From e835bf6ec80fa35fe9444cb4707aa8637630b79c Mon Sep 17 00:00:00 2001 From: Qin He <44242118+KoalaQin@users.noreply.github.com> Date: Fri, 27 Sep 2024 10:40:32 -0400 Subject: [PATCH 001/121] Add a draft notebook --- gnomad_toolbox/modules/__init__.py | 1 + gnomad_toolbox/modules/variant_filtering.py | 40 ++ .../use_cases/toolbox_for_gnomad_users.ipynb | 511 ++++++++++++++++++ 3 files changed, 552 insertions(+) create mode 100644 gnomad_toolbox/modules/__init__.py create mode 100644 gnomad_toolbox/modules/variant_filtering.py create mode 100644 gnomad_toolbox/use_cases/toolbox_for_gnomad_users.ipynb diff --git a/gnomad_toolbox/modules/__init__.py b/gnomad_toolbox/modules/__init__.py new file mode 100644 index 0000000..6e03199 --- /dev/null +++ b/gnomad_toolbox/modules/__init__.py @@ -0,0 +1 @@ +# noqa: D104 diff --git a/gnomad_toolbox/modules/variant_filtering.py b/gnomad_toolbox/modules/variant_filtering.py new file mode 100644 index 0000000..ab7b230 --- /dev/null +++ b/gnomad_toolbox/modules/variant_filtering.py @@ -0,0 +1,40 @@ +"""Small functions to filter variants in gnomAD datasets, such as by allele frequency or by variant type.""" + +import hail as hl + + +def get_variant_count( + ht: hl.Table, + afs: list[float] = [0.01, 0.001], + singletons: bool = False, + doubletons: bool = False, +) -> dict: + """ + Count variants with frequency <1%, <0.1%, and singletons (AC == 1). + + .. note:: This function works for gnomAD exomes and genomes datasets, not yet for + gnomAD joint dataset, since the HT schema is slightly different. + + :param ht: Input Table. + :param afs: List of allele frequencies cutoffs. + :param singletons: Include singletons. + :param doubletons: Include doubletons. + :return: Dictionary with counts. + """ + counts = {} + + # Filter to PASS variants. + ht = ht.filter(hl.len(ht.filters) == 0) + if singletons: + n_singletons = ht.aggregate(hl.agg.count_where(ht.freq[0].AC == 1)) + counts["number of singletons"] = n_singletons + if doubletons: + n_doubletons = ht.aggregate(hl.agg.count_where(ht.freq[0].AC == 2)) + counts["number of doubletons"] = n_doubletons + + for af in afs: + n_variants = ht.aggregate(hl.agg.count_where(ht.freq[0].AF < af)) + counts[f"number of variants with AF < {af}"] = n_variants + + # Count variants with frequency <1%, <0.1%, and singletons (AC == 1). + return counts diff --git a/gnomad_toolbox/use_cases/toolbox_for_gnomad_users.ipynb b/gnomad_toolbox/use_cases/toolbox_for_gnomad_users.ipynb new file mode 100644 index 0000000..d19f5ea --- /dev/null +++ b/gnomad_toolbox/use_cases/toolbox_for_gnomad_users.ipynb @@ -0,0 +1,511 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "id": "e77d32b1", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + " \n", + "
\n", + " \n", + " Loading BokehJS ...\n", + "
\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/javascript": [ + "(function(root) {\n", + " function now() {\n", + " return new Date();\n", + " }\n", + "\n", + " const force = true;\n", + "\n", + " if (typeof root._bokeh_onload_callbacks === \"undefined\" || force === true) {\n", + " root._bokeh_onload_callbacks = [];\n", + " root._bokeh_is_loading = undefined;\n", + " }\n", + "\n", + "const JS_MIME_TYPE = 'application/javascript';\n", + " const HTML_MIME_TYPE = 'text/html';\n", + " const EXEC_MIME_TYPE = 'application/vnd.bokehjs_exec.v0+json';\n", + " const CLASS_NAME = 'output_bokeh rendered_html';\n", + "\n", + " /**\n", + " * Render data to the DOM node\n", + " */\n", + " function render(props, node) {\n", + " const script = document.createElement(\"script\");\n", + " node.appendChild(script);\n", + " }\n", + "\n", + " /**\n", + " * Handle when an output is cleared or removed\n", + " */\n", + " function handleClearOutput(event, handle) {\n", + " function drop(id) {\n", + " const view = Bokeh.index.get_by_id(id)\n", + " if (view != null) {\n", + " view.model.document.clear()\n", + " Bokeh.index.delete(view)\n", + " }\n", + " }\n", + "\n", + " const cell = handle.cell;\n", + "\n", + " const id = cell.output_area._bokeh_element_id;\n", + " const server_id = cell.output_area._bokeh_server_id;\n", + "\n", + " // Clean up Bokeh references\n", + " if (id != null) {\n", + " drop(id)\n", + " }\n", + "\n", + " if (server_id !== undefined) {\n", + " // Clean up Bokeh references\n", + " const cmd_clean = \"from bokeh.io.state import curstate; print(curstate().uuid_to_server['\" + server_id + \"'].get_sessions()[0].document.roots[0]._id)\";\n", + " cell.notebook.kernel.execute(cmd_clean, {\n", + " iopub: {\n", + " output: function(msg) {\n", + " const id = msg.content.text.trim()\n", + " drop(id)\n", + " }\n", + " }\n", + " });\n", + " // Destroy server and session\n", + " const cmd_destroy = \"import bokeh.io.notebook as ion; ion.destroy_server('\" + server_id + \"')\";\n", + " cell.notebook.kernel.execute(cmd_destroy);\n", + " }\n", + " }\n", + "\n", + " /**\n", + " * Handle when a new output is added\n", + " */\n", + " function handleAddOutput(event, handle) {\n", + " const output_area = handle.output_area;\n", + " const output = handle.output;\n", + "\n", + " // limit handleAddOutput to display_data with EXEC_MIME_TYPE content only\n", + " if ((output.output_type != \"display_data\") || (!Object.prototype.hasOwnProperty.call(output.data, EXEC_MIME_TYPE))) {\n", + " return\n", + " }\n", + "\n", + " const toinsert = output_area.element.find(\".\" + CLASS_NAME.split(' ')[0]);\n", + "\n", + " if (output.metadata[EXEC_MIME_TYPE][\"id\"] !== undefined) {\n", + " toinsert[toinsert.length - 1].firstChild.textContent = output.data[JS_MIME_TYPE];\n", + " // store reference to embed id on output_area\n", + " output_area._bokeh_element_id = output.metadata[EXEC_MIME_TYPE][\"id\"];\n", + " }\n", + " if (output.metadata[EXEC_MIME_TYPE][\"server_id\"] !== undefined) {\n", + " const bk_div = document.createElement(\"div\");\n", + " bk_div.innerHTML = output.data[HTML_MIME_TYPE];\n", + " const script_attrs = bk_div.children[0].attributes;\n", + " for (let i = 0; i < script_attrs.length; i++) {\n", + " toinsert[toinsert.length - 1].firstChild.setAttribute(script_attrs[i].name, script_attrs[i].value);\n", + " toinsert[toinsert.length - 1].firstChild.textContent = bk_div.children[0].textContent\n", + " }\n", + " // store reference to server id on output_area\n", + " output_area._bokeh_server_id = output.metadata[EXEC_MIME_TYPE][\"server_id\"];\n", + " }\n", + " }\n", + "\n", + " function register_renderer(events, OutputArea) {\n", + "\n", + " function append_mime(data, metadata, element) {\n", + " // create a DOM node to render to\n", + " const toinsert = this.create_output_subarea(\n", + " metadata,\n", + " CLASS_NAME,\n", + " EXEC_MIME_TYPE\n", + " );\n", + " this.keyboard_manager.register_events(toinsert);\n", + " // Render to node\n", + " const props = {data: data, metadata: metadata[EXEC_MIME_TYPE]};\n", + " render(props, toinsert[toinsert.length - 1]);\n", + " element.append(toinsert);\n", + " return toinsert\n", + " }\n", + "\n", + " /* Handle when an output is cleared or removed */\n", + " events.on('clear_output.CodeCell', handleClearOutput);\n", + " events.on('delete.Cell', handleClearOutput);\n", + "\n", + " /* Handle when a new output is added */\n", + " events.on('output_added.OutputArea', handleAddOutput);\n", + "\n", + " /**\n", + " * Register the mime type and append_mime function with output_area\n", + " */\n", + " OutputArea.prototype.register_mime_type(EXEC_MIME_TYPE, append_mime, {\n", + " /* Is output safe? */\n", + " safe: true,\n", + " /* Index of renderer in `output_area.display_order` */\n", + " index: 0\n", + " });\n", + " }\n", + "\n", + " // register the mime type if in Jupyter Notebook environment and previously unregistered\n", + " if (root.Jupyter !== undefined) {\n", + " const events = require('base/js/events');\n", + " const OutputArea = require('notebook/js/outputarea').OutputArea;\n", + "\n", + " if (OutputArea.prototype.mime_types().indexOf(EXEC_MIME_TYPE) == -1) {\n", + " register_renderer(events, OutputArea);\n", + " }\n", + " }\n", + " if (typeof (root._bokeh_timeout) === \"undefined\" || force === true) {\n", + " root._bokeh_timeout = Date.now() + 5000;\n", + " root._bokeh_failed_load = false;\n", + " }\n", + "\n", + " const NB_LOAD_WARNING = {'data': {'text/html':\n", + " \"
\\n\"+\n", + " \"

\\n\"+\n", + " \"BokehJS does not appear to have successfully loaded. If loading BokehJS from CDN, this \\n\"+\n", + " \"may be due to a slow or bad network connection. Possible fixes:\\n\"+\n", + " \"

\\n\"+\n", + " \"\\n\"+\n", + " \"\\n\"+\n", + " \"from bokeh.resources import INLINE\\n\"+\n", + " \"output_notebook(resources=INLINE)\\n\"+\n", + " \"\\n\"+\n", + " \"
\"}};\n", + "\n", + " function display_loaded() {\n", + " const el = document.getElementById(\"bd49890a-4e5b-4f64-961d-42fb378aed46\");\n", + " if (el != null) {\n", + " el.textContent = \"BokehJS is loading...\";\n", + " }\n", + " if (root.Bokeh !== undefined) {\n", + " if (el != null) {\n", + " el.textContent = \"BokehJS \" + root.Bokeh.version + \" successfully loaded.\";\n", + " }\n", + " } else if (Date.now() < root._bokeh_timeout) {\n", + " setTimeout(display_loaded, 100)\n", + " }\n", + " }\n", + "\n", + " function run_callbacks() {\n", + " try {\n", + " root._bokeh_onload_callbacks.forEach(function(callback) {\n", + " if (callback != null)\n", + " callback();\n", + " });\n", + " } finally {\n", + " delete root._bokeh_onload_callbacks\n", + " }\n", + " console.debug(\"Bokeh: all callbacks have finished\");\n", + " }\n", + "\n", + " function load_libs(css_urls, js_urls, callback) {\n", + " if (css_urls == null) css_urls = [];\n", + " if (js_urls == null) js_urls = [];\n", + "\n", + " root._bokeh_onload_callbacks.push(callback);\n", + " if (root._bokeh_is_loading > 0) {\n", + " console.debug(\"Bokeh: BokehJS is being loaded, scheduling callback at\", now());\n", + " return null;\n", + " }\n", + " if (js_urls == null || js_urls.length === 0) {\n", + " run_callbacks();\n", + " return null;\n", + " }\n", + " console.debug(\"Bokeh: BokehJS not loaded, scheduling load and callback at\", now());\n", + " root._bokeh_is_loading = css_urls.length + js_urls.length;\n", + "\n", + " function on_load() {\n", + " root._bokeh_is_loading--;\n", + " if (root._bokeh_is_loading === 0) {\n", + " console.debug(\"Bokeh: all BokehJS libraries/stylesheets loaded\");\n", + " run_callbacks()\n", + " }\n", + " }\n", + "\n", + " function on_error(url) {\n", + " console.error(\"failed to load \" + url);\n", + " }\n", + "\n", + " for (let i = 0; i < css_urls.length; i++) {\n", + " const url = css_urls[i];\n", + " const element = document.createElement(\"link\");\n", + " element.onload = on_load;\n", + " element.onerror = on_error.bind(null, url);\n", + " element.rel = \"stylesheet\";\n", + " element.type = \"text/css\";\n", + " element.href = url;\n", + " console.debug(\"Bokeh: injecting link tag for BokehJS stylesheet: \", url);\n", + " document.body.appendChild(element);\n", + " }\n", + "\n", + " for (let i = 0; i < js_urls.length; i++) {\n", + " const url = js_urls[i];\n", + " const element = document.createElement('script');\n", + " element.onload = on_load;\n", + " element.onerror = on_error.bind(null, url);\n", + " element.async = false;\n", + " element.src = url;\n", + " console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n", + " document.head.appendChild(element);\n", + " }\n", + " };\n", + "\n", + " function inject_raw_css(css) {\n", + " const element = document.createElement(\"style\");\n", + " element.appendChild(document.createTextNode(css));\n", + " document.body.appendChild(element);\n", + " }\n", + "\n", + " const js_urls = [\"https://cdn.bokeh.org/bokeh/release/bokeh-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-gl-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-widgets-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-tables-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-mathjax-3.3.4.min.js\"];\n", + " const css_urls = [];\n", + "\n", + " const inline_js = [ function(Bokeh) {\n", + " Bokeh.set_log_level(\"info\");\n", + " },\n", + "function(Bokeh) {\n", + " }\n", + " ];\n", + "\n", + " function run_inline_js() {\n", + " if (root.Bokeh !== undefined || force === true) {\n", + " for (let i = 0; i < inline_js.length; i++) {\n", + " inline_js[i].call(root, root.Bokeh);\n", + " }\n", + "if (force === true) {\n", + " display_loaded();\n", + " }} else if (Date.now() < root._bokeh_timeout) {\n", + " setTimeout(run_inline_js, 100);\n", + " } else if (!root._bokeh_failed_load) {\n", + " console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n", + " root._bokeh_failed_load = true;\n", + " } else if (force !== true) {\n", + " const cell = $(document.getElementById(\"bd49890a-4e5b-4f64-961d-42fb378aed46\")).parents('.cell').data().cell;\n", + " cell.output_area.append_execute_result(NB_LOAD_WARNING)\n", + " }\n", + " }\n", + "\n", + " if (root._bokeh_is_loading === 0) {\n", + " console.debug(\"Bokeh: BokehJS loaded, going straight to plotting\");\n", + " run_inline_js();\n", + " } else {\n", + " load_libs(css_urls, js_urls, function() {\n", + " console.debug(\"Bokeh: BokehJS plotting callback run at\", now());\n", + " run_inline_js();\n", + " });\n", + " }\n", + "}(window));" + ], + "application/vnd.bokehjs_load.v0+json": "(function(root) {\n function now() {\n return new Date();\n }\n\n const force = true;\n\n if (typeof root._bokeh_onload_callbacks === \"undefined\" || force === true) {\n root._bokeh_onload_callbacks = [];\n root._bokeh_is_loading = undefined;\n }\n\n\n if (typeof (root._bokeh_timeout) === \"undefined\" || force === true) {\n root._bokeh_timeout = Date.now() + 5000;\n root._bokeh_failed_load = false;\n }\n\n const NB_LOAD_WARNING = {'data': {'text/html':\n \"
\\n\"+\n \"

\\n\"+\n \"BokehJS does not appear to have successfully loaded. If loading BokehJS from CDN, this \\n\"+\n \"may be due to a slow or bad network connection. Possible fixes:\\n\"+\n \"

\\n\"+\n \"\\n\"+\n \"\\n\"+\n \"from bokeh.resources import INLINE\\n\"+\n \"output_notebook(resources=INLINE)\\n\"+\n \"\\n\"+\n \"
\"}};\n\n function display_loaded() {\n const el = document.getElementById(\"bd49890a-4e5b-4f64-961d-42fb378aed46\");\n if (el != null) {\n el.textContent = \"BokehJS is loading...\";\n }\n if (root.Bokeh !== undefined) {\n if (el != null) {\n el.textContent = \"BokehJS \" + root.Bokeh.version + \" successfully loaded.\";\n }\n } else if (Date.now() < root._bokeh_timeout) {\n setTimeout(display_loaded, 100)\n }\n }\n\n function run_callbacks() {\n try {\n root._bokeh_onload_callbacks.forEach(function(callback) {\n if (callback != null)\n callback();\n });\n } finally {\n delete root._bokeh_onload_callbacks\n }\n console.debug(\"Bokeh: all callbacks have finished\");\n }\n\n function load_libs(css_urls, js_urls, callback) {\n if (css_urls == null) css_urls = [];\n if (js_urls == null) js_urls = [];\n\n root._bokeh_onload_callbacks.push(callback);\n if (root._bokeh_is_loading > 0) {\n console.debug(\"Bokeh: BokehJS is being loaded, scheduling callback at\", now());\n return null;\n }\n if (js_urls == null || js_urls.length === 0) {\n run_callbacks();\n return null;\n }\n console.debug(\"Bokeh: BokehJS not loaded, scheduling load and callback at\", now());\n root._bokeh_is_loading = css_urls.length + js_urls.length;\n\n function on_load() {\n root._bokeh_is_loading--;\n if (root._bokeh_is_loading === 0) {\n console.debug(\"Bokeh: all BokehJS libraries/stylesheets loaded\");\n run_callbacks()\n }\n }\n\n function on_error(url) {\n console.error(\"failed to load \" + url);\n }\n\n for (let i = 0; i < css_urls.length; i++) {\n const url = css_urls[i];\n const element = document.createElement(\"link\");\n element.onload = on_load;\n element.onerror = on_error.bind(null, url);\n element.rel = \"stylesheet\";\n element.type = \"text/css\";\n element.href = url;\n console.debug(\"Bokeh: injecting link tag for BokehJS stylesheet: \", url);\n document.body.appendChild(element);\n }\n\n for (let i = 0; i < js_urls.length; i++) {\n const url = js_urls[i];\n const element = document.createElement('script');\n element.onload = on_load;\n element.onerror = on_error.bind(null, url);\n element.async = false;\n element.src = url;\n console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n document.head.appendChild(element);\n }\n };\n\n function inject_raw_css(css) {\n const element = document.createElement(\"style\");\n element.appendChild(document.createTextNode(css));\n document.body.appendChild(element);\n }\n\n const js_urls = [\"https://cdn.bokeh.org/bokeh/release/bokeh-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-gl-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-widgets-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-tables-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-mathjax-3.3.4.min.js\"];\n const css_urls = [];\n\n const inline_js = [ function(Bokeh) {\n Bokeh.set_log_level(\"info\");\n },\nfunction(Bokeh) {\n }\n ];\n\n function run_inline_js() {\n if (root.Bokeh !== undefined || force === true) {\n for (let i = 0; i < inline_js.length; i++) {\n inline_js[i].call(root, root.Bokeh);\n }\nif (force === true) {\n display_loaded();\n }} else if (Date.now() < root._bokeh_timeout) {\n setTimeout(run_inline_js, 100);\n } else if (!root._bokeh_failed_load) {\n console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n root._bokeh_failed_load = true;\n } else if (force !== true) {\n const cell = $(document.getElementById(\"bd49890a-4e5b-4f64-961d-42fb378aed46\")).parents('.cell').data().cell;\n cell.output_area.append_execute_result(NB_LOAD_WARNING)\n }\n }\n\n if (root._bokeh_is_loading === 0) {\n console.debug(\"Bokeh: BokehJS loaded, going straight to plotting\");\n run_inline_js();\n } else {\n load_libs(css_urls, js_urls, function() {\n console.debug(\"Bokeh: BokehJS plotting callback run at\", now());\n run_inline_js();\n });\n }\n}(window));" + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import hail as hl\n", + "from gnomad.resources.grch37.gnomad import public_release as v2_public_release\n", + "from gnomad.resources.grch38.gnomad import public_release as v4_public_release" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "6fae5aa5", + "metadata": {}, + "outputs": [], + "source": [ + "# Get the number of variant counts by allele frequencies" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "4c6e7dd6", + "metadata": {}, + "outputs": [], + "source": [ + "def get_variant_count(ht: hl.Table, afs: list[float]=[0.01, 0.001], singletons: bool = False, doubletons: bool = False) -> dict:\n", + " \"\"\"\n", + " Count variants with frequency <1%, <0.1%, and singletons (AC == 1).\n", + "\n", + " .. note:: This function works for gnomAD exomes and genomes datasets, not yet for gnomAD joint dataset, since the HT scheme is slightly different.\n", + "\n", + " :param ht: Input Table.\n", + " :param afs: List of allele frequencies cutoffs.\n", + " :param singletons: Include singletons.\n", + " :param doubletons: Include doubletons.\n", + " :return: Dictionary with counts.\n", + " \"\"\"\n", + " counts = {}\n", + "\n", + " # Filter to PASS variants.\n", + " ht = ht.filter(hl.len(ht.filters) == 0)\n", + " if singletons:\n", + " n_singletons = ht.aggregate(hl.agg.count_where(ht.freq[0].AC == 1))\n", + " counts[\"number of singletons\"] = n_singletons\n", + " if doubletons:\n", + " n_doubletons = ht.aggregate(hl.agg.count_where(ht.freq[0].AC == 2))\n", + " counts[\"number of doubletons\"] = n_doubletons\n", + "\n", + " for af in afs:\n", + " n_variants = ht.aggregate(hl.agg.count_where(ht.freq[0].AF < af))\n", + " counts[f\"number of variants with AF < {af}\"] = n_variants\n", + "\n", + " # Count variants with frequency <1%, <0.1%, and singletons (AC == 1).\n", + " return counts" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "112c5065", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Initializing Hail with default parameters...\n", + "/opt/conda/miniconda3/lib/python3.10/site-packages/hailtop/aiocloud/aiogoogle/user_config.py:43: UserWarning:\n", + "\n", + "Reading spark-defaults.conf to determine GCS requester pays configuration. This is deprecated. Please use `hailctl config set gcs_requester_pays/project` and `hailctl config set gcs_requester_pays/buckets`.\n", + "\n", + "Setting default log level to \"WARN\".\n", + "To adjust logging level use sc.setLogLevel(newLevel). For SparkR, use setLogLevel(newLevel).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SPARKMONITOR_LISTENER: Started SparkListener for Jupyter Notebook\n", + "SPARKMONITOR_LISTENER: Port obtained from environment: 48351\n", + "SPARKMONITOR_LISTENER: Application Started: application_1727440474542_0001 ...Start Time: 1727441640185\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Running on Apache Spark version 3.3.2\n", + "SparkUI available at http://qh1-m.c.broad-mpg-gnomad.internal:38205\n", + "Welcome to\n", + " __ __ <>__\n", + " / /_/ /__ __/ /\n", + " / __ / _ `/ / /\n", + " /_/ /_/\\_,_/_/_/ version 0.2.130-bea04d9c79b5\n", + "LOGGING: writing to /home/hail/hail-20240927-1253-0.2.130-bea04d9c79b5.log\n" + ] + } + ], + "source": [ + "v2_ht = v2_public_release(\"exomes\").ht()" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "c276fb7e", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "[Stage 1:===================================================>(9979 + 16) / 9997]\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{'number of variants with AF < 0.01': 14795986, 'number of variants with AF < 0.001': 14551940}\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "[Stage 1:====================================================>(9995 + 3) / 9997]\r" + ] + } + ], + "source": [ + "print(get_variant_count(v2_ht))" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "c0243c4b", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "[Stage 5:====================================================>(9992 + 5) / 9997]\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{'number of singletons': 7763393, 'number of doubletons': 2194502, 'number of variants with AF < 0.01': 14795986, 'number of variants with AF < 0.001': 14551940}\n" + ] + } + ], + "source": [ + "print(get_variant_count(v2_ht, singletons=True, doubletons=True))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "d6f4a60c", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.8" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} From c9f0e22fa321df45eff6c48710a69caec3e69900 Mon Sep 17 00:00:00 2001 From: Qin He <44242118+KoalaQin@users.noreply.github.com> Date: Mon, 30 Sep 2024 10:55:23 -0400 Subject: [PATCH 002/121] Add more use cases in notebook --- .../use_cases/toolbox_for_gnomad_users.ipynb | 706 ++++++++++++++++-- 1 file changed, 650 insertions(+), 56 deletions(-) diff --git a/gnomad_toolbox/use_cases/toolbox_for_gnomad_users.ipynb b/gnomad_toolbox/use_cases/toolbox_for_gnomad_users.ipynb index d19f5ea..93f80a1 100644 --- a/gnomad_toolbox/use_cases/toolbox_for_gnomad_users.ipynb +++ b/gnomad_toolbox/use_cases/toolbox_for_gnomad_users.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "code", - "execution_count": 1, + "execution_count": 6, "id": "e77d32b1", "metadata": {}, "outputs": [ @@ -19,7 +19,7 @@ " \n", "
\n", " \n", - " Loading BokehJS ...\n", + " Loading BokehJS ...\n", "
\n" ] }, @@ -191,7 +191,7 @@ " \"\"}};\n", "\n", " function display_loaded() {\n", - " const el = document.getElementById(\"bd49890a-4e5b-4f64-961d-42fb378aed46\");\n", + " const el = document.getElementById(\"f884217f-12c5-4fe1-a1d8-6a1d52499205\");\n", " if (el != null) {\n", " el.textContent = \"BokehJS is loading...\";\n", " }\n", @@ -297,7 +297,7 @@ " console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n", " root._bokeh_failed_load = true;\n", " } else if (force !== true) {\n", - " const cell = $(document.getElementById(\"bd49890a-4e5b-4f64-961d-42fb378aed46\")).parents('.cell').data().cell;\n", + " const cell = $(document.getElementById(\"f884217f-12c5-4fe1-a1d8-6a1d52499205\")).parents('.cell').data().cell;\n", " cell.output_area.append_execute_result(NB_LOAD_WARNING)\n", " }\n", " }\n", @@ -313,40 +313,74 @@ " }\n", "}(window));" ], - "application/vnd.bokehjs_load.v0+json": "(function(root) {\n function now() {\n return new Date();\n }\n\n const force = true;\n\n if (typeof root._bokeh_onload_callbacks === \"undefined\" || force === true) {\n root._bokeh_onload_callbacks = [];\n root._bokeh_is_loading = undefined;\n }\n\n\n if (typeof (root._bokeh_timeout) === \"undefined\" || force === true) {\n root._bokeh_timeout = Date.now() + 5000;\n root._bokeh_failed_load = false;\n }\n\n const NB_LOAD_WARNING = {'data': {'text/html':\n \"
\\n\"+\n \"

\\n\"+\n \"BokehJS does not appear to have successfully loaded. If loading BokehJS from CDN, this \\n\"+\n \"may be due to a slow or bad network connection. Possible fixes:\\n\"+\n \"

\\n\"+\n \"\\n\"+\n \"\\n\"+\n \"from bokeh.resources import INLINE\\n\"+\n \"output_notebook(resources=INLINE)\\n\"+\n \"\\n\"+\n \"
\"}};\n\n function display_loaded() {\n const el = document.getElementById(\"bd49890a-4e5b-4f64-961d-42fb378aed46\");\n if (el != null) {\n el.textContent = \"BokehJS is loading...\";\n }\n if (root.Bokeh !== undefined) {\n if (el != null) {\n el.textContent = \"BokehJS \" + root.Bokeh.version + \" successfully loaded.\";\n }\n } else if (Date.now() < root._bokeh_timeout) {\n setTimeout(display_loaded, 100)\n }\n }\n\n function run_callbacks() {\n try {\n root._bokeh_onload_callbacks.forEach(function(callback) {\n if (callback != null)\n callback();\n });\n } finally {\n delete root._bokeh_onload_callbacks\n }\n console.debug(\"Bokeh: all callbacks have finished\");\n }\n\n function load_libs(css_urls, js_urls, callback) {\n if (css_urls == null) css_urls = [];\n if (js_urls == null) js_urls = [];\n\n root._bokeh_onload_callbacks.push(callback);\n if (root._bokeh_is_loading > 0) {\n console.debug(\"Bokeh: BokehJS is being loaded, scheduling callback at\", now());\n return null;\n }\n if (js_urls == null || js_urls.length === 0) {\n run_callbacks();\n return null;\n }\n console.debug(\"Bokeh: BokehJS not loaded, scheduling load and callback at\", now());\n root._bokeh_is_loading = css_urls.length + js_urls.length;\n\n function on_load() {\n root._bokeh_is_loading--;\n if (root._bokeh_is_loading === 0) {\n console.debug(\"Bokeh: all BokehJS libraries/stylesheets loaded\");\n run_callbacks()\n }\n }\n\n function on_error(url) {\n console.error(\"failed to load \" + url);\n }\n\n for (let i = 0; i < css_urls.length; i++) {\n const url = css_urls[i];\n const element = document.createElement(\"link\");\n element.onload = on_load;\n element.onerror = on_error.bind(null, url);\n element.rel = \"stylesheet\";\n element.type = \"text/css\";\n element.href = url;\n console.debug(\"Bokeh: injecting link tag for BokehJS stylesheet: \", url);\n document.body.appendChild(element);\n }\n\n for (let i = 0; i < js_urls.length; i++) {\n const url = js_urls[i];\n const element = document.createElement('script');\n element.onload = on_load;\n element.onerror = on_error.bind(null, url);\n element.async = false;\n element.src = url;\n console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n document.head.appendChild(element);\n }\n };\n\n function inject_raw_css(css) {\n const element = document.createElement(\"style\");\n element.appendChild(document.createTextNode(css));\n document.body.appendChild(element);\n }\n\n const js_urls = [\"https://cdn.bokeh.org/bokeh/release/bokeh-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-gl-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-widgets-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-tables-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-mathjax-3.3.4.min.js\"];\n const css_urls = [];\n\n const inline_js = [ function(Bokeh) {\n Bokeh.set_log_level(\"info\");\n },\nfunction(Bokeh) {\n }\n ];\n\n function run_inline_js() {\n if (root.Bokeh !== undefined || force === true) {\n for (let i = 0; i < inline_js.length; i++) {\n inline_js[i].call(root, root.Bokeh);\n }\nif (force === true) {\n display_loaded();\n }} else if (Date.now() < root._bokeh_timeout) {\n setTimeout(run_inline_js, 100);\n } else if (!root._bokeh_failed_load) {\n console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n root._bokeh_failed_load = true;\n } else if (force !== true) {\n const cell = $(document.getElementById(\"bd49890a-4e5b-4f64-961d-42fb378aed46\")).parents('.cell').data().cell;\n cell.output_area.append_execute_result(NB_LOAD_WARNING)\n }\n }\n\n if (root._bokeh_is_loading === 0) {\n console.debug(\"Bokeh: BokehJS loaded, going straight to plotting\");\n run_inline_js();\n } else {\n load_libs(css_urls, js_urls, function() {\n console.debug(\"Bokeh: BokehJS plotting callback run at\", now());\n run_inline_js();\n });\n }\n}(window));" + "application/vnd.bokehjs_load.v0+json": "(function(root) {\n function now() {\n return new Date();\n }\n\n const force = true;\n\n if (typeof root._bokeh_onload_callbacks === \"undefined\" || force === true) {\n root._bokeh_onload_callbacks = [];\n root._bokeh_is_loading = undefined;\n }\n\n\n if (typeof (root._bokeh_timeout) === \"undefined\" || force === true) {\n root._bokeh_timeout = Date.now() + 5000;\n root._bokeh_failed_load = false;\n }\n\n const NB_LOAD_WARNING = {'data': {'text/html':\n \"
\\n\"+\n \"

\\n\"+\n \"BokehJS does not appear to have successfully loaded. If loading BokehJS from CDN, this \\n\"+\n \"may be due to a slow or bad network connection. Possible fixes:\\n\"+\n \"

\\n\"+\n \"\\n\"+\n \"\\n\"+\n \"from bokeh.resources import INLINE\\n\"+\n \"output_notebook(resources=INLINE)\\n\"+\n \"\\n\"+\n \"
\"}};\n\n function display_loaded() {\n const el = document.getElementById(\"f884217f-12c5-4fe1-a1d8-6a1d52499205\");\n if (el != null) {\n el.textContent = \"BokehJS is loading...\";\n }\n if (root.Bokeh !== undefined) {\n if (el != null) {\n el.textContent = \"BokehJS \" + root.Bokeh.version + \" successfully loaded.\";\n }\n } else if (Date.now() < root._bokeh_timeout) {\n setTimeout(display_loaded, 100)\n }\n }\n\n function run_callbacks() {\n try {\n root._bokeh_onload_callbacks.forEach(function(callback) {\n if (callback != null)\n callback();\n });\n } finally {\n delete root._bokeh_onload_callbacks\n }\n console.debug(\"Bokeh: all callbacks have finished\");\n }\n\n function load_libs(css_urls, js_urls, callback) {\n if (css_urls == null) css_urls = [];\n if (js_urls == null) js_urls = [];\n\n root._bokeh_onload_callbacks.push(callback);\n if (root._bokeh_is_loading > 0) {\n console.debug(\"Bokeh: BokehJS is being loaded, scheduling callback at\", now());\n return null;\n }\n if (js_urls == null || js_urls.length === 0) {\n run_callbacks();\n return null;\n }\n console.debug(\"Bokeh: BokehJS not loaded, scheduling load and callback at\", now());\n root._bokeh_is_loading = css_urls.length + js_urls.length;\n\n function on_load() {\n root._bokeh_is_loading--;\n if (root._bokeh_is_loading === 0) {\n console.debug(\"Bokeh: all BokehJS libraries/stylesheets loaded\");\n run_callbacks()\n }\n }\n\n function on_error(url) {\n console.error(\"failed to load \" + url);\n }\n\n for (let i = 0; i < css_urls.length; i++) {\n const url = css_urls[i];\n const element = document.createElement(\"link\");\n element.onload = on_load;\n element.onerror = on_error.bind(null, url);\n element.rel = \"stylesheet\";\n element.type = \"text/css\";\n element.href = url;\n console.debug(\"Bokeh: injecting link tag for BokehJS stylesheet: \", url);\n document.body.appendChild(element);\n }\n\n for (let i = 0; i < js_urls.length; i++) {\n const url = js_urls[i];\n const element = document.createElement('script');\n element.onload = on_load;\n element.onerror = on_error.bind(null, url);\n element.async = false;\n element.src = url;\n console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n document.head.appendChild(element);\n }\n };\n\n function inject_raw_css(css) {\n const element = document.createElement(\"style\");\n element.appendChild(document.createTextNode(css));\n document.body.appendChild(element);\n }\n\n const js_urls = [\"https://cdn.bokeh.org/bokeh/release/bokeh-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-gl-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-widgets-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-tables-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-mathjax-3.3.4.min.js\"];\n const css_urls = [];\n\n const inline_js = [ function(Bokeh) {\n Bokeh.set_log_level(\"info\");\n },\nfunction(Bokeh) {\n }\n ];\n\n function run_inline_js() {\n if (root.Bokeh !== undefined || force === true) {\n for (let i = 0; i < inline_js.length; i++) {\n inline_js[i].call(root, root.Bokeh);\n }\nif (force === true) {\n display_loaded();\n }} else if (Date.now() < root._bokeh_timeout) {\n setTimeout(run_inline_js, 100);\n } else if (!root._bokeh_failed_load) {\n console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n root._bokeh_failed_load = true;\n } else if (force !== true) {\n const cell = $(document.getElementById(\"f884217f-12c5-4fe1-a1d8-6a1d52499205\")).parents('.cell').data().cell;\n cell.output_area.append_execute_result(NB_LOAD_WARNING)\n }\n }\n\n if (root._bokeh_is_loading === 0) {\n console.debug(\"Bokeh: BokehJS loaded, going straight to plotting\");\n run_inline_js();\n } else {\n load_libs(css_urls, js_urls, function() {\n console.debug(\"Bokeh: BokehJS plotting callback run at\", now());\n run_inline_js();\n });\n }\n}(window));" }, "metadata": {}, "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/opt/conda/miniconda3/lib/python3.11/site-packages/hailtop/aiocloud/aiogoogle/user_config.py:43: UserWarning:\n", + "\n", + "Reading spark-defaults.conf to determine GCS requester pays configuration. This is deprecated. Please use `hailctl config set gcs_requester_pays/project` and `hailctl config set gcs_requester_pays/buckets`.\n", + "\n", + "Setting default log level to \"WARN\".\n", + "To adjust logging level use sc.setLogLevel(newLevel). For SparkR, use setLogLevel(newLevel).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SPARKMONITOR_LISTENER: Started SparkListener for Jupyter Notebook\n", + "SPARKMONITOR_LISTENER: Port obtained from environment: 52867\n", + "SPARKMONITOR_LISTENER: Application Started: application_1727699094620_0001 ...Start Time: 1727699722656\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Running on Apache Spark version 3.5.0\n", + "SparkUI available at http://qh1-m.c.broad-mpg-gnomad.internal:43005\n", + "Welcome to\n", + " __ __ <>__\n", + " / /_/ /__ __/ /\n", + " / __ / _ `/ / /\n", + " /_/ /_/\\_,_/_/_/ version 0.2.132-678e1f52b999\n", + "LOGGING: writing to /test_toolbox.log\n" + ] } ], "source": [ "import hail as hl\n", - "from gnomad.resources.grch37.gnomad import public_release as v2_public_release\n", - "from gnomad.resources.grch38.gnomad import public_release as v4_public_release" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "6fae5aa5", - "metadata": {}, - "outputs": [], - "source": [ - "# Get the number of variant counts by allele frequencies" + "\n", + "hl.init(\n", + " log=\"/test_toolbox.log\",\n", + " tmp_dir=\"gs://gnomad-tmp-30day\",\n", + " )" ] }, { "cell_type": "code", - "execution_count": 5, - "id": "4c6e7dd6", + "execution_count": 11, + "id": "dd053d78", "metadata": {}, "outputs": [], "source": [ - "def get_variant_count(ht: hl.Table, afs: list[float]=[0.01, 0.001], singletons: bool = False, doubletons: bool = False) -> dict:\n", + "def get_variant_count(\n", + " ht: hl.Table,\n", + " afs: list[float] = [0.01, 0.001],\n", + " singletons: bool = False,\n", + " doubletons: bool = False,\n", + ") -> dict:\n", " \"\"\"\n", " Count variants with frequency <1%, <0.1%, and singletons (AC == 1).\n", "\n", - " .. note:: This function works for gnomAD exomes and genomes datasets, not yet for gnomAD joint dataset, since the HT scheme is slightly different.\n", + " .. note:: This function works for gnomAD exomes and genomes datasets, not yet for\n", + " gnomAD joint dataset, since the HT schema is slightly different.\n", "\n", " :param ht: Input Table.\n", " :param afs: List of allele frequencies cutoffs.\n", @@ -373,115 +407,659 @@ " return counts" ] }, + { + "cell_type": "markdown", + "id": "1ba4bfaf", + "metadata": {}, + "source": [ + "# Get variant count" + ] + }, + { + "cell_type": "markdown", + "id": "df28f17d", + "metadata": {}, + "source": [ + "## Get variant count by AF for a release" + ] + }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 8, + "id": "d9f96940", + "metadata": {}, + "outputs": [], + "source": [ + "from gnomad.resources.grch38.gnomad import public_release as v4_public_release" + ] + }, + { + "cell_type": "code", + "execution_count": 9, "id": "112c5065", "metadata": {}, + "outputs": [], + "source": [ + "ht = v4_public_release(\"exomes\").ht()" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "c276fb7e", + "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ - "Initializing Hail with default parameters...\n", - "/opt/conda/miniconda3/lib/python3.10/site-packages/hailtop/aiocloud/aiogoogle/user_config.py:43: UserWarning:\n", - "\n", - "Reading spark-defaults.conf to determine GCS requester pays configuration. This is deprecated. Please use `hailctl config set gcs_requester_pays/project` and `hailctl config set gcs_requester_pays/buckets`.\n", - "\n", - "Setting default log level to \"WARN\".\n", - "To adjust logging level use sc.setLogLevel(newLevel). For SparkR, use setLogLevel(newLevel).\n" + "[Stage 1:====================================================>(8782 + 7) / 8789]\r" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "SPARKMONITOR_LISTENER: Started SparkListener for Jupyter Notebook\n", - "SPARKMONITOR_LISTENER: Port obtained from environment: 48351\n", - "SPARKMONITOR_LISTENER: Application Started: application_1727440474542_0001 ...Start Time: 1727441640185\n" + "{'number of variants with AF < 0.01': 68398090, 'number of variants with AF < 0.001': 67709028}\n" + ] + } + ], + "source": [ + "print(get_variant_count(ht))" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "c0243c4b", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "[Stage 5:====================================================>(8781 + 8) / 8789]\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{'number of singletons': 34047562, 'number of doubletons': 10161819, 'number of variants with AF < 0.01': 68398090, 'number of variants with AF < 0.001': 67709028}\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "Running on Apache Spark version 3.3.2\n", - "SparkUI available at http://qh1-m.c.broad-mpg-gnomad.internal:38205\n", - "Welcome to\n", - " __ __ <>__\n", - " / /_/ /__ __/ /\n", - " / __ / _ `/ / /\n", - " /_/ /_/\\_,_/_/_/ version 0.2.130-bea04d9c79b5\n", - "LOGGING: writing to /home/hail/hail-20240927-1253-0.2.130-bea04d9c79b5.log\n" + "\r", + "[Stage 5:====================================================>(8786 + 3) / 8789]\r" ] } ], "source": [ - "v2_ht = v2_public_release(\"exomes\").ht()" + "print(get_variant_count(ht, singletons=True, doubletons=True))" + ] + }, + { + "cell_type": "markdown", + "id": "cc1178c8", + "metadata": {}, + "source": [ + "## Get variant count by AF for a gene" ] }, { "cell_type": "code", - "execution_count": 6, - "id": "c276fb7e", + "execution_count": 15, + "id": "814e2af4", "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ - "[Stage 1:===================================================>(9979 + 16) / 9997]\r" + "[Stage 7:===========================================================(3 + 1) / 3]\r" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "{'number of variants with AF < 0.01': 14795986, 'number of variants with AF < 0.001': 14551940}\n" + "{'number of singletons': 5282, 'number of doubletons': 1616, 'number of variants with AF < 0.01': 10733, 'number of variants with AF < 0.001': 10656}\n" ] - }, + } + ], + "source": [ + "# Filter to interval, e.g. for ASH1L.\n", + "gene_interval = \"chr1:155335268-155563162\"\n", + "\n", + "# Filter the exome release Hail Table to the ASH1L gene interval.\n", + "ht = hl.filter_intervals(ht, [hl.parse_locus_interval(gene_interval, reference_genome=\"GRCh38\")])\n", + "\n", + "print(get_variant_count(ht, singletons=True, doubletons=True))" + ] + }, + { + "cell_type": "markdown", + "id": "30663beb", + "metadata": {}, + "source": [ + "# Filter to variants by VEP annotations" + ] + }, + { + "cell_type": "markdown", + "id": "9c78ffb2", + "metadata": {}, + "source": [ + "## Filter to LOF variants" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "a58ab4ac", + "metadata": {}, + "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ - "\r", - "[Stage 1:====================================================>(9995 + 3) / 9997]\r" + "INFO (gnomad.utils.vep 928): Filtering to canonical transcripts\n", + "INFO (gnomad.utils.vep 931): Filtering to MANE Select transcripts...\n", + "INFO (gnomad.utils.vep 934): Filtering to Ensembl transcripts...\n", + "INFO (gnomad.utils.vep 940): Filtering to genes of interest...\n", + "INFO (gnomad.utils.vep 948): Filtering to variants with additional criteria...\n" ] } ], "source": [ - "print(get_variant_count(v2_ht))" + "from gnomad.utils.vep import filter_vep_transcript_csqs\n", + "# Filter to variants in ASH1L that are LOFTEE high-confidence (with no flags) in the MANE select transcript.\n", + "ht = filter_vep_transcript_csqs(\n", + " ht, \n", + " synonymous=False, \n", + " mane_select=True,\n", + " genes=[\"ASH1L\"],\n", + " match_by_gene_symbol=True,\n", + " additional_filtering_criteria=[lambda x: (x.lof == \"HC\") & hl.is_missing(x.lof_flags)],\n", + ")" + ] + }, + { + "cell_type": "markdown", + "id": "6aaba993", + "metadata": {}, + "source": [ + "## Filter to pLOF variants that we used to compute constraint metrics\n", + "pLOF variants meets the following requirements:\n", + "* High-confidence LOFTEE variants (without any flags),\n", + "* Only variants in the MANE Select transcript,\n", + "* PASS variants that are SNVs with MAF ≤ 0.1%, and\n", + "* Exome median depth ≥ 30\n", + "\n", + "**Note: this number should match the number of observed pLOF SNVs on the gene page of gnomAD Browser.**" ] }, { "cell_type": "code", - "execution_count": 7, - "id": "c0243c4b", + "execution_count": 17, + "id": "291d8b7c", "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ - "[Stage 5:====================================================>(9992 + 5) / 9997]\r" + "[Stage 7:===================(3 + 1) / 3][Stage 10:==================(3 + 1) / 3]\r" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "{'number of singletons': 7763393, 'number of doubletons': 2194502, 'number of variants with AF < 0.01': 14795986, 'number of variants with AF < 0.001': 14551940}\n" + "Number of variants: 18\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "[Stage 7:=====(3 + 1) / 3][Stage 10:====(3 + 1) / 3][Stage 11:====(3 + 1) / 3]\r" + ] + }, + { + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
freq
coverage
locus
alleles
AC
AF
AN
homozygote_count
csq
mean
median_approx
total_DP
over_1
over_5
over_10
over_15
over_20
over_25
over_30
over_50
over_100
locus<GRCh38>array<str>int32float64int32int64array<str>float64int32int64float64float64float64float64float64float64float64float64float64
chr1:155337668["G","A"]4593.14e-0414612700["stop_gained"]2.99e+0130218875281.00e+001.00e+001.00e+009.97e-019.86e-019.32e-016.07e-018.96e-046.02e-05
chr1:155337704["G","A"]64.10e-0614617140["stop_gained"]3.02e+0130220423721.00e+001.00e+001.00e+009.99e-019.94e-019.48e-016.21e-018.39e-044.93e-05
chr1:155337735["G","C"]16.84e-0714616940["stop_gained"]3.00e+0130219569141.00e+001.00e+001.00e+009.99e-019.92e-019.37e-016.12e-018.29e-044.51e-05
chr1:155338087["A","T"]16.85e-0714596480["splice_donor_variant"]3.16e+0131231113191.00e+001.00e+009.99e-019.95e-019.89e-019.59e-017.28e-011.35e-027.59e-04
chr1:155338161["G","A"]16.84e-0714618840["stop_gained"]3.19e+0131233084341.00e+001.00e+001.00e+001.00e+001.00e+009.76e-017.42e-011.35e-027.59e-04
chr1:155349380["T","A"]16.84e-0714617680["stop_gained"]3.21e+0132234449991.00e+001.00e+001.00e+001.00e+009.99e-019.76e-017.69e-015.01e-031.85e-04
chr1:155354631["C","T"]16.88e-0714534160["splice_acceptor_variant"]3.04e+0131222097141.00e+001.00e+009.95e-019.83e-019.70e-019.28e-016.53e-014.38e-044.93e-05
chr1:155357583["A","T"]16.84e-0714616800["splice_donor_variant"]3.13e+0131228588871.00e+001.00e+001.00e+009.99e-019.97e-019.79e-017.47e-018.14e-046.29e-05
chr1:155370984["C","T"]32.06e-0614557260["splice_acceptor_variant"]3.12e+0131228021811.00e+001.00e+001.00e+009.99e-019.97e-019.54e-016.97e-011.14e-033.69e-05
chr1:155415924["C","A"]21.48e-0613520320["splice_acceptor_variant"]2.73e+0130199323751.00e+009.84e-019.41e-018.72e-018.17e-017.64e-015.70e-011.35e-031.76e-04
chr1:155478020["G","C"]16.84e-0714618880["stop_gained"]3.26e+0133238300811.00e+001.00e+001.00e+001.00e+001.00e+009.72e-017.53e-013.11e-031.40e-03
chr1:155478203["C","T"]16.84e-0714618740["stop_gained"]3.27e+0133239248711.00e+001.00e+001.00e+001.00e+001.00e+009.72e-017.55e-014.07e-032.20e-03
chr1:155478439["C","T"]16.84e-0714618900["stop_gained"]3.28e+0133239948001.00e+001.00e+001.00e+001.00e+001.00e+009.73e-017.59e-014.64e-032.58e-03
chr1:155478528["G","A"]16.84e-0714618760["stop_gained"]3.28e+0133239977761.00e+001.00e+001.00e+001.00e+001.00e+009.73e-017.59e-014.67e-032.60e-03
chr1:155479767["G","A"]16.84e-0714618580["stop_gained"]3.30e+0133241434591.00e+001.00e+001.00e+001.00e+001.00e+009.74e-017.66e-016.55e-033.89e-03
chr1:155479862["G","T"]16.84e-0714611600["stop_gained"]3.24e+0132236512031.00e+001.00e+001.00e+009.98e-019.91e-019.42e-017.13e-016.42e-033.91e-03
chr1:155521291["C","A"]16.84e-0714618620["stop_gained"]3.30e+0132241144561.00e+001.00e+001.00e+001.00e+001.00e+009.81e-017.72e-011.94e-023.68e-03
chr1:155521474["C","A"]16.84e-0714617240["stop_gained"]3.29e+0132240775511.00e+001.00e+001.00e+009.99e-019.98e-019.79e-017.69e-011.94e-023.67e-03
" + ], + "text/plain": [ + "+----------------+------------+---------+----------+---------+\n", + "| locus | alleles | freq.AC | freq.AF | freq.AN |\n", + "+----------------+------------+---------+----------+---------+\n", + "| locus | array | int32 | float64 | int32 |\n", + "+----------------+------------+---------+----------+---------+\n", + "| chr1:155337668 | [\"G\",\"A\"] | 459 | 3.14e-04 | 1461270 |\n", + "| chr1:155337704 | [\"G\",\"A\"] | 6 | 4.10e-06 | 1461714 |\n", + "| chr1:155337735 | [\"G\",\"C\"] | 1 | 6.84e-07 | 1461694 |\n", + "| chr1:155338087 | [\"A\",\"T\"] | 1 | 6.85e-07 | 1459648 |\n", + "| chr1:155338161 | [\"G\",\"A\"] | 1 | 6.84e-07 | 1461884 |\n", + "| chr1:155349380 | [\"T\",\"A\"] | 1 | 6.84e-07 | 1461768 |\n", + "| chr1:155354631 | [\"C\",\"T\"] | 1 | 6.88e-07 | 1453416 |\n", + "| chr1:155357583 | [\"A\",\"T\"] | 1 | 6.84e-07 | 1461680 |\n", + "| chr1:155370984 | [\"C\",\"T\"] | 3 | 2.06e-06 | 1455726 |\n", + "| chr1:155415924 | [\"C\",\"A\"] | 2 | 1.48e-06 | 1352032 |\n", + "| chr1:155478020 | [\"G\",\"C\"] | 1 | 6.84e-07 | 1461888 |\n", + "| chr1:155478203 | [\"C\",\"T\"] | 1 | 6.84e-07 | 1461874 |\n", + "| chr1:155478439 | [\"C\",\"T\"] | 1 | 6.84e-07 | 1461890 |\n", + "| chr1:155478528 | [\"G\",\"A\"] | 1 | 6.84e-07 | 1461876 |\n", + "| chr1:155479767 | [\"G\",\"A\"] | 1 | 6.84e-07 | 1461858 |\n", + "| chr1:155479862 | [\"G\",\"T\"] | 1 | 6.84e-07 | 1461160 |\n", + "| chr1:155521291 | [\"C\",\"A\"] | 1 | 6.84e-07 | 1461862 |\n", + "| chr1:155521474 | [\"C\",\"A\"] | 1 | 6.84e-07 | 1461724 |\n", + "+----------------+------------+---------+----------+---------+\n", + "\n", + "+-----------------------+-----------------------------+---------------+\n", + "| freq.homozygote_count | csq | coverage.mean |\n", + "+-----------------------+-----------------------------+---------------+\n", + "| int64 | array | float64 |\n", + "+-----------------------+-----------------------------+---------------+\n", + "| 0 | [\"stop_gained\"] | 2.99e+01 |\n", + "| 0 | [\"stop_gained\"] | 3.02e+01 |\n", + "| 0 | [\"stop_gained\"] | 3.00e+01 |\n", + "| 0 | [\"splice_donor_variant\"] | 3.16e+01 |\n", + "| 0 | [\"stop_gained\"] | 3.19e+01 |\n", + "| 0 | [\"stop_gained\"] | 3.21e+01 |\n", + "| 0 | [\"splice_acceptor_variant\"] | 3.04e+01 |\n", + "| 0 | [\"splice_donor_variant\"] | 3.13e+01 |\n", + "| 0 | [\"splice_acceptor_variant\"] | 3.12e+01 |\n", + "| 0 | [\"splice_acceptor_variant\"] | 2.73e+01 |\n", + "| 0 | [\"stop_gained\"] | 3.26e+01 |\n", + "| 0 | [\"stop_gained\"] | 3.27e+01 |\n", + "| 0 | [\"stop_gained\"] | 3.28e+01 |\n", + "| 0 | [\"stop_gained\"] | 3.28e+01 |\n", + "| 0 | [\"stop_gained\"] | 3.30e+01 |\n", + "| 0 | [\"stop_gained\"] | 3.24e+01 |\n", + "| 0 | [\"stop_gained\"] | 3.30e+01 |\n", + "| 0 | [\"stop_gained\"] | 3.29e+01 |\n", + "+-----------------------+-----------------------------+---------------+\n", + "\n", + "+------------------------+-------------------+-----------------+\n", + "| coverage.median_approx | coverage.total_DP | coverage.over_1 |\n", + "+------------------------+-------------------+-----------------+\n", + "| int32 | int64 | float64 |\n", + "+------------------------+-------------------+-----------------+\n", + "| 30 | 21887528 | 1.00e+00 |\n", + "| 30 | 22042372 | 1.00e+00 |\n", + "| 30 | 21956914 | 1.00e+00 |\n", + "| 31 | 23111319 | 1.00e+00 |\n", + "| 31 | 23308434 | 1.00e+00 |\n", + "| 32 | 23444999 | 1.00e+00 |\n", + "| 31 | 22209714 | 1.00e+00 |\n", + "| 31 | 22858887 | 1.00e+00 |\n", + "| 31 | 22802181 | 1.00e+00 |\n", + "| 30 | 19932375 | 1.00e+00 |\n", + "| 33 | 23830081 | 1.00e+00 |\n", + "| 33 | 23924871 | 1.00e+00 |\n", + "| 33 | 23994800 | 1.00e+00 |\n", + "| 33 | 23997776 | 1.00e+00 |\n", + "| 33 | 24143459 | 1.00e+00 |\n", + "| 32 | 23651203 | 1.00e+00 |\n", + "| 32 | 24114456 | 1.00e+00 |\n", + "| 32 | 24077551 | 1.00e+00 |\n", + "+------------------------+-------------------+-----------------+\n", + "\n", + "+-----------------+------------------+------------------+------------------+\n", + "| coverage.over_5 | coverage.over_10 | coverage.over_15 | coverage.over_20 |\n", + "+-----------------+------------------+------------------+------------------+\n", + "| float64 | float64 | float64 | float64 |\n", + "+-----------------+------------------+------------------+------------------+\n", + "| 1.00e+00 | 1.00e+00 | 9.97e-01 | 9.86e-01 |\n", + "| 1.00e+00 | 1.00e+00 | 9.99e-01 | 9.94e-01 |\n", + "| 1.00e+00 | 1.00e+00 | 9.99e-01 | 9.92e-01 |\n", + "| 1.00e+00 | 9.99e-01 | 9.95e-01 | 9.89e-01 |\n", + "| 1.00e+00 | 1.00e+00 | 1.00e+00 | 1.00e+00 |\n", + "| 1.00e+00 | 1.00e+00 | 1.00e+00 | 9.99e-01 |\n", + "| 1.00e+00 | 9.95e-01 | 9.83e-01 | 9.70e-01 |\n", + "| 1.00e+00 | 1.00e+00 | 9.99e-01 | 9.97e-01 |\n", + "| 1.00e+00 | 1.00e+00 | 9.99e-01 | 9.97e-01 |\n", + "| 9.84e-01 | 9.41e-01 | 8.72e-01 | 8.17e-01 |\n", + "| 1.00e+00 | 1.00e+00 | 1.00e+00 | 1.00e+00 |\n", + "| 1.00e+00 | 1.00e+00 | 1.00e+00 | 1.00e+00 |\n", + "| 1.00e+00 | 1.00e+00 | 1.00e+00 | 1.00e+00 |\n", + "| 1.00e+00 | 1.00e+00 | 1.00e+00 | 1.00e+00 |\n", + "| 1.00e+00 | 1.00e+00 | 1.00e+00 | 1.00e+00 |\n", + "| 1.00e+00 | 1.00e+00 | 9.98e-01 | 9.91e-01 |\n", + "| 1.00e+00 | 1.00e+00 | 1.00e+00 | 1.00e+00 |\n", + "| 1.00e+00 | 1.00e+00 | 9.99e-01 | 9.98e-01 |\n", + "+-----------------+------------------+------------------+------------------+\n", + "\n", + "+------------------+------------------+------------------+-------------------+\n", + "| coverage.over_25 | coverage.over_30 | coverage.over_50 | coverage.over_100 |\n", + "+------------------+------------------+------------------+-------------------+\n", + "| float64 | float64 | float64 | float64 |\n", + "+------------------+------------------+------------------+-------------------+\n", + "| 9.32e-01 | 6.07e-01 | 8.96e-04 | 6.02e-05 |\n", + "| 9.48e-01 | 6.21e-01 | 8.39e-04 | 4.93e-05 |\n", + "| 9.37e-01 | 6.12e-01 | 8.29e-04 | 4.51e-05 |\n", + "| 9.59e-01 | 7.28e-01 | 1.35e-02 | 7.59e-04 |\n", + "| 9.76e-01 | 7.42e-01 | 1.35e-02 | 7.59e-04 |\n", + "| 9.76e-01 | 7.69e-01 | 5.01e-03 | 1.85e-04 |\n", + "| 9.28e-01 | 6.53e-01 | 4.38e-04 | 4.93e-05 |\n", + "| 9.79e-01 | 7.47e-01 | 8.14e-04 | 6.29e-05 |\n", + "| 9.54e-01 | 6.97e-01 | 1.14e-03 | 3.69e-05 |\n", + "| 7.64e-01 | 5.70e-01 | 1.35e-03 | 1.76e-04 |\n", + "| 9.72e-01 | 7.53e-01 | 3.11e-03 | 1.40e-03 |\n", + "| 9.72e-01 | 7.55e-01 | 4.07e-03 | 2.20e-03 |\n", + "| 9.73e-01 | 7.59e-01 | 4.64e-03 | 2.58e-03 |\n", + "| 9.73e-01 | 7.59e-01 | 4.67e-03 | 2.60e-03 |\n", + "| 9.74e-01 | 7.66e-01 | 6.55e-03 | 3.89e-03 |\n", + "| 9.42e-01 | 7.13e-01 | 6.42e-03 | 3.91e-03 |\n", + "| 9.81e-01 | 7.72e-01 | 1.94e-02 | 3.68e-03 |\n", + "| 9.79e-01 | 7.69e-01 | 1.94e-02 | 3.67e-03 |\n", + "+------------------+------------------+------------------+-------------------+" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "[Stage 7:=====(3 + 1) / 3][Stage 10:====(3 + 1) / 3][Stage 11:====(3 + 1) / 3]\r" ] } ], "source": [ - "print(get_variant_count(v2_ht, singletons=True, doubletons=True))" + "from gnomad.resources.grch38.gnomad import coverage\n", + "\n", + "coverage_ht = coverage(\"exomes\").ht()\n", + "\n", + "#Filter to PASS SNVs with AF <= 0.1% and median exome depth ≥ 30.\n", + "ht = ht.filter(\n", + " (hl.len(ht.filters) == 0) \n", + " & (ht.allele_info.allele_type == \"snv\")\n", + " & (ht.freq[0].AF <= 0.001)\n", + " & (coverage_ht[ht.locus].median_approx >= 30)\n", + ")\n", + "\n", + "print(f\"Number of variants: {ht.count()}\")\n", + "ht.select(\n", + " freq=ht.freq[0],\n", + " csq=ht.vep.transcript_consequences[0].consequence_terms,\n", + " coverage=coverage_ht[ht.locus],\n", + ").show(-1)" + ] + }, + { + "cell_type": "markdown", + "id": "bf479bea", + "metadata": {}, + "source": [ + "# Get 'freq' for specific genetic ancestry groups" + ] + }, + { + "cell_type": "code", + "execution_count": 85, + "id": "ee3cb2dd", + "metadata": {}, + "outputs": [], + "source": [ + "ht = v4_public_release(\"exomes\").ht()\n", + "\n", + "# Filter to interval, e.g. for ASH1L.\n", + "gene_interval = \"chr1:155335268-155563162\"\n", + "\n", + "# Filter the exome release Hail Table to the ASH1L gene interval.\n", + "ht = hl.filter_intervals(ht, [hl.parse_locus_interval(gene_interval, reference_genome=\"GRCh38\")])\n", + "\n", + "# Filter to variants with adj.AC > 0 \n", + "ht = ht.filter(ht.freq[0].AC>0)" + ] + }, + { + "cell_type": "code", + "execution_count": 86, + "id": "01c5051c", + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "text/plain": [ + "{'ami', 'asj', 'fin', 'oth', 'remaining'}" + ] + }, + "execution_count": 86, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# For this example, we filter to the ancestry that we included in the FAF calculation\n", + "from gnomad.resources.grch38.gnomad import POPS_TO_REMOVE_FOR_POPMAX\n", + "\n", + "POPS_TO_REMOVE_FOR_POPMAX[\"v4\"]" + ] + }, + { + "cell_type": "code", + "execution_count": 87, + "id": "905996c8", + "metadata": {}, + "outputs": [], + "source": [ + "from gnomad.utils.filtering import filter_arrays_by_meta\n", + "\n", + "# Remove unwanted stratifications\n", + "items_to_filter1 = ['sex','downsampling','subset']\n", + "freq_meta1, array_exprs1 = filter_arrays_by_meta(\n", + " ht.freq_meta,\n", + " {\n", + " **{a: ht[a] for a in ['freq']},\n", + " \"freq_meta_sample_count\": ht.index_globals().freq_meta_sample_count,\n", + " },\n", + " items_to_filter=items_to_filter1,\n", + " keep=False,\n", + " combine_operator=\"or\",\n", + " )" + ] + }, + { + "cell_type": "code", + "execution_count": 88, + "id": "c7cfb183", + "metadata": {}, + "outputs": [], + "source": [ + "# keep the necessary stratifications for your analysis \n", + "items_to_filter2 = {'gen_anc':['ami', 'asj', 'fin', 'oth', 'remaining'], 'group':['raw']}\n", + "\n", + "freq_meta2, array_exprs2 = filter_arrays_by_meta(\n", + " freq_meta1,\n", + " array_exprs1,\n", + " items_to_filter=items_to_filter2,\n", + " keep=False,\n", + " combine_operator=\"or\",\n", + " )" + ] + }, + { + "cell_type": "code", + "execution_count": 89, + "id": "f39a0853", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[[{'group': 'adj'},\n", + " {'gen_anc': 'afr', 'group': 'adj'},\n", + " {'gen_anc': 'amr', 'group': 'adj'},\n", + " {'gen_anc': 'eas', 'group': 'adj'},\n", + " {'gen_anc': 'mid', 'group': 'adj'},\n", + " {'gen_anc': 'nfe', 'group': 'adj'},\n", + " {'gen_anc': 'sas', 'group': 'adj'}]]" + ] + }, + "execution_count": 89, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "freq_meta2.collect()" + ] + }, + { + "cell_type": "code", + "execution_count": 90, + "id": "f57f9535", + "metadata": {}, + "outputs": [], + "source": [ + "ht = ht.annotate(**{a: array_exprs2[a] for a in ['freq']})\n", + "ht = ht.annotate_globals(\n", + " freq_meta=freq_meta2,\n", + " freq_meta_sample_count=array_exprs2[\"freq_meta_sample_count\"],\n", + " )" + ] + }, + { + "cell_type": "code", + "execution_count": 91, + "id": "4792f7d1", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
all
afr
amr
eas
mid
nfe
sas
locus
alleles
AC
AF
AN
homozygote_count
AC
AF
AN
homozygote_count
AC
AF
AN
homozygote_count
AC
AF
AN
homozygote_count
AC
AF
AN
homozygote_count
AC
AF
AN
homozygote_count
AC
AF
AN
homozygote_count
locus<GRCh38>array<str>int32float64int32int64int32float64int32int64int32float64int32int64int32float64int32int64int32float64int32int64int32float64int32int64int32float64int32int64
chr1:155335497["A","C"]11.79e-0356000NA000NA0000.00e+0013800NA0000.00e+00200NA00
chr1:155335570["T","C"]35.26e-0357000NA000NA0017.25e-0313800NA0000.00e+00200NA00
chr1:155335571["TA","T"]35.26e-0357000NA000NA0017.25e-0313800NA0000.00e+00200NA00
chr1:155335746["G","C"]11.77e-0356400NA000NA0000.00e+0013200NA0000.00e+00200NA00
chr1:155335855["G","A"]11.74e-0357600NA000NA0017.25e-0313800NA0000.00e+00600NA00

showing top 5 rows

\n" + ], + "text/plain": [ + "+----------------+------------+--------+----------+--------+\n", + "| locus | alleles | all.AC | all.AF | all.AN |\n", + "+----------------+------------+--------+----------+--------+\n", + "| locus | array | int32 | float64 | int32 |\n", + "+----------------+------------+--------+----------+--------+\n", + "| chr1:155335497 | [\"A\",\"C\"] | 1 | 1.79e-03 | 560 |\n", + "| chr1:155335570 | [\"T\",\"C\"] | 3 | 5.26e-03 | 570 |\n", + "| chr1:155335571 | [\"TA\",\"T\"] | 3 | 5.26e-03 | 570 |\n", + "| chr1:155335746 | [\"G\",\"C\"] | 1 | 1.77e-03 | 564 |\n", + "| chr1:155335855 | [\"G\",\"A\"] | 1 | 1.74e-03 | 576 |\n", + "+----------------+------------+--------+----------+--------+\n", + "\n", + "+----------------------+--------+---------+--------+----------------------+\n", + "| all.homozygote_count | afr.AC | afr.AF | afr.AN | afr.homozygote_count |\n", + "+----------------------+--------+---------+--------+----------------------+\n", + "| int64 | int32 | float64 | int32 | int64 |\n", + "+----------------------+--------+---------+--------+----------------------+\n", + "| 0 | 0 | NA | 0 | 0 |\n", + "| 0 | 0 | NA | 0 | 0 |\n", + "| 0 | 0 | NA | 0 | 0 |\n", + "| 0 | 0 | NA | 0 | 0 |\n", + "| 0 | 0 | NA | 0 | 0 |\n", + "+----------------------+--------+---------+--------+----------------------+\n", + "\n", + "+--------+---------+--------+----------------------+--------+----------+\n", + "| amr.AC | amr.AF | amr.AN | amr.homozygote_count | eas.AC | eas.AF |\n", + "+--------+---------+--------+----------------------+--------+----------+\n", + "| int32 | float64 | int32 | int64 | int32 | float64 |\n", + "+--------+---------+--------+----------------------+--------+----------+\n", + "| 0 | NA | 0 | 0 | 0 | 0.00e+00 |\n", + "| 0 | NA | 0 | 0 | 1 | 7.25e-03 |\n", + "| 0 | NA | 0 | 0 | 1 | 7.25e-03 |\n", + "| 0 | NA | 0 | 0 | 0 | 0.00e+00 |\n", + "| 0 | NA | 0 | 0 | 1 | 7.25e-03 |\n", + "+--------+---------+--------+----------------------+--------+----------+\n", + "\n", + "+--------+----------------------+--------+---------+--------+\n", + "| eas.AN | eas.homozygote_count | mid.AC | mid.AF | mid.AN |\n", + "+--------+----------------------+--------+---------+--------+\n", + "| int32 | int64 | int32 | float64 | int32 |\n", + "+--------+----------------------+--------+---------+--------+\n", + "| 138 | 0 | 0 | NA | 0 |\n", + "| 138 | 0 | 0 | NA | 0 |\n", + "| 138 | 0 | 0 | NA | 0 |\n", + "| 132 | 0 | 0 | NA | 0 |\n", + "| 138 | 0 | 0 | NA | 0 |\n", + "+--------+----------------------+--------+---------+--------+\n", + "\n", + "+----------------------+--------+----------+--------+----------------------+\n", + "| mid.homozygote_count | nfe.AC | nfe.AF | nfe.AN | nfe.homozygote_count |\n", + "+----------------------+--------+----------+--------+----------------------+\n", + "| int64 | int32 | float64 | int32 | int64 |\n", + "+----------------------+--------+----------+--------+----------------------+\n", + "| 0 | 0 | 0.00e+00 | 2 | 0 |\n", + "| 0 | 0 | 0.00e+00 | 2 | 0 |\n", + "| 0 | 0 | 0.00e+00 | 2 | 0 |\n", + "| 0 | 0 | 0.00e+00 | 2 | 0 |\n", + "| 0 | 0 | 0.00e+00 | 6 | 0 |\n", + "+----------------------+--------+----------+--------+----------------------+\n", + "\n", + "+--------+---------+--------+----------------------+\n", + "| sas.AC | sas.AF | sas.AN | sas.homozygote_count |\n", + "+--------+---------+--------+----------------------+\n", + "| int32 | float64 | int32 | int64 |\n", + "+--------+---------+--------+----------------------+\n", + "| 0 | NA | 0 | 0 |\n", + "| 0 | NA | 0 | 0 |\n", + "| 0 | NA | 0 | 0 |\n", + "| 0 | NA | 0 | 0 |\n", + "| 0 | NA | 0 | 0 |\n", + "+--------+---------+--------+----------------------+\n", + "showing top 5 rows" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "[Stage 7:=====(3 + 1) / 3][Stage 10:====(3 + 1) / 3][Stage 11:====(3 + 1) / 3]\r" + ] + } + ], + "source": [ + "populations = ['all', 'afr', 'amr', 'eas', 'mid', 'nfe', 'sas']\n", + "ht.select(**{pop: ht.freq[i] for i, pop in enumerate(populations)}).show(5)" ] }, { "cell_type": "code", "execution_count": null, - "id": "d6f4a60c", + "id": "027a2120", "metadata": {}, "outputs": [], "source": [] @@ -503,7 +1081,23 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.10.8" + "version": "3.11.7" + }, + "toc": { + "base_numbering": 1, + "nav_menu": { + "height": "213px", + "width": "374px" + }, + "number_sections": true, + "sideBar": true, + "skip_h1_title": false, + "title_cell": "Table of Contents", + "title_sidebar": "Contents", + "toc_cell": false, + "toc_position": {}, + "toc_section_display": true, + "toc_window_display": true } }, "nbformat": 4, From a44e72d3bbc41fc41fe6aabeb89d90e11d3e0419 Mon Sep 17 00:00:00 2001 From: Qin He <44242118+KoalaQin@users.noreply.github.com> Date: Mon, 30 Sep 2024 13:21:13 -0400 Subject: [PATCH 003/121] Add example to get AF for one ancestry for one variant --- .../use_cases/toolbox_for_gnomad_users.ipynb | 150 +++++++++++++++--- 1 file changed, 132 insertions(+), 18 deletions(-) diff --git a/gnomad_toolbox/use_cases/toolbox_for_gnomad_users.ipynb b/gnomad_toolbox/use_cases/toolbox_for_gnomad_users.ipynb index 93f80a1..ca5208e 100644 --- a/gnomad_toolbox/use_cases/toolbox_for_gnomad_users.ipynb +++ b/gnomad_toolbox/use_cases/toolbox_for_gnomad_users.ipynb @@ -366,7 +366,7 @@ { "cell_type": "code", "execution_count": 11, - "id": "dd053d78", + "id": "e69953f7", "metadata": {}, "outputs": [], "source": [ @@ -503,7 +503,7 @@ }, { "cell_type": "markdown", - "id": "cc1178c8", + "id": "725f9a57", "metadata": {}, "source": [ "## Get variant count by AF for a gene" @@ -512,7 +512,7 @@ { "cell_type": "code", "execution_count": 15, - "id": "814e2af4", + "id": "9f8e1ba4", "metadata": {}, "outputs": [ { @@ -542,7 +542,7 @@ }, { "cell_type": "markdown", - "id": "30663beb", + "id": "7bff63bb", "metadata": {}, "source": [ "# Filter to variants by VEP annotations" @@ -550,7 +550,7 @@ }, { "cell_type": "markdown", - "id": "9c78ffb2", + "id": "b1031947", "metadata": {}, "source": [ "## Filter to LOF variants" @@ -559,7 +559,7 @@ { "cell_type": "code", "execution_count": 16, - "id": "a58ab4ac", + "id": "5b08a706", "metadata": {}, "outputs": [ { @@ -589,7 +589,7 @@ }, { "cell_type": "markdown", - "id": "6aaba993", + "id": "f9b2d921", "metadata": {}, "source": [ "## Filter to pLOF variants that we used to compute constraint metrics\n", @@ -605,7 +605,7 @@ { "cell_type": "code", "execution_count": 17, - "id": "291d8b7c", + "id": "6ce87a77", "metadata": {}, "outputs": [ { @@ -814,16 +814,24 @@ }, { "cell_type": "markdown", - "id": "bf479bea", + "id": "b104a39b", "metadata": {}, "source": [ "# Get 'freq' for specific genetic ancestry groups" ] }, + { + "cell_type": "markdown", + "id": "135565fe", + "metadata": {}, + "source": [ + "## Get 'freq' for multiple groups for an (gene) interval" + ] + }, { "cell_type": "code", "execution_count": 85, - "id": "ee3cb2dd", + "id": "4f78166f", "metadata": {}, "outputs": [], "source": [ @@ -842,7 +850,7 @@ { "cell_type": "code", "execution_count": 86, - "id": "01c5051c", + "id": "8f625a41", "metadata": { "scrolled": true }, @@ -868,7 +876,7 @@ { "cell_type": "code", "execution_count": 87, - "id": "905996c8", + "id": "15729719", "metadata": {}, "outputs": [], "source": [ @@ -891,11 +899,11 @@ { "cell_type": "code", "execution_count": 88, - "id": "c7cfb183", + "id": "d2886179", "metadata": {}, "outputs": [], "source": [ - "# keep the necessary stratifications for your analysis \n", + "# Remove the genetic ancetries/group that you don't need \n", "items_to_filter2 = {'gen_anc':['ami', 'asj', 'fin', 'oth', 'remaining'], 'group':['raw']}\n", "\n", "freq_meta2, array_exprs2 = filter_arrays_by_meta(\n", @@ -910,7 +918,7 @@ { "cell_type": "code", "execution_count": 89, - "id": "f39a0853", + "id": "5471689c", "metadata": {}, "outputs": [ { @@ -937,7 +945,7 @@ { "cell_type": "code", "execution_count": 90, - "id": "f57f9535", + "id": "16170ed7", "metadata": {}, "outputs": [], "source": [ @@ -951,7 +959,7 @@ { "cell_type": "code", "execution_count": 91, - "id": "4792f7d1", + "id": "e3bcf7a0", "metadata": {}, "outputs": [ { @@ -1056,10 +1064,116 @@ "ht.select(**{pop: ht.freq[i] for i, pop in enumerate(populations)}).show(5)" ] }, + { + "cell_type": "markdown", + "id": "fe2e98b8", + "metadata": {}, + "source": [ + "## Get 'freq' for a specific group and a specific variant" + ] + }, + { + "cell_type": "code", + "execution_count": 96, + "id": "9a4f26a2", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[[{'gen_anc': 'afr', 'group': 'adj'}]]" + ] + }, + "execution_count": 96, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from gnomad.utils.filtering import filter_arrays_by_meta\n", + "\n", + "ht = v4_public_release(\"exomes\").ht()\n", + "\n", + "# Filter by the location of the variant\n", + "ht = ht.filter((ht.locus.contig == \"chr22\") & (ht.locus.position==15528692))\n", + "\n", + "# Assign th\n", + "items_to_filter1 = {'gen_anc':['afr'], 'group':['adj']}\n", + "freq_meta1, array_exprs1 = filter_arrays_by_meta(\n", + " ht.freq_meta,\n", + " {\n", + " **{a: ht[a] for a in ['freq']},\n", + " \"freq_meta_sample_count\": ht.index_globals().freq_meta_sample_count,\n", + " },\n", + " items_to_filter=items_to_filter1,\n", + " keep=True,\n", + " combine_operator=\"and\",\n", + " )\n", + "\n", + "# if you want to further remove 'downsampling', 'sex', and 'subset'\n", + "items_to_filter2 = ['sex','downsampling','subset']\n", + "freq_meta2, array_exprs2 = filter_arrays_by_meta(\n", + " freq_meta1,\n", + " {\n", + " **{a: ht[a] for a in ['freq']},\n", + " \"freq_meta_sample_count\": ht.index_globals().freq_meta_sample_count,\n", + " },\n", + " items_to_filter=items_to_filter2,\n", + " keep=False,\n", + " combine_operator=\"or\",\n", + " )\n", + "freq_meta2.collect()" + ] + }, + { + "cell_type": "code", + "execution_count": 98, + "id": "7e044201", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "
locus
alleles
freq
locus<GRCh38>array<str>array<struct{AC: int32, AF: float64, AN: int32, homozygote_count: int64}>
chr22:15528692["C","G"][(793,5.43e-04,1459438,7)]
" + ], + "text/plain": [ + "+----------------+------------+\n", + "| locus | alleles |\n", + "+----------------+------------+\n", + "| locus | array |\n", + "+----------------+------------+\n", + "| chr22:15528692 | [\"C\",\"G\"] |\n", + "+----------------+------------+\n", + "\n", + "+---------------------------------------------------------------------------+\n", + "| freq |\n", + "+---------------------------------------------------------------------------+\n", + "| array |\n", + "+---------------------------------------------------------------------------+\n", + "| [(793,5.43e-04,1459438,7)] |\n", + "+---------------------------------------------------------------------------+" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "ht = ht.annotate(**{a: array_exprs2[a] for a in ['freq']})\n", + "ht = ht.annotate_globals(\n", + " freq_meta=freq_meta2,\n", + " freq_meta_sample_count=array_exprs2[\"freq_meta_sample_count\"],\n", + " )\n", + "\n", + "ht.select('freq').show(-1)" + ] + }, { "cell_type": "code", "execution_count": null, - "id": "027a2120", + "id": "6fc82c5c", "metadata": {}, "outputs": [], "source": [] From 4bc936c3c94c046b44b29ca593b5db63ccf9a570 Mon Sep 17 00:00:00 2001 From: Qin He <44242118+KoalaQin@users.noreply.github.com> Date: Tue, 1 Oct 2024 10:27:26 -0400 Subject: [PATCH 004/121] Add table of contents and screenshot --- .../use_cases/toolbox_for_gnomad_users.ipynb | 47 ++++++++++++++++--- 1 file changed, 40 insertions(+), 7 deletions(-) diff --git a/gnomad_toolbox/use_cases/toolbox_for_gnomad_users.ipynb b/gnomad_toolbox/use_cases/toolbox_for_gnomad_users.ipynb index ca5208e..791362c 100644 --- a/gnomad_toolbox/use_cases/toolbox_for_gnomad_users.ipynb +++ b/gnomad_toolbox/use_cases/toolbox_for_gnomad_users.ipynb @@ -1,5 +1,16 @@ { "cells": [ + { + "cell_type": "markdown", + "id": "8e609a46", + "metadata": { + "toc": true + }, + "source": [ + "

Table of Contents

\n", + "" + ] + }, { "cell_type": "code", "execution_count": 6, @@ -420,7 +431,9 @@ "id": "df28f17d", "metadata": {}, "source": [ - "## Get variant count by AF for a release" + "## Get variant count by AF for a release\n", + "\n", + "**Note: this will take long if your notebook is using multiple nodes.**" ] }, { @@ -588,6 +601,11 @@ ] }, { + "attachments": { + "Screenshot%202024-10-01%20at%2010.20.53%E2%80%AFAM.png": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABokAAAFWCAYAAAC1jnTEAAAKrGlDQ1BJQ0MgUHJvZmlsZQAASImVlwdUU+kSgP9700NCS6hSQm+CdAJICT303myEJEAoIQaCgqioLK7giiIiAsqCLIoouCpF7FiwLQpKUdEFWRTUdbEgKirvAofg7jvvvfPmnjnz3cn8M/Pf8//nTAAgU1kCQTIsDUAKP10Y7OlCi4yKpuFGAR4oADKgA0sWO03ACAz0BYjM27/Lh14Azdh7xjO5/v33/yoyHG4aGwAoEOFYTho7BeFTiI6zBcJ0AFA1iF9rTbpghq8jTBUiDSI8MMPxczw+w7GzjEbPxoQGuyKsCACexGIJ4wEgaSN+WgY7HslDckPYlM/h8RFG3oFjSkoqB2GkLtBHYgQIz+Snx36XJ/5vOWPFOVmseDHP7WVW8G68NEEyK/P//Bz/W1KSRfM1dBElJQi9ghGL9AX1J6X6iJkf6x8wzzzObPwsJ4i8wuaZneYaPc8clpuPeG2yv+88x/E8mOI86czQeeamuYfMszA1WFwrTujKmGeWcKGuKClM7E/gMsX5sxJCI+Y5gxfuP89pSSE+CzGuYr9QFCzun8v3dFmo6yHee0rad/vlMcVr0xNCvcR7Zy30z+UzFnKmRYp743Dd3BdiwsTxgnQXcS1BcqA4npvsKfanZYSI16YjB3JhbaD4GyayvAPnGbgBd+CLPDQQCMyBJaIWM7507tqZMwpcUwWZQl58QjqNgdwyLo3JZ5ssppmbmlsCMHNn547Eu/7ZuwjJ4xd8fB4AljcRaFnwcU4DcGYZABT1BZ9WEwBSDwG4EMEWCTPmfDPXCWAAEUgBKlACakAL6ANjpDdrYA+ckY69QQAIBVFgJWCDBJAChGANyAabQB4oADvBHlAGKsFBcBgcAydACzgLLoFr4Ba4C3rAIzAIRsBLMA4+gCkIgnAQGaJASpA6pAMZQeYQHXKE3CFfKBiKgmKgeIgPiaBsaAtUABVBZVAVVAf9Cp2GLkE3oC7oATQEjUFvoc8wCibBVFgV1oWXwHSYAfvAofAKOB5eDWfBufAOuBSuho/CzfAl+BbcAw/CL+EJFEBJoORRGihjFB3ligpARaPiUELUBlQ+qgRVjWpAtaE6UPdQg6hXqE9oLJqCpqGN0fZoL3QYmo1ejd6A3o4uQx9GN6OvoO+hh9Dj6G8YMkYFY4SxwzAxkZh4zBpMHqYEU4tpwlzF9GBGMB+wWKw8Vg9rg/XCRmETseuw27H7sY3Yi9gu7DB2AofDKeGMcA64ABwLl47Lw+3DHcVdwHXjRnAf8RJ4dbw53gMfjefjN+NL8Efw5/Hd+Of4KYI0QYdgRwggcAiZhEJCDaGNcIcwQpgiyhD1iA7EUGIicROxlNhAvEocIL6TkJDQlLCVCJLgSeRIlEocl7guMSTxiSRLMiS5kpaTRKQdpEOki6QHpHdkMlmX7EyOJqeTd5DryJfJT8gfJSmSJpJMSY7kRslyyWbJbsnXUgQpHSmG1EqpLKkSqZNSd6ReSROkdaVdpVnSG6TLpU9L90lPyFBkzGQCZFJktssckbkhMyqLk9WVdZflyObKHpS9LDtMQVG0KK4UNmULpYZylTJCxVL1qExqIrWAeozaSR2Xk5WzlAuXWytXLndOblAeJa8rz5RPli+UPyHfK/9ZQVWBocBV2KbQoNCtMKm4SNFZkauYr9io2KP4WYmm5K6UpLRLqUXpsTJa2VA5SHmN8gHlq8qvFlEX2S9iL8pfdGLRQxVYxVAlWGWdykGV2yoTqmqqnqoC1X2ql1VfqcmrOaslqhWrnVcbU6eoO6rz1IvVL6i/oMnRGLRkWintCm1cQ0XDS0OkUaXRqTGlqacZprlZs1HzsRZRi64Vp1Ws1a41rq2u7aedrV2v/VCHoEPXSdDZq9OhM6mrpxuhu1W3RXdUT1GPqZelV683oE/Wd9JfrV+tf98Aa0A3SDLYb3DXEDa0MkwwLDe8YwQbWRvxjPYbdS3GLLZdzF9cvbjPmGTMMM4wrjceMpE38TXZbNJi8nqJ9pLoJbuWdCz5ZmplmmxaY/rITNbM22yzWZvZW3NDc7Z5ufl9C7KFh8VGi1aLN5ZGllzLA5b9VhQrP6utVu1WX61trIXWDdZjNto2MTYVNn10Kj2Qvp1+3RZj62K70fas7Sc7a7t0uxN2f9kb2yfZH7EfXaq3lLu0Zumwg6YDy6HKYdCR5hjj+LPjoJOGE8up2umps5Yzx7nW+TnDgJHIOMp47WLqInRpcpl0tXNd73rRDeXm6Zbv1uku6x7mXub+xEPTI96j3mPc08pznedFL4yXj9curz6mKpPNrGOOe9t4r/e+4kPyCfEp83nqa+gr9G3zg/28/Xb7Dfjr+PP9WwJAADNgd8DjQL3A1YFngrBBgUHlQc+CzYKzgztCKCGrQo6EfAh1CS0MfRSmHyYKaw+XCl8eXhc+GeEWURQxGLkkcn3krSjlKF5UazQuOjy6NnpimfuyPctGllstz1veu0JvxdoVN1Yqr0xeeW6V1CrWqpMxmJiImCMxX1gBrGrWRCwztiJ2nO3K3st+yXHmFHPGuA7cIu7zOIe4orjReIf43fFjCU4JJQmveK68Mt6bRK/EysTJpICkQ0nTyRHJjSn4lJiU03xZfhL/Sqpa6trULoGRIE8wuNpu9Z7V40IfYW0alLYirTWdigxHt0X6oh9EQxmOGeUZH9eErzm5VmYtf+3tTMPMbZnPszyyflmHXsde156tkb0pe2g9Y33VBmhD7Ib2jVobczeO5HjmHN5E3JS06bfNppuLNr/fErGlLVc1Nyd3+AfPH+rzJPOEeX1b7bdW/oj+kfdj5zaLbfu2fcvn5N8sMC0oKfiynb395k9mP5X+NL0jbkdnoXXhgZ3Ynfydvbucdh0ukinKKhre7be7uZhWnF/8fs+qPTdKLEsq9xL3ivYOlvqWtu7T3rdz35eyhLKecpfyxgqVim0Vk/s5+7sPOB9oqFStLKj8/DPv5/4qz6rmat3qkoPYgxkHn9WE13T8Qv+lrla5tqD26yH+ocHDwYev1NnU1R1ROVJYD9eL6seOLj9695jbsdYG44aqRvnGguPguOj4i19jfu094XOi/ST9ZMMpnVMVTZSm/GaoObN5vCWhZbA1qrXrtPfp9jb7tqYzJmcOndU4W35O7lzheeL53PPTF7IuTFwUXHx1Kf7ScPuq9keXIy/fvxJ0pfOqz9Xr1zyuXe5gdFy47nD97A27G6dv0m+23LK+1Xzb6nbTb1a/NXVadzbfsbnTetf2blvX0q7z3U7dl+653bt2n3n/Vo9/T1dvWG9/3/K+wX5O/+iD5AdvHmY8nHqUM4AZyH8s/bjkicqT6t8Nfm8ctB48N+Q2dPtpyNNHw+zhl3+k/fFlJPcZ+VnJc/XndaPmo2fHPMbuvlj2YuSl4OXUq7w/Zf6seK3/+tRfzn/dHo8cH3kjfDP9dvs7pXeH3lu+b58InHjyIeXD1GT+R6WPhz/RP3V8jvj8fGrNF9yX0q8GX9u++XwbmE6ZnhawhKzZUQCFKBwXB8DbQwCQo5DZ4S4AxGVzM/WsQHP/A2YJ/Ceem7tnxRqA+hwAghGdGR/3XwRAG1EpZwACEQ11BrCFhVjn59/ZWX1GpI8C0MU0DbX2fWI1nAP+IXNz/Hd9/9MCcda/2X8BEaoHZfbhPqoAAABiZVhJZk1NACoAAAAIAAIBEgADAAAAAQABAACHaQAEAAAAAQAAACYAAAAAAAOShgAHAAAAEgAAAFCgAgAEAAAAAQAABomgAwAEAAAAAQAAAVYAAAAAQVNDSUkAAABTY3JlZW5zaG90uT88RwAAAj5pVFh0WE1MOmNvbS5hZG9iZS54bXAAAAAAADx4OnhtcG1ldGEgeG1sbnM6eD0iYWRvYmU6bnM6bWV0YS8iIHg6eG1wdGs9IlhNUCBDb3JlIDYuMC4wIj4KICAgPHJkZjpSREYgeG1sbnM6cmRmPSJodHRwOi8vd3d3LnczLm9yZy8xOTk5LzAyLzIyLXJkZi1zeW50YXgtbnMjIj4KICAgICAgPHJkZjpEZXNjcmlwdGlvbiByZGY6YWJvdXQ9IiIKICAgICAgICAgICAgeG1sbnM6ZXhpZj0iaHR0cDovL25zLmFkb2JlLmNvbS9leGlmLzEuMC8iCiAgICAgICAgICAgIHhtbG5zOnRpZmY9Imh0dHA6Ly9ucy5hZG9iZS5jb20vdGlmZi8xLjAvIj4KICAgICAgICAgPGV4aWY6UGl4ZWxZRGltZW5zaW9uPjM0MjwvZXhpZjpQaXhlbFlEaW1lbnNpb24+CiAgICAgICAgIDxleGlmOlVzZXJDb21tZW50PlNjcmVlbnNob3Q8L2V4aWY6VXNlckNvbW1lbnQ+CiAgICAgICAgIDxleGlmOlBpeGVsWERpbWVuc2lvbj4xNjczPC9leGlmOlBpeGVsWERpbWVuc2lvbj4KICAgICAgICAgPHRpZmY6T3JpZW50YXRpb24+MTwvdGlmZjpPcmllbnRhdGlvbj4KICAgICAgPC9yZGY6RGVzY3JpcHRpb24+CiAgIDwvcmRmOlJERj4KPC94OnhtcG1ldGE+ChwqqdIAAEAASURBVHgB7J0JvE5V98e3ookG0kBJg1ApRcO/gUqakUoypFGJQrMGQpKhwRsNmlSiSC+lQWiek1QSDRo1qaRB8/S/3+VdT+eee57p3su9+K3P57nnPOfsvc8+373PUfv3rLUq/P777/8EmQiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIwCpFYLVV6m51syIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAkZAIpEmggiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAisggQkEq2Cg65bFgEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAGJRJoDIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIrAKEpBItAoOum5ZBERABERABERABERABERABERABERABERABERABERABERABCQSaQ6IgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIwCpIQCLRKjjoumUREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAERkEikOSACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACqyABiUSr4KDrlkVABERABERABERABERABERABERABERABERABERABERABERAIpHmgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAisggQkEq2Cg65bFgEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAGJRJoDIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIrAKEpBItAoOum5ZBERABERABERABERABERABERABERABERABERABERABERABCouKwS//vpr+Ouvv8I///wTlixZEtZZZ52w1lprhTXWWCPvSy5evDi89dZbYeHChWGbbbYJ9erVC2uvvXbGdn7++We7thdac801Q8WKmW833zp//vln+O233/wSoUKFCnafqQMFO9w/7UatcuXK0a/aFwEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREIHlTmCZeRLtscceoWrVqqFatWphiy22CNWrVw/HHntszjf4xRdfhJNOOskEoU022SQ0a9YstG/fPuy+++5h/fXXDw0bNgyXXHJJQIyKG+LNBhtsYNenD3xGjx4dL1boO2JOvM6oUaMKlYl+ef7558O2225b6BrU//7776PFAuW8D7595513CpXRFxEQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQARFY3gQyu9YUszdz584N8+bNK1L74YcfDosWLQobbrhhkXPRAy+88EJo27Zt+Oqrr6KHC+3TPp8nn3wyjBs3zoSoQgViXxCB8rWkOngODRgwIAwdOjSxuXid+HcqJR1LbEwHRUAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAERGAZEVgmnkT//e9/03Z38uTJac9xgvP77bdfRoEo2sDMmTPDLrvsEhYsWBA9vEz258yZE/baa6+0AtEyuagaFQEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREIFlQKDURSK8ZMaMGZO2q3fffXfac3/88Ufo2bNnkfOHHHJIGD58eLjnnnvMi2ezzTYrVObHH38MV155ZaFjpf1l+vTpoVGjRuHNN98s7abVngiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAgsdwKlLhLh2fPhhx+mvZGnn346fPbZZ4nnydUTP3feeeeZd9Hpp58ejj766NCrVy8Tavbdd99CbTz44IOFvpf2l/fff79QkxtvvHHo1KlToWNl+QWBDbGMfEy5GGHzZs+eHR599NHwySefpA2BR7lffvkla5PZytEv2snWP87feuut4Y477khd87vvvgs33nhjeP3111PHHnrooXDLLbfk7HGWqpjnDp5tXOebb77JWvOvv/4KiKDLei5m7chyLJAPn+J265lnngm33XZbTvOwuNdYUerxfmQ+Tp06tVS7vKzaLdVO5tkYgj7vDXLXPfvss3nWVnEREAEREAEREAEREAEREAEREAEREAEREAERWDUIlLpINGHChELkTjvttIAnUNQmTpwY/Zra//jjj1P7vnPkkUf6bmpbpUqVcNFFF4V111039fnhhx/C77//niqzLHfatGljgkVS35bldTO1jWhGrqeTTz45U7GwcOHC0Lp1a+O26667hlatWoU6deqE6tWrm7dWPF/SNttsE9Zff/2AgJfJatasaeU++uijIsUef/zxsOWWW9r5Cy+8sMj56AHEpm7dugXmjdt1111nHmYtWrTwQ+Gaa64JZ5xxRkZBMlW4BDt4qHEdhLRsxkL0iSeeaGLmBx98kK14kfMIZNlEtCKVyvhAPnyK01WEz+bNm4euXbuGTGEsi9N2ea7Dc8hc+Pvvvwt1k3xvzMeRI0cWOl7SL+napQ+InyuaPfLII6Fx48b23mCOPvfccyvaLai/IiACIiACIiACIiACIiACIiACIiACIiACIrBcCJSqSMSCYjycHAv7RxxxRKGbSReOLh5Gjkpjx45NXKRs1qxZWLRoUaHPGmusUeg6pf0FUYqQd9wjokp5sXnz5gU8uLBx48aZR1FS3xB6WDhlAZV7Oeigg0LHjh3DjjvuaHXw2konMsXFo6T2ORYth+CDmHfooYeWyOOHnFMYY16eDbENrltttVXYdNNN8+oqC/HrrLOOffCcki0lULlyZcsDBtfttttulcEydOhQmwt9+vQps3t+4YUXrA/kYVvR7Nprr7Uut2vXLrz44osBT1SZCIiACIiACIiACIiACIiACIiACIiACIiACIhAUQIVix4q/hF+rf3VV18VaqBp06Zh8eLFhY699tpr4d133w1169YtdByxgsVgvAfcbrjhBlvk69ChQzjggANC/fr1Q8WK+XcbLyNEi3QW/8V+vByeOnPmzAk1atSInyrz7+PHjy/UB8KdwStuhHFjfFj0ReyK3sukSZPCsccea6LcueeeGxo0aBCvntd3vMLatm0bGGvGdM899wzTpk3Lqw0vfPjhh4effvopVKpUyQ+Vy+3mm2+emv+rr756sfsYFdqK3chKUnG11VYLTz75pAnFxXnuV1QMPgd8Wxb3UZbXLun9umjet2/fgDekTAREQAREQAREQAREQAREQAREQAREQAREQAREIJlAqXoS3XvvvYWuQg4hvCPwECK0WdSSQkexsJ4kbiA0nH/++aFRo0bWHh4liEfx/EXR9uP7PXv2NLECwSLpQ0i1TIYXQ1RUyVR2eZ7DewvxByMsG3bnnXfaNv7nvvvus0Pk6IjfC6HzPMcSglFJjdBrjBveSohrhx12WLGbJJfRp59+Gr7++uusbSAEkhOLD3maoobn2fTp062t6PF89gk7Rz6YpLnHovqCBQvC559/XqRJ+kVOJeoioEUX4LmvaJg+9un/zz//XKQdONDGF198UeQcBxDTqPvtt9/aeQRX8oA9//zzqWOJFQsOEiKP0IDF9WRinLh20v1zTe/bl19+WagL33//vfWPfiaNMeXhylyPtlOceyzOHGCsuS+EZDy+Zs2aFZ544gnzYvQbYTzx1CPHFwJ4dHy9jG9pg2cDT524cM09ci36ibHle7rxhjntvPzyy0Xa8nmUFC6OY7SbFOKT6zLPfI4vWbLEytIe9+V1fZwZP54rPBqjxo8D6BusCHMZN58P+Y5jpvnC/OG+/IcG/j7gHqIGN+Yb76akHwjE+waLhx9+uMh9wIBnBv7xa0Svl+n5j5ZjP9P8iJfVdxEQAREQAREQAREQAREQAREQAREQAREQAREoKYFSE4l+/fXXEPdoId+NWzx/T7qQc8OGDUuJFV43vsVj6ayzzrKwXghGxcn/Em9zRf3+zDPPpLyDCBWHAIbnRaYcOiyQJtlNN91kAgEh4kpqhAm76qqrwuTJk4sIUvm2zSJzvXr1LL9IprrcF8IkZU866aTUojnhpvCeQhjDK2nrrbcOO+ywQ0iXGyvpGggVDRs2tPxNLVu2tLlH6L7o4jeL4njH7bzzzqkmWFQfPny4jcvuu+8eqLvtttuap9abb75p5c4+++xCodT22GMPu4fHHnss1c6oUaPsGH2njdq1a9s9xHOAIfBx/5deemm44IILLE/VgQceGPbff38LgYe4GrfbbrvN6uClR2jAjTfeOOy3335FFv3j9eLfeQ65NvmnWGSPG3mkOI93B4YIdsopp4SNNtrI+kc/EZR5V7hIQjlCVlLP82IV5x5LMgd8PKZMmWJs/u///s/yrDGfCD3J3CDvGp6QvPPwwoMlQkvUEIAYa/jSJox5Xtu3b58SGN577z27Vw+Xdvvtt9v3eF432h0xYoTl+aKdJk2aWFvXX3+9XZJrMT/hhlATNwQSzlE3SdBirh933HFWzfvE3P7mm29MWKIuc4r5xPjxXDFHMZ4DxP5NNtnE2qfvtWrVsmcwKnblO465zBe8IOmbG88i3wnDifG8Mr/4UQDzjR8ebLHFFqF///5exbbRvnEvhJCk3owZM+w8ghh8mes8M/CvVq1a6Ny5c+q9Q8Fcnn9rsOBPLvPDy2orAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAqVFIP+4bWmuzK+p/dfbXgQvEjc8SfBgcWPhEc+K6II65wgpdfPNN9sCHIvXvpDu9eJbBCNC2uFdwcL/qmbkbMLILQQ7hCIWmFkURSSIGuH6Ro8ebQIKi88s3kbzOFG/tEJ6xUXBpIXoaN9Kuo9ISbg8QtqxeI2nWpUqVcL7779vIgNzE2+2ffbZx7wHEGDIV4Kgtvfee2e9PF5Wa6+9dujSpYstkuMxwtxEFECAICxakrFwTq4nrFevXmGDDTYwbxMW6VlkZtEd0YdF9KuvvtrKdevWLSCykeMIw0PPc6rQ/9122808F1j8Z9zXW2+9cPDBB1tZ/8MzhHnbd911lz2fiKvkeCL8H3b//feHrl272j7PKAIWDGmb7y+99JIt9luBLH94/mgbLxk8S1q3bl2ohgvD7i3IPTFPEYa4Z0Q+hGY8Nhgb2shkud5jac0B5jT317x5cxtz3j0nnnhi6p7ZZ87hyYc3C+EWowLNhRdeGBBxEIYYN+YTIipzlfmL4Lfhhhua1yTiL94pfj2EpahxHk68Yxkz6hJKEhEKARFhjbmKUIvggYgRNY5hiHQVKlSInrJ92pk7d27A+5D++vxjXvp7nntkPuFliXCG4IIh1MKGPjP/8NShHULAIdYyHtHnJddxzGW+cN88S1deeaX1pUePHmHNNdcMO+20k4mSbdq0Ma7MOXLlwYy+DRw40MYOkSlq3jf6zX1SD087RDQMYdB/qECYT96veMQiuGO5PP88v1gu86O03s92Qf0RAREQAREQAREQAREQAREQAREQAREQAREQgQICpSYSxb2IoEsoHg9JlESbxbm4SEQ5FtlYNObDL7ZZyGbBlBBmvkAZbY+FPhYHWbRMZyzmRX9hHi+HiJEUAi9erjx9/+GHHwKL/xgLnhiLoIhECGyE6IsuAF922WXGEE6UY/GXRWYWkF1MsEYS/vTp08d+KZ9wyg4ljUu6sqV9nAV2RAWEG+4HUYUwhxiCBH0788wzA54sbnisIdogLBHKLMrJy0S31atXN3a+WI8QgjcI2/nz5xfJr+V1PQQjAgmiAcYCPN4HCFT0mT4wHi4S4WlTtWpVK4vnhXt03HjjjbaobycK/rAQjvDK2OG9wQJ+1Mg7xYI9Rlk8JxAteFYRifCq8D5xzIW9QYMGWZ9Y9GbhGkExV0MogQnPdlQkQlBj3rHIjtCFV4h7dyAocBxDCEBsQERjXFjwz2TZ7pG6pTUHEM24LxbqET5gi1DD/XIPeIpheJPwXkMUITQaXiuPPPJIyqOMd5kLgP369bN5RDvMEfghWAwePNjeeQi7fI8bcxoBCBEEY3wRMnmH8eF9iIcSZZiDnPc8WXis4AGFUSbJevfubSEAuV/6mtQH6iGAXnHFFakm8PZygYj79HFlTm266aYWwu6tt94ycSVVqWAn2zjmOl+Yz3y4XwwPIX8ueFboE2IxIrG/I3g34FGFByXPUjxXHh6H8HS74447bJc8dYyr50pD1MSjCmZ4WME7l+ef/uYzP7wf2oqACIiACIiACIiACIiACIiACIiACIiACIhAaRBIdn/Is2UWLH3BN1oVT4noJ3qOfRbbkvJBRMvx620W7xCK8LogHwgLmHEjZ0S6/BqURXBiYTTTJ95mef/OIj7G4rWLFyxUszDLgryHRvL7qFmzpi2+42FEecaNBWW8AUjuzi/i8e5KsgceeMDEAgSDpE9SneVxjFwfLHSzyAoHPCp88Zdf/LOAjxg2dOjQQt1BqIETAmOm0HxeCUbOmGN4eODBgb3xxhu2TfrjeZE8VBpl8KLA8+33339PiTRJdTlG/zG8o/D6iBoL9Iif2OzZs6OnzOvBBSJOsJDtog2iFvbqq6/aloVxF4g4gAiCiIY99dRTts31j1+TxXEW9t14fjE83Vys8HNRNjAmTBtssglEvBv8erSVdI+lOQe6d++e8rRjDJ0ZXiYuENGP7bff3sKTse/CNTmhMIRaF4j4zv26yIJHWq7GnEbccGPMEBox915ibvBhjkfbdrGdfvPcl8QQEaOGEM/YMYYuEHGeUGw+VuQBilou4xgtX9z54uEbEXD8HUG7cPBnC2EvaghKUYGIcwh53COikAtEHOf9ybjwXvV8Trk+/6U9P+iPTAREQAREQAREQAREQAREQAREQAREQAREQARyIVAqnkTk6iiOsXhJOCsW6XIxvD3I98GHX+fjKRM1fiVOqKVVxfwX7SzyRxfkjznmmPCf//zHfp2Pt0vU+DX/5ZdfHvoVeDAgIvEhvBgLqHgA4LlA6MC4hxdhk8jLkc4QMcrCCP3lhjcMoaXcXDhh0TY+VyjjC7mUyzZvPLyUt80WzxzCJn777bfRw4X28QKC64ABA0xIRajBcwte0b4WqhT5giiKxceRYzwPeAThpYO45yHkOEdIuri5kOFzxQUoxEZEs6h5eEAYIc7iSZWLIXowH2mTRXT3cPNQc3hNYSzS4/2FuEzYQ7yL2OKdQT+zeXbRRi73WJpzIO6JSGg5LOm5IGwcApFzdBGA/FQu0lnlgj+8tzDehbka8yEaso16/h5lvNwQ5RhbRDoYYx5q7oQTTvBixdoiAnmotHgD5Kdi3iPc4/GIp5t7ajoTr5PLOJZ0vhDK0Oc7oeDWWmstv7xt8bzEKOPhEPkefw9yDPvrr79MmGXM8MhDjMRrjHcN5j9+yPX5L+35YZ3QHxEQAREQAREQAREQAREQAREQAREQAREQARHIgUCpiESECiqu4XHgi5uIG3isuJ100kmp3A5+zLeE64ov/BN2bFWxjz76yLyCuF9yynhemej984t5wlbFF0Qpg+cB3PngJfPuu+/aL+ER7m699dZw3XXXRZuyEE3169cvdCz6xX9BHz22vPcRugj35OZeHHwnF0w6I6xZNktiSE6ZbMYiPXUJJYeYQxgsPvAi/NU555yTsQnyt2Cbb755Yjn31mBRPmpJ/Y178ETFikx88ArJVSSiD4gPiESIAohEHmoOr4xoKC/mGd5YLNojKPDBEF2Yf4hwmSyXeyzNOZCLcJWuvzDA6E861oTWzNWSBMYkHnjvIBIhxg0ZMsREK89j5p5luV4zXi6az8zP4Tlz8cUXW8hLP5Ztm9Tv+FyljZLMFxeEaccFIfbjxns1anEhjnOIQscff7yFi4yWTdrP9fkv7fmR1BcdEwEREAEREAEREAEREAEREAEREAEREAEREIEkAiUON8ev1smnETU8AtxLJb71EF1enpw6HpInuoDMecKaxdvmODk1PKE439223HJL313pt9EcUHilxD8OgJw3GN4jiALpckTB3pO2E45qRTHmE55RGOG/ELvcfK4RGo5f+qf7nHbaaV5lmWzxTCC0GyIAcxpvGTwOCNUVHceki++www522MWieBk/ToizfM1FP8LWpWPD8SQvqkzXIi8UIhjCBPPOhV9E36ghMpDrioV53hOIZwhECCmIfXHhK1o31/3yMgfcEwyPnnSs8UQpbcNzEJbutYkQx9wjNJ3nvSrNa5KPh5xojD8hHpn3X375pc2D+Pjne92SzJctttgidTnyfKUbAxfQUoUTdvDCJJ8YYfIQrt5+++3w9ddfB36k4KJttFouz39ZzY9oP7UvAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiKwahIosSfR5MmTi5Aj70a6MD0sHHouDyqyYEneE7wGDj744FTCcW+UsohOe++9d6hRo4bljyH/TDx3BGGuPJyW1y2v29NPPz3jAi2Lj56nJOkeCNdE+DeMRWdy8cSNnDK9evUKd955p+WiIQ8I4aZYvMVzJpqTw+v6L/q33nprP1Tut3Bg3Am3xgI184X8K4TB8nw9hJCCmSew95vCQ+ann36y3Dd4VpW2IWYSbguvCARM8r/w6dixY+jRo0cYOXJkeOKJJ4KHYPPrE8rKDYEL4xnheNTDgnxMLuh5Oa+Xy7ZRo0ZWjIX8pPmA4Aa3eJi1bG0zj/C0wGOGkHPuaXjUUUelqi5ZssQ8MhgThAzeF3zIs7PTTjtZGD/GsaRzsazngN8wXlR4uhH+Lv68EgqNvFiMQTwPkwvo3k5xtowFYjvvCm+PMGi5Wj4emoSqxMgBh4di1JjDxbWSzhcEJsaAfzcQdfj3JGqEjEToIUxgNq85zwXHv2X8m+WGAB/1WMrn+S/u/PBraysCIiACIiACIiACIiACIiACIiACIiACIiACxSVQYk8iXwD2DiDWZPI82G+//bxoauveFE2bNk0lX0+dLNjBGwaPg86dO1vi97hARFlEFRc5onXL4z6J5Vm0TffJtphKHgy8LRB8yCGUZJ4knmsQHom8H3hVIMohUi1atKhQNfKiDBw40I7FF7ELFSyHXwgDhmcZ4ho5gkhCT04Q+HgoQxbFSTbv9sorr5gAgYiAZ8GyMBb/6RNeWoyDG31DnMJcBImKP9H5jZDDfSB04cHguU4QjPAAYh7wzHGdfM3bxisCL56oIWCR+wuBlsXufM3zuhBCkjFBvGMB3g1Rjz7jKRUN94cg4ddLyvXj9XPdlvUc8H76e+/SSy8NzzzzjB827xMEFeZh//79U8fpN+a5alInirHDGNIeHj6EoGQ/Wyg/LuOiKh5w5BTKxTbZZBMr5vl/vM6gQYNsrvr3fLelMV8IUYrxLog+83g64YnJGPADhGzm3kIeIo7yeMx17969UNV8nv9850ehC+mLCIiACIiACIiACIiACIiACIiACIiACIiACJSAQIlEIjwxnn766UKXb9++fcak8yw8ktg+aqNHj7ZFNo4Rfs7FimiZdPsseLIAz6/lVxW7++677VZZiE/KTcJJwit5onpywyCk8Mt3jDBgeGU1adIkMF6IeuwTkgpRxQUmK7yC/KlSpUqYOHGiLYAT3szvFRGTRV3mCGXIw9KsWbOUJwHeDnj3LAtjbnoIP0QSvA64HuPCPOc8Yb/cfLxatWplosqsWbPM4+yhhx6yIuSUYVxbtGhhwhC5fLApU6aknQdWIM0fRBuYYeRHIu8Rog7zAU8nDGGhOF5WLkpaIwV/OnXq5Lu2xZMD7ydESzyImId4ESFMIXwhIHkIrkIVi/GlLOeAd5c5N2DAAPvavHlzYwzrOnXqBEKcMRcuuugiL24c+IJgiJDWu3fv1Ll8d8idFeWPiFqpUqWszbiASUEEFN43ePRkMuYmNm3aNAsdSB080fr27WtzNlPdTOdKY74Q3hEBHG+f2rVr23uA9wHPFEIY861t27aZumHnGDeM3EvU4TseYHFxP5/nP9/5YR3QHxEQAREQAREQAREQAREQAREQAREQAREQAREoBQIlEommTp1apAu5eKGwYB43D5uFR8X5559vv6BHTPJfbcfLE56nS5cugTBqufwqPuqpEW8r3fdsdZKSmsePZWsj6dpJCeG9HF4WLhJlW9AkrBk2ZswY25KbhF+/uxiB9xACEgukLGgiDDCm1apVs/LRP/H7ip6L7qcr58cRqzJZ0nk/5m1Q37lGjyH2OBv32EAMwxMNFnjc4ClAXhb2hw8fHgYPHpypO4nX8Qrxfvl3P88WwfOqq66y6+GxgycHC/8IBXgzRQWqESNGpELkIWohwmJ77rmnCUGeW4YFeIznCJGWBXw35+FbP8426Rj5kQgZyXOLSIjAxnxAwEF8QrDKZEnj4OVPOOEE22VuxZ9RWBF+De9AjHmIN9gPP/xgx/Cg8bZdpPL+x7fWwP/++LnosZLOARdU4m37d+9n9Jp+LDonCP/IXEBYgDGsYc44ElovOhcYF+YO8xRPLA9x5tf0bfSamfajIQ0R5OLm7fmW84RsxMuTPtBPwjniHRMtE2+HuTpp0iR7byPGUIe8dXfccYfdZ7S8t+PbpHN+LJ/54nXYRvkzjrwLe/bsaV6VvAfccwgxF8bujep98m20TcryfmFe4zHFOG5ZEE6Sd6d7v/l183n+85kf0f5oXwREQAREQAREQAREQAREQAREQAREQAREQARKQqBCQQiuf0rSwPKoi7cB+VFI7M6vvlmQ84Xj5XH9lfEaiE0sPpOLA48BFtJXdiO/DqHNWAhm4Xt5GyH+mMt47GSav3hrEL4KsS5ejpwyLL5na6M490Y4PvjAhgXwkhrh8BDiWJSPh7OLts24EP6LhfVlPQ/Leg74fSOGMR9q1qyZ0QuMsILkysFjsGrVql497y1CBh4veGi98cYbedf/7rvvLJ8R+XpcAMnWCGHceM8wpi6aZauTy/nSmi8IX8z54vaPfiDkIup7mL1M/c/1+aeNXOdHpuvpnAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAjkQmCFEIlyuRGVEQERKB8EELKmT59uof3o0fz5803cLR+9W7V6gZAxd+5cC1GIuEhoOw+XtmqR0N2KgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAgkEaiYdFDHREAERKA4BAjhRX4Vtz59+kggchjLeYtYRw44N0LYHXXUUf5VWxEQAREQAREQAREQAREQAREQAREQAREQAREQAREIEok0CURABEqNwPrrrx8OOeQQC+FF3iV5rZQa2rwbIiwcuaaqVKkSGjduHLp161aqYd/y7pAqiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIlDsCCjdX7oZEHRIBERABERABERABERABERABERABERABERABERABERABERCBZU9gtWV/CV1BBERABERABERABERABERABERABERABERABERABERABERABESgvBGQSFTeRkT9EQEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREIHlQEAi0XKArEuIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIQHkjIJGovI2I+iMCIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACy4GARKLlAFmXEAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREIHyRkAiUXkbEfVHBERABERABERABERABERABERABERABERABERABERABERABJYDAYlEywGyLiECIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiAC5Y2ARKLyNiLqjwiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAgsBwISiZYDZF1CBERABERABERABERABERABERABERABERABERABERABERABMobAYlE5W1E1B8REAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAERWA4EJBItB8i6hAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiUNwIVS9Kh2bNnl6S66oqACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACJQRgQq///77P2V0bV1WBERABERABERABERABERABERABERABERABERABERABERABESgjAgo3FwZgddlRUAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAERKAsCUgkKkv6urYIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIlBEBiURlBF6XFQEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREIGyJCCRqCzp69oiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiUEYEJBKVEXhdVgREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQATKkoBEorKkr2uLgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIQBkRkEhURuB1WREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREoSwISicqSvq4tAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAmVEQCJRGYHXZUVABERABERABERABERABERABERABERABERABERABERABESgLAlULMuL69oiIAIiIAIiIAIiIAIiIAIiIAIiIAIikI7AggULwg033hgefujhMH/+/PDnn3+kK6rjJSBQsWKlUKdOnXB4i8NDt65dQ61atfJujbG6sWCspkyZEt59993wxx8aq7whqsIyIVCpUqVQt27dcOihh4auxZzfy6RjalQEREAEygkBiUTlZCDUDREQAREQAREQAREQAREQAREQAREQgX8JjBo1Kpx5ZvfQ4fgTwiX9B4Y629YLLPbKSp8Ags78994J06c+EurVqx+uu25EOPnkk3O+EGPVvXv30KNHj3DbbbeFBg0ahDXWWCPn+iooAsuSwO+//x7mzJkTJkyYEOrXrx9GjMhvfi/LvqltERABESgPBCQSlYdRUB9EQAREQAREQAREQAREQAREQAREQARSBBAdrhg0KNw+dnzYbvsGqePaWTYEEN/gzOfAgw8Ll1xwtl0oF6GIsRo6dGh49tlnQ6NGjZZNB9WqCJSAAIIlc5PPMcccEzp06GCt5TK/S3BZVRUBERCBFYZAhQI1/Z8VprfqqAiIgAiIgAiIgAiIgAiIgAiIgAiIwEpNgLBleLNIICq7YZ43d044qeOx4Z133s4Yeo6xwjNDAlHZjZWunD+BWbNmhSZNmoS33848v/NvWTVEQAREYMUksHqfPn36rZhdV69FQAREQAREQAREQAREQAREQAREQARWNgKDhwwJ29StH1q0OnJlu7UV5n422mjj8PMvP4W5b80JzQ84IG2/hxSM1R577BE6deqUtoxOiEB5I1CjRo2wZMmSMHPmzHBAhvld3vqt/oiACIjAsiKw2rJqWO2KgAiIgAiIgAiIgAiIgAiIgAiIgAiIQL4EHn7oYQt5lm89lS9dAoSdYywy2ZQpUyx8V6YyOicC5ZEAYeeYvzIREAEREIEQFG5Os0AEREAEREAEREAEREAEREAEREAERKDcEFhnncrh2RmvB/LkyIpP4LNPF4QXnnsmPPn49NCo8W5h/Q02CHvt0zRstnmtnBr9448/QpPddw4///xT2vKVK1cOixcvDuR8kYnA8iTwwQcfhGnTpoX777/fQsdtuOGG4aCDDgpbb711Tt0oSL8RqlatGn76Kf38zqkhFRIBERCBlYCARKKVYBB1CyIgAiIgAiIgAiIgAiIgAiIgAiKwshBAcJj55rtpbwfx4pOPPzSxY6211k5brjye+Oeff8K4saPDHv+3V9i6zrbLrIvdTj0xzHjphcT2Tz+jZ+h8+hmJ5+IHd92xbmAxPZ0xVpnOp6uX7/E333wzPPfcc6Fr1675VlX5lZDAIYccEp544onEO+vbt2+45JJLEs/FDy6v+Ru/rr6LgAiIQHkjoHBz5W1E1B8REAEREAEREAEREAEREAEREAEREIEiBD7//LNwbo9uYc9GO4Rjj2wR9tmtYTjrjNPCV18tLFJ2WRz4dtE34cEHJoZffvml2M3/8P334eohA8P0qbmFuSrONRF2XCBqvNsegc9pXbvblo6PvP7aQJllYcOHDzevIvK9xO2CCy4Im2++eUAoy9fGjRsXevbsGX744Yd8qxYpv3DhwjB69Gh5kBQhs2IcQNhxgWjfffcNfAryrduWO+jfv78821aMoVQvRUAEyhEBiUTlaDDUFREQAREQAREQAREQAREQAREQAREQgaIEPv/s09D5+Pbhh++/C6PuGheeevHVcPd9k8Pff/8d2rQ6JPy8HEJGLfjkk9C/94Xh++8WF+1gjkcI+fb0i7PCqV3PzKlGvte8deT1qXYRhm4adZd9Tuu2dJ9jbngblba1adPGmnzkkUcKNf3nn3+G2267LZx66qmhQoUKhc7l8mXAgAHhm2++Ceutt14uxTOWef/990Pnzp3Dt99+m7GcTpY/AgMHDkx1CmFo+vTp9vF9tm54G8lEQAREQARyIyCRKDdOKiUCIiACIiACIiACIiACIiACIiACIlBGBB68f2L4syDM3NXDbww77dwoVKmybqhbr364fMjVYdu69cLL/wuthhhx/bVXh7atDwsH7buniToLv/wi1evBl/ez82w5f1jzpmHSffemzv/44w9Wh3N8KPfzzz+Hx6c9Gs4/a2mItpM7tQsD+i4NZ8X5EcOuCpdedH5o+n+7hBkvv1ggXP0Vxo6+PRzV4iA7duoJHcJbb85OXaPLyZ3C008+bt8z9SfdNVMNxXbIQYSXkBvCEPbqKy+Hm28YYfscw7MIw9uIOqVpNWvWDCzO33PPPYWaffrpp8OPP/4Y2rVrZ8enTp0a9tprr0AemcaNG5tnj1fo3r27hQs78cQT7TxeIxMmTAitW7f2IiFbfcQC2sFzaauttjKBisoTJ04Mbdu2tXaaNm0aunTpkmozusM86tevX2jYsKG10b59+/DFF//OI/ZPO+00O0cZwpvlGnYPL6ZmzZrZvR199NHh2WefjV46vPjii+GYY46x83vssUe49dZbU+cz9Yt69erVs/nqFe6+++5w4IEH2te5c+fa+TvuuMPuiz5g9P/666+3PuGlw3z36+ywww5W57zzzivULnXoV6tWrVL95PpuXj8TP9gzPswDrp/NyEGEl5CbC0LMLUREjGN4FmHMG+rIREAEREAEshOQSJSdkUqIgAiIgAiIgAiIgAiIgAiIgAiIgAiUIYF5c+eERrvuHtZbf/1CvVhvvfXDbaPHhf0PWLoQftXgy8Ptt94UWh91TOh5bq/w1pzZFpKOhW/sq4Vf2vnffv01nNvrkrBNQV6ggf17pxbAh105OMx69ZXQb+CQcN6FvcMjDz0QRt18Y9i+wY6hfacTrQ28cVoffYzt096do24uCEH3c+h1cd8CQWKb8Ni0qWHYlYPC4S1bh959Lw+rrb566HrqCbbwTqVPPvko5fmUqT/prmkXTvjzwnPPFDpKSDkEKT4337hUJCpUoOBLvE78fHG+H3fcceHhhx8OX3/9dar6+PHjw6677mqCw4IFC0LLli1tH6GB43j2zJo1y8p/+umn4corr7RwcNdee23YbrvtwnfffRfefXdpnqpc6g8ZMsTCAl599dUBoYNcRoTA41qIRxiCwsknn2z78T+IIldccUVAqEKAQGDZb7/9wl9//WVzBcHq+eeftzL0feTIkal2421FvyN2UR5hjDrYAQccYO2zP3/+/NCiRYvw22+/hRtvvDEgZHXr1i3ce+9SITNTvwiD+OGHH1ofaQv7viC8IW1ivxbMec6fe+654fjjjw+9evWy4/PmzQtnn3122G233QICEkLRRRddFEaMGBHOPPPMQJjA22+/PZxxxr95rKhDvxB4GCvYRvMAZeon/UAcmzlzZhg6dGg4/PDD7fpcO5NNmzat0Gn6iQDGx0WiQgUKvsTrxM/ruwiIgAiIwFICFQVCBERABERABERABERABERABERABERABMozgblz3gxtju2QsYuEnLtv/N2h7+WDQ8sjjrKyuzTeNbQ6pFmYNXNG2KfpfnZs623qhEsHDLKwZwhPhx6wj3nV7NeseZgz+/XQqPFuYa99mlrZBg13Dr8XLNjXqLmZHefg/+21d9i0Rk07zx88mYZcMyKsttrS3+HuuFPDMG7iQ6HOtkvz/tTecqvQsW3r8OEH71vZVMX/7WTqD33B4tf8X9VCm+8LhJS44UW0NCfRmXaK73zcnnx8ejimXUf/WipbRA7s/vvvt/ByCHQIAO4tUqVKFRNYdtlll1CxYkUTRe67774wY8aM0KhRI6u74447BoQlZ2oH//cnl/oIS7fccouNMUJL7dq1zbMEz5cmTZpYS4gLtWrVijZt+3g83XDDDSbiuIiEGDJ48ODw2WefhXfeeSe89tprJuzUqVPH6uARhaBEmapVqxZp0w8MGzYsdOrUyYQVjtEf7nnMmDEmOOFlREg9cjCts8465vVUvXr18OWXX5onVqZ++TWybRkLRLqoke8JYQ1D8EGco0/udbXpppuGI488MlxzzTWp++vRo0e48MILrc76BeIt3lZfffVVWHvttTPye++990wgIuyf8yfXFKIUDNPZokWLipzCiwjPod69e9s5vvNxYw6efvrp/lVbERABERCBNAQkEqUBo8MiIAIiIAIiIAIiIAIiIAIiIAIiIALlg8AGBQvv3xfkI8pk77//np1uXCD8uNXcbPOw2ea1wjvz5qZEogY77ZzKi7PRxhuHatU2NA8j6hza4ggLR0dbTfdrFpo1Pzgg4mSyHQvai4oZCEozZ7wURl53bVi06OvwztvzrDreS0mWqT9J5dMdwwMqychLhCEO4VUUNRehosdKuo+4gbfM2LFjTSQiNBx21FFLhTtElHXXXTcgmHxSkOdp8eLFJoC4txdlCbMWZcoxt1zre+6jGjVqhI0LxhkPpVxszpw5VszDsfGFMG5402B49Wy22WbBBSKO4WWEUZdQay4u2cGCPwgwiCx4z+Cd47bmmmtamLdXXlk6dnhTHXTQQSYQeRn3+PFwbun65R5DXi/ddueddy5yCg8rt7feest2ySH1+ONLwyIuXLjQjnF/LrIh8rn5/ueff24eXBxP10+8qbDLL7/ctvxxtnhQwSTJ4mH5vAx5iTDEIQ+t5+e8r/5dWxEQAREQgWQCEomSueioCIiACIiACIiACIiACIiACIiACIhAOSGwQ4Odwvz3loYbi3eJRfnVVqsQ/vj9dztVqdIahYqw6PxHQT4jt0qVKvmubStGvp/UuUvYuVHj8NjUKWHihPEm9Fxw8aWhbfvjCtWJfqnwPw8iPzbmzlHhP1cNDnvu3STQ750bVQ54QqWzTP1JVyfpOCH3yDMUN89HlBRybv0NNogXL5XvHTp0MJHgo48+CuTFIbwY3jYYYdr233//gLBAqDW8fDycml88nUCUa31CkUUtzjh6Lr7PfMLS1UHIiLePRxRGXiLEI/ewsYMFfxo0aJAKNxgXQfhOCDaMttNdN1u/rIGCP//884/vFuTH+ju17ztJbF1Qo4z3BW+sjTbayKrh8bPJJpvYx9uJ9nP11Vf3w6n7jJ5PnSzYISwetsUWW9iWP+R34lqE80tnhPgjz1DcPNScb6Pnfc5Fj2lfBERABESgKAGJREWZ6IgIiIAIiIAIiIAIiIAIiIAIiIAIiEA5IkB+ngcfmBhemzUz7NLoX6+HTxd8Elof1jxcNujKsPc+SxPWz31rdth34+bW+x8KcrJ88P78cPoZPXO6m28K8ugg7HCNcy64OPTudW4YN3Z0IZEoKjglNTp50n3hiIKcSH36D7TTs1+fFe4evdQLJal8LseyXZM2PERevL3Gu+1e4EU0I37Yvqerk1g4j4OEZ8Pbhrw6DzzwQJg0aVKqNiHAOPfSSy+ZRxeixMUXX5w6n22npPW9fQSdJEPQwegf4hZGfqV77rknHHvssQFPnP79+9sxF1E8nxL5jwjN1qVLF6sX/0MYvWi7CDovvPCCeU5RlrxA5HNCEHLhie+IPfvss481F60f7VflypXtPB5FHraPHET5GveAkSvIPXPoD15C3Fs2y8avYcOG1gQeVYSpw34qCBX57bffFvKgshORP3hYJRnhBJ955pmkU+aVlXhCB0VABERABAoRWBowt9AhfREBERABERABERABERABERABERABERCB8kOg9dFtTbjpdXb3gAjz8UcfhueeeSqccdpJFi6u+YGHBLxiCBE3sF+f8MJzzwTEmUt6nWPnyT2UzfBi6NCmVTivZ7fw0YcfhAWffFyQg2ZB2KbOtlaVsHXYpP/eGz77dIHtJ/0hX9FrBaHf8B5647VZ4fJ+S/OlJJXNdizXa9IOZXf/v70KNUk+IstJ1K27baMnEc68/ejx0tjHW+WUU06xkHKElnOxgbYRGsjtM2XKlPDmm2+aF0k+1yxp/a222souRzi1JBGFcHZHHHGE9QuB5uWXX7Z7GTp0aNigYI7tueeeJnIdd9xxgRBwhNPr2rWrCRLZRJTjjz/e8v1w7ddffz0QSo4QdG3atLE+EZJv3rx54ayzzrLz5CgiTB28svWrbt261sagQYPCq6++Gv773/+G4cOH54PWypID6bDDDrP7594IMUdeHzykyFeUzbL1c++997bwfx07djS2MGR+4H2WybbeeutCIewoSz4iPn369LFttH7fvn0DdWQiIAIiIALZCUgkys5IJURABERABERABERABERABERABERABMqQAKGrhlwzPDTcpVG47NKLw9EtDw5nnXFaqFngkTLm3klhjYKQXdiAQVeFnRvvGnp07RxO7tQuLPnxxzBi5G2BnEZYhQrplkEqBEJmDRk2wgSoNq0OCXzwzji31yVWt3pBOCzCzo0edUsYfHk/O5bUXvezz7ewWce3Pzqccny7cHir1v8rW8G20T9J9ZeeX1o26ZrR+vH9G265o9Ah8hARbo4tn6h1Pv2M6NdS32/fvr21SX6eaHg2vjdv3jwQPqxx48YmGGy77bapPFHZwqEVpz4d8ZBq5Cjq1q1buOqqq0L37t0T75scOXiuINCQ1+b9998PkydPtnw51apVCw8++GAghxICRcuWLc1zZ8yYMYltRQ/27NnTQtEhYOy+++7mNXTnnXcGhBOM3EDjx48PTz75pJ0ntxN1ENywTP1CnLnpppssJBtCFt5Z1Hfz+/fvmbb0ib74vZEPaNq0aQWCa7XEat62j12mftIGAuH3BV5+sIUhzxlhCbPZo48+WqgIeYgIM8eWT9QuuWTpcxs9pn0REAEREIFkAhUK3Gv/DVaaXEZHRUAEREAEREAEREAEREAEREAEREAERGC5EEBQmPnmu2mvReg1vHzw2FlnnXUSyxEei3Jrr7124vlsB5cs+dFyw6y55lpFitI2i+LRPCxFChUcINTdOgWL3x42LKlMrsdyvaa3d+vI68PI66/1r4W2eBvFxaRCBSJfdt2xruXZiRwqtMtYpQvbVqhgwpcfCwQ8GKYbw4QqhQ6VtD7zg3HMND6UIYfOeuutV+ja/oUwaQiYURHMz2XaEmbuu+++M++gdOUWL15s102aZ5n6hUccdcnH4+JNumtkO87Yco8IUMWxTP2kPdrGPFSefcnhz8CBAy3kX1LRZs2ahbiYlFSOYyWZv+na1HEREAERWBEJSCRaEUdNfRYBERABERABERABERABERABERCBlZTAOutUDs/OeN0W31fSW1wut0VIPMLufV8gRsx69ZWw/wEHWt6iXEPMscDfZPedCzxmli7kJ3WaxX0EiXxFkqS2dEwE8iHwwQcfmHfTokWLAp5OeKbh/ZVriDkEMMQvF6ryubbKioAIiMDKRqDiynZDuh8REAEREAEREAEREAEREAEREAEREIEVlwC5T+a/907YbvsGK+5NlIOeIwYd065jsXvCGDAWmYw8OOSsadSoUaZiOicCpU4AMYhcScU15q3ncSpuG6onAiIgAisLgXTBeFeW+9N9iIAIiIAIiIAIiIAIiIAIiIAIiIAIrEAEDm9xeJg+9ZEVqMcrZ1cZA8Yikx166KFhwoQJmYronAiUSwLMW+avTAREQAREoCBvn3ISlc00IP4sVtL4sGXTe11VBERABERABERABERABERABERABJYNgQULFoR69eqH28eOlzfRskGctdV5c+eEkzoeG9555+1Qq1attOUZq/r161u4L3kTpcWkE+WMwKxZs0KTJk3C229nnt/lrNvqjgiIgAgsMwKl6klEHM/XX389/PDDD8usw2Xd8NNPPx0uu+yy8MADDxS7K7/99lvYeeedQ4MGDSwBIoLRgAEDrF1i+SYZiQe5Lp/vC5JfZjOSWs6dO9cSIWYrm+08/Xv33XfDt99+W6Qox0ePHl3keNIB4sSSmDGTffHFF+HXX3/NVCR1jrK33nqrJSNNHSzYYf5xPKm/0XK57HPvn3/+ecY+/fzzz4G+yERABERABERABERABERABERABEpOAFHiuutGhEsuODsgVsiWLwGYw54xyCQQ0SvOjxgxInTo0CGw8C4TgfJOgHnKfGXeZpvf5f1e1D8REAERKC0CpSISkSCuWbNmlvBt9913D9WrVw977LFHmD17dmn1s9y08+KLL4bLL788PPJI8V3flyxZEubNmxfee+89E3z+/vtvE4loN53ARhnOZyoDpIULF4bjjz8+bLLJJiZEbbzxxqFx48bh5ZdfTjGk7ySVjH74BcXtt9+eKsPOL7/8Es466yz7RxNBa9NNNw0NGzYMMHCbMWNGOPvss/1r4hZhrV69eqFGjRqB/tDGa6+9liqLEMM/zhtuuGGoXbt2WG+99UKrVq1MnEkVSth58MEHw8CBA4skM/3mm29Ct27dstZPaDJ1iD7dcMMNNpe33HJL69ORRx4Zvvrqq1SZDz/8MBx88MFhgw02sH5vvvnmYdSoUanz2hEBERABERABERABERABERABESgegZNPPjlcfNFF5s0yfNhQE4v++OOP4jWmWlkJwBZxCNZ4EMGeMcjFKHfBBReYZ8ZFBfVYhC+IWpNLVZURgeVCgPnIvGR+sv7FfM11fi+XDuoiIiACIlDGBCqW9PrPPPNMaN68uTWz4447hl133TW89NJLJgKwj4iA14zsXwKIIQgMCBEIL3gJlYbh8XLggQeGKlWqhPvvv988lT7++OMwceJE+0fwueeeC4h4bozN+uuvb949U6ZMCV26dDHhqGPHjiYQHXPMMSYI3XXXXSb6IW6NHDky7LvvvuZKjhCYzT777DPr0xVXXBFOOeUU8/rp1atXaNmyZfjoo49CxYoVw6RJk8K5554b/vvf/4b999/fhBj6cuyxx9p10l3jqaeeCgcccEC60yU6DjMEssmTJ4d99tnHBKf27dvbsbvvvtvGrkWLFmHbbbcN8+fPN4EU8a1Tp04mqjEOMhEQAREQAREQAREQAREQAREQgeITYBGX/7e64cYbw8C+l9j/e/35p4Si4hNNX7NixUqhTp06loMoW4i5pFZ8rG4sGCv+35+oIxL1kkjpWFkQqFSpUqhbt67lIFKIubIYAV1TBESgvBMosUjUvXt3u0e8LMaNG2c5dvB6YQH9scceC9dee23KQwUPlOHDh4dp06aZZ8lhhx0WLrzwQhMKEJvwSNluu+1M0LjmmmtM7Dj11FND586drQwXYoGeD20hSh1++OEmMKy22moh2sbee+8dhg4dav9RgvfNTjvtFM4888yCeLrvBM7bLUbVAABAAElEQVTddNNN5tlCm4QKI9wbQgneNfxH6KWXXmpeL5xPMg//hvcNHjIIK2eccYYVpS1EGticeOKJdox7wHuGPiGu4CmDPf7442Hddde1/eifL7/80kLL0Sfap81sRl+oh5cSHjtY1apVTaRD4IF7VCTaaqutTCSi3C677BLGjx8fHn74YbuXF154wcrjJeZiEOLWoEGD7Br0y49TnzHBq4dQeMwFxo9/hAmth8jUtm3bVP4l5sbYsWMDfcILB7GI/iIcYYhc7Pfv3z8wlxjbuCGwTZ06NQwbNix+KvX91VdftTF/8803i4w5jAjdBxP+Q7hv3742/2CAqFmzZk2bDy5C8R8T/NoEYQ3jVyh4gvHrky222MKOtWnTxkSiTz75xL7rjwiIgAiIgAiIgAiIgAiIgAiIQMkIEA5qUMGPDvnIyjcBxoofiPKRiYAIiIAIiIAIrDgESiQS/fjjjyZIcLuIKhUqVLA7Z1H/vvvuC+SgQSjAWKjHAwXDw4iFdBbpCY9GqDHaogyfe++918rxp0ePHhaebM8997TcN4gtGAIHQgYfQoBdeeWVads47bTTTIQgfBrXefTRR8M555wT7rnnHhM1DjnkELsPvEKwm2++ObzyyivhiSeeCJUrV7Zj8T/RPDx4y8ycOdPEHkK9kbiR+4iGJsPbhGPk5EFgYh9L8iIinxAeKYRpw2j/0EMPtf1Mf3CdxavLBaJoWUSbTEYeoE8//TQcffTRVoz+IV5FhSCvHw9LB1PEQOYAOamuvvrqsPXWW5vowpYPYg/CCiId/8GIaIRAhLVu3doEpt69ewe8deCHmMa4JQlE1OFXSVx3r7324muiMcZDhgwxMQqRrWvXribeMQZcEzEK0ZJxgjftMUcw5hvGWCB0MRaIXbSHrbnmmiYKci+EmSO832233WbnED9lIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIlDeCRR10cijx3Pm/JtAEm8MDA8NvE0QDcaMGWNCDMevu+46NuY5hLCDlwciBB49ixcvtnP+h3Ms5BPmC8O7BcPbA8N7BLEBsQfjWniwRA33UXLTuJcOuWMQrRCAMDxkMNqmz4gNb7zxhn24Ll4/hDPLZLRBDiG8iDBCsZWG0XcXiAjF9vPPP4fzzjsva9PkHcK7yg0PKTx2/EPotKgR3g1BDndwvKcQSVzgQCSKthWtl7SPgEJ4OMYeloxx1MjVw1ggECKo+DhQBhGJMUUYwqMJL6vNNtssEJYundE+Ytg222yTroiJVYiKhI3r2bOnjTkeSLAl3B/eXowdHmzpRDQ8wfDGQlSinIuUXLRPnz4mNCHgNWrUKFx//fXhzjvvTHmope2YToiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIhAOSBQIk+iqJcHi+8YgouLOXxHGGBxnTxF2ODBgy0sHPuIEhjeJ25487g4gbBDHh28jvD2wKMGI6wX1qxZM2ufdhB43AhZh/CAsXiPKOBhwzw/knuM4H2DITp4biUXODhHOLskw/vIvWwIM4cQgzcRniclNQQwjPvw6xO67qqrrsrYNPmF/L4o+MEHH6SEFvjhfeVh7jh//vnns0mNA6HXEHGwatWqpcbMDmT5Qzg2N0LawSJqXJeQfzBFlCJ0G95azCGEKsQX8hLBlZB5hCFEmJk+fXrKGy3aHqEFGX/3Xoue830fa74zD5gnxESePXu2scAV3m2//fbz3UJbQt6dfvrpJhgiZCEKImYh3CGs4YGFRxqh+BCdTjjhBAvh52Jbocb0RQREQAREQAREQAREQAREQAREQAREQAREQAREQAREQATKEYESiUSIDm543hCiC6GFRXgW91n0JxQXxuI6Rh33OsLTBbGAsF8sumPsu6299tq+ayG//At5g9wow+J/VBxZa621/HRqu/rqq9t+VNjiwE8//ZQq4/36+uuvQ+PGja2vqZOxHcKNuUX3CavmFhWMCLWWqxHeDIveh4fty9QGQk1ULCP3EiHkMEK3EaItaohICEsTJkwwj5qKFf+dDg0bNjQPLUSQaD+o7/fl5d1by9tO6iteP3wQkPAWYtyff/552xKeDo8evJDcGAvmE0JSUkg55hcCTibz/lEmOu7rrbeeeZlF6/r8jB5jH08lPniXMdcuuugiC6uHeIm3Fd50LpAhNH388cfmNSeRKE5S30VABERABERABERABERABERABERABERABERABERABMobgRKFm2PR3z1PWDwnRBwL8LVr1w5Tp061e8WDA0MUwAj9deutt9qHHC5HHXVUxpBhVqngD14fLkZ4GDi8ljzvD6JGccz7f8QRR6T6RT6ldu3apfLSJLVLviJELoyQcBiePwhYnsdoxowZdhwu7h1kB7L8qV+/vpVAeOMeMbxUslnLli0D3kBRzyzqcP1HHnnEvGmS2mAM6Dtj6B5hzpNQflFDINphhx0sH0/0eLr9G264IeARFjUX4/AYwpYsWZJi5uVcIIyKf37u/ffft3H3vEF+PNctIhXCYpSph0P0Nsgt1a9fP/9q23r16tkWQQnxDPOxti8Ff1y09O/aioAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiEB5JfCv60gxe4gXyL777mvh2vC4IAQbnkQu3iA8YHiKjBs3znLDvPXWW5YfiJw4CD/z58/P6eqEdSNcHblvjj766FReIbw2Nt1005zaiBdCwKAPDzzwgLWJGIWwgT3++ONpBSxEhgYNGpinlAs57du3t3qEVcMQZvBI+vbbb1Mh3exElj/bb799IOzee++9FxBrCL+H10o269Spk+XhIbQeId0Q6GB72WWX2Xgg0CUZXlZXXHFFOPLIIy1HU4sWLeyaF1xwgeXdQTgi7B3eXnj7kM8H76NcDA8crktOpZNPPjngUeUeQPvvv781gSA3YMCAgAhDCLeFCxeGc845x8YlyYuI0IWMmYtpufQjWgbBskOHDqFt27bmIcT1ol5HlEWAIo9RzZo1LVQhIQ/xjENU5BhzHqPvQ4YMsbxFDz74YEBgJBydTAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQATKO4ESeRJxcyymk/MHUQPh5LHHHjNBAs+UJ598MhWKCzHmjjvusHI333xzQCBC/MDjqGrVqjlxwrMDsQEPJurjZcIi/d133521vueu8a1XIBweYhDiFov8CES0T1/d+8nLRrfkReK8C0SEc/McPwgQnksIcQdGnr8ofv1om75PeDfuz+vQRtSjJ10bhHnzXD3HHXdcQGwiFxAh9Z599tmwxRZb+CVsG20HoQ0BpFevXilvIngjlOBlg9jl94snlwthhRqMfPHwfpTD04r7IUcQ4eYIc4fQU716dauBkEgOIq5HeYQiRKAXX3zRPHMizdou93jQQQcVCiEXL8P36P1Fw81xfOTIkdYvxubMM88MEydOLNREly5drD/0jbnM/GWLmIgxZ1999VUTvQgzh5iHWIQA1qNHj0Jt6YsIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIlEcCFQo8O/4prY4tWrQoLFiwINSoUSNssskmaZv95ptvzHNjgw02SFsm2wlCvSHmuBiRrXwu5wl7hrcM7eZq1CEnUVIenu+//97y92y44Ya5NlekHMIbIczini5FCsYOcB94/HAvG220Uexsfl/xJCLEG6EE82ETvwoeVYwXeZCSjOsQgo554eHmksqR1wovp65duyadznrss88+M+ELjzSEKwzPKwSxzz//PCVecdz7VK1aNRtnjsUN1oSgK643W7w9fRcBERABERABERABERABERABERABERABERCBVYHAX3/9Varru+WF2cp6X+WFr/pRugRKVSQq3a6pNREoSgARkrCGM2fOzOrNVLT20iN///13aNasmYXwa9q0qQlD5H9CJLryyivTVdNxERABERABERABERABERABERCBMiDAj0TJtUsEk3x/QFkG3dUlVxACRJAhtDyh94l0k874wevHH38cttxyy5wj4aRrqyyOf/TRR/YDWH5wGzciA/EhOgq5uld0I/IN0WfIRU3e7nTGj33fffdd+yE0KQVWNOOHykTpqVu3blhnnXVWtO4X6i/RoU488cRA1Cm2K4uRaoU1R9KlcG8yESjvBEocbq6836D6t/IRIPTeDjvsUOwbI/QcYRF5SZO36ZhjjgnTpk2TQFRsoqooAiIgAiIgAiIgAiIgAiIgAqVPYPjw4fb/frVr17ZFbBZDu3fvbqHnc73ajBkzLHIEYeZl6Qnce++9YY011kj8kCagvBi/zCcSCB8WyktiY8eODZdffnmYO3duYjMcJ/Q+UUNIB0DEHLaIC27kVoYbIfajdtVVV9nxbt26pSLMUI58zFG75ZZbUswXL14cPVWi/T/++MPSCSAMISTQT9ItkCaBXNFuhPmHATm1VwZ7/vnn7X6mTJmSeDswJp84EWxIh4DwB5fo/ZOSgLGK5/V++eWX7biLbSz+U44UBFFj3nCcz6OPPho9VeJ93mNcj/QN9J/7IH3Ep59+WuK282mgNN+r/vwhquRqpXn9XK9JOSIT8e4ZPXp01mr8yJ3oUMwbmQisCAQqrgidVB9FwAnUqlWr2GHmvA22/PqMf9D5yERABERABERABERABERABERABMoXgSuuuMLyxNIrctLya38W4m+66SaLCkEO5Gge2nS95weBl112WTjppJPCAQcckK7YKn+cUOtuLDpHzfMJR4+V1f6ff/5pUUC4/qGHHmph8ZdFX/A08fD0zD/Eoeeee85yb5PbmFD1pB5wwYU81QhKiA6Y82TL+gN5rW+//fbw0EMPhT59+lgZ/rg4ccghh5SalxJ9OuGEE1LClXsIkWOZH93iWYRAhoixqlmnTp3sR8LknD7qqKNSLFq3bh0QHhhzos9g5Czff//9Ux5WftyZsZ5EbvMXXngh4G1GmgJs+vTpXqSIgJQ6UYwdBCLmPIanFPMNLzB+BI0n2Jw5cyz9RzGazrtKab5X+xXkJ+f5yOfH4KV5/Xxu/r333rP3z2abbRaOP/74jFV5pl9//fVAWZkIrAgE5Em0IoyS+igCIiACIiACIiACIiACIiACIiACqwgBwsuxcIjhTcTCOpEgCBOOsSjLgi5GuDAW6/h1P/mADz744IB3BHbJJZeEYcOG2f59991ni6rz58+375TBo4A6e+21l3kfIEC48etv8tjiZUA4MjxtWJSN/tCQfuJ1wOIm5RCi3nzzTW8idOjQweogDiC8cK3JkyfbMUSH3377zcriEUPbfN55551U/bLYYfH8/vvvL/ShX+5Vw76PA7+o5zscycnMPh+8J2AKky5dutiv7/1e8HDp37+/iS7wgBHh5KN266232jhyHk6MIWILuZLxnnA7/PDDw0UXXWRfs7XL2OLFw2I6XjWIjZns2WeftdPrrruuCQEIO9wXYhCiEX2JGh4DCBD0I8kQJDDYMW8whKiHH37Y9lkkxxAd8BTh3plXeLOQCzsfw/PLPZsQUydMmGAfBAUMsciv6+3ioYWYynPE2F1//fV+yjyhhg4damOLsMSYjBgxIiWEURDPCp/jbMePH5+q/5///MfqDhkyxJ4R5gXnfb6QTxujD02aNLHj7n2RqV3q3HPPPZZOgDZh9euvv3I40ZijiAvYXXfdFfr27WvCHf3juY6PKeVOPvlky73OftxcsOE4nN14X2G8l9Zaay17dniH0Ec+RLMhVFy+1qNHD6tCX+GDiMWzs+uuu5rHCmHbMJ/rjCPzCAGMMXcjHB/sjzvuOHsOeB74PnLkSKtLOTyu8ILjHG2QssG9MdO9V6PtksqBucQzx7M7atQom1fMH+Z1r169Uu8/3iOnnHKKzSmu7fMFbzzuGWatWrVKeWWluz51o+bvX+ZaixYt7D7Y8vzx3uC+4u+CTO8Rnine8RgeRTDj2Yq++/zfiQMPPDDg1cY74fTTT091i7CVvEO4rs+F6Lwrjec/dTHtiECeBORJlCcwFRcBERABERABERABERABERABERABEVh2BGbPnm2Ns0CPyOC2xRZbmMjy5ZdfWh4OftnPYhyLzCxI4vHCYi0fFvHcy4P6LOKzgEwdhJx9993XmmWBFaGJBfKFCxfaQiVhgljopg7GgrovqvsiNDmSWHCkLfq59tprm3cGIhACFrl0EXw4H72HBg0apISkV155Jeyzzz7moUK5jTfe2PIu2UXL6A8LzD/99FOhq1euXDlsv/32AQGJRVAEExbZe/fubYyuvvpqW+DnHjAWdN0QyBCYWGBmgbhr164mKMCMNhHvEDVYUK1fv74tfHuYL8YUUYUPi7csjjt/2kdkcaEtW7uDBg0qFOqNsIWZjNByGHOAhWoW1Hfaaadw3XXXpa3Gwj0CGOHb4obwwz3THixoz4UoyiJ4cZ8uQrZt2zYwPxACWISGY6726quvWlE8iPbee+9UNTygaJ/F7lmzZpn46Sej4bN4dhAf6C9CB4IaY838bNeunT0L5557rp0nhwx1O3fubE0hTODZwgdPP+6DRXnmhs8PCnoeHY7xvDLWb7zxRio0F6yztQtHPKbcYJXJqlSpkhoDwu6dffbZJnghhvBJMsaLhX7uJ25Vq1a1cePdQHg72PJecDEOYZB5i/BFO4iLCH4INojUeHTlmmMNIRkvFoyxcOO9g7jDeLrHCqKEjydc8Vbjw7PGs0lffDx4nt2Y54iozBPGE8GCXF28s9hHFMNbKd17Nald+s01XCjhfcvcQvjl3gcOHBh4n9MftljSfEGg5cOzkO76fh++9fcv4+fPHiLhbrvtFr766is7xr8dvAuYt9xrpvcIImZUBOZdxPuS4z63ea4x2nIe3p9vvvnG5gDXpD8Yc+GJJ54wgZLjpfH8+/W0FYF8CciTKF9iKi8CIiACIiACIiACIiACIiACIiACIrDMCBCiB2PBMh5SjhA+LEyzCMeCIZ48LNyTz+Ltt9+2xWbqItTwa3YWgjF+AU4Z8rP4Qv+FF15oXkksqrNox2I4v6CfNGmSLfCx6IpgxEJn8+bNrR0WBTEWhVkYpAy/BGfBF+GJhcH4gj6eFywAImpsvfXWqYVA9z7wbceOHQM5dMvSWIhm8Tv64Z4weGIstNJXjiMiIIBEjQV3FsPdawPxhDHlV/QsXsOaxWZEEhea7rzzTmuCMIMY3gUs8npuGb4jvLmASBm4XXPNNTm1i3cCxpgzDngAZDLmly/YMi9Y6F9//fXN88nnZ7S+eybhceMeF9HzhKZzbyEXHD0sGXMar4aXXnrJqhDi7I477jDhjPtGCM3H3MuO5ydu3BfmZaLnGQ/mOmOLIT5gTz31lG1dfOA7/SJXGIZHDsZ9cc7HDM+hqDHuiIG//PKLCQ54emDOwa/DnEL8yNYuHmcYzx3h3hAjffHdTsT+rL766iYGc5i5g2CCGIiXDN5zcWNuIoziuejzMl4GryCMdwZigQtE9IN2582bZ88JZcaMGWOCAF41iIn5eIjxvLjxHEQNQY13IvMEwdsFIoQoniEPbzh48OBoNdvn3YewhViN+dxEFMIQgBEVOc6Y4xWU7r1qFf73h/nL/cGNvEm0A0c+cMAQfTIZAtfXX39tz7eXg28u1/fybPHcWbRoUfD7RyCCJ3mcuAaGyJbt/YTg6X3nvc+/J3hRRo13H2KQP8vRcwh1/DvANbkW/YA771GEcq9T0uc/ek3ti0A+BMr2vz7y6anKioAIiIAIiIAIiIAIiIAIiIAIiIAIrPQE3Msg6jWSdNMIGSy8s+jMAjb7LMJhcW+YaH1fjGPREIGDsHIuhCAAuBDBIjaLyISMOvXUU6NNBPfWIIwUi6D8Kt4XDD1Ulldg4ZBFRfcaYLER88V0z0vjIcm8Xllt8aKKfrzfNWrUsJw29AvPChbC8dCJG/eL1xBsEcgwFvBdXIE1rDjvXjcsaONBwMIpBleMPFLMg2hIJjsR+ZNLuz6+iIrcD142vkAcaSq1i6DAYjveF4hFLj7wnZB38f7gBcUiOoZ3CzmL4ubjy6I7HlBsMZ8PeDhgCBjMuzPOOCNUqlTJwoXZiRz/ILBgSc+PH/NnzJtEqGKsmOtcF8PjA1EUgQzD244wWYiszGfGj/HC88jPc6xfv372HREVQc6N++QeYcsYOA/ERK7j3jo8x7m0y8I+xpjiJVSnTp2UwOXXjG+5N8Qw3hc+/uSaom8+Hl4Hji4KME+TxD8POcf8oj8ufDB/YYmg43MHTyy8D/FY5PnivZGr+ZhSPurNEq+PNxq27bbbWjg09n1+MZ68K90og2jIXCBMJ4bIhOHZhuH9hJcNAh5jx/hnM+YG707eAcxf2uZaeM1w3L1tsolkMEKY5b2DcIL5XMvWh+h5vze8mDD6x48FYIrAhsEl23vECmb5c84551ieNO47bj5fCf/HfOU5YE7xTPqzQZ2SPv/x6+q7CORKoGKuBVVOBERABERABERABERABERABERABERABJY1AZLHYyxqsoDGYqvb2LFjbSET8YDFQ8qyQMsiJOHLcjG8JTAWiVlYxhAoWAxn8c6vF13g9sV1F0z8nJelDRZFsbhAxUJn1HzRkvtjURfvHRaQXSSIll3e+56TKN11fWGd8yyy4iETt+gx54Mo4swo79wpSwhAhBf30uJ8dJE1m3dVtnY9JB3t+hix731jP8noA94mfPASYaHcRQEEjbhHB/lrEPzwwojm9PG2WehGMGC+4k3iC94shmMsYuNVgwcPwgneKXwI7efeNt5Wpi0s6UNcrKSOH4vPteiYRfcZG8JxMYcRTPDkQIjFWw5PH0J5ubHw7p5/iDw8T1H2iLpRYy55+DGEGxce4YSQ4pauXQ87Fp0r0b57/fgWMczFS7xB8FxC0HJBMFoeEQUvGMLrIZLFjXtCUMHTBoHIPXBcACNUI15b5HBCJOEe+eBhg3DqYQ3j7ca/81y64QVDSDg32CF0wcmfId5jblE+UYEpWiYqQlEPzz7EQPL58J7igwcPHi8u2Hj78S3vsqiRQ8i9EPHI9GcgWiZpP9qnuKiZVD7dMcSYXCzbeySXNlwQTCqbNF95XvyZKa3nP+naOiYCuRBYLZdCKiMCIiACIiACIiACIiACIiACIiACIiACy4MAOTDcCPlEiCOMhUrCxrE4zWI/i60suPNLdxZ7SWLPr8STjBBAbu4ZQe4bQlbxue2228yzgYX/XXbZxYqy0I8wwAKye7z4IixJyzEWTf2Yh1fzBWgrkPCHBU8P6UX4M4zF9mxiSEJTy/UQi6g9e/a0ayLKIQQ4l2hH3CMDMcHDb+Fp41xZRB4+fLhxZzGakIAIMSRy90VWr8dCOmG78PaKG6EBsWztksvKjYV6jIV2QoGlM7yCCAGHRwgCEQvNTZs2TeWM8n5G67PYi8ATXyT3MsxZ9+rwvDIIRNWqVbMihEukDbyzCLPFfMZg4fdqB7L8cQGIeh56jCqIPHgpYPE5Sl4UhFIMYQpDmKDPeN4h6JBbhhCPHsKR/FuwdRbMDZ4l2F177bXm2ZfNW8afg0svvdSuCR+EnlzadTHZQwfyLqBP6QxBljHlXghPh+2www4mULK/3nrrsSlieB/hUZPOfEwJacgzAQ/mLAZTxMATC8LB8Tzgpch5+ureiOnajR5H0HRPGAQr9wjienhF8U4kp4+HGOReCaeG+ZjzzKa7x+i1eM7xquE96e14Dre4WBl9r0bbiO572ELelYiozI3Sslyun+u1sr1Hou3wQwN/70ePZ9r39mHodS+++GKbKwiMpfX8Z+qDzolAJgISiTLR0TkREAEREAEREAEREAEREAEREAEREIHlSoBf53teH8SEWrVq2UIaYhDGgiULxHgSYeS5IOQUv1J37ww7UfCnUaNGtssv/PHgIZySL0yzqE09Qp+xqItQwyJ9u3btLAwTFVkcRhBicTxqtMViLwIS4gGL/ePGjbMivmgcLR/f91wmvoBLCKLyYAgnLKJHP88884x1DW8AFrpbtmyZyunDwriHafL+I3zBzENTIdwxDixSM4YsbOON0KtXL/OI4N4RKWDfuXNna4aQbYSmgj9eEi70ICD4YiveGnh5ZGsX8Q1xESNsIH3zeWEHE/5wXRby8RCh7CmnnGJzDq8vLJ03xUYbbZSauwnNpkKs0TbmeYrYZy4wh8lTglDkghb3F/fCoXw6Yy4T8g+DJ0IIHzydMM7hiRc1+oM4i8jgwp+HT2SM6Rch6RBO8VzB9t57b9viaYTxDJx//vn2LCH6DRs2LOUlYQUS/hD2D3MPpyiPbO36M4R3Ife35ZZbpsJNJlzK7g2RhHdENI8PAjFGKLgkY/7ccsstKTEsXgYumI+ph5rjGCIG7PDuuuCCCwJ99XLZ5iD1o3bzzTdbHxDL8eziHYSQ556IhEX0Z4F6iDww6tq1qzUTD5kZbTu6jyDKPTBHEGcRcl1Q5T4w73v0vRptI7rv7wHeCz169EjNw2iZfPfzuX6ubTu7dO8n2vEfMDCGzH8PL5jLNXin8G8Gwhv/ZvCMXHXVVfZ+47krrec/l76ojAgkEZBIlERFx0RABERABERABERABERABERABERABMqMAEIOAhELdyzaIRRgLPa7twCLryQlx1hAxWsh7iFBMndfiGYRjsU9FlfvKEisTtvUw/OFsFL80p3FeEJEsfh3ww03mDjAYreHD/Nwc3i90B7XY9EWryYWbCdOnFgoFJR1LuEPC7AsGGLlIdQcAo0bi+jRD14L7777bhg4cKAVIVQWof26dOli330x3+sTWuujjz6yrwg68OVeWXzGSwWRiYVSuHIdhAU+GG0j3GGE/2LsCQfWv39/O8YfvE4QnqiLN0Yu7V5zzTWpPEcIe8wjxBgseu92oOAPHmX84p/rsEBOyDcW45kziJIuUEbD13ld5px7XMXbRuD0cae8h5pjnz7hpcM9c7+IjswvOORrHiKN/tNvPuzTPgvTcUOcQVRwMYDnyscEkYh+MmZ4PjDfEVL79OljzTAe5513nu3jJYLgwxi7F5N7yMVZUIHnyMVfuLB47patXUREPLKox/1F56Rf09tiyzG8qxh3GN999932nfp4QNFnL2c7kT+MN++MJOOd4XU5HxW6eK/QNteA45AhQ2wceE9suummSc2lPYZAwfPjvPx9xv3g7UV70WeB5wOhkfcLnkZ4TuZiCLF4/PA+oz7h4ngHMCddSEt6r6ZrmznB3GP+IJL5s5GuvI9d0nzxY/lc36/jdaPPbPRaUXbp3k/Vq1e3nFuMJ2UWLFhQ6P3h1/BrRre1a9e2f1d4J/IM8W8MXPBAZX6V5vMfva72RSBXAhUKYiIu9dvOtYbKiYAIiIAIiIAIiIAIiIAIiIAIiIAIiMByIkDIJjx5yGPjIk300uQLInxPNMdG9Dz7hKzj44uCfp5f+tNmNCwWnjMebszzkCBcsFhP2CiEpaiRg4h8E7l6exC+DO8bzysyePDgQMLzFdkI3+WL3uSTwWMDQS7KNXp/5EaBPZ43SWPKWBE+K9152vIwcPm0y1whz04+OU4QFD7//PPAIm+uYxztU7779A+GeIvk08901/n4449t7uNpk82WLFli4d6ieWy8DvmFCIPHOGcaM8Y8mk/G6xd363MhXbvMA/odz/2V6XqU/+CDDwKL/jVr1sxUtNTOMY/gWhpziGcLIRYxM90c4Z3IM+bPZXFuhPcu4edoI0kASfdeTboWIRN5LyDGlJblc/18rpnt/URbSe+fXK/B+HENDzUZrVfaz3+0be2LQCYCEoky0dE5ERABERABERABERABERABERABERCBVYoAC6OEVSK0WtT4Rf5DDz1kYceix/PdJwSYe1nwa/3nn38+o8CVb/tlUT4uEpXGQnhZ3IeuKQIiIAIiIAKrIoGKq+JNozQTY5UtbtFJ//GSS5lVkV1J7hmm/NIB4xcsSb9C4By/dsCVnV9zpPvVEeX4JQ+/TkkaP85jtMOvfXCXTTKSzfE/AMS4TmelcZ10bWc6Tr/45RS/DEn6lU6mun6OX3zQjrvC+3HfMib8eoZfnqQr42W1FQEREAEREAEREAEREAEREIFVgQAeCYQSmjBhQpgzZ479+p9QVoSpw7OlpEYuC/5ft27duuG4445L6wlQ0uvkUz8aggmvqHy/R70V+P/LfOur/Bqp4UrHn+O5mFhmZ+kc07Fenuf9WtqKgAiIQFkSKHFOIhKQ8Q9Q/OMxMsvy5tJdG9e9AQMGmFCESJBkuZRJqlfWx3w8+HUThkt8fGyIIUqc33T37vdA7Nt4Xb7fdNNNVoS4pHxHiIkbcWWJ3+zGr6Rw46V/fNi/5557/LRtcacm1vAmm2xiv8ziV1oklPQEhl74nXfeCfvtt58JTZQlEd93333np21L8jyuQ8xWxCb6iiDiRjgA/mOcfiDCMF/jyTZL6zrOiW3UiGNMckUYRvv/6aefWgI7/ueD+LXcIzGc3XAVTxqXfv36eRFLxsr/wPA/HohkjAfxdqM2fvx4E8f45RplSG5J2+ksXX+9PO7afj/xsfUy2oqACIiACIiACIiACIiACIjAikAAoeOEE04IV155pf3/M///WBoCEfdO7gnywpD3JV2oqOXNiMVy/3Bt32eb73d+pFmS+vleb1UpbwORwx+xL725vDzmVg5DqiIiIAIisMwJlFgk8v9gYDGbRHb+4ZcxsuVPwMfDBRHELoxkaIwNSRZJioagcMghh4RFixZl7CT/8Uriwujn2GOPLVQHMYJYmumMxIC40/MfwQhBfEh4yX9wP/vss1YNbx1ECoSZ+++/38rMmDEjHH744ZY8kX0Mr5ijjjrK/uMcQYOEk4hUxIX2e0XsOfroo619rkXcaP7DnsSNbiTYxKV/1qxZlmgOQQnxjBixWGlch34gUpHAFMHLx4T2SRaJ0LXVVlvxNXWOuKQkVSVG6+zZs008GjRoUGjfvn145ZVXrCz3hM2dO7fQuPTo0cOOw+HQQw8NG264oXkJEYMWgQpGb731lpV54oknQqdOnew4c4AwCpRnjuB9FLd0/Y2WwysvnxjA0braFwEREAEREAEREAEREAEREAEREAEREAEREAEREAERWP4ESiwSeZcRHVjc9w+L8th//vMf8wZBIGARG4+GVq1ahUcffdSr2mL3kUceaec4j2cIIbDcECD69+8f8GxhIbtDhw5h5syZftq+43GCZwQL/ZRhS3LLiy66yL4jArgHTKpiwc4bb7wRDjzwQLs2gkiSV0y0fHQfzwyve9ZZZ4Vhw4bZvQ4ZMiRVDA8aFt59AZ4+uuXChrKZ2vC2sm3btGljY4NI4IILDBmXTOaeNnjb+CcaAg7xCY8kPJPSmYsbiBKEhuNz+umnm3hCfez222+30Gp4ADVp0sTK7LzzzoEkoXhDIWxhzz33XHjvvffCiBEjLDwa4wrHRx55JOUFgxcLouWFF15o7ey///6hT58+Vo42iJV877332ndEHDx1GDsEounTp1OkVK7D3EKMos9+n9Z4wR/EsFdffdXuzY+xffLJJ034IhFq/fr17Vdl/LoMYYh7wkgUSXskbfUxYesJ73755RcTf6699lqb1yQGbN26tdVdsGCBbeG8yy67hK5du4Z1113X2hs6dKixnTp1qpWJ/knXXy8zZsyYMHbs2CLeYX5eWxEQAREQAREQAREQAREQAREQAREQAREQAREQAREQgfJHoNRyErEwTQgvN8JhVapUyYQavD34uCEQ8cFbg1wriAJ4UBx00EGBkFUPPPBAePHFF8NHBflrOM9CNkIJi9nEAcYzhIVsPEFYSGcBm/YRIShDW4gKu+22my38cwxPCTwdCCtGG26IJ24sciOg8FlrrbX8cOIWUQLPDLdoaDXuB6PPeNBgXBePEj7k4mnbtm1WNuTbydaGNZ7nH8QXRD0+8VBuSU1FPWA4H80lRB6bG2+80YQ/BLOkMIN+DG+YCy64IDRq1Mg8ZZo2bZq6HB49zZs3N4+b1MH/7VxzzTWpQwhEeOVE4x03bNjQziMs4pnDfEA0XG21fzVQrokIxBx1AXKnnXZKtYvwhQgzf/58O1Ya18FTKp0xf7DPPvusUBFEyl133dXmNp5P9PmAAw4wsdNzLyEYwb13795h0qRJds+w7dixo7VVuXJlE075gsCKWHrppZdaOffw47niWYuae4PFk7NSJl1/Obd48eLQs2fPMHjwYAtbxzGZCIiACIiACIiACIiACIiACIiACIiACIiACIiACIhA+Sfw7yp6CftKfF73EmGLB0jUWLzHAyKa84QwZIQxQ9TB8EYgDNaoUaPMc4hFbMq7QETCSMKTsThOnTvvvDN6CYvnS+gsFqsxFtipQ44XD+uFGBG1du3amScM+VYwxAEPgRYtF9+/5ZZb7FDLli1tsR3hAfEC87Bnffv2te8PP/xweOqpp8KUKVPse9TTiAPp2HAu1zYom48hFGF4uXh/k+rjEUY84ejHQ5Z5ecLWnXLKKSZSIPzFDZHouuuus7FFpIAT4hmJQN0Qq9xThmMIG4h2/pk8ebIVff/9982DxuuxdQ8azmHMqVq1atm+/yEvEYbw6CIIQkvUtvx/9s4DTIri6cMlOeecBckIgggGFEE/MYCoGFAURQUDqIiCiooJUYyYUYLCXxEREUHMIEkFJOecJecc9Zu3j1pm53bv9u5WglQ9z96knu6ed3bndvvXVVWmjBOY2BePdvx1x7qOSISHFzwRTfEi4n0DY8QYbN26da4M4egQPrl+vOD43PgNDghGeBzxWUPoQTDF6tev797reHAhAhJiTnMmwT4lRuhARDs8vsyMgBEwAkbACBgBI2AEjIARMAJGwAgYASNgBIyAETACRuDkIRA3TyJCV/kH3cl94zdCrpGvhBfhvwirhRcFXjfq/YN4gDcJnhOElMO7g8FtDFEIbwlMBR28jfxGbhwMTwyMkFwVKlRw63iNIA7g8eQ3BrbxGuIc+shAOrle8IpJyjSEGoP5eE1pmLz33nvPnYZApV4iCGYMpB8+fNgdw+vJn/clGptY6khtkkvlAHO/x03wmsmPwzX6rVSpUv5Nt47whXdYhw4dpE+fPomOI3bg6YUISEg3PK8Q/xDkCCPI+0L7xMmIbo899pirBw4IaYQppJyKitqIesBwDCO0X7CMerkRek2FEvb5PcYQJQk9h8WjHVdRCv+ol9bAgQND70FCxVWuXNlxwwONEHuEXySUIkboPrzO8Dy68847Qy0ievFZ4X2P2FanTh2Xg6l06dIu1xPnEQ7v0Ucfdbz4DNCOMghVlMQKguHbb78tCKF8DsyMgBEwAkbACBgBI2AEjIARMAJGwAgYASNgBIyAETACRuDkIRA3kQjvHrxqohmD2Gp+YQNPB8K7kWOGMHMako0cN4g1fjEFjwgMrxa8Xxj09lv69On9mzGt+0UC6sX279+f7Ln0O1h23759bh+ii66zA6FKB/8RPBDG/G1EYxNLHX6WrvEY/6jARki+pIy+48WSnCG+fPLJJ07YQPSKZFznVVdd5V4IQIgV5A9CJKIdcvio4XGEBxiGwKS5ongP4A3kN/V8KVu2rNuNiOL3WGOn5uLBo0jFqDVr1jhBSeuiDb3WeLSj9aZkibCDIaSqkW8I0XX69OkuTGGzZs30UGgJV7yCEMdUBIM3wg8vjuNdhVjUuXNn934kZ1Hr1q1dyEG4IM5yblDgDTUSYaVr167OM2zlypVh4iCf4xw5ciT5TIhQne0yAkbACBgBI2AEjIARMAJGwAgYASNgBIyAETACRsAIGIFjSCBuIlFq+8wAPx435Pfp0aOHzJ8/XxAIGOyeMmWK4KGE4fGCxwKiCOG2CBuHx0habciQIYKXEf1gYBurVq1astUibOChQWg7RAlECPWgQcDC20Y9pMjXQht4vIwcOdLVjZdUchaPOoJtILqR0wmWWL169YJFUr1NCDOuVT2+tCI8VfDaIXeRGl5neK2oITDi2YIQoqHwOLZt2zbn3YUHDYaYxHuD8H0XX3yx24e4iCGmYOSpeuWVV1x4Ns3jwzXzXkJIRJzCOE9D3BH6jvch9xKLRzuuohT+0f6QG4nrwGBHGEQVSdu3b+/283lR03CHvOcI3deyZUvHSL37+NwgQKmghoce4uwjjzwSYqAc/fdF64+2RPwk9xhikd+GDh3qBN6khGN/eVs3AkbACBgBI2AEjIARMAJGwAgoAYtSoCRsaQSMgBEwAkbACJzIBA4cOHAidy/mvsVNJELkwZtErVatWvLVV1/pZtTlpk2bXIg5CjD4jTePhgqjjoIFCwo5bQibhXcFwsCgQYPcgD4htxBr0mJ4LH399dfOa0W9MM4777xkqyR/CyG2EBdU1EDIwlNIjXwx1I9nDcLJhAkT3AA+16EeK1o22jIedVA3XiMIJRoCj314lzz44IOsRjXEB8LD+Q0RgfB6kYx7Qv4gzftDGTy+yFmFYIEXDJ5W5J8iZw58MELRES4NbxbEJO49Qgmh+mCqwgj3hlw9iBuErCNPz7PPPisdO3YM5SbCOwaRCMEKrxlCGw4fPtz1i7Z4jyFq4P1Wo0YNF5aQsryXNGRhPNqhrZTaFVdc4cSzFi1aCHmv8HTTXEENGzZ01cGTz1vVqlXdPUQw7dSpk9x///3uOGIYnyvKvPDCCy5sIx5bhDlU3uQxol74Ic6RBwmmhJ9DIEPQJOQi713qjmYDBgxIdIgfdOSgCoqFiQraDiNgBIyAETACRsAIGAEjYASMQAQC/5UBlwiXZruMgBEwAkbACBgBI3DCEUizSKQzfBBYVNzhKtWDQfPdaLg1PwH24TnRu3dvefjhh50nEcfJJUT4uSJFirjiiDh33323G+hHlMEQBXhFMm1L+0aZaP1ATGAgnb7TFzxsChQoEMofFKl+9uFxgnCF9wWhthB+8IIhN4+GvevSpYvw5ZbcO4g0GJ4ViBtYtD5xTK8huToo6ze9Zj1f26CMCkSILHgQIRDhBZKUIfQFxT7uDWICpteqdeCxwvUSUk/thhtukPXr1zsRQj1O8HihHoQqjH6MHTvWCRYISmoIUuQt0jxIXBcCBAKItkHeJBVSOA8BBPGC68ODi7YQhPzCHO+32bNnO9GKcwjJhieYXk+82qFujHr1niTsCf+rxygHb0Sic8891xVCfCSXU5kjoegQX5YsWSJt27Z1LwqRw4v3MsZ7gHCCMFJPMero27dvSATjvc42OYxee+01d961114rL730kltHJEKk05B/bqfvj/bXt8tWjYARMAJGwAgYASNgBIyAETACRsAIGAEjYASMgBEwAkbgJCNwmidi/HOi9BmPEcQCDREW7BcD13hI4F2UIUOa9a1Q9YcPH3YiUSwh4PSknj17CiG78HjB24cQeHih4EFDbhgG+dX++ecfd5z6/fmH9Hgsy3jUEUs7/2YZwvCRKwiBAdHHL2D52yUkHhwRNrjX0YzQaXjaRHu/cB5iCrl4VDwL1rVjxw537xEmo1k82olWd1L7CWHIfVeBLFiWvFZ4ehE+L1puKlgigBYuXDh4uts+dOiQY4RnmObZ0oJ8LlQ00322NAJGwAgYASNgBIyAETACRsAIGAEjYASMgBEwAkbACBiB/w6BE0okOpmw/vnnny53UrDPhCwj3FpSwkXwHNs2AkbACBgBI2AEjIARMAJGwAgYASNgBIyAETACRsAIGAEjYASMwLEmYCJRGogTvm3o0KGyaNEiyZ8/v1SrVk0aN26cbAi3NDRppxoBI2AEjIARMAJGwAgYASNgBIyAETACRsAIGAEjYASMgBEwAkYgLgRMJIoLRqvECBgBI2AEjIARMAJGwAgYASNgBIyAETACRsAIGAEjYASMgBEwAicXgXQnV3ett0bACBgBI2AEjIARMAJGwAgYASNgBIyAETACRsAIGAEjYASMgBEwAvEgYCJRPChaHUbACBgBI2AEjIARMAJGwAgYASNgBIyAETACRsAIGAEjYASMgBE4yQiYSHSS3TDrrhEwAkbACBgBI2AEjIARMAJGwAgYASNgBIyAETACRsAIGAEjYATiQcBEonhQtDqMgBEwAkbACBgBI2AEjIARMAJGwAgYASNgBIyAETACJzmBffv2yZw5c2TPnj1pupJ41ZOmTtjJRsAIxETARKKYMFkhI2AEjIARMAJGwAgYASNgBIyAETACRsAIGAEjYASMwLEnUKJECcmUKVPE16RJk+LSoUOHDsmjjz4quXLlkpo1a0qePHnkscceE/ZHsr///lv69+8v+fPnl7p164aKpLSe0Im2YgSMwHEjkOG4tWwNGwEjYASMgBEwAkbACBgBI2AEjIARMAJGwAgYASNgBIxAkgTGjx8vhw8fDpVBiLnuuuskS5YsUr169dD+tKy8/fbbMnDgQEF0qlatmowbN04aNWokVapUkdtvvz2s6q1bt0qzZs1kxowZUrFixbC+paSesEptwwgYgeNGwDyJjht6a9gIGAEjYASMgBEwAkbACBgBI2AEjIARMAJGwAgYASOQNIEyZcpIuXLlQq/hw4fLokWL5NNPP3VCUdJnx3Y0a9as8uqrr8pZZ50lGTJkkAYNGsiZZ54p06ZNS1TB+vXrBe+mBQsWuHL+Aimpx3+erRsBI3D8CJgn0fFjby0bASNgBIyAETACRsAIGAEjYASMgBEwAkbACBgBI2AEYiYwdepU6dy5s7z77rtSuXLliOd99dVX8sorr0Q8ds4557hzgwfvu+++sF0rVqyQWbNmycMPPxy2n41KlSq5UHOJDng7UlJPpPNtnxEwAseegIlEx565tXiEAG6y6dOnPyY8li5dKj/99JMMHTpULrzwQhcv9bLLLpOyZcsek/atESNgBIyAETACRsAIGAEjYASMgBEwAkbACBgBI5AWArt27ZKbb75ZmjRpIq1bt45a1emnn+7C0UUqUKpUqUi7w/bt37/fhZhDhLrpppvCjqVkI171pKRNK2sEjEDKCZzSIhHxO5csWSKnnXaac9dMiWCBmt6vXz+XzK19+/YpJ3+Kn9GuXTv5/PPPZeTIkc6N9d/Ecfnll8uoUaNCTfjXn3nmGXnyySdDx47Hyp4Dh2XV5r1SMn9WyZYpdaLZocP/yKote6VMgWze+znyVezad0h2eq+iebJELuDtXbZxjxTPm0UyZYgciTIe7fzzj8iGHfslT/aMkjlKO7v3H5Z12/ZJCY9JtDIc9y7b9TfqBSVzIDkmsfTV38Thv/+Rjd61FcyVWdKni3IjfCcw+2fVqlXStGlT394TY3XhwoVSunRpyZw5c4o7tHbtWsmbN2+aXN737Nkj27dvl6JFi0Ztn3Yoh9t9LM/vzZs3u3Ik3zQzAkbACBgBI2AEjIARMAJGwAgYASNwshHo2LGj7N69W3r27OnGM6P1v1atWsIrNfaPNxhy7733Oi+iP//8UzJmzJiaaiRe9aSqcTvJCBiBFBGIPBKcgipITpYpUyY5++yzE52FkMIxXpEG4jlHj69bty7s/EGDBoXq3bdvX9gxPYfBVQzBQfcFlzt37gw7lw3EoRdeeEGyZcvmYmuSjI14mS+99FJYorVEJ/p2rF69Wrp27SpvvfWWb2/aVv/66y/54IMPorprUnssZdLWi2NzNoPj3Bu9h7G0SuI8+CAsxWq8H1QUql+/vvB6+umn3ZI6nnvuOffeibW+MfM3S5XHRiV6ndNljKti595D7tgzX81PVOXXk9e6Y3oAoaRNn+lS++kxcm2PSW7Z9pOZsnnXAVfk0QFzErXjbxshBXv/l2Vy3nNj5arXJkjDl36TEdPXu/36Z68nQlFXnWfGyiUv/S43vjNZ5q0J/1yMmrtJGnX/w9VxwfPj5I3vl3j/zLWGhGVa26G+z35f7fVjjDTo9pvUfHK0cL1bjlwvrWzfc1Du+3iGwLPJGxNdmc//+CusI3P+2un62tC7lv97+Xe3vmDtrrAyuvH4F3Mj3o/kmMTSV22DJfU9O2S+nPnEr949+N0tuw1bKPsO/u0vlmj9tddekxEjRiTa/91337n3JUJq0O666y654YYb3O5t27a5ctdee22wmNtGQNFnYsQCEXYS15jnOs/FYsWKuWc3X+zU+DLK85x6/c91yrzzzjvOSw9xKVeuXHL11VfLmjVr9NSw5SeffOLqYHaT35YtW+YSYyLkUA8xjvv27esvIjNnzpQaNWq448xqOuOMM2Ts2LFhZfwbY8aMcdeE4FSoUCF3bqSYyv5zbN0IGAEjYASMgBEwAkbACBgBI2AEjMCJRIDoOH369HGT1gsWLPivdY2xss8++0wYm0hLBJ541fOvXahVbASMQIhAmkWiAwcSBrSJUTl9+vRQxazwQFHzDzKyb+7cuU6R1uPffPONrrqllqfep556KuyYbmiZv/9OGIgtXry4XHnllWGvSLPLe/To4USinDlzyiOPPCIPPfSQsI5XyUcffaTVH/MlCefoC/2IZrGUiXbuibT/hx9+cInvcI+N1QgXBx8ExFjsxRdfDBVDGPr555/dS9dZquFtlBL78sFz5IdO54VeQx6qE3b6l5PWyMg5G8P2BTce8YQbvIiGd6grU7vWl6/b15GNOw/II5/NcUUfa1I+VP/tF5aUfDkyhbZpO2umdDJo4hp59+dl8tot1WTicxfJnReVko6fz5Gpy7eFmnt68HyZ4m0PfbiOjHu6npQtlE1a95kREmcQjNr1mynX1i4qE569SN69vbr0Hr1C+o5dEaojHu38NGuDvPjNQnmjRTWZ/EJ9GfHoubLG8wbq6u1Ta+v1Y/OugzLsCBP68sLQBYLAhiG63PHhVLnszEKuDvpbuXgOuav3dMGLx29D/lzr7gHeVUFLjkksffXXiaiGgMj7gnv5edva8t2MDfLRr8v9xcLWeW79+OOPctFFF4Xt92/cfvvtgtjuN33e+fchNC1fvty/y60PHjzYLcuXL5/oWKQdPMObNWvmXMpJQsn5JK18/fXXXXGOIx798ssvTmzRZzAHv/76a/c8RfzZsmWLzJ8/X/bu3RvRLZ3neps2beT8888P6wb1NW7c2In2ixcvFjx/aJsZTHx+MequXbu21K1bV1auXCkbNmyQe+65Ry699FKZN29eWH1sIKz/3//9n3PD55oQ+JlNxbOHCQNmRsAIGAEjYASMgBEwAkbACBgBI2AETnQC/LZl0ij5gS655JJku8tkS500Glxec801Uc/v3bu3dOvWTZhAyu/u1Fq86klt+3aeETACKSOQZpHI3xzh19QYyHz22Wd1M9GSBGrYVVdd5ZaRZsy7A96ft99+O+Jsez2uy+uvv97lnEFZ1xfeQkEbMmSI24UnEN5DDIIyGMrg6KZNm0LF//jjDxfnM3/+/G4wk/JJDSoS+uj+++8XZsYzEx8PJwYw1fCIYuY9D1nqZOASsQSDR6tWrdw6D368rL788ku3rX+ilWEGPeVvvfVWdy20j6cUNn78eCea0R4z8olbSj8x/3kffvih6zP14LKq18mSRHfq9UXf8RbwDw7z4G/UqJG7Jo6/+eaboeO33HKLO/fjjz8O9WPr1q2OTcuWLYUZ/oSUon5e8GDgmL4y8AsLDG7Ui3GvKMsgcjQjBxEzFtRUEKI9ZcM+PIswvI04J1Yr5YVB878IFee3KsVzCl4seAtFMgSNKcu2ySVVC0q5wtklS8b0UrFoDnmn5ZnSukFp58VTMGemUBt5s2eSjOlPC23Tdjovrtznf6yWlvVKSv1K+SVnlgxym7d+9ul5ZMgRUQXPnO9mrJcnr64gFYrkkPye0MQ63jvjF25xXft22nrXdpuGnvdH1gxSt1xeaft/p8vHYxM89SgUj3YK5c4sfe4+Sy6smN+F1Tu9YDap7fV19ZYET8FNnkA2dfl27oC8FAAAQABJREFU1/YZR5g0rFJAePX6NUEo2bhzv1zjiVl3X1zK1UF/m9Yq6q5ny+6DIdRLvbB5Tw2eJy/eUNmJYqED3kosTJLrq78+1ld64QLhVtW779zLGqVySY2SuWS1tz+aEc4Nb7rzzjsvWhEnhvBc0M9j1ILeAcSZoL333ntuV+7cuYOHIm7zHD7zzDPl8ccfd+HiGjRo4DzvENaxGTNmuM8lzxVEeb8hUuGlg/iSI0cON9uIdSYE+IUtnoM8q3lW8sz1G5MOEMLxjCJGMuI9ZTEEIYzPMNa9e3cpUqSI4HFEf7FIIj/xj//3v/85AYsQePQRIYpnM7GczYyAETACRsAIGAEjYASMgBEwAkbACJzIBMjpfeedd7oukmdbJ0HrkgmRQWNCKpP3I72ipc3Ac4jf6owFpEuXLtTOxIkTXfWMSxLVQ8cVg23qdnL1aDlbGgEjcOIQiGtOIgYkEV2yZMmSZOgfBIZPP/3UUXj++eeF+Ja///67mwlPbolIhqBAiKHgwKS/7MGDB11cTt3HA40wckHTHBeIHwye8uDkAchLjZnuKiAwa50BSvrKgxeRJGgIHXijMJNdZ+0zYMm1IUDQD7wCmG2PcR0MdvL69ddfXZg7+q/GQGpwYJh/CpHKMNBMf3mpl82OHTucB0LDhg1dlTVr1nSiCg90xBAe8JHOo/CDDz7oHvoMXiMe4cnFwGrz5s2dWIf3FYO3d9xxh7z//vui/1wQpwjhxIt+durUSRYsWOD6heCjxnXofvrANn3HCE+lhrDEADPh5dRjjWOcAx//wLOeo0u8jvzGrAnupw4wq2jkL8M5eCzEZJ7Tii8CV6I8QA9cVlZ6jlwmeKx80Kq6E3T89ZKv5vzy+VyouNxZM0rDqgUkT7aMUtgTUnjFYn97HSDMWivPe8hv1T1xQj2JyFOEVSyWI1QkpyesIEit2LTH7Vu6YbdULZEzrI+IXAhJhFHLnDFdXNqpWTpBqEAgO3Dob5m01PNumrJWOl6V4OWiOXw45jdC4WFcb8l8WZ3I5T8+bsFmx6yAJ4CpdfO8kxCj8DgaNjU8lGUsTJLrq7ajy2bnFJX2n852QhEC0WRPAPx13iZ5/47qWiTRkmcen6ty5colOqY7+AwgmiKQEnc4mrVo0cI9lxBLeP5ikydPdp9FjvF5i8UohwDLs1MNrxsEFcLM8QyLZsxEwnuP5wViNKEkecbiMeSvjxCd1MUkAsQbv5H/qG3btm7WEkJx4cKFnSs9ZfASxTJkSPi35X8mqGhNjrmg4RrPi+cF53CNzIq68cYbncAULG/bRsAIGAEjYASMgBEwAkbACBgBI2AETiQCRNRg7BC77rrrEnXtiy++cJMt/QcIy84rJdarVy9XnLa0PXYwLsoYBmOijHsS2t5v5Hr3W3L1+MvauhEwAicGgaMjgWnsz6OPPupq+P77791SB/8QFII2ZcoUIe8EQgmz1tXNEQEjaJdddplzp0QYQJQICif+8ggWzBTXVzT3S+0rXirUyQAinj/kB9H63333XVc1g648COkzwgiiCZ4wQSPcEw9KBnSZbc+rXr16bpB29OjR7npVICIfD9ev+TxQ9RmwVOEMLnPmzHEDrf52YimDNwGz4xkEZUmoJjySEIUQ2TBEHP7B+I3rI78JfcY0Twp9xxBP+vfvL2yTF4hcIRjtYOxj8FXvP9t+w8OIa+YfSYECBfyHwtaZsUC/VeSh34S4wtsLl1oMzwr4VKhQIexc/wZhqoKGQIRQpGGrVKTTcnifxWp1nx0rVR8fFXp1+Gx22KkZPBGo241VBAFj4IQEb6iwAt7GyzdV8TxPcjmPl/OfG+fyEpGzZ39AJAmep9sbdxxwq4VyhYtKRTyRafH63e7YqiOeLMEyxfNmkWWetw22dMMeKZo7QVhwO7w/hY/UiZdPvNrRuh8bOFfO9vIwkXsIgevGusXcobzZMzrxitxH6hU0ccnRz9o2n6eQ1jXaE2Lg+3jj8iGh7pfZG+X3RVvkyaaR3x+xMNH6o/VVj+sSj7Bm53j5e76cJ41fn+jlJ1ogN51b3AlVWia4xJMPb8KkjGcBzyKeFTw3ohlehDwj/WE7+VLG87NKlSrRTku0n2dYyZIlw/aTlwjDUygp4zmKmIUwhCiN4Ev/H3vssdBphHpDoOXzjAdQJOM4nkhXXHGFCwvH5AO8VFXcr1MnIbQj5RB9EJk1HF4wNJ+/flzteYbz5RbxKZLXkb+8rRsBI2AEjIARMAJGwAicGASYsMT3VP+EyROjZ6deLxgLIay0jptEIoCHAZM6zf7bBOw+H9v7S/4hfv9Ge0XLU5zSXjJuGakNxkUxxuwY1wtOdiXyknobUS65eihjZgSMwIlFIG4iEQIGxsx3xAZEIgbkIw3kqxjEMUIuqeCACBHJGFDES4VBfUIMRTMGJP05iS644IKIRfGQQdDo0qWLG8ykEAJG586dRQWkCRMmuHNffvllufjii11eDQZhsWDuJfbpAC4PTnJj8CIkkx5DNMIQxcjpgZF7iC9PKki5nWn4w/UT3g2vmYwZM0rVqlUFN1TEIcQwZuirkStEDc8n+kVoPsLGYRraifMxvKgQ0ugr7cCELwUaTk//ISHMcU3BGf38I+E89QJwlUb4Qzn6T/0ISxjeRCm1cePGRTwFgUg9ioID9HqtEU8M7HzTy6vz4Z01Qi9CxAWNcGpPXVNBug5dGBJt/GUKeOHkPrmnpsvN8/Q1FQVPGnL2PBIQnPzn+NezZU7vNvH28Rt5jnJ4oecwXQbL7N5/2IWWo0xuz4OJbb9p+RxZ0ku82tH6H2xUVv53by1p50LarZRXvj0aNvC1m6t64ef2Sr3nx0m9F8ZLq4+mydW1irhT6affyKV0/yczndDUqHohd4icRS8OWyj3XlLGhebzl9f1WJho2aT6qmVYklfpqz/XuPvNtT3miVZfeOLVWz9GD2FIXp9Y3nN45fD5uu222xLN1tE+5MqVy3kA6rMEkZRnccyecUcqIiylPue0brx+MNpIyvBivPvuu11YNz5n/A/g+cAkAP1BzzMWIR2vxEjGl00+lzxDCH2HWMwzAQ8m3NUxBB4EdQRxxCS8sfBgJXRpUODyt4FoxTOZ8KVMEIB9Ut6I/nNt3QgYASNgBIyAETACRuDYE5g0aZL7TYuHOeGNsmfP7iZPMYBp9u8QIBoAvz34Ta7fv2lp48aNbqyF7+LVq1d338nxXFDDs5+IK/yeYHyH3w58/16zZo0rwqQv6oz08v92Z0JopDLsS0qY0n7Y8iiBaPeS30CMvXGvdMzl6FkJa7Nnzw7dBx0b4khy9zlYj23/NwkkN67337xqu6qThQBjWpqChsheZrETSBhJjr181JJ8WeDLBGqx5q/gHzz5IPzGP3adwY3rogomlGF2EIJAcOY7A4F42zC46M8z46+XdXJXICjFYohOhEXihdjBkkFNXsyGJ1wbRjl1z6QcA4v0J/jFVAdSOUfL80WK0E3UoYOkhFPymz8Mk39/atYZLPUb3kAq3vDP3z+AquGZKM/1qAXD8z3wwAMuJB+Dsoh0iGkMPiNwEQJQDVFKLdI1xZoTxc9Hw2YF30PaTlJLBqYjPQw0H5Eu/XXwJSlWO79CPpcDKLnyzT1vkp9nbZSOn8/xPGbCc7jouYhJvG4+r7i88f0S6T16hctlFPT+0fK6JAdRPi/E2trt4bO01mzdJ5W8cHJYCS88G7Z++34Xzs5teH+We6HmLvLyGGFlC2WTNduOiobsW7stoU76gHgVj3aoF9NcTuROIn/Pa98tlnaXne5yDJGfadQTF7hwbVs9z6GzT88t4xdskTl/7XT9SKhBhGts3WeGIA51uKKc7nbh67hW2Hw5KeEHyQrPm2qzFzpv0MQ1nrdP0ZiYaIVJ9VXL7Nx7yAlCXa+vLNd59WNcG9b920VODMuUIZ3b1j+IqAgoPNNiMX5wVa5cOZR7J9I5JLBEAEHExkuJ54GGwIxUPtI+hOCgNw4/LjD1KIp0Hvvw5iG0HYKNGs9CRHnCbvJDceDAgU5IwqsHQ1TnWYvXEyIPgjahJ/lRohMMEIzpEwKYhpxjUgLseCbx7EGcJqxdpUqVtOlES3jwwhMJTyee5b/99ltMQl2iymyHETACRsAIGAEjYASMwL9KgO+IRLngOx6Tq/AIZ5Y63wMRi5h8ZBZfAgMGDHCTS/U7t792fmvgwc/3ciK34O3PJDbGO/jOzzgQUWSYEEwYf37rEHL+pptuEkQgxiU0aonWO3z4cBeinogEakzSZWzGb0QQYNJt+vQJkyT9x2w9MoFo9xJPMPLCwpPfftzToDHAyn3j95Z6j2iZ5O6zlrPlyUkAMVaNMc9/e1vbsqURMAInBoHwkcs09knzVWgIMn9+Ga2aQTmdqd6uXTuXZ8Ofa0O9jLS8LgkRFGlgX4/HukSsYSYSggADqRhhjPD8wRjIJJamzvAn307v3r3dq0+fPi72Z9CtkvPoH9a0adNQ+cGDB7sZ8wyS4qmDkScEsQlj5j05g4LeUXwhTm6WTCxlCDOH8aWKL2a4f6oF44Xq/uASjypELvpK3iUN+TZs2DDHkS/rGIO1GCIf18SXitSY3n/EKK0zOPC7aVNCjpqk6ifMViQj/1Q0i3ZOtPKx7E/nvZe63lDZ5fR5YejRvDCEemvyxkTBG8Zv5LNJiSEGfT9jQ+iUfQcPy0gvh88ZhRNEIsLKYSPnbAyVmesJLggpZQtld/tY/rZwi+zwxA61H2ZuEPISaZ6geLTTyRPK3v5pqTbhlohjGEILuYoINbfUY9OgSgEnuCByDfY8dKoUS3ifUZZ+3t17uhPCCNmnfeTY4cP/uPxE/cevcnVR3xIv9N6MlTvkg5HLXBuxMEmur7SlpuEBs2QKf5xmPbJ90OtT0HgO8tnhi3kshriBONuzZ08nmEc6BxEJLzlCYvKjjdxiKZ3hw2eNH+H+kJo8xxBVkvtRRphIfrD7TUVnPBcR0vEmJCQlzyJeeArx/4D/Gfzg1LAUkerR/xuEveNc+oMoxUAB9fMjE+/JoBGGVD0k9ZgK+evWrdNdtjQCRsAIGAEjYASMgBE4gQgwgRRjjIHf60xsZGIQvxH53cZEQryLGAz3G2KE/u7lOL/lGZdQr4k//vgjVJyxAX4rU44xArziCY+sltT5lNXcvFqesMuNGzd2m0y2ROxA5KJtBtwJ00aIe9riFRzfwLuD39KUZyDf72HD93siDPiN9snzieEdwmQtvg9zPpMmyUWcEmNiF2MIeP34DSGB3y1w5V4wmfOOO+5wRTSkPd/R+c3SpEkTd68QflhnfIC+Mc7COIq+GGNggi6RD/iNoMbkYy3Dkt8T/B4hskmsYxha16m8jHYvySfDe4/IOv6c3H5WjPlwj4PjVJRJ7j7767H1k4+AP8wcvf+3t08+QtZjI/DfJhA+qpnGayVMkIoGeBH5PVS0ahUu8Pp54403XKJzkp1rDhs8VvxeLnoeS2amBGef+I+TEJ0vG/6X38OHssw6Z2YMA44IQ4gZvFTgol8Yg4/YQw89JIhZfCHjCxuzZSJ9OWEQkmsnJwhf6PjCxpdKvpzhYs2seBWS+IJIfeQRIfwRg7uYelXRN0Ll/fDDD26//08sZbQ8//wxBo35R+/P0RSNsZ6rS7zC4IRHAl9M9Ysq/YMDX44x+BHqji/sXFOpUqW0ihQtyQHFbCQdPOcLY61atVwdumQwGN5+t+dgI3wp5X75jQF0XvwQYOk3PKP8M5j8xyKtT1i81QkriCu8/LlzguURJV70hCK/lSmQTQ54odE6efl5OJ8Qa+O9/EWEXqvoCT/JeRFpXfdferpMWbZNeo1e4XIMvfjNItnvCUW31Uu493iwPOx52rz78zIZ5YlHeOQgViFG1fO8obCbjuQE6urtX7phtwz4Y7Ur+5AXFk4tHu2cVSa39By53HndrPS8e2D28vBFUq1ELifsIPYs8gSd9p/OctdEXiXC7y1Yu0vaeqHpMASZtv1mOk8ochlNXrotdB/wPGpxQQn5tfMFYa8GlQvIDXWKuX3wiIVJcn1FyLry1Qnyh5f7iLCBtbxr6zZskRPjEAC/n7FeXh2xWOp73lrZj4QFVJYs+YzwHo70LPGX86/z41afS/79/nVCsyFmI7L6Pf38ZZJab926tTvMc48fsTyX+bwl5cGp9RFCDi9RvJ44lx/wPC95LvLM07xk9E1ffO74jLONmK6fS+pi1hqDA/zY5ochz1WsSJEiTixjNiM/bmDJ/xuEeJ5B/NjH+4jzMP5n4LVKKFF+pOJppc+taD+M3In2xwgYASNgBIyAETACRuC4EdDJP3xvI+yZhkvn9zC/q4lAQRm/SITAQzQNvldifJfk+zHfRYk4wqQmzQvM8Q4dOriB8DvvvFPwYGFgnUmflMOSOh/vdCYjab8oz/dwzZ9JX/g+Skh3viMz4ZLf0IyHMG5xww03OJGIyWMY+7lWfgszMQzj9zvfXzFyCgc9/gmhrBNQCdXMd2vygRKFBU8exhtSYkRU4fqDxuQs+J1zzjmhQxq1gzEPjHEPWCCMkT+YsQyuH5EsUqQRxk2IIKDh/kMVB1Zol/D41G8WO4Fo95JJgYiR0fJE8xuM47y3/V4k2nJK77OeZ0sjYASMwLEigFMFKRAYR9JUMseq7ZO9nQxpvQD/Pw4EGGaC8I88OEDJYCjeMXx5wXSGjbavM70ZLJw2bVrEwVNmxTObHrEAIUUHWP1fOvii5LdIOScQPqiLWUW4y6oxMIpghdGfTz75xG1reDwGIRFccK8OGoLMyJEjhRlDDKpizKThi5F6JeF9o19y8Zhh8JS8SOpxxT9qZgIRtgkGGubJ31akMtHCQNEX/skziIrAwxc2nVWl7Px1R1qHFbO0+GJOnzAGcBFaMDwAGJRlthEfQIx7H8ugsisc+MMAs4YOwHuBQWoVHhEh+dLKF0oGfdWzIFBFaJMvpv73J4PWzNbCm0i9lLSw/8eC7ktq+dD/ZoUdRgj48/lw4clf4Jqzi8pPszbImPmb3W7v4yB929SUxwbO8cKmTQ8VJUzZ67ck9oagfKb0iTVdxIlHriznxJc3vVB1hXNnlm43VgkTmVpdWEoWeUJLO09cwRBlXrqxcsgDh1w/5Fh6wcud1Pj1iU7UQBS6sGL+UL/i0Q6h93bsOeTCy2kOJESUF73+qj3VtII8OmCO3NZzqttV0vMkom+EfcMWrdvtBCTW2386m0XIyBHl73PoQISV5Jgk19fd+w45oWrrnoOu9vdury7PDJkvD/Q/+r5ofFZh6XJtxQiti/uHhSCanAU/pwjr/LOLZjxXee4gkCKmYME6op3L/nz58rkf2nghEWuczx7PDUTioPFj0V/3E0884Z4FPMMQ9DF+kDNbUz2KgnUEt3m2TpkyxT0nEXow+sDzhD5hzGrjGYCgrx6atMMziMEC8hotXrw4NAuU6+A5j9hPOD4MYZ4vC9F+HLlC9scIGAEjYASMgBEwAkbguBFgwuno0aPdZCAVCJiQiOigv5+ZIHTdddc5AYXvsQhEfBfWiUd0nu+Q+r2bEOhM1kRA4fspv+0ZE9CxCyYXMbmTiCMaci3a+fSJ75f8LqUs4ZIZy9CJTbSNmKWh+PHGQbRhjIHvovSb3+ich3jEoD4TrBhLwbhGxj2YRKuRWtyBKH+YCMVkWX6r8xsYsSqYJzjKqSnejTcJ4z688PbBmHDJNTDeoZO1+D2PaBU0WPCbgXB0SU0uZTwERoheyUU1CLZh2yknwHgdY0hMxmOCn47/+GtKyX32n2frRsAIGIFjQYCJF0zCYBye/y+Mw/MsU4eVY9GHk7mN0zz3wcSxkE7mK0pB33Gd5IscA538s4sWmonwZhzLkychz0hyTTDziIFKvqBGMkQV6mQQ1z/I6i/LF6fkvgjFUoY6EVMQ8DTHj7+dWNcRisixRJ8jccIzidBNBQsWjHg8qXaYFaUD2rg/44pOn6Pxpi1efnEwqfoR/qKJVgymR/LYSqq+eB/b5QkOa7ftl2Kex1Ekr5NY2iNU219enh5EFQSlSEY7iDMISdEMD5+ieTJLxgiCFOfEox3v1snGnQk5kvDqiWRbPK8ghJiSR8ShSGXisS85Jkn1FRb+UHf0h32bdh5w3kXBY9pfPOAId4YYoiKHHvs3l4SbUAE7Ujs8i1SI4Tg/Kslj5hdaI50X3KfPAj6/sYpDwTrY5hnKDBB9NgTL0A4sea4RlsJv0Z6NPGt4rsaaI81fp60bASNgBIyAETACRsAIHHsCTPokFxGeK0wgROBhUiWD2YQqxiud3JWIP0z0xLNFRQq+xzLJVL3x+T6MJ8WkSZPcREgGkRYuXChlypQJXRgRLYiSwcTFpM4/66yznHcL4dfoF55IDELxHR8j7B3H8MjAmOhFDs5t27Y57yL20Vbbtm3lvvvuc2GbEZAQvtS4Rjz0OZfJjoRtZhKoGgNhiGOIXUT8wPMIHuxHuGJyZKy/mbVOlng98buexN8qlulxwlIzmYvJXfRHv+8Tnh4RjMliTDBjbABxrnTp0q7/jEeoMWGW+7Vo0SJ3XPcHl/w2YSIuIe2SGxsJnmvbCQSSupdMlCXUOJ8vDE+4Tp06OQ86xrIYWEUsYgKeinkpuc8JPbC/RsAI/FcJbN682Y2tRBojPl7XzOQMJivo5BL6wf8SvHQjTVo4Xv08UdtNsyfRiXphsfSLL30a1iyp8imdbc6sp0ih9rQNviDxhTEpi+VLUCxlaEM9cZJqL7ljzNDX8HWRyjLAnNw1RTov0j6uK5pARHnaiiauRaqPLz98CSX/CQ8xvkDzwGAmWkpCzEWqOx77cmTJIOWLpO2jiCCh3jbR+kQ7vJKy5OqIRzve7QvzdIrUn3zZMwqvf9uSY5JUXyOJQOxLSoTjevCs4TNZpcpRD6p/+zqpnx9qfs/JSG36RSKdFRipXFL74vUsIDQHr2hGO/zojGTRno38iDYzAkbACBgBI2AEjIAROHkIIHIQPo4XockQggjHhoDCZCF+5yFm8NsOrx6NnKFX6Bcn/N8RmQSJ8TvXb9TJpE61aOdzHEEHgYdoGAhEwfBusQo0mo842Be2NWen9se/9EdNQfAiNN3AgQPdxDA8mIjCEc/Z0zDDU4k+Ua8KRPQJ4Q4xjrxIakyM474Rxg/Pf4xrJZoKHmHRvstTjtB63Gc8qfz3jWNm8SfAfUEgQmTViYV4jGHcAz5fDL7Gep/difbHCBiB/yQBxlWZjEDUKsa2eKYTmet4G+kIcNrwC0T0if9N5AOMRSQiihb/n6iDCSinmiU9Ynyq0bDrPS4EGAjWL5NJDQqnpXOIQbjDmxmB402AWVi9evU65j92+GE22gvZYWYEjIARMAJGwAgYASNgBE50Al988YXL3YMniYoRiCbkxWEQR+3GG290OXSJEEG4NQayYzHNeTR58mRp0qSJOwWvc/IQEa44FrviiitcBAwG0cmvo/mNYznXX4brI8IA4ZA1XB1e83gN4cmBUYa+Mpivs7bx8NAJrQza4V1PqGheeDcxaEfOonhM5kSQIjwc+YboF55GfmNgLnv27P5dofvmz9uEFxEeRP57GHbSkY3u3bu7XESE5TP79wnwfiOiC5F2VGhVsRRvOO4tn61Y7/O/32NrwQgYgeNFgJz3+fPnd56x/M/UiRyak+949Sut7RKBihQFiOX+SRhprfdkOt9EopPpbv1H+8psLc1h8h+9RLssIxAiwD9QMyNgBIyAETACRsAIGAEjYASiE+A7Mzl6yBeEhwMDUuSVfeutt8J+O5LPh9BYeBYxmznWiBPUR/g3PIHwFiIcMWHKqUtzCkfvXcIRZlDjTcSsY/IZEao5tcZ1duzY0YXDIyzOgAEDnCikOYqqVavmqiY/EUIS3lMMzp177rluP15WhKVDhKEf5Ciif0ExJ7X9gy19QrxhtjYvDGEOjyE8jAiJR6QWcgkTRr5Dhw6uD8l5EdHn559/3oWBR9AiLCC5ohDfVBBLbb/tvNgI8BlAIPLb1KlT3fsLUVDDzcVyn/112LoRMAL/LQKIx3isElqVSf78v2rVqpXLG328RSL+/xDVi/+Pfm8i8tqRvzs5QywnTyCTLEgRcyqaiUSn4l23azYCRsAIGAEjYASMgBEwAkbACBgBI3CCEmBQmnDhhHBDCFIj18Czzz6rm847nxxCiCmEv0nKVEDSMHD9+vWT1q1by9VXX+1Ow2vn22+/DXnnBOsKns9xPJkQT2INNad1aN26jdcP3kDPPPOMy7tUvnx5oX967YT74trx8uB16aWXuhBgei0INGvWrAkJXIg3DJSlRmTRPmkfWWqep2C4HgQ8+vPEE0+4MH3cG50AijhEqG31BEMMQohA0PIbghKCFzlJMcICcf3mReSnlLr1SPdSa0rqmJYJLmO5z8FzbNsIGIH/DgHyQmM8o9VIpTB27FjdPK5LJpLwXYDws3yPIN0IEyeC/7siddL/3SLS8VNh32kHDhzw0sibGQEjYASMgBEwAkbACBgBI2AEjIARMAJG4MQiQG7Nbdu2uXyy5BUOGrOYCb3GYFBqjJnR3rhIonBpsdSlQhN9jEf+S2Yyc6158+aN2Dz5gHhFy+FLaDeuBc+o42H0Hxb0T8WhWPrhD6MXS3krc3wJpPY+H99eW+tGwAiklQDCf/369d3/Ga0LT5333nvPhSLVfcdz+ddffwlet9u3b3e5wDt37pyi7uA5iycRoTZPNUt3ql2wXa8RMAJGwAgYASNgBIyAETACRsAIGAEjcHIQKFKkiAvDFhSICKmGBw8DVAzqpNYItRXMp5NcXQw+tWvXzoVUYwAqHgIRbeLdEU0g4jih2qMJRBxHmDleAhHt039CxqVEIOK81Hg8cZ7Z8SGQ2vt8fHp7arVKLpU+ffrI6tWrj+mFL1y4UPbv3x9Tm3gNki8tKeP4kiVL5PDhw0kVCx2j7Jdffhna1hU8LLdu3aqbSS4Rq+EWa5tJVpaKgynp686dO50HJpMGUmojRoxwefRSeh7lixcv7k7bvXt36HQmBpQuXTq0fbxXyK9G2FPyBGpI1uPdp5OlfROJTpY7Zf00AkbACBgBI2AEjIARMAJGwAgYASNgBBwBQq2Rg+CXX35xA0LHGgvC0LvvvpsmgepY9zmp9hDh9EU5XVdx7kTYTqr/dswIGAFxwgG51vCQPBY2fPhw9xwmb1qxYsXkySefFDzNIhnhJhs1auSEbkSFEiVKSN++fcOKzpw5U2rUqOFEh8qVK7ucZ8mFMkPcIYcdYoUaedMuvvhiKVOmjBQuXNiFIMNLM5IheNx///0ux07ZsmWdyE1ONTwz1e65556wZ6I+D/1iiZZN6TIlfd2yZYvLt0NePTghiPTs2TNqk3ja0lfeE2qIdAgoGuJT98ey5B5j5O5RIz8R/4vNTn4ClpPo5L+HdgVGwAgYASNgBIyAETACRsAIGAEjYAROKQLVq1cXXsfD8NZ5/vnnj0fT/1qbhKnz24m+7e+rrRsBI5BA4Pfff5dChQoJecn+bcObs1mzZi5PHCIE24hAeEMGc48hHDVu3NjlsiE8KGW+++47J+6QMwbPDwSQ2rVryx133CE//vij85xEACEH24wZMwTRKJLhQYTQQt42DE9PcpqRK2fFihWyY8cOlz+OeocMGSKay03rQtj6/vvvZcKECc5rddasWe66EGA0Tw2eTR07dpQ777xTT3PLbNmyhW2ndCOlfeW6eDbDGgFs5MiRrq/0o2XLlmHNf/LJJzJs2LCw/EEU0Hv20UcfSfv27cPOSW4Dr882bdrIc88957x4uS+DBw+WadOmRT0Vz7ZjaenTpw953OJFpu3fddddx7IbJ2Vb5kl0Ut4267QRMAJGwAgYASNgBIyAETACRsAIGAEjYASMgBEwAqcCAbyDnn76aedBghcOokgwrBy52RBqMDxsEDmqVq3qPD0QblLjPRKN7eeffy5nnnmmPP744070adCggetfjx49Ep2CsLFo0SK59tprpVSpUpIzZ07nzULBlStXuvJjxoxxy+7duwthRgmtSd0YgkY0GzRokNxyyy2hMJfjx493bb3zzjsu/CVeLvQJUQrRKGhLly51Xke1atVy3kR169aVc845R9ivRp4bOJYrVy7sRejFtFhK+oqnFCLgU0895QQwhKEmTZq4F8z8hmiGmNOrVy8nfPmPIZLBi/uXGnvhhRfc+wgPLQSnN99807GJVhcC4bF88b4npxAvRCJtO1r/bP9RAuZJdJSFrRkBI2AEjIARMAJGwAgYASNgBIyAETACRsAIGAEjYAROKAKEQPvwww/l1VdfFcKNsWzatKkgruTIkcMNhpNv5o033nD9fuKJJ1w4t65du7qQY506dZLNmzfLxx9/nOi6vvrqK3nllVcS7WcHggmhNYOGEHH22WeHeeYgtGzYsEEIw+bP9ZY5c2Zp27atdOvWzYWZQ2BQD48rr7zSVa25yfxejAzwY+QcimQc55rhooYYhTcVQpMaodkwhJ+glxUeRs2bNxdErjp16ghCG3V+/fXXerosX75cNFwewhyeT3gWaY6eUMEUrqSkr5H40Bwh/zDyUamX1MMPPyyXX36586gib1/QzjrrLOcNhIiSVB684HlsU3706NEurxRhV7m3SZl6eCVV5kQ69l/zEk4JWxOJUkLLyhoBI2AEjIARMAJGwAgYASNgBIyAETACRsAIGAEjYASOEYGdO3c6IaR3796hsGL16tWTChUqCDl7EFoQHCh33nnnya5du+Stt96STz/91IVao5uIJnjyICIFhQGEE0KZRTI8fyLZvHnznEjkP6Y5axBV8LzxG15Q9PWKK64I7e7Xr5/z9mEHAg1GOUQpwobhpYJF8gBiv+YZ8vcRQemMM87gcMgQMzCOXXLJJaH9rFx99dVC7h6/mIEXDiILhgcXXAmx9swzz0jGjBnlgw8+kJ9//ll+++23UGgzVziFf1LS1wIFCjjPLTx5LrjgAilYsKD8+uuvoRbxnEEc++abb1yuPu5PNCMnFLZx48ZE74Vo5wT3Fy1aNLjLtk9yAiYSneQ30Lr/3yDAbIaffvpJhg4dKhdeeKGbFXLZZZcJSfPMjIARMAJGwAgYASNgBIyAETACRsAIGAEjYAROTQJz5851F37RRReFAJCTBnGH/DSIRH/88YcTCcqXLy+TJk1y5fDWIW8Ntn79erecPXu2G3dyG0f+4AHEKyWGNxPiid/wIMLI5+M3wtzhfbNv3z4X5oxzGf+6/fbbhRxv9B/vIkStW2+9VcinQ0g67KqrrnJCjb8+XccTBiM0nRr1BfuF0INxLGjk5cG7ClGN8HlTpkxxXkKUffHFF2X//v0udNs999zjjnP+9ddf78K4jRo1KqK4hhjHfVFDvJk4caJuhpYp7St8EAfxYKJOvLZatGjh8gMhhO3du9flGercubMLixdqKLCivJRf4LBtnqIETCQ6BW784cOHnQJ/Clxq3C5RXVrTGl80lg4xO4F/LGr+dWYpkETPzAgYASNgBIyAETACRsAIGAEjYASMgBEwAkbg1COAUIEFQ3tlyZIlJKDgpdOwYUNhHAsxBqtcubLzOGG9ZMmSTohBjImHkesn6OGzatUqV7V6FGk79G3WrFmCQIX3E3bxxRe78/Ea0pBzN954o5x//vkuhB4eO3j94NVTqVIlrSpsmSlTJrdNHho1vIjwZPLb2rVr3WZwIjaeSOQ74kXYOQwRBiOcXJcuXVwov2C4PeqB7bRp0yKKRAhd6olEXVmzZmWRyFLSV06mTbyPyGWE5xB9/fHHH2Xq1KlCODpEQfInIdJpOL/Fixc7MQkvNDym8NBS0QzGZkZACZySIhECADE5WT7wwAMRXetiKaMQT+TlgAED3IPO/8BLS3+JdcqLeJ7EPv0vGv98cXPln8zkyZOjPszjce36D4266tev76pkZgj/QOGMOysvf0zWeLQbax2Ef129da8rXiJvVu/LRqxnhpfbte+Q7PReRfNkCT/g21q2cY8Uz5tFMmVI59t7dPXQ4X9k1Za9UqZAtqj9iEc7h//+Rzbu2C8Fc2WW9OkiX/DGnQdk74HDrr+RyvztgVu+aa/ky55R8mRL/T/d5JjE0tejBEX2HTwsO/YekkLetZkZASNgBIyAETACRsAIGAEjYASMgBEwAic+AQ3dxhhVkyZNXIe3bNkihBSrXr2620YsYKIxpuXxwsGDB2OMa82aNWG5etwB70/fvn3l3nvv1c2wJQIOXj9BQ7ghj5E/r83gwYOlZs2aiSaqq2jlz1NEfYgniB0Ywg6eMnfddZfzjmEf+X/IuePPOcR+NQ0jR64lNUQoPInIm4MQhRGCDStXrpxb6h/tV7Zs2XSXW+o2Y3H0i5B0w4YNE4QxjP2wJ/dPJGvWrFmk3Yn2paSv3L+XX37Z3c/GjRu7utjHvYM5xjZeRu+8847b5g+iEQbL2267zd0b9SDCo8vMCCiBNItEfEBI3hW02rVry++//x7cfUJsk8yLGI4Yro3BWJzsj6UM5U50U5fUOXPmxKWruK8isKE+RxKJcGnFNZMHXTDOZ1w6cAwqIXarxu7cvn17zCIRSe3WrVvnZm7oP46kuovbqhoxV3n5jfeovk+ZgfDDDz/4D0dcf+P7JdJ79IpExxpVLyRvtqgmenzEo+fK6QXD/wnWe2G83HdJGWlxfgl3/teT10q3YQtl9/7Dbjt75vTyzLUVpXHNIrJk/W5p8kZiV1ltuE2D0tL+8nJOSHl68Hz5bkaCW3O1ErnkuWYVpXKxBLdhyo+au0m6D1/kBCDauPm8EvKwd65fkHr/l2Xy8diVri+Fc2eWR688Q6466+jsFwSbtLaDgNL928XyxYSEf6D07a76peWhRmUlQ/oEsWjB2l3y6Odz3PVznL680ryqnFP2qGvzN1PWSddvFoS41auQT165uWoisWiP1+fr3/rTE5P2eHVUcVypE0uOSSx9Tagp4S/iWhfvPkxckuCKnS9HJmnvXdf1dYr5i9m6ETACRsAIGAEjYASMgBEwAkbACBgBI3CCEWAwH8HnvvvuczlxNBQaIcdIWcC4LKHH8MLByF+DuIMXTs+ePZ1w0KNHD+nfv78bt1JxRS+TycqfffaZboYtyX0TyVq3bu1EooceekgIb0Z+HAQdxBTsq6++kueff96NZemk6ObNm0v37t3dOCxlEZUQmjByJtFXxpLJRUS+HCZNEwLulltucWWCfxBzCEu3YMGCkDcSOZlI3/DII4/I+++/70SsZ5991nkGcd2UJf/S22+/7cYtYdahQwfBKwvha8aMGfL444+7+qib8U1EIcLNIb7gzcW4KKYiVLBfsW6ntK+M7eIh9L///U+4FnIj4aE1aNAg12Tbtm2Fl98IfQdbyqrNnz/frfL+MTMCSiDNIpF6OPChxXVRjRiYZsefAA9CYmXqLIJ/u0fk1eGfACLSySoS8c+Xf7B4k/EgjdX4Z4HLJ7FTkxOJyEHEPzs1FYjwHsKLSEUj9SgiBB3nBF1j9Xz/Ek+bnnfW8O+SrJnSh23f2Wua/PzY+SHxI+ygtzFp6VZ58st58sL1leT/qiX80xgxfb10GjhXinjeQDVK5ZIfOp3nTsOb5arXJkjHq86QS6omfHnIlTXh0YJwM2X5Nhn6cB3J7wkTr45YLK37zJBh3jZCxbw1O6Vdv5ny4GVl5RZPnGK71UfTJHe2DE6goYFBE9fIuz8vkw9a1ZBaZXLLUE+86ugJNUXzZPa2E8SZeLTz+ndLZPKybfJ1+zpSKn9WmfPXTmnZc6qUyJdFbjq3uGzfc1Cu7TFJrjunqHzcuqZk9jyePv9jtdz+4VQZ3qGulCucXWau3CFPDJorPW49UxpUyS9rtu6T+z6eKS97ItjLN1VxvPTP818vkBxZEj+CY2GSXF+1DZZ4g93jMS9dIKv88vj5HtuMMnrepiMMs8gFnohlZgSMgBEwAkbACBgBI2AEjIARMAJGwAicuAT69esnCDN4tWB169aVb7/91glCjMUhaBCOTI3yd999d8jziPxFlAsKRJQn7BmvlBj1EL3owQcfdN5MtP/UU0+FwqyRA4kJ2OQjKlq0qJtQTn9UWKE842KcjyHS4PHDGCZjzBgCDtcRDLPnDh75g9eO5mBiF+H2CA9H+DgENIxJ7prKYceOHbJo0SJR76MhQ4Y48Y121RCzNMQc9f38889CO2effbYrgrjCvjJlyugpqVqmtK8IfS1btnST02mQe/r5558n8pBKrjN4pCGkRQuDl9z5dvy/SSByXKdUXCtiBO6H+nr11VddLbyB+RC99tpr7oNfokQJ90Dze0Xg7YKyyTFeN9xwgxsQ124QK5EHBw9ABvBRkHlDq7FNG1988YXgckcZlsScfOKJJ9w2g/aR3BNRiHG9pF2EjYULF2q1yS5xXbzppptC9fNgwwsFQ2DA5Y8HGiHFEGkee+wxl/CM4wz+02fiVNIv+sc2qjnugWo8cPWaeJDCFS8nLJY6UIpx1fS7GhKHslGjRq7fMEWhp79Ycv12haL84YFLXRizAbgeYl/qe4DZAjCGNQ9TEtpxDqHrYAQrmKnpeWl57+A6Shv63uFe63sPLyH6yAvVnSXHuYf80+WfCPFJ/ZxR7LmXvIhNqnE8ifuKQIR16tQp9E9PryW45B+z37h+2ual3kP+46wHzwke1+1snjcOIof/VTBnQpxWyuD9Qli2D0Ym9gDUOmat2uFWrzm7qCD48Lr5vOLS755aUtgLVZYxfbpQ/YgPGCHMtE1CrCGq4EH05NUVpEKRHE4kYn3LrgMyfuEWd86309ZLxaI5pE3D0q6NuuXyStv/O93zGlrljvMHIaZlvZJSv1J+yemJKrd562efnkeGeGIRFq92aPuNW6q5/iCq1fbaQHBD6MEmLtnmlp2uKi8FPJ45PSZtGpZx+wZOTPA+IqRe20tPl8vOLOgYlfbOv7hyASceuYJH/uBtNGzqOnnz1mr+3W49FibJ9dVf6cHDfztvpcvOLCTFvHB+eGtd7nmWYWu2JVybv7ytGwEjYASMgBEwAkbACBgBI2AEjIARMAInFgHyzDDuyVga4cLGjRsnZ511lusk65deeqmkS3d0mBdvoy+//NKNcSHY4EHDuGI8jbFF6kUMYgyWcTK1+++/3wlEGuIN4WfixIlunG3lypVOpGHM1t9nxuWYII2IQ36j0d64a7VqicdNtA2WjN3htaTjsexDvOFcciZx7XDQEHLnnHOO6xf5jzDELrgiZhFabu/evc7jCt5qCGiMH1MffSN0m3pHaZnULlPSV/JJEVaQEHJ4A8E+udB2RD3yexGRt54xUMbhzYyAn0Diaez+oylY50PEg0qNQW8SYPGQwPWNlxqD9LwYpCexFsou8SJRMflQoxwT1owPJ8dxp8QlEpW5SpUqToDgQ/Hbb785V0A+FNRPbEXKUBcD6nzwcbdkH54h5B9CiKAONb9SjGsl6jMvFOykjAcb/cWI90j9CDyIIt999537wGk8T0LvIWohoHA9hBmjj8pF3QKpC6EJ0QSXQ64ZlR1DHcblkhfXhFgUSx2EP6Mdlhiulu3bt3fr1EmSNV6IHYgb9CWpfrsTo/xRrzIO0zcEGgStSO8BjpEEDsGK+0P8TBjxwnsHt9hI56XkvcM/GsIJ8kDEuE+aUwk3WGZY6PsSsQ7jnxYPTN3PejTOxAKF20svvRRKCkgdfBZ4JWU6Y8Ffhr7xT4aZF5j2VcsgwOq90X3Rlkc0v9Dh0xKipbntgjkzy/PNKsk9fWd4XiT5nXdOqOCRlZqlEzx0Hv5strS+uLRUKZ7T5efxh1ULnhPcJsQZVrFYjtAhhBVEoRVeiDVs6YbdUrVETknn6yBtISQRQi5zxnRCiLdWF5UK1cFK9ZK5ZKrnoYTFox1EoUurJXhB4RmF2DN0ylonrlxeI0FQ0ZBziC5qynmll38IwyvH75lDXeMWbpaangeUGjmBCEeH5xU5mIKWHJNY+uqvM5Pn8dTighLSc+RyKeIJhPk9gevLSWtcEQQsMyNgBIyAETACRsAIGAEjYASMgBEwAkbg5CDAWCsvvzFWxpheJGN8lte/aSoEBdtgDDRoiDUq2ASPsY13TenSpSMdiriP8UPGehlDRZjyGx5MkSxSv9hXrFixSMVD+6LVFyqQhpVodUfqKyEAo4UBTK4LjC0iIDKGbmYE/ASOSsz+valYZ5Cd3D76IuSY3xAkiCeJ6qrGIDhqM4PwGAnKCKuFNwmeQwhGlFeBaPbs2U4pZxCdc3A59BuxNhl8Z/AeQ0zhHBRe2semTp3qlvoHF0JcDTV/EoowCnxy1qtXL1eE8xGIaAOx45dffhEU8Tx58sjrr78eEna4NowHd9DI4YPHSr169dyhESNGuKUmnENcQgjTc9966y0nsPnriVaHvwzr3bp1c7tQkanz+++/D22zkpJ+uxN9fxCuNGkbHkPEyiR2pxp8EPYQUK644gpBPIMR9wjRjfuHBfmn9r3DfVGBiPvOtrqXBmOt8o+EZHkTJkzQ7kZc8p5jdoHGH6X/eH7x/tH7h9cW15OUBa9Ry+JhhVDEZwOvIr+pm6x/X6T1uV6YtKqPjwp7+fPscM6FFfPLDV4+mkcGzHaCSLAewrqRf+iPRVvkpncny7nPjnXh56g7Vlu1OUE4wcPIbwgjyzaqSOS5HecOF0rwVMJWb9knG3cccOvBOhA7Fnt5kbB4tOMqOvKHaz3/uXHyipefiBB3mj+JEHvYmz8sEYQiBKC+YxOeZ9E8cnr8sNTlL7r3kjLuXP6QXwmh7lZPuIlkSzckzcR/TrS++suw3s7zbsLD7K7e0+WaNyfJZ7+tdnmQ/B5mwXNs2wgYASNgBIyAETACRsAIGAEjYASMgBE4sQkwJoVA1KRJk2PWURWeVHw6FtvRLg5RiQnojGcei35oG/RHrz9a35Lar/VoHcdqG9GJMVFtN6k+2rFTi0BiSTeV148niF/1DOYkQtlFqeTVoEEDl9AM9zgGvhEPEH2I6Yh7JLlsCCHHB5zBcozjN998s1tXQQdvI7/h5oghPmB4jqhIUb16dScSBD082rVr57yGOIc+4gVE+LvgAL2r0PdH2ybcHEbfEcEwPFhKlSrlQrfhFfXGG2847yeO+d0f2YaTxtqk/4QsQ2RC4IIPpt5OhDRTVrg5qkWrQ4/rEs8c6sXUrRDWePWo0QdCziXXby2fkiWunHh3qXE/cfnEswpxD/dQTEVDLZfa9w6CIwZfdU9FeNP8PwhzaiSp87uS6n7/knus70ESwanHD66w+j7zl09q/ZprrnGCaLCMhprTpf84YRRjsZL5sspT1xwV5zinXKHsiU7Fk2Xsgs3y0rBF0u3Go3FrtSB5eJp64eYmLN4iv3nh4T77fbV87YV4+7xtbZeTSMtFW2q+HecR5HmzqO3ef9iFa2Ob/Dhs+43yWI4s6Z2wwbruYx3b45XR+nWZlnYSak342//eWrJ55wEZM3+zl09ohrx125leXqaCLlzea7dUlUcHzJEhf651Yds4o4HnjeP3LtK6vvpzjfQZs0Leu726cE+wRet2S//xq6TXXWe5cHRa1r9Mjom/bLS++svsO3hY7vDyPO0/+Le82aKa5MmeUX6ZvdHll8qZNaML4+cvb+tGwAgYASNgBIyAETACRsAIGAEjYASMwMlBgEF/IjAdS/NHEqLdY70dvFbNqcRYst+Od7/8fQmuH+u+BdsL9se2jUDcRCIGzJNSrf3JsPxuhdmzZ3fh3fC+QJjAE4cXHi+INXhtqGkSNRKWEcasTp06esgt06dPH7Ydy4Y/rJwmQtu/f3+yp2q//G3642jisaJ5mRC+VNwJVpwjx9FQXH5G/j741V3KIKL4xa5odQTb8uc68rumpqbfwbpj2cbLTA0hiliohLqDzUUXXaSHEi39XFLy3tF8QXpftWL/9eo++pCc+Zn53T1T86DVUIXBNuFADqRIFu2cYFlCuuEplJwhrnRvXkXu+HBaVKEgixfujZBkvMi/U7/rePl22rqYRKISR4SR9dv3CzmK1JZ7oeYu8vILYWULeTl/tiV4HOnxtUfy5OA9lD7daZIvRyZZu/2okEk58gRV8sLWYfFox1V05I96DtXzGK70vKHwukEkwq6sUVhqlc4tk5ZuE8LPnV8+nzz15TzvOsJFuHGe+Pb04PkuH1ODKkdDur3v5YHievA80pBv1Pv7oq2eIJZBGnplk2NCebWk+qpl/vT6Ssi+EY+eK6cXzOZ2k9MIhv/zBCtyPZkZASNgBIyAETACRsAIGAEjYASMgBEwAkbACBgBI3BqEjg6vf84XT/eLXjM3HHHHc7TZ+bMmSFBhRBqeChheHG8/fbbzoWQkF+ENbv66qvT3OshQ4a4OugH4hSmXiduI8ofcgZh6q2CaIN3CN4+1EV+IozcSXgnESIuJVayZEnHgXNGjx7tTiU0n3oCkbcopVaiRIlQneqhhRBHn9UjKq391j4Rui0pI6wfAhGG5xRh4Vq2bJnUKYmOJffeUQ8t8hxRFiPnEtfbvXv3RPUlt4P3KfmqsG+//TZUXMVL3REp35Ae02XZsmVdP3SbJWHmeOHpxNJveEBxTrytTtm8cvuFJYXcQ+QBUnt5+CJ55qv5uumWhCYrVzhcDAkrENjQfDsj5yR42HGYcHWIRiqqsMRLiTw9aj/M3BDKgcQ+xKDvZyR4wLGNZ8zIuZvkjMIJIlE82tnnedlc+eoEGT0v/H2LB5aKVqu9HEuEikufPp1cXcvLm+UJRvs8j6ZRXl/KFznKhWsk39P9Xog3cgH57TRvI6MnLlGPvjj+8+wNMtwT37DkmMTSV1fRkT+Ux7J5eZf8Rr6n3fuPcvcfs3UjYASMgBEwAkbACBgBI2AEjIARMAJGwAgYASNgBE4NAnHzJELk8YfrqlWrVih8WFIoERPwtMHat28veH1ouDHqIBEXCcgIMUeYOrxPGOhnwJ68RXXr1k2q+mSP4bGEQEFOIdrFo0QFoKROxoVx8ODB0qNHD1myZIksX75cZs2aJZUrV3Zh9ypWrCiIE48//rjro4ovSdUZPEZIM/IrIeA0a9YslKuH8GtFihQJFk92mzidd999t5Dj6PbbbxdCy+G1gvD00EMPufPT2m/uGTZ8+HBXv+Zucjt9fxD91Hjv4KUDz5RYcu+dAgUKuNCD3AfeQ+eee27oPcl7LTVG3iHEJ+41Rtg+9UajfsIFPvvss0I4wgEDBiTZBDmm/F5iCHeEmcObSEU8rUBzKel2UsudnuCC8OK3Ap7AU/GI541/P+sPNSoro+ZsklWeCKJW3cu/Q1i1gp43T6MzC4nn0CPfTF3n8us8ckU5LZbkMpMXYu5hr+yb3y+RSsVySmEvj1DXoQucF1K9CvncuTfVLSa9fl3u9pO3Z8KSrU50+fDOoyIoYsutH0yRXqNXyKVVC0rfMSu90GmH5bZ6CQJMPNrBY6pC0ezy3NcLXJLEsp7HzfSV2+WTcSulTYOEhImwGPDHXzJ1+Xbp3LSCbPVEtXd+Wua4NqmZ8HlESLr9w6nu2mp6Hkf++3DuGXnlDS/cW9CqPDbK5X9qfKSO5JjE0tcfPaHtXU+I6tu6puA1hLX/dJZ0vKq85PY8zUZ5YhhiXKfGZwS7Y9tGwAgYASNgBIyAETACRsAIGAEjYASMgBEwAkbACJxCBNIsEukgNwKLijvw0/xEGtoLgSJo7GPAnQRjeAYhuGDkEiL8nAohiDiIGwgP6n3SsWNH4RXJtC3tG2Wi9eOVV15xA/P0nb7grYS4cPhweJ6UYDuNGzeWjz76SF566SXXL44jRPTv398VxXOIHDz0d/HixU6ESak3EWIDIeKok3w9CFjNmzcPeSkF+xTLNqIYYdjwxlJRBg8eBDcs1n4rz2Cb5Fpj8msAAEAASURBVHJq2rSpCx3466+/uveEltX7wjnkm/rggw9ccj3CDJJXqUWLFi55mtYZ6Tw9Fut7Z9iwYe69gzeXMuzSpYvzQtu6datW54SB0EaUFbza8EJ6/fXXXQnEOr/4d9dddzmvL0QpPMhiMULVkZNJ+QdzEdEeYlJKDLGndZ/pYac0ql7I5aNhp+cIE2ZZMqaXV26uKje/Nzm0/4rqhV1enpc8jyI8XrDsmdNLl2srutBzoYK+lQgfcWl1YSlZ5IU6a9dvpitZrUQuecnLf0QYOYz8O+TJeWHoQmn8+kTXBqKQP1xerTK55ZEry0nPkcud4ITY1O3GKkI4OrV4tNP1+sry7JAFLg8R9XK9eFk9cFlZ10xmT/Tq2aqGPNB/pjR+bYLbR98I2YdQhY30xDbNsRS8B5OeuyiUR8kVjvInFibJ9XWTJ2AtWb/b5XLCA+zr9nXkSS8sHmIbxrUhDrasVzJKL2y3ETACRsAIGAEjYASMgBEwAkbACBgBI2AEjIARMAKnAoHTvEHqf06UC8WjBY8Sf+4af98QN/AewbvInxPGXyY16whCiEQIF6kx+kSuHH++HK0HIQIPK3/uIj2WkiXh0vC+SWs92iY5gdatWxeVZVr7Tf28VOjRdoNL2O/YsSPqPQ+Wj7Yd63sH4dEvVkWrz79/xIgRzmMIkWjixImyb98+lxMr0v3mPK4bS0k7S5culZ9++kkIVTdu3DgXupAcRP9GiDnXuRj//O1dy19e7hoknWJ5s3geRYnF3liq2rXvkBNPEHiiGfl/iubJ7IVjC6hYR044/HdCX0p6uY6idSNe7WzaecDzosoU8Xq5veQUwqMnv5df6N+0WJhE6yu8VIzTPhKqb9e+w4JnmZkRMAJGwAgYASNgBIyAETACRsAIGAEjYASMgBEwAkbghBKJ7HYYgRORQFAkOhH7aH0yAkbACBgBI2AEjIARMAJGwAgYASNgBIyAETACRsAIGAEjkFICaQ43l9IGrbwRONkIVKpUyYUVLFy48MnWdeuvETACRsAIGAEjYASMgBEwAkbgpCMwc2ZCuOqTruPWYSNgBIyAETACRuCUIlC9evX/xPWaJ9F/4jbaRRgBI2AEjIARMAJGwAgYASNgBIyAETACRsAIGAEjYASMgBEwAkYgZQQiJ/9IWR1W2ggYASNgBIyAETACRsAIGAEjYASMgBEwAkbACBgBI2AEjIARMAJG4CQjYCLRSXbDrLtGwAgYASNgBIyAETACRsAIGAEjYASMgBEwAkbACBgBI2AEjIARiAcBE4niQdHqMAJGwAgYASNgBIyAETACRsAIGAEjYASMgBEwAkbACBgBI2AEjMBJRsBEopPshll3jYARMAJGwAgYASNgBIyAETACRsAIGAEjYASMgBEwAkbACBgBIxAPAiYSxYOi1WEEjIARMAJGwAgYASNgBIyAETACRsAIGAEjYASMgBEwAkbACBiBk4yAiUQn2Q2z7hoBI2AEjIARMAJGwAgYASNgBIyAETACRsAIGAEjYASMgBEwAkYgHgRMJIoHRavDCBgBI2AEjIARMAJGwAgYASNgBIyAETACRsAIGAEjcJISWLlypdzV8mYpVCCPZMqU6Zi8aIs2advMCBiB40fgtAMHDvxz/Jq3lo2AETACRsAIGAEjYASMgBEwAkbACBgBI2AEjIARMAJG4HgRQKRpeOG5ctc5p0mbC/NIoZwZjklXNuw8JB+N2yZ9/vxHRo2bIKVKlTom7VojRsAIhBMwkSicx0mxdfjwYUmfPv1J0VfrpBEwAkbACBgBI2AEjIARMAJGwAgYASNgBIyAETACJy4BvHnO2DNWnrqywHHpZNfvNsnibBdJn/6fH5f2rVEjcKoTiGu4uT179sj06dOFZaw2ZswYef755+Wbb76J9ZRTutycOXOkUKFC0qZNm/8Ehy27DsiS9bvl0OHUO7Tt2ndI1m7blySP9dv3y469h6KWof1lG/fIP0l0Ix7tRO2A78Du/Ycdk/2H/vbtDV9d513vX1ujX3Msdew7eFg27NgfXnEqt5LrTyqrTfFpew4clgVrdwnL1Nqxei/Eq53UXqf/vHi8F/js8Bnavuegv+qw9YOH/5ZF63bLvoPR39thJxzHDT5/k5ZsT9N76Th235o2AkbACBgBI2AEjIARMAJGwAgYASMQM4Hh333vPIhiPiHOBfFeog9mRsAIHB8CcfEd/OOPP6RLly6C4KNWv359eeaZZ6RevXq6S77++mtZt26dNGzYUCpWrOj2c27Xrl2lVatW0rRp01DZf2MlUvv/Rjv/Zp2rVq2SnTt3ysSJE2NuBs+jjz76yJVv0aKF5MqVK+Zz/QXf+H6J9B69wr/LrTeqXkjebFFNxszfLPd9PENeaV5FGtcsElau86B5smv/IXn7tjPd/pkrd8jjX8yV5ZuOCop3X1xaHrjsdMmYPp2c02WMIHREsmolcsmgB2rLXk8IeHrwfPluxnpXjP3PNasolYvlDJ221Bu07jJ4nkxdvt3tu7RaQXnx+sqSM+vRt/77vyyTj8eudO0Vzp1ZHr3yDLnqrMKhOuLVjlY45M+18pTXJ9r6tfMFutsNrsMEjmpPX1NRbj6vuG7KnL92SodPZ8uqLXvdvpL5ssrbLc+UikVzuG0G6JOrg3O7eNwmLtnqzsmXI5O0b1RWrq9TzG3Xe2G8IN4FrU7ZvPLJPTXDdifXn7DCgQ19vwR2S/bM6eXP5+vLTk/Uq/vsWLnB69dzzSqFFft68lp58st5Mrd7Q7cfsespb3v8wi2hcg0qF5Dnr68k+b3re3TAnND7JFTAt0J7tHus3gvxaKdBt98E8dNvNUrlks/b1vbvcuvR3nPJvRc4OZZ2Pvt9tXs2aH9g3/WGypI3e0bXPuJQt2GL5Ntp60Kf6zYNy8gD/3e6pE93mivj/8Nn7oORy12dPBc6XFHOf/iYrK/dtt/r8xLvPVReqpc8+kwJNv7+Lytl9qqd8n6rqsFDbvuAJzbd1Wu25MmeQd5pWSViGdtpBIyAETACRsAIGAEjYASMgBEwAkbgeBLYtmPPMQsxF+k6CW9HH8yMgBE4PgSOjpSnsv3x48c70YfTy5cv70ShCRMmOMEIMejnn38WBCPsnXfeEcp/8sknIZHIHThGf453+/G4zMsvv9x5axUvflQ4SK7eQ4cOyUMPPeSKXXHFFakWiaigTIFs0vPOGmFNZs0UHvqu08C5UrNMHimeN0uo3N8+Fx08cpq/N1luOre4Ex1yZMkgM1Zslwf/N0uyeXXde0kZGdK+Tsir57GBc6RInizy8OUJA8WZ0icMKiMQTVm+TYY+XMcJAa+OWCyt+8yQYd42wsdOr512n8yUM4pkl9FPXuCJVIflIa+NTl59791RXdKddpoMmrhG3v15mXzQqobUKpNbhnriQ8fP50jRPJm97Tyu//FoR0Hg5YJARFtBT6C2/WbKgUP/yLAOdaVEvizy+6Kt0s7blyVjOrm2dlHnfXHHh1Ol+bkl5L5Lyzjvqy5fzZO7ek+XMd71MdieXB3chns8RqULZJVfHj9fcmfLKKPnbTpyzVnkggr55It2teXw30ddqv7xTrrjo2lSvmh2vQy3xBskuf6EnRBl48sHz5Gc3ntALSgZfDlpjVxUKb9cUrWgFkm0fMQTgejncI9dcY/dik17nYD4yGdz3HvssSbl5UFPCMM+/2O1DJ+2Xgbcf3aonqyZ0h2z90I83nPcRwQZxNnKxY8KGJkzJHYOjfaei+W9EEs7w6aukxe/Wej6wvtnsycwdvx8rnQeNNd9roD83NcL5DdPwPvorrOciDt79Q4nKOfJlkHuuDA83vC8NTvlfu9zi7jH55g+nIj23YyNMvevXTJ+wVbJ5ROdg319efhS9yzKmSX8ORksZ9tGwAgYASNgBIyAETACRsAIGAEjYASMgBEwAkbgeBBIPKKYwl60bdvWnYF4MXPmTPnwww9l2rRpctVVV7n9999/v1siGCEQYZ06dZKLL77YresfBng7d+4sJUqUkKpVq0rfvn31kBw8eFCee+45qVu3ruTPn19uueUWmTx5cuh4jx495Oyzz5bu3bs7jyTqQJzyW7T2o527e/duefLJJ6VGjRqSKVMmOf/888P6RB9oc9CgQXLNNde4ft1zzz1CODi1uXPnyrXXXuuuiT7dcMMNsnTpUj0sK1ascGHj8KrS40uWLHHHx44d6+q/9dZb5dVXX5XTTz9dXnjhBfntt9/ktttuk3vvvdeV0/6/8sor0qFDB1cPbPv37++OU1+dOnVCbXJfnnjiCbedXP9CJ/lWsnneFqXyZw17FcyZyVdCBI8evFn8QoO/wJINCTMDrvOEj0K5Mjth6Lzy+eQzb9C+XsV8rigeMtpO9swZJLc3CKvbCEZ4zOBB9OTVFaRCkRxuQJl1PGDUm2Tysm3OU6mL541DO2ULZpOnmlZwnjoq0CAYtKxXUup7IgRCxW3e+tmn55EhnliExasd6iJ81YP9Z0mL80tIozMLsStkm3YecN5ObT3PijMKZ/eEofTSsEoB9+r1a4L31sad++Uaj9ndF5dyzBiYblqrqLvmLbsPSix14NGB99ZlXvvFPBEP75nLPU8wbM2RkH2Ie8qaJeHBECTuvCh8MD+5/oQuLpkVf1usl/RefqviiSC8n6KFxuN9NsW714hI5Y6ww7PqHc/DqnWD0k5k4D2q7eTNnsnzVjsttM1+BMNj9V6IRzs79h50iKqWyBl2HXin+S2p91ws74VY2unleRe28TjjUYjgW9oTkj+9r5Z0b57gWcN7E0+mFzxvsJqlczvRs7b3GRvzVD25sW5isXv+ml1ysycgD/Q8oooErsd/bZHWe/26Su7sNUuavTXNE4TnyZh5Rz3LXh2xTF7/bpm85r1ueme6NH93ulBeDe+lLoMXuWN3954tv8w+6tGnZfzLLyaslZkrd4r31olqP3hC0gyvTFIiEiff03eO9B2z2hPXFsj1b0+Thz+dJzwnHxuYsN2y50zvPZ7gDUn51Vv2eQKy9/+lx1RX/sVvljjPSo7Rb+r73mv7lvdnhK6D/a0+SmDT9pO5rl+UNzMCRsAIGAEjYASMgBEwAkbACBgBI2AEjIAROLUJHJ2+nwoOu3btknnz5rkzCRmXPn3CTOl06dI5QWPEiBGyaNEi2bFjh+zbdzR/yt69e4WX3/AuUtuwYYMTQWrXri3Vq1eX++67z4keOXPmlCpVqsjgwYPlxx9/dIJJpUqVZO3atTJr1iz30jr87bHPv+1vP9q5HTt2lN69ewtt1qxZ04lSCFNFihSRK6+8UhYsWODaQ8RR+/jjj4VwcN99950Tti688EIXGu6yyy4TWJF3ifB6y5cvl23btgn7ly1b5tqgDo6PGjVKEHYIKafXhBCFwVH3ux3en0j9h9/vv//uhCv4+K+dfFH79+9Ptn8ZMkR/awRn9gcHSV/2ws3d9M6fLoQboaKCVt7z7ME6e+HBCO1Wt1xeN3CM2BOrabi1isWOnkMIOcSBFUdC2LHEE6GAT8SqdCQs2+rNe52nE14WrQLiR/WSuTzBZpvrSjzaQfDC+o1bJbu9gegHLysrQ6ckiFDugPdHQ24Rmspvo+Zucpt4YlEPQpjfxi3Y7MLWFfCuc9uRXDBJ1ZHJ8zRpcUEJ6emF8mIAPr/HBk8d7GIvRFjQEGDe+mmp571U3POuOuoZRrnk+hOsK+q25ynif08F308PeLx6jlzmPIM+aJXgAeavC3bneyIjIdxyZ80oDasWkDyehxSCSVA08Z/nX4fvsXgvIMDFo53NnvCC4W02aOJsJ3JdXDm/E8UI16iW1HsulvdCcu3w/iCnWGvvc/7MV/NlrPd+LJ0/mzQ9u4jzfqMfq7zPGobATDjK+d5n7ixPLLrVE0sRZIOG11xqbPCkdTJi+kapWjyHJ8IWkJ89UeSdn1fIueXzCB5WCCt4mOGZd2m1/E48ofz55fNK1RI5PA/DBV5f98npBT3R0HtPfTttQ5Ld6HdPdXf8gf5zPTE5cb4z2vvQE6HuaVDS81zb6DzdolWIADps6gb3fiW03dTlO+SRz+Y7ZvUq5PXu8zZB5BrY7iznUdjeE5EyeH1sfm5R2egJzAhAXb5aLK/eXNGJxYi6H45a5YnnGZ1X5Ki5mz2PyRXe8zCjF0qzoCekb/Xu1yJXXp/H0fpm+42AETACRsAIGAEjYASMgBEwAkbACKSWwJ4Df8u2vX9LsdzRxxlTW7edZwSMQPwIHB1NTEWdiBhqFSqED14Tek6NcogWmp+IsG/BnDqFChWSv/76S9asWRMSTRBl8LbBKwaxZvbs2TJu3Dh56qmnnFjSr18/bcItKYOnDSIQYdX8llz7wXMRqF5//XXXJn1t06aNq472/da8eXMnwpDvCPvll19k69atTjxD0ME+/fRTJ/7gHYVHFIIRQhICER5CXCPCDnw4BwHMbwhonNOtWzf/7rB1+o8HF+KTenHh1VWuXDnn4aWFf/31V3njjTeS7Z+WDy7nejlxqj4+Kuz1xYS/woohPjxzbUUhhxE5a4JGSLlP7ztbDnjhyhg0rvXUaGnTZ7qMnLMxWDTqtg484yHkNwbhl3l5iLCV3oBwGS+smt8Ir4at9AauN+5IyLsTrIP+L/YGvrF4tEM96zwvnR4/LJHHG58Rlg+JYxi5WxC4EDrwvMA0ZxDr247sY12NMHEDPfaPNy7vvBliraPdpae7wWfC1F3z5iT57LfVLo9U0COMdn6ZvdGJAJHEPu2HLoP90f3JLck75H9PdfhsdtgpDIZ3u7GKIIhxvZHs5ZuqeOJALhfK7//ZOw/4KKouit8EQq+hQ+gQQu+9Swfp0pEiHREQBT5FAaWooIAUqdJFqoWOdAHpvXcINZQkEFoSkv3euctbJsu2kKXfy293ZmfevPfmP5MAc/bcW+abLcphoc5L1cmBk8aVeFn3grvG0TWjZqpaWg2LpqNSOZJz2sQBqvaXDmf3HNo5uxecjaPdZ0P+OsnpEztXzqJSQ8blelH6WmnRtsv0gyyCwN11U4kiH07aR0cuP/v7Qc8/ukuklyyWLSkNa+qrUlmmo+5VM3FKxgMX71q6ggA5+aN8SkzLSOPbmesDHVfOpTMBD1ggqpzHm0a3zk0/tfRT4nVSy3HRXYF49rVyJfkqQbxmQftpEo39pkoSR80tLw1smIOFHez7Uc2jd80sLHohvSPcTn/sDuDz+rJ+dj7PHtUyU7V8Kdnxd+PJ7zQc27BYGvq1U34WwGb+e4WQFnS6+vxRRR+a0DYP/85AXxJCQAgIASEgBISAEBACQkAICAEh8PoTQAYiZDqy9dq1a9dLPYG2M65SrK7HqcvcqF+ANk7i3K1wqjranxL3PEkZ+5+mdH1P069bzV/INraTdSEgBF4PAjGScePHf/oAPiwsjOLFe+o0wGcdxnZ6m/US6eBSpTI/TKtRowa7hW7fvs31d9AW4kmLFi34MAg+CLhyjNG0aVMqXry4cZPL69bHYqxFixbRsGHDCPNYsmQJ96WFH90x0snBOQVXkI6AgAAWZyDcoD0EsKpVq1KVKlU4VV6yZMlo37593Byp6hIlMrth1q9fz98291BPMiEiIVB7CKntnEW9evU4TR/a9ejRg+Di0mPYOhbikaP52ToG2+Ae+aqBb5Td2VObnUHGje8XTkvrlOjTV9WK+aP3s9cENXlW9SulUh7dpR1ngviB/icqFdsXqnYMUr45C6S1QuChqbEOy31Vd0g7h5A+Dp+N8TjCXOAEx8PZgEAfxnigPuv+9TIm46BvCGY45zqF0hqHirL+Y4u8XKup3Ldb2AGFB/T1iqRVDoPrXDvI2FjXbYELCmm+dDjr41F4BNcXClUPnFHPJpkSpyAEoY5UYuXCQdo9HewiWnOOa0chNZ2jsDcfR8fofZiHvhbYpq+f3o9lVqQKVPfd0L9OUYlsyY27eB3HzOxSmAVC3E9Ldl/lOjnbTwfS+LZmx8czBxk26PFf9L3grnGQJhBpC3upOkv6HoUjpL+6jn2VaAjBz9k958q94GwcnWkNP2eTVa0yuLpalM5AsVU6vxmb/dmBpp1hqEEG5yCiUbH01EgJebhO+XxyGa7E86+2r+CjhMQg+mH5OboWFEqXlJMHofQaS3ir+z2pqoOE0KJosHIBabGq/JN0l9gPh9HOs09TvGGbqzFq1QWuQzS2TW5XDyE/Q80vpKfDvNIrwQ2RIrFZ3MY3sE6p9I9gmk+5n3QUyZpEOaducYo6va1B0TS8ip/juw8fs0g05C9zOlPsQIpFzUgfI0shIASEgBAQAkJACAgBISAEhIAQeD0JoIRHRMTT51eoP96oUSN+FossTC8rZvwXTH8fDCHfNHHsDolsMXXG+VOO1HHo3PAc5J0gFq04fI9a/XqFMnl7UbU8zz5HtNuZ7BACQuClEIiRSJQ799MHYAcPHiSkV9OB+kQ6kCLOWRiFpAQJEliaIz2ajhw5zA8Y48aNS5GRkVFq7aBN8uTPPjzWxzpbGo9FfSTU9YEzB0JKhQoV7B6OuSC8vMwP8XTDhAkTEpR8uKaQRg4OI7zgBkItIC2iGY+DOISXMSAwuRL4JoEOvW6d0k/vx9LZ/NKkMT9gNB6DdaR0K5/rqZBgvd/4GbWAaozYrtIknTFutqzjISVqlODVoWImVUtkv6oLc8UlkcjnSQo3pFVCajEdqLdT4YnQgdool1XNIWPoujaoQwMRCenort15mgoRba8GPVIPbM0PYN0xzqnr92j5gQBVfyU9LVYPxRH7Lt6he8r5sHDnFSXMpGSHBerpbPiiLKGWUpByDhXNmpS2ngxkN5ZOR4djMb9Ovx5kcahPrezYZAlnfSBtFdKdrfi8FAsvOBDp/tDnnK2XoohEaw7f4PpFUzsWsvRva8XRfGy1t95Wxtebr4X1duvPSHm39rASHn8/arOWDdpDTMILQgVEkmmqXg6uubVbzLrvl3UvuGuc3OkT04D6iaOcRllf88/lyashFKTccM7uOdyXzu4FZ+OUymGuIYa0ccZ7tLyaC+oQQZxI/yRNYYGMT505SPlWVl33/ernwF0xcb0/rTl0i0UgCGa+SnT557A5XaMewygo621Yhjw0/0PbWANJi0nGdq6ub1Pp3MCjt6qLhNDuwA6qXtLQJr4Wp5CxP9wbxogTO+rfBXoffm/gPPD7U0fEE/FbDWkJPX8tfKK5XkejXIoPUutJCAEhIASEgBAQAkJACAgBISAEhMDrTyBLlixRJvnjjz9yiQ88jzV+aT9KIzd/OHE9jDrOvkYLO2eguTufZu2wHiZM/R/1VEAY9a+RgjIrUQjRpGgSFokuBpqz51gfI5+FgBB4tQRilG4OAkmZMmX4DOBeQc0cBJbdu3fn9ZIlSz7zywrOHFcD9YAQEEvGjh3LdYKQZu7TTz8luGeeJ5yNjzpKEIgQ/v7+hFRybdq0idZQqBWE9Hnt2rXjtHIQzbRzZ+/evVznCB2uXbuWoP4jvvzyS4KjavXq1fw5Om9wDgUGBvIh2vVUsGDBZ7pAKjyEs/k9c+BzbIAAgzRgEH7ghtGxAoLJuD1cW0NvQ32U/KoWkKuBtHIIY4o6pMKDaJTtibMpixIL4HAwpm3T7SESISAGrTp4g9fxBnfFelUHKEcas0jkjnEeqm//ozbO5hO3OZ0cUsptVanTMLeJ6y8QUnbh2/7Yfk6lyqucJyU1Kp6OIFBBVMqjBAEdeOjeUaWJw7zB1vhg3pU+kLIKgZR/xoirHtrfD31aVwV9jf/nPLuINANje73uaD66jbuWeCg+tEluFjaQ3kwH0gvWHbWT4GYyRsFMrt9POO5l3AvuGmfZ/uv8M4TrpONq0ENezaDuG1fuOVfuBWfjwDGENInp1P1tDNzHcCFB+MDPIeLOw6j/EDytHDHZnuwzHvs866Cw8Vgg1xlDraCvVCq2gpme/tw46zODt3n+e88/Fa12n3u67ux46/0V/LxVCsBk5KdqpuEVR9WJQq0orEMgi0kgnR+u3e17T3keumS+9/XvNWP/cJpBIEJ9ouEqFZ9+QSDK6O3YIWjsR9aFgBAQAkJACAgBISAEhIAQEAJC4PUggMxBeIY4fvx4Mn6B3zg7PBvEM1lbLzzDfZ7oteA61cyXiBoXcfy8Ja760mOPyt40bOUtWn/8Ph2+Ekp9FgXwkHXym5+3Pc/4cowQEAIvjkDUry4/xzhTpkyh0qVLc42blClTsmik08FBFJk6daql11KlShHskYMHD+ZUcfPmzbPss7eC2kYQotBn5cqV2eGzcOFCFmBQ3we/7FwNV8c3uncg8sDts3jxYleH4Xa3bt3iFHP40Lt3b4KgplPVFSlShFPDgQ/EKDiVwE6LQ7/99pvDVHG2JoKaRmCVNm1a/iYB2jRp0oSbYmyIbRgLVlT8ZYD0eEiBh7A1P95h4y1EiRTbTpnFKL0bqb7woNhWVMmbypIyTe+HcwhukH7zj3LBeziBdp0LollbLql6GZl0M4dLiEqfKhfNaOUW8VMiCkSYoUo4gDBQTjkUEBgH698vO02DG/kpV0M4jf3nHKG+jq5N1F3V52k9cS9NVY6Tqmqu01WKrFAlFH1Yzof7cMc4BTN50cYvy3J/+m22cu3M+Nc/yvbTqg7Sol1XCSnjML95qqYOnB4/f5ifD0N9nY9nHWJ3T++a2WjPuae5XPNkSMx1jZz1AdcQovfcw9S3Tk5KqpxhG1Rto9WHblA/VS9Jx8qDATzOlA5RhcYRy8+olG73aWL7glzvx9l8BgwYwA7DmjVr6q6fWSI9nFG0gvCg52ndGILVMCUUDVhkdmhgfxblGEN9K6TMQ32mzKoO1QUlUmCuuC+duYj0GC/jXsBY7hinkLq3kVpu2N+n+GcGqcm+UPWIwAIviALO7jkIfAhH94KzcXB8typZuY88Pomper7UdMD/Do1TP2etyvo8ESfi8PqI5ac5xVsO5Zj7c881/pkf09p8bxvvK/RpL+zdT+p0OcUdRN6bIWF0RaWam7DOn7vB7yxnUVoJOhPW+qufv+tUMHMSrkm29shtZ4fZ3d+nVpYo+3opR1G4+vntWydrlO3P86GWqnG0VaXVG/fPRfqsdhblAgylTccD+Xdguifp6az7LazOad+FuzR321XlBE2uHIzX1e/xIOryXkbrpvJZCAgBISAEhIAQEAJCQAgIASEgBF5jAqhZjhIZdevWpU6dOtmdKWqg4xmgrciUybVnb8Zj/zoQQuuU4HNySNSMNsY2xvVB76ekf0/dp+o/m/9vjn1zPkqvvmQa40fRxmFkXQgIATcRiPFPpq+vL61atYrw8G7z5s0s5mBuFStWpKFDh5Kfn59lqh06dKBNmzbRnj17aM2aNZbtWEFdH+tA6rVYsWKxk6djx460bNkyi8Onb9++hBdCH2udqs26P1vj2zoWNYMmTpxI/fr141RxEF9atWpFEG9cCcwjf/787HqC42nMmDF8GOoLIf0chBwERCEINuCBwP4ZM2ZQunTp+HN03tq3b0+XLl3ilHYQnz766CPq2rWrpYuBAwfyWHA3wcn02WefOZ2f5WDDyqXAhyrV2QHDFuK0Z6growMPbI3xZT1f2moQllDfZkbnwvSZqlfUbLz53NEe6dh6Vs9mPNSybuvati+fiU4rEaWHEk4Q+XyS0HdNc1vcNXhQPrBhLvrfgmPUYoJ5nKr5UqmH9Fm4Pd5QJ+iz2tlpknL0QHCC2DS8aZ4owoI7xrEM6GDlq/q+9Lli8uGkfdwK9Z/AVbsD4LzYq1LRIXrPPcJL/YZ6MEgD6KwP1Dr5s3cJFlkgjiHg+EBtmzblzA+MI1W6RbiIcD10uj09zmXlVrl466Gq82IiZ/Px846kkSNHEsRZR9FrzuEouzGf3d9WjLLN+KFB0XQqjdgNdmZhO67zdHU/9YfoaLg3kQLtp5Z5jYfyOtrD2WEdL+tecMc4uDd+aVeAxdb5O67wqeD+H9chP/OwPjdbn125F1wZp2q+lFxrCEIPXghco/5KhNTRS/1c31VCVveZ5p9VXOMB6vdC9fypuInxvjKmUcM6rhfi5s2bDu+nFqXTKZH3MnWaZv7ZeC9vCvpPCSG/KLEIrh57ge7jK2cdhJ0fV56nnrOPcdN8SvRCrSJjCjdbfeB4PUdb+/U2W7/D9D5bSyMHRYGbYC55MySi+kVT0997b9CHE808E8WLRV83ePIPdXPTKF32rpmF/jf/JC1WIhheiBLZkxIEJwkhIASEgBAQAkJACAgBISAEhIAQeHMI4Fno/fv3adKkSer/ojb+A/jkVPAFdbzcEQ/DTdRrQQANqJ2ScqR6Wu7CXt+op1tl1EV69NhECzploJSJYtMf++/Sh9OvUrL4sai2uInsoZPtQuCVEfBQtXGe5iuK4TRQP+js2bOUPXt2MtYVsu4WNX8Qjn6ZWR+Dz+Hh4QSHTqpUqSh27OfXt1wdHwXhkDrPWK/I1rycbYPLB24ke/3AYYRz8/b2dtbVM/v79+9Po0ePps8//5zrHd25c4frDdnjg3OC8GYMZ/MztnX3+i31rX84fDKq9G9Ix/Q8gRodSN0GgcdeoC5NPK9YhAfjtgJpu66oujx4KG7v71h3jGNrbOttqF9yX50TmDxvuNIHXBf3HkUQnGCuBn50TeqP8QG2vWN37tzJLqKAgAC79769Y593O67RteBQghAJIeJ54mXdC+4YB2LdZeWaQUox74Rez3O6fIyze8GVcdAH5uKjUpjhZ81WBD8I5/o8mdW9bUyV6Mp95cr9FKbcOqeUmOqrahLBBQjGuB8wJ1cCadxOXL3HP3tIz/Y6R4i6109du0+pksRV8433REZyPGNcn+sqJSfqdr3u5+f4TGSvEBACQkAICAEhIASEgBAQAkLg3SPw119/UdOmTfnL+lWqVHErANQ3j5iU22afkzYH0ce/X6cRjVOrjDTm/+//vD6QksTzpHZlktFHZVGn+Omhq4/cozrjL9Gxb7JTrjRPnznV/+WSSp9uojW9bDuZYnU9bqnh/rQ3WRMCQuBlELD9xPw5R4YwBAeNs4iuOKT7g9DyPC4bfbxeujo+xBR7wo7uy5WlMX2drfZw/rgrkiZN6rAra4EIjZ3Nz2GHMdwJgSI6IoWt4fCAHC9H4SzlGB5Ya8eOvX7cMY69vo3b8bA/Jg/80ZcrfeBBvr2H+cb5GNchoGlXg3G7rXUIxkgV6Y6fIVv929qGa5QzreN7wdZxxm0v615wxzgQ65zdt8Zzs7fu7F5wZRz0gVRyjgKpJfGyDlfuK1fuJwhDcADpAGNXBSIcg3pBhVRqtjchUO+paFbHv++tzwMsosPD+nj5LASEgBAQAkJACAgBISAEhIAQEAKvhgAyAyFDEjIWuSIQTZ8+PUqGIeOsa9euTRCcXI3H6guYPsm9aOwGc51zHHc5yFwn93LwY2pTOmmUL4LCeYRIGCeq0ym++j/3rZCn9XW5kbwJASHwWhCI2dPU1+IU3u1JoNYLRJ6iRYu+2yDk7F87AllV/tuvv/76tZuXTOjNJCD305t53WTWQkAICAEhIASEgBAQAkJACAgBIRAzAsgKhLISiPLly9PatWujdFigQAFKkyZNlG2of26vbAYyNEUnelT2JryMAVdQ2iSxaXJrc8mMxXvv0jfLb9E/vTNRpVwJuGmzKVdoxAdpKHkCT1p28B4tUm1+VJ8lhIAQeP0IuDXd3Ot3ejIjISAEhIAQEAJCQAgIASEgBISAEBACQkAICAEhIASEwJtJADV6UcfcXixYsIAaNmxob7dL2x2lm7PVgbVINGFTEPWcf51ODsnOdYsOXQmlDrOu0j7/R3x4YpWarl+NFPS/mint1v6VdHO2SMs2IfByCIhI9HI4yyhCQAgIASEgBISAEBACQkAICAEhIASEwAsgcPv2bZoxYwanYnqZ6a5fwKm8Fl2CJ1LVJ0uWzO58kPoK9Z59fHxstgkKCiLUp82RI4fdmtLXrl3j9OTx4jmvIfro0SOugY0MA45qYNuczDu6MTIykk6fPk0pU6akFClS2KTw+PFjun79Opd2sFWeAAeh/jjqXzsq/+DsfrA5uGx8rQhEVySyNXmkpYut0r4b40FYJN19FMmuI+N2W+siEtmiItuEwMshYCgr9nIGlFGEgBAQAkJACAgBISAEhIAQEAJCQAgIASFgj0BwcDDhgaW9b8bjoTX244XYuXMnffnll7Rv3z57Xcp2Fwhs3ryZcuXKxWIA0toXLFiQ9u/fH+XIjRs3UsmSJQliTbZs2Shv3rx0+PBhSxs4HlDvBKmvdAosuBx0QFgaN24cixaZM2emJEmSUL169ejq1au6SZQlRIzPP/+c2xUuXJiFq/79+xO2S9gnMHfuXEJKMdQNh7jz/vvvE8Q/Hffv36fu3buz4IbrGD9+fOrTpw89fPhQNyF/f3+qUaMGM8e1giA4b948y36sOLsfojSWD289AWuBCCecII6nSwLRWw9HTvCFEcDfO6ixdeHChRc2xrvQsYhE78JVlnMUAkJACAgBISAEhIAQEAJCQAgIASHwhhFYsWKFzYc+ixcv5jPJmTMnLyFKwLXiSjH3NwzBS5sunCDVqlWjTp06McvLly9TkSJFqG7duhZB5siRIywa1KpViy5evEhwApUrV47w+e7duzzXDh06EOqnYD+2Qbz78MMP6cyZM7z/zz//pM8++4xmzpxJgYGBdOLECRYmmjVrZvNcx44dS/Pnz6ddu3axo2XNmjU0evRou7VWbHbyjm0EK9SvmTZtGt27d4+OHTtG58+fZ7FNoxgwYACtWrWKduzYQRBlt2zZQgsXLqQffviBm8CFhOsKB9K5c+fo1q1bhGPatWtHR48e5Tau3A96PFkKASEgBITA601ARKLX+/rI7ISAEBACQkAICAEhIASEgBAQAkJACLyzBCAmWMeECRN4U9KkSXkJAaJUqVIEYQMB4QHCER5ww+kCoQEOFmf7sB8OjPfee4+PbdOmDac44wPV2yeffEJff/01L+GqgJvm119/1bv5YXvHjh3ZcYH9aI+H9Doc9a3bvKplaGgozZkzhwUcpOyDkwjukxs3bljOYdasWewiGjhwILtTwPeXX35hJ1HChAlZHIITaejQobwfaeQgKiAOHTrES3zTG31DfEqUKBG7kbAOIQPChHXA4TJy5EgqVKgQp62rXLkyu2OsHU7Wx73Ln5EaDvcpnHhw2yHlX506dVho01wg/FSqVImFQKTvgzusePHiLAihDRxFEIV+/vlnvp/h+GrQoAEffunSJV46ux+4kby9MQSSJUlAN0JenUMPY2MOEkJACLwaAiISvRruMqoQEAJCQAgIASEgBISAEBACQkAICAEh4IBAq1atODUZ6tHo2LNnD6dAwz4d2A+nRFhYGItBcEDg4fiSJUtYpEC6MjhQIBTZ24e+li5dyg6M0qVLs/gB8Qmp0EJCQngoiFBwWuAB+k8//cQCVLdu3SwiSr9+/diRAQfHqFGjODXX999/z8c665sbvcI3pByDmweMIBhB1Bk+fDg1bdrUUpvo+PHj7BwaMWIEp6IrWrQoC0IQGVDPBi8IOhAbdGzYsIFXkboOAaEB/L766it2pKxevZrQX+fOncnT89lHVODbokULPhZvcCghvV2xYsUs22QlKgE4wiAS6UBqPtz/uK91QLz77bffaPbs2SyqTp06leDc044uiH4tW7bklHXh4eGceu6LL75gYbRs2bLcjbP7QY8lyzeDQN3atWjKluBXNlmMjTlICIHoEsDfr4sWLeK/82192SC6/b2r7T3UP6LMX6d5VwnIeQsBISAEhIAQEAJCQAgIASEgBISAEBACrw0BpL+C2wTpsCDqwOGiH1536dKFkBqtYsWKhNRl//33HyHtFVKjwUEEx0P69Olp+vTp1Lp1az4niAopU6YkLy8vu/tQt6V8+fIsfowfP56PQ52DDBky8DhwYsCZAQfGgQMHyMPDg9OtoVYL0t9BTIIQAoEEIhECggYELLhrnPXNB7wGb5g7atUgqlatyucGEQgBdxScRUjzB1EHKcggmjVu3Jh+//13bmN8g2sIQhIEPbi5dECYgONKB2oNQcRIliyZ3mRzCfEKNXKCgoIIYiGup4RzAkj59+OPP9LJkydZ5MEREI4+/vhjmjFjhqUDXFM4hyD26YAQpAU+/CysW7eOsmfPzrujez/oPmX5ehJADar3ypeiDsU9qHP5ZJQ6ceyXMlE4iCAQ/brbRBu27KBMmTK9lHFlkDefAL5wAMcrvmCAfwOcPn2af8/h3wa+vr5v/gm+5DN4OT/xL/mkZDghIASEgBAQAkJACAgBISAEhIAQEAJC4M0mAMGnZ8+eBNEGItHt27f5ofYff/xBeHhtKyAGQdxATRY4iSAqQNxJkyYNN7e3Dw/Nd+7cyS84J4xx8OBBTteFbUjLBYEIAWEJYpZOcwfnBRwcSJ0GUalRo0aUO3dufiDvSt/c6St+g9hVoEAB2rdvH02cOJHFrd27d/NDOC3KwB2keUIAA2sIdxARdEDIqV+/PqeG03VusA91byAQoS5RzZo16fr16/S///2PHUZr1661K/zA4dS1a1d2EWE+ei56PFnaJgARCAIRfmaQHlFH7969+WcJolD+/Plp79691LdvX0IKx2HDhulmlCVLFhZi4dSD86hEiRJ8b0Ac1dfAlfvB0qGsvLYEIM5ApPnmq/6Ue8gqCr774KXMFSnm4CDasOUHEYheCnH3DIK/j/H7InbsVyct4O8OiEGDBg2ynBRSwPbp04eWL19u2SYrrhF41svr2nHSSggIASEgBISAEBACQkAICAEhIASEgBAQAi+UQIcOHVi4gXsHD6khykBccBT4FjGcLXCmQGTKmDEj94Fj7O3TwhBcMnhYql9Iy2VMn4Y0dsbQD8qxrX///oQH5hCS4MiBAwM1e1zt29jvq1oHXwgBEGSmTJnCosy2bdt4Ovqb2VogwsYqVarwPghpOuD4ad68ObuokAIIdYV0IE0fnEXfffcdu8Eg/sGJBUcYxB978c033/D1X7lyJdcxstdOtj8lgFR+cN6NHj2av22v98Cph2uLF9L5lStXjnr16sWpApEuENdPB64dUvs1adKE0ydiO34OEa7eD9xY3t4IAvi99+vs3+nGrWBO34kUni/6hbEwJsaWeP0JQBxC3T58SQJ/F0BoflWxbNkywt/RxsC/Gf79919LGljjPmfr+PsFDskePXo4a/pW7n91ct9biVNOSggIASEgBISAEBACQkAICAEhIASEgBBwFwE4cZBabvLkySzAQPRx9M1lPNCEiwUuHqRBGzNmDBUqVIgfbCOtmb19EHYwFlxHAwYMsEz/6tWrlChRIstnRyvXrl1jQQkP3fGwvU2bNjRhwgRO3xbTvh2N6459ELP+/vtvTvum+8uRIwevwu2DgOh19OhRdkbpa4D0Pgidggz1ICBMoB2En1SpUvF+/Xbv3j1CvRtjaBEJqYNsBQQ31EfCA0FcJwnnBPbv388pEFH7CWnljKFrfOk0gnqf/oyfIYiyuH83bdrED4PRBvvhLMJ9jnDlfuCG8iYEhMBbQ+DTTz+lFClSEMRmOHpR6wwvfLngZYd29bpjXHwRAWlR8XvtXa1r9EY5iSIiItxx3aUPISAEhIAQEAJCQAgIASEgBISAEBACQuANIYAaOUghg5RXeHDtKFAHB99IHzhwIKeBg8Pl7t27LAA52oc+8Y1kiBEzZ87kh194YISH4o4cLnouSFcHxxEcF6j9cvbsWcJ4efLk4SYx6VuP8SKXELY2btxIn3/+OafLg0ig6wZVrlyZh4ZAh5pEnTp1olOnTtH27dt5HQKYdpWA+7x58zidHDgghRxeZ86c4T7gMIKDZdy4cVxDavPmzfThhx9S4sSJqUyZMswub968tH79em6Pb3bj+mMOqDuh+0P6PgnbBHDfIa0iAg9vNTMscZ+mTZuWWSMlEwq+41rC8YXUTbVr1+ZrAUEVNadw3+7atYvb4CEq6nuhBgjClfuBG8qbEBACbwUBuGLnz5/Pf79CNEbNufbt2/MXDF7FCeJ3Ef6+Ngb+rVChQgWXv9yhj0VKU9Q3xN+F72q8MU4i/CMDfznhHxNYvisR/CCcYnl4UOL4ti+Vuofpxt1QSpbQi+LGfj7NL/RxJPnfekgZU8SjeF6xbKINefSYboaEUeYU8SmWp4fNNnfUXKHiJrEzV5sHvSYbnZ1fTDkH3Akl/MJJmyyezTO++/Ax3QoJpcwpE9jla/NA2SgEhIAQEAJCQAgIASEgBISAEHjLCeBBENKgIcUNHnAjjN8gNq5DrIAA8eWXX5KuhdO5c2dq27YtOyHs7UOfqNOCB+OolxMSEsIPy5FKR6dUg0hhKzA+nDV4eIZUN6jxgoCwMWrUKF531jc3eoVvqEOEVHxIswNxDAHxZ8eOHYQ6Twik4YGogHRxOuUYnD2oM6SvwYgRI7gtUu8Zo1+/fjR06FD64osvOP3e4MGDmTPaQByC4ARHEQQ9uJOQ0ggxdepUXkLAwksHUqDBqSTxLAE4wnD/IlAbyxi4v1HrCzWKkGrugw8+sOyGgIf6XwikVcQ1wfM3/dAUP4PTp0/nOl9o48r9gHYSQkAIvB0E/P39+USQllUHvgiB9G6vIr7//nsWrfFFgyJFivDfHfhyAn6/RTfwd9K7Hh7KRqpkhucPFCnEt3mMgb9A8O0ed4o5sMjiHxs6T6pxPHeuPwyLoInrL9C0TRepY6XM1KdWdrvd77twh75adJwu3HpAOwdXsAg5lYdvI4gCxiiYKQn9/nEx3rRs/3XqP/+YcTevT+1QiMr6evP6rnNB9PWiE3Qp0Gy3zp4mIf3QLA/lyZCY90O0mLf9Mo1ZfZbuh5odVpVzp6QhH/iRdyJzjuSvF5+gJbuvPjPO3iEVKX6cWBQRaaKRK87Q7K2XLG3aV8jE56yFoOvBj2jQHydpy0nzP9ASxo1FQz/ITTUKpLYcs+NMEA1aEnWu3zb2o8KZk1ra2Fuxx9sVRu7g7Oz8XOFs7xxwzjvPBjHjY1fM/0DLokSg0a3zUa505nQFgffDqd/vyoZ/OpARge/gRn5Up1Aae8hkuxAQAkJACAgBISAEhIAQEAJCQAi4QMBRYW1H+/AFP+z39vZm94oLQ0VpcufOHX7IrtOoGXfGtG9jXy9qPTAwkGLFisVFyW2NATfKuXPnmI8WkGy1c7QNHJDGDnWjrDmhf53OzlEfsi/mBMAa7jDUFsE1txUPHjxg0clYi8rYzh33g7E/WRcCQuD1JADhGOlfkZJSB74wgLSqr1K0h3sI9QAhFCEdnr0vdOg5O1rCDQsxHSlY37WwbU+JBgV9Y0AYypo1K1uztm7dSnghnyy+meCOgKKHbzjAdvyi4vjVEOo+8xClUCILhBYIBDq2nQqkpfuUuFM3J3kr186wpafot22XqZwSdSAS6aY4BgLR6Fb5KPcTQQd9GF0+t5Qjp2jWZDSsSW7dPS9TJzGLOzi+3eT99Fnt7NSkRAZ6HBFJI5SY03n6Qdo8oCw7Tf45fIOG/X2KJn9UkPvCMX1+O0JD1bZRamwEHEYQuj4okZ4/6zftFoI4tPxAAC3pVZx80yaiPeeDqf2U/ZRDCVINi6Vj8amb4pFeuV+Wf1aS0iePR3/vvU6fqnEWJC9G+TMm4TE+mrqfulfNSh+W9aEIdf5TN16gVr/spR1KOHPkKnLE2xkjd3CGuObs/JxxdnQOp67fY55dq2ShX9oVoDjK6fXTyrPUYdoBWt23FCWKF5u+WHCMxbpN6romTeDF91RfJRrl80nMriJ9zWQpBISAEBACQkAICAEhIASEgBAQAtEjgLoJ9sLRPrhinlf8wHhJk9r/wmRM+7Z3Pu7cDnHMUUDA0enlHLVztA8cUPjcVohAZIvKi9kG1unTR31mZD0S0krpekXW+/DZHfeDrX5lmxAQAq8XgQwZMvCE7t+/b6ktB7E/c+bMr3Si9erV4zpJqD8YE4HolZ7EazC4ba/0c0wMSh2UO+SFhZUbsWDBAktPs2fP5tym+IcYcpwa96ER0slVq1aN7aqwYY8ePZpzG2p7+MSJE9m2DWu4DhwD2zn6rFSpEheG1MWlYHVDbsTWrVtzgUs4nvB50qRJnINV92Fcnrh6j1qUykDzleMnbdK4xl0s/GxTbo/QcLNr5/yNB/Rn7xL0YbmMUdrdfRjOn/Oqh/yZVGo2/Upj6A8CCBwlep9eavEmTKV/G9kiL31UITOLLBCs4BIKvBdGD564hlKr/n7tWIjK50pBCZQrKGuqBFRMCU+XAx9Z5gORKGfahM+Mo/4txhHXy5P+934Oyp0+MQtPJbMnZ4eLdr3sOBNIJ6/doyFKzMqWOiGnomum+ED88X3ihLkebHZM1S2chkUOCGjvFzbb/5E+zVE44u2MkTs4u3J+zjg7Ooc/91wjOMh6VMtKqZPEpWRKBBrcKBet/LyUxcmVLXUCdm5hP4TERsXN/0gGdwkhIASEgBAQAkJACAgBISAEhIAQEAIvgwDSi+kXxtPrWL7On3ly8iYEhIAQEAIvnIAWlFG7R8fevXsJz9wl3nwCMXYS2UKgLahwEiEgEOmCh8g1u27dOn7hmyNNmzYlFCJsp/Kc6jBausqXL8+boUyiQB6WCGOfcDDB1oYXbLIjR45kKyza44X8uDpQWK9gwYJcvE9v00u4Z+wFHt7rB/hoM00JNAgIMca4rdKHIf47HUQLdx4hT3WOlXKnoE6VM5NXLLMmd1MdE0cJNEgzdtD/LgsJLcr4WNKzZVTiEl6Ryi4T/thE528+oEkbLlDtgmksKe10KjekjIOotOtcMP219xr1rfM0L+RllaoOohHcQXAaIZUdnEVasGpZ2sc4dboS9IhFoXblM/F2OKTy+SShvcphNH3zRSVShVPpnMmpy3tZlHhlrq2TL2NiQiq84UtP0yfVs3HdHbiekBYPwpKjcMTbGSN3cHbl/JxxdnQOZwPus8tr2saLtEw5tmKrWk7v5UnJ/HQ6v/7vP71eYLX9Sdo5PyXcSQgBISAEhIAQEAJCQAgIASEgBISAEHgZBHSWGD3Wm/ZZz1uWQkAICAEh8GIIwDUIY8g333zDdekOHjxIixcvpv3799sdEIaSFx1eXl5ca23btm20fv16m8OhXqCEYwJucxJt2bKFlixZQt9++y2NGTOGR61VqxYvBw0axMsVK1bQpk2baNWqVfxZu4R0IcK6devSvXv3OLctCuIhtDOIPxjedJ9wHKEo1erVq3kvikoi/68xoGoGBwdbiu1hHi8q4PZBzPzXnxoWTUelciSn8WvP04CFxy1D3rgbRn/svsaCTxvlRLqq6v4gPRtSlxlj8a5rVGjAJmo4ZhenwBvaxM+4m9dR26jo15up24yDhHpCTUuabcKPVd43pFMb9885KqEcQg2VyLXu6E0WjEIePn6mHwhN/ecfZcFH18OBOHXk8l36cuExKqccS3ARbT5xmzpMPUB3n/QBEexH5XpCzaKm43ZTs/F76IQ6j+FNo6bSe2ZAJxucMXIHZ1fOT0/THme939bymHKmTd/sr8S76/RB8fRU0S8F17vqr1LM2QqIegNVbacWpTOw+8tWG9kmBISAEBACQkAICAEhIASEgBAQAkJACAgBISAEhIAQeNkEhgwZQqhTBoNI48aNOROYo9IwqD/3ol/4UgPqCMGsYm+sl83pTRzPbU4iLQxpCHXq1CGkjYOz58qVK7wZAtKwYcMoIiKCP8Plgxtr9+7d/BmqHqzMPj4+1KRJEy58pfszLo19ok4R4r333qPEiROzgwhKpo6cOXNS/vz5+WONGjW4VpK/v7/e7fZlwrixqJVyBfWqkY1rzmAApHyDyNBXuUZSJY5DJZVw1LJMBqqemBquAABAAElEQVSe3yyENVY1gxopIQjC0YD6Tx0kVfOmJL90xejolRCat/0ytZiwl+sHQZjR0VONA1Fh59kgmqGEqXuPIqifSiEXpuoYQdRprl65nqSGq6nGqzFiO21XaeT02OgH9X0gTiDF2R+9SlDsWOb+Pci8HNM6P7uQ0LZqvlRUU/Wx9dRtdjZBaIGIhXR4zdU8lLGJBTKIXkv7lKR0qp7Rx6qu0TGDAIaaT4t7Fkd3dsMZI3dwduX89ATtcdb7bS29nnCc060Ii3xokzVVQvpCiW4B74daHF3YDtEN9ZFwrYxuMOyTEAJCQAgIASEgBISAEBACQkAICAEhIASEgBAQAo4I4Iv2M2bMIDz/xLPVlxWnTp3iujRx40Yt3fE84wcGBhIyTyVPntylw2FaQB2asmXLRmnvzjnBjIDMVtmzZ+caXFEGiuGH6Mzz8ePHPA/Uc4sVK5bTkfH8fdasWQRTRqpUqZy2d6UBrgsMINeuXSPUr3N2zXVmMVf6fh3aQLt4V8NtTqJ+/frRokWLLByrVq1KyZIlo0ePntbIQWHDHDlycK5CpIhr06YNhYaGWopdYV2HPs5WwSljO50fF8fFjx+fD9dp7vAhUaJEvA1ver9lQzRWkFZuhUoZhvRujgL1fQbU97UIRGhb1tdcLPPkE6GkW5UsUUSaeCr1XEWVkg6p54yBWkQFVE0biEBDP8jNIs6+C1FdUqhnVFTVIupeNSt1q5KVZm7xpwdhEVynaFDDXBaBCP0ihR1Sw+maQ3qscWvP0dJ911UKvcLcRm/38TanlIMbSgfGQz2l41fMNXNQdwfzHNsmP9dHgltm8kcFufmy/QG8rFckLadYQ5o6vCCiOQtnjNzB2ZXz0/O0x1nvt7UEJwREMR1I14c4Yag5BBdXrzmHKSw8UnEsoGo/ue3HUg8rSyEgBISAEBACQkAICAEhIASEgBAQAkJACAiBt5jA8ePHqVu3bhQebi6F8aJPddmyZfyMN1++fIR6NQMGDGAnh/W47du3j1LnDM9y9QvCB2LDhg3cV9q0admlglIh27dvt+4qyuerV69SgwYNojzvdXVOEE/0HKyXEJ4Qly9fpnr16rHAAgMC3DPIouWOcHWeGOv+/fvUvXt3SpAgAWXLlo3Pt0+fPuyc0XNBG/DHuWCJgJCEVHB9+/bVzdy2hFDlTCBy22DS0Ush4Lan0SVLlqT69etbbsSBAweyqydTpkzs8MHZ9OrVi6ZNm0YTJ04kpIWDCwhCEo5FfP/993Ts2DFas2YN6ZyFttLNZcyY0dIn1EsEfhHCYYTALxJ3x9xtl6mvqiF0XKUQcxTL9l9Xadf2RBGTrgaZazNl8I7Prp0Pxu4mtDPGBeXIyZbaLCr89t9lTgtn3J85pVkAQ60eBOoZjVWp5IyRNZX5eKSTO6f6q/HDdl7qNuHKXYQ6OZlSmNth+8KdV2nS+gs0RQk7BZUgZQzftGaB7aKqTaTjoRKgUMtHz+dReAQljBOLdI0dtNProWofokaB1OxogqsJL0d1fNAeziZnjNzB2ZXzc8YZ87UXELIgoBmFxYu3zPcCBDsE6k59vfgEnVbXZUbnwuSd0Mted7JdCAgBISAEhIAQEAJCQAgIASEgBISAEBACQkAI2CSAWu0o34Ev5r/oOHDgAKcba9u2LQUEBHBtGtSI/+mnn54ZGs978dzW+MIzYWR/gpABV0rNmjWpVatW7JRBRqrq1atTxYoVKSgo6Jn+9AakPqtUqRIVKVKEN0VnTg0bNowyH8xtxIgR3A+EmJCQEH7OjfkdOnSIy5h899131KJFC0tGLD2P6C6jM0/0DdEHpVt27NjB84CItXDhQtJlXNAfhLp169bx9UfKNR0wdcybN4/27NmjN8lSCNgk4DaRSPfeo0cPXsUP0y+//MLrn3zyCS9r167N6iVSw0GJRT0hWAhxsyNVHNTNQoUKsQ1O1yTS/VovP/74Y97UrFkz/gGtVq2aZQyozu6OJiolHBxCudIldNh1ocxJuY7PsL9PEWrMHLkcotKLHWf3DZwlyBQH8eCH5Wdo26lAuq7qEaFuDWr9vJcnJfddTDmDkD7u+2Wn6YwSD1CrSNc0KpXDm9sUypKUxZ0FO66Q/+2Hlvb5fJJwGrOsaiyknBu4+Dg7kJAWTvdRInsy7gNjDv7jBJVUNYtwHTAfvLSjqYJyBcF59Nm8o5zyDnP5XK0jtLvovTyp6JI6T/SDecKl9KU6X9RDqqRS0D1PuMLIHZxdOT9nnB2dX5tyPoTaSQMWHSfw33/xDn2l1sEU1wfx8+pzLBh2qJiJ2+hrYBTmHI0h+4SAEBACQkAICAEhIASEgBAQAkJACAgBISAE3m4CcAd9/fXX/MV4pJJDGi84XYwB8QCp5hBw6AwePJhQLyZXrlz0+eefc8kPY/uYrP/+++9c3uN///sfp4arXLkyz8+6HAnGgAMHqdr0C5meFi9ezHXt8Tzy0qVLPJWWLVtyCjOkRoMYg4AAZStQhwZCSfPmzS27ozOnJEmSWOaDeUFYmzNnDnXt2pUyZMhAGzduJJRJmTJlCvn5+bGLp3PnzjwfXdbEMnA0V6IzT3R97tw5ixgGNxHMFsWLF+ft2I+yK126dOESK5i7MWC0gNj2559/GjfLuhB4hkCMaxLBxobADzUiRYoULPqg9hAUWPxwwVWEH97Zs2ezgwjtkA9Ri0j4ZQW1+++//ybUC8IvFqigUETt5VjELzr8wkOfsPpBZMIvhkmTJqH7GAfq/jw5Je4Lzg9HadLMZ69Suim30C/tCrDraL4ScBAQbsZ1yG/p7391c9Kdh+HU6dcDvB9vqCOk6wShLg36+ObPkzR7q/kXJYSFRaqOT/InThM4cu4+eEw/rjzDggz6QKq3YU3zYJXHmqmcKT1mH+aaQdgGV8vMLoXJR80RsfDJ/CBI4aUD8134STF2BI1XaeQgEjVR7icE+pjTtYilD4hFo1vlo++Xn2ZXEtqAwcT2BSl/xqjOJOyzF9a8nTFyB2c4npydnzPOxvOxPoe0qh4TUu/1+e0Ip/NDW7i1fv7w6b0wddNF7mLkijPGrqhTpcz0aa3sUbbJByEgBISAEBACQkAICAEhIASEgBAQAkJACAiBd48A0otNnjyZ4NbBs1cskdFp8+bNXGoD7pEVK1bQqFGjGM4XX3xB06dPp6FDh3IKMjhKbt++zTWLrOnhuap20Vjvgxgxfvx468108uRJKlq0KNcD0jvh6EGWJ6Q+S5jQ/pfsMXe4iJAqDlGsWDHKnTs34RwHDRpEyCrVv39/Kly4MAs0un/jEsIIDArGbFIxmROeSUMU0mIKagVhXtu2bWN3FM6rSpUqBK6u1ksyzte4Ht15tmvXjp9543l5iRIlCGIgrrWeK9xcjgLnsXr1asKzegkhYI+AhxJvnnrQ7LVy03b8wkKhL6SYM9YHgrCDX2r4ZQLXEdpA+T5//jz/8oLd0FHAlgjnkT1BydGxL2of0ohdDnzEtYnspRALefSYboaEUWYlQOkUbdbzufMgXP3C9aDE8WzreXAQ3gwJpWQJvChObNvGMNRTCo8wUYbk5hpD1mO48vmacjxhrPQO+rir0twhksS3PVdXxrFu44yRuzg7Oz9XOFvPXX9Gujm4vXCNtMin98lSCAgBISAEhIAQEAJCQAgIASEgBISAEBACQkAI2CMAMQTCEEp4oL474sKFC4Ta73/99RchcxNEDaQcO3LkCNcH8vb2prlz51LTpk25PUQFpFiDM8da5Ni3bx+tXbuW21m/oYyIdvUY9+EL/61bt2b3kN6ODFFwuWAJB5OtgGsIzp3ffvuNmjRpYmmClG4QM3TADIBnxTgnW7Fy5UoWmYKDg9nlgzbPO6eIiAh+Jl2hQgUaN24cDwfX0MyZM9mU0Lt3bx4DYhmcPFu3bn2Goa052tsW3XnCJIGMWjNmzLB0ifmhlIv1s3Dwh5g1fPhwS1uIi0jNZ+08szSQFSGgCLjvab4LOOE2QmEr64Dy3LNnT3YE6eJaaIMbG7/onIWtPp0d86L3w1WS6UndGXtjQfixJ/7oY5IqYcFRwO2UOklcR02c7nd48JOd6ZQrxlm4UxzSYzlj5C7Ozs7PFc56ztZLCIC6XpT1PvksBISAEBACQkAICAEhIASEgBAQAkJACAgBISAE7BFA/XYERAwdWbJk4RRpyMSEZ6fbt2/nL9DDobNr1y5uhnrv69ev53Wdtg0iUvny5XU3vMSX9nVdnyg7HHyAaAXxyhhwECGQys1eaBdRo0aNLE20a6dOnTqcNg1OIgggSJOG80PKNOsIDAzkTRBtdDzvnCC0oSbR0qVLdVcqQ5M5Z9T8+fNJlziB8wmOJwhqWnzTB9y9ezeKqwnbGzduTD/++KNuYllGd54QqSAQgQlS3e3du5fLuSRNmtQldxBEQTihwNXT07bBwDI5WXlnCbxUkcgeZVgX4RrCD+Xp06dZHYdS/P7775OXl2ORxF6fsl0ICAEhIASEgBAQAkJACAgBISAEhIAQEAJCQAgIASHwJhMIDQ3l6ceNG/VL4vHixSPUKkL8+++/hBrwEDcePXrE2yBooL4PAkILagPh5Y6AG+biRXMJBd2fri2UPn16vSnKEu2RTQoOJ6MDZtasWSxwoU6R3g43DPqZN28ep56L0pH6oMufIGuVFnSeZ05w6aBMCpw5mTNntgwDEQ6BFG864ICCCAfhylokwrVAfSZj5MiRw/jRsh6decIphbpIeCHtHKJcuXK87Nu3L8/d+r7gnYY3fY+IQGSAIqvPEHgtRCLMCoW1YJ2TEAJCQAgIASEgBISAEBACQkAICAEhIASEgBAQAkJACAgBsqRu27NnD9d4BxM4aeB+KVCgACNas2YN1/PBB53qDc4c7YKBGHL16lVKmzYttze+oXYRasrbCriU8KV+6/Dz8+M6RkFBQZbUaxB5UEdICz3Wx6D2PEQWo4sIbR4+fMg1jIzHxY5tfmStBS/rvuDGQdy5c4fLmmD9eeaEekwwLCB9nTHg2EGcOXPGUhcJTim0tSX+QLTq0qWLsQu769GZpz5/o2MKHevPqowMOROJUIsKz90lhIAjAuIxc0RH9gkBISAEhIAQEAJCQAgIASEgBISAEBACQkAICAEhIAReEQEIIhB8unXrRqtXr+bUcqhNhPrsSB2H7ExIJ1amTBmeYcqUKTkFHdwxEI+QYg4iEMSNe/fuPXMWSGOHGkG2Xkh1Zis6derEm3v16kUnTpygiRMn0rJly+ibb77h7RBfChYsSKgjjzh37hzXVBo0aBBpAYh3qDdkksI5dO/enV06qGnUoUMHTmdnrwyJj48PHw7RRoezOZ08eZIFNJ2Cz56LCP3VqlWLU8u1atWKULMJKf9QgwkBx1ZMIjrzhKiH69qnTx9Oh4fUfIsWLWLXEtigdpOzOHr0qE1hy9lxsv/dIvDaOIneLexytkJACAgBISAEhIAQEAJCQAgIASEgBISAEBACQkAICAHnBJCSDeJCvXr1uDHquC9fvpwgCP3zzz8sFiC9nA6079ixo8V5lDVrVm7n7e2tm1iWEI9suWMsDWysoB+kgkONebiZIFZ89dVXVLNmTW6NGkhwOj148IA/ozaPLRcRdkJ0+f333+nzzz9nIQnbMF84mFCixFb4+vqyOwYCjm7jbE6oGwRRCc4aBIQsiFMY1zrgasJ+iESlSpXi3RDlNmzYQDoVnfUxrn6O7jz/+OMPFgg/+OADyxDNmzen8ePHWz7rFcxbp9/T27Zu3Urt27fXH2UpBGwS8FC2NJPNPbJRCAgBISAEhIAQEAJCQAgIASEgBISAEBACQkAICAEhIAReCwKoL4MUYwkTJrTMBw4jpJ9bsGCBZZteQVukSUuePLne5Pbl2bNnueaRrhOkB4BTx9o1pPfZWyJ9HcKV+X7xxReEFHxr1659pjt3zgm1llD7KFOmTM+ME9MN0ZkneMIxhrpSxtR8juYA9xRS5x06dMiSNs9Re9n37hIQkejdvfZy5kJACAgBISAEhIAQEAJCQAgIASEgBISAEBACQkAIvMEE4Lrp168fu03e4NOI9tQhmMA9hfRxhQoVivbx78IBcHqFhobS5MmT34XTlXOMAQFJNxcDeHKoEBACQkAICAEhIASEgBAQAkJACAgBISAEhIAQEAJC4FUQgLsEAlHdunVf2vBGxxCcSi/6s70TQ/o3pIS7c+fOC5+D9Tnam5Oz7db9vMjPDx8+pDx58lCjRo2cTUv2CwESJ5HcBEJACAgBISAEhIAQEAJCQAgIASEgBISAEBACQkAICAEhIASEgBB4Bwl4voPnLKcsBISAEBACQkAICAEhIASEgBAQAkJACAgBISAEhIAQEAJCQAgIgXeegIhE7/wtIACEgBAQAkJACAgBISAEhIAQEAJCQAgIASEgBISAEBACQkAICIF3kYCIRO/iVZdzFgJCQAgIASEgBISAEBACQkAICAEhIASEgBAQAkJACAgBISAE3nkCIhJZ3QImk4mGDBlC3377LQUFBVntlY9vI4Hl+6/TmYD7dk/t/M0H9Oeea3b3u2NHwJ1Quhr0yGFXgffC6Kya5+MIk9126vYlzPfOg3C7bWRHzAmEPo6kXWfv0IOwiJh3Jj0IASEgBISAEBACQkAICAEhIASEgBAQAkJACAgBISAEXhEBj7CwMPtPnF2YVK5cuej8+fPPtCxWrBj9999/z2y33hAREUFTpkzhza1ataIkSZJYN3mpnzGf+PHj85inT5+mzJkzv9Tx34bBQh4+ppKD/7V5Kn99WoJ80yayue9VbSw3ZCv1qJaVmpfKYHMKf++9TkP/Pkm7v61oc79xI8SZ0t9soakdClFZX2/jLpq5xZ+mbfKnrV+Xs2z/7b/L9Nu2y3Th1gPe5p0oDn1aMxs1Lp7e0uaQ/13634JjljbY0bFSZvqkelbyimXWeR+FR9JPK8/QqkM3CGISInuahPRtYz8qnDkpf7Z+G7XqrJrPxSibi2ZNRr1rZCMsJewTuHDrIfWec5y+/SAnFciY2H5D2SMEhIAQEAJCQAgIASEgBISAEBACQkAICAEhIASEgBB4jQnEjunclMjEXeTPn58yZsxo6S5nzpyWdUcrjx8/pl69enGTWrVqvXKRyNFcZV/0CHyjBIqS2ZNHOShdsrhRPr9tH6KjuE5Ye54mrDtPAxvmoop+KShubE/adPw2fbX4OIU8ekztymeie2rZfMIeaqYErJldClOieLHp4MU71HPOYUoQJxZ1rZKFIBD1nH2I9qvtP7bMRwUzJaH7oRH0+/bL1OqXvfT7x8V4mz3W//QvzbuuBYfSLCVkfThpH20bWJ6SJ/Syd4hsFwJCQAgIASEgBISAEBACQkAICAEhIASEgBAQAkJACAiBt4BAjEUizWDw4MFUt25d/ZGXjx49otq1a9OdO3eoe/fu1KFDB9q5cyevx40bl8aOHcvb9EF16tShevXq0XfffUfh4eE0fPhwWrlyJZ05c4Zq1KhBffr0ITiUEC1btqSTJ09Sjx49aNGiRdwv2n388ce8vX///jRv3jzasmULffDBB9SzZ0/KmzcvH+vv709fffUV77t79y73ifmXLm1+WM6N7LyNGTOG5syZQ02bNqUTJ07Q2rVracaMGVStWjWaPXs2zZ8/n+dSsmRJatu2LTVr1ox7ghg2atQoWrBgAR0+fJgKFy5MrVu35vl7eHhwG8wXr+3btxNEN/D47LPPyNPTk1asWEEDBw7kOY4fP57bT5o0iaZOncpzwfk6mtu0adOY0549eyhHjhzUvHlz6t27N+mxYzp3W7jSJo1LmVKYXVnW++uO2kkfls1I64/epH0XgilzygQ0oL6vxfVy7sZ9Gr70NB30v0OpEsel5qUzcPsnqAjunsW7r9KJqyFUOXdK6lE9m2Us9N2qjA+tUa6aI5fvsqPny3q+9POac/TP4RuUNlk8dstUyZvKMq3g++HU7/ejtPH4LcqVLhG1VMfXLpjGst/dKw9VmjIIRJ/Vzh7FwdSoeDrCvn9P3qY25TLS2Rtmh1GjYukodRKzwFY6pzf91r0ohamUZ4j9it/WU4FRxKBkCbzo89o56FZIGG0+ccuuSJQnQ2Ly8TZfIywjVb66Dcdu0bXgRywSffvnSRamkA5vw7GbNK5NASqVIzmn3/tDpeADfwiB7SpkomLKfQRn1H9qLhPaFeC57TgTRIOWnKCpHQvx9YmINFGDMbt4buVzedPUjRf5Wt4MCeXjcZ0yPrlnbtwNpXH/nOdrkl5ds/pF0lKrsj7cL9L/rTgQwHOZueUStVT3R/eqWXmfvbd/Dt+ipftuqHMLJe9EXlQmZ3JqX8HsHhu54jx5qh9DiHy7VRo53GdV8qagTpXNwjeuyXdLz9HJa/cpcfzYalz7TquLymU0cMlpqls4Na09cpuC1L2VX7mNmpdKSxjn9r1wSpMkDg1p4ksp1DwQ208H06QN/nRXufDiecWi9wunUvdgesJvhp/XXKBQJQRCFNx0IpCmdcxHsdVkf1h+nk6p+Xiq9WJZk1DvmlkoFk5CQggIASEgBISAEBACQkAIvOEEDh069IafgUxfCAgBISAEhIAQeBcIFChgfgb6pp+r20Sihw8f0v37T+u6xIkTh+LFi8diDgSifv36UZMmTVicgUgCwSN58uQEIUnHgwcPKDQ0lD9269aNRZfEiRNTnjx5aPHixbRmzRratm0b+fn5sRCEfrp06aIPJ6SKg3CE7RBgdEDEuXTpEgtOkZGRLOggRV7WrFkpZcqUtHHjRn5duXKFvL2jpgjTfejltWvXuH+MoQPnAJGlY8eOvKlMmTK0bt06fkGEgaA0efJkPvfUqVOzQAPRBwIQzq9du3ZRjse8kKoPrxs3btDIkSMpODiYx02T5qlwgX2YR/ny5Xlce3P75ZdfWBBCI/S9f/9+fkGIw3WJ6dx5cBtvSg8g1MjRoQUefEZtncF/nGCxplq+VDR9sz8h/dmcrkX4mA7TDpCfEmvGty1Ahy/dpe+XnaasqRJQ+VwpWFj6YuExQso1pIibpUSCrtMP0qKexSlh3FjcN8SNAUpwqKWEHoyzTQkXEJOGN81DC3ZcoU9mH6b9wyqxewfzGfvPOXq/UBpOz7ZRiSSfzzvKogyEjxcRZ5UIhsD5WAeEEC2G5EybkHd/ueg4CysQZOJ5eUZJ2Xfy+j0+bziIrOP7ZnmsN0X5jNo6qHH0WF2sU9fu8XWASKZTAkIcmq94VVXX6Kv6uShb6gS06mAADVDzaVs+I4szEGvaKPfR0j4lKZu6RsP+PsUOKLietiix61LgQ4JYBMEQtZ9w7XOqVHjL9wewcDesSW5KmTgOC0KfKe4LPylGmFePWYcpPCKS+r+fgy4HPqJhS09RfCWUQEiD0+q/04FKcAmjnirtXv6Mz5678UTPKbHtl3X+6prGoSYl09Jh/xAlTimRKXtSyp0hEfcPcQdsq+ZLQeuUuLPiwE0WkvL6JKJ+80/SpduP1D0Yn0WZ5ftvGLuPsv4wLFLVhHpMc7ddpdzpE1Gc2B609/wdfqVXTrrSOZPR1pNB9PPqC5yu7uiVe0rwOUfY16BoGtpz7g4t2nmdBZ/mpdKpuYXS6evm+yVzyvjkpRxn3WccZUGpZPZkqn9P+leJR7dCwum7Zr5R5iIfhIAQEAJCQAgIASEgBITAm0jgbXng8iaylzkLASEgBISAEBAC7x4Bt4lERlEGGOFsGTJkCLVv356mT59OcLDAvbJ582YWKiCQoPYPviEEoQQBsSZLlix08eJFi0B05MgRSpcuHX377bc0dOhQmjVrFjuN+AD1BscO3DsQT2LHfno6GGvmzJm0atUqatiwIQs2QUFBfBjcR3AyffTRRxQrViwWnSAa7dq1i2rWrKm7drjEnFevXk1FikDUMJFOrwfxB66i9evXE9Ln/fDDDywSbdq0ifvr2rWrRSjDeLrm0aBBg3j/6NGj2Q21YcMGnsvPP//M7R1Oxmqn9dzAFDFx4kR2bum54TNEIj32886dO7fx1m3GwShbIeAY6/rAKdP5vSzcJrESFD797QjX04GwBnGid43s7FKBMAIxRac/Qx0dpF/rUys7HwtnTblvt9Duc0FUSQlBiE5KQNJCy3Hldlm+/7p6gJ6HH7z7eMej/34OpIuqDpAWQ4pkSWrZXz1/ahY2Fu28yu4W7tDNb/qhf6YUCRz2DPfI3G5F6QtVk0jzLKdqHeH8tRMKbhIIO88TEGwKfLnRciiu0dgP81PsWE8dKeh7TOt8ymlj3jbj30tKzEinxBtzSknMo8HoXewI+rhaFu7ryOUQdvlAcIN4tf1MIDUtmZ4OqJR4GZVjKX3yeHR8Wwivv184DddWKqCEHv/bD/n4feeD2QW2/osylE65iBBIvTdn2yUWiXiDevu1U2HydiEtXsCdMBZhRrXOzULQB8XTUpNx+9npA5EIgdOb/FE+SpogNjUoloY6TTtCx6/eo7hKOIJAVDmPN/WqkYXbfrf0LO1UjiNH8Z5yIvWsnpndSQ1H72NB8pf2ZjfjhZsP6eKTc52++TKPPbZNHubeUI3dZfpR+mtPgBJB01mGgAAE0WnD0dssQnWs5KMcR6l5P8QtOKUgTmH+EkJACAgBISAEhIAQEAJCQAgIASHw7hGIpEgKV38eqz8RT/7wmilC7YlU/z999o/63/AzfzzJk2J5qJf6E5vfsYxNXuoPtkkIASEgBITA20XAbU8TkT4NYo4OLZpAhIGTpUSJEizUYD/SpEEgshcHDhzgXSEhIdSiRQteh6sGgVRsxoBLKUMGc8oo43YIQ0jTVr16dcvmgIAAFoSQfm7hwoUEwQbCEQQihNEJZTnIzgrcQcWLF+e9cPTAhYSAmDVs2DB2NeEznD5wSMHt8/fff/N+pKurVKkSi1dYGo/H3BDvvfcei2dgcPBgVLGFGzh4M84N7iL0jwATRJUqVSwOLuPYzzN37tDO28fVshIe/OtAiixjINWZDr0eoFKM5U6fWDk4vAluIaSHK6cEour5U6nUXHEI6coO+t/lFxwwxjihHuhrkcjXIJokVanXIHToVFzeCePwYeGG4zGe3o9lWd8UtFI5ZF5UYE4ICB/xvMzzsTcWBKxV/UrxOcORg5RucEJ9UTcnfaiENogCgRfD7R3udDtS1yGQcm+TSrcHF9d0Jb4grRwCIo8WiMAcKfw+LGdO+4b9cLKgLRxfSJUGlqiPBNfRBSXEwR3WVQmGuHZ7lfhTOY9ZyIO4BBdY9R+2U60Caahi7hRUPJvZuQVxBvHLugu8xNsSlV4QodPspVHpDF0RiHAM3DspE3vRlA2XlAD4iJ1DcLnhn8c60JcWWFIpZxMiWIkuELwQSI+nA6nqnIlERTKb733c9RDd4EjSgXSASDuHuBoUShmUaGYU5vJkSEgbjwUyM7RJoMQ7CESIY8p5hMD4+y+a5wZRFQHXVtIET3+ueKO8CQEhIASEgBAQAkJACAgBISAEhMBbRQDCTxiF0iP1CjOFqXVIQ+F0l0LoGl2nANNNCqRgCqI7anmHbpuC1ad79JCPeqyOwytcvSKU7ONJ8ZUAFFe94qlPcdUrCSWgFB5JyJuSqlcy9ScppfZIQekpHX+Oy628KI5HHLVm/uOljofcJCEEhIAQEAJvHgG3iUSo8WNdk0jjSJs2rV7lZZIkT4WDKDuefICoogP1cxBw/iBVHMQmYyRNmtT40bKO9ggvL/PDeL0DaecKFSpEEF8gZCGV3fMEUuXpMKbM8/X1Va4A81+KEGAgDiGF3ieffEKY69y5c9lNBWEKafDg4mnTpo3uipCmTweENMwTqfx0IEWcDtQ5shXGuRnbGFlAQEPEdO4DBgywNQXeBoHIVjo1fYDxoTjqqhjjF1XTBi4U1Aga8tdJfv3+cTGLYyaLqmEEN4oOpCAzphx7cgn0bqdLpPAyBgQtiBrRDQgmiDsPn14n3QfqzSRUziAE0q0hzt98wKnW+MOTN9QFwthesZ7OCSJN4cxJ+dWhYib6aOp++n37FRaJ/NIlZrEFKdriWp2HPgctgBnHwTrEOfSrAwLOKZW+7g8lyGiRSN/PaIO0dIg4hrnxZzVu6OMI3ldWOZ2Q3g/p5eACK6xELsSxKyH0nxK5hnzgx5+Rym9V31JcWwh1kGZu8ee0dnAyPQo392W8xnBPQcgBH4T1HHijnbftZ4Lph2XnmI9vuoSq3lQq+mPP9SitrdnpnSEPzXNBjS0dWkzSn20tE8WL+u0qpMqzFRC9rMUuawEUjjIdd5WwiECbiEjz3JKoOkl5lCMqYVy3/UrXw8lSCAgBISAEhIAQEAJCQAgIASEgBF4hAXy5UUlBSuBRf0wPWRi6QTfotOk8naAzdEItTyth6ISSg0iJPm4L60cils8elJYSU25KTb4emdQyB+Wi7OTjkUFJS/Epvod68Z94Sn56+lzDbfOSjoSAEBACQsDtBF7KE0WkNENAlDl9+jTB/YPaQsb0cNgPV0+WLFkIriQE6veMHTuWEiRIQNevX6d9+/ZRihTP1nDhxi6+oVYQhBfUDUIKOIgomJd2ArnYTZRmmTJlsrh+evXqRcifDDEHad0QyZIlox07dnCaPTiYUKtp8ODBhNRyS5cuJQgtSBGHeWFOcPwcP37c4gAqWLCgxUEFBmFhYSx+7dy5M8o8bH3w8fGx9I1Uf++//z4dO3aMkHIvVapUtGDBAsv+5527rXFjsg11aCCoIO1bjQKpaUB9X6o3aict3XeNvm6g/umhBBbUMepWJYtlGDgpkCrteQPpzUilqNMBJ0wen+g7MvAwH/NDvZzaqh6SDog1W08GWgSTDCrlHeY7deMFKpq1oMWpg/aDlpykXWeD2D206uANFoBmKzcOUoohIERBENt8/DZ/9nviMIErp3Plp+eAMWuP3EEllFCjhRk+wMEbjrmuWGZIbtvphznAlXXA/w5fG3QFzWbfhTtU8IlzBuONXHGGhY8Kfin43HAtF6r0fYGqhlCxLGa3UPCDcCWQxaXuVbPya972yzT0r1N0Q7nJ/JSbDNFa1WdCKkLEw7AI5ewJZ7cSb4jG2/zt19gpNrNLfq5rhL6W7I4qEtnrLoO3WRxCXaH0yc3p3XarukHuCgg8pwOeCuPo99T1Byxo2RL3kC5xl3IRtS6XnvI+SZV39PI9Jbbd4JpL7pqX9CMEhIAQEAJCQAgIASEgBISAEBACr4YAEsbdV38emB4ob9A9OqXEoN2mA7TDdIQ2kb+aVNirmRiPqp4bKM8SXhtNZ9SWDea5mNSzCkpFpT3yUAkqRAXU0puSU0KPhKS+0khx1B9xGr3CyyZDCwEhIAQcEHCbpN+uXTsWQbJmzcrLxo0b87AQSlAzCIIPBBCkhtu/fz9NnTqV98Pxo0WhRo0a0U8//cSiDUQcOHEqV67M9Y1Kly5NDRo0INTqiUnolHj/qfR1EEqqVq0aI4FIzwVOIUTt2rWpb9++nC6uXr16LATBiTFmzBgeCzWPJkyYQFu2bOH2ZcuW5eXHH3/My2bNmnGKPdQ1QqA/OLHy5jXXMoGQlC1bNipVqhTXcOJGDt4wdseOHblF27ZtqWXLlpyCb+vWrQRxCxHTuXMnNt6QfgyOEuPrgXo47ywuq3RgFYZupZ/XnKXrwY8IaeSQlg3iC6JRsXQ0af0F5Xa5RqipM3vrJao8fBunO3PWt739m0/cVqnNzqsaNCG83HLytkqBZhYErI+BqId6VPYC88Pcxqw5Ryev3eM0cQMWHec0bbWeCEdwBo1qlY+2Kj5fLz6hRJZgbjtq1VlOq9ZeuYW0ewjp3frNP8rnd0nVsUHaNQhC7+U1p22DaIMaTGNWn1Xp1C5Yxuwx6xCnH4PQYi/g7tmlajnhtUzVbfps3hGuB4XUb/YC9Ygw/qJdV5kXBCHMUfPyU/OBALZcpevTbiS4izBvpM5LrEQRxPfLTlONEduZD0S+4yqNGo5DWsGiqp23Wn6m6lQhvSBEu7aT91Mf9dleOLouKRKZHUjXgkNVCryH9NXi09zNg1CVl/mJM8lev6VzJGOBadGu66pm0iPacOw21zKy1z662yv4JWcB7I/dAYSfD9QWAo+KuZ+mtzP2WTWf+bqPXXORU+GhRtHQv88q4S4kRkKpcQxZFwJCQAgIASEgBISAEBACQkAICIGXSwAp44JUUrhLpsu007SbJkZOp48i+1L+yLbUOHIwfW/6SwlEEGVepUDkiEkkHaYAmmLaSB1No6lEZCeqH9mdhkWMpn8iN9AZ0zm6SbeUH+pRlNTvjnqUfUJACAgBIfByCJif1sZgLJ0eDeIFXjogxsDxAtcQAnV64FwZMWIEtWrViuBagSiUJk0aGjhwIAs2cPPs3buXUMfozz//ZHFj2bJlLCqhD4gveD1vQDCBKNS5c2eaMmUKvyDClCxZklxx5WBcnaYNfRkD54DznT17Nv3888+8C+n3UI8JAZEIaedWrlxpOZ/mzZvT119/zfvhLIKrCccvWbKE3T3Yj/pNCKSxQ2q6b775hsUzOKogzM2cOZP3483e3IYPH87OplmzZtHixYu5PVLcoS9ETOfOndh4G7/2/DNb//q0BPmmfVqbRTfQNCGMZE2VgAY2zEU/rTxDUzZe5CZINQbxBdGufCYKUvVzvlt2iu6rh/wQFr5q4Kvqzth+qM4H2XjTY2JXRyWyIOUZ5oz+elbPxk4m68Nu3rxJI0eOZJHOep/+3L5CJq6bM23TRRZtsB2Cx48t81JF5azRgVR8cPj8usmf/txzjTdj7EHq3HG+CKRbm9G5sBJvjlKz8Xt4G96alkzPc9QbetbIRmHKgTV722UWp7A9o3d8mtutqCVFn25rvWynxBcdqD/0bWM/qlvYnCLS6jbnZm3LZ6Qg5ej5WYlgcAYh9d+I5nmUAGR2CMH9UtEvJW0+ccsydols5vSMqFeko7eaM8SQFhPM54X5TmxfkAUZ1Gz6tWMhGvzHCct+9PFds9x8uPHaYYOz69KyTHqC26bPbyf4+Kyp4ivRMQHX9Vl3xOzI4h1WbxgHaeL61MpCP648Tz1nH+MW+ZTLDLWKrLIkWh0d9aORpXG9lZrb8SsQO6/wC0dhbh9VfCruGdunTxaXOlXOSNM2XaKvFpnFLqTKG9w4R9QB5ZMQEAJCQAgIASEgBISAEBACQkAIvNYEIikSfiG6Y7rLbqHNpv/ob9M2OqbSyb0NcVSdx1H6h8ab/qEEpgTUjIpSNY/yVNAjr6p5lELVPkqsKhnF+NHk24BKzkEICAEh8EoJeChhQyWLej0iIiKCBSLjbJC27datWywwWaenM7aL7jpq8UCUSZToWcEiun0Z25uUKwGp8ZBiDjWFrANCER5owx1k73yuXbvGziuIZdaB4wMDA/l4a6HKuq31Zz03iHW2xtb7YzJ36zFj+hnpxZBuzFbaLRhAsB/1YSAuuSO4bpASamyNh/4hJqLOVEBAABlrP9kaG/O7HPSQa+ekMdSzsdUWKdbCVY2Z9MniqZpWtloQ3QoJU2n4wimjqvVjrFdkbI0x/W8/YGYQpl5kYKwQ5fBCurSYxKPwSHXukZa0ctZ9ITUcwl5NH+xz9bocV640MNY1ha4GhXKKNmN9LPRnKzBPuNrAH84kd0fAnTB2fkEkdaV/cDl57T6npcuVPqHbfgbcfV7SnxAQAkJACAgBISAEhIAQEAJCQAhEJRCuXEN3VLq2G6abtMm0leaZVtMuuhS1UbQ/4WECXkgaFEtVBcLLk+Kql5d6JVDviVTKt7hqGdfDi+KYYqu12KqKUQSFeTxWdY/CKdT0WElWYUq4UuvYrkQsLEPU0lzvCEu81AOBGEQqJQ6186hEdTyqUWbKRN4eySmempmko4sBVDlUCAgBIRADAq+VSBSD85BDhcBLITBv3jx2oCF1osTrQ0Cuy+tzLWQmQkAICAEhIASEgBAQAkJACAgBIWCbAFLKBas/p1QtnwWRS2kybVENw203drjVLATFUyKPtxJ+MlJSykZpKaNHOvJRy/QeaSm1qg+UTG2HWyepRxIlEiVwWYQJVdLQXVOIkrHusph1iwLpmuk6XVGViC6p5XmPq3TBdJtuq3Z3eP74cqfz8gK2Tqkm5aa2Ho2oqEchSu2RSglb6suzLHbZai3bhIAQEAJC4EUQEJHoRVCVPt9aAtu3b6cHDx5QlSpV3tpzfBNPTK7Lm3jVZM5CQAgIASEgBISAEBACQkAICIF3g8BjekyBpiCVeu0EzYlcQnNppzpxOHJcDYhCXkr+iUt+Sv4p6uGnljkop5KGcnhkU6nbvJVvKJarnbmlXYgSkc7TRa41dIrO0T7TMTpCl5Uf6oGSjiB8PY7WOGUpC3X2aEKlPIpROiVyxRVnUbT4SWMhIASEQEwIiEgUE3pyrBAQAkJACAgBISAEhIAQEAJCQAgIASEgBISAELBBwKTSsiGt3EnTaZocOeeJOORqqrbYlFwJJQWUNFTeo7Cq5lOACnnkp7QeaV66IGTj1GxuCjYFsxC233SYtpj20H4lIl1QyevMbinXzrukSj/3mUdbKuFRlJ1FUrPIJupnNg4YMIDWrVtnt+Y66rGjTjtqxrsjIiMjae7cufTpp59Sjhw57I7rjrGkDyEgBF48gZgVE3nx85MRhIAQEAJCQAgIASEgBISAEBACQkAICAEhIASEwBtF4JHy01w2XaH5pj/pW9Nfau5hLsw/lkofF58qKpdQZY9SShwqRTk9cqiEcu6vi+vCZKLdJJlHMipLpaismncP6kRXTFdphxKLNpr+o010mE4pwcwZh53kT01NQ6ilqSR18WxNeZRrKrGqpuSp/ki8HgSCgoKocePGdPDgQcqVKxehxryEEBACbzYB+Q37Zl8/mb0QEAJCQAgIASEgBISAEBACQkAICAEhIASEwGtCAO6hIFV3aH3kJvogspcSiBaqmTkSiDyU/BGPylFW+sGjNW32nERzY02grp7tKa9H7jdGILKFP4NHemrsWY/Gx/qe1nvOoNkevamxckWlU5WSyInoM0+l5KsY2YdmR85XdZCuqOR10UtfZ2s+b/K2ggUL0syZM6lJkyaUIkUKqlatGq1YseKVnFJAQAD5+PjQyZMnqXLlyq9kDjKoEBAC7iUgTiL38pTehIAQEAJCQAgIASEgBISAEBACQkAICAEhIATeQQIRFEFXTddphmkeDVUOIlKf7YencsjEp/oeBaglNaCyniXVp/j2m7/he9J4pKbmHo2pGTWio6bjtMi0lP4wbaWTSlKzX78onD4z/arkooPUmzoq0cxPyWnxyEP9edfi+PHj1LlzZ+rQoQNNmjSJ5s+fTw0bNqRdu3ZRoUKFYoRDp6qz1UnXrl2pffv2UXb5+fnR7Nmzo2yTD0JACLzZBEQkerOvn8xeCAgBISAEhIAQEAJCQAgIASEgBISAEBACQuAVEwhTbqHjppP0ZeRIWqukD/vhQckoAbVR3qFWnh+88W4h++dpew8EnnweefjVSTmE/jAtp9mmlXSIbqoDbItqC1XKun9Np2icx6dUybOs8iEleSeFotq1a9PEiRMZbP369alw4cIs1sRUJCpevDglSQJ317OBdHISQkAIvP0ERCR6+6+xnKEQEAJCQAgIASEgBISAEBACQkAICAEhIASEwAsiEKrqD+0w7aZPIr+nEyx22B7IQ7lg2ngUpW4ebZRIkveNTiVn+wyjt9XHIwP19OhCjU11aZZpPs01raMzFKg6MT3T0XVVz6iJaShNjOxG9T1rq9pN3iph3bvlKKpevbqFS5w4cTjl3L59+yzbnnelQYMGz3uoHCcEhMBbQkBEorfkQsppCAEhIASEgBAQAkJACAgBISAEhIAQEAJCQAi8XAKhykG02bSNOkV+R9eUkGE7YinfUCb6n0dnquBZhlOm2W73bm5F7aIvPfpQQ1MdGmWaTHNMeymSHtmAEUHdTBPoYeQjau7ZiFIooehdSj0HYcgYXl5eFBbmqN6VsbWsCwEhIATsE/C0v0v2CAEhIASEgBAQAkJACAgBISAEhIAQEAJCQAgIASFgi8Bjekz/mXZSRwcCUSwlCX3l0ZDmxRpL1Twri0BkC+STbbk9ctEEz+/pV88eVIDS2mlpoj6mabQkcikF0x3lOXrWdWTnwDd+87Zt2yznYDKZCJ9jmmoOHaLmEAQoW6+ffvrJMqasCAEh8PYSECfR23tt5cyEgBAQAkJACAgBISAEhIAQEAJCQAgIASEgBF4AAYgTR0zHOMUcUqHZilyUkkZ49KbKnuVFHLIFyMY2JVVQK48mVNgzPw2KHEV/02HVKvKZlp+YppB3ZDKq7VmDEqoaT+9C/Pbbb1SwYEGqVKkSLViwgPbs2UNDhgyxnHpwcDCtXbvW8hkrmTNnJl9f3yjbrD906tSJUO/IVuTNm9fWZtkmBITAW0ZARKK37ILK6QgBISAEhIAQEAJCQAgIASEgBISAEBACQkAIvFgCAXTj/+2dB3gUVReGz24IkNBbAOm9o9Kb0hUFRLCigoiK7VdAaQoizYYFRBTBgiCIqAhIExCVJggKUqT3EjqBUAKk7H+/G+4yW7IbAgm7yXf22d2ZuXdueWdm4blfzjnyasJ7sk2Oe+2ouZSTd+z9pIqtomRSL9rVEaisuI2xvy3FHCNltON3dXKsWwMJ8qTjI5nvKCK1bLdKqHqld3vttddk/Pjx0qdPH4mIiJARI0ZI8+bNndPevXu3tG7d2rmPjV69eslbb73lcsx9p0GDBu6Hkr1vs2WsvFDJBsOKJBBkBGwqdmXG8csMsovD4ZIACZAACZAACZAACZAACZAACZAACZAACQQWgYtyUYbGfyDDZZYamKeXSyupJCPsb0gpWwmxqxct5QRiJEaGJLwvHzjmq0bchSKR1lJFsR4kJWzF0nV+IoSCmzRpkjz44INy/PhxyZs3r9jtvLdSfmfxTBIgASsB/ppYaXCbBEiABEiABEiABEiABEiABEiABEiABEiABHwQWOX4R0bJAlXDUyBqKRXkQ/tACkQ++F1NUZiEyev2XtJTWqrTQjxOnSP/yQLlaXROvTKK5c+fnwJRRrnYnCcJpBEBikRpBJrdkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJBDeBGLkgoxMmqM8Yj4lUlALyrgoxRw8iDzTXdCBcCUX97S9LR1tN1Y5neLO3HZPlgCNSSXaeot01dRxAJ3/88cdyyy23BMSI4NVk3hiQdTsgBshBkAAJXDUBhpu7amQ8gQRIgARIgARIgARIgARIgARIgARIgARIICMS+C1hibR2vC7xSiZytRCZocKeNbc1lizqRbv+BLY7dkjHhFdkvRz2aHyE7WnpbH9Yckh2jzIeIAESIAES8E2AnkS++bCUBEiABEiABEiABEiABEiABEiABEiABEiABLSnyo8yWwlEFz1ovCQtpK6tFgUiDzLX70A5W1l53vaAajDUo9FvHHMlyhHlcZwHSIAESIAE/BOgSOSfEWuQAAmQAAmQAAmQAAmQAAmQAAmQAAmQQLonkJCQIFu3bpUTJ06k2Vzj4uLkwIEDEh8fn2Z9prSjkxIlixzr1ekOtyYyyWP2+yW35HI7Hpi7wcTcneADtnbSQG5yPyxr5KAckEiJUy8aCZAACZDA1RGgSHR1vFibBEiABEiABEiABEiABEiABEiABEjgBhOoW7eu9O/fP0WjOHXqlDOHhsmlYb6jojKuJ8KkSZOkQIECUq1aNSlcuLC0adPGRSz69ttvvXJbuHCh8zqUKlXKo85tt93mLLdunDt3Tp5//nkJDw+X0qVLS1hYmLz88ssSE+OZ68d63o3cXutYJ3u85CJ6QupLESVchKhXINj+/fulffv2+lrMnTvXOaRgZO4c/OWNHLYccp+thdrL5F4kfzv+lfNero9HRR4gARJIMwL4PZoxY4b8999/adYnO7p6AhSJrp4ZzyABEiABEiABEiABEiABEiABEiABEghyAmPGjJHNmze7vHPlCg5PkOuNftWqVdK1a1f54osv5OzZs7Jp0ybZvXu39OrVy9nV4cOHpVGjRi68wK9hw4a6jsPhkIMHD8qUKVNc6nz33XfONqwbEPnmzZsnK1euFAh3S5cule+//17effdda7WA2v7PsU35EHl6qrSwNZLstmwBMVaIeWXKlBFcD3cLRubuc8B+E1tD5bXlmfdpvWxRmaLcc0V5a4HHSIAESIAErAQoEllpcJsESIAESIAESIAESIAESIAESIAESOCGEoBAUaFCBZkzZ440aNBA8uXLJx07dtTCQ3IH9ueff8p9992nz23WrJl89dVXHqcWKVJEL6ZjQd287faMuUxy+vRpef31153eJ2XLlpXWrVsLxCNjR44ckXLlyjlZGWbwBIIZL6yaNWu61AFnb7Zr1y5p0qSJ1KhRQ3sTwTusdu3aguOBavtUSDNRGYncrZKtvGRVr0Cw1atXyw8//CATJkzwGE4wMveYhDpQ3lZOCkqYR9FOR6TEOmI9jvMACZAACZCAbwIZ838/vpmwlARIgARIgARIgARIgARIgARIgARI4AYRuHDhgvZi6dy5s9x7773y0UcfybZt2/R2dHS031Ghbtu2bXWOm88++0wgPjz77LMCDwuadwItW7bUIpEpRc6a+fPnS/369c0hOXTokPZOwXWBiIfvFStWOMuPHTumt3/99VfNHALfsGHD5NKlS8461o0uXbrI5MmTZeLEibJlyxb5/PPPtTD40EMPWasF1PYJxykv48ks4eplU69AsBEjRki7du28DiUYmXubSBbJLEVseTyKjsgZJeF5ingeFXmABEggTQjAMxUeoj9+P1V+Vf+m0AKXgGcAz8AdK0dGAiRAAiRAAiRAAiRAAiRAAiRAAiSQQQggNBZy1MAQ5qx8+fLy22+/abHIFwLk1smfP78gzFnWrFnlgQcekJMnT2qx6ZFHHnGe2rdvX8GCurHbb789xXmOTBvp5XvgwIHacwt5JIxBJFq8eLEW3F566SXtrdK4cWPtbXTLLbfI0aNHdVUwRa6hyMhIGTJkiBb4IAS52z333CNPPPGEPPXUU86ibt26SatWrZz7gbYRq0PNuYZxC1e5cewBIhD54xWMzJOaU1ZHZo+iC+r6uF4djyo8QAIBQWDfvn0yuF8fmTXvFzl17nyqjSl3tnBpe1creeOd4VK8ePFU68dbw+vWrZMOre6U+jkyS9mQBJm3arnMnTpFfvrtD8mWLTDCc3obd0Y9RpEoo155zpsESIAESIAESIAESIAESIAESIAEApgAwsQZK1mypA51tmHDBr8i0Zo1a3QYMwhExlq0aCHjx48XeCkZq1y5slSsWNHsahHKuZOBN8Dp/fffl59++klKlSrlJIHQcM8995x06NBBH0MOo1q1asnXX38tI0eOlBw5cmhxCMJQzpw5dZ0qVaoIvFeQZ6hw4cLOtrDRo0cPfU3gKVatWjX5559/pHfv3oK8UG+++aZL3UDZCdch5eAxdEWKOC+XlDQRHN4rwcjc27V3KP6n5ZxHUU6VpyhYBDuPwfNAhiEAgahZ/XryZHisbK6aRyJC86fa3I/Gxsu41Yt0f7+tWHndhKITJ07o3+pMmZKWFno987T0zWuX5wpeEXT/t2evDOn5krw77stUmzMbThmBpK9kytrjWSRAAiRAAiRAAiRAAiRAAiRAAiRAAiRwzQSyZHFNTI/FqIsXL/ptF3Xcz82cOXGRKj7+ymL+448/HtBeK34nmgoVfvnlF3nmmWe0h1WbNm1ceoBnl9XCwsLk7rvvluXLl+vD8CaCWGQ1hLGDrV+/3kUkOnXqlIwbN06/ISLB4C0Gg1AETyb3a6gLb/BHQVs+pQ+5ikSiJKKTEqXDnIVIyA0eYdLdBytzbzOKlmjZL56h/4pKi0OCMAAAP0hJREFUXuXXxaVOb8x4LHAIwIMIAtGAYrlSfVARoSGJ/ew/rT2Xvvz2u2vqE+IQvHOXLVum/zAAv9Xdu3f3aPPw4cOydccOea56XpeynoXCpeXcefKuy9HA2Jk7d67AmxVhbkePHh0Yg0rDUTAnURrCZlckQAIkQAIkQAIkQAIkQAIkQAIkQALJI7Bq1SpnxaioKB3+DB4n/qxGjRpauEhISHBWRVvlypVjiBsnEc+NtWvXCsKRDRgwQF544QWXCg6HQ+cZcs/rtH37dp2fCJVRhjxEyGdkbO/evXrT6pGEA8ajKzw83FTV32Y/qTxGLpVvwE5pKaF69RSC/nGsk/MScwNGlPwug5W5txmuTdggkeIpGJe3FZfMtiteC97O5TESuNEEEGKuW6HsaToM9Id+r9V69uwp+fLlE4jOCxYs0KK+9d/qa23/Rp0/ePBg6dSpk/Yotv7f4UaN50b0S3n9RlBnnyRAAiRAAiRAAiRAAiRAAiRAAiRAAj4JIB9Rnjx5pGDBgjr8GMKZIW+QsV27dsnChQvNrv6GNwvCoSEvTp8+feTRRx8V5EV47733AjaEmcsEbtDOnj17BCH5YPXr13fh2rRpU4EXF9iCaYECBaRSpUoydepUwV9eI/eTOQ9eQVhEfOWVVwR/cf7kk09qcQ4C3datW/W1GTVqlDRv3lwLSrjGCAuIsH+4Tv369dPeSbjWgWjVbZUlhyNUzkisy/BmO/6Qto47Jbstm8pOBE+jwLNChQoFJXN3kvHKZ2uB43flv+UpEt0qVVRAwCthJt3P5T4JBAIB5CBKzRBz3uYIj6JrzX0UGxurf+8RGhSCfs2aNXVeuZkzZ0qdOnVcusXvTYWyZWXMkQMq3NyVPwYYcfi8dLi7rUvdQNjBH0Js3LhRxowZI8ePHw+EIaX5GCgSpTlydkgCJEACJEACJEACJEACJEACJEACJOCPwKBBg/QC1JkzZ7QoMW3aNJeQZdjH22ozZszQIsOUKVN0yDIIEhAcevXqpd/Wuty+QgCLfOAMa9269ZUCtYUFM+QYQp6ikydPupQPHz7cmaMI3kLTp0+Xzp07y9ixY3UbyFn0448/is1mk+joaIHnEcQjGHIeIcfR/fffr/fx8fDDDwd0mJ8qSiSqIHnkb+U3ZLWFslU2ObZKhK2AZFavQDAwd7dgZO4+h/2OAzJNEOLwiqdgYh273GKrJmEUidyRcZ8ErgsB5FKCQfQ3htx+S5YsMbsu3++P/Vw6tLpTlsRekrIhCbIy1i6OAsXlpxGjXOoFwg7+v5HRzaZceK9k28voNDh/EiABEiABEiABEiABEiABEiABEiCBG0pgzZo1Uq9ePdm9e7fgr5ER1gbhbVJiCFOXO3duLVKk5Hye40ng9OnTgnwTZcqU0R5G7jUQqgfXDsISvI6shlB07onOcezo0aPaYywkxDOUm/X8QNh+M+EDGeyAOHklvxXGdbfyYhlpf0OKq5Bn9gD1JjL8go25GfdF5T00NP4DGS6z1CFXkaiD3CojQ4ZIIYkw1flNAgFJADny4hsVT/OxhSzbJ9cSynPFihXSuHFjlzYmT54sn3zyifz5559e53P27Fn9RwP4d7127drSo0cPr/UC5SByLOEPIz799NNAGVKajYM5idIMNTsiARIgARIgARIgARIgARIgARIgARK4GgIQDVIqEKEfhKvz5lFxNWNgXVcCuXLl0nmI3MUeU8tut2sByV0gQrm3c3DspptukmAQiDCHe213q8xEObHpYnPlP5njWCjR6uVQr0C2YGMOlggzt8yxQkbKArXnKhCh/CFba8nl5bqgLKMYBNovv/xSDhw4kKZT3rZtm1y86Bn+z9sg4FG4f/9+b0UpOvb999/Lzp07Xc5FWDSMCSHEkmORkZGCPygINDt4KV6i4jzv9WsZ56FDh2TixImSkrw7RYoU0V2fO3fOOQT8wUCJEsjV5t2yZ88uDz74oDzwwAPSsmVL75V4NCAIUCQKiMvAQZAACZAACZAACZAACZAACZAACZAACYBA0aJF5aOPPhKIEbS0IYC/bDdv9Gi28X2j9nXHAfhRxVZJOkh9NTLPJbWejvGyPGGlxMiFABx58A4pQYlC2x075bWEj+SSoutuTaWs1LXVyvCh5jZv3qxDOEIkSQubNWuWFoyrVq2qhd7+/fsnKcxAWHjsscckf/78WkRu0KCB/Pvvv3qYO3bscPnNsf7+vPXWW0lOZc6cOYK8ZhERV7zHhg0bpj1QMabSpUvr3GlJNYA8aU2aNJGSJUtqT0YIGfBcNbZ3716v40rt0GRbYmLl9vVHpPiqg5J/5QG5b/NxOeVDLFoefVEq/RMp8BTyVQ/zAv8PPvhAJkyYYKaZ7G+I+TDk7jGG/EQVKlQwu/wOYgLMSRTEF49DJwESIAESIAESIAESIAESIAESIIH0RgALfshVQ0s7Au4hiAJtP+1IJK+np+2d5NeENbJBDrudECfdHO/JREcWaWCrl+FFCzc4KdqFQLTbsUd6J7wpayXSSxt26Wl/QvLZ8nopy1iHEPILv5/ID5baBoHnvvvuEwgm+L3G/p133qm9N5EDzt2eeeYZWb58uSDsGLwM+/XrJ23atNH78ESBwGW1gwcPSosWLXQ+Outxsw0vIQhEffv21XnncPyLL76QIUOGCHLTNWzYUHvMdOrUSf/hAfathrCZHTp0EOTUgRgEDyd4vHTp0kXnS4NH5JEjR/QpmzZtcvFIhYdqatlpJQa133RMKodnlv11ikh0fII8oESiTttOyMzKBTyk6e67omR05Bm5I09W2RYT59eHMTQ0VAYMGCDPPvuszgEXFhaW7KnAA7Fbt24yePBgQZi5devW6Zxza9euTbINeLZlyZJF4FG0fv16WblyZZJ1kypIrkdYUufj+FNPPeWrmGWKgOefPRALCZAACZAACZAACZAACZAACZAACZAACZAACZCAVwJlbaXlRdtDalEtq0f5MTkjTyhB40/HSjmnXoEees5jAgF0IE7iZJcSiHomDJH5ssXryHpKK6ltqyFZ1Cs9G7yDXn/9dbn55pu16IFFb/ewckuXLtVCDTgg7xQEnCpVqmhPDwg358+fv26IpkyZItWqVdNiD0STpk2b6vGNHDnSo4+TJ08KwsKhDB4+BQsWlBEjRuhcZAsXLhQIF8hxZn3//PPPUq5cObnnnns82sMBiE3IfQahytiYMWPkpZdekrvvvlt7or744ovSqFEjr14zy5Ytk+3bt8vHH38shQsX1owwvrlz52rRCG0eO3ZMEGKtbNmyLmPLmzf1BMmlyisIYs8nZfLITZlDpGJYqIwqnUfmnoyRPRfizFSd31vOx8raWwtL95tyOI/524A4d+bMGfn999/9VfUoHzp0qL6PcA3BHtcR91hSBoHnwoULOs8PvMmwfzVvtIuQsdf6Tmp8PH6FAD2JrrDgFgmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAn4JfCo/QH5N+E/+dTxm6rrmjfksMpL9JASNj6zdZdm9tslt8qWY+ffaftlaq1wQYXs2+jYLK8mvCeLxTXnjKnXSErJs/YukldSz7PD9HWjv+E1M3bsWHnvvfd0njZ8t2vXThYvXqy9NLDwjvBrH374oR7qq6++Kl999ZUg/BrCt/Xp00dOnDgh48eP95jKtGnTZPjw4R7HcaB27doyevRojzKEaqtZs6bA48ZYjRo1tPADMSBbtmzmsOzatUtvV69e3Xksd+7cWmRCqDl3gxfRqFGjtLdKUrnKlixZoj2ITAg05NjZsGGD9i6ytofxw8PK3SAQweuqUKFCziIIcDCMF95Y8CSCgATPm+nTp+tjHTt2lEcffdR5zvXe2K4EoojQECmkBCJjN2dPDPu5W4lEpbO6LuXPr5oYai/ykqeAZM53/4b3EAQ+iIoQ1K7GIAj+8ccfgtxGEMvgJeTLgs2DB55oGdVc76yMSoHzJgESIAESIAESIAESIAESIAESIAESIAESIIFkEgiVUOlv6ymHHMdluqxTZzlczoxWXkSPON6RdxMOSntbayliK6LO4DKcCyQvO/C8ipJTsixhhfR0fCT71bY3K6mEoeH2PlJMcVV+Bt6qpJtj8PqAQIRwap07d9bzgodM+fLlBWIJFvoheqBe/fr15ezZszqv26RJk3QINZwAMaR9+/ZaRHIPlwZBBKHXvFnx4sW9Hdbh4SASWc0INnv27HHxLoHHDwyCi9WQCwhik7tBAIMXUVJjQn14+UDoMHb4cGLoR/c+kOMO4eLcbefOndpDyHrceAihrHnz5oI2//77b53HB15JEJueeOIJuXjxonTt2tV66nXb3nEhVsqFuf5O5M2UKMTtUCJR8+vUE+4dwywlTbpzTkkbPCewCLjedYE1No6GBEiABEiABEiABEiABEiABEiABEiABEiABAKSQAFbfnnb3k/OJwxS4dCw2O0qFMHDqK9jgqyQf6WHPClVbJUkh2SnV1ESVxPeQwcdh2S841sZ7pijasV7rRmhKH5mf1Wq2aoq2S39L20akeP222938oDAAnEHuYAgEq1YsUJ7xkBcWbVqla6HfDCLFi3S2ya/zsaNG+W2225ztoMNeADhfTWWL18+LUpZz4EHESxnzpzWw86cQSjPmvVKiEaIWQhbZrV9+/bJp59+KhC4kvIiQv2jR4/q/EfmXOO55B5SD324jwfn5MqVy2P8COlnyvBdoUIFnX8HXlkw5PGBF84HH3zgVSSCNxZC3lkN/EuXLm095HM7V4hdzqg8RFaLVV5iMJRdL8P1g5hHIwFDIP3/kpqZ8psESIAESIAESIAESIAESIAESIAESIAESIAEriOB0rZS8qH9deml8hDNk82qZXehSGSGY51695L3bY/JXbYWyquosISpV3r3gEku5ksSq7yHomRlwt8y1DFW1kuiV4i384uq0H2fKWGuoa2eykKUGIbLW730dAyeKzD30F4QXIywAY+iZs2a6dwtyAEDq1SpkhQoUEBvFytWTAsy7qKMLkzBBwSUvXv3upy5f/9+vW88ikyhEUkiIyN1qDxzfNu2bdKqVSuzq78htPjzIkJF69yxD9EH4ePMGHAMBtHJhJFLPJL4iTxD7iIJQqjBzHit+Y4SzxJp3bq1DtkHr60cOVzzAEF8wzis5u61ZS3ztg0vok8PuYqjkZcS991DzXk7P7nHLl26pHNBJbc+66V/AhSJ0v815gxJgARIgARIgARIgARIgARIgARIgARIgARSiUA5W1kZZR8sAxzDZapjjerFdZE3sdtL0svxlXzjmCc9bY9KA1sdibBFKKkoa4YViyAOnVav/1TuobGOyTLN8a9C5SmymctWXQrJCHtfqWurpeShjCEQYe5VqlTRCBD6rG3btnr75MmTOuSbyfMzf/58eeONN3SZqQ9Bo2XLlvpYXFycQKSx5uDRBeoDuYvgJePN4KU0Y8YMj6KKFSvqPEZRUVFOj54ff/xRbr31Vg8PoBIlSujzZ86c6QwRt3btWkHuIYhNxhCWbty4cdqLKFMm30vWEIRWr15tTtXfYPHDDz/Ic889p/fhVTRr1ixniD5rZYRbg9CD/DpNmjTRRRgfrEyZMvq7R48e+nvkyJH6Gx/IV4S+3QUilCHUH97XYuXDQrUn0R+nL0iTXIleVzNPxOgmy7qFobuWfhCuD/OgkYAh4PuJM7X4TQIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIk4JVACVtxGSXDpKjjYxkrv8lZOe+13jo5JF0c70tjRxnpausgdWw1lViUX7Kpl129MoLFqLByp9Rri2ObTEmYKV/Ln2rariG2XDmESBupJMPsvaWCrZyEqFdGMoQGg+AD8SM0NFR7q7z55pt6kR/eKxBXEH6tQYMGGkv+/Pl1CLpu3brJZ599JkWKFBEIHRMnTtR5aEzuHcMQYewmT55sdl2+jSeSy0G18/TTT2uRqHv37vLaa6/J77//rgWZn3/+WVedNm2aDBkyRH755Redi2jYsGEyYMAA7dWD8eC8unXryp133uls+p133kmWFxFOQK4hCE0Qv4yghPYh+MAb6d5779Vh4WJiYgT5hGB9+vQReC9B9IKYc8cdd8grr7yiw9tB7Bo0aJD07t1bDJ86depIly5dtEgH/mvWrNFtPP/887q91PhokDOL3JEnq/TcFSVjyuaVU3EJMnDvaelTNKcgN9GWmFhpv+mYjC6TV5rnThSRUjIOhCl86qmnUnIqz0mnBCgSpdMLy2mRAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmkHYE8ttwyLOQ1qZFQVd5TuYj+1WHTvHvGLJadstjxnlR2RMiTtrbS1NZIiUUFJKd6IYxaegtFFytxSjg7K6cd0fKPY63yqJopc2WTujje+ZirFqp8rQbY2snT9s6ST/KmOy5mnv6+J0yYoIWZe+65R1eFwDJ79myBILRgwQLt2YLwcsZQHyKA8TxC/iLUMwKIqYdvhF7D+2oM7Xz77bfy0ksvCTx44FkDkcaEj0MOpM2bN4vJEdSzZ09BPiQTwq1WrVqCnEkm7xBCv40fP16++eYbp+jjazxNmzbVxVu2bJGqVavqbYhkb731lrz99tt6LBCj0EfhwoV1OcS07du3S0JCgtjtdhk9erQWgUyOpnbt2kn//v2d3Xbs2FF27twpL7zwgn6j4JFHHtEilLPSdd6wqfY+VQLQ49tOSMN1R3Tr9+YLl9eLJ4axi45zyLaYODke611Uxfn+DNcGXlwtWrTwV5XlGYiATcUg9P1rnIFgcKokQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkcK0E4CUz3PGJfKfyEcVJYrgo322GymMqjFo7uUOq2CpKblsu7V2UVUlGwSoYIZzcefU66zgre2SfLHD8IRMdv0ukCjHn30KknhSV123PyW32+iooX8q9Jvz3FTw1kIMI+WSyZcvmHDQ8jBB+burUqc5jZgN1z5075wwJZ45fz28IKch5lDmzawhAq5eP6S86OlqHeYOAc61Ws2ZN6dChg4uwgzbRL/IlIbeQzXZFNnE4HII3BCKrIRcRchwllT8IOaEQZg5h88LDw62npmgbnOIbFfd7LnIRhdltkkd5EFlN6USS6cq0rEU+t0OW7dP3DsILDhw4UOdkMl5YPk9kYYYgQJEoQ1xmTpIESIAESIAESIAESIAESIAESIAESIAESCAtCVySSzIr4Rf5xPGtLJP9quu4ZHVfWHkT3SO1pImtfqJgJLkkzBamfGrCJFQyBaxoFK9yMSGUXIwjRotDO5U09KdjlcxzrJDVciBZcxc1u6Jq/s/b7pHO9oekgOQP2Pkmc0KpXg1eQgilZnLxpHqHAdLBokWL5PHHHxd4E2XPnj1ARuV/GMkVify3dHU1IBLBswviWt++fbVX1NW1wNrpmQBFovR8dTk3EiABEiABEiABEiABEiABEiABEiABEiCBG0rguOOE8qD5ToVYmy//yQk1luSJRYmDDlWCUSWpZ7tZakg1KWYrqjyMwiWrDT5GmdU7i87Rk9beRhCEIIJdxNtxUUlDF+SIHJMNjk3yt2O9zNHB9qKvgrtNSWHh8rCtrjxne1zK28oqOYxZMvwBhNfM559/rsPKIU9PWpjVYwieSqm972tOCHmH0HvWUHtpMSbMGf2kxG6kSAQPqzlz5kjXrl09PKpSMheek34IUCRKP9eSMyEBEiABEiABEiABEiABEiABEiABEiABEghQAgccB+UHlYtnshKL1stxNcqrEYvMpDJLCymp5KKyUsFWRspJaSloi1DB2LIoLyP1suET8komLR6FXP60i2vIKtOat28VlEtJQFdecWo7Vr3iHHH6G2HkotRrl2OvbFO5lTY5VH4ltXVUznhrzs8xu8o1FC4P2erJ47YHledUZSV9hfo5h8UkELwEIvLkls1V80hEaEiaTeJobLxU2hglR6NOpVmf7Ci4CFAkCq7rxdGSAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAkEMYHDjiMy0zFXCUYL5C85pLxxLqjZXEvKcLuUkdxKMCooxW2FpJgUlggVpi2POpZbhW7LZcupZJhwp8cRvI4SX4kQIQqZV4LagleQyhyjMgdFyynHaeUfdEIOymHZ5zgsu5W/0FotcKXMi+LKZcssFdTY2kkD6WjvoD2HIG/RSCC9E3jykYel7OpFMqBYrjSb6rD9p2VH7eby5bffpVmf7Ci4CFAkCq7rxdGSAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmkAwIQY5CzZ3rCPFkk62SH9sSJVTO7FsHIFxhku4f3gl3JMSEqbJ1dBYtzqPxB8eoY3gmX3+orVSyTEq2yyO1K0mpvbyl32JopL6K8ahTJ93JKlWGxURJIQwL79u2TZvXryZPhsdKtUPZU9SiCB9G4w2fly/Oh8tuKlVK8ePE0nCm7CiYCFImC6WpxrCRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAumOAELRLXf8JQsdS+VP2aoEo7NqjhCMINwEq0GUyqSEoCxSR4pLC1t9aWprpLyGyjGkXLBeUo77uhCAUDS4Xx+ZNe8XOXXu/HVp01sjubOFS9u7Wskb7wynQOQNEI85CVAkcqLgBgmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAncWAJHHEdlpWO1LJe/ZYVjo+xS+X+OqaB0iTmMAlk0SvRUClcSUHHlp1RbiUENpIbcpsShUraSynsp040Fy95JgARIgAS8EqBI5BULD5IACZAACZAACZAACZAACZAACZAACZAACZDAjSUQp8LA7XTskrWO9bJGNsg6x3aVF+iEFo3OaU8jhIlDeLrUClGX1PwRIs6ugtZlkgJKFCqq8gtVtZWUW6WK1LTdLFVsFXUeJOQ+opEACZAACQQ2AYpEgX19ODoSIAESIAESIAESIAESIAESIAESIAESIAEScBI46YiSnUoq2ubYocLS7ZE9KlTdbjmsXtHqFasC1cWrbEdGPILnkRGRrEKSddsq5JhtiEDYtisZyC45dA6jECUIZZOSEiElbIWltJSQCrYyUk7lGCpkK6TqId8RjQRIgARIINgIUCQKtivG8ZIACZAACZAACZAACZAACZAACZAACZAACZCAG4Gzck4Qqu6o8jOKklNyynFafZ9WW6fV66wKWHdJLjnUW+LUO1a94pSsY9f5gTKrYHCZbeqtvnMoISi38gzKI7kkt0291Xd+lVmosBKCsG1XLxoJkAAJkED6IUCRKP1cS86EBEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABJJNgNJ/slGxIgmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmkHwIUidLPteRMSIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESCDZBDIluyYrkgAJkAAJkAAJkAAJkAAJkAAJkAAJkEAqE1i/fn0q98DmSYAESIAESIAESODaCVSvXv3aGwmAFpiTKAAuAodAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAmlNgOHm0po4+yMBEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiCBACBAkSgALgKHQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAJpTYAiUVoTZ38kQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkEAAEKBIFwEXgEEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEggrQlQJEpr4uyPBEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABAKAAEWiALgIHAIJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJpDUBikRpTZz9kQAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkEAAEKBIFAAXgUMgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIggbQmQJEorYmzPxIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIIAAIUiQLgInAIJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJJDWBCgSpTVx9kcCJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACAUCAIlEAXAQOgQRIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgATSmgBForQmzv5IgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIIAAIUCQKgIvAIZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZBAWhOgSJTWxNkfCZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACQQAAYpEAXAROAQSIAESIAESIAESIAESIAESIAESIAHvBA4ePCj79u3zXhjgRzds2CBjxowJ8FH6H15qzWPbtm0yceJE/wNIoxp79uyRL7/8Mo16C85uYmNjZfPmzXL06NGrnsCUKVNk06ZNV31eRjohtZ41MFy6dKksX748VXA6HCL7T8boN7ZTakdOX5TomDifp+8+dl4uxSUkWScu3iGo42sc16Of+ASHHD51QfDtzdD/vhMxcjT6ordifeyimsf2w+fkQmx8knWSU+CPib+xuveB8Xgb95w5cwT3KC39EbBdunTJ+52c/ubKGZEACZAACZAACZAACZAACZAACZAACQQJgU8//VQ++eQT2b59ux5xRESEDB06VJ544ok0mcH8+fMlR44c0qBBgxT3179/f3nvvffk+PHjkjNnTr/tXI8+/XbiVgEiTaNGjaR06dJuJVd2r3YeV870vTVp0iTp3r27nDhxwnfFNCr9+eef5f7775eLFy+KzWZL1V5PnToluKdbt24t06dP9+jr/Pnzkjt3bn1crd25lOOaPfXUUzJt2jRp27atS1ndunXlwoULsnLlSgkLC3OW7dy5UypVqiSrVq2SW265Rcw1dVa4vHHfffcJxBx3A5MBAwbIRx995CxCe+PHj5caNWo4j/naKFq0qLz++uvyzDPP+KqWrDIsVOO3oUOHDknWvxHPU5KDSWaBuS7J/c04cuSIYJ64btmyZUuyl8jISKlWrZosXLhQX6/7R62WTQfPeNQf2L6CPFyviHw4b6d88cdemdOrnpQqEO5Sr9HQZfJc85LyaIOi+vj0vw/JWz9vk3MXE4WObFlC5A3VTptbC8nOI+ek7Yd/uZxv3enWtIT0aFVGdilRZ+CPm2XNntO6uEXVAvLm/ZUkR1gmZ/XfNh2Xd2dt10IU+uhYv6j0VOdaH9VPf90t45fs02MpmCuL9Lq7rLS+paCzjevRDwSUd2fvkKkrDzrbfbJxCel+Z2nJFJL4uzHn3yPythrrybOJz27NUrnlnYcqS5E8WfU5EG3em7NDJi7b72zjiduLy8t3lZEQu+tvz/lL8XL/R6tlz/HzMvzhypqrOckfk+SM1bSFbwh9A3/cIn/tjNKH82bPLD3UvO6vc5Pe/+GHH/TvwNq1ayU83PW+0BX4EbQE7EE7cg6cBEiABEiABEiABEiABEiABEiABEggXRKAGNSjRw956aWXBIvbBw4ckGHDhunF5ZEjR6bJnLEYDhHjWgzzSO5iL/q5Hn1ezXgTEhK02LB69Wqfp13tPHw2xkIXAvjLfHgwuduPP/6oD5UrV869SL7++mt9LCkvLHj6vPrqqy7nOby4VaBt1LW+P/zwQ5fzzA7Ezq+++kqLDFFRUbJ7926pV6+etGzZUiB4pbXNnTtXXnnlFZ/dpvXz5HMwySy82mcNv48QDE+ePOmzB7TbpEkTF0Hvvto3yS996ru8W998RVBBg10/XyvwzEnKVu2Kkv4/bJZ+bcvJykG36/fLd5WVPt9tkr93n5Li+cOc7UNwgvVuXdZ5rIsSRs5ciJP/fb1eIEj80b+hzFb14BnT57v/JOHyfbs58oz8b8J6aV+rsO5j9OPVtYj11ZK9zqF9/1ekjF64W95/pKr8Nfh26ara7j3lPyU8Jd6f16ufD+bu1HOb3qOO/DO0sUx8toZ8uXivTFsdqceyckeU7vf5FiVl9ZDG8vtrDSVPtlB5+ot/nR5DEIdmKyFpWvfasuHtpjK+261a3Pp5zWHnfMzGkOlbJXvWK2KZOZ4cJv7GatrCN1A/8+U6yRpql1/7NdBjf1Vd14HTtsjybYn3F8TITJkyybhx46yncjsdEKBIlA4uIqdAAiRAAiRAAiRAAiRAAiRAAiRAAumFwLlz57TH0FtvvaVFoWLFimmPiy5dusiIESPkt99+E4gbsD///FP/BX2+fPmkWbNmehHbcEBYqwoVKgj+8hneQKhz7733yqFDh0wVmTVrlsDzAmWos2jRIl2GxdRff/1VvvjiC93Gv//+q8NkoT0s0N988826P1TesWOHbhdtoLxv374SF5cYLgl9o0+Yv/F461OfaPmAKHD33XfLxx9/LKVKldJveL/Ak6BKlSp6Ho888oiAobEVK1bIAw88oMvuuecevciPMggT8ASBPf/88/p8bL/44ovaywS8MSfwts4DdcAQ3iDwDMGc+/Tpo71vUIZr8/bbbzvHg/nv2rULRUka5oDxo71u3bppYc1U9sXXX1/WceL6wjPNar/88ovceeedep7t27fXYqS13H0b7WF8GCfuAXh9WL18cAz3DDiDHe4t8PdnRvSx1jNjzZUrl/WwFmeWLVum78OZM2fKsWPHXMqxc+uttwo88eA14suyZ88uZcqUcXkXLlzY6ynwTLrtttukcePG2mOlSJEi+nn87rvv1OJyooiA+37QoEH6WuK+6NWrl8AjKimDCIvnFqw6d+6sBWFrXZRDhEI5vvG8wyCADR8+XBCKEv1AvHI3b8+TeQbdn2E8P+Y3ombNmi4hEM0zN3bsWN0XxgIB2zzj/u5B6/OH+wH3hzF/z5oZL4REM76OHTtqUQ9t/PTTT/Lggw/q5m6//fYkPbRwj37//ffy8MMPm671N4SL4vnCXN5Wzx144pxVAs6YRbtdzrPubNgfrXfvrVlYciqvH7w71i8iE56pIQVzZpHQELuz/RJKMIJFqOOm39zhoVpwgZfMwHsr6LLSynNpQLvysnjLCTkYdUGfM3vtEalQOLt0a1ZC91G3TB55oWUpJaxc8cSZsuKAdG5UTBpXzCc5lKjSSW3Dg+cn5ekEg2h1PfpB3x8qIQrjCcscIrVUHyXzh0vk5bEu2nRMKhfJIY8oTyd4PIEjhDH0vWRLotiSRQkx/dqUlUo35dCeQ2gT7bl7d83857BAOBrxWFU9B+tHcpj4G6u1vdj4BD3GO6pFyE3K4wljb1U9QleJVGH1YHa7XfBvjDdvQ12BH0FLgCJR0F46DpwESIAESIAESIAESIAESIAESIAE0h8BeDXAWrVq5TG5F154QSAoYKEK+WwQais+Pl4+++wzvSD/7LPPyrfffqvPQ8gteDv07NlTL55CyEBODpNzBsIF/iq6RYsWAq8NCCZ33XWXDn2GxX/sowyeFSVKlNAhvNAevBewoA0xCAvE7dq10/lZMAb8RT+ELCzQw+BhgXHC/I3HW5/6RMsH2oN4NW/ePPnggw902DCER3vyySf1eOBthblARIJhjm3atNHbGB8WuBHeDKG6ChQoIO+//74u69q1q150xw68tuA1AqEJnhjgYJ0HFv0h/ECoePPNN7VoAqbGqwOLh2+88YYez+TJkzWbxx57TPfj7ePMmTNapILXGEKRwUMEAhXY+uPrqy/wxvX9+++/9dwwb9wLRpD577//tJiDkGzIGwXhB4v/SZmZN3K6QMDEtQZTLPQbw70LwQ0L+mB49uxZLSSZcm/fjz76qL5eGK8xjBnhnFDmbhBlIAJBLIBQg5Bz7gbhq3fv3jo0IzzZfBkEHus7qboQiHBtIALBewWGcFMQb/LkyaP3Id7g3vvf//6nhUOEosMz683wHOO+q1+/vn5eIAZCXMP9AMO8UI4Qabg+CKUG4QfPIIQRXE+Eg8TzCeHK3bw9T+YZtD7D+/fv178jEJsg4NSqVUtf2zVr1ugmzTOHew3eOJ06ddLjxf0P83UPYk54/hCqD3OAkIP7A4INzN+zZsaL3xs8c3ge8XuC7ejoaD1Wc//h2QEvb7Zu3TrNFSKmu0Hfs76t5QVyZJEPH62qRKI9zjBw1nJs31oitz7Uc/JGgWBk8vPULp1biikBKjm2V4kn8CLKnyOzs3pFJZjADqicPrBdR89JlaI5xG6JLQchBuHcYlQ4NngcbT10Vosz+oTLH9WL5dQh77B7PfpBOwiFV65QNj3XU+dj5eul+7S40urmREElkwoXd/5y6D3UhxlvrINRifOBgIRwfMYghmH8VYvmNId0bqZhM7dqgcmEqXMWqg1/TFDX31it7WXOZJdHGxaVz9T1XrH9pGw7fFbemZ0Y7rVJpfzOqghXid8neBTS0g8BT1+19DM3zoQESIAESIAESIAESIAESIAESIAESCDICOCv52HwcPBl8DLInz+/YNE8a9as2lsGIZewkIq/dDYGjwwIOTB4gpicChAJYFjsh1dOw4YNBSJT5syZ9cI3FuBLliypF6NRD4vTMIgMJg8MvAmwX7ZsWedCOTwu4D0A0cObJTUeLLa79+ntfByDEIZ8NXXq1BF4GWDhHgvJMHj+YFEY9s0330ihQoV0/dDQUJ2/BXxxPrx9sNAOw8K42cY+FuanTp2qxTjsWw0iCRYI169fLxUrVtRFCFsG4QoGryvwhNcCWGKMRlTQFbx8QGSCsAGDIAexAAvsyJPki6+vvjBOiC3oG95oMCysQ8SACAUGGCcW+SEUQXg4fPiwwDvHm5l5gx+uNwyiG9p65513nNcf171fv366HF5AEHOOHj2qveH0QbcPCGgQ09DvQw89pEs///xzueOOO6Ry5cqydetW5xkQc8ADQgNyJiE/F4QY3LfuBtFg9uzZWqTBtfRmuI5ZsmRxKRo9erQW/lwOqh0IKxBUIJDhjXsV/T/99NMC7yMIYia8m/Fuwb0HDy0IOUZIMu1CRINXFoRGGDyK0OaSJUv0vQgRFPeQCX+HZ+7ll1/W9wWeFXieQfS13rembXx7e568PcNY6Ma1hfCGMFoQdSC0IneTNdcSGBYsWFDfJ/DQwnMH0crXPQgvJOQiw28UBDVwwW8W7jNjvp41UweCF+YOQ/6w8uXL6+ccYhHEOxjma+5zfcDyYbzNIIRaDTmH8LbazJ51tQBijt1WIZ88oPLRvPLtRvn55braQ8eU4btGyVw6/9D7c3fIrxuPae8TeKI82qCoh2BjPc+6ve94jPLEcRWUcikPI9g+JRLVLwdB5LyLgIIyeCrBDpy8oL2LsA0vJasVUl48O1ReJNj16AfikLF6g5Y48zCNeeJm7RWEsjql88iEpft1+LkOtW6Si3HxMuKXRGH1aPRFc7rz+1JcgvRVofXKFMzmkj8J+ZUg1D2mhBtv5o9Jcsbq3u7/WpSSv3edkidVaDxjyINUwCLg4TcahvvK/bk25/A7+AhQJAq+a8YRkwAJkAAJkAAJkAAJkAAJkAAJkEC6JWAWnU6fPq0X75OaKP7SH4u0EIiMwfMHi+ZWr4zq1aubYi2GGC8fhH6KiIjQx7CQDZECC87+knHjr6iNYVEZQhKEpy1btui/rEYIOxPGzdSzfic1HmsdX9tYSIdABDPfEDuMYSEbYbhgEBSwDc8OYxAGwAciUVIGNvDW8mZYFMcYjECEOhB18DbbEAvgmYEwdwiPBw8KX2b1BDF1IcZgMdwXX/SZVF8YJwzeVcZwb8Dg2QEOuH8gEBmD91pSIhGEN8zbCEQ4B+fDNm7c6Fysh9hgzGxHRkYmKRJBRICwBHEGItGJEyf0PYxQYsarzrQHARJCBwRU9IlvzAOsIChZDc8Frj+uJcQKeDe5G+4b8LOaezumDPc6xggvMYgk06dP12zBFGIcRD0YBD8TtvHIkSP6mJUPDkBc/euvv/Q7NjZW1zEf4AyBDG1a71vj8WXqXcu39RnG7w08kuABuG/fPv0Mw5vJGiYPvxN4rozB+wnhGmG+7kH8RmEu1t8UeCBazdezZupBQDOG5wGiLLwBIRIlx0y+Ius4cB68TCAAWQ1hxtwNodKWbD0hb/+8Xd56sJJ7sTxUr4i0U+HmVu44qXPXTP7zgExXId6mvFBLbi5+xTPG48TLBxAa7lwSnjcmFw9EI/c68CCCZc8aIuEqNBrMHNM76uO8qmPauB79mHbxjVxEJ85c0mHxnhu/Tj7qVE1aKqbwukHIvdd/3CLvzNquxw0PIYhAVm8ptAEvLuT8gRfRT93rSKYQGw7L9sPnBHmLPn/yFh2yTx90+/DHxFo9qbFa61yIjZcu49bKxdgEGaE8yHKrcIQQ/pBfKkdYqA7jh/rm3x16ElnpBf82RaLgv4acAQmQAAmQAAmQAAmQAAmQAAmQAAmkGwLwEIAhrBI8EayG8GNYYIaHChb63b0gcByGEHTGzDHsW4UPLPxiQRqhn+AFg9BeWDRH3hN4iCRl1jawoG+EgA4dOmhhBOdh4T8pS2o8SdV3P249370sqf3ixYs7i+D5Urt2bee+tw3rHN3LsajvawzwbIBoAe8JCGYjR47UnlwQ0pIyCBDGQkISF3uRR8UfX199xcTE6Catc4fnCsLs4f6AUOY+D3hbJWW439zrm3Fb8xJZ2zBzSapNcxzhAkeNGqW9UuBJg3sTgpW7SGS8anCvWQ1h73C+u+HehKgDb7kZM2a4F+vFXm9hHT0qWg6AHzz18Eb4OQgVf/zxh/aQQTUIpKgDg2cLxBWrwILjRhiC2GG9PubeNM+v4YtzrqdZ7294ETVt2lQ/x82bN9eebCYcnOkToe6sZr2uvu5B3DPW+8Hahtm2jsUcc/92/50DF7SdXDP3LTzR4IFmDHl04CnkzyCyvKu8SbqMXesUCtzPyapy7EAcwbtbs5LSeNgymb32cLJEohJqHAdUPiGrGY8b5C6ClY5QOX9OJT7Tpt6hy3ly4D0UokK8IWTdodNXwjaiHvIEmdB116Mf0ze+kU8I1kgxhMfT5OUHtEgExAPaVZAH6xaRdfuidU6i+mXzyC39/5AS+cL1Oebj44W7dM4hCGrW8HyfLtqt54NcQD+sijTV5c/tUUoQyyTNKuf3y8R5ktpIaqzWOquVBxHEqjm96kkplRcKhpxGYPiNEqyQ6wlmnl9/97auzI+gIXDlX+GgGTIHSgIkQAIkQAIkQAIkQAIkQAIkQAIkkF4J4C/l8Zf9SEyP0ErWRdTnnntOL0hj8RyhoJCfB8KRqYMQUVh4dl/U9cYK4bFgaBNvhE9D2DUseCOXDczfQiwWmBFKDF4UZrEbi/zXsrjtr089sGR+IF8RvE8QrsoYhBezCG+OXU2f8MIYNGiQDt2HMGMweO0gxB44on2IAgMGDNBv5GLp3r27S33Tr/nG+WAPMx5AEBv88fXVl8m/Am8UhH2DIc8SvCrgUYF5LF682OX+AaukDPUHDx6sQywZEcTkrTHCZlLn+juOucKbauzYsTqMGDyL3O8heLbAywnsrXl+EK4NofMgILmfg36Riwv5f5LrdeJtrHjGMD6El7PmvUEoQWOGAbzxEPoMBkEXXlTuYi+8gjBnePBZ703UzZ49u/YOhMAFwdaErsMY4KVUs2ZNZxg4s1htxuDt29+9DfEMHmK49hBQIB6+9tpr3pryeszXPQgxFmHpwMFcG+xjLiZkpddG3Q7idw28YPDewO+f+xitQqXb6U7RG96ZxgvEvY6/fYRQe/y2YoLcQ1aDpwy8dwbfV9F5GKHJ4DWTXCupBAl4Cf21M0qLEjhv0X/H9OlXRKJs8vnve3SenpxhicvZv6w/qkPaQSCCQQyat+6oIN8PDJ4xizYdl/bKywl2Pfq5oLxsOoxcJX3alNWCmG5YfZSJyOYc86pdUbJeiUNdGxeXCpdzK8EjB2bl8v1fkTr/z7iuN3uIaZhRqPIqQsg5qy3ceFRi1LwSRSLfTJIzVmvbqA8Lz5wo1JuyLEoAPHnuktl15iLy9ccUzsrcCBoC3n2Hg2b4HCgJkAAJkAAJkAAJkAAJkAAJkAAJkEB6IgDBBzlaFixYoHOWQChAaCUsJiO0FXJzoA68KXAci+AIuYXQWshzAm+E5BjyjkDkgIcLchVhIRYGkQmGcGrz58/XQoI19JQuvPxhPCTgNYPcMRC2IFyl1JLT59W0DUYI64UQV2AFzx6EcINwAwNHzBeeE//880+ymkbYMiyqw/MKwhBCj2GxH+IYrFevXnpBG/1i0R+iD0Q/I6x46wSeNL///rt+w9sHeVrAwh9fX30hxxQ8cjBOjAVjhXhh8lVhzGCCNnD/gMkXX3zhbXj6GEKMYd7IIYS2cG9AFEM4MXcRJMlGfBQgzxBEEISTM/mlrNVNzicINRC9zBvsIFRC8PJm+Gt/E2bPvfzUqVP6+uEamjfEUnfDfQLRrXfv3jp0HfI8IRycEYzgTYNcOwgtiOsHNggxh1xJCM9nBFlru3hOkdsIzy1ED3hCQSBevXq1roZyhIbEdcGY8PxDHDPeCwhniHnj3jU5d6ztYzs5zxOuHUIygi/uB4z/aszXPYjnD3Pr0aOHfg4Q9g/3nQkHmdx+8JsHoQ/38eOPP66fJxOW0YSaNPeOtzZNLqLt27e7FO8/GaPDwy3flhgmDt+HL3vnuFS8vNP9ztJSLG+iZ48pr67CycHTZfTC3TpE2k6V/+fDeTsF3w3L5zXVfH7fWiKXNFJ1ITjB82apCm03asEueapJCTG5iR6qmxgWb9iMrSo/0Tn5Vnke/aYEIIzJ2PMqn84/u0/J5yrP0u5j5+XNmdtV6LR46dQoUTS6Hv3AY6p84WwyePpWHWZuv/IgmqU8pr5euk/uujlCDyWXCs0GBiPm7dJeOAs2HJU3f94mD6uwfMZDZ/GWEzLopy1aFIM4aa4B5g/7UIV7+/21hi5vHH+jfQUdCg7b/pgkZ6zDZ+8QhMqDwWsI1mPSBlmz57S+hmAJMe7O6olzQzlCq8Lw+wrDv30QiU2YSX2QH0FHgJ5EQXfJOGASIAESIAESIAESIAESIAESIAESSN8EEAILXhXvv/++XpTGbCE0ICeKWcRFLo8pU6bIwIED9QIzyrFgizfMGlZJH3A7hvwvEEYgIsBwPvKzmJxBnTp10l4AEBaWLl3qEWoM58D7BV4yxmsG3hbwfDCL4tYxWLdxLsz9mHufmKPV3OubMvfjWNSHQdiYNGmS9oBBzhUYQo9Z86K8+uqreg6oC28Ec66ufPnD2j48ERBmDAKJySWE62Vy2wwdOlSLQxAOYFjEhreG8aS43KTzC9whdCAnFAxzhnAAMcAfX1995c2bVy/8Q3wxY8F4v/rqK90Pjn3yySeaDe4riGW4l4YMGaLL3T/QHkQ267zhDYLF+aTMcPPG1P2cNm3a6EVX5J8xopM5H3VxHREWzXhvmfMhlkBUw7OAcGkw9/6QZ+jdd991ue6oB0EKnj9Wgxcd2nI3CKC4P3D/GINoBnHKLBZPmDBBlxsvGVx7iL1gZ8zMCcLJ8ePH5ZVXXhHkADLPn5kDOEP8gacUxCCU49phrjDkH4NgCdEOYpN57k0/+HZ/nkzYNWsdCF1Y3DaeVvDiwr1gxmm+redY+fq6B3H/Tp06Vf8+jBs3TjeB3wvc7zBrO/qA+vDWH7zHIA6CEzyKpk2b5rwPcD/gHsdvJcS02bNnm6ac3xCGca3g+WYNNTlfLf7jbbWBSoSAmAELSfwZcRZnDQ2R4R2rSMdP/nYeu6t6QZ2X520l8Bivl2wqPxDaQeg5b6Y0ERfDPur3m7rJ2TbyJT3foqSzHsQi5MkZOmObtPngL0EfEIWs4fJqlMwlr9xdRnvnjFAiTcFcWVQOpcqCcHSw69XPsPsrKYFnq1NcwVjgZfXiHYmCFbyH3lb9vvr9Jvly8V7d9x3VCkgvldvJ2PcrD+pNeE/hbQy5i75/sZbZ9fmdHCb+xnogKkb2Ho+RBBWKEB5a03vUkf4/bJbHxiT+0QDmBiGuc6NizrFAIIY4bvK5RUdHCwRIeNXRgpeATf3AqxRZNBIgARIgARIgARIgARIgARIgARIgARIIPALw8sHiNMK5eVtAxYgRggniRVLlvmaFUFAIw+QtdA5yeCBcVdasnsncrW2iDryN8uRJ/Etsa9nVbie3z6ttF4wQyst4YljPR/g5vL0tolvruW8jfBvys3jjg5xAuG4m1Jv7ue77qItQX97yOfnj668vjBPmLQwheIONVchwH5v7PtoDx6vl5d5OMO7jWkBcwr1uPL3c54FrCUbJeR7AH4vL4O9NNPF3fUxuKW/nYlzJfZ4gwOBeRijClJi/exD3GO5taz4jf/1A1KlXr57mDeEQnl/efqfQDkLv4fcvKTEWYjAW9+ExlhoGkeGgyl0D/eemPFnF7q4EJbNT5CKCGGVCynk7Dfl/CufOosKxualYlyvHJySOBV5PSQ3jevVz/MwlKZAzs9f5Yhx7MVYlVoW5hXDzNq9rOZYcJt7Gqi6bONTL/XohVN/ZC/GSX4UOtBr+nShRooQW143YiXJrSEVrfW4HDwGKRMFzrThSEiABEiABEiABEiABEiABEiABEiABEiABEiCBDEDAKhLBE+haDN5Y8EKC1xTya9FIICUE4MUGj0uE6MyIInlKmAXLOd4l12AZPcdJAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAumMAHIJIYxjcr3xfE0fIQGxwA+vSRoJpJQAPNWQM5ACUUoJBu559CQK3GvDkZEACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZBAqhGgJ1GqoWXDJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJBC4BCgSBe614chIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIINUIUCRKNbRsmARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgAQClwBFosC9NhwZCZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACaQaAYpEqYaWDZMACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZBA4BKgSBS414YjIwESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIIFUI0CRKNXQsmESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESCFwCFIkC99pwZCRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiSQagQoEqUaWjZMAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAoFLgCJR4F4bjowESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAEUo0ARaJUQ8uGSYAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESCBwCVAkCtxrw5GRAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQQKoR+D8RE209v9CoYAAAAABJRU5ErkJggg==" + } + }, "cell_type": "markdown", "id": "f9b2d921", "metadata": {}, @@ -599,7 +617,9 @@ "* PASS variants that are SNVs with MAF ≤ 0.1%, and\n", "* Exome median depth ≥ 30\n", "\n", - "**Note: this number should match the number of observed pLOF SNVs on the gene page of gnomAD Browser.**" + "**Note: this number should match the number of observed pLOF SNVs on the gene page of gnomAD Browser.**\n", + "\n", + "![Screenshot%202024-10-01%20at%2010.20.53%E2%80%AFAM.png](attachment:Screenshot%202024-10-01%20at%2010.20.53%E2%80%AFAM.png)" ] }, { @@ -804,6 +824,7 @@ " & (coverage_ht[ht.locus].median_approx >= 30)\n", ")\n", "\n", + "\n", "print(f\"Number of variants: {ht.count()}\")\n", "ht.select(\n", " freq=ht.freq[0],\n", @@ -1200,18 +1221,30 @@ "toc": { "base_numbering": 1, "nav_menu": { - "height": "213px", - "width": "374px" + "height": "613.99px", + "width": "526.312px" }, - "number_sections": true, + "number_sections": false, "sideBar": true, "skip_h1_title": false, "title_cell": "Table of Contents", "title_sidebar": "Contents", - "toc_cell": false, - "toc_position": {}, + "toc_cell": true, + "toc_position": { + "height": "calc(100% - 180px)", + "left": "10px", + "top": "150px", + "width": "219.438px" + }, "toc_section_display": true, "toc_window_display": true + }, + "widgets": { + "application/vnd.jupyter.widget-state+json": { + "state": {}, + "version_major": 2, + "version_minor": 0 + } } }, "nbformat": 4, From 2f1156e60d8d27f012dd08fe275bca330a893d7d Mon Sep 17 00:00:00 2001 From: Qin He <44242118+KoalaQin@users.noreply.github.com> Date: Tue, 1 Oct 2024 11:32:05 -0400 Subject: [PATCH 005/121] Format gnomad_methods in requirements.txt --- requirements.txt | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/requirements.txt b/requirements.txt index 2900720..338124c 100644 --- a/requirements.txt +++ b/requirements.txt @@ -1,3 +1,3 @@ # We're using the main branch of gnomad_method on github rather than the pip version -git+https://github.com/broadinstitute/gnomad_methods@main +gnomad_methods@git+https://github.com/broadinstitute/gnomad_methods@main hail From ff64d867263bf21ceb56811826b9a4941512f652 Mon Sep 17 00:00:00 2001 From: Qin He <44242118+KoalaQin@users.noreply.github.com> Date: Tue, 1 Oct 2024 11:40:12 -0400 Subject: [PATCH 006/121] Remove setup.py --- requirements.txt | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/requirements.txt b/requirements.txt index 338124c..2900720 100644 --- a/requirements.txt +++ b/requirements.txt @@ -1,3 +1,3 @@ # We're using the main branch of gnomad_method on github rather than the pip version -gnomad_methods@git+https://github.com/broadinstitute/gnomad_methods@main +git+https://github.com/broadinstitute/gnomad_methods@main hail From bc85e6fcc89a269a576208f35fdbb5a1cf33d1ef Mon Sep 17 00:00:00 2001 From: Qin He <44242118+KoalaQin@users.noreply.github.com> Date: Tue, 1 Oct 2024 11:47:29 -0400 Subject: [PATCH 007/121] Remove setup.py --- setup.py | 41 ----------------------------------------- 1 file changed, 41 deletions(-) delete mode 100644 setup.py diff --git a/setup.py b/setup.py deleted file mode 100644 index f0e9818..0000000 --- a/setup.py +++ /dev/null @@ -1,41 +0,0 @@ -"""Setup script.""" - -import setuptools - - -with open("README.md", "r") as readme_file: - long_description = readme_file.read() - -install_requires = [] -with open("requirements.txt", "r") as requirements_file: - for req in (line.strip() for line in requirements_file): - if req != "hail": - install_requires.append(req) - - -setuptools.setup( - name="gnomad_toolbox", - version="0.0.1", - author="The Genome Aggregation Database", - author_email="gnomad@broadinstitute.org", - description="Toolbox to help users process gnomAD release files", - long_description=long_description, - long_description_content_type="text/markdown", - url="https://github.com/broadinstitute/gnomad-toolbox", - packages=setuptools.find_namespace_packages(include=["gnomad_toolbox.*"]), - project_urls={ - "Documentation": "https://broadinstitute.github.io/gnomad-toolbox/", - "Source Code": "https://github.com/broadinstitute/gnomad-toolbox", - "Issues": "https://github.com/broadinstitute/gnomad-toolbox/issues", - "Change Log": "https://github.com/broadinstitute/gnomad-toolbox/releases", - }, - classifiers=[ - "Topic :: Scientific/Engineering :: Bio-Informatics", - "Intended Audience :: Science/Research", - "License :: OSI Approved :: BSD 3-Clause License", - "Programming Language :: Python :: 3", - "Development Status :: 4 - Beta", - ], - python_requires=">=3.9", - install_requires=install_requires, -) From e083fbf4de436e83e54acb5ee60f04ba76773eb3 Mon Sep 17 00:00:00 2001 From: Qin He <44242118+KoalaQin@users.noreply.github.com> Date: Tue, 1 Oct 2024 12:10:29 -0400 Subject: [PATCH 008/121] Reorganize the notebook --- .../use_cases/toolbox_for_gnomad_users.ipynb | 155 +++++++----------- 1 file changed, 56 insertions(+), 99 deletions(-) diff --git a/gnomad_toolbox/use_cases/toolbox_for_gnomad_users.ipynb b/gnomad_toolbox/use_cases/toolbox_for_gnomad_users.ipynb index 791362c..6b42cfd 100644 --- a/gnomad_toolbox/use_cases/toolbox_for_gnomad_users.ipynb +++ b/gnomad_toolbox/use_cases/toolbox_for_gnomad_users.ipynb @@ -8,12 +8,12 @@ }, "source": [ "

Table of Contents

\n", - "" + "" ] }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 1, "id": "e77d32b1", "metadata": {}, "outputs": [ @@ -30,7 +30,7 @@ " \n", "
\n", " \n", - " Loading BokehJS ...\n", + " Loading BokehJS ...\n", "
\n" ] }, @@ -202,7 +202,7 @@ " \"\"}};\n", "\n", " function display_loaded() {\n", - " const el = document.getElementById(\"f884217f-12c5-4fe1-a1d8-6a1d52499205\");\n", + " const el = document.getElementById(\"e95c853b-736c-43c1-b869-4fb671ab4b50\");\n", " if (el != null) {\n", " el.textContent = \"BokehJS is loading...\";\n", " }\n", @@ -308,7 +308,7 @@ " console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n", " root._bokeh_failed_load = true;\n", " } else if (force !== true) {\n", - " const cell = $(document.getElementById(\"f884217f-12c5-4fe1-a1d8-6a1d52499205\")).parents('.cell').data().cell;\n", + " const cell = $(document.getElementById(\"e95c853b-736c-43c1-b869-4fb671ab4b50\")).parents('.cell').data().cell;\n", " cell.output_area.append_execute_result(NB_LOAD_WARNING)\n", " }\n", " }\n", @@ -324,7 +324,7 @@ " }\n", "}(window));" ], - "application/vnd.bokehjs_load.v0+json": "(function(root) {\n function now() {\n return new Date();\n }\n\n const force = true;\n\n if (typeof root._bokeh_onload_callbacks === \"undefined\" || force === true) {\n root._bokeh_onload_callbacks = [];\n root._bokeh_is_loading = undefined;\n }\n\n\n if (typeof (root._bokeh_timeout) === \"undefined\" || force === true) {\n root._bokeh_timeout = Date.now() + 5000;\n root._bokeh_failed_load = false;\n }\n\n const NB_LOAD_WARNING = {'data': {'text/html':\n \"
\\n\"+\n \"

\\n\"+\n \"BokehJS does not appear to have successfully loaded. If loading BokehJS from CDN, this \\n\"+\n \"may be due to a slow or bad network connection. Possible fixes:\\n\"+\n \"

\\n\"+\n \"
    \\n\"+\n \"
  • re-rerun `output_notebook()` to attempt to load from CDN again, or
  • \\n\"+\n \"
  • use INLINE resources instead, as so:
  • \\n\"+\n \"
\\n\"+\n \"\\n\"+\n \"from bokeh.resources import INLINE\\n\"+\n \"output_notebook(resources=INLINE)\\n\"+\n \"\\n\"+\n \"
\"}};\n\n function display_loaded() {\n const el = document.getElementById(\"f884217f-12c5-4fe1-a1d8-6a1d52499205\");\n if (el != null) {\n el.textContent = \"BokehJS is loading...\";\n }\n if (root.Bokeh !== undefined) {\n if (el != null) {\n el.textContent = \"BokehJS \" + root.Bokeh.version + \" successfully loaded.\";\n }\n } else if (Date.now() < root._bokeh_timeout) {\n setTimeout(display_loaded, 100)\n }\n }\n\n function run_callbacks() {\n try {\n root._bokeh_onload_callbacks.forEach(function(callback) {\n if (callback != null)\n callback();\n });\n } finally {\n delete root._bokeh_onload_callbacks\n }\n console.debug(\"Bokeh: all callbacks have finished\");\n }\n\n function load_libs(css_urls, js_urls, callback) {\n if (css_urls == null) css_urls = [];\n if (js_urls == null) js_urls = [];\n\n root._bokeh_onload_callbacks.push(callback);\n if (root._bokeh_is_loading > 0) {\n console.debug(\"Bokeh: BokehJS is being loaded, scheduling callback at\", now());\n return null;\n }\n if (js_urls == null || js_urls.length === 0) {\n run_callbacks();\n return null;\n }\n console.debug(\"Bokeh: BokehJS not loaded, scheduling load and callback at\", now());\n root._bokeh_is_loading = css_urls.length + js_urls.length;\n\n function on_load() {\n root._bokeh_is_loading--;\n if (root._bokeh_is_loading === 0) {\n console.debug(\"Bokeh: all BokehJS libraries/stylesheets loaded\");\n run_callbacks()\n }\n }\n\n function on_error(url) {\n console.error(\"failed to load \" + url);\n }\n\n for (let i = 0; i < css_urls.length; i++) {\n const url = css_urls[i];\n const element = document.createElement(\"link\");\n element.onload = on_load;\n element.onerror = on_error.bind(null, url);\n element.rel = \"stylesheet\";\n element.type = \"text/css\";\n element.href = url;\n console.debug(\"Bokeh: injecting link tag for BokehJS stylesheet: \", url);\n document.body.appendChild(element);\n }\n\n for (let i = 0; i < js_urls.length; i++) {\n const url = js_urls[i];\n const element = document.createElement('script');\n element.onload = on_load;\n element.onerror = on_error.bind(null, url);\n element.async = false;\n element.src = url;\n console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n document.head.appendChild(element);\n }\n };\n\n function inject_raw_css(css) {\n const element = document.createElement(\"style\");\n element.appendChild(document.createTextNode(css));\n document.body.appendChild(element);\n }\n\n const js_urls = [\"https://cdn.bokeh.org/bokeh/release/bokeh-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-gl-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-widgets-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-tables-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-mathjax-3.3.4.min.js\"];\n const css_urls = [];\n\n const inline_js = [ function(Bokeh) {\n Bokeh.set_log_level(\"info\");\n },\nfunction(Bokeh) {\n }\n ];\n\n function run_inline_js() {\n if (root.Bokeh !== undefined || force === true) {\n for (let i = 0; i < inline_js.length; i++) {\n inline_js[i].call(root, root.Bokeh);\n }\nif (force === true) {\n display_loaded();\n }} else if (Date.now() < root._bokeh_timeout) {\n setTimeout(run_inline_js, 100);\n } else if (!root._bokeh_failed_load) {\n console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n root._bokeh_failed_load = true;\n } else if (force !== true) {\n const cell = $(document.getElementById(\"f884217f-12c5-4fe1-a1d8-6a1d52499205\")).parents('.cell').data().cell;\n cell.output_area.append_execute_result(NB_LOAD_WARNING)\n }\n }\n\n if (root._bokeh_is_loading === 0) {\n console.debug(\"Bokeh: BokehJS loaded, going straight to plotting\");\n run_inline_js();\n } else {\n load_libs(css_urls, js_urls, function() {\n console.debug(\"Bokeh: BokehJS plotting callback run at\", now());\n run_inline_js();\n });\n }\n}(window));" + "application/vnd.bokehjs_load.v0+json": "(function(root) {\n function now() {\n return new Date();\n }\n\n const force = true;\n\n if (typeof root._bokeh_onload_callbacks === \"undefined\" || force === true) {\n root._bokeh_onload_callbacks = [];\n root._bokeh_is_loading = undefined;\n }\n\n\n if (typeof (root._bokeh_timeout) === \"undefined\" || force === true) {\n root._bokeh_timeout = Date.now() + 5000;\n root._bokeh_failed_load = false;\n }\n\n const NB_LOAD_WARNING = {'data': {'text/html':\n \"
\\n\"+\n \"

\\n\"+\n \"BokehJS does not appear to have successfully loaded. If loading BokehJS from CDN, this \\n\"+\n \"may be due to a slow or bad network connection. Possible fixes:\\n\"+\n \"

\\n\"+\n \"
    \\n\"+\n \"
  • re-rerun `output_notebook()` to attempt to load from CDN again, or
  • \\n\"+\n \"
  • use INLINE resources instead, as so:
  • \\n\"+\n \"
\\n\"+\n \"\\n\"+\n \"from bokeh.resources import INLINE\\n\"+\n \"output_notebook(resources=INLINE)\\n\"+\n \"\\n\"+\n \"
\"}};\n\n function display_loaded() {\n const el = document.getElementById(\"e95c853b-736c-43c1-b869-4fb671ab4b50\");\n if (el != null) {\n el.textContent = \"BokehJS is loading...\";\n }\n if (root.Bokeh !== undefined) {\n if (el != null) {\n el.textContent = \"BokehJS \" + root.Bokeh.version + \" successfully loaded.\";\n }\n } else if (Date.now() < root._bokeh_timeout) {\n setTimeout(display_loaded, 100)\n }\n }\n\n function run_callbacks() {\n try {\n root._bokeh_onload_callbacks.forEach(function(callback) {\n if (callback != null)\n callback();\n });\n } finally {\n delete root._bokeh_onload_callbacks\n }\n console.debug(\"Bokeh: all callbacks have finished\");\n }\n\n function load_libs(css_urls, js_urls, callback) {\n if (css_urls == null) css_urls = [];\n if (js_urls == null) js_urls = [];\n\n root._bokeh_onload_callbacks.push(callback);\n if (root._bokeh_is_loading > 0) {\n console.debug(\"Bokeh: BokehJS is being loaded, scheduling callback at\", now());\n return null;\n }\n if (js_urls == null || js_urls.length === 0) {\n run_callbacks();\n return null;\n }\n console.debug(\"Bokeh: BokehJS not loaded, scheduling load and callback at\", now());\n root._bokeh_is_loading = css_urls.length + js_urls.length;\n\n function on_load() {\n root._bokeh_is_loading--;\n if (root._bokeh_is_loading === 0) {\n console.debug(\"Bokeh: all BokehJS libraries/stylesheets loaded\");\n run_callbacks()\n }\n }\n\n function on_error(url) {\n console.error(\"failed to load \" + url);\n }\n\n for (let i = 0; i < css_urls.length; i++) {\n const url = css_urls[i];\n const element = document.createElement(\"link\");\n element.onload = on_load;\n element.onerror = on_error.bind(null, url);\n element.rel = \"stylesheet\";\n element.type = \"text/css\";\n element.href = url;\n console.debug(\"Bokeh: injecting link tag for BokehJS stylesheet: \", url);\n document.body.appendChild(element);\n }\n\n for (let i = 0; i < js_urls.length; i++) {\n const url = js_urls[i];\n const element = document.createElement('script');\n element.onload = on_load;\n element.onerror = on_error.bind(null, url);\n element.async = false;\n element.src = url;\n console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n document.head.appendChild(element);\n }\n };\n\n function inject_raw_css(css) {\n const element = document.createElement(\"style\");\n element.appendChild(document.createTextNode(css));\n document.body.appendChild(element);\n }\n\n const js_urls = [\"https://cdn.bokeh.org/bokeh/release/bokeh-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-gl-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-widgets-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-tables-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-mathjax-3.3.4.min.js\"];\n const css_urls = [];\n\n const inline_js = [ function(Bokeh) {\n Bokeh.set_log_level(\"info\");\n },\nfunction(Bokeh) {\n }\n ];\n\n function run_inline_js() {\n if (root.Bokeh !== undefined || force === true) {\n for (let i = 0; i < inline_js.length; i++) {\n inline_js[i].call(root, root.Bokeh);\n }\nif (force === true) {\n display_loaded();\n }} else if (Date.now() < root._bokeh_timeout) {\n setTimeout(run_inline_js, 100);\n } else if (!root._bokeh_failed_load) {\n console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n root._bokeh_failed_load = true;\n } else if (force !== true) {\n const cell = $(document.getElementById(\"e95c853b-736c-43c1-b869-4fb671ab4b50\")).parents('.cell').data().cell;\n cell.output_area.append_execute_result(NB_LOAD_WARNING)\n }\n }\n\n if (root._bokeh_is_loading === 0) {\n console.debug(\"Bokeh: BokehJS loaded, going straight to plotting\");\n run_inline_js();\n } else {\n load_libs(css_urls, js_urls, function() {\n console.debug(\"Bokeh: BokehJS plotting callback run at\", now());\n run_inline_js();\n });\n }\n}(window));" }, "metadata": {}, "output_type": "display_data" @@ -346,8 +346,8 @@ "output_type": "stream", "text": [ "SPARKMONITOR_LISTENER: Started SparkListener for Jupyter Notebook\n", - "SPARKMONITOR_LISTENER: Port obtained from environment: 52867\n", - "SPARKMONITOR_LISTENER: Application Started: application_1727699094620_0001 ...Start Time: 1727699722656\n" + "SPARKMONITOR_LISTENER: Port obtained from environment: 49385\n", + "SPARKMONITOR_LISTENER: Application Started: application_1727797895584_0002 ...Start Time: 1727798616140\n" ] }, { @@ -355,7 +355,7 @@ "output_type": "stream", "text": [ "Running on Apache Spark version 3.5.0\n", - "SparkUI available at http://qh1-m.c.broad-mpg-gnomad.internal:43005\n", + "SparkUI available at http://qh1-m.c.broad-mpg-gnomad.internal:45603\n", "Welcome to\n", " __ __ <>__\n", " / /_/ /__ __/ /\n", @@ -374,48 +374,27 @@ " )" ] }, + { + "cell_type": "markdown", + "id": "8e713032", + "metadata": {}, + "source": [ + "# Import modules" + ] + }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 2, "id": "e69953f7", "metadata": {}, "outputs": [], "source": [ - "def get_variant_count(\n", - " ht: hl.Table,\n", - " afs: list[float] = [0.01, 0.001],\n", - " singletons: bool = False,\n", - " doubletons: bool = False,\n", - ") -> dict:\n", - " \"\"\"\n", - " Count variants with frequency <1%, <0.1%, and singletons (AC == 1).\n", - "\n", - " .. note:: This function works for gnomAD exomes and genomes datasets, not yet for\n", - " gnomAD joint dataset, since the HT schema is slightly different.\n", - "\n", - " :param ht: Input Table.\n", - " :param afs: List of allele frequencies cutoffs.\n", - " :param singletons: Include singletons.\n", - " :param doubletons: Include doubletons.\n", - " :return: Dictionary with counts.\n", - " \"\"\"\n", - " counts = {}\n", - "\n", - " # Filter to PASS variants.\n", - " ht = ht.filter(hl.len(ht.filters) == 0)\n", - " if singletons:\n", - " n_singletons = ht.aggregate(hl.agg.count_where(ht.freq[0].AC == 1))\n", - " counts[\"number of singletons\"] = n_singletons\n", - " if doubletons:\n", - " n_doubletons = ht.aggregate(hl.agg.count_where(ht.freq[0].AC == 2))\n", - " counts[\"number of doubletons\"] = n_doubletons\n", - "\n", - " for af in afs:\n", - " n_variants = ht.aggregate(hl.agg.count_where(ht.freq[0].AF < af))\n", - " counts[f\"number of variants with AF < {af}\"] = n_variants\n", - "\n", - " # Count variants with frequency <1%, <0.1%, and singletons (AC == 1).\n", - " return counts" + "from gnomad_toolbox.modules.variant_filtering import get_variant_count\n", + "from gnomad.resources.grch38.gnomad import public_release as v4_public_release\n", + "from gnomad.utils.vep import filter_vep_transcript_csqs\n", + "from gnomad.resources.grch38.gnomad import coverage\n", + "from gnomad.resources.grch38.gnomad import POPS_TO_REMOVE_FOR_POPMAX\n", + "from gnomad.utils.filtering import filter_arrays_by_meta" ] }, { @@ -433,22 +412,12 @@ "source": [ "## Get variant count by AF for a release\n", "\n", - "**Note: this will take long if your notebook is using multiple nodes.**" + "**Note: this will take long if your notebook is NOT using multiple nodes.**" ] }, { "cell_type": "code", - "execution_count": 8, - "id": "d9f96940", - "metadata": {}, - "outputs": [], - "source": [ - "from gnomad.resources.grch38.gnomad import public_release as v4_public_release" - ] - }, - { - "cell_type": "code", - "execution_count": 9, + "execution_count": 3, "id": "112c5065", "metadata": {}, "outputs": [], @@ -519,12 +488,14 @@ "id": "725f9a57", "metadata": {}, "source": [ - "## Get variant count by AF for a gene" + "## Get variant count by AF for a gene interval\n", + "\n", + "**Note: This isn't necessarily equal to the number of variants annotated to this gene by VEP.**" ] }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 4, "id": "9f8e1ba4", "metadata": {}, "outputs": [ @@ -532,7 +503,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "[Stage 7:===========================================================(3 + 1) / 3]\r" + "[Stage 3:=======================================> (2 + 1) / 3]\r" ] }, { @@ -571,7 +542,7 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 5, "id": "5b08a706", "metadata": {}, "outputs": [ @@ -588,7 +559,6 @@ } ], "source": [ - "from gnomad.utils.vep import filter_vep_transcript_csqs\n", "# Filter to variants in ASH1L that are LOFTEE high-confidence (with no flags) in the MANE select transcript.\n", "ht = filter_vep_transcript_csqs(\n", " ht, \n", @@ -624,7 +594,7 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 6, "id": "6ce87a77", "metadata": {}, "outputs": [ @@ -632,7 +602,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "[Stage 7:===================(3 + 1) / 3][Stage 10:==================(3 + 1) / 3]\r" + "[Stage 4:=======================================> (2 + 1) / 3]\r" ] }, { @@ -646,7 +616,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "[Stage 7:=====(3 + 1) / 3][Stage 10:====(3 + 1) / 3][Stage 11:====(3 + 1) / 3]\r" + "[Stage 5:=======================================> (2 + 1) / 3]\r" ] }, { @@ -802,18 +772,9 @@ }, "metadata": {}, "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "[Stage 7:=====(3 + 1) / 3][Stage 10:====(3 + 1) / 3][Stage 11:====(3 + 1) / 3]\r" - ] } ], "source": [ - "from gnomad.resources.grch38.gnomad import coverage\n", - "\n", "coverage_ht = coverage(\"exomes\").ht()\n", "\n", "#Filter to PASS SNVs with AF <= 0.1% and median exome depth ≥ 30.\n", @@ -851,7 +812,7 @@ }, { "cell_type": "code", - "execution_count": 85, + "execution_count": 7, "id": "4f78166f", "metadata": {}, "outputs": [], @@ -870,7 +831,7 @@ }, { "cell_type": "code", - "execution_count": 86, + "execution_count": 8, "id": "8f625a41", "metadata": { "scrolled": true @@ -882,27 +843,23 @@ "{'ami', 'asj', 'fin', 'oth', 'remaining'}" ] }, - "execution_count": 86, + "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# For this example, we filter to the ancestry that we included in the FAF calculation\n", - "from gnomad.resources.grch38.gnomad import POPS_TO_REMOVE_FOR_POPMAX\n", - "\n", "POPS_TO_REMOVE_FOR_POPMAX[\"v4\"]" ] }, { "cell_type": "code", - "execution_count": 87, + "execution_count": 9, "id": "15729719", "metadata": {}, "outputs": [], "source": [ - "from gnomad.utils.filtering import filter_arrays_by_meta\n", - "\n", "# Remove unwanted stratifications\n", "items_to_filter1 = ['sex','downsampling','subset']\n", "freq_meta1, array_exprs1 = filter_arrays_by_meta(\n", @@ -919,7 +876,7 @@ }, { "cell_type": "code", - "execution_count": 88, + "execution_count": 10, "id": "d2886179", "metadata": {}, "outputs": [], @@ -938,7 +895,7 @@ }, { "cell_type": "code", - "execution_count": 89, + "execution_count": 11, "id": "5471689c", "metadata": {}, "outputs": [ @@ -954,18 +911,19 @@ " {'gen_anc': 'sas', 'group': 'adj'}]]" ] }, - "execution_count": 89, + "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], "source": [ + "# The order in the meta is order how AC, AF, AN and homozygote_count is stored in freq. \n", "freq_meta2.collect()" ] }, { "cell_type": "code", - "execution_count": 90, + "execution_count": 12, "id": "16170ed7", "metadata": {}, "outputs": [], @@ -979,10 +937,18 @@ }, { "cell_type": "code", - "execution_count": 91, + "execution_count": 13, "id": "e3bcf7a0", "metadata": {}, "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2024-10-01 16:07:07.655 Hail: WARN: Name collision: field 'all' already in object dict. \n", + " This field must be referenced with __getitem__ syntax: obj['all']\n" + ] + }, { "data": { "text/html": [ @@ -1071,13 +1037,6 @@ }, "metadata": {}, "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "[Stage 7:=====(3 + 1) / 3][Stage 10:====(3 + 1) / 3][Stage 11:====(3 + 1) / 3]\r" - ] } ], "source": [ @@ -1095,7 +1054,7 @@ }, { "cell_type": "code", - "execution_count": 96, + "execution_count": 14, "id": "9a4f26a2", "metadata": {}, "outputs": [ @@ -1105,14 +1064,12 @@ "[[{'gen_anc': 'afr', 'group': 'adj'}]]" ] }, - "execution_count": 96, + "execution_count": 14, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "from gnomad.utils.filtering import filter_arrays_by_meta\n", - "\n", "ht = v4_public_release(\"exomes\").ht()\n", "\n", "# Filter by the location of the variant\n", @@ -1148,7 +1105,7 @@ }, { "cell_type": "code", - "execution_count": 98, + "execution_count": 15, "id": "7e044201", "metadata": {}, "outputs": [ From b5101babf02725304f619a0194deb1fd8b1628f7 Mon Sep 17 00:00:00 2001 From: Qin He <44242118+KoalaQin@users.noreply.github.com> Date: Tue, 29 Oct 2024 11:49:33 -0400 Subject: [PATCH 009/121] Function to import data by version --- ...variant_filtering.py => filter_variant.py} | 0 gnomad_toolbox/modules/import_data.py | 32 +++++++++++++++++++ 2 files changed, 32 insertions(+) rename gnomad_toolbox/modules/{variant_filtering.py => filter_variant.py} (100%) create mode 100644 gnomad_toolbox/modules/import_data.py diff --git a/gnomad_toolbox/modules/variant_filtering.py b/gnomad_toolbox/modules/filter_variant.py similarity index 100% rename from gnomad_toolbox/modules/variant_filtering.py rename to gnomad_toolbox/modules/filter_variant.py diff --git a/gnomad_toolbox/modules/import_data.py b/gnomad_toolbox/modules/import_data.py new file mode 100644 index 0000000..7e1594d --- /dev/null +++ b/gnomad_toolbox/modules/import_data.py @@ -0,0 +1,32 @@ +"""Functions to import gnomAD data.""" + +import hail as hl +from gnomad.resources.grch37.gnomad import public_release as grch37_public_release +from gnomad.resources.grch38.gnomad import public_release as grch38_public_release + + +def get_ht_by_datatype_and_version( + data_type: str = "exomes", version: str = "4.1" +) -> hl.Table: + """ + Get gnomAD HT by data type and version. + + .. note: Available versions for each data type are: + + | Data Type | GRCh38 Versions | GRCh37 Versions | + |-----------------|----------------------------------|----------------------| + | exomes | 4.0, 4.1 | 2.1, 2.1.1 | + | genomes | 3.0, 3.1, 3.1.1, 3.1.2, 4.0, 4.1 | 2.1, 2.1.1 | + | joint | 4.1 | N/A | + + + :param data_type: Data type (exomes or genomes or joint). + :param version: gnomAD version. + :return: Hail Table. + """ + if version in ["2.1", "2.1.1"]: + return grch37_public_release(data_type).ht() + elif version in ["3.0", "3.1", "3.1.1", "3.1.2", "4.0", "4.1"]: + return grch38_public_release(data_type).ht() + else: + raise ValueError(f"Version {version} not found for data type {data_type}.") From 2bd494e65c3ed12cc3081a7b6a67c8f28b813fa5 Mon Sep 17 00:00:00 2001 From: Qin He <44242118+KoalaQin@users.noreply.github.com> Date: Tue, 29 Oct 2024 12:10:20 -0400 Subject: [PATCH 010/121] Modify import_data function to match gnomad_methods repo version by datatype --- gnomad_toolbox/modules/import_data.py | 37 ++++++++++++++++++++++----- 1 file changed, 31 insertions(+), 6 deletions(-) diff --git a/gnomad_toolbox/modules/import_data.py b/gnomad_toolbox/modules/import_data.py index 7e1594d..ac17b35 100644 --- a/gnomad_toolbox/modules/import_data.py +++ b/gnomad_toolbox/modules/import_data.py @@ -1,7 +1,12 @@ """Functions to import gnomAD data.""" import hail as hl +from gnomad.resources.grch37.gnomad import EXOME_RELEASES as GRCh37_EXOME_RELEASES +from gnomad.resources.grch37.gnomad import GENOME_RELEASES as GRCh37_GENOME_RELEASES from gnomad.resources.grch37.gnomad import public_release as grch37_public_release +from gnomad.resources.grch38.gnomad import EXOME_RELEASES as GRCh38_EXOME_RELEASES +from gnomad.resources.grch38.gnomad import GENOME_RELEASES as GRCh38_GENOME_RELEASES +from gnomad.resources.grch38.gnomad import JOINT_RELEASES as GRCh38_JOINT_RELEASES from gnomad.resources.grch38.gnomad import public_release as grch38_public_release @@ -19,14 +24,34 @@ def get_ht_by_datatype_and_version( | genomes | 3.0, 3.1, 3.1.1, 3.1.2, 4.0, 4.1 | 2.1, 2.1.1 | | joint | 4.1 | N/A | - - :param data_type: Data type (exomes or genomes or joint). + :param data_type: Data type (exomes, genomes, or joint). :param version: gnomAD version. :return: Hail Table. + :raises ValueError: If the data type or version is invalid. """ - if version in ["2.1", "2.1.1"]: - return grch37_public_release(data_type).ht() - elif version in ["3.0", "3.1", "3.1.1", "3.1.2", "4.0", "4.1"]: + # Mapping data types to version sets for GRCh38 and GRCh37 + versions_by_type = { + "exomes": (GRCh38_EXOME_RELEASES, GRCh37_EXOME_RELEASES), + "genomes": (GRCh38_GENOME_RELEASES, GRCh37_GENOME_RELEASES), + "joint": (GRCh38_JOINT_RELEASES, []), + } + + # Validate data type + if data_type not in versions_by_type: + raise ValueError( + f"Data type {data_type} is invalid. Choose from 'exomes', 'genomes', or 'joint'." + ) + + # Get GRCh38 and GRCh37 versions for the given data type + grch38_versions, grch37_versions = versions_by_type[data_type] + + # Check version availability for GRCh38 and GRCh37 + if version in grch38_versions: return grch38_public_release(data_type).ht() + elif version in grch37_versions: + return grch37_public_release(data_type).ht() else: - raise ValueError(f"Version {version} not found for data type {data_type}.") + raise ValueError( + f"Version {version} is not available for {data_type}. " + f"Available versions: GRCh38 - {grch38_versions}, GRCh37 - {grch37_versions}." + ) From 3cfb1bdac0743061c2e0bb1336300a26702a1bc2 Mon Sep 17 00:00:00 2001 From: Qin He <44242118+KoalaQin@users.noreply.github.com> Date: Tue, 29 Oct 2024 14:07:32 -0400 Subject: [PATCH 011/121] Formatting --- gnomad_toolbox/modules/import_data.py | 1 - 1 file changed, 1 deletion(-) diff --git a/gnomad_toolbox/modules/import_data.py b/gnomad_toolbox/modules/import_data.py index ac17b35..fb56e57 100644 --- a/gnomad_toolbox/modules/import_data.py +++ b/gnomad_toolbox/modules/import_data.py @@ -27,7 +27,6 @@ def get_ht_by_datatype_and_version( :param data_type: Data type (exomes, genomes, or joint). :param version: gnomAD version. :return: Hail Table. - :raises ValueError: If the data type or version is invalid. """ # Mapping data types to version sets for GRCh38 and GRCh37 versions_by_type = { From 8d904cf8299fc843ac091d4f0ab668bc3f95f157 Mon Sep 17 00:00:00 2001 From: Qin He <44242118+KoalaQin@users.noreply.github.com> Date: Tue, 29 Oct 2024 14:12:22 -0400 Subject: [PATCH 012/121] Formatting --- gnomad_toolbox/modules/import_data.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/gnomad_toolbox/modules/import_data.py b/gnomad_toolbox/modules/import_data.py index fb56e57..f0fb127 100644 --- a/gnomad_toolbox/modules/import_data.py +++ b/gnomad_toolbox/modules/import_data.py @@ -16,7 +16,7 @@ def get_ht_by_datatype_and_version( """ Get gnomAD HT by data type and version. - .. note: Available versions for each data type are: + .. note:: Available versions for each data type are: | Data Type | GRCh38 Versions | GRCh37 Versions | |-----------------|----------------------------------|----------------------| From 49b2cb0633fb09235b8337bd80683ddf4ec31df8 Mon Sep 17 00:00:00 2001 From: Qin He <44242118+KoalaQin@users.noreply.github.com> Date: Tue, 29 Oct 2024 14:16:32 -0400 Subject: [PATCH 013/121] Formatting --- gnomad_toolbox/modules/import_data.py | 3 ++- 1 file changed, 2 insertions(+), 1 deletion(-) diff --git a/gnomad_toolbox/modules/import_data.py b/gnomad_toolbox/modules/import_data.py index f0fb127..8dcf16d 100644 --- a/gnomad_toolbox/modules/import_data.py +++ b/gnomad_toolbox/modules/import_data.py @@ -16,8 +16,9 @@ def get_ht_by_datatype_and_version( """ Get gnomAD HT by data type and version. - .. note:: Available versions for each data type are: + .. note:: + Available versions for each data type are: | Data Type | GRCh38 Versions | GRCh37 Versions | |-----------------|----------------------------------|----------------------| | exomes | 4.0, 4.1 | 2.1, 2.1.1 | From a7c8e53314ef1c431290ee29e09cc8392354c902 Mon Sep 17 00:00:00 2001 From: Qin He <44242118+KoalaQin@users.noreply.github.com> Date: Tue, 29 Oct 2024 14:21:06 -0400 Subject: [PATCH 014/121] Formatting --- gnomad_toolbox/modules/import_data.py | 15 +++++++-------- 1 file changed, 7 insertions(+), 8 deletions(-) diff --git a/gnomad_toolbox/modules/import_data.py b/gnomad_toolbox/modules/import_data.py index 8dcf16d..0698693 100644 --- a/gnomad_toolbox/modules/import_data.py +++ b/gnomad_toolbox/modules/import_data.py @@ -16,14 +16,13 @@ def get_ht_by_datatype_and_version( """ Get gnomAD HT by data type and version. - .. note:: - - Available versions for each data type are: - | Data Type | GRCh38 Versions | GRCh37 Versions | - |-----------------|----------------------------------|----------------------| - | exomes | 4.0, 4.1 | 2.1, 2.1.1 | - | genomes | 3.0, 3.1, 3.1.1, 3.1.2, 4.0, 4.1 | 2.1, 2.1.1 | - | joint | 4.1 | N/A | + .. note:: Available versions for each data type are (as of 2024-10-29): + + | Data Type | GRCh38 Versions | GRCh37 Versions | + |-----------------|----------------------------------|----------------------| + | exomes | 4.0, 4.1 | 2.1, 2.1.1 | + | genomes | 3.0, 3.1, 3.1.1, 3.1.2, 4.0, 4.1 | 2.1, 2.1.1 | + | joint | 4.1 | N/A | :param data_type: Data type (exomes, genomes, or joint). :param version: gnomAD version. From 6d3471fd24313854f413dbf99aaca9b29e217347 Mon Sep 17 00:00:00 2001 From: Qin He <44242118+KoalaQin@users.noreply.github.com> Date: Tue, 29 Oct 2024 14:29:01 -0400 Subject: [PATCH 015/121] Formatting --- gnomad_toolbox/modules/import_data.py | 3 ++- 1 file changed, 2 insertions(+), 1 deletion(-) diff --git a/gnomad_toolbox/modules/import_data.py b/gnomad_toolbox/modules/import_data.py index 0698693..70f183b 100644 --- a/gnomad_toolbox/modules/import_data.py +++ b/gnomad_toolbox/modules/import_data.py @@ -16,8 +16,9 @@ def get_ht_by_datatype_and_version( """ Get gnomAD HT by data type and version. - .. note:: Available versions for each data type are (as of 2024-10-29): + .. note:: + Available versions for each data type are (as of 2024-10-29): | Data Type | GRCh38 Versions | GRCh37 Versions | |-----------------|----------------------------------|----------------------| | exomes | 4.0, 4.1 | 2.1, 2.1.1 | From 1b847b438bb48226b32b80bd4321b9e4404ea369 Mon Sep 17 00:00:00 2001 From: Qin He <44242118+KoalaQin@users.noreply.github.com> Date: Tue, 29 Oct 2024 14:44:30 -0400 Subject: [PATCH 016/121] Formatting --- gnomad_toolbox/modules/filter_variant.py | 7 +++++++ gnomad_toolbox/modules/import_data.py | 1 + 2 files changed, 8 insertions(+) diff --git a/gnomad_toolbox/modules/filter_variant.py b/gnomad_toolbox/modules/filter_variant.py index ab7b230..9c7073c 100644 --- a/gnomad_toolbox/modules/filter_variant.py +++ b/gnomad_toolbox/modules/filter_variant.py @@ -1,6 +1,13 @@ """Small functions to filter variants in gnomAD datasets, such as by allele frequency or by variant type.""" import hail as hl +from gnomad.resources.grch38.gnomad import POPS_TO_REMOVE_FOR_POPMAX, coverage +from gnomad.utils.filtering import filter_arrays_by_meta +from gnomad.utils.vep import ( + CSQ_CODING, + filter_vep_transcript_csqs, + get_most_severe_consequence_for_summary, +) def get_variant_count( diff --git a/gnomad_toolbox/modules/import_data.py b/gnomad_toolbox/modules/import_data.py index 70f183b..acd93ee 100644 --- a/gnomad_toolbox/modules/import_data.py +++ b/gnomad_toolbox/modules/import_data.py @@ -19,6 +19,7 @@ def get_ht_by_datatype_and_version( .. note:: Available versions for each data type are (as of 2024-10-29): + | Data Type | GRCh38 Versions | GRCh37 Versions | |-----------------|----------------------------------|----------------------| | exomes | 4.0, 4.1 | 2.1, 2.1.1 | From 22c40f746616c93eeb3072db8131c0bbaee0b62f Mon Sep 17 00:00:00 2001 From: Qin He <44242118+KoalaQin@users.noreply.github.com> Date: Tue, 29 Oct 2024 14:49:52 -0400 Subject: [PATCH 017/121] Formatting docstring block --- gnomad_toolbox/modules/filter_variant.py | 83 ++++++++++++++++++++++++ gnomad_toolbox/modules/import_data.py | 12 ++-- 2 files changed, 90 insertions(+), 5 deletions(-) diff --git a/gnomad_toolbox/modules/filter_variant.py b/gnomad_toolbox/modules/filter_variant.py index 9c7073c..7b1d4a6 100644 --- a/gnomad_toolbox/modules/filter_variant.py +++ b/gnomad_toolbox/modules/filter_variant.py @@ -45,3 +45,86 @@ def get_variant_count( # Count variants with frequency <1%, <0.1%, and singletons (AC == 1). return counts + + +def filter_by_csqs(ht: hl.Table, csqs: list[str]) -> hl.Table: + """ + Filter variants by consequence. + + :param ht: Input Table. + :param csqs: List of consequences. + :return: Table with variants with the given consequences. + """ + ht = ht.filter( + hl.any( + hl.map( + lambda x: (x.consequence_terms.contains(csqs)), + ht.vep.transcript_consequences, + ) + ) + ) + + return ht + + +def filter_by_gene_symbol(ht: hl.Table, gene: str) -> hl.Table: + """ + Filter variants in a gene. + + :param ht: Input Table. + :param gene: Gene symbol or. + :return: Table with variants in the gene. + """ + ht = filter_vep_transcript_csqs( + ht, + synonymous=False, + mane_select=True, + genes=[gene], + match_by_gene_symbol=True, + ) + + return ht + + +def filter_to_coding_variants(ht: hl.Table) -> hl.Table: + """ + Filter to coding variants. + + :param ht: Input Table. + :return: Table with coding variants. + """ + ht = filter_vep_transcript_csqs( + ht, + synonymous=False, + canonical=True, + ) + ht = get_most_severe_consequence_for_summary(ht) + + filter_expr = {} + filter_expr["coding"] = hl.any(lambda csq: ht.most_severe_csq == csq, CSQ_CODING) + + ht = ht.filter(filter_expr["coding"]) + + return ht + + +def filter_to_lof_variants(ht: hl.Table) -> hl.Table: + """ + Filter to loss-of-function (LoF) variants. + + :param ht: Input Table. + :return: Table with LoF variants. + """ + ht = filter_vep_transcript_csqs( + ht, + lof=True, + canonical=True, + ) + ht = get_most_severe_consequence_for_summary(ht) + + filter_expr = {} + filter_expr["lof"] = hl.any(lambda csq: ht.most_severe_csq == csq, CSQ_CODING) + + ht = ht.filter(filter_expr["lof"]) + + return ht diff --git a/gnomad_toolbox/modules/import_data.py b/gnomad_toolbox/modules/import_data.py index acd93ee..8616917 100644 --- a/gnomad_toolbox/modules/import_data.py +++ b/gnomad_toolbox/modules/import_data.py @@ -20,11 +20,13 @@ def get_ht_by_datatype_and_version( Available versions for each data type are (as of 2024-10-29): - | Data Type | GRCh38 Versions | GRCh37 Versions | - |-----------------|----------------------------------|----------------------| - | exomes | 4.0, 4.1 | 2.1, 2.1.1 | - | genomes | 3.0, 3.1, 3.1.1, 3.1.2, 4.0, 4.1 | 2.1, 2.1.1 | - | joint | 4.1 | N/A | + :: + + | Data Type | GRCh38 Versions | GRCh37 Versions | + |-----------------|----------------------------------|----------------------| + | exomes | 4.0, 4.1 | 2.1, 2.1.1 | + | genomes | 3.0, 3.1, 3.1.1, 3.1.2, 4.0, 4.1 | 2.1, 2.1.1 | + | joint | 4.1 | N/A | :param data_type: Data type (exomes, genomes, or joint). :param version: gnomAD version. From 66770eae25b630ca9cdee03ea3973f60bdee4072 Mon Sep 17 00:00:00 2001 From: Qin He <44242118+KoalaQin@users.noreply.github.com> Date: Tue, 29 Oct 2024 16:37:55 -0400 Subject: [PATCH 018/121] Function to extract callstats for one variant in one genetic ancestry group --- gnomad_toolbox/modules/extract_freq.py | 50 ++++++++++++++++++++++++++ 1 file changed, 50 insertions(+) create mode 100644 gnomad_toolbox/modules/extract_freq.py diff --git a/gnomad_toolbox/modules/extract_freq.py b/gnomad_toolbox/modules/extract_freq.py new file mode 100644 index 0000000..cb590b6 --- /dev/null +++ b/gnomad_toolbox/modules/extract_freq.py @@ -0,0 +1,50 @@ +"""Extract callstats from 'freq' of gnomAD HTs.""" + +from typing import List, Optional + +import hail as hl +from gnomad.resources.grch38.gnomad import POPS_TO_REMOVE_FOR_POPMAX +from gnomad.utils.filtering import filter_arrays_by_meta + + +def extract_callstats_for_1anc_1variant( + ht: hl.Table, gen_anc: str, contig: str, position: int, alleles: Optional[List[str]] +) -> hl.Table: + """ + Extract callstats for a single genetic ancestry group and a single variant. + + :param ht: Input Table. + :param group: Ancestry Group (e.g., 'afr', 'amr', 'asj', 'eas', 'fin', 'nfe', + 'oth', 'sas'). + :param contig: Chromosome. + :param position: Position. + :param alleles: List of alleles. + :return: Table with callstats for the given group. + """ + # Filter to the variant of interest + ht = ht.filter( + (ht.locus.contig == contig) + & (ht.locus.position == position) + & (ht.alleles == alleles) + ) + + # Format the gen_anc to lowercase if it's fed in as uppercase + gen_anc = gen_anc.lower() + items_to_filter = {"gen_anc": [gen_anc], "group": ["adj"]} + freq_meta, array_exprs = filter_arrays_by_meta( + ht.freq_meta, + { + **{a: ht[a] for a in ["freq"]}, + "freq_meta_sample_count": ht.index_globals().freq_meta_sample_count, + }, + items_to_filter=items_to_filter, + keep=True, + combine_operator="and", + exact_match=True, + ) + ht = ht.select(**{gen_anc: array_exprs["freq"]}) + ht = ht.annotate_globals( + freq_meta=freq_meta, + freq_meta_sample_count=array_exprs["freq_meta_sample_count"], + ) + return ht From 71a33bdcce46d92eab923f31e50a106d46970207 Mon Sep 17 00:00:00 2001 From: Qin He <44242118+KoalaQin@users.noreply.github.com> Date: Tue, 29 Oct 2024 18:18:19 -0400 Subject: [PATCH 019/121] Function to extract callstats for genetic ancestry groups --- gnomad_toolbox/modules/extract_freq.py | 72 +++++++++++++++++++++----- 1 file changed, 59 insertions(+), 13 deletions(-) diff --git a/gnomad_toolbox/modules/extract_freq.py b/gnomad_toolbox/modules/extract_freq.py index cb590b6..5411dcb 100644 --- a/gnomad_toolbox/modules/extract_freq.py +++ b/gnomad_toolbox/modules/extract_freq.py @@ -8,18 +8,17 @@ def extract_callstats_for_1anc_1variant( - ht: hl.Table, gen_anc: str, contig: str, position: int, alleles: Optional[List[str]] + ht: hl.Table, gen_anc: str, contig: str, position: int, alleles: List[str] ) -> hl.Table: """ - Extract callstats for a single genetic ancestry group and a single variant. + Extract callstats for a specific ancestry group and single variant. - :param ht: Input Table. - :param group: Ancestry Group (e.g., 'afr', 'amr', 'asj', 'eas', 'fin', 'nfe', - 'oth', 'sas'). - :param contig: Chromosome. - :param position: Position. - :param alleles: List of alleles. - :return: Table with callstats for the given group. + :param ht: Input Hail Table with variant data. + :param gen_anc: Genetic ancestry group (e.g., 'afr', 'nfe'). + :param contig: Chromosome of the variant. + :param position: Variant position. + :param alleles: List of alleles for the variant (e.g., ['A', 'T']). + :return: Filtered Table with callstats for the specified group. """ # Filter to the variant of interest ht = ht.filter( @@ -28,9 +27,14 @@ def extract_callstats_for_1anc_1variant( & (ht.alleles == alleles) ) - # Format the gen_anc to lowercase if it's fed in as uppercase - gen_anc = gen_anc.lower() - items_to_filter = {"gen_anc": [gen_anc], "group": ["adj"]} + # Check if the variant exists + if ht.count() == 0: + hl.utils.warning( + f"No variant found at {contig}:{position} with alleles {alleles}" + ) + + # Format gen_anc to lowercase and filter arrays by metadata + items_to_filter = {"gen_anc": [gen_anc.lower()], "group": ["adj"]} freq_meta, array_exprs = filter_arrays_by_meta( ht.freq_meta, { @@ -42,7 +46,49 @@ def extract_callstats_for_1anc_1variant( combine_operator="and", exact_match=True, ) - ht = ht.select(**{gen_anc: array_exprs["freq"]}) + # Select frequency for ancestry group + ht = ht.select( + **{ + gen_anc: array_exprs["freq"][i] + for i, gen_anc in enumerate([gen_anc.lower()]) + } + ) + ht = ht.annotate_globals( + freq_meta=freq_meta, + freq_meta_sample_count=array_exprs["freq_meta_sample_count"], + ) + return ht + + +def extract_callstats_for_multiple_ancs( + ht: hl.Table, + gen_ancs: List[str], +) -> hl.Table: + """ + Extract callstats for multiple genetic ancestry groups. + + :param ht: Input Table. + :param gen_ancs: List of Ancestry Groups (e.g., 'afr', 'amr', 'asj', 'eas', 'fin', 'nfe', + 'oth', 'sas'). + :return: Table with callstats for the given groups. + """ + # Format the gen_ancs to lowercase if they're fed in as uppercase + gen_ancs = [gen_anc.lower() for gen_anc in gen_ancs] + items_to_filter = {"gen_anc": gen_ancs, "group": ["adj"]} + freq_meta, array_exprs = filter_arrays_by_meta( + ht.freq_meta, + { + **{a: ht[a] for a in ["freq"]}, + "freq_meta_sample_count": ht.index_globals().freq_meta_sample_count, + }, + items_to_filter=items_to_filter, + keep=True, + combine_operator="and", + exact_match=True, + ) + ht = ht.select( + **{gen_anc: array_exprs["freq"][i] for i, gen_anc in enumerate(gen_ancs)} + ) ht = ht.annotate_globals( freq_meta=freq_meta, freq_meta_sample_count=array_exprs["freq_meta_sample_count"], From 80b1f91799a2cee5213152269574192cf30256f8 Mon Sep 17 00:00:00 2001 From: Qin He <44242118+KoalaQin@users.noreply.github.com> Date: Tue, 29 Oct 2024 18:24:22 -0400 Subject: [PATCH 020/121] indent correctly --- gnomad_toolbox/modules/extract_freq.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/gnomad_toolbox/modules/extract_freq.py b/gnomad_toolbox/modules/extract_freq.py index 5411dcb..ee051e7 100644 --- a/gnomad_toolbox/modules/extract_freq.py +++ b/gnomad_toolbox/modules/extract_freq.py @@ -69,7 +69,7 @@ def extract_callstats_for_multiple_ancs( :param ht: Input Table. :param gen_ancs: List of Ancestry Groups (e.g., 'afr', 'amr', 'asj', 'eas', 'fin', 'nfe', - 'oth', 'sas'). + 'oth', 'sas'). :return: Table with callstats for the given groups. """ # Format the gen_ancs to lowercase if they're fed in as uppercase From 8dcce6c58fcbc1d1abf8829b4890022e19c6d240 Mon Sep 17 00:00:00 2001 From: Qin He <44242118+KoalaQin@users.noreply.github.com> Date: Fri, 1 Nov 2024 19:21:25 -0400 Subject: [PATCH 021/121] Add functions to filter variants by gene symbol, interval and csqs --- gnomad_toolbox/modules/filter_variant.py | 150 +++++++++++++++-------- 1 file changed, 97 insertions(+), 53 deletions(-) diff --git a/gnomad_toolbox/modules/filter_variant.py b/gnomad_toolbox/modules/filter_variant.py index 7b1d4a6..6e3bd87 100644 --- a/gnomad_toolbox/modules/filter_variant.py +++ b/gnomad_toolbox/modules/filter_variant.py @@ -1,13 +1,9 @@ """Small functions to filter variants in gnomAD datasets, such as by allele frequency or by variant type.""" +from functools import reduce + import hail as hl -from gnomad.resources.grch38.gnomad import POPS_TO_REMOVE_FOR_POPMAX, coverage -from gnomad.utils.filtering import filter_arrays_by_meta -from gnomad.utils.vep import ( - CSQ_CODING, - filter_vep_transcript_csqs, - get_most_severe_consequence_for_summary, -) +from gnomad.utils.vep import LOF_CSQ_SET def get_variant_count( @@ -47,23 +43,29 @@ def get_variant_count( return counts -def filter_by_csqs(ht: hl.Table, csqs: list[str]) -> hl.Table: +def filter_by_interval(ht: hl.Table, interval: str) -> hl.Table: """ - Filter variants by consequence. + Filter variants by interval. :param ht: Input Table. - :param csqs: List of consequences. - :return: Table with variants with the given consequences. + :param interval: Interval string. Format has to be "chr:start-end", e.g., "1:1000-2000". + :return: Table with variants in the interval. """ - ht = ht.filter( - hl.any( - hl.map( - lambda x: (x.consequence_terms.contains(csqs)), - ht.vep.transcript_consequences, + if ht.locus.dtype.reference_genome.name == "GRCh38": + interval = "chr" + interval + ht = hl.filter_intervals( + ht, + [ + hl.parse_locus_interval( + interval, + reference_genome=( + "GRCh38" + if ht.locus.dtype.reference_genome.name == "GRCh38" + else "GRCh37" + ), ) - ) + ], ) - return ht @@ -71,60 +73,102 @@ def filter_by_gene_symbol(ht: hl.Table, gene: str) -> hl.Table: """ Filter variants in a gene. + .. note:: + This function is to match the number of variants that you will get in the + gnomAD browser, which only focus on variants in "CDS" regions plus 75bp + up- and downstream. This is not the same as filtering by gene symbol with + our `filter_vep_transcript_csqs` function, which will include all variants. + :param ht: Input Table. - :param gene: Gene symbol or. + :param gene: Gene symbol. :return: Table with variants in the gene. """ - ht = filter_vep_transcript_csqs( - ht, - synonymous=False, - mane_select=True, - genes=[gene], - match_by_gene_symbol=True, + if ht.locus.dtype.reference_genome.name == "GRCh37": + gene_ht = hl.read_table( + "gs://gcp-public-data--gnomad/resources/grch37/browser/gnomad" + ".genes.GRCh37.GENCODEv19.ht" + ) + else: + gene_ht = hl.read_table( + "gs://gcp-public-data--gnomad/resources/grch38/browser/gnomad" + ".genes.GRCh38.GENCODEv39.ht" + ) + + gene_ht = gene_ht.annotate( + cds_intervals=hl.array( + gene_ht.exons.filter(lambda exon: exon.feature_type == "CDS") + ).map( + lambda exon: hl.locus_interval( + hl.if_else( + gene_ht.interval.start.dtype.reference_genome.name == "GRCh38", + "chr" + gene_ht.chrom, + gene_ht.chrom, + ), + exon.start - 75, + exon.stop + 75, + reference_genome=gene_ht.interval.start.dtype.reference_genome, + includes_end=True, + ) + ) ) + intervals = gene_ht.filter(gene_ht.gencode_symbol == gene).cds_intervals.collect()[ + 0 + ] + + ht = hl.filter_intervals(ht, intervals) + return ht -def filter_to_coding_variants(ht: hl.Table) -> hl.Table: +def filter_by_csqs( + ht: hl.Table, csqs: list[str], pass_filters: bool = True +) -> hl.Table: """ - Filter to coding variants. + Filter variants by consequences. :param ht: Input Table. - :return: Table with coding variants. + :param csqs: List of consequences to filter by. It can be specified as the + categories on the browser: pLoF, Missense / Inframe indel, Synonymous, Other. + :param pass_filters: Boolean if the variants pass the filters. + :return: Table with variants with the specified consequences. """ - ht = filter_vep_transcript_csqs( - ht, - synonymous=False, - canonical=True, - ) - ht = get_most_severe_consequence_for_summary(ht) + missense_inframe = ["missense_variant", "inframe_insertion", "inframe_deletion"] - filter_expr = {} - filter_expr["coding"] = hl.any(lambda csq: ht.most_severe_csq == csq, CSQ_CODING) + filter_expr = [] + if "lof" in csqs: + filter_expr.append( + hl.literal(LOF_CSQ_SET).contains(ht.vep.most_severe_consequence) + ) - ht = ht.filter(filter_expr["coding"]) + if "synonymous" in csqs: + filter_expr.append(ht.vep.most_severe_consequence == "synonymous_variant") - return ht + if "missense" in csqs: + filter_expr.append( + hl.literal(missense_inframe).contains(ht.vep.most_severe_consequence) + ) + if "other" in csqs: + excluded_csqs = hl.literal( + LOF_CSQ_SET + missense_inframe + ["synonymous_variant"] + ) + filter_expr.append(~excluded_csqs.contains(ht.vep.most_severe_consequence)) -def filter_to_lof_variants(ht: hl.Table) -> hl.Table: - """ - Filter to loss-of-function (LoF) variants. + if len(filter_expr) == 0: + raise ValueError( + "No valid consequence specified. Choose from 'lof', 'synonymous', 'missense', 'other'." + ) - :param ht: Input Table. - :return: Table with LoF variants. - """ - ht = filter_vep_transcript_csqs( - ht, - lof=True, - canonical=True, - ) - ht = get_most_severe_consequence_for_summary(ht) + # Combine filter expressions with logical OR + if len(filter_expr) == 1: + combined_filter = filter_expr[0] + else: + combined_filter = reduce(lambda acc, expr: acc | expr, filter_expr) - filter_expr = {} - filter_expr["lof"] = hl.any(lambda csq: ht.most_severe_csq == csq, CSQ_CODING) + ht = ht.filter(combined_filter) - ht = ht.filter(filter_expr["lof"]) + if pass_filters: + ht = ht.filter(hl.len(ht.filters) == 0) return ht From 34fab765cd35fb9f4ae23ff9600d36c630a7ca87 Mon Sep 17 00:00:00 2001 From: Qin He <44242118+KoalaQin@users.noreply.github.com> Date: Fri, 1 Nov 2024 22:10:52 -0400 Subject: [PATCH 022/121] Correct small errors --- gnomad_toolbox/modules/filter_variant.py | 12 ++++++++++-- 1 file changed, 10 insertions(+), 2 deletions(-) diff --git a/gnomad_toolbox/modules/filter_variant.py b/gnomad_toolbox/modules/filter_variant.py index 6e3bd87..f73fe73 100644 --- a/gnomad_toolbox/modules/filter_variant.py +++ b/gnomad_toolbox/modules/filter_variant.py @@ -3,7 +3,7 @@ from functools import reduce import hail as hl -from gnomad.utils.vep import LOF_CSQ_SET +from gnomad.utils.vep import CSQ_CODING, LOF_CSQ_SET def get_variant_count( @@ -83,6 +83,9 @@ def filter_by_gene_symbol(ht: hl.Table, gene: str) -> hl.Table: :param gene: Gene symbol. :return: Table with variants in the gene. """ + # Make gene symbol uppercase + gene = gene.upper() + if ht.locus.dtype.reference_genome.name == "GRCh37": gene_ht = hl.read_table( "gs://gcp-public-data--gnomad/resources/grch37/browser/gnomad" @@ -151,10 +154,15 @@ def filter_by_csqs( if "other" in csqs: excluded_csqs = hl.literal( - LOF_CSQ_SET + missense_inframe + ["synonymous_variant"] + list(LOF_CSQ_SET) + missense_inframe + ["synonymous_variant"] ) filter_expr.append(~excluded_csqs.contains(ht.vep.most_severe_consequence)) + if "coding" in csqs: + filter_expr.append( + hl.literal(CSQ_CODING).contains(ht.vep.most_severe_consequence) + ) + if len(filter_expr) == 0: raise ValueError( "No valid consequence specified. Choose from 'lof', 'synonymous', 'missense', 'other'." From 0ccdb5bb4b2eac13b5ff3b986da890bc3191c68e Mon Sep 17 00:00:00 2001 From: Qin He <44242118+KoalaQin@users.noreply.github.com> Date: Fri, 1 Nov 2024 22:12:25 -0400 Subject: [PATCH 023/121] Update notebook --- .../use_cases/toolbox_for_gnomad_users.ipynb | 1874 ++++++++++++++--- 1 file changed, 1593 insertions(+), 281 deletions(-) diff --git a/gnomad_toolbox/use_cases/toolbox_for_gnomad_users.ipynb b/gnomad_toolbox/use_cases/toolbox_for_gnomad_users.ipynb index 6b42cfd..0e081fe 100644 --- a/gnomad_toolbox/use_cases/toolbox_for_gnomad_users.ipynb +++ b/gnomad_toolbox/use_cases/toolbox_for_gnomad_users.ipynb @@ -8,14 +8,34 @@ }, "source": [ "

Table of Contents

\n", - "" + "" ] }, + { + "cell_type": "markdown", + "id": "853c94b9", + "metadata": {}, + "source": [ + "# README\n", + "\n", + "This toolbox is meant to use Hail tables of gnomAD releases on cloud computing, if you want to query variants for gene(s), you should use gnomAD API (https://gnomad.broadinstitute.org/api).\n", + "\n", + "If you want to import your own data to use other gnomAD notebooks, such as for ancestry inference (https://github.com/broadinstitute/gnomad_qc/blob/main/gnomad_qc/example_notebooks/ancestry_classification_using_gnomad_rf.ipynb), you may use Hail's `import_vcf` functions." + ] + }, + { + "cell_type": "markdown", + "id": "ff73954c", + "metadata": {}, + "source": [] + }, { "cell_type": "code", "execution_count": 1, "id": "e77d32b1", - "metadata": {}, + "metadata": { + "scrolled": true + }, "outputs": [ { "data": { @@ -30,7 +50,7 @@ " \n", "
\n", " \n", - " Loading BokehJS ...\n", + " Loading BokehJS ...\n", "
\n" ] }, @@ -202,7 +222,7 @@ " \"\"}};\n", "\n", " function display_loaded() {\n", - " const el = document.getElementById(\"e95c853b-736c-43c1-b869-4fb671ab4b50\");\n", + " const el = document.getElementById(\"c9c511bf-e817-434d-8072-f4db620005e8\");\n", " if (el != null) {\n", " el.textContent = \"BokehJS is loading...\";\n", " }\n", @@ -308,7 +328,7 @@ " console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n", " root._bokeh_failed_load = true;\n", " } else if (force !== true) {\n", - " const cell = $(document.getElementById(\"e95c853b-736c-43c1-b869-4fb671ab4b50\")).parents('.cell').data().cell;\n", + " const cell = $(document.getElementById(\"c9c511bf-e817-434d-8072-f4db620005e8\")).parents('.cell').data().cell;\n", " cell.output_area.append_execute_result(NB_LOAD_WARNING)\n", " }\n", " }\n", @@ -324,7 +344,7 @@ " }\n", "}(window));" ], - "application/vnd.bokehjs_load.v0+json": "(function(root) {\n function now() {\n return new Date();\n }\n\n const force = true;\n\n if (typeof root._bokeh_onload_callbacks === \"undefined\" || force === true) {\n root._bokeh_onload_callbacks = [];\n root._bokeh_is_loading = undefined;\n }\n\n\n if (typeof (root._bokeh_timeout) === \"undefined\" || force === true) {\n root._bokeh_timeout = Date.now() + 5000;\n root._bokeh_failed_load = false;\n }\n\n const NB_LOAD_WARNING = {'data': {'text/html':\n \"
\\n\"+\n \"

\\n\"+\n \"BokehJS does not appear to have successfully loaded. If loading BokehJS from CDN, this \\n\"+\n \"may be due to a slow or bad network connection. Possible fixes:\\n\"+\n \"

\\n\"+\n \"
    \\n\"+\n \"
  • re-rerun `output_notebook()` to attempt to load from CDN again, or
  • \\n\"+\n \"
  • use INLINE resources instead, as so:
  • \\n\"+\n \"
\\n\"+\n \"\\n\"+\n \"from bokeh.resources import INLINE\\n\"+\n \"output_notebook(resources=INLINE)\\n\"+\n \"\\n\"+\n \"
\"}};\n\n function display_loaded() {\n const el = document.getElementById(\"e95c853b-736c-43c1-b869-4fb671ab4b50\");\n if (el != null) {\n el.textContent = \"BokehJS is loading...\";\n }\n if (root.Bokeh !== undefined) {\n if (el != null) {\n el.textContent = \"BokehJS \" + root.Bokeh.version + \" successfully loaded.\";\n }\n } else if (Date.now() < root._bokeh_timeout) {\n setTimeout(display_loaded, 100)\n }\n }\n\n function run_callbacks() {\n try {\n root._bokeh_onload_callbacks.forEach(function(callback) {\n if (callback != null)\n callback();\n });\n } finally {\n delete root._bokeh_onload_callbacks\n }\n console.debug(\"Bokeh: all callbacks have finished\");\n }\n\n function load_libs(css_urls, js_urls, callback) {\n if (css_urls == null) css_urls = [];\n if (js_urls == null) js_urls = [];\n\n root._bokeh_onload_callbacks.push(callback);\n if (root._bokeh_is_loading > 0) {\n console.debug(\"Bokeh: BokehJS is being loaded, scheduling callback at\", now());\n return null;\n }\n if (js_urls == null || js_urls.length === 0) {\n run_callbacks();\n return null;\n }\n console.debug(\"Bokeh: BokehJS not loaded, scheduling load and callback at\", now());\n root._bokeh_is_loading = css_urls.length + js_urls.length;\n\n function on_load() {\n root._bokeh_is_loading--;\n if (root._bokeh_is_loading === 0) {\n console.debug(\"Bokeh: all BokehJS libraries/stylesheets loaded\");\n run_callbacks()\n }\n }\n\n function on_error(url) {\n console.error(\"failed to load \" + url);\n }\n\n for (let i = 0; i < css_urls.length; i++) {\n const url = css_urls[i];\n const element = document.createElement(\"link\");\n element.onload = on_load;\n element.onerror = on_error.bind(null, url);\n element.rel = \"stylesheet\";\n element.type = \"text/css\";\n element.href = url;\n console.debug(\"Bokeh: injecting link tag for BokehJS stylesheet: \", url);\n document.body.appendChild(element);\n }\n\n for (let i = 0; i < js_urls.length; i++) {\n const url = js_urls[i];\n const element = document.createElement('script');\n element.onload = on_load;\n element.onerror = on_error.bind(null, url);\n element.async = false;\n element.src = url;\n console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n document.head.appendChild(element);\n }\n };\n\n function inject_raw_css(css) {\n const element = document.createElement(\"style\");\n element.appendChild(document.createTextNode(css));\n document.body.appendChild(element);\n }\n\n const js_urls = [\"https://cdn.bokeh.org/bokeh/release/bokeh-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-gl-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-widgets-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-tables-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-mathjax-3.3.4.min.js\"];\n const css_urls = [];\n\n const inline_js = [ function(Bokeh) {\n Bokeh.set_log_level(\"info\");\n },\nfunction(Bokeh) {\n }\n ];\n\n function run_inline_js() {\n if (root.Bokeh !== undefined || force === true) {\n for (let i = 0; i < inline_js.length; i++) {\n inline_js[i].call(root, root.Bokeh);\n }\nif (force === true) {\n display_loaded();\n }} else if (Date.now() < root._bokeh_timeout) {\n setTimeout(run_inline_js, 100);\n } else if (!root._bokeh_failed_load) {\n console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n root._bokeh_failed_load = true;\n } else if (force !== true) {\n const cell = $(document.getElementById(\"e95c853b-736c-43c1-b869-4fb671ab4b50\")).parents('.cell').data().cell;\n cell.output_area.append_execute_result(NB_LOAD_WARNING)\n }\n }\n\n if (root._bokeh_is_loading === 0) {\n console.debug(\"Bokeh: BokehJS loaded, going straight to plotting\");\n run_inline_js();\n } else {\n load_libs(css_urls, js_urls, function() {\n console.debug(\"Bokeh: BokehJS plotting callback run at\", now());\n run_inline_js();\n });\n }\n}(window));" + "application/vnd.bokehjs_load.v0+json": "(function(root) {\n function now() {\n return new Date();\n }\n\n const force = true;\n\n if (typeof root._bokeh_onload_callbacks === \"undefined\" || force === true) {\n root._bokeh_onload_callbacks = [];\n root._bokeh_is_loading = undefined;\n }\n\n\n if (typeof (root._bokeh_timeout) === \"undefined\" || force === true) {\n root._bokeh_timeout = Date.now() + 5000;\n root._bokeh_failed_load = false;\n }\n\n const NB_LOAD_WARNING = {'data': {'text/html':\n \"
\\n\"+\n \"

\\n\"+\n \"BokehJS does not appear to have successfully loaded. If loading BokehJS from CDN, this \\n\"+\n \"may be due to a slow or bad network connection. Possible fixes:\\n\"+\n \"

\\n\"+\n \"
    \\n\"+\n \"
  • re-rerun `output_notebook()` to attempt to load from CDN again, or
  • \\n\"+\n \"
  • use INLINE resources instead, as so:
  • \\n\"+\n \"
\\n\"+\n \"\\n\"+\n \"from bokeh.resources import INLINE\\n\"+\n \"output_notebook(resources=INLINE)\\n\"+\n \"\\n\"+\n \"
\"}};\n\n function display_loaded() {\n const el = document.getElementById(\"c9c511bf-e817-434d-8072-f4db620005e8\");\n if (el != null) {\n el.textContent = \"BokehJS is loading...\";\n }\n if (root.Bokeh !== undefined) {\n if (el != null) {\n el.textContent = \"BokehJS \" + root.Bokeh.version + \" successfully loaded.\";\n }\n } else if (Date.now() < root._bokeh_timeout) {\n setTimeout(display_loaded, 100)\n }\n }\n\n function run_callbacks() {\n try {\n root._bokeh_onload_callbacks.forEach(function(callback) {\n if (callback != null)\n callback();\n });\n } finally {\n delete root._bokeh_onload_callbacks\n }\n console.debug(\"Bokeh: all callbacks have finished\");\n }\n\n function load_libs(css_urls, js_urls, callback) {\n if (css_urls == null) css_urls = [];\n if (js_urls == null) js_urls = [];\n\n root._bokeh_onload_callbacks.push(callback);\n if (root._bokeh_is_loading > 0) {\n console.debug(\"Bokeh: BokehJS is being loaded, scheduling callback at\", now());\n return null;\n }\n if (js_urls == null || js_urls.length === 0) {\n run_callbacks();\n return null;\n }\n console.debug(\"Bokeh: BokehJS not loaded, scheduling load and callback at\", now());\n root._bokeh_is_loading = css_urls.length + js_urls.length;\n\n function on_load() {\n root._bokeh_is_loading--;\n if (root._bokeh_is_loading === 0) {\n console.debug(\"Bokeh: all BokehJS libraries/stylesheets loaded\");\n run_callbacks()\n }\n }\n\n function on_error(url) {\n console.error(\"failed to load \" + url);\n }\n\n for (let i = 0; i < css_urls.length; i++) {\n const url = css_urls[i];\n const element = document.createElement(\"link\");\n element.onload = on_load;\n element.onerror = on_error.bind(null, url);\n element.rel = \"stylesheet\";\n element.type = \"text/css\";\n element.href = url;\n console.debug(\"Bokeh: injecting link tag for BokehJS stylesheet: \", url);\n document.body.appendChild(element);\n }\n\n for (let i = 0; i < js_urls.length; i++) {\n const url = js_urls[i];\n const element = document.createElement('script');\n element.onload = on_load;\n element.onerror = on_error.bind(null, url);\n element.async = false;\n element.src = url;\n console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n document.head.appendChild(element);\n }\n };\n\n function inject_raw_css(css) {\n const element = document.createElement(\"style\");\n element.appendChild(document.createTextNode(css));\n document.body.appendChild(element);\n }\n\n const js_urls = [\"https://cdn.bokeh.org/bokeh/release/bokeh-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-gl-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-widgets-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-tables-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-mathjax-3.3.4.min.js\"];\n const css_urls = [];\n\n const inline_js = [ function(Bokeh) {\n Bokeh.set_log_level(\"info\");\n },\nfunction(Bokeh) {\n }\n ];\n\n function run_inline_js() {\n if (root.Bokeh !== undefined || force === true) {\n for (let i = 0; i < inline_js.length; i++) {\n inline_js[i].call(root, root.Bokeh);\n }\nif (force === true) {\n display_loaded();\n }} else if (Date.now() < root._bokeh_timeout) {\n setTimeout(run_inline_js, 100);\n } else if (!root._bokeh_failed_load) {\n console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n root._bokeh_failed_load = true;\n } else if (force !== true) {\n const cell = $(document.getElementById(\"c9c511bf-e817-434d-8072-f4db620005e8\")).parents('.cell').data().cell;\n cell.output_area.append_execute_result(NB_LOAD_WARNING)\n }\n }\n\n if (root._bokeh_is_loading === 0) {\n console.debug(\"Bokeh: BokehJS loaded, going straight to plotting\");\n run_inline_js();\n } else {\n load_libs(css_urls, js_urls, function() {\n console.debug(\"Bokeh: BokehJS plotting callback run at\", now());\n run_inline_js();\n });\n }\n}(window));" }, "metadata": {}, "output_type": "display_data" @@ -346,8 +366,8 @@ "output_type": "stream", "text": [ "SPARKMONITOR_LISTENER: Started SparkListener for Jupyter Notebook\n", - "SPARKMONITOR_LISTENER: Port obtained from environment: 49385\n", - "SPARKMONITOR_LISTENER: Application Started: application_1727797895584_0002 ...Start Time: 1727798616140\n" + "SPARKMONITOR_LISTENER: Port obtained from environment: 51311\n", + "SPARKMONITOR_LISTENER: Application Started: application_1730470703538_0002 ...Start Time: 1730485367380\n" ] }, { @@ -355,12 +375,12 @@ "output_type": "stream", "text": [ "Running on Apache Spark version 3.5.0\n", - "SparkUI available at http://qh1-m.c.broad-mpg-gnomad.internal:45603\n", + "SparkUI available at http://qh1-m.c.broad-mpg-gnomad.internal:39033\n", "Welcome to\n", " __ __ <>__\n", " / /_/ /__ __/ /\n", " / __ / _ `/ / /\n", - " /_/ /_/\\_,_/_/_/ version 0.2.132-678e1f52b999\n", + " /_/ /_/\\_,_/_/_/ version 0.2.133-4c60fddb171a\n", "LOGGING: writing to /test_toolbox.log\n" ] } @@ -384,17 +404,46 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 3, "id": "e69953f7", "metadata": {}, "outputs": [], "source": [ - "from gnomad_toolbox.modules.variant_filtering import get_variant_count\n", - "from gnomad.resources.grch38.gnomad import public_release as v4_public_release\n", - "from gnomad.utils.vep import filter_vep_transcript_csqs\n", - "from gnomad.resources.grch38.gnomad import coverage\n", - "from gnomad.resources.grch38.gnomad import POPS_TO_REMOVE_FOR_POPMAX\n", - "from gnomad.utils.filtering import filter_arrays_by_meta" + "from gnomad_toolbox.modules.filter_variant import get_variant_count, filter_by_interval, filter_by_gene_symbol, filter_by_csqs\n", + "from gnomad_toolbox.modules.import_data import get_ht_by_datatype_and_version\n", + "from gnomad_toolbox.modules.filter_variant import \n", + "from gnomad_toolbox.modules.extract_freq import extract_callstats_for_1anc_1variant, extract_callstats_for_multiple_ancs\n", + "from gnomad.resources.grch38.gnomad import coverage" + ] + }, + { + "cell_type": "markdown", + "id": "5335a135", + "metadata": {}, + "source": [ + "# Import data\n", + "\n", + "You can choose which version of gnomAD release you want to look at, here we listed the available version per data type per reference build. \n", + "\n", + "Available versions for each data type are (as of 2024-10-29):\n", + "\n", + "| Data Type | GRCh38 Versions | GRCh37 Versions |\n", + "|-----------------|----------------------------------|----------------------|\n", + "| exomes | 4.0, 4.1 | 2.1, 2.1.1 |\n", + "| genomes | 3.0, 3.1, 3.1.1, 3.1.2, 4.0, 4.1 | 2.1, 2.1.1 |\n", + "| joint | 4.1 | N/A |\n", + "\n", + "We use gnomAD v4.1 exomes to demonstrate for examples below. " + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "id": "100cf576", + "metadata": {}, + "outputs": [], + "source": [ + "ht = get_ht_by_datatype_and_version(data_type='exomes', version='4.1')" ] }, { @@ -415,16 +464,6 @@ "**Note: this will take long if your notebook is NOT using multiple nodes.**" ] }, - { - "cell_type": "code", - "execution_count": 3, - "id": "112c5065", - "metadata": {}, - "outputs": [], - "source": [ - "ht = v4_public_release(\"exomes\").ht()" - ] - }, { "cell_type": "code", "execution_count": 12, @@ -483,45 +522,205 @@ "print(get_variant_count(ht, singletons=True, doubletons=True))" ] }, + { + "cell_type": "markdown", + "id": "ec659eeb", + "metadata": {}, + "source": [ + "## Get variant count by AF for coding variants" + ] + }, + { + "cell_type": "code", + "execution_count": 44, + "id": "d65b0ea8", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "[Stage 21:===================================================>(8784 + 5) / 8789]\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{'number of variants with AF < 0.01': 23762097, 'number of variants with AF < 0.001': 23643787, 'number of variants with AF < 0.0005': 23569893}\n" + ] + } + ], + "source": [ + "ht = get_ht_by_datatype_and_version(data_type='exomes', version='4.1')\n", + "\n", + "ht = filter_by_csqs(ht, ['coding'])\n", + "\n", + "print(get_variant_count(ht, afs=[0.01, 0.001, 0.0005]))" + ] + }, + { + "cell_type": "markdown", + "id": "f07ca88f", + "metadata": {}, + "source": [ + "## Get variant count by VEP consequence" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "id": "b515bfc0", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "18231426" + ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# total number of missense variant in exomes data\n", + "ht = get_ht_by_datatype_and_version(data_type='exomes', version='4.1')\n", + "\n", + "ht.filter(\n", + " hl.any(\n", + " hl.map(\n", + " lambda x: (x.consequence_terms.contains(\"missense_variant\")),\n", + " ht.vep.transcript_consequences,\n", + " )\n", + " )\n", + ").count()" + ] + }, { "cell_type": "markdown", "id": "725f9a57", "metadata": {}, "source": [ - "## Get variant count by AF for a gene interval\n", + "## Get variant count by AF for a gene\n", + "\n", + "**Note: This isn't necessarily equal to the number of variants annotated to this gene by VEP.**\n", + "\n", + "Here we show two ways that you can load a variant table on the gnomAD browser, one is the [gene page](https://gnomad.broadinstitute.org/gene/ENSG00000149295?dataset=gnomad_r4) (filtered to MANE Select transcript of that gene, and only variants located in or within 75 base pairs of a coding exon (CDS)), the other is the [region view](https://gnomad.broadinstitute.org/region/11-113409605-113475691?dataset=gnomad_r4). We use *DRD2* gene as an example. " + ] + }, + { + "attachments": { + "Screenshot%202024-11-01%20at%209.31.00%E2%80%AFPM.png": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABCAAAAESCAYAAAAsZqRkAAAKrGlDQ1BJQ0MgUHJvZmlsZQAASImVlwdUU+kSgP9700NCS6hSQm+CdAJICT303myEJEAoIQaCgqioLK7giiIiAsqCLIoouCpF7FiwLQpKUdEFWRTUdbEgKirvAofg7jvvvfPmnjnz3cn8M/Pf8//nTAAgU1kCQTIsDUAKP10Y7OlCi4yKpuFGAR4oADKgA0sWO03ACAz0BYjM27/Lh14Azdh7xjO5/v33/yoyHG4aGwAoEOFYTho7BeFTiI6zBcJ0AFA1iF9rTbpghq8jTBUiDSI8MMPxczw+w7GzjEbPxoQGuyKsCACexGIJ4wEgaSN+WgY7HslDckPYlM/h8RFG3oFjSkoqB2GkLtBHYgQIz+Snx36XJ/5vOWPFOVmseDHP7WVW8G68NEEyK/P//Bz/W1KSRfM1dBElJQi9ghGL9AX1J6X6iJkf6x8wzzzObPwsJ4i8wuaZneYaPc8clpuPeG2yv+88x/E8mOI86czQeeamuYfMszA1WFwrTujKmGeWcKGuKClM7E/gMsX5sxJCI+Y5gxfuP89pSSE+CzGuYr9QFCzun8v3dFmo6yHee0rad/vlMcVr0xNCvcR7Zy30z+UzFnKmRYp743Dd3BdiwsTxgnQXcS1BcqA4npvsKfanZYSI16YjB3JhbaD4GyayvAPnGbgBd+CLPDQQCMyBJaIWM7507tqZMwpcUwWZQl58QjqNgdwyLo3JZ5ssppmbmlsCMHNn547Eu/7ZuwjJ4xd8fB4AljcRaFnwcU4DcGYZABT1BZ9WEwBSDwG4EMEWCTPmfDPXCWAAEUgBKlACakAL6ANjpDdrYA+ckY69QQAIBVFgJWCDBJAChGANyAabQB4oADvBHlAGKsFBcBgcAydACzgLLoFr4Ba4C3rAIzAIRsBLMA4+gCkIgnAQGaJASpA6pAMZQeYQHXKE3CFfKBiKgmKgeIgPiaBsaAtUABVBZVAVVAf9Cp2GLkE3oC7oATQEjUFvoc8wCibBVFgV1oWXwHSYAfvAofAKOB5eDWfBufAOuBSuho/CzfAl+BbcAw/CL+EJFEBJoORRGihjFB3ligpARaPiUELUBlQ+qgRVjWpAtaE6UPdQg6hXqE9oLJqCpqGN0fZoL3QYmo1ejd6A3o4uQx9GN6OvoO+hh9Dj6G8YMkYFY4SxwzAxkZh4zBpMHqYEU4tpwlzF9GBGMB+wWKw8Vg9rg/XCRmETseuw27H7sY3Yi9gu7DB2AofDKeGMcA64ABwLl47Lw+3DHcVdwHXjRnAf8RJ4dbw53gMfjefjN+NL8Efw5/Hd+Of4KYI0QYdgRwggcAiZhEJCDaGNcIcwQpgiyhD1iA7EUGIicROxlNhAvEocIL6TkJDQlLCVCJLgSeRIlEocl7guMSTxiSRLMiS5kpaTRKQdpEOki6QHpHdkMlmX7EyOJqeTd5DryJfJT8gfJSmSJpJMSY7kRslyyWbJbsnXUgQpHSmG1EqpLKkSqZNSd6ReSROkdaVdpVnSG6TLpU9L90lPyFBkzGQCZFJktssckbkhMyqLk9WVdZflyObKHpS9LDtMQVG0KK4UNmULpYZylTJCxVL1qExqIrWAeozaSR2Xk5WzlAuXWytXLndOblAeJa8rz5RPli+UPyHfK/9ZQVWBocBV2KbQoNCtMKm4SNFZkauYr9io2KP4WYmm5K6UpLRLqUXpsTJa2VA5SHmN8gHlq8qvFlEX2S9iL8pfdGLRQxVYxVAlWGWdykGV2yoTqmqqnqoC1X2ql1VfqcmrOaslqhWrnVcbU6eoO6rz1IvVL6i/oMnRGLRkWintCm1cQ0XDS0OkUaXRqTGlqacZprlZs1HzsRZRi64Vp1Ws1a41rq2u7aedrV2v/VCHoEPXSdDZq9OhM6mrpxuhu1W3RXdUT1GPqZelV683oE/Wd9JfrV+tf98Aa0A3SDLYb3DXEDa0MkwwLDe8YwQbWRvxjPYbdS3GLLZdzF9cvbjPmGTMMM4wrjceMpE38TXZbNJi8nqJ9pLoJbuWdCz5ZmplmmxaY/rITNbM22yzWZvZW3NDc7Z5ufl9C7KFh8VGi1aLN5ZGllzLA5b9VhQrP6utVu1WX61trIXWDdZjNto2MTYVNn10Kj2Qvp1+3RZj62K70fas7Sc7a7t0uxN2f9kb2yfZH7EfXaq3lLu0Zumwg6YDy6HKYdCR5hjj+LPjoJOGE8up2umps5Yzx7nW+TnDgJHIOMp47WLqInRpcpl0tXNd73rRDeXm6Zbv1uku6x7mXub+xEPTI96j3mPc08pznedFL4yXj9curz6mKpPNrGOOe9t4r/e+4kPyCfEp83nqa+gr9G3zg/28/Xb7Dfjr+PP9WwJAADNgd8DjQL3A1YFngrBBgUHlQc+CzYKzgztCKCGrQo6EfAh1CS0MfRSmHyYKaw+XCl8eXhc+GeEWURQxGLkkcn3krSjlKF5UazQuOjy6NnpimfuyPctGllstz1veu0JvxdoVN1Yqr0xeeW6V1CrWqpMxmJiImCMxX1gBrGrWRCwztiJ2nO3K3st+yXHmFHPGuA7cIu7zOIe4orjReIf43fFjCU4JJQmveK68Mt6bRK/EysTJpICkQ0nTyRHJjSn4lJiU03xZfhL/Sqpa6trULoGRIE8wuNpu9Z7V40IfYW0alLYirTWdigxHt0X6oh9EQxmOGeUZH9eErzm5VmYtf+3tTMPMbZnPszyyflmHXsde156tkb0pe2g9Y33VBmhD7Ib2jVobczeO5HjmHN5E3JS06bfNppuLNr/fErGlLVc1Nyd3+AfPH+rzJPOEeX1b7bdW/oj+kfdj5zaLbfu2fcvn5N8sMC0oKfiynb395k9mP5X+NL0jbkdnoXXhgZ3Ynfydvbucdh0ukinKKhre7be7uZhWnF/8fs+qPTdKLEsq9xL3ivYOlvqWtu7T3rdz35eyhLKecpfyxgqVim0Vk/s5+7sPOB9oqFStLKj8/DPv5/4qz6rmat3qkoPYgxkHn9WE13T8Qv+lrla5tqD26yH+ocHDwYev1NnU1R1ROVJYD9eL6seOLj9695jbsdYG44aqRvnGguPguOj4i19jfu094XOi/ST9ZMMpnVMVTZSm/GaoObN5vCWhZbA1qrXrtPfp9jb7tqYzJmcOndU4W35O7lzheeL53PPTF7IuTFwUXHx1Kf7ScPuq9keXIy/fvxJ0pfOqz9Xr1zyuXe5gdFy47nD97A27G6dv0m+23LK+1Xzb6nbTb1a/NXVadzbfsbnTetf2blvX0q7z3U7dl+653bt2n3n/Vo9/T1dvWG9/3/K+wX5O/+iD5AdvHmY8nHqUM4AZyH8s/bjkicqT6t8Nfm8ctB48N+Q2dPtpyNNHw+zhl3+k/fFlJPcZ+VnJc/XndaPmo2fHPMbuvlj2YuSl4OXUq7w/Zf6seK3/+tRfzn/dHo8cH3kjfDP9dvs7pXeH3lu+b58InHjyIeXD1GT+R6WPhz/RP3V8jvj8fGrNF9yX0q8GX9u++XwbmE6ZnhawhKzZUQCFKBwXB8DbQwCQo5DZ4S4AxGVzM/WsQHP/A2YJ/Ceem7tnxRqA+hwAghGdGR/3XwRAG1EpZwACEQ11BrCFhVjn59/ZWX1GpI8C0MU0DbX2fWI1nAP+IXNz/Hd9/9MCcda/2X8BEaoHZfbhPqoAAABiZVhJZk1NACoAAAAIAAIBEgADAAAAAQABAACHaQAEAAAAAQAAACYAAAAAAAOShgAHAAAAEgAAAFCgAgAEAAAAAQAABCCgAwAEAAAAAQAAARIAAAAAQVNDSUkAAABTY3JlZW5zaG90xVc9TwAAAj5pVFh0WE1MOmNvbS5hZG9iZS54bXAAAAAAADx4OnhtcG1ldGEgeG1sbnM6eD0iYWRvYmU6bnM6bWV0YS8iIHg6eG1wdGs9IlhNUCBDb3JlIDYuMC4wIj4KICAgPHJkZjpSREYgeG1sbnM6cmRmPSJodHRwOi8vd3d3LnczLm9yZy8xOTk5LzAyLzIyLXJkZi1zeW50YXgtbnMjIj4KICAgICAgPHJkZjpEZXNjcmlwdGlvbiByZGY6YWJvdXQ9IiIKICAgICAgICAgICAgeG1sbnM6ZXhpZj0iaHR0cDovL25zLmFkb2JlLmNvbS9leGlmLzEuMC8iCiAgICAgICAgICAgIHhtbG5zOnRpZmY9Imh0dHA6Ly9ucy5hZG9iZS5jb20vdGlmZi8xLjAvIj4KICAgICAgICAgPGV4aWY6UGl4ZWxZRGltZW5zaW9uPjI3NDwvZXhpZjpQaXhlbFlEaW1lbnNpb24+CiAgICAgICAgIDxleGlmOlVzZXJDb21tZW50PlNjcmVlbnNob3Q8L2V4aWY6VXNlckNvbW1lbnQ+CiAgICAgICAgIDxleGlmOlBpeGVsWERpbWVuc2lvbj4xMDU2PC9leGlmOlBpeGVsWERpbWVuc2lvbj4KICAgICAgICAgPHRpZmY6T3JpZW50YXRpb24+MTwvdGlmZjpPcmllbnRhdGlvbj4KICAgICAgPC9yZGY6RGVzY3JpcHRpb24+CiAgIDwvcmRmOlJERj4KPC94OnhtcG1ldGE+CiJWpAsAAEAASURBVHgB7J0HYBzV1bbPqrjKDdvYBtxNxzTTq+kEQk0CJPQSCKT9kAL5CBB6gHQgBFIoAZJAqAFCMzj03ptp7gX3bku2pf88V77L7HpXXkkrq/g9MJ7ZKXfuPDO7mvPec89NVVVV1ZhMBERABERABERABERABERABERABERABJqQQEkTlq2iRUAEREAEREAEREAEREAEREAEREAERCAQkAChB0EEREAEREAEREAEREAEREAEREAERKDJCUiAaHLEOoEIiIAIiIAIiIAIiIAIiIAIiIAIiIAECD0DIiACIiACIiACIiACIiACIiACIiACTU5AAkSTI9YJREAEREAEREAEREAEREAEREAEREAEJEDoGRCBFkZgyZIl9sEHH7SwWqk6IiACIiACIiACIiACIiACItA4AhIgGsdPR4tAUQlUVlbahhtuaFtvvbX97Gc/K2rZKkwEREAEREAEREAEREAEREAEmpOABIjmpK9zN4rA1Vdfbe3atUtPn3766SrlzZ49O709ue8GG2xgJ5xwgt1www02fvz4VY5rrhXTp083Juy1115r0mq8+OKLNmrUKHv++eeb9DwqXAREQAREQAREQAREQAREQAQgkKqqqqoRChFojQS22mor+/DDD9NVv/TSS+3cc89Nf2Zh1qxZ1q9fv4x12R+6dOli9957r+25557Zm5rl87XXXhuEgfPPP9+23377JqvD4MGDbfLkybbuuuvapEmTmuw8KlgEREAEREAEREAEREAEREAEICABQs9BqyTw3nvv2bbbbptRd7ouvP/++xnrkgIEjvYZZ5xh5FgYPXp0RoQB2959913r0aNHxvFt+YMEiLZ8d3VtIiACIiACIiACIiACItDyCKgLRsu7J01ao3/961/2zW9+0+iCsPfee9ujjz5qv//9723kyJFhmjJlSjj/aaedFj4fccQRRteGb33rW9azZ0/Daf3xj39sCxcuzKjnW2+9ZT/5yU9sxIgRocvDoYceatdcc03GfoT6x/M89NBD9qtf/cqIYqBc6jR16tTQHYLleK5zzjnHli5dmnEuPtx3333pdV/72tfC8ieffBJEhPSGrIVNN93ULrjgArviiivshRdesFdeeSW9B90e7rrrrvTnuDBv3rx0nY8++ui4Oswfe+yx9LZbb701rCOi4Hvf+16aw+abb24nnXSSffbZZ+lj6fYRObz66qt2+umnh/vBcYsWLUpvu/jii9PHLF682C677LKwja4k3D+umzpEy+bLfd1xxx3D/dh9992D6MK+iC+cn7piXDufk9f3zjvv2HHHHWcbb7xxOH6XXXYJOSkWLFgQjtE/IiACIiACIiACIiACIiACIlBfAoqAqC+xVrz/TTfdFJzj7EsgcgDnHaNLw9ChQ4MwELs3IDqMHTs247CTTz7ZbrzxxrCOXAU4qLlsr732CmJBp06d7D//+U9wmtlv+PDhq4gFu+22m33xxRfpusTyjj32WLv55pvjR6upqbFNNtkk1Im6IarssMMOYfvPf/5zu/DCC9P7JiMg6GLxxBNPpLexQNeLY445JqwjJ8Rf/vKXjO18wDlHsMDgNHDgwLB85pln2l//+tew/NxzzwXRBJEjl9HNA4GAeiPUIA5gSfaHHXaY/fnPfw5dItiGwPCPf/zDli9fHgSNeD/YlrS///3vQTxI8qUeufZnHWIRIk+2xa4Yzz77rO2zzz7Zm8NneHN8x44dc27XShEQAREQAREQAREQAREQARHIR6Ak3watb1sE6ONPC3u073znO3b99dcH4SCKD3Fb9rxDhw5h3+OPPz69CUHA84eE7gwHHHBAej3OP9EJ++67b1j39NNPG6JAttHd4aKLLgpREHEbTvy0adOCc54UEe64447ghMf93njjjbQg8o1vfCOIJTjPGPVCoCjUknkfSMqYy4j+iMb1YJwDhx9bf/31Q66GKMiwjuiO//3vfwZnjMiBZNRGWOn/wJ4oE6IbmOcyolSimIDwQ7nkiYj2t7/9LS6m5+x/9tlnG4k6EQ2iIdYgFlEXRBGMOZ9jFMftt98ed7cnn3zSJkyYkM6tgRD1+OOPp7drQQREQAREQAREQAREQAREQAQKJVBW6I7ar3UToNU6GiH/f/jDH8JHwu4322yz9MgLcZ/k/J577rFhw4bZt7/97ZA3ITrDhPDPmDEjONfsf+qpp6bFBpxcjsHxTnYTiOWeddZZRpJFjHJ++9vfhuWrrrrK6P6BEVnxyCOPhGX2iZEH1CfawQcfbKlUKrToE1XAfq+//rptt912cZc653T1wAGnnogBiCp0cUgakQlRvOFa6FIBgzhaBaIAdUBoIbqhtLTU1llnnVAEbP/0pz+FZYSTbDvvvPPskksuSa+eO3duejkuEI3AdWGUS/k777yzITy8+eabFkWRuD9zokZgiQ0ZMsS+/vWvh+Vx48aFpJxw69q1a7huohn4HI0olGjsTzcZ6hiHBc3mE/fVXAREQAREQAREQAREQAREQATqIqAIiLrotKFtSQEiGbGAExqjFfJdLkJCtGTEwLJly4KzH7fR3SIayRyjCIBjP2fOnLgpzMmNEK1v375xMXT/iB/IcxCturo6LK5YscJuu+22uNpKSkpCHaLDz4akQJHeMc8CuSxiXgMiBXI513369LEDDzwwlEDrP9dNHoVoRx55ZFiEJZEdv/jFL0KUAfkTevfuHXezeA3pFb5ArozVGQIB/BCNqAfsYIP4kM9ilxS2J0fSQGBZnR111FHpXRCDuIatt97afvnLX4bRMsrKpFumAWlBBERABERABERABERABESgYALyJApG1bp37Ny5c/oCSGiYNBIf5rMYph+3ZzvoyWOztyXzBGQnkiRioCH20ksvpSMPOJ7kitlGTgS6NBApsDp7++2307uQsDGfkSeCrhCIFURmsIyRa2GLLbYIy1deeWXoVhI++D90C0nmeIjrk/PkfUmuTy6PGjXKvvKVr6RXcU8QbWIERnpDYqG8vDz9qRAO6Z19gS4ndLu57rrrjG4xGBEfTIgQrEsKHGEH/SMCIiACIiACIiACIiACIiACqyGgCIjVAGorm2nBjkZffxIbYoxw8cADD8RN9Z4z6kU0Rk6IRpQAjjqGI96vX7+4qVHzf//73xnH44zHKW7AMc+XzyHuw3zmzJl2yimnpFclryW9cuVCsosCuR+iABHzYhCZQd4HjJwQjHpB3g3yNTTWYqJLynnqqadCvRluNF/Cy/qej2FJs42oDs5FFxuu9ZBDDknvcuedd6aXtSACIiACIiACIiACIiACIiAChRKQAFEoqVa+37bbbpseXYHEgrT209JdV6t/IZecFDaIOsBZJV/Bueeem26hZxSJYhiiSbL7Bd0SGOUiTowYES1bqGA9Q4wy1CYCDDkd6JoQR/eg+0WukSFied26dUvnUYhCA9viEKCVlZXprhxEgjARLUF3jMYaiTmjUW7kEHNxxG31ncfEndSTRJ/cN7qJkL+D7iNEl3BdDNdKzo5o2VExcb3mIiACIiACIiACIiACIiACIlAXAXXBqItOG9qGA/3QQw+lQ+fJVcCEM0legdiiX99LJtcDyRBjJEF2TgOiAQjbL4YRTRDzNdAin919ITl0JN0wrrnmmozTkoviuOOOy1jHBxxxRJnokK+yw8oVCDZJYQPxJo4wwTCj5NKgHESN/v375yum3uu5P7ErBEOVFssYdjTmkSCRJtdP1AaCA6NncB3kmuAao1DDuaPoUqx6qBwREAEREAEREAEREAEREIG1g4AiINaO+xyukmiFqVOnGkMxEqFAH3+6YCASRCOpI5Yv0WCu3A049bfccktGNAXCBqNHkL8gJpNMHhvPw7nyrU/uw3JyGEvKzrbu3bvb/vvvH1YjVDz//PMZZSf3x9lGUIDByy+/XJBggMCQbP3n+KQRWRHPz3rOkSshZr7r5ZjkNj5j55xzTnoUjto1Zpdeeqklk36yPnlskl1yfXKZiI/YhYTjY96Iiy++OAgQ8Vqj+EBSUbq2JKNeOE4mAiIgAiIgAiIgAiIgAiIgAoUQSHlW/JpCdtQ+rZvAxIkT0xEB5A4488wzwwXNmzcvDNOIw47DPGHChDCyREOvlqSU5GBgyMykE9zQ8lrjcST5jDyTDn9jr4WuF+RkYFSKfAJRQ89Bzg7KzK4v95KhQbmf7du3b2jxOk4EREAEREAEREAEREAEREAETALEWvIQ0Ld/+PDhRjcEjGUiH5JdL37yk5/Y5ZdfvpYQ0WWKgAiIgAiIgAiIgAiIgAiIgAisSQKtS4Bg4IZKDzVfWjs3Plf7tMLX+RSWfWbei6CGERiZ6FFApgtvvK3pUDsPn31xbbOPP/7YTj/9dHvhhRdWufQrrrgihPqvrVELqwDRChEQAREQAREQAREQAREQAREQgaISaHkCRJWLCYv8Guf73KcwX+hzRgr0KYgPCBBLUxYEiKT4gAiBrRQe0iIEAkQH72niAkQQITr6Z59qKnze1ec+hXlnn7fzqQ0bkRAkGiT3A90Ehg4dahtuuKHC69vwPdeliYAIiIAIiIAIiIAIiIAIiEBLINC8AoRHLwSxYZbPmWY6ktk+n+fz+anaOcsIEIt9Wu6iQ2MzVngRVuaFdPI5AkQ3L9In61pTO1/HP/fyqaev86kGUUKpOh2CTAREQAREQAREQAREQAREQAREQAQaTmDNCxB0oXChITXFp2k+TffKz3SxYYbPmRa6QkC3iuYwhIYKFyd6u/Dgk/VyUWJdX+7r03o+uTBBVw6ZCIiACIiACIiACIiACIiACIiACIhA/QisGQGCrhOIDZN8muzTFBccfNm+8GkxIQkt2Dq5INHHxYcNECFckPARK8OyixJ045CJgAiIgAiIgAiIgAiIgAiIgAiIgAisnkDTCRCeIDJ0qxjnc6axLjpM8ArRzWJZA0UHcju0d0GAZJJM5GuIySZjwklfFRNTkpwyTJ5XwkLeCJ9X+rljrgj/WC8r93PTPWOAT4NdjBjkcya6a5BnQiYCIiACIiACIiACIiACIiACIiACIpCTQPEFCHf0iXIo+djnn7ro8Lmfd6pPOP6FGN0gOruj393n6QSR/tnzNYQEkggPJJCkK0RSgOA4Jqx65ZQQIFLe9SMksqR+iBHklSDPxMpElzbXPy/yOnJsIYYQ0s/rMcSnYTVWvZHPPToiCCOFHK99REAEREAEREAEREAEREAEREAERGAtIlA8AcKTRJaMd+f+I59/4I78p05xns/dT6/T2vkOPXwP8i6QY4G8CySCRIDo4nOfwjyOUOFFNsqoTxxpY4HX1ydj7gJEyhNghnwURGmQj2KOT1WrOSGbu3mhw1y72MzrvonPB/o6klzKREAEREAEREAEREAEREAEREAEREAEAoHGCxAeTRCEh3d8/p5740Q8kEgyn7GJRI9ED5DYsZ877X19nXdjoCtDEB6IcmgO82sJQoSPyGGMyjHNp6keJTHFPxPFwXUhYOQzrssjIqq38GvacqUQ0VzXkq+OWi8CIiACIiACIiACIiACIiACIiACzUCg4QIEOR7cMS9BeHjdHfNPvPZ0YchndKsgkeMgd877+zyIDz73aIfQlSLfcc25nkgJhgV18SGM2jHR5+P8Gkmgubpr3dAFiBHeNcOFCK5VOSKa80bq3CIgAiIgAiIgAiIgAiIgAiIgAs1NoEECRMq7JqTec+HhVY8O8LnNySM8lLnowDCW3j0hnbRxgC/TvSLma2huAoWe33NDhOiICYgQPpFUk24mDCO6PM/193CxZQsXIravndfQ1UQmAiIgAiIgAiIgAiIgAiIgAiIgAmshgfoJEEQ9uANe8hKTO92TfcqVtJEEjUQ7bOIRABv7fKhPnuPBytsI4WXOwXNEpD5zDmN8/pFzICoiV6JNhJb1ncNOTM7BBRhFQ7SR50CXIQIiIAIiIAIiIAIiIAIiIAIiUDCBggUIkjWm3neH+5mVUQ8LcrT6k1ByoDvZw93Z3nSl8EC0Q45dC65hS97RLzdERSBEfOjL7/qFjvcK50pc2WVlNMQePt/c2ZBcUyYCIiACIiACIiACIiACIiACIiACawmBgjpCpHxUiJJnzEr/7eLDK+5kZ4sPdLUY4I71ATW24hifDvPAiO3cyabLQVsVH3hA/Nq4Rq6Va15xdC0DWBhMkubMYAdDWMK0Jdr999+fUa1nnvHK5rB869n1vPPOy3FE4avqKrvwUurek3OsifPUXQttbYkE9Fy0xLuiOomACDQXgcb+TW+ueuu8IiACIiAC9SPw3e9+N6cfd/PNNxfVb6pbgKCFf7KLD4/79JB725/5tCLrQshzsKuvPsqFh8PdGd/GnfKuWfusBR+55uptnYMzgAVMzNlkGOycISxhCts6R9XIOLjpP/CS8dprr6UfMByxv/3tb8bDmLTf/OY3du2116b3S26jjLKyspzbkvvlW7700kvt0Iu+Zlvut1W+XYqynuv617/+lbcsrn2nnXZq8HXkLVgbWjQBnt/TTz/deA5lIiACIrC2E6BRYvPNNw9/D9d2Frp+ERABEWjLBHgHxvcZPXp0xmVG364uvynjgAI+5BcgSLo41qMeHnLx4UkXHqb5lLRyd6439K4Wh7jw8LWV+Q0Y0SJrt+QhbX7Zr51RPcj1EJg4GxgZrJLmLGFa+rDjGucbcuXRSO6/hpanTZtmG2+8cdoxf+SRR2yfffaxHj16pB1xHPMXX3zRDj30UJs924cIybLsMrI2r/bj7Y/dYeWH9bPxPcnuaenzrvbAeuzAFyleV3bERyyGa0d4KeaXLZatecsl8Nxzz9mJJ55ojz32WMutpGomAiIgAmuIQPwbOWLEiDV0Rp1GBERABESgGATw2fB5CjV8OGzffffN8L/wDbGkPxhWNOKf3AJEFB8e9m4Dz7pXnT3KBfkMdlwZ9bCfO939vQaljahFWzvUWcBkhbMJ0RDOypxZhjlT2JZ6NARCT3OIEPHFgnrR4rvBBp451O3ll18O83XX9SFM3HjwcMgx5ogP2BNPPBHm8Z9kGa+//npcHeacq5Cogso+tSE2K2pWhDqdc845q0RgZBSc9QHRgDChugx1D+O6sq8hHhe/hMX8ssWyNW+ZBHh+u3SpTc7Sp0+fjB/flllj1UoEREAEmo5A8m+6/hY2HWeVLAIiIAJNQYBo70Kj0vHRoiX9Ptb973//C5tYn6vxOR5Xn3lOASI10fWER711Hj90UVZIQ28XH/b2qIcjPerBu1tYRX1Ot5bt62xgBCuYmbPLsIUuPjjjwNqZr0lDEVuwYEHauV+0aFFwyKnDgQceGJyvd955J10l9sXinGWOSRqfO3XqZBMnTsxQz+K5br/99jqjCnjZmbN0XiiybHgPo6vHD3/4Q8sWM5LnTC7z5Zk+fbp99tlnlhRXkvuwXNc2tlNOFGP4XGxLfsmLXbbKazgBnt/+/VFTzfr169fwgnSkCIiACLQBAsn3gjZwOboEERABEVhrCOB74csgGqwumpt9v/e972X4PtHfw2dJ+nv5Gm7rC3YVASLl0RelTyE+uPCQLT70d9HhKy4+HOQt/IP9VIp6WD1voiGcFcxgZ84ww5wxrAPz2siXjM1N9SG28MdoBx7QpBHpkHzg4rbkOh7spDNN1wy2MyEERIvnevrpp8OqoUOHxk0Z8+mLplvZ0FpFq7yivQ3bfFjYnh0KlHFQ4kOMzuBaCv2CJK8nFkU5kQdzPhfL+JI//vjjq43SKNb5VE7hBJ599lkbPJgfNrNu3brZT3/608IP1p4iIAIi0MYILFmyJH1Fxf5bmC5YCyIgAiIgAk1CIPoyq2vIpcGXxuPKyspV6pH0ie69915btmzZKvs0ZEWGAJHyxueSF1x8eN7Fh+yRLnxkh+qDfNrbHerayPyGnG+tPQZmsINhGCUjSYIRMpx5YF8bAJDcWvTlZAt/jHaYM2dO+jw8sDfeeGPaCWdDLkc9fcDKhSlTplhFRUWYunfvHhz3GMLJQ3vUUUfZrFmzQvhOUriI5Xwy+zMrGVJhQ16Yb11Gz7JuHbqFTYW++EShg4Py1Td57eyXLaKwLtuiCpi9viGf6dbC9RClcdT3j7bNjtkyQ8RpSJk6pjgEPvjgg3RBPMft27dPf9aCCIiACKxNBOjKuHz58vBSGq+7mH8LY5mai4AIiIAIFJ9A0ieqqyEXv4iu6dtvv32oBH4alvSjopCxdOnSnCJFOKCe/3wpQLigkfKI+5JnXHyY5VPSoviws4sPtT5hcquWCyQAu2pnmFOEcOaw5x5YccSlvLVKqlnRuU92t+DAzTbbLEOAwFGPYkIsOB4bP5MpO9rcuXNDdw0e4Pjg4tR98cUX4XOuqILZ1fOC8HD4zv2tdHyN9dtwvVhcRteP9Mo6FvIJC8lrz3d4U75kJTm/NfU9G3TENnbd3dfnq4rWr0ECG220UcbZ3n777YzP+iACIiACawsB+vx+/vnnNm7cuLXlknWdIiACItDmCIwZM8beeuutvN0w8Is6d+5sNTWZEfrRj4p582hI3mOPPTK6aTQGVlqASI33HhXPufAwMUt86OdRD/v5JPGhMZzTx6ZFCGdqzjbDnD33gHvRlBYfpngOHO6xY8fGj3nnMQlJrh1Q0KqqqtKbevfubR999FFaOIghOytW1CaZzOXkT3h/rG3cuZNtseU6NmLzXlZesiJETKQLrWOB8yN2ROWujl0zNmWLKGxMqn7xM8w4R2MsKeC88v6rtnSTslDc6y9mJuxszDl0bMMIcG/XWceHsEnY8OHDE58yF1eX6DRzb30SAREQgdZDgK6CjBSF8bc8/l1dXRhv67lC1VQEREAE2i6B6BNxhe+//77tuuuuoWs865n4jY+GPxbzn5HHD98tabFLe/TjktsasxwEiNR8j3x4zYshAjk5JGQ3Fx52Wyk+dG3MaXRskkCNswyREM7WnHHaYO/3gHvBPWkqy07CyGeUrnfffTd9SkIvk4ajzstHjGaI26KQgDhBGdkWnfkoPGRv5/Oee+4Zvgwd1uuc3lxVVWJlNbUOOisphy/MdtttF16MWGbEi+SXiP1mzJgRriOXsMD2aCRkeeONN+LHvHP2e+WVV+pMnpn34KwNXEPkt2Tgl/2s+h4ypNHiRtap9LEIBOguww91tiE+kFWY508mAiIgAm2NAII7rWa8lMbIRa5xk002aWuXqusRAREQgTZJIPobdJvAGMmI3GaMjEHEenyHvfPOO0OkG37fzJkzw2ACEcgll1wSIuEQoevy4+L+9ZmXmPu/qU/c6X3dIx98VIa0lfvIDVu7o7ybd7vomV6rhSIRgGlg64zNWafN7wH3gnvCvSmW5XKkKPvBBx8MpyD8hm4T0UpK0sExcVXeOS37f/zjH23hwoX28ccfh4f71VdftQkTJqxyTHV1rcIVhQm+EDz05ESY8p/xtvu2vfxzlS2rKrfKquW2eNniUAbiBv2ZeCHiC8LL0YYbbpgeXoYQojiEYnl5eWixGT16dPr8iCyIFQgmXDPRGjiYV1xxRTpKI73zygXCjQg/3XTTTe3RRx9t9Pi3Uayh+NmfzvYvc63I022Tfnb3I3dnn76gz9zXXEJMQQdrpzSBZJcgooGeeuope+mll9Lbkwvsi1j3/PPP5xQokvtqWQREQARaGwG6XiSt2C+eybLrs5zdclefY7WvCIiACKwtBHhPRYCIQjLXTW6+0tLSdGNxHISA7sfxN75Dhw6hITdyIuqBZMQkaY/7IEoXw0pC4kkavrN9xYE4yC5CrNqoXYzzrhVlLF68ODjl+S4WtjA2Z51hfi9K/J5wb4plDK9y2mmnrRIxgPOPEjbYs/8nQy3pCxTDLmMdDj744LiYMUdM2GGHHYIggMN+9NFHhwR+8+Z9eQHz58+3Tz75JIgNfCGIPkAQGDlypH31q181hIle63Sw4Vv3tI/enxumubNm26MPPWoocA899JBtvfXWYT/2R9Ej6SVfsDhaAV8c6s01sW3EiBGhnpznjjvuCGIFoUVs32uvvTKuIX7gBSdGcnCOyZMnh1Yf2PTq1asoI2Jw/XNXzLdOHdvZnNkzw6nr6t4S65ZrjnBDa1Uy2Uyu/bRu9QRiCNqAAQNsl112CS1/F956sW2585eJQnmWCGVDgOA5/7//+7/VF6w9REAERKAVESBXEWG7vBckjb+N+Rozkvs1xTLnzW65a4rzqEwREAERaCsEsn/HabiNkRFxEAIanGP+h44dOxq+FL+1119/vSFOMKohDcrFHp6+JDXWHd0PPPKhKhH9UOHdLrZz8WFjvwUlzX8bGBakXbt29s1vfnOVyrA+TvyxxMkuJLR+lYJWrkDtwfmgzHx5EWjl33HHHdM3MbssbuRZZ50V1Cb6lZ988snB6c3eD7YwhrU587T5veCecG+KZQyvQhISnF+uLVoMzeG6UbVw3OtjiA84vxyPQsa1M/HQElHBC0tU4HDwiE6gK0ffvn2NKAn2IXJi2oJpNnynHnbPHZ/aRde/YakBJTZl0kwrLSm1Qw45xBBz7rvvvlC/0R7ZANcY6YDQQNcLoil4VhANEEKi8WVj4vr5Es2aU5vhle277757qE/cN86p86hRo4whQ1OpVBBUYJOMYoj7FjqPUR+U3XloZp+mTbbbtNBiMvaLLfdwzu5ak7GjPhREIEY/sHP3/j3shXdftM8rJtq+394/vHg/99xz9u9//9u22WabUB7PWnO9kBd0QdpJBERABOpBgN+z+LcqHhYjF+Pn5pjzty7mpWiO8+ucIiACItCaCfA7TiNsbFzGL2J0DNYNHDgwfWk00h5wwAGhgZhtffr0Cd0yaIgtppWkPvXiJmUVOdQd46186pK1vpk+4ghi99xzT2gBz64G4dI4wXfddVdwovfbbz9LjjaQvX9dnxkLNTroURFK7v/www/bFltsERzrZNLF5D4oR4T5jx8/3iZNmhRyCFx33XXJXdLLMIa1OfMM83sS7s2XqQIyNjfkA2oXCUbiw0cZn376aejSkO9a2AeH+fxrL7AvlkwPxxJ6nhyyEOcXxx4HndZhuKGica54fGSJODRo0KAw3AutyBxLf/plVcus/+AK61JWbhXtym1Qp4FWUlpiO++8cyiH8riniEwIAuuvv34om38QHkiSwlCiOIQIHIgasY633357eKGaUzXHFvl/qdKUzVtQG51BeZw/21ANic6I3TrYjlhSjCRc85bPt86Du9mMBXPtrY/fClEQH732YXYVVvs5tsazIz8kMVHMag/UDnkJIFzFyJlPzMOQD+5hVSP9S7prJ/veud8LzwPiGj/kRJ8cc8wxdsEFF+QtTxtEQAREoLUR4O9J0hiSOPnekNy2ppZpsKCRg7/r/M2X8LumyOs8IiACrY1AbCylcbgu23bbbdObYxQwDbw09OLz4COynigJum/QyFssK0mN98iHJYnoh44e/bCpTwNqT0Efkb333js45WeccYadeuqpwdFnKwrJ1VdfbVtttVVwgK699tp0vbh4ohF69uwZXuhvu+229LaLL744hC7j4LH9sssuC2XijDIl9+UghIWrrroqOJ25+mV369YttIgzhunvfvc7o6vAr371q/T54sKvf/1rO/vss+PH4EDwh5buARgOBc7EDTfckN4ne4FhJHHAv/Od72RvSn+mvj//+c9DuAp5Bs4//3z7xz/+kd6evQBrmJuzT5vfE+5Nanp6TaMW6L6AIRIQRsPLBCIJ9w4nmwgDWn+ffvrpEEHCg8a+v/vz7+2Pr//Vvug/35YsWBKiFog84CFEQODhRqDAiY/CDQIBggNs6baAuEHyKlqPcdw499133x2OHeRiBNajyzJ7ZtRUu/HfY2z5wFIb++nn3kWhUxAbKCvmk6A8zo9x7igy8NzwbPDF4ZkiwgK1DnWP+/vmm2/aws6LbcnMJbbdTtsHESIUsrKcuBz7TfE5RlFQX55nBBW6O5Bz4aSTTlqlO0ssI9eclyXqCLd58+fZxC+m2PJ1Sj2/SjsbN2WcrbNZYcoi5XB+EiHSL4vrhytROdmtVrnqoXW5CfBiixjF9xuODzz5gC3qU232rOdFcSHMepRZh54dw8Eowi+88EJYRvDiedTLcG6uWisCItC6CMSouny1nj17dr5NTbae31dEEH6jeREuVnfIJquwChYBERCBFkAg5m2gKkSKb7nlluE9N1YNnwwfP2k0FPMejK8bG5LZjl+I31EsK0llRz+s5y3ytMZ74zXqx0EHHRQEhNdeey386P/9739Ph6HjoN1666325z//OTjuP/rRj4LTSuXOPPPMkDnzscces3PPPTeIEbGfOw7djTfeGI7BkaKPP0kM6ef///7f/wv7EgKC4fiRofPwww+3Y489Ni1+hI15/jnssMMsJtdI7kK4PeJGbO2PzmbXrrXh8D/+8Y9DXbPV/2QZp5xySmi9T67LXqb1PFkGyzjAMQoge39YB+bOPmncm1T9ekQkD89YjsoWK4kmwNGCLX/QEQx4qBAUiDjgvvPQISrM7zDfOry5yC7YeUP7Yuy08BKA4MP2qVOnBuGC+8mzgOMfjWvlYcViVxaUtBgpgQjCuXn4yc/w1ruf2sLpy22DoZ7cZFB7W750RVDdqNfbb78dnHfCgKIhPiAsUBcEEL5YXM+HH34YvmCIIUSfELFAfyZswYJaoYm6raheYUurajPDxjKT8/XWWy/cL5JzItDQPYXzURcc/vfeey8s18fxRNChnjWuNSytrlUlaz5fZOXPLLY5b88sSNCgDOqE4ECXEq4TsYXEnNzX+tQneb1arn1OEbCYqv2RSU33ezSym6uDnp/k9fY2Y0xtBBDdcjAELtgPGTIk7/jK4ioCIiACrY0A7yy5Ws5Yn6sRqKmvjwYL3t8w/hYjvPP3XiYCIiACIlAYAXw2GkLx2aKREwKfL5cl/Vi24yvm+ruQ69hC1pXYjMzdarw1vqZ/7TqcZpwaog9QTYhUwGlMGq37JCA87rjjbPjw4TbawzYQD4gC+P3vfx+GTTzqqKNCTgS6L0Q7/vjjQ3++Qw89NCQvJGcCrfRETWA4ath///vf0N+a8yJCIIBEASHskOMfnG2c3qTyw25ESCA2oOpg5BQgkRxGNw9C/GJCw7CyAf/gUJOwI+mM49BgdAvIZzCHfYY5ghAB4Q2xjTUS60WjBeHJJ58MIk2y+wFOLKIBjjZO7hMvPGmzqufZ5nv1tE2H9wiH44xzjUxcFw4/TjHPSbbh+BNZQf4JnHY+03LBsJvUgRYN7sXihdNtn10G2jZb9bQFqeXW4fNU+EJQB3JU8GVBTKClmSyuLLMexggU1JuEl8kvFtuo22abbRbq+sI7L1jZ7hXWa/3eVpPySBNv1I6hRNmJVTgf9aVcniXOy0R9eLa5Jrrh8J0oNAkh4ls836QxkzzlylJbNmq6dbpvma23vI/NmT4njLRRl4DAaCMIaPxY0B0pihGwoG4k+WyO1qns+95aP8fM73SdGrd0QnhubLF/+f47y6ORqq1qcVX4XeJ5Rh3mN4pnhN8jRDSZCIiACLRFAjj9xXzxrC8julHKREAEREAECiMQI6Kz/WCOxo+Khj+TbTTS8n6Lv5P0HdkPX6hYVpLR/YKhN/v6VOsvBweHk+MsYqgfsfUvViDpvLEvDmEMl0/ui5JC6HK0pIOOY8ofOCy2Vsf9iKRACCGRI3kUUL3J+VCX0ZWCoRNjC3zcl/qf5KHzRD4gEuBk0l0DyOecc04YkjHZ5z9vxEIsMMccVuQnIMIgGuei3GTZcVucwxz2GUNy0g2DaMf8DfXx8HrN4UBLPoYDRV1pUSB3BkICDjjsiBjoPKfSzjhxY/vgnTlhfyIfCD9nYpn7HUWMZJQF54BfHAkDwYLnIylUoLxRj0037GfPfTjFqhYtt6r+ZVZe3S6cizLo68kzQW4JvjQvrzwv5fBCxDbKxilHgIjCAxE1CFqcn2tjeeYYH3GCR9l7HC1auCjkiwgn8n+Sjj9fSL68dJ9J1veZ0Y+GyAcSYfHcc904/sljY3nZc54BRAtEqHk+AoZ1KrWe07uG87Rv19522XWXILTVJYBRBs4u0T2LOiwJ3Vp43qgHyiYRIs3ROpV9ra31M1E8PKOIl0uXE2bm4sP0Kuvap7v1GdA38OWZiM82zxq/HXyv+e4U8hy0VjaqtwiIwNpNoDnFbfLuJI3os+T7ZHKblkVABERABGrz9w1a2c09H4/om+G38/6L8Y6LxciIpG/H+mKJ0T72BsWtNJJOEkW/UuBANKDrRQzXoDK5ujbEw+M8ihI4RdFotSZUuT6GAoPg8IMf/CB0DWB0CoxuH/kMh4B8C4xSkcuOPPLIsP3RRx+1I444Iji11JPWcqIvCGmPIggiRkNGFmBYy+jgUweWaYmv02AOe+5BNO7NPBchihxpSMs59xahBF6IDTjdOPu0olNfWuvHz5xoKyZX29/+/rH98TcTQsTCiy++GB5SBAGWiZbAKctlvCTQTYDsqjjOtDDHBxxx4p///Kfttttu1q9PbReY/73yha2Yt9zKp5QFcYP7gNDBiwbdLBA7xvtzxMsI0RPUnS8P14MzSJlxGjZsWPiScB18eSbOmmQLF8+3Xr7f+DHj7J3X3rFJEyaF+mXXn8gYnHrOHwWI8R8/ZVO/mBecUEQEEj5SN17KVtdnFja04PCc3XH/nbasssrsOc+pMXGR0V2oammVayKpkIOkrhFceGZxcj+c+KFVTpoX6sePBkIaXMlHQASSrP4EEKn4nXvllVdqswG38x/gSSvMupVZj3Gdbfb4WUH55dlDoCB3CjlUuCfcW34nZSIgAiLQ2gm0tK4N/M3L1YrHb7FE39b+tKn+IiACa4oAPlS2xS7y2euTjejZ24r1uTa0IZbmfmBy5AtajXEQ999//9D9gqSThRhO21577WUXXXRRGJkAp+pPf/qTjRw5spDD0/s88MADoVWYhJKnn356mHC2CD9PdmdgBAwEDrpRkKOBsH5GCMhldBMhb8Dll18eMtizD4IJAkSc6N+P4VzQskluBJJK4tzmM7qnRHHmhBNOsCuvvDI43IRrs0zkxeossK/1xb/cleiYVSNkvtxezyWuIUaooGLF5IUwQHjA0cfIY9GjstQOOnaAverOFw4/+6KMRTUsZk+l5RhnPa6PVaLFHkNIYhlnnX14maAcogdg1q6k0qbNXWQ91mtvVRPdOV9cmz+CyBeiGhBL6LrBKBjUnXojmPBl4mUJcQMxhdB5rgNHnPMxR6AgUmPWUg8l6Vpui2cvts8/+TxEIyAwUQeczmg4oXBAlImRHZ988D+7a9Tr1rtP7yBAsC/JLenSg+O/Oqc/viTRxWfKnClmHuDR+Y12QUihKwx9Wwe5SolohkgX9491inOiVfhOWq8Sq+i6TnCUaX2Pfbg4nuuRNYwAzxC/DR/NdDFhukc/YHNd5JqzPDwLPEcIahg/2giy/DYyPDDfj0KEqHCw/hEBERABESiIAL+rNGYkjYhZ/h7KREAEREAE6kcAvyhpyc/RP8RXzP7d5Rh8o9idPFlGQ5YzBQhy9dXm6wtl4YCR/AenHif/wgsvTCcCyneyGLpxyy23hJZpwsJx4kkuSQ6H+hjJJ7/xjW9kHLLddtuFFneSW0ajGwWOGxEM9E9BiKgr2uLEE08MDkQUVLhOuoskJ8rGKcShQ0BhZIxc6hH74VAjsMTwd3Je4JQw8gNlIrzQhWS1lsWf/VPuj6fqHkVltcXm2gHnifB9Wn55yBBfcPi5FiIhyCtQ1bXGbrv5Y5vf1xuC3TEjygCnHSEhhmPGxJDsn8vYj+N4WcDBQzwgwgBRIkaavP7uNBu0bheb40KCDW8XzgU3nD2+BCSv5PmjHMQIBAe+BDFig3tOVwv2Q4hCnOI5JPICAQhBrEMP9/o9JyZfLo6jiwX7IVggoESjbl/5ylfC9XGeJ158ws/niR9rvBV85uwgwnCO2PWBSAuiQFZnPEucp2Izz5XhUSVde3YNAgndMqg/YgnRN7SsR7bJMhHU4PXWp29Zr/ntwr6IN0Sh8DJGNAjHcd35BIxkeVr+kgC86N5DThOelfFjXSTqngrP4rZT+vr6nuGZI9KGe819Ys73m2eM54lkvY8//viXhWpJBERABNoQgVxRCG3o8nQpIiACItCmCNCQvDrDl6KhtzmsLOOk7qCFPvIrV+Kg0fLPsH9MtPqhRjNaBBZby1fuHhzLuIxjR64GWqpxnHDYov3hD3+Ii2HOSAXR2BfHD8uV64FycACjxX3j50Lm9LOvq689NyRZLoIFSTZZHw1RJYausJ7W9+R28lUQZYEDnUz4EY/POQfRl6eo3QWhKlOsynlofVbSyg9nHKnBgwcHJ53jcabpJoBDy8vGrA7LrGLzDtZzcUVwzBBqWB+3J7vY1HV+hBvYoJoRBYAIATtGmujer51t6s/+y5/Xtmb0+qQkiD50u6C1Pz43CBycF2edqAMEDJ4DolVikk+2EzaE0MH9o4sEAtL8OZNtaftltuHE9W1Rt9oQJLqaUA/2wYGMxr2iqwj1DaLKzGk2rjxlJVt4borx5SECgu4n0diPqBqc2D322COuzpjznUFhhHvFJBdC3GqqagJTroOuKJRJXdiPiJ9ssY5uR0Q7zPKkIEs8V0a3HqXh+onEINoD55gRGahPLgEjo0L6kEGA+8OzwDOxYr1qm1/iit+0Gtss1dEWz6q0GQvnhO8LzxTfAZ4LIm8QqqIhXPCbV9dzEPfVXAREQAREoHEEkq12jStJR4uACIhA2ySAj9cQK9hvbUjhK4/JFCC8y3PS2cWhw0kk1B6njlba73znO7bTTjsVfErCltuC4djVZbm2EzVQL0No4B4kDVHiS+0muaVeywghySgF7gsiBPVmPa25CE44sThjnTtU21QfgmPhzCobsLSrlbUvCw4wggB/+HH+Y7QLggCJP6MRdZA0WouJssABx4HjOJ4rBJDpPrTn0ull1ndIR+vcq9xKJ9dGMyAqcJ4YkYGIQZg7IgYONnXfZpttQpQEy9Ex5DyxKwaqHte9oP1s6/yxJzrdqKulKkpDmXR7oJ50CXn22WfTTjs8KA8+XOsG63sEzMTZtv5yH5azW+1oGFEo4HiGLSWKpC4j2gIHFUFl2uKPbVn58vAZcYRnhNwmlBXnuZJrwSOIMZ4PpP+APlZdUxq6pdAthvVcB2Vw/UTiZAsYddVvbd/G/eFZ5B59sugz69O7k/Vp196mvL/Iers4hbCAkIoRacN9iz/OPKPhvvi2en/fQ4n6RwREQARaFgH+VmO8E2AI5UTZ0ei0JnNEIOjyvkm0H+8l/P2nLg19qQ4Xo39EQAREYC0hkPzdJN9djNjmt5yI8qThZ+EPZkf740dRTlxfrPwQmQIEUfRZkfQXXHBBSAKJ+ICTU9dIDskL0XIDCOTgX+MN5jVFGPVkzpw5wVGOLxY42jhTCA4kyMSJwrHC0WKo0mVlldZ1frkdv9sge31M9/Dg8QASZs5+dIegWwSGGBFfVHDOeVgxzkXuBspDdBjk3RA4lueICAjEhQN3bW/j5yyyJe2qrdSd6j6du9tYjzQg0gGHnC4GOHsDO7lY4dupNy8gbOOaEAuoO+t5NvnyIIhQV0QzbJ3+U2xYux4230ES7cC+dNOhXiQPZD+ec5x8zoWYwfVR7rp9XTRZVGbdrbeXuTy8ANENBcGF8Hu6dDAniiFfBAQvbNSnQ48VXrcuNqR/X7MlfUO3FEQS6sJ1wIT7gdCSNIbfZB3XN7BfV+tVtYFVLquNqECMoT5cN4IhXV34YfnlL3+ZLELLdRDgpZaX6/BseN6TzuuUW9/OHW2jnhU2+Ys+4TvB88B3g2cEwYI5xrOIeMH9494RTZHvOaijCtokAiIgAi2CAAI4f8MR8vlbSvfM+Dedv1Gxj3BTV5a/e/xt5D2C94aYLJx3Cf7GkfNIv7dNfRdUvgiIQGskQC5E/Av8tPgbjh9Pt3m6ZuDf4ENFozENgYF32myjyz6iA37Gx97gusJ/g4thmW3r3pU914gLtOzhpEp8KAby/GUE9tnpBAggKUIQCQ4SUQcYzjB/xHHyCStnouUcB5ZtOMyzZ8+xqvkr7FVv/cc5w3Dco3OPiBCjHigrGg88okNsDeah5jw4+7QwcxxGmQgglUuq7ePP51uJaxbzfMjPCVMqwxeDFx7KZX/qxzIvIXxBWMecFyHKRsjAqB+fOTfl82Xhy7R+h442c9G84JzHL1dUAaM4Qr0xzsGXjeN54elsZdZ+aSoID1wL3TOIjqBOGPWKDmxYkeMfroU6dixZYjXLamzajKp0NAi7w4XoBcriPjFP2p577hmcXBzgJUtX2KIltfeMfbgfSYNJTA6aXK/l/AQQd+DIfayurLaKdmWerHS5TZi8ODwL3D++FzzXPBc8Z7wUx2ebknnW+CwTAREQgdZOABEeQ1xFoOe3L4quUdhv6mvk7x7CL0Z9eGHmbyWGOCITAREQARHITQChgXfXLu1Kg++Hj4cPz/suPgZ+VBwogBLYF/+pv/tC2Y2g0Ydj/br9vAG1SFbio/99aQz3SORdkZMeMopEHFniy5OtuSWcB5T0pOEs4GjWx3A+6Gufz9EgCiBGGMRyUZqSOSvi+lXmMId9cshN7k03H1qyyyp713sFf7gJJecPOg8T10JLLteCM08oP33gMYSI7uVdbWn5Cnvlwxm2ZPnC8AKAg0Y3AkY44RhGAODFAOcaxxnDkcNBRwTgXOwHEx5ukkT+5z//Cc42LfW8UDz9zjTbYcOeNmt6pZV2924uPkRlcLT9OEY84YvC8W9PmR7qyDacbBJmkrCRa6EO7Ie4wHlw5jkvih3zJ5+fYuOWzA/15JzUlyFYEWT22WefILiQ/4KWaxRC6o04wnyWD5G5aOkyK2+XCt00SI7Js8w5eQnivNSHHCH5DJEDmzWjk42Zt9Bmer04DvY8G0RzkAOCbiGsj+JGLI96IQrxvE6fttgRzQ37cD94GeS5gz9zPtMSLyucAC/Z3AdEhBoPPhk31b/HSypt+hTPF1K5NKjEPGe0DPI94RnDeJZ4KYc90RM8OySjlImACIhAayVAd0xGeCKyD0GeOb9zRAfyd4q/V2vC+LvHiGfMeXHmhRpxnVGfzjjjjNAAUp/uwGuizjqHCIiACLQEAvg0vKN2Xqe3DRo0KIy6FyPAGcIYX+3QQw9NV5WGNXy/pe5XxHfcuJH1+DG86/bp2y/8TYjbGjN3STkxtOSylKWm+eQjFhbTfvOb39j111/fqCIZnYBw+YYYCSEZUhPD8T7//PMDSPrD0PIdt7Ed55QkgDgld911F6uC/fa3vw2ONQkHUZKSggbOIX3u+SONkz9y5MjQes6BOI2MiEG5dRnMYW9+D9Lm96aGSO9a3z69uiELOLax9YDjo/OEE0sYDg8f6hZiDc73uAmeFNKrUjHAu0gsqk36ifOPk8vDiJMbIw2y64OyxoTxIPPg4qQjTCBg4HhzDkSIeUtW2McTFtg8d/I/edWjLrosDqIC9aBOiAksw5h7h+PPCxLlEmKEUf8oBuAEUjbXh9PI8vq9e9mCnotc25mfvlaORcSgjykCRxxtBScUkQkuCDIvvTXbengXjPfGjgnn5Ly8gCEWcF8ZppbnqC7jJY5rpm7zF1Ta/IXLwjmJwiDKgm4rGNcKpy233HKV4uhqQTnm3XGm+zEIKzyjvBTybHH93BMilWT1I3DYYYeFe8vzaLM9CaWLYR9WLbBeQzrYUv955PkgjI3vD6IUz1uyD1z8XnHveFmWiYAIiEBbIMDfeqbBnsiMKIjsPsNr4hpj5C1/z2NdOC+/xTEqY03UQ+cQAREQgdZEAB8t/m7y20njJnN8sly/5fiJiAz4XhyXbfhVvO8WKwquxLu2Z1hqgvudmTkEM7Y35MPf/vY3++Mf/9iQQ9PH3H777SEfQHpFgQs4aueee25QzDmEHAYMmUmfGJzMK664IqhAOJ44uAceeKDde++9AXBUgWjxpgwiOXBGGBmEkTHi9h/96Eeh5RrHFYeXP4zkFMBoMcBxT4ocYUPWPzCHfYb5vanBt83sKJOxS0M+UB8cWhzgmMeBBw5HFl44WDx8PZa2sy7Lyqxqg+VBAIAXDnMUA7Jb6nPVhRcEnG/EBx5sWlbgRvmcq2/XgTZoQEU4tMrzGnywtDZSge4dDMMZjWMQSPgC4OiRgBIhAKGDLwRfKLbRWkO9cOYRS7gX/YfsZCvm+TCVuy4L14gjP9JFIoZ0JQICUSMaLzs4opSBQjik73Crdv4p/4f6sp7zUx8mPvNiVpfjSas40RkIFe3pcuWjamDUj2O5DsriWmCV66XqyCOPrBW1plRbzz0rwv4M4UlfWFqEaBlCkEBQUf6HgLde/3Af+bHeaf0drWsHT7zio5S81nGBlbkIyHPHfWHObwTPGc9QFI44EfePZ08mAiIgAm2RAO8ILcl4T5GJgAiIgAjkJoBvQN6epPH+WojF7uqF7NvQfUpqaru+f3n8FHe2PvOPnvT917/+tZ199tnpbTiFqCY4rjiHtALj9JAMiOEVMVoGB7tafuWVVwbnjyRBOPlEQWBcFC3HOIaUdfPNN4f18TiG6CQqAQfxscceC9vOOuusELr/i1/8Ih3i/Morr4Tzcn6GxCS8P5cRxk99CEfB+KNFKzGh9Kg9dCfAonOJY/v000+HSIawwf/B6bjpppvSitEBBxwQ+s7gyOOU33LLLSFqAscRx5qEhL/73e/i4UYL68MPP5z+vMqCsw7MnX3SuDc1tWkbkqsbvRxDKHGoYpglDhUPK4aIwj2eM7fSerTzPBFveubpRbXJ9hBuuE4mwniigIG4kM8QdxAtyJ8AH6IGOBf8KW+rYb1t3HRvca72+PcNysO+KGxES1BXBALqSTncJxxFnHfuZXweWce9o1sFdcEhJJKA844ePdq6prqG6vXr3y/9heSFaty4ccGxjHWnfpSFw8l5OX95u8623969gnLIesQNngmWGXEi2Y8qlpM9J3yUZ66SiKM+qdD9BbEDcQvnl2eeMlnOFcZPBBHX27NDT/tkinfjcJGEa+UZ5DvAjwoRELnEi+y66HMmAcQj+PHMBCGyswsQG7goNd6jckbMDFxhzL3hmWAi8Sf3ABGC6BO+30OGDMksWJ9EQAREQAQaRYBuFtkv0Y0qUAeLgAiIwFpAgPfW1RkNz9lpAmh8xXIdz3tysaykZqAXhlMUbUnKSj70aYIFgeG2224LL95sRkzA4aO1GVGAF/fXX389DEV40kknhRJwygg1p7vEQw89FLbRDSHmW8AxJ/cATn6MTEB8iMchLHAcLeU/+MEPQplEE5CQ6Mwzz7QbbrghrDv++OONVmGEB+p04YUXhvXZ/7zxxhs2YsSI9GqcO5xryr7FhYNvfetbdtppp4U+3LTSX3311RkOKQfiCMfr4zP9EhFdcNpxPnAkH3jggeD4Usb3vve9jBtHt43YXYDjsw3WMDdnnza/J9ybEAGRXlm8BZx0hAac9igekFNhhx12CNdF5EanHp1t+vgltu9+61tZVVnog4mDHlt+meMEDxo0KDjCOOZJo+sE4T50WUFwwEFmH4QHDGcZkeC9z6qsb/fOVtGxzNqRCLVrbR4E6sY5YIpYgDDAsYgKLLOeiQgInrnoHLKOer399tvhuWPf8pQ7lJU1PnpEpW282cahXMQwolrYNxriEsY1xS/l4YefYO0qe1pZaW23B0QJntMnn3wyRDAgxNVlfE94TvhSd57iSbQ8rn/xNstC9wmOoyx+BBDLeF7zRVNwHiJwql/2XAX+I4ADTD0RcbiHRD8g7sjqTwAhh+5T/DZ8deiB3hVjRW0h3T1Sp9yThzpvfvcQirhXPFNEr/CMPPHEE+H7nks4qn9NdITCEeYbAABAAElEQVQIiIAIiEAkwHsC7xFJowGCfDz5/lYm99WyCIiACIhAYQTwU4jyxtfCr8o2fPViWUkNgQHZURAeAZF622yHTbYPL93ReSYPw9FHHx3OjWN4+eWXh8iCr3/966G/PC240Yhk2HnnnYNjH9cx55gHH3wwtCDGBBj8IYnGdhx+xAlUbxw3HANe/mlFjmHOOF+0hrOeHA933nlnLCJjjsOG0xCNVn8cbbphEKXB+NI43YXaU089ZQwPFSMccKhxiGGDGPPss8+Gbh6XXHJJukgcb+qRyxj5AtZG1EnSvMrh3nhQQDGNh4roAlpzcbb4jFBARAo8EQqYyC1QurTEZpVV2c5b97bf/214aB1G9MHIn0A5vAjg+OcK60E9I/KEexj7zEf1jC4gdDngxWLqF7VDfyxc4iMMzK22qhVV4RzUB2cfR49IE843wkUJjPMhSjCxjFNI2R/4EDEIF4gelI84xbn799zASqtqQ0gHbjzItt55G+u2TrcQjYNgkXyRoWsGzx4CE3XABm60tw0ZOMC6dukUvpzUC7GCqA72W51RD64B4a5DZx/WZPcuNnb+ONtimy2s/8D+NnHSxFAeybXyGa3zCGbhe9VvndCNhu8DdSGSQ/kf8pFb/XrY8ZuG8Bla277wH9kSP27BMlvYcYkN2G5gEBr53vC88H3mOeG7zfOGwJp8hlZ/Ru0hAiIgAi2PAO8xLcn4XeXvfNL4W8rvrkwEREAERKAwAtEPS/prNConP1MSAgT+Ntvwo7INP7oYVlIz2B3dzTwCol0iCmKhR0C85tPHKTvlxFNC5ANh5rTQHnzwweG8RCLg2NMSuPfee4d10bnkAw5tLsNBRwDAacMpw5LHcdEYTicWHcDwIfEPgsPdd98d+tXT8pjMF5DYLTjISQcR0QEHAwGD/vMvvviinX766UE8SB6Xa5ks+CQrvPXWW9NRFfE6SVxJpAOREXQ5QZCIRgt9zjB993FSH7mf46zNmafN7wX3hHvTFAZvcgYgPnD/EBAQjxAK4I3zjkBw0B5fsTJ/AP9060cWa4cTjAPMH38EAZwxHlYe1KRRNlO02F0HRxmDGy8R7DNjtjt11WW2zVY9rR2h8DuVhqgGuNHtgGeBOuP0DXVxhDwUOIK8lCBycA0Y5SGmsD/l0mUIgYPnbNb4Wda7Ww9bgXrn/5emSm3Y0NpuOeHgxD/UFRGMyBZEmvh8lrbvZRMmTgnPGg4n277yla+k830kilhlkcgajPpUpFywYGjPke1s+uzpQbwbN3ZcCOO/9tprVzk2ruDZ5YeCL/+G/YcF8QM1kmvGEY7fnbi/5vUjgJjDc0O0VefuFZbq4+FrFWU2c+NFNmPS9PD80eWIZ585zyPRVTzLMWStfmfU3iIgAiLQsgiMHDmyZVXIa5P9ftHiKqgKiYAIiEALJzBo0KBVahgjHuKcHRAd8LF4H6aRPRndTmNvsX6PS2rcd6se7mcckFWv8e4YP5eyb+52jP3jH/8ISRQZupCWcRzAH/7wh3bjjTeG0HtC3Qs1ujt87WtfCw4uIgBOXqEWHUH2p/WZIS5p8SZE79hjj81ZDNti9w92INydyAsiJzAcCISD1V0DyhHOJpEZ5LCIFh2PpCLEcjIaBEcVZz3bUpOc8fPupDvrDPN7wT3h3hTLEAmi8QCRv2Gw58ZgfXSgcKoQIHjoeMBYv+xzz/8wb6nd84+x4XAEgaiW0YUBh5ooB64xRsqwY7xXRK/wMMMJQQBnmZZm6kD0BCLW4spS69Gtg7359izrUlNmC8uXBoGI8hk2BiPBJ6IIIgP3M84JgY/dJngeqDMiCdfGaBlcE2FE1GGxr585eYZXzscVLy/1Lxhjn9bmLQkLK/+hDIQNWCCYwIN64+DTQo7AgYhF2fUJu49RMF27dLX2y8utdFgXmzBirs1eMsc6965I5yNJ1iW5TEsQItEg/xFBIIEP0TcIbDxvCDL1qU+ybC1b4M+zyfNdPtvDH/p7XhNPXmpDKmxWu7mhqwviHM82vytR8EGE47mQiYAIiEBbJMDf6vh71xzXR8LlEJm28uS8nyQblpqjTjqnCIiACLRUArGRPykexBH7khFlvL9mWzwGX6oprYSm7RrPPVg9wr2yikQUBENy+iAEG0/f0LbouXnoOnHMMceEusRK4YixTLLKQo38D4gO/AH561//GhyoQo4FHAn/+ENI7gKEA7pD4PzSIk8rfi7jj2byDxd95G/x3A9EP+BUks+BPAB1ORD0D99///1DtAUh8Di0TChEOCJ0QaFbBs4gQsVVV12V4Qji5Ce7gVDP1CwEHp8z0ENy6E2/B9wL7kk67IADGmnxgaIeOKtwwVnFmaJ+PIQ4ttwXrhcnjLwCQ3YaZu16dbB7Pp9iK7xbCMIB/OMLCS8GOMMk5ct+IWAfLF477Ilq4DyUE8+JeDRrfo1VrFtmPcq91Xmc52nwqIVYZ8QSIja4X9QNMQMBCfZR2BnsggP15ZlEoOALxjNCqzb7MW/3YY317t/bprqYUV1ZbV0rasUvIltyGcID+SF4xmGGIIGIQFIshBeSStYn7B5GCDXdyrt+GVI6pLPNOshs7JSxBY1ecdFFF4Xnne8R10d9EEJgjxhTn/rkuua1dR2/HzxDcEToGrntSCuZWNsVyL8MNn3TRdZ3cN/wO0HUCROiJd95RM3sZ39t5ajrFgERaN0EeC/g/Yh3gWxjfXMY7138zcP4m0eXufo0XjVHnXVOERABEWhJBPCLYm67ZL1i42hcRw5AfCZ+Z+luHw1/MdnYHtc3dO7NfC5AeDBA9Xa+sJlPYQ1r3eZ5NwyPgjh/5P/ZwvEL0i3NvKjTl51QdZy7XApKbQGr/nvNNdeEKAL+eIwaNSo49avu9eUanEAMJ5W+iXRxIOT+hBNOCENm0lJN9wfyQOQynF66fcTEGQyZiWBB1ANOA90v/vKXv4TPuY5n3X//+9/Q+smNINM918/0zjvvhEM4P10saDmnpR3n/rLLLksXR70Z7jFaylMelLyIAOHX5ozTBnu/B9wL7kkxLT5gOPA43NQVJ58knkQp4LwjJiAQkOcDp5aw/u8cebrtMmgn22b94Vb58eIw4gj3mymZc4CIhBj1QL25b0RLEOWCeIDIEZMoIhKMHDkyCEPxy1DRdV3r1M2jAqpStvTlJVZdsSK8aLgUE8oiEgEBgutAmEieizIoE0GALxj3if1IhDp69OiQN4HPX93+IJs7f665tGalJbkFq/jyxbXxBeRcMEGQQQTj/jLM5fe///2CBIN4DxEGqCflduvazQb33cA6VZZZ9YR5tnH/Da3/VgPjrnXOKefkk082RsVANKNLFMJG8l7UWYA25iTA84tQyT0mygGmnmHERQhPRlm5zCNmfOzjvuuHnDF818m7wXeH/YkKi8Pu5ixcK0VABESgFRPA+eedAWuOKDv+7jHSEL/RCCMIIc1Rj1Z8C1V1ERCBtZBAMtqBd9tsIzI9+tlxWwwywG+Kv/v4cEm/K+7bmHnaC6tx/2fFbjVW+oUXNz7hFE9N2d4DRtq0B7zV2CPWY4wESRjpk47hoJF0EsOZJTIgaYgO0ei+QB4FHOHYDSJuyz4u+RkhgT86sWsDXUBwAmmBjDkAYjnJOfkmcE6JnsBpwHFGcCAJJQ5yrhvC8YRiR6PLSLIucX2c00qOyEE3AVjEbgNsp77kqiDxJpaa58LDSz494YydbYb1rwn3gHtRbONBoosErbuIONFwoLg2hBws+bDymYfv+COPY9EeK60dFhWhImmPPvpouE5Y8pASocB5iBiIxmfW49gxZCuRCyzzQoFTv2n/TeyDCZPssGMG2FvXz7buG/SwMZ+MsUkTJ4VoA54rjmd/kv/hBHJfub90CeL6iMTgnjLnmtgP4wuGqMIIE+XV5TZ5/GTbcpMtwzbKi7lIwoqV/8CDLyXlRkNsi9fUmEiDHTbf3u4a+6B1W7ejDd3GE7Wu40N8dqp/qBMvYI8//ni6/ghGsoYRQBDjGUVYjM9w1+kdbOYG8630+UW2fPxSe3HMRDvuuONCNxgEKYSge++9Nz0EccPOrKNEQAREoGUTyBdhuiZrTSMU0YcYjVeN+Ru8Juutc4mACIhASyGAH8R7bDR8HRrgkoZvhY9FtAP+HhHr+Gk0AkdBIrl/Q5e/jHfwaLsa98mq93CJoWeUGVYWO8EjIR7xyVvtcaCj4Wwz1df4Y5YtPhRaRvIPIU5AXeIDZbIPEQoxCWA8D+XkEx/iPvWdI0QkxQeO/+c//xmSdIakj4gPRD44S3OmGebMYc89sFUjHzN2bcgHxBfUq4svvjjkRkiWASNaFegyEfkmla+4b+wSET/HOYIGjhsRDoSl47gTlp58NuiyQJm0Fp966qlBTKLbCudkP877xSdLbAtPRHn3TfvY7DGTbP8D9w5hlyQchS0iFJEsRDoQERFDMHG8R7oDiWpH+dSFbhvREB8Qr4h4GTZ4mHe9+DK8hGuiK0O2IUpEEQJufBERu+I5s/cv5HNdYfp9Oq9bSBEZ+/AChuCC8UJGZIascQR4dmJUzua9N7Nd+uxgPz3uR1Y1plYgojsRP8j8iGOIXTIREAERaCsE+LvCbyCjYSHQY435u1csLvwdpyGHv+US24tFVeWIgAi0RQLxNzu7Kx2NzEkRAd8m/s5HH49u9jQQ02WcYAH8LRrviWgvpn0pQHipISHlLj7f1QWILnlEiKdchJhezCo0fVmHHHJISJjZ9Gda9Qyc+6abbgrMSpxdTvHBWcO8GvZFTDyZrA3RIqO9O8Lhhx+e7jrCdhwowit5AFHBouNOa3+2xS4nyfU41bwYkByRkHSUMyIi4vG8yODM07pM1EP8UuDE8aJDme+9914YWWJh95S9/4471C5gDBzQ3jpUpGzoxkMtjgzx5JNPhkSgJB5F0EBw4IUkhmLyRYk5KhA04rk4D5EoOOucl2uOXzi6niSNfWPd6daAmMK+5JXg+uK5ksfUdxke5ePMFi+pCtEP9T0+uT9dMUi+ecoppyRXa7meBGhZiz++e/uoPuR44fm65MSL7OITLkiXxv3nx5vnhvwxxx9/fHqbFkRABESgLRDg73qMiuR64kssf8/5G9kcxnlpfODvuMT25rgDOqcIiEBrIRCjxTbffPO0v0NjM8ICIi5Gw+UTTzwRfLTY8BajvGm0prcCfiMBAwgVyb8JxeCQIUBQYI1Hca/Y2+c7ugDROUuEmOhREP/1/vOPuI841nf27tGtxZorg3O3im7WcWqHwAx25gwzzBnDOjBvwgj65EtDsiUeZxjnGhEivmRk1K+AD5RNFxwezv322y+MchKTesZzoaDlMrpKENpDdMPSL3wEDs/NUJKq7Rm0dMVyW2/d9cJhlEOUA+IGYgb5GYhgiYkgozCAiMK+UUiJ5+SFBWcd45rpLkOXlCOPPDItVMR9o9BCnhBaxB955JEQ+km5SY5x/0LnURBh/y4lPhTnSpv30VT7xkHfiB/rPefaGlOvep+wDR4QRad4aTxXWDZXPvMCzHMTRbR4jOYiIAIi0BYJEP3XEiz5d7wl1Ed1EAEREIGWSIB3WoQG/B1SBGBEPxA9RmMuFiPJaLDF1yFKnUZXurxHoys7PhGCRGykiwMMxH0aOk/ngEgWUNPftYUDvbLVLjS87CLEooTTPCNlKW/JL/Wu8dV7eqv9Jn5kRfJoLacJLPSIh498+p8ze9vXLkhwZKcgPtSyhnlzGY41UzKRIeGXSeNBPuecc9IPdNyWdKqTAgaCBjkbokWHLjp6nC9abM2454377P4XJ9oWW9ZGXyxbmKlwxf3icdlzWqaJwGBOfZPniPvG+hK1kc+Sx+Fo8qVDvMjuxpPv+HzrEUlizoYpn02xfvvWdhMpn7BiFUc3Xxla33QEGNa0EONZuPnmmxV1Uggs7SMCItDqCNCQQBJn/qYnu2a2ugtRhUVABERgLScQ/S8aU4koxxchqiFG8BI5jiE+4P/EJJSsu/DCC+1f//pXECuycwSyvTG2SgREKMzX1gx2x/hgb53f3QWIHlmREO5Ip152EeIuj4Z4wis90Y/K9BUbU6fWf6yzgAlsYASrVcQHZwrbwNhZZ4w+0sQEohMeT0NkQXaSzdhFIe6zujktwx9++GF6NxQ1un1knyu2pGSv58DBGw21T/uW2HvvzLaqch/qsF1Zuq9SUhRInySxwPkJIYp9mxAg9txzz8QetYt88dhWH6OlmySm2a3h9SmDfTk+CjAnHHG8zfuoti/TcM81IGteAtyb7B9XRoLJZySgbOzzkK9srRcBERCB5iQQ/059/vnnGV0zV/d3uDnrrHOLgAiIgAjUEuD9NHaroMGVKAYizVnPlMxfhg+I2MygBEnDV0q+58ZG5uyklclj6rOcW4CghChCfNUjHfZ1AaJvlgixzFvzP/EuGf9xEeIen7/kTvdsPy5rt/pUptXv69cOA1gEJs4GRgarpDlLmK5wtgg9a1J8oBpJJzxGCmS/WOCMJR11HuTsoQbjsfHSkmE5dHnBaY/n4mEn1wPCRPZx8fjZn82wkiEV9uf/fW7Pzp1mU8dNiZtWETLSGxILyWtgOfnFSeyWsUhdqGPSGDY1aclyk+sbssyIHBg8tyndxMbd92ajul80pA46JjeB5PPOHiQ+lYmACIjA2kaAv510NeM9IL50wiBXw8HaxkbXKwIiIAKtgUDSdyEPXuyGnl13fKCXX345REDEXHnsE4+Pv/vJfBLZZTTkc34BgtLcb65Z3wWI/X36qnvXQ30qzTrNHG/hf762pb/0fvel3/TD5mftsxZ85JpLPDE+DELUgzMxZ5NhsHOGsIQpbGG8po2XC3IpYLmEhbrqE49jHxy2pChBq0kUIRgFA0ueiySR5GbId879d9vPqj9faAtG9rR2+/W1CZMmhDLyCRZhY+KfpHCQK/qBXakP54/GMuuSdt555yU/FvWlK2bypu/VXdf+y/501nWrnD/j5PqwxggwpGs0nuOdd945ftRcBERABNYqArys0hc42TVzrQKgixUBERCBNkIgigm5LgcfiAgJBhNI+kdbbrll2D02JJNPgq7KSV8rV3mFrqtbgFhZSk0vFyDcR1vxde82sIOLENkjZCx3L9qHlUw95tEQ//TpAXfGX3Pf2gc0aNMREUQ8+DVyrVxz6b9qGYQhNmGSNEa6cHYwhCVMm9MYOhOLSUiiwsU6HP7LLrss40GMD288jv3iOpYx8j4wTizDVmIxsoBjeHBJHonlEweSiRiXLay0Puv0CfvnEyzCxsQ/5GiIrdhxnticXvzoI0/MUYchpMTj47yO3eu1iS8645nHfBbZ4ke9CtPORSVAV5vY9ahYIWZFraAKEwEREIE1SCB2aeSU/C2Mf9PXYBV0KhEQAREQgQYQoMEz+jDR18tXzLe//e3w/ksevWg9evSIi+k5efF++MMfpj83ZqEgAYIT1HRxEWK7WhGi+kB3MPv7lH10lTvd3uUg9fBKIeIe3+U5d9KJpF/WmGq2sGP9Wrgmrq3UrxHRhWsO3S1gkDQYOSuYBfHBGcKyuY3WDUSH6AhHhYt6xaiApMAQBYqk8pXcznEIAIyEwagWbIvOdTzXpZdeGrplxIQoHJM09m83emlYVbK4xpb7fwwTs7ovTiyD4wkfItQoXlfclpyPGDEi/TFX2ZQTIz1gUVdZ6YLqscBQqLKWR4Af62eeeSZUjCFXi33fW94Vq0YiIAIikJ9ArveC/HtriwiIgAiIQEshgC/DiBcPPvjgKg3G2XXET2PfZD7AKF4kfSKOo3t9MSznKBh5C/a9a4a4EOGiSI071SWvuiP+nu+d3dWg0p1w7+qeGu/O+Zu+7zCfBnsEwCCfD/Cpux+TLV7kPWkL2VDt1zPXpwk+jfNprIsOn3rdyCOYHe0Qq0yiyS2c1/a185pVxaS4Z7PMk44wDxijXBCpkFxPxXh4SSiJITLEkRyiKBE2+D+UwTYs27GPZbJPXTZoG09EafNs4T0T7MUxH9e1a85tfIlWZzHDN9eaz5KRHvn20fq2RYBnM6n+tq2r09WIgAiIQP0I8JvIaBhYDMetXwnaWwREQAREoLkI0KX8iSeeyOgun68u/N4z4gWW9Pv4HH2i7PVsa6jVT4BYeRYc6RrvHl0z0EWIjVxLeN03fOJTcrhO9sUx90gBogVS7LOBH4MQwdzzu9X4UKM1jLjYjp1boFV5vb3XQGrqymuY5HMXHsznq1xrsvo+vKb5KJbVIzzywbvQcK3WINLJQpt++bvf/W4I1yGCAMGAFmGGbKEvfBQOmP/0pz8NURK33HLLKpUiAgHVLDs6YpUd86y46tTL7ZA/Hm1nHPHtPHs0fjVdLIhsYMp1DZyBa+c6s/NBNP7sKqElEyAPxO23326HHHJIS66m6iYCIiACa4QAiZN79+5t06fT2iITAREQARFoLQTw5WIDcCF13m47D9N3S0ax8xmfiAbm7PVsa6ilPNyitsN+Q0vwiPkSj3RIve3z9905/9wLWujzfMamCj8l4kMQIVyQ6OvrevpnJqIE2uc7uInXV/p1eE6H1Cw/j08pH4UvNdUjHVxAMRchwnXVRYvrIkJkC78mFx6qB/oxHXxqRUYIehQbqPb999+f8+HN3i95iXVtS+6Xb/n7533frv3ltfk2F2U914UQkbzWohSsQlo9gcY+v60egC5ABERABBIEbr75ZmPoYZkIiIAIiEDbJsDvPQ3J2d2QaZClW16x/KbGCxDxPixyAYLuCZ7fr+QDVxnonjDP53U57BzbzndAdOjtu/Zi8s8eFRG6aXTxuU/W1eed2NcnBIzGGPUhssHrawt87lOY073Cox1spgsOM30+wycXIyw7p4OvyjDq080LHeaCw2YuPGyyUnigvjIREAEREAEREAEREAEREAEREAEREIFAoHgCRATqERGpyS5CfOzzT92ZJyKC6AHyQhRi5IagCwN5IhAefLKu/rnClzv6MhEFPtUQJYEgwdCWTBzHhHm+hjCt8DkTgoNHN5jXjSm1xOcLfZrv9WPIUCYXIEK3Co4txNp7nYjiGOLTMO9qsZHPGVazlUU8FHKp2kcEREAEREAEREAEREAEREAEREAEGkug+AJErNFyd/TpxjBu5UTSxgm+keiCZQWKEbGsOEdowPFfKUJkCBBRhGBfRIQoPqwUIKL4EIQQ1jXEyv3cRGkM8Ckm1Rzky951pDXkeGjIJesYERABERABERABERABERABERABESgGgaYTIJK184iDkE+BJI4eHZGa4mIEiRy/8GlxA8WIZPlNudzJRYc+LjKExJnexcKjHMJyXz8pERkyERABERABERABERABERABERABERCB1RJYMwJEshokevQoiDAyxjSfk1iZvAvkXGAigWWh3SCS5RZjmS4cJJIkH4VP5vkoatb1ZRcbQsJMj35otgSZxbg+lSECIiACIiACIiACIiACIiACIiACzURgzQsQyQt1oSEkg6SrBqKEz80TQabm+dwTWIb8DCyTr2GxTwzr6fpAo4yAizIvhCSRnlfCunmR5JnwRJI1vhwSYHqXChJihpE5Ovs85pbwRZkIiIAIiIAIiIAIiIAIiIAIiIAIiED9CTSvAJGrviSMRHBghIqVCSLDZxJH0pVjZSJJW+pKgueZINdDKuZ7iJETCAaeE6KGvBBMZT51cNGB5JXkj6DrhE81CBAx0aWPthE+k9hSJgIiIAIiIAIiIAIiIAIiIAIiIAIiUFQCLU+AqOvyEBzowoEIwagWKwWIIEIgPiQEiJqVIkRagPBRM4L4wOgZCBIyERABERABERABERABERABERABERCBNUagdQkQawyLTiQCIiACIiACIiACIiACIiACIiACIlBMAspuUEyaKksEREAEREAEREAEREAEREAEREAERCAnAQkQObFopQiIgAiIgAiIgAiIgAiIgAiIgAiIQDEJSIAoJk2VJQIiIAIiIAIiIAIiIAIiIAIiIAIikJOABIicWLRSBERABERABERABERABERABERABESgmAQkQBSTpsoSAREQAREQAREQAREQAREQAREQARHISUACRE4sWikCIiACIiACIiACIiACIiACIiACIlBMAhIgiklTZYmACIiACIiACIiACIiACIiACIiACOQkIAEiJxatFAEREAEREAEREAEREAEREAEREAERKCYBCRDFpKmyREAEREAEREAEREAEREAEREAEREAEchKQAJETi1aKgAiIgAiIgAiIgAiIgAiIgAiIgAgUk4AEiGLSVFkiIAIiIAIiIAIiIAIiIAIiIAIiIAI5CUiAyIlFK0VABERABERABERABERABERABERABIpJQAJEMWmqLBEQAREQAREQAREQAREQAREQAREQgZwEJEDkxNL2Vj7zzDNt76J0RSIgAiIgAiIgAiIgAiIgAiIgAq2GgASIVnOrGlfRa6+91r773e82rhAdLQIiIAIiIAIiIAIiIAIiIAIiIAINJCABooHgWtthhx56qE2fPr21VVv1FQEREAEREAEREAEREAEREAERaCMEJEC0kRtZyGUgQtx///2F7Kp9REAEREAEREAEREAEREAEREAERKCoBCRAFBVnyy/siSeeaPmVVA1FQAREQAREQAREQAREQAREQATaHAEJEG3ultZ9Qa+//nrdO2irCIiACIiACIiACIiACIiACIiACDQBAQkQTQC1JRe57777mkbEaMl3SHUTAREQAREQAREQAREQAREQgbZJQAJE27yvuioREAEREAEREAEREAEREAEREAERaFEEGiVAVFZW2oMPPmjLli0rykWRn6CYIzVMmzbNRo0aVZS65SvkxRdfNM6Tyz7++GP76KOPcm1q1nWzZ89u1vPr5CIgAiIgAiIgAiIgAiIgAiIgAmsfgToFiMsvv9wYOSHbTjvtNDv77LNt7Nix9vWvf90mTJiQvUu9P1dXV9vJJ59sTz75ZL2PzXfA448/btS1vvbaa6/ZfffdV9BhP/rRj+yVV17Jue/f//53++tf/5pzW3Ot3Hjjje2ll15qrtPrvCIgAiIgAiIgAiIgAiIgAiIgAmspgToFiCOPPNIeffRRmzlzZhrPkiVL7LbbbjO2bbLJJrZ06VIbOnRoentDF0pKSoKQ8a1vfauhRaxy3AknnGCfffbZKutXt4Kohttvv311u2m7CIiACIiACIiACIiACIiACIiACIhAgQTqFCA23XRTGz58uD388MPp4p566ilbd911bZdddjFC+REfFi1aFLbT3eDwww+3nj172hFHHGHjx48P66+88kq74oorwjKCBa3wo0ePDp9x9vfbb7+wTLRFTJB4wAEH2NVXX21bbbVV2P/aa68N+/AP3TS+8Y1vhPNw7KWXXmrnnHNOentcoEsH+2GPPPJIWD7rrLPCcQgddJHINsSVX/ziF/af//zHBg8eHMSXGTNm2De/+c1wHHW/+eabMw57++23bccddwzbzzjjjCDKZOyw8sMvf/nLcC2bb765XX/99bl2WSPrFixYsEbOo5OIgAiIgAiIgAiIgAiIgAiIgAiIQCRQpwDBTscff7zdfffdcX/797//bSeeeKKVlpbaihUrbPLkyUb3icWLF9thhx1mG264Yci70Lt3bzvqqKPCcTjcDz30UFhmGEi6bsSuFs8++6wNGzYsbJs4caIRYYGNGzfObr31Vvvzn/9sF1xwgdHVYcqUKWEb3Srmz59vdLE46aSTggCRjNIIO/k/lDV16tTwkeUHHnggiApEdcydO9eSokY85pBDDrEzzzzT9txzT3vsscesR48e9rvf/S6ILE8//bSde+65hsjwxRdfxEPC+X/+858H0eK5556ziy66KL0tLnAt1113nd10003261//2i688MIgisTtTT0fM2ZMU59C5YuACIiACIiACIiACIiACIiACIhAXgKrFSC+9rWvBUefKACc+DvuuCMdVZAs9d133w3CAmIBgsIll1xib775ZhAodt11VyOvAiIFkQ/HHnusEZ2AvfDCC7bXXnsli0ovn3/++bbDDjvYcccdFyIxOJYyEBAQD0aMGBHKOv3009PH1LWw/vrr209+8hPbfvvtjUiIKIokj0Fw6NOnj3Xt2tU22mijILSQC4Nkm0SExJwYyegJrhnhgqgQojbuv//+ZJFh+c477wwiCnXebbfdQr4LoizWlD3//PP2z3/+c02dTucRAREQAREQAREQAREQAREQAREQgQwCqxUg+vfvHxxmumHQ/YIIh6233jqjED58+umnYV2vXr1snXXWsQEDBoTPRDvQJWObbbYJggTCAwksiZwgioAIiN133z3sm/1Pv3790qsoDwEkRh6st956GdvSH+pYGDhwYHorZRNFUYhRR7qCdO7cOXSh4Jiampr0oXTLiIb4wjVXVVXFVWEeoydgw/SHP/whb/LKjAOL9IH6plKpIpWmYkRABERABERABERABERABERABESgfgRWK0BQHBEId911V+h+QZeMXEZ0AROOd3KitR/bf//9Q9QDQsUWW2xhBx10UOiO0LdvX0sKDbnKTq5DEMFefvnlMMexjnkjwooi/UO3kmh0+SAShJwXdPXo0qVL3BTmdB2JhrBCjox27drFVWEOB0bFSLKhO8qaMs5/9NFHr6nT6TwiIAIiIAIiIAIiIAIiIAIiIAIikEGgIAGCbgfkbMjX/YISiRAgouCGG24IkQqjRo0ycj/MmjUrnHDkyJEhESXJJRnxYt999w25Ew4++OCMCq3uQ1lZmZ133nkhD8XFF18c8kyQyLKYRhTHW2+9ZdOmTQvFkmQT0aG8vDwMq5mdxPG3v/2tffjhh2F/up4ceOCBq1SHZJkk4iQxJ/knEDWuuuqqVfZrqhXJKI1sAaWpzqlyRUAEREAEREAEREAEREAEREAERCASKEiAwCFHKNhuu+3yDrlJ7oR77703JFrs1q1bEAZI2Ej3C2ynnXYK83322SfM99hjjzBHmCjUYhcCEjiSa4G8FHvvvXdIDFloGXG/WFb8nJwjFnTq1Cl0I6HLxzXXXBPOgeOOsEKEQ9IYkpQIA7qJIFKwf7bF3BN0YeF4oiZOOeWU7N30WQREQAREQAREQAREQAREQAREQATaJIGUdwn4MplBkS5x3rx5IWKASIemMIbdpBsHQ30uXLgwdO8gCeTPfvazop6O7hKxK8Xy5ctDAkySU+YyRgQhR0VFRUWuzel1lElZCBxr0uj+Ee399983hgSViYAIiIAIiIAIiIAIiIAIiIAIiMCaItAkCgEREE0lPgBm2223DV0YNthgg5DQEZHg1FNPLTqzKD5QMF0/8okPbGdY0tWJD+xHmWtafOC8MhEQAREQAREQAREQAREQAREQARFoTgJlzXnyhp6b7iAkeySfAmIHiSxlhREYM2ZMSABa2N7aSwREQAREQAREQAREQAREQAREQASKQ6BVChBceocOHdJDYhYHxdpRyqRJkyzm31g7rlhXKQIiIAIiIAIiIAIiIAIiIAIi0BIINEkXjJZwYaqDCIiACIiACIiACIiACIiACIiACIhAyyEgAaLl3Is1UpM999xzjZxHJxEBERABERABERABERABERABERCBJAEJEEkaa8EyOSBkIiACIiACIiACIiACIiACIiACIrCmCbTaHBBrGlRbON+oUaPslltuaQuXomsQAREQAREQAREQAREQAREQARFoZQQUAdHKblhDq/vggw9qtJCGwtNxIiACIiACIiACIiACIiACIiACjSaQqqqqqml0KSqgxRN45plnNPpFi79LqqAIiIAIiIAIiIAIiIAIiIAItF0CEiDa7r3VlYmACIiACIiACIiACIiACIiACIhAiyGgLhgt5laoIiIgAiIgAiIgAiIgAiIgAiIgAiLQdglIgGi791ZXJgIiIAIiIAIiIAIiIAIiIAIiIAIthoAEiBZzK1QRERABERABERABERABERABERABEWi7BCRAtN17qysTAREQAREQAREQAREQAREQAREQgRZDQAJEi7kVqogIiIAIiIAIiIAIiIAIiIAIiIAItF0CEiDa7r3VlYmACIiACIiACIiACIiACIiACIhAiyEgAaLF3ApVRAREQAREQAREQAREQAREQAREQATaLgEJEG333urKREAEREAEREAEREAEREAEREAERKDFEJAA0WJuhSoiAiIgAiIgAiIgAiIgAiIgAiIgAm2XgASItntvdWUiIAIiIAIiIAIiIAIiIAIiIAIi0GIISIBoMbdCFREBERABERABERABERABERABERCBtktAAkTbvbe6MhEQAREQAREQAREQAREQAREQARFoMQQkQLSYW6GKiIAIiIAIiIAIiIAIiIAIiIAIiEDbJSABou3eW12ZCIiACIiACIiACIiACIiACIiACLQYAhIgWsytUEVEQAREQAREQAREQAREQAREQAREoO0SKL3gggt+0XYvT1eWTWDq1Km2YsUK69ChQ3rT2LFjrXPnzlZaWhrWLVq0yN555x2rqamxrl27pvfLXmD7559/Ho5Lljdx4sSwvm/fvpZKpdKHzZkzx1555ZWwf7du3dLrkwuLFy+2l156KRyXvQ91WrJkiXXv3j19COeaOXOmUTYT11FWVpbenr2Qfa2VlZVGGT169EjvOn36dHv//fetU6dO1rFjx/T67AXqOmHCBOvSpUuaXa7y6rqmWOaMGTPs1Vdftfbt24fy4vpc5RVav1hGc8znzp0b7gdsomU/e8uXLw+c2Rf+JSW59dBczxnH8jxw79Zdd900f87FM/nuu++GMuGZy3gOxo0bF/ZJPi/57kO+9bnKbo51xeRN/SdPnmw8txUVFenLyce1kO81heT6vtT1DOS6pnRlmnEhV72K+WxzabDO9Xzy2/3GG2/YrFmzwnOf/H2NSObNmxf26dOnT8b3Ih/r6urq8D387LPPLPuYWGZzzov5mw03fj+Tf0O4tly/MazP98yzLdqnn35qY8aMsd69e6/ytyfXM89x+X5/YpnNOc9+lmN9G/KOkO/6KTPXbwy/52+++abxtz/f395c94R3Fo6N7wH83eRvD+uS7wd8N5J/65uTM+cu5m8J5WUz5dq5n5ELvxdwzceLMpLG371870K5nvt850uW2ZzLud6nct2DfL+/2XXP5s12nvlc77Cs5x0P9r169couKv05+7co+15xL3lXiu/cdX3H0oU2w0KxWef67c739/D/t3cWcHYV1x+fKPqHIsUpCUFKobhrkAKB4g7FnRIo7u5QoLhTtAQrxRoktLgUaSkUKFKgWNDikkD2P9/ZPS+zN/fed5/lvbf7O599e21m7sxv5s7MOXPOmaJjWhpPAVRZ7T5rDM2Ct559abJdJL812oXN1xhf7Junfaf1eVnt9Ntvv3VPP/10iM98IKa0byV+Xul5+oy/0lQUvuUR4EPYaaed3AILLOCuv/76kF8a2RprrOHmnXde9/LLL4d7f/3rX93666/v/vznP7t9993XHXbYYZllO/nkk92SSy7pbrnllhCGj/43v/mN23///d11113nVl555fAh8/CGG25wG2ywgXvwwQdDmNNPP32CdG+++Wa31lprub/85S9u7733dr/97W9DGD6kVVZZxV111VXu8MMPd7vssoujI4BWW201d9FFF5V+fJRplFZW8rTiiiu6xRdfvBTljDPOcLvvvru7++67Q35vu+220rP4ZMyYMW7rrbcO5edjh9LSyypTnNYf//hHt+2227pHHnnEbbXVVgG7rPSK5i9Of2Ke03mdeOKJbpFFFgnth3entT0G7mHDhrkRI0a4Cy+8MNQ7A1YaJdsZHee6664b2vFNN93kfvGLX7gvv/wyRD3ggAPccccd5x544IHQ/p5//vluSdJuNtlkE3faaae5W2+9NcRlEIKy6iHrfreEm3TRCLzvv/9+t9RSS7lDDjmkVKosXIt81ySS9r1ktYG0MpUy0sSTtHzVu23TPrfYYgvHd06/Sr/HRB964YUX3AorrBDa6cUXX+y23HLLgGsMyR/+8Ae33nrruZEjR4awTz31VHichfXnn38evsNLL73U3XHHHW6dddYJQtU4zWad17vPpq5WX311t/zyy09QpGQfQ4CsNm+RmYzRD/3ud79zd955p1tzzTUDw2vP09p8Xv9j8Zp1TGvLaXVQdI6QVn4rW1ofs88++4S5w0MPPeQ23XRTd99991nw0jGrTmi7O++8c2kecNddd4U4N954Y+ne8ccfH76JUmJNPGlEX5KG6ZFHHumOOeaYEgYI5qEsvGJImKOBKXOhzTff3NG3QHntPut9cbrNOk/Oz9LqIK//TeY7De+s+d5LL70U5ji0aeZHe+65ZzK50nWyL2J+Gc9xmSPbvDTvGysl2ISTemOd1ndnjYdFxrQ8niKr3WeNoWnw1rsv5R3JdvHYY491axfzzTdfGH/efffdbnzRZZddNkEWs9op82XmHPQPF1xwgdtuu+0c30natzJBolXcyF4qriIxRWldBF588cXA3M4+++ylTDIYnX/++aGR2U0kszCF0003nWNFjM7uhBNOsMelI5NjtBn22muv0j2EGEwekPIioT322GPDoIUwgUGQTnPIkCEOQQXSWwa1WWedtRSfcKx+fPHFF+7ggw8uCRlgABdbbLHANBJ46NCh7tlnn3WLLrpoiHvUUUc5Op2ZZ565lFbyJK2sdOx/+tOfglDGwvMe8oE2yBxzzOHuueeeMMm053Y86KCD3EorrRRW0+xeWnpZZbI4HMHqiiuuCCuaSy+9tDvrrLMCE5KWXtH8xelPzHOk1KwE0nldeeWV4dVpbY82gODB2sNPfvKTsFIVtwcip7UzBg8GcNomBFPGYER7+OlPf+p23HHHcJ93UH8I3YxoW3TcrC6j+cCE49FHH3ULLrhgZj1k1Y+l2cxjvfF+88033a677urOPvtsd/vtt4eigVEWrkW+axJJ+16y2gDhk22Ie82memOd1rbR8Npvv/1KQlEmPWg8zDXXXA4GCrx/9rOfhZWOAQMGTLDiPnz48LAaTz9OP0nfzXuysGaljjEBJhqink466aTw/TYb73r22bThX/7yl0Gwg5A3prR6yGvzFhfmduGFF3YwzkzQvDZp6EPseVqbz+t/LF6zjmn9dFodFJ0jpJWfsqX1MUzYwfPtt98OxX/iiSdCvw6DZZRXJzbhZyxg1W7gwIEhGosoRgim4/mK3W/Gsd59SRqmlAtmBIaKvoLv3DSmsvCKsYBJgfH9+c9/7hDoMJ4j9Mxr91nvi9Nt1nlyPpVWB3n9b5zvLLyz5nvMT+lj6S9YQEEDizGWuUVMaX0R85dTTz01BGPuA/4sEkJZ31h42MR/9cQ6q+/OGg/vvffesmNaFk/B/Dqr3WeNock5K7DXuy9NaxcsFvCDEAojPGA+zaIDgvYDDzwwzA+S2n6Ez2qnLETstttubptttiGYW2ihhQLfttxyyzVkTiYBRIC55/9DqgWhgWCEdCtJDDYIHhBMIK0988wzk0GCGQQCArQkrrnmmtJz1NaIb50qEjl732yzzeaQAvOBoBYJYb5gHy+DAYPkhhtu6D755BM3evTosELNahX5YdJtxDt415xzzhmYVhhP1NQ40jmnqd2nlZXOm8EgJoQKfMx0Yki4r7766vhxOIfZhbH9xz/+Ed5nAZLp5ZXJ4nC0wQQVK5hy61SS6RG2SP4I1yyiPlk1iVev0toekyEml6wGIABA68TaguWdyUBaOyOchUVgxaQVAQICBRM+oGp7hRfqIMmNCVU0JqVovqD5g+q0rSZk1UPW/TjdZp3XE2/KABN19NFHBxVoK1MeruW+a9LI+l7y2kCyDVlemnmsJ9ZZbRu1cTSymOzzXbDaaP0BbfXyyy8P6r1MaNEGg/k1YnIKmXov/S/YQ1lYw6zBZDLJo55ZuULw2gpUzz4bPNHWW2KJJboVLase8tq8JfDKK6+EsYnxCIL5tfEiq83n9T+WbrOOaf10Wh0UmSNklZ+ypfUx4IJpDOM+ppu0dcjaJed5dfL++++7Sy65hGAhjWuvvTZopIQb/h9zCphpzAlagerZl1CeNEy5z1wLbRI0BBlvmdPwfZfDi7gIIlkkYg728MMPh/GU+3ntPut9xGs2JedTaXWQ1//G+U/DO2++R99jxLxk4403Ls2T7X5WX2TPOZ577rlBAxjT6LxvLI7TjPN6Yp3Vd2eNh0XGtCyeAgFEVrvPGkPT8K1nX1qkXSBcZcEX4tvmO0dogEY4Wum0V6O8dgp2pjWMRjKCFIRt9CGNmJN1F79ZDnXs1QiweoAGBD4QMAtIEkzyRhttFIQJ8bOxY8eGSYLdY8JgavV0SEjVkKCzco3dPgIHIybUrPYxoWaSwATi17/+dXjMwBmHJV3useqEWQdqoggz0Fow8xJLt5oj5Tb/EwgZknTooYcGbYw4T8kwXOeVKS08EnEEKdtvv33a49K9cvkrBWzxE1ZjWOlmwomgivqMKaudWRg6VyZIMGVmD8kz7AJ32GGHYHI0//zzW/BwZCJG24LJY2WBzhghRkxZ9ZB1P47byufl8EZzCXX/zTbbLLUYabiW+65JKO97KZen1Iy0wc1y5SrXtlm1oA9mpRJtHQhBAcTqEuesAGGrakT/G9vNIwimPzFKyxOmNnyDCOTQEGBim7ZiYmm06jGvT0TrAKxQD09SuXpIa/OWBsIhtIRgyKgT6gqhPJTV5ov0P5Z+Kx/LzRGyyp/Vx9B/o8m4zDLLBO0/6gWyxYwYi7Q6YeIM48DcAfMjzE1jOu+884KQ28b1+Fmrn6d9t3GeszAlDCvuzIlg1tCOglGByuFFGEwuBg8e7BhDp5122mCKwf28dp/1PuK1E6X1v5b/LLyLzPfQ7MH8M80EuVxfZEI0VqihrG/M8tkuxzys8/rurPGwyJiWxVOAWVa751m5b5EwlVK5vrRcu2DBFN7HTAvpSzHpRniAVjqCVxZsjfLaKfEoP3zVsssu6+aee+5uvJelUa+jBBD1QrKHpIMK3SyzzOL22GMPh309jT/pV4HJHIwbUrVRo0aFcHTKSNbjho7kDI0HCIkgkrVf/epXIQ4TgUGDBoVn/DPzCVSHoFVXXTV8QKyAoOlgk3CeMdljYKTjwi4KxytMVNZee+3SygnhKiUmNpSfDgzGCu0PVuhjQurMJJPVScpPXhhMYkbAwueVycLYERVH7LrRKEHAkkZF8pcWrxXv0X4YBJCqovaF1kqsNUGes9oZzxBsIZVFYIWvkZiO9iv4pBf7MLDntFfaE8IEVN2p43POOcceB1XTtHooUj+lRFrwpAjeYMFEE0YAu0FMrFgRN0rDtdx3nfe9FMmTvbudjkXKldW20cgiPn4c6HsQ9OL7BqLPw88ARB+NxhfMrxGCBFZLTOhrmkE8z8oTQlTUO5kUo20Ek86ko12oSJ+ISSECCrT6MGFhpd369ax6sPKntXl7htkYPogQ+oAjYxeTvrw2X67/sbRb+VhujpBX/rw+Bn9TaKwxCabNo8GTJoBIqxOEpmaSx2oz3wFacJAxbsxp2o2yvtu4HFmYolHJqijmWxA+l4xpy8OLsKyiMv/DRBWzFQRtpMV8LKvd572PNNuB8vpfy38W3uXmeyySsWCClq6FtTQ5luuLEKJhHom2UN43FqfZyudFsM7ru7PGwyJjWhZPkdfui3yLleJdri8lvXLtAqEiwigj5gV8s/SdLGIMHTq05OOPMNb20ngt5hW0LYRcaPPhX814OEu/nkcJIOqJZg9ICym5MR2m0svkjUkbHyCEc0gGeQQICBJQ+UV1bZ555gkNnUkYzCUqkSaVw2Yfpp1JAjbNCA2IZ+kitcO8gNULCBMHVD1hxlkVgSFiUoGAAz8TmGTw8aJmxKoSgx/OkpIr3iGxgv+w8aJcqGdBqIPaignCFDpM8ox/Azo/yk9nh2oWxyTllcnKTRw+eFZsmHzBAGZRXv6y4rTqfQYWHIpRb2g+IOSiTVCXZgec1c4oEx0kWgy2GmDlRHpL26G9xJNXqz+YNKTCSNYhNFzQwICy6iHrfojUJv+y8IaBMwe0aCgh+aZds0JG2wcvKAvXct913veSlac2gTQzm1nlKtK2qQsmBqa5wKo6uw9AMGbmVJJvhH4U3xzWl7A6w2TDzOLQDEKzAcrKE301fTKTFr4n7JQR/rYL5fWJ9s0jUMbsinYN8wRxDuX1MVlt3tJlvGLCyrjEeMfYhVZVXpvP639ChtrgX7k5Ql75s/oYGFvqiTETx9j032jkQNa+Oc+qE8yRUNWG0GhDk8fGbhg3HFfDuLUbZX23RfptxlYw5RuHEH6hoQBl4WVYM59jjLQFJQQXaK0yH8tq93nvCy9tg39Z/W8RvPPme2AJM4cJBf2sUZExgbBJIVreN2Zpt/oxC2vybX1sXt+dNR5mjWlxHWbxFHntPutbrAXncn0paeeNUWg/MAbGi3AICxG28j3Cw6HFzjzB2lpeO2XugMCDPpg+FCFk3F5rKWtqXD9wdujXezDwA0+HX/HtVuf+I+/wg3a453cE6PArDx1+FazDDzgdfhIb7vuJQ4eXiHWLR7vxkrcOv2Jcuu8bbIhHXO/opHTfm0l0eJu7kK5n3ju4Jn6crp9Ql8IQ3wssSvH96lwpXf+RlO57TYVwn7T9qmGH7+hLz9LadVxWnnt1wg7f6ZTieOl0SI/yk0+vMheekR8vmCiFs7RJz2t2lO4n08sqU1xuv6rZ4T/O0o93W/rJ9LLyZ+Fb5egn4x3ezrFUDvIVtz2vMdLhNVZCfYOtN7fp8AKeDq8N0eGFMd3iETduZ14AVcLKcKNtEt+u7ehXDEJaVn+eWejwWhOhzmkzvnPt8ANhCJNVD1n3WwVr8lEt3n6wDnWQLIv36t/hnfUFXPJwLfJdx2nH30tWG7DwaWWyZ808puWrXm3bay90WJ9G/+MnFh1e0BrqAbz85D/0S/RZfkU/3I/7EuqTeLRtr0IZ+jewysPaT1ZKfSvfYTOxTXt3PftsPyELZU17T9zH5LV560tIgzGOa37edK6D/iWZdtzm8/qfZLxmXcdt2fIQ10Glc4S4/JYex7iP4Zo+nHZN2/ULFx3UFfetfefVCWMw7Z65C3XhNdZCXC8gCtf2DcXvb4XzavuSIv025fPO9gKmNqfzAoWASxZehjVxqQ+wBFeO5NUwy2r3We+zeM0+JudT5Ceug6z+tyjeWfM9bx40wdyEeUeR+Q559JppHcyBs/DL+saywk+M+9ViTd5ob8n5drLvzhoPiZ82piXrMIunyGr3eWNoFp717kvjMYp30k/Sj8bv98KqDr+IUfpuvUAhPI/bWlY79QLIMG8w/u+KK67olnb8rcTvrPa8DxH9ZF0kBLohgPoi0kBbRcYeCO+wpr7TLXDiwrepsCpkKxD2GAkkEvY4jWS6FoYVWHu3xcd2CdX6pJNJJHvYP9drhQPJIeU3W2jS9x181Q6s0sqULLeVscgxmb8icVo1jJ9UBvs1q1NUwPG8i+p5vSit/lhxY+WSNt6bKIk3zlbZQtB2QagGC2vfed91XrrJPOWFbadnyXJV0rZpn2gG2b7ecbnRzKKvs28m2ZfQP6BRZNorcdxknuyZnyyG1c2091mYVj4m+8S0b74e+U9Ll1UmxqrkeJf3vp7Q/9QyR8jChjYPxqzwGiXbt91PHmkDfBueeQljSvJ5O18nv9tK+m3ammeeus27wCINryTWhKFvSJtbZbX7rPe1E/7J/rcSvG08TJvDJjGoZExIxu0p10ms0/rYvLImx0MLmxzT0uowi6fIa/fJb9HeV8uxEX0pcwC0J80vVLKt5bVTNPsw38gyB6+lrHHcdGPzOITOeyUCyckUTGHMYOSBglMVfknCUUoyjWS6aWEsHVSCnq+0+QAAQABJREFU0qjek2ZUmU34wPv4kG13hbT3l7uXVqZkuculET9P5i9+1m7nmPfEhCmLqY3H92s5T6s/OtbeJnwAwyTeCGFsl4VqMa61fSfzVG0+Wi1eslyVtG3aZ1a/ZiZDVt5kX2KOsux5fEzmyZ7F/Z3da6djsk9M++brUZ60dNOYs3Lv6gn9Ty1zhCx8UA/mF1OyfcfP4nPaQHJ+ET9v5/Pkd1tJv01bS8MlDa8k1oTJat9Z97Pe1074J/vfSvBOGw+zyl7JmJCVRrvfT2Kd1sfmlTE5HlrY5JiWVodZPEVeu09+i/a+Wo6N6EtjIS55S7a1vHaK8GxikDQgJgbKLfAOBAJoJogaj8DSSy8dHJ5hVy1qLALYyIM3NoOixiOAw1Cvvhfad+PfpjfgkwP/MDjYFTUeAY2TjcfY3oDmFf0JTlBFjUcAu3DmJMkdQhr/5t75BpyyP/7446nCn96JSONKzZyE9g3eosYjUK9xUk4oG19XeoMQEAJCQAgIASEgBISAEBACQkAICIFej4AEEL2+CQgAISAEhIAQEAJCQAgIASEgBISAEBACjUdAAojGY6w3CAEhIASEgBAQAkJACAgBISAEhIAQ6PUIyAdEL2kCaU4he0nRVUwhIASEgBAQAkJACAgBISAEhIAQqBGBevgU1C4YNVZCu0SvR2Npl7Iqn0JACAgBISAEhIAQEAJCQAgIASHQegjIBKP16kQ5EgJCQAgIASEgBISAEBACQkAICAEh0OMQkACix1WpCiQEhIAQEAJCQAgIASEgBISAEBACQqD1EJAAovXqRDkSAkJACAgBISAEhIAQEAJCQAgIASHQ4xCQAKLHVakKJASEgBAQAkJACAgBISAEhIAQEAJCoPUQkACi9epEORICQkAICAEhIASEgBAQAkJACAgBIdDjEJAAosdVqQokBISAEBACQkAICAEhIASEgBAQAkKg9RCQAKL16kQ5EgJCQAgIASEgBISAEBACQkAICAEh0OMQkACix1WpCiQEhIAQEAJCQAgIASEgBISAEBACQqD1EJAAovXqRDkSAkJACAgBISAEhIAQEAJCQAgIASHQ4xCQAKLHVakKJASEgBAQAkJACAgBISAEhIAQEAJCoPUQkACi9epEORICQkAICAEhIASEgBAQAkJACAgBIdDjEJAAosdVqQokBISAEBACQkAICAEhIASEgBAQAkKg9RCQAKL16kQ5EgJCQAgIASEgBISAEBACQkAICAEh0OMQ6N/jSqQClUfgkw9d3/vvdH2ef8q5999x7ofvy8dRiNZHoJ//nGec1XUssLgbN3Rt56b9ccV57hjzsRv78X3u+8+fdeO+G+1ch9pGxSAqghBoBQT69HN9J5nZ9Z9qITdgulVdn4HTVZyrtz5/x13w1BVu5Kuj3Msfv+bGjlN/UDGIitBQBAb07e/mmW6IGzbXam73xbdzs081a8Xv+/TTT90TTzzh/v3vf7uPPvrI/fDDDxWnoQjtg0C/fv3c9NNP7+add1631FJLuR/96Eftk3nlVAj0EAT6jBkzpqOHlEXFKIBAn4fvcX2vu8B1LLacZ1BndB39+7k+Pl6HbwV9/Ek9jx3rbFkgRwpSNwS8IKnP22+4Pk8/5Prcd5sbt8XurmP51QsnP/bjB9x371zl+k+9hOs7cHrfIPoVjltpwIEzbVBpFIUXAkKgEgS88HDct2+77z99wo358G43yazbekHESoVTuPwf17rhIw9xG8+3jptj6tldfy/gZKxoBB2x4v6NSFZp9gIExvww1j3/wYvuxhdudWf/7RJ3zrCT3A4Lb1W45E899ZS77bbb3AILLBAYUZjTRtGqq67aqKSVbgUIIGAaPXq0e+6559yjjz7q1l13Xbf44otXkEJ60HHjxrl3R7/vPvnfp+6bb7718+nGs1d9/MR9sskmddNO8yM3y0wzur59pdieXju622oISAOi1WqkgfkJwoe7bnAdq2/oXBhk+/gJJR2kP/ap/7HxXW8DwWrHpD2D0DHHXOHXZ7EVXN9LT3XjfDmKCCEQPoz94HY3cIa1ugseOpvFeDTqfT0+ZZ0JASFQTwT69Hd9JxvkBvpf/x8t5b5947yQehEhBMKHkx852+23zB5uQL8BvhPxUYOkuuto+Uzet+tKn1t4HYVAhQgM9O1z0ZkXDL9Nfrae2/KWXUMKRYQQCB/uv/9+t8IKK/gpUeMEDxUWScEbjAB1Peuss4bfz3/+czdixIjwxlqEEG+/+5575bU33NixYxuc+wmT/+zzL9zo9z8M7597yCA32ywzTxhId4RAiyEgUVmLVUjDsoPZBZoPi6/oOvr2C5oO/ENAi5Q2CGrrfd2wwijhcgggiBi304Ghzp2v+zzC7CJoPkyztOczfJfQ2SjC0beMzmPXPbu2MHYdJP20n67wZZ/nZUjPhIAQqCsCCCImHfRr/51f6fje8wizCzQfNp9/A4d6e9fg0P1ofYR978ljxc/zcqRnQqAYAggi/rDBRaH90o7zCLMLNB8WXHDBsGrcOQ/yIxjjWIN+efnRs+YggCBi8803D22BNlENvfLa6+6Fl15pivAhzi/CD/JBfkRCoNURkAZEq9dQnfKHz4dgdtEfNdrxS1mmAeFnl/5N4zUi6nFNij2Vvv76a/fll186b8IUJiuNLidqdgMHDnRTTjmlm3zyyQu9LmhDrLpu8PcxbsPtMuPg8wGzC+dXTPvAOES2OHadPAamxIdL3rfrss8zc6MHQqD9EGiH/iBoQ/x4jeDjZeDMm2aCjM8HzC46NR+69wf2Xdf9mJkbPWglBNqhnSOE2GvJnYPvkhNXOSwTPnw+YHbR38+JEDgwxjb6mJmZHvqgHdoL0COEWHbZZYMfkDXWWKOi2kDz4fU33yrFeW/0B+699z/wZhj/875E0EFtLPXr19ebX0zjZp5xBjfzTDOEl5EfzDKkCdFY7JV6bQhIAFEbfm0TG4eTHQsu1TVvRMIPn9nYY9uAU2FGkZJ/9913bqqppnKTTjppmLhUmETFwZkYffvtt+7zzz8PQo+iTpM6MMW48nfO5QggcDjZf6pFulY4fdZoHFCjj51v0X8h0NYItFN/EEwx/nuJyxNA4HBynbn9JLzR338y/bZuBT0/8+3UzjHF2PH2vV2eAAKHkz/96U99M+8c7ybWsee3lM4StlN7IceYYtx8882uEgEEPh8wuzB6+dXX3Td+nrb2Gqu6eeYa4gYMaDyLNXbs9+7lV19zd426333x5Vf+vYNDdsiXfEJYzejYigjIBKMVa6UReWK3C7QfghcxfD7wkkYfG1GQ5qaJRB/hwwwzzOAlzJNNFOFDqClfYbyP9/J+8lGEOmYb1LnTSU7gsNuFN8vpbBS+YdA47Ie2jJ1zrNd1Tn70SAi0CwLt1h/0nXQ2v7vNe7nwsttFf/w+xN+7ffcNO+ZmSQ+bjEC7tfMFZpgv7NqSBxu7XeALAM2H0s+379J5aP98BtG9Gp/n5acnPWu39gL2M800U9gBpZJ6wOGk+XxA8wHhw1677ejmn2/eiSJ8IK8IOXgf7+X95AMiX+RPJARaFYHGi+dateS9LV9stekl/cj6MbsIxy4NCP8goLHXJVe6qx941H3pvffm0ZRetetXKy3rzt1lm65Fss74pXS70s9Lo12fYXaB5gOTkmYQ7+X9X3zxRTFTDLbmLLfNKltthirsahed1RmKxyn+Sfc5/DJ33c0Pui+/KtM2ppjUbbHRiu7M43fsFt+wsvTsWkch0M4ItF1/4M2sXEf+FoNstRlM86wfSDmOPPs29897/+7GfPNdbvUNnGwSt+AvFnHD9lrXhpnsY25KethMBNqtneOYstyWsbbVpmk+lPC19u5vnHfeee6+++7zOxp8U3qcdsLiADtc/PrXvx7fvrsCTpB+WgI97F67tRfgRxhlbaJodbDbhRFmF2g+TAytB3tnfOS9a6421N15930lUwzyJzOMGCWdtxICEkC0Um00Oi9I8jtFD+OPXbtfDL/4Svf1mLHu1QtOc9N7BrdzFIXJDixjt+NHn3/pDrrqejf84qvdObts7Z+NDxenH43jPkzPIHw+YHZRL0JK/dJLL7khQ4YUEyj4F/P+jz/OdyRXef58HfKHOirCla5q53qfwy/3kvUx7vlHz3XTT/N/3Z4HCVQU/qOPP3OHn3htiHPmCTumphfSrzyDhWOAze9//3u34447umm8bWRPIdQ9KRcqorPNNltNxWJC/ec//9m9+eabbrfddivc9mp6aQWRmbSfe+65YVL/s5/9rIKY44M+9thj7n/eDnettfzOLmXo5Zdfdo8//rjbZpttyoTs/rje/QH5ffvtt4M6cPc3ZV81pj/w7wvftfUH448jz7nNjf1urBt+7QFu8qm8P5qMcNz/+tMv3ahL7nIILIbtvZ7vV8an0y1edvEyn9BG3njjjfB80KBBPjnfb4kagkC92zmZZNybdtppg1ZfkUw3qp3TbmhLySPCB7QNr7jiitKiQ1o44mFucPnllweBxZ577pmaXq3tE42Nzz77LMwViuBVbZ9WJO1yYXpye4nLzlabRvh8wOyiVornhAMGDKhofsj7rx5xUykLcf5KN3UiBFoEAZlgtEhFTJxsdPp8gLtkHhgf0Xw4ZZtN3XT/5xnMlOdx+OmnmtKdvPWmXlvikQnSicPVs0wM8DhhvOuuu6pKFmaL+MnfUkstVVF6NgGpKFJO4HfeeccttthiYT/qnGDdHtlEqdvNmi98g+isvK7j+Ovrbn7AHX/oVp3CB94Two1/Hl9PP+1UISxxstIr3S+YZ6v7DTbYIDUG6p5WrwTAudihhx7qnnnmmdTw7XrzxRdfdLvvvntJ5TMuB+34sMOyHa7FYTnfY4893C677OKefPLJ4FMk+bzZ15988onbb7/93E03jZ9MVZqnP/7xj0GIUSTe3/72N7fPPvsUCdotTL37g5EjR4b+oNtLylw0pj/wL+3WH4y//uc9f3er7bJmp/CBvGWE4/7kU0/hVtt5zaAtkReOZCqhq666yk0//fRu3nnnDT/Or7vuukqSUNgKEKh3O+fVw4YNc9RjUWpUO6dsUPKI5gNCbDQO057H4aeeemq3ww47BG2J+H5avJBYBf+uvPJKR/8+yyyzuPnmmy8In/fff//gEypOBiz/85//lG5V26eVEqjhBAxqFbgkX98q7SXOl9U193A4WQ/tB+aESyy+mHv+uedcfB6/N+uc98eOL+P8ZcXJuk9buvDCC92aa67pTjjhhHAet6+seLovBIoiIA2Iokj1iHDYMjLYTnjE7CLWfMgK9+C/XgzxV1pg3mCq0bnoNGF6wcFlC2LGKieTBaNJJpnETnv30VYPO5vHeCz8NWYX00/XhVnK86AA42M89Ni//CzOuRWWnb/TVIM0c8KPf0mxszvvvDOseA7yq50xGZM699xzh9useL///vs9SvuBgj366KNhtXDw4MFx8as6v/baa90555zjdt1116riNzrSdNNNF+xx2fVF1AQEkv2Bfcf+iNnF5D/qqpfofugH7Npn+c1nPTPkr+dYeM5OU4069QcPPPCA22mnndxFF13k1l9//QDO9ddf77bddtvAnK2wwgpNAEyvbEcE8phktMSKOHv+5z//GYrOdp7EyUuzUoxOO+20IFg++eSTHX32//kFoqeeeipoar3wwgtBQMuuWGjH8U1cffXVbs4556z0NQovBLohgNDhL3/5S+lefH7UUUdVtNhRSkQnQiCBgDQgEoD06EsvlUbYj1SUI//sOpQ7uk4+5/rYEbe4VY882R17/S2d8TuT8OcTphfiVwAm0nsYR1axWNVCxXz48OHB10HRZEhjlVVWcTAvG220kXvooYcmiIqpQ/yrVZXdXoD6JZoMvPsXv/hFWIW3Z6zcUy4mCDCPQ4cOdUyik4TKJxh8/733ydBFN9xwQygTPh8aSUFSTj3CMVB5Xb9w7V+c+9yHPeGMG9ywTY9xJ/7uxs64ZDZKb4L4VRYGddgkgRtkgqVXX33VLb300kGVnftoUIA9dW3tChvVcs94jhr/JptsEup13XXXdffee2+Ixz/a5xFHHBGOpEvdXnbZZaXnee8lUF7apUSiE9pzEQ/d9i3BoPEt0SZ/85vfhHaFWi73oOOOOy6cs7uKxWHCS1mOP/74EObuu+8O25ORBu2bcEaU//DDDw+aFDxnGzPUqn/729+WsOYdMV1zzTWlbxRzh9deey1+3O2c7+j2228P98phTaDf/e53pW9w3333DerTcYLvvfdeELhQPvJq7SYOU49z8DzooINCe+Bdv/rVr9y7774bkv7vf/8byg+uv/zlLwNOMNH23N6PKQZ9GYy1Ef0CcViVajhZH2D9QXzk5XnP/bMHrhzlrtr3EvfAVfd16w/8xfi4pGHXFRQIrR1o6623DkJGzKwwIxo1alTYTg/NJ9o4uxwYgef8888fNOhg3Hh+4403lto2dUD7MOIcDSHqb6GFFgoTbtTKobz4qOwT/g9/+IMlFY6MAfZN8Zxvk2+Z72azzTYL76aP4prnt912Wyk+Ktn0M9wnP4TDTMeI9kXbj4lv9Y477gi3yvVDcbxKz3vCuNc5f2EO0/0HFsl7yWsY/gMPPNDRr/GsXJwQoOA/hBlotR199NGO/myuueZyM844o1t77bVDW6e9//Wvfw1CeTQjIDTbaOcx0Ra5R9uhH6U9GeWNQYTl/dttt11olzETavErPfI+m6PZeGK48X2cdNJJYbWd/NLeL7jggglewThIGnyHRow73CP9diDyO3z4nm7InIPdiiuu4I703zd9RysQ2qRW1yuttJLjR//DETrmmGOCxmkr5FV5aG8EJIBo7/qrLPd+BYpFKCT0HPln1yGh6Dr5/Lgb/uSO9T/oyM026Izvzy1+Mny4DqGL/WOSxIDKYMuAfsghh4RJXNEVWiaTTMwY1GyCjlOoeJAqlpPKQ2GXzwQYFUEGTLQqWIUz5urBBx8Mq3PYbzJBeM6r1m244YalCYu9cZ555gkYsNJtZAwtKx+NJJpDaA9dx/AuX4nhPo+67tsxfn7imTe5k/wPOvQ3m3Q2Ci4sfsqRx5XSVlttFVbtYfCMWA36+9//7nhmxPPXX3+9ZFpAe2LScumll7ozzjgjtCtWlKC8Z6gbwvBBtCmYAyZ/1B8EE3DKKaeEVa/TTz89TPIwkTDhRi1phxdE/5ikoQGy4oorRnfTT+1bQuiFAABG7fzzz3cPP/xw8PQNBhCYcY6dqcUZMWKEY4WDcr/11ltunXXWCcwa2C2++OLhGzPTFsp/6qmnBv8RF198cbBPXm655QJjd9ZZZwXBDe9/5JFHwvtgqlBTXmaZZUJ+EBQh1MkSrvHcnpXDGsEIeDMJ5Rtkgmf9AC+nTSCUpL2QZ+oRk4s0gVbIbA3/6AvOPPPMIIQ48cQTg5kLwhQYWJgK6gFc2fZtiy22CL44UKmOCaYaRgHcjTAtuueee8LWgXavoUfrxJNHe2nyftc1QocHETx4WmmbVbr1B+FmRrzwrMA/hEcQ2CGMMMdxfBus/rISjb18zMQjOHzllVdC27P+gfpnfLHv1PpaTLoQSNBuqT/GFdoSDBmUF5++H+YpFkDQdvl2afcQplSkRdun/7jlllvcAgssENoHeZh11lndxhtvXFKxh/kkHN8O/RZlXm+99Ur9DOknfQLRR7FlM2TlS+v/QoAq//WEcY+im8ZC8miwJO/bNRoJ/CD6Urtf7mjpljvSTiD6iiQtssgiQRvuH//4h/vxj38chL6EoY3QvxnRf9IXH3nkkWEcQPCFbx2oyPiGQPqrr74KaZiQw9Ku9MhcDCaWcZTxgjkS35aZTiEcZ+xh0QU/Gghc9957b/evf3nNyojoN+lD+W6M/vSnP4V7fEetTpRrk403cg/7Ocmhhx4WxqVTTz3FXeuFWM0mTC2MEDrQb/Kzc45GaEmIhEAtCPSvJbLithsCSPgZcCc8dpakwx0z4k8OYcOoYw92Qxdgj2y/UnrDLV7roVP4wH3ML7qE/Znp2fNKEWJFYckllwzRcFCFWi2T+XKmEoSB0WLAhJjcLbroomFlgkmkERO3OK299torMCP2vJojnTLMja1wMWFgtQFGiNVgaPXVVw+MGefsPU74eMWN+2hGIGhg5YrJNJNoVjhgHicKWaUlj10vP9FrOSBsGHn9UW6FZbxjQB/uxDNvDPcIEt8PUZLpJK+70i16YKWPCd+tt94aVg2Jd8kllwRscVQYr3jGacK4MdmxARN7WpgIKO8ZbZGtuWAmYNIRGjGJ4pqVGohJGXlg0kmdzTHHHGH1gPZXa9rhBV3/YJ6YTBoTEz/LOmf1nBWzTTfdNEwiYIJoYzDfEN+ZnVsa+FhhQguxagwTxmS3f//+QSiBuQu2xXxbEEIJW32FEaSOYOrBBbzQMnj++ecdggm+TVaVbZKDsABmCwFdMh8h8cS/PKx5D0yAff9oEvGdGVEOhA8IBWefffZwGwYNMxRW+OpFpE/7OPvss4NQknRpmzDN+HewPNFXwBgaxcyy3dtyyy3DBPzDDz8MdUK/wDa8yy+/vAVp7DH5vdp111vRckDQsM3pO7k5Fpoz9Aex8CG+H6JY/KxjwdKAJUwUQmr6AvpMNAzYgcDaKrb7tNUDDjggpAqzAlNvWlLcpM0wHkD0xQix0eihrSDU5Ftn1RmCaaKdmOCSe1nxqTfaPn5MGMP47qg3W0EkLnUfdkzw5zCRMGEw9HjiHzRoUBBEI4CjP4FpRHhgDlKpf4TVfDe083KU1w+Vi5v3vJZxD38GRs0e92wFPnm0/DEOMO4gBEK4RTg0Hkz4EN8nTjKd5LWlW+5IvwmZaWEyPH0vbWeKKaYo9Z/cS/al5J/2gqYNGgIscCB8KzK+wewzjvTt2zf5+oqvEXbzrdLWGU+YA+EEGfz4ZiCe0675TtE8pJ3wHcZaHZjF8L3j48f8HvHtMs4Rv9WJcZxx4Mijji45G0YYQR+1g++3mkUIpNBuMDJhA9q61AnX/DjnHloSxJHJjyGmY6UI1N6rVPpGhW8iAl2aD349u3MRavyxM1N27dxq3tTigef/HYQRJny479hDglDCizC64tvill0nj5UXdYkllihFYmIC2UpAuEj5x0ohzAUaD0YIGWBwTF3X7sN8MoG1HxPDWohJ5gcffNBtcsmWXDCKrMIaxSvXxgAlV61gchGiMJgyaWG1E0pbAbF063akQYRG0XWMr3mJPfOnwzY7xj30+AtB8IBAAhp5gxdKeN8PtI3ujSMlvZBWiFbRP5yBITCyFRzb7YIV5zxicsMKOXUO88sKp5kh5D2DkYbxZzWGlVK0V2BMcGhqRHuyFa+ZZ545MBqsSEK1pm3v4MjEkbaaNRmNw3JOWIQPRrTHN954wy5TjwgDTPhAAFbhmdAh3GPFdvvttw9CEPAzWnjhhe205HMDpgkCl8GDBwfVUlZ9YIRY+QJLfjB70LPPPhuO5f5lYc33T72gZWCE7wi+fyMm6hCMv72fcrFSXE/VV/vmEbgYoUoMscJnFPspGDRoUOr+8+bfAHMN+gO0U1j1Z/LeeLLvOOUYXu7vd9FV+13q/T287roLH3b2vh+G+BAWn1Pi2HXy2JVYwQOCLL4zJu30mXzftA/aGATzQpvA5IX2evPNN5eYHHsFzKQRjJuNM7RHvgUTPhDGxiJjCrmXFX+11VYL3w31BsEo0RfE9QZjZ4SQgmuED5B9g2jMwHxB8fhBe+G7sjYdAuT8y+uHcqLlPuox454vJf1U6efbp50bAFxDmFU998/nguAhFj7wfcdx7NziJa8t3XJHhF4Q2mlpxLzD2krac7uH8MEIobPNO4qOb/UQPvB+vkcWYuLvgDGZ747xAeIbNiEhjmUhy2+46PqHMIW+GwYYbUfOEUC0AzGuXnzJpe4xLwja1wuC1vZCRDM1bGb+bb5pecAUgzGVX9KU0sIk49h9HYVAEQQkgCiCUk8J4yex/i+sVIWjt7/laBJ6Lo7YdH13pP9Bqx55UnfNh/m7NB98uM74IakQP1zbfTuGVIr/g9mxQZtYMOSQrVaHi5R/NnjFmg0E4zoZl90RUPOzXyzwSEm67C3MKiCYz5hiO0vuF3Wmx8QZz8dMLpk0M2DHjGT8jrqeU4HUm9lkx9e8yF8fus/G7hD/g4K/B6/9AAXNh6U7NSJK8XmQlR5pV0msbMJkgA+TQBht02zISpKJI9J6JjesJDJhNK2SvGeW3k9+8hNnP1ZBEUgYMUjHZG2We7WmHafLqgMMdfx9xM+T56yKxWTMTXwveZ4sCyvBMFmsJPNtxsIGi1t0cmrfAwIUw5IjeBb9BpP5M6zt+7dry1scHtMHKH43TCwraKbCb/FqORqzgOaMEQ7ioLjuEFIaxfftHkf6lJVXXjkw2TDF9Aus4k8c6uwP/EccvuNux5CBDm9esapb0f+gq/a7pGR20an5MDgRzwcK331KelX2B2DIai8aOKykQqbOjUABJh3tA7TIaL8IBmKK20fcjhFIxc+IY0yT+YHgXhwmjs92kQiKUAuHeeL99OsxZdV5HIZzE44lxzbeYd8U4UpjOBcJKtIPJaKUvewx454vKdiVfmFO1HltIKBZxQ868KBOfw+cx5oPFp/7ds4x7TrcLPDPVv1NqBlHoc9j0cWEm/Gz+Jx2H1Oyj+RZ3Ccmx7e4XcfpVHOOY2gEezFZ3233kuOW3U8ezRcS37ctCMQC6GT4VrpG826euefyY8+h7quvv3JrrLmGF3Cu3PQspgl60HRAc8t8X3HNz4g+TiQEqkVgYiylVJs3xas3Akj6mVAi5bdj164Y4VVdz4/c3G932Mc7newyu0DzAbOLbvFCfH/HhwuBLb3o2Dn8hpQL/UM1DbVTW3l6+umnQzwbiLMSYSLKChI7XKDWBzH4o2oI09lIsgGVd5s6L4Mqk05WzCslnCfCVKPGjVScVYqJQ74i+WPSRKV2NpPO65CBzueH7bNJaD2YXkBB+IDmQxy+s1GEdFLTs+chhcr+oYbPgIhaMkIFNCKMOchKCfVqmFxUl1HRR5UZ9WnqJ+8ZzB71amqepM8gXZRhrWfarKYiNJuYxOSC9g0GMEwI8xDgVUN8o9QdqrMxnjhfLCqcy3ovaSPYwDTEGD2+QbRGTBvDJuoIj2yFDdtmVnLxIl8vMu0m8mKq0GbDXI2qKowsghLiUhdmnlav/OamE/oB6w+io0XyzxFCQObzIQgf0Hwo9SNd8QiUlR73KyD8ZVB3sYM6hDW0LyPaK9852gdgB44w7UUIQRuqyGb6Qhzze8JYlHQYmpYmq7EIPBAaDh48OJgqpYUrd8/GPphN04SjzbJqbBoYfD/WxkiPlfGY8vqhOFwl5z1n3KNZ+tmQb6/Jo+HBfUzLOGJ6ASF8oE9JxuNZMp34mudFib4LAQJae4xd8ThnfnzweRWTCazie1nntY5vWelm3ef7ZF4UE/0kfXdctvh51jmCCoRC5gcC7TzGgXagm7yGK3Pdp5/5e8m05M93jteqbFYZ0py2k5dY+JAU8sSafM3Kt97bvghIA6J9666KnCPZJ9qEx87Ext8PmhCbrR98QYz3+TD+eWc6nfPMtPTseaWZZNLIai+dHqr1qOjhT8GIiRjP4h/MBvFwtoQTL1bHWfUhbKNXDFkFY7KJPSUqhkyMze8DqsGVEivV+L2gLFARG99K35Ee3jcMq7RwjK5DhPHXaELw6+7zYfzz7un4yMn07D3pGSl7F8EB9YzqJfWeR7QNhA8wpviIwEYfUwTs8vOekSZ23Ghb0JZQ8UQghDprzPhkvbueaVNOmAq+hYlJrOKz6o7vAsoPI1wLsbqGPxaEajBQ+EkYNGjQBGZS1byDb82+f5hFBFOYzxhhEoFgj0krdYpwgskU6un1JAQEMGc4JYXxw48LDASMRDlNnbR8GNNJ2cAPZmaikX2nyaNloOu+aUJU7PMhK11LP+MIxnz/xx57bGC8aUsItTjGE2S+eVbr8K1ggqmMJLvdxlyJOoTppJ0g/MO5LNposWZLt0iJC2tvmC7RNqutN3N8y/vxz0J+6PNoyzb5hxFmJRihNSYi5luCLJXrhxLZLnzZc8Y9hic/dnlKHg0Mu2+aELHmQ1o8C591tHTLHWkzaEHShmlDzHmY02BGhvka/k3Q9IHQVICRx4GjLdyUS7+W8a1c2mnPzWyCMmEWRXum3VY7rvBN44ySX7uYX4DLTDN3ase9+eYb7hO/oHHOOWe7++//q9+6/MuSKUoafo2+ZyZ/yfdgfsEv7lstjJkJ2bWOQqASBKQBUQlabR/Waz50aTwkj1NONqn76PMv3fRTTelL2RmO3S78sFy6tvscP/7ic0eczvlwerqdw3px0Ab7lSJ2kjBVWVa6se2NJ29MOpOEah/eklmdZpUYZo3B+MorrwzO7+LwcVrx/VrOWVVnAIy1LWAYkqsT9g5TayQvaflhYkCaTHiK7ENu6dZ0NMams7rHJ+Wvp5zCt43/feGmn3Yqaw7u0H277C1Twn/0P982fJzQOFKe++ZTE7FDAxNwVheNIYhxjM9ZWcF2HtMNs7tGrZ0VpLxnZBBGhBUvVkPxFwDhtRuBBGT1GC6if7y/1rSj5ALTAQMbr/DGz5PncfntWVZe7XlaHDyq33fffWFHAMLB1PNdWdisNO15Mm22AoUh32+//cIKEGXiO4l9t1ic5LHcu5iM4xMARg2C2Ydht9Vq7OwRpCC8MsaN/oVtBOtJrLLDCDI5Nu0LyomzxCxNiyRecX6MAWWizir+RKNkf2DfsT8OnGwS9/XnX7vJp/ZmPl33V9rGmzfwXVs4y6i//vrzr0KcevUHYEufTzuCGYPAGIeipnXCPYSFCBIQosWOO9Pwju/RVhA20pZoIxCCIIQeUBw23Ei5Z4Jk+vFKhB+WHkd7D+PYzjvvHBwrc59xBoekZiMPDphL0d4hc25K/HL9UIhQ5b9axj17pZWR62aMe/H7LU92ZEUddXnTmOJ+3qICZinEyUvT0i56xPcIYxACTWvbtGnqPDkXwikr8yDGrdhUKPkuM8erdnxLplf0moUVhCNxP4YwDZ88eRTjGZ8zbvDdg7l9p3nptMqz1VdfwzPzq7sNvTYghBDpGD+vPcrvVHLM0Ue7nfy3bhSX1+416oiANY3wP8OiYBplxUkLq3tCIIlAH99RMWUQ9XAE+u22jutYe4swP7Si2nyR6+GXXOW+GTPWnbz1pl4I0Wk3GD8njF1/9PkX7uCrb3CTDxzgzt55/Aq0PScs1LFO8dVFVkNRi2eVGlVvBlCcDlZKrDpgh42jn0YQTA4TgOTAgJ03dshMQpj4ZjEbRfKEszq2k4L5M2YpjkcZmVTHmiHx8+Q5df/Dhbcnb5euv3x2WzdgxvVL9Us9GtE57Hv4Ze6bb8e44w/dyk3nhRDJ51bvHD/85HN3xInXuskmHejOPH7HEj9COnG4gTN1Dr72nolxpG5YuUtT1cx7Rt7YEQJV5zQb2nJ5rzVtGCHUrvFG3gxCXZRJay1tOs437RdhIYxelmAhDl/JOf0G/Ude34GWElTU3jjv/Vn9AfngO6a9DBkypGIV4/idMJZ876yAplGl/QHf+5QLXZmWVLg38IRZ3BEr7Jv5fOTZt7mx3411q+2yZqcQIjOkFz589pUbdfFdbsAkA9ywvdbNDHnEivtnPst6YH0ufTF27Mm2hDo6ZgowPEf7iX01RFuhDmN/D0XTQS0ck8Is1eai6Vg4fD7QrrLaLcwyAoes77RcP2TvSTtmtXOrA9JutXGPdjzmsHfTihPuoTWDEDuLmI/QhhBex0KItPCUHwEVvjpiDZRk2CLC1mQcu6bPpC8eNGiQ3ZrgiHkgv0rbay3j2wSZ8Dey2gthER6yxfPgwYPD7jJp8YvcQ7sHLBAqp5kGVtov8k7ahO3SVCQPTzz1d/eZnw9Do+5/yB13+EG+v+hfJGrAgO/V/IehDTHQt59aTBLHjv3eHXH8KW61oSuEPEzt5/JLLb5IofwQCME9pq1GCHZs3EEDIvb/wGJfbE5pcXQUAkURKPalFE1N4VobgT5+xT3BEtr1ubts44ZffLWbe48D3JffdG5RmFUYNB+2XmlZd84u2/og3VlLS4/7PKmGWEUsaq+bTJ/JaKOED7yLgR0GJ8nEMvllQK2FmMzR2eMokdX6eNUuTpf3VzrBiOOnnffhJu0DdVR/DGYTXddnnrCT2+ewS90Cyw33aoJl2obXfNhio5W88GGHbulZunZMy0Oj7+VNIvOeka9a2lStaaOqaquajcYoLX1WmepJfKO2elvPdEmL76Lct5HFwFWTl6z+gPu17kmPMBaVejQq8GWQRY3oD8K7on7A+gOOw/Zez40861Z3zq9+68Z8811WtsJ9tCUWXH0RN2y4Fz5kpBfu56aS/jCvz8U2HO0aNG5MKyY9lfy71bQVTAAxw0MdHs2VehGCkDwBaJ7QjTyU64fy8pnVzvPqIC+9+Fkzxz3yQX8Es5o84i+GHZcQJJkT2zjf8TnzAYQLCB+S6cTXcZxKz9GGKqfyjqDYNBwqSb+W8S3tPVnthbA41a7VsTZmdMyV0HalftKoYf1i9LLJ/FzYBBDT+kWvl199zc0/H/7SypP5C7KQ03btemLX1Rx5P/kwIn+VEHMN6s4IgQPmF2hBxMIHnkv4YCjpWC0CEkBUi1xbxuv04YD5RSef2f14zi5be40G7FVL/Gc875zgfhAyBH61ezqWfiUQ0cGVG1wrSa9RYZFOs9KEgISJRT2JiRiqvqi1sZqSlj4TJd5fb6YwlINGAaUc0WbgVxGlpBPi2/2KEuudgVnlQfhgvgB6JwqtW+pG9ge33XZbYKKP9Kq5pn6dRKJZ/QHaDHkaDcl8hmv77rOOqZGquwljjP8chLm1MjuV5oB3s83vqFGjum2fWWk6rRS+ke282eMe3xCUdkSgkKfRkFZHaenE6afF6Wn3GtlewAqmGC0Kdr0xDYIYw4b2i9GLpp3mR270+x+GOzPPOIO7a9T9bp65hhTWgoiSqvkU7QfeTz6MyF+lhJYVWiCYnkJgHRNaQwgqREKgVgQkgKgVwXaJ34+q9ivcGT4gGnG/i50thBCex9O2+SsUeSIGQr2VDhrJOytO9RREoI5H2mnEgIpEH+EDap5ZarYTxP3B768d6n6CJ+Nv9PFtI8hSkDz527FcpdHX43OhsxQEaBO1rOCmJKlbdUSgkf0Bfi34pVHV/UGH7w/69EtLsnRvQN/+vhtgrPC37Ptv9LH09vqc2I5E9UmtslQw+7AdKiqL2bqhG9nOGzHujflhrKMd55FpCnQT9Fs774rId1bX53kZ6kHPGtlegAkfKGlUdb/oE8N0xdpEWtpp92aZaUb3ymtvhC1xZ55pBvfFl1+5sy+8zK252tCJJohA8IDmw11e+DCZXxgjHxDaUuSvGkK7AdO1e+65J5hLYkaGk0oWx6rZzamaPChOz0cgv4fu+eXvPSWc0e+/7FdTO7yKHmYSYZzt0oTonGXCd3bdt2ONz3squDiGxIsz9pjYZTLoNZqYBKEah+ZDYeGDz1Sft9/wOo/d995O5rXvJN4r87gfAmMS2kVUnEZfJ/OiayHQbgi0U38w7tu3Xd9JZs6FeJ7phrjvYeBMcGn9QaOPubnSw2Yj0E7t/PkPXnS04zzCDCyV6bR23hV5gvG91ud5mepBz9qpvQD76NGjKzYNRNtp7iGD3Asvde64NM9cg917oz9wd959n7t6xE2+fY1reI3269c3mF2g+WDCB15KvshftYSggZ3oREKgUQhIANEoZFss3Y4F/HZNn7zv+swwi8+ZX93qFEGUNCJsqat0vw7PE+N0iyFSW3YQAlQiCKjtbdXH7vP0Qy7UfU4S/adayI0b85HrO+lMkQ8IH8GvgJZ8NlCZ9bzOyY8eCYF2Q6Bd+oPvP33C8b3n0bC5VnNvfvaWm2u6Of2w4D/8ojZ5tYTLy5CetQwC7dLOb3zhVkc7ziPMZHBYjSDCNB0afczLT0981i7tBezZapo2USnNNsvM3kfIt+71N98KURECxIKAStOrR/jBc8zuyJdICLQyAtWLx1q5VMrbBAiMG7q26/P0I0ELAmFD56J9o48TZEM3JiICfd581fW57zZH3efRgOlWdd9/9qRvFl49GwqNwzMeptnRkOvOV+m/EBACEweBcd+84cZ8eLfje8+j3Rffzt304u1urNeCCNStH/B3GnWdlyk9EwIFEXjmvX+6s/92iaMd5xHbmeLkFS0IyDQdGn3My5OeNQcBdhl69NFHu22lXklO5h4y2P3sp3PnOomtJL1qw2J2QT7Ij0gItDoC0oBo9RqqV/6m/bEbt8Xuru9dN7iOJVbyZsD9fMqN9QnRkzUg6lUtjUoH4UPfS08Nde583edRn4HTuUlm3caN/eB213+aZXyzoG10UZfmg112KcaULmu+Hp+SzoSAEGgQAggfvn3jPP+db+v43vNo9qlmdecMO8md/MjZbvP5N/CmGAM8d+ZjxD4hLIHkfbuu9LmF11EI1IAAwoctb9k1tF/acR5hIrDuuuu6+++/3y200EIV2//npa1n7YMAwocRI0aEtkCbqJbQOMDnwruj33ef/O/ToBVhwqxq0ywSD/NcdrvA4STvr8Xsosj7FEYI1AsBCSDqhWQbpNOx/OoOi7S+113gOhZbzrlpZww+ITpnl8wvO31A1Ou6DSDpWVn0Difx+YDZRdB88AIn6rwIDZhupRDsu3eucv2nXsL1HTh9EEQEfsL/M77Cri1Nu672uaWjoxAQAnVGwGs04fMBsws0HxA+2Hde7k07LLxVCDJ85CFu4/nWcXNMPbvr731CIIMInUGcAB8/lDx23p3wvoVLPrdrHYVABQjgcBKfD5hdoPmA8Mzab7lkFl/cm6Z6YscZts2FAa3UEWG5d+h56yGA1gs+HzC7QPMBQZS1hVpyC/OPIELmD7WgqLi9BYE+3ut+cjrQW8ree8v5yYeu7/13uj7PP+Xc++94979dqve9F5GeUXKcxnmHk/h8CGYXZTQf0grdMeZjN/bj+9z3nz/rxn032jMPahtpOOmeEGh5BLwmEw4n8fmA2UU5zYe08rz1+TvugqeucCNfHeVe/vg1N3ac+oM0nHSveQiw2wUOJ/H5gNlFOc2HtJziC+KJJ55w//73v91HH31UMstIC6t77Y8AQiZ8f+DzAVOcWjQf2h8NlUAINAcBCSCag7veKgSEgBAQAkJACAgBISAEhIAQEAJCoFchICeUvaq6VVghIASEgBAQAkJACAgBISAEhIAQEALNQUACiObgrrcKASEgBISAEBACQkAICAEhIASEgBDoVQhIANGrqluFFQJCQAgIASEgBISAEBACQkAICAEh0BwEJIBoDu56qxAQAkJACAgBISAEhIAQEAJCQAgIgV6FgAQQvaq6VVghIASEgBAQAkJACAgBISAEhIAQEALNQUACiObgrrcKASEgBISAEBACQkAICAEhIASEgBDoVQhIANGrqluFFQJCQAgIASEgBISAEBACQkAICAEh0BwEJIBoDu56qxAQAkJACAgBISAEhIAQEAJCQAgIgV6FgAQQvaq6VVghIASEgBAQAkJACAgBISAEhIAQEALNQUACiObgrrcKASEgBISAEBACQkAICAEhIASEgBDoVQhIANGrqluFFQJCQAgIASEgBISAEBACQkAICAEh0BwEJIBoDu56qxAQAkJACAgBISAEhIAQEAJCQAgIgV6FgAQQvaq6VVghIASEgBAQAkJACAgBISAEhIAQEALNQUACiObgrrcKASEgBISAEBACQkAICAEhIASEgBDoVQhIANGrqluFFQJCQAgIASEgBISAEBACQkAICAEh0BwEJIBoDu56qxAQAkJACAgBISAEhIAQEAJCQAgIgV6FgAQQvaq6VVghIASEgBAQAkJACAgBISAEhIAQEALNQUACiObgrrcKASEgBISAEBACQkAICAEhIASEgBDoVQhIANGrqluFFQJCQAgIASEgBISAEBACQkAICAEh0BwEJIBoDu56qxAQAkJACAgBISAEhIAQEAJCQAgIgV6FQP9eVdpeXNj//e9/7v3333c//PBDWRT69evnZpxxRjfNNNOUDasAjUPg9qf7uLNGOve/L8u/Y5opndt7mHPrLNZRPrBCCAEhIASEgBAQAkJACAgBISAEmoBAnzFjxohjaQLwE/uVL730khs3blzh1/bt29f99Kc/LRxeAeuPwGrH9ykkfLA3I4QYdbg+Z8Mj7yjhTh46eiYEhIAQEAJCQAgIASEgBBqDgEwwGoNry6VaRPPhxz/+sZtkkklC3ouEb7lC9rAMFdF8uGyPfm6JIX1CyYuEN4jGjh3rXnzxRffBBx/YrV51LKpZAijgSnhRz0PgP//5j7vwwgvdmmuu6U444YRwzj2REBACQkAICAEhIASEQGMQkACiMbi2XapTTTVVED4ghChKSy21lBs4cOAEv4suuqhoEgpXAwJ7rNE3CB8QQhSl7777zh1wwAFuiimmcAsttJCbbbbZwvGZZ54pJUG98uybb74p3ePktddeC3X9j3/8wxGeun/ooYe6heHijjvuCM8I36pURFhTrXAnrcwff/yx++1vf+swhYKuu+4698ILL6QFnWj3qN9LL73UjR49uuHv7OjocOecc07TyxwXFKEDWl577bWX+8tf/uKOOeaYcM49hBEiISAEhIAQEAJCQAgIgfojIAFE/TFtuxQRPvCDPvzww4ryv/3224eVdFbT7bfZZptVlIYCV44AwofdVu/8fHc8v7xfD3vDaaed5i6//HJ37733Bmb49ddfd0svvbT7xS9+4T799FMLFurykEMOKV1zAhNptOiii7q5557bXX/99XardPzDH/7gEGIMGTKkdK/dTioV7oBdmjCOewgdnnjiCXfooYcGwQ1YIAQy4Q2+Wa666ir31VdfTVSYvvzyS7fHHns42kCj6ZNPPnH77befu+mmm+ryqueee8798Y9/rDot6gWhA7TSSiuF3xFHHBGO3EMYQRiREBACQkAICAEhIASEQH0RkACivni2RWpmZkFmOTfhw+eff+5YIa+Epp9++sBowmza70c/+pG77bbb3Lzzzuv++c9/huQw6Vh//fXdb37zm3CNCQATfluF32mnndzbb79dejX30aRYY4013HTTTecQarz33nuOcFzznHcYff/99+7oo492888/f3jv/vvv777++mt77PCBsdZaa4W4hDn77LO7MdSlgC16YmYWZI9zEz5ceM849+Rr4wUD5bL/+OOPuxVWWCEwWmhBzDrrrO7MM890I0aM6IbHIoss4s4///wgqMhKc4cddggr+XGbgRGHyUQwBbUj7tUKdyjvBRdcUBLEmUBu6qmnDm0PQcOqq65KsG6EpgjtGia9pxLf7EcffeQOP/zwuhTxz3/+cxBoVJNYrN1AH4Qwjp+dczRCS0IkBISAEBACQkAICAEhUD8EJICoH5ZtkRLCBvP1gPDBTC4QPvCrhlgZj3+ksfbaa7uZZ57Z/frXvw7OL1nhhWkwAcS+++7rTjnlFAcTe/LJJ7snn3zSrbfeeo5VWQjmbfjw4W7dddcN4W655Ra3wAILOO801V122WWBcd54443dt99+G8KzWo+K95577ukOPPBA9/vf/z68m4fkbdiwYWFF8+abb3bbbbedQ0Bx9913h7it/g+G2MwBED6YyQXCh/PvLu5YlHIifKAeENaYicTkk08eNCDiXU8Q/LBKjyABxjGNEAp98cUXbtSoUaXHd955ZzjfYIMN2gb3egl3KDgCHRPE2RGHrq+++mrQNImFbIRnFX/TTTfl1K244opu1113Def8u+aaa9wqq6wShGbbbLNNqb54hgDuvPPOC89ZqUfYVk4I9/LLL7stt9wypIeGymOPPUZSqXTxxRe7ZZddtpvjWph0hHeYk3z22Wfh+xw8eHAw46EtmD8RTEsQPl5xxRUhn5QBQsvm9ttvD+dF4t94440hDwgvEF4igIT41k899VT3zjvvhPeg0QORNuUiPHm/7777wv34H/4d0G4wMmHDAw884I477rhwm3toRUBoScgnRIBC/4SAEBACQkAICAEhUBcEJICoC4ztk4hpPyB4MM0HVrCrFT6g0k+a8e9f//qXYytP7MtRPT/99NMDw3/WWWe5QYMGBaYV7Qae77333u5Xv/qVu/XWWx1q1Q8++GAJTAQJCDBYHd5ll13CfQQLMCMnnnhiuIaxQ2hB2qw+77777m7HHXcMKu3XXnttUH+HYYJZQWAxdOjQwFg//fTTgTkqvayFTxbrcjKJ4GE3L4yA0HqoVPhAPNTgwRL85ptvPgcDeeyxx5aYO8IYwYjBzFEHaYT/iNVWW82BsxHn4Iwwox1wr6dwxzBIOyIow9QBAVpMiy++eGDkuQfeCOQgtHs4X2aZZYImCu0cYRwCHwgB3T777OOWWGKJwOgjhMgTwvGNIBR69tlng8YLQg/TUgkJJv4tt9xy7qmnnnJ8J0YIBNielzaBJgOmNkcddVRoP3/7299KwhMrK20NwclBBx0UkqAMlv8i8SkfAhn6AcxVEDxC5B0B5//93/+5M844IwgLEBJstNFGoT2igUPbRuhIG4zpnnvuiS+DUBLBCD8TQHQL4C+ScZLPdS0EhIAQEAJCQAgIASFQHIH+xYMqZE9AAB8PsQYEZarU70OMA1oLMPwx/eQnPwmXc801l0NAwUo6K5ImRDDne6z4GiGYgBnGwSGmEtDPf/5ze+ymnXbacI1gAzLNDRg6BB4QDIqteqLuDj3//PNh1R9GGYYODQhW92HGYKbagfDxEGtAkOdK/D7EZezfv78799xzA+PIijaaJccff3zQGIHhhLk0mnTSSQNzy6oyGizUYZK23XZbt/XWWwfhD6vwaEOYaQzmOa2OeyzcMVOWaoU7YAOzjUmLEW38sMMOs8sJjnwraKVAMMGzzz57OOe74XsxcwG0CNCuQEAH8w0hvEOLCDIhHFoTplEx00wzhXYOk462wyuvvBK+h3nmmSfEQfOFNNIITQe+PzRaEHJgMsW3gyNNiLwhGLD84tDyyCOP7JYUGhDrrLNOt3t2USQ+Gh70LxDaDwhAEFxgHkT+EEoYFqZZgbCSfgQBym677TaBH4ekQIK00X5A48HMQ7jmZ/SnP/0ppGXXOgoBISAEhIAQEAJCQAhUj4AEENVj17YxYyFELcIHAICZybOTxgwDgtlBFR0ynwGmjRFu+n8wvDA6Rn369LHT3KOZYbDqaYIJGCMEDCZkgNFmdwZ+eL3nBwMDc90OFAshqhU+xOUEJ9Tx+WGSgVbJ/fffH1aR43Awe6xyw9jBiCXJGEAYVfw/sCod+zloddxjXM0UoxZ8f/azn4WdFQwnY/btusgRUwo0h/jF3wNx0WAwzNGeMConhEMQhwAjzs/KK69s0VOPJljCXOeRRx4J2gtoYUDsFEHdIsyCqUdAlaSFF144eat0XST+ggsuWApPWfFJkkV8xzPMMIMjHMJFhIzgRL8Tkzn+jO9xjjAOQvCAICgmExDF93QuBISAEBACQkAICAEhUB0CEkBUh1vbx0LwgAmGCQMaUSDegUkEq6yYSFx99dVBJZvVS4gVd1shxQEfauUx01E0T5YeDIcxDzBx7777rmMVGC0JdiLYcMMNA4P9u9/9zsEcYS7QLgIIsIAxxmTAVuqL4mPhxo0bF1Z6Ub03VX+eLbnkkhYk9chKN1oNCCmSNOWUUwZVftTxqUNWtgcMGBCCtQvusRCiFuEDhUYjJE8gl8Qv7dqEDuwyYtpEhMN3CdoIRrGArpwQjrpI7upg9WTpJY+YNFD3aCwhuONbNQ2ZTTbZpKSBgFADQdXf/1DWrxgAAB1vSURBVP73bkmYwLHbza6LIvHj/OalRZIIHxDO3HDDDW7kyJFuq622CpoQjz76aCnPhKMN2+4XXBuZ+YUd7T5HK3N8T+dCQAgIASHQexBgPokPJ7Rw8XHE3KcZxFiOSTELCvEYObHyAg4sNPFrFcLP2xtvvBEWHJOLDuQRJ/hoUTJPaAZmrYJTq+VDAohWq5EG5YdOEwY0pjy/D2bqEIdPO8f22lYP7TmaCPgHwAYcM4yTTjrJsRMANt0ICNCKQFiAcAImiGeomtM5VLPaiKo/ZhswvxdeeGHomBEysCo7evTo4EQRB5aox2NTTp4pO/lsZZrGj2//6/TJWcpmnt8HwucRTBzOCzGJwRQDNXUEM/iAgLKwp47wvZG1oo0WhQl+4lVqBoR2wb1W4U4e7kWfMbGAJptsstA2WcmPzTcY+LMmPeWEcNQDPihwFMl3BiEAzCO0iDBNQPjELinsHAORBlozV3gTC+oeYlBPCiDCg5R/tca3JE1Qw7U5r6VP4cfuO2hDJLV6Vl99dYve7YipTOx/Jn6YFScOo3MhIASEgBDoeQjA3LLAYqbDzJ1Y4EIwjY8j5p8Tk9A4xH8ac9l4gWJi5QFfa4yXNuer5b34V4JHmHPOOSdIBn9RaCQuv/zyjp318gjeBkwwP2WOmyTmueQbc/G0dyXD63riINCpEz9x3qW3NBEBTBFgQOPdKrLOCWemC+WyjF04woT4hzo+DApMCztT0GGz6wUaFxyhK6+8MjDAqHTD5OAVn1XWSjtzWwUmPRgOVmkXXXTRsDpL54bvCFZoyQfMMZ0Pfgm22GKLsFpdrnzNfL73MOfKCRUsf4QjfDli9wBWtjGpQACDXwecf9LRG2NKGskVZ0wLzN9A8h0MEEjjSS8WUrQy7mm41iLcSWJSyTU+CyB8mCAkgNB2wFEoTD6aQTD/+Elht5g0ioVw7O6CyQU+EBjcYc4RNlG/mFXgD4JvdI899khLqts9NAnwR4HQwDQ7bDLA98qkjJ08stpGt8S6LmqNTzKsQJEnNB7QtMLxJIJN/ESw0oFTTAgtkpj4/m1XDrtP/8Mv3v3CnmF+pAmLoaGjEBACQqB3IYCgnnEO7TkWa9hFCa1e5qzMcXsbsdBXTmu2KCaYRGbtMsW8hbkKOIt6JgLSgOiZ9TpBqdiVIN5mcYIAVdzARj2PbEWXMKhFGXPFNcKI66+/Pti4E26KKabgdoniuNy0VXoLAMMbh0GLAuaDe1999dUEZUVazA/pMWERirQ6rbNYh1tnsfrmknpgi0UEMtQHbSIpbMqqVzRY+CUJbZm4buPnrYo7wpqzRk6oYRLn3c6LCncsfNrRBGXxM7sH44wwAAePrNzD2LNdLdufokXESgDqjpgxxf414rQ4RwiHYMnMmhBsmBCO5zDraAfAbJMeAg62us0jBIRMOFjpMdVGtB0wpyLPMP58iwg7EFRAVq6sdKuJn0wTISLCM3bQoRzs1MKOHQhMIMMrzaTrrrvu6qaGifAN0wtWdTiPKdZAie/rXAgIASEgBHo+AmjRQmyrbZrBCPMZZ//73/+WAEAQjl8kBOAI2VmYWWyx8RO4v/71r2F8x1R1jjnmCOMXvpAgxiQ0+vCLBtONliqOnZnTYm6BtgUr+0OHDg3h+ceuUjhfRhCPqTHaiMxtY2Lln0UMxjbLCwuPaAOwYIQfKBYreCfmJZQL59OEh9LyxQIHJpekRx65fumll4KZA3MONCPwMWa+obhGExF8mGuy+Me8E21lNBfwL4WJBH6bjMCIOQZ03XXXBazR8szDkLBvvfVWCMO7WZRhsQ1t7CSBAWkhXMIMnUUGBExJPiQZT9f1RaCPZ9g66pukUhMCQkAICIFKEWACAqMdC8cYKBlM0eRJaqVkpZ8lhLPwTEpg0OP32LNKjkwemCgwOUoKCIqkU2t83oHvCwQahg2qsayYFPHbgNkXq1lphJYEky+REBACQkAI9F4E0BBF0wHmnm2x0eyEUY/HPBYJ0C5lLEIwjtDCtCbw24TmIk68Ye5h0rlmXEfAzTgMsw0TDyHo2GyzzcKCBM8wjX3zzTfDcxYEMLvA+TOEEAGTzWeeeSbEi317hQD+H+McAhHbTv21115zl19+eVhUYF6BuTKLCGgOYzZLeQk7yyyzTJAvBP4mrEewgGkKGprgwqIiTD1pkQ8EMZZP0kbIgJ8mys9CCUIPFlsQxrAoglajETuqsaPd448/HjSbwRRhTxaG1IXtwoXpKHkwLchDDz00LEqyO5mZYPBe3k9d8n4WHsD64IMPLgmZLC86Ng6B1l8GblzZlbIQEAJCoGUQSHMKycBaqVkSkyB+WVQvTSiY/krzFuep1vikxc45MTGJKCJ8IA6TP1Zj0BJhMog6KKsg+HyQ2UWMqs6FgBAQAr0TAYQGbOsOk4pQmh/jDBoJaOIZ441AHdMMriG0DBhTEECgKWA7NPEMjQU0UWGq47Fmzz33DKaEOE9mIQGG2VbwERSwlbb5fUAwYWaRMPf//ve/SXoCQlOBfJAHhBVsdU/+MU9Ec5X0EBgw/yCv7KiFEAIBhJHly67tyBiOJoiZZKBNkHTyHOeTeJZPhBaYalP+WPhAGLQtwQsBBMILNCeIl4UhQgQIX1eM6RBmwwhaKG9siolwA+EDWhwbb7xxCIt56yWXXOJefvnlINQJN/Wv4QhIANFwiPUCISAEhIAQaEUEmPxgPiISAkJACAgBIZCGAIIGzB9R8cf0AXM/fpzvv//+4T7M+KhRo0rRMQU2/wWYNMDcYjKBKQIaDRAajkZoWNi29WgPkB4r+UaYZUI8g2LBBZoMCCzSyAQQCBY4x8wTpp700bbAsTVCA0w5MPdAkJKVr2T67GaF9gV+oDAZtXLF4WLmnwULhBvVUBEM0QgxQqgAsbgQ5wFhEkR+yTdEmSGexWmEm/rXMAQkgGgYtK2VMJ0L3uxRsSpHfLioeqFmJmoeArc/3adiPwX4jRCVR0DYlsdIIYSAEBACQkAI9GYEMCuAcUYTAm0Bfpjo4f+InZ9gWllVh6GPt7VHeGDaC5gTwOSTDvNr0iDdmMzHEvcQXqDFGJt5xGE5T2r/JZ/bNf4Y0HpE8IB2IGaKtp23mWPwbhxWo62QND2M82Vp2hE/DuzORXkoK9ofSQFDmmanxa/kWARDEySQLvXBL0nUFYSQJa4vtCfASjTxEJAAYuJh3dQ3IXxghwKc0JUj1JMIj52WqHkIFHWSSA7ZrpPw9XZa2bzSN/bNwrax+Cp1ISAEhIAQEALtjgCMO4wqAoiY8GWAAAKmF8aerd0333zzktCAeKy+w+hiUoGZAA6dIUwp8giNBkwOzAE1YTEnwJcDpguVEgIHTA3RdkDTwswrzPcBTi8ReKBFgVlEEUITA+ED2iE4s4SKxi2SfhymKIamHUJczqmbpFDBTDQx0cD3BET9gk+9zFNDovpXFoEJxUNloyhAOyKA5kPRjotwRTQlYhyQKqLihVM4UX0QQKhQji7bo59bYkifEKxI+HLpFXnO1qvY1RWh+733YyTXrUZFsGoEtkxI2O0CR5C1EhMe9r7GEWQrESsg2L8WpXJtpNzzou+JwzGhYScY29s9ftaK55Vi2oplUJ6EgBAQAu2GAGYLtuUmTC3jLnNdNAXQDsA/Ab4JYHZxksgYzyIeO1gwzqPFwO4WzI0RKOD3gd0yIPwypBHpQewAgVkEggK0FcxEIy1O3j38HUA4gbS0uUYYQb4pHyYJvA+CIWeMzCPbMQI8mP8zRlFuKKtcyfTQUECIwZabScJPBYRZB4KRIhgi6MEpJnMi6of0kzthUV8Ich5++OFQj+B71VVXBX8TVqZkXnTdGAQkgGgMrr0mVTzNrrXWWuGDppNDBWuDDTYInUqvAaFJBd1jjb5B+ACjXJRwvLfUUksVDZ4aji1RkRYXoWuuuSYwyUXCtlKYSrH99NNPwwqCOYDkyHdx/PHHh4HdysYWp3hlxm6yVmLCwFaYDOCtRHgMxxkXE5MiVK6NlHte5B3JMExQ2OIUNdp2oEoxzSsTKsNMuFDzFQkBISAEhEA2Asstt5xbeumlA4PNrg6nnHJK2BWDlXS0hGGUYXJZuGNbxzPOOCPs7oCwYO211w4J49gY3w8nn3yyu+iii4IDS5hdGH5j1mNzC5xU/vKXvwzM9/nnnx/MNxCEkI9qiHm5+ZMgHSNMLjDlwMElu0QgdGBnCOb1CFmgOF8WjyNpMpckLDttMJbiJwOm33a/iMNznkwLngFNDxPIxOExVwFjtvlE0yQPQ1v4xAyE+cLpp58eHGyyNSmON2MiD1tvvXXIC7t4gC9CIbbsRCAjmngIaBvOiYd1U990+OGHh46zaCYOOuigwDzlhX/wwQeD+tU222zj8JKLHRgrinRkMFpIItnuT1QdAosd3KnZkBYbBnm31Tvlhzue/4N78rVOafXTJ+dLrRFA4CiJ+qmW8P681VZbuQMPPLBsEgzQMDomWS8bYSIFqDe2CCDwmcLK/9ChQ0urJHwLSPdxPsXADrEqUg9Vv//85z+OfcQRZmC/2CrEigplZoJShMq1kXLPi7wjLQwCElRS0+xE08I3816lmObllVUi2igramxZJhICQkAICIF8BGBy8aUGweimjRtoAhCGsQ8zipjYqYLtOVmBR2hhmgd5cwH8NSAshxlPe1+cfi3naHagFWDMOvMZ5u79+pVf3KLMaHbY1qRoK6BBUXTuD668J8tXBPNH8kX5i2DI+9FCIT95+Qd/6orwCHxYNBJNXASkATFx8e5Rb2M/YOy/cESDfwk63OWXXz6sruFlF7UxI6SSOO5BoonAgsmvEQwtquQ4vuQ5UlVT5SLM2LFj3RFHHBGkxnT8MCRvv/22RXfDhw93CFiwryM+ewazpzKq7oTnR15jyssPcVm9Jq3555/fnX322WXV0eK0G3FuZhakzbkJHy68Z1xJ+FDNe8thz+CC92UwxObxiiuumOA1eVjGgenwTzrppIAp2LLlIUx0s6me2LLKgGdpJPvsmX3vvfeGyQZaIxBes1nFsPab19Zo1+xtjcYEeFFXtOksIm0wJSzbWiFEZAKDgIJr2/6K+AhBaNtJh1M8Y3Wc9s9KDfFIjzZAWkZ8n3jA5hnfLeU0QvWUfBghiGRrLMLybWMnSrqxGQ9t45BDDgntjHylmXCgTUI75DnfM3GMmEDx/fMcnBC0MbGAEIryPtouz+iHIPYxRzAEgTV9DEdr65dddll4Zv9YVWH1iHLg+Zw8mE2vheHI5Iv3XH/99fHtgBPtH2JVh36KtEgTzI3IA/nfbrvtwnOclyUxLRc/qyx4/d50003Dq/Aqvuuuu4bzvHZo+dJRCAgBIdBbEUBTgEU2flnCAEwycDKZFD6AGcww8wMzLSCNPOEDcQgLI531PsLUg9DWMOED6SGMyGPe43eaGYppN8DIFxU+kA64ZgkfeI6miJW/CIa8n/KUyz9pInigPiV8AOmJTxJATHzMe8QbkUQiYGAPYOtQrWB0GDixRIUM4px9hlFRQ90JRgmmBakpBIOCKjkT8tNOOy2snjIBN9p3332D9gZpoML25JNPuvXWW69kNwYzd+qppwZ7PPZWxp4NtTkm7WeddVZglGAWHnnkkZBkXn5QQRs2bFjokPB1ABMAs8GEv1mEtoP5I4BZNpMLhA/n3z2eCasmf+WwhxmiznBSdNRRRwUBAnGM8rC0MHZEC4I0YIyvvfbaIH2GSW8mNRJbysVEBEbd2h7Sfvbehjku19Zo19beqQO+J4QR7FedJJhxvgkk+ggEEdKhfUE81EMx16CujBAY4AgrzS8Mqx9oyVBffDeoK5IONpMQQiP7tnkXTDSqpub9mvhsOQZxjjCCawR5OOkiPTAw1VPCoYKJ3xnUV3EOhQkH37kR3yKCC75z0iBf9BUQQjLeAcYnnnhiKDv5ou1ChjkmFwg/aX8Q/ZD1QWCNai15QtCAkAOHvWabikAEAQn7rnNOeciDCZJCgl3/sFUlfqz1Q3kR9tDHsZUb/SZCEQSv2ORSX2aWQ5qUjZUf+i+2BYsxLRI/qyy8y3BBSEGfWq4dxmXTuRAQAkJACAgBISAEakWg08tHrakofq9DAGYBivfMZUXT7MZ4xrY+rHgymWalEDsxiBVIJMGYcJiN3F577eUOPvjg8Bw7LFZMYaaQyrISy0Qd5gFCywJ1duKzUgsxscaODUI4AmPLiif523DDDd15553nnn/++SCYyMsP+cUpDczF0KFDww+mAxW4ZtFiXU4mETyYqQXHWoUPVp4s7JEKX3311Q6hDoIYCM2W2IlRHpZWtyGi/0f7QIsCBpK0l1xyyW6aMBZuYh4bjS1lgRmlTSUdT6ImWK6tsfqBbSXfxGabbRbUMWnnO++8czeYEEDQ3vnmbFXl8ccfD5pE1O+OO+4Y0kGQBMHwb7zxxrk2j6zgoy7KijkCizvvvDN8D7QJVg6wn2Tlgu8LLQOubYXfMoeQEuY7VvdHKJPMP/0B6SLMRACIUAN7WtsuzPJMfiCECjiRRJiA4AEbUfJA+SHi02YR4BiBD4x/FtFXINxhJQftALyWo32AsBSBRtyHkQ5aX1mE7Sm4IDhgNQnhCXVJ34XpB3lGS4byIsyhjrGl5fuC8LgO/rbyE78Hs5Fy8fPKgt0vhAYIJhgIp8q1w/j9OhcCQkAICAEhIASEQC0ISABRC3q9OK7tDQwjYMS+xqweQggPdtttt6BejL8BfphSxIRHXmNSmYwb2TnO9VBnhmAIjFBxg5GFoTUBRMwMGAMGAwHBUBCetFAjL5cfzEpYGWTVdY011ghONY3xsTxMzCM+HmINCN7NvXqR4U16dg72tkKNIMaI1XRTryuCpcXjCCPHii4rv2gFUHdxvcZhJ9Z5o7GlHCZ4gHGMCaFWubaGhkLsGInwmAaw6h8TjCzfBVo/qNPzTswLTEAI3ggucLbEe2nbqONnEcxy3ObJhwkdYeRhWPH7YoQAgL4gKYBgKzK+vdjXQNyeLD6Mt2lS0b5gwBHQGMG4x/lBiInwC4eK9CMIMEz4QBx7B0JH82wd9xGWbnxE+GhqpKhwggHaCGCN1g/mMEYIRnkH2ghpRD1RDnaAwbkVeG+77bZBLZT+iWdoqFAf1BWaGHGdkpc04QPvKho/rSxpeS3SDtPi6Z4QEAJCQAgIASEgBKpBQCYY1aCmOCVmgAm+0T777BMm7Ezambyz/64JHeaee+6S/Rw2V6xOxqubsQ1YbLtlAgjUmmPCbszS5n7WZD2Ow7nFycsPq8OoT7NyyeoxzFMtThuTeajmOnY0WU/hA3kph33SPs5sBYtgGZeVlVdWqVmNZ2Ucr8as6jebGoktZXv66aeDJlCMs5W5XFtLxrG6iP0xkBbMOsIjfE3wDCEPZI4g0VpBEIAWA4JCGGCY5Cwypt2ex9+k3TN7WPueY4GEheH9rLDHlLY7hpXLwpkwwq753mOy8LRB+gi7tjAW3/xAcL9cH5FMw7C3vieZ7+S1vZsj+UWLC8EDjscwX0EIBKG9gCAPrQfqIU0wkpfXIvGzyhIykPKvXDtMiaJbQkAICAEhIASEgBCoCgFpQFQFmyIxQUaVnlVVbKVjhgXVaTQgWMWEWWUVlq05Y78OrLAnV4TTUEV9HSJNU5/GKzArkkziK6Vy+YFhYUUS9WlWLikfDAI+C1iVbCbBKOOzwMwwGp0XWz2HgZ5lllnC61jxpW6hcliGQNE/mGRWsXEYyg9bemz9cSDIinMzqVHYImj5/e9/X/I7EJexSFvD2SNMtjHDqOmz2p9k7GFKqRf8GiAQgDBRMkac1XBMmNB6mHPOOQNznGTq47zlnWO6gXlH/D1Tt5g+JQmhCKv77I9ujimztuhKxo2vEQCiIWCaV+AA8w4WfJ/HHHNM2OYMoSdk/hToP2rdphThy0orrRTMMxAqgBuCNIQLeUIcTFd4juANgacJGsCCfIMh9YLmCL49ilKt8e09Jpwp0g4tjo5CQAgIASEgBISAEKgVAWlA1Ipgm8RHPTveWSIv24QjfDlCJRmmB3VoVI1xzIYdOGYLCB/MUR3aDjiHQ3UbwQHO6Eg/djKX9S5zcIeQAydu5A1GCg0Ls2XOipt1Py8/qJnDwFE2NDlQ72al05jxrDQbcX+a7hr74RV5fh/SwteSL4QFK6+8chAwgT2ruDgQjCkPyzgc5zjzBEeYSZhCTGhgIo1pTIZv5HUaVvXAFkEZ/hJuuOGG4OwPQRbMa8ysW7mKtDVMHWj7CIHYKQHngttvv70lUTqaecKIESPCbhc4a8SRZEyswJtAxFbj4+dFzykTdYj/BRxP2hajaTtX8I3iDwFmnH4CgQCMd6WEEAPNGfoMsMUhpO3ljXkIDD1+X+gfcBgLZmjY4KuiHoRpGXWLmQemQwgTyvUJOMKln0LYZv5ryAt5ol5HjhwZ8EvbSSMvz7XGRxMGwpQH/xxF2mFefvRMCAgBISAEhIAQEAKVICANiErQauOw2N/jBZ/Vs3KEcIDw5YjJOIwRTCiO44zQVMBBnK2+soUfath4oYeRgOnEF8Cqq65qUbodzXbZ1JCvvPLK4LTO8oQmwh133FFyDGnhuiXiLywdu2/X5fJD3lmRhNmDYBCw357YtLeH9KyR3ofAl+XfDENN+FrJMDJMcQxI/Rr2MJ1oiFi4cliSHwuLY08EDyY4ghGiPVo7qTXvlcRvFLa23SZ5YfUbsyR2HTBtA8OC5zhSLdfW0DJCu8B2q6AukqvlpImJBdokpl2C0AOm33ZxsPfBqMP84lMhi+I8WhhrD1yTF7ZeResAPwYQuzjY7hJxfM5x4IjA49FHHw1bXCIYSDLvcZyQoP8X36NPwRQCph5CC8McTOLUEiEIQgfKDRHettGM0wkPU/7F5YsfW1y0rdB6wISFvuzoo48OZlrx1qZxPM7RnKDfwFdFLPDBvwwCW9MIwcwLDQl7V1pe7BnpVhOfeJYG2kbsOsSWrvjooC8t1w6JLxICQkAICAEhIASEQD0Q6OPVLzvqkZDS6N0IYBaBKj2OH7NMK9juDWYKhiFtkl0OQVTRUReOzT3Kxcl7Xi4/5BUHgM1gkPPy3YxnMLIwVOb/IZmHcljG4XFuST3GzhXj573xPK2tYbaEwACTBbaWRYhh/giyMMIfAqYK5og1DsczGGnMCGCg60EIo/jezUQkmSbCDvKPrw8zQTDTG4RRle4uQzvkezSBTvJ9bF1JXpI+EJLhKr1GCPrhhx8GISqMPG0YoQHaHWibVEMIY/mmzKyk0jRqjU9/Slni/i2tHVaaL4UXAkJACLQqAvUeG1q1nMpX70OAeXU7kQQQ7VRbyqsQEAK9BoFYAFFroXEyiNYRJhOs5JvJRq3plovP9qCYXvBedjxB6MCOGWhroBnQLoQJElpAmJbhQ4PtORHGYW6T1OZolzIpn0JACAgBISAEhIAQaAYCEkA0A3W9UwgIASFQBgHU/Vkdxw9HrXTrrbcG3xD4b4i3q6w13SLx2ZWD9yP4gGnHXIQtLNuNMLfArwa7WrDLCCY29fIx0W5YKL9CQAgIASEgBISAEKgWAQkgqkVO8YSAEBACQkAICAEhIASEgBAQAkJACAiBwghoF4zCUCmgEBACQkAICAEhIASEgBAQAkJACAgBIVAtAhJAVIuc4gkBISAEhIAQEAJCQAgIASEgBISAEBAChRGQAKIwVAooBISAEBACQkAICAEhIASEgBAQAkJACFSLgAQQ1SKneEJACAgBISAEhIAQEAJCQAgIASEgBIRAYQQkgCgMlQIKASEgBISAEBACQkAICAEhIASEgBAQAtUiIAFEtcgpnhAQAkJACAgBISAEhIAQEAJCQAgIASFQGAEJIApDpYBCQAgIASEgBISAEBACQkAICAEhIASEQLUISABRLXKKJwSEgBAQAkJACAgBISAEhIAQEAJCQAgURkACiMJQKaAQEAJCQAgIASEgBISAEBACQkAICAEhUC0CEkBUi5ziCQEhIASEgBAQAkJACAgBISAEhIAQEAKFEZAAojBUCigEhIAQEAJCQAgIASEgBISAEBACQkAIVIvA/wOkDhV15NIjKwAAAABJRU5ErkJggg==" + } + }, + "cell_type": "markdown", + "id": "164a07b7", + "metadata": {}, + "source": [ + "### On region view (the interval of a gene)\n", "\n", - "**Note: This isn't necessarily equal to the number of variants annotated to this gene by VEP.**" + "This is for 'DRD2' gene. \n", + "![Screenshot%202024-11-01%20at%209.31.00%E2%80%AFPM.png](attachment:Screenshot%202024-11-01%20at%209.31.00%E2%80%AFPM.png)" ] }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 58, "id": "9f8e1ba4", "metadata": {}, "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The total number of variants in this gene interval is: 8126\n" + ] + }, { "name": "stderr", "output_type": "stream", "text": [ - "[Stage 3:=======================================> (2 + 1) / 3]\r" + "[Stage 37:=============================> (1 + 1) / 2]\r" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "{'number of singletons': 5282, 'number of doubletons': 1616, 'number of variants with AF < 0.01': 10733, 'number of variants with AF < 0.001': 10656}\n" + "{'number of singletons': 1390, 'number of doubletons': 384, 'number of variants with AF < 0.01': 2711, 'number of variants with AF < 0.001': 2662}\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "[Stage 38:=============================> (1 + 1) / 2]\r" ] } ], "source": [ - "# Filter to interval, e.g. for ASH1L.\n", - "gene_interval = \"chr1:155335268-155563162\"\n", + "# Filter to interval, e.g. for DRD2.\n", + "gene_interval = \"11:113409605-113475691\"\n", + "\n", + "gene_ht = filter_by_interval(ht, gene_interval)\n", "\n", "# Filter the exome release Hail Table to the ASH1L gene interval.\n", - "ht = hl.filter_intervals(ht, [hl.parse_locus_interval(gene_interval, reference_genome=\"GRCh38\")])\n", + "print(\"The total number of variants in this gene interval is: \", gene_ht.count())\n", "\n", - "print(get_variant_count(ht, singletons=True, doubletons=True))" + "print(get_variant_count(gene_ht, singletons=True, doubletons=True))" + ] + }, + { + "attachments": { + "Screenshot%202024-11-01%20at%209.28.50%E2%80%AFPM.png": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABB4AAAEdCAYAAACrCqQ6AAAKrGlDQ1BJQ0MgUHJvZmlsZQAASImVlwdUU+kSgP9700NCS6hSQm+CdAJICT303myEJEAoIQaCgqioLK7giiIiAsqCLIoouCpF7FiwLQpKUdEFWRTUdbEgKirvAofg7jvvvfPmnjnz3cn8M/Pf8//nTAAgU1kCQTIsDUAKP10Y7OlCi4yKpuFGAR4oADKgA0sWO03ACAz0BYjM27/Lh14Azdh7xjO5/v33/yoyHG4aGwAoEOFYTho7BeFTiI6zBcJ0AFA1iF9rTbpghq8jTBUiDSI8MMPxczw+w7GzjEbPxoQGuyKsCACexGIJ4wEgaSN+WgY7HslDckPYlM/h8RFG3oFjSkoqB2GkLtBHYgQIz+Snx36XJ/5vOWPFOVmseDHP7WVW8G68NEEyK/P//Bz/W1KSRfM1dBElJQi9ghGL9AX1J6X6iJkf6x8wzzzObPwsJ4i8wuaZneYaPc8clpuPeG2yv+88x/E8mOI86czQeeamuYfMszA1WFwrTujKmGeWcKGuKClM7E/gMsX5sxJCI+Y5gxfuP89pSSE+CzGuYr9QFCzun8v3dFmo6yHee0rad/vlMcVr0xNCvcR7Zy30z+UzFnKmRYp743Dd3BdiwsTxgnQXcS1BcqA4npvsKfanZYSI16YjB3JhbaD4GyayvAPnGbgBd+CLPDQQCMyBJaIWM7507tqZMwpcUwWZQl58QjqNgdwyLo3JZ5ssppmbmlsCMHNn547Eu/7ZuwjJ4xd8fB4AljcRaFnwcU4DcGYZABT1BZ9WEwBSDwG4EMEWCTPmfDPXCWAAEUgBKlACakAL6ANjpDdrYA+ckY69QQAIBVFgJWCDBJAChGANyAabQB4oADvBHlAGKsFBcBgcAydACzgLLoFr4Ba4C3rAIzAIRsBLMA4+gCkIgnAQGaJASpA6pAMZQeYQHXKE3CFfKBiKgmKgeIgPiaBsaAtUABVBZVAVVAf9Cp2GLkE3oC7oATQEjUFvoc8wCibBVFgV1oWXwHSYAfvAofAKOB5eDWfBufAOuBSuho/CzfAl+BbcAw/CL+EJFEBJoORRGihjFB3ligpARaPiUELUBlQ+qgRVjWpAtaE6UPdQg6hXqE9oLJqCpqGN0fZoL3QYmo1ejd6A3o4uQx9GN6OvoO+hh9Dj6G8YMkYFY4SxwzAxkZh4zBpMHqYEU4tpwlzF9GBGMB+wWKw8Vg9rg/XCRmETseuw27H7sY3Yi9gu7DB2AofDKeGMcA64ABwLl47Lw+3DHcVdwHXjRnAf8RJ4dbw53gMfjefjN+NL8Efw5/Hd+Of4KYI0QYdgRwggcAiZhEJCDaGNcIcwQpgiyhD1iA7EUGIicROxlNhAvEocIL6TkJDQlLCVCJLgSeRIlEocl7guMSTxiSRLMiS5kpaTRKQdpEOki6QHpHdkMlmX7EyOJqeTd5DryJfJT8gfJSmSJpJMSY7kRslyyWbJbsnXUgQpHSmG1EqpLKkSqZNSd6ReSROkdaVdpVnSG6TLpU9L90lPyFBkzGQCZFJktssckbkhMyqLk9WVdZflyObKHpS9LDtMQVG0KK4UNmULpYZylTJCxVL1qExqIrWAeozaSR2Xk5WzlAuXWytXLndOblAeJa8rz5RPli+UPyHfK/9ZQVWBocBV2KbQoNCtMKm4SNFZkauYr9io2KP4WYmm5K6UpLRLqUXpsTJa2VA5SHmN8gHlq8qvFlEX2S9iL8pfdGLRQxVYxVAlWGWdykGV2yoTqmqqnqoC1X2ql1VfqcmrOaslqhWrnVcbU6eoO6rz1IvVL6i/oMnRGLRkWintCm1cQ0XDS0OkUaXRqTGlqacZprlZs1HzsRZRi64Vp1Ws1a41rq2u7aedrV2v/VCHoEPXSdDZq9OhM6mrpxuhu1W3RXdUT1GPqZelV683oE/Wd9JfrV+tf98Aa0A3SDLYb3DXEDa0MkwwLDe8YwQbWRvxjPYbdS3GLLZdzF9cvbjPmGTMMM4wrjceMpE38TXZbNJi8nqJ9pLoJbuWdCz5ZmplmmxaY/rITNbM22yzWZvZW3NDc7Z5ufl9C7KFh8VGi1aLN5ZGllzLA5b9VhQrP6utVu1WX61trIXWDdZjNto2MTYVNn10Kj2Qvp1+3RZj62K70fas7Sc7a7t0uxN2f9kb2yfZH7EfXaq3lLu0Zumwg6YDy6HKYdCR5hjj+LPjoJOGE8up2umps5Yzx7nW+TnDgJHIOMp47WLqInRpcpl0tXNd73rRDeXm6Zbv1uku6x7mXub+xEPTI96j3mPc08pznedFL4yXj9curz6mKpPNrGOOe9t4r/e+4kPyCfEp83nqa+gr9G3zg/28/Xb7Dfjr+PP9WwJAADNgd8DjQL3A1YFngrBBgUHlQc+CzYKzgztCKCGrQo6EfAh1CS0MfRSmHyYKaw+XCl8eXhc+GeEWURQxGLkkcn3krSjlKF5UazQuOjy6NnpimfuyPctGllstz1veu0JvxdoVN1Yqr0xeeW6V1CrWqpMxmJiImCMxX1gBrGrWRCwztiJ2nO3K3st+yXHmFHPGuA7cIu7zOIe4orjReIf43fFjCU4JJQmveK68Mt6bRK/EysTJpICkQ0nTyRHJjSn4lJiU03xZfhL/Sqpa6trULoGRIE8wuNpu9Z7V40IfYW0alLYirTWdigxHt0X6oh9EQxmOGeUZH9eErzm5VmYtf+3tTMPMbZnPszyyflmHXsde156tkb0pe2g9Y33VBmhD7Ib2jVobczeO5HjmHN5E3JS06bfNppuLNr/fErGlLVc1Nyd3+AfPH+rzJPOEeX1b7bdW/oj+kfdj5zaLbfu2fcvn5N8sMC0oKfiynb395k9mP5X+NL0jbkdnoXXhgZ3Ynfydvbucdh0ukinKKhre7be7uZhWnF/8fs+qPTdKLEsq9xL3ivYOlvqWtu7T3rdz35eyhLKecpfyxgqVim0Vk/s5+7sPOB9oqFStLKj8/DPv5/4qz6rmat3qkoPYgxkHn9WE13T8Qv+lrla5tqD26yH+ocHDwYev1NnU1R1ROVJYD9eL6seOLj9695jbsdYG44aqRvnGguPguOj4i19jfu094XOi/ST9ZMMpnVMVTZSm/GaoObN5vCWhZbA1qrXrtPfp9jb7tqYzJmcOndU4W35O7lzheeL53PPTF7IuTFwUXHx1Kf7ScPuq9keXIy/fvxJ0pfOqz9Xr1zyuXe5gdFy47nD97A27G6dv0m+23LK+1Xzb6nbTb1a/NXVadzbfsbnTetf2blvX0q7z3U7dl+653bt2n3n/Vo9/T1dvWG9/3/K+wX5O/+iD5AdvHmY8nHqUM4AZyH8s/bjkicqT6t8Nfm8ctB48N+Q2dPtpyNNHw+zhl3+k/fFlJPcZ+VnJc/XndaPmo2fHPMbuvlj2YuSl4OXUq7w/Zf6seK3/+tRfzn/dHo8cH3kjfDP9dvs7pXeH3lu+b58InHjyIeXD1GT+R6WPhz/RP3V8jvj8fGrNF9yX0q8GX9u++XwbmE6ZnhawhKzZUQCFKBwXB8DbQwCQo5DZ4S4AxGVzM/WsQHP/A2YJ/Ceem7tnxRqA+hwAghGdGR/3XwRAG1EpZwACEQ11BrCFhVjn59/ZWX1GpI8C0MU0DbX2fWI1nAP+IXNz/Hd9/9MCcda/2X8BEaoHZfbhPqoAAABiZVhJZk1NACoAAAAIAAIBEgADAAAAAQABAACHaQAEAAAAAQAAACYAAAAAAAOShgAHAAAAEgAAAFCgAgAEAAAAAQAABB6gAwAEAAAAAQAAAR0AAAAAQVNDSUkAAABTY3JlZW5zaG90ZcvxbAAAAj5pVFh0WE1MOmNvbS5hZG9iZS54bXAAAAAAADx4OnhtcG1ldGEgeG1sbnM6eD0iYWRvYmU6bnM6bWV0YS8iIHg6eG1wdGs9IlhNUCBDb3JlIDYuMC4wIj4KICAgPHJkZjpSREYgeG1sbnM6cmRmPSJodHRwOi8vd3d3LnczLm9yZy8xOTk5LzAyLzIyLXJkZi1zeW50YXgtbnMjIj4KICAgICAgPHJkZjpEZXNjcmlwdGlvbiByZGY6YWJvdXQ9IiIKICAgICAgICAgICAgeG1sbnM6ZXhpZj0iaHR0cDovL25zLmFkb2JlLmNvbS9leGlmLzEuMC8iCiAgICAgICAgICAgIHhtbG5zOnRpZmY9Imh0dHA6Ly9ucy5hZG9iZS5jb20vdGlmZi8xLjAvIj4KICAgICAgICAgPGV4aWY6UGl4ZWxZRGltZW5zaW9uPjI4NTwvZXhpZjpQaXhlbFlEaW1lbnNpb24+CiAgICAgICAgIDxleGlmOlVzZXJDb21tZW50PlNjcmVlbnNob3Q8L2V4aWY6VXNlckNvbW1lbnQ+CiAgICAgICAgIDxleGlmOlBpeGVsWERpbWVuc2lvbj4xMDU0PC9leGlmOlBpeGVsWERpbWVuc2lvbj4KICAgICAgICAgPHRpZmY6T3JpZW50YXRpb24+MTwvdGlmZjpPcmllbnRhdGlvbj4KICAgICAgPC9yZGY6RGVzY3JpcHRpb24+CiAgIDwvcmRmOlJERj4KPC94OnhtcG1ldGE+Cv9SrqcAAEAASURBVHgB7J0HgF9F8cfnd7235C699x6S0EKAhC5IEUFAARGQoqCCNJUihCr6BwREQWki0hFpUhISUoD03sulXq7f5Uqu338+79hf3v1yl1zKpcAMXH6v7Nvd993Z2ZnZ2X2BqqqqejEyBAwBQ8AQMAQMAUPAEDAEDAFDwBAwBAwBQ6AVEAhrhTwtS0PAEDAEDAFDwBAwBAwBQ8AQMAQMAUPAEDAEPATM8WCMYAgYAoaAIWAIGAKGgCFgCBgChoAhYAgYAq2GgDkeWg1ay9gQMAQMAUPAEDAEDAFDwBAwBAwBQ8AQMATM8WA8YAgYAoaAIWAIGAKGgCFgCBgChoAhYAgYAq2GgDkeWg1ay9gQMAQMAUPAEDAEDAFDwBAwBAwBQ8AQMATM8WA8YAgYAoaAIWAIGAKGgCFgCBgChoAhYAgYAq2GgDkeWg1ay9gQMAQMAUPAEDAEDAFDwBAwBAwBQ8AQMATM8WA8YAgYAoaAIWAIGAKGgCFgCBgChoAhYAgYAq2GgDkeWg1ay9gQMAQMAUPAEDAEDAFDwBAwBAwBQ8AQMATM8WA8YAgYAoaAIWAIGAKGgCFgCBgChoAhYAgYAq2GgDkeWg1ay9gQMAQMAUPAEDAEDAFDwBAwBAwBQ8AQMATM8WA8YAgYAoaAIWAIGAKGgCFgCBgChoAhYAgYAq2GgDkeWg1ay9gQMAQMAUPAEDAEDAFDwBAwBAwBQ8AQMATM8WA8YAgYAoaAIWAIGAKGgCFgCBgChoAhYAgYAq2GgDkeWg1ay9gQMAQMAUPAEDAEDAFDwBAwBAwBQ8AQMATM8WA8YAgYAoaAIWAIGAKGgCFgCBgChoAhYAgYAq2GgDkeWg1ay9gQMAQMAUPAEDAEDAFDwBAwBAwBQ8AQMATM8WA8YAgYAoaAIWAIGAKGgCFgCBgChoAhYAgYAq2GgDkeWg1ay9gQMAQMAUPAEDAEDAFDwBAwBAwBQ8AQMATM8WA8YAgcBAhs27ZNlixZchDUxKpgCBgChoAhYAgYAoaAIWAIGAKGwL5FwBwP+xZPy80Q2G0EKisrpU+fPjJ8+HD5zW9+s9vP2wOGgCFgCBgChoAhYAgYAoaAIWAIHMwImOPhYG4dq9sOCPzhD3+QqKio4N+qVat2SFNQUBC870/buXNnufTSS+Wpp56SdevW7fDcgbqQk5Mj/EGzZs1q1Wp88cUXMmHCBJk2bVqrlmOZGwKGgCFgCBgChoAhYAgYAoaAIeAQCFRVVdW7E/s1BA52BIYNGyZLly4NVnP8+PFy6623Bs85yM/Plw4dOjS6FnqSmJgob731lhx//PGhtw7I+eOPP+45BH73u9/J4Ycf3mp16NGjh2zatEkyMjJk48aNrVaOZWwIGAKGgCFgCBgChoAhYAgYAoaAQ8AcDw4J+z3oEVi0aJGMGDGiUT1ZorB48eJG1/yOBwzsq6++WthDYdKkSY0iCri3cOFCSU1NbfT8N/nEHA/f5Na1dzMEDAFDwBAwBAwBQ8AQMAQOTgRsqcXB2S77tFavvvqqXHTRRcJSgxNOOEH+97//yWOPPSZjx471/jZv3uyVd+WVV3rn3/ve94QlDD/84Q+lTZs2grF60003SWlpaaN6zZs3T26++WYZOXKkt7ThrLPOkocffrhROkL6XTnvvfee/PGPfxSiFsiXOmVlZXnLHjh2Zd14441SUVHRqCxO3n777eC173//+97xypUrPedB8EbIwYABA+SOO+6Q+++/X6ZPny4zZswIpmB5w2uvvRY8dwfFxcXBOl9wwQXusvf70UcfBe+98MIL3jUiCK677rogDoMGDZLLLrtMVq9eHXyW5R0Oh5kzZ8pVV13ltQfPlZWVBe/dfffdwWfKy8vl3nvv9e6xZIT2472pg6NQfGnXI4880muPY4891nO2kBanC+VTV4h359z/fgsWLJCLL75Y+vXr5z0/evRob8+JkpIS7xn7xxAwBAwBQ8AQMAQMAUPAEDAEDIE9QcAiHvYEtUPomaefftozikOrTKQARjvE0oVevXp5DgG3jAFnw9q1axs99pOf/ET+9re/edfYiwDDtCkaN26c5ySIi4uTd9991zOWSTdkyJAdnARjxoyR7OzsYF1cfj/60Y/kueeec6dSX18v/fv39+pE3XCmHHHEEd7922+/Xe68885gWn/EA0spPvnkk+A9DlhiceGFF3rX2PPh73//e6P7nGCU46iAwKlbt27e8bXXXiv/+Mc/vOOpU6d6zhKcG00RyzlwDFBvHDQ4BSA/9meffbY888wz3tIH7uFY+Pe//y01NTWeI8O1B/f89M9//tNzGvjxpR5NpecaTiKcO6HkllxMmTJFTjzxxNDb3jl483xsbGyT9+2iIWAIGAKGgCFgCBgChoAhYAgYAjtDIGxnN+3eoY0Aa/iZUXd0zTXXyJNPPuk5DJzTwd0L/Y2JifHSXnLJJcFbOAJ0TxBv2cKpp54avI7RTzTCSSed5F377LPPBGdAKLGs4a677vKiHtw9jPctW7Z4RrnfefCvf/3LM75dujlz5gQdIeeff77nJMFohqgXjomWkn9fBzZbbIqI9nDE+0CUgaEPderUyduLwTliuEY0x+TJkwWcISIF/FEa3kX9B+yJKiGagd+miKgU50TA4UO+7APh6Nlnn3WHwV/S33DDDcIGnDgLHOGkwUlEXXCGQPxy7qI2XnrpJZdcPv30U1m/fn1w7wwcUB9//HHwvh0YAoaAIWAIGAKGgCFgCBgChoAhsDsIROxOYkt7aCHALLUjQvv//Oc/e6eE1w8cODD4JQWXxv/75ptvSu/eveWnP/2pty+CM4IJ1c/NzfWMatJfccUVQScDxi3PYHD7lwO4fH/2s58JmydC5PPII494xw899JCwzAMikuKDDz7wjknjIg2oj6MzzjhDAoGAN4NPFAHpZs+eLaNGjXJJdvrLkg4Mb+qJEwBnCksZ/EQkgnPa8C4snQAD9/UJnAHUAQcL0Qzh4eGSlpbmZQG2f/3rX71jHCahdNttt8k999wTvFxUVBQ8dgdEH/BeEPmS/9FHHy04HObOnSvOGeLS80uUCFhCPXv2lPPOO887zszM9DbbBLekpCTvvYle4NwRUSeOSM9yGOroPu8Zio9La7+GgCFgCBgChoAhYAgYAoaAIWAI7AoBi3jYFUKH8H2/48EfoYDx6aITmns9HAiO/BEC1dXVnpHv7rGswhGbNDrjH4O+sLDQ3fJ+2fvAUfv27d2ht8zDnbCPgaO6ujrvsLa2Vl588UV3WcLCwrw6OEOfG37HRDBhMwfsVeH2LSAyoCmjul27dnLaaad5OTDbz3uzT4Kjc8891zsESyI5fv/733tRBeyPkJ6e7pKJe4fgBT1gL4xdEY4B8MNZRD3ADmxwOjRHbukJ9/1fxsCxsiv6wQ9+EEyCE4h3GD58uDz44IPe1y8iIsxHGQTIDgwBQ8AQMAQMAUPAEDAEDAFDYLcQMGtit+A6tBLHx8cHK8xGhX5iQ8PmyIXju/uhhrn/2dB7/n0AQjeIJEJgT+jLL78MRhrwPJsmhhJ7HrB0gciAXdH8+fODSdiIsTliHwiWPOCkIBKDY4i9FAYPHuwdP/DAA97yEe9E/2H5h38PB3fd/+tvF/91//GECRPkO9/5TvASbYKzxkVcBG/4DiIjI4NnLcEhmFgPWFrC8ponnnhCWP4CEeHBH84HrvkdG14C+8cQMAQMAUPAEDAEDAFDwBAwBAyBFiBgEQ8tAOlQTcKMtSPW8rNhIcQXK9555x13a7d/+YqFI76E4IioAAx0CAO8Q4cO7tZe/b7xxhuNnscId3/uBgZ5c/s1uDT85uXlyeWXXx685H+X4MWvD/xLEdjbwTke3L4XRGKwrwPEng98xYJ9NdiPYW/JbWBJPhMnTvTqzWdDm9vIcnfL4/OioUQUB2WxlIZ3PfPMM4NJXn755eCxHRgChoAhYAgYAoaAIWAIGAKGgCGwOwiY42F30DrE0o4YMSL4tQQ2DGR2n5ntnc3yt+QV/Q4NogwwUtmP4NZbbw3OyPNViH1BOEv8yyxYfsBXK9wfX4BwFOqg4DqfCuWTmThe2LOBJQjuax0ss2jqSw8uv+Tk5OA+Cc7BwD33Kc/Kysrgkg0iP/gjOoJlF3tLbLjpiHwdDm6vDXdvd3/dhpzUkw08aTeWg7A/B8tEiCbhvfjsKntyOAqNgnHX7dcQMAQMAUPAEDAEDAFDwBAwBAyBXSFgSy12hdAhfB/D+b333guGyLMXAX8Ykewb4Gbwd/cV2cuBTQ5d5EDongXM/hOevy+I6AG3HwMz8KHLFPyfgGS5xcMPP9yoWPaauPjiixtd4wQDHGeMM8R3SPD1BRw1focGThv3xQg+F8peGeSDM6NLly7NZbPb12kft+SBT47uK+LzoW6fCDbI5P2J0sDRwNcweA/2kuAdnYOGsp2zZV/Vw/IxBAwBQ8AQMAQMAUPAEDAEDIFvDwIW8fANb2uiE7KysoRPKhKRwBp+llrgHHDEZo1QcxsINrU3A8b8888/3yh6AocGX4NgfwK3SaT/WVcOZTV33Z+GY//nKMk7lFJSUuSUU07xLuOgmDZtWqO8/ekxsnEkgMFXX33VIkcBjgX/bD/P+4lIClc+1ymjqY0um3tfnvHf4xy68cYbg1/VaLgiMn78ePFv5sl1/7N+7PzX/cdEeLilIjzv9oW4++67PceDe1fndGCzUJaw+KNceM7IEDAEDAFDwBAwBAwBQ8AQMAQMgZYiENAd7+tbmtjSHVoIbNiwIRgBwN4A1157rfcCxcXF3ucWMdQxlNevX+99KWJP347NJtljgU9f+o3fPc3vUHyOzTsdnn5Df2/fhSUW7LnAVyaacwztaRnsyUGeofWlLfnEJ+0ZHR29p9nbc4aAIWAIGAKGgCFgCBgChoAhYAh4CJjj4RvMCKzdHzJkiLDcAOKYSAf/Eoubb75Z7rvvvm8wCvZqhoAhYAgYAoaAIWAIGAKGgCFgCBgCBxIBczwcSPT3Q9krVqyQq666SqZPn75Daffff78X0v9tjVLYARC7YAgYAoaAIWAIGAKGgCFgCBgChoAhsM8RMMfDPof04MuQyAc2EGRvB5YD9OrVS/r06WNh9AdfU1mNDAFDwBAwBAwBQ8AQMAQMAUPAEPjGIXBoOB7KdRO94oBIYX3Db6W2Q/XXf1X6yx8U9fVfpP7yp8vT65N1C4vUQMNvnF4zMgQMAUPAEDAEDAFDwBAwBAwBQ8AQMAQMgf2GwEHzOc1AnjoWNqpjYVNAApvV0bBRz7foeZH+OseC6PFuk3tGf9UxUZ+ijoj26ojoXC/1HfW8k5531vO2tsfmbkNrDxgChoAhYAgYAoaAIWAIGAKGgCFgCBgCu0DgwEQ8EMGg+x0GlgckbKU6GpZrLUt2UdPWvp2oToh+InV91CHRT//6aIEWIdHaqFv+hoAhYAgYAoaAIWAIGAKGgCFgCBgC33AE9o/jQYMJAmv0b7Y6Guaoo2GFonqwBxhogER9X3VEjFAnxEj966l1dsET33CmsNczBAwBQ8AQMAQMAUPAEDAEDAFDwBAwBPYVAq3neMDZsEgk7HN1NsxSi71oX1X5AOWTok6IUfVSd5w6IQZrHcwJcYAawoo1BAwBQ8AQMAQMAUPAEDAEDAFDwBA4lBDY544H9mYIm6R2OX/5+8g6j9HogyT1ZLBJJL/xCjGbR7KZpPvVQ28vCDadZE8Ifsu0Dlu1DmxKyW+FXtsHVN9GnQ9j1RGhf+wVYWQIGAKGgCFgCBgChoAhYAgYAoaAIWAIGAJNI7BvHA9EN8wWCf9vmAQWNl3QLq+y8WMP/dPNHtn0UTrpcUc9ztBjdTzsE1LHQyBH/zarE2ITv/rHZpZrNXecFXtA9UNEas+q0+UY+rBma2QIGAKGgCFgCBgChoAhYAgYAoaAIWAIGALbEdg7x0ONLqX4TCMc3mkw4Ldnu+uj+vbqVBikzgXdxLGeDR276TPhu36uVVLUav3X6R8bXbLp5WL927J7XgQcJnVnaxTEOPXCHDTfCmkVtCxTQ8AQMAQMAUPAEDAEDAFDwBAwBAwBQ6DFCOyZ40Ft67Cp6nB4SQ30nBYa6Bq1UDdYHQyHqaNhhP6p4+FgJhwPgTn6fnP1XRfpO7ZwmUZ9hjogLtZ3HaPv10JoDmYcrG6GgCFgCBgChoAhYAgYAoaAIWAIGAKGwN4gsNuOB5ZShL+gSypWt6BYnfmvG67OhuP193A1xKNb8MzBmKRSnQ8z1RExWX/nqTdBIz12RfW9dAnGj3UJhi7FMDIEDAFDwBAwBAwBQ8AQMAQMAUPAEDAEvq0ItNzxoBs1hv9Doxx0acWuyFt2cLo6G/QLEJKwq9SH2P1SdT7wpY4PNKBB94fYFdWdUC+1lysObIhpZAgYAoaAIWAIGAKGgCFgCBgChoAhYAh8yxAIa8n78jnMiOt34XRQG5wNFmvurJOax3W5wenfQKcDYKkjhXfjHXnXXW0qGTaxAbvAzJYgvf/S3HbbbfuvMCvJEPgWIfD8f174Fr2tvaohYAgYAoaAIWAIGAKGgCGwawR27njQJQXhfw1I+H26zKCw+dl99myo+aM6HG5XQ1z3cPhW7G2Ao0XflXfm3cGgOQK7iPvDPCxbskyjuXz21fV58+ZJRESEfP755/sqS8vHEPhWIfCD6y9osv9c8uhP5Q+v/KnJe98qgOxlDQFDwBAwBAwBQ8AQMAQMAR8CzTseivTjDHeGSdhHO3E49FPD+341vO9Qw7unL9dv2SHvDgZgUa+YNEdgCaai2B5Iuu+++6Rfv35yyy23HMhqWNmGwCGJwPW3XS+lY2LkidefbFR/HHmzv/xKun/vMFlTsLbRPTsxBAwBQ8AQMAQMAUPAEDAEvs0INOl4YOPIiF9rlMPSZqDR/Qpqr9GlBg+ooT2gmTTfwstgASZg09yeDmDqYduSzTlbAUOWWJx11lleziNH6toYI0PAENgtBBbmLvHSb2pb2Ciy4fUPXvecDtz8YIJuAmNkCBgChoAhYAgYAoaAIWAIGAIeAjs4HgKL1TC+Q79aUdB0pEPdkfVS/Xid1J2qxnXTSb7d0ComYONhpFg1RWDrYaxYH0hKTU09kMVb2YbAIYcAUQ05ZblevZP7d2hU/+yynOB5Tnle8NgODAFDwBAwBHYfAVsOuvuY2ROGgCFgCBzMCDRyPHiz8eP10rYmqqyfxqy9Qr/QcJsa02avNgFQyCXFCKzATBS7HUgxjlCsm40q2eGBfXNhy5YtjTKygb0RHHZiCOwUAaIaUge0D6a57tbrgsd+Z0N11/BG0RDBRHZgCBgChoAhsEsEnnvuOXn88cdNjipStmHxLtnFEhgChsAhgkDQ8RBYp4bwvXpauWPN69vosor7NMrhu03P4O/4hF1xCIAZ2IHhDqRYgznYHwhin4eCgoIDUbSVaQgcsgj4Ix36j2p+rVl0mPWtQ7aRreKGgCFwwBBgQuSDDz7wloW++uqrB6weB0PBd704Xp6Z/y9zwBwMjWF1MAQMgb1GoMHxoJsdho/XNQLlO+ZX31Fn7R/ULzj03fGeXWkZAmDnYahY7kCKefi9iv1+2HCSwbysrKxRFR58UBvXyBAwBFqEgH85BQ8sm9WwEQ59iygHR7UrsiVQ8q7c/bur3CX7NQQMAUPAEGgBAs7pQNJQnaUFj3+jkkyePElwdoduZvyNekl7GUPAEPjWIBAmrAR4RGfd89X4DaH67rpZ4n31Ut+2CYM5JK2d7hwBMPSwVExDKZCnez5oG9AWrU1EOfjJNpj0o2HHhsDuIZA2MN17YPLkyY0e7BodkKrqShk9JNpmqhohYyeGwMGDAJstX3bZZdZHD54m8WpSUlISrFHnzp2/te3DF5TiTunsYRG6mXEQIDswBAwBQ+AQQiAs7D/69YoFO9a4vrMayvfUiaTseM+u7CECiiWYgm0o0Qa0RWtSqHHUmmVZ3gcOAdbGolAb7TkCze194t/HgdzdXg45urGkW4KR+fZcSfo6+GHMkT3l7jtv2vOK2JOtjoD1l1aHeJ8W0Fzf3JNC2PPoxBNPlG97OP+eYNeaz/ijHGxJaGsibXkbAoaAIbB/EQgLf6UJYzdJlwbcqRVJ3L+V+VaUpph62CrGoURbBLY00R6hCffwnME8NOJh9uzZe5ibPXYwIoDDISIiQlavXv2tnSXa23a5566b5fe/vWqPl0kkhQfkx5cNCVbjuGOGB4/t4OBCwPUX+sy+NGgPrrf85tSG9vr444/l5z//+V6/FHnhdIDsC097DWerZvDJJ5+0av4Ha+bu083UD8e2fzPjg7XOVq9DEwHkIX9GhkBrIxAmVSFFqN1b82udlU/fcVY+JKWdNoFAeXm5lJaWNnFn+yWwBeMdPkeqbRH23PZ0++Oof//++6MYK2M/IeC+WnLWWWfZLN4eYl67bb28/8+rd1gmgWHqPqUZmnXawIzgpU6D2gWPOairLm50vrcn1IMQ3KaouetNpT1Q11BuRo0adVAoOa6/4JC95ZZbDhQkVm4LEaC9aKujjjpqr50P/nB+ijfHUwsboZWT0Q4srzDaEYGdbWa8Y2q7Ygi0DAH6HJNVgwYN8mRry5469FP94PoLZOCFQ/eL7LfxZTu/BL9q4S7Vnal7Ogx1Zwfut7KyUqKiouSiiy7aoRJcd389evSQK6+8UubMmbNDupZeqK6ultGjR3t5rl27tsnHVqxYIUceeeQOEQMucX19vfzsZz+TlJQUSUtLk5/85CdSU1Pjbu/wC8ZgHUphMzTqYUXoVTs3BHaNwPjx401h2zVMO00BhlLbsL6YZRKfffSSl54B6pq/XCcVaeow9BGzUHxic+nMRcGrg2IbDqtqq+X+x96WOnVk7KtBB8cC9ZgTu3yHPNn9fPVhW4W6HsyE8fjLX/5SJk2atMM77M96H8wGDss/+DtYCL6Dvw4k0V7+EPy9rYs/L3M87S2a++55NpYMjczcd7kfOjnB7/4Niw+dmltNDzUE/Ju5fpMmI+lD6ENNTchwrXRMjHT/3mGtvnGr0x+bqsehxiv7or6NHA988rH2oh2N4X1R0O7mMWHCBO+RN998U+rqGiv73Jg4caKgwL722muSkJAgJ598sixY0MRmFS0o+P/+7/88pwNJcSCE0vvvvy+DBw/2jLqqqtAQkYbUzz77rPz3v/+VdevWycaNG2XGjBnyxBNPhGbV6Bysm/rMZthbrbPcInSGh8rsr42bEAD8tRbtTMC0VpkHW76hS2lycnIOtio2W59JH7/R7L39eaO+Zqvcdt3JjYpksFiUu1RSB7SXnPxdY7psYUOadz5eK7/56XC56sKB8pfHbm+U556eHHXxOG+gDN3lHIcJDhBof21Ctif92R/e3qVLF0Fu7s/N/fzhpKEGzkknndSqMqqlbU4dWfrBHzP7B5rgfxxdM6NXHVCnll85BpNevXrtFTR+xwMZ2UbLewVnqz4c2latWthBkjl7cq3dnClfzv9CFi9v0G1D9xg6SKpq1dhLBPZkLN3LIhs97iL/uLi/bIJGFWilkztfuNtzLjQ1UeNfxtSaOpPfwWH77DU0dCPHQ92FejFG5KuvvpITTjjBM8avvvpqueKKKzwDn0dOPfVU+cMf/iDDhg3zvNKPP/54Q076L4Yt0Qdt2rTxBvEXX3wxeO/uu++W3/72tzJ27Fjv/r333uvlCZPz50/LQzgUHnroIenUqZN8+eWXwXzcQXJyshdZcPjhh8ujjz4qZ5xxhvzxj390t4O/f/rTn+SGG24InhNOhDd969at3jXO77jjDnnqqaeCaUIPsrOzZdq0aXLNNdeE3gqeU9/bb79dOnToIBkZGfK73/1O/v3vfwfvN3mgWHuYh9wMm6mOh4KQi4fwKR3vN5/dKwiBvRGwPOvNSDeBRaiAOVgM2Saq2mqXQh1L8Lkfb/9xq1ViDzLmk5NH9tmwx3sq7EGRzT5SX9N4WQRfpRh51CjP2Oeh6HYJsjF7ww7PN6UQ1pY2fJ+4TUq8nDOufaO22CGDFl545pEngyn9gyWbW+K5h0KdEsEH9uEBs/F7stber+AgJ/nbX5v7OYOecFL2CDgYjPqmmsSPkbu/M9nn0rTWL8uI4CkouldSaxWz2/kWFBTssk/Bpzi2aHs/gWforPq30bj1Y3IwHw8dqiGi3zJamrdMqgfESHhGjBTm5Xtv7zYzPpigQJbOmzdvl33xYKrzwVQXN5YeyAg3v+xDLn4Tlh1iK7ilsYxfO9sfpTV1Jr+DI/G0faMHtjb/tra+EXQ81KfWS924eikqKpLTTz/dcxzMmjVL2rZtK//85z89pwIvm5mZKS+88II888wznsH+61//WjZv3uzhcO2118qaNWvko48+kltvvdVzQjgPT35+vvztb3/znqGD3XPPPfKXv/xF3nvvPfnVr37lpXVLEzCgXn75ZTnnnHPkRz/6UdDpsTOwzz77bM9hEprm2GOP9ZwaLlLBzXIlJTUoUDfddJNX11AlxJ/P5ZdfLjg4dkaLFy9upMiQ39y5c5uMoPDnA+Zg34g0wCNsautEPTQqZz+d0PHo2HwWak+/RY3zghDzfy9+fYewKe65T05Rzi+uPe+gMWT3E8ReMf7BgwvwIPwOoXhjKO7J7DJCCOUiVHn3Mt7Lf9jI8ZYrB3i58Mv5gaSm9mN4/t0GB+qWReslrGeC5OZmN6pithr9joqXZcmxI9upIpYjI4e0lUWrt3i3BvRJlrqK7elc+t35hc/9obfw+pqCtV4W/sGNC7O/aL1NYxnQnRzFeG+OL+Cb5u4tX75cVq5cGXx9NvcjfWsSBr2T85THUg8/+fuL//r+PAZbfz8mCoM/+i4Rfc3h2Zp1nDx5UjD7NcXr5Pn/vBA8358HOKn8RHsx7jfHg2DFxAKOrdDNQx3/+vOz45Yj0Jp9NdSBTq1a4mRqee0PjZRv/LMhgo3ahmXESmFBXqtUfG/akj5G/1u4cKHtKbUHreMfS5FVe9MWe1C89whtyJ5gfvomRH/5J2P878YxOPt1qdD7rXWOzrYzB0hrlbs7+cIPTt9oLX7c7nggujhcPGM5NjbWizbAy0xkAvso+InZ/COOOEIuvvhiGTJkiKfA4TRg1v+xxx7zNg77wQ9+4O15wDIFR5dccomnBMDkffr08e4PHz7cczqQJjc310v64YcfymGHHeaVi/MBx4dzHLi8Qn8J22V/htra2ka3cBjgZCBiAXr77bflggsa1kCznGPmzJl77d1jKQhh7UR6OGKfB2hXG02CeX3jyG7vubDZe+94gGkQbPuC9jQvv1OAeuzJjBllfzD7I0k+vos3q+s39MiTGWlHBf+dJ395/AzvFEOW2fSDnXi/1jLs3bs7oyt0drklZRMOj3IRqry7vPflb2jEwb7M25/X7kTE5JRk+R+VsuLt35hvdMN3snh+jqR3iZXypBr562tz5NlX5sjkyR/7UuzZIQOXnz6Y0OBY8l/juP2ZPVtNicEw9isqTRkKDF5Ew7nNquCz4447zotuo344apHZhYWFglMaIxLjorUo1KCnPMab0OgC3oW6HigKxZZ6tmvXzsMHzEOdJa1dTye/5y6aJZu0H9RlREpzPNfadQldSsnSRvQPZGdTsgns+IP43dUnM79JIcat2RbgvadO7Nas177OGznQ3PrwfV1WaH6heltkQrRkbs4MTbbX587I2JMJCQr3y8+dOY/BkrKMGiPgl/c7k1Fg15yDtXGO++aMeh3q7YXN4JYogYo/2oBlqaG61LJZS/cKvKbkBf041MFxsG8Q62wF9I1djZl7CljQ8VA3umHWneiFrl27SlhYw61AILDDWkqWEzgi7bZt22T9+vXeJf+6SzrSsmXLXNJGhnlMTIy3NwM3OfYTkRNEC7BBI/skoAyyp8POCG/hgAEDJDxcLXkfUX+EKjMcOAemTp3qLcvAUXLjjTfK/fffL4mJicEnmtrjIXizmQOwYkkISzIcURb5+vN290J/Hfb+6wFga35vSn/SZo+d1wpFAUKY+Amm4nOablbcf89/TOdh1u2dd96RY445xn8reEwajPyJ/7mnkeIe6iRgxowOStq7brmg0Qw311F0/cT59288XzbKFpm9aq6gALMhjH/Wzc1I89wpo9rJtupyKVBjBvp82jzv1/3jf85dO9C/GPb0uw0bNniOOSfwwYO/nRH3Sc9vXl6eLFmypFFy+g73cTg48isIu3Iq+J/d2cDo8t7dX74g4SeWNuzqnf3pd/eYvJtb2sG9MSMaz6q++fl8qRny9W6RXxe2s9mn2hXZMnx4hrTvFycx7SLl3y+tkC7t4+TXV/ST+uq9M6xdXyKqwk/UO3Rw89/f18d+ZZO8/fzkyiKNc04wXuCEwDHrHMjI2fbt23tLLVzE3IMPPuge36e/46+5Qj5//RXp372b5+RwmS9dutSL8GO2zhEhw8jNMWPGtCofuvJCf1Eu/fTWW295Y4u71pr7UDTX71DeatqEy+bSLbJ46XasXJ0O1O/xxx/vKeOU35RsctGWB6p++7tcosXcuNpcW+5tnRgP4FHwDnViN5U39aCdrr++8bjeVNpdXeOTmpTfWoSTYewVJwZ1EP/yzVBHwL6oQ3NtRBu++skzOknTWC8O5FTLinfnB6Pc9kUdnJHRkrYMLc+vG3APnnC6JHihd6J7kw49Ayc05829N+n3ZftSTqg+GfoO3A9t99A0TZ039w5Npf3Pf/7T1GXvmhtL0cWJ8maCNDRvsMS+AR+3TLC5DHl2dzEMHXNw6FKPXbVXc3XY3euh79vU837ZBh4tcQjWJtXrxE+tt0eKixba2ZiQNjC9qaJbfO2yuy+WeW0XyUfx0736Ucc3J7y5g4OjqWW5LS5kHyZsCvfQPt2UbrcvqtDgXUjWWfduDdkhPFhiwSwUxNIL9nzYFTlnRFbWdqWYTRZ79uy5q0cb3WcWCmPpF7/4hRx99NHe1yZIwPKO5ggnAvsp8NWJpujcc8/17v/vf/+T733ve96XJ6gniid7UvCFDOf8wHmxM0HRVP5co5POnz8/eJvjgQMHBs93duBhr23QiHQPy8CGRld2+4S2RPlvinlQaHEiMAu5qzBGOjp7c3z/+9/33rMpwVZTssgLmT96WGLwSwBUOLST4WW88Aff9dLedu1RcvSACs/5QBkM9OzK7z5vQ8f429tPS/GaQqk/PkEktlZKqku9kMPmZt3Y2C8qIUo25Tbw4W3XHOkJcvIn39cqJ3pCoalOt9sA74MHXEevqKjwNjAlxI1BxoVXY7A5xxHFwZucu0GafsLmqEQTYdjhBHR911UvdGBxCoIrm0GPGeim1vWFhjc3xUuunN399drg6y9ItOTZ0DbjHCWtKuv1Fkf21Jboe369tAMnB8/vkuqrGyWpKa2Q/LyGJRQ4AVZM/EzWr1kmq1Y0fNmiqrRKJnzQ4FCJCw+TL4ry5WdPfCkfTp+xg1JBxrwH/LkzIs2spTNl+atTZObiL+XTp96QBa9M8fqX21TS/zz9rKnrLo3DrrmlLdxvqp/zPA4yjHVknHN0sYcP6eFPnvU7OeFtFzUXGRnpfa0hOjra++qPc0TAg9xrrkxX79Bf+sHOPs157y03yV1DusnIzu2lb1KM5G/aKCzzYNkfMpuZcurA+6BwEQGHM5Y9g4js4132J7FUcWdE3wWr5mhP64uSxFI2fv00efbnkl++3WEW3TNFvlw8w59kvxw7noLn+KO9/NGUVIJ2c0R/IoLBT/5JEXSM1iTqi2xprn+1Rtk4cZFtjKvuazzUoyVKenP1CX3eGUouvR9Td83/y1IYeLZjx46ePkd/dcaoP53/uKk8cQjiWGdsxCnIuHTXXXfts/6JATovfals7l7kbaQ6fOzwRss3F+Zs/2qRv667c+x44rP3n/LahP72r0VvNXoH7vU4sVbK02qlWpfgFuc2TGZVfbJF8pZsFLm4ndz0ZMNEw87KpiynIzSXDlkLjk6GM1nGMzh4djUeNZen61f0PfQOHBpMBhLZDFEeX6pzct7V0zkRnYHdVP7w8dCjh+7SmUCe/cb0l3P/+WP5b9xUz5nEtaaIJYpMZLFUd0Lm5EZt0VR6rtGvKze/7k2c7QwnyoTXweT8889vNm+/Lk4keSgR1eVmn++77z7PQeFP4zDkWSLOncNgZ3XzP097+4m2I2IdPXJPHFL+vDimfrSd36nn0nCd/d+4t7P6+mXbc5Oe8TbQ3tkXvOjP+enlXjHskUK0UHn1Nnku61WvrI+/avzOJGTypjk+cfUN/SU9/HDCd0bKwEu6SN9uKdI2sVZmzJ8pGwaWSkl6hTdZ6n9uT8rxPx96TB2Qibvj3KWfNxW11pStgF1AGXtiF4fW1Z1HcFDfy52KJyB4iVNOOcUz0t99993tN3dyxPKMcePGeYMBxhLLHv7617/KP/7xj508teMtZtVZZuHfKBKhRZ1YtsAXLCAGQIwglEicEnjoUBqbIjoum1HSad2sGo4SHA+OWKLBlytwTuDAQLFBwaMzEDXRFLEMha9pkP7SSy8VIjVwcqBAP/DAA95mk00919Q12iAwp/GdwJaA1PcI2f+hcZKdnoE9Sj/vSkizI95t06ZNnlMJQxWD1SmzOCL8xPsjfNx1DAiW1CBMMS6YtYyLrvWUHZ6b+tUa8c9as7lLd2msAB57TM9gEXyy8MG//lsuf+I2+WLxKu86m+Td/9pDkhaeojvlhYl0UzYN0zaICReJjPZm3cpm6T0lOoSb7cUI/I6ur3/0mdmSnbNVwlKmS9XGKvnDvefroDIpuPkeAw17Tbh38jLaB/+AFQrKpuVLpEu3ntK9zYAgv7m6hpYJH8PDXKfP8AePYwyhsPHHfd4Tby0DM+0Bsc8KbZuenu4p2TjgWOLDDLJ/2Q8Cwz3jPaj/0H5EI7HcCB6Gx/msLOX460h4c+izfGmGmQ36Eumvu/taOf32iyV+ao23h4srY1e/kya8G/yCBHwDwQ8PP/+uVwfypp3axWdIm7osqa3KkfG/XSt33P8vT7HOXDlD7r1xrORu0qiEkpW7Ks6r66SJ78pRAxvWNlHW9IXbZQD1ufmy7bxJhiNHdpHJWUWyavlcKS7Mk20bo6RHWqy00y8ArVo2Sy4Y0EdOfeAU+e0rs2V1sS4VK6yRPz29Vdp0jJLXXl4t1bV1sihvq6QcHyuJdbFy3e+vlAUTt38vlwGSHZcLl26RmhdVqbn0jkbvAQZ/vO8mueiM9rJxwyaRBO0Pp6eKdK2VnNV5Ej0/TIacNHAHr3qjTEJO4FMchRgoEAPnXfc9HUyFUohB7hQY9riBcFAiO1iCh+yFkMnwAtfgv5tvvlm6desm3/3udz3FBZ6Fn5wzjGVpRIih5LLcDuId2cyYvCiTQfHJJ5/07u3sH+rJQOkGyyaf25ip8mOoZHTuIm9NmiZrcvOksqpa+Fyzc4bEx8dLZmamd46D1fVFflH4evfu7clznCX+vrGzuu3pvdD+hsHW1FedmsqfdkT23nXLkxKROLjFfdEzutpnSu8xh0mpZowy+NrjDc6NZeuXSfjx7aVyW4nysi5jDKijJqNiBznRVH1aeo32Z/whOpC2YLPnpiguLi4o1z777DPp3r27N4a5tC4ahDZibIKX/OQc7P42RLbidGXcRtbCy/777nkniwYcPlgKluTI4w8+7t3iemh6+lf26vfkpxcNlb59Owb7F2nvvvMmCYurk9GDdcBXCo/tKmNPPFOQPXfe/bC4JWCfT/vKO/cShfzTVJk4OFx/JjkOiKNPHCXF6VXeuFcqDZ/Zde0akmWzp0wGYJS55+MktlFaMOV9GcecPuB0LPonS10Zi5joQT7QvoxPTGahr9HfaG/eyY0poX3AGWZsCE45yI/rrrvOk0dsWE4Ua0vIlcEeZqFttiBrhvQdl+hls2L9Fono76nGwWzdRr6hzwUTtODg7tuvk9TeUfLUPW9IwWCRK0aOks8eu0dK1K83acLJXnufeskvpaduRFxZVyPhYeFSFx0upds0UvX4JLWMYqRa9YLkY9vvVH+hPdCj0c3QyZlgckuN/dVElxgxYoR3CbmO/GVPNzDmXlN85p7n3hdffLFDH8P5R/nIV/oTxKfu0cEZC9BVrrrqKm9CEnkNzxQXF8tpp53mjS3IWxzAoYSMQm/rrDJqzrLlnvPB9cHQtBvS8qQwrVQCg9KkuLRcKkd1bBIv8qwcFSObdWyXQKT0Vr1zV3oh/cxNXKA/fPfHzzUpr8AH3mSPOQgsiGhAzuFYY/yDDzHy/ZHSpGUMffjhhzn00oMfYw8b+9OW6IjodCxDh4gmQUfDac2nMGk/xmfS4fiAD1yf9B4I+Yc28BN6oeMLrofe96f1HzNuuInGE7s39Gvu0x6ec0ftgLdfeV9WXrVa+qQ1yD++FtZd21T6i7z+6OtNYumXbTc8/LZUxlfKgs2LJHb2EqnfvKPOCv/97f/+JoGLE6Vya4GEb6qR+uklUpS6QWJHpkhEp3jZumSrN4GZmtbW/wq7ffzkY7+Q63+sduPyXKkrSZKExGTZMilXNpcVSMnyOqkt0nFTkvZJWVQutE/yrshLJkog7OSm5CHPIV/hOX6dzgRfwpNOrmG7wzOh5Hgs9Pqenjc4HtptN25ROF9//XV55ZVXPMP8zjvv9AycnRXgDPPnn3/e2wySNakoEWwa6TrHzp7336Nz4h30EzNaeErZtJJZd8gBzRIHlFYMqJ1FV/z4xz/2HAF0Xoj39HvW3d4QKDMMjnR2vnSB8EDhCSXS41jhPXE84CGkcd03cNkUk6UiLaV6bYOA/teIGoJOGl3anRO8yKwJZmYInBBALIlhGQsz5RBCZdWqVbJo0SJPEcAhwdc7eBal4tNPP/UGeoxSHCpQeXm5hxF7Z+DNXrFogtzwcKyUdKqX2XPWyeDkDClc85Xcdc8fvU8Qeg99/U/m23PlyiFt/JeEqISLb7heep47XIonb5A8nWErb1srVdN0RB4Tr5JLZ5xrlUfDA1JVXiptklNl2AUN0S3eWq3DGpb+EOY+aW21zCnMl06ntdW9PVJk1bsbvOiBw383tlGZTkA2urgXJyzhePTjxyVmTaScdTahqF3ljVc/DXr2wRH+ZAaIJT5O2XJCHUUaxYyBimVFGEUoXLQfBhqfZ4XnnFDgHlE6RAUxoNOutC+OJtoJQw+Fj/wZgJjVgOf79u3rvSUKAkq344MpU6Z4s1J8wYY+hmOCfkc0EDOMEIoigiolJcVTOEafOEwKUgqlt3p635r0nGS+ss7jGyfEvIda8M/9j/5Xlzi0kamzNkl9LaZPW0+xYAYCJ9SKe16V9/9+mqQmDZf88/vIj264UMYdM1ievAsnWZ2sXL/JU7qdAU0/dDThvQYDNiwyWW2m5KCjw913TrLm6vzRtOVS2V6jcPp2kiW6zjY2MkySUqKlurJaUhfrErO16vA49zD5cvYaScmOl9LFNRJxcqyUra2SqnYRsjp8m7Q9OlHbTjeR1UIzK7M8OXHP72+X+roKWRi+Tnqdp1/N6H+YfLpsiiz1GX3UEUNl9JBwOfvE7iKsRPiuKsexKidiw/UvQTbM2iCzZs+S1MMa2pVnHLE0AyzY1HLsKee5y3LMkHo5etj2kP5QDFA6UQAhFBo83sg1jnE6wXOO4AnkAAYyshA5iNLLxpHwITIE2cHgiLKFEY9S6l8ShyGBA9QRPEu9XZuwGTF1IoIOueTkKgqW37h00TiUyQBKnaPXrRY5Zqi8PGmqhKe2UcVtjMzXutBXMOjpL4xfKMQovPA2/Q+FkD7G7Bw8T1mMMa5Orq7Uk4Gcfkq0Eg4Tf91dOn6bu+5PE3qMMul/R+47meFPi3I2Wo2ZTFV4skuzZOWXS5tU4vzPcMwM6/z1n4r0qfWca737HSbrC5bJiccNlTFHDRCJCkh8TIPcj4oMl7KKKolM3B4CvifvxDO0Ec5wZBDYwlsQGIfmiQFLmxCN6J98wEhyETMYThC6C22E/Aol2pG2cm2IwsXzOJ2YUQdX2ju0fPJxBvhMWaXp53rO2uzSbG/d8JYb18hz//dsMN+6wk/k1p9qY6hsWrF0jvTrVCtnnTFO/vfFNOnWI0GO69VBRg4vkfapHeTd/82SzYs2qcPzcLngrGHyvdMGydnfOVwdq4u9aAmcEX5CuccIjnyhVoakD/QcINS3TeImWbisQDqld5A0lftQtuRI/++NCz7ujGfGTGZ6M+Layvy586VDv07e7u/nn36+nNj9+OB7XHfz5UIEgKhSPSSivcyculhOOPy04NhCxmCKjnjmmWd6egL93jkAiSrCyGRcw7mDnkY70k+ZqKH96dfIF8YZ+NyNb8FK6wF9lPGRT5XTZ3ES4YRA7jA28v4Q42BzTit4iLLgH3Q76kOULLzAeyaOi5DcD7Jk2+oyGTY4VT6et0aSh3UQZ5gQQbYro9SrRMg/jpfon0ed20XmpxRJbXaYdMmPkJKFG+Tqq0cJEXK5qzd5PHL5hbpRY1K+rPmXRjp0DlMWipPapaoILq6U3ud1kNKicklJjg5+Mtnxsr9YjIrp06d7Rir8Da6uHrQNei/6vV+vRScES5bAMd4z2ec3SFz+4IjTCHmP3CQtstJNdCD/kfNOZiFDqSP6CO2IXkMbcI4DCnmOXg8xXtDOpGH2FhnuCH6N+3oCi7aY/Ohkd6vRL4bY+EfGS/Kdaskqub0xevca7WHAZswszYX3c9evk/zoAunbI91Lu0IdEDGzvMNm/2lYGtoxeP+2n6mOrZ8C94+vjtcYD+HRv//9714/waDHAcMv7867giNGPrzJRCg6IvYE0TzwOvog+TBm0l/ACHyYmMW2oixkJ2OX4wU27KdfukkpIoVc+wcr3sQBsphn2QOPNnKEXLzujusloGp4c84e5xhybTTh40ly/OfHe32SDeHR44jQrNTI5QVLV0l2RIlkTVkjI352kivGk6XkE1oGmE+bnikxidG6V9aXknBbZ6mpqpX6AclCJBCbNS74YoGXD+8JD0iXgET3j5faiUVS3SVSUgbESpsRSZIaGy15BYU6/uRLwewvJCGjrUSHR8phg0cF64Eu7yKqd+aoveS6c+W6G4fISy8skoB21UBAbRbtbwmxETLqJ111aW1ANmp/youukzazVkm/6C2qB+VIgPF0u1gOlrurA//EAvosk0XwEn3NjYv0Jyd/XX6cp2StlWERdfLe7RNlRk14sH+SxulN9HfkMLYA/dlF7MOP2AL7khrcumrbOeIF+CwkleUPo4XBmq8/QDCnn9is0RGMzsCCYYpRhELp6M9//rM79H79YZGkdQoEz4cS+aB0OnJp3XlLfhnc+GuOUIT9+eKoYPNMv4LMzDB4QFxnIPTfZz8KoioQ3iiwu0W+Ngg+VxE82qMDGAiv9OjRoz3GYXBB+LuwNzKFwRBaDDps9sa9f/3rXx5D044rVqwQsED48K54Ws877zzPmECoIgxf03WHPc9sL72P6CK9O3URqp2bmdtknZPUeXDEiE6N7j38/iQpPSpSVlVukK25mQquRuH0TRPR2WWZWiaBjpEeL9VW1+lAXC+VtdXi9opolJGerC0rlU7f0YGkql4Kl2+VnGWqOGlTbAzkSrJ0CCZ34U5OWAdv7MGBG+x6HdtZuiW1k559OkhNbY2ce84x8uifn1Vls5/nOAP7yy67zHP8YEzRl+j0OA1QxOngLDWCf1Dg8HJjAML/OIYgfjlnwELo0DcZ+OkfOJdwTrhZJdqWvLhPW9G3UdAZ/FA+SA/BJ/AIacmTc3AhbwY8ooUQSAyWvXp2k63F+bJi+WLZmlEoXce18/LwBu8LRa4bf70s+KTBUcENBgJHhP/y1YhxJ50vU75qiDR48M8fqrOhTKbMKNNk9fL59MWyalO9zCwrloxz+wibhZ5yXCepD6vTmeoqWbKqWPr30C9E1G/vHGlJYd6eHuzngXDOKlsu06auEd1aQf74u9PU2dKw5Omhp6ZpGduVBurFrMVXK3M4bJrqq6RrhwTvXkJkuCS2j5G6SnUufFEm/dISJUar8Zt7J8rA3m2kRAN76uOqpVCdEoN0UHz2zRVy4oN9vGeL15SrfKmTvmd1lXf++5S8+4/vyUsTZ6n/IFJWzlwrSaWbpGRxrqzYVu0NnCjQKKsnj24rv/iRzrj/daZEdo2U6jYNRqAEtJPo0iNpt13Ghr7A5iUa0aKOl2VLFslTT9wjAwYOkxNO/6lMVoyd44EZhLyKctm0drJ88VnDVxOc08Gfn5MZRDMQVeMckczWEN2AcQHhIINIA5+SHtkBr8NHeOOR9xiNKJ8oscxU+2f14VfeH3mE05T7OCycccq4hDJGOj+hbFF3BuLi7C2yfuF8efnkkfLLv78kq3PzpUdCkhdeuFWNUvod/QRnHH0GZRn+xzGHYgdlqkFKXak7y0tIx2ekicgjCoQ+gsJIHrwPs4oM/OSDAulmmugDOBuZ1UOZxonekogO927IAedIdNf8v/DJpE//I89PKpL0wxOkILVOwtvWyNHjhkpcfYxXp7pKnSmObu89xgw7ffFv/3hFktpFSf7AcEmtT5BATalM/NPrcvGwvnLVb0bJkP6D5fnlk6VY5W2E8ikUHxMlpbVbPR7FuKeNmA1x7+olauIf2gyZgwMKWYJSg3yiDRl3kTkQOgQKEH+MNaSlTRiLwB8+oz1oL8YesCayD95ivyn4krIgnK1MglAOhBGEnEVZx0HBMlIUe2Qu/Eqd4EfGTMfHPIcy7L6aRFRd6oD2snDiYknr1kZy/7NIxo3KkEceulomvdNJJs/MkV4dqiW/oL20SYlS2VYp732s42O7RDnq5E7SLjpSLtb+PGt2rjz2+EI5++Suug/RArn0V2/IVRf0l3bJlRTpOUgffOKTRgYDTgdmDr1xTO0qZn7hLZwiGfX5GoY+RBZkLpY2uTrTWxwnpRkNfZL83L4wXl86t79nCGzSd9kYvkUqusXKIHU44VRZ+voij6/hqQWbvpC+Omtc/fFWqSlYJUWZ5RJxRED7xRpvHMFZh07xwx/+0OsD9Cl4gihZ+AE+p/9AtDNGE+3JLDxEn2e2m3T0XYh0tD0RtET+0bdwRjGTR/QE4xz5oIvQJ9HHLrxQHdGaJ2kZ05xDAWzIizYlP57hWYj0TALgJJ01Y7oUqXwek5oklz4yQp1QubI4uUxnkJdKj7pealREBR0Q3sMt+OekE46TMcoXGUlbVQanygN/f1vGPjhMVv1ns9SPS5G+c+tUHifLay8ukiG6J9Da5VVy7BE95Kl5H8rRyWkSPbq9LCotkQo1YmJzw6SNOh0SEiPU6RCjSy4KZensFfKLz34hf77nz0GDk2rxzhj/6LpggwwDZ3RZ5BpLiyEcN2COTgD/gzXtR39CtjLWhxJ6DhHBGKbkzbP0J37hBfop5zijkcH0U4hoF+QXsgKiLMYN9CEMXfo1/ZbnkAXoohjL1IdlpE++8BfJuLZhDPcy0H/cRoGh+htfMuhyYk+N79lO26JrZObaOTL//RnS+cqGJTSlejv7xQ3SvdN2faAtesQRDeH25AuWjtx56B5Q6A9/+PvHnuMBfBivqDeYIO9wLvB+6HPoXfQXeBmeR+bRX+gD8C1jCXoduIEjEdikQf6TF/nQPrQN/cpfP+Qi8gz9jV9wpO3JB92OCVTwhuhj6KHIPO5TLmnhD/KnbRm7uUc5S7Ytl9kRa6X/4EHeMoXLzrxULjvnxw4a79fvGMLBsE2b+gd3XCTD+w3zZA0TjiVVpVKnsqRYIS/JK9PJm2JvGYIz+nEoZU9t0MV4N7dcbNmqBXLUiTqJkBAj8UfGS82aMkmfrmNST5Vv2p/j+zasU7/rxfHywG33SpuTk0RjxaVEzYXaOp3u6aH7CX5VrXynY70qYymtAABAAElEQVQ6g2vmlEhYZ7UpesRL+eoC6VEcK/NefVvbpaeccdmpMvTHx0rymA6e7jl8UIacrU5jItP8TmDaurJ8jcqKdrJmRaFUHhYmETW1UltTIrWq/4WFqcNQy6pYVSY/KEmXuy7VKFHtu0VbK+U/EzbI+HtvkU8+/rIRhjs7QR77I22IED5x7BGytaze042QffRp5Bz2m9MvqOd///mi3DdulAzPSJc6tUvKAvEyd/o0OWz0MV6RyAGi9+Ex+injILzy5Zdfeg5axtnWcTz43hih4LxwdAY3A+5CM3xJmz30e1KbTXQI3PA7FZqqblP3UYAOFkIRQ+jwhwccIQdz4hRhhhGPNcwF0yLU+EPxQzng3RBgMCD3GbwYwFHkIBflQpqzzu8tW49v7DmpUsXo1vG3SuqVfT2lJ+/DJdJbPwmVWFAh1eUlsmLlCunbp6+gXM1ZtEHq+quCo0alqCusvk4Nqol5Kp1qpXP/ZClQIVqra+Ujdba5Wp0PlTrrlq8ey53Ruo9ypbR7hIT/JEMiP8yT4rByWblxhfTp3DAzjJDzPkWoYwszwoS2Qn7hsrP83T283eOfvlfiRibIls8L5Se3f8e7xfz28lVqTJZVe7gxWIMZAw8KEwMKfW3s2LGesw6DCecA/Q3Bz54NtA19kLZjUKBf0QYo1ODODCuDEu3McxDtxH0GEhxKKAMMhDiQSOMUd2YZKZ/0CBsGGQiDCSOPtOThlMRZMz6XcWPHSFpqijpVlBemT5TIuBopL90qVbr8ZduUUhkWGyVFdYXeLOrn0zV8UYnZ9Ae0jY85LFWu+dGRktZugJx+8a1y5JA0ef3DVbKtslb+fu9oVdI6eoPd1NlZ8tiHE6V6dLxs2bxEBmVWynWPjJMv5ubIe1Nn6frTzfLPJ46T9z9WbHVwT9R3aJMS70U9jFHF7fUp/5Pul3eRjjkx8rtrhsnm7M0y791C6ZieJh98NFW+d2KqYrJdiUGAP/Dyv+TyP9wiqVWRcsLIw+Xlt1R5T9HIAqXps9dJ72ENBts2VbzTx8VLj/xIaTsySSb8a4O89dQJ0mvcm9LvBFW6NX28jnOblpfql1YaHI+bF5TItqmq1I5Ml2Q12p6/f6VceWvDBpb/nDBHkk5Jk6GldXL5D3toewyRGVM2yp8efVjqa7Z6e+3066TrBEvbSW11lQRS1NngaK1GCPSIVaeaKghSJNmTZ0v42iLpXqvOuvJqHeCqZP6yQjm6p8ijvxuhK5XUsVobLqf/5Fz57XWj5cvpn8sVj34uEd/ReuKu7x7rKRXhmQ371eCgQllixh3eQzHkGgYZAxX8i7yA+MUggLdRKDHO4TP+4EUcaxzDq8gWZA8KjpND8B6GJDyNIYDiS3k44hgE4WF4kZkxFwpMPihmRGvB3+RF/ZgVTw0PSH99Nm/DOnlzdZacPriDvLKlQcHD2RCjg7MbYCkHJYs6QrwvZdFXqQd9lVk9BmX6Bf2FwZ2oIGQl13E4kJay6a9gwIwqhjMKNDiyFIVrEIojDgquQSihOFpQElAKIerHs05Z5xoKKXkgH0jrnnnztRdkU125HHGTLj1YWS4JyhqlWZVy+rExsjGrQjYue0/OO7On5BYWyYo1lXL3b9+RIf1SPUN3lS4DWjG0RsJy66RDbIwua0qVs8Z19JbMvf/xBqmpVuWuLlJqMsukLqCyWfmubvk2qelW4xn41Clz4TyZNldDrBVb6gRh3CNjcJQyfqBsgzPvRLgwfMF7YxjCD86JTTuCLzoI4fQYkcg5+I4wUfgGRZk2R3FGNuKUAHt4jPYCb54HX4wZ2oR2hpdoP8Y2zqkH58hecCZv6kKd/aHMRe0bFPbaD+bLzDeXqFctIOFHxcuQjYVy7c1D1Zm1UR674zApKVLlX8fXUQPSpVuHGIlUHkXZ3JS9TZZmFUvBybqWfEWVfqVrhaRGKaZadq6Oh/f/eqQk675Ev7l2uKzZsFXe+XCmLF2Zp87ZVfLvt/ST4j88T8JiusiCMOV1dWhAbib+ln/fLkUJZdJblzP//BefqDKuY7f25+J16sA4Rp35uhwsZ2qWVHTRgVXbL/o4Had6Vkjd9EWS9cVa/YR6kuTlqrLfz8s2OJNeW7pYlufkyvCPq6VDWKzMXacz8EoZ6Q2yK6BlwPfgyC/9hbYlyggnJaHdOApoE9odvnVyAJ6hDfgDb56jjzG20Y/gBQwe+Ib+Tf9n/Tpt3b17d6+dOOYZxlXukRflEC3LxAjyxIUH099wfqLLoMeSDvrlL3/pLaEqC1RJt+hojcLoL1XK75/PVmdM54DEbi5X53WuzJi4Tuo7t5OEtsO85/gHw4jlMZM/+8iLDBp7/FiZOifP438MgtHDY+SWH2PUdpQLfvFf6aEh3rVqeNVUVUrN6lqZ8HqBDIxLkJsu031mdFyQ4fVyyU2TpUIjLq7+1ZFy0R2TpaR7QJ3ctZKao7OmxZWyvlD73YwSqT9JdcxTUiW7rlp+cuPlcu33z5fyihqN6Evy3tPp6sgJZDMyBUMUrFnXTX+CkLfoFPA7Dhn6AmloA86ZgUdOIdtxJNEv6Z8Y1dxzMpy8aF/kOHmQHicf7Uq7oFMgU5nZd04I6kPdKI/+iawgX3jGRbcgM55++mkpKMuXVVMnqaNmcJDv0d+I3Al1PBDlV7I+TyL7YFSqcatNHZ1fJ9XJupS0YUimuoIhHBmhxqnqL4nqkGY8SUOPYOJLyUUWcbxl+QaJ+G29Lv1NlV9e0EOv9PTk40efr5ScglrZsKVcctTZidGPYw/e433BBznOmIPeDd6Uw7vSNtyDx3lnHPLgg5zDEYQjByzBENwx/JBt8C5/yDcmhnCSsicfvE1+6IL0M8rDgUMk1xtvvOHpeshIxizyY18HnqcPMOaxtB5ZSZmMsRB9d0b+bCkdXstcoEc4YMffO17Wz22YCIPn4JH10dlSu7xAtmVtldou+uz0PCnJqZSJBTqRnJImSQWqGKnPr6q2SvWWFKlbXyN1w+Mlv6ZINmZvkM7t9CElIpHZxyMpvtTT315/e7UcfXy6xGuE57RpayRRRdVQjQK65Oe9VJ6pQFP6YmWJHP6dobKyerOED1YdY4s6stprw2eqnOserU4K7XMNSb30NbmVEpuq8leTHF+ZpF9X1HFBJyrXr6mRSes2SMGM5bL2qS/l8fGjZaAuWduyuUTS2hYFl8yRCQ6uqR+s8f5qY+pl2A++Hrc/KdYICq8Y759KHW/bd43WCbMi2aC8Pm9BgbRVfbmqaEtw/59QmwObwtkjTBLA46GRNji8Vt7yjqd/0E4QfEWfYmxk/IWwIW459ViJ1GiMPy9aK1/lFElXlad9wwKeTYBsfeihhzw5js6PTgXfEhiA3EQ+wJc4HOGtfUWB+jNq6uu+Uy+1Vylj+AgvHBVhQEYQGbUuAuFPByTsQ1/v0OJqr6iXuu82bpfdqQVKMYIG4c+gwICA4wAHBDOR/CLkcJYgHBnwGRAQPgg3Bh+iOmBGlD2EIecIS48vIrdIlHaid1cvk67HtJG0koDEqIhKqA+X4oIqKdXevumoMIl6sUjO+U5X+WpZnqRr+lwd6Ht0SZAp87KlUFQQJep7n5IibWaqwbRBZ7ba6nlurfRLSZKSpDopKtSw9a6qWOSoD3Gren11h3VFS1IyNYRJvXgbR1ZIbHS07ryYJ1Udw6SXBuUVFlSqIVgtMXERsqlMI3C0zm0763IQvV6teQ8YrvsGFKmRuLlM+nZNkWW5RZKqyuL0WVt0pApISkKipHaMk0GdO8nKKSulswrL6rR6ySzcKgXrKiRZDc86lb0d2sbI2qpiKVPlcnCbHtIxQw2bqHr58JOVnrAHW3AkPN2FFNIGDNwM5ggLFHCEBwMwRh6dnnMGefohAwiKOgMGhFJGWyIUaCtC7jD6KIsBB8WOMrhP/sz4MSghlGh3PJj80ebUjbQMPiiPlIlnngGQNCiSDGQo99f+9BJ1FNTJ3K/eUfSrpeBwXXbQM1ZqJ6nim5ggUcozs+bm6Wx6Z1mhRnCXrjGyJbtCo7Xr5KYrhsglv/tcUlKjZPTADA1Dq5V3PtkoN1w5SDq2i5NnXl0hHXQToC9W5ku5BmKEq/FYvlpD8tUfMnxoqizeqnuKHB0t8XN1RvO7fSRHDawZc3PluCMaBP4nU9dLfHsNQS0o0+bTwVmnNLp3TlDFpka2qVJWofU+/fhOkpVbIasy1TOsfLFidbGWGStZOis5aECKbF1fKV06x0t2WaXEJ0fKpDlZ0lnbObC1XsKyamWherbH3tdbsh7JkUoViWN6tpW2qdHypc6QlauOuaZim6QWhUuKGviByIAOdvWSHoiSqHid+W+bKLMW6SxOcpSccFQHySuskDdXbJbImIB02RYtSXGRyktx8vK7azT0UyOJKqskLixCcvIrpF/3RCkqrZay5DqdMY2WutJ62VC/TVKSoiWmNkzmrc2Xi37TXxY9vUXDdmtl9Ih2kl+0TXGNlyxVSLI2qWHWKVEydaZga0SNnHhSJ/njkwuk++Ha1vGJUpYbrnyikUIdu8rMpWsUg86yWvmBAQznFHyE/MDhgJHhDGaUSHjXyRcURwYteAWeIloGZYvxgzxQMpEh8CQzzcgSeIz7pMUwhO8wZhjkUJQwRigPQxDDE75HGaN/oCyRlj6A3KJ/Ibd6aZ89RcO6Z02bIh98OVN+e1o/eXOtLuBRhQpehu/pEzhkKZ/neD/qiAxEEcR4xYHCffLH4EFp5x3BBdnKe5AfERDkiUx86aWXPCUQJwv5OYPIyV7X33hf7rn8SU//RmkFI65DHEOUC968A+XXZW+UzM05EtkhXEYNS5f1teWSpTyzdYpGpiWGyaBeKdKjV4Ikq6Kbk6fyUXGBsnNYihWQQX1SZFNOubw8ca2MHKbRJxsrJGNovMSqfdlD+W1beY2s21gqX67Kk66jU2R9kS5xS4qVtBxdelEbpzlFSqCsSvrHJ8ji8lpp176drMsv9Nqe+jFewAfUlzEIYwcDh3egPeEL3hnlBpmTqYo6z9GOYEB6MIO/wII2R86hSGPYoqjTfu4LJJSHUo9BCsbkiUMBOYuST/vBm7QTBgK/8I7jTfiG9owuKZQ+PXvIrNWrpLaTztDHR0h+xVbtt9Fyyoj28v5ElYU61MTHRMij14yUKROzZNPGcvnpxf3k7b+tlLyaagnEhklmcbl07a7RJ6WVsuwrVfZGJUi+ts+xqboEMF4jl6rr5e1P18uct78rU2blyH1/XSDPPTBGCnVG7N2JG+S2qw+TR55bLPOn5kufuGh5OUejAXWHdsmIkGh1LKUVR0jWCvU29NAxV6NW2lRGSvqFDQbDpmdzPLkWdkaCLvmqkHXLi3XuTf1HmdpXVBbHjU6U8nq9kl8tXbZESX+dMYwpDUhRTpV06hIny1eoXEyPla/Sy6RdXrgMTmwjcTFxXr0Yx2gr+gl4MW7ghKOtGFtwFOB48/cxDCaMScYtCNlAm8D//JEX5PoIbY7TEf0TByftCpGWfosTgfZCd+Ea7U3bki91oxzkFn2GdnfpuU4fpRz6bbTK6+Q2SbJOsuSoIemydUOldOgZJ/NXFUqY6hhLJuTLcI2eXLtOnZYbKyW6qzp1dLldsk6ldomIkTuvH6kGUby885Xuh7A0W1aUlklMVo30TE2We28YLm98lClvvZMp3z9Vl10u26j7FEVJYZTqOLE1cs/Rg6V7uwT53+cbpUDbfGCvVJk4M0vaqY4ysm8beVvTM57U674TFc/mSrRa0H010i9bZ+QjZ22TBA3XTimPkFOP1BlyNWoStW/mLNoqE1eXeLIR3cLh5WQMmIABegB9jKUvkyZN8vAFD6IUwBy9ECw55z7pMXTpK7QteNNXaRecPiyPpg2RybQLRPnoHBD9nDzgCfQT2gq9hnPkIM/gHIF3yMc5RJC7XJ+3aZZk9EqUOl3P37FNrOJVJUnquOvXK0lyVU5NmLlRorS9qrJrpG1YjLQZHit5W7ZJSd8ICejnfztvCkjZqgqpOjVO9Ubtz3/eIl06xEvy0BjJVkO4Xsf2zr3jZeN8nTrQUIm26tBf075ShhTFy9rqMqnsqBNv+l/nNWHyyK+OkDsfnCNt0jtL+/RIWbFBJwZUXyhX3yTjF3wNNoxt4IGujCyCGP+Qhcg82gFZh8yH13HcIOvhadoG2QSvkwbs0M04xsHAPZ7njzEGeUjkyGWXXSZEoNNGOGVpA7CED8CadmCc45y6kS99DQcev9QfOcrYW6cTH2nqwX5t4QLpofxYrhFB7XWJHfpGO9V5Nym+y9agmybLvPXazt3DJS4vTMo3VkvnU5Ila7Q6XtW4rZqo4+dxqiwtKpMOpdFSpJNVgQVVUq5Os4izUyV9oupauh9WpJoBeUW65KioXCd91NhNTpL22tafr86VY1TPKiislk1V2yRraZm89ddxqvvlab/TZdmqzyUrxr2OS5U3l26SimJ1lFZGSXV6mIdZycAoaTuvWmoi9StaZepcUt7Ni9eln5/n6fLWJOnUOU7rUivZ5ZWyeV6JhI+OlWNK1IGnX5DpPzxZZszLU9shXLor/81S3TSsqF514lRZVaD6qC6nHdI3Vd+/QPrfoAqgUmDaNtmYrO+oy2yzX8+XbvWxslw3UO+SliCdeupk2qJSnQToIWsXb5US9Xxk5qhDmndWXa4iPiDdJVoiK9WJG65juUYa5mn0RExahIzomCobVpTIcG2LlLgomTYrVzZk13v9EvkGT9Bv4T36J9fgGXhkcHiNfLIxV7qpfRGl/BaueJGW8Zn78CgyGp7BGY+M/Mtf/uJFaNIn0YPos9Du7tnoPdTEP56UCGQHdriFEQMjImyMWh+BptpAGiJE97hwmBEmQkFA+CHEYUoGDIQ9Ag5hhKBygz+DNcKRNAwcTmghjFDGOUf5IN2MBbpWCgVZHW6p6onsk6GecmV2KF2N9i1btkq4DgZJqryx9IGOtECNt+RIDQvKVsWbKeJtXztW9Ln8tWotjmowrnGxVqpyFBapDpD+umxni24QowNAuCaBwtRwzIhU4a2KHmuQIxrGO29WJ1xnhjOX6UyzBmEc3lGXbOTVSc/2iRouHCYdVKnmt0u6GkI1MWqkJGhsgnq+62s0lF8VOzV4U+NjJdBHZ1S76MyCUtdOCbJ+myr2CZqmRkO12gdUwOlA1FeV14pqL02V7i2xTHedHjm4YUaIQYQ+ROdG0WFAoXMzmEIM5Aw6ziBDYCAsmPGFGDS4z6BCG5IfgzTCgTy4D9GODEa0Me3IgILAoZ0ok+eIdkC4UAaEEOE5+IPr1I82xbBkcCN/BBI8gDMEvmmrywpoqQgFuk3bNjJP1xM7YbRyabFEfN3uIzU0N15D4uYs1g26NH2+Oo2ycjVENyLgDeijj2rAp1iXTiSoQEfxitR7hw3U91cl4rBh2l5KbTUkuSaugTdQAqt14AjTMpgphA4fnu4Z2N6J/oOivGxpoaSqUE5S54b609UJFKd1VF2irEaOGZkhE7/M0g271M+lIXdbSyrVcCuVOA1lzcwpkUhd6aEuLVm8ulAH3Cgp3qQOE3WkFS9SA1/5NSU+Wjrp+myoc/d4KaqolA1ZZXKUGvk4NSo6Nri54+vDJF6dCHE6QJfrwJ6jA1qCOkT+/voKGTg0RVaq0yMlKUpGDGro3CVr9WsmOpBl68zntLk50k358bjD20maLunorbx65NC2kp6mirTWc12ubpil3aun8mP3QGwQf+q04D1VJI/pIEcMV+M6S7/8ogPwwnXqYKqpks7K6xtVKU1JipQNa8ukkGgJxSVN32uuKtnJyldJaenqKGxodwrB+YTyiaIIj0DwI4SSCu/AT/AA58gPeAelijGDc7zpPAuv0Q94HsUWmeMnjFMUJPoH8olfeB6iDyFr4EH4Eh4nH8qH4HWe4Xn6CmWXqaMRytR8xp+oYYPqfEpSxYt6OmXYS6D/oAxClEe9XLkoYq7P8k70se7du3tpnVOAekL0L45J4wZ+6oUSivIIBvRX6kkZYOCIPg/R18CINDzLu4KnM8aoA9dJB9W1aS/HDNNdtNslS+fkhnZJ7hPr8U9lP/2Syhf6dR+Ncpn81RYZOixVXvqPLj1qEyNztd9+MHmTZKhSB3XrmCCR6doHKspkSIcUiYoLkxidskmIjZSrLxogMTqDXqeyVxeG6jY79TKiZ5psUWUvPKatDGuTIEvyizXyKU6yChocJdQPnsBoAUv4gHfhOu/K+zHuIKdwCtCenJPOKcTIIbADM7ACQ7B1BE4ozeQFgb1TuhinnKLPPcrheeqA8s1SD4cr92h/cKXO1HGdGhGLN26WuvQoqVRHX5TKm/pttRKjY9jHb6+XzolxEqZjWu16jUBSRbG8Qtf1agRYjUbiVSUEZPPWCunUPl4S1Sgp3LRNnQQBOUcNzxVrdcPZ6Cidua5S2ci42jBO6qPaPwLSp2uiGkU6jibq2NxwS/r3zpBS3cxzdNcMSVO5pqE86pDXMUgjK6p1TBt0dKpERIZLRbW2j/4fxiBYp8uFBiR7ssnLRs8DGmqMJK2L1SijHqpoL1OlVDddlmXqOOqgRr/WISolQqbMztaIjWo586Te6lDVsGDFAsorqpSZC7M9DOFD+h6GFbiDN/0bDPmjjcEXPgdTrkFgy1jCeMd1xhfaD/zpM6SnvRnHHNFfaTfaHl5ybUT+GK6UhXzgHv2VdG7cwsAiP8qjH9OPSOf6LLzQOUUdc2qERCuGWlFPDudH1UhpQYNskdSAbFhX5vE9e2pWK37l6oxLLY2Q5MRI7ScNjpRCjS4ppztp20pevTovVH/Q/xbppsQQxzFqZAzolyy5a8t1trdaJk7ZLF/My5FUXY6TquNB2zTdN0hxyVVH80w1djZlNcgwno8OC5deagTVqhgOy9ENpBXLDVqPKK3z0vXFOtGhyzEUP1QjZE1XfU8cfMhVDAfwpR3oX7QdONJfIPQJMEe+gil40aakByuwpi+Dteu/5MNz4Akhe+mTODZoT/KAP1zepOE+z0GUTT3hCSZVKBuivqSjzSEizJDXtE+qpk/X8XemOtmT20RJoo6H2XnbZMKcjTowqRtUJxvatE9Th0yELP+qULqooYjOyPKUpDqWSOqYvlIdQ5FhktAnRo48PUPa9lfHh8qR/p2TpL68XjLidcwdmKhRL+pIbaP9XPXIGAU9UdtapzIkrA4ls15G90qXhSs1iq9eZ9T1eZwOvBM4ggG/yBbeC75244XjZd6bMQ2s3D14FP0O+cS4S36MvfA07YCzlLzhd3gcGUc7ghdRD/A6xC/9zPE5eZIXshaiTWgv1y/pJ/RDrsMz4M34mhBTq/qY9t126hhU4ZGuy7F6d9VJGL2ELMF5/ftfjJIs/VJEwkB16Kj86D4wSeKOjpHcFaUS+bV888pBBKjTKGqjymDVrao76P4LnaIloNGsdRnhkq28vlUjezzS6J4jFd/TxnVVEyAg65Yon2qBndvr2BYZ69kSKTp5k6S6TJru+dBBx7GtpTUya6FGSK/Qfluk0Q6KC1TApKZShZajWUmcOm25p/u2SqyOa30ykjSSVCcTM0ulMq9G4tqqA0R1tyXzi2S2yuh8Nfp7DVIbQJfghEepvrypViNXM6QqrFYKN25TPBLUZtDMlCK/NkDy1rJnlCdSpY1iBnXVSZ8BX9sSXXTZbs56jU4coREtKnq3xejkaa94KYtS55Iuxc0trJQMtWfiysOke5Lqm2oDkd+WlaqHKnbZOolQpstxq+piPN5wfZIxDt0Hhz28BI+hf7kxsle7dIlSXizSPk6bwJe0OWOv62/wCQRfQoy9OPyRATzjdC7v5l7+E/77vnf+PqAyru6chsbay/yCjxP2CgAMCAeCAGmSemsJ89ob4h0A3TXgrvKi82aq1x3hsTsU/pxyV8M4H3ys7vvaJg22YvDa7hzgBcWTSvghAy8MBkMivAhjQ8HjGswF4zLgICwJuWJWCgxRAFmbjKHs2hKjpHv37jJ27FgJi9JNegpXSacfdZMaVZ4i+6hw6psoK/LKpWNtN+l5wRGSemI/yVfPZZUO4t11R9nbfzpUrjj/BLnt52fq7GqKrotdI3Uq8BN0HWylCgHppkqWyqGicA2D1gGjeot6pU9KkbAOalAOUY99RJ2M6DNS/nTdE1Kpg0TUiA6S0aGbROnsUmwfHSyOTFTBXyuVat+sPz5W6tQIKzlOlU9VlPsdO0Y6jR0gVd06Sr/wAfL88x/J0hUb1JM4Qq644Er58QXXyhMPPSU3X/Br3ezrZ3LB2VfKjy77lfz8J7+Wn591g9x46a3ym8t+Izf98CZ9h+slZ1OpfDThU4nTGa2uGqY84ohR0l4F/4hRvXRQKdI+oGFaXw/S4M4fs7jwFIMTay6ZCSSygNkD0jKr5zZlZYBGeWBAgZdRDhiAcAIhPOBLrjOYEJLlIlkQFtyjDWlrBniO+eN5Bi3alHXzPMt9N0hiwKHYI3jwgDKQVVeph3QbQjVCOupylchAha6bVyOwW4x0OKadFOqgntg3QVbNK1DFZ4AccdSJctrJp+i68ULp0a29LFmZKzdfrJuwnnGqfDVnvTz17Hx95wxJ1GiAUYPayo/O7ivnnNxTliwsks0522RBXKlu0thJehcH5Lnbj9HPV9XIsA46k7Bwq1x4fHcNdcyX3157hIw7qpsce3hnGTq4q6SndpGZmZul/SW61lvb/MZrh6gjKE0u+O5IWb9Jl+jojONN14yR73/3aLnq0pPkN9efLJ06ZEhBVkBWqdNjw+Zceeruk2WjRga0T1WjXyM3ZmqofvKZqZJ4pH4ZZlaBJA1XxVkjZo7ooUqOtk2vbkkyd4lGk+gAUVqjSp3ONpfozOHJh3eQjz7fJB3P0WUAOjM1algbyVTHWm+NZhjSr5OMHXOEfLJ4nSQfrY6Womr55S+GyjnnDVKnXLiueyzTgV/30iiLkJG6JOX31x0mU2Zmy5oUnb0cFyWLO1XLxhhdbjRSI0qm6ICrfSVCvejlOiv3/ltrVHGI8JawHDGwrXROiJW7f3aYfqGon5x0fE+ZNq9SfnrhSOmVESavfqUzl+e0lZx+qgj1UwUtMlXGDDrGC1Wm7VHOcUKiSBJOiZICXzGTjJxDpsDHrJXmGD6Br/iF55AppEfxZTBDWSJPzuFr+AyjnegBFCxkEXKT+8y8IGcwPnCAw6MMjMgv6kZ+9BmUM66hBBNWyEAcrppFvl7PSFKZUlYh0SpXv8hvGFSdkUSZ5Ee/6tGjh5c/dfh/9s4DUKriasDnFXrvXXpvSlfpTcUWG7GLscWWRI1Ro8YaNRorGlv87Ynd2LCiiFhQFKygoqIgIgLSO2//881jlvsud/fte+y+xhnYd3dvmTvzTTtz5swM53knAhsCHsIvgiTxom4kvsyhRtjj3ZRnhDyEZsozYcIfhHX8IVzEBXNF4gUDlIGEk/hT7qgDWCwMIYDfLIDM85RreOAH1h3U14QLwZBRsn89+KTs0r6v/POGu3ThLVVuDKur+bSGrNOOUM8eqkRYkyXDNB9OmfKTTLxkoMzUMjp0QGeZ9sE8+d3h/eRj3Z1h+ToVznQx1OZta6lJqaaRru4+4Sgtv7t2lPd0Luzn63+RlfvUkModVMmrSsQ5G9fIqgabpH/jvjL26BOlbkvteG5YK2u1Xhq9737OMuWUU05xC/gx9/7BBx90HQ64skYSgvJIHWklb7AAM20NDD1z6ibShTzGSAsj6kz3QkEBE/INnRoUFfiJf6Q/9/IsaeKFctIL1qQjbdw+++zj0oe0oF2j/iNv8T7yK4Ia7d56VcCNHbq3vPzAy3KG7jIw84uPpca4ztKvfR01T56tHX/tbPTOkZha6B18uFq+qCB50MhdpH+vJvLUy9/LIWPbyEXH7SpH7dtJxo9tL7fc/7lU13K9YPdKcmj3ZtJBR9o2qLC8QYXtX9QC76gD2stX2u4dMLqtWjxs1O1ydQHBeo1VufuzTP/0e/mmamM5YP+jZUHtJdJu717SfEA7qd+tuVRqq1vE1m0nDfu0kpP2bCHfvq2dtIW6sY4KzPVa19PO0WLtZDWTpVN/UqFTlfM9VQmkytQ6g1tK97bdZeW3y+TrQbnybZWN0nzkMF3cuaf8qtPlTtj7Mvnfsy9Lo76q9NO6uFOTujpiV0k++2q5Lr45XrpoPmyn7CtVqhwvt5Qr8j/sybOUCdKCdCGtabcoO6QJ+Zg8TftE2sEc2QNZizTEH35TLvlN2iOD0Elro3IHUwnwm7YMP5BDyAukH51b2jHWUiEM5COeo6yR18iD+Is11cYq1aV6/VbKS+VUNb2eMEHzvU6Tad+6jry5eqm0HFNfKi3NkpqqdG61awOp9H0tWaKLw/3+9HPVmq+vtpE1ZfJb87QcLZFxfQ/URbIvk0MPO1Je+t9Unb++We74y3Bt1zq66TOfLlgmuXtr2Vyj6u2D6knOTLVIq19d/nRyD1UYt5SeHRvJP+/6RH5dulGuv3mQvD1nsSxRxc96nYte/Xsd+eyrirAOOlqv+WVhdx3db5crG9o3ka+naJtUubW06bC7HHnc8dKkeVuZqfID1mF0YqlD4E4ZgCX1GXU58jnssGalTqFeplxSf1E+SE/KHvUedTT+UGfRHlAOqf/5UL7gTzrynfTGSgXe1OfIjKQXz1LWSCfSEPmCtKJ9ID3IF4SJ9YIo4+QXHG3PsuUrZYmORHfeb4S0G9tDdyZoLzn920rHrN7y7qR35OI/XqyLS/9V/nzqn+Wtbz6SRetVUTyijuQ21ZHf91bJ4vU6zUStBxu1bS5dB+0uLYd1lTlqLbnu5xXSfKzWD93rSR1V8NcepAMqPy+Xhy58XGrVaSQffvetdDx+qPz46LdSf2M9GTXiAGmkZvWnnbmfnPm7ITL53YXSRDuvG3WQoW+/QU6ZAFvaAvIy+ZE8SPzJw1jGURbI36QF7QR5FWa0b8h/5GnaNsoQ98CNssI6KjCGEzIezyGb8R6egRf1GNdpH2lHqPNIR8okz/KhTaVs8YE/dTXyJmFA6UD4XFvVcBdV8LRSK6hfZeXu1TUfqgw0tI9U3qO9zNM8t9/eB8mGrJZyzumXyuEjjpBn57wkm3s1kqxfY7JJLUk2z1otm2aqdYtOX8jZRRWxy3U6rk5H1tUnJK8fymi1stc2a03bytK8d3vpvNce0nT3ztK0cj1ZrwsnrlKFxvi920pTlSk7dKgtY/dtIzk62Djt659locpRTGEeM7ilDlg1kB+1s96rx4Eye+3XsqmWKjXVeitL5bDNrbTM6KBD425qhaz1l+ymAxZdKsm8GaoQVCXudy10WsKGXLn+ggEydvdm0r+jTmdbvExq1K4uzXJy5fh9O8oErcNHdGkkowb0kHH7HytnX/iAHHfkWTJ/8SJZumiufKlWs7HqWdJs99o6oKl1qw56Lfley/ZuqiBSC6lvZq2QCQPayMHDdpFlSzbqVOUq2jdoKHfdM0f2GnG4/OGYU2S/kRPkhiv/JWee9BdXt3z640ppSx25S3c574zL5eZL/iUL5r4vt185Xn67/0DZZ2RfOfGIgfLkS3M0n7RwMjzlinqU/h7petVVV7l8Nk/7ovW07N89YleZ/csyVXyvks6dOkrrNm1lqJZbpqWRX0h78g/+kF8on7StyBp8J1/RN2EqUTqcUzzQ4Y3trp3cfIugdPjr5phg/k1FUlyH2RAFDwGhqI7FLHk/AhuO+UwIMFSmVMrXX3+9qzCZKxv8cI33UQnSaLG1DfMVqWTxi0QNOq4TRypmEp5KhYqYuYepWotkfa+a7Geygt7qEIH2J47XNMkueLoov6ZMmeIYECbMh2mA+U5mIoNxpAJCCEP4QzCmcqLCojLjHBmShgaHsAcHMiEVmr+3U90N8mNMBeKG2tPf6la9ulJuvPQ2eWHGJKmqZubZHZtKrWEdddG3FbLv0A46atvB3dlLG4MHnlSzfl0MLVdNzUVNfkVHdGIjG+hQtZpIfa3zs3K0MtNKZLOOLsU2x6RmFRXec+vK6LZDtUP7hfzaLF9js+5LtexYqaNRurYDIzs5KoTlfr9Rlr+3Qnrt3187wPnv5MUstvWHsae6SnzYiLHCp037bu731iikdKChGdZvmNxzw78lVyf4N6rdUFcV19GrWJZqRFvKR7O+cY0IghINEo0u+QJB1zfMXHvnnXdcQ0VDS4NEZUDepxKgwPObBpnnyWsIDQgMpA0VBh8acNKXBp7GifyLSTKNGMIeggF5GyGOxo10RwDD0eDwbioZ8j6NII0R33kuL5arHbsZ0q1LGx2N0UXdsqrIl6qFbzqooU5bqCE5qrX9cMkyGdRkX7n2H//neLbt1F8X5Wkl7boM1nmQ62WOmvpeffPz0rZjb7fjyYwPpmsnvIHOQ18tb+toW5aaAf+g2u91v2olvq6W1Omumv93f5Fuqmk/ZK82smfbJtJDhe11KpA9O/lHOfag/LAvXb5G1m2qJJ98rdYDbXVBvL9PkubV68h7asp8yNjdpFvn7rqIZEed2vGlHH/kSA0vpuL5bhdtUOf9Ulceufd/skbD/9u9u8roob10Vf+eMkRX9Z/x9XeyvoXmdR3d+vkDHQ3ooaNcbXRBIx1FWazz3leq0mDRL2p2uFQtA7QhZbpJSzXjpHNSv6qWh7Y64q/zfRdsWCdrG+soeKXN8uvnOXL0wQPklXfmSKW+NWT2kg2yYE11+WDyd/LZ7FXy14vvlPP/eom0bddZXnrucVXWdJEGKqQ+/u5c2dJpaxnTBs7p1X/RjuP3W2TQhNFSSRUadB4oZ3zmvaGjyYs2yC8rKsmDT8+RZRtayFEnXCBb1syVww8ZKhccPVrmqql4v5bN5edXdK75H692DRflm/xC3uDDfFDM2hGcyKdcI69xjoYOYZVnuBcBig40Ag55lIaPuoe6yAs+XnmGsIujDiJfcqRh436E3RdffNEJc+RfOtrU31xD+GUBZOoihDoEM/Io0zdcnu7VW9aqYMDc9bO7t5FZOgVg2oLFTvimnFCHoxwhPNR51GWURYQ5wsZ7KGfsREM8iCv1IEIeZZe68ayzzpKbbrrJKQ2pA3g/7RV+EV4EbhYaZsV/wk7HmjLJebiwOwhtDR/44fDngQcecOWbskh9wdQW4gsr4gljRp39Ys34+euvS2Th7K9lynPzJKYjOQ061lSzUZ1PvqaJdOg0XC0/lkqlOgNUkG0gw0ePl+N+d6pUq9VWHn7kSTlgeHeZrCvq1+9cW5ap0FZFzWkb6Jz+lrrQ3iH77in/+N+but12FclVq5tcNUPnw4hg40X5bQNpMG/hItlt0O5y4403unjwh12nyC+s+QAr0hIhnI4P87ZRAhBHnif+1FnkK5SntE3UdcSReop08uxJNxiTr2BO+iHUkyZ8p86kTqRuhDuKJQRp8gnpiYKMdo82jnoVZRphoG3ET/I3eYh7vUM+qD2omayoU0sa7NJAmup2uj99pkrXts3kBzVtZ7Trof9+KZ/O3Sj9dusoDVWOytF2m2kTy3RufjWduvfS6wt1jRe1zNH5xUeoouEjneubtz6mz6rZqy4Qxno3LBzYuFFdOeLQMdK6VRO1gFohT70wQ47VDiV5Y+qk1yVH06latequTV301lypubCartBfX35QZcx5OvVjzzZN5JBB3WRw667y/DdzpcfgPaXdHt2ldZ8uEpulbZDWrU3aN3Pb79bSdnm1dqSr697zzRrny1gN51RyHbjvdQHJj6Z+KO2OUQWomvIv0fUORKdQNmmqW2uqRRGKffInPOlg0dGkDFP+UaSz8wzyF2lKfif/01EiH9DBhT1lifaGfMA10ou0JM3xm3JK+cMffz/llHQmH5C/qGsom7yD/EV7h5kw+YhnuJ8BGMq1Dy+KK5SB7G5B+brj9ttkrVo+NFbLgRY6OrlI5+x/smalrK5cQ5U6avXTuZk07K4LcsYaCzt/4Ch3tG8jxhwmxx1/qmvvOMfnuAknyVtT35f/PP2evDjlK1m1voZMff07LWN1pZLW22t1JL2h4hzQp7E8P3mRWj78oqPnNaSNyiffrVsi0z7+SWpWypVleTqa2r6qrHl/pbQeqGbpuptS0+Y1JDZF5QKVgap8sEUeuPZ+11Z4+QUlA9NafH0Nd85R71F3Uv5o6+FEWKmr4M/gBmmFox6EPfxQIlCGTzrpJCeDkLbU08gHjKLDlLLGGgTkATorpCm7lnAfClqOlGc+1GGkH/UgHV7Cg1KE85wjXcgf1L+kE53vanWqS5eD+7uw+T/Ib802N5Rxo8f5U+74+ItPyNyvvpUtAzXt1YIht0sd2VxXO4a6g0yNz9SSjI6p5vu6XZvJnPtnSutR+e0ADy9TOeK71xfIsXsfIxMOOFZ6NtZpoJt0LZxDTpJ/6u4yNSvrdNLN3wkyA25vbWP5LFxeX268+V/OKoG62a8JBFfKBLIb9TdtJOUDZQ91HlYPyHrEm+te7oIp7SrphWLGK42Qx73CAuasA0Y95ncSwU/KD2WSASXqRNIEOY7ywsL9nKOew98LL7zQ1XeUH+o/6lnCR/5AJqVMNaymAyaffqMZngWhG8taXc9mv/77yt8uubJAnn/wunulw367SrOeKoMu03WAVEldp15dWaMLvI869UCpqSyWrFsmWWoRsGXuKqk+sIls+l6twBo2ku5dejme/Kn3U2V54Y7npGH1zvLOe0ukvbZDH37wpVqi1JMVOg1m0rR5MrvqOvl29Tp59bWF8r/qa2XNN7ky6T+TZMYHM2T2S59JVbU6zVZLio29Vc6bpRaeNdXy6hNdJL1nDVGVhGzQXfJWqsJ9Uw+dnqSWq7PUaujbd1fIlz9vlFXzsqXdCYOd/PTWlO8Ea6ZX3tNBnjWNZMLvL4+Hk7zw2Q9TnJVUTPscWEpVUeXGTz/qoNF6tdJWKzMWRVqpHLCYbV2vhpw2vqv0U3n3s890Eeh2feSqq++M7HO4PsXWPgllFDd1iq6T1qdR/P2sTfbRF7q4668rnExAm0jaUhczVZs6EFkKeeGNZ59y614d3qGltNH2XVdAkYa7aF3Vtp3zj/xInuB+8gHtI+WRvgflGb8p74SFvJQOF+/WZr+TlQ7/4n6wsA+R3xH30EMPuYqrqH7QcJ133nlOm8ezl112mSukJAoNEY6Vrymk/uPn3yNkApvRGraIogBSAdJgshBW0CGkEE+0i2iGcVSqVAQIpam6KPYxZNHcVH2Ivo8KH2UIjStzpKnkaKxpAGiQcFQ6ZDwaYToYCG5sV8VK0jRECG5eWENQoEJ77LHHnMCGPwjpy9ZUkZ4r6snKV3SLNK1oqk7dIIcNOyQyUDmdmsh7U+cVuHaE7uPbv45qYmu3kFad2krtqrUl++VlOi9svWzWSmOLVhTak9fFDTS7auVYVTWSlX7Y4oQLBAG/Yjee/mawjmTq/H9ch/1bSWVtQIfupgtK6ZytoPPPB88V9ztCDprjWt1ayuvTPnRKh/Vr82TqtC/d/FeEXgotay/QKPGbVWfplNDA05iQZ8i3CNP8puHliADMyAWOtECgQEjH+U4MCiHSinSiseBD2uAwvSLdycdUJAhy3iGM+Q4Rggj5eYp2EAkTyg38o9HjOYQRGtFPv5jn8lSnzt1kz/a7yk9a+eFotNlOM7wVEmz4sIAO2/9MnvqJO3Ku3wBdbflPB8iQ3btKVnaOLs6lDVNODek3aJicffrZboGiDuePkXue1K0Zc9RSp1ZtGaKLUN7+ny9kz/75FTLvbtCohVuolJWHecdGXV/kmov+IUP3OlmWbe7j9tq+7r6F8vvTzuP2Ao7FTVnAJ5Gb881ynbaQb+adpeaBv+paCxuzsuQHXbxolY4IttutgVx9sY7gasNSv7Vu36RzfFlckoXjdutaX3Ln5ZsQ1lLz23odqkudXyrpvN/puhL2bN1yNlvmzlCLmB5tZZ12Blbv1Vu69RnteBEeGC1ZXUPngC908d6g5t2yTusvV9foUc0Da67ROcH9+kYGf7f+QzU/6taIB+kuRX9RK55L8rf8e+fTbaZVN557kOTOj8m44Qe696EwZVHSoGO0BSERR6eQBs4rDciDCPzkGRx5k/yCAEZd4pVn5G8EGwQm7kdgQjBDmGJdB/KZd9Q9bI1HI4jQRr2DIoLyg1UDimDYkD+Dzj9HfXz4KadKvzH7yHwdwb9hwpG6sG1DJxAfofU64SMOCMgcKSvEg7KAgEY5QOAmfCiq6fhTJyKks80bZZf34+BFOBHkKFuEmwW7gvdwL79RXPPhe1EczBAGEznK1rARo+W7p8+VEUtby4n1Vcma11TefWuGK3eTp7wfL39s+0Z4OM76XKfnjNUR7Kz6Wu5UkZWrI0NqsXXfo/PkhTdWy7s653n1z5g+x8UEt51mzewaru667777HA/SpLA4cZ37iT9pisUWz9H2UD+hNOJDOpO+fOCKUgCBnfoLAYg0QbFAWnCevHHCCSe4vEV+wD/ehRBOfRnkRhoiOHGdTi4dMuo9hCzyAp1Y2n8/3c3zZqu2mtPy6wAWtVu5JSZ9m/bRPNtQfmzdWB64/wsZonXNvY99KKMOPF+enfKrlodK0qldc+Va1a0B073nQPn2zSXyyWfLdMtpXa9CF/u84KwRai24RUaPHCivP/UXeeb1n6Vh4/x6DcGS+izozjjsdBcOFsZroAI6W1/SZrPl2+alVaTKysrSuVVHtxsJi48Nr9Mj+Lj7zi4IfdZ1dv7QBrZf0UqGLO/hOhTE0W8fR57K3lRXvvphlXzYVOdAN68rdfrrdD/lNHjwEKcooC1i4IXOJewoK3QksbCks0r6kbbeUda8tQnnaKco/xwp2zh+k3YoIpBVSD/KM3mG9KWDHCy71Cl0rti1gXJHOHzZ5IjlIIvvEVb8IO9QV5H2bBuOO3TvAyVXFecPT5svE+/5zE05QRnepEkbt5ihX8izSY3G7v5U/lxy1e0uP5x67j3yf/99Ry48d4K0VqVPHVUabdHpFl833qLTQ3PlqON66BaqnXTkVBcgVavQLh2ayJJmlVRJv0KWawduvW61KXvUlHkzf5Xvflgtq1dp+9NNy+kyHcW87K54XH2YiDP1md/xAPmMckOngsE2yh31JFxhRz1Onqc8cY16jHSjbFF+go4ySbogw8AS+QTlBJ0bX85II+p8HOeQockD1KG0CTg63ISRdzM4Qj1AHiAcKDBoDyiPWIER1hsuv94tBuke3vqHvBuWNbhEGWnao4XkfZsvl3CucrYqbFbXlVlTZkmLJbpukeZzPs07tZF5P+ZbViC/xHJq66Kge8SZwpLdG4L56Zo7puNlpIPPfVrHYQHoLVKpj4gn8UOx4Ns72lgsX1Eu0NmHJfkaFvRReA7FDvmWvEqakI6kGWUMmZBw0f5QdigDcGbK7PDhw10fBtmfOpXrtG/4ce2117pwwJXnCTPcsbrjXb6PRHpRt5J/jhz0W2kyrZKMrzJSLj/uEle2wwC69Osal8Pb9+0u3Rp1lvlPfiuvPfOaO0+9WW2+ivBjm0tNtcLrvk4HGxbUK7CNJX76MkbYqIOO/+O/pVUb3VJ0Yy3pqAqo9WrpkN22mqwYqgvk/66FbP5mtYwdPMYFh7qL9+Vq+75a12vR2Tf509a067Bq7Ua3Fg9TvluOaS5b1PIzW5O+fqeWsqSmKigO2kNWt2vsylT7mbrO04YO8vvDzpb9Dr1KHnlyqpMrg3EmfHWqt1AlY0/57bE9tC3I0R0t8qSRTqFdNF8XgdU0RGal//Fit5jcp3X++DNfl70mvCIvLNwgBx5watC7Qr8j1773RVW3GD9tQ26tbvLa61PdYDDKOvIICgMU6ay54x3hbDt4pNww7SO5dtbXGs5q8tBrU6RTt/zBZH8f/VfyF/1h8hjyPmlP24rS0pdvf/+OHuNd26xX1avxoiuqX+8qeD96QaQYlcFMjYYFwYsCQ6PA9pEUHAJLZ4o9m6ksMK9ES40wec4557jRij/84Q9uISi0eay4iUbcP8eICAWCAnXBBRc4U9PTTjvNbcs0RTtCdPqxWKBC4v34jVbo9ttvd8+EISBMUJjwDwdUNLXcj8CLI2xBYZdRGBpRKlIqbZQPhJNnqYBZ3I/E9Y4KGi0wnNgTOegQrijIrBZaqNN+iWMfujGvr5aWHXQIcYT5T3/6k8tUmAxTuXAkM5FJqVz4UDlSaQYdlRIs2AqOBts7uCEMsKiQa0Cq5skDNx3mLlMoEHro6EU5KqCZT80ueCmnljYI2iB10c6Hrm7bTjekX/L8V1qRrpE5c1Ug6axCcY6yz2POqGoTN25Lh6BHKDVwHZZWle+/XSVV61WTc8YNkZ9+aC6fLflBtjVF4vZADz67o99pBBkZm1xjilpwvCjN6raQC8+7It5o4T8sqQi84zvbXnFEYcVIBfmOtOCDZYLvCNLhoxxiQkpjTUNDw4TiCCsH8ihHKg/OBTWTCAl+6oZ/N/7jH5p1GhnCQBmnfCE04iijEyZMcII5wjmNGKtVM4JEmb3yyivdVnMfz58tq6eultfuphJJ3dHhnzb9cRmyhyrHPvpZBvdvH887NPgfqoWFzFT/dh0nU95fqtYAs1UYb+EUCnnr58vVd38hh+7VSho2qi13PfaeXHbtNsUgHavhY/PDMmLf/Eoe/tOmv+neEQ+l5r1gmsTPb/3CPOu3fl0q67Ys16kPqinX+b2rNY3aNNGFrTTfv/LxChnYoZW01LVEvtSVmHN0nt4p+3eW/76oJuK7N5fXJv0sG77KljqqeNiimviqK2s6n2lIcKyevXiG7rqyy09OKJo48X533v+55PJ/yifT7pRpM2dJJe0Abp6jC461rqKTFFV4/mCNrJ6ro6wn95NvWBUrgQvHb8ReR8s1t9+m5qmD3Orc2VXzt6/kce5FwYpgRD5DQCHvUTdQH9JxQAlBPY6jXkAQpQ6hrmE7Mepd/CEfMm2AEWSUYwhGCLjc6x3KUeprBFrvwgKv79SGyw95GKHKj9TxGxfMv2MG9pfxe4gMatdKflTd42ytx7nPW13QWOMQlgk3ShFG4ymLKBKoK4kvz/gtNN0DW/8QzzDf8G9/f6Lz/nrU0St0gtcQKMOO/MRWsk1qqoD/bQ1VROwVviXyN2Xj9pemyPwqOg2oc36atu+9a7wstb35P7pw5TrZpB0BbamkSuXqsnnu0rhfRY2Tv9+nKR5Rb5In6ETDOOy4l3qQha0QiHAoaBHufT4kr5JnEfpxwTzmTugf8gp1nnf4ST3qlUacpz70YfT3cUSoZVtNVs2/47Rb4/e4PHnJK/Fb85+9Xu7+v3PlgtN20fUW+kiXXtWc4Mq97IQw/6cF8oXulvP9T4tUjhkn9zy3QYbu2UpO//NE/f6c+16leV/52+Hb2gpegN98wuWAaytWxJzCge/eLftqvY7GznTb2XGuR6OucT/8Pf4Y5eet/7jVbdXZQa3GcHTWmKIRdDD1223T9qAg8mnLVBqUZnR4kMdQyiHMMl+dThh1iS9T1C2kGb8ZzAk6ZA3KJ8Iv8ijpjtxJB5b0YoHRwhyyDB8GYA466KB4+vEcHZx7D3lCuu/fXNbp76++Xy5VX6oa30GBexjcaFwjX57kd6rO5yXK5yi1pGsmVeSDV7X8jKkhr32yUqfVfCq/frVUhow6XE7/4/4y+Rm1rq28QVY30fVQNuq6ElW0nteOVtbbqoionaMcdNeBWrpw6injC8QhGB5kaRQNfNgVhs48ccf5tOE7yhrvkBd83Y3ymHo/LA9yr3+e9CJdgnKG94v3kya+XuY89T75w7cFPIf8SUeb9gVHPqHORdmIksQ7GOYGxgxIiz6N8gdf/D3+yL09HtedCF5Xi6V2uubEohXSQC2Cem693yvWuJ88f/KTZ+kCK4HB4gAAQABJREFUketV7m+kOxc0l/YqSyRzQ/fUhW23yrjcd43ufhCUOzhH+0P/hCOMjjjiCE7Ht1KmzWHKD30N5DlkPwZ1+MAH+erhhx925YV2hwEplBN+0Ii+jO9cEl/aa/pftFOUMzdApOUL+ZD+Dnx9m+jzowvQ1j++3fTphfIO5zubKJPeffXdrXdHH3z9+OkrultR9YYyfv9j3Y28r8Xjur2o/up1uCpBnpguuboI5ejjh8ioKy+SC9640llfcTPWFBPvmeyeC/5hm/S/nJjP8IAx8+WTar/KgskaRp3qte7d5TLxhYnx23nff295WEYfqhag3+hCnANrSo5ufb5Fp18s0QHJKlXr6/SYFlK/y2LpMyhfYRF/eOuXKIVW+B5+HzP+PLn8vKNk/CG7yur3dZriUbrtfJUa0nhoE/lILdwad6yvfV+VyxbnyNedamr9MlKoQYIDpVH+JjpHW80nWFfTdvr+GfUhZZj6Megos+dvlbkaaft3VJ1WBeQmyjp+4hiQZ7Ay6JDruIdB53S5bYqHX3WfgDfEdS4QvOg0o/mgw0+GRHBEGUDDgSUDQgCdEip+NHR0btAsU2jQWAdXMWb0n4aDc9zD6DACgH8OhYIvbCgoaMwoKABkZIIOPg7TIhom9uCmcmPEmM5v2DF6H4R36aWXhm8p8JsCiukrlg04FCxUjCgP8B9tIRYUdMq8u+OOO1zFQeUdVjwgjMODQu8FI/9c+Jj9RpbOiwp1pFVTlzd4xxUPXshCIAsKq4z8UFlRQeEIP2ke5SjIKBeoEKnUUBYNHz7cZXYyPI5M6zsyKB0YzfUdq0r3q8DapaDPa9YXjC8jO2fst7/8/l9nOCGJCmj/TuNk2EnDZPRRY3RHAV1TWJUOskEXp9lSSbr37iXje410nhK+dh+1lqU6dwylxlsvfyx/Okm3mdTRH/ahZ0R71IGnyHC9m/3ON+nuGGi9wx28giEs3i/yLP+CFUPQJ8IaduRTGhTSg7JFZ418g4acdKPskY4oAXCURyoBGgum+JAGNOrkXbTdOJ71jvuCZcGfR8hDqUdFgzIBbTv++AbK3+cbJf+bvI1izccl1UraP5/oeP4Z+Y0AjfrwUflKrLDfzTSf+ffiD5Vu1127uO06R+13eiKv4+d59rILH1LFQ/xUgVFFrwghD3vXsGp1ademutRr3Fa+/Gy6rNQV5FfqdKFfVuv8/y4q/GjePv/mWaLj+9JuSC+J6W4DVWvrnEZdNIy5fyO7NZU1Ou3i3bt03/KcPDl+vxO81+7oBaFkeYZwc/3LLbfJO/Ony6rPV8q6WroNWa+2skvHfPPfYANe4AURP/CPD3tDD91zmJbVQwvc5RqqQEeAe3FeeEWRSQeQDgTWAygNECBR0vpVj73gSV5mpAtLAtoFlFwIY3Q8yHM46hMUu9yLEgK/opwPh7/mw+nLgxeK/XWOCIBvfpNfrx88fE/5Shf/i+m0GbYYY1QP5/M+9eFz2vGDNWWRdoSwhcuEeyhDf8LlLeo1XjAMX/N1bvh8Yb/Jg04BtlZ3kVCh0edJnquSqyPpurpXpZr5HX7OrVi4skA55NyOOM83rBwN+4lSlvqRvIeyAFZ0Zrzjt88j1Jk+D/rrCND+uj/nhW3/O9kxXB9xb9g/f27K5KHy1S9tZeozM+NtIfdG3R98Z2HXvf/BZ/iOgvLafz8U3+udDhEjYihL3rzpTWFEMpiu4eej3su5KUMnxxUujCbTTqH08Q6mUR1UrqPYQTndpk0bp9SjbFEHUM5QVgTT29ctPMc7gg4FBedonxiRxRoJ5QRKSzrWRXHBdwaf6998gMyaP1dHqXREdVlVnRZTOz5Sy32MsF98T75CPvhcUb4P12kZ552o7VWzV2Xzbq3lyScelTqqDHp12rb4vvHyQ9Lsp8XyUzai+Qb9v0Vq69TNvI66JtQUtRLbt4389KDuypK1WWRE9NtJN+QCOpy07152CN/N6DuKIqwLqAsZZUcW51yUAjD4POlFZzecb3wZ9GlI+WIrPtIOOQdZA4tZlFK+vkaJwSAmA3/I/mHFM+/F6sgr/vr3HyKXHZs4Lcjne588Tt575gNpd1BPqf9xlnZot3VOfTwIe6/HO8jqTlXdKeTOw3REP5mjjn3jhdv1lvVOtsypWVAR55/Fb+QT8inxQZbD+sPXddxHO4PMxhQIZGvcvHnz3AAuz3u2KNtg7eU0+lIoJryjnPEeFBrI8n/+85+d8oa+U/B9/v5kR9ILBQaWZb6cR6VHlB9R9SP3UW9M2vK23P+niTJk6BB57PFt+R2lxGdqwdW4hk5l2KqsCPtN3eb7Fw9efJQMOH6iDNfpG7iaujVw2MGtS/su8l2WLkRar4HIuIbSvKbusvLCXFk57Repqqco3zvqeM+r0+Y7OWrxd69Luyr5CrS11fPUWlvXnfjtMF1MX7cdr15NunfeNljw6+xFMvSS7fsCqYbH5wvu5zsKRmQsBuS9/BX2K1i/8sy9997r8iTltbCyjgzE85TTdLm44gEPsx/R1eIn9ndKBszzEb6Yt4q5BQ4TVBwaOBalQAHBKKt3zMlEwAw75rriEPBodDBxYzTeWyRwHVN0Kr+bb77ZdaL4jbKDCovvOART3s15KqpEDuHEC5WJ7gmex0qDMCEU4zC5pYOHBQcCMQIoCgYEZkahEfyYvoFgExR8vJ8oKnBodJMqHrTMZEe0m3n9tZNd3/tW/KPvuHqNJ4oi76isqMjoPDCnLpgx/T3+iJKHkSQqIDqxTIEJOjIyIzkIO9m6MAwjqt4hyKLt9A5t3/nnXKcWEc+5vWm53wvMXwzNb1yo/H3hOuWok+XOh++SnC90WyEd6a2l21fhGA1nVBz38aPTpeWf8kdlVqieY6OaJ7ZrlJ9ndG+5uF8IUYk6eM6jNP3xYU/FO9KBRppGAxNfhCmmOfj0CIfXn/d++1E8RpMYraWx8Jpqfw/adSxcvCNfoETDLwQTFFH4EyzL/l6OXPMCepTwHry3KN/hdMlfbitggTDtIy1boZE+72eYq29UL/l7vqLC35fs6Ef7B/dpLEw58Hkv0TN9+7aSKTM/VcXDtjuydX2LtroeiHfNu3WRXN1/unp9Xe+iu67erNvDtm5TR5V9agWh8/kaqiLo9TvGyROvrZYzL7rOP1bgGI5bgYv6g+u3Pn6b9DpimLtEOULRhrAU5bh+2LiCSo7wfYz0JXLhfBa8j3qcfOYFEzr+wTnx3BsUPFFOo4il/kSZzOg0+RHLKYRc6njaGu5L9t5gGPz3wu6/6Np/ylt33iLfTp0h9VTp0KlX/hxF2i9GPykrKNj9aBLKccKDJVvQ+se/r6SP3rIpamQxnWFJ1Ckd1neoPLHhdZ3ylv+2Lbod529PPTadr07JL/I/wjUcaN/pwJLHUHx5FxaQGVEsivN1aVGeSXSvL1sj9k10R3rPwyfYBvtpGok6A0V5e9AP2plgexBmHvSXMCEjUY4o24kUZsFnEn2nHDClg8EmlBnpduT/Sx64QkeZp6iycrhcdvPFThmH7EJdmmiEvSjhCLdXYxoPicsm3h/ap7znV+hicjqqq/m8+sj86Q7ZOnpfQ3djqv32Rjl8zImFdigLqxd5H7IH6eOnbjLnH86puijLBm9p5DvDyOF0YpFNUBqh7GD0PugIKx86NigMyTdRLpgPo64Hz7101ySnqKhft7GMOi6/zQxe99/pFPsBKdI40bv9/RwZdUZpz7SqZPdzjQ/xogyE7+U3Fq/BwR8Gg0iToPPphJyGoywFnX8PsiL9Fm85FH5f8Jlk38kDlHNkfdr2RIrFZH4Er7nwyVAZN3HP7RgkanfCzwfrNqZx/zJzvbM+S/Q81lrjLz5CtujAEG1W9SqVpOauHWTv7CGu7KBoD/ZLeF9xp19T1/Op3Er7J4c00/W4asspB5/srHVfe3OBjD4831rDxwklSzpdKmU9/D6UkfQLw3kk3Fegrkc5gSvOe8Lv9b8LKB6ydAXf3EeynSUDGZjRTUag6KDimKqAkiDYgDDK5V24w+PPo6E+44wznOmPr5iCzyHo4XwnHeVClMP6AE0uK3ai5eEYVVFicuL9jPIneA5tIlNDAOydDweWGoz2oyBBIKVCQPHAezHXC44k+7Uj8MMrIxihSeZy/qvWDsuytrsl7+BtTLe7WIQTWDkw4uczl89A3gvf4WQEO5njeczgwp3g4DNe0Aqe4/ucGbOlpa7h4J0v3D5M/rw/hhsXfvOhopi/i25lpZ27sEkWozm+EmGe1kfv/CR7TBjkvPQCmPc/0Xv99ZI+Eh4qecoFjRMuGMbg96iw+cqA+1Ashcsg/jLKQ+OG1hyHYsz760eNEzX4XOc5FA+UkWSCZlT4CjuH4qkkHfHmQ16+JKTg4HxYEdKmRtE6L4vyB/F1QSHd7ujnTXLE0Z3k4bu/lmmz1krPAUfuUFSDZQmlA86bkLark2/141+AVj3RiJi/J5NHLyyRbxA26QQiVFFv41C0UacghNLYZdINOeUPMkX3y8bs2zvCRSeW0dhgmWE6kS9T/t6SPPr20b+TcAYF0XQIgt7vVI6sofPRG1/KgpW6K9GmjdJB1xAY1WxwKo9m7B6fXrT9XhYJc6Eso5jwyjECE6y7wpwzFtgS9DhRG5zOINB5pi3BYZnkR62TvQNz8nQ4lA6ka6acG0UPjKTTqWGUHQVuJt4b5Sfn+OTqaPlHN1yh1uSV49FtqQt71qqSK4eNSF3RHn844gvvCVpQMtoeJU9HPOpO8bxXMHOCAQ1vWevjQTvrFUV0wJONrqa73g3LklHxIJzFGZAqSllLFi/fh/BKBd/3CIY1nE6JypxnHnw2le/hupA2BysVzidLr1T8Dt5D+IrrisKbdzgWvQbL9JVfSXNts+g3zHtTp+iflq+EYi2J1UmmpxYnnBeffJG06rmLTJo8yU2hwQ/az7A1aque7YrjfdqfiUqPcF8hmUXbjgRom53iVl+yn8uS43Y91pmwkfnoYDOqwLwrFu+588473Tx05vWm6piywJwkLACwWghn9GT+BBUUzBdG24cVAoIs5lpRjmthrWrUfZxjZAt/vKkT57yFhVcgcA7zTj8izMg0q48zUsaH0T7i6KceeBPi4GgMfgRd1ieqoFDWYZc3ICaxTuGzxfuNkBCVuYrnW8EOcap+oHlkxMA731Hyv1M9opmuMmO98yvsB9f8O+iQLVqTb3XDlI+iVliphied95FONE6ustyByhnrlUSOModggIAeLn/+3YmeZYV6nqGjmKwRTfR8svOM8DC9wruwosifT/cxUbmY9t7s7V616b18BWLtzvmaat/x2e7GwInuvRvL16xevKWK/O20AdKpbT2Z+vb0wB1F/xouS94H4rLhm5X+pzuiVU8UxwI3FuMHSoWgojbYofPe8W7qSzonCC/kG77TkOFQarPmg7cOI1+mO2/5sHCkjJF/veN91M+ppKV/piSOKACDbPmOkoaymwnFX6pxwlR0tx79nADn1l5J9cE03hdWnCMgw8TnsfCrgvk0lfyVTmuucFgq0m86PrQHiTpAFSmudF4zVY8m40R91bb7tg7KJt0qfMXybfVXsmeLco06lxFt0pJ37ojDYiLsR5Ad7wr+3pF3pfvZ0gpXsI4iTlFtKeeD6cTvdLpwm4PfTNOgE1paXNIVP9otvzhsUCYKL0rP+7DO3hFH3scKO5EVhve77qL8qT3+d1k8Zlre0GVSQ9HWwfaOT7WXbg27OesGdnfAISTi0MjxPbj4i7uQ5A9zkmiomHvOHJSg2XeSx5xQilCBBQOLgaEdZD4UFgjMjcIaIcph7cCaBIU5BA2/qGTwXqYeIBBfd911TnhmXQqsIjAHxjFCzboQ/sPiPViCsDAmDrMyXJT2kvNZv6hlyfWq8wkbNmha5B3PHRXHUXGNbjvERQhLhcZFWBk6SAF/ptwzWa4ecdF2qxlzbdVLOsKrjhW/69bpJtO/blWoGX3Q/4rw3WvPfVwQymlUcDRcjEb4TqC/J5UjFSqNUCYETdLOrxTNVJ3SVhQNHZJvFeK5MPWj7+593c/qlaq51bI3rsmvC/09aM99o+UtEXbdtbE8NmmetG2qU1/q1tD5oFN07Yr9/SNpOZLXaUCjXKL5klH3FvUcaYaZHg7lAnkrynGePMP93vnOI51G5iX69UjIX5l2QSEvSsCjvPjwZTosifyHVVBBQhtFe0PZxTItEetE/u3oecLDmjjeOWsz7YyVBUd6MY86nMd82Ag7+ZPpm+H0jhK2/XN2LJxAJstrWDFOaHZGpRCr9aNwwGWvjbl54m5+eKA+dRdL8Q9lzyuYmTZnrmgEqKNoS70CtaTr90ShjSqDie4tq+eDA5KEMThgCXesr4PO76gRPLej38PtJwOkxe0D7WhYUn2eMp1peSN7y+Hh3q8GT+uPx7s9IisWrHCrkhNgLAJYXBJTVCwKmLeVqqMDz+KMZGZGHvwoV6Ln/e4RWCKwJynaN8x12RuYqQ5YGbAuQ6J1HgYPHuwWIApOf4h6FwIJaxf4OW7+HkaYMCHDRJB4shMEccf6A8c8fCoL/yFerA/hzTqxBiHMbJGzndOp9jmX69mIOpq0iDWNSI/tPEnfCSq8TDtMGNmiJtFWPEV5PwU5ytEBQyhm5W46yuxqsLO7sLAGl0T8SpMV2/2xC0oqC0SWRjiDDdiGn1cXWCgoKjxvffizO91XlQ+4pbpV1xUX/36H2YcbsaAGPxhGGrdMj0ozR5B6L9HCZS7iEX+oz73DrJd1g2gTaFMy7eCHkOyVJWHhivJCGSltF2TkO8ylWXaDeSsovJU0p/CUnHD9FhUeBPkbbrghJYVNaSudosJv53ZeAsg01XWrY+aoN6yRr/xL9/zwdNClDUik/EuH/xXdD/gxeAnD0nC0i8E1msqCAj4dHILyUtQgjR8s4l1R19MRBu+Ht8h2i9SWARnDhyvRMdPyRtbGDRtjuZdmC6b/YRdroyNal+SJbFu/yS3uyH10zoviEPZY84CFIYvqeNZbN6BMwGICRUQixz3sLczKnSgNiut4L9YLKBWCW28W5h8KEioSdugo4HRNndzLlPW8Amfdj5guerr5UmW9/eyL7W8u5pngPH/vBUI/pnbmyj8B5lMyH5zRZJylbdHTFIYbFj4eX/AShQhWGCw89vikx2V9/TzpMizfAsL7jlKNbfZWD843odsy6WO56OSe8vG7i+XnBfnr1VRuMCYtnVrCx+4v9bo2lT7rOhew/nELJmkY2PauMHM/H/aSPgbzKPnTzyFFSChpFwwL7y5L5YW2C0u70hJGw2nhV5QvzXyV7vSijWb6qHfFWdzUP2vH9BEIpzM+l6Wymb6YJvcJDswPz2tcKW4uzuAKlp/mjEA6CQT7BhWprFGGkNuwMggPKvjy5RfpzmS56rV7L6m19/YyWzrTsDz5pb1g7fCelSexhtuPtNNBzr1QF0Bcsq03jMKhqEoHgKA4KI7SwT/LEce6C8mUDv4eLCJYdXdHHGHG0qMoSgd265g+fXp8C1D/fhg6lvP8mW1H2JMGmVQ68LbwCN+2ENi3ikAgrLn2o6UVIW4lFQcYstsFjq1Y/fQIrHaO6H6YNGuSvwWtD4/XZPvfwWO39nXlr388SN75aPl2jV7wvqJ8J3yj2gyTk3ofVUDpgB90ClGClGbnsLC4EH4Uut78nd98SsPx3uBIT1kqL34UsTS4RL2Tue6lna9Ir+A0lB1NL6wSzZUPAjujNQr5nRFSP0edlAqO0paPlLNQlgcChU1DLA9xiAojZYi2K6x04F6uMY0Qa4dMW/KxHWzUNPGoMO8M5/IXSVCLhi0XxST3r6pgCG3EkLUwS3LOV3Ovv+iSBJ3KDxL2zB0wYECJB7hVq1bywQcfFFDOZH2l0ytUB8KuIds5nbEC+6BVyXb32AkjUEQCFUlrXcSo7/DtfsvN4SP3L9AppvGafMIokS4FX4FJLFp1v0ryis35StzKOZXcjeF1Iwo+XfRfyVbrTnat6G/KzBNlZR5rMHYspuR3lQmet+9liwDTLbAEYZrFjlrqeb+wELP6smylczg0O+ugCYoGv2MXTDIxDz3M2n7vfATohLPDCWvqlRUru5JIBZTpWD4Q/0y7knhHpuOQLv/ju1rEWqvlw0U66l5le6/dNpsXZkv28xEd5+1vLzNnUt1SM50BxhokaNkBs1xlF6l0UNYwh31JuKgFtXbGkYSSYF1a76DhwGQ4k4t/lVbcSuq9NBCXXfuo26+7sHe6bStDN+V0aiKzZi2On83KTTwtLH6TfSkVAr68sF6PCQalkgRFein1GhYzfopOkR4O3RysI9l22lzZIEA5DFoilY1QWSiMQMUmwIDAzqR08Klp7b4nUXLHuOKBV8a6akf4YlU+RC3fsFlH7e9R64drVPmQ/l19Si7GJfUmZQQrmImy284pY1jD3JwRSCcBGpCgUJ1Ov3d2v8Kmrn6BR6we/LQL5gxO/PenUrlSlQLTNXZ2dmU1/pSXsmiFUVZ5lXa4SKt0CYsoMVA+oXgyV3YIBHdoYrE7vztT2QlhyYRk3Khx8XalLO0oUzKxt7cYASNQEQlstx9lrLt2iK/Ik5yrdG2HZdtbOGRPz5Lsz7JkyzExyRurJsXb31IROaUeJ0WS/YoqHB5UMGuiH4vV16krf9UdLMqArLOzmjBGp4ydNQLpIdC2V/6OFpJTK22dpPSEzHwxAkbAEzCFkydRto5BuSSV3UvKVujTF5p29dvGPWvVs138u30xAkbACJRXAgUsHnwk6BBvvl47xolG47VDnXOHTiG4QKcQzPZP2REWMIFNQqWDMnVsS0HpwCgRjbg5I2AEikcgPMfWW0BQttrV2TZnanW7xnLlrd+6KRvFe5M9ZQSMgBHYOQkEp4Xu6CKi5Zkg7crotkPcAnh1F+XvmlSe42NhNwJGwAhEKh4cFl1wcvPleZK3lw7hJ3BZX2pH+6/ZknuFKiC+TXDTTnCauMMAFjBJ5GAJ09JcSDK4psPObMKYKI3svBFIRiA4pYL7goqIdx56I/4oaz/8+bzL4r/tixEwAkbACKRGgA43O5iw6GtQZknt6Yp1Fzsq3XHardvtYlSxYmmxMQJGYGchsN1UiwIR16tbfq+WD/10+sC/dFbFrzqSH+GyPtKO98xsifXR+/fVdQt21Zuib414upyeUn1M1iy1/HhBlQ0af0msn5FYPZ2WcppIXr8kN5UChp3ZhLEUcNsrKziBvrv3ja9A7td+qOBRtugZASNgBDJCgIXuSmrF+YxEII2eoogxZwSMgBGoCASSKx62xpAOc95E7WTfowqINxJoFOiIf6gKiA9VAdFC7x+nHe2herJmRcAUiIPubZQ9Vde5mKTx/TEBi8DteSN0PYcTlEONwMlS/MoWYqtWrSrFENirjUD5JYAA2OLxek7BwP7Pkx75JB6Z+Z/8IPUG5+85PGzY8Ph5+2IEjIARMAJFJ2Ad7qIzsyeMgBEwAmWZQOKpFuFQa8d5yx/ypwoUtigiHfKcu7Ok0vG63sHftZM+TTvoG8IelqPfGnbiQFxcnDRuhSkd3DoZOq0CZmVF6QDx+vXrC1MscDvz3EkHwP4YgWIQmDMjf2GbvoMGFnj6H1f8I74C+bIvtm2nWeAm+2EEjIARMAJGwAgYASNgBHZCAlkbN27UnnERnT5BRzz7IR31X1z4qL/zXdfFyeuh0zZ201kJOiUj1rTory1iKHfo9qxFqlzQKRRZMzWuuouHrE/Nu1hjtfY4WuM6WOOXIprUfE7fXaeffrosXrxYevXqJRdffHH6PDafjMBOQmD8mb8Vtjqb8JvjCsS41+69pH63RjLlnskFztsPI2AEjIARMAJGwAgYASOwMxMonuLBE9usnXKdepH9TGrTDvxjHFE8sHVnrCMf/d5aT+YE7yjB71s0/N/r52tVNnytx8/1o4qHojg3veRAVTjo1ApJaQJLUXxP/702dzL9TM1HIwABK1uWD4yAETACRsAIGAEjYASMQEECO6Z48H4xuK/rO+Q8qwstfupPFvFYWRUQbfWj60PEmuuzLfR7c/3eWL+naxchtVrIUgvorIWqVPiRo350WkjWd/qOjUUM79bbYz11CsoBuqBmXz1RNF1F8V5oTxkBI2AEjIARMAJGwAgYASNgBIyAEShHBNKjeAhEOGu+WkC8qX3wKfpZmqaeuCoeYnVUu1E3K/9YXV9YST+qrIgf9atTHmwKHNdqGFZoGJbH8o8pTpfAq2Qu1kAVIsPVumGYhquVhsucETACRsAIGAEjYASMgBEwAkbACBgBIxBJIO2Kh/hbtD+e9ZlOxXhTFREf0vmPXymfX+qqoqGvrt8wTJUOPTQKadKplE8YFmojYASMgBEwAkbACBgBI2AEjIARMAKpEcic4iH4fpQQ3+jnI1VC6CfrK71Y1g0FVLEQ053x8vqoooFPew2zKRuCqWrfjYARMAJGwAgYASNgBIyAETACRsAIFEqgZBQP4WAwBYJFHL9URQQLOrK746rwTSX8u5YqGjqrooGFLjvrRxe9FKZ0mDMCRsAIGAEjYASMgBEwAkbACBgBI2AEik2gdBQPEcHN+kXNCX7UtRgWqCJi66KPskh/L9fzxVz4cbvX6JoQsbpqatFU14rYuohlrKX+bqG/G5V1E4ztYmMnjIARMAJGwAgYASNgBIyAETACRsAIlHkCZUbxkJQUFhIoIPwikRv0bhaR9AtJesUEi03yYeFJPlVU0eAXpUThYBYMCsWcETACRsAIGAEjYASMgBEwAkbACBiBkiNQPhQPJcfD3mQEjIARMAJGwAgYASNgBIyAETACRsAIpJFAdhr9Mq+MgBEwAkbACBgBI2AEjIARMAJGwAgYASNQgIApHgrgsB9GwAgYASNgBIyAETACRsAIGAEjYASMQDoJmOIhnTTNLyNgBIyAETACRsAIGAEjYASMgBEwAkagAAFTPBTAYT+MgBEwAkbACBgBI2AEjIARMAJGwAgYgXQSMMVDOmmaX0bACBgBI2AEjIARMAJGwAgYASNgBIxAAQKmeCiAw34YASNgBIyAETACRsAIGAEjYASMgBEwAukkYIqHdNI0v4yAETACRsAIGAEjYASMgBEwAkbACBiBAgRM8VAAh/0wAkbACBgBI2AEjIARMAJGwAgYASNgBNJJwBQP6aRpfhkBI2AEjIARMAJGwAgYASNgBIyAETACBQiY4qEADvthBIyAETACRsAIGAEjYASMgBEwAkbACKSTgCke0knT/DICRsAIGAEjYASMgBEwAkbACBgBI2AEChAwxUMBHPbDCBgBI2AEjIARMAJGwAgYASNgBIyAEUgnAVM8pJOm+WUEjIARMAJGwAgYASNgBIyAETACRsAIFCBgiocCOOyHETACRsAIGAEjYASMgBEwAkbACBgBI5BOAqZ4SCdN88sIGAEjYASMgBEwAkbACBgBI2AEjIARKEDAFA8FcNgPI2AEjIARMAJGwAgYASNgBIyAETACRiCdBEzxkE6a5pcRMAJGwAgYASNgBIyAETACRsAIGAEjUICAKR4K4LAfRsAIGAEjYASMgBEwAkbACBgBI2AEjEA6CZjiIZ00zS8jYASMgBEwAkbACBgBI2AEjIARMAJGoAABUzwUwGE/jIARMAJGwAgYASNgBIyAETACRsAIGIF0EjDFQzppljG/pk6dKldccUUZC5UFxwgYASNgBIyAETACRsAIGAEjYAR2JgKmeKjAqf3KK6/IJ598IqeffnoFjqVFzQgYASNgBIyAETACRsAIGAEjYATKMoEiKx42bNggzz77rGzatCkt8Xr11Vdl8eLFafELTxYtWiSTJ09Om39RHr377rvuPVHXvvrqK5kzZ07UpRI/17lzZznggAOkXr16gvWDOSNgBIyAETACRsAIGAEjYASMgBEwAiVNYDvFw9///nfXWQ0H5MQTT5SzzjpLvvvuOzn00EPlhx9+CN9S5N95eXly/PHHy2uvvVbkZxM9wCg/YS2qmzFjhjz99NMpPXbOOefI+++/H3nvgw8+KPfcc0/ktZI+SThuu+02+fzzz+XRRx8t6dfb+4yAETACRsAIGAEjYASMgBEwAkbACMh2ioeDDz5YXnrpJVmyZEkcz7p16+SBBx4QrnXp0kXWr18v7du3j18v7pfs7GynwDjyyCOL68V2zx177LHyzTffbHe+sBNYMTz00EOF3Vaurg8bNkyqVKkiL7zwgkyaNEmOPvpoW/OhXKWgBdYIGAEjYASMgBEwAkbACBgBI1D+CWyneOjatav07NnTdVZ99F5//XVp3Lix7LHHHrJs2TKndFizZo27zLSC3/zmN9KgQQM56KCD5Pvvv3fnr776arnqqqvcdxQVmP1PmTLF/aaTP2bMGPedqQB+GsBee+0l1157rfTu3dvdP3HiRHcPf5iOcdhhh7n38CyLJp599tnx6/4LUze4D0dnm++nnXaaew4FB1Mhwg6lyqWXXirPPfectG3b1ildfvnlFzniiCPcc4T93nvvLfDYxx9/LAMHDnTXTznlFKeMKXDD1h/XXHONi0v37t2d9UHUPZk699ZbbwmsSbdDDjlEOnXqJPD53//+l6lXmr9GwAgYASNgBIyAETACRsAIGAEjYAQKENhO8cDVY445Rh5//PH4jU888YQcd9xxkpOTI1u2bJEff/xRmCaxdu1aOfDAA6Vjx45uXYVGjRrJ+PHj3XN0tJ9//nn3/cMPP3RTNPyUCjrEHTp0cNfmz58vWFTg5s2bJ/fff7/cfffdcvHFFwtTGhYuXOiuMX1i5cqVwlSKCRMmOMVD0CrD3aR/8Ounn35yP/n+zDPPOGUCVhzLly+XoDLDP7P//vvLqaeeKlgIvPzyy25NhJtuuklQrrzxxhty3nnnCcqFn3/+2T/i3n/RRRc5ZcW0adPkkksuiV/zX4jLrbfeKnfddZdcf/318re//c0pQ/z1TB932WUXp3RA8cBUkjfffFMqVaok5557ri04mWn45r8RMAJGwAgYASNgBIyAETACRsAIOAKRigdGx+ngM+pP5/3hhx+OWxEEuX366adOoYCSAEXC5ZdfLjNnznSKiT333NN1dlFOYOlw1FFHudF2nn/nnXdkxIgRQa/i3y+88EIZMGCAmxaA5QXP4geKA5QGffv2dX6dfPLJ8WeSfWnRooXraPfv399ZPnhlSPAZFl9s0qSJ1K5d21kFoGBhrQsW0cQCBKsMXNBagjijsKBTj5VGlBXBf/7zH6c8IcyDBw9261lgVVFSDgXP5s2b5e2335alS5c6xQ4WK9WqVXMKkEGDBhVrPYySCr+9xwgYASNgBIyAETACRsAIGAEjYATKP4FIxUOrVq1cR5m1AZhmgUXDrrvuul1s586d6841bNhQ6tevL4yw41iAkqkXu+22m1NEYN7PwpRYSmA1QId4yJAh7t7wn2bNmsVP4R+KD29p0Lx58wLX4j+SfGndunX8Kn5jNZGKI4xM+ahRo4abKsEzsVgs/ijTL7xD6UKcN27c6E+5o7eWgA2fW265JeGilAUeTNMPdh4hLdnpo27duu4DTxzWKayxUadOnTS9zbwxAkbACBgBI2AEjIARMAJGwAgYASOwPYFIxQO3sRDhY489JkyzYOpFlMOagA8d7uCH0X3c2LFjnZUDCooePXrIuHHj3LSDpk2bSlDBEOV38BydZ9z06dPdEQWAXxfCnUjTH6aPeMfUDiw/sBBgSketWrX8JXdkioh3KFRYA6Ny5cr+lDvCgV0ugmyYdlJSDoURu28QD5QMKD8IJ4qIkSNHOssTpoCYMwJGwAgYASNgBIyAETACRsAIGAEjkCkCCRUPTC9gTYZE0ywIEBYBWBDcfvvtzjJh8uTJwtoOmPXjhg8f7haYZNFIOr6jR492ayPsu+++7nqqf3Jzc+X8889360xcdtllbh0JFk1Mp8NqY9asWa5Tjr+s74CygTUR2JZy1apVBV534403yuzZs939TDHZe++9C1znB4tgssAmC26yvgTKjH/84x/b3ZepE1iMoDiBFdNXUDagtDnzzDOFRS/NGQEjYASMgBEwAkbACBgBI2AEjIARyDSBhIoHOuIoCPr165dw60zWRnjqqafcAoqY7LOwJAsxMs0CxxoCuFGjRrnj0KFD3RGFRKouKyvL3crCjKylwLoTdKB5T1Gd9yvqOZQE1atXd9NFmNpx3XXXuXegfEChgqVA0LG1KBYNdO5RTnB/2LGII2tLYHnA81hJ/O53vwvflrHfhK1Xr15ujQfWoGCbUdauYH0Kc0bACBgBI2AEjIARMAJGwAgYASNgBEqCQJZOA9i2cMEOvHHFihXOQgDLhkw4ts9kugZbdq5evdpN42BxxwsuuCCtr2NahJ8ywcKMLGzJopNRjh0+WDOhZs2aUZfj5/ATv1BslKRjO1B2+MDagXQxK4eSpG/vMgJGwAgYASNgBIyAETACRsAIGAEIpE1LgMVDppQOBLRPnz5uqkLLli3dWgUoB0444QQupdV5pQOeMsUjkdKB6+x+UZjSgfvws6SVDryXNTVgxMKXLJJpzggYASNgBIyAETACRsAIGAEjYASMQEkTSJvFQ0kEfP369W69BJQcLFBpLjmBww47zO3IgbWFWTskZ2VXjYARMAJGwAgYASNgBIyAETACRiAzBHIz421mfK1atWp8a8vMvKFi+cr6DsOGDRO/tkbFip3FxggYASNgBIyAETACRsAIGAEjYATKA4FyZfFQHoBaGI2AETACRsAIGAEjYASMgBEwAkbACBiBbQTStsbDNi/tmxEwAkbACBgBI2AEjIARMAJGwAgYASNgBPIJmOLBcoIRMAJGwAgYASNgBIyAETACRsAIGAEjkDECpnjIGFrz2AgYASNgBIyAETACRsAIGAEjYASMgBEwxYPlASNgBIyAETACRsAIGAEjYASMgBEwAkYgYwRM8ZAxtOaxETACRsAIGAEjYASMgBEwAkbACBgBI2CKB8sDRsAIGAEjYASMgBEwAkbACBgBI2AEjEDGCJjiIWNozWMjYASMgBEwAkbACBgBI2AEjIARMAJGwBQPlgeMgBEwAkbACBgBI2AEjIARMAJGwAgYgYwRMMVDxtCax0bACBgBI2AEjIARMAJGwAgYASNgBIyAKR4sDxgBI2AEjIARMAJGwAgYASNgBIyAETACGSNgioeMoTWPjYARMAJGwAgYASNgBIyAETACRsAIGAFTPFgeMAJGwAgYASNgBIyAETACRsAIGAEjYAQyRsAUDxlDax4bASNgBIyAETACRsAIGAEjYASMgBEwAqZ4sDxgBIyAETACRsAIGAEjYASMgBEwAkbACGSMgCkeMobWPDYCRsAIGAEjYASMgBEwAkbACBgBI2AETPFgecAIGAEjYASMgBEwAkbACBgBI2AEjIARyBgBUzxkDK15bASMgBEwAkbACBgBI2AEjIARMAJGwAiY4sHygBEwAkbACBgBI2AEjIARMAJGwAgYASOQMQKmeMgYWvPYCBgBI2AEjIARMAJGwAgYASNgBIyAETDFg+UBI2AEjIARMAJGwAgYASNgBIyAETACRiBjBEzxkDG05rERMAJGwAgYASNgBIyAETACRsAIGAEjkHPxxRdfahgqNoGffvpJtmzZIlWrVo1H9LvvvpMaNWpITk6OO7dmzRr55JNPJBaLSe3ateP3hb9w/dtvv3XPJfNv06ZN8v7770vNmjWlWrVqYW/c77Vr18p7770nWVlZUqdOHXeOcBK2X3/91X2WL18u9erVc9fmz58vS5YsiV8j/Lm5uZF++5PpjDvh/eGHH6RWrVpxbrwnzDKVuBOXmTNnuniH+ZAO69atk7p16/pouCPvmTdvnuNRWLwLPFiCP0qD9y+//CIffPCBVKlSxaVNVHSj8lrwvh9//FG4h/xKWSB9fB7kmJ2dXaD8BJ8tze+UD8JHnvQunAabN2+Wzz//XHxZIi5RLlHZDvsHJ3jDqWHDhlFeuTBR/qlffNn2N8KWOqRp06au7PvzUXHx18rCMcyBMIXLfqr1aKp1Ce9IlC5cwxX2zmDezn9CJJU6yt9bWscw2w0bNrhy6dsDwrV48WKXt6tXr56wneG+pUuXunuDdWrYP9oW0tiXe9qlcN2MX7go/5IxJb+X9bo7nbxTyd/hepb0CNZj+aRFqN9nzJhRoK1M9GxYRlixYkVcfvD+laVjppkH83iYWaJ2LZH8Ea6faVe4F+aNGzcuIBOVJcaEJcjBhy0cH86nWk6jyn+Uf6RvYeU+ql0hLFH1dqr1Hc+XlouKTzifF9Zm+bBHtX2F5buotPH++WPwnnCfg3IRrIuKwjwcz6h8l6p/wTD6cBcme0XlmcLil0h+5rmPPvrItXWUb9rDdLloCTRdvps/pUqACuDEE0+UHj16yKOPPurC8uGHH8pee+0lnTt3lq+++sqde+ONN+Q3v/mNTJo0Sc4++2y58MILE4b7mmuukQEDBsjTTz+d0L9PP/1UBg8eLC+88IIccsghcs8992zn35NPPinjxo2T119/Xf74xz/KP//5T3fPwoULZfTo0XLnnXe6T/DZ4HmuIygmcumO+8aNG+WYY45xcadywUWxTCXuZ511lvz5z3+Wt956S8aPHy+TJ092/lHhjRw5Uh544AG56KKL5OSTTxYqWT6HHXaYXHfddfLMM8/ImDFjXIPvHiojf0qL91NPPSXHHXecvP3223LUUUfJf//73+2IJMpr/sYpU6bIwIED5YILLnCnSF+f/ziST5999ll/e5k4rl+/Xq666irZbbfdXJklUFFpQEO0zz77yCOPPCJ33HGHiwuNYZQLl+0o/+bMmeP8IM/y/jPOOGM7rx577DE56KCDZOrUqfKnP/1Jrr/+endPXl6e+03eJ51GjBjhOhVRcdnO01I8EcUhquynWo+mWpf4KIfTxZ/nWNg7w3mbZ1Kpo7ivtFwUW/LU0KFDpV+/fvFg3XDDDXLqqafKyy+/7PJbojJK+o0dO9a1Sf7hKP/+9re/yWWXXRYv+3CKclH+JWJK3X3EEUcIYaXNpH6fO3dulLeldi7dvFPN388//7ycdNJJcd4vvfRSAQbUF3/961/l97//vatLqFOQF3CJnn388cfj/l155ZUyZMiQAn6WlR8lwTycxwtr1xLJH1H1Mx2gAw44wMmVTzzxhJNJVq9eXVbwFghHmENUfIpSTsPlP5F/hclsUe2KD3hUvZ1qfef9KOljVHyi8nlhbVYw3OG2r7B8F06boF/+e/ge5KGgvHfaaaeJDsi721NlHhXPcL7Dw1T9C4eRZwuTvaLyDM8li18i+fmLL75wdSfX77rrLjnyyCOFej1dLvlwcbreYv6UCoHZs2e7zlirVq3i70dA+te//iUTJkyIn2PUko5JgwYN5JtvvnEdi7///e/x6/4LghOjmH/4wx/8KSfEhv2jg0zHef/995eVK1dK27Zt5fjjj3ejxv5BlA2M+K9atUrOP/9817nm2s8//+yExL/85S/OmsGPUKH5xF1yySXOz2bNmrnfif6kO+7nnXeeDBs2zI2a+XdGsSws7lQoCEcLFixw3kyfPt0VcAo1hbxv375OwcDF4cOHy8cffyzt2rWTd99912nOsXSgkXznnXekV69ePiilfiwt3oze33fffW7EZdCgQXLzzTc7QT8IJFFe457vv/9eTjnlFLnlllvkueeec4+hqLv22mvdd4Qx0gvFXFlyaMMbNWokt99+u9x///0uaFFpgPCOwqF9+/bC91122cUp7Fq0aFEgOlFlO8o/yvNNN90ku+66q7MQoXzCLmhFQeeNTqB/J5ZRhx9+uCvrKNuwluD+yy+/XP7zn//IoYceul1cCgSulH9EcYgq+6nWo6nWJUQ7Kl2COJK9Mypv82xhdVTQ/9L4HsWWTtP//vc/p0T3YaKupGxjVdO6dWt55ZVXXGfIX+dIXbnffvs5gQ/FpHdR/qH0RklWqVIloc2MGuFJ5F8ipliunXPOOXGFCYpARpE6dOjgg1Lqx3TyJjKp5m/aQgZGUA40adJEKleuXIAFgjb1BYol5IKgnJDoWQZOvLviiisKyCr+fFk4lgTzcB4vrF1LJH9gmRZua2gXUTqjlMeRhnRWGJQqay7MIartTLWcRpX/KP+QawuT2aLaFdglqrdTqe9Kk31UfKLyebI2Kxj+qLYvWb6LSpugf3yPugdrOS/vcQ/K4RNOOIGvTh4vrI3hvqh4hvNdqv5FhZFnk8leifIMzyWLXyL5GaUtcly3bt2cFTBtYjqtrE3xQMpUUEcBwjHy6F1Q4eDP9ezZ0ykcUCAwknnjjTf6S/EjFTMNP1YRDz30UPx8lH9ffvmls6jgJqZtUNEsWrRImjdv7p6joiYjH3zwwbJs2TJ3jZF8rCQQMNDc7bnnnq6DxIgp2kfM2LBw6NOnjzMt5kiHEPP6KJfOuNOgItTOmjXLvdO/rzhxx0wYUyt40KDDCkdlg9KHgu4d6YLpHw0OAhUjfliq8Eyi0T3/bEkfS4u3VwigmKKDjbIr6JLlNe4jb1166aXbTQfwftx6663O8iTZ9CN/b0keURwwWuitZXh3VBrQgUKphXUCyipGiMNKh0RlO8q/oGCJwgelQVDpQDhatmzptPMoHjDDxTFFCaGBPO3v79q1q6ubouLiHiojf6I4RJX9VOrRotQlidIliCXZOxPl7cLq56D/pfE9ii2dWUa7gg5FMKNnr776qmszHnzwweBl9x2lHHm2f//+Ba5F+UdexQKNkVvKDO0QCo2gS+RfMqZYafAc5Y92LFxHBf0vje/p5F2U/E1bf/fdd7so0x4+/PDDsvfee8cR0PYhJ3Tv3t0pJRB8qe+Y/lLYs8gVjGIyxawsupJgHpXHPYuodi2Z/BFua6izfTvCABIDKWVpIMTHk2OYQ1R7wxSfVMppVPmP8g85rzCZLapdIbyJ6u1U6jueLy0XFZ+ofJ6szfJhT9T2Jct3UWnj/fPHwu6hPaHO2X333d0jqTKPimc43+FhKv4lCmMy2StRnvHx9sdw/BLJz7Rn//d//+emwqPwYCAZS+10OZtqkS6S5dwfRhuweEA7htl62NGpY9oEnYnCHKZnQe0Y34Pm3WRkRn7IyAgGCBynn36685bRUUzn0Z4yFQThAQEEPzG1xKSJTgyjXH76SGHhKex6YXHH3JMRLSqkwlxhcSd+WG1QsWGCC1ccnTGE3eA74MY5BGEY0TAyakFnmsa+vLp08vYMGHVn3iCWNUGXLK8x8o7Z829/+9vgI/HvXnjF1Lc8O0ZuGbFC0YUSkjwadEUp2/45LHUoE34ahT/PkQb32GOPdeZ5jIgxP5B8zRz4ZPVC0I/y+j2deTvVdIl6Z7K8XVgdVZ7Y0175NURQDAcdo46M3DCFIhWHFQ9tCkLXmWeeKYyYB10y/wpjimUQ7Ssj9fN0nZ7y6pLxJk5FaSuxcrj66qudDPDiiy8664cgF9ZnmDZtmlMukSYIyb6+KezZ2267zSlZfd4I+lvevqeTOXFP1K4lkj+S8WIwCGs2OinBNb+SPVOWryUrp8nKfzhOxZXZktXbvKOwvBAOR1n9HdVmBcNaWNsXzneppE0q91Dnh6eap5t5Mv9SCWNY9ioszwS5RsWP62H5GQsOHFYbfKcdZS2IdDlTPKSLZDn2BxNTrBGY28R8PQp9eP0EMh4dXjRrr732mruPDB/lOnXqFB/pZIGSr7/+2pmu+nv9NAnm3eJGjRrlFA2M+mPJwFQOOuIIasOHD3cKCBoE5nux+B/X9t1337i1gPe3OMfC4s4IDlYejFYRdwoiwk+iQlhY3AkjFRtzVFGwsJ4DI7/EiSkVQaGUdzFNBd5co3LAbBeLlIkTJxYnuqX+TLp5EyHmBjMPDUucYMeWa8nyGhzr16/vFEGsJcI0IubleYfwyjSM4GJ2/lp5OVJmESgZsfr3v//tLISCVhLEoyhlm/tR/CFsYnHk+XLeO0Y+PvvsMzn66KNd3kX4b9OmjRs9RonoHeaBqSgy/f1l/ZjuvJ1KuiR6Z7K8nUodVdZZ064Qd9ZmQdFFfLHqCTqmDyLkYcmH2SiWZuF7/P1YTDH1x0+BYF0UL3z5e5L5l4gpVhqUwQMPPNC9G+U9dX55c6nwLmpbicLXm+ozmscoJ8oG7/yIOnUHDmsIb8GQ7FnfsUaeKc8uE8zhkahdSyR/JGLIYBIWQgwgsV5PeXaplNNk5T8c9+LKbInq7VTyQjgMZfV3ojYrGN5kbV9UvkslbQq7B2sAHJbFuHQzT8W/wsIYJXslyjMuEoE/4fj5S1HyM/0Ob31G35B+Gf24dDlTPKSLZDn2h9Ed3+HCHBqHwIaghtCEY/FHhAOEADoSTJ+IWoGae1EW0JFDmEORQaNEhxAtMCZ5aMYxOWKUA8c0BsyvuId59ggMPEtYsL7o0qWLEzKZfoEfXGPeJyaYO+oKizvxZB49BZG4M3KL+XrQMiEYhkRx9yxRriAsw4BFPuHEHGQcVhD8RgCjg8b8VqZeMFqN9QfaUBwje4xel0eXbt4Iu8wTRpGDEsE7zztZXmNUHisa0pURNPI1rHEVRXilITv33HNdmWFUFoUiyjtfFolrUco2eZDFTTHVDS70F/SPub8o6uhUMJ+d91GO6JyRj7FmQhmCmTXTqyqKS3feTpQuQdaJ3pksbyeqo8pTOrBeCe0R5uE4TPX96DYKLToS1LOYO1O+WdsEx/coR5vC/eRNHB0HLCBwqfiXiCn5HQU71lg4LB7Yjam8uWS8fV1b1LYS813MinFY8DGdjTT0vOGPtZRPY+r43r17u/sTPctFOtYszFyeFcbEIxlzz6iozMPtGp0h8igukfzhLkb8wRKQNqC8WwQStUTlNMinKPVJMpnNp10EUmcpGCWTJMsLUf6U5XOJ2qxgu5ao7SNeUfkuWdp43snuwd+wNUC6mSfzL5UwJpK9ErX1QZ5R8eNcIvmZQVF2EsLRZ0OOox+WNqcCYMw+FZuBNtIxHSEvkM5aCGPa2LtzuiVSTEfdYx07doxpQx9Tszl3XjN0TOfNFniOvKLmlDEdYS5wPuifZviY7kAR0xEL99EFEt29OuIa006i+64Z2V3z79SOijuvDWNMBbWYdvRdWFTzGX+Pjmy5c/irI0gxLYjxa4nycLrjTjx1NLfAe1OJe5AlTFVp4+KvHa+YKlji/uk6Gi6OpIOO4LvzqoiI6ahC/Blt7GPaUMafSRT30jhf0rxVK8uqo/EP+Yl4B3knymtBProDS0wXn4szVfPsGGkRvKcsflflXUzXWSgQzmAaqGVOTK2DXF4jT+mUpph2ymLBshiMV1TZDvqnptFx1p47eTHon06HipdtyjG//TtUERnP37poU/w816Pi4p8rC8cgBx+eYNkvaj1aWF3i38ExmC5B1oneGXw2nLcT1c/BZ8rC9yBbwqPrI7g60IdNLW5cXqLMk8/UBNXlJ/K5dlYL5C3qWM77Z6P808X1nP++LVTlb8r+JWKqo3Mx324RRlXCx3TEr0A4gmEqze/F5R2sa4PhLyx/047CBN6kjY68bcdbpxi6NOE+2j1V3Lh7Ej2raz84v8oq4yAfvheXeVQe9/4F5ZNwmQm3a6poc3W1D1eU/OGvBetnHRTZrh2IkhX9s6V9DHMgPMH4JCqnYT4+HlH1SdC/ZDJbOO2i2hXeE663E9V3Pkxl5RgVn2A+T9RmBdu1YFyCbV8q+S6cNmHe+B2+R9cJcmUx+F6+F5V5MJ48H853ifxLJYyJZK9gmIN5JsgzUfwSyc/IjTo47Opn+ipqNZjWNiuLQKdNi2EelWsCmDlixYDZP26PPfYQtiKMMqdOJaKMrjJdwq8OzlxbRiwwN8WhTWa0hNFm/07vL88yMhTeRx0tHnPF0wEQgzYAAEAASURBVD2akem4h1ky+kxcGLEIO9YlYNHM8MKZWEtgDZHI0iTsT1n+nW7e4biGeSfLa+FnK+JvRoBZF8XnqXBZ3NE4h/3zvKPqDm1zXD72I9Q7+u6y9nym83aYNfEPvzMVJuH6OZVnyto9WCoQd6bi4ahTVfiLm+QXNbzUsUyj8/m2qP4lYoq/1PlY/5RnF+ZNXMJ1bVHih39Yq6jg7eqnKN60ebSJyAlBF342eK0ifQ8zj2JU3PiyMKt2VtxORd6PRPKHv16Rj+FyGsWnKPEPy2w7mnbhvFCUsJS1e8NtVlS7tqNh3lHevD/dzMP+pSOMUZzSwZO6mb6Wlxuj3lOcc7arRXGoVdBnwh0BlAReACtOlMOdaqYn+PlT+EdHKJH/4Wf9+zMluGU67mGWTAHgE+US7aDAVJSKoHQgzunmHeYY5p0sr4WfrYi/mToVdOGyGLxWnO9h/5LxZmEpPhXVZTpvh1nDMfzOVNgmqmNTebas3INS2ysdCBMdf78VWnHCSB0bbJOK6l8ipvibqbarOPEs7jNh3vgTrmuL4jf+FcabwYfwAATvCD9blPeWp3vDzIuaJ5PFFaVOeJeVRPJHMn8qyrVwOY3iU5S4hmW2HU27cF4oSljK2r3hNiuqXdvRMO8ob96fbuZh/9IRxihO6eCZqSndZvEQlWIV5BzCPaOL5jJPYNCgQW4RMxZhMZdZAsyThjfz4sxlnoCa7Lk5fizSZy7zBJjjy7olLKBrLvMErJ3MPGP/BkbXqU+efvppf8qOGSTAelnIJNQn5jJPgO1333vvvQLKtMy/ded8A+sOkL/hbS7zBNLZTtrikplPL3uDETACRsAIGAEjYASMgBEwAkbACBiBnZaAKR522qS3iBsBI2AEjIARMAJGwAgYASNgBIyAEcg8AVM8ZJ6xvcEIGAEjYASMgBEwAkbACBgBI2AEjMBOS8DWeKjASV+RF3CrwMlmUTMCRsAIGAEjYASMgBEwAkbACJQJAulaM9B2tSgTyZmZQKQrk2QmdOarETACRsAIGAEjYASMgBEwAkbACOwMBGyqxc6QyhZHI2AEjIARMAJGwAgYASNgBIyAETACpUTAFA+lBN5eawSMgBEwAkbACBgBI2AEjIARMAJGYGcgYIqHnSGVLY5GwAgYASNgBIyAETACRsAIGAEjYARKiYApHkoJvL3WCBgBI2AEjIARMAJGwAgYASNgBIzAzkDAFA87QypbHI2AETACRsAIGAEjYASMgBEwAkbACJQSAVM8lBJ4e60RMAJGwAgYASNgBIyAETACRsAIGIGdgYApHnaGVLY4GgEjYASMgBEwAkbACBgBI2AEjIARKCUCpngoJfD2WiNgBIyAETACRsAIGAEjYASMgBEwAjsDAVM87AypbHE0AkbACBgBI2AEjIARMAJGwAgYASNQSgRM8VBK4O21RsAIGAEjYASMgBEwAkbACBgBI2AEdgYCpnjYGVLZ4mgEjIARMAJGwAgYASNgBIyAETACRqCUCJjioZTA22uNgBEwAkbACBgBI2AEjIARMAJGwAjsDARM8bAzpLLF0QgYASNgBIyAETACRsAIGAEjYASMQCkRyC2l99prS5rAsl8ke8oLkvXZDJGffxTZsrmkQ2DvywSBHC3CTVpIrEc/yRu+r0j9RkV+S2zjUtm0dLJsXvmx5G1YJBKzvFFkiPaAESgLBLJyJbtKU8mt3VsqNRglWZUbFDlU81f+KLfPuE9enPuafLX0G9mUZ/VBkSHaAxklUCk7Vzo1aC/7dBgtp/abIK1qtyjy+5YvXy7Tp0+XL7/8UpYsWSJbtmwpsh/2QPkhkJOTIw0bNpTOnTvLwIEDpW7duuUn8BZSI1CBCGRt3LgxVoHiY1GJIJA17RXJ/u/tEuu7p0iDJiJaAYtk6YekT+8xb78jI0JgpzJGQBVIWQvmSdaHb0nW5Gcl74hTJTZ4bMqv27T0Tdnw4wOSW6e/dlgaSVZWjsR8tvC+pOl35Sa/8T7a0QgYgUwQUKVh3voFsunX6bJpyStSpcWxqoAYlvKb/m/Ww3LmixfIoV33l9Z1W0luTiXJ8uU/zceLh5yTcrjsRiMQJLBxyyb5bPFsefyLZ+SW9++WiftcLb/b9ajgLUm/z5gxQ5599lnp0aOH1KtXT0UiZKJ8F9MGMCsLuWir8/ne/yzi9ZEjR3qf7FiKBFAsLVq0SD799FN555135IADDpB+/fqVYojs1UZg5yRgFg8VPN2d0uHFxyQ25mCJaeNKe+o6lk7pgNohtlX9sPWoUuaOXK/gOMte9NTiIda6g/tk9R0i2f++VvI0lKkoH1A6bFr8nFRutI9mhHzBC6HLyVn82erS/dv7a0cjYATSTACLh2ptpIp+KtUbKOvn3eZekIryAaXDNW/fIucMOk0qYUmFy28M8nXU7rc7m77fW72zgxEoCoHKqhDr06yX+xzW7UA58ulT3OOpKB9QOkyZMkUGDx4cVzjQ7gVd+LdrFAM3FPl64Fn7WjoEUC61aNHCfXr27CmPPPKIC4gpH0onPeytOy8BW+OhIqc90yuwdOg/TCQ31ykdUDWgfECj75T64eMOX6/IQMt23FBA5J34F5fmommfzDG9wlk61Ns9X+mQnxnIGM4GZmvmSPPvZCGya0bACKSTAAqIqm1Od+Wc8p7MMb0CS4fDux+Ur3Rw9YE+keljskDZNSOQAgEUEP856E6Xf8nHyRzTK7B06N27t1M6eMuGTB+ThcmulTwBFBCHH364ywvkCXNGwAiUHAGbalFyrEv8TdlP3SeyfInEGjV38iNKfeTITB5j+1fcqRZr166V1atXi05PUoYFR0gykbgIQ5UrV5aaNWtK9erVU35F9lP36r1ZknfwhITPbPzpMcnbuEynV+jUmxJylZseVEJvstcYgcwTKC/1wYaFj2q9r3VJs/EJofz19b/LjysXSof6bRPek+4LFw/9c7q9NP8yQKC85PMLJl+h+Txbrhp5YUIKL7/8sqxYsUIaNCj62icJPS3kwqhRowq5o2JdLi/5BeovvfSSqxv32muvHUqEjz7+TN59/0P5YcGPsnlz5tcKyc3NkV1atpDdB/SVPr177FDY7WEjUNIEbKpFSRMvwfexkGSs90CnbKAjmrV1sm4mj5nvjpcgwMCr0Ipv2LBBateuLVWrVnWNVeByRr6i3Fi/fr2sXLnSKTtSXQwpxpSL+28SSaJ4YCHJ3Dp9tmqiNPiqkIo7EjGTv+Mvsi9GoHwSKE/1gZty8cPdSRUPLCS5fycVvp1mWtOE8u/rAX/0SeV/h49Fve7vt2OZJVCe8jlTLk547o9JFQ8sJNm1a9cSab/LbKJmMGDlKb+AgSkXTz75pOyI4uHZF1+Vb779XkaPGCKdOrSXSpUy363atGmzfDX3G3ntjbdkwcKf5IB9xmQwVc1rI5BeApkvIekNr/lWFAK6ewXrOuTPT0RKRJ7Mn8PvJ+mm+3dRglde7kWDj9KhcePGJSqwMEpZrVo1p+hYvHixEI5ULB9iLdvk71ySBLDbvUJ0ppUqN1z/IT97uCf8b3fUM/63987/Lu51748djUB5JFDe6oPsqi3zd6tJApvdK3J1p4BC13TwflD4ceFj/tntz/v7wtf9bzuWOQLlLZ/3aNzV7cKSDCS7V2RnZ5eIxWKycFTEa+Utv5AGTZs2dTuaFDc9sHRA6XDaSRNKROHgw4lyo3vXzk7R8a+77xPCYZYPno4dyzoBUzyU9RTakfCx4wFDV6FlyVE2+CGtM+96UB58821ZvW590jfVrFZVjhm2h0w8+TinvPDPcwz6F5Yvk3paTi4yvQJLBz8PtKSDzXt5/6pVq1JSPAgLwxW2XarfMlP9zgrNvfG/z77w3/LfJ6fK6jWF5I0aVeWIQ4bJjVf+TrPDNv+8P/5Y0tzsfUYgEwTKXX2gC04WtkUuW2Y6Iyctv075EHF88eZn5JNXZ8rGdRuSYq1crYr0Grub7HPmAa4+SORfUk/sYqkTKG/5nAUnC9v61W+ZSZuKRWHU8dZbb5XJkyfLunXrkqYBgwJMozj99NMj/fH+J/WkAl0sb/kF9Cw46fNEcZKC6RVYOpSElUNU+Hgv75/69numeIgCZOfKJAFTPJTJZElnoPJ3qWB6RX7/ctvxjLsekHUbN8nX/7pOGtWplVA+5Lml2uk974HH5My77pdbTjpWG9pt/gT9TWfIy4pfrOnA9Ip0uU2bNsmcOXOkffv2qSkS9MW8f+nS5AvEFSt8JB4udDxLlQ7r1m+Uz96eKA3r186/J8HfJctWykVXPSxnXXSPKh9OyL8r5F/c/wR+7Ohp2Nx77/+3dx6AVhRXHx8UNLFGxc/YImCN+tmwN1ARxV4QYsNeP7FXLIgFRWPDiL2AGsESuySKsWPFkmCJkURj7yV2FL79zX3nMm/f3t297b13H/8D922bmZ397+zunP+cc+Zat88++/jp0aotr73knzZtmr8uTEEXW2yxqqpFR/q+++5zb731ljvwwANzt72qTlpGZjrqdPrpzC+//PJl5JyR9Mknn3Sff/6522KLLWbsLLH2+uuvu6eeesoNGjSoRIrk3bV+H1Dfd955x5v9Jp+x5d7Wfh9AOkz9YaobfMPRbo5552xZoWDPt19+4yZc8Wc3fuRdrt+hEfmA1Oh9QBt58803fZHdunXzCp/f0J+aI1Drdk4F+e7NP//83nowT4Xr1c5pR0h8yfsH60a+JfPOO29qFYkVcfXVV7tLLrnEkw9J5Vn5qQWlHMRCg/PQV8gjlb7T8pSdlaYjt5dS105MB9wrqpWwT9ilS5ey+oec/4Zxt1VbBeUXAq2GgGa1aDWo2+pE0Qh0YSirxfKGRya6EYMGetLBWy6USEf+rtGI+4hBAyLriIktymlefu2uE39BgisSAKgSQckif/y31lprlVUcnYdaWju8++67rmfPnn4+6bwVsZGZvOlzpePG+ZvXtAy2sXQ448TdXNcF6Hy1PO7zNaXvOv+8Pi15SpVX2J+rVj6R3fvtt08OSIlZp91XMjz99NNuyJAh7vnnn89/kgZI+eqrr7qDDjrI0TGJC+34xBNLB1KLpz/44IPd/vvv75599lkfMyR+vK23P/vsM3fUUUe5W2+9teKq/OlPf/LkRZ4CnnnmGXfEEUfkSdosTa3fB+PHj/fvg2Ynydioy/vAnvOEJZYOffbv5+b41VxRzWLvjdj2HPPO5foc0M9bRzR7H8TSZVxii8NjxoxxXbt2dcsuu6z/sX7TTTe1SKcdtUGg1u2cWvXr189xH/NKfdo5nyn6RU2/qF3aOpYOkNfEU7J90dEZ63zzIuEYafbdd19vHVFMGxy3fXmvNUw3evRox/t9kUUW8TEpIJ2PPvpoH/MpTAeW//rXv4q7Kn2nFQuoYqUjt5dSsBBIshbWDvQJ11i9p5v897+7cL3UecP9nL9WAS1pS5dddpnbfPPN3ZlnnunXw/YVnlfrQqBSBGTxUClyjZIvUprh9i2Wg1kqRFy/d6/oOvdcfjAq6TiXyP6HX34tWjq34QrL+TyFwYLCiEExX5SuaeycbO1KGNUMRy9mn332dlW/NquMjfpEFfDeOE0V4T7iXtF1vrn9SKVvP8HNDbcfe/IVf983XGf5gkuGtbcS6cu91nvvvdePcHbr1q1ZVlNOl156ab+fEe4PP/ywQ1k7cGETJ070o4Pdu3dvdv2VbNx4443u4osvdgcccEAl2eueh0jzjPAxi4ukLRCIHlp7bmNL3CvmmDeaWafpnVEq3VsvFpSgJVbuUXDJyEif9yofeeQRr+RdfvnlbrvttvPZxo0b5/bYYw9vCbTBBhvkLUrphEDR0qEIRVN7xyqMvgJKdDOJbb700kv+8EorreRdMuLp49vNysrYOPfccz2hfPbZZzve2XPPPbd77rnnvGXWK6+84olZYj1hDQfxcf3117sePXpklKrDQiAdAciGv/71r8VE4frQoUPLGuQoFqIVIZCAgCweEkDpULsiBt6T8LaMKAS2YeO92H5bBsdJctrNd7g+p5ztl0EWn99vWz5blgEebD0KI6NWjGLB6g8ePNjHMshbDGVsvPHGfnqsHXfc0T322GMtsmKmGP6qNVm3E1xzzTV+pBKFadNNN/Wj7naMkXqui44BSmPv3r0dnee4YKYJBj/99FPx0M033+yviZgO9RXfEKI7HknhZvql3/YnTjkepR9+wa2u38Bh7qwLb2nKXygnsTxfvi+07D/XXXddizzghhih9MYbb7i1117bm6yzH4sJsOdeW7vCBzXrGMcx199pp518m9pmm23cAw884PPxh/Z58skn+yXlcm8xtzVJOy9p0sq2MsIl7TlPxG17llDMeJZok4cffrhvV5jfsg85/fTT/TqzpVgeOrpcyxlnnOHTMOXcuuuu68vAMod0Jlz/SSed5C0nOAfpMJ/+/e9/X8Sac4Ryww03FJ9R3BqmTJkSHm62znN09913+31ZWJPowgsvLD6DRx55pDeTDgt8//33PdHC9VFXazdhmlqsg+dxxx3n2wPn2m233dx7773ni/7Pf/7jrx9ct9pqK48TyrMdt/PjcsG7DIXahPcCeRiFahWx5zS+tJPH9wfbj4x50I056ir3yJio8xrs91lLbVu5GUusdJDdd9/dk4vzzTefdxeaMGGCW3TRRb2lE22cWQtMwHOFFVbwFnMobBy/5ZZbim2be0D7MGEdiyDu38orr+w72piPI2n5Mc0n/R//+Ecryi/5BtgzxXGeTZ5lnpuBAwf6c/OOYpvjd911VzE/Fk68Z9hPfUiHO44J7Yu2HwrP6j333ON3Zb2Hwnzlrjf+d4/mWfjKxZeGRXx/uM37jGcdUiDcT95S21Zu1hLiAyu2U0891fE+W2qppdxCCy3kttxyS0db5/fQQw95Mp7ZORAs2WjnodAW2Ufb4T0aWsylfYNIy/n33HNP3y5D5TMsv5x1zmd9NPueGDHD83HWWWf50XXqS3u/9NJLWxTPd5AyeA5N+O6wj/IbQajv4MGHuCV7dHcbbriBOyV6vnl3tAfBetTuda9evRw/3j8skWHDhnkL0/ZQV9Wh8REQ8dD49zDjCgqxGBjKKpD4M5aFjDO248eHjb3DnTbuDp/slAHbzRjs8ux/qXwZ1QkO0zniQ8pH9thjj3UnnHCC77zlHZGlE0mHjI+ZdczxDw8/TsHparqKDyh+8piO8qHEioJRN1OqHn30UT8ah38mHYO/RyZ0O+ywQ4uRlGWWWcZjwMi2iSmyjHTUV6IbaSM7fhls+xMH27Hjw8+/OSIeIsIhkiGH7xQrJ9oZS188j8+R/8+uu+7qR+lR7EwY/XnhhRccx0w4/u9//7voQkB7orNy1VVXufPPP9+3K0aQkLRjmBWi6CG0KZQCOn3cP4TO/4gRI/wo13nnnec7d7hCGKlRTdn+BMEfOmdYfGy44YbB3uRVe5Ygu1D8UdBGjRrlHn/8cR+5GwwQMGMdP1LLM3bsWMeIBtf99ttvu6233toraWC3+uqr+2fMXFi4/nPOOcfHh7jiiiu8//F6663nFbqLLrrIEzac/4knnvDnQ5nae++93TrrrOPrA0EEmVOKVOO4HcvCGkIEvOl88gzSsbP3ACenTUBG0l6oM/cR14okIstXtoo/vAsuuOACr5AMHz7cu7NAoqC4okxwH8CV6dt23nlnH2sD0+lQUKZREMDdBBei+++/3y233HK2q75L/9xGp4gv7azx/U3bj4ye4B6NiAek16CNW+Yvkc+KzVpCGiFgBwlhAeF4NhjtZeQZa5lQeYcw/Oc//+nbnr0fuP98X+w5tXctrlsQEbRb7h/fFdoSihiSlp93P0pTSDzQdnl2afcILlOURdvn/XH77be7FVdc0bcP6gB50r9//6IpPUon6Xh2eG9xzdtuu23xPUP58Zg/vKOYehmx60t6//kEFf7pGN89mqfvxLRYGiyljmNdAOGA8C4tlS6+38rNWtJOEN4VcVl11VW99duLL77oFlxwQU/2koY2wvvNhPcn7+JTTjnFfwcgvIhdgeT5vkFEf/PNN74MIzes7HKX9MVQXvmO8r2gj8SzZS5SkOJ8exhsOeSQQzxRfthhh7mXX3652al4b/IO5bkxueOOO/w+nqP2LhDIO/Xf0T0e9UmGDDnRf5fOOWeEuzEisdpacKkwgWzgvcnP1lmaYBUhEQLVItC52gKUv70jgIUDH9mWy0LNO7nTb77dEwwPnna867Uic1xP99unR9YOiO2PPtd+uzBY0LI878bhU5T3h4/5mmuu6TMReArzWTrxWS4RpEHB4kOJ0KlbbbXVHCMSdB5N6LCFZR166KFeCbHjlSx5GaPU2IgWHQVGF1CAGP1F+vbt6xUy1lEcSB+OsLEfSwgIBkaq6ETTeWZEA6Wx7mKjkIXmMeN0hdvsRy2Hn3+LJxjG3zzUbbBOYVSlsO9Wn97vXzvab2YSlJlUnh2fcZZca4zs0dG78847/Sghma688kqPLQEIwxHOsEAUNjo59qHEXxblAUk7Rltkii2UCJRzyCI6T2wzMoPQGaMOjG5xz5ZYYgk/WkD7q7Zsf4KmPyhNdCJNeQmPlVpntJwRsgEDBvjOA8oPbQylG+E5s3UrgxgqdGQRRolRvujkdu7c2ZMRuLXgO8yzhUBG2GgrCiD3CGUeXMALq4LJkyc7CAmeTUaRrXMDSYCSBTEXr4cvPPYnDWvOQ+ffnn8sh0IFneuAdIAMXHzxxX3JKGa4mzCiVyuhfNrHyJEjPRlJubRNlGXiN1ideFegEJqESrLt22WXXRwd748//tjfE94LTOO7/vrrW5L6LePvA3uOg/eBEQyDzt/PLbFSD//c2z4qFu73Fa3R+wAsUZ4gp3kX8M7EooAZBayt4ptPWz3mmGP8qVFSUObNKoqdtBm+BwjvYshrLHhoK5CZPOuMMiMoS7QTIyzZVyo/9422T5wSvmE8d9w3GzEkL/ee+iIojyhfKPJE1u/WrZsnoCHeeJ+gLEIaWOBT7j8kNc8N7TxL0t5DWXnTjlfz3SNegUlbfvfMKsHqEl9ynD4EPxR6SC2EbSMdwv0cyyqTNHmE9yZiLoTxPLx7aTtzzjln8f3Jvvi7lO8Y7QXLGiwCGNiAdMvzfUPJ5zvCtKPVCiQ3zyptne8JfSCCG0Oq8cwgHKdd85xiaUg74TkMrTiIp8HzTgwfi2vEs8t3jvztXfiO8x04ZeipxSDCkBC8o/aO3lttJRBRWDOYGMmAdS73hG1+rLMPqwjyyLXHENOyEgSqf7NUclblaT0EImYfch8G3pP8wbavhO2PNjaJXCoemfyqCy0dIB2I7VDMH6WjnOJ2UB77K5E11lijmI0OCWLMv99I+MPIIEoFFg4mkAsoNmaWa/tROum42o8OYTVC5/Kjjz5q1qlkai0UREZdTcKRalN84qNUKLeQJ3xEwZTRTSRpxMPKrdWS83Ez+dd0U2dsRyfxx5vIpn4DhrnHJr7sQkuH+8ZFZMTay8/IT8WC8lqUX0HFmUYUoshGbGz2CkaY04RODSPi3HOUXkY0zd0g7RgKNAo/oy+MjGKtgkJCoFIT2pN1NBdeeGGvYDACiVRbtp2DJR1G2mqpTmiYlnXSQjqY0B7ffPNN20xcQgIY6UACRt3pyEHqMUK71157efID/ExWWWUVWy3G1EBZQsCle+R+ggkpozwoQIx0gSU/lDzEfKT9RsqfUljz/HNfsCowITYEz78JHXQEhd/Oz3UxMlxLE1d75iFaTDAZRhjRMwnjEKBoQjLGxeIX4JbB84M1CqP8dNrrLk3vg+gh9s9xsyUn53iTjDnySvfWS1NcM9LhvH0jMqI7CWek9XmatluUb6XlW0Jg8ZzRWeedyfNN+6CNISgttAlcW2ivt912W1G5sTOYEsk2Cpt9Z2iPPAtGOnDcvkWmDLKvVP4+ffr454b7hqAg8S4I7xsKnQnkBNuQDog9g1jIoHQh4feD9sJzZW3aJ0j5k/YeSsmWeqgjffd4tpJ+AGD7WYcsom2gsEM8ICjN3Lswna0nLX2mnH8guxCs0ZKEfoe1laTjtg/SwQSy2fodeb9vtSAdOD/PIwMw4XPAN5nnztxLeYaNHCRgLGL19RtNfyBReHej+GLdyDrEQyMI39UrrrzKPRkRQEdGBNCWEXloLoVtWX/rb1odcLngm8ov7jJpaeJ5bL+WQiAvAiIe8iLVqOkiRSD67xUClmzYtr+kaGPo77Zzpwzczm9CPsQtHSw9S6TZdrTRbLuQJPdflBxT4siEIo7Y6LTfSPhjH63QkoFkbMfzMtsB5nz2C4mOhKIzd+E+gaB0hhL6UbI/b5A8OsxEMqZTSWeZD3WoQIbnqOW6v53cPwrlJjYtm9b8/iFHDnBDjujvDxHPgbgOCJYOBJQkX2L+YH+z4z53eX8YyUS5AB9GnFCwzZKhVEn44MLO06lh5BBF0KxI0o5Zeb/5zW+c/Rj1hIgw4eMcirVZ9lVbdlguowwo0uHzER6PrzMKFoopNeG++Hr8Whj5Rbli5JhnMyQZLG/eTqk9DxAnhiVL8Mz7DMbrZ1jb82/bVrcwPS4OSHhulFdGzMxU3/JVszQlAUsZEwK/IeG9g5w0CffbPpa8UzbaaCOvXKPw8F5g1L7VJHgP+HPadlMFeu3Rx204qED2Es/B3Cu8pUMUUDJ8jzTLb+XEl2VeGBgyuovFDSOniJltQyR0j5RzrA2wGqP9QgiEEraPsB1DRIXHyGPKksV5YF+YJszPtI8QRJh/ozRxft7roZS652Ea1o0Ui3/bOIc9U6RDyS0led5DpfKW2t9Rvntcn92L+NKuHWILayoELOOWDvF8WdtWbtbSRvmNzAzT885jsMVIzfBYuE67DyX+juRY+E6Mf9/Cdh2WU8k6AZ8h9EKxd7fti3+3bH98abGOeL5tICAknuPp29M2lnbLLL1U9O0Z4r759hu32eabRcTmRm1exSSCB8sGLLUsthXb/Ex4x0mEQDUItMIwSjXVU97qEShYOthsFuGyUHbhOMQD/ZiQdMDSgdEr9ls+8oTbtt+WhTLz/8UEDfNSG2maNGmSz2wf4FIl0QFl1IEZKzDfQ+iIYVKIsllPsQ8p5zazXT6mdDYZIS9XCIqIMo25Niw4oxKtJtxMJL4s7PX7hxxR6EAXSYcmS4fEfPFy4ttWbhlLzO35EGJ+DJmABYQpBaWKwYwa5RYTZUzxMVnGTJr7k3YMJY/7auaclM/HOa+iWsuyGT2FLGtNoVNB+wYDOtOQeBB3lQjPKPcOE9kQT4Iq5iXlSp2XsiE0cAExBY9nECsRs76wDjqkkY2o4bvMyC1R4WslZs1EXczk2XyUKzFJRYGFICEv98Lc0GpV39Ry4s+rbVumaLtXE/FQJB2Klg5RIkufd2nlZiyJh8G9CwPPQdLQvkxorzznWBuAHTiirOcRCDZMjs3FhTwW14RvUTwQaFKZjL5CdEAWQoBAhFQi9u1DyTTLN9oso8RmccHzY22MczASHkraeyhMV856R/ruGWkTXxoe7MeFDDHSwSwd2BfPl7VNnjzCuwviACs9vl3hd87i9BDTKhQjqsJ9pdar/b6VKrfUfp5P+kWh8J7k3R1eW3i81DoEBWSQxXnAGo/vQCPIrZFFK33dSc+/UHQhue/eGVaUbXUNScHYqUtIOsTJndByr63qrfM2NgKyeGjs+5ej9tGIdGHIucWykHnGcbN8sJgOyfkgIcg5I1/z7RxViiWhs8joLi87TOgxxSNeggkdMI6FP5QM8hFEieBcjIYzMkHaeo8QMupFJxPzS0wJ6RBbXAdGSsoVRqaJa8G1IHl8eMs9R2J6bpy/eU3LcJsMwXbB8mEnb+ngYz3YsTC/5cEGotTxxIpk74Qw4D5jYsl9TxPaBqQDCikxIPDBx+UAv/u0Y5SJnzbWFbQlTDkhgjBbDRWeUueuZdlcJ8oEz0JrCqP2jLITm4DrRwGuRhhNI94KZBqKE3EQunXr1sIdqpJz8KzZ84+SCCGFm4wJrg8QenRWuaeQEnSiMEOvpUAMoJQRbBSFDxcKFAcUiCzLnKR6mLLJtYGfjaYmpa3tvtj7wJ5jll5mHDfLh4Klw5LN3yPFfFGmZu+HGfkL+5uKzbEAY57/0047zSvctCXILJZhx5hnntE5YicYIZWjeO8mxz1E2aSdQPoRNBbrs9CSJa0sa2+4KNE2K71vFtCW8xN/hfrwzqMtW6cfUo2RX8hqXEEsdgT1y3oPpV1D2rEO892LLpJ7U/xF7dXW7fptm/u42667+VgPYM5+xI7n3bZys5aUh9UjbZhz0+ehT4O7GG5qxC8xQgvLBBR4AjPagE1W+dV837LKTjpu7hFcE+5PtGfabaXfFZ5pgkzyaxQ3C3D59cIFa7i33nrTfRYNZFx88Uj38MMPRVOQf110OUnCr977zLUvfh7cLPiF71ZLY+5Atq2lECgXAVk8lItYo6WPmHvGtDthucAyChxZGIya7ub65S/cJ19+5RaYJ3J3aDpulg/G4Nt+lh9/9V+fx/IDRXic8suV7t27+5khzCSWkW18d+2DTnl0NuOCCR9B2BiNZlQYJY2P8OjRo31QuzB9WFa4v5p1RtH58IXWFSgK8dEIO4eZL1KXpPrQIaBMlCQCKbWKFG5koV0EN4/VueaM2sanX7qu889TPG4uF7QkH6+0qZKk//TTr3weGhfb8ePhdlO2shbMuEDHm9FEUwRCHMN1RlLwjcdFw/yqMV9nxCjtGBUiLgK+vIx+Eg8AIQo3RARi99FvBH84f7VlB8V5ZQPFNRzRDY/H18Prt2Ol6mrHk/IQIf3BBx/0Ef5JhzLPc2VpS5Vpx+NlM6UnivhRRx3lR3y4Jp6TMDaL5Ykvs85FJxyffxQ0BCUfRd1Gp/Gjh0CBtDKFjfcL0wHWUhhVRwGkU2zWFlwnQRBLWVbE8QrrY4onHXRG7VtPoieXhxeJLWf75ezu2y+/dnPM2+TOEx03ywefOJb+2y++ceSZYQFRKDZebtPezAXY8s6nHaGEIWBMoFCzMmEfJCEEAuRZGJAzCe9wH20FkpG2RBtBIIAgO5Awrd+RsM8IZN7j5ZAeVh5LOw/fsf32288HTGY/3xkCjZoPPDjgFkV7RyxoKfmz3kM+Q4V/qvnu2SntGtluk+9edF7r31idrF0ygo5LiVlIcXzX3QouF2EeWycteWzbyotv2/48S2KL8A2CyLS2TZvmnsf7QgRbpR/Edyt0CYqfx9zuKv2+xcvLu82ACqRI+B6DRCPmTpqEbSRc57vBcw/m9pymldNejvXtu1mkxPd1O0TWfwjk0bCoXzs0mnlk2Kmnun2jZ90kvF7bV68lxGqSEF+GwcAkKZUnKa32CYEkBDpFLyvrMiQd174GRmDWA7d207didI9bDFPffDn4itHu2x+nuhGDBriuURC/+PFw+5OvvnbHjRnn5ohG+y/en1H9luWRfpo/X3Q4hzD6ifk7o9KYdPPhJJhgucJHHj9rAvjUQ1Bu+PDHPwj4ceNnTOeDDm8pJSNPnQhCx7RQKH2mJIX5uEY606ElSHg8vs69//myu+O7i9tfv7SHm22h6CPob2PULqIO64zmMd0dcdI17rvvf3BnnLib6zpf5DMaOx5uQ1CcNPxG98tfzO4uOHOfqJyW5ZF+toUKcUSKlWiFFe4NI3VJJplpx6gaMzxg0pzkI5tV9WrLRgHCvJro4m0hmIXSWa2mTYf1pv1CEqLglSIUwvTlrPPe4P2R9u7AKgnJ60+cdv5S7wPqwXNMe1lyySXLNiUOz4lCyfPOiGeSlPs+4Hmfa+XRSUX5fbOduYg7eYMjm55ze35nLMdffJeb+v1U1+eAfm6OeSI3Ff8+mHE83P72i6/dhCv/7LrM1sX1OyyaQaL4Pmie/uQNjipZn1IH7J3Luxg/9XhbwuwcdwQUnVOjDn0lQlvhHobxHPKWg/k3roOlTJjzlmPpiOlAuyrVbvEdh2go9ZxmvYfsPEnLUu3c7gFlt7fvHu34xxPfS7ocvw8rGYubwzNEOwqX9EdoQ5DNvE/ix8Nt+hyQmLQT3LnCcsJ0nK9S4Z3Ju7hbt24li8ANkF+57bWa71tSZUq1F9JCGjJVc/dooKmaEXOsecACMjnJBbDc9yJ1o03YrEtslyPHDR3uTjvx2Oh9kW8MFwx4Xi0+GNYPs0VxyapxPZw69Sd3ypnnuBHDKnOJhLDHhdUEQse+O1g8hPEdGOQL3SYtj5ZCoBwE8j0t5ZSotO0MgYKFg1k6hMuR+w1yh145xi110DHu6+8KUw2WqjzWEbv1WteTDoV+ZHK5pfJn7WfUMK8/brwsPvL1Ih04Fx90FJu48kqnlw9pNUInjpc8ARAZnQ9H6cJyOX+5HYswf/J6pAhE/71wU5GmxQVn7B2RD1e7Fdc9JDIHzGgbkXXEzjtu6MjjlQxfTvPyivv9SVrvTzhyFT9r2jHSVtOmqi0bk1QbxYzXuzW2GVWqpfCM2mhtLculLJ6LrGejlOJWSV1KvQ/YX+2c8pCwmM5jQUGsglJSn/dBdLbie8Ce38Ky3+Bt3PiRd7mLdz3X/fjdD6Wq5fdj6bDSpqu6foduU7K84nlSS2p5MO2di+831jRY2JgVTMsSsvdU0lZw9cPdDrN3LFVqJRAgacRnGtlGHbLeQ2n1LNXO0+5BWnnhsbb97tEsC+06vsRlBfIB4s+C04b1DtfpDzACT554OfHtMF856yjpWYo6BLFZNJRTdjXft6TzlGovpCVYdrUBs3GXo6+EdSsEX5LU7b2YdLJo328WW9S9/sYUt8Jvly2Rovluiwdke+dvmsXEtitZcn7qUanQ1+DemUA04GaB1UNIOnBcpIOhpGU1CIh4qAa9hsiLaT8f2eTlxfvvEZEJ+Mx3in6FdFnLtPIKn/N8wPBiy/qo5iupvqlgoxlZghhBgaql0AHDpBfzNcx6k8qnE8P5a60MRicrXIrddruwpu0Lztw3smDYd0ZziB23zWKzsR0lyrPDWqYjwKgOpIP5+qen1tHWRqCe74O77rrLK8+nRCa4ZmYdv75Wex/Yc9y0xHqhYMEQ1Sjpc2EVjeXLfD9YviqXKMTEx4HErVbJKbcqnJvpeidMmNBsGsxyy2lP6evZztvyu5f0jQ1xx3ohnMUoPKb10gjUs71wVpRhLAaYxcYsBsLa1O29GJ4ktr7Omj3dhIcec8sstWRuq4dYEVVtYu3A+Xutv3ZV5WBVhdUHLqYIWIeC1Q4EhUQI1AIBEQ+1QLG9ljFr56jPF/UC6QgW/kT9xYIPfr22y4GCSOJJ0/WVU0ZrpMWMlRczTDsjTLUkIDC7o+wk4UMKgw/pwNRqpcxpW+T9+SfnonufKp2i4zbqEyUMYzB4vaGp2RT1C9+GCiVWezy1XjroTTGrGbEVhPVFoJ7vA+JW8EuSit8H06P3Ac97inSZJfpWRO+DJirSPg8tl1aGvQ/iy3KPW/oaLG2GoRoUVXYRuHfYjBNlZ26nGerZzuvx3fvx56mOdpwmWAbQziW1R6Ce7YXaEuMkSSp+L0aF4aJSibWI1WO1lVd077z3vht15XWuz0YbtBoBAeGApQOkw5I9lnDUo1rBmgEXtfvvv9+7ReIuRvBJBsUqmZ2p2voof8dFIP0t3XGve+a4soWiuATRizV6s0bXW1QhPflQr+2O+kkn4CNRmfG3xO+yNTovjMxgAoelQ27SgTv9zpuRbWO66d0ss/86Shm1jUgh6URHDOuHpqVtx5dVH4/OKBECHQGBRnofTPv+HVd43ksjv8wCS7qfpv3kuszapfgesOe9bsvS1dGRdoJAI7XzyR+96mjHaYK7F9YWRkDwjfWEWx2XafXpaMcaqb2A/QcffFC1C+A2/TZ1z7802T36xFPuhnG3RbNURP2qOkvnzrN69wosHWpBOlh1IRiYWU4iBOqJgIiHeqLbxmVPXzGaR/zTD930BReJ9MrkmAy13t/Gl1zX06P8l0MA1LUyKYV3mvSY8/c+JU3neVZ20374JFJIFiqkslGgei9T6qRDQqCREGiU98HUz592PO9p0m+pPu6tL952S83fvZCs3u8BKz+tUjrWLhBolHZ+yyt3OtpxmuAOQ1BFc/G0AYR6L9Pq1NGONUp7AXemjKZNVCso/7UkAKqtj/ILgfaMwCztuXKqW3UITOu9pes06QnXaRoMLDEeKK/ey+rqrNzVIdDprTdcpwfvctz7NOmywCbupy+fjZJMi35Rw6Bx2K9e22kV0jEhIARqjsC07950Uz+53/G8p8lBq+/pbn31bjc1snoovg/sPVC3ZVqNdEwI5Efg+ff/5kY+c6WjHacJ05ISvBWrB6wd/C9q38X1Qiep2XZ0tNk25Yfps46n1UfH2g4BZg2aOHFisynR2642OrMQmHkQEPHQke/1/Au6aTsf5Do984iL7L+8xSxOuww2wfD7Qaf4surjHRnQ9n1tkA6zXHWOv+cuuvdp0mm2Bdzsiw5yP33+ZNQYImWj0Cj80kcBqcd2WoV0TAgIgZoiAOnw/ZuX+Oec5z1NFp9nUXdxv7Pc2Jdvd1MjX/mmj0Odl2k10jEhkA8BSIddbj/At1/acZrgCrDNNtu4l156KeoS0Sfia0dfaMaP/OF2tcfT6qNjbYMApMPYsWN9W6BNSISAEGg9BORq0XpYt8mZpq/f149pz3LTpc71XM+5BRZynUrEfCDwJKNdNmtF9PktbMeXTbNkJB0nh6QVEYgCSRLTAfcKb+kQEU3c8zzSZYFePtkP745xneddI3K7iMiKTrMGMR+iwxhCQEIwElRoDpVv56mU0ggBIVA5AhGJSEwH3CuwdIBctOc8q9C9V9nVJxk8/gTX/7dbuyV+tbjrPEuX6BVgz3+Nl1kV0nEhUAIBAkkS0wH3CiwdIM2s/ZbIUty9+uqRC2okzCDD9LdMK1nPmA/FE2ulTREgkCQxHXCvwNIBAsraQptWTCcXAjMZAp2iiPqoE5KOjsBnH7tZHr7XdZr8nHMfvhvFFcSkVtLwCDB7RRRIkpgO3r0iw9Ih6Xqn//ipm/rpg+6nr16K4j58EBEMahtJOGmfEGj3CETBYgkkSUwH3CuyLB2Sruftr951lz53nRv/xgT3+qdTmtwvklJqnxBoGwSYvYJAksR0wL0iy9IhqZZffPGFe/rpp90//vEP98knn/gZDpLSaV/HQAByieCixHTA5UaWDh3jvuoqGg8BEQ+Nd89UYyEgBISAEBACQkAICAEhIASEgBAQAg2DgGI8NMytUkWFgBAQAkJACAgBISAEhIAQEAJCQAg0HgIiHhrvnqnGQkAICAEhIASEgBAQAkJACAgBISAEGgYBEQ8Nc6tUUSEgBISAEBACQkAICAEhIASEgBAQAo2HgIiHxrtnqrEQEAJCQAgIASEgBISAEBACQkAICIGGQUDEQ8PcKlVUCAgBISAEhIAQEAJCQAgIASEgBIRA4yEg4qHx7plqLASEgBAQAkJACAgBISAEhIAQEAJCoGEQEPHQMLdKFRUCQkAICAEhIASEgBAQAkJACAgBIdB4CIh4aLx7phoLASEgBISAEBACQkAICAEhIASEgBBoGAREPDTMrVJFhYAQEAJCQAgIASEgBISAEBACQkAINB4CIh4a756pxkJACAgBISAEhIAQEAJCQAgIASEgBBoGAREPDXOrVFEhIASEgBAQAkJACAgBISAEhIAQEAKNh4CIh8a7Z6qxEBACQkAICAEhIASEgBAQAkJACAiBhkFAxEPD3CpVVAgIASEgBISAEBACQkAICAEhIASEQOMhIOKh8e6ZaiwEhIAQEAJCQAgIASEgBISAEBACQqBhEBDx0DC3ShUVAkJACAgBISAEhIAQEAJCQAgIASHQeAiIeGi8e6YaCwEhIASEgBAQAkJACAgBISAEhIAQaBgERDw0zK1SRYWAEBACQkAICAEhIASEgBAQAkJACDQeAiIeGu+eqcZCQAgIASEgBISAEBACQkAICAEhIAQaBgERDw1zq1RRISAEhIAQEAJCQAgIASEgBISAEBACjYeAiIfGu2eqsRAQAkJACAgBISAEhIAQEAJCQAgIgYZBoHPD1FQVLRuBzz//3H344Yfu559/zsw766yzuoUWWsjNN998mWmVoH4I3D2pk7tovHOff519jvnmcu6wfs5t3XN6dmKlEAJCQAgIASEgBISAEBACQkAItBECnX788UdpLW0Efr1P+9prr7lp06blPs0ss8zilltuudzplbD2CPQ5o1Mu0sHODPkw4SQ9woZH2lKkTho6M8+xf/3rX+7+++93d9xxh9tggw3cAgss4Pr27et69Ogx84CgKxUCQkAICAEhIASEQCsjIIuHVga8NU+HpUOnTp1ST7ngggu6r776yv3www+5LCNSC9PBqhHIY+lw9cGzusv+Ms09O2V6WSTF1KlT3RtvvOEVrf/5n/+puq6NVkBeSxKui/tA+q17NtpVqr5pCGy++ebur3/9azFJuD506FB34oknFo9pRQgIASEgBISAEBACQqB2CCjGQ+2wbLiS5plnHjf77LM7yIe8stZaa7nZZputxe/yyy/PW4TSVYHAwZvN4tZYspODfMgrkErHHHOMm3POOd3KK6/sFltsMb98/vnni0VwXzn23XffFfexMmXKFH+vX3zxRUd67v1jjz3WLA0b99xzjz9G+vYqeUkd8EXypE+71k8//dT9/ve/d7g8ITfddJN75ZVX0rLU/Rj396qrrnIffPBB3c81ffp0d/HFF7f5NduF0naNaOjVq5fjd/LJJ/slaYYNG+bbsKXXUggIASEgBISAEBACQqB2CIh4qB2WDVUSpAM/5OOPPy6r7nvttZd79dVXm/0GDhxYVhlKXD4CkA4H9i08svuMyo7bYWc499xz3TXXXOMeeOABrwT/+9//dmuvvbbbdNNN3RdffGHJ/P084YQTitusoDyarLbaam7ppZd248aNs13F5R//+EcHebHkkksW9zXaSrmkDtglkXDsg2x4+umn3ZAhQzxhAxaQP0baEHtlzJgx7ptvvmlVmL7++mt38MEHO9pAveWzzz5zRx11lLv11ltrcqq///3v7k9/+lNFZZ155pnFfJANPAv8bJ2lCVYREiEgBISAEBACQkAICIHaIiDiobZ4ttvSsGwwYd1IB3OzsGN5ll27dvUKJkqm/X71q1+5u+66yy277LLub3/7my8GV4/tttvOHX744X4bU386+Dbqvu+++7p33nmneEr2Yzmx2WabeXcAyIz333/fkQ4/bI5zDpOffvrJnXrqqW6FFVbw5z366KPdt99+a4cdMS622GILn5c0I0eObKZIFxO20xUbead6rBvpcNn9BTeLvNV+6qmnvC87I7xYPSy66KLuggsucGPHjm2Gx6qrrupGjRrlFbJSZe+9995+5B4rChMUcJRLCCmkEXGvlNThei+99NJmJByk3LzzzuvbHgTDJptsQrJmgmUI7RrlvKMKz+wnn3ziTjrppJpc4n333eeJjHILI6YD1gwmRjI88sgj7vTTT/e72cfzgWAVQR6JEBACQkAICAEhIASEQO0QEPFQOyzbbUmQDLhTQDiErhWQDvwqEUbCwx9lbLnllm7hhRd2//d//+eDWjKii7JgxMORRx7pRowY4VBezz77bPfss8+6bbfd1jEKi6CwDR482G2zzTY+3e233+5WXHFFFwVAdVdffbVXmPv37+++//57n57ReUy5DznkEHfssce6a6+91p+bg9StX79+fkT6tttuc3vuuaeDmPjLX/7i87b3PyjCuFNAOPAz1wpIh1FRfIdyhAB63AdIGnOFmGOOObzFQziLCYQPo/IQCCiMSQIZ9N///tdNmDChePjee+/169tvv33D4F4rUocLh8gxAs6WBGolngaWJSG5RnpG7QcMGMCq23DDDd0BBxzg1/lzww03uI033tiTZYMGDSreL45BvF1yySX+OFYVkGxZ5Nvrr7/udtllF18eFilPPvkkRSXKFVdc4dZdd91mAWmxCoC0w23kyy+/9M9n9+7dvbsObeGjjz7yZeFCAul43XXX+XpyDQhWNXfffbdfz5P/lltu8XWAtIC0hHhEeNbPOecc9+677/rzYMGDUDbXRXrq/uCDD/r94R8CSYYCdtSLnxEP4XHW43nix7UtBISAEBACQkAICAEhUB4CIh7Kw6shU5u1A+SDWTowYl0p6YDpvpEYtnz55ZcdU3LiP46J+XnnnecV/Ysuush169bNK6tYM3D8sMMOc7vttpu78847HebTjz76aBFXCASIC0aD999/f78fQgElZPjw4X4bhQ6ygrIZbT7ooIPcPvvs403Xb7zxRm/mjqKEkgJR0bt3b69QT5o0yStFxZO145WeTXEGIBwOjEgIhGCS5ZIO5MPcHSzB77e//a1DcTzttNOKSh1pTBj5RYnjHiQJ8SH69OnjwNmEdXCGxGgE3GtJ6hgGSUsIMlwaIM5CWX311b0Czz7whohDsOZhfZ111vGWJ7RzSDiIHgRi7ogjjnBrrLGGV/BRoNPIN54RyKCXXnrJW7hAdphVii8w9me99dZzzz33nOM5MYEIYJpd2gSWC7jUEISR9vPMM88USRO7VtoahMlxxx3ni+AarP558nN9EDG8B3BLgXBEqDvE5txzz+3OP/98b52AVcKOO+7o2yMWN7RtyEbaYCjxbY5h7YCFA8SKbbPPhBkvJEJACAgBISAEhIAQEAK1Q0CzWtQOy3ZbEjEcQosHKlpuXIfw4rBSQNEP5Te/+Y3fXGqppRzEBCPnjEAaeWBB9RjhNYGQQAkmcCEuEcj//u//2mE3//zz+20IDcSCYKLIQXQgKCY2yolZOzJ58mTvWoCCjCKHxQOj+ShhKFGNIMRwCC0eqHM5cR3Ca+zcubP7wx/+4BVGFC0sSc444wxvIYKiiVJp8otf/MIrtYwiY7HCPYzLHnvs4XbffXdP+jDqjvWDucDghtPecQ9JHcgcpFJSh7wo2biumNDG02ZH4FnBCgVh1H3xxRf36zw3PC8WjwCrAawpIOZQuhFIO6yGECPfsJIwC4pf//rXvp2jnGPd8M9//tM/D8sss4zPg6ULZSQJlg08f1iwQG7gGsWzQ4BMhLpBCFh9CVR5yimnNCsKi4ett9662T7byJMfiw7eLwjWDhAfEBa4AVE/yAjDwiwpICl5j0CcHHjggS0CRFpcDauHLUPSgfsQit2fcJ/WhYAQEAJCQAgIASEgBCpHQMRD5dg1VM6QfKiGdOCiUWLSArDhboGg5GByjlhMALO+8DujPyi6KDgmWdN/Wjpzt2CU0wgJFCKIBSMXULCZbYHfoYce6n8oISjVjSAh+VAp6RBeJzhhds8P1wusSB5++GE/ahymQ8ljVBuFLmnk1xQ/FFTiOzAKHcYxaO+4h7iay0U1+C6//PJuueWWK0JoSn5xR44VXCawFOIXPg9kxWLBMMdawiSLfIOAg7gI67PRRhtZ9sSlEUq45TzxxBPeWgGrC4Rr5N5CYmFFADEVl1VWWSW+q7idJ/9KK61UTM+1EnOklPAcMy0s6SAVIRfBifdOKLRzm80i3G9uFrYMj4VkXLhf60JACAgBISAEhIAQEAKVIVDQCivLq1wNhgCEQyXBJMu5TM6B6wOjqoyEX3/99T47o5UII+wmBNbDfDxUNuxY1tLKQ9FgdJnf8ccf75dYUmAVwcwCO+ywgx/Zp14oYaGLQNY52sNxFOJyg0mG9Z42bZofXTefeDu25ppr2mrikpFtCAiUtrjMNddc3mQfs3tG2xnJ7tKli0/WKLiDq1k7VEM6cNFYgEDU2G+nnXaKQ5a5bWQDs4ZgEWE/YpNgfWASEnMh+WbpUcJxp4B8417gjhGK3adwX7iO6wLuIVgoQdhhvWBKONf16dEyAAAc60lEQVTFs40lAs8Y7SMuRjTG97OdJ39Y37SyKA/SAVIG6x1iTey6666+TnHXir59+5K8hYTWV/GDpfLE02lbCAgBISAEOiYC7733nncpxP3QYpG1xZXyLU9y22ytuoCDuUy21jmzzkMcNzAJA8qHeQhuT3wtsJO0LwRk8dC+7kdNa4OLAopnKGlxHcylIUyftI5vtZkp23EsD/D/x8cbd4uzzjrLR/bHZxszZqwgIAlQXFB+iPqPSTnKQyVmzZj0456B0nvZZZd5UuHCCy/0o7AffPCBD45IYErM4PEZp85cO/VszzLfXM59Xoi1WaxmWlwH0qcJyhtBCXF9weUCc3QIGXz0kVLYc4+IrVFqBBurCTNPD0el33zzTR8QtBFwh3Ag3oMREGk41uuYfRR/+ctf+rbJyH3opsEHH6InSULyze4FlhPkweWC9s+HGaWc5wwJib+kMrEaIvYBrjPMesJMMAhlYCVzXeRKwb1HIAleeOEFv571p9r8Vr4RNGxbR5B3Cj9m04F4iVvx9OjRwwfkDK0euEb74coSxneAQCKPRAgIASEgBGY+BFBqGVgxF2H6TnxbIeGJYUT/szUFMp34aPRlGWRobSGWGkS99TOqOT+Bm9ERkr6xkBt8i9dff33HTHlpgm4DJriZ0seNC/1c6o1beNK54um13XoIyOKh9bBu9TMx6oniGc4+UWqddOaikFVR/L4hEcIfZvcoJigrzDTBi5pZLAhmyRIZPXq0V3wx3abTT5R7RlXLfYnbqC/loWgwKrvaaqt5/29easSGwLyceqAU89Ih7sDOO+/sR6ezrq8tjx/Wz7ksMsHqRzrSZwmzATCSjesExAtxGwjqyQveFFLKoA2EgguBxRMI97POhwELEsoLyYn2jHsSrtWQOnFMytkmJgFCjBLIAQTrBgKAotxjCYTSj2UBs78kSUi+MVsLrhXEOOCjjlIOycT9xX2CeA88owcffHBSUc32YTlAvAnIAnOpsk4AzyudMWbmKNU2mhXWtFFtfoph1gzqdPPNN/sYNQSUhNAkDgRWGAS7RLAaicuf//znZrto+7hYsOQXSkj8hPu1LgSEgBAQAh0fAQh6vnNYfDJIw3TMWPHSZ6WPO7MJA3xZVrJ5McHdudR01fRb6KuAs6TjIiCLh457b/0sA+F0ibW4VHzQ08RGcEmDr7UpVWxDQowbN877sJNuzjnnZHdRwrzstFF5S4CiG6bBagKlg33ffPONv15LyxJ2mB9sMWkhQ9q7bN1zutu6Z21ryX1gqkSIGO4HbSJOMpW6r1is8IsL1jHhvQ2Pt1fcIWkuGt/SoiSsu63nJXUsfdLSCLLwmO1DYYYEIHAjI/Uo9Ew7yzSmWA3B/BM7g5lbwvgZYVmsQ75BKFlARwgNI984jpKONQBEH+VBbDBlbZpADNLRYGTH4iVg3YDbFHVG4edZhOSAoEDsukqVW0n+eJmQh5BmzIjDdTDzCiawECWI4VXKdYv3BFZWdCKReGwHgnnGCQqfUH+EgBAQAkJgpkEAq1mE6bHNEhgSn+/sf/7znyIOuPAS9wjiG3KdAZmePWd04B566CH/fceteIkllvDfL4sHxbcGCz7inqFsY5VKwGb6tMzIhnUFI/m9e/cuno9ZogiqDAGPVSPWh/RtQ2Gkn8ELLBSsLgw4MvrPQBFxnhik4Jy4InBdBJU218OkejGwgWsl5VFHtl977TWHOwN9DiwhiCFmsZ/YxvIQfOhrMuhHvxPrZCwViB9FXuIymYCRuWbfdNNNHmusOtMwJO/bb7/t03BuBmMYZMP6Oi5gQFmQSsScY0ASYimuh8Tzabv2CHSKOmOFsO61L1slCgEhIASEQAoCdDxQsENSjA8kH1Esd+JWKKWKKkW+WXo6Iyjm4XnsWDlLOg10EOgUxYmBPOVUm59zENsCIsOwwQSWERKLRZFVD0ZbIGfAmNEXOh/EdJA5ZhZyOi4EhIAQ6PgIYBGKZQNKPdNbY8mJgh5+8xgcwJqUbxGEOGSFWUkQlwlLRYJzo9SjnLPNNweLOr7DKNko7wgEx8CBA/1ABMdwgX3rrbf8cQYCcK8gqDMCeYBr5vPPP+/z2XTc/mDTHwh2iBCbFn3KlCmOOF8MJtCvwC2ZwQMshXGP5XpJu8gii7SoF0Q/JL25WuCCgkUmuDCYiDJPWdQDAsbqSdmQC8Rh4voZIIHsYJAFEobBEKwYTYjVwAx1Tz31lLdkBlNInlIYci9sVi1cRKmDWT0OGTLED0Yy25i5WnBezs+95PxYOoI1seGMXLK6aFlfBNr/EHB9r1+lCwEhIATaDIGkYI98UMt1P6Lzw6+U1MryCWW/3LqFdao2P2UxE04odB7ykg7kg2DAWkMiBISAEBACQiCOAGQB07OjnGIBwI/vDBYIWN6Zwg2RjgsG2whWBZDZEA9YBtiMSxzDQgHLU5TpkOQ+5JBDvMvgxIkTvfUuirKN2EMQMCW2xXWAkDD3R5T6f/zjHxTdQrBMoB7UAZKCKeupP26IWKpSHkQB/Q/qygxZkA8QDyZWL9u2Jd9wLD/M9QLrgTB+EunCerJt9YSswCWb6w9JB9JgXQleEA+QFlhKkK8UhpAHCLGssKhAcA+GYOF6Q5dLSA1IB6w2+vfv79PixnrllVe6119/3ZM5fqf+tAoCIh5aBWadRAgIASEgBISAEBACQkAICIH2jgAEA26OmPLj4oBbHz/Wjz76aL8fJZzZ20xw+bX4BFgIoNTiGoHLARYMCBaNJlhU2PTzWAtQHiP3JrhfIhxDQsICywUsHZPEiAcIBdZx50SZp3ysKwhYDVmAywZuHRAopeoVL5/ZqbC2IM4TrqF2XWG6UOlnoAJSoxLJgyEWICaQCQiWJWEdIJEQ6ku9Ea4Z4VhYht+pP3VFQMRDXeFt28J5qRCdHlOqLOGBxaQLczJJ2yFw96ROZcchIC6EJBsBYZuNkVIIASEgBISAEJiZEcB9AIUZywesA/gRA4j4RszkhLLKKDqKPCP+JpAGZq2A2wDKPeXQv6YMyg3FYiixD9ICq8XQnSNMy3rc2i9+3LaJt4CVI4QD1oC4I9q03OZ2wbkJRI11AhYdoYT1CvezTpwGZs7ierhWrD3ixEKSJWe8nDzbeTA0AoHyuB/84mJTbkKuhPcLawmwkrQuAiIeWhfvVj0bpAMzDhBcLkswQyI9fliStkMgb/BDasi0m6SvdTDKtrv6+p5Z2NYXX5UuBISAEBACQqDREUBhR0GFeAiFWAUQDyi7KPRM0f673/2uSBaQj9F2FFxcJ3AHIFAzgstEmmDBgGuBBZYmLW4DxGrARaFcgWgglhHWDVhWmBuFxTYgmCVEB1YTuD/kESwvIB2wBiFIJZI3b57ywzR5MTRrEPKyzr2JkwnmiokrBrElEO4v+NTKDdUXqj+5EGhJDeXKpkSNgACWDnlfWKTLYxkRXjcsIqZcBHuT1AYByIQsufrgWd0aS3byyfKkzyovz3GmUMVvLo88HEUzhqlub5IHq3pgS0eE2SsI8Fit0NFh7moCPLYnYcQD/9a8ktVGso7nPU+Yjo4MM7vY3Ozhsfa4Xi6m7fEaVCchIASEQKMhgHuCTZ2JMst3l74ulgFYAxB/gNgDKLkEP+Qbz+AdM1Lwncdqgdkq6BtDJBDXgdkvEOIuJAnlIczogPsDBAHWCeaKkZQnbR/xDBCCO1rZbENCUG+uD9cDzoegiPONTBObAQI86P/zjeK6kVLXFS8PiwTIC6bOjAtxKBDcNyBE8mAIwUOwS/pE3B/Kj89sxf2CwHn88cf9fQTfMWPG+HgSdk3xumi7fgiIeKgfth22ZCLHbrHFFv5B5uWGqdX222/vXyYd9qLbyYUdvNksnnRAQc4rRFFea6218iZPTMfUprDDeeSGG27wynGetO0pTbnYfvHFF37EwAI7suS5OOOMM/wH3a6NqUqJsoxfZLVCR4EpLflwtychAjhBtuiQ5JGsNpJ1PM854mnomDBVKeayjSDlYpp2TZgG09HCnFciBISAEBACpRFYb7313Nprr+0Va2ZpGDFihJ/lgpFzrIJRkFFuGbBjesbzzz/fz9YASbDlllv6gpkpidgOZ599trv88st9YEqUXBR9U9JDtwqCT2611VZe6R41apR304AAoR6VCP1yixdBOSa4VuCyQeBKZn2AbGCmB/r1kCtIWC/Lx5Iy6UuSlpkz+JYSBwNl32azCNOzHi8LnQHLDiNiwvS4pYAx03ViWZKGoQ144u5Bf+G8887zgTOZYpSAmqFQh913393XhVk5wBcyiKk3IWIkrYuAptNsXbxb9WwnnXSSf2HmPelxxx3nlaa09I8++qg3s2JaHqLe4ufFCCIvMBQsmEem7ZNUhkDP4wuWDEm5UYwP7FvgCvcZ9bN7dkqBnZ50djpLDfFAACTuT6VCNOddd93VHXvssZlF8GFGwTEmPTNDKyWoNbYQD8REYaS/d+/exVERngXYfIJK8UFHGAWphUkfU0EyDzgkBv6J7UUYQeGa6Zjkkaw2knU8zzmS0kCMYHqa5AealL4t95WLaVpdGRWijTKCxtRjEiEgBISAEEhHAOWWWGkICm7Sd4ORf9Lw7cNdIhRmnmCaTUbcISvM0iCtL0A8BkhylPCk84XlV7OOJQdWAKak05+h755nakmuGUsOm2IU6wQsJvL2/cGV85SKBUH/kXpx/Xkw5PxYnVCftPqDP/eK9BA9DBZJWh8BWTy0PuYNfUbm88W/iwAzxI/gRbv++uv70TSi5mIeZgILSUAeGEyICjq9JiiymIwT0JLjsKhmskWaqVOnupNPPtmzxLzwUUTeeecdy+4GDx7sIFbwnyM/c/4yJzIm7aTnR11DSasPeRmtpqwVVljBjRw5MtPsLCy7HuvmTkHZrBvpcNn904qkQyXnzcKejwrRlMEQn8brrruuxWnSsAwT86I/66yzPKZgu9122zmU57aWWmLLqAKRomHymfP6gQce8J0MrEQQomAzamHtN62t0a6ZmxoLCfDiXtGmSwllgylpmZ4K8pCOC8QE2zaNFfkhP2jb8UBSHGM0nPbPyAz5KI82QFkmPJ9EtOYYzy3XaYKJKfUwgYBkiivS8mzjB0q5obsObeOEE07w7Yx6JblqYD1CO+Q4zzN5TOg48fxzHJwg2OhQIJChnI+2yzHeQ8imm27qCSHWwZp3DEtr61dffTWHisIoCqNFXAeRzKmD+ewWE0UrdLo4z7hx48LdHifaP8IoDu8pyqJMMDehDtR/zz339McJShbHNCt/qWshiveAAQP8qYgSfsABB/j1tHZo9dJSCAgBITCzIoBlAINr/EqRALheEDwyTjqAGUow/QNzIaCMNNKBPKRFgS51PtLUQrDOMNKB8iAh0pT28JzmbmLWDCjweUkHygHXUqQDx7EMsevPgyHn53qy6k+ZEA7cT5EOIN02IuKhbXBvyLPCPEIsMIevvUjtQnhREJwSUzGEdeYJxhQNsyYUJJQVWFIExQSTcTri5557rh8tpeNtcuSRR3prDcrAVO3ZZ5912267bdEvDCXunHPO8f52zI2MvxrmcXTWL7roIq8goSQ88cQTvsi0+mBq1q9fP/8iIpYBnX+UDDr6bSVYN1i8AZRkc62AdBj1lxnKVyX1y8IeJYh7RvChoUOHeuKAPCZpWFoaW2L1QBkoxDfeeKNnm1HO21LqiS3XRQcEBd3aHuw+c2ejFGe1Ndq1tXfuAc8TJATzTccFJZxnAgYfIhByDmsL8mEGilsG98oEooAAV0lxXxjtwCqG+8Vzg1ki5eATiUAW2bPNuVCeMSm1aNbkZ+owhHVICLYh8Ai+RXlgYCampMPUkrgymKkS9AlXDZ5zE55FCAuec8qgXrwrEMgxzgHGw4cP99dOvWi7iGGOawWkJ+0P4T1k7yCwxoSWOkEwQG4QiNd8TyFCIEaYN511roc6GIHkC2z6gy8q+UMrH64Xkod3HFOy8d6EDIFwxeeW+2XuN5TJtTHSw/uL6b1CTPPkL3UtnMtwgZzgnZrVDsNr07oQEAJCQAgIASEgBGqBQCGSRy1KUhkdHgGUBCSc85YRTPML4xjT8zDCSSeakUH8wBBGHGF+cdUwH7hDDz3UHX/88f44flaMkKJEwcIy8koHHaUBwaoCs3XyMzKL0KHGTw2BFEGhZYST+u2www7ukksucZMnT/aERFp9qC/BZlAqevfu7X8oG5i6tZX0bAoeCeFgLhUsqyUd7HpKYQ8LfP311zvIHAgYBEuWMDhRGpZ2b33G6A/tA6sJFEfKXnPNNZtZvli61lzWG1uuBSWUNhUPKIk5YFZbY7QD30meiYEDB3qzS9r5fvvt1wwmiAfaO8+cjaI89dRT3nKI+7vPPvv4ciCQEBT9/v37p/o0MmKPWSgj5BAV9957r38eaBOMFOAfyUgFzxdWBWzbiL5VDnISpTs064eMidef9wHlQmJC/EFm4C9r035ZnakPAplAcEhIBAgHfECpA9ePkJ82C3FjAj4o/KWEdwWkDiM3WAMQhRxrA0hSiIzwHUY5WHmVEnxLwQXCgNEjSBPuJe8uXDyoM1YxXC8kDvcYX1meL4QI6uBvIz3heXAPycqfdi349SJYfOBqASmV1Q7D82tdCAgBISAEhIAQEALVIiDioVoEZ6L8NrcvCoAJ8xIzWohAGhx44IHejJh4AvxwmQiFCLumnNIJN7F1guZhtoygCJhgyoYCiyJrxEOoBJjiheKAoEiQnrIwF8+qD+4jjAQyyrrZZpv5YJmm8FgdWnNJDIfQ4oFzs69WYnhTnq2DvY1IQ8CYMHpuZnR5sLR8LFHgGMFlpBcrAO5deF/DtK21Xm9suQ4jHFAYQ4HMymprWCSEAY9IjwsAo/yhoMDyXGDlg9k85ySuhBGD4A1hQRAlzkvbxuy+lKAkh22eehjZiAKPokpcFxMUf94FceKBKcV49sJYAmF7svwo3GY5RftC8YaYMUFhD+sDeQnpRaBE3iMQF0Y6kMfOAdlokarDd4SVGy4hHc1cFFNNMMD6AKyx8sHtxQRClHNgfZAk3CeugxldCFoF3nvssYc3/+T9xDEsUrgf3CssL8J7Sl2SSAfOlTd/0rUk1TVPO0zKp31CQAgIASEgBISAEKgUAblaVIrcTJjPlAA69iZHHHGE76jTWafTzvy5RjYsvfTSRf84fKoYjQxHM0Mfr9A3y4gHzJdDwS/MymZ/qU56mId1y5NWH0aDMZNmpJLRYpSmaoIxxutQyXYYQLKWpAN1ycI+7v9mvoB5sAyvlZFWRqUZfWcknCjFjOK3tdQTW65t0qRJ3vInxNmuOautxfPYvQjjLVAWSjqkEbEkOAa5g1iAR6xUIACwWoAgRPFFOS4lpqzb8fCZtH3m72rPc0hEWBrOz4h6KEmzXdh1WTojIWyb5z0US08b5B1h25bG8lucB/ZnvSPiZRj29u6J1zu+bedmSX2x2oJwIKAYbiqQPwjWChB4WDlwH5IIkbS65slf6lp8BRL+ZLXDhCzaJQSEgBAQAkJACAiBihGQxUPF0M18GekYYzLPKCq+0KGigok0Fg+MWqKkMurKFJth3AZG1OMjwEkoYqaOUKaZSRPllxFIOu/lSlZ9UFQYgcRMmpFKrg/FgJgEjEK2paAgE5PA3C3qXRcbLUdxXmSRRfzpGOHl3iJZWPpEwR+UYwgrAoHyw1ceX34CAzLC3JZSL2whWK699tpiXIHwGvO0NYI4olybEow5PqP7cYUeZZT7QtwCiAAEVyRTwBn9xlUJK4cePXp4pTiuzId1S1vHRQM3jvB55t7i4hQXyBBG85nf3AJOlppqK5433Ib4wyLALK3AAaUdLHg+hw0b5qcrg+xELF4C749qpxuFdOnVq5d3w4BMADcINEiFNPIGFxWOQ7hBdBrBABbUGwy5L1iKELsjr1Sb385jpEyedmh5tBQCQkAICAEhIASEQC0QkMVDLVBsp2Vghh3OFJFWTdKRPkswPUbZwewZk2ICruHnjXsCpIMFoMO6gaBvmGhDGBBkjvLD4HGlzmWB6yA3CM5G3VCgsKgwX+VSeUvtT6sP5uQoblwblhuYcTOyaUp4qTLrsX++5pb5/hRpcR2S0ldTL0iCjTbayBNLYM+oLYEBQ0nDMkzHOkE6wRElEmUQVxmUR1MW4+nruZ2EVS2whSAjHsLNN9/sg/hBYKG0hkq6XVeetoZLA20f8oeZDwgauNdee1kRxaVZII0dO9bPXkEQRgJEhsKIuxEhNvoeHs+7zjVxD4mvQEBJmyo0aSYKnlHiHaCE856ACEDhLlcgL7CU4Z0BtgR6tLm4cQNBkSeuC+8HAsGCGRY1xKKoheBCxr3FnQMXIUiErHcCAW55T0GyWXwa6kKduK/jx4/3+CXNjJFW52rzY/mC4LJD/I087TCtPjomBISAEBACQkAICIFyEZDFQ7mINVB6/OuJas9oWZZACpA+S+iEoxChfBIQzgTLBAK/2WgrU/Fhbk1UeRQIlE18/TfZZBPL0mxpvslmbjx69GgfjM7qhOXBPffcUwz4aOmaFRJtWDm237az6kPdGYFEyUNQDPDPbm05LIL0ovFRjICvs8+MIk36asUwMkwJ+Mf9NexRNrEIsXRZWFIfS0vATggHI4xQgGiP1k6qrXs5+euFrU2bSV0Y7cb9iFkEzLrAsOA4AVKz2hpWRVgT2OwT3Iv46Dhl4kqB9YhZk0B2oOzbrAx2PhR0lF5iJpSSsI6WxtoD29SFKVSxMiBOAcKsDDZbRJifdQIzQnRMnDjRT1UJIRBX2sM8vsDoT7iPdwouDyjzCFYXFjiSYJWQH5ANXDdCepsOMyzHH0z4E15feNjyYl2FlQOuKrzLTj31VO+OFU5RGuZjHUsJ3hvEogiJHuLHQNSaBQjuXFhE2LmS6mLHKLeS/OSzMrAuYhYhpmYlBgfv0qx2SH6JEBACQkAICAEhIARqhUCnyORyeq0KUzkzFwK4P2AyT0DHUi4UTNuGEoWikNS5zkIMk3PMgkO3jqw8acez6kNdCezXFopxWr3b4hgKLIqUxXeI1yELyzA9QSu5j2HQxPD4zLie1NZwT4IowDWBKWIhLyzeQCmMiHeAS4IFWA3TcQwFGncBFOdaCCQUz7u5gsTLhOSg/sTyMFcDc7GBhCp3thjaIc+jETnx8zEFJXWJxziIpyt3G/Lz448/9uQpCjxtGLIAaw6sSyoRSFieKXMfKbeMavPzPuVawvdbUjsst15KLwSEgBBorwjU+tvQXq9T9Zr5EKBf3Wgi4qHR7pjqKwSEQIdFICQeqr1IggdiZYRrBCP35ppRbblZ+ZnmExcLzssMJpANzICBdQaWAI0iuBph9YMLGTEymGYTEg63mrj1RqNck+opBISAEBACQkAICIG2QkDEQ1shr/MKASEgBGIIYNbPaDhxNqqVO++808d+ID5DOO1kteXmyc8sG5wfwgNlHbcQpqJsNMGtgrgZzFLBrCG40tQqhkSjYaH6CgEhIASEgBAQAkKgGgREPFSDnvIKASEgBISAEBACQkAICAEhIASEgBAQAqkIaFaLVHh0UAgIASEgBISAEBACQkAICAEhIASEgBCoBgERD9Wgp7xCQAgIASEgBISAEBACQkAICAEhIASEQCoCIh5S4dFBISAEhIAQEAJCQAgIASEgBISAEBACQqAaBEQ8VIOe8goBISAEhIAQEAJCQAgIASEgBISAEBACqQiIeEiFRweFgBAQAkJACAgBISAEhIAQEAJCQAgIgWoQEPFQDXrKKwSEgBAQAkJACAgBISAEhIAQEAJCQAikIiDiIRUeHRQCQkAICAEhIASEgBAQAkJACAgBISAEqkFAxEM16CmvEBACQkAICAEhIASEgBAQAkJACAgBIZCKwP8DIqC8hHMGKEEAAAAASUVORK5CYII=" + } + }, + "cell_type": "markdown", + "id": "ac393319", + "metadata": {}, + "source": [ + "### On gene page\n", + "\n", + "To get the number of variants shown on the gene page, if you click 'all' and check 'exomes', 'SNVs', 'Indels', and 'Filtered variants' as this: \n", + "\n", + "![Screenshot%202024-11-01%20at%209.28.50%E2%80%AFPM.png](attachment:Screenshot%202024-11-01%20at%209.28.50%E2%80%AFPM.png)" + ] + }, + { + "cell_type": "code", + "execution_count": 49, + "id": "e6bf7236", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "[Stage 26:> (0 + 1) / 1]\r" + ] + }, + { + "data": { + "text/plain": [ + "1764" + ] + }, + "execution_count": 49, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# gene_symbol can be upper or lower case\n", + "ht = get_ht_by_datatype_and_version(data_type='exomes', version='4.1')\n", + "\n", + "drd2 = filter_by_gene_symbol(ht, 'drd2')\n", + "drd2.count()" ] }, { @@ -529,7 +728,1203 @@ "id": "7bff63bb", "metadata": {}, "source": [ - "# Filter to variants by VEP annotations" + "# Filter to variants by VEP annotations\n", + "\n", + "You can get the variant table either by gene_symbol or gene interval, we recommen you to get by gene_symbol because it's already filtered to MANE Select transcript of a gene. " + ] + }, + { + "cell_type": "code", + "execution_count": 57, + "id": "700582e4", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
histograms
grpmax
fafmax
info
qual_hists
raw_qual_hists
age_hists
in_silico_predictors
gnomad
non_ukb
gnomad
non_ukb
vrs
vep
vqsr_results
region_flags
allele_info
gq_hist_all
dp_hist_all
gq_hist_alt
dp_hist_alt
ab_hist_alt
gq_hist_all
dp_hist_all
gq_hist_alt
dp_hist_alt
ab_hist_alt
age_hist_het
age_hist_hom
cadd
locus
alleles
freq
AC
AF
AN
homozygote_count
gen_anc
AC
AF
AN
homozygote_count
gen_anc
faf
faf95_max
faf95_max_gen_anc
faf99_max
faf99_max_gen_anc
faf95_max
faf95_max_gen_anc
faf99_max
faf99_max_gen_anc
a_index
was_split
rsid
filters
FS
MQ
MQRankSum
QUALapprox
QD
ReadPosRankSum
SB
SOR
VarDP
AS_FS
AS_MQ
AS_MQRankSum
AS_pab_max
AS_QUALapprox
AS_QD
AS_ReadPosRankSum
AS_SB_TABLE
AS_SOR
AS_VarDP
singleton
transmitted_singleton
sibling_singleton
omni
mills
monoallelic
only_het
AS_VQSLOD
inbreeding_coeff
VRS_Allele_IDs
VRS_Starts
VRS_Ends
VRS_States
allele_string
end
id
input
intergenic_consequences
most_severe_consequence
motif_feature_consequences
regulatory_feature_consequences
seq_region_name
start
strand
transcript_consequences
variant_class
AS_VQSLOD
AS_culprit
positive_train_site
negative_train_site
non_par
lcr
segdup
fail_interval_qc
outside_ukb_capture_region
outside_broad_capture_region
variant_type
n_alt_alleles
has_star
allele_type
was_mixed
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
phred
raw_score
revel_max
spliceai_ds_max
pangolin_largest_ds
phylop
sift_max
polyphen_max
locus<GRCh38>array<str>array<struct{AC: int32, AF: float64, AN: int32, homozygote_count: int64}>int32float64int32int64strint32float64int32int64strarray<struct{faf95: float64, faf99: float64}>float64strfloat64strfloat64strfloat64strint32boolset<str>set<str>float64float64float64int64float64float64array<int32>float64int32float64float64float64float64int64float64float64array<int32>float64int32boolboolboolboolboolboolboolfloat64float64array<str>array<int32>array<int32>array<str>strint32strstrarray<struct{allele_num: int32, consequence_terms: array<str>, impact: str, variant_allele: str}>strarray<struct{allele_num: int32, consequence_terms: array<str>, high_inf_pos: str, impact: str, motif_feature_id: str, motif_name: str, motif_pos: int32, motif_score_change: float64, transcription_factors: array<str>, strand: int32, variant_allele: str}>array<struct{allele_num: int32, biotype: str, consequence_terms: array<str>, impact: str, regulatory_feature_id: str, variant_allele: str}>strint32int32array<struct{allele_num: int32, amino_acids: str, appris: str, biotype: str, canonical: int32, ccds: str, cdna_start: int32, cdna_end: int32, cds_end: int32, cds_start: int32, codons: str, consequence_terms: array<str>, distance: int32, domains: array<struct{db: str, name: str}>, exon: str, flags: str, gene_id: str, gene_pheno: int32, gene_symbol: str, gene_symbol_source: str, hgnc_id: str, hgvsc: str, hgvsp: str, hgvs_offset: int32, impact: str, intron: str, lof: str, lof_flags: str, lof_filter: str, lof_info: str, mane_select: str, mane_plus_clinical: str, mirna: array<str>, protein_end: int32, protein_start: int32, protein_id: str, source: str, strand: int32, transcript_id: str, tsl: int32, uniprot_isoform: array<str>, variant_allele: str}>strfloat64strboolboolboolboolboolboolboolboolstrint32boolstrboolarray<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64float32float32float64float32float64float64float64float64
chr11:113410731["C","A"][(2,1.37e-06,1461866,0),(2,1.37e-06,1461894,0),(0,0.00e+00,33480,0),(2,4.47e-05,44724,0),(0,0.00e+00,26136,0),(0,0.00e+00,39698,0),(0,0.00e+00,53416,0),(0,0.00e+00,5752,0),(0,0.00e+00,1112010,0),(0,0.00e+00,60394,0),(0,0.00e+00,86256,0),(1,1.36e-06,734628,0),(1,1.38e-06,727238,0),(0,0.00e+00,19326,0),(0,0.00e+00,14154,0),(1,3.89e-05,25690,0),(1,5.25e-05,19034,0),(0,0.00e+00,12636,0),(0,0.00e+00,13500,0),(0,0.00e+00,20710,0),(0,0.00e+00,18988,0),(0,0.00e+00,27646,0),(0,0.00e+00,25770,0),(0,0.00e+00,2494,0),(0,0.00e+00,3258,0),(0,0.00e+00,572288,0),(0,0.00e+00,539722,0),(0,0.00e+00,31800,0),(0,0.00e+00,28594,0),(0,0.00e+00,22038,0),(0,0.00e+00,64218,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,996,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,1994,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,3990,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5752,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,19998,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,26136,0),(1,3.83e-05,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26134,0),(0,0.00e+00,26134,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26134,0),(0,0.00e+00,26136,0),(0,0.00e+00,33480,0),(2,5.97e-05,33480,0),(0,0.00e+00,33478,0),(0,0.00e+00,33476,0),(0,0.00e+00,33480,0),(0,0.00e+00,33478,0),(0,0.00e+00,33478,0),(0,0.00e+00,33480,0),(2,5.04e-05,39700,0),(0,0.00e+00,39698,0),(0,0.00e+00,39696,0),(0,0.00e+00,39700,0),(0,0.00e+00,39698,0),(0,0.00e+00,39698,0),(0,0.00e+00,39700,0),(2,5.00e-05,40000,0),(0,0.00e+00,39996,0),(0,0.00e+00,40000,0),(0,0.00e+00,39998,0),(0,0.00e+00,39998,0),(0,0.00e+00,40000,0),(2,4.47e-05,44724,0),(0,0.00e+00,44720,0),(0,0.00e+00,44724,0),(0,0.00e+00,44722,0),(0,0.00e+00,44722,0),(0,0.00e+00,44724,0),(0,0.00e+00,53416,0),(0,0.00e+00,53420,0),(0,0.00e+00,53418,0),(0,0.00e+00,53418,0),(0,0.00e+00,53420,0),(0,0.00e+00,60396,0),(0,0.00e+00,60394,0),(0,0.00e+00,60394,0),(0,0.00e+00,60396,0),(0,0.00e+00,86258,0),(0,0.00e+00,86256,0),(0,0.00e+00,86256,0),(0,0.00e+00,100000,0),(0,0.00e+00,99998,0),(0,0.00e+00,200000,0),(0,0.00e+00,199998,0),(0,0.00e+00,400000,0),(0,0.00e+00,399996,0),(0,0.00e+00,999998,0),(1,1.00e-06,999978,0),(0,0.00e+00,1112010,0),(2,1.80e-06,1111990,0),(2,3.18e-06,628756,0),(2,3.18e-06,628784,0),(0,0.00e+00,17694,0),(2,4.57e-05,43740,0),(0,0.00e+00,20984,0),(0,0.00e+00,36068,0),(0,0.00e+00,53140,0),(0,0.00e+00,4132,0),(0,0.00e+00,350106,0),(0,0.00e+00,33096,0),(0,0.00e+00,69796,0),(1,3.49e-06,286232,0),(1,2.92e-06,342524,0),(0,0.00e+00,10286,0),(0,0.00e+00,7408,0),(1,3.99e-05,25040,0),(1,5.35e-05,18700,0),(0,0.00e+00,9838,0),(0,0.00e+00,11146,0),(0,0.00e+00,18296,0),(0,0.00e+00,17772,0),(0,0.00e+00,27396,0),(0,0.00e+00,25744,0),(0,0.00e+00,1904,0),(0,0.00e+00,2228,0),(0,0.00e+00,162220,0),(0,0.00e+00,187886,0),(0,0.00e+00,16752,0),(0,0.00e+00,16344,0),(0,0.00e+00,14500,0),(0,0.00e+00,55296,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,198,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,996,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,1990,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,3984,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4132,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17692,0),(0,0.00e+00,17694,0),(0,0.00e+00,17692,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(1,5.00e-05,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,19998,0),(0,0.00e+00,20000,0),(0,0.00e+00,19998,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(1,4.77e-05,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20982,0),(0,0.00e+00,20984,0),(0,0.00e+00,20982,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(2,6.04e-05,33098,0),(0,0.00e+00,33096,0),(0,0.00e+00,33094,0),(0,0.00e+00,33098,0),(0,0.00e+00,33096,0),(0,0.00e+00,33096,0),(0,0.00e+00,33096,0),(2,5.54e-05,36070,0),(0,0.00e+00,36068,0),(0,0.00e+00,36066,0),(0,0.00e+00,36070,0),(0,0.00e+00,36068,0),(0,0.00e+00,36068,0),(2,5.00e-05,40000,0),(0,0.00e+00,39996,0),(0,0.00e+00,40000,0),(0,0.00e+00,39998,0),(0,0.00e+00,39998,0),(2,4.57e-05,43740,0),(0,0.00e+00,43736,0),(0,0.00e+00,43740,0),(0,0.00e+00,43738,0),(0,0.00e+00,43738,0),(0,0.00e+00,53140,0),(0,0.00e+00,53144,0),(0,0.00e+00,53142,0),(0,0.00e+00,53142,0),(0,0.00e+00,69798,0),(0,0.00e+00,69796,0),(0,0.00e+00,69796,0),(0,0.00e+00,100000,0),(0,0.00e+00,99996,0),(0,0.00e+00,199998,0),(0,0.00e+00,199990,0),(0,0.00e+00,350106,0),(1,2.86e-06,350088,0),(1,2.50e-06,399978,0)]24.47e-05447240"amr"24.57e-05437400"amr"[(2.30e-07,9.00e-08),(0.00e+00,0.00e+00),(7.41e-06,2.77e-06),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,(5.30e-07,2.00e-07),(0.00e+00,0.00e+00),(7.58e-06,2.84e-06),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]7.41e-06"amr"2.77e-06"amr"7.58e-06"amr"2.84e-06"amr"1True{"rs140938110"}{}5.56e+006.00e+010.00e+0038621.02e+01-1.98e-01[134,83,109,52]9.81e-013781.31e+016.00e+010.00e+002.94e-0118951.06e+012.52e-01[134,83,56,19]1.42e+00179FalseNANAFalseFalseFalseFalse5.27e+00-1.37e-06["ga4gh:VA.RY2FNHeS0QpJNM9lQpQ_pzX7Q27-MXmI","ga4gh:VA.ZonDIhdwyghm7SuWkXynZVYg2s9ceaeP"][113410730,113410730][113410731,113410731]["C","A"]"C/A"113410731".""chr11\t113410731\t.\tC\tA\t.\t.\tGT"NA"missense_variant"NANA"chr11"1134107311[(1,"C/F",NA,"protein_coding",NA,"CCDS8362.1",1317,1317,1241,1241,"tGc/tTc",["missense_variant"],NA,[("Gene3D","1"),("Superfamily","SSF81321")],"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000346454.7:c.1241G>T","ENSP00000278597.5:p.Cys414Phe",NA,"MODERATE",NA,NA,NA,NA,NA,NA,NA,NA,414,414,"ENSP00000278597","Ensembl",-1,"ENST00000346454",1,["P14416-2"],"A"),(1,"C/F","P2","protein_coding",1,"CCDS8361.1",1682,1682,1328,1328,"tGc/tTc",["missense_variant"],NA,[("Gene3D","1"),("ENSP_mappings","5aer"),("ENSP_mappings","5aer"),("ENSP_mappings","6cm4"),("ENSP_mappings","6luq"),("ENSP_mappings","6vms"),("ENSP_mappings","7dfp"),("ENSP_mappings","7jvr"),("Superfamily","SSF81321")],"8/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000362072.8:c.1328G>T","ENSP00000354859.3:p.Cys443Phe",NA,"MODERATE",NA,NA,NA,NA,NA,"NM_000795.4",NA,NA,443,443,"ENSP00000354859","Ensembl",-1,"ENST00000362072",1,["P14416-1"],"A"),(1,NA,NA,"processed_transcript",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],3644,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000535984",3,NA,"A"),(1,"C/F","A1","protein_coding",NA,NA,1334,1334,1334,1334,"tGc/tTc",["missense_variant"],NA,[("Gene3D","1"),("Superfamily","SSF81321")],"8/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000538967.5:c.1334G>T","ENSP00000438215.1:p.Cys445Phe",NA,"MODERATE",NA,NA,NA,NA,NA,NA,NA,NA,445,445,"ENSP00000438215","Ensembl",-1,"ENST00000538967",5,["P14416-3"],"A"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],4563,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000539420",3,NA,"A"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],3133,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000540600",1,NA,"A"),(1,"C/F","P2","protein_coding",NA,"CCDS8361.1",1649,1649,1328,1328,"tGc/tTc",["missense_variant"],NA,[("Gene3D","1"),("ENSP_mappings","5aer"),("ENSP_mappings","5aer"),("ENSP_mappings","6cm4"),("ENSP_mappings","6luq"),("ENSP_mappings","6vms"),("ENSP_mappings","7dfp"),("ENSP_mappings","7jvr"),("Superfamily","SSF81321")],"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000542968.5:c.1328G>T","ENSP00000442172.1:p.Cys443Phe",NA,"MODERATE",NA,NA,NA,NA,NA,NA,NA,NA,443,443,"ENSP00000442172","Ensembl",-1,"ENST00000542968",1,["P14416-1"],"A"),(1,"C/F","A1","protein_coding",NA,NA,1358,1358,1325,1325,"tGc/tTc",["missense_variant"],NA,[("Gene3D","1"),("Superfamily","SSF81321")],"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000544518.5:c.1325G>T","ENSP00000441068.1:p.Cys442Phe",NA,"MODERATE",NA,NA,NA,NA,NA,NA,NA,NA,442,442,"ENSP00000441068","Ensembl",-1,"ENST00000544518",1,NA,"A"),(1,NA,NA,"lncRNA",1,NA,NA,NA,NA,NA,NA,["intron_variant","non_coding_transcript_variant"],NA,NA,NA,NA,"ENSG00000256757",NA,NA,NA,NA,"ENST00000546284.1:n.245-816C>A",NA,NA,"MODIFIER","2/3",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",1,"ENST00000546284",3,NA,"A"),(1,"C/F",NA,"protein_coding",1,NA,1682,1682,1328,1328,"tGc/tTc",["missense_variant"],NA,NA,"8/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_000795.4:c.1328G>T","NP_000786.1:p.Cys443Phe",NA,"MODERATE",NA,NA,NA,NA,NA,"ENST00000362072.8",NA,NA,443,443,"NP_000786.1","RefSeq",-1,"NM_000795.4",NA,NA,"A"),(1,"C/F",NA,"protein_coding",NA,NA,1595,1595,1241,1241,"tGc/tTc",["missense_variant"],NA,NA,"7/7",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_016574.4:c.1241G>T","NP_057658.2:p.Cys414Phe",NA,"MODERATE",NA,NA,NA,NA,NA,NA,NA,NA,414,414,"NP_057658.2","RefSeq",-1,"NM_016574.4",NA,NA,"A"),(1,"C/F",NA,"protein_coding",NA,NA,1410,1410,1328,1328,"tGc/tTc",["missense_variant"],NA,NA,"8/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","XM_017017296.2:c.1328G>T","XP_016872785.1:p.Cys443Phe",NA,"MODERATE",NA,NA,NA,NA,NA,NA,NA,NA,443,443,"XP_016872785.1","RefSeq",-1,"XM_017017296.2",NA,NA,"A")]"SNV"5.27e+00"AS_MQ"FalseFalseFalseFalseFalseTrueFalseFalse"multi-snv"2False"snv"False[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,21,0,124,0,314262,0,99,0,416424,0,0,0,0,0,0,3]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,98,374,11344,107362,344923,189028,36319,5607,2388,2759,3074,2931,2955,2915,2973,2922,2564,2682]07715[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0]01[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][7,0,0,0,28,0,124,0,314262,0,99,0,416424,0,0,0,0,0,0,3]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,7,98,380,11345,107362,344923,189028,36319,5607,2388,2759,3074,2931,2955,2915,2973,2922,2564,2682]07715[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0]01[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]10[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]002.77e+014.10e+006.02e-010.00e+000.00e+008.78e+000.00e+009.89e-01
chr11:113410731["C","T"][(1,6.84e-07,1461866,0),(1,6.84e-07,1461894,0),(0,0.00e+00,33480,0),(0,0.00e+00,44724,0),(0,0.00e+00,26136,0),(0,0.00e+00,39698,0),(0,0.00e+00,53416,0),(0,0.00e+00,5752,0),(1,8.99e-07,1112010,0),(0,0.00e+00,60394,0),(0,0.00e+00,86256,0),(1,1.36e-06,734628,0),(0,0.00e+00,727238,0),(0,0.00e+00,19326,0),(0,0.00e+00,14154,0),(0,0.00e+00,25690,0),(0,0.00e+00,19034,0),(0,0.00e+00,12636,0),(0,0.00e+00,13500,0),(0,0.00e+00,20710,0),(0,0.00e+00,18988,0),(0,0.00e+00,27646,0),(0,0.00e+00,25770,0),(0,0.00e+00,2494,0),(0,0.00e+00,3258,0),(1,1.75e-06,572288,0),(0,0.00e+00,539722,0),(0,0.00e+00,31800,0),(0,0.00e+00,28594,0),(0,0.00e+00,22038,0),(0,0.00e+00,64218,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,996,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,1994,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,3990,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5752,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,19998,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26134,0),(0,0.00e+00,26134,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26134,0),(0,0.00e+00,26136,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33478,0),(0,0.00e+00,33476,0),(0,0.00e+00,33480,0),(0,0.00e+00,33478,0),(0,0.00e+00,33478,0),(0,0.00e+00,33480,0),(0,0.00e+00,39700,0),(0,0.00e+00,39698,0),(0,0.00e+00,39696,0),(0,0.00e+00,39700,0),(0,0.00e+00,39698,0),(0,0.00e+00,39698,0),(0,0.00e+00,39700,0),(0,0.00e+00,40000,0),(0,0.00e+00,39996,0),(0,0.00e+00,40000,0),(0,0.00e+00,39998,0),(0,0.00e+00,39998,0),(0,0.00e+00,40000,0),(0,0.00e+00,44724,0),(0,0.00e+00,44720,0),(0,0.00e+00,44724,0),(0,0.00e+00,44722,0),(0,0.00e+00,44722,0),(0,0.00e+00,44724,0),(0,0.00e+00,53416,0),(0,0.00e+00,53420,0),(0,0.00e+00,53418,0),(0,0.00e+00,53418,0),(0,0.00e+00,53420,0),(0,0.00e+00,60396,0),(0,0.00e+00,60394,0),(0,0.00e+00,60394,0),(0,0.00e+00,60396,0),(0,0.00e+00,86258,0),(0,0.00e+00,86256,0),(0,0.00e+00,86256,0),(0,0.00e+00,100000,0),(0,0.00e+00,99998,0),(0,0.00e+00,200000,0),(0,0.00e+00,199998,0),(0,0.00e+00,400000,0),(0,0.00e+00,399996,0),(1,1.00e-06,999998,0),(0,0.00e+00,999978,0),(1,8.99e-07,1112010,0),(1,8.99e-07,1111990,0),(0,0.00e+00,628756,0),(0,0.00e+00,628784,0),(0,0.00e+00,17694,0),(0,0.00e+00,43740,0),(0,0.00e+00,20984,0),(0,0.00e+00,36068,0),(0,0.00e+00,53140,0),(0,0.00e+00,4132,0),(0,0.00e+00,350106,0),(0,0.00e+00,33096,0),(0,0.00e+00,69796,0),(0,0.00e+00,286232,0),(0,0.00e+00,342524,0),(0,0.00e+00,10286,0),(0,0.00e+00,7408,0),(0,0.00e+00,25040,0),(0,0.00e+00,18700,0),(0,0.00e+00,9838,0),(0,0.00e+00,11146,0),(0,0.00e+00,18296,0),(0,0.00e+00,17772,0),(0,0.00e+00,27396,0),(0,0.00e+00,25744,0),(0,0.00e+00,1904,0),(0,0.00e+00,2228,0),(0,0.00e+00,162220,0),(0,0.00e+00,187886,0),(0,0.00e+00,16752,0),(0,0.00e+00,16344,0),(0,0.00e+00,14500,0),(0,0.00e+00,55296,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,198,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,996,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,1990,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,3984,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4132,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17692,0),(0,0.00e+00,17694,0),(0,0.00e+00,17692,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,19998,0),(0,0.00e+00,20000,0),(0,0.00e+00,19998,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20982,0),(0,0.00e+00,20984,0),(0,0.00e+00,20982,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,33098,0),(0,0.00e+00,33096,0),(0,0.00e+00,33094,0),(0,0.00e+00,33098,0),(0,0.00e+00,33096,0),(0,0.00e+00,33096,0),(0,0.00e+00,33096,0),(0,0.00e+00,36070,0),(0,0.00e+00,36068,0),(0,0.00e+00,36066,0),(0,0.00e+00,36070,0),(0,0.00e+00,36068,0),(0,0.00e+00,36068,0),(0,0.00e+00,40000,0),(0,0.00e+00,39996,0),(0,0.00e+00,40000,0),(0,0.00e+00,39998,0),(0,0.00e+00,39998,0),(0,0.00e+00,43740,0),(0,0.00e+00,43736,0),(0,0.00e+00,43740,0),(0,0.00e+00,43738,0),(0,0.00e+00,43738,0),(0,0.00e+00,53140,0),(0,0.00e+00,53144,0),(0,0.00e+00,53142,0),(0,0.00e+00,53142,0),(0,0.00e+00,69798,0),(0,0.00e+00,69796,0),(0,0.00e+00,69796,0),(0,0.00e+00,100000,0),(0,0.00e+00,99996,0),(0,0.00e+00,199998,0),(0,0.00e+00,199990,0),(0,0.00e+00,350106,0),(0,0.00e+00,350088,0),(0,0.00e+00,399978,0)]18.99e-0711120100"nfe"NANANANANA[(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]NANANANANANANANA2TrueNA{}5.56e+006.00e+010.00e+0038621.02e+01-1.98e-01[134,83,109,52]9.81e-013780.00e+006.00e+010.00e+009.04e-0119679.88e+00-5.01e-01[134,83,53,33]6.81e-01199TrueFalseFalseFalseFalseFalseFalse5.40e+00-6.84e-07["ga4gh:VA.RY2FNHeS0QpJNM9lQpQ_pzX7Q27-MXmI","ga4gh:VA.Hp20SlFHUdM7jlWmVV27L6utrtRpDmAq"][113410730,113410730][113410731,113410731]["C","T"]"C/T"113410731".""chr11\t113410731\t.\tC\tT\t.\t.\tGT"NA"missense_variant"NANA"chr11"1134107311[(1,"C/Y",NA,"protein_coding",NA,"CCDS8362.1",1317,1317,1241,1241,"tGc/tAc",["missense_variant"],NA,[("Gene3D","1"),("Superfamily","SSF81321")],"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000346454.7:c.1241G>A","ENSP00000278597.5:p.Cys414Tyr",NA,"MODERATE",NA,NA,NA,NA,NA,NA,NA,NA,414,414,"ENSP00000278597","Ensembl",-1,"ENST00000346454",1,["P14416-2"],"T"),(1,"C/Y","P2","protein_coding",1,"CCDS8361.1",1682,1682,1328,1328,"tGc/tAc",["missense_variant"],NA,[("Gene3D","1"),("ENSP_mappings","5aer"),("ENSP_mappings","5aer"),("ENSP_mappings","6cm4"),("ENSP_mappings","6luq"),("ENSP_mappings","6vms"),("ENSP_mappings","7dfp"),("ENSP_mappings","7jvr"),("Superfamily","SSF81321")],"8/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000362072.8:c.1328G>A","ENSP00000354859.3:p.Cys443Tyr",NA,"MODERATE",NA,NA,NA,NA,NA,"NM_000795.4",NA,NA,443,443,"ENSP00000354859","Ensembl",-1,"ENST00000362072",1,["P14416-1"],"T"),(1,NA,NA,"processed_transcript",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],3644,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000535984",3,NA,"T"),(1,"C/Y","A1","protein_coding",NA,NA,1334,1334,1334,1334,"tGc/tAc",["missense_variant"],NA,[("Gene3D","1"),("Superfamily","SSF81321")],"8/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000538967.5:c.1334G>A","ENSP00000438215.1:p.Cys445Tyr",NA,"MODERATE",NA,NA,NA,NA,NA,NA,NA,NA,445,445,"ENSP00000438215","Ensembl",-1,"ENST00000538967",5,["P14416-3"],"T"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],4563,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000539420",3,NA,"T"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],3133,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000540600",1,NA,"T"),(1,"C/Y","P2","protein_coding",NA,"CCDS8361.1",1649,1649,1328,1328,"tGc/tAc",["missense_variant"],NA,[("Gene3D","1"),("ENSP_mappings","5aer"),("ENSP_mappings","5aer"),("ENSP_mappings","6cm4"),("ENSP_mappings","6luq"),("ENSP_mappings","6vms"),("ENSP_mappings","7dfp"),("ENSP_mappings","7jvr"),("Superfamily","SSF81321")],"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000542968.5:c.1328G>A","ENSP00000442172.1:p.Cys443Tyr",NA,"MODERATE",NA,NA,NA,NA,NA,NA,NA,NA,443,443,"ENSP00000442172","Ensembl",-1,"ENST00000542968",1,["P14416-1"],"T"),(1,"C/Y","A1","protein_coding",NA,NA,1358,1358,1325,1325,"tGc/tAc",["missense_variant"],NA,[("Gene3D","1"),("Superfamily","SSF81321")],"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000544518.5:c.1325G>A","ENSP00000441068.1:p.Cys442Tyr",NA,"MODERATE",NA,NA,NA,NA,NA,NA,NA,NA,442,442,"ENSP00000441068","Ensembl",-1,"ENST00000544518",1,NA,"T"),(1,NA,NA,"lncRNA",1,NA,NA,NA,NA,NA,NA,["intron_variant","non_coding_transcript_variant"],NA,NA,NA,NA,"ENSG00000256757",NA,NA,NA,NA,"ENST00000546284.1:n.245-816C>T",NA,NA,"MODIFIER","2/3",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",1,"ENST00000546284",3,NA,"T"),(1,"C/Y",NA,"protein_coding",1,NA,1682,1682,1328,1328,"tGc/tAc",["missense_variant"],NA,NA,"8/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_000795.4:c.1328G>A","NP_000786.1:p.Cys443Tyr",NA,"MODERATE",NA,NA,NA,NA,NA,"ENST00000362072.8",NA,NA,443,443,"NP_000786.1","RefSeq",-1,"NM_000795.4",NA,NA,"T"),(1,"C/Y",NA,"protein_coding",NA,NA,1595,1595,1241,1241,"tGc/tAc",["missense_variant"],NA,NA,"7/7",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_016574.4:c.1241G>A","NP_057658.2:p.Cys414Tyr",NA,"MODERATE",NA,NA,NA,NA,NA,NA,NA,NA,414,414,"NP_057658.2","RefSeq",-1,"NM_016574.4",NA,NA,"T"),(1,"C/Y",NA,"protein_coding",NA,NA,1410,1410,1328,1328,"tGc/tAc",["missense_variant"],NA,NA,"8/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","XM_017017296.2:c.1328G>A","XP_016872785.1:p.Cys443Tyr",NA,"MODERATE",NA,NA,NA,NA,NA,NA,NA,NA,443,443,"XP_016872785.1","RefSeq",-1,"XM_017017296.2",NA,NA,"T")]"SNV"5.40e+00"AS_MQ"FalseFalseFalseFalseFalseTrueFalseFalse"multi-snv"2False"snv"False[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,21,0,124,0,314262,0,99,0,416424,0,0,0,0,0,0,3]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,98,374,11344,107362,344923,189028,36319,5607,2388,2759,3074,2931,2955,2915,2973,2922,2564,2682]07715[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][7,0,0,0,28,0,124,0,314262,0,99,0,416424,0,0,0,0,0,0,3]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,7,98,380,11345,107362,344923,189028,36319,5607,2388,2759,3074,2931,2955,2915,2973,2922,2564,2682]07715[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,1,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]002.75e+014.07e+007.19e-010.00e+002.00e-028.78e+000.00e+009.89e-01
chr11:113410735["G","A"][(75,5.13e-05,1461876,0),(75,5.13e-05,1461894,0),(0,0.00e+00,33480,0),(0,0.00e+00,44724,0),(58,2.22e-03,26136,0),(0,0.00e+00,39700,0),(0,0.00e+00,53418,0),(0,0.00e+00,5762,0),(8,7.19e-06,1112004,0),(9,1.49e-04,60396,0),(0,0.00e+00,86256,0),(39,5.31e-05,734640,0),(36,4.95e-05,727236,0),(0,0.00e+00,19326,0),(0,0.00e+00,14154,0),(0,0.00e+00,25690,0),(0,0.00e+00,19034,0),(29,2.30e-03,12636,0),(29,2.15e-03,13500,0),(0,0.00e+00,20712,0),(0,0.00e+00,18988,0),(0,0.00e+00,27648,0),(0,0.00e+00,25770,0),(0,0.00e+00,2504,0),(0,0.00e+00,3258,0),(5,8.74e-06,572286,0),(3,5.56e-06,539718,0),(5,1.57e-04,31800,0),(4,1.40e-04,28596,0),(0,0.00e+00,22038,0),(0,0.00e+00,64218,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,18,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,198,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(1,1.00e-03,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,998,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(4,2.00e-03,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,1998,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(7,1.75e-03,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,3996,0),(0,0.00e+00,4000,0),(1,2.50e-04,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,3998,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(11,1.91e-03,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5762,0),(0,0.00e+00,5768,0),(1,1.73e-04,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5766,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(22,2.20e-03,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(2,2.00e-04,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,9998,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(46,2.30e-03,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(3,1.50e-04,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,19998,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(58,2.22e-03,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(3,1.15e-04,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26134,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(6,1.79e-04,33480,0),(0,0.00e+00,33480,0),(1,2.99e-05,33478,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(7,1.76e-04,39700,0),(0,0.00e+00,39700,0),(1,2.52e-05,39698,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(7,1.75e-04,40000,0),(0,0.00e+00,39998,0),(1,2.50e-05,39998,0),(0,0.00e+00,44724,0),(0,0.00e+00,44722,0),(0,0.00e+00,44724,0),(7,1.57e-04,44724,0),(0,0.00e+00,44722,0),(1,2.24e-05,44722,0),(0,0.00e+00,53418,0),(0,0.00e+00,53420,0),(9,1.68e-04,53420,0),(0,0.00e+00,53418,0),(1,1.87e-05,53418,0),(0,0.00e+00,60396,0),(9,1.49e-04,60396,0),(0,0.00e+00,60394,0),(2,3.31e-05,60394,0),(0,0.00e+00,86258,0),(0,0.00e+00,86256,0),(4,4.64e-05,86256,0),(0,0.00e+00,100000,0),(5,5.00e-05,99998,0),(0,0.00e+00,200000,0),(9,4.50e-05,199998,0),(3,7.50e-06,399998,0),(21,5.25e-05,399998,0),(6,6.00e-06,999994,0),(50,5.00e-05,999992,0),(8,7.19e-06,1112004,0),(58,5.22e-05,1112000,0),(60,9.54e-05,628768,0),(60,9.54e-05,628784,0),(0,0.00e+00,17694,0),(0,0.00e+00,43740,0),(50,2.38e-03,20984,0),(0,0.00e+00,36070,0),(0,0.00e+00,53142,0),(0,0.00e+00,4142,0),(2,5.71e-06,350102,0),(8,2.42e-04,33098,0),(0,0.00e+00,69796,0),(30,1.05e-04,286244,0),(30,8.76e-05,342524,0),(0,0.00e+00,10286,0),(0,0.00e+00,7408,0),(0,0.00e+00,25040,0),(0,0.00e+00,18700,0),(24,2.44e-03,9838,0),(26,2.33e-03,11146,0),(0,0.00e+00,18298,0),(0,0.00e+00,17772,0),(0,0.00e+00,27398,0),(0,0.00e+00,25744,0),(0,0.00e+00,1914,0),(0,0.00e+00,2228,0),(2,1.23e-05,162218,0),(0,0.00e+00,187884,0),(4,2.39e-04,16752,0),(4,2.45e-04,16346,0),(0,0.00e+00,14500,0),(0,0.00e+00,55296,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,18,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,198,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(1,1.00e-03,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,998,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(4,2.00e-03,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,1998,0),(0,0.00e+00,2000,0),(1,5.00e-04,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,1998,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(6,1.50e-03,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,3994,0),(0,0.00e+00,4000,0),(2,5.00e-04,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,3998,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(7,1.69e-03,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4142,0),(0,0.00e+00,4148,0),(2,4.82e-04,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4146,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(19,1.90e-03,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(3,3.00e-04,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,9998,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(42,2.37e-03,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(6,3.39e-04,17694,0),(0,0.00e+00,17694,0),(1,5.65e-05,17692,0),(0,0.00e+00,20000,0),(49,2.45e-03,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(6,3.00e-04,20000,0),(0,0.00e+00,20000,0),(1,5.00e-05,19998,0),(0,0.00e+00,20984,0),(50,2.38e-03,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(6,2.86e-04,20984,0),(0,0.00e+00,20984,0),(1,4.77e-05,20982,0),(0,0.00e+00,33098,0),(0,0.00e+00,33098,0),(0,0.00e+00,33098,0),(0,0.00e+00,33098,0),(8,2.42e-04,33098,0),(0,0.00e+00,33096,0),(3,9.06e-05,33096,0),(0,0.00e+00,36070,0),(0,0.00e+00,36070,0),(0,0.00e+00,36070,0),(0,0.00e+00,36070,0),(0,0.00e+00,36068,0),(4,1.11e-04,36068,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,39998,0),(5,1.25e-04,39998,0),(0,0.00e+00,43740,0),(0,0.00e+00,43738,0),(0,0.00e+00,43740,0),(0,0.00e+00,43738,0),(5,1.14e-04,43738,0),(0,0.00e+00,53142,0),(0,0.00e+00,53144,0),(0,0.00e+00,53142,0),(5,9.41e-05,53142,0),(0,0.00e+00,69798,0),(0,0.00e+00,69796,0),(6,8.60e-05,69796,0),(1,1.00e-05,100000,0),(8,8.00e-05,99998,0),(1,5.00e-06,199998,0),(21,1.05e-04,199998,0),(2,5.71e-06,350102,0),(31,8.85e-05,350102,0),(37,9.25e-05,399992,0)]87.19e-0611120040"nfe"25.71e-063501020"nfe"[(4.19e-05,3.82e-05),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(3.09e-06,2.24e-06),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,(7.54e-05,6.91e-05),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(9.50e-07,3.60e-07),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]3.09e-06"nfe"2.24e-06"nfe"9.50e-07"nfe"3.60e-07"nfe"1True{"rs201801648"}{}0.00e+006.00e+010.00e+001275011.23e+013.70e-02[3240,2211,2993,1962]7.34e-01104040.00e+006.00e+010.00e+001.00e+001274801.23e+011.60e-02[3240,2211,2991,1961]7.34e-0110383FalseNANAFalseFalseFalseFalse8.85e+00-5.13e-05["ga4gh:VA.SBSoboxxiC0V-mhjjHg2geRlf3I0Ib2d","ga4gh:VA.GzUD_86k_EDbtk-R58BTRVazmjZW2O1U"][113410734,113410734][113410735,113410735]["G","A"]"G/A"113410735".""chr11\t113410735\t.\tG\tA\t.\t.\tGT"NA"missense_variant"NANA"chr11"1134107351[(1,"H/Y",NA,"protein_coding",NA,"CCDS8362.1",1313,1313,1237,1237,"Cac/Tac",["missense_variant"],NA,[("Gene3D","1"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("Superfamily","SSF81321")],"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000346454.7:c.1237C>T","ENSP00000278597.5:p.His413Tyr",NA,"MODERATE",NA,NA,NA,NA,NA,NA,NA,NA,413,413,"ENSP00000278597","Ensembl",-1,"ENST00000346454",1,["P14416-2"],"A"),(1,"H/Y","P2","protein_coding",1,"CCDS8361.1",1678,1678,1324,1324,"Cac/Tac",["missense_variant"],NA,[("Gene3D","1"),("ENSP_mappings","5aer"),("ENSP_mappings","5aer"),("ENSP_mappings","6cm4"),("ENSP_mappings","6luq"),("ENSP_mappings","6vms"),("ENSP_mappings","7dfp"),("ENSP_mappings","7jvr"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("Superfamily","SSF81321")],"8/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000362072.8:c.1324C>T","ENSP00000354859.3:p.His442Tyr",NA,"MODERATE",NA,NA,NA,NA,NA,"NM_000795.4",NA,NA,442,442,"ENSP00000354859","Ensembl",-1,"ENST00000362072",1,["P14416-1"],"A"),(1,NA,NA,"processed_transcript",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],3640,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000535984",3,NA,"A"),(1,"H/Y","A1","protein_coding",NA,NA,1330,1330,1330,1330,"Cac/Tac",["missense_variant"],NA,[("Gene3D","1"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("Superfamily","SSF81321")],"8/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000538967.5:c.1330C>T","ENSP00000438215.1:p.His444Tyr",NA,"MODERATE",NA,NA,NA,NA,NA,NA,NA,NA,444,444,"ENSP00000438215","Ensembl",-1,"ENST00000538967",5,["P14416-3"],"A"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],4559,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000539420",3,NA,"A"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],3129,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000540600",1,NA,"A"),(1,"H/Y","P2","protein_coding",NA,"CCDS8361.1",1645,1645,1324,1324,"Cac/Tac",["missense_variant"],NA,[("Gene3D","1"),("ENSP_mappings","5aer"),("ENSP_mappings","5aer"),("ENSP_mappings","6cm4"),("ENSP_mappings","6luq"),("ENSP_mappings","6vms"),("ENSP_mappings","7dfp"),("ENSP_mappings","7jvr"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("Superfamily","SSF81321")],"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000542968.5:c.1324C>T","ENSP00000442172.1:p.His442Tyr",NA,"MODERATE",NA,NA,NA,NA,NA,NA,NA,NA,442,442,"ENSP00000442172","Ensembl",-1,"ENST00000542968",1,["P14416-1"],"A"),(1,"H/Y","A1","protein_coding",NA,NA,1354,1354,1321,1321,"Cac/Tac",["missense_variant"],NA,[("Gene3D","1"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("Superfamily","SSF81321")],"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000544518.5:c.1321C>T","ENSP00000441068.1:p.His441Tyr",NA,"MODERATE",NA,NA,NA,NA,NA,NA,NA,NA,441,441,"ENSP00000441068","Ensembl",-1,"ENST00000544518",1,NA,"A"),(1,NA,NA,"lncRNA",1,NA,NA,NA,NA,NA,NA,["intron_variant","non_coding_transcript_variant"],NA,NA,NA,NA,"ENSG00000256757",NA,NA,NA,NA,"ENST00000546284.1:n.245-812G>A",NA,NA,"MODIFIER","2/3",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",1,"ENST00000546284",3,NA,"A"),(1,"H/Y",NA,"protein_coding",1,NA,1678,1678,1324,1324,"Cac/Tac",["missense_variant"],NA,NA,"8/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_000795.4:c.1324C>T","NP_000786.1:p.His442Tyr",NA,"MODERATE",NA,NA,NA,NA,NA,"ENST00000362072.8",NA,NA,442,442,"NP_000786.1","RefSeq",-1,"NM_000795.4",NA,NA,"A"),(1,"H/Y",NA,"protein_coding",NA,NA,1591,1591,1237,1237,"Cac/Tac",["missense_variant"],NA,NA,"7/7",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_016574.4:c.1237C>T","NP_057658.2:p.His413Tyr",NA,"MODERATE",NA,NA,NA,NA,NA,NA,NA,NA,413,413,"NP_057658.2","RefSeq",-1,"NM_016574.4",NA,NA,"A"),(1,"H/Y",NA,"protein_coding",NA,NA,1406,1406,1324,1324,"Cac/Tac",["missense_variant"],NA,NA,"8/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","XM_017017296.2:c.1324C>T","XP_016872785.1:p.His442Tyr",NA,"MODERATE",NA,NA,NA,NA,NA,NA,NA,NA,442,442,"XP_016872785.1","RefSeq",-1,"XM_017017296.2",NA,NA,"A")]"SNV"8.85e+00"AS_MQ"FalseFalseFalseFalseFalseTrueFalseFalse"multi-snv"2False"snv"False[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,12,0,76,0,314251,0,32,0,416492,0,0,0,0,0,0,75]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,65,332,11308,107353,344982,189073,36327,5607,2387,2756,3080,2935,2956,2918,2972,2924,2564,2682]07717[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,75]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,1,2,3,4,7,3,7,5,1,4,1,3,0,2]032[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,1,1,6,12,25,24,5,1,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][6,0,1,0,14,0,76,0,314251,0,32,0,416492,0,0,0,0,0,0,75]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,2,67,335,11310,107353,344982,189073,36327,5607,2387,2756,3080,2935,2956,2918,2972,2924,2564,2682]07717[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,75]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,1,2,3,4,7,3,7,5,1,4,1,3,0,2]032[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,1,1,6,12,25,24,5,1,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][1,0,0,2,3,3,8,4,0,0]31[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]002.28e+012.69e+002.67e-010.00e+001.00e-028.67e+001.30e-011.18e-01
chr11:113410736["G","A"][(15,1.03e-05,1461882,0),(15,1.03e-05,1461894,0),(0,0.00e+00,33480,0),(0,0.00e+00,44724,0),(0,0.00e+00,26136,0),(0,0.00e+00,39700,0),(0,0.00e+00,53420,0),(0,0.00e+00,5762,0),(15,1.35e-05,1112010,0),(0,0.00e+00,60396,0),(0,0.00e+00,86254,0),(10,1.36e-05,734642,0),(5,6.88e-06,727240,0),(0,0.00e+00,19326,0),(0,0.00e+00,14154,0),(0,0.00e+00,25690,0),(0,0.00e+00,19034,0),(0,0.00e+00,12636,0),(0,0.00e+00,13500,0),(0,0.00e+00,20712,0),(0,0.00e+00,18988,0),(0,0.00e+00,27648,0),(0,0.00e+00,25772,0),(0,0.00e+00,2506,0),(0,0.00e+00,3256,0),(10,1.75e-05,572288,0),(5,9.26e-06,539722,0),(0,0.00e+00,31800,0),(0,0.00e+00,28596,0),(0,0.00e+00,22036,0),(0,0.00e+00,64218,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,1998,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,3996,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5762,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26134,0),(0,0.00e+00,26136,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33478,0),(0,0.00e+00,33480,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,39698,0),(0,0.00e+00,39700,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,39998,0),(0,0.00e+00,40000,0),(0,0.00e+00,44724,0),(0,0.00e+00,44724,0),(0,0.00e+00,44724,0),(0,0.00e+00,44724,0),(0,0.00e+00,44722,0),(0,0.00e+00,44724,0),(0,0.00e+00,53420,0),(0,0.00e+00,53420,0),(0,0.00e+00,53420,0),(0,0.00e+00,53418,0),(0,0.00e+00,53420,0),(0,0.00e+00,60396,0),(0,0.00e+00,60396,0),(0,0.00e+00,60394,0),(0,0.00e+00,60396,0),(1,1.16e-05,86258,0),(0,0.00e+00,86254,0),(0,0.00e+00,86258,0),(2,2.00e-05,100000,0),(1,1.00e-05,100000,0),(2,1.00e-05,200000,0),(2,1.00e-05,200000,0),(7,1.75e-05,400000,0),(4,1.00e-05,400000,0),(14,1.40e-05,1000000,0),(10,1.00e-05,999994,0),(15,1.35e-05,1112010,0),(12,1.08e-05,1112006,0),(1,1.59e-06,628772,0),(1,1.59e-06,628784,0),(0,0.00e+00,17694,0),(0,0.00e+00,43740,0),(0,0.00e+00,20984,0),(0,0.00e+00,36070,0),(0,0.00e+00,53144,0),(0,0.00e+00,4142,0),(1,2.86e-06,350106,0),(0,0.00e+00,33098,0),(0,0.00e+00,69794,0),(1,3.49e-06,286246,0),(0,0.00e+00,342526,0),(0,0.00e+00,10286,0),(0,0.00e+00,7408,0),(0,0.00e+00,25040,0),(0,0.00e+00,18700,0),(0,0.00e+00,9838,0),(0,0.00e+00,11146,0),(0,0.00e+00,18298,0),(0,0.00e+00,17772,0),(0,0.00e+00,27398,0),(0,0.00e+00,25746,0),(0,0.00e+00,1916,0),(0,0.00e+00,2226,0),(1,6.16e-06,162220,0),(0,0.00e+00,187886,0),(0,0.00e+00,16752,0),(0,0.00e+00,16346,0),(0,0.00e+00,14498,0),(0,0.00e+00,55296,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,1998,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,3994,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4142,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20982,0),(0,0.00e+00,20984,0),(0,0.00e+00,33098,0),(0,0.00e+00,33098,0),(0,0.00e+00,33098,0),(1,3.02e-05,33098,0),(0,0.00e+00,33098,0),(0,0.00e+00,33096,0),(0,0.00e+00,33098,0),(0,0.00e+00,36070,0),(0,0.00e+00,36070,0),(0,0.00e+00,36070,0),(1,2.77e-05,36070,0),(0,0.00e+00,36068,0),(0,0.00e+00,36070,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(1,2.50e-05,40000,0),(0,0.00e+00,39998,0),(0,0.00e+00,40000,0),(0,0.00e+00,43740,0),(0,0.00e+00,43740,0),(1,2.29e-05,43740,0),(0,0.00e+00,43738,0),(1,2.29e-05,43740,0),(0,0.00e+00,53144,0),(1,1.88e-05,53144,0),(0,0.00e+00,53142,0),(1,1.88e-05,53144,0),(1,1.43e-05,69798,0),(0,0.00e+00,69794,0),(1,1.43e-05,69798,0),(1,1.00e-05,100000,0),(1,1.00e-05,100000,0),(1,5.00e-06,200000,0),(1,5.00e-06,199998,0),(1,2.86e-06,350106,0),(1,2.86e-06,350104,0),(1,2.50e-06,399994,0)]151.35e-0511120100"nfe"12.86e-063501060"nfe"[(6.16e-06,4.89e-06),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(8.10e-06,6.42e-06),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]8.10e-06"nfe"6.42e-06"nfe"NANANANA1True{"rs1159504221"}{}5.49e-016.00e+010.00e+00123071.16e+017.40e-02[386,195,316,166]6.55e-0110639.64e-166.00e+010.00e+009.11e-01118991.17e+019.70e-02[386,195,304,161]6.47e-011013FalseNANAFalseFalseFalseFalse7.50e+00-1.03e-05["ga4gh:VA.QVbOetW6APM1_3jfGLLwArt4GfwgT6jE","ga4gh:VA.OXPDvbuulFZ9CSk4XtIFat1UOKdMachQ"][113410735,113410735][113410736,113410736]["G","A"]"G/A"113410736".""chr11\t113410736\t.\tG\tA\t.\t.\tGT"NA"synonymous_variant"NANA"chr11"1134107361[(1,"L",NA,"protein_coding",NA,"CCDS8362.1",1312,1312,1236,1236,"ctC/ctT",["synonymous_variant"],NA,[("Gene3D","1"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321")],"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000346454.7:c.1236C>T","ENSP00000278597.5:p.Leu412=",NA,"LOW",NA,NA,NA,NA,NA,NA,NA,NA,412,412,"ENSP00000278597","Ensembl",-1,"ENST00000346454",1,["P14416-2"],"A"),(1,"L","P2","protein_coding",1,"CCDS8361.1",1677,1677,1323,1323,"ctC/ctT",["synonymous_variant"],NA,[("Gene3D","1"),("ENSP_mappings","5aer"),("ENSP_mappings","5aer"),("ENSP_mappings","6cm4"),("ENSP_mappings","6luq"),("ENSP_mappings","6vms"),("ENSP_mappings","7dfp"),("ENSP_mappings","7jvr"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321")],"8/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000362072.8:c.1323C>T","ENSP00000354859.3:p.Leu441=",NA,"LOW",NA,NA,NA,NA,NA,"NM_000795.4",NA,NA,441,441,"ENSP00000354859","Ensembl",-1,"ENST00000362072",1,["P14416-1"],"A"),(1,NA,NA,"processed_transcript",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],3639,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000535984",3,NA,"A"),(1,"L","A1","protein_coding",NA,NA,1329,1329,1329,1329,"ctC/ctT",["synonymous_variant"],NA,[("Gene3D","1"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321")],"8/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000538967.5:c.1329C>T","ENSP00000438215.1:p.Leu443=",NA,"LOW",NA,NA,NA,NA,NA,NA,NA,NA,443,443,"ENSP00000438215","Ensembl",-1,"ENST00000538967",5,["P14416-3"],"A"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],4558,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000539420",3,NA,"A"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],3128,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000540600",1,NA,"A"),(1,"L","P2","protein_coding",NA,"CCDS8361.1",1644,1644,1323,1323,"ctC/ctT",["synonymous_variant"],NA,[("Gene3D","1"),("ENSP_mappings","5aer"),("ENSP_mappings","5aer"),("ENSP_mappings","6cm4"),("ENSP_mappings","6luq"),("ENSP_mappings","6vms"),("ENSP_mappings","7dfp"),("ENSP_mappings","7jvr"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321")],"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000542968.5:c.1323C>T","ENSP00000442172.1:p.Leu441=",NA,"LOW",NA,NA,NA,NA,NA,NA,NA,NA,441,441,"ENSP00000442172","Ensembl",-1,"ENST00000542968",1,["P14416-1"],"A"),(1,"L","A1","protein_coding",NA,NA,1353,1353,1320,1320,"ctC/ctT",["synonymous_variant"],NA,[("Gene3D","1"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321")],"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000544518.5:c.1320C>T","ENSP00000441068.1:p.Leu440=",NA,"LOW",NA,NA,NA,NA,NA,NA,NA,NA,440,440,"ENSP00000441068","Ensembl",-1,"ENST00000544518",1,NA,"A"),(1,NA,NA,"lncRNA",1,NA,NA,NA,NA,NA,NA,["intron_variant","non_coding_transcript_variant"],NA,NA,NA,NA,"ENSG00000256757",NA,NA,NA,NA,"ENST00000546284.1:n.245-811G>A",NA,NA,"MODIFIER","2/3",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",1,"ENST00000546284",3,NA,"A"),(1,"L",NA,"protein_coding",1,NA,1677,1677,1323,1323,"ctC/ctT",["synonymous_variant"],NA,NA,"8/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_000795.4:c.1323C>T","NP_000786.1:p.Leu441=",NA,"LOW",NA,NA,NA,NA,NA,"ENST00000362072.8",NA,NA,441,441,"NP_000786.1","RefSeq",-1,"NM_000795.4",NA,NA,"A"),(1,"L",NA,"protein_coding",NA,NA,1590,1590,1236,1236,"ctC/ctT",["synonymous_variant"],NA,NA,"7/7",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_016574.4:c.1236C>T","NP_057658.2:p.Leu412=",NA,"LOW",NA,NA,NA,NA,NA,NA,NA,NA,412,412,"NP_057658.2","RefSeq",-1,"NM_016574.4",NA,NA,"A"),(1,"L",NA,"protein_coding",NA,NA,1405,1405,1323,1323,"ctC/ctT",["synonymous_variant"],NA,NA,"8/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","XM_017017296.2:c.1323C>T","XP_016872785.1:p.Leu441=",NA,"LOW",NA,NA,NA,NA,NA,NA,NA,NA,441,441,"XP_016872785.1","RefSeq",-1,"XM_017017296.2",NA,NA,"A")]"SNV"7.50e+00"AS_MQ"FalseFalseFalseFalseFalseTrueFalseFalse"multi-snv"2False"snv"False[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,8,0,71,0,314313,0,37,0,416496,0,0,0,0,0,0,16]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,61,328,11304,107355,345020,189098,36329,5607,2382,2757,3074,2931,2955,2914,2974,2923,2564,2680]07685[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,15]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,1,3,1,2,3,1,0,1,0,1,1,0,0]01[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,1,0,0,1,1,11,1,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][5,0,0,0,9,0,71,0,314313,0,37,0,416496,0,0,0,0,0,0,16]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,1,62,330,11305,107356,345020,189098,36329,5607,2382,2757,3074,2931,2955,2914,2974,2923,2564,2680]07685[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,15]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,1,3,1,2,3,1,0,1,0,1,1,0,0]01[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,1,0,0,1,1,11,1,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,1,2,4,2,4,1,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]003.44e+002.28e-01NA0.00e+001.00e-02-2.55e-01NANA
chr11:113410736["G","T"][(1,6.84e-07,1461882,0),(1,6.84e-07,1461894,0),(0,0.00e+00,33480,0),(0,0.00e+00,44724,0),(0,0.00e+00,26136,0),(0,0.00e+00,39700,0),(0,0.00e+00,53420,0),(0,0.00e+00,5762,0),(1,8.99e-07,1112010,0),(0,0.00e+00,60396,0),(0,0.00e+00,86254,0),(0,0.00e+00,734642,0),(1,1.38e-06,727240,0),(0,0.00e+00,19326,0),(0,0.00e+00,14154,0),(0,0.00e+00,25690,0),(0,0.00e+00,19034,0),(0,0.00e+00,12636,0),(0,0.00e+00,13500,0),(0,0.00e+00,20712,0),(0,0.00e+00,18988,0),(0,0.00e+00,27648,0),(0,0.00e+00,25772,0),(0,0.00e+00,2506,0),(0,0.00e+00,3256,0),(0,0.00e+00,572288,0),(1,1.85e-06,539722,0),(0,0.00e+00,31800,0),(0,0.00e+00,28596,0),(0,0.00e+00,22036,0),(0,0.00e+00,64218,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,1998,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,3996,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5762,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26134,0),(0,0.00e+00,26136,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33478,0),(0,0.00e+00,33480,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,39698,0),(0,0.00e+00,39700,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,39998,0),(0,0.00e+00,40000,0),(0,0.00e+00,44724,0),(0,0.00e+00,44724,0),(0,0.00e+00,44724,0),(0,0.00e+00,44724,0),(0,0.00e+00,44722,0),(0,0.00e+00,44724,0),(0,0.00e+00,53420,0),(0,0.00e+00,53420,0),(0,0.00e+00,53420,0),(0,0.00e+00,53418,0),(0,0.00e+00,53420,0),(0,0.00e+00,60396,0),(0,0.00e+00,60396,0),(0,0.00e+00,60394,0),(0,0.00e+00,60396,0),(0,0.00e+00,86258,0),(0,0.00e+00,86254,0),(0,0.00e+00,86258,0),(0,0.00e+00,100000,0),(0,0.00e+00,100000,0),(0,0.00e+00,200000,0),(0,0.00e+00,200000,0),(1,2.50e-06,400000,0),(1,2.50e-06,400000,0),(1,1.00e-06,1000000,0),(1,1.00e-06,999994,0),(1,8.99e-07,1112010,0),(1,8.99e-07,1112006,0),(0,0.00e+00,628772,0),(0,0.00e+00,628784,0),(0,0.00e+00,17694,0),(0,0.00e+00,43740,0),(0,0.00e+00,20984,0),(0,0.00e+00,36070,0),(0,0.00e+00,53144,0),(0,0.00e+00,4142,0),(0,0.00e+00,350106,0),(0,0.00e+00,33098,0),(0,0.00e+00,69794,0),(0,0.00e+00,286246,0),(0,0.00e+00,342526,0),(0,0.00e+00,10286,0),(0,0.00e+00,7408,0),(0,0.00e+00,25040,0),(0,0.00e+00,18700,0),(0,0.00e+00,9838,0),(0,0.00e+00,11146,0),(0,0.00e+00,18298,0),(0,0.00e+00,17772,0),(0,0.00e+00,27398,0),(0,0.00e+00,25746,0),(0,0.00e+00,1916,0),(0,0.00e+00,2226,0),(0,0.00e+00,162220,0),(0,0.00e+00,187886,0),(0,0.00e+00,16752,0),(0,0.00e+00,16346,0),(0,0.00e+00,14498,0),(0,0.00e+00,55296,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,1998,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,3994,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4142,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20982,0),(0,0.00e+00,20984,0),(0,0.00e+00,33098,0),(0,0.00e+00,33098,0),(0,0.00e+00,33098,0),(0,0.00e+00,33098,0),(0,0.00e+00,33098,0),(0,0.00e+00,33096,0),(0,0.00e+00,33098,0),(0,0.00e+00,36070,0),(0,0.00e+00,36070,0),(0,0.00e+00,36070,0),(0,0.00e+00,36070,0),(0,0.00e+00,36068,0),(0,0.00e+00,36070,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,39998,0),(0,0.00e+00,40000,0),(0,0.00e+00,43740,0),(0,0.00e+00,43740,0),(0,0.00e+00,43740,0),(0,0.00e+00,43738,0),(0,0.00e+00,43740,0),(0,0.00e+00,53144,0),(0,0.00e+00,53144,0),(0,0.00e+00,53142,0),(0,0.00e+00,53144,0),(0,0.00e+00,69798,0),(0,0.00e+00,69794,0),(0,0.00e+00,69798,0),(0,0.00e+00,100000,0),(0,0.00e+00,100000,0),(0,0.00e+00,200000,0),(0,0.00e+00,199998,0),(0,0.00e+00,350106,0),(0,0.00e+00,350104,0),(0,0.00e+00,399994,0)]18.99e-0711120100"nfe"NANANANANA[(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]NANANANANANANANA2TrueNA{}5.49e-016.00e+010.00e+00123071.16e+017.40e-02[386,195,316,166]6.55e-0110639.64e-166.00e+010.00e+003.28e-024088.16e+00-9.23e-01[386,195,12,5]7.90e-0150TrueFalseFalseFalseFalseFalseFalse5.00e+00-6.84e-07["ga4gh:VA.QVbOetW6APM1_3jfGLLwArt4GfwgT6jE","ga4gh:VA.4qhkDG1qrfqiD2TeOA6LYLsi4UGWF19l"][113410735,113410735][113410736,113410736]["G","T"]"G/T"113410736".""chr11\t113410736\t.\tG\tT\t.\t.\tGT"NA"synonymous_variant"NANA"chr11"1134107361[(1,"L",NA,"protein_coding",NA,"CCDS8362.1",1312,1312,1236,1236,"ctC/ctA",["synonymous_variant"],NA,[("Gene3D","1"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321")],"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000346454.7:c.1236C>A","ENSP00000278597.5:p.Leu412=",NA,"LOW",NA,NA,NA,NA,NA,NA,NA,NA,412,412,"ENSP00000278597","Ensembl",-1,"ENST00000346454",1,["P14416-2"],"T"),(1,"L","P2","protein_coding",1,"CCDS8361.1",1677,1677,1323,1323,"ctC/ctA",["synonymous_variant"],NA,[("Gene3D","1"),("ENSP_mappings","5aer"),("ENSP_mappings","5aer"),("ENSP_mappings","6cm4"),("ENSP_mappings","6luq"),("ENSP_mappings","6vms"),("ENSP_mappings","7dfp"),("ENSP_mappings","7jvr"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321")],"8/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000362072.8:c.1323C>A","ENSP00000354859.3:p.Leu441=",NA,"LOW",NA,NA,NA,NA,NA,"NM_000795.4",NA,NA,441,441,"ENSP00000354859","Ensembl",-1,"ENST00000362072",1,["P14416-1"],"T"),(1,NA,NA,"processed_transcript",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],3639,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000535984",3,NA,"T"),(1,"L","A1","protein_coding",NA,NA,1329,1329,1329,1329,"ctC/ctA",["synonymous_variant"],NA,[("Gene3D","1"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321")],"8/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000538967.5:c.1329C>A","ENSP00000438215.1:p.Leu443=",NA,"LOW",NA,NA,NA,NA,NA,NA,NA,NA,443,443,"ENSP00000438215","Ensembl",-1,"ENST00000538967",5,["P14416-3"],"T"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],4558,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000539420",3,NA,"T"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],3128,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000540600",1,NA,"T"),(1,"L","P2","protein_coding",NA,"CCDS8361.1",1644,1644,1323,1323,"ctC/ctA",["synonymous_variant"],NA,[("Gene3D","1"),("ENSP_mappings","5aer"),("ENSP_mappings","5aer"),("ENSP_mappings","6cm4"),("ENSP_mappings","6luq"),("ENSP_mappings","6vms"),("ENSP_mappings","7dfp"),("ENSP_mappings","7jvr"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321")],"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000542968.5:c.1323C>A","ENSP00000442172.1:p.Leu441=",NA,"LOW",NA,NA,NA,NA,NA,NA,NA,NA,441,441,"ENSP00000442172","Ensembl",-1,"ENST00000542968",1,["P14416-1"],"T"),(1,"L","A1","protein_coding",NA,NA,1353,1353,1320,1320,"ctC/ctA",["synonymous_variant"],NA,[("Gene3D","1"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321")],"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000544518.5:c.1320C>A","ENSP00000441068.1:p.Leu440=",NA,"LOW",NA,NA,NA,NA,NA,NA,NA,NA,440,440,"ENSP00000441068","Ensembl",-1,"ENST00000544518",1,NA,"T"),(1,NA,NA,"lncRNA",1,NA,NA,NA,NA,NA,NA,["intron_variant","non_coding_transcript_variant"],NA,NA,NA,NA,"ENSG00000256757",NA,NA,NA,NA,"ENST00000546284.1:n.245-811G>T",NA,NA,"MODIFIER","2/3",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",1,"ENST00000546284",3,NA,"T"),(1,"L",NA,"protein_coding",1,NA,1677,1677,1323,1323,"ctC/ctA",["synonymous_variant"],NA,NA,"8/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_000795.4:c.1323C>A","NP_000786.1:p.Leu441=",NA,"LOW",NA,NA,NA,NA,NA,"ENST00000362072.8",NA,NA,441,441,"NP_000786.1","RefSeq",-1,"NM_000795.4",NA,NA,"T"),(1,"L",NA,"protein_coding",NA,NA,1590,1590,1236,1236,"ctC/ctA",["synonymous_variant"],NA,NA,"7/7",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_016574.4:c.1236C>A","NP_057658.2:p.Leu412=",NA,"LOW",NA,NA,NA,NA,NA,NA,NA,NA,412,412,"NP_057658.2","RefSeq",-1,"NM_016574.4",NA,NA,"T"),(1,"L",NA,"protein_coding",NA,NA,1405,1405,1323,1323,"ctC/ctA",["synonymous_variant"],NA,NA,"8/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","XM_017017296.2:c.1323C>A","XP_016872785.1:p.Leu441=",NA,"LOW",NA,NA,NA,NA,NA,NA,NA,NA,441,441,"XP_016872785.1","RefSeq",-1,"XM_017017296.2",NA,NA,"T")]"SNV"5.00e+00"AS_MQ"FalseFalseFalseFalseFalseTrueFalseFalse"multi-snv"2False"snv"False[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,8,0,71,0,314313,0,37,0,416496,0,0,0,0,0,0,16]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,61,328,11304,107355,345020,189098,36329,5607,2382,2757,3074,2931,2955,2914,2974,2923,2564,2680]07685[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][5,0,0,0,9,0,71,0,314313,0,37,0,416496,0,0,0,0,0,0,16]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,1,62,330,11305,107356,345020,189098,36329,5607,2382,2757,3074,2931,2955,2914,2974,2923,2564,2680]07685[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,1,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]002.96e+001.86e-01NA0.00e+003.00e-02-2.55e-01NANA

showing top 5 rows

\n" + ], + "text/plain": [ + "+-----------------+------------+\n", + "| locus | alleles |\n", + "+-----------------+------------+\n", + "| locus | array |\n", + "+-----------------+------------+\n", + "| chr11:113410731 | [\"C\",\"A\"] |\n", + "| chr11:113410731 | [\"C\",\"T\"] |\n", + "| chr11:113410735 | [\"G\",\"A\"] |\n", + "| chr11:113410736 | [\"G\",\"A\"] |\n", + "| chr11:113410736 | [\"G\",\"T\"] |\n", + "+-----------------+------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| freq |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [(2,1.37e-06,1461866,0),(2,1.37e-06,1461894,0),(0,0.00e+00,33480,0),(2,4.... |\n", + "| [(1,6.84e-07,1461866,0),(1,6.84e-07,1461894,0),(0,0.00e+00,33480,0),(0,0.... |\n", + "| [(75,5.13e-05,1461876,0),(75,5.13e-05,1461894,0),(0,0.00e+00,33480,0),(0,... |\n", + "| [(15,1.03e-05,1461882,0),(15,1.03e-05,1461894,0),(0,0.00e+00,33480,0),(0,... |\n", + "| [(1,6.84e-07,1461882,0),(1,6.84e-07,1461894,0),(0,0.00e+00,33480,0),(0,0.... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+------------------+------------------+------------------+\n", + "| grpmax.gnomad.AC | grpmax.gnomad.AF | grpmax.gnomad.AN |\n", + "+------------------+------------------+------------------+\n", + "| int32 | float64 | int32 |\n", + "+------------------+------------------+------------------+\n", + "| 2 | 4.47e-05 | 44724 |\n", + "| 1 | 8.99e-07 | 1112010 |\n", + "| 8 | 7.19e-06 | 1112004 |\n", + "| 15 | 1.35e-05 | 1112010 |\n", + "| 1 | 8.99e-07 | 1112010 |\n", + "+------------------+------------------+------------------+\n", + "\n", + "+--------------------------------+-----------------------+-------------------+\n", + "| grpmax.gnomad.homozygote_count | grpmax.gnomad.gen_anc | grpmax.non_ukb.AC |\n", + "+--------------------------------+-----------------------+-------------------+\n", + "| int64 | str | int32 |\n", + "+--------------------------------+-----------------------+-------------------+\n", + "| 0 | \"amr\" | 2 |\n", + "| 0 | \"nfe\" | NA |\n", + "| 0 | \"nfe\" | 2 |\n", + "| 0 | \"nfe\" | 1 |\n", + "| 0 | \"nfe\" | NA |\n", + "+--------------------------------+-----------------------+-------------------+\n", + "\n", + "+-------------------+-------------------+---------------------------------+\n", + "| grpmax.non_ukb.AF | grpmax.non_ukb.AN | grpmax.non_ukb.homozygote_count |\n", + "+-------------------+-------------------+---------------------------------+\n", + "| float64 | int32 | int64 |\n", + "+-------------------+-------------------+---------------------------------+\n", + "| 4.57e-05 | 43740 | 0 |\n", + "| NA | NA | NA |\n", + "| 5.71e-06 | 350102 | 0 |\n", + "| 2.86e-06 | 350106 | 0 |\n", + "| NA | NA | NA |\n", + "+-------------------+-------------------+---------------------------------+\n", + "\n", + "+------------------------+\n", + "| grpmax.non_ukb.gen_anc |\n", + "+------------------------+\n", + "| str |\n", + "+------------------------+\n", + "| \"amr\" |\n", + "| NA |\n", + "| \"nfe\" |\n", + "| \"nfe\" |\n", + "| NA |\n", + "+------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| faf |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [(2.30e-07,9.00e-08),(0.00e+00,0.00e+00),(7.41e-06,2.77e-06),(0.00e+00,0.... |\n", + "| [(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.... |\n", + "| [(4.19e-05,3.82e-05),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.... |\n", + "| [(6.16e-06,4.89e-06),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.... |\n", + "| [(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+-------------------------+---------------------------------+\n", + "| fafmax.gnomad.faf95_max | fafmax.gnomad.faf95_max_gen_anc |\n", + "+-------------------------+---------------------------------+\n", + "| float64 | str |\n", + "+-------------------------+---------------------------------+\n", + "| 7.41e-06 | \"amr\" |\n", + "| NA | NA |\n", + "| 3.09e-06 | \"nfe\" |\n", + "| 8.10e-06 | \"nfe\" |\n", + "| NA | NA |\n", + "+-------------------------+---------------------------------+\n", + "\n", + "+-------------------------+---------------------------------+\n", + "| fafmax.gnomad.faf99_max | fafmax.gnomad.faf99_max_gen_anc |\n", + "+-------------------------+---------------------------------+\n", + "| float64 | str |\n", + "+-------------------------+---------------------------------+\n", + "| 2.77e-06 | \"amr\" |\n", + "| NA | NA |\n", + "| 2.24e-06 | \"nfe\" |\n", + "| 6.42e-06 | \"nfe\" |\n", + "| NA | NA |\n", + "+-------------------------+---------------------------------+\n", + "\n", + "+--------------------------+----------------------------------+\n", + "| fafmax.non_ukb.faf95_max | fafmax.non_ukb.faf95_max_gen_anc |\n", + "+--------------------------+----------------------------------+\n", + "| float64 | str |\n", + "+--------------------------+----------------------------------+\n", + "| 7.58e-06 | \"amr\" |\n", + "| NA | NA |\n", + "| 9.50e-07 | \"nfe\" |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "+--------------------------+----------------------------------+\n", + "\n", + "+--------------------------+----------------------------------+---------+\n", + "| fafmax.non_ukb.faf99_max | fafmax.non_ukb.faf99_max_gen_anc | a_index |\n", + "+--------------------------+----------------------------------+---------+\n", + "| float64 | str | int32 |\n", + "+--------------------------+----------------------------------+---------+\n", + "| 2.84e-06 | \"amr\" | 1 |\n", + "| NA | NA | 2 |\n", + "| 3.60e-07 | \"nfe\" | 1 |\n", + "| NA | NA | 1 |\n", + "| NA | NA | 2 |\n", + "+--------------------------+----------------------------------+---------+\n", + "\n", + "+-----------+------------------+----------+----------+----------+\n", + "| was_split | rsid | filters | info.FS | info.MQ |\n", + "+-----------+------------------+----------+----------+----------+\n", + "| bool | set | set | float64 | float64 |\n", + "+-----------+------------------+----------+----------+----------+\n", + "| True | {\"rs140938110\"} | {} | 5.56e+00 | 6.00e+01 |\n", + "| True | NA | {} | 5.56e+00 | 6.00e+01 |\n", + "| True | {\"rs201801648\"} | {} | 0.00e+00 | 6.00e+01 |\n", + "| True | {\"rs1159504221\"} | {} | 5.49e-01 | 6.00e+01 |\n", + "| True | NA | {} | 5.49e-01 | 6.00e+01 |\n", + "+-----------+------------------+----------+----------+----------+\n", + "\n", + "+----------------+-----------------+----------+---------------------+\n", + "| info.MQRankSum | info.QUALapprox | info.QD | info.ReadPosRankSum |\n", + "+----------------+-----------------+----------+---------------------+\n", + "| float64 | int64 | float64 | float64 |\n", + "+----------------+-----------------+----------+---------------------+\n", + "| 0.00e+00 | 3862 | 1.02e+01 | -1.98e-01 |\n", + "| 0.00e+00 | 3862 | 1.02e+01 | -1.98e-01 |\n", + "| 0.00e+00 | 127501 | 1.23e+01 | 3.70e-02 |\n", + "| 0.00e+00 | 12307 | 1.16e+01 | 7.40e-02 |\n", + "| 0.00e+00 | 12307 | 1.16e+01 | 7.40e-02 |\n", + "+----------------+-----------------+----------+---------------------+\n", + "\n", + "+-----------------------+----------+------------+------------+------------+\n", + "| info.SB | info.SOR | info.VarDP | info.AS_FS | info.AS_MQ |\n", + "+-----------------------+----------+------------+------------+------------+\n", + "| array | float64 | int32 | float64 | float64 |\n", + "+-----------------------+----------+------------+------------+------------+\n", + "| [134,83,109,52] | 9.81e-01 | 378 | 1.31e+01 | 6.00e+01 |\n", + "| [134,83,109,52] | 9.81e-01 | 378 | 0.00e+00 | 6.00e+01 |\n", + "| [3240,2211,2993,1962] | 7.34e-01 | 10404 | 0.00e+00 | 6.00e+01 |\n", + "| [386,195,316,166] | 6.55e-01 | 1063 | 9.64e-16 | 6.00e+01 |\n", + "| [386,195,316,166] | 6.55e-01 | 1063 | 9.64e-16 | 6.00e+01 |\n", + "+-----------------------+----------+------------+------------+------------+\n", + "\n", + "+-------------------+-----------------+--------------------+------------+\n", + "| info.AS_MQRankSum | info.AS_pab_max | info.AS_QUALapprox | info.AS_QD |\n", + "+-------------------+-----------------+--------------------+------------+\n", + "| float64 | float64 | int64 | float64 |\n", + "+-------------------+-----------------+--------------------+------------+\n", + "| 0.00e+00 | 2.94e-01 | 1895 | 1.06e+01 |\n", + "| 0.00e+00 | 9.04e-01 | 1967 | 9.88e+00 |\n", + "| 0.00e+00 | 1.00e+00 | 127480 | 1.23e+01 |\n", + "| 0.00e+00 | 9.11e-01 | 11899 | 1.17e+01 |\n", + "| 0.00e+00 | 3.28e-02 | 408 | 8.16e+00 |\n", + "+-------------------+-----------------+--------------------+------------+\n", + "\n", + "+------------------------+-----------------------+-------------+---------------+\n", + "| info.AS_ReadPosRankSum | info.AS_SB_TABLE | info.AS_SOR | info.AS_VarDP |\n", + "+------------------------+-----------------------+-------------+---------------+\n", + "| float64 | array | float64 | int32 |\n", + "+------------------------+-----------------------+-------------+---------------+\n", + "| 2.52e-01 | [134,83,56,19] | 1.42e+00 | 179 |\n", + "| -5.01e-01 | [134,83,53,33] | 6.81e-01 | 199 |\n", + "| 1.60e-02 | [3240,2211,2991,1961] | 7.34e-01 | 10383 |\n", + "| 9.70e-02 | [386,195,304,161] | 6.47e-01 | 1013 |\n", + "| -9.23e-01 | [386,195,12,5] | 7.90e-01 | 50 |\n", + "+------------------------+-----------------------+-------------+---------------+\n", + "\n", + "+----------------+----------------------------+------------------------+\n", + "| info.singleton | info.transmitted_singleton | info.sibling_singleton |\n", + "+----------------+----------------------------+------------------------+\n", + "| bool | bool | bool |\n", + "+----------------+----------------------------+------------------------+\n", + "| False | NA | NA |\n", + "| True | False | False |\n", + "| False | NA | NA |\n", + "| False | NA | NA |\n", + "| True | False | False |\n", + "+----------------+----------------------------+------------------------+\n", + "\n", + "+-----------+------------+------------------+---------------+----------------+\n", + "| info.omni | info.mills | info.monoallelic | info.only_het | info.AS_VQSLOD |\n", + "+-----------+------------+------------------+---------------+----------------+\n", + "| bool | bool | bool | bool | float64 |\n", + "+-----------+------------+------------------+---------------+----------------+\n", + "| False | False | False | False | 5.27e+00 |\n", + "| False | False | False | False | 5.40e+00 |\n", + "| False | False | False | False | 8.85e+00 |\n", + "| False | False | False | False | 7.50e+00 |\n", + "| False | False | False | False | 5.00e+00 |\n", + "+-----------+------------+------------------+---------------+----------------+\n", + "\n", + "+-----------------------+\n", + "| info.inbreeding_coeff |\n", + "+-----------------------+\n", + "| float64 |\n", + "+-----------------------+\n", + "| -1.37e-06 |\n", + "| -6.84e-07 |\n", + "| -5.13e-05 |\n", + "| -1.03e-05 |\n", + "| -6.84e-07 |\n", + "+-----------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| info.vrs.VRS_Allele_IDs |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [\"ga4gh:VA.RY2FNHeS0QpJNM9lQpQ_pzX7Q27-MXmI\",\"ga4gh:VA.ZonDIhdwyghm7SuWkX... |\n", + "| [\"ga4gh:VA.RY2FNHeS0QpJNM9lQpQ_pzX7Q27-MXmI\",\"ga4gh:VA.Hp20SlFHUdM7jlWmVV... |\n", + "| [\"ga4gh:VA.SBSoboxxiC0V-mhjjHg2geRlf3I0Ib2d\",\"ga4gh:VA.GzUD_86k_EDbtk-R58... |\n", + "| [\"ga4gh:VA.QVbOetW6APM1_3jfGLLwArt4GfwgT6jE\",\"ga4gh:VA.OXPDvbuulFZ9CSk4Xt... |\n", + "| [\"ga4gh:VA.QVbOetW6APM1_3jfGLLwArt4GfwgT6jE\",\"ga4gh:VA.4qhkDG1qrfqiD2TeOA... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+-----------------------+-----------------------+---------------------+\n", + "| info.vrs.VRS_Starts | info.vrs.VRS_Ends | info.vrs.VRS_States |\n", + "+-----------------------+-----------------------+---------------------+\n", + "| array | array | array |\n", + "+-----------------------+-----------------------+---------------------+\n", + "| [113410730,113410730] | [113410731,113410731] | [\"C\",\"A\"] |\n", + "| [113410730,113410730] | [113410731,113410731] | [\"C\",\"T\"] |\n", + "| [113410734,113410734] | [113410735,113410735] | [\"G\",\"A\"] |\n", + "| [113410735,113410735] | [113410736,113410736] | [\"G\",\"A\"] |\n", + "| [113410735,113410735] | [113410736,113410736] | [\"G\",\"T\"] |\n", + "+-----------------------+-----------------------+---------------------+\n", + "\n", + "+-------------------+-----------+--------+--------------------------------+\n", + "| vep.allele_string | vep.end | vep.id | vep.input |\n", + "+-------------------+-----------+--------+--------------------------------+\n", + "| str | int32 | str | str |\n", + "+-------------------+-----------+--------+--------------------------------+\n", + "| \"C/A\" | 113410731 | \".\" | \"chr11\t113410731\t.\tC\tA\t.\t.\tGT\" |\n", + "| \"C/T\" | 113410731 | \".\" | \"chr11\t113410731\t.\tC\tT\t.\t.\tGT\" |\n", + "| \"G/A\" | 113410735 | \".\" | \"chr11\t113410735\t.\tG\tA\t.\t.\tGT\" |\n", + "| \"G/A\" | 113410736 | \".\" | \"chr11\t113410736\t.\tG\tA\t.\t.\tGT\" |\n", + "| \"G/T\" | 113410736 | \".\" | \"chr11\t113410736\t.\tG\tT\t.\t.\tGT\" |\n", + "+-------------------+-----------+--------+--------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| vep.intergenic_consequences |\n", + "+------------------------------------------------------------------------------+\n", + "| array, impact: st... |\n", + "+------------------------------------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+-----------------------------+\n", + "| vep.most_severe_consequence |\n", + "+-----------------------------+\n", + "| str |\n", + "+-----------------------------+\n", + "| \"missense_variant\" |\n", + "| \"missense_variant\" |\n", + "| \"missense_variant\" |\n", + "| \"synonymous_variant\" |\n", + "| \"synonymous_variant\" |\n", + "+-----------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| vep.motif_feature_consequences |\n", + "+------------------------------------------------------------------------------+\n", + "| array, high_inf_p... |\n", + "+------------------------------------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| vep.regulatory_feature_consequences |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+---------------------------------------------------------+\n", + "| histograms.qual_hists.gq_hist_all.bin_freq |\n", + "+---------------------------------------------------------+\n", + "| array |\n", + "+---------------------------------------------------------+\n", + "| [0,0,0,0,21,0,124,0,314262,0,99,0,416424,0,0,0,0,0,0,3] |\n", + "| [0,0,0,0,21,0,124,0,314262,0,99,0,416424,0,0,0,0,0,0,3] |\n", + "| [0,0,0,0,12,0,76,0,314251,0,32,0,416492,0,0,0,0,0,0,75] |\n", + "| [0,0,0,0,8,0,71,0,314313,0,37,0,416496,0,0,0,0,0,0,16] |\n", + "| [0,0,0,0,8,0,71,0,314313,0,37,0,416496,0,0,0,0,0,0,16] |\n", + "+---------------------------------------------------------+\n", + "\n", + "+---------------------------------------------+\n", + "| histograms.qual_hists.gq_hist_all.n_smaller |\n", + "+---------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+---------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.qual_hists.gq_hist_all.n_larger |\n", + "+--------------------------------------------+\n", + "| int64 |\n", + "+--------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+--------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.qual_hists.dp_hist_all.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.qual_hists.dp_hist_all.bin_freq |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0,0,98,374,11344,107362,344923,189028,36319,5607,2388,2759,3074,2931,295... |\n", + "| [0,0,98,374,11344,107362,344923,189028,36319,5607,2388,2759,3074,2931,295... |\n", + "| [0,0,65,332,11308,107353,344982,189073,36327,5607,2387,2756,3080,2935,295... |\n", + "| [0,0,61,328,11304,107355,345020,189098,36329,5607,2382,2757,3074,2931,295... |\n", + "| [0,0,61,328,11304,107355,345020,189098,36329,5607,2382,2757,3074,2931,295... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+---------------------------------------------+\n", + "| histograms.qual_hists.dp_hist_all.n_smaller |\n", + "+---------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+---------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.qual_hists.dp_hist_all.n_larger |\n", + "+--------------------------------------------+\n", + "| int64 |\n", + "+--------------------------------------------+\n", + "| 7715 |\n", + "| 7715 |\n", + "| 7717 |\n", + "| 7685 |\n", + "| 7685 |\n", + "+--------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.qual_hists.gq_hist_alt.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.qual_hists.gq_hist_alt.bin_freq |\n", + "+--------------------------------------------+\n", + "| array |\n", + "+--------------------------------------------+\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,75] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,15] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1] |\n", + "+--------------------------------------------+\n", + "\n", + "+---------------------------------------------+\n", + "| histograms.qual_hists.gq_hist_alt.n_smaller |\n", + "+---------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+---------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.qual_hists.gq_hist_alt.n_larger |\n", + "+--------------------------------------------+\n", + "| int64 |\n", + "+--------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+--------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.qual_hists.dp_hist_alt.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.qual_hists.dp_hist_alt.bin_freq |\n", + "+--------------------------------------------+\n", + "| array |\n", + "+--------------------------------------------+\n", + "| [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,1,2,3,4,7,3,7,5,1,4,1,3,0,2] |\n", + "| [0,0,0,0,0,0,0,1,3,1,2,3,1,0,1,0,1,1,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0] |\n", + "+--------------------------------------------+\n", + "\n", + "+---------------------------------------------+\n", + "| histograms.qual_hists.dp_hist_alt.n_smaller |\n", + "+---------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+---------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.qual_hists.dp_hist_alt.n_larger |\n", + "+--------------------------------------------+\n", + "| int64 |\n", + "+--------------------------------------------+\n", + "| 1 |\n", + "| 0 |\n", + "| 32 |\n", + "| 1 |\n", + "| 0 |\n", + "+--------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.qual_hists.ab_hist_alt.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+----------------------------------------------+\n", + "| histograms.qual_hists.ab_hist_alt.bin_freq |\n", + "+----------------------------------------------+\n", + "| array |\n", + "+----------------------------------------------+\n", + "| [0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,1,1,6,12,25,24,5,1,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,1,0,0,1,1,11,1,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "+----------------------------------------------+\n", + "\n", + "+---------------------------------------------+\n", + "| histograms.qual_hists.ab_hist_alt.n_smaller |\n", + "+---------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+---------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.qual_hists.ab_hist_alt.n_larger |\n", + "+--------------------------------------------+\n", + "| int64 |\n", + "+--------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+--------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.raw_qual_hists.gq_hist_all.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+---------------------------------------------------------+\n", + "| histograms.raw_qual_hists.gq_hist_all.bin_freq |\n", + "+---------------------------------------------------------+\n", + "| array |\n", + "+---------------------------------------------------------+\n", + "| [7,0,0,0,28,0,124,0,314262,0,99,0,416424,0,0,0,0,0,0,3] |\n", + "| [7,0,0,0,28,0,124,0,314262,0,99,0,416424,0,0,0,0,0,0,3] |\n", + "| [6,0,1,0,14,0,76,0,314251,0,32,0,416492,0,0,0,0,0,0,75] |\n", + "| [5,0,0,0,9,0,71,0,314313,0,37,0,416496,0,0,0,0,0,0,16] |\n", + "| [5,0,0,0,9,0,71,0,314313,0,37,0,416496,0,0,0,0,0,0,16] |\n", + "+---------------------------------------------------------+\n", + "\n", + "+-------------------------------------------------+\n", + "| histograms.raw_qual_hists.gq_hist_all.n_smaller |\n", + "+-------------------------------------------------+\n", + "| int64 |\n", + "+-------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+-------------------------------------------------+\n", + "\n", + "+------------------------------------------------+\n", + "| histograms.raw_qual_hists.gq_hist_all.n_larger |\n", + "+------------------------------------------------+\n", + "| int64 |\n", + "+------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.raw_qual_hists.dp_hist_all.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.raw_qual_hists.dp_hist_all.bin_freq |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0,7,98,380,11345,107362,344923,189028,36319,5607,2388,2759,3074,2931,295... |\n", + "| [0,7,98,380,11345,107362,344923,189028,36319,5607,2388,2759,3074,2931,295... |\n", + "| [0,2,67,335,11310,107353,344982,189073,36327,5607,2387,2756,3080,2935,295... |\n", + "| [0,1,62,330,11305,107356,345020,189098,36329,5607,2382,2757,3074,2931,295... |\n", + "| [0,1,62,330,11305,107356,345020,189098,36329,5607,2382,2757,3074,2931,295... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+-------------------------------------------------+\n", + "| histograms.raw_qual_hists.dp_hist_all.n_smaller |\n", + "+-------------------------------------------------+\n", + "| int64 |\n", + "+-------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+-------------------------------------------------+\n", + "\n", + "+------------------------------------------------+\n", + "| histograms.raw_qual_hists.dp_hist_all.n_larger |\n", + "+------------------------------------------------+\n", + "| int64 |\n", + "+------------------------------------------------+\n", + "| 7715 |\n", + "| 7715 |\n", + "| 7717 |\n", + "| 7685 |\n", + "| 7685 |\n", + "+------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.raw_qual_hists.gq_hist_alt.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+------------------------------------------------+\n", + "| histograms.raw_qual_hists.gq_hist_alt.bin_freq |\n", + "+------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------+\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,75] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,15] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1] |\n", + "+------------------------------------------------+\n", + "\n", + "+-------------------------------------------------+\n", + "| histograms.raw_qual_hists.gq_hist_alt.n_smaller |\n", + "+-------------------------------------------------+\n", + "| int64 |\n", + "+-------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+-------------------------------------------------+\n", + "\n", + "+------------------------------------------------+\n", + "| histograms.raw_qual_hists.gq_hist_alt.n_larger |\n", + "+------------------------------------------------+\n", + "| int64 |\n", + "+------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.raw_qual_hists.dp_hist_alt.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+------------------------------------------------+\n", + "| histograms.raw_qual_hists.dp_hist_alt.bin_freq |\n", + "+------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------+\n", + "| [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,1,2,3,4,7,3,7,5,1,4,1,3,0,2] |\n", + "| [0,0,0,0,0,0,0,1,3,1,2,3,1,0,1,0,1,1,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0] |\n", + "+------------------------------------------------+\n", + "\n", + "+-------------------------------------------------+\n", + "| histograms.raw_qual_hists.dp_hist_alt.n_smaller |\n", + "+-------------------------------------------------+\n", + "| int64 |\n", + "+-------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+-------------------------------------------------+\n", + "\n", + "+------------------------------------------------+\n", + "| histograms.raw_qual_hists.dp_hist_alt.n_larger |\n", + "+------------------------------------------------+\n", + "| int64 |\n", + "+------------------------------------------------+\n", + "| 1 |\n", + "| 0 |\n", + "| 32 |\n", + "| 1 |\n", + "| 0 |\n", + "+------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.raw_qual_hists.ab_hist_alt.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+------------------------------------------------+\n", + "| histograms.raw_qual_hists.ab_hist_alt.bin_freq |\n", + "+------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------+\n", + "| [0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,1,1,6,12,25,24,5,1,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,1,0,0,1,1,11,1,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "+------------------------------------------------+\n", + "\n", + "+-------------------------------------------------+\n", + "| histograms.raw_qual_hists.ab_hist_alt.n_smaller |\n", + "+-------------------------------------------------+\n", + "| int64 |\n", + "+-------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+-------------------------------------------------+\n", + "\n", + "+------------------------------------------------+\n", + "| histograms.raw_qual_hists.ab_hist_alt.n_larger |\n", + "+------------------------------------------------+\n", + "| int64 |\n", + "+------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.age_hists.age_hist_het.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.age_hists.age_hist_het.bin_freq |\n", + "+--------------------------------------------+\n", + "| array |\n", + "+--------------------------------------------+\n", + "| [0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,1,0,0,0,0,0] |\n", + "| [1,0,0,2,3,3,8,4,0,0] |\n", + "| [0,0,1,2,4,2,4,1,0,0] |\n", + "| [0,0,0,0,0,1,0,0,0,0] |\n", + "+--------------------------------------------+\n", + "\n", + "+---------------------------------------------+\n", + "| histograms.age_hists.age_hist_het.n_smaller |\n", + "+---------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------+\n", + "| 1 |\n", + "| 0 |\n", + "| 3 |\n", + "| 0 |\n", + "| 0 |\n", + "+---------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.age_hists.age_hist_het.n_larger |\n", + "+--------------------------------------------+\n", + "| int64 |\n", + "+--------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 1 |\n", + "| 0 |\n", + "| 0 |\n", + "+--------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.age_hists.age_hist_hom.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.age_hists.age_hist_hom.bin_freq |\n", + "+--------------------------------------------+\n", + "| array |\n", + "+--------------------------------------------+\n", + "| [0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0] |\n", + "+--------------------------------------------+\n", + "\n", + "+---------------------------------------------+\n", + "| histograms.age_hists.age_hist_hom.n_smaller |\n", + "+---------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+---------------------------------------------+\n", + "\n", + "+--------------------------------------------+---------------------------------+\n", + "| histograms.age_hists.age_hist_hom.n_larger | in_silico_predictors.cadd.phred |\n", + "+--------------------------------------------+---------------------------------+\n", + "| int64 | float32 |\n", + "+--------------------------------------------+---------------------------------+\n", + "| 0 | 2.77e+01 |\n", + "| 0 | 2.75e+01 |\n", + "| 0 | 2.28e+01 |\n", + "| 0 | 3.44e+00 |\n", + "| 0 | 2.96e+00 |\n", + "+--------------------------------------------+---------------------------------+\n", + "\n", + "+-------------------------------------+--------------------------------+\n", + "| in_silico_predictors.cadd.raw_score | in_silico_predictors.revel_max |\n", + "+-------------------------------------+--------------------------------+\n", + "| float32 | float64 |\n", + "+-------------------------------------+--------------------------------+\n", + "| 4.10e+00 | 6.02e-01 |\n", + "| 4.07e+00 | 7.19e-01 |\n", + "| 2.69e+00 | 2.67e-01 |\n", + "| 2.28e-01 | NA |\n", + "| 1.86e-01 | NA |\n", + "+-------------------------------------+--------------------------------+\n", + "\n", + "+--------------------------------------+\n", + "| in_silico_predictors.spliceai_ds_max |\n", + "+--------------------------------------+\n", + "| float32 |\n", + "+--------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+--------------------------------------+\n", + "\n", + "+------------------------------------------+-----------------------------+\n", + "| in_silico_predictors.pangolin_largest_ds | in_silico_predictors.phylop |\n", + "+------------------------------------------+-----------------------------+\n", + "| float64 | float64 |\n", + "+------------------------------------------+-----------------------------+\n", + "| 0.00e+00 | 8.78e+00 |\n", + "| 2.00e-02 | 8.78e+00 |\n", + "| 1.00e-02 | 8.67e+00 |\n", + "| 1.00e-02 | -2.55e-01 |\n", + "| 3.00e-02 | -2.55e-01 |\n", + "+------------------------------------------+-----------------------------+\n", + "\n", + "+-------------------------------+-----------------------------------+\n", + "| in_silico_predictors.sift_max | in_silico_predictors.polyphen_max |\n", + "+-------------------------------+-----------------------------------+\n", + "| float64 | float64 |\n", + "+-------------------------------+-----------------------------------+\n", + "| 0.00e+00 | 9.89e-01 |\n", + "| 0.00e+00 | 9.89e-01 |\n", + "| 1.30e-01 | 1.18e-01 |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "+-------------------------------+-----------------------------------+\n", + "showing top 5 rows" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# lof, missense, synonymous variants passing filters\n", + "variants_of_interest = filter_by_csqs(drd2,['lof','missense','synonymous'])\n", + "variants_of_interest.show(5)" + ] + }, + { + "cell_type": "code", + "execution_count": 50, + "id": "9887fdb0", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "[Stage 27:> (0 + 1) / 1]\r" + ] + }, + { + "data": { + "text/plain": [ + "17" + ] + }, + "execution_count": 50, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# number of lof variants passing filters\n", + "filter_by_csqs(drd2,['lof']).count()" + ] + }, + { + "cell_type": "code", + "execution_count": 51, + "id": "86596aaf", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "[Stage 28:> (0 + 1) / 1]\r" + ] + }, + { + "data": { + "text/plain": [ + "409" + ] + }, + "execution_count": 51, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# number of missense variants passing filters\n", + "filter_by_csqs(drd2,['missense']).count()" + ] + }, + { + "cell_type": "code", + "execution_count": 52, + "id": "b7e4368b", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "[Stage 29:> (0 + 1) / 1]\r" + ] + }, + { + "data": { + "text/plain": [ + "238" + ] + }, + "execution_count": 52, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# number of synonymous variants passing filters\n", + "filter_by_csqs(drd2,['synonymous']).count()" + ] + }, + { + "cell_type": "code", + "execution_count": 55, + "id": "4141ccb3", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "[Stage 30:> (0 + 1) / 1]\r" + ] + }, + { + "data": { + "text/plain": [ + "783" + ] + }, + "execution_count": 55, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# number of 'Other' variants passing filters\n", + "filter_by_csqs(drd2,['other']).count()" ] }, { @@ -537,7 +1932,7 @@ "id": "b1031947", "metadata": {}, "source": [ - "## Filter to LOF variants" + "## Filter to 'HC' LOF variants for certain genes" ] }, { @@ -580,12 +1975,12 @@ "id": "f9b2d921", "metadata": {}, "source": [ - "## Filter to pLOF variants that we used to compute constraint metrics\n", + "### Filter to pLOF variants that we used to compute constraint metrics\n", "pLOF variants meets the following requirements:\n", "* High-confidence LOFTEE variants (without any flags),\n", "* Only variants in the MANE Select transcript,\n", "* PASS variants that are SNVs with MAF ≤ 0.1%, and\n", - "* Exome median depth ≥ 30\n", + "* Exome median depth ≥ 30 (**This is changing in v4 constraint?**)\n", "\n", "**Note: this number should match the number of observed pLOF SNVs on the gene page of gnomAD Browser.**\n", "\n", @@ -812,12 +2207,12 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 60, "id": "4f78166f", "metadata": {}, "outputs": [], "source": [ - "ht = v4_public_release(\"exomes\").ht()\n", + "ht = get_ht_by_datatype_and_version(data_type='exomes', version='4.1')\n", "\n", "# Filter to interval, e.g. for ASH1L.\n", "gene_interval = \"chr1:155335268-155563162\"\n", @@ -831,150 +2226,46 @@ }, { "cell_type": "code", - "execution_count": 8, - "id": "8f625a41", - "metadata": { - "scrolled": true - }, - "outputs": [ - { - "data": { - "text/plain": [ - "{'ami', 'asj', 'fin', 'oth', 'remaining'}" - ] - }, - "execution_count": 8, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# For this example, we filter to the ancestry that we included in the FAF calculation\n", - "POPS_TO_REMOVE_FOR_POPMAX[\"v4\"]" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "id": "15729719", - "metadata": {}, - "outputs": [], - "source": [ - "# Remove unwanted stratifications\n", - "items_to_filter1 = ['sex','downsampling','subset']\n", - "freq_meta1, array_exprs1 = filter_arrays_by_meta(\n", - " ht.freq_meta,\n", - " {\n", - " **{a: ht[a] for a in ['freq']},\n", - " \"freq_meta_sample_count\": ht.index_globals().freq_meta_sample_count,\n", - " },\n", - " items_to_filter=items_to_filter1,\n", - " keep=False,\n", - " combine_operator=\"or\",\n", - " )" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "id": "d2886179", - "metadata": {}, - "outputs": [], - "source": [ - "# Remove the genetic ancetries/group that you don't need \n", - "items_to_filter2 = {'gen_anc':['ami', 'asj', 'fin', 'oth', 'remaining'], 'group':['raw']}\n", - "\n", - "freq_meta2, array_exprs2 = filter_arrays_by_meta(\n", - " freq_meta1,\n", - " array_exprs1,\n", - " items_to_filter=items_to_filter2,\n", - " keep=False,\n", - " combine_operator=\"or\",\n", - " )" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "id": "5471689c", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "[[{'group': 'adj'},\n", - " {'gen_anc': 'afr', 'group': 'adj'},\n", - " {'gen_anc': 'amr', 'group': 'adj'},\n", - " {'gen_anc': 'eas', 'group': 'adj'},\n", - " {'gen_anc': 'mid', 'group': 'adj'},\n", - " {'gen_anc': 'nfe', 'group': 'adj'},\n", - " {'gen_anc': 'sas', 'group': 'adj'}]]" - ] - }, - "execution_count": 11, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# The order in the meta is order how AC, AF, AN and homozygote_count is stored in freq. \n", - "freq_meta2.collect()" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "id": "16170ed7", - "metadata": {}, - "outputs": [], - "source": [ - "ht = ht.annotate(**{a: array_exprs2[a] for a in ['freq']})\n", - "ht = ht.annotate_globals(\n", - " freq_meta=freq_meta2,\n", - " freq_meta_sample_count=array_exprs2[\"freq_meta_sample_count\"],\n", - " )" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "id": "e3bcf7a0", + "execution_count": 61, + "id": "ce7a1e8c", "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ - "2024-10-01 16:07:07.655 Hail: WARN: Name collision: field 'all' already in object dict. \n", - " This field must be referenced with __getitem__ syntax: obj['all']\n" + "\r", + "[Stage 39:> (0 + 3) / 3]\r", + "\r", + "[Stage 39:======================================> (2 + 1) / 3]\r" ] }, { "data": { "text/html": [ - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", + "
all
afr
amr
eas
mid
nfe
sas
locus
alleles
AC
AF
AN
homozygote_count
AC
AF
AN
homozygote_count
AC
AF
AN
homozygote_count
AC
AF
AN
homozygote_count
AC
AF
AN
homozygote_count
AC
AF
AN
homozygote_count
AC
AF
AN
homozygote_count
locus<GRCh38>array<str>int32float64int32int64int32float64int32int64int32float64int32int64int32float64int32int64int32float64int32int64int32float64int32int64int32float64int32int64
chr1:155335497["A","C"]11.79e-0356000NA000NA0000.00e+0013800NA0000.00e+00200NA00
chr1:155335570["T","C"]35.26e-0357000NA000NA0017.25e-0313800NA0000.00e+00200NA00
chr1:155335571["TA","T"]35.26e-0357000NA000NA0017.25e-0313800NA0000.00e+00200NA00
chr1:155335746["G","C"]11.77e-0356400NA000NA0000.00e+0013200NA0000.00e+00200NA00
chr1:155335855["G","A"]11.74e-0357600NA000NA0017.25e-0313800NA0000.00e+00600NA00
\n", + "\n", + "\n", + "\n", + "\n", + "\n", "
afr
amr
eas
mid
nfe
sas
locus
alleles
AC
AF
AN
homozygote_count
AC
AF
AN
homozygote_count
AC
AF
AN
homozygote_count
AC
AF
AN
homozygote_count
AC
AF
AN
homozygote_count
AC
AF
AN
homozygote_count
locus<GRCh38>array<str>int32float64int32int64int32float64int32int64int32float64int32int64int32float64int32int64int32float64int32int64int32float64int32int64
chr1:155335497["A","C"]0NA000NA0000.00e+0013800NA0000.00e+00200NA00
chr1:155335570["T","C"]0NA000NA0017.25e-0313800NA0000.00e+00200NA00
chr1:155335571["TA","T"]0NA000NA0017.25e-0313800NA0000.00e+00200NA00
chr1:155335746["G","C"]0NA000NA0000.00e+0013200NA0000.00e+00200NA00
chr1:155335855["G","A"]0NA000NA0017.25e-0313800NA0000.00e+00600NA00

showing top 5 rows

\n" ], "text/plain": [ - "+----------------+------------+--------+----------+--------+\n", - "| locus | alleles | all.AC | all.AF | all.AN |\n", - "+----------------+------------+--------+----------+--------+\n", - "| locus | array | int32 | float64 | int32 |\n", - "+----------------+------------+--------+----------+--------+\n", - "| chr1:155335497 | [\"A\",\"C\"] | 1 | 1.79e-03 | 560 |\n", - "| chr1:155335570 | [\"T\",\"C\"] | 3 | 5.26e-03 | 570 |\n", - "| chr1:155335571 | [\"TA\",\"T\"] | 3 | 5.26e-03 | 570 |\n", - "| chr1:155335746 | [\"G\",\"C\"] | 1 | 1.77e-03 | 564 |\n", - "| chr1:155335855 | [\"G\",\"A\"] | 1 | 1.74e-03 | 576 |\n", - "+----------------+------------+--------+----------+--------+\n", + "+----------------+------------+--------+---------+--------+\n", + "| locus | alleles | afr.AC | afr.AF | afr.AN |\n", + "+----------------+------------+--------+---------+--------+\n", + "| locus | array | int32 | float64 | int32 |\n", + "+----------------+------------+--------+---------+--------+\n", + "| chr1:155335497 | [\"A\",\"C\"] | 0 | NA | 0 |\n", + "| chr1:155335570 | [\"T\",\"C\"] | 0 | NA | 0 |\n", + "| chr1:155335571 | [\"TA\",\"T\"] | 0 | NA | 0 |\n", + "| chr1:155335746 | [\"G\",\"C\"] | 0 | NA | 0 |\n", + "| chr1:155335855 | [\"G\",\"A\"] | 0 | NA | 0 |\n", + "+----------------+------------+--------+---------+--------+\n", "\n", "+----------------------+--------+---------+--------+----------------------+\n", - "| all.homozygote_count | afr.AC | afr.AF | afr.AN | afr.homozygote_count |\n", + "| afr.homozygote_count | amr.AC | amr.AF | amr.AN | amr.homozygote_count |\n", "+----------------------+--------+---------+--------+----------------------+\n", "| int64 | int32 | float64 | int32 | int64 |\n", "+----------------------+--------+---------+--------+----------------------+\n", @@ -985,53 +2276,41 @@ "| 0 | 0 | NA | 0 | 0 |\n", "+----------------------+--------+---------+--------+----------------------+\n", "\n", - "+--------+---------+--------+----------------------+--------+----------+\n", - "| amr.AC | amr.AF | amr.AN | amr.homozygote_count | eas.AC | eas.AF |\n", - "+--------+---------+--------+----------------------+--------+----------+\n", - "| int32 | float64 | int32 | int64 | int32 | float64 |\n", - "+--------+---------+--------+----------------------+--------+----------+\n", - "| 0 | NA | 0 | 0 | 0 | 0.00e+00 |\n", - "| 0 | NA | 0 | 0 | 1 | 7.25e-03 |\n", - "| 0 | NA | 0 | 0 | 1 | 7.25e-03 |\n", - "| 0 | NA | 0 | 0 | 0 | 0.00e+00 |\n", - "| 0 | NA | 0 | 0 | 1 | 7.25e-03 |\n", - "+--------+---------+--------+----------------------+--------+----------+\n", - "\n", - "+--------+----------------------+--------+---------+--------+\n", - "| eas.AN | eas.homozygote_count | mid.AC | mid.AF | mid.AN |\n", - "+--------+----------------------+--------+---------+--------+\n", - "| int32 | int64 | int32 | float64 | int32 |\n", - "+--------+----------------------+--------+---------+--------+\n", - "| 138 | 0 | 0 | NA | 0 |\n", - "| 138 | 0 | 0 | NA | 0 |\n", - "| 138 | 0 | 0 | NA | 0 |\n", - "| 132 | 0 | 0 | NA | 0 |\n", - "| 138 | 0 | 0 | NA | 0 |\n", - "+--------+----------------------+--------+---------+--------+\n", - "\n", - "+----------------------+--------+----------+--------+----------------------+\n", - "| mid.homozygote_count | nfe.AC | nfe.AF | nfe.AN | nfe.homozygote_count |\n", - "+----------------------+--------+----------+--------+----------------------+\n", - "| int64 | int32 | float64 | int32 | int64 |\n", - "+----------------------+--------+----------+--------+----------------------+\n", - "| 0 | 0 | 0.00e+00 | 2 | 0 |\n", - "| 0 | 0 | 0.00e+00 | 2 | 0 |\n", - "| 0 | 0 | 0.00e+00 | 2 | 0 |\n", - "| 0 | 0 | 0.00e+00 | 2 | 0 |\n", - "| 0 | 0 | 0.00e+00 | 6 | 0 |\n", - "+----------------------+--------+----------+--------+----------------------+\n", - "\n", - "+--------+---------+--------+----------------------+\n", - "| sas.AC | sas.AF | sas.AN | sas.homozygote_count |\n", - "+--------+---------+--------+----------------------+\n", - "| int32 | float64 | int32 | int64 |\n", - "+--------+---------+--------+----------------------+\n", - "| 0 | NA | 0 | 0 |\n", - "| 0 | NA | 0 | 0 |\n", - "| 0 | NA | 0 | 0 |\n", - "| 0 | NA | 0 | 0 |\n", - "| 0 | NA | 0 | 0 |\n", - "+--------+---------+--------+----------------------+\n", + "+--------+----------+--------+----------------------+--------+---------+\n", + "| eas.AC | eas.AF | eas.AN | eas.homozygote_count | mid.AC | mid.AF |\n", + "+--------+----------+--------+----------------------+--------+---------+\n", + "| int32 | float64 | int32 | int64 | int32 | float64 |\n", + "+--------+----------+--------+----------------------+--------+---------+\n", + "| 0 | 0.00e+00 | 138 | 0 | 0 | NA |\n", + "| 1 | 7.25e-03 | 138 | 0 | 0 | NA |\n", + "| 1 | 7.25e-03 | 138 | 0 | 0 | NA |\n", + "| 0 | 0.00e+00 | 132 | 0 | 0 | NA |\n", + "| 1 | 7.25e-03 | 138 | 0 | 0 | NA |\n", + "+--------+----------+--------+----------------------+--------+---------+\n", + "\n", + "+--------+----------------------+--------+----------+--------+\n", + "| mid.AN | mid.homozygote_count | nfe.AC | nfe.AF | nfe.AN |\n", + "+--------+----------------------+--------+----------+--------+\n", + "| int32 | int64 | int32 | float64 | int32 |\n", + "+--------+----------------------+--------+----------+--------+\n", + "| 0 | 0 | 0 | 0.00e+00 | 2 |\n", + "| 0 | 0 | 0 | 0.00e+00 | 2 |\n", + "| 0 | 0 | 0 | 0.00e+00 | 2 |\n", + "| 0 | 0 | 0 | 0.00e+00 | 2 |\n", + "| 0 | 0 | 0 | 0.00e+00 | 6 |\n", + "+--------+----------------------+--------+----------+--------+\n", + "\n", + "+----------------------+--------+---------+--------+----------------------+\n", + "| nfe.homozygote_count | sas.AC | sas.AF | sas.AN | sas.homozygote_count |\n", + "+----------------------+--------+---------+--------+----------------------+\n", + "| int64 | int32 | float64 | int32 | int64 |\n", + "+----------------------+--------+---------+--------+----------------------+\n", + "| 0 | 0 | NA | 0 | 0 |\n", + "| 0 | 0 | NA | 0 | 0 |\n", + "| 0 | 0 | NA | 0 | 0 |\n", + "| 0 | 0 | NA | 0 | 0 |\n", + "| 0 | 0 | NA | 0 | 0 |\n", + "+----------------------+--------+---------+--------+----------------------+\n", "showing top 5 rows" ] }, @@ -1040,8 +2319,9 @@ } ], "source": [ - "populations = ['all', 'afr', 'amr', 'eas', 'mid', 'nfe', 'sas']\n", - "ht.select(**{pop: ht.freq[i] for i, pop in enumerate(populations)}).show(5)" + "ht = extract_callstats_for_multiple_ancs(ht, gen_ancs=['afr', 'amr', 'eas', 'mid', 'nfe', 'sas'])\n", + "\n", + "ht.show(5)" ] }, { @@ -1054,84 +2334,79 @@ }, { "cell_type": "code", - "execution_count": 14, - "id": "9a4f26a2", + "execution_count": 62, + "id": "4846958a", "metadata": {}, "outputs": [ { "data": { + "text/html": [ + "\n", + "\n", + "
afr
locus
alleles
AC
AF
AN
homozygote_count
locus<GRCh38>array<str>int32float64int32int64
chr22:15528692["C","G"]6351.90e-02333806
" + ], "text/plain": [ - "[[{'gen_anc': 'afr', 'group': 'adj'}]]" + "+----------------+------------+--------+----------+--------+\n", + "| locus | alleles | afr.AC | afr.AF | afr.AN |\n", + "+----------------+------------+--------+----------+--------+\n", + "| locus | array | int32 | float64 | int32 |\n", + "+----------------+------------+--------+----------+--------+\n", + "| chr22:15528692 | [\"C\",\"G\"] | 635 | 1.90e-02 | 33380 |\n", + "+----------------+------------+--------+----------+--------+\n", + "\n", + "+----------------------+\n", + "| afr.homozygote_count |\n", + "+----------------------+\n", + "| int64 |\n", + "+----------------------+\n", + "| 6 |\n", + "+----------------------+" ] }, - "execution_count": 14, "metadata": {}, - "output_type": "execute_result" + "output_type": "display_data" } ], "source": [ - "ht = v4_public_release(\"exomes\").ht()\n", - "\n", - "# Filter by the location of the variant\n", - "ht = ht.filter((ht.locus.contig == \"chr22\") & (ht.locus.position==15528692))\n", - "\n", - "# Assign th\n", - "items_to_filter1 = {'gen_anc':['afr'], 'group':['adj']}\n", - "freq_meta1, array_exprs1 = filter_arrays_by_meta(\n", - " ht.freq_meta,\n", - " {\n", - " **{a: ht[a] for a in ['freq']},\n", - " \"freq_meta_sample_count\": ht.index_globals().freq_meta_sample_count,\n", - " },\n", - " items_to_filter=items_to_filter1,\n", - " keep=True,\n", - " combine_operator=\"and\",\n", - " )\n", + "ht = get_ht_by_datatype_and_version(data_type='exomes', version='4.1')\n", "\n", - "# if you want to further remove 'downsampling', 'sex', and 'subset'\n", - "items_to_filter2 = ['sex','downsampling','subset']\n", - "freq_meta2, array_exprs2 = filter_arrays_by_meta(\n", - " freq_meta1,\n", - " {\n", - " **{a: ht[a] for a in ['freq']},\n", - " \"freq_meta_sample_count\": ht.index_globals().freq_meta_sample_count,\n", - " },\n", - " items_to_filter=items_to_filter2,\n", - " keep=False,\n", - " combine_operator=\"or\",\n", - " )\n", - "freq_meta2.collect()" + "# When a variant exists...\n", + "extract_callstats_for_1anc_1variant(ht, gen_anc='AFR', contig='chr22', position=15528692, alleles=['C','G']).show(-1)" ] }, { "cell_type": "code", - "execution_count": 15, - "id": "7e044201", + "execution_count": 64, + "id": "9f4c689b", "metadata": {}, "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2024-11-02 02:02:23.969 Hail: WARN: No variant found at chr22:15528692 with alleles ['C', 'A']\n" + ] + }, { "data": { "text/html": [ - "\n", - "\n", - "
locus
alleles
freq
locus<GRCh38>array<str>array<struct{AC: int32, AF: float64, AN: int32, homozygote_count: int64}>
chr22:15528692["C","G"][(793,5.43e-04,1459438,7)]
" + "\n", + "
afr
locus
alleles
AC
AF
AN
homozygote_count
locus<GRCh38>array<str>int32float64int32int64
" ], "text/plain": [ - "+----------------+------------+\n", - "| locus | alleles |\n", - "+----------------+------------+\n", - "| locus | array |\n", - "+----------------+------------+\n", - "| chr22:15528692 | [\"C\",\"G\"] |\n", - "+----------------+------------+\n", - "\n", - "+---------------------------------------------------------------------------+\n", - "| freq |\n", - "+---------------------------------------------------------------------------+\n", - "| array |\n", - "+---------------------------------------------------------------------------+\n", - "| [(793,5.43e-04,1459438,7)] |\n", - "+---------------------------------------------------------------------------+" + "+---------------+------------+--------+---------+--------+\n", + "| locus | alleles | afr.AC | afr.AF | afr.AN |\n", + "+---------------+------------+--------+---------+--------+\n", + "| locus | array | int32 | float64 | int32 |\n", + "+---------------+------------+--------+---------+--------+\n", + "+---------------+------------+--------+---------+--------+\n", + "\n", + "+----------------------+\n", + "| afr.homozygote_count |\n", + "+----------------------+\n", + "| int64 |\n", + "+----------------------+\n", + "+----------------------+" ] }, "metadata": {}, @@ -1139,19 +2414,56 @@ } ], "source": [ - "ht = ht.annotate(**{a: array_exprs2[a] for a in ['freq']})\n", - "ht = ht.annotate_globals(\n", - " freq_meta=freq_meta2,\n", - " freq_meta_sample_count=array_exprs2[\"freq_meta_sample_count\"],\n", - " )\n", + "# When a variant doesn't exist...\n", + "extract_callstats_for_1anc_1variant(ht, gen_anc='AFR', contig='chr22', position=15528692, alleles=['C','A']).show(-1)" + ] + }, + { + "cell_type": "code", + "execution_count": 67, + "id": "6fc82c5c", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Copying gs://gnomad-qin/qin_notebooks/toolbox_for_gnomad_users.ipynb...\n", + "/ [1 files][747.1 KiB/747.1 KiB] \n", + "Operation completed over 1 objects/747.1 KiB. \n", + "[NbConvertApp] WARNING | Config option `extra_template_paths` not recognized by `EmbedHTMLExporter`. Did you mean `template_path`?\n", + "[NbConvertApp] Converting notebook toolbox_for_gnomad_users.ipynb to html_embed\n", + "[NbConvertApp] Writing 943138 bytes to toolbox_for_gnomad_users.html\n", + "Copying file://toolbox_for_gnomad_users.html [Content-Type=text/html]...\n", + "/ [1 files][921.1 KiB/921.1 KiB] \n", + "Operation completed over 1 objects/921.1 KiB. \n" + ] + } + ], + "source": [ + "notebook_name='toolbox_for_gnomad_users'\n", + "\n", + "#Uncomment top lines for the first time exporting on a cluster\n", + "#!/opt/conda/default/bin/conda create -n save-html-env --clone /opt/conda/default\n", + "#!/opt/conda/miniconda3/envs/save-html-env/bin/pip install \"nbconvert<6\" jinja2==3.0.3 jupyter_contrib_nbextensions\n", "\n", - "ht.select('freq').show(-1)" + "# Download the notebook from Google Cloud Storage\n", + "!gsutil -u broad-mpg-gnomad cp gs://gnomad-qin/qin_notebooks/{notebook_name}.ipynb .\n", + "\n", + "# Convert the notebook to HTML with embedded resources\n", + "! /opt/conda/miniconda3/envs/save-html-env/bin/jupyter nbconvert \\\n", + " --CodeFoldingPreprocessor.remove_folded_code=True --to html_embed \\\n", + " --template \"/opt/conda/miniconda3/envs/save-html-env/lib/python3.11/site-packages/jupyter_contrib_nbextensions/templates/toc2.tpl\" \\\n", + " {notebook_name}.ipynb\n", + "\n", + "# Upload the converted HTML back to Google Cloud Storage\n", + "!gsutil -u broad-mpg-gnomad cp {notebook_name}.html gs://gnomad-qin/qin_notebooks/{notebook_name}.html" ] }, { "cell_type": "code", "execution_count": null, - "id": "6fc82c5c", + "id": "a9e4c9bb", "metadata": {}, "outputs": [], "source": [] From c1834707ed35fbcd7ed326bc95ff2e412591b0bc Mon Sep 17 00:00:00 2001 From: jkgoodrich <33063077+jkgoodrich@users.noreply.github.com> Date: Mon, 9 Dec 2024 10:49:50 -0700 Subject: [PATCH 024/121] - Restructure files - Add a description of the repo structure to the README - Add some potential requirements - Update the documentation and make sure it works - Create a notebook specific to loading gnomAD release data and just showing what each dataset looks like. --- README.md | 30 + docs/generate_api_reference.py | 45 +- gnomad_toolbox/analysis/general.py | 42 + gnomad_toolbox/filtering/__init__.py | 1 + gnomad_toolbox/filtering/constraint.py | 1 + gnomad_toolbox/filtering/coverage.py | 1 + .../frequency.py} | 5 +- gnomad_toolbox/filtering/interval.py | 84 + gnomad_toolbox/filtering/pext.py | 1 + gnomad_toolbox/filtering/vep.py | 64 + gnomad_toolbox/load_data.py | 111 + gnomad_toolbox/modules/filter_variant.py | 182 - gnomad_toolbox/modules/import_data.py | 60 - .../notebooks/intro_to_release_data.ipynb | 6622 +++++++++++++++++ .../toolbox_for_gnomad_users.ipynb | 1963 ++++- requirements.txt | 7 + 16 files changed, 8590 insertions(+), 629 deletions(-) create mode 100644 gnomad_toolbox/analysis/general.py create mode 100644 gnomad_toolbox/filtering/__init__.py create mode 100644 gnomad_toolbox/filtering/constraint.py create mode 100644 gnomad_toolbox/filtering/coverage.py rename gnomad_toolbox/{modules/extract_freq.py => filtering/frequency.py} (95%) create mode 100644 gnomad_toolbox/filtering/interval.py create mode 100644 gnomad_toolbox/filtering/pext.py create mode 100644 gnomad_toolbox/filtering/vep.py create mode 100644 gnomad_toolbox/load_data.py delete mode 100644 gnomad_toolbox/modules/filter_variant.py delete mode 100644 gnomad_toolbox/modules/import_data.py create mode 100644 gnomad_toolbox/notebooks/intro_to_release_data.ipynb rename gnomad_toolbox/{use_cases => notebooks}/toolbox_for_gnomad_users.ipynb (72%) diff --git a/README.md b/README.md index 10ead05..52bdd94 100644 --- a/README.md +++ b/README.md @@ -1,2 +1,32 @@ # gnomad-toolbox This repository provides a set of Python functions to simplify working with gnomAD Hail Tables. It includes tools for data access, filtering, and analysis. + +## Repository structure +``` +ggnomad_toolbox/ +│ +├── load_data.py # Functions to load gnomAD release Hail Tables. +│ +├── filtering/ +│ ├── __init__.py +│ ├── constraint.py # Functions to filter constraint metrics (e.g., observed/expected ratios). +│ ├── coverage.py # Functions to filter variants or regions based on coverage thresholds. +│ ├── frequency.py # Functions to filter variants by allele frequency thresholds. +│ ├── interval.py # Functions to filter variants within specified genomic intervals and genes. +│ ├── pext.py # Functions to filter variants using predicted expression (pext) scores. +│ ├── vep.py # Functions to filter variants based on VEP (Variant Effect Predictor) annotations. +│ +├── analysis/ +│ ├── __init__.py +│ ├── general.py # General analysis functions, such as summarizing variant statistics. +│ +├── notebooks/ +│ ├── intro_to_release_data.ipynb # Jupyter notebook introducing the loading of gnomAD release data. +``` + +## Getting started +### Install +pip install -r requirements.txt + +### Opening the notebooks +jupyter lab diff --git a/docs/generate_api_reference.py b/docs/generate_api_reference.py index a38ba3e..34930cf 100755 --- a/docs/generate_api_reference.py +++ b/docs/generate_api_reference.py @@ -21,16 +21,6 @@ EXCLUDE_PACKAGES = ["tests"] -EXCLUDE_TOP_LEVEL_PACKAGES = [] -""" -List of packages/modules to exclude from API reference documentation. - -This should be a list of strings where each string is the full name (from the top level) -of a package or module to exclude. For example, if 'gnomad_toolbox' includes a -'example_notebooks' that you want to exclude, you would add -'gnomad_toolbox.example_notebooks' to this list. -""" - PACKAGE_DOC_TEMPLATE = """{title} {package_doc} @@ -119,7 +109,11 @@ def write_module_doc(module_name): write_file(doc_path, doc) -def write_package_doc(package_name): +def write_package_doc( + package_name, + package_doc = None, + doc_path = None, +): """Write API reference documentation file for a package.""" package = importlib.import_module(package_name) @@ -139,32 +133,21 @@ def write_package_doc(package_name): doc = PACKAGE_DOC_TEMPLATE.format( title=format_title(package_name), - package_doc=package.__doc__ or "", + package_doc= package_doc or package.__doc__ or "", module_links="\n ".join(module_links), ) - doc_path = package_doc_path(package) + doc_path = doc_path or package_doc_path(package) write_file(doc_path, doc) if __name__ == "__main__": - packages = setuptools.find_namespace_packages( - where=REPOSITORY_ROOT_PATH, include=["gnomad_toolbox.*"] - ) - top_level_packages = [ - pkg for pkg in packages if pkg.count(".") == 1 and pkg not in EXCLUDE_TOP_LEVEL_PACKAGES - ] - - for pkg in top_level_packages: - write_package_doc(pkg) - - root_doc = PACKAGE_DOC_TEMPLATE.format( - title=format_title("gnomad_toolbox"), - package_doc="", - module_links="\n ".join( - f"{pkg.split('.')[1]} <{pkg.split('.')[1]}/index>" - for pkg in top_level_packages + write_package_doc( + "gnomad_toolbox", + package_doc=( + "This repository provides a set of Python functions to simplify working " + "with gnomAD Hail Tables. It includes tools for data access, filtering, " + "and analysis." ), + doc_path=os.path.join(DOCS_DIRECTORY, "api_reference", "index.rst"), ) - - write_file(os.path.join(DOCS_DIRECTORY, "api_reference", "index.rst"), root_doc) diff --git a/gnomad_toolbox/analysis/general.py b/gnomad_toolbox/analysis/general.py new file mode 100644 index 0000000..7334f43 --- /dev/null +++ b/gnomad_toolbox/analysis/general.py @@ -0,0 +1,42 @@ +"""Set of general functions for gnomAD analysis.""" + +import hail as hl + + +def get_variant_count( + ht: hl.Table, + afs: list[float] = [0.01, 0.001], + singletons: bool = False, + doubletons: bool = False, +) -> dict: + """ + Count variants with frequency <1%, <0.1%, and singletons (AC == 1). + + .. note:: + + This function works for gnomAD exomes and genomes datasets, not yet for gnomAD + joint dataset, since the HT schema is slightly different. + + :param ht: Input Table. + :param afs: List of allele frequencies cutoffs. + :param singletons: Include singletons. + :param doubletons: Include doubletons. + :return: Dictionary with counts. + """ + counts = {} + + # Filter to PASS variants. + ht = ht.filter(hl.len(ht.filters) == 0) + if singletons: + n_singletons = ht.aggregate(hl.agg.count_where(ht.freq[0].AC == 1)) + counts["number of singletons"] = n_singletons + if doubletons: + n_doubletons = ht.aggregate(hl.agg.count_where(ht.freq[0].AC == 2)) + counts["number of doubletons"] = n_doubletons + + for af in afs: + n_variants = ht.aggregate(hl.agg.count_where(ht.freq[0].AF < af)) + counts[f"number of variants with AF < {af}"] = n_variants + + # Count variants with frequency <1%, <0.1%, and singletons (AC == 1). + return counts diff --git a/gnomad_toolbox/filtering/__init__.py b/gnomad_toolbox/filtering/__init__.py new file mode 100644 index 0000000..6e03199 --- /dev/null +++ b/gnomad_toolbox/filtering/__init__.py @@ -0,0 +1 @@ +# noqa: D104 diff --git a/gnomad_toolbox/filtering/constraint.py b/gnomad_toolbox/filtering/constraint.py new file mode 100644 index 0000000..edbb4ee --- /dev/null +++ b/gnomad_toolbox/filtering/constraint.py @@ -0,0 +1 @@ +# noqa: D104, D100 diff --git a/gnomad_toolbox/filtering/coverage.py b/gnomad_toolbox/filtering/coverage.py new file mode 100644 index 0000000..edbb4ee --- /dev/null +++ b/gnomad_toolbox/filtering/coverage.py @@ -0,0 +1 @@ +# noqa: D104, D100 diff --git a/gnomad_toolbox/modules/extract_freq.py b/gnomad_toolbox/filtering/frequency.py similarity index 95% rename from gnomad_toolbox/modules/extract_freq.py rename to gnomad_toolbox/filtering/frequency.py index ee051e7..1c028a3 100644 --- a/gnomad_toolbox/modules/extract_freq.py +++ b/gnomad_toolbox/filtering/frequency.py @@ -1,9 +1,8 @@ -"""Extract callstats from 'freq' of gnomAD HTs.""" +"""Functions for filtering the gnomAD sites HT frequency data.""" -from typing import List, Optional +from typing import List import hail as hl -from gnomad.resources.grch38.gnomad import POPS_TO_REMOVE_FOR_POPMAX from gnomad.utils.filtering import filter_arrays_by_meta diff --git a/gnomad_toolbox/filtering/interval.py b/gnomad_toolbox/filtering/interval.py new file mode 100644 index 0000000..0a3b810 --- /dev/null +++ b/gnomad_toolbox/filtering/interval.py @@ -0,0 +1,84 @@ +"""Functions to filter the gnmoAD sites HT by interval.""" + +import hail as hl + + +def filter_by_interval(ht: hl.Table, interval: str) -> hl.Table: + """ + Filter variants by interval. + + :param ht: Input Table. + :param interval: Interval string. Format has to be "chr:start-end", e.g., "1:1000-2000". + :return: Table with variants in the interval. + """ + if ht.locus.dtype.reference_genome.name == "GRCh38": + interval = "chr" + interval + ht = hl.filter_intervals( + ht, + [ + hl.parse_locus_interval( + interval, + reference_genome=( + "GRCh38" + if ht.locus.dtype.reference_genome.name == "GRCh38" + else "GRCh37" + ), + ) + ], + ) + return ht + + +def filter_by_gene_symbol(ht: hl.Table, gene: str) -> hl.Table: + """ + Filter variants in a gene. + + .. note:: + This function is to match the number of variants that you will get in the + gnomAD browser, which only focus on variants in "CDS" regions plus 75bp + up- and downstream. This is not the same as filtering by gene symbol with + our `filter_vep_transcript_csqs` function, which will include all variants. + + :param ht: Input Table. + :param gene: Gene symbol. + :return: Table with variants in the gene. + """ + # Make gene symbol uppercase + gene = gene.upper() + + if ht.locus.dtype.reference_genome.name == "GRCh37": + gene_ht = hl.read_table( + "gs://gcp-public-data--gnomad/resources/grch37/browser/gnomad" + ".genes.GRCh37.GENCODEv19.ht" + ) + else: + gene_ht = hl.read_table( + "gs://gcp-public-data--gnomad/resources/grch38/browser/gnomad" + ".genes.GRCh38.GENCODEv39.ht" + ) + + gene_ht = gene_ht.annotate( + cds_intervals=hl.array( + gene_ht.exons.filter(lambda exon: exon.feature_type == "CDS") + ).map( + lambda exon: hl.locus_interval( + hl.if_else( + gene_ht.interval.start.dtype.reference_genome.name == "GRCh38", + "chr" + gene_ht.chrom, + gene_ht.chrom, + ), + exon.start - 75, + exon.stop + 75, + reference_genome=gene_ht.interval.start.dtype.reference_genome, + includes_end=True, + ) + ) + ) + + intervals = gene_ht.filter(gene_ht.gencode_symbol == gene).cds_intervals.collect()[ + 0 + ] + + ht = hl.filter_intervals(ht, intervals) + + return ht diff --git a/gnomad_toolbox/filtering/pext.py b/gnomad_toolbox/filtering/pext.py new file mode 100644 index 0000000..edbb4ee --- /dev/null +++ b/gnomad_toolbox/filtering/pext.py @@ -0,0 +1 @@ +# noqa: D104, D100 diff --git a/gnomad_toolbox/filtering/vep.py b/gnomad_toolbox/filtering/vep.py new file mode 100644 index 0000000..f851598 --- /dev/null +++ b/gnomad_toolbox/filtering/vep.py @@ -0,0 +1,64 @@ +"""Functions to filter gnomAD sites HT by VEP annotations.""" + +from functools import reduce + +import hail as hl +from gnomad.utils.vep import CSQ_CODING, LOF_CSQ_SET + + +def filter_by_csqs( + ht: hl.Table, csqs: list[str], pass_filters: bool = True +) -> hl.Table: + """ + Filter variants by consequences. + + :param ht: Input Table. + :param csqs: List of consequences to filter by. It can be specified as the + categories on the browser: pLoF, Missense / Inframe indel, Synonymous, Other. + :param pass_filters: Boolean if the variants pass the filters. + :return: Table with variants with the specified consequences. + """ + missense_inframe = ["missense_variant", "inframe_insertion", "inframe_deletion"] + + filter_expr = [] + if "lof" in csqs: + filter_expr.append( + hl.literal(LOF_CSQ_SET).contains(ht.vep.most_severe_consequence) + ) + + if "synonymous" in csqs: + filter_expr.append(ht.vep.most_severe_consequence == "synonymous_variant") + + if "missense" in csqs: + filter_expr.append( + hl.literal(missense_inframe).contains(ht.vep.most_severe_consequence) + ) + + if "other" in csqs: + excluded_csqs = hl.literal( + list(LOF_CSQ_SET) + missense_inframe + ["synonymous_variant"] + ) + filter_expr.append(~excluded_csqs.contains(ht.vep.most_severe_consequence)) + + if "coding" in csqs: + filter_expr.append( + hl.literal(CSQ_CODING).contains(ht.vep.most_severe_consequence) + ) + + if len(filter_expr) == 0: + raise ValueError( + "No valid consequence specified. Choose from 'lof', 'synonymous', 'missense', 'other'." + ) + + # Combine filter expressions with logical OR + if len(filter_expr) == 1: + combined_filter = filter_expr[0] + else: + combined_filter = reduce(lambda acc, expr: acc | expr, filter_expr) + + ht = ht.filter(combined_filter) + + if pass_filters: + ht = ht.filter(hl.len(ht.filters) == 0) + + return ht diff --git a/gnomad_toolbox/load_data.py b/gnomad_toolbox/load_data.py new file mode 100644 index 0000000..b40dc10 --- /dev/null +++ b/gnomad_toolbox/load_data.py @@ -0,0 +1,111 @@ +"""Functions to import gnomAD data.""" + +import gnomad.resources.grch37.gnomad as grch37_gnomad +import gnomad.resources.grch38.gnomad as grch38_gnomad +import hail as hl + +GNOMAD_BY_BUILD = { + "GRCh37": grch37_gnomad, + "GRCh38": grch38_gnomad, +} +DATASETS = { + "variant": "public_release", + "all_sites_an": "all_sites_an", + "coverage": "coverage", +} +DATA_TYPES = ["exomes", "genomes", "joint"] +RELEASES_GLOBAL = { + "variant": { + "exomes": "EXOME_RELEASES", + "genomes": "GENOME_RELEASES", + "joint": "JOINT_RELEASES", + }, + "all_sites_an": { + "exomes": "EXOME_AN_RELEASES", + "genomes": "GENOME_AN_RELEASES", + }, + "coverage": { + "exomes": "EXOME_COVERAGE_RELEASES", + "genomes": "GENOME_COVERAGE_RELEASES", + }, +} +RELEASES = { + dataset: { + data_type: { + build: getattr(res, release_global, None) + for build, res in GNOMAD_BY_BUILD.items() + } + for data_type, release_global in data_types.items() + } + for dataset, data_types in RELEASES_GLOBAL.items() +} + + +def get_gnomad_release( + data_type: str = "exomes", + version: str = grch38_gnomad.CURRENT_EXOME_RELEASE, + dataset: str = "variant", +) -> hl.Table: + """ + Get gnomAD HT by dataset, data type, and version. + + .. table:: Available versions for each dataset and data type are (as of 2024-10-29) + :widths: auto + + +--------------+-----------------+----------------------------------+----------------------+ + | Dataset | Data Type | GRCh38 Versions | GRCh37 Versions | + +==============+=================+==================================+======================+ + | variant | exomes | 4.0, 4.1 | 2.1, 2.1.1 | + | +-----------------+----------------------------------+----------------------+ + | | genomes | 3.0, 3.1, 3.1.1, 3.1.2, 4.0, 4.1 | 2.1, 2.1.1 | + | +-----------------+----------------------------------+----------------------+ + | | joint | 4.1 | N/A | + +--------------+-----------------+----------------------------------+----------------------+ + | coverage | exomes | 4.0 | 2.1 | + | +-----------------+----------------------------------+----------------------+ + | | genomes | 3.0.1 | 2.1 | + +--------------+-----------------+----------------------------------+----------------------+ + | all_sites_an | exomes | 4.1 | N/A | + | +-----------------+----------------------------------+----------------------+ + | | genomes | 4.1 | N/A | + +--------------+-----------------+----------------------------------+----------------------+ + + :param data_type: Data type (exomes, genomes, or joint). Default is "exomes". + :param version: gnomAD version. Default is the current exome release. + :param dataset: Dataset type. One of "variant", "all_sites_an", "coverage". Default + is "variant". + :return: Hail Table for requested dataset, data type, and version. + """ + # Get all releases for the given dataset. + releases = RELEASES.get(dataset) + + # Validate dataset. + if releases is None: + raise ValueError(f"{dataset} is invalid. Choose from {RELEASES.keys()}") + + # Get all releases for the given dataset and data_type. + data_type_releases = releases.get(data_type) + + # Validate data type. + if data_type_releases is None: + raise ValueError( + f"Data type {data_type} is invalid. Choose from 'exomes', 'genomes', or " + "'joint'." + ) + + # Check version availability for GRCh38 and GRCh37. + if data_type_releases["GRCh38"] and version in data_type_releases["GRCh38"]: + return ( + getattr(grch38_gnomad, DATASETS[dataset])(data_type).versions[version].ht() + ) + elif data_type_releases["GRCh37"] and version in data_type_releases["GRCh37"]: + return ( + getattr(grch37_gnomad, DATASETS[dataset])(data_type).versions[version].ht() + ) + else: + raise ValueError( + f"Version {version} is not available for { + data_type} in the {dataset} dataset. " + f"Available versions: GRCh38 - {data_type_releases['GRCh38']}, " + f"GRCh37 - {data_type_releases['GRCh37']}." + ) diff --git a/gnomad_toolbox/modules/filter_variant.py b/gnomad_toolbox/modules/filter_variant.py deleted file mode 100644 index f73fe73..0000000 --- a/gnomad_toolbox/modules/filter_variant.py +++ /dev/null @@ -1,182 +0,0 @@ -"""Small functions to filter variants in gnomAD datasets, such as by allele frequency or by variant type.""" - -from functools import reduce - -import hail as hl -from gnomad.utils.vep import CSQ_CODING, LOF_CSQ_SET - - -def get_variant_count( - ht: hl.Table, - afs: list[float] = [0.01, 0.001], - singletons: bool = False, - doubletons: bool = False, -) -> dict: - """ - Count variants with frequency <1%, <0.1%, and singletons (AC == 1). - - .. note:: This function works for gnomAD exomes and genomes datasets, not yet for - gnomAD joint dataset, since the HT schema is slightly different. - - :param ht: Input Table. - :param afs: List of allele frequencies cutoffs. - :param singletons: Include singletons. - :param doubletons: Include doubletons. - :return: Dictionary with counts. - """ - counts = {} - - # Filter to PASS variants. - ht = ht.filter(hl.len(ht.filters) == 0) - if singletons: - n_singletons = ht.aggregate(hl.agg.count_where(ht.freq[0].AC == 1)) - counts["number of singletons"] = n_singletons - if doubletons: - n_doubletons = ht.aggregate(hl.agg.count_where(ht.freq[0].AC == 2)) - counts["number of doubletons"] = n_doubletons - - for af in afs: - n_variants = ht.aggregate(hl.agg.count_where(ht.freq[0].AF < af)) - counts[f"number of variants with AF < {af}"] = n_variants - - # Count variants with frequency <1%, <0.1%, and singletons (AC == 1). - return counts - - -def filter_by_interval(ht: hl.Table, interval: str) -> hl.Table: - """ - Filter variants by interval. - - :param ht: Input Table. - :param interval: Interval string. Format has to be "chr:start-end", e.g., "1:1000-2000". - :return: Table with variants in the interval. - """ - if ht.locus.dtype.reference_genome.name == "GRCh38": - interval = "chr" + interval - ht = hl.filter_intervals( - ht, - [ - hl.parse_locus_interval( - interval, - reference_genome=( - "GRCh38" - if ht.locus.dtype.reference_genome.name == "GRCh38" - else "GRCh37" - ), - ) - ], - ) - return ht - - -def filter_by_gene_symbol(ht: hl.Table, gene: str) -> hl.Table: - """ - Filter variants in a gene. - - .. note:: - This function is to match the number of variants that you will get in the - gnomAD browser, which only focus on variants in "CDS" regions plus 75bp - up- and downstream. This is not the same as filtering by gene symbol with - our `filter_vep_transcript_csqs` function, which will include all variants. - - :param ht: Input Table. - :param gene: Gene symbol. - :return: Table with variants in the gene. - """ - # Make gene symbol uppercase - gene = gene.upper() - - if ht.locus.dtype.reference_genome.name == "GRCh37": - gene_ht = hl.read_table( - "gs://gcp-public-data--gnomad/resources/grch37/browser/gnomad" - ".genes.GRCh37.GENCODEv19.ht" - ) - else: - gene_ht = hl.read_table( - "gs://gcp-public-data--gnomad/resources/grch38/browser/gnomad" - ".genes.GRCh38.GENCODEv39.ht" - ) - - gene_ht = gene_ht.annotate( - cds_intervals=hl.array( - gene_ht.exons.filter(lambda exon: exon.feature_type == "CDS") - ).map( - lambda exon: hl.locus_interval( - hl.if_else( - gene_ht.interval.start.dtype.reference_genome.name == "GRCh38", - "chr" + gene_ht.chrom, - gene_ht.chrom, - ), - exon.start - 75, - exon.stop + 75, - reference_genome=gene_ht.interval.start.dtype.reference_genome, - includes_end=True, - ) - ) - ) - - intervals = gene_ht.filter(gene_ht.gencode_symbol == gene).cds_intervals.collect()[ - 0 - ] - - ht = hl.filter_intervals(ht, intervals) - - return ht - - -def filter_by_csqs( - ht: hl.Table, csqs: list[str], pass_filters: bool = True -) -> hl.Table: - """ - Filter variants by consequences. - - :param ht: Input Table. - :param csqs: List of consequences to filter by. It can be specified as the - categories on the browser: pLoF, Missense / Inframe indel, Synonymous, Other. - :param pass_filters: Boolean if the variants pass the filters. - :return: Table with variants with the specified consequences. - """ - missense_inframe = ["missense_variant", "inframe_insertion", "inframe_deletion"] - - filter_expr = [] - if "lof" in csqs: - filter_expr.append( - hl.literal(LOF_CSQ_SET).contains(ht.vep.most_severe_consequence) - ) - - if "synonymous" in csqs: - filter_expr.append(ht.vep.most_severe_consequence == "synonymous_variant") - - if "missense" in csqs: - filter_expr.append( - hl.literal(missense_inframe).contains(ht.vep.most_severe_consequence) - ) - - if "other" in csqs: - excluded_csqs = hl.literal( - list(LOF_CSQ_SET) + missense_inframe + ["synonymous_variant"] - ) - filter_expr.append(~excluded_csqs.contains(ht.vep.most_severe_consequence)) - - if "coding" in csqs: - filter_expr.append( - hl.literal(CSQ_CODING).contains(ht.vep.most_severe_consequence) - ) - - if len(filter_expr) == 0: - raise ValueError( - "No valid consequence specified. Choose from 'lof', 'synonymous', 'missense', 'other'." - ) - - # Combine filter expressions with logical OR - if len(filter_expr) == 1: - combined_filter = filter_expr[0] - else: - combined_filter = reduce(lambda acc, expr: acc | expr, filter_expr) - - ht = ht.filter(combined_filter) - - if pass_filters: - ht = ht.filter(hl.len(ht.filters) == 0) - - return ht diff --git a/gnomad_toolbox/modules/import_data.py b/gnomad_toolbox/modules/import_data.py deleted file mode 100644 index 8616917..0000000 --- a/gnomad_toolbox/modules/import_data.py +++ /dev/null @@ -1,60 +0,0 @@ -"""Functions to import gnomAD data.""" - -import hail as hl -from gnomad.resources.grch37.gnomad import EXOME_RELEASES as GRCh37_EXOME_RELEASES -from gnomad.resources.grch37.gnomad import GENOME_RELEASES as GRCh37_GENOME_RELEASES -from gnomad.resources.grch37.gnomad import public_release as grch37_public_release -from gnomad.resources.grch38.gnomad import EXOME_RELEASES as GRCh38_EXOME_RELEASES -from gnomad.resources.grch38.gnomad import GENOME_RELEASES as GRCh38_GENOME_RELEASES -from gnomad.resources.grch38.gnomad import JOINT_RELEASES as GRCh38_JOINT_RELEASES -from gnomad.resources.grch38.gnomad import public_release as grch38_public_release - - -def get_ht_by_datatype_and_version( - data_type: str = "exomes", version: str = "4.1" -) -> hl.Table: - """ - Get gnomAD HT by data type and version. - - .. note:: - - Available versions for each data type are (as of 2024-10-29): - - :: - - | Data Type | GRCh38 Versions | GRCh37 Versions | - |-----------------|----------------------------------|----------------------| - | exomes | 4.0, 4.1 | 2.1, 2.1.1 | - | genomes | 3.0, 3.1, 3.1.1, 3.1.2, 4.0, 4.1 | 2.1, 2.1.1 | - | joint | 4.1 | N/A | - - :param data_type: Data type (exomes, genomes, or joint). - :param version: gnomAD version. - :return: Hail Table. - """ - # Mapping data types to version sets for GRCh38 and GRCh37 - versions_by_type = { - "exomes": (GRCh38_EXOME_RELEASES, GRCh37_EXOME_RELEASES), - "genomes": (GRCh38_GENOME_RELEASES, GRCh37_GENOME_RELEASES), - "joint": (GRCh38_JOINT_RELEASES, []), - } - - # Validate data type - if data_type not in versions_by_type: - raise ValueError( - f"Data type {data_type} is invalid. Choose from 'exomes', 'genomes', or 'joint'." - ) - - # Get GRCh38 and GRCh37 versions for the given data type - grch38_versions, grch37_versions = versions_by_type[data_type] - - # Check version availability for GRCh38 and GRCh37 - if version in grch38_versions: - return grch38_public_release(data_type).ht() - elif version in grch37_versions: - return grch37_public_release(data_type).ht() - else: - raise ValueError( - f"Version {version} is not available for {data_type}. " - f"Available versions: GRCh38 - {grch38_versions}, GRCh37 - {grch37_versions}." - ) diff --git a/gnomad_toolbox/notebooks/intro_to_release_data.ipynb b/gnomad_toolbox/notebooks/intro_to_release_data.ipynb new file mode 100644 index 0000000..c84c0d7 --- /dev/null +++ b/gnomad_toolbox/notebooks/intro_to_release_data.ipynb @@ -0,0 +1,6622 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "853c94b9", + "metadata": {}, + "source": [ + "# Introduction to gnomAD Hail release files\n" + ] + }, + { + "cell_type": "markdown", + "id": "5cf83cfe-0fce-40ae-add7-c9f2c20c1e85", + "metadata": {}, + "source": [ + "In this notebook we will explore all of the available [gnomAD v4 release files](https://gnomad.broadinstitute.org/data#v4) that are in Hail formats." + ] + }, + { + "attachments": { + "afcd4ecc-4e90-464b-91c7-9cd80b0e92ba.png": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAACTYAAAMYCAYAAAD7RiqDAAAMQWlDQ1BJQ0MgUHJvZmlsZQAASImVVwdYU8kWnluSkEBoAQSkhN4EESkBpITQQu8INkISIJQYA0HFjiwquBZURMCGroooWAGxI3YWxd4XCwrKuliwK29SQNd95XvzfXPnv/+c+c+Zc2fuvQOA2gmOSJSNqgOQI8wTxwT50ccnJdNJPUAZaAJ1QASjOdxcETMqKgzAMtT+vby7ARBpe9VeqvXP/v9aNHj8XC4ASBTEqbxcbg7EBwDAq7kicR4ARClvNj1PJMWwAi0xDBDixVKcLsfVUpwqx3tkNnExLIjbAFBS4XDE6QCoXoY8PZ+bDjVU+yF2FPIEQgDU6BB75+RM5UGcArE1tBFBLNVnpP6gk/43zdRhTQ4nfRjL5yIrSv6CXFE2Z+b/mY7/XXKyJUM+LGFVyRAHx0jnDPN2K2tqqBSrQNwnTI2IhFgT4g8CnsweYpSSIQmOl9ujBtxcFswZ0IHYkcfxD4XYAOJAYXZEmIJPTRMEsiGGKwSdIchjx0GsC/Fifm5ArMJmk3hqjMIX2pgmZjEV/DmOWOZX6uuBJCueqdB/ncFnK/Qx1YKMuESIKRCb5wsSIiBWhdghNys2VGEzriCDFTFkI5bESOM3hziGLwzyk+tj+WniwBiFfUlO7tB8sU0ZAnaEAu/Ly4gLlucHa+NyZPHDuWCX+UJm/JAOP3d82NBceHz/APncsR6+MD5WofNBlOcXIx+LU0TZUQp73JSfHSTlTSF2zs2PVYzFE/LggpTr42mivKg4eZx4QSYnJEoeD74ChAEW8Ad0IIE1FUwFmUDQ0dfUB+/kPYGAA8QgHfCBvYIZGpEo6xHCaywoAH9CxAe5w+P8ZL18kA/5r8Os/GoP0mS9+bIRWeApxDkgFGTDe4lslHDYWwJ4AhnBP7xzYOXCeLNhlfb/e36I/c4wIROmYCRDHulqQ5bEAKI/MZgYSLTB9XFv3BMPg1dfWJ1wBu4+NI/v9oSnhE7CI8J1Qhfh9hRBofinKMNBF9QPVOQi9cdc4JZQ0wX3w72gOlTGdXB9YI87Qz9M3Ad6doEsSxG3NCv0n7T/NoMfnobCjuxIRskjyL5k659HqtqqugyrSHP9Y37ksaYO55s13POzf9YP2efBNvRnS2wxth87i53EzmNHsCZAx45jzVg7dlSKh1fXE9nqGvIWI4snC+oI/uFv6MlKM5nrWOfY6/hF3pfHnyF9RwPWVNFMsSA9I4/OhF8EPp0t5DqMojs5OjkDIP2+yF9fb6Jl3w1Ep/07t/APALyODw4OHv7OhRwHYK8b3P6HvnPWDPjpUAbg3CGuRJwv53DphQDfEmpwp+kBI2AGrOF8nIAr8AS+IACEgEgQB5LAZBh9BlznYjAdzAYLQDEoBSvAGlAJNoItYAfYDfaBJnAEnARnwEVwGVwHd+Hq6QYvQD94Bz4jCEJCqAgN0UOMEQvEDnFCGIg3EoCEITFIEpKCpCNCRILMRhYipUgZUolsRmqRvcgh5CRyHulEbiMPkV7kNfIJxVAVVAs1RC3R0SgDZaKhaBw6CU1Hp6EFaBG6DK1Aa9BdaCN6Er2IXke70BfoAAYwZUwHM8HsMQbGwiKxZCwNE2NzsRKsHKvB6rEW+JyvYl1YH/YRJ+I0nI7bwxUcjMfjXHwaPhdfilfiO/BGvA2/ij/E+/FvBCrBgGBH8CCwCeMJ6YTphGJCOWEb4SDhNNxL3YR3RCJRh2hFdIN7MYmYSZxFXEpcT2wgniB2Eh8TB0gkkh7JjuRFiiRxSHmkYtI60i7ScdIVUjfpg5KykrGSk1KgUrKSUKlQqVxpp9IxpStKz5Q+k9XJFmQPciSZR55JXk7eSm4hXyJ3kz9TNChWFC9KHCWTsoBSQamnnKbco7xRVlY2VXZXjlYWKM9XrlDeo3xO+aHyRxVNFVsVlspEFYnKMpXtKidUbqu8oVKpllRfajI1j7qMWks9RX1A/aBKU3VQZavyVOepVqk2ql5RfalGVrNQY6pNVitQK1fbr3ZJrU+drG6pzlLnqM9Vr1I/pH5TfUCDpjFGI1IjR2Opxk6N8xo9miRNS80ATZ5mkeYWzVOaj2kYzYzGonFpC2lbaadp3VpELSsttlamVqnWbq0OrX5tTW1n7QTtGdpV2ke1u3QwHUsdtk62znKdfTo3dD6NMBzBHMEfsWRE/YgrI97rjtT11eXrlug26F7X/aRH1wvQy9Jbqdekd18f17fVj9afrr9B/7R+30itkZ4juSNLRu4beccANbA1iDGYZbDFoN1gwNDIMMhQZLjO8JRhn5GOka9RptFqo2NGvcY0Y29jgfFq4+PGz+nadCY9m15Bb6P3mxiYBJtITDabdJh8NrUyjTctNG0wvW9GMWOYpZmtNms16zc3Ng83n21eZ37HgmzBsMiwWGtx1uK9pZVlouUiyybLHitdK7ZVgVWd1T1rqrWP9TTrGutrNkQbhk2WzXqby7aorYtthm2V7SU71M7VTmC33q5zFGGU+yjhqJpRN+1V7Jn2+fZ19g8ddBzCHAodmhxejjYfnTx65eizo785ujhmO251vDtGc0zImMIxLWNeO9k6cZ2qnK6NpY4NHDtvbPPYV852znznDc63XGgu4S6LXFpdvrq6uYpd61173czdUtyq3W4ytBhRjKWMc+4Edz/3ee5H3D96uHrkeezz+MvT3jPLc6dnzzircfxxW8c99jL14nht9urypnuneG/y7vIx8eH41Pg88jXz5flu833GtGFmMncxX/o5+on9Dvq9Z3mw5rBO+GP+Qf4l/h0BmgHxAZUBDwJNA9MD6wL7g1yCZgWdCCYEhwavDL7JNmRz2bXs/hC3kDkhbaEqobGhlaGPwmzDxGEt4Wh4SPiq8HsRFhHCiKZIEMmOXBV5P8oqalrU4WhidFR0VfTTmDExs2POxtJip8TujH0X5xe3PO5uvHW8JL41QS1hYkJtwvtE/8SyxK7xo8fPGX8xST9JkNScTEpOSN6WPDAhYMKaCd0TXSYWT7wxyWrSjEnnJ+tPzp58dIraFM6U/SmElMSUnSlfOJGcGs5AKju1OrWfy+Ku5b7g+fJW83r5Xvwy/rM0r7SytJ50r/RV6b0ZPhnlGX0ClqBS8CozOHNj5vusyKztWYPZidkNOUo5KTmHhJrCLGHbVKOpM6Z2iuxExaKuaR7T1kzrF4eKt+UiuZNym/O04I98u8Ra8ovkYb53flX+h+kJ0/fP0JghnNE+03bmkpnPCgILfpuFz+LOap1tMnvB7IdzmHM2z0Xmps5tnWc2r2he9/yg+TsWUBZkLfi90LGwrPDtwsSFLUWGRfOLHv8S9EtdsWqxuPjmIs9FGxfjiwWLO5aMXbJuybcSXsmFUsfS8tIvS7lLL/w65teKXweXpS3rWO66fMMK4grhihsrfVbuKNMoKyh7vCp8VeNq+uqS1W/XTFlzvty5fONaylrJ2q6KsIrmdebrVqz7UplReb3Kr6qh2qB6SfX79bz1Vzb4bqjfaLixdOOnTYJNtzYHbW6ssawp30Lckr/l6daErWd/Y/xWu01/W+m2r9uF27t2xOxoq3Wrrd1psHN5HVonqevdNXHX5d3+u5vr7es3N+g0lO4BeyR7nu9N2XtjX+i+1v2M/fUHLA5UH6QdLGlEGmc29jdlNHU1JzV3Hgo51Nri2XLwsMPh7UdMjlQd1T66/BjlWNGxweMFxwdOiE70nUw/+bh1SuvdU+NPXWuLbus4HXr63JnAM6fOMs8eP+d17sh5j/OHLjAuNF10vdjY7tJ+8HeX3w92uHY0XnK71HzZ/XJL57jOY1d8rpy86n/1zDX2tYvXI6533oi/cevmxJtdt3i3em5n3351J//O57vz7xHuldxXv1/+wOBBzR82fzR0uXYdfej/sP1R7KO7j7mPXzzJffKlu+gp9Wn5M+NntT1OPUd6A3svP5/wvPuF6MXnvuI/Nf6sfmn98sBfvn+194/v734lfjX4eukbvTfb3zq/bR2IGnjwLufd5/clH/Q+7PjI+Hj2U+KnZ5+nfyF9qfhq87XlW+i3e4M5g4Mijpgj+xXAYEXT0gB4vR0AahIANHg+o0yQn/9kBZGfWWUI/CcsPyPKiisA9fD/PboP/t3cBGDPVnj8gvpqEwGIogIQ5w7QsWOH69BZTXaulBYiPAdsivyampMK/k2Rnzl/iPvnFkhVncHP7b8Ah9d8bcAadJgAAAA4ZVhJZk1NACoAAAAIAAGHaQAEAAAAAQAAABoAAAAAAAKgAgAEAAAAAQAACTagAwAEAAAAAQAAAxgAAAAA0O33uAAAQABJREFUeAHsnQe8JEW1/2vzLnF3JaddwpIXBESSIllEJAgYUcGETzGDisJDn4lgFhTDI6iogDz8CwaCJEWQKEsOwpKDAssSF3Z3/ufbcNqanuqZnnDvzr33dz6fe7unu6q6+tvdFU6dOjUqhFCzP4kIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAI9A2B0X2TE2VEBERABERABERABERABERABERABERABERABERABERABERABERABERABERABERABERABERABF4mIMMmvQoiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAJ9R0CGTX33SJQhERABERABERABERABERABERABERABERABERABERABERABERABERABERABERABERABERABGTbpHRABERABERABERABERABERABERABERABERABERABERABERABERABERABERABERABERABEeg7AjJs6rtHogyJgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAjIsEnvgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIQN8RkGFT3z0SZUgEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAERECGTXoHREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAE+o6ADJv67pEoQyIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAmOFQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREoA8IjBodJk5dNSy13PSwxNQVw8QlJocJi7/8x/6kJcPY8RPD6LHjwugx48IY244aMzaMGT02LFg4P9QWzA8L5r8YFi6wP9vOf+H5MO+5p8K8p+eEec+89Pe87T/9+ENh7qOzw/OP3xdCbWEf3LiyIAIiIAIiIAJpAqPscC19SkdFQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAR6TsAMmJZYcd2wzLT1w9SV1zFDplXNkGmlMGmJqSGMYgh3kKRWC889/bgZOj1ohk73hccfuC38+56bw9MP3SqDp0F6BLqMCIiACIhAcwIybGrOR2dFQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREoCsCYyYsHVZYf5uwwlqbhamrrBOWXn41s18a01WaAxm5VlsQnnzk3vD4/beFh++8Jjx882VhwbwnB/KSSlsEREAEREAEkgRk2JTEooMiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIi0CEB88i0/HrbhpXW3TIst+YmYallVukwof6JNvff94dH/3ldePDWK8Ijt1wqj07982iUExEQAREY1gRk2DSsH69uTgREQAQGh8Aqq04LO7/hTWGppZYMtT6eYTI4NHQVERABEWgksPUWm4W//f2axhM6IgIiIAJDkMCo2sLw4P33hnvvuzf8/TJTZEtEQAREQAREQAREQAREQAREQAReImD68RU23CFM22g7M2jaIowdP2nYkpn/wnNm4PT3cM+si8PDN15oRk4Lhu296sZEQAREQAQWLQEZNi1a/rq6CIiACAx5AnvsvV/YbPMtwp677xpmrLVGWGzS8O2oDfmHpRsQARFYZATuuuuusMYaayyy6+vCIiACItBLAnfedXe485+zwx/PvzDMvvO28Luzzuhl8kpLBERABERABERABERABERABIYcgaVX3Sisvc0+YdWZrw1jxk4YcvnvNsML5s8L993wl3D7ZWeGJ++b1W1yii8CIiACIiACdQRk2FSHQz9EQAREQATaIYBR035vfWvY/637tBNNYUVABERgxBGQYdOIe+S6YREYMQTOOOvs8Iuf/1zGTSPmietGRUAEREAEREAEREAEREAEnMCoMePC9C3fHGZssUdYevnpfnjEb598ZHa44++/C7Ov+D9z4vTiiOchACIgAiIgAt0TGGNJfLH7ZJSCCIiACIjASCOwxTbbhtdtt2P46IfeN9JuXfcrAiIgAm0TeOKJJ8KUKVPajqcIIiACItDvBDZYb51wx933hjtvvy3Mnftkv2dX+RMBERABERABERABERABERCBrgmMGjMxrL/L+8M2+385rLrBa8PEJSZ3neZwSgAeK62zRZixzb5h9IQlwr9n32jL1M0fTreoexEBERABERhkAjJsGmTgupwIiIAIDBcCW23zmvDB9x0YVlh+ueFyS7oPERABERgwAjJsGjC0SlgERKAPCExeeunwrzlPhX9cc2Uf5EZZEAEREAEREAEREAEREAEREIGBITB67CQzaDoobP2u/wkrzHiVLTk3fmAuNExShc9yq28cZrxmvzBmwlLhMTNwqi2UgdMweby6DREQAREYVAJjB/VqupgIiIAIiMCwIbDyKquFGWutMWzuRzciAiIgAiIgAiIgAiLQGQHahEstuVRnkRVLBERABERABERABERABERABIYAgelb7Rs2fv37w/hJSw6B3PZXFsdNWCysv/07wlpbvilcf+5Pw+zLf9NfGVRuREAEREAE+p6ADJv6/hEpgyIgAiLQnwRqo8aExSZN6s/MKVciIAIiIAIiIAIiIAKDRoA2YW3U6EG7ni4kAiIgAiIgAiIgAiIgAiIgAoNFYMmVNwiv3ufQMHXlGYN1yew6856dG56d82h45omHw9OPPxSem/tYeP6ZJ8K8Z54Mzz9l26efCAvmPWsrvM0zL0gv2N8Ci1ezv1Fh1Ogx9jc+jBo7wTwlLRYmLDElTFxySpiw+NJh4uJTwqSlXhGWmLpiWHzKCmGxycuFCYsNzkQVjMI23+uTYc3Ndw9XnnlseOqBmwaVqS4mAiIgAiIwdAnIsGnoPjvlXAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREoNcEbPLGRrt/Iqy9zd5h1ABO5Fiw4MUw58E7w5yH7g5PPHRHePz+O8LcB2zJNjvemdSy5d6yJd/mPxsWPP9EeOHJB8JTTRIbNWZcWGrlDcPUVWaEKSvOCJNXXD1MXmmtMMaOD4RgJPb6j54Qbr/srDDrnO+YPdbCgbiM0hQBERABERhGBGTYNIwepm5FBERABERABERABERABERABERABERABERABERABERABERABERABESgcwITJq8SXvfeo8PSy0/vPJGSmPNfeC78a/YN4dG7rg+P3HVdePKeWRYST0uLTjCievJey4v93Z1nY1RYetpGYfk1NgnLrbFxWHb6zDB2fO9WcMBYbJ3X7BNWmLFZuOTEz4Z5c+7Pr6wdERABERABESgSkGFTkYh+i4AIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIjDgCy2+wfdjqrZ8P42wJt14Jy8k9eOvfw/03/SX8+44rLNlFa8hU7b5qZnR1ffZ3+0XEGBWWmbFlWGWD14aV1t0iW8auWjrNQ2E89oZPnRQuP+1r4ZGbsgs1j6CzIiACIiACI5KADJtG5GPXTYuACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACDiBtbbdP7xyt4N6svTcvGfnhntnXRz+eeXvw1O2tNzQl5oZZV2e/f3DbmZJW7puzVe/May20XZhwmJLdXV7GJG99l3/E/7xhx+FOy/9RVdpKbIIiIAIiMDwJCDDpuH5XHVXIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACFQist8uHwoY7vqtCyOZB/nXPjeHWv5wRHr7hguYBh/hZjLX+cRZ/R4cVZu4U1n3tfmHZaRt2fFcsTbfJG/8rjJu4RLjlvBM6TkcRRUAEREAEhicBGTYNz+equxIBERABERABERABERABERABERABERABERABERABERABERABERABEWhBYN2dP9iVUVOttjDzznTTRaeGZx66tcXVht9pjLj4W3zFdcMG278z8+KEoVIngnEZPG89/8edRFccERABERCBYUpAhk3D9MEu6tsaN25cWHHFFfNsLLfccmHChAnhgQceCPPmzQsPPfRQfq7KzvLLL5/FbxV24cKF4cEHHwxsB0KOPfbYcMghhzQkfdRRR4XDDjus4bgOiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAI9CeB6VvuE2bu9J6OM/fAzZeFa885Pjz/2D0dpzFcImLUdeUvjwizzp0WNt39I2Hl9bfp6NZ4Hs8/9ViYfcWZHcVXJBEQAREQgeFHQIZNw++Z9sUdfetb3woHH3xwaV6WWWaZ8Nhjj5Wej09stNFG4frrr48Ptdx/8cUXwzPPPBPuv//+cPzxx4ef/OQnYcGCBS3jtQqw5pprJoOMGTMmeVwHRUAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAE+o/A5Ombhs32/FhHGZvz8N3hijOODk/df0NH8YdzJIy8/nbKZ8KSq8wMW+732TB5hdXbvl2eC4znzL627biKIAIiIAIiMPwIdOYHcPhx0B31mMBb3vKWpikeeuihTc/HJ8ePHx//rLSPx6jJkyeHDTfcMPzwhz8Mzz33XDj99NODDJAq4VMgERABERABERABERABERABERABERABERABERABERABERABERi2BEaNmRhes/8Xw+jR7fmAWDD/hXD9n34Szv/2/jJqavF2YPQFJ3jBrR3hufB8eE4SERABERABEWivthYvEahAYN111w0sPddM9t9///C5z32uWZCensPQab/99gvbbrtt2HrrrcNdd93V0/SVmAiIgAgMBIH58+eHs846K0/6DW94Q1hiiSXy38UdluK87LLLiofz30suuWTAC95KK62UH9OOCIjA8CDw5JNPhiuuuCI88sgj4V//+le2LC8eMpdddtmw+eabB5b1HY5Sq9XCX//61+x+V1999bDaaqsNx9vUPYmACIiACIiACIjAoBFYbLHFwvPPP5+1r3px0aWWWirMnTu3F0kpjUEkMFSe21DJ5yA+Ol1KBESgDQKbv/XwMGnJV7QRI4SnH38wXHLSYeHZR+9sK95ID3z7RSeH+2/6a3jdgV8PS0ytrpvm+fCcrvzl4SMdoe5fBERABEY8ARk2jfhXoPcAPv/5z7dMdOWVV84Gnu69996WYXsZgEG92267LWyyySbhxhtv7GXSSksEREAEek7gwgsvDLEHvFNOOSW8+93vLr0ORk1x+LKAGJ/utttugWVDp0yZUhZswI9fcsklYbvttsuuc80114RNN920q2t+5StfCWeccUY48MADwyc+8YmO06J++M53vhOuu+66MGfOnLDNNttkhrG77rprWGWVVTpOVxFFYCAIYNhz3nnnhT//+c8NyWPgdMstt4RLL700rLHGGgHD8mbGkQ0JDIEDCxcuDGeffXaW0x122EGGTUPgmSmLIjCSCWBwimdhjNGfffbZpihoh6y99trhyiuvDNtvv33TsDr5EgEmNC299NJt43j66aczI462IypCwKj4TW96U3j1q1+dtTl+//vfh3/84x8i0waBCRMmhKlTp4bFF18863vEUV944YUBMwj63//93/C2t70tK4swhHdhEuLXvva18OKLL2b9oKuvvtpPdbQ999xzwy677BIeffTRbILNggULOkqn3yONHj06e46U84899ligje7CPscGQvj+fv3rX2dJv+51rwvtPK+JEyeGf//732HUqFHhm9/8Zvjv//7vLB283VNPoTc4//zzs+c3EHnvRZoj5f3qhlWzMobv8YknnmiafNl70jTSMDxJ+2KfffbJJgvynTO5homITCwqEyZZn3zyydnpdr/PsjSH0/Gyemgw73Hy6q8K0zZur5394K1XhL/97HOhtuDFtrPK98ik05TwLQ7XOjK+X4zB/vSNd4St331UWGndLeNTTfd5Tv++dacw997W7cyBrHebZnIEn6QdtPfee2fjrmuuuWY29koZefPNN49gKkPr1r0tS64ff/zxlhMcaC/6uBLtyV7IDTfckOmvB0oH8spXvjJ3CvD+978//OpXv8ruocpKT63KFSaGwIO02rV7IM5ee+0VyN9aa62V8Uef/4c//EFOWhIvlpaiS0DRoe4I7LnnnpUSOOywwyqF63WgsWPHZoN/FNQSERABEehnAhgyxVL8HZ9rZx+lMsqVV73qVeGmm25qJ2rPwtJAjo2wME7oRlD6H3PMMWHWrFnh4Ycf7jipn/70p2HmzJkBBcu1116bNR5//vOfhw984ANhs802C3feqdlYHcNVxAEhcNFFF9UZNb3iFa8I66yzTtYRjI2Y8FZ5wgknBDzBSURABERABAafAINhGJzecccdmQFIqxxgkIpyTEbVrUj95/w73/nOjDGc2/m79dZb/5OI9ioR+K//+q8wb968rK383e9+N8CeSQYY5DEoR7tcUo3AsccemxmRUDYU31s8cj733HOBSSAf//jHqyVYMRRGaZQxGFXFcvDBB2eGLuPHjw+f/vSn41Md7e+8885ZPIxkMMIZrkLfmufHIAT97fhZMtiDodjtt98efvCDH2QDHr3i4HUFzxLjuHYE/ShxiBt7d+U5uSf+nXbaqZ0kBz3sSHm/ugHbrIxBL8O7ef/994ef/exnthRXo6687D3pJk9DKS4GTUwkwugEPRFlMXXeD3/4w0z3RBl96KGHJm8Jb+l8X518n8kEh9nBsnpoMG9zszd9uK3L3XP9ReGykz7dkVETF+J7jOuHeB9dDd8jxnLf+973AgZ0w1UwCoMjPNuRt3/ym6X8YpbUu0x8kwwOAd5XJu385je/CV/4whcyw3n6BYw58E7/v//3/5L1y+DkTlepSsDbsnxLPL9WsuOOO+bfY69WZ8ILP3XmQOlAqL+9XmYSMOIrH8RlSGq/VblCX4721D333BPe+MY3tsKXncegiXEn/34OP/zw7Pv58Ic/HL7//e+Hf/7znwFdxWtf+9pK6Y2UQI2t1ZFy57rPASHALD1cAFeRfffdt0qw0jA09phV5H8UAlgDM1B+8cUXN7UopYNOgSERAREQgX4lgNLkl7/8ZV328OBU1eIbIygGG/zvqaeeyhTiHF9//fWzdDF02HDDDbNGUt2FBuHHBz/4wUzh24tLcW8HHXRQYNuN0KDFgMnlXe96V/jGN76RLWXKMRTUeEy47777PIi2IrBICTDY9ac//SnLAwpnOj6f/exnw/ve977woQ99KJt1zZZZtgjvMEpZiQiIgAiIwOATiAe9UNhNnz598DMxwFf829/+lnkpQYE9lAQDDkl1AqeeempmnBFzi73TMDDO+84SuXjRigXv3YTlDwOPXspQff9aMaAdh2dbPMr+6Ec/ahW86/Pu/Ydn9JOf/KTr9NyDF0vb/fGPf+w6vaGaAG31GTNmBIwCGehDh9mvwnNyr4LXX3/9Is0mHvV4F/G+nxK9Xykq7R3j3aRsRv/BRK5OPB+2d8WhExrDG3RwGNAx/pASymiMefEinDIMS8XRsf4gMHWtLcLUldepnJnZ110w4Euh8T0ybvXRj340G2x/73vfWzl/VQIOZDusyvWLYVhaDq5V5fYHnw433fdkpeDtGvtWSlSB6gjQzmdSMO8r3shSwju9xx57hLvvvjvEHkJTYQfrGMZX3h/pF4ORfuvHVPl+4noRY6GhIG4Q/8wzz4QHHnig7SyXccHLEsbMLlWcumC8ihEUqyuU9atJj8nLrHpCH0LyEoEhuRTdiiuumHXot9pqq8CsdB46a7VTOJ500knh+OOPz+6OJdFSlnFYD/7lL3/JwqBMRClTlP/7v//L3PDSOD3yyCOzZW2YxURhjZKOgSE6VQykVvXewKx58oSrZ15aPgIavKRHRw1rPqzwsP5v5rmChnJxRhXWgAcccECW3ic/+cnAH40g8sugNh/p6aefHoofFNdHOfKGN7whs4LkfjEYgudvf/vb8JnPfKYtd8nF9J0rjPi4Y4EBg+u9ckcIMwbp+WMpImYbUbHGBUp8/be//e3ZwB/KlV7Kl7/85ayy5t2iQCd9rDlRDMCTZ52St771reFjH/tYwyl/XzmPpSz3w3PCO8kRRxyRDboXI9HxIiwD8HRIJ02alHXAeBcY+EeJ8qUvfSng5aEoZd8EXOnkpoR04sKXMMxSw51fUXjnMDwrKnH+/ve/h0996lN1wXHdx+Asy0BtsMEGYdVVV83unWfN/WM5izs+OpDkr6q8+c1vzqzHuVfcv/Kd8N6juHnooYcyBetxxx1X+h2WMfJyA5eBeMXg/eY7J20Gkofz7MSq7BWuOgFmObhQvp988snZT8ryQw45xE+VbvnG4u+SfRTi/PEN8G2RFsJSA9Q9gyUoyM8888yuLodrfOov6hCWvOiFYBXvgrtcXIC6kGeMsairKXOoryUisKgJ0P5zwc099VNRmMVNfUy9hrRTXxbT0m8REAEREIHOCNB/23zzzesis+RPrwcr6i6wCH64crPY1xusrNDnpt1cFIx+11tvvexw6jx9QEk1Aiyl8453vCMLzIAAbeJvf/vbYfbs2dlgBe3lL37xi4FBjC222CJbHhrvBCmpOikuFTd1bFG/f6k8tXsMPQ7LYrugyEavs91222WH4Isivqg78fC92NLX5JmiH2m1RFWV69H/XHfddTNvdSNhiR2YoIuMvZahx9tyyy2zfjjfBs8V72YbbbRRFYSDHgbdId8nhlj94tEOvWZKRuL7leJQ9RjlM8u8uDC2gt6DicKUoeiTMaBk7GKkC/rrq666Kp/AzXeBzt/LRzx6089mbAh2u+++e7Z0Ix4sJEODwLrb7Fs5o/+654Zw1a+/WDl8lYC8T3jjQKgb+P7oL1DvM1bBO4iuljG+o446qkqSbYXpdTusrYtHgeG6+NTlw7LTZkZHy3fPu/ahMHXssw3jnMUYGIpIBpYA49SbbLJJdhH6BUzQZnIDfSsm8uCAgrYtRk/8xnOlL102sDmrnjrLxPeDDId+TD9wbJUH+iRI3N/yOLy3ZfYNHqasXKF9FQvtK7cliY/H+3jkxdgUYfz4xBNPzCYo40GKuLTPmHDPt8P7waQgbFJwfCAJgUW/h8yfDSzWzKjByslysUGemjUEavaSJQN95CMfye/XFC3JMGaNXzNlXM0GMJPn/aB1ymumkMzTK2NpL2XLfHua1lCu2YBzaZpmCOVB8y1MzIimZo2h/Fhqx4y/amYYlqVtCqmauZxNBcuPmRKjZgZIpXkp3q8pWPK4vmMuWWs22OY/67ZmVNYybXOBVxfHf8CheP3ib56hGXV5lIatudVumUacphmuNKTBAVNY1My6t2YGTMnzfpD3xVzWJq9pCkEPVreFkRnE1R3zH7ZkUl1a1iCtWYHop1tuzTCoZo2PujR4j1LCO2YN6rqwsDG3nqng2fueCv+a17wmGZ53M2ZtBXfNjMKSYYsHyZsZaGTfbJxGcd8MpGq801WE79AGGury5Ok1KzfMqCn5rfNtevzhsv3YoYdXQdlRGMoNMyyp2SBEzZS3NXOJnX/L5557bo1vMf62L7/88poZuWTvARc0w7oa35Qp3bPyx5TpNVMuluaF8sS8uNXMuLBmSuPszwxEa2bgmYzj1zNj2uy8KfJrZsxWs7Wka2bAWDPPPzUvqylnCcd92FKdNeu41i677LJkuvFB68xm74y53szKan9v1l577ThY3T7fgYf7xS9+UXeu+IPy2gz78vDUna3EGlAZZ+61THjXeRb8mRK0IZgZIuXXpNz0/JrCqCFsswNmDJnH9TR8y3vTrsT5MiPOZHRTRmfXhJsZVybD6KAIlBFo1UYri9fsuBkI1kxpkP21aoOYoX4WzjppySRt8KpG2Xb6aadl5aetM167+uqra2YQnQzvB6m/KXvMcKpGWWuK8KyMLmtDX3DBBTXKcdralJPsE5d7iYX62gaoa+biv/bVr361ZsvcZNexDl4crGadv5wB4bkPm7ldI//f/OY3a6ZYyfoEXibXRdYPERCBnhKgbeh1sbb1Opa4P+flkU0masrLvPJlz4c22lDhST2C0D/rpzyff/75Wb7410/5Gop5sUlkOUubfJXkaRN88jBmUF0XxpS3+Tn6K71k0K/vX6t7tOU7cibov1LhY70LbaRUmHaPmVI8uy56qnbjKnx9GQ8P82CfP0farSlGNjm3FutN+Z0K184xdIwu6HnbiWsTcD1q1oZvJ+5ghbXJoVke6TsM1jWH23WqlDG8v9TdiA3s1bEeCu/JQDyzmBvlpBki1nHxa6Jrdv0QDOPvupvv09MfzttFWQ+NGjOuts/XL67td/RlLf/2+tJ5tTETpySff7vPJ36vyup8xrNiHS3vH7rgdq+VCj+Q7bDU9aoeGzNxag3OVZ7H27/xt9p1s27qCY+q+VO4xnYPbY5YPvGJTySfCWPL1Csu6NwXNU/z2OTZqZkjgkWeH3j0Qz+mSls2fnavf/3rc47/8z//0xOOA6kDifuo6Mj9XrwOj8eG/FzVrbdX4/HsZrYH8Iplt912y/MTX5PxdcYdXegHpsbc4zgjYX9ILUXH7Dss4d160R5QUvAMdOWVV3bt/hOvMm4xl7yQHbSXKPN8Ey9dE4fF8hkrugMPPLBlvj0eXjXMYCWcdtppfqjSFi9UzMpvJszkxwsFnq5MudfSQhaLVWbnVHFDu8suu2QeiorXtwH8zDMHVodFGWgPNtbwC1bAZq4Fi9fmNx5LeiF40LKBuoxrs/R4X/AwYgVns2B153hWeFdqJcwUwYMJs5WqCl6zsAyN3di516JiGnx3eE4qCpbXKSG8u/aLzzODJSXwc+Hd5z0tc2Hp4XzLtfBUgQtqGKfk4IMPzjy1VbXC5jtkVkS7XmzwHNOqjErlT8f+Q4BlvrbddttgRkLh6KOPDj/+8Y/Du9/97qw8xoMZ3y0eh/Aq58L7Yw3owHneH2Zk4waVmQJ4cGO2AN8G9UhR8MBjiuLMI5l1MANlP3/MwsIymneWbysWvx5lO+X1dCtbWe6J95aZmeSfsscMGbKZmYTjPlhTGk9rfEvkq0zwQsTMMIT7ZTYD7zjC7AZmd3YreJSzBlaezDnnnJPvl+1wf3DmXstcwTO7jzD8MZs4FjzY+cw/+DB7vlOZNm1aNluOGU78xffSSZrUVS4895Tg3RDB8x1La0hEYFETwBuoy6xZs3w3uTXD/qy+Z1sU3Ot//etfD3gevOrqqzN3+8w0pzxldhXlTkooY5kxQnmF+1w8muKl0zrkwQZ0ghkXNUQzQ6aszUT70gyPsn3ixks84lmSGYnMQsHD1Jw5czJvaVyH2SruebWYuBmSZvUG3ljJ/8MPP5yVl5RdZiCVzYApxtFvERABERgMAnhZQfDeS7sFwXMsM7Krynve856sbMMbMLMJabvYpJGm0akn8JZDmUs8PN5SxuKlklmAReEY6fKX8n5NeFO65WHwpo1QNhNn5syXZlrTH/J0qFuGkpiSPqtnaP9Tr9jAUua9oplOBI9c1Hu0D5lhSVz0LXBO9U/xeAQf+hR4t+I3+zwj6j28/3IcIT51NP0D8sPz4zx9+UUh273sOcgGb0t1VuSVvgXtAtcDoafjnn/3u9/l2WZZCn9PbAJIftx36E/8+c9/ztoAsIEvnIt6unbfP74l8kf7h28C79H0A3mO/Sq0iS666KIse+g00BMVhfKEMPRvTemdtc1YshhdUTtCX4jnwjXpM6YEHai3tWBI2wwvwKklRijzSI9ZyCnhGujJ6F/yjlO+8azLyiBPYyg+x8ceeyzzHu73gCd5F5vMlXHCm19K0An491LWXyUeZQOemW3yQfYeUIbBt933m/Yz1zPDjFR2stnj9BUos3jf6C/Q9m+Wt3bKSt5dru+emvju/f7jWfGt3q9260H06n4dvLHjVQu9IBx5fugd4+un4AzFd5NxFO+PsQJCu9Jp+QNv6gXKY94jvP/TbqHug6M/i1Rd2m4e2w0fe9XkOyjrb5NHvjGE9o9Nyim9FEse8Z3Q/6WsYxWC+DqpiFXrQuIW2xeMu/At0y6hb0w/fZ999kldJj+20047BTxSkD/qXsp6ngVCHcz92uTNPHy8g26Udp8NwmbPk+fKPbKiQSfS7vcbX6PVfZx81sX2njW2heM0fP/68/43LHj+Cf854FvGszbeeOOsHcXFeP/RKadk1113zfTjlFHUobynPB+8hcTSbjusnfI6vk6n+wuefzzAuYrMN3vsu/7VOM5YJW67ZVXxm0IfzpgB9QHtXYS+A98FbaFUO4gw1O2EiccyOO5tWPRqtP0Jx1gdzxLveoxnudAOoN6lfuf6tJXaGWP0dHq1jb2IsVKJl4PF9ClH4nY+4yIp6fbZVCnvWPKL5xCPheJ9lmO0oWMdK3ns9Dugbcv4EH1wnhVtc8pCyvNifebvwHDoR6eea6/qBefEt4IwruR9b/rffDfN2qDEidvd5uCAQz0RymFfoo5vkvF1hPKiTOL2NWP/vB8poc9tRrB5mvQDKZckQ8RbkxXibpTW9baKx6Z2L4JFnhVKNXuh6v6sY9BuUnXhrYNWlx7p+wzPuoBt/iibRV+WDBajxXsr/o5nQcbp+Cw+awjHh/N9a2g1Tbsbj02ex7Jrw9LDVNniJSYlPqslda7s2IYbblh37TKPTWXxOe4em6yyrLlVaLPwZefIf/wc8BKVEmuw1OUZZqZ8SgXNjlnnvyG8NRSS4ZnhQnrWsEier3oQzw7FZ0na3QjlT5xmmcemZteQx6ZmdP5zjvfYXOzmvNm3DnTNDEryY/4sbNnRPGKqrDRFaM1c9Gfe1DwOW+sc5PGYLYlHJD9PHDOmqtkgRM09JnGOd4gZMi6p61mjomYNljovSJ4u18ATX5wm58q+WzyqeFy8TyF4M/FjeGhJSTsem4iPhzdP0wzBUknWHcOrlYenPCgKnlP8+cVW8B4OL1jEx+MRHres0Zan167HJk/Tt9ZRytPqxGNT7KHNOh2ebN2Wes7vHy8wkuFB4JennVHbdOvX1tbZeNPajJmvbPpHGMISp10ZCI9NNoCQeyuiXMDzAcfaaSuasrEuDepR2jt4UXJvUGzNoLLulvHm5Oet41YzF9SZ9yU8NvEN+rliG8yPF7emqMvSZyZKfM6Up1nap5xySt1xb8vGHps8nilKMk9NePujPPXjZV746m5MP0RABDomII9N9boAbzOY6/Cc6a9//euaKUxzrwhmtJG3LTy8b+PZij6DM08o2vH2lcfzrQ1MlrY1iY73XvqRHp4tv13wlh2f833KfBfv09pgih9q2DJr0eMuqm2sq2iWh29961sN+fcD3Efcb/B0TKnalDMei3jmHp4tdaUL/Y6U2IBizYypsueUOk/b1wY46tKNrzFQ+943IU94Sq96HRusSN1GfsyMYvK04Nys3YR3Xzwl+7Wrvn9muFdz7xD5haMdvKi5XsLTHoxtFe8N5IM+qIsZFuX3zznaS80kVU44C/q58X3G/bzUM77++utLL8WzKTLEkybCufg67NsAYNPvx3Vecbx+fY5VZ7nb4HLOD2+jfm/MwEZ4n/1YvLWBoTweXuP9XOwRBg8Esd4ij2A79HFtgC6PR3zKJhfKJU+TLV7MEfTa8XH2Kfea6UFtQlcyTpn+g+sUy8qy+yAs/QvPU7P3q5N6MPZAgZ62rF9lA8sN4wD9+m5WLWPM8AW8dR7D4dzsPeF8J+UP8WBd9h5Rx9kAfpYf/uHBxp/5YGzj77nsm4zzQf5sgLVG+XjyySfneY2/TzOIK73flP683bqQ/MTtCzxFlEnZCho2qaksSlZ/8t4jlCfx/bPfqlwwg6qGOGX1EOl18v16nqrcxykX3lXJO9Duh//O8j2qIe9+rXa3Vb9H0sXTjZeFeBSJxx5558xIO3seqX98W3FboZ12WCdt23Y5pMOPqsG7itemb51xddvPpJOyKv6mzHCnDrX3cVj9wQXOqXtj1QGEujU+721Y+n3+PXhavkWPRZlUVh+xakSc5mDtu5cb8lWljKZspIxMtSu6fTZVyzv6t83ElinLWXb6HbRq26Lz5Nv25+TvQCpf/o552IHexnUfz6TV9WDkkvLY1Em9EOtA4us7J86j6y2T1Niwp+O2GsU+ib/LZqzY8p49rXjLN4hQ7tLWjm0IfPWsODz9WBfeh/hc2T7joy5//etfK8UpS2s4HE+7NrE76yfBMhKLvH4WLPKKa9zjPYJ1cZuJvYzNTmczeQZizfXiDLemmbCTVqi19J6Dh5Ki2MeceyVh9nxKWq1bmYrT7jGrOJNRWL/YKt7kuXYOduKhx4wU2rlE07B4CXKr0FTAVu8Z+Wc2FDN0kTKL1dQzNkVX6pLZsVR4POkUxRpAmWU0x8tmPvEu4e2GmZSmxAjESUnRCxfPt5knGtJhZiDeIMoEzz3tfjNlael4cwLWaMpnpFA2MKOI7xerZWskZDPbm6fw0ux33hWeO95AiOez5InLzAoXM47KrOb5zQxT4thSctlMemYyuQU0lvtl3ruYbc/Maco4PIIU19rFQ5E1vjLPTtaAysL49YlXFGY1+7WoQ3ztX6y/XWyAP5/97Mc62cbvNV5WWkk8w4JZoEXBUp6Z2UjRKh1vWXxLCGXMSiutlO33yz+s+13wwpeSeOaN32cqnI4NLQJrrD49vH6nHcLKvJNWH6bq9OyYnSMMYYnTD7LmmmsGZt65mJIgWEc92JJH2WxKyjRmvVonzYM0bONvGc+ofLt4zMOz00EHHZTPJqKtEQuelxBmInE9vNvhvZPy1gyJ8qB3WvlXJsT98Ic/nHlZcu+ncfvIjOODKYmytPHcx28X92rnv31rg+zZLDdm4piL68ybm8+IYsabRAREQAQGm4AZAuWXxAueDexmbUcO0l9q1R+lnLflcDMvxMx8N6V3Xd+F9i4eAGKhfL3xxhvzPqIpRbMZjXj99DoBrx7UG15GxvHb3cf7APUCXi1d+M0f9dJQEPqRZvyRZZX+M21j+g3eT8SbMPzQT7nADs8E3henPYmHIWZw039F6C9zrEzMWCVr1+M1iD6H93NXWGGFzPsTz4nnxyxw+hl+Ho89zNoebLnkkkvyS/KOmcI6/91sx5S22fsQx4eXvyfxDHb23Rs5HmDpY3DvcEB4BrByqfr+0cdiNjjCu0o/kz/yhtCvi/ORHeyjf7GXJjwDu/De0l5CeHdtAknmMSzu35jRXksvHZ5esy19OtdR8o7TzuTZ2EBdFo1nw7s63bx2tBL0T5RB/v3wTHg/8Pzj3w/fJbPbYxnqzzH2hsOz6qVQx1Au8a3wjfB8nCV93Pi76fS6PH/6GN5nooykXnJvP6SLNzZ0jC6dlJX0CSgfPP+8Y15elHku8eux7UU9iKcM9MZ4u+GeKaddv8o7zncVy1B+N/Ec4O8m91pVOi1/qBvx8OHvEWW9DdRlHkrQiVHela0QUDVv3YRzj+mkUcVjuhmfZG01vOwccMAByUt7e5A6B51l7AEKr02x3pIE2q0LixdlLI33lTKV66GXdEHXWfT6Sf/ZjCM9SOatCW+SeJciHerPsrIdvaVNdMqfp7eH8Prkgt4BL2hVpJvvt+p9zH70mSpZCXdfc56Faz5+VymhDgLh6Qa9OEKdGbf3eZ/csyHfDLoOvIXi+Qzh26KsdG9ZVdthnZTX2QV78q/2Mu/WiT00d0HrQFGITsuqKIncgyH1HuUC7dNeCav+8I1RFtJviMsHdPG0raiPeCeoCznv9RHvReyBqFd5apYObQEfR8RzJ2VgK6FspIxknDmWXjybquUd9Q78zJg6zwKeGL19AV+k0++AdnDcB6ftQtuBY96eYQWKeBWMqv2YPMNDZKfX9YLfNt8Kul6E8pF6Kh6jQaft5z2ObzfYYINsl/Zxr4TvwCZ1ZMnRr6ENHntuTHli9dVMiFSljUG42Oux98U4PpKl7627YqtXK7DrxAqEmjX0srUw8Q7BbApmWTWTdjw2YaWHNRyzE5h1xCz4MrFlhepYunVhKjwzAbE8txcvW6PZFGapYNkxc4NXl64pskrDkl+r7LJZT9b5z626yyIwCw6Leesw1FjfFO8lZRJ79CHf8R9emVJiH2Yezgqd5MyEooVknC77vfDYZIP3qexlx9pZozi2tkwlyAwrLH+ZdcJMKTNaSAXLj5Evv99WHpusUMwst60wzN5JwttyXLVm94a1KR6QTAmbXQdvNNYhz69f3LGGRBbOKu/ku4OnG88vW3NpXkyi7jezCuLwVtDXnfcf1hjLw/FNF4Vj1nnKw5Ams1Oxck9JPHuT76BMeEZx/rDKdgvdYhxz45qHbeWxifziCQdLfr4rLJaL14qvO1T3mZXfS6FscxY2eJOciRB7DSvz2JSaaW0KvDxtvJAgXA/PQVzTGgTJW+G7i/PkgWKPTeYC0w/nW0+XuNa4yo+zw0xET9MUX3Xn+BHP2iymzfvkca3R3RC3XY9N8Tea8rDUcAE7YB2RPA824FMXhPra82eKjPwcM86diSlr8uP95LHJvWnhcapMTBGQ358ZcpQF0/EhRgCPP/c/8GDt68d+s7bxq7eqrb3RJg1emzjGOcIQljjtSjPPA+2mFYenLOPbd69EZVtbtqZmAw5x1BrtRg9vgw915/wHnpg8jCk1/XCN8tjc5dZiLxj5SdvBaxLxiuWcp8W2WD7CyM/bciVxctk+9euRRx6ZhXFvAjwLj4N3JsrtopiSIwvTiTe3Ylr6LQIiUE5AHpvq+8jeJnK9AN4H/FjskZr+mh+Ptx4P4rTZ3DuSh7EJIfnDwAuGH2cb6xdSM/riOskMO/K4NpCUp0m/Nk7T9ymHXYp5cs9SlNcevh+2cV2Vyg9etcgzQr1avC8bEPRbrvM4Gs8ORi8Vp83MZe+vso3PxbO/OYcHFz9Pn5Q8uOBZC12Kn6fNzvuA0N7244O1Rf9gBiievWyLHskGCmroE2IdRypPsf4CT5PFMLGHM3QX6BDiMDZwl18bFvG5Vu+fe2Xle3EdicePZ8nzDPz4YGyrem9wXU7chzMDsJwH7zD6szjPtiRDfp548X37PcfpEdfbWEQ044M8vdjzCAzxKBZfK267xfrRMo869Htd4j4wafJs/TvgvuKZ7f36HKvOcqfd7mJLJeUMe+GxiXRtgCdPE5bos+Nv9nOf+1x+vpknHi+/ip4V4roJryjxO4Ce2+Px3Pwd6bSsJG3eNQQvs/G1fL/s/eq0HkSfGwte9fxabG0AOT8d1+uc69d3My5jeD/wZsAf/TT0Su6piRtj3CO+X/bL3pNuyh9bnifnSH8zviblPjqkWKhT4zADvR97i0Kv3On14nKT+zGjm7q08KjjYsYM+blO68K4fUHZXvSgF3ucifVx3J+XueQHvV18z3GZzPmixya+BZfiqgexDrD4zZTVQ51+v+3cx3/98KpKnoEmT9+0jkXMpZP9+Hss1tmp9OK6Mn4uPv7JOEax3RLrxWM9Oum3aod1U16n8t/uMXhX8dj0vu+1Xl3Gr91NWVX8phiL83R9G49dd+qxie8HfVtc1jEmHUtcRnDtuPwwo4eGfHn+BmLLeLIL33Gn1+jls2mnvGOczsWWsGvIf6ffgZdppB17l4QP461xH9xXOXJ2rfoxHm4gt3FblvYAZUmzP/q/LkWPTZ3WC97OxENTfK/uscmvxzh3fJ6VVFyo/8zIrO48Y8sutsx73TkfD0ZHHqdZZT8ee2a1Fo/j7frieDrn8eLt4uPxHq/Z1vXd1NfNwo2Qc2nlWz/dvLsI84cdbw855JCGh8hL6i9jHNb3qxo28bFQ4BRZxIO1niZbOlMeloK0TGgce7h4y7I8KeFFjfMRNzTj8MXKj7TNw0ccpG6fTkKs1CA8DVVX6NUFth/xYHacb/a94C3GKT4fBoVTsttuuyWZkHYvDJtIp0xSlVfx/vx3M8MmlHkpV/A2e63s0rVYCdDMsIkC0A3hPC++jY07ihcqdpiIgyvbsneIjqWnW7bEXKxYZKCwlcSNitg9YRzP3c6j9EgJbD1f8ZYKC+Ox4l98TSqklKSUqKSNYin1DVAZ+bWbGTZRccbKKY8zHLe9NmyKDX7Msjn12LLly5xl/O7Hhka+PFGcQNyI4H1DaEym0orjse/vE4Y5LvH1UgavbiSD4WRRGJzw68ZKYw9nVtv5+eKgv82cy89h5FSUbgybYgVdMd34d9xhMQ8B+SnKFTdeMm8v+XG+CV9KkA5LrFSNFSmLeik6HxhJPTO/mViZikJYMrwIXGcukY/51ndqu+y+pxk3bZoZOGHQxD7HOEeYTiXuwHaaRrN4GIrTFmWZRNoXbuxT3Mb1O8ZMfj7udMbXId8eJu6kx2F8n++b9iiDWR6nzLApLsM9PoPvHg+D1JTQDqeN7mV9bNgUK53iuDDxdFN1fBxW+yIgAp0TkGFTo24lHiDFwNTbgPSpaCMhNmMwP+7n2bpSjzBlxk+xriR2c+7tLdIo9vlJm4lNPvhMue3XHamGTSgUXfbff/+ch3NhSxseidvy8KKfXtZXj/UHtIM9vbi+KiqBCePLVXC9VJ+edwahTvM0B3OLTsEH8LOMFP7RZsYYIPXutRpQY0DHmabiw8OlyM71UmVc/JtDF1bkhc7Nr1s8N9C/Ww1y8p5hOOYS95tp37gU9W+eb4wUXeJBAG/XwcXDso37qLFhU7zMQmowFoa0MxlsZetplhme+KAsRhUeNt6yVLhLvGx4vz7HeDCobPmOI4880m8pqwNiXa8PgBQHcpxJPCBTthQd7fl4UNTjxpMS40lfZQYrxPM6IjZs4htxoZzy9OMtgzo8W/58gKfTspJ0OzVs6rQejOvtWEca36MPrqEDiY/367sZlzH+/FJbDEdTxqll70k35Y+P2/D9x9+B8+Rdi3XXqffaww7ENjasKRo7t3O92LAJI7JUXG/vxWVhp3Vh3L6gv128Hqyda1xOx+UXxtzFePyODWVjwyYMT12KRt6eDrpMl3iwuawe6vT7bec+9v/25ZUMaEaPnZTk4ffW7jb+HlN1aTG9eHJWPBjPcld8J3yfxTiMr7je4+qr65dsa9UO66a8Luajk9/wrmLYxPPjHsv+YgPrbsqq+JvCMDB1T70ybIr7Cn4dd0LBfabaxf49323LRHqcwdjGhj9xm6Tda/fq2bRT3pHHVoZNnX4H3ralDCONIg/a1YxREc48NdWdb9WPKaY1EL/jMtTL7KrbuF/WTb3gdWKxPextL/KTet7wiA2G4j4P5+Jn7mNAztDbJKRdVqZwPC5XPK7ni28xbqvEEz4YS/bwbOM2RjEvcbjivl+LfBbPjbTfQ2IpOncRZg+nTnBRipu5ouBasRfuSnGpbS9sMflsaY+Gg3YAV+EuuHBNiRVqwRQxqVPBOk/J47gZZEmQVmKz5hvc/uH61z6qZFRTrObuoj2AGYHkLiv9mG+toeS7dVv7YBtcCHqAontg3LSnxBQwqcM9PfbS996Y5OTJkxsPdnCE98UUEQ0xd9hhhzqX/HEAK2Djn8l98j1jxozMDX0qQNm7gYtKXBkWxQYCsyVjisf5bQP6+VIEsdvoOCz342IGPL6bbVPvmi/lRQAzYKsL7z9++tOfZrtWcSXfV2sIZG75rMHvUbKtDVQGyofin7vXtg5bvoxXHBGmLGmTEtwX2iBuwyneE2v8NxwvHmApHdKQtE+AstuFdz4lcTmbOs8xlmsoCu+Qi5cF1uj3Q7lr3vxAtGONuuwX5Xfs2tKDpN6L8ePHZ6dxL9qOWOM2WCMsj8JSUNRn/sdSdy4s50aeuhEbmMmjp+4jPxntsGSKeTXKjsR5Zck/z8+BBx6Yx7BOe7AZRnn4srokj7CIdvyefLmRVDbiMj5eli4VVseGHoFXmivld7/z7eE122wdll5qycx1N+672ecY5wjTr4LLY9w60860DlugXUhdt8kmm9Rl2TpX4dlnn82OmZFQfu7YY48NZrDX8Be35azznYdnhzKEuhg3uyzjaR3ZYF7xgg2A1IVL/TAlXMPhKmUS3yrLMqXKrFT5z0W8TGbf6wD2JSIgAiIw0ATMe11+CZY9dqHf5Etq2izrbMkVP1fcUm7FbcD4PGW6i/e1aPd6e4tlnWxw2oPkWxuQypfD67flgfNMDuJO3Me1QblsqTPq1fgP1/IIy+PQz0SoT6lL4/qU4/Cnbx33j8vqqLg9TVwk7heldChVlpB+KaWB+Y9OAQ7oM1iGzIyM6y606qqrZkt706/2d7EuQJMfZhiQM43fXRvMCWbYkS3l6NHb1eX4sl/0Kc04KNB35xkj6P5Sz9KvNVhbloBiSQL+zCAoWwILPcnOO++cZYF3ymbJ59mJ312WdU8Jy1W6eDnhv9vZmuI9C075YQOlDVFhuM466wSWiGDbTOBuk2KyICzlEn9rvs/SSS477rij72ZL7fGjn5+jDXLmz5Fnie7BJiEE87SX3wd645TOOQ/QwY5NHGrQC5OMeRQP6BqQVs8mC1TyjyXmXGyw13frtjapIXsHeA/YR3pRVtZdpMWPXtWDrlssXs51hujrYxkKZQxtChsoz//iesoMeALlO0saVpFOyx/6cmbgnV2CpbNS3wHlsXOukpdeh4n7jF7nd3sNlkBKib83Nlk6P92LuvCss87K0/MdWHuf3oxf/HC29Lv/iPv/fowt7aNifc9xlqR3+c1vfpMsz+MxhlZL2Hbz/cZ5aXUfL7zYOObn9xFvF85/Lv456Pu+XCMXjt9LdCd8J2b8meeJMTqb6JDpSzxerA/PAzbZGezyupiVqrx5ftxj2R/tRpdOyyqP79u43+XHerU1w4q65dE8XddRo4+O28XF816m+vGB3sbldjdlZK+eTTvlXRU2nXwH9Hm8bUsfnDSKQnuQpYFpI5XZCBTjLKrflDc852Z/ZXmLy+Je1AvF65S1U8y7VB7U+05+wPtAfGvYQJRJWZnC8bhcIT56bdo0CP0Z6m6XOI9x+5/zcVnezvdDGS95iUB9C7xPqUyaNCmZMwZ1y8QbW8VORln44nEa9ig6UlK2fmp8LbOwTUXNFBNxwR8HQjlFYySl+Jk5c2ZgffFmkirACc9AfGrwJ16XMU4XJRoFbFVBGZT6AG3mZ95Y9rQY4LbZkP4z3xbXdc5P9GiH/FH4pMRmE6YOt3UMxQ6GdikxF3HZ2rg2s6HhtA+kN5yIDvD8SL9M4o5PHKbs+RLGlhsIZk0dB8/2YYQhBpWsLb0WUMYUBeUl684iKOFj4TgdlLgxxfrALub5xnfzLR3q+FvjO1hvvfXy877DOtwo/2kU2KySjDdKv7KOIfGmm+Iz9dw5hmKnTLxCKp6nk+8dzuI5/33qqaf6rrZtEogHBNo1CIovVWxkxOfifXPln/9EMV8mcXkYNzw8fLNOYqps9HiprVl+1x0u/q47aT9Q9tqs8uLhyr/d4IgIZcZkxcRoRB100EHZYAXfJGU9z8vzSiPeFRXw8jKf8o7rxddkjWmXb3/725mSlUYh6Q+2+KBeynjN8yLDJicxfLfLmmHkfnvvFZZfbtlw5lkvDabss/eeYVurvzjXT8L35UoOyqFi2Uf7mXqLPwYhGOwiPO1Q6nmMguN3uqx9Gt9zXAbyLV900UXx6Wyf9rDNQgo2k6ThXHwgVT7G+aliyBqnx36z8rgYVr9FQAREYC6CODgAAEAASURBVKAJUM5hEO5i3pR9N9ua15j8Nwapn/rUp/Lf8U5cNsbH2Y/7QvS7GESOr2MeNYpR8t8Y6mD8SrmNEY55Ic3PjbQdDINd3FDffxe39CW32mqr4APe1L/oOWj/oneJ9ULFuKnfrfQRqUGMKnV26lq9PoYRBX8I/XUmNe27775ZO4Bj8OA9W3PNNfnZlthM8GBLcGT9g9hAua1ECoHf//73Z30Rvk3aKgx68kf7Hx0iBtqt+vuFJHv+k75QyvibC6GItyXbM4MZvzC6QgS9Smyg4OfZmteZTIHu7258ruo+fUDvF7dq41VJ0/uLhN1zzz0zo59m8eJJbkPhOXIvfBNlglETkwF6LWV6Sa7jg2n+HDu5djxI5HrBqul0W1ZWvQ7helUPmgej5GUxNkzJUHg3mbhXNExkgNW8ogUmulCH0Sah3DBP96nbzI91Wv7Ek3y9Ls0TjXYwCuzGEC9Kqu3dWD+JYeWsWbPaTqMYocjdz8eGKX7Mt93UhWWTjRinKEo8LmPLXRVP57/hUhxjissFxuqajdeREOV/bLiaJ/7yTjffbzv3MX7c6DDvhdbGTeZBKFQ1tineSy9+b7fddnkyRWM/WJmHzGyC2+KLL54cA8kjt7EzmOV1MVvwriLjxo7KyqqysEz4d+m0rPL4vo3Hr/xYr7ap7zJOu6yNt6j6BIwFuJhXSN9te9urZ9NOeVc1k+1+B7ZaRZ40Ez+GutjqQqHMeYvfG+V5bLjqx3tdL3i6bPkWYj1KfI56Fr01fR7zkhSfChu9PFGZceUyMc+ngfGpMonLFcL893//dx6UcUZbLjT/He9gwEf/07/XeEwShvH4WByvuO/1b8rIuBh2uP/ue8MmChBexJTESrzUeSyXsVLuRHiJy4TOYCsp8+Tgs/zK4qNESTXaywylPB0+2DKFp38wHta3ZYO3rSpSj+9bc4vvu3VbOifmorzuGB8dhinFgScMYVCCMet/IGS6GbiUSS8UuMWGZfFaVGYpwya34i2Gj38zS6+Z8I2kpFjQxmH4NngWKaUrRkW841wXJWox/a233jpLCuOf4jkscHlXfSYfAWMjIRTmRaGjGguexMpmGhKOdwcFPH8f/ehHs8rMvbe5UtXTKxpe+XG2zZRMcbh4n2+zmfKGGXApxXOchvbLCcSD2GUd+152ImKFcbMyP25sVDFGLL/D1md8RiMhywa3mOnps/Z/9rOfdWXYFM82iZVLrXLKrAJbji8LhhElhkhu1PehD32ozjuKp0WdY673/WfD1sv/TTfddJEYNsXtBQx8U/UGsxddvDHpv7UdHgToaKy7ztpZ/XjJX14yWN7BPGqutWbaYH1R3jUKdXNFnmWBOrHZbB+UXLb0bq5k5F3GsAlPBz6AZy7Ok4bq8T2SDkK7x42aYGZLWWZ1PwaC3jZgRkpqhlKcXnE/bhel2iDF8PotAiIgAv1MAMVWPOGjzLsF92BLDJe2/TBYKBNbtiQ/5ToIvOW4NIsbt39XW221EW3YFHstcHbNtm4QT18X47GUoYArVZulM5zOoT/gDw+Ob37zmwO6AXR56AeYvFfWvysyoB2BLsOW9i6eyn53wxUdIgYyDN7jMd31IfTx+F75Y0A/9q6WzMQAHsSwLvZgid4GJT2TSM4+++y6mcBkw9tOrfR4DAJgINaulyu/1XjAtJXxn8dptsWwrB3xNihxhsJzJJ9F3QUGYRjQ4Vm9zDCGeN1I2UAPafqECL5LvGK1emdS+YjLumYTMItxB7us7FU9SHnTjgyVd7N4T3jwsSWWsgmk7k3y4IMPbmnY1Gn5c9999+VZiPWA+cGXdwZa/1a8Xvw7Njpmkm6zgc44Xq/2e1EXlo0HpfIYjxGhGysb+4rLYk8n1qX5sWbbZhNLidfN99vOfSw5cawZNr3QLKvZuaVWWS/MmX1ty3ADFcANP0gfg0MXjOoZF0kJzx49TScy2OV1MY/wriITzbCpanut07KqSj5Gaph4PLXZ+FsrPr16Nu2Ud63yxPlOvoN4nMm9ZFa51nAM0+t6IWZUZuRHGN4DvCbRx4udgZAfdyZjS6DGydXt0werWq4Q8W1ve1se31dbyQ9EO/TBWFEBZyNIbBiIQW7sXTcLkPiH92ef7MPY4EiXzmq4QaTWrNPNwGMziRszzcKlzjWzeqvSsWG2Q0qKRhzFMMWOr59vtzDweAO9xcgkbmDF18NQic5K8a9o1ORxUt6B/Fy323g5tGJazTr+xbBlv1tZVdoaqcmoPviXPPnywWbKAliWGf6VzQTxa5UpUmIFU8oQz42T3vnOd3pS+fa0006r88bCCZT5GBHFrsbzCLZT9ERGwzx21ReHTe2TPrOTf//732duBGOmrQwCU+k1O+aDBWVhmg0clMXR8f8QiA1Jbrnllv+ciPbKZsxFQSrvxu9HWdlMee/GbFh2l31vlS/aJCDliCuRmC1Hoyb194Mf/CA3HsRttxslNEk6eYp7dgNIFEZlgwepyBhAeni+e2Z0uYI79iAFL+7FG3fFLcYQLlivcz626vdzg7GNLfnLZrrG5RUz9SXDlwCGTKee9L/ZXz8aNUGeQVhXVt18000tH0bc0adORuKON14A6PgV/6hnmaHKnxvRx2Ux3ziGkbQfvA5moKRdo6ZifsrKNtoJDJoeddRR2T3onwiIgAj0K4Fi/5ZyuPjneUdRVTbxIi6rPbxvt4tmcbt3ptg7JkasZYJRrAvu8otS5urclYLF8EP5t+thqAtpv7b6c0+lGKv5QD91I8pN6kOUqdTRGMmMRGH5vNNPPz2/9dQkr/xkYYcJE97PYFCAmcK8x7RdeC7dTi6gD7TTTjtlegq8cPz0pz/N+zFkheV1U56mC9kcsJ/0ifBw5X9MrkL3gkFMvLyBZ8CXJYyV937Ot+gnXRHeqdcRDB+8bZeajOnXqrqNJ6oeffTRLb+54qTJfn+OtFf9GfoWzxpM5CvTxTm7srK3TM/s8dg2e3cZpENop3di1ERc1x+wHy8fw+9mMthlZa/qwWb3VHau39/NsnxzHD2yT9aMJ6yWxem0/Im9O8Q6oeJ1mrVhimF7/dsn3pEuk++qCBONWNWinUmDZekOdF1YvC66RRcmRKWEvn5qnM7bn8ThmbVqQ731rW9NJZ8f6+b7bec+Vpjykk4kv3DJzsrrvTTBu+T0gB6mD+DGf7RR3cMZ/QY3amIME4NtJqKjI4I/9UinYxSDXV4XAVblPXXx6sPanZZVxbxV+R1PaonDl61IFIcZSvuMYfBOIowpuC6w2T0wfkcZ+b73vS8PNpjPJr9ohZ1OvgPGJl3cMYT/HmnbXtcLMT/Gw8u+M8pMn7gS93li24BW3ijjazXbxwOm6wEIV9TzxDp4zvuKJuzHeUh5PPvEJz6RGZxjdO52Ifvttx9RM2k17u/hhvO2eg2wiCjErj+LWYgVccVz/C52fFNhBuqYdwSK6fuLWDzuv+OPwY+xrTq7LY4zGPs0omgw9UJQXpUVSt2mX+bFoOw5tXu9Zspm0mIGbEqaGdClwhePNVNGeMO3GMd/lzWofNCScCnXsFhSo1SM3SsSlm+V/OBBpihUHrEr2fj8KaecEv/M9o844ojw4Q9/uG2DDYwtmAXnA7atFEYNF25xoBnvFlF1ugKBuMxmTdzi94EyFRe7vRK+S58ZwOyr4vW4zqWXXprPtNx77717delkOnGjJm5wpQLHhoUYFrUrDLzE3+Q3vvGN3ECialoYMyB0rN1rDAofd+3p6eCFijym/ljuwQWFNmEWlbFCrHw67LDDGpQAGFn4kq/77LNPKCtD/X60FYGBJkD7yw1umWlY5nqZfGCkGXcsvT0at08uvvjiZJbxDkAHPe6kx0qy1IzLa6/tbEZjbHCaGmTHU5R7TluzZNnn5E3ooAiIgAgMMgHKRp+9yoxWH2RgoCH+i5djKvNsiUFCmTFHHN+N8bmet2vj5ZuKCHzQEi8ePvMx7h/HM+bjuGUTm+IwQ23/iiuuyLIMa68jq9yDG8aj2Ec/RVuWCXhugBIbnlVJr9/DYMjgStvY02wq3/4Ops75MVc8+2+28YDnbrvtli3zd/PNN+eD7e0YScXppvaZscsACwYjsV6CGbVDRXypCwzp/Jsu5j3W3TSbpVyMV/ztk0vxWFamu6NPdeihh9Y9x2I6/OaZ+jvSzLAhFbd4bDg8R+7JBwhThgOcZxnCVhIvwxSH5f1wT3OxJ5o4TJX9c845Jw8W95/zg7aDkd0hhxySvQded/WirPQJHfG1yva7qQfL0uzk+FB8N52zGzI2u+9Oyx/S9olx1JMMDhaFJdha6dqLcXr5Gw+EPhaDwTLejZsJ4w4YQ7G8Ke9/tzKYdSF5xRO7y5e+9KXcs4UfYxsbHMXHYz3BHnvsEZ/qaL+b77ed+5i+3EveqFtlcvXNdrEgvRn7anWt+DwTCW6yCWz+TcaGpSx76XL88cdnE7+YVI/eHKEfkvKu5XF8m2qH9aK89vTb344KL/FuHXPFpca0DvRyiE7LqqoXiMfSZsyYkYzm9WHy5BA96DpI3tELLrig6V2guyQMZWTsAW+gn03TTL18MtWm7eQ7wNOd96lT9ZrnhZUuaCsP5wnTva4XnJ1vyybF77777h4kG9PzH95m5fn0yigoXoZu2223rdPxuL4HHZB7QESH4pMU6Ae5J1V0LhinxoKNCJN7+GNsEt09Rk4uvpKL/x6J29FD4aa9s1vMK7OsmkmZkVCzOL06V+ZuLmWBF19z+vTp8c98v5uOZ57IAOzEDaluk6cSLFuHspu0qYjKFDyuwOwmfeKWpe/plilqqnQUPY3UFqWiV5jF8xSoZULhWuY5iw6Ey0knneS7dVsUjBtuuGHdMfdKhTWsK2Q8AJVNrEzz43ijiht/fpwtBTSGLjQIWZ+bb6CsLIjjURmwlAMS30schnQwDGnnD0MTN96I09J+7wjQofJKmlnTdIix3Oc7YckjvPlQ8fdKGLjwZ8pAOUsmuHKFa/AuxzOVfDZMr64fp8N37N8bMx1YGqGZYFjjUjaoADPc3PsfRoe400RBgvGRezXk24y9LHm6rbb77rtvHsQ72L2sE0icDjqNQP5YzqIXUpYmZSKdC4T3gWVWffY+hmBxmYpbdokI9AOBeHCPbwQPCRga+8wQ6mM6URiL+kwolFxuQET7xQdwmV18sRk3uWdS0mCQnOMI4Vy5HBtP02H1eh/lLzPw8SrgEg+S+7GyLcoe9wzJ94di0ut+2gwMGLtsUnHmrIfXVgREQAQGkwBG0rRfEDzClAllpvcJU/0lj5fyJon3DSaDIJTd3h/jt3u9wwuU94047oIRlZf/t912mx/ODHJ8IC+lkGXAGi83ZeIGPdx72QB7WdxFeTz2HlGmmKcOYuk/jDt8kMm94NCW93v3+6Av26pN72GHypZBeup1ni/9BzewLuaf92TPPffMD7uHAQ54m4H91GTF2KijqCtAj9FswNifQer9QyfDs+MvnjFLPpC4T+XP96Uz/f0/HmjGU0Ux7wyM/uQnP8lvIm6j5Qcr7rj+jAGg+Jvx6HzzGMQfc8wxlbxwu/d0BnbQMRUFnRPLwvPd+eDBcH2O3Lvrr/h+pid0w9QrrQSPTbGuwMPz3H3gztv2fq6d7TXXXJP3M+g7Fyc1kRblBAM0vAfu3aubstL7Jt4PqZrfTuvBqukXww2HdxPv4P6eMJDWSropf0499dQsecosJrRgyMS7j1H4d7/73YZBvlZ5GYjzxx13XJ4susNUu4gADDji3cOlF7rDbupCz0c7W5bf8TKIa+ONBWMt3ge8rKAXYJsSDBP8O2WicupbxYspZTl/zTzLefqdfr/t3Me6q6RXW/E8+HbSkq8Iq2/zFv85KFsmbPMMfBIZuhmfXEoGYn1MvLS0Z47Jq2XSqh3WTXldds2qx+EM7yoybeq4KsGyMN2UVVUuEnuhjHXlHhejikU5Tu356PU2bpPTBiybjI43J8oQb6P62A/5GehnU3bPrmfkfMpIptPvwCdi0v7B605RqEsY86SNFH/ThGvWjymm0++/B6JeiO+Zsa7i2DYe6/CY6hIbV7lNho/zeJhutv7eoDvxcbFUeieeeGJ2mP7p5z73uTxIPLGfbynuO9PvcY9T6HxYus7fScbz3Ht0ntgI3BkShk1ubVx8Ps0GFr/85S/nisRivMH4TUMtJT5rM3WOY95gKZ7v5UdXTLvT3+TVXRl3mkYxHq5Weyk0BOMZRcW0v//97xcPdfQbpSVKtjIpm1nllpll8aocL1tTs5nVb7OZu/F6zSiaUt8fRj5Fy/9f//rXeXaLxid4UkoxcKvsPGJih4FYZkxOmzYt61BtvPHGAc8u8ZrsxWjuWSe+lzgMHQJm0rTzR4XpA8VxWtrvLQEGZ7yTS+MWwzbeNWYH0wj2Ae9eXZUZuu5WGiUsltO4isdAjnfNDZ0YkCorn3uRFzpBbmh04IEH5m4zy9KmgexKRL631LKRKOf5Vv3vPe95T7YcRrwsBMZiLK9G46pdwfVxUWlKer0UH+gjTW/gd5t+szRZ+s8NUTGo5F2ADay9HkaBu53NKpSIQD8Q4B2NB00ZcOI9prP0+c9/PlMs0Gl2D6i0iyhn45l5LJvjCoY//OEPgUETlmEhDZaZRDh/wAEHZPv8o1PocVC4ocD44he/GPDCxoAw53wmCoZVLDEbe3nKE0rsUIdPMMNThIF87uMIS5+639tNePnsdRs0kRUdEgEREIGOCbgxEQM9rfqcrtBF6RvP0I8vziA3yi3KYvYxTGKA2cvzYl+FAUIfZDr55JMzBSpGJCid+e3eoejfMBMwFm/zUI5TDqPDYJ8BLs75NeM4vu9x+Y1RPXFaTQLyuItySz/A805+Yc0yCbT/GcijfqWdy2Adhj3eL/R+L/0V6lD62YRhAA9Pwq6AXJT31utru2EM94bRCQYM3Df6EOpm3j2O+5KF9Od9pip5YdDR3036enwfxKdvgfAsXDCeYfIJafFt4LnRjbM9TLz1Z8ix4vtHf4nBZ/QKtJWYKe3X5Lvw+yJucdYsx/pVYMS7huCRB+8OTBjEWBwDLnQi7qUYpXs3kyZpG3p7jv457USU8PTRmUBDf937lbHivowdzwAhDt7CMWagnKKMYxlHyjg3rGfSDjJcnyP3Fhun4mmVNj5td/qnTLSBSxVBN8d3RVmGwRg6UZ+whRFmlWfT7DruaYH2Pjo9nj154xvFqMmXVaUc4DfSTVnJ5AaEuof6kncPDzqtpJt6sFXaqfND5d3EKJX6zf8YeKW/SNnA5C6XZkbZHqab8odr+TvPe44hBpPEb7nllqwOpVxw4xa/3mBv6Rf7+A75oU1EPilfef+ZSM0EIuo4L2d51+kfdyvd1IWdXps+to8BUFeiM8cIhu94l112ydo+3h+Pr0GbiLYlwkAzz5A+PHUu5QH1MYYMtI8w7qjiLaOb77fqfcycNtnaLqOyfLf6t/Eu7wtjJk5pFazt83yH1NX8MbDNREzeM+panoEL5+P6O/4+eU9pd9JWdyO0WHfjafi2VTusm/Lar9HJdszEqQHOVWSsPbc1lh1bJWgWppuyqspF0Le5wdh2pi/GuIL3nbICA4W4jVklvaEShraKr2xAntEHMjnRnSHQPqSO4Z3zyQxwYtzeZaCfjV+nuKVd5UK/nTZp3Gft9DugbvN+DvUDRi3oT2nL8d269z/KzdgwjLw068d4XofKdiDqhfjeKe/o46DHYFyeOoO6x42d8Cbm/U/684RHvD8Rp9XJPu+M9/Ob2R6QNvWfvxNx2YyOO37mTFTG6NvfQx/fLuavF54Ri2kO1d81y3hf/9kgrD37tJh1WkPerbFVs48nHcGOfuQjH8njWCM0Gc4aC3mYIh/rsCXjmIV0Hsc6iskwHLROWB4uTtsqvdI41hjM41hHtCEc9xunFe9zLymxyjUZx2bTpYLXzJCsLrxZmCbDcdBm/Df9s45pMi73YUqruuuYkisZFg7xfRb3eU48kzIxhWTT+MX0+G0FTFlyNTNMSKZnxgSlcXi3/TqmeEiGswItD+Nh423Z8zKDp5pZqibjWuWcvJYZcTSEN+VUQ1gzMKg7xnMzRXwe1wYw687zoxiHY6bozuNwT6ZYrJkypOHPKqC6cH7/1tgnmQYx6+g8vFnNNpzngCkv8zCenm+tAqlZ46Luz4wZ8vCdlBue9nDafuzQw5Nsuz3It23Kgpo1THLm5sWoZoPvtfjZ2nIB+aVMmZaHzQ9GO7aMYH7eBuyjM7WaGbo0lG/+nEw5UbNGT114frS6nhlnZdczBWJDXGvQ53mxRm52nnLCr2kKsYY4qQPWAMrjmKvoLIh5bMmPeXrFLe+3NcBqNgMvlWxbx6zDkl/PBnvaiktg2Hr+rrrqqob4NuiQn29W/hLRFCx5WOsoNKTlB1qlSTpmdZ+n5fljS91uszo8KW1FoC0CNhjXVvh2AluHrkbda53x5B/fhA1y1MraX6ZEzsrdVHybqVqzgYmG7JiHj9rhX/hCw/VsMLBmhpo1zsfpcQ2EvHDcBrAa0vQDtpRszTp/dfGJQ1zaJfF3SPvCr2OeCjyJui1lo4dJtUfqAuuHCIhAxwRoG8b15kjdN4PonKEtzdmSiSk78/A22JOHpyxEbFCtZkrgPExxx5R4eZyYuSmSi0EbfpvRSENcmyCT7Lt5ZNqyLqa4rotvA/F+Kt/G7fA4f4O5H9cPZddFD1FWT/rN2EBTzQbU83um79pM90TfxcU8PeTxzLODH27Qf5A/8w6Vn0/l1+vQZnqgVLxeHDPFcM2W6Mnz12wHXZR5dcrv26+f0kd4/4o+IO9MmcRM0aF5mmxbvX828NqQbPH58a7EaQ7GfqwLRP/V7jVNiV+Lv8uGm7QD5omjZgPxdWnbYHUWlLZRfE2bQZwnEb/vhKEv2aw8IiLpxun5+4KOKj7OPu2zVmIep+ri9etz5Bt3MSOtujwX7zv1G/1dszIofsY20z9P3wZ1/LI16pxmYoZOeTzyQLnnQrkU5wudKWKDQ3XHCeNlkMctbnlHbIA9j9dpWcm14u/DrxPXrc3er07qwbgcgW3MxPfLyuh+fTdTDJ1lcUuZaAOzdffd7D3ptPyBpRnE1sw4rpiFrIyxiTO1E044IT9HWOc/mFszrmxZvnomeReLevj4++TdSuWdbwyJxyk6rQtbtS+4vhmMZdejfVnMjxkoZ3rXLED0j7KJ8oO6BOF3MS76vWbCu0VZEMcrq4cI08n362lXvY+vnz6rtt/Rl1X62+7DJ1jeR9Xl36/Xzrad75GydL/99kte04yaS3HTjvIynDZXMX/N2mHdlNfF61T/PaoG36rP4lu/vaWWuq9m1+u0rKryTXFdM+YrfR6cMC+k2fn4OyeeP0f6fan8N/teCW9GVVm68XhJKp2BOkbbsur4AgzM2LHhPgfy2ZTx45r+jWQAX/5nEyiy/HXzHdgEgzjJ5D51XPGZxO0PjzTY/eh227Kvf/3rPas1M2xruKdO6gXXgfBtxIz8W6E/zhh2mWAPEI9TYwviYgZmdWl6+t63qVqueNuTdIv6EE8z3tqkKc9CzSaN5XmgzWDGTfm5VjtmDJvHjdMfofv9bdTEQ2GAuJlQQJlniqyzw4BwqwGLwTBsonAsKkj8HjC0KBrvoDwsC1+smPrFsClWKPm9sS0qMVIfFh2SsudEQyCO08ywiY/f/8wSukYFYFbqNXOtXMrT88oAdXydKvutBtYxxogLzl133bWWel6eB4zw/LqdGjaZxxRPrmEbd/b9OimjI4/IoKeH8625RfTTpVsGPD08W7PILg3rJ3jfzaVtXTwGHlPC4Gicvu9TYabErK7z8GWGkTReMH7ztHyLEZXNUEklW6NDSzgZNr1UbwyUYVMMn4FwOtsutnRA/szMItoP92TLdczTSM1myGRGjHTY48HznlxEiQwZAnS4bOZ9DaMOm4FS9x4OmZtQRvuKwEAaNnGjtKuoj+lgMShnbndrNgs2MzBKddiLcKiXMUhiUN1m4GdbfjcT0mVAHUUGHUAMRWPBUJBOmnlZbNkui+P5Pm1m0iVPDI5WuQ+Pq60IiMDgE5Bh00ttZPP6mMOvqnxy48/YwCBW6tks19rdd9+dp+s7DIZhaOJ9meIWo4GU4o8BKZsxWBoP43xXwPu1qCd+8YtfZIbefoyBo+I1GYiK2++DrZAt5offNhvYs9yQ3zg8A4mxotIjce/UranJYfT5i/1HniOGDbGxPQZvfi1b7seTbtANEca8G+TnPU68daMC8hUfH8x9dB+uBM4z+/IOOhDa0UVDGs8fnNEbxToh9BTxefp9RSEOAw4uGFN7HN+2ev/Qb6S+CY4xucnTGcwtxtwunRg2kVf0Yeh/eCdi4TcTD9FRFu/JDf7icocwsc6oaNjEeQYFbEmE+DLZPu02N1CLr+XGNinDJsIxuJOakEY5FU8wi9Psx+cYG6l2YtjE/VHGwLb4HM17VTYY6NDjwaOi4QS6xfjbIg58i8YqXI/3wqVo2OQGhinDJuJSHxT1nVwXPUo8OdefWydlJXEpR0466aQaA1kusa6z1fvVbj0Yj0GUGTY1K6P78d2MyxhnGG8py+lrMYEkNsL1Z9fsPSFMJ+WPp+3xGUQ2jwvZZHDXq8ecy+qTOJ2B2uf+mVhffN+dId8Kk79T148HVBmzSIVx465iGUld2W5d2Kp9wfU9zaIuP84bRqy0YZnkTtnm5zxuyrCJZ4TurFj+wAm9fmqCcVk95Ndr9/v1eL5tdR9/u/HeysY0GN1s/rYv5Sz8Gu1um32PlP28B3yP5tUm2Ub06zG2VmxLwRr9C21Ob+swoO5xfNuqHdZpee3pt7uFa1WjJsLdeO+ctg2byFMnZVWVb8rvl3ZpXFfxPCgfqEvcMUHxO+fbQMoMm/ybSxkict1Fbdjk924e3Bv6Q9mN2T/KTnSMXrZ7nHg7UM/G+aXKu5122il7jzyfbBnT9Hx18x3QHyn2D/m+MbqxpQnza/i1fNuqH+PhBmrbbluWPoFL3Db1/HVSL7hepMywiW+F/mCqz873VOy7uNOOYn/H88jW+7RVDJu4J2+nx45u4vSK+3FbwDx31T1/0jPPmVnZ7yzLtuj4i2mP1N/4WwRG3wtrgLs7224zyxJ2uHZEcBvq68TH6bLMFS4zU2LGELkrs/i8NepyV9YcJ13STwnreHJPuKrFRaEvd5MKe+SRR2au/PycVQYN7t/tZc+XBPFwvrXGULaskv/2rTVikm5draINW2+9tQfLt6wR7etLE7dsKbB3vvOdmbvSPGLJDvfO8j5FwVU5LsldTLETzJOH/+zJ1gqpsMEGG7SdFi7hytzAeWI8C1MCZ+7S3SWdn4u3NjiXuZX2Y7iKTi2viOtXmDYTazTlrvaK4TiHG1PeT6uwg3m+KQbJf8+cObPBZa514HJ343nAwg5LW1kntO6oNdTq7q/upP1IfWMsC/bjH/+4GDT7bRa+mct4XE/jAtiUBdn7mGJss6cCS+sguL+M3UtmB1/+x5JULBlgBlWBfWuwBPLga8rHYa1izJZh4Fgn5Uac1nDZt8Gr8N1j/uM+tBf3hctOa/RnbjpT3wPujVmqDbEGjpYi6gV0pSECIjAoBHAx22z5lEHJhC4iAiIgAgNI4OOfOSJ879ivDOAVlDSu1Fk2iz6eDTbnS4a0ImMKvmyZZXQJpgRM6gFSadiErOx69G9t8DgQv6q423fzMhJsUL1qtL4Ix32zLDV6D/qS6A9ayZQpUzI9ig08ZLoeU3i2ijIszrNU2Bve8IZMt4Muh/41bZ4qYoNyma4K/ZhNnGuIQr8c3RTh0K/RZ68qrd4/G1zJlkDnGmb4ky0xWDXtfg6H/oZ3F30mS/fx/qJ7GghhKT+WdYelDVi19XxS+aGdjN6X8oLn7UsipcL6seH6HG2QI3v3WaKrnbLeuRCf94BlYNC9slzHQAjf5nrrrZfptNHPDHRZybI+fLM2wbmt+oh777Qe7JTbcH03m/Fop/xheUT003zv6HBTwrIyLIdL2c+Sr4taeKZe37GkGuM6Npko2MDmgGatm7qwnYyxLBpCXX7JJZc0ROV7R9dPfliCasstt2wIwwHCMb6wzjrrhNmzZ7fdfkwl2s732+59fOGXN4epK6+Tumzy2D3XXxSu/OXhyXOL6qAZJAbaoSzh2s77yLNaddVVQ1k7bDDatq9+x1fCtI23r4zu8QduC3/+3nsrh08FbKesSsVvdYy2MeOZtMOq1Iut0htK582AM7t32qF33313thwuZUpVGehnk8oH1zTDqmDGgMnvp5vvADsC6jHqOpbvrdo/bNWPSd1HPx/rRb3g44D0D8zRSXa7rqug3Ut7OVX+MSZOnU3/FBuMfhaWW6b9znvD+8gS42bAmtlGUFYjZvCbLYvbz/cxWHkbElZeWBJj3dmOWIGRDD4YHpvs4WUut93aL5mRCgetAmh4PikOWAlyzdQfVt4pSc02JL5bEBfjYKXv6cfWynE4LB+xMvRwzbZY3ZcJS5J53DKPTWVxWx3HYh0rYE+/nW0rj02trh2f5/7ja3fqsYk09tprrzjpjvaZARXnJ97HqrmZpJYwMEVUsyjZjKv4Guxb56jBsr2YiFvEFo/7b85b4V93LycnXM57+KpbrLQ9v/LY9FJZMxAem3Bh6ZxZWimWeFZevMRHHEb7IiACItCvBAbaY1O/3rfyJQIiMHIIyGNTuj/ubVttxUfvgN4BvQN6B/QO6B3QO1A/9sAYQ5FJ7KHfJro2nC+G1+/uv6t4HA3PnTFTM7Ks2aTpvFPzyU9+su58HHZR77d7H5NXf1Vb3oLwGLTNgd+sjRpTvwrFor7voXZ9+MGxHU9NhOV5DbV7VX67L5/EUAzx4ISUeTdLvSN4tnY58cQTh2zZwVi324Rgf8EKVqn7HUnHRtvNDglh9hbWx3jyqCJY+2M5vyiFmYl4lelUzCgq2JrknUYf0Hi2vm8y/RtvvLGy5WmZZx4S/sxnPpNMv9uD5I8ZPuamsduk6uK3Y3lMRGYsmHvKujS6+fHb3/42mBvojpMwV9e5F5xUInhLKhOrHIK5wm84ffbZZzcciw+YS+H4Z7bPDOCDDjqo4Xh8AG9NzcTWqs74xmH4DvFc1ql84QtfCLZ8QafRFa8NArYOcR4ai/a3vOUt4V3veldW/jMbFFlyySXDr371qzycdkRABERABERABERABERABERABERABERABERABPqfgE06zzOJ53Y8y+Epn7EcvDEcccQR2Xl0zkcddVQeVjsDRwB9usvvfve7zFsEXj7xOMMzsWUas9N4DbUBYg/ad9t272PO3VcHvDC1Iyutu2XY9ZBfhsWWW6udaAr7MgG4wQ+O7QjPieclEQEREIEqBPbdd988WJl3yDxAH+9gS4C3RDxfsTXjrj7O7eBkbcgYNoGDxi2uiTHiKHPbZmswZktQ+TJUg4Ox/CoYm+y8885tu37GrS73ykvbb2LrE9ctuRfnj2XTqgofYJmxSaul16pew8Phug1DIlyhVnFn7fGqbm0N6cwtXJXwuGHEVXOvBeMPOn50+toRW8+6pRu+n//856VJYnRolqIN50855ZSGY34AF6dlxlJ8M7iNLfvGPY3iFqPHPfbYI9hatMVTWVp8T7hHb0fIw1e/+tXwta99rZ1oCtsFAfP+FX70ox9lxkskY+vYZ0Z7vhwlrqpx3Uk5JBEBERABERABERABERABERABERABERABERABERg6BDCYQffvS2WOHz8+WzqR5SiZzIiwBB3LnZ177rlD58aGcE4///nPB1tNIh9X8GV5GcNgIBVhKR+Ww+nnQdVO7uOq074Snnvqsbae3hJTVwq7fvwnYe3tD2gr3kgPDC+4wa8d4fnwnCQiIAIiUJWArXKUBWW8nDHwoS6MVbc7Zj7U77ks/2PLTvTr8Yceeijsvffe2RrueO/gb9lll83WjTeXmHWeeFiLMiWsB+ziDWj/XWXLmpjtyAUXXBBsKb1wzDHHBDwd0TAsE+7vhBNOCF/5yldKX9Jevbx0EFJSdn+sR4kccMAB2Tb1j7y3I3j6+ehHP9oQZaWVVsoazXjwqeqlyxOBD894zpw5gbU3mdkx0J0grrXjjjtmBjnf/e53k2t/w/v4448Phx12WNIQqN379PuNt7w355xzTvau4e1r7Nj0J05hjvcqjHaqWKued9552fvIeqVFufTSS4uHst8YPPEupd53nkszYeYHs0Nsebzwmte8Jls3tcxTE0ZSl19+eWB99mYdK4yvdtppp/D2t789HH744U0NY3iHWCf9wAMPDP7ex/ntpNyI42u/OQG8Nr3jHe8IvHcYAmKMuOGGG4ZNNtkkM8Irexeap6qzIiACIiACIiACIiACIiACIiACIiACIiACIiACi5oAk6PRYeOx6VWvelVm2ITu9tprr80mprISQNkYxaLO+3C9/sc+9rFgSwOGd7/73dmY22qrrRZwIoDenfGtgR5f6RXXdu+jtuD58NdffDHseNC3w+jR6bGUVN7GjB0fNt71A2HaK3cKV5xxdHjq/htSwXTMCCy5ysyw5X6fDZNXWL1tHgsXzs+eD89JIgIiMDIJHHfccdnYYJmjlBQV6i3qMMYXe2VTkbqOjg0+AdZ0as+9y+DnMWy00UZh6623brgyBhW4w0wJbrlwjTlhwoSG0wyOMzNgUQnX33jjjcM666yTGe8waI+71SuvvDL7yBZVvnTd3hHAkA3DIp4xBec111wTZs2aNagFKN/AtttumxnwzJgxI7C04aOPPpq9axgBPvHEE7274UFIabPNNgs77LBDWHHFFa2TMTrcd999mRe3Cy+8sKOrL7PMMpkbXZY7wwiSzvPVV18digaSHSU+QiJ97NDDw3eP+fIIuVvdpgiIgAh0R4DZjXgPlIiACIjAcCXw8c8cEb53rGbSDtfnq/sSAREQAREQAREQAREQgeFKYPqW+4TN9/5Ux7f3wM2XhWvPOT48/9g9Hacx3CJOfMW0sOnuHwkrr//SUoad3N9VZ30rzL7izE6iKo4IiIAIiMAwJDAkDJvwuPPZz362AT/efPDYhOeZWDB6wNMHHnSKgqcavNjIQq9IRr9FQAREoD0CMmxqj5dCi4AIjGwCMmwa2c9fdy8CI4GADJtGwlPWPYqACIiACIiACIiACIjA8CSw7s4fDDN3ek/HN1ezVSDuveHicNNFp4ZnHrq143SGesTFV1w3bLD9O8NqG20XRo1qXAGk6v3dcMEp4dbzf1w1uMKJgAiIgAiMAALVfSsuQhgsb5YybGJ93+uuuy5bbsy9Ha211lqBtRNTy19xC6ylKKOmRfgwdWkREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAER6BMCGNFgiLPhju/qKEejzOHCtI13yP7+dc+N4da/nBEevuGCjtIaipFWmLlTWPe1+4Vlp23YdfZv/PPPZdTUNUUlIAIiIALDj8CQMGyaPXt2uPjii8N2223X8ATwvrTeeutlfw0nCwfmz58fPvCBDxSO6qcIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiMBIJXDLeSeEF59/Orxyt4O68jaEcQ9/8579dLh31sXhn1f+Pjz1QP3KM8OB8ZIrbxjWfPUbM+9MExZbqutbqtUWhn/84Ufhzkt/0XVaSkAEREAERGD4ERgShk1gf9Ob3hRuvfXWsPLKK3f0FDBq2n777cO9997bUXxFEgEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAERGJ4EMKp56rEHwlZv/XwYN2Gxrm4SY58ZW+6R/T3zxMPhwVv/Hu6/6S/h33dcYenWukp70UQeFZaZsWVYZYPXhpXW3SIsPmWFnmXjxXnPhstP+1p45KaLepamEhIBERABERheBIaMYdPTTz8dpk2bFs4888ywxx57mLX0qMpP4h//+EfYb7/9wp133lk5jgKKgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiMHAIY1/zx23eG1x14VFh6+ek9uXGMgGZstWf2N/+F58K/Zt8QHr3r+vDIXdeFJ++ZZdfoR0OnUWHpaRuF5dfYJCy3xsZh2ekzw9jxk3rCI07kyUdmh0tO/GyYN+f++LD2RUAEREAERKCOwJAxbCLXCxYsCHvttVdYfvnlw6c//emw6aabhrXWWiussMIKYcKECdmN1Wq18OKLL4bHHnssnHvuueG4444L11xzTd1N64cIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIFAnMe+K+cN633xU22v0TYe1t9u5qabpi2hgHrbj2q7M/zi1Y8GKY8+CdYc5Dd4cnHrojPP7AbWHu/TeHmh0fLBk1ZlxYapX1w9SV1wlTVpwRJq+4epi80lphjB0fKGHpudsvOyvMOuc7Zte1cKAuo3RFQAREQASGCYEhZdjkzB955JHwmc98xn9m23HjxoWFCxdmxk91J/RDBERABERgQAiMqi0Izz73XFhsUu9naQxIhpWoCIiACIiACIiACIjAgBCgTThKiugBYatERUAEREAEREAEREAEREAEFhEB6+PMOvtb4e5rzw2v3udQM/qZMSAZwXjoFauul/3FF5j37Nzw7JxHA8vYPf34Q+G5uY+F5595Isx75snw/FOPh3lPzwkLbAm32vx5Zhf0ov3Nt+h4fhoVRo0ea3/jwqixE8IYW1JvwhKTw8Qlp4YJiy8dJi4+JUxa6hVhiakrZsvJLTZ5ucCyeYMpjz9wR7jyzGPDUw/cNJiX1bVEQAREQASGMIEhadiU4o2XJokIiIAIiMDgEZg796lwx513hY1nbjB4F9WVREAEREAEREAEREAE+o4AbcIH77+37/KlDImACIiACIiACIiACIiACIhAtwQwvvnz9w4I07faN2z8+g+E8ZOW6DbJSvExNuJvinlOGi7ywnNPhevP/WmYfflvhsst6T5EQAREQAQGicCwMWwaJF66jAiIgAiIwMsEzv/j2WH69OkybNIbIQIiIAIiIAIiIAIjnMD/+/2fwr33ybBphL8Gun0REAEREAEREAEREAERGNYEMMa596rfh/V2em+YsfVeYZx5QpJUI/CieZa642+/DbdccGJYOP+5apEUSgREQAREQAQiAmNs/4vRb+2KgAiIgAiIQCUCc+c+GZZaaumwIIwOG224fqU4CiQCIiACI5XAE088EaZMmTJSb1/3LQIiMIwJ/PL0s8L55/4pXHjeH4fxXerWREAEREAEREAEREAEREAERMAWerPl3v5151XhtkvPCLVRo8OUFdcMY8aOF5oSAi8+/3S49dLTwl9P+mx49I7LX14urySwDouACIiACIhAEwIybGoCR6dEQAREQASaE7jt1pvDggW1cMdd94bJk5c2Q6clw7hx45pH0lkREAERGIEEZNg0Ah+6blkEhjGBZ597Ltx86+3hxyf9PDNq+t1ZZwzju9WtiYAIiIAIiIAIiIAIiIAIiECBQM0MnP55dbjtL6eFZ5+ZGxafvHyYuMTkQqCR+/PJR2aHGy/8Wfj7qUeEf91xpVmEzR+5MHTnIiACIiACPSEwylKp9SQlJSICIiACIjBiCWyxzbZh1VVXDSuvsprNVMFmViICIiACIhAT2GHbrcOFl/4tPqR9ERABERiyBEbVFoa5T80N5//h7HD/ffcM2ftQxkVABERABERABERABERABESgVwSWXnWjsPY2+4RVZ77WvDhN6FWyQyadBfPnhftu+Eu4/bIzw5P3zRoy+VZGRUAEREAEhgYBGTYNjeekXIqACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACPQzAZv4u8KGO4RpG20XVlp3izB2/KR+zm1XeZv/wnPhwVv/Hu6ZdXF4+MYLzZXGgq7SU2QREAEREAERKCMgw6YyMjouAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAp0QGDU6LL/etmbgtGVYbs1NwlLLrNJJKn0VZ+6/7w+P/vM6M2i6Ijxyy6VmzLSwr/KnzIiACIiACAxPAjJsGp7PVXclAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiLQJwTGTFg6rLD+NmGFtTYLU1dZJyy9/GphlHl46lepmQemJx+5Nzx+/23h4TuvCQ/ffFlYMO/Jfs2u8iUCIiACIjCMCciwaRg/XN2aCIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIhAHxIwj05LrLhuWGba+mHqyuuEpZZbNSwxdaUwaYmpwSyeBi/DtVp47unHw9OPPxjmPnpfePyB28K/77k5PP3QrfLINHhPQVcSAREQARFoQkCGTU3g6JQIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIDBoBM3iaOHVVM3SaboZOK4aJS0wOExZ/+Y/9SUuGseMnhtFjx4XRY8aFMWzHjg2jR40NC2vzw8L588OC+S+GhQvsz7bzX3j+/7N3H/BSVGcfxx96k957kyqIDQsWsKGINRoLxsSYxBZjyavGlmgsMWoM0Wg0scaa2I0dG6ioCCgISBPp0pv0/p7/3Hv2zt2+e3e57Xf8XHZ3ypkz35mdGe957nNs88a1tnndatu8vuBnk3u/buUiF8g0xzatnE8A0y47uGwIAQQQQCAbAQKbslFjHQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEMirQNW81k7lCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggEAWAgQ2ZYHGKggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIJBfAQKb8utL7QgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIJCFAIFNWaCxCgIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCORXgMCm/PpSOwIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCGQhQGBTFmisggACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAvkVILApv77UjgACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAlkIENiUBRqrIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAQH4FCGzKry+1I4AAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAQBYCBDZlgcYqCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggkF8BApvy60vtCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggkIUAgU1ZoLEKAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAII5Fegev8r3szvFqgdAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEMhQgIxNGYKxOAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCORfgMCm/BuzBQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEMhQgMCmDMFYHAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBPIvQGBT/o3ZAgIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCGQoQGBThmAsjgACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAvkXILAp/8ZsAQEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBDIUILApQzAWRwABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgfwLENiUf2O2gAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAhkKENiUIRiLI4AAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAQP4FCGzKvzFbQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgQwFCGzKEIzFEUAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAIP8CBDbl35gtIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAQIYCBDZlCMbiCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggkH8BApvyb8wWEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAIEMBApsyBGNxBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQyL8AgU35N2YLCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggkKEAgU0ZgrE4AggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAII5F+AwKb8G7MFBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQyFCAwKYMwVgcAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEE8i9AYFP+jdkCAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIZChAYFOGYCyOAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAAC+RcgsCn/xmwBAQQQQAABBBBAAAEEyoFAvdrVy0Ery18TcS1/x4wWI1DWBbiu5OcI4Zof19KqtXbNala1SpXS2jzbRQABBBBAAAEEEEAAAQQQQCBnAvzmPmeUVIQAAggggAACCCBQGgL169SwalWr2IbN22zLth0pm9CwXg2r4v5bt2mrbdu+M+XyqRa44Yy+Nnjv1rZp63Yb/Pv3Uy3O/DIq8PcL+tsBPZrZqnVbbMhNH9iOHSU/N8roru7SZuG6S7nZWAkEdnOBjfXr1rCNm7fb6vVbktZUs3pVq1sr/q9Tfti4NSfXj9+dtocN3a9thb63yPHdW49yd2Szp0fOtn++PTOpu2ZWdff7t246whrvVtPGzFhuv3lwbMp1SnMBBZbUrlEtZRPSfYZJWVEJFuB6XQK8Ulz15rP72f7dm1qDujXd98Psjhem2MufzbefHdnFLj6uh23bscN+ee/nNnX+mqCVR/ZrZTeetWfw/oL7x6ScXoq7xqYRQAABBBBAAAEEEEAAAQQQiAjE/01cZDZvEEAAAQQQQAABBBAo2wLv3HykVa9WxaYv/MHOuXt0ysZqef31+tdzVgUdPSlXSLFA26Z1TB2XNWuQDDUFVZmevX/3ZkH71Fl+6B4tbNSkJWW6veWlcbiWlyNVudupa/j7tx1tPrHJIVe/kzRQ9tITetrph3ZMiLbdBUb+sGGrvfvVInt4xLcpA6Wdfd0/AABAAElEQVTiVdSpRb0Kf2/RvbuOs1dpUr9WPIaYabo+6zqtsn+3gut2zEJlaMI/Ltrf+nRslLJFs5esszPu+DjlcvlcgOt1PnXzU/cDFx9g++7epFjlCvhXOf2QjsE1rUa1qnb2oM52w5MTgunNG9YOri364L9/ep9ouuZREEAAAQQQQAABBBBAAAEEEChtAQKbSvsIsH0EEEAAAQQQQACBnAjUcpkf0inK1qSiTBGUyiPwyKUHWd9OjUwBBwdd+XbMjs/4/gfr0bZBEMzw2dRlMfPL+wR1WL5x4+HBbrz46bwgo8Ou2KeK7rorDNlG/gV+4jr9fVCTtnbmYZ3siQ++y3rDyiKo4BsFP512SAf703OT7X9jFmRdX1lYcdSfBwdBEPOWrbfTbv+o1Jqk6/OmLduDwIyZ7rpd1osPwkrVTgWflHYpS9fr0rpnZXMMUj1fZFNnOusoMNAHNW3dvsNe/XyBvTdhkc1Zuj5YfYQLrFRA006XgPKVz+enU2W5Waa0zMsNEA1FAAEEEEAAAQQQQAABBCqgAIFNFfCgsksIIIAAAggggAACCCBQXMAHLShbV7yibF/KkDJv+YacDCMVbxtlZVq9BENo5aN9lck1H37UuWsETjqwfbEN/WhAh7QDmx5xGZkWrNgQrK+AprZN61rv9g1dwEHTIJugrjkaslQBLv9+P/tgqWINLMUPtdIYVi2fzdOQs4Oue9c6NKsbCeDI5/ZKWrfPnqOskk99ODthdUtWbUw4b1fNKKvX6115z8rG2j9WJHq+yKbOdNbZr1vTyGJvjfve7nxxSuSz3tzzv2n2zKg5QSDgWjdEZkUqpWVekQzZFwQQQAABBBBAAAEEEECgvAkQ2FTejhjtRQABBBBAAAEEEEAAgbwI+CwHeam8EleKayU++OVg19s0qWMtG9UOWrpt+84gGEnTWrhpS1dvSrkHH01ZalPnr4lZrqoLcnrhmsOsnQvAUbnouO724ddLTBmPKCUT2OEy75WX64qGOVSZPHe1vfPl9yXb8V2wdnlx3QUUZX4T7ZvVi7Txw68XR96H3yxbk/oaFl6e9wgggAACCCCAAAIIIIAAAgiUVQECm8rqkaFdCCCAAAIIIIAAAqUioE7Ii10H9IBezYMMG8oOsWjlRnvk3W9t9DfpD1F2zD5t7MduCKLNW3fYb/451lq5TvJrTutjXVvvFgyhs2LtFntr3MIgg8cOjROSZrlp2J5BR/nn05bbwy5TSHRRdojhv9o3mPykyw4xatKSYotoeJfzju5qfTo2MnXe/7Bhq323eJ295IYnG53lEGwnu2wnpx7cwZo3qGXqzFfH6ITvVtqzLlPAqnVbim3ff6hbq5r9cnA3O3SPFtaoXk3b6f7Tsur41RBQCjCILvecv5/Vq13dXv9ioX04abGdc3gXO6BHs2A/tO4389bYn1+YbBs2b4+setmJPYMh6Lq2rh9M01/5P3zpgcH7le4YXP3Yl8H7C4d0M2U/mOvafst/JsWsP/P7tcHwbcMGdnJtbmm7u/o2btnmghQ22F9emhLTyb5P1yZ28dDu5vrf7XduG/Ecfjl4dzuwZ7Ng3lWPFrQjsmH3prU7Plec1Mt6tGtgu7n91n7NWrQ2yMIwe8m68KIJ37d3QRU3unOmZvWCznUteFifFhGDJz9w58jk4ueIMs2obR2a1w3O1fWbttmcJevtH2/OsGkLYgM4Em7czUjH9a6XvrHzjurq2tXSZbupEwSTvPzZfHvuk7lB1Tqnr/3xHrZHh0bB8VdgyGfTltlD7xQ//5Up549n7xmsc+eL37g2r7OrT93DdCwa1qthazdusy9nrbThr0x172OzV4TPr7EzV9jPXZt0TtSvUz0wDw8llq6Rhrz8x8X7B20aM32Fa/PM4H30P8f3b2snH9Q+GDLo+icnFAuoycV5EL29M9wQafreNmtQ27bt2BGc93JRVpm/X9g/GHLs/QmL7dmP5kRWDfuk+/2LrOzelPQ7r+uTjsmB7juvc2L+8vV2r8tIMmH2qmAz3d1Qklec1NM6tdwtGHB0pvuuvP7FAndNWRRuRsz7Xx3TLTJN1+oHCo/Xr9x34DY3hFy2RcE3w/7yib16w6DgXqJsLted3scuvH9MVlX2bNfQdD3r1LKeVa9a1Zb9sMmed98RfVd8CZ9v479daQ+472y8csw+rd39qWMw6w9PTbTv3T0uUbn3/P5Wt3Y1q1WjYKi05g1rRa4f8c7psw7TNbKFdXQZ8HTd0XGa4q7Nuq5nGmSxR4eGdsXJvYKmfb9io/3h6YnB+7t+vo81rl/TDbu12P6T43P0kuN7BueYrhnr3LXP31cau/vUDWf2Dbb/99em28TC8y6Rm5/uh5hbsLwgq5efXpLX6OeLo/dqbSce0M66t2lg6zdvs8+nLw+y9+gc1HmnoLqB7rrf1N2jl/+w2b76bpU96M6N1euL358TXa+z/e7/5PDONqhvS3fcN9u1//4q7i7f/rO9TefUOHfNffCtmZbNPUvX+AvdPrZz9wCdp2vWbzVdw//+2rTgGMbbcC6ehdJ9vvDbz+Ya6NcNv57qMsoN2a+Ne+YqCMjUPLXl5+7ZTo+T1z0xIfiuDXT257hjsNU9x17x8Pggc1O4nly/P8Xdw5TtTs+CNdy9T8fhK/cseP8bM2zl2s3FNqdh9B789QHBtMfemxX3+fpg9xyufVK55vGvgnM3U/Ng5QT/ZHo8SvJc59utZ0nda395zO52cK8WwfPrxy441l/bEjTV+vZoYx3bNrUNG7fYB59Nj7vYEQf1sLp1atqipWts/OR5xZap4q4De/VuZ21aNLSG9eu482SnrV670eZ/v8omz0gccNmqeQPbt08Ha7Bbbavmhsvc7K4v37v6x349x7ZsLXrW9hs75tBeVqNGdZs5Z6l9v2SN9evVNthmzZrV7YuJc2zG7KV+0YSvmbRV/89x3KA+QV0Tpy6w+YsKngfClbdv3di1o10w6YNPp9uGTQXXva4dmlmv3VvbdjeM49sffWM9urS0Lu2bWZOGdW3j5q326ZffBfuuFb+etsDmOat45cC9O1uzxrvZJrfOe6OnFVskXb/W7rjIWUXHY86CFcXq8R/679nRWjZzw2Zv3WYjPp7qJ/OKAAIIIIAAAggggEClESCwqdIcanYUAQQQQAABBBBAIJWAhgp6xXVC1ynMsOCXb1q/lg3/5X6mwIZb/1sU9OLnx3tVB8ienRoHsxRA8DsXYKGgGl/UMa/OxqEuoOG02z/yk1O+qsNY6zbZzXUuxwls2s0FYfjt7tlpVbHAJnUS3XnePuY7WrUx1aWAENX7/sTFCTsfEzXsmSsPsd3bFAQN+WX26lzT9urc2IYN7Gy/fuCLmA7gJs7z5esHxjgrwOnCId3tTNcxfuItI2M64RTEpE5aBQtd4AKRdFx80X50aF7PjujXyn7iggl81omBLljGZ0zxy3ofBa35omClbm4/FDwQDmzy63dtVd9auKAwOfmiju9WjevYf393mAuAmBScH36e6vLb6eLWHf9tbCfFwb1buGCdhrbVdapEFwU83fOr/jHnjDLLKOhOnXwfJMjQEK6rRaM6kXb46XXdUHS+bXt0XFkssOn/TultCnoJF9lqP9Wmv706NRjaJjw/2ft0XDUEoAKFfNH2rvxRb+vfvak97jo8H770INMQX74oKE8//bs1s/Pv+9xPDrLu+P061gUWnu72Q4EevqjeNk3a2uC9XRCAO7+iO1r9+aVzTAFldVzwnS/6jviSiZHOsc4u0Ebb1rmVKLDpAnfe69gqyHF1KBgwV+eBb7ten/jtwa4tDcKTgu/Sk/93sAssmGH7O1ddqza6QLpwYJP3yeT75zdS0u+8OusvOb6HNahbw1fpgtUa2b9+c2AQcKjr3q+H9ojM05sD3PXhgO4KfKxr6jhPVA7fs2UwS0E3+p6ucB3wurboWlKSwCZVumnLdjvjjo/t7ZuPCK5dOj8LrmFuhzIoCpI898iCDn6/mq4/1/64jymo5WJ3nVUJn2+92zdKGNh0wbEuCMQFPco1OrjF1+9f9+/RNGiz/6z2+++ZhqXz57QyXP3TBSqEvytaR8dJ31cFPZx3z2c2wwXPpVN6ueH8HvrNQUEGLbVTgbK+DOjdPLiPKcArHNhUknNU39HX/jDIBeAV/ZpM01q7a5+Cc7Sffr8VKJtOYJMCcfVdUsllpq7w88W5R3YJ7psFW5F3DfuRs1Yg04/ds8VL7l6re6sv2iddk47cs5X96E+jigV5JrpeZ+s6oGfzwCxZ8LaeSxRQXtcFPiiwKdN7lq7VZw3s5HcveNU+6vzW85X2MTrzWq6ehfzzQXjj/hwJP19ofrbXwHDd/r2Oh9+On6aATl+6u+cPXc/6uu+dX66Je75NFsDo18329dmrDnGB+8WfBf1xOG6/tnbu8E+DwFlff3UXJOPbNsg9p8X7w4He7vnIL9PQncMKysvE3G8r3ms2x6Mkz3W+3XqW1PWwhwvE9aVzq6Jj56dFv7Zr1dhaNJVv4nuHAngUfKSgsnBg0251a9kJR/a1OrWLrgOqX59bN28YBPS88eHkIDAnvN0D9upke3RrE55kNV3QUg8X5NStU3N7/s0vbb0LtAqXtq0auY9VguveAf06WfVQUH39ekWBeOF1wu8zbavuRwUu5gK/msQNbFLQkV+mlru++8CmVm7f/XS1tXe31pGmVFdg3g8bI/P32aND3MCmau4e1NsFR6ms31A8eC8Tv+Lbah83sEn3kj7d2zjbKraxMDgr0mDeIIAAAggggAACCCBQSQSKfstbSXaY3UQAAQQQQAABBBBAIJ6A/nr8aRek44OaNri/SlZ2F3VG+k45ZUQ467BO8VZPOs0HNalOdZwvXLEh6FDWSgrGUcaCfBft392/3DcS1KQsJ+oQnuAyN/jAmiNdR772Md2iLA4+qElGypDz9ZxVQee66lBQyb8uOTDIPOTrVAfmf64uclbnn4boUaYY3w51wipgSh0W8YqCphR4oKw7yvKgzAx+XW3zDpfNwxdlgFJ2K9n7os/6eeXzokwnfl6iV3VQK6hJ21EGj0++WRpku9LyaqYyA4WDaBLVk850Bfr89Rf7RTrEFYCjfVSnni9/+tlepgw1qcqilRuCfdW57Ivq8wbhjF7DXOewD2pSIIE6RsfMWF4sAOhy14l8hOsQz1WRq4KaNroAEO3jty6bgS/qCFTgioKaFHyhNmu+2qayV5fGpswV8Yoyheh4+OOl88tnAdP0J387IMguFm9ddToqqGm7i+BRR7DW1bmtko3RBy5gUEXbVYd6dFFApR8KTeeW7xDP5Xngt3nz2f0iQU1yXLRqo30xY0WQWUPLKOAlwdfOVxEELab7/dNKufjO93PfeQU16TugbF2LXbt9uerU3i7LXkFQk46XOsi1X74ogFQd7PHK/i54zgeyvDmuIGvFiMIMT1pH15qSFp27ytCnouuwzttMiq6DPqhJGfb0PQlnPlJWMe2jL/5807Z0TY8uyv7mg49mfP9DsQx30cvqs4bP03fP3wd1fvrrRzhb1F9c0KyvV99nXdej7wcPu+9zOkWd/o+4gEbtg7b720fGBYG36ayrZTK5R2h5Zf146sqDI+eCvvu61ih4ScFpugYp6DbTEh4qTME117uMXe/ecpR9etexwasCpofsWzxwINNtqF1qr7zVXn+d03f07ZuPDIKadMx0r9fx8PMVAKX7SCYlU9dM6vbLZnLPCp7JCoOadD1TVixlKvMZ+XTNfcoFbOrVl1w+C6X7fJGLa6Bvv14/clkW9R1UhklflMXRfy/nO4ddWe6/aP9IUJN/FtRx8M9d+v48ctlBQYB0SduVrnmy7eT6eCTbVvQ8PfPo+qbzVUG0yoI5ac7q6MVy+nno4X0iQU1r122yabMWuyCdlUHWH21IGZwO6797sW127+wC70NBTVpv8TL3fOIyBalUdQE9Jw/uFwRSFVux8EPzJvWDoCZlhlq3fpOtXL3e1rgMUalKNm1NVWc6831Qk/ZPbV26Yl0QAKX9VmnSqG7cZ8YeXYr+2GH6d0XZTzP1U7CV31ajBnXjuu7esUUQ1KT2pJP5SstREEAAAQQQQAABBBCoaAJFf4pW0faM/UEAAQQQQAABBBCoVAItXVYF/eV+tuXuX+zrhmUqyACkjvPL/jUuUpWyGzzj/hpdnTMK7Hhr/Pcps1xEVnZvFCigod7+/MKUyGRlwHnpuoFBx606nxU0o+Eo8lVOPKB9JFBIQ3j5LBvanv7K/mnXqasOdA1PFB5yK1F7zjyskx3ksjGoqBN76E0fFBvy5fduyJ4T9m8X7PulJ/SMZIL626/2i2SPUCfsr/5elHFHdSmTkzrHlW1Bdfzx2a81OaZEr6sghLf+eETQganjpY5Mdeb+8+2Cob8edZ1qClhRZ9Kl/xobU186E9RZepLL9KPhiXzxWQq0vWNdB3U6dn7dRK8+S4nm/8UN0+aHZNNnZT1RlhYdq/sv3N+O/v17mpywKNBD+6thd9648fBgOQWyRA97InOd2yoyOvdvn9rU+WuCz/pHQ9po+CcVdYYf9rsRkQCcYGIJ/lGQysm3jTINm6SiLBs3nrVn8F7ZxRS85jPSaKIyoGlILxVlr3rRfbfiFQUlhrOhyezV3w8Kgojk8fszEp9fGi7mZ8NHR4IAVH+2Rg+5zGonuTarnOk64aOHfDx7UOdgnv759/vfRd7n8jxQpQqo0TmqokCIs+78OJLZTNP8uaX3qUq63z/Vk6vv/IivFtkNbpg+X+5ygTQKftNxVbnXDTv11Iez/WxT4KW/Rmn4xTfGLozM8280tJ0vT40ssH/8/VmRDDC/cMMF/ebB7K4Xvl69fusCiJo3KLheaoi2cKBheLlk7//qhi8KZyfq26mRPewyGmn3tR8a2lSZ6sLnm67nysQXLspkVkhWzCu8TPi9H0Js1J8HB4G/GlYz+hqq+5kykqko+OzEWz4s9t3x10kFFOj6nGwoTQVsPnb5gEhQ06VueEBdszItmZyjV7pMdcrMpKLAz+NvLt7+v7jng8PcPTrTomHVfLn3gv7BkIT+swKLDnaZp/RzlMu69X+PjPezMnpV8OaZLiuYD2ZRQOSzVx8aPK/ovqTAulPc9VVDiqrI/1kXXKzvjYauy7Rk4ppp3Vo+3XuWzrnrT+8bbELXs5/cPToYqtVv0x8zBUrf6e5dlz9U8EyXy2ehdJ8vcnUN9Pv2uruW6Uff76tcdkOVu1/+Jqvvia8z21fdv/q74EoVnWND3LOgggF9ucHdZxWApnPxn5ccEDxD+XnZvKZrnqzuXB+PZNuKN08BX2fd9UkwzHW8+bmcVstlQqvnMjapLF+1zv73XtEztbINnXXifkEWpjYtC67fWk5Zkw7ZryDQSYFJr7w70VatKQqWO+rgntahTROrVbOGHTmgR8Ih0VauWR9szz/bqe5kJZu2Jqsvs3k77YNPZ9ichcXvNVNdENj+/Tq5qqpYj84tTZ/Dpbsbvs6XSYVD+mXrV7Qts15dW8UMEdiza9G2vp4e+zzj28ErAggggAACCCCAAAIVWaDoz5Yq8l6ybwgggAACCCCAAAIVXkCZljQcSaof36EbDaKMICrq1AwHNWmaOmFvf36y3gYdwuokz6Tor+rDQU1aV8Ec4U56dWzms4SHvfDZZ/z2Zi1aa0dd/54de+MHdkFoaC8/P96rz9qjIJgL7x9TLNhHy9/238lBtit14Gj4Dl96FXZ+qwNMw9RFFwXU+OxL++7eJHp28FmdmBfcN6bYPAUdqaPPFw1jlOuijtFwUJPqv8sFHvmSi22qE1Yd3iqjXFaGcFCTpilDih+yRcupszAX5YjC4bhU199fn1YsqEnTlNnp1cIMV+oQ1zBxuSoX/eOLSFCT6lQAiu8Y1fnlO6T99pRpS+eAyu5RQ9/4ZRTU9vO/feY/Bq/KJKGhsPy6ic4vZTQ52w1n6DOb+EqyNVKmFnXWq+zdJfac1tB4KtpnHXOVfJwHR/UrusZouEU/XGOwQfePzi0FD6UqmX7/cvGd1/EMXy/VxuEu0McXZb4IBzVpugI4fQkPdeinKUvPXoXHY74LgluzfmswS4E7/njt27X4MGx+3Uxflb3EFw2Nl2lR5rRwUJPWV5aP8HCkCj5UCZ9vfhinYEbhP0PdsFAqus4q+0kuylKX3U33D/2cfOvImO+OgsV88ee7/xx+VQbAxy4vyNTkz7Nsgpr8uuG6k90j9iu81+ga8VM3ZFb0d/9KF3S0xH2PMy2tmxQES2k9ZWZTELCupS+575ruw7q+qSiw+bafZpY9qWBNN7SkC4b0QU2apu/1tAU/+NlBwIsPatJEPc/MW1YQpKDrTCYlU9dM6s50WV2P/fPczS4AWs8x4aJj5odZ1JBmvuT6WcjXm+w1F9fAZPWX5jx/3dG5rPurv3f7Nmn4ZmXSUmnlhsYtC6W0j8eF93+xS4KaZN24YdH9Zl3UUGnbd+ywZ18b537GBq/+2HRqV/R89/HYb4sFNWmZ90ZPs81bCu6XzZvEH0YvCIgaMbHYs52vP9FrNm1NVFem07+ZuTgmqEl1fPOtnokKLtQ9QkFMmqfAsCaFvstXrrPt7p6qkq1feFvK+BQuutZpSD2VVS5gbOvWouDB8HK8RwABBBBAAAEEEECgogvk5rfgFV2J/UMAAQQQQAABBBAoFwLqlEz1E29HFBzihyOa5IZz0efoHx9woPX9X6fHqyvetDfHFQXchOd/8PXiSAdqz3aZZ04I15XqvYZO8+WWc/oFGXGUucEXBewoqGvD5vR+We7XXbNhS0wQjOrUcVC2nEHXvhvJmqNsHRriS0UZSxSsEF0UXPDd4oJhv5RVJ15RB7Pqjy7T3ZAevrQJdSj7aSV51fbiDRei4X988Rm//OdsXg9x2Tt80ZBS0eehPiujmC8+I43/nO2rhrPyJTqAwk9/euRs/9YNqVa80yUyI8M3Cq7Q0IzRZa07H1UUjBDvPNF0FQ0rFK9Mdx37fpnwfA3hpSAWlWYN4p9fc5YWnH/h9fS+JEYvjJ4bVKfjFz5mCnZQ5hGV8Hc0H+fBnp0bBdvRVyfRNem/H88Jlkn2Tybfv1x958NDLvm2+eAjfZ65sHhQg6ZpWD9fatWI/dXHaQM6BFlttEz0sJT/G1MwTKXOr0yG5/Tbi371ARiavrOwkzR6mWSf/zNqTtzZT35YkGVKM8NBcy8Wnm9qf3g4Og2D1K5ZvaCuMdOXx60zm4nKyKH7h37C31ed7wruCd9XEg0LqGv2v68YEAyXqsAiBUkoO1A2JZNzVPW3cRnrVBQUpp94JZuMiuH7kLyPvP5du+qxL+3PLlD6dJdlSZno/L3saBfc7INa420/0bR4wYgazs0XDSUYXRYsL7gGRk9P9TlT11T1lWR++Hqs57N490pl3lNpWLdmJLNb+Dqbi2ehVPuQq2tgqu2U1vzOLQqeIxVEligT23sTCwJmdR1UprnSLKV9PPTMo+HndlVZsrwoyLFT26Y2ZNAe1rZV0TFQMM7GTVtdoFLBM5fa1bpFUSDg3IUrg2HRqrnsmeGflasLrjHK2hS+v/n9Wv1DQTC3/5zOazZtTafedJaZMTv2Oqn1dG9bsrzgOhI9HF33YBi6gmfQcAalbP3C24oejq5rh+bOuWBbk2ekDkBPZ59ZBgEEEEAAAQQQQACB8ijAUHTl8ajRZgQQQAABBBBAAIEYAWU/UEdhqjLm7iExv4QPBxpoaKNP7jwmaTWZZub5wmXbSFTUGaSAGB/ckGi5kk5Xlh919CtzgTLuaLgv/aiTRZkOnvxgtr07Ib1flivTSYO6BVmF5hdmfkinfQf1bBZZLBwQFJlY+EadkcqqoKH/OjSvF2R+Ci8T7rQNT/cZV8LTcvV+Y4KAr3Anfi62dUCPIqM/nt3P9JOsHOhMw0F3yZZNNs9nPlJGkehsJX49ZQJRUEwuOye3bI0NbvPb0+s2d37GK2pHshIeRi96uVkucK6TC+pT0EeLRrVjAhnWuO9kvFISo+c+nmuXHN8j+O4NG9gpEpw2bGDnyKbCGYbycR60LwxoiRfw5Ruh4D1/jP206NdMvn+5+s7/4AIok5XN22IDMn3ASKL1NIyTL1tdII2G4vMlnHXkDDd0W3Tgk18u3VdlfvLFZy/xn9N5He8CQeMVtVPXIAV1aEhRX/7rzrdfF55v4eHoTnf77Duhw+ebX6+krxqWSvcVDbenYSQzKeFz/nsXmJPsO5yq3kzO0d1csJf8VOIF0PltKWvWaQd38B/TetU6CiZb7+4fCmaKLuO/XWH3vT7dNFyryuC929jzn8yNXizp5yWrkwcQxLtHFSa8S1pvvJmZuMZbP5fTuoWG0Rt5++CkVft7lgLlcvkslHSjhTNzdQ1MZ1u7ehk9S/pnwXgByr49CmQ/98iCYT8P6d0ibpC4Xzbfr6V9PFI98+R6/3U//3raAtuzZ7ug6tbNG5p+FGK7dv1mmzF7aTDkmc82pIUUwOPLOacc4N8mfG3RtH4k+McvtKkwo5P/nM5rNm1Np950lpFFojJx6gIbfGhvN9sN3+mGo5tWOBydhqZTUearOQuKhrAriV/RtooPR9dr91bBtna4bX07t+gPVYKJ/IMAAggggAACCCCAQCUSyOw3TZUIhl1FAAEEEEAAAQQQqDwC4awK6ey1hr3LpCxdk/gX5hqqTcV3rGZSbybLqpNfw7ypM3v5D0XtUedzTzc8nIbBefuPR6SVMUL77zvHffvTaUvL0DAk4cCB6HVXu6GgfGnVOH5WHT+/or1mmvWpYWGAWUkdfMayVJ1u21ynikqirCslbUeu1l+5rugcj67TD0+k6S1dYFO6pSRGCi7wwXx7dy0ajm7wPq2Dzes7Gc52kY/zwH9XlbEiUdFx9d/tRMtkMr2sfueVKUvBN7789uRedu2P+0R+Lj+pl58VBAyV9HzvGhqOM1nwTGSjoTfq7E12vdxcOCRN+L4UPt/Cw9Ep6EhFQaAlCRwKNS94q/vX45cPsMtO7BkMDxkd1KR9yKQooPWi47pnskrWyyqblG9fsuPcKoNrhW+MsiX9/qmJcYOa/DKvfbHAv7XD3JB0lPQEFJCWSfHX1Fw+C6Wz/bJ6DUyn7amWqesycPr7xQ8bCrIoxlsn/MzZtH6teIvssmkV+XgkQhw3aZ6N/HxG1JByVax+vdq2b58O9lMXvNSyWVHW2Jo1Mvtu1a2d2ZCWidqp6Zm2NVlduZq3YPFqF2RfEDzds3A4Ov2Bhw9gmv998cyCJfELb8sPR6fvmB+GbtHSNZH7Va72j3oQQAABBBBAAAEEEChPApn930p52jPaigACCCCAAAIIIIBAmgKfh4bkeeKD74IMCmmumtZiGrou0dBPfri1VaFgnnQq1S/V4xVlh0hWHnpnpgtummnq2D9mnzZ2rPtRBir94ryJ63D61yUH2hkpMl+td8OEqaNdARIdQsEBybareZ9OXWYKIFDp0qpoGLxgQuifHqFh+fSX/uW9JBouLd7wWJPnrrF9dy/I7qLjEA52yafD/OUbXIBbA6tfN/H5o3PLByzM/L5oeJN8tivbunt3KBpqJbqOboVBJgpmmOK80y0lNXrsvVk2/Jf7BUGMyrQ1bf4P1rpwGLrXxy4o1ox8nAfKhKbrjYJQFBSg4SejS3gIvOh52Xwuq9/5847evdjuxMvupGwkvpx7VBf7+2vT/ceMXnVdbVq/oONXGfIyHV5NzdDQn4muBbvVLsiepyxH4fLv97+zu3+xb5CZTMPR6T7ns3a989X34UVL/F7ZrpQNUEUBDrrHfDFjRTDMpIKsFFTy5k1HpNzO9U9MsFvP2Su4H/38qK72tTLsuPtGPouOvdqsYeDaNy/KVBK9zfDQZ9HzSvJZQWa6Fuk4JwusKsk2yvK61VzmvGyKMgR1d5kd9Z06+Kp3Mq4iF89C6Wy0rF4D02l7qmV0D9H3W/cUBSMmKvt0KQrmVZay6JLoebZOzcTPI9F1pPs5V8cjk+e6dNtW0uVCt6yYqr6bv9z0o+HkOrZtYhrarJ0bkk7Dm+nnODdE3WMvfBast3bdJhe0U88Nw7bDHn/x85i68j0hk7aG2+KHagtP0/saNRIHc0cvm+izhuSTmR+OriBbU8G168sp84utVlI/vy0/HF3ndk2DY6SNfPVN8WfFYhvmAwIIIIAAAggggAAClUCAjE2V4CCziwgggAACCCCAAALJBdRhvL1wbJa9ujROvnAWc/fvXjQMUXh1BYr4LBuJOq3Dy+u9Hyasfp34HT59OyYO6AjXpUCq/3w0J8jiNPSPH0TqDWcxCS8f/X7RqoLhb5o3qB10nEfP1+eDeze3cw7vbEfvVZCVZt6y9RHnZMP5qRNfRUNm+f0NJpSjf9ZuLAoaSdTh18IFmUSX0d8UDTFxWJ/8ZO+I15H89ZyCvzhXMIf3j27bgJ7NI5PGzYztnIzMLANvfPBSvKZ0bF5wfq3btNXiBbTEW0fTSmqkIZA01J/KsMM627BBnYL3CmpQEEq45OM8GBs6ZsN/tV94c8F7BSr+9mQNt5K7Ula/88cUZsrSdf/A/3s77s+Aq96OnB9D9yvIdJSpjDKa/PfqQ4MhCLXuhO+KZ3ZIt75DE2Ty8UGpqmeKG2o0XD6esjSS6UnD0YWHoXv03VnhRTN6Hy+m9ui9C67xqujyh8aZhsLTPU1BDyoa4jVVeX/i4mA41L++8k1k0bvO2zfvw7RqY7MWrw22qcAiBVRFF2U1THQMopcNf37puoH2xV+H2KgkQ6UpkNUHJHwxM/GwteF6y8v7DYXXO91X4mWKU0CMD5ZNtk/x7lk+A57W99mYktWRaF5Jn4US1eunl9VroG9fSV+/X1nwLKhhXROVcJZCXZdU/LVB78NZlPTZFz/8q/+ci9eSHI9sn+ty0e6tkeFWq7hn7thf5StgqWrV2OnR29aQc9/NW27vfjLVnnhpjBuOblOwiIKCWjUvyNq0dGXB9VD15TIbU3RbUn1Op63+/91UV7268TNHNW6YOGA1VRv8/C8n++ClKtatUwvrUZi5adPmrbb6h+JBxSX1+yoUKNWrayvr6X5UtmzdZktXFBwb3y5eEUAAAQQQQAABBBCobAKp/6+nsomwvwgggAACCCCAAAKVUsAPldG3Y2M7uFdRAIfH6Nq6fpBxQsO1/XJw8WwffplEr0P2bRtkRYqe/5DLjuRLuh3ec11wkIo6YFs3qeNXj7yee2Rsp6xmKnPHq78fZE/938Exw95p3xcXBipFKkrxZtKc1cES+qv1e8/vH7P0Xp0b219/sZ/95oSexYYUWrqmoBNFmRaOixMs8Ktjdo90UmY6ZFNMI0ITfOeHOpDVtnyXcBawI/Ys6JQIb1NBXw3iDCP3tXNVoIvKL1xWGWV7iS5nHNoxGDZQ52K/NPdlm+vM8qWHs48un4Wyotx30f6RQAy/nAI0rj+jj/9ooyYXBWBFJpahN8qE9LMju8S06Dcn9IgMtzh/WfHOqJiFoybkwsh36u6ze5MgY5o28e2itaYsaOGSj/PgjbELI53JOm/+fkF/28cNi6fgAmVv++/vDo3YhNtS0vel9Z1P1G4FqTSqV9ABOmnu6kjwUvTyCqr8pjBYSN9D3QMyKXJ91gU1KROQioLobvnPpEyqiCx7wZBuQbatyAT3RllOhv9y38ikL2bEBsV8XBgoqeHo/DB08909ZOXazZH10n5TeF2Kd00KZxqKHpJK7fyJC3BNVfx6Cor64OvFweK6vzx++UEJg2dT1Znu/Cc/LAosvHBI9yCzYPtmdYNjp7Y/fOmBMdfEdOr+dFpBtqk67vr5owEdYlZRwM/vTi0KJnzTfUcrUpn4XVHGxR+5rF7R5Ro3/GOikvKeNa3ofL/f3bPilT8VDrGrZx+fgS3Xz0Labqrni7J2DYxnle20b+YVPAvqenf7z/aOqaZvp0bmn4GU6dNnCtzhgko3umEgVfYozPYWXlnXlP4J/ihAy6UyD9cV/T7b45Htc1309rP5vGR5UUCLD3QJ1zNgn9jnHc3fq1c7O2Povnb6cftEhjPz6213GZk0tJkvPuPRwkUFx1TTjx1YdH3yy+n18IO627AT+wd167k6FyWbtu5099VthUFfzZvE3qNruaxfbVoUZBMsSRsVALZhY8Ew2Qo28sPQzZwT+yxcUr8fXMYsvy0FUDVvslvQ9Nku41Z00Xfn7EGdY/6/Lno5PiOAAAIIIIAAAgggUFEECGyqKEeS/UAAAQQQQAABBBAokcC9/5sWrK9f0P/FBQH93ym9TQEgCh5SBocnfjsgCLhRp+64OENpJNu46vznrw+wXw/tYW2b1g0yGD162UG2e+GQWBs2b7NnRs1OVkVk3qTCzDqa8PjlAyKBCco09exVh8QNdtKym7duD4a9UkCRgpsU0KASBKyc3sfauU5clRkL0xti7P43pkeyz2iInn+4jkVl5VB2oouHdrd7XdCE7+y47/XpQd36555Xp0UCd/5wVl+75rQ9AmcFG9141p4uaKxbsKyCAP76ytTIeiV9o2FrfLnp7H4ukKN1wsxEfrmSvCpwQEPkqOzrgliudOeTzh0NBabAuL+4TCTxivbbD0umDBfPX3NocP61coE6OnY3DdszyKqjuhq4v06fOr+oUypefX6aslK4qoOi4aiu/FHvINjOB3h85jqJFfCg0twNG/UfF+Si4aXU3mEDO7l2HObOlYIsYQrCyzQQLqh4F/9z8XE97A/unOrjspjp/LrZHfdzDi/o/JPF8FczO79yYfSvt2cGCuoE9sPQPT0y9rufj/Ng9fotdtE/xkTOgwN6NLMH3XXpkzuPsVt+0i9oj7Kk+fMkV4ertL7zidr/Sxc86Us8ez9Pr8+OmhP5mCig9aQD2gXfEX1PFARz9al72EO/OdA+umNw5BirkuHuepbt90ZZaXR9171I1wJ9N59z31EfZLRk9SYbNSm2g/WhwvNNAUI+c9zzo+dF9imTN6s3FHTqVnOBSvecv5/put+mMLjWB+ypPl37D9+zZXBvUba+l68fGNz3MtnWNY9/ZT4TjPbxvgvjB65kUmeyZZVN7cG3ZgSL6L515mGd7EWXbendW46yS11wrr6vMs60hDNj6V6n5woNA6uiTE1PXXmwdSrMUKjv55ylBdfgTLdTVpf/NBR8dMnxPe3kA9sH54WCBBV0dHz/xJnQUt2zdM75+7qyDD7jvh8nuu+iAgllq2eso9z5p/Nnq8scpmuqSq6fhVSnb4fex3u+KGvXQLUzV+Ufb86IBMxqyEsFjilwW9cbBRI/cPEBkWdBDccaLt5N2Ut1zezkhjbWez2fvXLDQNO1JlHx62p+PPNE62l6tscj2+e6ZG1Jd96CxUXZ/vrv2THIGFSjejVTNiIFGSmLULyyeu1Gl8molu1Wr7Ydd/ge1qV9M+daNRjaTAE6fr1wkNO8RSsjmZw0HNopg/ey7p1bmIKEWrsgoROO7Gud2zWz2rVquACzHTl7Zsimrdpnn3VKHscf0cca1q8TDD/XpUMz+7EL6PIBW/F8Mpk2/bslweIaps8NHhq8nzh1QUwVufCbPrtgW9oX3/7oYeh0n33M/X/gZSf2DJ7RYxrCBAQQQAABBBBAAAEEKqBAwW+mK+COsUsIIIAAAggggAACCGQi8O6ERa7DuHaQYUidKcqKo5/o8urn8zMeTmiWy8iijjxlkInOIqPOtl/c+3lMxpbo7frPj7khhE46oH2Q7UcdpApMCBd1jvpglfD0e1+bboe5wCN10KojVeupn88HH2lZBeKkG0ykTsdzh39qT195SJBNQ53c+oku410QmM++oXl6/zcXUHLFyb2CDArKYhEvk8W1//7K/FAz0XVm8/l/YxZEMkSpM/6Wn+wVdMYdcvU72VSX1joPv/NtJFvV6e5c0k+4KIgknOnEz1NWlzZN6gYBUZp/0XHdI/X4ZXTsbnx6YqRD0U9P9jp36brg2OuYa1gq/Tz+/iz7xxszgk7fs+8ebf/7/aDg/FEH47Vxsmko+OnC+8ck20yZmKdhsNTZrY7zeJ3nGu5q4uyijsJ0Gq3vakmNNAzOMpchTcFjKvrOvTkufpaWfJwHyrT2h6cn2HWn940Mg+n3XWYaRkyBKFUKO+38vJK8ltZ3PlGbD3QBXSoaCmnUpILOw0TL6r5w09l7BsNlJRqKLN71K1yfMj/9/qkJpqHWsik675a6oBoFNMW7Fmg/fvrX0ZHAjfA2FCijjHx+qC7V9cLoueFF0n7/scvS5q9hB7lhKfUz3QXCnuOuG899MjcIBtL9RdfXO87dp1i9y1ymPgVJZlJ+Nny0vfb7w4MhzBSIq4BZXavyVRSE1GS3WnbaIR0i2X20LV1rlflKQW4PXJxZgJUCIf7+2jRTUI+uu4meK3QvOOOOj/O1a6VWr559FAirwGsF1113ep/gxzdI1z9dazQvXkl5z/rLJ+6edXjwPKRhy244o2/wE65LWYIu/efYyKRcPwup4lTPF2XtGhjByMEbXZt+cc9n9vgVA4JAJF0n410r9ewcHdh0+wuTg4AmZdNSFsHnXAB1uCR6ntUyqczD9US/L8nxyPa5LroNmX5etWaDLVn+g7Vs1iAIdDl4366mH192uAAjBcD4IBg/fc6CFbbOZRtSYFP1atVs0IHd/axirxO+KQrQ0TXvlRETg2xMNV0wk4KnDtlvd/dTbBXTUHHvfPRN8Ykl+JRNW7W50eO/CwKaFGzUomkDO/XY4pnDNm/Z6oKyCjInlqB5Nmn6Qtt7j6LMczomW9wfjUSXXPhNnv697d27aFvhjFF+e0f2KxoCVs8HFAQQQAABBBBAAAEEKoMAGZsqw1FmHxFAAAEEEEAAAQQiAjvN/cY+QXnyw9lB1oaNriMsumiYnD+/MMVue25ysVnu9/opy0X/+CLo1NYvu8NFdf7usa9MnX/pFg3jcdZdnwSZP6Lrm7bgB7vkwaIOvC1bixqnTCFDbvwgCBZS57aKOlpVNKSHhsM64eaRGQVtKRDi4gfGxM1CIkMFzWjfo8uzH80JOnv9MCTh+TK5+dmv7cOvYwMOovc3vJ7eKxODL+rsD5cvZ60MMqYkGoLJm4TX0ftE08PL+XYpgCFc1In3lDun1LEaLmqbAsjkp+LXDy/z6we+CIIu4m1fwTEX3Pe5Kegik3KJ69xVoFm4zvC21c4z7/wkCFYIT9c29FmGCuwJr59q+4mWTTTd1xcehshPy+T15c/m2wMuk4TPmuXX1WcdFw13FV2i9zl6vj7nwuh/roPXly+mr/Bv477m4zx458tFNvCaEXb+3z+3u1/+Jvi+nXzryCCwYtHKjUGggRoT7RH9ObrByb5/+frOp2pTdBuVSUTBNyrjZia39+t+NasgAE7r+eDNZOev2qTvuDL8PPrut3bUDe9mHdTk23D2X0YH313/2b8qYEjXAgWaJirhwLmvZ6+26OtUovWip+ua9bobKi36eqblFNzwoz+NskVxhjTVNef8+4qCIcPXZnfrSVjWrN9qv37wi8h5qGFW/ZBViY57oul+I8nOUS3zF/d9GHTtu3bFw+PsHpfF8XePf2mD//CeXfnIeKtdo+jXZxr+KN2i54orHx0fyXAYXk/nkYZcPfVPHyU9huF19D7Z+af5YWN9TrckqjfV7iZzVSCs7h1+6DDfFt2LdX3z1+htLjAjuqS6Z21wQ5kNc8FNM7+PfYZSm7+YscJOvf2jSPYv1Z+PZ6FUzxfabrbXQK2bqITvk+HnPb98tHm20/16iV4V4HjZv8aarkfRRcf3BZclLvrZWcsp0PaqR780BfaFi47d2+O/t3BGvegAknTMw3VGv8/2eGT7XJfouxXdrmSf3xw52RYv+8FdE4tffzZt3mpvj/omyJ6k9TXMX7g89+aXNsNlAFLwU3TRum9+ONmiMw9tdcO7vTxigq1cEz+L3PdLV9vzb7ljt774sKZRTYveXMrP2bR16Yq19t7oaS7IqPiQvtrYrHnLXEDS95HtKhjLl2hHPz3Rq75vK1YVPLdrmSkzi+qNXidbP1+P1g/bT5sVGxit/8fy108/7Kxfn1cEEEAAAQQQQAABBCqqQJX+V7xZ/P94Kuqesl8IIIAAAggggAACCGQgoCHjuretb+o4U+ag9S6gKJOibDcaLkhl0LUjgnqqukxQ6pht3qC2TVuwplhnWyZ1+2X1V+57dmpkNV2H65R5azJqo7Jq7NGhkX3jhjILD+nh6870VVmierRrEAQNjHUBA/E6v+PVqXZ0c0OsqcNgxsK1cTvG4q1XkmkaqqaeG1ZN2QB0fHdFUcaUXu0b2oLlGyIBTelsV+eMMlF0dMO6KGhA5022gQl+e6qzZaPaQUezAhLiFQ2D180NldiqUR1b4IbxU/Bdtp3l8erPxzRldfEZzBSE8R8XQKei7FPd2jSwuS4g7FvXAZ6LDkbVuyuNcnEeKGPOQT2bqelBAKMC5KKLhu3TEE4qGporPJRW9LLZfi6N73y2bS1r6ym4ak+X2UTXrynzVgfZmFK1UUN8Di0c8uuyf42zz6YtS7VKyvk6l5RlR4EM0dcjTd+zU2PTOat7Z7r3gpQbzeMCujbreqfyngsYjXdf0PCdynKncpILBFQQYKZFw6Id5YbraumyQ46ZvtwF163M2fUo07aUxvIafrelO3cUCKNMYumWdO5ZGlZX1/kWrn4FavvA4VTbyPWzUDrPFxX5GuifBXdzQ8rpuWHesg1pneM6fv06NwmCnDJ9zknHPNl5kO3xyPa5Lllb0p3XxGVR0hBzK1attw2bEge2Rten4eRaNW9gGzZusWUri4J0opcLf9YQb00aue3VqeWCbTbY6h82hGfn7X22bW3ZrL5t3rLNVqxeHxPklbfGJqk4W78zhu4bHGMXZm7/fnFMJHAtvCldG+vXqW4KBKYggAACCCCAAAIIIFAZBAhsqgxHmX1EAAEEEEAAAQQQ2OUC8QKbdnkj2CAClUggUWBTJSJIuqsdXHDcC9ceFiyjILUTbxlp4QxmGsrkyd8ebOokVjn2xg+KzQ8m8k+5ElDH++s3Hh4MraZjrWNKiRXQELG/HtojmKGAv9Nclp9wUaau+y7sHzhu2LwtyOoUns97BBBAAAEEciWwe8fmdtj+3YLq5n2/MshI5euuWrVq3Oxbfj6vCCCAAAIIIIAAAghUZIHqFXnn2DcEEEAAAQQQQAABBBBAAAEEEDCXOWN9kCmlh8uQpsw/b910hGnoR2Vsa7RbTWvtApv88JTKqBIOesKvfAkMG9jJDundIsjupMx+Kve+Nr187cQubO2TH8y2Xx3TLfheKADw87uPddmoNtsKl1VI2ZWaukxLvjz/yTz/llcEEEAgrwKNXWamUwbvlddtUHnpCzz6/KdBIwbs28VaNKkfZMjyrfpk3Kzg7Xk/HhC8alhBP80vwysCCCCAAAIIIIAAApVFoGpl2VH2EwEEEEAAAQQQQAABBBBAAIHKLHDh/WNswuxVAYHiXZSdqbcbHlND8figpvcnLrZz7h5dmZnK/b6fc0QXU5YhBbCpfDRlqb05bmG536987YCGpzz3b59GhkdTMJiG69R3wwc1uUXsjhem2P1vECCWr+NAvQgggEBlFujZpZULaqrnCAoCksdMmG2bNjPMXGU+J9h3BBBAAAEEEEAAgeICDEVX3INPCCCAAAIIIIAAAgjkRODAns3smL3bBHXd9twk27bd9YpSEEAgbwLNG9a2i4/rHtT/n4/mBNmJ8raxcl7x/t2b2mF9Wlr3Ng2skQtuWrxqk3313UobPXWZzXDZmijlW+CWn/QzZeaav3yDffj1Ynt9LEFN6R7REw9oZ3t1aWK7t97NqleranOXrrcvZ620kZOWuCxOm9KthuUQQAABBBDISODkwf2CkKZVazbY1FlLbMny2OcxhqLLiJSFEUAAAQQQQAABBCqYAIFNFeyAsjsIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCFQEAYaiqwhHkX1AAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQKCCCRDYVMEOKLuDAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggEBFECCwqSIcRfYBAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIEKJkBgUwU7oOwOAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIVQYDApopwFNkHBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQqmACBTRXsgLI7CCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAghUBAECmyrCUWQfEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBCoYAIENlWwA8ruIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCBQEQQIbKoIR5F9QAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEECgggkQ2FTBDii7gwACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBARRAgsKkiHEX2AQEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBCiZAYFMFO6DsDgIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACFUGAwKaKcBTZBwQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEKpgAgU0V7ICyOwgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIVAQBApsqwlFkHxBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQqGACBDZVsAPK7iCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggUBEECGyqCEeRfUAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAoIIJENhUwQ4ou4MAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAQEUQILCpIhxF9gEBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgQomUGXs2LE7K9g+sTsIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCBQDgSqVKli+lGpWrVq8F6v+qlerVq1crALNBEBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQqkoAPaAq/+qAmApsq0pFmXxBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQKAcCPpDJN1Wfo3+CwKbq1av7ZXhFAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBHaJQDjAKRzY5LM2ubgmApt2yZFgIwgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIBBkZwoz+ACn6OCm6jVq1Agvx3sEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAYJcJxAts0jQyNu2yQ8CGEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAIFqAwKZoET4jgAACXbma0QAAQABJREFUCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAqQv4wCY1RO/9DxmbSv3Q0AAEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBCq3gA9uCr9Wr1atWuVWYe8RQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEECg1AR8MJMa4N/rlcCmUjskbBgBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQk4AOawu+rV61aFR0EEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAYJcIhIOY4m3QzydjUzwdpiGAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggECpCQRD0fkIp1JrBRtGAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBJxAOJapevgDOggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIDArhaIF8NEYNOuPgpsDwEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBIK+CAnApsSEjEDAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEESkugamltmO0igAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAokEyNiUSIbpCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggUGoCZGwqNXo2jAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAokECGxKJMN0BBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQKDUBAptKjZ4NI4AAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAQCIBApsSyTAdAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEESk2AwKZSo2fDCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggkEiAwKZEMkxHAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBUhMgsKnU6NkwAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIJBIgsCmRDNMRQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEECg1AQIbCo1ejaMAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACiQQIbEokw3QEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBAoNQECm0qNng0jgAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAIgECmxLJMB0BBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQRKTYDAplKjZ8MIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCQSIDApkQyTEcAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIFSEyCwqdTo2TACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggkEiCwKZEM0xFAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQKDUBAhsKjV6NowAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAKJBAhsSiTDdAQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEECg1AQKbSo2eDSOAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggEAiAQKbEskwHQEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBEpNgMCmUqNnwwgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIJBIgMCmRDJMRwABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgVITILCp1OjZMAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCQSILApkQzTEUAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAoNQECGwqNXo2jAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAokECGxKJMN0BBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQKDUBAptKjZ4NI4AAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAQCKB6olmML3iCezYscNWrFiR1Y7Vq1fP6tatm9W6rIQAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAQKYCBDZlKlaOl1+1apW1bds26z2oX7++tWvXzjp27Bi8HnzwwXbiiSeaplMQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEMilQJUtW7bszGWF1FV2BZStqXXr1jlv4DnnnGPDhg2zQYMGWbVq1XJePxUigAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIVD4BApsq0THPV2CTJxw4cKA98cQTeQme8tvIxevYsWNtxowZCas66qijrGXLlgnnMwMBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAg/wIMRZd/40qzhVGjRlmfPn3sueeesyOPPLLM7vcLL7xgw4cPT9i+kSNHEtiUUIcZCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIDArhGoums2w1Yqi8DatWttyJAhdv/991eWXWY/EUAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBPIgQGBTHlCp0uyKK66wzz77DAoEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBLISYCi6rNgq7krnn39+sZ3bvn27LV682ObNm2dz5swxZWRKtwwbNswmTJhgDRs2THcVlkMAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAIBAgsIkTISJQv359u++++yKfo99s27bNPvzwQ3v00UftxRdfjJ4d83nhwoV2+eWX22OPPRYzjwkIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCQTILApmQ7ziglUr17djj766OBHw8z9+Mc/tqVLlxZbJvrD008/bddee6117949elbKz8oQNWvWLFuxYoUtX77c1q9fb02aNLHmzZsHP/369bO6deumrGdXL7Bx40b7+uuvbdmyZUG71f4aNWoEbW7WrJl16dLFunbtuqubxfYQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIFyJVBly5YtO8tVi2ls1gIKsGndunXC9ZWxScukW5SRafDgwTZz5sykq/zxj38MgpuSLlQ4c/bs2fbwww/bK6+8krJerXLCCSfYaaedZqeffrpVq1Yt7ibGjBljhx56aNx56U5csmSJNW7cOOHiGrJPWayef/55e/XVVxMu52d07tw5aPd5551HkJNH4RUBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEAgJENgUwqjob3Md2CSvdIKGunXrZlOmTEnKu27dOrvjjjuCn6QLJpi5995727333msHHHBAzBLKLjVw4MCY6ZlMWLx4cZAtKt46o0ePtksvvdQmTZoUb3bKaTfccINdeeWVZTL7VMrGswACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIJAngap5qpdqK4mAAokuu+yypHurjE4TJkxIuMyaNWvs+OOPzzqoSRV/9dVXQVam1157LeF28jFDGZoOP/zwrIOa1KZbb7012P8NGzbko4nUiQACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIlEsBApvK5WErW42+8MILUzbo/fffj7vMtm3bgqCeTz/9NO78TCeeeuqp9tFHH2W6WlbLv/HGG3b22WdntW70Sp988omdeeaZtmPHjuhZfEYAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBCqlAIFNlfKw53anu3btar169Upa6aJFi+LOf+KJJ4Lh7OLOzHLiFVdckfcAoU2bNtkll1ySZQvjr/b222/b66+/Hn8mUxFAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgUomQGBTJTvg+dpdZUpKVhYuXBgze+vWrfaHP/whZnr0hL59+wbZjE477bSUAVRad9KkSaYgIV/atGnj3+bsVQFZ8fYpvIH69evb0KFD7ac//akNHjw4PCvh+9tuuy3hPGYggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAKVSYDApsp0tPO4r126dElae7yMTVOmTLGlS5cmXK9t27amIdrGjx9vCiR65plnbOLEifbSSy8lXMfPGDVqlH9rHTt2tA0bNtjatWuDn4svvjgyL96bESNGRJb16zRp0qTYou+8806xz9Efrr76aps9e7a9/PLL9vDDDweZmObPn2+pAsC++uorW7lyZXR1fEYAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBCqdAIFNle6Q52eHmzVrlrTiuXPnxswfN25czLTwhA8++MD233//8KTg/fHHH2///Oc/Y6aHJ8yYMSP80apXr261atWK/BSbGfWhZs2akeX8OuFFdu7caSNHjgxPKvb+/PPPt1tvvdUaNGhQbHrLli3tkUcesc6dOxebHv1hzpw50ZP4jAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIVDqB6pVuj9nhvAhEZzSK3ki8YdsUQJRoiLb+/fsnDQA66aST7IILLojeTOTzvHnzIu9z/WbLli120EEHJaz20ksvTTivbt26dvLJJ9vw4cMTLhMvu1XChZmBAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAghUUAECmyrogd3Vu7Vt27akm6xfv37M/J/+9Kemn2yKAqlUp4aKi1dStSfeOulOUxan119/Pd3FY5br2rVrzLTwhB07doQ/8h4BBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEKiUAgQ2VcrDnvudXrFiRdJKW7VqlXR+vJlLly61ZcuW2Zo1a2z16tW2bt264FXvNS1RUFO8unbltE2bNpmyLq1cuTLSTr8Per3lllt2ZXPYFgIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggUC4FCGwql4et7DV6+fLlSRvVsWPHpPM1c8GCBfbxxx/byJEjbcSIERZv+LqUlZTCAps3b7bx48fbRx99ZB9++GHwUwrNYJMIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggECFEiCwqUIdztLbmSlTpiTdeOvWrRPOnz59ul1zzTX2xhtvJFymLM7YunWrPfroo3bdddeV2exRZdGNNiGAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAukIENiUjhLLJBXYuXOnvfjii0mXSRTYpPXOOuuspOuWxZkaUu6UU06xTz75pCw2jzYhgAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAALlXoDApnJ/CEt/ByZPnpxy2Lhu3brFNPS1114rl0FNW7ZssSFDhti4ceNi9okJCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAArkRILApN46Vupa777475f4fd9xxxZbZtm2bXXnllcWmJfpQv3596927tzVt2tQaN24cvDZq1MhuvvnmRKvkdfpzzz2XdlCTArratWtnTZo0Cdqu9j/44IMMXZfXI0TlCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIFARBAhsqghHsRT34d1337VnnnkmaQuOPfZYa968ebFlXn/9dZs9e3axadEfrr76arvooousbdu20bOCz8OHDy+VAKHbb789bnv8xL59+9ptt91mRxxxhNWsWdNPjrx27tzZLr744shn3iCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgjEChDYFGvClDQFpk6daj//+c9TLn366afHLDNx4sSYaeEJd955p11++eXhScXez507t1SCmjZs2GAzZ84s1pbwBwVhjRgxIsgqFZ4efj927NjwR94jgAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIxBGoGmcakxBIKfDmm29av379bOnSpSmXHTp0aMwys2bNipkWnnDWWWeFP8a8f+edd2Km5WrCxo0bE1Y1b968hPM046STTkoa1LR9+3Z74YUXktbBTAQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEzAps4C9IWWLt2bTDs3KBBg+zkk09Oa7177rnHGjduHLPs5s2bY6aFJyQLmFq4cKGp3mxLtWrVkq46Z86chPO3bt2acJ5mLFq0KOn8e++9t1QyTSVtFDMRQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIEyKMBQdGXwoJRWkxS4dMoppxTb/M6dO4NgnW+//TbjgJyjjjrKLrjggmL1+Q8dOnTwb+O+ar033ngjJihqwoQJdvzxx6eVKSpuxW5i+/btE80Kpv/1r381ZYyqW7duzHKtW7eOmRae8PLLLwfBX8OGDQtPtm3bttk111xjCmyiIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCKQWILAptVGlWkLBRLko9evXt4ceesiqVo2fFKxbt25JNzNu3Dhr2bKlnX/++UEg0ty5c2306NE2derUpOulM7Nz585JF5s5c6Z1797dFJzUvHnzYGi58847L1inWbNmpn1TEFiicu6559oDDzxggwcPDhYZO3Zs0PZk6ySqi+kIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggEBlFaiyZcuWnZV15yvbfq9YscJSZRzKhYkCf1544QU7/PDDE1a3bNkya9u2bcL5JZ3Rq1cvmzhxYtxqlH2qd+/ececlmrh48WJr0qRJMPv666+3u+66K9GiJZ7+4osv2gknnFDieqgAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBAozwLx0+mU5z2i7aUqsPfee9uXX36ZNKhJDVQmpEsuuaRU2tqpUydLlTEqWcMSDa+XbB3mIYAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCGQmQGBTZl4snURAw8aNHDnSOnbsmGSpoll/+tOfbMCAAUUTMnj38ssvB0PCZbBKZNHq1asHw+RFJmT4pkOHDvbSSy9luFbB4trf4cOHZ7UuKyGAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAApVJgMCmynS087CvGk7upptushkzZth9991nderUSXsrtWvXNg27duqpp6a9joa5e/zxx23o0KFprxNvQQUYaUi5bMvxxx9vzz33XEbBVccdd5z997//Ne03BQEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQCC5AIFNyX0q1FxlKsq2KKCoV69eduyxx5oyM9144402YsQImzVrll133XWm4d2yKU2bNrVnn33Wnn/+eRs8eHDSKq644gr79ttvbdiwYcFy7dq1S7i8Aq5SFe3D+PHj7YQTTki1aNz5J598sk2ePNmuuuoqa9GiRdxlNFHD87311lv2yiuvWMuWLYNh+BIu7GY0a9Ys2WzmIYAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAAClUKgypYtW3ZWij1lJ8uFwLJly+y7776zxYsXW40aNaxWrVrWo0cPa9OmjVWtmr84PG1v/vz5tmDBAps3b16w3bVr19puu+1mCqAaMmSIJQsM2759u02bNi1o98aNG23nzp3Wvn1769atm9WrV69c2NNIBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEECgLAkQ2FSWjgZtQQABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgUAgfylwAEYAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEshQgsClLOFZDAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACB/AkQ2JQ/W2pGAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQOD/2bsP+CqqtPHjD0lISCBAKIFQQw0tQAABUQTsCuIqNixY//qyu+666qqr62tZdNHd17L23taCigURwUYRQXovgdBrCJAAgUCA5H+eCTO35N70m9yb/M7nc7kzZ86cOfOdC4nmyfMgUEYBApvKCMdpCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggEDgBApsCZ8vMCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggUEYBApvKCMdpCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggEDgBApsCZ8vMCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggUEYBApvKCMdpCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggEDgBApsCZ8vMCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggUEYBApvKCMdpCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggEDgBApsCZ8vMCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggUEYBApvKCMdpCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggEDgBApsCZ8vMCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggUEYBApvKCMdpCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggEDgBApsCZ8vMCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggUEYBApvKCMdpCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggEDgBApsCZ8vMCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggUEYBApvKCMdpCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggEDgBApsCZ8vMCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggUEYBApvKCMdpCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggEDgBApsCZ8vMCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggUEaBiDKex2khJLB8+fIQWi1LRQABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIGaLNCzZ8+afPvcu5tArdzc3Hy3fTYRQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgSoXoBRdlT8CFoAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAALeAgQ2eYuwjwACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAlUuQGBTlT8CFoAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAALeAgQ2eYuwjwACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAlUuQGBTlT8CFoAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAALeAgQ2eYuwjwACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAlUuQGBTlT8CFoAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAALeAgQ2eYuwjwACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAlUuQGBTlT8CFoAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAALeAgQ2eYuwjwACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAlUuQGBTlT8CFoAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAALeAgQ2eYuwjwACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAlUuQGBTlT8CFoAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAALeAgQ2eYuwjwACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAlUuQGBTlT8CFoAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAALeAgQ2eYuwjwACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAlUuQGBTlT8CFoAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIVG+B1NTU6n2D3B0CCCCAAAIIIIBAQAQIbAoIK5MigAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAeQQIbCqPHucigAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAQAQIbAoIK5MigAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAeQQIbCqPHucigAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAQAQIbAoIK5MigAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAeQQIbCqPHucigAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAQAQIbAoIK5MigAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAeQQIbCqPHucigAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAQAQIbAoIK5MigAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAeQQIbCqPHucigAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAQAQIbAoIK5MigAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAeQQIbCqPHucigAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAQAQIbAoIK5MigAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAeQQIbCqPHucigAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAQAQIbAoIK5MigAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAeQQIbCqPHucigAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAQAQIbAoIK5MigAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAeQQIbCqPHucigAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAQAQIbAoIK5MigAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAeQQIbCqPHucigAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAQAQIbAoIK5MigAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAeQQIbCqPHucigAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAQAQIbAoIK5MigAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAeQQIbCqPHucigAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAQAQIbAoIK5MigAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAeQQIbCqPHucigAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAQAQIbAoIK5MigAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAeQQIbCqPHucigAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAQAQIbAoIK5MigAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAeQQIbCqPHucigAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAghUW4GTefly7Hhetb0/bgwBBBBAAAEEEAh2gYhgXyDrQwABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQKAyBPLzRWasSJcVWw/I6m0HZcXmLOuyrZtES3JiQ+naqr5c2KeFxESFV8ZyuAYCCCCAAAIIIFDjBWrl5uaab9FoCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCARGIDU1VZKSkgIzeQXNmpObJ09+tlJ+Xr6nyBk1yGn8jb0lMb5ukeM4iAACCCCAAAIIIFB+AQKbym9YbWbIN7+GoP9hsXPnTtm9e7fs2bNHcnJypHHjxtYrPj5eOnToIC1atKg298yNIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAQOAFgj2wae/BXPnzm4tkc/phByO+QR3p3Kqe1I2KkLRd2bLBvNzb87f3kX4dGrl3sY0AAggggAACCCBQwQKUoqtg0FCcbu7cufLFF1/IxIkTZfv27cXeQkpKilx66aVyzTXXSPv27YsdzwAEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAIJgF3p++yQlqiokMl0ev6yFndGnqseQtGYfl0Y9Xyrodh6z+Jyaslgn3DZLIiDCPcewggAACCCCAAAIIVJwAGZsqzjLkZtq8ebPcd9998tVXX5V57Xr+/fffL7GxsWWegxMRQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEECgegsEe8am8x6eLkdyT1oP4aWxfaV3YpzPB3LseJ6MeHymM/bl/+krvdr5HutzAjoRQAABBBBAAAEESiVAxqZScVWfwRMmTJAbbrih3Df09NNPy0cffSQ//fSTtGvXrtzzMQECCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggUJkCB46ccAKVNFtTzzYN/V4+qnaY3Hx+B/nsl63WmOxjJ5yxO/blyOIN+6395MSGkhhf1znmvrExPVtWbTlgdZ3Vo5k0iCn4cV1m9nGZvXqPx/nb9+bIko37ZdnmLImrFyldWtWXoT3iJTysljPl4o2ZssIc37LnsDSLi5bubepLcts4Z15noNn4duFOycvLl4TG0VYZPb3mUjO/zpFvjndMqCfn9GousXVcP0LUTFVz1+6VTaZMX1TtcDN/rPRoEyctzRz+2klzjZVbsmSjOWfj7mzJPZEnnVrESiczf+eW9SXaOHs3Lfe3ZluBy9CezaSOsV6z7aC1tg27Dkm/jo0lqWWsrN9ZkDGra+v6Zr3+f/F+nRmXuv2gdZm+HRtJi0b+1+u9FvYRQAABBBBAIHgEXN+VBM+aWEmABb7++usKCWqyl6nl68455xyZNWuWtGrVyu7mHQEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBAIeoGYKFcpOc3adNRkZYqJKhx4Y9/ItYPbiL68W9rOgzJ+4hqr+4FRXf0GNi01QUT/91WqNa5R/Uin5N2eA0ed88ecnShN60c549yv1b1NA3nqxt4SEVFLHv9khcxZs8/9sLXd0ARBvfY//aRV0xiPY09+ttra16Cge3/XRW59Yb7Hcd154/uN8vSNvaRb6wby2rQ0+WD6Zo8xE+cU7I6/sacM7hbvcUx3NBhr3GerrGCrQgdNR3yDOvLc/0uRtk09A780KOz5b9ZZp6jLZ79ulQXrMp0pIkwwV3zDKMfojG5NzDp7O8e9N143a5+7tsDm1d/3I7DJG4h9BBBAAAEEQkTA9Z1aiCyYZZZPYOXKlXLllVeWbxIfZ2tw0+jRo30coQsBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQCF6B2uFhclpnVzm5f36+So6ZDENV2X5L3ecENWkWKfe2ausBefrL1fKPCSudoCYd4z4uKztX7nh1oRw66soo5T7Hrsyjcs87S50u73P//t8V8vZPGz2CmjRYyr098N5yWWGyMrk3nffqf/3qEdSkc2swk900gOu2/8wXzdDkr702dYNHUJM9rn+nxs59/rp6r9/70yxcdlBTS5OpqUcRWbjsuXlHAAEEEEAAgeAUIGNTcD6XgK3qySefLPHcWlqucePGsnbtWsnO9v/NpT3hvHnz5LvvvpOLLrrI7uIdAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEAh6gbNM5iE7O9DPy/eYcmdzZcRpLWVo9/hCWY8q42bW7ThkBfD869beknwqKGf2qj3yoAk40jZrZYb1rsFGml2pqylRJ6Y6nZas++Ori6xjGtyk5eBOT2pi7bv/oce0PXBFVzmvd4JV9k0Djf5qgp008Ehfb/+w0Rrz2OgeMtiUv4uKCJOd+3Pkr+8ulc2mxJy2X9fsNWXvXKX7NMuS3fp0jJN7Lu0ibUzWqLBatWTfoVz5v6/XyMwVGVbpvx+W7jal5Drawz3eN5i16L3d+7skkzmqocleFSlHTCYtLcF32aDW8uGMzdb4OWv2yAUpLTzO1Z05awt8dHv4aS3EXJ6GAAIIIIAAAiEqQMamEH1wZVn2mjVr5PPPPy/y1E6dOsnPP/8sBw4ckNTUVJkzZ47s27dPNm/eLI8//niR5+rBp556qtgxDEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEgkng8tNby/VDE50lbTPl1F75Lk2u/vccGf6PWfLwh8tl0vwdopmAKqu9cEdf6Z0YZwXzaEDPkORm8vuLO3lcXsvNaWm6MHNcg4dS2sXJfZd3dcakmgApf+1Pl3SWS0zwVp3aBT8u7JhQT8Zdn+wx/KGrusm5vZtbQU16oIXJfvTE9T2dMSu2emdsypEBSY3kzO5NZNx1vaxyfLoubY1jI+Xhq1zzz19fUCbOmcxtQ4OaXv/9aTLM3HMzU35O76/eqfKA55v12O0nE4Tmq/28fLfTfW4v13inkw0EEEAAAQQQCBkBMjaFzKMq/0Lnzp1b5CSjRo2St956S2JiPOst1zLfcLZo0UIeeOABGT58uFx66aWiped8NQ2EOnbsmERFRfk6TB8CCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggEJQCYy/qKPEmiGbCrK2yw2QmsptmN9IsTvp6auIaGdYzXq4fkihdNEtSgFrnlrE+5+/dzpUdqWvr+j6zSWm/3bak+6/IcXG/wpmOklq6ztU5hvZoZk/lvGsGJrut2+YZOPXPG3rZh3y+R0eGWYFYWk5Ps1KdzMu3Are8B5/Xq5m0bBzt3W3tawBWB/PSrE52ObrYOq4feR7MOeGU6EtObOh3Hp+T04kAAggggAACQSfg+iofdEtjQRUtsH79+iKnfPDBBwsFNXmfkJycLA899JCMHTvW+5Czv27dOtFxdtuyZYvMnj3b3vV4j4yMlCuvvNKjz3snJydHvvjiC+9ua79+/fpyySWXeBxbtWqVLF261KPP3unTp4907Vrwmwp5eXkyZcoU+eqrryQtLU22bt0qbdq0ER3Tq1cvGTlypMTFuWpq23Po+6ZNm2T69OmyfPlyWbRokWzcuFHatm0riYmJcuGFF8rll18u9erVcz+l0Laev3PnzkL92qHl/Bo1amQd0/t///335ZdffhF9hhkZGdY96DpTUlKsdUZE+P6rPH/+fPntt99k2bJlsnChqaV96JC1Rs3MpYFsZ599tvg71+fCTnXqmjRQ7vvvv7fs0tPTZc+ePXL8+HFp3ry5FQjXvn17y2LQoEFSp46rdra/eUvikZ+fb2Udmzx5sqxcuVIyMzOt640fP17OPPNM+fjjj/1Nb9LM1pJrr73W73H3AxMmTJATJ3z/1s3AgQOlQ4cO7sPZRgABBBBAAAEEEEAAAQQQQAABBBBAAAEEEKgmAqNM5qbLB7aW1dsOyPemVNq81L2i2Zvc23QT4KSv/9zeR/p2KPh/+e7HK2K7pwnI8dVio2s73Vb5OWfPtdG0fvH/T751k2hxDwayz44Ir2WVwDuSe1JamuxMMaeyJNnH9V0zMCU2q+uUo3M/5r1t/re+5Ji5Dh89IYePmZd516Cm4lovtwAuX2M109Rzk1KtQ3PXZMj5KQnOsDlm324jTBk6GgIIIIAAAgiEtoDvaIjQvidW70dgw4YNfo4UdPfo0aPI4/ZBDQ7561//KtnZvqP8NcjHPbBJA2puvvlm+3SPdw3+KS6wSYNx/J2vky1ZskS6d+/uzKvBNvfff7+z774xYMAAK0BIg2Kuu+460fJ87k0zUWnWKW2PPfaYFSij59hNg11eeukl6/7tPvtdA470XrXc32233SbvvvtukYE0zz//vBVYZZ/v/q5BZo8++qg11+23317IWtf5ww8/WKcMGTJE3nvvPSuYyJ4jKyvLMnjnnXfsLuddz9VAMz3Wrl070SCe3r17O8eL2tBn8eyzz8q4ceP8DnPP5vXcc89Z4/Re/vKXv0h0tO/frtBBxXncc889VrYw7yA5vZ4Gmg0ePFgefvhhv9nE9Bp9+/aVpKQk3fTb9O/JDTfc4Pe4Po8XX3zR73EOIIAAAggggAACCCCAAAIIIIAAAggggAACCIS2gInbsbIKaYk3kSTRDEBL0vbJzFUZMm2Jq8TZn15fLP+9+3RpZ4J8Krr5CijyvoaWZytrq+cWIOVvjrCCCnX+DvvtzziYK98u3CHz1+2VZZuKD2LyNVG0j4Aq93Fn92zmBDb9uDzdI7DpJ7cydEN6xLufxjYCCCCAAAIIhKBAGb8lCcE7ZckSHh5epMKKFSuKPG4f1OAUzVS0evVqny/NAlSZTTMvlbSdPHnSyrB01llnFQpq8p5DA2Y0WEYDlbRpUM+wYcN8BjV5n6v7N910kzz++OO+DhXbp5mPNPBIg8j8BZDZk8ycOVM0KE0zZWnToC0N9PIV1GSfY79rQFD//v1l2rRpdpffdw3a6tKlS5FBTf5O1sAmXZN+ZsrStLyhBrd5BzW5z6UZmW688Ub3rkLbmhWquKaeRbXf/e53RR3mGAIIIIAAAggggAACCCCAAAIIIIAAAggggEA1E6gfHSFDkpvJ/17TQ9758wAro5F9i/PX77M3eTcCizbul2v/9au8MW1DmYOaSgLZODZSzujWxBpql6PTnUMmI9ScNQXP5PzezXxmpSrJ/IxBAAEEEEAAgeARILApeJ5FwFeiZdaKaho4oiXZStJatWolHTt29PmKjY0tyRRVMubw4cMlChZyX9x9990nGljzxBNPyLx589wPFbutmY1KEjTkPZFmkrrjjju8u/3ua/CTrk8zSmlGIc0eVZo2evRo2bFjh99T9L61pFxp53WfUAPFzjvvPKtsn3t/Sba1ZOCkSZOKHarl9YpqP/74Y1GHrWN2JixfAzXDmAbF0RBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQRqpkDnFrFy/6iuzs0v3ZTpbLtvmApsftuJk0Ud9Xta0B/QknN/em2xaBk7bad1jpMHr+wmL43tKx/cPVC++Ntgmfb4MOnTMa5C7uXiPq7yc1qOTtucNXucuc93O+50soEAAggggAACISdAYFPIPbKyL1gDkYpqmrGpW7duVoDM4sWLpTSZkIqaN5iOacCQZikqTdOAHC2j9swzz5TmNGfs2LFjS205efJk5/ySbnz88cdy1113WeXwSnqOPU4Do/xll9KgLg18qoimgVG33HJLqafyLhnobwLNXNW1q+s/KL3HaXBUbm6ud7ezr4FhRQWiaQatyMhIZzwbCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAqEvMGXRTnl8wkrrtXb7wWJvqE28q/RcZvZxZ3ytcFdpuANHXP3OgFMbu7OOendVi/3FJluT3bSM33O39pXh/VpI78Q4ad+snjRrGCX1TIm57Rk59rByvZ/etamTPeunFenWXD8uK3iPiQyX/p0al2t+TkYAAQQQQACB4BAgsCk4nkOlrKKkJbQee+wxGThwoLRu3drKGvTmm2/KggULJCenYr7RrJSbreCLqEFZmwZGzZ07t6ynl+q8119/vVTj3Qdr6TpfZe/eeust0XsoSdOMRsW1OXPmyC+//FLcsDIfL64cnZbU89eWLFni08Aef/nll9ubvCOAAAIIIIAAAggggAACCCCAAAIIIIAAAghUEwHNNDRt8W7r9d704n85esF6VwBPi7g6jkLLRjHO9qb0bGfbfSMvL1/mraue5etWb3UFhV12eiv323a2N+85LHsOVExgV1REmFxkAqe0zV61V3bsy3HK0P3OXD88zBVo5iyADQQQQAABBBAIOQECm0LukZV9wU2bNpVbb721xBNodh0Ndvn9738vZ5xxhjRo0MAqR6aZfTQwRTP5hHLTLESvvPKKPP/88zJy5MgS34o6qomWfnvyySflzDPPLPbcGTNmFDvG1wD7Wvoc1D0lJcXXMJ99mrnooYcekvHjx8v9998v7dq18znOvXPRokXuu9b2p59+WqjP7tD1qZ+ed/ToUdm/f7+1XZzJF198YU9RpvcBAwbIn//8Z7n33ntl6NCh4l7+sLhydNOnT/d7zZ9//tnvMQ3aGjx4sN/jHEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBAITYHTOroy+8xamSETZm+VkyYAyVebt36fvPvjRufQaZ1d57Zt6srkpIFSuzILB/B8+utW2Zx+2Dm/Om0kxrsCu9btPFTo1vYfypVxn64q1F+ejgtSmjunP/HZSmfbvd/pZAMBBBBAAAEEQlIgIiRXzaLLLPD000/LrFmzZP369WWaQ7Pd6GvcuHGigR4aWHLzzTdLQoKrjnGZJq7kk6ZMmSLnnnuuc1UtF/foo49agUpOp48NDeSZPXu2R5CQln+74YYbZOLEiT7OKOgqacYj9wn0Wr/99puVOcvu12CeSy+9VIoLlNLAom+//Vaio6PtU+XOO++0AnOKKsW3Y8cOZ7xuaPCaZljy13766Sfp0qWLx+Hk5GT58ssvrSAsf/edlpbmcU5Jd9T5xRdf9Lgv73Pbtm1rBeD5W/fUqVOtgC/v83S/qDJ01113ndSuXdvXafQhgAACCCCAAAIIIIAAAggggAACCCCAAAIIhLBAm6YxMmpQa5k4Z5t1F//5Zp18u3CnnNOrubRpHC2xdWvLVpNpaOWWAzJtyW7nTls3iZZzejZz9iNMKbpe7RrIsk0HrL4xz8yVOy7qKK3N/JkmqGf6ynQrs5BzQjXb6NPBFeT16S9bZef+I3KmKRfXKDZS1u3IlknzdlRYtiabrlvrBtKyUbTs2J/juCc2qysdE2LtIbwjgAACCCCAQIgLENgU4g+wtMvXzDaTJ08WLUu3Zs2a0p7uMV7LlmkwkL60BNpNN93kcTxYd5577jmPoCZ7nXofGpBTlMvnn3/uEdSk50ZERMjbb79dZGDTrl277MuU+F0Dk7QcoHvTQKUPP/xQWrZs6d7tsa0BZ5oRyT2oSQfEx8fLu+++K0OGDPEY776zZ88e9105ePCgnHPOOR599o6WK/QOarKPaXavq666Sp555hm7y+N940bXb7N4HChi54orrpDXXnvN8i5imHXo+uuv9xuQNW/ePMnMzJS4uDiPafReNWjNX9Pr0xBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQSqp8BdIztL0wZR8up3Bb+Yu2FXtmzY5f+XdM/o1kQevrqHRJpyaO7tf69OlltfnC9Z2blyxJS4e/brVPfD1vblpkzaF3O3F+oP9Y7GJoDp9gs6yOvTNli3ouXh9OXezuzeRLKPnpClG7Lcu8u8XctUmxs5oKW8cuq56UQj+/v/GUqZL8SJCCCAAAIIIFBlAp7fbVXZMrhwZQpoSTLNBKTl1Cqq3X777XLbbbdJfr7v1KwVdZ2KmOfiiy/2O01RQT96Uv/+/X2eq0FEgwYN8nlMO0+ePOn3mK8DrVq1kt69e/s6JJrJqaiycmeffbY0bNjQ57n+5rQHe69Tr/Xdd9/5fD3yyCP2aT7fO3bs6LNfO0+cOOH3mL8DGpCmQWQlaZrVqqimpRS929y5c727nH0NFtNyjDQEEEAAAQQQQAABBBBAAAEEEM0SflgAAEAASURBVEAAAQQQQACB6ikQZiJkbhiaKC/+T1/p2rq+35vULE23X9hRxt/QS2LrFP5/1s3j6shLd/SVQV0bS0xkuMc8vTs0lPfuGiDtTEYhXy28lD+18w6qsueMiDDRPqdahFfgld1fkvfI2p7rdz/Hvnak1z3eeHY7eeSa7qJO3u0O4/b46J5SN6qwm44NNxmvytLO6ekqR6fnn+21X5Y5OQcBBBBAAAEEgkfA93cOwbM+VhIgAQ3E0UCRu+++W15++WUr45JmYCpPe//99yUpKUn++te/lmeagJ6rASqJiYl+r6Fl1Py18847z3xT7f+b+JSUFL9ZgvzN6a9/8ODB/g5Z/X379hV/JeUGDBjg91x97p06dSpzKUL3iTUIasuWLZKRkSEHDhywXpr1KCsry3o99dRT7sPLta2BXppxqqRNA7JGjBhhZSfzdc7PP/8sI0eO9DikZfX8tTFjxpQ4qMrfHPQjgAACCCCAAAIIIIAAAggggAACCCCAAAIIBL9ASrs4efOP/eVkXr5s23tENqVnS9bh49K5Ray0bx4r0ZHFRx8lxteVf92UInlmju37ciT3RJ40MwFPdiCUlkm7/PTWhTC0/9enzi3U796hZfOKG6PX8TfGX7/7NX74xzD3XZ/b7/zJ/88izk9JEH1lHzspO/cdMQFeEZLQqI6EhxUELj19o+9f7B5lTPRV2pZ1JNc55fQujaVp/Uhnnw0EEEAAAQQQCH0BAptC/xmW6w7atGkj48ePl3HjxsnixYtl+vTpMmPGDNFyXWUJdHrooYfk2muvLbJUWrkWXM6T/ZVOs6eNioqyNwu9FxdYU7eu79+wKDRRCTo0kKeo5l1mzn1scevUMnFlbVqmb9asWdZnZNq0aWX6jJTl2lr2rrTt6quv9hvYNGnSJCuwz31OLf3nr40aNcrfIfoRQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEqqGABuFogJK+ytrCzBwaiFRTW72ocCsgLJD3r4VEXpyyzrnE1YPbONtsIIAAAggggED1ECCwqXo8x3LfhZb40jJr+rr//vvNbxHkyebNm2Xp0qVWIIuWI/OXIcj74h988IE88MAD3t3sh7BAWlqa9Uw1IKgqWlFZtvytZ/jw4f4Oyfbt22Xjxo3Svn17a4zur1+/3ud4zf50+umn+zxGJwIIIIAAAggggAACCCCAAAIIIIAAAggggAACCFSugAYz7c46KnsPHpUflqbL0g1Z1gK6t2kgp3VsXLmL4WoIIIAAAgggEHCB4vNlBnwJXCAYBcLCwqygj8svv9zKbJOamipLliyxsjEVt96pU6cWN4TjISQwZ84c6datm1RVUJNS1apV+rraWnbwuuuu8ys9c+ZM55j7ttN5amP06NGUofNGYR8BBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgSoS0DKBV4yfLf/z8kKZOGebs4o/DO/kbLOBAAIIIIAAAtVHgMCm6vMsA34n3bt3l3fffVfefPPNIq/lL/NNkSdxMCgFtm7dKkOHDg3KtZVkUddcc43fYd9//71z7Mcff3S2vTcuu+wy7y72EUAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAIEgEWjaKlrfu7C+9EhsGyYpYBgIIIIAAAghUpACl6CpSM4jnysnJkUOHDvlcYWRkpDRsWPJv9saMGSNabs5flpuMjAyrlJ1mfSquZWdnS77JGVpURh6dj1Y1As8880yxFx4xYoT06tVLWrVqJQ0aNLA+S/r+6aefyvPPP1/s+YEcMGzYMNHMTfo5827Tpk2TEydOiH5Ov/76a+/D1r6WoRs4cKDPY3QigAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBA5QuEh9WSN/54mkSEh0mCCWqKrcOPOyv/KXBFBBBAAAEEKk+Ar/SVZ12lV/roo49k7NixPtegwRsbN26UqKgon8d9dTZp0sRXt9NXkqAme3B6ero0b97c3i30npaWVqiPjsAL5OXlycsvv+z3Qp06dZLJkydLu3btfI759ddfffZXZqcG7Wkgnq/70GAnLa9Yu3Ztn4FPuk4tZRceHl6ZS+ZaCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggUIRArVoi3Vo3KGIEhxBAAAEEEECgOgkUn1KnOt1tDb6XDh06+L17zYj0zjvv+D3ufUCzP02cONG729lPTk52tnWjuICplStXeoz33pk0aZJ3F/uVILB79+4ir6KfGX9BTXqiZkQKhnbVVVf5Xcb06dNlxowZfo9Ths4vDQcQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBAIuACBTQEnDo4L9OzZs8iFPPjggzJnzpwix+hBLd311FNPFTmuc+fOHsfj4+M99r13xo0b593l7M+bN88qe+d0sFFpAppJq6iWkJDg97AGRf30009+j1fmAS0lp2XyfLWpU6fKDz/84OuQaCazAQMG+DxGJwIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggEXoDApsAbB8UVGjVqJFo6zF/TslxDhw6V2267TTZt2iT5+fkeQzWgafny5TJs2DB58sknPY5575x33nkeXcUFNmlA1Y033ihZWVke533yyScyePBgjz52Kk+gYcOGRV7sgw8+8HlcSwcOGTLE57Gq6NSyiFpSzlebPXu238CmG264QUpTUtHX/PQhgAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAQNkFIsp+KmeGmoBmZbr55puLXPb7778v+tKWkpIirVu3tgKdVqxYUeR59kHNcjN69Gh713pv06aNlf1GS975ax9//LHoSzPkREdHy8KFC0WDrWhVJ9CyZcsiL/7oo4/K/Pnz5YILLpB+/frJzp07rf1XXnkl6J6dlqMrLtOY981efvnl3l3sI4AAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggEAlChDYVInYVX2pa665Rp555hkpaZDSkiVLRF+laffdd58VmOR+jp0x57nnnnPv9rmtpedowSEQGRkpF198sUyZMsXvgvRYUcf9nljJB5KTk6Vr166yZs2aEl1ZS9dpsBYNAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBKpOgFJ0VWdf6VcODw+XDz/80MqeFIiLX3vttfKHP/zB59Ra4o4WegJ33XVX6C3az4q1tFxJmwYBUoaupFqMQwABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAIDACBDYFxjVoZ+3SpYvMmjWrwoObxowZI2+++aZERPhOAta5c2f55z//WSaXr7/+ukzncVL5BYYOHSr33HNPqSfSjEePPPJIqc8L5AmjRo0q8fSUoSsxFQMRQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBAImACBTQGjDd6JO3ToYJWju/fee8u9yHbt2slnn30mb7zxht+gJvsimv3noYcesneLfa9Xr568++670rdv32LHMiBwAuPGjStVcFOnTp1Eg9FatGgRuEWVYWb9rA4aNKjYMzUoi89csUwMQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAIOACBDYFnDg4L9CoUSN58sknZcOGDfLwww9Lv379SrXQK664Qt555x1Zvny5XHrppVKrVq1iz9dSeJrF55tvvpEhQ4YUOV6z66xcuVK0vF1pW3R0dGlPccbHxcU526XdaNKkid9TfB0rzzobN27s91rFHYiPj/c7xNe8+tw029bMmTOlqKxHTZs2lRdeeEGWLl0qycnJUpRlQkJCoTWUx6PQZH46Ro4c6eeIq/u6664r0efZdQZbCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIBAIgVq5ubn5gZiYOUNPYO/evbJo0SLR94yMDOu9bt26kp+fLxqYo0Evms0mJSVFIiMjy32DmzZtkrVr18qOHTusuY8dOyZJSUmiGX80WxMtOAUOHDggaWlpkp6ebn0OYmJirGemgU3B3PRzfOWVV8qkSZOKXKb+HdDALBoCCCCAAAIIIIAAAggggAACCCCAAAIIIIBAxQmkpqZaPwOouBmZCQEEEEAAAQQQQKAmCBDYVBOeMveIAALy2muvyZ133lmkhJaqmzFjRpFjOIgAAggggAACCCCAAAIIIIAAAggggAACCCBQegECm0pvxhkIIIAAAggggAACIhEgIIAAAtVNQDOBTZgwQTSL1ObNm2Xu3Lkyb968Ym/zD3/4Q7FjGIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAAClSNAYFPlOHMVBBCoRIHPP/9cnnjiiVJdUUssXnbZZaU6h8EIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggEDiBsMBNzcwIIIBA6Ai8/fbbEhFBrGfoPDFWigACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCBQ3QUIbKruT5j7QwCBYgUmTpwo3bt3L3YcAxBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEECg8gQIbKo8a66EAAJBJtCpUyeZOXOmXHLJJUG2MpaDAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAtRd4jOAAALVTqBWrVo+76lp06ZWZqZu3brJmWeeKZdddpmEh4f7HEsnAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCFStQK3c3Nz8ql0CV0cAAQQqViA/P1/2798vmZmZcuzYMYmNjZW4uDjrvWKvxGwIIIAAAggggAACCCCAAAIIIIAAAggggAACJRFITU2VpKSkkgxlDAIIIIAAAggggAACjgAZmxwKNhBAoLoIaMamxo0bW6/qck/cBwIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAjVNIKym3TD3iwACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAsEvQGBT8D8jVogAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAQI0TILCpxj1ybhgBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgeAXILAp+J8RK0QAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAoMYJENhU4x45N4wAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAQPALENgU/M+IFSKAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggUOMECGyqcY+cG0YAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAIPgFCGwK/mfEChFAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQqHECBDbVuEfODSOAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggEPwCBDYF/zNihQgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAII1DgBAptq3CPnhhFAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQCH6BiOBfIitEAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEE/AvMXpMhh3JOSIRJ63Be7wT/A4P0yKb0w7J2x0FrdX3bN5L4hlFBulKWhQACCCCAQOUKENhUud5cDQEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAoIYIvDd9s+zJynHu9uK+LaR7mwbOfkk2Dh09Ia9PTZO8/Hyfw6MjI6RJ/Uhp1rCOJLeNs7Z9Dqzmna9P2yAbdmVLTGR4SAY2LUzbL89NSrWe0r9v6U1gUzX/vHJ7CCCAAAIlFyCwqeRWjEQAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEECgRALTV6RbAUnug3smNih1YNPBw8fli7nb3acpcvvM7k1kzNB2pb5OkZNyEAEEEEAAAQQQqCIBk4yRhgACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACFSWQmX1cnvx0dUVNV6p5Zq/aK7e/tEAmzN4qfpI8lWo+BiOAAAIIIIAAAlUpQMamqtTn2ggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAtVO4D/frJUjuSet+2rdJFq27XWVoyvPzZ7Vo6n884ZeHlMczDlhyt0dlV9WZ8jnc7ZJVnaudfw/36wz5etERg9u4zGeHQQQQAABBBBAIJQEyNgUSk+LtSKAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCAS1wK9rM+T7penWGpMTG8oNw9oFdL31oyOkY0I9ufmcdvLJXwfJGd2aONd7cfI6SduV7eyzgQACCCCAAAIIhJoAGZtC7YmxXgQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgQoRyDhwTH5L3WvNFR9XRwZ0aux33j1Zx2TeuoKx7ZvXk+5tGhQae+TYSXnyszVO/4NXdJPV2w44+4HeiK0TYWV0+sNri2TF5izrcm/8kCZPjent99LLzbglGzNl5/4cOX4yT5o1rGMCpWLlzG5NJSrCM0fCr2syZP+hgoxQF/VtIRHhtQrNO2NFuhwyWaQizLkX9UkodFw7vlu8S06cyJMmDaLk9KSCQKxvF+6UPJNiKqFxtPTr0EgOHT0hq7Zmmfs4ILsyc6RN07rSoXldOaNLUwkLK3xdnxfy6tT7m2MyW60zwV46Z+3wMGkeFy09ExtIn/aNpFYx06abz8CabVmyac8R2bonW5o3ipHOLeqZdcWa9cV4Xc1zV8sCzk/bZ93Pzn1HpH5MbWnXrJ4M69lMNDitJG1LxmFJ3X5QUncekkyTmUuv296YJCfGSb2o8JJMwRgEEEAAAQRCTqBkXyVD7rZYMAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAJFC0RFhsv4iQWBSDFme+pjQyXcT9DM5IU75K0fNloT/vmSzj4Dm16fluaUght7UUcr2KUyA5t0cbp+Daga/e851lpnr9prBQlp0JN7255xRB7+eIWs23HIvdvZVo8Hr+omw5KbOX3z1u2XiabcnbZOLWKlS6v6zjHdyMnNk4f+u8Lp62UyVrVoFO3s60bGwVwZN2GV1ael9ezApic/W231dW1dX/5+VXf5fy/Md8r5WQdO/aFZsB65uockNKrj3l3stmbS0qAzu1Sf9wlaMvAJU+avgwla8255Jipp4pzt8tykVO9Dzv4NwxLl9gs6SJiP6CgNePvTG4tMUNRBZ7y9oVm17r08yd71+X7iZL68MnW9fDJrq9fx3dZ+w3qRJqCtpwnQauh1nF0EEEAAAQRCX8AzzDr074c7QAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQKBEApopZ1jPeGvskdyTsnxLQZYjXyd/v2SX0312z+bOtr2xausB+ezXgqCfDqY03DWD29qHKv1dswf1aufKKDVvbUGmKXshm9IPy83/mVcoqEmDmeymHn83QUpf/rbd7pIBSY2c7WWnMkI5HWZj6ab97ruyaIPnvh5cuSXTGTPoVLYmp8NsbDFr04xTen1t8Q08A5g0E9W4z1eKZkAqadNnd987yzyCmtzvVefZtjdHxjz7m6wxGZG823++WVcoqKmlCdhyn+OD6ZvlqVNBcu7naxaqxyasKBTUZJ+r9/n4J6vl17V73E/z2H7g/aUeQU36+dIAMLtpsNbYVxbKsk0uW/sY7wgggAACCIS6gGdodqjfDetHAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAoBQCF/VNkOnLC4JKZqzYIynt4gqdnWZKl2ngi7ZBXRtLk/qRHmM0o85TX7hK0P3NZEzyVabN46QA7wzp0cwEuhSUwduVddS52kkTaPPEZ6ucwCENkvnD8E7S25Qzq21Ky6XtzjYBWltlysKCQK5/f7lW+prScBosldLOFdi0eON+ufrMNs68urFgvWcg01xT5u+S01p6jFmy0RU81rejaz57kAb66OuW89rLpf1bWdaaMWnakt1OpqelG7Jk3vq9MrBzQRk7+1xf71o+7rFPCjJE6fGzTSDb6LPaSlLL+nLCWKw0wWyvfJfmBB49ZrJYvf+X0yXyVBm+vSbDlB2wpuf/7zXdzGcgXjQDlgZXzV6zRx54b7kekskLdsofR3S2jlkd5o93ftokmjXLbo9c011O69RE4urVFg0w+2bBDpnwy1ZZsM53UNJ287mbu3afdboGU42/qZe0NyXstOUYp7d/3Cgfzdxi7U8wz62Xj8+vdZA/EEAAAQQQCFEBMjaF6INj2QgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAuUX6N+psZN5Z4oJTNHAH+/2y+oMp+viPi2cbXvjM1OebYMJftJ2zVltpKtXiTZ7XGW+u5dq23fwmHPp+ev3OUE8mjXon6b82gBjEFU7TMJMGbvOpsTcA6O6SZ+OrgCvT03AjLaYqHDp3aGg3Nni9ZmFrGavcjnp+JkrMkSDvtzb/HUFQT5a+s27TJ097tohbeXWc9s7AWRa3u2iPgky5uxEe4jJNlXg7XT42fjyt4IsWnpYsxw9bMrYdWvdwCrZF2WClzRo659jeouWc9OmAWzuz3vtjgNWpirNVvXAqK5yQUoLJ3BJq84N7hYvd1zY0TpX/9BAKbsdO55nBR7Z+09enyznpyRYQU3a165ZXblzeGc5v7er3J891n6fY0ro2e1q89myg5q0L9o8vzsu6CganKfr00ArzRBFQwABBBBAoDoJENhUnZ4m94IAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIFAqgdrhYTJyYEFWIc0UtGKrKzDFnmja4p3WpgYCDerW1O623ndlHpUXJ6+ztjU45rbzOngcr6qdBjGurFL7DrkCmzQrld3uujRJWjaOtned93AT4PTI1cnO/rRFu5wgpjNMtiJtarXBZHey2459ObJjf0FWq3sv62J3y6ptBVmjtGP/oVwn89UZXo7OCWbj8oGt3Xed7SHdC66tHdv2Hnb6i9qYtni3c/hRE9RkZ2JyOs1GU5OB66+/S3K6pq9Id7bP7NpUnrmlj/W6pL9n9il7UNfWsfamaHYvu21Kd21fkNJchiQXDmDS4Kj7RnV3guvsc+332qcyR+n+uh2HCpXg08xgf7+qu7U+DVLT4DQaAggggAAC1UmAwKbq9DS5FwQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgVILXGCy6NhtxqmydPa+Bu/YZeguMJlxNMuPe3vum7XO7t+u6Gpl0XE6qnDj6PGTztXr1antbK/becjZ7lJEZikttxffoI41VoOYMg4UBEf16+DK5LTCLTvRog0FZeg0+EvLz9nnLkxzladzz2bUv3NjZx3uG3q+e7Yp92NNT61H+7KPnnA/5HP7kBmz50BBGT6dt5Upp+evJbVq4BxateWgs+1rI/dEnmQdOS4azKWeK93Gu2dM0rJ+dktOLMh0Ze+7v0dHhkmXNvXdu5zt5LaudVml7t5YKN8v2SX7TJAYDQEEEEAAgZogEFETbpJ7RAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQMCfgJZfSzRlwTanH5YflqXLnSM6W6XKdPwst/JqmnXHvf1qyoTNXlVQWu3M7k1Es/sES9PsSHZrUj/K3jSBPq7sTa2b+A/00RM6t6rnBAZlHc6V5nF1pGNCPSu7kAY7aTDTqNMLsivNTS1wGNS1iWgWobN6NJXPf90ms00ZPy0rp23pZlc2rN6JrgAp6+CpP9qa5+CvRZngpNK0TDeDzm5ZlXzN0ayhu1FBMJT7uFkr98gvazJkztp9kpXtsnUf472tGZbspp+volpSi/qyOC2z0JCOCbFy2/kd5M3vN1jHlm7IEn1p03J+Z/VoZkrZNbeei9XJHwgggAACCFQzAc+Q8mp2c9wOAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAiURuOS0FtYwDVpxL0dnl6Fr2ShaerRxZd05djxP/v1FqjP1XSNc5deczircWLrRFSTTKNZVls4OytEMRr7KsrkvuXE9V7DP0RMFGaDCTO20Yb0KSqotSN0vefn5cvxknsxamWGdOqhrQSamgUkF7xrcYwdZ2dmbBiQ1kqjagf8xpXvWqkZ1XQbu92hv633ZWaa072RevnVIn/O4T1fJ3z5YLlMW7ipxUJOevD/bFUTWIMaVNcua2OuPOFPG0F+7+Zx2Mv7GnmLb2uM0k9iHMzbLjc/9Jne9tUiOHHNl6bLH8I4AAggggECoC5CxKdSfIOtHAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBAot8A5vRLkhcnrrXm0HJ1mFHIvQzeif0sxsS9OW7hhn5PNSDsfm7DSOea+sW3vEWf3re83ycQ5O6z9ey/rIpopKhBNS6X9bDJP2S2lvSs7kgZo7difI5pxKTP7uMTV8x9ws9FksLJbwxhX4M3pJmjp2wU7rTk2mTGHjh63h0nfDk2s7ZT2jZy+xSaz02mdm8iGXQWl2Qaa7cpo7mt2vxdf19YAJveydeFhBQ/7vyZw6LtFu6xTNBjsmrPaSlKrWGlqsmDVjaotdetESNrug3LXG0sKTduheaxMP1XacHvGEWnfrF6hMXbHpvQCG3vf+31wt3jRl5agW74pU5aZ7Ff2M9CxC9Zlyt1vL5FXx/bzPpV9BBBAAAEEQlqAwKaQfnwsHgEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAoCIEmtaPtDLizFmzzypH9ydTjs69DN25p7IU2dcyiYo82gq3MmseB9x2NKBIX9qO5J5wO1Kxmx9M32wFHemsWgItMd5VBq1pXJSzhi17s01gkyvoyX0VmonJ/Z4axbqyN/Vu5wpaWm7uW4NttHVuGStNjKO2OiYj0+ldGstcU7pt3vp9El3HVUbutE4F2ZysgQH8o6Fb0JaWGdSAL39ZqrZkuIK4EhpHO6uabcrP2W3cmJ4ywMfa9x9yZWayx+p7pxauQKaNew7LWe4HvbbX7XSVrfM65LHb2GTfGtazmfX6/cWd5Kfl6TJuwiprjD6v9Kxj4l5Wz+NkdhBAAAEEEAhBgcDneAxBFJaMAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCBQ8wQu7utWjm5Llthl6Hp3aCgtTKYj9xZrMvUkJzYs9qUZkuymGX/sc5rUq2N3V+j7zBXp8vaPG505R5sMQ+5tUFJTZ1cz/vhrs1e5Anq6tq4v9aNd+RI0y5P2adNsTLNW7bG2z+oeb73bfwzqUpCZSTNgLd5QUBqvoSm55h5oZY8NxLsGMWnZO7v9uGy3vVno/bvFBVmZ9MAZXQuMcnLzREvpadN19+/oOyDrNxO85au5Z2iaumin6Hy+2grzWbOzWXkfX7X1gOhr7faD3oesIK2L+iTIWT1cz3RjeskCpApNRgcCCCCAAAJBKuD6DiRIF8iyEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEKgMgUFdmooGH2mZtlembpBtewuyK43o17LQ5Xu1iytR2a9vF+6UJz9bbZ1/7+VJckFKQfBUoQnL2bFjX45MnLtNJvyy1ZlJMyYNPxWsZXcO7REvL08pKLk3ZeEu6d6mgfxuQCv7sPW+1ZRN+9sHy52+i/smONv2hgb/rNl2UH4+VWpN+/t3cgURFexrYFOq5fnJrIJ1DTVBOO4l/XRcINsFKc1lXup+6xJPfLpaOibEFioB+OPS3fKpm9s5JiOStujIMIlvUMcqUZeVnWveC2dD+mb+Dvl+qavsn3XiqT8S4qKd8/WzNP7zVfLYtcnuQ2TvwVx54H2XtcdBs/PspFTLWfsfvLKbDO/n+fk5cTJf9NnbrWvrBvYm7wgggAACCFQLAQKbqsVj5CYQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQTKKxBlyqed36e5fPXbDo8ybEO8MhGV9zplPX/55gPyzNepzun5plzcXlMGTQNbvDP+aEalv13RvVAQUUtTZu2Wc9s7WZ3+9cVamb06w5SNa2LKx4XLMlPObPoyV6COlpcb2d8z8EkX0K9jnLz5vbMUKyCsS6uCLE52b6sm0aIZq+zye9rvq5SbPT4Q7+f1SpCv5+2QZZsOWNP/4ZWFMtgEV6WYwLQTefny27q9MnvVXufSV57R2gQ/uUrIaTakz3/dZh2/5YV5MsIEFvVu39AEJB2Thev3y49uVs4kpzY0gGv8jb3klv/Ms3p0rFoMNp+n5g0jZeUWExi2Yo9o0JS/duUZreTxTwoC4zRAToPOerZrYM43rnuPyDs/b3KevWanahhT299U9COAAAIIIBCSAgQ2heRjY9EIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAKBELggJcEKbLLnvsAEOsVEhdu7VfquATAT5xQE2RS1kFGDWssfh3eySpX5Gjfm7EQTYHPElNorKM0215RS05d3a20Ck8Zd11Miwk2EjlfrZjID2dmt9JAGC4WHFR53lskQ9fGsLc7ZKR09szo5BwK0EWbW9Ni1veS+d5dYZeU0G5fet33v7pfVIKaxF3Vy75Krzmgjc9fstQKS1P+/Mzabl8cQuePCjvLa1DTPzlN7SSYw7LHRPeSRj1daPZrlSl/uTZ0v6NPCBIptcO+2toclNzeBZ3udzFh6fZlRaJh0MMFYd4/sWvgAPQgggAACCIS4AIFNIf4AWT4CCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggEDFCSS3beiRZegiH2XYSnM192CfyIjSB0hpYE5xTQNjWjWJMVmUGsm5JkNRk/qRRZ5SOzxMHr6qhwzo3Eg++WWbFfDjfoIGLF0zpK1cdWYbia3j+8eJel8DTak7uxTdoCQtO1e4aRYhO7ApObGh3/kKn1m4p3YRFrZzpFm7d2tqPF4Ze5p8OnurTDAv7wxJic3qyjXmXoef1kLCvOrkaYarN+4cIP/6crXMM8FfGhhlN72fP1/S2dp9bardW/j93N7Nrc43f3CVN7RHXT24jdx0TnvjWBBkpv2REWH2YWv7Hya47Iyuu+QjEyDmnZlLn/2QHs3klvPaS5Tbec4EbCCAAAIIIBDiArVyc3PzQ/weWD4CCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggEAQC6SmpkpSUlIQr7BmLy3ryHHZe+ComMps0iAm0gqMsgOFqptMnrnJfYdyJfNwQfm3pvXrSMO6tQuV7PN133mm9N/2vTmSeyJPmsXVKXWQlp6/79Bxycw+Jlr2sGWjGJ/ZsHxd2+47fjLPKj140txHy8YxpnygKwjKHsM7AggggAAC1UmAwKbq9DS5FwQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAgCAUIbArCh8KSEEAAAQQQQACBEBAghDcEHhJLRAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEECgpgkQ2FTTnjj3iwACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBACAgQ2BQCD4klIoAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCBQ0wQIbKppT5z7RQABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAgBAQIbAqBh8QSEUAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBCoaQIENtW0J879IoAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCAQAgIENoXAQ2KJCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgjUNAECm2raE+d+EUAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBAIAQECm0LgIbFEBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQRqmgCBTTXtiXO/CCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgiEgACBTSHwkFgiAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAI1TYDAppr2xLlfBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQRCQCAiBNbIEhFAoIIE9u3bJ9999501W9euXaVv374VNHPVTpOZmSlvv/22tYibb75ZGjVqVLULCrKrF+UzefJkycrKktq1a8vVV19dISs/duyYfPbZZ9ZcrVq1kqFDh5Z63m3btsnMmTOt8/r16yddunQp9RzlOSE/P1/WrFkjy5Ytk3Xr1lk+1113nbRt27Y801bJuT///LPs3LnTurY+Y33W1bkF4jNdmV6BfF4V8XezMi2q8lpVbXX8ZJ6czMuXOrXDq5Kh0q+9etsB2ZJxxLrumV2bSGx01f97lWe+Hhw+ekLqRkVIWFitYk2On8iTH5enW+OaNagjfTrEFXtOMA6YtmSXmI+g1DfP4AzzLEKpVcTnyN8c+vfyx2W7ZePubBner6W0aRoTSjSstZoLLFiwQFJTU627HD58uMTFhea/P8H8mA7lHJdJ8wu+r77ktBZSP6bqv04Fs5e/tanjup2HZN2OQ5Jtvsbqv6UXpCT4G17ifvMl2/qaHVMnXMJqFf81u8QTMxABBEotYH3/XIcfO5QajhMQQAABBBBAAAEEEEDArwD/heGXhgMIuAT+/ve/WwFBmzdvllWrVknz5s1dB/1s/eMf/5D09IIfbHkPiYyMtObQoI+ePXtKjx49vIcEZF+DRW655RZr7vvuu6/aBDY98sgj8uqrr1r3pff43HPPBcQvVCctykePrVixQmJjYysssOnw4cPO52zUqFFlCmxavny5M8cLL7xQqYFNGtR0zz33yIsvvujxyPv06ROSgU0vvfSSfPPNN9a9jBw5stoHNgXiM+3xQQjwTiCfV0X83Qzw7QfN9JVtdeJkvvyyeo9MXrBTNpiAiYwDxyyL1uYHfT3aNJAurepL/06Nq30Qxc8mIOjjWVute3//LwOrLLBp7faDMnHuNlmx5YBsOxVopYtq2iBKzu7ZTC7skyCdW8Ra6/T+Iyf3pIybsMrqHtYzPmQDmx7/pOAeurauX6rAprd/3Chv/bDRuv/fDWzpzSP1zA+44hvWkQGdG0urxoEJCqqIz5G/OWau3CO2zcxVGfLxPYOkMn52rq77DhX8u+CNWjs8TBrXj5J48/nsmBArHZrX8x7Cfg0R+Pzzz+XZZ5+17nbx4sVBFdikgSyvT9tgAiZN5Imf1qJRtHRr3cD697VukP4wXO/hi7nbrTtIzzoqd1+a5Odu6PYnsCn9sNz+0nw5cuykM6Rzy9gyBzat2JIlX/22XVZtO+jxNVs/T0mtYuXSAa2krwkyrsmBTnwNcT5qIblx4LD59/P7NPM53yGDuzeV8WN6+b2PN3/YIJnZudbxO0d0LvKXJL5ZsEP0e15tF/dtId3Nf3P4a6k7Dpqgzh3WYf3vkktOK/w9nv5dnL9uvzXn0k2Z1t/xuHq1pVe7OOu/ZYYlxwfsez9/66YfAQQQQAABBBBAAAEEqpcAgU3V63lyNwEQWLlypTz99NPOzJqJ5s4773T2/W289tprsmfPHn+HPfo1I43OOXr0aI/+UNrR/3m+ZcsWa8kjRoyo1OCJjRsLfoCmF09LSwsltkpZKz6lY9YgOe+gpuTkZImJCcwPYEu3OkYj4F9g6tSpkpOTI/Xr15dzzjnH/0COBJWAZoZ58IPlTjCT++I0qEZf3y3aZXX/7YpuMsJkiKAFRkCzRjz28UqZs3avzwtowNmEX7Zar7+YH2ZfMai1z3E1ufMLExBmN/0BXFHtwj7N5W9XdJeI8NDJqrFzf45zS/p3M9dk6IqqHfjq7uqamX3cuXZRGxqMdtUZbeT8lOJ/EaOoeYo6pj/g3LX/qDXkzG5NQ+oZFnVfemxu6l45lpsndaMj5LSOwZMFduvWrbJo0SJr+QMHDpSEhPJntynOoiKPHzxywgkIKsm8+u/DA+ZrngbuBVPbsc/1b8D2vQUZBitifdX575S7j2Y19A5q0gCksgS67j14TP7+4XJZsfmA+yWcbf33Wl/Tl++RxGZ15akbe5XpOs6EIbzB15AQfnhm6T+vSLeCmvQufjFB1akm01mSCQb01VaaoPwF6/dbh87p1Vz6tPefuU8D0e1fptDAv6ICm2aYwG77+7o/jajrcWmNV/1o1mZ5eUrh/xen37vMWLHHer36XZr191C/b6AhgAACCCCAAAIIIIAAAmURILCpLGqcU6MEPv74Y4/7fffdd0sU2ORxUjE7CxculBtvvFG+//57K6Cibl3P/1FQzOlBcfjuu++WOXPmWGvRTFWVWfrg/vvvl/Xr11vX1kxUNE8BfDw9itv78ccfnSFPPPGEjB07VurVI/uBg8JGUApoQJNm5NKWkpIi8+bNC8p1sihPgVnmhxN/e3+ZR6dmaeqYUE9iTOmz3Zk5sigt0zn+z89Xy3Lz29CaIaKmlalzEAK0odlw/vLWEtmwK9u5QkxUuPQ2v2Xe0Py2eZrp15I5dnv261Tzg6WDcs/vuvAsbJRSvk9dvFuOmR9yP3pNcsgExmi2rtlrMqzPyf9c1LFSgppKySprTNaSxz5ZKfPW7ZV7L+sq0ZEVX9Ly2UmpTjDB1EeHVFl2tdLaFDf+2PE8ufftpdYwzSDzzp8GFHdKpR1/7733RDMCa/vqq69CLrCptFD670OWyVIy7vqeAfkMl3Y99vgxZyfKtlMBTTcMS7S7y/1eXf9OecNs2nPYydSk3+88YZ5vWbLM6dfku95c5BHwqV+zeyY2NNnr6si+7GOyeusB5/hmkyXq5ufnyTO3pkhy24bey2LfTYCvIW4YQbJpZ0qyl6Plgv0FNvU3GTHtwKblm7P8BjZtNcHZdlCTzvvL6gzre1r7Gt7v7v890rejK1gqz5TofcT8UoBmurSb/l3UICnN0Lk147Dz/YIev/+9ZTLWfP90/dBEezjvCCCAAAIIIIAAAggggECJBQhsKjEVA2uiwIkTJ0T/J7J707JdWiZLS8iVtOXmFqSCtsdnZ2fL7t27ZebMmfLyyy9bpcD02IcffiiZmZny5ZdfmrIWofPb6/Z9VdX74MGDJTU1taouH/TXxad0j8g9IOT3v/+9hGKgYenumNEIIFAVAtv3HfEIatJsAhqw1LeDZ4YQLd/zpSmx8trUDdYyvzXl6hLi6sjN57SvimVX22s+9cUaj6CmP5nyHSMHtPT4gfrR4yflze83OOXypiwsyKT10JXdq61LeW7s16fO9ThdM3XsyjwqPyzdLVoWR5tm0oiJWiMPXtHNY2yw7jSpHyWvjj1NNDtBVX2r7u2q5Q81c8mSjZny+ZxtzudYA0M0S87TN/WusrUG63NkXVUrcFaPpvLPGzxLKZ00Pxzfc6Dg3wf7691vqfvkX1+ukf+9unLKtpdERYNdP7v/jJIMZYwPgbRdrgDhC0xWubIENenXYg0Kd89i98CoriZLXYJHsKmW+Z2xMl2emrjGCqbS0nd63kemhGj9mNo+VlczuvgaElrPWUs3ugfW6+q/MSXhNDjIV0a7fm6ZBhdv2C83nd3O5w0vMsfcmwY5abBTGxNw6N30784qEyioTYOW2ruVvJ25ao9HUJMGfV97VlsJD3P9/8zsnBPyzKS1Ms18X6LtFZO5SbM2JcaH3i90WjfAHwgggAACCCCAAAIIIFBlAsGV17vKGLgwAr4Fpk+f7pSTu/DCC51B3lmcnAMl3NDsLx07dpRbb71VFixYIA8//LBz5pQpU+Stt95y9tlAAIHKFbBLSA4YMICgpsql52oI1BiBPBMVMd78oM1u+lvNr47tVyioSY/HRteWMcPayT+uS7aHy0czt4gGM9AqRkBLZPy62lV+7t+39JarB7fxCGrSK2mWrD8O72wyiLiehQY3rd1+sGIWUs1nqR0RZv3A7Nbz2suzJmuG3TRYL8ME5oRSq6qgJl9GmpGpdZMYGdm/pbz75wGivnbTsoremR7sY7wjEEwC+kPwhLho6+udBuPZTX8Qnpnt+UtC9jHeQ0/ggMnCZbfurRvYm6V6f+enTVaJOT1Jgyz+P3tnAS9HrbbxfPWWuntP3V2oQIUCBYpbkRa9WHF3KW4Xv8AFbnEp7lagSEtb6u5u1N2FL//seWezc2b27J7d0/a0efvbZiaTSTJPMsmcyTPP+7oe907Q45/fLShuTo/Urrg4XqFUYVMGZKgXvo0oPSdV6AGc2M0h+3fj/jg+QqKnlh0bljOVhWj018xYYpJcRT1NOuK+wFBZwmVukOF21W9+spMcx222WLdmFRVu68R+tpSaLulVV/XrnhFDaiJdce3aFYJq50bl5TT1m3Zt58wh4BBwCDgEHAIOAYeAQ8Ah4BBwCCSLgFNsShaxAyA97mpQBEJ5aMmSJapGjRqqZcuW6uSTT1aFChVSgwcPVosWLTJX2rdvXxPHDukh4WCnnHKKKlWqlJo+fboaPny4+ZUoUUI1atRIHX300ap27eCvgszJ+j8UjCDwjB8/Xi1YsMCUQT26dOmiunfvHqhWtHLlSvXVV1+ZLDp16qQaN26s5syZY1SPhg0bpipWrKjatGlj6lagQLRro4rE8ZkzZ6qaNWuqDh06KM4vVy7yUkDqFBSioCT21FNPGVWgefPmqVdeeUXdf//9qmDB1L/0y5cvnyE2gcljjz1misN12HnnnedhL3VIJJwyZYrBae7cuQbHJk2aKEhZDRs2TOR0hUrViBEj1NSpU9XkyZPV9u3bTf9AoYp+QjuLbdiwQX388cdmd9my6AuXd955xyOE0K/Klo1Vn1i/fr3pM5TBjzxxndS8eXPzs9tPyooX0rZDhw41SY477jhVuXLlLMlRdBo7dqwaN26coi81bdpUNWvWzPQF+nJOTRS8wH3p0qWmX4JTq1atYurBse+//94UQ18/6qijQovkvvzhhx/McepInxVLpn3knETwkbRBYaLXGHSuxNG/v/jiCzVhwgS1cOFCVa1aNaN6xlhSpEgRSZZ0yLUxLnBfooQGtm3btlW9e/dO6v6k/WylJipC3xw4cKCpE/fp2WefrQoXjrwUl4oyBn355ZdmHFu1apWqWrWqIS3S7xmTgoy2pY25bvLkPmKM+vXXX42S2yWXXKJQ2UrUZEwHW+7DWrVqmf6HW7JEx6hkxuQ9e/YoXHJi5cuX99yfmYjM/7Zt26bee+89s0d9evbsaR8222vWrDGuVNhh7OaeCRrnwYox6Y8//lBcK/NM586dFcSznFoy1xtUxuLFi818SL+hD2ZkZJjxkTGsQYMGQad4celoLy8zvSH3N9ckBmbSd+lnZ511lqIPBxn9lr5PH1y9erXBlTGHOTZ//shLcfs8VAx3795trvmII44w4x59l7mWOjz88MNZ3OPgppQ0zPekqV69urn/jz/+eFW0aFE7e7O9ZcsW9cEHH5htsKWcIKO+jCsY/YFx3W/0159//tm4Sp0/f755diEd92iFChVinm0YlxlDwixZrMLyIR43H+PmRF3M3Xd2s2xdOR3RopJiEQIiDQsa349dpk7pWD2wGNSg/tBu7lDHWb95h0JlpromPnTXixFlihcKPMeORCUKss8C7T5i1cYdqkSRAqqyVonq0jixr6tX63OGTFpuvvzetG2nIV3g+kW+Iv9m9FKF64qShxRU3ZoGj5V2ffzbY7UyzXj9W6Zd9aFwWVm7uiBvXNDkxD4YusA7rW/3WqpTw+jCi3fA2ujRvJLq0mSZR4biWhtVL2mlyH4zJxjjUmSBduODdW9eMbTP/DVztVq+bpsqVDCfOqpV5ZgFKKnZGk0UwG0IX+dvpo0qHGLwa1OnjCTJ1RBXKai2/D55pSmH9qSuGPXavG2XqX8vrcARZt+OWarHo39UJd3+5BfPUDzANRshVq1cUXV4k4qqtlZKS8aol7hbaajbvEHV6HOxnY+/fauVLardxkTScy/llrHYeNGRdcxC5ttD5ptiXvhmpjquXZVAZYdN+nomafeW4DJv+Sa9GFrAuLepW7mEcYlpKy7Y1756Q3TO+W7MMo8EyIKnXwllhe6LU/WYN1fnv1C78EJxrn4V8i8RqAxhY4OLSMbLmUs3mnOr63arU6m4apbp4sZO699ev2WnaSvchq3WxLlyehxEHaJHwL3DfTBh3lq1U/cnsZVaPQhVDCzoXkJhCHeUs5ZuMqGG3qhYoEDDeGdjJ3nmJOSDGp4dxowZ452O+3LUf7Gw+Y9j/N3A33P8vf7XX3+Zv9FJzzyfndtw/gbkGVee3UuXLq0y9JzM/FmnTpQ8Rznpti6Ny6vGNUqatifv+XrcC5q7kmljfx1xO4iaDy7NIFZW0sSX+vp+pg+jgiLjKOcd0zZ6/0hfIb6znhPLlcg6pybab5O9p2TurKLHE+Y86o0iy1j9PLFr9x6FUsqI6aupmpkbe7erqkOzm+U/CNbkp3SXh3TAvJaM7dTl/Tltlbk3cZtbQGPGWNyydmnt+qpslnK/088suzTBYnKm6gtl/aTHeuYqrK52wdskAaITak3vZI5tnHerVmoKG4c5jlUvV0zddWZTde2rY80+ZNrLj6mnylrPQ35seUYZpomhEJeXrNlq0jL29GxZyRvvTGYh/yX7nEI/nJZJHmF+P0Q/dzHfT1qw3ozRjM2MX4fqua6qbv/csv1xDklmnkoWF/9cncjz7t5sK+YZmYfKaLfIuD8+47Fh5jK/G7tUP5dnfV7Np0mihzet4KkjMU/53S+ioCmEfvrTUt3HsZH6+THobwueP8Xa1499t8eYKGYTlyTODs/Vz9izMlXbwghXdnq37RBwCDgEHAIOAYeAQ8Ah4BBwCDgE/AhE2R/+I27/gEQAYgcLdxs3bsxyffXr1zeu0F5++WWPQHT66ad75BoWJW+88UZzHov3X3/9tSH4ZMlIRzz77LPqiiuuCDpkCE2XXnqpp4TkT0Q9Bg0aZEgn9jEWki+//HITBfEHYsQ111xjJzHbvKz95JNPzIL+hRdeaMrzJ4JwwPWgmhRm69at8xbm27VrZ9L269fPEJrAj4VSW8UpLJ9E4++44w714YcfGoIG+aMW1atXr0RPN+nAg/bz280336yuu+461adPH/+hmH1IGqhIsQgdZGAOOUdIUiwqS5vY6aWfEFepUiVDMpHj4Hb++eeHtv+RRx5pFrRLlkx8gZAX9VIPSFVnnnmmFKd27typ7rzzTvXMM894cfYGfQHcIUokY5BR6Ifx1LUgfUEuwSAXSB0hci1fvlyFEbggJDzwwAPmvH//+98esSnZ9jEZ6P/i4SNpgsJkrzEoD+IgREKShHzkN/omizMQ8JIxyApXXnllKP60K31N+mp2eUOMu/rqq2OScR9Km3GAsQWyB8YxyhfyhYm0/rv3lIJ2AABAAElEQVTqqqvUbbfdpu69994s5BCIkULSZGyBtCEqUWTRrVu3hIlNkM6OPfbYmPOlGoylb731luyGhpBMkxmTIcjQL2fNinztDAnF35dZQBPsGDeC2p4xTtIwZ0Bs8o/zEPsYd4PsX//6l3ryySdVsWJZ5fKD0ktcstcr5xHS71566SV1/fXX29Ex27fccouZJ4KIROlor5jC9A73l+Aox+hPdhx9JGgBk3aiv9n2+uuvm13GUUhMfnITxDuMvguJCTKzbYyLVapEiAizZ89W5557riGU2mlkm7GQ++G0006TKBPa9x6krDBiE4RRuU7mnUceeSQmH1y7Mk9DaPUb9ydtCZlO2pMF3DBiU06w8pdp7/9qfaXct0dGwotUfbtnGLISef2duRho5wvh6XHttmfwuMiCt32M7Sc/m67OOyJDXXJUXU12y7raiXutt3+d57m985//4rezzWLJnWc0CSXVsABjq1HZebDgcVefpurhj6aaaBaukyE2sYh948Bx3mK3nff/Bs9VreuWUU9opQ/UBxI1XHhNmh/9Er1f99oJnfovjeGS1ZGFoL81gSxRSwVjCDUfDVtkimqhF49R8wqyL0ctMS7eOAbm/nSQ4h4YNCXoVKMGcLduo71hqHUIsQkXVGKvaHd/i/RCGYoD8YhNT38xw5D8WBB/K4TYxKLgs1/NVB8OXSjZeyHurs7oUkNdd2JDLy67jXVabUT698kdq6mbT4k8F9jnsUAufdyOl23UwK48rn7aiC+Srx3iqvLnCcvNYiXjAqoNovQg6UbNXqMGvD8pxp2THCNk8fKhvi3MAjv73H9y7eyLga9Y2RKFvYVWiBOfDl+saKcwY/y7TCs82OoPkvaHccvU/R8E91PS3HJqY3WSdhcZZPHGIdxSoYAHWVQMNQr/taHsYsfZ9xIKQvdq7MA1yCB33HdWM1VREz1SNZ6V7edE8sOVuVjQ/McxSE0Q6IUALOklhNDcvn172Y0Jebbg4wN/uSRi/gwrMyaTFHcgiEFqw4IUm5JtY7s6LPRf9d8xZvyw49muod0w3X9Oc/WpdgELQRijr4jLpylWXxlwTn6jCGQSZf6XTL9N9p6ScYW5s/+x9dXVr0TJbhTfT6s7fqHnYMGtftXihlBp10+2p2nCzqMfTzO73OvJEJtQgnv4oymhYwcYMnbYbuae+nx6FrwhGPHDjtSEoQEa9+xs1Kw1XhJw6NmisrcfbwMiGPcwdceGTVupTmgfHT9sbCGb3/f+ZA9HO99nv5qhnrywtSFw2fGyndPnFAhqMpaW1yS7oVNXqs9HRIiVkreEN5zcUJ3WKZyIL+lSCfeHOYT6JztPJXrNqTyL7c22giAnLheP1/0VEhLzy4R568xz3oZTdmYhE4NBh/rlPGITaf3EJptgyLPMME1SJB1jHqQnFDZtG62fF8T8LrPL63l/jibmYeuyUdfDlefndyT+AZeU6UKHgEPAIeAQcAg4BBwCDgGHgEPAISAIxP61IrEuPCARYMEYkgULhkHGIjXqCaTLzli4ZDFSzK9Mcu211xr1BjkuIV+c8pWn/ZLUVgAiHfVAvWP06NFyWpYQIoSQmvznozwB4eCiiy7ySE2ksdNRfvfu3RWLnmHGAqeYLKxD9BKDQJNOQ7VCyiFfIT4kWgbEHT+pyb5mjkOyCDNUdCBt2KQmzoeUIIYKCAQgFucxFrz92BIvcYSogImhFOYnYdB37P7z008/qR49eoT2U8kr0ZAFc5vUhKIKC/Ji0hdE8Uni44WolaCo4yc1+ZXK6C+iWoNqlSzecw/aOPvLssky0udy0j7+fJPZz8k1BuWPchjEgiBiC+nBn4UT1HuSMfqyH3/6mxj5Mt5BWkjEIJ5Jv7XTSxyhEDwg8jB+2O3EOXb57D/66KMx9zRxfmPBibrmxFCP4RrDzmcsPemkkxQqNWGW0zFZCHvkO3HixCzZQyoTY9xAVchvKDCJBRFXPv300xj87LGI81577TWFkl4yltPrlTJuuukmjwQjcdz3dts//vjjgcTedLSXlGmHjLHST+14iSNE0cZvKJIx54v58YXwyVweZoxJMqYFpSF/yIB+UpGNFWMh94D9PBGUV07iUIaCFBVWPmVDuBR1vHhlpIpVUN6oIYn10OoQiVotrarzwqVtze8KrTZgGyoGl780KgupSdxRSNq3fpmvF+Qny25M+IQmRUH2sM1/PoseFz33l+Ird7+hcGETAThun8+C4oCQsv15+fdZaLn9rQmBC42SFhWs+wdNNmpQEpddaLvdgCCDckUihkLEuzd0Mr9EFmMlz1QxlnxyGqLO4yc12W00YsZqdc97kee8nJaR6Hm4CRLT/KNcsZe/mx1DarKvlQIhin38Z4Qslo4KDNWL5bJALvn5yxz0x0J18+vjFfdsbhkumY7VKjNif0yNjjnEMQZd9+pYb8GUONQg+IlBILji5dEeGQHyEdfivx6JIyxotelzmvDkJzWxKGufj/IKRCO/vavdbdqkJs6DuGjb459OU28NmWdHmW2U7eKNQyS6+91JRgVFToa0ItchcYQSR/h/+h+GK61+Tw+PITU1zyhlCDEmgf6PBeJznxquNm3dJVE5DvlIxJ47ycie48MI3nzUIqQm0tt/b5EHz+fMb35jfveTmvzlQ3CHlJ6btlarDYqVtpR1iMtJG0teKIhBkIXwF2SQKm/431hPSSgoTVhcsv022XtKykUh6dY3x8tuTIhKk5hNopY4CX+3CNbHtY2eI8fDwh81cZrxS8gWpLPvafbB8LynRyjIU2KlDymUJZ19f6FQlIgNzyQmkRYyVMAjbmg2qC2JQeQIMu7vm/T1CTnMn4Z+c9Pr41QQoTldzykvfDMrhtRkj8vU56nPtRK1Jrzkpu0Pc0hO5qlEMUnXs1hut9UPmoguRn/HjmkTnduHWH9PSDpCW31zXEBfsYlKqIAd3qSCdzrkTdt4VmFOwzK0yiUqsLa1qlPa233265k5Gju9DNyGQ8Ah4BBwCDgEHAIOAYeAQ8Ah4BDIBgFHbMoGoAPl8ObNm80CtyyAQ+yAHIQiC4v0LDCfcMIJZoHcvwgYhMG0adOMlD3nkTdkKIgLqO2I3X777bJpQtKg1CMGYYMvRVGuwTUZi4s24YS0uDMKMurIC1YWzzmfa2ARVoyXuN988415gQthheuG4ABpRow4v+spOUYorpbYhoyF4QIJYgxGefGIUSZRkv/hRk0MQkiihvtAVELE7rnnHkUboaiE6x/5qpc2D7Pnn3/eOwSxCLICmNGu8oKbBCwGC6ED136Uwc9WPEKlQ+LF5do/+rO4Bx980CsDhQwIF/QLfhDZUJjBIE7RN1I1FI7E/RvkA/oNbhwgFVE/W1nKvv7sykXxBXwxFglwwQQuuLujL9sEMvulv01cg+QVZFy7KOHQH0T5xK5fou0TlH+icTm9Rn/+YA42XAsqadyrqKFB3BP1I/oYBAO+LE/EUJERt42MAxBgII3QX2lfxjKMfM8444zQccQui/FG+qzE06cljlBcjN13330euY+0b7/9tunDpKEPSN04hmqXkNvY9xvtTTnfffedGcvACqJHdoYSGekgDWFgyZgHtozJqCGhpMM4J0REf56pjMk2ESnoXvUTM22ik9SDcQuDUBOkrCX3AWQksKU9uT4W6sRwCcqxRCyV6yV/3Py98MILXlHMEeBLm9P/UAoUQ/XInh/S0V6Stz+kj4MB1yeGa0/i5If7GL8xhtHfGKO4NvDl/rT7L4Qj6WP+87l2zkc5i2cBnicoDyVE7mXiOY4xb0r/5DxU5HC3KobCWRD5TY7nJISUxX2AMU4wb+G2hzpyT6A4gckcYXZC/ksVK3+2e/b847l8YFGvQbUS/iQ52n/1hzneF9NkgOLA13d3VYPv76E+urWLuqp3ZI7lGMo/qErYhjrAFyMjYwrx/zq6jvrg5s7m/G/v7aYe7NvcW5TEZQWLObbhyur6/43zonB99fq1h6ofBnRXPz3QQz15USuz8I+bi2SNL+sf0yQGWVhBpeHl/u3Ubw/3VL8+dIR68fJ2nuoVCkAvfT874SLEDQ4nZOfOJuFMQxKminFItglHo4oEOUwMFZJXr2qvfrivu/pRt9Nj57dUFbRSRJgKjZyXrnCWdi8mVlGXmxsm/e220xqrL+483PRn+vXFR9XxioN8YxPcvANJbkzRLpZufSOKb78eGeq9mzqZMj/XZd92emOPOES9xKVdksUknNx2USPqYpzM/TTw5+jfGWd3ramo39d3dzO/N6871CPpoMIwYX5kAR0Xeown/CDyiH16+2FevLgExBWXqIuR7p6zmpp+xlj044Ae6lHd18S+1ootNlESpaf3f58vh9Uj57U0YxikTu551JbEcLcHmUAMF0E3DRwvu+qaExp47U49Lzwyqsh2gx6vxP0OhAeuCwzEGJvlegmF9Dhs+kqP1IECzHd6fHz5ivbqg5s6m7JQ08AgQPwwPnaclbyTCXm2Ze66++67vdN49pQ53o73EugN/t7heYC/sZh7eU7g7zviMOZo+RvRROj/+DtG3gkQd8EFFxhXdDzn8De3/WEPSlLM7blh9B/bXWt1TWwTy2kbc/7WHZqU8kaUlMNc8rzuV0P0PPL7Iz3VK1e2N6qEkHZmLomOT1J2vDAn/TaZe8oum/rRv1Aso87Unz5ao3wxdYTlUg43kdzvfqOuP1jKjritSsQghQ34IEqMljnkez2H/PLgEeq5S9sYF4KSF2nF3RT3PnW0n0Ue1ve23GMosCVics+SVtzbJnIeadpY5Eg7H/t84iFmNdXuLp+9pI3BlueM5y9r66k0gf0tmlhmk1PBOV3PKfP18xRkTtqWMY9x6bM7DjMqelLXF7+NfQaT+HSG+3IOAc+czFOJXH86n8Vys61wVck9jKGChvtWrKt1v36lFTqDDLVAzsEgrO/aHTsQiHIZpDlcz8rcTXqb9MQ+7hjF7D4hcR0t983g0VeTep/TBCeeifibx5lDwCHgEHAIOAQcAg4Bh4BDwCHgEEgnAo7YlE409+O8IF7I4jZEDBZgURxBpQQXQqgq8ILUJhbFuxwWCVkM5LyCBQuapCxO22QgXqKymCtmqwlRDu62kL+nfNSKIGtQL/malEVt/+K45EUISQfVHM7nB/nooYcespMYIkWHDh2M0gpugbp27RrzApcXxUEGqUgUfCBrCbmEtDY55fPPPw86PcdxtgscCEmJmn3dLBDfddddqm7duuZ06s4Cs//FtT9vSEYQIXiZDREDEpe4UqpcuXKMOo5NEPPnE7ZP/tSFMlDUwmUQLg3FWrRoEaPaYau5SJpkQ8g5YpAhmjaNulahD0OKoD2pEy6mUClKxFgU4Bx+kGo6deqkChcubE6lL+P6jv6MQewRggN9iXIxXIQFEXnky2rS2Av/ud0+lGdbTq/RzkO2IawxvkDg4V7ly3LcLHK/Cx70qREjRsgpoSGLMOIKi0Qoq6E6g+tC+isECnssY1EnHX1JKkRb2gpgEJdw8SjjFgQ6SHuQC8UGDBggm1lC3IDRT3v27GlchdGPwr68t09mfGJcx8AQohwkQs5lTO7SpYtxLepXEbPzSGVMJn8xCGu24R5MiH8S71fFgWAixCUhoklaO+S6UAWSfsL1Qbyx56rp06fbp4Rup3K9ZMp8Ifc9eZ1zzjlKCEMoInEdjCliNnE2He0l+aYzxJUfbmPLlStnsuX+pP/iPk5s/PjoArHESciiJnMLzwKiekYe3M+iukjbcZ9I/0T5DLeDYCjjJPnZ5E3JP6ch96mt6MY4feqppyqU8zCIdLSVKD8mUk6qWNll4KZEjIWHIBdMcjzREFLAB1oFRgwiwFGtKmsSRUQ1kQWys7vWiiFzvPZjlNjAeW/8Mk9OV7jKwg0Ji6RYqWIFjZsa8hWDjGC7D/tu7FI5pPj6+7bTmhiiENeHa7hOeuHjyQtbeeQoL3ECG2PnrvEWdyDePH5BK+NWA8Uf3GVAJPj3Ra29vN/Tai8sYCditupEPa3YlJuWKsap1o02k+tlQR+Xc020OzjcEqKWcZj+Yh9s94axUPb92KjLRL+blHTW4Y4zmqgTOlTzVAbo1xcdWUed2qm6V8ybVv/3IpPcePrLGd4ZEA4u16pqqKxhFbTCAW6PuC/EbOKPxKUzrGS5QbNdVy7Tai+4juE+PV274uuv3eJRPzEWT+84PVrP8QFqD5I2LETthPwjY0Fj41JQiEEorKAOcdkxkb9VyMN2izNr6Savn3ZvXjFmEZd7HjJF/+PqmbzpN8stN4ZPfh5Vf7pSkzn7HFbTa3fwwIUk14xBTsBtYLL2e6Z7Ms67TLdxST0+iqFkgQs63P5x7ai/7CvjGRDX8fyNJaqj/H1nuynGzaptzz33nPcM17t3bzPHQ57nOQeXtriplQ9cOA910nQbSjioCtI+GFjaLv1SaWOUS8RlEgv6kDkhuxTS80h+PQ5CZoEUzPiYrKXSb5Mti/R9u9cy7hipM/WHKM01lDqkoOK+wVau365mLo2SEkyk/o/xl2MYJORE3bd+ot3zidlzCOWi8IOLqkf1c4IoDEEQEnd+cl6q4UrtPlbMrxwj8WFhOT3uiS3TBKYwo/6PnNfCEKfAlucMFHBwryfXRj+CICOWzucU2hJSFW0ryoYVSxVR9+qxRYwx1k9WkWPpCvflHJKb81Q6n8Vys63+sPqXrcSG+hmkWox+sFDfZ0F2WONIGo7Z48Aa7S5OiJvdNRGSOblOpeJe3/armU2cv87Lvp2+x/3GRwGMpWKM3ShTXvqfUerw23/WCnjjjLri4tXB9ZTzXOgQcAg4BBwCDgGHgEPAIeAQcAg4BBJBwBGbEkHpAEgzduxY7yp4YWkTdeQAC8Y2MUnig0LUloIWzFnc5yWo2KJFi2TTLLLLDi9UWQT1G/WyFzdZjAwyvjRt27ZtlkMQl8RY+EY5wm/2gjhKG0E2aNAgL5rFa9ts1zsox6TTZNGVPFn4T8Qg44hbM8hlYS+YITexKB9mH330kXn5DdlEFrnttMWLFzeL18RB1gki5djp/dvycp0X7E8//bRHmrLTyRfExFFGqiZkI/JhcR7VKNsggLD4TZ24fnnpb6cJ2oa4xDn8IM4Fma1gJSQPXEZdfPHFJjkEHf9iAgdQp8EgA+C2Tyy320fKkTCn1yjn2yH3uxBT7HjuTwhuYkK+lP2g0FYd69+/vyHw+NMxltn5xiNm+M/Nbh9lJTHIH7ZLNoknRLHOVqQKuzZIftQ3WYN4JvbEE0+oOnXqyK4XlipVKmbxyjuQufHuu+96UcmOydQZFyYYxCabFPjLL794+VI3DPLW1q3RBQSbxBY2LjGe2fOJZMriGmQyMZSGErFUrpf8IdDJfY+r0yCDrCs2YUJUtSMd7SX5pjNkXggyG1/7+cGf9uqrr/ZHmX1bkQ53gUHPCxCg7GcOCLXJziuBhetIG3vGCQiEQcZ8KaTEoON2XKpY2XltsFy4CfHIPi7buHt56KMpoT/cMInJl9fsH9OmcgwRQNIQXnBEbeNGgm1UCVC+kG1xuwJxqP+x9U28/z/UEYQUwLGhU6OuXCYvWO8lv/PMJmaB1YvI3Kherpi69oSG/uhs93/TKkxi12oFlrKZhC2JI6ypv0yHvCU2e1liahu2u6OamSQUySOdIXininGq9Zm+JLrAfU+fZmYx3J8nC1SQRnLLULiATHL1K9GPC7o2q+ApbqW73C5Nyit7QdDO/5rjG3gLebSN7zHRTprtNouw0r4sfF93YnA/hzx2w8kNVb8eGYb4kigBL9sKBCQoWTRKuFltkQEgOj51cWvzu17XM4hcaSvJzUhSuYaqcJ1SBqSyIGusSXVitnqX7c5u/orNHsFF0hKe2y3Dy59xBVulr3HS/Mg4hFLFOdZ4YBJk/mePb9Jm9vHstnFbJxY0zkDCgWjJ9UOg21fGxxsVKmRV4oHcK39z8XyKWqOYTVqCuMxc7TeIwocddpiJhsRtf8jkTxu2P0kvlD+lldLs3yMfT1X9tevD0x4dGqPWdGmv6HiUahvbyiM3ntxI2UQXqWuRgvkV42OyltN+m2w5kv7Mw6LzncRJaLuhDHJH95vlhs52ayXnh4W2WyxINpB+/AbZ6KaTo+pLQyYv9ydJaR/VKLES1hgncfFCCFgQUTDIF2FqMhBQg/oGz2y3WaRPe9xK53MK5E3Gab9RPnOamK04KXHpDPflHJJb81S6n8Vys62+HRMl3tpKbLRxL/2sLzZ4fPB7w3b1Ih+ukE7mRrbHzllDYAziKAa56YgWkTwhPa3V5CexsdrNs1jzjNKyGRMy5z9zSRtP1cw+iEIlbq77PP6ncZmd22qVdtlu2yHgEHAIOAQcAg4Bh4BDwCHgEDjwEMj6purAu0Z3RRoB3L6IBRGC5BjKKhAQxH2MxPvDMDIH6TIyMrzkuKbBUE8QdzbkH0Q4kpPs+tmL33Kc0CaN2PF8SSpmE5gkjtBWCbLjZRvyi73Y6l9YR1WJl7kocEAowt2ZqCNJHjkN7YV/FGgSMcoX69ixo4I8E2bU2yaGhKUjHhzoB5s2bTIuhnBNYCuQxDs30WMsYlMGP/oKbqbEcvKSXM6VEDzEcA2FEheEBFRCUKFKp7EowDXw43psVSub9AFRThR/WPxHdUxs8uTJnooN6VB/CrO90T7+shO9Rv95LVtGv+DzH7PHkkTIbDbJAgKeTZ6084aIJ2afI3E5DWkjMbt/SZyEkOQYp4TUNnXqVM+NpaQhROkmJ2aTtWwM/XnJwpU/Ph1jMsQmlPvo71OmTDGKAJQjYwxj50knnaRQ9cEg8okLO1HEI96+B9gXC4vnOG4wxWSekf2gMB3XG5Tv9u3bvfGLethkRfu+T7W9gspONY6+EUaqq149qmKC65kg43khbBy1r9ee0/35QGaGwMbzAf0Il3i2cqE/faL79j0f7/5gwRZCNIpS8SxVrPx5o34kxiJtmEFC+Xb0srDDJl5ct8z5O0JQIrKZVjAJM5R5WujjuIrA5i3fpF1bFFeQB8Sa1YoqBEicHTbVZISPVYS4Lov6u7WrCXETBzEqaEFQ8mhaM7HnG0lPOGlB9PkAdZSwxbxDCkf/tEE9IxEVoGJaTUrMXsiRuHSFqWKcjnpM1W5BMBZ2IYKFWSK4hZ1rx1/43Eh71yyUiUqIHGit1VJyQiKQ87MLW2ZE/zbwp0WFg/sFRREWuSEnBS0m+88L2scVo1jL2hEFGNn3h6d1iigG+ePTvb/dctGGIlc84x7esn2X2rxtt9qsw01bd3nJd6XJlQwu48B5k3avQxmQW8TsIjIqHmL6KGkZq85/ZoQhVKL6htoWC7BBNssiM5bWqjVh44R9LmMLhLawPO20st2qTmnPjeADg6YYN4ZHtays3fOVTlj5RvLKzbBNmzah2UOIl+fuNWvWmOcB/tYTNU1O5O+0sOdsyPNiKGeKq3aJyy5EOe6TPyPzSFjajEqHqFu1e7KGlrvWVNsY10hijaqHz0X0M8ZJ+mCiltN+m2j+djqIe+VKhP/Nj1qY1B9XVpceXc/r4/R3cUMHCbO1Hq8SMZQhZfwmb1F0DDrXxtYmPQelTTYOtZot2yMfS2zTyozZjW12/ly73aY8EwVZE62UFGaNq0eP2aTPdD6noNQUZlXKRN8PMI7mpu1vc0g65ql0P4vlVlvxPCJugVFHq1Yu2u60eedGFbymxx3dhT1rG/VNL1JviFtU4sZo5VPUWLG/ZkWJTW3qlDVx/AfJScZlyEy4aGXeHpWZvn39snHnuPb64wd+uL4dPOFvo2jmJw9DsJo0f5Jaosn+/bpneGW7DYeAQ8Ah4BBwCDgEHAIOAYeAQ8AhkCgC8d9wJpqLS7ffIzBs2DCvjvaCsBeZuYESBm61ZGHaf1z27UVPiZMwaKF05crol/bxXrKSh523kKEkbwlt0oLE+cNE1Xf850GmshVA7AVSSWu/zEVhB9dv6bAVK1Z42dSqFf4VppdIb9hEi2bN4n9dmt1LZxaVcRH4888/e6747LLSsY07JxSxcE0lpI905BuUB64XcAkm7qFw3SXuu1iUh3Rx9tlnJ/0ynrK2bdumIEtBYEKxhkX5RAwXTCj5cO0ffvihevzxx72voW3Xhn6lMPLeG+1jX0NOr9HOA4Jh0NfekqZBgwaymRBxzlYye+CBBxS/7CydruhoAzFRZJJ9f2jfj3a97XSJjGV2etm2yarxiKIQHbnv/YpR6RiThaREnZhjuN9YBPvmm29MNSE2ZWiiK/caC2WMK3LO4MGDTRrIlvZ4aiIz/4s3BsYj/dl5yHY6rlfywl0kblIhddljthwPClNtr6A8U40LUvmSPA855BDZDA3D2o0T7Lmb9o9nPBNIevBMB7HJJlY1adIkXvFGtSI7YlOqWPkrwKKcLDjipgXFgKDFtUra7Yi4PLHzEFdidpytxsLiajyrq4lMYms2Rr7IlpD4upWjxyWdHbLYLLZqY4SYtWhVVPEjOxc+OVFFWmm5mrrmlbFSfNzQVieKl7CstThsE8TinZOTY6linJMy7XNW67aSvtMwzoI+52TXh+x8422Lq5OwNJCantCu7xJ1gxSWT7z4OpWj/TUoHcQ+cZVE++eU2AS+Yrnt0lDKyS60+1zlMlmVclGvQelhhFZTELJjdnkme/y3KSvM4ubw6au8/pddHoyHuHy6XruvwVDYeO6rmebH2NmtWUWtVlHFuIZCgUXMJiayeHrqI0PlUGgIySFZQtvx7aqpP6etUiNmrDb5QkAVEirj35F6MfhITXRK1k1WaCVzeCDe3/y2kip//2OrVq2KKSnRD3dQpczub8yYjBPYObxpBdMH7PbltFTb2HapVLl0LFHArhaQQPBEaSRRy2m/TTR/O13xbIiKqIqhlIY7KHFH17BahMjF3CgEpZMOrR74/GGXJdsyf7Cf3RxSsXRhOc0ry4tIcaNcyUJmTCAbXPsmQ2zarEmVYmFjPWNMkCqknAehTJ7hIMoJMTKdzym4nQuzItrl396y/WEOSfc8ZV9TTp53/djnVlv9NGG5VxTKWaNmR8lI3oHMDe7n8ZoojLtE23i2aluvjCFIjdNEJYhhjG1/TltpkgkBUs5pbZ3/16zVhtg0c2n0HRfpEzFIWCjE8kOlE3LTMF3mFyOXeMTCl7+bbe6zMEXNRMpxaRwCDgGHgEPAIeAQcAg4BBwCDoGDEwFHbDpI2r18+fIe8WLHjh3KdtHlh4CvNtNttsR9kCS+XV6+fPk8BQfiWSiPR4ywz03Htu2uiPxsd2BB+ePK7I477tAvBVN/yWQrVGWnLCV1sRfss8PWdnUn50sIOQc3e4kSdOS8REMUhl544QV14403JnpKWtJBOkMxiHbCHZYYRIsnn3zS/I488kiF64VEVbIWLFigzjzzTO9LZ8kz0RDVKFRsWMRH4UWUacQNHW6b/GpAud0+/rqneo2SX3Zunmwi5OLFi+W00DARdR7/yYmST/znBe2jYCYW5LJRjhEy7opt3hxVcpC4VEIhSrEwFeTW084bVRw/sSkdY3KjRo28sfr3339XV1xxhYIIKmMI9xV28sknK1zS4cbtoYceMgtnQmo87rjj7Krm2nY6rpc8cL329ttvJ13PVNsr6QJTPIHxOhWTe47+Ge95gzIqVarkFWW3kxeZgw17LLfv2aCscjKm2PnkFKvalYorUY6AHBS0MMKX1fJ1tZS5Q3853ePOiLtHlJHEtmjVAjFbEUri7NA+vlUvOGAsPIhBvIpn9vmifMAin5i9cChxdojCQrJmL6gmeu66zVE3GvHOsd0B2gs48c7JybFUMc5JmfY56zbv9HbLZNPG2S2aexlls8HX/X5jEbqKJtl0alResYgW5AbNf04q+9n1Z/v4Osv1SrJlcm+KlSoW/x6SdLkdTl4YVUSqUDK6UM4Q/9GwhepZTRbKLaO/P/nZdIVaTE6sg15Aff3aQ416xNejlnpZMOaQJz/GwGf+1cYj4sl45CVOcAMlGqXCSS7+bAprYsEj57VUqGSwUDsn06Un6VjA5ff817NU3+611OXH1PeUcvz57Mv9PXui/VXqIc9vsp9ouHp14uQfyRP3k4/0aym7Jhwyabm6651JZnuMXsTfqtu6eNHY11WptjH3u6j97Nq9R6HaFma229iwNP74nPRbfx7p2u/VurIhNpEf7uiE2GS7pjuqVeIKxvYclt0cwrjO/SkEKggVfpJaTq/TJgxCegkjKAXlP81yx1opgOzJObiSzM7KaXd7WzQxnf64fdduhfvC3HxOya4+uXV8X84huTVP2f3Ynv+DMAx63g1Kl+44rv1LPbeIQbDMjmT5/dhlWYhNnH9og/KG2ERfhbzNvSl91XZrSFqIUKg2QdqFiEQ9xs+LPke01WpMyRr3Bs96/M7umqHufneip/AK8dkRm5JF1KV3CDgEHAIOAYeAQ8Ah4BBwCDgEYt8UOTwOWARwiSQqRDNmzPBcBvkvGNLT6NGj/dEp79uEG1wWxTMWNkW9gUXRvUlqomwhl8Sro32MuuKSDuWRVA0FHzFRNpH9sBBygdjMmfEXKGz3AnIOIS+yjz76aC8KQkKfPn0UKhWQoVDmoC0g8wwZMsRLl8zGL7/8EkNquvjii41LOFRZSpcubUhFqNdkRxZJpkxJe8IJJyh+kAtoK9xgvfnmmx4BA9WlE088UUEeSsTOP/98j9SEGsnll1+uaAcW6FlQ5/fiiy96SlH+PMFR3HOJOzrbDd2FF16oF0GiX6Dvjfbx1zHVa5T8JkyYIJuBoa2AlIhbNpsE8fLLL5s+FJixFWljaUXnaNMuf/bs2app06ah+dj3Y3YEr9BMQg5A1qMf0zcgkcTL31avkezSNSZzX9EOqPyxSCYuGLkvMjIyTHGMLRCbIDNBXrP7RM+ePaVKuRqm43ohQgqpifHw2muvVagNQUKVMRICWRAZNtX2ylVwciFzyJk8cyTSP3HTKGaTASUuXgjxOchQinvllVfMIdok3vyMiuC+MFSPhNj0u3aDdXrnGglVg0U8MdvVi60usGj1FlUnjurSQr0YJyaLk7htErOPS5wd2upM5YpHCBwQs1CXYrGERf09ejUkjLCSE1UkFi5RbcHeuaGjKqwXSrKzRNKQB671xGZofFnIsaZgOZQlJB2uuzAWxwvFWSAnTaoYk4dtlB9mu3ZnPVi9XDEv+VztgjCeLdUuUNJhkE5y0xIhOSxcuVk1jqNQtcByw1grG7WzeNdS2iIz4eJxf7CfxkcVH9pZC5Kj56yJITWdqJVdUHXAxRFEElw6FtO/o+4ZkuPLeOfX+R6pCeIjJM1GWjEGsgPkNsqYrRdZr3s1XIGtQdUS6vbTm6jrTmxo3NZNWrBe/aLJL6IuBWnikhf+Uh/c3MW45bLvsaM0qePSo+smVP8KmqSQrHG/41KQ3wLdx1ACGjd3rfph7N9eVu/8usCMVRcdWceL25837DmY55xE3wnYruBTub7uzSqpxjUWmDmEe/ud3+ZrYli9mCxTbeMWGaW8uYR2q1elREz+srNTk56Yy3JiyfbbnJSRyDkQmXBZhzKkuKPjvB80AQJDXSwZdT4b++zmEMgjQmri/k8XqYl6t9Ku84ZMXMGmIV8c0SJKkDeRcf5DaU0szAUf4wtzaIH80b/F5RxCjoEpxrMJxA3Zzq3nFFPAPvhvX84huTVP2f04J8+7e6MZpi5a741TiZb3jSYAX6/nSr8Cpj334y5x167o82H7elkVmA5rUsEQm3ie5z4fr+c1jPs4VTVK1M7uO6uZOiVTTREVqTDV2kSv26VzCDgEHAIOAYeAQ8Ah4BBwCDgEDj4EHLHpIGlzFvlEiejLL78MJTbhWic3zH5RyuL29u3bQ1UcbDKALIznRp2C8vzuu+88sgtupt57772gZCaOYyzWY2Abb+HUJMrmP9w02YpCEAYSMdvdlU0YCDrXdltnH7dddUEusethp7Pbxo5PZJvrE7vtttsCST/z58+XJLkSVq5cWZ166qnm9/DDDyvcD6GehEF4gnRhu0IMqgSKZqQVQ6kmiIy1aNEiSZIlREEHpRpwhsxGP7Ld0J111lkx5+yN9rELTMc1Sn4Q/9atW2fIaxJnh6LcQ1zr1q3tQ4HbtKEYSiwQKPam2UpqkDRxZxhmNqGINk+nMaZDbMKmT58eSmziK3pRz7HLT9eYfNRRRxliEwQW2pIxFEOlScxWH4PgKG3OohmEn71h6bhecbFHfVF449r9tnx5dBHZPpZqe9l55YVt3N/YZOow4h1kOHs8FeKgrYDod41jX3/YOIvLTzHG1ksvvVQFuaflfCHjSfq9FbbXJAMWIbA3fp6rjm9f1Vsci1cHFs7F6lsLshUstyXz9KJct3DOpZq1bKNk4blKshUQ7ONeQmtjvkUEsZUNmmm3Pbj0YkF6/FztEkO7GQsyWy0i6HhQHGQIWTBEGQfFq3RZg2olPFIWdf918nLVo3n2C6WkE3WRHi0qqgfPbRG3SunA2HZZuEG74Akzm3wmaVCZwQ0h6jIs3IJjGBlLiCNy7t4OZRGc9ghT+khUkWuuJs/EM7u/xyMExsuDY/RRsRlLoveYxO3tELc1f2r3b2K49hIbpV3MiJ13RIa6rFcseYRjcr9JumTDYRaBALdyKNn4bY3lvs9/zN5noZbz+UESYhy8f9BkQ5ygj4ybu8a4fitbItoGkA6TUXKxy0t2u1aFQxS/E9pXU9ce31C9/es89f7vC002EEryIrGJ5zrm8qC5M1l8Ek0PobT/cfXV1f+NEI7fHjJfnXRoNUO4kzxSbePGmsj6fSb5DFJxGLFp+PToPSJlJxsm2m+TzTeZ9Cdp0uIL38wy9wqKhJCOhXCUrFKKEKEpnzlip55DwhSvbMJIFU3+Sacd1riCevqLGSZL2vKCnnVUjfJR4m5YWSs3bFcfDo3cl6Sxx0T/OYs1QTyM9MUxsaa1SsmmmQNk3Ez3c4pXyF7c2NdzSG7NU+l4FsvtZvhhXJQgCyn4+HZVQ4t84MMpStz+8gx+tCb12lZfP/dBSorMlWvVlm0R1VTmx5qa+Og3W2kT5SZ5juiqnyGCPljgI41Ph0feezFH92od/51HeetZiTrt0CTSIvki5EB/Xdy+Q8Ah4BBwCDgEHAIOAYeAQ8Ah4BAIQiBfUKSLO/AQQFVC7P7771dBBCZIL6effrokS2uIKxpbEWjQoEGh+b/zzjvesd69e3vbe2ND1Dgo66mnnjJqLCiyBP0g54jh5iwVFzos9KOQI3buuefGuOeR+KAQUk21atXMod9++02FKWLhsi6MqPXXX395WV922WXetr0BeUKUtOz4oO0gd4Y2OeeCCy4IOk3Z5KfABElGcl0jR45UQYocuO/q27dvDDEljPhlF2vndd555wWSmlist0kQ9vmy3a9fP7MJ6QR3dKIU1q1bN+Un9KW7faQOYWG6rlHyRx0rzN544w3vUCIkF1vJDMJCmGIL8ZBo+KVCyPMql7lhKwxBaAxzcwWpw1YAQzUvnWYTN15//fXQrMOOpWtMFjeKVID24H7DbNIPZeHmEmPuoU2wU045JS0uPE1m2fyX6vXSzuPGjTOlQNIRN3v+YoPmVtKk2l7+crLbT3Sszi6fnB7v1auXd2q8+/+rr77y0kH+EnepENEgvmETJ040amBeQmsjTEEQYrIYae69917Z9UJc0B1//PHe/t7e6KkVBiCZYHwVzQJudjZbE1JQQRFrWjO6oAZRSgx3FFtD3L2x6IaLHzHUK7DG1aN58QV1mOIMi3XkL2aX28yqz61vjlfL122TZF74nT530B/RhUXvQDYbuMYQYzE6zNZrd2uj9fXxW5OgWzEWak7Qi79iuOdaH4c0RDrUPF78dracok7UhIbsLB0Y24u3QeQl6sDibRgxyVYu+tFaOLPrzsI37rX2pdXWimZislAs+xJCnkvEWCAMI4HN1iS/SfPXm2xY5EvFBR/YsniIsdA3RSsuBBn35oXPjTRqSCc//IdR/whKl0oc5MYB70/ysjimTWVlq7rZ2B3fLrjvcg8lav77hWuUhVaU3NrXj96/dp7D9aJpkKGkYzDUONpug0gL+QXSZL8eGewam5XpCq6JVqARYxxbvXGH7GYJUcTgGkU5L0sCHbFyfdYxjGuTugXdg6W0+h3u56Qv0H+zc88ZVHZ2cfFIv9mdG3acv43s5xv7OdZ/zpw5c8zzHHMsis/psjbaXVFn7aZS7L8/zJFNE6baxg01kVXsf4PnquEzouQ/iUdV8Pa3JshuwmFO+21QAf57KihNInFHWq7mIOPaxOIjEiDw2mVAYjrUIigOnhAlX9jp2IbQJ9alcbQ9JS6VsLJ2IdfaIk4/8dk0Q7KKlycE2ae+mO4lQTXTJod7BzI3vvwrfA78dkyElE5S1LnEcvM5RcrYW+G+nkO4znTPU4JdOp7FJK/cCHnO/s7qYxdp4h6k67Df1cc38Kph902JhBDfRaswYSidiUu7bs2iZGdJS4i6J0pv2Bs/zzUh/wWRk4mHNA/BkN/zX880pHniw8xWwmOeFMWzsPQu3iHgEHAIOAQcAg4Bh4BDwCHgEHAI+BFwxCY/IgfofqdOndSVV17pXR1ut/71r38pCEYfffSRuu666xSEity0c845x8uesm01EzmAes1zzz0nu+qMM87wtnN7A5dYolTEgmp2eJDGVtbJjsgSVP+1a9eql156yaiWiKoKi+b//ve/g5KHxtkkAhSJ1q+PXUyB5AFxSsrwZ2QvAge1CyokomzkP1f2cScnhoqR35o3b+5F4RrIb6NGjVK33HKLPzqlffo1xAv6f9Di+s6dWmJ7bvSFDQvr2Znt+o/r8L/MB+srrrgiFGvJH3dVsnB/1113KXETaBPcJG062kfySiRM1zVKWbjdE3UhiSPEhRnKN2Lt27eXzdAQRTFRaSJP2thv/+hF2QEDBqhjjjnG/CgnXUYdpXzaDDeElGcbJEdIonztjkHqSZebDimnQ4cOsmkU41599VVvXzZYkLrjjjtkN0uYjjGZ+17U6sBcjHvONnHPhkqaEIRssqudNre2U7le3GQKgZRxNIg4NHDgwJj+bF9HOtrLzi9oG/KWGHVMJ6FP8k00ZB4Se+utt1RQ/6R+9hwPUVQM95HSh7gWXHb6DRLdf/7zH3+02QcLe2x5/PHHDZHuv//9r/r666/N+ED+oh4WmEkuR7LQcI21GPHGz/PUQx9NUdt37gksGZLEFS+NMl9ckwClAXsRDZcyok6Ci5RHP55qXKrZmUEQuE0v1vKFNIbKUImiBc02CxOoRond8sYEtWlrVld/z341w3PPA2HBXlw8vUsN49qGPCjj4udHaqWImeq3ySsUiy33vjdJPThoihSRVGi7mgGrweOzLqhyfXe+O1Fd++pY85ukXUMlav261zaqTaRHzaL/y6PVigBiFschbN38+nhP0YYF0jDiBunF0oGx7QZkkFaegGBlG/u0UZi11qQBsUd0H0HBw29v/jLP+0Lff2xv7eOyTOyjYRElANknhLT2n29n2VGh27TngA8mG3cndqKNW3dq8sJEL6pDgyg50ItMYoNFf5sgd+sb4zVpMSvhg3sC0g/3CCSBMHdHSRTtJeWaPtHKCX2fGm4IkxzgPr32hIZeGjbsfjT776x9ANIPC5TxrESRyNhBGltJjn2UakTBCuJmEEHoK00cGBxCrjNus/4zSl2qf09+FiUjkLfYghVR1ZQWWi0OY4FUxjHwven1cd54J+cRokBxyQujzDjxsG+sLFhAM6cyjbrbyjNEs+hMvfid9cSfKsi15ppN271yIbDiek9s6dKlRmmTD0b4OzAZk78bOEdI4smcn0haPvoQw3V20Dw5f/58xXMNz9kQmVEHTaddZrmfo4/QH8VSbePmuq8wV4ndNHC8mXuZU36esFyTX2aoy18cJYeTCnPab6WQePeUpEk2xM2ikJGon7ih66pJDZDwkrVemiQp9tCHwXPIT5rwZCsj9WwRPUfOTTW86eRGXhZjZq9Vt745IZTAumnbLnWXfjb4fXKUFH3H6U3iupyFgP3LxOVeGbLxx9SV6l3tYlKsZUb0/UduP6dImbkZ7i9zCNeYjnkqCKt0PIsF5ZuuOMiW9nM67mHjGX2QeR4bNWtN4LOrjAF2Poc2DCccos6EST3Ytp8f2RdDQVXKZ86EaEg/CjLUzp78PDqnd29eMSZZKvNjTEZuxyHgEHAIOAQcAg4Bh4BDwCHgEDigEYj/V9IBfekH38Xh7oqvK0VRgsVGfrax0Fy0aFH1xRdf2NFp2e7Tp4967bXXPIIDyicQrCCeQDD58ccfla3ecNVVVymbDJOWSsTJhAV3sQsvvFAVKJD97QGxSRZPUXuyF2klL0I/+QJFo4ULF8a44CEdL6w/+eQTT7WCuETsscceU8OGDTPkGJRiUAeBWIFSF4vHn376aeCLacnbJnFBLCMPlCxwCzR27FiFIlXQQr6cT1i/fn1v96abblKQfiCh0KcgdUC+ov0xcAJjXoijbjRixAj17LPPeuena4M+JOpQl1xyicGiS5cuxrUC9wLu6IRkRT1td1VhdahRo4a5VkgtEDTov7z4b9GihZo6dapZgLddK4XlU6xYMXX22WerV155JaYfcE/4LR3t488z3n66rtEuA6Ul+qQo/OCyTMYi0kE4EMKQfZ5/G5cYjBOQEiAOgR9KW7Qfik/0U5TJ7DagH6TLcJH14osvKiHqQMakL+A6knsAYiD3m7jhotxHH300XcV7+dSrV8+QOoSwSgi5knuKsYsFL3tM8060NtI1JoOFTVxDickm2VCkrQAgVbD7tcTlZpjq9eJeT4g0uNeDhEh/hhSL2hx9IczS0V5heUs8fRMSpCxC0g4sUBLHuGK7d5NzciusU6eOgrD54IMPmiLon9y39BXGPuYr5jox3FBefPHFsmtCMOa5AGOsvPXWWxVxuLJF5S67OQNy1QMPPKDuvvtukwf3h5+ADJEY0m5u3KOm0Gz+a6dVllBSEbc4345eZr5Qh7QEsYPF8OmLN6gJ89dqlaXoAjhfONuLehSD6tAtpzVW12lSD/aTXqBduGqLOlx/pY3KDwSWXyet8Mg4pLlSu/yx7VLtjoqFPBYyUBnp+/Rw45INJZq/1201ZABRt+G8m09prArmj34jwYLzY+e31ISmvww5iAUO3DG9rxbaxahLetXVC4PzYxZMYhIE7PAF+QPnNld3vxshRt/3/mT1y6TlCgwraTd8XCsLqeJih6/ND8v8Qj0guyxRYHrXmc3UjQPHmWMoHp3yyFB1WucaqlXt0qp08UJq6eqtCoUfP9Gm/7H14y6Q2oWlinHdyiW87HApB7nizMNqqnK6fkt0m302YrFxNecl8m3gImS4JnXQP7ArNYGrW7OK+hrLqM3addewaStj+prv9L2228RS//rkz0WGINRDL4AV0YQZiCRvafKVveCWXcVwp9LvmREKhZIqZYvodtxk+rrdX67Q7ZiqXaEJGfQR7lf6fz99Dx2hF/XpQyzoQaix76EzutTMUZGQL2zboBcR/167NSZvjtOvHzu/lSpZLLLoKed00ApKosp1hyZ3QQbqpBc5UeuarFWSElFVM4oOmeuTz2mVM/ojKnIQLiFM0q8+ziSlXaRJjri9aqWJdau0othovfgqfVDqZIcnagU1UbGDjLFLq6101vVjoZvzvx8HQSNKbmQcELvuxIamj6AKAYHsfN3uKFNAaEFtCfdGMuZyDmoYqECJMZZCVhTVs1u0+tyxbaoYt1SMzaU0luD1daYrUcaMUztVVy0zypj+OXPpBvXf76Nqbr18boH4+0fUBnlOC3rul7r4w7p163pRPOvyMQXPfZDuGzaMJa95CZPcgASOUizPujxnQ16HoM8zG4pO/F0ortjJGqXfdLtbpp2Pa1dFMSdiz2mS3UuXt/faKdU2hlS8WM8ZjAsY5UhZJkL/BxGgcKF8MWQYORYWptJvyTO7eyqs3OziwRKVFhnvSH9c2yiRObvz7eNHtaxsxo4J8yLEYeYQSBDMIdynlIM7LLEzNInMJqhIfKohbuKuOaGBYuzBKPfYAb8p3HahHllC36ebNTl72mLcZC2OmS8u6FnbjFXZ1YHnjR814Y2+wBhBGTY56uKj6sTkk9vPKdnVN5njeWEOScc8FYZJqs9iYfmmI545T+woS3FN4vwhrnuP0/OrEO4G6+e7c7vVikmGEp7fbFKe/1jHBuW9/DjG2FTRcnltp6f8G05q5D2fM5by9wYEUly0ct5yrX44S/8d4n+2OLdbhp2VeT+Y0/kxJiO34xBwCDgEHAIOAYeAQ8Ah4BBwCBzQCGTP3DigL//gujgWu3Hzds8995iXlf6rZ/Hv+uuvV5deeqn/UFr2ISTguonFYQghvCxln5/fTjrpJG9B1H8st/Ztl1hhBCV/2ZCzICNxLZA0WOAOernLy+HsrEePHgq3UVWrJv+iEeIQihZC9oDcEbToCwkkqH0rV66s7rvvPvOjnixA2yQz4iBu4LoHd3dBBoFIygSPF154wfyoFy4F+aKXUBaWuVa/m6xHHnlE3X777UHZ5yiOhW3UOYTgwYt4+2W8ZAqBTuoucfFC3BSCB0ZfFgUaOQdlF5sEIfH+kMUD2kQMF4QlS0ZVCiQ+He0jeSUapusaheQCAZB2kLaw69G/f3/zIsuOi7fdoEED065CjIHEZBOZ7HO5LyFZpNO47+kv1157rck2qA9IefT3WrViXy7KsVRDyHoTJkzw+hCKc6I6J3nTp7hv/fczx9M1JkNauvPOO6VIj/TlRegNxjXuMyESQmSBOLk3LdXrveaaawy+kNZQEQoaT3D1yhwbZKm2V1Ce/jjqiGIcBuFOXLChupdu1TB/2f593LWClczx3Is2mVHSQwhkfChYMHbhHaU37uuffvrJJIXA67cbb7wxrsIhKoCQ7J588sksKnoQkyFeBdXJX05u7kOmgcTx1OcRogKEIv+Lf7t8FtzvPKOJKq9VGPyGW7gbTm7o5cWivriD8qd9+uLWqkqZojHR5UoUUv++qLUh90AaYRHUVl2wE192TF1DXLDj2C5XorB69pI2Rk1n2NRYFz980X1V7wYKcg3EpmQNNYQVenHk+a8jSj0sMNqLjJIfSjHP/auNYrElGYOQQd1xQSSkGUg1/IKMch49r6VqpIlfiVqqGENUoe2u/1+EgEX7+lWwUIhBpUMW7e26sTh7u+4/EME4l+tkEc1eSCP9HTrNwx9NtU/dq9sswl10ZB018Ke5plwId371jJM7VlO405O2CqvgnWc2USiLQFQZuDySn50WTJ+4oFVKbugkP1SbHu7bUl2m1dUoD3JTWB+CqJfTBf+wPin1IGxbr4y6u08z0xfseLY7NiqnXdOUV3KPQtIRoo6k7a+Jjy9+G66KdbxeSJWxijaA8MfvcY0lrqf6aMLdn9NWGZIkOLyjVU742cY48t/vY12NcRz1Obt8VHuC1J1ouwfObWFc4Ui+qEVRh8s06Y/xlF8QwZL0l2qSZc+WWZ9FqPtjn0wzWaKA90qmO7Tv7+tmSFvnH1FbEyY2GDIX42TQNXDykTrvUzpG1YGIs12GC9mf+ESM50/+xpCPTSBU82Mu5G+odBlzJmXwoRN/0/E3Mj+/HXfccWZ+9cenY//iI+t6ZCPIgL9PXaG6NY2oe6TaxswN95/TXOHmLuheYuw5RxMDkh0DU+m3YJbdPZVTXP0kX+6bjpZLuWTyzZeJ3c1akU7mEHFD5c8HVajLj63nj07bPvdpCa1mw/guxpg0SHYCwms1GQoycDxDARMiJM8/kLRsopacB8kRgpTfcvs5xV9eTveD+r0/r309h6RjnvJfk+yn+iwm+aQ7RI3S7m8QjBIx3FsLsemrUUuyEJsqlS5iH8ycJAAAQABJREFUyEnMZxj3ZiH9vBJmzWuVijnERxLxjH4P8RxlVp4H+L31y/zQUxgrn7iwlSEM24lSmR/tfNy2Q8Ah4BBwCDgEHAIOAYeAQ8AhcGAjEP7XzIF93Qft1UGaeOaZZ9SqVavM15gsuvPl5bp164yqAe52Nm3a5OGDOxixRBSMSMvXnGEG6QclERZ/UUrwG8oSuI3CRR6qDraxKJ2MhdXDXjwtVKiQyRL1Hllw54Wx7TYoXpksmKIkISakHfbtcuS4HaJOAzGDxVuIET/88EOOSE2SJ2QP8ghSRuHFM9dnX5dfUQWXVbhrs5WXJG/aC0Uq+keYNW3a1HyBbLt7stPSnrg9ZKHZ3/ZgzuI3xLqcWFjfoA/wRTMEqiD1L65V3KTZX0FnVwdIWnzN3Llz5yxJcafEYnwiZBaIaLZKke3+wZ9xKu0Thg9lyH2NUptt6bpG2h3FL8Yd24UGZbGP+7IgspldZ39f5Vyww9UaX6oHGe4uZ8yYoVCKyg2DPALJTwhu/jL4Ih8FL9tNpKRJp3IOBDTIK0HYor6GCzAbP2lvqUsqY7LkgVqZXX7QGERaCKtiKMIFmd3uQcclTsZu2bdDuUZ/nyZNKtfLvcq9jXKBfb3ky1jAsbBrJw2WantFcgn/n35HuzOmBpnd98LmSM6z+0xQPonE0Ua452MxFCKb38AQQjXqTfY4KOmoA88CjKlBcwaLuWHzjeTBMwyKibgcnThxokIpjvIgeqFYWbNmzdBnnr2FFY9Zp3WqoV6/9lBDRJC6+0MWIlnof/PajqpJjdgFBzsteb3cv51xVWfHyzZKIx/c3Fl1CFnUbKFdWrx9fSejQCLn2CHKBZB/zuuRdUFP0vGF9uNaJearu7uqV65sr57R6Qfd0ll9cWdXrVBVxajChJFRbDKSrQYleZ91eC11V5+mRlFF4iQEI4gS79zQSVXUizg5MZRf3ryuY9yFTwhaRpnj+o6BpCYUX8QKBywcpYoxbffweS1U84ys/YB6PaNJXUU1FmGGshZEHnHZZafjq3yIU6jrgCeWrKu0ApaKl513stuQC1D3gsznt/7H1VPX+dyr+dPIfrOapU2fsF03yjH68/OXtjWqZhInYVhftOMlrR3iNuZZ3Qa2uys5DqadG5XXfexQreSUlVAj6YLC7HBloRDXkH2719L3cEf13CVtA0lN5E0feKRfS9W3R4bnQkbKhLAH6ePsrvEX/+tULq5euqKdsl1TSR6E1Oe1qzsYl5fSl+Q4fZdj8Vw4ojjx6lXtVcvaUVdPcj73IKSh927qHOOSU46XLV5IPXdpG3XSocFzYfv6ZU3dISgFGffGjdrVlbjT86cx13ZVB9WvR4bnAtROAzHittMbqwEaR/vacT0HMRrjuSFZwjHP1ChEoozrfw6R8uUZiP14z0pBz0h2HvxNCFHbP/+Shr+f+LuQjxWSeV7I7t6R8gkrlyli+rLECblM9lNtYxQRbzipofpxQHcz/zLuvaXvm58f7KFQ4oE8tUWr2InZ70TyW2O8HJcwlX6b3T0lZSQbcr+j2iSGugskzJwaxOoXL29n5ltxQWXnxZh922mN1UN9W5ixxj7GdjL9wH+ufx/lKdqNuS+eoY458JoOced2+/yre9c3zxpB18cYe48mjdpzvX1uTp9T8uePPjvY+fm3CxUIn9/9ae39vDaHpGOesq/fv53Ks1hutdUI7YZOjHkIt3mJWIOqse6o52litd+66GcPsS6N4hOVGB9wVy3GhxPZGc82/P0Aadqe9+zzuJ8Yi16/5tAspKZU50e7HLftEHAIOAQcAg4Bh4BDwCHgEHAIHNgI/N+OHTv+ObAv0V0dCGzZssWQmdjmRWjYi9Tdu3ebF5h8nYnh8sV+kWci0/QfZbG4KC94UfSoUKFCrpWXpmrniWxwdbd48WLjeigjIyMuISnogtavX2+UNugrEHTsl+RB6f1x9LetW7caN3O4dwvqQ6hb/f333wo1In5Bafz5prqvxzvjjpG+x0L6IYdkXSxLtgzuEYhxuNRDGchPyEs2v0TSp9o+iZRhp0nXNYIR/RJiJWNQ9erVsyUA2vUI20aRiC/L6XMswEBeSZQgE5ZnMvGMl5S/efNmVbp0aUNQjLdglEzeiabFnSfY8lKQcRRii03MSCSfg21MTuV66cuzZ882cyT9OGxODcM9He0VlrfEb9u2zfRJ7gX65b427vulS5d68wLjfjJzy6JFi9Tq1auN0ld2cwZtK4oWkIwZE8IMQqm4ERw5cmQgCSvs3NyIxxXUkkyXZ3y5XVeTB2pqohCLuMka5CEUjrZp90uQLSqULJLwIgll7dy1R63Ubp82ajdXfNldQbuTKK4Xg8Nsw5adnnpOab14waJUkLHg0vep4eYQqgeoHuXE1m3eoa9vu1lcLF+ykCp9SPIYxSt387ZdasHKzWr5um1GvYpFZxR20llOshj767tDt9FC/QU+C8WQLRJdBJN8tu3crZat2aZ27t6j3YUUTuu1SRnpCOmDS3U9UedAeSCnC+O4IkPB5x99n5EPLtNy08AVRR/qX0b3z5wS7nKzjuSNe7fVG3doxbVCRnUtDm8jsCr0o+079xhcSxUrpJ/pY5Mxri1etVXRXyuVLpw07pzPfbhhyy5zfjL3IGUyDnI/FytcwBBmgkiTsTWO7nE+/QYyC+NokEm/guiA688wMuDo0aO9jyL4aARlw5wazxH8PcDzSNmyZZOaT5MpE3d3/L2+cuVK82ydof+uDCNVJZNvOtMm08b01XVaQQw7pEj+0L64R7tV63Xfr96cNvTRI7P06+yuIZV+m909lV3Z/uM3vz7euMIk/hVNGGwahyDtPzfePjit1s8qa/UPQy2Q+9M/BsTLI13HNmnXcwtXbVYr1m1Xa/XzAW4jjVKNvif97jiDyuxya0QhFGLia5q4KMb4uEy7+uS6Kut5IxlSWG4/p0gd93WY23MI15dqGfEwSvVZLF7eB+MxPWWbOXvu8k3mmau2JjvWqVRcE6nDn9PTOT8ejJjn1WvmQ8R0udLNqxi4eucuAkO1m/WN+vkAPvdRrcLfCeVuLXKeO+9Npi/ZYDJoW6es/lsyq2p3znN3ZzoEHAIOAYeAQyDvIuCITXm37ZKq+fjx4z21Hl5GjhkzRvFi0m+4ZeFFK4aa0ODBg/1J3L5DwCHgEHAIOAQcAg6B/RYBSF2Q+4Sk/fnnnyuUC/02ZMgQ4yZV4iFO7W8LtlK3vBB+rF22Pf3FDFNVVFZQDvK7utitF0FvHDhOjZq1xqRDkeeCENWUvHDNro4OAYeAQyBRBN5//311/vnnm+SoB7Zv3z7RU126NCEwc+lGdeGzI01uqIqg0Acp1G+4wfzf4IjrSpTQXtDKbnnVxs5Zq65+ZYypPmppL1/h+l1QW4YRm4LSujiHgEMgvQi4+TG9eOaV3A4WYtPoOWvU5AXr1dRF69WUhRtUCU2sbqZdnjasVlKhHltTK+Ymaxs1Yf+V72cbJeSgc4sWKqBd1xcyBN/mtcqY7aB0B3rcec+MMK6ji2klzsEP9Mhzl4ub72e+jLxfefKiVqpTw6j6Xp67GFdhh4BDwCHgEHAIpBGB4M8O01iAy2r/QKBVq1bGRc5PP/1kFvp69OihUClo166dUctZuHChcdfFcTFk7p05BBwCDgGHgEPAIeAQyEsI4Gbv1ltvVXfddZep9sknn6z69+9vnnlwoYN6FG7pXnnlFe+yUM5wpCYPjhxt4BLmv/oFK0pRE+atU9e8OkZ1aVxBNaxaQisJ5VfzV2xW7/+xQC3SCkMYi8onaFcbzhwCDgGHwMGAwKxZs8xlMtcEuWg9GDDY19fYQM9HuCKEXMtc1f/l0cZFKio95UsUVn+v3aa+GrXEI99S377dMvZ1tZMuHwXFTXrRc8L8dWpgJkGLTC7qWSfpvNwJDgGHgEMgtxFw82NuI+zy3xcIoNz67Fcz1WfDF8cUv26TUou0kul3Y5aZ+If6NlfdmyfnonrD5p3qU1++MYX4dg5rWl6d1722alozqytzX1K36xBwCDgEHAIOAYeAQ2C/R8ARm/b7JkpfBR977DF1+umnGxdjuGhhP8w+++yzGBWDsHQu3iHgEHAIOAQcAg4Bh8D+hsBll12mfv31VyWE7RdffDG0ivfcc4+64447Qo+7A4khAFHp9tObqLvfnWROmDR/veIXZChk8NVhOb2Q7Mwh4BBwCBwMCEybNs1cZu/evXPNddzBgGOq13hV7wbq9rcmGBdJuIp8e8j80Cwfv6CV6tiwXOjx/fXAJ8MXqdd+jChOSR07NyqvOmhlCGcOAYeAQ2B/Q8DNj/tbi7j6pIrAdu3K+IaBY9X4Oeu8rDK0W8aG1UoY4jHKTesy3bje+c4kddMpO9UpHat7adO9MXTKKsXvmhMaqDO71NwnLmPTfU0uP4eAQ8Ah4BBwCDgEDl4EHLHpIGr75s2bq7Fjx6oBAwao9957T61YsSLm6itWrKgOPfRQc7xZs2Yxx9yOQ8Ah4BBwCDgEHAIOgbyCQKlSpdQ333xj1Cghcs+bNy9L1XG5i5LTKaeckuWYi8gZAke0qKSa1CilnvlqhvpjysosmdTQUvuta5dR/Y+rp0oULZjluItwCDgEHAIHKgJTp041l9arV68D9RLzxHXVq1JcvXV9R038maN+GLdMrd20M6beZYoXNC5iLjm6rqpbuXjMsby6c0aXGurq4xvk1eq7ejsEHAIHOAJufjzAG/ggvLwR01Z6pKbSxQupx89vGaOWhHt21Jw+0a7csfd/W5BjYlPXZhXUI/1axqC8YesutWLdNvXH1JUKd/FConpOl6mLVmcfXjMmvdtxCDgEHAIOAYeAQ8AhkJcQ+L8dO3boRxpnByMCa9asUUj+7t69W9WpU8e4pDsYcXDX7BBwCDgEHAIOAYfAgY3Ali1b1Jw5cxTPPjVq1FAZGRkqX758B/ZF7+Or+0f/hbFq43bt2meryvd//6dqVypu3M/t42q54h0CDgGHwD5BYNeuXabc/Pnz6y/l/2+f1MEVmhUB3LYtWrVFschYrVwxrSRYKGuiPBazWs+9K7Qa1SGFC+hrKqry53P9Lbsm3LZzt0nC80qhAu75MDu83HGHQDoRcPNjOtHMO3nNmDFDNWzYMO9UOIma3vrWeKOQxClvXtdRQaoOsnOfGq7mL99sDg26uYuqXr5oULIscUtWb1VnPj7MxAcRm+wTNmrXtA8MmqyGTV3lRcerk5foANg475kRas6yTapYofxq8AM98twVfTRskXrmyxmm3qhdd2pYPs9dg6uwQ8Ah4BBwCDgEcgMBp9iUG6jmkTzLli1rFJrySHVdNR0CDgGHgEPAIeAQcAjkCIFixYoplCud7T0EWLevULKw+e29Ul1JDgGHgENg/0SgQAH36mV/bJmSxQrGqCjsj3VMtk64eXWuXpNDrUjB/Mmd4FI7BBwCaUPAzY9pg9JllAYEcFM7YkaEBFSxTBF1aP1wN64r1m1XI2dG0tbRKo9Na5ZSW3fs9khNDbTruTBSE1VtU6eMR2yatXRDwsSmZC6zRJECRtHpyv+O0W7iI67xXh08Wz12XqvQbCbqdOPmrjVue3fu3qMqlS6ir6OEOqxJBVXYR/4dptWp1mzcYfI6tm1VVSB/VjL1r5OWq41aRaqAPvfYNlUCy/1u7DK1S7vwK1+qsEfg+Wb0UrVHE8+raJJ2u7plFSStKQvXGXf3y/THUzUrHKLVNQ9RXRpV0B+tZS03sCBfJNf3p1a2mqkJUORZMH8+VblMUdUio5Run7LZuu1brvvAtEXr1LwVW9TCFZtU5bLFVIOqxXW9Suj6FfOVFrvLh2B/zV5trmfp6i2KZ1I+BuuhVbBLFk3s74YFKzerGYs3qBlLN2oV0h2m3Doak+YZZVTxwu7ZJhZxt+cQcAg4BBwCBwoCic2SB8rVuutwCDgEHAIOAYeAQ8Ah4BBwCDgEHAIOAYeAQ8Ah4BBwCDgEHAIOAYeAQ8Ah4BBwCGQiUFir+zz6yTSzh9LP9wO6hyoffj16ifrf4Lkm7bUnNDDEpqL6nN8f6WnisqPaLFmzJbNUpepq4lBuGcqNd5zeRJ395J+miKFTVhmSEKQn2xav3KLufn+Smrlkox3tbYPHHWc2UT2aV/LiRs5c47nUq1+1hGpUvaR3jI2tO/aoO9+Z5MW1zCitqpaNVaZauWGHenDQFJMGBSpRJnr4o4gb58Y1Sqq7zmyqLnn+L7VFE8f81lzneW+fZqpK2SL+Q3H3h01fqR7+aJrnqs+fuIZW0HpIu/kLck28R7OSPvlzsaeo5D+X/X49MtSlveoa9Wr/8S3bd6trXh2jSVEb/IfUC1/PVDedGl/NbNfuf9RL389SH/y+0Hf+32YfF4iP9GuhCVqlfcfdrkPAIeAQcAg4BPI+Ak5jOe+3obsCh4BDwCHgEHAIOAQcAg4Bh4BDwCHgEHAIOAQcAg4Bh4BDwCHgEHAIOAQcAg6BHCCAUk6PFhXNmZBoJi6IqBwFZfXjuGVe9BEtKnvbEIn4xVMRmr1soxo5Y405BxJKjfLx1X28zHO4gXpQy9qlvLNHTo+6piNynnaJd+FzI7OQmiAziYHHXZqk9NmIxRKlDm1Y1tuekKkI5UXojfHzItcocWPmxO4TP3nBWjmsOge4W1ug64bilJCaKpaKJTChRPXgx5MVCkiJGm13y+sTYkhN9rWSz6JVW9V5T49Q07Qikt+e+2pmFlJTNU3YsvN4e8h89VgmSc4+HxWqAYMmZSE1yblc5/0fTFXDpq+wT4vZvk27O7RJTXW1u0MIYGLrtHrTFS+NVhPmRbGVYy50CDgEHAIOAYdAXkcglpqd16/G1d8h4BBwCDgEHAIOAYeAQ8Ah4BBwCDgEHAIOAYeAQ8Ah4BBwCDgEHAIOAYeAQ8AhkAQCx7atooZMjJBKfp20QrWuXSbL2bO16zKIL1jnxuVU+ZKFsqQJikCdaOycVYa4IsdR1sGNe25bt2aVNNFlvSlm2bptXnG7NdHmoY+meMQhSDJX9q6vWml3ZgW1a7nZf29SHw1bqL4dHSFyPfnZdNVWu4aDLNW6dpTYNHbuGtXnsJpevmyMmhVLZBqu3fyd0L5aTJpxc6Pksbb1ovlJIog+/C46qo46qUN1gzWKST+M+9tTeho/Z50aOWuV6tigvJwWGuI+bsAHEYUoEh2hiWxnd62lGlYrqXZpLCZrMttL3832iEcDtIrVW9d3UoUy3fCt0m340bBFXv73nNVE94GKCgUsyFVDp61Qt7050Rz/etRSddXxDcwxOeH1n+d57gqJu/espqp9/fKqTPGChmD21aglatAfC9WomcGkpMW63w2fvtpkB5nq0QtaqjrahR2GK8SBP81V7/22wOwP0u3WMqD/moPuP4eAQ8Ah4BBwCORRBByxKY82nKu2Q8Ah4BBwCDgEHAIOAYeAQ8Ah4BBwCDgEHAIOAYeAQ8Ah4BBwCDgEHAIOAYdA6gh0qF/OKO9ApvlWE1Ou0cQUFJhs+2PqSm/3uDZVvW3/xs7de9S5Tw430Zt1fijpiEEguvbEBnvNXZjtqm31hu1SDfXXrNUeiQfVoEe0+7Vq5aLu4hpoF3O3ndZE/a3JUGNnR8g2H2rCzE0nN1LFCudXreqWVhCLxs5aqyBJ2VgNnRLFiQJ/m7RS4UatgCZMif01M6Iehes3v5s6SXNOt1rq4iPryK5x73Zsmypq4crN6q1f5pv4mUs2JURs+mxElJSEytHd2o2dkJaoO6StR85rpS54doRpLwhstHfPFhEXfNOXrPeUqnposliv1tH2h6B2eJOK6rJj6qn/fj/b1AuilLjX275zjyEeyYU83Le56ma59qtd6RB1de8Gau3G7erH8cslWUz4p3ahJ9ana02P1EQcrhAv61VPrdX9bM2m7YZohUJUPPUwycuFDgGHgEPAIeAQyCsIOFd0eaWlXD0dAg4Bh4BDwCHgEHAIOAQcAg4Bh4BDwCHgEHAIOAQcAg4Bh4BDwCHgEHAIOATSjkDB/PnUiR0jqkKQmyYtjCoKSWE/jF1qNiECdW5SQaIDwyVrtip+NqmJhJBdyhUvHHhObkSWKhZVlVqtiTNiqFKJXXdSwxhSk8RD+Lm3T3PZVT+MWWZITER00WpFGFjN0epOYktWR66b/ZtOaSTRasqiiGoUEWs27vCUr7rEwfHUjjW88+2Nbk0jZRO3aNVm+1Do9g9j//aO3WeRmrxIvVFBK3DdfHJDL2rIpCjJ6LDGFdRTF7UxvxM6xKpPyQmNa5SQTYW6l9i85dHtXq0rx5CaJA3kqFtOaxrj1k6OERbMVI5ie+aSjVlc8EEau+vMpqZ+kNQcqQmknDkEHAIOAYfAgYSAIzYdSK3prsUh4BBwCDgEHAIOAYeAQ8Ah4BBwCDgEHAIOAYeAQ8Ah4BBwCDgEHAIOAYeAQyBpBHq1ruKd82umWzqJgLwjbuh6abd1hS2iiaSREELQRVppqM/hNdXpXWqow5qWVxVLFTGH3/l1vjr338PVh0MXSvJcDbft3O3lX7xIQW975tKN3naj6iW9bf8G7vak7pCYVq6PkKPa1Y266puk1YnExsyJuKGD/IX7OTl39OyoezrUjMQ6NCgnmzEh59tqU/bBCplYErdp2y77UOD2Rp1mxfqIGz7yra7d6YVZw+qlvENTFmzwtoM2duzao9Zt2akgc4HnZCs9ikliuPUTa55RWjazhEUL5VONaga3RfNa0XoZV3evjlY/jlumVmuSmDOHgEPAIeAQcAgcDAg4V3QHQyu7a3QIOAQcAg4Bh4BDwCHgEHAIOAQcAg4Bh4BDwCHgEHAIOAQcAg4Bh4BDwCHgEAhFAPdrGdot2Pzlm9XgCcvV1ZY7ut8t92qo7sSzfFp+5+Kjoi7USIu7tp8mLFP3fzDVnPrsVzNV3arFVds6ZeNllfIx1JHEypeMKkWtyCQocaxG+XCiD8cbVC/uEYPWbd6hKpcpouppl3qQhCA7QWY6rVNEXWn4jIiLuc6NyxvXc12bVVAfD1ukhmq3buJWbvz8KLGpVUaUIEVZYrV0O4RZYV1uMrbWwqCBpaoUlEel0jZGETKUne73ySvUH9NWqj+nr86ixmWns7dRWBKjf8WzhlVLeq7/7HT1qpRQ/zq6rnrtxzkmGjeA/DDc+XXV7vGOblXZtIuJdP85BBwCDgGHgEPgAEPAKTYdYA3qLsch4BBwCDgEHAIOAYeAQ8Ah4BBwCDgEHAIOAYeAQ8Ah4BBwCDgEHAIOAYeAQyB5BE5oX9WchAs52x2duKGrVraoalYzXHUnrERUnHq1rqpuO72xl+SNn+d527m1MX7uWi/rsiWibunERR7kpEJx1Kc42Xadt21XRAEK8laPlpVM3qNmrFF7/vlH7dy9R/0+eaWJ69w4osTUsWEkhNwjJCtRbzq0YVlVuGDuL1PaqlVlD4liYCrq+4/rEpUpDkFIw7bv3KMe/HCKuv3tierb0csSJjVx7ppNUReApYpFVbM45rcyxcPrd2HP2urR81sowVbORUnsXa0Edv4zI9R1/xujtmyPqnRJGhc6BBwCDgGHgEMgryOQ+08MeR0hV3+HgEPAIeAQcAg4BBwCDgGHgEPAIeAQcAg4BBwCDgGHgEPAIeAQcAg4BBwCDoEDHoGeLbO6o7Pd0B3foZrS3Jcc29GtovlPXxjf1VmOC8k8EVdpv2jlKbHWdaLqSBC0MBSX1m7aKUkCw7lawUqsdLEo8aZTJmmJPObpNFMWrZdkqm3d8ma7taVINVYrO63fskvNWRZxzdaxQSSNd1Iubdh1tq8lqDgITLbbOghpGC4EvxuzzGxDBsPV4GMXtFQDr+mgBt3cRX19dzf1zCWtzXH/f3Url/CiFq/c4m0HbcxbHnVbF3T88CYV1RMXtFZf3tVVPXhuc3WGdnVIfcRGzVyrbhg4TnZd6BBwCDgEHAIOgQMGAeeK7oBpSnchDgGHgEPAIeAQcAg4BBwCDgGHgEPAIeAQcAg4BBwCDgGHgEPAIeAQcAg4BBwCOUWgQslCRhHnz2mrjTu6a7Q7OtsN3ZGZKkV2/qNmr1afjVhsos4+vJZqXitc0alA/igrCkIQKkcF8+eOBsHbQ+Yb4hIVwwVaRsWoG7QKZQqrJWu2mjovWLVJlSkeJT2ZyMz/UGKaZLmOK1si6qqtVe2oG72JOs3qTJdvDaqVUOU1jlgRrcjUqVE5NVy7bhs5a7UqWiRKwmlfP6LmlFlUrgWli0dVknAzCOErTKVqwcooiatKuQj5i4oN1e7nxB48r4U6NKDuazZGlZkkLWF97XJQbO6Kzaqr7ASEM5dG3dYFHPaiymn1rR4tKplf/+Pqq58nLlcPDppijtNey9dtV7ZbPe9Et+EQcAg4BBwCDoE8ikDuPC3lUTBctR0CDgGHgEPAIeAQcAg4BBwCDgGHgEPAIeAQcAg4BBwCDgGHgEPAIeAQcAg4BA5eBI5ra7mjW7BOiRu6VnVLq6qZSkc2OsUKFVC/TVppfoOGLrQPZdmeaqka4fIst0hNv01argb+NNcr/+yutbxtNjo3rODtfzNqqbft3xg6JUroaVyjpCpZNKqXUEYThojDUGP6fcoKs921aUUTyn+dG0WUmX6duEKni7jGK61drtlEK0mbGyEkJtzeif004W/ZzBJ+NzaiysSBLo0jGG3dsUfhSg+j3h3qBROyRmjyVpDVqRQlNn0/ZqkivyCbpPuaqFn5j09ZuF7xm744q8oX13dsmyqqa7Nom85dnhhByl+O23cIOAQcAg4Bh8D+ioAjNu2vLePq5RBwCDgEHAIOAYeAQ8Ah4BBwCDgEHAIOAYeAQ8Ah4BBwCDgEHAIOAYeAQ8AhsFcR6Nyogufe66Xv56hFqyLKRse3qxZYjyY1Silx7TZEk3e++mtJYLq/125TT3w23TvWvUUsAcg7kMLGktVb1XNfz1R3vDPJywXFpN6ZZC2J7N4sWva3o5epz0dGFKfkOOFC7Tbt9rcnelHHtY260ZNIIf/8oq9bSDkd6kdJRKTrUD9CbEKh6oPfI8Sv7pqEk4pLPyk/0bBX68pe0oc+nKqClJF+Gv+3+vCPKDGtp1ZEwooWyqcgoWHrNu3QruqyKjPR5j+Oj7r9M4kz/6tSpqh3Pn3p0Y8jykp2mlUbdqjb3opibR9j++kvZ6hL/zNKXfz8X+qb0VmJaLt2/6Noe7HGuk86cwg4BBwCDgGHwIGEQJRafSBdlbuWPIvA1KlT1dixY039e/TooapVC/5DIc9eYB6vOP6l/9H/ihSMysXm8Uty1XcIOAQcAg6BNCKQ1+bxtWvXqoEDBxoELrzwQlW2bOyLtzRCc0BntXvPP4qvHef+vUn11i95a1Yo5l0vX6Iu0C9CscMal1clikbl371EeXRj9erV6rvvvjO1b9y4sWrbtm0evZIDo9pj565VQ6eu1P2sgmpTN+pCYX/vg8nWO979lmhLhpWZ6Pn7Kt1O7S5i5rKNapZ2zbB83TZVvEgBdeZhNXPtC/d9dZ2uXIfAgYjA6NGj1fTp01W+fPnUqaeeqooUiSwM7o/XumvXLvXhhx+qKVOmqPPPP181aNAg6Wp+/fXXat26dapgwYKqT58+SZ+fjhNGjRqlZsyYYbLq3bu3KlMmOjcmkv/MmTPVm2++qZo0aWKuoUCB/eMVsnv+SqT1XBqHgEMgHQgU1u7Tjm5TWX0+YkmMG7ZuPiUiKQuCTp+uNdVTn0fG3kc/maZ+0+pFHRuWNy7gNm3ZqWYt22RIM5B7MIgy52i3dTmxifPXq6e+iJTF+f9od3GrtBs0iC1CLpJ8UVS6/fSmWUhE1bSbtYuOrOOpOj3x6XTzN1Unra7E+/8J2p3ZkAlRog7u5U7sUF2y9cJ29cqo1370dg0hrFH1iIqTxFYvX9QQv8T1HfFBrtwkfW6ER7Wsor4YuURNmLfeZH/lS6PV4Zpc1bp2GbVLv9cYMXOVGjpllVf0GV1qqHpVokpLqCF9PGyROX7R8yPV8e2qqlZ1SqtVG7ar0bPW6PciUay8TDI36B+Pnt9SXfTcSBNDWrA4XPenyqULqckLNqhfJq0wpCn/ubJ/Rpfq6v4Ppprdhz+aakhnLWqX0ucXVUtWbVGv/zLPa3vUqUoXO3DevwgGLnQIOAQcAg6BgxuB/eOv0oO7DdzVWwgMGTJEXX/99Sbmyy+/TJnY9K2W9cR38y/av/BLV7RTLTLCfVtb1XCbmQhs3LpT/TDub7NYuVg/HK/dtNMcKVY4v6ql/XF301919NYP8GW1/OrBajOWbFBfhnyBAyYs4PJHaqXSRcwiW9FCjhR2IPWV+++/X61YEZFYfvzxx1WxYtHFfP91vv7662rMmDEmul+/furQQw/1J/H2IXgK2YKFcggXzhwCeQGBdM/juX3N9957r3r55ZdNMYsWLVLPPPP/7J0FuBXV+saXdHeKdHcIiqIixkW4dnd3d+e149p6Fa/xN67dhXG92CAKUgLSDdJdgv/1W5tv9tpzZufZBw7wfc9zzsysWTXvzJ5Z8a73e7ioi8xb/hCJhlsiB3Zyn6buO5NJ5gx8bti40VSrWMac9bfmmSRJG+fr0X/YwbXYasOvrUT9q1fsHgyY0gZ7ddNqzBcv67lNEZt4Zk4//XSHz9VXX73dEZv8NlCfjnVN9xaZEQPf/nGGI8EB3LkHtMjLM/GHJblc9HTsG/u6XV377vV7BKthi/MzmEu9U/3e0v5YbYRUZWaSfkvFWbnmT3PF88PtpFJsEkLqcciuOymxScDYire43BhoXX4wcXjdke3MgT1irl9SXZL/DoqKp/2wKFS2XNg777xjHnjgAVeBjh07Gv6Kq73//vvm1FNPddV77733zOjRo227xs5GZmG0MUeNGmUqV668xYhNb731lnnooYdcrelfZkNs2mjbiocddpiZMGGCSw8R7YgjjsgCgaKLur23v4oOWc1ZEVAEohDo27W+a5/Iub6W6MS4eDI7YreGVtmnpEENCGNegr8oa9+oqrn75M6mZuXcxtVRDXr7hxlRWSeEHbF7Q3Ph31saXJVF2cn7NLEEm1XW1V7MNVuyOje0xKQ7TuhkSpUs+E1EraqCvW4hbEEWKlmiYLy97FzCq99MC6rRNcM+ZJCgkDslbJ1uO76zufqF4c6tHPXluuXa/ewhMZ3Xr6UfZI7u1cj8OHaBIySB/8uDptq/hCjmHNvHfXrgxMTATUetLTHstuM6mFteHe1Cxs5YZvjzDZz7dtvREsUm+cFuv0/HepZ4tsDOdcXGoinfDCoQzTS3ZKzLD25b8ISGKAKKgCKgCCgCWzkCSmzaym+gVj85AkhvPmQn71atja2A+I9tNCuxKTle4TPvDp5pHvBkcf3zYCoN76c+nWjO7tvcTapmOdbnZ7nV7k+etzKhg5vuQg7t2cCcsk/TYLItXfxsz69Zv8EMGb/QrtIxZqdaFRJWlWSbV3GLj1Sz+BDv0LiqqVWl7Bav4uDBg82XX37p6nHUUUeZ3r17J60TJKhZs2Iy1KxUTkVsYgB9wIABLq/7778/aZ56QhFQBAqHwOTJk4MMJk6MHngKIhSznSG/LzRIxWNM7EOgzcRk4HPHGuXzRmyabVcZis2w6kzrrKoKq1vVtm0E/DZQ07qVMiY2DbYD+z+Mi62CPcWS8vKh4jVv6ZoEsFHzETcBCSc28wHEizmLYnXbo13tApMAudQ73e+tKMrczLBFFnfHm2MSSE1MKNW377GoCZPIDDSwWCPw+nfTDS5bsEc+HG9wE1I6yeSbXIj/DpKwVNvC9sNWrVplPv/8c6eG0KJFi2JNzEmFg55Lj4DfPoTYs2bNGlO+fPkgISShadNik7IHHnigU2UKTm6mnenTpweLZnr27Gnq16+f15LXrl0bkJrI2MckrwUVs8yKGtdidrlaHUVAEcgAgY6NqyWoDPWLcMMWzqa/dfdG/+iFryY7FR4IML6hntSjZU1z6r5NTdk07R0/HfsQc9IZxBjGhFl4sp9VKKpVJTVxqnTJEuamozuYXVvVMK99O8MRfvwyICwd27uxU0qtbBVTo4w2eU/r6k4IN7tblaooQ0VIiE0d7QL0ZPlFpQ2HlU6BhfQRyti6h622xeNf5/Uwb9j2J23Q8P1pUreiOdaqwv7dEu1LhCY7ULh65qJdrSvB38wQ268VIhdlcD2XHNTKFff0wHCp8eP9utRzB//+Iu7eUM4es2cj+1w0szjGSGaE+4Q09m+35LJebecY5rrCylzc+94d6prT92+W9bMlddCtIqAIKAKKgCJQnBGIbokU5xpr3RSBDBEYOtE2LjeRmkjyrVUQWGQ7EtuzulAm0EGIwQc3jXvfkJptahv2dJ/wAz1meny19IDPJlk3MyvN9VbSNmrVhp/P9r7PKuTPrQoWK3IyVTbIBrPR05aa6zf5PT9h78aW2JS4siSbvIpbXHyHP/dljIRw/2ldigWxab/99guITd9//31SYhMy/kJqAtcPP/zQPProo0khRvVGDLecaoqAIlA0CFxzzTXBpA2KO2q5IXBAt/rmu7Hz3aDauf1aKKkpNxg1VSEQ6NCommGS4dNf5rgtx8XBHvpgfEDGGXhr7wIkrlzqne73VhRlbmksN9oOyjej5wfVePisbqZbs+pKagoQ2bp3llq3LEJq4kroww+25N09LRkwn1bYfhgLGo4++mhXpSuvvFKJTfm8OcUsrxNPPNF8/PHHTnHpjjvuSCA1UdXLL7/c/PDDD67W8+bNy0oJKV+Xiou422+/3WXHoph8E5sgcj3yyCPmxhtvdM86mGwPVtS4bg8Y6jUqAtsaAvBa3rimV9aX1da6Ybv35C4u3cLl68zMBStNGevarXm9SglElWwzrl+9nPn+3v2yTZY2PtfZt+uO7m+JbZstsAtHrGc2U7VCGUeMEqJQqowg3Nx+QqoYxvRoUTOj+mdyjSymShbv+YuTq+RTw3I27cl9mpgTLWGL+7N4ZYx8VrtKOatuXTpQoI66mqoVSjnlKvooM+0cCQu76tr74pO0ktVL8oPctE/nurbs9dZDxlo3htKgRoVgXuVQu3iNv2RGn5C/9Rs2OteDuCtvULOCu65kaTRcEVAEFAFFQBHYFhBQYtO2cBf1GiIRGGgnNsL2v1HzDJKwaskRwH2fT2rq1a6WObdvC9PMdrx8m7nQ+m22JJOBm2RqkWxtZlejnLh3Ez/adrV/2SGtzZFW3ldso+1U0DHCt/lnw2OuFTjHYP0lzwwzAy7oYZAdVtt6Edhnn32Cyn/99dfm+uuvD479HZ+oRDgkJ8hOrVrFVvL4cZcvX26GDIn5W8d1QYcOHfzTuq8IKAJ5RGDPPfc048ePz2OO22dWKOg9ZVc8Qo4OLWjcPgHRq97sCPDc3Xh0e3PDUe23qmcwl3oX9veWS5mb/YaGCvRVqro2r24nRDJzexjKRg+LKQKDRsWUmvzq0SfNhtik/TAfPd0vLAKQhAYNGuTUubJ1QVfYsotT+vPOO8+ce+65WbvhK07XoHVRBBQBRaA4IICruVzdzW2J+lerUNrwtz0YCli1q5Z1f9leL2pOjWpXyDZZEJ/0qEfxl6uhttWkTsVck2s6RUARUAQUAUVgq0NAfURsdbdMK5wJAstXrzdfjpjnokIcEd/XHw2dnUny7TbOgmVrzcN2ZbkYcv13n9S5AKmJ8zvZVQA3WplaZHPF/mXd0k23LmjUYgjQOapZuaxzgXjVYW3NK1fsZnD9I3ar9ae92vryVtt6EejYsaOBfIRBXsJNQZQNHFhQg5jB8igbOnRoEHzooYdamWn9VAeA6I4ioAgUawQgTKgpAlsSga31Gcyl3rmk8e9NYdP7eRX1/jK7alyss3XxoLZtIfDh0JirZq6qc9PY/UWha8mmlfO5XK32w3JBTdOEEdieSU2ChWIgSOhWEVAEFAFFQBFQBBQBRUARUAQUAUVgSyOgik1b+g5sgfJnzpxpmDgfM2aMUwxp0qSJ6dy5s5OXjlIPoYrIMW/YsMEQF4WSJUuWOEWRH3/80UybNs20aNHCdOrUyfTv39+ULFnQd7Fc5l92Kf+XX37pZLunTJliatSoYdq1a2cOP/xwty/xCrsdNDq+6hNyDu653h9iFVJmLTeT5q5wsq9RZXxj3dUtzWIAtZ/1mS2u174aOc+sXPOnlZUtYWVb60dl78JYfbphw1+mbrVyZpdWNYN4g8cvNPOtzCvp/9alvlm59k8zcuoS88vERWahdaF36K4NTJem1YP47EAi+va3+Wb2olWOIFOnajmD1G2vtrWDeiUkSHNA3cR9X0O74uDSg1undPHAhMiZ+zc3wycvNiOmLHG5vzt4ZuBPmoCJc1aYsTNibuv27ljHueCYs3i1+X7sAjNl3gon1wrZp6f1vU3d0xmuCsB6xoJVZqElYtW0KhGsTOizKe+o9LgwQz2pvi0H928rVv9pRltXeqOmLTFzbV3wO96ifmXTq02tjHyVR5WRSRj1/Nd53c1xD/zgcGb1OXXzVZ78fMBu4pzlZrLFCdIZ6VvuWNm02rFKgZU+w+w9mGUxmfLHyiALnvcPf4pNFNSz1x5e3Y5MLb8N8p9sfxdI55J/S4sFWyEEBhl6O6QdP2uZmTB7hdvyLKDqhaQy/ufTSRRT31/tH88Cg6X17O+Be9MpYrIK131r128w42YuC2rA74X7j0FeDCuKLVy+1j53y8zvs5eb6RaXnawPdBTFOti4dWxZ+TLedwcddJD5z3/+47IcPny42W233RKyX7t2rXNlQGDTpk0N7z7ss88+M2effbbb9//h0k5s3333ld2ELepQ3377rZk6daojPjVq1Mi9m3ffffeEeJkczJ8/37nGIy51b9Omjfntt9/MN998497z1atXNw899FBCVlzTBx98YEaMGGGmT59uqlWrZprY7wNErGbNmiXEjTqYPHmyef/99933g+8JqlTdunUzXbp0SfstWLdunfnkk0/Mr7/+6tKXKVPGNGzY0PTq1cvsvffekSuKw9fYtm1bM2nSJAOO4F2nTh1X/mGHHWZKlYo3jeQ86lpgvMsuuziMataMv7vl+sLfScrkHslqb76RRx55ZIKrCpSCIL2BN+4eyL9nz55pMVy4cKF5++23nQu1OXPmONcT3De+pdyvKAvXr7h9x7mepUuXmnLlypnjjz8+6hJc2Isvvmj+/PNPd8/333//AvFQPPv555/d8zFy5EhTu3Zt93x17do10mUM9/a7775z+dCGqVevXpBnvjDbuHGj+e9//+vaPvxmq1atatq3b+9+L9Rv1KhRrl1GwVwTz/OWtj+WrDG/2Xco3wfeocjd823gWxm1IpH2D99mrLX9lrey35B8Gc8F7U1+J/xBJpX7CbnU/81KmbxfUcbjeTruuOMM7w3eGfzeeS4aNGhgeA8cfPDBpkqV1G0P2su4D+W9xfeKdusBBxxgWrduLcUVapvLO43viCgB8t7mWqKMuosC4CGHHGLk3RV+J2by3o/KvyjDsn0GqYu0F2gb7m7bdIW1XNv2/u9h4bKYSwPqgpu88mVi/aTeHeqYKptWQWdbbz9/+b35Yfkqc71tF9I3+t22RefZdwKuFWhL925fx7o5iBP1o3DOVztsqO0HzbXt5Zn2T+yXSYtMvZ9ibbmqFcuYvdonuivDHcMPtp9BG5B2fim7ipl+F4SZbs1q2N+x5BTfQqDBbTnWwbZjaXPTTxk+ZbFzv125fGlzme0XZWP0Ob+3LjpRbrVidrYdWtHsavt+TW17dOnK9RbbWH+VNqyv4JrPfgsKu1zXnMVrXB8XtS/6PXvb5696pTKRlxPuk679c4PtMy2N9Ult+5r29B7WRVxDm48YxLP/WdUlvhmrbB+2XcOq9o9vQZVIvCUdW9yZ02bH+nevb3ZpWTPoV5LnYT2Tu+BwiTL8l20/zM+W9iDtxrFjxwbBfFOee+45d9y4cWMT1WZfvHixeffdd50yJO012su0Jw888EDX3g4yy2Bn2LBh7jtG1L/97W9mp50K4sK3UupIm5yxlrDRHmH8hm8n7a3wNxT3arRdicP3iXJow1Jn2qpRFm4vzZ492+UBbuRx1113Zewmzb+GunXrmr///e9RRbow2lcvvPCC269Vq5b7pocjs+hE+mnJ7tOiRYsMrtww6Y8sW7bMvPXWW0nDuJ9iL7/8sqlYMaaUkAx34q5atcr88ssvrt1J+xNcaffT/0mGrZThb1999VWzevVql5eEf/7552bu3LnucNddd3XtTDnnb2lDjx492rWrfvrpJ9c3JT59kKg+hDz7yZ4X8qY/w/NJP5j2BW1c+na0T2jz5mqFbX9xrbiPpO3INdN/ZdwT3NnK4iSpXy645tJGlfJ0qwgoAoqAIqAIKAKKgCKgCCgCioAikD0C8dm77NNqiq0MAQZ+/vWvf5nLLrssac2vvvpq849//KOAQshZZ53l0nTv3t08++yzZo899jBMHoaNSXUGthg0ChuDQ0wEMeEYtmuuucY89thj4eCcjxkQFkPCvl618o7YRNjn1iXYef1ayumE7cuDprrB64TAFAf4Qy61icg14PNJZoYlGkEGSUVseuj98Y7U0rx+JfOiR2x6b8jMYEC97U5VzflPDbU+luOrk7s1qx4Qm/DhfP8748wHm0gr4SpWr1TaPHFud9O4dmyALXw+2fFnlkAidslBrQxypumMyYGLDmxlznzsJxf1i1/n2OOWBjlVbJidfHjkw9/dfm1LvJo0d7l58pOJ7tj/9+/PJ5t9OtU1tx7XISkpBpLOPW/HB5T99Pfa8NtP6Ojy8MPZv+vN31xQWzvAjouSs5/4KSBw+XE7Nqlqbjm2g53AjR609ePmus+EwiUHtTZ3vxWr08BhcwoQm5icevzjCUnvL2XffXLnhIkc8vk4pEg2dMIiwx/mnrdLe7p9/jHRcccbY8yoqTHSWXBi0w4yvI+c1S3yGVpsiXa3vDrKTnAsDidzx0wc3WpxjCIQQUy74rnhwQSGn8GzX0w2uBe5/1Q7uLtp4o/zj340PuG3QNjbP8xg4+x46w/9gv7x3zRu//7x2hg5XWB79eFtzSGWKJgvg4ggA+YQJMLEJplUpjzepZByiMdEOQOsZcuWTaiKTFYT2KdPn4RzEFogUkW9R3l39+7d2w3My+B6QuIkB5BdcTGA8S6GCHDbbbcFsRn09YlNEGMhAP3xR5xAKpGvvfZac8UVV5i7775bghK2fIcuvvhiM2DAgIRw/4BvCESEKAM7yGBRZRO/ZcuW5vXXXy/gvi98jZAaqEfYGNiHYFO6dGlz2mmnuXsVjgMJigkfCL2++d9Jvmfh54C44Er+TB7cdNNN5r777vOzME8++aQ7Jg73OcqYRJP7FT6PuwgG5Y844ojwKffsEVhcv+M333yzI2rxvKUiNtGGof0BoSVMbGJCBXIXhJYoO//8893kWoUK8clYJnUETyamjj766CCpf09zbfswqUnbh7qFjd8L7TImgaRtBmFwSxKbaF+88+NMQ1slmZ3Yp4k5p2/z4DtPvCV2kl6+zxDKUSnMhzEBe8oppyT9ze+3337mtddeK0BO4h3DOxbjPcpEY9Q94Pf8yiuvuHdnVH15Tzz11FMFTl111VXm0ksvNcccc0yBc9kE5PpOg1Qqzy31S0Zsglwp7zp/gjj8Tkz33s/mmgobN9dnkHKlvQBhPh/Eplzb9rR15Pfg4yHtYcJqWEXPXm1j5Kts6x31e8t3mb/ZRQlXv/BrgfYXdX/CtlHDbS/CxfLZDnvf9o/+NzKxvUHbVdqv9Lu++Ee8rfTDuAW23T8mst7Uj4Ubd57YqcAil3lL1gb37KQ+TUxZu9CEvokY5WRKbOIZpl8SpRT8mJlg3XY3dv0VeUZ4p/rEpnz0W1ioct+7Y80XXt9OroXtA++OMyfv08ScZReooGzkm98n7dykurlowC92EU2cWEZc+inXHtnWHNSjgSO10q+RxTGc/+TnGOnjBHut5yfpdxMP++LXeP9z30717AKJOBGCPn2+iE2UlUk/jHhh4zshBBo5x2It/jDaJBBWxFjMRRuPtl6U4bqadt6///3vSDJJVBqI0fLev//++80ll1xSINp1113nSNScSEYUpy0EOTbc3po4caI54YQTIr+V5Ed8vq3p2piQmCBe+Ub/Atdu6YxvIt9rMSEbyXF4i6rtP//5T9d+5BzEoTBRC6KU4Eb7XxaY+HnR95I4jzzyiCMaLViwIAij7/H4448b+mESz09P30fM/9ZKGFv6Lrg/9svnucLov0AggpyVidEGCfeFpA9B+mR9MYg+9LFYXBJlkL979OiRcOqll14yLCrAIO+Bodj69evNDTfcYB5++GEJStjSxnrjjTdMLgtvCtv+goh4xhlnBL+HhIrZA66DxSU+ST1bXHNto4broseKgCKgCCgCioAioAgoAoqAIqAIKAKZI5CetZB5XhqzmCNw5ZVXBhNnUlXUQxikEmMAjonRZMZqLCYShdTkD2yQhhV+Z555pmEwzzfUnpgkDk/GS9nkd+qppwaqJn7abPdR8pHB7r061HYKQRAtIPtgDJCiNhNllexKZAauk/2F0wh5Jxxe2OMbXxmZdECevAd8NqkA6YU6i0GIuvK5X7OS759rV/JOnRdX+0E9J1Nr06BK4IuaslEairJ3Bs9IIDX5dSY+K+MHfFaQ9MS5H8cvCCYcOMbC6W96ZZRTYYqdLfh/mlUzumjAz8HAO+Qd33hu7rQkqNDj60fJy/6+nesG+bBC+Q+r1CW20T6bZz85tMD99V3YEfe6F0cYJo7EKlgikDy3EsZWwkQVgDDu9TH3/RD8TiSej8f8pWsdWS18L1lhftJDPyaQmiCEMVEkhnrXCQ/+6JSxJIwtK/+pt6zK9s/J/vBJi80/Xh/tFLYkjMm/8L2W62Lrk6Be+XpaAqkJ3CBL+XbfO2PNi/+b4gcVah8ykRiTyGHziUoM9PuEFUgVvjEgL+oxTFT7kwCQoI466qgC71E/PYPivEt55+ZiTCj4pKZwHqgzhUlN8h6XuEwwMCkQZTfeeGMBUlM4PSSGqDpA2GGywx/ID6edMGGCW2kd/tb4dWFFs0z0h9NDQrvgggvM6aefHpCaiOPHo3yUoSCsRBkYoYwiFk577LHHmjvuuCOB1MTAv29MGjEREzYG4MMTKn7+xGfCIiqt5LU1fMelrtls+d1ATBNSE7jw2/SxZdIH1axsLVfMUCngfocJNXLPaPuceOKJTr0t2zoVVfxHLRE5TGriPeq/g1/+31Q3aV9UdZB8Ubno169fwm+e++nfUyaVIS5Ju1TS+lt+T3IPwF7wJw6/Z8hwTFaGjYm6MKnJT8v5W265JZws4+N8vdMyLjBJxHTv/STJiiy4OD2DuV4k/QNpp/h5SBjb0iUTySR+vFz281km7cQwqcl/B1C//9j21uvfTi9Q1Xy3wyqWjfXNwgUJltWsYpMYyldXPZ9IxgrXm0UoJz802Iz1VEAlvWwhR/mkJgnPdPvcl5MLkJr8erw8aJp51sZJZ7n2W9ZYldNz/zW0AKnJrwNlv/jVVLtQYXTKatAnFVKT9KUlwT1vjTVv2YUG9L+E1BSO84q91te+nSZJCmzp97xn1X4x6kf/s6Ltj+/ftZ4Lo88wxeufusBC/kvVD0uWdaVKldy3w/8GEFe+KWFlJNqSYVJTOC3kW9R6krUnw3Xx+xsQ7MNGPozFiNHeDRsqQ0KsQQlJSEAo2tCGkm+lpPPrzHeWNmaqxQm0gaOIT5Jfqi1tXJ/U9Omnnzo18FRpOIfyohiKjGGDfCJGGxGlpLD5/TfUyZMZSr1yz/04EsYWJdmwgR3XJtjTjvGxpf/C/WAhYCYGecpPTxq/Dj6B388PQraQmojvt6eIBxGfZyFT4177pCYIfiygEGPQ/FUAAEAASURBVJM+k/RtJTzdtrDtL55D+tH+74Hr9ccueRYgXKGaKpYNrvlqo0rZulUEFAFFQBFQBBQBRUARUAQUAUVAEcgMASU2ZYbTVh+LQSxWmYmx4pCBBibrWI2GOoTY888/n3SAjUEZ0jFQhzw5gzPIe4sMO3kwsR4eSLvzzjuDlfPEQZGDwQQmkpBxlxWHsuqROLmav+qzr3XphuEW64BusX2IN7h3i7IHz+jqVv2y8jf89/ltfRLUgK48rI1bzRuVT2HDJlliEGSRh8/qZgbe2tsMunMf87dNA7wQs16yk4oYA8D3ntLZfH7b3uYz+/d/VpFnz03uGBiEvtaSSHAvlonNXxYn10AIy0StSfJFnElWnRPmE3UkDtvvf1vgDi/8e0vz5jW9HMbvXLeHueyQ1kE0Bvu/HBFfucsJyDUQtcQutmpS79+wZ5D+tP2ayilz+bPDgwH4IHDTDoPu3P/T92tmPrhxT/Pe9Xuab+/Z19x4TPsgKsSaIb8XnOAMIuRhByJOr3a1gpyYQBL73k6mCMGMyYGnzu/u7j94fXXHPubMvzWTqHaiID6hhNtAnlmUnMRYJS3P8eNn7yzB5o3v4+l2blHdvHLFbu75AY8PbtzL4DIQAy8UuHz7ftz8gHSHGsKnt/Q2T53Xw7x25e7unkAixEj7mZcWsti9llAkLgtRz+Lavr5rX3d9T1qFMSFvfTN6vvnXwDjB7UX7XHMd3Dex247vGFybhLNC/tVvpkoUhwW4ce2Ug6KXGL8hiFb5MFw0sNIWY1Ce1au+MWmMMXgcVpnxSU/E8Vd7+64XIIuywloGhhk05l27cuVKN6H/1VdfOVcC5MGANQSiXEwGd1kJjiIIbg5YwY0htQ8pi28ABoGKOHxD5s2bZ1C7EWPF68cffyyHbvvEE0+YBx54IAhjlToDz3wHcF9w6623Buf4Zki5BKIuAuFJDHIKq4opl3rhdsofSCcu36YoY9KGwW0mOkgPmYzVxGLgR925X+DN9aKo43+fCPOVuCQtW87x9/TTT7tvKdfHfZXBdL59t99+u0sCZtSf62OixVddCePHvfEnb8CS7zD5syrZv+e4C5HJE79u7G8N3/FwnTM59pUUWD3Ovf3iiy/MjBkzHP7cc4z7KM95JvkSJ1fMaNvIb5zyURbCTQj3jDqg2ITx3igOhuuoN7+fEVTl5mPbm89u3dt9r2kD3WPbG2IokSxfnfiuk3P52PLOgwAohqIVahX8VviDvCjvXbDkfZDMiMv7FDckvK/An0lM+U1yf/2JOfLh2UHFVAxFMdz7kJbfnSgjhNu7Ej/dNp/vtHRlpTsvv4eo9366tPk+X5yewcJcWz3rulHaX7TnxWjzSrjvjlrOF2abrzJXWNXQK54fHrT1/t5jR/Py5bvZvkYf1ye57fgOQTUf/ci68rSu1sSKoh123ZHtHGbPXBhXEaHdLzjSzsNwXXjba3GSDiqwpBlo32G0nx89u5uh7SlG3GR9JPph2MVWkZZr//bufQ33LhODXPX8l1OCqH6fh77HDUe3c+ekTxREjNjJtd/yjF0AI9dAtqjhfnTTXg4z8KJOYiwq8RdKSLhsIRYdsXtD86FN/9FNvV0+uNMTEyIsqlOf2D4BcfhuHNCtnkSx/bp5wX5451e7GIK+Gda/e9zF+37eIpDPvf5EOH0ux6n6Ycnye/DBB937/8033wyisGiMbwJ/fDPEPvroI6fEJMcQYCGLEI8xGdoC0iahrSZtAYmfbIsrUchHGG1E1Hd888k5hEOcCsfxie+QWDDisDCNbyFGX4X8cVlMe5ZFGCeffLI7x78LL7wwkhzEOeKTD/lRH4g6XHdY5ZS4vtGO99u4tNGjXPv5aWTfJyJFtQVEvVHi+0QnCZP7R7vAV/CR87LFjaDcc1+FiD6LhIfVRCUtbREW+tHepw1AfFQ65Vmgf5Jpe5B+Bel98hzKSlIHP1zKZwvRB1e+1IV7RT0ggxGGce+kfeMCUvyj7yH1ZbEk9adelEE9fBWrbJTZ89H+8suD/M410pfj90bfk0U6GNfL71EsU1zz2UaVsnWrCCgCioAioAgoAoqAIqAIKAKKgCKQGQIlMoumsbZ2BOikoxTCH6vPcfNSrVqMgLCDZaUwWY0bI7FkE7acZ5CCwRJREkECHMUBJMbF/NV+TBr7k1NMILPar3bt2i56u3btnHIFqgaFNQbUffdsPdvEB1737RwfYB3oKd1kWuYb3013ikLE79+9fl5l8cN1QGHm4TO7mR521Wrl8qVN6VIlTLnSJR1ZRNwTkOafp3c1e1hXe6xsZaV2C+vejsFrGbhHgejXyYvD2UceL7LuxcRyccVWt1o5SW4WL4/nFQRu2jlj/2bmuL0aByQW0h1pB8zP7dciiPr0wEnBPjsPvDc2OL7ADsYfs0cj50qAQNKfad0oHNmroYvDJIDvijBIuGkH1xnUoaZVAcLArZ8lvZ3UpwmHzn6fndlqSYmfy3anmhWCZLh2E5s4Z7lhwoC/e61Lto6Nq7n7z3ncYpy2bzMDGQn7fdbynCaW5yxe7fKHBHf7CZ1MkzoVA5dCNSuXMTceHSd6/bTJlZ0r0P77Zkx8AuucA1oYXwkK9w64oOvZOlZ/1J3Ehk1eZD79JUaSQhnqvk3XVqrkDu76IETxPMtqcpQAVq/LTnVowuwVweQI5Ky9NpH8qAPlMMl1fv8W7trBdZ6nlCX1zHULkUQMsqYY5Ap5HzKIyvu2ffv2wQrZMHnFH5D33dCxMpsBa4xBd1aJ4uoMl2m4ssM9KAP3MjiOatKKFbGJOalLplsG2SFkQLJhZXL16rHn7dFHH3UT++QDSYCBb+JwTcTBhZc/OHzPPfcERbKKXFxtEci1MElSr17svdyhQweDWw5WEovh+kvMV02BwASZFlcJrDQvX768U2yBoCsrj1n5HJ7IkLzYQkbAHQTp+WMVNWQq38Acl3FgwHdur732Shjs57uazCAdMXkhLgGZJPKxIR3ELjCj/liTJk0S4oS/wxdddJGLxz+wRXVKvsO4LoN4gUIAxkA9BOJkVpy/48nqnCqcSTl+Exi/AYhNokLA8wn+uIuUdtDkyZNTZRd5LlvMeOb9Z/idd95xykCi6sDEGe0uUQ+LLDSLQNRVUMrL5C9Ztkxgy/fn2iPaOre6lcqXctEtjAbXvucc0DxIPnr60mA/3zuQmHi+uWc817i33HHHHYNiOnXqlKAaEZ7QDSLaHSYfuf+tWrVy7yvOMTnsv1fC6nn++4BJXIiDzZvHrp16MWmb6eSfXxfZ98vOxztN8s11m+y9n01+L/x3ckbPH88oijhRVpyewaj6bQ9h9HeEYA8J/xrrvrdp3Yr2t2Pfr7ZPsp/tT91xYpwojuqP2JZsh729SfWHutAPuskuWmjXsKpb3EL7eefmNcw9lvwvikIoN33rtWnlGmT7wOldzDF7NnLXjqs2rj0Te9VTJzq7b/OEPg99j/4772juOqlTJlm5ONn2WyCc+gsfWPCwv3WdXr1STEWGRQT0w+gLiaVSp2Kxy6UHtzI1NqUnH38RBXnQLz7P9gmqVohhxHfjuiPbB1jzu167Pnoxgd8n98lMu7SsGfQJcEWeTG1ZriHbbbJ+WLb5RMXHFZsY7WnaJELsgZyESqBPkGJRGaT3TAwVQzHIur4JOUfCaAv6fRLC/W+l9DMgfEN0wWhDvfXWW06hG9Uf2sBdunRx30uJTzyfOMKxbyxu4PvIdxZ3eOQpbTI/nuxDNBI1W+KycIM2eqbWq1eM3Eh82u6+zZ49O+i7SDgkKt8gnNNvwKQe/vl87aPmyiKPJra9Lwa5jD6bWKq+hcQpzBYCEsQ72lDcW6xNmzaBqzmOffIbx8lMFu5wnv4b/Vsx7iNt3JNOOsm143BFnqmacD7aX7QhaT9yP2n/cY305TD6nn773F+4IvVPt81nGzVdWXpeEVAEFAFFQBFQBBQBRUARUAQUAUUgEQElNiXisc0eMenOIAZ/uNiJMiaJxVDhSGZhNzgSz5cO95U2WOEuBqHKjyfhTDwyAMYgSGEMIg8utDAGWSEDieEuTRRhPhs217AiOVP7dcpiw6pkrLklD11xaJtMk+YU7yhL9PHrLpkMtu7YxFg926lJjJwmYWxJd37/lkHQ77Njqy+DgCQ7yzwSik9WSRK9QLCfZvHKOFHHj9iqQWVz6r5N/aBg/wRLOOI8htrUitWx+7Ng2drAZRruzo63g/FRdn6/+DUzgJ7MDt9tp8hTe3eIqRRxEneGRW3VKsYG/ynHxwviEsph/LW3EzJRBilHLBf3DHef1NnlzwSPTEJIfmxZydy+UaxsyFP+ZIKv5AUJK2x1LNEMghL1FyUl4nxtVZjELjkoPkEiYWwb2fvLZItYVP5yLmrru3WZat0OQnIL2wm9mwT4+pMa4XjZHvurhX3ZewbnxWRlNO87cYcF6YkVs2LffPON7LrJeDkQtwEcMwCOVH7YmLT3yUOiwhGOl+oYBRSpZzieT8zhfR01ScFkDSQrDGKOqFfhTkKMaz/mmGPkMGGLahMTQBBlhbRDhFdeeSWI9+KLL7qJkiBg0w7x/YkWiCRRxqrknXfeucApiEtiEA1kEkrC2PqqUCgeJjMG8sPWrVu3hKCob6G/ShwVKzFW+MtzxT26/PLL5VTC1p9Mk0mqhAibDorzdzyqvunCZLKCeEzkMeEQtr59+wbtIN9VYDhesuNsMfPbUait+S5k/DIgqQkhzw/Pdp+2D2SETP6S5Q1RWr4/B+3SIDJaW++7NCHD9kVkRmkCZfKNdutDDz0UTEj5yURhgDAhkPrnZf/ss88OCIQSxpZJL7ExY8bIrpt8k98bRFKfpBlEsjuQm/w8/HPp9vP5TktXVrrzqd776dL651FdyeT5E9KMn1b2i9MzKHXa3raf/zo3uGRITajehq1Px7pGFDrHWILjnxv+clG2ZDvss2Ex8jwVucWS7MuUKjjMAQH/ykPbBpfzv9HRSkL0N3ZrXSuIl+kOLuBoN2PkcXKf6D5Pb9vn8BWNUuWfbb/FJw1Shk/y98s5dZ+mpoklrGH0u8KupyXuQT0aBIsfJAyiGIsYxPb3Fg9JGAsKOnj9lblLVsupYMsCho+HznbHLHqQvgcB3D9RK+bdMjzDhTpB5ml2kvXD0iRLe5r2h7S/+H747TI/Mf0GIaMTnoqM76fbb7/9gkP5TkmAELxpS8uYSpi0ISqDEL6lnS3pyAdlKr6/YaPN7ytjQhYJq0FJGp+IL2HJtijOClmLOlM/Fm5kYxCwpO8Csckn0JC/GKqEGIQcFGnFBg8eLLs5f9ODDFLscL+j+k6iHkTS8KKGFNnldIr+iSwu9DOg/yFtKvqPLExMZyysEYNAh4qRbyy+gUBEOw4inxCp/Djhfe6dPNeFaX9RHuWy6AUyYdhwLSnqZ7Qfkz3L4XRynM82quSpW0VAEVAEFAFFQBFQBBQBRUARUAQUgcwQKDjil1k6jbUNILB27VrnkgPlAgYj/NVZ/oCQf6kMODVuHCce+OcYfBDDtY6YP7meaqCKAQZ/0ljSZ7Md6A1qhwdZLZfA9Nu5fpDdN2PiZIIgMGIHYs1Vz8cUWFCTgRQSRTqKSJpzkD+w62cyflacsMOA7DzrdiHqr4IlpoiN89JIWNS2vL02sWyVcki32iORVCgbU3iQ/GTb2RKxUEiKMsJ9otbkeTG1mQkeeSbVNS/xyFSjpi2xg2sFS+H+JVOjql21XJAgG9JbkCjLHR/jCmWi8ZIsmShZaFWwptvV5eNmLjNDPRUlVMoKa2Sx0hL95ttnHUIQk1T8RVmXZnFS1e2vjzF3vjnG/GRd9/nXE5WOeyIGCS7quSWsovfssPI/G0N5ShSfmDg95eHB5nWrPABueYApZVWSrRb2JxR84ow/GS7kJ97JEp+JC1H7oWD//Yw6Eu61ov5kIoM0PrGC40wsmfsE3umympl8GACOKp+wqlXjhLxx48a5Yv1V5alWYTM5gcsOXLWJkg3KN7KSneuLIhzJtfmEJX+iQs6z9V1H+OGiTEVYsm+Rrxjjp/X3IQn4eck5Bvjl/jAgXqVK3CWOxIGg47ujk3D/XjIhkQx73GyJ8cyEJxk4V9y/41L/bLbg5pMLmaxAYYfJRSHXZZNfOG4umPnENJS/khmTXP67IVm8dOEolPRoWSOjv3R5+edx2Yn63qyFqw1E6VFT4+/yjYX//PhFpd3nvcP7ADcivFN8jFPd5zCpUAqCZMrvFfMJprhXEevZs6cpU6aMHBbYCpGzwIkUAfl+p6UoKqNTyd77GSX2IrF4INNnUL7VXvKku8XpGUxayW3kBO1flIzEICwla6+JmhtxaTtiW6odhkqRLGzh2WpYK66K6irm/WuzU/zbO3padFsXtaBcbNLceLuVPk+SLo/LumPE4pRwmbn0W/w6+MSicN6oUHXyiEdTNvW7wvFa24VBUVbVW6DRrF6lqCgJfa6odrivmEUfPdxHTFBb9vr4kYVlGej3W9L1w7LJGpdzYnw/aPslM79tgKusTIzvmbQlxdUt6Whvy3cMko8soBBXYcThvLTlfXfXvqqT344mjW8QoWS8BxI5pPuw8U0VNdbwufAxClNCSOIcpKRU5YfT+8eSD/XyicpC5OJ6fVK7368SN9/kl6qP4peXyz7KV1FGv0nuaRSmUWlyDUvWHiK/Zs2aBdkuWrQo2E+2w/MthuoYfdtXX33VuVyW8Gy3RdX+oj+EW0QUvPitQCDLN4ks1zZqthhpfEVAEVAEFAFFQBFQBBQBRUARUAS2dwRSz6Zv7+hsg9eP6gcrAhnkksGvbC7TV5MIpxN3OuFwf7AsasLWj8+Ajz9I559Ltw/5w3dDt8EOYAydmDgog8s2sY/sClHcAaSy9Rs2mhtfGRkov9x2fEfToGbMbVCqdIU9l4wYBLlF7NkvJhv+0lmmruiqVYxP3Pmu0dLlL+d9YpG4K5BzskXtKpU19wbGWTkM0cmvC4pch9/9Xaos3DmUenC3JgpdkqCxJb4kM1Yfb06DMCdW3bp/822dnUj+cOgsR2D6xT7DUcpDfvxc9ilfyhgxJT5RnS6vA7s3MD+MXWAGj1/oon7y8xzDH8bEOm4kcFPCqnjf5ntu3y4eMMw/lXQ/U1KeZMAkzZ0ndjKXPTvcBbEC/dEPf3d/TA6xQr6vdTvYrVn1SAUCySeXLcRMXDTw/kJ1icFNyBYi089grwxak7+v3gKZ6aijjkpwFxGeaBZiD2lRnsnE/En/TOITx6+jn8YnzBAuLpn8OFH7TNSwKpyBZDHfVYGEpdrOnx9X+0o1IE8eO+0UV2TzMfPz516ls0xWFSfLwyd2JYsTtWI7WVzC/e81K5kzwV+Ui8Ir74vzdzwVBunO4f4PIhP3nWu/77773B/p+vfv71TCcEmRyf0Pl1VYzHC5m8pYJY/rl8LY1VZZpdWOmale9rrmy5RFfW2J39/9Nt/8aN2FoZSxJQ23LK+//rrBdYyvAJpNnWQiNipN1PPgEzFxk5nKeL9la/l+p2Vbfjh+svd+OF66Y9x24Vo4E2PBgK8sE05TnJ7BcN225WO/Lc91ZtLmJh4Km7jD3lLtMP891dojLlG3sNWpFm+fChkqHCcb4p2fdpLtu4i1TPM+9vs8kia8zaXfstDrX0A0S2V+v2yR18f006Dims4gieZin/wSbxtWsn30cL99wyYlMPLGnfVlB7d27tdzKSucJlU/LBw3m2O/vZbu++GPi2RKaKH9CEkHFVXUiFiMRptVlIl4nzOeAtEHsgltRsi0EO59wv++++4bXJbfXhayb3AytEM7XOJzrbhC9i2TNrDEv/baa2XXbXEXlqv55HbceuNqjb6YuPwGsyZNmjgyM+Qu3N9JGnHhB1E5m/pnU1fuS7Vq1ZImYRyNtmtRW6NGjZIW4bcFMvlNgzFusHE5h7FQRxbr8BxBJDvuuONcPzBpoaET+Wx/8ZvCdTn32ievhYos1GE+2qiFqoAmVgQUAUVAEVAEFAFFQBFQBBQBRWA7RCDO8tgOL357umTkpJEFf+mllzb7Zc+bF5f5j5KC9itUq1Yt/zCrfSbhfLvyuV/9wwL7kDkgPoTJL37EJz6eELhBw63W7m1yr5+fb677K9f+mXVSf7A/VeLqleLkmuGTFqeKGnluhKfi4OflR/bJU3647Ptu0YTQlCuph9Xb1qmaZF2stqxa9lWXanrYQ8i6/qWRgSuLoqj4MHt/r/m/X3MiTEEAu9u6sIMU9f6QWcafxMEFIH+PfTTBnLh3Y3PuAS2D1eqZPof+9YYn2PxzyfZ3aVXTPH/JrubtH2YYyItiPEdMivCHu4uHz+zmlAXkfD62kJcgNjEwzcAsEw0yweGvjKYs1JiYdIBkyqA7K0n9QVdIUr5JPn5Yun1/8jxd3HTncx1sX7gwRoBbuTKm5kA5UWpGqcr33SFEuU/w00Img8Qgky5MamRLIvLzKy77K1bEJ0uzqROTWWFiUzbpJe7m+o5LeblsUZNkAm/AgAHmmWeeCX575AXBUEiGkGR8tx+5lJVJGl+RK939YxV5cTAI4g+8O869J7d0fXgnPv744+aKK67Y7FXx353p3jk1atTIun76TksOWXF6BpPXcts9k2ube+mqOAFyS7TDeG7EqnsLNSTM36IKRDtQSE24W45yt+enyXTfJ0ShhJrKVq6J1zlVvGzPrbLu3cT8fpWE+Vv//GoPQz9OUe3/YVVa/b7Qk59MTFvUt7avf4BdoFBYS9UPK2ze2bzf/XGRdO0Ev14scIDYRNschSgItqLMhFITbeG99947SMKCC0gmfj/DV9uRPgbEFt+9WJCBt+O7wvav1YuS8+71119vxF1ctplAipL2P9d73nnnOVVH6b+ICz/cQFMGbsruvPNOp14upGlI8Nuzbdy4MevLRx21c+fOzuWctLPJBPIYCw74A3ueV79dnKygfLW/UP864ogjiowstiXbqMmw03BFQBFQBBQBRUARUAQUAUVAEVAEthcElNi0ndxpBhWE1MSg1SWXXGJYcYdbHZG/xmVcv3798o4I6hz4t8cmTpxoUql1iNuiXCoBYSFb++LXueaUfZpGJuPcm9/PcOd2tWSJ0/aNjheZOEVgrpMGZOkrIV17RFuzc4vsJ9SSVa1x7ZgbL+oH4Qv3XY1qJ3fl4OeDkhRqSmLJVCOmWVcVe7arLdEKbKcviLu/aFo3tsoY93Ni+3etZ87+W3M5TLmtHVIMShl5M59EiUgmVKpXKm38Fdm3vTY6IDU1tPgf3nMnR8CpYVWdUPJiRfNblrSTiVpX1GVxfy8a8EtwCrcx+3ep55TIqpQv7fKvYMu4/qUR5peJ0QS3MqVKmCN2a+j+ps1faUZaUtvwyYvNZ8PmBvm+PGiaKVu6pIEQiEEg5LnCXr68pzvnDlL8I30uxvN33ZHtzKV2ZTduk0ZZVyNfjZpncE+Hgf1Zj/9kXruql6kZUsvKpTxJIyt/OcbFwbp1cYU1f2W0xIfsJOp5uE349ttv3Sne0ayC9Q1yypQpU1wQKnjJFPL8NJnE8eOn2vdJp9QPZZxMTEhMvluK33//PavVuz6xwHcvEVU+kyxCaqKe2wKpiev08T/22GPNbbfdFnX5BcIycZ1XIFFEwOb6jkcUXSBIJqkKnLABuEnBleENN9xgWEXN7xA3JOLikTTHHHOM+fTTT03UbzIqz1zDcGcIyQqjfZXKZRl1LQ728qCpAamJCXoUeNpYN0SQAFC8xFXoROtq6dJnMlPdK8w1oT7hk5rOOOMMp4oHgQ3VAybIUFvyJ4YLU56f1leN4H2VysStT6o44XP5fqcxwZbMUrnoS5ZmS4YXp2cwGxwK07bPppyijlvNugoW4x3wf5fGXQ1JeNSW9qNvm7sd5vcVxJW1Xx9/HxKUtMG5xnyRmiij1Y5VgqLSqY7+PrtoCK1+X3HGwlUmmZs4KkpfTywdIUzi5Wv7xYj4wqdM80ThKR/EplT9sEzrkiye317L5vvhE4aS5S3h/uIHUfEUYpO4ZKP9TbsDMhOKRBCbUK7BUK/0CUzSx6B9BcmpTp06UlSBre9qz7/WAhEzDHjhhRfMqaee6mI/8sgjBgXL448/PsPUidG4rqeeesq1+yDpSNsP9SDUmjAWoUBsgsw0c+bMBLfdRd0udBXYBv+BO39z5851Cwx45v7v//4vIBVxHw4++GDnajDd5eej/cVzzH0Wg1hF2x9Xe5DRZezz6KOPzlkpfku2UeW6dKsIKAKKgCKgCCgCioAioAgoAorA9oqAEpu2kzsvMtxcLiumwm6OCPcVGTjOlyGHLoaKCQNrycx3W5csTlT4fCu7L66xOM9AvPVKFWlz7QpRXGBgKLqc3KdpoCojCSbZibtbXx3tDpnQu+W4Ds69gpyP2srAOJMbyVb/5qJA45dVs3LcfQIrclOpTfnpMtkvVXIH50JM3Pm9/PVUc70lh2Rir34zNYi2Z/vaSd0EMCGaysBdTAbia/jXbBWr8nnNUtbm3G60K8Mf+yg+Ufq3rvWDSZVldsW7TxB7+vwexl9NLfWcZ5/hXO3XKXGyUvtGVZ1yUVRe/mRH1HkJgxDH30E9GphLDmxtXho0xbz6zXR3GrKhEJv4HQmxCVd7TeumdwcmZeS6xX0GygH8UQ/IV/94fbSb0OJ3OnzyIvfM55p/OB1kJMg0DKiyWlgIGEwYtGrVKhzdrWCVQNwsyUpXBn9Zbe0bq5CF2LRmzRqTzrWVnzYf+/7kBdeFK4Ns3LX5rqD4DrCKNlPzy2YiYu3atQkTMn4+/iSSTGL457fWfX/CC/zzocKUDRab4zsuJDSuL5nSlr+SO1X9yWvXXXd1f5deeqkZP368I8lAcsLefffdIic2+Zi999575uyzz478zcyYMSOYfEt1TZvj3PfWzagYbj15d4Zt0fK4G9XwuXweywQseeKuRlyd+GVMnTrVP8zbvu8+aMSIESnz9d2mpIzonczHO83/RoRdhXpFmenTY99jP6w47xenZxCcNkfbvjjdj2qegijtpHrVyqXt/6Sq/+Zqh/mkHEjs6207s7Ql4UeZ376tb0n3+bSdPHflP09Y5NxpR6nYUr9vxiQqDeerHrWrlguymmKx6N0+OCywM8G6EBQLu5CW8KLaovwqhhKsj52Es4W2efJDg10QCy7mLl5j6lWPX6M7kcW/VP2wLLJJGhWCtVi674coBRE/7NJN8ojaQlrHjR3pcf3VokWLIJqv1HTggQc6YhNtEAjxkKwxIT9JItr00segvZSM2ARZCCKVmN82lbBsttQLlSTafSiLY5CcuDYITtka41sQm8gPbCCxY6g0iflKVZBT5B7Qf0N5SC13BFjEcvjhh7u/u+66y7lYPv30012GPDcQyXyX4VEl5aP9JQuFyJ++gPSvw+X5fcbwuXTHW7KNmq5uel4RUAQUAUVAEVAEFAFFQBFQBBSBbR2B6BG/bf2qt7PrQ9p8+PDh7qoZqBIp7jAMstIvHF7YY3+A4j//+Y9JJrWOsoIMuGVb5n9HxJViTrXKSi3qV3IrVCHHhP9wJ9e5aTVXBESL0dOXJBS3YvWf5tr/i09k3XtK50hySUIieyAKQ4QLgSMc59fJiWWFz6c77u4pNH09+g9HoIpKA7Hq54mL3J8/gB8V1w/r261ecPixJX0NtXmkszHTlwZEFuL22zk+oBtO+711IZAMG8g6nBdrWCumFtWuYXz1My7yUIdKZr/NWOqumToVR2Mw/anPJhrcIIod1GNH2TXjZsZXb/fvXj/yudtolRm+HxvHKUgcsSPu/PxTPjaH7baTfyrYn2qVtWQ1exBod1ZbMh3p+ZvhqWtJnKpWXQv3c+KKg3strjh6to5PkKeazFm6cn3w7C5akfxeR5EEUY+S+vluSaif9TxiujWvbk7q04RDZxPmxIl0ElaYLUQfcTmHSp2QKPwBdT//5s2bG1YRYwwAi0URT3E7Ifbhhx/KboEtE9wM1POXT7JquXLlEr4dSPwns0mTJrnyccsnqlX+NbE6e9Gi6HcLikwMeqPCcvLJJ7siWFXur7zFlVgye/nll4NTci+CgK14p0ePHkHtIc2xKjqZDR061OE/ZMiQZFGyDt8c33GfrJeMsOK7UfEvYs6cOYbr5S8Km9atW5u77747SDJs2LBgv6h2mJgT47eAklTYcEHHxGNxMN7vv8+KTXKjJNijZfyd7dfvx/EL/cMi2/cnpkTNIVyYP7EUPleYY94/QsZk0jiZUhxEO9q12Vo+3mkoD4glUzvdsGFD8B2SuMV5W9yeQbDKd9ved9m2ue5FNmWiyImSp9gvlhCezGZaNSD6Gr9MWmTWb4i5MNpS7TBITKjrin3h9QslTLa+wm+vtrUkOC/bEnZVjdQDYtgNL48MsPELuP+9cc51sx+Wr/0eXl9x4LA5ru0elTdt9F+8fl6nJlWjohVJ2Fjb35mxSS2KRRZ72UUx4f66HDe3ffkz9o+/71Ld23SVTdcPS5c+fF5cuPnhqDWK8f3wFY4knC2LFF555ZUgyFd9DQJT7LAIAmNhhPQ3UGgSpVTOSdubeuKiVyxclt/HQGknmfn9D64zF1esft5C5jrnnHMcoUnOQY7JlMguadjuueeewSGkKWkHCw6c5PsriysY+6K/hOGi2CcMu8As/iXr12SRRaGjpiI5FzrziAx++uknh3GU6ij9xhNPPDFhQWMmRPB8tL+olxjPVpTRbhKF36jzflgUrluyjerXTfcVAUVAEVAEFAFFQBFQBBQBRUAR2B4RUGLTdnDXcdUhEzQMbEV14p977jmn5FQUcOA2RMrHZce5555boBgmJY866qgC4ZkGfGhJOGJ9OtaV3aTbft3i5JvPhscniCGN3PHmmIB8c+2RbU3rBnFiTdIM7QnctYiJCzs5ZgtJ44lPJvhBWe93sIO/olgEOebB98cVyAOPJM98PslcYl3F8PfOjzMKxEkW0KVp9QRiEu5mBo36I1l08+P4BebsJ4YG5yGN9W6fXL5eBvnXro9NgEhCVi4z+M95DBKMrJIvZ92RHbiJ/MP5K58fHsST9Gx/GLfAuhcb6q75rrd+Myk8s/jJNts+hJurXvjVvGJdtImd379FgnKR75JuoiXdyESRxIewdu/bY+0K8PUSVGCLuyCxHy0mYRya1Kkop4NJ7CDA7vCc3vHGGD8o2EdpifvN37H3/2B8hS2JtGjF2uD+NLcEQ6nPPp3iv8sX/jvF4OoxbJCRbnhlZPDs4kbOt4rlSgaHTKaFjckqqd8D7xb8bRB/2h9xtxudGlcLsoCA889//tOt6n3zzTeD8Gx3fAKOpI0Kk3OiYMfqYrHevXvLbrA98sgjg/0777zTRJF7cMN23HHHuZXYrMaGLJpPY4BaDPl+WeUsYWwhpOyyyy6uDkyULFwYI0Hg+rRjx44uKt8giApMuvu2evVq536C7xR4+CvKfbcUZ555polS93vjjTfMo48+GmRZmG9KkEkx2alQoYI57bTTXG3AhufGf2akmqxK7tWrl8MOhaBULqokTSbbzfEd5xkRe/zxx2U32ELUQ7knykaOHOkmtJjUwpVIFIHadxkW9RuLyrcwYUyeoZApdt9997mJs6efftp89NFHTj1ht912i/wdSZrNuUVZBWU9jG/M/KVrChT/4U+zzBdem6lAhDwGyPuCLKNI7xD4rr766jyWmJiVPxHKJOvSpYmEaVTFTjnlFOe2JzFlZkeFfadB1hNjcjxKmemxxx4rNs+X1DXVtrg9g9Q1H237yuVKB5eNcuTmsMKU6S9QuP7FEQbVn7BBijntkSGuvXbxgGEGUjpWmHZYuIxsj/3FGXe+8Zv5fXa8XSV5fWkJT298N10Ozb6d6gX7+dq57JDWAcGfvhrt0v/7aopdlLDAvP7tdHOhdQfN4pGisrZ2QYj0FSEP3RPRJ6K9fa29t9Lv6tOpjqkccidYVPUj38+970gmruX27RzvQ3wwZFaBvk0mdc2kH5ZJPrhBFYMYE25n4QZa2mvEgzCzZElif4bwK6+8MnDrzMKzbNslslCNtuBDDz1ElsHiCndg/0FKF/Wlm2++2QWj+MnCCt/4xom9+OKLCSQoCUfdxm9Xy+IDOV/YLW7ohBRGP4E+B9/ZbAw3teL213fZTFvLt379+rnDt956K1j8l6qv5qf19ylPjEUHW8JQmhITkpYcF/UWRVTa3eAbRYjDFe7kyZODasj9DQKS7BS2/eUvLIjqL9KfECWpJFVwCsxyLgrXwrZR8zXuIHXUrSKgCCgCioAioAgoAoqAIqAIKALbEwLxGfDt6aq3w2tFMeSJJ55wV44EN5MxDERAKGLFOxPCRWU7WKmUd955x0lBUwZlMchx0EEHGSZLBw8e7M5HrXrMpE7jrcIAbgewJnUrOrWmdOn2suSbeyxBBPvMrma98O8tDQSa/3w9zXy7yTUAg8KVLEkkFbGHlb7i6qCdJR2Jvf3DDOd+oE/HOqacnSyEAPKiHdSWAWSJl+2WlcD/PL2rOeOxIS6v9wbPcnn3bF3LXTcqO58Nn5PgzuyoXo2yKuaiv7dyK7BFsQfCEYPkf+++o6lfvbx1CfCXWWDL+dTi5isPofBw5WFt0paFIsSJD/5oGERvUa+ymTRvhUF9Slbuks+1IRd4lx7c2l3n2BnLHBnnlIcHm94dapuOlpjCCv+hExaagcPiRJnT921WwL1g2orlIcLHP882vkLWn3YFOziigBRWqkKR6dg9GyeUWte6/GhYu4LDApyYDNmvcz3T0hKEmFj63+h5Cfc2IfGmgx3tPRJjcvqiZ34x+1iyX7N6FQ3EtW7N4yvxmdyZs3i14TnGzSGKUbgilHsv+cgWt3iQzHDhiF3x3HBzuFV96tykunvOf5+9zDw9cKJEN327xieMdqpZwdx+Qkdz0yuj3HlcPX41ap5BhayudZsx3SpAUR8pGxz2aFc7yIudBjYPsc/s/d6w4S/T05LpUPXCHd7BuzQwL/1vqovC5Nqflgi2+6bfxgLrrnKg/W2QTsxXQGNl73XXXedOQQ5BIScXV2ZRExMQTZIZA+kPPPBAcBoFJyGCBoF2h0mIV1991RGXCD/ppJOcxD+rrlnxzIQDk9hCXCWffCvBMBHPKtgnn3zSkWqYPGDVM9fMylxUcO6///6g2qySFZccfAdw/7X77rs7IgCTQRBZIGy1b9/eQFL44IMPjJBPmIiRFdVkeMwxx5h///vfzqUGx5BXWK3Od4yBc1ar+yvJL7zwwoBIRfxtwR588EFH8Pj555/dRAwTBHzbmVBYuXKlc2fmr/6/8cYb7XvQSpXlwYr6O04VIcSJ8YzRJuAZYJKQVd733ntvJJmLNEzwMVmHKxWeIZ59SH7kCWGOSQnflVkyFTUpP19bJgtvv/12c9NNN7kscQvsuwYmkGedCZZ77rknX8XmnE/vDnXMW9/HyNCn23YG3/0uzaob3p+4VfpyxLyc8842IRNb/OYxJlOZKIbsiCsc2o1Mghal8bx9//337nniucK1IO8r3lu8b2nXRpE7M61TYd9ppUuXdhO4omKG2x6eNd79/Haon/9OzLReWzpecXoGwSIfbXvaM2ZcDNlHP/zdTLLEdVRqIPEXFZmkMGX2tS6Sx0xfZujL0G85+4mfbJu9rulm3wUoOo2ftcy87JH0Uf8UN2aFaYcV9tnb37aX37ekF+mbXPDUz04JiLYv7cEhvy8M+niUdVSvhhn1GbOtF4qz953axVz49C8uKe15UcPz87r4oFaG5yHfVsJ+968+oq1hcQrGe5s29p62TU3dIHzRt/X7JRf0j6mH5rsuUfmxmOUjzw0dv/l0Rhu/VYPKDkfqjUIvv6GwFbYfFs4v6tjvG/CupR1PW4W2LG1SDFINpBlIR3w/eD8TZ+eddzbTpk0ztIF9l26QucuUKRNVXNIwXGyFLUzOoe0GsQpCtRjjL2FDAZA24x133OFOXXDBBe77AQEIYj3fQpRoxbieM844Qw7zsqWtxxgR7uDADaVL+mV+vyKTgqizfBeJz/VDNPdNSGF+WFT/zT8ftS+qu5yDqAYJm/vCffCVs6LS5ivMJ6mhIAkZjLYS/VifAJ2v8vx86GuxUAU766yzXNuIPi+uDVHvRY1YiOlg4rvhdYmS/Cts+8u/lyx44TdIvwDXifRVn3322aC/nKQKCeS/KFwL20bN17hDsvpruCKgCCgCioAioAgoAoqAIqAIKALbMgJKbNqW7653bRdffLHzL0/HnkE4BonCA0VM+slqPi9pXnYZAMNFkCh+MDHLn28MDjER6U8++ueT7X9uyQpi/VO4QZM4bHGZ1atdLev6bIEbtEfZBqWn/46MT9oxcHrjyzEShp/W3//45r1MtVKxgUgG/E/fr5l57svYyrSvbF78+XZozwZulWphCE6N7ATJg2d0Nec+GcNv1NSlSckuj5zVzZJB4kQXvy7J9sHm+Yt3Nde9NCLIF0IRf8kMZZ4H7CB+HUvMSWWsYob4Ara+cpGf5t5TupjaVRIHIFnFzyTBOZboQ1r+Xv1munnVxFddSx5n921u/JW9Er45tskmL8JlX314W3PIrg3Cwe740oNaO8IQB1H5oajhT/yFM+H+7W8JRaKqgfs+/rhHL17a0xKYypizLEbPfDbJJYXIJ2Q+yWtP6xJixZo/XToJk+0p+zQ1uJBgYg4S0tMDY/nIednuZ1dXH9azoRy6LapNf1gVkMc+muCOvxk93/AXNq7x0TO7Bapdch73KJwT8hOTNfwd37uxYVIGMuL5dvvkJmU0MBAcJA+2uMq7/YROpmzpuGjhjBmxyXyJB0HIn7yQ8HRbSEa8y4Sgg7IOpJ9kFl5FLK4louIzKYLqi6iUvP/++4a/sEGMwjVFqVL5/8RDwgIbymXiAbdy/IWtf//+CYQtzjPQjVKNEFggBTARHzbqD8nJn4jAzR+kHQgpuFalbI59Io/kA+YyOSNh28K2YsWKjhy21157uUF6vues0peV+v41Mqnmr6z3z+W6X5TfcerERAQEIHkmmBTkzzdUqCD4cf994/mADIWSGOeYMPQnDf24KJ7JM+iHF9U+v1eeZX47tL98O/bYY92zyiRncbBj9mhkfrCqInxjIcZCXvAJDNTxnAOaJ33v5/MaUHzDnaQQwZ5//nnDn2+4FxRCqh+ej30mJSFj8o7mmeK9F0WmGjBggOG5zNby8U5DIYH68VxRR9QTwoZK6lNPPRUOLrbHxekZBKR8tO0PtARBlHow2v+ouvJHuzbfrtBcIfZfYcu8xJJu5i9b49po1BmFoSiVIZRaLzmwlRRbqHZYkEmOOyz++MfxHZ06Ku1n6s2iB3/hg2S9l10ccW6/FnKY921X2yd84PQu5l+fTnTtZb8AFouAb8Wy+W+jSTm4o7v80NbmwffGu6Co/oTEfcj2KVm4srkMgpn0g3HbR78kE0PZievAUFuOIjaluk6/jFT9MD9e1D7kDL7dosiIuzn+UHARl1z16tVz7Vja9PL98BVF/Xxp8+RCtqZvAUlJCKyQpH23wVIGJBef2BRF6iEuipi0K6VdTbskqm1CH4drh1ybb8MVNYQPFi9gfHMhEzM+lKlxfTfccEMQXdSZggC7s+OOO7r7JaQb2reQXrI1SD3SLuA+Q1Djj7bD5nKHDVb0m2RhC+Qw/q644ooEF8zZXlsm8SHv06+TtnrU+CL58NsQnDLJt7DtL35/t956q/ujPH4j8juR8vnt4A6a326UpcO1sG3UfI07RNVdwxQBRUARUAQUAUVAEVAEFAFFQBHY1hGIz+pu61e6nV8fSgZM8jEx7ktWAwsKGpxLNtCVKXTpBriYcITc5K9uk7wvueQSg696f1DJn9SWeFFbFIrEMnFDJ3H/1qWe7AaqTKVLZveTKFUiMT7EJkgjKEeFDbdjkFaSmV1UmbGhVPSv87q71d5RiSDNvHlNL6eGE3U+XVj1SmXMo2ftbJWT2kZei6SHSHLFoW3M0+f3SEtqIg2qPS9e1tOqEBUcPGSA+tGzu0UOVJO2BnWy55MRgiC9gAnEm1ysVMksboBXQMk0Nw4SDauM97bqXbce18H8944+Sa+BbFnB//wlu5qOTQquREbl6d8X7mInIJITZcjjCksgg+xD2VF2qsXolmM7OHWo8HkmralnsrTcc+pwUp8mgasLPw8mbHhubrOTS1F5oFJ14zHtI58r4lP+y5fvFvk8oar2xDndzQl7J7+2E+x1P3NhD9O5adw9gNQPNTCevf9cuXuB3w5qRCJdz2An78VczR/M9vej8uM9x3tZDAWmVMbENa5Dpa5+XN7tTJAgu8/kQKbGBHumBlmKyXRIsOLewk/L+/2ll15yg9xR73BUT1BbERd8floG5pkkgPTqS/xLHNSfRHknqmwwYQIfN32sMPctm2skXTIymv+dy3Z1vV+fZPn7ZbN6PWx8I1Gnwh1flPEdl1XuUefThfnXFxW3qL7jUhaKAUxGRD3frPzGXWQyYxICZSfqGG7ncNynTx83gXHVVVclKFll+2yEy0+HGYoJ/G5RqsRl3qeffurUD3CFgcsXCH++67xsVLbCbZBw3dIdlwx999z7/aJdnKJi+P3NN+nf9lyPljUjsxX3sVEn/XOZtrP4DeMWFGJY+PfOu4LJ18suuyyqOBdWItQ+SxYx6ncmcVu1auVIolHtY8ibTIr6JLmod57kFbUtzDuN/CDSfvHFF4a6hJ95iIK8S9u1axdVtCnscy+ZpmsDSbzwtlSpeJurlFUBEivMM0gepZK043N5BqVOhWnbk0ezepVc+9R3lSZ5yzbbevvXI3n428KUST7kTzvxjP2bGdpOYUMRirbiPad0DpRrJU6u7TBJn2xbMoPfNMpRT57b3bUlo+pN/+xaq2Z054mdnFKvX1aSR8ePktX+blYx9P8u6en6Y4+fs7N54tydzfs37GmeuWCXmOLs+g1BfvFfQxCUdiddv+WI3Rqap87vblisEGUosL521e5mF0suCluark04uikd+pZIhDLe71ze/YNGxwm+qX4Tkods+3jKTp/+MjtwR5fuHcS3LJt+mJSXagtJA+JI+L3rp0G5BiI+5NIoQ8EG4tA111wTdTqjMN9lM+SoqPYDZHjfxFWbH8Y+bVr6FyxWgOgTNq4V8jnqTYwr5Wrpvj2oXj388MNB9qiMo3KVqXXq1CnhvkR9v8nL74ckU7hNt0AElS7a3L5r2XA9JY9UbQ3SsHghF6OthPo6ilHJnkepA/mn6rskq2Oydi59GdSMIJ1H9dvoE9LmRkHLV5bK5DoL2/66/vrrXX81atyRRZT0VStVqpS0KulwLWwbNZ/jDkkvQk8oAoqAIqAIKAKKgCKgCCgCioAisI0isIP17/3XNnptellJEMCNx8SJE83atWvd5PfmksqW6lA+E3r8MYCC/HmyARNJszVul69eb1UP1lg3E6UMLsbSTULkeo0rrbLOH1Y5Z92fG0z1imWcOwhWLefL/rJviBnWhcE8q7Tzx5I1ZqMNwHUY6kyoR+HyIJXhXuyRTa4WcKMHcQdbu36jyxd3beADmSpTW2fdGKD8w7VXsCue61mijwyYZ5rH1hAPdw0zF66ymOOGrXyBSZhMrgGMcMGBOhHEoLChzIQ6BwP/rNjO9jnFFSDpeQ5wcZFuosUvf8nKde7ZJW2tKmVMNfv8Zmp/Wjd0XBvPYxXrIi+q3pybZ5/ZZav+tM9Y2bT5/2Xjs3qzatWCpLJM67U5482fP9+t0GWSgNWptWtHT14VVZ1wd8B7nHpQhyZNmiQdVI+qA2SOmTNnmjVr1ji3pNl8izZs2ODKFgUcVl9z/VGTOlFlbwth4MYK7aVLl5oqVao4gkyqCYt8XvPm+I4vXrzYTJ061bnzgKjnT8xkci08G7Nnz3bpIQ9t7meDZ1RW0NPGEbeMUXVHzZIV9tiQIUMiJxWj0hVlGO/PmQtW27YF3+iyReYyK9NrwHXy3Llz3buO993mvp+LFi1y7ysIU7zrUk2IZXpNfrzCvtNIj+sX2vYQnqpVK0ju9cvbGvaL2zMIZoVt26+xZBbav7Q3qlYoY5/jor8ThS1zg21DLly+1ixZud619SCfhYmPya4i23ZYsnxyCd9IvVesc67BSY8aLO3MosYc1520UbE69t2ZrJ+E27z73hnr4qHgdLRVzCsqQyGJftMa22avZPultauUS1AtLapyt4d86TfgEpkxDcgOUcZ7mfYI7RrIIJBzi3tfY8ECq95o60x7D5UqvrvZtsOisNhWw1atWuVcHwtem7uNAq48h/QJqEONGjU2+/2y48quHUJ7BPJbrmSt8DNS2PYXmKBGBvGrcePGWeOSCa65tFG3tnGH8H3RY0UgHwiMHz++yN1m5qOemocioAgoAoqAIqAIKAKKQPFCQIlNxet+aG0UgW0OgWTEpm3uQvWCFAFFQBFQBBSBTQhAPGPyEvckGO5VUNYJG6v9cWkhtnDhwqwIgpJOt4qAIqAIKAJbHgFceYub5ROtwuh5/VoWqBTkp1MfGexcfnISNacuTasXiKcBioAioAgoAoqAIqAIbKsIKLFpW72zel2KgCKgCCgCioAioAgULQKlijZ7zV0RUAQUAUVAEVAEFAFFQBHYvhBAlQEXM7jXw3ATc/7555vu3bs7l7yoIeCWbsCAAQEw1157rZKaAjR0RxFQBBSBrQ+B4/dqHBCbXh40zan3dmlWzbSsX9mstQp4Y6YvNa8MmmpQUcJw4dy5iZKatr47rTVWBBQBRUARUAQUAUVAEVAEFAFFQBFQBBQBRUAR2NwIKLFpcyOu5SkCioAioAgoAoqAIqAIbPMInHPOOWbQoEHmyy+/dNf65JNPJr3mm2++2Vx//fVJz+sJRUARUAQUgeKPQMfG1czxvRub/3w9zVX2q5HzDH9RtnubWuaW4zoUuXu8qLI1TBFQBBQBRUARUAQUAUVAEVAEFAFFQBFQBBQBRUAR2NoQKLG1VVjrqwgoAoqAIqAIKAKKgCKgCBR3BKpWrWo+/vhj89RTT5mmTZtGVrd3797m9ddfd8pOJUposzwSJA1UBBQBRWArQuCC/i3Nk+d2d2pMUdVu1aCyOatvc3PPKZ1NpXK6ziwKIw1TBBQBRUARUAQUAUVAEVAEFAFFQBFQBBQBRUARUATCCOywbt26v8KBeqwIKAKKQL4Q2LDxL7N+w0aXXZmSJUyJEjvkK2vNRxFQBBQBRUAR2GoQWLVqlZk0aZJZtGiRadiwoWnSpIn9JiqZaau5gVpRRUARUASyRIB+0JzFq838pWtN5fKlTeM6FUxp2x9SUwQUAUVAEVAEFAFFYHtGYPz48aZ169bbMwR67YqAIqAIKAKKgCKgCCgCOSCgxKYcQNMkioAioAgoAoqAIqAIKAKKgCKgCCgCioAioAgoAoqAIqAIKAKKgCKgCCgCmSOgxKbMsdKYioAioAgoAoqAIqAIKAJxBHS5YBwL3VMEFAFFQBFQBBQBRUARUAQUAUVAEVAEFAFFQBFQBBQBRUARUAQUAUVAEVAEFAFFQBFQBBQBRUARUAQUgWKCgBKbismN0GooAoqAIqAIKAKKgCKgCCgCioAioAgoAoqAIqAIKAKKgCKgCCgCioAioAgoAoqAIqAIKAKKgCKgCCgCikAcASU2xbHQPUVAEVAEFAFFQBFQBBQBRUARUAQUAUVAEVAEFAFFQBFQBBQBRUARUAQUAUVAEVAEFAFFQBFQBBQBRUARKCYIKLGpmNwIrYYioAgoAoqAIqAIKAKKgCKgCCgCioAioAgoAoqAIqAIKAKKgCKgCCgCioAioAgoAoqAIqAIKAKKgCKgCMQRUGJTHAvdUwQUAUVAEVAEFAFFQBFQBBQBRUARUAQUAUVAEVAEFAFFQBFQBBQBRUARUAQUAUVAEVAEFAH0vSYTAABAAElEQVRFQBFQBBSBYoKAEpuKyY3QaigCioAioAgoAoqAIqAIKAKKgCKgCCgCioAioAgoAoqAIqAIKAKKgCKgCCgCioAioAgoAoqAIqAIKAKKQBwBJTbFsdA9RUARUAQUAUVAEVAEFAFFQBFQBBQBRUARUAQUAUVAEVAEFAFFQBFQBBQBRUARUAQUAUVAEVAEFAFFQBEoJggosamY3AithiKgCCgCioAioAgoAoqAIqAIKAKKgCKgCCgCioAioAgoAoqAIqAIKAKKgCKgCCgCioAioAgoAoqAIqAIxBFQYlMcC91TBBQBRUARUAQUAUVAEVAEFAFFQBFQBBQBRUARUAQUAUVAEVAEFAFFQBFQBBQBRUARUAQUAUVAEVAEFIFigoASm4rJjdBqKAKKgCKgCCgCioAioAgoAoqAIqAIKAKKgCKgCCgCioAioAgoAoqAIqAIKAKKgCKgCCgCioAioAgoAopAHIFS8V3dUwQUAUVAEVAEFAFFQBFQBBQBRUARUAQUAUVAEVAEFAFFQBFQBBQBRUARUAQUgXwgsHrdBlO+TMl8ZJVzHsvX/Gk++GmWS39QjwamSvmCU4Pr/txoJsxebibMWW7mLVlrKpUrZY7eo6EpXVL1EXIGXhMmIDB38RozfMpiF9Z2pyqmSZ2KCee3hoPPhs82G//awVSpUMr0alN7a6iy1lERUAQUgW0GgYKtl23m0vRCFAFFQBFQBBQBRUARUAQUAUVAEVAEFAFFQBFQBBQBRUARUAQUAUVAEVAEFIHNgwAkoq9GzDMjpi42wyctMX8sXWPqVC1nujavZro2rW4O2Ll+TmSh576cbBYuX+vSXnpw66wuZsDAieadH2e6NPMsueTyQxLTr1q7wVz+3HAzauqShHwP6bmTLS8hSA+SIPDlr3MD0k44SokddjA1Kpc1taqUMQ1rVzCdGlUzJUrsEI62zR9Pmrvc3PH6GHedVx7WZqskNv3jtd9c/ds2rKLEpm3+idULVAQUgeKGgBKbitsd0fooAoqAIqAIKAKKgCKgCCgCioAioAgoAoqAIqAIKAKKgCKgCCgCioAioAhsVQjMX7rWXPrsMDN13sqEekNu+mzYXPf3v9HzzJ0nds5axeltS0xasmKdyzdbYtOsRauC+sxcmFg3Ttz+xugEUlMFqzBVv2Z5U9IScsTmWELU+JlL3WH7xtVNbUvSUYsjMGTCQvPJz3PiASn2ILod2rOBOXavxqZsKVXESgGVnlIEFAFFQBFQBAIElNgUQKE7ioAioAgoAoqAIqAIKAKKgCKgCCgCioAioAgoAoqAIqAIKAKKgCKgCCgCikB2CMxcsNpcNOAXp9BESshBPdvUNA1qVjBjZiw1wybGXHANGb/InP/Uz+axc7qbSmU3jxzSyfs0NTPnr3YXdFKfpgkXtvGvv8w3o+cHYQ+f1dV0a1bDlAwpCn3yy2zz3BeTXbz7TutsiU3qhisALcsdiG4DPptkBo3+w5LcOpkda5TPMgeNrggoAoqAIqAIbH8IKLFp+7vnesWKgCKgCCgCioAioAgoAoqAIqAIKAKKgCKgCCgCioAioAgoAoqAIqAIKAJ5QuDBD8YGpKZuLaqb+07palWZ4mo8o6YtMec++bMr7fdZy82HP80yx+3ZKE+lp86mS5Pq5o1rekVGmr1wTRDexbrL69GiZnCsO7kh8Pwlu5pWO1YOEq/7c6N1I7jO4IrtA3vfv/9tgTvHc3DWE0PNa1ftbiqX0+naADDdUQQUAUVAEVAEIhCIt6oiTmqQIqAIKAKKgCKgCCgCioAioAgoAoqAIqAIKAKKgCKgCCgCioAioAgoAoqAIqAIRCMwb8lagxITVq1SGfPAqYmkJsI7Nq5mrjuqHbvOvrZqPcXBlq2OubejLhCg1PKPQBnrbq5+9XJmj7a1LeGti7n31M5BIbgXfPDdscGx7igCioAioAgoAopANAJKAY7GRUMVAUVAEVAEFAFFQBFQBBQBRUARUAQUAUVAEVAEFAFFQBFQBBQBRUARUAS2cQTmL11rBo+PqejUsQSUXVsmVy36AxLT77G4zepVMu0bVTUzF64MENrdup8rWzpaU6BbszhxaMaCVUGaot6ZPn+VGTEl5gpvd0uuqVm5jBk6caGZu2iNmbUo5qKOOvwyabGpZxWFsKqVSpu92tUxnw+fY9au32jGzVzqwvkHiWvRshghqn3jqqZZ3UrBOdnBNd+3Y+ebOTb/pSvXmVpVy5qdrFu+vTvUNdVt3r6Nm7nMTJi93AW1s3g2t7gms9+sW79Jc1a407u0qmXqViubEJVrpdzZC1eZ1Ws3mLr2frax6km97LWUKrlDQlwOJtq8xto8sb071TXl7L0bO2OZGTZ5sS1nueluFawO2bWBO5+vfxCcHji9i7nyuV9dlp//Os8c17tJgsqTX9byNX+aQSPnmWn22hYuW2MqlS9t6lUvb3q1rWWa1KnoRzXz7X0ZPC7mWrB5/UqmXcOqCec5mGPv+8/2/mPJ7t+UeSvNaKsyhvWy9a1hn5kwVhWtK8Vpf6wyqJHxV6FsKVefXezvp0HN3N3rZfPsuAp6/zZs/MvVe7Kt/+S5KwxqWS3t/W9psWjVoIpVUUvt/nGRVdb6atQ8w3O0Ys1607h2RdOxSTXrnjH+2/WKK7BL+eNn8TyvcNsd7CPHe4J70bFRtQIuHgtkoAGKgCKgCCgCSRFQYlNSaPSEIqAIKAKKgCKgCCgCioAioAgoAoqAIqAIKAKKgCKgCCgCioAioAgoAorAtoxAWUt2uOftmGpOBbs/8La9kxIQPvp5lnn2i8kOjksOauWITXWrljdXHNra/GVDO1jyQjIrXyY+JQe5aHPZGEvckeu77biSZr8u9cz7Q2aZ/41MVI0aNdUSVOwfBg5f3F7HPPLRBIOqkG9v/zAjODy+d2NzQf+WwfHqdRvMfW//ZiDrRNkD744zJ+/T1Jy1fzNTokSMaLTYEp+kfvt0qmNuP6FTVFIX9qitj9TxuYt3DYhNG//6y9z/zjjn6i0qMUpaT567syOq+OeHTVpkHvnwdxdUo0oZ8+b3083Q32MkMAJL2Trmm9hEvru1rmX6dqtnPhs2l0PzP0um8d3XEWYvybz89VTz1KcTOSxgT34ywezRvpa58egOCa7sBMte7Wo5hahwwk+HzQ6e4QN77GiuOzKuJCZx3/lxhnnnx5nu8P8ureKITT5WENW++22+eW9wjAgn6WR7uf09HLFbQznMaJvLs+NnDCHqjjfHBM+Hf479OlXLmYfP6lrgGZB4A4fNMbe/PkYOE7a7WcLiDUd1SAgLHyxesd7c/OpIM2xi/Pnx43RuWtXccmyn4Jn1z+m+IqAIKAKKQHoEomnj6dNpDEVAEVAEFAFFQBFQBBQBRUARUAQUAUVAEVAEFAFFQBFQBBQBRUARUAQUAUVgq0agSvlSpo8l1GCrLDFn5CalmqiLQsFIbJ9O9dzuTrXKm8MtiQMiR+sGleV0ge1vM2OkIU6kilcgYREEVLTqOpCXwkYYf9UtEQiDgBWOJ3HY+go4KDud8+TQAqSmcPoXv5pibnl1VFB0D6uKJHG+smSr1es2Buf8HZS1hNTUpG7FBAyf+XxSAVKT5EkekLOusgpJkE+S2dMDJyWQmpLFy1f4gT3iSlD/jSCC3W9d1IVJTf41UY/vxiwwZzwyxKDqhNW25CzUgbDvf1tgUBAK2w/jFgRB341d4AhUQcCmnaETYopOEMJQHArb4x9PSCA1Ec+3B98b71Sv/LBU+7k+O5LnnMVrzDH3fx88H4SDFWQmsT+WrjFnPvqTU56SMNmiOBUmNflY/zhuoSMtSfzwdsmq9ebEh35MIDWh9NTQvhvERkxZak785w/BvZJw3SoCioAioAhkhkCcHp5ZfI2lCCgCioAioAgoAoqAIqAIKAKKgCKgCCgCioAioAgoAoqAIqAIKAKKgCKgCGwzCPTbuX6gYDRo1B+ma9OCrqdwxTXDqsJgu7etaWpZEkmmhkusxzYpA5Fm744xIlWm6fMdD5Ue/nDtdtbjQ132p+/XzJxhlZR8e/HSnu7w2S8nm+c2KVXdekIH06tNbT+a2x/w+cTATRwBtx7X3rpyq+Vcz81auNp8YxV+Hv8opo4EgWmPdrNN3647Ohdxh+3e0LwyaKrLZ8j4+Rafum7f//ftb3GFqYOs0pDYxz/PNi9+NdUdQka55fgO1nVYDVOuTAnrjmyleeaLiY4AhNu9614aYR49q5spU6qg7gMu7iDoXGnVhto1rOZIQqssWauorLMlvohRN0hIJTepWH1n3emhqiV2Vt/mZj+LyU61K5ilq/60BJqF5q43f3NEPNKCqygv7dmudnAfeGZ9Eh3ELlztiUH4mmRdtrXYRIYifMGydcFzvod1d1cCf2ohm2pdvTWoUd7cclwHm38Vdw9x03jX26MDchiKUv++cJdQyujDXJ8dyQ2lLbFuLaqbKw5pYxpZrKj7Qute7p/vjzVfj5rv8Pri17n2eltIdEO9r31xZHCMathxezU2bex1rbH3f9jkReaf71qiVhIlJhL+YO+XKJvxbrjpmI4GwiSGe8Bb/jPCuoNc6sqHHJmtmpXLSP8pAoqAIrCdI1Dwy72dA6KXrwgoAoqAIqAIKAKKgCKgCCgCioAioAgoAoqAIqAIKAKKgCKgCCgCioAisP0gsEvLuGrQJ0NnRyrdfGuJOWL9u8WJNRKWavvUwIkBWQTiQxQxKFX64n4OxaDXvomTS+4+pZPZv0t9R2qi7g1qljfH7dnInPm35sGlPPv5lGD/b9Y9nth/R0a7sftyRMxtG/H27VzfRcd9GQQfsQfO6Gr2aFvbVChb0pFaIOz847hOpm3DKi4Kik/Dp0S7CoPUNOD8HqaPJRDVrVbWucqrZPMpKoPEhPKU2NKVcTWpF/4bx+YYi9up1n0fpCasagUUxuqau0/tLEnNR/aZhaCD9WhVIwgfucm1oARA0gnbz5Yk5dvoaXF8erau6Z8K9iGQPXRmN+eKsVTJGPGpjsXslmPibgQhUP25oaBiVJDJpp3CPjtkM2fxarNr6xrONd8dJ3Q2TepUDAhZqI7ddHTHoNifNqlRSQDuJYWUxHNy0zEdLLGtqrv/PEc8T/d6WEs6f/v1mDjp7py+LQNSE3FQ0cIFHe7sqKN/n/08dF8RUAQUAUUgNQJKbEqNj55VBBQBRUARUAQUAUVAEVAEFAFFQBFQBBQBRUARUAQUAUVAEVAEFAFFQBHYhhEoXbKEObhnzDUY7uhGTY+7jZPL/mzYbLcLqWN3q4qTqb31wwzz+rdx0s+lB7XJNOlWE++HsXFiR99u9cxe7aIVqU7p0yQg86A0hKIQBgFJXKih5oRSjm+o3qB4g0EQgSyCDR4fd6t2hFV98lWQXAT7r2zpEub8/i3l0EycHSszCNi0s3/nuo6AFQ4vyuMalnQjttS6M8NmW1xEVQlXauf3i9dd4rLt3ryGObJXwyDou033oL0l5YiFiUyCV49W1c1+9nqx7z3XdBz/OiX+7He1ZUTZPkmwql6ptOnVrlaQZN6SNcF+sp3CPjvke/dJnc2Dp3cz957cxRG/wmWVt+pd7RvFcPl91vIE4uK4WXEFq5stqSlKzavVjpUTnqFw/mXs+0Ns4pzlshtsIco9cFpXV0eU0dQUAUVAEVAEskcg/qbNPq2mUAQUAUVAEVAEFAFFQBFQBBQBRUARUAQUAUVAEVAEFAFFQBFQBBQBRUARUAS2egT6do2pAHEhgyy5xjfcdYkbur7WbV3ZCFdmfnzZ/2b0H+ah98fLoXnwzK6bnTwTFF6EO5Pmrgpy79g47mItCNy0U8KqFHXyzk+ZFyeBHNQjRiwj6pBxcXUsjr/z3ND12zmuljVuZjx9tYqlzdzFayL/IKOJjZ0ZI0jJsWw7N01eb4mT7+3qtRuCLMttquOUP+LEq/aNY27egkihnfablKgIFpIYJL29OsSIdz//vshstC7usI1//RU817u1ru3cKRKOizWUr8SGToypOqFeVK1CaQlO2ApJKCFw00H96uWD4JVr/wz2k+3k49kJ520v1ayy2M5futZM/WOlGTN9qfsLx+N4zPQYsYlnBPd1yaxD4zhhLBynS7O468rbXx9j7nxzjBlilaFWr0sk6IXT6bEioAgoAopA5gjEHHxmHl9jKgKKgCKgCCgCioAioAgoAoqAIqAIKAKKgCKgCCgCioAioAgoAoqAIqAIKALbFAKosuAabOq8leaLEfPMRQe2MrgLw74ZEyfa9O0ad5uWCoBfJi0y1700Mohyw9HtzK7W5d22aAuWxZV5fPdqUdfarF6lIHjh8nXB/j7WvdrDH8RIYF9ad3S9rUs4sS9+nSO7zjWYHCxcHnO/xvGzX0x2f3Iu2Xb45LgikR+nfBG6nfPL8ffnWCKWWA3rCg9bvCLukq5F/cpyOnLbpG4cywUeFru1rmW+GT3foD422T7PKGJBfOIY27VVzf9n7yzg4za2Ln5fw8zMzMycFAPltE25TcrMjK9ML2VKOW2/MlNSStI0bdIwMzMzQ785s77aWVm7XnvXju2cm99G0mg0Gv01Gsmao3ulaMGwaAmenRAeEftG+4d1MSHYohnCzkWzgvnCIrJoedz0ZLQdlAevXj+YsHL/zNvgefdy9xM0v8Fso2Ho6leLzbqWw9pf1olGlPe38Xz195xQWL8fJ6wW/GAQiME7FsInqqcx//ZcJgESIAESSJsAPTalzYg5SIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAEcjmBk9qFvAFB7OCGo9MwdFVKF5Km1dP27DN7xTa5fsgkj9YNJ9WXvo6nIW9FLplxPf6UiOLlRw+1ZJGwz4W9Tsi5MiYsm4Yxc8PRuWHoTulQxYaW07Li8QikeXWqQhZdPlxThJzTusBbEELmwfY43pPSYlm8UFic5LJo44SQm7Zksy13wsLQFOHtapYvImVNOL/6VUJingnGaxNs5vKw6Kt9veAwdDZjEv9LRtuZaIRZ5z49Rt4YvjBuURMOYeuusLCudJFwWMCgwysaQ/gGD26PmXB4N5/awAupqGUgrOCL38+XUx/9Q179aYHAmxSNBEiABEgg/QTCTw/p35ZbkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkECuIACvKhAhwBCOrmXNUuKGoTuxfRX5T8iJU9TjReir61+f6K2/sk9dOatrdW85N86otyEc24r1u6R2DO82yzbs9hCU9IlJ+rauJGNmbbDrEY4OXpvcMHQnmPWuufu9s38jae0Ietx87nxa58/Nm5nzf8wMhzvs3Kistys3/NuyDeEQf14GZ2bFpvD6skXDXpSqlCkkEOGtNOKpSYs2y+mdqsmY2aH9aZg6FNO9SXmZt3K7jDEeyW4wHsqmpHizgtCqYdXizp4yb9Y9hxlpOxBGXf96WETYrn4pOc5cx1XKFhIIv4oUML9CeeWuoVNs2D33SKqWDYeeg2erWLZqU9i7VlC+/Ebc1N9wxm/p+p0ybckWmWzEZMMnr/GyfzByiRWwDTq2tpfGGRIgARIggfgI0GNTfJyYiwRIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIIBcTQKiozo1C4eIQju7QoX8jwtAhpFQsW23ED9cYUZOG/Bp0XG25oGfNWJvkinXwAqS22Ai7Ytm8Vdu81WVLRHrJ6WTCn0FUA/t9ekiIo2HosI9mNUp422KmbPHwfsHcCnog6onxq2wEP4fbEILvrZ8XedU4tmW4XZV1wry5rLzMzsziNWHW5UuGWSBL1yahUHLjTHi07XsOyJSFIW9M7euHPTGpVyYIoFYYwdk/80Oh1Do2LOOFYXR2lymzibYdhNFTa1K9hDx3SRvp17ayFSVCYFfB8IS3pRXrw4I6zQ9PS3VMmD4YQvDtO3BIV6WaLlm/I1VatIQa5YrISSY83f1nN5UfHugh53Sv4WUdNjEUos5L4AwJkAAJkEBcBChsigsTM5EACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACeR2AhoyzoajW7pFNAxdyzolJZYoBmKVG96Y6IUXO98Imi7JhZ5Ztu7cn6oJtK0bFsv8NHGV7N4XLBBZudF4EJofCnuGQpobj1iuQWjSu03IK9OvRlgGDz5TF2+1WU7pWEWO8rlbalMnvP2oGWvloBGiBRnSJyzcZH/LTJmH0yAyevDj6Z74DZ6V2tcPe2xqVDUs3oIYaXEUT0IQ4QyfHBbJtPWFjlMBEwRfX/69wjvkNnVCwj0kwCuTCsl+m7ZGFq4OiXc6NQzXx9swk2YSbTuzloWFcqd1qhpYS3hRW7c12ONSI8cz1c9Twt6V3IIOmfhx34wLM3TXoa3PXLbV/tBe/QYPXFf2rutxhohs196D/mxcJgESIAESSIMAhU1pAOJqEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiCBI4NA54Zhr0GvDlsoy1NCp53YtkpUABCr3PTWJBv6C5kGdKsuV5kQdLnFihiPN2oT5oc95Ghao2rFbegzLIPXE5/PFKMFibC9+w/JXe9P9QQ9vZqXl2IF80bkwUJvJ9zcI5/P8tYf16KiN68zTY2HHgiDYBBADf5mjq7ypqjHm78slBuGTLK/L/9e7q3Lypn9Bw/JH7PWySXPj4sIiXbf2U0Egi41zJ/YrrIuyh3vTrEel7yElJnnv5srs5eHRD0li+aX1rXDIi9kaVkrLDYbMmyB3aqT8cRUMF94X3mO+o8J91ferhsyfKGd4j9X/OQlZtJMom2nZvlwOLl5q7anquUmIzh85NOZqdI1oZXD7fHPZklQGUNHLJG/Zoe8Wel2OoXA7PKXx9vfgGf+sqErdZ1OUQf14gYPUYWd60nzcEoCJEACJBCbQOonhtj5uZYESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAEciWBAkb4cXzrivL12JUyfUkofBcOtEeTkADEf9AQ7Nz2zhTP2w3WHzj4rzz77Vx/1ojlMztVk6rlwqKMiJUxFgZ/E7tcbAqxSB9HIBSjuLhWIbSb2vDJa6xnpI7Gq09jsx+E3YInpdv6N5Qb35hss8Hb0rINu6S7YVa1TEEjFtkho0xoOXirUbumT32djZg2rhYSKyGv8m9Ry6Q5ddANjjLCnGcGtZJLXhhnhSM4ZwtNeLZODcpIXSMgWbd1r/FqtMYrB9ud2aW6bp4p07d+XSgVSoR57d53QNZs2SNzjGchFbfojm8/vZEJr1dSF73p5SfUld8NQ+QHhwsHj5WeRgjWqEoxU9Ze+WvOhohjuv3UBpIvT1iwhIIgYOrQoLSMmxsWogV5YkLaT054tJoVitjwbV5lMnkm0bbT2vFA9enoZbJq0y7pakIali6WX+at3CHfjlsZ1VsTDu2EVpXkb8MTbRZ2zasTrNirpRE87TSCxT9nr48QotlMzn8lCue1QrTvx6+yqbe+PUVO71xVmpuwiQXz5zVtf5u8ZgSSatgfjQRIgARIIP0EKGxKPzNuQQIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkkEsJQHwAkYzaCUboFM3LyuK1OyJEJtjmi7/S9goEj0UZETbFUzYELckUNrWvV1bKlyjoCUQgAsHv3B415Jq+9SymdnXLyM1GYDP465Dwat7K7UZYktqDDjIPvrSVVCpd0G7n/w/R5k7qUEVe+ynkZQjr+8XwllXdiMNQ3pWvTLBFQQylgih/2c9f3jpQIOXPl8jynzM3pLk5WD50XtNAURM2LmNEOc9c0kpufWuyFTchjBpEO0F2pfEM1qNZhaBV0rF+2QhhE86R39o4YQSxDqKgrLZE2g5YXX5CHVGPU+DvPwddm5SVHUakhNB+fkN7u/vMJlaIh/YKMRmEXq7YC9vcfWZjecx4dAqyi46uJbNXbLPiRpwrt+26+Y9tUUFOjxIuz83HeRIgARIggdQEIuW7qdczhQRIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgASOGALwoqMhznDQfdpE97ICr0EZsXxHxT9El9/njSc9+8sTo3p54qwDvFi9dEUbOa9nTSmcPxyWzl+P/sYL1WtXtxUISYIMIdY+ubWzdKiXWmDj5j+2eWTYue5Ng71l6TY4X69e1VYQai3ITjFCqU9v7yJt64TDsyFfnlhwggqKkpY3DY4IFdfEhM3D8UNc9cWdXaKKmnQXLWqWlKE3d4oqhIF4DWVdYM5JNGvncEZ7hgjMbyUL55NmZl9q7epHMtL0eFnld0Ld6baYutdJPif0nuZJpO1AWPSACelXrWzYU5aWe0XvuvLQOc2lSIHovj7Qvp+6uFVECEDdHmVCONevbWWv7ef1XY+VDds3r20vFx5dM6Lf0DLgQe3OMxrJf89tJoViXD+an1MSIAESIIHUBP6zb98+X5Tb1JmYQgIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIZJTB37lxp0KBBRjfndtmEAMLs7dh7QP49JFLchOHKE0XYtdt4vllrQrDtMdOiBfNJuZIFpECAoCXZh7Vr70HrWWrv/oNSskgBKVc8f4SoJtn7y4ry9h04JOtNWL0de/ZL/rx5DMuCUrRAdIFZVtQpM/eRSNvZYc7/qo27jAgpr/UKFq19Rqs/Qkuu3rxbwLxc8YJSqmi+aFmjpu/ed8iGxMO+q5YpLHmTJKCLukOuIAESIIEjgACFTUfASeYhkgAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkMDhJEBh0+Gkz32TAAmQAAmQAAmQQM4lEL+fy5x7jKw5CZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZBADiNAYVMOO2GsLgmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAkcCQQobDoSzjKPkQRIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARyGAEKm3LYCWN1SYAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESOBIIEBh05FwlnmMJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJJDDCFDYlMNOGKtLAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAkcCAQqbjoSzzGMkARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIggRxGgMKmHHbCWF0SIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESOBIIUNh0JJxlHiMJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJ5DACFDblsBPG6pIACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZDAkUCAwqYj4SzzGEmABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEgghxGgsCmHnTBWlwRIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgASOBAIUNh0JZ5nHSAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAI5jACFTTnshLG6JEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJHAkEKCw6Ug4yzxGEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEshhBChsymEnjNUlARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIggSOBAIVNR8JZ5jGSAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQQA4jQGFTDjthrC4JkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJHAkEKGw6Es4yj5EESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAEchgBCpty2AljdUmABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEjgSCBAYdORcJZ5jCRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiSQwwhQ2JTDThirSwIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAJHAgEKm46Es8xjJAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIIEcRoDCphx2wlhdEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEjgSCFDYdCScZR4jCZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACeQwAhQ25bATxuqSAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQwJFAgMKmI+Es8xhJgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIIIcRoLAph50wVpcESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAEjgQCFDYdCWeZx0gCJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACOYwAhU057ISxuiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRwJBCgsOlIOMs8RhIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARLIYQTy5rD6srokEEhg48aN8tNPP9l1jRo1kjZt2gTmi5U4a9YsmTRpks3Sq1cvqVKlipd91KhR8v3330u/fv2kZ8+eXnq8M4luH+9+jtR8e/fulc8++8weftWqVTN0jrKC3b///iuzZ8+WqVOnyrx58yRfvnxy3nnnSY0aNWTz5s3y9ttv22oMHDhQSpcu7VUJbW/Lli02/4ABA7z07DgT61zgmN977z1p3Lix4Djy5s1dt6BYfUisczV+/HiZO3euzYI+plSpUrGyJ31drHOW9J2xwGxLgO0gc07N4rU7ZM7K7bbwNnVKSfkSBTNnRyw1Swn8OXu9bN99QIoVyitdG5XL0n1zZ8EE9h84JPNWb5f5q7bL2i17pGjBvHJW1+qSLw+/4wkmFn/q/oOH5Nepa+0GNcsXkUZVi8e98cFD/5pt18iiNTukX9sqUr1c4bi3zY0ZE+WBdv7rtNC5qGDuJ63NfYVGAskmMGHBJlm/ba8t9rgWFSVvnv8kexcsjwRIgARIgARIgARIgARIgARIgARIgATSTSB3jSqn+/CPrA0efvhhWbt2reTPn18GDx6cqw5++fLlMmjQIHtMt99+e4aETSNGjJCbbrrJlvHtt996wqYVK1bIcccdZ9Off/55Wbx4sbcuHoiJbh/PPo70PDt37vTOf//+/bOlsAmipltuuUVeeumliNPVunVrK2x64IEH5LXXXrPr0J6fe+45Lx/WTZ8+XYoVK2YFQd6KbDgT7VwcOnRITjvtNJk/f76tdcGCBQXnKjdZtD4krWP8/PPP5dlnn7XZIK7MamFTtHOWVr1zyvoFZqD7q7ErMlzdHk3KS/v6ZTK8fU7ZMLe3g8N1HiYu3CzPfhMSLj4zqCWFTYfrRCR5v2/9skjmpQjWxjx5bJJLZ3HpJbBzzwG55Z3JMn3J1ohNT+lQlcKmCCIZW9iz76A88slMu3HPZuXl0fObx13QqBnr5KGPQ9uOmrlePrqls/znCNZIJMpjt3MuejUvT2FT3C0x8zNu3blfhvy8QL4eu1K6NSknT1zYIs2dbt9tthm+UA6ZvxODrFD+PFKueEEpV6KAtKhVUsoUKxCULelpn/+1XEab6xXWvXE5I2zia8OkQ2aBJEACJEACJEACJEACJEACJEACJEAC6SbANxTpRpZzN3j99ddl3bp19gBym7ApM88KRCauLVu2LELYhOWJEyfaLB07dpRKlSq52SWt7SMyZ8OFYcOGye7du6V48eJyzDHHHJYaZoc6JHrgEC35RU3NmjWTwoVDX64vWrTI28WCBQu8+dwyA28wKmrCMbnHm+gx5ob2kSgDbh+dwJwV2+0gU/QcsddUKVP4iBA2xabAtSRAAiSQfQk88tnMCFFT4QJ5pFLpQpLnqCNYQZNNTteqTbu9mixfv0v2GY9DBfIduV600uIxd+U2Wb1pj2XW1QpK2Ia9BpTNZ36fvtZ73oQoaK4RvzaoUixmrbftOiBf/h2/+B6CqQt61pQm1UvELDc7r/x77gbZu++QFDEeD9vVDXsozs51Zt1IgARIgARIgARIgARIgARIgARIgASyBwEKm7LHeWAtsjEBiJUuuOACef/99+0Uy64htBa8YcG+/vrrVMKmtLZ3y8pu8xA0nXzyybZarVq1knHjxmV5FbNDHZJx0L/++qtXzKOPPipXXXWVFC1a1Eu74447POEPvI7lNitUqJDA49m9994rEHSdf/75STnE3NI+kgKDhQQSOCrB8dNiJpwRjQRIgARIIHsSgKeTP2aEPIughs9d1lpa1y5FUVM2OV29W1cShG5cuHqHXNmn7hEtasIpSYvHs9/O9UR6wx7sYcJd5ssmZ5LVSIvAt/+sjMgyfPLqNIVNERvEsQDBFH7Xn1RfzupSPcd5P9u7/5Dc+vYUe6T1jejrnes7xHHUzEICJEACJEACJEACJEACJEACJEACJEACIQIcrWNLIIE0CPzHxEt466235M033zQvD9P/1Wyi26dRPa7OIQRcUdjVV18tRYoUiah5t27dZO7cULiiiBW5aAFiriuvvDJD11EuwsBDyWICfdtUFvyC7NTHRsv6rXvtKoaTCiLENBIgARLI3gRcDzit6pSiB5BsdrrKFi8gr13VThBpKwN/RmWzo0m8OuSROMPsWMLitTu98KRav++M0OkqI+bLlyc+hX33puXk8Qsiw9dt27Vf1pnn1D9mrjOenZbL5h37bfEvfDdPDh36V87pXkN3xykJkAAJkAAJkEA2J4CQwggzS8t8ArOWb5WlxlssDF5Qc9oHi1uNV8+/5oQ+3qlVvog0rFo886FxDyRAAiRAAiSQQwhQ2JRDThSrefgJZETU5NY60e3dsjif8whoGMgOHTqkEjXlvKPJeI15HWScHbckARIgARIgARKIJICBf7UWNUvqLKfZjABFTZEnhDwieeT0pZ+nrPYOoWODMjJ27kbZtfeg/DNvk3RpVNZbl96Z4oXzCX51KxW1Hpoe+nSGjJm1wRbz0g/zpV29MnZdestlfhIgARIgARIggcwnsH3PAfl96lqZumSzTF64xYiV90j5EgWlVZ2S0qpWKendplLcAmi3tm//ukg2bg99oOemYx6Cagjpy5XIb54RikudiuFIAf68uXn592nr5KM/ltpDHHpTRymWwzis3bJbHvlkpq3/Bb1qUtiUmxsrj40ESIAESCDdBChsSjey3LfB+vXr5bvvvrMH1qlTJ2nUqJGsXLlSxo4dK6NHjxaEemrYsKF07txZIMrIqG3dulX+/vtvmTVrlv0VK1ZMEN4MYanwy5s3dnOcOXOmreeiRYusx5fGjRtL7969pUGDBnFV6V/zqTDCgf3111+yePFiKV26tKCM008/3c7HKuSjjz6yHCpWrCh9+/a1WTVt4sSJ3qY///yzrFmzxi6DVZMmTSLyutt7G6XM7Nu3T3788UeZMmWKLF26VPLnzy/VqlWTLl26SM+ePQO93GTWuZs3b578+eefgjqpoU28/fbbdrFgwYJy9tlny1G+GE8ZOQYt3z/NaB20nA0bNtjQeWPGjJGNGzfattu+fXvbvvPkif2FDPaNawLtZMeOHfY8tGnTRvr16yf58sUfEgJt1vXUhLqh/StH8DvnnHOkQIECoseLPGhjaCvpsb1798q3334rU6dOlWXLlknJkiWlZs2acuqpp0rt2rVjFrV9+3aZMGGCbXvTpk2TcuXKSdOmTb3rM+bG6Vg5atQoWbhwob3Wzz333MBrHl6rJk2aJJMnTxa0b1xDqAv6phIlSnh7U17pbaOJcEqkD/EqHufM7NmzZfjw4YIprFatWnLKKafY9ptWEWjvX3zxhQ1tuHr1ahseE304+rpSpUqltXnU9em5vg8dOiTvvvuuLats2bJeSEu38D179sj//d//2aQaNWrIMccc466285s2bbIhPrHQunVradmyZao8WZmwzHzxNXrWelm1aZfgazu8lGpkvpzq0qic5M2T2qPflp37bMgQ1LFpDXNNmi+tFq/dIZMXb5aZy7baEDM3nRy6h2EQbL150ZU/31FyfMtKsnPvAZm2ZItMXLBJNu7YJ6d2qCItzcsvtYPmS/0ZS7fKIlPeojU7ZN+BQ1KvcjGpV8n8zLRwgdj9nJYTa5rRfjSR+z3aLO6r6APmz58vdevWtf0A7qlVq1aNVd2Y69Zt2SOzlm+zvJZt2CWVShW0rOoaXtXLFY65bayV8EIyfv5G87Jyi6zevFuKm7BBtSoUlV7NytvByFjbuusSbVu1KhSRFRt3mRemm21dShXNLw2rFJeeph55jgq3zUmLNtt2tWz9TqlQsqA0qVZCmhkxSAkzcBrLUDbC36zevEe2mnaNl6VVyxaWnk3LC/aVHkNYqs3bQ88XfYw3taBrZ+T0dbJ9935znzhK+phQVkH206TVcsC0+7IlCkinBpEDx/sPHpK/Zm+Qeau2yxpzXvKaF7w43ha1SpowZaUDPcek53oNqo8/bcT0tbJj9wGbjJA7Dcz5UMOA9+wVW62HjwWrt0vJIvmljhm4rl+5eOAg9QITxmu2+eoUhnOK8FRob2PMMaJPwfVfuXQh6Wg4oE+KZYn2HQcO/mv2u95ji7o0qlbc1L2Y1ChXxDwbhttbUD3QBqeYH+oPsXNFc17a1i0tzdMpShpv+sY1m3bLCvNTm7hwk1T8p6BdLGGYdm9STld5U/SrqMNqs90B007KmX4c/Sa+5C1g+t8g+2HCKusdpZJhjLqu37ZXJpl9TTLXG8q4um89KVOsQNCmNu1IaPN79h+UX6aYv4FMnwjr1LCs7Sd2YkBn2lqb1sC0TbQTNT9XXC8zzL1x+tIt9rpFH4M+uospK612tdDcB9EuV27cbatQ2/SJHeqXsf3x1p37rccb7Le2GdRoUj38PKl1cacIb/jD+FU2KVo7wjU33PRBsIqmXbQz7cJvEN2NmrHOJuuxB/Fw0zZuC//t9dPE1d5X/T1MXwuBS5Dh+KYv22L7dsw3NcfX2PzwdXda3ILK07SMMk3mecV9APeDpeaetcHcN/C1fUVz/8ZzF56pgszfXxYukFfmm3vBRHO9LlyzXaqWKSytjXc395kK/RrO1TzTH+NZrLa5j4Mh7pHR+gXdN/pUeGeClSqaT245taGc+eQYu/zTpFUJCZtsISn/FS2U13p0uub1CV64wjd/WShPXBjp5cndJto8QsKNnLHWcgFX9MO4Nrs3KR94Tw4qJz3PVXjGmWqeffcbzmrgrNzw7Htcy4pylE/xh3OJeySedTeYfhfnHM+4uFeWKZa+Zw/dL6ckQAIkQAIkkBUE4Bn8xrcmyRLj1dE1iJuGT1pjfyPMvfjR81t4z3tuvljzX/y9QraYd0TxGP5OO6tLNTm+VfDf1PGUwTwkQAIkQAIkQAIkkJ0IxFaSZKeasi6ZRmDFihU2PBR2cMcdd1gRwQUXXBC4v0svvVSeeeYZKVw4fYOAv/32m1x00UWiXmv8hR977LHy8ccfS/HiwYMx119/vbz22mv+zeS2226TG2+8UQYMGJBqnZuwbds2K4KCeMNvOOYXX3zRnxyxjP2g7hAXqLBJ09yMr7zyird4yy23yOOPP26XNa+7vZfRzEDQdPnll0flU69ePfnkk0/suXG3y6xzN378eK9N6P5w/AgjptanT58IkURGj0HL808zUgctAwK6Hj166KKdvvPOO3Z61llnyXvvvSdB4iaIMa655hobejBi45SF8uXLC9pyvGI6iMOuu+66iKIgInI5YrAeYsJ//vnHS//ggw8E9YzXwOq0004LbD933nmnuG3RXybEAxC8QLgWZAib99hjj6X7mg8q6/3335ehQ4faVRCxVKlSxcu2f/9+ueeee+S5557z0twZsP/000+twBLpGWkfiXBKtA9xjyXW/IEDB+TWW2+VF154IVW2+++/X6699loZPHhwqnWaANGc2740HVOEAoQgs3///m5yXPPpvb4h2vvf//5nhSnYwa5du1IJ2XCdal3RFiAk9NuIESO8PM8///xhEzZhkPPpL+fItykDV/56YiDr5Svb2kF9d93aLXvliS9C4rQLetW0g2Nv/rzIywLxkQqbvh63whNBNapaQq5+bbwXcgQbtK4dHoSDyOSRT2d6A1tegSkz5YzQ4/nLWqeqjz9frOWM9qOJ3O8hdLv44oujVgv3WDyHpMdw7r40L/6e/WZu1M3O71VTrjihTqoBtagbpKzAYPQNb04ygpNtqbK+9MM8ufW0hqnS/QnJalsQ2f3v6zn+4u0A/pMXtbADlQ99PNO4Mw95enAzov2+akJFVTMiAr9BgPPUV7Pll8lGsBBgz3w1Ry48uqZcdpzhl4agRTeHB4sv/lpuFzFA6XerDtHgPR9M0+wCLzwQ7biGAU79ghHhe1xhE47xsc9mRlw/7rbVjJDt0fObp/p6NT3Xq1te0PzrwxfI0N+X2FW4Hl++oq2Xbe7K7XLHe1O8MJjeipSZ/p2rGaFMXSmYLyxOhIjmeRN6CAYhDgbnX/lxQcoW4Qn6l6ObV5AHz2kaIWjTHIn2Haj7LW9PisoWoeAePa+5lCiSWoCx1Yg8bnl7cuD18tYvi8yXy6Xk6Ytbxv1i/xvTZ44wX+K6Nn2JEcWYHwz96y8P9fJWLzeCxvv/b3qqcFGaAfnvOqOx5adpOn3ss1l2FgMDV/epJ9cNCX/UgBUX9KoVU9iU29s8RE13vjfViDw3WU4QFB3XKiTQ32KENnofPLVjFbnttEY2D/5zud5zZhO5/OV/rJcbL0PKTLOaJeSBs5saQWpkP4DV6EOfNPfZ71OESO62L8p8Ob9nDXtOtQ7o79MSNkFc8aH5wnu5EWPA/nj8mFTXE8RXWiau8a/v7mbzuv9NMOI7zXPzqQ2scCSIB64Nzedur9c80kob4VyQ5x/U48pXIv++VRbHtqhgucXbN+u+E2WajPNqTqu8P3KxvD5soVYrYor+r5sRLt5zZmMr9HRXuv0lhK8/Tljties031u/iJzc3rTH0xsacfhOuffDad751jyYQgz7v0GtYvZLEEpqiLgT21Wx9ytsN3XxFttHbTttf1RRmruveOYhVL77jCZyzjN/2ewQHEP8BYFpvAax0I1vTvTq7G6H++OD5lqLZRl5rkI4GH8bBzM3rbMRMOpx4PkKHqmiPXejfo8bQVeQeDVW3bmOBEiABEiABLKCwIoNu+3fCxAxwQqb8HMdG5aRKkZcPdPcEyct2GzTx83dZN77TJAXzd+KRZPwYZot1Pcf3lX817wHGDtvo9x+emPzN2bwhxy+zbhIAiRAAiRAAiRAAtmWAJ9msu2pOTwV+/LLL8UVNbnCA9TozTffjDmoHlTrr776SiCCcUVNECngpwZPSr169RKIPvwGoYNf1ARvT2pY/8ADD+hiqunBgwdl4MCB1iONu1LLwD4xkPrDDz+4q9Ocr1ChgmgZmhnL+otX/AWhAbzquHz85cJrBbyVBAmzdN/JPHfwFqXHoeVjqmmYuiHFknUM7r7SWwfdFh6RTjzxRF2MEM8gEeKYG264wVvvzqAdvfXWW25SxDnGOTr55JOtJ6GITFEW4NlKmblZNA3TIIGVmzeteXhn8ouaUK5rEJhAFOI3CK8grFJRE7aDIMy9NiEkOOOMM/ybJn0ZYhtX1AQvbm3bhgeCwb5nz57Wkxh2nt72kQinzOpDgiDee++9EaIm/7l86aWXxBVQumUMGzbMEwFpun97eAiDYCU9ltHrG9eKGjyB+Q0CGDW0QXjh8hu8BqodffTROpvl0yHDF6YaXHE9ImFw5ta3pwg8vkQziC1cUVO0fEjHAJsOkvnzrTEecwY89Zc3eI/1qAsGVtXwdeClL/5jvnLfoUnpmma0H03kfo9+yhU1QQjsF6hCaPnkk0+m61heMGIQv6gJIhn3/H0wYokdGE9PwYeMh4aHjbjML2rSciEIgpDoT+PhK5Ylo22NMy8pVdSk+9d9wjMYhEmoq4qakMfNh7Z21avj7eCobocpxApXmnS/qMndFvkg4HngoxmYjcsgelCDpyu/TTFeHVyDFx6/weuOWmfHW9PPRoB12ztTIq4ff30hVrjw2bHGY1JqQZqWmZ7rVbfRKTxoqKgJbe01IxqrUiYkyMBA96AXxnmiJtQNgh6Iy9Qg+oJIJJp9OXZ5hKjJf3zwjjPECKv8lmjfAU841xpPIW7f5N83PIZd9PxY6z3M3f9+493mrqFTU10vbh5s+9AnM6xnJDc92nwR44XFv3/kRRp+8IKlBq9W4D7PCLNcc7fHNXvfh9Plq7Er3CwR8/D+BVFaei03t3n0E3cPneaJmro0LitPGDGlK8xLi9fSdTvN4M8ET9Tk3s+wLcRqjxpxGcQufkMoDhXy6Dr3vH4wcqm8ZfKk17oZD15q8Bjjt39SRFxIxz0XHmn8NsVc72rw9BXNIKTSduvm0TRM8wV4hVxsPADc/NZkbxM/t19N6JP/fZNa8OptEGUmWUwTOa9Pm/uWX9TknldUHaKeQS/8k+re5R4WRJPqMcy/PUQz7/y6WG59Z7InanL7YpSDPvt+0y/EMvXchTwQk8F6O54GRxiPU8k0eJmEcEoNzwDxGjx64XjdftzdFvdHrF9lPNpFs4w8VyEsjrZnt1xNw/Q/5h8Mz1eXvzI+1XO3X+CMe8rwySGvaW6ZnCcBEiABEiCBw01g8Lezbdg51KN13VLy7X095GHz8ceVvevKi5e1kdeuDr/rxN8n6sEwI/Ue8+Sx4v5+ffho+eTWznJH/0bWI7CWCS9R9304NfB5WvNwSgIkQAIkQAIkQAI5gQCFTTnhLGVhHSGggWEgG+GM4EFjy5Yt1iuSVuOhhx6y63Q51hShmx555BEvy0033SRLliwReBrCD0IdeCOCTZ8+XRA2zLVffvlFbr/9di8JHksQmgl1Q7g2HeBHCLho9uijj3qh9pAH3nowiI4yEPZNRS4QV6XHECoHZdx3333eZvBIgzR/upfBNwMG8GSlBgEJGKxdu1YQygehz7gOLgAAQABJREFUqFxxB/IifFOQJfPcnXnmmfYYUD81hA3UY8MUoc5gyTwG3Rem6amDux3aB8RqEPIgpBHaMLzFuIPhQ4YM8cQ8ui3aheaBGARCMYRhQjg0nOuTTjrJZkV5qFu086DlYYrzpcw0HSEdNQ3T+vXr66p0T9FGUC8VxUEUgFB0qDfaEDw/qcFrmF+8p6HCkAfekrANrrnly5fbY1ZRDK4NXJ+ZZQhPB1EODGIGeJECc4SNBCN4nFJT72rpaR+JcsqsPkSPyZ1qXwYxJ/o4HD9EJm4/Ay918GTkGs6PKySCZz3dHnwhmFKD8A/tOB5L5Pp2hUj+vh371hCoWg9X6KRpaI8wiGzj9ZSm2yZripAq7xvhCwwDL/B+8/N/e8pw83vvxo7WYwDWYRDoTjPIgvA0QbYwRWR0/Yn15YObO8lo4wHiy7u6BmUV5IWHiucuay3DHuwhIx892rgOr2jzfjpmmbdNG/OS7MNbOtm6wFvEt/d2t2GqkAGD9L9MydiAT0b60UTu9/CW9+yzz3rH9fnnnwvCUuL879y50z6T6MqnnnpKEFIyHtu4fa98Nma5l/X+s5vI8Ad7ymd3dDHnsJcdfNeVGBiH14N47e3fFnketrANvIn8cH936yHmg5s7yoBu1W1R6sEkqNxktS28DEXbfPnKNqa99LTeRR67oLm3yz9mrJcxszZY8cyQa9tZBmi/L13RxsuDQU6EgHLtDSPo03aLdHgB+v6+0DGC4bX9Qs9vWIeB43gHGFs6A7KTjacLv/mZIUyj31zBQJsUwQDC4vz347DACp6L3jDHCya/P3K0vHB5axsyTctC3mRcr1oephAEYKAcBs8Xr1zV1oZNsgnmv+8nrNRZufiYWrZuL13eRr67t4ftT3AeYWAQTZiIcwkDf5wHeCVCX3LTKQ1sOv6DmOPXqZFethLpOyDavPHNSZ7wBJ5S8EIebNEfwnOGesGByOPd38L3GIhRnvxythUIoG7weoRtRz12jO3bXjHe7nTAGm311WGpRVnYzm/wroRjxzlWG3hsLZuGdLCBIUwURDHoE2EI+ffsJa3kt0d62WvhnRs6SN+2lew6/AcvZEEiFazDdYJyTjGhQYdc005GmL4Z+wrydob8arm1zSOcFURNKqxAmER4Q8tvQkimx8AUbAcdW9vcx7pZ70ejnzhG7h0QCumNsiB80/1o2RAy6vWGNPeaQDn3nNXYZtVrRreLZ+qGloO4xW9+0er4Ban7qX9MmFIYBEcI0xjNEFoN7Qg/3PvVcF1rentHEKrrEdoE7OAN6scHelhu8C7l9s1fj13pDazpdrGmyWSa0fMKtt+MC/eVlx5fWz6+rbNlgeN85Pxm9p6H48CzFzz7RDOIj8H0IzPAB5a47tH3qqHPRp/Vrl5p22d8bwYe8cwFpmoQuu4wHoSCDJ6FEDIQhj4foRNhrieh78aHj8WuTMJ/CE2oFkuEpHkwRbi9e4xwHscLq2nCNWpfiP74VXO/gggT16J777eZU/7L6HPVMUbwBf7gq4YQrdq+MUWoPdgYw1vD9kBohvsFzgn6dNzL0R7UPh69TGc5JQESIAESIIFsQQBegOGJCVayaH555mJ4fox8Nm5Wo6TcZbxOqmnoYl1OZIp9VTXPJPBM+a75O+eS48L3zb9mb0wlHE5kX9yWBEiABEiABEiABA4Hgcgnq8NRA+4z2xGAxwV4T1FRAzwPQfDhCmzmzJkTV70hYqpUqZIcf/zxNsQXQrNVrlzZ27Z58+YCkYma650DaRAUqCEEEwbn69SpY5NQLkLSqLhJ87lTCFpcYRW89cBjSblyoa9wGzduLBgkPfvss93Nsmze9UQFvggj1a5dOxuyqVChQtaL1RdffOF50IF4yS8GcCubzHPnlhtrPtnHEGtf8a6DqANht8qUKWM3yZs3r0BUd95553lFQNSmBiHUZZddpovy7bffWq9PCI2IkFrwHgTRml4DENz426q3cRbOIFwZBAiwfv362WsBYe3gTatUqVI2nB1CPKo98cQTOisIeYb2AsO1DmETOMGwPY4ZYaFw7eK3aFH6v3a3hcXxH8KcqUG006RJeCALdYOYEp7kUA8IIOBBKT2WCKfD0Ye88cYbMmjQINt34jjr1q1rhU0atg1p7rnEshvyEOsQvhN9JKxatWoCUSjCLMLQ3iHki8cSub67dAkNKmM/I0eOjNjdqlWrvLarKyDkdG3NmjVeKDsVFrrrs2Ieg3IaUgX7QziSrsaLQ5GCeW3YsrpmgBxiDwzUw+BVYkqAUMOuNP89M6ilFbzUMoNJCA2jITd0vU7hweW5S1sLBlaRJ58ZJFbvF6uNxxAMPEFYgK/+apY3ZZlrFlamWH6596zw9eN6lNCy452mtx9N5H4PQaYKNOGBzhXp5cuXzz6TICQm+oBOnTpZQW08x4EBTbDC707zxeIJrSp5A2dABo8cV/QOPVOgPL+wJ9o+4KHEHUyHiAjCM/UQU6tCUbmuX30vFFNQOcluWy8acUzLWqVsuCSEqsGg51V96kbsGuHmmlQrYdse2kwrE97w9tPDYaHmOB6MIPJyBwwhXDmuZUUjjgp5wYEQ5ZzuNSJelMbrkQzXD9o4bKIJ1QThiWvwwuHaSOPtAgOyrqlgAAPJKor5wvG0g2vyPiOKaGyOFzwKGJf7beqUlifMcahHDnim8O/L3Ue816tu844Ru8E7CAwDxgg/V654AV1tjxPHAoOACSIO1A2G9oj+BNe0ttmVm1J7gLGZzX94QQ3+euwVShaUM0wIuyudc+73dpJI3/HJn8s8Dx4QBqHfwwt51B/nE4P4j5zXTKtnB/o37wh5sJu0aJM38A+Bx1MXt7Tb5jUeaNC3aagnFXX936ilgnCEyTK0FfWshn2gDUAkgj4V/XB9Ew7xzv6NBUJRNVcEpmk6RWgzXDcQckHAgzL1PGoe/zQ3tnmIAu9+f6onNkLouYfObWY8C2Xs9cK5PUL9SRkTcg2GPqqP8XpzQa+aWLQ2b1Wkl7WPRi/VVXK5CSfqXhMop2+byuKKPL3Mccw0dwSYCDXm2noTClOFF5o+dk6ksGnj9n2eFyDX+5PmT9b0+pPqS/9O1aRE4Xy2SLRFcOjdOiSGRuK8Vdvj3l2ymWbkvL77+2KvvhAJDzymticexHH2albBiik1E4TJGupF03Rq+5yLWgq8HMFw3V92fB3bz2oe3Edwj9P+FP0SmKr3JeSbH4XhaMcrY7+24XcceB5AaDUY+p9oYkmbIQP/uWEZN5m2Fo9NXbLZCgSRF/3WU4aL9oXoj5ubsK8PmX5cOQSVmVnPVe6+4CFN74NPptwvcE5guJejPWh/DWF3ekTp7n44TwIkQAIkQAJBBCAAhgcl/MaliNSD8iFtnRExaV54Soat2LjTTvFfZxN+DveuIGtt/hZXQ8jszDA8T+NvToSOV3vp+3my/2Dwx3jIgzB6H41eJoO/mSsPmDDeL/4wz3q0hfDZb3NXbvOOH4KuIEPYZGW0bXewUBwfCCDPjxNXee8Gxs7bYNOGT15lvUzhbw8w/j9Tt4fMB0qv/rRAfpq02vt4JWjf8aTBE/R75tnz8c9nWe/BCCn/m/loa6/ZX1q2w7wv/HvuBlunRz+bKc9+O9ceA8K3+99xBJW1yHgVHjpiiTxm9o39f2z+tlm6Ptx+grZx0/A3M7xb43zB8zHOFRhG+0DK3ZbzJEACJEACJJCTCYRGsXPyEbDuSSUArxgQSPgNQocBAwZ4odDg7cMdtPbn12V4X/n+++91MXAKT0Bq8NSiBvECBCQw1Ms/kK/5IG76+uuvRT2daDqmKvrA/LnnnmtDvmHeNRwbxFHwZoMB/6y0Dz/80Nvd0KFDBaHL/AZxArzUgD8MnoTgrcZvyT53/vKjLSfzGKLtI73paBNBBoZa30mTJnlt3W07CHUU1LYh8IMw77jjjrNFQxil80H7yoo0V7SENqzCJHffp59+unTt2tWGcBs3bpzs379fIBSAYEsN7R6iBAhoXDvhhBMEv8y2AgXCA7/gCs8vuC7VUF9/iEBdF880EU5Z3Yeg/3W9uLnH9/TTT9vrHwIQeLtTTvBMpn0lPODdfPPN7mbePIQhL7/8sl2OFdbS28DM6PWCtPT2Ubhmevfubb1xQdiEPl1DL/7+++/ebnBc8CgGgdvu3bsFok7Y2LFjvTwQtBwOG2teUqj1N6IBDPr4DYNkV/etJ9e9PtGuwgBikGcFDJx1ckJm+ctxl880+1Ihk5uO+ccvaOFPilgulD+PHXDHSx8M+OCFSlqD7hEFpCyktx9N5H6P0JJqEE6jT1Jxtabfeuutgl96DCI0/GJZIyN8UcPAZTznyB3QPsEMHrueE7QsdGF3GPHDGDPoCRGT35LZtuD1oGHVkLjO3Q+ES2oQ+gR5lVFRHvItNUIfNQ1bh2UMkLveJzQPphcfXcu++AMTeI3ASzQIdNIyDPjCAwvYLFyzw4pLsA3Cnan3iVtPa2i95yB91vKt3vW3yQhmIEqCdUkZOMa8Gw4IHrSCvMaUNUKjW09tJPd8MA2byIgZawWeJPyWnusV2+JlqAq7cD6eu6S1lCgSEhpo2c5tzR43jtN/Tjo2KCP4xTKU73occfOeZ8Qh8J6Fax/l7zAvj9ULRiJ9h3okwb4eNGyD+qfyRlwFMZh6t4GwCUK4UcYLk9oNRoRR2qT5DaIDiDFUGIaBbQinkmEqJkNZN57cIHDQHn0k2szJj4y2u0RbusnkDeo7z+paI0PVyk1tHqEF73l/mqg3NXi8gjgsiFe8sE7vVDUwa08j0lSvie6gDwSmaOcwXK8X9qoVuD36Z/Rhw0z4jfQY2jiuRRwjBJiHzL0UQjjYBLOsBi+ML5gBIvSZ8GClg1czzCCOGkQamWXwHhZkxxohqh4zOHVtFPteiDIyg2l6zyv6LRUiQpR0dZ96QYcnCO13Rpdq8nmKV8Y/jSe7oH1BdFw8RfTlFgRPf+oBrJfxNIZnJ781M898COcHW2EGHN17qubF4JHa0UZw5RqeD/Re+suUNRFCYDdfRuZLOvcXiOjisQWrdnjZ0G41RKqXaGaKGqEqhKuXvzzeTfbmM+u5ytuBmYFwKS3D/WHigpDgECEZg57P0yqD60mABEiABEggiEAB80zwxBehD0gLm/lh/+0Z9RkX3nj17xf8nYMPHyqUKCS3GM+P+CynafXof88Uyh8eksMHaplpF5t7629T1spK85y1K0UM07F+SICt+4VI5qkvZsnPJl+QwavtheZv/8uOq+09E68yf7srq+tOrCdnd0v9d9LLPy4wHwCGnovz5/uP+dgsLATX/Tz9xRxbN/DGx2gwhAf/c2bofVzrOmXl9ncne8/+uh2mLxWdbz4OaiauUMxdH21+hXmfcN9H0wPLxDaoy93G+ysE9UEGMdaDH82ULeZv3iBrV7+UPHZ+S8/LqD/P/76eI1/+vcKfLC9+P1/O7l5djmsR/kghVSaTAPEUwtdHE/fj/eU15j2l/m0SVAbTSIAESIAESCCnEgiPbOfUI2C9k0qgW7duUcurXr26t27btsgvZr0VcczAU8zmzZtl2bJlMmPGDIHARA2iCzWET1Lr2LGjuAOfmq5TCDeCzA2fBS8P0axo0aKeN55oeZKdDgYIiQfDAK5fVOLur02bNt6iO9jvJZqZrDh37v4wn+xj8JefkWUI5SCoCLKqVcODJgi7pua2QXh5Qii2oB/aiZq7jaZl5RTh1TT8IPaL6yqozkgrUSI8cK/e1iBsckOFdejQwXpEg+DFvQ6z4phwfau988471isLwmHCY0+iliinrO5DovVl4AABGM4TTMVomIe3GzV4o4vWDhCiUO3vv/+2wihdDpom4/qGsAmG+s6cOdPbjYoJIeQ65ZRTvHTUS+3PP//U2Zj9m5cpE2bwBZoaBpHWmlBXQT+89FCb42yjaZi2rxf/wKaGdHK3jzZvdICCUCjWg8S6nfYrNv1aMNo2aaVnpB8NKjPe+33Dhg09IRPEhPCOB09r8+bNS7OdBu03VhoG5Lfu3G8FNBCh6Us2bONzHBS1GPcLuFjiCwyUusIht8Bktq1oA3quR7BGAcIn1Mf1KOTWD2IjtaYxBCYY6G/urF9svjqMxzAorYavONXwxSEM3iROalfFhnDCshuezs2vggF4bNDwOtjWLxhCGWquCGzG0q2aHDFNz/X6/sglMsSE7YNBdPTCZalFTViHL2bbmnBHaoNeGGfDrs02nrL8Hqk0T9C0hRlsR1lBhnS3PeAr0GgWb9/hZwuPZNEMwsAre9e1v9oVQ/nc8wWBQVAfirQiBcIv9+c7A/DR9hVvuuutxj33/u3h4QdCChgEdxuMVx6/QUCT0YGH3NLm95hBD4SzUsHGqR2rCMICJiJqwjXreqBxuZcrUdBbdMOBuX0Urokol4TdFgKVjFinFOEk2oN7Lakgpkvjsl44WpTvtnU3XGZLR2SakXpE2wb9TZDIEPnLO9wQPiweSzbTjJzXJeY5Rq1pjRICT0LRDB4I1SCGDLLGVcN53PXFC4f7m3op4ePc9ZjX/gDzGJz0G7zgqbgG93q/UKhzw7CYDOHoII5LluE6VIMYKR5zPZ41NgOv0QztKj2WjOeqtPYH0R0EXPB8Be+S7jPBIdzMaCRAAiRAAiSQJALFTWjUXs3L29IgAprm/K3q38XPk1d7SUc3DwlRqpYtZMTW1az3xwYx7qmzVoT/Bo6Vz9tBAjMF8h4lfRzPkn6vxRDnX/HK+FSiJvc9F3Y/1HzM84ARA6m1rht+x+X3cIo82817Kvd9i4bo0+0xXb9tnxU1Yb6rebYO+pvirqFTPAES6uTWC8KiO96ZIlt3BXuDQrl+gyh6oPlbXD+S0PVuuTj3934w3QqsdL1OR05fKze+MTlC1ISwg/ipjZ+3Wa58dXygJ2J4ZvKLmtx9f/zHMhny8wItKtV06uLNgncJKmrCti3rlIzY/xd/LZc7hk5OtS0TSIAESIAESCA3EIjvLUhuOFIeQ1wEatSoETWfetGImiHGiokTJ8onn3wiCDXkekCJsYkVPen6pk2b6mzgFGGzgswNN4YQXbGsZcuWMmLEiFhZkrpu/frwF+ytW7eOWbYryFExlH+DzDp3/v24y8k+BrfsjM7Xrh39K88iRYoEFusKaB5++GHBLy073KHoXJEK6qohGtOq97Rp02yYOeRDqCkImdCmIDxBWEb8YH379rVewhACzBV02ZVJ/g8hKREqDSHnYKNGjbI/zMMDEYQvCCEZ7TpHvmiWKKes7kPcMHxBx9SiRQsvHCWEofCSoyG8kB+em+JpCyqMwvbRLBnXtyueGzNmjOBcQ+wCD3kwCJtq1qxpzzOEer/99psnuPvll19sHoi9XHGeTcyi/9yv4PElnn6NF2v30ULRYYAvXivsDPAHbYMBdwySYWBHvaME5ctoWkb6Ud1XRu738OQFz2rqMRJeIdVDE4S/p556qvW62KNHj0DPdLrvaNNRM9fJn8Zz0t/Go0aQC/Vo20VLd4USCAUYyxDmSgc+3XzJbFtBnibcfWFePY3406Mtb3REHWkdI0KTqcUbEgdenXBNQDAwyXhuQtgfGFy5w+DdBgPa8LYCjxx/zl7vebtw27yGi3LPa4MoIi5bsPmvfMmQeAXLKobSdTpNz/X6mnGDrwahmyso03SdwksGvJFgvzj2D4zrefxgOGaE+0OYyVjn1OVtN/T9VydFUIRkiPBcoVNG+g4/21gCEl9V7OL6rXu85OuHhD9m8BIDZqIJRAOyppnk7r962WDhuxYC4dP6raHnc3icQog/1+IVELjb6HxuafPqpUmPq0eT8lGFdponrWmNGP1otK+MF5q2rVbP9LOxzL0mYuXzr3PFaFPNl+Z1jQAGXhDhiQ/WxQhXELYLgjd4kRtvwpXoNhouE6EWE2k3/jq5y34hjbsuVh/i5nPnk800I+fVvYekdd4Q8lNtQxTxVkFHeK55/dNoQlF/Pv+yenNCenETNni848nLnxd9/hTThtLrTcBfji5vdLwDlCkeHkTT9UHTmebeoxZL/ItwkrjPuO1Bt9Npsp+rtFydItyMPufCYxrulzQSIAESIAESyCoCfdpUkhHT1tndwftrKxPy3W/4O2u5CdsG69yojJSN836M/LjPvfjdPMxa62m8R2a2ISzemz+HPsbxhzyHiMa97z94ThPzTFvWhnCHR+U/zLMvQtjBfjdcujZeZT0vlTBCcXyUhw/rxhjvmX5v4ZNNSHLXIKjy55lhQuWqdTR1DDL8/YwPCq7tW99+wIS/R7FPCI8g7oEI6ePRS+SKE+oGbR6Rhv0jbBy2geGZ55p+9aRlzVImpPZ/ZIH5wOuzMcvkxwkh0Ro8VSGkvYY1hp767d8We2XC6/CArtU9QTzE9vca79BoG2A6xYiQXK/gCG8Ir0xqlx5fx3pngiAOIq+/zHuPp76cLUEiMN3m+wlhj6EDTajBgcfUsoIw1A0fKlxlRGo4Poir4vWorWVzSgIkQAIkQAI5gQA9NuWEs5SD64hQSQijBm9Jzz33XNyiJhyyO6gOLySxrHTp8Bfwbj7XKw888cSysmXLxlqd9HW7doVDvqR1fPCug1BzahAGZAfLaceA9hhkGfFA5opJgsrM7DQIUzJiGzdu9DaDGA5CmHvuuUfKl4/8QxphwRASDdfWV1995W2TWTP33nuvfPHFF1ZQ5e4DYhcIsOC1DGKr9J6rRDlldR+SVj/krtc+cseO8OCeyy6teXhkimXJuL7hiUf7rj/++MPuDt7O9Lwce+yxNg3CFZiGLoUgTUWwOO+Hy3buTX9f64oAMqPeEIGc88xfNuyVK/DIjH0FlRmtH03kfo/9ILTnP//8IwMHDozYLdrK+++/L3369LECOPU6F5EpygK+8H/k05ly99Bp9sVUss7Nph1h7xclAkLcuNUpWSR4wDE7ti233vqiD2lpHaO7frdhHo9hILlX85Bb93/mbTTesv6V/QcPyR8pYcs6Nwo9k2lYNnxNiRB0MA0DBW9N6q0E51qtVBTmuh77dj1x4OVmsgxfRv5hXthGM3ilefPa9jaUXKmikaHq4AHnvx/PkGPvGyFu+DR/WdHalOZzzwfEOWoZ7Tv2HQizdcMfablpTTNy3W3ZGa53WuWntV73D7FaPvO1cixzw+S5bSrWNvGuy61tHmEdNXxkvCySkc8VH8JrYSzbuSfchmPl86+DqFP7ismLQs9MEN2pyKJdige2HkaMCPtzdkiYCa+AGrK0S0pf5i87s5ej/MkTc7dZwTRmBcxK97pLT1+n5ySt8pO1Hny/HRfyvIwy4cXrxjcmpfq5+xtmQlwmy1wRPbzNxWMqWMZ5DgrV6pZRNkqZmfVc5e4bnrDgNWLw13MFA6BZfW7dunCeBEiABEjgyCQA773qQefH8ausGMdPYnSK0B3pfVtX9q+OufzasAURoiiI5TPbypsQeWprNoU/PIFXJXgIUnv8oubmY5tKVtSENAjpz+lWXSDAUXvr58U6K+6zruv9Exn+mRcpbMI7BvcjMeSB8FsNIeeCDN5XHz6vuRUX6Uc2EFTdcUZDL/sMI3SKx/DxgYY9xjlGuPYO5nzjYwp8DIYP0xBiu3XdsJjtUyN0UsPfPRCxdWgQCot8dd+63t8LyIMPIe46s4lmlymLwseHxHd+DbM704RVhigJoiZYOVMuwkzffnr0D/Px7mJkiugO9VdRE7YHG3xM8/AFzWz9UMdVG8NjT8hDIwESIAESIIHcQIAem3LDWczGx/D777/LLbfc4tXwkksukV69egkEFSVLlpTixYtbbzBBoiMMiKshHE0sc0Nyufng/QRiCdiCBQskljeU9AyWuvvI6LwrZnJDNAWVB4GBemqC94q8ebPHpZsbjgG8K1QIx8x+7bXXbBsNOg9u2n/0ryk3MQvnXYEL2gQ8L8VjpUqF/zhD/kqVKskDDzxgxU3wtIJQYAgT9uuvv3rFDRgwQH766Sc55phjvLTMmIF3KPzgQQuCK4Qie++99zwRDOp08skny8iRI+PefaKcsroPQV+HMFzRzO2ntI90j/Hss8+W//73v9E2j0ivXDn2y5dkXd84p7iu0K4OHTrktS1446pZs6at0/HHHy9PP/20FTOtWLEiIrxeZre7CCi+BXeQ+87+jaRN3WARrW+zTFvE4M51QyZ65WNQFR5e8LIJ3gLgFaKw+d39/tRAL0Hehpkwk8j9XqsDz4mvv/66/O9//7N9EUKvfv75557IDffBLl262LCGFStW1M2iTj8YuUR+mhgaSMRA3gDzQq5hleL2xVMRwwmhr/BFHgYj02O1TSiuERL6gnO5eVGkIbeCynDD6rjrs1vbcuuGebd+aR0jQsOopSUq0nyYdjTCpB/Mi2K0a7iDR8gzNfV60tL5OnaSCVPXzrx01K9JVfSEbVzBjRsySstzpxiYVU9NaBd5zAvMRAxfj6JdqUe3u4ZOlQ9u7iS1HG8ibvllixeQy8yL4UHm60qE1EH4KnjBcUPrQCzy3GWtpV1An7PUhGrq1jj6y+9lG8LnQ+uQSN9RwhGKzV2RflE1PNqo8OWDmzual8Zpe6+LJ4/LNNa87h8MIPQq5YQI8G/ntp0ShYNFif5t0rOcW9r8pcfXllnLttlwdOB6p2nzr1/dLqansfRwiidv/crFvWxpefhyQ3B5G8U5g2sNoSLGmWsUAky9TuGlCW0L1sGEYPxg5FIrZlpnwirOc8KitXVCdMS5y8OWLauYxjpAty937y1B2yx3+royMa7roG0TTZu1fKvXr8VbFu53N53cIOHrBF4efp+21tute5/0EgNm4NkMgvh4+sJo10xmPVe51YXAV0PD4Do7vWNVgciwdLH8xtNjXvus+7kREes9192W8yRAAiRAAiSQDALwXniyCbcMwQ/EONOXbbEefdyyh08Kec2BuKRzjL/N3G0wj3vYJ6PDQpkbTwqPffjzJnMZ3pXUNhrPQGp/zQ6918DyCa0rSvfGkR+9ar6LetWUX6eusc+7K424Rz0B4e92Dcs+zYiUIAxSG2G8XcEuP6GO9VJsvQgZr+ONHA/L41I8NsNzEoQ9QXZax8qCcHp+61AvLIRatGanf3XgsvsB0Y2nNEgVShgb4f3AAwOaySmP/mHLGG7eKeEZDul49zZ4UOyoG3g3oDZ3VVhwhbDEGpoPYaPhKSrIIG4aNXNtoNcmdygCPFcbj1pVzfOSax3rlzXvWsJs3HWcJwESIAESIIHcQCD8VJMbjobHkO0IIKyQ2p133umFmtI0TJcsWeIuevNu+LmpU6d66UEzCMkUZBgkVUMehLSKZm7IqWh5kpnuihHgmWTv3r1SoEDwF5eusEuFAMmsS0bLyg3HgGN3B8jh/SZWeK6Mskr2di57eDSpXr26IJxTRg1iuQ4dOtjfjTfeKHPnzrWiRIhRYPDalFUCE5yP008/3f4ee+wxK2wYNGiQrQcETxC+uOEZ7Yoo/yXKKav7kLREjgglqKZCTVeYh7aQrPbrskukj4InHgibUDeUA5EcTL00Yb5jx46YWINARr01QbSH8HuHy9yv4PHSQAcxD1d94MZaDV+oPXdp8AuVtAYDtYxkThO53/vrgfCXaDf4wZsbwlPCk5OGzYT3r7POOsu/WarlMSneM7Di0fObS3sjpPHbpijha/z53GX3Zd0iI4xCKKZo5v8iUfNlt7al9dJpOfOiTQ2iox7hjw412ZvOdwbxIdqJ11rXCQtt8RIUYdJg9asUE+WDcEoQMEH4A48YhfKH/3RRbynYxhVUwVPKfjPwG807j3t9VEoRJqCMjBraVl7jWROcdLD59nenyDvXd5CihcL19ZePF6O4jvE7u1sNWbp+pzz/7Tx7nMg7cvraQGETxHixzP1SVkV3ifQdrtAAAqXdpi9MT5greLxRYRMG5GsZYWBWWoVSBb39g3E0YRNEK9OXhF88lzGD6Mm23NLmBx5T2woRB73wj2ULseETn8+SB89pZr8UTja3oPKqmkEFtQlmgCSaaA19QSwvalpGtCnuGxA2QQyCvuWvlPuKemnCds3MNaw2wQgw0RfAIJysVzlr27vWIyPTrGIaq27uPcS9twRt4wqHy/vCRgblT2ba8MlrvOIgmj6xbfSPBR42niNVqAMPRMe3SluY7RUeMDN0xGLPixHC8amANSBrRBIGEdXTJ9hF6wu37tofNWxvZj1XaUW3mX27/TAEk64XQs231ggIaSRAAiRAAiSQmQROaFXJ82QEDzkIVaaGv7c0DN0JJmxdkOhG87rTP2ask2e/meslDb60VaCwxsuQxJm9B8Jeiouaj+LUFq4JfxSDsOrRDN6Mmpv16pV08drt1jsQQnlD3IX3ZRPNc/AZnavZIvCssSXFezD+nsffg98bkTe8FF/Yq6bNA8+6yrFLo+gf7jSoEn7Wthum/AeRTzXj7Qhl6L7c9UHz7vsZ1D2awSsTxEca6g4fRlU0f1cGGbwo4fh37D5gntEOmGn4g639B8PcVxgRklqTGsVN6LvUYi1d37JW6UBhE7wAt61f2vN0PfCFcdLfeH7q0bS81DPeovKacHo0EiABEiABEsjtBKLfQXP7kfP4soTA6NGjvf1cfPHF3rw74w6Guunw4qQhjDCoGW3AH+GY/u///s/d1Jt3xVHIEy1kE7zUTJ8+3dsuozMInxSvQcQELyVqn3zyic6mmn7wwQdeWr9+/bz5rJxRj1HuPrP6GILq4NYno/NHH320t+nXX38t0UL9IR2iC/xcsZm3cRbOFCxYUDSMF3Yby4vRwoULbZ1HjBgh+/aFvsxZvXq1jBs3zv7gIclvDRo0kMcff9xLRviwzDKEn0Jd4DHKbzjO888/P0KUGE3IGNQ+EuWU1X0I+qlNmzb5MdhliJog7IJBvFSiROiP+3bt2tk0/AfBR9D51Azjx4+3bQG807JkXd/dunXzdoXrS/cN0Yoa9tW/f3+7OGzYMFtHLJx22mnGHfThe1RRrzGoyyjzEipayCqkIzwWfq5oAtsl02Y67rVP61Q1sGi8QFJvNIEZMikxkfs9hJTaH7khEFFVeMfr2bOn3H777V7NXYGfl+ibgfhCBxIR8guefoLsbyOYSa+pWATbYXAT+woyeOJR70L+9dmtbfnr53oKQvicaMeIF5QTTbtXa14z+KWjrnenCDPUqFroZSLCpKk7f783In3Jia8r4bUJhnNas3xYMAARE0LTqf1iviaNZurFC+td1/nR8qeVjheSeKl695mNBYPMMHB56NMZxktd+EUmhFu4hvHbuD38layWX6NcEbm6b/irzbkm/F6QjTFhD1Qo5F+PwV6sV6tWNvT1ZiJ9B44PXqnUvv1npc6mmj5uxC3H3T/C/vSlsetZK5bABOG7tB/VsIOpdpCBhE7mRbraDxNW6WyqqbY/rEC7LJ5GmMlUBcSRkBvafM9mISFnMTMg8tTFLbyj/nXqWvlo9FJvObNnMLii1zxER/ByhnCWfnv66zleuAn/uniWWzle40bNXGevX2zXwfkKGv1Pr+YhLn/P2eiFywQrDD5k1CAwyUrLKqaxjqlR1fA9ZLK5LyxeGyzkhEjSDe3m3rNilZ+Mddj3TxPDfckgI/TDc0G033Un1vd2+6OznZeYjhk8i7ohTM4xoth4DaJhte/HR+/Ho61L9nPV+q2pxUnwYqjWt22lQFETRKhjZofvc5qfUxIgARIgARJIJgF8zKR/2/1innPdd0Hu3zQnxClYhujnrvfDHyrec1ZjGwItmXWOVZb7QRc+/FDbsC18P9bj1XX+qfseRP+excc6XVP+Vpwwb5P396+Gj4foCV4j9W8yeCxC+DvY9GWbvV24Hy15iSkzFWII2AsZb47psXVGoKSmfyvrsn9av2r4fYM/VDqeWV78YZ6cN/hv6X7Xb9L7gZFyxhN/yoXPjpWrX0v9bhtlL3Q+CEPIulhWp2LovUJQnuv7NbCiK6yDoOr9EUvk0hf/kR53/ya3vTtZfp6M9zep/y4KKotpJEACJEACJJATCRy+0cKcSIt1TjeBZs2aedsECYcwyO4OVnqZU2bcgW94cNm6NfwlNbJAaHLRRRfJunVh16luGQh5p+IohKu78sor3dV2HgKPM888M1V6vAnwKKIGwUt67Nxzz/WyX3rppRLkNerTTz+VF154wcuXSF29QuKcgdhADYyDxDyZfQzx1EHrmNEpPBWplxuEP4PHIr/9a16iIsRX79697Q8eaA63QfCjBu8l6uVG0zBdsmSJtG/f3tb5hBNOkI0bN9rVEAZAcIIfPDEFif7cEI89evRwi03qPHijHp06dbKh5/yF79+/XxYtWuQlu6Ha4mkfiXDKij7EOzAzA3EWRKAHD0YKJTZv3hzRT7l9Y+HCha03G5QDr0jwTIep33788Ucbxgtt+PLLLxe06bQsGdc3wo527drV7soNk4fz7VqfPn3sIkKPTZ482c674k8krFq1ShCODz8wyWxrarwwqJcmfOU++Js5qXYJjG/8vFBueGOS/X359/JUeZKVgFAcaira0WVMIQZ4xHgGOByWyP0e4l3tj6677rrA6kP8pOZvO5ruTuFRBp5iYPgSMGgA7Tsj0PjF8brgbh9rvlKpQl7Zy00YNngq8dtG4wkKIcmiWXZrW/56QtihbV+P0d9lIKQbQlBBVADDwD7EDumxzg1Dghl4OlIRmIoVtJz25otEGPbz8ehldh5fJPr1AnCdr/bop7NEhTWahinc53/6Z6gMLB/TPLwNlhMxtLknL2phvbSgnDGzNsg7vy32ioS7/stfHm9/17w+IVAstnzDTi9/q9rhr4K9RDOjIo69+yNfVsIzDcQdej4gKMKLZliifceJbavYcvDfC9/NE3jY8hvY4itc7B8CnjpmoB92dPNwuN93DY9fpqQWnaEt3fPhNK8fVRf9/n1kZLln0/D+f5ywWr4etyJVMRCk3j00PNDQt0107yupNk5nQm5q8/C+BY9lai//MF/GO0JHTc+s6U0mfAS8IsFwj8b19d7vi43oYYMN8XGtCd2K8F+JGLyutagV+nr9zZ/Dz6LNaoQFOCjfPa96f/b3ZfHUo1jBcB86eVHmP+f465QVTP37dJcL5DtKTmwXvv5uf3eq/frdzYP557+b6wnWIHRt5XgA9OdN9vLfJmSK9rO478XyzId9t6hZ0opxMY9QhghXmF6DmPWF7+eZUMPhfgp9fL8YnqL8+2hcLdxmh01aE9gXQmT8yo8L/Jva5WQ8V+XLGxb64dnM/zFADec5F/dMv1gRg8pPfjE7qkcpVBQf41x44YVy8803278bAg+GiSRAAiRAAiQQB4GTUp5J4A0I4ejUNAxdFeP9t2n10HOirguazjYimOuHTPJW3XBSfcnMvze8HTkzMxwRkRvyzf2AKchLolOE+RsvLCJy/xZFWGYYRDaLUjyXjk0JMXd0iwpW6N/G+dBscsrfC+pJEtvi/UhWmHp2guAqv/k4IZaVKRoeE9lzIPTOA+9E8D7hEiMkQqhC9WAVqxxdt8X5aCEt1rE+sqlUuqAMuba9DDy2tpQsml+Lt9O/Zm+U/348U46973frATpiJRdIgARIgARIIJcQCD+R5JID4mFkLwIYfH/zzTdtpSDIGThwoBVYHDp0SMaOHSvPP/98zAo/+eSTMmbMGIHAYvHixYKwUGeccYa0bt3aimy+/PLLQDGHFgpPD8gD4QoMIiEIJE466SSBYAF1wPpowigtJ9a0Tp063mp4W4HYCsIBeFGB15tYNmDAAMsHYhoYBCYnn3yyHeCFmANhwL777juviGuvvVbcwWNvRSbNwFNKo0aNPMbwngKRCNJQT6zP7GOIpw6JHj5CuIEzBsshCBkyZIjAKxBEFQiDBbEJzq16y8H+cC4Ot0F0Am9Hr7zyiq03xCPwegMREjwV4cXu008/7VXziiuukEqVKtlleHuCmAvXFa6vE088Uc455xwrgtq9e7f1mPPQQw9527phw7zEJM2AJcQ8sMsuu8xe2126dLHh9eBtCuHoVBiJc+KGSIunfSTCKSv6EHvgzn/wWIQ+Dn0d+ikcO8Q+6pGqXr168uijjzpbiAwePNjmmzBhghUFQfyFc4Y2vXPnTvn111/lww8/9LZBeC8cW1qWrOsboiXt57BP9CWuKA1prgcyLMP8gjrcQ+B5DAYm6Icy0+C94H+DWpmXFuPsINbXY1cK3I53NC9u6lYqaj0jDTdfQ7lhM87sUj3TqtS6TkjggR3gZcrqzbutxxmE7cIXY/Ckcji8NaE+idzvEWoS93vY+++/L7j/oc00b97cDkqh7aIPVnO97Gla0BTil8/HhIRmg8w5xABgSyMWgecchC6Ch5GMGC6dJy9qKYOM228YyllpBh3haQjuyWcs3SojTBgxDNpFs+zWtvz1hJeR2/s3khuNYA+GY1y2YZc9RnzZCNEQPCi5noOucbwN+cuLtowvM9/6JSwWgEjB7xK+apnCVmTl7isorOBxLSrKN+NWeqF2rnltgnRvUk5aGo8rB8xgKELZIQyQ2pnGZTuu42Qa6vrwec3llrcn22Lf/nWRDa2HttHeHCvEYjgOiMVuemuSIMQBBpv3GmEPvmp1WfQ07TeaQThxvvk6FIPqdSsWk4XGqwk8eaBcGAb67zyjsbd5on0HOF58TC2BMAl21asTrGCpc6Oysse8wPazPad7DU9UFWLSTO77cLrd9sGPZsjv5vqA17IKxr0/2hX6M+27qpUrbL76LWfzJuO/KiZk2cBja3leTp7+co5tB6h7wXx5ZKoRaY0wwjo1eDU5uX1YyKXpyZrmtjYPr0QXHl1Thv6+xCK624gd37uxoyeMTBa3oHLQFz11cUu59vWJdjWuCxUVufmvN4NHEORl1CBacgdecMz+UJdBXgHd6y7efaP9S4qGGnWG4BPhKiFiSa9wNN59uvmyiqm7T//85SfUtWE9IR5Cf3n+s6ava1ZBEEptzZbdNoSJ+9x122mNYoby8Jef6LLr9e+4lmmLYyEw7WuePz4cudTuGl4fzutRI1U1IOgc7ISnwQcIG4xIeqUJW6LCX90I4uO7z2ySSuCr64OmOLe3nd5Q0AfCMIUAt5Np36gj7kEaTjVoe6Ql+lyFZwt4g9BBwNvfmyJ9Wley4ttu5j4Djwy4BnAvw7UMseKx5t5ez9yrEeJxxIy1Ec/c/nriHdMFF1xg/7bFOvxN++qrr/qzcZkESIAESIAE4iJwTItK8uL3821eDUfnhqE70fzNgHcDsQweta9PeVZFviv71JWzumbeO6NodXHffbStG/ZoW9oRxqww99/aMcKGLzMh39TwIYtaG+c9FbxW45kDXkxh6qmpWEF8LFDCPFNvlXHzN0p387cuBN+wrk3KpikyshmT8B/EaHh3AxEW3tfg7+ZopiItrC9ZOHS8ExZuNAL78N8V+LuxjRHYI8Q9xO6FC+STogXzGGFR6L2lW7Yr4MbfwLFseRrrIU679LjaMtD8jY53geA+dt4GGT8v/GHEPR9Ml+cuy2vC24fPd6x9ch0JkAAJkAAJ5BQCFDbllDOVQ+sJDzEInfbDDz/YI3jnnXcEP9cQ7uquu+5yk7z5UqVKyVdffeUJTjCwHySGghAFHkiCrFWrVgJvEOq1BQP/+LkGoQBEHa6Qw10fax5iJHiFUtEBxFP43XLLLRGhvILKgKAGA7YQIMBDCUQ1WHYFCLodvLA88sgjuphl0+uvv16uuuoquz8IYB544AE7v3btWsH5yYpjSKsOyYBRv359+f777z0hBURMrpDJ3QeEJ7Vr13aTDtv8M888Y9veN998Y9vPu+++K/j5rW/fvoK8ajhvEETB0xPaXazjhYgGXp8yy+CNDewhVIFBjOUKsnS/EPUFXf/xtI+McsK+M7sP0ePDFEJQeG+D962HH37YXWXn4SEO51rD0GmGIkWK2L6ye/fuVqwGwdqzzz5rf5pHp/CaFK/nt2Rd3xAt3XPPPVoFK1rxFlJmKleubIWbKmID9woVwp42kM0NSQoPP1lh1c0Ay+BLWsmVr4TuGxhMcwfU3Do8f1lrwSB6ZlmZYvnlshPqyBvDF9pdQKThCjWQiIGhHca1N0K4ZKUlcr+HyNJ9Fvj4448FP7+h/UPgVKhQfIwHmBeGfxnPHRgYxUurD8ygIn6uXdG7jrw+LMTTTU9rvoERP/z33KbywP/NsFlnL9/meY/QbTE4d7wZ9HTFKroO0+zUttx66TxC+9x8agMZ/HXIW1Y00QDyP2uuEXiySq9B1AMxk3q/gIAGA6x+69G0nHxkvohUax3gzQhisYfObWbcr0+xA6IoE14p8PNbd1MeXipnhkGA4LarO9+bKh/e0skO3EIsBuEH6harL7nK1M31ruHWEx5VXh+2wLZrHSh312MewrtyxcNfmCaj77j0uDqCUHc6qI8B8KBB8PN71pBTOkQKg+C1aZ0JO6QDA3/MWC/4+Q1e1l64tHVgG/DnTc/yRUfXktWmH9C2MNaEoMTPb7hm4YEob57UbdCfN6PLubHNo22gfwBTtG14cnv96nYCDy+ZbfBs9syglvLqTwsCxR/4Ir5IOkNU+OsM0RLKV+uU8lW6LmOK662OEV+oAAUCOXegyM0ba/5EI4D5JMUzHVh+ZsS5+EHAlYzQmbH2reuygqnuK2iK/gqicghEwQCiR9fTnrsN+lqIbbLK4BnTfe7qWD/koSCt/R9j+kDtr78zYeCChE14Tvnir5AYO1Z5/TtXk2v71cvQAOCpHarKfCNMhlAf9tecDfbn7q+38X6403B3j1PXJ+O5CmXA6xIMAqYhKc+0wx7sYcV7N57UwBMHBz134D7hCqy0bpgi5Lrrcdj1+Ovm4zwJkAAJkAAJxEMA4pHOjcqYdwobBcLk6014WTcM3bHGG1EsW71pj1xjRE0Q0cAGGSHKBT1r2vms/G/8go32GHSfbuj38uZDE7XFRoTVXRcCpvNWbfNSy5YIC5twb1bhMkLHVy0bfi/gemrq2qSCFTaNNH8HXn5CPe+5OejZ2ttRkmfKlSpghU0odumGHUbYFOwlGaFvXS/Cpc3HhLDx88Pv2S40f2NeYd7P+c39IMtdV8d8kKTmstQ0dwoBXTyGdyf4CAK/s02I4qXrd1rPpuPmhkRj+BiNwqZ4SDIPCZAACZBATiIQ2+diTjoS1jVNAvnyBavQMXAdj+XPH35ojSc/8iBE0meffWbDzZUvH/nSEWIgCHhuuummmMVBcDJ8+PBAbx4Qa2AQ3BVd+L2AoHCINyBugoDJbzfccIOMHj06YgDdX0Y0digLx/jbb7/JrbfeKm5YOnc/sbaHBx2EsIOoys8IZcA7EsKeffLJJ3ZfbrmZee50PwMHDrSh8DSkn6a700SOwS0n2nxadYDXHjV4Kopm/vPqzwfvNiNHjrQet/zrsAzBCcIhxestJKiMaGmxzmXevCENatBgPta99957cv/99we2H7R5eECBaMh//BDlwTMVrg9/28Vyr169ZNSoUXLbbbfF5d0HxxbrXES7DnDOIFaA6DHIIxmOAXWAxx/XQ5qyTKt9IF8inLB9on0IyojHOnbsKFOnTg1sg/BWBS9udesGD8ZDBIT1aKdBBnERvB35haSxzhnKScb1Dc87bhsL8s6EfUHAqQYvYq4h9Jx61+vcubMVVrrrM3O+WY2S8upVba3HhKD9YBD/szu6WA8k7vo84a7JTQ6cT+tLP93oYvPy5IGzm9ov2jVNpxjge/Ccpl5oHk2PZ5pWO9Ay/P2Ipid6v4cYGB4aNWyhlosp7o24BnG/h4AqXoN3nDeva2+92kA841qzmiXsuiAvG26+WPPwIgBxk/Ww4cs4oFt1GWIG9kubAVq1IFfnWdG2sP+gfSPdFXDkCxBz9O9UTV67uq0VzCG/3xAy6OPbOkuQByV/3qBlvIiDBzQ1eI4IMnVvj3U4d9E8l5Q14oJXrmxrhUVBX1/iheudRlwE8Qq89biWnus1SHzllnW+eWENry5qEHrg5SjEYh/d2tl4oKiQ6jpFG21Tt5Tlje2j9QnwgDT0po62DC1fp3ih+cLlre2LTU3TaaJ9B+pzh2F3dd+6gV+24rw8fF4zuapPvUBhEl603jugiX3prXXSKY4d/dcHN3eS8sZjR3osj/MMGG27fObk3ntWU7n/7CbWg5Y/H/Y/yLjyf/Oa9pnuaSgntnl4WYllOCbclzR8JcQ9KgRK61qJVS7WuX1UtLwYDHnvho72PvzSFW3k5SvbyDf3dJM3zPlEH7vbeERTi30kmityCm8x7j0E3teCDMJMta6NwvOahmlaPGqbEI543nBDa7rbu+eiQIzwGW7IL3f7eOczm2la57W5Cd/2/k2d5PROVQOrjDB/EJNf2KtWqvV5Au5lqTI5CX7vW7oK/Yaa5tGwKkjH/Q+h8+Kx+pUjw7vC+xAsrfaAPHjGgGAWg6nf3ttNbjbi1mj3dORPy248uYFcenztiDaNbdDGbzm1ofUE5R67yzMZz1Xghv1ouGB/fXGs79zQwd7r/ev6tq0kb5rQK5WMd8wgw9+UTz31lF2FvzvwfoZGAiRAAiRAAokQ0JBxNhyd8YqjYeha1inpPfsGlb9x+z4TZnuiaOgz/H13ifl7I6sNHqMe/Gimt1s8Y7rvKOBFV+2niatMuPRDuhgxhQfJSY6op3nNSEGQPgePNZ6aVFQDD03w1KTWPmVfYPKNEx68bZ2s8yjUuUH4GT1WyOo/HU/P8JRZ3Hhjgk1xQkXjg4QggxfMICtROK+okGzKwi0mbF+weAlid/0gx1/O+m37ZOayrfaHNua3GuWKyNV96nvJc83HJzQSIAESIAESyG0E/mO+avo3tx0Ujyf7Eli9erWsWbNGKlasaH/xhEJyj2bTpk2yYsUKK56oWbOmFC1a1F2d5jzck8PTEH4QicDrTjSxRZqFBWRA+JytW7cK9lO6dGkrpgjIFjXp4MGDtm46eA8PJuXKlYtbVBK14CSt2LNnjw1rBRFOyZLBccQz+xjiqUMyDnfbtm3WExJc2GNQHeKOWOKjZOwz0TIQBhFte/369bauuEZcMUla5aPdrVq1ygpGqlevftjaHb62RQg6tCV4coE3ongtnvaRCKfM7kPc49yxY4csWbLE9ifVqlVLl5AHHOBFDv1R8eLFbVi/jIhT3fpgPrOvb//+3GV42oOgCQYh6J133umuzrL5ncYb0jrjPWDfgYNSyrjfhpACnmIOh8EzE74Gw2AUvOXEM0CWVfVM5H6P62z58uWCe37VqlXtfTDRekNUssK4Tt934JAJdVIgqjAmI/tB2ZvMSyV4csAgZ5XSheMajPfvKzu1LX/dsAzPGfC6g9BjcLNernjBuAd1g8rL7LRDJvzcRnNONpsfDB5V4DI/DY1GZlcronzUbb0JjVjM8KxYslDUusFbibq8hycTDPzC9u4314pxU3/gINp1QSM4CgvpInbkW0i07wBbtPctO/fZkFwQW6Wn/8F26Ech0ihrvoR2Qxn4qpopi1t37jfc9xixGcIK5JMypm2kp/6ZUqkkFJoT2nwSDtMrAmFFDxwMvcoob/p1V/TjZTIzCFH51JchDzHw4HQ4wn+49Yl3fo8RZOEaR0iyEib8RVb0XdmR6X5z30Y/uX33fivoKWc8C/w/e+cBr0dR9u0hIb2TQkiBkIQkhEAIPTQJoEiR9wUFRQRUFBRRRBQEBVFQFAV5QVCKoNhQRAFByoeFXgKhBggQSCMhCamEJISQfHPtyb1nnj27z9mnnZLzv3+/c3af2Wl77ezM7Mw993QPJsny8pS/QgK8O7TpcKUORtEo6x0qDFn3qxr9Kvpkq3yfor0v3PQrksKzn7NoZVRXYxE1qZCc9G+/+X5HYT9LGd/86SgCIiACItB8BFg0Onr06ObLQM6U6XNpiDgAAEAASURBVIsd9oP7I6tL23vFa7Piw4INtlNNk3f8OA3bopslTxY9oaBcLTn0ggdihamHf3JgarTk4d6n58XWl/HU238rssjGlHRwoz3/1MWPxFaMWIBz/jHbF/Q7YfDFK5+I74ft0C/026+HMsUr/Hw12HKPa6d4C5PH+i3KTXxS7rAL6/OOO1vD/cUvEkzKWTc+4x6a+nbkfN8FkzItwX7u8sfjrahDFr+481Vv8XlmFJ5FQSP84gEEBa2jL344Oucf2/Ri0TKUWd6i5DE/eyR2OsNbsT7SL/hC+Kbg2wK56Lgdoi31oh8b/r04e5k77ZopsZUuFOCuPGmX2MuP/vqiM4Uq7v16v4V3dz+eZ/KB/0A944YpBVvKHTdpmPvSR0dGXthu7oxfPxOdD/WWsW44baJnU6hozzbr392wDfyn/fbHXzmk4SJ/S09HERABERABEWiNBBqOHrTGu1CeWw0BlEP4K1dQFuKvXGGAq9I8FEsbJal+/dKtDRQLZ9dQnEGZib+WKKyCLGYRiTzX+h7y5KEa7FAG4a81CVaJsKxVzLpWsftBgSvNalixMLW4hgIOlsrKkTzloxJOta5DwntGcXPcuHGhU+5zOKRZt8odQYbHWr/fGclGzuHWElgbay7p5ifTtm4hE2pM7I0aVG/OurmYpKVbSVvLe7bVVltFf2lxl+PGZB1bv9VC6pQzOkVKbpXE35LKVtp9oEA3bEB+RdO0OJrSDYVDlJnCLdmaMv08aaGIlFcZKS0+FOlGemsypUqldQdsUerkrxxhEr2plZnCfPbq1sHxt7FJayjz1WR+yW0vx1sasgUi1sKSgqLOtffWbyPHFnGtRVDiyKvIUa17aolMsZZUZw2sfluTat1vW44Hq1mVcK1GvwrLU8WsT/Hst9689DYuzcpxW37WuncREAEREIHyCfC99RFv5YhtXE2pidg+tF29dd4wdpSAvnXDM7ESENdQJv757XXbu4d+w/OjvOLMkDLGKy69rTDed1aucfOWvleQV9Lp6reIvviE8QVKTbjTnn/r42Pc1699mp/uPr/l3iy/cGZff39D+nZ2r8xd4e7325m96RfUmXwlsAhkbuO85eCk7O63cw7FJ+UmeavGf390Tuy8V2DxNHas4QmK0ljqvf6+16NUfvq3l91DLy50WI6m3/3sjKXuP56BCd8Oh+9Wr/iE5VZTbDr7d89FFjwn+kVHLLV4fuayeEtpC588ftUruD33xhK/OGlVxPS4Sx6NLIyP8enM8m7/eX6+m7HBsmcyLL93G9k3UgbjeRDH6b+e4g6aMDDaxv49vyjiqelL3HX3To+D7teEWzbHiepEBERABERABGpMQIpNNQas6EVABERABERABConYIpNWCGbMGFC5REqBhEQAREQAREQgVZL4NN+BfgDLyyM8v/7/870FgxXux2H93bbbNHDvectvbBNwx/+OyOyNocntpEYn9g2o9XefI0yLqY1AqtoRUAEREAEREAEWi2BgyZsESk22Q2wnVu4TbG5c3zDby8WKkDhdssjszkUFawglaPYlCfunfx25+f5bbmztoHd1SvLfMNbJbr01jolqVf89mX8pcmlX5jgttis4ZawKCrvvV2/2MoS1qHMSlIYD0pAoWJT1hbPYZhqnx+//zCvVLTSbyv4VhT1o377PP6SgkUkLFOFWyhPHNPf7TW2n3v4xbcj73dMnuv4CwVLVVd5i1FpwtZ8F392gjvRW5pa6a1WYj3zzw/OauD17KPGuotufrGBOwtZUEQ757fPReEpa8nyZoFO8Zaaxg5tqHBm13UUAREQAREQgdZKQIpNrfXJKd8iIAIiIAIi0IYIvPRS3TYyhx56aMnbfLYhTLpVERABERABEWgTBLbfqrdje4U/3l+3zcS//bYL/KXJnn4V9veOGVewrUaav7buJqZtvQTo/kVABERABERABJIE6B+xbZhZLTp45+ydKFA8KUc6eKvVeaVj++J+yWv/Pp3cuKG9HUpYw3NYP/y4txiFNfDf3z8jVk4K83PYroPccR8aVlT5auLoesWm/cb1T+137zSicBeOHbcu/G1pYkkqj3TyVpbSJNxmvEOCF7/P9Ypeu4/azN304OwGSlxYt/qU/8Zg+2oUkULBgtdFx433FmGnu394haalG7a9x88Av13yqYdtE1mlylJswh+WxC8/eWd39T2vFmw5x7U9t+3rTj10lFu3jl91krRuiSLaH7+1l/vFHdPcIy+9HW97h2/yPmbLnu6kj4xwlFuJCIiACIiACGyMBDZZs2YN1hIlIiACIiACIiACItBiCYwfP96h3HTDDTe4Y489tsXmUxkTAREQgWoT+MtDs9z//eOVKNpLPj/B7eFXukpEQATqCDz7xlJ3xZ2vuJdmL2+AhO0jPuS3YDhuv2EunOBo4FEOBQTEtACHfoiACIiACIiACFSZwLRp09zo0aOrHKuiqwaBVd6S0Pylq91qf+zeuYPr37uT6+QtMm2ssnTl++5tbzlpnZ8h7dW1o99uvWPu74aFy9e4xe+85zbr4bdp79ExVZmrGLflq9a6BUtX+XBsEdzVdelYOuclK953C5ev9kpYHdzAPp1LzkOx/OmaCIiACIiACLREAlJsaolPRXkSAREQAREQAREoILB27drod/v27aOP/oKL+iECIiACGzGBD/wo6/sf1C3bZIVuuSuBN2JEujURcLwn85ascguXved6dOngthrQ1SVXaAtTaQTEtDRe8i0CIiACIiACIpCPgBSb8nGSLxEQAREQAREQAREQgUICUmwq5KFfIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACVSYgxaYqA1V0IiACIiACIiACItBGCJRu37CNgNFtioAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAINB8BKTY1H3ulLAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIikEFAik0ZYOQsAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiLQfASk2NR87JWyCIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIhABgEpNmWAkbMIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiEDzEZBiU/OxV8oiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIZBKTYlAFGziIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAs1HQIpNzcdeKYuACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACGQQkGJTBhg5i4AIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAINB8BKTY1H3ulLAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIikEFAik0ZYOQsAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiLQfASk2NR87JWyCIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIhABgEpNmWAkbMIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiEDzEZBiU/OxV8oiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIZBKTYlAFGziIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAs1HQIpNzcdeKYuACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACGQQkGJTBhg5i4AIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAINB8BKTY1H3ulLAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIikEFAik0ZYOQsAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiLQfASk2NR87JWyCIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIhABgEpNmWAkbMIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiEDzEZBiU/OxV8oiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIZBKTYlAFGziIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAs1HQIpNzcdeKYuACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACGQQkGJTBhg5i4AIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAINB8BKTY1H3ulLAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIikEFAik0ZYOQsAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiLQfASk2NR87JWyCIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIhABgEpNmWAkbMIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiEDzEZBiU/OxV8oiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIZBKTYlAFGziIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAs1HQIpNzcdeKYuACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACGQQkGJTBhg5i4AIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAINB+BTZsvaaUsAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiJQawJrP1jvVq9d57p3al/rpBT/BgIvzl7mZi5cGf3ae2x/16Nz65qWXbZyrXvk5YVR/rce0M2NGdJTz1YEREAEREAEmoVA62pBmwWREhUBERABERABERABERABERABERABERABERABERABERABERABEdiYCdz3zFvu6TeWlHSLx+wzzA3p16WkMHk9L135vrv2ntfcrY+96fberp/7yfE75g0a+ftg3Xr36LS33W2Pz3GvzX3XLVi2Og4/Yovu7sDxA93BOw9y/Xt2jN1LObn+vtfdonfeSw3SoX07169nJ9e/V0c3couebsTA7qn+NnbHfz+3wP3pgZnRbd54+h6uRyvjMH/pKnfhn6dG+T9u0jApNm3sBVb3JwIiIAItmIAUm1rww1HWREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEak/g8VcXuX8+Oa+khD660xY1U2z6z3PzI6UmMvTQ1LfdtDffcaMH98iVvxkL3nVn3vCMe3PxqlT/0+etcNPnveZ+9+833MWf39FN2LpPqr9ijrc8OsctXbGmmJf42rZDe7qj9xrqPjJhi9hNJyIgAiIgAiIgAiKQl0C7vB7lTwREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREoI5Au002qRmK2594syDue57Op3T1/Myl7otXPFGg1DSgV2c3aYcB3krT5m7wZvUWplau+cCd+qun3F8fmV2QVrV/vDR7ufv+TVPdD/78glv9/rpqR6/4REAEREAEREAENnICsti0kT9g3Z4IiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiEB+AjectrsbNSifdaT8seb3icWlV7yFplD+8fib7ssHj3Rs85YlK977wH37xuccCktI7+4d3VkfH+P23ra/C5WwFi57z/3wry+4ya/Ubb3389umua6d2rtD/NZ05cjDPzmwINiqNevcIr/13RS/tR9KU1iIQu6Z8pZ7Z9X77uITJrga6oQV5EU/REAEREAEREAEWj+B7N5P67833YEIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAItCoC9zz9VpzfiWP6RucoKz3ht8srJtfe81q8PRxKTdecsqvbd+yAAqUmwvfv1cld+rmd3Cf32TKO7ue3TquaNaUuHdu5If27usN3G+x+45XETvzw8DidR15a5JLWqOKLOhEBERABERABERCBFAKy2JQCRU4iIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIikIfA417haMGS1ZHXLb1Cz/it+6QGe9pbMJqzcGV0bfthvd2wAd0a+Ptg3fpY8QflpNMPH+MeffnhyN9dT81ze43p3yAMDiu9taa/Ply/pdw5R23rBvet33YuGahdu03cSQeNdFiCQmmKv6emL8qMPxk+728sRX3+wOHu/Q/WuRv/PSMK9os7XnGH7LJFpvWp52YsdU+/vsTNXbwqCrd5785u5BY93N5j+7tOmxbabHj4pYVu8TtrongP9hanNm3fcHvA/z4/31uKWus29WEP3mmL1KzfNWWeW7t2nevnlb4mju4X+XnslbfdwqXvuY4dNnEf2XFQlJdX577jnp25zL325nKvINbZDdu8m/vQdgMii1epEedwLOV+k9Fhpev5GUvcGwtWujfeesfnY1M3enAPN2JgD8+su2vvn3MxeX3+CvfQi2+7OYtWOnxu7e9n4ph+bqv+DctmWjxvL1/jXn5zWWRhbPbCd92Qft3c8IHd3Nihvd3mvTulBZGbCIiACIiACJRMQIpNJSNTABEQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQARGoJ/DjW16Kf9x6zj6RVaTYwZ/M9woyp/7qqdjpD2dMjM/DkymvL46tLh2+26BIOWn81r3cs28sc/95boFbfuRa17NLw+m9x6e9HUez7dCeuRSUOndo5772sVHupodmRWHnvL0qjqPaJ589YLj71zPz3ZteWalOiWqx22NUnQKRpYXS17l/er7BNnx2vWvH9u6co8e6Sdtvbk7u8VcWu1v8dnfINn77wDFDesbXOGFbvO/8/vnYbbxXKBu0WaHC10KvnHPhn6dGfvYd1z9WbPr7Y3PcQ1PruO40op878zdPp+btF91fdRccu73baXi6QluceOKknPsNo5j82iJ3/p+mxuUlvMb5rqP6uB99ZsdMpatLbn3Z/e3ROclg7oo7XnWf2ndL9+HxAxtcCx3ueXqu+8FNL4ZOBednHrmt+5/dBxe46YcIiIAIiIAIlEOgUK25nBgURgREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQATaKIHdt+nrPr7n0Pjuf3ZbvZKTOV56e73baV6ZKM1aE37vmVK/Dd0BO9Qp8Hx0p0EWjVdumh+fhyePvVK/Td34rXuHl4qef8xvF/eHb0yM/j65d/3WdEUDlXERS0sH71J/Hw9OXVgQyxvz33Wfu/zxBopDKDOZoBD1Xa+khMKRye6jN7NT96y39JSUZ95YXOD01PTC31x8YeaS2M+eG6w1xQ4bTs6+8Zk4b+QpzNfSFWvcWTc845atXJsMlvm73Pu1CLFC9fVrny5QasLCF38mk19Z4r70y8leuesDc4qPNz04s4FSU3hPNz0wy11z72ux/+TJHx6YWaDUNNgri+04orDcXfy3l9zv/jsjGVS/RUAEREAERKBkAg1VukuOQgFEQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREoO0SOOWQbdxjL78dWSTCyg+KJ/ttsCx0vz83yz8of3wiUIIKibGdHNvNIUP7dYm2X+N8n7ED3E82WIT6x+Q3U63gzF+2Cq+RjBjY3U5b1HHPMX3ddfdOj/L05uK6Lfn4wfZ7P7x5amTJid8j/BZqXzl0G7fjsD5+u7pN3GtvrXA3PzzL/fPJOjY/+/vLbucRmzm2/Zuwdb1iE9aukspZk18tVGR61Fu2+tiuhVaEnn69XiFq55H18ZEXk5dmL3d7je3nTj1klH82XZ3fYc9NnbUsUrRasGx1lPebHpzhTvbb+zUmldwvca9f79z1/3ojTuaYfbeK7ru/30YPeW3eOz5fz7nZ3gLX9Hkr3DN+C0TbXo/rbJ2IVSaTL3xkRGSdaYgvc1ivesRv74dS0uPTCtmZ/3U+A3+8f6b9dBedsIPb15dRZO0H692DLy6IuPD7Rp9PnknHxBaCXJOIgAiIgAiIQF4CUmzKS0r+REAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAENnoC3/3dc65zp3pLQWk3vOPWfdw3/md0fIlt3b53zDh30pWTI7ef3jrN7ewtOSEX+3OT735inGvXzmvFpMgDUxfErocFyjd9undwe27b1yucLHIo2MzyW7ah1BPKwmVr4p9bb94yFZsG9KrfAu6txavj/D7hFW24LwSrQRcdNz7ags88jPJbzH3742PdW0tXuymv1VlX+otXdPrm/46JtllDWeyZ6UvdlFeXREpS7QO+DyUsQ93//MJI+WZTrzBl8sQrddvNoUyW3KbO/Gzvt7C74NgdHJanTLbbspc76xNj3Bm/fiZyesErOuWRSu6X+Of67fz69ezo/zbzSlbd3CmHjHTt0LTaICO36OHOPmo7d8ovn4xcnvGKW6Fi0w331StFHbXXUPe5A7a2oK6/j9e2j0O5KU1enbsithT1oe37x0pN+IUrWwWecshq99T0OitiC/w2jChNSURABERABESgXAL1rW+5MSicCIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACGwkBN70iiNYuin2N29JvcUhu20UXT5/4PDoJ9uT/fKfr7pr75keK4F85+ixbovNOpv3Bsc7n5obu6EcEspBO24R//x/z9ZvV2eOC5bUKwoN8RaFWqL06lpvb2GRtwxk8t/n6xW6vu6VxQb3bagEg7LS9z65vQVx93jLVlg+Qvbats5aEFvVTffWnUzeXLQqsqDF728eMcac3dTZ9QpIi99ZE1k24uJeY/vHfpInR+wxqECpya7vvk0/O3Wvv/VufF7spNL7hc+ln98p+jv98NEFSk2W7pjBPe3UTZtbf7/rPLPnN2zZN6BX58gyVuwxOEG5KdzmL7jkOmxar0Q1c8HK1K3ujv3QVnEepdQU0tO5CIiACIhAOQSk2FQONYURAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQARHYKAmgoIRSR7G/CSPqrDElARy//zA3anCPyPm2x990tzwyOzrfe7t+7pCdByW9x7/neQtGZo1o26E9Gyj3hEo3dzwx16GgEkr3Lh3in8u8sk5LlPfW1uc5zO8rc9+JsztmSL1CTuy44QQrRSjjICgxLVz2XnS+y4g+0ZF/z8+s31buqel1W6lhBYrt5yzsk6/Vb7H2QuB/t1Hpz5R4Rw/uxaGBYCgJS08Iymx5pNL7TUsDJa93Vq9187yCG8pdL8+pV2Z6328PZzLHK3uZbLdVT7/VX/ZU8Y7BNn8WhuOw/t0iy1qcz5j/rjvh54+5Pz80K7IkxjZ5EhEQAREQARGoNoF61ehqx6z4REAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAERKCVEcC6D9uflSMoipz3yXHuM5c+GgdHseasI8bGv9NO/vVcvRWmnt6y0eTX6rbxSvO7YNlq94y3urPT8HqFns37dHa4I68vXOGGJLaqS4unqd0Wv1OniES65NdkwQYFJX4PbcTa1Kgh3eP7XPruGjfQxzNyi+6Rog3KTigzfXzi0CjqR6fVbTG357b9oi3S9h3X3/314dnuoRcXuhM3WNaCo8mOw+p5mpsdN+9dn19zs2OXTqVNt1Z6v5buy3OWO6x3PTZtUaRgZO7FjtPn1SuRsWVdMRkxsFvqZbZSvPD4Hdw3rns6uo6Fs8v/8Ur0R1n/0PYD3EE7DfTlczMXbguYGpkcRUAEREAERCAHgdJa2hwRyosIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAItFUCWw3o6kZ4ZRu2skO22ryb69293qJSkgtWbm731p1MHp+22PFXTO6eMq9AsWmzHvXxv+G3RNu3uB5Vsahrdu2FWUviuPt760smZukIpZiOm2ZbEMJ/3+6dLJhbvfaD6LydN5s0afzm7s7Jc91kz22dB4oFowdeWBhd33PbOktMe4zuGyk2vfLmO44t6Dbr0dGZ9Sasc3XqUDztOOEKTyq9X8rLzQ/Pcv/nlYlKlaUr34+D9OpaX2Zix+CkZ5Hru2/T191w2u6RRbI7PHcTlMvu8tsE8oeFrJ9/YYIbNiBdQcrC6CgCIiACIiACjRFomha6sVzougiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAhsBAT+/ticWKmJ23lp9nJ3q3fLkhdnL3NYvSlFUOJZtWZdHGSHrXrH568GVnlix4wTFIBWvvdB9Md5LeW+Z+fH0e8ysn7bt8Gb1W3lhlLMkhX1ijex5+Dkdb/1mUnvrvXKURO90hJCHG94P1M9U5OdR/SLTid4C0ImU7xlp2Ur18bPaY9RdX7sei2Pld7vk9MXFSg1Hb7bYPf9Y8a5a76yq/vjNye6W7+zr7vvgkmpt7BVoGQ06+2VqX7McXYj17FqdvYnxvq09neXegWmz394uBvmlfhMsCD2xSuecIta6NaIlk8dRUAEREAEWj4BWWxq+c9IORQBERABERABERABERABERABERABERABERABERABERABERABEWgFBGYtXOkuvXValNOh/bq4RcvXRMo2l3i33bbp54Z4t6Tc83T9NnSf3GdLd9iug5Je4t8X/Hmqw+IQ8uDU+e4jE7aIzvfedoC74o5Xo/P/PLfAzTtktdsi2O4tupDyD6s/tzwyO7pyxv+Odkdu2MYtxWtFTmyt98hL9dvr7TO2fxxf/z6dYsWumW+vcH26p28JhyWm54Ot4zbrUW+9acet65WWnvN+TJlm1OAert8G61CdvUWmiWP6ukdfXuQef3WR69K5fZyHXb0FoqaSSu938qv1lq+O339rd/JBIxpkfW6GotyIgfXbz70yd3mDcKHD9LfqLI6FbmnnXTq2c1hw4u/zBwx3U95Y7C686cVoy0AUzZ72SmQH7jgwLajcREAEREAERCAXAVlsyoVJnkRABERABERABERABERABERABERABERABERABERABERABERABEQgmwAWjy78y9TYw7mfHOfO+vi28e8Lb57q1iWsIq1Zu87d9WT9Vl6fO3C4G75598y/rx42Ko7vn1Pqw6Ewte3QnvG1y/7xcoO04osbTlDCMqUmnA4YX6cklfRX6e8ZC9515/+pnstBOw2MtoGzePccXa/khCWqLHloat3WclznXnt2qbff0Mdv9Wf3jzWmB6YuiKLZd7sBBdHtOabOMtN/vfLXlOl1CkK9u3ds0u3SKr3fZ16vV2w6bJd0JTjbYq/g5v2PXl03jbaIw/2Z6Uvd6/PTlZewnHX3lHqFuzCemQu9RaxZy6K/996vtxqGH78roNvZW8b6zKSt4iCv5VSQigPoRAREQAREQAQSBKTYlACinyIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiJQKoE/PTAzUvYg3FF7DXXbbdnLKwsNdLuPrrMmhLWhvzw8qyDax15+O7LohOOkHQa4Hp3rlXUKPG74MX5Yb4ciDjL5lSVu/tL3Nlxx7ltHjInPH5r6dqRklVQ8MQ/P+rx88/qn7WeUX5ReqinvrF7rbnl0tjv2kkfd0hVroqjJ+9cPr88njvuNq1c++ueT89ytj89pkA2UsM7+3XOx+yE7N1TC2mvbOgWpf3ulpenz6hR2dtum3pITgbGahWBJ6KYH6p7FfuP6Rwo50YUm+Ffp/Y7conucy+kp2w6yteEV3hJXluw6qp7Jt3/zrFvhtyIMBQW97//5ufiZhdc4v3vKPHfSlZOjv5/+/aXk5ej3zAX129xtP6xXqh85ioAIiIAIiEBeAtXtoeRNVf5EQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREoAUSuOae19ygzboWzRmWaU6YtHVseeg1r2Dyy7tei8KgvHPSQSOjc/x94/Bt3Sd/+nD0m+3i9hjdL7YQdGdgdekjXgmqMWnfbhN3qLfS84f/zoi83vfcW+7Yfeus44we3NN93lt8uv6+16NrbHH3oLdy9JlJw9zIQd1dx03buRnzV7oXZy119z4zP/LDP/J79N5bxr9LPbn0tmkFQd5ZucbN8wpX4bZxeOjasb27+ITxBZaWcB/ct0tBvn/6t5fdQy8u9NvG9XOdO7R3KGH959n6/LK93OG7DSFogewyso+77t56J9IbM6TeihVXsGw1eLMu8dZ3uLGFWlNKpfeLstZtj78ZZRllL7YunDi6r1vvXZ6fucz9+cFC5bnkvWH167k3lrjZb6+KOBznFc9Qqhvjuc7ybv95fr4vJ+8mg8W/D9tlsLvx3zOi33c9Nc998MG66FmNHNTDLVz+nrvHu4XbK+4ysmn5xhnViQiIgAiIwEZDQIpNG82j1I2IgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAhUSuDRlxf5KPgrLgeO3zxSbGI7ue/96YXY81kfH+O6dmof/0aZ5pRDtnFX/fPVyI3t6q4+ZVe37N33HZaVTHbfsE2a/c46HuCVUEyx6R/eupEpNuH/xA8Pd5192lfdWZcWlomuuWd6VlRu11F93LlHb+/69qizApXpsciFcDu7LG87eaWj844e5/r36pTq5fj9h3klm5Xung3bn/EM6p5DofehnuWFx+7gNm3vNcYSMnZor0h5intG9vGWmFAES8q+3kIU1rVMJoyst2BkbrU+VnK/E8f0d3uN7ecefrGu7Nwxea7jL5RTDvXlbUMZCN05xyrYxZ+d4E68/PHIctWCZatTlaHOPmqsu+jmF5PBI0W0MH6U5EJFOQuAYtkFx23vOnmFOokIiIAIiIAIVEJAik2V0FNYERABERABERABERABERABERABERABERABERABERABERABERCBVk9g03blK1/c/Mjs2MLNvl6ZZt+x9VurGZij9x7q/vnU3MjfS7OXu9ufeNN16lCfJlZ38iqAjBrUM7Y6hNWdGQvejS1AkR6KTjts1cv90SvvPPDCQstCwXHY5t3cwTtt4T7t/bZLUf4p8Jzyo2P7+rynXI7y179PJzduaG930E4D3fDN67dPS/Pfwcd3rld82t1vk3bTg7PdK2++U+ANJZlPfWiryLJU1nZ9KDHtMaavYys6ZE9vGStN2BrQFJu291v7ZcXXDnNbOaSTtyqVJqFSFfcXSiX3S7m56Ljx7tp7p7t/eIUm2+aP+Af06uxOPWwbN2n7AZmKTfjbsn9Xd/nJO7ur73k12tIQN5M9t+3rTj10lFu3zlxcZO2r/lddGZuwdW/3iztfcc++sSy8FFkA22VEnyiOLEW2ggD6IQIiIAIiIAKNENhkzZo1WCaUiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiEBNCEybNs2NHj26JnEr0mwCby9f495c9K57a+kq9+7qDxzb1Y3Yooff4q1Q0SY7hua5snTl++5tb0lonZ/F7NW1o+vXs2Oq9aXmyV31U63kfhf6Z7z4nfe89bBOrp+3vJVTHyu+ieWr1roFvnxs4gOyBWOXjqWVjXXr17v5S95zy1e9HylW9eneIY5bJyIgAiIgAiJQDQJSbKoGRcUhAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiKQSUCKTZlodEEEREAEREAEREAERKAIgdJUbotEpEsiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiUC0CUmyqFknFIwIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiUDUCUmyqGkpFJAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiUC0CUmyqFknFIwIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiUDUCUmyqGkpFJAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiUC0CUmyqFknFIwIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiUDUCUmyqGkpFJAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiUC0CUmyqFknFIwIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiUDUCm1YtJkXUJghMnjzZTZs2LbrXQw891PXp06dN3LdusroEXnzxRTdlypQo0kmTJrnBgwfnSqC1l7/Wnv9cD0meWiSBO+64wy1dutR16NDBffKTn2yReVSm0gncf//9judHm7vffvule2ohripnLeRBtMFsqH0t/tCrwSfr/V67dq37y1/+4qZOnepOOOEEN2rUqOKZ0VURaKMEWlN7nucRzZ4923FPyC677OLGjBmTJ1hRP6pPiuLZKC5ubO9Ba3ko1egHlHuvLfG9zurTlHuPbTVcsXZAjNtqqdB9i4AIiIAIiIAIiIAIiEBtCWyyZs2a9bVNQrE3N4Hly5e78847zzGgUI6MHTvWnXLKKVHQs846y/385z+PzlFMGTduXDlRNmmYRx991P3hD39w11xzTfT32c9+ttH0maC57LLL3JNPPukOPPBAN3z48IIwXbp0cVtssYXbY4893MSJE90mm2xScN1+XHDBBW7+/PmuY8eO7tJLLzXnNn+88sor3emnnx5xuP32291HP/rRXExaY/kLb6y15z+8F53XE3j77bfd+eefH9UvH/vYx9wtt9xSfzHjbMmSJe573/ueW7duXaqPbt26uUGDBrkhQ4a4PffcM6pvUj3mdNx5553d888/73r06OEWLVqUM5S8NTeBOXPmFLQ/b7zxRm5F0ObIu8pZc1BXmhBQ+1q8HFSDT9b7TZt3zDHHRBnYZptt3AsvvJDZLy6ey+pd5Rvl+uuvjyI88sgj3f7771+9yBWTCJRBoLW153lu8c4773RHHHFE5PWKK65wJ598cp5gRf20xPqkaIZ1sSQCG+N7UBKAZvRcjX5Audlvie91Vp+m3Htsq+GKtQNi3FZLRf77ZtH06NGj8weQTxEQAREQAREQAREQARHwBGSxqQ0Ug7feestdddVVZd8pSiem2FR2JM0Y8PLLL48VDc4444xo8qVTp05Fc3TvvfdGSk14uu+++4r63X777SNrGig6JeXqq692CxYsiJyl2JSks3H9XrlypaPcrF+/3o0cOdJRLiRtgwCDtShOIv/4xz/c008/7SZMmFD05lFs+tWvflXUT3gRhakzzzzT7b777qGzzjdyAqyCDWXWrFktWrEpzKvONw4ClLmnnnoquhmUudP6OrW+05aQh1rfY2uO//XXX4+z/+qrr7rVq1c7FgA0p2AZ1NplFmhIsak5n4bShoDa83zloCXWJ/lyLl95COg9yEOp9fm5++673apVq1zPnj3dAQcc0OAG9F43QCIHERABERABERABERABERABERCBMgm0KzOcgrUiAu3aVfaYN9tss1Z0t4VZxTIJSgcm77zzTqR8Yr+rccQKClad5s2bV43oFEcrJfDYY4+5o48+Otrm609/+lMrvQtluxwCZhXCwv7xj3+006odUZjaZ599HIqaKM9J2gYBFEmOO+646GY58lsiAk1J4Le//W3UrrGFJUqbzSEtIQ/Ncd+tJc3PfOYzkWVBLAL+3//9X7MrNbUWbspn2yKg9jzf81Z9ko9Ta/Wl96C1PrnsfKPQdPjhh0d9xXPOOSfVo97rVCxyFAEREAEREAEREAEREAEREAERKINAZRovZSSoIE1PAOsxfsvB1L/Pfe5zcYaeeOKJVD+/+c1vYj+t7eTvf/97gyzfeOONDdyKOSS5MHjDqrPrrrvODRgwIArKCnWUm957771iUemaCIjARkbgpZdeajDZj6ITdW5e+Z//+Z8GdS+W9rCSwjaiVs8Q3ze/+c1om8y8cctf6ybANqe//vWvo7aFY9a2p637LpV7ERCB1kwAK17//e9/HduyfvnLX27Nt6K8i0DNCKg9z4dW9Uk+Tq3Vl96D1vrkKsu33uvK+Cm0CIiACIiACIiACIiACIiACIhAPQEpNtWz0NlGSCC0pLL33ntHd3jbbbe5hQsXln237du3d0OGDHHHH3+8mzx5smOFOoJy0x133FF2vAooAiLQ+giE1rnYthPBMtz/+3//r6KbwVIe2xl+97vfdS+88II79NBD4/jOOussh6U4SdshIIWmtvOsdaci0FoJqJ5qrU9O+W5KAnpP8tEWp3ycWqsvPd/W+uQqy7eee2X8FFoEREAEREAEREAEREAEREAERMC5TQVBBCohsHbt2mjS/dFHH3VYNtp6663d7rvv7nbbbTfXp0+folFj3ej22293zz77rJs1a5br3bu3GzZsmPvf//1fN3z48KJh81ycNm2ae/LJJyOvKCF9+MMfdg899FD0+29/+5s7+eST80RT1A+rzy644AL39a9/PfL3r3/9y3384x8vGqaxiytXrnQ33XRT5A0e+++/f2oQttlDSQuB+XbbbdfAH9vjYfWF7WNQvMJ6F/7wj3JWMbFt/AhHPNzrmDFj3JFHHtnos2WrrPvuu8898sgj7o033nAoaYwdOzYKW+2tDbGYc8899ziOCGUQCzjbbrttwe3deeedbv78+ZEbSiKbb755wfXwxz//+U+HxRwG39h+p2vXruHlgvP777/fTZ8+PU6fi88884wzpbqtttrKHXDAAQVh7EdLfX+4d7Zw5NkvXbrUbbPNNm7ixIlxWWRboA8++MD17ds3Ym33w3N48803XefOnd0xxxwTWSGCxcMPP+yee+45N3jw4Oi5YK6+Z8+eFiz1uGTJEofFNd5jyh/1w5ZbbukOO+ywqBymBULZB2VD5IgjjoiUDqlfsCTBNcr/hz70oWhLNwv//vvvu1tvvTWqh+bMmRO9H9Rf/HXp0sW8pR55fvacsarEFjyjR4+O/P7+978vUEZKjSCnI/d+8803R1bheKeQ888/v2CbzZxRFXj7z3/+46i7X3nllYjvqFGj3FFHHeX69+9f4M9+2HO3emnu3LkRW94BLFT96Ec/iuoJ848b7xJlYObMma5jx45u6NChbq+99nL77bdfgfWhdevWObMO2K9fv2hLA4vHjqtXr3a2zV/We7V48eLoeRJmp512cjvuuKMFdzwv6kLKxJQpUxzbtFIfjhs3Lirfm25avEvEfT744INuxowZUVjKI/XznnvuGacRniTLY7du3aI2Ce5Tp06Nwn7hC18Ig6SeozyHpcCBAwe6Qw45pIEfFOlo6+DMe8bz454mTJgQKcc1CJDTYdmyZVH5ePHFFx1/KPFanCjdNcYrKxneafjzLFAyDp9Br169soJF7tS19BsoT1iHGTRoUPRe028ILZsVjSTjYinl1aIg/2wTiVBH0u7wPOhjoJBIm0NZpc09+OCDHYrRxaScflE1690wb1bu6EOY3HvvvVHbyO+sfkc1n1G5eSB/Lal9TT4j+haPP/64o07hfaCtoX36xCc+kdk3o03mnaR9/fSnP80tpgpWSbl36lr6vcUkb/+pWBxcW758ufvrX/8aeUvWu2FYrJ3Sb+X9pW9BPWX+q903DNNNniefB+9+uX2VZNy00S+//HLkTD8k61sI5efZs2dHz/NTn/pU1KaEcVXaXtGuUzfRB1+xYkVUHnbeeeeoX9KhQ4cwqZLP6TfQjvEcEZ4hbQPPs1h/mXti22baE+pH6rvx48e7HXbYITraQpG0DFXazpXaflseKk3X4rGj1WnJ9rzcMkk/7O67746ib+ydp39OOgjPin5uKOX0u8Pwdl5pnorVJ+VysryFR8ogC5J4R/hu5Tv1Ix/5SHSkf0FfA7Hv5jBsnnPqV+Kg3kNgTh9uxIgRLuyr0m+g/4BUcwyA+Er9lk/2afju53194IEHojaL+uxnP/uZ43sAoR99wgknFPTnowsb/tG3xy98+ZZhDAHJeg+S/Wb6hNSn1Dn8UUeQJ54T3/vFpNxv2WJxhtfIK31u+vOUeZ4j9RnfHbzfpUqp31jEX269VixvpfT9aWcYW6MNNaGesW9j+ivWvqW914wlWFnim4Lxuiyh/TCr62nfieX0n9PSos/LdyKyyy67RO1Tmj/c6DfwPYPwPcj3cV4p9VsoWffxXcg78V8/xsE4CfXUxz72sagvaXmgnuF7hDJKW7brrrtGf7TXxRTMql22LT86ioAIiIAIiIAIiIAIiIAIiEDVCPgP0fX6a7sM/FZ0631hiv68YlKjZeH0008v8O8VSOLfFo8dvTJDZnxc85OQmWHPOOOMzLB5y6u3dBLH7wf31/tByvi3H6goGr8fWIn9NsbFDyrFfv1AW0G84T3mzbef6Ijj84NBBfGFcfiBl9hfGi+vJBBft2cSHq+66qrMuH/1q18VDesHJDPDwhm+YVp27gck15Ovn//85/F1P+ibGVd4v5wny9/Xvva1OB5Lw46nnnpqQbxnnnlm7NcPyhZcC9PxA2+xP+Lyk2+Zfgn32c9+tsC/pW9HrwAQh0/mvyW+P8WevR+QX+8Hz+L7Tb5HfkAtvuYnvNb7gbP4t/HgyHvhJ/ViLiF/PzC53isLpoazOEjHKww0CH/JJZfE4ShXfpI4/m1hOZ544onrvZLMet4hr7SV6sdbeFvvJ3kapBHm9a677orDeitKkV/CWVp+UD0zvB+oj/1RDsJ4s879JEwchjTSGGSFpRwShnfQK3Ctp66yfCaPv/vd71LzY/547l7BoUF4P8Afh/PKYkXreLj7weDYP/kOn4Wf3Cm4xnU/qBun6ZXkGlzHD3WT5dMrmsV+uOdJkybF18yPHXlufvIp9h9ypMxn1WmE98pyqWUlLI/w8NuVFqRfrH4P07d2xE/iNMifV45YDwu7j+TxlFNOabQOC9Oyc8q2pZuMk9/cC3W9+bdjWM7MzY7vvvvueq8EnJlX0vMD9A3iJLyfnFsPr7S8mNu3v/3t9X6gPzW85SHrWE55JS74W/rUAfQ1srhRvmnfs/JQbr+oGvVuWp6y7sPuN9nvqMUzKiUPLbl9DZ8RZaBYWabeSHseVj9Sh6ddNzeu84zCvgfXknxK6T9Z3Fnvd9ienXTSSQ3yR3uLu5WdtKOf3GwQztIt5+gnVuP0LrvssoK4w+dRbl8lK0/0Pe3+/ORgQbphGL8IIvaXbMsraa9gTR/H8pA88k4Vy1eYx+Q5+fQKjUXjzvpm8koe670ScGZY2rGsfFXSzpXbfnPvlaSbZGe/rU5Ltufllkn6mfaMeffT+k6W9rnnnhv7DeuZSvrdfgFCHOcVV1wRlfdK81SsPimXkzHgyDsSjn8YPzt+61vfWu8V8OL74vsxDJ/n/Ctf+Uoc3uK1I+MT9H/tN/0ii7NaYwDEV+x7jrTTvuWTfZrvfe97cT4JY+1P2CeGleU/efRKL3F4+o12Pes9CPvNfMcVazfCPr7Fa8di997Yt6zFkXWk71usjoWTV/SN7zUrnqS7lYc831jl1mthPyD5DUZ+Su3733DDDfHztfwnj9a+Zb3XYVnyCx4yuYXfgNQDIb9y+89pfRrKnd2DXwhXkE6YJufeUnPsl/HA5PW03+V+C4V132uvvbaeNsTyGR6vvvrqKB+839YfDK9z7re1T81ruWU7rR2we09jbNd0bLtzEOGzz+r7hX50rrKiMqAyoDKgMqAyoDKgMqAykCwD2orOf91JyiOAlSKzGOQ/nBtYS2BbJlb5JQXrTKxiXrBgQXyJ8KH4ga3I+knoVso5K8CuueaaKAhxs4oKCzF+Milyw7qFWfgpJd40v+HKZ1YmtgSBn1e4ibPCqkYs1YTiJ7zdT37yk9ApOmfl75e+9KUC9+TzwRoPq8SSAnc/WBxbyrLrFp7VYuQL60mVClt0XX755XE0loY5/OIXv3Beect+RhaE7IdZxLLf4fHf//53/NMPXBZdfY7H7t27RytIk+nzm78sKwQt8f3BgkCxZ4/1nRP8ytw8guUyLLIgxsLC8e6zapeVxEnxkwHOT74UOCfZYoVgjz32cKwuz5If/OAHsQWJZPhf//rX7oc//GFkFQirVIgfZC+IihWoxx57bIFb8odZD8IdS0dIGIZVktUULCrZlprEW852d7yD1INYXjFJ8jnuuONiy1fmJzxShxezTOcHUyPLe8XqeLhj5cGs6hE/lrxMWAWdFCzimbAimJXCScGikgn1PuIHaqO0sDBhgpUlryhgP6MVx6y0xopIKKwA5tmG+Qyvc86Kaeo16r8soUxjxa6aQhnFag4sEJ4j9XxYlqkDsQJTimApDetC4fMjzjBe7sUrikUrgPPGTZnxCgaxdz/YHa2GNgfSw5IX9xUKFgxwT9bbyXL74x//2FF2S5Vyy2syHaxW+omHmFsyf5R5LAD6jngyaGS1shr9onLr3QYZ8g5YNUzeA7/tL7TMUqtnVEoewntoie2r5Y82NizLScZeYSyydGf+a3Estf9UaR5Iz/rkFlfyvulbfP/737fLTXas5jtTjUxX0l6RvldEcPRxQglZU8/S1pa6JTfWIWDlFR/CqAvOiRsrQMk+Pn0GrJmYxUkCkSeseJrQjtEu+wkuc4qOlbRzlbTflaRbcANl/CilTPKNgX+E/l3IOJl0WO+E/YJq9bstvWrkyeIqdiyFUxjPhRde6LxCRuhU0Nb99Kc/jawxF3go4QffpldeeWVmCNLnG6SWUsm3vOWLb76sOpk+rwlWb7PExom4Xmr/jG23w3Yj7IMS32mnnRb1vzkPpZrfsmG8nNPP32effRrUsYyzhML7FX4jhtcaO2/sG6uSeq1Y2uX0/bHES10etjHk0DH8AABAAElEQVSkYW4ci1kGwm84rlCsLJE/k9CyU7XHFb0CXnw/tGVZYw2MYZi1PJ4/4xJ5hHqrnG+hMG6+47E0hyTfCyzS8+3HWB1tQpofrK6FecBPU5TtKDP6JwIiIAIiIAIiIAIiIAIiIAJVICDFpipAbKtRMHiKKWMmfBnMZhsnJqNxQ/iYDhVLcMO8dTjxx8AY5p4ZyPcruhzbN5n4FZMNBsftWmNHJrfJE8LghykfMalowmRmNQRT9iZsA9DcgnKVt4gUZ4PtQTB3zUCfXyUWmX+3ixdffHG0FYT9ZkIhVC5g4IOtJhi8YXsZJqdM2BLMBlXMjYFalE5MMC/OZAXhMdfNICRSjQl+U8zwqzLjPKJIFyrFMLlpygyY6LaySZm1LTQsr3YMlVGKbfdi/i+99NLo/tgqzMSvhIvcuO8s5ZOW9v6g6McWfSa8N0zUM/mFKXO/gjFSBDHu5i/rCGPi4/3g/YYF76VNZFE/JAfV2BLiuuuui6Nkgo5nSli/OjWaDLbBU8qet9AS+02ekD6TZKRPeBRWvvOd78Te2EKSsskAJgoy1F/kie3kTBjUp85KE0zqe8tG0SUUZNhKBQnfHzPFH12o0j+23DJJvn/m3tiRCTsGYRkkhg11L242OUZ4lCxgnibUrbBiGzWeKSyIh62U4BgOUjO471fSRmnAElP6fnVuHC1+/er56LcpIvGDMEkJ6xauhYpO5tfeN8qZbQvIc7T2gG1A2J4C0/2Y5qceMGUx7ilsF9g6AwVQ2CDkGyUm6lH8ogRpkxlM3oT1o+XHjtStDD4TP9uSMEnsrRvY5bKOtnUfgSnbPEfu36/4j7YgtXeF+jY5WZyVIPfMpJuJX90dbb3Hc+WP98oUwogz7TlZ2PBI+xFOAKD0yHYP1IOUHZQ5TJJc2HYxzD/vHXkhHG1bqKBLe1fKZFIl5dXya0dra+jXWN1JuaNtsIkH7vcb3/iGBYmO1ewXlVPvFmQm+MHzgXHYpsIet6R7rZ5RKXkIsh6Vq5baP2WijHeTuoB3lvaR+/SWKeJbYAI4TXEz9lDhibXjeftPlSTHBD99SRPaeCYiKUNs4ULZMaEP6S0R2M8mOVbznalGhsttr0ibPrfVh5Qx+rOUL/pxlDG+vxD6DijsWtsbORb5x4Tn5z//+bgtpA1gApoJX9pD2uJQqdtbrYq2Q7QowzodhVi+FckT+bBJafzSrobKN7iV285V2n6Xmy55rlRKLZOhwkg4+R/mgzbUFPnpB7G9OFLNfneYXiV5CuMpdl4qJ+Ki3g37OLwv1LXUR/QH7RskqZxXLB/hNd4FvgFNaD/5DkGhmfh/+ctfRpfYWrRWwrMOv0VK/Za3fFm/C0Uvxmrot1r9bFvK4Zd+Ae9bUhiPCPtjVv8k/WX95ruUPjbfGdQz9NeoM/huMzn77LPtNDpW+1u2IHL/g/rZFsbRr+ObgHqLvih9Ob5bTcLvSXPLcyz2jVVpvZaVfrl9f9oR3h2ejQl9L9zsjy0Ii0n47RmWlzAM29D94Q9/iJxo2w466KDovJr9Z0uPLfFQDjLxVqzstOAYuvMt25gCF4Er+RYKE6fu4/uU7z3Y88f2jCaMfyHe2lz0Lc91ylXYTv/lL38x79GxKcp2QYL6IQIiIAIiIAIiIAIiIAIiIAIVEJBiUwXw2npQBpsYEGVCv3379hGOMWPGuBtvvDFGk7TqwypGGxBC6QHFJ1bxMhjQp08fd/TRRxcMamOBoRwJB0aI0+SAAw6IV2GhdMBASSXCgEo4mZ20ilRJ3OWGZfDRJvFRTggHN1HwYgDpRz/6UTQAMnHixILBqK9+9atxsrD3W5XEg98obZ133nmOlb0IA3lMophgsSEcLGbAhNVi/fv3j7yMHTvWoUhlVrMsXCXHa6+9NppssQF6FCsYRA6tDoVlKFxhGq4itTwwyWOTAihG7LXXXnap6seW9v6Ykg43yuAYE5477rija9euXWSVCgtsKDeZskRjQFAq4j3EypAN9mFdhnhNmPwPhXJpghIcyho8U6Rv376RladQgYwV12atxsLZkefHpB7pI1gXYcA5HPhjco74hg0bFvnp1KmT+/KXvxzVQ5GD/8f7lCahkk2oyEN5Z9IIYeCx2pPTllfiZ1K8XEEBhDqY58kgLlYWqBNN+Y86JJzYS6aD4in1N8+0c+fOcTzh80URiDh33XXXKI0uXbpEVn6Y0DFFDybajGX4vqF4FMrcuXPjtsPcUZIKBYUlm7gLJ1DCdx2FttCKGnUHbRblm7LBJLAJebD3gvJE3UCdST1KWUEhirzbO4GlvBUrVljwgiP3y+QM9e+QIUOiNrNXr14Ffkr5QdtldRXp867wHBHeN6wh8f5xT/yhTJVHZsyYEdX5hKGuv+iii9ygQYPioLT34Qp67imPMGBuwoA7iqYm5B8La0yEki6TYWb9ionzUAGScouCspUf6lGUr2ibTLIsDNj18FhJeQ3jsXMm3HgvrO5kQsdvNVnQr4FfWG9Vs19UTr1reS/3WOtnVE6+Wlr7mrwHyjF1Af1ee1+ZBKUeQuhfhRYpk+Gr8bvU/lM5aVI2eD9NqE9Rmh44cGDkNG7cOHfOOec4m4TDMWltyMLW6tgc70yxeym3vaLMfPGLX4yjpr/GAgSs1dKPo02AvykWo2SZt/5GiTdUxKBvRT+nW7duUXuIBRPKk8VN/Ra2z7Qr1O20y7RLfCuSJ4SyED7zcOFDJe1cJe13JenGD6CCk1LLZGhhhP5M2rdtWK5CayfV7HeHt1xJnsJ4ip2Xyom4wv4EfQXqJ+tX0x+ETXLCv1gektfoY5qgeMA3qX2HED+WgMM+lPmt5rGSb/lkPqhH+B5jrIaxHtospF+/ftECCM55381CL79NUKa0vg5csXBcitA3RCGe7wxboEZfPPw24Tvr/fffj6O1PjsO1DmVfsvGEW84QSmTePmjHuSbgO8BhG8c+uIobyIwoQ0sR7K+sSqp14rlo1Z9/2Jp2rWwLPENl2btnQUmtHEI3wp8dyLV7D9HEW74x/iVSTjuYG4c6ceZ5B3bKvdbyNKxI98VLKzDqinCN1Eyn7xzjMsxfoLwPULdY99PvDsoK5o0Vdm29HQUAREQAREQAREQAREQAREQgUoISLGpEnptPCwDC6a0EqLASoZNjrPaD4UXk3AlLpN/NhFr1zmyCtAsaLDlQThgFfrLOmdi2Qa9GABjQMyEgRAbrGDi/oEHHrBLJR0ZNGaVHhZGTImIgYLQmkpJEVbRM2bBTV5++eV4IMjcOLKaFKU0/kaMGBFdwjoLEx0ICh9JqxLRBf8vHARnUMTEFNb4jaWjNBZM4PHcTRHAwpZzRCkjVCgJ42B1aThwYytJw1WBYVm0sAwY2sAZq9Nt4sWuV/PY0t6fxx57LL49JqjS3k3KCsobeQTrEwzyJoXBYBMs5pgwqGrlifc2LGfmhyPvnCnX8duUYjgPhfc8VGCxazbgzG/KAxNzSWGg2sRWJ9tvO4YKnOGWHlwPLX39+c9/tiBVOdoAJZGhyFOO8H4wyZkUnldoZQprGlkSTpyEfmxFLW4wssHn0A+TO6EFByYHEJTPbGKfd9GUW7gWbhFJ/hEGiMNB2bAMh+XMJh0Iw8BtUlA0YvKG+jC0ThNOBFLubQA5DM+EVThxbyvcQz+co2CLskW1JKybqLN4f5LCimar5xkEzyOmEEI4LP+F6Vh4a9/5nTaZZf7CY/gMsN5ndbL5YdKKyW3SZXDelKXDFdGsNA4VdS0sR1btM/GGsKI/6zlEHoJ/lZTXIJr4lL5HWt1JnyarnIRtUaX9olLr3TjjFZzU+hmVk7WW1r6G94AST9gO2TXKfFj/Tp482S5V/VhO/6mcTIRlg3YytJoaxofVJiaE2XqI9qEppTnemWL3F9aVpbRXZoWLuFGoCBWFLT3aWJRVTaiL80g4gcs2z2YNMQxLvUf55RnyFwp1OnU7ylFhH8b8oPBg32q0KaaYE7Y/pbZzlbTflaRr91TJsdQyyXcfCjMInJKLinA3a5R8f7HVLFLtfncU6YZ/5eYpjKOx81I5MR5hfRa+c7OsvvL9Glo2aSwfdp0+q31H8x3DYp40YZENdXAtpNJv+TBPMLI+eehu56GCXNoWYqFbOTxpM9L6zXzfh/ywWmMSfgdU41vW4rUj7ZT1q1kQkiYo3JmEYyPmlueY9Y1VSb1WLN1a9f2LpRleo89mEpabNLfwG7ua/WdLiyPfyPadnLYdHZasTUmJ5z18+PAweOZ52L6X8i2UjPBzn/tcg+8zvuHD9zWtv8W3lrW1xInFRJOmKtuWno4iIAIiIAIiIAIiIAIiIAIiUAkBKTZVQq+Nh91pp50yCYQf+Hz8I1g3Mmsa/GbgmsGotL/QkgXKOaVIqOjAQEk4QE08mM02CSc1zS15ZOCKQQD7w9IEkwMf/vCH48lTBtmYiMe9uYWV0KY4xIAaK6hZ0YblmORkcpjX0DINCmtpzwW30KIJg+cWZziRHCqGhGlwzgSGrepOXivltym/pYVh4MgGbsLJEJ6TWXJBiSa5HZ0pWBBn2oBQWlrlurWk94d30bbbYjC+2MRi1kBukkPW/aHcxmA5YkqBnIcrNPfYY494dS7XkhLmIW3iD/9YCUqTUNlp/PjxaV4iizp2wcq3/eZIubFtpyjLYX3HdZs04pyJvlBBB7dKJFQUDevJUuKEb5aYcgjX0ybHcOf5mcUNfpuwMtlWZ1MHmbUtux4ed9555/hnOBFhg7K8t6Him03aMpkRKumEebQyTMRYkDAJzxkMZgs9tmzLsq5k4cK4WaWeVSdafUu4sB61eDimTTKH10s9p10Lt+6jvsN6IPVaqcrAjaVN/cCzZQCcLVVChbe8aYVlDktrKJ4x0dqYch7pmYRxmJsdUQoJJ5PC+sT8JI/VKK9hnLwXplAbutt5mH8rJ9XuF5Va71reKjnW8hmVm68sDsQX1tdN3T8l/bCc8jsULBdY+8gEPNsX1ULK6T+Vk4+wbIT1cDIu+s5YVMTaCZZCm1KyykpWX6XWeQs5ldJehfUyykNZ7VVoNSUMU+y+QgWoYv17vj94hvyFigfJuOlXsYUtlhj5xmMRC39JqaSdq6T9riTd5D2U87ucMhlO9ps1R0ub99C+v/Fniw7CdpL2yaziWLjwmKffHfrnvJw8JeMo9rtUTmF9RB3IO54lxerprDBsM2UCz3ChkbnbsVYWnq1vQTrlfMtb/jgyzlFMuG79Xywlhd9LnJv1bPpF++67b7GoUq+FZS7pwaxs4U5dgtTiWzaKuJF/fJfRl2WcBStVodW5cr7/sr6xyEYl9Vojt9HgcjX6/g0izXAIy1JybI58mCUuFLDs+77a/edk1ljgZmJbadvvUGkbRcW8En4HlPItlIw/q+4LxziwiJkmobJg+M6m+a122U5LQ24iIAIiIAIiIAIiIAIiIAIiUA6Bun1LygmpMG2ewJZbbpnJwAa68GADh6FCDO5mKYjzYoLigq2aKubPrtngB7/ZguFf//qXXYqODJCY4BerFPgrJrbCM80PA3ZYEyk2iZ8WrlZuTPCygs0mFbBegYUm/ngurERlsJlB1dCyRKhkworTPM/HlIYYJAknPkLliLT7ZJseUwxJu57HLdzKKM0/Sium5MZgtg3kYOXJ3Fn5aJNo7733XrzVBkoCtnVAWtzVcGtJ709olagxpbO8XFCQypJwYs38hOUvazDO/Ibli9XJaZJHyZDJq3IktMLEIGKyjgnjRNEHhZtqTWKE288VU0AL85A8D/klr8GECR3qAJ4J9TaT7aFkKVQtXLgw9pY16GoesJJkYspQ/A6VdR5++OFoq1PqbFbMItRrTGgw8M9EHewtDMpKCBNWYR4ZdGYQ2gamsSRlFrco71hTQpExyTPMF9aP8kjWRHFamc8TXzE/P/vZzyJFJvJJXYx1ALMQwDZB3BOKnOWkzeQM5ZzthMpdcR7mnS3s2C6OLecQLB7yh/AsUVbDylqyrQ/f72LllnjCeqMxhSn8V6O8Eo+JTbbY7+QxzL+1l9XuF5Va7ybzWM7vWj6jcvJDmJbUvibvgW15iwlKn6aEMG3atAbvRLGwea+V23/KG7/5Q3HFpLE0zV9TH5vjnSl2j+W2V2GdZ8pFxdLhWt6t6MI+oineNRZ38jr1BIretNmhEnLSX/J3ue1cpe13uekm81/O73LKJN9VtDG012ylRl/AvvFCCyihslG1+93Jey0nT8k4iv0ulVO4ACdrYYOlF/YnzK2xY6g41Vj4WtWH4TMt51s+vMdwLCd0t3MUt1D+YBtV3jfGSqzvH25DxxaZZoXTwuY5ht8JSf9p33hhPVWtb9lkuvxm23qUUlBgYlEb/e9qSvj9koy30notGV/yd7X7/sn4s36zIM3KEv0flC6tr8S3oDFmYUpTjSti1dksrVKnmsV37iHc9i1cbJN1f+Ze7reQhbdjmrVpu2ZH42S/8xxrXbbz5EF+REAEREAEREAEREAEREAERCAPgfJmdfPELD9tmsC6desa3L8NSjS40IjDokWLGvFRf3nOnDkFK+XOOeecyHoKFlTszyz2WChTcrHfaccDDzzQhX9Mrn/pS1+KVpCxQi+vskda3LVwY+XbE0884VjtHQrPAGUuWDA5EVrDasx6SRhPeI7VCyRUuEjbaiIMk1SUCK/lPW8sjvB6OIGNpRAbrA1NmKNoZWW0lNV3efNbir+mfn+MB3m0la9Z+Q0tBmX5Kcc9jDdti8swzrB8lVtuw/hKOWd1I1tmmWBJyOqW8GjXOSZXn4bXSj0PJyLTrCbliS983mn+Q/6l1L+lPEMUqMJJKVM4xeKDudtWoSgL2btJPYzYVpdsCYGgIGIKOCj1hIJ1AgalmXxJKs5g4ejMM890W221VbQVUrh6NZwgCuMrdh7WNcX8VeMaeWbiiu0DkpaC2CIBJU4U75LWG4qlzf2zTSBWOS677LKYabEwea9hUYqtiJLPh0kMJpFR6OBaWAeF73f43qelGdb57777bpqXArdqlNcwwvC9Cd3tHKtfJqYMZOXa3PMeS3kv88ZZrr9aPqNy81QsXFO3r8m8hCvqk9f4HZbjWtUnYRq1zEP4HoblPy1NudURKLe9CuvNvCzztnFWT9F3SNtetrH0mPxH0eP73/9+SUpNxFtuO5f33sK8h+9buemG8TX1uVkY4d5Dyy62DR0LPEKLIaW0gWH7G9b5jd1jqXlqLL5Krod9X6y9FJNy3qew/DRWxzbWXyiWt2LXSnk2YTz2LR+65TkPlT1CBbrwvNYWkC2f4fNt7PmFZd/C5zlisZeFKqeddlq0SMrqxjxhq+Gn0notKw+17PtnpZl0/9SnPhU7heUn/IYJy1K57PP2n/nGtkWCLK5ZunRplD/eFduGjjyX2rcp51soBlPDk+Yu2zW8NUUtAiIgAiIgAiIgAiIgAiKwERKQxaaN8KG21FsKB/kYfGJCOY+UMmAQWlLJEzd+sNxx7LHHZnpHQYhVpy1NTBEgK1/k+eqrr3aXXHJJNMDNdk9//etf44lqVv2xPRLbPTF4Ez4fBmqYgMgjgwYNiryx+pRJa4RVk8VWo4YKVVGAMv6hUFZsRWaYBsoSJkzKHH/88e7KK6+MyiDbK2HdIRw4O+KII8x7izmGz6fa7w+KJChGMGDKe8nEb5Y1o3BFcjXhhPfHsy0mZs0CP5tvvnkxr1W/Rn2AFbRS5De/+Y279NJLy7KcE6bDSkreYZNwyxpzy3OkzDNplyXh9n5m6SzLb+geTtSE28iFfuycSQVbeUx5NssCXEf59Fe/+pVDaYyyaNs6oIxp20+goPjTn/40qs9QaA233zjggAMsmfjIe//lL385+sMKCgpBWAyyrTLwSHz4O/fcc6Nw3Ls9ayzs2PYtcaQpJ3n8pAQr2wkrU2zhhHITK62ZzISbMSNiJgKwWJXGJZkw1gfPOOOM2PnEE090kyZNispL7969I+uGWIAKJzljzzlOeLb8YV2EZ4Dljt/+9rex4hr5Pvzww6NV8EQXvt+NtSthvZFU9ErLWrXKq8VtinX2O3l8/fXXYydWbSNhvVftej1OrMYntXxGNc56HH1TPgfarzC9OBMbTsK+S2jlK+kv63eeyb5y+09ZaWa5h8q3pJlULM0Kt7G4h4qyyXsqts1gOe1V+B7SflJvNyZ5LTpYW0jZQikzad2wWDqEob02QTmZNoktIVHywzoJdR+WE7MsuZbTzlmeSbfc9rucdO0+m+MIw29961tR0nzT0Eekz259Zha7hM88rIfC9jMt7xYH18KyluY3dCs1T2HYap+H3/JZ1jUtTbOqaL/zHMNvTfqZxaQx3sXCci1rDCB8puV8yzeWbvI6Fprom1M+WDhlYwe2oIPv9JBLMnw1fzfFtywLBsyKN/fNIjfuj3cC69/8XXXVVbF10mreH3FVo15Ly1Ot+/5paSbdWNxgZYnyw+JEyrlZYqdNC61xhmW9Vv1nxovMYjDfUSjyhdvQhRbwkvdT7Hep30LF4qrWteYu29W6D8UjAiIgAiIgAiIgAiIgAiLQNghIsaltPOcWcZfhAAQD3QxOlGOavNjNsM2BCQoAWdupMdlg5tIZSDflFgvbnMdQoSS5TU2Yr9mzZ4c/M8+ZhMaCE3+sEmMyn8FtlAp4DlhFYeA5HKjGncGzUiQcMGYgvZhp7nIGjJN5aUxxIlTOSCpZMRCFYhPCdnQnnXRSrDCC6fHGLCok89IUv2v9/rD9HtbLrEzst99+qbcVKoCleijTMZwoC5VU0qILFQiGDh2a5qVmbrbynQRYsVvMuhcr1W0AHLbhyuZyMsjWIjwfhAnvcia9CQu/LMUmFI5MmWfChAmOrSbySlhGSYPtHdleIE3CSR1TVjJ/1FVMzHKvxGODyGalCX+h1QEG5K1MMLjd2BYjo0ePdvxRD2IpCIUmtiRFfv/738eKTUySGAuUymxbhMhjC/uHYhjvMH9f//rXHZNqKCih5ITw3uZRbAq3Vfz2t7+dOjkzY8aMKM5K/qHwcOSRR0Z/P/rRj6L61yw7oPCEshrbkJjiLGlR5+dtV8L6JCuf1SqvFn9oIcPcwiNba5hYGQ3zQHmvRb/I0qzVsZbPqFZ5TsbblM+BcoBFtCx5/PHHo0vUZWE5NuVPygmTffY7jCe0GBK6J88r6T8l4yr226zv4Yd+If2rjV3C75rFixdn3m64bVKmJ38hb3sVKpFhtaXUPnyxPNBGW1tI+Q3LZbFwXAutTNI+maWLZLiwT5C8Zr9Laeeq2X6Xkq7ltTmOPBesHsIYK5X0bULLJ6FFFPIXPsda9btLzVMtuYVjAvQbWcyRpgRN35Vvw1Il3H6use/c8Bs1TKfSMYBKv+XDvOQ9Z3uws846KxpX4L4/+OCDeOECyhJNKbX8lqU+p39qwvhJmpJ/3vEZi6eUYzXrtTDdpur7h2mmnVtZQlGO7zreUfvuTZalpui3ffSjH40Ub8kD44p8x1O3IvTRzIpw2r3kccv7LZQnrkr8tISyXUn+FVYEREAEREAEREAEREAERKDtEdBWdG3vmTfbHbMCORwAYGuCLJk+fbpj0BGlo2KrmsPwWJqxFaUMbGH1AYWWtD8GH88777w4eLglWezYTCcM1DBYgjDwmbZtCteyVjYzoc3EGH9JU+us1EVhha2XTGxwdddddzWnSNkJixpZMnny5Oj52AQc/sIBXaygZJnDZ/L3+eefz4o6tztpZE0acU82+MjkDivCQ+FeWRWIoKgCSxs4+8xnPhN6Leu8HFPxjSVU6/cnVBRh8jFtYBalD7bzqoWE1rdQvguVAML0UDCxlcC477///uHlmp6Ttq0cJSGs5KTVL+aGIpJJGM7cSjkyOXXhhRfGQU4//fT4vNSTa6+9NrNeCS0YhXVCnjRQYgotMxSzoEdZMjFT//Y7tETFfVs9g8KTCWnZJPndd98d1Udcw9paODFEPWT1YdpEMvUtXK3OZfLWtrA46KCDLLlI6S/+kThBAZX2ir9wS86Et6r+xGqG3VdaXc1k+EUXXRSn2Zh1AvMYTkJnKe2FEyAWrrEjls7IL1alkkLdRr0bKi2ZZbhQGYv3Pqtd4bmFfYo999wzmUyD39UqrxYxbUjW1rbvv/++w3KbiVmuqXW9bulV65imbF3LZ5SW77Q8pPkrxa0pnwNbmTJxniYoJFhfBIuaoYSKlVnKhVhAyyOV9J/yxG9+wjqb8p/VZ0PRCkVGJomxkNCaZeTIkXH27ZskdthwMnfu3FgZN7xWSXsV9oVoN7MsuuBu7VUeZSLyF24fijWSrO8SrO/xDPnDYixC3W9y8skn22nBEStlZsExvFBJO1dJ+11JumH+m+P8uOOOi5LlO4TvLVPGZ/uspBJ5U/W7S8lTLZmhdGh9VOpZFL3Sxhi++tWv5rYqHeaXcm/KnNTFWd+6bIUVfseEcVQ6BhD221G8SesfWnpp3/J2rZRjuD0YSvShMp3100uJrxK/tfyWDfuvtFM876RQN5qFn+S1avyupF4rln41+/5pdXmxtMNrYVmiHIWLqbByFEpT9Nuwwmv1F/17LK+aci6L4tIUzMM8Js/L/RZKxlPt3y2hbFf7nhSfCIiACIiACIiACIiACIjAxk1Aik0b9/NtcXcXKo1gJcisbIQZZcJmt912c6ySYgCHAcA8EionFdtazuI66qij7NQx0VRsy4jYYxOcoHxkq/kZmA4HdSx5JojN4pC52RGFARQD+GNwNk1CE/mWVteuXSMLJvhnwJdJZptgC+NgQIcJN54PgzrGDQswNqDLZA7m2ZPCZEHIPXm9lN8MnDHxzsrQUJYsWVKQRjixFvrDWguCQpwpoKDckOU/DJt2jvl5ExQtjIu5VeNYy/fnK1/5Sry1H8+dcsEKXAYW2a6RtM2iSjXuJRkHg4f2TLiGgsrSpUuT3tw3v/nNeMKBldZM1jSV3HPPPfE7wWA9W3MVE94TWw3OFltYoSlVUNhgaxHqSxPeveTKVbuW58jgLJaKkoLyyymnnBI777vvvvF53pPQLD8rb9NWrbPa9fLLL4+jTNYJcN17772j67atBT+srrKABx98cHTKKlqzjGWTVuYHBQKrD1EMMIUZu84xXBGMwom9y5/4xCdibz/84Q9dmqIWyqOs4OWZ8NeY1Z44wgpPUN60+0KxJE3hJ5xUz/uemMIN2UublGMiLFSMzXsbWJEivzxDJr+TguJPuFWbTbgySWeWR6xdSdatPAOelbVXvJt5t7CtRnkN74U2KU2Bji01aLcR2hmUH01qWa9bGpUcTemPOFCISEqtnxHpNZaHZJ7K+d1Uz4E+h20XFeaTvq9NoOGefGfNyijXfvGLX3AoEJQqsbKWRyrtP+VJAz/k2eqUrDRXrVrleA+tHqYeDeVvf/ubw1of1mdQLm7pYttMkk/auaTiBL/D7T7D+6mkvWJBh9WVKFVQ5yaFupM21dorLCPmEazrmdB/YIvrpFDvffGLX4zqYepi60uHliXT+gOU26y+ZSXtXCXtdyXpJrk09W/6RVZfYqXX+gFpfcam6neXkqda87rssstiPrwn9EtQAkcZhYUblNtQCbnU/IR9UMog36ShoFjIs8hS/qh0DKDSb/kwr3nPsdpo980iDlPaYhwhtKqTN75K/NXyWzbcUo/+cbJu59my5TVtWa2kknqtWJ6sncZPOX3/0Dov959XaTaZp7As8R7aoiAUyaxeC8M0Rb8ttLbMd61J6G5ujR3L/RZqLN5Kr7eEsl3pPSi8CIiACIiACIiACIiACIhA2yKwadu6Xd1tcxNg8oLVSqz4ZeCbyWsmIZnAYeUVE+tMXpiwujc0lW/uySOTATfccEPsHG5ZFDsmTrBowVZLTIijPEC+mBhoCcKKQ9tCiIETFExw4z6ZOC9mNYcJgp/85CfRbTAgxIQxg8pMtrBKnAHH0CpLuMr70ksvjQa0mHiDC5PLsGQy+t1333UoZ9iAJQkwaM4gLMKRCShjiPICE9WssEPp6bHHHouuV3PADwUiJs4Y6CMNBuNQcrABY6wyoZCQJqzUZbIZMSsHsCtl660w3nAlNPfIIC9lmwlsBs6rIbV6f8gbg+G33HKLw9IJ/LgHtueyLbos/+eff340qWVKBOZejSMTbjw/4uad5P2E4c477+xmzpzpeN5miYv0mNwt93mVk18UvEySW3qYe3hkJSeDsaZEhGJM2oQm73Q4CcmKX5QAeX+SA8y8k9dcc0383oXplXLOu4uFGyY4mdyC6+233x5HgXJoqEwVX2jkhNW21113XfxOoXSD9TzeAeoi6rXQqs2pp54aT3yHUVNn2XuJO4pu4cA5bqEFQH4jSWUAVlSjMGftA/URSpconXXr1i1SvDr33HPrAvv/4UA125Zg7cDcUDqgfFJnsgUiA/dXXHFFQX1z2GGHxXHV8oR7ZxKb94SJS9IlnygFoyiAAsoPfvCDOAt52kQ8M6nH80NQOIMdZYQySR1erO2JAmX84zmj9IMw+Q07ngFbr2Ghke3orKxTd9pkGNa36C9QHhDaFe6X50j9zkQ57Q4cTH784x/baaPHapVXS4i6izaQNon7w7rQHXfcUVCWuQfKnkkt63VLo5JjuH0PfQcm7ygTKDTRj6r1MyLvjeWhkvuzsE35HFAoQXkCa3X0cal/aR+sXZ00aVK01anljSPvtgnvBG007SP1Nwqb9PssvPkrdqyk/1Qs3vAa/UKU8+lXkN8wTfpGKErS7pjyBYrA3JMJliOtrUWpHqtOVh+bn5Z2DK2XUqfR9rHIgC2iqKewZGR1XTLvlbRXWKOhbaW/Tjmgn0C5oD5l60v6dby/YR+KejmP0N7xnGjLEaxV8j3Ab5RI6UvQfzThGQ4fPjz6GbbJKHrBgPYKHnzzsbDE+uwW3o6VtHOVtN+VpGt5b64jfXneEZ5/+Kzt2SXz1RT97lLzlMxjNX9jUY06yfqPfOuaYnyYDv12FlKUKtTD9F2p0yjrfKPSf6U/gGU63pO0RV1hOpWMARBPJd/yYT5KOedbh/59+C7j1tRSy29Z6kH6nTxbygx1O99JjK9gZZhyFb5ztbj3Suq1YvmptO9PPxAlVivblHmUjnCj7gkt6RbLB9esLIX9+lCBKQzfFP02+l72vWXfpdxXqMQc5qnYebnfQsXirMa1llC2q3EfikMEREAEREAEREAEREAERKANEfCrjdbrr+0y8JOW631xj/68Yk+jZcFvfxT79wPSmf79oETszw9MFPjz1hXW+1V88XVLP3n0Wx+s94PzBWGzyqqf2Izj84P4ucIQlx+4jMN5SyVxuDD/ebhk5ctP0sTxZ/lJc+e+/aBrHDbJht9eQSK+znkYj199Gl9LC4ubX/m23k+CFIQjDj+RtN4P4DQa3g+GNwhLeG8xqmhYPyi43m8DGPvxkyWp8YT3Y+dh+fOT73EcaffI/fmBxqJxJxn7ifui/i0fWUc/AdcgT34VZBxnmP+W9P6E9+Mn3Nb7ydYG90FZ9soh671yXVR2YO6VbOJ7Iw6vbBCH85bWCq6FaXiFpdhf6M653xYwjj/tuZrbBRdc0CB+b0UgjjetbBO/n1SM/fiJ5AZx4Ofmm2+O/fzyl7+M/PBeWNocly1blho2eT+UKQtH2bfrfuuV2N2uN3akjvLbpMVxWFx5jpRD4ue98JPiRdPm+XhrWQ3Ssfwln3syfa+Etj58xhYueaQdSEuH+Lx1m4I8+km6BvnBn90XcZNmMi/89ko0Bf6S+bDffoJifVq59RbdCvJi/sOjt1a33iuiFaSfpzym5TfpZu0I9XJ47a677sr1rnjlzui9DcNmnfM80t7/8F7D9sVPWhfkyZ4H5SxMg3LrlX0a5Uh4PzFSEJZ4vEJVo2HJo7e60CBsmI+080rKa1hOv/a1r0V1YsgqeU6fIy0PlfSLqlHvpuXJ3CgTlO/kvST7HbV8Rnny0JLb1/AZNdZ3gbVXbE0tJ14Js8FzCJ+Lt6IZ1wm8S/YMOYZ8GstDVv8p6/0O2zPyEKbLOf3oMJ9p59y33w6lIKzfHqcgnFfWLLieTCf8ff3118dhvZWWgnDh80ir8y2esB0ztzxH6qG0ezQ3OHrlwNiPt1oU56/S9spv5RvHa+mlHb2SWZxmnnvCD+1wWlyhG99gfvurgri9QnzRcDwP2hKLh/rQ8lRpO1du+11pupb/5DGrPa9mmfSKZjFLmHpF9ZhnMj/8rqTf7ZU54rS8ondmOqXkqVh9Ui1OfHtafWbljiP9W94hr7gS35e3Upl5X2k8vUJhXA+HcYfnXpk7jt8vbCiIv9IxAPJU7rd82Kfxi6oK8pV2r+ZGGx3eH21IsTGcrPcgb7/ZWz2M00sbp6nkW9buKe3It2V4n8lz2jFvNSr247duzs3Q4mrsG4t8lVuvhf2AcByi0r4/eeJ72e4hPFr7Vuy9DlknyxJlxS/YyORYSf/Z6oDkN0uYH879luUF95bVl0+GS/6u5FsoT93nFb3ifM6aNSuVGd8q9ny8gn3sp5KyXawdyMs4yUq/2878BPW1nnfbed561nrWKgMqAyoDKgMqAyoD1SoD2orOf9m1ZWGFbykS7iVfzFIKK8izhDjYisYrt8TbNIV+WQ2HpSEsYyQtdIT+wnNWyZmweiuvhNsrkKZtcdOhQ4e8URT1V2483Der91m15gd0CtLwg2aR1Ypi94lVmIcffjjezimMgPhYYciKcbb6SwqrqFl1GZrbDv2wytUPgruzzz47dI7PiZvt8HiOSTnttNOcn6iKVmrbtbzP2PzbkRWtzz77bGQ5wtzsyAp17oGVucUkZEh+w61eioXLuoY1E9j7AbJULy31/QkziwUO3icsJfCs/OROtAKTbXKw4sPWf36wOgwSn+ddkVmsfmBVMyth07YyJCGeLVYfsGKWlJBv8lra76w6LHxvrXyyDZ0JVmyK3YP54+gnRuPtYVjla6tZ8+SVMollFKzYYbGKLTSwbFeJkG/ebawvpL2jXGP7QVY9lytYIDGLQcn6izhZ6YrFEuq4rHRYCRu+R7a6PpkntrowybKWhDU16kPKDKtuk+InESIrGtRbYZrmD2tafpI8yre52RH/XskushyENZFQ8jzj0H/WeVgeQz9Yw8IiB3VuMt/8xuqLn6CLtr0yy3ph+LRznodX7Iu2m0s+O9oeLPb5iZG0oJGb3XPy/aDcYi0Ey1l+kLtBeMoi23OxGjq0zmMe2d6De/ED++ZUcOSdZMW8bX9UcLGRH9UoryTBPVNPYA0tKbDDwpyfUEhein7Drdx+UTXq3dRMbXCkTPjJuch6RbKcheFq+Yzy5MHKHnnKqtu5liybuJlU8hwsjsaOWDKgD0W9kxQsfWEJB8s9aULZ8koiqXURVs/StghLi6fc/pMxTjI097S0cNtxxx0ji29hfW1+eTew5oal0GTdgKUEeCG0G+FWfRY+61js+6bW7wz1EPUolqqScuKJJzqsT4VW20I/lbZXWGzCghJ9hzShjWc76tBaa5q/NDeeE1YM6dckhWfHdx39h80226zgMtZRqd/S+hxYFuT7q3v37gVh7Eel7Vy57Xel6Vr+k8es9ryaZZIyEPZ1sqydWN4q6XeH75n1ly3e8FhKnorVJ9XixPtBnYP1SOpc2jj62fQVyStWik3y9p/M/6hRo6JvUL5XkkKdQF/GrFAmr/O70jEA4ij3Wz58nsSTV2ijGbMw4bxYech6D4o9e4ubY2PfQpV8y4bpJM8ZN/GKVKl1O/eMxSYsSNdayq3XQr5hP6nSvj/3Sz8cq3y06WkSpp123dzIC+2kiVeWdsXKJfGW23+2PCX7NJa2HbHuGkpyC/XwWrHzSr6F8tZ9ln74fM2NY/hehn4qKdvh8wnjJ728jPErEQEREAEREAEREAEREAEREIG8BDZBQyqvZ/kTgWoTYEsTv5LLLVy4MBq0YEC/2MRZtdNvLfGhZOJXlUcDlQMHDixpGyq2ECL84sWLo208+vfvn/u2V69eHZmV99ZpXM+ePaNtg8JBkGIRkS7Plj8GjNiWImsgs1g8ea6tWLHCoXhDmpjTZmuMPIKiiF+JG3ll+6JvfOMbeYLl8uNX5UVbb3HvDNLVQqr5/lA+4IiwDVRWnlHMYVsTBCWDcPuRyLGK/9h6ke0TlyxZEg1iM1jaq1evKqagqKh72TqCgUgG47Oee7mkUISjDmAbImTQoEGOOqjUiaJy008LZ/UFA7EoP5ZSLxkvwlIXl1KfpuWlmm4w5n2h/mOLt2owZktEb30jutdS255i9+b7ntEWdJQPJmCzJvnT4kCxkjLLxGPv3r2jMtXYpERaPGlupZZXlDBt+1UU51ByQ6ibmSRlKzrqLZSnwoH/tLTNrZr1usVZrSPbSdIfoK1FecEmLJLx1/IZ5c1DMk+l/q7mc2BrLr8aPsoCfTnr59K2sRWj1b/0s/IKYen38L6jVJn1LBqLz+rDUvtPjcWbdZ305syZ4+hf0ubk6a9ZH7QadVpWvmrlzn2i1Mzz4Run1LrKnk857RX9UOpKtidFUbWUeqgxHtRtPEfaT+rwvH0HniVbDPEO8PxLLbeVtHOVtN+VpNsYy5Z0fWPvd9OnoQ1BqDezlAXYktdbSY38oTDKdpLlCPU0fQGE98S+YdiWzhQEUVLxFngyo69kDIBIK/mWz8xUygW2PEZpE0FJPdw+NcV7TZya8luWd4X2m7aTMY68dWC1b7ySei0rL5X2/Slz9NFpt+inN5VUs98W5hklSFNURimSxUHVkEq+haqRflYcLaVsZ+VP7hsXAZTtUUaViIAIiIAIiIAIiIAIiEApBKTYVAot+RUBEdhoCDApw0e0WR9iEC/LSsJGc9NFbsRvT+YYXEf23nvvaHA6uSKWAcPDDz88Wt2MPyxHsBJfIgIiIAJtkUCWYlNbZKF7ziaQpdiUHUJXREAEREAEqk0ASyu33XZbFC1WIv1WvQ2S4Htw1113jRXysea0zz77NPBXiUMpik2VpNNUYbESZxaqUADhd3OIvmWbg/rGnSbW3CnbWFpDsGSNRT+JCIhAdQhIsak6HBWLCIiACIiACIiACLQ1Apu2tRvW/YqACLRdAitXrowsXz33/9k7D3g7iuqPD4EkEEoILQQIhBYgVOkBka5IERAE+YOggFIVAaWJggLSlCpFBBRQkKb0Jk2KgPQSIKGG0GtoIQmQ95/vxrM5d9/ubXvfyyu/8/ncO7uzU3/TZ86c88QT4YwzzkiZmmDO6c1MTdQIVLz88pe/TDDhpi03EjfddNPkRjESBp599tlw8sknJ5IHcM9te8TOi4SAEBACQkAICAEhIASEgBAQAl0ZASTzGmMTap6RHgbTEuqPkTLzwAMPJCo97dILKkO57CFqjwDSkZAKx5rRpFXi6he/+EV7x51ko7VsJwHdw6OBmQlJaUg8RG26MTUhoVVMTT288JU9ISAEhIAQEAJCQAgIASEgBLoFAmJs6hbFpEQKASHQCgQQJb7RRhtVBIWaoH322afCrje+wKh0zjnnhB122CHJ/n/+85/AL49Qp4AYdtSaiISAEBACQkAICAEhIASEgBAQAl0ZgZEjR4YDDzwwYV4inVdccUXyy0szlzsuuOCClqj1zQu/u9udddZZ4de//nVFNsBs4403rrDrzBetZTsT7Z4bFxKqUVWepeOOOy5rpXchIASEgBAQAkJACAgBISAEhIAQmA4I9JkOcSpKISAEhECXQAAmJ27nzjvvvF0iPdM7EajLef7558MWW2yRm5Qll1wy7LbbbuH+++9P1PjlOpKlEBACQkAICAEhIASEgBAQAkKgiyFw7LHHhttvvz0gjSmPvvKVrySqtmF6GjhwYJ6TltrNOuusLQ1vegW27777FjKJdWaatJbtTLR7R1xc6LrvvvvC2muv3TsyrFwKASEgBISAEBACQkAICAEhIAS6OAIzTJ48ua2Lp1HJEwJCQAi0BIFPP/00jBo1KrCJzCbVgAEDWhJuTwwEMexvvPFGGDt2bOjTp08YMWJEon6uJ+ZVeRICQkAINIPAlClTEvU1+O3bt2/yayYc+enZCEyaNCl8+eWXSSY17+jZZa3cCQEh0H0QQDIL6xxUTg0aNCi5tNGvX78Oz4CfO/Tv3z/MOOOMHR5nqyNgjQhuc8wxR1hsscXCTDN1PUHwWsu2utR7R3jUG6R8M69fZJFFkr6hd+RcuRQCnY/A6NGjdWGy82HvlBhvePj1cN+z74bbn3g7nLnXqmHFYXPWjPfWx94Mj770Qa67PjPMEOaavX+YZ45+Yei8A8IKC88Z96lnyHVbxvLJsePDTY+8Ea66/7Vw6HdGhM1XXaBmcKNf+yj8/a6x4ZbH3gpzztYvrLdc5cXpGeN++txz9A+LDR4Q1hg+T+g3U76MifNvfTG89/Gk0HfGPuGn31qqZrxyIASEgBAQAkKgNyMgxqbeXPrKuxAQAkJACAgBISAEhIAQEAJCQAgIASEgBISAEBACQkAICAEhIAQ6AQExNnUCyNMhii++bAvfPPLOMGHy1Is9X112nnD8zivVTMkxl48KNzz0Rk13OJhv4MxhqzUXDN/92iKhfwGjUF0BZRwd/rcnwh2RGQsa0G/GcP0R6xYyIpnXGyMj1NGXjrLXqiZh/n63r4QVchi9NjvqrjD+k8mJ/3uP36hqOPooBISAEBACQqC3I5DPJtzbUVH+hYAQEAJCQAgIASEgBISAEBACQkAICAEhIASEgBAQAkJACAgBISAEhIAQqIrAg8+/lzI14fCeUe+G9z+eyrBT1WMDH9/+cGI45+YXwp5nPhhef/+zBnwWO/1wwhcpUxOuYMx6YMy7xR6a+EKYe531UHj85fFN+JYXISAEhIAQEAJCwBDoejKjLWUyhYAQEAJCQAgIASEgBISAEBACQkAICAEhIASEgBAQAkJACAgBISAEhIAQ6LII3PRwe6lLdzz1Vthm5NC60/zn/dYIwxeYPXU/+YspUU3b5PDCmx+Ha/77Wrj36akMR2Ne+zj88IwHw99/vlaYfeZyR5x3PvlWGp893BDzss6I+ey1prn/lkuFbdeqzOcHn3wenn/zo3DmDc8H0gvtHZmb/nbgyDBsvllrhikHQkAICAEhIASEQHsEJLGpPSayEQJCQAgIASEgBISAEBACQkAICAEhIASEgBAQAkJACAgBISAEhIAQEAJCoAoCH0/8Itz6+FQGoWUXHpioc8P5dQ++XsVX7U/9orq5IYNmDl9dZt5wwi4rheO/v2LqCfVtJ/3zmfS92YdrH3wt9briogOT57ueeifAmFSGBs3WN6y2xNzh3H1XD8s7FXT/uO/VMsHKrxAQAkJACAiBXo1AOXbmXg2dMi8EhIAQEAJCQAgIASEgBISAEBACQkAICAEhIASEgBAQAkJACAgBIdCTEJjS1hYefP798OTLH0a1ZxPCbDP3DYvNP2tYd9nBAaaV59/4JDwz7sMky6stOXeYPzLgQDDE3PP028kzDC1I53l7/KQwatz48OiL48Okz78MwwbPFlZYZGCACagWPRHVlz364geJ6rXPv5wSBs85c1hiyOzhqyPmDf0j408eXf/Q62HKlLYwZO5ZwqqLz5Wk6bEX3w+PxHDaooclhswWNlxx/gppR2Pf+TTc9+y74aW3Pg39+84Y0zZ7WG7hQWHBGEYt8lKPtlpzwfDU2A/D1Q+8lkgqeuHNT8Li889WK4i6vsPg9LtdVwo/O/+xxP0tj70Vdlh3WIWUp7oC+p8j8vzMuI+St01XHRJWX3Ku8PhLU8v0zihtaus1F2okuFy3M/aZIRwQJTr94NQHku93j3onec91LEshIASEgBAQAkKgKgJibKoKjz4KASEgBISAEBACQkAICAEhIASEgBAQAkJACAgBISAEhIAQEAJCQAj0BgSQQPSTcx5OVYj5PJ9x3XPh4G2WCR98+nk45ZrRySeYbYyx6e0PJ4bjrpwqSWjnDYaFxQbPGo68ZJQPIn3eco0Fw35bLBUZidozKL36zoTwy0uezE0DAQzoN2M4bLsRYf3lB6fh2cNvL386eVxm6BzhZ1stHXY7/b/2KTX/dMuLUQrSimHE0IHhjzc/Hy664+X0Gw9X/mfq63G7rFBTLdv1D01TQ7fOsvOFwZHJC8Ym6JZH3wx7fXOJqYG14H/kUvOEb6w8f7j5kTeT0O6IquS8+rpGorg1MkYZbbji4MhsNii+Ti0rmMNawdhE+J6xi/oB01mfyPAkEgJCQAgIASEgBBpDoP2MqTH/ci0EhIAQEAJCQAgIASEgBISAEBACQkAICAEhIASEgBAQAkJACAgBISAEujUCSEU67KLH2zEUwUgETZj8ZTjikqfCA2PerZnPO554q4Kpab6BU6U6mUeYfy6+a6y9piZSk35w2gOFacAh6Tj8r0+Gf95frNrsjQ8mhgP/PFW6EX4sDzyjyg3/59/2YgVT05yz9eNzSodc8ER4cuz49D37AAPWk1GqFPS15eZNpECtNGxQsHCuiwxCX0ZGnlbS5qstmAZ3m2NOSi3reIC56B//ww5cVl187jCg/4zh6ytNZRRDktPLb39aR0i1nWRZmFqLRu345UIICAEhIASEQE9BQBKbekpJKh9CQAgIASEgBISAEBACQkAICAEhIASEgBAQAkJACAgBISAEhIAQEAJNIXDSVaPDI89/kPhNpCJ9Z0RYJaqam2OWmQKqy26KkoIuvP2lqLbtvZrhj3v3s8TN0TstH9aMkoZmiQw0kz6fEs655fnw97teSb6de8sL4dsjh4aBA6Ye1cEEdMzloxLGJRwsHtXG7bPZkgFmob4zzhCej6rdLr/3lXDD/6Qk/e6fz4ZVorq5hecdkITn/2Begg7Zdpmw8UpDwsxRMhQq9H4emZ2QHMTv/H+9mLj59Q7LhXWWmy9Rb/f6+5+Fn//lsfByZLCC7n3m3bD8InMmz9m/f0XmLaNvrDR/8oj6tW+uPCRcEpm2SMNDL7wf1ogYtopWjCr+jF6LaQUz4myEHn35gyRt+Nl0tQXCTBFbaKOYB1TcQTdHaVN7fGPx5LnM36vvTa0HhAFzW6NpLRO3/AoBISAEhIAQ6EkISGJTTypN5UUICAEhIASEgBAQAkJACAgBISAEhIAQEAJCQAgIASEgBISAEBACQqAhBFBBd81/p6pQw+PxP1gprL/C4ISpifdF5p01YXTZbp2Fea2LTvjBiom6OJiaINTO7bvp8ICaOKOX3/7EHsN/n3svIC0IgrHq2O+tmDAF4Q/1ZahdO2SbEWHlJVCbNpUui4xORfSTLYaHLaKEI5iaoCUioxSMVp5+EVXawdDTf6apbhaYa5ZwzE4rpE6efCVfYtOUtrZwzf9UzuF45NLzpn5Q7WZ088PTVNWZXRkTxqBhUcWf0YdRLWCjZKrs8LeRS+tqkQHLJFtRF1ohbeqsm55Lk7f68LnSZz0IASEgBISAEBACjSEgxqbG8JJrISAEhIAQEAJCQAgIASEgBISAEBACQkAICAEhIASEgBAQAkJACAiBHoTAmNenMhSRpW3WGhpWXmwa85DP5r6bLpmqWvP22Wek86ztmH3s+wxROJBnpkFCktGdT75tj+GnWy4VFpx7lvTdHmDsOWL7acxJMA4VMeBsuuoC5i01l1pwGlMVlustN40JyRx5CVBjxn1s1hUmKuiQ+gRtuuqQhGnLHCwd41gwMkhBSD76ZNKX9qkl5lyzT1OZ9+GExhibPps8JVz/4OtJOiijZRcemKapX2Tu+vrKUyVPIW3q0ZemSu9KHdT5EHm+witRTd+hUa3hXU+9k/r69siF0mc9CAEhIASEgBAQAo0hIFV0jeEl10JACAgBISAEhIAQEAJCQAgIASEgBISAEBACQkAICAEhIASEgBAQAj0IgdGvTZOctOzCsxfmDMailRebUKnSaQAAQABJREFUM9z+xDQmpDzHKy06jWEm+33+OWdOrT6NkqKMxrw+jYlo6YUqGZDMDeY8c/RL1JrBWDRh8pfhnQ8nhfkHTQsTN0PnmSXMPnP7I0DUriGVCH8wHw3oP1WaFH6M+kTuK6QimTo6s/cmavmMkPjkCeatb0amKlTtQXc99VbYdJX2TFbeTyPPnzlGqZn/Jw2rXv93j5qmPm+TVYYE8uppwxXnD1fdP1Vy102RaWzVqOqvGp189ehw/UNTGaVwN/mLKbm4HbfLCiHLVFYtXH0TAkJACAgBISAEKhFoP6up/K43ISAEhIAQEAJCQAgIASEgBISAEBACQkAICAEhIASEgBAQAkJACAgBIdBjEXju1Q/TvC06uJixCUdLLzSwJmPT/P+TWJQG6h76FzDjvB0ZlIyGzjPAHnPN4QvNlkpMGv/p5HaMTbPN0jfXn7fs06ROl0mfT6lQ2zdlSlt48Pn3fNAVDFPXPfhaSxmb3vhgqqQoIpxrtmnSmyoSUPBywyPTmJBmi4xf2XR76Vc3RsamA7ZcuiIvecGOeW0aQ1re92MjU9M6I+bL+yQ7ISAEhIAQEAJCoE4ExNhUJ1ByJgSEgBAQAkJACAgBISAEhIAQEAJCQAgIASEgBISAEBACQkAICAEh0PMQGOCkG302aZoUpbycfjKxMfVneWHk2aH+DEKiEmrRqtHcs/VPP0/8orWq3tKACx7uHlUprepn5z9W4HKq9eMvfRhee++zXNV6VT3mfER1n8epf9/qOPkg3ho/KTw4Zpp6uTNveM5/zn2+K+Z1k5WH5H4zy9WGV6otnClyjM09e/+wxJDZw4YrDA5edZ75kSkEhIAQEAJCQAg0hoAYmxrDS667MALXXXddGD9+fOjbt2/Yfvvtu3BKOy9pr776anjsscfC448/HqZMmRI22GCDsPbaa3deAnpRTE8//XR45JFHkhyvv/76YcEFF+yWuf/3v/8daEubbbZZWG+99RrOQ0e2w3HjxgXSB6266qph6aWXbjh9XcXDpEmTwuWXX54kZ6GFFmoK666SF6Wj9Qh88cUX4bLLLgujRo0Ku+yySxg+fHjrI5nOIXZkXzGds6bohYAQ6AUIXHzxxcncetCgQcmcqRdkuVdmsSvM72+//fbw+utTb5SzxmWtK8pHQHOLfFxkWxuBMWPGhAsuuCCMGDEi2UuaaabO2yptxRq3FWHURqk5F1r3NodbR/uaPHlyst4kHvZV2F+pl3rDWrVeLOSuZyKwzNCBqQqy59/8JKy4aCWzis/1M066k7cv+4xquNci4w5q4j745PMwaLbi+d+Lb32aRjfngMakFqUem3y46dE3GvZ56xNvhV3WH9awv6wHGI2M1lpmHnusy7z1iWnq8+ryEB1d//DrVRmb9t9yqbDtWkPrDU7uhIAQEAJCQAgIgSYR6LzVepMJlDchUC8CRxxxRHjyySfD7LPPLsamCBpMEzvuuGMFfBMnThRjUwUirXu54447wv77758EeM0113RLxiYY4TbeeOMkD6eeemp46aWXGs5HR7bDJ554Iuy6665J+k4//fRuzdj06aefpnnZZpttxNjUuqbYI0K6+uqrw/e///0kL1dddVV46qmnwgwzzNAj8maZ6Mi+wuJotXnhhReGm266KVxxxRWBPr8eRmEY1E455ZTw0EMPhY022igstthiFcmaZZZZwpAhQ8Kaa64ZRo4cmVvOH3zwQQAvGJSXX375sMcee1SEoRchIAQ6HwHrozkIhBlc1DMR6Arz+zPOOCNce+21CcDf+ta3xNhUpap1x7lFlezoUychwPxq6623Ds89N1Vaw8wzzxxYn3UWtWKN24owOiq/Wvd2FLLlwvXlQv2/9NJL6w6wN6xV6wZDDnskAsMXmKZ+7s6n3g5br7FQ6NOn/X7Mm1ENmpf600ow5h3UP2FsIsyx734SGZvymaumtLWFJ18en0Y9V5QO1Fn0TlSXd9+z09TOXfDTNSNO+bG/8cFn4aA/P558vP6/r4Wd1xsW9z7y3dZj+97Hk8N5t7yYOt1opcHpcz0P1z7wauoM9XALzZ2v7i/CG3Y++f7E7SPPfxBQfTdk0MypXz0IASEgBISAEBACnY+AGJs6H3PFKAQ6HAGkNGWZmpZZZpkwzzyN3WDo8IQqgi6FADc9Pb3yyisVjE28P/zww4kTDuE5jBd1PQRUTl2vTBpN0YsvTtug4ZAFplQYYLoLIb1u7NixSXI333zzHnEI+/nnnyfMqx9//HGSr5NOOqkuxqZbbrklYWrC06233pr4LfqDaQlpE9m+Fcams88+O/G25ZZbNsTYNGHChEAa2uKO3BJLLJEwRhXFL/vuiYDKuHuWm1ItBISAEBACXQMBJAoZUxMp8vNw3jXOgkIxwfT/2WefhTnmmCNsuOGGxQ71pccg4NtId1yr9piCUEY6DIFh882ahg0zyzm3vBD23GSJ1I6HCZO+DAf++dEKu1a+rLXUvOGxF6YyLF3/4OthpWH5jE33jHonjXaZoXOEOWbpvKO+25zUox9stFhUtzZbmpbsw2KDZ4uSrwaGRBVdlET11Cvjw/KLzJl1Vtf7xxO/CEf+/clEmhUekG61+vD6zzueefWjMO7dz5K4ll14YPjaiPmqxrv71xcP58Y6AN32+Jthp8iUJRICQkAICAEhIASmHwIFfNTTL0GKWQgIgfII3HvvvWkg2267bXLAjDo6kyiUftSDEHAIwKz0ve99L7HB5N0T4vlRgcHv0Uc7bgHv49Rz4wionBrHrKv52GmnncJaa62VSCBEelp3YmoCywMOOCDtKz755JOuBm9T6bntttuCMTURANIz3nrrrabCKvKE1EmkOr3xRuPi3IvCvP/++8N2222XlMcll1xS5Ez23RgBlXE3LjwlXQgIASEgBKY7AsyzmW8j+Zv5N/NwTxpnPRqVzzA0IUmO/YHDDjus8qPeeiwC3X2t2mMLRhlrGQL9ZuoTjt5x+TS8i+54ORx0wWPhn/e/Gu555p1w7r9eDLuedn942amASx236GG95aYx29zw0BvhKidhyKJ45Z0J4dCLnrDXsOkqnXv59NrIcGXk02t2WfObKy+QWt38aOOq4D7/ckq46+m3w26nPhBgODP65XeXDf1jmdVLtzw2Le5NVp6/prcNVphWFtc88Fq8NFbTixwIASEgBISAEBACHYhA57Fxd2AmFLQQEAKVCCAtw2jPPfdsJ/3BvskUAh4BVF2dd9554dxzz81Vh+Td6lkICIGOQwCJPXfeeWciZaenqaDrONQ6NuS//vWv7SL4xz/+Efbaa6929kUW//3vf8NKK62Ufv7yyy8TJqbbb789OQx6++23E4kBMDcxjvfv33li5NNE6UEICAEhIASEgBAQAr0MAeZz7Jto3t3LCl7ZbQoBrVWbgk2euhkC668wOOwZJQudfePzScrvffrdwM/TnLP1C99afcFw4e0veeuWPC849yxh1ygF6fxbp0rzPvEfz4Z7nn4njFx6njBz3xnD41H93B2PT7toNXzB2WNaFmpJ3PUEMvq1j1PGrmGDZ60qrcnCWycyax135TPJ680PvxF+vNnw0L9ve4ak8259IQweOE1i+WeTvwhvjp8Ynn3lo1RKk4V50LeXaUjy0+QvpoTrInOS0brL1VZht8i8swbwHRPz/FqsE0+P+zAg6UkkBISAEBACQkAITB8ExNg0fXBXrEKgQxF4771pOq5XWWWVDo1Lgfc8BLSh2/PKVDnqngioLXaNckMV3GWXXZYkZo011ghPP/10Ir3pL3/5S0OMTdnczDjjjGGhhRYKO++8c9h4443Dcsstl4SLSgdU0m2zzTZZL3oXAkJACAgBISAEhIAQ6AAENO/uAFAVZI9GQG2mRxevMhcR2GndYaHvjDOEi+4cG8Z/MrkCk6+vNDj8aJMlw/2jK5mdKhyVfNl5g2GRkWZCuPmRqRKG7nv2vcAvS0PnmSVKmFohzBTT2ll0y2PTpExvuso0SUzV4p9zQN+w9oh5EgaxCZO/DP+J0q9gIMvSPaNqYzrfwJnDb3ZcriGmJuL573PvpcxRayw1V5h79n7Z6HPfN1l5SMLYxEekTYmxKRcmWQoBISAEhIAQ6BQExNjUKTBP/0jeeeedRG0KKRk5cmRYZpllwmuvvRYQq3333XcHREgvvfTSiehtDu2y9NJLL4U77rgjsTb/WTe8jxo1KjzwwAPJpy233DLMPffcyXNe/C+88EL497//HVCbNt9884WVV145bL311mGmmaZVS/s+ZsyYsPDCC4fVV189Sb+FmwRe5Y8033fffQH/c845Zxg+fHj4zne+E+add94qvqZ+wg+qZsg7qnSGDh0aYBLabLPNQt++fdv5z+YRPDn8vOuuuxJMBg0aFE4++eR2/qpZgNE111yTqJJ79913wwILLBCWWGKJsNVWWyWYeb/vv/9+uOqqqxIr0mzEwaupMfr617+eHKLatyLz5ptvTurHzDPPHHbYYYfw0UcfJeWEBJE333wz/PCHPwzrrLNOhfdG8arwHF8oJ8pr7NixySfqw1e+8pXkoHfAgAFZ5xXvjeBkHhvNY1uUNXvrrbeG//znP0mdmGuuucKIESPCt7/97cBzPTR69OhECgdq3Kgvyy67bJI/2tTAgfXf9rj++utTFUiojMurj//85z8Dh/H9+vVrJ07f0ooEksmTJyf1apNNNkmsUVVEfzD//POHTTfdtMLu4YcfNq/hlltuSeoCFvQZ5CWPJkyYEPB3zz33JO1whRVWSFTcIbXE6mWevzJ2jdQHpKI89thjSXRF7YO6+cwzU28V0fbyyhs1VdRd+q//+7//q+jHms3LF198kfTR9CNPPfVUmDRpUlhxxRUDGGKiLsGTlV2j5UQ/yzjw8ssvhz59+iR97QYbbJCMBz58e0Zd1oMPPpi80mdTd5999tmkDYMV6aL/A89FF13UvOWan3/+eaA+UwbgRz+56qqrJlJtllpqqQDjh9Hrr78ebrrppuSVvtDqrH33Jv3UDTfckFgx3tHGmiHaO3mDyCvpy6N//etfYdy4cYE+87vf/W6Co3dHWdLuUQlKnQNn3/79uIc/+twrrrgiCYK+0Ev5yfZdtGHwYyx94oknwoILLpiM8aiFmGOOOXwy2j1Tr2CgYcygj6NPo9wwGXMYfyDSmjc38AH6NHtVavQzs846a+K0qP3wsUxfATPvlVdemUg7Im5uEVMH6Z+Lysynvdazja24Y/xj7oRkO8oUDGFIKkuk+aijjgo//elPk6DoU8owNtGu6Qut7yJQ6sn555+fhL/IIouEDTfcMHn2f4wbjB+MV2DJ3In51+abb55g6t3W89zM3Ii+jrpHe3nllVeSNAwbNiyZ+yy22GJVo6UeM5dgzKFeM1+k/tJ+yQv9KeUH0c8RLoTbMvPcJBD31+ycqJG+otkydslMHju7jIj0xRdfDFdffXXS748fPz5pQ9bX5Y2xPs30efTvNm4wz2GOvvbaa4f11lsvV9pGM3lE1ST9CmX54YcfhiWXXDKJY9111/XJKXxGdeVDDz2UpJO+mbUHfQVz2+WXX77QX60PpIWxlrrMjzHXwiTc7Hjiw6NNM0eg74KBkjWF9e8wWTZCWUwbXVtm42p0LuL9lxkDWjG/Jy3Ntnn8Mu+m36XPo4zonxn3Gcfz5vj4qUV55cOYAM6tXns3Uiepf+QTYr7HnLaIaOMmhdj310Xui+zL7AeUqZfZ9HRmmRB3I+shS2t2jtkZewAWd9ZstL+iv6YuMhdnLVZEF154YWCsZdyAqdzIxlS/ljO7RuZSja7fLP6syTyc+Sf7a4yTzFe++tWvJnOXMswkZfoqn0bCYa7FmGzE/qLNM4vWROaW/LFvSH9EH846g70+xhK//jP3Zr766qvJOhRcSAO4sC5m/GOvL49Q046UVNzSl4AncTOWsv5kLKQvYu+jWtw+7ClTpgT22aB55pkn6a+TF/c3ceLEcPHFFyc2RfNuv4dn8yAXRLKf0+i8PLtWZx3GfIS+ENzAYPfdd/fRFD6zPrv00kuTdSKOvvnNbybrLL/uy6a7VXiDMesh1uPsU7DnwJyF9SRzKp9P2jJtWiQEWo3ADDOE8N11FgnbrDU0vPbeZ+GdjyaGWfvPFIZGCT6zzzz17OKzz6ek0eLeaMb2gojsU4XZt4oKtb4xkF9ut1xYY/hc4e93j0sZayyAAf1mDN9dd5Gw3VcXTtNj3xo1+0UpUEWEaj6oX4zP6KZHpqlzW3/5aara7HuR+fUV508lX9351NspY9NMcY+sGiEda8G5ZgmLRulQG39l/rDyooPivpoDvJpn9+3OJ99O374Rw6mX1ouSnU67dkzi/MaHXg/7f2upuO4MoVW8ZP3qrTD1JljuhIAQEAJCQAj0ZATiQrRNv56PQVy4t8V6nPwOPvjgtosuuih9N3sz4yK3LS72K+pFlFSQuj/77LMrvvn6c9ppp6Xu4gI8dZeN37uzeDHjhkZb3Kxoi4cJbXFjIQ3Lu4lMUG1xIz8N2+KPmxmJ+7jBn4QRD2dz/RMW+Td/WTNuQLTttttuhX6JPy6i2/nP5vGII46oCIN0ZeMqeo+bO23xcLzCv8eA50MOOaQtboSnYcaN36ru8XPmmWem7ovixn6LLbZIw4qHtm3k2cd/1llnpeE0i5fFT1lT7j58/0zcUX1PGp/5w2wGJ/PfSB7jxltb3HzPTSPlGje12iLTWvo9HshWpPfTTz9ti4fV6XefP57JY2Qaq/Bj6cwz99577zSsuCHXzl/cIEu/E37c9GvnJm7ipW4iE2L63co6MqS0s8um294PPPDA1G22HRKOufNmPCBsi4wqqb+8fGbt6FMsjNNPP72d32bqw9///vc0zBNPPLFdmKRhrbXWSt1Q1tl08W75pD7EDcBcN95fZLxJw4zMC+3cxw30ingt32ZG5pV2/ZCVnbnJmr6cSEs8MCis1/iNh7dtkcmhXdp+//vfp2mnrv/oRz9K37Nxnnrqqe38Gw70mdXSTPy+jnjMwDkynBaGfdxxx6VpOvroowvdWVqKzH333TcNJ6/fN3+UoeWdPs3sMRnT1l9//fS7uTMzHlK0xUP+Cj+RmSp1D74+PN930Y7jgXbq1sLEBNvIcFXh18Kh3/7BD36Q6w+/P//5z9si80f6/aCDDsoNx8LDjIwwqXufDv/s5wWt6iuYk/g4ss+R4a9m2n0+8p59H0D5RsbONE6wyvNjdlEaU+q2aCwzt/EALXXLHMbsfX3w/bV9zzO///3vp2FlMeEd/L2/yEzUFhmrqvqh7mXrtw8j77nRuVE84KraL2T7MR8nY4AvK59v+gzmsn/4wx/SPEZVgikGZee5lo4yc6JG+4pGy9jSmDU7s4zAp9qYQZnFA7G0XLJpjYe8VesHcwvmw1l/jebxz3/+c1pPfD3iOTLVtsXD2/Q788O8+Bins37tnXlcdq2VDSPv/cYbb6ya/6jGso05a55f5i8Wf55Z7xrBws5i2uja0sJpdi5i/suMAWXn96ShTJvHf2T0KSxT6jPzfD/uF5Wv4WFmtnw6Yu1NXI3WSeaNVv/iZaHcump5oK2ZW8ZHs69mZucWze4HlK2XeWnsrDJpZj1k6fV1raP3ACzOPLOZ/or2Qn1hvM8L0+z4jrvsPMjP1yKzcxJGo+NsM+s30pVd40bm+SQfVv+9yTyHtb7lx8xsGGZvZtm+ysIxs9o4aem1OaNfw7Fm8vNdc2vmdtttV7HHZfGRfr/fYu69yXoFd+bHTHPDeB0ZK6tiG5l+2/m3cLKm1TnCz1v/R0bBtA9jTpD1zzvrFEufXzeXmZf7tTrzJuYGFgcm+4zETfmYfbwA0C59zFO8X/pTm7v4tUl2rWphlsGbtBWtcWnD8eJMRX3I7r/lYS27rnfuUW1/ZXqX18SJk9rGvvVR8nvt3eJ9J9J56F8ebltt/xuS35MvvdeuLbUyL2+P/7Tt6bHvtT318ntt497+uO2zmM5Whq+wul47UZmoTFQHVAdUB1QHVAfa14Hq7NBxRSLqeQjEg5yAlBcjpDt4QgrBSSed5K1a+oykl5/85CdJmHFRWhF23PAL++yzT9h1111TaRu48e7efvvt5EY2UgXyiBvSSMwgHiPvHzvybxJHzI2ZkSEpnHfeefaamN4/8XODlluXRcRN8l//+tdFn6vacyuKG+eR4aLCnU8DH+LBfUU5crsQN1l3ZofJzblGCYlN5LmIyuDFDWUkUlDuRUTc3N5DqounZnHyYdhztTxyuy8yACS33Mw9puFMfYubnu3S592Sx1NOOSW1ihupyS1ls7A6za3HesjfLuWWY5ay4ZgUCu+Om29G3LyrRoMHD07za+58vcqTqAUu3KZDCgYUmSwqwkBSANLPuO3XCmq2PkTmmTR6JJJliX7GY+X7FXPLjWLLJ3mqJi3B/FQzkVDCbVUfL3j7vpobsXFjO7mpaGE1Uk5IREF6Hbc3iyhuOid1mzZQRJFRNpxzzjnpZ8rZ03777ZdIB/B2PCOtI26UVvQt1qbMLfGvttpqyY1z7JDise222yafqV98LyJulhptv/329tjpZjyATKQR+jZIucWN8DQttFduGseN4tSu3gf6FiRvQNYmzS/9ChKL4gGXWaVmZPYK8UAifefB4x+Z/BLpQRUOarxwwzmbBgvX7JGskqUyfQUSvPbcc8+KIH0++ED/zo3sZun5559P2yKSKJEAxY15q+vcSuZ2fivIS+bglnIZmm222aqWR1YqDnOvX/7ylxVRZrFEiuWaa66Z3B6vcFjnS625EX0fkpX8nCObhnhYE+LBT7sYwYu5o+83vSPqWTwsC0hX60hqdk7UTF/RaBnXk++OLCPiP/zwwyvGDOyyZbzLLrvkzqGRSsi8olr9YG6B5IBqY1utPNJfMO/z5NNIv7PTTjv5zxXP9OlInmCchvDLXMP6DOwiE1E6nvFeD8VD60RSgs8/YfpwkSwaGWkTlZY+TNoNc1WjyIydpMneMSOzVTj++OO9Vd3Pza4ty85FyowBrZjfA1CzbR6/tHvWlL5MsTeiPjPuIKmiDHXU2ruZOsncz9oTa7ui9TxzF5PSSX1l7GmE6POb3Q8oWy/rSWdHlUmz66G8NFdbH+O+TN3Pi8/sOrq/snjqMRsZZ5tdv2XTgTRDpOlQhyFrL+aOeU68hBcanSe2uryY05O2bPrMDjNPshSSBpECauTXt9ih+pn1Y5Z+9rOfhf3337/Cmr7Bx3/CCSdUVRGNNFL2UQzbbNxgC/ZI8quH6L+NkMyYJaQNGTEnQMJUlpCabIQkJaNWzcuZ2zM3aJToS5g3m1/2OJAmnLfvUxR2s3jHg5uk/7Y1roVvZU35MQ9DwpxICHQUAl9MaQs7n3Rf2Pa4e8JWx9wV7n02f///4RfeD7c+/laajIXnra5tIHXY5AOq3JYYMnsYvsDsYfCc/cOMTUgsajJqeRMCQkAICAEhIASEQJdBQIxNXaYoOi8hbJJCHBCwaciBPAeqpv6Eb7/5zW9yD0P5VpZYoLIoZaEfb+Ik6mfYwDBiM4eNTjbqORxgsxcmIltU4w67asww+GOjgw1X8kg82HEIbMThGQwJnjigtE190shGPZvOxI/o/HiLMXEOZjAFxBth3nv6jFhkiMNhxO3DwMPhaD105JFHVjArxBvQAZHb5IPNAUsfYbG5YOKtUbuDG36mQgw3qEcy+2oHMbjNI/LCQXy8kZvgyEYCG51QGbw4UOAQknKBOOhH3Dob3FHCUVI/dtxxx+Qbf1FySsXhcbM4pQG6h2p5POaYY1I1jnghz2xMgSkqEmzjzddPF3TClOE35qn/1CU2zggjSp9InUcpROlztQevBjCPucNvohGOxe/DLNpE827smfSSVn/oTb20euXtzQ8mB4scDrKJZ3U43qZLNyDBIi9tPox6n5utD6gp4gASot/JMih4nHDDwX7WjWeaqKYeDf/1kK8HHFCyUUofRL9jB/+EQ1v0DJD1lhObtRxgWtuLtykTJiHaHWHefvvtqQo5+mMOoosI1Qz0teCEf8qZdHJwZXTooYfaY2KSF5jpiAuiX6Ue00/T39KvWZnQ1n77298m7vjzfZipaks//u8BpinbCOUweZFFFsk66bR3DtDtwJJ+GRV5MNChBgDVBzDIQGDBmNwo0cbYaEYdGtjRJikL26gnXM9USfjEA2OTEWMKbRS/pAnmZijLTGrui0zUlVmfwJhhxNhn9p4p075jNtNX0G/7A4Xf/e53SfqJC/Urvt5ygEK9bIZ8GzPVJjAv2vhE+XrGtWbiMD+Uo1FZdQowqIPF5ZdfbkEGDoWsLDyDD+oIrdxxzOEXB0+4ZZ4EBnaYAI5RYmQaZiMP1eZGqI+hL7D2AhMG8yfqNX0DKg2NopSsdvWTsZr+yihKe0j6Iw5HGKvtMMy7MbetMsvMiZrpKxop43rz2JFldMYZZwTaqRF1jjGNeoa6KcZxI8rTz5sZW2B4MoLJFcZu6gZ1h8MtxjIj3DYzR2fMYX5vZPFQL6mLrAvoX6u1eeqe0S9+8YskjaaulHHa2hLzRsPb3BeZjNu+36Y+w+wCLvzoQ41hljA90zuH314VNmMn6wnSxLjtxx4OhWHqaJSaWVuWnYuQzzJjQNn5PRiVafOo4mU9RZ2DYGhn3GVNTrlQx6J0jKRPrLeeJAHl/HXE2rvZOsn4uccee6SpZH2ZR96e9pzHIJHnz9s1sx9Qtl76+Ks9d0SZEB/9qK8v9e4j5KWVcDpiDyAvLrPrjP7K4qrHbGScbXb9lk2H7SmwR8A8iDGSft6PLexxHXvssVmvhe9l+qqiQBkrLW3mBrWo2NkPFcBZYu3I+gQmdbscBBON3+Pi0oz1jfjHXZS4mQYFFozLjGWMzaghNOLiRhHDJPHij70L1jzMaZkrmPo8wmBNmneRycL3pmdE8uOuuWHfwFN2j4ZvNh9nboEadqiV83LaMfuqjPWskdmX9HU1iTDzhxuYmgwH9k25NNToJclm8WZ/zeZZzJlYh7CGpl6RH1uHtGofKZN9vQqBBAFUr+2y4aIpGgf9+fFw0tWjw42PvBFGvfJhuPeZd8KJ/3wm/OScR1I3O2+waJjFqWpLP+hBCAgBISAEhIAQEAJCoLUISIxVezFWPRETL/o81qBE3HU2n3Eju0ItUVxMpiJNy6royMaPWP1s/HGDmatR6S9P3RxqEsxNPHirCMNEz9v3eHhQ8Z344uFHhUjjKFUpdRMXymnYhOHzb2lF9DIilS2OuAGd+s/msRlxyPGAJg2bOOLhQxq+pQHzV7/6VeouMhW0c+PV+JFm77eeZy+GPjIGpCKnvd+yeIGd4YgZNynapTNuclXgHTfxEjetwKmePIKdTyPtwGPAM+0mqzbQl70XBe7Fi1s48fCiLUoQa0O0NyqG4kZSuzjMrTcpF9IWN3vaiT6nTvh080w83r+JTsf09nHjK/GbV6/iJmAaLmLNvT979u2Q/FCG9s3MuFmZhhMP59p9N3dZk/K3fMUNudRf2foQDwHScLOqouLhS/rN4o5MaWncpDHeqEzdoBosm+6896xIfu8G3KgP1NG4kdsuPK9qEBHt3i/PtcopKxY/Mj+2CwP1E9Qty7NXeeDrNG7ipnI7/3EDPvWbrX+o0bRwqS95fRSq2cwNJuGRN+qxpQszTx1d3BhP/caN6nZpy+JV7b2sKjrfz+SNSeQTVSuUN+Vmaakm3t+HGQ+cknHN/JkZN9JTDFCDZ/aYXqy/HwO9Gz/mg389qui8f9Jl5Uf79N/suWxf4eNA9aCF603fNg877LBcN9599hl1FvGgIc2Lr6v0A5bHyPBUGLZXbZLtX3x8keGvQh1RPLRJw/T1gf7B+6v1HDf903RGxqZcv35eEw8Tct34cMh3PAzKdZdNT71zI99vRWa93LEjHmykeUGFrcWVHatxZ9+8GZnRUv/kITKppO58nW9G5XLZOZFv1430FeTPl01RGXscss+dUUbZcRq1Zdl08O7V9nq1g/RB1t6or1HaYzv/jL82h8Ht3/72t9RNM3ksiod2bGnBxJ3lhTmPH6Py5kD0z/T5/CLjYerXwsgzGWfND/0afVPWHesWS5dXkenznqdqhnAiA3EaPqqUsmHnvftwidfm6N5ttbVl2blImTEg22c0M78v2+Z9/qkz9PMeO54ZF7Jz+niI385d1h/v2fJp9dq7TJ2kj7O6Sn+fl36/ls3DJs8Pdn5uQRx5/Wm1/QBfLoz/jc6Ri9KFfUeXSbafbWYfwY9FHbUHUC9GjfZXtralPVWLw/po6op35+dr2TlOPeNsmfWbX+NSb5mv+LTZc2ROSdsO7iLjSOrOh+HXyWX7Kou7yKQ9WXvOW5fiz697cRuZnNN0+3D9PM2PKczXbAwsmqPFi5lpOvxeDOFb+jD93MLHHaUQp+4Iy38revZjCW3Hu4vMx2l4Fj/9mncTmbtTN1ECbfqt7Lzcr9WZF+Wt1UmH7zOsvTG/8mpA2efKm8v4tUmRKrpm8PZpwn9k/Epx8dhFDQApdrjLlrl3q+eue+aRtwfclcrr/Y8/a9v7rPtSNXOmbi7P/OONo9smxr3hrpR+paXr1n2VjcpGdUB1QHVAdUB1oFwdkMSmuArqbcRtICQ8ZImbkF5lDzeYOoK4ybXKKqu0C/prX/taahcX82GJJZZI3+0Be6O4QLfHdiaSkuJmVTv7WWaZpeJGFjfEjexGEu9IM1l77bXtU2oietnfjkMKQB5xa7oZyS3+dirSIPxNZB8PElC42QtRTtxc6ihCDHaeyOmyeHlpK9zAsxtqPh/c6uUGHequ+Bm1GqeiPHKj0CgeXCcqUOzdTNoNKkXiJqlZVZj9+/dP36kv3AT2hOohVB9yMw/JGqhzqodMfRw34byUD27iWdv1t/HiQVwabNwwCna7Pq8vSB2WfADXPLVs3Pozipv89ti0WbY+eOlCSNLyFDdVk1duQFsZ201ac2dtgT5nyJAhZt20ST2gPnD7FIlSWUItgkk04sZ3VoJU1n323UssQd0DKuyyNHz48FTCCd+K+hikWcRDt6z35Gaor1tIjjPi9rjRhRdemNu/LLTQQiFuUKZtHylPEO0FFQEQdT9PYhm3Oo2K+lD73tGmb/95Kgosn5R3ZOxoODlxIzkwrmUpbv6nVkiHMoob06k0K8Ypu/Fq381E3RNjUGdRo30FN7etrZKPAw44IDepXtoXEk0aJeKwG+PxwKuirjKPsbqP5ESkxjRDtF/qMbe+TVoRN6spg84gpL4YNswPPWY+ftJHORllb6GbfTWz2tzIt1vG1LyxA9WKJuWMsQOJJ5Afq1E9hLs8QmKQ9eN538vY2ThAGM3MITu6r6g3bx1VRn6cZtzw6w2fNsZapBwx5/PjaWRSSp0xbuRJDcC9n/cgXSmPquXRrwuQCJEXz0orrVTYTvr0mba0ZoyifWXpG9/4RjLG0+/Hg/Ds59x3+hrc80P6ko/HPLC+MjKphbx7FaDxIDKVlmhuMZHmZuEvvvji/lNdz82sLcvMRcqOAb7PaHZ+X7bN+zkB69bFFlusHdYDBw4M1Pey1BFr7zJ1kvmyrdORUpWVrhKZ6VOV9JGBLRebejBpZj+gTL2sJ03mpiPKxPezrdhHKFofl637hkGe2Rn9VV68rbBr1fqNeQrzlTxC+jhjqFG1/TBz05HlZXE0atpaLuvPzw38eIzkVRujkPidR6gvN0LSVRFlVVibOz/v9hIj7XueyR6Z7fkhkderb0cCshF9EYR0TqQhGd1///32mEjo46XV83IkL9l6JY2s4AGJjcyjIyNf4oK1D3txeXPygiDaWTeKty875tORwbJdmFjESy0VqnhzHclSCJREYLb+M4aTd10lHLLNMmHBudrvuRD8SovPGY7ZafnwgyjdqU/cGxYJASEgBISAEBACQkAIdDwCM3V8FIqhqyHg1Vhl04YqGaN4W8ceW2qyQZlHgwYNSq09A1NqGR8WWGAB/1r4vOaaaxZ+M4YgHHgVUn7zBGYCfxDvA4OpwMj7MTvMInU73k3es2dQqZYHmF/A0TbmURljG8R54ZaxMwaKbBg+783g5ZnCRo4cmQ0+fUfF3lFHHZW+89BqnIry6Jk5qqWROkGdjbflK9LJiy9HRKPDeMSGHCrG5p9//nbu67Xwos+pxxy0QZYGNkWJh00fDubZXDNmPb+J1mxdrSedlqasWw5qSB+HfhxOlaWy9WHllVdO0wN+bKJBHAAaowGbloispwzZ7DOGEL53NJMYzHBgFaUTBfplGCjKMIT5fo9+t6iv8wwAbDLmtYHVV1+9sPiGDRuWfrPxhMMrYxQh/BEjRqRusg9gbpvF/huqW0ytDgfXvg7D1GcHuhzqzDHHHN5rpz8z3hoTJ2oZqV9s2oOlH0uaTRh1N49guOTwnrppdRh3vq3AIFJNtQtjjGcmyIunVXaN9hV+03veeectrMM+fdR72lK1PHv3PPv8+8MWvhFOlLaXqO7lncNQDgCqEe3FMx/Qpq3/MH8wNXE4ksdQbG5aaTJ/MGK8gnmwiEi/Hbb5Q/ki91l731b9N/o0jwPMXkX9EuOHEX00cx8/Vts4Z268Caa0SQ6WWk1l50Qd3VfUm9+OKiPf91Rbh1BGqEL0lB038i4+mHt/ccLPdew7ZlEe+fbggw9iJHMCGHyLKG88xC0MR8zPjDmC+eVee+2VMCquuOKKVdtXUVxF9rQT5gb8GGOj5IjUqTH9YcE82uZcrBuYr8KwwPjKONFIn5hGkHmoVqZFa8syc5GyY4DvM4rKkixWm9+XbfN+HVRtLuXHjAzsdb92xtqbxNRbJ3HLGsVUhDKvNjXnfPMMOqglbZb8GiwbRtF+QJl6mY2j2ntHlInvZ6vlvd59hKL1cdm6Xw2XzuivqsXfym/Nrt+Yx1SbA/Ld1hb0ZSussELVZHdkeVWNuOAjfVpR/rjwYcRFrGoEE46Nf4yBvu16BiMfBmNhkYpyGHSNGrmswFhKH0ZauExi5WEMZVz0gYkZNcoQ6bR9HFMLj72No62el1ebFxOvEQxXMDXZHJnLM6eddlouI7X5qWU2g7evr9XGRpituBhrbaFWWvRdCDSLALxKW6y+YPKb9PmUMO7dCeGjzz4PgwfOHIbMNbOYmZoFVv6EgBAQAkJACAgBIVACATE2lQCvu3otWsyTnzzJD63OZz2HufVKrSlKm9+szLrh0IHNRCQxcOAbRfqHeeaZJ9Hbbm5hpMky09g3b959993+NX1mEd8MeSaPankg7OWWWy6NAp3zHUVF5eXjbAYvfxOOg5VGqNU4FeXRHzrUKg8O5o2pyOeFza2oOjA9/EYyh0mZId9sdLGZ3yhjGuHaQRWH4BycQXbDDolOHFBz+5CDaG45mkQYv4lW72aXz1M9z6RtzjnnLHRKX8MGYCuobH1gY4xNRySGwADGZih9kN20JC+ULxuXMDbRd3DQClOQPzjdcMMNW5GdJAzyxA3J2267LfjyakUExlhEWEiOqIf8JqN37zegvT3PeZvWJnmJ7zDlNHOgSlnQHjmgjepjQlTxmEqksMNkwt9pp50wpitxIMcBnbVLJC+Y9AUOl7lFC8OMl0zSSIL9JnzWX16/5g9zOWSvRn6Mqeau7Ldm+grPrEV7rEfCCP0Nt6DrvbWMdCuk6RnRL9AePXnGOaS71GJswq8x3vlw7BmmJvqdaowb5rZVpseyVpn7cdD3u/WmhbLOI+ZhnuopT9zDXMXY2ehYbYc2Ps6yz2XnRB3dV9Sbv44qo9dffz1NwrLLLps+1/OQHTeq+fFjkh/rvJ+iPFKnrT0UMY1aOL4tmJ2ZUcVOIgWN+Ol3TjjhhOTH96iGJunzo8qapphbo1qtcOmll4aoLiu93GDxFpnMZ5jfmBRFGICR0MQPLJgnIrUIqQjNSmVoZm3py6fRuYiVE3luZgxotM/Im9+XbfNekmq1Ph8JNlkGzqKyLrLPmw9k3Ta79m6mThI3kmeMsYm5nGdsQvKNUb1Szcy9N6u106L9gDL10sdd67kjysSPy9XyTtr8eO/rsk93URq9+2b2AHwc2efO6K+ycbbyvRXrN2OMKUoXzF9G9GW1JKx2ZHlZOhox86TTmf9ZZ53VHnNN1nlIDGVd5ceBXMc5lnkSws1Zs/ugxqREOPfee2/C2ASTJ9LoIMbeYfGyj104YS1hfqKatcQNl02Mcd/ny7fTxGHmz7dz3/69s6J27N3wbGtVs6fvpZ8sQ83g7cfnahegSBdMcmJsKlNC8tsoAv379glLDJl20blR/3IvBISAEBACQkAICAEh0BoEyq1UWpMGhSIEWo5A0aGFRYSEB6P33nsveTSJImZfj+k3HupxX8sN0huM8lRQ2TdMmLGMPv30U3vsNLMsXsbUQlnlqfqolpHOwsnfFGykPLJpP/zwwxO1YhxoeUJCBQdgSBjgWyOYstHEoQCEarQpU6aEqJs1lRJgcdlhEYfplh9j2EFdVR7ziU9jd3huRX0wnKiXdlPSNvgQ+Q/e6623XgrHXXfdlTx7pqNqt6NTj3U8wKjGRuavf/3rljM1EX0z/ZY/WK4jC4VOJk6cmH7zfVhqWefDbrvtlrikvIxREAsOxyAYRIpE1ycOOumPTXJjvsoyL6L+66CDDkpuDqN6KaumsiOS6MfGWreRG+mPOiKt1cL0bb6au+y3rLqb7Hf/DjOoJ9QawjDqfzAGGNEXmBpQs8szUX3pfxx4oKYBFY1jxowJ1aTE5IVX1g4GLiM/NzI7b/pxsNky8OHZs80H7L1e0+ZvNrbhb6655qrqvVYeq3qu8rGZ9uL74q7WV2SzWraM/DzVS2jNxpP33kgdZaz2DJ8cLtZLVp9wX6ue2AFkXtgw+cBsQ7/OWOQJprpddtklqaem6tZ/L3pmfEDNHtKFTjnllLqZmiw8pFTBSIPkQE+UK30P/RqHrkhB6yzy9b/eOG0u0mz/Y2OA7zN8v5aXjqK5Stk2b8wG9ayDmmV+zstPq+zK1kmk1hqzHQwAJnGMMjLmU6SHNNpf+Pz5OY+3t2ffzq39l6mXFu70Mn27aKRe+/65nrSXrfu14uiK/VWtNPO9Veu3oj7H0uDL1vdl9j1rdnR5ZeMr8160FmIewNrvO9/5TnJBpJl2WiZd1fzCaGbzDtsf4EKQzZtM5b2purP1BUz9Jn3d9m2Ip5E5j68Lvv1XS2+93+h/61nX1Bteve78pZFaeWqmbtebDrkTAkJACAgBISAEhIAQEAJCoOsiIIlNXbdsumzKijYcSLBXfTA9M/DKK68UipkmXV6FiklvGDx4cJrks88+O1EVlloUPDQjbaQgqMTapwGJRtVutXMAapQ9ODH7jjR9WpvBC9zZLGHThxtmjWza+7g7Eifwv/LKKxMYa8VT6zCI2/n8OMjgwItD8AsuuCDd9II5iYNzNkXrJZhxkBIChjDj2IEN/lF1B5lYc55hAEGqkEltMWYevnVnakV9MLzAwW7/G2OTqUPjcIUblZQdNyy5yWgSXCjb/v37l4aRsoThzIjNUCT6cLuVA3tT44eknzwJAuavmmltDzfciqznhmo9bqrFad/8Zn2RFChzW81kY9uYSkwdHf0JzEIQ0k+alTxRFG+1sQ+mwiKCcROJavxGjx6d1C/a4sUXX5x6OfHEExMGT5Oqln5o8YNX+VYLf39jtsXJKB2cr0dsvMMEWA/Vq86WsP7617/WE2SFG6SiHHrooRV2/gXGAl8G/tv0evZY+nlFXnq8ujjf7+a5bcTOp4GDaGvHtcKwA+/sWF3thrsdIlULu1pbL5rnejyamRORnq7UV2TxKVtGXvUu9SzL6JmNz7975gPUvFQjDgRN4gp1qZFxwEsKqxUP0t+qEXNaVOrB3IREG1TPoJaGuZ4RYzsS/eqR9ghD+oEHHmhekwNe5i0wUSEdk4NApDL4Q87U8f8e6Hv++Mc/ht///vdJepA4iaQDaxPghhRP8u7LKxtOq97LzEV8fWxmDMj2GdXWW0Xz+7JtHqmJzCeZ93FIX20t1xXH41bUSaQcmlQT2gJSm7waOiSJlaFm9gPK1MsyaW2FX18na61b/Xhfre7lpcvH0+x4lxeut+vI/oo212pq5frN+uSiNL7wwgvpp2p9lznqjPKyuDrK5CIYTLgQY/t+++2XSP5lXm9rY/Y3YNKdHsQ+AG2BcZ7LZjbWwzCMtCaI9T3rPcr31VdfDV6lqp8H+PHNt9MkkMxfq+flzFtQyQtzKXWay10wa9WSpJVJVqlXJBqfc845SRiUKXsvRcT8SiQEhIAQEAJCQAgIASEgBIRA70NAjE29r8ybyrEXQ5xVGeIDZAOxKxAbBkVqETj0sNtHiC9GxD/kN/G5HcTGZmeTP3TlYKGa+H2/yd0IU1Cr8lQWLzZ5rBxgymkkD52Fkz+Afuqpp+ouj2oYg9u3v/3t5Pfb3/42OVTaddddEy8w1LDR5VWpVAvra1/7WvoZvyaCnHpteLIRBWMOTDpstvmNKb+JlgbUDR9aUR8IA3Hu9B0wnXi1IF5S0+abb54cRF111VUJM4UxiRnzU1n4vHrLNdZYI721ng231kZn1r1/51aptT0kKNUS8+79ln32m7WkgVvivk7WGz71m9utbLyaRCSvho6DzlaQV83y/vvvFwbJAVI9hEh+fkjNYJOeDe6TTz458QojTUczNvmDew4liw5TJ02alEp/qydfne3GH9Kw8d7q8Rq1WcbYSN7YOPfzIJ/fsWPHJqqcsIPR9JBDDmlKxaIPszOfbawgTn/IkpcGf9g2dOjQPCdN2fl+gfJceOGFE3Wg9QaWHavtVnye/yKGPl++zcxzy86Jsmmd3n1FNj1ly8ikGRAu8ymTOJmNJ+/dx00dpH8qYiT2Y6MdJuaFmWcHA6+p/CIexsciiaK+LeSFZXYwVjGW8/vpT3+aMLfCoMR8DEJqUz1zMWOixg99zG9+8xseK6gWs5U5hgEKiSj8kCjKnIcxCcYm2h+HmDBPdzSVmYuUHQOyfUa96y2PSdk2z+EtjE0QzFNFzCVIEupK0kkMg1bUSebOMClQ72Cyg7HJJG9ib5JOLM5GTdppo/sBZeplo+lrtftWrIfqSVPZul9PHOamkf7KGFmpT0jrs3cLC9Okvnm7Vjy3cv3m93jy0maShflWS600bjqzvIivI8gYIAmbSwSMX1mqR3pV1k+r3kkPjE3UPfodY9D081Ev2Zk1mM0j6Ot8OU7PeTnM2FyUI62s09nn2GOPPRKmslZf6CzC3o/P7Lf86Ec/yl0TjBs3LmUgKwpL9kJACAgBISAEhIAQEAJCQAj0TAT69MxsKVetRgBpIUZFN1e//PLLdKPe3E4v809/+lNyWyovfi8lY7XVVkudmK57LFhEF6mvwJ7NCH7+ACUNqMSDP9z429/+ForEL7PR4CX7rLXWWiVibc5rWby8yO0zzzyzsLyQasQNdH7cNIc6Cycv9YF6U1Qe3MQ3BpcsmkjoeOCBB5KD8ew3Dsx22mmnCoYpDvzqJaQYcDACUR+uueaa5Jlbg54Maw7QOMCCOECBkadZqnbw22yYzfprVX1AYhZ08803p30ZtwRNKgjfbCOVQyb6GSPfHsyuGZP6YsRGYh7RB5tEirzv3i6vnLykrmuvvdY7r3jGr/V1rdoshpHUVI8Q2XnnnVcRp38h/9b28zb5v/e97yXO2USmXtthGIx9vu36MBt99gxu/lasDwcmGNuc9vb0F7R9fnmMTxzWH3300cmhHv7o1ztapD6MWiYRDNxgAMuTNvXjH/+4bqk5Ps95z9UYwvLc12Pnx24O4U2lT55fbh5TjymHesnqEu7Z5IfZgVvxeT/6V7tNTBkiBaWrUt7huI0hpJl25A/MfD5g8mBeYtSqPo/wGAv9Abaf31h8ZiKpgPJEYp3VXd/eL7nkksJ2RB0okgZVdp7r8Wh0DtnKviKvjA27MmbZMrKxkzTAAFjUL8DUD3M3fT/SXCCYmKzf4v3SSy/FyCUvac2PNbmOcyx9e+DwNI+QxnDuuefmfUoYzK3fz+uXYFg79thjU79FjHapg/89+ENzJBLmkWc08d+RFGhp8ipucMNBJczbqEU18lJtza4jzDJzkbJjgO8zmp3fl2nz4OkPb//85z8XQlztW6GnTvhQpk5a8mAmtLkc89EXX3wxZejnMDuPMcX81mM2sx9Qpl7Wk6aOdNOq9VCtNJat+9XCL9Nf+YsaRYyexkxYLQ21vuWNs61cv6E+3ofn08M6wY9z9Ug/7Mjy8mnjud71adZftXfmSGACsX/h54ven7+Q4O0749lLyGYOaGsOP/dhLmNM3aSVuSy09dZbV1ye8POQzpyXkw6IfQ+vKpc1kV3CSRx08J/fn2KujxSpLNEOuGwmEgJCQAgIASEgBISAEBACQqB3IiDGpt5Z7g3nmo14Iw628iQznX766bmHu+avM002R5GGkSUOEPbee+/U2ku84Ta1SX1g04ub1VlCPQkqb7hhyo+bWa0kNuotDRyi77nnniGrEoVDCcRCcygNsUHiGS9amZ5qYZXFC6lFRpQXqjGyBDPAD3/4wySv5Nc2hzoLJ275mpQBK49sGpGShFqsIqIesdk1cuTIRPVc1h1qbdjIN/KbWWZXzTSmJW46G3OV4WT+7B0MTznllMSaG4SN3rzjRqGRbcbZ+/Q0W1UfbKMUnGwDL3swymGY3ar/1a9+lWSbNusl4ZTBwm/m5THzwGBkEr6K4qlVTvQfRsccc0zuITH9DDfnra+Dea9VhGQII9TJ3XvvvfaammyicphHWcAA5A8hzRHqBiyvHBQbw0LeoS/MRzCE8fMqGy2sInOFFVZIP5122mkpI4VZwljh1QOZPSZSRWj7/DhsyWNa5HCEPEIcTqBOqKOJPsBwY6wjfeDHbehTTz016WdhPChDqEYygvGo1TRgwIBEwgjhgh/SNgxHHxcSvVCtRD3mkDQ7nnq3/tkfJPuxyrvxzzCoGnnmabObnqavUxykZDHgYNm3SQ42xo8f3y7JtFVrY/SB6667bjs3ZSw8hkiLyWMW5KBy9dVXT8qTw2ckmUDZsRqmyGw+6TvtQCkvnWXnuWXmRGX7ilplnJffZuzKlNHKK6+cqp/j4JN+mgsRnj777LOA6inrF2m3Rl4l1e67756oUbVvZjJu0E8bVZubmZus6dcF9Bl54zD9JX1LHsEUZP0+TAZ5DPGeSbbeduQPr22u5+OHgdMzJ/lvHIJbmmBazSOYCYyYr3YGlZmLlB0Dsn0G660s1Zrfl2nzxEVfZsTa2jPLmz1Mnocddpi9dimzTJ30GWGuaUTbNvL2Zteo2cx+QJl62Wj6Wu2+VeuhWukqW/erhV+mv2KcMfrDH/5gj6nJPACJd81QrXG2Fes3ny7mnlkGKuY1zG9goodYf9o+hfebfe7I8iIuL0GRNLf64h9SuyyfhJ/HPHX++ecnkpyyee+sd9Y9dsnBq8fOjqemKo99G2PW8ozbpLcrzMtZt3omctpNEfN0qzGmPnnG8hNOOCFh/uKC43XXXZfsxYJr3jqh1WlReEJACAgBISAEhIAQEAJCQAh0TQSkiq5rlkuXS1Xfvn2TxbrdckMixlFHHRXQG88Gwz/+8Y/A5mFXItQrsCHMwQgbBKjqMok2pHPHHXesULWAJAvywEKZA1J0u3MQzWYD4qHZROHAknCM9t13X3tsiYkqFKQX2aYHhzQcgCCBB6w5YAFr29Ai0uOOO64lcTcaSFm8UGNDeZiUHKRi3Hrrrck7jFqU3ZVXXpkmiwNJk6jQWTjB+APebAhClAdMSJQHhyJI5uB7duMxTXR8oI5wgAfBpMVmHwftqNpB8gTq6OyQirrmVa4knmr8cXDmVZLAsLDKKqtU+ILphs1PX2+M2anCYY0Xz7xDW0B6GQdRSjoAAEAASURBVO2LjXR/KFwjmJZ/blV9sHL2CcxuNlInOPg36WG4zUrI8v4bffaHnBzQUmbcSETtCoyZSDjK29D18dQqJ74j1cQOjbgtzwYrN3ppl9RRGFUtHvqeVt6KpM1zUEfdh9Zff/2EWRMmPVTToaLHjyf7779/7q19DjbJA321jU2El8eIAuMGtz4h8mr9TmJR5c8zVNFOORzmYJjyoGyoB9Z+s8EgcYR4jUmGesLhKe0f9Xv05171nJVHNpxWvyOFipu4xsjHxrptrvu4YA6GmaUZos4YEQYY0b5oT61ixD3ppJOScGG2If0whcKwyRhOPWI88RKGmBPUw8xJWLZZzkGVP7y1PGVN6pMdjNM3Hn/88YH62RXIq+NirKIMGE+RPkV9hjiEoV0w96FeM8fDDWMJqvZgiPJzHw4MTY1vq/II4woSCpgDkQ4OiEgDfSLSguj/UN1oxOGeqeugXKnTxijA3AE1GrQ5xiYki9Qaq8vOc8vMicr2FfWUseFWxmxFGSFhlHpIneIQGiYC6iKMOcwJjekH5jnK32j77bdPpCRZX8/ch3ZHHYZBPDtuMPeqp+1a+GaSR1TIMN+DiId+hXiQEAADqI0l5seb9Ks23yIvjJ307dRNGLdgCvdzNq+mxoeTfWbOZlKiYNhibGH+hfQo5qIwpRYRzND0SdBFF12U4MU6A8ZdmH7pJz1DppfuURRmK+zLzkXKjAGtmN+XafPgx1h8xhlnhH322SeBE5P6RbkiqYi6Qr/cValMnfR5om1Ym7H2zdjrGcu9+0afG90PKFsvG01fK923aj1UK01l63618Mv0VzYHIHzmEow1jCPsA7GnQz+YxwRfLT32rdY424r1m8WFSdptjGROhqp6xkg/X6+3f+jI8iKt1DvarM2dWSfDCI0d4zTfyxJjJf0lxPxul112ScZlGFBhuLExu2w8ZfwzrlofRjjg4Jm+sLO1F89Gvu6YXVeYl5N+GJpsr5FLB6y56K87mljLs9ds62TGRn6emCfSX1j6/Dc9CwEhIASEgBAQAkJACAgBIdDDEYjSBtr06/kYRHHIbbEqJ7+DDz64sMzjhknqLkp1qHAXmTDa4gIy/W7heTMe7KXf4yFT6r+e+OOGU+o3bu6mfn39jJs6qZuoQqfCTTzASL5Fxo62uJmVuvPps+e4QdQWJRJU+Ld4osjnqn4tjHgoU+G/njxaHLXMeEBRVxriAr8iDRZuZBBI/Rfl09zmmfEwMPUfJSLkxmH+msXL/EemhDQuwzZrxoPYtqjSo106yuDUSB7j7dGqaYyH+G1Rek/qhnZk+YsHYW3x4C79ls2bvVN/44Zg6s/81zKjZJ026ryFExn2csOIzCGpG9zGW6u57qyNx02rdt+pS/HGZEU4hBUl1qRufTuslvZq8RT5o0+xfEbGmzROc1+mPlgYvl6QxihJo108Ph2kx5e3hVPLpD5bXuKme0UcRx55ZPrN3HiTNMZN0NQNdcDHV0854T7egEzD8OH7Z8o7MvNVhB+lq6X+IgNSxTefjp///Oepu8iwUOEOXCNDVfrdx+mfCSObPx9Htv+JErYq4jG3Vt8Iu6jum9usST/r05R9ps7Hg8jUjQ8/Mom1WZvI+vPvcbO4zfe1UbJUGl6UGlKRJ19HvZ9suhnnLI7sN96pt3lpiwxCbeAaD09S/1ESSEUa8sLzdt6vpQHTzwssbvov7zf7bGWX1yeNGzeuDXsfR95zPCCoGoePM0rZS8OLzHd1+6PuWdzxpnHqL6rTSu2z7cDHW+3Z14conSoNu5of/435kqXNTPD3biKzRsVYYu6yZjxoqPDnw8h7bmRuRFsnf9k4s+/MceLhZLt0RAaNqn6pS75fisxOFWGUmeda3rN9Ujbt9p6dQzbbV1i89ZSxuc2anVlGtAHDoMhk3Hn44YcryoY0Rya7Nt+vFfmnDmXnvo3kEb+14onSddJ80Gd6TCNjVF1tKUpMzJ1j+LDsmTT5PiYv71GSVJom5gjmF9N/y/OLHX1xtTHdh8dzvZhWW1sSTrNzEfyWHQPKzO8Nj2bbvPlnjC8qE+yZ1/txP6oJrihbCydr1lM+ZdbeZeukT29Uy1uBQWSsriuPPgx79nOLMvsBZeqlpSVrdnSZWHxl1kO+rlWbYxJX2bpv6c2aZfqryAhRUZeybYv2Zuvm7DzIz9cik3e7OlhrnC2zfvNrS+as7C1k0+7f4wWVdunzYeStkzuqvCi/s846Kze9tiaqtu715e/nu379E6UK1pzvR6bhNA2UhQ/XsMuO197NO++8k/pvZq7t2zfxscflw7dn66Nww1zD7LNmmXl5vWt1ysewiYxM7dLCvNyvcUl7lHycuCsqK/JhYZbBm70C+mFbB1qYmLTFKNm9LV60SONqZj8mi7neO/9cJF5+alfvVA6dXw7CXJirDqgOqA6oDqgOqA50tzpQ/vpMXFmIuj4C3NSqh6rdwEeSx7/+9a+AVI24IVQRXNxAT27wILY4j+qN3/xyOz+PuFFvVJRWbuUhyj4ubhMpR+beTL5dddVVhdIUkPZgkp7Mjzfxj8qG7I3mRvPow8w+77XXXiFuPhVKguGm9tNPP52qZsv6L5uWRm7WNYuXpRlpRkiPiRs7ZpWacfMkoO6L8pprrrlSe3sog1MjeeSGGqLxvRQSS8N+++2XSINAgouRv51HXeYmPFJbyE+WCDMetCY3/Lyknay7ondudaOSx8ikfdm7mV7yEBITiqSm+DZmfs1EAgm3IpHAku0DzA3pgWiH1QiJNY2Sr9ceYwunTH2wMLgpb8Tt0DwJL15VDW5N9Lz5q8f09S/b3yHN6IILLsitb0h6QOICYvmLqJ5ywi9qEhHdz43aLFG+3JREqtBCCy1U8dnKuMIy5yWbL+8EXOMmeCK1KW5Y+k/JM3WUfgFVedXi49auqSfAYzyUaBcWque4+QxVq/vtPP7PAqkEl19+eeI362a33XZLVBIV1WdueKNqLzIU595wjRu+idQn+hffpqrl2dedbHr8e602SF3n5i0SupBuRNtGOg/pNalHFl5eO7BveSYSWJBqgvSTIrI81kpnEbaES7+LpBavvsbHx81o0nHooYd666rPXnKJV0lT1VP86CVuIR3IqFqfam5qmYZVLXdF3+MhZ6Iy0dexrFskiSEJwCRPZb8zhiBlh7rcCPl+u5Y/8knfx7if1y8wXtL/IaUgbwxAkk3RWI2UTuo20haLqMw818Jsdk7UbF9h8dZTxuY2a3ZmGa200kqJhKF4aJhNRtKXMyekX8qbLyGhyyQe5dUPxjJURKM+JSsxrZE84pd5J3PtLFEHkRqwS5QWYe0pux5ByhPSQZg7mhsLh3ekFDLHZ+5Xb99KmhiHUDeXzTtjIFKXkG5YRKhMpf7nzVcIj7QiWc/PJ4vCMvt6Mc3iY/7NbHYugv+yY0CZ+b2lv9k2b/6RPHXEEUfk1hUkd6Kizvd39Y4H9ZaPpaNozubHMF+WZeukxYuJRDZPzaiR9P55LrsfUKZeZtNi7x1dJhZPmfVQvXNM4ipb9y29WbNMf4WEriOPPDJ3bYOk2MjwkY0uffd1PbV0D7XG2bLrN4uKsQ41zibNzewxGYPo771EQ/vu65fvM+x7R5UX4TNe0l/5NZnFi+nrVVFfg7u8dGOPlCAkh5Lv7LjK2o5vedKQ8Fsv1Sr/WuEgZc6nrSg9fv5TTSJymXl5q8YJwkE9OfhDzBOQsg7VG0fiOOevFt7Mj+iHkZaOml+kaTKPicxY4cILL0ykn3t1v/XOp3KSIishIASEgBAQAkJACAgBISAEuhkCM8CJ1c3SrOR2AQS+/PLLRI1WvEmTqC5Cr3xXpXj7KlGpxEYJB1rZw45q6UbtBOqYUB/Bxj8bTX7TqJrfVn1DZDppQLUOOC+wwAI1mUZaFXej4ZTFK95CTkSts9HBBkojZdUZOKHyg80UfmyYoxqv1qZMFsPY5yZthzZEHqsd2mf9dqV3VL98+OGHiRoUmM7Kbm61Om+dUR9anea88MAY1VBslNJ/NYpzveVk/ST92/zzzx/mnXfevOR0iB1tAcYj0kA/DYNfvfmMN0mTMYjyBiNUNWQZZTgkZ9MbgjEMsfrN0sSJExNVSaQPRoRsXLXCZQP25ZdfTsYR1NA02n/UCr+e76htoF5AMK35wwbvH7VHe++9d2LFQRAq+JohyogxlP4TVZsdtfFM2TBW0mbmmGOOZMPbH8I2k/ae6IdxmvKn7haNscztUFEFUyAHUBxUDRw4sFPhQNUpYy39Av0S7c0fGFVLTFtbW4jSAUKUKJLUN/zaQRqqK02NMAxoRYdKrZjnlpkTlekr6injavjV+61MGREHeaTPpu0yvhUxXOelh/KhfhjTKnNjxq1W9y/0XzB80iZoB82MjaSR9kT+UEPcijTSj1PHGa/5NRImfXGUdBTef//9ZAxoJk95ZdIKuzJzkTJjQCvm9+S/TJunX6Y90O9SJtS3ovG5FVi3OowyddLP02C65nJSq8nqVjP7AeZ3esyRy+LQWeuhMnW/Wh7L9Fe0Jebc9L3Md+tdW1RLj32rNc6WXb9ZPOwbwNhB/wYjZ6P9vYWTNTuqvIiHtLJvRXvpiD1C6kSU1pOMy5RrI3OHLA7d5b0rzMs7Cyvmd6znINbJpnY6L35UHpoawigxK/eiZJ4/2XUdBLgwjNpwkRAQAkJACAgBISAEhIAQaAQBMTY1gpbcCgEhIASEgBAQAl0Ggai+JGFWIkHcIEXqQZaQ/IR0DYibnquttlrWSa96RxLC1VdfneQZiSFIxcoSB5TgZEwDSHNaZ511ss70LgS6HQL1MjZ1u4wpwUJACAiBbogAjKhIBESKGYRUDqSeiYSAEBACQqD3IQBjHIy9MGVCSNBEY0CWkMjrpUxG1Zl1X4DIhqX36YeAGJumH/aKWQgIASEgBISAEBAC3RmBqTqDunMOlHYhIASEgBAQAkKg1yAA0w23sFFBhgQmozyVDXx77rnnEidIe8lTeWn+e4t5wAEHpIxNJ554YiIRDKYlVCiwmcyNVyQ02YYy6vLy1Bf1FryUTyEgBISAEBACQqB1CMDMhNQwpHKgOtKYmtZYYw0xNbUOZoUkBISAEOh2CCBhFbXXqJWEttpqq0SCMOtRVDEi4R0GWC4qGCGNuV6pruZHphAQAkJACAgBISAEhIAQEALdFwExNnXfslPKhYAQEAJCQAj0OgR23nnn9BDMMn/88ccnas7s3ZvPPPNM8rrZZpu1VA2Fj6M7PY8cOTIceOCBCfMS6b7iiiuSX14euCF7wQUXNKTmKC8c2QkBISAEhIAQEAJCAARQY4k63iwdd9xxWSu9CwEhIASEQC9DYI899gh33nlnuPXWW5Ocn3nmmYUI/OpXvwqHHXZY4Xd9EAJCQAgIASEgBISAEBACQqDnIdCn52VJORICQkAICAEhIAR6AwLczjz33HPD/vvvX5jdp59+OvnmxdUXOu4lH4499thw++23B26/5hGSrY488siE4WngwIF5TmQnBLo9ArPMMku3z4MyIASEgBDo7ggsuuii4b777gtrr712d8+K0i8EhIAQEAIlEWDtef3114ezzz47MD7k0brrrptI/EOyU58+OtbIw0h2QkAICAEhIASEgBAQAkKgpyIww+TJk9t6auaULyEgBISAEBACQqBnITBmzJhETdqQIUMCvxlmmKFqBpEMAM0444w13VYNqId+BJ+xY8cmKmEGDRoUllpqqdCvX78emltlq7cjQH2Pa58EhgEDBvR2OJR/ISAEhECnI4Aquoceeij07ds3LLLIIoG5h0gICAEhIASEQB4CEyZMCC+88EJ4//33w9ChQ8OwYcPEzJQHVDe0Gz16dLL30A2TriQLASEgBISAEBACQkAITEcExNg0HcFX1EJACAgBISAEhIAQEAJCQAgIASEgBISAEBACQkAICAEhIASEgBDoDQiIsak3lLLyKASEgBAQAkJACAiB1iMgma2tx1QhCgEhIASEgBAQAkJACAgBISAEhIAQEAJCQAgIASEgBISAEBACQkAICAEhIASEgBAQAkJACAgBIVASATE2lQRQ3oWAEBACQkAICAEhIASEgBAQAkJACAgBISAEhIAQEAJCQAgIASEgBISAEBACQkAICAEhIASEgBBoPQJibGo9pgpRCAgBISAEhIAQEAJCQAgIASEgBISAEBACQkAICAEhIASEgBAQAkJACAgBISAEhIAQEAJCQAgIgZIIiLGpJIDyLgSEgBAQAkJACAgBISAEhIAQEAJCQAgIASEgBISAEBACQkAICAEhIASEgBAQAkJACAgBISAEhEDrERBjU+sxVYhCQAgIASEgBISAEBACQkAICAEhIASEgBAQAkJACAgBISAEhIAQEAJCQAgIASEgBISAEBACQkAIlERAjE0lAZR3ISAEhIAQEAJCQAgIASEgBISAEBACQkAICAEhIASEgBAQAkJACAgBISAEhIAQEAJCQAgIASEgBFqPgBibWo+pQhQCQkAICAEhIASEgBAQAkJACAgBISAEhIAQEAJCQAgIASEgBISAEBACQkAICAEhIASEgBAQAkKgJAJibCoJoLwLASEgBISAEBACQkAICAEhIASEgBAQAkJACAgBISAEhIAQEAJCQAgIASEgBISAEBACQkAICAEh0HoExNjUekwVohAQAkJACAgBISAEhIAQEAJCQAgIASEgBISAEBACQkAICAEhIASEgBAQAkJACAgBISAEhIAQEAIlEZhh8uTJbSXDkHchIASEgBAQAkJACAgBISAEhIAQEAJCQAgIASEgBISAEBACQkAICAEhIASEgBAQAkJACAgBISAEhEBLEZDEppbCqcCEgBAQAkJACAgBISAEhIAQEAJCQAgIASEgBISAEBACQkAICAEhIASEgBAQAkJACAgBISAEhIAQaAUCM7UiEIXRexEYM2ZMuOCCC8KIESPC9ttvH2aaqbEq9eCDD4bRo0cnAG622WZh0KBB0wXM22+/Pbz++utJ3OSjb9++0yUdnRXpddddF8aPH5/kk/x2N3r66afDI488kiR7/fXXDwsuuGCnZ6G31ZlOB7gHR/jee++FG2+8McnhMsssE1ZZZZUenNvGstbW1haeeeaZ8PjjjwfGF/riHXfcMSyyyCKNBSTXQkAIFCIwadKkcPnllyffF1poobDeeusVus378MUXX4TLLrssjBo1Kuyyyy5h+PDhec4atiubroYj7AEexo0bF/79738nOVl11VXD0ksv3XCump1TdZU5fFGGu/tctyhfXcFeY3VXKAWlQQh0LALqQzsW3+4SeivmGd0lr70hnWrXvaGUlUchIASEgBAQAkJACAgBIdCzEZAqup5dvh2auylTpoTll18+PPfcc0k8l1xySdhmm20aivPggw8OJ598cuIHRpXllluuIf+tcky6r7322iS4d999N8wxxxytCrpLhgMjxZNPPhlmn332AJNFd6Mzzjgj7L///kmyr7nmmrDJJpt0ehZ6W53pdIBzIrzwwgvDTTfdFK644opwxx13hLXXXjvHVaXVUUcdFd56661Ky/+99evXL8w///yBg/0VVlih0/qfxx57LKy++upJKg466KBw9NFH56avp1nCCHHXXXcl2aLvHzp0aEUWOSg98MADwx/+8IcK++nVxisS0cEvMAjDJAD96le/CvPNN18Hx6jgezMC77//ftL3gQFjGfO3RujKK68MO+ywQ+JlySWXDE899VSYYYYZGgki123ZdOUG2sMtr7/++rD11lsnuTz99NPDHnvs0XCOm51TdZU5fFGGu/tctyhf09u+N4/V0xt7xS8EOhMB9aGdiXbXjasV84yum7velzK1695X5sqxEBACQkAICAEhIASEgBDoaQg0Jl6np+Ve+SmFADfrjamJgF588cWK8CZMmBBuueWWwAb4EksskTBBVTjQixAQAkKgTgQ+//zzhJnt448/TnycdNJJdTE2/fGPfwxvv/12XbEg7eLHP/5xemBfl6cu5uiVV14JDz/8cJKqNddcMwwZMqTLpJDxAOY0aPfdd2/H2HT22We3Y2qCeXbAgAFdJg8dlZCrrroqcHAAHXLIIR0VjcIVAi1BwM/3mAdOnDgxzDLLLC0JW4EIgZ6EQL1rIS53jB07Nsn65ptv3qUlx/bmsbon1U3lRQgIASEgBKYi0IoxuBVhlC2PrpCGsnmQfyEgBISAEBACQkAICAEhIASEQC0ExNhUCyF9L0SAQ6xTTz01HH744QnT0k477VTh9v777w/bbbddYvezn/1MjE0V6OhFCAiBRhC47bbbgjE14Q8Ja0hiGjx4cCPBVHX70EMPJWqVYMBBatCss85a1X1X/IjkH6RUQTDLdCXGplp43XrrramTY445Juy1115httlmS+168oNnCpl55pl7claVtx6AAPM9GPGQ/IjEOV9/e0D2lAUh0DIE6l0LHXDAAeE///lPEi9zm+mlmruejPfmsboefORGCAgBISAEuhcCrRiDWxFGWdS6QhrK5kH+hYAQEAJCQAgIASEgBISAEBACtRDoU8uBvguBaghw8IzqtjvvvLNbHaBXy5O+CQEh0PUQ+Otf/9ouUf/4xz/a2VWzmDx5cvA/1B49/fTT4ayzzqpgvPzb3/4Wdtxxx0TaXLXw9K21CDzwwANpgHvvvXevYWoi014qlRib0mqghy6KAAyTzPuY/zEPFAkBIdB7EOjNY3XvKWXlVAgIASEgBISAEBACQkAICAEhIASEgBAQAkJACHQ9BMTY1PXKpNulaIYZZuh2aVaChYAQ6D4IfPDBB+Gyyy5LErzGGmuE2WefPXn+y1/+UioTSANCTeZuu+0WHnzwwfDLX/4yDe+GG24I5513Xvquh45HwFQGUsbdUVpWGYS8ZCoxNpVBUn47EwHN/zoTbcUlBLoGAr15rO4aJaBUCAEhIASEgBAQAkJACAgBISAEhIAQEAJCQAgIgd6JgFTR9YJyR9f6Y489luT061//elhooYXa5fq+++4LzzzzTGK/1VZbhbnmmqudG1RBjR07Nsw000zh//7v/xLz3//+d3jhhRdy7Sw8AiL+888/PwlzkUUWCRtuuGG78LH44osvwlNPPRVIz3//+9+w6KKLBg65V1999VJqGT777LPwz3/+Mzz++OPhjTfeCKRhpZVWCt/61rdC3759c9OSZ4maCKQUgAOSX8ByhRVWCJtvvnk7VSyoaUGdBPS9730vNx7SBNNGv379QlaVn8WPpBriWmCBBcImm2ySWKNu6ssvvwzDhg0LG2ywQRg/fnzgBjW4kTaYNUjXpptuGmaccUYLqmGzkfxmA3/11VcTZpFRo0aFMWPGJGldccUVE8k4w4cPzzqveG9rawuouiD+l156KamPI0aMCN/+9rdz62aFZ/dCvKgsI4xPPvkkDB06NKyyyiphs802yy0P5zW0qs74MP2zhY8qn9deey1JG/jQ/qgP//rXv8K4ceMSL9QN7CDcw4QDbb311mHgwIHh2WefTcqe8ofpZ+mllw60ddpPLWqmjLP175133gl33313uDO2DcqOurfttttWtNnRo0eHm266KZGQhNoi2vSaa64ZFltssVpJTFSqmaMf/vCHAdUu5557bnj00UeT/mK55Zazz02bffr0SRibaGvHH398Es7BBx8cdt555xT7RgKn3lP3XnzxxcDhP/WX9rvUUkvVFQx9IflEohR94qRJkwL1A2wxjbnLArvkkkuSOvvwww+bVUCl3ptvvpm8048uu+yy6TcePvzww6TeEAc/wvzKV76StNHll18+6dcrPHTACzh56Q9EQVpsvKBcdthhh9C/f//C2F9//fWkbuHA95N5HsADpjVomWWWCSNHjqxwRn9Mv0x9ZayYc845w8ILL5z08bSrPKIN0QYh2mSRCiFr0zAuffe73w3kzcir8mKM9ZRt8zB9oTbxjjvuCODHGLD77rt7L0mf22zfVxFQfJkwYUL4+9//nljbmJN1w/t7770Xrr766uRTtr5l+4xmxyzKhDpO23/uueeSsY56TXx5c5uyZdMM9uBw5ZVXJukjvUg3ou4wfhXVjTw8p0yZEox5c5555knmK1l3EydODBdffHFiXTS3QjIdaimhlVdeOZn7JC+ZP6Qv0RbvvffepCxt7kU7yc4jPvroo3DFFVckIVQLM9ueFl988aSPYf5Fu6qHGklXUXidhWU2v53VfxTl2+xbNaey8KqZzP1vvvnmdE3BPGTLLbdM+ttq/vhWZs5WK2z7Tr/JXIm4KB/mo9/5znfCvPPOa04KzUbSZ+ujamuh1VZbLW1H9BVGzPuNubdoTUb4zLtefvnlZCyhPTEWrLXWWhZMhdlMX+YDaHasbsUckzGe+SV5Zo7229/+tqqUYL/+Yr5fTWUx8wHmBczTtt9++wrpieS/0fR3xHjZaP4t3WXnJYTDXJTxlvUz+wnMWxhzmXczf8rOV/DjqZE24/3V80w7pj2z7oUYi5jDkjYvBTMbVqPza+8fldjMv9jXeOKJJ5J+g/hs7uzd5j032m7zwqjXjn6Y9SVzTubR1HHGeNLAHJd5J/sFrNfy5k/1xsP65JprrknqyCuvvJL0q8wV6btqrfF6Slk007+WmSuWXb9l5yrNzM3YW6EN0kdSx+gPGNPqndsV1S/2FalPtGvmf6zrqKfUp/nmmy/XG3NuMCEd7FEW0YUXXpj0aewHbbzxxsHPZRsdgy2OMmE0Or5YnFmzTBoIi3GLtdU999yTzI3Ya2CPhrm6X59m4+W9I/v4vPhkJwSEgBAQAkJACAgBISAEhIAQSBCIG4Rt+vVsDOKBZFss7OR34okn5pZ33AhP3cSDtFw38XAicRMPv9viAjhxEw/9U39xgyOx+/73v5/aWbzejAfmafj7779/6jYyMrXFw4/03fvhOR62pf4aqbNxod4WN0Jyw11yySXb4qZM2xZbbJF+j5so7eKJB+1tcdMydZNNG5hExoIKf1GVUuqeOLJpjoeN6XfCixsD7dzETZ3UDdhYGBb/qquu2hY3m9uI3+y8SbnGw9/Un/mnDHCHP7PzZjP5Nf/xoLXt5JNPzk2Ppe2ggw5qw5358Sb4ky9z603SS/304cfNr3bhEHaUwpMbBuFRH+ImZDt/lo5W1BkLK8+MDCuFZUadpC0U1cnf//73ab7I+49+9KP03WPF86mnnlqYxzJlbPFQTtRte/cmGMdDt7a44d1Geftv/jluRham0bDz/VNkFmyLDDtpeD//+c+r+vdt38KrZsaN0Tbr60hnZA6pGn5eWHvuuWeaPp9Xnn/6059WYAY22TDiQWibz3M2jAUXXLBd/fX5zLrn/cADD6yI58YbbyzsF3G/0UYbteX1hdm0NvLuxwvqOH5PP/30QqwsH/Rx1eKJh5JpGPQRkYmx0P1xxx2Xuj366KNTd9TTo446Kv1mcXuTNkn9y6Zl3333Tf1V61e22Wab1F02nCgtLPmW1yf7Nh8ZVJKy8emKTFJpmsr2fdm88R4ZLNN0+7iybuk3LV3Z+mb2zY5ZxEXfb+HkmWeeeWaKg6WtbNk0gj1xnn322VXTmJ0nWDqLTMYDy6vNu7zbeHCZfqdf8N/smTgtDBsTfJuhXsaDztSNuTVzu+22a4uMuBVhxwPz1D1jkMXlzT/96U+pGwvLm/vtt186lzR/ZdNl4eSZHYUlcU3P/iMyYqY4059m896KOVU2THvPzuF/8pOfpGnxZc0zbdH8Zc2O6LeIw891I7N9W2T4LkzfRRdd1NL01bMWiswFhekx/Chfj1c8fC2cI+Nn3XXXbYuH1hV+8N9oX+bj5LnRsbpVc0w/3zNMIkNJu/z59Po55+9+97tCt/EwuAL/yHCbum02/a0eL5vJP1iUHfsIgzaz/vrrV2BkZYD51a9+tS0y76eY+TLoqDZNHMyfIuNtYbqYD9sc06eJ52bm1xZGZApqY5z1GPhn1v2+Dpk/zGbbrQ+j0We/jqReMn/z6fXP9A954fs+NO87ezPV1h/ZuaAPoyeVRaP9a5m5Ytn1WzNzs+w8g/1EX3/8c948xJd70XNk9KpaR4njkEMOaTcfJTyb3+WtoXx8fCcc24tsZgz24fHcTBjNji/ZuO290TT4dk0/7/c9fFmCa2Ssze0bOrKPt3zJ7NlnFCpfla/qgOqA6oDqgOqA6oDqgOpAmTowTVxAXMWIeiYCcZM7zRg3XrPErS1uDBkh5SNL3GLiZhbE7ddqNzRRqRM3DtpJFDG7PGlQhBsP/FNpD7iNG2VYp4S0k7gRkL7X8xAPdBIpB6Y2IesHiQ/cJOfGcxERJ5ILuLHqiTQacYOT25DnnHOOWSU3wewFCQhZ4laUJ26dZsmXyze/+c3s5+TGJTfOiB+KG64VbvCPJA9u69dLzebXwv/Zz34W4mGXvSYmN/Y9XieccELYa6+9KtzwghSqH/zgB8ltWP/R/JLPeFgUuI1djY444oh2asQsDPxRH5DWhaShLLWizmTD9O9IsiJuKzP/jWfqJBLAcFeLkCjk61y2zcSD4+RmbjacsmVs4XEzl/ZjlMUYqTSReSRQ3kbZNMZD9eTGp33Pms8//3zaPxEXEk/iYUraPyAJhhu/rSJuJiJhzQipN43QKaecEuKGdYUXjwvfqZ9FBKZISPFtH/++bXMDOzI+JdK7LBwkEvh4sOfdfv72OhKJ6E98v0i5+LJBYlo80CqspxZvWZPbtZZGH5bZYWalxXh3PDOmcOMcol1xG72ILr300vQT0hmM9tlnnwpVhNgTtyfqAjdYGTNbTSaRqtbNWNQlUjZFVKbvKwqzlfZx8z0ZG63/8/WaeIrGrHholPT9lhbGFD+3wT4eKqbS1sxdK81a2CORLjI1VkSZrUPME7jhXi8xVhghHSJLSNI0ol/g5nSWkOpihESXLDEeMOYYZcsENaCMJY0QYzTS9TxlsYhMVskNfG6K51Gr09WRWE7v/iMPP+xaNacqCt/bH3744eG0005LrbLl/Yc//CFE5sP0u3/o6H6L/ob5iF/fZNPHuG/SMH3aeG4mffWshRjbSEc2LWaHadI6SQeSUZAuhcSYImL8Y55M2RdRrb4sz18jY3Ur55jMERsl+lkjkzZo7968/fbb01dUEts8qVXpTwNv8oH5YDP5bzK6Cm+shZCA5NemzDvjQXfqjnUsEkSRwJilZtpMNoy8d6TdgklW0qd3y9wWqbDZtWKz82vCJq/sBTDOQrRN5iB+3kz/ZnPRxNH//lrVbn2YjT4zN/FtIdvn/H97ZwKvx3T+8RNEIiELCUESEsS+NaSWKkFLadVWpaJatJaqpSiqtS9FW7XVUvu+/Gsvse9bEWLfBUGIiCCySfKf77meuc87d97lvsvNTfI7n8/7zpkzZ5vvOXPmzJxnnicRQEq1mVaaNzzRUuqfJbL5MnfjXp91c3JblBtfa5kr1vr8Vo+5GRqCk4+K0ibNzhl///vfB/+slUYs4WEeuNFGGxX0UaJn+1PycUrBM3qJLCs61Np7cF6mrc2jEfeX1tbBzoO5EZqw7B0v45lnzjsp3vuiESrrGjXGZ8vRvgiIgAiIgAiIgAiIgAiIgAjkEZBgUx6VOSxskUUWiS/jOC1eaGSFAPyiF3FYvM3G8QtxZg6NuHnuH//4RzRjcv3116eHEXZB5TY/zPHkORY0UeXOC3tekiHYwUIeYTgevostiuTlN23atChsZC8hERbg/HkBO3HixPiyFnNdlIUK8TwHBwSDbBE2+cIpzYN0yReh0VSVpU2+kE0XFjfYYAMLzl1o9wuSRORFV9b5tslbkKRe1IOXaKjs5sVE8gVVasaJ/Fjk8Is52TL8fi3nSz4IwLF4ZQ4zOtSPxWxekqMq3NzFF1/cQkDghBNOiP3P4iC0QvvRb1D7b4urpRb2SWOmxHg5c8MNN8SyEWJCzXbyBWvMHlYsEMHLXD36jOWVt6XfIZwDE1yivSS2DS+MeKlHe1M/jmcF6fLyw8QJC/ykI2+uGc4r0baTRj/88MNTP55a29hnRj35nXfeebEtaScY20tO2i7RghOTYFoFNfHUkcV3rkdz2cUHC2frX8SbenkEK3feeecYjfL9wotPW60fE47mMCVXqWNsSzQFpNGPPPLIaI4HLlyfNn6Vuh6TL13T9AgWMQbSd2lXW0QgAte+ZwN3ymEsMJdooEjHXQtHyBFhM3MIISLYSbvwY/y1hSvGxTyhTEtbj+2uu+6a1tHyY/GMc7FfOdOVpPOmPM1EluVnW9rSrisWpDDdhbvtttuiaUOLx8taXjxTPmManO1FL+2QfDFsUeu2ZSxAOCIrGJMtgDbhxTMLC5wPi3zWZ2oZ+7LlNGq/mnsWZsQSLX1plWhf7ilcb4x7sDCHECWLiI1wpdhzzAvOJFpC4jVPH8KsBkIf5hAioh9V4vx9P+9azApeZucVlGFzLsblPFOY3EdoFxYfTYid+5HdR8kDAVqbS7FfyrHgzGKnOQRw4QMLxhruF7YYzFhY7Hqtd70axbI9jB/GOrutx5wqm2exfbuvIdjL/Y72Zhy1ew/p+IAhe79uq3ELwQTmSywMU7dE60sUVvCCI/RbrgHvqq1fJc9CmOyhLvy475lDoNvC+XgBx70b4U37KIJ7BvN7xkCuX4R0OD8cJkH9mBMD3V+pscxFK/BWeq+u9xyTc+M5jHkuc2W4YJaolMNUmj07MqehP+Y5ng/M2fyynvW3vKvdMr+t5vyrLc+nw0Qf5eOYE2Ouj4+jMEkITz4wwFE/fw8mrNprhrSlHMJ6u+22W3oNMFfFzCrC5lwH3P/s2YB8eCanPc3ZXIn91syvic/zrLkjjjgijh/cWzEZzvzb5og8n3J9mavndWt5VrPlOYs60laMfTyTU+9E42KaHcKdecLRaQTn4XnOnlcJRpgSc4XkS/4885lDCCb7nDcnt0Wp8ZVj1c4Va31+q9fcjPd19CXmn/QD5rO0uY2htDvPv61xRx99dMF1w/Mrz6SM98z3/XyUOaOZYG5NGXlxW3MPzktPWGvyaNT9pTV1yJ4H90g+KuTaN+aYArQxjefm7DvKRo3x2bppXwREQAREQAREQAREQAREQASKEqhF3ZPSzj7qwpIXBqjsib+sevY999wzPWZxkpcWBWqHkwXXNE7yQjM95k0LJS820nD6RvIQnKZJBJsKjlnf8WYskhfyM5OFsxbxkpdAaT6mOtrSl9p6Ey3Jw/lMTKdk4ycCAy3ULycv5dJ4mPoyJuSRvFxJj1leyQJggap+eNqxZPE8pict8SycLedreds2eTFbEAcV0Bxj69NafLbF1Lwni4lp/scee2xBeq+C2udb6/kmiwTR1AfmPlCz7vM2P3Wx+lOehaO+38LZJloi0mMWB3MvWVX6Po/kBVhBHskCWos8KAdzSFZW8rI1jVOPPmN1zdtiRsrKTRZ2Z/pryeJn60d83ye9uvtifTJ5MZWWQ3rfr2ptY+pp58A2z8xHsgBVEOeCCy5IGdt5Yl7M8uE6sXC/Rc15shifxoONHWeMsvTJy9Q03I7bFs4Wz8LKbRmHLE322iuVNlmYTNMVM7uTCDelcSgja4ouEXyL1xAmJJIF1hbn5U1YYh4zW59kETnNn/6WPc4YxvXJj3Edxtk4XDd2/uVM/WXTltr394vsfYh0ViYcS+WTd4w+zvVAHmzzzNElL8bTMi666KK0DD8eYB4rL39/P6MMf7+rh8mXvDItzF/z9Oe8+1CtY5+Vlbetp2kd2LX2noX5F+sbieBBbvuceOKJab/GvImdR61tUwl7yvLXPuYOrXy/9fOoP/3pT7lxfHz8/r7ImOCPJ0JCKRfjkyxAF8RJhCHTOJjItPTe5Btp88Zx4iaLxGl6TJFY+lKm6Pz1lAgkpGksLVvmClZnP47VWi9fRtbfKJb+fGfF+EG7GMtksTjl7c+X49XMqbIMs/t+Dk8ZmLjJxmGfvmd1xLSVxWnkuEUZNte1spOF/LRsqwPmZ+mDFueYY45J49Sjfv7eUexZiLr4MSRZJE7rYPX081PmRYzLdsy2L774Ynof5HyYL9ixSscyi19qa6zy7tX1nmNWOwfB7KbVM298wwydzRngaXOhWutf7/tltedf672P+43xy7tuMEGXfOgU77vMO62/1OOasbyyW57XrE5seT+QjcOzth+T/X2r2vk1eVpfYZt9nqcOiZBHOgdJPuxK61XrdZs9v9bs+zaEF3XJpsfMLO1oXLOmZW0M5bx9Wv+skWh0yWWSfBSQ5ovpQJ9+TmuLSsdXP863dq5Y6/Obvy5aOzfz8wz6Cs/5vj3x89zln9mZz2Xj5O1zv7P+xzYRXMpNlwhLpfF4h+bzsvdl2X7q4+C36zjvfaJvm7x7cDavvP1yedR6f8krMxtWrg7Et+sa3lyLeWNa8kFDypu5npXTyDHeytB29lljUFuprdQH1AfUB9QH1AfUB9QH1AdmVR+QxqbkiW5ucF6DC19aeZe8rIi7fC2VPPBHf1Yjjn2JnTwIh8UXX9wnr5ufLwV79+7dIj80DNiXt3zpljx8t4iTF+DNtpx66qlh4MCBLaJ17949XHbZZS3CLcDYsM/X1/Y1tB1ni/YY/yUnX5HZF6JmPo4vWpMFhzQZmjb4wg3nv1pEA5Q5vn5DBTQONdDFXDENH6iWNsfX35W4Ws8XTRRoL+DHV7V5bu21106D+brTHNoZzCWCKlE1tu3btkOHDlHrjfVTC7et9VP2+bJ9/fXXt0PpFlMTJ510UrqPJihz9egzllfedsSIEWkwJlvyriXq5/tTmiDHg8mDvD6JNgzfZ/ii2FytbWz52NabbbMwzFd45/uihXvNIZ6LHWfLWGVaQhKhmNRMCMcGDx6cnjvXHF+N1st5c5l8pV6J40tyG1uTF7sBdfl5Ds0DaIor5tB0x/WDdjO07WUd5m0wh4HjK0oba7Lxiu3TX+waRQvOPPO0nAbYeGtlFMurPYV37NgxanWgToy3eebovIYr+2IaDTJ8rYqj3RIBmejP/qHtBY1K5rKaciy80dsddtgh7fe+rFrHPp9Xo/2tvWd5U0yJQE1s32wd0Qpp/XqZZZbJHq7LfjH2aHixaz9ZXAl/+MMfcsvzfcv6XG5EF8j9wLRkoi3Dm5fyZpSY4+DQsoEWL3NPPPGEeUuOO4xLec6bayw2Tvt0aPKwc+M+xLwpzzFXQEMU2pwYD5MFsbxo6TWdPdjaepG+ESzb8/hRjzlVlnupfeYcu+66a24U+if9AUf/QPMEri3HLerAM0zWYf4zEXRNg30/b8v6pRUo4kELk7lkET1gfjbr0G6IFkZzPDPluWJjWV7c1obVe46JWaNqnNfE5e/9lhfjKXMFHM8rNheqd/2tvGq31Z5/teVZOjOPy75/NrLjffv2Dckifbzveq1sjbxmvHY/tAP75wirF8/kXM/cW/h5V+382voGedFnGPezbrPNNkvnIImgQHq4ntdtmmkVHrTloaUq6zBh5ce/YuY4s+n8NYU2Wrhn3bbbbptq9kJbEFqRzc3JbVFsfK11rljL81s952Zoa7PnUGtPtszVeX9jzr/jsbC87R133JEGo3HNns/SwG89aKA2bc+8Qyt2f8uma0/77e3+AhuebfOuX695levXXCPHeCtDWxEQAREQAREQAREQAREQAREoR6Dlima5FDo+WxJA0MCEQbwZCBYJTdU8i2cISuC8ymGOVyJgUyuYrDCEz88LJSVfIPtDRf1eYGXIkCFF4/lF/GwknweCFMUcAiosiuN46WmmLLzpE2/Oz9qANuGFuqX1C5V+QdJMUWTLJ72ZU8oeszwJr1Too9bzzdaBfcwCoZoeYS7y9xz8Iq1/QbXuuuvmZRXDEOxIvjrMPe4XpBAKQaAn70ce5nwaf/7V9hnLN2/rBddK9ScWx+16zcvHwkrVcemll7Zo0XyH7fhzLFWHYn3a8mFLPXv27OmDoh8hE6s/L2K7devWIg4LBfaCssXBbwOuvPLK9JBfyCYQITcvVOUXD9JEVXq8YEBe3fOyxdyUuXXWWSe+4LX97NZMeGTD8/ZZAMb8yocffhgYr3m56F8w5qVpbRjCUZjywNQdApj+mvALEa3Nt63j77TTTmmR3sQMgbwENzN0vDi3dsVUkjnajb5bzPnrLW+hr1i6eobnCWuSv2+zasa+etaxVF7V3LNWWGGFdDxBWIPxH8FQzCaYgESpMut1rBh7v3iDcHbePYcw7oPmuA9WWncTbGJugRkgc7a4gECJX0j191gzW0Uabx7X8mDLHAihnzzH4rU5hK3LOV8/eHXu3Llokr333juaKsVcqb8nW4J61svyrDfL9jx+1GNOZdwq2Za6ryEkYQuhXjCgLcctxvdizs9F/PXTlvUrVjcL9/Vi3lVsnLG5F+n82GT5sC02lvk41frrPcfs06dPVVVBkC7RWBPTIkzHwr53fo7g55f1rL8vrxo/c+xqz7+a8nwaf7/ATBHCr5heKyaEamkbec34tin1nMicgfsKP/+Rh9XRtpXOr3le8c/zjGWYeqRflZsj1/O6tXpXs020uBRN1qtXr9QENfPk5GvLonE5wDsFey/EPs8QxcYjPiAzxzNMMTcntUWx8dWPx/WaK1b6/FbPuVmpaw+TaOYwo16J8x/+lbpPI4Tn+7Gff1VSTnuI48ewWt/B1Ot81lhjjdysuHZtPmHvNYnYyDE+tyIKFAEREAEREAEREAEREAEREIEcAi0/r8qJpKDZnwBf4vByjy/sEJ5BoIQXBCZIw4MrD7Ys+lx88cVR+wAL3bw89wI2m2yyScNg+Jch2ULswZpwBBoqcV6IZNllly2ahC/M+IrbLwJZZNMWwz4vmEs5BLMsPsJg/fr1C6uttlp8KcBCDl8Hs5CHM8ExNDqxkI5Gm7PPPrvgy1e/IFnsJVne16pWR75Cb62z+pOumvO18hAyQaMJ52mCc3as2Na/7PGLTHnx6asmHOaPe+069lLbH8/zJ+rU0+B69Jk0sxzPo48+moaW6u/0cV4c2sJ1mijj8YvOmUNFF6rr1caU519YZ8u3/byvAO1YqS2a2S688MI0CmPWvffem+7jMeEU/JdccklAq1M9nO+zxQQHs+X4F7OrrLJK9nDBfp7WCB+BF4h8Qc35+nHAx6nVn5gWCddee21ITFMEr9mj1nxnZXrGBcYOzicxuxQ1wpi2Hy/4NmzYsLSavq3LtZsfl/xL3jSzNvDkCYBQbK1jXxtUPRZRzT2LuQpzF1ugREgNDU38mBtw/+Qr8cSkZe5Xx/U6t2LsfR9Cc1MlGqNMuAPBz3LOL6hyD2FewWJWYpYnJoXL0okgK/dsFhsZNywNC9E4hE6KjddecDxGdn9du3Z1e+W9XviJetbi6lkvq4dxYb8eLH3bt7fxox5zKuNWyXbllVcuGW311VeP80Iicb+k77fluOXH72xFEVxgwZTrlzZFCJHF/rasX7ZO2X0/d0M7TCXOL0D6+MXGMh+nWr+vZy3PEZRfbMyqtG5oEDPtiswB9ttvv5iUDy7QiolDSAVNV+bqWX/Ls9ptredfbbmk+9WvfhXQpGLPq2g3Ng3HCBejlQaBsKzm2UZeM177cLm+Vezcq51fJ+YMoyAT/YP79ymnnBJ/lJOYgI0sEKTLXlu+P9V63RY7p0rCV1pppZLRELIwYaXE5FmudjvLwAtpE1bJnId4fBDgn3/m1LbI9gHOHefnC7XMFat5fqvn3KzU+4ti595EIP/fP0+Vuk+T2s+z/FiTn3P7C/XjQbkxLO+9Yr3PiGeoHj16FM2Wd4mMd9557tW8a/N5yS8CIiACIiACIiACIiACIiAC1RKQxqZqyc2G6eyFGg+o9pWTvbBEUxMv9jfaaKP0zB566KHo9wvrpb6kShM2wDNjxoxW52oP3jy0l9IaQMbZF7NWmL2EIg+vlt+O+603C2Hm8mBq5hAw78d58CWkLbLzMhRnbcOXkvbyyYTOMNNSTJuCL78e/lrPl/Pefffdw89+9rP4Atzyq6Rudt7EzTPB5fNgwSnPodmmtc7XsR59plT5vt7lvoitVDNZqfLyjtn5Vtun8/JsRBhmpbxDNT2CgP6HYIM5xikz72hh1W69MOcSSyxRUTb+y9Q8k5o+E2/qzofjRwCSF7fHHHNMQ4Sa+Coa85cIzv3zn/+cY4SajCPjD477nDdHh6ATDi0OCMCYs7Ga/XLt5selcloLLP+22tY69rVVPastB62FCJ6iOcI72vnyyy+P4wKLBKU0Avh09fRX2xcQHq/EoX3CNDDavAyBBVtsMFPDZvLTxk4WH01o0eYalZTn41SqVcrSTJ482bxl7+NpxCo8ra2XFVFvlu15/KjHnMq4VbL185u8+P643S/bctxizlPK+fF/3LhxMWpb1q9U3Thmc7dy8fxx4+zDGu23eraHOSbPT9bu3nQWH0bY+IkAj3ftqf6+Xm3tZ0HbBMS9MAr1QFPRH//4x6gx+IgjjijQPtjIa8bajDYt91yfx6uW+TUfOSCMwvmaWU0rAxOwCNExt/empjhu/cniVrJtxHVb6rmDOuWNz8Xqau1Q7HixcBtXOT43tkWtc8Vant/a89zMc/HPWXn9yPfTiRMn5kVp12E2HrSH+2O1oBo5xldbJ6UTAREQAREQAREQAREQARGY+whIY9Nc1OZDhw5Nz9a+FDPBJjPPgYYmvuxHSIAv/TFvYlpS+BKxnHBPWkA78PB1OOfBCzheJGRfRPoq+i/bfThflCMsUUkeJixGev/iBaEltMmQB3H8Yqa1iVf5z2I8mrFMg5QJPfl6Ncpf6/nyRSuLzDhe2uy///6BL84QDuHLY8I4L4RTso6v/e0Lar7KLfX1f7HFay9cdu655wbjmy3L73sNYPXoMz7vrB+NACZ8wxexxTRaIPTEwkEjXK1t3Ig65eV5xRVX5AWXDGPh6vDDDy8Zp5KDJgRDXK/ho1RaFszNYSKrlLOvorNxGCNYiDOHwAJfxKO5hEUJu4b4Uj5PY5mlK7VFYPKggw5KoyAIxHXCog1fbaIFiy9uy71cTjNoZx6EKk3gDVMzCMRwzdn1xCKm1yLmx+rWtJsfazyCUgIX5YQZfT6t9fv6VDP2tba8vPhoEWqkQyPXeeedF/7+979Hk6YIIP7f//1fKrzDl9BoN8TkRp75nka1je9DO+64YxRKrIRDpUKT5MX8i3ZFix8C0ghK4xDmQlsTjrHj1FNPjTxGjx5dYIaqkdo2Y+Hf/nkWfk7k48xqfz1Z+vNtb+NHPeZUrWkrzr+YmWDy8fM2u1+25biFqdVSGhi9eVHmSbi2rF8ssMSfzd2IwjNLJVpZK4lTosiqDlk9a3luqqrgnEQIv6DJE424zAHoA2gb8cIn22yzTUHKtqp/o++X/qSqvffBD03D/Hhm4d0Bz6hXXXVVmj33HOL95S9/iWGNvGZ826DlpdhHSWnlnKce82vKO+qoo6JwE1pzMDPHPdnuxxTHnB1NV3bPtTpzbFZetzx3+PsV9fHOj8/ltOb4fHiut/m1zy/Pb6bL59a28NyqmSvW8vzmy25vczM/ZpR7/+PnWaXe6+X1P8Loe7PS2XjQHu6P1XLw7TWrnjerrbvSiYAIiIAIiIAIiIAIiIAIzDkEJNg057Rl2TNhEY2XVXzBz4tJb57Na2r68Y9/HAWCbrrpprhAZwI2JvxUtqB2EoEFFtM2xQu7Yi9A+ILQvqDKVp0X4F4QpVgeLDTywtecf+j//ve/b8ExjqncXnPNNdOXsph7gS+CZrwk9eZf7OVomkkDPbWer5nGoYoImSBUkHVei4A/xqK1OcyUIFRXzBUTRPOL2XwByAuk1rh69JlS5ZH/lVdeGaPccsstRQWbTOCwVF7VHqu1jasttzXpPvzww9T8BelYQED7WZ579913oykqqOw1AABAAElEQVQqjiFAeNhhh1VsrjIvPwQ5+fraHIvglTivHn/kyJElk3izdT6iN4uIeRRfDx/Pv9j14ZX4TVCVuLA69thjWyQbNWpUi7DZJYCFJ7TTwM60DZiGPM6BxQTv/MJYuXYz7Tekx9SoOUylmSulac2bUbH49drWOvaVqoe/9rImSHy6999/3+82zI/gHfcWfn/+85/jfAZNTmYiBq1GCP/h2qJt/P2exYrW3ncqAcW5soBA/vRDFk5xpqUJv9eoyQKY9VcWHhHabQvnhbXQQNkeXT1Ztufxox5zqta0HwKFpZwXHDLB9UaOW9m6cD0UE2xC85bN9ZmbmwnTtqxftr7ZfbS2WR3RvlHOtFQ2fVvtt7c5JmZKEWzCMRf47W9/GwVi2UejblaTTa31by/3y3rf+zAjy497LR+xINB02mmngTHwIYIJNjXymkGI164BhDP8+BsrUuKvnvNrhOOZo/M74IADotAXHwyY+XAE5+zZvb1ct/BCU2sx9+STT8ZDzBfKcfVCMsxJuGZ8fytWhoXPrW1R61yxlue39jw383VjHlHp+x/fT+2DFfojQqO2b32ObSM0ofn8K/HXen+ppIxGx2nkGN/ouit/ERABERABERABERABERCBOYdA/krxnHN+OpMMAcw54e688870BRwamuwrOo6x6IND2Off//539PNXqeaSNIHzFBMcclHq7vWLOhdffHHR/Esd89qSLr300qJ53HrrrekxhFf8i3LMWxCGQ/U6Ai24rMCEmYrhhaiZUEKQqtyXkzGzOv3Vcr4IEtlCJvU28zjZqhUT2vGCIXwN7FWT+zz4QtaE7Xw4ft9HEcwr9kU04Sz88vNCIvXoM9k6+X20V5lDoCSPBUIvmIZslKuljRtVp2y+XmMSZh8wg8FCaN6P64YxDMeChzcjl8233D4Ln5iTMLfzzjsXaGyw8LwtGo7MXBTXb7FFXl6s+q/dfV6Y2jK35557mrdgi5AmAhyVuDwhFL+gkDXBYnn6l+cWNjttd9lll1hdXnDTFtafWLD24wyRbGzGT9xiXzKzkGxCicT1Y40XEi6mjQthPRM0IX29na9PNWNfqfqwiMViFw7hhGKmYavVIlaqbI6hKYJFN37e9BfH0LiHYDZmccx5AYq2aJu1117big4IVZlJ0zTQeZ566ql437FFRHeopNdrdaR9Lb3N10iMRk0zfcu9hfsbDo0kfrE9Bjboj+vJ+gp19GOaLxITIiwKM24iCDZt2jR/uKH+erJsz+OHH+uqnVO1piEoo5hgJ9ekCf/T3mgfxDVy3MrWneeZYmOXvyf767ne9av0WSiPo5+7+WeO7Hly37f5bbEPCbJp6rnv61ntc1M960N7otkOd/XVV0dtl8wNcMOGDYtb/1dr/Wf1/dLOpZZ7H89fjN/88gSyOcfjjz8+HeuZe5t5onpfM3Y+bO05Gf+//vWvotcz/Y57Cz+0POL8vai182s+SDIeefd3BL5OOumkWA5/mIo15/vTrLxuL7zwwjBlyhSrVsGWDwHsmkDrZTmHhi7/jM+7jWLurbfeiuMR80PTWjq3toW/t1QzV6zl+a09z81MCJA+xHNWsfc/jDO+r6EF25wX9C32cY597GhpSm3z7sGl4ucdy8vDjwdtcX/Mq0NeXVsT1sgxvjX1UFwREAEREAEREAEREAEREIG5m4AEm+ay9rcXUbzAsi8tt9xyywIKLIaYZqIjjzwyHmMhYplllimIV24Hk0bmWGQrpQrf4tVzO2TIkDQ7XpR4IS07wAuSP/3pT7bbYrvtttumYZdddlluHgjGYP7IHGYPss5exmI2x4Ry/IIk8W2ftvnnP/8Zs0AbgzeVls233vu1nC9aNEywg8WbPOGLiy66KGpyyqs3X9JbeoQD9tprrxbReLnsWWcjsFBKX8XxAosvabOOfnjMMcdEDVloyUILhrl69BnLK2/L17K/+93v0kMIGu6xxx7h2muvDddff32s74Ybbpgeb4SnljZuRH3y8vTChr6+eXEJ84tTfoGyWPxsOOYhzznnnKjVxBYeGQMxedUaZ9cwaaj3hAkTCpIjUIfglJVRcDDZ8UKMeVrJWKTcbbfdsskK9k2ogEATbPAREBIzZ2OR7bNF8MILifhj+FmYgAtjE322PTpMXRoHFpvMTEaeIBemetBAYA4hkM8//9x20y3m7Swf+oa/Tr1JyTPOOCNdvLHEMPPm/yy8nttax75SdeEeZF/603e9GR9Lx6KfacWwsHpt0QaBMAq/3//+97nZIvxkzurKflu0TZcuXdI+xP2br81tkdDqxJbFQxYNue+gNaQ1cyLMRJoAJ/cvc/5cCTMzr8w1TNDYm7e0dI3aIlzlxyjGwbzx7tBDD431gxP169ixY6Oq1CLferJsz+NHPeZULeCVCGDOxxg7ffr0gljcX/28zd8nGzluFVQi2UGoAE0zWYcQwj777JMGey2r9ahfpc9C9EtzLHpnnRd4P+GEE+K8MRsHwc+ddtopnd/yIUBbOz9nq+W5qZ71tns89/BTTjklZs0cwfdFK6/W+s/q+6WdRy33PgRg7J6LwECellHGdbvPMa+0fl6Pa8bOIbv1bcP1nDdHRxDrN7/5Tawb9bM2rmV+jWCm8UAII0/wwgu1+/lhrdctbcEHDfz8hzhZNuX26fuHHHJIi2gIgdjHABz0dW8R2QX45y40ZOYJ7pM3z9XMeRDoQEM2bnZtC3f6VXlrnSvW8vzWnudmCHzZuxt7/5OdH3Nv41qyMQchfv9Rpv9w7KyzzmrRPjw/o6W4lCt3Dy6V1o6Vy8OPYY26P5arg9W12m0jx/hq66R0IiACIiACIiACIiACIiACcx8BmaKby9qch9Gsyy568VKWxV37ypH4We1C2Tzy9lEZb44XoJTDiwi0rvCCsNGOr1VZaDVBEraYSuMFGyqqWfRn8a+UGzhwYDR1w5epOPLgZSqLh7ygevTRR8N//vOfNAs0guy+++7pvnl4EepNPvFCffDgwXY4bhEc48WOqdkn0F7IFkRs4E6t54uwgy1uYxYHIQ7aGoEktMCY5pS8U6Df3XDDDVGLA8eJ+/bbb8e+xwIdmng4nrdIavmhCp/2YbGXl1/nn39+fCFP38MUDwtvCL6Y5gDS7bvvvpY8mmestc+kmRXxYL6BL1hNWxMvtvh5R31ZMPUmtPzxWvy1tnEtZVeSlsV4e0HOy2//IrdYegTETBCO9j355JPj9ZmNnxV040vG9957r6A/kIbrk+vaa17L5pW3T7mMCbyY5TpGAxgvYnnhyoIE/dfOLS+9X1BAQIY8MA2K+QIWX/niOk9g0OflBVBhgTAVYx4vjvmqnDHlggsuiElYbGbBj+NosuAaO/300312Lfxoizn88MNjOIIa5OvH+hYJZkEAYzOLu1z//gtd/0LZVwtBEe4FjBkwZxznXsUYjalDrlU/ZvDS3EwVkY/XjIKwGGMeAji0G/lxL80TIvN1qNVf69hXrnzGczOzAlsEUwhj0Y3F83L9plz+pY4jKMO1hbv88sujdh/uwSzcogkLwWUv0Oi/Jm6rtvnHP/4R25jFQ8Ywvo7nfsi9CO1E99xzT4HGL0zocc9rjeOcfX9mnsZilXcmvO7D/LjiwxvlZ77EQjAaGrhfM/4xDnJdMDZmryd/D25UnbL51pNlex0/6jGnynIrt0/bWnszb2PcY2y1+xaacxDKMdfoccvKsS3XHR80cM9jjsW4blpUiYOWRjNjyX496ufvj6WehUyrEOUiSAs7ntmYD7KAy70djUOMvziEEWDLeIdpVOYYZ555ZgFr5g9t7drjHBMTtPYRi42h3Ff8fdw41aP+s/J+aedRy70PTUfMDe0jA94BMMdGMBdT6Qjem+k5yrM+ib8e1wz55Dn6OderaZ9Goyv3Vva5Rri2/TM58zjaE+fvg62dX3Nftedz7mFcV5wzQjuTJk2K7xP8Mz73fnO1XrfMKYYOHRqz45monMlkKzdvy4c83Jv5oA0zXox/fFhjwiKUs//+++clbRGGiUc0L6E5i/QIXsMbzmh04pmF511zaMky02Gza1vYudSyrWWuWOvzW3udm6FRlH7EvAzH+x+uM8Yd7ouMNzw/8zxl7q9//at549Z/mEZe3Gvpj9znEczkGcL6eUFCt1PuHuyiFvWWy6Me95eihX97oFwdyqUvd7yRY3y5snVcBERABERABERABERABERABFICiSaBmfrNXQySFwUzkw4Qf4nmiZnJwmSLPpBoZEjjEDd5kdgiDv0m0U6UxkteOLSIk7xMTo9bmYmgQhrvwAMPTI8nL8HS8GyfLFdONr7fTzQjpGVYHfw2WciY6ZkkZhwK6pF8mTmTOD5Nnj95kTAz0RpRkNbqkXxpNjMRlkjzID875reeB2UkX5jlxrPyk8XT3OPkmZi8SstLNEgUxKMNyIM6+fLx13K+nH/y8jct1+rpt8nL3/T40Ucf3aL8RDtHetynMz+cE01iaZy8vpmYlEqPW7q8bbII16J8GNTaZ7JMs/v0sURDQG4dk8WCmYnAzcxkITg97vtk8oVyGp4IceXWn/KSL3PTeMnL54J4tbQxeRvLUv3P+jvtlT1/209e0se8fD9MhI/S/E888cSiaS0P2yYv6tN011xzTZqOMc7qW8k2ebE/M/nKOE1v+Ve6TV6gFlzreWUmAjdpnRLtSAVlcU3kpbEwxqpkUSCNw9ji65ZoG5qZaD5Lj1u6RGNQjMdxz8qO+22i5ShNT1k+f3+MNInwQsFxHzfr9+N4tk8S1+qQmBeoOM9sGbafHQM4ZzuWt+U8rM9aPfK2xx13XG4+idBsWv+8dIy5yWJ6GqfY2J5Xt0qvedJmzzuvLoQVG/vyyicsWRCYmSzupfXPy5c+ZuHW3yw/Cy81ZpS6Z2X7neXnt7Rf3phYS9u0hv37779f9v5HfRNBmNw+ZKyKbROtWClf8mEcyYtr93fiJEJ6uXESczppXsniT24c8k60RKTxuC9aecXC7XiyqDTTxnffRll/IqiR5knaWutl5Zfb1pMlZc3K8cPP1xPBlgKe1K0ec6piPP2cNRGYTftKtp3Z5/pMTH22qB95N2rcsmuBspPFzpL141rh/ph3rrXWr9yzEGUmApG59aN9fZ0SjUO58Txz5gDJhwEF6Vozlvny8vxWVrF7dVvMMfPqVSose/9KBLkL+Pi0tda/Le6Xvr7F/LXc+xJBuZl2/Vh7520TQcCZiSaeFixrvWaKnRPhfg6dVyfCEoHAeD/x+dQyv77jjjsqmiMmgpu571WqvW79ufJc58+nnN+/2yg3PjNmJB8htcjf+gBjaLY8nj94v1CsDSw80Vod55A+/ezYFr7+WX9rxtdq54q1Pr9R52rnZuXmGcYj0cyd9gfmHhZeyTb5QCJNa30nb8u4lpcf70/y4lsYc1j6Mfv062weld6Ds+n8fiV51Hp/8eXl+SupQ6nr2udp71B4t+fD8TdyjM+Wpf25a61C7a32Vh9QH1AfUB9QH1AfUB9QH6ikD8yTPNzJzWUE+FLZHF8V5mkN8KYYiGsmUCydbcuZD0GLAyZ4khcJlqRgi+Ykc3lfztoxvriq1vF13FFHHdWiDtSJrzYxUee1Hvg6USb1woTaJZdcEjV5ZOtBPny5iqYWvujMc+SJGnZz9lWa7duWL7PNJQsGBWq2LbzSbam2sXPM41rL+XL+fAHKV3LZNud8OJanUcKfE1/LY3rIf3Fmx/mS9OGHH46aUCzMt52FoSWDL3d9X7djbDH/hukir9nDH6+1z/i88vyYbMDcYCKwFL94TV7Sxa9bk5eWsS9h1i958ZUm9deotV16sIiHL2aLuVrauFiexcJL1cOO+X7oNa+g5aNS578Y58tOc6WuA+LQZxPhnWiiIXkZGO68886wxBJLWPJWbwcNGhTzyOvnmKREC4P/sjTbf9EqcOmll+b2f74IR2MN/aOYQ1sR2tHQ+JC9BknDcUzIYW4Ok2reYQoS7TfJYrUPLvDzlTZfjeOSRZPAdV2pK9cWleZTSTw0JnA+5vJMhNoxtmgioP1N85c/hp+xGW0kaCrKc3xJDdc8HmjxQ7sVmg6qcZVe8+Rd69hXrH70U77sh2Nev+ELa/pGLa5U/2AewT02by5CfbhvcG35+6zVpZa2aQ17NHSh1Yr7S55jTEgEYFKNZ3lxSoWhocpf03ljDOkxhWeumMYWvpA3Z+Ow7fttdnyyY+W4YAqD68U0Zlo6tpwDYyGaKJgreFdrvXxepfz1ZEk5s3L84Ot5c3ntVY85leVfasuYizaRvHkX4yfXBppU81yjxi0rizkG1yXaXvLmlhxDGyH3xzxXa/3KPQtRJtpsGR/KjaNonuSZxO7Dvr5cW4nwbdRw0bdvX38oaqotCGjgTlvOMSs9Dc+VPuBNF2XzqLX+bXG/zNY5b7+Wex+axrjnMufJe7ZFKyHaKHle8/clq0et14zlk7fF5CXay9CumXXJgn1IPn6J13NW62ot82s0L6P5hfE0e77so+0oWeiPzxL+mc3qV+11683PUYdqHRoeGV9ot6zjWQvNV2jqyjq71/vnNIvDMZ5X4J2dFxKH64xnFjTLZe9Ns2Nb2HnnbY1T3rFsWLVzxVqf36hHtXOzcvMMO8dsO1t4Jdu99947XkM8W+Y5tMglwtFFtZmjkfHoo4/OvTcmH0rlmq705VR6D/Zpsv5K8qj1/pItM7tfSR2sv+Zd1z6/Us+tjRzjfR3kFwEREAEREAEREAEREAEREIE8Ah2Qfso7oDARqDeBL774IpqQ4SG62OJBvcv0+U2bNi2MHj06jB8/PvTu3TsuevtFNB+3lB9hFMzfYLqpV69eoU+fPm26YFCqbo04Vu35wufNN9+MpopYYMFMQGsc6ROtJvFHn0F9d6mF72J50+8wg4K5AF68ogrfv6Arlo7wevUZKyP5ujUKM7HPi/BiTKZPnx7ramrTMfeU96Lc8q11W20b11runJ4eU3eMOYwzLBKVEkjKYzFhwoSoep++glkfexGZFzcvjP5LHlxLLPDkpcdMZKIlJY5jjGWV9LOZM2cGrqvu3bvnFdsuwrjWMFvCNQQ/2qHcC1yrONcbYzz3CoQ+EJBqzblOnjw5mlGAN+1eablWfr22tYx95eqQfHEeEi0NUci00n5TLs9Kj9OfKZ/ri3sL9/NKXVu1DeVw3+H6Q5C1f//+uWaPKq337Bwvec6ILLieuAdnBS5m53PLq3t7HT/qNafKO+dsGILZiebDeO9hHC4218mmY7+R45aVl2iHi32SRVjura15Jqm1fqTn3lzqWYj7F3NW2oznjGL3ZTsP5rSMw60ZC41FW2zbwxyTjwkQ6MZhxugPf/hDxadea/1n5f3STrLWe59d0/Q1BBRb8zxW6zVj55C3pW2Y31EfBLAqvZZrnV9j6op5ImMb9/di12henVtz3fIBGoLxOOrcmvkkgsOYZ8cxX2MujONejEl0G/+Yo9TqMHvNMzvnRh9h7mvllct7dmmLcudRzfFa5orVPL/5OrbnuRnPbsyhMeWMMBYfHLWm79PHmYNwfTLnzHv+9Syy/krvwdl0fr/SPGq9v/gys/5K65BN19r9Ro7xra2L4ouACIiACIiACIiACIiACMwdBCTYNHe0s85SBESgHRB47rnnUm09vPB95pln4svfbNWOP/74gHYeHNqE7r777mwU7YuACJQg4K+hI444ImrtKxFdh0RABERABERABOZAAiwcL7/88lHQmdNDICBPO80ceOo6pdmcAMJaCHig5RCtcq1xxQSbWpOH4oqACIiACIiACIiACIiACIiACIiACIhAeyPQbAesvdVM9REBERCBOYzAGmusEU3xofKfrxExXTBs2LBoGoCv7d97771w8cUXR5MAduqYFJMTAREoT4DFSr7SxeSRCQaSKs8cVvncFEMEREAEREAERGB2JICmCrTUPP/88+Hss89OhZowgSWhptmxRee+OtOHEWrC5ZnZnfuI6IxFQAREQAREQAREQAREQAREQAREQAREIAQJNqkXiIAIiEAbEjj55JPD9ttvH02M8cKa/WLuxhtv1MvsYnAULgIZAr/85S/Dgw8+WBDK9YUpHzkREAEREAEREIG5g8DTTz8dPyTwZ4tZWQk6eyLyt2cCmIszt/HGG5tXWxEQAREQAREQAREQAREQAREQAREQARGYqwnMM1efvU5eBERABNqYwKqrrhpGjBgRDjjggLDooou2KJ2wn/zkJzHOlltu2eK4AkRABMoTwNTjBRdcEA488MDykRVDBERABERABERgjiWw6aabhieffDL07t17jj1HndicReDtt9+OJ4RAHqYU5URABERABERABERABERABERABERABERABELoMHXq1JkCIQIiIAIiMGsIfPbZZ+GNN94I06dPDwMHDgyYpJMTARFoPYHXX389mptZfPHFA78OHTq0PhOlEAEREAEREAERmK0JTJw4Mbz00kuha9euYcCAAaFLly6z9fmo8nMfgZkzZ8ZnQ+ay8847b6sBTJkyJaYnofp/q/EpgQiIgAiIgAiIgAiIgAiIgAiIgAiIQDslIMGmdtowqpYIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIzM0EZIpubm59nbsIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAItFMCEmxqpw2jaomACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIjA3ExAgk1zc+vr3EVABERABERABERABERABERABERABERABERABERABERABERABERABERABERABERABESgnRKQYFM7bRhVSwREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQATmZgISbJqbW1/nLgIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIALtlIAEm9ppw6haIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIjA3E5Bg09zc+jp3ERABERABERABERABERABERABERABERABERABERABERABERABERABERABERABERABEWinBCTY1E4bRtUSAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQgbmZgASb5ubW17mLgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIQDslIMGmdtowqpYIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIzM0EJNg0N7e+zl0EREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAE2imB+dppvVStOhOYMmVKuP7662Ouffv2DRtttFGdS1B2IiAC1RLQ9VktOaWrJ4EvJ00Lr3/4ZXj9gy/DV5O/Cf17dwmbrbl4PYtQXiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiLQKgIdpk6dOrNVKRR5tiTw2WefhT59+sS6b7fdduHqq6+eLc9DlRaBOZGArs85sVWbzun2Zz4Mj786Ltz3/MfhnL3XCqst3aPsyd4zckx49u3xufHm6dAh9Fxw/tC7e6fQr1eXsNpSPcI883TIjduawHc+nhh+e/b/wtdTpqfJBi25ULh4v++m+/KIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIQFsTkMamtiau8kSgCgJff/11uOuuu8LMmTPDsssuG1ZdddUqclGSWUVg+PDhYdKkSaFbt25hk002mVXVULltTOCb6TPDaTe/lgoLXfXQuxUJNj35+rhw+9MfVVRbBJy2Xqdv2GmDpUKnjtVZl532zYwWQk1LLLxA6LtIl4rqoEgiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIi0CgCEmxqFFnlKwJ1JPDEE0+EHXbYIeZ48MEHS7CpjmwbnRUCTVtttVUsZs011wxPPvlko4tU/u2EwFNvjkuFmqjSwy+NDZ99NTUsnGhcqpcbO2FK+Pedb4UHX/wknDBstYBAUmvdO59MTOvZLzE/Rz7L9FmwtdkovgiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAjUnYAEm+qOVBmKgAiIgAiIQAjDn2mpden+Fz4O263br2I8F+//3TBoiYXS+GhXGvfl1PDmR1+GW576IDz68qfx2OsffBm1Ll198HphoQU6pvEr8ZCXuc3W7COhJoOhrQiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIwCwnUJ3dmllebVVABERABERABNovgS8nTQv3jPw4VnDl/t1Dl07zRv9tT31YU6U7zjdP6NOzc/jeSr3DKbuuEU7edfU0v/FfTQt/T0zftdZNmDgtTbJyv+6pXx4REAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAERmNUEpLFpVrfALCx/6tSp4eabbw4jR44M7733XlhyySXDaqutFrbZZpvQuXPnFjUbO3ZsuPXWW2P4uuuuG1ZYYYXw8ssvh4ceeiia1+rZs2c47bTTCtKNHz8+3HjjjeG1114LH330UejRo0fo379/+PGPfxzT+8gcv+OOO2LQqquuGtZee21/OPrffffdcO+990b/d7/73bDyyiu3iEOdMN2G23LLLcNiiy2Wxvnyyy/D008/HZ577rnw/PPPh969e4dVVlklYCKMMku5KVOmhFtuuSXlxbksvfTSYeuttw4DBw7MTXrnnXeGDz74IPLcaaedwhdffBEeffTR8MADD4QxY8aE3/zmN2GDDTbITUvggw8+GN56663wyiuvpHGo+0UXXRT3l1pqqbDJJpukx8zz+uuvx7Z65513wldffRX69esXBg8eHHl07Fham8vo0aPDU089FV566aVAPpzj6quvHvkMGjTIiijYXnrppWH69Okx7sYbbxzoKw8//HA8z5kzZ8Z+tf322wf6iDn6xPDhw2MfWmCBBcKQIUPCOuusU5SlpSu1pU/ffvvtsX3pK/PPP3889/XXXz9stNFGoUOHDi2SZ/v1iiuuGNuMPsQ5YEqOvr7eeusF+lylDnaPPPJIoE7m6AvWdlxjO+64Y5hnnnz50k8//TReV/SXcePGxbJhRP3mnbdJSMbyzW5raf9sXn5/RtKWT7/xWRg56vMwZvyk0LVzxzCwT9ew0SqLhh5d50+0CH0VXnl/QkwyZNAiYbEeTePI5xOnRjNsHFhlqR5hwGJdwycTJocX350Qnnvn8zBlWtJ3Fu0aVlu6R0AIqJx7Pil/xNvjw0efTQrfTJ8RenfvHJZbfKEo7NOpYz7P/z79YZgxY2ZYPDHVttayCwfq9GySx4i3xoeZSYHLLr5g2GS1xQq0Hb07dmJ44tVx4e2PvwqdOs6b1K1bWKV/j7DkIuXNvT2QmIYzt/U6S8ZzvfnJDwKald4a81XdtCIh4PS33dYIB1/0XCzu7mfHhF98f6kCLU9Wj+z2jhEfhW8SDVAvvtfUZhy/5/mPw8efT45Rl0mYrJQRdEJg64EXPgmw+TTRHLVQ5/mioNX6K/aObZgtg33fLzZaddHQef55k37yRXjmrc/C22Mmxvb46XeXDB8m7fnMm5/FLKyf5OX3dsLvpW/r/P2k73Xv0jSm5fWz0eO+Ds8mbUyf7ZmYAFxhyW6BOsw7T/NYQF+iT72XnBN9FuGuVZO+aPnm1UFhIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACbUOgQ7Lozpqu3BxO4LPPPgt9+vSJZ7nddtuFP/zhD2HYsGEBwZesW3TRRcNdd90VVlpppYJDzz77bCrYceihh0ZhnWOOOSaNs9BCC0UBDAIQZjnllFPCX/7yl/R41vOTn/wkXHDBBamwC4JNCOrgEEhCICrrjjvuuMAP9+tf/zqcd9552Shhv/32C+eee24MR4gJYS0c9d92222j0EoMyPzts88+4cQTTwxdunTJHAlR0AeBr08+aRZW8JEOOuigcNJJJ/mg6Ie1CYO9+OKLAaEfn8c555wTdt999xbpLOC3v/1tuOSSS2y3xRZhrGeeeSYNnzFjRvjd734XLrzwwjTMe2hbBMOWX355Hxz9pKU+Bx54YItjFvDHP/4xHHvssS2EcRAgwq211lrhzDPPDAi+ZR1l/+c//4kCTPQL+keeIw59o7UOgSZ4eb4+j+WWWy5ce+21UZDNh2f7NYJuu+yyi4+S+vfYY4/wt7/9LbePpJG+9Vx55ZWxj2bD/f7HH38c+3/2+qQPb7jhhj5q6t9hhx0CgmR5wk21tH9aQBEPAi37/XtEFMzJRkEb0aHbrZgIC00Lp32rMQhhm3WX7xWjvpYI8+x2xpPRv8vQpaNQz9FXv5jNJu4j4LLfTwaFzokgUda9/+nX4cirXsitA3Gpx+HbrxQ2TgSUsm79Q++JQSv26xYO3nqFsPuZ/8tGSQRfOiYakNaIwjzn3vlmuOL+US3iEPDXREvSBolAUSm31zlPhRdGNQkMDT96w/DGh1+F35/fdK0O22ipsPePliua/ITrXwq3P91kxi5riq5YouOufTEMHzEmHobxXpsvWyxqGv6DI+8PX0+Znu5nPZuuvlg45hdNAp/JkB4uf+CdcN7wt7LR0v0NVu4djvjZSgXCYRy87pH3wum3vh7jnfrrNeL+U4mAnLkfJObvjt5xlfBgIgz2p8ufj8GHJf3pJ0OWtCgF2xseHx3+ftOrMeyUX60R1l8xv58tmgi8WTyfAcJzaLqab94O4dhrXgqPvdpkzs/HoS+cs/faoV+vlvcDH09+ERABERABERABERABERABERABERABERABERABERABERABERABERCBxhLIV23R2DKV+ywm8Pbbb4fNN988V6iJqiEYghAPwhbFHEIkXqgpGw/hmqxQE4JP3iHwg4YetDrhFl988VRr0n//+99Ek8g3Pnr0m0YndoiDAFXWmUYnBGkQUsGhOQdtO2jMwVEXBEeIY+5f//pXQKtQ1qHNKivUlD2Xv//97+H000/PJi3YR2NTMaGbgohuZ8EFF4x1zZbHPr+FF17YxQ7hqKOOaiHU5NNS/lZbbRU1KhUkTHYOPvjgFkJNAwYMiOVYXISR9t57b9ttsYXVT3/60zQ8WzYaio4//vgCoSbfBiREGOzxxx9P86jEc/XVV0fNWZ6vL5s83njjjfCd73wnauwqlucNN9xQINSEFjPvEMT7xz/+4YOK+hH2og7ZelgY2zwNUmgcQ6OZuWwdrrvuurD//vvb4YJtLe1fkFFmZ1qiFemIK55vIVBk5tUQjjnqqhfD4zkCIpmsApqMvFBT7+6dCqKg1eiqB98tCGPnnURrEsJRaDzyzupAGPX4y5UvhBufGO2jFPjRNHXwxc+mYT49ptw4z4vuebtAqAkhF+8Ou3RkeOHdz31QgR8BLBNq+v4qvaOgz+oDekTBKSKiPWp6oj2qnm7LtZv76r3fmsArlz9atvz5E599+3VNtDGZO/XGV1oINWXTPvzS2KSN/hcQgivmzh3+ZvBCTcXi1Rr+5OvjUqGmbD3R9nRKcj7HXdcs1GTnbOXSF/ZOhNNKnYvF1VYEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAERKBxBCTY1Di27TZnNNRgkm2LLbaIpsK+/vrr8Pnnn0fNQpi5wqHJCY1OecJFHH/hhRfYhFNPPTWaZsNc15tvvhnDbrvttqiJKe4kfwhbIKyBOS20Ml1zzTWpsAflHHbYYRa1QFOPlWEHEVpBA5M59tGC5B35I8CCQ+uTmfnyWo+OOOKIgKacu+++O7z//vtR45EJn9xzzz3puZHHhAkTYp1MYOZXv/pVPF/MhJHHFVdcQbToDjnkkChsZfvZLeeDOTOEs0hLGyDsVMohRAO366+/Po2GABJh/DgHc2jxOfnkk+Mu54OQDvXE1BpanUwLEsx/9rOfhcmTJ1vS2C5nnXVWug8vzhlzceSBFiVzF198cSqMZmG2JQ0/NGkhsEYdKduEcxAsM41bsIMvpu8wnWZ9j7wQWqvUkX7XXXdNoyOchvk2GJM/5gDRJGWOuP7cLZyt9R0Epag7rLg2DjjggDQaGqs4Vs7BmHjUzxwmDwmzH+YMsw6zg/QNBOXoz9SBa9Talvjnn39+KqRn6Wtpf8uj2PYfN72WmAhrEkBEAOT4YauGO47aMNx97NBw1cHrhl9uvHRM+sRr5bm8P/brGPe4nVeN6W/60wbh3uOHhh036J8Wf+Hdb4cJXzcLxyAEdML1L6fahTCRdtrua8Z0dx69UUCr0RZrLZ6m/9uNryZmxZrKSQO/9SCwwu+w7VcM9xw3NNbh0gPWSczZNQlYjZ0wJQo2Ef2YX6wS7jt+43DbXzYM1x+6flg6MaFn7pFXWmr5sWN3P9ekOYn9zdZoqhemzzb/TpOf8s3kmqWpdbt6YjrNHCbdKhGc4pxow323bNYedeIvV49hhP9x26b7wSMvjw0InJnb44cDwzWHrBfj3Z70A/qDCQ9R9ln/bRqDLb7fvpWYK0RQjPa/8fDvhYdP2iRq0PJx6uFHAI46nb3X4DA86SMPJeWcuEuT9j7yf+jFseHRlz+NdTl/37UD/ejOYzYKZ+05OC2edvJm+tID8oiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACLQZAQk2tRnq9lUQZrkuv/zyKGgz33zzRdNam222WRRg8UI+TzzxRNGK33LLLVFzDAIpmMXq2bNnjIs5N3NolkGQaNlll41BiyyySDQH5wV1EJQxTUqbbLKJJQ2PPfZY6sfz4IMPFuyzY9qZ7ICv7w9/+MMYjHCWmbXj3KgP54xDYw7m3K666qpAfH5otDJ3xhlnBARNcAhKodWJ8yUd54tZMAS1zP31r381b4stGqLQdMU5krZTp04VmTRrkVFOAIIwv/nNb9IjtA1af7p16xaFuzhH2tsEfGD78MMPp/ERPrLzx4zfL37xi2BCN5wrQlEI9Jh78sknzdtii6k2zAR27dokBELZnhEJ0HwEuwUWWCCmX3rppQvilMo/W6CZHSSc87vooovC2muvHduY/IcOHRr7tWmGQnjJzANm82KfvoLWKLsOME2IUJGxI86rrzaZwcLfCAdDNGNxveDor5gI3HnnndPinnvuudRfa/unGeV40Fhzy/+ahVpOTkx/DV11sdCtS8cYe6neXcOemy0bdvhes2BSTjYFQZgPw1ycCcNgdm7fLQcFzMSZe/eTieYN/3tjXHjl/S/iPmn+mgjfDBm0SDRXN08iMDRoiYXCYdutFAYv2zQGEfG6R99L02c9mLr7SaLhaIH5542Hlk0EpU4Y1iz0QuARO6wUNl29T+jUsek2ucTCC4Tjd26Og9afPDcj0SLnea2zQlMbEneTJD9zw59tMjVn+7VuEZzygldeMKzWvC+57500i58nAmi/3mRgaqKte9IP6A8nJW1i7ranPgyfTGgWnLRwtgg1nf+7IbH9F+3RORmfOoQFnWYoH7dW/5m/HRzWGNAzwIbfhqssmpgAbLoXWd6Ym1u5X/dYj3mSsW7NgT1TgS7ivDq6qd9ZfG1FQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQATaloAEm9qWd7sp7bLLLksFN3ylEEA66aST0qCs1iQ7gGAU5uyybtSoUalWJbT0eCEnH3fjjTcOmKszZ4ImmIsz98ADD5g3btG8g9t0002jUAx+b5qOfS+sgyARzrQ24UcAhDpmHUJdaJri502peYEchJpMIMqn33bbbcP3vve9GIRAzrRpzZpmfDzOFyGZRri77rorzXafffYJ66+/frpvHsr2besFYxCCsvPfbbfdLEnBFmEhcyNHjjRvi+0uu+zSIgwTcN5tvfXWfjf6l19++TRsxIgRqb+c58orr0yj0K87d+6c7psHM4dnnnmm7UZtVumO89BnEWDLOoS7fv7zn6fBaFFqpNtjjz1ys/d18Ixqbf/cwr4NfOPDr9LD263XL3wnEfzIc2j9yZpsy4uHZqT1V+zV4lCCOPzACf58kGj+MffAC5+YNxyw1fIBIaOsQ3DlqB2bTE9y7M4RHxXVWrTF4GbtTpbP8ks2C1URtuHKzWYqLc5SizZfv68VEXjBBB1an3BokUJoy9wKSRlW9ztHjAlfTW5pbtPiVrNdZKH502QTJk5N/bV40MBkQmW03T4/Wi43u7WWXThsv36/9NgjiTakPIewmDHIO16vsEFLLhRW6FvYpuSN4JI5BOn69WpuUx9u/neLaP6y49qKgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAg0loAEmxrLt93mvvrqzdo1spUcMmRIGoTZujz3gx/8IC84mpyzA+uss07o2LFJq4uF+a0v5/nnn4+H5p9//lSw6L777gvTp0+P4TNmzEi1LiFQhRk93P333x+FleJO8mcanNCu06tXk/AEgk0IUplDeOrPf/5zFMAqJoREXMyYmWky9tH8hOm6vF/37t2JEl0xbT5eaMvi1mvrhVzQ8pNXR8IWXHDBtEifJg10nilTpkQzdGiwQgjq8ccfT49au6QB33oQeDPNXf4Y/cA0IA0YMCBqkvLH8dNO3hxd9njePubuTNsX+ZtmsLy4gwc3m5jymr183A022MDvFvj792/WSPTFF43T4oK5umICcH379k3rhKk9c74t69X+lverHzSf68r9WwqKWDwEi9YcuLDtFt2u4QRLspEWSzT4mJvohH5e//BLC84VVrGDiyzUKTUp9/WU6eHTL5oEjOw42369u4SFFmg5Ls03b4dUgxSCN11ztAih0cdrRfL5mn94IlBlzgtqEYbw1o+cUNVDLzULbFmaWracs7kF5m/SSmf71W5HOc1ZqyzVPcCpmEPzkbk3P2puMwtju5ozmefD6+0vVo5v+xVzBJ+oR+9unepdHeUnAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiJQJYH6rHxWWbiSzRoCCP3kaR6y2gwaNMi8oZhJMBNSSSN+6/nkk+aF+lVWadaeko3Hvhdi+eijZmEABJduvvnmKLD08ssvR1NxCD6hbQmHUJWZSWMfLU0IOo0dOzY1G2eCTxzHYdrr6aefjkIw5HPKKafEH8eIiyYczK15wZ9PPy3UOLLMMssQvayjrphfyzqfd/ZYrftjxoxJszjuuOMCv3LOa7eyuHBHe9bw4cODb0s7Xm7rBbyKxS3V94qlKRZOm5vLaoWycNt6oSAThrJjtl1qqaXM22JrZvNaHKhzwMCBA4vmaOb9shHq1f7ZfNn3QkUDFmsWjMuLu3yiJee+55sFrvLi9HHCS9njnebPl7Ud68ya9c/RsOPzQUvP2AlN/WL8V1ODF5YiXiVmz+YtIbzjy8r6J0+bXmCGbnpilu6pNz8riOYFpjDZtsXgJQqO17IzZnyzlqseicm3erjPvmzW/LRMn9Lt74W+Pv2ypVAZ9enSqW2mHWZmsBQDzODJiYAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAItG8CbbPC2L4ZzHW1W3TRliaWPASvLWb06NH+UFn/119/ncbp3bt36s/zoFnG3FdfNZu78tqVHn300SgkhPYmHKbCTCAKzTZolOIYwkleCCurUQqBlcceeyycf/754d///neB0M7tt98e+OGuvfbasM0220S/CVLFnVb8jRs3rhWx6xO1Gg1CXnCJdvv9738fLr/88vpUqI1yaU1/QyMU/ceEmtDAVU8hq7Y45ZmJoEyeq7X98/K0sK6dmk2pTXIagey439bbtJrlPf6rJvOOXZK6dJwvX/jJ4i68YLM5NgSN2tI98nKzoB3lHnzRcyWLH/nO5wFTb/UwzUY+npM3gVeyEmUOeoY9ujazzUvWvUuzMJXXHpUXV2EiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiUAkBCTZVQmkOizNy5MiSZ+S1J7XWfJqZf6OA119/vWQ53szbYostlsbFVBm/d955Jzz44INhr732CnfccUc8vvXWW6fx0LCEYBMahtDIZBqI0CblzY5ZgsUXXzwcddRR4YgjjgjPPPNMNK121113hXvuuceiRM1NlLXJJpukpuw4SJ5ofKrE5ZliqyRdLXE8v3PPPTcMHTq0bHYdsIv1rYOfCTVxrvvvv39AA9ISSywR0MJE2AsvvBB+9KMfWZJ2sfXCcy+99FLJOiEEZUJNnM/sJtRU6uRqbf9Sea/Yt3u4KXwQo7w55suw+oAeRaO/OrrZbF3RSFUcQPAHwR2EZdDC1NMJL2Wze/vjZiHJ7l1KC+Jk09a6f8czzZrnKs3r7ufGhF03HlBp9KLxvFm79VZoMsNZNHIrDvTo2iys9N7YZsHVvCze/7T5+CIl2igvbTYsX4SvKdY302dko2tfBERABERABERABERABERABERABERABERABERABERABERABERABERgDiUgwaY5tGFLnRbCHZ9//nmBOTcf/5VXXkl30YrUGofwkLlyAlS+nH79+lmyuN1qq63C6aefHhA8oq4IOOG8JqYf/vCH4dhjj40CUG+99VYqoLTZZpuVFFpBoAWBLX4HHHBAeO2118JBBx0Uy6KMG2+8sYVgE9qb+vfvH+adt1l7DXHbi+vTp09aFbRfIRjWGvff//43jX7NNdcUcLYDH39c2sSYxWvLrRekoz9NmTIldOrUKbcKXtBu6aWXzo0zuwbW2v6lzntQYl7O3IMvfhK2+W7fkGfC6+PPJ4en3ig0u2bpat0u1rNzFGwin3fHTiwq2DQj0Wj1wqgJaXGLLNR2gk1jv5gSnnitWVvbpQesE4pZOhuTsDrk4iZtTpij++XQAcHJGab1r9QzLjEXd+Hdb6fRN12jeTxIA6v09OrWfD298VGTOdBiWY36ZGJ6aNESJgfTSBmPF7b8fGKzCbxMtAA/OREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQgbmDQGmbPnMHg7nyLC+99NKi533JJZekx1ZfffXUX4lnrbXWSqMhjPTyyy+n+94zefLkcOWVV6ZB3vwcgZtuumk8hkDROeeck8bbcMMNUz8ahdC8g8OEHBqFcJtvvnnc2h8aqDBTx2/MmDEWnG6XX375cNJJJ6X7I0aMiP7OnTun9SDggQceiOF5fwhWYRLv/vvvD1OnFl+Qz0vb2jBvQs7Sen433XRTwMxaniOcevIzQR8EodB8hcNMobHPph8+fHg2aJbvI8SEgJs5+kExd8UVV6SHttxyy9Tflh7TGFXvMmtp/3J1GbBo1zTKM2+OD+fd9Va6b56Jk78Jf7ioqQ9ZWD236y7fbLbyv09/WDTrh50puBX7dQvdnGm0oonqdODekc1jy682GRCWXXzBMLBP/g+NSqb5Ck1UL773edW1+HLStHDMNS9EbVZkgnarIcs186o6428TorHL3LNvjQ/vOI1YFs526jczwvARzRqr1l52YX+4Iv+SiyyQxnvXCUmlgYlnxoyZ4cnXmwXI/DH5RUAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAE5jwCEmya89q0ojM65JBDwiOPPNIiLmbM0Nhjbu211zZvRdsFFlgg/PrXv07jbrPNNlHjUhrwrefggw9OTbshTOMFlojyve99L02C+TgcAktduzYLWaB5yUzTHX300TEOf17Ig/3nn38+bLDBBvGHiTkEebLOm8XzdRk2bFgadYcddghey5QdGDVqVBgyZEisH9qixo2r/6J7t27drLiAgNHMRDONd2ifMi1NtCuaqLKONMccc0ysJyxpa9yCCy4YllxyyehHaCpP+Oaiiy4q6Bcxcjv5+8UvfpHWZI899gjPPdekCScNTDzXXXddOOOMM9Kgn/3sZ6m/0R6vQQq+JlBWz3Jraf9y9eg43zzh+GGrptGuuH9U+OOlz4UbnxgdHkkEif6dCDrtftb/wqiPm7X1pJHr5NlolWZTlbc//VG46cnRLXLGTNqfLns+Dd9i8BKpvy08tyaal8wNXbW5vhaW3f7oO83a7e58tlkoKhuv2P60xBzbQy+NDbud8b+AwJm5I3dcOXTqWL9bO3n9eO1mln+8ZGT4alJLwcnTb30tvPJ+kynCngt2DGsu09OqVPF2qd7N4/vwEWPCmPEtNTNd9+h7De1r5SqLoCz3T8adSs2TlstTx0VABERABERABERABERABERABERABERABERABERABERABERABERABIoTmK/4IR2Z0wkgALT99ttHgR/O9Y477ohCM3be5513XiosY2GVbBGe+b//+7+AtqV33nknYM5uu+22C4MHDw7vvvtuLOOxxx5LszrrrLPC/PPPn+7jQYAJTTyYojP3ox/9yLzpFgGdyy+/PN1fccUVQ9++fdN9PGggQuiHuiDA9OMf/zjstNNOURhp0qRJUXsRJu3MmbAU+yxe/+9//wv/+te/4vkgcMW5IPyERie0O5166qmWNOy5557Bm+NLD9To8abTEI6BDfVYeeWVY/thIu/WW28N6667bqzn+eefH1588cUYD61bCCtdddVVwXPfd99901pxzmeffXbcX2eddcKuu+4a82UR/957742CQWnkdub5+c9/Hi644IJUUA/hNUwZIsw2bdq02IdgY47zXnXVZkEdC2/Udp555gn0SxOKQ9gPgTnCqCfHa3W1tn+58hHU2XPzr8N5w5u0NT368qeBn3cIs/xkyJLhsvtG+eC6+NHk8+tNB4SL73kn5nfqDa+GhxOhnvVW7BU6d5w3jBz1ebj/+WZTiZjP2yqpS1u51z74MhW2WXqxrlFbU7myv7/youGv/2ky+3lnoulo3y2Xi+eSTXfRPW+HRbt3ToMnTf0mYPYPIaKvp0xPw/H8cdsVw6pL9SgIq8fObzdbNtyX8KU8NEwNO+3xQJ9YsW+3xCzcpPDYq58WmAA8ZJsVQ8d5W9+v55u3Q9RkNfKdJg1WuyTl7Ln5sqF/ry7hs6+mhgcSU4i0+6x0J5xwQmB8xT3zzDPxuq7HNTwrz0lli4AIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiEB7JiDBpvbcOg2qG4IVaJFBMxMCSPyybp999inQvJQ9Xmq/T58+4ZZbbolCGwg3IVTjteX4tMcdd1yqdcmH40f7kRdsQmAl64YOHVoQhNBS1iH0gWASGpeoD8I9XsDHx2fRGu1L3v3tb3+L53DzzTfH9Jjq8+b6LO4WW2wRiNsI16tXr7DjjjumWpMw88cPAR0W13GDBg0Kt912W6r9qtR5ovVp4MCBaVX322+/cPvtt0fhLwSnENbyAltERPjryCOPTNO0Fw/ti1lDhLMwqUcbs+9NHVpdf/rTn4bjjz/edttsC9+99947lodwnWkh+/jjj0PPnq3XbJNX8VraPy+/bNguGw0I8yfam654YFQY/9W0gsM/WLNP2CsRfnn8tUJhp4JINe7suvGA8FEiOYMJmAAACOpJREFUVIMmH9wTr42Lv2y2/Xp3CScMWy0gJNNW7q5nm02wbTG4WRNTqfK7d+0Y1l+pVxQQQ2Do8UQ4KE/TUyWCPL27dwrH7bxqQ4SaOIdFFpo//H23NcNBiblB6jp2wpRw3SPv5Z7enpsvEzZcZdHcY5UEHrXjKmH3M5+MfYyyTrv5tRbJtl23b7jh8ZZau1pEbEDAe+81nzfCsphV7dKlSwNKUpYiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIQaL1KBXGb7QmwCHvhhReGf/7zn2GhhRYqOB/20biUFWohEgIklbr1118/CpnstddeuUnQOIRwzaGHHpp7nEAvyITGJQQ3sg6Bn/XWWy8N9mnSwMRDOBqMEG7KO2cEpBAUwsRQhw6FAhGYvLv00kujUA9m87JuueWWi1qjEBDzZseIV09NHqeffno46KCDWtTf1weNTQ888EA0N+fDzY+pttdee62FuT74IgiFFqgsH/hyDM1X9XBouirm7BgmDVvj0JJ13333ReGrvDZCOxKm96699toWQgiV9uusVrHW1A/zjAj3mcm/bFrfT4xBNg772f6VjVNt+2fzydvnsthxg6XCjX/aIFx50Lrhn7/5Tvj3vmuH4UdvGI5OhFH69OwcJk1t1iDUITRfR5Uq7yml5Ydjf95hlYCpNTQyZV2XTvOG3TYdGC743ZCwxMKt6z/ZvBDgKubsmDf3dqcTbMoTTiqW1w/X6JMeeuCFT1L/fGW0eKEda+X+3aOJuNOTdrjhsO/VJNQ07zzNbZVWIuNZbeke4fID1w0IFeW57w5aJFCXXw4d0OLwvK0QMlusR+dw5m/XCuut0CvQpt5h3u7SAxKzm4st6INTf6X9zBJYW9q+bb1QXMdM3Q888MBgYwyCsBJqMmraioAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiEBjCHSYOnXqzMZkrVxnBwIzZswIo0ePDp9++mnUHIMZt44dO9a16lOmTAkffvhhGD9+fDTfhnBH9+7d61pGazNDKxF1QltO//79WwgzFcvvm28SM1CJlp2xY8dGQS9MxGUFgYqlrWf4F198Ec2sIQBUbGGdOGjLwtweC/EI/1QixEOfePPNNwPtRn+ol0ahep5/qbymT58e24g2xi2xxBKhd+/eFbdxqbzrcQwNLxMnToxt0aNH/c2GWR2rbX9Lb9sZM2aGTxINPTgEPnp162SHWmyPuuqFcM/IJpNwF+333bB8jgBSi0RVBkyYOC2M/WJySKoXenTpGBZJ6lWJgE6VxSmZIzDtmxkJ+ynhy0nTohav3ompvAU7118BJH1v9LhJYWpSXp9E4GnBBepfhjutir3JvClwLyg29lackSKKgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiUJSDBprKIFEEEREAE5l4CCJVseeyD0QQZFE799RpRm06WyDNvfRb2O39EGnz3sUNbaNxJD8ojAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAhUQkGBTBZAURQREQATmZgKXPzAqnHvHmymC7dbrF1bs1y3079UljJ84NTz+6qfhpic+SI//cuOlw56bLZvuyyMCIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiAC1RCQYFM11JRGBERABOYiAl9N/ib8+Yrnw1NvfFb2rHf/wcDwq00GhHk6dCgbVxFEQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREoBQBCTaVoqNjIiACIiACkcDMmSHc9tQH4bL7R4UPP5vUgsqay/QM26/bL2y06qItjilABERABERABERABERABERABERABERABERABERABERABERABERABERABERABKohIMGmaqgpjQiIgAjMxQQmT5seRn86KXwxaVpYrHvnsPjCnaWhaS7uDzp1ERABERABERABERABERABERABERABERABERABERABERABERABERABEWgUAQk2NYqs8hUBERABERABERABERABERABERABERABERABERABERABERABERABERABERABERABERABEaiawDxVp1RCERABERABERABERABERABERABERABERABERABERABERABERABERABERABERABERABERABEWgQAQk2NQisshUBERABERABERABERABERABERABERABERABERABERABERABERABERABERABERABERABEaiegASbqmenlCIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAg0iIMGmBoFVtiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAtUTkGBT9eyUUgREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREoEEEJNjUILDKVgREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREoHoCEmyqnp1SioAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAINIiABJsaBFbZioAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIVE9Agk3Vs1NKERABERABERABERABERABERABERABERABERABERABERABERABERABERABERABERABERCBBhGQYFODwCpbERABERABERABERABERABERABERABERABERABERABERABERABERABERABERABERABERCB6glIsKl6dkopAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiLQIAL/DyDSVCPmVwWZAAAAAElFTkSuQmCC" + } + }, + "cell_type": "markdown", + "id": "88ddfe98-92b3-4c9c-906d-84d4835d2bf1", + "metadata": {}, + "source": [ + "![image.png](attachment:afcd4ecc-4e90-464b-91c7-9cd80b0e92ba.png)" + ] + }, + { + "attachments": { + "2f957256-5d08-40e1-b77c-5faa4f771fb2.png": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAACE8AAAMDCAYAAABZhalJAAAMQWlDQ1BJQ0MgUHJvZmlsZQAASImVVwdYU8kWnluSkEBoAQSkhN4EESkBpITQQu8INkISIJQYA0HFjiwquBZURMCGroooWAGxI3YWxd4XCwrKuliwK29SQNd95XvzfXPnv/+c+c+Zc2fuvQOA2gmOSJSNqgOQI8wTxwT50ccnJdNJPUAZaAJ1QASjOdxcETMqKgzAMtT+vby7ARBpe9VeqvXP/v9aNHj8XC4ASBTEqbxcbg7EBwDAq7kicR4ARClvNj1PJMWwAi0xDBDixVKcLsfVUpwqx3tkNnExLIjbAFBS4XDE6QCoXoY8PZ+bDjVU+yF2FPIEQgDU6BB75+RM5UGcArE1tBFBLNVnpP6gk/43zdRhTQ4nfRjL5yIrSv6CXFE2Z+b/mY7/XXKyJUM+LGFVyRAHx0jnDPN2K2tqqBSrQNwnTI2IhFgT4g8CnsweYpSSIQmOl9ujBtxcFswZ0IHYkcfxD4XYAOJAYXZEmIJPTRMEsiGGKwSdIchjx0GsC/Fifm5ArMJmk3hqjMIX2pgmZjEV/DmOWOZX6uuBJCueqdB/ncFnK/Qx1YKMuESIKRCb5wsSIiBWhdghNys2VGEzriCDFTFkI5bESOM3hziGLwzyk+tj+WniwBiFfUlO7tB8sU0ZAnaEAu/Ly4gLlucHa+NyZPHDuWCX+UJm/JAOP3d82NBceHz/APncsR6+MD5WofNBlOcXIx+LU0TZUQp73JSfHSTlTSF2zs2PVYzFE/LggpTr42mivKg4eZx4QSYnJEoeD74ChAEW8Ad0IIE1FUwFmUDQ0dfUB+/kPYGAA8QgHfCBvYIZGpEo6xHCaywoAH9CxAe5w+P8ZL18kA/5r8Os/GoP0mS9+bIRWeApxDkgFGTDe4lslHDYWwJ4AhnBP7xzYOXCeLNhlfb/e36I/c4wIROmYCRDHulqQ5bEAKI/MZgYSLTB9XFv3BMPg1dfWJ1wBu4+NI/v9oSnhE7CI8J1Qhfh9hRBofinKMNBF9QPVOQi9cdc4JZQ0wX3w72gOlTGdXB9YI87Qz9M3Ad6doEsSxG3NCv0n7T/NoMfnobCjuxIRskjyL5k659HqtqqugyrSHP9Y37ksaYO55s13POzf9YP2efBNvRnS2wxth87i53EzmNHsCZAx45jzVg7dlSKh1fXE9nqGvIWI4snC+oI/uFv6MlKM5nrWOfY6/hF3pfHnyF9RwPWVNFMsSA9I4/OhF8EPp0t5DqMojs5OjkDIP2+yF9fb6Jl3w1Ep/07t/APALyODw4OHv7OhRwHYK8b3P6HvnPWDPjpUAbg3CGuRJwv53DphQDfEmpwp+kBI2AGrOF8nIAr8AS+IACEgEgQB5LAZBh9BlznYjAdzAYLQDEoBSvAGlAJNoItYAfYDfaBJnAEnARnwEVwGVwHd+Hq6QYvQD94Bz4jCEJCqAgN0UOMEQvEDnFCGIg3EoCEITFIEpKCpCNCRILMRhYipUgZUolsRmqRvcgh5CRyHulEbiMPkV7kNfIJxVAVVAs1RC3R0SgDZaKhaBw6CU1Hp6EFaBG6DK1Aa9BdaCN6Er2IXke70BfoAAYwZUwHM8HsMQbGwiKxZCwNE2NzsRKsHKvB6rEW+JyvYl1YH/YRJ+I0nI7bwxUcjMfjXHwaPhdfilfiO/BGvA2/ij/E+/FvBCrBgGBH8CCwCeMJ6YTphGJCOWEb4SDhNNxL3YR3RCJRh2hFdIN7MYmYSZxFXEpcT2wgniB2Eh8TB0gkkh7JjuRFiiRxSHmkYtI60i7ScdIVUjfpg5KykrGSk1KgUrKSUKlQqVxpp9IxpStKz5Q+k9XJFmQPciSZR55JXk7eSm4hXyJ3kz9TNChWFC9KHCWTsoBSQamnnKbco7xRVlY2VXZXjlYWKM9XrlDeo3xO+aHyRxVNFVsVlspEFYnKMpXtKidUbqu8oVKpllRfajI1j7qMWks9RX1A/aBKU3VQZavyVOepVqk2ql5RfalGVrNQY6pNVitQK1fbr3ZJrU+drG6pzlLnqM9Vr1I/pH5TfUCDpjFGI1IjR2Opxk6N8xo9miRNS80ATZ5mkeYWzVOaj2kYzYzGonFpC2lbaadp3VpELSsttlamVqnWbq0OrX5tTW1n7QTtGdpV2ke1u3QwHUsdtk62znKdfTo3dD6NMBzBHMEfsWRE/YgrI97rjtT11eXrlug26F7X/aRH1wvQy9Jbqdekd18f17fVj9afrr9B/7R+30itkZ4juSNLRu4beccANbA1iDGYZbDFoN1gwNDIMMhQZLjO8JRhn5GOka9RptFqo2NGvcY0Y29jgfFq4+PGz+nadCY9m15Bb6P3mxiYBJtITDabdJh8NrUyjTctNG0wvW9GMWOYpZmtNms16zc3Ng83n21eZ37HgmzBsMiwWGtx1uK9pZVlouUiyybLHitdK7ZVgVWd1T1rqrWP9TTrGutrNkQbhk2WzXqby7aorYtthm2V7SU71M7VTmC33q5zFGGU+yjhqJpRN+1V7Jn2+fZ19g8ddBzCHAodmhxejjYfnTx65eizo785ujhmO251vDtGc0zImMIxLWNeO9k6cZ2qnK6NpY4NHDtvbPPYV852znznDc63XGgu4S6LXFpdvrq6uYpd61173czdUtyq3W4ytBhRjKWMc+4Edz/3ee5H3D96uHrkeezz+MvT3jPLc6dnzzircfxxW8c99jL14nht9urypnuneG/y7vIx8eH41Pg88jXz5flu833GtGFmMncxX/o5+on9Dvq9Z3mw5rBO+GP+Qf4l/h0BmgHxAZUBDwJNA9MD6wL7g1yCZgWdCCYEhwavDL7JNmRz2bXs/hC3kDkhbaEqobGhlaGPwmzDxGEt4Wh4SPiq8HsRFhHCiKZIEMmOXBV5P8oqalrU4WhidFR0VfTTmDExs2POxtJip8TujH0X5xe3PO5uvHW8JL41QS1hYkJtwvtE/8SyxK7xo8fPGX8xST9JkNScTEpOSN6WPDAhYMKaCd0TXSYWT7wxyWrSjEnnJ+tPzp58dIraFM6U/SmElMSUnSlfOJGcGs5AKju1OrWfy+Ku5b7g+fJW83r5Xvwy/rM0r7SytJ50r/RV6b0ZPhnlGX0ClqBS8CozOHNj5vusyKztWYPZidkNOUo5KTmHhJrCLGHbVKOpM6Z2iuxExaKuaR7T1kzrF4eKt+UiuZNym/O04I98u8Ra8ovkYb53flX+h+kJ0/fP0JghnNE+03bmkpnPCgILfpuFz+LOap1tMnvB7IdzmHM2z0Xmps5tnWc2r2he9/yg+TsWUBZkLfi90LGwrPDtwsSFLUWGRfOLHv8S9EtdsWqxuPjmIs9FGxfjiwWLO5aMXbJuybcSXsmFUsfS8tIvS7lLL/w65teKXweXpS3rWO66fMMK4grhihsrfVbuKNMoKyh7vCp8VeNq+uqS1W/XTFlzvty5fONaylrJ2q6KsIrmdebrVqz7UplReb3Kr6qh2qB6SfX79bz1Vzb4bqjfaLixdOOnTYJNtzYHbW6ssawp30Lckr/l6daErWd/Y/xWu01/W+m2r9uF27t2xOxoq3Wrrd1psHN5HVonqevdNXHX5d3+u5vr7es3N+g0lO4BeyR7nu9N2XtjX+i+1v2M/fUHLA5UH6QdLGlEGmc29jdlNHU1JzV3Hgo51Nri2XLwsMPh7UdMjlQd1T66/BjlWNGxweMFxwdOiE70nUw/+bh1SuvdU+NPXWuLbus4HXr63JnAM6fOMs8eP+d17sh5j/OHLjAuNF10vdjY7tJ+8HeX3w92uHY0XnK71HzZ/XJL57jOY1d8rpy86n/1zDX2tYvXI6533oi/cevmxJtdt3i3em5n3351J//O57vz7xHuldxXv1/+wOBBzR82fzR0uXYdfej/sP1R7KO7j7mPXzzJffKlu+gp9Wn5M+NntT1OPUd6A3svP5/wvPuF6MXnvuI/Nf6sfmn98sBfvn+194/v734lfjX4eukbvTfb3zq/bR2IGnjwLufd5/clH/Q+7PjI+Hj2U+KnZ5+nfyF9qfhq87XlW+i3e4M5g4Mijpgj+xXAYEXT0gB4vR0AahIANHg+o0yQn/9kBZGfWWUI/CcsPyPKiisA9fD/PboP/t3cBGDPVnj8gvpqEwGIogIQ5w7QsWOH69BZTXaulBYiPAdsivyampMK/k2Rnzl/iPvnFkhVncHP7b8Ah9d8bcAadJgAAAA4ZVhJZk1NACoAAAAIAAGHaQAEAAAAAQAAABoAAAAAAAKgAgAEAAAAAQAACE+gAwAEAAAAAQAAAwMAAAAALY2tZAAAQABJREFUeAHs3QeYFFXWxvEDQxpyziA5qAgIAmYMgCiY46K7Ys45u+qaXbOrfuawuurqGjAHUFQUFQQRUBiy5JxhYGDg67eweqqrU3VPD0z43+eBrq66davq19VdPX1PnVsuLy9vu1EQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIEyKlC+jB43h40AAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCDgCBE9wIiCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAmRYgeKJMv/wcPAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggQPME5gAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAJlWoDgiTL98nPwCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIEDwBOcAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCJRpAYInyvTLz8EjgAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAMETnAMIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggUKYFCJ4o0y8/B48AAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACFcoaQX5+vj344IO2efPmwIe+zz772MCBAwPXD1pxwYIF9sILLwStHlWvfPnyVr9+fWvcuLE1adLEeWzYsKFlZ2dH1WVG2RMYPXq0jRgxIu6B16tXzy688ELTeUQpeoHHHnvM1qxZE3dD/fr1s3333TfuchYggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggEDRCZTLy8vbXnTNF7+Wn332WbvkkktS2rHLLrvMCbhIaaUAlceNG1cknaWdO3e2oUOH2sknn2xNmzYNsCdUKY0C6qy/9tprEx6azsEuXbokrMPCzAh07NjRZs+eHbex3r1726hRo+IuZwECCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCBSdQJm65XzhwoV2ww03FJ1mMWl5ypQpdt1111mrVq1s8ODB9r///c+UcYOCAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAtECZSp44pprrrH169dHK5TiOZ9//rkNGTLEjj76aFu6dGkpPlIODQEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgfQEykzwhIII3n777fSUSsFaw4cPt+7du9v3339fCo6GQ0AAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQCBzAmUieCI3N9cuvPDCzKmV0JaWLVtmhxxyiD355JMl9AjYbQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBDIvUCaCJ+666y6bP39+5vVKaItXXnmlffPNNyV079ltBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEMitQ6oMnJk2aZA888EBm1UpBa3/5y19s5cqVpeBIOAQEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQKJ1Cqgyfy8/PtoosuSig0YMAAO+CAAxLW2ZULjzzySMvLy4v6t3HjRps9e7aNHj3aXn75ZTvssMNS2k0N4XHxxRentA6VEUAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQKI0CpTp44qWXXrKffvop4ev2+OOPJ1xeXBdWqFDBmjVrZj179jRlkfj0009t2rRpNnTo0MC7/M4779jbb78duD4VEUAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQKI0CFdI5qDFjxtjmzZsTrtq2bVtr2rRpwjrehRMmTLB169Z5Z0VMZ2dnO4ECETMTPFm0aJFdd911CWqY3X///daqVauEdUrSQh3LM8884zgFzSrxwgsv2Iknnpj2Yep1GzVqlM2fP9/mzp1rf/zxh61YscIaNmxoLVq0sJYtWzpBHn379rUuXboE3s6cOXNs3rx5Cet37drVatasmbCOu0/xKlWqVMl69+4db3F4/i+//GLr168PP/dPdOrUyRo0aBCe/cMPP9jWrVvDz/0Te+yxh9WtWzdidk5OjhPMoowis2bNsgULFliTJk0ct9133930r1u3blarVq2I9XbFE+2bAnb0euu116PmVa9e3Vq3bu289gru2Xvvve3ggw+2rKysjO6mbMeNG2dffvml6VxZunSp6T2/evVqZx/02dOoUSPbbbfd7NBDD3VeYwUcZaKsWrXKhg0b5gQrzZw50/RP+6PXVOekHvv06WP169fPxObituE10PmyZMkSx0EGtWvXdt6DMtDngjLT9OrVK+OvQ9ydYwECCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACJUwgrd5EBSVouIhE5fLLL7cHHnggUZXwMg2voQ7ORJ3Tqjx58mTr0KFDeL1EEzfccEPC9tSRf8kllyRqosQuO/fcc61x48Z2wgknJD0GdT6r01md9EGLOo+VseL55583BRXEKgoA8Gf96N69u5133nnOfqlzN1H54IMP7JprrklUxd54442kx3j77bfbq6++mrCdlStXOh3uiSqp8znR+Slr7Y9bFJCioVHilWOPPdbeeustZ7ECUG655Rb7/PPPo6q7Q7O4CxSgIfeBAwe6s3bao4aP+eyzz+zFF1+0Tz75JO52J02aFLFM+6zhc4YMGeJ05EcsTPHJwoUL7d5777XXXnst4evh3Yc777zTeX2VoeWmm25KKajLu3va9pNPPhn3c23KlCnhTC4KInn44Yftr3/9q5Uvn9kEPwpSue+++5IaePf9jjvucAzOOussu/766yMCfbz1mEYAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEECgrAqk1at38sknJ/VK1LnqX3nixIkJO0JVv3nz5tauXTv/qjGfjxgxIqIjO1alZ5991jJ1J3qs9nf1vMGDB9sZZ5wRaDfef//9QPVU6YsvvjBlFVFmi3iBE/EaU/0LL7zQ2rRpY1999VW8as78Aw88MOFyLRw/fnzSOursT1Z+/vnnhFWUvSJR4IRWVoaFVIqyA6h89NFHTkaAWIETsdpTQMYxxxzjOK5duzZWlSKZp+wK++67r5OlJJX3tnZG+6wgFgU+Pfroo7Z9+/aU91FZFhQwoCwKyq6S7PXwb0D19Z7X+gpqUHupFGUS2XPPPeMGTvjb0vYUKDRgwABTAEwmyrZt2+yee+5xMnuka/Cvf/3LOnbs6ATApPM6ZOI4aAMBBBBAAAEEEEAAAQQQQAABBBBAAIFMCSibLwUBBBBAAAEEEMiUQFrBE+q8TVamT5/upPJPVk/LR44cmbSa7hoPcgd3bm6u02mZqEFlxejRo0eiKqVimTJ/6A74ZEV38Scryg5y11132aBBg1LuuPa3rY7lI444wukIVruxijKDJNv3sWPHxlo1PE9BD4myP7gVv//+e3cy5qMyQyQrGpYk1aLAieOPPz7V1Zz6Gm4lSGaRtBr3raTgmn322ce82Rx8VQI/VdaaU045xRleI+hKW7ZscTI43HrrrUFXSVhPWWmUnSXeuedfWcFYGnok1YANtfPNN9847xl9LhWmyED7/I9//KMwzTjr6jguuOACJwtHoRujAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQRKiUBawRPNmjVzOhOTGXz99dfJqjjLg2QH0DAIQYruzJ4/f37cqhpCIFOdsHE3UkwW1K1b184555yke6PhNZYuXZqw3tlnn21K/Z/Joo7g888/P2aTygqiAItERedXog5wZQsIUtTBnagky7ChIA8NSZJKWbFiRdxjD9qO9nvYsGFBq6dV76WXXrKTTjoprcCBeBvUPisYYePGjfGqhOcrO4KGvtAwMZksChi64oorkjapgJEjjzwyab1EFRRIVtjPnKuvvjrp8DOJ9iHWsoceesjuv//+WIuYhwACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggECZE0greEJKygSRrAQZikB3QScLsmjdurV169Yt2eZs8uTJ9s9//jNhveeee85q1KiRsE5pWnj00UcHOpyFCxfGrffKK6/Y66+/Hnd5YRYkartfv35Jm54xY0bcOskySrgr6vzbvHmz+zTqccyYMVHzvDO0n6kOAaNO+SBZMbzbiTV9/fXX26ZNm2ItKvS8KVOmFDrAI95OqG0FBCQrH3zwgb3zzjvJqqW1XENfJDpHFLhx1VVXpdW2f6XHHnss7eE7pk2bZk8//bS/yYw8//vf/572fmVkB2gEAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgWIikHbwxODBg5MegjJKbN26NWG9H3/8MeFyLdSd58mKMhBccsklCatpmIPC3kWecAPFcGGfPn2SDn+h3V6+fHnMvVdwQpDsFTFXDjjzzDPPtFmzZkXVPuigg6Lm+WckGlLjyy+/9FeP+3z8+PExl23bts2SZbA4/PDDY667M2bOnj3bXn755YxvSgEZp59+esbb9TaooUfeffdd76yIaQ1VoWE+irIoU0288t577znDbsRbvrPmB80O0blzZ9N76bbbbrPLLrvMNPRNkBK0/SBtUQcBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBkiqQdvBE/fr1kwYiKKtEvE5pF2zEiBHuZNzH448/Pu4yd4GGFxg9erT7NOpRQysoTX1ZK8qIsO+++yY97MWLF8esc/nll8ecH2umsiCMGjXKcnJynMdrrrkmVrWY82Ld4d+2bVtr3rx5zPruzHjnl7I6aLiEoCVegISCE3QeJyoagqKwRR3dChS4/fbbnWAhZVsJWjTsSqbL448/bsqOEaScdtpp9sUXX5iySShLh7IsaHicIEWBObm5uTGrjh07NlBWBJ2jEydOdF4nBX3MmTPHtP96zycrw4cPt7lz58asdsstt8ScH2+mgrw0FI1ex0ycE+52Pv30U3cy7qM+2/ReePbZZ+3mm2+2Bx980H7++Wd744034q7jLlAQS6Lhb9x6PCKAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCBQmgUqFObgTj31VPvkk08SNvHVV19Zr1694tb58MMP4y7TAt1NrX+JyqJFi5Leof7AAw9Y06ZNEzVTapc1btw46bHJ0F/mz59v6lxOVtTRryCYFi1ahKtqXu/eve28886zQw891NRWoqLzSPvQpEmTiGrKFKIO4XglXuBAvPnx2vn2229jDtHwyy+/xFvFma8ggQ4dOiSsk2yhOriVFcVb8vLy7N5777W7777bOzvmtIJVMlk0XMXzzz8fqEkNzXPIIYdE1NUQO8qAcPLJJ1uyoXsUmKIMNccdd1xEG3qSbLgU1dG6Or+8Re/z888/3zScSqdOnbyLYk4r60nLli0jls2cOTNw8I3O8TvuuMPq1q0b0YYCcuSgAJx0y8aNG5MO7zJkyBC79NJLozZRrlw557xSZhLtR6KigBMFK1EQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQKKsCaWeeENjAgQOTuqlzM15ZsGBB0g7KIEMHXHvttQmzA+y33342dOjQeLtR6uc3bNgw6TEuWbIkqs5bb70VNc8/Q3f3+wMnvHVatWplCqAJUmIN4eDvmPe3o2wjsYaGSZSFxN+Gnit4I1Y78TJbuG0MGjTInUzrUUEK/sAJNVSpUiVn+IVYGTn8G1KGgUyWoBkf3nnnnajACXc/srOzTedP9+7d3VlxH1977bWYy5IFrlx00UVRgRPehtq0aeMENXjnxZqONWRMkIw4aktZL5Tlwh84oWXK+KJzP5UsIlrPW5IFHanu7rvv7l0lalpBLMmycMybNy9qPWYggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggUJYECpV5olatWnbiiSfa22+/HddMndirV6+22rVrR9X5+uuvo+b5ZyQbskN3tifr5H/qqaesfPlCxYn4d6tEPY9l7z+AFStW+GfZv//976h5/hk33nhjRMYJ/3I9VwDFbbfd5gxJEWu5O+/FF1+0iy++2H3qPB544IERz2M9mTp1qu25554Ri4KcWxErhJ5MnjzZlDXBWxRIkKj4sx4kqutfpo53DfWQqGjok4cffjhRFWfZ0qVLLUiQTNKGQhX++9//Jq2mrA6DBw9OWE8BFMr4cvjhhyes98EHH9jy5ctNQwF5y0033WQ9evTwzoqYPvrooyOex3qSKOuNW1/b9pcgQ2UoKEKZQZThIV5p1qyZPf300zZgwIB4VRLOr1q1asLlWqjXS8Fhfj93RQ3d8/7779vChQvdWRGPVapUyegwIxGN8wQBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBEiJQqOAJHaPuak4UPKE6o0aNitnRmuzu7p49eyZMJZ+bm2sXXnihNhG33HrrrUmH/Yi7cilZoKERkhV/gIUyUUyZMiXZanbBBRckraMKyhJw++23J6w7adKkqEAbBQQoe0GiLAS//vprRPDEunXrLF42htNOO800TEasomEWvMETykTxzTffxKoanhckuCNc2TcRJGuFOsTV8Z5s+Au9XpkKnvjyyy99exr9VEEdQcpBBx2U9PVTOwpS8Wey6dixo+lfYUq6Q/VoGJdkReezMoQkK8qeomCTIEPg+NsKMuSO3jcKErnllltMw9w0atTI34wV5jyNaowZCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCJRCgUKnYwhyR3Wsztht27Y5d0MnMlVHd6Kiu74TpbVv3769Be3kTbSdkr4s1p31/mPyd9Iqk0Gy0rdvX6tRo0ayas7yOnXqmIZPSVZibVcdz4nKuHHjIhb7n3sXaoiXeEVBPt4yY8YM79Oo6c6dO1u6nfNqrGvXrlFtxprRtm3bWLMj5m3fvj3ieWGeBAma6dOnT+BNHHXUUUnrLl68OGmdWBWU1WbmzJmm4VWUbWTYsGH2yiuv2L/+9S+766677NJLL421WsJ5CpoJEnAU5LPP3ZCCzNIpyhoR5H2jz8Hzzz/fyQKj9+UNN9zgBLXJJpPnRjrHwDoIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIlASBQmeeUGp+DT2gDst4RWn5H3300YjFEydOTNpBedxxx0Ws432iIRbuv/9+76yoaaXLV0r6sl6UlSBZ8QdPBFlHnbSpFN39rmFcEhVtt0OHDhFVNDRGotf6xx9/jKj//fffRzx3nzRo0MDJUBEvC8Bnn33mdDS7wzBMmDDBXTXmYyqd5/4GFNjjz/bhr+M+b9GihTtZ5I9BggYOPvhg0/s+aAnS+b9o0aJAzc2dO9fJZKOMIB9//LEtW7Ys0HqpVFq1alXS6sqKo4CgoKUww7uce+65Sd833v3Qe8z7PqtevbopA4j2Qee+gn4oCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCAQKVA+8ml6z5LdVa27onUHtLfoLvFE5YADDrDmzZvHrKKsFZdccknMZe7MoUOHkqr+T4ycnByXJe6jP3hi4cKFceu6C/zruPPjPQbJ0hBru8myHGiIjs2bN4c3G2+oDXdYiHgd2QocmDZtWrgdZTNIVDQcQ7qlWbNmgVetWLFi4LqFrRgkaCbI6+jdjyDDicR63d028vPz7T//+Y8zhEe7du1M7+2XX365SAIntM2VK1e6m4772KpVq7jLYi1I1czbximnnGIKWEm36Lz+5JNPnCw8ynaioVCee+4527hxY7pNsh4CCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACpU4gI8ETykCgu5sTlZEjR0Ys/vzzzyOe+58kGrLjpZdeiriz2r+u9uXee+/1zy6TzxW0Mn369KTHrqwM3hJr+Azvck3XqlXLPyvh85o1ayZcroWxtlu1alVLluXCHWpCQRTxAnPcYAfdhR+veLNYjBkzJl41Z36QjAoJGyiGC4MM8ZJKxgUdYpDzJN6wHfPmzXOGrTjrrLNs9uzZO0UsSPBE3bp1U9qXrKyspJ+R8RrU0B3K7KNsJZkocrz44oudLCw//PBDJpqkDQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQRKvEChh+2QQKVKlez00083DZMRr3zxxRd2zjnnOItzc3Ptyy+/jFfVmT948OC4y3XXeaKijvZk7XvXT3a3/fDhw+3KK6/0rmL169e3m2++OWJecXwi9yDFn0UiSLaDrVu3Bmk6XEcZBJIVnUuxSv/+/e3rBNlKNMRGt27dLNFQG/vvv7/TdPfu3WNtwpk3atQo+9vf/mZbtmxJGKCjwIkgQQFxN1RMF6ijPllJ9XUPUj/W+abAHw0zocw1O7MEMYgX7FFU+9mkSRP76aef7Iorrkg4RFIq25erMlq88847lujzNpU2qYsAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBASRVI3lMa8Mg0dEei4Ilhw4Y5HdLqJE12t/Nhhx1m/s58724k64T/6KOPTP8yVZTVwM1s4LbZunXrEhE88eabb7q7HPexc+fO5h9WIJG/29CqVavcyUCPQeo3atQoZlvJMk9o6I4zzzwz7rmlIWDcoRbUOT5o0KCY58hXX33lbH/q1Kkx98OdqWCO0lji+XuPdcWKFd6nSadXr16dtI5/GBMNzaPPlJ0dOKEdrVevXtL9TTaki7+BvLw80/AZhSnKqPP88887ARSPPPKIvfrqq4VpLrzuCSec4AxX474/wguYQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQKAMCWRk2A557bvvvuYf+sHvOHbsWGfWiBEj/IsinicasiOiIk8SCihwYvTo0QnraOGQIUOi6uhO92Tljz/+SFYlYvmcOXMinsd6Em+7yiqRaGgYNyDnu+++i9WsDRgwIGK+AnRiFXXWz50713799ddYi8PzdMd+aSzJ3sM65lmzZqV06EHOE3+wjob1mTRpUqDtKBDmpptucgIL3n77bSfrjIJppk2bZt98802gNryVggzJofNk3bp13tUSTufk5CRcnsrCPffc01544QVbs2aNffbZZ3bNNdc4Q5uk0oa/7nPPPeefxXMEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEypRAxjJPZGVl2RlnnGEPP/xwXMCRI0c6nXwff/xx3DpaoM5QSuEEVq5caRdeeGGgRo4//vioeg0bNoya55+hIUHuvfde/+y4z4MMIRJvu8oWoQAIDTEQq6ijXZ3ZbuYIfx1/sMOBBx7orxJ+rkCMcePGhZ/HmujZs2es2SV+XuXKlZ0glURZEn755Rdbvny5M3RNkAP+9ttvk1bzB80888wzSddRNhLVUxaYeGXjxo3xFsWdH3Q4FgVn9OjRI2473gUa+ifTJTs72w499FDnn9rWUDPKkKOsGBri44MPPrBly5YF2uwbb7xhd999d6C6VEIAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEECgNApkLPOEcJT+PVFR0MTChQujhsDwrqPAiSB3fnvXYTpSQMMqnHLKKYGGCejevbu1a9cusoHQM39ndlSF0AwFLChLQ5Ayc+ZMmz59etKq/gwE3hUOP/xw79OoaWXaiNfpf8ABB0TU32OPPeJmsvj++++dzueIFTxPjjzySFOQQWktnTp1SnpoybLHuA1s3brV6cR3n8d79A/bMXHixHhVnfnKkPHWW28lDJxQxXSG/ShXrpxpmJdkJWhAhAz+/e9/J2uu0Ms1JNJee+3lDF/z1FNP2bx585xgoiCBPnLSflIQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQKKsCGQ2eUCddok5HpdJXWv1ERZ3+lPQFfv/9dye7R9DhCk4//fSYG9Pd97qzP1kJmnkiSD0FJehu+njFnz3CX++BBx7wz3KeKzOB/7xUphT/UB7uyh999JHpXI1X+vXrF29RqZh/9NFHJz2OO++8M1Bn++uvv540gEHDsfTp0ye8zby8vKTrKJCmdu3a4XXiTXz66afxFiWcnyxQRyvfeuuttmTJkoTtaOHLL7+cMGAsUQMKujjvvPPi/nv++efjrl6+fHlT0JAM/Od/rJWUrYaCAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAQFkVyGjwhO7YPvPMMxNaXnPNNQmXDxw4MOFyFkYLbNu2zb7++mv729/+Zt26dbPZs2dHV4oxp0uXLk6nbIxFzqx4gRXe+i+88ELcoTLcespS8Morr7hP4z6edtppcZdpgTJkJOoEjnfc/fv3j9muhjyIVZJlKzjooINirVZq5p100klJj0VZRO67776E9ZSV5MYbb0xYRwv/8pe/WJUqVcL1gmRA0LAhycro0aPtySefTFYt5vJ4gTX+ygr2WrNmjX92+LnelxdddFH4eaoTGpZEwRfx/l133XWWm5ubsFkFQnXu3DlhHS0MOlxJ0oaogAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggEAJFKiQ6X0+/vjj7a677kqr2RNPPNFq1qyZdF11bLZv3z5pvaAV3njjjaRV/R37DRs2TLpOJipMmTLF7r///qim1q1b59ydr45+ZZtYtmxZVJ1kM3RXe6LhJwYPHpysCWf5EUccYf/973/tuOOOMwXQuGX79u327rvvmt/OXe5/POqoo/yzop5rW4nuto9aITQjXsaKAw88MFb1hPOUJUFDfpTm0rZtW+vdu3fCoUt0/HfccYcpcOfaa6+NyhiiIV30fg5yXvqzzVStWtUZUiXeECzatobMUEaFeMFWGsLljDPOUNW0yiGHHBJoPQVoKJhGgSQ6N93zf/Xq1aahM2677bZA7cSrpOwvibKgyEgZMOJlXVG7yiiRbIgRZWdJ9FkQb/+YjwACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggEBpEch48MSee+7p3OWsTv9US5A73tVmYTsk/fv14YcfWqKO2ssuu8wefPBB/2o75bmyKfz973/P+LYUkKHXKlGpU6eODR061F566aVE1Zxlp556qnXv3t2OPfZYpwNZgRNyTdTx6230ggsucDrMvfNiTStbRKrBE/vtt1+spqxjx47WoEGDQB38bgMa0kLDIZT2otfjp59+SnqYCpRSdgSdJwp60D8FFAwbNizpuqqgIKhYr0+nTp2SnjvHHHOMk9VhyJAh1rRpU1uwYIGNGzfORo0alXR4oGQ7V7duXWdYl88//zxZVWdIDu2LAmt0PulRwSOZKAr8SfbZ89hjj9mqVatMWSg6dOgQ3mx+fr6NHDkyYXYZt7Iy1lAQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQKMsCGQ+eEKY6M9Pp8Ned25SiF+jXr59deumlgTakO+p113qyoSzU2C+//OL8C9Swp5Lueg+areSAAw7wrJl8Up3z6liPVZQlQEN6vPbaa7EWx5wXb6iPmJVL8EwNpfHee+/ZBx98kPQolF0iVnaUpCuGKsg+KysrquqgQYOSBk9opf/7v/9z/kU1kIEZ9957rwUJnnA3pQCsREFYbr1UHg877LBAwWgaFkf/NKxNy5YtnWCKVALYFCBGQQABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQKAsCxTJLfQnnHBCyqYKuMjOzk55PVZITeDyyy93sgLE6rCO1ZKyT7z66quxFmVsntoPMlyLNti4cWPr0qVL4G0rOCJRCTo8g9tGvCFA3OWl5VGBJU8//bSTSaGojklDTcTLeHDWWWcV1WYDt6vMLBdffHHg+kVRsUKFCvbII48EblpBTsr8kUrghIZB2n///QNvg4oIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIlEaBIgmeaNu2rfXs2TMlr5NPPjml+lROXeD11183dVhXrFgxpZXVsZpuZoFkG9KQA7169UpWLWK5OnuDloMOOihh1VQ6jZUhY7fddkvYXmlaWL9+fXvzzTeL5JBOPPHEhNlPFCRz5513Fnrbp512WqHaUAYdve6FLQ899FDa7SjbyfXXX1/YXYi5vjJVPPHEEzGXMRMBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBsiRQJMETAlQmiaClevXqVlaGQwhqksl6ffv2tYkTJ5o6rNMtV1xxhX344Yem1yoTRe189tlnduGFF6bcXCrnSrLgCAX6NGjQINA+DBw4MFC90lRJw6T8/vvvKWX7SHb8CsTRcB3lyyf++LnuuutMw4ekW7TujTfemO7qznr16tWzkSNHOkNnpNuQht4obAYLBZLcdttt6e5CzPU6d+5s3333XZkKCIoJwUwEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEQgKJey8LQXTssccGXvvUU0+1ypUrB65PxeQCuqP8H//4h+Xk5NgXX3xhnTp1Sr5SkhrK+DBhwgQr7NAVCuaYNGlS2gEzffr0SbKnOxarc7hhw4ZJ6w4aNChpHVXQfpfF0q5dO6eT/bzzzivU4SuDgwIRFIijYUGSFdV5/vnn7e67705WNWr5rbfeak899VSg7USt7JvRtGlT++qrr0yBJKmWa665xt55552kgSJB2r355pudgKNUhq2J164CMRQ4oWOjIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAEQZPNGvWLHAn+0knnbRLX4vs7OyE2w+amSBhIzEWVq1aNcbc1GZp33r37u1klVCntIblGD58uE2fPt1uuummtIcKiLcXLVu2dNpXEMXVV18dOBOFMk1ce+21TgYMBXPo/Ei3qK0gARz9+/cPtIkgbamhAw88MFB7qpSpDB1BN6gMCf6SyX3Qe0TDO8ydO9c5x9q3b+/fXNznZ5xxho0YMcKmTJliyTKB+BupUKGCc97ofFP2hmTHpIw3M2fONA23oX2uXbu2v8mo540aNYqa558hXwVQ6L3Vr18//+Ko5/vtt5+NGzfO7rnnHnPf502aNImql+oMZV0ZM2aMk7lDmWSSeXjb1+fE7bff7ryGCsSoUaOGdzHTCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCJRpgXJ5eXnby7QAB18ogdD542S3WLhwobn/srKyLD8/3wmQ0J3t6jRW5ouKFSsWalusXHwEtm/f7gTo6DVfsGCB80/z1q9fb8p6otdd/5S1olatWhnb8S1bttjkyZNt8eLFzj8FANSsWdM6dOhgLVq0MJ17O6PMmTPHZs2aZbNnz7b58+c7gRrKcqJsJx07dgwUtJGJ/ZTH+PHjbd68ebZs2TJbvny5Y6DXQQEfCq7Sv3322cfq16+fiU3SBgIIIIAAAggggAACCCCAAAIIIIAAAsVGQJmX9XscBQEEEEAAAQQQyIQAwROZUKQNBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQ2KkCJTV4In/bdtuYl281qlTYqV5sDAEEEEAAAQQSC3BlTuzDUgQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEECgUALf/r7UJsxabb/PW2uT5qx22mpYq4rtuVtN271lbTuiexOrU53szYVCZmUEEEAAAQQKKUDmiUICsjoCCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgjsfIGSkHli89Zt9tCwqfbx2IUJgWpXr2QPnNnVdm+RuWGQE26QhQgggAACCCAQJVA+ag4zEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEECiWwbtNWu/jpnyMCJ5Rt4qA9G9igfZpa5xY1w+2vXp9n5z4x1kZOWhKexwQCCCCAAAII7FwBhu3Yud5sDQEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBMqAwFvfzbUpoWE6VKpWyrKbTt7dDunSKOLIl67ebHf+b7KNn7HKmX/PW79bz/b1rEYVum8ioHiCAAIIIIDAThAg88ROQGYTCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggULYEPh+3KHzAt5y2R1TghBY2rF3ZHj17b2tWN9upuzEv336ZsTK8HhMIIIAAAgggsPMECF3cedZsCQEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBMqAQP627bZgZW74SHu3rx+e9k9klS9nZ/dvba+M/MNZtGrDlnCVRas22Vd/DuXRrVVt26NlrfAy78TytXn2+YQdwRo929a1js1qhBd/Mm6hqc1qlbPs2N7NbVmo7viZy+3nULaLDZu3WoemNe3wvRpb8/o7Aji04vxlG+3LyUtt1qJ1lr99u+3eMrTt0DAjXUP74C+q+82UZc7sfTvWs90aVLPJc9eEtrHKfp+32prUqWpddqtph4W2UT50rCry+WriYvtt7lqbv2KjtQits0fzmrZ3aN/r1qjk1In139rcrTZuxgqbtWSDzQjtW5UK5a1981rWvkk127NlHcuuFH3P8LiZK23qgnVOc0f3amahwwkFqKywcbNWh7a9wQ7cvaEN7NHU3vtxvm0LLaxbvZIN3LtJrM0789Zvzrf3f5rvTNeuWtGO6tk0bl0WIIAAAgiULAGCJ0rW68XeIoAAAggggAACCCCAAAIIIIAAAggggAACCCCAQDEXUEBE7VAn/Or1ec6erg4FLzQKZZmIVwZ0b2r65y+LVuXa/3083Zl90ZHt4wZPTF2wJlzvmuM6RQRPPPf5LFu6ZpM1rFXFurWuY0Me+iFiM99MWmbPfT7T7hjSJRTg0CgUxDHHnvlsRkSdkROXOs/PPKy1ndu/bcSy3+cXbLt+jYr25qi59tHYhZ46K+yd0eYEJzx01t62IhS8cdN/frWZi9aH6/wwdYUzLbNnL9rHmtUrCORwK30/dZnd878pYVN3/hcTljiTrRpVs4dD7fudR4SWfzBmgVOnZ9s6dsO/Jzoe7voNalZxAiBe/GKmKfOHyv6dG1jN7NhdaKN/Xxq2Pmn/Fm4zPCKAAAIIlAKB6BC8UnBQHAICCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggsCsF1FHvln+++5ttDGUs2JVlfe4Wu+6lCeFdaOHJNKGZt742yV4YMSsicEIBCd7y8pezw4EI3vnu9H9HzQsHTmgokqqVstxF9uvsNfbAe1Ps+lcmhAMnVEcBE25RsMklz4yzzVu3ubOcx29DAQvXvfRrROCE9t+7f3NC2SjOevwnJ7NGxMqeJ7e9PikicEL7V7VKBasUymAxuHezcM3v/8ykEZ7hmfjyz0wgmtW/e2PPEiYRQAABBEq6QOywuZJ+VOw/AggggAACCCCAAAIIIIAAAggggAACCCCAAAIIILALBQ7as6GN+HVHVoSfclY6GR8G92pqfbs0tNYNq1u5HSNY7LQ9VFaFjaGhRK47vnNomIomTsDAqvVb7MZXf7VJc1Y7+/Hi8FnO480n7279ujW2ilnlbfOWbXbnW5PNzT4xKhTIoOEvYpVpoeExOoSGDLn79L2saSgwQkNkfDFhod3x39+d6p+PX+w8aviRO4fsFc4S8cvsVXbJ0+OcZcqSMTM0JMfuLXYMUaI2XhoxO7y50/u2stMPaWU1QkEPKsvWbLY7Qvs3PjQMiYIvfsxZZoP3ib1/85bnOvt32eAO1qlZzdAwH1nOUB1qp3/oeJU1Q0VDisQaumPdpq323W/LnToK3nD30ZnBfwgggAACJV6AzBMl/iXkABBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQKC4CWgIjIuOah/eLQUFvBAKTjjj4R+t/60jnaCFd36YZyvW7RjaI1yxCCfOCQ25cUwow4IyLajUqV7R7goFMXiL9vnIHk2dwAnNr1yxvN16yp7hKhNmrnaCIsIzPBPK5PDg0O5O4IRmK0BEw5GcsF/B8BbKNPHQ2d3DgROq1z00nMiFA9tp0ik5oSAMt2wKBW/s3qKmE7Ch/T//iLbhwAnVaVCrst1w/O5udftl1qrwtH+ic6idx8/v6WxPgRMq5f+MYunUvKa52ThGT1lha3O3+le3HzwZKQb3ah61nBkIIIAAAiVbgOCJkv36sfcIIIAAAggggAACCCCAAAIIIIAAAggggAACCCBQTAWGHLSb/f2UPSKGl9CuKgvEt5OX2cPDcuzou7616/49wSbMid/pn6nDU3YFf6lfs1I4aEDLDt69ob+KE2yhbBEq2ndlYIhVDunayOrVKBiGw63TvU1td9L27VgvIvjBXdA+lLHCLQtW5LqToewQ5e3a4zrb9Sd0tqGHtQ4HO4QrhCaa1SsYIuT3uWu8iyKmlZGieuWCoUQiFoaeHNOnIMgj1tAd3iE7FBxDQQABBBAoXQIET5Su15OjQQABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgWIkoOEfXrtqX3vp8t52WiiYolWjalF79/3vy+3ip8bZN5N2DPMRVSEDM5QVQkEGsUrNqgUBD81Dw1HEKo1qVw7P1lAascoefw614V9W9c8hNjS/XZPq/sXO8wY1Pe1bnA38uaaGElm2Ns/mLttov89bY2NnrHCCOmI27Jm5V6uCIA7P7PDk4Z6ACA3d4S3eITv2blfHGtep4l3MNAIIIIBAKRDYMSBUKTgQDgEBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQKK4CHZrWMP27JDQshjriJ4YyTSj7xEdjF4Z3+ab/TLKnL6psXXZL3MkfXiGFierZFVOonV7VKpVC43QkKeX+HCYjSbWoxVPmr7VPxy2yMdOW27zlBZkpoiommFGlYvysE1pNQ4D07ljXfspZae7QHTWzd3Sl/Th1WbjlQT2bhKeZQAABBBAoPQJknig9ryVHggACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAiVAoEYoE8P+nRrYjSfubq9dva81rFWQxWD01BUl4Ah23i4qy8Xbo+fZOY+PsXdCj+kGTgTd4yP3bhqu6h26Y8TEgqwgB+3BkB1hJCYQQACBUiRA5olS9GJyKAgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIFCyBFo1rGY3nNTZrnr+F2fHf5m1KuYBbI83Vkao9tat22KuUxpmTp672h55Pyd8KMf2aWa92tW1xnWrWvVQEEqNqhWtWuUsO/ruUbZ6fV64XroTB+zRMLyqhu7QsCvrN+fbd78td+YP7NHEskNDoFAQQAABBEqfAMETpe815YgQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEBgFwqMnbHChk/YkangqFBne9fWdRLuTcv61cLLV67dHJ7O8oyCsWpD/MCARasL1gmvXEomxk5fGT6SUw9qaZce1SH83J1QcEMmAifUXpWK5e3oXs3sgzELwkN3jMnZETih5QP2bqwHCgIIIIBAKRRg2I5S+KJySAgggAACCCCAAAIIIIAAAggggAACCCCAAAIIILDrBNSR//HYhc6/Z4fPTLojP4eCLdzSvEG2O2lN6xUEVfyxdEN4vn9inGd9/7KS/nziHwWZOI7sUTCkhve4xs8s8PPOT3d6QI+CAAkN3fHlpB2BMLWrV7K929RNt1nWQwABBBAo5gIETxTzF4jdQwABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgZIl0K1NvfAOT5i52l79eo5tyY89tMZvc9fY058VBFj0al+wboOalazqn0NE/DB1hc1cvD7crjsxYsJi07LSWto1rhk+tOkL14Wn3YnZSzbYP9+Z6j7NyONeu9W2hrWqOG29M3qefTt5mTOtjBRZ5T3pQDKyNRpBAAEEECguAgzbUVxeCfYDAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEESoWAgh7O6tfGXhw+yzmepz+dYZ+NX2RH7N3EWtbLtlo1Ktm8ZRttyry19v5PC8LHrA77Qb2ah59ronenejZy4lJn3gVPjrWh/dta64ZVbd3GLfbjtBX2+fjFEfVL25N9OtS1N779wzmsO9/8zX6esdL6dKhnFUNjmvw2f529Fwpu2JiXn9HDLl+unB3du5k9/8VM5zVyG+/frSAjhTuPRwQQQACB0iNA8ETpeS05EgQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEECgmAmcd1sZqV6toDw/LcfZoTihDgoIo4pVubWvbXX/patUrZ0VUufqYzjYjlHFh3vJcJ0jgyY+mRSzXk9P7trL/hLJblMayd5s61r9bI/tiwo6hMz4dt8j0z1vOOKSVfRgaJkXDpWSq9Ova2AmecNvr0KyGtW5UMIyKO59HBBBAAIHSI8CwHaXnteRIEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAoJgIhJIX2An7trBnL97H9mhZK+5eKduEgh8eO7uH1aleMaqe5j1yTg87aM8G4SE83Erq0H/qwp7WpVX89pWhQaVyxR2P7rqxHt0hQmItq1ihoEsp6882VU9ZGtxSqUJk4Ic73/tYydNOxPzyBe1761TMKm+3nLqnnTegbXgoDXe92tUr2Q0ndrbzQtk4KoXqxSqeZq1CnG3HWq95/Wzr3KJgyJBB+zSNVY15CCCAAAKlSKBcXl7e9lJ0PBwKAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIlAGBnJwc69ixY4k50vxt20PZIzbazMXrLT9/mzWsU8XaNq5hNaoETxK+PdSjsyDUxqatofVrV7Ga2cHXLTFQSXZ05bo8W7Z2cyirRyVrUKtSRPBGklVTWrwt9Hr95aHRTsYPrfjRLQfHDG5JqVEqI4AAAggUa4Gyd1Ut1i8HO4cAAggggAACCCCAAAIIIIAAAggggAACCCCAAAKlUSCrfDlr1bCa8y/d41OSh+YNqqa7eqlYr26NSqZ/RV0+Gb8oHDihrBOxsoIU9T7QPgIIIIDAzhUgeGLnerM1BBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBYiiwbtNW25S3zcZOX26PvZ8T3sMz+rYOTzOBAAIIIFB6BQieKL2vLUeGAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCAQUODh96bYFxOWRNQ+af8W1rx+dsQ8niCAAAIIlE4BgidK5+vKUSGAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCBRC4LwBbe2vh5B1ohCErIoAAgiUKIFyeXl520vUHrOzCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggUOYFcnJyrGPHjmXeAYDMCcxZusFWrs+zutUrWbN62VYxq3zmGqclBBBAAIFiL0DmiWL/ErGDCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACRS3QqmE10z8KAggggEDZFCBkrmy+7hw1AggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCPwpQPAEpwICCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIlGkBgifK9MvPwSOAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBABQgQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQKJ7ByfZ5NmbfWZi/daAtXbbJFoX+5m/MtNy/ftuZvL1zjrI0AAggggEAJE6iQVc6yK2VZduUsa1KnijUN/WvdsKp1blHT6lavVCyPhuCJYvmysFMIIIAAAggggAACCCCAAAIIIIAAAggggAACCCBQ3AWWr91so3NW2HdTVtiCFZuK++6yfwgggAACCOw0AQUOrsvd6vxbunqz/Tp7TXjbzepVsQM617P9O9W3ejWKTyBFuby8PMIdwy8TEwgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIFASBHJycqxjx467ZFfnLd9o749ZZD9OW2nb6WXZJa8BG0UAAQQQKPkC5cqZ9elQ147p1cRa1K+6yw+IzBO7/CVgBxBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQKAkCKzL3WJvjJpv3/y2vCTsLvuIAAIIIIBAsRZQAOIPOSudfwfvUd9OO7C51ciuuMv2meCJXUbPhhFAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQKCkCIwJZZl4fsQc27A5v6TsMvuJAAIIIIBAiRFQYOLPM1bZOYe3sl6hbBS7ohA8sSvU2SYCCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgiUCIH8bdvt1a/n2vBfl5aI/WUnEUAAAQQQKKkCClB87OOZ1m/+Ojujb0vLKh8a12MnFoIndiI2m0IAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIGSI7B5y7ZQJ84M+3X2mpKz0+wpAggggAACJVxAAYtL1262y49qZ5Urlt9pR7PztrTTDokNIYAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAKFE1DgxL3vTiVwonCMrI0AAggggEBaAgpc1HVY1+OdVQie2FnSbAcBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQRKhICG6lDGiekLN5SI/WUnEUAAAQQQKI0Cug7reqzr8s4oBE/sDGW2gQACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAiVG4NWv55JxosS8WuwoAggggEBpFlAGCl2Xd0apsDM2wjYQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgZIgMGbaStNY6+mUrPLlrFvrWtZlt5rWplE1a1irslWtVMGyssql0xzrIIAAAgggUGIF8vO328a8rbZ0zWabtWSDTfpjrU0IBUKkk0VC1+Xdm9ewXh3qFqkHwRNFykvjCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggUFIE1uVusedHzEl5d6tVzrIjezS2w7s2tOpV6HpJGZAVEEAAAQRKnYACB2tkV3T+tW1c3fp1bWTrN221EaFAiE/GLbYNm/NTOmZdnzu3qOG0l9KKKVRm2I4UsKiKAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACpVfgjVHzU+7M2a9TXXtoaBc7tndTAidK76nBkSGAAAIIZEBAAYa6Xuq6qetnKkXBFrpOF2UheKIodWkbAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEESoTAvOUb7Zvflgfe1/LlytnZh+9mFw9sW6R3wQbeISoigAACCCBQQgSUkULXT11HdT0NWnSd1vW6qArBE0UlS7sIIIAAAggggAACCCCAAAIIIIAAAggggAACCCBQYgTeH7Mo8L6qo+fyQW3t0C4NA69DRQQQQAABBBCIFNB1VNfTVAIoUrleR24t+TOCJ5IbUQMBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQRKscDytZvtx2krAx/h0MNaWs92dQLXpyICCCCAAAIIxBbQ9VTX1aBF12tdt4uiEDxRFKq0iQACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAiVGYHTOCtu+Pdjuaox2Mk4Es6IWAggggAACQQR0XdX1NUjR9VrX7aIoBE8UhSptIoAAAggggAACCCCAAAIIIIAAAggggAACCCCAQIkR+G5KsE6YapWz7K99g98dW+IfomUAAEAASURBVGIA2FEEEEAAAQR2sYCur7rOBilBr9tB2vLWIXjCq8E0AggggAACCCCAAAIIIIAAAggggAACCCCAAAIIlCmBlevzbMGKTYGO+cgeja1GdsVAdamEAAIIIIAAAsEFdH3VdTZI0XVb1+9MF4InMi1KewgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIFBiBKbMWxtoX7PKl7PDuzYMVJdKCCCAAAIIIJC6gK6zut4GKUGv30HacusQPOFK8IgAAggggAACCCCAAAIIIIAAAggggAACCCCAAAJlTmDWkg2Bjrlb61pWvUqFQHWphAACCCCAAAKpC+g6q+ttkBL0+h2kLbcOwROuBI8IIIAAAggggAACCCCAAAIIIIAAAggggAACCCBQ5gQWrgo2ZEeX3WqWORsOGAEEEEAAgZ0tEPR6G/T6ncr+EyKZihZ1EUAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAoFQJLF69OdDxtGlUzfLy8mzz5s22devWQOtQCQEEEEAAAQRSE6ifvS3QCgtXbLRVq1bFrVuhQgWrXLmyVapUKW4d/wKCJ/wiPEcAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIEyI5C7OT/QsVarsNU2bNgSqC6VEEAAAQQQQCA9gfo1goUw5G7ZnnADCnTUPwU+Vq9ePWFddyHDdrgSPCKAAAIIIIAAAggggAACCCCAAAIIIIAAAggggECZE8jNCxY8UaFcsDthyxwgB4wAAggggEAGBbIrZQVqbdOWYNfvLVu22Pr16wO1SfBEICYqIYAAAggggAACCCCAAAIIIIAAAggggAACCCCAQGkU2Jqf+M5V95izypdzJ3lEAAEEEEAAgSISCHq9zQ8WO+HspQIolIEiWSF4IpkQyxFAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEECgxAps3rw56b4HGzAkaTNUQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQKDsCNz3/izbnFcwnEv/rvVt3w61SyzAY5/MsdUbtob3//C96tn+HeuEnzOBAAIIlGSBrVsLPt/iHQfBE/FkmI8AAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIFEOBt35YZMvWbonasw5Nqlq/vepHzU80Y/jE5TZt0ca4VTRaSe1qFa1u9YrWtE5l2715dQuaUj1uo6VkwXdTVkUcyd5takY8L2lPhk9cEbHLe+1WI+I5TxBAAIHSLkDwRGl/hTk+BBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQKDUCP05fba98szDm8WzaUjfl4ImxM9fY6JzVMduLNbNWtQp2VPcGdkLvxla5IqPDxzJiHgIIIIBAyRTgqlYyXzf2GgEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBMqYwIZN+fb4Z3/s0qNeExrW4fXvFtnVr061RauSjx+/S3eWjSOAAAIIIJCCAMETKWBRFQEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBDYVQKvjlpgCl4oDmXO0ly75j9Tbd2m4rE/xcGEfUAAAQQQKNkCDNtRsl8/9h4BBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQTKgMDUhRvso3HLIo60S8vqNmnu+oh5hX2iYTnuOqWD08zWbdts1pJcmzxvnY2fvTYqcEOBHE99MdeuO7pN0s3mb9tuazZutfLlzGpVrWjlQo/FtWhfV4eOrU71CqH9zeyOZsJhewhu1fotViU0bErVylkpM2r9LVu3WaUKhb/HenXoNa0QelGrV0l9P1LecVZAAAEEiliA4IkiBqZ5BBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQKDsCCjR47sv5EQd8+oFNbZ+2tSLm6cnnvy63T36JDIi48dg21rh25Yi6W0Od+U/4hus497DmtiA0bEamgyeyQx3yrRtmh7ffvnE1G9C1vm3N3253vjvDxs1cG16miW9/X2Wn7JtruzUoWMetsDZ3q42YtMI+m7DMFq6MHOKjfZOqTrt9d69nVSoVdOJ/N3WV/e/HxW4TViGrnN0/pKNlKerizzJnWa498vEc96nzeMMxbaxJnQI37e+1ocwYIbpwOW3/JtanfW17f+wS++q3leH5LetVsasHtzZt+9spK+2XUKBIbt42Z7n2828HN7NurWqG66c6kY6DfxvL1ubZuz8tsRlLNpiyfrj7V69GRevYtJqzfwO7N7ACpcgW8kLBEl9O1mux3GYu3ugs1Lp77VbDdH42qlVgF7lm5LPcvHx7b8wSUzDPlPnrI/ajXeOq1qVlDRvco2HE6xXZAs8QQACB4iuwy4MnFixYYK+++qojtP/++9uBBx5YfLXYMwRKocDq1astOzvbKlcO9sUoEwTDhw+3cePGOU2dffbZ1qBBg0w0SxsI7BSBMWPG2EMPPWStWrWyG264werUqbNTtrszNrJx40b717/+5Wxqn332scMOO2xnbHanb2PZsmX2ww8/2C+//GILFy60+vXr2913373T94MNxhcoymvThg0brEKFCjv1uhf/SFmCQPEVKG7f17Zu3Wrr1q0rsuuu2tZ3Yn0+UAoEdL385ptvnBmnnnqq8/2nYOnOmXrzzTdt9uzZzsauueYaXqOdw85WilAg0e9gxeE9V4SHXmaaLit/VyU6l8vMi82BIpBAoGmdKuHOabfa6JxVMYMnvv5tRURddWY38gVOqI2Pxy11Oszd9tqGOqkHhTqonxkxz51V5I8KYlCAwg2vT4vYZ2149LTVUcETv4c61u9+b2ZUtgp3R6cv2mjTF821d0Md8bee0M6ahwIYVJTBwO3cd+suCAVetKy/Y7nmTZ67LqqOgla8wRN/LM8Ntb8jSMBtxw1KWbR6c9T634deo/uGzXKrhh/Vxt//O93OPrS5HderUXh+0Il0Hdz2FfvxeSj45InP5rqzIh5XrNtio3NWO/8mhlyuPLKVVQ4FwHjLhk359o+3p4eCHTZ4Z5vWHTl5pfPv3r/syDYSUcH3ZPriDfbPkNHi1Xm+Jea0tWLdGvtp+hqT5fWhc6V+jUpR9ZiBAAIIFGeBtH4Z2rx5s9188822adOmtI6tcePG9ve//91Zd/78+Xbrrbc603okeCIt0mK70sSJE+3ZZ591/t1zzz2mH7uSlZycHHv88cfjVqtVq5Y1a9bMmjdvbgcddJDVrl07bt1duWDq1Kn2xBNPhHehRo0adu+994afpzPx1ltv2bfffuus2qNHDxs6dGg6zdikSZPsjjvusK+++sr5EVqNtG7d2k4//XS7/PLLrWbN9CNog+zQF198YY899phT9eijjyZ4IggadYqFwPbt25333fTp0539UeCEAihKS9GPfO41+cQTTyyVwRMzZ860gw8+2JYuXRrxspWl4Al9j7v66qsjjj/Ik7322svOO++8qKorV660Tz75xH7++WdTcJGu4127drXevXtb9+7dTZ/zVaoU/LgR1cCfM4rq2qT37bvvvmsvvPCCjRgxIrx57VuvXr3s2muvtZYtW4bnpzIR5Fqfae9U9o+6CBRGIJ3va/PmzbN//vOfKW/2hBNOsEMOOSRqPX1W6zvjsGHDzL32NmzY0PmbUZ/l55xzTtod6dtCqYffe+89GzVqlI0cOdKmTJnibL9///623377Od+Lg342BP2Ofvvtt5sC+IKUNm3a2FVXXRWkapHW+f7778PfDfr06bNLgid0s4XOR5Urr7wy7de8SKFoHIEUBBL9DlYc3nMpHApV4wiUhb+rdOiJzuU4NMxGoEwJ1K1e0bq1rmETZq8LH/eYmWtMneDlwnMsdMd+flTWiH571Y+oo+rq4PZnsrj0iN12yZ392ZWy7KqjWtnFL/zuORJzOsuV1cEtygxx3X9y3KcJH5WR4sp/T7Hnzt/TaleraJ2bVY+qPzOUbcEbPKEgAX/RPPm5ZdaSyMCJ7FB2i1jZMVR/4cpNdu970YETblt6fOGr+XZQ57qmAJegpTAO7jZ+nbM2buCEW8d9/G7KKtsWSrVx03Ft3VnO46OfzIkKnIioEHpy3/uJj39laJiQK1+e6l8t5nMFadzy5nR76pw9Yi5nJgIIIFBcBdIKnli7dm34ztR0Dqxz587h4Il01medkiPgBk5oj2+66SY799xzTcEPicqMGTOcYItEdbzLzjjjDLv++uutQ4fkUZHe9YpyWnfGnXXWWU5HkrudwgRPrFmzxglqeP31193mTHd+pRM8obvKYwWx6G6uO++805555hknqKI4eYYPOsDE119/bX/88YdTUx12pSkrQLLDVyfeTz/95FRTp2WnTp2SrVIqlxflOaBOWL0f3ZJuEKG7fll6XLVqlX3wwQfOIe+2227Wt2/fXXL4Rx55ZETgRJcuXaxjx467ZF921UZ1jdL1OdVyzDHHRAVP/P7773bccceF7wh22/zuu+9M/1T0efS///3PFDwbrxTVtUmdowoK1LXNX5R5RP90bVWw42mnneavkvB50Gt9Jr0T7hALESgGAvouks7nyx577BEVPKGgrGOPPTbqqBRQ8c4774T/vfLKK9akScEPtFErxJih9+UFF1xgWtdf1Emvf//3f//nBIYpcCxeSfU7uj7rlOEiSDnggAOKRfBEkH2lDgIIIIBA5gSKy99N/L6QudeUlsq2gIai8AZPrNmw1ckc4R0O47dQZgZ/2b9jdJbTF0ZGZpcY3LOhaXiEXVXcDBHe7S8JZXJwy7bQb2gPfrgje5g7T4+1qlWw/TrUsU1b8u3HUKYKd9gJLdP0/30x1+n0V9YEDSUx8Y+C788zQsNMHLJHPVW1UPPOsBrOE89/40NDbXjL9D+HpnDn7Rey9QavuPP16O6LAiw0PEduaB+9r59b98vJy+3kfYP9DVJYB3ebH/wceROQ5h+7T0MnU8fMJbmm7CXu/muZslBoiI5KFXZkn/ht3nr7IeQdqyiDiQJHtL7O0UTli4nLoxb/rW8z692utq3akBfaj5U2fOKKcJ15yzeFMn9ssPZNqoXnMYEAAggUd4G0gicKe1D16u24wBW2HdYv3gKKtPf/ePrhhx86d3Flcs91J5L+6Y6vWD+wZnJbQdvSHXK6AzcTRZ3hCpRQOsTCFhl5Ayd69uxpurtO6dFlqB9z9YP0gAEDnJT2iTq6CrsvRbX+iy++aP/973+d5tVhV5aCJ3SX0oUXXugc+1NPPVVmgyeK8hwoX768Pf/8884QD8p+c/755xfVqVzq2l2yZIkTQKcD02fargieWLRoUbiTX3cuKw1527aRUfilDj7GAWVlZZkC+oJ24MVowpmlu7W9Q7uoTV1XFByjO7jdYC49ar6yUjRt2jSquaK6NuXn59sll1ziZJxwN6rMVQMHDrTc3FwnmEcG+ve3v/3NuRa6n6Fu/USPQa/1mfJOtC8sQ6C4COg6mU5RcKK3KDua93u9PrOPOOIIJ1vZb7/9Zp999plTXZ/jGmZKnzn6DApSFPg4ZMgQ098lblHbyuqm7Baffvpp+DuxPrv0WafvlP6S6nd0fe6k8rkbJGOPf594jgACCCBQ8gWKw99NUuT3hZJ/LnEExUOgd/vomwgn/rHWvMETE+YUBAdor5vWrRyxXPMmhbIpfPv7Kk06RQEIpx8Q/fe1u3xnPGaVL2edm1eLyGSgzvfNW7Y5w0Uo68CcpbkRu9KqYbY9/NdO4Q791Ru22LnPTI7q9FeWDWV26NGmZkTwxNSFBcNNzFuRG7GeuyF1/i8OBXG4Q3NouAxv6dYq8d8NOqa7T+0Q3kcNPeHPRqEsGUFLJhw2bM63FaGMDwpycMtZhzSzrrsVZI/uHjque3xZM6aFghb2bLHjeGNl6dCx3hIaKqVmdgXLD2WqGBkKfHj04znuJmI+zluxKWJ+l5bV7aQ+O26WUVaQvVrWtIqhgA29Bm6ZHwrMIHjC1eARAQRKgkBav241aNDA8vLyYv7zpi/XD1Kx6unHMErpF9APj/7y73//2z8r4fNbbrkl4hzSj51KB6wfMXUnqfdH0pNPPtk+/vjjhO3tjIXTpk2zG2+80dmUfuj17mMq29cdcRrmQ0PZuIETai/dsn79+nDHutqQrRz/8Y9/2KOPPmr6IVopzFW0vfvuu8+Z5j8EEIgUUAeL3jtvvPFGyne6RrbEs50toKGk3KJsCWUxcELHrw65FStWRFxfY31f0zxdK9yiNPbeouGf3PKXv/zFyfrz+eefO4GTeo9MnjzZGRJKdRSY9/7777vVw49FeW164IEHIgInFFilLEu6m/yll15y9sl7fBpSTkOQBCmpXOsz5R1kv6iDwK4WUEBVvM8T/3zvZ4oCINyi7/tnn322+9T++te/mu5+VfCivhsri9G4ceOsffv2Th19vuj9HbQoYNgNnNB3619//dVp87bbbrP//Oc/TgCFshK5RRnuvCXd7+j63HWLglz9Hv7nyrxBQQABBBBAAAEEECjZAjWqVDB/AMU4X2aEMTMiswEc3qVgyAkdvTq1lY3BW845tLlVq5LlnbVLpls3LOjMd3dAHf0qo6cVBHu4y64e1DoclKB5Gp7jiqNauYvDjz/9aaLME96Ss2CDbc3fEXg9JTTtFgWTeMuUBTsCJhTI4Q/gcIMJvPW901f59lFZQBT04S0LVkUGEHiX+acz4VCtcpY9dmbniH/ewAlts3f76KHNF3iCPGYvjR6+5MZj2zqBE1pfwTCHd6nnZLPQ83ilZuic9pZJc9c7w7W4r0u5UFqPi/q3tDtObh/+52YL8a7HNAIIIFCcBdIKnijOB8S+FR8B/TDplsMPP9yZ1N1hc+bMcWen/Ki72Ro1auTc/aVOEaXb9v64qR9X9QPqripKD64UwG7RD6P160d+4XWXJXtU8IJ+xHXLzTffbB999JH7NOVH/eDs3u2mzl91EuluWLcoy4SbsUHz1Lmk8SspCCCAQGkR8A654u2oKy3Hl+njWL58uTOck9pVIOB5550X3sTcuXOdzB2aodTyL7/8slWvHjkeqYZ/8nZoxgqqLKpr05YtW5yhONwd1rAdp59+uvvUedQ1UMETV1xxhfNc18gggYOZvNZ7dyiRt7ce0wiUBoEvv/zSRo8e7RyKhlPyfiYruMkNHFa2GA114f980fd/7/dW/V2gzA5Bitp3izLfaEhJb6lbt254mCnN1356A6vS/Y7u/RulJGZ38xoxjQACCCCAAAIIIBBcwN9xPH7WWic7g1pYtjYvNFxCwR36mndAp8ghOz7/dblp6AO3KFtA3z+HrnDn7arH5aH995eqlXb83qxsA96ioTC8GTfcZXu1jAyQ0PyFq3aYtAkFZ2g9b/lj+Y7v/ZND2TjcogAHubhlcmiICpU5yyL/RlBWjwY1K7nVoh61rSa1K0fNb90gMngib2tk5ryoFTwzMuHgac6ZXLdpq2l4kuGhITTeH7vEXv9uob00MvHv+LOWRAZP7NOultWtXtHfdNJza48Wkb/9qAFl5jjtsQl2x9sz7K0fFjmZUhT0Q0EAAQRKqkBkmFgxOQqNn60fqTRWtn6g3nfffZ0f1HRXvLez17+7SveqrBYjRoywGTNmmO4Kat26te2///529NFHW8WK0RcDfxuJnquj/t1337WZM2c6P85pbN5DDz3U+achKtRRrqLOgsGDB4ebGjlypI0fP955rruoKlWq5KSyVgo8De2gYIBOnTrZCSecYC1btgyvF2vCTTOtNLF//PGHU0Xr6AdHpbatWjU62lOVNJ7vsmXLrGbNmk7adKUu137JS50FGstXadS9d+HKUGOUKyOBUl9rG0pZK89kRe27d0sdddRRTmp7vS4q+qHTm6EkWVuJluvY1a5+QNUPkjqWxx9/PNzZk2hdLXNdyoVCIi+99NKE54heX73OKqqr19Ff1EnkjvGuTBg6D7zDZPjrJ3rubkt3xL322mt28MEHm94b6RbdJe8W+euY/UXvF3WOucOt6K68VFKYu+1p3998803nrkB1sGkc6q5duzrjyQcdRkM/Uusc1THrbvHs7Gzr1q2b047OQ++P6LpD8cknn3Q2r/PVLXo99P5SUeeeP+WyPiM0prW2ofXWrl0b3obO91THz3a3q0cFnuhzTJ8bSiWtIR723HNP69Wrl+29997eqlHTOh6N5T127Fgn2EjH3qZNGxs0aJDzeehfwT2Pf/zxx/AipbPWcCwqep+cdNJJ4WVBJ3RntT4DZs2a5Xx+qHNBKa21/+3atUvYTKY+q9SZqM9Kva+USlvnqD57TzvtNKtWreCPonTPgVTOM/eA9br+8MMPztMzzjjDvBlh3NfC/awNuv9u2+6jOvl1zDp/9E8d1/qc0zmkYLRE10K3jXiPEyZMcM4vfcbrLld56k5hfcYEKam+b77++mvns0DpZ92i99tDDz3kPrWrr746PO1O6Dqna6fq6nNE10l9Buj803Qq5bnnnnPe3wrgc4s68nVdVNFwYmeeeaYz7b9m63vIt99+azoOmelz3T9ci64/b7/9tpNpQe99fT61atXKcT3kkEMsVhp7fU7qs1bXV70GCmrTsWoftQ86h3S8Gk5C027Rcl339Lmlz9M+ffo4GYo6duzoVsnYo4alcMutt94a8Z7zBvOdddZZbrWoR31muEXvZX8pqmuT7lJ3Oyr1/pFjvHLttdc6GZi0XJmYdI1U52m8kslrvXcbiby99ZJN69zQNUSfmboO6Pqj73mnnHJK1FBW3s8zfQf0DpPg3Y4+j/SeVNH7T9/tvKUkvAe0jzrf5KOOeWXSU+YCff/VNTZRKcw1PVG7qX6eqi19DrlZXPS5oWuzrhN6LfVP1wfN07XC/73Hvy+Z+L7mbzPIc/3N5s364p3W+gqqcosCJ+L9faProrJQ6Fqrz9kg10Zt2zu0nr6XxSoK2tD5ofeRis4Z93Mh3e/o7meS2nO/n2o6E0V/0+k8UDn33HMjrhtu+/pccIPY4/0to785Fi9e7PydcOWVV8b8e0Hnrb6j6jNd34f0fVnXIv0rqu+H7jEkeiyuvwV49zmdz6FMfbfUfvBZ7X01Mjedzmd55rZe0JL/+qDvhrp263ulPvf03VS/rZ144onhz0vtuz4bVE/r67csfS7q74JEn1Pp/A3l/45du3Zt5zNEWcv0HVif4/oMOf74452/OQuOrGAqE20UtLbjPZHudwO1U9i/q7z7oul0/25K929v//bd5+7nTrq/L+i7lr6T6PtjcfpN1z0+HhHYFQI920QP3aHMCN1a1bRf/ygIANC+aViGpnUKOu/Xb8qP6hQ///CWFv2r7q44MrOc0LAQ/lLlz2CHpWsiAyvaeYac8K5TIzRkhIIWNOSHW1au37GusiH0aFvLvptSkMVCQQBtG1W18XPWutVDQ0XUsNpVK4SHEPn1z2Uz/QEDobYSlaZ1q8RcnB3K/JBuyYSDu21lKXnl24VR2TTc5fEec/PyQ8NoRL4erRrE7kdqXi+2gdv2PiHDbq1r2ITZkeeuXr8xM9Y4/1RX2UAO2b2unbp/U6teDLKkuPvPIwIIIBBEoFyo4ySjIWD6cd29a08drwMGDEi4H/ojTcMSqGhddUJpfOpYRZ0V+gEtVqevOpo0hrX3xzBvG/oBTF/c9Zhq0Q8xF110UUTqZ28bxxxzjD344IPh1LH6Y/T1118PV1Hn8wsvvOA8V1pYPdcfErGKfixU9oRYRZ2hGp/XzR7gr6POAWV70N1b/qIOR/3op+NXUIM6smMV/WCmTla9hno9YpWbbrrJGeoh1jJ3nl4nN2hA6W/1Y7x+WNO+a1/UqRHrddT6GnpD6dRV9GOq/wdVZ4HvP+86OkZ19sZr37uqAlbctL3yVTBMrKL9VceDioJ43A4Eb10FjKhjU8eo10J/MOoHB/1ooTThmudN1+tdN9a0nHNyckx3y7rZK9SmOtNU9GO//qgNUtR54nbw6lFDn8TzUcdcv379nGb1OigIIpWifVYa5ljnqQx0t5/SubudRPrBYffdd4/YhF5Pvd+9PzJ7K6hTQHXUIaTiPT5vPe/03Xffbeogc4teU3X4xfvM0L4qWCpoh7Lbrh51F6P/Dmfvcg05o3T3Corwl0mTJjmfZfGOXe9vte8N3lHniPuDub89Pe/fv39KWUv0mad9fPrpp2M158zT+an3ZqyOikx9VumuVAWxxDqX9D7Xuel2eqRzDqR6nrkYSt/9yCOPOE/Vua/3vVu8n7Wp7L+7vh71ntB7z73r1rtM0+qM1/uoadOm/kVJn1911VURd+N7V1BnqI5LP5qq+K9lmpfO+0ZZc3RHcKKiIA63rFq1yrSfuh7FK/fff384W0C8Ot757uvineed1meKrs8q3mu2fjDUdcL7WgwdOtT5XFZdvVe0L4muU2pbQUiuq9ZTUUCI28mkNvVZ4wZw7Kix43+d67pOqWNby9977z3v4vD0sGHDYl7/wxVSnFCwS4sWLZy19Hmo/fUGLCnoQ8evos+BeNcU/RDvfsarM9cNrNR63vdtpq9N+hxS4KyKghn1XSRRca/VqpPo+2umr/XuPiXzdusletTrcdlll4XPz1h1FTSkYCm36PPG/RzVPF0T3e87bh19d9H5634W6/u0u05JeQ/o9U8U5HP77beHh1xzj9t9LMw13W0j1mM6n6dqR508bjCQMr7oe4M3GM27rYsvvtj5/K1QITpePhPf17zbSmVanwNuoI6uPd7PNQVCuNe3nj17xv2bKZXteeuqo1BuOncVQOPuh7eOO63vs+73RH2X1+exSrrf0fW9/ZxzznHa0N8q7vdYZ0Yh/9P3XJ3HKgooUWCNt+gzW5+z7vtYHZD+gHhdi93gZAWmaGgUFf2dq2NW0WeIhmH0Zv1wFvz5n/4WVaBWrFKY74cKIFbAs4qOoXLlgg4FzSvOvwVo/1TS/Rxyv8Po/Ev3uyWf1eb8bRPv768dr1B6/6f7We7/HUxZId3ifc/pvO/bt6+7KOGj//qgv+u9mXbclXVTgYLw9PemviPpOuIv+rzQ3+w6//wl3b+hvN+xNbTbPffcE/G7mXc7+m6sv0X93y8z0Ya7nXTfk+76hf27ym3H+5jq301atzCfrd5te6dT+X3Bfy7r3Cluv+l6j43p0iug77aZuKFgyCNjAyE9cWbiG4piNfLQh7Nt5G8rw4tO6NPIhvZtbg+E5n/jmX/uYc3tmH123Aimyq+NWmhvfL8ovF7j2pXs7EN3/K0enhmaGBbKPvDbn9kWNF9BGP1CQzCo9Ax1djeOkU3BWej57573ZtronB03Ymm2tvX8BV08NSInV2/YYqc/XjA8qn+d856dHJFVY+82NZ1hHCJb2fFsyOO/2poNW8OLlH3jhmN3BLkr88bjn/4RXjawewM7vlcjO/eZyeF5r1yyly0IZbq48fVp4XkvX9zF8Rs+cUV43q0ntrVe7WqHnz89fK59NG7HjTWaKTcNj+EvGjblk/Hx6w26b8d3Z3e98/u1sME9GjpPM+XwzPB59uG4pe4mAj1eOnA3G9C1vilTxWmP7vjdy13x7NDQL8eFHP1Fw28c+8D4iNn+uhoO5YVQpguvScQKnica8kRDeMTKcuGpxiQCCCAQU+CSl2fEnO+fmeq1OdlN3uX9G9iVz/VjtfdLtv5Q0w/2blEncqwOfaVmVlCB++OW6ms9fWl3izo+9CO6+4OROz/Io8bWdYMf3PrePyL1h6c3lbVbJ9ajMk+4gRPaP/dHOLeuflBT1L2/qBPXv/9a33uMOjb9AKhOmnhFd9Z7fyR0xwp268vxzjvvjHBWx4+36I9cv4d3uaa9y9XZq45eta2iHx/HjBnjTGfqPwXpuOeKXmu3EyxZ++6Pz6rn/eHWv546pdyizqtYRXdOu+eXsl8kulMj1vr+eQrY0Z3MbuCEf3kqz93MJ1pHr6f/RwhvW967L91sId7liabV6ek/T1XfPc/low5Z7x0M/vb0g686jr3BAzpPveehMjno7jZ1YqnoB1T9yOs/n7VdzdM/74fhwoULnc4h72eG3ksKjHHPI+2rgkj0I2UqRT/yeAMntF86HtdAbSlwRHcF+ouOR0Fg3mP3rqf66nDQ3YLeEuvYdRzusbudEN51Ek3fddddUYETrou7nj4H9Frqx3hvyeRnlSzc95T/81Lvc/0476boTvUcSOc88x5nsml91qay/2576qhQp6TbWa/XX5kOdG66RR0equMNOHCXJXpUloMnnngioor3WqYfQmOdl+4K6b5vdJebzkX/OeSen3p0i+5MUge7N3BC66kDzXu9u+6660znadCibBX+fVB77j54HbxtKrOI+1povvbFexz63PcHTvjb0ueV7vJTJpd4RZ+J7rUl1rmu66euCe51Svvg346u7bF+/I63zWTzlYHBLRpCyhs4ofn/z955wFtRXH98pHcQREABEVAUFcTee2yJPRprYok1amzRmNhrNGo0ln+sMSbGWGONvffeUVQUBUFEFBFEqv/9Lp595+7be9+tj/fwdz6fe7fNzsx+d3d2d86ZczCYQCHLL98zBWWNN8LC8MdLLZ9Nvm3KUhz7ejDPu4mJr5ets2m1n/WWb0O8LV2hKe+rvCt7SV8ntEsYYppgkOnvJdoAlMteUJpaW4xyxwwnSNMc7gHazLThRJoL17g3fLbjr+SZbnlkTcttT9N50aab4QTtQvqdAa9cKLrTUo33tXSexS7TLpiSn33Sbag3ULZrDe9SKIc4Voxrjz/++Ng7hXkPKrZs0tEe8L3Fte6/idJ5YNxl74lptuW+o/v3Oww3pk+fHhvE8u2FYSbfD/7403UqtMyz0yTLyw/fRnYfky7r/dYb4prxmeVpU86XGU6kuZCG56Y3krP9qvV+aPn5aXPoC6ikHbJjLffdkv3VVuf//jK+5Uyr1ZaXU3ZD+/C9aYYTPPO4X00wgsTYEg8P9u5IGv+uTXvFwBL71rJ9q/UNRcg0/9xNP5epu383svL9tJI8Kr0nK/2u8sfh50v5bmK/WrWt5fYvNNU+Xc9Y8yKwIAlsEI3A98II/XnRu/EL79cZK7B9nSj8hJfJP3hgsHV4DzjzttH1ft5wgrSjP/s2/C1StvMbOzk3fIblVen0Lmd0YHmtPqjOMGHxrm1sdTxNe4Gwjd9FHgu84QTrF3XhJNJhPfDawc+EUBwo5pft09FWxdN3P50e3h5Xl46VQ/vWPRNzEtdwoRocPolClaQNJ/DssMXKi4UjfjognLjToHD27vMHQ2UdSud2rWJPEH4beWbJ+K8avl7atm4RDtm8f7jl6BHh2O2WDluv0jNgJJElYz6fEe4s0egjKx+tEwEREIHGJNCkjCfosOGjjhEtuEPFapSReHRompxzzjmBDhIvuBS1kSi85NPpxMceo+v5GLSR48zToeM71H0+WfMoKk455ZRkE6NnGX1J3RjhQl35yOTjqxihE46RQIT+wAUwnfWMyvRudX0nNnnCwCu0GAVLxz7Hxw9uKDFNDjrooESpbOtsSqcZZV522WVxBxqGGiiGGFllQgcegheMadOmxYYIdCBSrgkfRfmEUYwoi5Ddd989GcHEqAYTrxizdZVM6Qj1o5wspElDeTIi3zoS+HhPKwxsf0ZxmHgOto5OQgwdEDovCSlQqTAaLZ9CqtS8GcVn4o0jbJ2f+lAVXC/5mPh9mOe+whjFFFAoJemY5RpiHaNLzNV9vo5hOtQZOWeCpwjuZa5TOn1xNWzKN9bTkY7gwQGlM+nwyGHC/ck6fjbSj210TpuQH/lyP1Iv7im8Lpgwgq4UsfA97MNoVeqFhwQYeKMhtlGWCR3odOJzXAjKUkYysR/baGOsQ4vOJFOWkJZ7lWP0ZTMa3o7dwrCQtiHB8MnaANIyOpM2iJHH1Nc64diGsv3BBx9kNpZatFUo7cjX2kuuKeNA22VKoVKugXKvMzvOYqbW1hZbf8vTtzVc/7gLN1e6dNDyjEO4TrxRl+2fb0onqTdOxBCRUa88y2jf6QilLWSEWj4p977h+cW16JU53Kd2fTI14Z61TlzOM/cMyjGMDnn22vkmPUpNzmUxAkPK8fcIHpasDvlYwh/DFQzJuAf4cW8hXIveGIV3FWNKu8c9a0ZfXA8YWeZ7/+CZCX/crnOc1l7Ytc52npukYRQgbTrnjnTe+KRUg7d87DDksjaGOvj2M98+fj3PDc4j++GJCuFdzF+DrKvls8kbjTXEhXvASz6FbC2e9ZRbKW/y4Jni31e5pjkurhPeifxzjZH+9qxhX0ZO2nsg75S8I5r4UavcCz7sWnO4B3iO+ndk7l/aUrhwPxOCxQQDJjNwtnW+zSjlmW7755uW256m8+O7AoMJ3l+4bmkTMIzw9yzGZv5drhrva+l6lLJMyB9T0mMcmA5lxvPehBAxPL8I/4MyH6MJewfCgIFjN09mtk+1poxQNzEDcFsu9x2d9xmEthw39YRVw+CW9y48P6HgxiMj96OltTIbmsKIfBHuzbSk20He4dLin9PeQ41PxzXHuwhtPG041xxhPvDEaOLbENZV8/3QyvDTpt4XUGk7ZMda7rul2uq6QRvp7y9jW+60Wm15ueUX2o92luc2xrs887hf+a4z4b2S90v6oez9lfbXtxV8a/ENb1LNbyjKoc1C+U8IEHtfMS+2lIlRmf/WtHrYtNw8Kr0nq/FdZceQnpby3VTLtrXc/gWuO85rU+rTTTPWsggsSAKE6CA0hcnYL74Lz703JSdUxQr9OoWeXXINDix9U5s+8MYX4cZn5g9q83VbZ4gznkgdCwYSX07L1euw7wcTp/ss4nnPoU8UxqRH59ZJGpTxL4z+Olledemu8TwK/WFL1RlHPBsZpoz/cmaSbsiSHRdI+IjFq8DhlY/qQpTYAf1t/xXCYVsuFTaLPIysuUy30G+xbOMFSz8kZVxCnniQSEtWWek0ttwuYr7B8t1jQ4pL9h0a/nXYsMgzSl/bnEwtjEqyQjMiIAIi0MQJ1D2xm0hFUeDQWWOjBJnius4MIKgmHzsmGBGYYpAOfvbnI9FcSOOyi49kUy7Q8V1o9Kfla1M/YpLRdnQ+9+7dO96Mso668mFQrFA3lGPmCpv96DjznhrSo/Jx8UpnCUJnFWlxE49inR+x0llH3ghp/YdxvNL9oTSjU9XcnTLyySvsSMroRcKHWGgAYg17pSnKm3xKKx/mwRtMMPLWFEF8rKdHMbgqljWLlb4JnXjFSLt27ZIwKXDjuNLCh7wZg9DJa8dg6TD0wS2yCZ0o1TJ6sDwrndKRbsL1Vki45/zIRYyEihE6Uc2YgfQoK+kAtmsIl9+MHsFgJZ9gJECYBjy0cJ3SmUwsVBOUYf6efOKJJ2xTSVNcElMGhkaMnvNKNq51rn8b/eI7kBoqBKMou1Zos9IjGhnhS2c55VI+HVUm3MOmTMAAh3bNDF1at24du1a2GOfsg+eHagv3JK5QTRjBjAGUee3AmwoKBGtzSefPR7XbKjihDLTyKY9ryhvYFOtlhn1NGus6K6f+NpqTujK6056FLOOFhvYV5QrXT7H3JvtamBHmcYPL88zchXPNY9RnXg1IkyW1um98WYwu5tj4YaTHPUP8Y4QphmnmoQHlr8Wi93lUcx6PFxhnbrDBBolSyurjmWIYwbuKMaXdwx067aAps1DKEhs+n9B5jBtly59jN8MD24d3GDq57RlDW03npgkx6KshPswKykqukYYEA0TeufiRHkWeGZ9huAqLdKiiWj6bULoae64Vys8nXkFOGl8v26eWz/pyeFu9mOKFxrfdvJfi9cvOG0aRGB/bOxnKEN6XTWhn/HsoYdcwKuSZ4D2rYWhgz3T2bQ73ANevvUPzXsEoVfPoxfWB4torv7zSt5JnurHNN61We8ox8F7BN4C1HXiJ4X3L3uU4fgxGTKrxvmZ5lTrFcMO7pvfzlhdKNBMMXBj5XKitx9Aw3Vba/uVOeZ814zgYe0P+cvNkPzOI4Jxg1GPXZjpPDBR4X+b4ixXuYzzLIOyPlwIvPD8Qaxd557T6WDr/Xm1eP2ybTfkOwvCCtt6eRd27d4/fDS1vnnX+O7Ha74dWF6bNoS+gknbIHyvz5bxbqq3O//2V5lvqcrXa8lLLLSY99yPfjtZHwv3Kdx2GZybWf2bvr6znndcP5rHvU7ZV+xuKPiFC8sAR4X0Fg05v8EkIk0JSTh6V3pP+nir3u6rQMRW7rZZta7F1yErX1Pp0s+qodSKwoAi0brlI2GiFHjnFXxOFPfCy0Qrd/WKTm58xa254bczU8M8nxoe//u/jevXrt1i7yLPD/HadjT48hiUm/IYfBjNrzrxw6f2f2OZkuloU4sNLOq+n3qnr6/YGExipmPhwKKxbbeB8Iwvb3ljTdN0pt1QOaa8dGJN0bNsy5xAefrNu8GTOhh8WBvbK7duZ/M3sQDgSL+9PmB6uejj3uvTb8RJC+BD/45ow6daxdRwKZM1lcll/MyPXw6Wl11QEREAEmiqB+RqJJlI7DBzSsVetargUNHnjjTdsNlau2AIuYK2j0NYxRfGGUsPE72/rsqZ08JlHCT4sszr42A+DBj9SOysvW4dBQtr1NdtQLNsIVTq1USCZeGXalVdemXSG23amKCTYZuL3sXU2TY+eYj0fqmZgwnJa6cs6DA3MQwadfVnKBbyCmGKVD3Y/agmDFguTwf509lZTMAIxyTdq1Lb7KZ0IJlnKQz8i2epv6ZkyipFzhtDRQFz6piZ+VK3vHMlXTzMcYHu68zXfPv6+QkmD4iotXAN+lGd6Ox0ndFajyOJ+M0WAT0fdrHPWe3LwaRqapz2gDDrbvWLe9qMD2kZConRLdy5buvTUFFWsx4iC0cRpwdMF5VK+Nwrz4XYuuOCCgMFEWlBG0kGDcA95zxXptOUsW3vHvnTaW1npvLgPcAXOte/bCt/uVKOtSrtZt3qYcoBljJtKlca6zsqpf9eudR8XFmvcH9/gwYNj4x6uH++RyKfJmjdvL9w7+Vzg0lnqOyvT+dTqvvHl4NmHY+NnBoF+O/N2bzLvww+wXG3hHPpzYvkzes88XsHUvDTYdptyvnwHtDeAsjRMecfw7YFtw+jQhDT2DLZ1TM0bCfPl3A/s54V2xZSGlJmvHfD7ME+bxAhkfl4wCEEJ55Xutr2Wzybei7xBAYY3/nlOHQgTQzuWVoz6dzCra62e9eXytnoxxfAT/gheXfy7V7wy+uN56q/FdGgS3l2470zwEoJRh51Pjh9jXZPmcA9gYGaj67lP/beAHQdTvGLZ94MfeV/JM93nnzVfrfZ0o402ir8h0mVwv3lPad5Ysxrva+nyil3mHjQj03RIKsvDG09YeA++UfDwxvs2nn245n3bhMGP90xkeZUzxYOeD1mBZ4sePXI7ucvJl33S74UYfjAowDwuYgxHu4vACSOoUozNMYQ08cZ0fLOZVxWv9PPepvBOYgYWeJHIarPJe+edd04GElhZTHmfxtAFoT3CAMuk2u+Hli9T7w2xKfYFVNoO+WNlvtR3S7XV8wnm+/5K8y11uVpteanlFpOeZ4AN+vHpMUQ3IfRp1rewfwfHkNCkmt9QtOG+zbIymDJIwNpCjMG8MZZPV04e1bgnq/Fd5Y+j3Platq3l1qmp9emWexzaTwRqSWD95XJDchCCw8vakfeAtOywRu84HAMhGQr9BvXOVYxjUGDphyyRG84iXUa+Zep36DUj498BV7wVdr7gtXDCf97P9DhBHsdss3Ro2WKRJLtVls71tsGGFyOPEafc/H6497VJ4e5XPg/H3/BewAuHl2X6dAj9U14UVh5Q51HCp2V+eWewsVL/OuONdLp0+I/09lotV4ND+hxi+IABw8goLAm/qx6OvAU/Ol8/ke840nmQ7uE3J4dfXfpGOP/uj8IfonNx5D/qBi1n5dMu8p7y3mfT4xAihBHhxzXxfOTlY/p3c8Oced+Hlz78Orzx8fw+Cstj6cVzr09br6kIiIAINFUCrZpSxehgzyde4etH4XjlEh3lhMDIEpShJnQY+xAPtj499XmhwMhS5No+jJYvRrzSJ50epbB1KNKJhrECBhyMEDPB40Q+GTp0aLKJfOgE88fNRjqPvWI82SGaYdSQST4DADxm2Mdi1kcsbkGtAx+jBPNuYfnS4WYjLOnk9IpXS1PuFGYmNnrBlgtNOXd85DGqjZELKK49N4vFCTs6GLzQ4WkeAMijkOLR79fY8360r1dW5auHv8e4DosR3xnPaO18QkcI16ApZPKls/WcVzo5uK6YYsxh15ilqXTKqF24kC/58/OjlFGwFSMYIdmxYXTB/YpXEkbUMIo8X0c0+dt9ZeX49sfWMfVGFTD3Xmx8unLmffgEr7RN58XIpbTivtptFWX6Ns3XwRtKcU1UQ2pxnZVTfz/Clo5eOgUZnYrSvEuXOuv5Uo6Za5EfwjPItwfpfPKNNE2nY7la901W3raO68ruf7s3TblDGrbXUiyUQboMPwqa9i79rPPpufdNfDtp65iiAM0Sf87ztas873g+VatdxPjNhLAzXoFs67OmtBn2DORcoaxFMYdrY34YjeFdg9HKJv5arMWzCaMIDErMaAXPCzyD6Kxn9CQGMMaNUBamaE8rEmr5rC+XtzFkirLXpNC7sH+WpZ857I9SDkUk9xhszECI9/PDDjvMioinzeEe8J7quJe8AijnYKIFez6jnEd5zztxuc/0dN7FLJfbnmYZVFl5/tuJ693Et0P52hXSlvq+Zvnnm/JdgvcPE7wrZUn6+wLjcgyuvRKQ4+Z5RfuEMSeCEhMDcf8On5V/oXWETeKdzeTwww+PvZPYcqVT7wGEME3+25f3R36cE5SbtE2M+OaeNK8xDZXPe4MJhkBmSOU96/HthVcg2me4Wt7ek5c3UrX8bFrom9dGuJMWgw2Opxbvh1YXpk29L6DSdsgfK/Olvluqrc7//ZVmW43lctvyapSdziPfO71/t/QGuH5/75Ux3Sb7dMyX+w211lprpbNKlvnepZ2n/aMtJPyYb18sYTl5VHpP1uq7yo6p2Gmt29Zi65FO559r6W3+vcT3N9WyHU/XQcsi0BQIEJaja8dWgfAVaVkl8rTAqP209OvRLvBrSAgNMfqzur5xPBOs1D+/wUFD+dl2QmQUI0f8dEAYlPJs0KZVi3DsdgPDqTfn6mteHj018Msnv916QL1NK/TLPha8XXTrUKf3Gdw7v6HIsmUakdSrTIkrqsFhpYzjv+eVSYFfsbLaoK6RoUnH8M64uu9D9sUQ49G36jwANpTftqsuHv78ae7AmdNvrTO4zNp/u9XnG4lnbdM6ERABEWiKBOqeLE2gdoWUgPkUuDbin+qbK++GDsWPxCmU1sd3HD58eKGkeTsy0jv5D9H0Nq9EsG1+9BWdh9a5a9v9lM5CPoDN2ALvC3T8evEfy359teb/9a9/JVlRVlbMXUuAkoIR/YQCqIb40Vzp424ofxSUKIn4OEfJY4osQryYQQuj7b2CjI4EUxSRPyM2/faGymzM7d4whs6HhsSOmXQ+bEah/RgVYpLldcK2MUWBW8h4gry4lohx6jv9fB6VznO94CWFsBxZSqRy82cECGE3uJb4EbfVYrcyghCjIjrmvUIy7cVl2LBhRRVPpzoKv2qJ97BRbB2s7Gq3VYwCztfeYbxRDWVxLa+zcut/yimnBDyqmItcwiVZyCQUKowqxwitlDbOP8u8It/OnZ+aByS/zs/X6r7xZTDqH88lPD+8oYRP01jzWZ6iKNt7N2roXvHtIbGksyRfOT4t132thXbZvEehOC32vYp6wcGMI62eXC+MrCZ8Gm057R/u3O3ervWzic53niXcN2YYQac3bo69MDqT8A2Wxo8yr+WzvhLevv6+7fZthk+TnuddkRHt/t2Ta4x3GQz/eH6Z4DEKz1FemsM94OvI90I+paM/LuYxLrD3wHKe6en88i1Xoz31ioh0Of7c+m3VfF/z+TY0j1GqvdPh2SDf8yjt7Yc2yRtOWDlcr3j9wXOXKbP4xitk/Gn7Zk3J4yc/+UlibIjhor2/ZaUvZx1hYfAEwLdPPgUT1yneIQixiMDNDBwaKpN3D57jvMdjnGHGKrxPIxhX8H3GuyPGE3gC4XnLAAHvdcU8SGSVt6C/ZdN1aup9AdVoh+yYy3m39OU31fcVX8em2FYb/3zTarTl+fKuZL3/1syXT6HBQfn2YX01vqEaeibT/2aeZfiWGTBgQL0qlZNHpddbNb+r6h1QCSuq/e1dQtEFkza1Pt2CldVGEVhABPDKsHEUuuP2FybWq8FGQ+sGNdbb2IRXYKRx/A6DwnJ5DBNWjxT2h2zRP1yWEZoj67BO+vmgMKBn+3qbMJDAu4Y3ECHRqqlQHIRHWXVQl3rGGdSDbQtKKuXQP2Ky67p9wn+eru/l2I5ps5V6hIciTxL5hKM/ZpuB4Y83jAppryd+n4bO17qRB5WPJs0Itzz7md8tc7595KnisK2WCitmGH9k7qCVIiACItBECLRoIvUouxr+o6HYTLyVc6F9LCYyaejoKiTF5lkoj6xt3nU0ioyGxBsi+H0b2q8a21EAoyAxQYnCyKX0z7Yz9aP7/fpy5ukkNPEcbF2hKYoVE+/W28/j8tsLnbUW5oD9cXnfVMWPoi1ktED909dyvs739LHScWTSkMGFv7dsH6YoqehYZrQ3U+tk92mqMU+HMcqhM888s6qGE9QNN6d03qMwRMHvBUUwCjo6FezaYbv3muLTNzRfzEjthvLw232bka67T5c17/dt6m1VY11nWZwaWofSlpGgxPdNGzLQUYlr8qWWWire3lBett0b5zR0b3pltu1v01reN1YGo35R2hx99NEL3HDC6pQ19W7UG2Lq76VqeUrJqlM11nlFIaO4i+l4L1QuRj4o3m10Owr7e++9N9mlMZ5NGDWiAMcdPs8WOx8ooXbYYYdAuK4bbrghHtVoFfPGE7V81leLN2EMyhE8hKSFc+a9GcApS3HdHO4B720hfZyFlv2ztZxneqG8bVtjtKdWVnpajfe1dJ4NLRfrdYJ80sYThbz2ofjDYNWk3HBmtM2EEbF3ZLzTXHvttRV5sbA6+SnhmTDWymc4YWl9GMt8nsgsbXrKcSCE6bB7wMISmsEtRiIIRlLmcYJrEsFbRJaSMt5Yxl+t3w+bel+AnYNS0fl2qNR9fXq11SF+n8z6/vKcyp1fkG15uXWuZL9qfkP5d8CsOvn363T/hKUvJ49K78lqfVfZMZQ7rXXbWm69ytmvlu14OfXRPiLQGATSoTuszDUG1w/ZYduKmfpwGaQvx1CghQu5ka9MPGcMWbJj2Hx4j3DmbsuGvx+yUl7DCctj6xE9w1/2Xi5sMDQ3bIltZ7pVlObKA1cMhTgQ/iItwzLCdKy8VP10K2fsS15pbun88y23aVW6IUYlHChtz/WXiA0RBiyea1yCgcJ+m/QNh265VGDeS/o66NW1TThvr+XCNqvV1zP17tYm/HHHQYF6FpJW0XWy94ZLhnP3HBJ7sshKy3WyXmRkcel+K4QNlm+ehkFZx6V1IiACPx4CrZr7oTLiykacMGKGTt6GJD16Ll96PzqDkcCFxDqeCqUpZ5vvwE/Hp87Kz7vi9ftmpa32Om9oUGzeV199dTjkkEOKTZ43Hd4U/Eg6U9Tk3SG1geuIzle8EODKFsUlnjxuvPHGOCUhOdJuaqm7Ca4GbZSirbOpdcTSQWkxRhklcfnll1uSmk/9yGcf9zqrYN/xnM9lfdZ+q666atLpjGtsX2Y6vQ8P4bc999xz4YgjjkhWHXDAAfF5QVlMBwod6oyYo1OXEYLlCB0N1mnM/ptvvnk8GppQNdwzKNYo5+CDD47DuJRTxsCBA2PDDLwI4EGAkdZ33313PMqP/LgWCAHDdYO3mLTC2seJLlR+sYYthfLw27zRES6ADuhKAABAAElEQVRN813Tfh+b9+1NU2+rGuM6My7lTLnWcRXOj5ADXD+0Td44DU85dBjut99+DRbh70XyKyR428mSxrhvKPeggw5K2nLa3UMPPTQeLc61afc/ymzahgUp3gCsIab+fu7fv/+CrHbBsjn35uWkVK8ThTLGy8Ree+2VnFcMKBh1jvhrs1bPJsrBgOKXv/xl/GN59uzZOSGQWOc9LvE8M6nVs76avL3BGmFAiglNx/H569iOl3aG9saEd+zTTz89fqbZOqZ+36Z6D/hnK56fMMosRrzChvSlPtMbKqOx2tN89ajG+1q+vPOtJwSevQ9jtOS/sdL7+NA+bPPhytJpWfahBssxUEO5jJcJ8/iEdwYMrsxDTlaZtV7He69JqUolQnWce+658e4Y82L8ZO/MZmjCdwjtBuu533kXfeyxx+J9rH228iud1vr9sKn3BVSrHSr3PKitzv/9VS5T229Bt+VWj8acVvMbikESyy67bN7q+28S/77odygnj0rvSV+Xht5//DH4eldjvtZtazXqWGwetWzHi62D0olAYxMYEnlouPv3dd+c1Sr/99sPrDir30chNsL8z/WK80pnsEwUTuPYbQeGw7acGz7/elaYOmNONIguCiPeqXXoGYUcads6V+mf3p/lX0UKe34NyQ5r9Ar8ipH9N+0X+DUkh2zeP/DLJ8We00o5bDF8scDv25kRx6mzQqd2LUOPTm3CIj/Yctx81Ih8VUzWEx7mwM36hX037hu+iPKYHuWFUUXn9nWqwmKOZ2jfTuHPey4Xn8fPp84ME6fMCq0jo5K+UZiZzu3q8koK1owIiIAINCMCzb4V40XbXO7TuZRWcFdyLlBMMfqGzj4U87joY7R6WhhN5cNVpLdXssyoT5S5KFv5FQpzgUW+dY5RZq1DdKSP6x//+EeyChewhQwYGMmHoETJxzXJrIiZY489NkmFa1tiwJcqhOWgAxHOGOIw+pL6IcQBT4uPHc6HezFeEuxaJUZlYwody9ZJioKIUYf53P7byDPqV8htb7r+uF++5ZZb4tWU4TsWfFpGrBAaJUu8wgYjCuv89WnpGPfXud9WzDyKaBM6i3EHmuUOv6HOEMuj0JQOf+LN8iPEC9fTgQcemCgRMaigDrjst/uc/Lh+G/v+pVxvfOYNsdjWkDSntqoxrrOGeBW7HSUSP8In4M3n5JNPjkfDsj9KzmKMJ3zHpI8pm1WHkSNHZq2ODThsQ63uG0bP+3ND2I6sEe8NKdmtnrWc+no1xNTHVvb3WC3rV07eZ599drLbCSeckBPOIdngZvCug6cQ2i6e+VntqCX37ZkfPVjrZxOxxxHq5hWwfp7teBdDuWvi319q9awvlbfVLWvqn+e8Cxdyq5+1v63j3QDDQYRrlXaddxvaHsJN+XAIzeEe8Fx4byiXi/Ep9plu6fNNG/M9JKsO1Xhfy8o33zruQ55dJrQvhST9Lcf96RXA6X09z1LPMd9wjEi3d1+MhvGKV6nXnXQdWeZZcNppp8Wb8GyBQVc+8cZc3pAiX3q/3t+nvG+bopB72lzc0ybuuOOO4W9/+1vsDQiDXr5/EG9g7PMtd77W74dNvS+g2u1QqedBbXX+769SWabT+7anVu/G6TIX9LJ/T6/0W50+IPOGk3Vc3hjf2q50unLyqPSerMZ3Vfo4ylmuddtaTp3K3aeW7Xi5ddJ+IiACtSXQvk3LsFRGWI7altr0cq+UQ4e2LTPDm5RypHil6LNo21J2yUyL4Uavrm3jX2YCrRQBERCBJkaAgfMNScMmfQ3lsIC3M2rc5LbbbrPZelPc4vOBy68UC3BG75jgBtXHSLT1uFH3H5K2vlrTbbfdNskKrwj5xG/zYSjypa/mejwN4B4WweAEQ4QVVlgh749Yvia4yy5XUMTTqW/uaMmHkcvlCIoBE/K74447bDFzFCfHRydrQ78kk2jG0poHCr+t1vP+OvIjaX25jMb1IzNLMZ7wowgZvZzPQMQMLHy5Nu87ofJ1KlsHt+1TaOpdU1s670WG0etZCj+ULN6Tie3b0BSvHRhI8MtyCUrHmlcaeAMFc7NMGRhV5BOOydqyzz7LH1tu/Pjx+bLIu963d3hd8V5I/E7Ugeufjg5/jfhrzLdHfl/m/bZat1VZ10C1r7P08ZW7jNLTrh8M5dJCZx+jyk2KvUZR+JkyGEWoj2tueTHlOZmvbaj2fYPSPS3+fsCtue/w92l92+zXN+Y8IVVstD9M/TXl64Hi3TNFYdYUBUXd9ddfH1eN4+IZ3pBwvfKsvO6668KTTz5ZMPmDDz6YbE8rAn274VklO0Qz5TybuJ4xROOHgVqh9hIvQaY4ZNS19+pTi2d9Obw9j/Q8I+VN7rzzzoKhoLiXuV4Zke6F9ymM+4zDFVdckeMhCwMu/1xrDveAryPtJe+q+YRvA3u2WiitSp7p+cphfbXb00JlZW2rxvtaVr751vHMNy+BtO28CxUSlP3e+wEhz/IJ72v+Gyyf4W7W/rTPfDNgRIvwnOT5Uo4Bdlb+6XWEbOMdmB/eozDcyCf+mLIM9/Ptx/p27dolCkneme+77744uWfKCgwmEAwsjAHLPmQIy9UQ3877d8B03n5bse+HTb0voNJ2KM2o1GVfflN9X/F1bEptdUOsF3Rb3lD9arHdv+9W+q3O+6O9c6TriuGEfefgiQ5D3SwpJ49Kr7dqfFdlHUuhdVnfTaSvZduaVZ9y+hey8kmvq3U7ni5PyyIgAiIgAiIgAiIgAiKAl+KGpNkbT2Ctbh9TKGwvuuiiesdMp/tvfvObQJxZfoUUk+mdzzzzzMAHG0LHH51yKFzpVD7xxBMDrm+9sjm9fzWWfecRnW3mVtXnjeLCe1/w+/h0tZr3BhDFKF1w2WuCx4pCHYiWLj197bXX4nALxGU3YQREQ3GELW16inJln332iVfTeXdtFOsYwcUtSuK0XHjhhfG54HwU+tlIY65TS+cVoPfcc088ygsX/YWUO+nys5YJh7HbbrvF8ZTN/bClw/OBCSPf4JeWU089NXGrTMzzUlj6mNR01PpRtVYOo9r32GMPW6w39R3qWaFw2L+hMC/e3fYTTzxRrwzfCZ01YpwYw7iYL0dw80ybwI8OJT9i2fLzI/v9deW5oKTynVO2LyO2uR6tLUt3pPhjf+CBB2y3oqcoNckboTML1++4pPXCMe2///7xaGSUFt7gwrc7C7Kt8hyyroFqXGeeSbXm8XZi189aa60Vj4ZP5+2N//z1k06XXvZGLpzXLKMS2k+MN7KkGveNj2OPsV26w9SP5MKQwhSYVh+uPa4rPyLXtjX2tEWLFsnzgrJ33nnnTKYY99HGm3gjPVvXFKaEZTA56aSTcowHbH16uvvuuyerjjzyyPDBBx8ky34Gowzv1cEUdpam0mcT1wX3hf3sfYIReXjHMKGOM2fOtMVkSlvLO52Jf6dgXbWe9ZY/03J4+/3T89w7PLMR7g/ew4yDT4uHEJ7rtPO+DqS55pprEiUrbTmjz0lr3m3wwuaN/5rDPUCYvl//+tcJAkJ38NxKC+9LtHFw4R7FkASp5JmeLsMvV6M99fmVOl+N97Viy+QdwnudSN9f+fLx75Ccw0ceeaReUt6Jttpqq2Q958+H8OAdydqF9POGnX7/+9/Hxl/M4xGPtto/p1hfTeE7g/c7hOvw+OOPz7xPeYc+7rjj4nT8+ffDZGUDM8bFG0945RS7b7DBBkkuvP8jpKmF141avh829b6AStuh5CSVOaO2ej64fN9fbG2orciHfkG35fnqVcv11fyGwpiHfjV75lq9Mc7F0M6kkDeccvKoxj1Z6XeVHVuhqX8eZX03sW8t21arm/+uLqd/wfIpNK11O16obG0TAREQAREQAREQARH48RHAILqYUK0N+6Zo4uwYIckIHuuMp6McV9+MwqMzGffeuCTlwwpBgW0K8mIOjdAdjMbBhSwdb/xQqvPzQger/3jx2yqd59gYLWSjbenY4oPSlJZ0KPrR/Hx80EHcWILiwo8WJW5wQ4JbXc7Ro48+GncgMs36MMbQxbv4RhmAEQudoXZOrSxG7lvnn60rdUoHJUY4dq7ZvxhjkFLLsfSEoDBDEjo4uT4x2ClXUH6aZ4Zx48YlIW3ID9f/XPsW057r509/+lOsHEFJiRGQH/F1xhlnlFQN7sWbb745ViKyIwYaGPVwLfLxz/ztt99eME8MA8wrCXXl2ub6pzFjdM/ll19eT+GaztB3nMMShTT50kk8ePDgHIMQ7mNGUDBqo3///oFRLij60tdWuox8yxhMmGKAdgOFKvcunfJ4reH4aY9MCDFjwvXP6Gd+CEoA2hTuE9oh3JLCxhQAHBPhQLwMGDAgWSREDHlyfdHRVay3EwzQcOmNMOJn+PDhcSxwRmSi0GYEqDfMwZDCpKm0VQ1dA9W4zuyYqznF1TbnCgMG2jnactyJY0hBO4vHCJQ9JqaEseVCU65L7ifOKUobnmlcG+RNpzHXq43wysrHG1KVe9/06pUbb5KyaXMxUORewS071xn14B6EB8ZgGJSwzPPAj8bNqmdjruN9g5BdnCtjuv3228dMud9RgPFsMznvvPNCmoFtW5BTrjd7h6AdzzeSMF1H2ijOHeeGPHCpjCcu2gy8pND28jwivIzJoYceGhjx56XSZxPPOq/AoI0012uUhwELgit+3h0wNKVMwsTwvuifuRy7tX++jtWcL5d3Q3WAM/c11yLvixhT8F7E/cP1iEcKP4LfK2d5V7ZwHbyH+JBZ8CFvuF566aXx89I8XTSHe4C2j2c79yMGIBgO8J7K6HreKVFI8G5hAheU3Eglz3TLL2tajfY0K99i11Xjfa3YsnhecE0icPf3aqE8eF/DsMqM4vHawzLvrrwT8U7J+6y9r3HdWlrLlzaK9hmhLfLhLDBixjDKhPenhr4hUJb5Ub62bylTvilgglBfjJ55zvPs51lMPX298Abj6x3vWMSfV+xZcm8swTqY8U3plWFmdGH7VGtay/fD5tAXUEk7VI1zoLY6//cXfAu1FYX4L+i2vFDdarWt2t9QvJvxPcD7ysCBA2OvWPQn2HODd8a0sWf62MrJo9J7stLvqvQxZC2nvxnS303sU8u21epUjf4FyyvftNbteL5ytV4EKiWA4oXBmhIREAEREAEREIHmQ4Dnd7EeR5u98QSnhU5cvBeYkpsOUn5poZOIkf90upUifMjRSYcy2RQMtj+dTqwnTS2Fjl1GxJtinI9EfmkhLAQjCxtT6Hi2zkmUxH70cKF6MGrVFEsorLOMJ1DSekVtvvzo3D/66KMDo2sqETpB8BRhx0NetRwpjPLGiy/Xry92no5XE/JiJIcPS0GHLB3NuOhFEYJHliy5+OKL446krG2F1mEogEcW6+Tg/No5tv24Z+gUz/LYYgYDGCMhGHN4gw7Wofii49k6VVjnBYMEDDfMyIB7lh/XCJ2HGHJghMAoZIROY99xzDquAzossu4xtucT9rnkkksCCjsEhTS/LOEY0nG9GVWPIvCqq66Kd4GDsfB5cJ+Zi32/HqUfbQD3JEJ7wQ/mxRpPoADluG3ED8omUz76smhP4Upnh5em0FY1dA1U4zrzx1zNee496s/1Xaj9o72z66yY8glDwHk15Sr5c6680pB8MAZAkZOWatw3tM8Yf2C0hdAWmbEQxhMISlvaEe5fRtDjBcEL1x3eZ7z3Hr+9Mee7dOkSK6RRNsGTHx4MvBcDqw91bshrjqVt7CntpQkjxHH5XoxgoMCzBEM3U8pjIJJPOO9HHXVU5uZKnk3e4wUGR97tGkYcGK3hTYhrCsOFfJ6F2DfruZRZ4QpWlsu7oSI5Vp5ltPV2rBxvlqB0Ntf8hNjad999k2Tnn39+TsgcQijAxbiRFs9VtAnN4R7go4jnJQof2lTuU44n61zj4QADIJNKn+mWT3pajfY0nWepy5W+rxVTHoa53hAXZVMpgqcT3onsXQxjg7SBBPnxHoJhnQ/ZQdn+ndpCV1n5PGu9+PB/fr2f5+O6UuMJ7jvaJAztEOqdzyiQd/QLLrjAV6Hoed6z/fcM74FZnQMYOPt3YDOMKrqgEhLW8v2wqfcFVNIOlYA4b1K11XVo0t9fDbUVdXvWn2sKbXn9WtV2TTW/ofje5bmb73uHd37aZqb5pNw8Kr0nK/2uync8fn0x302kr2XbSv7V6F8gn4ak1u14Q+VruwiUQ4B3q1mzZsXeDbO8/pWTp/YRAREQAREQARGoDQH6sekzLsbjhNWg6sYTfIiUIl7ZXUrF02UwOpWRYij5GHHthQ8uYtoSFiFtwe3TFZpHoYjbaTqc6YwDNKNkrZPeh1vwx0SeuAY0KfcY6bzGnSwfRyhnUWh6oYOMEVmMHLQ6+e1WbjGuWAt9oPq8bWQnoxlNspRuti09ZYSBCWwx+uD68bxsu59SPyzg+ZEHo6fpvKiGcO5QDJjyH6WQjUAsN39jn7U/5w0lKMoK5g877LCsZMk6Y56sSM3QSc21jmAs4A0nWMeHPp22KB6zFOJLL710rNg0bxjsU6rQOc75QAmKksILXDnGs846K1ntrylY0alFBzjXg+/4pnOc/RkJmmU4YBmiQMJggM4UrxzxLOiQxtMEitu0colRpxhZ+FG5lncxU9yPYsCAkhh38GbEwb5cuxtttFEc0iSfkdFf//rXeDQ3U3/87M81Qr4w4FymhXvnxhtvjN2vo8BN759On2+Z+4qOLBShadacB5RzKEIJ85GWxmyr0mXbckPXQKXXmb8P0/e3LRfT1lp9/ZRrh5A1uPNGIZ2+hzDsQblXjnchuDz44IOxQYJ5MrKyKZd2CIVLPqnGfYOBEMaGXJ9Zni44Pox/MAwxY0GrDwY9tGvpZ7xtL2bqz12+9P4ZZOczX1pGC3McKPQ4Jn+/sw9ceTZntam+nKz7OV1mIaMG9qds356m989axhODXQvc27QtpQjGqCg2MX7g2ZI+N9bmEfqh0DVbybPJG08wAi8tlEuIJjy1mGGZT0MdMfrj2dnQ+fb7peeL2bdS3uky08u8q+JNg2e8KZx9Gu4h7kGuWxMMFI0L91/WNYBBF0bKKHl5rtD+W1iF5nAPcI55V+WZlqV8R7GOoh5DKP+uAKNKn+nGOT2tpD31bUep97yvRyXvaz6ffPN4LLFnGNfQCiuskC9p5nreJQkLiFEf7Wi6fWUnFHl4REm/U/nvJK779PdpejmzAqmVDbEu5vlClrRJeFPjfTjdZrKd65VvA94D0tcj24sVnjt8MyL52l+Mikx4BqQ9A9m2alxzlb4fer6+PlbHptwXQB0raYfs+VLuuyXlq63O/v5qqK2AXSGppC33fUZ2jq0sf4031PbYPkxL3S9f3n69n6eelX6rW31pv3mH5ts2bUSGtyGMTRsaoFRJHpXckxxDpd9VxqHQtKHvJvattG0tVD7buKYa6l8odC03lL/fXut23JeleRGoFgHaxXQbXq28lY8IiIAIiIAIiEBpBEp1mtBQ7otEVpLzA/s2lLIZbSdOIp27jKbr3bt3bDBRbucTRhFYkiJ8IOXrbKOz2lyd0sGXpZiuFkLct9MZaQYbGITw8x8t1SpL+TQOgenTp8dKL98xWG7JFtPdd3Rk5cX1g+EA9wov+yhNcbfe0H5ZeWWtw/KakBiEXSFWJsYKvkMna5/0uokTJ8Z59OzZMxDqpdRrHBd6ePfAAweNZ1Y7wHZclqOYxCCnmh8+lAsD7lfaD9qjYoX7nOPH3Tr17tevX8yxlP3xVsO+dA6Ve20xIotjQGnBOSjFAK0ptFXFXAOVXmfFnpNy0vE8w6MMowa5Pku9B/KVScgg8rVrq1QDtGrcN9SBa4R7L8t4gHM3evTo2BUmhl1Zo2bzHd+CWE99J0yYEDhntHV9+/Yt2dPVgqh3Ncuk3cdAgHuKc4aBVVa7W6jMUp9NGLuZQpxnGiE58gntGGkIg8T1RB2HDRtWsZFkvvIW5HreK3i+c6/26NEjNr4r9zlQ7HE0h3uAOvJM4z5FEcm7SVb7k3XMlTzTs/KzddVoTy2vcqbVeF8rp9xS9qGOGEoRPoxrm2saYwwfpsvnh7GMhREkXJr3ruLTLeh53rEwmESBy/OQ5wYhd4q9Jhd0/cstv9bvh029L6CSdqhc5n4/tdV1NKrZVizotrzuqBpvrtRvKAb6WLhXPNCZIT7szBiWdYU6PauRR5pQpfdkpd9V6fpkLTf03cQ+tW5byb8a/QtZx5deV812PJ23lhdeAoSNLPQtWOyR7/GXF4tKev2RqxeVTolEQAREQAREQAQqI7Cgns0LpfFEZacid2+8VdDphuCy2D72fCo6vhiJbSPY8U5BHHeJCIiACIiACIiACIhA7QgQWgu383jm8SNIa1eichYBEWjqBPAywohdhI50DKUkIlAOAfUFlEOt+eyjtqJxz1U+w4dSalGNPEopT2lFQASaDwEZTzSfc6WaioAIiIAIiEApBBaU8UTVw3aUctDNIS2uw814AtfGWFpvuummcew/PFswepHwBIzuQ3B5uuOOOzaHQ1MdRUAEREAEREAERKBZE3jttdfi+mNEIREBERABCOABB8FoQoYTMQr9lUlAfQFlgmsmu6mtaCYnStUUAREQAREQAREQAREQAREQgUYmIOOJBoATQ/fUU08NJ598cpzyrrvuCvyyZMSIEeG2225b6F2tZh271omACIiACIiACIhAYxLAzTNhkZDNNtusMYtWWSIgAk2YAMbtyDbbbNOEa6mqNQcC6gtoDmep/DqqrSifnfYUAREQAREQAREQAREQAREQgYWZQIuF+eCqdWzHH398eOaZZ+IYtFl5LrPMMuG3v/1tePTRR2O30VlptE4EREAEREAEREAERKB6BHyYjg022KB6GSsnERCBZk3gpZdeiuu/ySabNOvjUOWbBgH1BTSN81CLWqitqAXV/Hm2bNky/8Yit1QjjyKLUjIREAEREAEREAEREAEREIEfMYFFZs2a9f2P+PhLPvQ5c+aEMWPGhA8++CD06NEjDB06NHTs2LHkfLSDCIiACIiACIiACIhA+QRmzJgRxo8fH+hIHzBgQPkZaU8REIGFisDo0aPj4+nfv39o3br1QnVsOpgFS0B9AQuWf7VLV1tRbaKF8+P+4d0NoQ+tRYvSx3JVI4/CtdRWERCB5kpg1KhRYciQIRVXf0HFVa+44spABERABERABBZSAgvq2aywHSVeUK1atQqDBw+OfyXuquQiIAIiIAIiIAIiIAJVItC+ffswaNCgKuWmbERABBYWAmoXFpYz2fSOQ30BTe+cVFIjtRWV0Ct9X+6fzp07l76j26MaebjsNCsCIiACIiACIiACIiACIiACmQRKN/XOzEYrRUAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAERKB5EpDxRPM8b6q1CIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIhAlQjIeKJKIJWNCIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIhA8yQg44nmed5UaxEQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQgSoRkPFElUAqGxEQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQgeZJQMYTzfO8qdYiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAJVIiDjiSqBVDYiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIALNk4CMJ5rneVOtRUAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEqkRAxhNVAqlsREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEmicBGU80z/OmWouACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIhAVQnMnfd9mPLt7DBn7vdVzVeZiYAIiIAIiEBzINCqOVRSdRQBERABERABERABERABERABERABERABERABERABERABERABEag+gVGfTg23PDM2vP7hlPDplzOSArp1ahM2XmnxsNUqfcIK/bsm6xfWmX8/+Un49IvpmYfXskWLsFiXttGvTRjUu1MYsmSXzHRaKQIiIAIi0LwJ1Mx44vvvvw9fffVV6NKlS2jVqmbFlEXf6tauXbvQoUOHovK48cYbw0cffRSnPeaYY5rcMRV1EE040fPPPx9ee+218Oabb8a13HXXXcN6663XhGusqomACIiACIiACIiACIiACIiACIiACIiACIiACIiACIhA8yUwY9a8cNqNb4Yn3pqUeRBTps0K/312XPw7eKvBYY8NB4RFFslMulCsvO/l8WH0hGlFHcuAXh3Dzuv2C9uusWRoUSMoYz6fHt7+5Ou4PhivDFi8Y1F1ay6JHnh1QpgdeThp3XKRsPmIPs2l2qqnCIjAQk6gqlYNY8eODZdffnm46667wjvvvJOgW2eddcLqq68eRowYEXbYYYfQvn37ZFt65oILLggffvhhenWy3K1bt7DaaqvFv759+ybrG5r59NNP47rdcccdOXXr3Llz2GSTTcJuu+0W122RPA+5f/7zn+GBBx6IiznyyCMrMp748ssvw//+97/w0ksvhRdeeCGMGjUqDB8+PKy55poxo2233TZg2NGQPPvss+Hpp58OL7/8cnjyySdD69atw/rrrx9WXXXVsOGGG4aVV165oSyaxPYTTzwxnHPOOTl1GThwoIwncohoQQREQAREQAREQAREQAREQAREQAREQAREQAREQAREQASqQ4DQHMdc82p4Z+zUJMMObVqGEYMXDYt2bBM+mlinuCfB/937QcBDxR92XjG0b6OI8GMiPn++7d3wzLtfhBN/sWLo3K6q6rb4nLwxZko459b5urbjdlp+oTOegN+3s+YGrjsZTyS3oWZEQAQWMIGqtOZz584NJ510Uvjzn/+ceTjPPPNM4Iecf/754aabbgqDBg3KTHv99dcn3gcyE7iVSy+9dGyoseyyy7q1ubN4mTjrrLPCqaeemrvhh6VvvvkmYFDBb6eddgpXXnll6NSpU2baaqwcOXJkbKRhXiwsz6eeeirwQzCiuPnmm0Pv3r1tc850zpw5Me/zzjsvZz0L//nPf+If82effXY46qijIkvQpmsKyrWQNpzYcsstw3LLLcchSERABERABERABERABERABERABERABERABERABERABERABKpM4KI73s0xnDhk62XCjmv3yzGMmDVnXvjHIx+Fax+e75X7kTc+D9+Ht8IZewyrcm2aXnaPnrlJaNOqzkhk5ux5YdLXM8Nbn0wJt0XeOMwjxNMjvwhHXvVKuPyQ1UPLFk1XF9P0CKtGIiACItA0CdS1/GXWb8aMGYEQC2nDic022ywccMAB8TY8TpgQlmGNNdYId999t60qe4oBwtprrx2He8jKZN68eeGggw6qZzix8cYbh/322y9svvnmAc8TJrfeemtYd911C3q+sLTlTPEOgTcIM5ygbOqy9957xwYTlichLPCuMX78eFuVTGfOnBm233774A0nMCLhHPz85z8PSy65ZJL2+OOPD/vss0/AgKSpihnVUD88UEydOjXceeedYeutt26qVVa9REAEREAEREAEREAEREAEREAEREAEREAEREAEREAERKDZEnjxg8nhgdcmJvU/a8+VopAcS+UYTrAR44H9Nx8Uzt1neJL20ciAAo8IPzZp27pF6LtY+7DlKn3CFb9ZPRy+Td2gXrx3/POxMT82JDpeERABEVgoCVTseeLMM8+MvTYYnSOOOCIcc8wxYfHFF7dV8fS1114Lf/jDH8JDDz0U8Paw4447hjFjxoQlllgiJ51fQJGeDl/xxRdfBIwLjj322PD+++/HeW266aaxwUPXrl397uHaa68Nf//735N1e+21VzjttNNyDAwwsPjvf/8bh+0gIeFGNthgg/Dee++FDh06JPtWY4ayTXbfffdwySWX5Hi5oMxtttkmNq74/PPPY64HH3yw7RJPffgQVuBpApZeCJ1y2GGHxav+/e9/h1122aXJGiMQtsQEg5b0+bZtmoqACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACFRO4OanxyaZbL/WkmHDlXoly1kz6y7XM2w8bPGA4QTyyBsTw7AB3eolZRznKx99GV4Y9WUY/+W3YUYUkmHxru3icBObDe8dunduU28fVrw8+svw7qffxNu2XWPJaEBoCK9GBh4vfzgljJs8Paw/dPGww1q5Ydy/mjY73P/q+Di8yKSp34VuUaiRpXp2DJSzZI/8oeMzK1DGyl+s1z8euHrx3e/He195/+iw0zr9MsN3TJ0xJ7wcHc+HUaiPDyZ8E9pFRinL9O0alunTMazYf9F6Riv/e3l8+Gr67PDWx3VGKs+O+iJ8892cuKze3dqFTYflnrO5874Pz733RRgz8dsw+rNvwvSZc8KyS3QJyyzRKSzft1vo2SWbvR36BxOmRZ5Ivo7Ow9Tw+dffRSw7hYG9O4YRA7uHPosWDjNfyrkY98WM8PjI+dcRITsQptc/8bFVJWwencOeXdsmy5oRAREQgcYkUJHxxKuvvhrOPffcpL4XX3xxOPDAA5NlP4PHBYwUMBq466674k2XXXZZOOOMM3yyBucXW2yx8NOf/jSss846YaWVVgoYGWCMgdeIfffdN9l/4sSJ4Xe/+12y/Nvf/jauazqERYsWLeJwHRhNbLjhhnF+5MmxHHfcccn+lc588skn4fHHH4+zWW+99WLDjnSehB+55pprYm8UbLv33ntD2njinnvuSXb729/+Vs9wgo2cg0mTJsWGIiyTT1P15DB58mSqGBvbFDKkiRPpTwREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREoGwC386cGwg1YbL3JgNttuB0380Ghk8mfRun+eKbmfXSohT/w79eD6MjJXyWXHTXe2H/LQaFX248ILRIhRp/KPKCcecLn8a7rTZo0fD7f7wRK/Atn55dcpX3974yIZxx49u2OWd6RWTEcMCWg8OvNh6Qs74WCzuv2z8y4PgsvPeD4cfTIyfFnil8WU+/OymcdfM7Ycq0WX514vljQK+O4YJ9Vwm9utUZC2DcYnnaTk+8NSnwQ9Yc0j3HeGLM59PDGTe9nROGhXRPvT3/PHdo0zKcs8/KYZWBi7I6RzC6uDxidv1jY3LWP/POfN0NK4/feWj42WrZA6FLPRcffzEtXHbPfIMTX6BfN2yprjKe8HA0LwIi0KgEKjKeuOiii5LKEjIin+GEJWrbtm34v//7v8R4AsMLDBzSHiMsfaHpoosuGghLceSRR8bJ3njjjZzkeGTAqAJZZpllwllnnRXShhN+h0GDBsVhI8xjw3XXXVfQeAKvGISc4EfZK6ywQhx6Y6211qrndYNyfJgSb+Th68D8qquumqx6+umnk3mb+fDDD202EBoln/zkJz9JjCfGjq2zIs2X3q9/9NFHwyuvvBKvwhsE3jmeeOKJ8Nhjj4UPPvgg9o6RPtcYnNxwww1h5MiR4dNPPw09e/aMuRNOZODA3Jevt99+O9x3331x/hbChPAv559/flINPHBgTOKllDJsv1ofi5XD9YLBSpcuXcL+++8f8JDC+XvqqadiDymEVuEa2W233ULHjh1tt8wp+950003hrbfeCuPGjQt9+/aNrwsMkIYPHx5atcp/2xKi5ZFHHok9vHCu5syZEyibcDTbbrttaN26dWaZxaz8+uuv4+PBaIofYWcwYFpxxRXja7Fly5Z5s6m0Xt9++23M5KWXXgoYIhGeBhYYY8Gc65Vzjeyxxx6hd+/e8Txpb7755ngeo6U111wznk//TZgwIeClBdlkk02CDzXk03J9Y6iF15spU6bE52bYsGHhF7/4RaBNSgv1vuKKK8LcuXPj87/llluG0aNHJ9cGxkPLL798HKZnu+22K9hGkTfeaTge2gGuN/alzVhllVXC4MGD08XnLH/33Xdx3V988cXY60/79u3je/NnP/tZHP4oJ7EWREAEREAEREAEREAEREAEREAEREAEREAEREAEFkoCr0aeIUy6dWpTtJJ6YK9O4boj1rJdc6YYTuxz0XOxBwG/Ycnu7cOnX85IVuGdYfLUmeHo7ZdL1qVnTv73mzmGEyj+O7Sr6xPHS0XacCJdzhX3fRB6d2sTthiRrfBPl1nucssWiwQ8ZZz333fjLB59a2KO8cQTkYeF4yNDEC/9otAfLVu2iDxETI9XM9334ufDtb9dK/EOMbhPpzAj8hwxNuJqAoceP3iPWMwZk0z6embY4/xnLVk85bwuHnluGBcZu+DVgd9hl78cLtx/RFh9cI+ctCff8GbiUYQNK0UeRbp0aBV5/vgqOZ9n3zwy6uP+Pmy3Zl3YeNKWcy4W69w2wADxx2frWN+2dX5dA9slIiACIlBLAnVPnBJLQSloykZ2Pfvss4vKgXAe55xzTnjwwQfj9ITzwONDOeKV6yjsveDlwuSUU04pSmn8q1/9KjYAMKMLlKPdutV3PfXll1/GymIUqCb/+9//4lkUyhgaoCj3grHBAQccEK8qpGRGWW6SpehFEY6XDIS0/fv3t+Q5U58PyvdSBMX91VdfHe+y8cYbx545PF8U117+9a9/5Xj98Ntgf+qpp8aGLrb+9ddfz1lmPcwxhjFBEezPb6llWD61PhYr5+STT46NRmBDGJnVV189Md6xNEwJc3PjjTeGNdZYw69O5rmn9t5772TZZq666qp4FuX7P/7xj0xFPcYNW221VcDAIC2EiKFuGHOkz186bdYy9+kOO+wQH2PWdq4TQuRkeQ+ptF4YDKy99tqZPPFcQ7l4dTEvOPA34wmMc+y6gn3WPcXxvPzyy0k6WKWNJzD+OPzwwwMhcbKEbXh4oWwvGMIQYgjZZ599YmOWdJgd88QDQ86t1d3nQ/l4z8HbjBczQmIdYZFOPPHE6MW7/ovlm2++GV8bGCCl5c9//nPsmYZ7pU2bNunNWhYBERABERABERABERABERABERABERABERABEViICKBsNxnar7PNlj2dF/VdnnXLW4miHSX48T8fGob27xpaR0YCn0+ZGe57dUK4PDJoQG57dlxYd+hiYa1lF8ssE4X6skt2Dodvs2xYbskuUUiLloEyEDws/P7a15P9DvvZMmHLVZcI3Tq0jkOEPPbW54lhxWn/GRmFm+iQGV4kyaAKM2sPqTsOjEhMqPLfH/rIFsOeGw0Ie248IAnrwXk47aa3wiuRkQJeKZ4bNSlss/p83csfd56vX8Ibxzm3ztcHHRbxwFAjLTc9/UmyapXBi4aTdlkxMYiZOXte5FXig3Djk/PT3PvShBzjicnfzEoMJwivct6+K4dBvTvF+c2LPFJw3s68aWS8fMMTY8I2ayyReA0p91wMic7pf363bpznT058NL5uMAyxdcnBaEYEREAEFhCBFuWW670irLbaamGppZYqOiu8RWBswK9cwwkKw4jBxCscv/rqq9gjhG1jVHYx0q5du9i7AopUflmGE+Sz0047xSPPmcdYAoMGE4wAtthii/Dxx3XxmdiGQhOPAfzyecBAQeqVoyhT04Jy3ARPDYwmTwtGH4QdMdl8881ttuTpXnvtlaMw53j5mTDaP+1Jw/MgHYYF3tCmT58+sVcKPIJ4Ydl+HTp0SDaVU0ays5upxbG47ONZPJJwjswAB2Mhb6yAEQpeCvC0kRYMitKGE5416VGW490ETwleZs+eHXtc8IYT7Ev5JpSN9wmrm61vaMq9gLGHGdBwPHgG8QYGnCPSzJqV63qs0npxL2O0ka6zMcUYgDA+eFOopWAcljacSF/nnHc8U+ST5557LifMDvv78wtDM7RI54GRiG8b2O73ZRnvOngAwsuFF64V6uYNJ4yfpaMtNq87tk5TERABERABERABERABERABERABERABERABERCBhY/AlOmzk4Ma3KdLMl/uzNuffB1e/+jrZPdz9x4Rhi+9aGw4wcrFo3AUhOrYaZ1+SZrrH8/VnyQbopnl+3UJFx+4WhgR5YHhBGJhPi679/3ESOPXmw8Ku66/VGw4QRrSbrVKn3DMDnVeLW59Ziybaip4eDD5/Ks6fc13keHC0OhYMHigrgduOSgxnCB9z2i/3+841HYNr374VTJfykzHyCsHZey4dt9w1l7DE8MJ8mjbukX4zdbLBDxzIM+/X6dTi5ffqwvfsv1aSyaGE2xrEXnV2DoyTPn9TsvH+Y8Y2D1M/qbu2mmK54J6S0RABESgUgJlG0/4UBBbb711pfUoa39GSpt4LwVpxfKAAQMsWVWmKKhRxBMSALf7o0aNisMYmDEASkoLFVBMgYRWYGT4r3/96/DXv/413gWjkkMPPbTe7hgqmDEEI9YJz4GXDUbnv/vuu3FoA0I0EE4EwVMBiu5yBe8aKMkfeuih+Fg5XhvhT3koa01YP378+JgH6a655hrbFBsFWJ0wCiF0Bz9TQKPkt3VMOS6k3DKSgt1MLY7FZR/PouTH2wFeACZOnBh7B2H54YcfTgwZMELAw4AXwmBgBGCCEp36whFjmNtvvz0OkcF28sM7ghcMkh544IF4FaE0nn/++VhZzn3KtWVGSsxz7aYV7D6v9DzhWEwIs0O9CF1BGZxvykO47qmnl0rqRR3xBkN5CPcX1+G0adNiBhgqHHLIIfE2DA9qJbQzeFAx4Rg5J9z3GEnhEcKEc+iNFGw9U/MYQ0ghjGzYH88Ul112WZKMbZwjL3iBOf3005NV1157bXxtcW1wfvG8YXLPPfckXn1YN3369LD99tsndSKkCfcU1xDb4GYGNuTjQ+dYnpqKgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAgsPATwcmCyVM8ONlv29Im3JyX74i2if5488RKBhwEEbwtfRl4PsgTvC53azk/nt0+bOTc8PXK+sp989t5kab85md9hrb5RyIp28fIbY+qMOpIEVZ7ByMCOi/AYs+fOi0to36ZF+N0Oy4fjIuODfTZdOjEA8cUv2aN9su/IyAilHIEDZRAKpbMLb2J5EVpk2b7zB8Ry7j339i48xlufTEnqbvsy3SYyzCB/fj1/CBvSVM+Fr7fmRUAERKBcAmUbT3z22WdJmaWGhUh2LHMGbwuMxDZ392TjlfgoJE3wipHlxt62lzPFIIFR6N7bBWE6/u///i/JjtH6hQRPDEOGDIl/eFlYddVVwz//+c94F5TbKKfbt59vDejzad26dXzcV1xxRTzyHAU2ngxWXHHFMGzYsLDnnnvGymZGpf/pT3+KQ0Tk83Th8803Dz+U8htssEEy0r1Fi/mXDeEQzCPASSedFI444oiw2GLzXVRRPnXxHjC8kjhfeen11SyjsY7loIMOipXtiy66aHI466+/fhyyw1YQusQL4RZMUHBzfZs3F64PDJTs+iAdXggInYO88sorgesBQRF+5513xgYvXPece64zDADMuAcvAxjbFCso9E2oJ95TTDjfhCE5+uijw3777RcI0WFSab0wIvBhKW655Zb4OrTQEoR2QdlfS+MtPGkcfPDBdkhxaA7KM88oeFEhDNEuu+wSp8EwBv755Prrr4+9T+DlBuH8YDTFOTd56623bDb2UOLLp93Zfffdk7AtvXr1ive188+O3kMFhhcY5iCbbbZZfJ0MHDgwXqYtwdDqjjvuiJf5w3uFRAREQAREQAREQAREQAREQAREQAREQAREQAREYOEl0N4ZJnzlvFCUe8SjP/sm2XW5KNxGPiGEx0pLd002j/1iejLvZ4YNqB9Kne0fT5yWJOvUvnX49Itvw7hJ2b/WLReJ037+9Xdh6ow5yX61msFowqTVD/oTW/ZTwmhMmjorfBLVe+TYr8OLH0xOPGn4dJXMY7zx1bTZgRAioz79JrwSebR49I3Pkyznfp/MhhX617F+5p3JYe+Lng83Pz02fDxpevghUkpdYjfXlM+Fq6ZmRUAERKAsAnVa0BJ39wYKXknss8GjAorkQoJXhO222y4zyTHHHJOjqJ03b17s7QHPD3509wknnBBQYpr4cB4YFVRb9tlnn5x6Wf4YGJg8+eSTNps5NQ8F6Y3rrbdeHP7AFMTp7SyzL6PGCwmGFyjSzdChUNpC2/B00bVr3QuNpUVJzih3BEOJP/7xj7YpZ3rggQfGRhwolX2ol5xEeRaqXUZjHUs6jIkdng+5gtcBEzwImNcIWF566aW2KWc6dOjQ2LMDhg8o3c17hDciOvXUU3PChFgG3KOco7333jte9cYbb4Tll1/eNheccv7tfsMoCIW7F4wYCGuRlkrrRR1NMFDIqi8GInhMwIigFsJ9bAZCu+66a9h0003rFcM9hrGLecLBaCSf7Ljjjpmb8A6BYQUyevToJI33qIHHGdqeLMFDByFSaBd8uCHvAeeCCy4IGEykBcMt8oUjx4o3i3796lzopdNrWQREQAREQAREQAREQAREQAREQAREQAREQAREoPkSWLRjm6TyoyfUGT4kK0ucmThlZrJH/56dkvmsmUG9O4fnR80PHeE9IPi07Zw3BL/+q+l1niowivjFefO9b/s0WfPvT5gaVo1CTtRKvo08Ypjg8SLqus+Rd8ZNDfe+PCG8EIXIGBsZNNRCMMi44/lxURmTA2FUihVCqhy/89Bw9s3zw1GPmTg9XHjnfN0F3jQ2GrZ42DIKhUIIFTxsmDTVc2H101QEREAEKiFQtvGEeRig8EmT6twy+cp8H5mmXXfddX5VvfkBAwbkNZ7wo6nr7fjDCkJFHHbYYTmbvccGU/rmJKhwgTAW+QQFL+75Gyp37bXXTtz948L/ww8/DI8//nh46qmn4h/hO2677bbYa4AvC4MCjDQsBADbKHPNNdeMlacvvPBC7HmC8lHiEzrj3nvvDW3b1sXd8vk1NL/OOutkJsH1v0mXLl1yFL623qZmCIIBBYYt3bsX96JS7TIa61gwcsiSnj17Jqu9hwbvBWKVVVZJvBokid0MXg/Snha8lxOu/Q8++MDtUTfrPUag4MdjSTGyySabJKEzCLmCoh1PL1xznPt8Umm9vPEEXkPyCYYhdt/lS1Pu+tdeey3ZtRBbDLtM8AaTJXh+yOcFZ8kll0x2MWMNVhDCxoQ2I59gTLP//vvnbKZO6brkuza8UQXcZTyRg1ILIiACIiACIiACIiACIiACIiACIiACIiACIrDQEOjeqc54AsV+pfLtd3XGA53bF1Y5delQN7hr5py6PtVi6jBjZnkeJKZVwbtGofq9GYW7MOnTvU4Pg+eGW58dG/5yR91ASktXzSmeJY77+2tle7D42WpLhH6LdYiNL+5/pc7jPN40/vfShPjXb7H24aL9Vwu9ImMLpKmei2pyVV4iIAI/XgKFn2QFuDDa3GTMmDE2mzNFoUeoAK8oJkFDhgU5mRRY+Pjjj3M8TlhSPC6Y4KWi2uK9XKTz7tixY3pV5jIhNv785z/nbJswYUL43e9+F49gf//992P3/M8++2ww4wOUoYT0MMMJFMaE9/DnggxRjO+0004BYwWMMQ4//PA4zEhOYUUu5DsebzBDOfkMBtLFoJjdaKON0qszl6tdRmMcC0pwO1/pg+J+wLOEV46Txt8PK6+8cnq3Bpfhb2KeJWw53/TFF1/Mt6ne+lNOOSVglGPhH/BQwA/BqAGPDDvvvHO9e7HSevl7d7nllqtXL79i9dVXT+4Lv77S+YkTJyZZ+ONOVmbMEG5kxowZ9cLuFDJIsDAe6ex8+bQZpchXX32Vk7zY/TnPP/3pT3P21YIIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiMDCQWC5vnWepvE0MCsyYmjTan6o7nKOsGfXtgFPEMi4yd+GAYvn15F85EJvdO1YZ0hRTLldnMeMdZbvEY7dIXsQYzovb7CR3laN5Uder+tDXmPZ+WHNyfetyKjCG05sv9aSYY3B3UPv7h1Cp3atQufIkKRjFEJl2zOfDFOm1XnVKKVOnLvDLq8LIb/mkO5hixG9Q98eHUPXKLRJh6icTpFBy59uHRm8YUS6jOFRqBR+v9th+bjeb4z5Otwfecv49Mv5njLwmHHQZS+G/xy7TmgbXStN9Vykj0vLIiACIlAOgbKfiIMGDUrK827mk5XRDCPdGTk9bty4nN8ll1ySJMsKCWEb8cgwa9as5IciEeWzST4FsB/hj2LahxixfZviFKMMPEXYKHuUsHiNMBk5cmS477774kWU9BhGpA0n2Ij3Aj/iHKVvtRk0FDbE6pyeTplSZ4WZ3pZebowyKLOxykkfny3PnFnn1qzQ/WDp01Mfpia9Ld8yoUKKlR49eoT7778/nHfeefVCZ2DgQHidpZZaKt7u86y0XhgTmfhQFLbOT6ljLWTatLo4eqXkT9tVDfnuu/kfHeTl275i8v7222+LSVYvTSn3aL2dtUIEREAEREAEREAEREAEREAEREAEREAEREAERKBJE+gbeREY0KvOwOHB1+q8DRSq+PPvTw7rHvdQ/Dvkb3WD88wbAft+7IwjsvL6YEJdf2vPLnVeGrLSptct1rku/VfTZgeMNor5tW1dthosXYV6y6M+/Sbc/eL4ZP1GK9YN7H3x/fnhSdi46wb9Y8OEDVfqFYYs2Tks2aN96BIZNcyYPa9swwnyffPjOn3LoD6dwvn7rBIZTywRVujfNfTt2SF079wmNoz5ZFJxfcXto1Adqw/uEfbbbGBsKHH+fisHwncgGMi8O3Z+SJCmeC7iSupPBERABKpAoGzPEwMHDkyKf+CBBwKjnHGfX4w89thjSbIVVlghmW9ohvxPOumk2DsDafHSsOWWW9Yb6Y9hAd4nbEQ/4R/WW2+9hrJvEtvxWoB3CRt1jwHFdtttF9ftueeeS+q42267FVSmcvy77LJL7MWCnTCmqOZoch96gzASl112WVK3QjMNKcH9vo1RBuU1Vjn+2Py8D4HjwzT4NIXm+/btG3sZIc3TTz8dfAiIfPvlCx+RLz3nDQ8m/EaNGhXwiPLQQw8l1xf7/eEPf4jbgP322y/OptJ6rbrqquGjjz6K8yLcBJ5W8kkx3AgjlE9mz56ducl7sTnnnHOKDnXiz2lmxkWu7NWrV5KSdqxYry3s5K9rlvN5CGKbFx/2yK/XvAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIwMJBYOsoVMNl97wfH8yFUViJtYYsFnpEivZ8Mm/e9+HSH9KTZpd1+ydJ2feRNz6Pl+9+eXxYPzIgaBF5YU7L2598HUb/YDzRLQodMrBXp3SSgstLRx4t2A8vDe+MnRrGRd4QMATJEowFvv52vjeHZZfoEmphQDHhy+/Cyf9+Iyl+lcGL5njdeOPjOs/AW6+6RJLOz7wyuvhBjl9MrRuEaXmMjDiY7LBW35CBPWBoAq8sGfP59DBn7vfxfpwPvz/ncK3Ik8aO6/QL/3psTLz76M+mheFLLxqqfS4IEfJdZEjSroaGLlnHr3UiIAIikEWgbOMJDBlGjBgRu/InDAHeJE488cSsMnLWEXqCUewmhRSilsZPDzjggHDhhRfGymIUq1dffXU4+OCDfZKogV8kYFxw0UUXxetJU4zxBMYWKHxNGJ1f6mhv2zc9xdDjk08+ifO78sor4zqm09hyly5dbDZ4DwGmSGaj966RJE7N+PAihDippvi84bbEEtkP/0rKbIwyqF9jlZOPhTd28AYy+dKn13PNmqcRvD0QwqKWMmTIkMCPECGEnjn55JPDtddeXlf2JAAAQABJREFUGxd50003BW88UUm9CGFyyy23xPkSqqZQW4ExR5Z4I5FC3lfyGRb4awO2tbjOs+pt6/y1QcibUoQwNT5MTKdOnYJvW0rJS2lFQAREQAREQAREQAREQAREQAREQAREQAREQAQWHgI/jxTidzw7Lg7LgOL6N5Enib/st2ro071dvYOc/M2scO5/RyaGD4t3bRfWX6HOw8K6Q3sm+zzzzuRw3aNjwt6bLJ2sY+bLKI9j//F6su6nkfFGixb1DSySBBkzpN9+zSXDtQ/PH3B31NWvhMt/s0ZYtFNu+A+8Qez71+fjHPCacNdJG2bkVv6qGbPmRcYinwWMTmCHUM4ff547UHhw7y7hxffmG1C8P/6bMKh3rrHIR1HIlHNufbdgRTpH3ilMnhs1OewbeYTwMtB5EHln3NSwg98YzX/z3Zxw0g35+5X/eveo8Pyo+R4yDvvZMmHX9ZfKyWFeNCBx9GffJOsWi7x9INU6F4tGxjDf/hAa5M3I2ASvFxIREAERWNAEKvJXdO655yb1P/3008OHH36YLOebOeOMMwLGFgiKQa+czLePX8+o6DPPPDNZdcIJJ8ReL5IVP8z8/Oc/T1Zdf/314fHHH0+W88344/nNb35TNcMJykPx+t///jdcd9114cknn8xXhXj9gw8+mGwnHIKJn7/jjjtsdeaUUfameCZB//51lqCZO5S4EkW2jcrHS0a+0C1k+95778WeClBwlxJKoDHKoH6NVQ5lZcmyyy6beIv49NNPw//+97+sZGHOnDlh++23jw18MJgwzyqbb755kv62225L5tMzsOcc8OOcFCNct3g/4UfYnLRw/+KRwcQ8prBcab2GDRtm2cbhbObOnf8imqz8YYb7ytqU9DYfXgjPDfnk0Ucfzdy08cYbJ+vvvPPOgtfvCy+8ELPNF04oyaiEmU033TRJfeONN4axY8cmy36GECd48eG62GSTTZJN22yzTTJ/9913J/PpGfa3a+Ozz4pz05fOQ8siIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIALNg0DbVi3CH3cZmlR2bOTF4efnPBXOv/3d8PibE8MbY6aE+18dHy6794Ow67lPh6fe/iJJe8jWg0JLZ/jQrUPrcNT2Q5LtV94/Ohx25cvh309+Eu57ZUI4L8pzrwufS8JT4D1ir40HJOlLmdln04Fh7eXmK9g/jZTue/7l2XBBZMTw8BsTwwOvzi/LDCfI91ebLl22N4OL7hoV503+/E678a1AuJLNTnwknHXzyBzDidP3Win0XjTX8GT1Zbsnh3b6jW+HM256OzwUhUiBL1wPuOSFhEmSMDXTZ9H2yRo8d/zmipfCLc+MDa+NmW+UMXxgXRn3vDg+HHXNK+G/z40Lz476IvzjkY/C/hc/H175oM4DRpLZDzM7rd0vWXXx3e+HC+8cFZ546/PIYGJaePqdSeG3V70Snn13vncMDES8cUM1zsWA3nXhY/7wjzfi8u95aXyY8YNRSlI5zYiACIhAIxKoyHhiww03zAkFwYh3r/j3x4HHCbwvYDxhctVVV9lsSdNf/OIXySh0lKaMfk/LmmuuGX75y18mq3/yk5+Ehx9+OFn2MzNnzgynnnpq+Otf/5qsPvTQQ5P5aszsvvvuSTZHHnlkIAxBlmDo8e9//zvZtMUWWyTzXin6zDPPhOOOOy5khRtASf7rX/86CeVABmuttVaSTzVmGNFPGSaE7jBlvq1j+uqrr4YVV1wxcK387Gc/C4VCJ/j9mG+MMhqznPTx2TKeUjxLwrZ4LyOW7vzzz48NK+DsDT4Ix2IeUv7+978nHldsP6ZcJxgEcR74FVKk+/0I0UH4DH5cQ1neG7whhvfcUmm9VllllaQqhAY666yzkmWbwSCC9iCfYNxhbO67777w1ltv1UuKtwy2ZQmGLbQlCN4vfvWrX8VGLOm0eJPBuw1sMSSrlmAwRZ4IbR3H+t133+VkT9u6//77h/fffz++B73BxR577JGkxVMIBhJpwbvNZpttllwbeMjxcs899wTaT0K2yLDCk9G8CIiACIiACIiACIiACIiACIiACIiACIiACDRfAoRfuOzg1WKvCXYUt0XeKP7wrzfDwf/3UjjtPyPD9Y+NSYwEMHq45KBVw09W7mPJk+kOa/YNv1i/bgAnCvtL734vYDTw3yhPQm0g5PGX/UaEzu3qPCokmRQx06rlIuH0PYaFZZfsHKcm31sjY4KTrn8znPqf+WVZNttFXip237BucKqtL3Z6+3OfxnmTP7/7X/ksvP7R1zm7U4+/H75mHN4iZ0O0sMrARcPmK9eFZb735Qnh5BveivkaV4xIYJJPll2ic1hpQLdk82ujp4S/RIYc10WGEUinti3DEdvWGa7gReK8/74bjrnmtXBFZMSCUczwpbuGjYfVeQpJMotmCLmy9Wp15/Pmp8eG4//5RvjlX54Lx177emJ4sWT39vG5bx8ZUJhU41zsFHlAMcGLB+VjmPLBhDpvF7ZdUxEQARFoLALlPaFc7f70pz+FJ554IlbsodxDYbrDDjvECsfhw4fHo9VR2D3yyCOxcs92JfyGV/LZ+mKmKNUZ7b7tttvGyc8777xYebj00rmuoM4+++xYKWpK/a222iqg5EcBiSeGSZMmxcrUm2++OVaMWtnUzY9Yt/WVTFGALrPMMjEDRvEPHTo0HHPMMQFGKHhRUuMdA0WuCQYcKMlNBg8eHBugmLHIX/7yl9iLBUYJ5N26devYQwAeJ1D0msBnscUWs8WqTf/4xz+GV155JWaMsh9lNx4/1l133VjBjIHH5ZdfnpSHsQehBEqRxiiD+jRWOfmOHYMavJLAkftotdVWi1lyj4wfPz489NBDAQMCE9Kb4AGEc26GNhgpYSiE1wSU/3iE+dvf/pbcfxgT7LPPPrZ7wenaa68dVlpppfi6wisG9/eee+4ZG1KgtH/66afD73//+yQPFPQmldaL/bk3d9555zhLjBJoa7iHu3fvHs/ffvvtVlzeKR4wbr311ng79yHnmvvvq6++iplisFRIuCcxDKMdweMLxhR4dMCghDYEjxTeWwjXeTWF8EOEMEHw7EGbwX3GNUIoD8rGSMkEQwoTjB5OOeWU+Mc6jn/XXXeNrw1CL2FMQjvCNYdgRLHGGmvE8/x9/fXXcXvOPO0T1473/MN6iQiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIQPMkMDxSzF931NqR0vqTcGPkKSJL8Diw3tDFwmE/GxK6d85W9BPG4fCfLRtGDOwWrn/8k/Bm5LnCC3lsu9aSUViIAaFnl/p5tHDDfFu1cgs+kx/mUeCfv8+I8K/Hx2TWefl+XcI+my0d1hnSMwqfnpFBgVVtGiibkCV9urcNQ/p2DVus3Dss17dL3txat2wRTtx1xTCgV6eAIcbnX9cNisNg4qAtB4WfrrpEbJSRLxO4nrXnsHBX5I3h9sgIxedh++y8br/I60XbcOUDHyahVWzbLzcZEPbaaOlwcWTIkiV4EPnjziuE9ZfvGf4eGWS8F4U88YLRxBpDeoSDtlomNtTw25iv9FysuUyPcN6+K4fbnx+X492kRaknLl0xLYuACIhABQQWmTVr1vcV7B/vinKXEdnFhMZgh0MOOSRWwGUp0lFIYlyATJ06NbRrl+vqKN7wwx+KQSsTZaL32GDpqBuKTsvT1ueboqg86KCDoodq7lMVAwVTXqNobNu2bWYW66yzTqzgZGPENicNylqU1l7RmpPALWCUctRRR7k1dbNXX311OPjgg+tWFJhD8Uuoh1KEvCkDYTS7DxeSzgcWKFy98jadhmU8K1xyySVRLKzcF58hQ4bEBgMoyseNG5e1a6zYLbeMxjoWDHcwLiAUTZbXCDuwHj16xMeDQcLLL79sq+MpBjQYBBXan4QYz/z2t7/N2ZeFG264Ib4P621wK1B+P/bYY7FBhFtdcBYjmF122SXTs4jf8eijjw6nnXZabMTj11daL4wmCnlzwHAIQ5ErrrgiLpbwGWZswAoMHDbaaKPEeMTXzeYxODGjJK5TDKi8jBw5Mqy//vqJkYHf5ufx/OG9PeDFAaMnhHvfGxP5/TBiME8bGMb4UCiku+uuu8JOO+3kd6k3z7nFiMaHGrFEtLkNefoZMWJEbAiFUYUJ17Q3SsODzrXXXmubNRUBERABERABERABERABERABERABERABERCBBUqAPlX6mCuVPf7yYlFZXH/k6kWla46Jvp05N3w0cVr4bMp3YdaceaFbx9ZhcO/OoWfXbF1IoWP85rs54fMonzlzvw9dorAePbu0DXgqqLaQ/6SvZ4apM2aHdm1aREYE7QMhSZqifPnNrDBp6syIa5uIaZtQqoHAvChU+7Tv5sYGIRijYPiQlhmz5oVPJ08PbVq1jIw82gUMOEqRufO+j/afEZ//JSLDiQ6RZ4tipdJzMXP2vDBr7rzQMtLNlVJusfVTOhEQgeZHYEE9m0trOfNwXWKJJcK9994bh77wirZ0ckZKM1L9wgsvzOuBwBsl4GGikOBZwgSlIQrOtFA3lMXnnntuQEGfTxiR/dxzz8VGCWnDCfZp1arOSUdD9cpXBkpJRsBTbwsF4NOi/MTQg9H0+QwnSL/ffvuFp556KlamoqxPC+cAJSej0ks1nCAvf3xt2rRJZ5+zTJ0ZeZ+lzCch55zjufTSS+sZTrDdc2U5Syopo7GOxTh16NAh6xCKWsdLPvfHsccem4SasB1hgFL8/vvvz8t6t912i5Xn+a4tDAS4RzDcKEUwCHr99dcDXiWy7iHCVXCOua7xfpKWSuuFpwi8p2SVzXXH/d2tW7d0sclyz5494/Zpu+22q8cVgwH2x8NGIcFTBd488hkwsB5jGG84QX7++mvfvi4+XaGysrbRLmCglM6ftHChfLzAZBlOkIaQRBhkZLUXrLv44otjDt5wgv3YhlGMzR922GHxvP5EQAREQAREQAREQAREQAREQAREQAREQAREQAQWLgIorFfo3zVsOqxX2GqVPmHtKKRDOYYTUCEsx6DencKQKKxFn0Xb1cRwgnIwyMBIgHKW6tmxyRpOUFe8dlDPXt3almw4wf4YW3Rp3ypmm2U4QZr2kQHJ4D6dQ/+eHUo2nGB/8mXfwX06lWzAUOm5aNu6RXxsMpzgTEhEQAQWJIGqeJ5IH8CUKVNid/Bjx46NlYeEDuBXiWI5XUY5y7Nnzw5vv/12oF7m1QJFMiE6vJKznLzL2WfOnDnhvffei0ObYPCAh4csw42G8p48eXKcD+lQ8nbt2rWhXWqyHb54+vjyyy/jc01olEoUxlmVbIwyKLexysk6RtZxbcCSc4thwIABA0q6NjgHeA2YO3du6N27d+jVq1dJ++erF+vJG48KXbp0ieuV9ibS0L7l1gsmEyZMiLkQhobry4w1TjjhhNhAirLTnid8fb6PrHNHjx4dZsyYERsGEP6jVJk+fXrMdtq0aQFPIhgYFGMEVGo5+dJ/++23MQO8vmAcxrktVgi1MnHixNgbB21Nv379ChqeWL4cM4ZtjXmcVramIiACIiACIiACIiACIiACIiACIiACIiACIpCPgDxP5COj9SIgAiIgAiLQvAksKM8TNTGeaN6nQrUXARFobgSKNZ5obsel+oqACIiACIiACIiACIiACIiACIiACIiACIiACOQnIOOJ/Gy0RQREQAREQASaM4EFZTxRlbAdzRm86i4CIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIvDjJiDjiR/3+dfRi4AIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiMCPnoCMJ370l4AAiEDzJ9CqVavmfxA6AhEQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQgQVGQMYTCwy9ChYBEagWgRNOOCFMnjw5/q200krVylb5iIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAI/EgIaLj2j+RE6zBFYGEmgOeJzp07L8yHqGMTAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQARGoIQF5nqghXGUtAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiLQ9AnIeKLpnyPVUAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREoIYEZDxRQ7jKWgREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREoOkTkPFE0z9HqqEIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiEANCch4ooZwlbUIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiEDTJyDjiaZ/jlRDERABERABERABERABERABERABERABERABERABERABERABERABERABERABERCBGhKQ8UQN4SprERABERABERABERABERABERABERABERABERABERABERABERABERABERABERCBpk9AxhNN/xyphiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAjUkIOOJGsJV1iIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAk2fgIwnmv45Ug1FQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQARqSEDGEzWEq6xFQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQASaPgEZTzT9c6QaioAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAI1JCAjCdqCFdZi4AIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAINH0CMp5o+udINRQBERABERABERABERABERABERABERABERABERABERABERABERABERABERABEaghARlP1BCushYBERABERABERABERABERABERABERABERABERABERABERABERABERABERABEWj6BFo1/SqqhiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiKw4AnMnjsv/Pvxj8Nbn0wJ26/VN6y7XM8FXynVQAREQAREoCoEZDxRFYzKRAREQAREQAREQAT+n737gK+izB4+fkhIQkJ6SKcGCL2DgNgQBVQsuCgqFlAXd/2rq66vuupaVtfVta+rC9Zdy7IWFBVFFFFBeov0UAMkQBICIQlJIBDeORPu3JJ7b24qhPye93O5U5555pnvTNz3859zz0EAAQQQQAABBBBAAAEEEEAAAQQQQKC6Aj+uyZblW/abh43unyi92kX6NMSx8uPyj5mb5KgRzKDtrjFdJCig/hOu/7I+V96YvdU858INeTLnyfMlOLD+z2uekH8QQAABBOpVgOCJeuVlcAQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAU8CpWXlMmNxlrm7oLjM5+CJtIwD8umCXeZx3dqEN0jghJ6s5Mgx85y2f46Wa/DGqRM88d2qPVJ27LgE+DeTkf0SbdPkGwEEEEDABwGCJ3xAogsCCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggEDdC5zbI06eknXmwHNX58gD445JaJB/lSf6IS3b6nPJwCRrub4Xzu+dIL9uz5cNmQVy9VltJazFqfWq7bnPNkqxEeAREuhP8ER9PwyMjwACp53AqfVf9NOOlwtCAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBDwJBBiBEqM6p8gs1fuNbssWJ8to/p5D4Y4crRcvl9V0V8PGt473tPwdb69hVEa5E/jutf5uAyIAAIIIHDyBU6dPEIn34IZIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIINLDARQPs5SW+d8go4WkayzbnmdkVdP+5vWIlMiTAU1e2I4AAAggg4LMAmSd8pqIjAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAXQv0T4mWyNBAyS86Ios25smBojKJCvUcEPGdQ9aJiwdUzlJRUHJUVmzJk23Zh2TLnkJp0dxPOreOkM6JLaVn2ygJDqz82+IVW/fLxqxC89IuOyNZjh8XWWWMsWJbvmTmHZKzu8fJ2CGtpexYuUxfuEuOGfvbtAqWc4ztru1Y+XFZvGmfZGQXy9a9hXLo8FFJTQqXzkmh0q11pMSGB7oeIofLyuXzxRXjpsS3lKFdWknmvhJZveOApBllQg4WH5EOccbxyWFyTs94adbMPoT2+3l9jrlBS3Zo0+8P5+0wl/WfkX0SJDYiyFrXOf6akS+bsgok3ShBUmpk8+iUGCYpcS1lsHFuzQhCQwABBJqaAMETTe2Oc70IIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAwCkk4O/XTC47I0nem5thzuqntdlmoIK7KRYfPiZzfs02d4UE+svg1Binbgs25srTn2wwAzEcd3x3IqNFeyMw4cWb+0t8pD2QQPvNMfZ/uTTLPGRgxyh58D+rJedgqTVEbHgLc7nkSLm8OnOzuTy8d1yl4ImMnEPy1MfrZMOuAutYXfhl3T5zXef87KS+0j8lymn/fiNwxDbumEFJosEND/z7V6c+tjH6d8qUx6/pJTFhFUEYO/YVyetfV8zJ8QDHbb3bRVjBE/nFZfL4tNWybNMBx+4yb22uuR4X0UKeur6X9Ggb4bSfFQQQQOB0F6gcWne6XzHXhwACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggcEoJXNg3wZrPbIfMEtbGEwsLNlRkWNDVMYOTJcDf/qprnpF94f53f3UKnNDsEBowYWsZRjaKm19dIrkFR2ybKn0/9t81ToETGvAQ0qLq3yPnHjwsE15Y5BQ4oRk1Uo1sETqGNs0IcefUFbLMyGrhqa3dedApcCI5Otg6Xo9ZueWA/HNmunV4q7AgMwuGXqtj03XbJyig4vylRoaLSS8vsQInzACULtHSv5M9mEODRia/tszImlHkOBzLCCCAwGkvUPV/6U97Ai4QAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEDgZAqkxIeaQQabjNIZa4xyEnv2l0pidEW2B8d5fZe211od5RBwoWU23p2z3dp3/Xnt5frh7SXsRNCDBjb85eO1ZuCBlgdZnJ4rlw5Ktvo7LuwyymBowMNdl6ZK1+Rwo8yHv5TrCapoHy/YafXQYIRHr+5pZXvQshxTZ2+Rj+ZX9Jm1fI8M6uScNcN2sAZ4aHtqQi8Z1j1WAo2yI3p6zYzx9882mPs0k8aE8zoYpTZCpYsxx//9v2Hm9gv//KMZoKFBEbZt5o4T/yxN32cFhgxKjZInru0jESEVrwsPG6U7/vFVusxYXJGB47NFu+T/je3meDjLCCCAwGktYA/HO60vk4tDAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBA4lQW0XIWtzTVKd7i2A0VlsnBDRcYGzajQtXW41UUzKnRvE26U/0iWW0d2lNtGd7QCJ7RTbESQPHhld6v/qm3OJSusHcZCN2OcV28bKP06RJmBE7rPr1kzxy5ul1sagRp6/iuHtpanb+hjBU5o56AAP/m/izuLZpHQtmTzfvPb0z9/MQInhveONwMntI+e/nIj08ao/vYMHdv2Fno63OP2+RsqSnNoh4kjUqzACV0PMoI07rq0i9x8QYp5HYEnslXoPhoCCCDQFATIPNEU7jLXiAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgic4gLn90qQF2dUlKP4ZvlumXBOO6cZz1tnL9lx6eDWTvuCA/2qzJKQHFNR/kJLZ6w3SmN4apqRIjSoosyFpz7utk88v4O7zdY2f79mkto6TLL2l5ilRfYXHpHosEBrv+PC8J5xjqvW8nk94mT2yorsG1lGdo7qtuBA+6vB1dsPSt/29nIdOpYGUNxyYUp1h6U/AgggcFoI2P8LeVpcDheBAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCDQGAWiQgPkrB6t5Jd1+0RLV2zLLhIt52Frs1busS3KBb3tGRisjS4LWiqjoOSolBw+KkWlZXLI+NbAiapa7/aRVXXxaX/ZsXIpKjkmh0qPmufW8/+42h4AcsxDJRAtp+FnBFq4a7GR9lImOm51W58OkTJ94S7zsKnfbpHVGQdkVL8E6ZsSI7Hh7gM5qnsO+iOAAAKNVYDgicZ655g3AggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIHCaCVzSP8kMntDL0kCDlAsrgif2GFkW1mTkm1erwQXxkUFur3xDZoHMWrFHlm7aJ7v2lbjtU9XGFrUoV5FbcES+WJJpnD9P1nnJbuFtDvERFaU93PUJNDJD1KZpRotLjPIoXy/bbQ6zaGOe6EeblhTRUiFaGsQxaMXcyT8IIIBAExAgeKIJ3GQuEQEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBoDAJDuraSkEB/M0PETOMF/80XpEgzIwnDjw4lOy42Aixc23Eji8P0RbvkpS8qyn647m+I9ZXbDsgD76b5lN2iIebj7hya0eLBK7vJGZ2iZeaKLFm26YDVTcuJfPBThvkZ3jtOHh3fU2obrGENzgICCCDQCAQInmgEN4kpIoAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAJNQUBf1l80MMksLZFzsFTW7zooPdpGyLcrKjIlqMHZPeIrUazdme8UOHHFkGQzQCAhOkRCWzSXsJAAaRnkL5f9db7kFx2pdHxtNxw5Wi53Tl1hDTO4S7RZDqN1TEuJCA6QEGMOocHN5Znp62X2yr1Wv5OxoAEUF/RNMD+aKWOtUbojzcjq8Y0RrGIra6JZPwL81slj1/Y6GVPknAgggMBJESB44qSwc1IEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAF3AqP6JZjBE7rvh9XZEhLUXLbuKTK7asmJ4MDKpSuWbd5vDXXNOW3lzktSrXXbQtHhY/USOKHjr9lRUVJElzsmhsoLk/qbGTN03bHtzC12XD3py7HhgWapDi3XcftFneXLpVny8pcV2Tu+S8uWB6/qIUG1LBVy0i+SCSCAAAI+ClT+XxcfD6QbAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAnUt0L1NhCRHB5vDfrUkS75L22OdYnT/RGvZcWH1Dnv5iYsHVC7roX1Xbs1zPKROl9fvKrDGGzuktdvAiQNFZbLBoZ91QD0saAaJ0rJyp5E1O8YWIwhFP1l5JU77dCUowE+uGtZGUpPDrH27TrFgD2tiLCCAAAL1IEDwRD2gMiQCCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggEDNBJo1E7lscLJ5sAYBvDc3w1yODA2Uvu0j3Q7aKSHc2r55d6G1bFvYnn1Inp2+0bZa598p8S2tMTdk2gMpbBsLS4/Ko9NW21br7TvKMLK1NQ4BJbqt/LjI719fJje9vFiu/vsCp2wZtmOKjewcmQ4BEzFhQbZdfCOAAAKnvQBlO077W8wFIoAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAKNS2BE7wT516wtTpO+0sjo4OdnRFa4aYNSo2XavB3mnic/WifLt+yXIakxEuDfTNZlFsrnC3eJBmLUV+uTEm0N/fWy3bKvoFTO7h4nCVEtZFNWocxasVt27auc7cE6qI4W2ie0lKz9Fed56D+rRcucdE4Kk/ONshzBgf5yuWFoc7r3rVVy3XntpXf7CAkLDpDt2YUyZdY2y+nMbjESFRpQRzNjGAQQQODUFyB44tS/R8wQAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEGhSAonRLaR/pyhZucVejuPCvgkeDfqnRMnIvvFGiY9ss8+sFXuMgAV7uQ/deMPw9vKVEdiQX3TE7FOX/4QG+cvdl3WRl79MN4ddkr5f9OPY+nSIkGgjk8OPq3McN9fp8m/ObCML1u8zx9RgkU8W7DKX28aGSK92kTL+7HaStv2AWT5E97/13Va35x/cJVr+9JsebvexEQEEEDhdBSjbcbreWa4LAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEGjEApcMSLJm361NuGgAgKcW4O8nf76mp0we1VHiIlo4ddNyHw+O6yaTR3aUQKOfu+bnsLl5c4cVl85aUsTWAl36XTWsjTxzU2/pmBhq62J933h+e3l+Un8Ja+E+k4O/w8BBAf7WcdVdGNw5Rp6/ua+c1aOV06F+J8aPDQ+UqbcPkttGd5Lk6GCnPrqic79jTKo8P7GfEehhLwFSqSMbEEAAgdNQoNmRI0eMCkc0BBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQKDxCKSnp0uXLl1qPeEJLy3zaYwP7xnkUz86nRoC+wuPSG7BYYlsGSixEYFiCx5oqNmVHCmXrLxDEtjcXzSLhgZ3NHQ7XFYuR46ViwZmhBiZMdw17ZO1v1iaGf8vOSbYmG/Dz9PdvNiGAAJNW+Bk/W8zZTua9nPH1SOAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACp52AZk04mZkTggP9pFNi2El1DQrwE/14a7o/Jb5ypgxvx7APAQQQOF0FvP8X83S9aq4LAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBA4IUDwBI8CAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCDRpAYInmvTt5+IRQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAgOAJngEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQaNICBE806dvPxSOAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAwRM8AwgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCDQpAUInmjSt5+LRwABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAGCJ3gGEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQKBJCxA80aRvPxePAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgRP8AwggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAQJMWIHiiSd9+Lh4BBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEECJ7gGUAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBJi1A8ESTvv1cPAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggQPMEzgAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAJNWoDgiSZ9+7l4BBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEECB4gmcAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBJq0AMETTfr2c/EIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggQPAEzwACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIINGkBgiea9O3n4hFAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEECA4AmeAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBo0gIETzTp28/FI4AAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggADBEzwDCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIINCkBZo36avn4hFAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBJq0wJy0vfLtqj0yqHOMXD2srTRr1qQ5uHgEEECgyQoQPNFkbz0XjgACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgic+gIZOYfkkwU7zYkO7Bgtw3vH19mks/MPy2PT1prjLdqYJ11bh0uf9pF1Nn5dDLQj95B8/EvF9fs63tghbaRTYqiv3emHAAIIIGAIEDzBY4AAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIHDKCuQVHpYZi7PM+bVsEVCnwRNlR8udrru07JjTem1XCkuPyry1OeYwCdEtZEBKdLWHzMwrtq7f14PP7NaK4AlfseiHAAIInBAgeIJHAQEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAoEkKtG4VLLdf0llmr9wjAztFyyAjs0VdtryCw/L0J+vNIUf2ja9R8ERN5hNqBJnQEEAAAQSqJ0DwRPW86I0AAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIHAaCUw4p53opzG0Wy5MkZsvSGkMU2WOCCCAQKMT8Gt0M2bCCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAHQqQeaIOMRkKAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEDg5AgcPlou89Zmy7qdBbInv8ScREJksHRvEybn9UyQoAD3vyn+Pm2P5BQckUB/P7lqWBtr8pm5xfLzhlxzfWiXGGkf11I2ZRXK6ox8Wb0jX/ybNZMOCaEyyCj30aNthHWcLqzYtl82ZhbK/sLD1vat2Yfkw3k7rPWGynaxYqsxF2Pe2i47I1mOHxdZtSXPmGO+ZOYdkrO7x8nYIa2teenCdmOuc9dkS2buISksPSpxES2kU2KoXNgvUcJaeH+9WG6cYFH6Plmx5YAxfrG0DPSXlMQwOb9XvCTHBMuBojL5ZuVu83z9U6KkW+twc7m8/LhM+2WnuZwU1UKGG/3dtWNGv88XZ4re77ZG2RWdv7um55m9ard5LbkFpRLZMlDaxbaUC/okmPNwd4yrlT4Ta3ca9zvjoKzflS/RoUHSPj7UeJ7iJNGYo7eWX1wmc9L2yra9RZJzsNQ07Gpca2pSmHQ2Pv5+zazDS8vKzWtSu+jQQLmof6K1z3Wh6PAx+WJJprk5MiRALhmY5NqFdQQQqKGA9/+61XBQDkMAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEECgoQT0Zf2jH6yR4iPH3J7y+cB0eXxCTxnWNbbS/vd/2iFb9xRJiPGS3zF4Yn3mQXn9681m/1ZhATJrxR7578/24Adzx6/Z8ubsrTLOCLq4a0yq9UJ8afp++eCnDKdz6Tls4+mOhgqemJOWLV8uzTLnMrBjlDz4n9Xmy3zb5GLD7UEAGljxwhcb5fNFFS/nbX1s3y/MSJeXf9vPCBiJsW1y+j5sBAHc+cYKI4DloNN2MeYwZdYWuf3izpKS0NJyuPuyLlbwxDHj5DafwV2iPQZPFJUek5e+SDfHP793nNvgiVkr98hTH61znsOJtTeM+zV5dCe5aXj7SvsdrYZ1bSXPTN8ga4xgGdf2z5mb5OGru8vFA9wHLmjQxl/+t971MCPooeI+DO0aI49d28sKRNE4ine+22o9v8O6xUp4sPvXuAvX51hOjs9rpZOxAQEEqi3gPsSu2sNwAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAINL/Dj6my5750068WzziDS+PW+fmxNgyruf/dX+cHoW5P2yYJMK3BCgyw0E4Nj+3TBLvl6eUU2Bd2eGN1C2hhZEbSvY9Ntto/j9oZafuy/a5wCJ3R+IQ6ZJN77cXulwInk6GCn6d395iozm4PTRmNFAy+e/mRdpcAJx+Nf/2azmWHB9di6XNfsEa6BE45z0HO98e0WMyuFt/M+9fE6K3BCnyXXe/7Xj9fLtuyiSkMs2ZxXKXDC9TlYtDFPbnllieQaGU+0BTb3k0sHJ1tjLTiR8cTa4LDwg5ERxNZG9kuwLfKNAAJ1IOA+ZKkOBmYIBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBOpTYH/hEeOFvf0X/sONTASTRqRIilFaQdv2nCJ5d842mbs6x1x/xujbu32UxIbbAyvMHVX8s2FXgfny/Jmb+hglF0LFzyjZoaUW/vFVupVN4NWvNpklFLQcwxWDW5ufjJxDMuGFReboI/vGm9kGqjhVve7eta9EUpPD5K5LU6VrcrgEG8ETWipCm5aY0KwMtvb3SX1kYMcYs9yJvuSfNi9DPppfUVbj3rdXyTt3DZao0ABbd/mvUZJkjpGJw9aeuLanDDayN2iZDy2h8fO6bHnus42yYP0+W5c6/1bvB//9qzXunWM6y2gjO4SWtygxAmh+WptjBVZoZojEqBDjeYi0+jsu6D3XDBH3XdFNEk6U6NhzoFQ0AMWWWeMd49l6akJv67B0ozzKvW+tstZvGN5eLj+jtRlMo1k5lm/Nk6nfbjUznWTtL5FPF+yU31/Uyew/sm+C5Tt39V63pTu0hMov6yr8NAinexvncjHWiVlAAIEaCZB5okZsHIQAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIHCyBbQ8g61UR8fEUPnz1T2lY0KoGLEN5keDKB4Z39MMGNC5at9vVtgzRPg6f80c8Mpv+0sXI/BAAye0tQjwk3su72JlJNCxcw4e9nXIGvXbvKfQzJ6hGTQ8ffQFv6fWrU24vHrbQOnXIcoMnNB+ej1lx8rlWaNEha1paQ4tcRJkXKM2DTa545LOckGfeHM952CpzFtXEZCiGzQAQ7NK2Nqj13SXC4xgAA2c0KZBFhpQcrsxRn2212dttp6HW0d2lGvObmcGTug5NVDkov6Jct/YrtYUpi/cZS27LmiQyVPX97ECJ3R/ohFE8cjVPayu63YUWMu6MHW23WBU/wT5nVEeRLOQaFNLNX3CKNdha58Z59egCm1dW4ebWUl0eeGGPCkoOaqLTm2RQ0aKS42gDBoCCNStAJkn6taT0RBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBpIYPaqPdaZHr6qu/Wy39poLAQZJRF0300vLzE3f2ccc9Pw9uayr//07xwlbWNDKnUP8PeT84xsFx+fyMiw+0Cx+YK9Usc62jBvba7ox1ubPKqj3HR+B7ddLh2ULKFBzqVEtGPa9gNW0IFmyBjUKabS8RpkcZsRDGDLLpGepYEDFaUmdufZAzbO7BYjo/olVTpeN1xnBDNomRXN6lDXrejwMSurhQa7TPRgMHZIa3lvboZZvmR1xkGP07jYyFihATKuTZ+D9vEtJSP7kDnGkaPlZtmNg8VHZUn6frO7nv+BK7u7HmqudzCO1aweu3KLzXVb5g9duXxIG/nnzE3mdi3docEejs2xZMeI3hWBLI77WUYAgdoJEDxROz+ORgABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQOAkC5eXHzfIHtlOnGBknPLUOJ8p46H596X3MOFbLa/jaerV1X9pBj4+PCLKGKTVe4J/KzVOJik27i6xpBwb4S+aJF/vWxhMLFTkSKlbW7rQHHmzbW2h17enFSpN26BzqI3hiR7b9GkKDAyRrX0VwgjUxh4UA/4p7rxk0NMNDeHDlV6ZdW4c5HOG8mGRkk9DnSJuWbwk0AnR25trPn9omzG0gj20UzUAh9gQYts1ygREQYQuecC3d4Viyo3+nKKeMGNYALCCAQK0EKv+XoFbDcTACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAAC9S+gv/S3Nc0EoFkgPDUNlNCyHlv3VLzgPlBUJq2MUhS+ttgIz32DjGCDhmqaFeLac9t7PV10qD2Yw7VjCw9z3V9oLzcyc9lu0U9VTS0PG1kXNLPH5r32wIEOCS29HtrJuA/10Q4cOmINq0ER459faK17W9i8p0AGpERX6tIqrKLcRqUdxgZ39/xAof38XZLC3R1W5bZYIxBncJdoM4OFrXSHLbBj8UZ7xpExA50zUlQ5MB0QQMAnAYInfGKiEwIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAwKkkcLjMnuUhMjSgyqlFhwUYwRMV3RyPrfLAU6hDm9iWkprkOSNCTadaUsOMGYeMrA1BYYFy9Jg9J0WYkfXBW4sI8b7f27He9pUctgfTeOvnuq/oUJnrphqta/kOW6vKwNbP3ffF/ZOs8h+OpTvmGOVObO2cHpTssFnwjUBdChA8UZeajIUAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIFCnAsc9jBYVas8GsWmXvWyEh+6yeXdFmQXd73isp/5Nabujxx1jUs3yEb5cf2TLikCIuAh7loadOcXSr0OUx8MzjP1VtfLjnu66OAVqOI4T3tL+PJzZLUbuH9vdcbfH5fA6CuaINIJIbG2rQxkT2zZfv8/qEWd1tZXuKDKCW35Zt8/cftGARAkObLhsJ9ZkWECgCQg0WPBEcXGx7N69W7KysiQzM9Nc9vf3l/j4eElOTja/O3bsKIGB9v+wNAF/LhEBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQaLICZUbGgn0HK8odaPYIdy+Fi4rtmQEc9wcF+EmI8RK5+Mgx87PfKJsQ7fAC2xFVS3zkF9nLKoQE8fLZ0adVuL3UR0HxEdHyEdVpjqU4tjqU8HA3xpbdBe42i1+zZtb2/YX2e25tPLGQnV/iuslcbxVmn7OWZanuNbgdtBobYx0M1+1wf42+DNfCeK4vOyNZvlyaJbbSHUvTKwIn9PhR/RN8GYY+CCBQA4F6DZ4oLS2VmTNnytSpU+Xnn3+ucnqhoaFy4403ylVXXSVDhgwRDa6gNZxAdna2DB06VPLz86t10sjISGnbtq20bt3a/GgwzIgRI6R7d98i+qp1MjojgAACCCCAAAIIIIAAAggggAACCCCAAAIIIIDAaSPw05pseXzaOvN6rj2nndxxSedK17Yj156pIDU51Gn/2T1jZfbKvea2WSv3yIRz2zntt63MWpFlW5SRfU9OyYM9+YetOZxqCwM6RltTmrcuVyaenyIanOKurdt5UDQzhL9fM+neJsLs0iHBXkrkB6O8xMTzO7gNZMncVyK/rLcHAjiOr+MlRwdL1v4So7xKkWgZjMDmleewarv791gd4lpKpJGNRINkNuwqED1X61bBjqewlncaz9RBI0hEW2pSuMdrtQ7wYaFtq5aiGThyDpaanwUbc2VY19hKRx4rPy4Pvpcm609kS/ngnqFGJhTnUiajBiSYwRN6sJbumLcuxxxHr69/iv1eVRqcDQggUCuByv/FqdVwFQdrlolHHnlEkpKS5LrrrvMpcEKPLCoqktdff12GDx8u/fv3l6VLl9bBbBjCVwG9b5oVRO9DdT56zMKFC+Xjjz+WF198Uf74xz9K3759ZfDgwTJlyhTJzc31dQr0QwABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgSYk0CW54uW7XrIGP+QW2LND6LbC0qPywY8Zumi21CR7f90wsp/9V/ivf7NZVmzbX9HR4d+0jAPy6szN1pYLHI6xNtbTQssW9pfiazLypcTIknEqtraxIdKjbYVtRvYhefx/a0Rf8ru2GUsyZfJry+R3ry+Xd+Zss3aHGpk8urUJN9c1eOHP01ZXOr60rFwe+uBXM0uIdaDLQo+2FWPo5q+X73bZK6JBD69/bb+Xjh38jOCLKwYnW5vufXulaAYK15aeVSjXPr/QvIZ731olla/S9Qjf1jVxxuVD7Od//MO1kpVXOUvGf+ftMDNKqFP7+JBKgRN6tt7tIs1ADF2evnCXzFtb8a5NM1JokAkNAQTqR6DOM09s375dxo0bJ2vWrKnVjDds2CBnnXWW3HvvvfLYY49JcLD7yLBanYSD61Vg1apVop+77rpL3njjDZk4cWK9nq+mg8+aNUt27tzp9vDU1FQzmMftTjbWWiAnJ0c+//xzj+Ncc801EhHh/P8R9tiZHQgggAACCCCAAAIIIIAAAggggAACCCCAAAKNTqBNqxDjBXJL0Rf2+jL5//61TK41skfERQbJwUNl8ubsbdbLdu0XG+5c/n1Iais5x8g+YXu5fNfUlTK8d5wM6hRjWizfkidzV1f8al83DOveym02gPqCiwmzB0/oOSa9slguGpBkZEQIkRG9T04GDE/X+tcb+shEY356H9Rz0j+WyNndY6Vr6zBjW5nMW59jvvS3HX/D8A62RfP78Wt6mdenZVTStubLhBcWGvciQTrEhUj67kKZ+2uOmZHB6SCXlV7tI+W7tGxz6/Ofb5Rd+4qlX0qkHC8X2WAEPbw3d7vLEc6rk0akSHpWgSzamGdmsLj+pUWmc58OkXLMKBGzesdB+XxRpnXQTSM6iJbJqKt27dnt5Jtlu81zq8PElxfL+X3ijecxWvYVHpalm/NkSbo9wOc6I9uKu6YlTC4zAkHe+m6rmUXD1mdkX3uwkG0b3wggUHcCdRo8MXfuXDNwQrMW1FXTTAa//vqrzJgxQ4KC7LWK6mp8xmkYgcmTJ8v8+fPl1VdflZCQkIY5qY9nefvtt+XLL79021sDPjQTCq1+BLKysuTOO+/0OPjIkSMJnvCoww4EEEAAAQQQQAABBBBAAAEEEEAAAQQQQKDxC+iv9R+7pqfx0n2JeTFaskFfmrs2LYfw/KR+rpvN9T+N6yEFJWnmC3vd8KMRLKEf16Yv5h+6qofr5npd15fgNxolLGwv/XcZpSTemL3VPOepFjyhgSn/nDxAJv9zqRmwoqUz9OOu/Xl8D+ljeDo2LZHx9E295e43V5mb9Vpt1+3Y77bRnWTqt1scN1nLlw9uLSu3HbDu30fzd4p+HNtEI+Dh3z+4D6Jo7t9MnpzQW26fslw2GcEWGgiimRv049ouN4ITrvNQ5sW1r6/rWurkuZv7yv97J80KoJhpBFPox7XdOaaz10CeC/skmMETtuNSk8OkgxFAREMAgfoTqLNQqkWLFsno0aPNcg91Pd0ffvhBbrnlFiMi7NRMZVTX13u6jvf+++/L0KFDJT/ffS2q0/W6uS4EEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBDwLJCaFCZv3jFI9OWwu6blIP552wBJjGrhbreEBzeXl2/pL3+4NFWSoytnMtfAC31R/Y/f9pfIEOdMEDqgrQxCYKC/0/ga+GBrgc2d99m2+/I9yXjZ/6erultlLXw5xrGP4zwCmlf/1Z6fwyHNqzheX86/9vuBZvYOxznYljWrx3/uHiKj+yfaNjl9a8aPv0/q4/ZeataP9+8dIp2TQp2OcVzRe/Ho+J5y5dDWVtkK2/7I0EB5+OruMu7MtrZNbr+Djfv4ghFoM/5s9/30edI5/r+x3cTRVgerjpXbkxsb28W2lDfuPENuGN5eQlyeKV3v3ylK/jG5v1xjZKnw1jQYxVYKRfuNGZTkrTv7EECgDgSaHTly5Hhtx9FMEwMGDBAt2VGfTct3PPzww/V5iiY9tt6/Ll261LvBhAkT5N1336338/h6Ai0z4y3zhJYcodWPgJZ1GTx4sMfB09PTpa/zlhkAAEAASURBVEMH57RfHjuzAwEEEEAAAQQQQAABBBBAAAEEEEAAAQSalID+3w/r4v+mPeGlZT65fXjPIJ/60anmAsfKj8uO3EOyK+eQkUniqLSODZGuyRESHOjw9r+K4cuPH5cDRomJPKNEgrbo0CCJNkpnuL4kr2KYettddPiYHDfmGGgEMQRVEchQb5PwceDSsnLJyS+VkiNHjQCVQLOUii3QxJch9hcekeyDpRLg72eWKbGVx1iUvk/uMzIzaLv7si5y1bA2HofbV3BE9hcdlqiWgRJjZMao7n08euy45B48bDxPZdLCeI4SooIb1F2f6Rw9f3GZhLZoLklGcI9DTI7H69Yd5cax1xmlTzSDh7aZfz5XokIrB/+YO/kHgdNM4GT9b3OdlO3405/+5FPgROfOneWhhx6SgQMHStu2bWX//v2iL0/18+mnn8qGDRu83tYnnnjCzECRkEA9H69Q9bTzwgsvlOuuu85p9Lw8o2aUUXpBAy+0tIov7cMPP5RRo0bJNddc40t3+iCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggEATENAX8ynxoeanpperL9djwowX7cbnVGyhQTXPYNHQ16PBDm2NAJaatmjjHuinNq2VETChn5o2LeORGN1CEsV91pKajuvrcfpMa8YUT1lTvI3zzco9VuCEZp0gcMKbFvsQqBuBWgdPLFiwQKZOnVrlbN5880254YYbjHQ39ujA5ORk0c+YMWPkvvvuk9/97ncybdo0r2O98MIL8txzz3ntw876EdD75y3g4cCBA/LJJ5/Igw8+WGX5lttvv13OOeccSUoixVD93C1GRQABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQaEwChaVHpfRIuSzbvE9e+SLdmvoN55Gl28JgAYF6FKh18MR7771X5fSmT58ul156qdd+wcHB8u9//1u6d+8uf/7znz32feWVV+TRRx+VsDD3da9cD9y0aZN8/vnnsm3bNtm5c6f5KSkpMTNftGvXTlq3bi0XXHCB+SLf39+3aL8ff/xRdu/e7Xoqc/2iiy6S6OhoM+WSZtOYOXOmrF27VjSwQDNmPPPMM+a53B5sbDTKqJjHLFmyxJyrzjszM9M8VssXaMYOLZEyduxYCQmpebSfp/PXZntUVJRMnjxZLrnkErnyyivNjCKextNSLx9//LHcfffdnro4bS8vL5e0tDSZPXu2rF69WrKzs81Pfn6+eQ/j4uLM7/PPP9+8nzoXT03vxTfffGPt9lZuRp8fzZTh2EaOHCmxsbGOmyot6zO2aNEi+e6772TLli3mXHNycqSsrMy8lxo0kpKSIqNHj5YzzzxTWrSoWcTj1q1bZc6cObJw4ULZs2ePeZ59+/ZJq1atzMAUfeaGDRsm+lxqoFJNW10+l/PmzZNdu3aZU8nIyPA6Jc1movfW1hITE0XvMQ0BBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQON0EXvx8g3yXlu10WVrWpHWrYKdtrCCAQP0INDNeih6v6dClpaXmC1p9Ee6paakNLetRnaYvk5cvX+7xEA1e0BfC3poGLvzzn/80Xyp762fbp0EUv/3tb+XOO++U0NBQ22a331dccYXTy3fHTlqW5I9//KNcfvnl8ssvvzjuMpc1A8dNN91Uabu+0Nf5TpkyRXJzcyvtd92gc5w4caJ5rtq8FHccV4MIvNWH00AZb5knHMfS4AEtz7J582bHzU7LvXr1khUrVjhtc105duyYmY3kgQce8MnFdvyECRPkr3/9q9vMFmvWrDEDUGx9q/ut9/WMM85we1hhYaG89NJL8tRTT7nd72nj448/Lvfcc49oEJEvTQMQNMOHt78T13FGjBghmrlFA5R8bfXxXI4fP94MaPJ1Do79tNzLV1995biJZQQQQAABBBBAAAEEEEAAAQQQQAABBBBoogLp6ele/2/avrKcrLrqvs6PfgicbgJLNufJvW+tMi/r7su6iAYH0CoEnpi2xil4YvKojnLj8A5iVKOhIdCkBE7W/zbba2jUgHvu3LleyzNoQIKvmQUcT3/vvfc6rlZaXrZsWaVttg3FxcUyadIkue6663wOnNBjNbvDY489JoMHD5aNGzfahqv29+HDh83zuwuc8DTYhg0bZMiQIfLkk0/6HCCgASsabKEBCFo65VRrGgTw1ltveZ2WBjHo/+fWU9MgkrPPPltuvvlmn11sY2m2iPbt24sG0TRU00CGrl27VjtwQuenwRM9evSQ9evXe52uBpNokIVmS6lO4IQO+sMPP0jfvn3NAAqvJzmx83R8Ln25bvoggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBA/QkM7hwjc54cbn6uGFLzrNn1N8OTN/JNI1Lk1dsGyId/HCo/PX2+3HQ+gRMn725w5qYoUKvgiU8++cSrmWYL8PWX9I4DadYGb2URli5d6tjdWtayBUOHDq1UZsHq4MOCZkro3bu3WW7Bh+6Vumg5iC+//LLSdk8bNAClT58+4q10hKdjdbsGUQwfPrxW1+xt/Nrs03tx7bXXeh1CS6q4a1qWoyYBAq5jaRCNY4kO1/11ta5lVjRjii9ZQzydUwN4LrzwQrPEjKc+t912m7z22muedvu0XTPB/OMf//Da93R+Lr1eODsRQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEECg3gWCA/1FPwH+tXpVWe/zbOgTtI9rKf1TokS/sWlofc6HgEjz2iBU9Sv5kSNH1mj4gIAAs1SDp5IPSUlJlcYtLy+XW2+9VfTX8nXRtDyFZkaobkmM6pxfgz3GjRtXF9M1s10MGDDAzHxQJwPW0SBjx44176Wn4TxlntCSFNWx9DS+btcyK3v37pXo6Ghv3Wq8T7ONVBUk4uvgGnyhmTZ++umnSodohhEtnVIX7b777jODU9yV8GgKz2VdGDIGAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgicPgK1Cp7wFNygPJ07d5YOHTrUWOqcc84R/fjatITF999/72v3KvtpRoeJEyfKt99+K/7+/lX2r26H48ePy//93/95LXtiG1MtvVnb+t10000yf/58CQwMtG066d8jRozwOoesrKxK+9PS0nzOpBEaGuqT4ZQpU+Shhx4yzxUSElLpnLXZ8Pbbb5tlX3wZw5f5Lly40LyPWrLEsT399NOOq5WWtUzOJZdcIm3atJF9+/aZht4yYeh4H3zwgdM4TeW5dLpoVhBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAoMkL1DgXTllZmdeX1oMGDWow3Pz8fNFf0ntrGsgxbdo0ycnJkYKCAtFf8Y8ZM8bbIfLzzz9XqwSHu8EGDx4sf/jDH8z5nXfeeRIWFmZ200CPmTNnujvE3KYv2XW+mjFh3bp1cujQIXM+5557rsdjVq1aJZ7KYHg8qJ536PV269bN41ncBU94c9GBNAjixx9/NO/j/v37ZefOnTJ58mSP59AdH374obW/Y8eOogEav/zyi/nRoANP7eKLL7b62fq7Zmv4+OOPPR1ulp955ZVXZMWKFVJaWio6X10+66yzPB6jOz777DOn/ZpZxVtwkGa+WLt2rbz66qty//33y9///nfZsmWLGQDkNJDDis772LFjDlvEPIc3/7p4Lp988knL9OWXX3Y6v+vK//73P6uv+j///POuXVhHAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEai1Q48wT3n7RrrOKjY2t9eR8HeDLL7/02lVf+M6ZM8f8Rb6towZ3TJ8+3XzRrC+3PTV96a6lJ6rbbrjhBtFsGMHBwW4P/eijj9xut2386quvZNiwYbZV0VImQ4cOFX3hrS/ePWWi0ICL8ePHW8edCgtaZsVTCQ5316GBLZ7am2++KZphw7ElJCSY1hoYM2PGDMdd1rKeRwMFbFlEHAMg+vfv7zFzRFxcnJxxxhnWOK4LWrJDM0V4aj/88EOlUiq9evUyg1z69evn8bwa+ODYtJSGt/bwww+La0YNffZee+0189nPzMx0e/iOHTskJSXF2tcQz2Vqaqp1Pn2uvTU1qk0GG29jsw8BBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBCwCdQ4eEJfVHtrMTEx3nbX6b7333/f63jvvPOOU+CErXOzZs3kb3/7m3z33XceX+5rYIaWQGjVqpXtsCq/x40bJ1OnTpXmzd3zlpSUiLc567GOgROOJ4yKijKzYXjK5vDNN9+Y2TX0pf+p0uLj471ORT0cg0w02MJduY+WLVvKhAkTPI6lZVY8BU/oQfrMJiYmejy+Jjs0i4m7uepYQ4YMqRQ4YTtHRESEXH311fLiiy/aNjl9b9u2zWlds1Z4a5rBwzEowdZXgxMee+wx+emnn2ybnL61TIetNbXn0nbdfCOAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAALu3+43Ihd9ea3lNTy1K664QvTjqWmAwwMPPOC1vIG+eNaACF+bliLwFDihY3jLrKD7q8p0oWUn9Bf5WqbDXVu+fLlouYlTpTm+oHc3Jz8/5+oxb7/9trtuVW6rKkOBlr6o66YZVmbNmlWjYTt16uTxuKNHjzrtqyoAZdSoUWbJDn12XANnNFOHa7YOp8FPrDS159KdAdsQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQKBpCtQ4eKKqshx5eXkNIrp3716v59Ff/1fV+vbt67XL7t27ve533Nm6detKL68d9+vyrl27XDc5rT/66KNO6+5WPAVOaN+qSjy4G68+t3mbj5ZUCQoK8vn0ei/0nufn55sfDZ45ePCg6PePP/7o8zgN0VHLhGhZDC1xo3O0zdM292effdbnaaiTZhvxVP5EB7rzzjvNz5lnnin6GThwoGhJknbt2olmWamqNbXnsioP9iOAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAQNMRqLfgCX1h3BAtOzvb62m6du3qdb/uTElJ8drH28t/1wN9CdaoarwpU6a4Dlut9aoCSqo1WB109naP2rRp4/UMGiwxb948M7vI7NmzJTMz02v/k71Tgxt0vpqtROdbVFRUZ1O6/fbbzeCIqgZcuHCh6MfWNPDi0ksvlZEjR5oZSbT0i7vW1J5LdwZsQwABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBpilQ4+CJwMBA0Zeynl4OL1u2rEFEq8oKkZqaWuU8WrRoIZ07d5bNmze77VvVORwPat++veOq2+WqXlK7PagaG+t7/GpMxcwI4S1bgmbqcNc0O8MzzzwjL774orvdp9y2LVu2yIMPPihffvllvc3tlltukRkzZsgPP/xQrXPo3+i0adPMjx74hz/8QR555BGJiIhwGqe+n5v6Ht/pYlhBAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEqiFQ4+AJPUeHDh1kzZo1bk+ngQhaskBLBtSk6bieygj06dNHkpOTzWFLSkq8Dh8ZGel1v22nliHxFDxx6NAhW7cqv30pj+Ap4KTKwX3sUFZW5mPP+u9WVSkN2310nIm+ZB89erTXEhWO/U/2smZ5OO+88+p9Gs2bN5ePPvpIfve738mnn35a4/O98sorMn36dPn222/FMbioKT2XNcbjQAQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQOC0FahU80bNnT4/BE6r1/fffy6233lptuGPHjsm4ceNk+/btbo8dO3as+RJZd8bExLjtY9uYkZEhrVq1sq16/F69erXHfRpYUZfNl/nU5flO5lhVZWLo16+f0/T03o8ZM6bRBE7s3LmzQQInbEjh4eHy3//+1wyg+PDDD+Xdd9+17arWt5Y/0b+j5cuXS3BwsHlsU3ouq4VFZwQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQOO0FahU8ceWVV1qlANxJPffcc3L99deLlsWoTvvmm288Bk7oOJp5wtYSEhJsi26/09PTZeDAgW732Tbm5eV5LD+ifdxlR7AdW5PvxMREj4dpKZQFCxZ43O/LDtdyDL4cUx99Vq1aJe+//77XoS+//HKn/VqWwlM2E1vHwYMHy5AhQ6Rjx46imUWioqJEgwq0vMq1115r69Yg376UFdFgEH1mtUSJ3huds35//PHHolkgatLOOecc0c9LL70kX331lejfzPz580WDInxtmmlFn7ULLrjAPKSpPJe++tAPAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQSajkCtgidGjhzpVUozR/zrX/+Se+65x2s/1536QthbcwyGqCp4wlMpDsfxt2zZ4rhaabmqc1Q6oIoN8fHxXnt07dpVfCn/4XWQk7xTS4doeQlv7dxzz5WkpCSnLppNwVubPXu2DB8+3G0XzaLQkK28vFxef/11j6fs3LmzzJw50yxv465TbYNkdMyQkBAZP368+dH1nJwcSUtLk8WLF8sXX3xRZSDKokWLrOCJpvBcqhENAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQcBXwc91QnXVN9z9hwgSvhzzwwAMyd+5cr30cd06dOlV++eUXx02Vlh1LPegLX83W4Knpr/L1Jbe3NmfOHG+7RV+C12VLTU31OFxRUZFoqZGqWmlpqWRnZ5ufvXv3iu2jL89Pdtu/f79cdtllopknvDV96e/a1q1b57rJWn/mmWc8Bk5op+o8Z9agVSx4e3bU3FvTkhodOnTw2EUDQXxtR48elfz8fLcfDVSxtbi4ONGgpkcffVRWrFhhBlDY9rn7/vHHH63Np+Jz6c3fmjgLCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAQC0FahU8oee+8cYbq5zC6NGj5bPPPvPa7/Dhw3LHHXfInXfe6bWfBmvExsZafQIDA61f3VsbHRa0BMS0adMctjgvZmVlyRNPPOG80WFNAzOGDRvmsKX2iwMGDDBLOHgaSTN16Mtyb+33v/+9tGnTxvy0bdtWbB8tDVEfQQTe5mLbpwEdn376qQwdOlR++OEH22a333oPf/Ob31Tap9lKPDXXLBWO/dRr+vTpjpvqZHnPnj0ex9HgFW/NWxkMDbyoyshxbM3ioYER7j76d+OpXXTRRTJq1ChPu0VL1tjaqfhcngrBQDYfvhFAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBA4PQVqHXwhJZQ8CWA4pprrpGzzz5bvvnmGzNLwvHjx6W4uFi0bICW9tBx3njjjSqlH3nkkUp93GUwcOw0adIk87yO23Q5MzPT/JW+63bH9VtvvVWaN69VdRPH4cxlPz8/uemmmyptt21Qo7vvvtu26vStv8R/9dVXxVt5i759+zodU1crWg5CsyXYPrNmzTLn8eyzz8rtt99uluC47rrrxFsAhG0u77zzjkRFRdlWrW/HwBhr44mF999/321QSWFhoYwbN67KTBeu49nWIyMjbYuVvvX53LdvX6XtusHbcbpf5+uuaZkYLVlSneatpIZmuHDMIOE6rgYmeWpdunSxdp2M5zI8PNw6v7uF6gSYuDuebQgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggIAvAnUSFfD888+LvkjPzc31es4lS5bIFVdc4bWPt536gr5jx46Vupx11llmeQRvL+31vCNGjBDNgqEvkzVwYsqUKZXGct1www03uG6qk/Vrr71W/vrXv3ocSwNJ1q5dawZ36PVpiZQNGzaYL+R//vlnj8dpIEt0dLTH/bXZ8eKLL4p+attuu+02j9kQunfvLp6u7/vvvzezgGhJEA0+0HIVS5culf/+97+mTU3n1alTJ4+HahkVPZfeLw3w0UCabt26ib70T05O9nic7nj88cfN+Wnmh4EDB8ru3bvNdQ0W0nGr08455xx57rnnPB5yyy23yCuvvCKaaULnqMFJ+oxr+Y6ffvrJ43G9evVy2tfQz6VmTPHW/vKXv8jGjRvN69JnQ6/Ndc7ejmcfAggggAACCCCAAAIIIIAAAggggAACCCCAQNMSyMk/LN+uqsgq3btDhPRtb/8h55od+bJqW74JckGfeEmKDq53nDlpe835DOocI1cPayvNmtX7KU/5E5yse/T+TxnG+xORuIggGd0/8ZR3akwT/D5tj+w5UPFj3gnnthN/Px70xnT/mKtdoE6CJ/QX+Porew1MqK+mL7D/9re/uR1eX6jq+TXIwFvTX7FX55fsjz32WL29qE1NTZWnn35aHnroIY9TXrhwoeinOu2uu+6qTvcG79uvXz+P91Enc8kll3gMntD9q1atqnGGCT3eXfMWPKH9N2/eLPoSXz/afvnlFznjjDNES8ZcfPHFbrOamB2NfzSLiH5q2zTwR4M2NIDGXdNACVsZFC3douu+tIkTJzp1a+jnMiAgoMrAp48//lj0o00DUb766iunObOCAAIIIIAAAggggAACCCCAAAIIIIAAAgggcHoKbNlTKJ8vzpQZi7Pk9os7i76UrarlFpTK1G+3mN1uHdnRKXhidcZBa1+PduH1HjyRbQRyPDZtrTmXRRvzpGvrcOnT3nM27Kqu7XTZf7Lu0ZRZFc9FHyOohuCJun2aZq3cI0vS95uDXnN2W4In6paX0RpQoNZlO2xzPf/88+Wjjz6yrdbpt75w//TTT83sC54G1pfZTzzxhKfd1d4+ePBgeeCBB6p9XHUO0NIcVQV8VGc8zcDQu3fv6hzSoH21fIpmQQgNDfV4Xm/lTDweVMsd+nzVtHkqr1LT8TwdpwFCL730kqfdTtt9DZy47777pE2bNk7H6kpDP5dazoeGAAIIIIAAAggggAACCCCAAAIIIIAAAggggICrgC1wQre//s1mKTp8zLXLKb1edrTcaX6lZc7zz8g5JF8v321+dJmGAAIIIHByBeoseEIvY+zYsZKWlmb+kryuLkvLCOgv9yMiIqoc8v7775dHHnmkyn5VdTjvvPNk+vTpZomAqvrWZr++ENdf1F944YW1GcY89qmnnpJx48bVepz6GmDq1KmiHy0/4q1FRUXJjBkzvHXxuO+f//ynx33edmgpmJoGyuiz8sc//tHb8G73aXYIzWxSnaYBSm+99VZ1DvHYVzNO2DJpuHZq6OfyySef9BpQ4zo/1hFAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQROf4HDZeVmxgnHK52/Lsdx9ZRfbt0qWG6/pLN0TAyV8cav8Qd1dC67vjojX57+ZL350WUaAggggMDJFajT4Am9lO7du8vixYtl8uTJtbqy2NhY8yX6f/7zH4mJifFpLH9/f3n00UfNtP7esht4G+zhhx82gzXi4uK8dauzfa1atZIvvvjCa/kObyfr1auXfPvtt6KBI6da69y5szz77LOSkZEhmnXC16alMLQMi6/3UPtp1g0NZKhp0/IpalmTpoEr1QmgUBe950lJSdU+3Y033mge26FDh2ofqweold6TKVOmeA0OasjnMjExUf71r3/V6Ho4CAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQOD0FFi4MbfShc1cnlVp26m+YcI57eS9u4fIXWNSxc+v2ak+XeaHAAIINGmBOg+eUE3NHqBZAHJzc+W1116r1kvp3/zmN2b5jy1btoi+RK9JGzVqlOzYscP8lf6ZZ55Z5RC2LACbNm0yswHoL++9taqyJ3g71t0+Pd/jjz8umzdvNs+vgSNVNX3R/+6778rSpUtFMxLURQsMDKzxMBoQoBk0NEhCMyrMnz9f1q1bJ/fcc0+NggTGjx8vv/76q9x+++1egyi0xIQ+K5p1Izw83Ov8vQVj6D3VoJ+XX35ZfPF3PJEG7fztb3+Tn3/+WfT59dR03FdffdXMzqL3T/9OPDUNKPDULrroIlm9erX5N3buued66ua0Xc+n90Wfcb0nfn5V/+k35HNpu99jxoxxmjcrCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAk1T4JsVu60LH5Ra8X9PT9uaL7v3l1jbWUAAAQQQQKAuBbxHCdTyTFpq47e//a35ycrKEtsnMzNTioqK5MiRI6K/cI+Pjxd9WdyzZ0+fynP4Mq2wsDDRX+nrR8+7c+dO2b17txw6dMh8cdysWTPRoAk9r5Zt0BfgvrZp06b52rVa/dq1ayea+UJLSGzbts2cr869ZcuWkp2dbc5T59qmTRuvWQOqdVKHzsnJyeY9cdh0Uhf1OjWY4e9//7ukp6ebBuXl5ea1d+rUybx/jkEACQkJtZp/QECAGayhARv6jK5atco8pwZWFBQUmPdBn1XNruKuDR06VPRz8OBBM6BD75kGpISEhIgGl7gGZVxxxRU1nm9QUJCZ3UUzvOj51qxZY8513759pk9xcbF5Pv376tatm+i9rWlrqOdS5/nZZ59JSUmJrF271rznhYWFZlBMaWmpGUTjyb6m18ZxCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAqeeQG7BEVm4Ic+c2LDurWTskNaybNMBc33Or9ly4/D25nJD/3Os/Lj8apTX2JRVIOmZBVJ6tFw6JYZJSlxLGdyllYQEVX7X9H3aHskxrifQ30+uGtbGnLIGhhw4VCZrd9hLdSxK3yeFpUfN/QmRLWRE7/hKl3egqExmr9ot27MPSW5BqUS2DJR2sS3lgj4JkhzjvWx6dv5hWZNxQNJ3F0pGTpHERbSQjgmh0qNthHRJ9v7j1EoTcdhQUHJUVmzJk23GnLbsKZQWzf2kc+sI6ZzYUnq2jZLgwKp/zOkwnM+LajB3TbZk5h4y3fR6OhnlUS7slyhhLWr++vOIcU/nrs6W9bsKZM+BYgkK8Jfk6BA5y3gOe7WL9Hl+jh1t97ul8XxcMbi15BeXyeptByTNeJZ27TskScb4KfGhMqp/orQIqOxle4Z0TM1k4qn9ZHhkHSh1eta0b2Zusfy8oSKTy9AuMeYzs3bnQVm59YBxnfmSGBViXFu48cwlWNlR9Fmfu3qvrNtZIJl5xdLGeM56tA6X/kbpmegw336MvWRznqzcckC2G89bkPFctIsLNZ7VeGlv/L1U1Wpyf12ds/JKZNX2A8Z17pcCw/yG89pLnw72HzbX199EVdfG/lNboOb/9ajmdenL29q8wK3m6Zy6n8xzO03ExxX9xX9qaqr58fGQ07qbBiBo5gT9NFTTwBr91KRp0NCAAQNqcmiNjtHznXXWWTU6tjoHNdRzqcEqgwYNMj/VmR99EUAAAQQQQAABBBBAAAEEEEAAAQQQQAABBE4PAX1pa2sjjcCAgZ2iJSTQX4qPHJOZS7PMl6DGb2QbtOkL78enrbaCOGwnn7e24qW0vrx/6vpeZjCCbZ9+v//TDtm6p8icvy144pMFu4wAjELHbqLj2MYa3CW6UvDErJV75KmP1jkdY1t5Y/ZWmTy6k9w0vL1tk9P3nLS98ti0tU7bHFfGn91WbjOO1xfc1WkLjNIqT3+yQfKLjjgd9l1atrnePr6lvHhzf4mPDHLaX5uV48dFXvhio3y+KNPtMC/MSJeXf9tPBnWKcbvf28Ytxn36w1srK12PHvPBTxlyZrcYefqGPhJgBMJUp705e5vkHCw1A1Z0XhNfXmw+y/YxKgKF/v3DdrfP0OeLM+XX7QfN7t6CJ94xjnd91vSg9ZkH5fWvN5vHtwoLkI/m75SZy+yZXUTyZPpCET3PC8b9yjOCfR764FdzLPMg459FGyvmGBkaKG/cPshrsE5B8VF56pM1lf5WRHLk3Tnb5OYLUuSWC1NsQzt91+b+Ojp3NoKaJr+2zGnsC/vGSx+pCJ6or78JpxOy0igFqvfX3SgvkUkjgAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgg0FoEvjQAJWxvWPc58WT16QEW56yyjbMf6XRUvkm196vu7tKxcJr28xHoZrIEcGuDQv5P9V+z6clxf1m7dW1TldDRDQptWzpkidEzdpp9W4S2cxlhh/HLeNXAiOdr5+De+3WJmpXA60Fj5bNEup8CJjsa5z+0Va77It/XVl+lPf+w+MMPWx/V73vocuf/dX50CDXTuGjBhaxlGdoibX11iZMlwDq6w7a/J93s/bq8UOOFqcfebq8zsHNUZX+foGjihATGOTbOhPP/5RsdN1VouKimTe4zgDA0C0qaBCI7n0GfokQ/WyGEj+0V9tf/N32UFTqibPne2pgEaz32+QR54L80KnNA+Ok9b00CZO6au8DrHx/7nHGTkeI06zjtGAIVm03DX6uL+qvP9//m10vDBARU5Berrb6LSCdnQKAUaLPNEo9Rh0ggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAg0msEnLShgv3bWN6pdglX3QdP+fncg28K2RhUHLTTRUW2qU1NAX29oGpUbJE9f2kYiQilds+qL7H1+ly4zFFQEf+mL2/43t5nVqD1/Vw9yvQSLPTt9gLt95aapcdkblEtwZOYfkwX/bXwTfOaazjB6QJJEhAVJivIT/aW2OFVjxl/+tN0sw9G5vLy8x3SFDw9NGZoxze9nLgaj1pFeWmOfXcii/v6izJEQ5Bwy4uxDNDvDunO3WruuNcgjXD29vlcvIPXhY/vLxWrNkg75sX5yeK5cOqnxt1gA+Lmi2AM2yYWt/n9RHBnaMMUpr+JkBGtPmZZhZFXT/vW+vknfuGixRoQG27h6/NTjm/n+vsgJBRvVPkFsu6GhmVzh67LisM4J1Hnp/tblfMza0NcpOeMsA4elEGjRRbAT/TBzRQa4xym/YyoukGeVUHn5/jTm+PmdfL8uSK4dWlHjxNFZNt2vGk9TkMPnr9b2NciHBovfyu7Tdos+OttkrK7K+6N/XkxN6W1lDtPzFHVNWmH10jluNEi3d27j/G0zbmm8GhTx0dTfp3T7KzGiy27juL5ZkmRk8dJDHp62TtrGhRsmYMHNM/aeu7q/pbFjrfRx/VjuzPI2/XzOxZaupj78J6yJYaPQCZJ5o9LeQC0AAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEETg+B740X5LY2wkizb2u92kVav4D/dsUer798tx1TV9/zN1SU5tDxJo5IsQIndF1LXdx1aRezFIEGPwQG2H/Jr/tr216ftdnKVHDryI5yzdntzMAJHTfYyBpwUf9EuW9sV+s00xfuspYz95VYgSh9O0Y6BU5op9SkMPnH5P7Gi/rWZuDG7gMl1rHeFjTYoHubcPMYndNtoztagQB6XGxEkDx4ZXdriFXbDljLNV0oO1ZuBZroGFqaY1jXWDNwQtdjwwPljks6iwbZaNMX/PPW5ZjLVf3zxZJMq4yKBsc8NK6HVZaiuX8z6WMEo7wwqa81zL+/32YtV3dBrX9rmNkCJ/T4vkaAwe0XdbKG2ry76uwlVudqLmimiecn9TMDJ/RQDSgY1S9JfnOmPVhDM028cEs/K3BC+/XrEGUE19jnmO5Sdkb7OLZnbuptlk6xlYLRQI3fGaVhzu8dZ3X7dOFOa7mu7+9Yw/nPV/c0gzP0HtoCJ+rrb8K6EBYavQCZJxr9LeQCEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIHGL6C/8p9xIlOCvuQd1CnGuig/45fjYwYmmb9c11+WLzYCGhyzKFgd62EhOND+Om21UdpAX3Y7Nn1BfMuFKY6b6mS56PAxWbB+nzmWekw8v4PbcccOaS3vzc0wAwZWZxy0+rQwjrG1jOxi2WeUpmhlBBk4tgEdo0U/1WnBgX5VZtdIjqkoCaH3av1O+5yqcx7HvmlG5gMdS9tII6jG8dmw9fMz3pDfZryg1ywa2tKzCox/q8548cOJ/nrM3Zd2FX3Z7tq6tg6XMYOSzJIXOo+9B0p9ytLhOs6lbrKLaJ8zjUAQW9uRW3/BE8ON4JKYMOdnQM/bLyVSbIE3Q7vEOAV32ObV2SFLRFae50AbDajpkhxuO8z61gCGPxmBKXNXVwS1rN+l96ei1fX9HWcEg9gCJmzn0O/6+ptwPAfLjVvA/l/7xn0dzB4BBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQKARCyzbkme9IB81IFECjaAExzbCePH7wU8Z5qavjdIdDRU80aeD/cXy1G+3yGqjzIKWFOmbEmNmPHCcY10u78i2v0QPDQ6QrH3FHocPOPHCXzMuFJQclfDg5magRLLxi/8so2SCls+49rkFMu6stnJWt1Zm6YYAf2dfj4P7sOOwkY1Cz1ty+KgUlZbJIePbFuzgw+FVdtnkkI1Bs3tk5rq3KHcYaa0PQRvlRt2KdS79PI3tGFSxdW9hjYInOsS3dJihfTGypb28SFFpRZCIfW/dLfXwUGojpIX9lXGnxFC3J4wND7K2Hxej3oeH1rW1vRSHa5eQIH/paIy/dU+RmRVFnxstu1KX91cDjdrFunfW4KGG+ptwvXbWG4eA/S+hccyXWSKAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCJyGAlqOw9ZaBjUXDabw1DQjw/7CIxLt5lf0no6p6fbhPePkEiPrwNfLdptDLNqYJ/rRpi9ih/eOl1H9EyQl3v1LZ7NjDf45cOiIdZQGRYx/fqG17m1h854CGZBSkU3iyet7yx1TlpuBDBrM8N7c7eZHjz+zW4yM6psoZ/eIs8pfeBvXdd+GzAKZZdyzpZv2yS6jREh9tv2Fh63hZxr3QT9VNX1Bf/io8XLeJQjH8bjCEudAhQkvLHLc7XFZX/YP62bPFuGxo8OOuIgW4ilgRbMk6Ev/ugw4cTi1tdgisHJWDWvniYVm7lI2uHbyst4hzvvfQRcjg4XeG23bjQAhzepRl/dXA428XUJ9/k14YWFXIxEgeKKR3CimiQACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgicrgKFpUetcgt6jZphwpZlwtM1z12TLZqev76blgx58MpuckanaJm5IkuWbTpgnVKzOtjmOrx3nDw6vmeljBlW52ouaBaHmrSiQ2XWYfqi+t93D5Evl2bJZwt3Ob2cX7ghT/SjL+2fmdjH5/IdRrIGmb5ol7z0Rbp1nvpeKDFKmNSkHTKyYQR5CbCpqXFBid24JvM6nY+JaFm5LIjj9UaE2PcfPOFYX/fX8by25fr4m7CNzXfjFyB4ovHfQ64AAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEGjUAj8ZgRDVbRoQ0BDBEzovDaC4oG+C+cktOCJrjdIdaRn58o2RAcGWLeDH1TkS4LdOHru2V3UvxW3/cIeX0Jol4v6x3d32c90YHmIvAaH7kmOC5fcXdZLfjuwo6VkFsmZHvszfkCtpW/PNQ3X+d72xUv5jBFl4KtngeI61O/OdAieuGJJsBpYkRIdIqFH+Icw4f0ujPMNlf51vlgtxPLamy1Gh9hfud4xJlQuMbB++NMdyGO76RzqMq/tnPHS2u26VtrUwru9kNA1c8ZRV4UhZzQJM6vo6duYWSZfkcI/DZuTYy9G0a1VRXqO+7q+nSdT134Sn87C98QkQPNH47hkzRgABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQROK4Gvl9tLdjx0VXfp1sbzy9cbXlxsXrum/t+6t0g6JngvE1DXULHhgWapDi3XcftFnc2sDi9/WZGF4bu0bHnwqh5eS0X4Op9WYUFW1wNFZRIbYV+3dlRjobl/M+nRNsL8XHN2O9li+D0zfb1s2FVgjrJg4z6fgieWbd5vnfWac9rKnZekWuu2hSIjU0R+kb3siG17Tb9bhduvvaD4SK0tbPNoEeDnVC6jpRH8EXKSAiNsc3L99vf3szYVGJk0IkIqv94tLz9e76VTrElUsbA9+5DX4IkNmYXmCJrxJD6yhblcX/e3iqlKXf1NVHUe9jceAftfW+OZMzNFAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBA4TQQy95XIGiOLg7bk6GC5ZGCSpMSHevzcfVkX68q/W7XXWq6PhSNHy80gAw00yMorqXSKIOPl+1XD2kiqUR7D1nblFtsWff7eV3C4Ut8OcS3FlhlBAxzUyVPbaZxTM0ro53BZudlt74FSa+6lJ7Y5Hq9ZJiZd0MHatHl3RRCFtcHDwuod9rIlFw9Icttr5dY8t9trunFAx2jr0Hnrcq1rtDY6LKzbedB0WL/roMNWz4tn94i1ds5f7zkDyj4j44jNOK+w7gJDrJN7WGgfW5GdQXdn7jvktteGTN/unduD63jjjCVZcvSYkSLDTVuUvs8KqunRPtzKolGf99dxGvX1N+F4DpYbtwDBE437/jF7BBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQKBRC3z/qz0A4pJB7l/GO17geT3jrNWZy3fLMeNX9/XVdOjfv75Mbnp5sVz99wXmy3PXcxUbWRYyHQImYhwyRrj2dVwPC7ZnEFicXjnYQEuFXDE42Trk3rdXimagcG3pWYVy7fML5XevL5d731olNo0fVmeb89a5PzZttZRrzQeXlpFtD/SIi6jIAuDSpdJqpwR7VpDNuyuyCDh20swDz07f6Lip1sttY0PMjBk6UIYx/uP/W+P2vs9YkimTX1tmWrwzZ5tP5x01INHq95f/rXd7jw8WH5U7plaMq857D3gOZLEGq6OF1CR7YM7/5u8Q19uoWT5eOpH5pI5OWathNBDq9VmbK42xZ3+pPPrBGmv7oE6trOX6vL/WSYyF+vqbcDwHy41bwP5f5cZ9HcweAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEECgkQnoC/0vjV+q29rwXvG2RY/fWr6if6coWbnlgPkr9uVb98vgzjEe+9dmh5Z1uHxIa5k2b4c5jAYnXHdee+ndPkLCggNke3ahTJm1TYqPHDP3n9ktRqJCA3w6ZWJUsNVPsyX83xvLZXjPeOmUFCp920eZ+yaNSJH0rAJZtDFPsvaXyPUvLZIRRrmQPh0i5dixclm946B8vijTGuemER1E56ztov6J8vo3FS+xf1m3T/70/q9ybo84SU0Kl3yj9MXPa3LkM4djL+hTtb2OOyg12vJ48qN1snzLfhmSGiMBRlmQdUZJhs8X7rI8tH9dtb/e0EcmvrLYvOfz1ubKpH8skbO7x0rX1mHGtjKZtz5HFm6wB6HcMNyeVcPbHPTZmTyqo7wxe6vZTYMjRvaNN56xaAk3ynhsyymW//6UYV3ToNQoK5DD27h1ta9bmwhrqLmrc6S0bJWM6psoLY3gmx05h+T9n3ZY2Rysjid54aP5O2W9kS1F74/+PazJOChz0vZahvr3O/6stk6zrK/763iS+vqbcDwHy41bgOCJxn3/mD0C/5+984Dzojj//0O744CjH733jqAIKliwG3vsWEAjxhr9a0yisUWjYomxi5pmiejPHhua2BtVEAHpvfd6cMDdfz5zPPud795+636vwee51/d2d3ZmdvY9s7NlnnkeEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiCBSksAs9RXb9phyw/XF5iBnoyc0K+5VZ5A3LGTVpSa8gTyP3dIW5myYIPAdQaUJJ7/uHiQHftcGdi1ofzhlz3doLjrsCjQu119z2XJlHkbBT/kc8ClxcoT1Y1Cwt3D+shVz0yU2cbCxMatBfKGUU7Azy+nGSsVFxzR1gtumJslN53RTR56q9gKBBQo8AuS28/rIT2cQfqgOBrWv0MDq1zw8ZRiFxcfGv74uXLRUe3kPxOWZ3RQP69uljwx8kAZ+cR4Ww/zjCsV/ILktnN7Sl/DNlm5ZGh7WbVxh7yzV5EH56bn5+aBNnr3sL5uUKmvw73KDad1lUfemWWPBQURV0kEgYf3yhO4boFVjvKWey7sLX80FiZwbas7HrdMsHCCNo227Upp1q8ep7SuCc2fy8pPgG47Kn8d8gxIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIoFIS+HLGGq/cmBWerAwxFhRUxv6wUnbvKXZJUcUZj4UlBFfgBkMlq1ryQ2QY1B191QC54oRO0rJhxFqE5tXRDG5fc3IXeWh4P8HgrCvV9h4zK6uaG2zXUZ57L+wjI02+8Vxm5Ji0D4/oZ5Q4omfqa4bdW9eVB0b0ld+e0V2qugBMhDOM1YwXbhhkFTJq+cqA7cE9G8srNx0qx/dL7C5Fj1fDsLvtvF7WWoO/3PXrZMnvz+ouI4/rKLEYu0VMtY7aN60tT155kBzVJ1L/Wi4sEf6v6wfJCXHaUtZeyxxuOqzfeHo3W4/+c8I+hEER5RnTDnKNNYpURM8xu0ak/aWSHnHPOrS1XH9qV4Hyhl9GHNNBbj+3t2hb8+9320RW9ZLt0B8/q3rwtZFVNRLuj1PDSXO4uTafNnWEdumXoaZ+HjcKMPVrBVtnCVO/yXIujWvCf57crrwEqhQUFJR0cFR5z4clJwESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAES2A8IzJo1S7p27Rr6TIc9MiGpPF6+YUBS8Rhp3yewc1ehcaGxXaqYv5aNcsQ/kJwOAbgv2bpjj0CxAEoNsQbCoSSyZtNO2Zy/S2pmVZVmxvVHtjNwHe/Y5hA27YZtBdK4brY08il6xEsbb9/6LQWyZvNOqV87S/LqZZVQ4IiXNsy+HaYeVhtrEfkFu6VuTpY0qZ8dk1sqx0FdrN+ySzZu22mSVZGmDWqmrDCRyvFSjZtvrJ8sWbvdtJPqpv5rlrDgkGp+pRl/y47dsmrDDtuuWxjFIygCJSulVb/u8UvrmnCPwfX0CJTXvTk11aj0zo2pSIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESGCfIJBtLBd0aFono+cC6wB1cxIP28HVQfOGNaW51Ez5+FDMgIIBfpkUWNvwW9zIZP6x8qpp6iFZNy+x8ggKR100NtZG8KuIAgUEuHypDAIrHbnGMks6Ulr165altK4J9xhcr1wEIvZVKle5WVoSIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESyAgBKk9kBCMzIQESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESqKwEqDxRWWuO5SYBEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEsgIASpPZAQjMyEBEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEqisBKg8UVlrjuUmARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARLICAEqT2QEIzMhARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARKorASoPFFZa47lJgESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESyAgBKk9kBCMzIQESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESqKwEqDxRWWuO5SYBEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEsgIASpPZAQjMyEBEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEqisBKg8UVlrjuUmARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARLICAEqT2QEIzMhARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARKorASoPFFZa47lJgESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESyAgBKk9kBCMzIQESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESqKwEqDxRWWuO5SYBEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEsgIASpPZAQjMyEBEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEqisBKg8UVlrjuUmARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARLICAEqT2QEIzMhARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARKorASoPFFZa47lJgESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESyAgBKk9kBCMzIQESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESqKwEqDxRWWuO5SYBEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEsgIASpPZAQjMyEBEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEqisBKpX1oKz3CRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAvs3gdUbd8pHP6ywEPq0rycHtGuQFpAXP18oRUUiTeplywn9m6eVBxORAAlUbgJUnqjc9cfSkwAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkEClJlCwu1CeeH+OvPHtEnsepw9qWeJ8GtetKZ2a15YOTXOlRcMcqVKlRBQGlCOB2cu3yDvjlqZdgv4dG8rRfZqmlX7N5h0y+qO5Nu2vjuuYtvLEMx8W59HXKGBQeSKtqmAiEqj0BKg8UemrkCdAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAApWXwE6jPKGKEziLt79fFvdkBnRpIHcP6yu5NTnMFRdUGe5cuTE/Yb3FK05WjWppK0/Ey5f7SIAESCAVAlVTicy4JEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJFCaBGplVRP35z/WhNkb5PLHx8maTTv9u7hdTgTCGgKpm1OjnErOw5IACZBAhABV8iIsuEYCJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJFCOBHq3qy/PXHlQVAkKi4pk3eYC+XjKSnnqgzl235K1+XZ72BFto+Jyo3wIDOnRRL4ZdUzgwX/1xHiZuWSz3fffu4+SHKMcQyEBEiCBikiAlicqYq2wTCRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAApZA1SpVJK9etkBR4o7zenpUvp21xlvnCgmQAAmQAAmEJUDLE2EJMj0JkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkECZEBjap5ncNWa6PdaUeRsFVimgXKHywaTlsmHbLqmdXU1OH9hKlq3Llx8WbJDJ89bL5u275KIj20nf9g00ul0uXL1NPpu22sTdLuu37pT6tbOkdePacmSvJtK+ae2ouIvXbJevZhYrbRzatXGJ/Yg8ffEmmbJwo013ZM8m0rJRTlQe2Jg8f4PMXFpsjeFYc05N6md7cbbu3CNTF6yX2cu2ys/LNkntrOrSsUWudGxWWw7u1EiqVo2cr5do74rBIRPnrZPxs9fLUnM+ewqLpEWDHHPLFPGPAABAAElEQVTO9QXWIapXK5l2qTmnL/ae0yFdG0mrRrXkx0UbZer8jaaMm6RJvZpy85nd/YcqlW2U9/vZa2Xhqu0yb+UW2bZzt3RpUVc6t6gj3VvVl7y6WUkdd6Op67GTV5g8tsr6LTulmWHQs009ObpPU8mqnv7c8oLdhfLpj6tkhrGksWLDdsmuUU1aNqwlg3s0lt5t68ctW5h6jZsxd5IACWSMAJUnMoaSGZEACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZQVgdaNc6IUJ3Dc58bOl9WbdtgB/87Nc2XkkxOiinPsAU2lrxQrT+QXFMq9//eTGQxfHRVHN57/eJ4c0TtP/nh2L6lllDEg64xyxVPvF7sO2WIG6H99QieN7i1f+WqRfLY3zz17iuTio9p5+3Tlpc8XyLhZ6+3mKQNaarDMXr5FfvfPqfYcvECs/LDSbvbv1EBuP6eXtcQRtd9sYHD++ucmeS4y3P3/980Sy2T0VQOiFDUQZ4ZRkNBzalQnS54z5/3lTxGrHlCeKAuBEss9r00vUf6vp6+1h69l3H2MGnGA9O8QrfziL9snU1bIA2/8LNsL9kTteuu7pfKEqbvnrz5YmjdM/Zzmrtgqv3l+smzcWhCVLzZe+nyhHNq9kdx7UV+pUa2kckaYei1xMAaQAAmUGoGSV2+pHYoZkwAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkED6BL6aEVF0OKR7XsyMtubvkpv/NbXE/pwaxfOKYUHgqmcmlFCcgEKGK19MWyO/fnqC7DTxIT1b1/N2T5xbrPzgBZiV3UZZYtzP67ygb38uHvj3AszKrj2FnuIErCHUzSku08/GEsWIR8d5ihNQWhjcs7F0aZnrJZ88d4MMf2yczcMLNCs47u0vT41SPICyQX2jDKECpZKb/vmD5PuUCnQ/lv/83/woxQnkUatmseKIGy/T62s27ZRhD38XVX6UHeeOMkCgDHHt6EkyYW6Er78c42avkztfme4pTvgVP6D48LsXpsiOXcX16U8fa3vN5oISihP+vL+duU4eeuvnElmEqdcSmTGABEigVAnQ8kSp4mXmJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACYQjAFcXaLQXy8Q8r5KkPiq0+tGyYI5ce0yFmthhox+/4/s3k3MFtjcuLOlLNuLtQDx8vGksBs5dt8dLfc2FvOahzI8mtWd1acJhoXEfc+tI0u3+esTgApYIrju9kXT5AoQHWEGYa1w3bjbUHtUqByHBz4Vo8mGbcd2zZsdvmqwdzj3tYj4gCyNgpxdYlEO9C415k5PEdbZmxDTcU1z07SVAWKAB8YdyMHHNAM+yy8si7P3sKGR2b15Fbz+4pnc2yijnhxWu3yQNvzRS4OUH62//9o4y6+IBA9x9L1uZbZYVbzukhfdo1kEa5WdY1ih6ntJavfbPYy9pvXWOnUXQYPXauvPpVcZwPJ66QAcZ9SZCAN+SCI9paty1wmQJFmWnGDck9r86wiilg8OfXfpI/XdDHaw9BeWkYFC1uNkonanECbeqyYzpadyxQWpm+ZJPc8uKPdv97E5ZLmya1ZdjhbTW5hKlXLxOukAAJlAkBKk+UCWYehARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIIBEBDH6fM+obL9ouMzgNiwmuHN4rT64+oXOUQoK7X9fPOKSV3HhatxID5BiM//sn8zWa3HV+Lzmqd1Nvu45x0XGk2b7nQpE/7lWgeOHThXLJ0A5Ss0ZVObRrnlWeQIJpizfKQKN0oTJhTrE1ClhLUCWKyXPWGfcfkfx/XLRJo8tBHSMuKD7e65oDOy87toOnOIHt+rVqyL3D+sg7E5bJ1vzdRsFjN4KtzFq2Wd7+fpldh7WGh4b3i3LN0TavttxvlCUuf3ycQDkCFhIWr90u7cwgv19Q7ueuPThqX1XVOPFHzuB2baO0curBLaV6tSoy0rhCgRKLSrZhfvVJnQ3zNbJsfb6M28tY9/uXR/VpIled2Nmr96zqVeXAjg3l/kv6yKWPjbfR4arliuPzpZXP0og/L2y/M26pp2gzoEsDueWsnrac2Ify9m1XXx427kQue7w473+atuUqT6Rbr8ifQgIkULYE6LajbHnzaCRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAnEIYIBcf37FCSRraBQEVm/ZGSeH4l1nHdraG0B3I0+cF3H7cFiPxlEWHNx4UKiAoobK+DnFLjgO6tRQg2TawogiBALVTcepg1pK99Z1bbzxPvcek/ceH4oK3VoVx0HEXMc9xkzjwsMvrfJqWSWC3/2yu7WqoPu/mhFxDXKFsVbRpH627vKWUEYYcUx7b3vO8pL5Y+eh3RtHKU54CUp5ZfjQ9oLzuvH0blGKE3pYWA3p0qrYfQksQKw3lkhiCaxuBOl7dG1ZN8payfyVEcsjsfJC+P+mrvJ2X39KN09xwgs0K6jHkwe0sEFQmlm5IaLwk269uvlznQRIoGwIUHmibDjzKCRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAkkQOG1gS3F/xx3QVLq0LB44R3JYWbh29CSB641YAsUEWFwIkoWrtnvBPdvU99aDVno5+xfsTQdXEHAbApnoKEZs2LrLuvJA+KCujWTIXpccn/+0RuB6BLKnsMhafsD6YKO4AaUAFbgNUbnq6Yly3+szjJWFddY1iIYHLX82rkJUsmtUkaVrtgf+qlWJDAvOWrZVk0Qt+zmWMKJ2lPHGrj2FAp5LjaWMWca9yuT5G+QzYy1CxRgkCRQorOSYuo8l3VpH2tGclcEM3LSFpuKmL47wxb5YfGGFQmWeo5iRbr1qXlySAAmUHYGIzZuyOyaPRAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIlCPQ2LhBuPrN7iXAEQAHhbeNC4aG3frb7n/lwrrQyigyuyw1NWCenRqD1Aexf51itaN+0liYJXLZz9q/bHLF2Mbhnnrz61WJjeWKj7DBuQODOY/L8YpcdyKhPuwZSp2YNeXbsPIGlhIWrt0n7prVl7oqItYNB3SLKEkhz+XGd7ED9bKMsAHlvwnL7wzqUAo49oJkc3aeZNK6bhSBPVm+KlOtPY2Z44fFWZizZGLg7JyuiYBEYoRQD12wusC4yxs9eV0JhIdnDdmkRUY4IStMur44XDHcniWRL/p6oKMMe/i5qO9bG7OVb5bDuxVZL0q3XWHkznARIoPQIlF8PWHrnxJxJgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgAT2MQJwxXDGoFZy1/m9vDP7eMpKbz3ZlR3GrYJKrlGyiCe5RgFCZceuSLoBnSOuO6YvLlZE+H5WsfsMuALJrl5VupqBfFjAgEwwFiQgUxdElBb6d2xsw/RfvVrV5bGRB8p1p3SRdkbRwpWZSzbLY/+ZLaf9+Ut5+YtF7i7Zsn131HYyG5vSSJNMvunGgWWJCx78Rv7x3/lpK07g2HVrReorqCy5zv54rj80bf7O1Nki7eb8XZqFpFuvXgZcIQESKDMCtDxRZqh5IBIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIggbAEBnaLKB1MnL3eWqSAYkWy0jA324u6xLi46Ne+gbftX1myNuLio2GdiMWHA9pHlCd+XLhJ+nVoIJ/vdStx6N7yVTUuOY7s00Q+mLhCvp+9Vs4Z3EZ+WLDBHqJj8zqS57MggR25NavLuSYefovWbJNpizbJBGOJ4b9TV3lFe+qDOZKbU11OPbilDcurly2rN+2w689dM8DkW9OLG2vFdRcSK05ZhRfsLrRuWPR4A7s2lOP7NTNWRWpLPaPcUsswqWPO9/43ZsjYyfGVZeaviu+KY4lhqpLISgXi1XfqHNtv3zIEi4RSMzvadUg69ZrwIIxAAiSQcQJUnsg4UmZIAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRQWgTgIkNlu7EisaewSKpXS157olFuRAli/sr4g+3uYDyUFFTg3mJAlwZGsWGDsSqx1rhoaCwoC2RAp4g7DihSQHli3Kz1sn3nHoGyB0RdOtiNGP/a5tUW/E4+qIVce3JXefbjufK+ceUB+WTqSk95okn9bGOtoTgTWDzo0bpe8UYl+T9tUcQaB5RKHh7RP9DlymKj6JJIpi+O74oD7lNUOidw8YF4aGuwHqJ1W9soctTyKUZofskuk63XZPNjPBIggcwRiNxdMpcncyIBEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiCBUiEwcW6xAgIyh2WAVBQnkGZAx4jViE+MRYeN2yMuFrBfBa4tPp26WjflQCcdAg/pmmf3TV2wSb6escaut26cIy0b5dh1/OvfMaJI8fq3S7xBeNftB+Jtzt8tc1dstb8gdxKNjZWKa0/ugqhWfnaUBAZ2iRzjs73WLzSeu9y5q9BYsthof8koIrhpS3N9hnFJogK3LEFWRDZs3SVwXZJINm4tkO/2uk/xx929p0j+s1f5BPs6GUWNZGRIz+J6RtyvZkQsgPjTrt1c4PFdt6XA7g5Tr/78uU0CJFD6BGh5ovQZ7xdH+OSTT2TSpEn2XC+77DLJy4vcSCo6gO+++06++OILW8zzzjtP2rVrV9GLzPI5BLZv3y6PPfaYDRkwYIAcffTRzt7kV8eNGydTpkyRadOm2URoC4MHD04+A8Ykgf2IQGXu85OpptmzZ8ubb75po5555pnSpUvkpTSZ9BU1zvLly+W+++6TLVu2yM033yw9evSoqEUNLFdlLz9OKsw969VXX5UFCxZYNjfddJNUr175HuP3hXMIbJwMJIFyJBCmXynHYkcdevz48fLwww/b97Df//730qBBbHPJUQm5QQIkQAIkQAIkQAIksN8SmDR/vdz+UvF3XEA4pm/TlFm0yqsl3VvXtYPxGGy/85UfrbUD15VFobFmcfer0zx3GF1a5kq7JrWjjuUqQPztk/l23+G9ostTr1Z16d2uvkxbuFFGfzTXS9+rTbR1iEWrt8qvn5po9zepV1P+cf1AqV+rhhcfK4sdqwlNGkRccwzu3sRYR5htFTPeM8oB7ZvWlvOGtI1KC8WBUW9G3F5cbRQxLshrExWnvDY6mPKqzFy6Wc7Qjb3LLTt2y+2mjpIVtI9/Xj8oSokFaZ8x/FEPEFiT6NQ8164n+nf8gc1l7A/F7kL+NGaGtGhYS3q3rR+VDIo214yeIEvW5tvwZ68eILBwEqZeow7ADRIggTIhUPm+upYJlrI5yL333iv4iDxz5kyZNWuWtG/fPuGB//KXv8j8+cU3YH9kfERv1qyZtGjRQnr16iX9+/f3Rym17Y8//lgeffRRm/+pp55aqZQnvvnmG7n99ttt2QcNGkTliVJrJaWTMT4Ya/2dddZZaSlP3HbbbTJq1KioAnbo0IHKE1FEuEECEQKVuc+PnEXsNdyTtV9p1KjRPqM8cf/998vo0aPtia9YsULGjh0bG0IF3FPZyw+kYe5ZL774ouDag9xwww2VUnliXzgHWwH8F0hgX3q3CTzBChoYpl+pCKdUVFQkI0aMkDlz5tjiQHECChQUEiABEiABEiABEiCB/ZsABref/jCiZAAauwsLZfXGHTJ/1TZZaH4qUDI4b3C0koDuS7T87Rnd5dLHxtlocL1x8V+/l8ONhQEM5C9cvV0+/2l11LFuPrN7iSzbN6ljLV9AAUNlYJeGuuoth/TI8wbtETi4Z2PJqh5tHB6D8XBZMc9Yn1i9aYfc8PxkObF/c+nVtp6YR2eZumiTPPnebC/Pkwe09NYb1Kkh9w/vK9c9O9mGPf7eHIF1jgON+5A2xhLGsnX58uZ3S7yBfSgOnDKghZe+vFf6dogwg1uStZt3yJAeTaSZURCZvWyLfDhpuVf2ZMoKFxvDTX0ONYo1fdvXlw3bdsk3M1YLLISo3HtJH8kxHJKRgZ0bycjjO8qzY+fZ6FByOe6AptK/U0Opa9x4zDft5d+fL4xYFTHuXHruVY4JU6/JlI1xSIAEMkuAyhOZ5Zl0bkuWLJE777zTi//SSy8JBnATycsvv+zNjE8Ut3v37nLNNdcILEFUrRp9E06UtiLtf+WVV6SgoECysrLk/PPPr0hFY1n2AQKvvfZaCcWJE044Qbp161Yhzu7nn38WWMWADBw4sMKUq0LA2c8K8fnnn8uiRYvsWUNJjbMy97MGkIHTxQCbiruuYWGXpd1G3TK762HLzfSZIcDntcxwrKy58N2mstZc6Zc70bMslCc2bYp8vNyxY0fpFyrDR2D/l2GgzI4ESIAESIAESIAE9hJ4yQxEJ5K+7evJny88QKA4kI50NZYk7jq/l9zxyk82OZQyXMUMN8/bz+sh3VvVdYPsepUqIkcYhYt3xi3z9vktEmCHa6EC24d0bYxFCbnp9G7yhxd/FChjQGkAvyC54Ii2cvahraN2waXIHef1lLvGTLfh3/28TvDzCxQnnr5qgOSaQf+KInWyq8n1p3aVv747yxZp3Kz1gp8rqO+GudkSzy0J4l94ZDv5Yf4Gmb54k8AKB35+ufbkzjLAKJakIpcMbS+rjAKP1vXHU1YJfn6BhZK7h/WNCg5Tr1EZcYMESKDUCVScnrHUT7ViHQAWJ1z5+9//LrfeemtGlRxg0eLqq6+WDz74QJB/ZR1ogwIITIzn5uZSecJtNFzPCIFvv/3WywcKTL/97W+lZs2IuTNvZzmtwDLKlVdeaY/+9NNPU3minOqhIhwW/fiYMWNsUaBIU1n79IrAcn8tA1x1rF69WvLz8+VPf/pTxjGUdhst7fJnHMh+liGf1/azCvedLt9tfEC46RFI9CwLJf/nn39e/vznP0urVq3kiiuu8NJWlhX2f5WlplhOEiABEiABEiCBik6gCrQQEggG/Xu2qytdW9STzsZCwxG9m0iNaiUnjtaoVpxXdo3EeR5zQDNpY1xxvPLFwsCB8KF9mpjB+PYCRYtYMrBzQ29A/fBeeSUsSiBdJ1Pe+nWyrFIEtg/qGDxw38e49/j3jYfKkx/Mlm9mrvXiIw0ECgTDjHLAYd2CXacf16+51DSKCC99tsgqDxSnKv4PfmcahYtzB7cxSghZ7i6p6vDPqp6cNYaoDBJsVA+oJ3+Ssw9rbSxNZMtzH8+31jfc/RcPbScXmXp43LG84e5388/NqS6PXn6g/NvU6d//G23JHZZKkNcZg1q5yUusZ9Uo2a4Q6Uaj3NI6r7a89tViz52LJta8TzqohWT7rIqErVc9BpckQAKlT4DKE6XPuMQRMLvmH//4R1T4smXL5Ouvv5bDDz88KjzexubNm6MGeTELE2a4v//+e3nmmWe82ervv/++/OIXv5Avv/yyUpp4jseA+0ggLAH4WFaBlZaKpDih5eKSBEiABDJBoEuXLvLuu+9mIqtyyaOyl79coPGgJFAGBPhuUwaQ9/FDwOobfhQSIAESIAESIAESIIH9mwAsD3wz6piMQHjtd4ellE+XFrlyx/m95fdn9ZQ1xrLAtoLdxp1DdWlav6ZkxxhEdw9wRO+mpuxN3aAS61BOeP+25MZ/6tWqLrec1cPmsTl/t6zckC+1s6tL84Y1o5QcShxkb8Dhxt0FfkgLVyeFZkyqkbHY0NAobzg6ElHJoUSCX2nJM1celFTWcNWBX35BoXE1ss0oolSz561KMr/7ZXfBzy9QbvG3n8uO7SDDj24vK9abOt25W+rXzpK8ullmEnNspRp/Hv7jVDNpzx/SxiigtJb1W3bJxm07TZQq0tS4F0lkySNsvfrLwm0SIIHSIRCsOlU6x2KuewlMnDjR8+l63HHHeVzgkiOM1KpVSzp27CjDhg2Tr776Sh566CEvOxxz1KhR3jZXSIAEigmsW1dstqxJkybSokXF8fHG+iEBEiABEiABEiCBykCA7zaVoZZYRhIgARIgARIgARIgARIggWQIQFGiVV4tY2WirrQxy2QUJ5LJN0ycusaKApQ7WjbKSUpxwj0W0sLiBdI3MpYmYilOuGkqynpOVlVT9lxbD6o4kU7ZoOzQqnGOtRzStH52XMWJVPKHMkxjo4iBMoJxIsUJf95h6tWfF7dJgAQySyAjlie2bdsmMNU6efJkWbx4sTRr1kx69+5tB/EbNmwon376qfzwww+25Jdccok0blzsywmWEp599lnZs2eP9OzZ0842mTdvnsC0J6wwYFCze/fuctBBB8lpp51mOvbY2mDIHP5UX3/9dVmwYIGsWrVK8vLyrDLBmWeeKT16FGvp+fHNnTtX3nnnHRuM2S5du3a1Fhs+++wzwYfAdu3aySGHHCJnnXWWVKtWbKpo9+7d8sYbb9h4SI+ZkAcffLAcccQR0rRpfO1CHOjf//63VwyYzV6zZo3lA2sUf/nLX6R27dre/jAr1113nWAmGNwQQO666y656qqr0jL1jrpCHU+aNMnWcfPmzaVv377WjUaypuO1bqdPny6zZs2yA9UHHHCAbSvgp3xRVsR9++23sWpddujy4YcftmH4d/7555cY7F6/fr2g7mbMmCE//vij5OTkCI6BssLMfZ06dbz08VZQRhwfy507d0qHDh1s+xw6dGjCdjhu3Dh7LSAtrodu3brZMvTv3z+hy4Vp06bJhAkTbPqlS5fa9ohr48gjj5Q2bdrEK7I1xQ5/uzh3WDJB++/cubOcd955tvxxEyfYmUrdaVYvvPCCbdt169aVyy+/XNauXetd23PmzJH27dvb6x71mKjNT5kyxV5zuN4KCgpsuqOPPtpec3q8VJaom48++sgmQX8BgRl7t32dcsop9tq2O/f+g7n7dBmn2jaVHyzJqKDMGzdutJtoD2effbZdx7WJ9gK58cYb7TLo31tvvSXz58+31jXg0kfF3w9CCQvuTNAPox+ECeWnnnpKo9sl/FGjH0R7Xbhwob3WcJ2cfPLJts+MiuzbQB+Kfh71ij4F7Pv06WPr9ZhjjhG0mXQF5cLMenBbtGiRLRfuIf369bP3kqC2pqy1raJNfPHFF/aH+xBcBQwePDiqSLjOcP5oy6gTMMI5nHvuuQn72FTaAs7nySeftMdGu1WBewS936Bs6N/8EqaMmejz/eXxb6faV2bymaGwsND2AXg+Qf+GdtGrVy97r+/UqZO/qElvB5UR9Yb2hHsT2hjuSXgWcts59v/3v/+1/TfuqYMGDZIhQ4bYe0Csg+M6+vjjj20aHAPWqPR+N2DAAMF92i9LliyR1157zQbjfobrQsV/HSTbZ6fbRitK+fX83WWYvh75ZPqe5ZbNv/7JJ5/I559/btsBnnnwHHvOOefY52c3rvssfvrpp9vnY3e/u457jfY3eP6Od02k+7ymx0O7xf0GPzy34ZkH/RmuASg1xpOw9RQvb77b7JvvNkF9NFwDQoEd7Q/PUi1bthQ8s+P5NOi9ISgPvAPDwh+U13F/wfstnsNV8D6Gfh7XK54xtm7dap8b8J6L61Xv5xo/aJluvxL2GdEtS6rPWHpfSeZZFn3Ad999Zw930UUXBV7/6XLE/Rd1BIGVuaysLPsej2dRPOeCP97XfvnLXyZ837KZ7P2Xbv+H80CfjPs+nsFxP8R70WGHHSannnqq1KgR31d3Jt7LYK0SXFAOXAN4hsU7I94BVFC2//u//7P3A3yvwbMF+meUk0ICJEACJEACJEACJEACJEACJEAC+zQBMxBZFOZnPjgU5ebmFhlIJX4IN4N1Rb/5zW+8febDj3c880LuhY8YMaLozTff9Lb9+R111FFFZiDaS+uW2QxEFRnlhphpkdcZZ5xRZAYCSqT/17/+5aX75z//WYRy+I+NbTM4VWQG0YpmzpxZZBRDAuOYj7xFRimgxDHcspqPEx4v85HExjUDtl5+L730Utz07rHNB+e4cXFc84GvyAyOePkbBY2EadzyYt0M6Htl9rNBHRuFlZh1rGW49957vTL488A26s89H6O4EDc+0piPkFHngraGOgjKH2HmA2WRGTiOSoPyuWUzAwZF119/fcw8zMBuEerQzwjbRmGnyFj9iJkWZXjggQcC06KebrrpprhpzYfYwLQ4thlIjZvWKM7ETBt0LhqGcrl8gtj6607Tmo/PtkxYGsWmmG0I+80gfczyGR/CMc/NuKMpmj17trcfZdHjx1viWg86FzfMfCyMyisM43TapnvduuXSdWO1xisf+icNj3fe2n/gunXjuf0g+ggzWOblh3xRR258o/AQ91o76aSTiszAQFQaTb98+fIiXEdaXv8SxzKDD4FpNY9Yy0TlQp/r3oM0HxxTzxNt0V8mtBeNa5Spiowv7hJx3DQffvihF1/T6TLVtmAGB+MeC8c1PsKjjhe2jGH7fD3XWMt0+8pMPTNs2LChyHz8j8n1j3/8Y5FRjPH2G+WVKL6xzgvh/jLG6mvQ5sxATtGmTZvs84nbftx13AuDjmcG+YqMUpBXRjcN1nGNm0G6EmnR/jTu448/HrXfvQ5S6bPTaaMVqfx+vmH6euRVGvcsLSP6fa0/oxwWty9FO9Z0WD7yyCNeWqNUG7XPjYf+Q9sCjoXjuPv966k+r/nPwSh5euXSc8MSbdgoXsc8dth68p+Hu813m8g73b72buPvo8eOHRvzeQZtEG3BbRtY9+fhXlvaho1ipZcu3rujxr/jjjuKjGKCl8Z/zDD9SthnRC1LOs9YqTzL3nDDDV5fgPujHleXYTgahQkv76lTpxYdeuih3rbWgS6ff/75EsfWMviXqfZ/SG8mTcS9f6P/NQo2gWXI1HsZGOj5+pdGkcge20zwiBnnlltuCSyfnw+3w31nIz/yYxtgG2AbSK0N4DtGJpidPeqbomR+mTgW80itjsmLvNgG2AbYBvbPNpDMfRlxMt0+QrntwIwFM0jmWQYwL99iPjTZGTtYxywGo7RgZyZjO55gRgosRKhg9gXyUsHMCMz+9QusAmAGOixOuIIZ966YAQMxChh2hrMb7q4/+uijAusPEP/xMQMblhxQRlgH0DjurDjMgMNMTsyijiWYJQoukIsvvtguMctFBTN0MinVq1e3M2w0T6OgoqtJLc0gk50Bo2XWRObDjl1FuBmwtrO8dZ9/+Yc//EHMR5aoYMx2BWMV1B9m+mMmDgTWS1CH/nrUMCwxw1IFM83R1lAHKoiDGV0q5qObncmIdhtL7rvvPvnrX//q7XbLiEDMEDIf97z9uoJZZpgx77peQfvFjHe3jaAN33PPPZrMW2KGletmxXzUE6MYEHUNjBw5UswHPS+NruDauPTSS3XTLv3lNh9loyyeREWOs5FO3fmzw6zSE0880Wv34KHtB3FhJQOz9YOuG8zce+KJJ6KydM/t/ffft1YtoiIksYEZ2dqW3OgahiXc4KiEYZxu24T1HpTDFbQpLWNpuRgxyjKeNR4cG8d0Z8jj+kF9uteaW59I88EHH8i1116L1SjBTF7MWsN1BEHecF2EvlkF7QEz7n/66ScNSmqJGfX+ciF/VzDbEzPzMfszSNBW3fuQxnGtVaCPGD16tO6yS7dNIgDlgNUHv6TTFrKzs611Hn9bAHNtC37rP2HKmIk+33/e7nbYvlLzSveZAfcYWMKB1QtX3DpEH/3YY4+5u9NaRxmHDx9u0wb1e3CxBWtQeD6BoL265UAYLAToMwe2IUYByc4QxWxZFeSP+6q2edybjz32WPnf//6nUZJeptpnp9pGK1r5XTBh+nrkU1r3LLeMuo5nSO1LEebvh9GOMeNcxX3WhAU0fd7S/brE7Hb0wxA84wdZMNG4WKb6vOamRZlgvQfib/9ow8cff7y1IOSmwXrYevLn527z3aZ91HPrvvhuo/WN+zTeYfR5Bv2o9qGIgzYIyyuwEBhL8H4Y9F4AywYQWAiAdT1/P+7v62Ed0ChvBx6mLPuVwAKYwHSfsTL1LJsJjnpusDwBKxcQ/70ZYb/61a88yzvYjiep9n+7du2yljnd+zfaHMqhgv4X1ifQ/vySqfcyPFuo+J8v8Wxy9913y+23365Rot6nEYh3hb/97W/efq6QAAmQAAmQAAmQAAmQAAmQAAmQwL5GIG3lCZjtxIu3fnDCR3uYKoW7DAxQwYWGfkzSDxTx4GFgGzJmzBhrehpuHWAy2jUVj33+j09mJr/nEgTpYVIfZYK5YXzscj8cIy1e9mMJXIvgPMxMdutWAsc3s0a96BgYRzlhrhKm71FGmHd1P17jg0e8QT9XOUJN7mMQVAcPoVyBgYVMCgbyVMxsKV1NuIR5zkuMaXHUJwQfVzAQA1OzCMN5mhnYdp9/IMoGmn8rV64UKKWooH7wMQjxwQ/mWfWDEQY09SM6zOWiDvHTD5lYahiWGASFYADAzLzWQ1g3JdoGzMwa61JA+SJc3TV4CZwVHVSFkgLKjjKiTatSDaJiHz5kumJmmnttE+czfvx42/7Q9uG6w8zs96I/88wzUYMWOA7M/0Mw+AGzsjDBjQE1lNdVmDCz26w5YM0M1xk+/KrgekD7QbnhbsDMzNRddhAvmWtRE6Rbd5pel6hvtBco0IAlrhlsoy1p3eO6cRkhLT5Im5l2mo39iKfXHdwkYCAabULrzIuYxArag7Yl/YCNsmgYlhh4hIRhHKZtot5Rjqeffto7I9SvltHfBr1IIVdwDYIrrlW0XbQjdbsE5Qe338cHVvBBfWIfBrS0TnHNuG5QUCz0lTooB2Uj9LXvvfeemJmfYmbgCxSEVHCdJCsY8IfbJVwvEAz46TVoZunZe5N7nQQp4iEd2irywHmhj8I5QUEPgycQuDu488477Tr+mRmH1mUHrje4CDFWlrx9UH7S8iAw3bYAJTG4NkG9w5yyCvocbQv40K8SpoyZ6PO1HLGWYfpKN890nxkefPDBKGVL3NfxrIA6RN9krDHYw6TTr7jlwzrKiGsJJrFxLeE6QbvUawT7cXzEwfMTnjlQDsRzBzPcZwzkq2XEOvoyuM1B2dFmMcDltsMXX3wR0VKSVPvsVNtoRSu/wgnT1yOP0rxnaRndJdoonhlwTaH/RLtBn6qu2hAXipnaf2OQD/0SBP2wO3hnA/f+U1d22ET6RJLK85o/L5QBx9B7Ddo/yqvtH30oTMa7Erae3Lz863y32fffbdw6R5+J/g6KSOqyA8+puLbwPgjBtXLBBRcIBr2DRN9b8H6JPh3PDGhHUDqCsiCU9XAMCNo17gd4j9K+Hu4bVfDcg+chV8q6X3GPrethnrEy8SybCY56Llii38EzIxQy9J0E78d4v1cJUnTXfe4y1f4P30bwrg+BYgnaIPo53LvxnQIuQCFYR9+I5zKVTL+X4RsL2iaeJdHOobivAuUJCOoP7RXv03j3cpXw/vOf/2h0LkmABEiABEiABEiABEiABEiABEhgnyOQtvIEBnP0gywGAmDRAB8dYOkA0qFDB7n//vuT+vCqVDGIgFm/NWvWtEFVqlSxsz8wkKXiKiZgUExf7rHfuLywL/X169e30evVq2etEWAQUGXUqFF2QEy33SUGMPDRuF27djYYx8cHM8wMVcG5YtAW/u1VDj/88ChrAspF9+sSAzT6URof5bp06aK7rF9d3XAVPjQszNKdoY6PRMkKPty4igYY4MeMcJ1NhfLDSgNmjscSnDNm+OCn9YNZqioHHnigoE5UUhnc1zQ6mx3HwCwZtAltA4iD83cHYuGTOJ5gxjE+pDZs2NBGw6xutEF3JrL7sROR8KFUzxMfk6DYUbVq8eWFJfwm6wxkfCTTj61Iqx/RsI6PrL169cKqlWrVqtmyoPzIH20NH3ZVMANJP8ri3DFrrXHjxnY32vOFF14YNdDmKiNpHrGWmay7X//613bQ2Z0hj7bkKr3gw5wrUBRRMe50xJgg9647WIXAh0+dsa3xSmMZhnGm22ZpnJ8/T7Qb+IDGB1IMtkG0LWOWmfZvUH6AAgf6egj8M8MHsvZxCPMrq7kfWsG1UaNGiGYFA7AY2EY9o63rfUD3x1uiXHpNYXACSmp6DeKehHsTPgCrogzOYcKECYFZQiEMSkfoo3FOuA9AjNknufLKK700GLCEkoZaKMFACfoy+C6H4EM07hUqZdEWwpYxE32+nm+sZZi+0p9nqs8MGIBB+1KBciSUGPGsAMH9HfXv7981fjpLPBsZk+neNYR26d5LkCcstaCNalvDgDjaq4q/rdapU8deI+hXoVTq3uPRHmF5RNu6X/FC80y0TKfPTpSn7q+o5Q/T1+PcyuOehecyWF9TS1x4fsWgn6ssZtzOKHrP4hkCoPzlFyh5uc/MrvKtP24mtnEfhyUfvdcgz549e0YpDeJ9w5Ww9eTm5V/nu82+/27jr3MMGENJtVu3bnYXnhkOOeQQq3yP5yEIlCkwyB1L8H5jXO9Jx44dbT+uz0xIA+UHFTyz4n6g71Ho63//+99HvWf+5S9/0eh2WR79SlQBzEYmn7H8eSeznQmO7nHwfId+rnXr1l5wmzZtoiwpwHJUpgXK8ar4rN8TUBa86+H+37VrV6ukq8pjeDaAQpxKJt/L8M4IxVt9J8/Ly4vq+3FMPEvgfVjbK54v3MkEUPrEPYNCAiRAAiRAAiRAAiRAAiRAAiRAAvsigbSVJ/ABQAUDoPgA5Bd8CPCb3PfHcbeDzKVjv2taErNEVDDLWQWz6XTQSsN0iUFAnTmMsFhmrN3BQk2LJQZ5VWBC2B0A1nB8/FBxy6hhWLouM1yFEOyDeU4Vd9BEw8Is8VFGPwBioB0DbMkIZmGpYFBQPyxqGJbI27Vu4O7DOmbV4KMkfrHqp0+fPl4y95heYIIVDMSgneEYGBjTj5ZuMgwkKQPM/I0l+KiJQaMgQbjOyoECBH4qaDt6nm5b0P1YYnaSimvSH+VXQdmC6gduOTR/NaGNmaZwWwHBud16662aTdQSg4F6fWJQPFnJZN353YpoGdyBGczCc0U/VOPcXFcqbhwok7izrN19mVgPyziTbTMT55NMHqiToGsdad0ZwPjAD+UCv0AhCsouEPQ3mE2n4rb1oLaIAUB80EVbd93YaPpYS7dc6D9dNyOaBh994R4I1jvwC4qDuFCW00FsTYslPhKrohIsQGDA0i/oe9zZiu59sizaQtgyuv1vun2+n4l/O0xf6c8r1WcGzMxXgeILlCODBJZJ0P+FFQyO6CxSNy8MzKkgjjvbVcPd4/v7RvT1uEaghBH0PILBP73f4D7lKtxp/omW6fTZifLU/RWx/GH7epxbWd+z0FdqPStbLNF/uQqjrvINlBX0WSjIdQdcduh1goE1VQ5z88/kOu4VqnTt5ot7uwr6NZVM1JPmFbR0+2y+24hnfQGs9pV3G3+9w+pZ0LMMFJFc5W4oFwYJridXWcmN4ypQ4pnGVZp34+GZRK9LvNu6fXZZ9ytuuXQ9k89Ymmcqy0xwdI8HhQDXHZvuQ/2ou0cowELZM5PiKhDDTYu+m7nHwD3dfZ9zn8sy+V7m/w6BMuD9UhU3sO1+f8E2BIrN+syCZ2JYJaGQAAmQAAmQAAmQAAmQAAmQAAmQwL5IoNhMRBpn5n6MjTVYjGwxGIYB50QWBTCLGQPxQeJ+XNDBK8RzB6DhTzaeYL/OiIZ5SldZQdPFysMdZHMHNDQdlu7Mz1izMFwlAwwguQIrB6eccorgwwpmUOMDbtBHcTdNKusut6CPhEF5uR9sDjrooKAoNgyDP1BO0A/uMSOaHWCDsuCHj+BYurN7MDM4EwKrJJo/lvDh7jKIdQxVjoi1H4Ne2pZhBWXo0KGBUWFmVY+PY+OHGUQqrhlW/QiFfYgzYMAA674A1wQ+5AUN5CIuTFeroI3G+rCNODprCB8D169f71nV0PTJLMPUXY8ePQIPgZlOKuCl4iqn4DrQWbW6313Gum7dOOmulwbjdNtmuueQarqgwV7kgWtTP+JrnrHcALl9DPoRnd0HyxRq/QQDf7iW8AEXA2WqFKR5J7vEtaTWMJAm3v0I/XesPhxpMXgRS3EEg4oqaI+xzt3tw/y8NL0uM90WwpaxNPp8PddYy1T6SjePdJ4ZXMtV8foNKMHgXhBrsMwtR7z1I488MnC3+0wR694KZRu0x2TuW1C4gzltxNX7jbqCQgHcNhlYoIDAVPvsgCySDqoI5Q/b15fHPStW2wF4tDH0dWjDcCWAvgaKEOi70OdCuQLPAzBfj2cOFX1OxnbQ4JrGy9QyXn+NQUyU3VVUDVtPicrNd5toQvviu417huhj27Zt6wZFrUMZVMW9v2oYllCqD1Laxj73HhLvnQ7P6Hi/UEt0eA9s2rSpbfva/svrWTiTz1hgko6E5eg/Zry6wPss+h0I+s1UrKD5j+Pfdq3oxHuOdBXK8D3g3HPP9Wdlt9N9L0O7x3kGiVpdxD5YUgkSPNPr822sbx5B6RhGAiRAAiRAAiRAAiRAAiRAAiRAApWJQNrKE+4HAJiZjCf4OKoDzrHi6eBa0P5YHy70gxLSwMxvPHEHAtwZPW6aZGbYxfpA5uYTtI4PMe4AHz4Aux+BkcZ1NQFzovE+7gQdI1YYBlNUoIgSazBe4+jS9Ycda0BR46Ks8ZQnYB4aP5gQd+tN02diifLCdO4nn3zimfBPNd94A6vIy21n+JjnKk9ghtJzzz1nLZu4ihKJyoA6gRnXkSNH2qhoK/CJC8EHrjPOOMMbYHYVjGC+VQWDIG4b1/CgJQZIYw3qBcUPW3c4P1Xe8OePthg0QOgOcsLMfTzRWWLx4qS7L1OMM9E20z2HVNMFzcZDHv7ZZa7FmHjHQL8Hy0AQWAoYPny4wF0CBG6B1DUQPuRi9iasAbjXmY0Y59+6deu8vWgLse4XXqQ4KxhwjNU/uvcNmC12TRfHyhJ9RH5+fpTyT2m2hbBlzGSfH4sJwtPtK90803lmcJVDXPdIbr66nmi/xou3jHUtuWlitTc3TtD6ihUr7H0D91QdxAiKl05YOn12qsepaOUP29eXxz0rUT+JZ28ddMRzhQ4Eq/IE6gz3d1WewCCYuuxAG3AtpKRav8nGj6c0F3T9hK2nROXiu00iQtH7K+O7jXsGUOiMJ66lCPf+6KbBM2wscS1vJXpXxvuHKk/oe1J59Cv+c8nkM5Y/72S3w3L0H8dVCvLvi6es7Y+b6jbe1VTwLJyMuApdGj/se5mrwKl5ckkCJEACJEACJEACJEACJEACJEACJBBNIG3lCcyIUR/zmMke7wOoO6ATffhwW/Ahr+IqHmiYu3RNW2MmSVmLfpDW47ruCjTMXcJKBUwGxxp0duMmWncHVmLNNAnKA4MbKon4Nm7cWKNGLTGj9MYbb7Q+raN2ZHADH/xhwvz6668PnWu9evXi5uG2I/eD4uLFiwWm/GN9XI2bqdmJj2gwlQqXAy+//LIXHTOJX3jhBfvD/rFjx0qrVsU+qd327yVIYgUzlJORsqi7WOVwB+oTtT13llSs/NIND8s4k20z3XPIVLp0+023vUH5B9cqrAZAgQIDvypQvnrwwQftD5Z5oJyQjCIE2qlKo0aNdDXjy61bt6aVJ5TX8DG+LNpC2DJmos9PBClsX5ko/3j73bZSnv1KvDIms++LL76wikjJWKVIJr+yjlMRyx+2ry+Pe5b7PBJUh25/iOd0FVhdwbMg+ly47oCrISjxTJ061VOCveyyy2LOptd8ymMZtp4SlZnvNokIRe+vjO827hkken50lerTeZd1ldcT3XPc/VC6hJRHv+Lywbp733T7FH+80twOy7E0y5ZK3m4/nGw6912zPN/Lki0v45EACZAACZAACZAACZAACZAACZDAvkIgbeWJQYMGyddff205YGZMPOWJ7777rlR44SOnChQ5XB/JGq5LVfTANtxMlKXs3r1bXJcdyRwbgyKwoKAztpNJEyvO66+/7u06+uijvfVEK5ilqNYk4BIinvUJuEIJkkcffdRTnMDsLFhUgKlpKABAUQGzX1auXBnXlH5Qvm4Y3H64ihOw4IDBWZjixcdIPQ78F+tsLje9uz579myBT/BY4vqed2d9/vrXv/YUJ6DkcM0111hLEGijenz4DFbrEkH5YwYcfvBjP378eGutBZY0tA7QhocMGWLd1WAw1v3oe9JJJ3nuEILydsPcD7RuuH+9LOrOf0zddtuay1z3u0vUWWlJWMaZbJvJniMG6WPNZg/jv9llgbIsXLgwqSL5Z/FBgeKcc86xPwzW4/4An/ZQEtLBYLgcgOsPhCUS92M+Bv/inX+ivOLtd+8b8IMey4yyPw9VLCuLthC2jJno8/3n79/ORF/pzzPZbddaRaJnhkT9TrLHzHQ8XMPHHnusl+1xxx1nrbXAvDauBdxncc+58soroxTxvATlvFJRy+/2b+ncT8vjnoV7XzwLZbAKoOKWD/eHSy+9VG677bYo1x2uy47zzz9fk1aoZdh6SnQyfLdJRCiyv7K+20TOINqthhuu666lgHjXmsb3L/Guo3kkeo9yrRHqc4173Sa6JyX7LBzvGSnoGVHLgnMrzWcsPzt3OyxHN6/yXHfP45tvvhFY+EkkrsXB8nwvS1RO7icBEiABEiABEiABEiABEiABEiCBfY1A2soTav4XQDBT3v2Y70L6/PPPvQ9Hbngm1l2FjViD93ocd38yHys0XSaWX375pTdoj8EtWA+IJe+99579oI39GDgPqzwBk/mueXmYzU9W4C5BFS/wEd79iOfmgQ9xqkjjhmP9/fff94L+9a9/ycknn+xt6woUBcKIO3sdShQPPPBAiew2bdrk1UGJnU6AayLXCfZW1QQ2AtSsO2Z7u2X43//+J82aNfPS6Mr8+fN1Ne4Sg19QcsHv1ltvtUo0cGWAgWV8hIVZ6cGDB0cpLEEpJJ4Z2rgHjLGzLOouxqHFNZXsmtEOij9jxoyg4IyEuX1MOozddhG2bcY7ISgaqGBmm/uxW8Pht9pVItPwZJcwoY62qQoOderUscpPyaYPige+6JPwg6Ud9FXqsmbMmDFW8cqvfOHPB/u1XCjb0qVLxR0k98dPd9ttC2Cc6vVWFm0hbBkz0efH45vpvjLesYL2uW6ZEvX1GCSqiOIqo+J8/vOf/wQqSyUaaCuvc6uo5XevnXT6+vK4Z+G5LN6A7uTJk201o3/EoJ0rsJQF5QmIuu6AFQrIoYceGtPXvY1Qjv/C1lOiovPdJhGhyP7K+m4TOYNi5QnM5o9l5c9VQIp3rbl5uut4FlHrf1COiPUehTSuWyl9vshUvxLmGbGsnrFcbv71sBz9+ZXXNvphbQ94jlSXScmWpzzfy5ItI+ORAAmQAAmQAAmQAAmQAAmQAAmQwL5CoGq6J+J+YMQH17/+9a8lssIsGJhfLy0ZOnSol/Vrr70ma9eu9bbdFZi8xKx/laOOOkpXy2TpumF45JFHBBYLYv0wcIgP3RDMvk7HxKee1KJFi+TCCy/UTcF5d+/e3dtOtNKnTx8vCgY1MfgaJKpg4d+HWWnffvutDcY5xXJVoj5+/en92xgYDTLZ7A7GXHzxxf5kdhtmwpMRMMfga5Ag/N133/V26UdN94Mn2nuQ4gQSubM6vUzMCj7OQikDg3lQRHGlatWqcvzxxwtma6vooB/qUmeaw10IZrXFElyL4IRfMu4XMl13scoVKxwfemGhBIIBf8zQChKcy9/+9regXRkJC8s4k20TJ7R8+fLA83J9ac+dOzcwTrouZdzMTjnlFG8Til6xRC1K4PxhWQayc+dO287R1tWaipse5rGvvvpq6devnxcc61y8CHtXzjrrLC/omWee8db9K/fdd58dRMQH7A8++MC/O+62e99APxDvOoJCGM7d9VWd6bbgutjQgoctY9g+X8sRaxm2r4yVb7LhPXr08KLimSCWJSK0u1j9tZdBOa24yoawZBRkZQbnlYnrPewpBrXRilr+sH19edyznnvuOdm1a1dgNX300Ude+x44cGCJdgLLXEcccYRNi2d4KNpqvxzrOSrwQDECYz2vxYiedHDYekp0IL7bJCIU2V9Z320iZ1C85p6Huw/P467VQFf5zo0Xbx3P7ypwVVZYWKibUUsMqKtyNp7r1bJdpvqVsM+ImX7GivUsGwXF2QjL0cmqTFZj9X+wFKXy5ptv6mqJJZ4v8cyIn1oUKe/3shKFZAAJkAAJkAAJkAAJkAAJkAAJkAAJ7OME0laegAuEJ5980sNz8803y5FHHin333+/DYfJ30MOOcSbpexFzOBKp06dvAFWDBbggy8+LriCAf8RI0Z41i8wMBdv5o+bNhPr+IDy4osvelnFUiDQCJj9dNFFF+mmxPu44kXyrWB2L6w8YJaUzjSH8sLzzz/vixl/051lhQ/xGHj0C2b9Dxs2zB9st6tXr+654wCHIDP/OD+YIY0navYecWD63i/uB82g2cIo41VXXeVPFriNcsKlAAZ6XcE22jT2Q/ABTGdyqRIFwjE46B9UxcfSW265xSpJII5ffvvb3wo+2IN3EAuk14+qSKsz0mDK9Ve/+pWXHUyNBw0GYlAEVjIwUALLH34FDS8DZyVTdedkmfKqqxwFFwlBA3Gw5uCySfkgCRKEZZyJtum6WYmlaASLASpoQ/46huUVteig8dJZutf68OHD7Yddfz5QVoPbHLQ3/BYvXmyjoG/GPQJtHR/yXWUCzQN+rV2FiViKSBpfl265HnzwwSglJ40D6zh33HGHvUZwnWB2dSqC6xyDkBAoPF1yySUl7jfYhwFNWIbBud99990IspLptoBZv34JW8awfb6/PP7tsH2lP79Ut+HOQpWy0AZwr/U/M+D+WZpKn6mW2R9fLR4hPMgqz8aNG6OeIfzpS3vb7a+C2mhFLX/Yvh5cy/qeBeVUPFv4BYqzbp/oKlW5cdGHQ2DR6rrrrrPr+HfGGWd466muJHpeSzU/f/xM1JM/T3eb7zYujdjrlfndxn9WV1xxhaiVFnff448/bpXYNSxVKwFI51oPhMJm0HvUqlWrou45eJdFO1fJRL8S9hnR7U/SfcZy7w2xnmX1nP3LTHD051ka24n6P5yHTpDApISgdz4oxEGRWJ+hVVG5IryXJcMM1jFgjRT3FFWeTiYd45AACZAACZAACZAACZAACZAACZBARSOQttsOnMjll19uB+fV6gQ+5KqlAT1RDKLhY7nG0fBMLaHAoQNaMIuOgblTTz3VHhMDXG+99VbUoLWr8JGpMsTLBya1VfDxCabuE8nZZ58tTz31lI0GJQh3gNxNe9NNNwk+pqhggBQfzf0uNPChBjMLUzVlj9lPmJ2L8kD+9Kc/yVdffSUYpMcgFNZh7jme4EORDm7jQxDcT2AAFVZCMLDywgsvxEtu92G2sM6IhGIDBi379u1rTf3j3NDGYNEDAkWZTz/91FprgCIKZrmOHj3aU3qwkRL8w4xdzMDGTCu0Xbh8QTtSRRRwefbZZ71c8LEMA3JIhzhQGoKiBdoitvHhyzXZ7yXcuwLf9PohEUpIGGwGK/iwR30+9thj8tlnn9nYOF93IARuPfDRF8otYITBT5T7sMMOs4OCuB5x/iq/+93vBO4XkpFM1F0yx4kVB+eGugRXDHTiwzUGdeCTHIxwbZXF7OowjDPRNjGYo4LZifgoCQ4YjB8yZIjd5X7UhyUYKPDgWqtbt67AfD8+dgcp1mi+yS5x7DvvvNP+kAbtFObf0SYbNGhgrafgWlQlI5z/wQcfbLNHu0NfptcqFHmg0IG2irRQcgJrTYt+Ji8vL6miHX744XawUGeQ4hqAlQy0YVhvQTtyzR2j73Q/5Cd1EBMJFo7AGixhmQD3HhwH1/qaNWus0oZr0QLXm0om2gL6BBW4OUHdIl+cP5QJIWHKmIk+X8sXtAzblpeyZwAAQABJREFUVwblmWoYlBnRJtHO0K+i7nA9QbFjypQp9p6nPupTzbss4kMxRwUzmTGDF888bdq0sfcCXAN6r9J4ZblM1EYrcvnD9PVgXB73LAy+wcIN+lNcv1BKQx+g/Sj6ZigZBolrSUhNyaPvRH+criR6Xks3Xzdd2Hpy8wpa57tNEJXosMr8bhN9JsVbeLbB8wLeT3bs2GEtU+lzOWLAAgX62FQF9zxco7/5zW9s0rvuusu++8CSQtOmTa1CON4v9PkM1zDeA1zJRL8S9hkxE89YyTzLuuftrmeCo5tfaa0n6v9Qv3hGV0saUJ6Hq0f003gGgXtHWE/Tezje+fBeq1Le72VajlhLfIdQ5TtYfET58axKIQESIAESIAESIAESIAESIAESIIFKScD4ei0K88vPzy8yg2FFLVu2hL8B72demItGjRpVZF6ki8yHIC/cDE54xzMzjL1w83HAC/eXxwwOe/HMYFuJeC+99JK33y2Df90MNJRIa5QTvLRB+1EWM+jmxXnooYdK5IE4Zna/F8d8qPbimA8iXrhRNPDC/efoboOp+cDipTNuGrx0ZsDUC/efX9C2sbRRZAYlvfTucZJdN36x4x7TWGEoMpYdvDhuHRtrE0XGzLK3L6iMxlqJtx/5+Mvl8nfTmw8zNq6ZKVxkBnC9PNw4uo42qEw7d+4cdYx7773XS/v0008Xoe1quqClHtctpxmcjZsOeZqBVC/fV155xSuDGeguMjPNvH1Bx0RY+/bti4zlDS+dHt/M9C9CPcdKp+Fm4LrIfBQukV7z8S/D1p32CVj683a3lTfathuOdaM84tWbnod/6V7/ZuCnRB7+PP3b4Io80T78+3Q7XcZh2yaOj/7AWEkoUb+47rR8WBoFtRJxXFannXaady2CuZs2mX7QjY+25OYdtI42aWZURh0H9WkUjRKmxbktWbIkKq17/KB1o5BVdMIJJyTM2yiVFJnZ+VF5J9tWcVz0b9pmg85bw8yswqhjZKItgF/Qsc3H6ahjpVtG5Rqmz9c8Yi3D9JWZemb48MMP47YT9AVmwMuLY5Quo/jGOjeEJ1PGDRs2eHmbwZCYeWtd+/tGPHNpOwtaGgWFImM9w4uDdqNlNgN1XriZWe2FY3+y10GsciGPZNpoRS5/un298sX567NGUN0gLMw9C32j5ovnCF0PWqI+jXJNVB1rOXVprK9E5ZHsc6qm9y8TPa8hvnsORskjZvnce4X/OGHryZ+ff5vvNsXvhvviu43bR+PZ2yhqRl0D/mvJKD6UaKNuHvHeX9Gu0JaQhz9f/zb6DaPwXeJYyCMT/UqYZ0SUIcwzlnJI9CyLd3zlgnd/pNNfWI6XXXaZl7dRTvDy1fx16d47jeWEmPE0vrtMpv9DfPeZW8/Xv8R91liXijp+WbyXGaVgj5N7bu463rW0vMYqoFdGo8TvhWM/nrfddFyPtGeyIAu2AbYBtoHSaQNm4l5G7j1nj/qmKJkf67F06pFcyZVtgG2AbYBtwN8GkrkvI44/XdjtqublNpTAtCjMS2LWO8zqwzenGfQS82HTzirOycmRbdu2ecdw/XO7ZkkRL12BNQJYGMAM6CDBTDrMqsNMbL+4ZcjOzvbvLrEdK44bruuwruBaDMAM4WQEZRq+15wy4rszvDTvWPmYj+XWZDzMZWIGIs5bZyTHSpMoHLOejNKIndXojwuz9Jjl6FrUcMsIFxOwMAGrG+ZDUFRyuFCBRQbUTzzBjLB3333XzvB242FGOQQWJjADFzPicf6umI+R1vICZnupmw13P9bd8mLWENxcBJUJ1iVg4QGWJfyC2bSw8oCZ+H6BCXjMDEXeQQLrIXCpAisfYOIXM7gvMCuMNu6a1dd44Ao+OrNNw3WJcsNCCKyuKDPdF28Ztu5QL5BatWrFO0zcfc2bN5dPPvlEzMB/iXhwu4A2rjO4SkRIMsC13hIrSbqMw7ZNlAf9wauvvipow/727ZYXrmlg1SGoDeEahongWOeaaj8IayhGOS6wPCgjzF1//vnnJWYwoz7RH8CKDdq1X2BNA/nCqgNmZaYisLIBN0AoW1DeuA4wAxR9hb9NptJWcR1jpmAs1w4IhzsF18w1ziMTbQH8MJvP74bIva/iWOmWEWkhYfr84hxi/w/TV7rtNMwzw9FHH237xKBrBSbT0V8HtaHYZxXZk2oZa9asGUnsW9NzdO9RiIJnrjfeeMNzi+Umg7UT9PexLKu45fPnm8p14B7TXU+mjVbk8qfb1yuD0r5nuXWG+yL6WfRtfsEzDJ6vMGM7nrjPzTh3PG+FkUTPa8jbvQ+57TGV44atp0THQrn4bhP9fKxtb195t0EbQD2PGTPGPnegTbmC7XvuuSfQ1YbbbrWfdtO664gL61/os4PcheE4sA6D+47rXsPNIxP9SphnRJQlzDMW0oNDomdZt2/Q+xHSQsJydOvMn3fxEcL/T6b/w1FgnRAWKNRypntktAdYpIA1NjwTu1KW72X+68Eth/YFCHPrDM//N954o42K9WuvvdZNxnUSIAESIAESIAESIAESIAESIAESqFQEqkD7Ip0Sw6ypmhnFh6N45tVhWl5NAsMcdry46ZTFTQNz9TBjvXnzZjug36pVqxIDZW58ridPAL7hwRaKMRiYgQlb92NUopyKioqskg18yuMDUKKP+kH5oX537txpj4sPeUEC/8EoJ9oZjpOKwoCbn5nlZE2oFhYWSrNmzZJut/BXO2/ePMESA3CuYombf6x1cIbpVpxn27Zt7QfLWHH94Tgmzn39+vW23aOOEn3Y9ecRtJ2JugvKN5UwmIOFuw4MFMMFDVzHlIeEYRy2baItGqsJlgE+bLofLV0WMNmONog4aAOxFIfcNOmsozw4J7is0HqJNWgblD+uZyjeIS3M/bsfZIPiJxuG9opy4R6Fc4cCWWkwgGIg7mno0xo1amSVSWLVib/sYdsC2iGOi3OFmX2/AoUeL0wZw/b5WoZYS5xDmL4yVr6phGs7wb2sQ4cOEk+ZIZV8yyou2gDuFyg3zKKX1qBQOueTTBut6OUPcz8ty3uWsWYiS5cutf0AnhviDXy5dQnl1wsvvNAGYQD3gQcecHeHWk/meS3UAfYmDnNP9h+f7zZ+IvveNp4jVakcLhHUtR2eZ3AN4Z4OZQW8PyZ7P0+FEq5VHAPtFs8NOFYqzyeZ6FfCPiOGfcZK9lk2HtewHOPlnYl9yfZ/eF9De9izZ49914TicKznObdcFeG9zC2Pu47nTjzPl8b14x6H6yRAAiRAAiTgJwC3pl27dvUHp7w97JEJSaV5+YYBScVjJBIgARIgARIggXAEyuvenLbyBD4wYaBBBTNt/TMksA+zTIxZYBsNsxAwUEYhARIgARIgARIgARIgARIoHwJQFOjbt6/3XD5z5kyrxFY+pakYR+W7TcWoh9IsRSzlidI8JvMmARIgARIgARIgARIofQJUnih9xjwCCZAACZAACZQHgfJSnqie7sliRg7Mkr/88ss2ixNPPFEuueQSaz4YM52Nn1CrOAFzqCp/+MMfdJVLEiABEiABEiABEiABEiCBMiIAazKwzIYPi5hxrwrNcFcD6z/7u/DdZn9vATx/EiABEiABEiABEiABEiABEiABEiABEiABEjCuKsNAuO2222T8+PEyZ84cax4dPl1jyRNPPCEjR46MtZvhJEACJEACJEACJEACJEACpUQAbnL8VuLg4oPKzRHgfLeJsOAaCZAACZAACZAACZAACZAACZAACZAACZAACeyPBKqGOWm47YC7jltuuSXQvzI+yB5zzDHy8ccfU3EiDGimJQESIAESIAESIAESIIEMEujevbtVgqbViQhUvttEWOyLa1Wrhnr13ReR8JxIgARIgARIgARIgARIgARIgARIgARIgAR8BKoUFBQU+cLS3ly/fr21QrFhwwbBB1m476hSpUra+TEhCZAACZAACZAACZAACZBAeALbt2+X77//XmrXri3t27eXJk2ahM90H8+B7zb7XgVv27ZNCgsLpXr16pKTk7PvnSDPiARIgARIgARIgAT2QwJwTdi1a9fQZ15eftVDF5wZkAAJkAAJkMA+SqC87s2h3Hb466Jhw4YycOBAfzC3SYAESIAESIAESIAESIAEypFArVq1ZOjQoeVYgsp3aL7bVL46S1RiKA9RSIAESIAESIAESIAESIAEKieBgt2Fkl9QKLk51aQqJ+1WzkpkqUmABEigEhDIqPJEJThfFpEESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESKACEygsLJLvZq2Vt75fKjOXbpGNWwu80rZunCPH9msuJx3YQpo3qOmFc4UESIAESIAEwhKg8kRYgkxPAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiSQEQJL1+bLTf+YLEvMMkgQ/vdP5suYLxbJ3Rf1lkFdGgdFYxgJkAAJkAAJpEygasopmIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAEMkxg1rLNMuLR76MUJ1o2zJGhfZrIiQc2F1idUNlesEdu/NsUedkoURQVaSiXJEACJEACJJA+AVqeSJ8dU5IACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACWSAwM5dhXLbS9MEShGQWlnV5I/n9JAhPZtI1apVvCNs2LpL7n39J/l25job9tQHc6RWdjU5Y1ArLw5XSIAESIAESCAdArQ8kQ41piEBEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEsgYgRc/XyjL1he76qhfJ0uev+5gOaJ30yjFCRysQZ0aMuqSA+TCI9t5x37q/TmydWex0oUXyBUSIAESIAESSJEALU+kCIzRSYAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAEMkdg155CefXLRV6GN5zSRdrm1fa2/StVq1SRS4/tIO9NXC4btxZYaxWTZq+1yhb+uHDpMXnBehk/a70sX79d8o1liyb1akq7JrXlmL7NpGFuVlSSifPWy6xlW2zYUb2aSAvjNiSWfD1zjSxas93uPtJYyGjZKDruglXb5NNpq2Tpmm2yZcdue9xOzevIsf2aS27N4CG6DyYtlw3bdkltY03j9IGtZNm6fPlhwQaZbMq1efsuucgojfRt38Ar0p7CIvnenPvCVdtl3sotsm3nbunSoq50blFHureqL3l1o8/PS7h3ZYex+PHJDyvkZ+MyZdXGHYZHtnRqVkdOOLCF1M2pLi6PXxzUQurXquHPwrpNmThvnYyfvV6WrtsuKFOLBjmmnPVlSI8mUr1axHJIicQMIAESIIEKRCC4Z65ABWRRSIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAE9l0CUxdu9Nx1tG6cI0P7Nk14stnVq8o1v+gsr+xVuli2cWeJNEvX5sstL02VeSu2ltiHgEf/M1suP76jXHxUO4FCBmTBym0CSxaQHUbR4rJjOth1/79CoyBw3+szrfIG9kGxQAUKGw+/87O89d1SDYpaPvz2LPnr5f1kQKdGUeHYeG7sfFm9aYdVtOjcPFdGPjkhKs6xBzSVvlKsPLFw9Ta557XpMnPJ5qg4X09fa7fh+mTUiAOkf4eIsoUbce6KLXLlUxM99u6+58bOkzuH9ZJJczfIq18ttrsO7dq4hPIELH5c/9ykEmVAgv/7Zok9j9FXDZAm9bPd7LlOAiRAAhWSAN12VMhqYaFIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIYP8gAIsFKr3b1fcUGTQs1vLE/s3lhesH2d8FQ9pERYPixIhHvy+hONHSZ0kCSgKPvDPLSzu0T0RxY+ykFV64f2Xa4k2e4sQRvfOilApe+GxBCcUJ/3Gvf+4HgWWKWLI1f5fc/K+pJXbn1CieF71m004Z9vB3UUoLcHfSpWWuQGkCst0of1w7epJMmLuuRD5rNhfIb57/IUpxAulglUPT3vyPqTLDp5jhZrR7T5Hc/vLUqDIgD5RDBYogN/3zB2vxQ8O4JAESIIGKSoCWJypqzbBcJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJLAfEFhh3GmodDQuI8JKoTH9cO/rP3mKAbBm8YezekiPNvWkRrWqstpYqfjIuKoY/dFce6g3jYWIw3o0lkFdGksj48YD69/MWCvL1ufLXGO1Aq42/PLFT6u9oF8YFxcq/52yUp41ChkqD4zoKwd1bCTZNaoKFBZe+XKhZ8nh//3tB/n7dQOlQZ2SrjCg+IDf8f2bybmD2wq4VKtaRfYayJDXvim2BoHj9O/UQG4/p5fk1Su27rDTuOIYPXaud5wPJ66IsnJRsLtQbjYKDXB5AoHCxU2nd5NureraY8BVyFvfL7VWPaYZqyCx5JF3f5Zxxh0KpKNhdOvZPaWzWVYxhVy8dps88NZMmTJvo1Vguf3fP8qoiw+QquYcKCRAAiRQUQnQ8kRFrRmWiwRIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgAT2AwLrtxUP4uNU22dAeWK6sQoxdcEmj9wDw/tJ3/YNrOIEAuFCAq46fnloay/Oy18s8tZPMhYtVL6cHlGS0DC47Bj7w0q7CUsLB3cpdr+xa0+hjHpjpkazrjkO65ZnFScQmFc3y7oaOWavWxJYZQjKXzM445BWcptRiuhqlBuqV4soTmB/7ZrV5dSDW8qZJs69F/X1FCewD4oaV5/UWdTaxbg5Ecse2D9z6WaZvWwLVq2VCCg19DSKJVDOgLRslGPTn3hghIPd4fybtWyzvP39MhsCSxMPGcYoJ5QjoODRNq+23G/yheIK5NuZ64xCRURJxgbyHwmQAAlUMAJUnqhgFcLikAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkMD+RGCdcUGh0qphLV1Ne/nl9DVe2utO6SJt8oLzvPbkzp6Li8lzN8j6LcVKHId0z/PCPzYWKvzyk+Oy45SBLT2ljCkLNnjWLo47oGmUtQfNo6rRLLjihE66KVBCiCVnGeUOtTThjzN8aHv53S+7y43GYkSuUaTwCxQhurTKtcGwMKHnhoBZRnlC5aoTO1llEt3WJY772zO762aJ5VfGMofKFcd3DMwD5RpxTHuNJnOWR47rBXKFBEiABCoQgZK9aQUqHItCAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiSwbxOokwO3Ffn2JDdtL7CWD8Kc8byVxVYVkEc3Yw0hlsCFR+/29TzXE0uMq4mGxm1HdvWqcuJBLeSNb5fIkrUlXXd87rjsOL5fMy/72cu3eutZNarJ0jXBlhYKvVgiUMQIEli0gPWGZAVWL7bm75FtO3bLtp3Fv89+jFjN2FMUyWnmksgxYS0iloBD73b1Jch1x89LI3lk16gS81yrVYnM4561bKsce0CsozGcBEiABMqfAJUnyr8OWAISIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAES2G8JNDLuLFQWrt4mPVrX0820lqs2RixZtMmrEzePjs1yPeUJ1zoDlCKgPAH5asYa6dS8OB/XZQdcUnRtWdfLf/2WyHHfm7Bc8Esk81ZslZ27C63ChhsXCiWxrE5ovDWbC+SdcUtl/Ox1AlclyQrcdqi0SaCgAeWKIOWJ1Y61kD+NmaHZxV3OWLIx7n7uJAESIIHyJhBR9yrvkvD4JEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEAC+x2BxrnZ3jnPNcoEYWX7jj1eFrk58ecR160FqxfFAiUGFShwtGyYYzfHTo4oQUw3VhvgBgNy2qDWdqn/8ndGjqthySy35e9OJlpUnMnzN8gFD34j//jv/JQUJ5AJrGuobNoe/9iuQoimwXJLgnRuXF1PdCyNxyUJkAAJlBeB+HeM8ioVj0sCJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJLBfEOjZpp68/f0ye65zVkRcbqR78nn1smX1ph02+dJ126Vdk9juLxasiihr1KsdUaSA1YdTB7aUpz+ca113zFu5VTo2qyOuy45j+jSNKmKDOhGlhGtO7iL+/VGRnY36znGd4JirBUbJ49rRk7z9A7s2FFjKaNWottQzFitq1awudYzSyP1vzJCxk1d68XSlV9sGMnVBsaWK+au2SF7dRrqrxPKnRRErFe5Ol/Fz1wwwedR0dweuV6tqoFJIgARIoAIToPJEBa4cFo0ESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAE9nUCg7o09k5x8twNsmjNNmmbwJ0EEoweO09e+HSBTfur4zrKiKPb2/Wm9bONNQa7KouMckQ85QnX0kVe3YgFDKQ+um8zqzyB9S+nr5H2Rgnjo73KCId0ayRQIHClsZN+8/aCEvvduGHWpy2KuL/oaNyJPDyif6CLj8VrtgcepnurXC987KQVMrBzsPLEpPnrPSUUL8HelSYO4835u0K7WvHnz20SIAESKA8CdNtRHtR5TBIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgAUsAbiSgjKDyyLs/y57CIt0MXK7euNNTnECEkw9q4cUb1DWijPHepOVSWBSc1/TFm2TeXjch9Y3ViA5N63h5YKV5g5rSv1MDGwbXHa7LjhMPjBxPEx3YsaGuWmWLnbsibkC8HXtXcGwoQcwwbkBSlRlLItYgzhjUKlBxYsPWXTLTieceo2vLut7m2B9WypivFnnbugLFi9//Y6pullgO7BKpr89+XF1ivwaAAc4Tv1jKHBqXSxIgARIobwJUnijvGuDxSYAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESGA/J3CtcXOhMmH2Brnt3z/KjhjKB7OWbZYb/j5Zo8tJBzWPsvJwWI88b9+3M9fJC58t9LZ1Zf2WArn5XxHlgF8Y5YuqAW4lTjZ5Q5aszTdWKOZochncPXIMDWyTV0vgggSycNU2uXPMtEAlkLfHLZWRT06QXz81Uf7+3/maPOllh6YRNyQzl0YUKTSDLTt2y+2v/KibJZYtGubIb8/s5oU//t4c+fXTEy2n//tmifzx5R/lssfGyfaCPV4c/8rg7k2kVlY1G/zehOWBChi79xTJqDdn2PPEuX7981p/NtwmARIggQpFgG47KlR1sDAkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIksP8RgJuOq37RWZ56v1hB4Ytpa+SUWV/IhUe1ky4tc6WmGahftHqbtaaAwXoVDOAPO6Kdbtpl/Vo15P+d3lX+8vYsu/2cce8xad56Y90iTxrWriE/GasPn01bLRu3FhTHN1YnLjqqnV33/zu8Z1MTNMMGT11QbCXitIEtJbtG8PzkP1/UV4Y/+r3N+8uf1sgIo4QwxChzdDOuMjYaaxBfzlgtUOhQueioYlcjup3Msm+HiIWL9w2LtZt3mGM0kWbGUsbsZVvkQ2NtA8oe8eT0ga1MnO0y5sti/ybTFhrrEObnyoAuDaRjs1wvjruvQZ0acv/wvnLds8VKLFDAmDh3vRzYqZG0aZwjy9bly5vfLfHKgXo6ZUBJax1unlwnARIggfImQOWJ8q4BHp8ESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESECGHd5WsqtXlUfeKVZ6gOWDZ43iQyyBlYe7Luht3Wv445xhlAMwgP/qV8XKAZPnbhD8/AJ3HY9c1k9yawYPmeWYQX9Ytvhg4gov6fH9i61ReAHOSl7dLHli5IEy8onx1nID3IKoaxAnml297dye0rddfX9wwu062dXk+lO7yl/fLeY0btZ6wc+Vvu3rScPcbInnUuPqEztLs/o58u8vFsnqTTu85FB0uPS4jnLmIa3kH3EsY8BNyR3n9ZS7xky3ab/7eZ3g5xfk9/RVA2Iy9sfnNgmQAAmUF4HgO0F5lYbHJQESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAES2G8JnHVoa+neqq68/OVCgfWJIGlp3E4c26+ZDD+6vdSoFmwBAi44rjOuQPp1qC8vf7G4hFUFDOifOqilnDeknUDhIZ6cYJQlVHmiSb2a0rttsWuOWGnaG7caT155kHGDsSBQeeGoPk1k+NAO0ql5nRJZ1KhWxYZl1yheloiwN+Dsw1obSxPZ8tzH80soZ1w8tJ1cdGR7efy92bGS23AwQj74bdq+W7bt2CU1a1QzShcRHvmO644qAUU6rl9zqWmUOV76bJFMNxY9XAHjM019nju4TVSebhyukwAJkEBFIlCloKCg6P+zdx/wVVTZA8cPBBISkhASEgihBELvRZpdQRAVsS4qNnRX117+7tp2dXfdRV27a1nLWrF3xYJiwUKR3gk1QGgJ6YEUEvjfM2HmzXt5L7yEYEL43f083sydO3dmvvOS+Nk575z6dEKcCwIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCBwIIHU1FTp3r37gYYdcPvEx+YecIwOeOOWIUGNY1DtCWTml5qyD7tkR26xaExB65hm0jkxqkYZDAqKyyTDzFNWvk+iTVmP+OgwabI/UKH2zrjyTMV79lrHLSotk+jwUEmICZMQE7RQm62odK/JsrFLQpuESGJss4ABJfYxS8v2SlZBRckSDZbQEhyB2lVPz3WCIqb+9YQqx+YXVRjv3bdP4kzWi1iT1cNfwEWgY9GPAAII2AJ19beZzBP2HeAdAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEECg3ghoRogDZYUI9mS1LEdUm8qZHoLdv6bjmjVtLB3iI2q6e1D7hYc2NlksooIaq4NyCvfIeQ/87Ix/9ebhfrNgfLNomxM4oRk3qgqy0Mmiw5uY129v7FwICwgggMBBChA8cZCA7I4AAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIDA4SLQ2mS/GDOojUxbsN065ZteXCBnHNXWlEuJMqVAwk1WihKZvmi7fL1oh3NJWgqEhgACCDR0AYInGvod5voQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQcAlcOSpFVmzKM2VRiiS3sFSm/JDm2uq9eNvZPeTs4e28O1lDAAEEGqBA4wZ4TVwSAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggEEEiKC5fXbhkhl4/sJBGhIZVGad+Qbi3lyasHEThRSYcOBBBoqAJknmiod5brQgABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQCCAQGiTxvKH0SnWK7+oTDZn7pL8oj2SHB9pync0k0aNAuxINwIIINBABQieaKA3lstCAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAIBiB6PAm0rtDi2CGMgYBBBBosAKU7Wiwt5YLQwABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIFgBAieCEaJMQgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCDQYAUInmiwt5YLQwABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIFgBAieCEaJMQgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCDQYAUInmiwt5YLQwABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIFgBAieCEaJMQgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCDQYAUInmiwt5YLQwABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIFgBAieCEaJMQgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCDQYAUInmiwt5YLQwABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIFgBAieCEaJMQgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCDQYAUInmiwt5YLQwABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIFgBAieCEaJMQgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCDQYAUInmiwt5YLQwABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIFgBAieCEaJMQgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCDQYAUInmiwt5YLQwABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIFgBAieCEaJMQgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCDQYAUInmiwt5YLQwABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIFgBJoEM4gxCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCNSFQPnefVJYXC4tInis5eufmVcir36/QXYXl8klJ3WSTq2b+w5hHQEEEEAgSAH+ygQJxTAEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIHfRmDF5jz5cFa6LNmQK1uyi6yDRoSGSP/OMdKzXQvp1SFaRnRv9ducTD0+ymsmcOIj46Qts6BE/vOHwfX4bDk1BBBAoH4LEDxRv+8PZ4cAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIHDECBSaDwr1vLpE5qdmVrnl3abnMWpVlvXTj6AGt5c/n9pbw0IZZpT4tY5cs35RnOfTu0EKSEypnlSjeU+44lZTudZZZqJ8CwdzT+nnmnBUCR4YAwRNHxn3mKhFAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBei2wLbtYbvnffNm8syLThJ6sZpsY1LWlxEc3kyyTWWHV5gLJyCu2ruPrRTtkZXq+PHDZAL+BBfX6YoM4uSVpufLgByutkbef29PvNV5yYifJKSyVIhNE8ccxXYKYlSF1KRDMPa3L8+PYCBzpAgRPHOmfAK4fAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEKhjgb1798m9by31Cpz48zk9ZezgRAlt4skssXffPpmVulOe+GS1Vc5DAy3unrJEXr9luDRu1KiOr+K3P3yH+Ah5eNLA3/7AHBEBBBBogAKevzYN8OK4JAQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgfov8OHsdKdEhWabeP66ITJ+WJJX4IRehQZIHNMjXp66+ihJig23Lixtxy6Zszqr/l8kZ4gAAgggUK8FyDxRr28PJ4cAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIINGwBzTrx8rcbnIu89vSu0rtDC2fd30JCTJjcclZ3ue2lRdbmKTPSZET3Vv6GSmnZXvluyQ5ZsTlftuXslrCmISbwIkKO7dVK+naM8btPeuZumbEy09o2onucVTJj9ZYC0bILSzbmSogJ4ujUJlKGdIk94LmaZBkyb12W/Lo6W9Kzdku5ud62LcOlf6cYOa5XgjQJ8c6Y8cX8rZKza48sM8exm2bbKCgus1bbxDSTkf1aW8vbc4rl26U7rOWjUmKle1KUvYvX+yZzPd+Zcek7d0vurlJzPZHSw4ztkRQt7Uz2ipq2/KIymb82S9abAJa12wqkmckS0rVdC+ma2Fz6dGgp4aGVv8dd27YLN+TInNQs2Zq9W0rL95praiHdkiKlp3mPjQqt8tJyCvfItIVbZYM5/8z8YolpHiod45vLqP5tJCmuIjgn0AQ7cktkaVqOpG4tkLSMQklo0UxSzGdCP7vdjau7Veee+vq0i4uwPnOL1+eaMjV51nFuHNddPjIBR5qJJTYyVMYOSnQfzmu5sKRcPpmTbvXFRDSV049q67X9QCuZeSXGaJu5xl3WZyfJnE+v9lHGKFFCGjeSz+dtldzdeyTM3Pvzjm7vTBfMdWh2GXcrMT+rPy7bYQKpzM9qbkX5njYx4dbxTuzTxvzsVv486e+Pt37eZE3TtmUzOalvxc+Ge15d1p87NdNjdGgVbv3s2WPmr8uWVebnW9uZQ5MkqlkTWWp+/mabz9X6HYWiSW3axzU3cydIj3be99aeg/eGIUDwRMO4j1wFAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIHBYCizfnCe5haXWuWs2CX14GUwb3q2VjBnURrILS6zh+gBXHw6729pthXLTiwuc+d3bpvyQJkf3jJPJl/SXpiHeD2VXmIfUz3y+xhreKqqpfDl/m7w5Y6N7d5HFO+SFaevkvGPay41ndLMeJHsPENEH1ze/MF9WmsAN3/beL5utB+HPXTtENBjEbtqvgRru9uOyTPNQuSKYY1j3WCd4Yt32Auc8bzu7R6XgCQ3cePSTVfLhrIqH5/acs1Z5MnVcPrKTXDmqszQ2D8Kr035ZlSmT31tZyfbrRRXBHMmtm8ujVwyS1q5r0/lr0/ZWc2+Xb8rzOu2fl+901idf3FdOCPAw/csF2+Sf7yx3xroXnjf39apTu8hlJyW7u53l6Yu2mzIzy5x134UJx3WQq83+GlCgrTr31O0TZwIjXvh6nXPvdS4N0rj5TJGXTP/u0nLtkmN6xkt0uP/HvjNXZDifkfPNZ7U6TYM+/vXuCp9dKj47r32/Ue43Pztv/rhRNPuLZoxxB08Ecx3uiTVA6J4pS51rcm/T5YdDU+VvE/tYmWfc28rNh9z+WdWfjUDBE4XF5fLYJ6nWrif3S/AKnphuPrOf/rrF2nacsXzs41UmYGS7+zBmOVP0d8YZQ9rKHef2sgIqfAaw2gAEvP8SNIAL4hIQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQOHwH9drfdRg5o4zcIwd7uftdvg98zoY88fuVg6+UbOJGZX1opcEIfPLvbzJVZ8vBHq9xdlZbf+yXdCZzQB8S+c7xvgh302/e+rax8n9zzxmKvwAndP8Y8ELdbRl6x3PbKQina/xBc+7skRkp78814d9P9tE9fraK9r8E9znf5pW/XVwqc0Lnc7RWT9eOO1xeLfoM/2PajeSD/55cXewVO6LlpwITd9IH6Ff+ZYzI6VATG2P3u95raajaRv0xZVClwwvfa7jIP49/8qSIrgfu4mmnAN3DCLgNjj3v+q7VWVgp73X7/cNZmr8CJFHO/Tugb7/W5eMccc/K7nsCMmt7TV8z9s4Nm9Ph6fRHNQqxyNuNMWRu7/bI/S4q97n63M5No3+iBbdybqlyevz67UuCEfnZtY72/fzaf3VyTJeVALdB12Pt9bzLDaBYZOxhE+/VY7p8V3aafuW/N2EPZHv10pVfghO/nYurcrfL2/kwXh/I8mLtuBPyHINXNuXBUBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBI0xgqyllYbejura0Fw/qvXjP3ooHu/szWmiGiitHpVilGDSoQbNd3PX6Euvhvz4M7ZDQXCYe39HvMTVrhAZMPHBZf+naNlIam6gNnf/Jz1JNOYSKb6v/57PVVjkELWNgt8c+XWXKSWRbq/qA/e7ze5tyFpHmG+uNZNPOXfLvj1bKonW5ss5kx7jnzSXy4KUDrOwPOk6bfhP+wQ9WWss3jOsWdEYOa4f9+7/0zXp7Ve65oJfJtJFglSTILiiVX9dkyX37My/8smKnzDHrgUqfOJOYBc1m8fL0DU7XxScmy8UnJVvzaqeWefjHu8tkwdocy3d2aqaMG+J50O/saBZqYqvHf+D9FTJ3dY41lT7cvv28nlYJllCT6UFLlOgD9hdNZgZtT09dLacNTnSykmj5iTteWWxt039uOKOrnDq4rbVdg1h+WJbhBFb84+0VktgyQvole8q7fODK4uGb2WK1KeEx6Yk51tzTTWaSa8Z2lTamlERN7+nmnUVWsMJdv+tlzqGlxJkyJFqqQ9toE2ikQRravluy3W/pDi31Ymfi0OCWXu2rLodjTWb+STfHvcMEKtjttKMSRe+zljTRIJs15jP73LQ1zufbHhfovarr0M/i5Pc82S1OMlkhJo3sLJ1bR1rTbTAlUV6evt5cY4a1/oAZqxbx0Z4gpEDHrUm/fq40QOTei/rI4JQ4q/SMBgB9s3i79VnSOZ8yn6nObZrLsK5xNTkE+9RjATJP1OObw6khgAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAg1dIKOgouyGXmd8VPBZFapy+WROulP6Yki3lnLXeb2twAndp0lII+lvHoY/MmmAM8UrriADp3P/gj5IfeIPg6ySGBo4oa1Z08Zyy/juTrYB/VZ8hgkasFvqlnz5eHZFYIV+e/7hywdW7G+CK3QKfQj9gAmW0Afa2jQDxqadniASe56avpeYzAx24IXOcYcJLhgzsK0T4BBrHsKfOihR7jy/l3MIzagQTNPAkV7to61gjt+PTjHlKVKceXX/+BZhcsc5nnkXrq8IcvA3d01sV5jAF3dJhcmX9jcPuWOtbAx6jA7xEebheyerpIt9TC27YrdnvlzjZDjQ87/guI5OYEW4uddjjYuWQLHbBzM9LhpUoBkXtA1IialUEqRb2yh58qpBcs6IdpbP1pwie5oavavPCzcMtUpRaOCENvsz2KNdtNfnJ7+orNIxZrkyUowb2q7S9kAd3y3d4Rjpdd5u7qd+ZrVpeZfuSVHyj4n9vTKNBJpL+6u6Di2fYmec0CCjv/6uj6S00SAjsV4aRPEXk2GmmzmmNh2r5UQOZfuHKfdyrCnfER5a8ShdAzUuMqVYtByL3bSEB63hCZB5ouHdU64IAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEDhsBLJcQQdR4U39nrdmC3hjRprfbXbnxBOSJdlkkND2rfnWv91uHtfDCpiw1+13ffh8xpC2opkn9IHs9pxiK0uAvd1+H2SyYegDed/WNKSxnGi+Jf/u/m//b83ZbbIUVAR//GQyOdjt6jEpkhATZq8671HNmsikUZ1EsxtoW7M13zl/Z1ANF+at9ZRCGdY9NmDmh9NNxoWy8r1SbK4/MoC97ynoA+U/nd3Tt9trPSku3Hpgrq4rNuV5bXOv1MR2xvJMZ4prT+tqlTlxOlwLN5/ZQzSYQVtKYsXnorCkXDTLhjZ9oH/5yZ2sZd9/zh7eTl77Ls0ExBTLkjTP+Tcz+9gtbcdu2WkyErTyyYCggRz6qo12dM9WVX4mxg9vb2VB0GNp6Q4N/HA3d8mOkf1auzdVubx8c66z/c6ze/n9+YkMCzFBFT3lmmfnOWMDLVR1HdMWegJb7jbBPGEmMMm3hZmMIrrtsscrsnp8bfa57KRk32G1sq6/EwJlYLnWZBLRwJ1ck9Fm1aZ8KwvL/niqWjk2k9S9AMETdX8POAMEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBA4IgViDOZCjStv7a83aXSMrJyAEXOrlL5Yp7nIas/rFNNaQYNntCyBst9Htinm1IO/ppmobDbuu0FfoMn+nbwlGywx9rvrc25263YPJi326p0zwP3sKaNJNDxQxp5HhSnbimUUzzJMOypavSuD/btpiUOAjV98HvWsOAzEgSap8Rko9DMB0UlZVJYvEd2mXc7m0CgfbS/JrZrt+U7U/bqEO0s+y5Ehzexskq4+zfuKHRWNVhkSxXZPpru/2xoAIVem86ngRJaJmRLdpH1AP3Ch36R847tYLIUtLIyI2hATW22gSmB750eZ5QJiNASEtp8S3e4S3YM6tLS72fb2tHPPwvWVGQL0QCTpFaVA4fsXbonBfa3x+h7oOvQEiBatsZunU3GiUCt0/4yHrpds3+Um33dZXIC7Vfd/j4dA5c20d8XfTpGW6VQ9PO9zWQWaWs+D7SGI0DwRMO5l1wJAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIHDYCSSbcgCL1lV8010fRtrZI9wX0iKiqVUio9RkSXA3/Qa4byso8gQx6LaJj8zyHeJ3ffXWQjnGpOr3bfEtKsol+PbrelhTTyYC93Z3CQ87s4R7u7/lFa5v+/vbXp2+na5SKCltKrIuVGf/YMauTM8XLYfx6+qdTvBLMPu5x9TEdkeupzyK+4G6e95AyxqEYzcNipjw8Ex7tcr3NSZgY3DnimwS913cT67/7zwrOEQfoL/23QbrpRMc3TNOxgxIlON6J/jNoFDlQfxstMtG+NlkdWmJFM0sMic12yr9Ygd56MbZqzwZOs44yjsjRaD5tD/TZNOwA1+6JlWUzwg0XrNEaOkZO/gp0LhA15G321NqJLl1c6kq+EQDJbSshx1skVO4p1LWj0DHr06/lgmpqnVLrAie0DHrTTAOwRNVaR1+2wieOPzuGWeMAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCDQYgfaub7ZvM9/o99f0geZHdx1badNf31hivnGfYfVHhlVkrNDsBzVp+UV7arKb330KXA+F/Q7w0+l+kOxnc7W6Svd4AkgiTHmQ2mwmsYd8MGuzPPZJam1OG/Rce0yWC7tpZoTqtJp+Ngp3eT4b3ZOi5JWbh8unv26RD2dudgIN9DxmrsyyXnpeD1zev9bKd1R1jacNamsFT+gYd+mO6Us8pWuO7x18yQ7NsGG37AJPsInd537Xz0KWCbaoaStxfU5j/GSc8Z03NqqpCZ6o6HXv6zvuYNYDlQ6y54x0+eS5Phf2dt4PbwHPp//wvg7OHgEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBA4DAUaB/vKQswffF2OWdE+6CuQstzzF6V5Yy1M1bERHpnivj4ruOcMVUtNAur3oP4qubSjACa2UDbC9cPkfjoZlUNt7bVZgmC2ChPOZGNpsSBnTXhgCcRxIBlm3K9AifOGp4kQ7vESpvYCIk0gRpRJktIc2N55r9+skpbBDFltYbERodZZTN0p02mHEsXk40g2Bbd3PPZ0CwRfz67V1C7RptrcrekuHC5ZmwX+cPoFEndki9LN+bKTysznQwqmrnhxucXyKsmyKI65+c+RrDLx5osF3azS3cUmhIyPy/faXWPNeVswqsRZKLZJLqZAJHVWwqsjBJF5loC7a+ZYuwsFfY5VOe9petndfXmggPuumbrLmeMe1+7U38nBGplPllrAo3bvHOXdHD9TvIdtynTcw727xzfMawfvgIETxy+944zRwABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQOe4GeSS2ca1i8IU/mr8sO6hv7G0xQgP3gVksH6ENfbc3Mu37z397W3DzQj6jFwAjnZKtYSIgJk+WbKgZoRote7T3XWMVutbYpwQQY2G3ttkJ7sVbe567Jdua54PgOcsPp3Zx1e0Ef3vsrqWJvP5j3RGO7dP8EG3YUVCs4oZUrqETLPmiQy8G0JiGNpHeHFtbrguM6ilo/8MEKWbk535r2l1U7q3V+NTkX/byfOTTJyoShmS+0dMevqRWBEzrfmEFtqj1tH3NNGjyhbfqi7TLOzO+vTVu43V930H36M2v/rOrPq2a6iI3yBLi4J9LMLO7PlP0z3bhRI2dYdoEnQ4jTuX9hR67/rDa+49ab3yv+yvfY41L3u+h65zbBB+7Y+/NevwUq/orU73Pk7BBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBqogD4s/b35Br/dnv1yrRS7SjPY/e73ErP96S9WO12DUmKdZV04rne8s/7TCk/5Aqdz/8JOU3JAswboK+sAJQp8961qfVi3OGfz9/vLijgdrgW9Dvv4mkUhUNuZXxJok9/+o7p4jv+NecC9PaciC4bvYL3+Cx76RU6/70e59r9zfTf7XV+yMcfpP21wW2fZvbBgnScjiLu/NpaH9/Bc2weztsieABkF5q7Nsq5Lr+2Fr9dZh+6U0FzszCQa4JC+M/ADdb0f9r3R+6RNHTVAQl/+PqOaZWLSqE7WWP1nzdaKIAqnw7VQ3Xvq2rXS4pjBngAJLd3x7dKKz7xe66DO3j8blXb209Ev2RPs88AHKy0H32Hfm2O8uN/Vd1t11o/r4/lZ/XLB/pocfib4cv4Wp3f0AE8ZEs3YkhQbbm1bZ+5LaZmnrIuzg1lYuCHXvRpw+fO5W0SzbfhrmmXEDozRgK1AGTn87Uvf4SFA8MThcZ84SwQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEECgwQrot/bdD7WvevpX2ZLl/8G2ZjW45X/zZU5qRQYE/eb6lad4gi8UaYwpVWC3f7y9wu/DX/0m+/XPzZU/PjPPem03JQhqqx3bM8H6Rr3ON3XuVnn7p42Vpi4r3ycPfrjCOf7PJkuBu0WFexLIz06tXjBCYmwzGZASY02n3+j/yxtLKj1U1hIHk99fZpVm0G/0D+3Wyn34gMtd2kQ729ZsrchO4HSYBc0I8uAHq9xdtbp8tMt2aVquaLCNb9OsEn97a7mVqUCv7aiuFQEEjc2D9rOGebIo3Pq/BaJjfZtmF7jw4ZnWvbn1xYViF4P4dskOuezx2dbr3reWiL8yEWk7PEEwCS28y7UczD31PUf3er+OMWIf64OZm+XHZZnWZs1IUZNyMCP7txF3gIL+jNz+2iLrc/zGjI1ywwvz5S9TlrpPocbLowd6Aj+e+WKNzF/vyWxiT7ooLUf+M3WNvSqjXPtoZ+8Ons/k5/O2OuPsBQ2EeeZzz/52v7/3zSag5l/vLRffCiCa0eOOV5c4uwT78+LswMJhIeD5rXtYnC4niQACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggg0NAEwkMby21ndXceyOo3yC83D6lP7t/aKnnRznzLOy1jlywzD8t/XZvjlb7/9nN7SpxPqv9hXePkqjEp8vy0iowD+vBXHwYP6hIr0aaMx/qM3fLmD2lOaY8h3VpapRdqy7VlZFN54PL+cuPzC6wp9cHvvLWmHInJCNHBXIsGhnw4a7MVuKADNABk3BDvLA6JLSu+Ta/bl2/Kk+uenycn9WktXdpGyoDkltpdZbttfE+5+NFZ1hj9tvzFj8ySk/q1lp7tomTt9l2iGQrs0gw6aPzQdlXOZ28c0i1W3vqxIhjkvneWW9c13GTaaGpKWCxPL5CPzMN7u2SKvU9tvkeZ+3fT+O5y/3srrGnf+WmTLNuYJyf0SZA2LZvJYpNh4Kflmc5npFtSlAzs5PGaNLKzaAaBWauyZEt2kVz82CwZaVz6d4qRcpPFYomZ66NZ6c4pXzayk1UKRjvGDkoUfcCv7eflO+XO1xfLCb0TpFvbaMndXSozlmaY++rZd5T5/Lrbwd5T91zuZS1dcaYJCtFMEHZmBN0+eoAnMME9/kDLOt8d5/eWbbklogEq2vR69eVumjFGP0fuY7q3B7M83ATtHG+yT9gBHzc+t8B8ThNkyP7sKfNMBpHvXNlbjunVSo7p4clWocfomxwjXy+qyLbx8EerzM/VbhnYOUb2mSQUK00gzGvfbQjmVJwxmi3miqw5cry5t21jw2TF5gKZvniH85lKbt1crhnbxRnPQsMRIHiiGveypKREli9fLvreu3dviY72RDFVYxqGIoAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAII+Aic1Le1PH9dMyuAIiOv2HoAr1kb9BWo/Z8JuBgV4AHxZSd3kh25xfLJnIp0/zKFmU8AAEAASURBVPpw1X7A6p5PH67fN7G/u6tWlgebUiL3XtBb/v72cms+fVivL9+mgRPPXjtENCjA3bq1jbIeCtsPrxetyxV9DeseKwOu8AQDuPdxL3cyD3gfuKyf8215DRSYYgJGfJseXwM9NOAjmDaoc0srEMW2/HL+NtGXu11yUrJ8Zu6bZn04FO10Uy5EA1Dsh+IaXKIv35ZiymhMvtj73jYxQR73TexnypTMs4JH9Bw1W4O+fNt4E5Bw0QkdnW4tMXPb2T1EH9Br8xdQYA++54JeVuCPva7vB3tP3XP5Lp9iskW4y2jo51o/AzVtYU0ay4OXDTCfmQ3ypsk24W5asuLasV1NeZwEK3jCva0my3ee11vyixZZn2/dX4MX/JW70SCJu0xQh28bP6ydLFif4+yjATX6crfLTRDMK98eOIji7t/1kn+9u8L6bLiDi+y59Ofl38aFkh22SMN69/4t3LCurVavZuXKlXLWWWfJhg0VP1SRkZHy1ltvyZgxY2r1OEyGAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCBypAr07tJDXbh0uT36WKj+YB6iBMhicbL6ZfuO4HhIfHVol1f+d1UPaxzeXd82DVA3IcDctc3Dpycly2lFtRR8Uu5t+895uoU1C7MVqv48emCjNwkJkyvcbKz3c14ew5xzdXiYc20H0obxv0xITky/uJ5+ZMgQfm2wGvuev43WM3Zr6XIP2H9crQV43nho0MW3Bdnuo9a5lUvTb+deN7SZa5iPY1jSksfz1gj6S3DpSPp69xeu8dM4/npoiGtzgezx7/tqw1dtz9ZgU6ZfcQqbMSHMeutvH0If7R/eMN2O6SFhT73urY/TB9yOTBlr7+j5k1+0920fLpFGd5Oju8eL6KOgmOXt4O3PcGHn6i9WydEOe12dU7+mgri0t0w7xEdZ49z9B3VPXAavz2dPsLHredhaIM3wymbjPI9jlFhFN5LrTuso1p3aRrIJS2WMyc8Q0D5UI85m2W2FR5bInuq069znalKh5/MpBVsaP93/ZbGUEsefXd/1ZnXBcezlnRHsJ9fM519Ik90zoIy2br5afV+ys9Jm87rQuMsLcy2CCJwZ2ipVXbx4mT5n7O3d1jvs0ZEQPzWjTRZLiPFlhvAawctgLNCotLd1X3avYZ4q85OVVjt7SeTSooEmT4GIyqponLCxMwsPrzwdv2LBhsnDhQi8qvda0tDQyUHipsIIAAggggAACCCCAAAIIIIAAAggggAACCCCAwKEXSE1Nle7dux/0gSY+NjeoOd64ZUhQ4xhUuwKZ+aWydlu+5O7aI1HmAWuHVs2tB5f6sLQ6ba95tpVdsMfMU2J2ayStTXkH30wP1ZmvJmPzi8okw2TC0HOJiwqTWBNo4HpOXuWUuk9hcbk1Xh/QV/f6dfKSPXsl0xx/V2m5CToxx/cTsFHlSQTYmG0eqmfml1gP1eNbhHo9NA+wS613FxRX2Bom8/mIMMERlQMmAh20rHyfZOaVmMwHe6SZ2a+NKZfiG0wTaF89nu6bs6tUWhlT3/IxgfbT/tq4p+759+7dJxc9MtMpBTP1rycEnU3EPY8uq2eh+bxqi2neNGCWhaLSvTLqr99Z47SUxRu3jrCWD+Yfdckp3GOCNfRnVczPiX5Wm1brc7XT/N7ILiwxwRShEmcCrNyBHP7O7cEPVsqnv1ZkqHn/9mOdYCK9vs07d1m7JMaG/+a/M/yd65HSV1d/m4OLcvC5C1999ZWMHz/ep7di9fXXX5cJEyb43ebbOW/ePDnmmGN8u631e++9V+6++26/237rzvz8/EqBE3oOhYWFVhmPESMO/hfBb31NHA8BBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQqO8CmlkiPrrVQZ+mPjxtZebSV101/XZ9dHhkjQ6v56/7H0zTDAzt/GRDOJg5dV8NwqitQIyanosGwkS1qZmtlvHQzBsmR0i1D6/BLwkxYdarujvXxj11H/OLBducwAnNOhFsGRb3HPbyvDVZVvkcXdegiBeuG+qVbcIe99TnqfaiaNaY2mjqokEo1QlE8T1ubf2saxCOllqhHTkCNfotO2RI4OhKDawINnjim2++CSh92mmnBdz2W2/QLBiBWvPmNa8VFGjO37J/9WqTcmZu5ajawYMHS48ePX7LU+FYCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCAQpIBmiCg22RHmrtkpT3ziCWS45MROQc7gf5iWe9FSGVoqJm3HLrnuuXlyUt/W0r1dlESGNZGt2bvlvV/SvUrRnGdK0NAQONwFahQ80apVKxkzZoxMmzat0vV/8sknUlZWFlTpjqlTp1baXzs6deokAwYM8LutLjo1eOLyyy+XV155xevwffv2lV69enn1HW4rP/30k1xzzTWVTvuJJ54geKKSCh0IIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAII1A+BRz9aKV8v2uF1Mucf017atQr36qvuimbj+PO5PeSeKUtltynzsnpLgfXyN4+WkXn4igFkaPCHQ99hJxB8wR+fSzv//PN9eipWtZTF/Pnz/W5zd27fvl20bIe/duGFF5qaTdWrVeVvntrse/zxx+Wmm26S+Ph463XeeefJZ599FlSQSG2eB3MhgAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACvgJXjUmRm8Z19+2u0fqI7q3kzT8dIyf3S/C7f0xkqJxktr126wjp36ml3zGHS2fjGj8xP1yukPMMVqBGmSd08qrKakyfPl2GDRtW5Tl89913AbePHz8+4La62hARESEPPfSQ9aqrc+C4CCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAgApcNrKzjBvWTmJNIENSXLg0DandKID46FC5b2I/+cdFIpl5JbI5e5cF3zkhSlpGNm0wN+HW8T3k+tO7WdcT1rR2DRsM0hFyITW++3bpDn9On376qb9urz5/JT90QH0r2eF10qwggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAAC9UAgOaG5DOrcUvS9tgMn3JenBQMSYsJkcOdY69WQAif0OkMaN5JwU35EX43rWXUE931g+dAL1DjzhJ6alu7wFwSxcOFC2bZtmyQmJvq9grKyMqvkhb+NgUp2bNiwQX799VdZtWqVLF26VBYsWCDp6enSrl07adOmjQwfPtzKhnHiiScGLKXx0UcfWfu5jxseHi633HKLhIWFydSpU2XKlCmyfPlyKSoqkqSkJHn33Xet63j22Wdl69at7l2t5fvuu69Sn92xc+dOmT17tqxYscJ6qcvKlSutsh96zn379pWxY8fKqaeeKi1atLB383pftGiRfPDBB159unLFFVdYgSZ5eXny5ptvyocffmgdIzMz05p3wIABVvYPHdekifdt1rIqH3/8sTWnOvprGgDjvt5x48bJ0KFDKw3NyMiwrlHNlixZYvnqvdLyJh07dpTBgwdb92XkyJESGhpaaX86EEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQqGuBRqWlpftqehIaHNC2bVu/u7/88ssyceJEv9tmzZolJ5xwgt9tGiChD/7tpoEWjz/+uNx11112V5XvGpDw1FNPyYgRIyqNu/baa+XFF1+s1K9BDW+//bY8+OCDlbZpsENKSooViKDjfFtJSYk08olA2rNnj1Xe429/+5vvcL/rkZGR1jVeeumllbbrefnr12s899xz5eijjxYNVgjUjjrqKNF70b27p77Ra6+9Jr///e8D7eK3X4NHrrzySq9tGoyifYWFhV79/la6du0q//nPf+Tkk0/2t5k+BBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQSqJZCamur1/31Xa2fX4ImPzXWtBV5845YhgTeyBQEEEEAAAQRqTaCu/jbXuGyHXnlVpTu+/PLLgDjffPON321asqN///7Oto0bN8qoUaOCDpzQHTUrhQZm/PDDD848B1rQTAz+AicOtJ+/7ZqxQjNyBBs4oXNo8IEGM9x///3+pvTbV1xcLBdccEGVgRO647x586xAktzcXL/z1KRTr/Hqq6+WCRMmBBU4ocdYs2aNlWHjnXfeqckh2QcBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIFDJnBQwRN6Vhoo4K998cUXohkY/LVPPvnEX7dcdNFFThaH8vJy0RIeM2fO9Dv2QJ3nnHOOBBswUN0sDFUd+x//+Ifotdek3XvvvfLTTz8Ftettt90mM2bMCGqsBmc89NBDQY0NZtATTzxhZbMIZqzvmEsuuUTWrVvn2806AggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACdSZw0METp59+ut+T1wf2WoLDt23ZssXKDuHbr+vjx493ujXAQrMmBGqnnHKKaEmKQE2P/+qrrwbafEj69doeeeSRgHMPGzZM9Lyrao899lhVm2u8TYMn8vPzrf1DQkJES4Xoq6pmj9H39u3bW0M148W///1vv7tpCZFnnnlGXnrpJavUSKD5D9U1+j0pOhFAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQKBBCyzdmCuvfZ9mvbZmFx3W1zp90Xa57eWF8s7Pm2TfPv+XklO4R35ckSEvfrNe7n9/hTz75Vpn4PJNeXLXlMXy1OdrpKC4zOk/HBb2lO+VV7/bIH96ZaH8sirzcDhlzhEBBBqYwEEHT8TFxcmYMWP8svgrz/Htt9/6HaslOwYMGOBs++6775xl94JmZ9i9e7d8/vnnVlaK9PR0mTRpknuIsxxsZgZ7B70ODTLQc9SyH//9738lNjbW3nzA959//tnvGA2YyMvLs7JK6Hnr8pNPPul37NSpU80fwwB/Df3s8fDDD8uyZcus8hlz5swRDdAI1NavX29tmjhxomRnZ1uvZ5991u9wzS5hj9H30aNHW+PS0tL8lurQa1Q3zeJx8cUXy4svviizZ8/2O/f333/vt59OBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQKC6AkvS8uS5r9Zar225h2/wxI7cErn3rWUya1WWPPnZalligkJ8W/rOIrn4sVly56tL5OXp62Xq3K0y5Yc0a5g+XrrvnWUyY2mmvPXjRvloVrrv7vV6/ecVmfL8tHUyc2WW/PnlxVJUurdeny8nhwACDU+gSW1ckpbumDZtWqWpPvvsM/nb3/7m1f/ll196rdsrWrLD3WJiYuSss85yd0lycrLceeed0rixJ+YjISHBCnh4+eWXvcbqSmpqaqW+QB1aBmPy5MlemzWTQnWb7zk3adJEnnrqKQkPD3em0uU//vGP8tprr/nNrpGRkSGtW7d2xgda0ACFSy+91Nk8cOBAUd8OHTr4DXDYsGGDV4CKs2M1FrZv3+53dP/+/UUzWrhbt27d5PXXXxffoBLfce59WEYAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEjkSBPWXewQLFe8orMdz6vwWSW1jq9KckRkrH+AhrfZ/sM9kmPPuU+Nnf2fE3XtAsGD8uy7CO2ia2mQzuXPnLy0WlnnPXgWV71cPzTNDamX8QQACBQyhQK8ETgUp3LF26VLSURVJSknUJpaWl8sEHH/i9HHfJDh3wz3/+0+84f53R0dESHx8vmZneKXyKioKLLtSME76BE/6Oc6C+CRMmiL6CbX369PEbPKGlMQ7U+vbt6xU4YY/XUhnXXnut39IamzZtsofV+L1r165+99UMGJo9RK9f74fdqmti78c7AggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIHAkCbRrFS7Xnt5Vpi3YJkd1iZUhKd4BBpn5pbJlf1mSmMhQee6aIaL72K1xo0byl9/1MhkpNkhCTJicNby9vanO37PyS2Tyeyus8xg9oLXf4ImT+7WRxRtyZWV6vvzu2A4S1axWHmPW+bVzAgggcPgI1MpvHbt0h7/sE9OnT5fLLrvMEtGyEv6ab8kOf2O0r6SkRFavXi1ZWVlW6Qstf1FQUCC5ubmVAicCzeGvf9SoUf66a6Vvr4mK03IZO3bssM45JyfHOedXXnmlxscYMWJEwH0144O/psErB9s0EEbvl2ax8G3XXXed6GvkyJGiWTsGDx4smg0jMTHRdyjrCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACPgITj+8o+vLX1m3Pd7pP6pvgFThhbxjRvZXo63BszZo2ljvP63U4njrnjAACDUSgVoIn1CJQ6Y4vvvjCCZ746quv/LL5luxwD9IyEVreYsaMGfLNN9+4N9Xa8tChQ2ttLp1IgzymTJki3377reg1FxYW1ur8Olnv3r0Dztmq1aH9ozhp0iS55557Ah5fr1tfdtNACr3Hml0kmHIk9n68I4AAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIVAgU7i5zKHq192QBdzpZQAABBBA4KIFaC54IVLrjo48+soIJwsLC5OOPP/Z7sr4lO+xBmsniwgsvPCTBB/Yx9N1dZsLdX5NlzYxxySWXyMKFC2uye9D7hISEBBzbyKRlOpTtjjvukPz8fNFSHcG0mTNnir6uv/56eemll+Tiiy8OZjfGIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAwBEmUFq2V35cliHLNuXJttwiadYkRHqaQIFuSdHSq30L0ewENWnpO4tkycYcWb99l2zMLJT46GbStW2UdEmMlN5m3saNAz9bKSwpN+UksmX1lkJZtSVPmoc2kRSzb0qb5jK0S1zAfcv37pPFablmv3xJNaUois21dUmMks4JzWWYyQ4REVb5Wc83i7ZJhinPERrSWM4/pqLsxsdz0mWXOYeF67KdS5+5aqfk7NpjrbeIaCpnHNXWWl5ijrfU2Gk7bVBbaRnZ1Fr2/WdT5m75bukOSd+5W3J3lUpyQqT0SIoyr2hpFx/hO9xrfbmZf5W5pvXbC2VHbrF0NNfTrW2kdE9qYeZp7jV2/vpsWZVeINkFJU7/uh275I0fNzrrdqaNPeV75YOZm6V8n0h7U47k+F4Jzhj3Qk7hHvl2yXbr+Bl5xRIeGiKJsREypGtLGWxKnWj5Et9WsmevfDS7Yu7OrZtb2Tnsz8QiUyokb3epdDIGPY3B8X1ai58pfKdkHQEEGqBArQVPVFW6Y/bs2ZKcnCxr1qypRBioZIc+mL/rrrsqja/PHZod45RTTqnPp1hr5zZ58mQr+8ULL7xgBUYEO/EVV1xhBV5ce+21we7COAQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEDgCBNZuK5SbXlwguYXeZcinL95hXX1SbLg8ePkA6WQefgfbNIDh7Z82yTNfVH5GZc9xcr8E+euEPhLapHJgxuqtBXL7K4tFH9J7tYXbrdVBXVrKPb/rI/Etwrw25+7eI397a4nMXZ3j1f/jskxrPaFFM/nnxX2ld4cWXttf/2GjrDMOESYgwA6eePXbtErH/35JhuhLW7LxsIMnflyeKW/tD0wY3i2uUvDEPhOY8Ognq+TDWelex521KstZv3xkJ7lyVOdKQSEFxWXymNl32oKKa7d3cO97wxld5YLjPGVHfk3Nlik/pNlDrXe9vmc+99wPO3iiqHSv/GdqRf9J5p74Bk/ouU+ZkSb//XKt13z2yhvmOGpx/yX9pYNPAEi2+UzZc58xpK3o50Lvq7v9vHyntTqoS7r87YK+EhcV6t7MMgIIHAEClf8KHMRFT5gwwe/emkFi+vTpfrf5K9mxbdu2gIET8fHxog/eH3vsMXnllVfkk08+kR9++MHv3L9l5z7zG/vWW28NeEjNRnH//ffLiy++KO+//75V1qJnz54Bxx8OGyZOnGjZr1y5Uu677z4ZM2aMREZGHvDUb775ZisbyQEHMgABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQSOCIHtOcWVAic0gMDdtmQXycWPzpIF670DEtxjfJefNkETvoET3Ux2AQ3EsNt3JgjhlpcWiD6cd7dVJlvEpCfmOIELGvBwbO9WJgtGlDNswdocufzJOaJZE+xWbLIcTHp8jhM4odcxrHusaKCF3TQY46qn58o6k73hQK1bu0grE4PbIyYy1OrTDA1tY5sdaApn+0vfrq8UOOGeVwe+8u0GueP1xbLXBBjYba/Bue6/87wCJ3Q/zQqi52I3DVB42exvt0RzbnqOvsfQPvtljz3Q+xOfpVYKnHDfR90/zWS1uNLcD82sEahpVhN34ITO4T4/vadPTU0NtDv9CCDQgAVqLfOEGo0dO9YvlQY4BAoU8Fey46uvvvI7z7nnnmsFTGgJEHcrKyuzHtoXFh74D4x7v9pc1qwaS5curTSlZtbQjBRt2rSptC0lJUU08OBwb3odt99+u/XSIJL169db16yBIvPmzfN7eYsWLZJhw4b53UYnAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIHDkCmtHg5hfnOxknju4ZJ38Y3cUqqaEBDRrE8PZPG0WDHLT9Z+pqefnGAz9jyCoolXdM1gm7aaaHY3rGOxkmdN7/e3mRddxF63Jlsylh4c5YMG2RJ8PCxScmy1VjUiRkf3kPzSxx4/PzrSwRmiljxtIMGTWg4lnQr6k7nYCLId1ayt8v7C8tIioeyZWY0h1PmiCAj2dvsU7rw1mb5U9nV/1l2wcvHWCNnW7O5963llnL15/eVcYOSrQvLaj3T3/dIi99s94Ze88FveTongkS1ayJKatRKr+uyZL73llubf9lxU6ZY9ZHmPIi2maZa9KMEdo0WOKxKwda90dLZGhghZ7b39+u2Pd9U3rj8pM7WaUvzhrWTvSVlrFLJj4yy9p/9IDWcu+Ffa3lYP+ZuzZL3vtlszP8D+ZejDVlSVrHhFmBKys258u/P1xpBU/sLi2Xye+vkGeuHlwpe4ZOoAEW2v450XweelV8HvRzpj46h7avF+2QiSd2sq7R6uAfBBA4IgRqNfOEXbrDV04DCz799FPfbglUskMfvvtrt9xyi/gGTui4OXPmSF0GTug5bNrk+eOr63a7+uqr/QZOFBUVydSpU+1h9e59wwZPVKD75DIyMkQDH9wvd9BII/NHUoMptDzHL7/8IkcffbR7d2dZ96chgAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAp/O2WICF4osCM1G8PcL+0m3tlGiD+Y1WEFLW/zFlMawswys3lIgKzbnHRAuxwQ1nDk0yXr9/cI+clLf1k7ghO7co1203GCCEOy2ZGOuvWi9f72/NIeuXHlKZydwQtdjIprK5In95KITOlrzF5aUabfVflpZUZpDVy4f2dkJnND1MFMa5MZx3eUKUxZDzy20qXd2DR1zKJoGbTz4QUVggM5/x3k9ZczAtlbghK7HmhIVp5pgjDvP76WrVtPADruVmmwatuWjVwx07o9u1/s0emCinG7KYWjTYBINRKnNZpci0TnPGp5kBWdo4IS2piGNpX9yjDxoynXYGSSWpuXKUp/7aQ3e/88/TODESf08nwdzCTJ+WJKMGeT5MvT67QXuXVhGAIEjQKBWM0+ol5bu0DIdwTQt++Cv7d3rSW3k3r569WoZOnSou0uysrLk7rvv9uqri5Xy8nK/h12xYkWlfs2Uceedd1bqr4uOpk2b+j2slhZ58MEHTVSg+WvhaloyxV8gzMsvvyy+91P31ewSM2fOdM1QsaiBNjQEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAYPpiT4aHu3/XWyLCKgcUhDVtLJMv7S/zTAYCbc1NtoQDtS6JkXL7uVVndeiS6CnBsXar98PyqGYhJhCg4igrTZYKfUDvbu3iI+S60zzBF/a28FDPuS3ZkCcDkj3lOnSMBlBoMMZv2Ww3PaaWEBk3JMnv4U8f3FbKTAmSYpO9ITLc8wxJA0/0VVXrYcqZfD63YsQGE3jgzuJR1X4H2qZZPuakZlvDNDjiJhN84q/p/fjjaV3k0Y8rSm7MWJ4p/Tt529v7ndQnwV70ej+xd4JTmmRLdrHXNlYQQKDhC3h+e9fStQYq3eFv+jPPPNNft3To0MFvv2YzSE1NldGjR0tUVJQsWLDAesAfKEuC30kOUWdSkv8/Mq+99pp1xHHjxknXrl1l+fLlVumRb7755hCdSfWm1ewf/lp6eroMHz5czjrrLOt+DBw4UHr16mUFQ/gLnpg0aZKEhITIcccdJ2qxZ88eeffdd+WFF17wN7107+7/D5vfwXQigAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAgxTYu3efaCYJu3VPirYXK71rMIS+atq0NEORCQooLCqTXSZTxG7zcmcnMKfi1Y7qGmcyKKRbfdc+O0/OMJkVTu7fWvp2iPEb4GHv3L9TjHxgSldoe+6rtbIkLcdkeWgjAzrHSXx0qD3sN31P2+HJBNHPJ5jDfSL6nVots3GgpvetsKRcdu23VM+Zq3Y6u/n/mrSzuVoLmzMrymzoTj06RHtlD/GdSDOW2G3NNs/nyu7Tdy2l0nh/+RV3vy7HxzRzunaZcjI0BBA4sgRqPXhCMwqcdtpp8sUXX1QpGahkh+40atSogPtqNgR91bfWo0cPadeunWjQgW/TAAo7iMJ3W12vd+4cOLJx4cKFoi9tzz77rBU8cdFFFwXM9HHppZdaYyMjI6sso3LCCSdI377Vq2VlTcw/CCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggg0KAE8nZ7HlAnt25e5YPxml74jKU7RLMQzFmTbZWUCHaeP4zuIss35TnBHVPnbhV9aevZPlpOGdBGRvZrI618AiI0q4GWsPh8/9hZq7JEX9q09IiWi9DyEJ1b1zwQxJqsGv/sLChxRqe0ae4sV2eh1JT++Hh2usw12T9mrqy4nursX9OxObtKnV27ujKFOJ2uhWSXaWau/8wRrVuEu/bwXgw1WUFoCCBw5Aockt8A55133gFFfUs8uHdISUmRq6++2t1V5bI+rK/r1qRJE7n//vvr+jSqffy2bdvKyJEjg95Ps0o89dRTVY4vLNyfw8rPqPj4eHn88cf9bKELAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEjjQBfSBvtxYRtfud3z2m/MTDH6+Su6YslWkLt1crcELPSc/nyasGy43juokGdrjbys358uRnq2X8v36UN2ZsdG+yshrccU5P+fuFfawsB+6NW7KLZMoPaXLJo7PlL28sEff1u8fV9nLpHk/5+YggSp74Hn9bTrFc+9958oS55t8ycELPo8RkC7FbdISnlIjd537Xsh52Kyj27Gf38Y4AAghUJVC7f4X2H0kzTxyoaTmIqtoTTzxhleZ4+OGHqxpmbfvyyy/lwgsv9Jv14YA71+KACRMmSGhoqOj7gdpjjz0my5Ytk//9738HGnpItzcy+Ze0tEa/fv2qzBbhPomrrrrKKtFxzTXXuLsPuHzuuefK008/LbGxsQccywAEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBo+AIxkZ6H4Wu2FIqW1tDSEbXR3v15s3w0qyJjuD5Uv+jEZOnRLkoSWjST5mFNJNI8iM/KL5aLHp4V8HBRJtBgwrEdrNdGUz5i6cY8mbs6S6Yv3uHs88wXayQqvImcOdRT4l3LQowymSn0lZlfKstM6Y5FabnyhclGsXt/MMD3SzKkaePlcu+Fhz5bd2xUmHO+G3fsksGdq/es5sEPl4sGjGhr3ypczjcmnUyWh9jIUGnerKl1/dMXb5f731vhHKe2FmLMMey2cUfgL/DqmG1ZRfZQSWzpKcHhdLKAAAIIVCFwSDJP6MPxqgIotGSHPqyvqjVu3FgmT54szz33nJx44ol+h/7+97+XDRs2yLBhw6xAC99BUVFRXl0a2FDTFmhfDT5wt7PPPlu+//570eAQfxkx9Fpmzpwp1113nd/tOld4uCddUNOmnv9ocB+nNpe13Mj69evlX//6l+i9CaZdeeWVlv31118vmk2iqjZw4EB56aWX5K233iJwoiootiGAAAIIIIAAAggggAACCCCAAAIIIIAAAgggcIQJhJkyCXa2AA0q2BGg1EJNWH5akensdu9FfWTSyE4yonsrSWkTKW3Mg/XIsBDZXo3jdYxvLmcc1Vb+flFf+eTu463SHPYBvjGBA4FavCnroaU6bjmzu0y95wS52bzb7etFO6TElX3D7q/t94RoT/DE2m1VByD4HruodK8JGMlxup/+4xA5d0R7GdS5pSQnNBe9vmZNG8sWV+CCM7gWFuJcgR8r0ysCOAJNm7Zzl7MpvoXnmp1OFhBAAIEqBA5J5gk93scff1zFYYPfNGnSJNFXWVmZrFy50kQc7pPmzZtLhw4dxB1YsHjx4gNOquUialoy4qeffjrg/PaAY445RvSlLS0tTXJzc61MDVqOJCIiwh4mDz30kPVyOvwsaLaG0lJPLSc/Qyp1jR07ttr7xMTEyJ/+9CfrVV5eLhkZGVJSUmK5axBKQkJCpeNoCY9HH31UHnnkEVmzZo1s2bJFsrIqalyFhIRY+3Tp0kVat25daV86EEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEVOLl/a5lqMjJo+2h2ulwztou17PvPq9+nybs/b7K67zq/pxzTI/CXO8v37pOlJtODNg3OONoETfhrc1Irnmv4bssvKpOM/YEVml0hNsr7C7qtTMDADWd0k8/3n/eqTRUP9bUMx6bM3dZ04ea4SXGeL8xqZ5gJMjj/mPbyxfytsnpLgTVusxnfJfHQlqg/qkucdSz95xtTwuTSkzpZASRO5/6FnSZLxvXPzRUtedExPlyeMYESa7Z6AhZO6pcgcT4W9hw/Ls+wF6t835ZbUuV2340aoKHZJ3ILS2XzziKT/SNX+naM8R0me80zxE9/3eL0a6AMDQEEEKiOwCELnqjOSQQztkmTJtK376FPWxTMuVRnTHJycnWG14uxGviQmJgY9Llo9o1u3bpZr6B3YiACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggYAROHZzoBE9M+SFNeneMluN7eX+pc/GGHHn+q7WOV7/kls6yv4UQUzYjxQQkrDNZFjSjxdbsYmlnyk242/dLdsg7P1UEY7j7dXljRqH88Zl5VreW+Xj55mESY8p8uNumDE+Wg4T9JSJMzIZc88xcpzTHf689qtKD/t0l5ZK+P8BC53NnVnDPX5vLibHNZEBKjCxal2ud21/eWGICI46SUJP5w24afDD5/WVWgIL2aZCHtg4meMFua7cWSMmevVYQiN2n+/33q3WSZsqBBGpa2sNuGtRSZO6JBpcE0xqb51BnDm0rr32XZg2/47Ul8upNw0UDWNztjRkb5ZcVO52uY3sGDq5xBrGAAAIIuAQOm+AJ1zmziAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggg0EAEBnZqKWMGtZFpCypKX9z56hI5tncrOdZklmhkgiDmr8mSn10PxSeemCxRzQ78iOsY8/Bcgye0Xf3sXDnVHGNQSkvJ27VHFq7PkS/mbQsoqJkN7OCLjLxiueXFBTJ2UKL06djCZEkXWbwxT56eutrZ/4whSdaylq8YP7ydvPXjRmv91hcXykXmfPslt5Co8KayYUeB/PfL9U5wxdE946RlpCewwJnwECzcNr6nXPzoLGvmlZvz5eJHZlnlRHq2i5K123fJLysznWwYOmj80HbWWA0a6dk+WnQfzfxwxX/myJiBidLd7KdZM35emeFV1sPayeefuCjva5z0xGwZO7itCWiJkJGmpMmB2iUndpKv5m8XvReageIys/+JfeLN/YiRXHM/Z67KlAVrPaVFbhzXrVK2kAMdg+0IIIDAgf+yYIQAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIDAIRS47ayekr97j8xaVVFG4+flO0Vfvm3MwDZy5ajOvt1+188xQQxaSkIzIugD97d/3GS93IOvM6U33EEQ7m23ndVD7nx9ibWvltiwy2y4x+jyRSd0lPOPrsjSoOsTjusoi0ymDA020KwXL369TrsrtWHdY+XOc3tX6j9UHZ1aN5cHLusnd5jgFG1bsotEM334Ni1z8sDl/b2COm44vavc9tIi63rU8zlXFhDdX/c579j2TnYI3zk1e8SlJ3cy2zdYmzQI4/lpFS7BBE9EhIXIQ5MGyE0miEXvpb4+nr3Fevke61xzL85z3Q/f7awjgAACgQQ8uXgCjaAfAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgUMooA/HH7xsgPzfWd0lKda7vIYeVjMf3Gq23XNBH6+SEbqtsclOYbfQEM+jr/gWYfLcdUOtrBb6cN/duiVFyVN/HCwn9fEuD+Ie0y85Rt78v6Pl9CFtJSbSu0SEjuvfqYX8e1J/ue60rtIkxHMO8aacxHPXDpGrT+3i91o0o8X1Jmjj4csHVsqOoOVGtIX6nK/22dt0OVBzj2nqsrDHH2fKobx+63DLxO6z3/UaT+qXIK/dMkIGp8Ta3dZ7f5Md5MUbh1qlP7w2mBXd55Wbh0snV3kP3zG6PmlkJ7nz/F7WvfS33cRXOM1dTsTu7GLcXjPH0WAV3/upY/qa+/Wvi/vKreO7V7IKcU0e1tT7s2DPzzsCCCDQqLS01CQXoiGAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACh49AamqqdO/e/aBPeOJjc4Oa441bhgQ1jkEHL6BlMbJNZoGcwhITlNBY2sVFeAUn1OQIOudWk2mhqLRMWrVoJlqKorotv6hMtucUSfOwJpIY20w0m0IwrWTPXpPlYbc0Mv9LigsXf4EBwcxT22P0vDJzi2WXyY4RHx1WKZAj0PHKyvdJetZu0fckc2/CQz0BK4H28e0vLCk35U/2WRZhTaq/vx47M79ECor2WPehdctmQZVy8T0P1hFAoH4K1NXfZsp21M/PA2eFAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCByRAhqTEBcVar1qC0Dn1MCFg2nR4U0kOjyq2lOENW0snVtHVnu/Q72Dnle7+IhqH0azbCQfIMvEgSaNNJlGDqbpOSSagAl90RBAAIHaEqh+KFdtHZl5EEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBeiBA8EQ9uAmcAgIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgjUnQDBE3Vnz5ERQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAoB4IEDxRD24Cp4AAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACdSdA8ETd2XNkBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEKgHAgRP1IObwCkggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAQN0JEDxRd/YcGQEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQTqgQDBE/XgJnAKCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIFB3AgRP1J09R0YAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBeiBA8EQ9uAmcAgIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgjUnQDBE3Vnz5ERQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAoB4IEDxRD24Cp4AAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACdSdA8ETd2XNkBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEKgHAgRP1IObwCkggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAQN0JEDxRd/YcGQEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQTqgQDBE/XgJnAKCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIFB3AgRP1J09R0YAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBeiBA8EQ9uAmcAgIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgjUnQDBE3Vnz5ERQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAoB4IEDxRD24Cp4AAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACdSdA8ETd2XNkBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEKgHAk3qwTlwCggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggccQLfLNom23JKrOueeEJHCWnc6Igz4IIRQACB+iJA8ER9uROcBwIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCBwBAqUlu2Vpz5fI+V790rbuAiZeHzHI0bhywXbZE5qtnW9FxzXgeCJI+bOc6EIIFAfBQieqI93hXNCAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBI4QgRITPPHBzM3W1fZNjjmigieOkFtcby6zoLhMflyWYZ1Pm9hmMrhzbL05N04EAQTqXoDgibq/B5wBAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggcYoGs/BKZ/N4K6yijB7QmeOIQezM9AoebQOPD7YQ5XwQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAoDYFCJ6oTU3mQgABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIHDToCyHYfdLeOEEUAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEfAX27RNZsCFbfk3Nlq3Zu6WotFwSWjST5ITmMqp/G4mNCvXdpdJ67u49Mn3Rdlm/vVAy8oqt/Xu0i5ZubaOkq3mFNG5UaR+7I31nkSzZmGP23SUbMwslPrqZtU+XxEjp3b6FNK5iX3uO6r6X790ns1fvlLQdu2Xd9gLZVVJmzjXaHDdSeraLMedQ+ZrTM3fLjJWZ1qFGdI+zfFZvKZAlabnm/HMlpFEj6dQmUoZ0iZXeHVpUeUpqvnBDjsxJzbLMS8v3So+kFtItyRzfvB/IvLRsr3y3ZIes2Jwv23J2S1jTEEmKjZBje7WSvh1jqjx2YUm5LDb3e/WWQlm1JU+ahzaRFHOPUto0l6Fd4ry856/PllXpBZJdUOLMuW7HLnnjx43O+sTjO1rLvj7t4iIsl8Xrc2Vlep71mbhxXHf5aHa67DUAsZGhMnZQojOP74Ke5ydz0q3umIimcvpRbX2HsI4AAvVEgOCJenIjOA0EEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIGaCWjgwl1TFsu6bYV+J3jis9XyhzEpculJydLYBAf4a9MWbpV/vL2i0qZP5myx+kb0iJN7L+wrUc28H69pAMPbP22SZ75YU2lfu+Pkfgny1wl9JLRJ7SWFT8vYJf98d7msNIEH7vbz8p3WakRoiDw4aYAM6tzSvVlWmACAZz6vONdWUU3ly/nb5M0ZniACa/DiHfLCtHVy3jHt5cYzuvkNGtGggFtfXCDLN+V5zW8fXzsnX9xXTujb2mu7vbLW3KubzP65haV2l/M+5Yc0ObpnnEy+pL80Dalstnprgdz+ymIrwMXZSRcWbrdWB3VpKff8ro/Etwiz1jWgRud0N/2s2A7abwdPuH3iTGDEC1+vkx+XVQSb6DgNyLn5TJGXTP9uE6Cj7Zie8RId7v25sDaYf2auyHCOc77xpCGAQP0VqPzbpv6eK2eGAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAgJeABk5MemJ2pcCJpNhwr3EaDPDYJ6leffbKnDVZlQInNPjA3WatypIrn5gjmfneD/ufNkETvoET3ZKiTAYFz/G/W5Iht7y0QDRTQ220zLwSmfjILK/AiRjzoF+Pa5+3Pti/4bn5MndtVsBDvvdLuhM4oftpYIC7vf/LZvl83lZ3l7WsGSP+MmVRpcAJ+9j2DndNWSpvmsAS36aGvoETvseeuTJLHv5ole+uJoNEvrnfc5zACd3v2N6trGu3By9YmyOXPzlH9phMGNoSY5tJ+1bhjo09Tvvsl93nfn/l2/VegRN6fRHNQqwgmHHDkpyhv+zP5OF0uBa+XbrDWRs9sI2zzAICCNQ/Af8hUPXvPDkjBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBLwEtGzC5PeXORkA9EH4nef1kl6m3IRmLMjILZGvFm6T575aa+334ax0OcaUhBjerZUzT6opWXHriwud9UtOSpbxQ9tZD9xL9uyVeeuyzP7rrOCMLdlF8v4vm+SasV2s8VkFpfKOKzjgnybTgmYhsDNM6IP+/3t5kZVdYdG6XNm8c7d0iI9wjlXThXfNOdjNN8uCnvNz09Y65/XlvG2mBEecPdzrXbNWaPDBA5f1t0p9aFaOYrP/k5+lmlITFRk3/mOydmipCbtkiQaAPPD+Cpm7OseaS4NEbj+vp1VmQ697kykL8q0pxfGiycyg7empq+W0wYmiJSu06fx/fmWhk3FizKA2cuWoFEmKC5ey8n2yfHOe3PX6Emv71LlbpYMpu2JnhdD9p5myKna7+MRkuWpMinNuWnblxufnW/dKM1rMWJohowa0kbOGtbNemq1Dg060jR7Q2sokYs/l732zCczRgIm7ftdL+iW3lDhT+kU/c9pGm3nte//dku1+S3cUFJeJnYlDP5u9TPkWGgII1F8BMk/U33vDmSGAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCFQhoCUjFm/wlI349+UDpX+nlk6ph4SYMKtUx7lHe8olvOFTouK5aZ5yG/og/4+ndrECJ/SwYU0byzE94uXvplyH3T6cuVk0QEFbjnlAf+bQJOv19wv7yEmmRIUdOKHbe7SLlhtO76qLVluyMddePKj35qZ0iB73nBHtrNIWdnkKnVTP+brTujqZL+asyQ54LA0MeOIPg6S7yVhhlzNpZva/ZXx3JwuFZrDIMJku7LbCBDdM218eQ/smX9pfBqfEOtetwSGTRnYStbSblgax2ydz0mW1CVjRNqRbS7nrvN5W4ISuNwlpJP2TY+QRU27Ebq98s95etN6/dh37ylM6O4ETulEDNCZP7CcXndDR8iksKfPat7or6vPCDUOt+6qBE9psJ723GhChTbNk5BdVPtYsV0aKcSYgh4YAAvVbgMwT9fv+cHYIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIBBH5cnulsuXFct4BZHW44o6t8acpPaCCAlnTINhkjYs3D8LzdZTIntSK4QB+U335OL2c+90Kn1s3l35P6y2aTVUGbnX2gS2Kk3H5uT/fQSstdEqOcvrVbK4IGnI4aLlx+cqcq99QsEd3aRYlmytAMDPb1+u40qGtLv2aatePEfgny7v6sGltzdktiy4qSHjNc5teaIA018NduPrOHdGtbce0pic2dId8u9pSxuHlcDytgwtm4f0EDE84Y0lY084Tes+05xdJm//GjTNmM3MKKgStNZg8NtnC3diZ4Q4NHaqMd3bOVJJvMF4Ha+OHt5SmTWUOblu4YOyjRa6i7ZMfIfq29trGCAAL1T4Dgifp3TzgjBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBIATWbfcEI/Qw2RMCNQ0G6NuphRMosXnnLit4YlPm/qfwZsdu7aOsrA2B5tAMFNIj0NaKfq3oUGQe9heaLAS7TNaD3ea11JVtYm9FxYeqJ6nB1j3le80xy2WXKROhx9XX90synJlMNQy/rW8H78AD96DWLcKc1eKScmd57bZ8Z7lXh2hn2XchOryJXHBcR69uDTrRbCHulr4/IMXdp8uahcJuep/t4ImjusaZ8ifp1qZrn51nBVmc3L+16LVEhIXYu9TK+8CUllXOM8oERNjBE76lO9wlO7S0in3+VU7IRgQQqFMBgifqlJ+DI4AAAggggAACCCCAAAIIIIAAAggggAACCCCAwP+zdx3gVRRd9EoJkBBCSAihJiFA6L33jqAgYAcUsYu9oqjYCxbsKKKiAmJDVIo0pf1I7zX0AKEnJCGEjv+ceZl98zb7+nuh3ft9L7s7OzM7c7bMZu+ZcxkBRsBXBA5m2MNJVCptrYCg6k6MDTfIE1BigB3NXWI9qZxzIgD2u7J56w4SFBkQIgNKD/lhh7NOE0JgLN2SloeQ4OnxS0fYQlFY5S9S2JqIoGOeUMY15uZ6jwmCh27931+kbzpd37Ivm1rVEOQVYfd0rSL7q0J/QJ0CP1iNiiWoS/1Y6lQ3lqJLOO+bzOzBn2IhBVzmQriUZkml5HWlQneANAJbvNmuinJtY0dFCpeV8k5GgBG4YAgweeKCQc8HZgQYAUaAEWAEGAFGgBFgBBgBRoARYAQYAUaAEWAEGAFGgBFgBBgBRoAR8AeBnJN2Z3x4rtPaWX0lQgsbu06dPS/XT+cusRFezL7fyOhmBYoPH03eQpMW2ZQQ3GQP2O6VO47SkDGrZUiLgFXqYUVnztiwQ3aEOvHGTghFDF8s68QZo1hEaCH6+N5GNE2EYflzaSrtOnjc2LdpTxbh97E4Jwgp0r+do/KFkTGAKz0aljNIOXrojtlr7eFJ2tbikB0BhJyrYgSChgCTJ4IGLVfMCDACjAAjwAgwAowAI8AIMAKMACPACDACjAAjwAgwAowAI8AIMAKMACMQTAQw8/9Q5kl5iL1pORQfE+b0cDsP2kN0RITZiBIlw+3qBHoIEKeVmHb8/L89BnECRIJ+7eOpeoVwiokoSmFFClFxQdhIyzpJ/d7zTGHBVL3lJggfD49aYeyD8kG3BrFUISqMIgQBJLSoOK4gkrw9cSPNWHnAyBeolVIlilBq+glZ3W4RcqNKWc/VJ0oWt+ONCn4f2sajZhU1heMIF328uXUl+Us5fFyERsmkZUKBY/YaO2Fh5LStghBTiHo1Le/RMXzN1LpWjFFUhe7IFmFO/rfhiEzv3qgsFfOSZGJUyCuMACOQrwgweSJf4eaDMQKMACPACDACjAAjwAgwAowAI8AIMAKMACPACDACjAAjwAgwAowAI8AIBAqBMiWLiBAOttpSBDnCFXli2347eaK0IADA1BLrG1KysPDKFmy0h2Z4qV9tap0bWkKvZEOGjdyhp/mzvi4lwyieKIgL7w9qSFddZSQZKyA2BMPKCszX5Va88+Axr8gTRQsXkGoVOadtiiFhggQRaiJGeNvmuNJhhN+1jcvRw9cm0Zczt9HU3DAes9YcCDp5An0CQQMqGCp0x9JkG3ECfenWMNbbLnF+RoARuEAIuA7Uc4EaxYdlBBgBRoARYAQYAUaAEWAEGAFGgBFgBBgBRoARYAQYAUaAEWAEGAFGgBFgBNwh0Dwp2sgyZcU+Ov/ff8a2vrJhdyZtzyVPQP2gchmbWkKl6DCpEoG8ULBYuNlOhtDLnzv/Hz397Sq65rX58nc0+wwhbd0uG5EBqhMttbboZZckp+mbfq9vFGEplPVpXsGSOIH2IXxFMKx59Sij2omLUgk2CvvSAABAAElEQVShS6xs2bY0A6/RM7cbWdrUKm2sL9hoV4owEnNXjmSdFooSGfKXduy0TM06cZZAgsEvPTdNLxddIkQQKKoZSZt3O8dgf8YpI5+/K90a2QkSCN3x9zpbv3CtNaxcyt/quTwjwAjkEwJMnsgnoPkwjAAjwAgwAowAI8AIMAKMACPACDACjAAjwAgwAowAI8AIMAKMACPACDACgUWgVU27Ix6z/r+fsyvPAeBkf+a7NUb6NUKhoEABm1QDFBuua24P6/Dy+PWUmmYLSWEUECs/zE+RqgIZ2acpvkwoRRYvTAVFHVB+gEFJYV96XoWJOWsP0k8LcqUxZE7//1QuYw9NsmlvXnLAsZNnadiEtf4fyEkNLWvESPUI7AZ55PO/tuXJCfLGyxM2EPDCr3FVO4GgmwhjoezVHzdKcoTaVsvMnLP00KhldP/I5fJ34KjtnKQcyqaBHy6Wv7s+WUoZOWdUEWO5+9BxYz0msqixjpWworZwLVhH20/kKmBg2x+rG1fSIOFM/HcPzV9vI+FAkQLXCRsjwAhcGghw2I5L4zxxKxkBRoARYAQYAUaAEWAEGAFGgBFgBBgBRoARYAQYAUaAEWAEGAFGgBG47BHYcySHRvyR7LafjRMjqW3tGCoZWpie6J1EI363lRk9Yzut2J5OLaqXplJhhWm9UJyYs+6QdOCjUigB3NYhHquG3domjqaJMA+p6SckCeIO4ZzvWK8MNalSio4cO0VLt6bRkuR0I3+/tnHGeisRpkMpWtz3+TK6WoRoaCjalnn8DK3acZSmLd9v5A3USj1NyQDhKY5knaQ2NWMoVhAFtqQeo7+EAseeI3kJIIE6frgItfHodUn01i8bZZUgh6xPyaR24nygDWt2ZtCCDYcNzKuVD6cGCZHG4ZtVjaJ7uyXSl+JcwUCQ6Fq/DDUUeJcQde84lEM/zN0lzwX2N6kWSbUqRWCV6giSAggrwBxKIY9/tZK6NyxLteMiCKIja0Q7PpuyRebFn2ub2Ikx2I4Kt5MnsD3oo8XUvVE5qhAdSp3qlkGST1ZAsHB6NStPXwmFDV3xo2t9uyKFTxVzIUaAEchXBJg8ka9wX9oH27dvH7311lt07NgxeuaZZ6hmzZpB6dC2bdto6dKltGrVKsrOzqbmzZvTwIEDg3Ksy71S4Pj+++9TfHw8PfvssxQZaX85udz7fin1Lycnhz7++GPZ5CZNmlCnTp0C3vzhw4eLF8f/qGLFitS/f/+A188VMgKXGwInz5yj80Jt0N94i1a4QM4x59RZCi/m+I+aVV53aZAtxD/hsM71YqlcqWLuiuTZj38yp6+0/RNfN74k1df+kc2TmRMYAT8Q2LJlC/3222+yhr59+1K1anYJTT+qNYqmpqbS2LFj5XarVq2oTZs2xj5eYQQYgeAjEMixc9bqA7Q/d1ZZ/3bxPs3SCsQYGXzU+AiMACPACDACjAAjwAgwAlYIQKUAM/fdWTERJgPkCVifZhWkWoRSeFi57SjhZzYQJz64qwHB+a9bkcIF6N0769PT36w2CBRTBCkBP7M9fG1VaiWIGcr6irAZ8zccol0Hj0uywI/zdxN+uj0owkjoDn19ny/rxYsUpMd6JdGHf9oIIyB26OQO1FkvIYJKhRehOWsP+XIIt2WuEYQDKHR8/89OmRdhUfAzG4gObw6oZ06mgR0T6GDGSfpjSarcN3P1QcLPbCBevNbfsfxTvavTc2PXSrxBFsHPyvq1i6MbW1Z02AWSw+3i2KrdIJkoEoc/5AkcpIv4PgfyhDK0PUFTCVHpvGQEGIGLFwHH0cHLdo4YMYJ27Njhcany5cvTc88953F+znhxIfD222/TqFGjZKP2799PM2bMCHgDp06dSn369HGoFx/CmTzhAIlHG3CUDxo0iLZu3SrzgzgBAgXbxYcAyBPDhg2TDbvhhhuCQp548cUXZf2tW7dm8sTFdwn41SLIyn02bStNWrRXsq+/eKCxITnoqmLIDKam5VhmKVigACE2YHSJIpQYW5ySypewzHehE+Gk+UJIAuoxFe/snCjY4yE+NS1d/GP+nfhnb976Q3Q485SsA/KLLapH06BOlX0iJqiGnD57Xp6jP5elyn+kkQ5iBpjyd3RKIJAWfLG1Qlpw1HTbP2S1K5X0qY3oq6rjri6VmTzhy4ngMh4hkJycbIx3UVFRASdP7N2716gf4yqTJzw6LZdMpm37j9GkxXvp98WpNLhHFYJD3Z3h2fvp1K0iBvF5y6xFCheUY11MRBE5hpaN9J6AZllxgBN3CbnZXxbaP7yGFilED/ao6tdRNgtZ3ynL90lyrT/1BWvs/GvFflqyxRYTGjMAfZG4DcQY6RfIXJgRYAQYAUaAEWAEGAFGwCsErhIObW8tpJA9Mj1CcDwiCAoNKpek8fN2y3AMen2hgmjRS4TmuKVNPJUW372sLK50GH35cFNBfEihiQv3GKoHyIvy1SuVoDuE071Roj38BPaVFv9TjHqwqVC+2EQLRKgGhO9QBuf5Iz2rUWzJYk7JE/r7rr6u6nC2vLFVRaHyUIRGz9xhKF+ovLd3jKfb2ifQJ5oCg9qHJQgEykIKFVSrXi1RxX3dEsV3rQgaN28Xrd6e4VC+YnQxailUOe7rVoVATrGyJwUJoqLA/WehXIEJPrrFRBQVJId46iFCrBTRzjXy4FvaD0+2FN9Ft9DCTUcMhQtVHsSR/u3jHUguah+Wg8T3uPJRxcT/mHsdVCJUHl/xqSD6XKNiCaPOa5uUU1XykhFgBC4RBPwiT4wfP57WrVvncVcbNGjA5AmP0br4MsLBq0xfV2n+LlNSUvIQJ9q1a0eYOciWF4HNmzfTkiVL5I5mzZpR9erVHTKBPJGZaWd5njzp+OLhkJk3LmkEJkyYQKdPn6aQkBC69dZbL+m+cOO9R2DhpsPSKY+SYHav2nk0zz9wVrVCaUDJCVrt19PiBTsa/4whPp/+j4Oe50Ksfz1rh3AmOc5CuLl1nE/kCThYHvh8eZ5uIDYjpBXxe31AHepQx3vpvjQRU/PBUctpz2H7OIoD5Zw6Jx1DcA7d0qYSPSz+wWe7MhGYueqAJAEVLliAujZgKUerq+Do0aP0559/yl1xcXHUvn17q2ycdhkjoIgT6OLIadvoOjGrrLhpppi5+6cEyc6T2WqqXBMRfxcf1yDLe7EY1Ipe/3mD8eEN7QL5zlfyxHlR3wTxUXKkIF4q87W+YI6dqm28vHQROHbijJh9aYvxDGISZKvZGAFGgBFgBBgBRoARcIUAlBQWDu/sKotH+xC6Ar9jJ8/SIaFqcPbcf1RChPUoLSYJFSpoJww4qwwhQO6/ugrd0zVROPNPUVbOGfm/B9Q+Nb5BnuJo/7Cba9N/NxHtE6E/Tpw+S9HC+Y/6lDnr37t3NFBZvF6q/p44fV5MlDpOIEKULVWU8I0BNuT6GvJnrrizCCWBnzvrI1Q18HNlLZKiCT+FuXBNCGJCKBULsSZM6HWBLHKr+C52c+uKlH7sDGUcx4Smq6iMCP1hVgfRy2E9IrQQDb3BppCedeIsHRDqdWGCbI7+u/uGCeLNtYKUgV+2+EYHf4pOxvEUH3Ob8D9XtngXVtaxjnuMVV5eMgKMwMWBgF/kCW+7gBlmbJcuAgjVcejQITpx4gS9+uqrAe/I8uV2p9XVV19N33zzDUVHRwf8OJdLhQsXLqQHHnhAdufzzz/PQ54oUKAAffXVV/TGG29QhQoV6L777rtcus79MCHw0EMPyXA64eHhTJ4wYXMlbJpjJoIUYWa/+4sDJAff/W0z/bv5CL14U62AhJvwt00givwwL8XfamR5zOh98ptVRl1Qm+jaoKz4J/Mqmic++ivSwwvj1tFn94d4pcwAZZCnxqwy6sBBQEKBqseaXUdpRa585I/CkRUpZCMHCKcd25WHwLuTNkkyDRyYTJ6wPv8HDx6ke+65R+685ZZbmDxhDdNlmwqlIShO6LZg42EZ01ZP83d92dZ0wg+KQHd2ruyT2oG/bTCXx/igx8o17/dm+0jWKXr1p/XG2ONNWXPeYI6d5mPx9qWJAMijb+bGv+4iiIFMnrg0zyO3mhFgBBgBRoARuJQRgOM9XCiq+mpw6pcVDnz8vDEQLKBokN8GokKVsuH5fViH4/mDOcgONiVca1UQhwNZbJQoVohKFPOt/yC+BMqmiW+zCAMCg+oEvjOyMQKMwKWFQMDIE1lZWVS0qHeDyKUFFbcWcanVjL9goLF69Wqj2ttuu42JEwYavq+AhIIfGyPACFyeCBwWThAlaa16CDLF472qy1mpKs3dcs4bHR2Y1XBSwcGyPiWTfhPhQFSswoUbj9DjX6+iUYObXFCHEmTYXxOzcJVVLB3qQE5Q6Z4uPxOS7lCBgLUUITpevrU2heXOZr67SyK99/tmI77l2xM30Q9PtPAoNArqg/SfirkICcdP72tEFQTzXtnkpamEOmGfixAkXQTjv0xJfp9S+PCSEWAEGAEg8K+QYDXbVBFyonvDsuZkp9t1hIzsFw80cdifLWYmQRZ2UfIRqWSkQjZ9+/dOwljjq7qDw0H82NgtFIuUQgQ+uJ06c94Yr7yt9n+CbPLKj+uN8qgP6kq+WjDHTl/bxOUYAUaAEWAEGAFGgBFgBBgBRoARuBAIQHHjpFD+WLb1CH30R7LRBIRNYWMEGIFLDwH3mjmXXp+4xZcoApBjVtawYUO1yktGgBFgBBgBJwjMXn3A2NOsml3dacHGQ0a6LytFRQx4OPivFk6pLx9sIuMyqnow+/X7OTvV5gVZjp2zyyBL3Cxk/Rr7Ia++ScR8h6IGDI6kF2+uZRAnkFZYSPg9JWIvJpa1zVSACsW8DZ7hC9WJb2bvQDXS3hhQ14E4gcSeQoWibwu79OH4AKlp2I7IfxkBRoARuDwQ+GvFfqMjCK0BW7X9qJTCNXb4sFJczEyqLGai9W8XTz8+3ZK6NbTLqULdaOUO+/8nPlTvV5HzQjL27YkbjTqGXF+TSob5NgML/Rjy3RqDONGqZjSNf6KlV0RLoyFiJZhjp34cXmcEGAFGgBFgBBgBRoARYAQYAUbgUkBghFAU7f3GfHrj542UI74HwhACuUJ0/iuQXAp4cRsZgYsdgYApT/jTUcQSmjdvHs2aNYt27txJ2dnZMsxAjRo16KabbqIyZazji3///fd0+PBhKlGihJTxRVnUg19aWhohzETr1q3dNs1cz/79+2nOnDn0zz//SCn8unXrEuSBExMTjbq2bdtGv/zyC23YsIHOnTtHTZo0oWbNmlGrVq2MPFYrCHkB9YYlS5ZQSopNbrxSpUqyfO/evSk01D4bVS9vbqMnfd24cSNNnDiRtm7dShkZGRJT9OXmm2+myEjv443u2bOHfv75Z9msjh07UoMG9jhc5vYdOXKEEFbif//7nzx+QkIC1apVS4YUCAsLM7qGdn399ddyG5grQ8iOUqVsH0br169PnTp1Urvk0hccc3Jy6Msvv5TnC22BIsPKlStp/vz5tGDBAjp//rzcX7p0acL5/eOPP+SxkC8pKUmeM7QR4UXi4+OpRYsWdMMNN1DBgjZJp7Nnz0q8cW5RHkodTZs2pXbt2jm9hnGA9PR0eb3hfK1du5aKFStG6HO9evXkNVW8uKO0mMJ68eLFsn34M336dHmOsY7r6cYbb8Qq/fvvv7Ro0SK5DjWPmJgYua7/8fX+AxbAD3bXXXdRSEiIxAjnHRjhvq1evTpdf/31sk36MQOxrnDw5v73557w9jyZ+whlFdyPuDZOnz4t7wdc17g+fLHt27fT77//LoseO3bMWL7//vtGdbfeeiuVK1fO2NZX8JzDdY97NDU1lRo3biyvt+bNmzt9DqnyCN8zYcIEAp4oi3umatWq8jlZuXJllc2nJZzNIARsTs0SMepOUpQIbVBFODXgxEdswuXb0ik51dZfxKOLCLPJntnkvPfSufMknCBhMsbe3rQcQizu1TszZGzCuJgwqlmhBLWtFeMyPiEaDinqf9YelE6ZdCE5DKc64vR1qBNDCWUc70nV0RXb02nzXlvbrhMO8QJC2m+VcFYgHQ532S6halA/wf78RSzoGasO0NZ9x0RMv9OUVCGcalaMkLLGIDC4sz+EagEMUv9Db6xJ172xQG5jNm43EXYiUHZz60pEIlbhx1O2yCq/mrmDbmhZ0aPwHfo5A36ID+nMMCs2RWAFa187xlLicPuBbIOQACUHxJ/8TIvb7qxuZ+lz1x00dt0k+onrzGwgUNzeIZ5e+mG93DV7zUFxLVi/m+hlV+88ajiq4OyrVSlC322sI1QHFD5gf63YR4/1rOaxsoVRibayQ2AEgseOA8fpjLgpgHkLce01Tizl9trXqsmzejT7NP0t7gvUf1DEDA3NjSHZpGqUCBUT6TaWpK/3d56GmBLM9x6coetSMmhxchrtOJgt21VByGXinFUXzwB35m8/t+3PFhL7mfI5dijjFMXFhErnbMPKpShWk/rEM2reelsseKV8gqVOoEEID8Rk9cbwHoLxGe+ou3fvlmMx3itATMW4bDar9yOMMeo9Du/UeCfHOHHdddeJa+gqcxXGNt6l8E6Cd2jUgXe+2rVry/elKlWqGPm8WZk7dy6tWLGCELZDGfqmj3dPPvmk2pVnibEK70MY79A+vL/hvR3vseodLk+h3AR/3huc1anSoRyEMEspYrzBNVchOlQ8/0tQ53qxUtkHz/GM42eoSOEC8nmryu05kkPzRTghWIukKIovEybVbTDerRXXfUFxfpDWVNyXzp45qi7EoMU4tWTLETHenRTPq7NS+SZejJeI7VpKhBKysmniOQXFgrCiBal3swpSqQj3IZ73uIarCLIZVHR0lR20G+Mqnh/nxIEx1tUWz8S68SWtDuGQBiUkRXKD0x+xdhFaAzZ7zQHxfE5wyO/rBsbdF2+qTdlixhCUlmBQffjqoaYeValwwS1yU6tKLmMpT1y0R85KQsU3ibi+KhaxfqDJS/fRGvEOA+tcr4yI2VyaPp5sG4f1fJ6sn8z9eIe8T/ROor7NK/o1HgRz7HTVn6Vb0uR71U5x3xQRcZwrCeUp3DMJ4pr3x3x579OPh3fTOeJ9IjXtBJ06e06+KzYRxE6QO/GOOvFf2xiP9uI8emrqmlL3GmInz11/iNaL0GV4twwX8Z1xv+I9OUbE0nZn/vQT9wWux2Txjr5FvLfi3TMxNlz8iovnTSmH95aVgtgEgk36McSqthnufX18698uTu3iJSPACDACjAAjwAgwAowAI3DZIXBvt8SA/a962YHDHWIELgEELjh5Ah9WQZBYt26dJVz4GPrSSy/Rc889J/4hdxTKQDocd+XLl5eOZjNRAoQHT0yvB3XAaa3bpEmT6JVXXqHx48dLp/Tbb79Nw4YN07NIpygShg4dSi+//LLDPrWBj8n9+/eXhAyVpi/Dw8Np7Nix1KNHDz1ZruttRPtc9RXO8EceeYRGjRqVpx4kYN9ff/2Vh5BgmVlLhGMf5wH2ySefOJAn9PbBIYyP0sqhq1VBb7zxBv3000+SVID0zMxMo04937vvvmtsor06ecJXHEHoAKEGNmjQIPlR//HHHzeOgxU4EGDLli0z2lW2bFn6+OOPacyYMXKf+jNy5EiJMUgWcCabr2O0EwbCApzUIJCYberUqXTffffJ8vq+H3/8UW7CWYE8FSrYZyV/9tlntGrVKj27JHooskfXrl0N8gTSPvjgA5m3W7duecgT/tx/INIo4guu2QceeEA6JxwaJjaGDBlCX331Fd1+++3mXX5t69dcsO8JX86T3rknnniCPv30Uz2JJk+eTHiWXHPNNcY5csjgZiM5Odm4RvWs6h5FWsuWLS3JE3BCwXmkG9oDg3MM1y5IKVY2btw4uvPOO612yWcfnpV6GywzOknctv8YPfD5csPZrGcbPXO7CKVQR34w/0nE/oa1rB5lkCcyhBPnkylbZTpiyZ0795+cYSkTcv8syHU2NaoSSS/dUoeiwvM6heDcRWxmOHis7OtZO6i9IAAMvaGmgzoB8s5efZD+zCUzNBcOLUhjbxdOVGVw/Iybm0JQSnjk2mpSInzY+HUO/VXOITja3x5Yj1wRKPDxGh/OYXCwRgsHa5tapQn9XLHtqHRuBzL8ww2tKtL0VfuNEBQLhYQ6Pta7M3yoV5LjcN7c1cWaYAOHAGbYKglxkGPMhjzDc0NcYN8LN9WiYiHuSSbmevTtpbkOOKR1rOucENGmZoxRDM4btAUEGVe2WpuxjHPkzHCe6iWUlE4JOB53HDwunY/O8jtLxyzlTwTB5cfce0TPh/sG19W7d9SXahr6PnfrcLCOnbuTRk3fbpl1vLiu4ax967Z60pFllcmf+9uqPj1Nv/fglBrx52aasfKAnkWu4/7D8+FZMXsbzk2z+dvPc+KaGDVjGwEP3f7dbN96Tjw70AaYLsdvz2Fz1qrtuiLMgKfkCSh4YbzB+6pu6n0Eae+88w499thj+m4yvx+BDNq3b1+HPGqM6NChA3333XcUG5v3ej5+/LgkpoK8oRveF/De/MILLzi8O+p5XK2DXK2/FyIv/m/Qxxpn5AmQZh966CGH6tU7Ft6/8H5nRQYJ1ru0aggcopiN4mCC7AP7fs4ueS/9MD+FdolnARyUIKspg/qPeqYiFuxfgoABhQSzSZKbeG5jvEGcXrOBvDN07FqHcUrP85Fw0t/dtTIN7JiQhxj15YzthPAWILDVi4+kASNsRF1Vfu66Q4Tjv9qvDnUSTn+oFZmfH3PW2hR87uiUIElwqqzVEqQtZV0FKQMOaeCC5yUIBpBBtbqnVRlvlqjnmT416LqNNjIi8N6XfsIl8U/VD1KLeteoVi7cqSoSxsURvyfLYtXKhwvVi7xOZBBGPp1qI0qgr4/2SlKH8XmJEFev96/r0/hiPmgwx07zsbCdJcimr/20wSDN6HkQYmVQ5wRCmC1vzZ/3PhwL48Y7v20y3v/U8UG+GSfu5ba1S8t7UN2zeM/whjyh32stkqLp2e/XGO9h6lhY4v56/qaa1KNR3ncn7Pe3nyBLPPPtannfoz672cZavFu/eHNtY7wCIQtjrm54Jx653/aujnSr617Pz+uMACPACDACjAAjwAgwAozApYTAwE6VqaeYXIBJCOXFBB4rgvyl1B9uKyNwpSPgyEbIZzTguMXMfDNxwuxkhjPO/KFXb2pWVlaej7zYrysc6PmdraMeqD8ow0xq3UB8eO211xyIE3Bu6/bmm28aDmU9/bfffqNevXo5EArgVNeVAEA2wPGhaOHMPOnrW2+9lYc4Yca0e/fucta4s+P4mo72oW5FnED/QG5RBrILlC+gHAGDqgIwNGONMkjDTylQIH+gcMTsQzNxAvVDPcFsH330kUGcAI4guShDPSB3wMmgrmPk0c8riBVQ6lB9VmWhQNKnTx8H4gT6q19TmzZtIigBQCVAWZ06dfLghTYpvJwpDajyahmo+w/1QXkCszph5nOOtLvvvlvOgMV6oC3Y94Sv50n1E44bM3FCvx9BzLjnnntUdo+XcFypc64XUmlYQsXEbDt37iQQbJThXtOvV6iG4Dl06tQplcVYQm3ETJzQ+4KMILX88MMPRhlPV+AkeOyrlQ5EAjgL4JiBwUGCj7YbxWxud4bZeJCmVoZZ96hLGYgFn+Q6JFQalmdEbPPBXyzPQ5yAs0E3OIUeEPkQd9yZvf7zBsMhZS4PJzbIIE99s9roLxzPumFG7dsaSUDfp9ahWKEMsy5hcCopw2zcQBqcb72EooYyzHz0xHSFBsyydmY4b4o4AYKKUhXR80NpY4PIB4MD2p9wHagDs0G35CqZYDu2ZN57BukwzP7Wr8c9wvHoztaImeDKXCluIA9mjiqDaoEv9u0/Ox2IE+Zj4rr64E+bw86b+j+anJzH8WmuG07euz5ZIgkB5roDeX+b6zZvj/jDkThhbueUZfsERo4OHVWHv/18acI6B+JEHUF8wCx5/fnz1q8b6Y8lqfKQIHDh+WB+Rqg0LIuImfCeGBQVOnfu7ECcwLsBCHH6Mx4k0tdff91plVC10okT5vcejAOKiKpXArIBxjIzcUIfI3BckBW8tfj4eDne6e9fqEMf76zqBOFDJ06Y+wKSsZkMreoJ5rs0ZmSbiRNQN1LXCe6lZ75bTZnHT6vmOF3+snCPQZzQx0xV4FexHwoWZgNxYtBHS4xxSu033y8gQHygxWpV+dTyuJiJjrFZmflaHvbDOgLpUCdOmMc7OL4V8VDVY17q+1vVKC0/QinyHogNnrwbmOt0tQ0yok6mU8RGV2WwT3dcuxoj52uhnxSZylw3yCt494E91ae6UxUQczln21D5+PbRZgEhTgR77LTqw0sT1jsQJ9R4rPKOmb2TZmmhzFS6q2Ug3vu+E8Qg/frE8fT7aL5QF8Jz31/DvaYTJ3C/47mhG54rUF0ym7/93CwUJPC8AGEKBuxB1gXxRxnerQd9tFiqXSGtrHj3xvNAPddUPn18U2m8ZAQYAUaAEWAEGAFGgBFgBC4HBPBdr2HlSPl9j4kTl8MZ5T5c6QhcMPIEPvLiI6tysuMDKCR+EbIDM6rh4Hv11VeN8/PFF1/QjBkzjG19BXXAQQ1yAz7aYuYbHH+QFvbGUA+OC0UBrEMSGM5+zN5WBvIEDDPp0dY1a9bIcAkITaBMzc5T25AZ1p2jyAs5ZYTBwA8qAgj/oOz+++93cJardCzd9RWz+3TlC8j6IzQGMEWYkEcffdSoDjPegVsgTWEIBQ70e+/evRLTv//+2/h4D0wxaxEWFRUlMQTW9957r9EU5EcafqgLFkgcEcoEBrILCAq4Xk6ePElQmTAbzg+knbds2SJxxAzNb7/91siGGZ6oA2FbduzYIfOg37NnzzbyoM/r19vk3pEIJwNUOJQ9/fTT8lygv7imdu3aRZjdCcM50meN4tpDvs8//1wVlzNJFV5w1ruzQN5/OBYc7ghvAkKGOucITwFMlLly1qg8viyDeU/4c57QF5BrdMcNnDTqGsF9CWIGnEEINeStQX5dnXPlUMJSpWEJmXaz4VoEZh9++KEMGYNnHs4ZQoooQ7sRZkS3zZs3OzynMHt537598nqHpDtC7Si74447DDKNSnO1PC1IC08L54tynONj7JcPNqHpL7en34e2oZ+faUW3tq0kq1i3y71TGY4n2OsD6tCcNzrSL0Na0cxXOtAzfe1kt1mCeABpfd0w21d3pL/Wvw7NEG348amWNOOV9vTGgLpGdsyeG/P3DmPbvIJ64BCZ/nI7WX7umx0Jyg3K4CyCXS9mE6Pu8U+0oAVvdZKzE1UetBEz2a0MoRgm56pc4ON5vVzZc4RmUDZZOIkDbS21+iHB7onBQQwHMgxOLjPuqg7d0dS9Ud5nMRzw703aLLPjY/yDPaqqoj4vs3LOGGXhDChU8Cpj22pFJzhA7cSdpWXZnZ/u5LT1cA7pQsLfF1slnLIwzD7966V28trHNfjizbWM6uC4n7TYJh9uJLpYWSZk+OGgVYaZ6JOeay3rxnX9+QONpeoE9sPR9+avG6Qqh8of6Ptb1etsCYIIro/hQrll9msdZDv/eL4NPXiN/Xr5dOpWgnqIbv72M02E3VEz6XEtff94c/rigSb0zsD68jmCc6JsgiBvQCUkqXwJ+XzAM0Y5mLDEtvph9ronBkUxReIEWWLp0qUytB2IjQjdod67UBfeqTG+WRneZ2BQZwA5Ee+PeO/Bu7Ey7FPHUmlQhvj111/VpiRxILQeymOMgWIZzJfxDu/QGNMQRkQZ1OX08U6l60u8v2FcBDZQFkNb8C4Jkp+y4cOH05kzjvdyMN+lQVoYIogRyno0Lks/PNWCprzYTl4n3zzSjJpVi5KqQmpMVHmtllBFwPWGchhLMGbiur+uWXkjO9Ro9LEE1x4UlpRjHs7Mkfc3JtzPGC8nDW1N912daJRHSCGEwLEy1IHnOsbXuWK8xXU7dVhbAnFI2TezbWMl7gEcA+Pd3693oA51Y1QWQ63BSNBWMONdjevdGsYaakOKNIisroh5WlVerbYVzmFlCMXgiUF1St3LMwRZUMddL6+THztahIACWUMpYEExqGv9vGOiXp8n6whJ5UrNypM6VJ5gj53qOPoS4xuu9Q/vaUj/vN5RXuu4Xge0jzOyvSwIFiq0m5HoYsXf9z6QaUcLFRZlUHn584W28j5CG9FWvKOBWOCv4V7Du2UNEdrni8FCJU68n+K5MU7cT1eL+0LZc0KZAiGBdPO3n/r1CrwnPtua3r69Ho0Rz51pw9pRogjTA8Mza14usRbhfPA8GP1QU6MpXYQClxrbsGRjBBgBRoARYAQYAUaAEWAEGAFGgBFgBC5WBAoEqmFQBIBigrPftGnTHA4FkgMcdMoQGgOhKNTMf8yGfvbZZ2nw4MEqC40YMcJYN69AehfOOzi5CxcubCnBay5jtQ3nJmbJFylim+1cunRpmjBhgkNWzEZDCALV1tDQUEOZABkRokH/KP39998bJBGoBiDUAeI/QyYYv1q1ask0tB0Gx6bunJeJ2h9nfT19+rQMnaCy4mMxwimgfTAQA/CRGOElYHCiwnkbaAP5AwSOyMhIo+o2bdo4kAVAEPDWAo0jwg889dRTlJiYKM+DOSyMah8+vCP8RXx8vEzCOevXr5/DtQlHBbDUw2u0bdvWYXanHmoDBB+ENoFiA645kHJKliypDilDLcC5oWz+/PlqNSDLQN9/uHZxn1SsaHcOV6pUyUGFBbNZg2XBuif8PU8qZAr6jVAxkCxX1wjuSxBO8OzLbwMxDc9WKL8o69mzp4NDSb9ekQfy6Hg2wXDNQg0oOtrmEMc9MmDAAMM5hjy6ow3brgwz2hRpAR+Z4fREnHYlMw6pswd7VCMrh7qzeiEVDsWDkEK2YU7cttKZpH9gRuxlZZhFqRw8SHulX20567R4sUIyS/GihWS4DhAqlI0VZAvIIFsZnB1wJoUXKyx3g3H8eK8khxnmICI81qsaoW4YQkAgpAfKKksR0t5WtnSLLa489vUQ4S1U+AiEsFB9REiPQM/G1cMHHMo4adU0y7QeDcsZ6fqMW5V4XpBEZoqQIDA4nuA8NBtm4Sobcn0NgiPIXzt24qxRRYVo21hpJFis6LNJjwkJcXeWoc0ch9PHlZWNtKte6I4pV2Ws9j3Zu7qc/azwwTWIGdpIV/b1LLuzR6U5W07QwgH0bl6eBgkZwhgRZgSG67quIO7AiaIchiA4rUuxk5yCcX87a6tKf1Xcp61F+A4V0gWzyPu1jZP3l8ozbt4utSqX/vYTEuXKejevIGPAq23cn5iR/qy4bqHe0iAhUsSB940go+o0L0EAxTsFfiDxgjyn3muwvPXWWwnENhhImYpEKhNMf0AKhfpE0aK284z3Hrwbg6SsTCeEgpCJ8U0Z3mFvvPFGioiwOdDxjoRxWidFq7zBXuLdDKHfChWyPWexfP7556ldu3bGoUEOVBbsd2k4xBVpoUFiJA3pW5PiSttUZ3CdJAnyIK5fszqDap95ifvu43sayXIFMNAJw3X/+HVJDko5asY49kO9Z83ODKxKA8EHYYPUzBgQvW7vkCDJfSrPD/N3qdU8S4RiAlmjcO54WzIsxIFsiAKDBdkN94A6Bpz4w4TEv7LVO4/K8AdqW1/qagI6YaJOXIQx8x7kCVdqUHp9nq7rhLbDWZ6Nd3jnwJgMw3lGv8yWcvi4QQbB7P1IIemqG95HEAZCGVQnck+tSrrgy2CPnc46iPfDJlVKSSUo5MGYfP/VVR1UQn79d7ez4g7pgXjv+22xnViIsCF4h1Mh4aBWhbZ+eHcjh+P6s4H7/U1B5K0TV9J4R04QymUIRQVSBQwEhmma2kwg+jlrte39DPXfJUKjqPdzbEMlDOTifiL0DMa3bKGQwcYIMAKMACPACDACjAAjwAgwAowAI8AIXOoIBIw8gQ+y+Kjq7AcZeMRQVqY77d977z2qVq2a2uWwxOxmOOZgkArGjDErgyMQH3f9Nf3DsKoLpAMoYyjTQ3uoNHxgVrPs4WBE3GllKrYytkePHm2QGdR+LCGvj33K9DIqTS2d9RWkDeXcxIw8fCw2Gz6g6woAUMAItJll/VX9COehDLP/vDUdE39xxDWlq324aguUQqxie4MQoqxbt24OZBGVrggx2IYqgzI4rRHKAeoRcDgoB4faj6UuL40ZpIG0QN9/IBNZhcnBfa3CkICsA+dOMCxY94S/50nJl+N6g9KDlYFkoyvCWOUJdJpyoJnrBYFCmf5syMzMJIQXgaEvcDxZGZxjKkyPPkPYKq+eBueqsge6VyWrGfp4vD8tYpB7ah1E2Acra1vbno4ZwMr0WYFQSdAdNCoPlpDxRvxqZZjlbmVwVusfl1WeplXtpADMulXOLrUfSxBHlO07aj3b9a+VdlWJTqJNunXWQnfMFOoVgTQ495STHI4hKGB4YlDEUOVmWshq6yE7eoqP78rBpuqGSoCahQtihbPzo/J7uoQMtrIybsgNyAcnvDJ3DgIQQpSTFKQgc59UPWoZpdV9TGuX2u/JEg7Qvi0qWGZFupoNDufKUQ/ULTKPn6EluQoNOH+P9UyyrLuiIJ7c372KsW+eJkkfjPvbOJDFChRfEBfeygaL5wvOBQwz9pX4QiD6qYgaqHuDII9Y3Ru4tkH8wU+/llDGX8O7Ct4p8NPfPfR6oVikbOPGjWo1z1IP26Hv1N9/9XcaKBgpA2kXBFMrQ7gPkIjzy/Du3qpVK8vD6X1cu3atkSfY79IbxXWnbIgg2Fmp3YBQh32eWCPhnK0klCPMhueNHjIJ6hDK5m84rFbpkZ7VLMsjw8PXVjWe2xgjnSniqPAZRqViJSq8iANZsJ02bqp8IBqo8Q7PSitC2tlz/9HvuUo5eAbBGa0M49E1GlFhcbKdwKTy+LOMCLWTGrwhO3UTs+uVQZnAbGpmPtL1MB8qH4iZiuyC52qFqLznV+W9UMtgjp3O+gSSDtR6zIb3QxDTlOn3mEqzWvr73ocxXtWBceXOzpWtDiPDpOhKLpaZPEwEkUaRF/UiIC49f6NdYQpqLcpUG7Ht6/tt8VwiMOrQx3Rsw/AOADUwjG1QnGBjBBgBRoARYAQYAUaAEWAEGAFGgBFgBC51BAJGnvAWCF3uV/+Ya64H6g4tWrQwkq1mysGZV726fUalkdnLFdSjx2bWi5cqZf9YB6UCK9Nn3SvliXPnzjlIG0NxwpnVrFnT2AXZZJ1sona46qsusw8yBsImWP0wq06Zcu6q7UAs9X7o9UHFQxmcsd5YoHEE2cGKsGDVpqZNm1olU4kS9g94zpwB5crZZp+hAnVNWFYmEiEpvX//fhkeZNmyZYTQJYoM46yMr+mBvP/QBlf3sH5PoY+Btvy+Jzw9T5jZq8LiAB/ck87M2TXmLL8/6SA3WJGBUKd+vUJuXZk+KxfXPZxmVs8WpClFHpBl0tOtiQWqXrXcqJEnMOvWmWEWn3L+OsuDdCg3wKliZToxI+eU3XG+86BdhaJWRTt5waoOfb9eTs9r9YEf+8NzlSywroeAwLYyB6fqfyrVvswUoSZUeADMujQfq7FwLimiAmLdI9Z1IE0RAlBnIUHI88Rw7rqLWccwKGKYQ3foITt0xxPyYzbxu7nhOrD9RG9rBz72eWtolzJPCAs6YUKpmqjy5qV+DYKsoBz15nxqW3dG+SqtXic3fIuq07zEbFVl2zXlFZVmXu4+Ylc+waxWNbPcnA/beniJbfvtjptA399Wx9bTaovZ6M4MjurauRjgOt6fS04KRD+VExjHhuT+HSI+/K//7iHMMnd37p211590vDfhGYyQbRjzQWjTVeCw38o6d+5MBQsWtNplkOOwU38/0VUoXI1neO/SQ+FZHiSAiVC0c2ZKBQr7EXpKWbDfpVeIMDgwPKNdOcURvsoT0687c/4yJe1kr5zT9vEOYaeUVbdwRqt9IGDozww8u82GfmAcsrISmsPVWV/L5KrYoLzFcEfLtqUZJLRugpRofgZ1qmcnKkxdYScVWrXH2zTM2FcWVsSmXKK2XS1rincIhEKBQRHDHLpDhUAAdi1EmA/ddgm1KRXWC3Xc0rqSvvuiWQ/m2Omsk0pZwWp/mCAcqdARCPGinzur/EjT39/09zqr/Pp+VW6PRsDF2GtFhlV14ZoIhNWo4LyeuBg7yQbqMspUe7Gt90Pt15f6fr0c3iuVPfD5cnrr140y9JX+3qL285IRYAQYAUaAEWAEGAFGgBFgBBgBRoARuBwQ8PxLkJveYqaWCnXhLKv+MXbPnj1GtqQk144QOKZnzpwp8ytnpFFYrMCZFwjVCd0Zrtfvz7ruPMQMfOVYtKoTUsLoq3Jsw3kJ1QvdXPVVV+UYM2aMQygRvQ59Hcc6ceKES8eunt/dOhyzzvqIcwRHt/7B3V19an+gcUQ7PDUV9sRVfk+JGOY6li9fTggfMmvWLJcS2uZy/m4H8v5DW3Snu7ltrkgD5ry+bOfHPeHLedKdSZBPd2VKncNVnkDt08ks5jqVRLs5XSdSgBThjCBlLofZvO3btzcn59nWZ7Ep+fI8mXITQBRAWABXpjtjzPmcObz1GbUJZYqbizls6/vTnEjvFw2xO+UdCmsbVsoU2m6nq/pMVoQVWZbrjNMLwLEB5zB+i4VyQBsRwiAQpn8oRxgKbwSfQIqYKJzJMITuqJIbI1sP2QFnkZkMMmFBCqlZ03d3rezS4ehtH4sXtakQoNxuC8eguT7VDqSrsBjmPPo2ZqOCOAE7KkJ4lDLJs+t5D2phUCJ8DElSJdb1tVtZ2w8Hqu4Q0dui1lXbsV2lrOtxUycDHcq0x1sP9P2t2uZsWdnN/YvrbkHuzHuE7oHjNxD9BDHruRtqSqcS2gYH3gd/2FS24CRtL9RwMEMfITt0Yo2zfviSDnUnKHOBfKkTJbypSycCm8s5GyN05QZXJGHU526/+Zj+bPvSl2C+Sx/JOmUQAaqWC3f5/ASBCs9DK8KCjkmMC8WcIqIOKzuYaVcB0x2uVnnhkFbqM+nZ9vta5YXTOpg2fcV+o/owcR9ZjXcqw8KNR6Q6hqvnrMrryTLtmL2/7sIumevrKRRwRk7bJs83QqQ0FCFaYBhn8GyAQTVDJ4OAZDXij81yH/5AfUTfb+y4CFaCPXZaddHdsx3kW0UMAsbVK9hJ7lb1+fvep46Fuqu6GR/190artniahjB2zgzkDRCM8Y4M5RIQbfEu4W8/cbx7uibKcD8qxN6UZfsIPxhILV2E4lnnemWk4oxM5D+MACPACDACjAAjwAgwAowAI8AIMAKMwCWOQMC+eNWrV8+IjewJJllZdtnakiXtMyGtyur74ei/lEwPU4CYz+6sTJkyBnlCL+uuHPZnZ9tnknmSX+XBuQi2g1sdy9eljkWwcfS1jd6UgwoFpLUfe+wxb4oFLO+Vcv/5e0/4c5700D36M8zqJOrKNlb7L3Ta8eP22efetCUjI8Oj7HB0KAcRPvY6KC+YavBGOttU1OXmydP2Gaa6OoRVIX2/J7MbrerwJ23yslSjOD5kPzZ6pbFttTJNzMYNFHlCn83obLaxVRuQhpmXKAMCAkJ3KInrDXsyDef1dSKsgW7IO3qGLeQRnFf92sbru/1e188lrkE4r1wRQnTyRLg2q9pZQ0oJ6XrlmD8sHJaunHr7NVl9vV3O6rZKB5nGlen1ZuTYVaiclTmlzbzWy1rlD9VmZmefsBFGkC+/729350Xfj+cNLBD9RD0IGYIQCn8s2StmnNtD5oDENG35fvmDQ/zjuxtaSq+jDl9t9+7dhJBtIPvlt+mKZpf6eOfve4Mr7PX7U3doWpXBsyhNkC2CYToJTneCWx1Lv++hApSfhjAes9ccNA45bm4K4efKEN7phpYVXWXxeN/aXfZ3GFfvJVYVdhGKGCBPwKCspMgTekijrlp4D+T7e+0BIwxEF7GvQWUb4QL7LjbTr4tgjJ1W/XVHWNRJh1m5z3arelSav+99JTUyZIYIceXKMgV50l8DCc8d6VbHCBgAE3/7iXajnk/uaURQd/lzaapBAMI+hMDC7+PJW2hwjyrUv108ktkYAUaAEWAEGAFGgBFgBBgBRoARYAQYgUsaAddf2YPYNcjlYgYzDBLwrsJu6JLxUVGO8qZBbGJAqtbbu3KlawcXDqjP3tPLetIYnVQwfPhwuvnmmz0pRtHR1rHBPSqcT5l0LIKNY350afHixQ7EiXvvvZcglR0XF0dwPEREREhFlfj4eCP0QyDbdaXcf/7eE/6cJ/2Zlpxsm33s7Bxu2bLF2a6LIl0ndyCe/ciRIz1qlzsnmqoEMvuYmQnDTHBXTop1KXZnhiofiGWk9hF8z5Ecl04L7Feml1NpwVxi1io+Untj89cfpgzx4b5kmD1+uzfl9bx/C8eUMoRH8cZASujVrDx98dc2SZZB2IhEoYSgK2l0FrMXdZu9xu6APnvuPD361Qp9t7GuzwB98ptVpM7Lx/c2JFchMOBo0NUhgJMqa1SurejHgZPcnekzYQ8IZQmzqoZefl9uCAmkJWgKEXoed+u4Plq4EPPS1TXczeLFsXTnUIqo25XpxJLYSPvs2Py+vxGCw9W52S3CaChTahmB6Keqs66Qb8fvyd41CMSgteLZBul+hQ8cjfeOXEY/Pd2KdOl7Vd7X5f33328QJ6pWrUoPPfSQVAkCKVe9U/zyyy+E941Am67wgPB6bdu2dXoId+Oh04L5tMPf9wZXzcSzCOE4QHrDdQBSDRyiVoaQMtgfDINKCmamw/aK0APqPrA6VooII6EsIsyu1KPSgrnUwzl5ehw4dgNBnoAi0uzV9vHOWyJDjAhHgjFy2dZ0+ks4nB/tWU06vmcJ4iAMJCpzKAe0XRkUe+7/fJnadFiqZwmuj3s/s+VJKBMmlW8cMgZxI9hjp1XT8ex2NYbuzFX0QNm4mDCrKhzS9LHel/e+qrnqWah0o3jWu7KtWigrV/lc7cP5BiFCJ0iY8+88YL9fFcHV336qY4D8dbMII4MfwlFB4WLZ1jQHghMIQyAo9jIRYVUdvGQEGAFGgBFgBBgBRoARYAQYAUaAEWAELhUELhh5Ah9alyxZInECOUJ3NJrB0wkFrsIDmMtdDNsI+aBCVSBcBeSA8SHbyhBzWQ9L4m0YET3EB8JcXGpYWWGi0vITR3XMYC5nz55tVA/1iXfeecfYViuZmZkO14NKD8TySrn//L0n/DlP1apVM07VihXWDl+VYePGjWr1olzqOOIZFehnix5zffqq/dS0mjVJbuX2o4bDJ9BA6YQNEDhcmb7flWS6qzp83accLyh/dcNYlzP8Pp6yRTpukHfOukPUp3kFrPpsycLhp2SaUUn72tZjmasDYDYuyBOweWI2boJwcMwQ5xzWXMR+L12iiFxXf4T/yjAoOBzNdu2gQGY4lpRzCbO33VmL6tFSEQD5Vu88Sh3qWPdLDz8BaexiIdZOT/14cLhBcQC2YttRalcrRt9trGNG93LhZFNWu5LzuOYqj9UShBRXtl1z4IC44s6iNFKR3n+rcrqTVZe4z+/7G/dn6xqlrZoo03AdK1NS6oHop6pTLeEUbyLixOM3qHOCiA+fTi+OXysd4nBcA896CSVVdr+WUEvQxyuE7YiNdSQi4QA7duzw6zjOCiPknDI9ZJVK05dr1qzRNy+6dX28C8a7NO5tJX3/tyCH9XTiZAThJliG0FZKRQj3rSvyxFYR3keZ+fms0oO1nLrcFhYA9Q+9sSbVcBGG4bYPFstmgOCmiHn+tGuSUI9R4wgIdiBEeWsIywHyBJzea4SKRbRQIlIEvJ5NHFWWULc+3oFcs+ew+yOq83jek8HOfXVe5Qjm2GnVEJAjXJEnklNtxFI8e0EQcmf+vveBJKDUtEBqdXbdnRMn9i8t/Iy7drnav0vcr86uRVxn6pqtJZ4zSqXC335atQch9vCD2tIjghg0SiiETV1mu19BemXyhBVqnMYIMAKMACPACDACjAAjwAgwAowAI3ApIeA+KHuQetOtWzej5m+//ZbOn7eWggXBYt26dTIvZoPVqlXLKHeprPTq1cto6tixY41184q+D9LL3lqHDh2MIn/++Sfl5DifJbp06VJatGgRLVtmm7FkFLyIV/ILx/yAANgru/3229Wqw3LevHkO26429u2zf2B2lU/tu1LuP3/vCX/OU+HChalx48YScszEXbhwoYLfYYn79Ouvv3ZI83UDBC1fQ2y4OmaNGjVIzcaFJDzUgpwZVDSAG36unkF6eT0u9Qwhdf/jghR9t1zHjPkh363Okx6ohMbCwakMH34znUgwQ+ZfV19olGgvp8oHa4mZsJMW7zGqv+/qKlRZOMCd/Qb3qGrk1We0GolerGAW9EsTbGMxijWqEkmY6eqtxUYWlWVRDqE79JAdPRqVy1MdnHUgKrj76bO3E8VsUOTHrN9CBYXchRtrWtVO1pm4aK/T3L8ttu9rkRTtNJ++o2Fl+/Ux8d89BBl6K5uz7qAxyxzYekLMsKxHKIMcEgoXVob0+Rvs3rhKwvHhzuLFOYbjEAZnnjPlFzju/tTCyej45Pf9PU04qeBEsjI415RyC2Z+q+smEP2EY29bruPW7MdELHqQg/q2sBOYnBFd0PYTWhghq36Y03SS8fXXX29JnECZP/74w1w0INs1a9Y06oG6hU4ENnaIlW3btgWsDQhTEgzz973BXZt0x+fbEzdZ3lMIPfH1rOAQXdA+XIvKQIhz5niHY145+/Ec8EStRtXr7xKKGJjZDoODGkQEZ2Md0h+/Lsk45MxcQp6R4OXK8m3pNOJ3u2LYTWKmvXJEe1NV65p2EhcUluZvOGQU71IvL0kP+Lob67BfN5W/foCIWHrd7taDOXZaHft3QWg5e86aEbko+YgRIgvEAVfht1TdgXjv0xW4oHoF9SqzfSTCWYBEEwhDSChn9tdK+/+C+rjrbz+hdoGxDT+rcENRghT08DX29001xlq184CmsGW1n9MYAUaAEWAEGAFGgBFgBBgBRoARYAQYgYsFgQtGnrjmmmsMDKZNm0ZvvfWWsa1WoNKAj8DK4GQuWND9TE+V/2JZ6kSIoUOH0ty5c/M0bcGCBfTMM88Y6XoZI9HNCma6N2vWTObatGkTDRw4kM6ePZun1OjRo6l169bUrl07eu211/Lsv1gTdEyCiWN+9F+fpWk1CxNKBIMHD3bZFD0kwsyZM13mNe+8WO4/OD/gbMcPjv9Am7/3hL/nqWPHjkaXEEZn//79xrZagfKIIoipNG+XeugdhBoJtOG5e/fddxvVInSHlXNs1apVVLt2bflsufbaa+k/swfRqMFxBY6Rp/tWNxI/mbJVylV/P2cn/Soczi+I2dp3fbLEqUPUKOjHSsXoUKpRsYSsAQoHIApgtqBuIC+8+uN6Q/0C8uuuZuzqZQOxvlrMXEXbYA0SI93OrKxWLlxKgyM/ZjrrktZI88TgxMXs39vFrF44z2FwOD9/Yy1PilvmgRMMhvo+z1WhwHarmnkJCcj7xQNN3P66aOE+Xu9fV+b/8O6GVLig7TUHH/+hxDH4i+UEx6Ru7evEkFJKWCXUTSZpJAmVD44ZNasSab2b2Z3guMx/mJ8i5dO/+2enw3UDsggUQpS989tmcV+oLdsSpIb3f99sJA5oF2+se7sCx/vQcWvpzFlHQiq2Xxi/zriHmgl1F0+IJXD6X6vNkH7u+zWUdswm96+3bdzcXbRw4xEjSXca5vf9jevqzV835MEZ18CQ7+yqB7rjLxD9/ERcXwM/XCzvlZ/+l5cABgc1nE/K9NnASNPD6qwXTmtvTFc6ApHCTFwDQRnvTXg3DIYhLIgiC2JsuO222/K8f0IdQ3+n96UdOI6yf//996J8b1Dtc7bsJJzmXRrYnwn3j1xOz4r7CqTB8fN20SOjVwiFknXOigckknr/2AAAQABJREFUXVdm+XfzEcJzy2xwkuqExR7iWVyggHsymrkeX7dnrjpgFL1GzG53Z+1q21V9MGaZx2935bH/cNYp+mrWdnp09EojO94L+rWNN7a9WQEJDjPzYQjdMSVXSQMOd4T1MNsTggDiyXinxiuMxSr/Q9dUM6qD+g7em3Bd6Uo7RgYvVoI5dnrRDJkVZJqRf23NUwzkzmHaPaOTBfJk1hIC8d73QPcqxnsWFIVuHL5QjD8b5XvEF9O30e1iTABxMlA2XRCMf7MgeYKIqhN+dDKNv/1EiA6Mbfjd+fESS3KxHhLMfG0XL1rI6D7OoTNy44YNG+jWW2+V4wT+n2BjBBgBRoARYAQYAUaAEWAEGAFGgBFgBC4kAvb/ZvO5FXD2ffTRR/Too4/KI7/yyis0f/58wox4hLWAA3DSpEmGgw6znnVyQT4316/DoU/XXXedMduua9eu8sNAp06dZL3//PMP/frrr8Yx4NiGc9IX+/nnn6lJkyYSN8wwBJmiZ8+e1KhRIzp8+DBBkQJkFWVDhgxRqxf9Mj9xDDYYnTt3pg8++EAeZtCgQYRrAP0LCQkhqIKMGjXKrVMgPj7eaCYUWrp06UJ9+vQhOPzbtGlj7LNauVjuPxB4UlNTZROhtNGiRQur5vqV5s894e95ev755+W5hVoDHEq4N3GOmjdvTiCOTJ482YhR708nMet3506b8+Omm26SxKl69epR3759Zdggf+pWZdGXlStX0vTp0+WxGjZsSDfccAO1atVKOsngyMJ1qwzPlrAw9zPbVX44o+H0/HGBbTYxPrCqWacqDxwOCDWg8qj0QC2f7lNDfhhGfZgliI/ebcTMURwTUsmIv75Li6n9TN8agTq0R/XM0GTcr25Q1qMyPRqVpVHTbUohUNS4p2uiZbmPJieLmbV2PuXxk2do/9GTtGZnhkN+OGteE+QEyL77am1qwsm1QRZX9V/XrDwVLVzQ1yrdloNqxE+51xaO2VCQT5SzGgQLOEBe/dHWpvcmbZbS192Eg/MqQR6Ac1GFGsGB7u5amSLCbGoM2Eaoj8+m2hw6mKldVZBWWopQIMoGdqxMcHjAQNzIOXWW7uiUQBGhIcKxlUXAXjkTQIpxFrZG1eduiVmf/d5fRB3rxohrN5y2H8yWIVIU+QUzyJ8TEvie2m3t40X790vSEMg7cKDAUVk7riRlCAcriCUISaIMEt6lioeoTbnM7/t7ztpDdGfaEnn/lo8qJuLRZ9Hf4vpX5CMoTdwvlFt087effVtWoCVb0mSVIIAdEPcPzmeFqFBxL52gn/+328AJ95HZwZcQG2ZIrg8VTk8Qh3AtIYwM8rsyjOkgL2CsgdIRxlI4ofDuh+0pU6Y4hPVwVZev+6Ce1rRpU/nuMmfOHHlsjHcgdqxevZqgSKHGe1+PYQ57h7G0f//+VLVqVbrxxht9rTZPOX/eG/JUZkoAUee562uK6+OEMcYtEIow+Ol2V5fK8tnjaha3nt+bdTy/nuidZDhbv5q5g1btOCoUKaLlvQvyzlyhhqPuFzwzbm+f4M0h/MorlWyW2t4NUVFHJ6GU9INApQiqPXgWod0rhHqE1bN075EcGvFHsl5UzKY/Je9XM9ZQp3m1Xx2PiGYOFWobVzcsK8Nd4RmfI95xYIpAqGUL6OqIP5MJREDYQUHOG/OIjVjvy0GCOXb60h6M4xsFUQDvZpFinMF7It5t1BiKa+CWNnEeV+3vex9Cd7w/qAHd8dFi2Qa0A0RLnWyJxrw+oA69MC4wpCiQLf+38TC1rBFNIYUK0Epx787SyEY9GpcV438ZBwz86WcdMdZD0QsqNCCIPPb1SuouruvacRGSpIiQNOodCAe9NpcgqxpQKtzxfeBOQYbGfVFRjI0gkykDmVypLu7du9cI76r285IRYAQYAUaAEWAEGAFGgBFgBBgBRoARyE8ELhh5Ap289957ZfxlkChg+NiKn9lAnMCHX32mvTnPxb4Np2JGRobxUWDixImEn9latmxJUIbw1RCrGSoEcJ5jJj9mtDub1T5mzBjp+PT1WBeiXH7hGOy+gTQAJY0ff/xRHgpOBz1sCxJBFkJIG6sZ/thfv359wvUCpzUMH5zwAznHHXkC+S/0/YeZsbojRc1aRdsCaf7cE/6ep2LFisn7XBGacC5xDeskA/R13LhxNGDAAJ+7DZWSqVOnyvK47z/99FO5DqdVoAgpCEMyfvx4AqEEM8LQl5EjR8qfueFQqXjqqafMyW63HxRhJsoKFQrMYscHWmVwHN7ZubKQvK9I3/wdPCnzJKEk8Uq/2vTSD+vloUGU0MkSqj1YDrullsv463reQKxDAQLy6sra1CqtVl0u4XhV5AnIPd8lcLSaPfz7YrujylmFUNqAIwmzGP0xnE983J+23K7Egg/pwbQ0MaNYt6ycswZ5AundBBkFs3XHzU2R2X6Yl0L4ma2z+NA/sIOjE/GoIBDoZlZmqCQccMPvqEdDvrWpHixOTiP8zAZH3RsD6pqTvdoecn0NggIC4p6rvpgreOv2egRHo6cWJmaNviecQ499tUI6JeGYxPVidc1c37Ii3SB+VpZf9/fzN9WkN37eKNVWoLhiNlx/7wysn4eQ4G8/EapEv65/WbiH8DMblDjgSDMTIm4Qzzel3gEHnCqL6wfOK3f2zjvvSKIuxgAoTAwbNsyhSHh4uFS0Gj58uEN6oDYSExMJpIPu3bvLKtEGs9IF3udBxFPEaW+PXUAQvJ599ll6++23ZVEQQ15++WW5HkjyhD/vDZ70qUjhAjRcXIMY68zPGTwHQOZqK0hmIG4Fy/oIwmJq2gmDVAbSgU6CUscFcWLEXQ2peLH8+5cRDnH1DoBxB/eAJ4bnuOrDdBG6w4o8geeXJ0oA3YRi0FO9a+S5Tz1ph56nnginAaUI1R/s05V59LyBWj8oiFvKDmeelA5uwdnxyYI5dnrboNf615GqLFbkWtQFnF/rV9crsksg3vtA0PvywSb0zeydeZStoPJ0v7ify4vnvr+G/mF8hWIXiHqKrKfXC6UUECXM5m8/n+pdnYaOXSPfATCuWo2tOGa/dnF0Y6tKDocHYez2jvH0/T+7ZDqInKNn2Ei9OnlCD8WE/w+hXgcCKxsjwAgwAowAI8AIMAKMACPACDACjAAjcCEQsE8z9eHoRYrYP777Ek4DZd59913pXIQT2Gz40ItZCMuWLZOOYvN+zNKHhYZ69lHNXF5te1MP2uTMdDwKFXL8yFiqVCnp3Hz//fcpIcHR8YL6ypcvT/jwPWPGDNIl+NWxvGkjZqH//fffTuWRIZu8YsUKOVtP1e/JUj/Hel9R1pv2OTuWGTOrfP7gqLcfTm1Xpuc199WqnLM8erq+DrxAjMBHf5x73eBcgHMdaixwWDsztPGnn36S+cx1qDI6puocqX0o78/9p2Nkrlsdw9VSKSUgD65JV321qkcd05P739d7IhDnCU6YWbNmSaeWuR947i1atEiqjpj3ebMN1RGoykBlRjc4msxWtKjvigF4/uE4zhxfIMD8/vvv9NlnnwkHfd5jm9ti3oZTHx+Gfx/ahqa91I5+GdKKJr/Ylma92oFubRtHcDidFCQCu9k/quqHK+KHgkHnerE05tFmDrLq9uOJGbBiNt83YhYnnDRm09ugwkWY8+jbhXJDSuhpWMdMQmUqD2bRKgNxIiLU+bNB5cPSLNe8aW+WsVs/jpGoreBDPRw/iPf+9cNN5exVf4kTqnqdLIHjYAajP2ZFCNHr69uiAsFpDevdvLylM+4+oUQANRGzU1vVA4fmCzfVykM+aVWjtFQYQD7EWreaJQ2Z/E/ubSRnb6r69GWvpuVp5P2NPT6veln9WksQigpjH2+RZ9Yp8sOp8tE9DS0d8bp/orB2/anjVBGzTr97rIV0jFjhUyc+QhI/IDtf0Im0vz/3t2qHJ8sGlSNFW5uRHotelWueFEWfCZzh7LIyf/qJfiOczZu31yU4fM2G66+PuA7xfEkqbwsRpOeBo/e9O+uTmRgFx5MnhnBsIFOC9Gc2jLF4l8ZYaGX6eO7u/ciqvEqDohrGgAYNGqgkY4nQe2iD1TuwkcmDFYQf+fLLL40wIeYi+tij3hPMeTzZ9vW9wZO6kQfPcBCKFrwlMHu+jRzvZr7Snn58qiW1qxUjnIZE2Sfzht5DWW/HGpQxG+7HR66tRm8PrEe4f82G+/yWNpXo20ebE0JAmU09d4qK0BTuzOqZocqEFLJf3+rZMX/DIbVbznA3NtysQI1A2Qyh9nP23H9y0xMHLEgreGbcd3UiTXy2NQ27ubbTsUAdw5Ml7l8835UhjAfCefhjCntndUBVB5jj90D3qvJacpbXXXowx053x8b+EPHepwyKR58/0NgIsabSscS72af3NXJQhVL79WdoYe16U/v9ee9TdSSUKS5UuerQ3Dc60s/PtKJJQ1vL9RF3NZD3z8kz9lBaToZIVZXL5YD28QQCpHqf0TNjfHnnjvoO75D6fn/6WTe+JI1/siUhhA4IVWbDu+K7g+rLZ5pVSLBBnSrTczfUtDx3qq7XX39dquXhf4033niDiRMKGF4yAowAI8AIMAKMACPACDACjAAjwAhcEASuOn36tO3L0gU5vONBjx49KmeinzlzhqKioghOR28dqo41XpxbiD2NWdsHDthkvCFDjJ/+wTdQLT9+/LjEFLGmgSmc7LpDPVDHuRD15CeOwe7fwYMHad++fVS6dGkqVw5xpe0fCz05NrCAsgk+EOOjky/nOL/vPzjhEfYB9sUXX9Cdd97pSVf9zuPPPeHvecrMzJThOnCeKlasSHr8dr87llsBFD1OnTpFcIaVKJHXQReo4+A5jWs2PT1dEtgqVapEvjrdTp89T+nHbLP3i4YUcFAEMLf33s+WEUIjwKYOa+syr7mst9snz5yTs0URZqFYSCERo7xIUENLeNs+zu8dApCCPyUcGO4cV1D52LrvGO1Ns0msx0YWo6qCPAB5blcGR6ce29sq7/nz/9HW/cdoj5COPyHUBaIFcaSycLr4EwbF6jhIQ19TRR/EISm6REjA7hU4JI8IJY+sE2cITqky4r5whU1+3N/DJ26iP3Nl/n99thWVFecMhnMJrGFlI4u6bKfMpP3xtp9aUbl6TgCPmf3oP44NZQtPDc+eM6Ic8PWmnKofz+ft27cTliArFC9eXO3KtyXGS7zrYiyqXLky+UPcc9ZojKl4/0Hdvo4/zurW0/15b9DrwXr2ibMGKaKEIFA4Ixbg2u384hxZHGFmxj/RwlxVQLePifv5kFB8wnUPYke0UKexcoIG9KBcWdAQwPMDZkWG8/agwR47vW0P8uN6PZhxShJD8Lx3dh95W7e3731p4t1VYe3qnlkmCLCPjV4pm3OzICWBuOSp9X5zgXwXBdEU5GJlGcdPyzEGqjB4h/Am9Jm3/VTHVMusnDN0QISECStSSCjGFZVjldrnbol3JahKhBQqKEnRen78/wLTJxzo+3mdEWAEGAFGgBFwhUBycjIlJSW5yuLRvv4fLPMo3/jHm3iUjzMxAowAI8AIMAKMgH8IXKix2fMvuf71z6PSkZGRhN/lbnCMx8bGyl+w+xoWFibjTQf7OBei/vzEMdj9UwQaX48DLKDK4Y/l9/23ZcsWo7kdOnQw1oO94s894e95AlmiTp06Qe0ilDg8UePwtxEgtsXFxcmfv3VliLAH17/9P6Oa7x5rTpgBbrZZqw8YxAl8RC4ZZlMfMucL1DY+RAdKaSFQbeJ6fEcAjmh3xAnUjjyYZYmfN+aOOIG6MNsbqgNWygPeHMuTvFBqqRyb9z7ypKyrPHCoxgoyAH6e2IW8v3EurWbNe9Jub/tprhOz6D0NN2Aui2ePN44wc3k8n6tXr25Oztdtf8dLTxobDAKi1XH9eW8w17d0a5oMPYB0kCK+HNzEkiDz6VT7OxIUbYJtIEC5IkEF+/hcf2ARCARpQrUo2GOnOo43y2Bdr96+93379w76bdFe2fTujcpKdSpzP0BUQDgtZb6OSaq8WuId2Nf3YG/7qY6pliB+4eeLuXpXYtKEL4hyGUaAEWAEGAFGgBFgBBgBRoARYAQYgWAgcFGRJ4LRQa6TEWAELk4EFHkCs2L9lfG+OHvIrfIUgRgxY+5qEV98upDZhj321Qq6pnE5qlEhQjpojxw7RbPXHKRZq2z7kWdgxwQs2BgBRuAiR4Dv74v8BHHz8hWBtiIkB8h/h4XKw66Dx+mhL1dQhzoxVF2QqqAysi/9BP2ycI9BFETjEM6KjRFgBC4+BG5sVckgT/y1Yr9UlWlcpZQk7UGxY/uBbBo7Z5e839F6hLzoUKfMxdcRbhEjwAgwAowAI8AIMAKMACPACDACjAAjwAg4IMDkCQc4eIMRYATyC4H169fLQ/Xs2TO/DsnHuYgRuLNzIm3Yk0V7DufQ0ewzNG5uitPWPtWnOvVpXsHpft7BCDACFxcCfH9fXOeDW3PhEICiyZDra9Cw8esoR4Tu2ZJ6TP6sWoRQBO8NauCzeopVnZzGCDACgUMA6kL3dkukL2dsl5Uu2HCY8LOyauXDafjAenlCVVjl5TRGgBFgBBgBRoARYAQYAUaAEWAEGAFGgBG4sAgUuLCH56MzAozAlYrA8uXLZdc7dux4pULA/dYQKB9VjL4X4Tru6JRgGbsaTqQmVUvRJ/c2YuKEhhuvMgKXAgLBvr9F5Co2RuCSQaBFUjRNeKoldaxrPQNdzk6vG0NjH29B9RK8Cx90yYDADWUELhMEoIT21cNNyVl4nYqCYHFzm0r0+QONKSbCs3BXOjSFC/IAp+PB64wAI8AIMAKMACPACJw+e54yc84SlL7Y8heBDbszaei4NfTp1K107OTZ/D04H40RYAQYgXxG4KrTp0/zSJPPoPPhGAFGgGj7dtssrUqVKhHis7MxAjoCWTlnaM+RHMo6cYbiY8IotmQxuuoqPQevMwKMwKWKQKDv73Pn/6NTZ85LOIqGFKAC/LC4VC+NK67d+N53OOsk7T1yQva9cmwYlQwLueJw4A4zApcDAhiLEHpnb1oORYQWpoQyxalYSEG/ugbnwNlz/8l3YH/r8qshXJgRYAQYAUaAEbjIEUhOTqakpCS/W9n/g2Ue1TH+8SYe5eNM/iNwXrxjLUo+QpMW76VNe49RRvZpo9KK0cWoS4Oy1KNROSob6T1R1aiIV9wigP9db31vofhWa/vf9b6rq9DtHeLdluMMjAAjwAj4i8CFGps5bIe/Z47LMwKMgE8IJCYm+lSOC10ZCJQQH52dzeK7MhDgXjICly8Cgb6/Cxa4ylKx5vJFkHt2uSAAng9mo/syI/1ywYD7wQhcLghgLKoYHSp/gepTSKECFMJfbAIFJ9fDCDACjAAjwAgwApcYAiCZPzVmpeGwNzcfjvxvZu2gH+el0Gu31aHm1aLNWS75bSg8zF9/SPYjtlRRalS51AXp03/0n1CbOGcc+9QZ+7qR6OfKih3pdCD9pKylbe0YCi/KL8J+QsrFGQFGwA8E+AnkB3hclBFgBBgBRoARYAQYAUaAEWAEGAFGgBFgBBgBRoARYAQYAUaAEWAEGAFGIDAIJKdm0UNfrKCc03YnfflSxSipQjgVKVyQ1qdkGKQK5Hny69U0uEdV6tc27rJSrk3LOkVv/rJRgtq1fpkLRp6AwucLN9WkMbN3UkzJItS7ecXAnGitlilLUmnm6oMyBRPqmDyhgcOrjAAjkO8IMHki3yHnAzICjAAjwAgwAowAI8AIMAKMACPACDACjAAjwAgwAowAI8AIMAKMACPACOgIICzni+PWGcSJUBEKDY77NrViqIBQ+1J2NPsMvfnrevp3U5pMGjltq1Sl7NO8gsrCywAi0CIpmvBjYwQYAUbgSkCgwJXQSe4jI8AIMAKMACPACDACjAAjwAgwAowAI8AIMAKMACPACDACjAAjwAgwAozAxYvA2Lm7KDX9hGxgyeIh9NUjTaldnTIOxAnsjCxemIYPrE8D2sfLvPgzcupWyj5lV6swdvAKI8AIMAKMACPgBQKsPOEFWJyVEWAEGAFGgBFgBBgBRoARYAQYAUaAEWAEGAFGgBFgBBgBRoARYAQYAUYgsAicOXeefpqfYlT6eM9qFFc6zNg2ryCcxJ1dKtOU5fsoI/u0VKtYseWIJFuY8/73H9HKnem0NDmd9qXn0AkR7iMmoijFx4RR53qxVCo8xFxEbk9bsY+OHj9DYUUKUu9mFSgj5wyt3XGUVu9C6JDjVK5UKFUuU5y6NSxLRQs7n6sMUscacfwtqdm0OTWTwkIKUWK5cEqMDaOmVaIcyCErdqTT5r3HKP3YKaNN2w8ep/EaNv1FiBLY3sM5NG/TYbneIimKKkSF0loR1mTNjgzatDdT9vGZvjXkfvUn68RZWrEtjXaIOrftP0ZFCxWgqhUiqGrZMKpdKZKKheTtx1rR33W7M2UVPRqWk+QVVZ+vGJ0+e55++XePrAb9UzZ5Wao4H0XkZv34koQwHmyMACPACOQnAkyeyE+0+ViMACPACDACjAAjwAgwAowAI8AIMAKMACPACDACjAAjwAgwAowAI8AIMAIOCKwRDvocQWqAVYwuRh3rlXHYb7VRRDj+H7qmKk3IJRakZtgJByr/3iMnaOi4NbR9f7ZKclh+NHkL3dMtkW7vEE8gZOg2esYOOpR5UpIQmgiSwx0fLjbaaMtnCxvy7d876fUBdSwd/Vv2HaMh366R9eh106oDcrNhlUgadlNtKh1hIwyA4DFOKHDohrZDWUOZIk9sFAQJlR4llDpGz9xO89fbyBTIC4KIbgs3H6Y3f9kkySZ6+szVB+VmfJkwGnFnQypT0tYWlWf+hsMGxs2rRTmQJ3zF6JQgT6i2q+Ng+eP83cbm4B5VLTE1MvAKI8AIMAJBQCAvhSwIB+EqGQFGgBFgBBgBRoARYAQYAUaAEWAEGAFGgBFgBBgBRoARYAQYAUaAEWAEGAErBJZuSTeS6wjFATORwdhpWukuVB++f6y5/PVrU8lhL4gTgz5anIc4Ub5UMYd8o2dspw/+SHZI0zeyT5yhx79aaRAnEFJEJyaAYPHCuHUEQoBum/dmieMvMYgTKNO6VjRVKx9uZFu57Sjd8fESgvIGrGypopI8EhpS0MiDFRBK1M9hR+7Gt3/vcCBOoHxoUXsd8zceomfGrHEgTqA+ECaU7RIKEHd+soQOZ51WSR4vvcUoRBBfEssWl33SDwKMVD+LF+X53zo2vM4IMAL5gwA/efIHZz4KI8AIMAKMACPACDACjAAjwAgwAowAI8AIMAKMACPACDACjAAjwAgwAoyABQL7RTgNZYmxxdWqz8vzIlbHm7+uNwgPcMg/d0NNqinCQBQuWIAOCZWK6av206jp2+Qxflu0l1rVjKbm1aLzHBOKGDnpJ+iOTgl0iwiZEZ7r1F+96yg9P3adJCSAQDFVhJzo26KiUX7Gapu6BBIGtI+ne4XCRcECNnULhAB55MsVktiBsCPz1h2izvVjZXgQhAjZdeg49X9/kayra/0y9NKtdYx6rVb2CKIICBNDb6pJdeMjKUqEIgEGMCzGzN5pFENbBnSIN/pxOPMUvfrzegKRA21ZnHyYejYpb+T3ZMVbjKAaAtIL7JUJ60ipX3xwdwMZTsWTY3IeRoARYASCgQArTwQDVa6TEWAEGAFGgBFgBBgBRoARYAQYAUaAEWAEGAFGgBFgBBgBRoARYAQYAUbAIwTSj9vVDhICQJ7YsDuT1uzMNI79zh0NqF5CpCROIDFGhKZAqI7rW9rJDuPnpRj5zSt9W1Sge7omGoQD7K8vSAqDu1cxsm7d5xgaZGZuaA5kuKtLZYM4ge2SoYXpzf51qV+7OOrVtDxlnzqLZJ8NxInRDzelDnXKSOIEKlLqHSfPnKeaFUvI49wt+nDf1Y79QMiQZ/vWNI69asdRY92bFV8w8qZ+zssIMAKMQH4gwMoT+YEyH4MRYAQYAUaAEWAEGAFGgBFgBBgBRoARYAQYAUaAEWAEGAFGgBFgBBgBRsASgTShfqCsQqlQterzcv6Gw0bZR3pWo0qlret8+Nqq9NfyfVKhAsoL6cdOUymh2mC2noLgYGUtq5c2klMOO5InwkXYjIzcpE0ihEc9EY5EtwqiTQ/2qKon+bzeska0U8WGYiEF6Ok+NVzWXT6qmFSugILERkE88cV8wciX43AZRoARYASCiQArTwQTXa6bEWAEGAFGgBFgBBgBRoARYAQYAUaAEWAEGAFGgBFgBBgBRoARYAQYAUbAJQLFixU29mfm2FUojEQvV7YfOGaUqF4+3Fg3ryCER52ECCN5z5Hjxrq+klAmTN801kuG2dudffKckY6VxlWjjO3Bny+nt37dSEu2plHOKcd8RiY/VhokRnpV+pRQozicdZp2H86hjXsyadk20S5BnPDHfMHIn+NxWUaAEWAEgoEAK08EA1WukxFgBBgBRoARYAQYAUaAEWAEGAFGgBFgBBgBRoARYAQYAUaAEWAEGAFGwCMEokrY1R52HTouwkzYCQ0eVWDKdDDDrmRRqXRx017HzcTYcFqSnC4ToTxhtpiIoka4D/O+q64iQ7HBvO+erlUI4UO2pNqIHFOW7SP8YDVEGI0u9WOpU91Yitb6bq7D022oS7gzqF/8tWI/Ld1yhPYcOeEuu1f7fcXIq4NwZkaAEWAE8gEBJk/kA8h8CEaAEWAEGAFGgBFgBBgBRoARYAQYAUaAEWAEGAFGgBFgBBgBRoARYAQYAWsEosOLGDu27XcMf2Hs8GIlR1OBCC/m2hVWItSuHnHq7HkvjuI6a0RoIfr43kY0TYQF+XNpKu06aFe12LQni/D7ePIWGixCd/RvF+e6Mj/2/vcf0cRFe+iDP5L9qIWLMgKMACNwZSDgesS4MjDgXjICjAAjwAgwAowAI8AIMAKMACPACDACjAAjwAgwAowAI8AIMAKMACPACFwgBGpViqDfF6fKo2/dbw+54WtzSkcUoUOZJ2XxvWk5FB9jHXYDGXYetJM1IrQwHL4eWy8XXrQQ3dy6kvylHD5O61JEiIwtaTR7zUEj28hpWwkEj15NyxtpgVxZvzvDgTjRu3l5alqlFMWWCqXion3hgjwSVqQg9XpjAWVk51XeCGRbuC5GgBFgBC52BJg8cbGfIW4fI8AIMAKMACPACDACjAAjwAgwAowAI8AIMAKMACPACDACjAAjwAgwApcxAs2rRRu9W7ntKIFoEFfaOeFBZR41Yzt9/89OuXl310Qa1ClBrpcpWUSEzLDlShHkCFfkCV3ponQJuwKGOkaglugPftc2LkcPX5tEX87cRlNzw3jMWnMgaOSJZVttIUnQj1vaVqKHr6mWp0vZp84xcSIPKpzACDACVyIC7oMgXYmocJ8ZAUaAEWAEGAFGgBFgBBgBRoARYAQYAUaAEWAEGAFGgBFgBBgBRoARYATyBYFS4SHUonqUcawP/txM586LeBMu7FDGKYM4gWwgJShrnmQnY0xZsY/OI3aFhW3YnUnbc8OElCweQpXLFLfI5X1S1omzBFIGfunH8qo5RJcIEQQKO4lh8+4spwfZL/rpj61NOWoU79HIjpGRKFZWbk/TNy/Yetox//p6wRrOB2YEGIHLBgEmT1w2p5I7wggwAowAI8AIMAKMACPACDACjAAjwAgwAowAI8AIMAKMACPACDACjMCliYBOJli25Si9+MNaOnnmvGVnklOz6PFvVhr7ejQuSwjVoaxVzdJqlf7dlEbfz9llbKsVkBqe+W6N2qRrBPmiQIGrjG1/VlIOZdPADxfL312fLKWMnDN5qtt96LiRFhNZ1FjHSljRwsb2ul0ZdOL0OWPb25UqsSWMIlv35Q2JsvPgcRo+cbORJ79Xihez93XVjoz8PjwfjxFgBBgBBwQ4bIcDHLzBCDACjAAjwAgwAowAI8AIMAKMACPACDACjAAjwAgwAowAI8AIMAKMACOQ3wggpMXga6rSyKlb5aHnrTtMPZPn0YAO8VStfDgVDSlIKYJwsGlPFk3JDXeBjKEivX+7eKwaVjK0MD3RO4lG/J4s00aL8B4rtqcLdYvSVCqsMK0XihNz1h0yQlVAdeK2DvFGeX9X6sSVpMSyxaWqxaHMk/T4Vyupe8OyVDsugiCCsSYlkz6bssU4zLVNyhvrWIkKtxMKsD3oo8XUXahGVIgOpU51yyDJY2tSrRRNmJ8i87/20wZavi2dmleLosIFr6INe4/RpH/3UI4f5AyPG+IkY/moYsaeMbN3iHOcTU2rRlGDhEiqUDrU2McrjAAjwAjkBwJMnsgPlPkYjAAjwAgwAowAI8AIMAKMACPACDACjAAjwAgwAowAI8AIMAKMACPACDACLhHo3zaOihQqQB/8YSM9wKn/pSA+OLNalSLolX51qKxJuQH5+zSrQKlpJ+inBbtl8ZXbjhJ+ZgNx4oO7GlB40cC6zJ7qXZ2eG7tWEjS2pB4j/KysX7s4urFlRYddBa66im7vmGCEJdlz5ISBg7fkiYaVI6lr/TI0c/VBeYy/Vuwn/HQDcWSyIKRkZOcNMaLnC8Z653pl6euZOwwCxz9rDxF+g3tUFaSYuGAckutkBBgBRsApAoEdCZwehncwAowAI8AIMAKMACPACDACjAAjwAgwAowAI8AIMAKMACPACDACjAAjwAgwAq4RuEEQCWpUKEHj5+8iqE9YWflSxahLg1i6o1OCUFCwjlCPEBz/Z+884KOo1jb+SkiDJEAgQKghQOgdBAQUFEWKhYsoChbsyodXFNu1XvVaUVAuir0i4hVFRRRFFKR3CL0GktACCYRAChC+85wws7Ozs8mmkcLz+tvMmdPmzH9mcc+cZ973gUEx0iG6qkyZt0cQ/sJq8Fhxdbe6MqxXlESEBViLdBqeGWCB/gUL5dE2qqp89fBFMmnWVlm46ZCHMKFdoyoyvHeU9FDeMJxspDo3eGWYsSRBe9uw14HAwrCAin5G0mMLPk8Pay1RtUJUX4kCTxiGQThy75WNZaDyajF71X4j223rZwllYmddWEY4UA3FfvKoLvLD0kSZrrxg0EiABEigJAlckJWVpRwE0UiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEig7BDYsmWLNGvWrNADHj5+uU99TBnTxad6rFR0BJJSsyT+0HE5cCRDoGWoVTVIoiNDC+Ql4ljGKTmo+jl1+oyEqbAeEWGBUvGsQKLoRuy9p9T0U7I/JV0qB1aUyPAgsYofvLfKKUnLPK3CfZyRAOWVA545CmPJx7IkKTVTqlYOkIgqAfkaR2GO60tbXJv0kzhX0dfYog/xpTnrkAAJlCMCJfX/ZnqeKEc3EU+FBEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABMoLAXiEcPIKUZDzQ1iO0NohBWlaJG3CgitKWHBogfoKCfTuWSK/HYaHBgg+pdEgZgn149Jlabw2HBMJnC8ECidPO18o8TxJgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgATKLQGKJ8rtpeWJkQAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJ+EKA4glfKLEOCZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZBAuSVA8US5vbQ8MRIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgAV8IUDzhCyXWIQESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESKLcEKJ4ot5eWJ0YCJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJOALAYonfKHEOiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAuWWAMUT5fbS8sRIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgAR8IUDxhC+UWIcESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESKDcEqB4otxeWp4YCZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZCALwQonvCFEuuQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmUWwIUT5TbS8sTIwESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAES8IUAxRO+UGIdEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiCBckuA4olye2l5YiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAr4QoHjCF0qsQwIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkUG4JUDxRbi8tT4wESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESMAXAhRP+EKJdUiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABMotgYqFObOUlBQ5ceJEgbuIiIiQgICAArdnQxIgARIgARIgARIgARIggbJLID09XebOnSs7duyQ+Ph4SUhIkMDAQImMjJQ6depI7969pU2bNmX3BDlyEiABEiABEiABEiABEiABEiABEiABEiABEiCBMkOgUOKJjh07SmJiYoFPdvHixdKpU6cCt2dDEiABEiABEiABEiABEiCBskcAIonJkyfLu+++K8eOHcv1BBo1aiSPPfaY3HrrreLn55drXRaSAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQQEEJMGxHQcmxHQmQAAmQAAmQAAmQAAmQQL4J/PHHH9KuXTt57bXX8hROoPNdu3bJvffeKxdddJFO5/uAbEACJEACJEACJEACJEACJEACJEACJEACJEACJEACPhCgeMIHSKxCAiRAAiRAAiRAAiRAAiRQeAIffvih9O/f3yfRhP1oq1evll69eukQH/Yy7pMACZAACZAACZAACZAACZAACZAACZAACZAACZBAYQlQPFFYgmxPAiRAAiRAAiRAAiRAAiSQJwGIH+6///486+VW4eDBg3L11VdLVlZWbtVYRgIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAL5JlAx3y3yaHDzzTfLoEGD8qiVU4z4xTQSIAESIAESIAESIAESIIHyTSAjI0Nuu+02x5MMDQ2VZ599Vm688UaJiIiQ06dPS1xcnMBLxRtvvOHRZtu2bTJp0iQZM2aMRxkzSIAESIAESIAESIAESIAESIAEyh+BtMzTEuxfQfwqXFD+Tu48PKMv/oqTM2dEalYJlCs7RpYbAnPW7JdfV++TLk2ry/U9GsgFvF3LzbXliZxfBIpcPNG+fXsZPHhwvijGx8fLjz/+6NGmY8eO0r17d4/8TZs2ydy5cz3yr7zySmncuLFbfmpqqnz33XeybNky2bNnj+zbt0/Cw8OlXr160qJFC7nhhhukYcOGbm2sO0uXLpUVK1ZYs6Rt27baZfDhw4fl008/lQULFui+69evr8uGDh0qbdq0cWsTGxsrM2bMkDVr1uiHwZ07d9Z9IHZzdHS0W12nnTPq/yQ4zk8//aRjPeNcAgIC9NibN28u119/vcTExDg19cjbuXOnrF27VjZs2KC32Efb1q1b63Fj7BS2eGBjBgmQAAmQAAmQAAmQQAEJTJ06VfAb3m5169bVv+utvz39/Pz0b/qXX35ZBgwYIJdddpm9mRZVPPjgg+pBhPOTiMzMTD2/mD9/vuzevVsSExP1HAC/+zHHwG/nGjVqePSLDLT97LPP5OTJk27lt99+uwQHBwvmB19++aVs3bpVDh06pH9Ht2rVSo8VfftimP9MmzZNM8Hv+uTkZImMjBTMJy688EI9n6patapjV7mNLygoSHDOX331lWzZskV76MBve/R5yy23iL+/v9knvHegHuY6mBtAxNKjRw/B/KRbt276XM3KXhI4f5wHvIqAM84D17RBgwbSp08fGThwoGBMedmJEydk1apVen6yfv16PWfCfYC5JeYoLVu2lA4dOvg0pryOxXISIAESIAESIAESIAESIIHST+DgkUz5fd1+2Rx/VNbvTpWDRzP0oNtEVZVWDcKkc5Nw6d7MeU5X+s+OI5z8y3YNoV2jKuVGPHFA3bPPTl2vz2vx5sPSvF6YtFP3K40ESKDsEbhAPTRT+q6CGR5y4kGk1fB22OjRo61Zeabx8NAuekCjmjVrCt4sw0NKq/Xu3VsWLVpkzdJ1IQaoUqWKzj916pS8+OKL8tJLL7nVc9q55ppr9NtrOJ7d8EYb3myzGvLwsLZLly4C18FOhoe9Dz/8sH7o+txzz8nrr7/uVE3nffvtt9r9sLcKy5cv12/qgUVuhofL7733ntSqVcuxGh6QvvDCC/Lqq686llszn3nmGXn88celYsUi19dYD8M0CZAACZAACZAACZDAeUCgX79+8ueff3qcKYQIWBTPzd5991355z//6VFl5cqVHoJlVPr888+1V4pjx455tLFm4Dc9fhtDkGy1/fv368V/ax7SyIdwGr+RvdlTTz2ly+19GvUhNsBcafr06UaW1+2jjz6qPXJYBQ+onNv4wOrf//63Y5/gDBELhNsQTNx66616ruVUuWfPnlq0XblyZadiLcrAuU6YMMGx3MiEIGP8+PFauGHk2bcQlw8fPtzrWIz6TZs2FcybIICnkQAJkAAJkAAJkAAJkIBBAKLhZs2aGbsF3g4fv9yntlPGdPGpHisVnMDauCMy9qPVciLrdK6dDLmovowe1FT8/Tyj08cdPC4b9hzV7Vs1qCJRNZ3nNrkeoBQVHss4JfPX56xF1Q4Pkk7R4aVodPkfSo/H5uhGEE+8c2/5+E4lHEqXG15faMJ4884O0lV5oCgttnJnsuxPzhEhXdy6poQGce2vtFwbjsM7gZL6f7Pn/1W8j7HYSvCG1bhx4zz6hzDhgw8+cMufNWuWh3ACFfCg0BBOHDlyRPr37++TcAJtf/jhB/0GGrxD+GJ42wtuhb0JJ9DHE088oR8Qv/baa7kKJ1D3uuuuk19//RVJD/vmm2/0G2B5CSfQEGw6deokeFvLbvC4AdGJL8IJtH3++ef1m2J4wEsjARIgARIgARIgARIggYISwO9QJ+EEFszzEk7gmPCYAC8G8Ihg/UCAbTV4ahs7dqzceeedkpdwAu2wqA/PdUeP5jxQs/bllIYHuNyEE2gD8fZbb73l1Fz/Rof42hfhBDrAPAKik5SUFMf+7JkzZ870KpxAXXiHAJsDBw7ofnObX8DjHbzppaen2w+jxwNueQkn0BDXAcfEdXGyyZMna68YuY3FaIc67dq1054ujDxuSYAESIAESIAESIAESIAEyheBX1btk/vfXeEmnID4YVCXOtKzVQ2pGuISv09fFC+j318lGSezPSCsUwKMl/63UX+QLut2ODXTPJ+ZS91faC7r51Zexl+vRrDcP7CpNI4MkRt6NZAujUuXwAX3jfGdwP1EIwES8E6gVIgnMLz777/f8c0xvDkFMQQM8Y8hSrAbwoRcddVVZja8QsybN8/c9yUBIQREDL48aH3nnXccBRz249x88825PsC01r/vvvusuzoNEcSIESM88nPLwHkgFAlc31rtX//6l0f4EWu5UxoPuZ988kmnIuaRAAmQAAmQAAmQAAmQgE8E4F3CyZzCcTjVg/eD2bNny19//eX2gdc1q33yySfy9ttvW7PyTEMk8NBDD+VZDxXuuusun+rh9zMEClZLS0uTIUOGeHjts9ZxSmN8o0aNciryyINIIS9DfwjJ4cucZ86cOTrsoL1PeAFBP/kxXBd4BLEawp488MAD1iyf0phj7dixw6e6rEQCJEACJEACJEACJEACJFB2CKSmK2/i0zaYA4ZYYubTl8j7o7rIE9e1lFdvaS8zn7pYHr/O5Y0uVgkjvlmwx2zDBAmUJIHhFzeUzx/sJg8MipEKFZzDjJbk+HhsEiAB3wgUuXgCD9J+//33PD8bN250GyHCQyDkhN3wYG/ixIk6G14Y7LGS4QrW+tYT3ghD7F4nQ8xdvGE2cuRIHdPXXmfXrl3aNa4939s+wpagL7i1dTKrZwrEGr7jjju81kX4E7jgNQxvzqG+k0Ec8uOPP+q31u6++26PKngrC2+qGYa36aZMmWLsmtvbbrtNcM6pqan6bUCIR+yGh9B2IYa9DvdJgARIgARIgARIgARIwBsBeJ5wsubNmztlFyhv7969cu+993q0RVg+iLExP/n444/liiuu8KjzxRdf6HKPAi8Z8JZxzz33OPZlNPn555+NpN5iDPjdbTfMZTCfwBzFKga31kOoihkzZlizck1DVHLTTTfpsIZOFY2wizg2whcOGzbMa91ly5a5dYHz+vrrr93ysNO5c2c9Z5s7d672KIgQG3aDuCMpKcnMtospUIDrhXOFeB68cM2czNt8z6ku80iABEiABEiABEiABEiABMoGgeXbDpsDjapVWYslqoX4m3lIXKDWo6/qUleeHdbKzJ+92nnOaVZgggRIgARIgATyQaDIg9p8//33gk9ehgeOhijCqIuHbnj7yP7GGGIRw10vvCfYDWEoIiMjzWx7mA+jAA/6Lr/8cmNXnnvuOWndurXHW1f//e9/tbvdSpUqmXWdEhAeQOxxAf5vreyjjz4SJ+8RKMPDUqvHDJz3ww8/jCI3Q9xmCDxgiEMM17p2wwNEqzcKPGStXbu2DrNhrfvhhx8K4hBDlOL0oBZ1J02aJEYM5R49eujQJXjwvH37dmtXun2rVq4fI26F3CEBEiABEiABEiABEiCBXAhYBcXWat7iEiNEHjzO5WWBgYHi5+enq02bNs2xOkLj4Te/YfDQBsEAvCpYDYJh61zBWmZNY55j/F5HPvbRp9127txpZiH0hZMIAOIFeJoz5jLwMPHHH3/o8INm47MJ/La/9tpr7dke+5hPQLQNO3z4sFx66aUe4nOU1a1bVxYuXCh16tTBrg5H2KtXL495w/z583W58cdprtWiRQsdgjAsLExXg7AcIT8QosR+7SGMMDx4IDa13eAFxPAogvkY5j24zmPGjHGrag/Z4lbIHRIgARIgARIgARIgARIggTJJIPGwK2zgZW1r5XoOfVT5d0sS5Vj6SfFTb/ifzj6jt7NW7pWU4ydl/W5XqI7FWw7JsYxTur/aVYPE6HvljmTZnHhM5199YV1R77PK6u2HZeXOI5Jw+Lj0allTBnerJ/tSMmRubI53wfZRVQVhRJzsUGqWzF6TI+TorEI2NKsb6lRN9iSd0P0lHDohR45nSVTNEGmu6javGyb1ItzXpVbuVGNMOCbJxzLNvnYcOC5T5u829+HtAFYU4zT4VQ70k2u71hNck9W7UmSVYpV64qTc3DtK2jWqZh4b3JdsPSRxB07Ijv3H5HjmKYmpEyZN64RIi3pVJSIswKxbmARCs3y/JEGy1UWqEeov/TrkzGWd+jyixvnzir26qLoK83JlR9f6ITI37Dmqrnuq7NyfJgeOZEjDmpXVmEPU9aqirkVljy4z9bHj5bS6P6KVqKd7sxqyRbVfvTNFs8F988SQVgKhz+/q+h9U90GAXwUZ2qO+R1/ISDiULut2p6jjH5fdSWmKUZDiFSpNVLiPVvWrOHqssF8XnOM6dfw1yvNK/KHjUie8khpbiPRT5xrk73pnPutUtvxPhbeB4b4x7KfliRIeGqh3ne7p7fvSZFN8DqeDRxWjiBCJrl1ZOkSHS2S1IKMbbkmg3BIocvFEYUk9/fTT+m0m+4M2LO7b8xDz+PbbbzcPCfe4eEBqN7iWtT8MxUPKTz/9VLvPtdfHm2l4qOrN8KATwgNDOIF68BKBGMfGm1xGWzxMtAonkD969Ggt3rC7y7XG+v3uu++MLswtPENYhRNGAVwD48FtbGyskaVZ4YHoJZdcIgEBzv+DgutjK5fg4GDtCtnshAkSIAESIAESIAESIAESKCQBiHPthsV7/KZ2MoS3+O2335yK3PIgRn755Zd13pdffulWhh2Ioq3CCeRBOPzZZ59p8QD2DYN3BwgDECLEmz366KNuwgnUQ/jAvn37eogxrL/rIdSw/+5HWwg2DOEE9mEIZYK5y1tvvZWTcfYveMBLHUTT3gxtDOEE6lSvXl0ef/xxufXWWz2aoK4hnEAhPD6MHTvWI0SIdX5x6NAhmTVrlkdf8AJhCCeMQpzXu+++6zHXmjp1qimeMETcRhtsMT+ByN56HSDEwIdGAiRAAiRAAiRAAiRAAiRQvgmEh7rWMQ5bxAJOZ+2vFqcn39fZo+h/C+Nl61lBhFE4f32S4APr2izcFE/MWXNAflyWqPM7N64mj3+2TrBQbBgWtWH7UtLlnZ+36fT9A5p6FU9sTjxq1hs7uLmHeAKL7G/+sFm+W5yg+zL+LN7s8rhx22WN5I6+0eYC+rItyfLlX3FGVb3doRa2jfEgwyWeKPw4P5i9UzOoWUUt6EeGyt2Tlrsd+/L2taSd5Ign4g4elxe/2aAW2VPd6izYcEjvVwrwk1dHtpeO0S6xhVvFfOwofYx8/NsOOZGV86JFr5a1pJISeDjZ/PUHTT7DldjDMAhoxiv+s1ftN7L01sp/9KCmMqxXQ7fy5LQsmTgz5/oP6lJHix8m/Oj+MkDGVRiXv3zx127B9cG528UTEJp8/fceeWdWTl9uBzm7c2nbmvL0Da0loKJLAIEi63Xp0qS63DZhickip2nOPfTpH7vkxRFtzHs0U4knrPfK2cPI1/P3GEmx3tMY43uzd8gU2z23aJPrHn1iaEsZ1Nm7eMXsmAkSKMME3L+BpeBEqlSpooUJ9qHYhRMonzx5svqfiOsU7CE9jD7gtcLJ4LXB6aGt9SGhU7vevXubHhus5d27d7fu6nSfPn088pABLxt2y87ONrOcYkPDfS3eRrN/4B43Li7ObGskjIe2cInsdJ54aw5vmL3++uv6QSX6p5EACZAACZAACZAACZBAURLIy6NbQY9l/HaFpwqn3+/efjuvW7fO8ZB79rgeHjhV8Pa73mkOYIwN/axdu9ajO/w2v/rqqz3ykeFt7rJ582bH+kam0zjatm1rFLtt4RXCbi1btrRnue1v2LDBbd/YgTjGPj/BPsQWdrOywDzEbhDCN2jQQHv0g9Bi69atYp0j2etznwRIgARIgARIgARIgARIoPwQaG3x6DBDeZX4e+PBfJ8c3t6vXyPYrR0WspGHT42zggi3Cmrn2a9i3YQTaFMpqGjfPf74j50ewgkcx2pY/H78i7VqHqSUFsoiw4P0uO31jPOxn6u1r8Kk05RHj0c/85zLBvvnMEk6minD31jsJpyoqrw8xCgPGsZYIXQY/d5KWa68eRTWICa4qmtdsxt4E/Fmv691iSOuaJ/zAgI8VoyavMJNOIFxtqgfJhi3YRBJfKKugTdbq7xw2IUTqOtvEzs4tZ+kRBN24QR41Q133a9z1x2UMR+v0l5QnPrAdRnz4SpTOIGxQ+hiGMQ/T30ZKxBNwMCtscN3Am2MeyjEcp8/OzXWTTjRRnla6dGyhnlN0efL/9soPyzNER1hn0YC5ZFA0f7rrwjhQSA8GORljRo18loFXh+wsG+PFWxt8Mwzz4g9TrKTwAJtoqOjrU3d0ng7a9GiRW55Tm/HWSs0btzYumumnR4M4y0uJ6tatapTtpln92CBAry1ZnfYef4AAEAASURBVHcxbDZwSODtNBgEJvBagbfb7AaRhlWogRjOcD38j3/8Q6KiouzVuU8CJEACJEACJEACJEAC+SIQExPjUR+/dbOylCvLANdDCo9KPmYkJeW8QWSvjhB2+TF4sYPXOG/mTVyQmzcI9GX8Jrf2660v1PE218D4crP69T1dggYFuR6iWNtGRERYd3Xa7j3CXsHb8a1hTOxt7PvwwJGRkSEYF7xsOBnqICQiPjBDaII5CgQsCONBIwESIAESIAESIAESIAESKH8EGqiQFVjQjVdhDWDwBHFx6wjBAng3FSoh2CY0cCLw5NBWOhseJV6dvkmnR18VIwjLkZvhmFjIfkDVRfgMHAsL7kVlGM/Hv7vCOz4zrKVc1KKmhKqF6+RjWbJs22F5YVqOYH3hxkOyVO0jPARCZ+ADLw8QK8CuUN4fnr2xTVENzbEfCB/w6dexttzQs6E0rh2iw6KcjWIv3yx0vXzQsUk1eeb61hJRJWeuhjAX783eLtP+zqnzy4p9Am8JhTXcB0aff6zbb3oQsfYLlqu2p+gsiAYgpoFBbAGPEDAIDsbf0UGXVVAnhOs8Z81++ffXOfy/VWEubru0kfI8r6u7/THuTXhruKRVTalbPVjOqP/QT252WI3LGDvqwTtEjxYRpoeJzQmp8vAna+SI8nKxZgdCcZwQfB/spq9LcrrAQ8kwFa4F9w9sTVyKPPlFrG4PAcXPKizHP7rXl0Alnvj8wW66zr+VMOI35W0FNv7ODh4hSjDGP5V4AwZxxbjb2+vrjn2IeX5dvU/+881G7MrU+XFy1YV18jxvXZl/SKAMEihy8cRzzz2nw1IUlgVcyXoTT+AB2iOPPOJxCKcHehAvWN2+2hs1adLEQzyxb98+ezW3fWu4DreCItzZtcu7us3XwyDOsWHgCT5OrnaNOtiuXr1af+Did9iwYdp9MR9QWgkxTQIkQAIkQAIkQAIkkB8C+L3tZBBQOAmqncI5OLU3BNvexBNObXLLS0nJecDirY6338RWT3hObZ3mFs2aNXOqqvMgyMYcxi4Md5rrWDsp7jlKXse3jiW3NLxyQHACUQ3me3mJLyCmmDJliv5gHohwhRdffHFuh2AZCZAACZAACZAACZAACZBAGSSABeiJd3fWHgIS1QIxzBpyA+KGDioERJem4WobLkH+FYrsLOGBYMJdnSTEEgoirwVxXw8OLwCGkANtHr+uhfTr4Ap7gHAlV3aMlFNqgRpv9cO+WxyvxRN6p4T+DO5eTx6+prmjiKCyWrSHIKWi3wVy95VNzEV8DDVQXZdRSlywYEOS4Dou3ZZcJGfQvF6YKa6ZF5sk6UrcYRfULNzkerniqi4uwUyWEnQYAppru9WTmDqh5phwna/oECkrdqQo0cFeLUDwJl5Ao3/f2Fr6nvVogf0L1H95WYoSRRjH76RCxPRpU8utCc5t9MCmpoBm3e4jjuIJNPqHui53XeH+gnf7qGpyf/8m8tLZ+2fb3hyhiNtB8thZutXlzePabnVN4QSaVVBxUwZ0qiOnT5+RjWfDtBw+dlIiwgr/Qkwew2IxCZQIgSIXTxTVWezc6VLh2fvEA7T58+fL5Zdf7lZkPEC1ZuKh4xmlHPP2MPHo0aPW6jqdm9jCo3IxZeDBIM6zqAxvd3399dfy/vvv67e4vIU4sR4P9ZOTk2X69Ol8w8sKhmkSIAESIAESIAESIAGfCXjzAvf33387iiewOG43hLhASAerGV4ivHlXsNYtybTTHMVpDmKMEXMXu3ACZU5e7ow252LrdB6FPS7mc4sXL5Z33nlHvvjiizy7w/yob9++8tNPP0m/fv3yrM8KJEACJEACJEACJEACJEACZYsAvBdMurezvP/bdpmlPBZYbWviMcHHeIN/RO8oub1vtF6st9YrSBoL7VbhREH68NZmhSVsRddm4WJd1Le2GagWp0+dzpYMJQoICfa3FpVI+rqL6jsKJzAYeGbIzfzUYntMvVAtnoA3BXiEgEiksHZNt/ry35lbdTdLlDcJuwjhj1hXyI5L27oECqhnr2sfS3Mlzvl5eU7urv3HHMULCPVxaTtXv/Y+vO3DA8ZjQ7x7ukS7JpEuQcf2vd7XBq/y4kXlouYuD5O7k/Ivngj29zOHv37PETmp7kV/P3eBEo7t7fhmYyZIoBwQKJXiiRMnTsg999yTK97/+7//0x4SrA8RvbnMhavcyMhIx/42bsxR8lkL69Rxqf6s+ecyHRUV5RG7+e2335Zrr73W52FY2aARHiw/8MAD+rNmzRqZO3euDtmxcOFCxwe0aPPbb7/pOny7CzRoJEACJEACJEACJEAC+SXQsGFDxyb/+c9/5KabbpKKFXOfkqSlpXkIJ9ChEcLPW5i8lStXilN4CsfBqMy8wup5a5dXvtPcYt26dV6bOYX5QGVvcx2vHRVxgdPxIfjesCHHtamvh7Nfr06dOmlx9/jx42X27NmybNkywfxkxYoVXrscN24cxRNe6bCABEiABEiABEiABEiABMo2AQgoEH5jzNXNZf6Gg4IQDQhlgJAFVvvyrzhZH39Ext3WwcMDgbWeL+m2UbmHWfelD2914g6cMIvaKg8B3gyRHxCiozQYRAINIyr7PBQstKeln5bjGafkeGbOxwgBgU6Uw4Iisb5KEGGIJ/5Yd8BNEAGBxvKtOR4le7SsIdVzEWsgDEVaphpvumu8iza7PC9kexltt+bViyRUBSLCwHNG2tnjn1DMYpW3CcPU8Lxao1rO16VqZZfgJi3D/bvitTNLQasGru/Aok2H5ba3lur78cKYcGlQo7JXIY2lCyZJoNwQyP1JZQmd5muvvSZ5ha1A+SuvvCLPP/+8OUpvAgk8nHQqg8vYbdu2me2NRN26Lnc+Rt653jZo0MBDPAGXxE4PLQsytvbt2ws+hi1fvlw+/PBD+eSTT4wsc7tgwQK6xjVpMEECJEACJEACJEACJJAfAhBHwFvAnDlz3Jrh9/xXX30lt9xyi1u+fcdbKD8j9EV4eLi9id7Hb+c2bYo3DqzjgW2ZTnMLnDvmIk6CDW/CCqf5jO1QxbrrdHx4gggLCysSrxjoZ+jQofqDE4F3jm+//Vac5obz5s2T9PR0KQ5vGMUKkZ2TAAmQAAmQAAmQAAmQAAn4TKCSCqGBcBb4ZKvV5j1JJ2TxlsMyc3mixB04rvuBqOLpKetk3MgOPvfrVDHI8ta9U3lh8g4dyzSbN67tvPBtViglCXi+gJgjN0tKzZIflibIsq2HZcMeTw/vubUtaBmENfDesXRLskCckT7UFbpj4eYks9uB6p6xW5YKnzJjSYIsV55AIA4oiFUKLNyS6rzYAzJPhTNBKBN45Miv1awS5OENwugD1wuiF7vIyCjPa1uzaqA8MbSlGToG37EJP27RzdBv77Y19XexQ6NqOoxHXv2xnATKMoHCfdOL4cxjY2PlpZde8uj5kUcekddff90tH+KJG264QVq1aqXz27VrJ07hLh566CGBOMDuiWHs2LFu/Rk7eLhb0jZgwAAdA9g6ji+//FLuv/9+qV69ujVbp3///Xd9jnDzaxjYIMY03roDV6uBVYcOrh8UXbp0EXzgiWPp0qXWqhIfH++2zx0SIAESIAESIAESIAESyA8B/G7v3LmzR5M777xTsrKyBFsnQ/i4m2++2aMIggTDgwHC81133XV6od1a8b333pPevXurSb27m0nU+eijj+TAgQM6vB/2IfAYPXq0x3wBZYU1e6hBoz/MRSBetho88GHuYjfMcfD7vSQNxwdze0gRiK9HjRrlMbTjx4/LxIkTVUxU1xsvEGDcfvvtkpmZKdOmTZPsbNf7PLhOVk8kVapUkTvuuEOilEe+/v37e/QPcQwE5zQSIAESIAESIAESIAESIIHyT6CCmvdF1aysP9f3qC+f/LFLPpmzU5/44s2H5YTyIgCxRWm0rJOuOVGloFK3JFcgZKt2pshjn6wp8EJ9gQ56ttGAjnW0eAK71tAd8FACw0J/txauEBbI25eSoUU2m+JTsXvODZ453vppq3y/OOGcHzs/BxzUuY7Ur1FJi2Jmr3KFQIEgA2F08KlfI1jeuquz1FJiCxoJlFcCRf4vNUJBnDp1yidew4YNc/MIgQdrEAfY7dFHH5XnnntOZs6cKZs2bXIrxoM6HBMP2/DQEw/j3nrrLbc68C5x7733yr/+9S/t3heucD///HP9cauodhA72RBj2MvO5T7iOtsfQuINtSFDhsh3330n1jfsvvnmGxkxYoTH8CDAgH399dceTPAAFq5wGzVqZLbD213JycnmvpGw1jHyuCUBEiABEiABEiABEiABXwm0bdtW7r77bnn//fc9muD3//z582XQoEGCEA6wVatW6TwIIJxs0qRJbtk33nijh3ji+++/l8cff1x7qkP4Ohi8FUCo/eqrr7q1x29jhLcrDmvZsqWeY9jnMZiPxMTEaM8b8C63efNmPTYnz3gjR47MM7xJcYzd2ifmWuBsn2uNGTNGe8cbPHiwKVTZt2+f3HfffTJr1ixrF3LVVVfp+RrmHU6CGQi+7YL5uLg4tz6MHadwKEYZtyRAAiRAAiRAAiRAAiRAAuWXgF+FC+SOvtFuHg82JhyVzo2dvRIWJQnry6v2fk8pzwZOFh7qWmTerd7m7xRdOsfpNHanPHhwGP3eSrMIniD6dagt9apXlirKYwUEIiHBFeWV6RvFugBvNihkolermmYPRuiOlLSTZsiO/koAEFjR/SWKV7/bIIZwAov/Q3s2kEa1QiQ8JEAqB/lLqBrvnLX7Ta8L5gGKKPHNgnhTOAFxx029o6R5vVCBJ4nKyptFSCV/OZyaITeNW1xERyx4N+1UCBt8HhncQtbvOSLr4o7K7JX7JDE5XXcafyhd7n1nuXz96EUenAt+VLYkgdJFoMjFE3Cr6821rv3UL774YjfxxAcffODh9QAPMvFWFh7Wvfnmmx5vHS1atEiHmsBbSbB//vOf8vHHHwtcyFoNAgJ88jInrxd5tSmO8lq1aomTtw2cLx6uwmsE3rSCW1+IKuzWs2dP07PEFVdc4fGQE3zw9t+ll14q0dHR4ufnp8Uk9jfJ0C/a00iABEiABEiABEiABEigMASeeeYZmTp1qsfvdPTp62911IV3AkMkjH0YPBN07drVYy4xYcIEwQee5QICAuTvv/92PD4EAMUZAuLll1+Wa6+9Nmewlr9PPfWU4JObYT6EOU5psAcffNBxrgVRBcbZW3n6SElJEYT9czJ494DBg4XT9YIwA8L4Pn366OsFIckPP/zg0RVEGJgf0kiABEiABEiABEiABEiABMoHAYTlwJv56eoN9xC1+P7AoJhcT0w5opDGtUPMcBFHj5/MtX5hCv3UsQxLOe491MK+I67wHEZ9bGuGucQT2/elWYuKNF3Ycfo6mNjdR8yqjSND5I2RHR1DfCDMSnFYoH8FuaZrXeUdIfFs6I5ssYbsgJDDaulZ2aawAvmT7u0i1UMDrFV0OvFwjjjAo6AIMv7e6Aop8uxNraWnzTMGDrHhSEYRHKnoughWIo8uTarrz8jLGsmybYfl6S9itbeRg0czZHP8UWmnQnjQSKA8EnCXX5XgGSYkJDi+7YUHjUYs4Msuu8zjQSmGDM8UeLsJVq9ePZk8ebJO5/cP3oYbOHBgfpsVW/2nn37aa5zm1atX6weJTsIJPIz89NNPzXHBVbDTeUFAgYeR48ePl3Hjxnm44EUHeMutffv2Zl9MkAAJkAAJkAAJkAAJkEBBCOA36ldffaUX2QvSHm3Qh90zAfKxkG79/Ys8q82ZM0d7QbALrFEHC/UQLRenQexxzz33FOgQ7777rtSvX79AbYu6EcKleJtrge1PP/3kVTgBL4AQVxiG+YeTwfvE22+/recnTsIJtHnhhRecmjKPBEiABEiABEiABEiABEigjBJAWI7565Pk5+V7Zdrfe2RNXEquZ5KdfUbmWxaka1fN8Tbo1OhQqrOowamuU14d5VHBsN0HjxtJj+3K7Yc98pDRWS1AG/b76v2yX4WQcLJDqVky7PWFMvCF+XL/5OVOVXSeN5FGYcfp9YC2go2W0BeDu9VzFE7AE4Th6cHWvEh2rQKJJZuTZO7ZkB11w4OlZf0qbsfYttcVqqNP25qOwgk0mL/hoFu7oto5re7V2LgcwQm8TlzUrIZj10u3ON8/jpULmXn4mOd3Ik7d2xD37NifpkKcuh8A389uMTXkHxe5nk2gHo0EyiuBUiOecHqbqmnTpnrx3gof8ZLthgd11geeQ4cO1TF07fVy23/sscf0W2m51TnXZXAvjAe99jfrchsHQmz88ssvHvF/EVP4ySefzK2pRxlEFXhYSyMBEiABEiABEiABEiCBoiDQr18/2bhxow7fkN/+4Glu7dq1EhHhHrvU6Kdx48YCgXF+Qs7Bwxp+JwcGut4EMvor6i1+W+f39zg8dVx//fVFPZRC9Ye5FsIG5scefvhhefbZZ92awPPEsmXLBHM+Xw1ttmzZIgiFQiMBEiABEiABEiABEiABEihfBLCwbdibM7bohVxj37rNVGEjJigvFUfScrxAYEG6SWSotYoOw2BkLCnkonREWIDgGLDFmw/rxWWjb2M7Z81+XWbsW7eR4UHSvnFVnXVCedZ4aso6QegLq8HzxkvfrheERMB5XagWqq2G0BKGYSEeHjrsVthx2vvzth9dyyUm2ZTgEiYY9Y9lnJJnpq4zdotl20aFlUDIC9i0hfGydEtOOPqrlUcKeCWxWoOarvFu33tMMk96sn/nl+0Sp0KqFIchzAw8dMBw/fcme4pn/lx3QIuGiuP4Rp8hKqSKYat3uryHGHlvz9wit05YIreMXyLTFuw2ss0t7tEd+10e/2tUKf7nKObBmSCBc0ygUOIJuL4tCoNbV7ylZDe8Vebv7/pCo7x58+YyatQoe1X9AA+xkQ1DzF3EDcaDOriQ9WbDhg3TrmHx9pKT61enPG99VapUyVuRR75TXae8atWqyfTp0+Wzzz4ThOLwZngL7J133pH169c7eqvAtcIDy3nz5ukwHHhrz8nQzzXXXCMrV67UnCtUKNQt4nQI5pEACZAACZAACZAACZzHBBCeDr9vEbIPvz3zMoSrw29YiHqrV3e9sePUrlWrVjp0BwTXuYkosAgPwfHMmTNNL3dGfwhnVxyGeQV+j//111+COYg3w9wF4TE2bdokQ4YM8aiWn/HlJxSJU11v8yiEIMFcC+P0VgcDx/gxP4E3wQvsT7BUOTzcLV++XHsSbNGihce5Ghm4Xpiv/fnnn7leV6M+tyRAAiRAAiRAAiRAAiRAAmWPwIhLokyRwg71BjwWcl/7bpP8uCxRVu5MloWbkuTzP+Pk9reXyvRF8eYJ3jugiSCUg9UiqwWbuxv2HJVR76+Qb1WbvDxamI1sia7NXXPReyctl6+Ud4zFWw7Jb6v3yfPT1suzU9fbWrjvjr3GNd+BR4YRbyyWd9WC/V+xB+TD33fKHROXmQIAtLzmwnpuHVQPdV8nG/nWEvls7i75Qy26W62w47T25S3dLjrcLIKnkIc+XiXfL0nQPDCmuyYulVXbc/ccYnZQwAQ8IVzTLed5guHVAV1d1q62R49VK/lLi/phOh/ilNvV+HAfLVVhKHBPYPxT/orzaFeUGT0sYTrueXe5TPx5qw41MmvlXvnP/zYoQU1sUR7Osa+61V3fiU/m7JSnlYjnJ/XdSjgbXmVId5dXiYkzt8mEH7cobzAHtVgI371/frjKFAhBTISQHjQSKK8ELsjKyrI5YCl/p6rOUeLi4mTv3r1y/PhxLZKoU6eONGzYUMLCcv7RLCtnjfAkiYmJcuDAAcGDUzxwjo6OlsqVXeo5X88lOTlZEEf40KFDUqNGDWnWrJnHw2Nf+2I9EiABEiABEiABEiABEigIAXgSWLFihf59e/r0aTl58qT+XRoTEyPwJuEkMPblONnZ2bJ7924d3u/IkSP6t3OTJk10CIyiEoH7Mg5vdVJTU/X4MEc5deqU/j1vzFHOhScMb+PKb35mZqY51zpx4oQWU+C6RUZGSn6F2OgL8xOEJoQXPsxzoqKi9LXL77hYnwRIgARIgARIgARI4PwggPkEnmsX1oaPX+5TF1PGdPGpHisVjMA+FdICi7q+hnx4dlgruaJDpMfBENbj/vdWmuESjApdm4XLm7d31LuvTs8RZmDn28d6CjxEeDOEobjv3WXaM4S3OiN6R8mXZxfhxw5uLghpYbW/Nx6Uxz/L3SMDFqVfua2ddGrsEigYfbw3e4d8rsQJdlv4al8zq7DjHPzSAjl4NEN7dfj+X95f5v2f8vaAxXVv1q5RFQkPDZQ/1+WEwpjx5MUCzxiG9Xhsjk6i3jv3Fuw7laCEEDeoMCeGdWxSTSbe1cnYdduu3ZUiYz9eoz0/uBWc3QH363rWV3zjdM6LI9pInza1dBr35HWvLNDpQV3qyBPXefeEeIsS/ED4g/5+f6GPboM/SUcz5cGPVuXq3WLUoBiZNHOrbjNEhcd46BrXv2u+XpfLn/5TnyM8XXz+YDfz+EggLMyNihe8X1jt/gFNZfglDQXhRV6ZvlFmrdhnLfZIIzTKC4pPs7pla23V40SYUSYIlNT/myuWCTqFHCQejuLhKz5l3fAQEp+isPDwcMFbXDQSIAESIAESIAESIAESKCkCeNBZFA877ePHwj28T+TmgcLe5lzuQ8Tdpk0bR69x53IchT0WhB5FdQ3RV+vWrfWnsONiexIgARIgARIgARIgARIggbJHILJakFpM76y9Mfy8Yq8ZmsN+Jgjb8OBVMdK8nvMCbgUVKuGlEW3lJ9XHjMUJWhBg78PqdLtiRXfPFfa61UL8ZfydnQShDVZsTXZbgI6pGypjrm4mqekn7c3c9nu1rClfPNRNCyxmr9rvVlY1JEA6RFeVUf1jvIo4Rl7WSOA9YIby8uBNXFLYcfr7XaDHFeifs3UbpGVnaI/6UrtaoHzw204tFrAUyS2XRsnNvRvJxLNCAGuZPR1g8xhiL89tv16NYMF9YHieGNTZ+7pZu0bV5MMHLpTXvt8ka3a4h6xAuJj7rmwqG/a45xvH9rvAxSLQP3dPlQjRAQtQ4gmrRagQF++NulDenLFJ/l6f5HH/PKDu5dpVg03xhLUt0r5eF3s7634NJV6ZPKqL/LA00c1zi1EHY39yaCvppbxkfKJEOlsTjxlFegvRxIXNqsu9/ZtKSKD7+blV5A4JlAMC54XniXJwnXgKJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACFgL0PGGBUQ6TR06clJ3709Sb++kSUNFPGtcO1QICY5Hal1POPnNG0jJOq1CCoj0C5KetU/+qO0k8dEIyTmVLzapBEhac/3eUM09mS9KRDDmuvABEhAUqLw0urwxOx7TnpWWeljNqIAFK9BHoRfhRFOO0H9dpPz0rWxIPH9fXB947/P1yF6I49XEu806dPiMJh08ItnWrV5LggHM7XlyXvcnpkp51SmpUCRKEFTnXhnNPP4l7SCQ0qKL+btjHAE8UiYfTJUvd53WUcKISBRN2RNw/BwToeeIcQOYhSIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESj8BLCx3jK6mBopPwayCUk0URODg7WgQYdSLqOSt2Kf8QOVxoTB9+PLmf1GM05eTgfigSWSoL1VLRZ2KyrtGVM3KJTYWXBd4EClJA4NQv9xFPxAZNSjkfV6S58hjk0BhCJxbSVVhRsq2JEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJFAMBCieKAao7JIESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESKDsEKB4ouxcK46UBEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEigGAhQPFEMUNklCZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZBA2SFA8UTZuVYcKQmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQQDEQoHiiGKCySxIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIggbJDgOKJsnOtOFISIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIIFiIEDxRDFAZZckQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAJlhwDFE2XnWnGkJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACxUCA4oligMouSYAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAEyg4BiifKzrXiSEmABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABIqBAMUTxQCVXZIACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZQdAhRPlJ1rxZGSAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAkUAwGKJ4oBKrskARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIoOwQonig714ojJQESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESKAYCFE8UA1R2SQIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkUHYIUDxRdq4VR0oCJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJFAMBCieKAao7JIESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESKDsEKB4ouxcK46UBEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEigGAhQPFEMUNklCZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZBA2SFA8UTZuVYcKQmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQQDEQqFgMfbJLEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEigSAlmnsiU9K1tCg/2kwgUXFEmf7KR0E4jdfURW7zyiB9m3XS2pEx5cugdchke3Yc9RmTI/TupUqyS3XtZIQoO4fFyGLyeHXkgCvPsLCZDNSYAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAEio5AdvYZWbzlkHy/JEE2JRyTI2lZZuf1awTL5R0iZUCnOhJZLcjMZ6J8EVgXd1Te+3W7PqlWDcMoniimy3vmjMgL09ZL/KF0fYSwSv5yS5+oYjoauyWB0k+A4onSf404QhIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARI4LwgkqEXcsZ+sMhdz7SeNRd6Pf98pX8/bLS/c3Ea6xdSwV+E+CZCAjwTOyBk5lnHarJ150pU2M0swEXfwuMAzBqxVgyoSVbNyCY6Ghz4fCFQ4H06S50gCJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJFC6CWxJTJWRby1xE07UVeEaLm1bU/p3ihR4nTDsRNZpefijNTJFiSjw9jyNBEgg/wQQBuep61tqYUIf9T27tlv9/HdSjC3WxR2Rl/63UX+QppFAcROg54niJsz+SYAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAEciWQeTJbnv4yViCKgFUK8NOLur1a1ZQKFS4w26aknZSXvl0vizYd1nnvzNomlQL9ZHC3emYdJkiABHwn0L1ZDcGHRgIkIELPE7wLSIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESpTAF3/FSWJyuh5D1ZAA+fCBC+WSNrXchBMorBbiL6/e2l5G9I7SdfHnnZ+3SVpm6Qo3YA6OCRIgARIggTJDgJ4nysyl4kBJgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIoPwROHk6W6bN322e2JirYqRhRGVz355AqIHbL4+WmSv2ypG0LO2tYuXWQ1psYa+LkB6rdiXLsi3Jsjf5hKQrzxY1qwRJVM3K0rddbQkPDbA30fuzVu6VlOMnpbLyanFt13qSnX1G5m04KLG7j6qwIsclNMhfomqFyJUdIqVm1UC3PlbsSJYticd03iUta0o9S7gRt4pqZ/GWQ7LzwPGcui0ipF5EJXsVj/2Vqv/NZ/u/+sK6EuBXQdbvOSLr4o7KxvgjEh4SqMfWu3VNiawW5NEe4Q9i9xzV+VcoBhFV3MdvNNiUkCqrdqbo3QEd62jhCnbgJeT7JfFyWrGNrlVZey3YeSBNVu1IEYytcmBFiakTKoO61NVeQYz+0NfybYfV+aZJWLC/tG5QVdpHV831WhttsUW7+RuSZMe+Y5Kl7pm64ZWke/Pq0rlxdVG3RK4GjyWzV++VXYp1UmqGVK0coI+Le6BudVc4GGsnds64l1ZvPywrdx6RhMPHpZe6trl5PMnQnBIkWzWsEeov/TrUsXbvlj5y4qT8rO5nWHUlHrqyY6Rb+QZ1vTarsDY796fJgSMZ0lDdvzF1QqRZ3Sr6XnarfHbHfg8nHk6X1btS1HVKllR1vJuVAKldo2rqvnHdD9brbO0zNf2UrFTnjnt1u+IfVLGCNK1XRZpGVlbXsZoEB3i+r2/nl5/71Bj7+t2uUB34rhzLOKWHVbtqkFzWtpZ1iIpLpsTGpciWvcck7mCa/p43rh2iQ5I0qxvmVpc7JOCNAMUT3sgwnwRIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIoNgJrFWLt0a4jvpKaHBpO/dFUacBBKrF2/8b2FSmnhVdJKqFU7slHEqXf325Vi22p9mL9P5bP22Vu/o1llv6RAkEGVb7YPZOOXg0Qy/AdoupIU98sVa2nhUsWOu99+t2efL6ljKgk2thfNf+49obBuqlKgHGff2bWJuYaSzGvzZ9sz4OMq9o775gbla0JeasOSA/LkvUuT2a15BXpm9Si8auRWaj+n9nbvUYG8pWKpHDh7/t0NXaNqziVTwxZ+1++Xr+Hl2ve7PqpngiWQlWJs7cpvMHdamjFuKz5PmvN+p9488vK/epa7NHxt3eXolHKsm/v46VebFJRrHezlqxT29fG9lOejSPcCuz7oDTxJ+3mmOxlk37e490iakmr93aQQLUPeFkv6zaJy9O2+BUJO/P3iF3X9lEbu0T5VFu5dy5cTV5/LN15rVC5YgwT2GKtRNEm/lYcTbu7V4ta7mJSax1568/aN4zw5WowTCIBcb/sFlmr9pvZOnt4s05YWuwM3pQUxnWq6FbOXas93DTyFC5e9JytzqXt68l7aSaFqQY36NuMa7rbFReuDlJXvrfJi1UMvKw/U3dh7AoJaB58/aOUssmIrLyy+99+r+F8R7ft/nrkwQfWNdm4W7iiTlr9suzU9frMqc/N/RqIPeo64x/N2gkkBsB3iG50WEZCZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZBAsRJYtjXZ7L9NVFUPIYNZaEv0V2/nf/5gN/25SS2OWg3CiZFvLfEQTtQNd/cy8IFaPB//wxZrU7d0WvpJN+FEpQA/QVgRq/3nm43KI4VLvHCp5Y3431bvFyz+O9lW9YY8BBqwi1pUV4vx7v06tbHnvfjNBlM4gXHBq4bVMDZ4bCguW688IhjCCfvxcW7PfBUrr07faAonwM9+DR79ZK3yZuB9jJ/8sdNNOGFvv3xrikz40fkawvuBXThhb/++EsDAK0Vu9qw6D+NaoR7Oo1JQ7u+oQ8xxVde6ZrfwnODNfldCFcOuaF9bJ+GxYtTkFW7CCRy3Rf0wt3sQQpZP/thlNPfY4h5+9LO1HvnB/rmPHw3mbzwouD7w8GIYBE4QTBgWp7xR3D5xqfLo4apjlBnb/N6nTSJDBMexGs4defjUsAhXvlsc7yacaKzaXtImwu27AJHNS+q7QiOBvAjk/a3IqweWkwAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkEABCexT4TQMg5v9whoWnV/6dr35xj8WW5+4rqW0bFBF/FWIi4PKS8Wvq/cJvEbAvlucID1a1hB4mLAbvAbA4wQWrP+pwom0rF9F/JRLgbiDx+XzP3eZC9uPf75OPn2gq/biUF2FAkF/Czce0gvumxKO6nb2vuerMCCGWT1XGHm+bDfFp+rQFWOvbSG1z4bo2JeSIVjsR6gH2MdzdsqLw9v60l2+62DhHIva8DBhCF8gChnz0Wq94I5yo86EuzpqDnDygWvwwAcrVAiUdH3M5duTBQvmTrZmR44wBR4+eqpQGWHBFXX4hoUbk+SFsx4lfliaKE1VqBBrGA1co8c/dYkG4KHhSuUhpGolfx2+5S/l7cEQVkAAElmtkrRV4h0nwzhj6obKA+oeaK5CQASrc8Z9lpdBCIGFe9gf6/a7eUsw2iYfy5JV23PCo2Dh3+AAsYXhNQXClPF3dNBl8JKCY8Pbwr+/zhEEfLsoXm67tJFj+BLcw/j061hbbujZUPAdwz1sc7ZiDMfc4vQ+meMSZYxQHjFG9IlSIWtylpeTjmbK89+s12OHuGLJliS5SoVqcbL83qdPDm2lu4GHlVeVZxXYaMUeYWrsNl19fw17aUQbt/A9uBdHvrVUF89Ze0B5gWlqfk+MNtySgJUAPU9YaTBNAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRwTgkkH3e9sd6oCMQTEA2s3ZUjHMCJvHZbB2nXqJoWTmC/pgovgFAdQy6qj11tU+btNpIeW4gD/jOinbRpWFUvOqNCVM3K8viQllpUgX0sHs9S4SEMG6C8Yhg272yoAWMfWyxM/668Uhh2US5hK4w6Tlss6L+oxmYIJ1AnUokonro+Z/EZ+xt2p2JTbPbqyPaarxH6JEaJGMZe08zteBBOtFLiFWPBHtfgScsYN+5xee5wa3h25+Frm+nQKBBOwLCAf6VijHzDPvx9p5HU23d+2WYKaO68orEObQHhBAziB3guGTu4ud7Hn+lKgODNIJ6ZeE9n6aDuI7SFGefrrQ3ym9cLMz0oIGxJuhIx2G3hppxQFMi3ig+yTmZrsQAEA2/e3kHA1Tgmtld0iJSBKmwKDPdf/CGXCElnWv4M7l5Pnr6+tTRT90tFv7yFE2iaoY7fUp03jg9+91zZ2BROoDyiSqA8/o+WSGpbvTNHAGLsW7fFdZ/CwwzEObD2jau6CSeQB2Zv391R/qHOH+exNyVHrIMyGgk4EaB4wokK80iABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABM4JgcPqDXbD6oVXMpIF3s7f4FqMhqeABhHOfcITAYQRMLz5Dw8ATjb2H82kllrstxvCMlhFClsSXYKN7i0izL6dQnfgjfjE5JyF3GtUaIdA/4It2cFjRZBDW5yzEVoB4SayTmXbh18k+/CI0DG6mkdfraNceagD4YTdmkSGmVm7k7wv/LdrVEUtfruELmYjlUA+PF7AICBISTup02mZp7XnD+zgGsMrg5PBU4UR6mRdnOv62etC1BASmHOv2Mvy2r+mm2vsSxxCd/wR6xLRWEO+9GlTSx4b0kJ/IHpwsuaW/F37jzlV0XnXKaGQIVzxWslWEBxQQR4ZnHP8kZc1MoUb1mp1qweb9/nGs55OrOVGurju06Cz318cJ+7ACTnkEDqkU+NwJbJprjk63avGGLklARAo2L/EZEcCJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACRUAgJDjHGwC6OnrCWcCQn8PssCwiWxeX7X0ghEcbtTBvWPyhnDfYjX1j26KecygHlFuFGZv2uBavA5Ww4spOOd4nIF5A6A6rWUN29LN4qbDW8SXdvJ7zojra1gkPMruAF4HisM6NXSIJa/+hZz1EIK9lfecxYnHeEK9Y29rTbS1CDHsZ9ts0dF3DHQdyrsHuA2lmVdxficorQ4ISaDh9/JUnBhiuU2r6KbOdNeEtnIe1jrd037a1zKI/1h0w00hAsLN8a47HBoR6QcgXb5adfUaPb19yhmzflyZr447Ios2HzOrerjAYN4yobNYrTCJT3UdJSqCwR7HcGH9Ulm8/bHr3yK3f4rpPa4QFSN3wYH1oiGdufH2hvDd7hw5Zc/K0NyK5jZRl5zuBHN825zsFnj8JkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkECJEKiuFkANizt4XC22uxbDjfz8bA8ccXmyaBARkmvTxrVDZemWZF3Hm+cJvF3vzRA+AZ4PYtVCNhbfj544JVUq5Sy/IazEd4sTdFOE7jDOyxqyA14PrIv/3o7jLb9GqEsgYa8T6F8wTwn2fnLbt775763eBfl1eWDrqHHt3Bf+oy2hXrYrjx6dlaeBFEsoGFyXG8YtsvXqvLttX6p0ig73KAwqBEuEt+jaLFzfZ3+uOyjpQ0+boT8WbnZ5SRnoIKKBx5AZSxK0SGHRpsMe4/IlA+KRwlyCTQmp8svKfbJs6yEVGqRgYS+K8z59YURb+b/JK7SI44QKi/L53F36AzYXtagu/dpHSq9WNQvs3cUXxqxTfgjQ80T5uZY8ExIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIocwRqhLpCYuCN+sLaiYzTZhdWDwhmpiURVsnl9SLTIbQF3tr3q5DjmcDSzC0ZdlYsgcxjlkV7iCWMt+KtoTu27XOF7LhaheyAAIPmnYDVM4lTrTCLlwuIV2Dpmc4eJJzaW/PSjueE/bDmFUV6QMc6ZjfW0B1/rMsJ2YH7rJsK9WK1fSkZcr8SBbz101YpqHDC2l9+0xD5fLsoXu6cuEymq21BhRP5PW5+6yOkyacPdpMRvaM8PJmA27NT18ug5+fJyh05Iqn89s/65xcBep44v643z5YESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAEShWBVg2qqLfrE/WYICworOFNf3gbgCUcPiFRNb17LthlCe9QpbJLSGGMAW+yI5SDdYHeKDO2cftd4T4iLV4qoIm4SokjJv+yXY8HoTsgqJi/weVt4PJ2tY1uSt321Gm1el4KDCEiujfzPpDdFm8I0bUq6YphlV3eTOB94NHBLb13YCmximks2YVOwvOBYQjd0adNLUlJO2mG7OjfuY4g1IvVXv1ug2yKT9VZ9WsEy9CeDaRRrRAJDwmQykH+AmHQnLX75eX/bbQ2K7L0+j1HZPwPW8z+ru1WVy5sEi61wytJSFBFCVXCo8qBfnL1f/4WhMwoSYN3mPv6N5G7rmgsWxJTJXb3Efl7U5Ks2XFEDwvf4wfeXyWfKZFFk8jcvdGU5Hnw2CVPgOKJkr8GHAEJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJnLcEusXUMM991fYU2Z10XBpGeBc8GJXfm73DdM9/p1o0HXlZI11Uq2qgbNiTU2u3EkfkJp6werqICHN5wDCOgW2c6qOtCs3hZOlqUTYxOSeUAUQgdi8VfdvW1uIJtDVCd/y2ap/uCuE+6qlF8XNtFSyeNI6e8O5pYW/yiXM9NMfj7difuzeS7XtzBAZo3DgyVPdh9WYCkQIENSVpgf4V5BolpPlhaaLkhO7IFmvIjn4d3EU06VnZprAC4550bxepHuoShBjnkni4YGE0jPa5bZdvc3lqGHZxAxk9MMajelrm6RIXTlgHVdHvAsH3EJ9hvRoKvt+vTN9oilAWbj5E8YQVGNMeBNwlTB7FzCABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiCB4iMQrhaFuzevbh5g/I+b5XR27l4PDh7JNIUTaDhIvblvWLdmLjHGzJV7JRvxBxxsw56jsuNsmJCq6m3+aPVWv5PNWJrglK3zZqn+DWteL8xImtvI8CBp3zhHeIHQHVsSXSE7BnaKNOudy0QDi2Bjt/Lq4GQn1KK48da+U/m5zPtz7QE5oK63kyH/7/UuTx4NauSIbhopbyO4pjB4b0iweKew9wPPFvBUgE/myWx7cZHtWwUSSzYnydyzITsQ2gUeSay2zSII6dO2pqNwAvXnbzhobVak6XW7U8z+BnRyfb/MTJVYteOwdbdY04dSPe+B/Sq0CQQS+GQ4XDt4mRjZN0dUhcFZuRbrYNl5mSVA8USZvXQcOAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmUDwKjB7neal++NUWe/mqd42IozhZu+cd8vMo88QGdI908C/RoGWGWLdp0WD7/M87cNxLJx7Lk0c/WGrsyUIkvrB4ZzAKVmL1qv3y3ON6apdMQX7w5wxXWoEO0s3eKqzrX1fURSuSNGZvNfnq3rWWmz2UiurZLJPLtgngPwUC2Eq5M/nW7INRBaTCM48kv10rWKXdhA/afnrLOHGfXZuECzwMwXMtrlacHwx76aJUOk2HsG1uIWW4ct0jufWeFPPThanGW2Ri1C7eFp5GaVYJ0J9MWxsvSLTmeHa5W40SIF6s1sISa2b73mOc1UoKgd1Q4mLgDrpAx1vZFkW5S2yUG2qbGYLdd6tivTnfdz/byothHaBLDlmzxFGogBMqtE5boz7NT1zkKpeIOuARCBn+jT25JwE7AdcfZS7hPAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAueAAMJ03D+wqbzz8zZ9tHmxSXLVlnkyok+UxNQNlaAAP9l98Lj2IjBzucvbQyWVP/ySKLcRVq3kLw9d28wUNnygwnus3JGsvFtESHhlf1mvRA9/xh40ww3AQ8HN6ji52RtKJLFgU5JcpPoIqFhBVqv+fltzwGwCAUefNs5iiItb1VT1Nui6EFzALlXeBEKDSmaZrl71SgJuECVA0HHrhMWKcyMtQDmg3uSftXKfxMYd0eMsLX/gPWLEG4uljxKcNK5dWXaqhfu/Yg9I/FmPEriGTwxp5TbckZdFa6HN4s2HdWiVEeMXy2WqfbtGVeX06WxZt/uofL/Y5VXkVhX2JUiF1yguq6AUEtd0qyu4H618L2vnHrIDx8c93KJ+mL7fcY63T1wq/TpESrN6oRKvPGUs2HTQLaxHcYy5S0y4TJ2/W3f9wrQNsmJ7snSLqS7+SqCyIeGYfL8o3hSuFMfx0WdkNVdYG3x3Rr2/Qvq0riVN6oRI+6hq0r9jpLwzK+ffjAUbDskTX6yVS9T3LaZOmBw5kSXz1Pf8O8s17tvO+TtaXONnv2WPQMn8q1z2OHHEJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACxUhg+MUNJVAJE8b/kOPNAYv776uFZm/WqkEV+fdNbdQCa87b/NZ6g7vWk8TD6TLt7z06e9X2FMHHblh0H39HB69CBrypfl2P+nqBFp4CDG8B1n6wyP3I4BbWLLd0pUA/6a9CdPyiRAmGXVlCITtwfD/llWHCXR3l7knL9XCwOP/y/zYaQ9NbnHenJtXcxuxW4RzuPDakhUz8aasWQHz5V5zjkV+5pa2b9xFUgheKF4a3lfsnr5CtysPEkbQsma4W/PGx2zXK+8NNlzS0Zxf5ft+2tbV4wui4o2LsdP+ifLQSE439eI0WKMDDxHvKG4jVIIC5rmd9Fb4mzppdZOmO0dXkiva1TJEQ7l/rPYwDQXT0kxIzgW1xWEydUIHHDkNsglAy+MDLSPvbqwlC/owd3FzGfZ/jAQMCCnyc7JlhLT3CozjVY975TeC8EE+cOJHjjqVSpUp5Xu29e/fKyy+/LMeOHZNHH31UWrZsmWcbVsg/gaysLBk3bpwsW7ZM7r77bhkwYIDZSWJionzxxRd6v0ePHtKrVy+zrLQmXn31VTmjXCTVr19fhg8fXqBhFkUfBTowG5EACZAACZAACZAACWgCnDeUzhvhm2++kS+//FL69u0ro0ePVq5Mc3yZnq/zhmnTpsmuXbv0xRo7dqxUrHheTOtL583JUZEACZAACZAACZAACRQLgesuqi8t6oXJlPlx6q3xJMdj1A0Plss71JbblKcAfz9nTwEI2/CACgWCUBpT5u0xF1+NDrHwfLXyAjCsV5REhAUY2Y7b4WpRvX5EsPz3p216Ad9aaXD3enK78nAAbxS5GcZrLDzj2F2b1siteq5lFSyHqpjHcb11BOHJhLs6yKdzd+nFaGs9eMW4f0CMfLsoR3hiLUPazxJjItDfz17ssZ8bmwDFAiIZex14NzCsUa3K8vlD3ZWAZavMXXfQyNZbCFfu7d9E2jR0DpkSrPp/Y2QH+XJenCmksXaA9iP7NpKLmkV4hM4oCs7WYyFdr0awmxhgkPJY4s3aNaomHz5wobz2/SaPa9RHXaP7rmwqG/Z49xBiMAz0d7F0OhbENIZZv09IPz2stUTVCpEZSxK1lxKjHkRH917ZWAZ2qqPD2hj51m1R8MP3+KURbeWnFXtlhvIgAU8pdhvcrZ60VQKLSer+iN111M0bBr5rHZtWk1H9Y6RBRN7rxPa+uX/+EbhALWKfKW+nnZ6eLlOmTJHly5fLihUrJDY2Vp9imzZt5MILL5SuXbvqBW5/f3+PU3/ggQdk8uTJOr9Pnz4ye/ZsjzplNePNN9+UnTt36uFPmDDBp4dsBw8elOeff163adu2rRY6FMX5T58+XW688Uazq+TkZAkJyYmxtXTpUlMw8cwzz8hTTz1l1vOWyMzMlCeffFIyMjz/0fTWxppfu3Ztn45jbWNNBwTk/LDq2bOnzJ0711rkc7oo+vD5YKxIAiRAAiRAAiRAAiQgnDc43wSlad6QkJAg0dHR5kD//PNPgcAadr7OGwYNGiS//fabZgDRf2BgoE7zDwmQAAmQAAmQAAmcjwS2bNkizZo1K/SpDx+f8/Z9Xh1NGdMlryosL2ICSalZKizDcTlwJEMt2IvUqhok0ZGhXr1E5Hb4Yxmn5KDq59TpMxKmQiJEhAVqzwTe2gx+aYFeqIUHhu//1dOslpJ2UvYmn5CQ4IpSu2qwBPoY5mHOmv3y7NT1up9hFzdQXgVizD5LOnFShbCAl47T2WcEIT18PaeSGHfmKYz1hGRni1QPDZRqIZ5rfd7GhWufdDRTUtNPqjAwFaS2CgkBTydlwTD2BHXe2NZV1yhYjf9cW/KxLElKzZSqlQOUl48AQRiSc2nZ6iXmtIzTWuQCUYRV9GGMQ1XR1zjleJbUUN/x6sozBa1sEiip/zeXu1dU8PbR0KFDtWjCfitARIHPRx99JJ9//rkWWERGuiu6jLfN0NaaNvqaOnWqwGsCFrqti/9GeWneQlBiCEng9cGXN5TwMO7999/XpzV48OAiE08cP37cDdXJkyfd9vO7k5qaKm+//XZ+m5n1W7RoUSjxhNkREyRAAiRAAiRAAiRAAmWCQHHPG/766y/ZvXu3ZnH11VdLtWrVygQXDLI0zRsgkraa0xzNWp5XmvOGvAixnARIgARIgAQGLs5kAABAAElEQVRIgARIgARKFwF4hMjLK4SvIw4NqiihtXNe4vS1jVM9LNZXC6niVOQ1L0st+FvDjwzuWt9r3ZIogIeBqJqVS+LQ+T4mxA7RyhNCQQxhPCLDgyRSPMO8FKS/c9kGYy/pa4QQGfiUlEGsEaZES7kZ9Bw1qwbqT271WEYC3gjkfod5a1VK89esWSOXXXaZDrlhDBGL4h06dNC78ESxbds2nV6wYIF06dJFfv/9d0EdwxCqA94W8Baa4XHBKMP2//7v/3T/oaGhZU48YT2Pkk4PGTJEFi5cqEUucL1b0g+Tq1evXtJIeHwSIAESIAESIAESIIFzROBczBs+/vhj+frrr/UZwfNdSf/ePUdoi/wwjRs31mEVv/rqK7n00kv1p8gPko8OOW/IByxWJQESIAESIAESIAESIIHznAC8OBzPPC27D6bJ9yrcQGJyuiYyQIVpQOgGGgmQAAmQQOkjUK7EEw8++KApnGjatKl+Y6p9+/Zu1BcvXiw33XST4E0ziCTQxhqaIyYmRn788Ue3NtwpegKVK1eW9957r8g6joiI0B5BnDpE6I9XXnlFF/3000/Sr18/p2rMIwESIAESIAESIAESOE8IcN5Qti70ww8/LPgUhXHeUBQU2QcJkAAJkAAJkAAJkAAJkIAvBBBi4aZxi92qItTArX1coQndCrlDAiRAAiRQ4gTOfUCcYjrlvXv3yqJFi8ze586dK3bhBAq7d+8uKDMMMXMhoqCRAAmQAAmQAAmQAAmQAAmUfwKcN5T/a8wzJAESIAESIAESIAESIAESIIGiIOCvwiQUpUXVqiyf/LMbvU4UJVT2RQIkQAJFTKDceJ7YtWuXieaiiy6SWrVqmfv2RKNGjWTUqFGmiCIhIUFq1qypq8XHx8s333yj03ALi5AfO3bskBkzZui8Y8eOmds33nhDp/HnxhtvlDp16pj7SJw5c0YfY86cObJ9+3Y5deqU4Ng9evQQxD329/d3q2/fiY2NFYQaWbVqlWCMzZo1k1atWknv3r2lQYMG9uolur906VI9zg0bNsiePXukefPmWrzSsWNHnbYPLisrS959913NBF5CwKO0WH7PxWncOD/cRytWrJCdO3fq+wvXbsSIEYK33QpqGRkZMn36dH1fxMXFSXBwsERHR8ugQYO0MKig/bIdCZAACZAACZAACZwvBIpz3oDfapMmTdIo8bvYMITwMOYnPXv2FITxsBrnDe3F27wBnKZNm6bnQ0FBQXoeZ2VXkunSPG8o7D1Vklx5bBIgARIgARIgARIgARIoLQS+fLi7IPSGSMFEFLWrBstbd3eUYH8/qRNeSaqF5L4mVFrOm+MgARIggfOZQLkRT1gXpPft25fnNR0/frxjnXXr1skTTzyhyyZOnKjFE1u2bDHzrI2MesiDYMMqnjh69Kj0799fL55b2yD93//+V+rWrSsLFizQW3s5RBYINTFu3Di3olmzZpn777//vtx2223mfkklUlJS5KGHHtIhUqxj+PXXX83d1157TYdHMTNUIi0tTR555BGdNWTIkFIhnijouVjPC2nE0L7hhhvE+mDeqPPYY49pIc6AAQOMLJ+3ENPgnnLylPL6668L+oRgIyAgwOc+WZEESIAESIAESIAEzjcCxTlvgHjCOkcw2E6YMMFIyn/+8x838QTnDbnPGwAO8wn8Fg4NDS0V4onSPm8ozD1l3qhMkAAJkAAJkAAJkAAJkAAJSEDFwjlvD/SvIJ0bh5MkCZAACZBAGSJQuH/5S9GJwnsBHqbBsGgN8QHetikKq127tqB/fKxm5GELDwCGnTx5UoYPH+4mnMDYDO8WqJeYmKgFA4YnC6MttjfffLObcALCjIEDB5rnhzp33323fPjhh0iWmGVnZ0vfvn3dhBM4z86dO7ud66OPPiovvvhiiY3TlwMX1bngusILhCGcAA/jvjTGce211woEOfkxCILswgkIcKwGcc3o0aOtWUyTAAmQAAmQAAmQAAnYCOC3u/H7rKjnDYGBgdKmTRuPeQN+txlzh2rVqpkj4ryB84ainjcU9p4yb04mSIAESIAESIAESIAESIAESIAESIAESOA8JHDOxBNPPfWUREVF6bfiscV+UdoFF1wgN910k9nlK6+8osNjTJ48WXzxRGE2dEjAhSzc7uJjPGjF1sjDtn379mbLMWPGyG+//ab38fAU7lzhLQAhQfDG1CWXXKLLkIZQ4vTp02bb/fv367AMyMBDVoTs+Ouvv+T777/XfVgFE/CegUX/krJffvlFnw+OD2HIsmXLJCkpSRYtWqRDd3z22Wfm0HAdikrMYnZahImiOhc8/MS1vuKKK2TJkiWaB5iAzZVXXmmOGGFK8MaaL3b8+HGB4MLwOAFhzubNm7VAA2V//vn/7F0HnBTF0y3J8chwZI4j3ZEzSE4CCiKCiqAIKmJWDKjgH8GAqJgwIhJEED9BFEERJAgKCCg555xzjvrV66Vne2dn8x7cHVW/397M9HT39Lzp3Zvqfv1qtkVWGTlyJJnhZIKpX/IIAoKAICAICAKCgCCQnBBIyX4DCNX//POP8hM6depkwYp3Te07PPjgg1a6+A3iN0TTb0DHiqRPWR1TdgQBQUAQEAQEAUFAEBAEBAFBQBAQBAQBQUAQuE4RuCphO5o0aULz5s2zIN6zZ4+SXkUaJn6jZZg0Bvlg0qRJqsq///5bqT88+eSTFBcXRw0aNFCT2lAGyJIlS7Qu61EPyA4IqQEDoeCnn37yCM1RtmxZFVoBsY43btxIUAvYsGEDJSQkqDKadIGDHj16UIUKFVQ6/qRNm5a6du1KCOuxePFilb5//34qWLCglSfYnerVq1O6dIEfP6SHfRnOPfDAA+o0lDBMAkmaNGno7rvvVs931KhRauIf91umTBlf1V3T9GjeC/ra119/TeaqQmAzevRoJdEMggU+kydPVs8z0I0PHz6cli5dqrJB6QP9K316V2w0bOvVq6f6fN26dVWegQMH0rPPPhuoWjkvCAgCgoAgIAgIAoJAskNA/Aa3spj4DeI3hOo3ROqLJrsfBGmQICAICAKCgCAgCAgCgoAgIAgIAoKAICAICAJXGYHAs+cRNggrx0zihFkd0nE+WiEdMmTIoEJIvPnmmzRs2DBrpT6uqQeeMIENw4ovhJOACkY0DRPi2gYMGOBBnNDpmFTv27cvdevWTSWtWLHCIk9ky5ZNZ1NqBRcuXFBqHVYi79x///3qY6aFug8iQ6TWoUMHwsefQbUD5AnYmjVrki15Ipr3MnToUA/ihLp5/pMzZ0769NNPVfgNpOG5B2Pjx4+3sr333nsWccJK5B2QYbp3705QnkAoGKicFC1a1Mwi+4KAICAICAKCgCAgCCRrBMRvcBMn9IMSv0EjkXy2ydlviNQXTT4oS0sEAUFAEBAEBAFBQBAQBAQBQUAQEAQEAUFAELg2CCQ5eWLMmDF+7wzno0WewIVAoHjllVcUOWHmzJlK5WHatGkeRArkQ/gLqEIgD1Z1Rcsg06sNsr2bNm3Shx5bU/UBK4Tuuusudb527dpWPqhS1KxZk6DqAMUBqDYgPEk0DMoXmTJlClgVJuIRdiQYQ/iR48ePq8n7EydOED64B21meBKdlly3kdwLCCO+zDwHZZRAhrAsdvx99SmtRoE6QcwQ8kQgdOW8ICAICAKCgCAgCCQnBMRvEL9B90fxG4hC9RuAXaS+qMZftoKAICAICAKCgCAgCAgCgoAgIAgIAoKAICAIXK8IJDl5AiE6/Fmg8/7K+jsHckLLli3VB/lwnRkzZigyhQ6NceDAAbrxxhtpy5YtlCNHDn/VBX1u9+7dVl6tLGEl+NjRIThwunDhwiosAwgTsLVr16q4tdjPnj07tW/fnrp06UINGzZUYTyQHo6B1BAMeWLz5s2WKobTdRDuAiofIKGYRAmnvMk9LRr3gucXExPj81axehDhXND35s+fTxgYRjgWX3b06FGPU5UqVfI49nWAMB+33HKLr9OSLggIAoKAICAICAKCQLJDIJBfEOh8uDckfoN/5MRv8MYnOfoNaGWkvqj3nUqKICAICAKCgCAgCAgCgoAgIAgIAoKAICAICALXFwJpkvp2CxUq5PcSgc77LRzCSVyna9euNGXKFJo4caJVEsoKixYtso4j3Tly5EjIVRw+fNijDEgXs2fPViQJ8wTairAjIIVgEn3Xrl3m6au+v2PHDmratCk9++yzKZ44Ea17KViwYMDnUKBAASvPmTNnrH2nnUDnncog7dixY75OSbogIAgIAoKAICAICALJEoFAfkGg89G6KfEbooWku55ovWu7a7x2e9G6l2j7DUAkGr7otUNWriwICAKCgCAgCAgCgoAgIAgIAoKAICAICAKCwLVHIMmVJ+655x56++23fd4pzl9ta9OmDb344os0aNAgdem//vqLWrRoEZVmFClSxFrxM2/ePKUkEahiJ+WBevXqET5DhgxR5A6oFEDKeOvWraq6jRs3UoMGDWjNmjWE8CDXwh5++GHSoSdKly5Njz/+OCUmJhLIAVDygALD+PHjVdiRa9G+UK4ZrXsBHgi1kSaNMy/p0qVLtHLlStU0qFRATcSf5c6d2+P0tm3bPI59HVyrPuGrPZIuCAgCgoAgIAgIAoJAIATEbygcCCJHxTLxGwLCFtUMydVvwE1GyxeNKmBSmSAgCAgCgoAgIAgIAoKAICAICAKCgCAgCAgCKQiBJCdPvP766wQSAT52w0AfzkfDPvvsM0KoAtirr75KsbGxfqtNSEiwziOEQrQMA1YLFy5U1WHlT82aNSOqGpPrzZo1U5++ffvSb7/9Rp07dyaoUECWFXFt69evH9E1wil86tQpFQZFl0XYDifMERIluVu072X79u0UFxfneNsm+aFu3bqOeczErFmzKoIFnjcsW7ZsfsOCmGVlXxAQBAQBQUAQEAQEgZSEgPgN4jck9/6anP0GYBdtXzS5Pw9pnyAgCAgCgoAgIAgIAoKAICAICAKCgCAgCAgC0UbAeXl8lK+CEBS9e/cmLbWLLY6RHi3Dav5Ro0apz4gRIwJWO23aNCtP8eLFrf1gdzCZffr0aa/sN910k5VmhgexEq/sIBzDggUL1GfDhg3W6bVr1yplglWrVtF///1npWMHagYI2YHVTtqQ71rYihUrrMt26NDBkTiBDJMmTbLyJdedaN/L8OHDfd7qyJEjrXNVqlSx9v3ttG3b1jqNsDO+bO/evVaf2rdvn69ski4ICAKCgCAgCAgCgkCyRSA1+g0AG+9pdhO/wRMR8Rs88QjHb4i0T3m2QI4EAUFAEBAEBAFBQBAQBAQBQUAQEAQEAUFAELj+ELgq5AnAipVkWHV/4cIFtY2W4oR+ZK1bt9a79O6779LkyZOtY/sOSBbffPONldykSRNrP9BO3rx5rSwI92G3W265xQrFgAGvDz/80J6FLl68SI899hg1atRIfcwJ8eeff56qV69O1apVcyyLkBA67AMq1oQUr4skcUKZMmWsK4B8ADKIaWhnnz59CGSQ5G7RvheEqXHqf3jO77zzjgUHwq4EY126dLGydevWTREkrIQrO4cPH6bmzZtbfQqxmMUEAUFAEBAEBAFBQBBIiQikFr8hZ86cFvxz58619vWO+A0uJMRv8PZbw/UbIu1Tum/KVhAQBAQBQUAQEAQEAUFAEBAEBAFBQBAQBASB6xWBJA/bcbWAbdOmjQpf8eeff6qQFlBDaNWqFbVo0YJKly5N6dOnp3Xr1hEUJ3799VerWe3atVNkBSshwE5iYiJt3bpV5brzzjvpvvvuo8qVK9Ptt9+uSBP58+enCRMmKIUIZAIZAiEtQNDAJD3CWHz++ee0ceNGVQfCcnTv3l3t488jjzxC06dPV8dQ58AkOEgW8fHxhHAQQ4YMsRQ7UDYU4od1kSjsgERSo0YN+vvvv9W9IATF3XffrbDEvWHAb8aMGVG4UtJXkRT3gv4HxQgohcAQbsVcTfe///2PggnbgbLow/3791cfHKM/dOrUST37XLlyEdRH3n//fdXvcR4kilq1amFXTBAQBAQBQUAQEAQEAUHAhsDV8hvw/q7tjTfeoPXr16v3tIYNG1KpUqVI/Ibqyo8QvyF6fkOkfUr3V9kKAoKAICAICAKCgCAgCAgCgoAgIAgIAoKAIHC9IpBqyBM33HCDmrDv1asXaYlTkCRMooT9IT/55JM0aNAge7Lf40cffZR+/vlnlQehOz7++GO1D2KEngwHoeGrr75SxAqc9NUOkB9+//13wgS4Nky2d+3alUaPHq2SUL++hs6DbVxcHI0bN85SuTDPXa19KCyAfAIcoDDRr18/j0vj/oDXW2+95ZGeHA+idS/169enmjVrKjID1CecFChAqujbt29IMEDFY9euXfTll1+qct9++y3hY7eqVavS2LFj7clyLAgIAoKAICAICAKCgCBwBYGr5TeAaP3qq69aBFcQrPEBkQIEa5j4Da6HIn5D9PyGSPqU62nIX0FAEBAEBAFBQBAQBAQBQUAQEAQEAUFAEBAErl8ErlrYjqsBcZYsWWjo0KFqghlqE74sISGBRowYQYMHD6Z06Tz5I2nTprWKZcyY0drXO1AB+Omnn5SqgE7DNk0aTyihwoDB0dq1a5vZ1D4GBzFgumbNGqpYsaLHebQHE+Tjx48nTITbDaSJnj170qJFi1RoD/t5f8fm/Zj36a9MhgwZrNNmeSSCKDB//nylhGBlurID5YXFixcTlDqczMQrU6ZMHlnMc+b1PTKFcADVkUAWyb2YdeNe3nzzTUXgwcovu+G5g9xj3qM9jx0PfR6qIyCiFC5cWCdZW6R99NFHXmQcK4PsCAKCgCAgCAgCgoAgIAhYCFwNv6FgwYI0Z84cRSa2Lsw7IG+YJn6Df78BWGmfLXPmzCZ0Hu/U15PfoPEAGE5+Xbh9ygNcORAEBAFBQBAQBAQBQUAQEAQEAUFAEBAEBAFB4DpE4IYLFy78l1rv+/Tp00oRAWE2Ll68SCBNlCtXjuyDbuHe/5kzZ+j8+fNqwComJsZnNUeOHKHdu3fT5cuXKTY2lgoUKOA1aOqr8KVLl1SoD1ynePHi5O86vuq4GunAd/PmzQpnEDyyZct2NS6bJNeI1r38999/tG/fPvXBcytSpAjZCSjh3ADiQu/fv58OHjyo+lHRokXJjKkdTp1SRhAQBAQBQUAQEAQEgesZgaT2G/B+eerUKcL7IVTn7AQKjb34DRqJlLFN7n4DUIykT6WMpyCtFAQEAUFAEBAEBIHrHQGExytbtmzEMHR5f3FQdYztVTOofJJJEBAEBAFBQBAQBCJD4Fr9b07V5InIHomUFgQEAUFAEBAEBAFBQBAQBAQBQUAQEAQEAUFAEBAEBAFBQBAQBASB5IqAkCeS65ORdgkCgoAgIAgIApEhcK3IE56xJiK7ByktCAgCgoAgIAgIAoKAICAICAKCgCAgCAgCgoAgIAgIAoKAICAICAKCgCAgCAgCgoAgIAgIAoJAikMgXYprsTRYEBAEBAFBQBAQBAQBQUAQEAQEAUFAEBAEBAFBQBAQBAQBQUAQEAQEAUFAEBAEoorAxcv/0jdzttOqHcfotjpFqF65fFGtXyoTBJIKgR0Hz9Dvqw6o6htXyE/F8mVJqktJvakcASFPpPIHLLcnCAgCgoAgIAgIAoKAICAICAKCgCAgCAgCgoAgIAgIAoKAICAICAKCQHJG4MKlf+njnzfS9/N3qmbeVqewV3NjsqSn2JyZ6cZyeSlfjoxe5yUhcgT+XHOQvpi2WVU0f+1hmvFaU8qcQUTsI0dWakhqBLYfPEVDf92kLhOTJZ2QJ5Ia8FRcv5AnUvHDlVsTBAQBQUAQEAQEAUFAEBAEBAFBQBAQBAQBQUAQEAQEAUFAEBAEBAFBILkjcJ7JE5o4gbb++Nduv02+p3EJerhVKbrhBr/Z5KQNgelL99LFy/9R+rQ30E1VC9rOEp29cNkj7dK///KxkCc8QJEDQUAQSNUICHkiVT9euTlBQBAQBAQBQUAQEAQEAUFAEBAEBAFBQBAQBAQBQUAQEAQEAUFAEBAEUhcCY37fxiSAf+mJW8oIgSKER/vOxHV0hgkSWTKkdSRPNK0US8u3HqO1u07QnfWLUfZMMo0YArySVRAQBFIBAvKrlwoeotyCICAICAKCgCAgCAgCgoAgIAgIAoKAICAICAKCgCAgCAgCgoAgIAgIAqkBgYolctLnj9TwuJXzF/+l3UfOKEUKrVDxf3/sIITy6NY0ziOvHISPQKb0aeiljonhVyAlBQFBQBBI4QiI1k4Kf4DSfEFAEBAEBAFBQBAQBAQBQUAQEAQEAUFAEBAEBAFBQBAQBAQBQUAQEARSMwIZeVK/ZIFs9Ey7svRihwTrVsfO3kYgVogJAoKAICAICALRQECUJ6KBotQhCAgCgoAgIAgIAoKAICAICAKCgCAgCAgCgoAgIAgIAoKAICAICAKCgCCQ5Ai0qVmYxs/fSZv3nlIhKNbvPkGVWK0C9s/mI7Ru90m1f2utwvTff0RLNx2mf7Yco12HT1ODxPzUvk4RdV7/OXrqIs1csY+27DtFB46fo8wc0qJg7ixUs3Quqh6fm9LccIPOam1B2Pjhr510mesvWSAr1S2bl85yOIyp/+yhTdwu1JMvJhOVLZKdWlYtxHX6X8uMdi7ZeoQWrT9Ce1hhA3Xlz5GJSuTPSs0rx1Lu7Bmsa5s7wdxvzVJ5aM6aA6oYQnbAsB07d7vax5+b+Br5cmRUoVCg7IH7Kpo3MzVkvJwsWpjtOnSWVmw/Sss4VMjxMxcoLn82SiicnRpWKBBROJYLl/6lWSv205qdJ2jv0TOUMX1aKszPtH5iXqpY3NVX9H0h/Iu+Z6S1qlqQ8jjgjTonLnBhg3xtuR/GZE5Huw6eoTlrDyKJ+0EeRfLZe+QczUCf2nuSTp2/pK5drVQuql8uH6VJ492f7HUUyZOFcTlGy7nfrt11XPWF3re7SUO4Vij3iPymnTp/mcOzHKENu0/x9+U4Zc2QjuILZaf42KxUi/uLUxtR/vK//9Hybce43Alaz6FdzjEmpQpmp5LcT2vzdyBLxrTmZbz2t+4/TbNW7mfMTtPJc5fUfZUqmI1aMOaBQsT8y1+SBesP0d+bjtLuw2coMz/TeL520wr5qUi+LF7XCidB98ct+07T9oOn1He4NOOCNpYvmsMnLvpaO7gvqPs7dIaOnb7A399sVI77c7nCMY5tDOe5n2fM567aT6t3cN8+dlZdOjZnZkosmp0aV4jlvu7/t2b/sfO0cttRWr/nJG07cEo9g/hYvr9iOagst9OXhdtnfNWXnNOFPJGcn460TRAQBAQBQUAQEAQEAUFAEBAEBAFBQBAQBAQBQUAQEAQEAUFAEBAEBAFBwEIAXIayPCEJ8gTs4Inz1rkZy/bTT4t2q+Ma8bnoxa9WKCKDzgBCgzYQFsbM2UafT92kkzy2Y3/fRiWYGPHmvZWpmG1y9sipC/TRlI0qf5uahShDujTU75tVdIzTPWwR0Sec77NHa6hJZo9zVw4wYdtnzHLrfux5Ppy8gXq0jKeuTUp4ETmCud/8OTPSpz+72mrWbaZVKp5DkSfOXvjXuq8mlfJ7kSeiiRkm4l8YtdxsEv25+pA6rlZqF/XvVNGRxOBRwOEA5JWnvlzi/Sw47xh+pjcm5KGB/EzTp3VNMmO7asdxmr3CRTBZu/M4vd6lklfN4zhMzBe/uvpKPSZhdG5QXOVZw+QGjWXe7Olp0YbDFobuSg7T+Hk7qQz324961qBsNpKBWUeebBlo2PTNPEHuImSgDhBpTAv1Hs2yG3jSHLiD4ONhS/epQ5A8+t1ZQfUH8/yxMxep/7gVtHjDUTPZaifa+Po9FdUkvEcGPkC/eXfSOvphwS77KXX87o/r6YMeVQlEHyc7x2SlJ7/4hwkDxz1Oz1i+n4byM7m/eUnGNpvHuVAO0Be/5ef76S/e3xNdT1P+Pvzvrgrqu67T9Bb39x7f30Tb/S1Yd1hnoW7N4ugBbqdJTAn1uYM80m/MSkV+sio2dgZnWE/9u1SgekzScbIZy/bRK+NWOZ1SaXc1KEY9W5WijPx7Zlq4fcasIyXte959Smq5tFUQEAQEAUFAEBAEBAFBQBAQBAQBQUAQEAQEAUFAEBAEBAFBQBAQBAQBQeC6Q0BPfOPG/+OJTyd75ZuVHhPEWVhRIksm95riDyev9yJOFM6d2aOqbbxS/oEhCwkryn0ZVtO/yJPRmjiRkye/cS1tUHl4fuRyglqD3UCc6P7hX17ECXs7hk3bTO9PWm8v7nHs637zZs+oVCSgJGEajvUHygzBWLQwA1nBJE7gfk3MlrC6wMdT/N+vU3sPnrjgRZywEw/mrz1Mg39Y51H8ufYJhOcGA4li3hUlCZ0Jz18TJ9DO3u0THZUxpi7Z60GcsD/HDayK8uq3K+lfH30W1xs1c4tFSMCxq9+6n0+494i61rFaRPcPF1rfC2BTv3xeRerAeRiw78Z9Hooc2kBe6P7BQos4gTbVLpubQLTQBjLGQ58sps2s4GK30bO3ehEn7Ng8PWwp4btkNxAT3vhulRdxwiw/YsYW+vbPHfaiQR9/wqQJO3ECRBfzGrO4X/QasUQRQewVj+BnZidOmP0Z+UfN3Eovfr3c57MP9Nxns5LKcyOWeRAn0Gd1v8U18FvTm39rZnJeu0E1xSROxLOaRqOK+TyIOf/HBJKB3632KBpun/GoJIUduP9LpLCGS3MFAUFAEBAEBAFBQBAQBAQBQUAQEAQEAUFAEBAEBAFBQBAQBAQBQUAQEASuPwS2GJOsCDfhZDuZmIAJ0CfbllGy+QjHAel/2OJNLiUAXQ7KDq2rFaICrNKASWOEe3h74loCeQITkgMnrKFPe1b3WDWuy+rV8DfXKEhdGpVQoTawkn0NKxi8x4QHTJhjYvnlb5bThw9Up3RpXWEb0JaBE1ZZk6EgMrzUMZESWT4f5JADLK//69K9amU9roXJWSge1CmTV1/aY+vrfhF25Nvn66m8Lf43W10PE7s6zaMSPwfRxAy4wl7vUpHvKZ9azY9HA9UQ4A6bzioiXRrHqZAJKiHAH0zw9x611CKxtKwWyyv946lwnsx0ieOQrObn0efrFer8lMV7qBiHmujSsLiqNWeW9PTynYlqchoJAyespf/rnVspRKBdb/2wxrp6X86XN8Y5jIpWZXiiTWkOt1JQ5UMIFmD32rjVCvt5aw7RSJ5If6BFSatOcwfPEc+nD1+nUolcSn1D99tI7hHXmMbKA9ruaVyCHuJ+n/ZKGBEoS0DdAYouIALNWXmAmleJVdkXseKBVqqoWSYXDbi7MuXI4ppiRhiJIUxE+vEvl+ILJumfZzKKNqgdfMHkH21vd69MNeLzqPASIIKMm7uNMGkPe2b4UhrxZG3KlS29zk5jWR0GxAVtr3KfQYgQqHeAkPQ7h7AAGWbZ5mM6S0jbwycvWNdHQahn1Etw9Ukcgzzw7MhlChNcYyeH5DCVaNBnR/y2BVmV9euUyOom+VUYkiNc96KN/Oz/z0VIwLNfyMcI82M3f88d9Qwc7+6DUIXp3qykChGDerZy+I2RTCDROA3ivOg7+Yx++r2hijGQ77FRxQJWE6AsAVINDGoej7QuTbG5XGon4fYZq/IUuCPKEynwoUmTBQFBQBAQBAQBQUAQEAQEAUFAEBAEBAFBQBAQBAQBQUAQEAQEAUFAELgeEfhjzQFauc09UVqmcIwjDAlFY1SIhKpxuQjECRiIBLBxc7erLf7cVqcwdWsap4gTOAZxoXKJnPQWh3bQq8dxvZXb3ddEPtMqcv4Xbk9UxAmkY0K6YvGc9MY9law6MPG6eoe7DpAulm91hyF4u1tVqsxt1aoaCLeBUB0dbixqXWrsHHe7rcQrO/7u1543nONoY4ZJ8CaVClhhEPBo2tUuTCA9aNuy76TeDbidtHCXIqogIyb4+3Qsr4gTOAZhBc/03e5VcKhslDHhjQRMaLevW0SdA3lAK01MXbLHmphH2xobk84qs+1P16YlqBOH9NAEC/S9hon5qd/d5a2cUEq4wKQDJ0OfG/ZELWrC18mT3UXS0P020nucfiU0B64L8oYmTuAYBJKBHK6kc6PidGutwnTq/CUkK/vDUOLoxpP2mjiBkwjx8GTbsip0BsplMFRMQER663sXGQZ5EZoDISUypndNT2Ny//FbQDRxTeSDoDF3tZsoAdLIZ0ZYHRATmnGf0WFPQLJoX6eICjWB+sOxo/ys0W58BtxdQeGOMDzayhWJoSe4jdpWGL8DII6Y9/dixwRqWbWQIk4gf25+fq2qFaSX7kjUxZkEtdPaN3f8PXcomoDEBYNixP84rEp8bDalfoLvTckC2ehlDikCshgMeX/5Z4/axx8o3GjCUpX4nB7ECZwvUyg7DXmoGt3O/R847Dl6FsnKwu0zunxK3F4XyhNnzrjklLJkyRLwGe3evZu+/vprla9evXrUoEGDgGUkQ+pAYNOmTbRo0SJaunQpnTp1iurUqUP33Xdfirg5/JPdyGzA9btPERhoWTOlVfGoSvGPZ4n8gft9irjJFNDIWbNmqT6UNm1aeuyxxyiY35wUcFvSxBAQkD4QAljJPCtezPccOUe7D5+ltOxcIUammCAgCKR+BMRvSP3POBp3ePDgQVqwYIHyG/bs2UN58+alN954IxpVJ3kd4jckOcRBXQC+54QJE1TeO+64g+Lj44MqJ5lSDwLSB1LPsxS/IfU8S7kTQUAQSBkInDl/mSbxKu+Pp2ywGnw3KwdoYoSVeGWnbc3C1iSreQ4r7BeuP6KSMGH5FE/8OlmRfFno4ZtL0Xs/usJHzFl9UJEbnPK+whOXWlHCPF+Iw1E83qaMpaawiUMagCABm8v1aYM6hrmaXadjCxWDqX/vUROiCKmAOQBMytrN1/3a84VznBSYNamQ37Epjcvnp2lLXAoJu3l8LlibySvmtT3dtpzj88BEeJuahQjKE5hg3nf0nLXCHmUfu7kMLVp/mHYfOUvfz99J1UvmpPevPH+ER+jVrpy+hOMWYR4ebOH8ft+ACRQgCWBlPwyhQErxRLjdbkzIa5Fw7OcivcfsPHd07EpUjbWsqABCiWno84/d7CYK6HOZM7ink1cw4acKqxqYBgKFk5LGsq1HrUn/m6oUoJql8pjF1D6IIT1blbJwWb/7BKcXVuf2HHY//xsT8ihiglcFnHBP4+Jcfp9X+BunvPY0PIMXOriVMuzncVyqoIuUgP1NrNKg7W9WFNGGMCb4DjrZLdULsfrJv3SO+1y2zG5VDTOvv+c+jRVotPVlIoYmn+g0bPEMcO4+Dq8Cm85l7mtSAruUiX/ntG3bf4YOseKHJvfo9OrxuQkfu4XbZ+z1pKRjd29PSa0O0NazZ8/S2LFjafHixfT333/TypUrVYmKFStSrVq1qHbt2tSlSxdKn967g+7atYv69eun8mN7vZAnvvvuO5o7d6667169egU1ePMfTyz17duXTpw4QbGxsfTyyy97PJn33nuPtmxxS9V4nOSDnDlzUo0aNdSnSBEXm8+eB8c///wzTZ06VZ164oknqGxZ5xcZp7LBpuEa7du398gOIk1yJ0+sZumwj3/ZTCfOuBmAHjfBBzEsndSyagG6rVYh+6lUczzst60szXRI3c8DzUtQU47TdC1s8ODBNGPGDHVp9NVw7eVvVnNsLxfpC3W81KEsVSjmzJ4O9xpSLmkQCLUPPDJ0qcf3F1JY73arGFTjdvGk/gujV3nk7dq4mPq+I/HUuUvU87Ol6nymDGlo+GPVPfLKgW8E/uS4h19M30qQV4SBvTvm6Zq+C8gZQUAQSLEIiN8Q+qNbsmQJjRgxQhVs06YNtWrVKqhKUAZlYYMGDaJs2dwDRCnJb9i8eTM1atSIDhxwr4TBPSV38oT4DXhKRMnFb5g4caI17tCwYcOg/G/XHXj+Fb/BE4+UdBRqH/hwCi/22HjUukW8n454vLq1StM64WOn20f/0EVjZWPF4jH04u3usZWen/MikrOucYUPH6jsNZDqo9rrPln8huu+CwgAgoAgkIQIQOWh+xDXBKC+zIHj55Vsvj7GFpOxj7QuZSZ57FeyTQzrkzsPukJG4Lgcj7uaq8x1Hr3FimxtG/e6J011GrYgYBTM7ZK4N9P1PibstSGEh7bNhqpCuSsrxvU5cwsliopxOSzCx85Dpx3JE77u16wr3P1oYwZliDRXwkXY25QvpxvL0zzGGYyB0KjDp+j8u5ic4GQmyQXPQIcnQN7MPI76CqsPPPTJYlW0zxjX/CIO+rNyRPZM/qdVKxTP4aHmoCox/pTnkCyaPLF53wlH8kRVH4u4onGPNUrn4bATu1SLHv3sb0UkacqEjorFclIWDoPhyyrH5VRkEpwf+usmWrHtKI9Dx1KVknk8QkPYy2/Yc4WpwSegSOHrmZgaHKtYkUWbqTxSgdvoy0DAQP9HyJFIjbsSIdQK3o9Ps/rGGf6YqjNXhozVZUBE0IYwGb4M7++31S7i67RK9/nc+YLmfZXkRdO+LI4VKLRBaQLj21AXAVECxB6QgqCqcvc786hj/WJUn4k6UKvQaje6rLkNt8+YdaS0ff/f8pR2N9xeTHhj5QZIE3YDiQKf4cOH0+jRoxXBomDBgvZs1+UxVk598cUX6t5BLAlm5cvly5cJE4WwhIQEL/IECCyauKIy+fkTFxdHkydPpjJlynjl+vPPP622dejQIerkie3bt3sRJzAgCuWR5Gr4Jzlq1naaucLNTPXVVhArxs/bTRv5n9Sz7UpbsmS+8qfEdNf0pqvlmDC+Fnb+/HmLONGkSRPKlMn9ghdKe07wP2STOIGyU5llK+SJUFC8Nnmj0QfAdD52+iLlzOpN7rPf1Qwjzps+Z34XdJpsQ0Pg4Inz9Nmvvol/0zjW4j+bXPKK7WoXpPIs/ygmCAgCKRMB8RvCe254d9Z+Q7FixYImT4wbN47mzJmjLtq/f38P8kRK8RvQ+JtvvtmDOAGCflKQu8N7Ot6lxG/wxMR8V7pWfgNapBcuYL9atWrYhGziN4QMWbIqEGofMPsubgQDuvPXHabGFQIvHFi5/bgHcUKXNwHB4hix0BAQvyE0vCS3ICAICALhIGCSDJzKgzgBmXoz7IA9XyYjfIB57ujpC9ZhaWNFuZVo7JQwJiMPHnOvgjeyUGVWJ/BnxfNntU5jtb+2/cfO611WnXBPelqJxk58bHaLPAHlCSfzdb9OeUNNizZmBXJk9tkEf2QWX4VOnnWFNNDnu7y7QO/63WJyv16C5zsVCA73Ny9JCK2hrWO9oo6qCfq83sYbZBudZm7jYt19AdduWdU869oHgcPJonGPPW4qpUgm+vsFBQ58YAj70qJKLIfFiPUi00Il5BZW7Pj5St4F/C6KDwyT8gi/gpAmCB9h2pGT7j5uXsvMY98HUQDhMKCksJGVWrSZ2Ok0c4swFpHYnJX7CeoyCzce8SJq+ar3kHF/8caz9ZXfX7qv537cWDxdokBWv0QH/B4irIcmWxw9ddF6lq9xCKHHP/9bKYFAdWX0rK3qgzYpVY8qBakBq77YVS3C7TP+7jW5n0tV5Illy5ZRs2bN6ORJN3MPk/pVq7p+faBEsXHjRvVMMCFfs2ZN+u2339TEf3J/UKm9fVu3bqW6devSzJkzqUqVKlf1dk2iDVbOYVUcpHeTs/Xm1eZ7DbkqsNYg6VWafxQLMcMVL0+b9p2mdbvc34VlLKX08jdr6LW7E/2+UCbn+07ObcPvjzaQb8K1aUbMMV3Hyu0nLIagTpNt8kMgWn1gJpMiOtR1lvcy73rBFWlBM833Pv9IiAWFAH4rteG3tXnl/FQ0jzv80eodJwird2HVOT6ckCc0WrIVBFIWAuI3pKznZbb2WvoNe/fuJVwflj9/fkUGCYZ0brb/au+L33C1EQ98vQsXLtD06dNVRvgN4ZKuxW8IjHVyzRGtPjBr5cGgyBO/LfdUygmESxrnsfpAxa678+I3XHePXG5YEBAErgECUCawW/ZM6alI3izUIDEfJRbNYT8d9PF5njjUFpPF/yImqEpoO3nOXU6nYRvjQ4Zf58EksLbDBvHhjFFf9sz+p+vMdmJi+WpbtDGLdvvPsjpAOHbi7EXHYnXK5vEgTziF13AqGBPoORp95SgrAIRi0bjHHKxUPuSh6vQLh4H5iUPgQJ1A21oe88RnyOQN9CiH7ujSqLg+pVRCXrw9gWqVyk1T/tlNize4VdGgZjDm923q06RSfurHpCZNgDnLoXbCsdO8yDQjh6ZBqAtt2Q3sdJq5Nb8jZnqg/Yt8jQ/5nn9YsCtQVq/zFy667y9LAFUSr8JBJpw3rpEzm//fK1SZO3t6Jk+4KjfLlmWFiVFP11HPfSKHpAGBQtt8VmLGB793g7pV9gjfEW6f0XWnxK3/X+MUdkdPP/20RZwoXbq0UpawT8RDYaFz585KoQJSqygzbdq0FHanKa+5CO1hHxQ6dOgQLVy4kHr37q1ILSC9gPyCUB85coT/4hMqOuaE57333pvsiRM//7PPgziRg1eo/++OclSQ5f7tdoJjt7394wZLyWD7gTMcR+0QNblGYS3s7UtNx/Pnz7dup379+tZ+qDsYALMbpJUgB9qofPIm9djbfb0dR6sP/LHmcEDyxI5DZyxZXV84I9YjQr7AglGy8FXP9ZZuOrCVSuSgbk3cTsL1hoXcryCQmhEQvyH5Pt3k7DesWLHCAg4h/5I7cUL8ButxJaud5cuXW+1p3LixtR/qjvgNoSKWfPJHqw9s4YHuczyQ6m+F6X9828u3ucnBvlDo3b6sir+MQe7cHMtbLDAC4jcExkhyCAKCgCAQCQIVWX7/gweqR1KF37I5jf932/e7V7Y7FdrLoXO1OY3B49wmY3W8zmtuEXJEW0IRdxiQfDky0oHjLjWLXYfPUAlDoULn19utRjsxJ3C1LdqYRbv9ZvtQ9499GgR1iUwOoSouMDll4IQ1HuWH/LSB6pTJS3hm/gxzMP5spxFKJD6A6om9nmjdI0KP3MUhG/DZziFsoFS2eMNhK5wIrvvpLxsJhJ5ba7kX+SHMSnNWpsDn4IkLtIpDdyzjEDu/sBqFnoifzQsD06dZzaFPXKGpcxnftcfblKHmrFARjOnx7Pw53PNewK5qnDepSte3w8BWpwWz/e7PnRZxAuSBzo1LUDn+nuLaWTOmo2xMsDp84hx1HrzAq7rc2d39YTu/n1cvmdsrT6QJJoYbdroXTPuqd+MeNyHGLIv8hfNkVqGOetwUT+t3n1DhSP5Ye5CWbXYpLeM5PvnFEvqKSRYmYSjcPuOrjck93U13S+4tDdC+PXv2kDlxNWvWLEcFA6gb4Jy22bNne8iu6nTZJj0CUHe45ZZbCCogWLkFA4Hi+++/T/qLG1c4etTNkAtXMtWoLkl3zzBL77t5bvZbSZbo+ejByo7ECTQETLsBnRKVGoVuGCTnxaKPgJahRs01atQI6wKbWS0EYVZgSl7JkHn6bbk8t7BAvYqFotEH0FzIvx4JwDr+bVng1WPoQwj3gk8RfikSCw4BU7JYBo6Dw0xyCQIpDQHxG1LaEyNFbk4OfsPx4+4JSKgYJmcTvyH5Pp158+ZZjQs3VKT4DRaEKXInGn0AN45IGyBe+7MVTJy4dBkUCv9Win1P+A1lCkUmdez/KqnrrPgNqet5yt0IAoLA9YdAHmPC0wyj4YTEtkPuiUhfE+eQyMfqdV+27aCboFG2sDsEbIGc5sSrO49TPZv4GtryxbjL6bSk3kYbs2i3N1P6NGrVvK43KxME8LwCfTApbLeRM7dYigy1y7omwzGp/NbENeodzJ7fPN60z6VYa6aZ+5sNpQdzctrM42s/mveor1E8X1ZqU6MQDehckSb1bahCc+hzvy3fp3e9tvliMqhQHb1uLUtT+jWip3mrbTrPQWl1lLxGXz1x5kLA56GfF4gaMBOjzQFIShv2+Mdet8++/WONe0HrK50rUPdmcVS3bF5CGJBYXrScjQk2+3yE7Mlv3J/5HbVfI5JjhNHQCjjoh77C9uAaCPFxzJhbyOJADkK+dGlvIISn6dSgOH3yUA1FlkDYFm3z1h3Su17bcPuMV0XJOMH7VyEZN9Zf07R8KvLceOONVKCAb/ZSXFwcPfbYYxaJYteuXdbkvdM11qxZo4gZmOT/999/VXgJDJYhHEjatG7JJqey69atowkTJih51/3791O+fPnUCqXbb7+dEhMTPYps2LCBJk+erNJat27tdR4nFi1aRH/88YfKgzpwL3bDBJ4ORdGpUycqXNjNDLPnTQ7HuXLlopdeeol69eqlmmOu6Eqq9h07doyGDx+uqgeBRhtCduTO7fpnCNUSKGGYdvbsWfrpp5+UYgbiPcMQ6xn94bbbbqMsWdzS7ma50aNH08GDBykmJoZ69Oih+gOeEz6HDx9W6hvBqBUMn7HNGviAnPxTbUoFDMGBCdT7m5Wg18evU03aeegsHTt90edKdPzAL9hwhGV9TtNOZtWC4VeCQ4JULB4TlCRopOW3MzvwH2a5IeTIv/SfipfVqmoBRRDZw6FKdnGbICNaI943w9DEXu9juOifzUdpLde7kWOJ4WUWcvtVOR5dOZYrAk7h2qVLl+iXX35RxfH746sfBKp/yt97rSxY8V6nTG767NctKm3rflYaOHeJsjm8zCHDH2sOMUvZxWBuX6cQXbj4L01atJfWcAy9Uyz/lpclrlCfqToCRulSDlGwbvdJjpN1AyUUiaEapXIRBs58GXDEtRZvPKquh5VOkKXLyy9L9RPyqjAG9rL7uV1/cplgLT+/1DZIzOuVHSt7fl91kDZyH93KDF60GeFqynC4mpurx1pSYGbBQ8yARZwyWOW4nOresEJryZZjtIZZmsAUscjQF4APXhrCsWj0gYIcckeH44G07l31ivhsCuKuacML3L6j3vEWEeMcSjMXebA0K78k3Vgujy7isUUIir84BAhwBXEjZ9YMFMuOG753FYt7qwChn57n/oUX2Yb8nPDiOH7ebtrOahjAsXvT4h71R/KbAOm6iX/tUb9Fh7htWZjpWzRvZvUcm7MEXHpD8tDjonxwkRniM1jJBfH78P05zdJ9IJGU5OfdimNiov2mIdTRVu4b+I3Qtot/L/Es0NdARsN59B9t+K1CH9JY6HTZCgKCQPJGIDX4DadPn6YvvvhC+SYVKlSgli1beoGOEBPffPONSse7asOGDb3yQPHthx9+UOl4hwHRPDnbtfAbgMewYcMIihgmUXLq1Knq/R7n8+TJQ926dcOuZZhUQ36EiUSfO3XqFBUpUkSFjLzzzjt9+qviNwTvdySV34CHiPcXrNZHDGKQWvG+WJXfJSvzO3omQ7bZeuAh7Jj9KFwSTiR+A9511vD7H6x+Qh7KnzMTzVpxkP7ilWZ438Y7TwL7R/AptNQufMhF/P65isOXneXBOgxgVuL3xFql/ftk8DNm8LsU3hdBEs+aKa1SNcA7ZjNWQ3R6l5u6dD+d4ferYOwGdopv53baLRy/AWp/U/7ep2SBsRoLvgHq0fe9j+OR4z0U2NThAfQcjFO4FmkfMP2G2ewfteAwc77MDNlhlrPnh3+E+4VB8VA/ezOf+A0uNMRvMHuF7AsCgoAgkHIRgMIDVvFjkhHvOiu3H+NxsJxeN4TxNYQ20IYJVV/265K91Lam91wMCI+TjTrMyeA6XN8sXqkPm/LPHmpQIT+lwcC/zVbvOM7j9S7yBNpdskDkhEdMwp7jMT5MyAdjSYFZMNcNJU+D8vlIh7f7Y81+alnV+10R9WHMeO9Rl0JEodxZKA+PnWtDXxg9a5s6hALKO92q0rMjl6gwFQvWHaYpi3dTW0ONQZfTW4SzgD9hPmd97iS/585c5iYklCzgViHReQJtI7nHExwK48AVEgAWjeU27hvXxRj/E6wO8fPiPaoZ6/j9HwYlDq3qALVjvC+bhsn9O+oVpV+4D2MsFgaVCGBQPd4134a0uTxO361pSUJ+J0M/x3cOczU6LE9crBujGbzAFOVzOYSu2MXXm8vvxqEa/ICVrJ4BA0HhRh/f8YXrnUnLNUq5x9x/45DsXZvEKcKFvR3oc48PXUwI/VM8X2b69OHQFmQ0qMB9e4mr70zl3xozpIp5ran/uH+vbuIxcG2YP8A4Ngyhj+zfezyr7s3jqPfI5SrPxitElHD7jKokBf9JNeQJkBK0YaAwkL3//vuBsqjzGJR8/PHHPfJ+++236rhnz540ZMgQgsNuNwyOPfTQQ4o4YT+H41dffZUg9YqBOEyow/bt26dIBNiHGsLrr7+OXQ9Du7Uyw8WLF+nFF1/0OI+Dd955x4qh2r17d6/zyTGhTJkyVrN273Z/ua3EKO9g1RgIG3YDdtqefPJJD/LEr7/+Sl26dLFCw+h8eps9e3b6+uuv6eabb9ZJ1vaVV15RoWJAZKlcuTLZiRIguQRjize5VTIwUY1/ZsEYpMAw+HOS/znCMCiiZY90eUyKf/37Dn658FQ42McvUfhh/YsJFT8t3kvP31bGUekiGuWH/7aNMPhj2lqe4MaAW7NK+VhG6JQiT+D82F7B/3PBBOxrTB7ZzwNepu04eJamLtmvBkAHdEoIe3X+ypUrrWqbNm1q7Yeyg3/SmIjVdguTAUrzP6zPp22x2KzA4bbazi98X8/ZQaevxMjDYOQbE9ZZRBvUiWeIwU7gO+DuRPpwyiZFgNDXw3YTE2Ym8zPu2TJOTYqb57AP8sr/xq1mOVdPFjX+8WNCeRETKsBkfL1zIhXgQVhteLHHBHiwBua0nTyxgCf3QSQBTqYdPXWcljMBZDJP6D/WOp6qMRnGNBBE9LXxkreQ+/EvHPrGtN1MyAHJAIPQb3QpHxaRJhp9AIPXICHAQFDxRZ7YxsQR/azxYg/5tH3unwbr1rDidBh/p2CZMqTxIk/gRfSL6Vu9Vqvtu3BO9RfE8C3GL3Kv3V3eg1Qy7o9dqk5cG86c2UfNQdZIfxOgsoPfHDiY2o6eukh4XiB74NzLHLKocG7Pl3XkBckK3/lTV37zdHlMgOCD37nb6xT2GGz/lV8+0c9MA6EEH/ybBzEE3yHTMICMD36LQSQREwQEgZSBQGrwG+B/vPDCCwpwKF45kSdA+NXvu02aNHEkT0ycOJH69Omj6tEkiuT+FK+23wA8Bg4cqN7lTWzgk2m/LCEhwYM8sXnzZgJBwnw/MMs+++yzBP8AzycNWMGGid8QnN+RVH4D3jU//mWzeq81Hot6D8YKf7wTPNqqpNd7lZnX3z4It3PnzlVZQFjKmjWrv+yO5yL1G/AujIlyGOSef5qw3po0Rxp8JpDNp/PA5EcPVqF5PEA8atZ2nLIMEwyzmaRal0kEj98cb6XrHSgdvDhmlUUM1umHeRwVPhjeM7+Zu5Pf30tSbfZTtYH8OoZ90lDMTp4I128AKUSrPIIkAVL1B5M3ebyLwqcCify7+bvorXsrBu2Pm/cTjT5QkVeIoS14T4YsNNqOQWy74TUa/pC2mrwA4acjzuNleKfXPgaIQuZYg/gN4jfoPiRbQUAQEARSEwIY07q1ViFrkvzF0Svoq6fqePwPxP2OnbOd5hmLwuonuOeh7HgMmrCWVZyyk6ksgTzfzdtBCGWgrVyRHHqX6iW665vPYZtHz97Gk8Nx1nnsYJV5769cE5o4vqVGIfYj+MU0TIOM/5kjZ1XplduPUk1j8tdflUmBmb/rhXOuZfWCFnni1W/XsCI3yNme48VYmY9JbLzTwr54rKZFnjjL496vfbvaunTv28upseLn2iXSXe/MU+mDvl9L1Uvl5rq9xyR1wT6jl9Pwp2qTqWqBd6rXv1tFu69gj3dOqDeEapHc4/YDp+jhT/9Wl0RIipFP16acNlLwjgOnrSblBm9A4QAAQABJREFUvxIqHkPyj3y62ArN8fmjNbxwxVg0CAzatFIJFj9C4QDEiG08h9D/25X0epdKXmPwPy7cRe9MXKeK1+VFgIO7V1X7UH2AIsJaHoMF2anfuBUc0qeaR3k8txe+dn9HdBuC2YKoEc/zMJjDAKEIcyBF+NmYNnvFfvq/P5z9FBCUq8TnVGEvUP7lsSuYGFHDg4yMZz9wwiqrz4FoEqrdVDXWIk8gpEq5otm9QoQs4zAqH03ZaFXdnMtom8n3gHKw+kyWfvPeyl5ErW28AFGbDpcSbp/R9aTUbaohT5QuXZoweY2wD1jZ069fPxowYIAjsSHYhwUViKVLl1rZofJw6NAha/J86NChlDNnTnrttdesPNg5f/68mnQ3yyIdbdy40d1xMUC5adMmFbYic+bMVLt2bWRTZoYW0WkgS0yfPl0fEibz7eSJCxcuWHlQn1ZRsAol050jR9wTVrGx7i90UjU3W7ZsatUXBi7MZwJyg1YNMLHDwLKd4KBDjRw44HrxQd+D+sTYsWPpjjvucGw6VqxBMcRuwQya4Z+POXHcrlZBezV+j5+4xXtQyyww4Nu1apLQTMPKIFxXT15iIO35r1bSEA4VYpezj7T8/75ZrVaHm9c392fyaqhwDJP6A/5vrQeRwF7POf6n1mfManrm1tJUJc798mrP5+t4wYIF1qlwpXfn86Ckfr5YzaZj3yWyGgQmZ2GIa+yLPGE1gHde/W6t9czMdOxD4vfBT5aoeLb2c/p46LStVIhfjEx2LNo28Pt1HsQJTMjjpRl9RBv2+4xdTV884vkCo8+Hs/1+wW6LAKHLAyMMrmrMQOh4d9JGQj8HUcjJsJLMNAx+676NdLwwv/3DBnqpQ1kzW1D70egDIMtkYNYtVENAEjjIih12dQQ0xgzhAsKFfUI/qAZzpr78nDB4bRquD1w1Ljg/5OdN6rth5sM+VmFqZRT7ORxH8psAhREop5iG3yOoaAAfGFYvvjB6FcuKVfFY+YfVlCAP6XtAXgx+46OJPziHfoVVkJgAgfmSMFMngziv88lWEBAEkj8CqcFvwPtqq1atlD8AxTkQg3Pk8HyHga+gDUpreFeFv2SansRFWoMGwcWDNctfi/2r7TfgHhHaD5iD7A4cYfAFNOamGiCIE7Vq1bLyqcz8B3lM1RP4qlAmBBnfycRv8O13JJXfAEW1Z0aupOOs0ufL8A7xydQtiqh5px+VMF/lV61aZfUNkJrCsWj6DSNnbvfZBLw3PfHlcr9+A4gKGDS2ExjwjqgV1XABvIfh/d0ktuI9fsjPm+kNJl2XyJ/FZztCOREtvwF+wfs/bfJ5aWDzwter2OdhNdIQJy6i0QfgxyAGMxYawH5nInhrVo2z21ImyeiQHcDYSenDXsbpWPwG8Ruc+oWkCQKCgCCQGhC4t3Ec/crE0gPHz6lJ2fs+/EspL1fgyXYoN89fd5CWGIsZn2xbxmulvh2Hxz//h+rzAptqvNoeYQtQx0Jjsc7Ld5X3WJiIietnbitL7/24XlU1bNpmXmB3hOqWy0e5mei6iiecZ688YMnwQ3Xi3iYl7JcN6bgEq6rpCfw+X61QYRpKM+mjaaUCjoRMs/KkwMysP9L92qXz0EMt4+kLxhEGogBW31djskMMKzpvYeLpN79vs0gANcvkUhP7+rqfTd1oYdO9eUlL4QOT6Q+3LkWfT3W9I74xYTV91KO61+Szrgf4dnpnPiuEFeCJ/+w8IX+en+N+Sz0E+QZ2rayzh7SN5B5BJNFEAfT7Xl8uodbVClIFXowJX2c5E28/mbLBak+bK0oqUCloV6cIjZvr8h+e+XIpdW5cgqCenZ1VqbfuP8nYbLFwvZHHrE11iDd4or4bf79AfoA6RPchC3nxZD71TnuMx8HnrjlAIA9pu5fVG0zr36kidefyICfgO9n1A3xX86uFf1goN4sXneJ+wrV6TIrSyi49P1tMrarF8nc4l/INl245Sr8YiuFO13iuXQLd855rjggkj3veXaBCmmCOB6pl89a61JF12Xa1iujdoLd1yuSlhqw+odU1nhy6hK+R3yI//b3psKVig0rr8e9QPf4d0YbnrMkTf7L/8BKTTRqVz8+Erxg6xuFU5vDvzMQFrkWTKNOc+y4s3D6jCqfgP6mGPIHVV507dyYQGmCDBg2iGTNmUNeuXaldu3ZUsGBoE82oA+QHDDB+99131KhRI0qXLh1hsv2tt95SxAzkwT6IGunTp8ehsrffftuDdDFu3DhFpgDRAgObIEbcddddKi9WI2ElEwgYGTNmpLZt26rQHRgExYCZVqVAZqTpwTocz58/XylUQL5W27Jly/SuowKCdTKZ7QBjbeZqMp0W7S2kdZcvdzHRoCwChRHYzJkzqWRJ10SaviYGNRFqQ1uHDh2ob9++VL58eZWEsC5vvPGGpTLy8MMPK2UJpz6H54cPFCygbAGZZfQrJ/USfT293Wow/pBmxkPTecLdQjEAq6u1ta5WQK16x+AKBrUgWYtVN9jHP1Hsv8rqBdoiLY/VTJDV14bJ76aV+J8nS6Jisv9T/seLcALh2JApm60BIwzYPXNrKbWCHPcC+az3+F4wiIfj9ydvpJFP+H7p8XV9M/RLuNK7kKfVhglxbc1ZglWTJ6AYspdXGBW8wvjUeexbPKOYLOnUKrBEZmWCnQwCiZZhBVkEhpi29zcvQbn4RRzKIiN5RZmemEZ7nuDJfG1YhYUJfRgmmft2LGcNcoIwATnbL2dsU/0Dg4l4adEEELxE9enom5AwbPo2j+d7Sw03ger4mYv0w0K3akXJAlnphdvLWOFLoDCAiXJMpMOGspIC1CdMBQR1wvhTnAcOn2WiDJQTEFLknR83WIO7ICJg4DxTeu+VW0YVXrvR6AP/ch9EOBoMiMOm80tfl4ZFva6F75s29I+V213kGp0WzBbXMIkTjSvkpY51C/NLbQb1XYBiBdQvYFBEcSJyoJ/BMHiLFYMgf+ADi/Q3YQITG7RBFvlB7qd6NR2UN976Yb165mjDuD920sMt3b/bGKzXbUNffeUut6oMHF+sqtOYzeOX8pbsQEGKG+GNuvMHqyC1OglIandcmRjh2+RAQkTvMUlHr9a8t3Exlv/zHqjWbZetICAIJE8EUoPfAGShNqEJEgjt16JFCwvwc+fO0c8//2wdYweh/0yFNBCzdXlM4pp+h0fBZHZwtf0G3L5WmMC177nnHoUI/E29ryFCiEf4DdpnA1EH/inIFBkyZFDqFVCqg/8I+/zzz+mWW25xVA4Rv8HZ70hKvwEqfJo4gfebexoVU+EQMDmOwc8v+f0I77gwkDxrlc5tvQ+rxCD+mIRbKE+EY9H0G3B93F/XJsWoEQ+uwSf6jInUf1+ZJNB+A96bH2WVCLzrIeTHqNk7lPIBys/gVZQmeWI9y/TCt4ABx543xVmqcqgfoTzgT2oC9h9rDzGOxVT+dOx/+vMb/uR3NyjGaTOJ70nhN4C826ttaeXXQOIWfQRtgAEbKGhU51VmoVg0+gBWrrXggVJNnpjDA9BO5ImZxgpXhG/Eu3CoJn6Dy9cSvyHUniP5BQFBQBBIGQhg3Oid7lXoKZ5AxqQuPj/+tVt97HfQ4cai1JE/vuzmGgX5f+0FNQE8fdl+wsdudzUopiaq7entaxdRSqt6ZTsmh03Shs4P4sT7D1T1UDPQ50LZ4l60mgYmo8fP26mKQyHArtJgrzeamNnrjtbxfU3jWE3tHE1a6Bpf9PU8yvDcw2td3ASGhRsP0/fzXVhA6fbexiU8mnRX/WIczmK3WoC3jMdLv2c1MicFgUdvKU3fsGIJ+pPG1qMiPnjzvkoWMcN+LpjjcO8RdT93WzmeOF+h2ocQGzrMhv26nRsVpzuMPn9Xg+L8/sth0dkfQL/5cvpmexF1XJvHcl/q4Jo70xmgsPHxQ9XpoY8XqbIgKmiygs6jt/9jglFlDpdiGsgrAxmzp4ctVclQsBi1f6uZRYXhuZ/DTmgiksfJAAe3MzFk7uoDShkDz+3buTvUxyz2WJsyHsQS81wcz1kM4va9yGQkGPzHMUzSsRvCggzqVtmDWGLP4+/4pY7l6cTZZUrlAvmgaGOq2uiyCDfT5w7PZ4AQLc+1L0eDf1insoFAgY+T9euUaIVNwflw+4xT3SklLU1KaWgw7Xz33XcVUULnBdkAE9TFixensmXL0oMPPqiIEGfOuCdpdV5fW8jdNmvWTE1wIw8mujFxDjKFtnXrXJ0Nx6jbVKIYM2YMYbIdxAkYVichXAcIFdpAwEDcYljr1q11Mi1cuNDaxw7IIDBzxZgZKxPn5s2bh40ytDu5GwZ2EZ4EKh/aOnbsqHeTxRZxh/UAaMWKFWn48OGK9ICBd3xAokBa1aouGSHkHTVqlM+2I9zLiBEjVH6QboIhTqAyHVMK+1gdjhX/TgaiA8IU+PsgdIE2TAaOnLVNH6rwGBgo1KtSMJiGyWhMWGsDoUHLf0ZaHgM/X83erqtWcYShHgCJfFy7TKFs9G73iixhldHKE+wOVq9r0gVWO334QCVVL8qj7rL8gvTOfRVVSAOkYVWOXbYf6f7s8uXLihCFPJDNDmfiAQN9kFvVdjOTV7TVKJXTYzWTntTV5522uNf3urvuFb0Eg512OV1MFkNhoUCOjIpogJADd95Y2KpOy5bpBAxyaru7QVGPgWK8NDdm1mONUm4il0nGycasXjxPpw8mwvUzQv0NWTLKjNk7/AohA+dimTQy4O4EiziBtCIcX+2teytYzxDkj7E8+e3LGiTmoYEcmgOYwHD/rxtEIKSZzwLHgSwafUBfo2WV/HpXSSRbB1d2oKSiB5rxnbArwNjzOx3jOzfK+M5h1VqPFnGKOIH8+G48zKFb8Fy1/b3ZTdjQadjid+KtrhXoCZZrbsUkAvSrSH8TEF5FE3VwjR7N3cQJHGPVHIgO2vB7pA3feU0SwvcA32/0EW0IV/TC7WUproB7deMnU90v+vi+8O1bhp9ZHOokta8PrqSb562CsiMICALJHoHU4DeYocJMHwDgm5Nz2nfQvoR+OCbp2insh86XXLYpwW+A//bnn39akEFpEOH6QJyAQeUOyoGPPvqolee9996z9u074je4VNO035GUfgPeR+cYA0d4T8a7Dd6LYBg87ceETBB5tSHcXahmqr2AVBOqRdtvwPVxr815Ih7vdSCbP9Um3rpvnIfvObhbRUVsBx4IEfii4RueYF/GtNVX1BCQVoXDP5jh+FAePgEIqNq2GO9yQNvJZ0AaiLSa3Iuy+fk9HsqB2qLtN6D+Tx+qahHC4dM8wopl5go600fS7Qi0jbQP6Prhe+n+Cd9Nxy/W5/F90YRhvNOaBH2dJ9BW/AbxGwL1ETkvCAgCgkC0ETDHyTNlcL2HhXMNMzIeyJn+DMq7o5+uQ5goxsSm3TAJ+cY9FemZdmWt/732PDjGWP0b91Smx3mC1V4Pjh9h1YLHbna/u5h1IATHk1wOk6+4nt1QvlPDYjSKw4ogLIjdQrlflIVyweD7qyjpfrMuPd9gTjs4LVCLBLO0RuUZQ1y8ZrY10P6zTBDAs9ChB8z8SMMk8ueP1rSIKCD5vvrtaivb8x3KUUZ+DzYNWJgT0h/85Bn+TufNmz296lO31XGPtetzJdifQH9qmOgeA9bnNP44zpDOuy/qfHob6j3qcpW4j33z7I1KcQSEHLtVZmXut7tXVv0V46vaQIAYypj1bFXKMYwyFC2A+eBuVR0VWkAw+OSRGkotQddpbqGi8BV/F1uxQoKTIbwM2gXSi91AXsL3w18oFXsZ8xjqz0Mfq0UtWXHC/v3F9T5+uDo1YaULf9aAn+nXz9RRddjzAWfc3+hedZl8ndvjdCjPPYbDdyNkyVNtyzg+A/TtJ9qUpiE9qnmFY8FF2zNJZHSvOgSCi/0+cYxwHuOeu5EXCxbyaGO4fcajkhR2kGqUJ4A7BqUQMuHNN9+kYcOGkQ6ngHOQSMUHE+EwECl69+5NJUqUUMdOf7BSyJcEP0IvaOLCihUrCJPqMHP1MVYRIdatk4FQAUWMSZMmqdNQPLj11lvJHASdz8oS5gqyqVOnqrwPPPCAGpQDOQSDoAgVoU23CYOkkJdNLvbcc89ZBBS0CauyduzYodQ0zOf08ssvh6USkpT3+e2331rVo1/psB5WIu8g7ArOYfIchjI6xrRKMP5gsNR8ETRO+d3dwQMi2vAj6csQj/YAr6b3Z4inpWPLYuJRr9rHuwsmxp0MA1aYrNUT3Vihj4GzSMtDcULHVsU/46fblvK6PAaFHmhenAZNdEtGeWVySJhshGm4g4kBGPCyG7CE0sXvq1wsu2msuFCPY2oFa2vXrrXINeFK7/66xM1ERmzZAixdqw3/PCsWj1GrmpA2f/0RxqKEPu24vZn/yetV+jpDHE84m9bVGLDU6SXyuweD7YNvN5bNoybq0R5fA288PmeZloe1Ehx2MBCOVf7aoAjxEK9MMw2rubRBhcF8mdDpMSxvV7dMHprNE+cwrHZzMvQvc9Jd58EgMZQ69Pcg1BVZ0egDui1wPtAerGTDyke70sj0ZQd0Vh6IDr6fWoV4Z4vxnUP6U228v3NIb8MvnTruM0hZrblf2Q3PBJMJpkX6m2DWhX2sZkRbTMNgMUhW6HOmEgvUOrTVYwUXkCXshlf+DqyyMfjHjepUoN9Le3k5FgQEgdSBQGrwG8qVK6dCR+BdGr5E//79rYeDYxh8FKhNgKwNJQpzot4kXDRv3twqe613UrLfAOK9tsGDB5MvRT0oFUKBAqRr+I9QuitQwE2e1XWI3+DyabTfkZR+w88s16zfZUEshe9jN7xDtK9TSIWKwzlf5FJ7OX0MH1iH4QTxXod90eeD2UbbbyiWL7NFDtDXx/t2NvaRtAoHVLrsg+bwC+E7AjN88O6vB1bLFs7GqhwuUnXbmp7vcPoaGmscY6A6kIE08tp4d1g2EDoGdErwmMCIpt+A9oAooe/JbB/UN7QSHNoVikWjD+jrwUdOZAloTZCAP9vGUPCDUprGFqSfUJX1cB3xG8Rv0P1NtoKAICAIXC0EsvFCnnlvRe6bPN8+gfAJ1rDICsSGni1LqbHvk2cvqjHIAryQK7vDeLKvevHOdDerS9xVvygrH5ynQyfO8QKujGqsV5MefZVFOiZf8TnJilcHWDkB71gY98S7l9N7ia4r1PtFubpl86rPeV6IduHyvwRSg15IhXsO9BzCxSx/zowB60b74mOzBZUPeZ0MeOtnceTkRVYFgW9xA/l6psj/8/8aOlXlkYZJ5EDYoADwwXN5+taySlXkzPlLTOTIrNLxHu1kzavEEj7BWqj3aNabg8fC+3RMVEknWJV739GzlDVjOiqYO5Pj+Lsui2t2bVJCfdB3dh85w6jeQIV58ZrdZ9BlzC3IP693qUTn7vxX9fGzFy5RTOYMhH6BugMZwlDgA6VthJRGGfPa+WLyBvV8nK6D359+d1Wg/3hKdw8rR6BteZmMgNA62gI9+5IFsqk6Xrg9kQ7yd/g0j/GrBZDcH3xZqM89fdo0dGf9YtSxXlG1APHwSZffnDsbL7Rk4o7T/Il5bXy33ru/mvLjoDZ9lBVz8vJvjF5sauY198PtM2YdKWk/XUpqbDBtxUDoK6+8otQhMGgIadVp06Z5EClQz5dffkkY3EIeqFI4GVYJ+bIiRYpYpw4fdsk2IgEhHLQFWkmC85o8sXr1akWeQMiIuDhXPFwMpOFeYBgUBVkChpVhULLA8Y8//kgfffSRmoxHSJFffvlF5QFxAyoZycV0WAx/7cEg4hNPPOEvy1U/hxXlCK2iDWE2fFliouufDc5jMhXPw/4MQGrBQHc4ZjLBzvE/pmjZzoNnrKpK8Q+nfdLdOsk7WK2tyRNamSDi8ofc18egjq9/siBq4J+hHgAy2+VrH/9AteEfs31VlD6H0BaaPIHJ6lDMXNnpi2wVqL7fV7sm/ZGvGTMQ7Ya4bHowEJPqCOPhNKCry5VmtQ67aSURnQ4ZNruZLyj/mSOanBGhCczwBFiFhEnnPUfOqZeJv1mqbOMVGWN7vU7HrnAZrslrnMcAbb87yvGrlttA4NDPG+2HAoovwyC3Jk8cPOF+7mZ+kFJ89S+cO3HGJcMc6vcrGn3AbCcGm7Uc8W9MBjCJLouNOItOfcWsx9f+LuM7B1x9kbEQsgIff9aI2ah2i/Q3Ac8oB5Me9ID9uD92ESY0QGqCPDb6N/oJSE92O2SE9wGJyJchJJA2dHUQZpyIFjqPbAUBQSB1IpDS/QaQcUGixns2FA9OnTpF2bK53gG0qpsmZ4M8ASL55s2bKT4+Xj1QTbrOnz+/UlVLLk85pfoNwM/0G/wR2dH36tata02kb9y40Ys8IX6Dg99hvMNE22/Qvg2eYylW0vLlN5iEZAxmIx8GtIMxKFZqRcNwCUvR9htMJQ3zHjLwgJy2Yky8D2SXmBiSLq1rdRz8FLuvcpT9st3sN0C+FqET569zKyEGqhv+QL9xa6zwghhsfuXOBA/co+034BpQQHQyEL41eQIDxqFYNPqAeT3E0NbkiTnsU5rkiRkGqbgJqwSGY+I3kFJc0diJ36CRkK0gIAgIAqkXARAUsEjHXKgTzt1i8jKSekBeyM7j9FfDoK5gV1gI5brRwiyUa4aSF88CixXxuRaGiW5zwWJStCHSe8TYcExm91hpsG1EvwFZIBzLxGWd5ieCrQshKPBJCoMvAEJGJAZsijjMv0RSp70snjsID4FID/Zy+hj3CdIKPqFauH0m1Otcy/zJZ3Y9yihg0hokAy1Bu2fPHqXSADKFXu0BQgLijG7ZssVx1UfRos4r8NHUTJncK8PNppsqCgjn4M/MyXasNtKGQc4PP/yQoDyBcB5Zs2a1VC6QB23GKpX+/fsrUgUm6lEXFDC0tWrVSu+miO327duTneIEgDtyxD2ok5CQYEnuOoGKPofVfXrQ9ODBg173hJAO4ahO4HqQqtd29vxlveu1xcp9pxUws1ceJKzastvOw25Fi0J5nPu1LoMwF3qgSJMMIi2/y7g+FDH8GWLOanUAf/lwDtL/COGgbcD/rdW7frcoF4rpiQeUqVOnTihFVV4MHpr3NGnRHjVR7K8irDizD0ia+QsxQ9Sf4R+jLxKBv3LABhPZ89cfplPMSA3Xzl28rAZANTECpI1XeeUYFBdM224Qe8Bs9GcJTJ7QBoIJyB14gTDNXx3+2NtmHU77kfYBe51Y3afJEwsYa02eQF/BvcEK8EtNuJP95ncWcmvhGjBz6kdm/eH8pqA9T7Maxuu8ulD3EXxHpnK/xwf9BQSK+kymgAy0+ex0SBPU4e97AJJYpgxpGE/X9x3hY8yY2SgvJggIAtcPAinZb7jpppsUeQJPa9GiRUrFDn4P/AMYJmhr1qyp9vFn1qxZijwBki+UKGAgXacxdV5VavL9k1z9BiC2c6dbUcsXQV8jC7/B9Et1ut6K3+DtdySV3wDMERNZ2xRWr8MnGDsWAnkC/r02+PShWlL4Db4mBszXaKxCCsegHvbTor1qRRgmncO1d37cwKs23eRoKEKYvjHqjbbfYCeem23HAHi4FmkfsF+3askc6l0YRB6Q2rFqEAOZeIdecyV8Cp4lFNnCMfO9XvwG8RvC6UNSRhAQBAQBQUAQEAQEAUFAEEiJCITv9aWwuy1UqBB17dqVpkyZQhMnTrRaj5UfGGiMloHsoA3qEP4sVy6XlCXynDnjXn3frFkzq5huG9QzYBjcRIgIyHzq+MValteU3g03fACugXjCwdiFC+4BjED5T5w4QcivPyCL6Paj7OLFiwNVcU3Om1hgVV4gM+V2zbKBygVzHjGhtGEwxJwk1OnYYhIZK7LtHzM2q5nfHCjM7RDjysxrTtbqAbBIyx9iiSVtWQPIoOmJVJ3f3xbSaOGYvq9gykKdQYfTwQB47tzeK+ED1WOGFkFeTOaCmGD/mPUghII/LGIyB7f6zawz0D6UL3p8uoSmL9vvSJzARLSWdgtUFybFTfLF87eV9ghVosvvO+p+hoHuKUcQK/7s5Ax9nUi20egD9utjMBhEIRhIA3qiwAxJ0ZBJA+Ga+d0oltdNygq1Pl9EsEh/E9AOrPQbeE95RRIyB+9xDn1/3a6T9OWMbdTjsyUqtAnSsfJTf39BsLCTZ5DHNFNl5z+KYETfrFT2BQFBIFUgkJL8hgYNGliYa18ABAkY3rWhdAeVg44dO6q0X3/9VW012RcHIGCEa6H4A8G+G6dUvwEYou3aAvmC5vmzZ91kZl0+kq34DcGFgjAxPhkmMfjCpeDfIebOnWtdMhzSdVL4DU5hDa1GhrkDlYlHhi6lkTO302H29fT7ma4O72m+fFOdR28RQk4rKyCtdbUCjiEWo+03pGeScFJYpH3A3ia871ZihUZts1YeULt/s1qd9hehLulEeNZl/G3Fb3ChI36Dv14i5wQBQUAQEAQEAUFAEBAEBIHUh8B1Q54wH12bNm3oxRdftJL++usvaz/SHXPyHPKr/sw8b07Mm+FCMAiKuJg//PCDqgoxi2FpWRKzffv2al8TK7QjjkncggX9S62rgsYfM97q0qVLjTO+d5cvX26dNIkgVqKfHeTv16+fleP5559XxAorIZns5MnjXqGxZMmSgK0y1T/MsgELBpHBvooak9ihmJ6AtZcxCRGQrvdnpiR+vhyuFeuRljcJGyd5otiXQUnAF2HEqYxdrggrlB5tHfjzGOcJ1vAd1tK7TZs2DbaYlQ8DWks5Fq02EBAwae7ro/Oh3IL1blUUnZ5UW8jgvj95o4qzh2tgMjue5Yw71S/CsdHK0tBHqtLwx6o7hlGwt+mL37YS4lVru7tBUUJIFiczB1XRBn926EpsL+RBDGSnifOkGAKNtA/4uiczJIX+rv+z+aiVvWnF8KR3UYE5SH6RYxpG2yL9TdDtKcLyaOhfIx+vTk+xEsWNrDRh9gnkg7oMZJxhJvkK35FAUxmnDQWfIrn9q96oC8gfQUAQuC4RSO5+A96p9Qp2hPyDaTUDKPClT+8iVGpVOoTzOH/+PJkhpxo1ahTSs9WhQVBIE70DVYBrIrSINrMOneZrm1L8BrTfDO2IECn+DPL92sRv0Ei4t05+R1L5DbiqSQJuUSV/UH4DfItCLOscjIFwq4lNUDQM9ZmnFL8BWLzx/XoPZb1Yxujm6rH0bLvS9MEDlWj0UzWoR4u4gLAt3HCEJrFyhTaE6bunUTF96LE13xGj4jfY2bseVwvvINI+4OuqzSu7F3lo9bpZrDqprWkl8RuAhfgNukfIVhAQBAQBQSCaCDiNP0azfqkr5SAgfSHlPCtpqSAQDAL+ddCDqSGZ5Pnss89IT/q/+uqrFBsb67dlGLDQZoba0Gnhbk3SwurVq/1WY54vXLiwlReDiZDYnTFjhhpgwaCtnqA1Y6O2bt2aRo8erQZIscpJD8ZAnSJUMwf6/vjjD3rmmWcCVmEOusbFBR78sFf40EMP0QcffEC7d+9WMZiHDx9OjzzyiD3bNT3OkiWLWrUH/PGBYoZJkDEbd/jwYRVGRadBajeahn/AMRy6QId4wMqjdrULUTATwgdPnCfI0jtZUWPlOaQ+/dm63aes04WuTDZGWr6wMWm5/7jv6+84eNZr1ZLVGIcdDIBCzh8SpjDE87UTUHQx5Dh9ZXI+Y7rgOWXmd8Bc+anrDbT9c+1ha0UQxueGPlzNIwSBvfzTw1cQniVs2tL9VD9M+VV7vYGOEapF44iVYm/eW57M56bLHzjuVorQaeYW0r1zVh2ykkAQMOPyWieu7BQ34oIdDUDs0bK0KJora/SVN+xt08eR9gFdj317E4fumLnCNej5Fw8c12PigA4xUZDDsgQbW9teL46L58tMf1w5Ya4ms+dFmJ9xf7jkxyH1e3M1//9XdflIfxPQ1xDaBYZVXpBNrlU6l/ogDQoT4+fvJj0oDFIV1C4K5MzkEYpj39FzPmNUgihmhvXJmyM8OWq0R0wQEARSHgKpyW8A+iBXQwr+zz//VMoHZjgO/XRatGihdwnEcU20qFGjBuXNG5qakek3QMkCIUAQ+sSfmaRrkMZ9hUD0VUdK8BvQdoR91CQRkCPKlSvn65Y8Qi5C7SSaJn5DaH4DsM/HoSm0nwWSBt69fBnePUDsTsfvxcEqm4FMo8cdwlF7SSl+A8JH7jV8ShDYnXyWPfye5s92HjpLH/3iJiCBHPFi+zI+i6QEvyHSPuDr5iuVyKHely9yiEW82yPEyVpWaYPBx7yxrO++7KtOnS5+A5H4Dbo3yFYQEAQEAUHACQGE1Z35elMes+bwwfxuKHb9ItCscizVS3SRViMJ83b9Iih3LggkLwSCnyVMXu32ag2kZ0eNGqU+I0aM8DpvT9BqDUgvXry4/XTYx+bq8++++44OHXJPFJqVYqJ9/PjxVpI9zIZeHYZBUKwQg5UuXZpMkkLjxo1VOv58+umnFsHCDPthZQiwU7t2bSsHBlxNBQXrhLFz9OhR+uqrr6wUveLNSghiB+FH3njjDSvnyy+/TKg3udmtt95qNenrr7+29u075rlOnTrZT0fl+F5jpc25C5dp4oLdQdU7+MeNPokHRfO6V1xv2HPSp7oDBghXcLgIbaULZlO7kZYvkse9Wms9kzNwX0722/L9Tsl+08wV8LNXuVff2At9zzj2/Gyp+gye5F8xxiyr1V6QZn6HzDz+9n9dus86XaFYjF/iBDLWT3QPfG3Zf9rns7IqjdLOhj1u0kwpfu5OxAlcasNedz77pdfvPqmke3U6iCyP3VxSHzpuoR6iF31hMPCfzW6VDnuBmUzM0GYOnuq0pNpG2gd8tQuqCyBLwU6fu0yjZm+3sjaKIGQHKimRP6tVFxRpQEZwshEztynSFYhXoai+RPqb8P1f7u/jmDk7vJoG4sgDzUtQYcZImyaHmStSf1rsXqmo8+mtVvPAMXAW91YjI1tB4PpAILX5DSa5+pNPPrF8AtMvAcEb6nQwKFNo0rVWtQvlycfHx3uE3zPfgZ3quXz5MoGwoq1hw4Z6N+htSvEboPahDb4pFASdDAQLHToFZJLy5cs7ZYsoTfyG0OAz3yvmMcHZl23ad1qFsoPv8NiwZb6yeaWD4KStXr16ejfobUrxGzYa/gAIsE7ECdy0qahmBwHKEf3/b63lv6Ke1+5OVAQBe159nBL8hkj7gL5X+xbvsVXj3Ep+7/60wSLolymUPaCPaa/PPBa/gf9nGoqf4jeYvUP2BQFBQBAQBDQCmVgBF4t/QlmQp8vKNvUggDFs9AN8sKBTTBAQBFI2AqmGPAEVBm3vvvuuRTjQaeYWA1nffPONlWQnLlgnwtgpVaoUYQUXDCtLunbtqlZjmVVhALF79+5KcQHpVatW9VqVZBIgXnvtNVW8Xbt2ZjVK6lOTFswQGOHET8Vgqjn5C0yWLXMeDDpy5AiB3LF27VqrPXfccYe1H8rOXXfdRVoFBMoO77zzTijFr0pekwjRp08f+v33372uC7WO3r17W+lmGSsxCjuQrS+eP4tV08S/9tDHvCIHxAYnwyqJ1yesI18hO1CmXOHs1oopVIOwCk42YsZ2axAGqg5YiQ6LtDwUIRBmAQY52qHTva+PlVa/G4oFKnMQfxqVd0uUYtDDKSwJYvL+ZMjBNghhYlqTsEBs8qVI4quZaAvUNLS1DmJVf/NKbklWlPttuZswoOtJim2OK5P4qPvsBe/wGeh9WBlmruQ323GEMX5z4gYrCf1nQKdEx9AaVqYrO+WLuhVcRs7a5kiugaSvnjxHMYQTuVoWSR8I1Ma6xioxs680iSBkB64JyWNNzMCx03du9c4TauUazsNCWbEW6W+CJmbhulDdcDL0Oaxs1KZ/F5sZ3xFMfDj99u1nhZRflrjJWLexgk+4djJAOJlw65VygoAgkLQIpDa/oXLlyhaZ4ZVXXlHgwb8wFfGQeNttt6lzeN/WqnamIoU6GcSfDBky0BNPPGHl7Nmzp1LDsxKMHfg9jz76KI0dO9ZKffDBB639UHZSgt9gKgD+8ssv9Oabb3rdIpTsOnToYKXDX0RIxmib+A2hIdrCCH2A94dlW92kcV0TfJVPp7rVECr5CD2n85tbk3Abqr+ekvyGmMzprdv+l/ECAdpuUFdbu/OkPVkdw6995du11js/BqH7dCjLodsyOOY3E5O73xBJHzDv02nfDN1h+g3NIgjZgeuI3yB+g1N/kzRBQBAQBAQBQUAQEAQEAUEgtSPgX181Bd09QlvUr19fydViMBADUpjgx4AgJjYR7xfSqZjogrysNhASqlevrg+jssWKL01EQOgN1A/1ggoVKijCwQ8//OBBPEB+uyUmJhJWIWlpT5x3GtzEAJ25gqFt27aUMWN48uNQr9BYAMNatWoR8MHKGKwwg4oGJOoxEGi264svvqCcOXPabyGoYwwUvvXWWwofFBg8eDD16NHDQ2HDrGjIkCE0adIkM8lxf+DAgYSQG9EwrCADDvq6kFlF/9IEF6zcmzBhgnUpPJNwVvFZFQTY6dWmFPUaucJaibNg/RFayfL6pWKzUnxsNhWaAuE3trIywdKtx6x8GHhy4lggDEP3psXps1+3qCsv5hANr363jtrXLkhxTGzApDRUG/7i62jrULewtVI70vJYSXQ/X//zaS7SBEJE9B69ihowOeMiy/cv2XKU78U55Ihuj69t+zqFmGCwX0nwIhTA0yNWEFbhVSiWnS7xYN7SLcfpu3m7LFJIDg73ULdsbl/VeaRv3brV+h44fTc9MjscTF3iVp0AeaQyy60GMihpQA5Oh1qYtfIAtatVMFCxiM8nFImhKRwmBobBOKhztK5WgLJnTsfP5xghtq5uk74YVEwwSZ0vJgP15wFQc+A0W6Z09MHkTTqr1xZ99SUeJIX1bBlHT365XPXdo6cuqr5/X5PilMAEABxj1doPC/dYdUDBA+EbroZF2gcCtfEmjreN8CymYVUk8IvEwH2+v1kJ6xlgcmAAr+5rVbWAwm7F9uM0gcNiaEOYEF8hb3Qecxvpb0Ji0eyEOjBBAfns575aSQ+3LEklOIwLwnks5T73C39/Tp11EXkyZUhDsVeeeUu+h0mL9qhyKN9nzGrq3LCo+n6B9b2c1XPG/bHL6o+Q2kaIlFAMz0CroOB7nJXJQOhz1UqG938wlGtLXkFAEIgOAqnNb8D7NHwNk6CAe7QbFCo0KRvnsmfPbr372/MGOkaIP6jobdzoUuwCIQLXhz8GFQWE8li8eLFSuTAJ1126dCFTESPQdczzKcFvQAiUDz/8kJ566inV9AEDBhAmTOFPgGiLkCnwBbUvBX/PJGCb9xuNffEbgkcRhG6ECYMvAnvnxw3UtmZBQpg5vPNCiW3079vVOwbO4301FMKuHoPA2ESgEKOo37SU5DfEs0+qDe9iL/K7WHsmqpYtlI1WbD/B+B4hhIYzDWEJ93IYD4Teg9oaQq9pg69ovpfqdHOLd70SvMAgOfsNaG8kfcC8X6d9EEfgU5pkdvRR9N9ITPwG8Rsi6T9SVhAQBAQBQUAQEAQEAUFAEEipCEQ2A5OM7voG9gynTJlCvXr1opEjR6qWwTnVDqpTU5988kkaNGiQ06mI0rDSa8yYMXTPPfeoejBgaA4ampVDBUMrVZjpuB8Mgn755ZdWct26da19vYNJ2759++pDRRixDkLcgfrEjz/+SPfee6+1Gg2EAU0acKoOihfdunVzOhV0GkgujRo1ojlz5qgyuB9TGcSsSMdwNtOc9vv37x818gTqHzp0KB07dsxq4/fff0/42A1KIMOGDbMnR/U4X46M9HTbUorscO6CayUPJhExAeq0QgoXx6DTq3cn8ATpOmsVj9koyKn+vtq9AgghFgZNdF4NVIUlQTGpa1qk5aH2sHjTUWtCcjev9vr2z13mJQhqBecv/msRHTxO+jjAYE+vtqXp9fHrVDlM4CMUgZNhsrbfneXUpK3TeXsaiETaGjRooHeD3v7OhANttUsHP6jVkLEaf2ViG/Fs9x87l+RkATxzTBjjucAweY2P3UAAweQ0bCUPjj7DZJXPHq5KUJ4w7QCTKvAJxhCG4Y4biyiSC/JjMv2jn90r/sw6INeLuMpXyyLtA4HaCUIA4juDJKKtcYXQ4tLrcvZtzVK5FFEI5CsYJgTM8Cw6P347Xu5YTh8GvY3kNyFT+rTUhQfBR/++Q10PcbNfGbfG57WfZkKZNnznn7ylFL35/Xr1nceg/ddcj1PAJZApnmtX2iKC6ToCbTEIrdVq8Bs8Zs5OysskISFPBEJOzgsCyQeB1OY3AFm8T5vkCZB97VazZk1FmNCqE5jQT5cuPHcwJiZG+QggGGsCxezZswkfXwaCsRNp3Fd+p/SU4Dc89NBDtGXLFkWiwD34wgXECfiv4ZLQnfCxp4nf8J8dEr/HPVrE0Tr2g/C+CZvMIcDwcbKHbooL+h18+/btFmFGE/Cd6vSVlpL8BvhUIOT+eoUADCKEJumb9wey7NpdJxVBWpFlR61UYdnspHmQAaCI5s8OnTyvyBPJ2W+ItA/4u399rkZ8Tpq/zr3gAWRzPI9ITfwGUtLb4jdE2pOkvCAgCAgCgoAgIAgIAoKAIJByEHBp5aec9vptKZQGMMkNwgFWdPgyhIkYMWKEUjmwDximSeOGBJK04dqdd95JixYtIl/hGzp27EiIddu5c2eflzAHPTEwmSmT92rqSpUqKYUKXUm4K7l0eSgmIFwHCBT+DCvXoLjw8ssv+8xmKmAEkqI1JW2h4rBmjXuiLFBZpwZAaSRYs/cBp3K5c+cmEDcQEiYuLs4rS+HChentt99WyiZYcWY33ZeipYZRIz4Xfd6zKjUKMJGK1SaY0Pu4R2UqljeLWvGDtjnF3cIEKVZPoYwvu7tBUXr+tjKO4RYiLf/MraUVKQTqD6ZhBQ1k/N/tVpEljV2Nsw8CpfHT6DK8ymnIg5XV5L9Zr7mPFVID7ylvrV43z/naR6gWbaFK70IKWK+aRx03Vw9+5XtTW8gGPZiKiaBAFihLBp4o92V9O5ZVg5JO57NmSquUInq3L8NKE97KN/6ej1N99jSoa0CJQod3sZ/HMfr5+/dXIqhzmJYmyAHDDGnd9+4PB7PuSPqAWY/ed7puPQ7VY1pjIxSNTje/z2YdJu7mvi73+M3x1I1VX3z1iwQe1H6nawUvTHX5QNtIfhOgIKEUbvx0a/Q7EMkq2iSzMVCMvpCfiWa+DP30A86DvHYDYUSbua/TirMCRqSr+HRdshUEBIFrh0Bq8xtARNbmS1EC77xQqdMGIkIkhnCFUJcA8RlEAF8G3wvk4okTJ/okN6cmvwG+C0KjgGitQyya2OD5PP300wq7KlWqmKfUvvgNLkj8+R1J5TeArP1xjyqEkCe+7P/buw74KortfaQHCJ0ASeglofcmgqKAgL2joIK994LlWZ797/M9e+9dHlhQUCmioiBIbyGBAAFCDyWEAKG8//nmZvbO3ey92VuS3CTn8Lvs7O7M7Mw3k905M9+cA7Iuxh8gNLsV01IkrLMEI0WhN7gZH5vjS3/ldRpfIu6YU5oRiLROgrHVxQMS6SHWPZ3GtcZ0jFPyQq+FpTf4GxTbnmqOtyvn66e2KAVOw+kDOrOKRvkqG7qLvj+0q69Oabqz03F8ym6MeXHf1CcrV/IdhIveIHqD7kNyFAQEAUFAEBAEBAFBQBAQBMoDAifk5eUFtx2jFKFy4MABZfEBptWPHDlCmLhLTk6mmJiYYq1Fbm4ubdnCZsSzs6lmzZqUmJjod+KwWAtWyMNycnJo4cKFBL+8KDsm8uA7Ge5H7D6UC8mqTN0+fvy42jm0bds2VS+Y4MXPJN4UZ4XhjmLDzlxaszVHuerAJBZ2QcfXrUbYJeK0+BeofLmHj1Equ1xIy8yh3Lxjyu0CyAtwCeJmEi3c9Cgbdotv2nWQ6vHkZC02k6uvXfnyArU7Cab237u5h7oezH+Zuw+qHU5rGStMHMXVrkZ929V1XPAvLN+kpCTCuwVkmtTU1MKil5n72I2HH6xewPxu15Z1rDZCJdEfsTts9/48imMXIx3YhKzv1FvoUCDv9G053D9z+PmHlfuKdvGxBIIMJruLW8pKH8AgIIPd86DdYN2laYMY/nuvQdi9FwkJ552AtHANg7KBcFSVyVTx9WKoWcMYRZjxN2mPcqNem/k9gv6KXY/woY13WVJCLGHhI1yB//H1Ow6odwkIFeG6Uwm3PJJeEBAEwkNA9Ibw8IObjsWLF9PmzZuVtTaMl+GaAK7/oH+VZ9mzZw9lZmYqfbR+/fpKjwqG6B1J7ERvcI8mvvOrePyBcWceW68D8RLu4TDuDFZuueUWgqtLCKySYD6gPAhcccAqHcZjCfWrUXcmO2tXa7r+6dsOUAbrsrWrV2ZCLLuesC3o63jBHqNNbygrfUD0hmB7oie+6A2h4SapBIFgEMC8HOZowpXR//nbVRaf3dnbVTyJJAiUBgRmLNnGVsO2Uu+29Znk2szvJqvSUBc3Zfx91Q7awC7CsXYypFtjN0lKfZxDPN874Y+Nqh79kuqzTlNwM1mpr6RUoMwiUFLf5jJNniizvUUqJgiUIQRAlICLjiPHjlNVnizDLjMngVlXuN+ANKlXjf51ZWenaMVyDRPg2gLJ1VdfTW+88UaxPFceEj0ISB+InraQkggCgoAgIAgIAoJA+UCgNOoNaBlNuIW1QpCvRcofAtIHyl+bS40FAUGgeBEQ8kTx4i1PKzsIbN97mM5/xmtd+fUbe1HXFnXKTgVtNYFr4Auf+0Ndve2sdnTJSc1sMcru6X0fLaE/V+2iFo1q0Md39IuIe7eyi5bULJoQKCnyRGhObqMJOSmLICAIlGoEYDb2Z/aJi8lQSCv+gPdtV8+nTth9/vKUtda1/rb71o1iCvz111/WkwYOHGiFJVB+EJA+UH7aWmoqCAgCgoAgIAgIAtGBQGnUG2CBUhMmTLec0YGolKI4EJA+UBwoyzMEAUFAEBAEyhICG9jK58qN+1SVOjarzW6Ea5Sl6kVVXY6whTVTDh05Zp5GJBxN7fnaj2mqTgls1fb8/mXHGpwbjG8b2U6RJzZsP0CT52fSef3KTv0j0lElE0HAhoCQJ2yAyKkgIAgULwJw6QDCBNyOQF7/aR1t3XuIujSvrUzkrtyYTTOX76Ts3KPqfrUqFWhoN19/rupGMf43e7aXkdu/f/9ifLI8KloQkD4QLS0h5RAEBAFBQBAQBASB8oJAadQb5s6dazXPoEGDrLAEyg8C0gfKT1tLTQUBQUAQEAQig8CyDXvpuUkpKrP7L2gv5InIwOqYSyK77r3pjLb086Kt1KtNPerd2ndDo2OiIC9GS3suTN9Ns5btUKW/7vTWVLlihSBrEr3R3WCcyC6Hz+mbQN/Ny6TXp6yhwV0aUR12nSciCAgCzggIecIZF7kqCAgCxYjALSNb070fL6c89r8F/7T//TNT/exFqFK5Aj17eSeqFVOyr6758+erosXFxVnuO+xllfOyjYD0gbLdvlI7QUAQEAQEAUFAEIhOBEqb3rB48WILSCFdW1CUq4D0gXLV3FJZQUAQEAQEAUGg1CEwelBzwq+syxs/eq1aD+gQV9ar61i/Id0aK/JEbt4x+mp2Bl1/ehvHeHJREBAEiMoOvUpaUxAQBEotAg1qVaFnxnSk9k1jHetQqeIJ1KxhjCJONKxV1TFOcV785ZdfKCsri9LSPKa+ivPZ8qzoQED6QHS0g5RCEBAEBAFBQBAQBMoXAqVNb3jssceU3gDdoVWrVuWrsaS2CgHpA9IRBAFBQBAQBAQBQUAQKFkEtu89TCmbslUhhrFF6xi2bF0epWuLOlSnZhVV9ZlLtpdHCKTOgoBrBEp2+7brYkpEQUAQKOsINK5TjR6+MJlyDh2ljJ25tGX3ITafdQJ1Yt92mCSNJqlWrRrhJ1J+EZA+UH7bXmouCAgCgoAgIAgIAiWLQGnSGypVqkSxsc4E8ZJFUZ5eXAhIHygupOU5goAgIAgIAqUdgakLt9CeA0doRcZeqypzU3fRfp4rhmAMeBq7GoBs5rnj31J2qnD/pPqUWL86LeN0S9ftpZTN+yiudjW67/z26r7+L/vgUVq4NovWbT9Aa7fup2qVKlDbxNrUtkkNnn+u67igDlcPqzP3qyzO7pNAVdjVw4qNe2nZhn20atNeqlezKrVoVJNO6RRHTer6nys+dvx/tJTdkaRlZlPq5mw6dPQ4tWkSS63ialDfpAZUvWpFXUzH40au7y/Lt9PmXbm090AeuzKpSckJsfyrRXDHYJdg8Jm+ZCvtyM5TdbtoQFMrK3serbieW3m+fsaybbSO8cs5fJQS6lWnHm3q0knJDalCBTjZ80ow7alT5Rw+RkvX72acchj3fVSjSiVqHR9LrRvXoD5t6hd4hk5X2HFe2i4ryuCuBd2Bh1tXK/P8wP/+R7QgPYvmp+2mzVm5hPaPrxtDXVvWoYFs9QIbRbUcOXacJs3ZRGyMW8nw7k2ofmzBtZA87jNfz/XGO6t3Av2xaofrvxlkXpHbaFj3xjRh9kbK3H2Q12AOUPOGNTwPlv8FAUHABwEhT/jAISeCgCBQ0gjUrFaJOjatpX4lXRZ5viAgCAgCgoAgIAgIAoKAICAIRCcCojdEZ7tIqQQBQUAQEAQEAUFAEAgFgf/+uYkXzT1EBZ3+9xU7CT9I36R6FnliFRMkXp+yRl2vzzvp35mWbsXDRZAnTPlz9U56+r8ptDcnz7xM0/J337doVIP+fVUPalTH1+LxDL4/eX6mSjMguQE9OymFljMJwi6v/pBGD13cgUb2jLffor25R+ixL5bR32l7fO7peqGsT47pTB15A6FdsAj/7+9W86L5Zp9bc1dnWedjT2tJVw9p5UMsCAafT37NoPStOVS9SkUyyRNmHg1iKzMRIIte+cGDufVwymLX25uoHRM5Xrm+F9U0SCDBtCfyS9uyn+7/cCnt2HfImz1Ci7epc5A0Hrm4EzWs7dtGvpGdz2YzyUBL+4SCOIdbV503jiCA3PHOQsvShXkPmKC937qpN8Xl97XKipCzj2Yt85QxZdM+enJ0FzOZCn/BhIe3f/K4HhnQoQFdNrC5wt7t34zOsGNiLR2kuat3CXnCQkMCgoAvAuXTPo0vBnImCAgCgoAgIAgIAoKAICAICAKCgCAgCAgCgoAgIAgIAoKAICAICAKCgCBQAgi0aVKTmjaI8XkyFvRxDb8GtXwJETrihzPX+RAnkKZ6Na8lh9954fy+D5b6ECeQHwgTWjawNYqrXplHO9kCgz95csJKizgB1wd2gsZTE1axVYscn+SHjhyncS/Os4gTKBtIICACaAFZ4LrX/qb0bb5pcf99rpudOIE8TPlw5noa/8lSOs7WDZykMHyc0tiv/bhoqw9xIqGebzthAf+fXy73KUMw7bmarXGMe2meRZwAtid1bKBIGbosi9buobEvzyNYaghGDnMbzEnxkE3QboWRL0Kpqy7PUTYf8chnS32IE2gv7SoD8dDe93y4mA7mHdPJ6J7z2ltxQKL4M9+qio4AyyOaOIH87juvA53AxiuCwVjn1Y6tlWiZbXuOvi5HQUAQIBLLE9ILBAFBQBAQBAQBQUAQEAQEAUFAEBAEBAFBQBAQBAQBQUAQEAQEAUFAEBAESgSBhy7qqJ4LSw/PsYUHyK1ntSO4ywgkm3YdVFYTHmTLD11a1FUuD47DZAMLDh/MWG8lH3NKCxozuAXFsuVjyM59h+mfE1YQFuZhleKv1J0EdwhOkrIpm/on16d7zm1PjfNddGzdc4ge/Xw5rdy4TyV5f8Y6H6sB89ntiLak0LtdXXr80q5Uu7rn2YfZDcPL36fSt395LFvAJcO9vIiuBTi8P32dPqVHRnWgE9vHqbLv3p9H89dk0RNfrVT3/1y1i9x1hd4AAEAASURBVObxeX92AWKXQPjY4/o711Yzbj2zLQ3p2kS52Mbi/9/sBuWJL1ZSLodRhg+YyHH10FYqm2Da8+clHusSSIg2uu701srFBM5hueO2txcq6xhoo9+W76Ah3RrjlitBG2vp1NxLHNDX7MdQ6qrz+M/k1TQvdbc6bc1kIGDQlo8nMNNh464D9H/fpNCS9L2qLo98voyeu6KbshhSp3plepj77z3vL1Fpn56YQl/dV09Z8kAffu6bVfoRysKJdnEeDMY6g8T6XuLLhu25+rIcBQFBwIaAWJ6wASKngoAgIAgIAoKAICAICAKCgCAgCAgCgoAgIAgIAoKAICAICAKCgCAgCAgC0Y0AduK/c2sfGty5kSJOoLQVsC2fBZYfOrB7aBAwrhnWmq4f3toiTuA+rBCMP78DgkoWr/N1raGv4wjXFE+O6WoRJ3CtCZMoHr7YQ/rA+cqMbBwsMXf2jz2tlUWcQISqlSrQbWcl0VXscgPlq1LZa1ECxApNIEHc8Re2p9O7x1tlrxdbhYb3aEIPXOQtO8gXThIIH6f4/q5dcWoLGsWuIvTCfQzjPqhDHD1yqbf+II/kcdmDlWn5rjmQDuSLihU87YdzEAueZjcWl53cXOGUc/goLruWfbleayKtGtV0lS6UuqZmZltEGFia+NfY7pTEfaYC1wXdsXnDGvQskyW0dRVYw9i4y0teAPHlvP6JqnwgiWhLEz8u2qIIF7hxeo/GdAr383AE5WnPfxMQPEcTjcLJU9IKAmURAbE8URZbVeokCAgCgoAgIAgIAoKAICAICAKCgCAgCAgCgoAgIAgIAoKAICAICAKCQBlG4MT2DahFnNcFh1nVmCoVfKw5mPd0OIF34oNgAOsJq/ItSOh75nFkz3iqVrngXuRmDasrFyBw/QErEyAPVGFiBCSminf5bdn6fdSNLWOYAgKFttRgXl/AFh20wM2HP2sYZ3CZjrIbi0Nc9poxlXUSn2MgfHwiBjiBm45rhrZ2jDGQCRRDujaiGUu3q/twMQF3EsFILLtZ2ZvvtSSFXXh0bVHHJ3kiY3zzyLY+19ye7D3gJU/UZiJGYRJqXWez5Q0t17PljLg6VfWpdYTFk3FDWrKLE48liTVbsn367s0j29H81CzK3H2QJs3ZRD1b1aH/fJuq0oOQcec5yVZe4QTq1vTicODwMYuUE06eklYQKGsIFHzbl7UaSn0EAUFAEBAEBAFBQBAQBAQBQUAQEAQEAUFAEBAEBAFBQBAQBAQBQUAQEATKFALdW/sSEgqr3GG2RrEzO4+wyL9q0z7legLEicIkOTHWb5T4etWse7B2oaVrSy8J4K2f1tI9Hyym6Uu2qufrOE5H050CXJH4E1g0OLdvorIIcWaveMdoweLjlEmn5rV9rEHY43RsVtu6lL7N1/qGdSNAoFfb+tbdm95YQM9MXKXckOTywn64sufAESuLWi7IE6HWdfVmj+sWPKxq5RNoM/cvp1/FE7xLsqmZ+YyR/BKC7PPopZ2s8j746XJF6sGFx9jCh3Y3Y0UIMRBrEG32sQsYEUFAECiIgJf6VvCeXBEEBAFBQBAQBAQBQUAQEAQEAUFAEBAEBAFBQBAQBAQBQUAQEAQEAUFAEBAEog4BLDgXJrBm8OPCrTQ/bRdt2nWwsOiO9xvEegkS9ghVDZcb5r3BneLojN7xNOXvLery3NVZhB8EFg4Gd2mkXDHY3Uns2n9YxcF/rRs7W9WwIhQScINPIVlQ63j/xBGkbWmUMW1LDrsYKSxH3/vXDmtDK9nqR1rmfnXjB8YLPwhcTAzt1phO69LYchmibrj8b59BnqgZU/hyaKh13bHP22baskRhRVy1aW+BKCCiwJULXKBouXBAU+rdxksw0ddDPdauUcVKuu/gEfI4C7EuSUAQEAQYgcLfFmUEpqNHj9LevXupdu3aVLmy1yxNGameVCMEBHbu3Elz586lxYsX05YtW6hBgwb01FNPhZBT8SeBL6qNOw9SCg8oMrMOUuWKFSiudhVKZDNjYEd6vYIVf9nK0xPXrl1LEydOVFW+6KKLqHVrZ/Nl5QmT8lZX6QNlq8WzmG2dwcxw7ELo1rI2m1esWLYqKLURBAQBVwiI3uAKpnIV6eDBgzRnzhylN6xZs4Zq1KhBd999NyUkJEQ9DqI3REcTHTp0iF588UVVmL59+9LgwYOjo2BSimJDQPpAsUFdLA8SvaFYYJaHCAKCgCAQNgI8hU6T5m6i/3zncX0QdoZBZlChwgk0/vz21KdNPfphYSb9nbbHygGuGT79dYP6De4SR49c0sly95F3xGtxoTq7eihpqVUI6aCWYclgT07wlgxqV69EL1/Xk6Yu2EKT52cSXKBoSdmUTfi9/H0a3cSuO0af3FzfcnXULlQQ+chR7hCFSKh13Z97tJCcC97e5ydNv6T6PuSJYN2gFHyS7xWzf1XOdzHjG0POBAFBoOTfvEXYBosWLaLXX3+dZs+eTevXr7eeFBcXR+eddx6NGTOGMHFRHgXYvP/++6rqZ555Jg0fPtwVDEiDtJBnn32Watb0+q+aMmUK/fjjj37zqVatGnXp0oV69+5N7dq1o4oVnRelUlNT6ZVXXlH5jBgxgs444wy/eYZ6Iz09nU4++WTasWOHTxbRTp6Agv78t2kBGbL44PVpW5euGdLCGnD5VLIMnCxat5de+G6Nqkl39v11zzltS6RWX3/9NT3yyCPq2YMGDQqZPDFxbiZ985eHTYvMhnVrRFcOblYidZKHBodAsH3gpR/W0vw1XkUJ5vXev6Wn67/Vsa8s5IH+cauQnZvXYiUsyTq//s3FlHPQM1h/6equITGyrczKUWDjrlx68r+r6cAhr3L6j4uTKTkhMLO+HEEkVRUEyjwCojf4b+J9+/bRQw89pCJgDH/bbbf5j2zcgQ721VdfqSvXXHMNdevWzbpbmvSG3NxcpTvOmjXLKj8Co0aNimryhOgNnuaKFr0BhH2tNzzxxBMhkydEb/D5MyxVJ8H2AfjNfvNn7zwWKjv+/HbUmTdLuJHHv0oh7PzUUo1Jwe/d3EOf0guT19CidM9uxzGnNKMR3RtZ9yTgHwHRG/xjI3cEAUFAEIhGBFZs3OtDnDi3X4IiMjSuV51qMikhlt041Khakc5+ajbtDWHR302dQaAYwpYT8IO7kBUb9tCSDXtpKltW0O5CZi3bQZUrrGSXDZ1VlvViq1pZZzCRoGeretZ5SQQyduQGfOwm3oikpXWT0ObS4JLikpOaqV/GzgO0PINdqqRl0Yyl23XW9PrUNRTLRI6z+7gnsdet4d1InZ17xMrLXyDUujasXZV27Duksn3nlt7UsJZ/SyX62RW5b9glj+d9n2a3Jaa8PDmN+rVrQHhGJGSfgUNdwwpFJPKWPASBsoJAmSRP5OTk0Lhx4+i7775zbCcsmL/11lvq9+STT9K9995LJ2AFqxxJRkYGvf3226rGzZo1c02e+OKLL+i3335T6R577DEf8sQff/xh5VkYlLGxsfTRRx8RiBt2wU5uXbZGjRoVCXli5MiRPsSJzp07U1KSdwHSXqZoOP+dJ0/enb6Bjh0PzJDEwuqfKVnssy2bnh7dkdz48oqG+oVahgOHgmd1hvose7rff//dutSjh3ciyrroMjCTB8im/JGyS8gTJiBRHA62D9j/esGAn8Pm+k7p1LDQWkJpMIkTSID0pvzPfsG8KWG/CDz+1Wo65Me/JSadJ87JVGm7tapNI3s09puP3BAEBIHSh4DoDYW3Gawu6LH5kCFDgiJP6HSnn366D3miNOkN9913H5nECRDxe/XqRU2aNCkcvBKKIXqDM/AlqTf8+eefVqFOOukkKxxsQPSGYBGLnvjB9gHbMF9VZNrSHa7IE9AZ1mz1Eic8KNhytJ1GD1LRXRLRG6K7faR0gkC4CFSqeAIdPVb4C/IYx6nIcUWiH4G/1+y2CjlqUDO69Yx21rkO5Bw+VmTECf0MfWxYq4py1QF3HTeNaKusLLw42WMVY9qS7TT+oo5UlTdGxtXyLpKvLfBN17kV33HttuyAD0s3LEVEwkpC84Y1CL8ze8XTrWcm0dvT1lquT6Yv3RYUeaJOrNdFxf78DWeBKhNqXePqVGXXI56cs9kVRoem7giv9rJ8MHOdZXmjb1I9mpe6W5Fsnvt6FT0/tjuvY9pTBH9ukidqG+SS4HOSFIJA0SKA760bwfc70lK4Q6hIP7GI89u1axcNGzbMhziBhXpYLwChwm5p4uGHH6bRo0cTJk5Fig+B/fv30/nnn0+ff/558T00/0lbt261LJFg8jMlJYUWLlxYImVxW/kPZ2XQW7zrxCROxDHT8MTkeoRdIuf1i1fWJsyXxJ6cI3TnB8tpp+Fvy+3zJF7hCOTl5dG0adNURFgxgWWVUGQdDy6zbSa6cnnQnprv4y2UPCVN8SAQqT7wy/Kdrgo8nSdLg5EKZe4LH0zt3cfdy74PTeJEz9Z16KITE6hVI49PyS1sRnElk9HwW7Zhn/uMJaYgIAhEPQKiN0R9E6kClqTegAKYxInJkyfTxo0b6dtvv6WmTZtGJYCiN0Rls1CwhFunWoje4IRK6bkWiT6Asaib6cM/mZwdDKda1AZ3/Uj0Bnc4SSxBoDQj4NZ1Z25eyW3kKs34hlL2XdmHQ0lmpVmW4bX+OrJnvHXdDCxKzzJPIxaGBQEQH/CD2227VK1cgS4a0JTaGVZPtQWHXm3qW9GnL95G2/Z4LBpYF/MDu9iSxajn/6Qznvidbnrzb/vtiJ3D3Yg/Esd+3tg4c8k261mtGvm3POHUntlMaNA47War23ZpwISTW8/0kl5WbwxM5LCnr1PdS55wer49fqh17dvO22awJOJP4Cp4ecZe9dtoWOxAfFz/+JcNKmnnFnUUWaJ3u7rqfC6P737427O5S13w85+bOm7f7elP1dkymenWxE+WclkQKDEE3H5v3X6/g6lImbM8cdddd9GCBQssDJ5++mm64YYbfCwkHD58mJ555hnCPcjEiRNZsfwfwaqCSGQQ+PnnnwuYIgVBZdWqVQRrHz/99JN60NixYwmWL8LZfRNsiZctW2YlgfuW1q1bW+fRGNi06yBNX+L94IIgcdsZbQgLfHYBO/qz3zcRmKoQLAh+/OtGuruE3FrYy1eWzpcuXWpV55RTTrHCwQamLPAOLs20UxdtpyRj8Gzek3B0IBCpPoCJ8EPsy7BaZWdXRqgtJkmXuli4v++8JPV3j4FvvZpe5SA6EIvOUphKRXU21XjX2W2js6BSKkFAEIg4AqI3RBzSkDKMZr0hOzub1qzxuIpr2bKla2t9IQERgUSiN0QAxCLI4siRI5b+C9J1TExMSE8RvSEk2KIiUaT6APT9xezCsge7rgwks1YUTs6+bFBTOj3fVUdSvNcda6B8y/s90RvKew+Q+pcHBGJ4TsDNzvQdvFEtNqZyeYCkROoItwxa/krNoquGtNKnQR/bNK7Frh88BIo1W/ZT68a+37z1PCf33KTVQefrJgGMR9/4+t+Wa443b+rFFqR8v+HYQLfZWECvn++uo0m9atSN5/6XsIstuPZ4+LNl9PoNvXwWuo/zetbTE1dY7r1BxChKefDjpfTe7X0J7jW0oAxPTlhBmbzxCNK0QQy7q/CdjyysPTN25NANr3vW8+JqV6MP7uhLddidiikbdxywTuPqBreBsbbhlmLVJnebokKp60nt46h6lTTVXj+wS5aWvClr1MDmVrkRwFgOFiR+XuRZD7iZSSGXNfS47j6Yd5ye+HKlFf++85MJbj3uOacDXcIEGcizk1KoZ5t6FF/PV58oDGMrUw6gz+n2qm9rKzOehAWBaEAA31s3Ur2a/3UVN+md4njfdE53S9m1mTNn0pdffmmVesKECXTuueda5zpQtWpVgsuJ3r17K/+1uD5p0iSaM2cOnXjiiTqaHCOMQM2aNalPnz7KKghIC1OnTlVPgDnf4iRPwG+zFvSBaJdXpqZbRYSf0hfGdqY6fswpgVhx5eBmhIHLjPxd6lhwhcUKJx9aVsYSCBoB0+zqgAEDgk6PBGiXBeleBjQmweCXGbJk/V7VjhUiYYtL5Sj/RRqBSPQBlIn/XGn2qiwa2jXObxGxy8yN6cg2jT3WEvxmJDcKIGB6QoK/SxFBQBAoHwiI3hDd7RwtegOsXmgpTn1FPzPYo+gNwSJWPPFNwi3IE6GI6A2hoBY9aSLRB3RtZvBOxkDkCexyTd/mXWDQ6ezHJrzwgJ+IewREb3CPlcQUBEorAo3Z7P6OvYUv1GATjH0RvrTWORrL3aSud2F45cZ9dPPbC2hwp0bUhsl+3Vp4duG7LXfvdvXoi98zVPQnvlpJC9bupn5sIaAyz6Gv3LyfvpmzySI3uM3TbbxqbFninH6J1vPvencxXXZKC+rSorYi36zfvp/e/HGd9fwT29enujW9pIF7zmlPY/49Vz0uha2hjnlhrnL50T4xltbyt/7PlJ2UZlguPqdPotuihRQPC+6jnp/D85eNqH3TWNqy+zDNWr6d0g23Ik9f0bVA3oW1JwglrZvUVPns2HeI7nx3EY3o0YQ6Na+t5kyXshvj135Is/I9s3eCFXYTAJkDpAzkDRyPHDvO7R/Y7lYodUXbPTu2K9329iJVrFd+WKP6W0+2ItKMSSWwPvL13E0W2QVWH87q7bWG8saPayxSwzgmDLVq5CH6JHLaG0a04b6yVuX71MSV9Mq1PclcMygMYxOnNVu9Om73VvXMWxIWBKIOAXxv3UjjOpHXa8rUKsGrr75q4Xjdddc5EiesCByAK48LLrhAESdwHRYonMgTsErx22+/0fTp05W7B1hQSExMpPbt29PFF19MjRo1MrO1wjDxumiR52V59dVXU506dWju3LmE3VUrV66kCmxTvU2bNsp9Rc+ePa10CKxdu9ZyPYJ7gXa2Iy9tyaF79+506qmn+uQVbScn8GIwyCuaPAGXGcUh77zzDmH3GNpSy48//kg7d3p2ZdSvX59gCcOUSLX98ePHlanWX3/9VbXtWWedRddff735KMfwHylZPma9QIzwR5wwMxjDu0hmsSsATLLhN3vVLjqlU0MzihWGWay5abt5gHKANvFHHPm3aFidmbC1/KaxEnMgi81p/co7W+BTdf2OXDX4bMbp2/GgZ2TPxj6MWDOdDu/JyaP5a/ewT7Bs5b4C/sEG8mCxMw+Qctjs16pNng96Bx6UBbuwibqBPJK2JYd283Na88Jy95Z1qCsPUkFECUfMfhQqCWcu+yzTC+I1mB137bCWdOObi1WxcH0eM6P7s28zJ0nhAf4qHvBBTmK84vgD8cuynfRXWpZqk1rM0G3Plivg0kWb38JuxPns628FY32QWcvwQdeFce7TNrDisZoH4iDjbNt7SLURygqrBmij0zo3pMps5cAuPy7eTrncfm4E74TzuZx2ga/eGdyPoQis355LBw4fpcT6MdSK23F4t0bUkF3X2AX9/Qe25nGUB8IJHLcfK0noo7re21gJBgsa2PRjbGvbmMz2/AKdh9sHwCLfmm8mDbvDApEnTJcdZjp7+UC+QX0hJ3dsYLW9GW8rm/r7beUuQruiT9Tk9gSWvVvXpWG8+8zuIWwevx8255sXvKB/grJs8dWfm1V6KBv/vLSDmX1Y7wS0+eS/t6q/2e35ExYJ9aspFxond2xIMNUXSFBWKFV4n+1iHBrx+6RlXHX+G2lAUC5NwTthITP4dd1wD2x+jXVzfo8t57xSDEV0C7fXpLmZ7F/Quc+a+UtYEBAEohsB0RuIRG/w30ehW0HHMknXK1asoBdeeMFKdOONN1L16tWt8/KgN4Q77g83fVHqDXB1uIDHUXCdh7FBEx5bd21Zm3oyublumNa8sElDS6ik63D0Bphz/m2lR+eFZbtOzWopd2Q/saU7jO8xlseE7oX9E62xFtwTYFy1nPUGxGneoDr7ba5FA9htZCA9aieb1sZYHCaI4UaycqUTlN7QgsdjI3o0dtRloUvq8avGKdARem19w3c14ka73hBuH4DLTr3rakVGdkCSPeYQQM6GBNIbNrDuDh0e0oV1/0YOE46iNyh41FyC6A0eLOR/QaCsIxDPpLJlGzxzbYHqupzfxVhAFikaBNrFxxJcFizfkL/BjOduYIGhL8/jdbsq8BymvUQ9WvFcF88haivNPy7cSviZcvngFvQ9WwrYy/NEkZZL2PLAkvV71KI95pzenebdJGk+C3V74IKO5iVlueDZK7vQ+I+WqetY0P/01w0+cXCCRXgs2pvEiwKRwrxw0xlt6fPfMhRG//1zk2Nuz3BZ9YK/GcFNe95zbjI98MkylT/mgU1SiJnXZSc3Z1e7wVvYGNwljr6avVFlBWsjKJM/CaeuPVvXo0dHdaTH8y1IwNUGfnZBm71xU2/Lise8NVk0iYk8kAS2KnE5k2xMueSkZjSFXXZgHhd/C5PmbFYuX3QcNxjruCa2Azo00JflKAhEJQL43roRfL8jLWWGPIFF8SlTplj4PPjgg1Y4UODhhx+mtLQ0FWXrVt8PJy6mp6crgsTy5csds7n77rvp0UcfpQceeECRIcxIsHzx3nvvqUtYLL/jjjvo888/N6Oo8PPPP0/jxo2jN998Uy3I4CIIGsgTgonNefPmqbDTf5j81c/BM0uDtG3b1iqmNoVrXSiiANy0ZGZm+uQOiyP4QUCGMckTkWr7wYMHK5KO+eyEBHcMyZ95AVoLJogGufygYQIMi5wgJEDMHRI6P8ynfMIuPcxn4N42HsjBj9pfPFmGRcx7z23nd0cKJvHe+GmdImjofHHck7OPlq7fR98v2Eo3j2jtd2fM70zqeHvaemtyB2kxgfMnT/g0axij3FZolyUoRzeewHQjWEB/lS12zF/jteqAdFj4xA5/GHO4aXgrOjG5vpvsCsQ5evSoIsPgBghXNWqEttv/x3wTXchnIC/u1mKzdFjw137w0Db+yBNTF26zrFTUZsLL5ImpPpOOWHhew6SRaUu30yvXdCP4vf3wlww8yhIMuECywTNuGdnauq4DIHCM/3SFtcCvr2cxn2XjTh6scRt/zm5ibh7RivoySUELJi8/5b4VjNjJE5i0fuK/qymH/d6ZAiIMfsDm/H4JBUgXIIVM4IV9CEgSsMby4vdrffoY+vff3Dcm8EDzucs7W5PE5nMKC0eiD3RuVlv9rWFyM4MnL1F2J/9c+FvFIr4WkBwm7y74vcL9N39eRwcOHVNRQRSykw1+4fZ+f+YGHzzg3geT6ilMVJrIxACQIcxdaJ/P3qTuI1MQTh7+fBXlsX8+iN2iTTjvBBA/Xp6Sria/Veb5/2ESHn3tu/l4n/j2NR0P2D33dZo1AayvA1f8fl2xi3qwucOb+e9eT/inZuYU+JtAf9N/JzBjbH8/YmL/67+2qOztfVY/U46CgCAQ/QiI3uDRT0Rv8N9Xv/nmG/rggw98IixevJjw03L55Zdb5ImyrjegzuF84yORvqj0BpRtCo+rv+Dxjl5wxjUQXDE2+WBmBp3KZOGrh7TA5ZAkXMItHhqO3oBxpB6/gFgMywUYC5uC8RL0pH9cnKx24v1zQopF8kY84OHRD7fQ81d2diTovsV63e9M0LULdDCQt0GqGNotjsYObu4TZcKcTNrHZA23AiK1SZ6Idr0B9Qq3D8AnejwTr4EldN0Fa/f6JcBDv9MCHVPrRvqaPoIQrK0ejjmlGY3o7jvhKHqD6A26r8hREChPCLRiM/tuBHMU2PAV7CYvN3lLHOI1lhPo6TFdeF55C307d7OyGGDHxdx1X6WS/w1y2PTzj1GdqAXv4v/2r0yfvOowQfaG4a3pjJ7xlhuFAs8x9otVctg8Zo9vP4fVg7d4kfwzJh78MD/Tsiyg48Hiwgh+/iXscgP1tsvADnH0yV39FGlCu3rQcVD+7kz0vXkEz93zOMEUt/ggjZ7bqxJgo2GD2Mr08R396P0Z6QpH81kt+O/m2qGteN3C2aKum/bswmSZz+8+kV6bmsbrArsKEFlAah7NhIIByc6bQ83yOIUH8JhIkycWpe8OSJ4Ip6549rDuTagauwD6dFYGr81453NxD6SJ85n8ATJEvXwyMMZ2/8wnWyDOvRckE8Z+pmBj5IMXdaQb3/C4N3lxciqd2qWRNSZ2g7HOb/4a73gdZA8RQSBaEcB3Ft9bN4LNk5GWMkOe+OOPPyxs4uLiKD4+3joPFOjYsSP5s3yASTC4mTDNtSIv+Ltdv369le3jjz9O27dvp5dfftm6Zg+AODFjxgzrsj0PTM4lJyfTnXfeqeJ069ZNLeanpKSoSbp169ZRq1atrPQ6kJeXR3riMzY2lk4//XR9K6qPu3fvtsoHLIpDevTooSY4t23bZrUp+krt2p4FebMckWx7TKyaxAm0E35uZAcvGmoJtCtdxzGP5/RpQvj5k8e/TCmw0AiLAvB7pScOsQB/70fL6eVruqodQ2ZemGzRk3D6OhYlsXCOjz7kEPvqeuG7NXTrGa2VBQAdD0dM4mAx1J9gcR6/YOXQkWN01wfLA07AoX6vsVk0TLRdPCAx2EcQdh7q9wLIMaHIvtwjhN0+WrATCzK4UwP69DcP0xREEn8L6jodjpjU9Sdog1vfXaqsBfiLg8lw+EqzLwaDGKMtIyAtiAhoY5PQgLbGgvdTvFMJO8oiIbCq8dTE1VY/1M/G81EfCNoQfRA74UCEcRKQQ/4zea3TLXUNed3/yQp6+8bulqLgN7LtRiT6AEg8yWwNAaQFyK882TyCF+ztAr/G2kIJMHay9GFP43SORQFMWpsCTIGl/pvF3z8my0G4wT27PPKFlzhhvxfOOwETwf+evManzatVqaBM0KFMEN3XbmfgTGspuG/v48AWRBSdFukXMTP7Hn6fvXJtN2VdozorMoHErqgEiiv3BAFBoHQhIHoDqbGo6A3++y2sA4LsDcsTO3bssCKaBPCKFT3fkfKgN4TzjQd44aYvKr0BZYOuoheQce4kWESG3vDQhcmO4yOnNPoaCLewPgjp27cvwSVNsBJJvQEEiEDyNBOy4QIS40MnAeH2SSY42y2PwdqBSZzAWAy+l0Hq1eNM5AdifAP25X1mL4/u4/SMYK6VBr0hEn0AGMLiBojrkJlMgDHHwxoz6MLr832CYyEEFhf9kSd0Gqej6A2iNzj1C7kmCJQHBNqzlSU3gvcyLLSe29fd+oObPCWOLwJYWL5ycAvegd+ciSrH1EY4LDxrGdKtMeHnRkAkuPLUluq3mzfFYJNOnRpV2AprFcv1wTcPnuSY1b3ntSf8CpMnR3chGu0cC9/kKwa3UL/DvBkpc3cuz0udoDbQaWvBzik9V2HN4ZFLOtH953egnTwPeoA3EDWsVdVafHdKGww+H9zW1ymLAtdAXgUWd5ydpDb+5bKF4LjaMWoBH2O/QFJYeyJt7eqV6MELO6hssnlz07Y9B6lG1UqKGGKSQQI9x989kDO0TGXLI6PYIkggCaeuyBdEEvxQjx3cZhhf1+cxMCw527FC/5jyj0GBiqPuoQ5/PjfEbzw3GMMy3Bwet0PgJsZpE5/fB8gNQaCYEcB31tQlAz3e7fc7UB72e2WGPGEuTvfq1ctez6DP4Wbh2muvtRZIMVH21ltvKTJFlSpV1GL4J598Qo888ojKG1Yj4AbE3yQkiBNYMP/oo4+UCw5MmsDSxRdffEHjx49Xedx///3UqVMnGjp0qDq/6qqr6N5771Xh7777ziJWqAv5/2EHg17EHT16NMXEeH2CmfGiLfztt99aRUKdi0O0hQmQTcaMGaMe+eyzz1phXYZItz0sa8B6CCyM4Ih+gGe4kQOG2wNYJIiUwCKDNtGJPEf0aMQM10S1KIsXElxdYLc+wpg4Q9icIMME3jfzPLuvkR7M7PvPb2cxrjG5iMXv7NyjuE3YhQS/rHpACJO7sGqhBRYCzukTTz15Zzgm5DBZU9gkpk5rP8Kaht65hMHImJObKXcIGIjAvNm70zcoywVIB/JGn7b1gl70h/sdLU6ufvS9QMefDKsicC2gLQRgUkyTJ5B+JrvicDO56BmIN6OT2ToJ2u2Nn9fzjiTPjjJYFoBg4HcT79xvy6xmuPz4cNZGZfkA97ADzSRPwGSxnlwFjtezS5GB+ZZPkD9cPqBf6MXp2cwKbhHXDFkRmNgPXpikwk7/2SdX7RZFQNrQE7ZY4H70kvbKXQfygglhWFfQJptgpeR0Nr8Hlyz+BKSgO89qq9w2gLGIPoIyQIANGIzoe8FIJPoABs5D2WycJk/8xiaLncgTmBzVMph3PgKDYAVpsKtSCyy73HB6K4JrCgh2qL07Y4MK4+92Olss0YQedTH/P01egW9DmHxuxiacIeG+E76Zl2m1OcwSP3xRssWeRpv969s11jvr0982+kwWf/xrhkUOQl+9la2o9OFdldDbMIE8deF2tWiDckJJ+JpJN7DMg8nkT+/srUwB/nPCatxW74InR3dUYaQHuepXAxvUefwF/vu2Sij/CQKCQNQjIHoDz+uJ3hCwn0IHww99RROsr7jiCnr33Xd90pUHvSHcb3y46YtSb4C+YeocA3gCcdypzdUkoh47wdobBJbPvpu/RY0hfDpBISerVq2y9PVQSdeR1htQ5NO6NFTjHEyYwoy11j8wzoeArHvVac0VAR5k5Ulzt1i6RTr72IYOoImoSANrglqQ91jGUU9yZ7ALj/d4nIl0EFgRMfWbe85pqwjjOr15hNsIkyheiyfVOxoLW6VBb4hEH0CzDDbIEyCNAHfogKaYLjvghjMU0X1fpxW9QfQG3RfkKAiUBwSwsAnXoZlZhwqtLsYI+ObFxlQuNK5ECB0BjCdgqTdSggVm/EpKsFHHybWFm/IgbWL+PJ6b+EUVB9Y8WsT5n4cN9Fy37Yk2rxXjbvNpoOfpeyjzJQObKesT6bxZMWPnAZ4TLbwO4dQVz/bUI3jytC53KMdAGM9e5Z1jPqtXQijZSxpBoFgQ2H/wCM/pe9cyAj0U3218vyMtvvZfIp17MeZn7gjq0oWZfmEK3GSYu9JguvWkk04iECcgcLsA0sNNN91kPenf//63FXYKfPbZZ3TmmWdau02aNGlCd911F91+++1W9H/9619W+OKLL7bCX375pRU2A19//bV1eumll1rhaA6ACAJ3J1pAEokmiXTbg8wzbdo0GjRokGVxokKFwv/0wILVC8jAp6kf8gQIAbAAEehn7jbHdNgHv2xAlkow0AfBQO9mxwQMiA4gQ2jBRJfpNgCTX7psjdmf0OOXtreIE0iTyGV97vJObKXAU0+Y+P8sf5cM7r9jpK/JgyEQM+A6AuQKmCO9myfQ9EI94rsVYPabYSr2AV7kHM47+fWkEnyGPcIL8aYZvu8NEofb5/z+++9WVFinCUXg21fLkK5es2aYwDQtOJgL5zq+0xF1HcIL8WhHWIe4/czWVr0RvwoPsP81tjMls59j4NG5eW0ab7RxNhNiTFmZbw0B17qx+wezPZAek5aXs3lXLevyJ0Nxjik83Hf6oX6zecJUCxbK7zq7rT5l9wpen8ewfACzwOhPWuqwi5L7z09iv3+eRXtcf+3HdH27wBH5v35dd0WcwE2YVLyRLVWYfgBBBAlWItEH8Mxebepa7QRLGSAKmAKChSaKgBhwEk/qhyLvTPe6x1GElIvbW8QJ5AdShkliWbzOv0ksWJJ5mHdensuEJ7wrIOG+E8z+BsKCaYoZbXbfee0sZvZuwwclyFYwMa0F7n3gQkZPI1erzObw+sX7WOEB8SuPLeRAEO8EAJsvCKpr+pyPxm0VNu/rdHIUBASB0oWA6A1EojdEps+Wdb0BKIX7jQ83fVHpDdCJMD7SMpzJ5LBmpndfYcw5elBT3lHqteQHsnGwMmfOHCvJgAEDrHAwgUjrDSDOX3VaCzUuxrgehFmQ2U35BxNZ4TIS+hnIsnee1cbS7RAPhAgt2pUEzkFaRt6aOIFrIOuO5/G7lh37DuugOkI3c9IbcN20mgDdAHqjJuSXFr0hEn0AQGEMDyIDBMQJu4tKXDdddpzGumEoInqD929e9IZQepCkEQRKPwJu510OMJHw4yBd1pZ+dKQGgkDpRWDckFbKbQZqMJldqJQ3Oc7jx2/+2qyq3YPnowd1Cm2sWN5wk/qWDAL4vuI760bcfrfd5GXG8axsmldKaTgry7t4kpTkVcxDrc7kyZOtpCA0tGvnXUi2bnDg//7v/6wF8VmzZin3HeZ9HR43bhwNHz5cn/ocn376aYL7CMiCBQt4URpTOUQgV4wcOVKF4V8XrjtMMV12tGzZkvr162feLtEwXJjAVYn5u+yyywhuUi666CKrbCCkjBgxwjqPhkCk2x7kEO0aJJj62V1WNOBFYCf5aZFnVzXM4fr7ffmHx7wn0oMIoS1CYFHw0oFNnbJVE1gwAaYFfmq1mL6GMKloTo7pOLWqV6b+7bwLvbBkoGVFhjev+3ixU0+A6fs4XsEL85r0YF4PFMbOek3qgDsETMLZBQuf5/FiqpYF6b7+fvV1f0fsMAQZBgJLIqG07VpbG5zKu4hMObWzd/CCyUWQQgIJJtHac31NQZuAmKIF1hnsOKN99cIwcNOuIZAmKaGm2t0Pc7CmRQqdH44aa4T1LjWE/Ql2Hj7BZn51OhA6Hh/V3qedp7E5Ji3Y/YeJa7ugDWE5QIt9AlZfxxFECSf3E7C+oQXlCkYi0Qf089DHO7AVBy2/rvASS3ANuyE1tphABhkgFNEEDKS9jP/mQbCxi/kuSN/u2RlojwNrDfCVbZdw3wkMgyUzl+9Q5uysCxzAZDEIQrewVQkQJLSY5CJYb0H5nMTsL+h/psscp/hyTRAQBMo2AqI3iN4QqR5e1vUG4BTuNz7c9EWlN6zI2GfpRBiTYnzkJLCOpwU61MZdufrU1RGWIrXAbUewEmm9AWPPUScVrKtp5RC6hZNVN3M3j2kJDe45MD6E3gBSvpOAEKxFz3foc6cjYj/+VYpy+6Hvg0xr6qelQW9A2cPtA7r+OMJKoRY7mQcW9fQYF/oPfKCHIqI3ePVM0RtC6UGSRhAo/QicmFTfmisrrDZzVu+mX3gOQ0QQEASiH4FY3px161meOcUvf9/I7sKDG9dHfw0Dl/CnxVuV9V3EuvPs8NdPAz9N7goCoSOA7yq+r24Ea1sDkhu4iRp0nDJDnqhRw2tmx9xNFjQi+QmWL19uJe3Ro4cVtgdgiaJ///7WZbhocJJAxIbKlSsr/6dIBxccGRkZVhaXX365FYbFBlNMlx0gZ5i7Z814JRGeMmUKvf766z6/iRMnkonPddddR3Cl4cYKQ3HWIdJtH6pbB20GVdf9oEumlY7v77jJGBi0aVzT2l3lFN/c3Y9d8RDsjNeLubByoHeeO6UHgUHLTt4hDoGJVzO908Qc4qH+ibYdULgeSHQZEacNu3GANQWnX8u46lY2IAzYrS5YNx0Cq1evtkzvDhkyxCFG4Zd+WLDVioRFfPtC9sAOvoraj0yQCSSmJQ0zXhU2SaalmQssjxruZEA8uf3MNuqn84fZZJBofmbTvrD2YJrn1c/xd0SbP/LFKoIVEgg+bI+y9QOQbEzZZRBFRvIuOH8CCxpaMKllTuDq63hGu3gvSUJfx7G50QfgbzAYiUQfMJ83tGsj6/S3lV6LJLgI315aYKo3FDH/ZpG+HRNjnAQWPj5jNxb4vXez83dvUMeCgxEz/1DeCSiL2Z5wY3LVq4vo1anptDB9r2UlAn0SFmpMggRcBGkJhA8WCmDmWYu5W1Jfk6MgIAiUHwREbxC9IVK9vazrDeF+48NNX5R6gzkWiGdLenCX6KQ3YEHatFi2ZoszwdSpT9kJt3XqBL+YHWm9AQQIJ2JxjEHQjWdrfU5iEtu1Pod4IDvDMhl0B1irgKDt4OoE1iE+YZdrt7yzVF13+x/ccZi63Rgm1tuJ8aVBb4hEHzAxg4tGLdicYJLffzOs+3VhK4OsCgUt5t8sEove4GtlJWhAJYEgIAiUSgQa8EYjp00j/irzwcyNlmsrf3HkuiBQGhFw2ixZGuthlvmMXvE8vvHMKb/xk3cdryzW1az3kWPH6bWpa9UluC8J1XWMmaeEBYGiQABu6PFddSv4XpsWrN2mcxPPu5LgJnYUx9GWG1DEFStWhF3STZu8O/ULs2TRuXNnaye6P+JGhw4dApapa9eu9P3336s4KH+LFi1UGFYZYmNj1WItXHfceeedVj5wJaLlkksu0cFSccQuLX+WOEq6ApFue3OCPpi6ma4bkG4L+3sFIcAuMDHbsVlBCwswZ//FbG8/1uk2GYuN8ewPKJAk8WBCmwOFv1mIOdFY21iMdMrHtIaAiUfsODJ3a9Wr6btwbs8DLhcydrhngW5nf7xa4KrEdFeirzsd9zLJwr6I7xQP10yzq6EQYzDRuIgXhLWsYT9r17+5WJ9aR2NzFv2RsktZ4rBu2gJNeMLXSUAe0ALlLxTBjqbJ87cSXCWYZQo2r+e/TSP0SS2wCGHv47iHiVYtcOHiT2BSGW5hDuV5iA/YZWW6nUA67YrGKQ/4rAtVwu0D9ud2b1VbTWJj8hNmj7MPHlU+8dBXVuW7T0FbwhJHKGJOPCMffxPibvI2Xajo+OG+E6CgXDG4Oa3clM2LFh63JUfYrcbc1N3qh+dgNyQGQ3AzVNsg3MAHt5Zmhfh9hMlpbUHHLLNOL0dBQBAoPwiI3iB6Q6R6e1nXG8zvZSjj/nDTF6XeYJYN48gb31riqlsEY7EsNTXVIl2feuqprvI3IxWF3lCfLXU5iqE3mBYmHOP6uZiyeb8iSmxm0r1JrvAT3e/lnxZvpz9Tsqz7JybXpxHsitEupUFvCLcP2OsM0j02OKzfnqt0s7mpWZZ7RX/uXex5BDoXvcGDjugNgXqJ3BMEygcC5/RpYs1HFFZjzHW+9EM6jTutGZmWZAtLJ/cFgWhH4LSujWlAB89GrnDmUaOpniADv3tLH7VRy9yIXBbrauKO9pt4/wB1yW6Z2ownYUGgJBGAxQkQJ0yrhYWVB9/ropLQV4+KqkQh5tuokVeZhuuLcCU72+tWoLAdIub9gwcPOj66bt26jtf1RTMP05Rw9erVLZ/EpuuOI0eO0FdffaWSw/UF3HaEKnD/4VYOHfIuVAVK8/PPPxPyNX+DBw+2ksycOdMKR1sg0m0fav2wOGzuCtqy27lvJfDOICwq2n+N6jgvlpsEg8ImxkyXCXrhfNserwuJWjGByQ/mIqfGwXSxYLe4oOPo4zFeTA5G9vOicyiSd9T9c37//XfrEYEsyliRbIE/eCLQnEwErjlcbvvPTHbg0DFayyQLf1KTzY5FWmBl4sa3FvMHK4Oy9hckTmCwae7CC/R8+Co2zb/Cz/IAngS1C3b76X6G/Atj/Wqf1Mjnf/zPLpXZXG1RSLh9wF4m1BO7w7Rok49gWuq+AisxoQ5uNfEJ+cOscjioOLVJuO8ElKsWl+uFsV0I1iPM9x7uQTKZ9AW3RDe/vYTJRN7JdNPiSGHvM9PyhEN38TxI/hcEBIFygYDoDaHrDW51AXQk6CtuRPQGNygFjlNUekO43/hw0xel3mDmHRhd37sgeLqVuXPnWlGhswcrRaE31GDrfoUJD8ODEozC4ZrvSf6B+K7HrzoTD3nXPylax8MRZNpPDP/xTdl63k0jWplRVLi06A3h9oECFecLp3X2unicudxjtQ5EEu32EwTyLn5c2TnlZ14TvcGDhugNZq+QsCBQPhFoypsvTnawvOkPDSz0vDcjQ1lp3X/Q3RjYX15yXRCIFgQwhoOeYdc1oqV8oZYDc86oUzV23aelrNZV1w9H3Zaov4ggEE0I4LsJK+f4jgZDnMB3Gt/ropLIr7gVVUkLybdnz55WjJSUFDp8+DBVreq8eGxFDBBITEykzMxMFSM9PZ2Sk5P9xoYJdy316xdcEMQ9uKto187rp13H18e0tDQdLPCsyy67jN5++211H647YH0Ci3dw8QEZO3asOgbzX82aXrPt8+fPd5UUmM6bN8+Ka+ZhXQwQePrppy0XJy+99BJdf/311KZNmwApSuZWpNs+nFrUrVGFdua7Mfhl2U7LDKqbPDfscDYpaxIizIVHpzxNU6gNa3t2KZkL5jDrGUh27fcSLeBLGAuvphmdXCYFBBJY2whG4OpD71wf2i2O4BLDjcBUrxuBf95ffvlFRW3fvj35+3sPlNdPi7dZt7FIXNUYqFk38gOYBNNkgikLtylTuPY4RXX+1KRUC0s8ozFjBBctsCaCSUz4G166YR/93zfed5dTWeal7abv2HKFFrhy8ecLuYZBAsGkKyZiAw3nDhhWKhIdzAubDGL9/HCPkegDTmUY0jWOFq3zWCT5feUuOpf9a/+SPxmK+KeyxYVQxZz8Y1gjLuG+E3SB8Pd7zdAW6reazRD/vWYPLWN/5LDGoQV/D2/+vE754YbFlRpVK1nWSgp7n+3O8U5gFGZ1Rz9PjoKAIFA2ERC9Ibh2hRU8LX/88YciRcDtYGHy999/W1FEbyByozNagIUQKAq9IdxvfLjpi1JvqMvuK4g8+hLcCJ7uYNnAqRm0Ozune/ZrJuG2b9++9tuFnpcWveHjWRtpNVud0IKxJ9ysdW1Rh2C1LIGtHUIPHP0f7ztBxzWP0HtN3aJGtYr06CXtHfWB0qA3oG7h9gETHx2GNbr3Zm5QeiII9nlM6DFddsAaXyAdSufjdBS9wYOK6A1OvUOuCQLlD4FLByYqdxzm3FNhKMBH+9L1+2hkz8aEeZ6i2OxUWBnkviAgCAgCgoAgUBoQwNoiXJZP5XWvYL61qBs2BeA7XZRSZsgTrVu3JixmgjgBgYuLK6+8slDspk+fTmeccYaKh90gemG0adOmFlEAE12ByBPLli2znhMfH2+FzQBccejnmNd1eNGiRTpIdhcf2N0OyxLr169X9QJ5wnTZcfbZZ1tp3QZAENDy008/0dGjR6lSpcDdYelSr59SmDuuVs3dgrN+DiaqL774YpowYYK69MADD9B///tffTtqjpFu+3Aq1oJNcmryBNw7wGpEozqF4w6G1qwVuxwfbbKxzEVJp8irM73WDrSp/+aGafw9B7yLkU7ptcsB3KvLvnAhTXkCTcu+QtjYO/d5yRc6TaAjFvQ1eQK70J2sG+j0ICYAp0rMtizMAoZOAyKVds0zbNgwfdn1EYu7ekcQEo0/P0mREfxl8M709ewn2NOOWFhHeZ12/vtLH+p1mCPeaixYw8XGSQ4uIwojt8Ds6ytT061iYAJ9/Hn+SWRgvpquOLYxecafSxJgmXfEu/OvAbt4KQ4Jtw/4KyN2h2GXGHYzbt97WLk4geljCNjPJyY5E/P85WdeN/9m4c/bHykFfxNPT1qtJmKB+y0jW5vZ+A2b+YfyTkB5UC4IrGvgl8wug/CDAJNfmVDy0awMVTYQKBay65szezXm92FV6x25aVdB1y0qg/z/cF+L+R7S1+QoCAgC5QcB0RuCa2u4oNNuBJESuo9JQHHKDVYnpk2bZt1KSEiwwm4Coje4Qck3TlHoDeF+48NNb36vI603IG8QNSEYgwbSGw4dOUZwr4ZxOMiebmXGjBkqKuYpGjRo4DaZilda9AYU9s/VXr0T1hBvPaPgGNJ03+cEBAgAj3yxSuGM+2iTx0d1UDvknOKXBr0B5Q6nDzjVG9cwVm7DmwTWbMlRY2O4OPnVIF0P5cW6UMX8mxW9wYOi+R4KFVdJJwgIAqUTgVi2tnvNkBb00hTvvJabmmAB6L9zMunrv7Yo97Kdm9cikC/hmrh6lUpUsYispLopm8QRBAQBQUAQEARKAgFYmM/NO0qwALlu+wFlpXwJkw3tVgvdlg3fZ3yni1ICr5YX5ZOLIO8rrriCsCAPueuuu+j000+nxo0b+33SsWPHaPz48db9W2+91Qoj7cSJE9X5hx9+SCAoVKjgNeWjI8ISw/Lly9UpCAUdO3bUt3yOH3/8Md10001q4tHnBp+AOKFdjbRt27ZAHDwXRJDHHnuM4LoDfjO/+OILlc2oUaPIdPlhz9vfOSaNzUnQTz75hMaNG+cvOgGrN954w7o/aNAgKxxM4PHHH7fIE7Cigd1roZgwDeaZwcaNdNsH+3wz/uUnN1MsZywWQt74aT09cklyoQvoX8zeTPv8EBtgNUBL2pb9ate20yQgFuqXsWUBLdqKA3aAYTEXZcKiJhYxe7auo6P5HGcu22Gd64mYWtUrW+mx+L1iYzZ1albLiqcDIAsE+/JM4EnQ9G2eHWSYRDq7dxOdnc9xLcd5lCfnIFisf+/mnj73/Z3MmTPHujVgwAAr7DYA/71aQNiAFYdAMrRrI4s8gQlbTPD25QnJohYQdbRgQd+JOIH7C9M9E846rnkEc/Cxr1JUP8F15PPEpR3U0YxnD4P0okk9k//eStcPa2mPos6nLfFiiR1S3CWLRcLtA/4KifJ3511i8/Mn8V+YnGb1/3bxsY6uLPzlZb8OUpH+m8XfLf42nNr0K3avAv/JEMR3K+G+E9bx3yMmyyGwcPLC2M4+j0bfwSTwNiaP/bTI0+7aTzn+5vEOgczg981Zfv7mMSiD+xstzeNq6KAcBQFBoJwiIHpDcA0/ZMgQi7z9+uuv0zvvvOOoG+lcoVtogY4EIniwInpDcIgVhd4Q7jc+3PRFqTe0MMYC0B+weI9Fabvg+g1vLlF6D+69dHVXalALVisCi0m4Pe200wJHdrhbWvQGqKnmGGvMyU0dakM0b81ux+v64lMTV1skeFy78+w2fknUOk206w3h9gFdT6fjaZ0bKvIE7k1ZtM0ivsPaY8emBXVrpzycroneQGoy1+zTojc49RS5JgiUHwT68BzcUN7YMp13xgYrmNPEnCl+IoKAICAICAKCgCAQGQSwToDvc1FLwdmBon5iEeYPcoKemINLC0xSZGRkOD5x27ZtygqCJj5gN9RZZ51lxTWtREydOpWeeeYZ654ObN++nS644AJ9SpiErVjReScK3HZcd911vJCYvwqen2r37t0+eQwdOtTKzwyAJKHlmmuusVx2XH755fpyUMcqVaqQSRaBCw0QPJwExAlg+9lnn1m3UYZQBKSNW265xUp633330fHj3t3j1o0SDES67cOpCiYczcVALGrf+9EK8ucuAwvsH7OPWJi68SfYza0tLaA7vs3WDZzkffYxpMkLIFfAPKgWc0Lmg1820KE876KkjgN3DRvY562WUSd5rZ1gp4yWt6etp4O29FgkffH7tTqK66O5y2Zz1kECe80uqNPr7ENJS5fmtXWw0KNpdhUWYYKVWSt2WkkGJBf+gm8RV51grlbLjwb5Ql8rimMtg7V3nPFy8u08k93IpGza7/h4EG8e/TLF6hdYiH/wgiTymEd2TGJdPK1LnBXGIj/a0S7bmaE4NX8RHffO7ets8ceeLhLn4faBQGWASUctpoWS08Jw2aHz69Wmrg7S57M3WW2jL2JH5Sxjx1qftoX3T50Wx3DeCZpYhXxgbQQ+rJ1kB1vk0NK8oYcENsToL9jR+BtbqLAL3ouv/bjOuoxdH7ViQuOOmhOpVoYSEAQEgVKJgOgNwTWbOfYHMeLGG29U5GqnXKBT3HDDDdYt6Blu3HxYCfIDojfYEQl8XhR6A54Yzjc+EumLSm/AeAALzRDoB5+wDuUkH7LlKz0WBmHXDXEC+cydO9fKbuDAgVbYbaC06A3g25qk26z9eQWqCBIrduD6k/dnbqC1W70uJy8akMCkYmdyvplHtOsN4fYBs672cH+2SqdxNy0G9nCBmz0v+7noDaI32PuEnAsC5R2By09pRl15s4uIICAICAKCgCAgCJQsAvge47tcHBLa6kFxlCyEZ8TExNB7771Hp556qkoNwgIsOWDyDtew62nDhg0EFxpvvfWWRUBA5GeffdbHbQXMar700kt0++23q7ztaAGMAAAQ5klEQVSw8wmLZrBK0KhRI/rrr7/U7ittwh95gwgQSCZNmkRYcAVJo1WrVgQ/wHBbofOAOc8nnnjCMQvEh4UGWGqAtQsInjl48GDH+G4uwjoHng+cIJgUBUECz4EFDbjyQBlhcle7Q0G80aNHWxjjPFi5//776dVXX1XJYHEDFj7gzsNJfvjhB8rKynK65XMNZe/UqZPPtVBPiqLtQy0L0l10YgJbH9hp7cTB4uIt7ywl+OaF2beWvMC+lxcbQVSAJYBDeYHJKDBxOu7U5mzFwjMpAGsG/5ywms7r24Racn7IB5N1f6V6dwdd0D/BZ2f/9ae3pNveXaqsCuzJOUJ3frCMrhzcXFlSwDnK8c28LVa1YVnCdDdyy4jWdMf7nvSYYENeWDjG7rKl6/cS3BVo4oaViYsA8OjTtq61e//5b9MU+QTmY2N5sTSNTZt+/GuGhSUmnExSR2GPgIsbCN4rgazaOOWDZ+cc9LgmwP0RPRo7RStwDWUHUQECn7YgqmjyS4HIEbqAvqUF7TD+05XcP+IpKb4mLcvIZnx3W7v9dTy4l9nKfRPuWTDJjH6qBZYDJgaYMEW8ywY1JZBF4G/6u/lbVBvh2Q/ys3EPfpMrsWnDpWwNBZZV9CQ2sBjWrZF+VJEfw+kDhRUOixOYxDfdkaCPog+EK1fx3/yCtXvU3yys0tz14XK6oF+Ceo9k7j5In/620fqbA86ndGoY1CPDeSfgebAgkZlPlMH75PphrZRFGuwAhWWJ2at2EazRaNGTuvH1qvn8zYOMtWHHAbas0YAasknMlE3ZylSm2R/HMhbBiOnqCJP/E+dmEnY6nso7/kQEAUGg9CIgekNwbQeC92WXXUaff/65SvjBBx8ofQhuzPr06aOsUKxatUrpKrNmzbIyx5jpjjvusM6DDYjeEBxikdYb8PRwvvGRSF9UegPGGBgfvfmzh0j+C5NId+fkKR/lCfViCO6+Js3dQqZFtssGNnXdIOEQbkuT3gBAYK0A5lchz3ydSuf2iVfjV4ybFrNu9wcTos09JCC24h4IP6tZ79O6jsqA/1u1cT//UvVpgSNI/Sd3bBD1ekM4faBApW0XMH5O4k0RwM8Uk4xtXg8mLHqDV48VvSGYniNxBYGyiwDmUW8/ow1/41az1R8v2a/s1lhqJggIAoKAICAIRB8CbeNrqO8xvsvFIWWKPAHAsPCPCTu42YD1Ccibb76pfurE9h8ICJgEdHJDAUsR69atUyQKJEO+5mSgzgp5YJE/kPuMd999V5ET4HYDP7vAhcY333xTwGWHGW/s2LFqQlJfgyuPSpVCb8JatWoRXGecc845FoHCXx31M2GV4bXXXtOnIR1BPnnsscfUDxlgUhSEEkxi28UfXvZ4mLiNFHkCeUey7e1lDfYcvnX/cVF7+td3abQ9f+c1Fo4xUWKfLDHzvnZoC/qLrT8s58Vuu8Bk/68rvZYDUjP307Nf+0686DTdmM01rJt3RzyuY+HwohMTaQKb+Ydk5x6lV/z4AMSk2I3DW6l4+j/s2BrNLkk+zd/hlcv+ACfP36pvqyMWjWtUq+RDOPCJ4Ofk2qEtaTXXB2WCfM+uH/BzkuvYJYRJ6nCKo6/Bio0mOoVieveHBd4yAJMm7J7AjYAYoCcUMen4CxNbRrokXrjJ3ykOPkDDmcSgzQVj4VmTbcz4HZrGKqILygW87+EF+auHtLBcP+i4IAOs5EXsQLJr/2FFnsCn7zYopZNS1WK+3gn4iUNiTBrec05bH2KPQ7SIXQq3D7gpSC92gTNntZe4BNcukRgQgJh01Wkt6L0ZG1QxQKDALj8nuevstkFbZgj3nXAb+8a+/+MVqjgggL30g3/LM+ibjet4/37Q58y/+WlLdhB+TnLpwESftE5x7NdAJkJfw0Q/5Bv2WwoR8oSCQf4TBEo1AqI3BNd8cNexb98+mjJlikoIcrVJsLbnBuIEdA3oOaGK6A3BIVcUekO43/hw0xel3jCwQwP6c3WWpS/Bap2T5Tq0AsisiO9Wpk+frqLCMmaTJk3cJlPxSpPegAJfdVpz1iXTVNkxjvvyj83qpy7k/1e3ZmU1ttc62j8+X0XdW9Vx1IkK0xvqsS4F8kQ06w2odjh9wMTOXxhWF835AJCwC3ML6S8v87roDR40RG8we4WEBQFBoCq/Yx84P5lemrKWN30VtHIrCAkCgoAgIAgIAoJA0SEAixMgMuJ7XFxSfE8qrhrxcwYMGKAICtpqhNOjMYkHVxgLFy50JE4gDVxwPP/88wSLESeeeGKBbJAHdlLBOkO3bt0K3DcvnHzyyQQrC/AXbJfhw4fTzJkzlTUK+z3zHCQHU0xXHub1YMJt2rRR5X/ooYeUJQt/aWEVA76Nv/76a6pevbpjNNNlSdWqVR3j6ItwGaInUjMzM+nTTz/Vt/y6PrEiOAQKe56ZxA3hJNy2N7GAi5RwBbur/z2uC10xuJlaxAuUX3Pevf/U6I5q53jP1h5T/ZhItcvDFyYrqwsOt6yol/LuqnvPbUdO6c/p04QeYFcM2tytlcgI9OAJsf9c1YXqsDUCu4zgBdDnruhEibzj3CwDFoobM7HgHxclq3s6XU3DzL5TeXQ8uBh59dpudGJyfX2pwBHkhTvOakODgpgAnTNnjpUPFluCFVhs0BLMrn7gAxPBWrBzC1LBBcMOC76FiT8sx7D5I5BsnASWJC4ekEgPcR86pWPB3fcVwvyyYNIP/SaOLQf4E+xwe5Hj2CcI/dXHno/p07qyC5yQPtw+gDwqGp29csWCQA3t6mtFwzRHjPQQn7JzW5hygpl/Jd/2x2L/46Pa+7VcgsWJBy9MUlY+zDzdYhrOOwH9HO+aQO8TvBvO6xdP6Jum1GSS1cvsf7wnE0/8Cfrsw/xOObNXwcULE89KDm2CPC9ht0Nu/p78PV+uCwKCQPQiIHqD+7aBDgBdADoBdAN/AmL5gw8+qHQM6BpOYo6VCxvHl6TeUMHFoKY86A3hfOPR/uGmLyq9AWUbf34SXcFjC2MIhcuWYGxyPo8/bmWip1vZuHEjQceF+HPLGSivktAbzPGQv7I5jV0RtzO7QcQOfSfCL3DtwWO0F6/qSmPZUqFdnNLY4wQ6j1a9Idw+gDqb2FRy0P16s1s+Mw5I2HYx29WMi3imPlnFNgYWvUH0BntfknNBQBAgtWBzN282MV0GCy6CgCAgCAgCgoAgULQI4LuL729xEidQoxPy8vI8WymLtn4llnt2drbaEQXl9fDhwwSXDF26dKH4+Pigy7Rnzx41CXLkyBGqX7++2kESyH8vfAHDjQgErjGaN/dMFuTk5NDatZ5dtbhWt67XF32gQm3atIng+xfSuXNnRfwIFD/Ye3DTAUsPmzdvpr1799Lx48eVawI8Mzk5OdjsylT8YNu+KCuPP9gtbGZ/DbuBSN92gA6yG4cGvJCMxeRebepQbd5hHozA6kPqlv2UlplDuZxXQ15AbdukJpvzr+lqsRC7sdO35XAeObSLXTdgIbNdfCz/ahKIDG4FLh8wJ2RagribLRloc/uvXNtVWbxwmx/i7eXd9avY4gHKlsfWOoARXIigbMHKLbfcQm+//bZKBos0iYmJwWZRKuOjXeAqY/Oug+xaoZraIWbu+kel0A8zduaqvqf8R9sW9EOtOPo6ngurAugHx9nEBfomTNSCAFPcUpb6wE42rYxdfTCxHM+mqZs3rE5NGxS0/hMKxuG8E2BpBG46sOsTprMhsNICcgWs4OD9EkjgBgj9BaagkRfSJfH7KJHr5kslCZSL8z28Q+BSCO8pELzwPhERBASBsoWA6A3Btefq1aspPT2dtm3bxgvPJyidJiEhgXr06BGWdbzgShF9scuy3hDONx4tFW563dpFoTfANR50BnzrMZ4AqbQFj4/6sMWJYMcQEyZMoDFjxqjiYpOAPxeVuj5l5Zhz6Ci7b9yrXKjBgmA3drvXmsfuJn7beewJawkgpcJlnRPJPhQ8ok1vKEt9QPSG4Huk6A3BYyYpBIFwEUhNTaWkpKRws3Gdfj5b+n2XLXse4DlVEUFAEBAEBAFBQBCIPAI1eG3xGrY4DZ28JKTMkydKAlT9TH/kCX0/2OO4cePos88+U8k+/PBD5Xc42DwkviAQDQj8vGQ7YdITAp+4TpNmWCi/4qUFyj8udix9dFsvn501xV0PKGHr168nLArgKFL+EJA+UP7aXGosCAgCgkBxISB6Q3EhLc8pbQiURr3BJNxi00SzZr5Ws0pbG0h5g0dA+kDwmEkKQUAQEATCQaC4yRMo6/6DR+iL2Zvpt5W7wim6pBUEBAFBQBAQBAQBGwJw0wg3erExwW0Ut2UT1mngLZxhZS2JI4FAVlYW7dq1S5nI1cQJ+E0tL7tXIoGh5BF9CECxyNiRqwp24NAxunlEqwKF/L9v0hRxAjdaNapRosSJLVu2WISJYcOGFSirXCj7CEgfKPttLDUUBAQBQaC0IyB6Q2lvQSm/EwKlTW9AHaZPn66qAtK1ECecWrXsX5M+UPbbWGooCAgCggAWdK4b1pJG9GhE383fSn+xNQreByYiCAgCgoAgIAgIAiEggA3U/djKBNx+Nm1QPYQcIptEyBORxTPiubVr147279/vk++zzz5brk3h+oAhJ6USgT7sn1WTJ+aszmJiBNEpnRpStcoVKYVN7v+VmkVrtx6w6nbxgJJ1kTF37lyrLIMGDbLCEig/CEgfKD9tLTUVBAQBQaC0IiB6Q2ltOSl3IARKm96wdetWi3Q9dOjQQFWTe2UUAekDZbRhpVqCgCAgCPhBAAs8t4xsTaNOSqQ5PJ/5R0oWZWZ5rO36SSKXBQFBQBAQBAQBQSAfAbiKP6l9fToxqT67z4weN9lCnijCLlqxYsWI5h4bG6vcdgwfPjyi+UpmgkBxI3BW7yasUOxmZeKgevTsVVmEn5PcdXZb6tSsltOtYru2ePFi61n9+/e3whIoPwhIHyg/bS01FQQEAUGgJBAQvaEkUJdnlgYESpvesHTpUgtWIV1bUJSrgPSBctXcUllBQBAQBCwEsOBzdu949dudk0cpm7Jp3fYDtIXdFm/be5gOHj5GB/OO0dFjYp7CAk0CgoAgIAgIAuUCgUoVT6CYKhUppmpFalynKsXXraaszbdvWovq1awSlRickJeXJ1/sImqao0eP0sGDnsXhGjVqUIUKvL0+SJkzZw6b/PofJSYmUtOmTUPKI8hHSnRBoFgQyDt6nN6fmUGwPHHsuO9rCCZ6GsRWpTGnNKVeresWS3kCPcT8WwaJSaT8ISB9oPy1udRYEBAEBIHiRMD8zojeUJzIy7NKAwKlSW+A7p6Tk6NgjYmJEYuRpaGDRbiM0gciDKhkJwgIAoKACwRSU1MpKSnJRUyJIggIAoKAICAICAKCQOEICHmicIwkhiAgCBQhAkeYRJGxM1cxscHCTkqIpeZx1Yn5EyKCgCAgCAgCgoAgIAgIAoKAICAIKAREb5COIAgIAoKAICAICAJOCAh5wgkVuSYICAKCgCAgCAgCoSIg5IlQkZN0goAgIAgIAoKAICAICAKCgCAgCAgCgoAgIAgIAoKAICAICAKCgCBQYggIeaLEoJcHCwKCgCAgCAgCZRKB4P1IlEkYpFKCgCAgCAgCgoAgIAgIAoKAICAICAKCgCAgCAgCgoAgIAgIAoKAICAICAKCgCAgCAgCgoAgUF4REPJEeW15qbcgIAgIAoKAICAICAKCgCAgCAgCgoAgIAgIAoKAICAICAKCgCAgCAgCgoAgIAgIAoKAICAIKAT+H51GlAuAzvT9AAAAAElFTkSuQmCC" + } + }, + "cell_type": "markdown", + "id": "f97431a4-78a0-473f-99a0-67eeefb8bbc6", + "metadata": {}, + "source": [ + "![image.png](attachment:2f957256-5d08-40e1-b77c-5faa4f771fb2.png)" + ] + }, + { + "cell_type": "markdown", + "id": "8e609a46", + "metadata": { + "tags": [], + "toc": true + }, + "source": [ + "

Table of Contents

\n", + "" + ] + }, + { + "cell_type": "markdown", + "id": "8e713032", + "metadata": {}, + "source": [ + "## Import modules" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "e69953f7", + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-06T20:08:40.044647Z", + "start_time": "2024-12-06T20:08:37.758061Z" + } + }, + "outputs": [ + { + "data": { + "text/html": [ + " \n", + "
\n", + " \n", + " Loading BokehJS ...\n", + "
\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/javascript": [ + "(function(root) {\n", + " function now() {\n", + " return new Date();\n", + " }\n", + "\n", + " const force = true;\n", + "\n", + " if (typeof root._bokeh_onload_callbacks === \"undefined\" || force === true) {\n", + " root._bokeh_onload_callbacks = [];\n", + " root._bokeh_is_loading = undefined;\n", + " }\n", + "\n", + "const JS_MIME_TYPE = 'application/javascript';\n", + " const HTML_MIME_TYPE = 'text/html';\n", + " const EXEC_MIME_TYPE = 'application/vnd.bokehjs_exec.v0+json';\n", + " const CLASS_NAME = 'output_bokeh rendered_html';\n", + "\n", + " /**\n", + " * Render data to the DOM node\n", + " */\n", + " function render(props, node) {\n", + " const script = document.createElement(\"script\");\n", + " node.appendChild(script);\n", + " }\n", + "\n", + " /**\n", + " * Handle when an output is cleared or removed\n", + " */\n", + " function handleClearOutput(event, handle) {\n", + " function drop(id) {\n", + " const view = Bokeh.index.get_by_id(id)\n", + " if (view != null) {\n", + " view.model.document.clear()\n", + " Bokeh.index.delete(view)\n", + " }\n", + " }\n", + "\n", + " const cell = handle.cell;\n", + "\n", + " const id = cell.output_area._bokeh_element_id;\n", + " const server_id = cell.output_area._bokeh_server_id;\n", + "\n", + " // Clean up Bokeh references\n", + " if (id != null) {\n", + " drop(id)\n", + " }\n", + "\n", + " if (server_id !== undefined) {\n", + " // Clean up Bokeh references\n", + " const cmd_clean = \"from bokeh.io.state import curstate; print(curstate().uuid_to_server['\" + server_id + \"'].get_sessions()[0].document.roots[0]._id)\";\n", + " cell.notebook.kernel.execute(cmd_clean, {\n", + " iopub: {\n", + " output: function(msg) {\n", + " const id = msg.content.text.trim()\n", + " drop(id)\n", + " }\n", + " }\n", + " });\n", + " // Destroy server and session\n", + " const cmd_destroy = \"import bokeh.io.notebook as ion; ion.destroy_server('\" + server_id + \"')\";\n", + " cell.notebook.kernel.execute(cmd_destroy);\n", + " }\n", + " }\n", + "\n", + " /**\n", + " * Handle when a new output is added\n", + " */\n", + " function handleAddOutput(event, handle) {\n", + " const output_area = handle.output_area;\n", + " const output = handle.output;\n", + "\n", + " // limit handleAddOutput to display_data with EXEC_MIME_TYPE content only\n", + " if ((output.output_type != \"display_data\") || (!Object.prototype.hasOwnProperty.call(output.data, EXEC_MIME_TYPE))) {\n", + " return\n", + " }\n", + "\n", + " const toinsert = output_area.element.find(\".\" + CLASS_NAME.split(' ')[0]);\n", + "\n", + " if (output.metadata[EXEC_MIME_TYPE][\"id\"] !== undefined) {\n", + " toinsert[toinsert.length - 1].firstChild.textContent = output.data[JS_MIME_TYPE];\n", + " // store reference to embed id on output_area\n", + " output_area._bokeh_element_id = output.metadata[EXEC_MIME_TYPE][\"id\"];\n", + " }\n", + " if (output.metadata[EXEC_MIME_TYPE][\"server_id\"] !== undefined) {\n", + " const bk_div = document.createElement(\"div\");\n", + " bk_div.innerHTML = output.data[HTML_MIME_TYPE];\n", + " const script_attrs = bk_div.children[0].attributes;\n", + " for (let i = 0; i < script_attrs.length; i++) {\n", + " toinsert[toinsert.length - 1].firstChild.setAttribute(script_attrs[i].name, script_attrs[i].value);\n", + " toinsert[toinsert.length - 1].firstChild.textContent = bk_div.children[0].textContent\n", + " }\n", + " // store reference to server id on output_area\n", + " output_area._bokeh_server_id = output.metadata[EXEC_MIME_TYPE][\"server_id\"];\n", + " }\n", + " }\n", + "\n", + " function register_renderer(events, OutputArea) {\n", + "\n", + " function append_mime(data, metadata, element) {\n", + " // create a DOM node to render to\n", + " const toinsert = this.create_output_subarea(\n", + " metadata,\n", + " CLASS_NAME,\n", + " EXEC_MIME_TYPE\n", + " );\n", + " this.keyboard_manager.register_events(toinsert);\n", + " // Render to node\n", + " const props = {data: data, metadata: metadata[EXEC_MIME_TYPE]};\n", + " render(props, toinsert[toinsert.length - 1]);\n", + " element.append(toinsert);\n", + " return toinsert\n", + " }\n", + "\n", + " /* Handle when an output is cleared or removed */\n", + " events.on('clear_output.CodeCell', handleClearOutput);\n", + " events.on('delete.Cell', handleClearOutput);\n", + "\n", + " /* Handle when a new output is added */\n", + " events.on('output_added.OutputArea', handleAddOutput);\n", + "\n", + " /**\n", + " * Register the mime type and append_mime function with output_area\n", + " */\n", + " OutputArea.prototype.register_mime_type(EXEC_MIME_TYPE, append_mime, {\n", + " /* Is output safe? */\n", + " safe: true,\n", + " /* Index of renderer in `output_area.display_order` */\n", + " index: 0\n", + " });\n", + " }\n", + "\n", + " // register the mime type if in Jupyter Notebook environment and previously unregistered\n", + " if (root.Jupyter !== undefined) {\n", + " const events = require('base/js/events');\n", + " const OutputArea = require('notebook/js/outputarea').OutputArea;\n", + "\n", + " if (OutputArea.prototype.mime_types().indexOf(EXEC_MIME_TYPE) == -1) {\n", + " register_renderer(events, OutputArea);\n", + " }\n", + " }\n", + " if (typeof (root._bokeh_timeout) === \"undefined\" || force === true) {\n", + " root._bokeh_timeout = Date.now() + 5000;\n", + " root._bokeh_failed_load = false;\n", + " }\n", + "\n", + " const NB_LOAD_WARNING = {'data': {'text/html':\n", + " \"
\\n\"+\n", + " \"

\\n\"+\n", + " \"BokehJS does not appear to have successfully loaded. If loading BokehJS from CDN, this \\n\"+\n", + " \"may be due to a slow or bad network connection. Possible fixes:\\n\"+\n", + " \"

\\n\"+\n", + " \"
    \\n\"+\n", + " \"
  • re-rerun `output_notebook()` to attempt to load from CDN again, or
  • \\n\"+\n", + " \"
  • use INLINE resources instead, as so:
  • \\n\"+\n", + " \"
\\n\"+\n", + " \"\\n\"+\n", + " \"from bokeh.resources import INLINE\\n\"+\n", + " \"output_notebook(resources=INLINE)\\n\"+\n", + " \"\\n\"+\n", + " \"
\"}};\n", + "\n", + " function display_loaded() {\n", + " const el = document.getElementById(\"e0412447-897b-4b15-8731-38893ba83dd5\");\n", + " if (el != null) {\n", + " el.textContent = \"BokehJS is loading...\";\n", + " }\n", + " if (root.Bokeh !== undefined) {\n", + " if (el != null) {\n", + " el.textContent = \"BokehJS \" + root.Bokeh.version + \" successfully loaded.\";\n", + " }\n", + " } else if (Date.now() < root._bokeh_timeout) {\n", + " setTimeout(display_loaded, 100)\n", + " }\n", + " }\n", + "\n", + " function run_callbacks() {\n", + " try {\n", + " root._bokeh_onload_callbacks.forEach(function(callback) {\n", + " if (callback != null)\n", + " callback();\n", + " });\n", + " } finally {\n", + " delete root._bokeh_onload_callbacks\n", + " }\n", + " console.debug(\"Bokeh: all callbacks have finished\");\n", + " }\n", + "\n", + " function load_libs(css_urls, js_urls, callback) {\n", + " if (css_urls == null) css_urls = [];\n", + " if (js_urls == null) js_urls = [];\n", + "\n", + " root._bokeh_onload_callbacks.push(callback);\n", + " if (root._bokeh_is_loading > 0) {\n", + " console.debug(\"Bokeh: BokehJS is being loaded, scheduling callback at\", now());\n", + " return null;\n", + " }\n", + " if (js_urls == null || js_urls.length === 0) {\n", + " run_callbacks();\n", + " return null;\n", + " }\n", + " console.debug(\"Bokeh: BokehJS not loaded, scheduling load and callback at\", now());\n", + " root._bokeh_is_loading = css_urls.length + js_urls.length;\n", + "\n", + " function on_load() {\n", + " root._bokeh_is_loading--;\n", + " if (root._bokeh_is_loading === 0) {\n", + " console.debug(\"Bokeh: all BokehJS libraries/stylesheets loaded\");\n", + " run_callbacks()\n", + " }\n", + " }\n", + "\n", + " function on_error(url) {\n", + " console.error(\"failed to load \" + url);\n", + " }\n", + "\n", + " for (let i = 0; i < css_urls.length; i++) {\n", + " const url = css_urls[i];\n", + " const element = document.createElement(\"link\");\n", + " element.onload = on_load;\n", + " element.onerror = on_error.bind(null, url);\n", + " element.rel = \"stylesheet\";\n", + " element.type = \"text/css\";\n", + " element.href = url;\n", + " console.debug(\"Bokeh: injecting link tag for BokehJS stylesheet: \", url);\n", + " document.body.appendChild(element);\n", + " }\n", + "\n", + " for (let i = 0; i < js_urls.length; i++) {\n", + " const url = js_urls[i];\n", + " const element = document.createElement('script');\n", + " element.onload = on_load;\n", + " element.onerror = on_error.bind(null, url);\n", + " element.async = false;\n", + " element.src = url;\n", + " console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n", + " document.head.appendChild(element);\n", + " }\n", + " };\n", + "\n", + " function inject_raw_css(css) {\n", + " const element = document.createElement(\"style\");\n", + " element.appendChild(document.createTextNode(css));\n", + " document.body.appendChild(element);\n", + " }\n", + "\n", + " const js_urls = [\"https://cdn.bokeh.org/bokeh/release/bokeh-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-gl-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-widgets-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-tables-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-mathjax-3.3.4.min.js\"];\n", + " const css_urls = [];\n", + "\n", + " const inline_js = [ function(Bokeh) {\n", + " Bokeh.set_log_level(\"info\");\n", + " },\n", + "function(Bokeh) {\n", + " }\n", + " ];\n", + "\n", + " function run_inline_js() {\n", + " if (root.Bokeh !== undefined || force === true) {\n", + " for (let i = 0; i < inline_js.length; i++) {\n", + " inline_js[i].call(root, root.Bokeh);\n", + " }\n", + "if (force === true) {\n", + " display_loaded();\n", + " }} else if (Date.now() < root._bokeh_timeout) {\n", + " setTimeout(run_inline_js, 100);\n", + " } else if (!root._bokeh_failed_load) {\n", + " console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n", + " root._bokeh_failed_load = true;\n", + " } else if (force !== true) {\n", + " const cell = $(document.getElementById(\"e0412447-897b-4b15-8731-38893ba83dd5\")).parents('.cell').data().cell;\n", + " cell.output_area.append_execute_result(NB_LOAD_WARNING)\n", + " }\n", + " }\n", + "\n", + " if (root._bokeh_is_loading === 0) {\n", + " console.debug(\"Bokeh: BokehJS loaded, going straight to plotting\");\n", + " run_inline_js();\n", + " } else {\n", + " load_libs(css_urls, js_urls, function() {\n", + " console.debug(\"Bokeh: BokehJS plotting callback run at\", now());\n", + " run_inline_js();\n", + " });\n", + " }\n", + "}(window));" + ], + "application/vnd.bokehjs_load.v0+json": "(function(root) {\n function now() {\n return new Date();\n }\n\n const force = true;\n\n if (typeof root._bokeh_onload_callbacks === \"undefined\" || force === true) {\n root._bokeh_onload_callbacks = [];\n root._bokeh_is_loading = undefined;\n }\n\n\n if (typeof (root._bokeh_timeout) === \"undefined\" || force === true) {\n root._bokeh_timeout = Date.now() + 5000;\n root._bokeh_failed_load = false;\n }\n\n const NB_LOAD_WARNING = {'data': {'text/html':\n \"
\\n\"+\n \"

\\n\"+\n \"BokehJS does not appear to have successfully loaded. If loading BokehJS from CDN, this \\n\"+\n \"may be due to a slow or bad network connection. Possible fixes:\\n\"+\n \"

\\n\"+\n \"
    \\n\"+\n \"
  • re-rerun `output_notebook()` to attempt to load from CDN again, or
  • \\n\"+\n \"
  • use INLINE resources instead, as so:
  • \\n\"+\n \"
\\n\"+\n \"\\n\"+\n \"from bokeh.resources import INLINE\\n\"+\n \"output_notebook(resources=INLINE)\\n\"+\n \"\\n\"+\n \"
\"}};\n\n function display_loaded() {\n const el = document.getElementById(\"e0412447-897b-4b15-8731-38893ba83dd5\");\n if (el != null) {\n el.textContent = \"BokehJS is loading...\";\n }\n if (root.Bokeh !== undefined) {\n if (el != null) {\n el.textContent = \"BokehJS \" + root.Bokeh.version + \" successfully loaded.\";\n }\n } else if (Date.now() < root._bokeh_timeout) {\n setTimeout(display_loaded, 100)\n }\n }\n\n function run_callbacks() {\n try {\n root._bokeh_onload_callbacks.forEach(function(callback) {\n if (callback != null)\n callback();\n });\n } finally {\n delete root._bokeh_onload_callbacks\n }\n console.debug(\"Bokeh: all callbacks have finished\");\n }\n\n function load_libs(css_urls, js_urls, callback) {\n if (css_urls == null) css_urls = [];\n if (js_urls == null) js_urls = [];\n\n root._bokeh_onload_callbacks.push(callback);\n if (root._bokeh_is_loading > 0) {\n console.debug(\"Bokeh: BokehJS is being loaded, scheduling callback at\", now());\n return null;\n }\n if (js_urls == null || js_urls.length === 0) {\n run_callbacks();\n return null;\n }\n console.debug(\"Bokeh: BokehJS not loaded, scheduling load and callback at\", now());\n root._bokeh_is_loading = css_urls.length + js_urls.length;\n\n function on_load() {\n root._bokeh_is_loading--;\n if (root._bokeh_is_loading === 0) {\n console.debug(\"Bokeh: all BokehJS libraries/stylesheets loaded\");\n run_callbacks()\n }\n }\n\n function on_error(url) {\n console.error(\"failed to load \" + url);\n }\n\n for (let i = 0; i < css_urls.length; i++) {\n const url = css_urls[i];\n const element = document.createElement(\"link\");\n element.onload = on_load;\n element.onerror = on_error.bind(null, url);\n element.rel = \"stylesheet\";\n element.type = \"text/css\";\n element.href = url;\n console.debug(\"Bokeh: injecting link tag for BokehJS stylesheet: \", url);\n document.body.appendChild(element);\n }\n\n for (let i = 0; i < js_urls.length; i++) {\n const url = js_urls[i];\n const element = document.createElement('script');\n element.onload = on_load;\n element.onerror = on_error.bind(null, url);\n element.async = false;\n element.src = url;\n console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n document.head.appendChild(element);\n }\n };\n\n function inject_raw_css(css) {\n const element = document.createElement(\"style\");\n element.appendChild(document.createTextNode(css));\n document.body.appendChild(element);\n }\n\n const js_urls = [\"https://cdn.bokeh.org/bokeh/release/bokeh-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-gl-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-widgets-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-tables-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-mathjax-3.3.4.min.js\"];\n const css_urls = [];\n\n const inline_js = [ function(Bokeh) {\n Bokeh.set_log_level(\"info\");\n },\nfunction(Bokeh) {\n }\n ];\n\n function run_inline_js() {\n if (root.Bokeh !== undefined || force === true) {\n for (let i = 0; i < inline_js.length; i++) {\n inline_js[i].call(root, root.Bokeh);\n }\nif (force === true) {\n display_loaded();\n }} else if (Date.now() < root._bokeh_timeout) {\n setTimeout(run_inline_js, 100);\n } else if (!root._bokeh_failed_load) {\n console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n root._bokeh_failed_load = true;\n } else if (force !== true) {\n const cell = $(document.getElementById(\"e0412447-897b-4b15-8731-38893ba83dd5\")).parents('.cell').data().cell;\n cell.output_area.append_execute_result(NB_LOAD_WARNING)\n }\n }\n\n if (root._bokeh_is_loading === 0) {\n console.debug(\"Bokeh: BokehJS loaded, going straight to plotting\");\n run_inline_js();\n } else {\n load_libs(css_urls, js_urls, function() {\n console.debug(\"Bokeh: BokehJS plotting callback run at\", now());\n run_inline_js();\n });\n }\n}(window));" + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import hail as hl\n", + "from gnomad_toolbox.load_data import get_gnomad_release" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "8649f215-0afc-4f66-920a-53b707f41c4a", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Welcome to\n", + " __ __ <>__\n", + " / /_/ /__ __/ /\n", + " / __ / _ `/ / /\n", + " /_/ /_/\\_,_/_/_/ version 0.2.132-678e1f52b999\n", + "LOGGING: writing to /Users/jgoodric/PycharmProjects/gnomad-toolbox/gnomad_toolbox/notebooks/hail-20241208-2218-0.2.132-678e1f52b999.log\n" + ] + } + ], + "source": [ + "hl.init(backend=\"local\")" + ] + }, + { + "cell_type": "markdown", + "id": "5335a135", + "metadata": { + "tags": [] + }, + "source": [ + "## Variant data\n", + "\n", + "Available versions for each data type and reference build are (as of 2024-10-29):\n", + "\n", + "| Data Type | GRCh38 Versions | GRCh37 Versions |\n", + "|-----------------|----------------------------------|----------------------|\n", + "| exomes | 4.0, 4.1 | 2.1, 2.1.1 |\n", + "| genomes | 3.0, 3.1, 3.1.1, 3.1.2, 4.0, 4.1 | 2.1, 2.1.1 |\n", + "| joint | 4.1 | N/A |\n", + "\n", + "For a description of all fields the the HT, see the [Help/FAQ](https://gnomad.broadinstitute.org/help/v4-hts) page." + ] + }, + { + "cell_type": "markdown", + "id": "d1a4ae8933ba6421", + "metadata": { + "tags": [] + }, + "source": [ + "### v4.1 exomes Hail Table" + ] + }, + { + "cell_type": "markdown", + "id": "318a034c-ac84-4147-9f25-e5e8783e9b91", + "metadata": {}, + "source": [ + "#### Load the Hail Table\n" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "100cf576", + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-06T20:08:59.197890Z", + "start_time": "2024-12-06T20:08:50.859108Z" + } + }, + "outputs": [], + "source": [ + "ht = get_gnomad_release(data_type='exomes', version='4.1')" + ] + }, + { + "cell_type": "markdown", + "id": "77d7a05e31c1f37a", + "metadata": {}, + "source": [ + "#### Print the schema of the Hail Table\n" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "95c14f2c8cc3e699", + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-06T20:09:00.032524Z", + "start_time": "2024-12-06T20:09:00.029271Z" + }, + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "----------------------------------------\n", + "Global fields:\n", + " 'freq_meta': array> \n", + " 'freq_index_dict': dict \n", + " 'freq_meta_sample_count': array \n", + " 'faf_meta': array> \n", + " 'faf_index_dict': dict \n", + " 'age_distribution': struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int32, \n", + " n_larger: int32\n", + " } \n", + " 'downsamplings': dict> \n", + " 'filtering_model': struct {\n", + " filter_name: str, \n", + " score_name: str, \n", + " snv_cutoff: struct {\n", + " bin: int32, \n", + " min_score: float64\n", + " }, \n", + " indel_cutoff: struct {\n", + " bin: int32, \n", + " min_score: float64\n", + " }, \n", + " snv_training_variables: array, \n", + " indel_training_variables: array\n", + " } \n", + " 'inbreeding_coeff_cutoff': float64 \n", + " 'interval_qc_parameters': struct {\n", + " per_platform: bool, \n", + " all_platforms: bool, \n", + " high_qual_cutoffs: dict>, \n", + " min_platform_size: int32\n", + " } \n", + " 'tool_versions': struct {\n", + " cadd_version: str, \n", + " revel_version: str, \n", + " spliceai_version: str, \n", + " pangolin_version: array, \n", + " phylop_version: str, \n", + " dbsnp_version: str, \n", + " sift_version: str, \n", + " polyphen_version: str\n", + " } \n", + " 'vrs_versions': struct {\n", + " vrs_schema_version: str, \n", + " vrs_python_version: str, \n", + " seqrepo_version: str\n", + " } \n", + " 'vep_globals': struct {\n", + " vep_version: str, \n", + " vep_help: str, \n", + " vep_config: str, \n", + " gencode_version: str, \n", + " mane_select_version: str\n", + " } \n", + " 'frequency_README': str \n", + " 'date': str \n", + " 'version': str \n", + "----------------------------------------\n", + "Row fields:\n", + " 'locus': locus \n", + " 'alleles': array \n", + " 'freq': array \n", + " 'grpmax': struct {\n", + " gnomad: struct {\n", + " AC: int32, \n", + " AF: float64, \n", + " AN: int32, \n", + " homozygote_count: int64, \n", + " gen_anc: str\n", + " }, \n", + " non_ukb: struct {\n", + " AC: int32, \n", + " AF: float64, \n", + " AN: int32, \n", + " homozygote_count: int64, \n", + " gen_anc: str\n", + " }\n", + " } \n", + " 'faf': array \n", + " 'fafmax': struct {\n", + " gnomad: struct {\n", + " faf95_max: float64, \n", + " faf95_max_gen_anc: str, \n", + " faf99_max: float64, \n", + " faf99_max_gen_anc: str\n", + " }, \n", + " non_ukb: struct {\n", + " faf95_max: float64, \n", + " faf95_max_gen_anc: str, \n", + " faf99_max: float64, \n", + " faf99_max_gen_anc: str\n", + " }\n", + " } \n", + " 'a_index': int32 \n", + " 'was_split': bool \n", + " 'rsid': set \n", + " 'filters': set \n", + " 'info': struct {\n", + " FS: float64, \n", + " MQ: float64, \n", + " MQRankSum: float64, \n", + " QUALapprox: int64, \n", + " QD: float64, \n", + " ReadPosRankSum: float64, \n", + " SB: array, \n", + " SOR: float64, \n", + " VarDP: int32, \n", + " AS_FS: float64, \n", + " AS_MQ: float64, \n", + " AS_MQRankSum: float64, \n", + " AS_pab_max: float64, \n", + " AS_QUALapprox: int64, \n", + " AS_QD: float64, \n", + " AS_ReadPosRankSum: float64, \n", + " AS_SB_TABLE: array, \n", + " AS_SOR: float64, \n", + " AS_VarDP: int32, \n", + " singleton: bool, \n", + " transmitted_singleton: bool, \n", + " sibling_singleton: bool, \n", + " omni: bool, \n", + " mills: bool, \n", + " monoallelic: bool, \n", + " only_het: bool, \n", + " AS_VQSLOD: float64, \n", + " inbreeding_coeff: float64, \n", + " vrs: struct {\n", + " VRS_Allele_IDs: array, \n", + " VRS_Starts: array, \n", + " VRS_Ends: array, \n", + " VRS_States: array\n", + " }\n", + " } \n", + " 'vep': struct {\n", + " allele_string: str, \n", + " end: int32, \n", + " id: str, \n", + " input: str, \n", + " intergenic_consequences: array, \n", + " impact: str, \n", + " variant_allele: str\n", + " }>, \n", + " most_severe_consequence: str, \n", + " motif_feature_consequences: array, \n", + " high_inf_pos: str, \n", + " impact: str, \n", + " motif_feature_id: str, \n", + " motif_name: str, \n", + " motif_pos: int32, \n", + " motif_score_change: float64, \n", + " transcription_factors: array, \n", + " strand: int32, \n", + " variant_allele: str\n", + " }>, \n", + " regulatory_feature_consequences: array, \n", + " impact: str, \n", + " regulatory_feature_id: str, \n", + " variant_allele: str\n", + " }>, \n", + " seq_region_name: str, \n", + " start: int32, \n", + " strand: int32, \n", + " transcript_consequences: array, \n", + " distance: int32, \n", + " domains: array, \n", + " exon: str, \n", + " flags: str, \n", + " gene_id: str, \n", + " gene_pheno: int32, \n", + " gene_symbol: str, \n", + " gene_symbol_source: str, \n", + " hgnc_id: str, \n", + " hgvsc: str, \n", + " hgvsp: str, \n", + " hgvs_offset: int32, \n", + " impact: str, \n", + " intron: str, \n", + " lof: str, \n", + " lof_flags: str, \n", + " lof_filter: str, \n", + " lof_info: str, \n", + " mane_select: str, \n", + " mane_plus_clinical: str, \n", + " mirna: array, \n", + " protein_end: int32, \n", + " protein_start: int32, \n", + " protein_id: str, \n", + " source: str, \n", + " strand: int32, \n", + " transcript_id: str, \n", + " tsl: int32, \n", + " uniprot_isoform: array, \n", + " variant_allele: str\n", + " }>, \n", + " variant_class: str\n", + " } \n", + " 'vqsr_results': struct {\n", + " AS_VQSLOD: float64, \n", + " AS_culprit: str, \n", + " positive_train_site: bool, \n", + " negative_train_site: bool\n", + " } \n", + " 'region_flags': struct {\n", + " non_par: bool, \n", + " lcr: bool, \n", + " segdup: bool, \n", + " fail_interval_qc: bool, \n", + " outside_ukb_capture_region: bool, \n", + " outside_broad_capture_region: bool\n", + " } \n", + " 'allele_info': struct {\n", + " variant_type: str, \n", + " n_alt_alleles: int32, \n", + " has_star: bool, \n", + " allele_type: str, \n", + " was_mixed: bool\n", + " } \n", + " 'histograms': struct {\n", + " qual_hists: struct {\n", + " gq_hist_all: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }, \n", + " dp_hist_all: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }, \n", + " gq_hist_alt: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }, \n", + " dp_hist_alt: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }, \n", + " ab_hist_alt: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }\n", + " }, \n", + " raw_qual_hists: struct {\n", + " gq_hist_all: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }, \n", + " dp_hist_all: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }, \n", + " gq_hist_alt: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }, \n", + " dp_hist_alt: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }, \n", + " ab_hist_alt: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }\n", + " }, \n", + " age_hists: struct {\n", + " age_hist_het: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }, \n", + " age_hist_hom: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }\n", + " }\n", + " } \n", + " 'in_silico_predictors': struct {\n", + " cadd: struct {\n", + " phred: float32, \n", + " raw_score: float32\n", + " }, \n", + " revel_max: float64, \n", + " spliceai_ds_max: float32, \n", + " pangolin_largest_ds: float64, \n", + " phylop: float64, \n", + " sift_max: float64, \n", + " polyphen_max: float64\n", + " } \n", + "----------------------------------------\n", + "Key: ['locus', 'alleles']\n", + "----------------------------------------\n" + ] + } + ], + "source": [ + "ht.describe()" + ] + }, + { + "cell_type": "markdown", + "id": "a071f738b2c888e", + "metadata": { + "tags": [] + }, + "source": [ + "#### Show the first 5 variants in the Hail Table\n" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "222de580c305d72a", + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-06T20:09:20.949958Z", + "start_time": "2024-12-06T20:09:05.622171Z" + } + }, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
histograms
grpmax
fafmax
info
qual_hists
raw_qual_hists
age_hists
in_silico_predictors
gnomad
non_ukb
gnomad
non_ukb
vrs
vep
vqsr_results
region_flags
allele_info
gq_hist_all
dp_hist_all
gq_hist_alt
dp_hist_alt
ab_hist_alt
gq_hist_all
dp_hist_all
gq_hist_alt
dp_hist_alt
ab_hist_alt
age_hist_het
age_hist_hom
cadd
locus
alleles
freq
AC
AF
AN
homozygote_count
gen_anc
AC
AF
AN
homozygote_count
gen_anc
faf
faf95_max
faf95_max_gen_anc
faf99_max
faf99_max_gen_anc
faf95_max
faf95_max_gen_anc
faf99_max
faf99_max_gen_anc
a_index
was_split
rsid
filters
FS
MQ
MQRankSum
QUALapprox
QD
ReadPosRankSum
SB
SOR
VarDP
AS_FS
AS_MQ
AS_MQRankSum
AS_pab_max
AS_QUALapprox
AS_QD
AS_ReadPosRankSum
AS_SB_TABLE
AS_SOR
AS_VarDP
singleton
transmitted_singleton
sibling_singleton
omni
mills
monoallelic
only_het
AS_VQSLOD
inbreeding_coeff
VRS_Allele_IDs
VRS_Starts
VRS_Ends
VRS_States
allele_string
end
id
input
intergenic_consequences
most_severe_consequence
motif_feature_consequences
regulatory_feature_consequences
seq_region_name
start
strand
transcript_consequences
variant_class
AS_VQSLOD
AS_culprit
positive_train_site
negative_train_site
non_par
lcr
segdup
fail_interval_qc
outside_ukb_capture_region
outside_broad_capture_region
variant_type
n_alt_alleles
has_star
allele_type
was_mixed
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
phred
raw_score
revel_max
spliceai_ds_max
pangolin_largest_ds
phylop
sift_max
polyphen_max
locus<GRCh38>array<str>array<struct{AC: int32, AF: float64, AN: int32, homozygote_count: int64}>int32float64int32int64strint32float64int32int64strarray<struct{faf95: float64, faf99: float64}>float64strfloat64strfloat64strfloat64strint32boolset<str>set<str>float64float64float64int64float64float64array<int32>float64int32float64float64float64float64int64float64float64array<int32>float64int32boolboolboolboolboolboolboolfloat64float64array<str>array<int32>array<int32>array<str>strint32strstrarray<struct{allele_num: int32, consequence_terms: array<str>, impact: str, variant_allele: str}>strarray<struct{allele_num: int32, consequence_terms: array<str>, high_inf_pos: str, impact: str, motif_feature_id: str, motif_name: str, motif_pos: int32, motif_score_change: float64, transcription_factors: array<str>, strand: int32, variant_allele: str}>array<struct{allele_num: int32, biotype: str, consequence_terms: array<str>, impact: str, regulatory_feature_id: str, variant_allele: str}>strint32int32array<struct{allele_num: int32, amino_acids: str, appris: str, biotype: str, canonical: int32, ccds: str, cdna_start: int32, cdna_end: int32, cds_end: int32, cds_start: int32, codons: str, consequence_terms: array<str>, distance: int32, domains: array<struct{db: str, name: str}>, exon: str, flags: str, gene_id: str, gene_pheno: int32, gene_symbol: str, gene_symbol_source: str, hgnc_id: str, hgvsc: str, hgvsp: str, hgvs_offset: int32, impact: str, intron: str, lof: str, lof_flags: str, lof_filter: str, lof_info: str, mane_select: str, mane_plus_clinical: str, mirna: array<str>, protein_end: int32, protein_start: int32, protein_id: str, source: str, strand: int32, transcript_id: str, tsl: int32, uniprot_isoform: array<str>, variant_allele: str}>strfloat64strboolboolboolboolboolboolboolboolstrint32boolstrboolarray<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64float32float32float64float32float64float64float64float64
chr1:11994["T","C"][(0,NA,0,0),(2,3.18e-06,628784,1),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(2,3.18e-06,628784,1),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0)]NANANANANANANANANANA[(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]NANANANANANANANA1FalseNA{"AC0","AS_VQSR"}NA2.50e+01NA603.00e+01NA[0,0,2,0]2.30e+002NA2.50e+01NANA603.00e+01NA[0,0,2,0]2.30e+002FalseNANAFalseFalseFalseFalse-5.25e+001.00e+00["ga4gh:VA.ps4-9woXy7o4rS39i8hDK_cUPBa-UcyP","ga4gh:VA.nHlWYJXgiuvXrLAxQsraJ6r-daZ8ELL-"][11993,11993][11994,11994]["T","C"]"T/C"11994".""chr1\t11994\t.\tT\tC\t.\t.\tGT"NA"non_coding_transcript_exon_variant"NANA"chr1"119941[(1,NA,NA,"transcribed_unprocessed_pseudogene",1,NA,NA,NA,NA,NA,NA,["upstream_gene_variant"],16,NA,NA,NA,"ENSG00000223972",NA,"DDX11L1","HGNC","HGNC:37102",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",1,"ENST00000450305",NA,NA,"C"),(1,NA,NA,"processed_transcript",NA,NA,126,126,NA,NA,NA,["non_coding_transcript_exon_variant"],NA,NA,"1/3",NA,"ENSG00000223972",NA,"DDX11L1","HGNC","HGNC:37102","ENST00000456328.2:n.126T>C",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",1,"ENST00000456328",1,NA,"C"),(1,NA,NA,"unprocessed_pseudogene",1,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],2410,NA,NA,NA,"ENSG00000227232",NA,"WASH7P","HGNC","HGNC:38034",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000488147",NA,NA,"C"),(1,NA,NA,"transcribed_pseudogene",1,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],2368,NA,NA,NA,"653635",NA,"WASH7P","EntrezGene","HGNC:38034",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"RefSeq",-1,"NR_024540.1",NA,NA,"C"),(1,NA,NA,"transcribed_pseudogene",1,NA,121,121,NA,NA,NA,["non_coding_transcript_exon_variant"],NA,NA,"1/3",NA,"100287102",NA,"DDX11L1","EntrezGene","HGNC:37102","NR_046018.2:n.121T>C",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"RefSeq",1,"NR_046018.2",NA,NA,"C")]"SNV"-5.25e+00"AS_MQ"FalseFalseFalseFalseTrueNATrueFalse"snv"1False"snv"False[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][314391,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][308845,5547,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]001.26e+011.08e+00NANA-1.10e-011.09e+00NANA
chr1:12016["G","A"][(0,NA,0,0),(6,9.54e-06,628784,2),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(6,9.54e-06,628784,2),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0)]NANANANANANANANANANA[(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]NANANANANANANANA1FalseNA{"AC0","AS_VQSR"}NA2.50e+010.00e+002622.18e+016.74e-01[2,0,10,0]2.67e+0012NA2.50e+010.00e+001.00e+002622.18e+016.74e-01[2,0,10,0]2.67e+0012FalseNANAFalseFalseFalseFalse-2.75e+006.67e-01["ga4gh:VA.VFxwcI4knOzk6SHzS2qowyDGnkG3mfEH","ga4gh:VA.ctgP7qNjQAGjI2eTDopAF-qoBBPmtsW5"][12015,12015][12016,12016]["G","A"]"G/A"12016".""chr1\t12016\t.\tG\tA\t.\t.\tGT"NA"non_coding_transcript_exon_variant"NANA"chr1"120161[(1,NA,NA,"transcribed_unprocessed_pseudogene",1,NA,7,7,NA,NA,NA,["non_coding_transcript_exon_variant"],NA,NA,"1/6",NA,"ENSG00000223972",NA,"DDX11L1","HGNC","HGNC:37102","ENST00000450305.2:n.7G>A",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",1,"ENST00000450305",NA,NA,"A"),(1,NA,NA,"processed_transcript",NA,NA,148,148,NA,NA,NA,["non_coding_transcript_exon_variant"],NA,NA,"1/3",NA,"ENSG00000223972",NA,"DDX11L1","HGNC","HGNC:37102","ENST00000456328.2:n.148G>A",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",1,"ENST00000456328",1,NA,"A"),(1,NA,NA,"unprocessed_pseudogene",1,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],2388,NA,NA,NA,"ENSG00000227232",NA,"WASH7P","HGNC","HGNC:38034",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000488147",NA,NA,"A"),(1,NA,NA,"transcribed_pseudogene",1,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],2346,NA,NA,NA,"653635",NA,"WASH7P","EntrezGene","HGNC:38034",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"RefSeq",-1,"NR_024540.1",NA,NA,"A"),(1,NA,NA,"transcribed_pseudogene",1,NA,143,143,NA,NA,NA,["non_coding_transcript_exon_variant"],NA,NA,"1/3",NA,"100287102",NA,"DDX11L1","EntrezGene","HGNC:37102","NR_046018.2:n.143G>A",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"RefSeq",1,"NR_046018.2",NA,NA,"A")]"SNV"-2.75e+00"AS_MQ"FalseFalseFalseFalseTrueNATrueFalse"snv"1False"snv"False[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][314388,2,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][308845,5547,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,2,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]001.60e+011.54e+00NANA-7.00e-026.55e+00NANA
chr1:12060["CTGGAG","C"][(0,0.00e+00,4,0),(1,1.59e-06,628784,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,0.00e+00,2,0),(0,0.00e+00,4,0),(1,1.59e-06,628784,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,NA,0,0),(0,NA,0,0)]NANANANANANANANANANA[(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]NANANANANANANANA1FalseNA{"AC0","AS_VQSR"}NA2.60e+016.74e-011233.08e+01-1.15e+00[1,0,3,0]1.61e+004NA2.60e+016.74e-016.25e-011233.08e+01-1.15e+00[1,0,3,0]1.61e+004TrueNANAFalseFalseFalseFalse-2.22e+00-1.59e-06["ga4gh:VA.P573ZtUtAaRcceE7NLanEyynSefvcAPL","ga4gh:VA.CHmk9uDiHW2LIHndZWqNHxD1fN_Ta1vn"][12059,12060][12065,12071]["CTGGAG","TGGAGT"]"TGGAG/-"12065".""chr1\t12060\t.\tCTGGAG\tC\t.\t.\tGT"NA"splice_donor_5th_base_variant"NANA"chr1"120611[(1,NA,NA,"transcribed_unprocessed_pseudogene",1,NA,NA,NA,NA,NA,NA,["splice_donor_5th_base_variant","intron_variant","non_coding_transcript_variant"],NA,NA,NA,NA,"ENSG00000223972",NA,"DDX11L1","HGNC","HGNC:37102","ENST00000450305.2:n.48+10_48+14del",NA,NA,"LOW","1/5",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",1,"ENST00000450305",NA,NA,"-"),(1,NA,NA,"processed_transcript",NA,NA,193,197,NA,NA,NA,["non_coding_transcript_exon_variant"],NA,NA,"1/3",NA,"ENSG00000223972",NA,"DDX11L1","HGNC","HGNC:37102","ENST00000456328.2:n.199_203del",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",1,"ENST00000456328",1,NA,"-"),(1,NA,NA,"unprocessed_pseudogene",1,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],2339,NA,NA,NA,"ENSG00000227232",NA,"WASH7P","HGNC","HGNC:38034",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000488147",NA,NA,"-"),(1,NA,NA,"transcribed_pseudogene",1,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],2297,NA,NA,NA,"653635",NA,"WASH7P","EntrezGene","HGNC:38034",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"RefSeq",-1,"NR_024540.1",NA,NA,"-"),(1,NA,NA,"transcribed_pseudogene",1,NA,188,192,NA,NA,NA,["non_coding_transcript_exon_variant"],NA,NA,"1/3",NA,"100287102",NA,"DDX11L1","EntrezGene","HGNC:37102","NR_046018.2:n.194_198del",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"RefSeq",1,"NR_046018.2",NA,NA,"-")]"deletion"-2.22e+00"AS_MQRankSum"FalseTrueFalseFalseTrueNATrueFalse"indel"1False"del"False[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][314380,0,0,0,11,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][308833,5557,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]008.52e+007.07e-01NANA-9.00e-02-4.41e+00NANA
chr1:12074["T","C"][(0,0.00e+00,4,0),(2,3.18e-06,628784,1),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,0.00e+00,4,0),(0,0.00e+00,2,0),(0,0.00e+00,4,0),(0,0.00e+00,4,0),(0,0.00e+00,4,0),(2,3.18e-06,628784,1),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,0.00e+00,4,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0)]NANANANANANANANANANA[(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]NANANANANANANANA1FalseNA{"AC0","AS_VQSR"}NA2.56e+014.31e-01991.24e+01-2.53e-01[4,0,4,0]6.93e-018NA2.56e+014.31e-016.87e-01991.24e+01-2.53e-01[4,0,4,0]6.93e-018FalseNANAFalseFalseFalseFalse-2.18e+001.00e+00["ga4gh:VA.neBeBT28ISe_1-yKPFsYxntP2jz1pj7E","ga4gh:VA.1RPHSwBHNUwoECJ9VVK3hf-KasFb1nfl"][12073,12073][12074,12074]["T","C"]"T/C"12074".""chr1\t12074\t.\tT\tC\t.\t.\tGT"NA"non_coding_transcript_exon_variant"NANA"chr1"120741[(1,NA,NA,"transcribed_unprocessed_pseudogene",1,NA,NA,NA,NA,NA,NA,["intron_variant","non_coding_transcript_variant"],NA,NA,NA,NA,"ENSG00000223972",NA,"DDX11L1","HGNC","HGNC:37102","ENST00000450305.2:n.48+17T>C",NA,NA,"MODIFIER","1/5",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",1,"ENST00000450305",NA,NA,"C"),(1,NA,NA,"processed_transcript",NA,NA,206,206,NA,NA,NA,["non_coding_transcript_exon_variant"],NA,NA,"1/3",NA,"ENSG00000223972",NA,"DDX11L1","HGNC","HGNC:37102","ENST00000456328.2:n.206T>C",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",1,"ENST00000456328",1,NA,"C"),(1,NA,NA,"unprocessed_pseudogene",1,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],2330,NA,NA,NA,"ENSG00000227232",NA,"WASH7P","HGNC","HGNC:38034",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000488147",NA,NA,"C"),(1,NA,NA,"transcribed_pseudogene",1,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],2288,NA,NA,NA,"653635",NA,"WASH7P","EntrezGene","HGNC:38034",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"RefSeq",-1,"NR_024540.1",NA,NA,"C"),(1,NA,NA,"transcribed_pseudogene",1,NA,201,201,NA,NA,NA,["non_coding_transcript_exon_variant"],NA,NA,"1/3",NA,"100287102",NA,"DDX11L1","EntrezGene","HGNC:37102","NR_046018.2:n.201T>C",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"RefSeq",1,"NR_046018.2",NA,NA,"C")]"SNV"-2.18e+00"AS_MQ"FalseFalseFalseFalseTrueNATrueFalse"snv"1False"snv"False[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][314369,1,0,0,20,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][308823,5567,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]001.52e+011.41e+00NANA-4.00e-026.01e+00NANA
chr1:12102["G","A"][(0,0.00e+00,32,0),(2,3.18e-06,628784,1),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,32,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,16,0),(0,0.00e+00,16,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,16,0),(0,0.00e+00,16,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,0.00e+00,6,0),(0,0.00e+00,4,0),(0,0.00e+00,14,0),(0,0.00e+00,8,0),(0,0.00e+00,30,0),(0,0.00e+00,22,0),(0,0.00e+00,32,0),(0,0.00e+00,26,0),(0,0.00e+00,32,0),(2,3.18e-06,628784,1),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,32,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,16,0),(0,0.00e+00,16,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,16,0),(0,0.00e+00,16,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,0.00e+00,6,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,0.00e+00,10,0),(0,0.00e+00,4,0),(0,0.00e+00,20,0),(0,0.00e+00,12,0),(0,0.00e+00,32,0),(0,0.00e+00,20,0),(0,0.00e+00,22,0)]NANANANANANANANANANA[(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]NANANANANANANANA1FalseNA{"AC0","AS_VQSR"}NA2.45e+01NA902.25e+01NA[0,0,4,0]3.26e+004NA2.45e+01NANA902.25e+01NA[0,0,4,0]3.26e+004FalseNANAFalseFalseFalseFalse-2.86e+001.00e+00["ga4gh:VA.ZXRhPWtip8HseOMWpCnaja0-ATo8hLE1","ga4gh:VA.Qi95g6E8nt6DaqTGpH5JX9x4n-pi-kBO"][12101,12101][12102,12102]["G","A"]"G/A"12102".""chr1\t12102\t.\tG\tA\t.\t.\tGT"NA"non_coding_transcript_exon_variant"NANA"chr1"121021[(1,NA,NA,"transcribed_unprocessed_pseudogene",1,NA,NA,NA,NA,NA,NA,["intron_variant","non_coding_transcript_variant"],NA,NA,NA,NA,"ENSG00000223972",NA,"DDX11L1","HGNC","HGNC:37102","ENST00000450305.2:n.48+45G>A",NA,NA,"MODIFIER","1/5",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",1,"ENST00000450305",NA,NA,"A"),(1,NA,NA,"processed_transcript",NA,NA,234,234,NA,NA,NA,["non_coding_transcript_exon_variant"],NA,NA,"1/3",NA,"ENSG00000223972",NA,"DDX11L1","HGNC","HGNC:37102","ENST00000456328.2:n.234G>A",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",1,"ENST00000456328",1,NA,"A"),(1,NA,NA,"unprocessed_pseudogene",1,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],2302,NA,NA,NA,"ENSG00000227232",NA,"WASH7P","HGNC","HGNC:38034",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000488147",NA,NA,"A"),(1,NA,NA,"transcribed_pseudogene",1,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],2260,NA,NA,NA,"653635",NA,"WASH7P","EntrezGene","HGNC:38034",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"RefSeq",-1,"NR_024540.1",NA,NA,"A"),(1,NA,NA,"transcribed_pseudogene",1,NA,229,229,NA,NA,NA,["non_coding_transcript_exon_variant"],NA,NA,"1/3",NA,"100287102",NA,"DDX11L1","EntrezGene","HGNC:37102","NR_046018.2:n.229G>A",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"RefSeq",1,"NR_046018.2",NA,NA,"A")]"SNV"-2.86e+00"AS_MQ"FalseFalseFalseFalseTrueNATrueFalse"snv"1False"snv"False[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,2,0,12,0,2,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,14,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][314323,1,0,0,54,0,12,0,2,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][308789,5585,16,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]004.42e+003.11e-01NANA-8.00e-021.38e+00NANA

showing top 5 rows

\n" + ], + "text/plain": [ + "+---------------+----------------+\n", + "| locus | alleles |\n", + "+---------------+----------------+\n", + "| locus | array |\n", + "+---------------+----------------+\n", + "| chr1:11994 | [\"T\",\"C\"] |\n", + "| chr1:12016 | [\"G\",\"A\"] |\n", + "| chr1:12060 | [\"CTGGAG\",\"C\"] |\n", + "| chr1:12074 | [\"T\",\"C\"] |\n", + "| chr1:12102 | [\"G\",\"A\"] |\n", + "+---------------+----------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| freq |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [(0,NA,0,0),(2,3.18e-06,628784,1),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,... |\n", + "| [(0,NA,0,0),(6,9.54e-06,628784,2),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,... |\n", + "| [(0,0.00e+00,4,0),(1,1.59e-06,628784,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),... |\n", + "| [(0,0.00e+00,4,0),(2,3.18e-06,628784,1),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),... |\n", + "| [(0,0.00e+00,32,0),(2,3.18e-06,628784,1),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0)... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+------------------+------------------+------------------+\n", + "| grpmax.gnomad.AC | grpmax.gnomad.AF | grpmax.gnomad.AN |\n", + "+------------------+------------------+------------------+\n", + "| int32 | float64 | int32 |\n", + "+------------------+------------------+------------------+\n", + "| NA | NA | NA |\n", + "| NA | NA | NA |\n", + "| NA | NA | NA |\n", + "| NA | NA | NA |\n", + "| NA | NA | NA |\n", + "+------------------+------------------+------------------+\n", + "\n", + "+--------------------------------+-----------------------+-------------------+\n", + "| grpmax.gnomad.homozygote_count | grpmax.gnomad.gen_anc | grpmax.non_ukb.AC |\n", + "+--------------------------------+-----------------------+-------------------+\n", + "| int64 | str | int32 |\n", + "+--------------------------------+-----------------------+-------------------+\n", + "| NA | NA | NA |\n", + "| NA | NA | NA |\n", + "| NA | NA | NA |\n", + "| NA | NA | NA |\n", + "| NA | NA | NA |\n", + "+--------------------------------+-----------------------+-------------------+\n", + "\n", + "+-------------------+-------------------+---------------------------------+\n", + "| grpmax.non_ukb.AF | grpmax.non_ukb.AN | grpmax.non_ukb.homozygote_count |\n", + "+-------------------+-------------------+---------------------------------+\n", + "| float64 | int32 | int64 |\n", + "+-------------------+-------------------+---------------------------------+\n", + "| NA | NA | NA |\n", + "| NA | NA | NA |\n", + "| NA | NA | NA |\n", + "| NA | NA | NA |\n", + "| NA | NA | NA |\n", + "+-------------------+-------------------+---------------------------------+\n", + "\n", + "+------------------------+\n", + "| grpmax.non_ukb.gen_anc |\n", + "+------------------------+\n", + "| str |\n", + "+------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| faf |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.... |\n", + "| [(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.... |\n", + "| [(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.... |\n", + "| [(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.... |\n", + "| [(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+-------------------------+---------------------------------+\n", + "| fafmax.gnomad.faf95_max | fafmax.gnomad.faf95_max_gen_anc |\n", + "+-------------------------+---------------------------------+\n", + "| float64 | str |\n", + "+-------------------------+---------------------------------+\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "+-------------------------+---------------------------------+\n", + "\n", + "+-------------------------+---------------------------------+\n", + "| fafmax.gnomad.faf99_max | fafmax.gnomad.faf99_max_gen_anc |\n", + "+-------------------------+---------------------------------+\n", + "| float64 | str |\n", + "+-------------------------+---------------------------------+\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "+-------------------------+---------------------------------+\n", + "\n", + "+--------------------------+----------------------------------+\n", + "| fafmax.non_ukb.faf95_max | fafmax.non_ukb.faf95_max_gen_anc |\n", + "+--------------------------+----------------------------------+\n", + "| float64 | str |\n", + "+--------------------------+----------------------------------+\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "+--------------------------+----------------------------------+\n", + "\n", + "+--------------------------+----------------------------------+---------+\n", + "| fafmax.non_ukb.faf99_max | fafmax.non_ukb.faf99_max_gen_anc | a_index |\n", + "+--------------------------+----------------------------------+---------+\n", + "| float64 | str | int32 |\n", + "+--------------------------+----------------------------------+---------+\n", + "| NA | NA | 1 |\n", + "| NA | NA | 1 |\n", + "| NA | NA | 1 |\n", + "| NA | NA | 1 |\n", + "| NA | NA | 1 |\n", + "+--------------------------+----------------------------------+---------+\n", + "\n", + "+-----------+----------+-------------------+---------+----------+\n", + "| was_split | rsid | filters | info.FS | info.MQ |\n", + "+-----------+----------+-------------------+---------+----------+\n", + "| bool | set | set | float64 | float64 |\n", + "+-----------+----------+-------------------+---------+----------+\n", + "| False | NA | {\"AC0\",\"AS_VQSR\"} | NA | 2.50e+01 |\n", + "| False | NA | {\"AC0\",\"AS_VQSR\"} | NA | 2.50e+01 |\n", + "| False | NA | {\"AC0\",\"AS_VQSR\"} | NA | 2.60e+01 |\n", + "| False | NA | {\"AC0\",\"AS_VQSR\"} | NA | 2.56e+01 |\n", + "| False | NA | {\"AC0\",\"AS_VQSR\"} | NA | 2.45e+01 |\n", + "+-----------+----------+-------------------+---------+----------+\n", + "\n", + "+----------------+-----------------+----------+---------------------+\n", + "| info.MQRankSum | info.QUALapprox | info.QD | info.ReadPosRankSum |\n", + "+----------------+-----------------+----------+---------------------+\n", + "| float64 | int64 | float64 | float64 |\n", + "+----------------+-----------------+----------+---------------------+\n", + "| NA | 60 | 3.00e+01 | NA |\n", + "| 0.00e+00 | 262 | 2.18e+01 | 6.74e-01 |\n", + "| 6.74e-01 | 123 | 3.08e+01 | -1.15e+00 |\n", + "| 4.31e-01 | 99 | 1.24e+01 | -2.53e-01 |\n", + "| NA | 90 | 2.25e+01 | NA |\n", + "+----------------+-----------------+----------+---------------------+\n", + "\n", + "+--------------+----------+------------+------------+------------+\n", + "| info.SB | info.SOR | info.VarDP | info.AS_FS | info.AS_MQ |\n", + "+--------------+----------+------------+------------+------------+\n", + "| array | float64 | int32 | float64 | float64 |\n", + "+--------------+----------+------------+------------+------------+\n", + "| [0,0,2,0] | 2.30e+00 | 2 | NA | 2.50e+01 |\n", + "| [2,0,10,0] | 2.67e+00 | 12 | NA | 2.50e+01 |\n", + "| [1,0,3,0] | 1.61e+00 | 4 | NA | 2.60e+01 |\n", + "| [4,0,4,0] | 6.93e-01 | 8 | NA | 2.56e+01 |\n", + "| [0,0,4,0] | 3.26e+00 | 4 | NA | 2.45e+01 |\n", + "+--------------+----------+------------+------------+------------+\n", + "\n", + "+-------------------+-----------------+--------------------+------------+\n", + "| info.AS_MQRankSum | info.AS_pab_max | info.AS_QUALapprox | info.AS_QD |\n", + "+-------------------+-----------------+--------------------+------------+\n", + "| float64 | float64 | int64 | float64 |\n", + "+-------------------+-----------------+--------------------+------------+\n", + "| NA | NA | 60 | 3.00e+01 |\n", + "| 0.00e+00 | 1.00e+00 | 262 | 2.18e+01 |\n", + "| 6.74e-01 | 6.25e-01 | 123 | 3.08e+01 |\n", + "| 4.31e-01 | 6.87e-01 | 99 | 1.24e+01 |\n", + "| NA | NA | 90 | 2.25e+01 |\n", + "+-------------------+-----------------+--------------------+------------+\n", + "\n", + "+------------------------+------------------+-------------+---------------+\n", + "| info.AS_ReadPosRankSum | info.AS_SB_TABLE | info.AS_SOR | info.AS_VarDP |\n", + "+------------------------+------------------+-------------+---------------+\n", + "| float64 | array | float64 | int32 |\n", + "+------------------------+------------------+-------------+---------------+\n", + "| NA | [0,0,2,0] | 2.30e+00 | 2 |\n", + "| 6.74e-01 | [2,0,10,0] | 2.67e+00 | 12 |\n", + "| -1.15e+00 | [1,0,3,0] | 1.61e+00 | 4 |\n", + "| -2.53e-01 | [4,0,4,0] | 6.93e-01 | 8 |\n", + "| NA | [0,0,4,0] | 3.26e+00 | 4 |\n", + "+------------------------+------------------+-------------+---------------+\n", + "\n", + "+----------------+----------------------------+------------------------+\n", + "| info.singleton | info.transmitted_singleton | info.sibling_singleton |\n", + "+----------------+----------------------------+------------------------+\n", + "| bool | bool | bool |\n", + "+----------------+----------------------------+------------------------+\n", + "| False | NA | NA |\n", + "| False | NA | NA |\n", + "| True | NA | NA |\n", + "| False | NA | NA |\n", + "| False | NA | NA |\n", + "+----------------+----------------------------+------------------------+\n", + "\n", + "+-----------+------------+------------------+---------------+----------------+\n", + "| info.omni | info.mills | info.monoallelic | info.only_het | info.AS_VQSLOD |\n", + "+-----------+------------+------------------+---------------+----------------+\n", + "| bool | bool | bool | bool | float64 |\n", + "+-----------+------------+------------------+---------------+----------------+\n", + "| False | False | False | False | -5.25e+00 |\n", + "| False | False | False | False | -2.75e+00 |\n", + "| False | False | False | False | -2.22e+00 |\n", + "| False | False | False | False | -2.18e+00 |\n", + "| False | False | False | False | -2.86e+00 |\n", + "+-----------+------------+------------------+---------------+----------------+\n", + "\n", + "+-----------------------+\n", + "| info.inbreeding_coeff |\n", + "+-----------------------+\n", + "| float64 |\n", + "+-----------------------+\n", + "| 1.00e+00 |\n", + "| 6.67e-01 |\n", + "| -1.59e-06 |\n", + "| 1.00e+00 |\n", + "| 1.00e+00 |\n", + "+-----------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| info.vrs.VRS_Allele_IDs |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [\"ga4gh:VA.ps4-9woXy7o4rS39i8hDK_cUPBa-UcyP\",\"ga4gh:VA.nHlWYJXgiuvXrLAxQs... |\n", + "| [\"ga4gh:VA.VFxwcI4knOzk6SHzS2qowyDGnkG3mfEH\",\"ga4gh:VA.ctgP7qNjQAGjI2eTDo... |\n", + "| [\"ga4gh:VA.P573ZtUtAaRcceE7NLanEyynSefvcAPL\",\"ga4gh:VA.CHmk9uDiHW2LIHndZW... |\n", + "| [\"ga4gh:VA.neBeBT28ISe_1-yKPFsYxntP2jz1pj7E\",\"ga4gh:VA.1RPHSwBHNUwoECJ9VV... |\n", + "| [\"ga4gh:VA.ZXRhPWtip8HseOMWpCnaja0-ATo8hLE1\",\"ga4gh:VA.Qi95g6E8nt6DaqTGpH... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+---------------------+-------------------+---------------------+\n", + "| info.vrs.VRS_Starts | info.vrs.VRS_Ends | info.vrs.VRS_States |\n", + "+---------------------+-------------------+---------------------+\n", + "| array | array | array |\n", + "+---------------------+-------------------+---------------------+\n", + "| [11993,11993] | [11994,11994] | [\"T\",\"C\"] |\n", + "| [12015,12015] | [12016,12016] | [\"G\",\"A\"] |\n", + "| [12059,12060] | [12065,12071] | [\"CTGGAG\",\"TGGAGT\"] |\n", + "| [12073,12073] | [12074,12074] | [\"T\",\"C\"] |\n", + "| [12101,12101] | [12102,12102] | [\"G\",\"A\"] |\n", + "+---------------------+-------------------+---------------------+\n", + "\n", + "+-------------------+---------+--------+--------------------------------+\n", + "| vep.allele_string | vep.end | vep.id | vep.input |\n", + "+-------------------+---------+--------+--------------------------------+\n", + "| str | int32 | str | str |\n", + "+-------------------+---------+--------+--------------------------------+\n", + "| \"T/C\" | 11994 | \".\" | \"chr1\t11994\t.\tT\tC\t.\t.\tGT\" |\n", + "| \"G/A\" | 12016 | \".\" | \"chr1\t12016\t.\tG\tA\t.\t.\tGT\" |\n", + "| \"TGGAG/-\" | 12065 | \".\" | \"chr1\t12060\t.\tCTGGAG\tC\t.\t.\tGT\" |\n", + "| \"T/C\" | 12074 | \".\" | \"chr1\t12074\t.\tT\tC\t.\t.\tGT\" |\n", + "| \"G/A\" | 12102 | \".\" | \"chr1\t12102\t.\tG\tA\t.\t.\tGT\" |\n", + "+-------------------+---------+--------+--------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| vep.intergenic_consequences |\n", + "+------------------------------------------------------------------------------+\n", + "| array, impact: st... |\n", + "+------------------------------------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+--------------------------------------+\n", + "| vep.most_severe_consequence |\n", + "+--------------------------------------+\n", + "| str |\n", + "+--------------------------------------+\n", + "| \"non_coding_transcript_exon_variant\" |\n", + "| \"non_coding_transcript_exon_variant\" |\n", + "| \"splice_donor_5th_base_variant\" |\n", + "| \"non_coding_transcript_exon_variant\" |\n", + "| \"non_coding_transcript_exon_variant\" |\n", + "+--------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| vep.motif_feature_consequences |\n", + "+------------------------------------------------------------------------------+\n", + "| array, high_inf_p... |\n", + "+------------------------------------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| vep.regulatory_feature_consequences |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.qual_hists.gq_hist_all.bin_freq |\n", + "+--------------------------------------------+\n", + "| array |\n", + "+--------------------------------------------+\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,2,0,12,0,2,0,0,0,0,0,0,0,0,0,0,0] |\n", + "+--------------------------------------------+\n", + "\n", + "+---------------------------------------------+\n", + "| histograms.qual_hists.gq_hist_all.n_smaller |\n", + "+---------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+---------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.qual_hists.gq_hist_all.n_larger |\n", + "+--------------------------------------------+\n", + "| int64 |\n", + "+--------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+--------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.qual_hists.dp_hist_all.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.qual_hists.dp_hist_all.bin_freq |\n", + "+--------------------------------------------+\n", + "| array |\n", + "+--------------------------------------------+\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,14,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "+--------------------------------------------+\n", + "\n", + "+---------------------------------------------+\n", + "| histograms.qual_hists.dp_hist_all.n_smaller |\n", + "+---------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+---------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.qual_hists.dp_hist_all.n_larger |\n", + "+--------------------------------------------+\n", + "| int64 |\n", + "+--------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+--------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.qual_hists.gq_hist_alt.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.qual_hists.gq_hist_alt.bin_freq |\n", + "+--------------------------------------------+\n", + "| array |\n", + "+--------------------------------------------+\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "+--------------------------------------------+\n", + "\n", + "+---------------------------------------------+\n", + "| histograms.qual_hists.gq_hist_alt.n_smaller |\n", + "+---------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+---------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.qual_hists.gq_hist_alt.n_larger |\n", + "+--------------------------------------------+\n", + "| int64 |\n", + "+--------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+--------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.qual_hists.dp_hist_alt.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.qual_hists.dp_hist_alt.bin_freq |\n", + "+--------------------------------------------+\n", + "| array |\n", + "+--------------------------------------------+\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "+--------------------------------------------+\n", + "\n", + "+---------------------------------------------+\n", + "| histograms.qual_hists.dp_hist_alt.n_smaller |\n", + "+---------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+---------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.qual_hists.dp_hist_alt.n_larger |\n", + "+--------------------------------------------+\n", + "| int64 |\n", + "+--------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+--------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.qual_hists.ab_hist_alt.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.qual_hists.ab_hist_alt.bin_freq |\n", + "+--------------------------------------------+\n", + "| array |\n", + "+--------------------------------------------+\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "+--------------------------------------------+\n", + "\n", + "+---------------------------------------------+\n", + "| histograms.qual_hists.ab_hist_alt.n_smaller |\n", + "+---------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+---------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.qual_hists.ab_hist_alt.n_larger |\n", + "+--------------------------------------------+\n", + "| int64 |\n", + "+--------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+--------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.raw_qual_hists.gq_hist_all.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+--------------------------------------------------+\n", + "| histograms.raw_qual_hists.gq_hist_all.bin_freq |\n", + "+--------------------------------------------------+\n", + "| array |\n", + "+--------------------------------------------------+\n", + "| [314391,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [314388,2,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [314380,0,0,0,11,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0] |\n", + "| [314369,1,0,0,20,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [314323,1,0,0,54,0,12,0,2,0,0,0,0,0,0,0,0,0,0,0] |\n", + "+--------------------------------------------------+\n", + "\n", + "+-------------------------------------------------+\n", + "| histograms.raw_qual_hists.gq_hist_all.n_smaller |\n", + "+-------------------------------------------------+\n", + "| int64 |\n", + "+-------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+-------------------------------------------------+\n", + "\n", + "+------------------------------------------------+\n", + "| histograms.raw_qual_hists.gq_hist_all.n_larger |\n", + "+------------------------------------------------+\n", + "| int64 |\n", + "+------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.raw_qual_hists.dp_hist_all.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+----------------------------------------------------+\n", + "| histograms.raw_qual_hists.dp_hist_all.bin_freq |\n", + "+----------------------------------------------------+\n", + "| array |\n", + "+----------------------------------------------------+\n", + "| [308845,5547,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [308845,5547,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [308833,5557,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [308823,5567,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [308789,5585,16,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "+----------------------------------------------------+\n", + "\n", + "+-------------------------------------------------+\n", + "| histograms.raw_qual_hists.dp_hist_all.n_smaller |\n", + "+-------------------------------------------------+\n", + "| int64 |\n", + "+-------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+-------------------------------------------------+\n", + "\n", + "+------------------------------------------------+\n", + "| histograms.raw_qual_hists.dp_hist_all.n_larger |\n", + "+------------------------------------------------+\n", + "| int64 |\n", + "+------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.raw_qual_hists.gq_hist_alt.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+------------------------------------------------+\n", + "| histograms.raw_qual_hists.gq_hist_alt.bin_freq |\n", + "+------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------+\n", + "| [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,2,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0] |\n", + "| [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "+------------------------------------------------+\n", + "\n", + "+-------------------------------------------------+\n", + "| histograms.raw_qual_hists.gq_hist_alt.n_smaller |\n", + "+-------------------------------------------------+\n", + "| int64 |\n", + "+-------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+-------------------------------------------------+\n", + "\n", + "+------------------------------------------------+\n", + "| histograms.raw_qual_hists.gq_hist_alt.n_larger |\n", + "+------------------------------------------------+\n", + "| int64 |\n", + "+------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.raw_qual_hists.dp_hist_alt.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+------------------------------------------------+\n", + "| histograms.raw_qual_hists.dp_hist_alt.bin_freq |\n", + "+------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------+\n", + "| [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "+------------------------------------------------+\n", + "\n", + "+-------------------------------------------------+\n", + "| histograms.raw_qual_hists.dp_hist_alt.n_smaller |\n", + "+-------------------------------------------------+\n", + "| int64 |\n", + "+-------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+-------------------------------------------------+\n", + "\n", + "+------------------------------------------------+\n", + "| histograms.raw_qual_hists.dp_hist_alt.n_larger |\n", + "+------------------------------------------------+\n", + "| int64 |\n", + "+------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.raw_qual_hists.ab_hist_alt.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+------------------------------------------------+\n", + "| histograms.raw_qual_hists.ab_hist_alt.bin_freq |\n", + "+------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------+\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "+------------------------------------------------+\n", + "\n", + "+-------------------------------------------------+\n", + "| histograms.raw_qual_hists.ab_hist_alt.n_smaller |\n", + "+-------------------------------------------------+\n", + "| int64 |\n", + "+-------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+-------------------------------------------------+\n", + "\n", + "+------------------------------------------------+\n", + "| histograms.raw_qual_hists.ab_hist_alt.n_larger |\n", + "+------------------------------------------------+\n", + "| int64 |\n", + "+------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.age_hists.age_hist_het.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.age_hists.age_hist_het.bin_freq |\n", + "+--------------------------------------------+\n", + "| array |\n", + "+--------------------------------------------+\n", + "| [0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0] |\n", + "+--------------------------------------------+\n", + "\n", + "+---------------------------------------------+\n", + "| histograms.age_hists.age_hist_het.n_smaller |\n", + "+---------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+---------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.age_hists.age_hist_het.n_larger |\n", + "+--------------------------------------------+\n", + "| int64 |\n", + "+--------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+--------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.age_hists.age_hist_hom.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.age_hists.age_hist_hom.bin_freq |\n", + "+--------------------------------------------+\n", + "| array |\n", + "+--------------------------------------------+\n", + "| [0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0] |\n", + "+--------------------------------------------+\n", + "\n", + "+---------------------------------------------+\n", + "| histograms.age_hists.age_hist_hom.n_smaller |\n", + "+---------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+---------------------------------------------+\n", + "\n", + "+--------------------------------------------+---------------------------------+\n", + "| histograms.age_hists.age_hist_hom.n_larger | in_silico_predictors.cadd.phred |\n", + "+--------------------------------------------+---------------------------------+\n", + "| int64 | float32 |\n", + "+--------------------------------------------+---------------------------------+\n", + "| 0 | 1.26e+01 |\n", + "| 0 | 1.60e+01 |\n", + "| 0 | 8.52e+00 |\n", + "| 0 | 1.52e+01 |\n", + "| 0 | 4.42e+00 |\n", + "+--------------------------------------------+---------------------------------+\n", + "\n", + "+-------------------------------------+--------------------------------+\n", + "| in_silico_predictors.cadd.raw_score | in_silico_predictors.revel_max |\n", + "+-------------------------------------+--------------------------------+\n", + "| float32 | float64 |\n", + "+-------------------------------------+--------------------------------+\n", + "| 1.08e+00 | NA |\n", + "| 1.54e+00 | NA |\n", + "| 7.07e-01 | NA |\n", + "| 1.41e+00 | NA |\n", + "| 3.11e-01 | NA |\n", + "+-------------------------------------+--------------------------------+\n", + "\n", + "+--------------------------------------+\n", + "| in_silico_predictors.spliceai_ds_max |\n", + "+--------------------------------------+\n", + "| float32 |\n", + "+--------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+--------------------------------------+\n", + "\n", + "+------------------------------------------+-----------------------------+\n", + "| in_silico_predictors.pangolin_largest_ds | in_silico_predictors.phylop |\n", + "+------------------------------------------+-----------------------------+\n", + "| float64 | float64 |\n", + "+------------------------------------------+-----------------------------+\n", + "| -1.10e-01 | 1.09e+00 |\n", + "| -7.00e-02 | 6.55e+00 |\n", + "| -9.00e-02 | -4.41e+00 |\n", + "| -4.00e-02 | 6.01e+00 |\n", + "| -8.00e-02 | 1.38e+00 |\n", + "+------------------------------------------+-----------------------------+\n", + "\n", + "+-------------------------------+-----------------------------------+\n", + "| in_silico_predictors.sift_max | in_silico_predictors.polyphen_max |\n", + "+-------------------------------+-----------------------------------+\n", + "| float64 | float64 |\n", + "+-------------------------------+-----------------------------------+\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "+-------------------------------+-----------------------------------+\n", + "showing top 5 rows" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "ht.show(5)" + ] + }, + { + "cell_type": "markdown", + "id": "b7a158a3-f21a-4f87-9596-1f918156d713", + "metadata": { + "tags": [] + }, + "source": [ + "### v4.1 genomes Hail Table" + ] + }, + { + "cell_type": "markdown", + "id": "30f86500-afc5-419e-ae2e-f944dc461fee", + "metadata": {}, + "source": [ + "#### Load the Hail Table\n" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "62ca9934-20dd-437e-898b-86a056e2606e", + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-06T20:08:59.197890Z", + "start_time": "2024-12-06T20:08:50.859108Z" + } + }, + "outputs": [], + "source": [ + "ht = get_gnomad_release(data_type='genomes', version='4.1')" + ] + }, + { + "cell_type": "markdown", + "id": "9cf4b782-f289-47b6-9123-d08ca761b074", + "metadata": {}, + "source": [ + "#### Print the schema of the Hail Table\n" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "09de90df-0b03-4a54-817c-c8a0606026f6", + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-06T20:09:00.032524Z", + "start_time": "2024-12-06T20:09:00.029271Z" + }, + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "----------------------------------------\n", + "Global fields:\n", + " 'freq_meta': array> \n", + " 'freq_index_dict': dict \n", + " 'freq_meta_sample_count': array \n", + " 'faf_meta': array> \n", + " 'faf_index_dict': dict \n", + " 'age_distribution': struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int32, \n", + " n_larger: int32\n", + " } \n", + " 'filtering_model': struct {\n", + " filter_name: str, \n", + " score_name: str, \n", + " snv_cutoff: struct {\n", + " bin: int32, \n", + " min_score: float64\n", + " }, \n", + " indel_cutoff: struct {\n", + " bin: int32, \n", + " min_score: float64\n", + " }, \n", + " snv_training_variables: array, \n", + " indel_training_variables: array\n", + " } \n", + " 'inbreeding_coeff_cutoff': float64 \n", + " 'tool_versions': struct {\n", + " cadd_version: str, \n", + " revel_version: str, \n", + " spliceai_version: str, \n", + " pangolin_version: array, \n", + " phylop_version: str, \n", + " dbsnp_version: str, \n", + " sift_version: str, \n", + " polyphen_version: str\n", + " } \n", + " 'vrs_versions': struct {\n", + " vrs_schema_version: str, \n", + " vrs_python_version: str, \n", + " seqrepo_version: str\n", + " } \n", + " 'vep_globals': struct {\n", + " vep_version: str, \n", + " vep_help: str, \n", + " vep_config: str, \n", + " gencode_version: str, \n", + " mane_select_version: str\n", + " } \n", + " 'frequency_README': str \n", + " 'date': str \n", + " 'version': str \n", + "----------------------------------------\n", + "Row fields:\n", + " 'locus': locus \n", + " 'alleles': array \n", + " 'freq': array \n", + " 'grpmax': struct {\n", + " AC: int32, \n", + " AF: float64, \n", + " AN: int32, \n", + " homozygote_count: int32, \n", + " gen_anc: str\n", + " } \n", + " 'faf': array \n", + " 'fafmax': struct {\n", + " faf95_max: float64, \n", + " faf95_max_gen_anc: str, \n", + " faf99_max: float64, \n", + " faf99_max_gen_anc: str\n", + " } \n", + " 'a_index': int32 \n", + " 'was_split': bool \n", + " 'rsid': set \n", + " 'filters': set \n", + " 'info': struct {\n", + " FS: float64, \n", + " MQ: float64, \n", + " MQRankSum: float64, \n", + " QUALapprox: int64, \n", + " QD: float32, \n", + " ReadPosRankSum: float64, \n", + " SB: array, \n", + " SOR: float64, \n", + " VarDP: int32, \n", + " AS_FS: float64, \n", + " AS_MQ: float64, \n", + " AS_MQRankSum: float64, \n", + " AS_pab_max: float64, \n", + " AS_QUALapprox: int64, \n", + " AS_QD: float32, \n", + " AS_ReadPosRankSum: float64, \n", + " AS_SB_TABLE: array, \n", + " AS_SOR: float64, \n", + " AS_VarDP: int32, \n", + " singleton: bool, \n", + " transmitted_singleton: bool, \n", + " omni: bool, \n", + " mills: bool, \n", + " monoallelic: bool, \n", + " only_het: bool, \n", + " AS_VQSLOD: float64, \n", + " inbreeding_coeff: float64, \n", + " vrs: struct {\n", + " VRS_Allele_IDs: array, \n", + " VRS_Starts: array, \n", + " VRS_Ends: array, \n", + " VRS_States: array\n", + " }\n", + " } \n", + " 'vep': struct {\n", + " allele_string: str, \n", + " end: int32, \n", + " id: str, \n", + " input: str, \n", + " intergenic_consequences: array, \n", + " impact: str, \n", + " variant_allele: str\n", + " }>, \n", + " most_severe_consequence: str, \n", + " motif_feature_consequences: array, \n", + " high_inf_pos: str, \n", + " impact: str, \n", + " motif_feature_id: str, \n", + " motif_name: str, \n", + " motif_pos: int32, \n", + " motif_score_change: float64, \n", + " transcription_factors: array, \n", + " strand: int32, \n", + " variant_allele: str\n", + " }>, \n", + " regulatory_feature_consequences: array, \n", + " impact: str, \n", + " regulatory_feature_id: str, \n", + " variant_allele: str\n", + " }>, \n", + " seq_region_name: str, \n", + " start: int32, \n", + " strand: int32, \n", + " transcript_consequences: array, \n", + " distance: int32, \n", + " domains: array, \n", + " exon: str, \n", + " flags: str, \n", + " gene_id: str, \n", + " gene_pheno: int32, \n", + " gene_symbol: str, \n", + " gene_symbol_source: str, \n", + " hgnc_id: str, \n", + " hgvsc: str, \n", + " hgvsp: str, \n", + " hgvs_offset: int32, \n", + " impact: str, \n", + " intron: str, \n", + " lof: str, \n", + " lof_flags: str, \n", + " lof_filter: str, \n", + " lof_info: str, \n", + " mane_select: str, \n", + " mane_plus_clinical: str, \n", + " mirna: array, \n", + " protein_end: int32, \n", + " protein_start: int32, \n", + " protein_id: str, \n", + " source: str, \n", + " strand: int32, \n", + " transcript_id: str, \n", + " tsl: int32, \n", + " uniprot_isoform: array, \n", + " variant_allele: str\n", + " }>, \n", + " variant_class: str\n", + " } \n", + " 'vqsr_results': struct {\n", + " AS_VQSLOD: float64, \n", + " AS_culprit: str, \n", + " positive_train_site: bool, \n", + " negative_train_site: bool\n", + " } \n", + " 'region_flags': struct {\n", + " non_par: bool, \n", + " lcr: bool, \n", + " segdup: bool\n", + " } \n", + " 'allele_info': struct {\n", + " allele_type: str, \n", + " n_alt_alleles: int32, \n", + " variant_type: str, \n", + " was_mixed: bool\n", + " } \n", + " 'histograms': struct {\n", + " qual_hists: struct {\n", + " gq_hist_all: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }, \n", + " dp_hist_all: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }, \n", + " gq_hist_alt: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }, \n", + " dp_hist_alt: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }, \n", + " ab_hist_alt: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }\n", + " }, \n", + " raw_qual_hists: struct {\n", + " gq_hist_all: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }, \n", + " dp_hist_all: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }, \n", + " gq_hist_alt: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }, \n", + " dp_hist_alt: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }, \n", + " ab_hist_alt: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }\n", + " }, \n", + " age_hists: struct {\n", + " age_hist_het: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }, \n", + " age_hist_hom: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }\n", + " }\n", + " } \n", + " 'in_silico_predictors': struct {\n", + " cadd: struct {\n", + " phred: float32, \n", + " raw_score: float32\n", + " }, \n", + " revel_max: float64, \n", + " spliceai_ds_max: float32, \n", + " pangolin_largest_ds: float64, \n", + " phylop: float64, \n", + " sift_max: float64, \n", + " polyphen_max: float64\n", + " } \n", + "----------------------------------------\n", + "Key: ['locus', 'alleles']\n", + "----------------------------------------\n" + ] + } + ], + "source": [ + "ht.describe()" + ] + }, + { + "cell_type": "markdown", + "id": "ed916197-3b0e-45dc-bacd-a13cb66d70ee", + "metadata": { + "tags": [] + }, + "source": [ + "#### Show the first 5 variants in the Hail Table" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "00b0ea2f-5685-4bae-886a-b9ea31866818", + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-06T20:09:20.949958Z", + "start_time": "2024-12-06T20:09:05.622171Z" + } + }, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
histograms
info
qual_hists
raw_qual_hists
age_hists
in_silico_predictors
grpmax
fafmax
vrs
vep
vqsr_results
region_flags
allele_info
gq_hist_all
dp_hist_all
gq_hist_alt
dp_hist_alt
ab_hist_alt
gq_hist_all
dp_hist_all
gq_hist_alt
dp_hist_alt
ab_hist_alt
age_hist_het
age_hist_hom
cadd
locus
alleles
freq
AC
AF
AN
homozygote_count
gen_anc
faf
faf95_max
faf95_max_gen_anc
faf99_max
faf99_max_gen_anc
a_index
was_split
rsid
filters
FS
MQ
MQRankSum
QUALapprox
QD
ReadPosRankSum
SB
SOR
VarDP
AS_FS
AS_MQ
AS_MQRankSum
AS_pab_max
AS_QUALapprox
AS_QD
AS_ReadPosRankSum
AS_SB_TABLE
AS_SOR
AS_VarDP
singleton
transmitted_singleton
omni
mills
monoallelic
only_het
AS_VQSLOD
inbreeding_coeff
VRS_Allele_IDs
VRS_Starts
VRS_Ends
VRS_States
allele_string
end
id
input
intergenic_consequences
most_severe_consequence
motif_feature_consequences
regulatory_feature_consequences
seq_region_name
start
strand
transcript_consequences
variant_class
AS_VQSLOD
AS_culprit
positive_train_site
negative_train_site
non_par
lcr
segdup
allele_type
n_alt_alleles
variant_type
was_mixed
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
phred
raw_score
revel_max
spliceai_ds_max
pangolin_largest_ds
phylop
sift_max
polyphen_max
locus<GRCh38>array<str>array<struct{AC: int32, AF: float64, AN: int32, homozygote_count: int32}>int32float64int32int32strarray<struct{faf95: float64, faf99: float64}>float64strfloat64strint32boolset<str>set<str>float64float64float64int64float32float64array<int32>float64int32float64float64float64float64int64float32float64array<int32>float64int32boolboolboolboolboolboolfloat64float64array<str>array<int32>array<int32>array<str>strint32strstrarray<struct{allele_num: int32, consequence_terms: array<str>, impact: str, variant_allele: str}>strarray<struct{allele_num: int32, consequence_terms: array<str>, high_inf_pos: str, impact: str, motif_feature_id: str, motif_name: str, motif_pos: int32, motif_score_change: float64, transcription_factors: array<str>, strand: int32, variant_allele: str}>array<struct{allele_num: int32, biotype: str, consequence_terms: array<str>, impact: str, regulatory_feature_id: str, variant_allele: str}>strint32int32array<struct{allele_num: int32, amino_acids: str, appris: str, biotype: str, canonical: int32, ccds: str, cdna_start: int32, cdna_end: int32, cds_end: int32, cds_start: int32, codons: str, consequence_terms: array<str>, distance: int32, domains: array<struct{db: str, name: str}>, exon: str, flags: str, gene_id: str, gene_pheno: int32, gene_symbol: str, gene_symbol_source: str, hgnc_id: str, hgvsc: str, hgvsp: str, hgvs_offset: int32, impact: str, intron: str, lof: str, lof_flags: str, lof_filter: str, lof_info: str, mane_select: str, mane_plus_clinical: str, mirna: array<str>, protein_end: int32, protein_start: int32, protein_id: str, source: str, strand: int32, transcript_id: str, tsl: int32, uniprot_isoform: array<str>, variant_allele: str}>strfloat64strboolboolboolboolboolstrint32strboolarray<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64float32float32float64float32float64float64float64float64
chr1:10031["T","C"][(0,0.00e+00,56642,0),(2,1.65e-05,121094,0),(0,0.00e+00,25546,0),(0,0.00e+00,4326,0),(0,0.00e+00,192,0),(0,0.00e+00,782,0),(0,0.00e+00,352,0),(0,0.00e+00,1550,0),(0,0.00e+00,14642,0),(0,0.00e+00,1712,0),(0,0.00e+00,1120,0),(0,0.00e+00,6420,0),(0,0.00e+00,29308,0),(0,0.00e+00,27334,0),(0,0.00e+00,14998,0),(0,0.00e+00,1060,0),(0,0.00e+00,102,0),(0,0.00e+00,402,0),(0,0.00e+00,154,0),(0,0.00e+00,814,0),(0,0.00e+00,7978,0),(0,0.00e+00,770,0),(0,0.00e+00,260,0),(0,0.00e+00,2770,0),(0,0.00e+00,10548,0),(0,0.00e+00,3266,0),(0,0.00e+00,90,0),(0,0.00e+00,380,0),(0,0.00e+00,198,0),(0,0.00e+00,736,0),(0,0.00e+00,6664,0),(0,0.00e+00,942,0),(0,0.00e+00,860,0),(0,0.00e+00,3650,0),(0,0.00e+00,1078,0),(0,0.00e+00,2476,0),(0,0.00e+00,38,0),(0,0.00e+00,36,0),(0,0.00e+00,40,0),(0,0.00e+00,26,0),(0,0.00e+00,46,0),(0,0.00e+00,62,0),(0,0.00e+00,36,0),(0,0.00e+00,34,0),(0,0.00e+00,30,0),(0,0.00e+00,46,0),(0,0.00e+00,64,0),(0,0.00e+00,40,0),(0,0.00e+00,42,0),(0,0.00e+00,50,0),(0,0.00e+00,42,0),(0,0.00e+00,28,0),(0,0.00e+00,18,0),(0,0.00e+00,42,0),(0,0.00e+00,52,0),(0,0.00e+00,44,0),(0,0.00e+00,36,0),(0,0.00e+00,40,0),(0,0.00e+00,48,0),(0,0.00e+00,42,0),(0,0.00e+00,34,0),(0,0.00e+00,62,0),(0,0.00e+00,536,0),(0,0.00e+00,542,0),(0,0.00e+00,18,0),(0,0.00e+00,10,0),(0,0.00e+00,18,0),(0,0.00e+00,14,0),(0,0.00e+00,30,0),(0,0.00e+00,30,0),(0,0.00e+00,16,0),(0,0.00e+00,16,0),(0,0.00e+00,22,0),(0,0.00e+00,16,0),(0,0.00e+00,38,0),(0,0.00e+00,18,0),(0,0.00e+00,20,0),(0,0.00e+00,26,0),(0,0.00e+00,22,0),(0,0.00e+00,14,0),(0,0.00e+00,10,0),(0,0.00e+00,16,0),(0,0.00e+00,24,0),(0,0.00e+00,24,0),(0,0.00e+00,20,0),(0,0.00e+00,18,0),(0,0.00e+00,28,0),(0,0.00e+00,22,0),(0,0.00e+00,24,0),(0,0.00e+00,22,0),(0,0.00e+00,20,0),(0,0.00e+00,26,0),(0,0.00e+00,22,0),(0,0.00e+00,12,0),(0,0.00e+00,16,0),(0,0.00e+00,32,0),(0,0.00e+00,20,0),(0,0.00e+00,18,0),(0,0.00e+00,8,0),(0,0.00e+00,30,0),(0,0.00e+00,26,0),(0,0.00e+00,22,0),(0,0.00e+00,22,0),(0,0.00e+00,24,0),(0,0.00e+00,20,0),(0,0.00e+00,14,0),(0,0.00e+00,8,0),(0,0.00e+00,26,0),(0,0.00e+00,28,0),(0,0.00e+00,20,0),(0,0.00e+00,16,0),(0,0.00e+00,22,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,10,0),(0,0.00e+00,40,0),(0,0.00e+00,812,0),(0,0.00e+00,812,0),(0,0.00e+00,12,0),(0,0.00e+00,32,0),(0,0.00e+00,54,0),(0,0.00e+00,6,0),(0,0.00e+00,18,0),(0,NA,0,0),(0,0.00e+00,20,0),(0,0.00e+00,8,0),(0,0.00e+00,2,0),(0,0.00e+00,22,0),(0,0.00e+00,8,0),(0,0.00e+00,8,0),(0,0.00e+00,36,0),(0,0.00e+00,26,0),(0,0.00e+00,2,0),(0,0.00e+00,8,0),(0,0.00e+00,60,0),(0,0.00e+00,6,0),(0,0.00e+00,18,0),(0,0.00e+00,6,0),(0,0.00e+00,4,0),(0,0.00e+00,10,0),(0,0.00e+00,8,0),(0,0.00e+00,10,0),(0,0.00e+00,32,0),(0,0.00e+00,22,0),(0,0.00e+00,26,0),(0,0.00e+00,30,0),(0,0.00e+00,22,0),(0,0.00e+00,6,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,0.00e+00,16,0),(0,0.00e+00,26,0),(0,0.00e+00,10,0),(0,0.00e+00,22,0),(0,0.00e+00,28,0),(0,0.00e+00,10,0),(0,0.00e+00,8,0),(0,0.00e+00,8,0),(0,0.00e+00,2,0),(0,0.00e+00,4,0),(0,0.00e+00,26,0),(0,0.00e+00,52,0),(0,0.00e+00,32,0),(0,0.00e+00,4,0),(0,0.00e+00,298,0),(0,0.00e+00,514,0),(0,0.00e+00,8,0),(0,0.00e+00,4,0),(0,0.00e+00,34,0),(0,NA,0,0),(0,0.00e+00,12,0),(0,NA,0,0),(0,0.00e+00,10,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,0.00e+00,4,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,0.00e+00,12,0),(0,0.00e+00,8,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,0.00e+00,24,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,0.00e+00,10,0),(0,NA,0,0),(0,0.00e+00,26,0),(0,0.00e+00,16,0),(0,0.00e+00,8,0),(0,0.00e+00,6,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,0.00e+00,6,0),(0,0.00e+00,4,0),(0,0.00e+00,6,0),(0,0.00e+00,4,0),(0,0.00e+00,4,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,0.00e+00,40,0),(0,0.00e+00,8,0),(0,0.00e+00,4,0),(0,0.00e+00,4,0),(0,0.00e+00,28,0),(0,0.00e+00,20,0),(0,0.00e+00,6,0),(0,0.00e+00,6,0),(0,NA,0,0),(0,0.00e+00,10,0),(0,0.00e+00,8,0),(0,NA,0,0),(0,0.00e+00,18,0),(0,0.00e+00,6,0),(0,0.00e+00,8,0),(0,0.00e+00,24,0),(0,0.00e+00,18,0),(0,NA,0,0),(0,0.00e+00,6,0),(0,0.00e+00,36,0),(0,0.00e+00,6,0),(0,0.00e+00,18,0),(0,0.00e+00,6,0),(0,0.00e+00,2,0),(0,0.00e+00,10,0),(0,0.00e+00,6,0),(0,0.00e+00,8,0),(0,0.00e+00,22,0),(0,0.00e+00,22,0),(0,NA,0,0),(0,0.00e+00,14,0),(0,0.00e+00,14,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,0.00e+00,14,0),(0,0.00e+00,26,0),(0,0.00e+00,4,0),(0,0.00e+00,18,0),(0,0.00e+00,22,0),(0,0.00e+00,6,0),(0,0.00e+00,4,0),(0,0.00e+00,6,0),(0,0.00e+00,2,0),(0,0.00e+00,4,0),(0,0.00e+00,22,0),(0,0.00e+00,12,0),(0,0.00e+00,24,0),(0,NA,0,0),(0,0.00e+00,32,0),(0,0.00e+00,6,0),(0,0.00e+00,16,0),(0,0.00e+00,16,0),(0,0.00e+00,2,0),(0,0.00e+00,4,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0)]NANANANANA[(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]NANANANA2True{"rs1639542312"}{"AC0","AS_VQSR"}7.30e+003.48e+016.70e-02962.74e+00-1.07e+00[21,6,4,4]9.60e-02355.10e+003.51e+01-5.72e-016.87e-01772.96e+00-1.38e+00[21,6,3,3]9.64e-0226FalseNANANAFalseFalse-4.57e+00-1.65e-05["ga4gh:VA.oTAtTrgYxm81O9fu6Mrhfo1t3eHsgg4L","ga4gh:VA.Y283OnlLjyi1T1IT_JzvW255rC6YJsW6"][10030,10030][10031,10031]["T","C"]"T/C"10031".""chr1\t10031\t.\tT\tC\t.\t.\tGT"NA"upstream_gene_variant"NANA"chr1"100311[(1,NA,NA,"transcribed_unprocessed_pseudogene",1,NA,NA,NA,NA,NA,NA,["upstream_gene_variant"],1979,NA,NA,NA,"ENSG00000223972",NA,"DDX11L1","HGNC","HGNC:37102",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",1,"ENST00000450305",NA,NA,"C"),(1,NA,NA,"processed_transcript",NA,NA,NA,NA,NA,NA,NA,["upstream_gene_variant"],1838,NA,NA,NA,"ENSG00000223972",NA,"DDX11L1","HGNC","HGNC:37102",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",1,"ENST00000456328",1,NA,"C"),(1,NA,NA,"unprocessed_pseudogene",1,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],4373,NA,NA,NA,"ENSG00000227232",NA,"WASH7P","HGNC","HGNC:38034",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000488147",NA,NA,"C"),(1,NA,NA,"transcribed_pseudogene",1,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],4331,NA,NA,NA,"653635",NA,"WASH7P","EntrezGene","HGNC:38034",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"RefSeq",-1,"NR_024540.1",NA,NA,"C"),(1,NA,NA,"transcribed_pseudogene",1,NA,NA,NA,NA,NA,NA,["upstream_gene_variant"],1843,NA,NA,NA,"100287102",NA,"DDX11L1","EntrezGene","HGNC:37102",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"RefSeq",1,"NR_046018.2",NA,NA,"C")]"SNV"-4.57e+00"AS_QD"FalseFalseFalseTrueTrue"snv"2"multi-snv"False[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,23215,2435,1647,594,176,118,49,29,19,9,11,6,5,2,4,2]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,16,121,475,973,1736,2409,2950,3134,2995,2803,2514,2194,1773,1335,911,665,439,351]0527[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][14149,7330,6840,3904,23217,2436,1647,594,176,118,49,29,19,9,11,6,5,2,4,2]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][10,66,471,1445,2990,5808,6940,7906,7262,6236,4943,3919,3129,2527,1993,1476,1023,741,500,418]0744[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]008.97e+007.57e-01NANANANANANA
chr1:10037["T","C"][(2,2.60e-05,76882,0),(4,3.15e-05,126902,0),(0,0.00e+00,34670,0),(1,1.80e-04,5568,0),(0,0.00e+00,234,0),(0,0.00e+00,998,0),(0,0.00e+00,494,0),(0,0.00e+00,2066,0),(0,0.00e+00,20394,0),(1,4.07e-04,2456,0),(0,0.00e+00,1706,0),(0,0.00e+00,8296,0),(1,2.49e-05,40172,0),(1,2.72e-05,36710,0),(0,0.00e+00,20498,0),(0,0.00e+00,1316,0),(0,0.00e+00,122,0),(0,0.00e+00,528,0),(0,0.00e+00,238,0),(0,0.00e+00,1106,0),(0,0.00e+00,11132,0),(1,8.98e-04,1114,0),(0,0.00e+00,420,0),(0,0.00e+00,3698,0),(0,0.00e+00,14172,0),(1,2.35e-04,4252,0),(0,0.00e+00,112,0),(0,0.00e+00,470,0),(0,0.00e+00,256,0),(0,0.00e+00,960,0),(0,0.00e+00,9262,0),(0,0.00e+00,1342,0),(0,0.00e+00,1286,0),(0,0.00e+00,4598,0),(0,0.00e+00,1628,0),(0,0.00e+00,2912,0),(0,0.00e+00,54,0),(0,0.00e+00,54,0),(0,0.00e+00,54,0),(0,0.00e+00,54,0),(0,0.00e+00,74,0),(0,0.00e+00,88,0),(0,0.00e+00,76,0),(0,0.00e+00,44,0),(0,0.00e+00,60,0),(0,0.00e+00,64,0),(0,0.00e+00,84,0),(0,0.00e+00,62,0),(0,0.00e+00,56,0),(0,0.00e+00,76,0),(0,0.00e+00,80,0),(0,0.00e+00,42,0),(0,0.00e+00,30,0),(0,0.00e+00,74,0),(0,0.00e+00,56,0),(0,0.00e+00,48,0),(0,0.00e+00,54,0),(0,0.00e+00,64,0),(0,0.00e+00,78,0),(0,0.00e+00,48,0),(0,0.00e+00,72,0),(0,0.00e+00,82,0),(0,0.00e+00,830,0),(0,0.00e+00,798,0),(0,0.00e+00,26,0),(0,0.00e+00,24,0),(0,0.00e+00,20,0),(0,0.00e+00,28,0),(0,0.00e+00,40,0),(0,0.00e+00,48,0),(0,0.00e+00,44,0),(0,0.00e+00,16,0),(0,0.00e+00,36,0),(0,0.00e+00,30,0),(0,0.00e+00,46,0),(0,0.00e+00,34,0),(0,0.00e+00,26,0),(0,0.00e+00,36,0),(0,0.00e+00,38,0),(0,0.00e+00,26,0),(0,0.00e+00,20,0),(0,0.00e+00,36,0),(0,0.00e+00,32,0),(0,0.00e+00,22,0),(0,0.00e+00,30,0),(0,0.00e+00,34,0),(0,0.00e+00,38,0),(0,0.00e+00,24,0),(0,0.00e+00,38,0),(0,0.00e+00,38,0),(0,0.00e+00,28,0),(0,0.00e+00,30,0),(0,0.00e+00,34,0),(0,0.00e+00,26,0),(0,0.00e+00,34,0),(0,0.00e+00,40,0),(0,0.00e+00,32,0),(0,0.00e+00,28,0),(0,0.00e+00,24,0),(0,0.00e+00,34,0),(0,0.00e+00,38,0),(0,0.00e+00,28,0),(0,0.00e+00,30,0),(0,0.00e+00,40,0),(0,0.00e+00,42,0),(0,0.00e+00,16,0),(0,0.00e+00,10,0),(0,0.00e+00,38,0),(0,0.00e+00,24,0),(0,0.00e+00,26,0),(0,0.00e+00,24,0),(0,0.00e+00,30,0),(0,0.00e+00,40,0),(0,0.00e+00,24,0),(0,0.00e+00,34,0),(0,0.00e+00,44,0),(0,0.00e+00,1028,0),(0,0.00e+00,1028,0),(0,0.00e+00,16,0),(0,0.00e+00,34,0),(0,0.00e+00,64,0),(0,0.00e+00,2,0),(0,0.00e+00,22,0),(0,NA,0,0),(0,0.00e+00,36,0),(0,0.00e+00,8,0),(0,0.00e+00,2,0),(0,0.00e+00,34,0),(0,0.00e+00,8,0),(0,0.00e+00,12,0),(0,0.00e+00,40,0),(0,0.00e+00,30,0),(0,0.00e+00,2,0),(0,0.00e+00,16,0),(0,0.00e+00,76,0),(0,0.00e+00,8,0),(0,0.00e+00,30,0),(0,0.00e+00,10,0),(0,0.00e+00,10,0),(0,0.00e+00,8,0),(0,0.00e+00,8,0),(0,0.00e+00,12,0),(0,0.00e+00,38,0),(0,0.00e+00,30,0),(0,0.00e+00,30,0),(0,0.00e+00,42,0),(0,0.00e+00,26,0),(0,0.00e+00,6,0),(0,NA,0,0),(0,0.00e+00,8,0),(0,0.00e+00,24,0),(0,0.00e+00,26,0),(0,0.00e+00,8,0),(0,0.00e+00,24,0),(0,0.00e+00,32,0),(0,0.00e+00,14,0),(0,0.00e+00,12,0),(0,0.00e+00,14,0),(0,0.00e+00,8,0),(0,0.00e+00,12,0),(0,0.00e+00,28,0),(0,0.00e+00,60,0),(0,0.00e+00,38,0),(0,0.00e+00,6,0),(0,0.00e+00,372,0),(0,0.00e+00,656,0),(0,0.00e+00,14,0),(0,0.00e+00,4,0),(0,0.00e+00,44,0),(0,0.00e+00,2,0),(0,0.00e+00,14,0),(0,NA,0,0),(0,0.00e+00,12,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,0.00e+00,6,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,0.00e+00,12,0),(0,0.00e+00,12,0),(0,0.00e+00,2,0),(0,0.00e+00,10,0),(0,0.00e+00,26,0),(0,0.00e+00,4,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,0.00e+00,12,0),(0,NA,0,0),(0,0.00e+00,30,0),(0,0.00e+00,18,0),(0,0.00e+00,12,0),(0,0.00e+00,4,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,0.00e+00,4,0),(0,0.00e+00,6,0),(0,0.00e+00,6,0),(0,0.00e+00,6,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,0.00e+00,6,0),(0,0.00e+00,46,0),(0,0.00e+00,8,0),(0,0.00e+00,4,0),(0,0.00e+00,2,0),(0,0.00e+00,30,0),(0,0.00e+00,20,0),(0,NA,0,0),(0,0.00e+00,8,0),(0,NA,0,0),(0,0.00e+00,24,0),(0,0.00e+00,6,0),(0,NA,0,0),(0,0.00e+00,28,0),(0,0.00e+00,6,0),(0,0.00e+00,12,0),(0,0.00e+00,28,0),(0,0.00e+00,18,0),(0,NA,0,0),(0,0.00e+00,6,0),(0,0.00e+00,50,0),(0,0.00e+00,4,0),(0,0.00e+00,30,0),(0,0.00e+00,10,0),(0,0.00e+00,8,0),(0,0.00e+00,8,0),(0,0.00e+00,6,0),(0,0.00e+00,10,0),(0,0.00e+00,26,0),(0,0.00e+00,30,0),(0,NA,0,0),(0,0.00e+00,24,0),(0,0.00e+00,14,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,0.00e+00,8,0),(0,0.00e+00,22,0),(0,0.00e+00,26,0),(0,0.00e+00,4,0),(0,0.00e+00,20,0),(0,0.00e+00,26,0),(0,0.00e+00,8,0),(0,0.00e+00,6,0),(0,0.00e+00,12,0),(0,0.00e+00,8,0),(0,0.00e+00,10,0),(0,0.00e+00,22,0),(0,0.00e+00,14,0),(0,0.00e+00,30,0),(0,0.00e+00,2,0),(0,0.00e+00,40,0),(0,0.00e+00,14,0),(0,0.00e+00,24,0),(0,0.00e+00,16,0),(0,0.00e+00,2,0),(0,0.00e+00,12,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0)]14.07e-0424560"eas"[(4.32e-06,1.62e-06),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]NANANANA1False{"rs1639542418"}{"AS_VQSR"}8.58e+003.83e+011.37e+001802.20e+00-4.80e-01[49,12,13,8]1.51e-01828.58e+003.83e+011.37e+001.00e+001802.20e+00-4.80e-01[49,12,13,8]1.51e-0182FalseNANANAFalseFalse-3.18e+00-3.15e-05["ga4gh:VA.6pIoPAYDsphCprRcyrititenuEWlZaxV","ga4gh:VA.iHyQ1mh_iQX6WcqXcx5vvZF9_jPYDePo"][10036,10036][10037,10037]["T","C"]"T/C"10037".""chr1\t10037\t.\tT\tC\t.\t.\tGT"NA"upstream_gene_variant"NANA"chr1"100371[(1,NA,NA,"transcribed_unprocessed_pseudogene",1,NA,NA,NA,NA,NA,NA,["upstream_gene_variant"],1973,NA,NA,NA,"ENSG00000223972",NA,"DDX11L1","HGNC","HGNC:37102",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",1,"ENST00000450305",NA,NA,"C"),(1,NA,NA,"processed_transcript",NA,NA,NA,NA,NA,NA,NA,["upstream_gene_variant"],1832,NA,NA,NA,"ENSG00000223972",NA,"DDX11L1","HGNC","HGNC:37102",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",1,"ENST00000456328",1,NA,"C"),(1,NA,NA,"unprocessed_pseudogene",1,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],4367,NA,NA,NA,"ENSG00000227232",NA,"WASH7P","HGNC","HGNC:38034",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000488147",NA,NA,"C"),(1,NA,NA,"transcribed_pseudogene",1,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],4325,NA,NA,NA,"653635",NA,"WASH7P","EntrezGene","HGNC:38034",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"RefSeq",-1,"NR_024540.1",NA,NA,"C"),(1,NA,NA,"transcribed_pseudogene",1,NA,NA,NA,NA,NA,NA,["upstream_gene_variant"],1837,NA,NA,NA,"100287102",NA,"DDX11L1","EntrezGene","HGNC:37102",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"RefSeq",1,"NR_046018.2",NA,NA,"C")]"SNV"-3.18e+00"AS_QD"FalseFalseFalseTrueTrue"snv"1"snv"False[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,29394,3741,2868,1281,401,358,163,63,69,31,18,20,10,4,5,15]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,9,69,387,913,1737,2859,3749,4216,4302,4223,3745,3280,2661,1954,1380,943,607,519]0888[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][10121,5441,5610,3838,29394,3741,2868,1281,401,358,163,63,69,31,18,20,10,4,5,15]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][7,37,269,903,1948,4127,5519,7075,7322,6972,6095,5249,4374,3624,2893,2106,1501,1031,679,590]01130[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,2,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,2,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,1,0,0,1,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]008.90e+007.49e-01NANANANANANA
chr1:10043["T","C"][(1,1.17e-05,85634,0),(1,8.24e-06,121430,0),(0,0.00e+00,39236,0),(0,0.00e+00,5820,0),(0,0.00e+00,254,0),(0,0.00e+00,1148,0),(0,0.00e+00,568,0),(0,0.00e+00,2276,0),(1,4.39e-05,22760,0),(0,0.00e+00,2912,0),(0,0.00e+00,2158,0),(0,0.00e+00,8502,0),(1,2.23e-05,44904,0),(0,0.00e+00,40730,0),(0,0.00e+00,23244,0),(0,0.00e+00,1280,0),(0,0.00e+00,136,0),(0,0.00e+00,594,0),(0,0.00e+00,284,0),(0,0.00e+00,1234,0),(1,8.03e-05,12446,0),(0,0.00e+00,1296,0),(0,0.00e+00,502,0),(0,0.00e+00,3888,0),(0,0.00e+00,15992,0),(0,0.00e+00,4540,0),(0,0.00e+00,118,0),(0,0.00e+00,554,0),(0,0.00e+00,284,0),(0,0.00e+00,1042,0),(0,0.00e+00,10314,0),(0,0.00e+00,1616,0),(0,0.00e+00,1656,0),(0,0.00e+00,4614,0),(0,0.00e+00,1788,0),(0,0.00e+00,2700,0),(0,0.00e+00,74,0),(0,0.00e+00,66,0),(0,0.00e+00,62,0),(0,0.00e+00,50,0),(0,0.00e+00,84,0),(0,0.00e+00,84,0),(0,0.00e+00,76,0),(0,0.00e+00,56,0),(0,0.00e+00,62,0),(0,0.00e+00,76,0),(0,0.00e+00,100,0),(0,0.00e+00,62,0),(0,0.00e+00,64,0),(0,0.00e+00,66,0),(0,0.00e+00,86,0),(0,0.00e+00,48,0),(0,0.00e+00,40,0),(0,0.00e+00,66,0),(0,0.00e+00,70,0),(0,0.00e+00,54,0),(0,0.00e+00,46,0),(0,0.00e+00,68,0),(0,0.00e+00,72,0),(0,0.00e+00,80,0),(0,0.00e+00,84,0),(0,0.00e+00,92,0),(0,0.00e+00,926,0),(0,0.00e+00,862,0),(0,0.00e+00,36,0),(0,0.00e+00,26,0),(0,0.00e+00,28,0),(0,0.00e+00,34,0),(0,0.00e+00,48,0),(0,0.00e+00,34,0),(0,0.00e+00,40,0),(0,0.00e+00,20,0),(0,0.00e+00,38,0),(0,0.00e+00,36,0),(0,0.00e+00,58,0),(0,0.00e+00,22,0),(0,0.00e+00,28,0),(0,0.00e+00,40,0),(0,0.00e+00,54,0),(0,0.00e+00,26,0),(0,0.00e+00,22,0),(0,0.00e+00,34,0),(0,0.00e+00,36,0),(0,0.00e+00,34,0),(0,0.00e+00,24,0),(0,0.00e+00,36,0),(0,0.00e+00,36,0),(0,0.00e+00,42,0),(0,0.00e+00,48,0),(0,0.00e+00,46,0),(0,0.00e+00,38,0),(0,0.00e+00,40,0),(0,0.00e+00,34,0),(0,0.00e+00,16,0),(0,0.00e+00,36,0),(0,0.00e+00,50,0),(0,0.00e+00,36,0),(0,0.00e+00,36,0),(0,0.00e+00,24,0),(0,0.00e+00,40,0),(0,0.00e+00,42,0),(0,0.00e+00,40,0),(0,0.00e+00,36,0),(0,0.00e+00,26,0),(0,0.00e+00,32,0),(0,0.00e+00,22,0),(0,0.00e+00,18,0),(0,0.00e+00,32,0),(0,0.00e+00,34,0),(0,0.00e+00,20,0),(0,0.00e+00,22,0),(0,0.00e+00,32,0),(0,0.00e+00,36,0),(0,0.00e+00,38,0),(0,0.00e+00,36,0),(0,0.00e+00,46,0),(0,0.00e+00,1154,0),(0,0.00e+00,1154,0),(0,0.00e+00,24,0),(0,0.00e+00,30,0),(0,0.00e+00,70,0),(0,0.00e+00,6,0),(0,0.00e+00,32,0),(0,0.00e+00,2,0),(0,0.00e+00,34,0),(0,0.00e+00,16,0),(0,0.00e+00,12,0),(0,0.00e+00,40,0),(0,0.00e+00,8,0),(0,0.00e+00,12,0),(0,0.00e+00,44,0),(0,0.00e+00,18,0),(0,NA,0,0),(0,0.00e+00,22,0),(0,0.00e+00,80,0),(0,0.00e+00,14,0),(0,0.00e+00,36,0),(0,0.00e+00,10,0),(0,0.00e+00,10,0),(0,0.00e+00,14,0),(0,0.00e+00,10,0),(0,0.00e+00,10,0),(0,0.00e+00,46,0),(0,0.00e+00,32,0),(0,0.00e+00,34,0),(0,0.00e+00,44,0),(0,0.00e+00,22,0),(0,0.00e+00,6,0),(0,NA,0,0),(0,0.00e+00,14,0),(0,0.00e+00,32,0),(0,0.00e+00,28,0),(0,0.00e+00,14,0),(0,0.00e+00,28,0),(0,0.00e+00,38,0),(0,0.00e+00,14,0),(0,0.00e+00,12,0),(0,0.00e+00,12,0),(0,0.00e+00,8,0),(0,0.00e+00,10,0),(0,0.00e+00,28,0),(0,0.00e+00,64,0),(0,0.00e+00,46,0),(0,0.00e+00,14,0),(0,0.00e+00,404,0),(0,0.00e+00,750,0),(0,0.00e+00,14,0),(0,0.00e+00,6,0),(0,0.00e+00,50,0),(0,NA,0,0),(0,0.00e+00,18,0),(0,NA,0,0),(0,0.00e+00,10,0),(0,0.00e+00,4,0),(0,0.00e+00,4,0),(0,0.00e+00,8,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,0.00e+00,14,0),(0,0.00e+00,6,0),(0,NA,0,0),(0,0.00e+00,12,0),(0,0.00e+00,30,0),(0,0.00e+00,6,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,0.00e+00,16,0),(0,NA,0,0),(0,0.00e+00,30,0),(0,0.00e+00,20,0),(0,0.00e+00,6,0),(0,0.00e+00,6,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,NA,0,0),(0,0.00e+00,6,0),(0,0.00e+00,4,0),(0,0.00e+00,10,0),(0,0.00e+00,6,0),(0,0.00e+00,6,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,8,0),(0,0.00e+00,50,0),(0,0.00e+00,12,0),(0,0.00e+00,6,0),(0,0.00e+00,10,0),(0,0.00e+00,24,0),(0,0.00e+00,20,0),(0,0.00e+00,6,0),(0,0.00e+00,14,0),(0,0.00e+00,2,0),(0,0.00e+00,24,0),(0,0.00e+00,12,0),(0,0.00e+00,8,0),(0,0.00e+00,32,0),(0,0.00e+00,6,0),(0,0.00e+00,12,0),(0,0.00e+00,30,0),(0,0.00e+00,12,0),(0,NA,0,0),(0,0.00e+00,10,0),(0,0.00e+00,50,0),(0,0.00e+00,8,0),(0,0.00e+00,36,0),(0,0.00e+00,10,0),(0,0.00e+00,6,0),(0,0.00e+00,14,0),(0,0.00e+00,8,0),(0,0.00e+00,8,0),(0,0.00e+00,30,0),(0,0.00e+00,32,0),(0,0.00e+00,4,0),(0,0.00e+00,24,0),(0,0.00e+00,16,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,14,0),(0,0.00e+00,28,0),(0,0.00e+00,28,0),(0,0.00e+00,8,0),(0,0.00e+00,24,0),(0,0.00e+00,28,0),(0,0.00e+00,8,0),(0,0.00e+00,6,0),(0,0.00e+00,10,0),(0,0.00e+00,8,0),(0,0.00e+00,10,0),(0,0.00e+00,20,0),(0,0.00e+00,14,0),(0,0.00e+00,34,0),(0,0.00e+00,8,0),(0,0.00e+00,40,0),(0,0.00e+00,14,0),(0,0.00e+00,18,0),(0,0.00e+00,22,0),(0,0.00e+00,2,0),(0,0.00e+00,12,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0)]14.39e-05227600"afr"[(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]NANANANA1FalseNA{"AS_VQSR"}3.11e+013.52e+011.23e+00972.77e+00-8.96e-01[25,0,5,5]1.00e-03353.11e+013.52e+011.23e+001.00e+00972.77e+00-8.96e-01[25,0,5,5]1.48e-0335TrueFalseNANAFalseFalse-5.79e+00-8.24e-06["ga4gh:VA.HdrkFJS16zwJPcGSKX9___fJcdqSATlQ","ga4gh:VA.LSHuFx03sqw8WJGN2-n782ME4o04Vl4U"][10042,10042][10043,10043]["T","C"]"T/C"10043".""chr1\t10043\t.\tT\tC\t.\t.\tGT"NA"upstream_gene_variant"NANA"chr1"100431[(1,NA,NA,"transcribed_unprocessed_pseudogene",1,NA,NA,NA,NA,NA,NA,["upstream_gene_variant"],1967,NA,NA,NA,"ENSG00000223972",NA,"DDX11L1","HGNC","HGNC:37102",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",1,"ENST00000450305",NA,NA,"C"),(1,NA,NA,"processed_transcript",NA,NA,NA,NA,NA,NA,NA,["upstream_gene_variant"],1826,NA,NA,NA,"ENSG00000223972",NA,"DDX11L1","HGNC","HGNC:37102",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",1,"ENST00000456328",1,NA,"C"),(1,NA,NA,"unprocessed_pseudogene",1,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],4361,NA,NA,NA,"ENSG00000227232",NA,"WASH7P","HGNC","HGNC:38034",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000488147",NA,NA,"C"),(1,NA,NA,"transcribed_pseudogene",1,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],4319,NA,NA,NA,"653635",NA,"WASH7P","EntrezGene","HGNC:38034",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"RefSeq",-1,"NR_024540.1",NA,NA,"C"),(1,NA,NA,"transcribed_pseudogene",1,NA,NA,NA,NA,NA,NA,["upstream_gene_variant"],1831,NA,NA,NA,"100287102",NA,"DDX11L1","EntrezGene","HGNC:37102",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"RefSeq",1,"NR_046018.2",NA,NA,"C")]"SNV"-5.79e+00"AS_FS"FalseFalseFalseTrueTrue"snv"1"snv"False[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,31093,4532,3696,1752,595,585,261,88,82,59,17,26,14,5,3,9]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,8,40,264,690,1525,2691,3754,4574,4813,4940,4490,3907,3242,2387,1704,1158,760,638]01232[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][6578,3782,4202,3336,31093,4532,3696,1752,595,585,261,88,82,59,17,26,14,5,3,9]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][2,24,149,466,1201,2614,4035,5568,6331,6725,6267,5855,5101,4268,3465,2554,1836,1244,831,692]01487[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,1,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]008.90e+007.48e-01NANANANANANA
chr1:10055["T","C"][(1,1.06e-05,94224,0),(5,4.64e-05,107704,0),(0,0.00e+00,44382,0),(1,1.80e-04,5570,0),(0,0.00e+00,216,0),(0,0.00e+00,1228,0),(0,0.00e+00,682,0),(0,0.00e+00,2370,0),(0,0.00e+00,26032,0),(0,0.00e+00,3020,0),(0,0.00e+00,2668,0),(0,0.00e+00,8056,0),(1,2.02e-05,49580,0),(0,0.00e+00,44644,0),(0,0.00e+00,26312,0),(1,9.67e-04,1034,0),(0,0.00e+00,110,0),(0,0.00e+00,624,0),(0,0.00e+00,344,0),(0,0.00e+00,1246,0),(0,0.00e+00,14152,0),(0,0.00e+00,1256,0),(0,0.00e+00,600,0),(0,0.00e+00,3902,0),(0,0.00e+00,18070,0),(0,0.00e+00,4536,0),(0,0.00e+00,106,0),(0,0.00e+00,604,0),(0,0.00e+00,338,0),(0,0.00e+00,1124,0),(0,0.00e+00,11880,0),(0,0.00e+00,1764,0),(0,0.00e+00,2068,0),(0,0.00e+00,4154,0),(0,0.00e+00,1478,0),(0,0.00e+00,1784,0),(0,0.00e+00,56,0),(0,0.00e+00,54,0),(0,0.00e+00,40,0),(0,0.00e+00,58,0),(0,0.00e+00,68,0),(0,0.00e+00,78,0),(0,0.00e+00,72,0),(0,0.00e+00,66,0),(0,0.00e+00,58,0),(0,0.00e+00,64,0),(0,0.00e+00,84,0),(0,0.00e+00,52,0),(0,0.00e+00,60,0),(0,0.00e+00,54,0),(0,0.00e+00,58,0),(0,0.00e+00,22,0),(0,0.00e+00,34,0),(0,0.00e+00,66,0),(0,0.00e+00,70,0),(0,0.00e+00,42,0),(0,0.00e+00,32,0),(0,0.00e+00,44,0),(0,0.00e+00,56,0),(0,0.00e+00,70,0),(0,0.00e+00,50,0),(0,0.00e+00,70,0),(0,0.00e+00,766,0),(0,0.00e+00,712,0),(0,0.00e+00,32,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,26,0),(0,0.00e+00,34,0),(0,0.00e+00,38,0),(0,0.00e+00,52,0),(0,0.00e+00,38,0),(0,0.00e+00,38,0),(0,0.00e+00,32,0),(0,0.00e+00,32,0),(0,0.00e+00,28,0),(0,0.00e+00,26,0),(0,0.00e+00,30,0),(0,0.00e+00,28,0),(0,0.00e+00,10,0),(0,0.00e+00,18,0),(0,0.00e+00,36,0),(0,0.00e+00,32,0),(0,0.00e+00,26,0),(0,0.00e+00,18,0),(0,0.00e+00,24,0),(0,0.00e+00,28,0),(0,0.00e+00,36,0),(0,0.00e+00,32,0),(0,0.00e+00,32,0),(0,0.00e+00,24,0),(0,0.00e+00,34,0),(0,0.00e+00,20,0),(0,0.00e+00,32,0),(0,0.00e+00,34,0),(0,0.00e+00,40,0),(0,0.00e+00,20,0),(0,0.00e+00,28,0),(0,0.00e+00,20,0),(0,0.00e+00,32,0),(0,0.00e+00,52,0),(0,0.00e+00,24,0),(0,0.00e+00,34,0),(0,0.00e+00,24,0),(0,0.00e+00,30,0),(0,0.00e+00,12,0),(0,0.00e+00,16,0),(0,0.00e+00,30,0),(0,0.00e+00,38,0),(0,0.00e+00,16,0),(0,0.00e+00,14,0),(0,0.00e+00,20,0),(0,0.00e+00,28,0),(0,0.00e+00,34,0),(0,0.00e+00,18,0),(0,0.00e+00,38,0),(0,0.00e+00,1312,0),(1,7.61e-04,1314,0),(0,0.00e+00,22,0),(0,0.00e+00,40,0),(0,0.00e+00,58,0),(0,0.00e+00,10,0),(0,0.00e+00,48,0),(0,0.00e+00,8,0),(0,0.00e+00,38,0),(0,0.00e+00,18,0),(0,0.00e+00,12,0),(0,0.00e+00,38,0),(0,0.00e+00,16,0),(0,0.00e+00,16,0),(0,0.00e+00,36,0),(0,0.00e+00,26,0),(0,0.00e+00,12,0),(0,0.00e+00,26,0),(0,0.00e+00,72,0),(0,0.00e+00,18,0),(0,0.00e+00,30,0),(0,0.00e+00,8,0),(0,0.00e+00,10,0),(0,0.00e+00,8,0),(0,0.00e+00,8,0),(0,0.00e+00,10,0),(0,0.00e+00,48,0),(0,0.00e+00,40,0),(0,0.00e+00,34,0),(0,0.00e+00,52,0),(0,0.00e+00,20,0),(0,0.00e+00,6,0),(0,0.00e+00,14,0),(0,0.00e+00,18,0),(0,0.00e+00,34,0),(0,0.00e+00,22,0),(0,0.00e+00,14,0),(0,0.00e+00,28,0),(0,0.00e+00,36,0),(0,0.00e+00,14,0),(0,0.00e+00,14,0),(0,0.00e+00,10,0),(0,0.00e+00,12,0),(0,0.00e+00,10,0),(0,0.00e+00,40,0),(0,0.00e+00,58,0),(0,0.00e+00,50,0),(0,0.00e+00,14,0),(0,0.00e+00,484,0),(0,0.00e+00,828,0),(0,0.00e+00,16,0),(0,0.00e+00,6,0),(0,0.00e+00,38,0),(0,0.00e+00,2,0),(0,0.00e+00,26,0),(0,NA,0,0),(0,0.00e+00,12,0),(0,0.00e+00,4,0),(0,0.00e+00,6,0),(0,0.00e+00,6,0),(0,0.00e+00,6,0),(0,0.00e+00,2,0),(0,0.00e+00,12,0),(0,0.00e+00,10,0),(0,0.00e+00,8,0),(0,0.00e+00,14,0),(0,0.00e+00,28,0),(0,0.00e+00,6,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,0.00e+00,18,0),(0,NA,0,0),(0,0.00e+00,30,0),(0,0.00e+00,24,0),(0,0.00e+00,10,0),(0,0.00e+00,4,0),(0,0.00e+00,12,0),(0,0.00e+00,2,0),(0,0.00e+00,4,0),(0,NA,0,0),(0,0.00e+00,8,0),(0,0.00e+00,6,0),(0,0.00e+00,14,0),(0,0.00e+00,8,0),(0,0.00e+00,4,0),(0,0.00e+00,4,0),(0,0.00e+00,4,0),(0,0.00e+00,4,0),(0,0.00e+00,8,0),(0,0.00e+00,42,0),(0,0.00e+00,12,0),(0,0.00e+00,6,0),(0,0.00e+00,6,0),(0,0.00e+00,34,0),(0,0.00e+00,20,0),(0,0.00e+00,8,0),(0,0.00e+00,22,0),(0,0.00e+00,8,0),(0,0.00e+00,26,0),(0,0.00e+00,14,0),(0,0.00e+00,6,0),(0,0.00e+00,32,0),(0,0.00e+00,10,0),(0,0.00e+00,14,0),(0,0.00e+00,24,0),(0,0.00e+00,16,0),(0,0.00e+00,4,0),(0,0.00e+00,12,0),(0,0.00e+00,44,0),(0,0.00e+00,12,0),(0,0.00e+00,30,0),(0,0.00e+00,6,0),(0,0.00e+00,8,0),(0,0.00e+00,8,0),(0,0.00e+00,6,0),(0,0.00e+00,10,0),(0,0.00e+00,30,0),(0,0.00e+00,40,0),(0,0.00e+00,4,0),(0,0.00e+00,28,0),(0,0.00e+00,10,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,0.00e+00,16,0),(0,0.00e+00,30,0),(0,0.00e+00,22,0),(0,0.00e+00,6,0),(0,0.00e+00,22,0),(0,0.00e+00,22,0),(0,0.00e+00,6,0),(0,0.00e+00,10,0),(0,0.00e+00,6,0),(0,0.00e+00,8,0),(0,0.00e+00,6,0),(0,0.00e+00,32,0),(0,0.00e+00,16,0),(0,0.00e+00,38,0),(0,0.00e+00,8,0),(0,0.00e+00,58,0),(0,0.00e+00,14,0),(0,0.00e+00,32,0),(0,0.00e+00,26,0),(0,0.00e+00,2,0),(0,0.00e+00,12,0),(0,0.00e+00,20,0),(0,0.00e+00,10,0),(0,0.00e+00,16,0),(0,0.00e+00,4,0),(0,0.00e+00,2,0),(0,0.00e+00,12,0),(0,NA,0,0),(0,0.00e+00,20,0),(0,0.00e+00,10,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,0.00e+00,12,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,12,0)]NANANANANA[(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]NANANANA2True{"rs892501864"}{"AS_VQSR"}0.00e+003.55e+011.07e-012202.12e+00-1.16e+00[51,29,15,9]6.16e-011045.94e+003.48e+017.15e-012.27e-01911.21e+00-1.16e+00[51,29,7,8]4.69e-0175FalseNANANAFalseFalse-3.72e+00-4.64e-05["ga4gh:VA.xis4Nhtveh7q75mtkipQAUqZfWUfboWB","ga4gh:VA.Ciou33oFTNEilAEegbFai_K0nu3F18A7"][10054,10054][10055,10055]["T","C"]"T/C"10055".""chr1\t10055\t.\tT\tC\t.\t.\tGT"NA"upstream_gene_variant"NANA"chr1"100551[(1,NA,NA,"transcribed_unprocessed_pseudogene",1,NA,NA,NA,NA,NA,NA,["upstream_gene_variant"],1955,NA,NA,NA,"ENSG00000223972",NA,"DDX11L1","HGNC","HGNC:37102",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",1,"ENST00000450305",NA,NA,"C"),(1,NA,NA,"processed_transcript",NA,NA,NA,NA,NA,NA,NA,["upstream_gene_variant"],1814,NA,NA,NA,"ENSG00000223972",NA,"DDX11L1","HGNC","HGNC:37102",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",1,"ENST00000456328",1,NA,"C"),(1,NA,NA,"unprocessed_pseudogene",1,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],4349,NA,NA,NA,"ENSG00000227232",NA,"WASH7P","HGNC","HGNC:38034",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000488147",NA,NA,"C"),(1,NA,NA,"transcribed_pseudogene",1,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],4307,NA,NA,NA,"653635",NA,"WASH7P","EntrezGene","HGNC:38034",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"RefSeq",-1,"NR_024540.1",NA,NA,"C"),(1,NA,NA,"transcribed_pseudogene",1,NA,NA,NA,NA,NA,NA,["upstream_gene_variant"],1819,NA,NA,NA,"100287102",NA,"DDX11L1","EntrezGene","HGNC:37102",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"RefSeq",1,"NR_046018.2",NA,NA,"C")]"SNV"-3.72e+00"AS_QD"FalseTrueFalseTrueTrue"snv"4"mixed"True[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,25677,6107,5433,3528,1753,1702,1130,485,518,282,119,125,77,35,29,76]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,4,22,120,354,999,1950,3037,4168,4734,5196,5380,4766,4238,3206,2398,1776,1236,1052]02440[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][1429,1382,1901,2026,25677,6108,5433,3528,1753,1702,1130,485,518,282,119,125,77,35,29,76]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][1,9,42,122,294,787,1537,2717,3751,4972,5404,5762,5875,5161,4526,3415,2525,1883,1294,1116]02622[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,1,2,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,3,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,3,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]008.88e+007.46e-01NANANANANANA
chr1:10057["A","C"][(3,2.64e-05,113536,0),(3,2.41e-05,124252,0),(2,3.78e-05,52912,0),(0,0.00e+00,6886,0),(0,0.00e+00,266,0),(0,0.00e+00,1504,0),(0,0.00e+00,742,0),(0,0.00e+00,2768,0),(1,3.25e-05,30736,0),(0,0.00e+00,3850,0),(0,0.00e+00,3424,0),(0,0.00e+00,10448,0),(2,3.37e-05,59380,0),(1,1.85e-05,54156,0),(2,6.43e-05,31106,0),(0,0.00e+00,1472,0),(0,0.00e+00,132,0),(0,0.00e+00,764,0),(0,0.00e+00,378,0),(0,0.00e+00,1532,0),(0,0.00e+00,16598,0),(0,0.00e+00,1670,0),(0,0.00e+00,784,0),(0,0.00e+00,4944,0),(0,0.00e+00,21806,0),(0,0.00e+00,5414,0),(0,0.00e+00,134,0),(0,0.00e+00,740,0),(0,0.00e+00,364,0),(0,0.00e+00,1236,0),(1,7.07e-05,14138,0),(0,0.00e+00,2180,0),(0,0.00e+00,2640,0),(0,0.00e+00,5504,0),(0,0.00e+00,2810,0),(0,0.00e+00,3122,0),(0,0.00e+00,100,0),(0,0.00e+00,102,0),(0,0.00e+00,92,0),(0,0.00e+00,90,0),(0,0.00e+00,122,0),(0,0.00e+00,130,0),(0,0.00e+00,132,0),(0,0.00e+00,110,0),(0,0.00e+00,124,0),(0,0.00e+00,112,0),(0,0.00e+00,140,0),(0,0.00e+00,90,0),(0,0.00e+00,126,0),(0,0.00e+00,106,0),(0,0.00e+00,118,0),(0,0.00e+00,76,0),(0,0.00e+00,72,0),(0,0.00e+00,98,0),(0,0.00e+00,120,0),(0,0.00e+00,68,0),(0,0.00e+00,84,0),(0,0.00e+00,124,0),(0,0.00e+00,134,0),(0,0.00e+00,108,0),(0,0.00e+00,118,0),(0,0.00e+00,114,0),(0,0.00e+00,1450,0),(0,0.00e+00,1360,0),(0,0.00e+00,56,0),(0,0.00e+00,50,0),(0,0.00e+00,46,0),(0,0.00e+00,42,0),(0,0.00e+00,66,0),(0,0.00e+00,64,0),(0,0.00e+00,64,0),(0,0.00e+00,50,0),(0,0.00e+00,82,0),(0,0.00e+00,44,0),(0,0.00e+00,72,0),(0,0.00e+00,48,0),(0,0.00e+00,68,0),(0,0.00e+00,52,0),(0,0.00e+00,60,0),(0,0.00e+00,42,0),(0,0.00e+00,36,0),(0,0.00e+00,56,0),(0,0.00e+00,58,0),(0,0.00e+00,44,0),(0,0.00e+00,42,0),(0,0.00e+00,72,0),(0,0.00e+00,66,0),(0,0.00e+00,56,0),(0,0.00e+00,64,0),(0,0.00e+00,50,0),(0,0.00e+00,44,0),(0,0.00e+00,52,0),(0,0.00e+00,46,0),(0,0.00e+00,48,0),(0,0.00e+00,56,0),(0,0.00e+00,66,0),(0,0.00e+00,68,0),(0,0.00e+00,60,0),(0,0.00e+00,42,0),(0,0.00e+00,68,0),(0,0.00e+00,68,0),(0,0.00e+00,42,0),(0,0.00e+00,58,0),(0,0.00e+00,54,0),(0,0.00e+00,58,0),(0,0.00e+00,34,0),(0,0.00e+00,36,0),(0,0.00e+00,42,0),(0,0.00e+00,62,0),(0,0.00e+00,24,0),(0,0.00e+00,42,0),(0,0.00e+00,52,0),(0,0.00e+00,68,0),(0,0.00e+00,52,0),(0,0.00e+00,54,0),(0,0.00e+00,64,0),(0,0.00e+00,1300,0),(0,0.00e+00,1300,0),(0,0.00e+00,28,0),(0,0.00e+00,44,0),(0,0.00e+00,66,0),(0,0.00e+00,8,0),(0,0.00e+00,44,0),(0,0.00e+00,2,0),(0,0.00e+00,40,0),(0,0.00e+00,14,0),(0,0.00e+00,14,0),(0,0.00e+00,38,0),(0,0.00e+00,12,0),(0,0.00e+00,12,0),(0,0.00e+00,44,0),(0,0.00e+00,32,0),(0,0.00e+00,2,0),(0,0.00e+00,24,0),(0,0.00e+00,78,0),(0,0.00e+00,16,0),(0,0.00e+00,40,0),(0,0.00e+00,10,0),(0,0.00e+00,14,0),(0,0.00e+00,12,0),(0,0.00e+00,16,0),(0,0.00e+00,14,0),(0,0.00e+00,50,0),(0,0.00e+00,38,0),(0,0.00e+00,38,0),(0,0.00e+00,46,0),(0,0.00e+00,22,0),(0,0.00e+00,10,0),(0,0.00e+00,2,0),(0,0.00e+00,14,0),(0,0.00e+00,36,0),(0,0.00e+00,34,0),(0,0.00e+00,12,0),(0,0.00e+00,32,0),(0,0.00e+00,36,0),(0,0.00e+00,20,0),(0,0.00e+00,12,0),(0,0.00e+00,14,0),(0,0.00e+00,12,0),(0,0.00e+00,14,0),(0,0.00e+00,32,0),(0,0.00e+00,66,0),(0,0.00e+00,52,0),(0,0.00e+00,14,0),(0,0.00e+00,472,0),(0,0.00e+00,828,0),(0,0.00e+00,18,0),(0,0.00e+00,8,0),(0,0.00e+00,42,0),(0,0.00e+00,2,0),(0,0.00e+00,22,0),(0,NA,0,0),(0,0.00e+00,14,0),(0,0.00e+00,4,0),(0,0.00e+00,6,0),(0,0.00e+00,6,0),(0,0.00e+00,4,0),(0,0.00e+00,2,0),(0,0.00e+00,16,0),(0,0.00e+00,12,0),(0,0.00e+00,2,0),(0,0.00e+00,12,0),(0,0.00e+00,32,0),(0,0.00e+00,6,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,NA,0,0),(0,0.00e+00,6,0),(0,0.00e+00,2,0),(0,0.00e+00,18,0),(0,NA,0,0),(0,0.00e+00,36,0),(0,0.00e+00,20,0),(0,0.00e+00,6,0),(0,0.00e+00,8,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,0.00e+00,10,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,0.00e+00,6,0),(0,0.00e+00,14,0),(0,0.00e+00,6,0),(0,0.00e+00,4,0),(0,0.00e+00,4,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,0.00e+00,8,0),(0,0.00e+00,50,0),(0,0.00e+00,14,0),(0,0.00e+00,4,0),(0,0.00e+00,10,0),(0,0.00e+00,36,0),(0,0.00e+00,24,0),(0,0.00e+00,6,0),(0,0.00e+00,22,0),(0,0.00e+00,2,0),(0,0.00e+00,26,0),(0,0.00e+00,10,0),(0,0.00e+00,8,0),(0,0.00e+00,32,0),(0,0.00e+00,8,0),(0,0.00e+00,10,0),(0,0.00e+00,28,0),(0,0.00e+00,20,0),(0,NA,0,0),(0,0.00e+00,12,0),(0,0.00e+00,46,0),(0,0.00e+00,10,0),(0,0.00e+00,40,0),(0,0.00e+00,10,0),(0,0.00e+00,10,0),(0,0.00e+00,12,0),(0,0.00e+00,10,0),(0,0.00e+00,12,0),(0,0.00e+00,32,0),(0,0.00e+00,38,0),(0,0.00e+00,2,0),(0,0.00e+00,26,0),(0,0.00e+00,16,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,0.00e+00,12,0),(0,0.00e+00,26,0),(0,0.00e+00,34,0),(0,0.00e+00,8,0),(0,0.00e+00,26,0),(0,0.00e+00,22,0),(0,0.00e+00,14,0),(0,0.00e+00,8,0),(0,0.00e+00,10,0),(0,0.00e+00,10,0),(0,0.00e+00,12,0),(0,0.00e+00,24,0),(0,0.00e+00,16,0),(0,0.00e+00,38,0),(0,0.00e+00,10,0),(0,0.00e+00,54,0),(0,0.00e+00,16,0),(0,0.00e+00,30,0),(0,0.00e+00,24,0),(0,0.00e+00,2,0),(0,0.00e+00,14,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0)]23.78e-05529120"nfe"[(7.02e-06,2.95e-06),(6.27e-06,2.35e-06),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]6.27e-06"nfe"2.35e-06"nfe"1True{"rs1570391741"}{"AS_VQSR"}3.30e+013.60e+017.88e-012921.79e+00-6.84e-01[97,29,17,20]3.75e-011633.79e+013.61e+017.88e-011.00e+002642.06e+00-6.84e-01[97,29,13,19]7.58e-01128FalseNANANAFalseFalse-3.31e+00-2.41e-05["ga4gh:VA.TV0UyS-jCvsVkEOMbipUnzTc4hYuVNTg","ga4gh:VA.33zGTKcHyj5wWpTfc3OfD8-UlPQ-YOfx"][10056,10056][10057,10057]["A","C"]"A/C"10057".""chr1\t10057\t.\tA\tC\t.\t.\tGT"NA"upstream_gene_variant"NANA"chr1"100571[(1,NA,NA,"transcribed_unprocessed_pseudogene",1,NA,NA,NA,NA,NA,NA,["upstream_gene_variant"],1953,NA,NA,NA,"ENSG00000223972",NA,"DDX11L1","HGNC","HGNC:37102",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",1,"ENST00000450305",NA,NA,"C"),(1,NA,NA,"processed_transcript",NA,NA,NA,NA,NA,NA,NA,["upstream_gene_variant"],1812,NA,NA,NA,"ENSG00000223972",NA,"DDX11L1","HGNC","HGNC:37102",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",1,"ENST00000456328",1,NA,"C"),(1,NA,NA,"unprocessed_pseudogene",1,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],4347,NA,NA,NA,"ENSG00000227232",NA,"WASH7P","HGNC","HGNC:38034",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000488147",NA,NA,"C"),(1,NA,NA,"transcribed_pseudogene",1,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],4305,NA,NA,NA,"653635",NA,"WASH7P","EntrezGene","HGNC:38034",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"RefSeq",-1,"NR_024540.1",NA,NA,"C"),(1,NA,NA,"transcribed_pseudogene",1,NA,NA,NA,NA,NA,NA,["upstream_gene_variant"],1817,NA,NA,NA,"100287102",NA,"DDX11L1","EntrezGene","HGNC:37102",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"RefSeq",1,"NR_046018.2",NA,NA,"C")]"SNV"-3.31e+00"AS_FS"FalseFalseFalseTrueTrue"snv"2"multi-snv"False[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,25460,7448,6933,4978,2881,2833,2048,1038,1129,685,321,364,212,90,117,231]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,2,23,108,320,888,1844,3110,4447,5361,6012,6379,5879,5289,4273,3400,2503,1787,1521]03622[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,1,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][995,1036,1539,1788,25460,7448,6933,4978,2881,2833,2048,1038,1129,685,321,364,212,90,117,231]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][2,6,39,104,247,638,1325,2417,3685,5047,5927,6484,6763,6192,5525,4439,3518,2603,1850,1572]03743[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,1,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,1,0,1,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]008.53e+007.09e-01NANANANANANA

showing top 5 rows

\n" + ], + "text/plain": [ + "+---------------+------------+\n", + "| locus | alleles |\n", + "+---------------+------------+\n", + "| locus | array |\n", + "+---------------+------------+\n", + "| chr1:10031 | [\"T\",\"C\"] |\n", + "| chr1:10037 | [\"T\",\"C\"] |\n", + "| chr1:10043 | [\"T\",\"C\"] |\n", + "| chr1:10055 | [\"T\",\"C\"] |\n", + "| chr1:10057 | [\"A\",\"C\"] |\n", + "+---------------+------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| freq |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [(0,0.00e+00,56642,0),(2,1.65e-05,121094,0),(0,0.00e+00,25546,0),(0,0.00e... |\n", + "| [(2,2.60e-05,76882,0),(4,3.15e-05,126902,0),(0,0.00e+00,34670,0),(1,1.80e... |\n", + "| [(1,1.17e-05,85634,0),(1,8.24e-06,121430,0),(0,0.00e+00,39236,0),(0,0.00e... |\n", + "| [(1,1.06e-05,94224,0),(5,4.64e-05,107704,0),(0,0.00e+00,44382,0),(1,1.80e... |\n", + "| [(3,2.64e-05,113536,0),(3,2.41e-05,124252,0),(2,3.78e-05,52912,0),(0,0.00... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+-----------+-----------+-----------+-------------------------+----------------+\n", + "| grpmax.AC | grpmax.AF | grpmax.AN | grpmax.homozygote_count | grpmax.gen_anc |\n", + "+-----------+-----------+-----------+-------------------------+----------------+\n", + "| int32 | float64 | int32 | int32 | str |\n", + "+-----------+-----------+-----------+-------------------------+----------------+\n", + "| NA | NA | NA | NA | NA |\n", + "| 1 | 4.07e-04 | 2456 | 0 | \"eas\" |\n", + "| 1 | 4.39e-05 | 22760 | 0 | \"afr\" |\n", + "| NA | NA | NA | NA | NA |\n", + "| 2 | 3.78e-05 | 52912 | 0 | \"nfe\" |\n", + "+-----------+-----------+-----------+-------------------------+----------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| faf |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.... |\n", + "| [(4.32e-06,1.62e-06),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.... |\n", + "| [(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.... |\n", + "| [(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.... |\n", + "| [(7.02e-06,2.95e-06),(6.27e-06,2.35e-06),(0.00e+00,0.00e+00),(0.00e+00,0.... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+------------------+--------------------------+------------------+\n", + "| fafmax.faf95_max | fafmax.faf95_max_gen_anc | fafmax.faf99_max |\n", + "+------------------+--------------------------+------------------+\n", + "| float64 | str | float64 |\n", + "+------------------+--------------------------+------------------+\n", + "| NA | NA | NA |\n", + "| NA | NA | NA |\n", + "| NA | NA | NA |\n", + "| NA | NA | NA |\n", + "| 6.27e-06 | \"nfe\" | 2.35e-06 |\n", + "+------------------+--------------------------+------------------+\n", + "\n", + "+--------------------------+---------+-----------+------------------+\n", + "| fafmax.faf99_max_gen_anc | a_index | was_split | rsid |\n", + "+--------------------------+---------+-----------+------------------+\n", + "| str | int32 | bool | set |\n", + "+--------------------------+---------+-----------+------------------+\n", + "| NA | 2 | True | {\"rs1639542312\"} |\n", + "| NA | 1 | False | {\"rs1639542418\"} |\n", + "| NA | 1 | False | NA |\n", + "| NA | 2 | True | {\"rs892501864\"} |\n", + "| \"nfe\" | 1 | True | {\"rs1570391741\"} |\n", + "+--------------------------+---------+-----------+------------------+\n", + "\n", + "+-------------------+----------+----------+----------------+-----------------+\n", + "| filters | info.FS | info.MQ | info.MQRankSum | info.QUALapprox |\n", + "+-------------------+----------+----------+----------------+-----------------+\n", + "| set | float64 | float64 | float64 | int64 |\n", + "+-------------------+----------+----------+----------------+-----------------+\n", + "| {\"AC0\",\"AS_VQSR\"} | 7.30e+00 | 3.48e+01 | 6.70e-02 | 96 |\n", + "| {\"AS_VQSR\"} | 8.58e+00 | 3.83e+01 | 1.37e+00 | 180 |\n", + "| {\"AS_VQSR\"} | 3.11e+01 | 3.52e+01 | 1.23e+00 | 97 |\n", + "| {\"AS_VQSR\"} | 0.00e+00 | 3.55e+01 | 1.07e-01 | 220 |\n", + "| {\"AS_VQSR\"} | 3.30e+01 | 3.60e+01 | 7.88e-01 | 292 |\n", + "+-------------------+----------+----------+----------------+-----------------+\n", + "\n", + "+----------+---------------------+---------------+----------+------------+\n", + "| info.QD | info.ReadPosRankSum | info.SB | info.SOR | info.VarDP |\n", + "+----------+---------------------+---------------+----------+------------+\n", + "| float32 | float64 | array | float64 | int32 |\n", + "+----------+---------------------+---------------+----------+------------+\n", + "| 2.74e+00 | -1.07e+00 | [21,6,4,4] | 9.60e-02 | 35 |\n", + "| 2.20e+00 | -4.80e-01 | [49,12,13,8] | 1.51e-01 | 82 |\n", + "| 2.77e+00 | -8.96e-01 | [25,0,5,5] | 1.00e-03 | 35 |\n", + "| 2.12e+00 | -1.16e+00 | [51,29,15,9] | 6.16e-01 | 104 |\n", + "| 1.79e+00 | -6.84e-01 | [97,29,17,20] | 3.75e-01 | 163 |\n", + "+----------+---------------------+---------------+----------+------------+\n", + "\n", + "+------------+------------+-------------------+-----------------+\n", + "| info.AS_FS | info.AS_MQ | info.AS_MQRankSum | info.AS_pab_max |\n", + "+------------+------------+-------------------+-----------------+\n", + "| float64 | float64 | float64 | float64 |\n", + "+------------+------------+-------------------+-----------------+\n", + "| 5.10e+00 | 3.51e+01 | -5.72e-01 | 6.87e-01 |\n", + "| 8.58e+00 | 3.83e+01 | 1.37e+00 | 1.00e+00 |\n", + "| 3.11e+01 | 3.52e+01 | 1.23e+00 | 1.00e+00 |\n", + "| 5.94e+00 | 3.48e+01 | 7.15e-01 | 2.27e-01 |\n", + "| 3.79e+01 | 3.61e+01 | 7.88e-01 | 1.00e+00 |\n", + "+------------+------------+-------------------+-----------------+\n", + "\n", + "+--------------------+------------+------------------------+------------------+\n", + "| info.AS_QUALapprox | info.AS_QD | info.AS_ReadPosRankSum | info.AS_SB_TABLE |\n", + "+--------------------+------------+------------------------+------------------+\n", + "| int64 | float32 | float64 | array |\n", + "+--------------------+------------+------------------------+------------------+\n", + "| 77 | 2.96e+00 | -1.38e+00 | [21,6,3,3] |\n", + "| 180 | 2.20e+00 | -4.80e-01 | [49,12,13,8] |\n", + "| 97 | 2.77e+00 | -8.96e-01 | [25,0,5,5] |\n", + "| 91 | 1.21e+00 | -1.16e+00 | [51,29,7,8] |\n", + "| 264 | 2.06e+00 | -6.84e-01 | [97,29,13,19] |\n", + "+--------------------+------------+------------------------+------------------+\n", + "\n", + "+-------------+---------------+----------------+----------------------------+\n", + "| info.AS_SOR | info.AS_VarDP | info.singleton | info.transmitted_singleton |\n", + "+-------------+---------------+----------------+----------------------------+\n", + "| float64 | int32 | bool | bool |\n", + "+-------------+---------------+----------------+----------------------------+\n", + "| 9.64e-02 | 26 | False | NA |\n", + "| 1.51e-01 | 82 | False | NA |\n", + "| 1.48e-03 | 35 | True | False |\n", + "| 4.69e-01 | 75 | False | NA |\n", + "| 7.58e-01 | 128 | False | NA |\n", + "+-------------+---------------+----------------+----------------------------+\n", + "\n", + "+-----------+------------+------------------+---------------+----------------+\n", + "| info.omni | info.mills | info.monoallelic | info.only_het | info.AS_VQSLOD |\n", + "+-----------+------------+------------------+---------------+----------------+\n", + "| bool | bool | bool | bool | float64 |\n", + "+-----------+------------+------------------+---------------+----------------+\n", + "| NA | NA | False | False | -4.57e+00 |\n", + "| NA | NA | False | False | -3.18e+00 |\n", + "| NA | NA | False | False | -5.79e+00 |\n", + "| NA | NA | False | False | -3.72e+00 |\n", + "| NA | NA | False | False | -3.31e+00 |\n", + "+-----------+------------+------------------+---------------+----------------+\n", + "\n", + "+-----------------------+\n", + "| info.inbreeding_coeff |\n", + "+-----------------------+\n", + "| float64 |\n", + "+-----------------------+\n", + "| -1.65e-05 |\n", + "| -3.15e-05 |\n", + "| -8.24e-06 |\n", + "| -4.64e-05 |\n", + "| -2.41e-05 |\n", + "+-----------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| info.vrs.VRS_Allele_IDs |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [\"ga4gh:VA.oTAtTrgYxm81O9fu6Mrhfo1t3eHsgg4L\",\"ga4gh:VA.Y283OnlLjyi1T1IT_J... |\n", + "| [\"ga4gh:VA.6pIoPAYDsphCprRcyrititenuEWlZaxV\",\"ga4gh:VA.iHyQ1mh_iQX6WcqXcx... |\n", + "| [\"ga4gh:VA.HdrkFJS16zwJPcGSKX9___fJcdqSATlQ\",\"ga4gh:VA.LSHuFx03sqw8WJGN2-... |\n", + "| [\"ga4gh:VA.xis4Nhtveh7q75mtkipQAUqZfWUfboWB\",\"ga4gh:VA.Ciou33oFTNEilAEegb... |\n", + "| [\"ga4gh:VA.TV0UyS-jCvsVkEOMbipUnzTc4hYuVNTg\",\"ga4gh:VA.33zGTKcHyj5wWpTfc3... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+---------------------+-------------------+---------------------+\n", + "| info.vrs.VRS_Starts | info.vrs.VRS_Ends | info.vrs.VRS_States |\n", + "+---------------------+-------------------+---------------------+\n", + "| array | array | array |\n", + "+---------------------+-------------------+---------------------+\n", + "| [10030,10030] | [10031,10031] | [\"T\",\"C\"] |\n", + "| [10036,10036] | [10037,10037] | [\"T\",\"C\"] |\n", + "| [10042,10042] | [10043,10043] | [\"T\",\"C\"] |\n", + "| [10054,10054] | [10055,10055] | [\"T\",\"C\"] |\n", + "| [10056,10056] | [10057,10057] | [\"A\",\"C\"] |\n", + "+---------------------+-------------------+---------------------+\n", + "\n", + "+-------------------+---------+--------+---------------------------+\n", + "| vep.allele_string | vep.end | vep.id | vep.input |\n", + "+-------------------+---------+--------+---------------------------+\n", + "| str | int32 | str | str |\n", + "+-------------------+---------+--------+---------------------------+\n", + "| \"T/C\" | 10031 | \".\" | \"chr1\t10031\t.\tT\tC\t.\t.\tGT\" |\n", + "| \"T/C\" | 10037 | \".\" | \"chr1\t10037\t.\tT\tC\t.\t.\tGT\" |\n", + "| \"T/C\" | 10043 | \".\" | \"chr1\t10043\t.\tT\tC\t.\t.\tGT\" |\n", + "| \"T/C\" | 10055 | \".\" | \"chr1\t10055\t.\tT\tC\t.\t.\tGT\" |\n", + "| \"A/C\" | 10057 | \".\" | \"chr1\t10057\t.\tA\tC\t.\t.\tGT\" |\n", + "+-------------------+---------+--------+---------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| vep.intergenic_consequences |\n", + "+------------------------------------------------------------------------------+\n", + "| array, impact: st... |\n", + "+------------------------------------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+-----------------------------+\n", + "| vep.most_severe_consequence |\n", + "+-----------------------------+\n", + "| str |\n", + "+-----------------------------+\n", + "| \"upstream_gene_variant\" |\n", + "| \"upstream_gene_variant\" |\n", + "| \"upstream_gene_variant\" |\n", + "| \"upstream_gene_variant\" |\n", + "| \"upstream_gene_variant\" |\n", + "+-----------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| vep.motif_feature_consequences |\n", + "+------------------------------------------------------------------------------+\n", + "| array, high_inf_p... |\n", + "+------------------------------------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| vep.regulatory_feature_consequences |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.qual_hists.gq_hist_all.bin_freq |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0,0,0,0,23215,2435,1647,594,176,118,49,29,19,9,11,6,5,2,4,2] |\n", + "| [0,0,0,0,29394,3741,2868,1281,401,358,163,63,69,31,18,20,10,4,5,15] |\n", + "| [0,0,0,0,31093,4532,3696,1752,595,585,261,88,82,59,17,26,14,5,3,9] |\n", + "| [0,0,0,0,25677,6107,5433,3528,1753,1702,1130,485,518,282,119,125,77,35,29... |\n", + "| [0,0,0,0,25460,7448,6933,4978,2881,2833,2048,1038,1129,685,321,364,212,90... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+---------------------------------------------+\n", + "| histograms.qual_hists.gq_hist_all.n_smaller |\n", + "+---------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+---------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.qual_hists.gq_hist_all.n_larger |\n", + "+--------------------------------------------+\n", + "| int64 |\n", + "+--------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+--------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.qual_hists.dp_hist_all.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.qual_hists.dp_hist_all.bin_freq |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0,0,16,121,475,973,1736,2409,2950,3134,2995,2803,2514,2194,1773,1335,911... |\n", + "| [0,0,9,69,387,913,1737,2859,3749,4216,4302,4223,3745,3280,2661,1954,1380,... |\n", + "| [0,0,8,40,264,690,1525,2691,3754,4574,4813,4940,4490,3907,3242,2387,1704,... |\n", + "| [0,0,4,22,120,354,999,1950,3037,4168,4734,5196,5380,4766,4238,3206,2398,1... |\n", + "| [0,0,2,23,108,320,888,1844,3110,4447,5361,6012,6379,5879,5289,4273,3400,2... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+---------------------------------------------+\n", + "| histograms.qual_hists.dp_hist_all.n_smaller |\n", + "+---------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+---------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.qual_hists.dp_hist_all.n_larger |\n", + "+--------------------------------------------+\n", + "| int64 |\n", + "+--------------------------------------------+\n", + "| 527 |\n", + "| 888 |\n", + "| 1232 |\n", + "| 2440 |\n", + "| 3622 |\n", + "+--------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.qual_hists.gq_hist_alt.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.qual_hists.gq_hist_alt.bin_freq |\n", + "+--------------------------------------------+\n", + "| array |\n", + "+--------------------------------------------+\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0] |\n", + "+--------------------------------------------+\n", + "\n", + "+---------------------------------------------+\n", + "| histograms.qual_hists.gq_hist_alt.n_smaller |\n", + "+---------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+---------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.qual_hists.gq_hist_alt.n_larger |\n", + "+--------------------------------------------+\n", + "| int64 |\n", + "+--------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+--------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.qual_hists.dp_hist_alt.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.qual_hists.dp_hist_alt.bin_freq |\n", + "+--------------------------------------------+\n", + "| array |\n", + "+--------------------------------------------+\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,1,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "+--------------------------------------------+\n", + "\n", + "+---------------------------------------------+\n", + "| histograms.qual_hists.dp_hist_alt.n_smaller |\n", + "+---------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+---------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.qual_hists.dp_hist_alt.n_larger |\n", + "+--------------------------------------------+\n", + "| int64 |\n", + "+--------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+--------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.qual_hists.ab_hist_alt.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.qual_hists.ab_hist_alt.bin_freq |\n", + "+--------------------------------------------+\n", + "| array |\n", + "+--------------------------------------------+\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "+--------------------------------------------+\n", + "\n", + "+---------------------------------------------+\n", + "| histograms.qual_hists.ab_hist_alt.n_smaller |\n", + "+---------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+---------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.qual_hists.ab_hist_alt.n_larger |\n", + "+--------------------------------------------+\n", + "| int64 |\n", + "+--------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+--------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.raw_qual_hists.gq_hist_all.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.raw_qual_hists.gq_hist_all.bin_freq |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [14149,7330,6840,3904,23217,2436,1647,594,176,118,49,29,19,9,11,6,5,2,4,2] |\n", + "| [10121,5441,5610,3838,29394,3741,2868,1281,401,358,163,63,69,31,18,20,10,... |\n", + "| [6578,3782,4202,3336,31093,4532,3696,1752,595,585,261,88,82,59,17,26,14,5... |\n", + "| [1429,1382,1901,2026,25677,6108,5433,3528,1753,1702,1130,485,518,282,119,... |\n", + "| [995,1036,1539,1788,25460,7448,6933,4978,2881,2833,2048,1038,1129,685,321... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+-------------------------------------------------+\n", + "| histograms.raw_qual_hists.gq_hist_all.n_smaller |\n", + "+-------------------------------------------------+\n", + "| int64 |\n", + "+-------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+-------------------------------------------------+\n", + "\n", + "+------------------------------------------------+\n", + "| histograms.raw_qual_hists.gq_hist_all.n_larger |\n", + "+------------------------------------------------+\n", + "| int64 |\n", + "+------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.raw_qual_hists.dp_hist_all.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.raw_qual_hists.dp_hist_all.bin_freq |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [10,66,471,1445,2990,5808,6940,7906,7262,6236,4943,3919,3129,2527,1993,14... |\n", + "| [7,37,269,903,1948,4127,5519,7075,7322,6972,6095,5249,4374,3624,2893,2106... |\n", + "| [2,24,149,466,1201,2614,4035,5568,6331,6725,6267,5855,5101,4268,3465,2554... |\n", + "| [1,9,42,122,294,787,1537,2717,3751,4972,5404,5762,5875,5161,4526,3415,252... |\n", + "| [2,6,39,104,247,638,1325,2417,3685,5047,5927,6484,6763,6192,5525,4439,351... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+-------------------------------------------------+\n", + "| histograms.raw_qual_hists.dp_hist_all.n_smaller |\n", + "+-------------------------------------------------+\n", + "| int64 |\n", + "+-------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+-------------------------------------------------+\n", + "\n", + "+------------------------------------------------+\n", + "| histograms.raw_qual_hists.dp_hist_all.n_larger |\n", + "+------------------------------------------------+\n", + "| int64 |\n", + "+------------------------------------------------+\n", + "| 744 |\n", + "| 1130 |\n", + "| 1487 |\n", + "| 2622 |\n", + "| 3743 |\n", + "+------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.raw_qual_hists.gq_hist_alt.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+------------------------------------------------+\n", + "| histograms.raw_qual_hists.gq_hist_alt.bin_freq |\n", + "+------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------+\n", + "| [0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,2,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,1,2,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0] |\n", + "+------------------------------------------------+\n", + "\n", + "+-------------------------------------------------+\n", + "| histograms.raw_qual_hists.gq_hist_alt.n_smaller |\n", + "+-------------------------------------------------+\n", + "| int64 |\n", + "+-------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+-------------------------------------------------+\n", + "\n", + "+------------------------------------------------+\n", + "| histograms.raw_qual_hists.gq_hist_alt.n_larger |\n", + "+------------------------------------------------+\n", + "| int64 |\n", + "+------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.raw_qual_hists.dp_hist_alt.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+------------------------------------------------+\n", + "| histograms.raw_qual_hists.dp_hist_alt.bin_freq |\n", + "+------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------+\n", + "| [0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,2,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,3,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,1,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "+------------------------------------------------+\n", + "\n", + "+-------------------------------------------------+\n", + "| histograms.raw_qual_hists.dp_hist_alt.n_smaller |\n", + "+-------------------------------------------------+\n", + "| int64 |\n", + "+-------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+-------------------------------------------------+\n", + "\n", + "+------------------------------------------------+\n", + "| histograms.raw_qual_hists.dp_hist_alt.n_larger |\n", + "+------------------------------------------------+\n", + "| int64 |\n", + "+------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.raw_qual_hists.ab_hist_alt.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+------------------------------------------------+\n", + "| histograms.raw_qual_hists.ab_hist_alt.bin_freq |\n", + "+------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------+\n", + "| [0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,3,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "+------------------------------------------------+\n", + "\n", + "+-------------------------------------------------+\n", + "| histograms.raw_qual_hists.ab_hist_alt.n_smaller |\n", + "+-------------------------------------------------+\n", + "| int64 |\n", + "+-------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+-------------------------------------------------+\n", + "\n", + "+------------------------------------------------+\n", + "| histograms.raw_qual_hists.ab_hist_alt.n_larger |\n", + "+------------------------------------------------+\n", + "| int64 |\n", + "+------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.age_hists.age_hist_het.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.age_hists.age_hist_het.bin_freq |\n", + "+--------------------------------------------+\n", + "| array |\n", + "+--------------------------------------------+\n", + "| [0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,1,0,0,1,0,0,0,0,0] |\n", + "| [0,0,1,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,1,0,1,0,0,0,0,0] |\n", + "+--------------------------------------------+\n", + "\n", + "+---------------------------------------------+\n", + "| histograms.age_hists.age_hist_het.n_smaller |\n", + "+---------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+---------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.age_hists.age_hist_het.n_larger |\n", + "+--------------------------------------------+\n", + "| int64 |\n", + "+--------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+--------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.age_hists.age_hist_hom.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.age_hists.age_hist_hom.bin_freq |\n", + "+--------------------------------------------+\n", + "| array |\n", + "+--------------------------------------------+\n", + "| [0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0] |\n", + "+--------------------------------------------+\n", + "\n", + "+---------------------------------------------+\n", + "| histograms.age_hists.age_hist_hom.n_smaller |\n", + "+---------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+---------------------------------------------+\n", + "\n", + "+--------------------------------------------+---------------------------------+\n", + "| histograms.age_hists.age_hist_hom.n_larger | in_silico_predictors.cadd.phred |\n", + "+--------------------------------------------+---------------------------------+\n", + "| int64 | float32 |\n", + "+--------------------------------------------+---------------------------------+\n", + "| 0 | 8.97e+00 |\n", + "| 0 | 8.90e+00 |\n", + "| 0 | 8.90e+00 |\n", + "| 0 | 8.88e+00 |\n", + "| 0 | 8.53e+00 |\n", + "+--------------------------------------------+---------------------------------+\n", + "\n", + "+-------------------------------------+--------------------------------+\n", + "| in_silico_predictors.cadd.raw_score | in_silico_predictors.revel_max |\n", + "+-------------------------------------+--------------------------------+\n", + "| float32 | float64 |\n", + "+-------------------------------------+--------------------------------+\n", + "| 7.57e-01 | NA |\n", + "| 7.49e-01 | NA |\n", + "| 7.48e-01 | NA |\n", + "| 7.46e-01 | NA |\n", + "| 7.09e-01 | NA |\n", + "+-------------------------------------+--------------------------------+\n", + "\n", + "+--------------------------------------+\n", + "| in_silico_predictors.spliceai_ds_max |\n", + "+--------------------------------------+\n", + "| float32 |\n", + "+--------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+--------------------------------------+\n", + "\n", + "+------------------------------------------+-----------------------------+\n", + "| in_silico_predictors.pangolin_largest_ds | in_silico_predictors.phylop |\n", + "+------------------------------------------+-----------------------------+\n", + "| float64 | float64 |\n", + "+------------------------------------------+-----------------------------+\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "+------------------------------------------+-----------------------------+\n", + "\n", + "+-------------------------------+-----------------------------------+\n", + "| in_silico_predictors.sift_max | in_silico_predictors.polyphen_max |\n", + "+-------------------------------+-----------------------------------+\n", + "| float64 | float64 |\n", + "+-------------------------------+-----------------------------------+\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "+-------------------------------+-----------------------------------+\n", + "showing top 5 rows" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "ht.show(5)" + ] + }, + { + "cell_type": "markdown", + "id": "22e6f759-a0ee-4e9c-8ca4-eb154cb08763", + "metadata": { + "tags": [] + }, + "source": [ + "### v4.1 Joint Frequency Hail Table" + ] + }, + { + "cell_type": "markdown", + "id": "0a569b77-d3d2-45a4-803a-1214c77e46f2", + "metadata": {}, + "source": [ + "The joint frequency Hail table includes frequency for the exomes, genomes, and the exomes+genomes. We have also added statistics for the combined exomes and genomes frequencies, more details on these stats can be found on our [Help](https://gnomad.broadinstitute.org/help/combined-freq-stats) page." + ] + }, + { + "cell_type": "markdown", + "id": "46d4fc43-609d-4a16-8a0a-ab1e870b5d3d", + "metadata": {}, + "source": [ + "#### Load the Hail Table\n" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "c1c1fbb0-4ef9-4892-bd91-aae9985317a7", + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-06T20:08:59.197890Z", + "start_time": "2024-12-06T20:08:50.859108Z" + } + }, + "outputs": [], + "source": [ + "ht = get_gnomad_release(data_type='joint', version='4.1')" + ] + }, + { + "cell_type": "markdown", + "id": "163df47b-70de-4e1e-91be-a65c90cf2db5", + "metadata": {}, + "source": [ + "#### Print the schema of the Hail Table\n" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "750c0111-4566-4b86-8c08-18c504ff1a79", + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-06T20:09:00.032524Z", + "start_time": "2024-12-06T20:09:00.029271Z" + }, + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "----------------------------------------\n", + "Global fields:\n", + " 'exomes_globals': struct {\n", + " freq_meta: array>, \n", + " freq_index_dict: dict, \n", + " freq_meta_sample_count: array, \n", + " faf_meta: array>, \n", + " faf_index_dict: dict, \n", + " age_distribution: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int32, \n", + " n_larger: int32\n", + " }\n", + " } \n", + " 'genomes_globals': struct {\n", + " freq_meta: array>, \n", + " freq_index_dict: dict, \n", + " freq_meta_sample_count: array, \n", + " faf_meta: array>, \n", + " faf_index_dict: dict, \n", + " age_distribution: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int32, \n", + " n_larger: int32\n", + " }\n", + " } \n", + " 'joint_globals': struct {\n", + " freq_meta: array>, \n", + " freq_index_dict: dict, \n", + " faf_meta: array>, \n", + " faf_index_dict: dict, \n", + " freq_meta_sample_count: array, \n", + " age_distribution: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int32, \n", + " n_larger: int32\n", + " }\n", + " } \n", + "----------------------------------------\n", + "Row fields:\n", + " 'locus': locus \n", + " 'alleles': array \n", + " 'region_flags': struct {\n", + " fail_interval_qc: bool, \n", + " outside_broad_capture_region: bool, \n", + " outside_ukb_capture_region: bool, \n", + " outside_broad_calling_region: bool, \n", + " outside_ukb_calling_region: bool, \n", + " not_called_in_exomes: bool, \n", + " not_called_in_genomes: bool\n", + " } \n", + " 'exomes': struct {\n", + " filters: set, \n", + " freq: array, \n", + " faf: array, \n", + " grpmax: struct {\n", + " AC: int32, \n", + " AF: float64, \n", + " AN: int32, \n", + " homozygote_count: int64, \n", + " gen_anc: str\n", + " }, \n", + " fafmax: struct {\n", + " faf95_max: float64, \n", + " faf95_max_gen_anc: str, \n", + " faf99_max: float64, \n", + " faf99_max_gen_anc: str\n", + " }, \n", + " histograms: struct {\n", + " qual_hists: struct {\n", + " gq_hist_all: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }, \n", + " dp_hist_all: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }, \n", + " gq_hist_alt: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }, \n", + " dp_hist_alt: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }, \n", + " ab_hist_alt: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }\n", + " }, \n", + " raw_qual_hists: struct {\n", + " gq_hist_all: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }, \n", + " dp_hist_all: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }, \n", + " gq_hist_alt: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }, \n", + " dp_hist_alt: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }, \n", + " ab_hist_alt: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }\n", + " }, \n", + " age_hists: struct {\n", + " age_hist_het: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }, \n", + " age_hist_hom: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }\n", + " }\n", + " }\n", + " } \n", + " 'genomes': struct {\n", + " filters: set, \n", + " freq: array, \n", + " faf: array, \n", + " grpmax: struct {\n", + " AC: int32, \n", + " AF: float64, \n", + " AN: int32, \n", + " homozygote_count: int32, \n", + " gen_anc: str\n", + " }, \n", + " fafmax: struct {\n", + " faf95_max: float64, \n", + " faf95_max_gen_anc: str, \n", + " faf99_max: float64, \n", + " faf99_max_gen_anc: str\n", + " }, \n", + " histograms: struct {\n", + " qual_hists: struct {\n", + " gq_hist_all: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }, \n", + " dp_hist_all: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }, \n", + " gq_hist_alt: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }, \n", + " dp_hist_alt: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }, \n", + " ab_hist_alt: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }\n", + " }, \n", + " raw_qual_hists: struct {\n", + " gq_hist_all: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }, \n", + " dp_hist_all: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }, \n", + " gq_hist_alt: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }, \n", + " dp_hist_alt: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }, \n", + " ab_hist_alt: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }\n", + " }, \n", + " age_hists: struct {\n", + " age_hist_het: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }, \n", + " age_hist_hom: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }\n", + " }\n", + " }\n", + " } \n", + " 'joint': struct {\n", + " freq: array, \n", + " faf: array, \n", + " fafmax: struct {\n", + " faf95_max: float64, \n", + " faf95_max_gen_anc: str, \n", + " faf99_max: float64, \n", + " faf99_max_gen_anc: str\n", + " }, \n", + " grpmax: struct {\n", + " AC: int32, \n", + " AF: float64, \n", + " AN: int32, \n", + " homozygote_count: int32, \n", + " gen_anc: str\n", + " }, \n", + " histograms: struct {\n", + " qual_hists: struct {\n", + " gq_hist_all: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }, \n", + " dp_hist_all: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }, \n", + " gq_hist_alt: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }, \n", + " dp_hist_alt: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }, \n", + " ab_hist_alt: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }\n", + " }, \n", + " raw_qual_hists: struct {\n", + " gq_hist_all: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }, \n", + " dp_hist_all: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }, \n", + " gq_hist_alt: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }, \n", + " dp_hist_alt: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }, \n", + " ab_hist_alt: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }\n", + " }, \n", + " age_hists: struct {\n", + " age_hist_het: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }, \n", + " age_hist_hom: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }\n", + " }\n", + " }\n", + " } \n", + " 'freq_comparison_stats': struct {\n", + " contingency_table_test: array, \n", + " cochran_mantel_haenszel_test: struct {\n", + " p_value: float64, \n", + " chisq: float64\n", + " }, \n", + " stat_union: struct {\n", + " p_value: float64, \n", + " stat_test_name: str, \n", + " gen_ancs: array\n", + " }\n", + " } \n", + "----------------------------------------\n", + "Key: ['locus', 'alleles']\n", + "----------------------------------------\n" + ] + } + ], + "source": [ + "ht.describe()" + ] + }, + { + "cell_type": "markdown", + "id": "d6843db4-9e8f-42f4-9178-fc945f61a827", + "metadata": { + "tags": [] + }, + "source": [ + "#### Show the first 5 variants in the Hail Table\n" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "477ed281-4ee9-4799-b5b6-e6a0c528fa9a", + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-06T20:09:20.949958Z", + "start_time": "2024-12-06T20:09:05.622171Z" + } + }, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
exomes
genomes
joint
histograms
histograms
histograms
qual_hists
raw_qual_hists
age_hists
qual_hists
raw_qual_hists
age_hists
qual_hists
raw_qual_hists
age_hists
freq_comparison_stats
region_flags
grpmax
fafmax
gq_hist_all
dp_hist_all
gq_hist_alt
dp_hist_alt
ab_hist_alt
gq_hist_all
dp_hist_all
gq_hist_alt
dp_hist_alt
ab_hist_alt
age_hist_het
age_hist_hom
grpmax
fafmax
gq_hist_all
dp_hist_all
gq_hist_alt
dp_hist_alt
ab_hist_alt
gq_hist_all
dp_hist_all
gq_hist_alt
dp_hist_alt
ab_hist_alt
age_hist_het
age_hist_hom
fafmax
grpmax
gq_hist_all
dp_hist_all
gq_hist_alt
dp_hist_alt
ab_hist_alt
gq_hist_all
dp_hist_all
gq_hist_alt
dp_hist_alt
ab_hist_alt
age_hist_het
age_hist_hom
cochran_mantel_haenszel_test
stat_union
locus
alleles
fail_interval_qc
outside_broad_capture_region
outside_ukb_capture_region
outside_broad_calling_region
outside_ukb_calling_region
not_called_in_exomes
not_called_in_genomes
filters
freq
faf
AC
AF
AN
homozygote_count
gen_anc
faf95_max
faf95_max_gen_anc
faf99_max
faf99_max_gen_anc
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
filters
freq
faf
AC
AF
AN
homozygote_count
gen_anc
faf95_max
faf95_max_gen_anc
faf99_max
faf99_max_gen_anc
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
freq
faf
faf95_max
faf95_max_gen_anc
faf99_max
faf99_max_gen_anc
AC
AF
AN
homozygote_count
gen_anc
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
contingency_table_test
p_value
chisq
p_value
stat_test_name
gen_ancs
locus<GRCh38>array<str>boolboolboolboolboolboolboolset<str>array<struct{AC: int32, AF: float64, AN: int32, homozygote_count: int32}>array<struct{faf95: float64, faf99: float64}>int32float64int32int64strfloat64strfloat64strarray<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64set<str>array<struct{AC: int32, AF: float64, AN: int32, homozygote_count: int32}>array<struct{faf95: float64, faf99: float64}>int32float64int32int32strfloat64strfloat64strarray<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<struct{AC: int32, AF: float64, AN: int32, homozygote_count: int32}>array<struct{faf95: float64, faf99: float64}>float64strfloat64strint32float64int32int32strarray<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<struct{p_value: float64, odds_ratio: float64}>float64float64float64strarray<str>
chr1:10031["T","C"]NATrueTrueTrueTrueTrueFalseNA[(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA)]NANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANA{"AC0","AS_VQSR"}[(0,0.00e+00,56642,0),(2,1.65e-05,121094,0),(0,0.00e+00,25546,0),(0,0.00e+00,4326,0),(0,0.00e+00,192,0),(0,0.00e+00,782,0),(0,0.00e+00,352,0),(0,0.00e+00,1550,0),(0,0.00e+00,14642,0),(0,0.00e+00,1712,0),(0,0.00e+00,1120,0),(0,0.00e+00,6420,0),(0,0.00e+00,29308,0),(0,0.00e+00,27334,0),(0,0.00e+00,14998,0),(0,0.00e+00,1060,0),(0,0.00e+00,102,0),(0,0.00e+00,402,0),(0,0.00e+00,154,0),(0,0.00e+00,814,0),(0,0.00e+00,7978,0),(0,0.00e+00,770,0),(0,0.00e+00,260,0),(0,0.00e+00,2770,0),(0,0.00e+00,10548,0),(0,0.00e+00,3266,0),(0,0.00e+00,90,0),(0,0.00e+00,380,0),(0,0.00e+00,198,0),(0,0.00e+00,736,0),(0,0.00e+00,6664,0),(0,0.00e+00,942,0),(0,0.00e+00,860,0),(0,0.00e+00,3650,0)][(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]NANANANANANANANANA[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,23215,2435,1647,594,176,118,49,29,19,9,11,6,5,2,4,2]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,16,121,475,973,1736,2409,2950,3134,2995,2803,2514,2194,1773,1335,911,665,439,351]0527[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][14149,7330,6840,3904,23217,2436,1647,594,176,118,49,29,19,9,11,6,5,2,4,2]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][10,66,471,1445,2990,5808,6940,7906,7262,6236,4943,3919,3129,2527,1993,1476,1023,741,500,418]0744[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]00[(0,0.00e+00,56642,0),(2,1.65e-05,121094,0),(0,0.00e+00,25546,0),(0,0.00e+00,4326,0),(0,0.00e+00,192,0),(0,0.00e+00,782,0),(0,0.00e+00,352,0),(0,0.00e+00,1550,0),(0,0.00e+00,14642,0),(0,0.00e+00,1712,0),(0,0.00e+00,1120,0),(0,0.00e+00,6420,0),(0,0.00e+00,29308,0),(0,0.00e+00,27334,0),(0,0.00e+00,14998,0),(0,0.00e+00,1060,0),(0,0.00e+00,102,0),(0,0.00e+00,402,0),(0,0.00e+00,154,0),(0,0.00e+00,814,0),(0,0.00e+00,7978,0),(0,0.00e+00,770,0),(0,0.00e+00,260,0),(0,0.00e+00,2770,0),(0,0.00e+00,10548,0),(0,0.00e+00,3266,0),(0,0.00e+00,90,0),(0,0.00e+00,380,0),(0,0.00e+00,198,0),(0,0.00e+00,736,0),(0,0.00e+00,6664,0),(0,0.00e+00,942,0),(0,0.00e+00,860,0),(0,0.00e+00,3650,0)][(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]NANANANANANANANANA[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,23215,2435,1647,594,176,118,49,29,19,9,11,6,5,2,4,2]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,16,121,475,973,1736,2409,2950,3134,2995,2803,2514,2194,1773,1335,911,665,439,351]0527[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][14149,7330,6840,3904,23217,2436,1647,594,176,118,49,29,19,9,11,6,5,2,4,2]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][10,66,471,1445,2990,5808,6940,7906,7262,6236,4943,3919,3129,2527,1993,1476,1023,741,500,418]0744[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]00[NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]NANANANANA
chr1:10037["T","C"]NATrueTrueTrueTrueTrueFalseNA[(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA)]NANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANA{"AS_VQSR"}[(2,2.60e-05,76882,0),(4,3.15e-05,126902,0),(0,0.00e+00,34670,0),(1,1.80e-04,5568,0),(0,0.00e+00,234,0),(0,0.00e+00,998,0),(0,0.00e+00,494,0),(0,0.00e+00,2066,0),(0,0.00e+00,20394,0),(1,4.07e-04,2456,0),(0,0.00e+00,1706,0),(0,0.00e+00,8296,0),(1,2.49e-05,40172,0),(1,2.72e-05,36710,0),(0,0.00e+00,20498,0),(0,0.00e+00,1316,0),(0,0.00e+00,122,0),(0,0.00e+00,528,0),(0,0.00e+00,238,0),(0,0.00e+00,1106,0),(0,0.00e+00,11132,0),(1,8.98e-04,1114,0),(0,0.00e+00,420,0),(0,0.00e+00,3698,0),(0,0.00e+00,14172,0),(1,2.35e-04,4252,0),(0,0.00e+00,112,0),(0,0.00e+00,470,0),(0,0.00e+00,256,0),(0,0.00e+00,960,0),(0,0.00e+00,9262,0),(0,0.00e+00,1342,0),(0,0.00e+00,1286,0),(0,0.00e+00,4598,0)][(4.32e-06,1.62e-06),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]14.07e-0424560"eas"NANANANA[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,29394,3741,2868,1281,401,358,163,63,69,31,18,20,10,4,5,15]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,9,69,387,913,1737,2859,3749,4216,4302,4223,3745,3280,2661,1954,1380,943,607,519]0888[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][10121,5441,5610,3838,29394,3741,2868,1281,401,358,163,63,69,31,18,20,10,4,5,15]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][7,37,269,903,1948,4127,5519,7075,7322,6972,6095,5249,4374,3624,2893,2106,1501,1031,679,590]01130[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,2,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,2,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,1,0,0,1,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]00[(2,2.60e-05,76882,0),(4,3.15e-05,126902,0),(0,0.00e+00,34670,0),(1,1.80e-04,5568,0),(0,0.00e+00,234,0),(0,0.00e+00,998,0),(0,0.00e+00,494,0),(0,0.00e+00,2066,0),(0,0.00e+00,20394,0),(1,4.07e-04,2456,0),(0,0.00e+00,1706,0),(0,0.00e+00,8296,0),(1,2.49e-05,40172,0),(1,2.72e-05,36710,0),(0,0.00e+00,20498,0),(0,0.00e+00,1316,0),(0,0.00e+00,122,0),(0,0.00e+00,528,0),(0,0.00e+00,238,0),(0,0.00e+00,1106,0),(0,0.00e+00,11132,0),(1,8.98e-04,1114,0),(0,0.00e+00,420,0),(0,0.00e+00,3698,0),(0,0.00e+00,14172,0),(1,2.35e-04,4252,0),(0,0.00e+00,112,0),(0,0.00e+00,470,0),(0,0.00e+00,256,0),(0,0.00e+00,960,0),(0,0.00e+00,9262,0),(0,0.00e+00,1342,0),(0,0.00e+00,1286,0),(0,0.00e+00,4598,0)][(4.32e-06,1.62e-06),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]NANANANA14.07e-0424560"eas"[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,29394,3741,2868,1281,401,358,163,63,69,31,18,20,10,4,5,15]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,9,69,387,913,1737,2859,3749,4216,4302,4223,3745,3280,2661,1954,1380,943,607,519]0888[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][10121,5441,5610,3838,29394,3741,2868,1281,401,358,163,63,69,31,18,20,10,4,5,15]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][7,37,269,903,1948,4127,5519,7075,7322,6972,6095,5249,4374,3624,2893,2106,1501,1031,679,590]01130[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,2,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,2,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,1,0,0,1,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]00[NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]NANANANANA
chr1:10043["T","C"]NATrueTrueTrueTrueTrueFalseNA[(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA)]NANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANA{"AS_VQSR"}[(1,1.17e-05,85634,0),(1,8.24e-06,121430,0),(0,0.00e+00,39236,0),(0,0.00e+00,5820,0),(0,0.00e+00,254,0),(0,0.00e+00,1148,0),(0,0.00e+00,568,0),(0,0.00e+00,2276,0),(1,4.39e-05,22760,0),(0,0.00e+00,2912,0),(0,0.00e+00,2158,0),(0,0.00e+00,8502,0),(1,2.23e-05,44904,0),(0,0.00e+00,40730,0),(0,0.00e+00,23244,0),(0,0.00e+00,1280,0),(0,0.00e+00,136,0),(0,0.00e+00,594,0),(0,0.00e+00,284,0),(0,0.00e+00,1234,0),(1,8.03e-05,12446,0),(0,0.00e+00,1296,0),(0,0.00e+00,502,0),(0,0.00e+00,3888,0),(0,0.00e+00,15992,0),(0,0.00e+00,4540,0),(0,0.00e+00,118,0),(0,0.00e+00,554,0),(0,0.00e+00,284,0),(0,0.00e+00,1042,0),(0,0.00e+00,10314,0),(0,0.00e+00,1616,0),(0,0.00e+00,1656,0),(0,0.00e+00,4614,0)][(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]14.39e-05227600"afr"NANANANA[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,31093,4532,3696,1752,595,585,261,88,82,59,17,26,14,5,3,9]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,8,40,264,690,1525,2691,3754,4574,4813,4940,4490,3907,3242,2387,1704,1158,760,638]01232[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][6578,3782,4202,3336,31093,4532,3696,1752,595,585,261,88,82,59,17,26,14,5,3,9]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][2,24,149,466,1201,2614,4035,5568,6331,6725,6267,5855,5101,4268,3465,2554,1836,1244,831,692]01487[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,1,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]00[(1,1.17e-05,85634,0),(1,8.24e-06,121430,0),(0,0.00e+00,39236,0),(0,0.00e+00,5820,0),(0,0.00e+00,254,0),(0,0.00e+00,1148,0),(0,0.00e+00,568,0),(0,0.00e+00,2276,0),(1,4.39e-05,22760,0),(0,0.00e+00,2912,0),(0,0.00e+00,2158,0),(0,0.00e+00,8502,0),(1,2.23e-05,44904,0),(0,0.00e+00,40730,0),(0,0.00e+00,23244,0),(0,0.00e+00,1280,0),(0,0.00e+00,136,0),(0,0.00e+00,594,0),(0,0.00e+00,284,0),(0,0.00e+00,1234,0),(1,8.03e-05,12446,0),(0,0.00e+00,1296,0),(0,0.00e+00,502,0),(0,0.00e+00,3888,0),(0,0.00e+00,15992,0),(0,0.00e+00,4540,0),(0,0.00e+00,118,0),(0,0.00e+00,554,0),(0,0.00e+00,284,0),(0,0.00e+00,1042,0),(0,0.00e+00,10314,0),(0,0.00e+00,1616,0),(0,0.00e+00,1656,0),(0,0.00e+00,4614,0)][(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]NANANANA14.39e-05227600"afr"[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,31093,4532,3696,1752,595,585,261,88,82,59,17,26,14,5,3,9]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,8,40,264,690,1525,2691,3754,4574,4813,4940,4490,3907,3242,2387,1704,1158,760,638]01232[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][6578,3782,4202,3336,31093,4532,3696,1752,595,585,261,88,82,59,17,26,14,5,3,9]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][2,24,149,466,1201,2614,4035,5568,6331,6725,6267,5855,5101,4268,3465,2554,1836,1244,831,692]01487[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,1,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]00[NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]NANANANANA
chr1:10055["T","C"]NATrueTrueTrueTrueTrueFalseNA[(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA)]NANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANA{"AS_VQSR"}[(1,1.06e-05,94224,0),(5,4.64e-05,107704,0),(0,0.00e+00,44382,0),(1,1.80e-04,5570,0),(0,0.00e+00,216,0),(0,0.00e+00,1228,0),(0,0.00e+00,682,0),(0,0.00e+00,2370,0),(0,0.00e+00,26032,0),(0,0.00e+00,3020,0),(0,0.00e+00,2668,0),(0,0.00e+00,8056,0),(1,2.02e-05,49580,0),(0,0.00e+00,44644,0),(0,0.00e+00,26312,0),(1,9.67e-04,1034,0),(0,0.00e+00,110,0),(0,0.00e+00,624,0),(0,0.00e+00,344,0),(0,0.00e+00,1246,0),(0,0.00e+00,14152,0),(0,0.00e+00,1256,0),(0,0.00e+00,600,0),(0,0.00e+00,3902,0),(0,0.00e+00,18070,0),(0,0.00e+00,4536,0),(0,0.00e+00,106,0),(0,0.00e+00,604,0),(0,0.00e+00,338,0),(0,0.00e+00,1124,0),(0,0.00e+00,11880,0),(0,0.00e+00,1764,0),(0,0.00e+00,2068,0),(0,0.00e+00,4154,0)][(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]NANANANANANANANANA[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,25677,6107,5433,3528,1753,1702,1130,485,518,282,119,125,77,35,29,76]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,4,22,120,354,999,1950,3037,4168,4734,5196,5380,4766,4238,3206,2398,1776,1236,1052]02440[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][1429,1382,1901,2026,25677,6108,5433,3528,1753,1702,1130,485,518,282,119,125,77,35,29,76]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][1,9,42,122,294,787,1537,2717,3751,4972,5404,5762,5875,5161,4526,3415,2525,1883,1294,1116]02622[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,1,2,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,3,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,3,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]00[(1,1.06e-05,94224,0),(5,4.64e-05,107704,0),(0,0.00e+00,44382,0),(1,1.80e-04,5570,0),(0,0.00e+00,216,0),(0,0.00e+00,1228,0),(0,0.00e+00,682,0),(0,0.00e+00,2370,0),(0,0.00e+00,26032,0),(0,0.00e+00,3020,0),(0,0.00e+00,2668,0),(0,0.00e+00,8056,0),(1,2.02e-05,49580,0),(0,0.00e+00,44644,0),(0,0.00e+00,26312,0),(1,9.67e-04,1034,0),(0,0.00e+00,110,0),(0,0.00e+00,624,0),(0,0.00e+00,344,0),(0,0.00e+00,1246,0),(0,0.00e+00,14152,0),(0,0.00e+00,1256,0),(0,0.00e+00,600,0),(0,0.00e+00,3902,0),(0,0.00e+00,18070,0),(0,0.00e+00,4536,0),(0,0.00e+00,106,0),(0,0.00e+00,604,0),(0,0.00e+00,338,0),(0,0.00e+00,1124,0),(0,0.00e+00,11880,0),(0,0.00e+00,1764,0),(0,0.00e+00,2068,0),(0,0.00e+00,4154,0)][(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]NANANANANANANANANA[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,25677,6107,5433,3528,1753,1702,1130,485,518,282,119,125,77,35,29,76]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,4,22,120,354,999,1950,3037,4168,4734,5196,5380,4766,4238,3206,2398,1776,1236,1052]02440[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][1429,1382,1901,2026,25677,6108,5433,3528,1753,1702,1130,485,518,282,119,125,77,35,29,76]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][1,9,42,122,294,787,1537,2717,3751,4972,5404,5762,5875,5161,4526,3415,2525,1883,1294,1116]02622[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,1,2,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,3,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,3,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]00[NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]NANANANANA
chr1:10057["A","C"]NATrueTrueTrueTrueTrueFalseNA[(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA)]NANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANA{"AS_VQSR"}[(3,2.64e-05,113536,0),(3,2.41e-05,124252,0),(2,3.78e-05,52912,0),(0,0.00e+00,6886,0),(0,0.00e+00,266,0),(0,0.00e+00,1504,0),(0,0.00e+00,742,0),(0,0.00e+00,2768,0),(1,3.25e-05,30736,0),(0,0.00e+00,3850,0),(0,0.00e+00,3424,0),(0,0.00e+00,10448,0),(2,3.37e-05,59380,0),(1,1.85e-05,54156,0),(2,6.43e-05,31106,0),(0,0.00e+00,1472,0),(0,0.00e+00,132,0),(0,0.00e+00,764,0),(0,0.00e+00,378,0),(0,0.00e+00,1532,0),(0,0.00e+00,16598,0),(0,0.00e+00,1670,0),(0,0.00e+00,784,0),(0,0.00e+00,4944,0),(0,0.00e+00,21806,0),(0,0.00e+00,5414,0),(0,0.00e+00,134,0),(0,0.00e+00,740,0),(0,0.00e+00,364,0),(0,0.00e+00,1236,0),(1,7.07e-05,14138,0),(0,0.00e+00,2180,0),(0,0.00e+00,2640,0),(0,0.00e+00,5504,0)][(7.02e-06,2.95e-06),(6.27e-06,2.35e-06),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]23.78e-05529120"nfe"6.27e-06"nfe"2.35e-06"nfe"[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,25460,7448,6933,4978,2881,2833,2048,1038,1129,685,321,364,212,90,117,231]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,2,23,108,320,888,1844,3110,4447,5361,6012,6379,5879,5289,4273,3400,2503,1787,1521]03622[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,1,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][995,1036,1539,1788,25460,7448,6933,4978,2881,2833,2048,1038,1129,685,321,364,212,90,117,231]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][2,6,39,104,247,638,1325,2417,3685,5047,5927,6484,6763,6192,5525,4439,3518,2603,1850,1572]03743[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,1,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,1,0,1,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]00[(3,2.64e-05,113536,0),(3,2.41e-05,124252,0),(2,3.78e-05,52912,0),(0,0.00e+00,6886,0),(0,0.00e+00,266,0),(0,0.00e+00,1504,0),(0,0.00e+00,742,0),(0,0.00e+00,2768,0),(1,3.25e-05,30736,0),(0,0.00e+00,3850,0),(0,0.00e+00,3424,0),(0,0.00e+00,10448,0),(2,3.37e-05,59380,0),(1,1.85e-05,54156,0),(2,6.43e-05,31106,0),(0,0.00e+00,1472,0),(0,0.00e+00,132,0),(0,0.00e+00,764,0),(0,0.00e+00,378,0),(0,0.00e+00,1532,0),(0,0.00e+00,16598,0),(0,0.00e+00,1670,0),(0,0.00e+00,784,0),(0,0.00e+00,4944,0),(0,0.00e+00,21806,0),(0,0.00e+00,5414,0),(0,0.00e+00,134,0),(0,0.00e+00,740,0),(0,0.00e+00,364,0),(0,0.00e+00,1236,0),(1,7.07e-05,14138,0),(0,0.00e+00,2180,0),(0,0.00e+00,2640,0),(0,0.00e+00,5504,0)][(7.02e-06,2.95e-06),(6.27e-06,2.35e-06),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]6.27e-06"nfe"2.35e-06"nfe"23.78e-05529120"nfe"[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,25460,7448,6933,4978,2881,2833,2048,1038,1129,685,321,364,212,90,117,231]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,2,23,108,320,888,1844,3110,4447,5361,6012,6379,5879,5289,4273,3400,2503,1787,1521]03622[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,1,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][995,1036,1539,1788,25460,7448,6933,4978,2881,2833,2048,1038,1129,685,321,364,212,90,117,231]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][2,6,39,104,247,638,1325,2417,3685,5047,5927,6484,6763,6192,5525,4439,3518,2603,1850,1572]03743[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,1,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,1,0,1,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]00[NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]NANANANANA

showing top 5 rows

\n" + ], + "text/plain": [ + "+---------------+------------+-------------------------------+\n", + "| locus | alleles | region_flags.fail_interval_qc |\n", + "+---------------+------------+-------------------------------+\n", + "| locus | array | bool |\n", + "+---------------+------------+-------------------------------+\n", + "| chr1:10031 | [\"T\",\"C\"] | NA |\n", + "| chr1:10037 | [\"T\",\"C\"] | NA |\n", + "| chr1:10043 | [\"T\",\"C\"] | NA |\n", + "| chr1:10055 | [\"T\",\"C\"] | NA |\n", + "| chr1:10057 | [\"A\",\"C\"] | NA |\n", + "+---------------+------------+-------------------------------+\n", + "\n", + "+-------------------------------------------+\n", + "| region_flags.outside_broad_capture_region |\n", + "+-------------------------------------------+\n", + "| bool |\n", + "+-------------------------------------------+\n", + "| True |\n", + "| True |\n", + "| True |\n", + "| True |\n", + "| True |\n", + "+-------------------------------------------+\n", + "\n", + "+-----------------------------------------+\n", + "| region_flags.outside_ukb_capture_region |\n", + "+-----------------------------------------+\n", + "| bool |\n", + "+-----------------------------------------+\n", + "| True |\n", + "| True |\n", + "| True |\n", + "| True |\n", + "| True |\n", + "+-----------------------------------------+\n", + "\n", + "+-------------------------------------------+\n", + "| region_flags.outside_broad_calling_region |\n", + "+-------------------------------------------+\n", + "| bool |\n", + "+-------------------------------------------+\n", + "| True |\n", + "| True |\n", + "| True |\n", + "| True |\n", + "| True |\n", + "+-------------------------------------------+\n", + "\n", + "+-----------------------------------------+-----------------------------------+\n", + "| region_flags.outside_ukb_calling_region | region_flags.not_called_in_exomes |\n", + "+-----------------------------------------+-----------------------------------+\n", + "| bool | bool |\n", + "+-----------------------------------------+-----------------------------------+\n", + "| True | True |\n", + "| True | True |\n", + "| True | True |\n", + "| True | True |\n", + "| True | True |\n", + "+-----------------------------------------+-----------------------------------+\n", + "\n", + "+------------------------------------+----------------+\n", + "| region_flags.not_called_in_genomes | exomes.filters |\n", + "+------------------------------------+----------------+\n", + "| bool | set |\n", + "+------------------------------------+----------------+\n", + "| False | NA |\n", + "| False | NA |\n", + "| False | NA |\n", + "| False | NA |\n", + "| False | NA |\n", + "+------------------------------------+----------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| exomes.freq |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(N... |\n", + "| [(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(N... |\n", + "| [(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(N... |\n", + "| [(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(N... |\n", + "| [(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(N... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+-----------------------------------------------+------------------+\n", + "| exomes.faf | exomes.grpmax.AC |\n", + "+-----------------------------------------------+------------------+\n", + "| array | int32 |\n", + "+-----------------------------------------------+------------------+\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "+-----------------------------------------------+------------------+\n", + "\n", + "+------------------+------------------+--------------------------------+\n", + "| exomes.grpmax.AF | exomes.grpmax.AN | exomes.grpmax.homozygote_count |\n", + "+------------------+------------------+--------------------------------+\n", + "| float64 | int32 | int64 |\n", + "+------------------+------------------+--------------------------------+\n", + "| NA | NA | NA |\n", + "| NA | NA | NA |\n", + "| NA | NA | NA |\n", + "| NA | NA | NA |\n", + "| NA | NA | NA |\n", + "+------------------+------------------+--------------------------------+\n", + "\n", + "+-----------------------+-------------------------+\n", + "| exomes.grpmax.gen_anc | exomes.fafmax.faf95_max |\n", + "+-----------------------+-------------------------+\n", + "| str | float64 |\n", + "+-----------------------+-------------------------+\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "+-----------------------+-------------------------+\n", + "\n", + "+---------------------------------+-------------------------+\n", + "| exomes.fafmax.faf95_max_gen_anc | exomes.fafmax.faf99_max |\n", + "+---------------------------------+-------------------------+\n", + "| str | float64 |\n", + "+---------------------------------+-------------------------+\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "+---------------------------------+-------------------------+\n", + "\n", + "+---------------------------------+\n", + "| exomes.fafmax.faf99_max_gen_anc |\n", + "+---------------------------------+\n", + "| str |\n", + "+---------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+---------------------------------+\n", + "\n", + "+----------------------------------------------------+\n", + "| exomes.histograms.qual_hists.gq_hist_all.bin_edges |\n", + "+----------------------------------------------------+\n", + "| array |\n", + "+----------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+----------------------------------------------------+\n", + "\n", + "+---------------------------------------------------+\n", + "| exomes.histograms.qual_hists.gq_hist_all.bin_freq |\n", + "+---------------------------------------------------+\n", + "| array |\n", + "+---------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+---------------------------------------------------+\n", + "\n", + "+----------------------------------------------------+\n", + "| exomes.histograms.qual_hists.gq_hist_all.n_smaller |\n", + "+----------------------------------------------------+\n", + "| int64 |\n", + "+----------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+----------------------------------------------------+\n", + "\n", + "+---------------------------------------------------+\n", + "| exomes.histograms.qual_hists.gq_hist_all.n_larger |\n", + "+---------------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+---------------------------------------------------+\n", + "\n", + "+----------------------------------------------------+\n", + "| exomes.histograms.qual_hists.dp_hist_all.bin_edges |\n", + "+----------------------------------------------------+\n", + "| array |\n", + "+----------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+----------------------------------------------------+\n", + "\n", + "+---------------------------------------------------+\n", + "| exomes.histograms.qual_hists.dp_hist_all.bin_freq |\n", + "+---------------------------------------------------+\n", + "| array |\n", + "+---------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+---------------------------------------------------+\n", + "\n", + "+----------------------------------------------------+\n", + "| exomes.histograms.qual_hists.dp_hist_all.n_smaller |\n", + "+----------------------------------------------------+\n", + "| int64 |\n", + "+----------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+----------------------------------------------------+\n", + "\n", + "+---------------------------------------------------+\n", + "| exomes.histograms.qual_hists.dp_hist_all.n_larger |\n", + "+---------------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+---------------------------------------------------+\n", + "\n", + "+----------------------------------------------------+\n", + "| exomes.histograms.qual_hists.gq_hist_alt.bin_edges |\n", + "+----------------------------------------------------+\n", + "| array |\n", + "+----------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+----------------------------------------------------+\n", + "\n", + "+---------------------------------------------------+\n", + "| exomes.histograms.qual_hists.gq_hist_alt.bin_freq |\n", + "+---------------------------------------------------+\n", + "| array |\n", + "+---------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+---------------------------------------------------+\n", + "\n", + "+----------------------------------------------------+\n", + "| exomes.histograms.qual_hists.gq_hist_alt.n_smaller |\n", + "+----------------------------------------------------+\n", + "| int64 |\n", + "+----------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+----------------------------------------------------+\n", + "\n", + "+---------------------------------------------------+\n", + "| exomes.histograms.qual_hists.gq_hist_alt.n_larger |\n", + "+---------------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+---------------------------------------------------+\n", + "\n", + "+----------------------------------------------------+\n", + "| exomes.histograms.qual_hists.dp_hist_alt.bin_edges |\n", + "+----------------------------------------------------+\n", + "| array |\n", + "+----------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+----------------------------------------------------+\n", + "\n", + "+---------------------------------------------------+\n", + "| exomes.histograms.qual_hists.dp_hist_alt.bin_freq |\n", + "+---------------------------------------------------+\n", + "| array |\n", + "+---------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+---------------------------------------------------+\n", + "\n", + "+----------------------------------------------------+\n", + "| exomes.histograms.qual_hists.dp_hist_alt.n_smaller |\n", + "+----------------------------------------------------+\n", + "| int64 |\n", + "+----------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+----------------------------------------------------+\n", + "\n", + "+---------------------------------------------------+\n", + "| exomes.histograms.qual_hists.dp_hist_alt.n_larger |\n", + "+---------------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+---------------------------------------------------+\n", + "\n", + "+----------------------------------------------------+\n", + "| exomes.histograms.qual_hists.ab_hist_alt.bin_edges |\n", + "+----------------------------------------------------+\n", + "| array |\n", + "+----------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+----------------------------------------------------+\n", + "\n", + "+---------------------------------------------------+\n", + "| exomes.histograms.qual_hists.ab_hist_alt.bin_freq |\n", + "+---------------------------------------------------+\n", + "| array |\n", + "+---------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+---------------------------------------------------+\n", + "\n", + "+----------------------------------------------------+\n", + "| exomes.histograms.qual_hists.ab_hist_alt.n_smaller |\n", + "+----------------------------------------------------+\n", + "| int64 |\n", + "+----------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+----------------------------------------------------+\n", + "\n", + "+---------------------------------------------------+\n", + "| exomes.histograms.qual_hists.ab_hist_alt.n_larger |\n", + "+---------------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+---------------------------------------------------+\n", + "\n", + "+--------------------------------------------------------+\n", + "| exomes.histograms.raw_qual_hists.gq_hist_all.bin_edges |\n", + "+--------------------------------------------------------+\n", + "| array |\n", + "+--------------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+--------------------------------------------------------+\n", + "\n", + "+-------------------------------------------------------+\n", + "| exomes.histograms.raw_qual_hists.gq_hist_all.bin_freq |\n", + "+-------------------------------------------------------+\n", + "| array |\n", + "+-------------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+-------------------------------------------------------+\n", + "\n", + "+--------------------------------------------------------+\n", + "| exomes.histograms.raw_qual_hists.gq_hist_all.n_smaller |\n", + "+--------------------------------------------------------+\n", + "| int64 |\n", + "+--------------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+--------------------------------------------------------+\n", + "\n", + "+-------------------------------------------------------+\n", + "| exomes.histograms.raw_qual_hists.gq_hist_all.n_larger |\n", + "+-------------------------------------------------------+\n", + "| int64 |\n", + "+-------------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+-------------------------------------------------------+\n", + "\n", + "+--------------------------------------------------------+\n", + "| exomes.histograms.raw_qual_hists.dp_hist_all.bin_edges |\n", + "+--------------------------------------------------------+\n", + "| array |\n", + "+--------------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+--------------------------------------------------------+\n", + "\n", + "+-------------------------------------------------------+\n", + "| exomes.histograms.raw_qual_hists.dp_hist_all.bin_freq |\n", + "+-------------------------------------------------------+\n", + "| array |\n", + "+-------------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+-------------------------------------------------------+\n", + "\n", + "+--------------------------------------------------------+\n", + "| exomes.histograms.raw_qual_hists.dp_hist_all.n_smaller |\n", + "+--------------------------------------------------------+\n", + "| int64 |\n", + "+--------------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+--------------------------------------------------------+\n", + "\n", + "+-------------------------------------------------------+\n", + "| exomes.histograms.raw_qual_hists.dp_hist_all.n_larger |\n", + "+-------------------------------------------------------+\n", + "| int64 |\n", + "+-------------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+-------------------------------------------------------+\n", + "\n", + "+--------------------------------------------------------+\n", + "| exomes.histograms.raw_qual_hists.gq_hist_alt.bin_edges |\n", + "+--------------------------------------------------------+\n", + "| array |\n", + "+--------------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+--------------------------------------------------------+\n", + "\n", + "+-------------------------------------------------------+\n", + "| exomes.histograms.raw_qual_hists.gq_hist_alt.bin_freq |\n", + "+-------------------------------------------------------+\n", + "| array |\n", + "+-------------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+-------------------------------------------------------+\n", + "\n", + "+--------------------------------------------------------+\n", + "| exomes.histograms.raw_qual_hists.gq_hist_alt.n_smaller |\n", + "+--------------------------------------------------------+\n", + "| int64 |\n", + "+--------------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+--------------------------------------------------------+\n", + "\n", + "+-------------------------------------------------------+\n", + "| exomes.histograms.raw_qual_hists.gq_hist_alt.n_larger |\n", + "+-------------------------------------------------------+\n", + "| int64 |\n", + "+-------------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+-------------------------------------------------------+\n", + "\n", + "+--------------------------------------------------------+\n", + "| exomes.histograms.raw_qual_hists.dp_hist_alt.bin_edges |\n", + "+--------------------------------------------------------+\n", + "| array |\n", + "+--------------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+--------------------------------------------------------+\n", + "\n", + "+-------------------------------------------------------+\n", + "| exomes.histograms.raw_qual_hists.dp_hist_alt.bin_freq |\n", + "+-------------------------------------------------------+\n", + "| array |\n", + "+-------------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+-------------------------------------------------------+\n", + "\n", + "+--------------------------------------------------------+\n", + "| exomes.histograms.raw_qual_hists.dp_hist_alt.n_smaller |\n", + "+--------------------------------------------------------+\n", + "| int64 |\n", + "+--------------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+--------------------------------------------------------+\n", + "\n", + "+-------------------------------------------------------+\n", + "| exomes.histograms.raw_qual_hists.dp_hist_alt.n_larger |\n", + "+-------------------------------------------------------+\n", + "| int64 |\n", + "+-------------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+-------------------------------------------------------+\n", + "\n", + "+--------------------------------------------------------+\n", + "| exomes.histograms.raw_qual_hists.ab_hist_alt.bin_edges |\n", + "+--------------------------------------------------------+\n", + "| array |\n", + "+--------------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+--------------------------------------------------------+\n", + "\n", + "+-------------------------------------------------------+\n", + "| exomes.histograms.raw_qual_hists.ab_hist_alt.bin_freq |\n", + "+-------------------------------------------------------+\n", + "| array |\n", + "+-------------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+-------------------------------------------------------+\n", + "\n", + "+--------------------------------------------------------+\n", + "| exomes.histograms.raw_qual_hists.ab_hist_alt.n_smaller |\n", + "+--------------------------------------------------------+\n", + "| int64 |\n", + "+--------------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+--------------------------------------------------------+\n", + "\n", + "+-------------------------------------------------------+\n", + "| exomes.histograms.raw_qual_hists.ab_hist_alt.n_larger |\n", + "+-------------------------------------------------------+\n", + "| int64 |\n", + "+-------------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+-------------------------------------------------------+\n", + "\n", + "+----------------------------------------------------+\n", + "| exomes.histograms.age_hists.age_hist_het.bin_edges |\n", + "+----------------------------------------------------+\n", + "| array |\n", + "+----------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+----------------------------------------------------+\n", + "\n", + "+---------------------------------------------------+\n", + "| exomes.histograms.age_hists.age_hist_het.bin_freq |\n", + "+---------------------------------------------------+\n", + "| array |\n", + "+---------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+---------------------------------------------------+\n", + "\n", + "+----------------------------------------------------+\n", + "| exomes.histograms.age_hists.age_hist_het.n_smaller |\n", + "+----------------------------------------------------+\n", + "| int64 |\n", + "+----------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+----------------------------------------------------+\n", + "\n", + "+---------------------------------------------------+\n", + "| exomes.histograms.age_hists.age_hist_het.n_larger |\n", + "+---------------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+---------------------------------------------------+\n", + "\n", + "+----------------------------------------------------+\n", + "| exomes.histograms.age_hists.age_hist_hom.bin_edges |\n", + "+----------------------------------------------------+\n", + "| array |\n", + "+----------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+----------------------------------------------------+\n", + "\n", + "+---------------------------------------------------+\n", + "| exomes.histograms.age_hists.age_hist_hom.bin_freq |\n", + "+---------------------------------------------------+\n", + "| array |\n", + "+---------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+---------------------------------------------------+\n", + "\n", + "+----------------------------------------------------+\n", + "| exomes.histograms.age_hists.age_hist_hom.n_smaller |\n", + "+----------------------------------------------------+\n", + "| int64 |\n", + "+----------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+----------------------------------------------------+\n", + "\n", + "+---------------------------------------------------+-------------------+\n", + "| exomes.histograms.age_hists.age_hist_hom.n_larger | genomes.filters |\n", + "+---------------------------------------------------+-------------------+\n", + "| int64 | set |\n", + "+---------------------------------------------------+-------------------+\n", + "| NA | {\"AC0\",\"AS_VQSR\"} |\n", + "| NA | {\"AS_VQSR\"} |\n", + "| NA | {\"AS_VQSR\"} |\n", + "| NA | {\"AS_VQSR\"} |\n", + "| NA | {\"AS_VQSR\"} |\n", + "+---------------------------------------------------+-------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| genomes.freq |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [(0,0.00e+00,56642,0),(2,1.65e-05,121094,0),(0,0.00e+00,25546,0),(0,0.00e... |\n", + "| [(2,2.60e-05,76882,0),(4,3.15e-05,126902,0),(0,0.00e+00,34670,0),(1,1.80e... |\n", + "| [(1,1.17e-05,85634,0),(1,8.24e-06,121430,0),(0,0.00e+00,39236,0),(0,0.00e... |\n", + "| [(1,1.06e-05,94224,0),(5,4.64e-05,107704,0),(0,0.00e+00,44382,0),(1,1.80e... |\n", + "| [(3,2.64e-05,113536,0),(3,2.41e-05,124252,0),(2,3.78e-05,52912,0),(0,0.00... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| genomes.faf |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.... |\n", + "| [(4.32e-06,1.62e-06),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.... |\n", + "| [(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.... |\n", + "| [(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.... |\n", + "| [(7.02e-06,2.95e-06),(6.27e-06,2.35e-06),(0.00e+00,0.00e+00),(0.00e+00,0.... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+-------------------+-------------------+-------------------+\n", + "| genomes.grpmax.AC | genomes.grpmax.AF | genomes.grpmax.AN |\n", + "+-------------------+-------------------+-------------------+\n", + "| int32 | float64 | int32 |\n", + "+-------------------+-------------------+-------------------+\n", + "| NA | NA | NA |\n", + "| 1 | 4.07e-04 | 2456 |\n", + "| 1 | 4.39e-05 | 22760 |\n", + "| NA | NA | NA |\n", + "| 2 | 3.78e-05 | 52912 |\n", + "+-------------------+-------------------+-------------------+\n", + "\n", + "+---------------------------------+------------------------+\n", + "| genomes.grpmax.homozygote_count | genomes.grpmax.gen_anc |\n", + "+---------------------------------+------------------------+\n", + "| int32 | str |\n", + "+---------------------------------+------------------------+\n", + "| NA | NA |\n", + "| 0 | \"eas\" |\n", + "| 0 | \"afr\" |\n", + "| NA | NA |\n", + "| 0 | \"nfe\" |\n", + "+---------------------------------+------------------------+\n", + "\n", + "+--------------------------+----------------------------------+\n", + "| genomes.fafmax.faf95_max | genomes.fafmax.faf95_max_gen_anc |\n", + "+--------------------------+----------------------------------+\n", + "| float64 | str |\n", + "+--------------------------+----------------------------------+\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| 6.27e-06 | \"nfe\" |\n", + "+--------------------------+----------------------------------+\n", + "\n", + "+--------------------------+----------------------------------+\n", + "| genomes.fafmax.faf99_max | genomes.fafmax.faf99_max_gen_anc |\n", + "+--------------------------+----------------------------------+\n", + "| float64 | str |\n", + "+--------------------------+----------------------------------+\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| 2.35e-06 | \"nfe\" |\n", + "+--------------------------+----------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| genomes.histograms.qual_hists.gq_hist_all.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| genomes.histograms.qual_hists.gq_hist_all.bin_freq |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0,0,0,0,23215,2435,1647,594,176,118,49,29,19,9,11,6,5,2,4,2] |\n", + "| [0,0,0,0,29394,3741,2868,1281,401,358,163,63,69,31,18,20,10,4,5,15] |\n", + "| [0,0,0,0,31093,4532,3696,1752,595,585,261,88,82,59,17,26,14,5,3,9] |\n", + "| [0,0,0,0,25677,6107,5433,3528,1753,1702,1130,485,518,282,119,125,77,35,29... |\n", + "| [0,0,0,0,25460,7448,6933,4978,2881,2833,2048,1038,1129,685,321,364,212,90... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+-----------------------------------------------------+\n", + "| genomes.histograms.qual_hists.gq_hist_all.n_smaller |\n", + "+-----------------------------------------------------+\n", + "| int64 |\n", + "+-----------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+-----------------------------------------------------+\n", + "\n", + "+----------------------------------------------------+\n", + "| genomes.histograms.qual_hists.gq_hist_all.n_larger |\n", + "+----------------------------------------------------+\n", + "| int64 |\n", + "+----------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+----------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| genomes.histograms.qual_hists.dp_hist_all.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| genomes.histograms.qual_hists.dp_hist_all.bin_freq |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0,0,16,121,475,973,1736,2409,2950,3134,2995,2803,2514,2194,1773,1335,911... |\n", + "| [0,0,9,69,387,913,1737,2859,3749,4216,4302,4223,3745,3280,2661,1954,1380,... |\n", + "| [0,0,8,40,264,690,1525,2691,3754,4574,4813,4940,4490,3907,3242,2387,1704,... |\n", + "| [0,0,4,22,120,354,999,1950,3037,4168,4734,5196,5380,4766,4238,3206,2398,1... |\n", + "| [0,0,2,23,108,320,888,1844,3110,4447,5361,6012,6379,5879,5289,4273,3400,2... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+-----------------------------------------------------+\n", + "| genomes.histograms.qual_hists.dp_hist_all.n_smaller |\n", + "+-----------------------------------------------------+\n", + "| int64 |\n", + "+-----------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+-----------------------------------------------------+\n", + "\n", + "+----------------------------------------------------+\n", + "| genomes.histograms.qual_hists.dp_hist_all.n_larger |\n", + "+----------------------------------------------------+\n", + "| int64 |\n", + "+----------------------------------------------------+\n", + "| 527 |\n", + "| 888 |\n", + "| 1232 |\n", + "| 2440 |\n", + "| 3622 |\n", + "+----------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| genomes.histograms.qual_hists.gq_hist_alt.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+----------------------------------------------------+\n", + "| genomes.histograms.qual_hists.gq_hist_alt.bin_freq |\n", + "+----------------------------------------------------+\n", + "| array |\n", + "+----------------------------------------------------+\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0] |\n", + "+----------------------------------------------------+\n", + "\n", + "+-----------------------------------------------------+\n", + "| genomes.histograms.qual_hists.gq_hist_alt.n_smaller |\n", + "+-----------------------------------------------------+\n", + "| int64 |\n", + "+-----------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+-----------------------------------------------------+\n", + "\n", + "+----------------------------------------------------+\n", + "| genomes.histograms.qual_hists.gq_hist_alt.n_larger |\n", + "+----------------------------------------------------+\n", + "| int64 |\n", + "+----------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+----------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| genomes.histograms.qual_hists.dp_hist_alt.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+----------------------------------------------------+\n", + "| genomes.histograms.qual_hists.dp_hist_alt.bin_freq |\n", + "+----------------------------------------------------+\n", + "| array |\n", + "+----------------------------------------------------+\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,1,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "+----------------------------------------------------+\n", + "\n", + "+-----------------------------------------------------+\n", + "| genomes.histograms.qual_hists.dp_hist_alt.n_smaller |\n", + "+-----------------------------------------------------+\n", + "| int64 |\n", + "+-----------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+-----------------------------------------------------+\n", + "\n", + "+----------------------------------------------------+\n", + "| genomes.histograms.qual_hists.dp_hist_alt.n_larger |\n", + "+----------------------------------------------------+\n", + "| int64 |\n", + "+----------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+----------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| genomes.histograms.qual_hists.ab_hist_alt.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+----------------------------------------------------+\n", + "| genomes.histograms.qual_hists.ab_hist_alt.bin_freq |\n", + "+----------------------------------------------------+\n", + "| array |\n", + "+----------------------------------------------------+\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "+----------------------------------------------------+\n", + "\n", + "+-----------------------------------------------------+\n", + "| genomes.histograms.qual_hists.ab_hist_alt.n_smaller |\n", + "+-----------------------------------------------------+\n", + "| int64 |\n", + "+-----------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+-----------------------------------------------------+\n", + "\n", + "+----------------------------------------------------+\n", + "| genomes.histograms.qual_hists.ab_hist_alt.n_larger |\n", + "+----------------------------------------------------+\n", + "| int64 |\n", + "+----------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+----------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| genomes.histograms.raw_qual_hists.gq_hist_all.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| genomes.histograms.raw_qual_hists.gq_hist_all.bin_freq |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [14149,7330,6840,3904,23217,2436,1647,594,176,118,49,29,19,9,11,6,5,2,4,2] |\n", + "| [10121,5441,5610,3838,29394,3741,2868,1281,401,358,163,63,69,31,18,20,10,... |\n", + "| [6578,3782,4202,3336,31093,4532,3696,1752,595,585,261,88,82,59,17,26,14,5... |\n", + "| [1429,1382,1901,2026,25677,6108,5433,3528,1753,1702,1130,485,518,282,119,... |\n", + "| [995,1036,1539,1788,25460,7448,6933,4978,2881,2833,2048,1038,1129,685,321... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+---------------------------------------------------------+\n", + "| genomes.histograms.raw_qual_hists.gq_hist_all.n_smaller |\n", + "+---------------------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+---------------------------------------------------------+\n", + "\n", + "+--------------------------------------------------------+\n", + "| genomes.histograms.raw_qual_hists.gq_hist_all.n_larger |\n", + "+--------------------------------------------------------+\n", + "| int64 |\n", + "+--------------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+--------------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| genomes.histograms.raw_qual_hists.dp_hist_all.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| genomes.histograms.raw_qual_hists.dp_hist_all.bin_freq |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [10,66,471,1445,2990,5808,6940,7906,7262,6236,4943,3919,3129,2527,1993,14... |\n", + "| [7,37,269,903,1948,4127,5519,7075,7322,6972,6095,5249,4374,3624,2893,2106... |\n", + "| [2,24,149,466,1201,2614,4035,5568,6331,6725,6267,5855,5101,4268,3465,2554... |\n", + "| [1,9,42,122,294,787,1537,2717,3751,4972,5404,5762,5875,5161,4526,3415,252... |\n", + "| [2,6,39,104,247,638,1325,2417,3685,5047,5927,6484,6763,6192,5525,4439,351... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+---------------------------------------------------------+\n", + "| genomes.histograms.raw_qual_hists.dp_hist_all.n_smaller |\n", + "+---------------------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+---------------------------------------------------------+\n", + "\n", + "+--------------------------------------------------------+\n", + "| genomes.histograms.raw_qual_hists.dp_hist_all.n_larger |\n", + "+--------------------------------------------------------+\n", + "| int64 |\n", + "+--------------------------------------------------------+\n", + "| 744 |\n", + "| 1130 |\n", + "| 1487 |\n", + "| 2622 |\n", + "| 3743 |\n", + "+--------------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| genomes.histograms.raw_qual_hists.gq_hist_alt.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+--------------------------------------------------------+\n", + "| genomes.histograms.raw_qual_hists.gq_hist_alt.bin_freq |\n", + "+--------------------------------------------------------+\n", + "| array |\n", + "+--------------------------------------------------------+\n", + "| [0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,2,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,1,2,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0] |\n", + "+--------------------------------------------------------+\n", + "\n", + "+---------------------------------------------------------+\n", + "| genomes.histograms.raw_qual_hists.gq_hist_alt.n_smaller |\n", + "+---------------------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+---------------------------------------------------------+\n", + "\n", + "+--------------------------------------------------------+\n", + "| genomes.histograms.raw_qual_hists.gq_hist_alt.n_larger |\n", + "+--------------------------------------------------------+\n", + "| int64 |\n", + "+--------------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+--------------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| genomes.histograms.raw_qual_hists.dp_hist_alt.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+--------------------------------------------------------+\n", + "| genomes.histograms.raw_qual_hists.dp_hist_alt.bin_freq |\n", + "+--------------------------------------------------------+\n", + "| array |\n", + "+--------------------------------------------------------+\n", + "| [0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,2,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,3,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,1,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "+--------------------------------------------------------+\n", + "\n", + "+---------------------------------------------------------+\n", + "| genomes.histograms.raw_qual_hists.dp_hist_alt.n_smaller |\n", + "+---------------------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+---------------------------------------------------------+\n", + "\n", + "+--------------------------------------------------------+\n", + "| genomes.histograms.raw_qual_hists.dp_hist_alt.n_larger |\n", + "+--------------------------------------------------------+\n", + "| int64 |\n", + "+--------------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+--------------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| genomes.histograms.raw_qual_hists.ab_hist_alt.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+--------------------------------------------------------+\n", + "| genomes.histograms.raw_qual_hists.ab_hist_alt.bin_freq |\n", + "+--------------------------------------------------------+\n", + "| array |\n", + "+--------------------------------------------------------+\n", + "| [0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,3,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "+--------------------------------------------------------+\n", + "\n", + "+---------------------------------------------------------+\n", + "| genomes.histograms.raw_qual_hists.ab_hist_alt.n_smaller |\n", + "+---------------------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+---------------------------------------------------------+\n", + "\n", + "+--------------------------------------------------------+\n", + "| genomes.histograms.raw_qual_hists.ab_hist_alt.n_larger |\n", + "+--------------------------------------------------------+\n", + "| int64 |\n", + "+--------------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+--------------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| genomes.histograms.age_hists.age_hist_het.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+----------------------------------------------------+\n", + "| genomes.histograms.age_hists.age_hist_het.bin_freq |\n", + "+----------------------------------------------------+\n", + "| array |\n", + "+----------------------------------------------------+\n", + "| [0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,1,0,0,1,0,0,0,0,0] |\n", + "| [0,0,1,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,1,0,1,0,0,0,0,0] |\n", + "+----------------------------------------------------+\n", + "\n", + "+-----------------------------------------------------+\n", + "| genomes.histograms.age_hists.age_hist_het.n_smaller |\n", + "+-----------------------------------------------------+\n", + "| int64 |\n", + "+-----------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+-----------------------------------------------------+\n", + "\n", + "+----------------------------------------------------+\n", + "| genomes.histograms.age_hists.age_hist_het.n_larger |\n", + "+----------------------------------------------------+\n", + "| int64 |\n", + "+----------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+----------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| genomes.histograms.age_hists.age_hist_hom.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+----------------------------------------------------+\n", + "| genomes.histograms.age_hists.age_hist_hom.bin_freq |\n", + "+----------------------------------------------------+\n", + "| array |\n", + "+----------------------------------------------------+\n", + "| [0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0] |\n", + "+----------------------------------------------------+\n", + "\n", + "+-----------------------------------------------------+\n", + "| genomes.histograms.age_hists.age_hist_hom.n_smaller |\n", + "+-----------------------------------------------------+\n", + "| int64 |\n", + "+-----------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+-----------------------------------------------------+\n", + "\n", + "+----------------------------------------------------+\n", + "| genomes.histograms.age_hists.age_hist_hom.n_larger |\n", + "+----------------------------------------------------+\n", + "| int64 |\n", + "+----------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+----------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| joint.freq |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [(0,0.00e+00,56642,0),(2,1.65e-05,121094,0),(0,0.00e+00,25546,0),(0,0.00e... |\n", + "| [(2,2.60e-05,76882,0),(4,3.15e-05,126902,0),(0,0.00e+00,34670,0),(1,1.80e... |\n", + "| [(1,1.17e-05,85634,0),(1,8.24e-06,121430,0),(0,0.00e+00,39236,0),(0,0.00e... |\n", + "| [(1,1.06e-05,94224,0),(5,4.64e-05,107704,0),(0,0.00e+00,44382,0),(1,1.80e... |\n", + "| [(3,2.64e-05,113536,0),(3,2.41e-05,124252,0),(2,3.78e-05,52912,0),(0,0.00... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| joint.faf |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.... |\n", + "| [(4.32e-06,1.62e-06),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.... |\n", + "| [(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.... |\n", + "| [(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.... |\n", + "| [(7.02e-06,2.95e-06),(6.27e-06,2.35e-06),(0.00e+00,0.00e+00),(0.00e+00,0.... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+------------------------+--------------------------------+\n", + "| joint.fafmax.faf95_max | joint.fafmax.faf95_max_gen_anc |\n", + "+------------------------+--------------------------------+\n", + "| float64 | str |\n", + "+------------------------+--------------------------------+\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| 6.27e-06 | \"nfe\" |\n", + "+------------------------+--------------------------------+\n", + "\n", + "+------------------------+--------------------------------+-----------------+\n", + "| joint.fafmax.faf99_max | joint.fafmax.faf99_max_gen_anc | joint.grpmax.AC |\n", + "+------------------------+--------------------------------+-----------------+\n", + "| float64 | str | int32 |\n", + "+------------------------+--------------------------------+-----------------+\n", + "| NA | NA | NA |\n", + "| NA | NA | 1 |\n", + "| NA | NA | 1 |\n", + "| NA | NA | NA |\n", + "| 2.35e-06 | \"nfe\" | 2 |\n", + "+------------------------+--------------------------------+-----------------+\n", + "\n", + "+-----------------+-----------------+-------------------------------+\n", + "| joint.grpmax.AF | joint.grpmax.AN | joint.grpmax.homozygote_count |\n", + "+-----------------+-----------------+-------------------------------+\n", + "| float64 | int32 | int32 |\n", + "+-----------------+-----------------+-------------------------------+\n", + "| NA | NA | NA |\n", + "| 4.07e-04 | 2456 | 0 |\n", + "| 4.39e-05 | 22760 | 0 |\n", + "| NA | NA | NA |\n", + "| 3.78e-05 | 52912 | 0 |\n", + "+-----------------+-----------------+-------------------------------+\n", + "\n", + "+----------------------+\n", + "| joint.grpmax.gen_anc |\n", + "+----------------------+\n", + "| str |\n", + "+----------------------+\n", + "| NA |\n", + "| \"eas\" |\n", + "| \"afr\" |\n", + "| NA |\n", + "| \"nfe\" |\n", + "+----------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| joint.histograms.qual_hists.gq_hist_all.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| joint.histograms.qual_hists.gq_hist_all.bin_freq |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0,0,0,0,23215,2435,1647,594,176,118,49,29,19,9,11,6,5,2,4,2] |\n", + "| [0,0,0,0,29394,3741,2868,1281,401,358,163,63,69,31,18,20,10,4,5,15] |\n", + "| [0,0,0,0,31093,4532,3696,1752,595,585,261,88,82,59,17,26,14,5,3,9] |\n", + "| [0,0,0,0,25677,6107,5433,3528,1753,1702,1130,485,518,282,119,125,77,35,29... |\n", + "| [0,0,0,0,25460,7448,6933,4978,2881,2833,2048,1038,1129,685,321,364,212,90... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+---------------------------------------------------+\n", + "| joint.histograms.qual_hists.gq_hist_all.n_smaller |\n", + "+---------------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+---------------------------------------------------+\n", + "\n", + "+--------------------------------------------------+\n", + "| joint.histograms.qual_hists.gq_hist_all.n_larger |\n", + "+--------------------------------------------------+\n", + "| int64 |\n", + "+--------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+--------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| joint.histograms.qual_hists.dp_hist_all.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| joint.histograms.qual_hists.dp_hist_all.bin_freq |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0,0,16,121,475,973,1736,2409,2950,3134,2995,2803,2514,2194,1773,1335,911... |\n", + "| [0,0,9,69,387,913,1737,2859,3749,4216,4302,4223,3745,3280,2661,1954,1380,... |\n", + "| [0,0,8,40,264,690,1525,2691,3754,4574,4813,4940,4490,3907,3242,2387,1704,... |\n", + "| [0,0,4,22,120,354,999,1950,3037,4168,4734,5196,5380,4766,4238,3206,2398,1... |\n", + "| [0,0,2,23,108,320,888,1844,3110,4447,5361,6012,6379,5879,5289,4273,3400,2... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+---------------------------------------------------+\n", + "| joint.histograms.qual_hists.dp_hist_all.n_smaller |\n", + "+---------------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+---------------------------------------------------+\n", + "\n", + "+--------------------------------------------------+\n", + "| joint.histograms.qual_hists.dp_hist_all.n_larger |\n", + "+--------------------------------------------------+\n", + "| int64 |\n", + "+--------------------------------------------------+\n", + "| 527 |\n", + "| 888 |\n", + "| 1232 |\n", + "| 2440 |\n", + "| 3622 |\n", + "+--------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| joint.histograms.qual_hists.gq_hist_alt.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+--------------------------------------------------+\n", + "| joint.histograms.qual_hists.gq_hist_alt.bin_freq |\n", + "+--------------------------------------------------+\n", + "| array |\n", + "+--------------------------------------------------+\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0] |\n", + "+--------------------------------------------------+\n", + "\n", + "+---------------------------------------------------+\n", + "| joint.histograms.qual_hists.gq_hist_alt.n_smaller |\n", + "+---------------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+---------------------------------------------------+\n", + "\n", + "+--------------------------------------------------+\n", + "| joint.histograms.qual_hists.gq_hist_alt.n_larger |\n", + "+--------------------------------------------------+\n", + "| int64 |\n", + "+--------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+--------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| joint.histograms.qual_hists.dp_hist_alt.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+--------------------------------------------------+\n", + "| joint.histograms.qual_hists.dp_hist_alt.bin_freq |\n", + "+--------------------------------------------------+\n", + "| array |\n", + "+--------------------------------------------------+\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,1,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "+--------------------------------------------------+\n", + "\n", + "+---------------------------------------------------+\n", + "| joint.histograms.qual_hists.dp_hist_alt.n_smaller |\n", + "+---------------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+---------------------------------------------------+\n", + "\n", + "+--------------------------------------------------+\n", + "| joint.histograms.qual_hists.dp_hist_alt.n_larger |\n", + "+--------------------------------------------------+\n", + "| int64 |\n", + "+--------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+--------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| joint.histograms.qual_hists.ab_hist_alt.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+--------------------------------------------------+\n", + "| joint.histograms.qual_hists.ab_hist_alt.bin_freq |\n", + "+--------------------------------------------------+\n", + "| array |\n", + "+--------------------------------------------------+\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "+--------------------------------------------------+\n", + "\n", + "+---------------------------------------------------+\n", + "| joint.histograms.qual_hists.ab_hist_alt.n_smaller |\n", + "+---------------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+---------------------------------------------------+\n", + "\n", + "+--------------------------------------------------+\n", + "| joint.histograms.qual_hists.ab_hist_alt.n_larger |\n", + "+--------------------------------------------------+\n", + "| int64 |\n", + "+--------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+--------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| joint.histograms.raw_qual_hists.gq_hist_all.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| joint.histograms.raw_qual_hists.gq_hist_all.bin_freq |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [14149,7330,6840,3904,23217,2436,1647,594,176,118,49,29,19,9,11,6,5,2,4,2] |\n", + "| [10121,5441,5610,3838,29394,3741,2868,1281,401,358,163,63,69,31,18,20,10,... |\n", + "| [6578,3782,4202,3336,31093,4532,3696,1752,595,585,261,88,82,59,17,26,14,5... |\n", + "| [1429,1382,1901,2026,25677,6108,5433,3528,1753,1702,1130,485,518,282,119,... |\n", + "| [995,1036,1539,1788,25460,7448,6933,4978,2881,2833,2048,1038,1129,685,321... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+-------------------------------------------------------+\n", + "| joint.histograms.raw_qual_hists.gq_hist_all.n_smaller |\n", + "+-------------------------------------------------------+\n", + "| int64 |\n", + "+-------------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+-------------------------------------------------------+\n", + "\n", + "+------------------------------------------------------+\n", + "| joint.histograms.raw_qual_hists.gq_hist_all.n_larger |\n", + "+------------------------------------------------------+\n", + "| int64 |\n", + "+------------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+------------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| joint.histograms.raw_qual_hists.dp_hist_all.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| joint.histograms.raw_qual_hists.dp_hist_all.bin_freq |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [10,66,471,1445,2990,5808,6940,7906,7262,6236,4943,3919,3129,2527,1993,14... |\n", + "| [7,37,269,903,1948,4127,5519,7075,7322,6972,6095,5249,4374,3624,2893,2106... |\n", + "| [2,24,149,466,1201,2614,4035,5568,6331,6725,6267,5855,5101,4268,3465,2554... |\n", + "| [1,9,42,122,294,787,1537,2717,3751,4972,5404,5762,5875,5161,4526,3415,252... |\n", + "| [2,6,39,104,247,638,1325,2417,3685,5047,5927,6484,6763,6192,5525,4439,351... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+-------------------------------------------------------+\n", + "| joint.histograms.raw_qual_hists.dp_hist_all.n_smaller |\n", + "+-------------------------------------------------------+\n", + "| int64 |\n", + "+-------------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+-------------------------------------------------------+\n", + "\n", + "+------------------------------------------------------+\n", + "| joint.histograms.raw_qual_hists.dp_hist_all.n_larger |\n", + "+------------------------------------------------------+\n", + "| int64 |\n", + "+------------------------------------------------------+\n", + "| 744 |\n", + "| 1130 |\n", + "| 1487 |\n", + "| 2622 |\n", + "| 3743 |\n", + "+------------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| joint.histograms.raw_qual_hists.gq_hist_alt.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+------------------------------------------------------+\n", + "| joint.histograms.raw_qual_hists.gq_hist_alt.bin_freq |\n", + "+------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------+\n", + "| [0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,2,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,1,2,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0] |\n", + "+------------------------------------------------------+\n", + "\n", + "+-------------------------------------------------------+\n", + "| joint.histograms.raw_qual_hists.gq_hist_alt.n_smaller |\n", + "+-------------------------------------------------------+\n", + "| int64 |\n", + "+-------------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+-------------------------------------------------------+\n", + "\n", + "+------------------------------------------------------+\n", + "| joint.histograms.raw_qual_hists.gq_hist_alt.n_larger |\n", + "+------------------------------------------------------+\n", + "| int64 |\n", + "+------------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+------------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| joint.histograms.raw_qual_hists.dp_hist_alt.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+------------------------------------------------------+\n", + "| joint.histograms.raw_qual_hists.dp_hist_alt.bin_freq |\n", + "+------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------+\n", + "| [0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,2,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,3,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,1,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "+------------------------------------------------------+\n", + "\n", + "+-------------------------------------------------------+\n", + "| joint.histograms.raw_qual_hists.dp_hist_alt.n_smaller |\n", + "+-------------------------------------------------------+\n", + "| int64 |\n", + "+-------------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+-------------------------------------------------------+\n", + "\n", + "+------------------------------------------------------+\n", + "| joint.histograms.raw_qual_hists.dp_hist_alt.n_larger |\n", + "+------------------------------------------------------+\n", + "| int64 |\n", + "+------------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+------------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| joint.histograms.raw_qual_hists.ab_hist_alt.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+------------------------------------------------------+\n", + "| joint.histograms.raw_qual_hists.ab_hist_alt.bin_freq |\n", + "+------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------+\n", + "| [0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,3,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "+------------------------------------------------------+\n", + "\n", + "+-------------------------------------------------------+\n", + "| joint.histograms.raw_qual_hists.ab_hist_alt.n_smaller |\n", + "+-------------------------------------------------------+\n", + "| int64 |\n", + "+-------------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+-------------------------------------------------------+\n", + "\n", + "+------------------------------------------------------+\n", + "| joint.histograms.raw_qual_hists.ab_hist_alt.n_larger |\n", + "+------------------------------------------------------+\n", + "| int64 |\n", + "+------------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+------------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| joint.histograms.age_hists.age_hist_het.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+--------------------------------------------------+\n", + "| joint.histograms.age_hists.age_hist_het.bin_freq |\n", + "+--------------------------------------------------+\n", + "| array |\n", + "+--------------------------------------------------+\n", + "| [0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,1,0,0,1,0,0,0,0,0] |\n", + "| [0,0,1,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,1,0,1,0,0,0,0,0] |\n", + "+--------------------------------------------------+\n", + "\n", + "+---------------------------------------------------+\n", + "| joint.histograms.age_hists.age_hist_het.n_smaller |\n", + "+---------------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+---------------------------------------------------+\n", + "\n", + "+--------------------------------------------------+\n", + "| joint.histograms.age_hists.age_hist_het.n_larger |\n", + "+--------------------------------------------------+\n", + "| int64 |\n", + "+--------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+--------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| joint.histograms.age_hists.age_hist_hom.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+--------------------------------------------------+\n", + "| joint.histograms.age_hists.age_hist_hom.bin_freq |\n", + "+--------------------------------------------------+\n", + "| array |\n", + "+--------------------------------------------------+\n", + "| [0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0] |\n", + "+--------------------------------------------------+\n", + "\n", + "+---------------------------------------------------+\n", + "| joint.histograms.age_hists.age_hist_hom.n_smaller |\n", + "+---------------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+---------------------------------------------------+\n", + "\n", + "+--------------------------------------------------+\n", + "| joint.histograms.age_hists.age_hist_hom.n_larger |\n", + "+--------------------------------------------------+\n", + "| int64 |\n", + "+--------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+--------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| freq_comparison_stats.contingency_table_test |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,... |\n", + "| [NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,... |\n", + "| [NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,... |\n", + "| [NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,... |\n", + "| [NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------+\n", + "| freq_comparison_stats.cochran_mantel_haenszel_test.p_value |\n", + "+------------------------------------------------------------+\n", + "| float64 |\n", + "+------------------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+------------------------------------------------------------+\n", + "\n", + "+----------------------------------------------------------+\n", + "| freq_comparison_stats.cochran_mantel_haenszel_test.chisq |\n", + "+----------------------------------------------------------+\n", + "| float64 |\n", + "+----------------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+----------------------------------------------------------+\n", + "\n", + "+------------------------------------------+\n", + "| freq_comparison_stats.stat_union.p_value |\n", + "+------------------------------------------+\n", + "| float64 |\n", + "+------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+------------------------------------------+\n", + "\n", + "+-------------------------------------------------+\n", + "| freq_comparison_stats.stat_union.stat_test_name |\n", + "+-------------------------------------------------+\n", + "| str |\n", + "+-------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+-------------------------------------------------+\n", + "\n", + "+-------------------------------------------+\n", + "| freq_comparison_stats.stat_union.gen_ancs |\n", + "+-------------------------------------------+\n", + "| array |\n", + "+-------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+-------------------------------------------+\n", + "showing top 5 rows" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "ht.show(5)" + ] + }, + { + "cell_type": "markdown", + "id": "354d7a5e-07a2-4f33-a830-970877cd4d63", + "metadata": { + "tags": [] + }, + "source": [ + "## All sites allele numbers\n", + "\n", + "As part of gnomAD v4.1, we [released](https://gnomad.broadinstitute.org/data#v4-all-sites-allele-number) allele number across all callable sites in the gnomAD exomes and genomes. For more information, see our [v4.1 blog post](https://gnomad.broadinstitute.org/news/2024-04-gnomad-v4-1/#allele-numbers-across-all-possible-sites)." + ] + }, + { + "cell_type": "markdown", + "id": "81008401-eec4-4e95-9709-4781db066f7f", + "metadata": { + "tags": [] + }, + "source": [ + "### Exomes all sites allele number Hail Table" + ] + }, + { + "cell_type": "markdown", + "id": "f7f1c013-a013-4fde-a7e6-fcb18d8d8a5c", + "metadata": {}, + "source": [ + "#### Load the Hail Table\n" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "3b7c75d0-1eec-4b92-883e-410337b09c92", + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-06T20:08:59.197890Z", + "start_time": "2024-12-06T20:08:50.859108Z" + } + }, + "outputs": [], + "source": [ + "ht = get_gnomad_release(data_type='exomes', version='4.1', dataset=\"all_sites_an\")" + ] + }, + { + "cell_type": "markdown", + "id": "6868a2d1-6e62-492a-8086-822c910e8608", + "metadata": {}, + "source": [ + "#### Print the schema of the Hail Table\n" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "f9c6d73b-7683-47fe-bf7d-2f5bef1d23d3", + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-06T20:09:00.032524Z", + "start_time": "2024-12-06T20:09:00.029271Z" + }, + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "----------------------------------------\n", + "Global fields:\n", + " 'strata_meta': array> \n", + " 'strata_sample_count': array \n", + "----------------------------------------\n", + "Row fields:\n", + " 'locus': locus \n", + " 'AN': array \n", + " 'outside_broad_capture_region': bool \n", + " 'outside_ukb_capture_region': bool \n", + " 'outside_broad_calling_region': bool \n", + " 'outside_ukb_calling_region': bool \n", + "----------------------------------------\n", + "Key: ['locus']\n", + "----------------------------------------\n" + ] + } + ], + "source": [ + "ht.describe()" + ] + }, + { + "cell_type": "markdown", + "id": "626f20d9-43c1-4687-9b05-01d53115c168", + "metadata": { + "tags": [] + }, + "source": [ + "#### Show the first 5 variants in the Hail Table\n" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "ee361058-54ae-4793-951b-1e0a6df6f685", + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-06T20:09:20.949958Z", + "start_time": "2024-12-06T20:09:05.622171Z" + }, + "tags": [] + }, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
locus
AN
outside_broad_capture_region
outside_ukb_capture_region
outside_broad_calling_region
outside_ukb_calling_region
locus<GRCh38>array<int64>boolboolboolbool
chr1:11719[0,628784,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,628784,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]TrueTrueFalseTrue
chr1:11720[0,628784,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,628784,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]TrueTrueFalseTrue
chr1:11721[0,628784,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,628784,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]TrueTrueFalseTrue
chr1:11722[0,628784,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,628784,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]TrueTrueFalseTrue
chr1:11723[0,628784,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,628784,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]TrueTrueFalseTrue

showing top 5 rows

\n" + ], + "text/plain": [ + "+---------------+\n", + "| locus |\n", + "+---------------+\n", + "| locus |\n", + "+---------------+\n", + "| chr1:11719 |\n", + "| chr1:11720 |\n", + "| chr1:11721 |\n", + "| chr1:11722 |\n", + "| chr1:11723 |\n", + "+---------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| AN |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0,628784,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0... |\n", + "| [0,628784,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0... |\n", + "| [0,628784,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0... |\n", + "| [0,628784,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0... |\n", + "| [0,628784,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+------------------------------+----------------------------+\n", + "| outside_broad_capture_region | outside_ukb_capture_region |\n", + "+------------------------------+----------------------------+\n", + "| bool | bool |\n", + "+------------------------------+----------------------------+\n", + "| True | True |\n", + "| True | True |\n", + "| True | True |\n", + "| True | True |\n", + "| True | True |\n", + "+------------------------------+----------------------------+\n", + "\n", + "+------------------------------+----------------------------+\n", + "| outside_broad_calling_region | outside_ukb_calling_region |\n", + "+------------------------------+----------------------------+\n", + "| bool | bool |\n", + "+------------------------------+----------------------------+\n", + "| False | True |\n", + "| False | True |\n", + "| False | True |\n", + "| False | True |\n", + "| False | True |\n", + "+------------------------------+----------------------------+\n", + "showing top 5 rows" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "ht.show(5)" + ] + }, + { + "cell_type": "markdown", + "id": "dc4a4f23-d754-4e31-8e59-f62f9be65942", + "metadata": { + "tags": [] + }, + "source": [ + "### Genomes all sites allele number Hail Table" + ] + }, + { + "cell_type": "markdown", + "id": "65cb8d93-c5ef-409b-9c51-7c282a63bdc2", + "metadata": {}, + "source": [ + "#### Load the Hail Table\n" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "0bb38926-f803-4be5-852c-782023b387bb", + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-06T20:08:59.197890Z", + "start_time": "2024-12-06T20:08:50.859108Z" + }, + "tags": [] + }, + "outputs": [], + "source": [ + "ht = get_gnomad_release(data_type='genomes', version='4.1', dataset=\"all_sites_an\")" + ] + }, + { + "cell_type": "markdown", + "id": "7d5c2549-151c-4b99-bac3-23fd9024f114", + "metadata": {}, + "source": [ + "#### Print the schema of the Hail Table\n" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "64d2c64c-b533-433a-89e6-72d473bd6464", + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-06T20:09:00.032524Z", + "start_time": "2024-12-06T20:09:00.029271Z" + }, + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "----------------------------------------\n", + "Global fields:\n", + " 'strata_meta': array> \n", + " 'strata_sample_count': array \n", + "----------------------------------------\n", + "Row fields:\n", + " 'locus': locus \n", + " 'AN': array \n", + "----------------------------------------\n", + "Key: ['locus']\n", + "----------------------------------------\n" + ] + } + ], + "source": [ + "ht.describe()" + ] + }, + { + "cell_type": "markdown", + "id": "140f66aa-83d4-4752-abcf-c674bf208194", + "metadata": { + "tags": [] + }, + "source": [ + "#### Show the first 5 variants in the Hail Table\n" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "id": "e2271a6e-16f6-48ca-805f-735e17a8f711", + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-06T20:09:20.949958Z", + "start_time": "2024-12-06T20:09:05.622171Z" + }, + "tags": [] + }, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
locus
AN
locus<GRCh38>array<int64>
chr1:10001[16,18232,0,0,4,0,0,6,0,6,0,0,8,8,0,0,0,0,4,0,0,0,0,0,2,4,0,0,2,4,0,0,0,0]
chr1:10002[78,32090,12,0,22,2,0,26,0,14,2,0,30,48,8,4,0,0,4,18,2,0,0,0,12,14,0,0,2,12,2,0,0,0]
chr1:10003[200,38154,48,0,48,6,4,28,6,48,6,6,102,98,38,10,0,0,8,40,6,0,0,4,14,14,2,4,26,22,6,0,2,4]
chr1:10004[948,62380,202,0,248,18,12,172,10,258,18,10,400,548,112,90,0,0,66,182,14,4,2,10,70,102,4,6,118,140,10,8,4,6]
chr1:10005[1774,70720,356,6,444,30,18,288,18,552,32,30,782,992,206,150,2,4,134,310,18,12,6,12,116,172,6,12,268,284,16,16,10,20]

showing top 5 rows

\n" + ], + "text/plain": [ + "+---------------+\n", + "| locus |\n", + "+---------------+\n", + "| locus |\n", + "+---------------+\n", + "| chr1:10001 |\n", + "| chr1:10002 |\n", + "| chr1:10003 |\n", + "| chr1:10004 |\n", + "| chr1:10005 |\n", + "+---------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| AN |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [16,18232,0,0,4,0,0,6,0,6,0,0,8,8,0,0,0,0,4,0,0,0,0,0,2,4,0,0,2,4,0,0,0,0] |\n", + "| [78,32090,12,0,22,2,0,26,0,14,2,0,30,48,8,4,0,0,4,18,2,0,0,0,12,14,0,0,2,... |\n", + "| [200,38154,48,0,48,6,4,28,6,48,6,6,102,98,38,10,0,0,8,40,6,0,0,4,14,14,2,... |\n", + "| [948,62380,202,0,248,18,12,172,10,258,18,10,400,548,112,90,0,0,66,182,14,... |\n", + "| [1774,70720,356,6,444,30,18,288,18,552,32,30,782,992,206,150,2,4,134,310,... |\n", + "+------------------------------------------------------------------------------+\n", + "showing top 5 rows" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "ht.show(5)" + ] + }, + { + "cell_type": "markdown", + "id": "1bf9f31f-34ff-4385-a80e-985cbb0acfe8", + "metadata": { + "tags": [] + }, + "source": [ + "## Coverage\n" + ] + }, + { + "cell_type": "markdown", + "id": "de70c319-787b-4d6c-9058-255a1137d81f", + "metadata": { + "tags": [] + }, + "source": [ + "### Exomes coverage Hail Table" + ] + }, + { + "cell_type": "markdown", + "id": "3278430c-4279-4d89-85e7-276184ec42b8", + "metadata": {}, + "source": [ + "#### Load the Hail Table\n" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "id": "7f005af0-df6d-4a0a-a2e0-9cb4ff6782c2", + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-06T20:08:59.197890Z", + "start_time": "2024-12-06T20:08:50.859108Z" + } + }, + "outputs": [], + "source": [ + "ht = get_gnomad_release(data_type='exomes', version='4.0', dataset=\"coverage\")" + ] + }, + { + "cell_type": "markdown", + "id": "128e58ce-c219-472a-88be-6babc2ba5a15", + "metadata": {}, + "source": [ + "#### Print the schema of the Hail Table\n" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "id": "6058bf38-4ce9-4d37-89a7-d11af0e4d9f1", + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-06T20:09:00.032524Z", + "start_time": "2024-12-06T20:09:00.029271Z" + }, + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "----------------------------------------\n", + "Global fields:\n", + " None\n", + "----------------------------------------\n", + "Row fields:\n", + " 'locus': locus \n", + " 'mean': float64 \n", + " 'median_approx': int32 \n", + " 'total_DP': int64 \n", + " 'over_1': float64 \n", + " 'over_5': float64 \n", + " 'over_10': float64 \n", + " 'over_15': float64 \n", + " 'over_20': float64 \n", + " 'over_25': float64 \n", + " 'over_30': float64 \n", + " 'over_50': float64 \n", + " 'over_100': float64 \n", + "----------------------------------------\n", + "Key: ['locus']\n", + "----------------------------------------\n" + ] + } + ], + "source": [ + "ht.describe()" + ] + }, + { + "cell_type": "markdown", + "id": "5969ab0c-7cee-4061-8740-8b82366ae806", + "metadata": { + "tags": [] + }, + "source": [ + "#### Show the first 5 variants in the Hail Table\n" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "id": "49fcf64b-1a91-4052-bb98-b329a0e8031b", + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-06T20:09:20.949958Z", + "start_time": "2024-12-06T20:09:05.622171Z" + }, + "tags": [] + }, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
locus
mean
median_approx
total_DP
over_1
over_5
over_10
over_15
over_20
over_25
over_30
over_50
over_100
locus<GRCh38>float64int32int64float64float64float64float64float64float64float64float64float64
chr1:118191.12e-010816952.79e-027.59e-030.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+00
chr1:118201.12e-010816952.79e-027.59e-030.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+00
chr1:118211.12e-010816952.79e-027.59e-030.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+00
chr1:118221.12e-010816952.79e-027.59e-030.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+00
chr1:118231.12e-010816952.79e-027.59e-030.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+00

showing top 5 rows

\n" + ], + "text/plain": [ + "+---------------+----------+---------------+----------+----------+----------+\n", + "| locus | mean | median_approx | total_DP | over_1 | over_5 |\n", + "+---------------+----------+---------------+----------+----------+----------+\n", + "| locus | float64 | int32 | int64 | float64 | float64 |\n", + "+---------------+----------+---------------+----------+----------+----------+\n", + "| chr1:11819 | 1.12e-01 | 0 | 81695 | 2.79e-02 | 7.59e-03 |\n", + "| chr1:11820 | 1.12e-01 | 0 | 81695 | 2.79e-02 | 7.59e-03 |\n", + "| chr1:11821 | 1.12e-01 | 0 | 81695 | 2.79e-02 | 7.59e-03 |\n", + "| chr1:11822 | 1.12e-01 | 0 | 81695 | 2.79e-02 | 7.59e-03 |\n", + "| chr1:11823 | 1.12e-01 | 0 | 81695 | 2.79e-02 | 7.59e-03 |\n", + "+---------------+----------+---------------+----------+----------+----------+\n", + "\n", + "+----------+----------+----------+----------+----------+----------+----------+\n", + "| over_10 | over_15 | over_20 | over_25 | over_30 | over_50 | over_100 |\n", + "+----------+----------+----------+----------+----------+----------+----------+\n", + "| float64 | float64 | float64 | float64 | float64 | float64 | float64 |\n", + "+----------+----------+----------+----------+----------+----------+----------+\n", + "| 0.00e+00 | 0.00e+00 | 0.00e+00 | 0.00e+00 | 0.00e+00 | 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 | 0.00e+00 | 0.00e+00 | 0.00e+00 | 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 | 0.00e+00 | 0.00e+00 | 0.00e+00 | 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 | 0.00e+00 | 0.00e+00 | 0.00e+00 | 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 | 0.00e+00 | 0.00e+00 | 0.00e+00 | 0.00e+00 | 0.00e+00 |\n", + "+----------+----------+----------+----------+----------+----------+----------+\n", + "showing top 5 rows" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "ht.show(5)" + ] + }, + { + "cell_type": "markdown", + "id": "19b2e9be-48fd-4859-af3d-a0775656d24c", + "metadata": { + "tags": [] + }, + "source": [ + "### Genomes coverage Hail Table" + ] + }, + { + "cell_type": "markdown", + "id": "5918f8e0-a723-439a-a11f-558d5ed13be8", + "metadata": {}, + "source": [ + "#### Load the Hail Table\n" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "id": "a8d0be07-c35d-425a-b554-c86034e367fc", + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-06T20:08:59.197890Z", + "start_time": "2024-12-06T20:08:50.859108Z" + }, + "tags": [] + }, + "outputs": [], + "source": [ + "ht = get_gnomad_release(data_type='genomes', version='3.0', dataset=\"coverage\")" + ] + }, + { + "cell_type": "markdown", + "id": "d129b898-d642-44d1-8243-66a9cca8d1b1", + "metadata": {}, + "source": [ + "#### Print the schema of the Hail Table\n" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "id": "18afb20f-7429-4fe2-a6c5-73a22dcbdb76", + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-06T20:09:00.032524Z", + "start_time": "2024-12-06T20:09:00.029271Z" + }, + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "----------------------------------------\n", + "Global fields:\n", + " None\n", + "----------------------------------------\n", + "Row fields:\n", + " 'locus': locus \n", + " 'mean': float64 \n", + " 'median': int32 \n", + " 'count_array': array \n", + " 'over_1': float32 \n", + " 'over_5': float32 \n", + " 'over_10': float32 \n", + " 'over_15': float32 \n", + " 'over_20': float32 \n", + " 'over_25': float32 \n", + " 'over_30': float32 \n", + " 'over_50': float32 \n", + " 'over_100': float32 \n", + "----------------------------------------\n", + "Key: ['locus']\n", + "----------------------------------------\n" + ] + } + ], + "source": [ + "ht.describe()" + ] + }, + { + "cell_type": "markdown", + "id": "05d8e22c-93d6-4ecf-b9e7-711945268c82", + "metadata": { + "tags": [] + }, + "source": [ + "#### Show the first 5 variants in the Hail Table\n" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "id": "b27cb655-3abb-4501-bcc9-3f634db64591", + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-06T20:09:20.949958Z", + "start_time": "2024-12-06T20:09:05.622171Z" + }, + "tags": [] + }, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
locus
mean
median
count_array
over_1
over_5
over_10
over_15
over_20
over_25
over_30
over_50
over_100
locus<GRCh38>float64int32array<int32>float32float32float32float32float32float32float32float32float32
chr1:100011.93e+0116[0,20,65,141,226,328,386,442,415,385,292,198,362,367,337,273,289,266,241,226,191,169,168,151,227,194,179,190,177,166,143,131,150,130,125,121,136,94,93,83,67,60,68,68,59,33,39,39,39,38,20,18,21,25,10,9,16,8,7,6,2,3,2,4,1,2,2,2,0,0,2,1,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]1.25e-011.19e-019.12e-026.95e-025.15e-023.88e-022.62e-022.27e-030.00e+00
chr1:100022.10e+0118[0,10,41,108,209,339,482,570,581,575,483,390,702,689,639,556,587,534,516,435,417,366,346,320,437,415,405,359,333,308,283,266,272,248,218,231,241,184,176,162,138,119,127,137,118,63,82,87,66,66,46,33,39,43,22,25,26,19,19,11,7,6,7,5,3,5,2,4,2,6,2,3,2,0,1,1,1,0,0,0,1,0,0,2,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2]2.20e-012.15e-011.79e-011.39e-011.02e-017.60e-025.06e-024.83e-032.79e-05
chr1:100032.44e+0123[0,6,16,62,100,162,233,289,294,346,342,310,537,612,664,649,661,711,723,658,649,590,548,486,679,656,640,571,533,491,439,398,412,404,349,383,360,298,263,242,207,182,186,194,159,118,123,116,96,96,67,59,61,64,34,33,34,31,30,15,12,11,13,10,7,7,3,7,5,10,3,3,5,0,2,2,1,0,0,2,1,1,1,4,0,2,1,0,0,1,0,0,0,0,0,0,0,0,0,0,4]2.62e-012.59e-012.41e-012.07e-011.59e-011.18e-017.77e-027.61e-035.58e-05
chr1:100042.43e+0123[0,4,21,70,101,178,270,396,417,515,550,486,864,1003,1098,1138,1183,1270,1242,1181,1162,1083,966,845,1149,1088,1047,922,857,804,725,645,633,658,525,610,537,451,411,369,343,285,290,260,235,184,190,174,151,152,96,83,96,91,52,52,56,43,47,30,20,19,22,16,13,9,9,10,10,14,8,7,8,0,5,3,3,2,1,2,1,1,1,5,3,3,2,1,0,2,0,0,1,0,1,0,1,1,0,0,12]4.27e-014.24e-013.99e-013.43e-012.60e-011.87e-011.21e-011.20e-021.67e-04
chr1:100052.45e+0123[0,4,22,67,98,177,257,381,423,511,580,560,1013,1158,1257,1314,1338,1472,1401,1341,1300,1266,1105,966,1288,1243,1198,1068,976,905,842,725,728,740,600,678,613,515,464,414,396,338,324,300,268,213,210,198,175,165,113,100,108,102,61,58,61,50,53,35,22,22,27,22,15,11,12,10,13,14,10,8,9,1,6,4,6,5,3,3,4,2,2,5,3,7,3,1,0,2,0,1,2,2,2,0,1,1,0,0,17]4.83e-014.80e-014.56e-013.92e-012.96e-012.14e-011.38e-011.42e-022.37e-04

showing top 5 rows

\n" + ], + "text/plain": [ + "+---------------+----------+--------+\n", + "| locus | mean | median |\n", + "+---------------+----------+--------+\n", + "| locus | float64 | int32 |\n", + "+---------------+----------+--------+\n", + "| chr1:10001 | 1.93e+01 | 16 |\n", + "| chr1:10002 | 2.10e+01 | 18 |\n", + "| chr1:10003 | 2.44e+01 | 23 |\n", + "| chr1:10004 | 2.43e+01 | 23 |\n", + "| chr1:10005 | 2.45e+01 | 23 |\n", + "+---------------+----------+--------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| count_array |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0,20,65,141,226,328,386,442,415,385,292,198,362,367,337,273,289,266,241,... |\n", + "| [0,10,41,108,209,339,482,570,581,575,483,390,702,689,639,556,587,534,516,... |\n", + "| [0,6,16,62,100,162,233,289,294,346,342,310,537,612,664,649,661,711,723,65... |\n", + "| [0,4,21,70,101,178,270,396,417,515,550,486,864,1003,1098,1138,1183,1270,1... |\n", + "| [0,4,22,67,98,177,257,381,423,511,580,560,1013,1158,1257,1314,1338,1472,1... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+----------+----------+----------+----------+----------+----------+----------+\n", + "| over_1 | over_5 | over_10 | over_15 | over_20 | over_25 | over_30 |\n", + "+----------+----------+----------+----------+----------+----------+----------+\n", + "| float32 | float32 | float32 | float32 | float32 | float32 | float32 |\n", + "+----------+----------+----------+----------+----------+----------+----------+\n", + "| 1.25e-01 | 1.19e-01 | 9.12e-02 | 6.95e-02 | 5.15e-02 | 3.88e-02 | 2.62e-02 |\n", + "| 2.20e-01 | 2.15e-01 | 1.79e-01 | 1.39e-01 | 1.02e-01 | 7.60e-02 | 5.06e-02 |\n", + "| 2.62e-01 | 2.59e-01 | 2.41e-01 | 2.07e-01 | 1.59e-01 | 1.18e-01 | 7.77e-02 |\n", + "| 4.27e-01 | 4.24e-01 | 3.99e-01 | 3.43e-01 | 2.60e-01 | 1.87e-01 | 1.21e-01 |\n", + "| 4.83e-01 | 4.80e-01 | 4.56e-01 | 3.92e-01 | 2.96e-01 | 2.14e-01 | 1.38e-01 |\n", + "+----------+----------+----------+----------+----------+----------+----------+\n", + "\n", + "+----------+----------+\n", + "| over_50 | over_100 |\n", + "+----------+----------+\n", + "| float32 | float32 |\n", + "+----------+----------+\n", + "| 2.27e-03 | 0.00e+00 |\n", + "| 4.83e-03 | 2.79e-05 |\n", + "| 7.61e-03 | 5.58e-05 |\n", + "| 1.20e-02 | 1.67e-04 |\n", + "| 1.42e-02 | 2.37e-04 |\n", + "+----------+----------+\n", + "showing top 5 rows" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "ht.show(5)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.12.2" + }, + "toc": { + "base_numbering": 1, + "nav_menu": { + "height": "613.99px", + "width": "526.312px" + }, + "number_sections": false, + "sideBar": true, + "skip_h1_title": true, + "title_cell": "Table of Contents", + "title_sidebar": "Contents", + "toc_cell": true, + "toc_position": { + "height": "calc(100% - 180px)", + "left": "10px", + "top": "150px", + "width": "202.438px" + }, + "toc_section_display": true, + "toc_window_display": true + }, + "toc-autonumbering": false, + "toc-showcode": false, + "toc-showmarkdowntxt": true, + "toc-showtags": false, + "widgets": { + "application/vnd.jupyter.widget-state+json": { + "state": {}, + "version_major": 2, + "version_minor": 0 + } + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/gnomad_toolbox/use_cases/toolbox_for_gnomad_users.ipynb b/gnomad_toolbox/notebooks/toolbox_for_gnomad_users.ipynb similarity index 72% rename from gnomad_toolbox/use_cases/toolbox_for_gnomad_users.ipynb rename to gnomad_toolbox/notebooks/toolbox_for_gnomad_users.ipynb index 0e081fe..326a2a3 100644 --- a/gnomad_toolbox/use_cases/toolbox_for_gnomad_users.ipynb +++ b/gnomad_toolbox/notebooks/toolbox_for_gnomad_users.ipynb @@ -23,19 +23,17 @@ "If you want to import your own data to use other gnomAD notebooks, such as for ancestry inference (https://github.com/broadinstitute/gnomad_qc/blob/main/gnomad_qc/example_notebooks/ancestry_classification_using_gnomad_rf.ipynb), you may use Hail's `import_vcf` functions." ] }, - { - "cell_type": "markdown", - "id": "ff73954c", - "metadata": {}, - "source": [] - }, { "cell_type": "code", - "execution_count": 1, "id": "e77d32b1", "metadata": { - "scrolled": true + "scrolled": true, + "ExecuteTime": { + "end_time": "2024-12-06T18:02:57.909455Z", + "start_time": "2024-12-06T18:02:56.316003Z" + } }, + "source": "import hail as hl", "outputs": [ { "data": { @@ -50,7 +48,7 @@ " \n", "
\n", " \n", - " Loading BokehJS ...\n", + " Loading BokehJS ...\n", "
\n" ] }, @@ -59,340 +57,14 @@ }, { "data": { - "application/javascript": [ - "(function(root) {\n", - " function now() {\n", - " return new Date();\n", - " }\n", - "\n", - " const force = true;\n", - "\n", - " if (typeof root._bokeh_onload_callbacks === \"undefined\" || force === true) {\n", - " root._bokeh_onload_callbacks = [];\n", - " root._bokeh_is_loading = undefined;\n", - " }\n", - "\n", - "const JS_MIME_TYPE = 'application/javascript';\n", - " const HTML_MIME_TYPE = 'text/html';\n", - " const EXEC_MIME_TYPE = 'application/vnd.bokehjs_exec.v0+json';\n", - " const CLASS_NAME = 'output_bokeh rendered_html';\n", - "\n", - " /**\n", - " * Render data to the DOM node\n", - " */\n", - " function render(props, node) {\n", - " const script = document.createElement(\"script\");\n", - " node.appendChild(script);\n", - " }\n", - "\n", - " /**\n", - " * Handle when an output is cleared or removed\n", - " */\n", - " function handleClearOutput(event, handle) {\n", - " function drop(id) {\n", - " const view = Bokeh.index.get_by_id(id)\n", - " if (view != null) {\n", - " view.model.document.clear()\n", - " Bokeh.index.delete(view)\n", - " }\n", - " }\n", - "\n", - " const cell = handle.cell;\n", - "\n", - " const id = cell.output_area._bokeh_element_id;\n", - " const server_id = cell.output_area._bokeh_server_id;\n", - "\n", - " // Clean up Bokeh references\n", - " if (id != null) {\n", - " drop(id)\n", - " }\n", - "\n", - " if (server_id !== undefined) {\n", - " // Clean up Bokeh references\n", - " const cmd_clean = \"from bokeh.io.state import curstate; print(curstate().uuid_to_server['\" + server_id + \"'].get_sessions()[0].document.roots[0]._id)\";\n", - " cell.notebook.kernel.execute(cmd_clean, {\n", - " iopub: {\n", - " output: function(msg) {\n", - " const id = msg.content.text.trim()\n", - " drop(id)\n", - " }\n", - " }\n", - " });\n", - " // Destroy server and session\n", - " const cmd_destroy = \"import bokeh.io.notebook as ion; ion.destroy_server('\" + server_id + \"')\";\n", - " cell.notebook.kernel.execute(cmd_destroy);\n", - " }\n", - " }\n", - "\n", - " /**\n", - " * Handle when a new output is added\n", - " */\n", - " function handleAddOutput(event, handle) {\n", - " const output_area = handle.output_area;\n", - " const output = handle.output;\n", - "\n", - " // limit handleAddOutput to display_data with EXEC_MIME_TYPE content only\n", - " if ((output.output_type != \"display_data\") || (!Object.prototype.hasOwnProperty.call(output.data, EXEC_MIME_TYPE))) {\n", - " return\n", - " }\n", - "\n", - " const toinsert = output_area.element.find(\".\" + CLASS_NAME.split(' ')[0]);\n", - "\n", - " if (output.metadata[EXEC_MIME_TYPE][\"id\"] !== undefined) {\n", - " toinsert[toinsert.length - 1].firstChild.textContent = output.data[JS_MIME_TYPE];\n", - " // store reference to embed id on output_area\n", - " output_area._bokeh_element_id = output.metadata[EXEC_MIME_TYPE][\"id\"];\n", - " }\n", - " if (output.metadata[EXEC_MIME_TYPE][\"server_id\"] !== undefined) {\n", - " const bk_div = document.createElement(\"div\");\n", - " bk_div.innerHTML = output.data[HTML_MIME_TYPE];\n", - " const script_attrs = bk_div.children[0].attributes;\n", - " for (let i = 0; i < script_attrs.length; i++) {\n", - " toinsert[toinsert.length - 1].firstChild.setAttribute(script_attrs[i].name, script_attrs[i].value);\n", - " toinsert[toinsert.length - 1].firstChild.textContent = bk_div.children[0].textContent\n", - " }\n", - " // store reference to server id on output_area\n", - " output_area._bokeh_server_id = output.metadata[EXEC_MIME_TYPE][\"server_id\"];\n", - " }\n", - " }\n", - "\n", - " function register_renderer(events, OutputArea) {\n", - "\n", - " function append_mime(data, metadata, element) {\n", - " // create a DOM node to render to\n", - " const toinsert = this.create_output_subarea(\n", - " metadata,\n", - " CLASS_NAME,\n", - " EXEC_MIME_TYPE\n", - " );\n", - " this.keyboard_manager.register_events(toinsert);\n", - " // Render to node\n", - " const props = {data: data, metadata: metadata[EXEC_MIME_TYPE]};\n", - " render(props, toinsert[toinsert.length - 1]);\n", - " element.append(toinsert);\n", - " return toinsert\n", - " }\n", - "\n", - " /* Handle when an output is cleared or removed */\n", - " events.on('clear_output.CodeCell', handleClearOutput);\n", - " events.on('delete.Cell', handleClearOutput);\n", - "\n", - " /* Handle when a new output is added */\n", - " events.on('output_added.OutputArea', handleAddOutput);\n", - "\n", - " /**\n", - " * Register the mime type and append_mime function with output_area\n", - " */\n", - " OutputArea.prototype.register_mime_type(EXEC_MIME_TYPE, append_mime, {\n", - " /* Is output safe? */\n", - " safe: true,\n", - " /* Index of renderer in `output_area.display_order` */\n", - " index: 0\n", - " });\n", - " }\n", - "\n", - " // register the mime type if in Jupyter Notebook environment and previously unregistered\n", - " if (root.Jupyter !== undefined) {\n", - " const events = require('base/js/events');\n", - " const OutputArea = require('notebook/js/outputarea').OutputArea;\n", - "\n", - " if (OutputArea.prototype.mime_types().indexOf(EXEC_MIME_TYPE) == -1) {\n", - " register_renderer(events, OutputArea);\n", - " }\n", - " }\n", - " if (typeof (root._bokeh_timeout) === \"undefined\" || force === true) {\n", - " root._bokeh_timeout = Date.now() + 5000;\n", - " root._bokeh_failed_load = false;\n", - " }\n", - "\n", - " const NB_LOAD_WARNING = {'data': {'text/html':\n", - " \"
\\n\"+\n", - " \"

\\n\"+\n", - " \"BokehJS does not appear to have successfully loaded. If loading BokehJS from CDN, this \\n\"+\n", - " \"may be due to a slow or bad network connection. Possible fixes:\\n\"+\n", - " \"

\\n\"+\n", - " \"
    \\n\"+\n", - " \"
  • re-rerun `output_notebook()` to attempt to load from CDN again, or
  • \\n\"+\n", - " \"
  • use INLINE resources instead, as so:
  • \\n\"+\n", - " \"
\\n\"+\n", - " \"\\n\"+\n", - " \"from bokeh.resources import INLINE\\n\"+\n", - " \"output_notebook(resources=INLINE)\\n\"+\n", - " \"\\n\"+\n", - " \"
\"}};\n", - "\n", - " function display_loaded() {\n", - " const el = document.getElementById(\"c9c511bf-e817-434d-8072-f4db620005e8\");\n", - " if (el != null) {\n", - " el.textContent = \"BokehJS is loading...\";\n", - " }\n", - " if (root.Bokeh !== undefined) {\n", - " if (el != null) {\n", - " el.textContent = \"BokehJS \" + root.Bokeh.version + \" successfully loaded.\";\n", - " }\n", - " } else if (Date.now() < root._bokeh_timeout) {\n", - " setTimeout(display_loaded, 100)\n", - " }\n", - " }\n", - "\n", - " function run_callbacks() {\n", - " try {\n", - " root._bokeh_onload_callbacks.forEach(function(callback) {\n", - " if (callback != null)\n", - " callback();\n", - " });\n", - " } finally {\n", - " delete root._bokeh_onload_callbacks\n", - " }\n", - " console.debug(\"Bokeh: all callbacks have finished\");\n", - " }\n", - "\n", - " function load_libs(css_urls, js_urls, callback) {\n", - " if (css_urls == null) css_urls = [];\n", - " if (js_urls == null) js_urls = [];\n", - "\n", - " root._bokeh_onload_callbacks.push(callback);\n", - " if (root._bokeh_is_loading > 0) {\n", - " console.debug(\"Bokeh: BokehJS is being loaded, scheduling callback at\", now());\n", - " return null;\n", - " }\n", - " if (js_urls == null || js_urls.length === 0) {\n", - " run_callbacks();\n", - " return null;\n", - " }\n", - " console.debug(\"Bokeh: BokehJS not loaded, scheduling load and callback at\", now());\n", - " root._bokeh_is_loading = css_urls.length + js_urls.length;\n", - "\n", - " function on_load() {\n", - " root._bokeh_is_loading--;\n", - " if (root._bokeh_is_loading === 0) {\n", - " console.debug(\"Bokeh: all BokehJS libraries/stylesheets loaded\");\n", - " run_callbacks()\n", - " }\n", - " }\n", - "\n", - " function on_error(url) {\n", - " console.error(\"failed to load \" + url);\n", - " }\n", - "\n", - " for (let i = 0; i < css_urls.length; i++) {\n", - " const url = css_urls[i];\n", - " const element = document.createElement(\"link\");\n", - " element.onload = on_load;\n", - " element.onerror = on_error.bind(null, url);\n", - " element.rel = \"stylesheet\";\n", - " element.type = \"text/css\";\n", - " element.href = url;\n", - " console.debug(\"Bokeh: injecting link tag for BokehJS stylesheet: \", url);\n", - " document.body.appendChild(element);\n", - " }\n", - "\n", - " for (let i = 0; i < js_urls.length; i++) {\n", - " const url = js_urls[i];\n", - " const element = document.createElement('script');\n", - " element.onload = on_load;\n", - " element.onerror = on_error.bind(null, url);\n", - " element.async = false;\n", - " element.src = url;\n", - " console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n", - " document.head.appendChild(element);\n", - " }\n", - " };\n", - "\n", - " function inject_raw_css(css) {\n", - " const element = document.createElement(\"style\");\n", - " element.appendChild(document.createTextNode(css));\n", - " document.body.appendChild(element);\n", - " }\n", - "\n", - " const js_urls = [\"https://cdn.bokeh.org/bokeh/release/bokeh-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-gl-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-widgets-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-tables-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-mathjax-3.3.4.min.js\"];\n", - " const css_urls = [];\n", - "\n", - " const inline_js = [ function(Bokeh) {\n", - " Bokeh.set_log_level(\"info\");\n", - " },\n", - "function(Bokeh) {\n", - " }\n", - " ];\n", - "\n", - " function run_inline_js() {\n", - " if (root.Bokeh !== undefined || force === true) {\n", - " for (let i = 0; i < inline_js.length; i++) {\n", - " inline_js[i].call(root, root.Bokeh);\n", - " }\n", - "if (force === true) {\n", - " display_loaded();\n", - " }} else if (Date.now() < root._bokeh_timeout) {\n", - " setTimeout(run_inline_js, 100);\n", - " } else if (!root._bokeh_failed_load) {\n", - " console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n", - " root._bokeh_failed_load = true;\n", - " } else if (force !== true) {\n", - " const cell = $(document.getElementById(\"c9c511bf-e817-434d-8072-f4db620005e8\")).parents('.cell').data().cell;\n", - " cell.output_area.append_execute_result(NB_LOAD_WARNING)\n", - " }\n", - " }\n", - "\n", - " if (root._bokeh_is_loading === 0) {\n", - " console.debug(\"Bokeh: BokehJS loaded, going straight to plotting\");\n", - " run_inline_js();\n", - " } else {\n", - " load_libs(css_urls, js_urls, function() {\n", - " console.debug(\"Bokeh: BokehJS plotting callback run at\", now());\n", - " run_inline_js();\n", - " });\n", - " }\n", - "}(window));" - ], - "application/vnd.bokehjs_load.v0+json": "(function(root) {\n function now() {\n return new Date();\n }\n\n const force = true;\n\n if (typeof root._bokeh_onload_callbacks === \"undefined\" || force === true) {\n root._bokeh_onload_callbacks = [];\n root._bokeh_is_loading = undefined;\n }\n\n\n if (typeof (root._bokeh_timeout) === \"undefined\" || force === true) {\n root._bokeh_timeout = Date.now() + 5000;\n root._bokeh_failed_load = false;\n }\n\n const NB_LOAD_WARNING = {'data': {'text/html':\n \"
\\n\"+\n \"

\\n\"+\n \"BokehJS does not appear to have successfully loaded. If loading BokehJS from CDN, this \\n\"+\n \"may be due to a slow or bad network connection. Possible fixes:\\n\"+\n \"

\\n\"+\n \"
    \\n\"+\n \"
  • re-rerun `output_notebook()` to attempt to load from CDN again, or
  • \\n\"+\n \"
  • use INLINE resources instead, as so:
  • \\n\"+\n \"
\\n\"+\n \"\\n\"+\n \"from bokeh.resources import INLINE\\n\"+\n \"output_notebook(resources=INLINE)\\n\"+\n \"\\n\"+\n \"
\"}};\n\n function display_loaded() {\n const el = document.getElementById(\"c9c511bf-e817-434d-8072-f4db620005e8\");\n if (el != null) {\n el.textContent = \"BokehJS is loading...\";\n }\n if (root.Bokeh !== undefined) {\n if (el != null) {\n el.textContent = \"BokehJS \" + root.Bokeh.version + \" successfully loaded.\";\n }\n } else if (Date.now() < root._bokeh_timeout) {\n setTimeout(display_loaded, 100)\n }\n }\n\n function run_callbacks() {\n try {\n root._bokeh_onload_callbacks.forEach(function(callback) {\n if (callback != null)\n callback();\n });\n } finally {\n delete root._bokeh_onload_callbacks\n }\n console.debug(\"Bokeh: all callbacks have finished\");\n }\n\n function load_libs(css_urls, js_urls, callback) {\n if (css_urls == null) css_urls = [];\n if (js_urls == null) js_urls = [];\n\n root._bokeh_onload_callbacks.push(callback);\n if (root._bokeh_is_loading > 0) {\n console.debug(\"Bokeh: BokehJS is being loaded, scheduling callback at\", now());\n return null;\n }\n if (js_urls == null || js_urls.length === 0) {\n run_callbacks();\n return null;\n }\n console.debug(\"Bokeh: BokehJS not loaded, scheduling load and callback at\", now());\n root._bokeh_is_loading = css_urls.length + js_urls.length;\n\n function on_load() {\n root._bokeh_is_loading--;\n if (root._bokeh_is_loading === 0) {\n console.debug(\"Bokeh: all BokehJS libraries/stylesheets loaded\");\n run_callbacks()\n }\n }\n\n function on_error(url) {\n console.error(\"failed to load \" + url);\n }\n\n for (let i = 0; i < css_urls.length; i++) {\n const url = css_urls[i];\n const element = document.createElement(\"link\");\n element.onload = on_load;\n element.onerror = on_error.bind(null, url);\n element.rel = \"stylesheet\";\n element.type = \"text/css\";\n element.href = url;\n console.debug(\"Bokeh: injecting link tag for BokehJS stylesheet: \", url);\n document.body.appendChild(element);\n }\n\n for (let i = 0; i < js_urls.length; i++) {\n const url = js_urls[i];\n const element = document.createElement('script');\n element.onload = on_load;\n element.onerror = on_error.bind(null, url);\n element.async = false;\n element.src = url;\n console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n document.head.appendChild(element);\n }\n };\n\n function inject_raw_css(css) {\n const element = document.createElement(\"style\");\n element.appendChild(document.createTextNode(css));\n document.body.appendChild(element);\n }\n\n const js_urls = [\"https://cdn.bokeh.org/bokeh/release/bokeh-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-gl-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-widgets-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-tables-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-mathjax-3.3.4.min.js\"];\n const css_urls = [];\n\n const inline_js = [ function(Bokeh) {\n Bokeh.set_log_level(\"info\");\n },\nfunction(Bokeh) {\n }\n ];\n\n function run_inline_js() {\n if (root.Bokeh !== undefined || force === true) {\n for (let i = 0; i < inline_js.length; i++) {\n inline_js[i].call(root, root.Bokeh);\n }\nif (force === true) {\n display_loaded();\n }} else if (Date.now() < root._bokeh_timeout) {\n setTimeout(run_inline_js, 100);\n } else if (!root._bokeh_failed_load) {\n console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n root._bokeh_failed_load = true;\n } else if (force !== true) {\n const cell = $(document.getElementById(\"c9c511bf-e817-434d-8072-f4db620005e8\")).parents('.cell').data().cell;\n cell.output_area.append_execute_result(NB_LOAD_WARNING)\n }\n }\n\n if (root._bokeh_is_loading === 0) {\n console.debug(\"Bokeh: BokehJS loaded, going straight to plotting\");\n run_inline_js();\n } else {\n load_libs(css_urls, js_urls, function() {\n console.debug(\"Bokeh: BokehJS plotting callback run at\", now());\n run_inline_js();\n });\n }\n}(window));" + "application/javascript": "(function(root) {\n function now() {\n return new Date();\n }\n\n const force = true;\n\n if (typeof root._bokeh_onload_callbacks === \"undefined\" || force === true) {\n root._bokeh_onload_callbacks = [];\n root._bokeh_is_loading = undefined;\n }\n\nconst JS_MIME_TYPE = 'application/javascript';\n const HTML_MIME_TYPE = 'text/html';\n const EXEC_MIME_TYPE = 'application/vnd.bokehjs_exec.v0+json';\n const CLASS_NAME = 'output_bokeh rendered_html';\n\n /**\n * Render data to the DOM node\n */\n function render(props, node) {\n const script = document.createElement(\"script\");\n node.appendChild(script);\n }\n\n /**\n * Handle when an output is cleared or removed\n */\n function handleClearOutput(event, handle) {\n function drop(id) {\n const view = Bokeh.index.get_by_id(id)\n if (view != null) {\n view.model.document.clear()\n Bokeh.index.delete(view)\n }\n }\n\n const cell = handle.cell;\n\n const id = cell.output_area._bokeh_element_id;\n const server_id = cell.output_area._bokeh_server_id;\n\n // Clean up Bokeh references\n if (id != null) {\n drop(id)\n }\n\n if (server_id !== undefined) {\n // Clean up Bokeh references\n const cmd_clean = \"from bokeh.io.state import curstate; print(curstate().uuid_to_server['\" + server_id + \"'].get_sessions()[0].document.roots[0]._id)\";\n cell.notebook.kernel.execute(cmd_clean, {\n iopub: {\n output: function(msg) {\n const id = msg.content.text.trim()\n drop(id)\n }\n }\n });\n // Destroy server and session\n const cmd_destroy = \"import bokeh.io.notebook as ion; ion.destroy_server('\" + server_id + \"')\";\n cell.notebook.kernel.execute(cmd_destroy);\n }\n }\n\n /**\n * Handle when a new output is added\n */\n function handleAddOutput(event, handle) {\n const output_area = handle.output_area;\n const output = handle.output;\n\n // limit handleAddOutput to display_data with EXEC_MIME_TYPE content only\n if ((output.output_type != \"display_data\") || (!Object.prototype.hasOwnProperty.call(output.data, EXEC_MIME_TYPE))) {\n return\n }\n\n const toinsert = output_area.element.find(\".\" + CLASS_NAME.split(' ')[0]);\n\n if (output.metadata[EXEC_MIME_TYPE][\"id\"] !== undefined) {\n toinsert[toinsert.length - 1].firstChild.textContent = output.data[JS_MIME_TYPE];\n // store reference to embed id on output_area\n output_area._bokeh_element_id = output.metadata[EXEC_MIME_TYPE][\"id\"];\n }\n if (output.metadata[EXEC_MIME_TYPE][\"server_id\"] !== undefined) {\n const bk_div = document.createElement(\"div\");\n bk_div.innerHTML = output.data[HTML_MIME_TYPE];\n const script_attrs = bk_div.children[0].attributes;\n for (let i = 0; i < script_attrs.length; i++) {\n toinsert[toinsert.length - 1].firstChild.setAttribute(script_attrs[i].name, script_attrs[i].value);\n toinsert[toinsert.length - 1].firstChild.textContent = bk_div.children[0].textContent\n }\n // store reference to server id on output_area\n output_area._bokeh_server_id = output.metadata[EXEC_MIME_TYPE][\"server_id\"];\n }\n }\n\n function register_renderer(events, OutputArea) {\n\n function append_mime(data, metadata, element) {\n // create a DOM node to render to\n const toinsert = this.create_output_subarea(\n metadata,\n CLASS_NAME,\n EXEC_MIME_TYPE\n );\n this.keyboard_manager.register_events(toinsert);\n // Render to node\n const props = {data: data, metadata: metadata[EXEC_MIME_TYPE]};\n render(props, toinsert[toinsert.length - 1]);\n element.append(toinsert);\n return toinsert\n }\n\n /* Handle when an output is cleared or removed */\n events.on('clear_output.CodeCell', handleClearOutput);\n events.on('delete.Cell', handleClearOutput);\n\n /* Handle when a new output is added */\n events.on('output_added.OutputArea', handleAddOutput);\n\n /**\n * Register the mime type and append_mime function with output_area\n */\n OutputArea.prototype.register_mime_type(EXEC_MIME_TYPE, append_mime, {\n /* Is output safe? */\n safe: true,\n /* Index of renderer in `output_area.display_order` */\n index: 0\n });\n }\n\n // register the mime type if in Jupyter Notebook environment and previously unregistered\n if (root.Jupyter !== undefined) {\n const events = require('base/js/events');\n const OutputArea = require('notebook/js/outputarea').OutputArea;\n\n if (OutputArea.prototype.mime_types().indexOf(EXEC_MIME_TYPE) == -1) {\n register_renderer(events, OutputArea);\n }\n }\n if (typeof (root._bokeh_timeout) === \"undefined\" || force === true) {\n root._bokeh_timeout = Date.now() + 5000;\n root._bokeh_failed_load = false;\n }\n\n const NB_LOAD_WARNING = {'data': {'text/html':\n \"
\\n\"+\n \"

\\n\"+\n \"BokehJS does not appear to have successfully loaded. If loading BokehJS from CDN, this \\n\"+\n \"may be due to a slow or bad network connection. Possible fixes:\\n\"+\n \"

\\n\"+\n \"
    \\n\"+\n \"
  • re-rerun `output_notebook()` to attempt to load from CDN again, or
  • \\n\"+\n \"
  • use INLINE resources instead, as so:
  • \\n\"+\n \"
\\n\"+\n \"\\n\"+\n \"from bokeh.resources import INLINE\\n\"+\n \"output_notebook(resources=INLINE)\\n\"+\n \"\\n\"+\n \"
\"}};\n\n function display_loaded() {\n const el = document.getElementById(\"e603302b-40d4-4f8c-aa3c-1000266b48fa\");\n if (el != null) {\n el.textContent = \"BokehJS is loading...\";\n }\n if (root.Bokeh !== undefined) {\n if (el != null) {\n el.textContent = \"BokehJS \" + root.Bokeh.version + \" successfully loaded.\";\n }\n } else if (Date.now() < root._bokeh_timeout) {\n setTimeout(display_loaded, 100)\n }\n }\n\n function run_callbacks() {\n try {\n root._bokeh_onload_callbacks.forEach(function(callback) {\n if (callback != null)\n callback();\n });\n } finally {\n delete root._bokeh_onload_callbacks\n }\n console.debug(\"Bokeh: all callbacks have finished\");\n }\n\n function load_libs(css_urls, js_urls, callback) {\n if (css_urls == null) css_urls = [];\n if (js_urls == null) js_urls = [];\n\n root._bokeh_onload_callbacks.push(callback);\n if (root._bokeh_is_loading > 0) {\n console.debug(\"Bokeh: BokehJS is being loaded, scheduling callback at\", now());\n return null;\n }\n if (js_urls == null || js_urls.length === 0) {\n run_callbacks();\n return null;\n }\n console.debug(\"Bokeh: BokehJS not loaded, scheduling load and callback at\", now());\n root._bokeh_is_loading = css_urls.length + js_urls.length;\n\n function on_load() {\n root._bokeh_is_loading--;\n if (root._bokeh_is_loading === 0) {\n console.debug(\"Bokeh: all BokehJS libraries/stylesheets loaded\");\n run_callbacks()\n }\n }\n\n function on_error(url) {\n console.error(\"failed to load \" + url);\n }\n\n for (let i = 0; i < css_urls.length; i++) {\n const url = css_urls[i];\n const element = document.createElement(\"link\");\n element.onload = on_load;\n element.onerror = on_error.bind(null, url);\n element.rel = \"stylesheet\";\n element.type = \"text/css\";\n element.href = url;\n console.debug(\"Bokeh: injecting link tag for BokehJS stylesheet: \", url);\n document.body.appendChild(element);\n }\n\n for (let i = 0; i < js_urls.length; i++) {\n const url = js_urls[i];\n const element = document.createElement('script');\n element.onload = on_load;\n element.onerror = on_error.bind(null, url);\n element.async = false;\n element.src = url;\n console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n document.head.appendChild(element);\n }\n };\n\n function inject_raw_css(css) {\n const element = document.createElement(\"style\");\n element.appendChild(document.createTextNode(css));\n document.body.appendChild(element);\n }\n\n const js_urls = [\"https://cdn.bokeh.org/bokeh/release/bokeh-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-gl-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-widgets-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-tables-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-mathjax-3.3.4.min.js\"];\n const css_urls = [];\n\n const inline_js = [ function(Bokeh) {\n Bokeh.set_log_level(\"info\");\n },\nfunction(Bokeh) {\n }\n ];\n\n function run_inline_js() {\n if (root.Bokeh !== undefined || force === true) {\n for (let i = 0; i < inline_js.length; i++) {\n inline_js[i].call(root, root.Bokeh);\n }\nif (force === true) {\n display_loaded();\n }} else if (Date.now() < root._bokeh_timeout) {\n setTimeout(run_inline_js, 100);\n } else if (!root._bokeh_failed_load) {\n console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n root._bokeh_failed_load = true;\n } else if (force !== true) {\n const cell = $(document.getElementById(\"e603302b-40d4-4f8c-aa3c-1000266b48fa\")).parents('.cell').data().cell;\n cell.output_area.append_execute_result(NB_LOAD_WARNING)\n }\n }\n\n if (root._bokeh_is_loading === 0) {\n console.debug(\"Bokeh: BokehJS loaded, going straight to plotting\");\n run_inline_js();\n } else {\n load_libs(css_urls, js_urls, function() {\n console.debug(\"Bokeh: BokehJS plotting callback run at\", now());\n run_inline_js();\n });\n }\n}(window));", + "application/vnd.bokehjs_load.v0+json": "(function(root) {\n function now() {\n return new Date();\n }\n\n const force = true;\n\n if (typeof root._bokeh_onload_callbacks === \"undefined\" || force === true) {\n root._bokeh_onload_callbacks = [];\n root._bokeh_is_loading = undefined;\n }\n\n\n if (typeof (root._bokeh_timeout) === \"undefined\" || force === true) {\n root._bokeh_timeout = Date.now() + 5000;\n root._bokeh_failed_load = false;\n }\n\n const NB_LOAD_WARNING = {'data': {'text/html':\n \"
\\n\"+\n \"

\\n\"+\n \"BokehJS does not appear to have successfully loaded. If loading BokehJS from CDN, this \\n\"+\n \"may be due to a slow or bad network connection. Possible fixes:\\n\"+\n \"

\\n\"+\n \"
    \\n\"+\n \"
  • re-rerun `output_notebook()` to attempt to load from CDN again, or
  • \\n\"+\n \"
  • use INLINE resources instead, as so:
  • \\n\"+\n \"
\\n\"+\n \"\\n\"+\n \"from bokeh.resources import INLINE\\n\"+\n \"output_notebook(resources=INLINE)\\n\"+\n \"\\n\"+\n \"
\"}};\n\n function display_loaded() {\n const el = document.getElementById(\"e603302b-40d4-4f8c-aa3c-1000266b48fa\");\n if (el != null) {\n el.textContent = \"BokehJS is loading...\";\n }\n if (root.Bokeh !== undefined) {\n if (el != null) {\n el.textContent = \"BokehJS \" + root.Bokeh.version + \" successfully loaded.\";\n }\n } else if (Date.now() < root._bokeh_timeout) {\n setTimeout(display_loaded, 100)\n }\n }\n\n function run_callbacks() {\n try {\n root._bokeh_onload_callbacks.forEach(function(callback) {\n if (callback != null)\n callback();\n });\n } finally {\n delete root._bokeh_onload_callbacks\n }\n console.debug(\"Bokeh: all callbacks have finished\");\n }\n\n function load_libs(css_urls, js_urls, callback) {\n if (css_urls == null) css_urls = [];\n if (js_urls == null) js_urls = [];\n\n root._bokeh_onload_callbacks.push(callback);\n if (root._bokeh_is_loading > 0) {\n console.debug(\"Bokeh: BokehJS is being loaded, scheduling callback at\", now());\n return null;\n }\n if (js_urls == null || js_urls.length === 0) {\n run_callbacks();\n return null;\n }\n console.debug(\"Bokeh: BokehJS not loaded, scheduling load and callback at\", now());\n root._bokeh_is_loading = css_urls.length + js_urls.length;\n\n function on_load() {\n root._bokeh_is_loading--;\n if (root._bokeh_is_loading === 0) {\n console.debug(\"Bokeh: all BokehJS libraries/stylesheets loaded\");\n run_callbacks()\n }\n }\n\n function on_error(url) {\n console.error(\"failed to load \" + url);\n }\n\n for (let i = 0; i < css_urls.length; i++) {\n const url = css_urls[i];\n const element = document.createElement(\"link\");\n element.onload = on_load;\n element.onerror = on_error.bind(null, url);\n element.rel = \"stylesheet\";\n element.type = \"text/css\";\n element.href = url;\n console.debug(\"Bokeh: injecting link tag for BokehJS stylesheet: \", url);\n document.body.appendChild(element);\n }\n\n for (let i = 0; i < js_urls.length; i++) {\n const url = js_urls[i];\n const element = document.createElement('script');\n element.onload = on_load;\n element.onerror = on_error.bind(null, url);\n element.async = false;\n element.src = url;\n console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n document.head.appendChild(element);\n }\n };\n\n function inject_raw_css(css) {\n const element = document.createElement(\"style\");\n element.appendChild(document.createTextNode(css));\n document.body.appendChild(element);\n }\n\n const js_urls = [\"https://cdn.bokeh.org/bokeh/release/bokeh-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-gl-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-widgets-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-tables-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-mathjax-3.3.4.min.js\"];\n const css_urls = [];\n\n const inline_js = [ function(Bokeh) {\n Bokeh.set_log_level(\"info\");\n },\nfunction(Bokeh) {\n }\n ];\n\n function run_inline_js() {\n if (root.Bokeh !== undefined || force === true) {\n for (let i = 0; i < inline_js.length; i++) {\n inline_js[i].call(root, root.Bokeh);\n }\nif (force === true) {\n display_loaded();\n }} else if (Date.now() < root._bokeh_timeout) {\n setTimeout(run_inline_js, 100);\n } else if (!root._bokeh_failed_load) {\n console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n root._bokeh_failed_load = true;\n } else if (force !== true) {\n const cell = $(document.getElementById(\"e603302b-40d4-4f8c-aa3c-1000266b48fa\")).parents('.cell').data().cell;\n cell.output_area.append_execute_result(NB_LOAD_WARNING)\n }\n }\n\n if (root._bokeh_is_loading === 0) {\n console.debug(\"Bokeh: BokehJS loaded, going straight to plotting\");\n run_inline_js();\n } else {\n load_libs(css_urls, js_urls, function() {\n console.debug(\"Bokeh: BokehJS plotting callback run at\", now());\n run_inline_js();\n });\n }\n}(window));" }, "metadata": {}, "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/opt/conda/miniconda3/lib/python3.11/site-packages/hailtop/aiocloud/aiogoogle/user_config.py:43: UserWarning:\n", - "\n", - "Reading spark-defaults.conf to determine GCS requester pays configuration. This is deprecated. Please use `hailctl config set gcs_requester_pays/project` and `hailctl config set gcs_requester_pays/buckets`.\n", - "\n", - "Setting default log level to \"WARN\".\n", - "To adjust logging level use sc.setLogLevel(newLevel). For SparkR, use setLogLevel(newLevel).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "SPARKMONITOR_LISTENER: Started SparkListener for Jupyter Notebook\n", - "SPARKMONITOR_LISTENER: Port obtained from environment: 51311\n", - "SPARKMONITOR_LISTENER: Application Started: application_1730470703538_0002 ...Start Time: 1730485367380\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Running on Apache Spark version 3.5.0\n", - "SparkUI available at http://qh1-m.c.broad-mpg-gnomad.internal:39033\n", - "Welcome to\n", - " __ __ <>__\n", - " / /_/ /__ __/ /\n", - " / __ / _ `/ / /\n", - " /_/ /_/\\_,_/_/_/ version 0.2.133-4c60fddb171a\n", - "LOGGING: writing to /test_toolbox.log\n" - ] } ], - "source": [ - "import hail as hl\n", - "\n", - "hl.init(\n", - " log=\"/test_toolbox.log\",\n", - " tmp_dir=\"gs://gnomad-tmp-30day\",\n", - " )" - ] + "execution_count": 1 }, { "cell_type": "markdown", @@ -404,17 +76,16 @@ }, { "cell_type": "code", - "execution_count": 3, "id": "e69953f7", - "metadata": {}, + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-06T18:04:56.165634Z", + "start_time": "2024-12-06T18:04:55.603516Z" + } + }, + "source": "from gnomad_toolbox.load_data import get_gnomad_release", "outputs": [], - "source": [ - "from gnomad_toolbox.modules.filter_variant import get_variant_count, filter_by_interval, filter_by_gene_symbol, filter_by_csqs\n", - "from gnomad_toolbox.modules.import_data import get_ht_by_datatype_and_version\n", - "from gnomad_toolbox.modules.filter_variant import \n", - "from gnomad_toolbox.modules.extract_freq import extract_callstats_for_1anc_1variant, extract_callstats_for_multiple_ancs\n", - "from gnomad.resources.grch38.gnomad import coverage" - ] + "execution_count": 3 }, { "cell_type": "markdown", @@ -433,18 +104,1604 @@ "| genomes | 3.0, 3.1, 3.1.1, 3.1.2, 4.0, 4.1 | 2.1, 2.1.1 |\n", "| joint | 4.1 | N/A |\n", "\n", - "We use gnomAD v4.1 exomes to demonstrate for examples below. " + "We use gnomAD v4.1 exomes to demonstrate for examples below." ] }, + { + "metadata": {}, + "cell_type": "markdown", + "source": "## Loading gnomAD v4.1 exomes sites Hail Table\n", + "id": "d1a4ae8933ba6421" + }, { "cell_type": "code", - "execution_count": 30, "id": "100cf576", + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-06T18:08:08.225100Z", + "start_time": "2024-12-06T18:07:55.852971Z" + } + }, + "source": "ht = get_gnomad_release(data_type='exomes', version='4.1')", + "outputs": [ + { + "data": { + "text/plain": [ + "\u001B[?25l" + ], + "text/html": [ + "
\n"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/plain": [
+       "Output()"
+      ],
+      "application/vnd.jupyter.widget-view+json": {
+       "version_major": 2,
+       "version_minor": 0,
+       "model_id": "4720d6aa643c489bb768ba33f92dbc45"
+      }
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/plain": [
+       "\n",
+       "\u001B[?25h"
+      ],
+      "text/html": [
+       "
\n",
+       "
\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "\u001B[?25l" + ], + "text/html": [ + "
\n"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/plain": [
+       "Output()"
+      ],
+      "application/vnd.jupyter.widget-view+json": {
+       "version_major": 2,
+       "version_minor": 0,
+       "model_id": "782f39c8b7904334873519d3c7da2b37"
+      }
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/plain": [
+       "\n",
+       "\u001B[?25h"
+      ],
+      "text/html": [
+       "
\n",
+       "
\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "execution_count": 5 + }, + { "metadata": {}, - "outputs": [], - "source": [ - "ht = get_ht_by_datatype_and_version(data_type='exomes', version='4.1')" - ] + "cell_type": "markdown", + "source": "## Print the schema of the Hail Table\n", + "id": "77d7a05e31c1f37a" + }, + { + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-06T18:14:53.139250Z", + "start_time": "2024-12-06T18:14:53.136478Z" + } + }, + "cell_type": "code", + "source": "ht.describe()", + "id": "95c14f2c8cc3e699", + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "----------------------------------------\n", + "Global fields:\n", + " 'freq_meta': array> \n", + " 'freq_index_dict': dict \n", + " 'freq_meta_sample_count': array \n", + " 'faf_meta': array> \n", + " 'faf_index_dict': dict \n", + " 'age_distribution': struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int32, \n", + " n_larger: int32\n", + " } \n", + " 'downsamplings': dict> \n", + " 'filtering_model': struct {\n", + " filter_name: str, \n", + " score_name: str, \n", + " snv_cutoff: struct {\n", + " bin: int32, \n", + " min_score: float64\n", + " }, \n", + " indel_cutoff: struct {\n", + " bin: int32, \n", + " min_score: float64\n", + " }, \n", + " snv_training_variables: array, \n", + " indel_training_variables: array\n", + " } \n", + " 'inbreeding_coeff_cutoff': float64 \n", + " 'interval_qc_parameters': struct {\n", + " per_platform: bool, \n", + " all_platforms: bool, \n", + " high_qual_cutoffs: dict>, \n", + " min_platform_size: int32\n", + " } \n", + " 'tool_versions': struct {\n", + " cadd_version: str, \n", + " revel_version: str, \n", + " spliceai_version: str, \n", + " pangolin_version: array, \n", + " phylop_version: str, \n", + " dbsnp_version: str, \n", + " sift_version: str, \n", + " polyphen_version: str\n", + " } \n", + " 'vrs_versions': struct {\n", + " vrs_schema_version: str, \n", + " vrs_python_version: str, \n", + " seqrepo_version: str\n", + " } \n", + " 'vep_globals': struct {\n", + " vep_version: str, \n", + " vep_help: str, \n", + " vep_config: str, \n", + " gencode_version: str, \n", + " mane_select_version: str\n", + " } \n", + " 'frequency_README': str \n", + " 'date': str \n", + " 'version': str \n", + "----------------------------------------\n", + "Row fields:\n", + " 'locus': locus \n", + " 'alleles': array \n", + " 'freq': array \n", + " 'grpmax': struct {\n", + " gnomad: struct {\n", + " AC: int32, \n", + " AF: float64, \n", + " AN: int32, \n", + " homozygote_count: int64, \n", + " gen_anc: str\n", + " }, \n", + " non_ukb: struct {\n", + " AC: int32, \n", + " AF: float64, \n", + " AN: int32, \n", + " homozygote_count: int64, \n", + " gen_anc: str\n", + " }\n", + " } \n", + " 'faf': array \n", + " 'fafmax': struct {\n", + " gnomad: struct {\n", + " faf95_max: float64, \n", + " faf95_max_gen_anc: str, \n", + " faf99_max: float64, \n", + " faf99_max_gen_anc: str\n", + " }, \n", + " non_ukb: struct {\n", + " faf95_max: float64, \n", + " faf95_max_gen_anc: str, \n", + " faf99_max: float64, \n", + " faf99_max_gen_anc: str\n", + " }\n", + " } \n", + " 'a_index': int32 \n", + " 'was_split': bool \n", + " 'rsid': set \n", + " 'filters': set \n", + " 'info': struct {\n", + " FS: float64, \n", + " MQ: float64, \n", + " MQRankSum: float64, \n", + " QUALapprox: int64, \n", + " QD: float64, \n", + " ReadPosRankSum: float64, \n", + " SB: array, \n", + " SOR: float64, \n", + " VarDP: int32, \n", + " AS_FS: float64, \n", + " AS_MQ: float64, \n", + " AS_MQRankSum: float64, \n", + " AS_pab_max: float64, \n", + " AS_QUALapprox: int64, \n", + " AS_QD: float64, \n", + " AS_ReadPosRankSum: float64, \n", + " AS_SB_TABLE: array, \n", + " AS_SOR: float64, \n", + " AS_VarDP: int32, \n", + " singleton: bool, \n", + " transmitted_singleton: bool, \n", + " sibling_singleton: bool, \n", + " omni: bool, \n", + " mills: bool, \n", + " monoallelic: bool, \n", + " only_het: bool, \n", + " AS_VQSLOD: float64, \n", + " inbreeding_coeff: float64, \n", + " vrs: struct {\n", + " VRS_Allele_IDs: array, \n", + " VRS_Starts: array, \n", + " VRS_Ends: array, \n", + " VRS_States: array\n", + " }\n", + " } \n", + " 'vep': struct {\n", + " allele_string: str, \n", + " end: int32, \n", + " id: str, \n", + " input: str, \n", + " intergenic_consequences: array, \n", + " impact: str, \n", + " variant_allele: str\n", + " }>, \n", + " most_severe_consequence: str, \n", + " motif_feature_consequences: array, \n", + " high_inf_pos: str, \n", + " impact: str, \n", + " motif_feature_id: str, \n", + " motif_name: str, \n", + " motif_pos: int32, \n", + " motif_score_change: float64, \n", + " transcription_factors: array, \n", + " strand: int32, \n", + " variant_allele: str\n", + " }>, \n", + " regulatory_feature_consequences: array, \n", + " impact: str, \n", + " regulatory_feature_id: str, \n", + " variant_allele: str\n", + " }>, \n", + " seq_region_name: str, \n", + " start: int32, \n", + " strand: int32, \n", + " transcript_consequences: array, \n", + " distance: int32, \n", + " domains: array, \n", + " exon: str, \n", + " flags: str, \n", + " gene_id: str, \n", + " gene_pheno: int32, \n", + " gene_symbol: str, \n", + " gene_symbol_source: str, \n", + " hgnc_id: str, \n", + " hgvsc: str, \n", + " hgvsp: str, \n", + " hgvs_offset: int32, \n", + " impact: str, \n", + " intron: str, \n", + " lof: str, \n", + " lof_flags: str, \n", + " lof_filter: str, \n", + " lof_info: str, \n", + " mane_select: str, \n", + " mane_plus_clinical: str, \n", + " mirna: array, \n", + " protein_end: int32, \n", + " protein_start: int32, \n", + " protein_id: str, \n", + " source: str, \n", + " strand: int32, \n", + " transcript_id: str, \n", + " tsl: int32, \n", + " uniprot_isoform: array, \n", + " variant_allele: str\n", + " }>, \n", + " variant_class: str\n", + " } \n", + " 'vqsr_results': struct {\n", + " AS_VQSLOD: float64, \n", + " AS_culprit: str, \n", + " positive_train_site: bool, \n", + " negative_train_site: bool\n", + " } \n", + " 'region_flags': struct {\n", + " non_par: bool, \n", + " lcr: bool, \n", + " segdup: bool, \n", + " fail_interval_qc: bool, \n", + " outside_ukb_capture_region: bool, \n", + " outside_broad_capture_region: bool\n", + " } \n", + " 'allele_info': struct {\n", + " variant_type: str, \n", + " n_alt_alleles: int32, \n", + " has_star: bool, \n", + " allele_type: str, \n", + " was_mixed: bool\n", + " } \n", + " 'histograms': struct {\n", + " qual_hists: struct {\n", + " gq_hist_all: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }, \n", + " dp_hist_all: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }, \n", + " gq_hist_alt: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }, \n", + " dp_hist_alt: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }, \n", + " ab_hist_alt: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }\n", + " }, \n", + " raw_qual_hists: struct {\n", + " gq_hist_all: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }, \n", + " dp_hist_all: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }, \n", + " gq_hist_alt: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }, \n", + " dp_hist_alt: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }, \n", + " ab_hist_alt: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }\n", + " }, \n", + " age_hists: struct {\n", + " age_hist_het: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }, \n", + " age_hist_hom: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }\n", + " }\n", + " } \n", + " 'in_silico_predictors': struct {\n", + " cadd: struct {\n", + " phred: float32, \n", + " raw_score: float32\n", + " }, \n", + " revel_max: float64, \n", + " spliceai_ds_max: float32, \n", + " pangolin_largest_ds: float64, \n", + " phylop: float64, \n", + " sift_max: float64, \n", + " polyphen_max: float64\n", + " } \n", + "----------------------------------------\n", + "Key: ['locus', 'alleles']\n", + "----------------------------------------\n" + ] + } + ], + "execution_count": 8 + }, + { + "metadata": {}, + "cell_type": "markdown", + "source": "## Show the first 5 variants in the Hail Table\n", + "id": "a071f738b2c888e" + }, + { + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-06T18:16:28.722532Z", + "start_time": "2024-12-06T18:16:00.055352Z" + } + }, + "cell_type": "code", + "source": "ht.show(5)", + "id": "222de580c305d72a", + "outputs": [ + { + "data": { + "text/plain": [ + "\u001B[?25l" + ], + "text/html": [ + "
\n"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/plain": [
+       "Output()"
+      ],
+      "application/vnd.jupyter.widget-view+json": {
+       "version_major": 2,
+       "version_minor": 0,
+       "model_id": "a239765de31846aab6def7bc857e326e"
+      }
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/plain": [
+       "\n",
+       "\u001B[?25h"
+      ],
+      "text/html": [
+       "
\n",
+       "
\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "+---------------+----------------+\n", + "| locus | alleles |\n", + "+---------------+----------------+\n", + "| locus | array |\n", + "+---------------+----------------+\n", + "| chr1:11994 | [\"T\",\"C\"] |\n", + "| chr1:12016 | [\"G\",\"A\"] |\n", + "| chr1:12060 | [\"CTGGAG\",\"C\"] |\n", + "| chr1:12074 | [\"T\",\"C\"] |\n", + "| chr1:12102 | [\"G\",\"A\"] |\n", + "+---------------+----------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| freq |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [(0,NA,0,0),(2,3.18e-06,628784,1),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,... |\n", + "| [(0,NA,0,0),(6,9.54e-06,628784,2),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,... |\n", + "| [(0,0.00e+00,4,0),(1,1.59e-06,628784,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),... |\n", + "| [(0,0.00e+00,4,0),(2,3.18e-06,628784,1),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),... |\n", + "| [(0,0.00e+00,32,0),(2,3.18e-06,628784,1),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0)... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+------------------+------------------+------------------+\n", + "| grpmax.gnomad.AC | grpmax.gnomad.AF | grpmax.gnomad.AN |\n", + "+------------------+------------------+------------------+\n", + "| int32 | float64 | int32 |\n", + "+------------------+------------------+------------------+\n", + "| NA | NA | NA |\n", + "| NA | NA | NA |\n", + "| NA | NA | NA |\n", + "| NA | NA | NA |\n", + "| NA | NA | NA |\n", + "+------------------+------------------+------------------+\n", + "\n", + "+--------------------------------+-----------------------+-------------------+\n", + "| grpmax.gnomad.homozygote_count | grpmax.gnomad.gen_anc | grpmax.non_ukb.AC |\n", + "+--------------------------------+-----------------------+-------------------+\n", + "| int64 | str | int32 |\n", + "+--------------------------------+-----------------------+-------------------+\n", + "| NA | NA | NA |\n", + "| NA | NA | NA |\n", + "| NA | NA | NA |\n", + "| NA | NA | NA |\n", + "| NA | NA | NA |\n", + "+--------------------------------+-----------------------+-------------------+\n", + "\n", + "+-------------------+-------------------+---------------------------------+\n", + "| grpmax.non_ukb.AF | grpmax.non_ukb.AN | grpmax.non_ukb.homozygote_count |\n", + "+-------------------+-------------------+---------------------------------+\n", + "| float64 | int32 | int64 |\n", + "+-------------------+-------------------+---------------------------------+\n", + "| NA | NA | NA |\n", + "| NA | NA | NA |\n", + "| NA | NA | NA |\n", + "| NA | NA | NA |\n", + "| NA | NA | NA |\n", + "+-------------------+-------------------+---------------------------------+\n", + "\n", + "+------------------------+\n", + "| grpmax.non_ukb.gen_anc |\n", + "+------------------------+\n", + "| str |\n", + "+------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| faf |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.... |\n", + "| [(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.... |\n", + "| [(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.... |\n", + "| [(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.... |\n", + "| [(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+-------------------------+---------------------------------+\n", + "| fafmax.gnomad.faf95_max | fafmax.gnomad.faf95_max_gen_anc |\n", + "+-------------------------+---------------------------------+\n", + "| float64 | str |\n", + "+-------------------------+---------------------------------+\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "+-------------------------+---------------------------------+\n", + "\n", + "+-------------------------+---------------------------------+\n", + "| fafmax.gnomad.faf99_max | fafmax.gnomad.faf99_max_gen_anc |\n", + "+-------------------------+---------------------------------+\n", + "| float64 | str |\n", + "+-------------------------+---------------------------------+\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "+-------------------------+---------------------------------+\n", + "\n", + "+--------------------------+----------------------------------+\n", + "| fafmax.non_ukb.faf95_max | fafmax.non_ukb.faf95_max_gen_anc |\n", + "+--------------------------+----------------------------------+\n", + "| float64 | str |\n", + "+--------------------------+----------------------------------+\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "+--------------------------+----------------------------------+\n", + "\n", + "+--------------------------+----------------------------------+---------+\n", + "| fafmax.non_ukb.faf99_max | fafmax.non_ukb.faf99_max_gen_anc | a_index |\n", + "+--------------------------+----------------------------------+---------+\n", + "| float64 | str | int32 |\n", + "+--------------------------+----------------------------------+---------+\n", + "| NA | NA | 1 |\n", + "| NA | NA | 1 |\n", + "| NA | NA | 1 |\n", + "| NA | NA | 1 |\n", + "| NA | NA | 1 |\n", + "+--------------------------+----------------------------------+---------+\n", + "\n", + "+-----------+----------+-------------------+---------+----------+\n", + "| was_split | rsid | filters | info.FS | info.MQ |\n", + "+-----------+----------+-------------------+---------+----------+\n", + "| bool | set | set | float64 | float64 |\n", + "+-----------+----------+-------------------+---------+----------+\n", + "| False | NA | {\"AC0\",\"AS_VQSR\"} | NA | 2.50e+01 |\n", + "| False | NA | {\"AC0\",\"AS_VQSR\"} | NA | 2.50e+01 |\n", + "| False | NA | {\"AC0\",\"AS_VQSR\"} | NA | 2.60e+01 |\n", + "| False | NA | {\"AC0\",\"AS_VQSR\"} | NA | 2.56e+01 |\n", + "| False | NA | {\"AC0\",\"AS_VQSR\"} | NA | 2.45e+01 |\n", + "+-----------+----------+-------------------+---------+----------+\n", + "\n", + "+----------------+-----------------+----------+---------------------+\n", + "| info.MQRankSum | info.QUALapprox | info.QD | info.ReadPosRankSum |\n", + "+----------------+-----------------+----------+---------------------+\n", + "| float64 | int64 | float64 | float64 |\n", + "+----------------+-----------------+----------+---------------------+\n", + "| NA | 60 | 3.00e+01 | NA |\n", + "| 0.00e+00 | 262 | 2.18e+01 | 6.74e-01 |\n", + "| 6.74e-01 | 123 | 3.08e+01 | -1.15e+00 |\n", + "| 4.31e-01 | 99 | 1.24e+01 | -2.53e-01 |\n", + "| NA | 90 | 2.25e+01 | NA |\n", + "+----------------+-----------------+----------+---------------------+\n", + "\n", + "+--------------+----------+------------+------------+------------+\n", + "| info.SB | info.SOR | info.VarDP | info.AS_FS | info.AS_MQ |\n", + "+--------------+----------+------------+------------+------------+\n", + "| array | float64 | int32 | float64 | float64 |\n", + "+--------------+----------+------------+------------+------------+\n", + "| [0,0,2,0] | 2.30e+00 | 2 | NA | 2.50e+01 |\n", + "| [2,0,10,0] | 2.67e+00 | 12 | NA | 2.50e+01 |\n", + "| [1,0,3,0] | 1.61e+00 | 4 | NA | 2.60e+01 |\n", + "| [4,0,4,0] | 6.93e-01 | 8 | NA | 2.56e+01 |\n", + "| [0,0,4,0] | 3.26e+00 | 4 | NA | 2.45e+01 |\n", + "+--------------+----------+------------+------------+------------+\n", + "\n", + "+-------------------+-----------------+--------------------+------------+\n", + "| info.AS_MQRankSum | info.AS_pab_max | info.AS_QUALapprox | info.AS_QD |\n", + "+-------------------+-----------------+--------------------+------------+\n", + "| float64 | float64 | int64 | float64 |\n", + "+-------------------+-----------------+--------------------+------------+\n", + "| NA | NA | 60 | 3.00e+01 |\n", + "| 0.00e+00 | 1.00e+00 | 262 | 2.18e+01 |\n", + "| 6.74e-01 | 6.25e-01 | 123 | 3.08e+01 |\n", + "| 4.31e-01 | 6.87e-01 | 99 | 1.24e+01 |\n", + "| NA | NA | 90 | 2.25e+01 |\n", + "+-------------------+-----------------+--------------------+------------+\n", + "\n", + "+------------------------+------------------+-------------+---------------+\n", + "| info.AS_ReadPosRankSum | info.AS_SB_TABLE | info.AS_SOR | info.AS_VarDP |\n", + "+------------------------+------------------+-------------+---------------+\n", + "| float64 | array | float64 | int32 |\n", + "+------------------------+------------------+-------------+---------------+\n", + "| NA | [0,0,2,0] | 2.30e+00 | 2 |\n", + "| 6.74e-01 | [2,0,10,0] | 2.67e+00 | 12 |\n", + "| -1.15e+00 | [1,0,3,0] | 1.61e+00 | 4 |\n", + "| -2.53e-01 | [4,0,4,0] | 6.93e-01 | 8 |\n", + "| NA | [0,0,4,0] | 3.26e+00 | 4 |\n", + "+------------------------+------------------+-------------+---------------+\n", + "\n", + "+----------------+----------------------------+------------------------+\n", + "| info.singleton | info.transmitted_singleton | info.sibling_singleton |\n", + "+----------------+----------------------------+------------------------+\n", + "| bool | bool | bool |\n", + "+----------------+----------------------------+------------------------+\n", + "| False | NA | NA |\n", + "| False | NA | NA |\n", + "| True | NA | NA |\n", + "| False | NA | NA |\n", + "| False | NA | NA |\n", + "+----------------+----------------------------+------------------------+\n", + "\n", + "+-----------+------------+------------------+---------------+----------------+\n", + "| info.omni | info.mills | info.monoallelic | info.only_het | info.AS_VQSLOD |\n", + "+-----------+------------+------------------+---------------+----------------+\n", + "| bool | bool | bool | bool | float64 |\n", + "+-----------+------------+------------------+---------------+----------------+\n", + "| False | False | False | False | -5.25e+00 |\n", + "| False | False | False | False | -2.75e+00 |\n", + "| False | False | False | False | -2.22e+00 |\n", + "| False | False | False | False | -2.18e+00 |\n", + "| False | False | False | False | -2.86e+00 |\n", + "+-----------+------------+------------------+---------------+----------------+\n", + "\n", + "+-----------------------+\n", + "| info.inbreeding_coeff |\n", + "+-----------------------+\n", + "| float64 |\n", + "+-----------------------+\n", + "| 1.00e+00 |\n", + "| 6.67e-01 |\n", + "| -1.59e-06 |\n", + "| 1.00e+00 |\n", + "| 1.00e+00 |\n", + "+-----------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| info.vrs.VRS_Allele_IDs |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [\"ga4gh:VA.ps4-9woXy7o4rS39i8hDK_cUPBa-UcyP\",\"ga4gh:VA.nHlWYJXgiuvXrLAxQs... |\n", + "| [\"ga4gh:VA.VFxwcI4knOzk6SHzS2qowyDGnkG3mfEH\",\"ga4gh:VA.ctgP7qNjQAGjI2eTDo... |\n", + "| [\"ga4gh:VA.P573ZtUtAaRcceE7NLanEyynSefvcAPL\",\"ga4gh:VA.CHmk9uDiHW2LIHndZW... |\n", + "| [\"ga4gh:VA.neBeBT28ISe_1-yKPFsYxntP2jz1pj7E\",\"ga4gh:VA.1RPHSwBHNUwoECJ9VV... |\n", + "| [\"ga4gh:VA.ZXRhPWtip8HseOMWpCnaja0-ATo8hLE1\",\"ga4gh:VA.Qi95g6E8nt6DaqTGpH... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+---------------------+-------------------+---------------------+\n", + "| info.vrs.VRS_Starts | info.vrs.VRS_Ends | info.vrs.VRS_States |\n", + "+---------------------+-------------------+---------------------+\n", + "| array | array | array |\n", + "+---------------------+-------------------+---------------------+\n", + "| [11993,11993] | [11994,11994] | [\"T\",\"C\"] |\n", + "| [12015,12015] | [12016,12016] | [\"G\",\"A\"] |\n", + "| [12059,12060] | [12065,12071] | [\"CTGGAG\",\"TGGAGT\"] |\n", + "| [12073,12073] | [12074,12074] | [\"T\",\"C\"] |\n", + "| [12101,12101] | [12102,12102] | [\"G\",\"A\"] |\n", + "+---------------------+-------------------+---------------------+\n", + "\n", + "+-------------------+---------+--------+--------------------------------+\n", + "| vep.allele_string | vep.end | vep.id | vep.input |\n", + "+-------------------+---------+--------+--------------------------------+\n", + "| str | int32 | str | str |\n", + "+-------------------+---------+--------+--------------------------------+\n", + "| \"T/C\" | 11994 | \".\" | \"chr1\t11994\t.\tT\tC\t.\t.\tGT\" |\n", + "| \"G/A\" | 12016 | \".\" | \"chr1\t12016\t.\tG\tA\t.\t.\tGT\" |\n", + "| \"TGGAG/-\" | 12065 | \".\" | \"chr1\t12060\t.\tCTGGAG\tC\t.\t.\tGT\" |\n", + "| \"T/C\" | 12074 | \".\" | \"chr1\t12074\t.\tT\tC\t.\t.\tGT\" |\n", + "| \"G/A\" | 12102 | \".\" | \"chr1\t12102\t.\tG\tA\t.\t.\tGT\" |\n", + "+-------------------+---------+--------+--------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| vep.intergenic_consequences |\n", + "+------------------------------------------------------------------------------+\n", + "| array, impact: st... |\n", + "+------------------------------------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+--------------------------------------+\n", + "| vep.most_severe_consequence |\n", + "+--------------------------------------+\n", + "| str |\n", + "+--------------------------------------+\n", + "| \"non_coding_transcript_exon_variant\" |\n", + "| \"non_coding_transcript_exon_variant\" |\n", + "| \"splice_donor_5th_base_variant\" |\n", + "| \"non_coding_transcript_exon_variant\" |\n", + "| \"non_coding_transcript_exon_variant\" |\n", + "+--------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| vep.motif_feature_consequences |\n", + "+------------------------------------------------------------------------------+\n", + "| array, high_inf_p... |\n", + "+------------------------------------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| vep.regulatory_feature_consequences |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.qual_hists.gq_hist_all.bin_freq |\n", + "+--------------------------------------------+\n", + "| array |\n", + "+--------------------------------------------+\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,2,0,12,0,2,0,0,0,0,0,0,0,0,0,0,0] |\n", + "+--------------------------------------------+\n", + "\n", + "+---------------------------------------------+\n", + "| histograms.qual_hists.gq_hist_all.n_smaller |\n", + "+---------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+---------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.qual_hists.gq_hist_all.n_larger |\n", + "+--------------------------------------------+\n", + "| int64 |\n", + "+--------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+--------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.qual_hists.dp_hist_all.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.qual_hists.dp_hist_all.bin_freq |\n", + "+--------------------------------------------+\n", + "| array |\n", + "+--------------------------------------------+\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,14,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "+--------------------------------------------+\n", + "\n", + "+---------------------------------------------+\n", + "| histograms.qual_hists.dp_hist_all.n_smaller |\n", + "+---------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+---------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.qual_hists.dp_hist_all.n_larger |\n", + "+--------------------------------------------+\n", + "| int64 |\n", + "+--------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+--------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.qual_hists.gq_hist_alt.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.qual_hists.gq_hist_alt.bin_freq |\n", + "+--------------------------------------------+\n", + "| array |\n", + "+--------------------------------------------+\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "+--------------------------------------------+\n", + "\n", + "+---------------------------------------------+\n", + "| histograms.qual_hists.gq_hist_alt.n_smaller |\n", + "+---------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+---------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.qual_hists.gq_hist_alt.n_larger |\n", + "+--------------------------------------------+\n", + "| int64 |\n", + "+--------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+--------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.qual_hists.dp_hist_alt.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.qual_hists.dp_hist_alt.bin_freq |\n", + "+--------------------------------------------+\n", + "| array |\n", + "+--------------------------------------------+\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "+--------------------------------------------+\n", + "\n", + "+---------------------------------------------+\n", + "| histograms.qual_hists.dp_hist_alt.n_smaller |\n", + "+---------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+---------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.qual_hists.dp_hist_alt.n_larger |\n", + "+--------------------------------------------+\n", + "| int64 |\n", + "+--------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+--------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.qual_hists.ab_hist_alt.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.qual_hists.ab_hist_alt.bin_freq |\n", + "+--------------------------------------------+\n", + "| array |\n", + "+--------------------------------------------+\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "+--------------------------------------------+\n", + "\n", + "+---------------------------------------------+\n", + "| histograms.qual_hists.ab_hist_alt.n_smaller |\n", + "+---------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+---------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.qual_hists.ab_hist_alt.n_larger |\n", + "+--------------------------------------------+\n", + "| int64 |\n", + "+--------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+--------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.raw_qual_hists.gq_hist_all.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+--------------------------------------------------+\n", + "| histograms.raw_qual_hists.gq_hist_all.bin_freq |\n", + "+--------------------------------------------------+\n", + "| array |\n", + "+--------------------------------------------------+\n", + "| [314391,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [314388,2,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [314380,0,0,0,11,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0] |\n", + "| [314369,1,0,0,20,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [314323,1,0,0,54,0,12,0,2,0,0,0,0,0,0,0,0,0,0,0] |\n", + "+--------------------------------------------------+\n", + "\n", + "+-------------------------------------------------+\n", + "| histograms.raw_qual_hists.gq_hist_all.n_smaller |\n", + "+-------------------------------------------------+\n", + "| int64 |\n", + "+-------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+-------------------------------------------------+\n", + "\n", + "+------------------------------------------------+\n", + "| histograms.raw_qual_hists.gq_hist_all.n_larger |\n", + "+------------------------------------------------+\n", + "| int64 |\n", + "+------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.raw_qual_hists.dp_hist_all.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+----------------------------------------------------+\n", + "| histograms.raw_qual_hists.dp_hist_all.bin_freq |\n", + "+----------------------------------------------------+\n", + "| array |\n", + "+----------------------------------------------------+\n", + "| [308845,5547,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [308845,5547,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [308833,5557,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [308823,5567,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [308789,5585,16,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "+----------------------------------------------------+\n", + "\n", + "+-------------------------------------------------+\n", + "| histograms.raw_qual_hists.dp_hist_all.n_smaller |\n", + "+-------------------------------------------------+\n", + "| int64 |\n", + "+-------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+-------------------------------------------------+\n", + "\n", + "+------------------------------------------------+\n", + "| histograms.raw_qual_hists.dp_hist_all.n_larger |\n", + "+------------------------------------------------+\n", + "| int64 |\n", + "+------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.raw_qual_hists.gq_hist_alt.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+------------------------------------------------+\n", + "| histograms.raw_qual_hists.gq_hist_alt.bin_freq |\n", + "+------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------+\n", + "| [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,2,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0] |\n", + "| [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "+------------------------------------------------+\n", + "\n", + "+-------------------------------------------------+\n", + "| histograms.raw_qual_hists.gq_hist_alt.n_smaller |\n", + "+-------------------------------------------------+\n", + "| int64 |\n", + "+-------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+-------------------------------------------------+\n", + "\n", + "+------------------------------------------------+\n", + "| histograms.raw_qual_hists.gq_hist_alt.n_larger |\n", + "+------------------------------------------------+\n", + "| int64 |\n", + "+------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.raw_qual_hists.dp_hist_alt.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+------------------------------------------------+\n", + "| histograms.raw_qual_hists.dp_hist_alt.bin_freq |\n", + "+------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------+\n", + "| [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "+------------------------------------------------+\n", + "\n", + "+-------------------------------------------------+\n", + "| histograms.raw_qual_hists.dp_hist_alt.n_smaller |\n", + "+-------------------------------------------------+\n", + "| int64 |\n", + "+-------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+-------------------------------------------------+\n", + "\n", + "+------------------------------------------------+\n", + "| histograms.raw_qual_hists.dp_hist_alt.n_larger |\n", + "+------------------------------------------------+\n", + "| int64 |\n", + "+------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.raw_qual_hists.ab_hist_alt.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+------------------------------------------------+\n", + "| histograms.raw_qual_hists.ab_hist_alt.bin_freq |\n", + "+------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------+\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "+------------------------------------------------+\n", + "\n", + "+-------------------------------------------------+\n", + "| histograms.raw_qual_hists.ab_hist_alt.n_smaller |\n", + "+-------------------------------------------------+\n", + "| int64 |\n", + "+-------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+-------------------------------------------------+\n", + "\n", + "+------------------------------------------------+\n", + "| histograms.raw_qual_hists.ab_hist_alt.n_larger |\n", + "+------------------------------------------------+\n", + "| int64 |\n", + "+------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.age_hists.age_hist_het.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.age_hists.age_hist_het.bin_freq |\n", + "+--------------------------------------------+\n", + "| array |\n", + "+--------------------------------------------+\n", + "| [0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0] |\n", + "+--------------------------------------------+\n", + "\n", + "+---------------------------------------------+\n", + "| histograms.age_hists.age_hist_het.n_smaller |\n", + "+---------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+---------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.age_hists.age_hist_het.n_larger |\n", + "+--------------------------------------------+\n", + "| int64 |\n", + "+--------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+--------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.age_hists.age_hist_hom.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.age_hists.age_hist_hom.bin_freq |\n", + "+--------------------------------------------+\n", + "| array |\n", + "+--------------------------------------------+\n", + "| [0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0] |\n", + "+--------------------------------------------+\n", + "\n", + "+---------------------------------------------+\n", + "| histograms.age_hists.age_hist_hom.n_smaller |\n", + "+---------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+---------------------------------------------+\n", + "\n", + "+--------------------------------------------+---------------------------------+\n", + "| histograms.age_hists.age_hist_hom.n_larger | in_silico_predictors.cadd.phred |\n", + "+--------------------------------------------+---------------------------------+\n", + "| int64 | float32 |\n", + "+--------------------------------------------+---------------------------------+\n", + "| 0 | 1.26e+01 |\n", + "| 0 | 1.60e+01 |\n", + "| 0 | 8.52e+00 |\n", + "| 0 | 1.52e+01 |\n", + "| 0 | 4.42e+00 |\n", + "+--------------------------------------------+---------------------------------+\n", + "\n", + "+-------------------------------------+--------------------------------+\n", + "| in_silico_predictors.cadd.raw_score | in_silico_predictors.revel_max |\n", + "+-------------------------------------+--------------------------------+\n", + "| float32 | float64 |\n", + "+-------------------------------------+--------------------------------+\n", + "| 1.08e+00 | NA |\n", + "| 1.54e+00 | NA |\n", + "| 7.07e-01 | NA |\n", + "| 1.41e+00 | NA |\n", + "| 3.11e-01 | NA |\n", + "+-------------------------------------+--------------------------------+\n", + "\n", + "+--------------------------------------+\n", + "| in_silico_predictors.spliceai_ds_max |\n", + "+--------------------------------------+\n", + "| float32 |\n", + "+--------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+--------------------------------------+\n", + "\n", + "+------------------------------------------+-----------------------------+\n", + "| in_silico_predictors.pangolin_largest_ds | in_silico_predictors.phylop |\n", + "+------------------------------------------+-----------------------------+\n", + "| float64 | float64 |\n", + "+------------------------------------------+-----------------------------+\n", + "| -1.10e-01 | 1.09e+00 |\n", + "| -7.00e-02 | 6.55e+00 |\n", + "| -9.00e-02 | -4.41e+00 |\n", + "| -4.00e-02 | 6.01e+00 |\n", + "| -8.00e-02 | 1.38e+00 |\n", + "+------------------------------------------+-----------------------------+\n", + "\n", + "+-------------------------------+-----------------------------------+\n", + "| in_silico_predictors.sift_max | in_silico_predictors.polyphen_max |\n", + "+-------------------------------+-----------------------------------+\n", + "| float64 | float64 |\n", + "+-------------------------------+-----------------------------------+\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "+-------------------------------+-----------------------------------+\n", + "showing top 5 rows" + ], + "text/html": [ + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
histograms
grpmax
fafmax
info
qual_hists
raw_qual_hists
age_hists
in_silico_predictors
gnomad
non_ukb
gnomad
non_ukb
vrs
vep
vqsr_results
region_flags
allele_info
gq_hist_all
dp_hist_all
gq_hist_alt
dp_hist_alt
ab_hist_alt
gq_hist_all
dp_hist_all
gq_hist_alt
dp_hist_alt
ab_hist_alt
age_hist_het
age_hist_hom
cadd
locus
alleles
freq
AC
AF
AN
homozygote_count
gen_anc
AC
AF
AN
homozygote_count
gen_anc
faf
faf95_max
faf95_max_gen_anc
faf99_max
faf99_max_gen_anc
faf95_max
faf95_max_gen_anc
faf99_max
faf99_max_gen_anc
a_index
was_split
rsid
filters
FS
MQ
MQRankSum
QUALapprox
QD
ReadPosRankSum
SB
SOR
VarDP
AS_FS
AS_MQ
AS_MQRankSum
AS_pab_max
AS_QUALapprox
AS_QD
AS_ReadPosRankSum
AS_SB_TABLE
AS_SOR
AS_VarDP
singleton
transmitted_singleton
sibling_singleton
omni
mills
monoallelic
only_het
AS_VQSLOD
inbreeding_coeff
VRS_Allele_IDs
VRS_Starts
VRS_Ends
VRS_States
allele_string
end
id
input
intergenic_consequences
most_severe_consequence
motif_feature_consequences
regulatory_feature_consequences
seq_region_name
start
strand
transcript_consequences
variant_class
AS_VQSLOD
AS_culprit
positive_train_site
negative_train_site
non_par
lcr
segdup
fail_interval_qc
outside_ukb_capture_region
outside_broad_capture_region
variant_type
n_alt_alleles
has_star
allele_type
was_mixed
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
phred
raw_score
revel_max
spliceai_ds_max
pangolin_largest_ds
phylop
sift_max
polyphen_max
locus<GRCh38>array<str>array<struct{AC: int32, AF: float64, AN: int32, homozygote_count: int64}>int32float64int32int64strint32float64int32int64strarray<struct{faf95: float64, faf99: float64}>float64strfloat64strfloat64strfloat64strint32boolset<str>set<str>float64float64float64int64float64float64array<int32>float64int32float64float64float64float64int64float64float64array<int32>float64int32boolboolboolboolboolboolboolfloat64float64array<str>array<int32>array<int32>array<str>strint32strstrarray<struct{allele_num: int32, consequence_terms: array<str>, impact: str, variant_allele: str}>strarray<struct{allele_num: int32, consequence_terms: array<str>, high_inf_pos: str, impact: str, motif_feature_id: str, motif_name: str, motif_pos: int32, motif_score_change: float64, transcription_factors: array<str>, strand: int32, variant_allele: str}>array<struct{allele_num: int32, biotype: str, consequence_terms: array<str>, impact: str, regulatory_feature_id: str, variant_allele: str}>strint32int32array<struct{allele_num: int32, amino_acids: str, appris: str, biotype: str, canonical: int32, ccds: str, cdna_start: int32, cdna_end: int32, cds_end: int32, cds_start: int32, codons: str, consequence_terms: array<str>, distance: int32, domains: array<struct{db: str, name: str}>, exon: str, flags: str, gene_id: str, gene_pheno: int32, gene_symbol: str, gene_symbol_source: str, hgnc_id: str, hgvsc: str, hgvsp: str, hgvs_offset: int32, impact: str, intron: str, lof: str, lof_flags: str, lof_filter: str, lof_info: str, mane_select: str, mane_plus_clinical: str, mirna: array<str>, protein_end: int32, protein_start: int32, protein_id: str, source: str, strand: int32, transcript_id: str, tsl: int32, uniprot_isoform: array<str>, variant_allele: str}>strfloat64strboolboolboolboolboolboolboolboolstrint32boolstrboolarray<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64float32float32float64float32float64float64float64float64
chr1:11994["T","C"][(0,NA,0,0),(2,3.18e-06,628784,1),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(2,3.18e-06,628784,1),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0)]NANANANANANANANANANA[(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]NANANANANANANANA1FalseNA{"AC0","AS_VQSR"}NA2.50e+01NA603.00e+01NA[0,0,2,0]2.30e+002NA2.50e+01NANA603.00e+01NA[0,0,2,0]2.30e+002FalseNANAFalseFalseFalseFalse-5.25e+001.00e+00["ga4gh:VA.ps4-9woXy7o4rS39i8hDK_cUPBa-UcyP","ga4gh:VA.nHlWYJXgiuvXrLAxQsraJ6r-daZ8ELL-"][11993,11993][11994,11994]["T","C"]"T/C"11994".""chr1\t11994\t.\tT\tC\t.\t.\tGT"NA"non_coding_transcript_exon_variant"NANA"chr1"119941[(1,NA,NA,"transcribed_unprocessed_pseudogene",1,NA,NA,NA,NA,NA,NA,["upstream_gene_variant"],16,NA,NA,NA,"ENSG00000223972",NA,"DDX11L1","HGNC","HGNC:37102",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",1,"ENST00000450305",NA,NA,"C"),(1,NA,NA,"processed_transcript",NA,NA,126,126,NA,NA,NA,["non_coding_transcript_exon_variant"],NA,NA,"1/3",NA,"ENSG00000223972",NA,"DDX11L1","HGNC","HGNC:37102","ENST00000456328.2:n.126T>C",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",1,"ENST00000456328",1,NA,"C"),(1,NA,NA,"unprocessed_pseudogene",1,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],2410,NA,NA,NA,"ENSG00000227232",NA,"WASH7P","HGNC","HGNC:38034",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000488147",NA,NA,"C"),(1,NA,NA,"transcribed_pseudogene",1,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],2368,NA,NA,NA,"653635",NA,"WASH7P","EntrezGene","HGNC:38034",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"RefSeq",-1,"NR_024540.1",NA,NA,"C"),(1,NA,NA,"transcribed_pseudogene",1,NA,121,121,NA,NA,NA,["non_coding_transcript_exon_variant"],NA,NA,"1/3",NA,"100287102",NA,"DDX11L1","EntrezGene","HGNC:37102","NR_046018.2:n.121T>C",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"RefSeq",1,"NR_046018.2",NA,NA,"C")]"SNV"-5.25e+00"AS_MQ"FalseFalseFalseFalseTrueNATrueFalse"snv"1False"snv"False[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][314391,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][308845,5547,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]001.26e+011.08e+00NANA-1.10e-011.09e+00NANA
chr1:12016["G","A"][(0,NA,0,0),(6,9.54e-06,628784,2),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(6,9.54e-06,628784,2),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0)]NANANANANANANANANANA[(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]NANANANANANANANA1FalseNA{"AC0","AS_VQSR"}NA2.50e+010.00e+002622.18e+016.74e-01[2,0,10,0]2.67e+0012NA2.50e+010.00e+001.00e+002622.18e+016.74e-01[2,0,10,0]2.67e+0012FalseNANAFalseFalseFalseFalse-2.75e+006.67e-01["ga4gh:VA.VFxwcI4knOzk6SHzS2qowyDGnkG3mfEH","ga4gh:VA.ctgP7qNjQAGjI2eTDopAF-qoBBPmtsW5"][12015,12015][12016,12016]["G","A"]"G/A"12016".""chr1\t12016\t.\tG\tA\t.\t.\tGT"NA"non_coding_transcript_exon_variant"NANA"chr1"120161[(1,NA,NA,"transcribed_unprocessed_pseudogene",1,NA,7,7,NA,NA,NA,["non_coding_transcript_exon_variant"],NA,NA,"1/6",NA,"ENSG00000223972",NA,"DDX11L1","HGNC","HGNC:37102","ENST00000450305.2:n.7G>A",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",1,"ENST00000450305",NA,NA,"A"),(1,NA,NA,"processed_transcript",NA,NA,148,148,NA,NA,NA,["non_coding_transcript_exon_variant"],NA,NA,"1/3",NA,"ENSG00000223972",NA,"DDX11L1","HGNC","HGNC:37102","ENST00000456328.2:n.148G>A",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",1,"ENST00000456328",1,NA,"A"),(1,NA,NA,"unprocessed_pseudogene",1,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],2388,NA,NA,NA,"ENSG00000227232",NA,"WASH7P","HGNC","HGNC:38034",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000488147",NA,NA,"A"),(1,NA,NA,"transcribed_pseudogene",1,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],2346,NA,NA,NA,"653635",NA,"WASH7P","EntrezGene","HGNC:38034",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"RefSeq",-1,"NR_024540.1",NA,NA,"A"),(1,NA,NA,"transcribed_pseudogene",1,NA,143,143,NA,NA,NA,["non_coding_transcript_exon_variant"],NA,NA,"1/3",NA,"100287102",NA,"DDX11L1","EntrezGene","HGNC:37102","NR_046018.2:n.143G>A",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"RefSeq",1,"NR_046018.2",NA,NA,"A")]"SNV"-2.75e+00"AS_MQ"FalseFalseFalseFalseTrueNATrueFalse"snv"1False"snv"False[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][314388,2,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][308845,5547,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,2,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]001.60e+011.54e+00NANA-7.00e-026.55e+00NANA
chr1:12060["CTGGAG","C"][(0,0.00e+00,4,0),(1,1.59e-06,628784,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,0.00e+00,2,0),(0,0.00e+00,4,0),(1,1.59e-06,628784,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,NA,0,0),(0,NA,0,0)]NANANANANANANANANANA[(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]NANANANANANANANA1FalseNA{"AC0","AS_VQSR"}NA2.60e+016.74e-011233.08e+01-1.15e+00[1,0,3,0]1.61e+004NA2.60e+016.74e-016.25e-011233.08e+01-1.15e+00[1,0,3,0]1.61e+004TrueNANAFalseFalseFalseFalse-2.22e+00-1.59e-06["ga4gh:VA.P573ZtUtAaRcceE7NLanEyynSefvcAPL","ga4gh:VA.CHmk9uDiHW2LIHndZWqNHxD1fN_Ta1vn"][12059,12060][12065,12071]["CTGGAG","TGGAGT"]"TGGAG/-"12065".""chr1\t12060\t.\tCTGGAG\tC\t.\t.\tGT"NA"splice_donor_5th_base_variant"NANA"chr1"120611[(1,NA,NA,"transcribed_unprocessed_pseudogene",1,NA,NA,NA,NA,NA,NA,["splice_donor_5th_base_variant","intron_variant","non_coding_transcript_variant"],NA,NA,NA,NA,"ENSG00000223972",NA,"DDX11L1","HGNC","HGNC:37102","ENST00000450305.2:n.48+10_48+14del",NA,NA,"LOW","1/5",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",1,"ENST00000450305",NA,NA,"-"),(1,NA,NA,"processed_transcript",NA,NA,193,197,NA,NA,NA,["non_coding_transcript_exon_variant"],NA,NA,"1/3",NA,"ENSG00000223972",NA,"DDX11L1","HGNC","HGNC:37102","ENST00000456328.2:n.199_203del",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",1,"ENST00000456328",1,NA,"-"),(1,NA,NA,"unprocessed_pseudogene",1,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],2339,NA,NA,NA,"ENSG00000227232",NA,"WASH7P","HGNC","HGNC:38034",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000488147",NA,NA,"-"),(1,NA,NA,"transcribed_pseudogene",1,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],2297,NA,NA,NA,"653635",NA,"WASH7P","EntrezGene","HGNC:38034",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"RefSeq",-1,"NR_024540.1",NA,NA,"-"),(1,NA,NA,"transcribed_pseudogene",1,NA,188,192,NA,NA,NA,["non_coding_transcript_exon_variant"],NA,NA,"1/3",NA,"100287102",NA,"DDX11L1","EntrezGene","HGNC:37102","NR_046018.2:n.194_198del",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"RefSeq",1,"NR_046018.2",NA,NA,"-")]"deletion"-2.22e+00"AS_MQRankSum"FalseTrueFalseFalseTrueNATrueFalse"indel"1False"del"False[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][314380,0,0,0,11,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][308833,5557,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]008.52e+007.07e-01NANA-9.00e-02-4.41e+00NANA
chr1:12074["T","C"][(0,0.00e+00,4,0),(2,3.18e-06,628784,1),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,0.00e+00,4,0),(0,0.00e+00,2,0),(0,0.00e+00,4,0),(0,0.00e+00,4,0),(0,0.00e+00,4,0),(2,3.18e-06,628784,1),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,0.00e+00,4,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0)]NANANANANANANANANANA[(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]NANANANANANANANA1FalseNA{"AC0","AS_VQSR"}NA2.56e+014.31e-01991.24e+01-2.53e-01[4,0,4,0]6.93e-018NA2.56e+014.31e-016.87e-01991.24e+01-2.53e-01[4,0,4,0]6.93e-018FalseNANAFalseFalseFalseFalse-2.18e+001.00e+00["ga4gh:VA.neBeBT28ISe_1-yKPFsYxntP2jz1pj7E","ga4gh:VA.1RPHSwBHNUwoECJ9VVK3hf-KasFb1nfl"][12073,12073][12074,12074]["T","C"]"T/C"12074".""chr1\t12074\t.\tT\tC\t.\t.\tGT"NA"non_coding_transcript_exon_variant"NANA"chr1"120741[(1,NA,NA,"transcribed_unprocessed_pseudogene",1,NA,NA,NA,NA,NA,NA,["intron_variant","non_coding_transcript_variant"],NA,NA,NA,NA,"ENSG00000223972",NA,"DDX11L1","HGNC","HGNC:37102","ENST00000450305.2:n.48+17T>C",NA,NA,"MODIFIER","1/5",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",1,"ENST00000450305",NA,NA,"C"),(1,NA,NA,"processed_transcript",NA,NA,206,206,NA,NA,NA,["non_coding_transcript_exon_variant"],NA,NA,"1/3",NA,"ENSG00000223972",NA,"DDX11L1","HGNC","HGNC:37102","ENST00000456328.2:n.206T>C",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",1,"ENST00000456328",1,NA,"C"),(1,NA,NA,"unprocessed_pseudogene",1,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],2330,NA,NA,NA,"ENSG00000227232",NA,"WASH7P","HGNC","HGNC:38034",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000488147",NA,NA,"C"),(1,NA,NA,"transcribed_pseudogene",1,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],2288,NA,NA,NA,"653635",NA,"WASH7P","EntrezGene","HGNC:38034",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"RefSeq",-1,"NR_024540.1",NA,NA,"C"),(1,NA,NA,"transcribed_pseudogene",1,NA,201,201,NA,NA,NA,["non_coding_transcript_exon_variant"],NA,NA,"1/3",NA,"100287102",NA,"DDX11L1","EntrezGene","HGNC:37102","NR_046018.2:n.201T>C",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"RefSeq",1,"NR_046018.2",NA,NA,"C")]"SNV"-2.18e+00"AS_MQ"FalseFalseFalseFalseTrueNATrueFalse"snv"1False"snv"False[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][314369,1,0,0,20,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][308823,5567,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]001.52e+011.41e+00NANA-4.00e-026.01e+00NANA
chr1:12102["G","A"][(0,0.00e+00,32,0),(2,3.18e-06,628784,1),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,32,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,16,0),(0,0.00e+00,16,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,16,0),(0,0.00e+00,16,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,0.00e+00,6,0),(0,0.00e+00,4,0),(0,0.00e+00,14,0),(0,0.00e+00,8,0),(0,0.00e+00,30,0),(0,0.00e+00,22,0),(0,0.00e+00,32,0),(0,0.00e+00,26,0),(0,0.00e+00,32,0),(2,3.18e-06,628784,1),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,32,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,16,0),(0,0.00e+00,16,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,16,0),(0,0.00e+00,16,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,0.00e+00,6,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,0.00e+00,10,0),(0,0.00e+00,4,0),(0,0.00e+00,20,0),(0,0.00e+00,12,0),(0,0.00e+00,32,0),(0,0.00e+00,20,0),(0,0.00e+00,22,0)]NANANANANANANANANANA[(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]NANANANANANANANA1FalseNA{"AC0","AS_VQSR"}NA2.45e+01NA902.25e+01NA[0,0,4,0]3.26e+004NA2.45e+01NANA902.25e+01NA[0,0,4,0]3.26e+004FalseNANAFalseFalseFalseFalse-2.86e+001.00e+00["ga4gh:VA.ZXRhPWtip8HseOMWpCnaja0-ATo8hLE1","ga4gh:VA.Qi95g6E8nt6DaqTGpH5JX9x4n-pi-kBO"][12101,12101][12102,12102]["G","A"]"G/A"12102".""chr1\t12102\t.\tG\tA\t.\t.\tGT"NA"non_coding_transcript_exon_variant"NANA"chr1"121021[(1,NA,NA,"transcribed_unprocessed_pseudogene",1,NA,NA,NA,NA,NA,NA,["intron_variant","non_coding_transcript_variant"],NA,NA,NA,NA,"ENSG00000223972",NA,"DDX11L1","HGNC","HGNC:37102","ENST00000450305.2:n.48+45G>A",NA,NA,"MODIFIER","1/5",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",1,"ENST00000450305",NA,NA,"A"),(1,NA,NA,"processed_transcript",NA,NA,234,234,NA,NA,NA,["non_coding_transcript_exon_variant"],NA,NA,"1/3",NA,"ENSG00000223972",NA,"DDX11L1","HGNC","HGNC:37102","ENST00000456328.2:n.234G>A",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",1,"ENST00000456328",1,NA,"A"),(1,NA,NA,"unprocessed_pseudogene",1,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],2302,NA,NA,NA,"ENSG00000227232",NA,"WASH7P","HGNC","HGNC:38034",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000488147",NA,NA,"A"),(1,NA,NA,"transcribed_pseudogene",1,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],2260,NA,NA,NA,"653635",NA,"WASH7P","EntrezGene","HGNC:38034",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"RefSeq",-1,"NR_024540.1",NA,NA,"A"),(1,NA,NA,"transcribed_pseudogene",1,NA,229,229,NA,NA,NA,["non_coding_transcript_exon_variant"],NA,NA,"1/3",NA,"100287102",NA,"DDX11L1","EntrezGene","HGNC:37102","NR_046018.2:n.229G>A",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"RefSeq",1,"NR_046018.2",NA,NA,"A")]"SNV"-2.86e+00"AS_MQ"FalseFalseFalseFalseTrueNATrueFalse"snv"1False"snv"False[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,2,0,12,0,2,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,14,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][314323,1,0,0,54,0,12,0,2,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][308789,5585,16,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]004.42e+003.11e-01NANA-8.00e-021.38e+00NANA

showing top 5 rows

\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "execution_count": 9 }, { "cell_type": "markdown", diff --git a/requirements.txt b/requirements.txt index 2900720..32706b5 100644 --- a/requirements.txt +++ b/requirements.txt @@ -1,3 +1,10 @@ # We're using the main branch of gnomad_method on github rather than the pip version git+https://github.com/broadinstitute/gnomad_methods@main hail +jupyter +jupyter_contrib_nbextensions +jupyter_nbextensions_configurator +jupyterlab +nodejs +npm +jupyter_bokeh From 095a234b196f57ead2a0c6cb8d2ac5bbb102fc55 Mon Sep 17 00:00:00 2001 From: jkgoodrich <33063077+jkgoodrich@users.noreply.github.com> Date: Mon, 9 Dec 2024 10:50:03 -0700 Subject: [PATCH 025/121] - Restructure files - Add a description of the repo structure to the README - Add some potential requirements - Update the documentation and make sure it works - Create a notebook specific to loading gnomAD release data and just showing what each dataset looks like. --- gnomad_toolbox/{modules => analysis}/__init__.py | 0 1 file changed, 0 insertions(+), 0 deletions(-) rename gnomad_toolbox/{modules => analysis}/__init__.py (100%) diff --git a/gnomad_toolbox/modules/__init__.py b/gnomad_toolbox/analysis/__init__.py similarity index 100% rename from gnomad_toolbox/modules/__init__.py rename to gnomad_toolbox/analysis/__init__.py From 5fe3010853ccc1ec9cf730ade73c86ed508b151e Mon Sep 17 00:00:00 2001 From: jkgoodrich <33063077+jkgoodrich@users.noreply.github.com> Date: Mon, 9 Dec 2024 14:58:29 -0700 Subject: [PATCH 026/121] - Modifications to support setting a default data_type and version - Addition of variant.py to store some functions that can also be used by frequency based filtering - Changes to frequency filtering to use new default settings if not passed a ht --- README.md | 2 +- gnomad_toolbox/filtering/frequency.py | 131 ++++++++------- gnomad_toolbox/filtering/interval.py | 84 --------- gnomad_toolbox/filtering/variant.py | 159 ++++++++++++++++++ gnomad_toolbox/load_data.py | 159 ++++++++++++++---- .../notebooks/intro_to_release_data.ipynb | 22 +-- 6 files changed, 373 insertions(+), 184 deletions(-) delete mode 100644 gnomad_toolbox/filtering/interval.py create mode 100644 gnomad_toolbox/filtering/variant.py diff --git a/README.md b/README.md index 52bdd94..76ef6da 100644 --- a/README.md +++ b/README.md @@ -12,8 +12,8 @@ ggnomad_toolbox/ │ ├── constraint.py # Functions to filter constraint metrics (e.g., observed/expected ratios). │ ├── coverage.py # Functions to filter variants or regions based on coverage thresholds. │ ├── frequency.py # Functions to filter variants by allele frequency thresholds. -│ ├── interval.py # Functions to filter variants within specified genomic intervals and genes. │ ├── pext.py # Functions to filter variants using predicted expression (pext) scores. +| ├── variant.py # Functions to filter to a specific variant or set of variants. │ ├── vep.py # Functions to filter variants based on VEP (Variant Effect Predictor) annotations. │ ├── analysis/ diff --git a/gnomad_toolbox/filtering/frequency.py b/gnomad_toolbox/filtering/frequency.py index 1c028a3..2adf1c9 100644 --- a/gnomad_toolbox/filtering/frequency.py +++ b/gnomad_toolbox/filtering/frequency.py @@ -5,35 +5,28 @@ import hail as hl from gnomad.utils.filtering import filter_arrays_by_meta +from gnomad_toolbox.filtering.variant import get_single_variant +from gnomad_toolbox.load_data import _get_gnomad_release -def extract_callstats_for_1anc_1variant( - ht: hl.Table, gen_anc: str, contig: str, position: int, alleles: List[str] + +def get_callstats_for_multiple_ancestries( + gen_ancs: List[str], + **kwargs, ) -> hl.Table: """ - Extract callstats for a specific ancestry group and single variant. + Extract callstats for specified ancestry groups. - :param ht: Input Hail Table with variant data. - :param gen_anc: Genetic ancestry group (e.g., 'afr', 'nfe'). - :param contig: Chromosome of the variant. - :param position: Variant position. - :param alleles: List of alleles for the variant (e.g., ['A', 'T']). - :return: Filtered Table with callstats for the specified group. + :param gen_ancs: List of genetic ancestry groups (e.g., 'afr', 'amr', 'asj', 'eas', + 'fin', 'nfe', 'oth', 'sas'). + :param kwargs: Keyword arguments to pass to _get_gnomad_release. + :return: Table with callstats for the given ancestry groups and variant. """ - # Filter to the variant of interest - ht = ht.filter( - (ht.locus.contig == contig) - & (ht.locus.position == position) - & (ht.alleles == alleles) - ) - - # Check if the variant exists - if ht.count() == 0: - hl.utils.warning( - f"No variant found at {contig}:{position} with alleles {alleles}" - ) + # Load the Hail Table if not provided + ht = _get_gnomad_release(dataset="variant", **kwargs) - # Format gen_anc to lowercase and filter arrays by metadata - items_to_filter = {"gen_anc": [gen_anc.lower()], "group": ["adj"]} + # Format gen_ancs to lowercase and filter arrays by metadata. + gen_ancs = [gen_anc.lower() for gen_anc in gen_ancs] + items_to_filter = {"gen_anc": gen_ancs, "group": ["adj"]} freq_meta, array_exprs = filter_arrays_by_meta( ht.freq_meta, { @@ -45,51 +38,75 @@ def extract_callstats_for_1anc_1variant( combine_operator="and", exact_match=True, ) - # Select frequency for ancestry group ht = ht.select( - **{ - gen_anc: array_exprs["freq"][i] - for i, gen_anc in enumerate([gen_anc.lower()]) - } + "filters", + **{gen_anc: array_exprs["freq"][i] for i, gen_anc in enumerate(gen_ancs)}, ) - ht = ht.annotate_globals( + + # Select a subset of the globals. + ht = ht.select_globals( + "date", + "version", freq_meta=freq_meta, freq_meta_sample_count=array_exprs["freq_meta_sample_count"], ) + return ht -def extract_callstats_for_multiple_ancs( - ht: hl.Table, - gen_ancs: List[str], +def get_callstats_for_single_ancestry( + gen_anc: str, + **kwargs, ) -> hl.Table: """ - Extract callstats for multiple genetic ancestry groups. + Extract callstats for a specific ancestry group and single variant. - :param ht: Input Table. - :param gen_ancs: List of Ancestry Groups (e.g., 'afr', 'amr', 'asj', 'eas', 'fin', 'nfe', - 'oth', 'sas'). - :return: Table with callstats for the given groups. + :param gen_anc: Genetic ancestry group (e.g., 'afr', 'amr', 'asj', 'eas', 'fin', + 'nfe', 'oth', 'sas'). + :param kwargs: Keyword arguments to pass to _get_gnomad_release. + :return: Table with callstats for the given ancestry group. """ - # Format the gen_ancs to lowercase if they're fed in as uppercase - gen_ancs = [gen_anc.lower() for gen_anc in gen_ancs] - items_to_filter = {"gen_anc": gen_ancs, "group": ["adj"]} - freq_meta, array_exprs = filter_arrays_by_meta( - ht.freq_meta, - { - **{a: ht[a] for a in ["freq"]}, - "freq_meta_sample_count": ht.index_globals().freq_meta_sample_count, - }, - items_to_filter=items_to_filter, - keep=True, - combine_operator="and", - exact_match=True, - ) - ht = ht.select( - **{gen_anc: array_exprs["freq"][i] for i, gen_anc in enumerate(gen_ancs)} - ) - ht = ht.annotate_globals( - freq_meta=freq_meta, - freq_meta_sample_count=array_exprs["freq_meta_sample_count"], + ht = get_callstats_for_multiple_ancestries([gen_anc], **kwargs) + + # Select a subset of the globals. + ht = ht.select_globals( + "date", + "version", + sample_count=ht.freq_meta_sample_count[0], ) + return ht + + +def get_single_variant_callstats_for_multiple_ancestries( + gen_ancs: List[str], + **kwargs, +) -> hl.Table: + """ + Extract callstats for specified ancestry groups and a single variant. + + :param gen_ancs: List of genetic ancestry groups (e.g., 'afr', 'amr', 'asj', 'eas', + 'fin', 'nfe', 'oth', 'sas'). + :param kwargs: Keyword arguments to pass to get_single_variant. + :return: Table with callstats for the given ancestry groups and variant. + """ + ht = get_single_variant(**kwargs) + + return get_callstats_for_multiple_ancestries(gen_ancs, ht=ht) + + +def get_single_variant_callstats_for_single_ancestry( + gen_anc: str, + **kwargs, +) -> hl.Table: + """ + Extract callstats for a specific ancestry group and single variant. + + :param gen_anc: Genetic ancestry group (e.g., 'afr', 'amr', 'asj', 'eas', 'fin', + 'nfe', 'oth', 'sas'). + :param kwargs: Keyword arguments to pass to get_single_variant. + :return: Table with callstats for the given ancestry group. + """ + ht = get_single_variant(**kwargs) + + return get_callstats_for_single_ancestry(gen_anc, ht=ht) diff --git a/gnomad_toolbox/filtering/interval.py b/gnomad_toolbox/filtering/interval.py deleted file mode 100644 index 0a3b810..0000000 --- a/gnomad_toolbox/filtering/interval.py +++ /dev/null @@ -1,84 +0,0 @@ -"""Functions to filter the gnmoAD sites HT by interval.""" - -import hail as hl - - -def filter_by_interval(ht: hl.Table, interval: str) -> hl.Table: - """ - Filter variants by interval. - - :param ht: Input Table. - :param interval: Interval string. Format has to be "chr:start-end", e.g., "1:1000-2000". - :return: Table with variants in the interval. - """ - if ht.locus.dtype.reference_genome.name == "GRCh38": - interval = "chr" + interval - ht = hl.filter_intervals( - ht, - [ - hl.parse_locus_interval( - interval, - reference_genome=( - "GRCh38" - if ht.locus.dtype.reference_genome.name == "GRCh38" - else "GRCh37" - ), - ) - ], - ) - return ht - - -def filter_by_gene_symbol(ht: hl.Table, gene: str) -> hl.Table: - """ - Filter variants in a gene. - - .. note:: - This function is to match the number of variants that you will get in the - gnomAD browser, which only focus on variants in "CDS" regions plus 75bp - up- and downstream. This is not the same as filtering by gene symbol with - our `filter_vep_transcript_csqs` function, which will include all variants. - - :param ht: Input Table. - :param gene: Gene symbol. - :return: Table with variants in the gene. - """ - # Make gene symbol uppercase - gene = gene.upper() - - if ht.locus.dtype.reference_genome.name == "GRCh37": - gene_ht = hl.read_table( - "gs://gcp-public-data--gnomad/resources/grch37/browser/gnomad" - ".genes.GRCh37.GENCODEv19.ht" - ) - else: - gene_ht = hl.read_table( - "gs://gcp-public-data--gnomad/resources/grch38/browser/gnomad" - ".genes.GRCh38.GENCODEv39.ht" - ) - - gene_ht = gene_ht.annotate( - cds_intervals=hl.array( - gene_ht.exons.filter(lambda exon: exon.feature_type == "CDS") - ).map( - lambda exon: hl.locus_interval( - hl.if_else( - gene_ht.interval.start.dtype.reference_genome.name == "GRCh38", - "chr" + gene_ht.chrom, - gene_ht.chrom, - ), - exon.start - 75, - exon.stop + 75, - reference_genome=gene_ht.interval.start.dtype.reference_genome, - includes_end=True, - ) - ) - ) - - intervals = gene_ht.filter(gene_ht.gencode_symbol == gene).cds_intervals.collect()[ - 0 - ] - - ht = hl.filter_intervals(ht, intervals) - - return ht diff --git a/gnomad_toolbox/filtering/variant.py b/gnomad_toolbox/filtering/variant.py new file mode 100644 index 0000000..e6a1a9e --- /dev/null +++ b/gnomad_toolbox/filtering/variant.py @@ -0,0 +1,159 @@ +"""Functions to filter the gnomAD sites HT to a specific set of variants.""" + +from typing import Optional + +import hail as hl +from gnomad.utils.reference_genome import get_reference_genome + +from gnomad_toolbox.load_data import _get_gnomad_release + + +def get_single_variant( + variant: Optional[str] = None, + contig: Optional[str] = None, + position: Optional[int] = None, + ref: Optional[str] = None, + alt: Optional[str] = None, + **kwargs, +) -> hl.Table: + """ + Get a single variant from the gnomAD HT. + + .. note:: + + One of `variant` or all of `contig`, `position`, `ref`, and `alt` must be + provided. If `variant` is provided, `contig`, `position`, `ref`, and `alt` are + ignored. + + :param variant: Variant string in the format "chr12-235245-A-C" or + "chr12:235245:A:C". If provided, `contig`, `position`, `ref`, and `alt` are + ignored. + :param contig: Chromosome of the variant. Required if `variant` is not provided. + :param position: Variant position. Required if `variant` is not provided. + :param ref: Reference allele. Required if `variant` is not provided. + :param alt: Alternate allele. Required if `variant` is not provided. + :param kwargs: Additional arguments to pass to `_get_gnomad_release`. + :return: Table with the single variant. + """ + if not variant and not all([contig, position, ref, alt]): + raise ValueError( + "Either `variant` must be provided or all of `contig`, `position`, `ref`, " + "and `alt`." + ) + + # Load the Hail Table if not provided + ht = _get_gnomad_release(dataset="variant", **kwargs) + + # Determine the reference genome build for the ht. + build = get_reference_genome(ht.locus).name + + # TODO: Move this to gnomad_methods. + # Parse the variant string if provided. + try: + if variant and ":" not in variant: + contig, position, ref, alt = variant.split("-") + if all([contig, position, ref, alt]): + variant = f"{contig}:{position}:{ref}:{alt}" + variant = hl.eval(hl.parse_variant(variant, reference_genome=build)) + except ValueError: + raise ValueError( + f"Invalid variant format: {variant}. Expected format: chr12-235245-A-C " + f"or chr12:235245:A:C" + ) + + # Filter to the Locus of the variant of interest. + ht = hl.filter_intervals( + ht, [hl.interval(variant.locus, variant.locus, includes_end=True)] + ) + + # Filter to the variant of interest. + ht = ht.filter(ht.alleles == variant.alleles) + + # Check if the variant exists. + if ht.count() == 0: + hl.utils.warning( + f"No variant found at {variant.locus} with alleles {variant.alleles}" + ) + + return ht + + +def filter_by_interval(ht: hl.Table, interval: str) -> hl.Table: + """ + Filter variants by interval. + + :param ht: Input Table. + :param interval: Interval string. Format has to be "chr:start-end", e.g., "1:1000-2000". + :return: Table with variants in the interval. + """ + if ht.locus.dtype.reference_genome.name == "GRCh38": + interval = "chr" + interval + ht = hl.filter_intervals( + ht, + [ + hl.parse_locus_interval( + interval, + reference_genome=( + "GRCh38" + if ht.locus.dtype.reference_genome.name == "GRCh38" + else "GRCh37" + ), + ) + ], + ) + return ht + + +def filter_by_gene_symbol(ht: hl.Table, gene: str) -> hl.Table: + """ + Filter variants in a gene. + + .. note:: + This function is to match the number of variants that you will get in the + gnomAD browser, which only focus on variants in "CDS" regions plus 75bp + up- and downstream. This is not the same as filtering by gene symbol with + our `filter_vep_transcript_csqs` function, which will include all variants. + + :param ht: Input Table. + :param gene: Gene symbol. + :return: Table with variants in the gene. + """ + # Make gene symbol uppercase + gene = gene.upper() + + if ht.locus.dtype.reference_genome.name == "GRCh37": + gene_ht = hl.read_table( + "gs://gcp-public-data--gnomad/resources/grch37/browser/gnomad" + ".genes.GRCh37.GENCODEv19.ht" + ) + else: + gene_ht = hl.read_table( + "gs://gcp-public-data--gnomad/resources/grch38/browser/gnomad" + ".genes.GRCh38.GENCODEv39.ht" + ) + + gene_ht = gene_ht.annotate( + cds_intervals=hl.array( + gene_ht.exons.filter(lambda exon: exon.feature_type == "CDS") + ).map( + lambda exon: hl.locus_interval( + hl.if_else( + gene_ht.interval.start.dtype.reference_genome.name == "GRCh38", + "chr" + gene_ht.chrom, + gene_ht.chrom, + ), + exon.start - 75, + exon.stop + 75, + reference_genome=gene_ht.interval.start.dtype.reference_genome, + includes_end=True, + ) + ) + ) + + intervals = gene_ht.filter(gene_ht.gencode_symbol == gene).cds_intervals.collect()[ + 0 + ] + + ht = hl.filter_intervals(ht, intervals) + + return ht diff --git a/gnomad_toolbox/load_data.py b/gnomad_toolbox/load_data.py index b40dc10..5c39aff 100644 --- a/gnomad_toolbox/load_data.py +++ b/gnomad_toolbox/load_data.py @@ -1,5 +1,8 @@ """Functions to import gnomAD data.""" +import functools +from typing import Optional + import gnomad.resources.grch37.gnomad as grch37_gnomad import gnomad.resources.grch38.gnomad as grch38_gnomad import hail as hl @@ -32,50 +35,106 @@ RELEASES = { dataset: { data_type: { - build: getattr(res, release_global, None) + build: ( + None + if release_global.get(data_type) is None + else getattr(res, release_global.get(data_type), None) + ) for build, res in GNOMAD_BY_BUILD.items() } - for data_type, release_global in data_types.items() + for data_type in DATA_TYPES } - for dataset, data_types in RELEASES_GLOBAL.items() + for dataset, release_global in RELEASES_GLOBAL.items() } -def get_gnomad_release( - data_type: str = "exomes", - version: str = grch38_gnomad.CURRENT_EXOME_RELEASE, +class GnomADSession: + """Class to manage the default data type and version for a gnomAD session.""" + + def __init__(self) -> None: + """ + Initialize a gnomAD session. + + The default data type is exomes and the default version is the current exome + release. + + :return: None. + """ + self.data_type = "exomes" + self.version = grch38_gnomad.CURRENT_EXOME_RELEASE + + def set_default_data( + self, + data_type: Optional[str] = None, + version: Optional[str] = None, + ) -> None: + """ + Set default data type and version. + + :param data_type: Data type (exomes, genomes, or joint). + :param version: gnomAD version. + :return: None. + """ + data_type = data_type or self.data_type + version = version or self.version + + # Validate data type. + if data_type and data_type not in DATA_TYPES: + raise ValueError( + f"Data type {data_type} is invalid. Choose from 'exomes', 'genomes', " + f"or 'joint'." + ) + + # Get all possible versions. + possible_versions = functools.reduce( + lambda x, y: (x or []) + (y or []), + [ + ds[dt][r] + for ds in RELEASES.values() + for dt in ([data_type] if data_type else DATA_TYPES) + for r in GNOMAD_BY_BUILD + ], + ) + + # Check version availability. + if version not in possible_versions: + raise ValueError( + f"Version {version} is not available" + f"{'' if data_type else f' for {data_type}'}. " + ) + + self.data_type = data_type + self.version = version + + +# Global gnomad session object +gnomad_session = GnomADSession() + + +def _get_gnomad_release( + ht: hl.Table = None, dataset: str = "variant", + data_type: str = None, + version: str = None, ) -> hl.Table: """ - Get gnomAD HT by dataset, data type, and version. - - .. table:: Available versions for each dataset and data type are (as of 2024-10-29) - :widths: auto + Get gnomAD HT using a Hail Table, specific parameters, or session defaults. - +--------------+-----------------+----------------------------------+----------------------+ - | Dataset | Data Type | GRCh38 Versions | GRCh37 Versions | - +==============+=================+==================================+======================+ - | variant | exomes | 4.0, 4.1 | 2.1, 2.1.1 | - | +-----------------+----------------------------------+----------------------+ - | | genomes | 3.0, 3.1, 3.1.1, 3.1.2, 4.0, 4.1 | 2.1, 2.1.1 | - | +-----------------+----------------------------------+----------------------+ - | | joint | 4.1 | N/A | - +--------------+-----------------+----------------------------------+----------------------+ - | coverage | exomes | 4.0 | 2.1 | - | +-----------------+----------------------------------+----------------------+ - | | genomes | 3.0.1 | 2.1 | - +--------------+-----------------+----------------------------------+----------------------+ - | all_sites_an | exomes | 4.1 | N/A | - | +-----------------+----------------------------------+----------------------+ - | | genomes | 4.1 | N/A | - +--------------+-----------------+----------------------------------+----------------------+ - - :param data_type: Data type (exomes, genomes, or joint). Default is "exomes". - :param version: gnomAD version. Default is the current exome release. + :param ht: Pre-loaded Hail Table. If provided, other parameters are ignored. :param dataset: Dataset type. One of "variant", "all_sites_an", "coverage". Default - is "variant". + is variant. + :param data_type: Data type (exomes, genomes, or joint). Default is session value. + :param version: gnomAD version. Default is session value. :return: Hail Table for requested dataset, data type, and version. """ + # If a pre-loaded Hail Table is provided, return it directly. + if ht is not None: + return ht + + # Use session defaults if parameters are not provided. + data_type = data_type or gnomad_session.data_type + version = version or gnomad_session.version + # Get all releases for the given dataset. releases = RELEASES.get(dataset) @@ -109,3 +168,41 @@ def get_gnomad_release( f"Available versions: GRCh38 - {data_type_releases['GRCh38']}, " f"GRCh37 - {data_type_releases['GRCh37']}." ) + + +def get_gnomad_release( + dataset: str = "variant", + data_type: Optional[str] = None, + version: Optional[str] = None, +) -> hl.Table: + """ + Get gnomAD HT by dataset, data type, and version. + + .. table:: Available versions for each dataset and data type are (as of 2024-10-29) + :widths: auto + + +--------------+-----------------+----------------------------------+----------------------+ + | Dataset | Data Type | GRCh38 Versions | GRCh37 Versions | + +==============+=================+==================================+======================+ + | variant | exomes | 4.0, 4.1 | 2.1, 2.1.1 | + | +-----------------+----------------------------------+----------------------+ + | | genomes | 3.0, 3.1, 3.1.1, 3.1.2, 4.0, 4.1 | 2.1, 2.1.1 | + | +-----------------+----------------------------------+----------------------+ + | | joint | 4.1 | N/A | + +--------------+-----------------+----------------------------------+----------------------+ + | coverage | exomes | 4.0 | 2.1 | + | +-----------------+----------------------------------+----------------------+ + | | genomes | 3.0.1 | 2.1 | + +--------------+-----------------+----------------------------------+----------------------+ + | all_sites_an | exomes | 4.1 | N/A | + | +-----------------+----------------------------------+----------------------+ + | | genomes | 4.1 | N/A | + +--------------+-----------------+----------------------------------+----------------------+ + + :param data_type: Data type (exomes, genomes, or joint). Default is "exomes". + :param version: gnomAD version. Default is the current exome release. + :param dataset: Dataset type. One of "variant", "all_sites_an", "coverage". Default + is "variant". + :return: Hail Table for requested dataset, data type, and version. + """ + return _get_gnomad_release(dataset=dataset, data_type=data_type, version=version) diff --git a/gnomad_toolbox/notebooks/intro_to_release_data.ipynb b/gnomad_toolbox/notebooks/intro_to_release_data.ipynb index c84c0d7..1e49925 100644 --- a/gnomad_toolbox/notebooks/intro_to_release_data.ipynb +++ b/gnomad_toolbox/notebooks/intro_to_release_data.ipynb @@ -86,7 +86,7 @@ " \n", "
\n", " \n", - " Loading BokehJS ...\n", + " Loading BokehJS ...\n", "
\n" ] }, @@ -258,7 +258,7 @@ " \"\"}};\n", "\n", " function display_loaded() {\n", - " const el = document.getElementById(\"e0412447-897b-4b15-8731-38893ba83dd5\");\n", + " const el = document.getElementById(\"a8702bf8-b019-4dc5-b5ff-b8a2fe2976da\");\n", " if (el != null) {\n", " el.textContent = \"BokehJS is loading...\";\n", " }\n", @@ -364,7 +364,7 @@ " console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n", " root._bokeh_failed_load = true;\n", " } else if (force !== true) {\n", - " const cell = $(document.getElementById(\"e0412447-897b-4b15-8731-38893ba83dd5\")).parents('.cell').data().cell;\n", + " const cell = $(document.getElementById(\"a8702bf8-b019-4dc5-b5ff-b8a2fe2976da\")).parents('.cell').data().cell;\n", " cell.output_area.append_execute_result(NB_LOAD_WARNING)\n", " }\n", " }\n", @@ -380,7 +380,7 @@ " }\n", "}(window));" ], - "application/vnd.bokehjs_load.v0+json": "(function(root) {\n function now() {\n return new Date();\n }\n\n const force = true;\n\n if (typeof root._bokeh_onload_callbacks === \"undefined\" || force === true) {\n root._bokeh_onload_callbacks = [];\n root._bokeh_is_loading = undefined;\n }\n\n\n if (typeof (root._bokeh_timeout) === \"undefined\" || force === true) {\n root._bokeh_timeout = Date.now() + 5000;\n root._bokeh_failed_load = false;\n }\n\n const NB_LOAD_WARNING = {'data': {'text/html':\n \"
\\n\"+\n \"

\\n\"+\n \"BokehJS does not appear to have successfully loaded. If loading BokehJS from CDN, this \\n\"+\n \"may be due to a slow or bad network connection. Possible fixes:\\n\"+\n \"

\\n\"+\n \"
    \\n\"+\n \"
  • re-rerun `output_notebook()` to attempt to load from CDN again, or
  • \\n\"+\n \"
  • use INLINE resources instead, as so:
  • \\n\"+\n \"
\\n\"+\n \"\\n\"+\n \"from bokeh.resources import INLINE\\n\"+\n \"output_notebook(resources=INLINE)\\n\"+\n \"\\n\"+\n \"
\"}};\n\n function display_loaded() {\n const el = document.getElementById(\"e0412447-897b-4b15-8731-38893ba83dd5\");\n if (el != null) {\n el.textContent = \"BokehJS is loading...\";\n }\n if (root.Bokeh !== undefined) {\n if (el != null) {\n el.textContent = \"BokehJS \" + root.Bokeh.version + \" successfully loaded.\";\n }\n } else if (Date.now() < root._bokeh_timeout) {\n setTimeout(display_loaded, 100)\n }\n }\n\n function run_callbacks() {\n try {\n root._bokeh_onload_callbacks.forEach(function(callback) {\n if (callback != null)\n callback();\n });\n } finally {\n delete root._bokeh_onload_callbacks\n }\n console.debug(\"Bokeh: all callbacks have finished\");\n }\n\n function load_libs(css_urls, js_urls, callback) {\n if (css_urls == null) css_urls = [];\n if (js_urls == null) js_urls = [];\n\n root._bokeh_onload_callbacks.push(callback);\n if (root._bokeh_is_loading > 0) {\n console.debug(\"Bokeh: BokehJS is being loaded, scheduling callback at\", now());\n return null;\n }\n if (js_urls == null || js_urls.length === 0) {\n run_callbacks();\n return null;\n }\n console.debug(\"Bokeh: BokehJS not loaded, scheduling load and callback at\", now());\n root._bokeh_is_loading = css_urls.length + js_urls.length;\n\n function on_load() {\n root._bokeh_is_loading--;\n if (root._bokeh_is_loading === 0) {\n console.debug(\"Bokeh: all BokehJS libraries/stylesheets loaded\");\n run_callbacks()\n }\n }\n\n function on_error(url) {\n console.error(\"failed to load \" + url);\n }\n\n for (let i = 0; i < css_urls.length; i++) {\n const url = css_urls[i];\n const element = document.createElement(\"link\");\n element.onload = on_load;\n element.onerror = on_error.bind(null, url);\n element.rel = \"stylesheet\";\n element.type = \"text/css\";\n element.href = url;\n console.debug(\"Bokeh: injecting link tag for BokehJS stylesheet: \", url);\n document.body.appendChild(element);\n }\n\n for (let i = 0; i < js_urls.length; i++) {\n const url = js_urls[i];\n const element = document.createElement('script');\n element.onload = on_load;\n element.onerror = on_error.bind(null, url);\n element.async = false;\n element.src = url;\n console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n document.head.appendChild(element);\n }\n };\n\n function inject_raw_css(css) {\n const element = document.createElement(\"style\");\n element.appendChild(document.createTextNode(css));\n document.body.appendChild(element);\n }\n\n const js_urls = [\"https://cdn.bokeh.org/bokeh/release/bokeh-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-gl-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-widgets-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-tables-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-mathjax-3.3.4.min.js\"];\n const css_urls = [];\n\n const inline_js = [ function(Bokeh) {\n Bokeh.set_log_level(\"info\");\n },\nfunction(Bokeh) {\n }\n ];\n\n function run_inline_js() {\n if (root.Bokeh !== undefined || force === true) {\n for (let i = 0; i < inline_js.length; i++) {\n inline_js[i].call(root, root.Bokeh);\n }\nif (force === true) {\n display_loaded();\n }} else if (Date.now() < root._bokeh_timeout) {\n setTimeout(run_inline_js, 100);\n } else if (!root._bokeh_failed_load) {\n console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n root._bokeh_failed_load = true;\n } else if (force !== true) {\n const cell = $(document.getElementById(\"e0412447-897b-4b15-8731-38893ba83dd5\")).parents('.cell').data().cell;\n cell.output_area.append_execute_result(NB_LOAD_WARNING)\n }\n }\n\n if (root._bokeh_is_loading === 0) {\n console.debug(\"Bokeh: BokehJS loaded, going straight to plotting\");\n run_inline_js();\n } else {\n load_libs(css_urls, js_urls, function() {\n console.debug(\"Bokeh: BokehJS plotting callback run at\", now());\n run_inline_js();\n });\n }\n}(window));" + "application/vnd.bokehjs_load.v0+json": "(function(root) {\n function now() {\n return new Date();\n }\n\n const force = true;\n\n if (typeof root._bokeh_onload_callbacks === \"undefined\" || force === true) {\n root._bokeh_onload_callbacks = [];\n root._bokeh_is_loading = undefined;\n }\n\n\n if (typeof (root._bokeh_timeout) === \"undefined\" || force === true) {\n root._bokeh_timeout = Date.now() + 5000;\n root._bokeh_failed_load = false;\n }\n\n const NB_LOAD_WARNING = {'data': {'text/html':\n \"
\\n\"+\n \"

\\n\"+\n \"BokehJS does not appear to have successfully loaded. If loading BokehJS from CDN, this \\n\"+\n \"may be due to a slow or bad network connection. Possible fixes:\\n\"+\n \"

\\n\"+\n \"
    \\n\"+\n \"
  • re-rerun `output_notebook()` to attempt to load from CDN again, or
  • \\n\"+\n \"
  • use INLINE resources instead, as so:
  • \\n\"+\n \"
\\n\"+\n \"\\n\"+\n \"from bokeh.resources import INLINE\\n\"+\n \"output_notebook(resources=INLINE)\\n\"+\n \"\\n\"+\n \"
\"}};\n\n function display_loaded() {\n const el = document.getElementById(\"a8702bf8-b019-4dc5-b5ff-b8a2fe2976da\");\n if (el != null) {\n el.textContent = \"BokehJS is loading...\";\n }\n if (root.Bokeh !== undefined) {\n if (el != null) {\n el.textContent = \"BokehJS \" + root.Bokeh.version + \" successfully loaded.\";\n }\n } else if (Date.now() < root._bokeh_timeout) {\n setTimeout(display_loaded, 100)\n }\n }\n\n function run_callbacks() {\n try {\n root._bokeh_onload_callbacks.forEach(function(callback) {\n if (callback != null)\n callback();\n });\n } finally {\n delete root._bokeh_onload_callbacks\n }\n console.debug(\"Bokeh: all callbacks have finished\");\n }\n\n function load_libs(css_urls, js_urls, callback) {\n if (css_urls == null) css_urls = [];\n if (js_urls == null) js_urls = [];\n\n root._bokeh_onload_callbacks.push(callback);\n if (root._bokeh_is_loading > 0) {\n console.debug(\"Bokeh: BokehJS is being loaded, scheduling callback at\", now());\n return null;\n }\n if (js_urls == null || js_urls.length === 0) {\n run_callbacks();\n return null;\n }\n console.debug(\"Bokeh: BokehJS not loaded, scheduling load and callback at\", now());\n root._bokeh_is_loading = css_urls.length + js_urls.length;\n\n function on_load() {\n root._bokeh_is_loading--;\n if (root._bokeh_is_loading === 0) {\n console.debug(\"Bokeh: all BokehJS libraries/stylesheets loaded\");\n run_callbacks()\n }\n }\n\n function on_error(url) {\n console.error(\"failed to load \" + url);\n }\n\n for (let i = 0; i < css_urls.length; i++) {\n const url = css_urls[i];\n const element = document.createElement(\"link\");\n element.onload = on_load;\n element.onerror = on_error.bind(null, url);\n element.rel = \"stylesheet\";\n element.type = \"text/css\";\n element.href = url;\n console.debug(\"Bokeh: injecting link tag for BokehJS stylesheet: \", url);\n document.body.appendChild(element);\n }\n\n for (let i = 0; i < js_urls.length; i++) {\n const url = js_urls[i];\n const element = document.createElement('script');\n element.onload = on_load;\n element.onerror = on_error.bind(null, url);\n element.async = false;\n element.src = url;\n console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n document.head.appendChild(element);\n }\n };\n\n function inject_raw_css(css) {\n const element = document.createElement(\"style\");\n element.appendChild(document.createTextNode(css));\n document.body.appendChild(element);\n }\n\n const js_urls = [\"https://cdn.bokeh.org/bokeh/release/bokeh-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-gl-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-widgets-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-tables-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-mathjax-3.3.4.min.js\"];\n const css_urls = [];\n\n const inline_js = [ function(Bokeh) {\n Bokeh.set_log_level(\"info\");\n },\nfunction(Bokeh) {\n }\n ];\n\n function run_inline_js() {\n if (root.Bokeh !== undefined || force === true) {\n for (let i = 0; i < inline_js.length; i++) {\n inline_js[i].call(root, root.Bokeh);\n }\nif (force === true) {\n display_loaded();\n }} else if (Date.now() < root._bokeh_timeout) {\n setTimeout(run_inline_js, 100);\n } else if (!root._bokeh_failed_load) {\n console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n root._bokeh_failed_load = true;\n } else if (force !== true) {\n const cell = $(document.getElementById(\"a8702bf8-b019-4dc5-b5ff-b8a2fe2976da\")).parents('.cell').data().cell;\n cell.output_area.append_execute_result(NB_LOAD_WARNING)\n }\n }\n\n if (root._bokeh_is_loading === 0) {\n console.debug(\"Bokeh: BokehJS loaded, going straight to plotting\");\n run_inline_js();\n } else {\n load_libs(css_urls, js_urls, function() {\n console.debug(\"Bokeh: BokehJS plotting callback run at\", now());\n run_inline_js();\n });\n }\n}(window));" }, "metadata": {}, "output_type": "display_data" @@ -406,7 +406,7 @@ " / /_/ /__ __/ /\n", " / __ / _ `/ / /\n", " /_/ /_/\\_,_/_/_/ version 0.2.132-678e1f52b999\n", - "LOGGING: writing to /Users/jgoodric/PycharmProjects/gnomad-toolbox/gnomad_toolbox/notebooks/hail-20241208-2218-0.2.132-678e1f52b999.log\n" + "LOGGING: writing to /Users/jgoodric/PycharmProjects/gnomad-toolbox/gnomad_toolbox/notebooks/hail-20241209-1355-0.2.132-678e1f52b999.log\n" ] } ], @@ -6254,7 +6254,7 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 18, "id": "7f005af0-df6d-4a0a-a2e0-9cb4ff6782c2", "metadata": { "ExecuteTime": { @@ -6277,7 +6277,7 @@ }, { "cell_type": "code", - "execution_count": 20, + "execution_count": 19, "id": "6058bf38-4ce9-4d37-89a7-d11af0e4d9f1", "metadata": { "ExecuteTime": { @@ -6331,7 +6331,7 @@ }, { "cell_type": "code", - "execution_count": 21, + "execution_count": 20, "id": "49fcf64b-1a91-4052-bb98-b329a0e8031b", "metadata": { "ExecuteTime": { @@ -6407,7 +6407,7 @@ }, { "cell_type": "code", - "execution_count": 23, + "execution_count": 21, "id": "a8d0be07-c35d-425a-b554-c86034e367fc", "metadata": { "ExecuteTime": { @@ -6431,7 +6431,7 @@ }, { "cell_type": "code", - "execution_count": 24, + "execution_count": 22, "id": "18afb20f-7429-4fe2-a6c5-73a22dcbdb76", "metadata": { "ExecuteTime": { @@ -6485,7 +6485,7 @@ }, { "cell_type": "code", - "execution_count": 25, + "execution_count": 23, "id": "b27cb655-3abb-4501-bcc9-3f634db64591", "metadata": { "ExecuteTime": { From 5330ea6a68009c11681f232f43403599c55d5f10 Mon Sep 17 00:00:00 2001 From: jkgoodrich <33063077+jkgoodrich@users.noreply.github.com> Date: Tue, 10 Dec 2024 22:38:45 -0700 Subject: [PATCH 027/121] More clean-up of notebooks and functions --- README.md | 1 + gnomad_toolbox/analysis/general.py | 124 +- gnomad_toolbox/filtering/frequency.py | 100 +- gnomad_toolbox/filtering/variant.py | 139 +- gnomad_toolbox/filtering/vep.py | 39 +- gnomad_toolbox/load_data.py | 2 + .../notebooks/intro_to_release_data.ipynb | 6622 ----------------- .../notebooks/toolbox_for_gnomad_users.ipynb | 3778 ---------- 8 files changed, 266 insertions(+), 10539 deletions(-) delete mode 100644 gnomad_toolbox/notebooks/intro_to_release_data.ipynb delete mode 100644 gnomad_toolbox/notebooks/toolbox_for_gnomad_users.ipynb diff --git a/README.md b/README.md index 76ef6da..08eecb8 100644 --- a/README.md +++ b/README.md @@ -24,6 +24,7 @@ ggnomad_toolbox/ │ ├── intro_to_release_data.ipynb # Jupyter notebook introducing the loading of gnomAD release data. ``` +# TODO: Add fully detailed info about how to install and open the notebooks. ## Getting started ### Install pip install -r requirements.txt diff --git a/gnomad_toolbox/analysis/general.py b/gnomad_toolbox/analysis/general.py index 7334f43..bcdde4a 100644 --- a/gnomad_toolbox/analysis/general.py +++ b/gnomad_toolbox/analysis/general.py @@ -1,42 +1,126 @@ """Set of general functions for gnomAD analysis.""" +from typing import Dict, List, Optional, Tuple, Union + import hail as hl +from gnomad_toolbox.load_data import _get_gnomad_release + + +# TODO: Modify this function in gnomad_methods. +def freq_bin_expr( + freq_expr: Union[hl.expr.StructExpression, hl.expr.ArrayExpression], + index: int = 0, + ac_cutoffs: Optional[List[Union[int, Tuple[int, str]]]] = [ + (0, "AC0"), + (1, "singleton"), + (2, "doubleton"), + ], + af_cutoffs: Optional[List[Union[float, Tuple[float, str]]]] = [ + (1e-4, "0.01%"), + (1e-3, "0.1%"), + (1e-2, "1%"), + (1e-1, "10%"), + ], + upper_af: Optional[Union[float, Tuple[float, str]]] = (0.95, "95%"), +) -> hl.expr.StringExpression: + """ + Return frequency string annotations based on input AC or AF. + + .. note:: + + - Default index is 0 because function assumes freq_expr was calculated with + `annotate_freq`. + - Frequency index 0 from `annotate_freq` is frequency for all pops calculated + on adj genotypes only. + + :param freq_expr: Array of structs containing frequency information. + :param index: Which index of freq_expr to use for annotation. Default is 0. + :param ac_cutoffs: + :return: StringExpression containing bin name based on input AC or AF. + """ + if isinstance(freq_expr, hl.expr.ArrayExpression): + freq_expr = freq_expr[index] + + if ac_cutoffs and isinstance(ac_cutoffs[0], int): + ac_cutoffs = [(c, f"AC{c}") for c in ac_cutoffs] + + if af_cutoffs and isinstance(af_cutoffs[0], float): + af_cutoffs = [(c, f"{c*100}%") for c in af_cutoffs] -def get_variant_count( - ht: hl.Table, - afs: list[float] = [0.01, 0.001], + if isinstance(upper_af, float): + upper_af = (upper_af, f"{upper_af*100}%") + + freq_bin_expr = hl.case().when(hl.is_missing(freq_expr.AC), "Missing") + prev_af = None + for ac, name in sorted(ac_cutoffs): + freq_bin_expr = freq_bin_expr.when(freq_expr.AC == ac, name) + prev_af = name + + for af, name in sorted(af_cutoffs): + prev_af = "<" if prev_af is None else f"{prev_af} - " + freq_bin_expr = freq_bin_expr.when(freq_expr.AF < af, f"{prev_af}{name}") + prev_af = name + + if upper_af: + freq_bin_expr = freq_bin_expr.when( + freq_expr.AF > upper_af[0], f">{upper_af[1]}" + ) + default_af = "<" if prev_af is None else f"{prev_af} - " + default_af = f"{default_af}{upper_af[1]}" + else: + default_af = f">{prev_af}" + + return freq_bin_expr.default(default_af) + + +def get_variant_count_by_freq_bin( + af_cutoffs: List[float] = [0.001, 0.01], singletons: bool = False, doubletons: bool = False, -) -> dict: + pass_only: bool = True, + **kwargs, +) -> Dict[str, int]: """ - Count variants with frequency <1%, <0.1%, and singletons (AC == 1). + Count variants by frequency bin. + + By default, this function counts PASS variants that are AC0, AF < 0.01%, and + AF 0.01% - 0.1%. + + The function can also include counts of singletons and doubletons, with or + without passing filters. .. note:: - This function works for gnomAD exomes and genomes datasets, not yet for gnomAD - joint dataset, since the HT schema is slightly different. + This function works for gnomAD exomes and genomes data types, not yet for gnomAD + joint data type, since the HT schema is slightly different. - :param ht: Input Table. - :param afs: List of allele frequencies cutoffs. + :param af_cutoffs: List of allele frequencies cutoffs. :param singletons: Include singletons. :param doubletons: Include doubletons. + :param pass_only: Include only PASS variants. + :param kwargs: Keyword arguments to pass to _get_gnomad_release. Includes + 'ht', 'data_type', and 'version'. :return: Dictionary with counts. """ - counts = {} + # Load the Hail Table if not provided + ht = _get_gnomad_release(dataset="variant", **kwargs) # Filter to PASS variants. - ht = ht.filter(hl.len(ht.filters) == 0) + if pass_only: + ht = ht.filter(hl.len(ht.filters) == 0) + + # Initialize allele count cutoffs with AC0. + ac_cutoffs = [(0, "AC0")] + if singletons: - n_singletons = ht.aggregate(hl.agg.count_where(ht.freq[0].AC == 1)) - counts["number of singletons"] = n_singletons + ac_cutoffs.append((1, "singletons")) + if doubletons: - n_doubletons = ht.aggregate(hl.agg.count_where(ht.freq[0].AC == 2)) - counts["number of doubletons"] = n_doubletons + ac_cutoffs.append((2, "doubletons")) - for af in afs: - n_variants = ht.aggregate(hl.agg.count_where(ht.freq[0].AF < af)) - counts[f"number of variants with AF < {af}"] = n_variants + freq_expr = freq_bin_expr( + ht.freq, ac_cutoffs=ac_cutoffs, af_cutoffs=af_cutoffs, upper_af=None + ) - # Count variants with frequency <1%, <0.1%, and singletons (AC == 1). - return counts + return ht.aggregate(hl.agg.counter(freq_expr)) diff --git a/gnomad_toolbox/filtering/frequency.py b/gnomad_toolbox/filtering/frequency.py index 2adf1c9..c5a008b 100644 --- a/gnomad_toolbox/filtering/frequency.py +++ b/gnomad_toolbox/filtering/frequency.py @@ -1,6 +1,6 @@ """Functions for filtering the gnomAD sites HT frequency data.""" -from typing import List +from typing import List, Union import hail as hl from gnomad.utils.filtering import filter_arrays_by_meta @@ -9,24 +9,34 @@ from gnomad_toolbox.load_data import _get_gnomad_release -def get_callstats_for_multiple_ancestries( - gen_ancs: List[str], +def get_ancestry_callstats( + gen_ancs: Union[str, List[str]], **kwargs, ) -> hl.Table: """ - Extract callstats for specified ancestry groups. + Extract callstats for specified ancestry group(s). - :param gen_ancs: List of genetic ancestry groups (e.g., 'afr', 'amr', 'asj', 'eas', - 'fin', 'nfe', 'oth', 'sas'). + :param gen_ancs: Genetic ancestry group(s) (e.g., 'afr', 'amr', 'asj', 'eas', + 'fin', 'nfe', 'oth', 'sas'). Can be a single ancestry group or a list of + ancestry groups. :param kwargs: Keyword arguments to pass to _get_gnomad_release. :return: Table with callstats for the given ancestry groups and variant. """ # Load the Hail Table if not provided ht = _get_gnomad_release(dataset="variant", **kwargs) + # Check if gen_ancs is a single ancestry group. + one_anc = isinstance(gen_ancs, str) + + if one_anc: + gen_ancs = [gen_ancs] + # Format gen_ancs to lowercase and filter arrays by metadata. gen_ancs = [gen_anc.lower() for gen_anc in gen_ancs] - items_to_filter = {"gen_anc": gen_ancs, "group": ["adj"]} + gen_anc_label = ( + "gen_anc" if any(["gen_anc" in m for m in hl.eval(ht.freq_meta)]) else "pop" + ) + items_to_filter = {gen_anc_label: gen_ancs, "group": ["adj"]} freq_meta, array_exprs = filter_arrays_by_meta( ht.freq_meta, { @@ -40,73 +50,41 @@ def get_callstats_for_multiple_ancestries( ) ht = ht.select( "filters", - **{gen_anc: array_exprs["freq"][i] for i, gen_anc in enumerate(gen_ancs)}, - ) - - # Select a subset of the globals. - ht = ht.select_globals( - "date", - "version", - freq_meta=freq_meta, - freq_meta_sample_count=array_exprs["freq_meta_sample_count"], + **{ + m[gen_anc_label]: array_exprs["freq"][i] + for i, m in enumerate(hl.eval(freq_meta)) + }, ) - return ht - - -def get_callstats_for_single_ancestry( - gen_anc: str, - **kwargs, -) -> hl.Table: - """ - Extract callstats for a specific ancestry group and single variant. - - :param gen_anc: Genetic ancestry group (e.g., 'afr', 'amr', 'asj', 'eas', 'fin', - 'nfe', 'oth', 'sas'). - :param kwargs: Keyword arguments to pass to _get_gnomad_release. - :return: Table with callstats for the given ancestry group. - """ - ht = get_callstats_for_multiple_ancestries([gen_anc], **kwargs) - # Select a subset of the globals. - ht = ht.select_globals( - "date", - "version", - sample_count=ht.freq_meta_sample_count[0], - ) + sample_count = array_exprs["freq_meta_sample_count"] + if one_anc: + sample_count = sample_count[0] + else: + sample_count = hl.struct( + **{ + m[gen_anc_label]: sample_count[i] + for i, m in enumerate(hl.eval(freq_meta)) + } + ) + ht = ht.select_globals("date", "version", sample_count=sample_count) return ht -def get_single_variant_callstats_for_multiple_ancestries( - gen_ancs: List[str], +def get_single_variant_ancestry_callstats( + gen_ancs: Union[str, List[str]], **kwargs, ) -> hl.Table: """ - Extract callstats for specified ancestry groups and a single variant. + Extract callstats for specified ancestry group(s) and a single variant. - :param gen_ancs: List of genetic ancestry groups (e.g., 'afr', 'amr', 'asj', 'eas', - 'fin', 'nfe', 'oth', 'sas'). + :param gen_ancs: Genetic ancestry group(s) (e.g., 'afr', 'amr', 'asj', 'eas', + 'fin', 'nfe', 'oth', 'sas'). Can be a single ancestry group or a list of + ancestry groups. :param kwargs: Keyword arguments to pass to get_single_variant. :return: Table with callstats for the given ancestry groups and variant. """ ht = get_single_variant(**kwargs) - return get_callstats_for_multiple_ancestries(gen_ancs, ht=ht) - - -def get_single_variant_callstats_for_single_ancestry( - gen_anc: str, - **kwargs, -) -> hl.Table: - """ - Extract callstats for a specific ancestry group and single variant. - - :param gen_anc: Genetic ancestry group (e.g., 'afr', 'amr', 'asj', 'eas', 'fin', - 'nfe', 'oth', 'sas'). - :param kwargs: Keyword arguments to pass to get_single_variant. - :return: Table with callstats for the given ancestry group. - """ - ht = get_single_variant(**kwargs) - - return get_callstats_for_single_ancestry(gen_anc, ht=ht) + return get_ancestry_callstats(gen_ancs, ht=ht) diff --git a/gnomad_toolbox/filtering/variant.py b/gnomad_toolbox/filtering/variant.py index e6a1a9e..ec00bc7 100644 --- a/gnomad_toolbox/filtering/variant.py +++ b/gnomad_toolbox/filtering/variant.py @@ -1,6 +1,6 @@ """Functions to filter the gnomAD sites HT to a specific set of variants.""" -from typing import Optional +from typing import Optional, Union import hail as hl from gnomad.utils.reference_genome import get_reference_genome @@ -78,81 +78,110 @@ def get_single_variant( return ht -def filter_by_interval(ht: hl.Table, interval: str) -> hl.Table: +def filter_by_intervals( + intervals: Union[str, list[str]], + **kwargs, +) -> hl.Table: """ - Filter variants by interval. + Filter variants by interval(s). - :param ht: Input Table. - :param interval: Interval string. Format has to be "chr:start-end", e.g., "1:1000-2000". - :return: Table with variants in the interval. + :param intervals: Interval string or list of interval strings. The interval string + format has to be "contig:start-end", e.g.,"1:1000-2000" (GRCh37) or + "chr1:1000-2000" (GRCh38). + :param kwargs: Arguments to pass to `_get_gnomad_release`. + :return: Table with variants in the interval(s). """ - if ht.locus.dtype.reference_genome.name == "GRCh38": - interval = "chr" + interval + # Load the Hail Table if not provided + ht = _get_gnomad_release(dataset="variant", **kwargs) + + # Determine the reference genome build for the ht. + build = get_reference_genome(ht.locus).name + + if isinstance(intervals, str): + intervals = [intervals] + + if build == "GRCh38" and any([not i.startswith("chr") for i in intervals]): + raise ValueError("Interval must start with 'chr' for GRCh38 reference genome.") + ht = hl.filter_intervals( - ht, - [ - hl.parse_locus_interval( - interval, - reference_genome=( - "GRCh38" - if ht.locus.dtype.reference_genome.name == "GRCh38" - else "GRCh37" - ), - ) - ], + ht, [hl.parse_locus_interval(i, reference_genome=build) for i in intervals] ) + return ht -def filter_by_gene_symbol(ht: hl.Table, gene: str) -> hl.Table: +def filter_by_gene_symbol(gene: str, exon_padding_bp: int = 75, **kwargs) -> hl.Table: """ Filter variants in a gene. .. note:: + This function is to match the number of variants that you will get in the - gnomAD browser, which only focus on variants in "CDS" regions plus 75bp - up- and downstream. This is not the same as filtering by gene symbol with - our `filter_vep_transcript_csqs` function, which will include all variants. + gnomAD browser, which only focus on variants in "CDS" regions plus + 75bp (default of `exon_padding_bp`) up- and downstream. - :param ht: Input Table. :param gene: Gene symbol. + :param exon_padding_bp: Number of base pairs to pad the CDS intervals. Default is + 75bp. + :param kwargs: Arguments to pass to `_get_gnomad_release`. :return: Table with variants in the gene. """ + # Load the Hail Table if not provided + ht = _get_gnomad_release(dataset="variant", **kwargs) + + # Determine the reference genome build for the ht. + build = get_reference_genome(ht.locus).name + # Make gene symbol uppercase gene = gene.upper() - if ht.locus.dtype.reference_genome.name == "GRCh37": - gene_ht = hl.read_table( - "gs://gcp-public-data--gnomad/resources/grch37/browser/gnomad" - ".genes.GRCh37.GENCODEv19.ht" - ) - else: - gene_ht = hl.read_table( - "gs://gcp-public-data--gnomad/resources/grch38/browser/gnomad" - ".genes.GRCh38.GENCODEv39.ht" - ) - - gene_ht = gene_ht.annotate( - cds_intervals=hl.array( - gene_ht.exons.filter(lambda exon: exon.feature_type == "CDS") - ).map( - lambda exon: hl.locus_interval( - hl.if_else( - gene_ht.interval.start.dtype.reference_genome.name == "GRCh38", - "chr" + gene_ht.chrom, - gene_ht.chrom, - ), - exon.start - 75, - exon.stop + 75, - reference_genome=gene_ht.interval.start.dtype.reference_genome, - includes_end=True, - ) - ) + # TODO: Create a resource for this in gnomad_methods (is it different from our + # current gencode resources? + # gene_ht = hl.read_table( + # f"gs://gcp-public-data--gnomad/resources/{build.lower()}/browser/gnomad" + # f".genes.{build}.GENCODEv{'19' if build == 'GRCh37' else '39'}.ht" + # ) + + # TODO: This actually takes a while to run locally for a single gene. Is there a + # way to speed this up? + + # Filter to the gene of interest. + # gene_ht = gene_ht.filter(gene_ht.gencode_symbol == gene) + + # Get the CDS intervals for the gene. + # chrom_expr = hl.if_else(build == "GRCh38", "chr" + gene_ht.chrom, gene_ht.chrom) + # intervals = gene_ht.aggregate( + # hl.agg.explode( + # lambda exon: hl.agg.collect( + # hl.locus_interval( + # chrom_expr, + # exon.start - 75, + # exon.stop + 75, + # reference_genome=build, + # includes_end=True, + # ) + # ), + # gene_ht.exons.filter(lambda exon: exon.feature_type == "CDS"), + # ) + # ) + + # TODO: Consider this alternative approach to get the intervals from gencode. That + # is not too bad time wise + + from gnomad.resources.grch38.reference_data import gencode + + gencode_ht = gencode.ht() + gencode_ht = gencode_ht.filter( + (gencode_ht.gene_name == gene) & ((gencode_ht.feature == "CDS")) ) - - intervals = gene_ht.filter(gene_ht.gencode_symbol == gene).cds_intervals.collect()[ - 0 - ] + intervals = hl.locus_interval( + gencode_ht.interval.start.contig, + gencode_ht.interval.start.position - exon_padding_bp, + gencode_ht.interval.end.position + exon_padding_bp, + includes_start=gencode_ht.interval.includes_start, + includes_end=gencode_ht.interval.includes_end, + reference_genome=build, + ).collect() ht = hl.filter_intervals(ht, intervals) diff --git a/gnomad_toolbox/filtering/vep.py b/gnomad_toolbox/filtering/vep.py index f851598..a8b8793 100644 --- a/gnomad_toolbox/filtering/vep.py +++ b/gnomad_toolbox/filtering/vep.py @@ -5,19 +5,30 @@ import hail as hl from gnomad.utils.vep import CSQ_CODING, LOF_CSQ_SET +from gnomad_toolbox.load_data import _get_gnomad_release + +# TODO: I haven't looked over this function yet. Is there anything in gnomad_methods +# that could be used here? If not, is there anything here that should be moved to +# gnomad_methods? + def filter_by_csqs( - ht: hl.Table, csqs: list[str], pass_filters: bool = True + csqs: list[str], + pass_filters: bool = True, + **kwargs, ) -> hl.Table: """ - Filter variants by consequences. + Filter variants by VEP transcript consequences. - :param ht: Input Table. :param csqs: List of consequences to filter by. It can be specified as the categories on the browser: pLoF, Missense / Inframe indel, Synonymous, Other. :param pass_filters: Boolean if the variants pass the filters. + :param kwargs: Arguments to pass to _get_gnomad_release. :return: Table with variants with the specified consequences. """ + # Load the Hail Table if not provided + ht = _get_gnomad_release(dataset="variant", **kwargs) + missense_inframe = ["missense_variant", "inframe_insertion", "inframe_deletion"] filter_expr = [] @@ -62,3 +73,25 @@ def filter_by_csqs( ht = ht.filter(hl.len(ht.filters) == 0) return ht + + +# TODO: The following was in one of the notebooks, and I think we should add a wrapper +# around this function to make it much simpler instead of using it in the notebook. + +# Filter to LOFTEE high-confidence variants for certain genes + +# In this example, we are filtering to variants in ASH1L that are LOFTEE high-confidence +# (with no flags) in the MANE select transcript. + +# from gnomad.utils.vep import filter_vep_transcript_csqs +# ht = get_gnomad_release(data_type='exomes', version='4.1') +# ht = filter_vep_transcript_csqs( +# ht, +# synonymous=False, +# mane_select=True, +# genes=["ASH1L"], +# match_by_gene_symbol=True, +# additional_filtering_criteria=[lambda x: (x.lof == "HC") & hl.is_missing(x.lof_flags)], +# ) +# ht.show() +# ht.count() diff --git a/gnomad_toolbox/load_data.py b/gnomad_toolbox/load_data.py index 5c39aff..d591bed 100644 --- a/gnomad_toolbox/load_data.py +++ b/gnomad_toolbox/load_data.py @@ -48,6 +48,8 @@ } +# TODO: Are there other things we want to store in a session? Like a PASS variants only +# variable? class GnomADSession: """Class to manage the default data type and version for a gnomAD session.""" diff --git a/gnomad_toolbox/notebooks/intro_to_release_data.ipynb b/gnomad_toolbox/notebooks/intro_to_release_data.ipynb deleted file mode 100644 index 1e49925..0000000 --- a/gnomad_toolbox/notebooks/intro_to_release_data.ipynb +++ /dev/null @@ -1,6622 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "id": "853c94b9", - "metadata": {}, - "source": [ - "# Introduction to gnomAD Hail release files\n" - ] - }, - { - "cell_type": "markdown", - "id": "5cf83cfe-0fce-40ae-add7-c9f2c20c1e85", - "metadata": {}, - "source": [ - "In this notebook we will explore all of the available [gnomAD v4 release files](https://gnomad.broadinstitute.org/data#v4) that are in Hail formats." - ] - }, - { - "attachments": { - "afcd4ecc-4e90-464b-91c7-9cd80b0e92ba.png": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAACTYAAAMYCAYAAAD7RiqDAAAMQWlDQ1BJQ0MgUHJvZmlsZQAASImVVwdYU8kWnluSkEBoAQSkhN4EESkBpITQQu8INkISIJQYA0HFjiwquBZURMCGroooWAGxI3YWxd4XCwrKuliwK29SQNd95XvzfXPnv/+c+c+Zc2fuvQOA2gmOSJSNqgOQI8wTxwT50ccnJdNJPUAZaAJ1QASjOdxcETMqKgzAMtT+vby7ARBpe9VeqvXP/v9aNHj8XC4ASBTEqbxcbg7EBwDAq7kicR4ARClvNj1PJMWwAi0xDBDixVKcLsfVUpwqx3tkNnExLIjbAFBS4XDE6QCoXoY8PZ+bDjVU+yF2FPIEQgDU6BB75+RM5UGcArE1tBFBLNVnpP6gk/43zdRhTQ4nfRjL5yIrSv6CXFE2Z+b/mY7/XXKyJUM+LGFVyRAHx0jnDPN2K2tqqBSrQNwnTI2IhFgT4g8CnsweYpSSIQmOl9ujBtxcFswZ0IHYkcfxD4XYAOJAYXZEmIJPTRMEsiGGKwSdIchjx0GsC/Fifm5ArMJmk3hqjMIX2pgmZjEV/DmOWOZX6uuBJCueqdB/ncFnK/Qx1YKMuESIKRCb5wsSIiBWhdghNys2VGEzriCDFTFkI5bESOM3hziGLwzyk+tj+WniwBiFfUlO7tB8sU0ZAnaEAu/Ly4gLlucHa+NyZPHDuWCX+UJm/JAOP3d82NBceHz/APncsR6+MD5WofNBlOcXIx+LU0TZUQp73JSfHSTlTSF2zs2PVYzFE/LggpTr42mivKg4eZx4QSYnJEoeD74ChAEW8Ad0IIE1FUwFmUDQ0dfUB+/kPYGAA8QgHfCBvYIZGpEo6xHCaywoAH9CxAe5w+P8ZL18kA/5r8Os/GoP0mS9+bIRWeApxDkgFGTDe4lslHDYWwJ4AhnBP7xzYOXCeLNhlfb/e36I/c4wIROmYCRDHulqQ5bEAKI/MZgYSLTB9XFv3BMPg1dfWJ1wBu4+NI/v9oSnhE7CI8J1Qhfh9hRBofinKMNBF9QPVOQi9cdc4JZQ0wX3w72gOlTGdXB9YI87Qz9M3Ad6doEsSxG3NCv0n7T/NoMfnobCjuxIRskjyL5k659HqtqqugyrSHP9Y37ksaYO55s13POzf9YP2efBNvRnS2wxth87i53EzmNHsCZAx45jzVg7dlSKh1fXE9nqGvIWI4snC+oI/uFv6MlKM5nrWOfY6/hF3pfHnyF9RwPWVNFMsSA9I4/OhF8EPp0t5DqMojs5OjkDIP2+yF9fb6Jl3w1Ep/07t/APALyODw4OHv7OhRwHYK8b3P6HvnPWDPjpUAbg3CGuRJwv53DphQDfEmpwp+kBI2AGrOF8nIAr8AS+IACEgEgQB5LAZBh9BlznYjAdzAYLQDEoBSvAGlAJNoItYAfYDfaBJnAEnARnwEVwGVwHd+Hq6QYvQD94Bz4jCEJCqAgN0UOMEQvEDnFCGIg3EoCEITFIEpKCpCNCRILMRhYipUgZUolsRmqRvcgh5CRyHulEbiMPkV7kNfIJxVAVVAs1RC3R0SgDZaKhaBw6CU1Hp6EFaBG6DK1Aa9BdaCN6Er2IXke70BfoAAYwZUwHM8HsMQbGwiKxZCwNE2NzsRKsHKvB6rEW+JyvYl1YH/YRJ+I0nI7bwxUcjMfjXHwaPhdfilfiO/BGvA2/ij/E+/FvBCrBgGBH8CCwCeMJ6YTphGJCOWEb4SDhNNxL3YR3RCJRh2hFdIN7MYmYSZxFXEpcT2wgniB2Eh8TB0gkkh7JjuRFiiRxSHmkYtI60i7ScdIVUjfpg5KykrGSk1KgUrKSUKlQqVxpp9IxpStKz5Q+k9XJFmQPciSZR55JXk7eSm4hXyJ3kz9TNChWFC9KHCWTsoBSQamnnKbco7xRVlY2VXZXjlYWKM9XrlDeo3xO+aHyRxVNFVsVlspEFYnKMpXtKidUbqu8oVKpllRfajI1j7qMWks9RX1A/aBKU3VQZavyVOepVqk2ql5RfalGVrNQY6pNVitQK1fbr3ZJrU+drG6pzlLnqM9Vr1I/pH5TfUCDpjFGI1IjR2Opxk6N8xo9miRNS80ATZ5mkeYWzVOaj2kYzYzGonFpC2lbaadp3VpELSsttlamVqnWbq0OrX5tTW1n7QTtGdpV2ke1u3QwHUsdtk62znKdfTo3dD6NMBzBHMEfsWRE/YgrI97rjtT11eXrlug26F7X/aRH1wvQy9Jbqdekd18f17fVj9afrr9B/7R+30itkZ4juSNLRu4beccANbA1iDGYZbDFoN1gwNDIMMhQZLjO8JRhn5GOka9RptFqo2NGvcY0Y29jgfFq4+PGz+nadCY9m15Bb6P3mxiYBJtITDabdJh8NrUyjTctNG0wvW9GMWOYpZmtNms16zc3Ng83n21eZ37HgmzBsMiwWGtx1uK9pZVlouUiyybLHitdK7ZVgVWd1T1rqrWP9TTrGutrNkQbhk2WzXqby7aorYtthm2V7SU71M7VTmC33q5zFGGU+yjhqJpRN+1V7Jn2+fZ19g8ddBzCHAodmhxejjYfnTx65eizo785ujhmO251vDtGc0zImMIxLWNeO9k6cZ2qnK6NpY4NHDtvbPPYV852znznDc63XGgu4S6LXFpdvrq6uYpd61173czdUtyq3W4ytBhRjKWMc+4Edz/3ee5H3D96uHrkeezz+MvT3jPLc6dnzzircfxxW8c99jL14nht9urypnuneG/y7vIx8eH41Pg88jXz5flu833GtGFmMncxX/o5+on9Dvq9Z3mw5rBO+GP+Qf4l/h0BmgHxAZUBDwJNA9MD6wL7g1yCZgWdCCYEhwavDL7JNmRz2bXs/hC3kDkhbaEqobGhlaGPwmzDxGEt4Wh4SPiq8HsRFhHCiKZIEMmOXBV5P8oqalrU4WhidFR0VfTTmDExs2POxtJip8TujH0X5xe3PO5uvHW8JL41QS1hYkJtwvtE/8SyxK7xo8fPGX8xST9JkNScTEpOSN6WPDAhYMKaCd0TXSYWT7wxyWrSjEnnJ+tPzp58dIraFM6U/SmElMSUnSlfOJGcGs5AKju1OrWfy+Ku5b7g+fJW83r5Xvwy/rM0r7SytJ50r/RV6b0ZPhnlGX0ClqBS8CozOHNj5vusyKztWYPZidkNOUo5KTmHhJrCLGHbVKOpM6Z2iuxExaKuaR7T1kzrF4eKt+UiuZNym/O04I98u8Ra8ovkYb53flX+h+kJ0/fP0JghnNE+03bmkpnPCgILfpuFz+LOap1tMnvB7IdzmHM2z0Xmps5tnWc2r2he9/yg+TsWUBZkLfi90LGwrPDtwsSFLUWGRfOLHv8S9EtdsWqxuPjmIs9FGxfjiwWLO5aMXbJuybcSXsmFUsfS8tIvS7lLL/w65teKXweXpS3rWO66fMMK4grhihsrfVbuKNMoKyh7vCp8VeNq+uqS1W/XTFlzvty5fONaylrJ2q6KsIrmdebrVqz7UplReb3Kr6qh2qB6SfX79bz1Vzb4bqjfaLixdOOnTYJNtzYHbW6ssawp30Lckr/l6daErWd/Y/xWu01/W+m2r9uF27t2xOxoq3Wrrd1psHN5HVonqevdNXHX5d3+u5vr7es3N+g0lO4BeyR7nu9N2XtjX+i+1v2M/fUHLA5UH6QdLGlEGmc29jdlNHU1JzV3Hgo51Nri2XLwsMPh7UdMjlQd1T66/BjlWNGxweMFxwdOiE70nUw/+bh1SuvdU+NPXWuLbus4HXr63JnAM6fOMs8eP+d17sh5j/OHLjAuNF10vdjY7tJ+8HeX3w92uHY0XnK71HzZ/XJL57jOY1d8rpy86n/1zDX2tYvXI6533oi/cevmxJtdt3i3em5n3351J//O57vz7xHuldxXv1/+wOBBzR82fzR0uXYdfej/sP1R7KO7j7mPXzzJffKlu+gp9Wn5M+NntT1OPUd6A3svP5/wvPuF6MXnvuI/Nf6sfmn98sBfvn+194/v734lfjX4eukbvTfb3zq/bR2IGnjwLufd5/clH/Q+7PjI+Hj2U+KnZ5+nfyF9qfhq87XlW+i3e4M5g4Mijpgj+xXAYEXT0gB4vR0AahIANHg+o0yQn/9kBZGfWWUI/CcsPyPKiisA9fD/PboP/t3cBGDPVnj8gvpqEwGIogIQ5w7QsWOH69BZTXaulBYiPAdsivyampMK/k2Rnzl/iPvnFkhVncHP7b8Ah9d8bcAadJgAAAA4ZVhJZk1NACoAAAAIAAGHaQAEAAAAAQAAABoAAAAAAAKgAgAEAAAAAQAACTagAwAEAAAAAQAAAxgAAAAA0O33uAAAQABJREFUeAHsnQe8JEW1/2vzLnF3JaddwpIXBESSIllEJAgYUcGETzGDisJDn4lgFhTDI6iogDz8CwaCJEWQKEsOwpKDAssSF3Z3/ufbcNqanuqZnnDvzr33dz6fe7unu6q6+tvdFU6dOjUqhFCzP4kIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAI9A2B0X2TE2VEBERABERABERABERABERABERABERABERABERABERABERABERABERABERABERABERABERABF4mIMMmvQoiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAJ9R0CGTX33SJQhERABERABERABERABERABERABERABERABERABERABERABERABERABERABERABERABERABGTbpHRABERABERABERABERABERABERABERABERABERABERABERABERABERABERABERABERABEeg7AjJs6rtHogyJgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAjIsEnvgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIQN8RkGFT3z0SZUgEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAERECGTXoHREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAE+o6ADJv67pEoQyIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAmOFQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREoA8IjBodJk5dNSy13PSwxNQVw8QlJocJi7/8x/6kJcPY8RPD6LHjwugx48IY244aMzaMGT02LFg4P9QWzA8L5r8YFi6wP9vOf+H5MO+5p8K8p+eEec+89Pe87T/9+ENh7qOzw/OP3xdCbWEf3LiyIAIiIAIiIAJpAqPscC19SkdFQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAR6TsAMmJZYcd2wzLT1w9SV1zFDplXNkGmlMGmJqSGMYgh3kKRWC889/bgZOj1ohk73hccfuC38+56bw9MP3SqDp0F6BLqMCIiACIhAcwIybGrOR2dFQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREoCsCYyYsHVZYf5uwwlqbhamrrBOWXn41s18a01WaAxm5VlsQnnzk3vD4/beFh++8Jjx882VhwbwnB/KSSlsEREAEREAEkgRk2JTEooMiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIi0CEB88i0/HrbhpXW3TIst+YmYallVukwof6JNvff94dH/3ldePDWK8Ijt1wqj07982iUExEQAREY1gRk2DSsH69uTgREQAQGh8Aqq04LO7/hTWGppZYMtT6eYTI4NHQVERABEWgksPUWm4W//f2axhM6IgIiIAJDkMCo2sLw4P33hnvvuzf8/TJTZEtEQAREQAREQAREQAREQAREQAReImD68RU23CFM22g7M2jaIowdP2nYkpn/wnNm4PT3cM+si8PDN15oRk4Lhu296sZEQAREQAQWLQEZNi1a/rq6CIiACAx5AnvsvV/YbPMtwp677xpmrLVGWGzS8O2oDfmHpRsQARFYZATuuuuusMYaayyy6+vCIiACItBLAnfedXe485+zwx/PvzDMvvO28Luzzuhl8kpLBERABERABERABERABERABIYcgaVX3Sisvc0+YdWZrw1jxk4YcvnvNsML5s8L993wl3D7ZWeGJ++b1W1yii8CIiACIiACdQRk2FSHQz9EQAREQATaIYBR035vfWvY/637tBNNYUVABERgxBGQYdOIe+S6YREYMQTOOOvs8Iuf/1zGTSPmietGRUAEREAEREAEREAEREAEnMCoMePC9C3fHGZssUdYevnpfnjEb598ZHa44++/C7Ov+D9z4vTiiOchACIgAiIgAt0TGGNJfLH7ZJSCCIiACIjASCOwxTbbhtdtt2P46IfeN9JuXfcrAiIgAm0TeOKJJ8KUKVPajqcIIiACItDvBDZYb51wx933hjtvvy3Mnftkv2dX+RMBERABERABERABERABERCBrgmMGjMxrL/L+8M2+385rLrBa8PEJSZ3neZwSgAeK62zRZixzb5h9IQlwr9n32jL1M0fTreoexEBERABERhkAjJsGmTgupwIiIAIDBcCW23zmvDB9x0YVlh+ueFyS7oPERABERgwAjJsGjC0SlgERKAPCExeeunwrzlPhX9cc2Uf5EZZEAEREAEREAEREAEREAEREIGBITB67CQzaDoobP2u/wkrzHiVLTk3fmAuNExShc9yq28cZrxmvzBmwlLhMTNwqi2UgdMweby6DREQAREYVAJjB/VqupgIiIAIiMCwIbDyKquFGWutMWzuRzciAiIgAiIgAiIgAiLQGQHahEstuVRnkRVLBERABERABERABERABERABIYAgelb7Rs2fv37w/hJSw6B3PZXFsdNWCysv/07wlpbvilcf+5Pw+zLf9NfGVRuREAEREAE+p6ADJv6/hEpgyIgAiLQnwRqo8aExSZN6s/MKVciIAIiIAIiIAIiIAKDRoA2YW3U6EG7ni4kAiIgAiIgAiIgAiIgAiIgAoNFYMmVNwiv3ufQMHXlGYN1yew6856dG56d82h45omHw9OPPxSem/tYeP6ZJ8K8Z54Mzz9l26efCAvmPWsrvM0zL0gv2N8Ci1ezv1Fh1Ogx9jc+jBo7wTwlLRYmLDElTFxySpiw+NJh4uJTwqSlXhGWmLpiWHzKCmGxycuFCYsNzkQVjMI23+uTYc3Ndw9XnnlseOqBmwaVqS4mAiIgAiIwdAnIsGnoPjvlXAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREoNcEbPLGRrt/Iqy9zd5h1ABO5Fiw4MUw58E7w5yH7g5PPHRHePz+O8LcB2zJNjvemdSy5d6yJd/mPxsWPP9EeOHJB8JTTRIbNWZcWGrlDcPUVWaEKSvOCJNXXD1MXmmtMMaOD4RgJPb6j54Qbr/srDDrnO+YPdbCgbiM0hQBERABERhGBGTYNIwepm5FBERABERABERABERABERABERABERABERABERABERABERABERABESgcwITJq8SXvfeo8PSy0/vPJGSmPNfeC78a/YN4dG7rg+P3HVdePKeWRYST0uLTjCievJey4v93Z1nY1RYetpGYfk1NgnLrbFxWHb6zDB2fO9WcMBYbJ3X7BNWmLFZuOTEz4Z5c+7Pr6wdERABERABESgSkGFTkYh+i4AIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIjDgCy2+wfdjqrZ8P42wJt14Jy8k9eOvfw/03/SX8+44rLNlFa8hU7b5qZnR1ffZ3+0XEGBWWmbFlWGWD14aV1t0iW8auWjrNQ2E89oZPnRQuP+1r4ZGbsgs1j6CzIiACIiACI5KADJtG5GPXTYuACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACDiBtbbdP7xyt4N6svTcvGfnhntnXRz+eeXvw1O2tNzQl5oZZV2e/f3DbmZJW7puzVe/May20XZhwmJLdXV7GJG99l3/E/7xhx+FOy/9RVdpKbIIiIAIiMDwJCDDpuH5XHVXIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACFQist8uHwoY7vqtCyOZB/nXPjeHWv5wRHr7hguYBh/hZjLX+cRZ/R4cVZu4U1n3tfmHZaRt2fFcsTbfJG/8rjJu4RLjlvBM6TkcRRUAEREAEhicBGTYNz+equxIBERABERABERABERABERABERABERABERABERABERABERABERABEWhBYN2dP9iVUVOttjDzznTTRaeGZx66tcXVht9pjLj4W3zFdcMG278z8+KEoVIngnEZPG89/8edRFccERABERCBYUpAhk3D9MEu6tsaN25cWHHFFfNsLLfccmHChAnhgQceCPPmzQsPPfRQfq7KzvLLL5/FbxV24cKF4cEHHwxsB0KOPfbYcMghhzQkfdRRR4XDDjus4bgOiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAI9CeB6VvuE2bu9J6OM/fAzZeFa885Pjz/2D0dpzFcImLUdeUvjwizzp0WNt39I2Hl9bfp6NZ4Hs8/9ViYfcWZHcVXJBEQAREQgeFHQIZNw++Z9sUdfetb3woHH3xwaV6WWWaZ8Nhjj5Wej09stNFG4frrr48Ptdx/8cUXwzPPPBPuv//+cPzxx4ef/OQnYcGCBS3jtQqw5pprJoOMGTMmeVwHRUAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAE+o/A5Ombhs32/FhHGZvz8N3hijOODk/df0NH8YdzJIy8/nbKZ8KSq8wMW+732TB5hdXbvl2eC4znzL627biKIAIiIAIiMPwIdOYHcPhx0B31mMBb3vKWpikeeuihTc/HJ8ePHx//rLSPx6jJkyeHDTfcMPzwhz8Mzz33XDj99NODDJAq4VMgERABERABERABERABERABERABERABERABERABERABERABERi2BEaNmRhes/8Xw+jR7fmAWDD/hXD9n34Szv/2/jJqavF2YPQFJ3jBrR3hufB8eE4SERABERABEWivthYvEahAYN111w0sPddM9t9///C5z32uWZCensPQab/99gvbbrtt2HrrrcNdd93V0/SVmAiIgAgMBIH58+eHs846K0/6DW94Q1hiiSXy38UdluK87LLLiofz30suuWTAC95KK62UH9OOCIjA8CDw5JNPhiuuuCI88sgj4V//+le2LC8eMpdddtmw+eabB5b1HY5Sq9XCX//61+x+V1999bDaaqsNx9vUPYmACIiACIiACIjAoBFYbLHFwvPPP5+1r3px0aWWWirMnTu3F0kpjUEkMFSe21DJ5yA+Ol1KBESgDQKbv/XwMGnJV7QRI4SnH38wXHLSYeHZR+9sK95ID3z7RSeH+2/6a3jdgV8PS0ytrpvm+fCcrvzl4SMdoe5fBERABEY8ARk2jfhXoPcAPv/5z7dMdOWVV84Gnu69996WYXsZgEG92267LWyyySbhxhtv7GXSSksEREAEek7gwgsvDLEHvFNOOSW8+93vLr0ORk1x+LKAGJ/utttugWVDp0yZUhZswI9fcsklYbvttsuuc80114RNN920q2t+5StfCWeccUY48MADwyc+8YmO06J++M53vhOuu+66MGfOnLDNNttkhrG77rprWGWVVTpOVxFFYCAIYNhz3nnnhT//+c8NyWPgdMstt4RLL700rLHGGgHD8mbGkQ0JDIEDCxcuDGeffXaW0x122EGGTUPgmSmLIjCSCWBwimdhjNGfffbZpihoh6y99trhyiuvDNtvv33TsDr5EgEmNC299NJt43j66aczI462IypCwKj4TW96U3j1q1+dtTl+//vfh3/84x8i0waBCRMmhKlTp4bFF18863vEUV944YUBMwj63//93/C2t70tK4swhHdhEuLXvva18OKLL2b9oKuvvtpPdbQ999xzwy677BIeffTRbILNggULOkqn3yONHj06e46U84899ligje7CPscGQvj+fv3rX2dJv+51rwvtPK+JEyeGf//732HUqFHhm9/8Zvjv//7vLB283VNPoTc4//zzs+c3EHnvRZoj5f3qhlWzMobv8YknnmiafNl70jTSMDxJ+2KfffbJJgvynTO5homITCwqEyZZn3zyydnpdr/PsjSH0/Gyemgw73Hy6q8K0zZur5394K1XhL/97HOhtuDFtrPK98ik05TwLQ7XOjK+X4zB/vSNd4St331UWGndLeNTTfd5Tv++dacw997W7cyBrHebZnIEn6QdtPfee2fjrmuuuWY29koZefPNN49gKkPr1r0tS64ff/zxlhMcaC/6uBLtyV7IDTfckOmvB0oH8spXvjJ3CvD+978//OpXv8ruocpKT63KFSaGwIO02rV7IM5ee+0VyN9aa62V8Uef/4c//EFOWhIvlpaiS0DRoe4I7LnnnpUSOOywwyqF63WgsWPHZoN/FNQSERABEehnAhgyxVL8HZ9rZx+lMsqVV73qVeGmm25qJ2rPwtJAjo2wME7oRlD6H3PMMWHWrFnh4Ycf7jipn/70p2HmzJkBBcu1116bNR5//vOfhw984ANhs802C3feqdlYHcNVxAEhcNFFF9UZNb3iFa8I66yzTtYRjI2Y8FZ5wgknBDzBSURABERABAafAINhGJzecccdmQFIqxxgkIpyTEbVrUj95/w73/nOjDGc2/m79dZb/5OI9ioR+K//+q8wb968rK383e9+N8CeSQYY5DEoR7tcUo3AsccemxmRUDYU31s8cj733HOBSSAf//jHqyVYMRRGaZQxGFXFcvDBB2eGLuPHjw+f/vSn41Md7e+8885ZPIxkMMIZrkLfmufHIAT97fhZMtiDodjtt98efvCDH2QDHr3i4HUFzxLjuHYE/ShxiBt7d+U5uSf+nXbaqZ0kBz3sSHm/ugHbrIxBL8O7ef/994ef/exnthRXo6687D3pJk9DKS4GTUwkwugEPRFlMXXeD3/4w0z3RBl96KGHJm8Jb+l8X518n8kEh9nBsnpoMG9zszd9uK3L3XP9ReGykz7dkVETF+J7jOuHeB9dDd8jxnLf+973AgZ0w1UwCoMjPNuRt3/ym6X8YpbUu0x8kwwOAd5XJu385je/CV/4whcyw3n6BYw58E7/v//3/5L1y+DkTlepSsDbsnxLPL9WsuOOO+bfY69WZ8ILP3XmQOlAqL+9XmYSMOIrH8RlSGq/VblCX4721D333BPe+MY3tsKXncegiXEn/34OP/zw7Pv58Ic/HL7//e+Hf/7znwFdxWtf+9pK6Y2UQI2t1ZFy57rPASHALD1cAFeRfffdt0qw0jA09phV5H8UAlgDM1B+8cUXN7UopYNOgSERAREQgX4lgNLkl7/8ZV328OBU1eIbIygGG/zvqaeeyhTiHF9//fWzdDF02HDDDbNGUt2FBuHHBz/4wUzh24tLcW8HHXRQYNuN0KDFgMnlXe96V/jGN76RLWXKMRTUeEy47777PIi2IrBICTDY9ac//SnLAwpnOj6f/exnw/ve977woQ99KJt1zZZZtgjvMEpZiQiIgAiIwOATiAe9UNhNnz598DMxwFf829/+lnkpQYE9lAQDDkl1AqeeempmnBFzi73TMDDO+84SuXjRigXv3YTlDwOPXspQff9aMaAdh2dbPMr+6Ec/ahW86/Pu/Ydn9JOf/KTr9NyDF0vb/fGPf+w6vaGaAG31GTNmBIwCGehDh9mvwnNyr4LXX3/9Is0mHvV4F/G+nxK9Xykq7R3j3aRsRv/BRK5OPB+2d8WhExrDG3RwGNAx/pASymiMefEinDIMS8XRsf4gMHWtLcLUldepnJnZ110w4Euh8T0ybvXRj340G2x/73vfWzl/VQIOZDusyvWLYVhaDq5V5fYHnw433fdkpeDtGvtWSlSB6gjQzmdSMO8r3shSwju9xx57hLvvvjvEHkJTYQfrGMZX3h/pF4ORfuvHVPl+4noRY6GhIG4Q/8wzz4QHHnig7SyXccHLEsbMLlWcumC8ihEUqyuU9atJj8nLrHpCH0LyEoEhuRTdiiuumHXot9pqq8CsdB46a7VTOJ500knh+OOPz+6OJdFSlnFYD/7lL3/JwqBMRClTlP/7v//L3PDSOD3yyCOzZW2YxURhjZKOgSE6VQykVvXewKx58oSrZ15aPgIavKRHRw1rPqzwsP5v5rmChnJxRhXWgAcccECW3ic/+cnAH40g8sugNh/p6aefHoofFNdHOfKGN7whs4LkfjEYgudvf/vb8JnPfKYtd8nF9J0rjPi4Y4EBg+u9ckcIMwbp+WMpImYbUbHGBUp8/be//e3ZwB/KlV7Kl7/85ayy5t2iQCd9rDlRDMCTZ52St771reFjH/tYwyl/XzmPpSz3w3PCO8kRRxyRDboXI9HxIiwD8HRIJ02alHXAeBcY+EeJ8qUvfSng5aEoZd8EXOnkpoR04sKXMMxSw51fUXjnMDwrKnH+/ve/h0996lN1wXHdx+Asy0BtsMEGYdVVV83unWfN/WM5izs+OpDkr6q8+c1vzqzHuVfcv/Kd8N6juHnooYcyBetxxx1X+h2WMfJyA5eBeMXg/eY7J20Gkofz7MSq7BWuOgFmObhQvp988snZT8ryQw45xE+VbvnG4u+SfRTi/PEN8G2RFsJSA9Q9gyUoyM8888yuLodrfOov6hCWvOiFYBXvgrtcXIC6kGeMsairKXOoryUisKgJ0P5zwc099VNRmMVNfUy9hrRTXxbT0m8REAEREIHOCNB/23zzzesis+RPrwcr6i6wCH64crPY1xusrNDnpt1cFIx+11tvvexw6jx9QEk1Aiyl8453vCMLzIAAbeJvf/vbYfbs2dlgBe3lL37xi4FBjC222CJbHhrvBCmpOikuFTd1bFG/f6k8tXsMPQ7LYrugyEavs91222WH4Isivqg78fC92NLX5JmiH2m1RFWV69H/XHfddTNvdSNhiR2YoIuMvZahx9tyyy2zfjjfBs8V72YbbbRRFYSDHgbdId8nhlj94tEOvWZKRuL7leJQ9RjlM8u8uDC2gt6DicKUoeiTMaBk7GKkC/rrq666Kp/AzXeBzt/LRzx6089mbAh2u+++e7Z0Ix4sJEODwLrb7Fs5o/+654Zw1a+/WDl8lYC8T3jjQKgb+P7oL1DvM1bBO4iuljG+o446qkqSbYXpdTusrYtHgeG6+NTlw7LTZkZHy3fPu/ahMHXssw3jnMUYGIpIBpYA49SbbLJJdhH6BUzQZnIDfSsm8uCAgrYtRk/8xnOlL102sDmrnjrLxPeDDId+TD9wbJUH+iRI3N/yOLy3ZfYNHqasXKF9FQvtK7cliY/H+3jkxdgUYfz4xBNPzCYo40GKuLTPmHDPt8P7waQgbFJwfCAJgUW/h8yfDSzWzKjByslysUGemjUEavaSJQN95CMfye/XFC3JMGaNXzNlXM0GMJPn/aB1ymumkMzTK2NpL2XLfHua1lCu2YBzaZpmCOVB8y1MzIimZo2h/Fhqx4y/amYYlqVtCqmauZxNBcuPmRKjZgZIpXkp3q8pWPK4vmMuWWs22OY/67ZmVNYybXOBVxfHf8CheP3ib56hGXV5lIatudVumUacphmuNKTBAVNY1My6t2YGTMnzfpD3xVzWJq9pCkEPVreFkRnE1R3zH7ZkUl1a1iCtWYHop1tuzTCoZo2PujR4j1LCO2YN6rqwsDG3nqng2fueCv+a17wmGZ53M2ZtBXfNjMKSYYsHyZsZaGTfbJxGcd8MpGq801WE79AGGury5Ok1KzfMqCn5rfNtevzhsv3YoYdXQdlRGMoNMyyp2SBEzZS3NXOJnX/L5557bo1vMf62L7/88poZuWTvARc0w7oa35Qp3bPyx5TpNVMuluaF8sS8uNXMuLBmSuPszwxEa2bgmYzj1zNj2uy8KfJrZsxWs7Wka2bAWDPPPzUvqylnCcd92FKdNeu41i677LJkuvFB68xm74y53szKan9v1l577ThY3T7fgYf7xS9+UXeu+IPy2gz78vDUna3EGlAZZ+61THjXeRb8mRK0IZgZIuXXpNz0/JrCqCFsswNmDJnH9TR8y3vTrsT5MiPOZHRTRmfXhJsZVybD6KAIlBFo1UYri9fsuBkI1kxpkP21aoOYoX4WzjppySRt8KpG2Xb6aadl5aetM167+uqra2YQnQzvB6m/KXvMcKpGWWuK8KyMLmtDX3DBBTXKcdralJPsE5d7iYX62gaoa+biv/bVr361ZsvcZNexDl4crGadv5wB4bkPm7ldI//f/OY3a6ZYyfoEXibXRdYPERCBnhKgbeh1sbb1Opa4P+flkU0masrLvPJlz4c22lDhST2C0D/rpzyff/75Wb7410/5Gop5sUlkOUubfJXkaRN88jBmUF0XxpS3+Tn6K71k0K/vX6t7tOU7cibov1LhY70LbaRUmHaPmVI8uy56qnbjKnx9GQ8P82CfP0farSlGNjm3FutN+Z0K184xdIwu6HnbiWsTcD1q1oZvJ+5ghbXJoVke6TsM1jWH23WqlDG8v9TdiA3s1bEeCu/JQDyzmBvlpBki1nHxa6Jrdv0QDOPvupvv09MfzttFWQ+NGjOuts/XL67td/RlLf/2+tJ5tTETpySff7vPJ36vyup8xrNiHS3vH7rgdq+VCj+Q7bDU9aoeGzNxag3OVZ7H27/xt9p1s27qCY+q+VO4xnYPbY5YPvGJTySfCWPL1Csu6NwXNU/z2OTZqZkjgkWeH3j0Qz+mSls2fnavf/3rc47/8z//0xOOA6kDifuo6Mj9XrwOj8eG/FzVrbdX4/HsZrYH8Iplt912y/MTX5PxdcYdXegHpsbc4zgjYX9ILUXH7Dss4d160R5QUvAMdOWVV3bt/hOvMm4xl7yQHbSXKPN8Ey9dE4fF8hkrugMPPLBlvj0eXjXMYCWcdtppfqjSFi9UzMpvJszkxwsFnq5MudfSQhaLVWbnVHFDu8suu2QeiorXtwH8zDMHVodFGWgPNtbwC1bAZq4Fi9fmNx5LeiF40LKBuoxrs/R4X/AwYgVns2B153hWeFdqJcwUwYMJs5WqCl6zsAyN3di516JiGnx3eE4qCpbXKSG8u/aLzzODJSXwc+Hd5z0tc2Hp4XzLtfBUgQtqGKfk4IMPzjy1VbXC5jtkVkS7XmzwHNOqjErlT8f+Q4BlvrbddttgRkLh6KOPDj/+8Y/Du9/97qw8xoMZ3y0eh/Aq58L7Yw3owHneH2Zk4waVmQJ4cGO2AN8G9UhR8MBjiuLMI5l1MANlP3/MwsIymneWbysWvx5lO+X1dCtbWe6J95aZmeSfsscMGbKZmYTjPlhTGk9rfEvkq0zwQsTMMIT7ZTYD7zjC7AZmd3YreJSzBlaezDnnnJPvl+1wf3DmXstcwTO7jzD8MZs4FjzY+cw/+DB7vlOZNm1aNluOGU78xffSSZrUVS4895Tg3RDB8x1La0hEYFETwBuoy6xZs3w3uTXD/qy+Z1sU3Ot//etfD3gevOrqqzN3+8w0pzxldhXlTkooY5kxQnmF+1w8muKl0zrkwQZ0ghkXNUQzQ6aszUT70gyPsn3ixks84lmSGYnMQsHD1Jw5czJvaVyH2SruebWYuBmSZvUG3ljJ/8MPP5yVl5RdZiCVzYApxtFvERABERgMAnhZQfDeS7sFwXMsM7Krynve856sbMMbMLMJabvYpJGm0akn8JZDmUs8PN5SxuKlklmAReEY6fKX8n5NeFO65WHwpo1QNhNn5syXZlrTH/J0qFuGkpiSPqtnaP9Tr9jAUua9oplOBI9c1Hu0D5lhSVz0LXBO9U/xeAQf+hR4t+I3+zwj6j28/3IcIT51NP0D8sPz4zx9+UUh273sOcgGb0t1VuSVvgXtAtcDoafjnn/3u9/l2WZZCn9PbAJIftx36E/8+c9/ztoAsIEvnIt6unbfP74l8kf7h28C79H0A3mO/Sq0iS666KIse+g00BMVhfKEMPRvTemdtc1YshhdUTtCX4jnwjXpM6YEHai3tWBI2wwvwKklRijzSI9ZyCnhGujJ6F/yjlO+8azLyiBPYyg+x8ceeyzzHu73gCd5F5vMlXHCm19K0An491LWXyUeZQOemW3yQfYeUIbBt933m/Yz1zPDjFR2stnj9BUos3jf6C/Q9m+Wt3bKSt5dru+emvju/f7jWfGt3q9260H06n4dvLHjVQu9IBx5fugd4+un4AzFd5NxFO+PsQJCu9Jp+QNv6gXKY94jvP/TbqHug6M/i1Rd2m4e2w0fe9XkOyjrb5NHvjGE9o9Nyim9FEse8Z3Q/6WsYxWC+DqpiFXrQuIW2xeMu/At0y6hb0w/fZ999kldJj+20047BTxSkD/qXsp6ngVCHcz92uTNPHy8g26Udp8NwmbPk+fKPbKiQSfS7vcbX6PVfZx81sX2njW2heM0fP/68/43LHj+Cf854FvGszbeeOOsHcXFeP/RKadk1113zfTjlFHUobynPB+8hcTSbjusnfI6vk6n+wuefzzAuYrMN3vsu/7VOM5YJW67ZVXxm0IfzpgB9QHtXYS+A98FbaFUO4gw1O2EiccyOO5tWPRqtP0Jx1gdzxLveoxnudAOoN6lfuf6tJXaGWP0dHq1jb2IsVKJl4PF9ClH4nY+4yIp6fbZVCnvWPKL5xCPheJ9lmO0oWMdK3ns9Dugbcv4EH1wnhVtc8pCyvNifebvwHDoR6eea6/qBefEt4IwruR9b/rffDfN2qDEidvd5uCAQz0RymFfoo5vkvF1hPKiTOL2NWP/vB8poc9tRrB5mvQDKZckQ8RbkxXibpTW9baKx6Z2L4JFnhVKNXuh6v6sY9BuUnXhrYNWlx7p+wzPuoBt/iibRV+WDBajxXsr/o5nQcbp+Cw+awjHh/N9a2g1Tbsbj02ex7Jrw9LDVNniJSYlPqslda7s2IYbblh37TKPTWXxOe4em6yyrLlVaLPwZefIf/wc8BKVEmuw1OUZZqZ8SgXNjlnnvyG8NRSS4ZnhQnrWsEier3oQzw7FZ0na3QjlT5xmmcemZteQx6ZmdP5zjvfYXOzmvNm3DnTNDEryY/4sbNnRPGKqrDRFaM1c9Gfe1DwOW+sc5PGYLYlHJD9PHDOmqtkgRM09JnGOd4gZMi6p61mjomYNljovSJ4u18ATX5wm58q+WzyqeFy8TyF4M/FjeGhJSTsem4iPhzdP0wzBUknWHcOrlYenPCgKnlP8+cVW8B4OL1jEx+MRHres0Zan167HJk/Tt9ZRytPqxGNT7KHNOh2ebN2Wes7vHy8wkuFB4JennVHbdOvX1tbZeNPajJmvbPpHGMISp10ZCI9NNoCQeyuiXMDzAcfaaSuasrEuDepR2jt4UXJvUGzNoLLulvHm5Oet41YzF9SZ9yU8NvEN+rliG8yPF7emqMvSZyZKfM6Up1nap5xySt1xb8vGHps8nilKMk9NePujPPXjZV746m5MP0RABDomII9N9boAbzOY6/Cc6a9//euaKUxzrwhmtJG3LTy8b+PZij6DM08o2vH2lcfzrQ1MlrY1iY73XvqRHp4tv13wlh2f833KfBfv09pgih9q2DJr0eMuqm2sq2iWh29961sN+fcD3Efcb/B0TKnalDMei3jmHp4tdaUL/Y6U2IBizYypsueUOk/b1wY46tKNrzFQ+943IU94Sq96HRusSN1GfsyMYvK04Nys3YR3Xzwl+7Wrvn9muFdz7xD5haMdvKi5XsLTHoxtFe8N5IM+qIsZFuX3zznaS80kVU44C/q58X3G/bzUM77++utLL8WzKTLEkybCufg67NsAYNPvx3Vecbx+fY5VZ7nb4HLOD2+jfm/MwEZ4n/1YvLWBoTweXuP9XOwRBg8Esd4ij2A79HFtgC6PR3zKJhfKJU+TLV7MEfTa8XH2Kfea6UFtQlcyTpn+g+sUy8qy+yAs/QvPU7P3q5N6MPZAgZ62rF9lA8sN4wD9+m5WLWPM8AW8dR7D4dzsPeF8J+UP8WBd9h5Rx9kAfpYf/uHBxp/5YGzj77nsm4zzQf5sgLVG+XjyySfneY2/TzOIK73flP683bqQ/MTtCzxFlEnZCho2qaksSlZ/8t4jlCfx/bPfqlwwg6qGOGX1EOl18v16nqrcxykX3lXJO9Duh//O8j2qIe9+rXa3Vb9H0sXTjZeFeBSJxx5558xIO3seqX98W3FboZ12WCdt23Y5pMOPqsG7itemb51xddvPpJOyKv6mzHCnDrX3cVj9wQXOqXtj1QGEujU+721Y+n3+PXhavkWPRZlUVh+xakSc5mDtu5cb8lWljKZspIxMtSu6fTZVyzv6t83ElinLWXb6HbRq26Lz5Nv25+TvQCpf/o552IHexnUfz6TV9WDkkvLY1Em9EOtA4us7J86j6y2T1Niwp+O2GsU+ib/LZqzY8p49rXjLN4hQ7tLWjm0IfPWsODz9WBfeh/hc2T7joy5//etfK8UpS2s4HE+7NrE76yfBMhKLvH4WLPKKa9zjPYJ1cZuJvYzNTmczeQZizfXiDLemmbCTVqi19J6Dh5Ki2MeceyVh9nxKWq1bmYrT7jGrOJNRWL/YKt7kuXYOduKhx4wU2rlE07B4CXKr0FTAVu8Z+Wc2FDN0kTKL1dQzNkVX6pLZsVR4POkUxRpAmWU0x8tmPvEu4e2GmZSmxAjESUnRCxfPt5knGtJhZiDeIMoEzz3tfjNlael4cwLWaMpnpFA2MKOI7xerZWskZDPbm6fw0ux33hWeO95AiOez5InLzAoXM47KrOb5zQxT4thSctlMemYyuQU0lvtl3ruYbc/Maco4PIIU19rFQ5E1vjLPTtaAysL49YlXFGY1+7WoQ3ztX6y/XWyAP5/97Mc62cbvNV5WWkk8w4JZoEXBUp6Z2UjRKh1vWXxLCGXMSiutlO33yz+s+13wwpeSeOaN32cqnI4NLQJrrD49vH6nHcLKvJNWH6bq9OyYnSMMYYnTD7LmmmsGZt65mJIgWEc92JJH2WxKyjRmvVonzYM0bONvGc+ofLt4zMOz00EHHZTPJqKtEQuelxBmInE9vNvhvZPy1gyJ8qB3WvlXJsT98Ic/nHlZcu+ncfvIjOODKYmytPHcx28X92rnv31rg+zZLDdm4piL68ybm8+IYsabRAREQAQGm4AZAuWXxAueDexmbUcO0l9q1R+lnLflcDMvxMx8N6V3Xd+F9i4eAGKhfL3xxhvzPqIpRbMZjXj99DoBrx7UG15GxvHb3cf7APUCXi1d+M0f9dJQEPqRZvyRZZX+M21j+g3eT8SbMPzQT7nADs8E3henPYmHIWZw039F6C9zrEzMWCVr1+M1iD6H93NXWGGFzPsTz4nnxyxw+hl+Ho89zNoebLnkkkvyS/KOmcI6/91sx5S22fsQx4eXvyfxDHb23Rs5HmDpY3DvcEB4BrByqfr+0cdiNjjCu0o/kz/yhtCvi/ORHeyjf7GXJjwDu/De0l5CeHdtAknmMSzu35jRXksvHZ5esy19OtdR8o7TzuTZ2EBdFo1nw7s63bx2tBL0T5RB/v3wTHg/8Pzj3w/fJbPbYxnqzzH2hsOz6qVQx1Au8a3wjfB8nCV93Pi76fS6PH/6GN5nooykXnJvP6SLNzZ0jC6dlJX0CSgfPP+8Y15elHku8eux7UU9iKcM9MZ4u+GeKaddv8o7zncVy1B+N/Ec4O8m91pVOi1/qBvx8OHvEWW9DdRlHkrQiVHela0QUDVv3YRzj+mkUcVjuhmfZG01vOwccMAByUt7e5A6B51l7AEKr02x3pIE2q0LixdlLI33lTKV66GXdEHXWfT6Sf/ZjCM9SOatCW+SeJciHerPsrIdvaVNdMqfp7eH8Prkgt4BL2hVpJvvt+p9zH70mSpZCXdfc56Faz5+VymhDgLh6Qa9OEKdGbf3eZ/csyHfDLoOvIXi+Qzh26KsdG9ZVdthnZTX2QV78q/2Mu/WiT00d0HrQFGITsuqKIncgyH1HuUC7dNeCav+8I1RFtJviMsHdPG0raiPeCeoCznv9RHvReyBqFd5apYObQEfR8RzJ2VgK6FspIxknDmWXjybquUd9Q78zJg6zwKeGL19AV+k0++AdnDcB6ftQtuBY96eYQWKeBWMqv2YPMNDZKfX9YLfNt8Kul6E8pF6Kh6jQaft5z2ObzfYYINsl/Zxr4TvwCZ1ZMnRr6ENHntuTHli9dVMiFSljUG42Oux98U4PpKl7627YqtXK7DrxAqEmjX0srUw8Q7BbApmWTWTdjw2YaWHNRyzE5h1xCz4MrFlhepYunVhKjwzAbE8txcvW6PZFGapYNkxc4NXl64pskrDkl+r7LJZT9b5z626yyIwCw6Leesw1FjfFO8lZRJ79CHf8R9emVJiH2Yezgqd5MyEooVknC77vfDYZIP3qexlx9pZozi2tkwlyAwrLH+ZdcJMKTNaSAXLj5Evv99WHpusUMwst60wzN5JwttyXLVm94a1KR6QTAmbXQdvNNYhz69f3LGGRBbOKu/ku4OnG88vW3NpXkyi7jezCuLwVtDXnfcf1hjLw/FNF4Vj1nnKw5Ams1Oxck9JPHuT76BMeEZx/rDKdgvdYhxz45qHbeWxifziCQdLfr4rLJaL14qvO1T3mZXfS6FscxY2eJOciRB7DSvz2JSaaW0KvDxtvJAgXA/PQVzTGgTJW+G7i/PkgWKPTeYC0w/nW0+XuNa4yo+zw0xET9MUX3Xn+BHP2iymzfvkca3R3RC3XY9N8Tea8rDUcAE7YB2RPA824FMXhPra82eKjPwcM86diSlr8uP95LHJvWnhcapMTBGQ358ZcpQF0/EhRgCPP/c/8GDt68d+s7bxq7eqrb3RJg1emzjGOcIQljjtSjPPA+2mFYenLOPbd69EZVtbtqZmAw5x1BrtRg9vgw915/wHnpg8jCk1/XCN8tjc5dZiLxj5SdvBaxLxiuWcp8W2WD7CyM/bciVxctk+9euRRx6ZhXFvAjwLj4N3JsrtopiSIwvTiTe3Ylr6LQIiUE5AHpvq+8jeJnK9AN4H/FjskZr+mh+Ptx4P4rTZ3DuSh7EJIfnDwAuGH2cb6xdSM/riOskMO/K4NpCUp0m/Nk7T9ymHXYp5cs9SlNcevh+2cV2Vyg9etcgzQr1avC8bEPRbrvM4Gs8ORi8Vp83MZe+vso3PxbO/OYcHFz9Pn5Q8uOBZC12Kn6fNzvuA0N7244O1Rf9gBiievWyLHskGCmroE2IdRypPsf4CT5PFMLGHM3QX6BDiMDZwl18bFvG5Vu+fe2Xle3EdicePZ8nzDPz4YGyrem9wXU7chzMDsJwH7zD6szjPtiRDfp548X37PcfpEdfbWEQ044M8vdjzCAzxKBZfK267xfrRMo869Htd4j4wafJs/TvgvuKZ7f36HKvOcqfd7mJLJeUMe+GxiXRtgCdPE5bos+Nv9nOf+1x+vpknHi+/ip4V4roJryjxO4Ce2+Px3Pwd6bSsJG3eNQQvs/G1fL/s/eq0HkSfGwte9fxabG0AOT8d1+uc69d3My5jeD/wZsAf/TT0Su6piRtj3CO+X/bL3pNuyh9bnifnSH8zviblPjqkWKhT4zADvR97i0Kv3On14nKT+zGjm7q08KjjYsYM+blO68K4fUHZXvSgF3ucifVx3J+XueQHvV18z3GZzPmixya+BZfiqgexDrD4zZTVQ51+v+3cx3/98KpKnoEmT9+0jkXMpZP9+Hss1tmp9OK6Mn4uPv7JOEax3RLrxWM9Oum3aod1U16n8t/uMXhX8dj0vu+1Xl3Gr91NWVX8phiL83R9G49dd+qxie8HfVtc1jEmHUtcRnDtuPwwo4eGfHn+BmLLeLIL33Gn1+jls2mnvGOczsWWsGvIf6ffgZdppB17l4QP461xH9xXOXJ2rfoxHm4gt3FblvYAZUmzP/q/LkWPTZ3WC97OxENTfK/uscmvxzh3fJ6VVFyo/8zIrO48Y8sutsx73TkfD0ZHHqdZZT8ee2a1Fo/j7frieDrn8eLt4uPxHq/Z1vXd1NfNwo2Qc2nlWz/dvLsI84cdbw855JCGh8hL6i9jHNb3qxo28bFQ4BRZxIO1niZbOlMeloK0TGgce7h4y7I8KeFFjfMRNzTj8MXKj7TNw0ccpG6fTkKs1CA8DVVX6NUFth/xYHacb/a94C3GKT4fBoVTsttuuyWZkHYvDJtIp0xSlVfx/vx3M8MmlHkpV/A2e63s0rVYCdDMsIkC0A3hPC++jY07ihcqdpiIgyvbsneIjqWnW7bEXKxYZKCwlcSNitg9YRzP3c6j9EgJbD1f8ZYKC+Ox4l98TSqklKSUqKSNYin1DVAZ+bWbGTZRccbKKY8zHLe9NmyKDX7Msjn12LLly5xl/O7Hhka+PFGcQNyI4H1DaEym0orjse/vE4Y5LvH1UgavbiSD4WRRGJzw68ZKYw9nVtv5+eKgv82cy89h5FSUbgybYgVdMd34d9xhMQ8B+SnKFTdeMm8v+XG+CV9KkA5LrFSNFSmLeik6HxhJPTO/mViZikJYMrwIXGcukY/51ndqu+y+pxk3bZoZOGHQxD7HOEeYTiXuwHaaRrN4GIrTFmWZRNoXbuxT3Mb1O8ZMfj7udMbXId8eJu6kx2F8n++b9iiDWR6nzLApLsM9PoPvHg+D1JTQDqeN7mV9bNgUK53iuDDxdFN1fBxW+yIgAp0TkGFTo24lHiDFwNTbgPSpaCMhNmMwP+7n2bpSjzBlxk+xriR2c+7tLdIo9vlJm4lNPvhMue3XHamGTSgUXfbff/+ch3NhSxseidvy8KKfXtZXj/UHtIM9vbi+KiqBCePLVXC9VJ+edwahTvM0B3OLTsEH8LOMFP7RZsYYIPXutRpQY0DHmabiw8OlyM71UmVc/JtDF1bkhc7Nr1s8N9C/Ww1y8p5hOOYS95tp37gU9W+eb4wUXeJBAG/XwcXDso37qLFhU7zMQmowFoa0MxlsZetplhme+KAsRhUeNt6yVLhLvGx4vz7HeDCobPmOI4880m8pqwNiXa8PgBQHcpxJPCBTthQd7fl4UNTjxpMS40lfZQYrxPM6IjZs4htxoZzy9OMtgzo8W/58gKfTspJ0OzVs6rQejOvtWEca36MPrqEDiY/367sZlzH+/FJbDEdTxqll70k35Y+P2/D9x9+B8+Rdi3XXqffaww7ENjasKRo7t3O92LAJI7JUXG/vxWVhp3Vh3L6gv128Hqyda1xOx+UXxtzFePyODWVjwyYMT12KRt6eDrpMl3iwuawe6vT7bec+9v/25ZUMaEaPnZTk4ffW7jb+HlN1aTG9eHJWPBjPcld8J3yfxTiMr7je4+qr65dsa9UO66a8Luajk9/wrmLYxPPjHsv+YgPrbsqq+JvCMDB1T70ybIr7Cn4dd0LBfabaxf49323LRHqcwdjGhj9xm6Tda/fq2bRT3pHHVoZNnX4H3ralDCONIg/a1YxREc48NdWdb9WPKaY1EL/jMtTL7KrbuF/WTb3gdWKxPextL/KTet7wiA2G4j4P5+Jn7mNAztDbJKRdVqZwPC5XPK7ni28xbqvEEz4YS/bwbOM2RjEvcbjivl+LfBbPjbTfQ2IpOncRZg+nTnBRipu5ouBasRfuSnGpbS9sMflsaY+Gg3YAV+EuuHBNiRVqwRQxqVPBOk/J47gZZEmQVmKz5hvc/uH61z6qZFRTrObuoj2AGYHkLiv9mG+toeS7dVv7YBtcCHqAontg3LSnxBQwqcM9PfbS996Y5OTJkxsPdnCE98UUEQ0xd9hhhzqX/HEAK2Djn8l98j1jxozMDX0qQNm7gYtKXBkWxQYCsyVjisf5bQP6+VIEsdvoOCz342IGPL6bbVPvmi/lRQAzYKsL7z9++tOfZrtWcSXfV2sIZG75rMHvUbKtDVQGyofin7vXtg5bvoxXHBGmLGmTEtwX2iBuwyneE2v8NxwvHmApHdKQtE+AstuFdz4lcTmbOs8xlmsoCu+Qi5cF1uj3Q7lr3vxAtGONuuwX5Xfs2tKDpN6L8ePHZ6dxL9qOWOM2WCMsj8JSUNRn/sdSdy4s50aeuhEbmMmjp+4jPxntsGSKeTXKjsR5Zck/z8+BBx6Yx7BOe7AZRnn4srokj7CIdvyefLmRVDbiMj5eli4VVseGHoFXmivld7/z7eE122wdll5qycx1N+672ecY5wjTr4LLY9w60860DlugXUhdt8kmm9Rl2TpX4dlnn82OmZFQfu7YY48NZrDX8Be35azznYdnhzKEuhg3uyzjaR3ZYF7xgg2A1IVL/TAlXMPhKmUS3yrLMqXKrFT5z0W8TGbf6wD2JSIgAiIw0ATMe11+CZY9dqHf5Etq2izrbMkVP1fcUm7FbcD4PGW6i/e1aPd6e4tlnWxw2oPkWxuQypfD67flgfNMDuJO3Me1QblsqTPq1fgP1/IIy+PQz0SoT6lL4/qU4/Cnbx33j8vqqLg9TVwk7heldChVlpB+KaWB+Y9OAQ7oM1iGzIyM6y606qqrZkt706/2d7EuQJMfZhiQM43fXRvMCWbYkS3l6NHb1eX4sl/0Kc04KNB35xkj6P5Sz9KvNVhbloBiSQL+zCAoWwILPcnOO++cZYF3ymbJ59mJ312WdU8Jy1W6eDnhv9vZmuI9C075YQOlDVFhuM466wSWiGDbTOBuk2KyICzlEn9rvs/SSS477rij72ZL7fGjn5+jDXLmz5Fnie7BJiEE87SX3wd645TOOQ/QwY5NHGrQC5OMeRQP6BqQVs8mC1TyjyXmXGyw13frtjapIXsHeA/YR3pRVtZdpMWPXtWDrlssXs51hujrYxkKZQxtChsoz//iesoMeALlO0saVpFOyx/6cmbgnV2CpbNS3wHlsXOukpdeh4n7jF7nd3sNlkBKib83Nlk6P92LuvCss87K0/MdWHuf3oxf/HC29Lv/iPv/fowt7aNifc9xlqR3+c1vfpMsz+MxhlZL2Hbz/cZ5aXUfL7zYOObn9xFvF85/Lv456Pu+XCMXjt9LdCd8J2b8meeJMTqb6JDpSzxerA/PAzbZGezyupiVqrx5ftxj2R/tRpdOyyqP79u43+XHerU1w4q65dE8XddRo4+O28XF816m+vGB3sbldjdlZK+eTTvlXRU2nXwH9Hm8bUsfnDSKQnuQpYFpI5XZCBTjLKrflDc852Z/ZXmLy+Je1AvF65S1U8y7VB7U+05+wPtAfGvYQJRJWZnC8bhcIT56bdo0CP0Z6m6XOI9x+5/zcVnezvdDGS95iUB9C7xPqUyaNCmZMwZ1y8QbW8VORln44nEa9ig6UlK2fmp8LbOwTUXNFBNxwR8HQjlFYySl+Jk5c2ZgffFmkirACc9AfGrwJ16XMU4XJRoFbFVBGZT6AG3mZ95Y9rQY4LbZkP4z3xbXdc5P9GiH/FH4pMRmE6YOt3UMxQ6GdikxF3HZ2rg2s6HhtA+kN5yIDvD8SL9M4o5PHKbs+RLGlhsIZk0dB8/2YYQhBpWsLb0WUMYUBeUl684iKOFj4TgdlLgxxfrALub5xnfzLR3q+FvjO1hvvfXy877DOtwo/2kU2KySjDdKv7KOIfGmm+Iz9dw5hmKnTLxCKp6nk+8dzuI5/33qqaf6rrZtEogHBNo1CIovVWxkxOfifXPln/9EMV8mcXkYNzw8fLNOYqps9HiprVl+1x0u/q47aT9Q9tqs8uLhyr/d4IgIZcZkxcRoRB100EHZYAXfJGU9z8vzSiPeFRXw8jKf8o7rxddkjWmXb3/725mSlUYh6Q+2+KBeynjN8yLDJicxfLfLmmHkfnvvFZZfbtlw5lkvDabss/eeYVurvzjXT8L35UoOyqFi2Uf7mXqLPwYhGOwiPO1Q6nmMguN3uqx9Gt9zXAbyLV900UXx6Wyf9rDNQgo2k6ThXHwgVT7G+aliyBqnx36z8rgYVr9FQAREYC6CODgAAEAASURBVKAJUM5hEO5i3pR9N9ua15j8Nwapn/rUp/Lf8U5cNsbH2Y/7QvS7GESOr2MeNYpR8t8Y6mD8SrmNEY55Ic3PjbQdDINd3FDffxe39CW32mqr4APe1L/oOWj/oneJ9ULFuKnfrfQRqUGMKnV26lq9PoYRBX8I/XUmNe27775ZO4Bj8OA9W3PNNfnZlthM8GBLcGT9g9hAua1ECoHf//73Z30Rvk3aKgx68kf7Hx0iBtqt+vuFJHv+k75QyvibC6GItyXbM4MZvzC6QgS9Smyg4OfZmteZTIHu7258ruo+fUDvF7dq41VJ0/uLhN1zzz0zo59m8eJJbkPhOXIvfBNlglETkwF6LWV6Sa7jg2n+HDu5djxI5HrBqul0W1ZWvQ7helUPmgej5GUxNkzJUHg3mbhXNExkgNW8ogUmulCH0Sah3DBP96nbzI91Wv7Ek3y9Ls0TjXYwCuzGEC9Kqu3dWD+JYeWsWbPaTqMYocjdz8eGKX7Mt93UhWWTjRinKEo8LmPLXRVP57/hUhxjissFxuqajdeREOV/bLiaJ/7yTjffbzv3MX7c6DDvhdbGTeZBKFQ1tineSy9+b7fddnkyRWM/WJmHzGyC2+KLL54cA8kjt7EzmOV1MVvwriLjxo7KyqqysEz4d+m0rPL4vo3Hr/xYr7ap7zJOu6yNt6j6BIwFuJhXSN9te9urZ9NOeVc1k+1+B7ZaRZ40Ez+GutjqQqHMeYvfG+V5bLjqx3tdL3i6bPkWYj1KfI56Fr01fR7zkhSfChu9PFGZceUyMc+ngfGpMonLFcL893//dx6UcUZbLjT/He9gwEf/07/XeEwShvH4WByvuO/1b8rIuBh2uP/ue8MmChBexJTESrzUeSyXsVLuRHiJy4TOYCsp8+Tgs/zK4qNESTXaywylPB0+2DKFp38wHta3ZYO3rSpSj+9bc4vvu3VbOifmorzuGB8dhinFgScMYVCCMet/IGS6GbiUSS8UuMWGZfFaVGYpwya34i2Gj38zS6+Z8I2kpFjQxmH4NngWKaUrRkW841wXJWox/a233jpLCuOf4jkscHlXfSYfAWMjIRTmRaGjGguexMpmGhKOdwcFPH8f/ehHs8rMvbe5UtXTKxpe+XG2zZRMcbh4n2+zmfKGGXApxXOchvbLCcSD2GUd+152ImKFcbMyP25sVDFGLL/D1md8RiMhywa3mOnps/Z/9rOfdWXYFM82iZVLrXLKrAJbji8LhhElhkhu1PehD32ozjuKp0WdY673/WfD1sv/TTfddJEYNsXtBQx8U/UGsxddvDHpv7UdHgToaKy7ztpZ/XjJX14yWN7BPGqutWbaYH1R3jUKdXNFnmWBOrHZbB+UXLb0bq5k5F3GsAlPBz6AZy7Ok4bq8T2SDkK7x42aYGZLWWZ1PwaC3jZgRkpqhlKcXnE/bhel2iDF8PotAiIgAv1MAMVWPOGjzLsF92BLDJe2/TBYKBNbtiQ/5ToIvOW4NIsbt39XW221EW3YFHstcHbNtm4QT18X47GUoYArVZulM5zOoT/gDw+Ob37zmwO6AXR56AeYvFfWvysyoB2BLsOW9i6eyn53wxUdIgYyDN7jMd31IfTx+F75Y0A/9q6WzMQAHsSwLvZgid4GJT2TSM4+++y6mcBkw9tOrfR4DAJgINaulyu/1XjAtJXxn8dptsWwrB3xNihxhsJzJJ9F3QUGYRjQ4Vm9zDCGeN1I2UAPafqECL5LvGK1emdS+YjLumYTMItxB7us7FU9SHnTjgyVd7N4T3jwsSWWsgmk7k3y4IMPbmnY1Gn5c9999+VZiPWA+cGXdwZa/1a8Xvw7Njpmkm6zgc44Xq/2e1EXlo0HpfIYjxGhGysb+4rLYk8n1qX5sWbbZhNLidfN99vOfSw5cawZNr3QLKvZuaVWWS/MmX1ty3ADFcANP0gfg0MXjOoZF0kJzx49TScy2OV1MY/wriITzbCpanut07KqSj5Gaph4PLXZ+FsrPr16Nu2Ud63yxPlOvoN4nMm9ZFa51nAM0+t6IWZUZuRHGN4DvCbRx4udgZAfdyZjS6DGydXt0werWq4Q8W1ve1se31dbyQ9EO/TBWFEBZyNIbBiIQW7sXTcLkPiH92ef7MPY4EiXzmq4QaTWrNPNwGMziRszzcKlzjWzeqvSsWG2Q0qKRhzFMMWOr59vtzDweAO9xcgkbmDF18NQic5K8a9o1ORxUt6B/Fy323g5tGJazTr+xbBlv1tZVdoaqcmoPviXPPnywWbKAliWGf6VzQTxa5UpUmIFU8oQz42T3vnOd3pS+fa0006r88bCCZT5GBHFrsbzCLZT9ERGwzx21ReHTe2TPrOTf//732duBGOmrQwCU+k1O+aDBWVhmg0clMXR8f8QiA1Jbrnllv+ciPbKZsxFQSrvxu9HWdlMee/GbFh2l31vlS/aJCDliCuRmC1Hoyb194Mf/CA3HsRttxslNEk6eYp7dgNIFEZlgwepyBhAeni+e2Z0uYI79iAFL+7FG3fFLcYQLlivcz626vdzg7GNLfnLZrrG5RUz9SXDlwCGTKee9L/ZXz8aNUGeQVhXVt18000tH0bc0adORuKON14A6PgV/6hnmaHKnxvRx2Ux3ziGkbQfvA5moKRdo6ZifsrKNtoJDJoeddRR2T3onwiIgAj0K4Fi/5ZyuPjneUdRVTbxIi6rPbxvt4tmcbt3ptg7JkasZYJRrAvu8otS5urclYLF8EP5t+thqAtpv7b6c0+lGKv5QD91I8pN6kOUqdTRGMmMRGH5vNNPPz2/9dQkr/xkYYcJE97PYFCAmcK8x7RdeC7dTi6gD7TTTjtlegq8cPz0pz/N+zFkheV1U56mC9kcsJ/0ifBw5X9MrkL3gkFMvLyBZ8CXJYyV937Ot+gnXRHeqdcRDB+8bZeajOnXqrqNJ6oeffTRLb+54qTJfn+OtFf9GfoWzxpM5CvTxTm7srK3TM/s8dg2e3cZpENop3di1ERc1x+wHy8fw+9mMthlZa/qwWb3VHau39/NsnxzHD2yT9aMJ6yWxem0/Im9O8Q6oeJ1mrVhimF7/dsn3pEuk++qCBONWNWinUmDZekOdF1YvC66RRcmRKWEvn5qnM7bn8ThmbVqQ731rW9NJZ8f6+b7bec+Vpjykk4kv3DJzsrrvTTBu+T0gB6mD+DGf7RR3cMZ/QY3amIME4NtJqKjI4I/9UinYxSDXV4XAVblPXXx6sPanZZVxbxV+R1PaonDl61IFIcZSvuMYfBOIowpuC6w2T0wfkcZ+b73vS8PNpjPJr9ohZ1OvgPGJl3cMYT/HmnbXtcLMT/Gw8u+M8pMn7gS93li24BW3ijjazXbxwOm6wEIV9TzxDp4zvuKJuzHeUh5PPvEJz6RGZxjdO52Ifvttx9RM2k17u/hhvO2eg2wiCjErj+LWYgVccVz/C52fFNhBuqYdwSK6fuLWDzuv+OPwY+xrTq7LY4zGPs0omgw9UJQXpUVSt2mX+bFoOw5tXu9Zspm0mIGbEqaGdClwhePNVNGeMO3GMd/lzWofNCScCnXsFhSo1SM3SsSlm+V/OBBpihUHrEr2fj8KaecEv/M9o844ojw4Q9/uG2DDYwtmAXnA7atFEYNF25xoBnvFlF1ugKBuMxmTdzi94EyFRe7vRK+S58ZwOyr4vW4zqWXXprPtNx77717delkOnGjJm5wpQLHhoUYFrUrDLzE3+Q3vvGN3ECialoYMyB0rN1rDAofd+3p6eCFijym/ljuwQWFNmEWlbFCrHw67LDDGpQAGFn4kq/77LNPKCtD/X60FYGBJkD7yw1umWlY5nqZfGCkGXcsvT0at08uvvjiZJbxDkAHPe6kx0qy1IzLa6/tbEZjbHCaGmTHU5R7TluzZNnn5E3ooAiIgAgMMgHKRp+9yoxWH2RgoCH+i5djKvNsiUFCmTFHHN+N8bmet2vj5ZuKCHzQEi8ePvMx7h/HM+bjuGUTm+IwQ23/iiuuyLIMa68jq9yDG8aj2Ec/RVuWCXhugBIbnlVJr9/DYMjgStvY02wq3/4Ops75MVc8+2+28YDnbrvtli3zd/PNN+eD7e0YScXppvaZscsACwYjsV6CGbVDRXypCwzp/Jsu5j3W3TSbpVyMV/ztk0vxWFamu6NPdeihh9Y9x2I6/OaZ+jvSzLAhFbd4bDg8R+7JBwhThgOcZxnCVhIvwxSH5f1wT3OxJ5o4TJX9c845Jw8W95/zg7aDkd0hhxySvQded/WirPQJHfG1yva7qQfL0uzk+FB8N52zGzI2u+9Oyx/S9olx1JMMDhaFJdha6dqLcXr5Gw+EPhaDwTLejZsJ4w4YQ7G8Ke9/tzKYdSF5xRO7y5e+9KXcs4UfYxsbHMXHYz3BHnvsEZ/qaL+b77ed+5i+3EveqFtlcvXNdrEgvRn7anWt+DwTCW6yCWz+TcaGpSx76XL88cdnE7+YVI/eHKEfkvKu5XF8m2qH9aK89vTb344KL/FuHXPFpca0DvRyiE7LqqoXiMfSZsyYkYzm9WHy5BA96DpI3tELLrig6V2guyQMZWTsAW+gn03TTL18MtWm7eQ7wNOd96lT9ZrnhZUuaCsP5wnTva4XnJ1vyybF77777h4kG9PzH95m5fn0yigoXoZu2223rdPxuL4HHZB7QESH4pMU6Ae5J1V0LhinxoKNCJN7+GNsEt09Rk4uvpKL/x6J29FD4aa9s1vMK7OsmkmZkVCzOL06V+ZuLmWBF19z+vTp8c98v5uOZ57IAOzEDaluk6cSLFuHspu0qYjKFDyuwOwmfeKWpe/plilqqnQUPY3UFqWiV5jF8xSoZULhWuY5iw6Ey0knneS7dVsUjBtuuGHdMfdKhTWsK2Q8AJVNrEzz43ijiht/fpwtBTSGLjQIWZ+bb6CsLIjjURmwlAMS30schnQwDGnnD0MTN96I09J+7wjQofJKmlnTdIix3Oc7YckjvPlQ8fdKGLjwZ8pAOUsmuHKFa/AuxzOVfDZMr64fp8N37N8bMx1YGqGZYFjjUjaoADPc3PsfRoe400RBgvGRezXk24y9LHm6rbb77rtvHsQ72L2sE0icDjqNQP5YzqIXUpYmZSKdC4T3gWVWffY+hmBxmYpbdokI9AOBeHCPbwQPCRga+8wQ6mM6URiL+kwolFxuQET7xQdwmV18sRk3uWdS0mCQnOMI4Vy5HBtP02H1eh/lLzPw8SrgEg+S+7GyLcoe9wzJ94di0ut+2gwMGLtsUnHmrIfXVgREQAQGkwBG0rRfEDzClAllpvcJU/0lj5fyJon3DSaDIJTd3h/jt3u9wwuU94047oIRlZf/t912mx/ODHJ8IC+lkGXAGi83ZeIGPdx72QB7WdxFeTz2HlGmmKcOYuk/jDt8kMm94NCW93v3+6Av26pN72GHypZBeup1ni/9BzewLuaf92TPPffMD7uHAQ54m4H91GTF2KijqCtAj9FswNifQer9QyfDs+MvnjFLPpC4T+XP96Uz/f0/HmjGU0Ux7wyM/uQnP8lvIm6j5Qcr7rj+jAGg+Jvx6HzzGMQfc8wxlbxwu/d0BnbQMRUFnRPLwvPd+eDBcH2O3Lvrr/h+pid0w9QrrQSPTbGuwMPz3H3gztv2fq6d7TXXXJP3M+g7Fyc1kRblBAM0vAfu3aubstL7Jt4PqZrfTuvBqukXww2HdxPv4P6eMJDWSropf0499dQsecosJrRgyMS7j1H4d7/73YZBvlZ5GYjzxx13XJ4susNUu4gADDji3cOlF7rDbupCz0c7W5bf8TKIa+ONBWMt3ge8rKAXYJsSDBP8O2WicupbxYspZTl/zTzLefqdfr/t3Me6q6RXW/E8+HbSkq8Iq2/zFv85KFsmbPMMfBIZuhmfXEoGYn1MvLS0Z47Jq2XSqh3WTXldds2qx+EM7yoybeq4KsGyMN2UVVUuEnuhjHXlHhejikU5Tu356PU2bpPTBiybjI43J8oQb6P62A/5GehnU3bPrmfkfMpIptPvwCdi0v7B605RqEsY86SNFH/ThGvWjymm0++/B6JeiO+Zsa7i2DYe6/CY6hIbV7lNho/zeJhutv7eoDvxcbFUeieeeGJ2mP7p5z73uTxIPLGfbynuO9PvcY9T6HxYus7fScbz3Ht0ntgI3BkShk1ubVx8Ps0GFr/85S/nisRivMH4TUMtJT5rM3WOY95gKZ7v5UdXTLvT3+TVXRl3mkYxHq5Weyk0BOMZRcW0v//97xcPdfQbpSVKtjIpm1nllpll8aocL1tTs5nVb7OZu/F6zSiaUt8fRj5Fy/9f//rXeXaLxid4UkoxcKvsPGJih4FYZkxOmzYt61BtvPHGAc8u8ZrsxWjuWSe+lzgMHQJm0rTzR4XpA8VxWtrvLQEGZ7yTS+MWwzbeNWYH0wj2Ae9eXZUZuu5WGiUsltO4isdAjnfNDZ0YkCorn3uRFzpBbmh04IEH5m4zy9KmgexKRL631LKRKOf5Vv3vPe95T7YcRrwsBMZiLK9G46pdwfVxUWlKer0UH+gjTW/gd5t+szRZ+s8NUTGo5F2ADay9HkaBu53NKpSIQD8Q4B2NB00ZcOI9prP0+c9/PlMs0Gl2D6i0iyhn45l5LJvjCoY//OEPgUETlmEhDZaZRDh/wAEHZPv8o1PocVC4ocD44he/GPDCxoAw53wmCoZVLDEbe3nKE0rsUIdPMMNThIF87uMIS5+639tNePnsdRs0kRUdEgEREIGOCbgxEQM9rfqcrtBF6RvP0I8vziA3yi3KYvYxTGKA2cvzYl+FAUIfZDr55JMzBSpGJCid+e3eoejfMBMwFm/zUI5TDqPDYJ8BLs75NeM4vu9x+Y1RPXFaTQLyuItySz/A805+Yc0yCbT/GcijfqWdy2Adhj3eL/R+L/0V6lD62YRhAA9Pwq6AXJT31utru2EM94bRCQYM3Df6EOpm3j2O+5KF9Od9pip5YdDR3036enwfxKdvgfAsXDCeYfIJafFt4LnRjbM9TLz1Z8ix4vtHf4nBZ/QKtJWYKe3X5Lvw+yJucdYsx/pVYMS7huCRB+8OTBjEWBwDLnQi7qUYpXs3kyZpG3p7jv457USU8PTRmUBDf937lbHivowdzwAhDt7CMWagnKKMYxlHyjg3rGfSDjJcnyP3Fhun4mmVNj5td/qnTLSBSxVBN8d3RVmGwRg6UZ+whRFmlWfT7DruaYH2Pjo9nj154xvFqMmXVaUc4DfSTVnJ5AaEuof6kncPDzqtpJt6sFXaqfND5d3EKJX6zf8YeKW/SNnA5C6XZkbZHqab8odr+TvPe44hBpPEb7nllqwOpVxw4xa/3mBv6Rf7+A75oU1EPilfef+ZSM0EIuo4L2d51+kfdyvd1IWdXps+to8BUFeiM8cIhu94l112ydo+3h+Pr0GbiLYlwkAzz5A+PHUu5QH1MYYMtI8w7qjiLaOb77fqfcycNtnaLqOyfLf6t/Eu7wtjJk5pFazt83yH1NX8MbDNREzeM+panoEL5+P6O/4+eU9pd9JWdyO0WHfjafi2VTusm/Lar9HJdszEqQHOVWSsPbc1lh1bJWgWppuyqspF0Le5wdh2pi/GuIL3nbICA4W4jVklvaEShraKr2xAntEHMjnRnSHQPqSO4Z3zyQxwYtzeZaCfjV+nuKVd5UK/nTZp3Gft9DugbvN+DvUDRi3oT2nL8d269z/KzdgwjLw068d4XofKdiDqhfjeKe/o46DHYFyeOoO6x42d8Cbm/U/684RHvD8Rp9XJPu+M9/Ob2R6QNvWfvxNx2YyOO37mTFTG6NvfQx/fLuavF54Ri2kO1d81y3hf/9kgrD37tJh1WkPerbFVs48nHcGOfuQjH8njWCM0Gc4aC3mYIh/rsCXjmIV0Hsc6iskwHLROWB4uTtsqvdI41hjM41hHtCEc9xunFe9zLymxyjUZx2bTpYLXzJCsLrxZmCbDcdBm/Df9s45pMi73YUqruuuYkisZFg7xfRb3eU48kzIxhWTT+MX0+G0FTFlyNTNMSKZnxgSlcXi3/TqmeEiGswItD+Nh423Z8zKDp5pZqibjWuWcvJYZcTSEN+VUQ1gzMKg7xnMzRXwe1wYw687zoxiHY6bozuNwT6ZYrJkypOHPKqC6cH7/1tgnmQYx6+g8vFnNNpzngCkv8zCenm+tAqlZ46Luz4wZ8vCdlBue9nDafuzQw5Nsuz3It23Kgpo1THLm5sWoZoPvtfjZ2nIB+aVMmZaHzQ9GO7aMYH7eBuyjM7WaGbo0lG/+nEw5UbNGT114frS6nhlnZdczBWJDXGvQ53mxRm52nnLCr2kKsYY4qQPWAMrjmKvoLIh5bMmPeXrFLe+3NcBqNgMvlWxbx6zDkl/PBnvaiktg2Hr+rrrqqob4NuiQn29W/hLRFCx5WOsoNKTlB1qlSTpmdZ+n5fljS91uszo8KW1FoC0CNhjXVvh2AluHrkbda53x5B/fhA1y1MraX6ZEzsrdVHybqVqzgYmG7JiHj9rhX/hCw/VsMLBmhpo1zsfpcQ2EvHDcBrAa0vQDtpRszTp/dfGJQ1zaJfF3SPvCr2OeCjyJui1lo4dJtUfqAuuHCIhAxwRoG8b15kjdN4PonKEtzdmSiSk78/A22JOHpyxEbFCtZkrgPExxx5R4eZyYuSmSi0EbfpvRSENcmyCT7Lt5ZNqyLqa4rotvA/F+Kt/G7fA4f4O5H9cPZddFD1FWT/rN2EBTzQbU83um79pM90TfxcU8PeTxzLODH27Qf5A/8w6Vn0/l1+vQZnqgVLxeHDPFcM2W6Mnz12wHXZR5dcrv26+f0kd4/4o+IO9MmcRM0aF5mmxbvX828NqQbPH58a7EaQ7GfqwLRP/V7jVNiV+Lv8uGm7QD5omjZgPxdWnbYHUWlLZRfE2bQZwnEb/vhKEv2aw8IiLpxun5+4KOKj7OPu2zVmIep+ri9etz5Bt3MSOtujwX7zv1G/1dszIofsY20z9P3wZ1/LI16pxmYoZOeTzyQLnnQrkU5wudKWKDQ3XHCeNlkMctbnlHbIA9j9dpWcm14u/DrxPXrc3er07qwbgcgW3MxPfLyuh+fTdTDJ1lcUuZaAOzdffd7D3ptPyBpRnE1sw4rpiFrIyxiTO1E044IT9HWOc/mFszrmxZvnomeReLevj4++TdSuWdbwyJxyk6rQtbtS+4vhmMZdejfVnMjxkoZ3rXLED0j7KJ8oO6BOF3MS76vWbCu0VZEMcrq4cI08n362lXvY+vnz6rtt/Rl1X62+7DJ1jeR9Xl36/Xzrad75GydL/99kte04yaS3HTjvIynDZXMX/N2mHdlNfF61T/PaoG36rP4lu/vaWWuq9m1+u0rKryTXFdM+YrfR6cMC+k2fn4OyeeP0f6fan8N/teCW9GVVm68XhJKp2BOkbbsur4AgzM2LHhPgfy2ZTx45r+jWQAX/5nEyiy/HXzHdgEgzjJ5D51XPGZxO0PjzTY/eh227Kvf/3rPas1M2xruKdO6gXXgfBtxIz8W6E/zhh2mWAPEI9TYwviYgZmdWl6+t63qVqueNuTdIv6EE8z3tqkKc9CzSaN5XmgzWDGTfm5VjtmDJvHjdMfofv9bdTEQ2GAuJlQQJlniqyzw4BwqwGLwTBsonAsKkj8HjC0KBrvoDwsC1+smPrFsClWKPm9sS0qMVIfFh2SsudEQyCO08ywiY/f/8wSukYFYFbqNXOtXMrT88oAdXydKvutBtYxxogLzl133bWWel6eB4zw/LqdGjaZxxRPrmEbd/b9OimjI4/IoKeH8625RfTTpVsGPD08W7PILg3rJ3jfzaVtXTwGHlPC4Gicvu9TYabErK7z8GWGkTReMH7ztHyLEZXNUEklW6NDSzgZNr1UbwyUYVMMn4FwOtsutnRA/szMItoP92TLdczTSM1myGRGjHTY48HznlxEiQwZAnS4bOZ9DaMOm4FS9x4OmZtQRvuKwEAaNnGjtKuoj+lgMShnbndrNgs2MzBKddiLcKiXMUhiUN1m4GdbfjcT0mVAHUUGHUAMRWPBUJBOmnlZbNkui+P5Pm1m0iVPDI5WuQ+Pq60IiMDgE5Bh00ttZPP6mMOvqnxy48/YwCBW6tks19rdd9+dp+s7DIZhaOJ9meIWo4GU4o8BKZsxWBoP43xXwPu1qCd+8YtfZIbefoyBo+I1GYiK2++DrZAt5offNhvYs9yQ3zg8A4mxotIjce/UranJYfT5i/1HniOGDbGxPQZvfi1b7seTbtANEca8G+TnPU68daMC8hUfH8x9dB+uBM4z+/IOOhDa0UVDGs8fnNEbxToh9BTxefp9RSEOAw4uGFN7HN+2ev/Qb6S+CY4xucnTGcwtxtwunRg2kVf0Yeh/eCdi4TcTD9FRFu/JDf7icocwsc6oaNjEeQYFbEmE+DLZPu02N1CLr+XGNinDJsIxuJOakEY5FU8wi9Psx+cYG6l2YtjE/VHGwLb4HM17VTYY6NDjwaOi4QS6xfjbIg58i8YqXI/3wqVo2OQGhinDJuJSHxT1nVwXPUo8OdefWydlJXEpR0466aQaA1kusa6z1fvVbj0Yj0GUGTY1K6P78d2MyxhnGG8py+lrMYEkNsL1Z9fsPSFMJ+WPp+3xGUQ2jwvZZHDXq8ecy+qTOJ2B2uf+mVhffN+dId8Kk79T148HVBmzSIVx465iGUld2W5d2Kp9wfU9zaIuP84bRqy0YZnkTtnm5zxuyrCJZ4TurFj+wAm9fmqCcVk95Ndr9/v1eL5tdR9/u/HeysY0GN1s/rYv5Sz8Gu1um32PlP28B3yP5tUm2Ub06zG2VmxLwRr9C21Ob+swoO5xfNuqHdZpee3pt7uFa1WjJsLdeO+ctg2byFMnZVWVb8rvl3ZpXFfxPCgfqEvcMUHxO+fbQMoMm/ybSxkict1Fbdjk924e3Bv6Q9mN2T/KTnSMXrZ7nHg7UM/G+aXKu5122il7jzyfbBnT9Hx18x3QHyn2D/m+MbqxpQnza/i1fNuqH+PhBmrbbluWPoFL3Db1/HVSL7hepMywiW+F/mCqz873VOy7uNOOYn/H88jW+7RVDJu4J2+nx45u4vSK+3FbwDx31T1/0jPPmVnZ7yzLtuj4i2mP1N/4WwRG3wtrgLs7224zyxJ2uHZEcBvq68TH6bLMFS4zU2LGELkrs/i8NepyV9YcJ13STwnreHJPuKrFRaEvd5MKe+SRR2au/PycVQYN7t/tZc+XBPFwvrXGULaskv/2rTVikm5draINW2+9tQfLt6wR7etLE7dsKbB3vvOdmbvSPGLJDvfO8j5FwVU5LsldTLETzJOH/+zJ1gqpsMEGG7SdFi7hytzAeWI8C1MCZ+7S3SWdn4u3NjiXuZX2Y7iKTi2viOtXmDYTazTlrvaK4TiHG1PeT6uwg3m+KQbJf8+cObPBZa514HJ343nAwg5LW1kntO6oNdTq7q/upP1IfWMsC/bjH/+4GDT7bRa+mct4XE/jAtiUBdn7mGJss6cCS+sguL+M3UtmB1/+x5JULBlgBlWBfWuwBPLga8rHYa1izJZh4Fgn5Uac1nDZt8Gr8N1j/uM+tBf3hctOa/RnbjpT3wPujVmqDbEGjpYi6gV0pSECIjAoBHAx22z5lEHJhC4iAiIgAgNI4OOfOSJ879ivDOAVlDSu1Fk2iz6eDTbnS4a0ImMKvmyZZXQJpgRM6gFSadiErOx69G9t8DgQv6q423fzMhJsUL1qtL4Ix32zLDV6D/qS6A9ayZQpUzI9ig08ZLoeU3i2ijIszrNU2Bve8IZMt4Muh/41bZ4qYoNyma4K/ZhNnGuIQr8c3RTh0K/RZ68qrd4/G1zJlkDnGmb4ky0xWDXtfg6H/oZ3F30mS/fx/qJ7GghhKT+WdYelDVi19XxS+aGdjN6X8oLn7UsipcL6seH6HG2QI3v3WaKrnbLeuRCf94BlYNC9slzHQAjf5nrrrZfptNHPDHRZybI+fLM2wbmt+oh777Qe7JTbcH03m/Fop/xheUT003zv6HBTwrIyLIdL2c+Sr4taeKZe37GkGuM6Npko2MDmgGatm7qwnYyxLBpCXX7JJZc0ROV7R9dPfliCasstt2wIwwHCMb6wzjrrhNmzZ7fdfkwl2s732+59fOGXN4epK6+Tumzy2D3XXxSu/OXhyXOL6qAZJAbaoSzh2s77yLNaddVVQ1k7bDDatq9+x1fCtI23r4zu8QduC3/+3nsrh08FbKesSsVvdYy2MeOZtMOq1Iut0htK582AM7t32qF33313thwuZUpVGehnk8oH1zTDqmDGgMnvp5vvADsC6jHqOpbvrdo/bNWPSd1HPx/rRb3g44D0D8zRSXa7rqug3Ut7OVX+MSZOnU3/FBuMfhaWW6b9znvD+8gS42bAmtlGUFYjZvCbLYvbz/cxWHkbElZeWBJj3dmOWIGRDD4YHpvs4WUut93aL5mRCgetAmh4PikOWAlyzdQfVt4pSc02JL5bEBfjYKXv6cfWynE4LB+xMvRwzbZY3ZcJS5J53DKPTWVxWx3HYh0rYE+/nW0rj02trh2f5/7ja3fqsYk09tprrzjpjvaZARXnJ97HqrmZpJYwMEVUsyjZjKv4Guxb56jBsr2YiFvEFo/7b85b4V93LycnXM57+KpbrLQ9v/LY9FJZMxAem3Bh6ZxZWimWeFZevMRHHEb7IiACItCvBAbaY1O/3rfyJQIiMHIIyGNTuj/ubVttxUfvgN4BvQN6B/QO6B3QO1A/9sAYQ5FJ7KHfJro2nC+G1+/uv6t4HA3PnTFTM7Ks2aTpvFPzyU9+su58HHZR77d7H5NXf1Vb3oLwGLTNgd+sjRpTvwrFor7voXZ9+MGxHU9NhOV5DbV7VX67L5/EUAzx4ISUeTdLvSN4tnY58cQTh2zZwVi324Rgf8EKVqn7HUnHRtvNDglh9hbWx3jyqCJY+2M5vyiFmYl4lelUzCgq2JrknUYf0Hi2vm8y/RtvvLGy5WmZZx4S/sxnPpNMv9uD5I8ZPuamsduk6uK3Y3lMRGYsmHvKujS6+fHb3/42mBvojpMwV9e5F5xUInhLKhOrHIK5wm84ffbZZzcciw+YS+H4Z7bPDOCDDjqo4Xh8AG9NzcTWqs74xmH4DvFc1ql84QtfCLZ8QafRFa8NArYOcR4ai/a3vOUt4V3veldW/jMbFFlyySXDr371qzycdkRABERABERABERABERABERABERABERABERABPqfgE06zzOJ53Y8y+Epn7EcvDEcccQR2Xl0zkcddVQeVjsDRwB9usvvfve7zFsEXj7xOMMzsWUas9N4DbUBYg/ad9t272PO3VcHvDC1Iyutu2XY9ZBfhsWWW6udaAr7MgG4wQ+O7QjPieclEQEREIEqBPbdd988WJl3yDxAH+9gS4C3RDxfsTXjrj7O7eBkbcgYNoGDxi2uiTHiKHPbZmswZktQ+TJUg4Ox/CoYm+y8885tu37GrS73ykvbb2LrE9ctuRfnj2XTqgofYJmxSaul16pew8Phug1DIlyhVnFn7fGqbm0N6cwtXJXwuGHEVXOvBeMPOn50+toRW8+6pRu+n//856VJYnRolqIN50855ZSGY34AF6dlxlJ8M7iNLfvGPY3iFqPHPfbYI9hatMVTWVp8T7hHb0fIw1e/+tXwta99rZ1oCtsFAfP+FX70ox9lxkskY+vYZ0Z7vhwlrqpx3Uk5JBEBERABERABERABERABERABERABERABERABERg6BDCYQffvS2WOHz8+WzqR5SiZzIiwBB3LnZ177rlD58aGcE4///nPB1tNIh9X8GV5GcNgIBVhKR+Ww+nnQdVO7uOq074Snnvqsbae3hJTVwq7fvwnYe3tD2gr3kgPDC+4wa8d4fnwnCQiIAIiUJWArXKUBWW8nDHwoS6MVbc7Zj7U77ks/2PLTvTr8Yceeijsvffe2RrueO/gb9lll83WjTeXmHWeeFiLMiWsB+ziDWj/XWXLmpjtyAUXXBBsKb1wzDHHBDwd0TAsE+7vhBNOCF/5yldKX9Jevbx0EFJSdn+sR4kccMAB2Tb1j7y3I3j6+ehHP9oQZaWVVsoazXjwqeqlyxOBD894zpw5gbU3mdkx0J0grrXjjjtmBjnf/e53k2t/w/v4448Phx12WNIQqN379PuNt7w355xzTvau4e1r7Nj0J05hjvcqjHaqWKued9552fvIeqVFufTSS4uHst8YPPEupd53nkszYeYHs0Nsebzwmte8Jls3tcxTE0ZSl19+eWB99mYdK4yvdtppp/D2t789HH744U0NY3iHWCf9wAMPDP7ex/ntpNyI42u/OQG8Nr3jHe8IvHcYAmKMuOGGG4ZNNtkkM8Irexeap6qzIiACIiACIiACIiACIiACIiACIiACIiACIiACi5oAk6PRYeOx6VWvelVm2ITu9tprr80mprISQNkYxaLO+3C9/sc+9rFgSwOGd7/73dmY22qrrRZwIoDenfGtgR5f6RXXdu+jtuD58NdffDHseNC3w+jR6bGUVN7GjB0fNt71A2HaK3cKV5xxdHjq/htSwXTMCCy5ysyw5X6fDZNXWL1tHgsXzs+eD89JIgIiMDIJHHfccdnYYJmjlBQV6i3qMMYXe2VTkbqOjg0+AdZ0as+9y+DnMWy00UZh6623brgyBhW4w0wJbrlwjTlhwoSG0wyOMzNgUQnX33jjjcM666yTGe8waI+71SuvvDL7yBZVvnTd3hHAkA3DIp4xBec111wTZs2aNagFKN/AtttumxnwzJgxI7C04aOPPpq9axgBPvHEE7274UFIabPNNgs77LBDWHHFFa2TMTrcd999mRe3Cy+8sKOrL7PMMpkbXZY7wwiSzvPVV18digaSHSU+QiJ97NDDw3eP+fIIuVvdpgiIgAh0R4DZjXgPlIiACIjAcCXw8c8cEb53rGbSDtfnq/sSAREQAREQAREQAREQgeFKYPqW+4TN9/5Ux7f3wM2XhWvPOT48/9g9Hacx3CJOfMW0sOnuHwkrr//SUoad3N9VZ30rzL7izE6iKo4IiIAIiMAwJDAkDJvwuPPZz362AT/efPDYhOeZWDB6wNMHHnSKgqcavNjIQq9IRr9FQAREoD0CMmxqj5dCi4AIjGwCMmwa2c9fdy8CI4GADJtGwlPWPYqACIiACIiACIiACIjA8CSw7s4fDDN3ek/HN1ezVSDuveHicNNFp4ZnHrq143SGesTFV1w3bLD9O8NqG20XRo1qXAGk6v3dcMEp4dbzf1w1uMKJgAiIgAiMAALVfSsuQhgsb5YybGJ93+uuuy5bbsy9Ha211lqBtRNTy19xC6ylKKOmRfgwdWkREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAER6BMCGNFgiLPhju/qKEejzOHCtI13yP7+dc+N4da/nBEevuGCjtIaipFWmLlTWPe1+4Vlp23YdfZv/PPPZdTUNUUlIAIiIALDj8CQMGyaPXt2uPjii8N2223X8ATwvrTeeutlfw0nCwfmz58fPvCBDxSO6qcIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiMBIJXDLeSeEF59/Orxyt4O68jaEcQ9/8579dLh31sXhn1f+Pjz1QP3KM8OB8ZIrbxjWfPUbM+9MExZbqutbqtUWhn/84Ufhzkt/0XVaSkAEREAERGD4ERgShk1gf9Ob3hRuvfXWsPLKK3f0FDBq2n777cO9997bUXxFEgEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAERGJ4EMKp56rEHwlZv/XwYN2Gxrm4SY58ZW+6R/T3zxMPhwVv/Hu6/6S/h33dcYenWukp70UQeFZaZsWVYZYPXhpXW3SIsPmWFnmXjxXnPhstP+1p45KaLepamEhIBERABERheBIaMYdPTTz8dpk2bFs4888ywxx57mLX0qMpP4h//+EfYb7/9wp133lk5jgKKgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiMHAIY1/zx23eG1x14VFh6+ek9uXGMgGZstWf2N/+F58K/Zt8QHr3r+vDIXdeFJ++ZZdfoR0OnUWHpaRuF5dfYJCy3xsZh2ekzw9jxk3rCI07kyUdmh0tO/GyYN+f++LD2RUAEREAERKCOwJAxbCLXCxYsCHvttVdYfvnlw6c//emw6aabhrXWWiussMIKYcKECdmN1Wq18OKLL4bHHnssnHvuueG4444L11xzTd1N64cIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIFAnMe+K+cN633xU22v0TYe1t9u5qabpi2hgHrbj2q7M/zi1Y8GKY8+CdYc5Dd4cnHrojPP7AbWHu/TeHmh0fLBk1ZlxYapX1w9SV1wlTVpwRJq+4epi80lphjB0fKGHpudsvOyvMOuc7Zte1cKAuo3RFQAREQASGCYEhZdjkzB955JHwmc98xn9m23HjxoWFCxdmxk91J/RDBERABERgQAiMqi0Izz73XFhsUu9naQxIhpWoCIiACIiACIiACIjAgBCgTThKiugBYatERUAEREAEREAEREAEREAEFhEB6+PMOvtb4e5rzw2v3udQM/qZMSAZwXjoFauul/3FF5j37Nzw7JxHA8vYPf34Q+G5uY+F5595Isx75snw/FOPh3lPzwkLbAm32vx5Zhf0ov3Nt+h4fhoVRo0ea3/jwqixE8IYW1JvwhKTw8Qlp4YJiy8dJi4+JUxa6hVhiakrZsvJLTZ5ucCyeYMpjz9wR7jyzGPDUw/cNJiX1bVEQAREQASGMIEhadiU4o2XJokIiIAIiMDgEZg796lwx513hY1nbjB4F9WVREAEREAEREAEREAE+o4AbcIH77+37/KlDImACIiACIiACIiACIiACIhAtwQwvvnz9w4I07faN2z8+g+E8ZOW6DbJSvExNuJvinlOGi7ywnNPhevP/WmYfflvhsst6T5EQAREQAQGicCwMWwaJF66jAiIgAiIwMsEzv/j2WH69OkybNIbIQIiIAIiIAIiIAIjnMD/+/2fwr33ybBphL8Gun0REAEREAEREAEREAERGNYEMMa596rfh/V2em+YsfVeYZx5QpJUI/CieZa642+/DbdccGJYOP+5apEUSgREQAREQAQiAmNs/4vRb+2KgAiIgAiIQCUCc+c+GZZaaumwIIwOG224fqU4CiQCIiACI5XAE088EaZMmTJSb1/3LQIiMIwJ/PL0s8L55/4pXHjeH4fxXerWREAEREAEREAEREAEREAERMAWerPl3v5151XhtkvPCLVRo8OUFdcMY8aOF5oSAi8+/3S49dLTwl9P+mx49I7LX14urySwDouACIiACIhAEwIybGoCR6dEQAREQASaE7jt1pvDggW1cMdd94bJk5c2Q6clw7hx45pH0lkREAERGIEEZNg0Ah+6blkEhjGBZ597Ltx86+3hxyf9PDNq+t1ZZwzju9WtiYAIiIAIiIAIiIAIiIAIiECBQM0MnP55dbjtL6eFZ5+ZGxafvHyYuMTkQqCR+/PJR2aHGy/8Wfj7qUeEf91xpVmEzR+5MHTnIiACIiACPSEwylKp9SQlJSICIiACIjBiCWyxzbZh1VVXDSuvsprNVMFmViICIiACIhAT2GHbrcOFl/4tPqR9ERABERiyBEbVFoa5T80N5//h7HD/ffcM2ftQxkVABERABERABERABERABESgVwSWXnWjsPY2+4RVZ77WvDhN6FWyQyadBfPnhftu+Eu4/bIzw5P3zRoy+VZGRUAEREAEhgYBGTYNjeekXIqACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACPQzAZv4u8KGO4RpG20XVlp3izB2/KR+zm1XeZv/wnPhwVv/Hu6ZdXF4+MYLzZXGgq7SU2QREAEREAERKCMgw6YyMjouAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAp0QGDU6LL/etmbgtGVYbs1NwlLLrNJJKn0VZ+6/7w+P/vM6M2i6Ijxyy6VmzLSwr/KnzIiACIiACAxPAjJsGp7PVXclAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiLQJwTGTFg6rLD+NmGFtTYLU1dZJyy9/GphlHl46lepmQemJx+5Nzx+/23h4TuvCQ/ffFlYMO/Jfs2u8iUCIiACIjCMCciwaRg/XN2aCIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIhAHxIwj05LrLhuWGba+mHqyuuEpZZbNSwxdaUwaYmpwSyeBi/DtVp47unHw9OPPxjmPnpfePyB28K/77k5PP3QrfLINHhPQVcSAREQARFoQkCGTU3g6JQIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIDBoBM3iaOHVVM3SaboZOK4aJS0wOExZ/+Y/9SUuGseMnhtFjx4XRY8aFMWzHjg2jR40NC2vzw8L588OC+S+GhQvsz7bzX3j+/7N3H/BSVGcfxx96k957kyqIDQsWsKGINRoLxsSYxBZjyavGlmgsMWoM0Wg0scaa2I0dG6ioCCgISBPp0pv0/p7/3Hv2zt2+e3e57Xf8XHZ3ypkz35mdGe957nNs88a1tnndatu8vuBnk3u/buUiF8g0xzatnE8A0y47uGwIAQQQQCAbAQKbslFjHQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEMirQNW81k7lCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggEAWAgQ2ZYHGKggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIJBfAQKb8utL7QgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIJCFAIFNWaCxCgIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCORXgMCm/PpSOwIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCGQhQGBTFmisggACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAvkVILApv77UjgACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAlkIENiUBRqrIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAQH4FCGzKry+1I4AAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAQBYCBDZlgcYqCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggkF8BApvy60vtCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggkIUAgU1ZoLEKAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAII5Fegev8r3szvFqgdAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEMhQgIxNGYKxOAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCORfgMCm/BuzBQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEMhQgMCmDMFYHAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBPIvQGBT/o3ZAgIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCGQoQGBThmAsjgACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAvkXILAp/8ZsAQEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBDIUILApQzAWRwABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgfwLENiUf2O2gAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAhkKENiUIRiLI4AAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAQP4FCGzKvzFbQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgQwFCGzKEIzFEUAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAIP8CBDbl35gtIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAQIYCBDZlCMbiCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggkH8BApvyb8wWEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAIEMBApsyBGNxBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQyL8AgU35N2YLCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggkKEAgU0ZgrE4AggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAII5F+AwKb8G7MFBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQyFCAwKYMwVgcAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEE8i9AYFP+jdkCAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIZChAYFOGYCyOAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAAC+RcgsCn/xmwBAQQQQAABBBBAAAEEyoFAvdrVy0Ery18TcS1/x4wWI1DWBbiu5OcI4Zof19KqtXbNala1SpXS2jzbRQABBBBAAAEEEEAAAQQQQCBnAvzmPmeUVIQAAggggAACCCBQGgL169SwalWr2IbN22zLth0pm9CwXg2r4v5bt2mrbdu+M+XyqRa44Yy+Nnjv1rZp63Yb/Pv3Uy3O/DIq8PcL+tsBPZrZqnVbbMhNH9iOHSU/N8roru7SZuG6S7nZWAkEdnOBjfXr1rCNm7fb6vVbktZUs3pVq1sr/q9Tfti4NSfXj9+dtocN3a9thb63yPHdW49yd2Szp0fOtn++PTOpu2ZWdff7t246whrvVtPGzFhuv3lwbMp1SnMBBZbUrlEtZRPSfYZJWVEJFuB6XQK8Ulz15rP72f7dm1qDujXd98Psjhem2MufzbefHdnFLj6uh23bscN+ee/nNnX+mqCVR/ZrZTeetWfw/oL7x6ScXoq7xqYRQAABBBBAAAEEEEAAAQQQiAjE/01cZDZvEEAAAQQQQAABBBAo2wLv3HykVa9WxaYv/MHOuXt0ysZqef31+tdzVgUdPSlXSLFA26Z1TB2XNWuQDDUFVZmevX/3ZkH71Fl+6B4tbNSkJWW6veWlcbiWlyNVudupa/j7tx1tPrHJIVe/kzRQ9tITetrph3ZMiLbdBUb+sGGrvfvVInt4xLcpA6Wdfd0/AABAAElEQVTiVdSpRb0Kf2/RvbuOs1dpUr9WPIaYabo+6zqtsn+3gut2zEJlaMI/Ltrf+nRslLJFs5esszPu+DjlcvlcgOt1PnXzU/cDFx9g++7epFjlCvhXOf2QjsE1rUa1qnb2oM52w5MTgunNG9YOri364L9/ep9ouuZREEAAAQQQQAABBBBAAAEEEChtAQKbSvsIsH0EEEAAAQQQQACBnAjUcpkf0inK1qSiTBGUyiPwyKUHWd9OjUwBBwdd+XbMjs/4/gfr0bZBEMzw2dRlMfPL+wR1WL5x4+HBbrz46bwgo8Ou2KeK7rorDNlG/gV+4jr9fVCTtnbmYZ3siQ++y3rDyiKo4BsFP512SAf703OT7X9jFmRdX1lYcdSfBwdBEPOWrbfTbv+o1Jqk6/OmLduDwIyZ7rpd1osPwkrVTgWflHYpS9fr0rpnZXMMUj1fZFNnOusoMNAHNW3dvsNe/XyBvTdhkc1Zuj5YfYQLrFRA006XgPKVz+enU2W5Waa0zMsNEA1FAAEEEEAAAQQQQAABBCqgAIFNFfCgsksIIIAAAggggAACCCBQXMAHLShbV7yibF/KkDJv+YacDCMVbxtlZVq9BENo5aN9lck1H37UuWsETjqwfbEN/WhAh7QDmx5xGZkWrNgQrK+AprZN61rv9g1dwEHTIJugrjkaslQBLv9+P/tgqWINLMUPtdIYVi2fzdOQs4Oue9c6NKsbCeDI5/ZKWrfPnqOskk99ODthdUtWbUw4b1fNKKvX6115z8rG2j9WJHq+yKbOdNbZr1vTyGJvjfve7nxxSuSz3tzzv2n2zKg5QSDgWjdEZkUqpWVekQzZFwQQQAABBBBAAAEEEECgvAkQ2FTejhjtRQABBBBAAAEEEEAAgbwI+CwHeam8EleKayU++OVg19s0qWMtG9UOWrpt+84gGEnTWrhpS1dvSrkHH01ZalPnr4lZrqoLcnrhmsOsnQvAUbnouO724ddLTBmPKCUT2OEy75WX64qGOVSZPHe1vfPl9yXb8V2wdnlx3QUUZX4T7ZvVi7Txw68XR96H3yxbk/oaFl6e9wgggAACCCCAAAIIIIAAAgiUVQECm8rqkaFdCCCAAAIIIIAAAqUioE7Ii10H9IBezYMMG8oOsWjlRnvk3W9t9DfpD1F2zD5t7MduCKLNW3fYb/451lq5TvJrTutjXVvvFgyhs2LtFntr3MIgg8cOjROSZrlp2J5BR/nn05bbwy5TSHRRdojhv9o3mPykyw4xatKSYotoeJfzju5qfTo2MnXe/7Bhq323eJ295IYnG53lEGwnu2wnpx7cwZo3qGXqzFfH6ITvVtqzLlPAqnVbim3ff6hbq5r9cnA3O3SPFtaoXk3b6f7Tsur41RBQCjCILvecv5/Vq13dXv9ioX04abGdc3gXO6BHs2A/tO4389bYn1+YbBs2b4+setmJPYMh6Lq2rh9M01/5P3zpgcH7le4YXP3Yl8H7C4d0M2U/mOvafst/JsWsP/P7tcHwbcMGdnJtbmm7u/o2btnmghQ22F9emhLTyb5P1yZ28dDu5vrf7XduG/Ecfjl4dzuwZ7Ng3lWPFrQjsmH3prU7Plec1Mt6tGtgu7n91n7NWrQ2yMIwe8m68KIJ37d3QRU3unOmZvWCznUteFifFhGDJz9w58jk4ueIMs2obR2a1w3O1fWbttmcJevtH2/OsGkLYgM4Em7czUjH9a6XvrHzjurq2tXSZbupEwSTvPzZfHvuk7lB1Tqnr/3xHrZHh0bB8VdgyGfTltlD7xQ//5Up549n7xmsc+eL37g2r7OrT93DdCwa1qthazdusy9nrbThr0x172OzV4TPr7EzV9jPXZt0TtSvUz0wDw8llq6Rhrz8x8X7B20aM32Fa/PM4H30P8f3b2snH9Q+GDLo+icnFAuoycV5EL29M9wQafreNmtQ27bt2BGc93JRVpm/X9g/GHLs/QmL7dmP5kRWDfuk+/2LrOzelPQ7r+uTjsmB7juvc2L+8vV2r8tIMmH2qmAz3d1Qklec1NM6tdwtGHB0pvuuvP7FAndNWRRuRsz7Xx3TLTJN1+oHCo/Xr9x34DY3hFy2RcE3w/7yib16w6DgXqJsLted3scuvH9MVlX2bNfQdD3r1LKeVa9a1Zb9sMmed98RfVd8CZ9v479daQ+472y8csw+rd39qWMw6w9PTbTv3T0uUbn3/P5Wt3Y1q1WjYKi05g1rRa4f8c7psw7TNbKFdXQZ8HTd0XGa4q7Nuq5nGmSxR4eGdsXJvYKmfb9io/3h6YnB+7t+vo81rl/TDbu12P6T43P0kuN7BueYrhnr3LXP31cau/vUDWf2Dbb/99em28TC8y6Rm5/uh5hbsLwgq5efXpLX6OeLo/dqbSce0M66t2lg6zdvs8+nLw+y9+gc1HmnoLqB7rrf1N2jl/+w2b76bpU96M6N1euL358TXa+z/e7/5PDONqhvS3fcN9u1//4q7i7f/rO9TefUOHfNffCtmZbNPUvX+AvdPrZz9wCdp2vWbzVdw//+2rTgGMbbcC6ehdJ9vvDbz+Ya6NcNv57qMsoN2a+Ne+YqCMjUPLXl5+7ZTo+T1z0xIfiuDXT257hjsNU9x17x8Pggc1O4nly/P8Xdw5TtTs+CNdy9T8fhK/cseP8bM2zl2s3FNqdh9B789QHBtMfemxX3+fpg9xyufVK55vGvgnM3U/Ng5QT/ZHo8SvJc59utZ0nda395zO52cK8WwfPrxy441l/bEjTV+vZoYx3bNrUNG7fYB59Nj7vYEQf1sLp1atqipWts/OR5xZap4q4De/VuZ21aNLSG9eu482SnrV670eZ/v8omz0gccNmqeQPbt08Ha7Bbbavmhsvc7K4v37v6x349x7ZsLXrW9hs75tBeVqNGdZs5Z6l9v2SN9evVNthmzZrV7YuJc2zG7KV+0YSvmbRV/89x3KA+QV0Tpy6w+YsKngfClbdv3di1o10w6YNPp9uGTQXXva4dmlmv3VvbdjeM49sffWM9urS0Lu2bWZOGdW3j5q326ZffBfuuFb+etsDmOat45cC9O1uzxrvZJrfOe6OnFVskXb/W7rjIWUXHY86CFcXq8R/679nRWjZzw2Zv3WYjPp7qJ/OKAAIIIIAAAggggEClESCwqdIcanYUAQQQQAABBBBAIJWAhgp6xXVC1ynMsOCXb1q/lg3/5X6mwIZb/1sU9OLnx3tVB8ienRoHsxRA8DsXYKGgGl/UMa/OxqEuoOG02z/yk1O+qsNY6zbZzXUuxwls2s0FYfjt7tlpVbHAJnUS3XnePuY7WrUx1aWAENX7/sTFCTsfEzXsmSsPsd3bFAQN+WX26lzT9urc2IYN7Gy/fuCLmA7gJs7z5esHxjgrwOnCId3tTNcxfuItI2M64RTEpE5aBQtd4AKRdFx80X50aF7PjujXyn7iggl81omBLljGZ0zxy3ofBa35omClbm4/FDwQDmzy63dtVd9auKAwOfmiju9WjevYf393mAuAmBScH36e6vLb6eLWHf9tbCfFwb1buGCdhrbVdapEFwU83fOr/jHnjDLLKOhOnXwfJMjQEK6rRaM6kXb46XXdUHS+bXt0XFkssOn/TultCnoJF9lqP9Wmv706NRjaJjw/2ft0XDUEoAKFfNH2rvxRb+vfvak97jo8H770INMQX74oKE8//bs1s/Pv+9xPDrLu+P061gUWnu72Q4EevqjeNk3a2uC9XRCAO7+iO1r9+aVzTAFldVzwnS/6jviSiZHOsc4u0Ebb1rmVKLDpAnfe69gqyHF1KBgwV+eBb7ten/jtwa4tDcKTgu/Sk/93sAssmGH7O1ddqza6QLpwYJP3yeT75zdS0u+8OusvOb6HNahbw1fpgtUa2b9+c2AQcKjr3q+H9ojM05sD3PXhgO4KfKxr6jhPVA7fs2UwS0E3+p6ucB3wurboWlKSwCZVumnLdjvjjo/t7ZuPCK5dOj8LrmFuhzIoCpI898iCDn6/mq4/1/64jymo5WJ3nVUJn2+92zdKGNh0wbEuCMQFPco1OrjF1+9f9+/RNGiz/6z2+++ZhqXz57QyXP3TBSqEvytaR8dJ31cFPZx3z2c2wwXPpVN6ueH8HvrNQUEGLbVTgbK+DOjdPLiPKcArHNhUknNU39HX/jDIBeAV/ZpM01q7a5+Cc7Sffr8VKJtOYJMCcfVdUsllpq7w88W5R3YJ7psFW5F3DfuRs1Yg04/ds8VL7l6re6sv2iddk47cs5X96E+jigV5JrpeZ+s6oGfzwCxZ8LaeSxRQXtcFPiiwKdN7lq7VZw3s5HcveNU+6vzW85X2MTrzWq6ehfzzQXjj/hwJP19ofrbXwHDd/r2Oh9+On6aATl+6u+cPXc/6uu+dX66Je75NFsDo18329dmrDnGB+8WfBf1xOG6/tnbu8E+DwFlff3UXJOPbNsg9p8X7w4He7vnIL9PQncMKysvE3G8r3ms2x6Mkz3W+3XqW1PWwhwvE9aVzq6Jj56dFv7Zr1dhaNJVv4nuHAngUfKSgsnBg0251a9kJR/a1OrWLrgOqX59bN28YBPS88eHkIDAnvN0D9upke3RrE55kNV3QUg8X5NStU3N7/s0vbb0LtAqXtq0auY9VguveAf06WfVQUH39ekWBeOF1wu8zbavuRwUu5gK/msQNbFLQkV+mlru++8CmVm7f/XS1tXe31pGmVFdg3g8bI/P32aND3MCmau4e1NsFR6ms31A8eC8Tv+Lbah83sEn3kj7d2zjbKraxMDgr0mDeIIAAAggggAACCCBQSQSKfstbSXaY3UQAAQQQQAABBBBAIJ6A/nr8aRek44OaNri/SlZ2F3VG+k45ZUQ467BO8VZPOs0HNalOdZwvXLEh6FDWSgrGUcaCfBft392/3DcS1KQsJ+oQnuAyN/jAmiNdR772Md2iLA4+qElGypDz9ZxVQee66lBQyb8uOTDIPOTrVAfmf64uclbnn4boUaYY3w51wipgSh0W8YqCphR4oKw7yvKgzAx+XW3zDpfNwxdlgFJ2K9n7os/6eeXzokwnfl6iV3VQK6hJ21EGj0++WRpku9LyaqYyA4WDaBLVk850Bfr89Rf7RTrEFYCjfVSnni9/+tlepgw1qcqilRuCfdW57Ivq8wbhjF7DXOewD2pSIIE6RsfMWF4sAOhy14l8hOsQz1WRq4KaNroAEO3jty6bgS/qCFTgioKaFHyhNmu+2qayV5fGpswV8Yoyheh4+OOl88tnAdP0J387IMguFm9ddToqqGm7i+BRR7DW1bmtko3RBy5gUEXbVYd6dFFApR8KTeeW7xDP5Xngt3nz2f0iQU1yXLRqo30xY0WQWUPLKOAlwdfOVxEELab7/dNKufjO93PfeQU16TugbF2LXbt9uerU3i7LXkFQk46XOsi1X74ogFQd7PHK/i54zgeyvDmuIGvFiMIMT1pH15qSFp27ytCnouuwzttMiq6DPqhJGfb0PQlnPlJWMe2jL/5807Z0TY8uyv7mg49mfP9DsQx30cvqs4bP03fP3wd1fvrrRzhb1F9c0KyvV99nXdej7wcPu+9zOkWd/o+4gEbtg7b720fGBYG36ayrZTK5R2h5Zf146sqDI+eCvvu61ih4ScFpugYp6DbTEh4qTME117uMXe/ecpR9etexwasCpofsWzxwINNtqF1qr7zVXn+d03f07ZuPDIKadMx0r9fx8PMVAKX7SCYlU9dM6vbLZnLPCp7JCoOadD1TVixlKvMZ+XTNfcoFbOrVl1w+C6X7fJGLa6Bvv14/clkW9R1UhklflMXRfy/nO4ddWe6/aP9IUJN/FtRx8M9d+v48ctlBQYB0SduVrnmy7eT6eCTbVvQ8PfPo+qbzVUG0yoI5ac7q6MVy+nno4X0iQU1r122yabMWuyCdlUHWH21IGZwO6797sW127+wC70NBTVpv8TL3fOIyBalUdQE9Jw/uFwRSFVux8EPzJvWDoCZlhlq3fpOtXL3e1rgMUalKNm1NVWc6831Qk/ZPbV26Yl0QAKX9VmnSqG7cZ8YeXYr+2GH6d0XZTzP1U7CV31ajBnXjuu7esUUQ1KT2pJP5SstREEAAAQQQQAABBBCoaAJFf4pW0faM/UEAAQQQQAABBBCoVAItXVYF/eV+tuXuX+zrhmUqyACkjvPL/jUuUpWyGzzj/hpdnTMK7Hhr/Pcps1xEVnZvFCigod7+/MKUyGRlwHnpuoFBx606nxU0o+Eo8lVOPKB9JFBIQ3j5LBvanv7K/mnXqasOdA1PFB5yK1F7zjyskx3ksjGoqBN76E0fFBvy5fduyJ4T9m8X7PulJ/SMZIL626/2i2SPUCfsr/5elHFHdSmTkzrHlW1Bdfzx2a81OaZEr6sghLf+eETQganjpY5Mdeb+8+2Cob8edZ1qClhRZ9Kl/xobU186E9RZepLL9KPhiXzxWQq0vWNdB3U6dn7dRK8+S4nm/8UN0+aHZNNnZT1RlhYdq/sv3N+O/v17mpywKNBD+6thd9648fBgOQWyRA97InOd2yoyOvdvn9rU+WuCz/pHQ9po+CcVdYYf9rsRkQCcYGIJ/lGQysm3jTINm6SiLBs3nrVn8F7ZxRS85jPSaKIyoGlILxVlr3rRfbfiFQUlhrOhyezV3w8Kgojk8fszEp9fGi7mZ8NHR4IAVH+2Rg+5zGonuTarnOk64aOHfDx7UOdgnv759/vfRd7n8jxQpQqo0TmqokCIs+78OJLZTNP8uaX3qUq63z/Vk6vv/IivFtkNbpg+X+5ygTQKftNxVbnXDTv11Iez/WxT4KW/Rmn4xTfGLozM8280tJ0vT40ssH/8/VmRDDC/cMMF/ebB7K4Xvl69fusCiJo3KLheaoi2cKBheLlk7//qhi8KZyfq26mRPewyGmn3tR8a2lSZ6sLnm67nysQXLspkVkhWzCu8TPi9H0Js1J8HB4G/GlYz+hqq+5kykqko+OzEWz4s9t3x10kFFOj6nGwoTQVsPnb5gEhQ06VueEBdszItmZyjV7pMdcrMpKLAz+NvLt7+v7jng8PcPTrTomHVfLn3gv7BkIT+swKLDnaZp/RzlMu69X+PjPezMnpV8OaZLiuYD2ZRQOSzVx8aPK/ovqTAulPc9VVDiqrI/1kXXKzvjYauy7Rk4ppp3Vo+3XuWzrnrT+8bbELXs5/cPToYqtVv0x8zBUrf6e5dlz9U8EyXy2ehdJ8vcnUN9Pv2uruW6Uff76tcdkOVu1/+Jqvvia8z21fdv/q74EoVnWND3LOgggF9ucHdZxWApnPxn5ccEDxD+XnZvKZrnqzuXB+PZNuKN08BX2fd9UkwzHW8+bmcVstlQqvnMjapLF+1zv73XtEztbINnXXifkEWpjYtC67fWk5Zkw7ZryDQSYFJr7w70VatKQqWO+rgntahTROrVbOGHTmgR8Ih0VauWR9szz/bqe5kJZu2Jqsvs3k77YNPZ9ichcXvNVNdENj+/Tq5qqpYj84tTZ/Dpbsbvs6XSYVD+mXrV7Qts15dW8UMEdiza9G2vp4e+zzj28ErAggggAACCCCAAAIVWaDoz5Yq8l6ybwgggAACCCCAAAIVXkCZljQcSaof36EbDaKMICrq1AwHNWmaOmFvf36y3gYdwuokz6Tor+rDQU1aV8Ec4U56dWzms4SHvfDZZ/z2Zi1aa0dd/54de+MHdkFoaC8/P96rz9qjIJgL7x9TLNhHy9/238lBtit14Gj4Dl96FXZ+qwNMw9RFFwXU+OxL++7eJHp28FmdmBfcN6bYPAUdqaPPFw1jlOuijtFwUJPqv8sFHvmSi22qE1Yd3iqjXFaGcFCTpilDih+yRcupszAX5YjC4bhU199fn1YsqEnTlNnp1cIMV+oQ1zBxuSoX/eOLSFCT6lQAiu8Y1fnlO6T99pRpS+eAyu5RQ9/4ZRTU9vO/feY/Bq/KJKGhsPy6ic4vZTQ52w1n6DOb+EqyNVKmFnXWq+zdJfac1tB4KtpnHXOVfJwHR/UrusZouEU/XGOwQfePzi0FD6UqmX7/cvGd1/EMXy/VxuEu0McXZb4IBzVpugI4fQkPdeinKUvPXoXHY74LgluzfmswS4E7/njt27X4MGx+3Uxflb3EFw2Nl2lR5rRwUJPWV5aP8HCkCj5UCZ9vfhinYEbhP0PdsFAqus4q+0kuylKX3U33D/2cfOvImO+OgsV88ee7/xx+VQbAxy4vyNTkz7Nsgpr8uuG6k90j9iu81+ga8VM3ZFb0d/9KF3S0xH2PMy2tmxQES2k9ZWZTELCupS+575ruw7q+qSiw+bafZpY9qWBNN7SkC4b0QU2apu/1tAU/+NlBwIsPatJEPc/MW1YQpKDrTCYlU9dM6s50WV2P/fPczS4AWs8x4aJj5odZ1JBmvuT6WcjXm+w1F9fAZPWX5jx/3dG5rPurv3f7Nmn4ZmXSUmnlhsYtC6W0j8eF93+xS4KaZN24YdH9Zl3UUGnbd+ywZ18b537GBq/+2HRqV/R89/HYb4sFNWmZ90ZPs81bCu6XzZvEH0YvCIgaMbHYs52vP9FrNm1NVFem07+ZuTgmqEl1fPOtnokKLtQ9QkFMmqfAsCaFvstXrrPt7p6qkq1feFvK+BQuutZpSD2VVS5gbOvWouDB8HK8RwABBBBAAAEEEECgogvk5rfgFV2J/UMAAQQQQAABBBAoFwLqlEz1E29HFBzihyOa5IZz0efoHx9woPX9X6fHqyvetDfHFQXchOd/8PXiSAdqz3aZZ04I15XqvYZO8+WWc/oFGXGUucEXBewoqGvD5vR+We7XXbNhS0wQjOrUcVC2nEHXvhvJmqNsHRriS0UZSxSsEF0UXPDd4oJhv5RVJ15RB7Pqjy7T3ZAevrQJdSj7aSV51fbiDRei4X988Rm//OdsXg9x2Tt80ZBS0eehPiujmC8+I43/nO2rhrPyJTqAwk9/euRs/9YNqVa80yUyI8M3Cq7Q0IzRZa07H1UUjBDvPNF0FQ0rFK9Mdx37fpnwfA3hpSAWlWYN4p9fc5YWnH/h9fS+JEYvjJ4bVKfjFz5mCnZQ5hGV8Hc0H+fBnp0bBdvRVyfRNem/H88Jlkn2Tybfv1x958NDLvm2+eAjfZ65sHhQg6ZpWD9fatWI/dXHaQM6BFlttEz0sJT/G1MwTKXOr0yG5/Tbi371ARiavrOwkzR6mWSf/zNqTtzZT35YkGVKM8NBcy8Wnm9qf3g4Og2D1K5ZvaCuMdOXx60zm4nKyKH7h37C31ed7wruCd9XEg0LqGv2v68YEAyXqsAiBUkoO1A2JZNzVPW3cRnrVBQUpp94JZuMiuH7kLyPvP5du+qxL+3PLlD6dJdlSZno/L3saBfc7INa420/0bR4wYgazs0XDSUYXRYsL7gGRk9P9TlT11T1lWR++Hqs57N490pl3lNpWLdmJLNb+Dqbi2ehVPuQq2tgqu2U1vzOLQqeIxVEligT23sTCwJmdR1UprnSLKV9PPTMo+HndlVZsrwoyLFT26Y2ZNAe1rZV0TFQMM7GTVtdoFLBM5fa1bpFUSDg3IUrg2HRqrnsmeGflasLrjHK2hS+v/n9Wv1DQTC3/5zOazZtTafedJaZMTv2Oqn1dG9bsrzgOhI9HF33YBi6gmfQcAalbP3C24oejq5rh+bOuWBbk2ekDkBPZ59ZBgEEEEAAAQQQQACB8ijAUHTl8ajRZgQQQAABBBBAAIEYAWU/UEdhqjLm7iExv4QPBxpoaKNP7jwmaTWZZub5wmXbSFTUGaSAGB/ckGi5kk5Xlh919CtzgTLuaLgv/aiTRZkOnvxgtr07Ib1flivTSYO6BVmF5hdmfkinfQf1bBZZLBwQFJlY+EadkcqqoKH/OjSvF2R+Ci8T7rQNT/cZV8LTcvV+Y4KAr3Anfi62dUCPIqM/nt3P9JOsHOhMw0F3yZZNNs9nPlJGkehsJX49ZQJRUEwuOye3bI0NbvPb0+s2d37GK2pHshIeRi96uVkucK6TC+pT0EeLRrVjAhnWuO9kvFISo+c+nmuXHN8j+O4NG9gpEpw2bGDnyKbCGYbycR60LwxoiRfw5Ruh4D1/jP206NdMvn+5+s7/4AIok5XN22IDMn3ASKL1NIyTL1tdII2G4vMlnHXkDDd0W3Tgk18u3VdlfvLFZy/xn9N5He8CQeMVtVPXIAV1aEhRX/7rzrdfF55v4eHoTnf77Duhw+ebX6+krxqWSvcVDbenYSQzKeFz/nsXmJPsO5yq3kzO0d1csJf8VOIF0PltKWvWaQd38B/TetU6CiZb7+4fCmaKLuO/XWH3vT7dNFyryuC929jzn8yNXizp5yWrkwcQxLtHFSa8S1pvvJmZuMZbP5fTuoWG0Rt5++CkVft7lgLlcvkslHSjhTNzdQ1MZ1u7ehk9S/pnwXgByr49CmQ/98iCYT8P6d0ibpC4Xzbfr6V9PFI98+R6/3U//3raAtuzZ7ug6tbNG5p+FGK7dv1mmzF7aTDkmc82pIUUwOPLOacc4N8mfG3RtH4k+McvtKkwo5P/nM5rNm1Np950lpFFojJx6gIbfGhvN9sN3+mGo5tWOBydhqZTUearOQuKhrAriV/RtooPR9dr91bBtna4bX07t+gPVYKJ/IMAAggggAACCCCAQCUSyOw3TZUIhl1FAAEEEEAAAQQQqDwC4awK6ey1hr3LpCxdk/gX5hqqTcV3rGZSbybLqpNfw7ypM3v5D0XtUedzTzc8nIbBefuPR6SVMUL77zvHffvTaUvL0DAk4cCB6HVXu6GgfGnVOH5WHT+/or1mmvWpYWGAWUkdfMayVJ1u21ynikqirCslbUeu1l+5rugcj67TD0+k6S1dYFO6pSRGCi7wwXx7dy0ajm7wPq2Dzes7Gc52kY/zwH9XlbEiUdFx9d/tRMtkMr2sfueVKUvBN7789uRedu2P+0R+Lj+pl58VBAyV9HzvGhqOM1nwTGSjoTfq7E12vdxcOCRN+L4UPt/Cw9Ep6EhFQaAlCRwKNS94q/vX45cPsMtO7BkMDxkd1KR9yKQooPWi47pnskrWyyqblG9fsuPcKoNrhW+MsiX9/qmJcYOa/DKvfbHAv7XD3JB0lPQEFJCWSfHX1Fw+C6Wz/bJ6DUyn7amWqesycPr7xQ8bCrIoxlsn/MzZtH6teIvssmkV+XgkQhw3aZ6N/HxG1JByVax+vdq2b58O9lMXvNSyWVHW2Jo1Mvtu1a2d2ZCWidqp6Zm2NVlduZq3YPFqF2RfEDzds3A4Ov2Bhw9gmv998cyCJfELb8sPR6fvmB+GbtHSNZH7Va72j3oQQAABBBBAAAEEEChPApn930p52jPaigACCCCAAAIIIIBAmgKfh4bkeeKD74IMCmmumtZiGrou0dBPfri1VaFgnnQq1S/V4xVlh0hWHnpnpgtummnq2D9mnzZ2rPtRBir94ryJ63D61yUH2hkpMl+td8OEqaNdARIdQsEBybareZ9OXWYKIFDp0qpoGLxgQuifHqFh+fSX/uW9JBouLd7wWJPnrrF9dy/I7qLjEA52yafD/OUbXIBbA6tfN/H5o3PLByzM/L5oeJN8tivbunt3KBpqJbqOboVBJgpmmOK80y0lNXrsvVk2/Jf7BUGMyrQ1bf4P1rpwGLrXxy4o1ox8nAfKhKbrjYJQFBSg4SejS3gIvOh52Xwuq9/5847evdjuxMvupGwkvpx7VBf7+2vT/ceMXnVdbVq/oONXGfIyHV5NzdDQn4muBbvVLsiepyxH4fLv97+zu3+xb5CZTMPR6T7ns3a989X34UVL/F7ZrpQNUEUBDrrHfDFjRTDMpIKsFFTy5k1HpNzO9U9MsFvP2Su4H/38qK72tTLsuPtGPouOvdqsYeDaNy/KVBK9zfDQZ9HzSvJZQWa6Fuk4JwusKsk2yvK61VzmvGyKMgR1d5kd9Z06+Kp3Mq4iF89C6Wy0rF4D02l7qmV0D9H3W/cUBSMmKvt0KQrmVZay6JLoebZOzcTPI9F1pPs5V8cjk+e6dNtW0uVCt6yYqr6bv9z0o+HkOrZtYhrarJ0bkk7Dm+nnODdE3WMvfBast3bdJhe0U88Nw7bDHn/x85i68j0hk7aG2+KHagtP0/saNRIHc0cvm+izhuSTmR+OriBbU8G168sp84utVlI/vy0/HF3ndk2DY6SNfPVN8WfFYhvmAwIIIIAAAggggAAClUCAjE2V4CCziwgggAACCCCAAALJBdRhvL1wbJa9ujROvnAWc/fvXjQMUXh1BYr4LBuJOq3Dy+u9Hyasfp34HT59OyYO6AjXpUCq/3w0J8jiNPSPH0TqDWcxCS8f/X7RqoLhb5o3qB10nEfP1+eDeze3cw7vbEfvVZCVZt6y9RHnZMP5qRNfRUNm+f0NJpSjf9ZuLAoaSdTh18IFmUSX0d8UDTFxWJ/8ZO+I15H89ZyCvzhXMIf3j27bgJ7NI5PGzYztnIzMLANvfPBSvKZ0bF5wfq3btNXiBbTEW0fTSmqkIZA01J/KsMM627BBnYL3CmpQEEq45OM8GBs6ZsN/tV94c8F7BSr+9mQNt5K7Ula/88cUZsrSdf/A/3s77s+Aq96OnB9D9yvIdJSpjDKa/PfqQ4MhCLXuhO+KZ3ZIt75DE2Ty8UGpqmeKG2o0XD6esjSS6UnD0YWHoXv03VnhRTN6Hy+m9ui9C67xqujyh8aZhsLTPU1BDyoa4jVVeX/i4mA41L++8k1k0bvO2zfvw7RqY7MWrw22qcAiBVRFF2U1THQMopcNf37puoH2xV+H2KgkQ6UpkNUHJHwxM/GwteF6y8v7DYXXO91X4mWKU0CMD5ZNtk/x7lk+A57W99mYktWRaF5Jn4US1eunl9VroG9fSV+/X1nwLKhhXROVcJZCXZdU/LVB78NZlPTZFz/8q/+ci9eSHI9sn+ty0e6tkeFWq7hn7thf5StgqWrV2OnR29aQc9/NW27vfjLVnnhpjBuOblOwiIKCWjUvyNq0dGXB9VD15TIbU3RbUn1Op63+/91UV7268TNHNW6YOGA1VRv8/C8n++ClKtatUwvrUZi5adPmrbb6h+JBxSX1+yoUKNWrayvr6X5UtmzdZktXFBwb3y5eEUAAAQQQQAABBBCobAKp/6+nsomwvwgggAACCCCAAAKVUsAPldG3Y2M7uFdRAIfH6Nq6fpBxQsO1/XJw8WwffplEr0P2bRtkRYqe/5DLjuRLuh3ec11wkIo6YFs3qeNXj7yee2Rsp6xmKnPHq78fZE/938Exw95p3xcXBipFKkrxZtKc1cES+qv1e8/vH7P0Xp0b219/sZ/95oSexYYUWrqmoBNFmRaOixMs8Ktjdo90UmY6ZFNMI0ITfOeHOpDVtnyXcBawI/Ys6JQIb1NBXw3iDCP3tXNVoIvKL1xWGWV7iS5nHNoxGDZQ52K/NPdlm+vM8qWHs48un4Wyotx30f6RQAy/nAI0rj+jj/9ooyYXBWBFJpahN8qE9LMju8S06Dcn9IgMtzh/WfHOqJiFoybkwsh36u6ze5MgY5o28e2itaYsaOGSj/PgjbELI53JOm/+fkF/28cNi6fgAmVv++/vDo3YhNtS0vel9Z1P1G4FqTSqV9ABOmnu6kjwUvTyCqr8pjBYSN9D3QMyKXJ91gU1KROQioLobvnPpEyqiCx7wZBuQbatyAT3RllOhv9y38ikL2bEBsV8XBgoqeHo/DB08909ZOXazZH10n5TeF2Kd00KZxqKHpJK7fyJC3BNVfx6Cor64OvFweK6vzx++UEJg2dT1Znu/Cc/LAosvHBI9yCzYPtmdYNjp7Y/fOmBMdfEdOr+dFpBtqk67vr5owEdYlZRwM/vTi0KJnzTfUcrUpn4XVHGxR+5rF7R5Ro3/GOikvKeNa3ofL/f3bPilT8VDrGrZx+fgS3Xz0Labqrni7J2DYxnle20b+YVPAvqenf7z/aOqaZvp0bmn4GU6dNnCtzhgko3umEgVfYozPYWXlnXlP4J/ihAy6UyD9cV/T7b45Htc1309rP5vGR5UUCLD3QJ1zNgn9jnHc3fq1c7O2Povnb6cftEhjPz6213GZk0tJkvPuPRwkUFx1TTjx1YdH3yy+n18IO627AT+wd167k6FyWbtu5099VthUFfzZvE3qNruaxfbVoUZBMsSRsVALZhY8Ew2Qo28sPQzZwT+yxcUr8fXMYsvy0FUDVvslvQ9Nku41Z00Xfn7EGdY/6/Lno5PiOAAAIIIIAAAgggUFEECGyqKEeS/UAAAQQQQAABBBAokcC9/5sWrK9f0P/FBQH93ym9TQEgCh5SBocnfjsgCLhRp+64OENpJNu46vznrw+wXw/tYW2b1g0yGD162UG2e+GQWBs2b7NnRs1OVkVk3qTCzDqa8PjlAyKBCco09exVh8QNdtKym7duD4a9UkCRgpsU0KASBKyc3sfauU5clRkL0xti7P43pkeyz2iInn+4jkVl5VB2oouHdrd7XdCE7+y47/XpQd36555Xp0UCd/5wVl+75rQ9AmcFG9141p4uaKxbsKyCAP76ytTIeiV9o2FrfLnp7H4ukKN1wsxEfrmSvCpwQEPkqOzrgliudOeTzh0NBabAuL+4TCTxivbbD0umDBfPX3NocP61coE6OnY3DdszyKqjuhq4v06fOr+oUypefX6aslK4qoOi4aiu/FHvINjOB3h85jqJFfCg0twNG/UfF+Si4aXU3mEDO7l2HObOlYIsYQrCyzQQLqh4F/9z8XE97A/unOrjspjp/LrZHfdzDi/o/JPF8FczO79yYfSvt2cGCuoE9sPQPT0y9rufj/Ng9fotdtE/xkTOgwN6NLMH3XXpkzuPsVt+0i9oj7Kk+fMkV4ertL7zidr/Sxc86Us8ez9Pr8+OmhP5mCig9aQD2gXfEX1PFARz9al72EO/OdA+umNw5BirkuHuepbt90ZZaXR9171I1wJ9N59z31EfZLRk9SYbNSm2g/WhwvNNAUI+c9zzo+dF9imTN6s3FHTqVnOBSvecv5/put+mMLjWB+ypPl37D9+zZXBvUba+l68fGNz3MtnWNY9/ZT4TjPbxvgvjB65kUmeyZZVN7cG3ZgSL6L515mGd7EWXbendW46yS11wrr6vMs60hDNj6V6n5woNA6uiTE1PXXmwdSrMUKjv55ylBdfgTLdTVpf/NBR8dMnxPe3kA9sH54WCBBV0dHz/xJnQUt2zdM75+7qyDD7jvh8nuu+iAgllq2eso9z5p/Nnq8scpmuqSq6fhVSnb4fex3u+KGvXQLUzV+Ufb86IBMxqyEsFjilwW9cbBRI/cPEBkWdBDccaLt5N2Ut1zezkhjbWez2fvXLDQNO1JlHx62p+PPNE62l6tscj2+e6ZG1Jd96CxUXZ/vrv2THIGFSjejVTNiIFGSmLULyyeu1Gl8molu1Wr7Ydd/ge1qV9M+daNRjaTAE6fr1wkNO8RSsjmZw0HNopg/ey7p1bmIKEWrsgoROO7Gud2zWz2rVquACzHTl7Zsimrdpnn3VKHscf0cca1q8TDD/XpUMz+7EL6PIBW/F8Mpk2/bslweIaps8NHhq8nzh1QUwVufCbPrtgW9oX3/7oYeh0n33M/X/gZSf2DJ7RYxrCBAQQQAABBBBAAAEEKqBAwW+mK+COsUsIIIAAAggggAACCGQi8O6ERa7DuHaQYUidKcqKo5/o8urn8zMeTmiWy8iijjxlkInOIqPOtl/c+3lMxpbo7frPj7khhE46oH2Q7UcdpApMCBd1jvpglfD0e1+bboe5wCN10KojVeupn88HH2lZBeKkG0ykTsdzh39qT195SJBNQ53c+oku410QmM++oXl6/zcXUHLFyb2CDArKYhEvk8W1//7K/FAz0XVm8/l/YxZEMkSpM/6Wn+wVdMYdcvU72VSX1joPv/NtJFvV6e5c0k+4KIgknOnEz1NWlzZN6gYBUZp/0XHdI/X4ZXTsbnx6YqRD0U9P9jp36brg2OuYa1gq/Tz+/iz7xxszgk7fs+8ebf/7/aDg/FEH47Vxsmko+OnC+8ck20yZmKdhsNTZrY7zeJ3nGu5q4uyijsJ0Gq3vakmNNAzOMpchTcFjKvrOvTkufpaWfJwHyrT2h6cn2HWn940Mg+n3XWYaRkyBKFUKO+38vJK8ltZ3PlGbD3QBXSoaCmnUpILOw0TL6r5w09l7BsNlJRqKLN71K1yfMj/9/qkJpqHWsik675a6oBoFNMW7Fmg/fvrX0ZHAjfA2FCijjHx+qC7V9cLoueFF0n7/scvS5q9hB7lhKfUz3QXCnuOuG899MjcIBtL9RdfXO87dp1i9y1ymPgVJZlJ+Nny0vfb7w4MhzBSIq4BZXavyVRSE1GS3WnbaIR0i2X20LV1rlflKQW4PXJxZgJUCIf7+2jRTUI+uu4meK3QvOOOOj/O1a6VWr559FAirwGsF1113ep/gxzdI1z9dazQvXkl5z/rLJ+6edXjwPKRhy244o2/wE65LWYIu/efYyKRcPwup4lTPF2XtGhjByMEbXZt+cc9n9vgVA4JAJF0n410r9ewcHdh0+wuTg4AmZdNSFsHnXAB1uCR6ntUyqczD9US/L8nxyPa5LroNmX5etWaDLVn+g7Vs1iAIdDl4366mH192uAAjBcD4IBg/fc6CFbbOZRtSYFP1atVs0IHd/axirxO+KQrQ0TXvlRETg2xMNV0wk4KnDtlvd/dTbBXTUHHvfPRN8Ykl+JRNW7W50eO/CwKaFGzUomkDO/XY4pnDNm/Z6oKyCjInlqB5Nmn6Qtt7j6LMczomW9wfjUSXXPhNnv697d27aFvhjFF+e0f2KxoCVs8HFAQQQAABBBBAAAEEKoMAGZsqw1FmHxFAAAEEEEAAAQQiAjvN/cY+QXnyw9lB1oaNriMsumiYnD+/MMVue25ysVnu9/opy0X/+CLo1NYvu8NFdf7usa9MnX/pFg3jcdZdnwSZP6Lrm7bgB7vkwaIOvC1bixqnTCFDbvwgCBZS57aKOlpVNKSHhsM64eaRGQVtKRDi4gfGxM1CIkMFzWjfo8uzH80JOnv9MCTh+TK5+dmv7cOvYwMOovc3vJ7eKxODL+rsD5cvZ60MMqYkGoLJm4TX0ftE08PL+XYpgCFc1In3lDun1LEaLmqbAsjkp+LXDy/z6we+CIIu4m1fwTEX3Pe5Kegik3KJ69xVoFm4zvC21c4z7/wkCFYIT9c29FmGCuwJr59q+4mWTTTd1xcehshPy+T15c/m2wMuk4TPmuXX1WcdFw13FV2i9zl6vj7nwuh/roPXly+mr/Bv477m4zx458tFNvCaEXb+3z+3u1/+Jvi+nXzryCCwYtHKjUGggRoT7RH9ObrByb5/+frOp2pTdBuVSUTBNyrjZia39+t+NasgAE7r+eDNZOev2qTvuDL8PPrut3bUDe9mHdTk23D2X0YH313/2b8qYEjXAgWaJirhwLmvZ6+26OtUovWip+ua9bobKi36eqblFNzwoz+NskVxhjTVNef8+4qCIcPXZnfrSVjWrN9qv37wi8h5qGFW/ZBViY57oul+I8nOUS3zF/d9GHTtu3bFw+PsHpfF8XePf2mD//CeXfnIeKtdo+jXZxr+KN2i54orHx0fyXAYXk/nkYZcPfVPHyU9huF19D7Z+af5YWN9TrckqjfV7iZzVSCs7h1+6DDfFt2LdX3z1+htLjAjuqS6Z21wQ5kNc8FNM7+PfYZSm7+YscJOvf2jSPYv1Z+PZ6FUzxfabrbXQK2bqITvk+HnPb98tHm20/16iV4V4HjZv8aarkfRRcf3BZclLvrZWcsp0PaqR780BfaFi47d2+O/t3BGvegAknTMw3VGv8/2eGT7XJfouxXdrmSf3xw52RYv+8FdE4tffzZt3mpvj/omyJ6k9TXMX7g89+aXNsNlAFLwU3TRum9+ONmiMw9tdcO7vTxigq1cEz+L3PdLV9vzb7ljt774sKZRTYveXMrP2bR16Yq19t7oaS7IqPiQvtrYrHnLXEDS95HtKhjLl2hHPz3Rq75vK1YVPLdrmSkzi+qNXidbP1+P1g/bT5sVGxit/8fy108/7Kxfn1cEEEAAAQQQQAABBCqqQJX+V7xZ/P94Kuqesl8IIIAAAggggAACCGQgoCHjuretb+o4U+ag9S6gKJOibDcaLkhl0LUjgnqqukxQ6pht3qC2TVuwplhnWyZ1+2X1V+57dmpkNV2H65R5azJqo7Jq7NGhkX3jhjILD+nh6870VVmierRrEAQNjHUBA/E6v+PVqXZ0c0OsqcNgxsK1cTvG4q1XkmkaqqaeG1ZN2QB0fHdFUcaUXu0b2oLlGyIBTelsV+eMMlF0dMO6KGhA5022gQl+e6qzZaPaQUezAhLiFQ2D180NldiqUR1b4IbxU/Bdtp3l8erPxzRldfEZzBSE8R8XQKei7FPd2jSwuS4g7FvXAZ6LDkbVuyuNcnEeKGPOQT2bqelBAKMC5KKLhu3TEE4qGporPJRW9LLZfi6N73y2bS1r6ym4ak+X2UTXrynzVgfZmFK1UUN8Di0c8uuyf42zz6YtS7VKyvk6l5RlR4EM0dcjTd+zU2PTOat7Z7r3gpQbzeMCujbreqfyngsYjXdf0PCdynKncpILBFQQYKZFw6Id5YbraumyQ46ZvtwF163M2fUo07aUxvIafrelO3cUCKNMYumWdO5ZGlZX1/kWrn4FavvA4VTbyPWzUDrPFxX5GuifBXdzQ8rpuWHesg1pneM6fv06NwmCnDJ9zknHPNl5kO3xyPa5Lllb0p3XxGVR0hBzK1attw2bEge2Rten4eRaNW9gGzZusWUri4J0opcLf9YQb00aue3VqeWCbTbY6h82hGfn7X22bW3ZrL5t3rLNVqxeHxPklbfGJqk4W78zhu4bHGMXZm7/fnFMJHAtvCldG+vXqW4KBKYggAACCCCAAAIIIFAZBAhsqgxHmX1EAAEEEEAAAQQQ2OUC8QKbdnkj2CAClUggUWBTJSJIuqsdXHDcC9ceFiyjILUTbxlp4QxmGsrkyd8ebOokVjn2xg+KzQ8m8k+5ElDH++s3Hh4MraZjrWNKiRXQELG/HtojmKGAv9Nclp9wUaau+y7sHzhu2LwtyOoUns97BBBAAAEEciWwe8fmdtj+3YLq5n2/MshI5euuWrVq3Oxbfj6vCCCAAAIIIIAAAghUZIHqFXnn2DcEEEAAAQQQQAABBBBAAAEEEDCXOWN9kCmlh8uQpsw/b910hGnoR2Vsa7RbTWvtApv88JTKqBIOesKvfAkMG9jJDundIsjupMx+Kve+Nr187cQubO2TH8y2Xx3TLfheKADw87uPddmoNtsKl1VI2ZWaukxLvjz/yTz/llcEEEAgrwKNXWamUwbvlddtUHnpCzz6/KdBIwbs28VaNKkfZMjyrfpk3Kzg7Xk/HhC8alhBP80vwysCCCCAAAIIIIAAApVFoGpl2VH2EwEEEEAAAQQQQAABBBBAAIHKLHDh/WNswuxVAYHiXZSdqbcbHlND8figpvcnLrZz7h5dmZnK/b6fc0QXU5YhBbCpfDRlqb05bmG536987YCGpzz3b59GhkdTMJiG69R3wwc1uUXsjhem2P1vECCWr+NAvQgggEBlFujZpZULaqrnCAoCksdMmG2bNjPMXGU+J9h3BBBAAAEEEEAAgeICDEVX3INPCCCAAAIIIIAAAgjkRODAns3smL3bBHXd9twk27bd9YpSEEAgbwLNG9a2i4/rHtT/n4/mBNmJ8raxcl7x/t2b2mF9Wlr3Ng2skQtuWrxqk3313UobPXWZzXDZmijlW+CWn/QzZeaav3yDffj1Ynt9LEFN6R7REw9oZ3t1aWK7t97NqleranOXrrcvZ620kZOWuCxOm9KthuUQQAABBBDISODkwf2CkKZVazbY1FlLbMny2OcxhqLLiJSFEUAAAQQQQAABBCqYAIFNFeyAsjsIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCFQEAYaiqwhHkX1AAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQKCCCRDYVMEOKLuDAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggEBFECCwqSIcRfYBAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIEKJkBgUwU7oOwOAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIVQYDApopwFNkHBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQqmACBTRXsgLI7CCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAghUBAECmyrCUWQfEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBCoYAIENlWwA8ruIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCBQEQQIbKoIR5F9QAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEECgggkQ2FTBDii7gwACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBARRAgsKkiHEX2AQEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBCiZAYFMFO6DsDgIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACFUGAwKaKcBTZBwQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEKpgAgU0V7ICyOwgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIVAQBApsqwlFkHxBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQqGACBDZVsAPK7iCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggUBEECGyqCEeRfUAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAoIIJENhUwQ4ou4MAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAQEUQILCpIhxF9gEBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgQomUGXs2LE7K9g+sTsIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCBQDgSqVKli+lGpWrVq8F6v+qlerVq1crALNBEBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQqkoAPaAq/+qAmApsq0pFmXxBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQKAcCPpDJN1Wfo3+CwKbq1av7ZXhFAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBHaJQDjAKRzY5LM2ubgmApt2yZFgIwgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIBBkZwoz+ACn6OCm6jVq1Agvx3sEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAYJcJxAts0jQyNu2yQ8CGEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAIFqAwKZoET4jgAACXbma0QAAQABJREFUCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAqQv4wCY1RO/9DxmbSv3Q0AAEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBCq3gA9uCr9Wr1atWuVWYe8RQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEECg1AR8MJMa4N/rlcCmUjskbBgBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQk4AOawu+rV61aFR0EEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAYJcIhIOY4m3QzydjUzwdpiGAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggECpCQRD0fkIp1JrBRtGAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBJxAOJapevgDOggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIDArhaIF8NEYNOuPgpsDwEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBIK+CAnApsSEjEDAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEESkugamltmO0igAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAokEyNiUSIbpCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggUGoCZGwqNXo2jAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAokECGxKJMN0BBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQKDUBAptKjZ4NI4AAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAQCIBApsSyTAdAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEESk2AwKZSo2fDCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggkEiAwKZEMkxHAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBUhMgsKnU6NkwAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIJBIgsCmRDNMRQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEECg1AQIbCo1ejaMAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACiQQIbEokw3QEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBAoNQECm0qNng0jgAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAIgECmxLJMB0BBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQRKTYDAplKjZ8MIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCQSIDApkQyTEcAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIFSEyCwqdTo2TACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggkEiCwKZEM0xFAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQKDUBAhsKjV6NowAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAKJBAhsSiTDdAQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEECg1AQKbSo2eDSOAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggEAiAQKbEskwHQEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBEpNgMCmUqNnwwgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIJBIgMCmRDJMRwABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgVITILCp1OjZMAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCQSILApkQzTEUAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAoNQECGwqNXo2jAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAokECGxKJMN0BBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQKDUBAptKjZ4NI4AAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAQCKB6olmML3iCezYscNWrFiR1Y7Vq1fP6tatm9W6rIQAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAQKYCBDZlKlaOl1+1apW1bds26z2oX7++tWvXzjp27Bi8HnzwwXbiiSeaplMQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEMilQJUtW7bszGWF1FV2BZStqXXr1jlv4DnnnGPDhg2zQYMGWbVq1XJePxUigAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIVD4BApsq0THPV2CTJxw4cKA98cQTeQme8tvIxevYsWNtxowZCas66qijrGXLlgnnMwMBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAg/wIMRZd/40qzhVGjRlmfPn3sueeesyOPPLLM7vcLL7xgw4cPT9i+kSNHEtiUUIcZCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIDArhGoums2w1Yqi8DatWttyJAhdv/991eWXWY/EUAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBPIgQGBTHlCp0uyKK66wzz77DAoEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBLISYCi6rNgq7krnn39+sZ3bvn27LV682ObNm2dz5swxZWRKtwwbNswmTJhgDRs2THcVlkMAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAIBAgsIkTISJQv359u++++yKfo99s27bNPvzwQ3v00UftxRdfjJ4d83nhwoV2+eWX22OPPRYzjwkIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCQTILApmQ7ziglUr17djj766OBHw8z9+Mc/tqVLlxZbJvrD008/bddee6117949elbKz8oQNWvWLFuxYoUtX77c1q9fb02aNLHmzZsHP/369bO6deumrGdXL7Bx40b7+uuvbdmyZUG71f4aNWoEbW7WrJl16dLFunbtuqubxfYQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIFyJVBly5YtO8tVi2ls1gIKsGndunXC9ZWxScukW5SRafDgwTZz5sykq/zxj38MgpuSLlQ4c/bs2fbwww/bK6+8krJerXLCCSfYaaedZqeffrpVq1Yt7ibGjBljhx56aNx56U5csmSJNW7cOOHiGrJPWayef/55e/XVVxMu52d07tw5aPd5551HkJNH4RUBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEAgJENgUwqjob3Md2CSvdIKGunXrZlOmTEnKu27dOrvjjjuCn6QLJpi5995727333msHHHBAzBLKLjVw4MCY6ZlMWLx4cZAtKt46o0ePtksvvdQmTZoUb3bKaTfccINdeeWVZTL7VMrGswACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIJAngap5qpdqK4mAAokuu+yypHurjE4TJkxIuMyaNWvs+OOPzzqoSRV/9dVXQVam1157LeF28jFDGZoOP/zwrIOa1KZbb7012P8NGzbko4nUiQACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIlEsBApvK5WErW42+8MILUzbo/fffj7vMtm3bgqCeTz/9NO78TCeeeuqp9tFHH2W6WlbLv/HGG3b22WdntW70Sp988omdeeaZtmPHjuhZfEYAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBCqlAIFNlfKw53anu3btar169Upa6aJFi+LOf+KJJ4Lh7OLOzHLiFVdckfcAoU2bNtkll1ySZQvjr/b222/b66+/Hn8mUxFAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgUomQGBTJTvg+dpdZUpKVhYuXBgze+vWrfaHP/whZnr0hL59+wbZjE477bSUAVRad9KkSaYgIV/atGnj3+bsVQFZ8fYpvIH69evb0KFD7ac//akNHjw4PCvh+9tuuy3hPGYggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAKVSYDApsp0tPO4r126dElae7yMTVOmTLGlS5cmXK9t27amIdrGjx9vCiR65plnbOLEifbSSy8lXMfPGDVqlH9rHTt2tA0bNtjatWuDn4svvjgyL96bESNGRJb16zRp0qTYou+8806xz9Efrr76aps9e7a9/PLL9vDDDweZmObPn2+pAsC++uorW7lyZXR1fEYAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBCqdAIFNle6Q52eHmzVrlrTiuXPnxswfN25czLTwhA8++MD233//8KTg/fHHH2///Oc/Y6aHJ8yYMSP80apXr261atWK/BSbGfWhZs2akeX8OuFFdu7caSNHjgxPKvb+/PPPt1tvvdUaNGhQbHrLli3tkUcesc6dOxebHv1hzpw50ZP4jAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIVDqB6pVuj9nhvAhEZzSK3ki8YdsUQJRoiLb+/fsnDQA66aST7IILLojeTOTzvHnzIu9z/WbLli120EEHJaz20ksvTTivbt26dvLJJ9vw4cMTLhMvu1XChZmBAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAghUUAECmyrogd3Vu7Vt27akm6xfv37M/J/+9Kemn2yKAqlUp4aKi1dStSfeOulOUxan119/Pd3FY5br2rVrzLTwhB07doQ/8h4BBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEKiUAgQ2VcrDnvudXrFiRdJKW7VqlXR+vJlLly61ZcuW2Zo1a2z16tW2bt264FXvNS1RUFO8unbltE2bNpmyLq1cuTLSTr8Per3lllt2ZXPYFgIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggUC4FCGwql4et7DV6+fLlSRvVsWPHpPM1c8GCBfbxxx/byJEjbcSIERZv+LqUlZTCAps3b7bx48fbRx99ZB9++GHwUwrNYJMIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggECFEiCwqUIdztLbmSlTpiTdeOvWrRPOnz59ul1zzTX2xhtvJFymLM7YunWrPfroo3bdddeV2exRZdGNNiGAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAukIENiUjhLLJBXYuXOnvfjii0mXSRTYpPXOOuuspOuWxZkaUu6UU06xTz75pCw2jzYhgAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAALlXoDApnJ/CEt/ByZPnpxy2Lhu3brFNPS1114rl0FNW7ZssSFDhti4ceNi9okJCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAArkRILApN46Vupa777475f4fd9xxxZbZtm2bXXnllcWmJfpQv3596927tzVt2tQaN24cvDZq1MhuvvnmRKvkdfpzzz2XdlCTArratWtnTZo0Cdqu9j/44IMMXZfXI0TlCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIFARBAhsqghHsRT34d1337VnnnkmaQuOPfZYa968ebFlXn/9dZs9e3axadEfrr76arvooousbdu20bOCz8OHDy+VAKHbb789bnv8xL59+9ptt91mRxxxhNWsWdNPjrx27tzZLr744shn3iCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgjEChDYFGvClDQFpk6daj//+c9TLn366afHLDNx4sSYaeEJd955p11++eXhScXez507t1SCmjZs2GAzZ84s1pbwBwVhjRgxIsgqFZ4efj927NjwR94jgAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIxBGoGmcakxBIKfDmm29av379bOnSpSmXHTp0aMwys2bNipkWnnDWWWeFP8a8f+edd2Km5WrCxo0bE1Y1b968hPM046STTkoa1LR9+3Z74YUXktbBTAQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEzAps4C9IWWLt2bTDs3KBBg+zkk09Oa7177rnHGjduHLPs5s2bY6aFJyQLmFq4cKGp3mxLtWrVkq46Z86chPO3bt2acJ5mLFq0KOn8e++9t1QyTSVtFDMRQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIEyKMBQdGXwoJRWkxS4dMoppxTb/M6dO4NgnW+//TbjgJyjjjrKLrjggmL1+Q8dOnTwb+O+ar033ngjJihqwoQJdvzxx6eVKSpuxW5i+/btE80Kpv/1r381ZYyqW7duzHKtW7eOmRae8PLLLwfBX8OGDQtPtm3bttk111xjCmyiIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCKQWILAptVGlWkLBRLko9evXt4ceesiqVo2fFKxbt25JNzNu3Dhr2bKlnX/++UEg0ty5c2306NE2derUpOulM7Nz585JF5s5c6Z1797dFJzUvHnzYGi58847L1inWbNmpn1TEFiicu6559oDDzxggwcPDhYZO3Zs0PZk6ySqi+kIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggEBlFaiyZcuWnZV15yvbfq9YscJSZRzKhYkCf1544QU7/PDDE1a3bNkya9u2bcL5JZ3Rq1cvmzhxYtxqlH2qd+/ececlmrh48WJr0qRJMPv666+3u+66K9GiJZ7+4osv2gknnFDieqgAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBAozwLx0+mU5z2i7aUqsPfee9uXX36ZNKhJDVQmpEsuuaRU2tqpUydLlTEqWcMSDa+XbB3mIYAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCGQmQGBTZl4snURAw8aNHDnSOnbsmGSpoll/+tOfbMCAAUUTMnj38ssvB0PCZbBKZNHq1asHw+RFJmT4pkOHDvbSSy9luFbB4trf4cOHZ7UuKyGAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAApVJgMCmynS087CvGk7upptushkzZth9991nderUSXsrtWvXNg27duqpp6a9joa5e/zxx23o0KFprxNvQQUYaUi5bMvxxx9vzz33XEbBVccdd5z997//Ne03BQEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQCC5AIFNyX0q1FxlKsq2KKCoV69eduyxx5oyM9144402YsQImzVrll133XWm4d2yKU2bNrVnn33Wnn/+eRs8eHDSKq644gr79ttvbdiwYcFy7dq1S7i8Aq5SFe3D+PHj7YQTTki1aNz5J598sk2ePNmuuuoqa9GiRdxlNFHD87311lv2yiuvWMuWLYNh+BIu7GY0a9Ys2WzmIYAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAAClUKgypYtW3ZWij1lJ8uFwLJly+y7776zxYsXW40aNaxWrVrWo0cPa9OmjVWtmr84PG1v/vz5tmDBAps3b16w3bVr19puu+1mCqAaMmSIJQsM2759u02bNi1o98aNG23nzp3Wvn1769atm9WrV69c2NNIBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEECgLAkQ2FSWjgZtQQABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgUAgfylwAEYAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEshQgsClLOFZDAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACB/AkQ2JQ/W2pGAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQOD/2bsP+CqqtPHjD0lISCBAKIFQQw0tQAABUQTsCuIqNixY//qyu+666qqr62tZdNHd17L23taCigURwUYRQXovgdBrCJAAgUCA5H+eCTO35N70m9yb/M7nc7kzZ86cOfOdC4nmyfMgUEYBApvKCMdpCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggEDgBApsCZ8vMCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggUEYBApvKCMdpCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggEDgBApsCZ8vMCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggUEYBApvKCMdpCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggEDgBApsCZ8vMCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggUEYBApvKCMdpCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggEDgBApsCZ8vMCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggUEYBApvKCMdpCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggEDgBApsCZ8vMCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggUEYBApvKCMdpCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggEDgBApsCZ8vMCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggUEYBApvKCMdpCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggEDgBApsCZ8vMCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggUEYBApvKCMdpCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggEDgBApsCZ8vMCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggUEYBApvKCMdpCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggEDgBApsCZ8vMCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggUEaBiDKex2khJLB8+fIQWi1LRQABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIGaLNCzZ8+afPvcu5tArdzc3Hy3fTYRQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgSoXoBRdlT8CFoAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAALeAgQ2eYuwjwACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAlUuQGBTlT8CFoAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAALeAgQ2eYuwjwACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAlUuQGBTlT8CFoAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAALeAgQ2eYuwjwACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAlUuQGBTlT8CFoAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAALeAgQ2eYuwjwACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAlUuQGBTlT8CFoAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAALeAgQ2eYuwjwACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAlUuQGBTlT8CFoAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAALeAgQ2eYuwjwACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAlUuQGBTlT8CFoAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAALeAgQ2eYuwjwACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAlUuQGBTlT8CFoAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAALeAgQ2eYuwjwACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAlUuQGBTlT8CFoAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIVG+B1NTU6n2D3B0CCCCAAAIIIIBAQAQIbAoIK5MigAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAeQQIbCqPHucigAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAQAQIbAoIK5MigAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAeQQIbCqPHucigAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAQAQIbAoIK5MigAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAeQQIbCqPHucigAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAQAQIbAoIK5MigAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAeQQIbCqPHucigAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAQAQIbAoIK5MigAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAeQQIbCqPHucigAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAQAQIbAoIK5MigAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAeQQIbCqPHucigAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAQAQIbAoIK5MigAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAeQQIbCqPHucigAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAQAQIbAoIK5MigAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAeQQIbCqPHucigAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAQAQIbAoIK5MigAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAeQQIbCqPHucigAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAQAQIbAoIK5MigAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAeQQIbCqPHucigAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAQAQIbAoIK5MigAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAeQQIbCqPHucigAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAQAQIbAoIK5MigAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAeQQIbCqPHucigAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAQAQIbAoIK5MigAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAeQQIbCqPHucigAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAQAQIbAoIK5MigAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAeQQIbCqPHucigAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAQAQIbAoIK5MigAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAeQQIbCqPHucigAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAghUW4GTefly7Hhetb0/bgwBBBBAAAEEEAh2gYhgXyDrQwABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQKAyBPLzRWasSJcVWw/I6m0HZcXmLOuyrZtES3JiQ+naqr5c2KeFxESFV8ZyuAYCCCCAAAIIIFDjBWrl5uaab9FoCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCARGIDU1VZKSkgIzeQXNmpObJ09+tlJ+Xr6nyBk1yGn8jb0lMb5ukeM4iAACCCCAAAIIIFB+AQKbym9YbWbIN7+GoP9hsXPnTtm9e7fs2bNHcnJypHHjxtYrPj5eOnToIC1atKg298yNIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAQOAFgj2wae/BXPnzm4tkc/phByO+QR3p3Kqe1I2KkLRd2bLBvNzb87f3kX4dGrl3sY0AAggggAACCCBQwQKUoqtg0FCcbu7cufLFF1/IxIkTZfv27cXeQkpKilx66aVyzTXXSPv27YsdzwAEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAIJgF3p++yQlqiokMl0ev6yFndGnqseQtGYfl0Y9Xyrodh6z+Jyaslgn3DZLIiDCPcewggAACCCCAAAIIVJwAGZsqzjLkZtq8ebPcd9998tVXX5V57Xr+/fffL7GxsWWegxMRQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEECgegsEe8am8x6eLkdyT1oP4aWxfaV3YpzPB3LseJ6MeHymM/bl/+krvdr5HutzAjoRQAABBBBAAAEESiVAxqZScVWfwRMmTJAbbrih3Df09NNPy0cffSQ//fSTtGvXrtzzMQECCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggUJkCB46ccAKVNFtTzzYN/V4+qnaY3Hx+B/nsl63WmOxjJ5yxO/blyOIN+6395MSGkhhf1znmvrExPVtWbTlgdZ3Vo5k0iCn4cV1m9nGZvXqPx/nb9+bIko37ZdnmLImrFyldWtWXoT3iJTysljPl4o2ZssIc37LnsDSLi5bubepLcts4Z15noNn4duFOycvLl4TG0VYZPb3mUjO/zpFvjndMqCfn9GousXVcP0LUTFVz1+6VTaZMX1TtcDN/rPRoEyctzRz+2klzjZVbsmSjOWfj7mzJPZEnnVrESiczf+eW9SXaOHs3Lfe3ZluBy9CezaSOsV6z7aC1tg27Dkm/jo0lqWWsrN9ZkDGra+v6Zr3+f/F+nRmXuv2gdZm+HRtJi0b+1+u9FvYRQAABBBBAIHgEXN+VBM+aWEmABb7++usKCWqyl6nl68455xyZNWuWtGrVyu7mHQEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBAIeoGYKFcpOc3adNRkZYqJKhx4Y9/ItYPbiL68W9rOgzJ+4hqr+4FRXf0GNi01QUT/91WqNa5R/Uin5N2eA0ed88ecnShN60c549yv1b1NA3nqxt4SEVFLHv9khcxZs8/9sLXd0ARBvfY//aRV0xiPY09+ttra16Cge3/XRW59Yb7Hcd154/uN8vSNvaRb6wby2rQ0+WD6Zo8xE+cU7I6/sacM7hbvcUx3NBhr3GerrGCrQgdNR3yDOvLc/0uRtk09A780KOz5b9ZZp6jLZ79ulQXrMp0pIkwwV3zDKMfojG5NzDp7O8e9N143a5+7tsDm1d/3I7DJG4h9BBBAAAEEQkTA9Z1aiCyYZZZPYOXKlXLllVeWbxIfZ2tw0+jRo30coQsBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQCF6B2uFhclpnVzm5f36+So6ZDENV2X5L3ecENWkWKfe2ausBefrL1fKPCSudoCYd4z4uKztX7nh1oRw66soo5T7Hrsyjcs87S50u73P//t8V8vZPGz2CmjRYyr098N5yWWGyMrk3nffqf/3qEdSkc2swk900gOu2/8wXzdDkr702dYNHUJM9rn+nxs59/rp6r9/70yxcdlBTS5OpqUcRWbjsuXlHAAEEEEAAgeAUIGNTcD6XgK3qySefLPHcWlqucePGsnbtWsnO9v/NpT3hvHnz5LvvvpOLLrrI7uIdAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEAh6gbNM5iE7O9DPy/eYcmdzZcRpLWVo9/hCWY8q42bW7ThkBfD869beknwqKGf2qj3yoAk40jZrZYb1rsFGml2pqylRJ6Y6nZas++Ori6xjGtyk5eBOT2pi7bv/oce0PXBFVzmvd4JV9k0Djf5qgp008Ehfb/+w0Rrz2OgeMtiUv4uKCJOd+3Pkr+8ulc2mxJy2X9fsNWXvXKX7NMuS3fp0jJN7Lu0ibUzWqLBatWTfoVz5v6/XyMwVGVbpvx+W7jal5Drawz3eN5i16L3d+7skkzmqocleFSlHTCYtLcF32aDW8uGMzdb4OWv2yAUpLTzO1Z05awt8dHv4aS3EXJ6GAAIIIIAAAiEqQMamEH1wZVn2mjVr5PPPPy/y1E6dOsnPP/8sBw4ckNTUVJkzZ47s27dPNm/eLI8//niR5+rBp556qtgxDEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEgkng8tNby/VDE50lbTPl1F75Lk2u/vccGf6PWfLwh8tl0vwdopmAKqu9cEdf6Z0YZwXzaEDPkORm8vuLO3lcXsvNaWm6MHNcg4dS2sXJfZd3dcakmgApf+1Pl3SWS0zwVp3aBT8u7JhQT8Zdn+wx/KGrusm5vZtbQU16oIXJfvTE9T2dMSu2emdsypEBSY3kzO5NZNx1vaxyfLoubY1jI+Xhq1zzz19fUCbOmcxtQ4OaXv/9aTLM3HMzU35O76/eqfKA55v12O0nE4Tmq/28fLfTfW4v13inkw0EEEAAAQQQCBkBMjaFzKMq/0Lnzp1b5CSjRo2St956S2JiPOst1zLfcLZo0UIeeOABGT58uFx66aWiped8NQ2EOnbsmERFRfk6TB8CCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggEJQCYy/qKPEmiGbCrK2yw2QmsptmN9IsTvp6auIaGdYzXq4fkihdNEtSgFrnlrE+5+/dzpUdqWvr+j6zSWm/3bak+6/IcXG/wpmOklq6ztU5hvZoZk/lvGsGJrut2+YZOPXPG3rZh3y+R0eGWYFYWk5Ps1KdzMu3Are8B5/Xq5m0bBzt3W3tawBWB/PSrE52ObrYOq4feR7MOeGU6EtObOh3Hp+T04kAAggggAACQSfg+iofdEtjQRUtsH79+iKnfPDBBwsFNXmfkJycLA899JCMHTvW+5Czv27dOtFxdtuyZYvMnj3b3vV4j4yMlCuvvNKjz3snJydHvvjiC+9ua79+/fpyySWXeBxbtWqVLF261KPP3unTp4907Vrwmwp5eXkyZcoU+eqrryQtLU22bt0qbdq0ER3Tq1cvGTlypMTFuWpq23Po+6ZNm2T69OmyfPlyWbRokWzcuFHatm0riYmJcuGFF8rll18u9erVcz+l0Laev3PnzkL92qHl/Bo1amQd0/t///335ZdffhF9hhkZGdY96DpTUlKsdUZE+P6rPH/+fPntt99k2bJlsnChqaV96JC1Rs3MpYFsZ599tvg71+fCTnXqmjRQ7vvvv7fs0tPTZc+ePXL8+HFp3ry5FQjXvn17y2LQoEFSp46rdra/eUvikZ+fb2Udmzx5sqxcuVIyMzOt640fP17OPPNM+fjjj/1Nb9LM1pJrr73W73H3AxMmTJATJ3z/1s3AgQOlQ4cO7sPZRgABBBBAAAEEEEAAAQQQQAABBBBAAAEEEKgmAqNM5qbLB7aW1dsOyPemVNq81L2i2Zvc23QT4KSv/9zeR/p2KPh/+e7HK2K7pwnI8dVio2s73Vb5OWfPtdG0fvH/T751k2hxDwayz44Ir2WVwDuSe1JamuxMMaeyJNnH9V0zMCU2q+uUo3M/5r1t/re+5Ji5Dh89IYePmZd516Cm4lovtwAuX2M109Rzk1KtQ3PXZMj5KQnOsDlm324jTBk6GgIIIIAAAgiEtoDvaIjQvidW70dgw4YNfo4UdPfo0aPI4/ZBDQ7561//KtnZvqP8NcjHPbBJA2puvvlm+3SPdw3+KS6wSYNx/J2vky1ZskS6d+/uzKvBNvfff7+z774xYMAAK0BIg2Kuu+460fJ87k0zUWnWKW2PPfaYFSij59hNg11eeukl6/7tPvtdA470XrXc32233SbvvvtukYE0zz//vBVYZZ/v/q5BZo8++qg11+23317IWtf5ww8/WKcMGTJE3nvvPSuYyJ4jKyvLMnjnnXfsLuddz9VAMz3Wrl070SCe3r17O8eL2tBn8eyzz8q4ceP8DnPP5vXcc89Z4/Re/vKXv0h0tO/frtBBxXncc889VrYw7yA5vZ4Gmg0ePFgefvhhv9nE9Bp9+/aVpKQk3fTb9O/JDTfc4Pe4Po8XX3zR73EOIIAAAggggAACCCCAAAIIIIAAAggggAACCIS2gInbsbIKaYk3kSTRDEBL0vbJzFUZMm2Jq8TZn15fLP+9+3RpZ4J8Krr5CijyvoaWZytrq+cWIOVvjrCCCnX+DvvtzziYK98u3CHz1+2VZZuKD2LyNVG0j4Aq93Fn92zmBDb9uDzdI7DpJ7cydEN6xLufxjYCCCCAAAIIhKBAGb8lCcE7ZckSHh5epMKKFSuKPG4f1OAUzVS0evVqny/NAlSZTTMvlbSdPHnSyrB01llnFQpq8p5DA2Y0WEYDlbRpUM+wYcN8BjV5n6v7N910kzz++OO+DhXbp5mPNPBIg8j8BZDZk8ycOVM0KE0zZWnToC0N9PIV1GSfY79rQFD//v1l2rRpdpffdw3a6tKlS5FBTf5O1sAmXZN+ZsrStLyhBrd5BzW5z6UZmW688Ub3rkLbmhWquKaeRbXf/e53RR3mGAIIIIAAAggggAACCCCAAAIIIIAAAggggEA1E6gfHSFDkpvJ/17TQ9758wAro5F9i/PX77M3eTcCizbul2v/9au8MW1DmYOaSgLZODZSzujWxBpql6PTnUMmI9ScNQXP5PzezXxmpSrJ/IxBAAEEEEAAgeARILApeJ5FwFeiZdaKaho4oiXZStJatWolHTt29PmKjY0tyRRVMubw4cMlChZyX9x9990nGljzxBNPyLx589wPFbutmY1KEjTkPZFmkrrjjju8u/3ua/CTrk8zSmlGIc0eVZo2evRo2bFjh99T9L61pFxp53WfUAPFzjvvPKtsn3t/Sba1ZOCkSZOKHarl9YpqP/74Y1GHrWN2JixfAzXDmAbF0RBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQRqpkDnFrFy/6iuzs0v3ZTpbLtvmApsftuJk0Ud9Xta0B/QknN/em2xaBk7bad1jpMHr+wmL43tKx/cPVC++Ntgmfb4MOnTMa5C7uXiPq7yc1qOTtucNXucuc93O+50soEAAggggAACISdAYFPIPbKyL1gDkYpqmrGpW7duVoDM4sWLpTSZkIqaN5iOacCQZikqTdOAHC2j9swzz5TmNGfs2LFjS205efJk5/ySbnz88cdy1113WeXwSnqOPU4Do/xll9KgLg18qoimgVG33HJLqafyLhnobwLNXNW1q+s/KL3HaXBUbm6ud7ezr4FhRQWiaQatyMhIZzwbCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAqEvMGXRTnl8wkrrtXb7wWJvqE28q/RcZvZxZ3ytcFdpuANHXP3OgFMbu7OOendVi/3FJluT3bSM33O39pXh/VpI78Q4ad+snjRrGCX1TIm57Rk59rByvZ/etamTPeunFenWXD8uK3iPiQyX/p0al2t+TkYAAQQQQACB4BAgsCk4nkOlrKKkJbQee+wxGThwoLRu3drKGvTmm2/KggULJCenYr7RrJSbreCLqEFZmwZGzZ07t6ynl+q8119/vVTj3Qdr6TpfZe/eeust0XsoSdOMRsW1OXPmyC+//FLcsDIfL64cnZbU89eWLFni08Aef/nll9ubvCOAAAIIIIAAAggggAACCCCAAAIIIIAAAghUEwHNNDRt8W7r9d704n85esF6VwBPi7g6jkLLRjHO9qb0bGfbfSMvL1/mraue5etWb3UFhV12eiv323a2N+85LHsOVExgV1REmFxkAqe0zV61V3bsy3HK0P3OXD88zBVo5iyADQQQQAABBBAIOQECm0LukZV9wU2bNpVbb721xBNodh0Ndvn9738vZ5xxhjRo0MAqR6aZfTQwRTP5hHLTLESvvPKKPP/88zJy5MgS34o6qomWfnvyySflzDPPLPbcGTNmFDvG1wD7Wvoc1D0lJcXXMJ99mrnooYcekvHjx8v9998v7dq18znOvXPRokXuu9b2p59+WqjP7tD1qZ+ed/ToUdm/f7+1XZzJF198YU9RpvcBAwbIn//8Z7n33ntl6NCh4l7+sLhydNOnT/d7zZ9//tnvMQ3aGjx4sN/jHEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBAITYHTOroy+8xamSETZm+VkyYAyVebt36fvPvjRufQaZ1d57Zt6srkpIFSuzILB/B8+utW2Zx+2Dm/Om0kxrsCu9btPFTo1vYfypVxn64q1F+ejgtSmjunP/HZSmfbvd/pZAMBBBBAAAEEQlIgIiRXzaLLLPD000/LrFmzZP369WWaQ7Pd6GvcuHGigR4aWHLzzTdLQoKrjnGZJq7kk6ZMmSLnnnuuc1UtF/foo49agUpOp48NDeSZPXu2R5CQln+74YYbZOLEiT7OKOgqacYj9wn0Wr/99puVOcvu12CeSy+9VIoLlNLAom+//Vaio6PtU+XOO++0AnOKKsW3Y8cOZ7xuaPCaZljy13766Sfp0qWLx+Hk5GT58ssvrSAsf/edlpbmcU5Jd9T5xRdf9Lgv73Pbtm1rBeD5W/fUqVOtgC/v83S/qDJ01113ndSuXdvXafQhgAACCCCAAAIIIIAAAggggAACCCCAAAIIhLBAm6YxMmpQa5k4Z5t1F//5Zp18u3CnnNOrubRpHC2xdWvLVpNpaOWWAzJtyW7nTls3iZZzejZz9iNMKbpe7RrIsk0HrL4xz8yVOy7qKK3N/JkmqGf6ynQrs5BzQjXb6NPBFeT16S9bZef+I3KmKRfXKDZS1u3IlknzdlRYtiabrlvrBtKyUbTs2J/juCc2qysdE2LtIbwjgAACCCCAQIgLENgU4g+wtMvXzDaTJ08WLUu3Zs2a0p7uMV7LlmkwkL60BNpNN93kcTxYd5577jmPoCZ7nXofGpBTlMvnn3/uEdSk50ZERMjbb79dZGDTrl277MuU+F0Dk7QcoHvTQKUPP/xQWrZs6d7tsa0BZ5oRyT2oSQfEx8fLu+++K0OGDPEY776zZ88e9105ePCgnHPOOR599o6WK/QOarKPaXavq666Sp555hm7y+N940bXb7N4HChi54orrpDXXnvN8i5imHXo+uuv9xuQNW/ePMnMzJS4uDiPafReNWjNX9Pr0xBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQSqp8BdIztL0wZR8up3Bb+Yu2FXtmzY5f+XdM/o1kQevrqHRJpyaO7tf69OlltfnC9Z2blyxJS4e/brVPfD1vblpkzaF3O3F+oP9Y7GJoDp9gs6yOvTNli3ouXh9OXezuzeRLKPnpClG7Lcu8u8XctUmxs5oKW8cuq56UQj+/v/GUqZL8SJCCCAAAIIIFBlAp7fbVXZMrhwZQpoSTLNBKTl1Cqq3X777XLbbbdJfr7v1KwVdZ2KmOfiiy/2O01RQT96Uv/+/X2eq0FEgwYN8nlMO0+ePOn3mK8DrVq1kt69e/s6JJrJqaiycmeffbY0bNjQ57n+5rQHe69Tr/Xdd9/5fD3yyCP2aT7fO3bs6LNfO0+cOOH3mL8DGpCmQWQlaZrVqqimpRS929y5c727nH0NFtNyjDQEEEAAAQQQQAABBBBAAAEEEM0SflgAAEAASURBVEAAAQQQQACB6ikQZiJkbhiaKC/+T1/p2rq+35vULE23X9hRxt/QS2LrFP5/1s3j6shLd/SVQV0bS0xkuMc8vTs0lPfuGiDtTEYhXy28lD+18w6qsueMiDDRPqdahFfgld1fkvfI2p7rdz/Hvnak1z3eeHY7eeSa7qJO3u0O4/b46J5SN6qwm44NNxmvytLO6ekqR6fnn+21X5Y5OQcBBBBAAAEEgkfA93cOwbM+VhIgAQ3E0UCRu+++W15++WUr45JmYCpPe//99yUpKUn++te/lmeagJ6rASqJiYl+r6Fl1Py18847z3xT7f+b+JSUFL9ZgvzN6a9/8ODB/g5Z/X379hV/JeUGDBjg91x97p06dSpzKUL3iTUIasuWLZKRkSEHDhywXpr1KCsry3o99dRT7sPLta2BXppxqqRNA7JGjBhhZSfzdc7PP/8sI0eO9DikZfX8tTFjxpQ4qMrfHPQjgAACCCCAAAIIIIAAAggggAACCCCAAAIIBL9ASrs4efOP/eVkXr5s23tENqVnS9bh49K5Ray0bx4r0ZHFRx8lxteVf92UInlmju37ciT3RJ40MwFPdiCUlkm7/PTWhTC0/9enzi3U796hZfOKG6PX8TfGX7/7NX74xzD3XZ/b7/zJ/88izk9JEH1lHzspO/cdMQFeEZLQqI6EhxUELj19o+9f7B5lTPRV2pZ1JNc55fQujaVp/Uhnnw0EEEAAAQQQCH0BAptC/xmW6w7atGkj48ePl3HjxsnixYtl+vTpMmPGDNFyXWUJdHrooYfk2muvLbJUWrkWXM6T/ZVOs6eNioqyNwu9FxdYU7eu79+wKDRRCTo0kKeo5l1mzn1scevUMnFlbVqmb9asWdZnZNq0aWX6jJTl2lr2rrTt6quv9hvYNGnSJCuwz31OLf3nr40aNcrfIfoRQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEqqGABuFogJK+ytrCzBwaiFRTW72ocCsgLJD3r4VEXpyyzrnE1YPbONtsIIAAAggggED1ECCwqXo8x3LfhZb40jJr+rr//vvNbxHkyebNm2Xp0qVWIIuWI/OXIcj74h988IE88MAD3t3sh7BAWlqa9Uw1IKgqWlFZtvytZ/jw4f4Oyfbt22Xjxo3Svn17a4zur1+/3ud4zf50+umn+zxGJwIIIIAAAggggAACCCCAAAIIIIAAAggggAACCFSugAYz7c46KnsPHpUflqbL0g1Z1gK6t2kgp3VsXLmL4WoIIIAAAgggEHCB4vNlBnwJXCAYBcLCwqygj8svv9zKbJOamipLliyxsjEVt96pU6cWN4TjISQwZ84c6datm1RVUJNS1apV+rraWnbwuuuu8ys9c+ZM55j7ttN5amP06NGUofNGYR8BBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgSoS0DKBV4yfLf/z8kKZOGebs4o/DO/kbLOBAAIIIIAAAtVHgMCm6vMsA34n3bt3l3fffVfefPPNIq/lL/NNkSdxMCgFtm7dKkOHDg3KtZVkUddcc43fYd9//71z7Mcff3S2vTcuu+wy7y72EUAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAIEgEWjaKlrfu7C+9EhsGyYpYBgIIIIAAAghUpACl6CpSM4jnysnJkUOHDvlcYWRkpDRsWPJv9saMGSNabs5flpuMjAyrlJ1mfSquZWdnS77JGVpURh6dj1Y1As8880yxFx4xYoT06tVLWrVqJQ0aNLA+S/r+6aefyvPPP1/s+YEcMGzYMNHMTfo5827Tpk2TEydOiH5Ov/76a+/D1r6WoRs4cKDPY3QigAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBA5QuEh9WSN/54mkSEh0mCCWqKrcOPOyv/KXBFBBBAAAEEKk+Ar/SVZ12lV/roo49k7NixPtegwRsbN26UqKgon8d9dTZp0sRXt9NXkqAme3B6ero0b97c3i30npaWVqiPjsAL5OXlycsvv+z3Qp06dZLJkydLu3btfI759ddfffZXZqcG7Wkgnq/70GAnLa9Yu3Ztn4FPuk4tZRceHl6ZS+ZaCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggUIRArVoi3Vo3KGIEhxBAAAEEEECgOgkUn1KnOt1tDb6XDh06+L17zYj0zjvv+D3ufUCzP02cONG729lPTk52tnWjuICplStXeoz33pk0aZJ3F/uVILB79+4ir6KfGX9BTXqiZkQKhnbVVVf5Xcb06dNlxowZfo9Ths4vDQcQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBAIuACBTQEnDo4L9OzZs8iFPPjggzJnzpwix+hBLd311FNPFTmuc+fOHsfj4+M99r13xo0b593l7M+bN88qe+d0sFFpAppJq6iWkJDg97AGRf30009+j1fmAS0lp2XyfLWpU6fKDz/84OuQaCazAQMG+DxGJwIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggEXoDApsAbB8UVGjVqJFo6zF/TslxDhw6V2267TTZt2iT5+fkeQzWgafny5TJs2DB58sknPY5575x33nkeXcUFNmlA1Y033ihZWVke533yyScyePBgjz52Kk+gYcOGRV7sgw8+8HlcSwcOGTLE57Gq6NSyiFpSzlebPXu238CmG264QUpTUtHX/PQhgAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAQNkFIsp+KmeGmoBmZbr55puLXPb7778v+tKWkpIirVu3tgKdVqxYUeR59kHNcjN69Gh713pv06aNlf1GS975ax9//LHoSzPkREdHy8KFC0WDrWhVJ9CyZcsiL/7oo4/K/Pnz5YILLpB+/frJzp07rf1XXnkl6J6dlqMrLtOY981efvnl3l3sI4AAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggEAlChDYVInYVX2pa665Rp555hkpaZDSkiVLRF+laffdd58VmOR+jp0x57nnnnPv9rmtpedowSEQGRkpF198sUyZMsXvgvRYUcf9nljJB5KTk6Vr166yZs2aEl1ZS9dpsBYNAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBKpOgFJ0VWdf6VcODw+XDz/80MqeFIiLX3vttfKHP/zB59Ra4o4WegJ33XVX6C3az4q1tFxJmwYBUoaupFqMQwABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAIDACBDYFxjVoZ+3SpYvMmjWrwoObxowZI2+++aZERPhOAta5c2f55z//WSaXr7/+ukzncVL5BYYOHSr33HNPqSfSjEePPPJIqc8L5AmjRo0q8fSUoSsxFQMRQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBAImACBTQGjDd6JO3ToYJWju/fee8u9yHbt2slnn30mb7zxht+gJvsimv3noYcesneLfa9Xr568++670rdv32LHMiBwAuPGjStVcFOnTp1Eg9FatGgRuEWVYWb9rA4aNKjYMzUoi89csUwMQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAIOACBDYFnDg4L9CoUSN58sknZcOGDfLwww9Lv379SrXQK664Qt555x1Zvny5XHrppVKrVq1iz9dSeJrF55tvvpEhQ4YUOV6z66xcuVK0vF1pW3R0dGlPccbHxcU526XdaNKkid9TfB0rzzobN27s91rFHYiPj/c7xNe8+tw029bMmTOlqKxHTZs2lRdeeEGWLl0qycnJUpRlQkJCoTWUx6PQZH46Ro4c6eeIq/u6664r0efZdQZbCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIBAIgVq5ubn5gZiYOUNPYO/evbJo0SLR94yMDOu9bt26kp+fLxqYo0Evms0mJSVFIiMjy32DmzZtkrVr18qOHTusuY8dOyZJSUmiGX80WxMtOAUOHDggaWlpkp6ebn0OYmJirGemgU3B3PRzfOWVV8qkSZOKXKb+HdDALBoCCCCAAAIIIIAAAggggAACCCCAAAIIIIBAxQmkpqZaPwOouBmZCQEEEEAAAQQQQKAmCBDYVBOeMveIAALy2muvyZ133lmkhJaqmzFjRpFjOIgAAggggAACCCCAAAIIIIAAAggggAACCCBQegECm0pvxhkIIIAAAggggAACIhEgIIAAAtVNQDOBTZgwQTSL1ObNm2Xu3Lkyb968Ym/zD3/4Q7FjGIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAAClSNAYFPlOHMVBBCoRIHPP/9cnnjiiVJdUUssXnbZZaU6h8EIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggEDiBsMBNzcwIIIBA6Ai8/fbbEhFBrGfoPDFWigACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCBQ3QUIbKruT5j7QwCBYgUmTpwo3bt3L3YcAxBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEECg8gQIbKo8a66EAAJBJtCpUyeZOXOmXHLJJUG2MpaDAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAtRd4jOAAALVTqBWrVo+76lp06ZWZqZu3brJmWeeKZdddpmEh4f7HEsnAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCFStQK3c3Nz8ql0CV0cAAQQqViA/P1/2798vmZmZcuzYMYmNjZW4uDjrvWKvxGwIIIAAAggggAACCCCAAAIIIIAAAggggAACJRFITU2VpKSkkgxlDAIIIIAAAggggAACjgAZmxwKNhBAoLoIaMamxo0bW6/qck/cBwIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAjVNIKym3TD3iwACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAsEvQGBT8D8jVogAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAQI0TILCpxj1ybhgBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgeAXILAp+J8RK0QAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAoMYJENhU4x45N4wAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAQPALENgU/M+IFSKAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggUOMECGyqcY+cG0YAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAIPgFCGwK/mfEChFAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQqHECBDbVuEfODSOAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggEPwCBDYF/zNihQgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAII1DgBAptq3CPnhhFAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQCH6BiOBfIitEAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEE/AvMXpMhh3JOSIRJ63Be7wT/A4P0yKb0w7J2x0FrdX3bN5L4hlFBulKWhQACCCCAQOUKENhUud5cDQEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAoIYIvDd9s+zJynHu9uK+LaR7mwbOfkk2Dh09Ia9PTZO8/Hyfw6MjI6RJ/Uhp1rCOJLeNs7Z9Dqzmna9P2yAbdmVLTGR4SAY2LUzbL89NSrWe0r9v6U1gUzX/vHJ7CCCAAAIlFyCwqeRWjEQAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEECgRALTV6RbAUnug3smNih1YNPBw8fli7nb3acpcvvM7k1kzNB2pb5OkZNyEAEEEEAAAQQQqCIBk4yRhgACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACFSWQmX1cnvx0dUVNV6p5Zq/aK7e/tEAmzN4qfpI8lWo+BiOAAAIIIIAAAlUpQMamqtTn2ggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAtVO4D/frJUjuSet+2rdJFq27XWVoyvPzZ7Vo6n884ZeHlMczDlhyt0dlV9WZ8jnc7ZJVnaudfw/36wz5etERg9u4zGeHQQQQAABBBBAIJQEyNgUSk+LtSKAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCAS1wK9rM+T7penWGpMTG8oNw9oFdL31oyOkY0I9ufmcdvLJXwfJGd2aONd7cfI6SduV7eyzgQACCCCAAAIIhJoAGZtC7YmxXgQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgQoRyDhwTH5L3WvNFR9XRwZ0aux33j1Zx2TeuoKx7ZvXk+5tGhQae+TYSXnyszVO/4NXdJPV2w44+4HeiK0TYWV0+sNri2TF5izrcm/8kCZPjent99LLzbglGzNl5/4cOX4yT5o1rGMCpWLlzG5NJSrCM0fCr2syZP+hgoxQF/VtIRHhtQrNO2NFuhwyWaQizLkX9UkodFw7vlu8S06cyJMmDaLk9KSCQKxvF+6UPJNiKqFxtPTr0EgOHT0hq7Zmmfs4ILsyc6RN07rSoXldOaNLUwkLK3xdnxfy6tT7m2MyW60zwV46Z+3wMGkeFy09ExtIn/aNpFYx06abz8CabVmyac8R2bonW5o3ipHOLeqZdcWa9cV4Xc1zV8sCzk/bZ93Pzn1HpH5MbWnXrJ4M69lMNDitJG1LxmFJ3X5QUncekkyTmUuv296YJCfGSb2o8JJMwRgEEEAAAQRCTqBkXyVD7rZYMAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAJFC0RFhsv4iQWBSDFme+pjQyXcT9DM5IU75K0fNloT/vmSzj4Dm16fluaUght7UUcr2KUyA5t0cbp+Daga/e851lpnr9prBQlp0JN7255xRB7+eIWs23HIvdvZVo8Hr+omw5KbOX3z1u2XiabcnbZOLWKlS6v6zjHdyMnNk4f+u8Lp62UyVrVoFO3s60bGwVwZN2GV1ael9ezApic/W231dW1dX/5+VXf5fy/Md8r5WQdO/aFZsB65uockNKrj3l3stmbS0qAzu1Sf9wlaMvAJU+avgwla8255Jipp4pzt8tykVO9Dzv4NwxLl9gs6SJiP6CgNePvTG4tMUNRBZ7y9oVm17r08yd71+X7iZL68MnW9fDJrq9fx3dZ+w3qRJqCtpwnQauh1nF0EEEAAAQRCX8AzzDr074c7QAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQKBEApopZ1jPeGvskdyTsnxLQZYjXyd/v2SX0312z+bOtr2xausB+ezXgqCfDqY03DWD29qHKv1dswf1aufKKDVvbUGmKXshm9IPy83/mVcoqEmDmeymHn83QUpf/rbd7pIBSY2c7WWnMkI5HWZj6ab97ruyaIPnvh5cuSXTGTPoVLYmp8NsbDFr04xTen1t8Q08A5g0E9W4z1eKZkAqadNnd987yzyCmtzvVefZtjdHxjz7m6wxGZG823++WVcoqKmlCdhyn+OD6ZvlqVNBcu7naxaqxyasKBTUZJ+r9/n4J6vl17V73E/z2H7g/aUeQU36+dIAMLtpsNbYVxbKsk0uW/sY7wgggAACCIS6gGdodqjfDetHAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAoBQCF/VNkOnLC4JKZqzYIynt4gqdnWZKl2ngi7ZBXRtLk/qRHmM0o85TX7hK0P3NZEzyVabN46QA7wzp0cwEuhSUwduVddS52kkTaPPEZ6ucwCENkvnD8E7S25Qzq21Ky6XtzjYBWltlysKCQK5/f7lW+prScBosldLOFdi0eON+ufrMNs68urFgvWcg01xT5u+S01p6jFmy0RU81rejaz57kAb66OuW89rLpf1bWdaaMWnakt1OpqelG7Jk3vq9MrBzQRk7+1xf71o+7rFPCjJE6fGzTSDb6LPaSlLL+nLCWKw0wWyvfJfmBB49ZrJYvf+X0yXyVBm+vSbDlB2wpuf/7zXdzGcgXjQDlgZXzV6zRx54b7kekskLdsofR3S2jlkd5o93ftokmjXLbo9c011O69RE4urVFg0w+2bBDpnwy1ZZsM53UNJ287mbu3afdboGU42/qZe0NyXstOUYp7d/3Cgfzdxi7U8wz62Xj8+vdZA/EEAAAQQQCFEBMjaF6INj2QgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAuUX6N+psZN5Z4oJTNHAH+/2y+oMp+viPi2cbXvjM1OebYMJftJ2zVltpKtXiTZ7XGW+u5dq23fwmHPp+ev3OUE8mjXon6b82gBjEFU7TMJMGbvOpsTcA6O6SZ+OrgCvT03AjLaYqHDp3aGg3Nni9ZmFrGavcjnp+JkrMkSDvtzb/HUFQT5a+s27TJ097tohbeXWc9s7AWRa3u2iPgky5uxEe4jJNlXg7XT42fjyt4IsWnpYsxw9bMrYdWvdwCrZF2WClzRo659jeouWc9OmAWzuz3vtjgNWpirNVvXAqK5yQUoLJ3BJq84N7hYvd1zY0TpX/9BAKbsdO55nBR7Z+09enyznpyRYQU3a165ZXblzeGc5v7er3J891n6fY0ro2e1q89myg5q0L9o8vzsu6CganKfr00ArzRBFQwABBBBAoDoJENhUnZ4m94IAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIFAqgdrhYTJyYEFWIc0UtGKrKzDFnmja4p3WpgYCDerW1O623ndlHpUXJ6+ztjU45rbzOngcr6qdBjGurFL7DrkCmzQrld3uujRJWjaOtned93AT4PTI1cnO/rRFu5wgpjNMtiJtarXBZHey2459ObJjf0FWq3sv62J3y6ptBVmjtGP/oVwn89UZXo7OCWbj8oGt3Xed7SHdC66tHdv2Hnb6i9qYtni3c/hRE9RkZ2JyOs1GU5OB66+/S3K6pq9Id7bP7NpUnrmlj/W6pL9n9il7UNfWsfamaHYvu21Kd21fkNJchiQXDmDS4Kj7RnV3guvsc+332qcyR+n+uh2HCpXg08xgf7+qu7U+DVLT4DQaAggggAAC1UmAwKbq9DS5FwQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgVILXGCy6NhtxqmydPa+Bu/YZeguMJlxNMuPe3vum7XO7t+u6Gpl0XE6qnDj6PGTztXr1antbK/becjZ7lJEZikttxffoI41VoOYMg4UBEf16+DK5LTCLTvRog0FZeg0+EvLz9nnLkxzladzz2bUv3NjZx3uG3q+e7Yp92NNT61H+7KPnnA/5HP7kBmz50BBGT6dt5Upp+evJbVq4BxateWgs+1rI/dEnmQdOS4azKWeK93Gu2dM0rJ+dktOLMh0Ze+7v0dHhkmXNvXdu5zt5LaudVml7t5YKN8v2SX7TJAYDQEEEEAAgZogEFETbpJ7RAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQMCfgJZfSzRlwTanH5YflqXLnSM6W6XKdPwst/JqmnXHvf1qyoTNXlVQWu3M7k1Es/sES9PsSHZrUj/K3jSBPq7sTa2b+A/00RM6t6rnBAZlHc6V5nF1pGNCPSu7kAY7aTDTqNMLsivNTS1wGNS1iWgWobN6NJXPf90ms00ZPy0rp23pZlc2rN6JrgAp6+CpP9qa5+CvRZngpNK0TDeDzm5ZlXzN0ayhu1FBMJT7uFkr98gvazJkztp9kpXtsnUf472tGZbspp+volpSi/qyOC2z0JCOCbFy2/kd5M3vN1jHlm7IEn1p03J+Z/VoZkrZNbeei9XJHwgggAACCFQzAc+Q8mp2c9wOAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAiURuOS0FtYwDVpxL0dnl6Fr2ShaerRxZd05djxP/v1FqjP1XSNc5deczircWLrRFSTTKNZVls4OytEMRr7KsrkvuXE9V7DP0RMFGaDCTO20Yb0KSqotSN0vefn5cvxknsxamWGdOqhrQSamgUkF7xrcYwdZ2dmbBiQ1kqjagf8xpXvWqkZ1XQbu92hv633ZWaa072RevnVIn/O4T1fJ3z5YLlMW7ipxUJOevD/bFUTWIMaVNcua2OuPOFPG0F+7+Zx2Mv7GnmLb2uM0k9iHMzbLjc/9Jne9tUiOHHNl6bLH8I4AAggggECoC5CxKdSfIOtHAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBAot8A5vRLkhcnrrXm0HJ1mFHIvQzeif0sxsS9OW7hhn5PNSDsfm7DSOea+sW3vEWf3re83ycQ5O6z9ey/rIpopKhBNS6X9bDJP2S2lvSs7kgZo7difI5pxKTP7uMTV8x9ws9FksLJbwxhX4M3pJmjp2wU7rTk2mTGHjh63h0nfDk2s7ZT2jZy+xSaz02mdm8iGXQWl2Qaa7cpo7mt2vxdf19YAJveydeFhBQ/7vyZw6LtFu6xTNBjsmrPaSlKrWGlqsmDVjaotdetESNrug3LXG0sKTduheaxMP1XacHvGEWnfrF6hMXbHpvQCG3vf+31wt3jRl5agW74pU5aZ7Ff2M9CxC9Zlyt1vL5FXx/bzPpV9BBBAAAEEQlqAwKaQfnwsHgEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAoCIEmtaPtDLizFmzzypH9ydTjs69DN25p7IU2dcyiYo82gq3MmseB9x2NKBIX9qO5J5wO1Kxmx9M32wFHemsWgItMd5VBq1pXJSzhi17s01gkyvoyX0VmonJ/Z4axbqyN/Vu5wpaWm7uW4NttHVuGStNjKO2OiYj0+ldGstcU7pt3vp9El3HVUbutE4F2ZysgQH8o6Fb0JaWGdSAL39ZqrZkuIK4EhpHO6uabcrP2W3cmJ4ywMfa9x9yZWayx+p7pxauQKaNew7LWe4HvbbX7XSVrfM65LHb2GTfGtazmfX6/cWd5Kfl6TJuwiprjD6v9Kxj4l5Wz+NkdhBAAAEEEAhBgcDneAxBFJaMAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCBQ8wQu7utWjm5Llthl6Hp3aCgtTKYj9xZrMvUkJzYs9qUZkuymGX/sc5rUq2N3V+j7zBXp8vaPG505R5sMQ+5tUFJTZ1cz/vhrs1e5Anq6tq4v9aNd+RI0y5P2adNsTLNW7bG2z+oeb73bfwzqUpCZSTNgLd5QUBqvoSm55h5oZY8NxLsGMWnZO7v9uGy3vVno/bvFBVmZ9MAZXQuMcnLzREvpadN19+/oOyDrNxO85au5Z2iaumin6Hy+2grzWbOzWXkfX7X1gOhr7faD3oesIK2L+iTIWT1cz3RjeskCpApNRgcCCCCAAAJBKuD6DiRIF8iyEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEKgMgUFdmooGH2mZtlembpBtewuyK43o17LQ5Xu1iytR2a9vF+6UJz9bbZ1/7+VJckFKQfBUoQnL2bFjX45MnLtNJvyy1ZlJMyYNPxWsZXcO7REvL08pKLk3ZeEu6d6mgfxuQCv7sPW+1ZRN+9sHy52+i/smONv2hgb/rNl2UH4+VWpN+/t3cgURFexrYFOq5fnJrIJ1DTVBOO4l/XRcINsFKc1lXup+6xJPfLpaOibEFioB+OPS3fKpm9s5JiOStujIMIlvUMcqUZeVnWveC2dD+mb+Dvl+qavsn3XiqT8S4qKd8/WzNP7zVfLYtcnuQ2TvwVx54H2XtcdBs/PspFTLWfsfvLKbDO/n+fk5cTJf9NnbrWvrBvYm7wgggAACCFQLAQKbqsVj5CYQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQTKKxBlyqed36e5fPXbDo8ybEO8MhGV9zplPX/55gPyzNepzun5plzcXlMGTQNbvDP+aEalv13RvVAQUUtTZu2Wc9s7WZ3+9cVamb06w5SNa2LKx4XLMlPObPoyV6COlpcb2d8z8EkX0K9jnLz5vbMUKyCsS6uCLE52b6sm0aIZq+zye9rvq5SbPT4Q7+f1SpCv5+2QZZsOWNP/4ZWFMtgEV6WYwLQTefny27q9MnvVXufSV57R2gQ/uUrIaTakz3/dZh2/5YV5MsIEFvVu39AEJB2Thev3y49uVs4kpzY0gGv8jb3klv/Ms3p0rFoMNp+n5g0jZeUWExi2Yo9o0JS/duUZreTxTwoC4zRAToPOerZrYM43rnuPyDs/b3KevWanahhT299U9COAAAIIIBCSAgQ2heRjY9EIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAKBELggJcEKbLLnvsAEOsVEhdu7VfquATAT5xQE2RS1kFGDWssfh3eySpX5Gjfm7EQTYHPElNorKM0215RS05d3a20Ck8Zd11Miwk2EjlfrZjID2dmt9JAGC4WHFR53lskQ9fGsLc7ZKR09szo5BwK0EWbW9Ni1veS+d5dYZeU0G5fet33v7pfVIKaxF3Vy75Krzmgjc9fstQKS1P+/Mzabl8cQuePCjvLa1DTPzlN7SSYw7LHRPeSRj1daPZrlSl/uTZ0v6NPCBIptcO+2toclNzeBZ3udzFh6fZlRaJh0MMFYd4/sWvgAPQgggAACCIS4AIFNIf4AWT4CCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggEDFCSS3beiRZegiH2XYSnM192CfyIjSB0hpYE5xTQNjWjWJMVmUGsm5JkNRk/qRRZ5SOzxMHr6qhwzo3Eg++WWbFfDjfoIGLF0zpK1cdWYbia3j+8eJel8DTak7uxTdoCQtO1e4aRYhO7ApObGh3/kKn1m4p3YRFrZzpFm7d2tqPF4Ze5p8OnurTDAv7wxJic3qyjXmXoef1kLCvOrkaYarN+4cIP/6crXMM8FfGhhlN72fP1/S2dp9bardW/j93N7Nrc43f3CVN7RHXT24jdx0TnvjWBBkpv2REWH2YWv7Hya47Iyuu+QjEyDmnZlLn/2QHs3klvPaS5Tbec4EbCCAAAIIIBDiArVyc3PzQ/weWD4CCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggEAQC6SmpkpSUlIQr7BmLy3ryHHZe+ComMps0iAm0gqMsgOFqptMnrnJfYdyJfNwQfm3pvXrSMO6tQuV7PN133mm9N/2vTmSeyJPmsXVKXWQlp6/79Bxycw+Jlr2sGWjGJ/ZsHxd2+47fjLPKj140txHy8YxpnygKwjKHsM7AggggAAC1UmAwKbq9DS5FwQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAgCAUIbArCh8KSEEAAAQQQQACBEBAghDcEHhJLRAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEECgpgkQ2FTTnjj3iwACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBACAgQ2BQCD4klIoAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCBQ0wQIbKppT5z7RQABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAgBAQIbAqBh8QSEUAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBCoaQIENtW0J879IoAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCAQAgIENoXAQ2KJCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgjUNAECm2raE+d+EUAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBAIAQECm0LgIbFEBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQRqmgCBTTXtiXO/CCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgiEgACBTSHwkFgiAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAI1TYDAppr2xLlfBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQRCQCAiBNbIEhFAoIIE9u3bJ9999501W9euXaVv374VNHPVTpOZmSlvv/22tYibb75ZGjVqVLULCrKrF+UzefJkycrKktq1a8vVV19dISs/duyYfPbZZ9ZcrVq1kqFDh5Z63m3btsnMmTOt8/r16yddunQp9RzlOSE/P1/WrFkjy5Ytk3Xr1lk+1113nbRt27Y801bJuT///LPs3LnTurY+Y33W1bkF4jNdmV6BfF4V8XezMi2q8lpVbXX8ZJ6czMuXOrXDq5Kh0q+9etsB2ZJxxLrumV2bSGx01f97lWe+Hhw+ekLqRkVIWFitYk2On8iTH5enW+OaNagjfTrEFXtOMA6YtmSXmI+g1DfP4AzzLEKpVcTnyN8c+vfyx2W7ZePubBner6W0aRoTSjSstZoLLFiwQFJTU627HD58uMTFhea/P8H8mA7lHJdJ8wu+r77ktBZSP6bqv04Fs5e/tanjup2HZN2OQ5Jtvsbqv6UXpCT4G17ifvMl2/qaHVMnXMJqFf81u8QTMxABBEotYH3/XIcfO5QajhMQQAABBBBAAAEEEEDArwD/heGXhgMIuAT+/ve/WwFBmzdvllWrVknz5s1dB/1s/eMf/5D09IIfbHkPiYyMtObQoI+ePXtKjx49vIcEZF+DRW655RZr7vvuu6/aBDY98sgj8uqrr1r3pff43HPPBcQvVCctykePrVixQmJjYysssOnw4cPO52zUqFFlCmxavny5M8cLL7xQqYFNGtR0zz33yIsvvujxyPv06ROSgU0vvfSSfPPNN9a9jBw5stoHNgXiM+3xQQjwTiCfV0X83Qzw7QfN9JVtdeJkvvyyeo9MXrBTNpiAiYwDxyyL1uYHfT3aNJAurepL/06Nq30Qxc8mIOjjWVute3//LwOrLLBp7faDMnHuNlmx5YBsOxVopYtq2iBKzu7ZTC7skyCdW8Ra6/T+Iyf3pIybsMrqHtYzPmQDmx7/pOAeurauX6rAprd/3Chv/bDRuv/fDWzpzSP1zA+44hvWkQGdG0urxoEJCqqIz5G/OWau3CO2zcxVGfLxPYOkMn52rq77DhX8u+CNWjs8TBrXj5J48/nsmBArHZrX8x7Cfg0R+Pzzz+XZZ5+17nbx4sVBFdikgSyvT9tgAiZN5Imf1qJRtHRr3cD697VukP4wXO/hi7nbrTtIzzoqd1+a5Odu6PYnsCn9sNz+0nw5cuykM6Rzy9gyBzat2JIlX/22XVZtO+jxNVs/T0mtYuXSAa2krwkyrsmBTnwNcT5qIblx4LD59/P7NPM53yGDuzeV8WN6+b2PN3/YIJnZudbxO0d0LvKXJL5ZsEP0e15tF/dtId3Nf3P4a6k7Dpqgzh3WYf3vkktOK/w9nv5dnL9uvzXn0k2Z1t/xuHq1pVe7OOu/ZYYlxwfsez9/66YfAQQQQAABBBBAAAEEqpcAgU3V63lyNwEQWLlypTz99NPOzJqJ5s4773T2/W289tprsmfPHn+HPfo1I43OOXr0aI/+UNrR/3m+ZcsWa8kjRoyo1OCJjRsLfoCmF09LSwsltkpZKz6lY9YgOe+gpuTkZImJCcwPYEu3OkYj4F9g6tSpkpOTI/Xr15dzzjnH/0COBJWAZoZ58IPlTjCT++I0qEZf3y3aZXX/7YpuMsJkiKAFRkCzRjz28UqZs3avzwtowNmEX7Zar7+YH2ZfMai1z3E1ufMLExBmN/0BXFHtwj7N5W9XdJeI8NDJqrFzf45zS/p3M9dk6IqqHfjq7uqamX3cuXZRGxqMdtUZbeT8lOJ/EaOoeYo6pj/g3LX/qDXkzG5NQ+oZFnVfemxu6l45lpsndaMj5LSOwZMFduvWrbJo0SJr+QMHDpSEhPJntynOoiKPHzxywgkIKsm8+u/DA+ZrngbuBVPbsc/1b8D2vQUZBitifdX575S7j2Y19A5q0gCksgS67j14TP7+4XJZsfmA+yWcbf33Wl/Tl++RxGZ15akbe5XpOs6EIbzB15AQfnhm6T+vSLeCmvQufjFB1akm01mSCQb01VaaoPwF6/dbh87p1Vz6tPefuU8D0e1fptDAv6ICm2aYwG77+7o/jajrcWmNV/1o1mZ5eUrh/xen37vMWLHHer36XZr191C/b6AhgAACCCCAAAIIIIAAAmURILCpLGqcU6MEPv74Y4/7fffdd0sU2ORxUjE7CxculBtvvFG+//57K6Cibl3P/1FQzOlBcfjuu++WOXPmWGvRTFWVWfrg/vvvl/Xr11vX1kxUNE8BfDw9itv78ccfnSFPPPGEjB07VurVI/uBg8JGUApoQJNm5NKWkpIi8+bNC8p1sihPgVnmhxN/e3+ZR6dmaeqYUE9iTOmz3Zk5sigt0zn+z89Xy3Lz29CaIaKmlalzEAK0odlw/vLWEtmwK9u5QkxUuPQ2v2Xe0Py2eZrp15I5dnv261Tzg6WDcs/vuvAsbJRSvk9dvFuOmR9yP3pNcsgExmi2rtlrMqzPyf9c1LFSgppKySprTNaSxz5ZKfPW7ZV7L+sq0ZEVX9Ly2UmpTjDB1EeHVFl2tdLaFDf+2PE8ufftpdYwzSDzzp8GFHdKpR1/7733RDMCa/vqq69CLrCptFD670OWyVIy7vqeAfkMl3Y99vgxZyfKtlMBTTcMS7S7y/1eXf9OecNs2nPYydSk3+88YZ5vWbLM6dfku95c5BHwqV+zeyY2NNnr6si+7GOyeusB5/hmkyXq5ufnyTO3pkhy24bey2LfTYCvIW4YQbJpZ0qyl6Plgv0FNvU3GTHtwKblm7P8BjZtNcHZdlCTzvvL6gzre1r7Gt7v7v890rejK1gqz5TofcT8UoBmurSb/l3UICnN0Lk147Dz/YIev/+9ZTLWfP90/dBEezjvCCCAAAIIIIAAAggggECJBQhsKjEVA2uiwIkTJ0T/J7J707JdWiZLS8iVtOXmFqSCtsdnZ2fL7t27ZebMmfLyyy9bpcD02IcffiiZmZny5ZdfmrIWofPb6/Z9VdX74MGDJTU1taouH/TXxad0j8g9IOT3v/+9hGKgYenumNEIIFAVAtv3HfEIatJsAhqw1LeDZ4YQLd/zpSmx8trUDdYyvzXl6hLi6sjN57SvimVX22s+9cUaj6CmP5nyHSMHtPT4gfrR4yflze83OOXypiwsyKT10JXdq61LeW7s16fO9ThdM3XsyjwqPyzdLVoWR5tm0oiJWiMPXtHNY2yw7jSpHyWvjj1NNDtBVX2r7u2q5Q81c8mSjZny+ZxtzudYA0M0S87TN/WusrUG63NkXVUrcFaPpvLPGzxLKZ00Pxzfc6Dg3wf7691vqfvkX1+ukf+9unLKtpdERYNdP7v/jJIMZYwPgbRdrgDhC0xWubIENenXYg0Kd89i98CoriZLXYJHsKmW+Z2xMl2emrjGCqbS0nd63kemhGj9mNo+VlczuvgaElrPWUs3ugfW6+q/MSXhNDjIV0a7fm6ZBhdv2C83nd3O5w0vMsfcmwY5abBTGxNw6N30784qEyioTYOW2ruVvJ25ao9HUJMGfV97VlsJD3P9/8zsnBPyzKS1Ms18X6LtFZO5SbM2JcaH3i90WjfAHwgggAACCCCAAAIIIFBlAsGV17vKGLgwAr4Fpk+f7pSTu/DCC51B3lmcnAMl3NDsLx07dpRbb71VFixYIA8//LBz5pQpU+Stt95y9tlAAIHKFbBLSA4YMICgpsql52oI1BiBPBMVMd78oM1u+lvNr47tVyioSY/HRteWMcPayT+uS7aHy0czt4gGM9AqRkBLZPy62lV+7t+39JarB7fxCGrSK2mWrD8O72wyiLiehQY3rd1+sGIWUs1nqR0RZv3A7Nbz2suzJmuG3TRYL8ME5oRSq6qgJl9GmpGpdZMYGdm/pbz75wGivnbTsoremR7sY7wjEEwC+kPwhLho6+udBuPZTX8Qnpnt+UtC9jHeQ0/ggMnCZbfurRvYm6V6f+enTVaJOT1Jgyz+P3tnAS9HrbbxfPWWuntP3V2oQIUCBYpbkRa9WHF3KW4Xv8AFbnEp7lagSEtb6u5u1N2FL//seWezc2b27J7d0/a0efvbZiaTSTJPMsmcyTPP+7oe907Q45/fLShuTo/Urrg4XqFUYVMGZKgXvo0oPSdV6AGc2M0h+3fj/jg+QqKnlh0bljOVhWj018xYYpJcRT1NOuK+wFBZwmVukOF21W9+spMcx222WLdmFRVu68R+tpSaLulVV/XrnhFDaiJdce3aFYJq50bl5TT1m3Zt58wh4BBwCDgEHAIOAYeAQ8Ah4BBwCCSLgFNsShaxAyA97mpQBEJ5aMmSJapGjRqqZcuW6uSTT1aFChVSgwcPVosWLTJX2rdvXxPHDukh4WCnnHKKKlWqlJo+fboaPny4+ZUoUUI1atRIHX300ap27eCvgszJ+j8UjCDwjB8/Xi1YsMCUQT26dOmiunfvHqhWtHLlSvXVV1+ZLDp16qQaN26s5syZY1SPhg0bpipWrKjatGlj6lagQLRro4rE8ZkzZ6qaNWuqDh06KM4vVy7yUkDqFBSioCT21FNPGVWgefPmqVdeeUXdf//9qmDB1L/0y5cvnyE2gcljjz1misN12HnnnedhL3VIJJwyZYrBae7cuQbHJk2aKEhZDRs2TOR0hUrViBEj1NSpU9XkyZPV9u3bTf9AoYp+QjuLbdiwQX388cdmd9my6AuXd955xyOE0K/Klo1Vn1i/fr3pM5TBjzxxndS8eXPzs9tPyooX0rZDhw41SY477jhVuXLlLMlRdBo7dqwaN26coi81bdpUNWvWzPQF+nJOTRS8wH3p0qWmX4JTq1atYurBse+//94UQ18/6qijQovkvvzhhx/McepInxVLpn3knETwkbRBYaLXGHSuxNG/v/jiCzVhwgS1cOFCVa1aNaN6xlhSpEgRSZZ0yLUxLnBfooQGtm3btlW9e/dO6v6k/WylJipC3xw4cKCpE/fp2WefrQoXjrwUl4oyBn355ZdmHFu1apWqWrWqIS3S7xmTgoy2pY25bvLkPmKM+vXXX42S2yWXXKJQ2UrUZEwHW+7DWrVqmf6HW7JEx6hkxuQ9e/YoXHJi5cuX99yfmYjM/7Zt26bee+89s0d9evbsaR8222vWrDGuVNhh7OaeCRrnwYox6Y8//lBcK/NM586dFcSznFoy1xtUxuLFi818SL+hD2ZkZJjxkTGsQYMGQad4celoLy8zvSH3N9ckBmbSd+lnZ511lqIPBxn9lr5PH1y9erXBlTGHOTZ//shLcfs8VAx3795trvmII44w4x59l7mWOjz88MNZ3OPgppQ0zPekqV69urn/jz/+eFW0aFE7e7O9ZcsW9cEHH5htsKWcIKO+jCsY/YFx3W/0159//tm4Sp0/f755diEd92iFChVinm0YlxlDwixZrMLyIR43H+PmRF3M3Xd2s2xdOR3RopJiEQIiDQsa349dpk7pWD2wGNSg/tBu7lDHWb95h0JlpromPnTXixFlihcKPMeORCUKss8C7T5i1cYdqkSRAqqyVonq0jixr6tX63OGTFpuvvzetG2nIV3g+kW+Iv9m9FKF64qShxRU3ZoGj5V2ffzbY7UyzXj9W6Zd9aFwWVm7uiBvXNDkxD4YusA7rW/3WqpTw+jCi3fA2ujRvJLq0mSZR4biWhtVL2mlyH4zJxjjUmSBduODdW9eMbTP/DVztVq+bpsqVDCfOqpV5ZgFKKnZGk0UwG0IX+dvpo0qHGLwa1OnjCTJ1RBXKai2/D55pSmH9qSuGPXavG2XqX8vrcARZt+OWarHo39UJd3+5BfPUDzANRshVq1cUXV4k4qqtlZKS8aol7hbaajbvEHV6HOxnY+/fauVLardxkTScy/llrHYeNGRdcxC5ttD5ptiXvhmpjquXZVAZYdN+nomafeW4DJv+Sa9GFrAuLepW7mEcYlpKy7Y1756Q3TO+W7MMo8EyIKnXwllhe6LU/WYN1fnv1C78EJxrn4V8i8RqAxhY4OLSMbLmUs3mnOr63arU6m4apbp4sZO699ev2WnaSvchq3WxLlyehxEHaJHwL3DfTBh3lq1U/cnsZVaPQhVDCzoXkJhCHeUs5ZuMqGG3qhYoEDDeGdjJ3nmJOSDGp4dxowZ452O+3LUf7Gw+Y9j/N3A33P8vf7XX3+Zv9FJzzyfndtw/gbkGVee3UuXLq0y9JzM/FmnTpQ8Rznpti6Ny6vGNUqatifv+XrcC5q7kmljfx1xO4iaDy7NIFZW0sSX+vp+pg+jgiLjKOcd0zZ6/0hfIb6znhPLlcg6pybab5O9p2TurKLHE+Y86o0iy1j9PLFr9x6FUsqI6aupmpkbe7erqkOzm+U/CNbkp3SXh3TAvJaM7dTl/Tltlbk3cZtbQGPGWNyydmnt+qpslnK/088suzTBYnKm6gtl/aTHeuYqrK52wdskAaITak3vZI5tnHerVmoKG4c5jlUvV0zddWZTde2rY80+ZNrLj6mnylrPQ35seUYZpomhEJeXrNlq0jL29GxZyRvvTGYh/yX7nEI/nJZJHmF+P0Q/dzHfT1qw3ozRjM2MX4fqua6qbv/csv1xDklmnkoWF/9cncjz7t5sK+YZmYfKaLfIuD8+47Fh5jK/G7tUP5dnfV7Np0mihzet4KkjMU/53S+ioCmEfvrTUt3HsZH6+THobwueP8Xa1499t8eYKGYTlyTODs/Vz9izMlXbwghXdnq37RBwCDgEHAIOAYeAQ8Ah4BBwCDgE/AhE2R/+I27/gEQAYgcLdxs3bsxyffXr1zeu0F5++WWPQHT66ad75BoWJW+88UZzHov3X3/9tSH4ZMlIRzz77LPqiiuuCDpkCE2XXnqpp4TkT0Q9Bg0aZEgn9jEWki+//HITBfEHYsQ111xjJzHbvKz95JNPzIL+hRdeaMrzJ4JwwPWgmhRm69at8xbm27VrZ9L269fPEJrAj4VSW8UpLJ9E4++44w714YcfGoIG+aMW1atXr0RPN+nAg/bz280336yuu+461adPH/+hmH1IGqhIsQgdZGAOOUdIUiwqS5vY6aWfEFepUiVDMpHj4Hb++eeHtv+RRx5pFrRLlkx8gZAX9VIPSFVnnnmmFKd27typ7rzzTvXMM894cfYGfQHcIUokY5BR6Ifx1LUgfUEuwSAXSB0hci1fvlyFEbggJDzwwAPmvH//+98esSnZ9jEZ6P/i4SNpgsJkrzEoD+IgREKShHzkN/omizMQ8JIxyApXXnllKP60K31N+mp2eUOMu/rqq2OScR9Km3GAsQWyB8YxyhfyhYm0/rv3lIJ2AABAAElEQVTqqqvUbbfdpu69994s5BCIkULSZGyBtCEqUWTRrVu3hIlNkM6OPfbYmPOlGoylb731luyGhpBMkxmTIcjQL2fNinztDAnF35dZQBPsGDeC2p4xTtIwZ0Bs8o/zEPsYd4PsX//6l3ryySdVsWJZ5fKD0ktcstcr5xHS71566SV1/fXX29Ex27fccouZJ4KIROlor5jC9A73l+Aox+hPdhx9JGgBk3aiv9n2+uuvm13GUUhMfnITxDuMvguJCTKzbYyLVapEiAizZ89W5557riGU2mlkm7GQ++G0006TKBPa9x6krDBiE4RRuU7mnUceeSQmH1y7Mk9DaPUb9ydtCZlO2pMF3DBiU06w8pdp7/9qfaXct0dGwotUfbtnGLISef2duRho5wvh6XHttmfwuMiCt32M7Sc/m67OOyJDXXJUXU12y7raiXutt3+d57m985//4rezzWLJnWc0CSXVsABjq1HZebDgcVefpurhj6aaaBaukyE2sYh948Bx3mK3nff/Bs9VreuWUU9opQ/UBxI1XHhNmh/9Er1f99oJnfovjeGS1ZGFoL81gSxRSwVjCDUfDVtkimqhF49R8wqyL0ctMS7eOAbm/nSQ4h4YNCXoVKMGcLduo71hqHUIsQkXVGKvaHd/i/RCGYoD8YhNT38xw5D8WBB/K4TYxKLgs1/NVB8OXSjZeyHurs7oUkNdd2JDLy67jXVabUT698kdq6mbT4k8F9jnsUAufdyOl23UwK48rn7aiC+Srx3iqvLnCcvNYiXjAqoNovQg6UbNXqMGvD8pxp2THCNk8fKhvi3MAjv73H9y7eyLga9Y2RKFvYVWiBOfDl+saKcwY/y7TCs82OoPkvaHccvU/R8E91PS3HJqY3WSdhcZZPHGIdxSoYAHWVQMNQr/taHsYsfZ9xIKQvdq7MA1yCB33HdWM1VREz1SNZ6V7edE8sOVuVjQ/McxSE0Q6IUALOklhNDcvn172Y0Jebbg4wN/uSRi/gwrMyaTFHcgiEFqw4IUm5JtY7s6LPRf9d8xZvyw49muod0w3X9Oc/WpdgELQRijr4jLpylWXxlwTn6jCGQSZf6XTL9N9p6ScYW5s/+x9dXVr0TJbhTfT6s7fqHnYMGtftXihlBp10+2p2nCzqMfTzO73OvJEJtQgnv4oymhYwcYMnbYbuae+nx6FrwhGPHDjtSEoQEa9+xs1Kw1XhJw6NmisrcfbwMiGPcwdceGTVupTmgfHT9sbCGb3/f+ZA9HO99nv5qhnrywtSFw2fGyndPnFAhqMpaW1yS7oVNXqs9HRIiVkreEN5zcUJ3WKZyIL+lSCfeHOYT6JztPJXrNqTyL7c22giAnLheP1/0VEhLzy4R568xz3oZTdmYhE4NBh/rlPGITaf3EJptgyLPMME1SJB1jHqQnFDZtG62fF8T8LrPL63l/jibmYeuyUdfDlefndyT+AZeU6UKHgEPAIeAQcAg4BBwCDgGHgEPAISAIxP61IrEuPCARYMEYkgULhkHGIjXqCaTLzli4ZDFSzK9Mcu211xr1BjkuIV+c8pWn/ZLUVgAiHfVAvWP06NFyWpYQIoSQmvznozwB4eCiiy7ySE2ksdNRfvfu3RWLnmHGAqeYLKxD9BKDQJNOQ7VCyiFfIT4kWgbEHT+pyb5mjkOyCDNUdCBt2KQmzoeUIIYKCAQgFucxFrz92BIvcYSogImhFOYnYdB37P7z008/qR49eoT2U8kr0ZAFc5vUhKIKC/Ji0hdE8Uni44WolaCo4yc1+ZXK6C+iWoNqlSzecw/aOPvLssky0udy0j7+fJPZz8k1BuWPchjEgiBiC+nBn4UT1HuSMfqyH3/6mxj5Mt5BWkjEIJ5Jv7XTSxyhEDwg8jB+2O3EOXb57D/66KMx9zRxfmPBibrmxFCP4RrDzmcsPemkkxQqNWGW0zFZCHvkO3HixCzZQyoTY9xAVchvKDCJBRFXPv300xj87LGI81577TWFkl4yltPrlTJuuukmjwQjcdz3dts//vjjgcTedLSXlGmHjLHST+14iSNE0cZvKJIx54v58YXwyVweZoxJMqYFpSF/yIB+UpGNFWMh94D9PBGUV07iUIaCFBVWPmVDuBR1vHhlpIpVUN6oIYn10OoQiVotrarzwqVtze8KrTZgGyoGl780KgupSdxRSNq3fpmvF+Qny25M+IQmRUH2sM1/PoseFz33l+Ird7+hcGETAThun8+C4oCQsv15+fdZaLn9rQmBC42SFhWs+wdNNmpQEpddaLvdgCCDckUihkLEuzd0Mr9EFmMlz1QxlnxyGqLO4yc12W00YsZqdc97kee8nJaR6Hm4CRLT/KNcsZe/mx1DarKvlQIhin38Z4Qslo4KDNWL5bJALvn5yxz0x0J18+vjFfdsbhkumY7VKjNif0yNjjnEMQZd9+pYb8GUONQg+IlBILji5dEeGQHyEdfivx6JIyxotelzmvDkJzWxKGufj/IKRCO/vavdbdqkJs6DuGjb459OU28NmWdHmW2U7eKNQyS6+91JRgVFToa0ItchcYQSR/h/+h+GK61+Tw+PITU1zyhlCDEmgf6PBeJznxquNm3dJVE5DvlIxJ47ycie48MI3nzUIqQm0tt/b5EHz+fMb35jfveTmvzlQ3CHlJ6btlarDYqVtpR1iMtJG0teKIhBkIXwF2SQKm/431hPSSgoTVhcsv022XtKykUh6dY3x8tuTIhKk5hNopY4CX+3CNbHtY2eI8fDwh81cZrxS8gWpLPvafbB8LynRyjIU2KlDymUJZ19f6FQlIgNzyQmkRYyVMAjbmg2qC2JQeQIMu7vm/T1CTnMn4Z+c9Pr41QQoTldzykvfDMrhtRkj8vU56nPtRK1Jrzkpu0Pc0hO5qlEMUnXs1hut9UPmoguRn/HjmkTnduHWH9PSDpCW31zXEBfsYlKqIAd3qSCdzrkTdt4VmFOwzK0yiUqsLa1qlPa233265k5Gju9DNyGQ8Ah4BBwCDgEHAIOAYeAQ8Ah4BDIBgFHbMoGoAPl8ObNm80CtyyAQ+yAHIQiC4v0LDCfcMIJZoHcvwgYhMG0adOMlD3nkTdkKIgLqO2I3X777bJpQtKg1CMGYYMvRVGuwTUZi4s24YS0uDMKMurIC1YWzzmfa2ARVoyXuN988415gQthheuG4ABpRow4v+spOUYorpbYhoyF4QIJYgxGefGIUSZRkv/hRk0MQkiihvtAVELE7rnnHkUboaiE6x/5qpc2D7Pnn3/eOwSxCLICmNGu8oKbBCwGC6ED136Uwc9WPEKlQ+LF5do/+rO4Bx980CsDhQwIF/QLfhDZUJjBIE7RN1I1FI7E/RvkA/oNbhwgFVE/W1nKvv7sykXxBXwxFglwwQQuuLujL9sEMvulv01cg+QVZFy7KOHQH0T5xK5fou0TlH+icTm9Rn/+YA42XAsqadyrqKFB3BP1I/oYBAO+LE/EUJERt42MAxBgII3QX2lfxjKMfM8444zQccQui/FG+qzE06cljlBcjN13330euY+0b7/9tunDpKEPSN04hmqXkNvY9xvtTTnfffedGcvACqJHdoYSGekgDWFgyZgHtozJqCGhpMM4J0REf56pjMk2ESnoXvUTM22ik9SDcQuDUBOkrCX3AWQksKU9uT4W6sRwCcqxRCyV6yV/3Py98MILXlHMEeBLm9P/UAoUQ/XInh/S0V6Stz+kj4MB1yeGa0/i5If7GL8xhtHfGKO4NvDl/rT7L4Qj6WP+87l2zkc5i2cBnicoDyVE7mXiOY4xb0r/5DxU5HC3KobCWRD5TY7nJISUxX2AMU4wb+G2hzpyT6A4gckcYXZC/ksVK3+2e/b847l8YFGvQbUS/iQ52n/1hzneF9NkgOLA13d3VYPv76E+urWLuqp3ZI7lGMo/qErYhjrAFyMjYwrx/zq6jvrg5s7m/G/v7aYe7NvcW5TEZQWLObbhyur6/43zonB99fq1h6ofBnRXPz3QQz15USuz8I+bi2SNL+sf0yQGWVhBpeHl/u3Ubw/3VL8+dIR68fJ2nuoVCkAvfT874SLEDQ4nZOfOJuFMQxKminFItglHo4oEOUwMFZJXr2qvfrivu/pRt9Nj57dUFbRSRJgKjZyXrnCWdi8mVlGXmxsm/e220xqrL+483PRn+vXFR9XxioN8YxPcvANJbkzRLpZufSOKb78eGeq9mzqZMj/XZd92emOPOES9xKVdksUknNx2USPqYpzM/TTw5+jfGWd3ramo39d3dzO/N6871CPpoMIwYX5kAR0Xeown/CDyiH16+2FevLgExBWXqIuR7p6zmpp+xlj044Ae6lHd18S+1ootNlESpaf3f58vh9Uj57U0YxikTu551JbEcLcHmUAMF0E3DRwvu+qaExp47U49Lzwyqsh2gx6vxP0OhAeuCwzEGJvlegmF9Dhs+kqP1IECzHd6fHz5ivbqg5s6m7JQ08AgQPwwPnaclbyTCXm2Ze66++67vdN49pQ53o73EugN/t7heYC/sZh7eU7g7zviMOZo+RvRROj/+DtG3gkQd8EFFxhXdDzn8De3/WEPSlLM7blh9B/bXWt1TWwTy2kbc/7WHZqU8kaUlMNc8rzuV0P0PPL7Iz3VK1e2N6qEkHZmLomOT1J2vDAn/TaZe8oum/rRv1Aso87Unz5ao3wxdYTlUg43kdzvfqOuP1jKjritSsQghQ34IEqMljnkez2H/PLgEeq5S9sYF4KSF2nF3RT3PnW0n0Ue1ve23GMosCVics+SVtzbJnIeadpY5Eg7H/t84iFmNdXuLp+9pI3BlueM5y9r66k0gf0tmlhmk1PBOV3PKfP18xRkTtqWMY9x6bM7DjMqelLXF7+NfQaT+HSG+3IOAc+czFOJXH86n8Vys61wVck9jKGChvtWrKt1v36lFTqDDLVAzsEgrO/aHTsQiHIZpDlcz8rcTXqb9MQ+7hjF7D4hcR0t983g0VeTep/TBCeeifibx5lDwCHgEHAIOAQcAg4Bh4BDwCHgEEgnAo7YlE409+O8IF7I4jZEDBZgURxBpQQXQqgq8ILUJhbFuxwWCVkM5LyCBQuapCxO22QgXqKymCtmqwlRDu62kL+nfNSKIGtQL/malEVt/+K45EUISQfVHM7nB/nooYcespMYIkWHDh2M0gpugbp27RrzApcXxUEGqUgUfCBrCbmEtDY55fPPPw86PcdxtgscCEmJmn3dLBDfddddqm7duuZ06s4Cs//FtT9vSEYQIXiZDREDEpe4UqpcuXKMOo5NEPPnE7ZP/tSFMlDUwmUQLg3FWrRoEaPaYau5SJpkQ8g5YpAhmjaNulahD0OKoD2pEy6mUClKxFgU4Bx+kGo6deqkChcubE6lL+P6jv6MQewRggN9iXIxXIQFEXnky2rS2Av/ud0+lGdbTq/RzkO2IawxvkDg4V7ly3LcLHK/Cx70qREjRsgpoSGLMOIKi0Qoq6E6g+tC+isECnssY1EnHX1JKkRb2gpgEJdw8SjjFgQ6SHuQC8UGDBggm1lC3IDRT3v27GlchdGPwr68t09mfGJcx8AQohwkQs5lTO7SpYtxLepXEbPzSGVMJn8xCGu24R5MiH8S71fFgWAixCUhoklaO+S6UAWSfsL1Qbyx56rp06fbp4Rup3K9ZMp8Ifc9eZ1zzjlKCEMoInEdjCliNnE2He0l+aYzxJUfbmPLlStnsuX+pP/iPk5s/PjoArHESciiJnMLzwKiekYe3M+iukjbcZ9I/0T5DLeDYCjjJPnZ5E3JP6ch96mt6MY4feqppyqU8zCIdLSVKD8mUk6qWNll4KZEjIWHIBdMcjzREFLAB1oFRgwiwFGtKmsSRUQ1kQWys7vWiiFzvPZjlNjAeW/8Mk9OV7jKwg0Ji6RYqWIFjZsa8hWDjGC7D/tu7FI5pPj6+7bTmhiiENeHa7hOeuHjyQtbeeQoL3ECG2PnrvEWdyDePH5BK+NWA8Uf3GVAJPj3Ra29vN/Tai8sYCditupEPa3YlJuWKsap1o02k+tlQR+Xc020OzjcEqKWcZj+Yh9s94axUPb92KjLRL+blHTW4Y4zmqgTOlTzVAbo1xcdWUed2qm6V8ybVv/3IpPcePrLGd4ZEA4u16pqqKxhFbTCAW6PuC/EbOKPxKUzrGS5QbNdVy7Tai+4juE+PV274uuv3eJRPzEWT+84PVrP8QFqD5I2LETthPwjY0Fj41JQiEEorKAOcdkxkb9VyMN2izNr6Savn3ZvXjFmEZd7HjJF/+PqmbzpN8stN4ZPfh5Vf7pSkzn7HFbTa3fwwIUk14xBTsBtYLL2e6Z7Ms67TLdxST0+iqFkgQs63P5x7ai/7CvjGRDX8fyNJaqj/H1nuynGzaptzz33nPcM17t3bzPHQ57nOQeXtriplQ9cOA910nQbSjioCtI+GFjaLv1SaWOUS8RlEgv6kDkhuxTS80h+PQ5CZoEUzPiYrKXSb5Mti/R9u9cy7hipM/WHKM01lDqkoOK+wVau365mLo2SEkyk/o/xl2MYJORE3bd+ot3zidlzCOWi8IOLqkf1c4IoDEEQEnd+cl6q4UrtPlbMrxwj8WFhOT3uiS3TBKYwo/6PnNfCEKfAlucMFHBwryfXRj+CICOWzucU2hJSFW0ryoYVSxVR9+qxRYwx1k9WkWPpCvflHJKb81Q6n8Vys63+sPqXrcSG+hmkWox+sFDfZ0F2WONIGo7Z48Aa7S5OiJvdNRGSOblOpeJe3/armU2cv87Lvp2+x/3GRwGMpWKM3ShTXvqfUerw23/WCnjjjLri4tXB9ZTzXOgQcAg4BBwCDgGHgEPAIeAQcAg4BBJBwBGbEkHpAEgzduxY7yp4YWkTdeQAC8Y2MUnig0LUloIWzFnc5yWo2KJFi2TTLLLLDi9UWQT1G/WyFzdZjAwyvjRt27ZtlkMQl8RY+EY5wm/2gjhKG0E2aNAgL5rFa9ts1zsox6TTZNGVPFn4T8Qg44hbM8hlYS+YITexKB9mH330kXn5DdlEFrnttMWLFzeL18RB1gki5djp/dvycp0X7E8//bRHmrLTyRfExFFGqiZkI/JhcR7VKNsggLD4TZ24fnnpb6cJ2oa4xDn8IM4Fma1gJSQPXEZdfPHFJjkEHf9iAgdQp8EgA+C2Tyy320fKkTCn1yjn2yH3uxBT7HjuTwhuYkK+lP2g0FYd69+/vyHw+NMxltn5xiNm+M/Nbh9lJTHIH7ZLNoknRLHOVqQKuzZIftQ3WYN4JvbEE0+oOnXqyK4XlipVKmbxyjuQufHuu+96UcmOydQZFyYYxCabFPjLL794+VI3DPLW1q3RBQSbxBY2LjGe2fOJZMriGmQyMZSGErFUrpf8IdDJfY+r0yCDrCs2YUJUtSMd7SX5pjNkXggyG1/7+cGf9uqrr/ZHmX1bkQ53gUHPCxCg7GcOCLXJziuBhetIG3vGCQiEQcZ8KaTEoON2XKpY2XltsFy4CfHIPi7buHt56KMpoT/cMInJl9fsH9OmcgwRQNIQXnBEbeNGgm1UCVC+kG1xuwJxqP+x9U28/z/UEYQUwLGhU6OuXCYvWO8lv/PMJmaB1YvI3Kherpi69oSG/uhs93/TKkxi12oFlrKZhC2JI6ypv0yHvCU2e1liahu2u6OamSQUySOdIXininGq9Zm+JLrAfU+fZmYx3J8nC1SQRnLLULiATHL1K9GPC7o2q+ApbqW73C5Nyit7QdDO/5rjG3gLebSN7zHRTprtNouw0r4sfF93YnA/hzx2w8kNVb8eGYb4kigBL9sKBCQoWTRKuFltkQEgOj51cWvzu17XM4hcaSvJzUhSuYaqcJ1SBqSyIGusSXVitnqX7c5u/orNHsFF0hKe2y3Dy59xBVulr3HS/Mg4hFLFOdZ4YBJk/mePb9Jm9vHstnFbJxY0zkDCgWjJ9UOg21fGxxsVKmRV4oHcK39z8XyKWqOYTVqCuMxc7TeIwocddpiJhsRtf8jkTxu2P0kvlD+lldLs3yMfT1X9tevD0x4dGqPWdGmv6HiUahvbyiM3ntxI2UQXqWuRgvkV42OyltN+m2w5kv7Mw6LzncRJaLuhDHJH95vlhs52ayXnh4W2WyxINpB+/AbZ6KaTo+pLQyYv9ydJaR/VKLES1hgncfFCCFgQUTDIF2FqMhBQg/oGz2y3WaRPe9xK53MK5E3Gab9RPnOamK04KXHpDPflHJJb81S6n8Vys62+HRMl3tpKbLRxL/2sLzZ4fPB7w3b1Ih+ukE7mRrbHzllDYAziKAa56YgWkTwhPa3V5CexsdrNs1jzjNKyGRMy5z9zSRtP1cw+iEIlbq77PP6ncZmd22qVdtlu2yHgEHAIOAQcAg4Bh4BDwCHgEDjwEMj6purAu0Z3RRoB3L6IBRGC5BjKKhAQxH2MxPvDMDIH6TIyMrzkuKbBUE8QdzbkH0Q4kpPs+tmL33Kc0CaN2PF8SSpmE5gkjtBWCbLjZRvyi73Y6l9YR1WJl7kocEAowt2ZqCNJHjkN7YV/FGgSMcoX69ixo4I8E2bU2yaGhKUjHhzoB5s2bTIuhnBNYCuQxDs30WMsYlMGP/oKbqbEcvKSXM6VEDzEcA2FEheEBFRCUKFKp7EowDXw43psVSub9AFRThR/WPxHdUxs8uTJnooN6VB/CrO90T7+shO9Rv95LVtGv+DzH7PHkkTIbDbJAgKeTZ6084aIJ2afI3E5DWkjMbt/SZyEkOQYp4TUNnXqVM+NpaQhROkmJ2aTtWwM/XnJwpU/Ph1jMsQmlPvo71OmTDGKAJQjYwxj50knnaRQ9cEg8okLO1HEI96+B9gXC4vnOG4wxWSekf2gMB3XG5Tv9u3bvfGLethkRfu+T7W9gspONY6+EUaqq149qmKC65kg43khbBy1r9ee0/35QGaGwMbzAf0Il3i2cqE/faL79j0f7/5gwRZCNIpS8SxVrPx5o34kxiJtmEFC+Xb0srDDJl5ct8z5O0JQIrKZVjAJM5R5WujjuIrA5i3fpF1bFFeQB8Sa1YoqBEicHTbVZISPVYS4Lov6u7WrCXETBzEqaEFQ8mhaM7HnG0lPOGlB9PkAdZSwxbxDCkf/tEE9IxEVoGJaTUrMXsiRuHSFqWKcjnpM1W5BMBZ2IYKFWSK4hZ1rx1/43Eh71yyUiUqIHGit1VJyQiKQ87MLW2ZE/zbwp0WFg/sFRREWuSEnBS0m+88L2scVo1jL2hEFGNn3h6d1iigG+ePTvb/dctGGIlc84x7esn2X2rxtt9qsw01bd3nJd6XJlQwu48B5k3avQxmQW8TsIjIqHmL6KGkZq85/ZoQhVKL6htoWC7BBNssiM5bWqjVh44R9LmMLhLawPO20st2qTmnPjeADg6YYN4ZHtays3fOVTlj5RvLKzbBNmzah2UOIl+fuNWvWmOcB/tYTNU1O5O+0sOdsyPNiKGeKq3aJyy5EOe6TPyPzSFjajEqHqFu1e7KGlrvWVNsY10hijaqHz0X0M8ZJ+mCiltN+m2j+djqIe+VKhP/Nj1qY1B9XVpceXc/r4/R3cUMHCbO1Hq8SMZQhZfwmb1F0DDrXxtYmPQelTTYOtZot2yMfS2zTyozZjW12/ly73aY8EwVZE62UFGaNq0eP2aTPdD6noNQUZlXKRN8PMI7mpu1vc0g65ql0P4vlVlvxPCJugVFHq1Yu2u60eedGFbymxx3dhT1rG/VNL1JviFtU4sZo5VPUWLG/ZkWJTW3qlDVx/AfJScZlyEy4aGXeHpWZvn39snHnuPb64wd+uL4dPOFvo2jmJw9DsJo0f5Jaosn+/bpneGW7DYeAQ8Ah4BBwCDgEHAIOAYeAQ8AhkCgC8d9wJpqLS7ffIzBs2DCvjvaCsBeZuYESBm61ZGHaf1z27UVPiZMwaKF05crol/bxXrKSh523kKEkbwlt0oLE+cNE1Xf850GmshVA7AVSSWu/zEVhB9dv6bAVK1Z42dSqFf4VppdIb9hEi2bN4n9dmt1LZxaVcRH4888/e6747LLSsY07JxSxcE0lpI905BuUB64XcAkm7qFw3SXuu1iUh3Rx9tlnJ/0ynrK2bdumIEtBYEKxhkX5RAwXTCj5cO0ffvihevzxx72voW3Xhn6lMPLeG+1jX0NOr9HOA4Jh0NfekqZBgwaymRBxzlYye+CBBxS/7CydruhoAzFRZJJ9f2jfj3a97XSJjGV2etm2yarxiKIQHbnv/YpR6RiThaREnZhjuN9YBPvmm29MNSE2ZWiiK/caC2WMK3LO4MGDTRrIlvZ4aiIz/4s3BsYj/dl5yHY6rlfywl0kblIhddljthwPClNtr6A8U40LUvmSPA855BDZDA3D2o0T7Lmb9o9nPBNIevBMB7HJJlY1adIkXvFGtSI7YlOqWPkrwKKcLDjipgXFgKDFtUra7Yi4PLHzEFdidpytxsLiajyrq4lMYms2Rr7IlpD4upWjxyWdHbLYLLZqY4SYtWhVVPEjOxc+OVFFWmm5mrrmlbFSfNzQVieKl7CstThsE8TinZOTY6linJMy7XNW67aSvtMwzoI+52TXh+x8422Lq5OwNJCantCu7xJ1gxSWT7z4OpWj/TUoHcQ+cZVE++eU2AS+Yrnt0lDKyS60+1zlMlmVclGvQelhhFZTELJjdnkme/y3KSvM4ubw6au8/pddHoyHuHy6XruvwVDYeO6rmebH2NmtWUWtVlHFuIZCgUXMJiayeHrqI0PlUGgIySFZQtvx7aqpP6etUiNmrDb5QkAVEirj35F6MfhITXRK1k1WaCVzeCDe3/y2kip//2OrVq2KKSnRD3dQpczub8yYjBPYObxpBdMH7PbltFTb2HapVLl0LFHArhaQQPBEaSRRy2m/TTR/O13xbIiKqIqhlIY7KHFH17BahMjF3CgEpZMOrR74/GGXJdsyf7Cf3RxSsXRhOc0ry4tIcaNcyUJmTCAbXPsmQ2zarEmVYmFjPWNMkCqknAehTJ7hIMoJMTKdzym4nQuzItrl396y/WEOSfc8ZV9TTp53/djnVlv9NGG5VxTKWaNmR8lI3oHMDe7n8ZoojLtE23i2aluvjCFIjdNEJYhhjG1/TltpkgkBUs5pbZ3/16zVhtg0c2n0HRfpEzFIWCjE8kOlE3LTMF3mFyOXeMTCl7+bbe6zMEXNRMpxaRwCDgGHgEPAIeAQcAg4BBwCDoGDEwFHbDpI2r18+fIe8WLHjh3KdtHlh4CvNtNttsR9kCS+XV6+fPk8BQfiWSiPR4ywz03Htu2uiPxsd2BB+ePK7I477tAvBVN/yWQrVGWnLCV1sRfss8PWdnUn50sIOQc3e4kSdOS8REMUhl544QV14403JnpKWtJBOkMxiHbCHZYYRIsnn3zS/I488kiF64VEVbIWLFigzjzzTO9LZ8kz0RDVKFRsWMRH4UWUacQNHW6b/GpAud0+/rqneo2SX3Zunmwi5OLFi+W00DARdR7/yYmST/znBe2jYCYW5LJRjhEy7opt3hxVcpC4VEIhSrEwFeTW084bVRw/sSkdY3KjRo28sfr3339XV1xxhYIIKmMI9xV28sknK1zS4cbtoYceMgtnQmo87rjj7Krm2nY6rpc8cL329ttvJ13PVNsr6QJTPIHxOhWTe47+Ge95gzIqVarkFWW3kxeZgw17LLfv2aCscjKm2PnkFKvalYorUY6AHBS0MMKX1fJ1tZS5Q3853ePOiLtHlJHEtmjVAjFbEUri7NA+vlUvOGAsPIhBvIpn9vmifMAin5i9cChxdojCQrJmL6gmeu66zVE3GvHOsd0B2gs48c7JybFUMc5JmfY56zbv9HbLZNPG2S2aexlls8HX/X5jEbqKJtl0alResYgW5AbNf04q+9n1Z/v4Osv1SrJlcm+KlSoW/x6SdLkdTl4YVUSqUDK6UM4Q/9GwhepZTRbKLaO/P/nZdIVaTE6sg15Aff3aQ416xNejlnpZMOaQJz/GwGf+1cYj4sl45CVOcAMlGqXCSS7+bAprYsEj57VUqGSwUDsn06Un6VjA5ff817NU3+611OXH1PeUcvz57Mv9PXui/VXqIc9vsp9ouHp14uQfyRP3k4/0aym7Jhwyabm6651JZnuMXsTfqtu6eNHY11WptjH3u6j97Nq9R6HaFma229iwNP74nPRbfx7p2u/VurIhNpEf7uiE2GS7pjuqVeIKxvYclt0cwrjO/SkEKggVfpJaTq/TJgxCegkjKAXlP81yx1opgOzJObiSzM7KaXd7WzQxnf64fdduhfvC3HxOya4+uXV8X84huTVP2f3Ynv+DMAx63g1Kl+44rv1LPbeIQbDMjmT5/dhlWYhNnH9og/KG2ERfhbzNvSl91XZrSFqIUKg2QdqFiEQ9xs+LPke01WpMyRr3Bs96/M7umqHufneip/AK8dkRm5JF1KV3CDgEHAIOAYeAQ8Ah4BBwCDgEYt8UOTwOWARwiSQqRDNmzPBcBvkvGNLT6NGj/dEp79uEG1wWxTMWNkW9gUXRvUlqomwhl8Sro32MuuKSDuWRVA0FHzFRNpH9sBBygdjMmfEXKGz3AnIOIS+yjz76aC8KQkKfPn0UKhWQoVDmoC0g8wwZMsRLl8zGL7/8EkNquvjii41LOFRZSpcubUhFqNdkRxZJpkxJe8IJJyh+kAtoK9xgvfnmmx4BA9WlE088UUEeSsTOP/98j9SEGsnll1+uaAcW6FlQ5/fiiy96SlH+PMFR3HOJOzrbDd2FF16oF0GiX6Dvjfbx1zHVa5T8JkyYIJuBoa2AlIhbNpsE8fLLL5s+FJixFWljaUXnaNMuf/bs2app06ah+dj3Y3YEr9BMQg5A1qMf0zcgkcTL31avkezSNSZzX9EOqPyxSCYuGLkvMjIyTHGMLRCbIDNBXrP7RM+ePaVKuRqm43ohQgqpifHw2muvVagNQUKVMRICWRAZNtX2ylVwciFzyJk8cyTSP3HTKGaTASUuXgjxOchQinvllVfMIdok3vyMiuC+MFSPhNj0u3aDdXrnGglVg0U8MdvVi60usGj1FlUnjurSQr0YJyaLk7htErOPS5wd2upM5YpHCBwQs1CXYrGERf09ejUkjLCSE1UkFi5RbcHeuaGjKqwXSrKzRNKQB671xGZofFnIsaZgOZQlJB2uuzAWxwvFWSAnTaoYk4dtlB9mu3ZnPVi9XDEv+VztgjCeLdUuUNJhkE5y0xIhOSxcuVk1jqNQtcByw1grG7WzeNdS2iIz4eJxf7CfxkcVH9pZC5Kj56yJITWdqJVdUHXAxRFEElw6FtO/o+4ZkuPLeOfX+R6pCeIjJM1GWjEGsgPkNsqYrRdZr3s1XIGtQdUS6vbTm6jrTmxo3NZNWrBe/aLJL6IuBWnikhf+Uh/c3MW45bLvsaM0qePSo+smVP8KmqSQrHG/41KQ3wLdx1ACGjd3rfph7N9eVu/8usCMVRcdWceL25837DmY55xE3wnYruBTub7uzSqpxjUWmDmEe/ud3+ZrYli9mCxTbeMWGaW8uYR2q1elREz+srNTk56Yy3JiyfbbnJSRyDkQmXBZhzKkuKPjvB80AQJDXSwZdT4b++zmEMgjQmri/k8XqYl6t9Ku84ZMXMGmIV8c0SJKkDeRcf5DaU0szAUf4wtzaIH80b/F5RxCjoEpxrMJxA3Zzq3nFFPAPvhvX84huTVP2f04J8+7e6MZpi5a741TiZb3jSYAX6/nSr8Cpj334y5x167o82H7elkVmA5rUsEQm3ie5z4fr+c1jPs4VTVK1M7uO6uZOiVTTREVqTDV2kSv26VzCDgEHAIOAYeAQ8Ah4BBwCDgEDj4EHLHpIGlzFvlEiejLL78MJTbhWic3zH5RyuL29u3bQ1UcbDKALIznRp2C8vzuu+88sgtupt57772gZCaOYyzWY2Abb+HUJMrmP9w02YpCEAYSMdvdlU0YCDrXdltnH7dddUEusethp7Pbxo5PZJvrE7vtttsCST/z58+XJLkSVq5cWZ166qnm9/DDDyvcD6GehEF4gnRhu0IMqgSKZqQVQ6kmiIy1aNEiSZIlREEHpRpwhsxGP7Ld0J111lkx5+yN9rELTMc1Sn4Q/9atW2fIaxJnh6LcQ1zr1q3tQ4HbtKEYSiwQKPam2UpqkDRxZxhmNqGINk+nMaZDbMKmT58eSmziK3pRz7HLT9eYfNRRRxliEwQW2pIxFEOlScxWH4PgKG3OohmEn71h6bhecbFHfVF449r9tnx5dBHZPpZqe9l55YVt3N/YZOow4h1kOHs8FeKgrYDod41jX3/YOIvLTzHG1ksvvVQFuaflfCHjSfq9FbbXJAMWIbA3fp6rjm9f1Vsci1cHFs7F6lsLshUstyXz9KJct3DOpZq1bKNk4blKshUQ7ONeQmtjvkUEsZUNmmm3Pbj0YkF6/FztEkO7GQsyWy0i6HhQHGQIWTBEGQfFq3RZg2olPFIWdf918nLVo3n2C6WkE3WRHi0qqgfPbRG3SunA2HZZuEG74Akzm3wmaVCZwQ0h6jIs3IJjGBlLiCNy7t4OZRGc9ghT+khUkWuuJs/EM7u/xyMExsuDY/RRsRlLoveYxO3tELc1f2r3b2K49hIbpV3MiJ13RIa6rFcseYRjcr9JumTDYRaBALdyKNn4bY3lvs9/zN5noZbz+UESYhy8f9BkQ5ygj4ybu8a4fitbItoGkA6TUXKxy0t2u1aFQxS/E9pXU9ce31C9/es89f7vC002EEryIrGJ5zrm8qC5M1l8Ek0PobT/cfXV1f+NEI7fHjJfnXRoNUO4kzxSbePGmsj6fSb5DFJxGLFp+PToPSJlJxsm2m+TzTeZ9Cdp0uIL38wy9wqKhJCOhXCUrFKKEKEpnzlip55DwhSvbMJIFU3+Sacd1riCevqLGSZL2vKCnnVUjfJR4m5YWSs3bFcfDo3cl6Sxx0T/OYs1QTyM9MUxsaa1SsmmmQNk3Ez3c4pXyF7c2NdzSG7NU+l4FsvtZvhhXJQgCyn4+HZVQ4t84MMpStz+8gx+tCb12lZfP/dBSorMlWvVlm0R1VTmx5qa+Og3W2kT5SZ5juiqnyGCPljgI41Ph0feezFH92od/51HeetZiTrt0CTSIvki5EB/Xdy+Q8Ah4BBwCDgEHAIOAYeAQ8Ah4BAIQiBfUKSLO/AQQFVC7P7771dBBCZIL6effrokS2uIKxpbEWjQoEGh+b/zzjvesd69e3vbe2ND1Dgo66mnnjJqLCiyBP0g54jh5iwVFzos9KOQI3buuefGuOeR+KAQUk21atXMod9++02FKWLhsi6MqPXXX395WV922WXetr0BeUKUtOz4oO0gd4Y2OeeCCy4IOk3Z5KfABElGcl0jR45UQYocuO/q27dvDDEljPhlF2vndd555wWSmlist0kQ9vmy3a9fP7MJ6QR3dKIU1q1bN+Un9KW7faQOYWG6rlHyRx0rzN544w3vUCIkF1vJDMJCmGIL8ZBo+KVCyPMql7lhKwxBaAxzcwWpw1YAQzUvnWYTN15//fXQrMOOpWtMFjeKVID24H7DbNIPZeHmEmPuoU2wU045JS0uPE1m2fyX6vXSzuPGjTOlQNIRN3v+YoPmVtKk2l7+crLbT3Sszi6fnB7v1auXd2q8+/+rr77y0kH+EnepENEgvmETJ040amBeQmsjTEEQYrIYae69917Z9UJc0B1//PHe/t7e6KkVBiCZYHwVzQJudjZbE1JQQRFrWjO6oAZRSgx3FFtD3L2x6IaLHzHUK7DG1aN58QV1mOIMi3XkL2aX28yqz61vjlfL122TZF74nT530B/RhUXvQDYbuMYQYzE6zNZrd2uj9fXxW5OgWzEWak7Qi79iuOdaH4c0RDrUPF78dracok7UhIbsLB0Y24u3QeQl6sDibRgxyVYu+tFaOLPrzsI37rX2pdXWimZislAs+xJCnkvEWCAMI4HN1iS/SfPXm2xY5EvFBR/YsniIsdA3RSsuBBn35oXPjTRqSCc//IdR/whKl0oc5MYB70/ysjimTWVlq7rZ2B3fLrjvcg8lav77hWuUhVaU3NrXj96/dp7D9aJpkKGkYzDUONpug0gL+QXSZL8eGewam5XpCq6JVqARYxxbvXGH7GYJUcTgGkU5L0sCHbFyfdYxjGuTugXdg6W0+h3u56Qv0H+zc88ZVHZ2cfFIv9mdG3acv43s5xv7OdZ/zpw5c8zzHHMsis/psjbaXVFn7aZS7L8/zJFNE6baxg01kVXsf4PnquEzouQ/iUdV8Pa3JshuwmFO+21QAf57KihNInFHWq7mIOPaxOIjEiDw2mVAYjrUIigOnhAlX9jp2IbQJ9alcbQ9JS6VsLJ2IdfaIk4/8dk0Q7KKlycE2ae+mO4lQTXTJod7BzI3vvwrfA78dkyElE5S1LnEcvM5RcrYW+G+nkO4znTPU4JdOp7FJK/cCHnO/s7qYxdp4h6k67Df1cc38Kph902JhBDfRaswYSidiUu7bs2iZGdJS4i6J0pv2Bs/zzUh/wWRk4mHNA/BkN/zX880pHniw8xWwmOeFMWzsPQu3iHgEHAIOAQcAg4Bh4BDwCHgEHAI+BFwxCY/IgfofqdOndSVV17pXR1ut/71r38pCEYfffSRuu666xSEity0c845x8uesm01EzmAes1zzz0nu+qMM87wtnN7A5dYolTEgmp2eJDGVtbJjsgSVP+1a9eql156yaiWiKoKi+b//ve/g5KHxtkkAhSJ1q+PXUyB5AFxSsrwZ2QvAge1CyokomzkP1f2cScnhoqR35o3b+5F4RrIb6NGjVK33HKLPzqlffo1xAv6f9Di+s6dWmJ7bvSFDQvr2Znt+o/r8L/MB+srrrgiFGvJH3dVsnB/1113KXETaBPcJG062kfySiRM1zVKWbjdE3UhiSPEhRnKN2Lt27eXzdAQRTFRaSJP2thv/+hF2QEDBqhjjjnG/CgnXUYdpXzaDDeElGcbJEdIonztjkHqSZebDimnQ4cOsmkU41599VVvXzZYkLrjjjtkN0uYjjGZ+17U6sBcjHvONnHPhkqaEIRssqudNre2U7le3GQKgZRxNIg4NHDgwJj+bF9HOtrLzi9oG/KWGHVMJ6FP8k00ZB4Se+utt1RQ/6R+9hwPUVQM95HSh7gWXHb6DRLdf/7zH3+02QcLe2x5/PHHDZHuv//9r/r666/N+ED+oh4WmEkuR7LQcI21GPHGz/PUQx9NUdt37gksGZLEFS+NMl9ckwClAXsRDZcyok6Ci5RHP55qXKrZmUEQuE0v1vKFNIbKUImiBc02CxOoRond8sYEtWlrVld/z341w3PPA2HBXlw8vUsN49qGPCjj4udHaqWImeq3ySsUiy33vjdJPThoihSRVGi7mgGrweOzLqhyfXe+O1Fd++pY85ukXUMlav261zaqTaRHzaL/y6PVigBiFschbN38+nhP0YYF0jDiBunF0oGx7QZkkFaegGBlG/u0UZi11qQBsUd0H0HBw29v/jLP+0Lff2xv7eOyTOyjYRElANknhLT2n29n2VGh27TngA8mG3cndqKNW3dq8sJEL6pDgyg50ItMYoNFf5sgd+sb4zVpMSvhg3sC0g/3CCSBMHdHSRTtJeWaPtHKCX2fGm4IkxzgPr32hIZeGjbsfjT776x9ANIPC5TxrESRyNhBGltJjn2UakTBCuJmEEHoK00cGBxCrjNus/4zSl2qf09+FiUjkLfYghVR1ZQWWi0OY4FUxjHwven1cd54J+cRokBxyQujzDjxsG+sLFhAM6cyjbrbyjNEs+hMvfid9cSfKsi15ppN271yIbDiek9s6dKlRmmTD0b4OzAZk78bOEdI4smcn0haPvoQw3V20Dw5f/58xXMNz9kQmVEHTaddZrmfo4/QH8VSbePmuq8wV4ndNHC8mXuZU36esFyTX2aoy18cJYeTCnPab6WQePeUpEk2xM2ikJGon7ih66pJDZDwkrVemiQp9tCHwXPIT5rwZCsj9WwRPUfOTTW86eRGXhZjZq9Vt745IZTAumnbLnWXfjb4fXKUFH3H6U3iupyFgP3LxOVeGbLxx9SV6l3tYlKsZUb0/UduP6dImbkZ7i9zCNeYjnkqCKt0PIsF5ZuuOMiW9nM67mHjGX2QeR4bNWtN4LOrjAF2Poc2DCccos6EST3Ytp8f2RdDQVXKZ86EaEg/CjLUzp78PDqnd29eMSZZKvNjTEZuxyHgEHAIOAQcAg4Bh4BDwCHgEDigEYj/V9IBfekH38Xh7oqvK0VRgsVGfrax0Fy0aFH1xRdf2NFp2e7Tp4967bXXPIIDyicQrCCeQDD58ccfla3ecNVVVymbDJOWSsTJhAV3sQsvvFAVKJD97QGxSRZPUXuyF2klL0I/+QJFo4ULF8a44CEdL6w/+eQTT7WCuETsscceU8OGDTPkGJRiUAeBWIFSF4vHn376aeCLacnbJnFBLCMPlCxwCzR27FiFIlXQQr6cT1i/fn1v96abblKQfiCh0KcgdUC+ov0xcAJjXoijbjRixAj17LPPeuena4M+JOpQl1xyicGiS5cuxrUC9wLu6IRkRT1td1VhdahRo4a5VkgtEDTov7z4b9GihZo6dapZgLddK4XlU6xYMXX22WerV155JaYfcE/4LR3t488z3n66rtEuA6Ul+qQo/OCyTMYi0kE4EMKQfZ5/G5cYjBOQEiAOgR9KW7Qfik/0U5TJ7DagH6TLcJH14osvKiHqQMakL+A6knsAYiD3m7jhotxHH300XcV7+dSrV8+QOoSwSgi5knuKsYsFL3tM8060NtI1JoOFTVxDickm2VCkrQAgVbD7tcTlZpjq9eJeT4g0uNeDhEh/hhSL2hx9IczS0V5heUs8fRMSpCxC0g4sUBLHuGK7d5NzciusU6eOgrD54IMPmiLon9y39BXGPuYr5jox3FBefPHFsmtCMOa5AGOsvPXWWxVxuLJF5S67OQNy1QMPPKDuvvtukwf3h5+ADJEY0m5u3KOm0Gz+a6dVllBSEbc4345eZr5Qh7QEsYPF8OmLN6gJ89dqlaXoAjhfONuLehSD6tAtpzVW12lSD/aTXqBduGqLOlx/pY3KDwSWXyet8Mg4pLlSu/yx7VLtjoqFPBYyUBnp+/Rw45INJZq/1201ZABRt+G8m09prArmj34jwYLzY+e31ISmvww5iAUO3DG9rxbaxahLetXVC4PzYxZMYhIE7PAF+QPnNld3vxshRt/3/mT1y6TlCgwraTd8XCsLqeJih6/ND8v8Qj0guyxRYHrXmc3UjQPHmWMoHp3yyFB1WucaqlXt0qp08UJq6eqtCoUfP9Gm/7H14y6Q2oWlinHdyiW87HApB7nizMNqqnK6fkt0m302YrFxNecl8m3gImS4JnXQP7ArNYGrW7OK+hrLqM3addewaStj+prv9L2228RS//rkz0WGINRDL4AV0YQZiCRvafKVveCWXcVwp9LvmREKhZIqZYvodtxk+rrdX67Q7ZiqXaEJGfQR7lf6fz99Dx2hF/XpQyzoQaix76EzutTMUZGQL2zboBcR/167NSZvjtOvHzu/lSpZLLLoKed00ApKosp1hyZ3QQbqpBc5UeuarFWSElFVM4oOmeuTz2mVM/ojKnIQLiFM0q8+ziSlXaRJjri9aqWJdau0othovfgqfVDqZIcnagU1UbGDjLFLq6101vVjoZvzvx8HQSNKbmQcELvuxIamj6AKAYHsfN3uKFNAaEFtCfdGMuZyDmoYqECJMZZCVhTVs1u0+tyxbaoYt1SMzaU0luD1daYrUcaMUztVVy0zypj+OXPpBvXf76Nqbr18boH4+0fUBnlOC3rul7r4w7p163pRPOvyMQXPfZDuGzaMJa95CZPcgASOUizPujxnQ16HoM8zG4pO/F0ortjJGqXfdLtbpp2Pa1dFMSdiz2mS3UuXt/faKdU2hlS8WM8ZjAsY5UhZJkL/BxGgcKF8MWQYORYWptJvyTO7eyqs3OziwRKVFhnvSH9c2yiRObvz7eNHtaxsxo4J8yLEYeYQSBDMIdynlIM7LLEzNInMJqhIfKohbuKuOaGBYuzBKPfYAb8p3HahHllC36ebNTl72mLcZC2OmS8u6FnbjFXZ1YHnjR814Y2+wBhBGTY56uKj6sTkk9vPKdnVN5njeWEOScc8FYZJqs9iYfmmI545T+woS3FN4vwhrnuP0/OrEO4G6+e7c7vVikmGEp7fbFKe/1jHBuW9/DjG2FTRcnltp6f8G05q5D2fM5by9wYEUly0ct5yrX44S/8d4n+2OLdbhp2VeT+Y0/kxJiO34xBwCDgEHAIOAYeAQ8Ah4BBwCBzQCGTP3DigL//gujgWu3Hzds8995iXlf6rZ/Hv+uuvV5deeqn/UFr2ISTguonFYQghvCxln5/fTjrpJG9B1H8st/Ztl1hhBCV/2ZCzICNxLZA0WOAOernLy+HsrEePHgq3UVWrJv+iEeIQihZC9oDcEbToCwkkqH0rV66s7rvvPvOjnixA2yQz4iBu4LoHd3dBBoFIygSPF154wfyoFy4F+aKXUBaWuVa/m6xHHnlE3X777UHZ5yiOhW3UOYTgwYt4+2W8ZAqBTuoucfFC3BSCB0ZfFgUaOQdlF5sEIfH+kMUD2kQMF4QlS0ZVCiQ+He0jeSUapusaheQCAZB2kLaw69G/f3/zIsuOi7fdoEED065CjIHEZBOZ7HO5LyFZpNO47+kv1157rck2qA9IefT3WrViXy7KsVRDyHoTJkzw+hCKc6I6J3nTp7hv/fczx9M1JkNauvPOO6VIj/TlRegNxjXuMyESQmSBOLk3LdXrveaaawy+kNZQEQoaT3D1yhwbZKm2V1Ce/jjqiGIcBuFOXLChupdu1TB/2f593LWClczx3Is2mVHSQwhkfChYMHbhHaU37uuffvrJJIXA67cbb7wxrsIhKoCQ7J588sksKnoQkyFeBdXJX05u7kOmgcTx1OcRogKEIv+Lf7t8FtzvPKOJKq9VGPyGW7gbTm7o5cWivriD8qd9+uLWqkqZojHR5UoUUv++qLUh90AaYRHUVl2wE192TF1DXLDj2C5XorB69pI2Rk1n2NRYFz980X1V7wYKcg3EpmQNNYQVenHk+a8jSj0sMNqLjJIfSjHP/auNYrElGYOQQd1xQSSkGUg1/IKMch49r6VqpIlfiVqqGENUoe2u/1+EgEX7+lWwUIhBpUMW7e26sTh7u+4/EME4l+tkEc1eSCP9HTrNwx9NtU/dq9sswl10ZB018Ke5plwId371jJM7VlO405O2CqvgnWc2USiLQFQZuDySn50WTJ+4oFVKbugkP1SbHu7bUl2m1dUoD3JTWB+CqJfTBf+wPin1IGxbr4y6u08z0xfseLY7NiqnXdOUV3KPQtIRoo6k7a+Jjy9+G66KdbxeSJWxijaA8MfvcY0lrqf6aMLdn9NWGZIkOLyjVU742cY48t/vY12NcRz1Obt8VHuC1J1ouwfObWFc4Ui+qEVRh8s06Y/xlF8QwZL0l2qSZc+WWZ9FqPtjn0wzWaKA90qmO7Tv7+tmSFvnH1FbEyY2GDIX42TQNXDykTrvUzpG1YGIs12GC9mf+ESM50/+xpCPTSBU82Mu5G+odBlzJmXwoRN/0/E3Mj+/HXfccWZ+9cenY//iI+t6ZCPIgL9PXaG6NY2oe6TaxswN95/TXOHmLuheYuw5RxMDkh0DU+m3YJbdPZVTXP0kX+6bjpZLuWTyzZeJ3c1akU7mEHFD5c8HVajLj63nj07bPvdpCa1mw/guxpg0SHYCwms1GQoycDxDARMiJM8/kLRsopacB8kRgpTfcvs5xV9eTveD+r0/r309h6RjnvJfk+yn+iwm+aQ7RI3S7m8QjBIx3FsLsemrUUuyEJsqlS5iH8ycJAAAQABJREFUyEnMZxj3ZiH9vBJmzWuVijnERxLxjH4P8RxlVp4H+L31y/zQUxgrn7iwlSEM24lSmR/tfNy2Q8Ah4BBwCDgEHAIOAYeAQ8AhcGAjEP7XzIF93Qft1UGaeOaZZ9SqVavM15gsuvPl5bp164yqAe52Nm3a5OGDOxixRBSMSMvXnGEG6QclERZ/UUrwG8oSuI3CRR6qDraxKJ2MhdXDXjwtVKiQyRL1Hllw54Wx7TYoXpksmKIkISakHfbtcuS4HaJOAzGDxVuIET/88EOOSE2SJ2QP8ghSRuHFM9dnX5dfUQWXVbhrs5WXJG/aC0Uq+keYNW3a1HyBbLt7stPSnrg9ZKHZ3/ZgzuI3xLqcWFjfoA/wRTMEqiD1L65V3KTZX0FnVwdIWnzN3Llz5yxJcafEYnwiZBaIaLZKke3+wZ9xKu0Thg9lyH2NUptt6bpG2h3FL8Yd24UGZbGP+7IgspldZ39f5Vyww9UaX6oHGe4uZ8yYoVCKyg2DPALJTwhu/jL4Ih8FL9tNpKRJp3IOBDTIK0HYor6GCzAbP2lvqUsqY7LkgVqZXX7QGERaCKtiKMIFmd3uQcclTsZu2bdDuUZ/nyZNKtfLvcq9jXKBfb3ky1jAsbBrJw2WantFcgn/n35HuzOmBpnd98LmSM6z+0xQPonE0Ua452MxFCKb38AQQjXqTfY4KOmoA88CjKlBcwaLuWHzjeTBMwyKibgcnThxokIpjvIgeqFYWbNmzdBnnr2FFY9Zp3WqoV6/9lBDRJC6+0MWIlnof/PajqpJjdgFBzsteb3cv51xVWfHyzZKIx/c3Fl1CFnUbKFdWrx9fSejQCLn2CHKBZB/zuuRdUFP0vGF9uNaJearu7uqV65sr57R6Qfd0ll9cWdXrVBVxajChJFRbDKSrQYleZ91eC11V5+mRlFF4iQEI4gS79zQSVXUizg5MZRf3ryuY9yFTwhaRpnj+o6BpCYUX8QKBywcpYoxbffweS1U84ys/YB6PaNJXUU1FmGGshZEHnHZZafjq3yIU6jrgCeWrKu0ApaKl513stuQC1D3gsznt/7H1VPX+dyr+dPIfrOapU2fsF03yjH68/OXtjWqZhInYVhftOMlrR3iNuZZ3Qa2uys5DqadG5XXfexQreSUlVAj6YLC7HBloRDXkH2719L3cEf13CVtA0lN5E0feKRfS9W3R4bnQkbKhLAH6ePsrvEX/+tULq5euqKdsl1TSR6E1Oe1qzsYl5fSl+Q4fZdj8Vw4ojjx6lXtVcvaUVdPcj73IKSh927qHOOSU46XLV5IPXdpG3XSocFzYfv6ZU3dISgFGffGjdrVlbjT86cx13ZVB9WvR4bnAtROAzHittMbqwEaR/vacT0HMRrjuSFZwjHP1ChEoozrfw6R8uUZiP14z0pBz0h2HvxNCFHbP/+Shr+f+LuQjxWSeV7I7t6R8gkrlyli+rLECblM9lNtYxQRbzipofpxQHcz/zLuvaXvm58f7KFQ4oE8tUWr2InZ70TyW2O8HJcwlX6b3T0lZSQbcr+j2iSGugskzJwaxOoXL29n5ltxQWXnxZh922mN1UN9W5ixxj7GdjL9wH+ufx/lKdqNuS+eoY458JoOced2+/yre9c3zxpB18cYe48mjdpzvX1uTp9T8uePPjvY+fm3CxUIn9/9ae39vDaHpGOesq/fv53Ks1hutdUI7YZOjHkIt3mJWIOqse6o52litd+66GcPsS6N4hOVGB9wVy3GhxPZGc82/P0Aadqe9+zzuJ8Yi16/5tAspKZU50e7HLftEHAIOAQcAg4Bh4BDwCHgEHAIHNgI/N+OHTv+ObAv0V0dCGzZssWQmdjmRWjYi9Tdu3ebF5h8nYnh8sV+kWci0/QfZbG4KC94UfSoUKFCrpWXpmrniWxwdbd48WLjeigjIyMuISnogtavX2+UNugrEHTsl+RB6f1x9LetW7caN3O4dwvqQ6hb/f333wo1In5Bafz5prqvxzvjjpG+x0L6IYdkXSxLtgzuEYhxuNRDGchPyEs2v0TSp9o+iZRhp0nXNYIR/RJiJWNQ9erVsyUA2vUI20aRiC/L6XMswEBeSZQgE5ZnMvGMl5S/efNmVbp0aUNQjLdglEzeiabFnSfY8lKQcRRii03MSCSfg21MTuV66cuzZ882cyT9OGxODcM9He0VlrfEb9u2zfRJ7gX65b427vulS5d68wLjfjJzy6JFi9Tq1auN0ld2cwZtK4oWkIwZE8IMQqm4ERw5cmQgCSvs3NyIxxXUkkyXZ3y5XVeTB2pqohCLuMka5CEUjrZp90uQLSqULJLwIgll7dy1R63Ubp82ajdXfNldQbuTKK4Xg8Nsw5adnnpOab14waJUkLHg0vep4eYQqgeoHuXE1m3eoa9vu1lcLF+ykCp9SPIYxSt387ZdasHKzWr5um1GvYpFZxR20llOshj767tDt9FC/QU+C8WQLRJdBJN8tu3crZat2aZ27t6j3YUUTuu1SRnpCOmDS3U9UedAeSCnC+O4IkPB5x99n5EPLtNy08AVRR/qX0b3z5wS7nKzjuSNe7fVG3doxbVCRnUtDm8jsCr0o+079xhcSxUrpJ/pY5Mxri1etVXRXyuVLpw07pzPfbhhyy5zfjL3IGUyDnI/FytcwBBmgkiTsTWO7nE+/QYyC+NokEm/guiA688wMuDo0aO9jyL4aARlw5wazxH8PcDzSNmyZZOaT5MpE3d3/L2+cuVK82ydof+uDCNVJZNvOtMm08b01XVaQQw7pEj+0L64R7tV63Xfr96cNvTRI7P06+yuIZV+m909lV3Z/uM3vz7euMIk/hVNGGwahyDtPzfePjit1s8qa/UPQy2Q+9M/BsTLI13HNmnXcwtXbVYr1m1Xa/XzAW4jjVKNvif97jiDyuxya0QhFGLia5q4KMb4uEy7+uS6Kut5IxlSWG4/p0gd93WY23MI15dqGfEwSvVZLF7eB+MxPWWbOXvu8k3mmau2JjvWqVRcE6nDn9PTOT8ejJjn1WvmQ8R0udLNqxi4eucuAkO1m/WN+vkAPvdRrcLfCeVuLXKeO+9Npi/ZYDJoW6es/lsyq2p3znN3ZzoEHAIOAYeAQyDvIuCITXm37ZKq+fjx4z21Hl5GjhkzRvFi0m+4ZeFFK4aa0ODBg/1J3L5DwCHgEHAIOAQcAg6B/RYBSF2Q+4Sk/fnnnyuUC/02ZMgQ4yZV4iFO7W8LtlK3vBB+rF22Pf3FDFNVVFZQDvK7utitF0FvHDhOjZq1xqRDkeeCENWUvHDNro4OAYeAQyBRBN5//311/vnnm+SoB7Zv3z7RU126NCEwc+lGdeGzI01uqIqg0Acp1G+4wfzf4IjrSpTQXtDKbnnVxs5Zq65+ZYypPmppL1/h+l1QW4YRm4LSujiHgEMgvQi4+TG9eOaV3A4WYtPoOWvU5AXr1dRF69WUhRtUCU2sbqZdnjasVlKhHltTK+Ymaxs1Yf+V72cbJeSgc4sWKqBd1xcyBN/mtcqY7aB0B3rcec+MMK6ji2klzsEP9Mhzl4ub72e+jLxfefKiVqpTw6j6Xp67GFdhh4BDwCHgEHAIpBGB4M8O01iAy2r/QKBVq1bGRc5PP/1kFvp69OihUClo166dUctZuHChcdfFcTFk7p05BBwCDgGHgEPAIeAQyEsI4Gbv1ltvVXfddZep9sknn6z69+9vnnlwoYN6FG7pXnnlFe+yUM5wpCYPjhxt4BLmv/oFK0pRE+atU9e8OkZ1aVxBNaxaQisJ5VfzV2xW7/+xQC3SCkMYi8onaFcbzhwCDgGHwMGAwKxZs8xlMtcEuWg9GDDY19fYQM9HuCKEXMtc1f/l0cZFKio95UsUVn+v3aa+GrXEI99S377dMvZ1tZMuHwXFTXrRc8L8dWpgJkGLTC7qWSfpvNwJDgGHgEMgtxFw82NuI+zy3xcIoNz67Fcz1WfDF8cUv26TUou0kul3Y5aZ+If6NlfdmyfnonrD5p3qU1++MYX4dg5rWl6d1722alozqytzX1K36xBwCDgEHAIOAYeAQ2C/R8ARm/b7JkpfBR977DF1+umnGxdjuGhhP8w+++yzGBWDsHQu3iHgEHAIOAQcAg4Bh8D+hsBll12mfv31VyWE7RdffDG0ivfcc4+64447Qo+7A4khAFHp9tObqLvfnWROmDR/veIXZChk8NVhOb2Q7Mwh4BBwCBwMCEybNs1cZu/evXPNddzBgGOq13hV7wbq9rcmGBdJuIp8e8j80Cwfv6CV6tiwXOjx/fXAJ8MXqdd+jChOSR07NyqvOmhlCGcOAYeAQ2B/Q8DNj/tbi7j6pIrAdu3K+IaBY9X4Oeu8rDK0W8aG1UoY4jHKTesy3bje+c4kddMpO9UpHat7adO9MXTKKsXvmhMaqDO71NwnLmPTfU0uP4eAQ8Ah4BBwCDgEDl4EHLHpIGr75s2bq7Fjx6oBAwao9957T61YsSLm6itWrKgOPfRQc7xZs2Yxx9yOQ8Ah4BBwCDgEHAIOgbyCQKlSpdQ333xj1Cghcs+bNy9L1XG5i5LTKaeckuWYi8gZAke0qKSa1CilnvlqhvpjysosmdTQUvuta5dR/Y+rp0oULZjluItwCDgEHAIHKgJTp041l9arV68D9RLzxHXVq1JcvXV9R038maN+GLdMrd20M6beZYoXNC5iLjm6rqpbuXjMsby6c0aXGurq4xvk1eq7ejsEHAIHOAJufjzAG/ggvLwR01Z6pKbSxQupx89vGaOWhHt21Jw+0a7csfd/W5BjYlPXZhXUI/1axqC8YesutWLdNvXH1JUKd/FConpOl6mLVmcfXjMmvdtxCDgEHAIOAYeAQ8AhkJcQ+L8dO3boRxpnByMCa9asUUj+7t69W9WpU8e4pDsYcXDX7BBwCDgEHAIOAYfAgY3Ali1b1Jw5cxTPPjVq1FAZGRkqX758B/ZF7+Or+0f/hbFq43bt2meryvd//6dqVypu3M/t42q54h0CDgGHwD5BYNeuXabc/Pnz6y/l/2+f1MEVmhUB3LYtWrVFschYrVwxrSRYKGuiPBazWs+9K7Qa1SGFC+hrKqry53P9Lbsm3LZzt0nC80qhAu75MDu83HGHQDoRcPNjOtHMO3nNmDFDNWzYMO9UOIma3vrWeKOQxClvXtdRQaoOsnOfGq7mL99sDg26uYuqXr5oULIscUtWb1VnPj7MxAcRm+wTNmrXtA8MmqyGTV3lRcerk5foANg475kRas6yTapYofxq8AM98twVfTRskXrmyxmm3qhdd2pYPs9dg6uwQ8Ah4BBwCDgEcgMBp9iUG6jmkTzLli1rFJrySHVdNR0CDgGHgEPAIeAQcAjkCIFixYoplCud7T0EWLevULKw+e29Ul1JDgGHgENg/0SgQAH36mV/bJmSxQrGqCjsj3VMtk64eXWuXpNDrUjB/Mmd4FI7BBwCaUPAzY9pg9JllAYEcFM7YkaEBFSxTBF1aP1wN64r1m1XI2dG0tbRKo9Na5ZSW3fs9khNDbTruTBSE1VtU6eMR2yatXRDwsSmZC6zRJECRtHpyv+O0W7iI67xXh08Wz12XqvQbCbqdOPmrjVue3fu3qMqlS6ir6OEOqxJBVXYR/4dptWp1mzcYfI6tm1VVSB/VjL1r5OWq41aRaqAPvfYNlUCy/1u7DK1S7vwK1+qsEfg+Wb0UrVHE8+raJJ2u7plFSStKQvXGXf3y/THUzUrHKLVNQ9RXRpV0B+tZS03sCBfJNf3p1a2mqkJUORZMH8+VblMUdUio5Run7LZuu1brvvAtEXr1LwVW9TCFZtU5bLFVIOqxXW9Suj6FfOVFrvLh2B/zV5trmfp6i2KZ1I+BuuhVbBLFk3s74YFKzerGYs3qBlLN2oV0h2m3Doak+YZZVTxwu7ZJhZxt+cQcAg4BBwCBwoCic2SB8rVuutwCDgEHAIOAYeAQ8Ah4BBwCDgEHAIOAYeAQ8Ah4BBwCDgEHAIOAYeAQ8Ah4BBwCGQiUFir+zz6yTSzh9LP9wO6hyoffj16ifrf4Lkm7bUnNDDEpqL6nN8f6WnisqPaLFmzJbNUpepq4lBuGcqNd5zeRJ395J+miKFTVhmSEKQn2xav3KLufn+Smrlkox3tbYPHHWc2UT2aV/LiRs5c47nUq1+1hGpUvaR3jI2tO/aoO9+Z5MW1zCitqpaNVaZauWGHenDQFJMGBSpRJnr4o4gb58Y1Sqq7zmyqLnn+L7VFE8f81lzneW+fZqpK2SL+Q3H3h01fqR7+aJrnqs+fuIZW0HpIu/kLck28R7OSPvlzsaeo5D+X/X49MtSlveoa9Wr/8S3bd6trXh2jSVEb/IfUC1/PVDedGl/NbNfuf9RL389SH/y+0Hf+32YfF4iP9GuhCVqlfcfdrkPAIeAQcAg4BPI+Ak5jOe+3obsCh4BDwCHgEHAIOAQcAg4Bh4BDwCHgEHAIOAQcAg4Bh4BDwCHgEHAIOAQcAg6BHCCAUk6PFhXNmZBoJi6IqBwFZfXjuGVe9BEtKnvbEIn4xVMRmr1soxo5Y405BxJKjfLx1X28zHO4gXpQy9qlvLNHTo+6piNynnaJd+FzI7OQmiAziYHHXZqk9NmIxRKlDm1Y1tuekKkI5UXojfHzItcocWPmxO4TP3nBWjmsOge4W1ug64bilJCaKpaKJTChRPXgx5MVCkiJGm13y+sTYkhN9rWSz6JVW9V5T49Q07Qikt+e+2pmFlJTNU3YsvN4e8h89VgmSc4+HxWqAYMmZSE1yblc5/0fTFXDpq+wT4vZvk27O7RJTXW1u0MIYGLrtHrTFS+NVhPmRbGVYy50CDgEHAIOAYdAXkcglpqd16/G1d8h4BBwCDgEHAIOAYeAQ8Ah4BBwCDgEHAIOAYeAQ8Ah4BBwCDgEHAIOAYeAQ8AhkAQCx7atooZMjJBKfp20QrWuXSbL2bO16zKIL1jnxuVU+ZKFsqQJikCdaOycVYa4IsdR1sGNe25bt2aVNNFlvSlm2bptXnG7NdHmoY+meMQhSDJX9q6vWml3ZgW1a7nZf29SHw1bqL4dHSFyPfnZdNVWu4aDLNW6dpTYNHbuGtXnsJpevmyMmhVLZBqu3fyd0L5aTJpxc6Pksbb1ovlJIog+/C46qo46qUN1gzWKST+M+9tTeho/Z50aOWuV6tigvJwWGuI+bsAHEYUoEh2hiWxnd62lGlYrqXZpLCZrMttL3832iEcDtIrVW9d3UoUy3fCt0m340bBFXv73nNVE94GKCgUsyFVDp61Qt7050Rz/etRSddXxDcwxOeH1n+d57gqJu/espqp9/fKqTPGChmD21aglatAfC9WomcGkpMW63w2fvtpkB5nq0QtaqjrahR2GK8SBP81V7/22wOwP0u3WMqD/moPuP4eAQ8Ah4BBwCORRBByxKY82nKu2Q8Ah4BBwCDgEHAIOAYeAQ8Ah4BBwCDgEHAIOAYeAQ8Ah4BBwCDgEHAIOAYdA6gh0qF/OKO9ApvlWE1Ou0cQUFJhs+2PqSm/3uDZVvW3/xs7de9S5Tw430Zt1fijpiEEguvbEBnvNXZjtqm31hu1SDfXXrNUeiQfVoEe0+7Vq5aLu4hpoF3O3ndZE/a3JUGNnR8g2H2rCzE0nN1LFCudXreqWVhCLxs5aqyBJ2VgNnRLFiQJ/m7RS4UatgCZMif01M6Iehes3v5s6SXNOt1rq4iPryK5x73Zsmypq4crN6q1f5pv4mUs2JURs+mxElJSEytHd2o2dkJaoO6StR85rpS54doRpLwhstHfPFhEXfNOXrPeUqnposliv1tH2h6B2eJOK6rJj6qn/fj/b1AuilLjX275zjyEeyYU83Le56ma59qtd6RB1de8Gau3G7erH8cslWUz4p3ahJ9ana02P1EQcrhAv61VPrdX9bM2m7YZohUJUPPUwycuFDgGHgEPAIeAQyCsIOFd0eaWlXD0dAg4Bh4BDwCHgEHAIOAQcAg4Bh4BDwCHgEHAIOAQcAg4Bh4BDwCHgEHAIOATSjkDB/PnUiR0jqkKQmyYtjCoKSWE/jF1qNiECdW5SQaIDwyVrtip+NqmJhJBdyhUvHHhObkSWKhZVlVqtiTNiqFKJXXdSwxhSk8RD+Lm3T3PZVT+MWWZITER00WpFGFjN0epOYktWR66b/ZtOaSTRasqiiGoUEWs27vCUr7rEwfHUjjW88+2Nbk0jZRO3aNVm+1Do9g9j//aO3WeRmrxIvVFBK3DdfHJDL2rIpCjJ6LDGFdRTF7UxvxM6xKpPyQmNa5SQTYW6l9i85dHtXq0rx5CaJA3kqFtOaxrj1k6OERbMVI5ie+aSjVlc8EEau+vMpqZ+kNQcqQmknDkEHAIOAYfAgYSAIzYdSK3prsUh4BBwCDgEHAIOAYeAQ8Ah4BBwCDgEHAIOAYeAQ8Ah4BBwCDgEHAIOAYeAQyBpBHq1ruKd82umWzqJgLwjbuh6abd1hS2iiaSREELQRVppqM/hNdXpXWqow5qWVxVLFTGH3/l1vjr338PVh0MXSvJcDbft3O3lX7xIQW975tKN3naj6iW9bf8G7vak7pCYVq6PkKPa1Y266puk1YnExsyJuKGD/IX7OTl39OyoezrUjMQ6NCgnmzEh59tqU/bBCplYErdp2y77UOD2Rp1mxfqIGz7yra7d6YVZw+qlvENTFmzwtoM2duzao9Zt2akgc4HnZCs9ikliuPUTa55RWjazhEUL5VONaga3RfNa0XoZV3evjlY/jlumVmuSmDOHgEPAIeAQcAgcDAg4V3QHQyu7a3QIOAQcAg4Bh4BDwCHgEHAIOAQcAg4Bh4BDwCHgEHAIOAQcAg4Bh4BDwCHgEAhFAPdrGdot2Pzlm9XgCcvV1ZY7ut8t92qo7sSzfFp+5+Kjoi7USIu7tp8mLFP3fzDVnPrsVzNV3arFVds6ZeNllfIx1JHEypeMKkWtyCQocaxG+XCiD8cbVC/uEYPWbd6hKpcpouppl3qQhCA7QWY6rVNEXWn4jIiLuc6NyxvXc12bVVAfD1ukhmq3buJWbvz8KLGpVUaUIEVZYrV0O4RZYV1uMrbWwqCBpaoUlEel0jZGETKUne73ySvUH9NWqj+nr86ixmWns7dRWBKjf8WzhlVLeq7/7HT1qpRQ/zq6rnrtxzkmGjeA/DDc+XXV7vGOblXZtIuJdP85BBwCDgGHgEPgAEPAKTYdYA3qLsch4BBwCDgEHAIOAYeAQ8Ah4BBwCDgEHAIOAYeAQ8Ah4BBwCDgEHAIOAYeAQyB5BE5oX9WchAs52x2duKGrVraoalYzXHUnrERUnHq1rqpuO72xl+SNn+d527m1MX7uWi/rsiWibunERR7kpEJx1Kc42Xadt21XRAEK8laPlpVM3qNmrFF7/vlH7dy9R/0+eaWJ69w4osTUsWEkhNwjJCtRbzq0YVlVuGDuL1PaqlVlD4liYCrq+4/rEpUpDkFIw7bv3KMe/HCKuv3tierb0csSJjVx7ppNUReApYpFVbM45rcyxcPrd2HP2urR81sowVbORUnsXa0Edv4zI9R1/xujtmyPqnRJGhc6BBwCDgGHgEMgryOQ+08MeR0hV3+HgEPAIeAQcAg4BBwCDgGHgEPAIeAQcAg4BBwCDgGHgEPAIeAQcAg4BBwCDoEDHoGeLbO6o7Pd0B3foZrS3Jcc29GtovlPXxjf1VmOC8k8EVdpv2jlKbHWdaLqSBC0MBSX1m7aKUkCw7lawUqsdLEo8aZTJmmJPObpNFMWrZdkqm3d8ma7taVINVYrO63fskvNWRZxzdaxQSSNd1Iubdh1tq8lqDgITLbbOghpGC4EvxuzzGxDBsPV4GMXtFQDr+mgBt3cRX19dzf1zCWtzXH/f3Url/CiFq/c4m0HbcxbHnVbF3T88CYV1RMXtFZf3tVVPXhuc3WGdnVIfcRGzVyrbhg4TnZd6BBwCDgEHAIOgQMGAeeK7oBpSnchDgGHgEPAIeAQcAg4BBwCDgGHgEPAIeAQcAg4BBwCDgGHgEPAIeAQcAg4BBwCOUWgQslCRhHnz2mrjTu6a7Q7OtsN3ZGZKkV2/qNmr1afjVhsos4+vJZqXitc0alA/igrCkIQKkcF8+eOBsHbQ+Yb4hIVwwVaRsWoG7QKZQqrJWu2mjovWLVJlSkeJT2ZyMz/UGKaZLmOK1si6qqtVe2oG72JOs3qTJdvDaqVUOU1jlgRrcjUqVE5NVy7bhs5a7UqWiRKwmlfP6LmlFlUrgWli0dVknAzCOErTKVqwcooiatKuQj5i4oN1e7nxB48r4U6NKDuazZGlZkkLWF97XJQbO6Kzaqr7ASEM5dG3dYFHPaiymn1rR4tKplf/+Pqq58nLlcPDppijtNey9dtV7ZbPe9Et+EQcAg4BBwCDoE8ikDuPC3lUTBctR0CDgGHgEPAIeAQcAg4BBwCDgGHgEPAIeAQcAg4BBwCDgGHgEPAIeAQcAg4BA5eBI5ra7mjW7BOiRu6VnVLq6qZSkc2OsUKFVC/TVppfoOGLrQPZdmeaqka4fIst0hNv01argb+NNcr/+yutbxtNjo3rODtfzNqqbft3xg6JUroaVyjpCpZNKqXUEYThojDUGP6fcoKs921aUUTyn+dG0WUmX6duEKni7jGK61drtlEK0mbGyEkJtzeif004W/ZzBJ+NzaiysSBLo0jGG3dsUfhSg+j3h3qBROyRmjyVpDVqRQlNn0/ZqkivyCbpPuaqFn5j09ZuF7xm744q8oX13dsmyqqa7Nom85dnhhByl+O23cIOAQcAg4Bh8D+ioAjNu2vLePq5RBwCDgEHAIOAYeAQ8Ah4BBwCDgEHAIOAYeAQ8Ah4BBwCDgEHAIOAYeAQ8AhsFcR6Nyogufe66Xv56hFqyLKRse3qxZYjyY1Silx7TZEk3e++mtJYLq/125TT3w23TvWvUUsAcg7kMLGktVb1XNfz1R3vDPJywXFpN6ZZC2J7N4sWva3o5epz0dGFKfkOOFC7Tbt9rcnelHHtY260ZNIIf/8oq9bSDkd6kdJRKTrUD9CbEKh6oPfI8Sv7pqEk4pLPyk/0bBX68pe0oc+nKqClJF+Gv+3+vCPKDGtp1ZEwooWyqcgoWHrNu3QruqyKjPR5j+Oj7r9M4kz/6tSpqh3Pn3p0Y8jykp2mlUbdqjb3opibR9j++kvZ6hL/zNKXfz8X+qb0VmJaLt2/6Noe7HGuk86cwg4BBwCDgGHwIGEQJRafSBdlbuWPIvA1KlT1dixY039e/TooapVC/5DIc9eYB6vOP6l/9H/ihSMysXm8Uty1XcIOAQcAg6BNCKQ1+bxtWvXqoEDBxoELrzwQlW2bOyLtzRCc0BntXvPP4qvHef+vUn11i95a1Yo5l0vX6Iu0C9CscMal1clikbl371EeXRj9erV6rvvvjO1b9y4sWrbtm0evZIDo9pj565VQ6eu1P2sgmpTN+pCYX/vg8nWO979lmhLhpWZ6Pn7Kt1O7S5i5rKNapZ2zbB83TZVvEgBdeZhNXPtC/d9dZ2uXIfAgYjA6NGj1fTp01W+fPnUqaeeqooUiSwM7o/XumvXLvXhhx+qKVOmqPPPP181aNAg6Wp+/fXXat26dapgwYKqT58+SZ+fjhNGjRqlZsyYYbLq3bu3KlMmOjcmkv/MmTPVm2++qZo0aWKuoUCB/eMVsnv+SqT1XBqHgEMgHQgU1u7Tjm5TWX0+YkmMG7ZuPiUiKQuCTp+uNdVTn0fG3kc/maZ+0+pFHRuWNy7gNm3ZqWYt22RIM5B7MIgy52i3dTmxifPXq6e+iJTF+f9od3GrtBs0iC1CLpJ8UVS6/fSmWUhE1bSbtYuOrOOpOj3x6XTzN1Unra7E+/8J2p3ZkAlRog7u5U7sUF2y9cJ29cqo1370dg0hrFH1iIqTxFYvX9QQv8T1HfFBrtwkfW6ER7Wsor4YuURNmLfeZH/lS6PV4Zpc1bp2GbVLv9cYMXOVGjpllVf0GV1qqHpVokpLqCF9PGyROX7R8yPV8e2qqlZ1SqtVG7ar0bPW6PciUay8TDI36B+Pnt9SXfTcSBNDWrA4XPenyqULqckLNqhfJq0wpCn/ubJ/Rpfq6v4Ppprdhz+aakhnLWqX0ucXVUtWbVGv/zLPa3vUqUoXO3DevwgGLnQIOAQcAg6BgxuB/eOv0oO7DdzVWwgMGTJEXX/99Sbmyy+/TJnY9K2W9cR38y/av/BLV7RTLTLCfVtb1XCbmQhs3LpT/TDub7NYuVg/HK/dtNMcKVY4v6ql/XF301919NYP8GW1/OrBajOWbFBfhnyBAyYs4PJHaqXSRcwiW9FCjhR2IPWV+++/X61YEZFYfvzxx1WxYtHFfP91vv7662rMmDEmul+/furQQw/1J/H2IXgK2YKFcggXzhwCeQGBdM/juX3N9957r3r55ZdNMYsWLVLPPPP/7J0FuBXV+saXdHeKdHcIiqIixkW4dnd3d+e149p6Fa/xN67dhXG92CAKUgLSDdJdgv/1W5tv9tpzZufZBw7wfc9zzsysWTXvzJ5Z8a73e7ioi8xb/hCJhlsiB3Zyn6buO5NJ5gx8bti40VSrWMac9bfmmSRJG+fr0X/YwbXYasOvrUT9q1fsHgyY0gZ7ddNqzBcv67lNEZt4Zk4//XSHz9VXX73dEZv8NlCfjnVN9xaZEQPf/nGGI8EB3LkHtMjLM/GHJblc9HTsG/u6XV377vV7BKthi/MzmEu9U/3e0v5YbYRUZWaSfkvFWbnmT3PF88PtpFJsEkLqcciuOymxScDYire43BhoXX4wcXjdke3MgT1irl9SXZL/DoqKp/2wKFS2XNg777xjHnjgAVeBjh07Gv6Kq73//vvm1FNPddV77733zOjRo227xs5GZmG0MUeNGmUqV668xYhNb731lnnooYdcrelfZkNs2mjbiocddpiZMGGCSw8R7YgjjsgCgaKLur23v4oOWc1ZEVAEohDo27W+a5/Iub6W6MS4eDI7YreGVtmnpEENCGNegr8oa9+oqrn75M6mZuXcxtVRDXr7hxlRWSeEHbF7Q3Ph31saXJVF2cn7NLEEm1XW1V7MNVuyOje0xKQ7TuhkSpUs+E1EraqCvW4hbEEWKlmiYLy97FzCq99MC6rRNcM+ZJCgkDslbJ1uO76zufqF4c6tHPXluuXa/ewhMZ3Xr6UfZI7u1cj8OHaBIySB/8uDptq/hCjmHNvHfXrgxMTATUetLTHstuM6mFteHe1Cxs5YZvjzDZz7dtvREsUm+cFuv0/HepZ4tsDOdcXGoinfDCoQzTS3ZKzLD25b8ISGKAKKgCKgCCgCWzkCSmzaym+gVj85AkhvPmQn71atja2A+I9tNCuxKTle4TPvDp5pHvBkcf3zYCoN76c+nWjO7tvcTapmOdbnZ7nV7k+etzKhg5vuQg7t2cCcsk/TYLItXfxsz69Zv8EMGb/QrtIxZqdaFRJWlWSbV3GLj1Sz+BDv0LiqqVWl7Bav4uDBg82XX37p6nHUUUeZ3r17J60TJKhZs2Iy1KxUTkVsYgB9wIABLq/7778/aZ56QhFQBAqHwOTJk4MMJk6MHngKIhSznSG/LzRIxWNM7EOgzcRk4HPHGuXzRmyabVcZis2w6kzrrKoKq1vVtm0E/DZQ07qVMiY2DbYD+z+Mi62CPcWS8vKh4jVv6ZoEsFHzETcBCSc28wHEizmLYnXbo13tApMAudQ73e+tKMrczLBFFnfHm2MSSE1MKNW377GoCZPIDDSwWCPw+nfTDS5bsEc+HG9wE1I6yeSbXIj/DpKwVNvC9sNWrVplPv/8c6eG0KJFi2JNzEmFg55Lj4DfPoTYs2bNGlO+fPkgISShadNik7IHHnigU2UKTm6mnenTpweLZnr27Gnq16+f15LXrl0bkJrI2MckrwUVs8yKGtdidrlaHUVAEcgAgY6NqyWoDPWLcMMWzqa/dfdG/+iFryY7FR4IML6hntSjZU1z6r5NTdk07R0/HfsQc9IZxBjGhFl4sp9VKKpVJTVxqnTJEuamozuYXVvVMK99O8MRfvwyICwd27uxU0qtbBVTo4w2eU/r6k4IN7tblaooQ0VIiE0d7QL0ZPlFpQ2HlU6BhfQRyti6h622xeNf5/Uwb9j2J23Q8P1pUreiOdaqwv7dEu1LhCY7ULh65qJdrSvB38wQ268VIhdlcD2XHNTKFff0wHCp8eP9utRzB//+Iu7eUM4es2cj+1w0szjGSGaE+4Q09m+35LJebecY5rrCylzc+94d6prT92+W9bMlddCtIqAIKAKKgCJQnBGIbokU5xpr3RSBDBEYOtE2LjeRmkjyrVUQWGQ7EtuzulAm0EGIwQc3jXvfkJptahv2dJ/wAz1meny19IDPJlk3MyvN9VbSNmrVhp/P9r7PKuTPrQoWK3IyVTbIBrPR05aa6zf5PT9h78aW2JS4siSbvIpbXHyHP/dljIRw/2ldigWxab/99guITd9//31SYhMy/kJqAtcPP/zQPProo0khRvVGDLecaoqAIlA0CFxzzTXBpA2KO2q5IXBAt/rmu7Hz3aDauf1aKKkpNxg1VSEQ6NCommGS4dNf5rgtx8XBHvpgfEDGGXhr7wIkrlzqne73VhRlbmksN9oOyjej5wfVePisbqZbs+pKagoQ2bp3llq3LEJq4kroww+25N09LRkwn1bYfhgLGo4++mhXpSuvvFKJTfm8OcUsrxNPPNF8/PHHTnHpjjvuSCA1UdXLL7/c/PDDD67W8+bNy0oJKV+Xiou422+/3WXHoph8E5sgcj3yyCPmxhtvdM86mGwPVtS4bg8Y6jUqAtsaAvBa3rimV9aX1da6Ybv35C4u3cLl68zMBStNGevarXm9SglElWwzrl+9nPn+3v2yTZY2PtfZt+uO7m+JbZstsAtHrGc2U7VCGUeMEqJQqowg3Nx+QqoYxvRoUTOj+mdyjSymShbv+YuTq+RTw3I27cl9mpgTLWGL+7N4ZYx8VrtKOatuXTpQoI66mqoVSjnlKvooM+0cCQu76tr74pO0ktVL8oPctE/nurbs9dZDxlo3htKgRoVgXuVQu3iNv2RGn5C/9Rs2OteDuCtvULOCu65kaTRcEVAEFAFFQBHYFhBQYtO2cBf1GiIRGGgnNsL2v1HzDJKwaskRwH2fT2rq1a6WObdvC9PMdrx8m7nQ+m22JJOBm2RqkWxtZlejnLh3Ez/adrV/2SGtzZFW3ldso+1U0DHCt/lnw2OuFTjHYP0lzwwzAy7oYZAdVtt6Edhnn32Cyn/99dfm+uuvD479HZ+oRDgkJ8hOrVrFVvL4cZcvX26GDIn5W8d1QYcOHfzTuq8IKAJ5RGDPPfc048ePz2OO22dWKOg9ZVc8Qo4OLWjcPgHRq97sCPDc3Xh0e3PDUe23qmcwl3oX9veWS5mb/YaGCvRVqro2r24nRDJzexjKRg+LKQKDRsWUmvzq0SfNhtik/TAfPd0vLAKQhAYNGuTUubJ1QVfYsotT+vPOO8+ce+65WbvhK07XoHVRBBQBRaA4IICruVzdzW2J+lerUNrwtz0YCli1q5Z1f9leL2pOjWpXyDZZEJ/0qEfxl6uhttWkTsVck2s6RUARUAQUAUVgq0NAfURsdbdMK5wJAstXrzdfjpjnokIcEd/XHw2dnUny7TbOgmVrzcN2ZbkYcv13n9S5AKmJ8zvZVQA3WplaZHPF/mXd0k23LmjUYgjQOapZuaxzgXjVYW3NK1fsZnD9I3ar9ae92vryVtt6EejYsaOBfIRBXsJNQZQNHFhQg5jB8igbOnRoEHzooYdamWn9VAeA6I4ioAgUawQgTKgpAlsSga31Gcyl3rmk8e9NYdP7eRX1/jK7alyss3XxoLZtIfDh0JirZq6qc9PY/UWha8mmlfO5XK32w3JBTdOEEdieSU2ChWIgSOhWEVAEFAFFQBFQBBQBRUARUAQUAUVgSyOgik1b+g5sgfJnzpxpmDgfM2aMUwxp0qSJ6dy5s5OXjlIPoYrIMW/YsMEQF4WSJUuWOEWRH3/80UybNs20aNHCdOrUyfTv39+ULFnQd7Fc5l92Kf+XX37pZLunTJliatSoYdq1a2cOP/xwty/xCrsdNDq+6hNyDu653h9iFVJmLTeT5q5wsq9RZXxj3dUtzWIAtZ/1mS2u174aOc+sXPOnlZUtYWVb60dl78JYfbphw1+mbrVyZpdWNYN4g8cvNPOtzCvp/9alvlm59k8zcuoS88vERWahdaF36K4NTJem1YP47EAi+va3+Wb2olWOIFOnajmD1G2vtrWDeiUkSHNA3cR9X0O74uDSg1undPHAhMiZ+zc3wycvNiOmLHG5vzt4ZuBPmoCJc1aYsTNibuv27ljHueCYs3i1+X7sAjNl3gon1wrZp6f1vU3d0xmuCsB6xoJVZqElYtW0KhGsTOizKe+o9LgwQz2pvi0H928rVv9pRltXeqOmLTFzbV3wO96ifmXTq02tjHyVR5WRSRj1/Nd53c1xD/zgcGb1OXXzVZ78fMBu4pzlZrLFCdIZ6VvuWNm02rFKgZU+w+w9mGUxmfLHyiALnvcPf4pNFNSz1x5e3Y5MLb8N8p9sfxdI55J/S4sFWyEEBhl6O6QdP2uZmTB7hdvyLKDqhaQy/ufTSRRT31/tH88Cg6X17O+Be9MpYrIK131r128w42YuC2rA74X7j0FeDCuKLVy+1j53y8zvs5eb6RaXnawPdBTFOti4dWxZ+TLedwcddJD5z3/+47IcPny42W233RKyX7t2rXNlQGDTpk0N7z7ss88+M2effbbb9//h0k5s3333ld2ELepQ3377rZk6daojPjVq1Mi9m3ffffeEeJkczJ8/37nGIy51b9Omjfntt9/MN998497z1atXNw899FBCVlzTBx98YEaMGGGmT59uqlWrZprY7wNErGbNmiXEjTqYPHmyef/99933g+8JqlTdunUzXbp0SfstWLdunfnkk0/Mr7/+6tKXKVPGNGzY0PTq1cvsvffekSuKw9fYtm1bM2nSJAOO4F2nTh1X/mGHHWZKlYo3jeQ86lpgvMsuuziMataMv7vl+sLfScrkHslqb76RRx55ZIKrCpSCIL2BN+4eyL9nz55pMVy4cKF5++23nQu1OXPmONcT3De+pdyvKAvXr7h9x7mepUuXmnLlypnjjz8+6hJc2Isvvmj+/PNPd8/333//AvFQPPv555/d8zFy5EhTu3Zt93x17do10mUM9/a7775z+dCGqVevXpBnvjDbuHGj+e9//+vaPvxmq1atatq3b+9+L9Rv1KhRrl1GwVwTz/OWtj+WrDG/2Xco3wfeocjd823gWxm1IpH2D99mrLX9lrey35B8Gc8F7U1+J/xBJpX7CbnU/81KmbxfUcbjeTruuOMM7w3eGfzeeS4aNGhgeA8cfPDBpkqV1G0P2su4D+W9xfeKdusBBxxgWrduLcUVapvLO43viCgB8t7mWqKMuosC4CGHHGLk3RV+J2by3o/KvyjDsn0GqYu0F2gb7m7bdIW1XNv2/u9h4bKYSwPqgpu88mVi/aTeHeqYKptWQWdbbz9/+b35Yfkqc71tF9I3+t22RefZdwKuFWhL925fx7o5iBP1o3DOVztsqO0HzbXt5Zn2T+yXSYtMvZ9ibbmqFcuYvdonuivDHcMPtp9BG5B2fim7ipl+F4SZbs1q2N+x5BTfQqDBbTnWwbZjaXPTTxk+ZbFzv125fGlzme0XZWP0Ob+3LjpRbrVidrYdWtHsavt+TW17dOnK9RbbWH+VNqyv4JrPfgsKu1zXnMVrXB8XtS/6PXvb5696pTKRlxPuk679c4PtMy2N9Ult+5r29B7WRVxDm48YxLP/WdUlvhmrbB+2XcOq9o9vQZVIvCUdW9yZ02bH+nevb3ZpWTPoV5LnYT2Tu+BwiTL8l20/zM+W9iDtxrFjxwbBfFOee+45d9y4cWMT1WZfvHixeffdd50yJO012su0Jw888EDX3g4yy2Bn2LBh7jtG1L/97W9mp50K4sK3UupIm5yxlrDRHmH8hm8n7a3wNxT3arRdicP3iXJow1Jn2qpRFm4vzZ492+UBbuRx1113Zewmzb+GunXrmr///e9RRbow2lcvvPCC269Vq5b7pocjs+hE+mnJ7tOiRYsMrtww6Y8sW7bMvPXWW0nDuJ9iL7/8sqlYMaaUkAx34q5atcr88ssvrt1J+xNcaffT/0mGrZThb1999VWzevVql5eEf/7552bu3LnucNddd3XtTDnnb2lDjx492rWrfvrpJ9c3JT59kKg+hDz7yZ4X8qY/w/NJP5j2BW1c+na0T2jz5mqFbX9xrbiPpO3INdN/ZdwT3NnK4iSpXy645tJGlfJ0qwgoAoqAIqAIKAKKgCKgCCgCioAikD0C8dm77NNqiq0MAQZ+/vWvf5nLLrssac2vvvpq849//KOAQshZZ53l0nTv3t08++yzZo899jBMHoaNSXUGthg0ChuDQ0wEMeEYtmuuucY89thj4eCcjxkQFkPCvl618o7YRNjn1iXYef1ayumE7cuDprrB64TAFAf4Qy61icg14PNJZoYlGkEGSUVseuj98Y7U0rx+JfOiR2x6b8jMYEC97U5VzflPDbU+luOrk7s1qx4Qm/DhfP8748wHm0gr4SpWr1TaPHFud9O4dmyALXw+2fFnlkAidslBrQxypumMyYGLDmxlznzsJxf1i1/n2OOWBjlVbJidfHjkw9/dfm1LvJo0d7l58pOJ7tj/9+/PJ5t9OtU1tx7XISkpBpLOPW/HB5T99Pfa8NtP6Ojy8MPZv+vN31xQWzvAjouSs5/4KSBw+XE7Nqlqbjm2g53AjR609ePmus+EwiUHtTZ3vxWr08BhcwoQm5icevzjCUnvL2XffXLnhIkc8vk4pEg2dMIiwx/mnrdLe7p9/jHRcccbY8yoqTHSWXBi0w4yvI+c1S3yGVpsiXa3vDrKTnAsDidzx0wc3WpxjCIQQUy74rnhwQSGn8GzX0w2uBe5/1Q7uLtp4o/zj340PuG3QNjbP8xg4+x46w/9gv7x3zRu//7x2hg5XWB79eFtzSGWKJgvg4ggA+YQJMLEJplUpjzepZByiMdEOQOsZcuWTaiKTFYT2KdPn4RzEFogUkW9R3l39+7d2w3My+B6QuIkB5BdcTGA8S6GCHDbbbcFsRn09YlNEGMhAP3xR5xAKpGvvfZac8UVV5i7775bghK2fIcuvvhiM2DAgIRw/4BvCESEKAM7yGBRZRO/ZcuW5vXXXy/gvi98jZAaqEfYGNiHYFO6dGlz2mmnuXsVjgMJigkfCL2++d9Jvmfh54C44Er+TB7cdNNN5r777vOzME8++aQ7Jg73OcqYRJP7FT6PuwgG5Y844ojwKffsEVhcv+M333yzI2rxvKUiNtGGof0BoSVMbGJCBXIXhJYoO//8893kWoUK8clYJnUETyamjj766CCpf09zbfswqUnbh7qFjd8L7TImgaRtBmFwSxKbaF+88+NMQ1slmZ3Yp4k5p2/z4DtPvCV2kl6+zxDKUSnMhzEBe8oppyT9ze+3337mtddeK0BO4h3DOxbjPcpEY9Q94Pf8yiuvuHdnVH15Tzz11FMFTl111VXm0ksvNcccc0yBc9kE5PpOg1Qqzy31S0Zsglwp7zp/gjj8Tkz33s/mmgobN9dnkHKlvQBhPh/Eplzb9rR15Pfg4yHtYcJqWEXPXm1j5Kts6x31e8t3mb/ZRQlXv/BrgfYXdX/CtlHDbS/CxfLZDnvf9o/+NzKxvUHbVdqv9Lu++Ee8rfTDuAW23T8mst7Uj4Ubd57YqcAil3lL1gb37KQ+TUxZu9CEvokY5WRKbOIZpl8SpRT8mJlg3XY3dv0VeUZ4p/rEpnz0W1ioct+7Y80XXt9OroXtA++OMyfv08ScZReooGzkm98n7dykurlowC92EU2cWEZc+inXHtnWHNSjgSO10q+RxTGc/+TnGOnjBHut5yfpdxMP++LXeP9z30717AKJOBGCPn2+iE2UlUk/jHhh4zshBBo5x2It/jDaJBBWxFjMRRuPtl6U4bqadt6///3vSDJJVBqI0fLev//++80ll1xSINp1113nSNScSEYUpy0EOTbc3po4caI54YQTIr+V5Ed8vq3p2piQmCBe+Ub/Atdu6YxvIt9rMSEbyXF4i6rtP//5T9d+5BzEoTBRC6KU4Eb7XxaY+HnR95I4jzzyiCMaLViwIAij7/H4448b+mESz09P30fM/9ZKGFv6Lrg/9svnucLov0AggpyVidEGCfeFpA9B+mR9MYg+9LFYXBJlkL979OiRcOqll14yLCrAIO+Bodj69evNDTfcYB5++GEJStjSxnrjjTdMLgtvCtv+goh4xhlnBL+HhIrZA66DxSU+ST1bXHNto4broseKgCKgCCgCioAioAgoAoqAIqAIKAKZI5CetZB5XhqzmCNw5ZVXBhNnUlXUQxikEmMAjonRZMZqLCYShdTkD2yQhhV+Z555pmEwzzfUnpgkDk/GS9nkd+qppwaqJn7abPdR8pHB7r061HYKQRAtIPtgDJCiNhNllexKZAauk/2F0wh5Jxxe2OMbXxmZdECevAd8NqkA6YU6i0GIuvK5X7OS759rV/JOnRdX+0E9J1Nr06BK4IuaslEairJ3Bs9IIDX5dSY+K+MHfFaQ9MS5H8cvCCYcOMbC6W96ZZRTYYqdLfh/mlUzumjAz8HAO+Qd33hu7rQkqNDj60fJy/6+nesG+bBC+Q+r1CW20T6bZz85tMD99V3YEfe6F0cYJo7EKlgikDy3EsZWwkQVgDDu9TH3/RD8TiSej8f8pWsdWS18L1lhftJDPyaQmiCEMVEkhnrXCQ/+6JSxJIwtK/+pt6zK9s/J/vBJi80/Xh/tFLYkjMm/8L2W62Lrk6Be+XpaAqkJ3CBL+XbfO2PNi/+b4gcVah8ykRiTyGHziUoM9PuEFUgVvjEgL+oxTFT7kwCQoI466qgC71E/PYPivEt55+ZiTCj4pKZwHqgzhUlN8h6XuEwwMCkQZTfeeGMBUlM4PSSGqDpA2GGywx/ID6edMGGCW2kd/tb4dWFFs0z0h9NDQrvgggvM6aefHpCaiOPHo3yUoSCsRBkYoYwiFk577LHHmjvuuCOB1MTAv29MGjEREzYG4MMTKn7+xGfCIiqt5LU1fMelrtls+d1ATBNSE7jw2/SxZdIH1axsLVfMUCngfocJNXLPaPuceOKJTr0t2zoVVfxHLRE5TGriPeq/g1/+31Q3aV9UdZB8Ubno169fwm+e++nfUyaVIS5Ju1TS+lt+T3IPwF7wJw6/Z8hwTFaGjYm6MKnJT8v5W265JZws4+N8vdMyLjBJxHTv/STJiiy4OD2DuV4k/QNpp/h5SBjb0iUTySR+vFz281km7cQwqcl/B1C//9j21uvfTi9Q1Xy3wyqWjfXNwgUJltWsYpMYyldXPZ9IxgrXm0UoJz802Iz1VEAlvWwhR/mkJgnPdPvcl5MLkJr8erw8aJp51sZJZ7n2W9ZYldNz/zW0AKnJrwNlv/jVVLtQYXTKatAnFVKT9KUlwT1vjTVv2YUG9L+E1BSO84q91te+nSZJCmzp97xn1X4x6kf/s6Ltj+/ftZ4Lo88wxeufusBC/kvVD0uWdaVKldy3w/8GEFe+KWFlJNqSYVJTOC3kW9R6krUnw3Xx+xsQ7MNGPozFiNHeDRsqQ0KsQQlJSEAo2tCGkm+lpPPrzHeWNmaqxQm0gaOIT5Jfqi1tXJ/U9Omnnzo18FRpOIfyohiKjGGDfCJGGxGlpLD5/TfUyZMZSr1yz/04EsYWJdmwgR3XJtjTjvGxpf/C/WAhYCYGecpPTxq/Dj6B388PQraQmojvt6eIBxGfZyFT4177pCYIfiygEGPQ/FUAAEAASURBVJM+k/RtJTzdtrDtL55D+tH+74Hr9ccueRYgXKGaKpYNrvlqo0rZulUEFAFFQBFQBBQBRUARUAQUAUVAEcgMASU2ZYbTVh+LQSxWmYmx4pCBBibrWI2GOoTY888/n3SAjUEZ0jFQhzw5gzPIe4sMO3kwsR4eSLvzzjuDlfPEQZGDwQQmkpBxlxWHsuqROLmav+qzr3XphuEW64BusX2IN7h3i7IHz+jqVv2y8jf89/ltfRLUgK48rI1bzRuVT2HDJlliEGSRh8/qZgbe2tsMunMf87dNA7wQs16yk4oYA8D3ntLZfH7b3uYz+/d/VpFnz03uGBiEvtaSSHAvlonNXxYn10AIy0StSfJFnElWnRPmE3UkDtvvf1vgDi/8e0vz5jW9HMbvXLeHueyQ1kE0Bvu/HBFfucsJyDUQtcQutmpS79+wZ5D+tP2ayilz+bPDgwH4IHDTDoPu3P/T92tmPrhxT/Pe9Xuab+/Z19x4TPsgKsSaIb8XnOAMIuRhByJOr3a1gpyYQBL73k6mCMGMyYGnzu/u7j94fXXHPubMvzWTqHaiID6hhNtAnlmUnMRYJS3P8eNn7yzB5o3v4+l2blHdvHLFbu75AY8PbtzL4DIQAy8UuHz7ftz8gHSHGsKnt/Q2T53Xw7x25e7unkAixEj7mZcWsti9llAkLgtRz+Lavr5rX3d9T1qFMSFvfTN6vvnXwDjB7UX7XHMd3Dex247vGFybhLNC/tVvpkoUhwW4ce2Ug6KXGL8hiFb5MFw0sNIWY1Ce1au+MWmMMXgcVpnxSU/E8Vd7+64XIIuywloGhhk05l27cuVKN6H/1VdfOVcC5MGANQSiXEwGd1kJjiIIbg5YwY0htQ8pi28ABoGKOHxD5s2bZ1C7EWPF68cffyyHbvvEE0+YBx54IAhjlToDz3wHcF9w6623Buf4Zki5BKIuAuFJDHIKq4opl3rhdsofSCcu36YoY9KGwW0mOkgPmYzVxGLgR925X+DN9aKo43+fCPOVuCQtW87x9/TTT7tvKdfHfZXBdL59t99+u0sCZtSf62OixVddCePHvfEnb8CS7zD5syrZv+e4C5HJE79u7G8N3/FwnTM59pUUWD3Ovf3iiy/MjBkzHP7cc4z7KM95JvkSJ1fMaNvIb5zyURbCTQj3jDqg2ITx3igOhuuoN7+fEVTl5mPbm89u3dt9r2kD3WPbG2IokSxfnfiuk3P52PLOgwAohqIVahX8VviDvCjvXbDkfZDMiMv7FDckvK/An0lM+U1yf/2JOfLh2UHFVAxFMdz7kJbfnSgjhNu7Ej/dNp/vtHRlpTsvv4eo9366tPk+X5yewcJcWz3rulHaX7TnxWjzSrjvjlrOF2abrzJXWNXQK54fHrT1/t5jR/Py5bvZvkYf1ye57fgOQTUf/ci68rSu1sSKoh123ZHtHGbPXBhXEaHdLzjSzsNwXXjba3GSDiqwpBlo32G0nx89u5uh7SlG3GR9JPph2MVWkZZr//bufQ33LhODXPX8l1OCqH6fh77HDUe3c+ekTxREjNjJtd/yjF0AI9dAtqjhfnTTXg4z8KJOYiwq8RdKSLhsIRYdsXtD86FN/9FNvV0+uNMTEyIsqlOf2D4BcfhuHNCtnkSx/bp5wX5451e7GIK+Gda/e9zF+37eIpDPvf5EOH0ux6n6Ycnye/DBB937/8033wyisGiMbwJ/fDPEPvroI6fEJMcQYCGLEI8xGdoC0iahrSZtAYmfbIsrUchHGG1E1Hd888k5hEOcCsfxie+QWDDisDCNbyFGX4X8cVlMe5ZFGCeffLI7x78LL7wwkhzEOeKTD/lRH4g6XHdY5ZS4vtGO99u4tNGjXPv5aWTfJyJFtQVEvVHi+0QnCZP7R7vAV/CR87LFjaDcc1+FiD6LhIfVRCUtbREW+tHepw1AfFQ65Vmgf5Jpe5B+Bel98hzKSlIHP1zKZwvRB1e+1IV7RT0ggxGGce+kfeMCUvyj7yH1ZbEk9adelEE9fBWrbJTZ89H+8suD/M410pfj90bfk0U6GNfL71EsU1zz2UaVsnWrCCgCioAioAgoAoqAIqAIKAKKgCKQGQIlMoumsbZ2BOikoxTCH6vPcfNSrVqMgLCDZaUwWY0bI7FkE7acZ5CCwRJREkECHMUBJMbF/NV+TBr7k1NMILPar3bt2i56u3btnHIFqgaFNQbUffdsPdvEB1737RwfYB3oKd1kWuYb3013ikLE79+9fl5l8cN1QGHm4TO7mR521Wrl8qVN6VIlTLnSJR1ZRNwTkOafp3c1e1hXe6xsZaV2C+vejsFrGbhHgejXyYvD2UceL7LuxcRyccVWt1o5SW4WL4/nFQRu2jlj/2bmuL0aByQW0h1pB8zP7dciiPr0wEnBPjsPvDc2OL7ADsYfs0cj50qAQNKfad0oHNmroYvDJIDvijBIuGkH1xnUoaZVAcLArZ8lvZ3UpwmHzn6fndlqSYmfy3anmhWCZLh2E5s4Z7lhwoC/e61Lto6Nq7n7z3ncYpy2bzMDGQn7fdbynCaW5yxe7fKHBHf7CZ1MkzoVA5dCNSuXMTceHSd6/bTJlZ0r0P77Zkx8AuucA1oYXwkK9w64oOvZOlZ/1J3Ehk1eZD79JUaSQhnqvk3XVqrkDu76IETxPMtqcpQAVq/LTnVowuwVweQI5Ky9NpH8qAPlMMl1fv8W7trBdZ6nlCX1zHULkUQMsqYY5Ap5HzKIyvu2ffv2wQrZMHnFH5D33dCxMpsBa4xBd1aJ4uoMl2m4ssM9KAP3MjiOatKKFbGJOalLplsG2SFkQLJhZXL16rHn7dFHH3UT++QDSYCBb+JwTcTBhZc/OHzPPfcERbKKXFxtEci1MElSr17svdyhQweDWw5WEovh+kvMV02BwASZFlcJrDQvX768U2yBoCsrj1n5HJ7IkLzYQkbAHQTp+WMVNWQq38Acl3FgwHdur732Shjs57uazCAdMXkhLgGZJPKxIR3ELjCj/liTJk0S4oS/wxdddJGLxz+wRXVKvsO4LoN4gUIAxkA9BOJkVpy/48nqnCqcSTl+Exi/AYhNokLA8wn+uIuUdtDkyZNTZRd5LlvMeOb9Z/idd95xykCi6sDEGe0uUQ+LLDSLQNRVUMrL5C9Ztkxgy/fn2iPaOre6lcqXctEtjAbXvucc0DxIPnr60mA/3zuQmHi+uWc817i33HHHHYNiOnXqlKAaEZ7QDSLaHSYfuf+tWrVy7yvOMTnsv1fC6nn++4BJXIiDzZvHrp16MWmb6eSfXxfZ98vOxztN8s11m+y9n01+L/x3ckbPH88oijhRVpyewaj6bQ9h9HeEYA8J/xrrvrdp3Yr2t2Pfr7ZPsp/tT91xYpwojuqP2JZsh729SfWHutAPuskuWmjXsKpb3EL7eefmNcw9lvwvikIoN33rtWnlGmT7wOldzDF7NnLXjqs2rj0Te9VTJzq7b/OEPg99j/4772juOqlTJlm5ONn2WyCc+gsfWPCwv3WdXr1STEWGRQT0w+gLiaVSp2Kxy6UHtzI1NqUnH38RBXnQLz7P9gmqVohhxHfjuiPbB1jzu167Pnoxgd8n98lMu7SsGfQJcEWeTG1ZriHbbbJ+WLb5RMXHFZsY7WnaJELsgZyESqBPkGJRGaT3TAwVQzHIur4JOUfCaAv6fRLC/W+l9DMgfEN0wWhDvfXWW06hG9Uf2sBdunRx30uJTzyfOMKxbyxu4PvIdxZ3eOQpbTI/nuxDNBI1W+KycIM2eqbWq1eM3Eh82u6+zZ49O+i7SDgkKt8gnNNvwKQe/vl87aPmyiKPJra9Lwa5jD6bWKq+hcQpzBYCEsQ72lDcW6xNmzaBqzmOffIbx8lMFu5wnv4b/Vsx7iNt3JNOOsm143BFnqmacD7aX7QhaT9yP2n/cY305TD6nn773F+4IvVPt81nGzVdWXpeEVAEFAFFQBFQBBQBRUARUAQUAUUgEQElNiXisc0eMenOIAZ/uNiJMiaJxVDhSGZhNzgSz5cO95U2WOEuBqHKjyfhTDwyAMYgSGEMIg8utDAGWSEDieEuTRRhPhs217AiOVP7dcpiw6pkrLklD11xaJtMk+YU7yhL9PHrLpkMtu7YxFg926lJjJwmYWxJd37/lkHQ77Njqy+DgCQ7yzwSik9WSRK9QLCfZvHKOFHHj9iqQWVz6r5N/aBg/wRLOOI8htrUitWx+7Ng2drAZRruzo63g/FRdn6/+DUzgJ7MDt9tp8hTe3eIqRRxEneGRW3VKsYG/ynHxwviEsph/LW3EzJRBilHLBf3DHef1NnlzwSPTEJIfmxZydy+UaxsyFP+ZIKv5AUJK2x1LNEMghL1FyUl4nxtVZjELjkoPkEiYWwb2fvLZItYVP5yLmrru3WZat0OQnIL2wm9mwT4+pMa4XjZHvurhX3ZewbnxWRlNO87cYcF6YkVs2LffPON7LrJeDkQtwEcMwCOVH7YmLT3yUOiwhGOl+oYBRSpZzieT8zhfR01ScFkDSQrDGKOqFfhTkKMaz/mmGPkMGGLahMTQBBlhbRDhFdeeSWI9+KLL7qJkiBg0w7x/YkWiCRRxqrknXfeucApiEtiEA1kEkrC2PqqUCgeJjMG8sPWrVu3hKCob6G/ShwVKzFW+MtzxT26/PLL5VTC1p9Mk0mqhAibDorzdzyqvunCZLKCeEzkMeEQtr59+wbtIN9VYDhesuNsMfPbUait+S5k/DIgqQkhzw/Pdp+2D2SETP6S5Q1RWr4/B+3SIDJaW++7NCHD9kVkRmkCZfKNdutDDz0UTEj5yURhgDAhkPrnZf/ss88OCIQSxpZJL7ExY8bIrpt8k98bRFKfpBlEsjuQm/w8/HPp9vP5TktXVrrzqd776dL651FdyeT5E9KMn1b2i9MzKHXa3raf/zo3uGRITajehq1Px7pGFDrHWILjnxv+clG2ZDvss2Ex8jwVucWS7MuUKjjMAQH/ykPbBpfzv9HRSkL0N3ZrXSuIl+kOLuBoN2PkcXKf6D5Pb9vn8BWNUuWfbb/FJw1Shk/y98s5dZ+mpoklrGH0u8KupyXuQT0aBIsfJAyiGIsYxPb3Fg9JGAsKOnj9lblLVsupYMsCho+HznbHLHqQvgcB3D9RK+bdMjzDhTpB5ml2kvXD0iRLe5r2h7S/+H747TI/Mf0GIaMTnoqM76fbb7/9gkP5TkmAELxpS8uYSpi0ISqDEL6lnS3pyAdlKr6/YaPN7ytjQhYJq0FJGp+IL2HJtijOClmLOlM/Fm5kYxCwpO8Csckn0JC/GKqEGIQcFGnFBg8eLLs5f9ODDFLscL+j+k6iHkTS8KKGFNnldIr+iSwu9DOg/yFtKvqPLExMZyysEYNAh4qRbyy+gUBEOw4inxCp/Djhfe6dPNeFaX9RHuWy6AUyYdhwLSnqZ7Qfkz3L4XRynM82quSpW0VAEVAEFAFFQBFQBBQBRUARUAQUgcwQKDjil1k6jbUNILB27VrnkgPlAgYj/NVZ/oCQf6kMODVuHCce+OcYfBDDtY6YP7meaqCKAQZ/0ljSZ7Md6A1qhwdZLZfA9Nu5fpDdN2PiZIIgMGIHYs1Vz8cUWFCTgRQSRTqKSJpzkD+w62cyflacsMOA7DzrdiHqr4IlpoiN89JIWNS2vL02sWyVcki32iORVCgbU3iQ/GTb2RKxUEiKMsJ9otbkeTG1mQkeeSbVNS/xyFSjpi2xg2sFS+H+JVOjql21XJAgG9JbkCjLHR/jCmWi8ZIsmShZaFWwptvV5eNmLjNDPRUlVMoKa2Sx0hL95ttnHUIQk1T8RVmXZnFS1e2vjzF3vjnG/GRd9/nXE5WOeyIGCS7quSWsovfssPI/G0N5ShSfmDg95eHB5nWrPABueYApZVWSrRb2JxR84ow/GS7kJ97JEp+JC1H7oWD//Yw6Eu61ov5kIoM0PrGC40wsmfsE3umympl8GACOKp+wqlXjhLxx48a5Yv1V5alWYTM5gcsOXLWJkg3KN7KSneuLIhzJtfmEJX+iQs6z9V1H+OGiTEVYsm+Rrxjjp/X3IQn4eck5Bvjl/jAgXqVK3CWOxIGg47ujk3D/XjIhkQx73GyJ8cyEJxk4V9y/41L/bLbg5pMLmaxAYYfJRSHXZZNfOG4umPnENJS/khmTXP67IVm8dOEolPRoWSOjv3R5+edx2Yn63qyFqw1E6VFT4+/yjYX//PhFpd3nvcP7ADcivFN8jFPd5zCpUAqCZMrvFfMJprhXEevZs6cpU6aMHBbYCpGzwIkUAfl+p6UoKqNTyd77GSX2IrF4INNnUL7VXvKku8XpGUxayW3kBO1flIzEICwla6+JmhtxaTtiW6odhkqRLGzh2WpYK66K6irm/WuzU/zbO3padFsXtaBcbNLceLuVPk+SLo/LumPE4pRwmbn0W/w6+MSicN6oUHXyiEdTNvW7wvFa24VBUVbVW6DRrF6lqCgJfa6odrivmEUfPdxHTFBb9vr4kYVlGej3W9L1w7LJGpdzYnw/aPslM79tgKusTIzvmbQlxdUt6Whvy3cMko8soBBXYcThvLTlfXfXvqqT344mjW8QoWS8BxI5pPuw8U0VNdbwufAxClNCSOIcpKRU5YfT+8eSD/XyicpC5OJ6fVK7368SN9/kl6qP4peXyz7KV1FGv0nuaRSmUWlyDUvWHiK/Zs2aBdkuWrQo2E+2w/MthuoYfdtXX33VuVyW8Gy3RdX+oj+EW0QUvPitQCDLN4ks1zZqthhpfEVAEVAEFAFFQBFQBBQBRUARUAS2dwRSz6Zv7+hsg9eP6gcrAhnkksGvbC7TV5MIpxN3OuFwf7AsasLWj8+Ajz9I559Ltw/5w3dDt8EOYAydmDgog8s2sY/sClHcAaSy9Rs2mhtfGRkov9x2fEfToGbMbVCqdIU9l4wYBLlF7NkvJhv+0lmmruiqVYxP3Pmu0dLlL+d9YpG4K5BzskXtKpU19wbGWTkM0cmvC4pch9/9Xaos3DmUenC3JgpdkqCxJb4kM1Yfb06DMCdW3bp/822dnUj+cOgsR2D6xT7DUcpDfvxc9ilfyhgxJT5RnS6vA7s3MD+MXWAGj1/oon7y8xzDH8bEOm4kcFPCqnjf5ntu3y4eMMw/lXQ/U1KeZMAkzZ0ndjKXPTvcBbEC/dEPf3d/TA6xQr6vdTvYrVn1SAUCySeXLcRMXDTw/kJ1icFNyBYi089grwxak7+v3gKZ6aijjkpwFxGeaBZiD2lRnsnE/En/TOITx6+jn8YnzBAuLpn8OFH7TNSwKpyBZDHfVYGEpdrOnx9X+0o1IE8eO+0UV2TzMfPz516ls0xWFSfLwyd2JYsTtWI7WVzC/e81K5kzwV+Ui8Ir74vzdzwVBunO4f4PIhP3nWu/77773B/p+vfv71TCcEmRyf0Pl1VYzHC5m8pYJY/rl8LY1VZZpdWOmale9rrmy5RFfW2J39/9Nt/8aN2FoZSxJQ23LK+//rrBdYyvAJpNnWQiNipN1PPgEzFxk5nKeL9la/l+p2Vbfjh+svd+OF66Y9x24Vo4E2PBgK8sE05TnJ7BcN225WO/Lc91ZtLmJh4Km7jD3lLtMP891dojLlG3sNWpFm+fChkqHCcb4p2fdpLtu4i1TPM+9vs8kia8zaXfstDrX0A0S2V+v2yR18f006Dims4gieZin/wSbxtWsn30cL99wyYlMPLGnfVlB7d27tdzKSucJlU/LBw3m2O/vZbu++GPi2RKaKH9CEkHFVXUiFiMRptVlIl4nzOeAtEHsgltRsi0EO59wv++++4bXJbfXhayb3AytEM7XOJzrbhC9i2TNrDEv/baa2XXbXEXlqv55HbceuNqjb6YuPwGsyZNmjgyM+Qu3N9JGnHhB1E5m/pnU1fuS7Vq1ZImYRyNtmtRW6NGjZIW4bcFMvlNgzFusHE5h7FQRxbr8BxBJDvuuONcPzBpoaET+Wx/8ZvCdTn32ievhYos1GE+2qiFqoAmVgQUAUVAEVAEFAFFQBFQBBQBRWA7RCDO8tgOL357umTkpJEFf+mllzb7Zc+bF5f5j5KC9itUq1Yt/zCrfSbhfLvyuV/9wwL7kDkgPoTJL37EJz6eELhBw63W7m1yr5+fb677K9f+mXVSf7A/VeLqleLkmuGTFqeKGnluhKfi4OflR/bJU3647Ptu0YTQlCuph9Xb1qmaZF2stqxa9lWXanrYQ8i6/qWRgSuLoqj4MHt/r/m/X3MiTEEAu9u6sIMU9f6QWcafxMEFIH+PfTTBnLh3Y3PuAS2D1eqZPof+9YYn2PxzyfZ3aVXTPH/JrubtH2YYyItiPEdMivCHu4uHz+zmlAXkfD62kJcgNjEwzcAsEw0yweGvjKYs1JiYdIBkyqA7K0n9QVdIUr5JPn5Yun1/8jxd3HTncx1sX7gwRoBbuTKm5kA5UWpGqcr33SFEuU/w00Img8Qgky5MamRLIvLzKy77K1bEJ0uzqROTWWFiUzbpJe7m+o5LeblsUZNkAm/AgAHmmWeeCX575AXBUEiGkGR8tx+5lJVJGl+RK939YxV5cTAI4g+8O869J7d0fXgnPv744+aKK67Y7FXx353p3jk1atTIun76TksOWXF6BpPXcts9k2ube+mqOAFyS7TDeG7EqnsLNSTM36IKRDtQSE24W45yt+enyXTfJ0ShhJrKVq6J1zlVvGzPrbLu3cT8fpWE+Vv//GoPQz9OUe3/YVVa/b7Qk59MTFvUt7avf4BdoFBYS9UPK2ze2bzf/XGRdO0Ev14scIDYRNschSgItqLMhFITbeG99947SMKCC0gmfj/DV9uRPgbEFt+9WJCBt+O7wvav1YuS8+71119vxF1ctplAipL2P9d73nnnOVVH6b+ICz/cQFMGbsruvPNOp14upGlI8Nuzbdy4MevLRx21c+fOzuWctLPJBPIYCw74A3ueV79dnKygfLW/UP864ogjiowstiXbqMmw03BFQBFQBBQBRUARUAQUAUVAEVAEthcElNi0ndxpBhWE1MSg1SWXXGJYcYdbHZG/xmVcv3798o4I6hz4t8cmTpxoUql1iNuiXCoBYSFb++LXueaUfZpGJuPcm9/PcOd2tWSJ0/aNjheZOEVgrpMGZOkrIV17RFuzc4vsJ9SSVa1x7ZgbL+oH4Qv3XY1qJ3fl4OeDkhRqSmLJVCOmWVcVe7arLdEKbKcviLu/aFo3tsoY93Ni+3etZ87+W3M5TLmtHVIMShl5M59EiUgmVKpXKm38Fdm3vTY6IDU1tPgf3nMnR8CpYVWdUPJiRfNblrSTiVpX1GVxfy8a8EtwCrcx+3ep55TIqpQv7fKvYMu4/qUR5peJ0QS3MqVKmCN2a+j+ps1faUZaUtvwyYvNZ8PmBvm+PGiaKVu6pIEQiEEg5LnCXr68pzvnDlL8I30uxvN33ZHtzKV2ZTduk0ZZVyNfjZpncE+Hgf1Zj/9kXruql6kZUsvKpTxJIyt/OcbFwbp1cYU1f2W0xIfsJOp5uE349ttv3Sne0ayC9Q1yypQpU1wQKnjJFPL8NJnE8eOn2vdJp9QPZZxMTEhMvluK33//PavVuz6xwHcvEVU+kyxCaqKe2wKpiev08T/22GPNbbfdFnX5BcIycZ1XIFFEwOb6jkcUXSBIJqkKnLABuEnBleENN9xgWEXN7xA3JOLikTTHHHOM+fTTT03UbzIqz1zDcGcIyQqjfZXKZRl1LQ728qCpAamJCXoUeNpYN0SQAFC8xFXoROtq6dJnMlPdK8w1oT7hk5rOOOMMp4oHgQ3VAybIUFvyJ4YLU56f1leN4H2VysStT6o44XP5fqcxwZbMUrnoS5ZmS4YXp2cwGxwK07bPppyijlvNugoW4x3wf5fGXQ1JeNSW9qNvm7sd5vcVxJW1Xx9/HxKUtMG5xnyRmiij1Y5VgqLSqY7+PrtoCK1+X3HGwlUmmZs4KkpfTywdIUzi5Wv7xYj4wqdM80ThKR/EplT9sEzrkiye317L5vvhE4aS5S3h/uIHUfEUYpO4ZKP9TbsDMhOKRBCbUK7BUK/0CUzSx6B9BcmpTp06UlSBre9qz7/WAhEzDHjhhRfMqaee6mI/8sgjBgXL448/PsPUidG4rqeeesq1+yDpSNsP9SDUmjAWoUBsgsw0c+bMBLfdRd0udBXYBv+BO39z5851Cwx45v7v//4vIBVxHw4++GDnajDd5eej/cVzzH0Wg1hF2x9Xe5DRZezz6KOPzlkpfku2UeW6dKsIKAKKgCKgCCgCioAioAgoAorA9oqAEpu2kzsvMtxcLiumwm6OCPcVGTjOlyGHLoaKCQNrycx3W5csTlT4fCu7L66xOM9AvPVKFWlz7QpRXGBgKLqc3KdpoCojCSbZibtbXx3tDpnQu+W4Ds69gpyP2srAOJMbyVb/5qJA45dVs3LcfQIrclOpTfnpMtkvVXIH50JM3Pm9/PVUc70lh2Rir34zNYi2Z/vaSd0EMCGaysBdTAbia/jXbBWr8nnNUtbm3G60K8Mf+yg+Ufq3rvWDSZVldsW7TxB7+vwexl9NLfWcZ5/hXO3XKXGyUvtGVZ1yUVRe/mRH1HkJgxDH30E9GphLDmxtXho0xbz6zXR3GrKhEJv4HQmxCVd7TeumdwcmZeS6xX0GygH8UQ/IV/94fbSb0OJ3OnzyIvfM55p/OB1kJMg0DKiyWlgIGEwYtGrVKhzdrWCVQNwsyUpXBn9Zbe0bq5CF2LRmzRqTzrWVnzYf+/7kBdeFK4Ns3LX5rqD4DrCKNlPzy2YiYu3atQkTMn4+/iSSTGL457fWfX/CC/zzocKUDRab4zsuJDSuL5nSlr+SO1X9yWvXXXd1f5deeqkZP368I8lAcsLefffdIic2+Zi999575uyzz478zcyYMSOYfEt1TZvj3PfWzagYbj15d4Zt0fK4G9XwuXweywQseeKuRlyd+GVMnTrVP8zbvu8+aMSIESnz9d2mpIzonczHO83/RoRdhXpFmenTY99jP6w47xenZxCcNkfbvjjdj2qegijtpHrVyqXt/6Sq/+Zqh/mkHEjs6207s7Ql4UeZ376tb0n3+bSdPHflP09Y5NxpR6nYUr9vxiQqDeerHrWrlguymmKx6N0+OCywM8G6EBQLu5CW8KLaovwqhhKsj52Es4W2efJDg10QCy7mLl5j6lWPX6M7kcW/VP2wLLJJGhWCtVi674coBRE/7NJN8ojaQlrHjR3pcf3VokWLIJqv1HTggQc6YhNtEAjxkKwxIT9JItr00segvZSM2ARZCCKVmN82lbBsttQLlSTafSiLY5CcuDYITtka41sQm8gPbCCxY6g0iflKVZBT5B7Qf0N5SC13BFjEcvjhh7u/u+66y7lYPv30012GPDcQyXyX4VEl5aP9JQuFyJ++gPSvw+X5fcbwuXTHW7KNmq5uel4RUAQUAUVAEVAEFAFFQBFQBBSBbR2B6BG/bf2qt7PrQ9p8+PDh7qoZqBIp7jAMstIvHF7YY3+A4j//+Y9JJrWOsoIMuGVb5n9HxJViTrXKSi3qV3IrVCHHhP9wJ9e5aTVXBESL0dOXJBS3YvWf5tr/i09k3XtK50hySUIieyAKQ4QLgSMc59fJiWWFz6c77u4pNH09+g9HoIpKA7Hq54mL3J8/gB8V1w/r261ecPixJX0NtXmkszHTlwZEFuL22zk+oBtO+711IZAMG8g6nBdrWCumFtWuYXz1My7yUIdKZr/NWOqumToVR2Mw/anPJhrcIIod1GNH2TXjZsZXb/fvXj/yudtolRm+HxvHKUgcsSPu/PxTPjaH7baTfyrYn2qVtWQ1exBod1ZbMh3p+ZvhqWtJnKpWXQv3c+KKg3strjh6to5PkKeazFm6cn3w7C5akfxeR5EEUY+S+vluSaif9TxiujWvbk7q04RDZxPmxIl0ElaYLUQfcTmHSp2QKPwBdT//5s2bG1YRYwwAi0URT3E7Ifbhhx/KboEtE9wM1POXT7JquXLlEr4dSPwns0mTJrnyccsnqlX+NbE6e9Gi6HcLikwMeqPCcvLJJ7siWFXur7zFlVgye/nll4NTci+CgK14p0ePHkHtIc2xKjqZDR061OE/ZMiQZFGyDt8c33GfrJeMsOK7UfEvYs6cOYbr5S8Km9atW5u77747SDJs2LBgv6h2mJgT47eAklTYcEHHxGNxMN7vv8+KTXKjJNijZfyd7dfvx/EL/cMi2/cnpkTNIVyYP7EUPleYY94/QsZk0jiZUhxEO9q12Vo+3mkoD4glUzvdsGFD8B2SuMV5W9yeQbDKd9ved9m2ue5FNmWiyImSp9gvlhCezGZaNSD6Gr9MWmTWb4i5MNpS7TBITKjrin3h9QslTLa+wm+vtrUkOC/bEnZVjdQDYtgNL48MsPELuP+9cc51sx+Wr/0eXl9x4LA5ru0elTdt9F+8fl6nJlWjohVJ2Fjb35mxSS2KRRZ72UUx4f66HDe3ffkz9o+/71Ld23SVTdcPS5c+fF5cuPnhqDWK8f3wFY4knC2LFF555ZUgyFd9DQJT7LAIAmNhhPQ3UGgSpVTOSdubeuKiVyxclt/HQGknmfn9D64zF1esft5C5jrnnHMcoUnOQY7JlMguadjuueeewSGkKWkHCw6c5PsriysY+6K/hOGi2CcMu8As/iXr12SRRaGjpiI5FzrziAx++uknh3GU6ij9xhNPPDFhQWMmRPB8tL+olxjPVpTRbhKF36jzflgUrluyjerXTfcVAUVAEVAEFAFFQBFQBBQBRUAR2B4RUGLTdnDXcdUhEzQMbEV14p977jmn5FQUcOA2RMrHZce5555boBgmJY866qgC4ZkGfGhJOGJ9OtaV3aTbft3i5JvPhscniCGN3PHmmIB8c+2RbU3rBnFiTdIM7QnctYiJCzs5ZgtJ44lPJvhBWe93sIO/olgEOebB98cVyAOPJM98PslcYl3F8PfOjzMKxEkW0KVp9QRiEu5mBo36I1l08+P4BebsJ4YG5yGN9W6fXL5eBvnXro9NgEhCVi4z+M95DBKMrJIvZ92RHbiJ/MP5K58fHsST9Gx/GLfAuhcb6q75rrd+Myk8s/jJNts+hJurXvjVvGJdtImd379FgnKR75JuoiXdyESRxIewdu/bY+0K8PUSVGCLuyCxHy0mYRya1Kkop4NJ7CDA7vCc3vHGGD8o2EdpifvN37H3/2B8hS2JtGjF2uD+NLcEQ6nPPp3iv8sX/jvF4OoxbJCRbnhlZPDs4kbOt4rlSgaHTKaFjckqqd8D7xb8bRB/2h9xtxudGlcLsoCA889//tOt6n3zzTeD8Gx3fAKOpI0Kk3OiYMfqYrHevXvLbrA98sgjg/0777zTRJF7cMN23HHHuZXYrMaGLJpPY4BaDPl+WeUsYWwhpOyyyy6uDkyULFwYI0Hg+rRjx44uKt8giApMuvu2evVq536C7xR4+CvKfbcUZ555polS93vjjTfMo48+GmRZmG9KkEkx2alQoYI57bTTXG3AhufGf2akmqxK7tWrl8MOhaBULqokTSbbzfEd5xkRe/zxx2U32ELUQ7knykaOHOkmtJjUwpVIFIHadxkW9RuLyrcwYUyeoZApdt9997mJs6efftp89NFHTj1ht912i/wdSZrNuUVZBWU9jG/M/KVrChT/4U+zzBdem6lAhDwGyPuCLKNI7xD4rr766jyWmJiVPxHKJOvSpYmEaVTFTjnlFOe2JzFlZkeFfadB1hNjcjxKmemxxx4rNs+X1DXVtrg9g9Q1H237yuVKB5eNcuTmsMKU6S9QuP7FEQbVn7BBijntkSGuvXbxgGEGUjpWmHZYuIxsj/3FGXe+8Zv5fXa8XSV5fWkJT298N10Ozb6d6gX7+dq57JDWAcGfvhrt0v/7aopdlLDAvP7tdHOhdQfN4pGisrZ2QYj0FSEP3RPRJ6K9fa29t9Lv6tOpjqkccidYVPUj38+970gmruX27RzvQ3wwZFaBvk0mdc2kH5ZJPrhBFYMYE25n4QZa2mvEgzCzZElif4bwK6+8MnDrzMKzbNslslCNtuBDDz1ElsHiCndg/0FKF/Wlm2++2QWj+MnCCt/4xom9+OKLCSQoCUfdxm9Xy+IDOV/YLW7ohBRGP4E+B9/ZbAw3teL213fZTFvLt379+rnDt956K1j8l6qv5qf19ylPjEUHW8JQmhITkpYcF/UWRVTa3eAbRYjDFe7kyZODasj9DQKS7BS2/eUvLIjqL9KfECWpJFVwCsxyLgrXwrZR8zXuIHXUrSKgCCgCioAioAgoAoqAIqAIKALbEwLxGfDt6aq3w2tFMeSJJ55wV44EN5MxDERAKGLFOxPCRWU7WKmUd955x0lBUwZlMchx0EEHGSZLBw8e7M5HrXrMpE7jrcIAbgewJnUrOrWmdOn2suSbeyxBBPvMrma98O8tDQSa/3w9zXy7yTUAg8KVLEkkFbGHlb7i6qCdJR2Jvf3DDOd+oE/HOqacnSyEAPKiHdSWAWSJl+2WlcD/PL2rOeOxIS6v9wbPcnn3bF3LXTcqO58Nn5PgzuyoXo2yKuaiv7dyK7BFsQfCEYPkf+++o6lfvbx1CfCXWWDL+dTi5isPofBw5WFt0paFIsSJD/5oGERvUa+ymTRvhUF9Slbuks+1IRd4lx7c2l3n2BnLHBnnlIcHm94dapuOlpjCCv+hExaagcPiRJnT921WwL1g2orlIcLHP882vkLWn3YFOziigBRWqkKR6dg9GyeUWte6/GhYu4LDApyYDNmvcz3T0hKEmFj63+h5Cfc2IfGmgx3tPRJjcvqiZ34x+1iyX7N6FQ3EtW7N4yvxmdyZs3i14TnGzSGKUbgilHsv+cgWt3iQzHDhiF3x3HBzuFV96tykunvOf5+9zDw9cKJEN327xieMdqpZwdx+Qkdz0yuj3HlcPX41ap5BhayudZsx3SpAUR8pGxz2aFc7yIudBjYPsc/s/d6w4S/T05LpUPXCHd7BuzQwL/1vqovC5Nqflgi2+6bfxgLrrnKg/W2QTsxXQGNl73XXXedOQQ5BIScXV2ZRExMQTZIZA+kPPPBAcBoFJyGCBoF2h0mIV1991RGXCD/ppJOcxD+rrlnxzIQDk9hCXCWffCvBMBHPKtgnn3zSkWqYPGDVM9fMylxUcO6///6g2qySFZccfAdw/7X77rs7IgCTQRBZIGy1b9/eQFL44IMPjJBPmIiRFdVkeMwxx5h///vfzqUGx5BXWK3Od4yBc1ar+yvJL7zwwoBIRfxtwR588EFH8Pj555/dRAwTBHzbmVBYuXKlc2fmr/6/8cYb7XvQSpXlwYr6O04VIcSJ8YzRJuAZYJKQVd733ntvJJmLNEzwMVmHKxWeIZ59SH7kCWGOSQnflVkyFTUpP19bJgtvv/12c9NNN7kscQvsuwYmkGedCZZ77rknX8XmnE/vDnXMW9/HyNCn23YG3/0uzaob3p+4VfpyxLyc8842IRNb/OYxJlOZKIbsiCsc2o1Mghal8bx9//337nniucK1IO8r3lu8b2nXRpE7M61TYd9ppUuXdhO4omKG2x6eNd79/Haon/9OzLReWzpecXoGwSIfbXvaM2ZcDNlHP/zdTLLEdVRqIPEXFZmkMGX2tS6Sx0xfZujL0G85+4mfbJu9rulm3wUoOo2ftcy87JH0Uf8UN2aFaYcV9tnb37aX37ekF+mbXPDUz04JiLYv7cEhvy8M+niUdVSvhhn1GbOtF4qz953axVz49C8uKe15UcPz87r4oFaG5yHfVsJ+968+oq1hcQrGe5s29p62TU3dIHzRt/X7JRf0j6mH5rsuUfmxmOUjzw0dv/l0Rhu/VYPKDkfqjUIvv6GwFbYfFs4v6tjvG/CupR1PW4W2LG1SDFINpBlIR3w/eD8TZ+eddzbTpk0ztIF9l26QucuUKRNVXNIwXGyFLUzOoe0GsQpCtRjjL2FDAZA24x133OFOXXDBBe77AQEIYj3fQpRoxbieM844Qw7zsqWtxxgR7uDADaVL+mV+vyKTgqizfBeJz/VDNPdNSGF+WFT/zT8ftS+qu5yDqAYJm/vCffCVs6LS5ivMJ6mhIAkZjLYS/VifAJ2v8vx86GuxUAU766yzXNuIPi+uDVHvRY1YiOlg4rvhdYmS/Cts+8u/lyx44TdIvwDXifRVn3322aC/nKQKCeS/KFwL20bN17hDsvpruCKgCCgCioAioAgoAoqAIqAIKALbMgJKbNqW7653bRdffLHzL0/HnkE4BonCA0VM+slqPi9pXnYZAMNFkCh+MDHLn28MDjER6U8++ueT7X9uyQpi/VO4QZM4bHGZ1atdLev6bIEbtEfZBqWn/46MT9oxcHrjyzEShp/W3//45r1MtVKxgUgG/E/fr5l57svYyrSvbF78+XZozwZulWphCE6N7ATJg2d0Nec+GcNv1NSlSckuj5zVzZJB4kQXvy7J9sHm+Yt3Nde9NCLIF0IRf8kMZZ4H7CB+HUvMSWWsYob4Ara+cpGf5t5TupjaVRIHIFnFzyTBOZboQ1r+Xv1munnVxFddSx5n921u/JW9Er45tskmL8JlX314W3PIrg3Cwe740oNaO8IQB1H5oajhT/yFM+H+7W8JRaKqgfs+/rhHL17a0xKYypizLEbPfDbJJYXIJ2Q+yWtP6xJixZo/XToJk+0p+zQ1uJBgYg4S0tMDY/nIednuZ1dXH9azoRy6LapNf1gVkMc+muCOvxk93/AXNq7x0TO7Bapdch73KJwT8hOTNfwd37uxYVIGMuL5dvvkJmU0MBAcJA+2uMq7/YROpmzpuGjhjBmxyXyJB0HIn7yQ8HRbSEa8y4Sgg7IOpJ9kFl5FLK4louIzKYLqi6iUvP/++4a/sEGMwjVFqVL5/8RDwgIbymXiAbdy/IWtf//+CYQtzjPQjVKNEFggBTARHzbqD8nJn4jAzR+kHQgpuFalbI59Io/kA+YyOSNh28K2YsWKjhy21157uUF6vues0peV+v41Mqnmr6z3z+W6X5TfcerERAQEIHkmmBTkzzdUqCD4cf994/mADIWSGOeYMPQnDf24KJ7JM+iHF9U+v1eeZX47tL98O/bYY92zyiRncbBj9mhkfrCqInxjIcZCXvAJDNTxnAOaJ33v5/MaUHzDnaQQwZ5//nnDn2+4FxRCqh+ej30mJSFj8o7mmeK9F0WmGjBggOG5zNby8U5DIYH68VxRR9QTwoZK6lNPPRUOLrbHxekZBKR8tO0PtARBlHow2v+ouvJHuzbfrtBcIfZfYcu8xJJu5i9b49po1BmFoSiVIZRaLzmwlRRbqHZYkEmOOyz++MfxHZ06Ku1n6s2iB3/hg2S9l10ccW6/FnKY921X2yd84PQu5l+fTnTtZb8AFouAb8Wy+W+jSTm4o7v80NbmwffGu6Co/oTEfcj2KVm4srkMgpn0g3HbR78kE0PZievAUFuOIjaluk6/jFT9MD9e1D7kDL7dosiIuzn+UHARl1z16tVz7Vja9PL98BVF/Xxp8+RCtqZvAUlJCKyQpH23wVIGJBef2BRF6iEuipi0K6VdTbskqm1CH4drh1ybb8MVNYQPFi9gfHMhEzM+lKlxfTfccEMQXdSZggC7s+OOO7r7JaQb2reQXrI1SD3SLuA+Q1Djj7bD5nKHDVb0m2RhC+Qw/q644ooEF8zZXlsm8SHv06+TtnrU+CL58NsQnDLJt7DtL35/t956q/ujPH4j8juR8vnt4A6a326UpcO1sG3UfI07RNVdwxQBRUARUAQUAUVAEVAEFAFFQBHY1hGIz+pu61e6nV8fSgZM8jEx7ktWAwsKGpxLNtCVKXTpBriYcITc5K9uk7wvueQSg696f1DJn9SWeFFbFIrEMnFDJ3H/1qWe7AaqTKVLZveTKFUiMT7EJkgjKEeFDbdjkFaSmV1UmbGhVPSv87q71d5RiSDNvHlNL6eGE3U+XVj1SmXMo2ftbJWT2kZei6SHSHLFoW3M0+f3SEtqIg2qPS9e1tOqEBUcPGSA+tGzu0UOVJO2BnWy55MRgiC9gAnEm1ysVMksboBXQMk0Nw4SDauM97bqXbce18H8944+Sa+BbFnB//wlu5qOTQquREbl6d8X7mInIJITZcjjCksgg+xD2VF2qsXolmM7OHWo8HkmralnsrTcc+pwUp8mgasLPw8mbHhubrOTS1F5oFJ14zHtI58r4lP+y5fvFvk8oar2xDndzQl7J7+2E+x1P3NhD9O5adw9gNQPNTCevf9cuXuB3w5qRCJdz2An78VczR/M9vej8uM9x3tZDAWmVMbENa5Dpa5+XN7tTJAgu8/kQKbGBHumBlmKyXRIsOLewk/L+/2ll15yg9xR73BUT1BbERd8floG5pkkgPTqS/xLHNSfRHknqmwwYQIfN32sMPctm2skXTIymv+dy3Z1vV+fZPn7ZbN6PWx8I1Gnwh1flPEdl1XuUefThfnXFxW3qL7jUhaKAUxGRD3frPzGXWQyYxICZSfqGG7ncNynTx83gXHVVVclKFll+2yEy0+HGYoJ/G5RqsRl3qeffurUD3CFgcsXCH++67xsVLbCbZBw3dIdlwx999z7/aJdnKJi+P3NN+nf9lyPljUjsxX3sVEn/XOZtrP4DeMWFGJY+PfOu4LJ18suuyyqOBdWItQ+SxYx6ncmcVu1auVIolHtY8ibTIr6JLmod57kFbUtzDuN/CDSfvHFF4a6hJ95iIK8S9u1axdVtCnscy+ZpmsDSbzwtlSpeJurlFUBEivMM0gepZK043N5BqVOhWnbk0ezepVc+9R3lSZ5yzbbevvXI3n428KUST7kTzvxjP2bGdpOYUMRirbiPad0DpRrJU6u7TBJn2xbMoPfNMpRT57b3bUlo+pN/+xaq2Z054mdnFKvX1aSR8ePktX+blYx9P8u6en6Y4+fs7N54tydzfs37GmeuWCXmOLs+g1BfvFfQxCUdiddv+WI3Rqap87vblisEGUosL521e5mF0suCluark04uikd+pZIhDLe71ze/YNGxwm+qX4Tkods+3jKTp/+MjtwR5fuHcS3LJt+mJSXagtJA+JI+L3rp0G5BiI+5NIoQ8EG4tA111wTdTqjMN9lM+SoqPYDZHjfxFWbH8Y+bVr6FyxWgOgTNq4V8jnqTYwr5Wrpvj2oXj388MNB9qiMo3KVqXXq1CnhvkR9v8nL74ckU7hNt0AElS7a3L5r2XA9JY9UbQ3SsHghF6OthPo6ilHJnkepA/mn6rskq2Oydi59GdSMIJ1H9dvoE9LmRkHLV5bK5DoL2/66/vrrXX81atyRRZT0VStVqpS0KulwLWwbNZ/jDkkvQk8oAoqAIqAIKAKKgCKgCCgCioAisI0isIP17/3XNnptellJEMCNx8SJE83atWvd5PfmksqW6lA+E3r8MYCC/HmyARNJszVul69eb1UP1lg3E6UMLsbSTULkeo0rrbLOH1Y5Z92fG0z1imWcOwhWLefL/rJviBnWhcE8q7Tzx5I1ZqMNwHUY6kyoR+HyIJXhXuyRTa4WcKMHcQdbu36jyxd3beADmSpTW2fdGKD8w7VXsCue61mijwyYZ5rH1hAPdw0zF66ymOOGrXyBSZhMrgGMcMGBOhHEoLChzIQ6BwP/rNjO9jnFFSDpeQ5wcZFuosUvf8nKde7ZJW2tKmVMNfv8Zmp/Wjd0XBvPYxXrIi+q3pybZ5/ZZav+tM9Y2bT5/2Xjs3qzatWCpLJM67U5482fP9+t0GWSgNWptWtHT14VVZ1wd8B7nHpQhyZNmiQdVI+qA2SOmTNnmjVr1ji3pNl8izZs2ODKFgUcVl9z/VGTOlFlbwth4MYK7aVLl5oqVao4gkyqCYt8XvPm+I4vXrzYTJ061bnzgKjnT8xkci08G7Nnz3bpIQ9t7meDZ1RW0NPGEbeMUXVHzZIV9tiQIUMiJxWj0hVlGO/PmQtW27YF3+iyReYyK9NrwHXy3Llz3buO993mvp+LFi1y7ysIU7zrUk2IZXpNfrzCvtNIj+sX2vYQnqpVK0ju9cvbGvaL2zMIZoVt26+xZBbav7Q3qlYoY5/jor8ThS1zg21DLly+1ixZud619SCfhYmPya4i23ZYsnxyCd9IvVesc67BSY8aLO3MosYc1520UbE69t2ZrJ+E27z73hnr4qHgdLRVzCsqQyGJftMa22avZPultauUS1AtLapyt4d86TfgEpkxDcgOUcZ7mfYI7RrIIJBzi3tfY8ECq95o60x7D5UqvrvZtsOisNhWw1atWuVcHwtem7uNAq48h/QJqEONGjU2+/2y48quHUJ7BPJbrmSt8DNS2PYXmKBGBvGrcePGWeOSCa65tFG3tnGH8H3RY0UgHwiMHz++yN1m5qOemocioAgoAoqAIqAIKAKKQPFCQIlNxet+aG0UgW0OgWTEpm3uQvWCFAFFQBFQBBSBTQhAPGPyEvckGO5VUNYJG6v9cWkhtnDhwqwIgpJOt4qAIqAIKAJbHgFceYub5ROtwuh5/VoWqBTkp1MfGexcfnISNacuTasXiKcBioAioAgoAoqAIqAIbKsIKLFpW72zel2KgCKgCCgCioAioAgULQKlijZ7zV0RUAQUAUVAEVAEFAFFQBHYvhBAlQEXM7jXw3ATc/7555vu3bs7l7yoIeCWbsCAAQEw1157rZKaAjR0RxFQBBSBrQ+B4/dqHBCbXh40zan3dmlWzbSsX9mstQp4Y6YvNa8MmmpQUcJw4dy5iZKatr47rTVWBBQBRUARUAQUAUVAEVAEFAFFQBFQBBQBRUAR2NwIKLFpcyOu5SkCioAioAgoAoqAIqAIbPMInHPOOWbQoEHmyy+/dNf65JNPJr3mm2++2Vx//fVJz+sJRUARUAQUgeKPQMfG1czxvRub/3w9zVX2q5HzDH9RtnubWuaW4zoUuXu8qLI1TBFQBBQBRUARUAQUAUVAEVAEFAFFQBFQBBQBRUAR2NoQKLG1VVjrqwgoAoqAIqAIKAKKgCKgCBR3BKpWrWo+/vhj89RTT5mmTZtGVrd3797m9ddfd8pOJUposzwSJA1UBBQBRWArQuCC/i3Nk+d2d2pMUdVu1aCyOatvc3PPKZ1NpXK6ziwKIw1TBBQBRUARUAQUAUVAEVAEFAFFQBFQBBQBRUARUATCCOywbt26v8KBeqwIKAKKQL4Q2LDxL7N+w0aXXZmSJUyJEjvkK2vNRxFQBBQBRUAR2GoQWLVqlZk0aZJZtGiRadiwoWnSpIn9JiqZaau5gVpRRUARUASyRIB+0JzFq838pWtN5fKlTeM6FUxp2x9SUwQUAUVAEVAEFAFFYHtGYPz48aZ169bbMwR67YqAIqAIKAKKgCKgCCgCOSCgxKYcQNMkioAioAgoAoqAIqAIKAKKgCKgCCgCioAioAgoAoqAIqAIKAKKgCKgCCgCmSOgxKbMsdKYioAioAgoAoqAIqAIKAJxBHS5YBwL3VMEFAFFQBFQBBQBRUARUAQUAUVAEVAEFAFFQBFQBBQBRUARUAQUAUVAEVAEFAFFQBFQBBQBRUARUAQUgWKCgBKbismN0GooAoqAIqAIKAKKgCKgCCgCioAioAgoAoqAIqAIKAKKgCKgCCgCioAioAgoAoqAIqAIKAKKgCKgCCgCikAcASU2xbHQPUVAEVAEFAFFQBFQBBQBRUARUAQUAUVAEVAEFAFFQBFQBBQBRUARUAQUAUVAEVAEFAFFQBFQBBQBRUARKCYIKLGpmNwIrYYioAgoAoqAIqAIKAKKgCKgCCgCioAioAgoAoqAIqAIKAKKgCKgCCgCioAioAgoAoqAIqAIKAKKgCKgCMQRUGJTHAvdUwQUAUVAEVAEFAFFQBFQBBQBRUARUAQUAUVAEVAEFAFFQBFQBBQBRUARUAQUAUVAEVAEFAH0vSYTAABAAElEQVRFQBFQBBSBYoKAEpuKyY3QaigCioAioAgoAoqAIqAIKAKKgCKgCCgCioAioAgoAoqAIqAIKAKKgCKgCCgCioAioAgoAoqAIqAIKAKKQBwBJTbFsdA9RUARUAQUAUVAEVAEFAFFQBFQBBQBRUARUAQUAUVAEVAEFAFFQBFQBBQBRUARUAQUAUVAEVAEFAFFQBEoJggosamY3AithiKgCCgCioAioAgoAoqAIqAIKAKKgCKgCCgCioAioAgoAoqAIqAIKAKKgCKgCCgCioAioAgoAoqAIqAIxBFQYlMcC91TBBQBRUARUAQUAUVAEVAEFAFFQBFQBBQBRUARUAQUAUVAEVAEFAFFQBFQBBQBRUARUAQUAUVAEVAEFIFigoASm4rJjdBqKAKKgCKgCCgCioAioAgoAoqAIqAIKAKKgCKgCCgCioAioAgoAoqAIqAIKAKKgCKgCCgCioAioAgoAopAHIFS8V3dUwQUAUVAEVAEFAFFQBFQBBQBRUARUAQUAUVAEVAEFAFFQBFQBBQBRUARUAQUgXwgsHrdBlO+TMl8ZJVzHsvX/Gk++GmWS39QjwamSvmCU4Pr/txoJsxebibMWW7mLVlrKpUrZY7eo6EpXVL1EXIGXhMmIDB38RozfMpiF9Z2pyqmSZ2KCee3hoPPhs82G//awVSpUMr0alN7a6iy1lERUAQUgW0GgYKtl23m0vRCFAFFQBFQBBQBRUARUAQUAUVAEVAEFAFFQBFQBBQBRUARUAQUAUVAEVAEFIHNgwAkoq9GzDMjpi42wyctMX8sXWPqVC1nujavZro2rW4O2Ll+TmSh576cbBYuX+vSXnpw66wuZsDAieadH2e6NPMsueTyQxLTr1q7wVz+3HAzauqShHwP6bmTLS8hSA+SIPDlr3MD0k44SokddjA1Kpc1taqUMQ1rVzCdGlUzJUrsEI62zR9Pmrvc3PH6GHedVx7WZqskNv3jtd9c/ds2rKLEpm3+idULVAQUgeKGgBKbitsd0fooAoqAIqAIKAKKgCKgCCgCioAioAgoAoqAIqAIKAKKgCKgCCgCioAioAhsVQjMX7rWXPrsMDN13sqEekNu+mzYXPf3v9HzzJ0nds5axeltS0xasmKdyzdbYtOsRauC+sxcmFg3Ttz+xugEUlMFqzBVv2Z5U9IScsTmWELU+JlL3WH7xtVNbUvSUYsjMGTCQvPJz3PiASn2ILod2rOBOXavxqZsKVXESgGVnlIEFAFFQBFQBAIElNgUQKE7ioAioAgoAoqAIqAIKAKKgCKgCCgCioAioAgoAoqAIqAIKAKKgCKgCCgCikB2CMxcsNpcNOAXp9BESshBPdvUNA1qVjBjZiw1wybGXHANGb/InP/Uz+axc7qbSmU3jxzSyfs0NTPnr3YXdFKfpgkXtvGvv8w3o+cHYQ+f1dV0a1bDlAwpCn3yy2zz3BeTXbz7TutsiU3qhisALcsdiG4DPptkBo3+w5LcOpkda5TPMgeNrggoAoqAIqAIbH8IKLFp+7vnesWKgCKgCCgCioAioAgoAoqAIqAIKAKKgCKgCCgCioAioAgoAoqAIqAIKAJ5QuDBD8YGpKZuLaqb+07palWZ4mo8o6YtMec++bMr7fdZy82HP80yx+3ZKE+lp86mS5Pq5o1rekVGmr1wTRDexbrL69GiZnCsO7kh8Pwlu5pWO1YOEq/7c6N1I7jO4IrtA3vfv/9tgTvHc3DWE0PNa1ftbiqX0+naADDdUQQUAUVAEVAEIhCIt6oiTmqQIqAIKAKKgCKgCCgCioAioAgoAoqAIqAIKAKKgCKgCCgCioAioAgoAoqAIqAIRCMwb8lagxITVq1SGfPAqYmkJsI7Nq5mrjuqHbvOvrZqPcXBlq2OubejLhCg1PKPQBnrbq5+9XJmj7a1LeGti7n31M5BIbgXfPDdscGx7igCioAioAgoAopANAJKAY7GRUMVAUVAEVAEFAFFQBFQBBQBRUARUAQUAUVAEVAEFAFFQBFQBBQBRUARUAS2cQTmL11rBo+PqejUsQSUXVsmVy36AxLT77G4zepVMu0bVTUzF64MENrdup8rWzpaU6BbszhxaMaCVUGaot6ZPn+VGTEl5gpvd0uuqVm5jBk6caGZu2iNmbUo5qKOOvwyabGpZxWFsKqVSpu92tUxnw+fY9au32jGzVzqwvkHiWvRshghqn3jqqZZ3UrBOdnBNd+3Y+ebOTb/pSvXmVpVy5qdrFu+vTvUNdVt3r6Nm7nMTJi93AW1s3g2t7gms9+sW79Jc1a407u0qmXqViubEJVrpdzZC1eZ1Ws3mLr2frax6km97LWUKrlDQlwOJtq8xto8sb071TXl7L0bO2OZGTZ5sS1nueluFawO2bWBO5+vfxCcHji9i7nyuV9dlp//Os8c17tJgsqTX9byNX+aQSPnmWn22hYuW2MqlS9t6lUvb3q1rWWa1KnoRzXz7X0ZPC7mWrB5/UqmXcOqCec5mGPv+8/2/mPJ7t+UeSvNaKsyhvWy9a1hn5kwVhWtK8Vpf6wyqJHxV6FsKVefXezvp0HN3N3rZfPsuAp6/zZs/MvVe7Kt/+S5KwxqWS3t/W9psWjVoIpVUUvt/nGRVdb6atQ8w3O0Ys1607h2RdOxSTXrnjH+2/WKK7BL+eNn8TyvcNsd7CPHe4J70bFRtQIuHgtkoAGKgCKgCCgCSRFQYlNSaPSEIqAIKAKKgCKgCCgCioAioAgoAoqAIqAIKAKKgCKgCCgCioAioAgoAorAtoxAWUt2uOftmGpOBbs/8La9kxIQPvp5lnn2i8kOjksOauWITXWrljdXHNra/GVDO1jyQjIrXyY+JQe5aHPZGEvckeu77biSZr8u9cz7Q2aZ/41MVI0aNdUSVOwfBg5f3F7HPPLRBIOqkG9v/zAjODy+d2NzQf+WwfHqdRvMfW//ZiDrRNkD744zJ+/T1Jy1fzNTokSMaLTYEp+kfvt0qmNuP6FTVFIX9qitj9TxuYt3DYhNG//6y9z/zjjn6i0qMUpaT567syOq+OeHTVpkHvnwdxdUo0oZ8+b3083Q32MkMAJL2Trmm9hEvru1rmX6dqtnPhs2l0PzP0um8d3XEWYvybz89VTz1KcTOSxgT34ywezRvpa58egOCa7sBMte7Wo5hahwwk+HzQ6e4QN77GiuOzKuJCZx3/lxhnnnx5nu8P8ureKITT5WENW++22+eW9wjAgn6WR7uf09HLFbQznMaJvLs+NnDCHqjjfHBM+Hf479OlXLmYfP6lrgGZB4A4fNMbe/PkYOE7a7WcLiDUd1SAgLHyxesd7c/OpIM2xi/Pnx43RuWtXccmyn4Jn1z+m+IqAIKAKKQHoEomnj6dNpDEVAEVAEFAFFQBFQBBQBRUARUAQUAUVAEVAEFAFFQBFQBBQBRUARUAQUAUVgq0agSvlSpo8l1GCrLDFn5CalmqiLQsFIbJ9O9dzuTrXKm8MtiQMiR+sGleV0ge1vM2OkIU6kilcgYREEVLTqOpCXwkYYf9UtEQiDgBWOJ3HY+go4KDud8+TQAqSmcPoXv5pibnl1VFB0D6uKJHG+smSr1es2Buf8HZS1hNTUpG7FBAyf+XxSAVKT5EkekLOusgpJkE+S2dMDJyWQmpLFy1f4gT3iSlD/jSCC3W9d1IVJTf41UY/vxiwwZzwyxKDqhNW25CzUgbDvf1tgUBAK2w/jFgRB341d4AhUQcCmnaETYopOEMJQHArb4x9PSCA1Ec+3B98b71Sv/LBU+7k+O5LnnMVrzDH3fx88H4SDFWQmsT+WrjFnPvqTU56SMNmiOBUmNflY/zhuoSMtSfzwdsmq9ebEh35MIDWh9NTQvhvERkxZak785w/BvZJw3SoCioAioAhkhkCcHp5ZfI2lCCgCioAioAgoAoqAIqAIKAKKgCKgCCgCioAioAgoAoqAIqAIKAKKgCKgCGwzCPTbuX6gYDRo1B+ma9OCrqdwxTXDqsJgu7etaWpZEkmmhkusxzYpA5Fm744xIlWm6fMdD5Ue/nDtdtbjQ132p+/XzJxhlZR8e/HSnu7w2S8nm+c2KVXdekIH06tNbT+a2x/w+cTATRwBtx7X3rpyq+Vcz81auNp8YxV+Hv8opo4EgWmPdrNN3647Ohdxh+3e0LwyaKrLZ8j4+Rafum7f//ftb3GFqYOs0pDYxz/PNi9+NdUdQka55fgO1nVYDVOuTAnrjmyleeaLiY4AhNu9614aYR49q5spU6qg7gMu7iDoXGnVhto1rOZIQqssWauorLMlvohRN0hIJTepWH1n3emhqiV2Vt/mZj+LyU61K5ilq/60BJqF5q43f3NEPNKCqygv7dmudnAfeGZ9Eh3ELlztiUH4mmRdtrXYRIYifMGydcFzvod1d1cCf2ohm2pdvTWoUd7cclwHm38Vdw9x03jX26MDchiKUv++cJdQyujDXJ8dyQ2lLbFuLaqbKw5pYxpZrKj7Qute7p/vjzVfj5rv8Pri17n2eltIdEO9r31xZHCMathxezU2bex1rbH3f9jkReaf71qiVhIlJhL+YO+XKJvxbrjpmI4GwiSGe8Bb/jPCuoNc6sqHHJmtmpXLSP8pAoqAIrCdI1Dwy72dA6KXrwgoAoqAIqAIKAKKgCKgCCgCioAioAgoAoqAIqAIKAKKgCKgCCgCioAisP0gsEvLuGrQJ0NnRyrdfGuJOWL9u8WJNRKWavvUwIkBWQTiQxQxKFX64n4OxaDXvomTS+4+pZPZv0t9R2qi7g1qljfH7dnInPm35sGlPPv5lGD/b9Y9nth/R0a7sftyRMxtG/H27VzfRcd9GQQfsQfO6Gr2aFvbVChb0pFaIOz847hOpm3DKi4Kik/Dp0S7CoPUNOD8HqaPJRDVrVbWucqrZPMpKoPEhPKU2NKVcTWpF/4bx+YYi9up1n0fpCasagUUxuqau0/tLEnNR/aZhaCD9WhVIwgfucm1oARA0gnbz5Yk5dvoaXF8erau6Z8K9iGQPXRmN+eKsVTJGPGpjsXslmPibgQhUP25oaBiVJDJpp3CPjtkM2fxarNr6xrONd8dJ3Q2TepUDAhZqI7ddHTHoNifNqlRSQDuJYWUxHNy0zEdLLGtqrv/PEc8T/d6WEs6f/v1mDjp7py+LQNSE3FQ0cIFHe7sqKN/n/08dF8RUAQUAUUgNQJKbEqNj55VBBQBRUARUAQUAUVAEVAEFAFFQBFQBBQBRUARUAQUAUVAEVAEFAFFQBHYhhEoXbKEObhnzDUY7uhGTY+7jZPL/mzYbLcLqWN3q4qTqb31wwzz+rdx0s+lB7XJNOlWE++HsXFiR99u9cxe7aIVqU7p0yQg86A0hKIQBgFJXKih5oRSjm+o3qB4g0EQgSyCDR4fd6t2hFV98lWQXAT7r2zpEub8/i3l0EycHSszCNi0s3/nuo6AFQ4vyuMalnQjttS6M8NmW1xEVQlXauf3i9dd4rLt3ryGObJXwyDou033oL0l5YiFiUyCV49W1c1+9nqx7z3XdBz/OiX+7He1ZUTZPkmwql6ptOnVrlaQZN6SNcF+sp3CPjvke/dJnc2Dp3cz957cxRG/wmWVt+pd7RvFcPl91vIE4uK4WXEFq5stqSlKzavVjpUTnqFw/mXs+0Ns4pzlshtsIco9cFpXV0eU0dQUAUVAEVAEskcg/qbNPq2mUAQUAUVAEVAEFAFFQBFQBBQBRUARUAQUAUVAEVAEFAFFQBFQBBQBRUARUAS2egT6do2pAHEhgyy5xjfcdYkbur7WbV3ZCFdmfnzZ/2b0H+ah98fLoXnwzK6bnTwTFF6EO5Pmrgpy79g47mItCNy0U8KqFHXyzk+ZFyeBHNQjRiwj6pBxcXUsjr/z3ND12zmuljVuZjx9tYqlzdzFayL/IKOJjZ0ZI0jJsWw7N01eb4mT7+3qtRuCLMttquOUP+LEq/aNY27egkihnfablKgIFpIYJL29OsSIdz//vshstC7usI1//RU817u1ru3cKRKOizWUr8SGToypOqFeVK1CaQlO2ApJKCFw00H96uWD4JVr/wz2k+3k49kJ520v1ayy2M5futZM/WOlGTN9qfsLx+N4zPQYsYlnBPd1yaxD4zhhLBynS7O468rbXx9j7nxzjBlilaFWr0sk6IXT6bEioAgoAopA5gjEHHxmHl9jKgKKgCKgCCgCioAioAgoAoqAIqAIKAKKgCKgCCgCioAioAgoAoqAIqAIKALbFAKosuAabOq8leaLEfPMRQe2MrgLw74ZEyfa9O0ad5uWCoBfJi0y1700Mohyw9HtzK7W5d22aAuWxZV5fPdqUdfarF6lIHjh8nXB/j7WvdrDH8RIYF9ad3S9rUs4sS9+nSO7zjWYHCxcHnO/xvGzX0x2f3Iu2Xb45LgikR+nfBG6nfPL8ffnWCKWWA3rCg9bvCLukq5F/cpyOnLbpG4cywUeFru1rmW+GT3foD422T7PKGJBfOIY27VVzf9n7yzg4za2Ln5fw8zMzMycFAPltE25TcrMjK9ML2VKOW2/MlNSStI0bdIwMzMzQ785s77aWVm7XnvXju2cm99G0mg0Gv01Gsmao3ulaMGwaAmenRAeEftG+4d1MSHYohnCzkWzgvnCIrJoedz0ZLQdlAevXj+YsHL/zNvgefdy9xM0v8Fso2Ho6leLzbqWw9pf1olGlPe38Xz195xQWL8fJ6wW/GAQiME7FsInqqcx//ZcJgESIAESSJsAPTalzYg5SIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAEcjmBk9qFvAFB7OCGo9MwdFVKF5Km1dP27DN7xTa5fsgkj9YNJ9WXvo6nIW9FLplxPf6UiOLlRw+1ZJGwz4W9Tsi5MiYsm4Yxc8PRuWHoTulQxYaW07Li8QikeXWqQhZdPlxThJzTusBbEELmwfY43pPSYlm8UFic5LJo44SQm7Zksy13wsLQFOHtapYvImVNOL/6VUJingnGaxNs5vKw6Kt9veAwdDZjEv9LRtuZaIRZ5z49Rt4YvjBuURMOYeuusLCudJFwWMCgwysaQ/gGD26PmXB4N5/awAupqGUgrOCL38+XUx/9Q179aYHAmxSNBEiABEgg/QTCTw/p35ZbkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkECuIACvKhAhwBCOrmXNUuKGoTuxfRX5T8iJU9TjReir61+f6K2/sk9dOatrdW85N86otyEc24r1u6R2DO82yzbs9hCU9IlJ+rauJGNmbbDrEY4OXpvcMHQnmPWuufu9s38jae0Ietx87nxa58/Nm5nzf8wMhzvs3Kistys3/NuyDeEQf14GZ2bFpvD6skXDXpSqlCkkEOGtNOKpSYs2y+mdqsmY2aH9aZg6FNO9SXmZt3K7jDEeyW4wHsqmpHizgtCqYdXizp4yb9Y9hxlpOxBGXf96WETYrn4pOc5cx1XKFhIIv4oUML9CeeWuoVNs2D33SKqWDYeeg2erWLZqU9i7VlC+/Ebc1N9wxm/p+p0ybckWmWzEZMMnr/GyfzByiRWwDTq2tpfGGRIgARIggfgI0GNTfJyYiwRIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIIBcTQKiozo1C4eIQju7QoX8jwtAhpFQsW23ED9cYUZOG/Bp0XG25oGfNWJvkinXwAqS22Ai7Ytm8Vdu81WVLRHrJ6WTCn0FUA/t9ekiIo2HosI9mNUp422KmbPHwfsHcCnog6onxq2wEP4fbEILvrZ8XedU4tmW4XZV1wry5rLzMzsziNWHW5UuGWSBL1yahUHLjTHi07XsOyJSFIW9M7euHPTGpVyYIoFYYwdk/80Oh1Do2LOOFYXR2lymzibYdhNFTa1K9hDx3SRvp17ayFSVCYFfB8IS3pRXrw4I6zQ9PS3VMmD4YQvDtO3BIV6WaLlm/I1VatIQa5YrISSY83f1nN5UfHugh53Sv4WUdNjEUos5L4AwJkAAJkEBcBChsigsTM5EACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACeR2AhoyzoajW7pFNAxdyzolJZYoBmKVG96Y6IUXO98Imi7JhZ5Ztu7cn6oJtK0bFsv8NHGV7N4XLBBZudF4EJofCnuGQpobj1iuQWjSu03IK9OvRlgGDz5TF2+1WU7pWEWO8rlbalMnvP2oGWvloBGiBRnSJyzcZH/LTJmH0yAyevDj6Z74DZ6V2tcPe2xqVDUs3oIYaXEUT0IQ4QyfHBbJtPWFjlMBEwRfX/69wjvkNnVCwj0kwCuTCsl+m7ZGFq4OiXc6NQzXx9swk2YSbTuzloWFcqd1qhpYS3hRW7c12ONSI8cz1c9Twt6V3IIOmfhx34wLM3TXoa3PXLbV/tBe/QYPXFf2rutxhohs196D/mxcJgESIAESSIMAhU1pAOJqEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiCBI4NA54Zhr0GvDlsoy1NCp53YtkpUABCr3PTWJBv6C5kGdKsuV5kQdLnFihiPN2oT5oc95Ghao2rFbegzLIPXE5/PFKMFibC9+w/JXe9P9QQ9vZqXl2IF80bkwUJvJ9zcI5/P8tYf16KiN68zTY2HHgiDYBBADf5mjq7ypqjHm78slBuGTLK/L/9e7q3Lypn9Bw/JH7PWySXPj4sIiXbf2U0Egi41zJ/YrrIuyh3vTrEel7yElJnnv5srs5eHRD0li+aX1rXDIi9kaVkrLDYbMmyB3aqT8cRUMF94X3mO+o8J91ferhsyfKGd4j9X/OQlZtJMom2nZvlwOLl5q7anquUmIzh85NOZqdI1oZXD7fHPZklQGUNHLJG/Zoe8Wel2OoXA7PKXx9vfgGf+sqErdZ1OUQf14gYPUYWd60nzcEoCJEACJBCbQOonhtj5uZYESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAEciWBAkb4cXzrivL12JUyfUkofBcOtEeTkADEf9AQ7Nz2zhTP2w3WHzj4rzz77Vx/1ojlMztVk6rlwqKMiJUxFgZ/E7tcbAqxSB9HIBSjuLhWIbSb2vDJa6xnpI7Gq09jsx+E3YInpdv6N5Qb35hss8Hb0rINu6S7YVa1TEEjFtkho0xoOXirUbumT32djZg2rhYSKyGv8m9Ry6Q5ddANjjLCnGcGtZJLXhhnhSM4ZwtNeLZODcpIXSMgWbd1r/FqtMYrB9ud2aW6bp4p07d+XSgVSoR57d53QNZs2SNzjGchFbfojm8/vZEJr1dSF73p5SfUld8NQ+QHhwsHj5WeRgjWqEoxU9Ze+WvOhohjuv3UBpIvT1iwhIIgYOrQoLSMmxsWogV5YkLaT054tJoVitjwbV5lMnkm0bbT2vFA9enoZbJq0y7pakIali6WX+at3CHfjlsZ1VsTDu2EVpXkb8MTbRZ2zasTrNirpRE87TSCxT9nr48QotlMzn8lCue1QrTvx6+yqbe+PUVO71xVmpuwiQXz5zVtf5u8ZgSSatgfjQRIgARIIP0EKGxKPzNuQQIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkkEsJQHwAkYzaCUboFM3LyuK1OyJEJtjmi7/S9goEj0UZETbFUzYELckUNrWvV1bKlyjoCUQgAsHv3B415Jq+9SymdnXLyM1GYDP465Dwat7K7UZYktqDDjIPvrSVVCpd0G7n/w/R5k7qUEVe+ynkZQjr+8XwllXdiMNQ3pWvTLBFQQylgih/2c9f3jpQIOXPl8jynzM3pLk5WD50XtNAURM2LmNEOc9c0kpufWuyFTchjBpEO0F2pfEM1qNZhaBV0rF+2QhhE86R39o4YQSxDqKgrLZE2g5YXX5CHVGPU+DvPwddm5SVHUakhNB+fkN7u/vMJlaIh/YKMRmEXq7YC9vcfWZjecx4dAqyi46uJbNXbLPiRpwrt+26+Y9tUUFOjxIuz83HeRIgARIggdQEIuW7qdczhQRIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgASOGALwoqMhznDQfdpE97ICr0EZsXxHxT9El9/njSc9+8sTo3p54qwDvFi9dEUbOa9nTSmcPxyWzl+P/sYL1WtXtxUISYIMIdY+ubWzdKiXWmDj5j+2eWTYue5Ng71l6TY4X69e1VYQai3ITjFCqU9v7yJt64TDsyFfnlhwggqKkpY3DY4IFdfEhM3D8UNc9cWdXaKKmnQXLWqWlKE3d4oqhIF4DWVdYM5JNGvncEZ7hgjMbyUL55NmZl9q7epHMtL0eFnld0Ld6baYutdJPif0nuZJpO1AWPSACelXrWzYU5aWe0XvuvLQOc2lSIHovj7Qvp+6uFVECEDdHmVCONevbWWv7ef1XY+VDds3r20vFx5dM6Lf0DLgQe3OMxrJf89tJoViXD+an1MSIAESIIHUBP6zb98+X5Tb1JmYQgIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIZJTB37lxp0KBBRjfndtmEAMLs7dh7QP49JFLchOHKE0XYtdt4vllrQrDtMdOiBfNJuZIFpECAoCXZh7Vr70HrWWrv/oNSskgBKVc8f4SoJtn7y4ry9h04JOtNWL0de/ZL/rx5DMuCUrRAdIFZVtQpM/eRSNvZYc7/qo27jAgpr/UKFq19Rqs/Qkuu3rxbwLxc8YJSqmi+aFmjpu/ed8iGxMO+q5YpLHmTJKCLukOuIAESIIEjgACFTUfASeYhkgAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkMDhJEBh0+Gkz32TAAmQAAmQAAmQQM4lEL+fy5x7jKw5CZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZBADiNAYVMOO2GsLgmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAkcCQQobDoSzjKPkQRIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARyGAEKm3LYCWN1SYAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESOBIIEBh05FwlnmMJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJJDDCFDYlMNOGKtLAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAkcCAQqbjoSzzGMkARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIggRxGgMKmHHbCWF0SIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESOBIIUNh0JJxlHiMJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJ5DACFDblsBPG6pIACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZDAkUCAwqYj4SzzGEmABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEgghxGgsCmHnTBWlwRIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgASOBAIUNh0JZ5nHSAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAI5jACFTTnshLG6JEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJHAkEKCw6Ug4yzxGEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEshhBChsymEnjNUlARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIggSOBAIVNR8JZ5jGSAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQQA4jQGFTDjthrC4JkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJHAkEKGw6Es4yj5EESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAEchgBCpty2AljdUmABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEjgSCBAYdORcJZ5jCRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiSQwwhQ2JTDThirSwIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAJHAgEKm46Es8xjJAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIIEcRoDCphx2wlhdEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEjgSCFDYdCScZR4jCZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACeQwAhQ25bATxuqSAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQwJFAgMKmI+Es8xhJgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIIIcRoLAph50wVpcESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAEjgQCFDYdCWeZx0gCJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACOYwAhU057ISxuiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRwJBCgsOlIOMs8RhIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARLIYQTy5rD6srokEEhg48aN8tNPP9l1jRo1kjZt2gTmi5U4a9YsmTRpks3Sq1cvqVKlipd91KhR8v3330u/fv2kZ8+eXnq8M4luH+9+jtR8e/fulc8++8weftWqVTN0jrKC3b///iuzZ8+WqVOnyrx58yRfvnxy3nnnSY0aNWTz5s3y9ttv22oMHDhQSpcu7VUJbW/Lli02/4ABA7z07DgT61zgmN977z1p3Lix4Djy5s1dt6BYfUisczV+/HiZO3euzYI+plSpUrGyJ31drHOW9J2xwGxLgO0gc07N4rU7ZM7K7bbwNnVKSfkSBTNnRyw1Swn8OXu9bN99QIoVyitdG5XL0n1zZ8EE9h84JPNWb5f5q7bL2i17pGjBvHJW1+qSLw+/4wkmFn/q/oOH5Nepa+0GNcsXkUZVi8e98cFD/5pt18iiNTukX9sqUr1c4bi3zY0ZE+WBdv7rtNC5qGDuJ63NfYVGAskmMGHBJlm/ba8t9rgWFSVvnv8kexcsjwRIgARIgARIgARIgARIgARIgARIgATSTSB3jSqn+/CPrA0efvhhWbt2reTPn18GDx6cqw5++fLlMmjQIHtMt99+e4aETSNGjJCbbrrJlvHtt996wqYVK1bIcccdZ9Off/55Wbx4sbcuHoiJbh/PPo70PDt37vTOf//+/bOlsAmipltuuUVeeumliNPVunVrK2x64IEH5LXXXrPr0J6fe+45Lx/WTZ8+XYoVK2YFQd6KbDgT7VwcOnRITjvtNJk/f76tdcGCBQXnKjdZtD4krWP8/PPP5dlnn7XZIK7MamFTtHOWVr1zyvoFZqD7q7ErMlzdHk3KS/v6ZTK8fU7ZMLe3g8N1HiYu3CzPfhMSLj4zqCWFTYfrRCR5v2/9skjmpQjWxjx5bJJLZ3HpJbBzzwG55Z3JMn3J1ohNT+lQlcKmCCIZW9iz76A88slMu3HPZuXl0fObx13QqBnr5KGPQ9uOmrlePrqls/znCNZIJMpjt3MuejUvT2FT3C0x8zNu3blfhvy8QL4eu1K6NSknT1zYIs2dbt9tthm+UA6ZvxODrFD+PFKueEEpV6KAtKhVUsoUKxCULelpn/+1XEab6xXWvXE5I2zia8OkQ2aBJEACJEACJEACJEACJEACJEACJEAC6SbANxTpRpZzN3j99ddl3bp19gBym7ApM88KRCauLVu2LELYhOWJEyfaLB07dpRKlSq52SWt7SMyZ8OFYcOGye7du6V48eJyzDHHHJYaZoc6JHrgEC35RU3NmjWTwoVDX64vWrTI28WCBQu8+dwyA28wKmrCMbnHm+gx5ob2kSgDbh+dwJwV2+0gU/QcsddUKVP4iBA2xabAtSRAAiSQfQk88tnMCFFT4QJ5pFLpQpLnqCNYQZNNTteqTbu9mixfv0v2GY9DBfIduV600uIxd+U2Wb1pj2XW1QpK2Ia9BpTNZ36fvtZ73oQoaK4RvzaoUixmrbftOiBf/h2/+B6CqQt61pQm1UvELDc7r/x77gbZu++QFDEeD9vVDXsozs51Zt1IgARIgARIgARIgARIgARIgARIgASyBwEKm7LHeWAtsjEBiJUuuOACef/99+0Uy64htBa8YcG+/vrrVMKmtLZ3y8pu8xA0nXzyybZarVq1knHjxmV5FbNDHZJx0L/++qtXzKOPPipXXXWVFC1a1Eu74447POEPvI7lNitUqJDA49m9994rEHSdf/75STnE3NI+kgKDhQQSOCrB8dNiJpwRjQRIgARIIHsSgKeTP2aEPIughs9d1lpa1y5FUVM2OV29W1cShG5cuHqHXNmn7hEtasIpSYvHs9/O9UR6wx7sYcJd5ssmZ5LVSIvAt/+sjMgyfPLqNIVNERvEsQDBFH7Xn1RfzupSPcd5P9u7/5Dc+vYUe6T1jejrnes7xHHUzEICJEACJEACJEACJEACJEACJEACJEACIQIcrWNLIIE0CPzHxEt466235M033zQvD9P/1Wyi26dRPa7OIQRcUdjVV18tRYoUiah5t27dZO7cULiiiBW5aAFiriuvvDJD11EuwsBDyWICfdtUFvyC7NTHRsv6rXvtKoaTCiLENBIgARLI3gRcDzit6pSiB5BsdrrKFi8gr13VThBpKwN/RmWzo0m8OuSROMPsWMLitTu98KRav++M0OkqI+bLlyc+hX33puXk8Qsiw9dt27Vf1pnn1D9mrjOenZbL5h37bfEvfDdPDh36V87pXkN3xykJkAAJkAAJkEA2J4CQwggzS8t8ArOWb5WlxlssDF5Qc9oHi1uNV8+/5oQ+3qlVvog0rFo886FxDyRAAiRAAiSQQwhQ2JRDThSrefgJZETU5NY60e3dsjif8whoGMgOHTqkEjXlvKPJeI15HWScHbckARIgARIgARKIJICBf7UWNUvqLKfZjABFTZEnhDwieeT0pZ+nrPYOoWODMjJ27kbZtfeg/DNvk3RpVNZbl96Z4oXzCX51KxW1Hpoe+nSGjJm1wRbz0g/zpV29MnZdestlfhIgARIgARIggcwnsH3PAfl96lqZumSzTF64xYiV90j5EgWlVZ2S0qpWKendplLcAmi3tm//ukg2bg99oOemYx6Cagjpy5XIb54RikudiuFIAf68uXn592nr5KM/ltpDHHpTRymWwzis3bJbHvlkpq3/Bb1qUtiUmxsrj40ESIAESCDdBChsSjey3LfB+vXr5bvvvrMH1qlTJ2nUqJGsXLlSxo4dK6NHjxaEemrYsKF07txZIMrIqG3dulX+/vtvmTVrlv0VK1ZMEN4MYanwy5s3dnOcOXOmreeiRYusx5fGjRtL7969pUGDBnFV6V/zqTDCgf3111+yePFiKV26tKCM008/3c7HKuSjjz6yHCpWrCh9+/a1WTVt4sSJ3qY///yzrFmzxi6DVZMmTSLyutt7G6XM7Nu3T3788UeZMmWKLF26VPLnzy/VqlWTLl26SM+ePQO93GTWuZs3b578+eefgjqpoU28/fbbdrFgwYJy9tlny1G+GE8ZOQYt3z/NaB20nA0bNtjQeWPGjJGNGzfattu+fXvbvvPkif2FDPaNawLtZMeOHfY8tGnTRvr16yf58sUfEgJt1vXUhLqh/StH8DvnnHOkQIECoseLPGhjaCvpsb1798q3334rU6dOlWXLlknJkiWlZs2acuqpp0rt2rVjFrV9+3aZMGGCbXvTpk2TcuXKSdOmTb3rM+bG6Vg5atQoWbhwob3Wzz333MBrHl6rJk2aJJMnTxa0b1xDqAv6phIlSnh7U17pbaOJcEqkD/EqHufM7NmzZfjw4YIprFatWnLKKafY9ptWEWjvX3zxhQ1tuHr1ahseE304+rpSpUqltXnU9em5vg8dOiTvvvuuLats2bJeSEu38D179sj//d//2aQaNWrIMccc466285s2bbIhPrHQunVradmyZao8WZmwzHzxNXrWelm1aZfgazu8lGpkvpzq0qic5M2T2qPflp37bMgQ1LFpDXNNmi+tFq/dIZMXb5aZy7baEDM3nRy6h2EQbL150ZU/31FyfMtKsnPvAZm2ZItMXLBJNu7YJ6d2qCItzcsvtYPmS/0ZS7fKIlPeojU7ZN+BQ1KvcjGpV8n8zLRwgdj9nJYTa5rRfjSR+z3aLO6r6APmz58vdevWtf0A7qlVq1aNVd2Y69Zt2SOzlm+zvJZt2CWVShW0rOoaXtXLFY65bayV8EIyfv5G87Jyi6zevFuKm7BBtSoUlV7NytvByFjbuusSbVu1KhSRFRt3mRemm21dShXNLw2rFJeeph55jgq3zUmLNtt2tWz9TqlQsqA0qVZCmhkxSAkzcBrLUDbC36zevEe2mnaNl6VVyxaWnk3LC/aVHkNYqs3bQ88XfYw3taBrZ+T0dbJ9935znzhK+phQVkH206TVcsC0+7IlCkinBpEDx/sPHpK/Zm+Qeau2yxpzXvKaF7w43ha1SpowZaUDPcek53oNqo8/bcT0tbJj9wGbjJA7Dcz5UMOA9+wVW62HjwWrt0vJIvmljhm4rl+5eOAg9QITxmu2+eoUhnOK8FRob2PMMaJPwfVfuXQh6Wg4oE+KZYn2HQcO/mv2u95ji7o0qlbc1L2Y1ChXxDwbhttbUD3QBqeYH+oPsXNFc17a1i0tzdMpShpv+sY1m3bLCvNTm7hwk1T8p6BdLGGYdm9STld5U/SrqMNqs90B007KmX4c/Sa+5C1g+t8g+2HCKusdpZJhjLqu37ZXJpl9TTLXG8q4um89KVOsQNCmNu1IaPN79h+UX6aYv4FMnwjr1LCs7Sd2YkBn2lqb1sC0TbQTNT9XXC8zzL1x+tIt9rpFH4M+uospK612tdDcB9EuV27cbatQ2/SJHeqXsf3x1p37rccb7Le2GdRoUj38PKl1cacIb/jD+FU2KVo7wjU33PRBsIqmXbQz7cJvEN2NmrHOJuuxB/Fw0zZuC//t9dPE1d5X/T1MXwuBS5Dh+KYv22L7dsw3NcfX2PzwdXda3ILK07SMMk3mecV9APeDpeaetcHcN/C1fUVz/8ZzF56pgszfXxYukFfmm3vBRHO9LlyzXaqWKSytjXc395kK/RrO1TzTH+NZrLa5j4Mh7pHR+gXdN/pUeGeClSqaT245taGc+eQYu/zTpFUJCZtsISn/FS2U13p0uub1CV64wjd/WShPXBjp5cndJto8QsKNnLHWcgFX9MO4Nrs3KR94Tw4qJz3PVXjGmWqeffcbzmrgrNzw7Htcy4pylE/xh3OJeySedTeYfhfnHM+4uFeWKZa+Zw/dL6ckQAIkQAIkkBUE4Bn8xrcmyRLj1dE1iJuGT1pjfyPMvfjR81t4z3tuvljzX/y9QraYd0TxGP5OO6tLNTm+VfDf1PGUwTwkQAIkQAIkQAIkkJ0IxFaSZKeasi6ZRmDFihU2PBR2cMcdd1gRwQUXXBC4v0svvVSeeeYZKVw4fYOAv/32m1x00UWiXmv8hR977LHy8ccfS/HiwYMx119/vbz22mv+zeS2226TG2+8UQYMGJBqnZuwbds2K4KCeMNvOOYXX3zRnxyxjP2g7hAXqLBJ09yMr7zyird4yy23yOOPP26XNa+7vZfRzEDQdPnll0flU69ePfnkk0/suXG3y6xzN378eK9N6P5w/AgjptanT58IkURGj0HL808zUgctAwK6Hj166KKdvvPOO3Z61llnyXvvvSdB4iaIMa655hobejBi45SF8uXLC9pyvGI6iMOuu+66iKIgInI5YrAeYsJ//vnHS//ggw8E9YzXwOq0004LbD933nmnuG3RXybEAxC8QLgWZAib99hjj6X7mg8q6/3335ehQ4faVRCxVKlSxcu2f/9+ueeee+S5557z0twZsP/000+twBLpGWkfiXBKtA9xjyXW/IEDB+TWW2+VF154IVW2+++/X6699loZPHhwqnWaANGc2740HVOEAoQgs3///m5yXPPpvb4h2vvf//5nhSnYwa5du1IJ2XCdal3RFiAk9NuIESO8PM8///xhEzZhkPPpL+fItykDV/56YiDr5Svb2kF9d93aLXvliS9C4rQLetW0g2Nv/rzIywLxkQqbvh63whNBNapaQq5+bbwXcgQbtK4dHoSDyOSRT2d6A1tegSkz5YzQ4/nLWqeqjz9frOWM9qOJ3O8hdLv44oujVgv3WDyHpMdw7r40L/6e/WZu1M3O71VTrjihTqoBtagbpKzAYPQNb04ygpNtqbK+9MM8ufW0hqnS/QnJalsQ2f3v6zn+4u0A/pMXtbADlQ99PNO4Mw95enAzov2+akJFVTMiAr9BgPPUV7Pll8lGsBBgz3w1Ry48uqZcdpzhl4agRTeHB4sv/lpuFzFA6XerDtHgPR9M0+wCLzwQ7biGAU79ghHhe1xhE47xsc9mRlw/7rbVjJDt0fObp/p6NT3Xq1te0PzrwxfI0N+X2FW4Hl++oq2Xbe7K7XLHe1O8MJjeipSZ/p2rGaFMXSmYLyxOhIjmeRN6CAYhDgbnX/lxQcoW4Qn6l6ObV5AHz2kaIWjTHIn2Haj7LW9PisoWoeAePa+5lCiSWoCx1Yg8bnl7cuD18tYvi8yXy6Xk6Ytbxv1i/xvTZ44wX+K6Nn2JEcWYHwz96y8P9fJWLzeCxvv/b3qqcFGaAfnvOqOx5adpOn3ss1l2FgMDV/epJ9cNCX/UgBUX9KoVU9iU29s8RE13vjfViDw3WU4QFB3XKiTQ32KENnofPLVjFbnttEY2D/5zud5zZhO5/OV/rJcbL0PKTLOaJeSBs5saQWpkP4DV6EOfNPfZ71OESO62L8p8Ob9nDXtOtQ7o79MSNkFc8aH5wnu5EWPA/nj8mFTXE8RXWiau8a/v7mbzuv9NMOI7zXPzqQ2scCSIB64Nzedur9c80kob4VyQ5x/U48pXIv++VRbHtqhgucXbN+u+E2WajPNqTqu8P3KxvD5soVYrYor+r5sRLt5zZmMr9HRXuv0lhK8/Tljties031u/iJzc3rTH0xsacfhOuffDad751jyYQgz7v0GtYvZLEEpqiLgT21Wx9ytsN3XxFttHbTttf1RRmruveOYhVL77jCZyzjN/2ewQHEP8BYFpvAax0I1vTvTq7G6H++OD5lqLZRl5rkI4GH8bBzM3rbMRMOpx4PkKHqmiPXejfo8bQVeQeDVW3bmOBEiABEiABLKCwIoNu+3fCxAxwQqb8HMdG5aRKkZcPdPcEyct2GzTx83dZN77TJAXzd+KRZPwYZot1Pcf3lX817wHGDtvo9x+emPzN2bwhxy+zbhIAiRAAiRAAiRAAtmWAJ9msu2pOTwV+/LLL8UVNbnCA9TozTffjDmoHlTrr776SiCCcUVNECngpwZPSr169RKIPvwGoYNf1ARvT2pY/8ADD+hiqunBgwdl4MCB1iONu1LLwD4xkPrDDz+4q9Ocr1ChgmgZmhnL+otX/AWhAbzquHz85cJrBbyVBAmzdN/JPHfwFqXHoeVjqmmYuiHFknUM7r7SWwfdFh6RTjzxRF2MEM8gEeKYG264wVvvzqAdvfXWW25SxDnGOTr55JOtJ6GITFEW4NlKmblZNA3TIIGVmzeteXhn8ouaUK5rEJhAFOI3CK8grFJRE7aDIMy9NiEkOOOMM/ybJn0ZYhtX1AQvbm3bhgeCwb5nz57Wkxh2nt72kQinzOpDgiDee++9EaIm/7l86aWXxBVQumUMGzbMEwFpun97eAiDYCU9ltHrG9eKGjyB+Q0CGDW0QXjh8hu8BqodffTROpvl0yHDF6YaXHE9ImFw5ta3pwg8vkQziC1cUVO0fEjHAJsOkvnzrTEecwY89Zc3eI/1qAsGVtXwdeClL/5jvnLfoUnpmma0H03kfo9+yhU1QQjsF6hCaPnkk0+m61heMGIQv6gJIhn3/H0wYokdGE9PwYeMh4aHjbjML2rSciEIgpDoT+PhK5Ylo22NMy8pVdSk+9d9wjMYhEmoq4qakMfNh7Z21avj7eCobocpxApXmnS/qMndFvkg4HngoxmYjcsgelCDpyu/TTFeHVyDFx6/weuOWmfHW9PPRoB12ztTIq4ff30hVrjw2bHGY1JqQZqWmZ7rVbfRKTxoqKgJbe01IxqrUiYkyMBA96AXxnmiJtQNgh6Iy9Qg+oJIJJp9OXZ5hKjJf3zwjjPECKv8lmjfAU841xpPIW7f5N83PIZd9PxY6z3M3f9+493mrqFTU10vbh5s+9AnM6xnJDc92nwR44XFv3/kRRp+8IKlBq9W4D7PCLNcc7fHNXvfh9Plq7Er3CwR8/D+BVFaei03t3n0E3cPneaJmro0LitPGDGlK8xLi9fSdTvN4M8ET9Tk3s+wLcRqjxpxGcQufkMoDhXy6Dr3vH4wcqm8ZfKk17oZD15q8Bjjt39SRFxIxz0XHmn8NsVc72rw9BXNIKTSduvm0TRM8wV4hVxsPADc/NZkbxM/t19N6JP/fZNa8OptEGUmWUwTOa9Pm/uWX9TknldUHaKeQS/8k+re5R4WRJPqMcy/PUQz7/y6WG59Z7InanL7YpSDPvt+0y/EMvXchTwQk8F6O54GRxiPU8k0eJmEcEoNzwDxGjx64XjdftzdFvdHrF9lPNpFs4w8VyEsjrZnt1xNw/Q/5h8Mz1eXvzI+1XO3X+CMe8rwySGvaW6ZnCcBEiABEiCBw01g8Lezbdg51KN13VLy7X095GHz8ceVvevKi5e1kdeuDr/rxN8n6sEwI/Ue8+Sx4v5+ffho+eTWznJH/0bWI7CWCS9R9304NfB5WvNwSgIkQAIkQAIkQAI5gQCFTTnhLGVhHSGggWEgG+GM4EFjy5Yt1iuSVuOhhx6y63Q51hShmx555BEvy0033SRLliwReBrCD0IdeCOCTZ8+XRA2zLVffvlFbr/9di8JHksQmgl1Q7g2HeBHCLho9uijj3qh9pAH3nowiI4yEPZNRS4QV6XHECoHZdx3333eZvBIgzR/upfBNwMG8GSlBgEJGKxdu1YQygehz7gOLgAAQABJREFUqFxxB/IifFOQJfPcnXnmmfYYUD81hA3UY8MUoc5gyTwG3Rem6amDux3aB8RqEPIgpBHaMLzFuIPhQ4YM8cQ8ui3aheaBGARCMYRhQjg0nOuTTjrJZkV5qFu086DlYYrzpcw0HSEdNQ3T+vXr66p0T9FGUC8VxUEUgFB0qDfaEDw/qcFrmF+8p6HCkAfekrANrrnly5fbY1ZRDK4NXJ+ZZQhPB1EODGIGeJECc4SNBCN4nFJT72rpaR+JcsqsPkSPyZ1qXwYxJ/o4HD9EJm4/Ay918GTkGs6PKySCZz3dHnwhmFKD8A/tOB5L5Pp2hUj+vh371hCoWg9X6KRpaI8wiGzj9ZSm2yZripAq7xvhCwwDL/B+8/N/e8pw83vvxo7WYwDWYRDoTjPIgvA0QbYwRWR0/Yn15YObO8lo4wHiy7u6BmUV5IWHiucuay3DHuwhIx892rgOr2jzfjpmmbdNG/OS7MNbOtm6wFvEt/d2t2GqkAGD9L9MydiAT0b60UTu9/CW9+yzz3rH9fnnnwvCUuL879y50z6T6MqnnnpKEFIyHtu4fa98Nma5l/X+s5vI8Ad7ymd3dDHnsJcdfNeVGBiH14N47e3fFnketrANvIn8cH936yHmg5s7yoBu1W1R6sEkqNxktS28DEXbfPnKNqa99LTeRR67oLm3yz9mrJcxszZY8cyQa9tZBmi/L13RxsuDQU6EgHLtDSPo03aLdHgB+v6+0DGC4bX9Qs9vWIeB43gHGFs6A7KTjacLv/mZIUyj31zBQJsUwQDC4vz347DACp6L3jDHCya/P3K0vHB5axsyTctC3mRcr1oephAEYKAcBs8Xr1zV1oZNsgnmv+8nrNRZufiYWrZuL13eRr67t4ftT3AeYWAQTZiIcwkDf5wHeCVCX3LTKQ1sOv6DmOPXqZFethLpOyDavPHNSZ7wBJ5S8EIebNEfwnOGesGByOPd38L3GIhRnvxythUIoG7weoRtRz12jO3bXjHe7nTAGm311WGpRVnYzm/wroRjxzlWG3hsLZuGdLCBIUwURDHoE2EI+ffsJa3kt0d62WvhnRs6SN+2lew6/AcvZEEiFazDdYJyTjGhQYdc005GmL4Z+wrydob8arm1zSOcFURNKqxAmER4Q8tvQkimx8AUbAcdW9vcx7pZ70ejnzhG7h0QCumNsiB80/1o2RAy6vWGNPeaQDn3nNXYZtVrRreLZ+qGloO4xW9+0er4Ban7qX9MmFIYBEcI0xjNEFoN7Qg/3PvVcF1rentHEKrrEdoE7OAN6scHelhu8C7l9s1fj13pDazpdrGmyWSa0fMKtt+MC/eVlx5fWz6+rbNlgeN85Pxm9p6H48CzFzz7RDOIj8H0IzPAB5a47tH3qqHPRp/Vrl5p22d8bwYe8cwFpmoQuu4wHoSCDJ6FEDIQhj4foRNhrieh78aHj8WuTMJ/CE2oFkuEpHkwRbi9e4xwHscLq2nCNWpfiP74VXO/gggT16J777eZU/7L6HPVMUbwBf7gq4YQrdq+MUWoPdgYw1vD9kBohvsFzgn6dNzL0R7UPh69TGc5JQESIAESIIFsQQBegOGJCVayaH555mJ4fox8Nm5Wo6TcZbxOqmnoYl1OZIp9VTXPJPBM+a75O+eS48L3zb9mb0wlHE5kX9yWBEiABEiABEiABA4Hgcgnq8NRA+4z2xGAxwV4T1FRAzwPQfDhCmzmzJkTV70hYqpUqZIcf/zxNsQXQrNVrlzZ27Z58+YCkYma650DaRAUqCEEEwbn69SpY5NQLkLSqLhJ87lTCFpcYRW89cBjSblyoa9wGzduLBgkPfvss93Nsmze9UQFvggj1a5dOxuyqVChQtaL1RdffOF50IF4yS8GcCubzHPnlhtrPtnHEGtf8a6DqANht8qUKWM3yZs3r0BUd95553lFQNSmBiHUZZddpovy7bffWq9PCI2IkFrwHgTRml4DENz426q3cRbOIFwZBAiwfv362WsBYe3gTatUqVI2nB1CPKo98cQTOisIeYb2AsO1DmETOMGwPY4ZYaFw7eK3aFH6v3a3hcXxH8KcqUG006RJeCALdYOYEp7kUA8IIOBBKT2WCKfD0Ye88cYbMmjQINt34jjr1q1rhU0atg1p7rnEshvyEOsQvhN9JKxatWoCUSjCLMLQ3iHki8cSub67dAkNKmM/I0eOjNjdqlWrvLarKyDkdG3NmjVeKDsVFrrrs2Ieg3IaUgX7QziSrsaLQ5GCeW3YsrpmgBxiDwzUw+BVYkqAUMOuNP89M6ilFbzUMoNJCA2jITd0vU7hweW5S1sLBlaRJ58ZJFbvF6uNxxAMPEFYgK/+apY3ZZlrFlamWH6596zw9eN6lNCy452mtx9N5H4PQaYKNOGBzhXp5cuXzz6TICQm+oBOnTpZQW08x4EBTbDC707zxeIJrSp5A2dABo8cV/QOPVOgPL+wJ9o+4KHEHUyHiAjCM/UQU6tCUbmuX30vFFNQOcluWy8acUzLWqVsuCSEqsGg51V96kbsGuHmmlQrYdse2kwrE97w9tPDYaHmOB6MIPJyBwwhXDmuZUUjjgp5wYEQ5ZzuNSJelMbrkQzXD9o4bKIJ1QThiWvwwuHaSOPtAgOyrqlgAAPJKor5wvG0g2vyPiOKaGyOFzwKGJf7beqUlifMcahHDnim8O/L3Ue816tu844Ru8E7CAwDxgg/V654AV1tjxPHAoOACSIO1A2G9oj+BNe0ttmVm1J7gLGZzX94QQ3+euwVShaUM0wIuyudc+73dpJI3/HJn8s8Dx4QBqHfwwt51B/nE4P4j5zXTKtnB/o37wh5sJu0aJM38A+Bx1MXt7Tb5jUeaNC3aagnFXX936ilgnCEyTK0FfWshn2gDUAkgj4V/XB9Ew7xzv6NBUJRNVcEpmk6RWgzXDcQckHAgzL1PGoe/zQ3tnmIAu9+f6onNkLouYfObWY8C2Xs9cK5PUL9SRkTcg2GPqqP8XpzQa+aWLQ2b1Wkl7WPRi/VVXK5CSfqXhMop2+byuKKPL3Mccw0dwSYCDXm2noTClOFF5o+dk6ksGnj9n2eFyDX+5PmT9b0+pPqS/9O1aRE4Xy2SLRFcOjdOiSGRuK8Vdvj3l2ymWbkvL77+2KvvhAJDzymticexHH2albBiik1E4TJGupF03Rq+5yLWgq8HMFw3V92fB3bz2oe3Edwj9P+FP0SmKr3JeSbH4XhaMcrY7+24XcceB5AaDUY+p9oYkmbIQP/uWEZN5m2Fo9NXbLZCgSRF/3WU4aL9oXoj5ubsK8PmX5cOQSVmVnPVe6+4CFN74NPptwvcE5guJejPWh/DWF3ekTp7n44TwIkQAIkQAJBBCAAhgcl/MaliNSD8iFtnRExaV54Soat2LjTTvFfZxN+DveuIGtt/hZXQ8jszDA8T+NvToSOV3vp+3my/2Dwx3jIgzB6H41eJoO/mSsPmDDeL/4wz3q0hfDZb3NXbvOOH4KuIEPYZGW0bXewUBwfCCDPjxNXee8Gxs7bYNOGT15lvUzhbw8w/j9Tt4fMB0qv/rRAfpq02vt4JWjf8aTBE/R75tnz8c9nWe/BCCn/m/loa6/ZX1q2w7wv/HvuBlunRz+bKc9+O9ceA8K3+99xBJW1yHgVHjpiiTxm9o39f2z+tlm6Ptx+grZx0/A3M7xb43zB8zHOFRhG+0DK3ZbzJEACJEACJJCTCYRGsXPyEbDuSSUArxgQSPgNQocBAwZ4odDg7cMdtPbn12V4X/n+++91MXAKT0Bq8NSiBvECBCQw1Ms/kK/5IG76+uuvRT2daDqmKvrA/LnnnmtDvmHeNRwbxFHwZoMB/6y0Dz/80Nvd0KFDBaHL/AZxArzUgD8MnoTgrcZvyT53/vKjLSfzGKLtI73paBNBBoZa30mTJnlt3W07CHUU1LYh8IMw77jjjrNFQxil80H7yoo0V7SENqzCJHffp59+unTt2tWGcBs3bpzs379fIBSAYEsN7R6iBAhoXDvhhBMEv8y2AgXCA7/gCs8vuC7VUF9/iEBdF880EU5Z3Yeg/3W9uLnH9/TTT9vrHwIQeLtTTvBMpn0lPODdfPPN7mbePIQhL7/8sl2OFdbS28DM6PWCtPT2Ubhmevfubb1xQdiEPl1DL/7+++/ebnBc8CgGgdvu3bsFok7Y2LFjvTwQtBwOG2teUqj1N6IBDPr4DYNkV/etJ9e9PtGuwgBikGcFDJx1ckJm+ctxl880+1Ihk5uO+ccvaOFPilgulD+PHXDHSx8M+OCFSlqD7hEFpCyktx9N5H6P0JJqEE6jT1Jxtabfeuutgl96DCI0/GJZIyN8UcPAZTznyB3QPsEMHrueE7QsdGF3GPHDGDPoCRGT35LZtuD1oGHVkLjO3Q+ES2oQ+gR5lVFRHvItNUIfNQ1bh2UMkLveJzQPphcfXcu++AMTeI3ASzQIdNIyDPjCAwvYLFyzw4pLsA3Cnan3iVtPa2i95yB91vKt3vW3yQhmIEqCdUkZOMa8Gw4IHrSCvMaUNUKjW09tJPd8MA2byIgZawWeJPyWnusV2+JlqAq7cD6eu6S1lCgSEhpo2c5tzR43jtN/Tjo2KCP4xTKU73occfOeZ8Qh8J6Fax/l7zAvj9ULRiJ9h3okwb4eNGyD+qfyRlwFMZh6t4GwCUK4UcYLk9oNRoRR2qT5DaIDiDFUGIaBbQinkmEqJkNZN57cIHDQHn0k2szJj4y2u0RbusnkDeo7z+paI0PVyk1tHqEF73l/mqg3NXi8gjgsiFe8sE7vVDUwa08j0lSvie6gDwSmaOcwXK8X9qoVuD36Z/Rhw0z4jfQY2jiuRRwjBJiHzL0UQjjYBLOsBi+ML5gBIvSZ8GClg1czzCCOGkQamWXwHhZkxxohqh4zOHVtFPteiDIyg2l6zyv6LRUiQpR0dZ96QYcnCO13Rpdq8nmKV8Y/jSe7oH1BdFw8RfTlFgRPf+oBrJfxNIZnJ781M898COcHW2EGHN17qubF4JHa0UZw5RqeD/Re+suUNRFCYDdfRuZLOvcXiOjisQWrdnjZ0G41RKqXaGaKGqEqhKuXvzzeTfbmM+u5ytuBmYFwKS3D/WHigpDgECEZg57P0yqD60mABEiABEggiEAB80zwxBehD0gLm/lh/+0Z9RkX3nj17xf8nYMPHyqUKCS3GM+P+CynafXof88Uyh8eksMHaplpF5t7629T1spK85y1K0UM07F+SICt+4VI5qkvZsnPJl+QwavtheZv/8uOq+09E68yf7srq+tOrCdnd0v9d9LLPy4wHwCGnovz5/uP+dgsLATX/Tz9xRxbN/DGx2gwhAf/c2bofVzrOmXl9ncne8/+uh2mLxWdbz4OaiauUMxdH21+hXmfcN9H0wPLxDaoy93G+ysE9UEGMdaDH82ULeZv3iBrV7+UPHZ+S8/LqD/P/76eI1/+vcKfLC9+P1/O7l5djmsR/kghVSaTAPEUwtdHE/fj/eU15j2l/m0SVAbTSIAESIAESCCnEgiPbOfUI2C9k0qgW7duUcurXr26t27btsgvZr0VcczAU8zmzZtl2bJlMmPGDIHARA2iCzWET1Lr2LGjuAOfmq5TCDeCzA2fBS8P0axo0aKeN55oeZKdDgYIiQfDAK5fVOLur02bNt6iO9jvJZqZrDh37v4wn+xj8JefkWUI5SCoCLKqVcODJgi7pua2QXh5Qii2oB/aiZq7jaZl5RTh1TT8IPaL6yqozkgrUSI8cK/e1iBsckOFdejQwXpEg+DFvQ6z4phwfau988471isLwmHCY0+iliinrO5DovVl4AABGM4TTMVomIe3GzV4o4vWDhCiUO3vv/+2wihdDpom4/qGsAmG+s6cOdPbjYoJIeQ65ZRTvHTUS+3PP//U2Zj9m5cpE2bwBZoaBpHWmlBXQT+89FCb42yjaZi2rxf/wKaGdHK3jzZvdICCUCjWg8S6nfYrNv1aMNo2aaVnpB8NKjPe+33Dhg09IRPEhPCOB09r8+bNS7OdBu03VhoG5Lfu3G8FNBCh6Us2bONzHBS1GPcLuFjiCwyUusIht8Bktq1oA3quR7BGAcIn1Mf1KOTWD2IjtaYxBCYY6G/urF9svjqMxzAorYavONXwxSEM3iROalfFhnDCshuezs2vggF4bNDwOtjWLxhCGWquCGzG0q2aHDFNz/X6/sglMsSE7YNBdPTCZalFTViHL2bbmnBHaoNeGGfDrs02nrL8Hqk0T9C0hRlsR1lBhnS3PeAr0GgWb9/hZwuPZNEMwsAre9e1v9oVQ/nc8wWBQVAfirQiBcIv9+c7A/DR9hVvuuutxj33/u3h4QdCChgEdxuMVx6/QUCT0YGH3NLm95hBD4SzUsHGqR2rCMICJiJqwjXreqBxuZcrUdBbdMOBuX0Urokol4TdFgKVjFinFOEk2oN7Lakgpkvjsl44WpTvtnU3XGZLR2SakXpE2wb9TZDIEPnLO9wQPiweSzbTjJzXJeY5Rq1pjRICT0LRDB4I1SCGDLLGVcN53PXFC4f7m3op4ePc9ZjX/gDzGJz0G7zgqbgG93q/UKhzw7CYDOHoII5LluE6VIMYKR5zPZ41NgOv0QztKj2WjOeqtPYH0R0EXPB8Be+S7jPBIdzMaCRAAiRAAiSQJALFTWjUXs3L29IgAprm/K3q38XPk1d7SUc3DwlRqpYtZMTW1az3xwYx7qmzVoT/Bo6Vz9tBAjMF8h4lfRzPkn6vxRDnX/HK+FSiJvc9F3Y/1HzM84ARA6m1rht+x+X3cIo82817Kvd9i4bo0+0xXb9tnxU1Yb6rebYO+pvirqFTPAES6uTWC8KiO96ZIlt3BXuDQrl+gyh6oPlbXD+S0PVuuTj3934w3QqsdL1OR05fKze+MTlC1ISwg/ipjZ+3Wa58dXygJ2J4ZvKLmtx9f/zHMhny8wItKtV06uLNgncJKmrCti3rlIzY/xd/LZc7hk5OtS0TSIAESIAESCA3EIjvLUhuOFIeQ1wEatSoETWfetGImiHGiokTJ8onn3wiCDXkekCJsYkVPen6pk2b6mzgFGGzgswNN4YQXbGsZcuWMmLEiFhZkrpu/frwF+ytW7eOWbYryFExlH+DzDp3/v24y8k+BrfsjM7Xrh39K88iRYoEFusKaB5++GHBLy073KHoXJEK6qohGtOq97Rp02yYOeRDqCkImdCmIDxBWEb8YH379rVewhACzBV02ZVJ/g8hKREqDSHnYKNGjbI/zMMDEYQvCCEZ7TpHvmiWKKes7kPcMHxBx9SiRQsvHCWEofCSoyG8kB+em+JpCyqMwvbRLBnXtyueGzNmjOBcQ+wCD3kwCJtq1qxpzzOEer/99psnuPvll19sHoi9XHGeTcyi/9yv4PElnn6NF2v30ULRYYAvXivsDPAHbYMBdwySYWBHvaME5ctoWkb6Ud1XRu738OQFz2rqMRJeIdVDE4S/p556qvW62KNHj0DPdLrvaNNRM9fJn8Zz0t/Go0aQC/Vo20VLd4USCAUYyxDmSgc+3XzJbFtBnibcfWFePY3406Mtb3REHWkdI0KTqcUbEgdenXBNQDAwyXhuQtgfGFy5w+DdBgPa8LYCjxx/zl7vebtw27yGi3LPa4MoIi5bsPmvfMmQeAXLKobSdTpNz/X6mnGDrwahmyso03SdwksGvJFgvzj2D4zrefxgOGaE+0OYyVjn1OVtN/T9VydFUIRkiPBcoVNG+g4/21gCEl9V7OL6rXu85OuHhD9m8BIDZqIJRAOyppnk7r962WDhuxYC4dP6raHnc3icQog/1+IVELjb6HxuafPqpUmPq0eT8lGFdponrWmNGP1otK+MF5q2rVbP9LOxzL0mYuXzr3PFaFPNl+Z1jQAGXhDhiQ/WxQhXELYLgjd4kRtvwpXoNhouE6EWE2k3/jq5y34hjbsuVh/i5nPnk800I+fVvYekdd4Q8lNtQxTxVkFHeK55/dNoQlF/Pv+yenNCenETNni848nLnxd9/hTThtLrTcBfji5vdLwDlCkeHkTT9UHTmebeoxZL/ItwkrjPuO1Bt9Npsp+rtFydItyMPufCYxrulzQSIAESIAESyCoCfdpUkhHT1tndwftrKxPy3W/4O2u5CdsG69yojJSN836M/LjPvfjdPMxa62m8R2a2ISzemz+HPsbxhzyHiMa97z94ThPzTFvWhnCHR+U/zLMvQtjBfjdcujZeZT0vlTBCcXyUhw/rxhjvmX5v4ZNNSHLXIKjy55lhQuWqdTR1DDL8/YwPCq7tW99+wIS/R7FPCI8g7oEI6ePRS+SKE+oGbR6Rhv0jbBy2geGZ55p+9aRlzVImpPZ/ZIH5wOuzMcvkxwkh0Ro8VSGkvYY1hp767d8We2XC6/CArtU9QTzE9vca79BoG2A6xYiQXK/gCG8Ir0xqlx5fx3pngiAOIq+/zHuPp76cLUEiMN3m+wlhj6EDTajBgcfUsoIw1A0fKlxlRGo4Poir4vWorWVzSgIkQAIkQAI5gQA9NuWEs5SD64hQSQijBm9Jzz33XNyiJhyyO6gOLySxrHTp8Bfwbj7XKw888cSysmXLxlqd9HW7doVDvqR1fPCug1BzahAGZAfLaceA9hhkGfFA5opJgsrM7DQIUzJiGzdu9DaDGA5CmHvuuUfKl4/8QxphwRASDdfWV1995W2TWTP33nuvfPHFF1ZQ5e4DYhcIsOC1DGKr9J6rRDlldR+SVj/krtc+cseO8OCeyy6teXhkimXJuL7hiUf7rj/++MPuDt7O9Lwce+yxNg3CFZiGLoUgTUWwOO+Hy3buTX9f64oAMqPeEIGc88xfNuyVK/DIjH0FlRmtH03kfo/9ILTnP//8IwMHDozYLdrK+++/L3369LECOPU6F5EpygK+8H/k05ly99Bp9sVUss7Nph1h7xclAkLcuNUpWSR4wDE7ti233vqiD2lpHaO7frdhHo9hILlX85Bb93/mbTTesv6V/QcPyR8pYcs6Nwo9k2lYNnxNiRB0MA0DBW9N6q0E51qtVBTmuh77dj1x4OVmsgxfRv5hXthGM3ilefPa9jaUXKmikaHq4AHnvx/PkGPvGyFu+DR/WdHalOZzzwfEOWoZ7Tv2HQizdcMfablpTTNy3W3ZGa53WuWntV73D7FaPvO1cixzw+S5bSrWNvGuy61tHmEdNXxkvCySkc8VH8JrYSzbuSfchmPl86+DqFP7ismLQs9MEN2pyKJdige2HkaMCPtzdkiYCa+AGrK0S0pf5i87s5ej/MkTc7dZwTRmBcxK97pLT1+n5ySt8pO1Hny/HRfyvIwy4cXrxjcmpfq5+xtmQlwmy1wRPbzNxWMqWMZ5DgrV6pZRNkqZmfVc5e4bnrDgNWLw13MFA6BZfW7dunCeBEiABEjgyCQA773qQefH8ausGMdPYnSK0B3pfVtX9q+OufzasAURoiiI5TPbypsQeWprNoU/PIFXJXgIUnv8oubmY5tKVtSENAjpz+lWXSDAUXvr58U6K+6zruv9Exn+mRcpbMI7BvcjMeSB8FsNIeeCDN5XHz6vuRUX6Uc2EFTdcUZDL/sMI3SKx/DxgYY9xjlGuPYO5nzjYwp8DIYP0xBiu3XdsJjtUyN0UsPfPRCxdWgQCot8dd+63t8LyIMPIe46s4lmlymLwseHxHd+DbM704RVhigJoiZYOVMuwkzffnr0D/Px7mJkiugO9VdRE7YHG3xM8/AFzWz9UMdVG8NjT8hDIwESIAESIIHcQIAem3LDWczGx/D777/LLbfc4tXwkksukV69egkEFSVLlpTixYtbbzBBoiMMiKshHE0sc0Nyufng/QRiCdiCBQskljeU9AyWuvvI6LwrZnJDNAWVB4GBemqC94q8ebPHpZsbjgG8K1QIx8x+7bXXbBsNOg9u2n/0ryk3MQvnXYEL2gQ8L8VjpUqF/zhD/kqVKskDDzxgxU3wtIJQYAgT9uuvv3rFDRgwQH766Sc55phjvLTMmIF3KPzgQQuCK4Qie++99zwRDOp08skny8iRI+PefaKcsroPQV+HMFzRzO2ntI90j/Hss8+W//73v9E2j0ivXDn2y5dkXd84p7iu0K4OHTrktS1446pZs6at0/HHHy9PP/20FTOtWLEiIrxeZre7CCi+BXeQ+87+jaRN3WARrW+zTFvE4M51QyZ65WNQFR5e8LIJ3gLgFaKw+d39/tRAL0Hehpkwk8j9XqsDz4mvv/66/O9//7N9EUKvfv75557IDffBLl262LCGFStW1M2iTj8YuUR+mhgaSMRA3gDzQq5hleL2xVMRwwmhr/BFHgYj02O1TSiuERL6gnO5eVGkIbeCynDD6rjrs1vbcuuGebd+aR0jQsOopSUq0nyYdjTCpB/Mi2K0a7iDR8gzNfV60tL5OnaSCVPXzrx01K9JVfSEbVzBjRsySstzpxiYVU9NaBd5zAvMRAxfj6JdqUe3u4ZOlQ9u7iS1HG8ibvllixeQy8yL4UHm60qE1EH4KnjBcUPrQCzy3GWtpV1An7PUhGrq1jj6y+9lG8LnQ+uQSN9RwhGKzV2RflE1PNqo8OWDmzual8Zpe6+LJ4/LNNa87h8MIPQq5YQI8G/ntp0ShYNFif5t0rOcW9r8pcfXllnLttlwdOB6p2nzr1/dLqansfRwiidv/crFvWxpefhyQ3B5G8U5g2sNoSLGmWsUAky9TuGlCW0L1sGEYPxg5FIrZlpnwirOc8KitXVCdMS5y8OWLauYxjpAty937y1B2yx3+royMa7roG0TTZu1fKvXr8VbFu53N53cIOHrBF4efp+21tute5/0EgNm4NkMgvh4+sJo10xmPVe51YXAV0PD4Do7vWNVgciwdLH8xtNjXvus+7kREes9192W8yRAAiRAAiSQDALwXniyCbcMwQ/EONOXbbEefdyyh08Kec2BuKRzjL/N3G0wj3vYJ6PDQpkbTwqPffjzJnMZ3pXUNhrPQGp/zQ6918DyCa0rSvfGkR+9ar6LetWUX6eusc+7K424Rz0B4e92Dcs+zYiUIAxSG2G8XcEuP6GO9VJsvQgZr+ONHA/L41I8NsNzEoQ9QXZax8qCcHp+61AvLIRatGanf3XgsvsB0Y2nNEgVShgb4f3AAwOaySmP/mHLGG7eKeEZDul49zZ4UOyoG3g3oDZ3VVhwhbDEGpoPYaPhKSrIIG4aNXNtoNcmdygCPFcbj1pVzfOSax3rlzXvWsJs3HWcJwESIAESIIHcQCD8VJMbjobHkO0IIKyQ2p133umFmtI0TJcsWeIuevNu+LmpU6d66UEzCMkUZBgkVUMehLSKZm7IqWh5kpnuihHgmWTv3r1SoEDwF5eusEuFAMmsS0bLyg3HgGN3B8jh/SZWeK6Mskr2di57eDSpXr26IJxTRg1iuQ4dOtjfjTfeKHPnzrWiRIhRYPDalFUCE5yP008/3f4ee+wxK2wYNGiQrQcETxC+uOEZ7Yoo/yXKKav7kLREjgglqKZCTVeYh7aQrPbrskukj4InHgibUDeUA5EcTL00Yb5jx46YWINARr01QbSH8HuHy9yv4PHSQAcxD1d94MZaDV+oPXdp8AuVtAYDtYxkThO53/vrgfCXaDf4wZsbwlPCk5OGzYT3r7POOsu/WarlMSneM7Di0fObS3sjpPHbpijha/z53GX3Zd0iI4xCKKZo5v8iUfNlt7al9dJpOfOiTQ2iox7hjw412ZvOdwbxIdqJ11rXCQtt8RIUYdJg9asUE+WDcEoQMEH4A48YhfKH/3RRbynYxhVUwVPKfjPwG807j3t9VEoRJqCMjBraVl7jWROcdLD59nenyDvXd5CihcL19ZePF6O4jvE7u1sNWbp+pzz/7Tx7nMg7cvraQGETxHixzP1SVkV3ifQdrtAAAqXdpi9MT5greLxRYRMG5GsZYWBWWoVSBb39g3E0YRNEK9OXhF88lzGD6Mm23NLmBx5T2woRB73wj2ULseETn8+SB89pZr8UTja3oPKqmkEFtQlmgCSaaA19QSwvalpGtCnuGxA2QQyCvuWvlPuKemnCds3MNaw2wQgw0RfAIJysVzlr27vWIyPTrGIaq27uPcS9twRt4wqHy/vCRgblT2ba8MlrvOIgmj6xbfSPBR42niNVqAMPRMe3SluY7RUeMDN0xGLPixHC8amANSBrRBIGEdXTJ9hF6wu37tofNWxvZj1XaUW3mX27/TAEk64XQs231ggIaSRAAiRAAiSQmQROaFXJ82QEDzkIVaaGv7c0DN0JJmxdkOhG87rTP2ask2e/meslDb60VaCwxsuQxJm9B8Jeiouaj+LUFq4JfxSDsOrRDN6Mmpv16pV08drt1jsQQnlD3IX3ZRPNc/AZnavZIvCssSXFezD+nsffg98bkTe8FF/Yq6bNA8+6yrFLo+gf7jSoEn7Wthum/AeRTzXj7Qhl6L7c9UHz7vsZ1D2awSsTxEca6g4fRlU0f1cGGbwo4fh37D5gntEOmGn4g639B8PcVxgRklqTGsVN6LvUYi1d37JW6UBhE7wAt61f2vN0PfCFcdLfeH7q0bS81DPeovKacHo0EiABEiABEsjtBKLfQXP7kfP4soTA6NGjvf1cfPHF3rw74w6Guunw4qQhjDCoGW3AH+GY/u///s/d1Jt3xVHIEy1kE7zUTJ8+3dsuozMInxSvQcQELyVqn3zyic6mmn7wwQdeWr9+/bz5rJxRj1HuPrP6GILq4NYno/NHH320t+nXX38t0UL9IR2iC/xcsZm3cRbOFCxYUDSMF3Yby4vRwoULbZ1HjBgh+/aFvsxZvXq1jBs3zv7gIclvDRo0kMcff9xLRviwzDKEn0Jd4DHKbzjO888/P0KUGE3IGNQ+EuWU1X0I+qlNmzb5MdhliJog7IJBvFSiROiP+3bt2tk0/AfBR9D51Azjx4+3bQG807JkXd/dunXzdoXrS/cN0Yoa9tW/f3+7OGzYMFtHLJx22mnGHfThe1RRrzGoyyjzEipayCqkIzwWfq5oAtsl02Y67rVP61Q1sGi8QFJvNIEZMikxkfs9hJTaH7khEFFVeMfr2bOn3H777V7NXYGfl+ibgfhCBxIR8guefoLsbyOYSa+pWATbYXAT+woyeOJR70L+9dmtbfnr53oKQvicaMeIF5QTTbtXa14z+KWjrnenCDPUqFroZSLCpKk7f783In3Jia8r4bUJhnNas3xYMAARE0LTqf1iviaNZurFC+td1/nR8qeVjheSeKl695mNBYPMMHB56NMZxktd+EUmhFu4hvHbuD38layWX6NcEbm6b/irzbkm/F6QjTFhD1Qo5F+PwV6sV6tWNvT1ZiJ9B44PXqnUvv1npc6mmj5uxC3H3T/C/vSlsetZK5bABOG7tB/VsIOpdpCBhE7mRbraDxNW6WyqqbY/rEC7LJ5GmMlUBcSRkBvafM9mISFnMTMg8tTFLbyj/nXqWvlo9FJvObNnMLii1zxER/ByhnCWfnv66zleuAn/uniWWzle40bNXGevX2zXwfkKGv1Pr+YhLn/P2eiFywQrDD5k1CAwyUrLKqaxjqlR1fA9ZLK5LyxeGyzkhEjSDe3m3rNilZ+Mddj3TxPDfckgI/TDc0G033Un1vd2+6OznZeYjhk8i7ohTM4xoth4DaJhte/HR+/Ho61L9nPV+q2pxUnwYqjWt22lQFETRKhjZofvc5qfUxIgARIgARJIJgF8zKR/2/1innPdd0Hu3zQnxClYhujnrvfDHyrec1ZjGwItmXWOVZb7QRc+/FDbsC18P9bj1XX+qfseRP+excc6XVP+Vpwwb5P396+Gj4foCV4j9W8yeCxC+DvY9GWbvV24Hy15iSkzFWII2AsZb47psXVGoKSmfyvrsn9av2r4fYM/VDqeWV78YZ6cN/hv6X7Xb9L7gZFyxhN/yoXPjpWrX0v9bhtlL3Q+CEPIulhWp2LovUJQnuv7NbCiK6yDoOr9EUvk0hf/kR53/ya3vTtZfp6M9zep/y4KKotpJEACJEACJJATCRy+0cKcSIt1TjeBZs2aedsECYcwyO4OVnqZU2bcgW94cNm6NfwlNbJAaHLRRRfJunVh16luGQh5p+IohKu78sor3dV2HgKPM888M1V6vAnwKKIGwUt67Nxzz/WyX3rppRLkNerTTz+VF154wcuXSF29QuKcgdhADYyDxDyZfQzx1EHrmNEpPBWplxuEP4PHIr/9a16iIsRX79697Q8eaA63QfCjBu8l6uVG0zBdsmSJtG/f3tb5hBNOkI0bN9rVEAZAcIIfPDEFif7cEI89evRwi03qPHijHp06dbKh5/yF79+/XxYtWuQlu6Ha4mkfiXDKij7EOzAzA3EWRKAHD0YKJTZv3hzRT7l9Y+HCha03G5QDr0jwTIep33788Ucbxgtt+PLLLxe06bQsGdc3wo527drV7soNk4fz7VqfPn3sIkKPTZ482c674k8krFq1ShCODz8wyWxrarwwqJcmfOU++Js5qXYJjG/8vFBueGOS/X359/JUeZKVgFAcaira0WVMIQZ4xHgGOByWyP0e4l3tj6677rrA6kP8pOZvO5ruTuFRBp5iYPgSMGgA7Tsj0PjF8brgbh9rvlKpQl7Zy00YNngq8dtG4wkKIcmiWXZrW/56QtihbV+P0d9lIKQbQlBBVADDwD7EDumxzg1Dghl4OlIRmIoVtJz25otEGPbz8ehldh5fJPr1AnCdr/bop7NEhTWahinc53/6Z6gMLB/TPLwNlhMxtLknL2phvbSgnDGzNsg7vy32ioS7/stfHm9/17w+IVAstnzDTi9/q9rhr4K9RDOjIo69+yNfVsIzDcQdej4gKMKLZliifceJbavYcvDfC9/NE3jY8hvY4itc7B8CnjpmoB92dPNwuN93DY9fpqQWnaEt3fPhNK8fVRf9/n1kZLln0/D+f5ywWr4etyJVMRCk3j00PNDQt0107yupNk5nQm5q8/C+BY9lai//MF/GO0JHTc+s6U0mfAS8IsFwj8b19d7vi43oYYMN8XGtCd2K8F+JGLyutagV+nr9zZ/Dz6LNaoQFOCjfPa96f/b3ZfHUo1jBcB86eVHmP+f465QVTP37dJcL5DtKTmwXvv5uf3eq/frdzYP557+b6wnWIHRt5XgA9OdN9vLfJmSK9rO478XyzId9t6hZ0opxMY9QhghXmF6DmPWF7+eZUMPhfgp9fL8YnqL8+2hcLdxmh01aE9gXQmT8yo8L/Jva5WQ8V+XLGxb64dnM/zFADec5F/dMv1gRg8pPfjE7qkcpVBQf41x44YVy8803278bAg+GiSRAAiRAAiQQB4GTUp5J4A0I4ejUNAxdFeP9t2n10HOirguazjYimOuHTPJW3XBSfcnMvze8HTkzMxwRkRvyzf2AKchLolOE+RsvLCJy/xZFWGYYRDaLUjyXjk0JMXd0iwpW6N/G+dBscsrfC+pJEtvi/UhWmHp2guAqv/k4IZaVKRoeE9lzIPTOA+9E8D7hEiMkQqhC9WAVqxxdt8X5aCEt1rE+sqlUuqAMuba9DDy2tpQsml+Lt9O/Zm+U/348U46973frATpiJRdIgARIgARIIJcQCD+R5JID4mFkLwIYfH/zzTdtpSDIGThwoBVYHDp0SMaOHSvPP/98zAo/+eSTMmbMGIHAYvHixYKwUGeccYa0bt3aimy+/PLLQDGHFgpPD8gD4QoMIiEIJE466SSBYAF1wPpowigtJ9a0Tp063mp4W4HYCsIBeFGB15tYNmDAAMsHYhoYBCYnn3yyHeCFmANhwL777juviGuvvVbcwWNvRSbNwFNKo0aNPMbwngKRCNJQT6zP7GOIpw6JHj5CuIEzBsshCBkyZIjAKxBEFQiDBbEJzq16y8H+cC4Ot0F0Am9Hr7zyiq03xCPwegMREjwV4cXu008/7VXziiuukEqVKtlleHuCmAvXFa6vE088Uc455xwrgtq9e7f1mPPQQw9527phw7zEJM2AJcQ8sMsuu8xe2126dLHh9eBtCuHoVBiJc+KGSIunfSTCKSv6EHvgzn/wWIQ+Dn0d+ikcO8Q+6pGqXr168uijjzpbiAwePNjmmzBhghUFQfyFc4Y2vXPnTvn111/lww8/9LZBeC8cW1qWrOsboiXt57BP9CWuKA1prgcyLMP8gjrcQ+B5DAYm6Icy0+C94H+DWpmXFuPsINbXY1cK3I53NC9u6lYqaj0jDTdfQ7lhM87sUj3TqtS6TkjggR3gZcrqzbutxxmE7cIXY/Ckcji8NaE+idzvEWoS93vY+++/L7j/oc00b97cDkqh7aIPVnO97Gla0BTil8/HhIRmg8w5xABgSyMWgecchC6Ch5GMGC6dJy9qKYOM228YyllpBh3haQjuyWcs3SojTBgxDNpFs+zWtvz1hJeR2/s3khuNYA+GY1y2YZc9RnzZCNEQPCi5noOucbwN+cuLtowvM9/6JSwWgEjB7xK+apnCVmTl7isorOBxLSrKN+NWeqF2rnltgnRvUk5aGo8rB8xgKELZIQyQ2pnGZTuu42Qa6vrwec3llrcn22Lf/nWRDa2HttHeHCvEYjgOiMVuemuSIMQBBpv3GmEPvmp1WfQ07TeaQThxvvk6FIPqdSsWk4XGqwk8eaBcGAb67zyjsbd5on0HOF58TC2BMAl21asTrGCpc6Oysse8wPazPad7DU9UFWLSTO77cLrd9sGPZsjv5vqA17IKxr0/2hX6M+27qpUrbL76LWfzJuO/KiZk2cBja3leTp7+co5tB6h7wXx5ZKoRaY0wwjo1eDU5uX1YyKXpyZrmtjYPr0QXHl1Thv6+xCK624gd37uxoyeMTBa3oHLQFz11cUu59vWJdjWuCxUVufmvN4NHEORl1CBacgdecMz+UJdBXgHd6y7efaP9S4qGGnWG4BPhKiFiSa9wNN59uvmyiqm7T//85SfUtWE9IR5Cf3n+s6ava1ZBEEptzZbdNoSJ+9x122mNYoby8Jef6LLr9e+4lmmLYyEw7WuePz4cudTuGl4fzutRI1U1IOgc7ISnwQcIG4xIeqUJW6LCX90I4uO7z2ySSuCr64OmOLe3nd5Q0AfCMIUAt5Np36gj7kEaTjVoe6Ql+lyFZwt4g9BBwNvfmyJ9Wley4ttu5j4Djwy4BnAvw7UMseKx5t5ez9yrEeJxxIy1Ec/c/nriHdMFF1xg/7bFOvxN++qrr/qzcZkESIAESIAE4iJwTItK8uL3821eDUfnhqE70fzNgHcDsQweta9PeVZFviv71JWzumbeO6NodXHffbStG/ZoW9oRxqww99/aMcKGLzMh39TwIYtaG+c9FbxW45kDXkxh6qmpWEF8LFDCPFNvlXHzN0p387cuBN+wrk3KpikyshmT8B/EaHh3AxEW3tfg7+ZopiItrC9ZOHS8ExZuNAL78N8V+LuxjRHYI8Q9xO6FC+STogXzGGFR6L2lW7Yr4MbfwLFseRrrIU679LjaMtD8jY53geA+dt4GGT8v/GHEPR9Ml+cuy2vC24fPd6x9ch0JkAAJkAAJ5BQCFDbllDOVQ+sJDzEInfbDDz/YI3jnnXcEP9cQ7uquu+5yk7z5UqVKyVdffeUJTjCwHySGghAFHkiCrFWrVgJvEOq1BQP/+LkGoQBEHa6Qw10fax5iJHiFUtEBxFP43XLLLRGhvILKgKAGA7YQIMBDCUQ1WHYFCLodvLA88sgjuphl0+uvv16uuuoquz8IYB544AE7v3btWsH5yYpjSKsOyYBRv359+f777z0hBURMrpDJ3QeEJ7Vr13aTDtv8M888Y9veN998Y9vPu+++K/j5rW/fvoK8ajhvEETB0xPaXazjhYgGXp8yy+CNDewhVIFBjOUKsnS/EPUFXf/xtI+McsK+M7sP0ePDFEJQeG+D962HH37YXWXn4SEO51rD0GmGIkWK2L6ye/fuVqwGwdqzzz5rf5pHp/CaFK/nt2Rd3xAt3XPPPVoFK1rxFlJmKleubIWbKmID9woVwp42kM0NSQoPP1lh1c0Ay+BLWsmVr4TuGxhMcwfU3Do8f1lrwSB6ZlmZYvnlshPqyBvDF9pdQKThCjWQiIGhHca1N0K4ZKUlcr+HyNJ9Fvj4448FP7+h/UPgVKhQfIwHmBeGfxnPHRgYxUurD8ygIn6uXdG7jrw+LMTTTU9rvoERP/z33KbywP/NsFlnL9/meY/QbTE4d7wZ9HTFKroO0+zUttx66TxC+9x8agMZ/HXIW1Y00QDyP2uuEXiySq9B1AMxk3q/gIAGA6x+69G0nHxkvohUax3gzQhisYfObWbcr0+xA6IoE14p8PNbd1MeXipnhkGA4LarO9+bKh/e0skO3EIsBuEH6harL7nK1M31ruHWEx5VXh+2wLZrHSh312MewrtyxcNfmCaj77j0uDqCUHc6qI8B8KBB8PN71pBTOkQKg+C1aZ0JO6QDA3/MWC/4+Q1e1l64tHVgG/DnTc/yRUfXktWmH9C2MNaEoMTPb7hm4YEob57UbdCfN6PLubHNo22gfwBTtG14cnv96nYCDy+ZbfBs9syglvLqTwsCxR/4Ir5IOkNU+OsM0RLKV+uU8lW6LmOK662OEV+oAAUCOXegyM0ba/5EI4D5JMUzHVh+ZsS5+EHAlYzQmbH2reuygqnuK2iK/gqicghEwQCiR9fTnrsN+lqIbbLK4BnTfe7qWD/koSCt/R9j+kDtr78zYeCChE14Tvnir5AYO1Z5/TtXk2v71cvQAOCpHarKfCNMhlAf9tecDfbn7q+38X6403B3j1PXJ+O5CmXA6xIMAqYhKc+0wx7sYcV7N57UwBMHBz134D7hCqy0bpgi5Lrrcdj1+Ovm4zwJkAAJkAAJxEMA4pHOjcqYdwobBcLk6014WTcM3bHGG1EsW71pj1xjRE0Q0cAGGSHKBT1r2vms/G/8go32GHSfbuj38uZDE7XFRoTVXRcCpvNWbfNSy5YIC5twb1bhMkLHVy0bfi/gemrq2qSCFTaNNH8HXn5CPe+5OejZ2ttRkmfKlSpghU0odumGHUbYFOwlGaFvXS/Cpc3HhLDx88Pv2S40f2NeYd7P+c39IMtdV8d8kKTmstQ0dwoBXTyGdyf4CAK/s02I4qXrd1rPpuPmhkRj+BiNwqZ4SDIPCZAACZBATiIQ2+diTjoS1jVNAvnyBavQMXAdj+XPH35ojSc/8iBE0meffWbDzZUvH/nSEWIgCHhuuummmMVBcDJ8+PBAbx4Qa2AQ3BVd+L2AoHCINyBugoDJbzfccIOMHj06YgDdX0Y0digLx/jbb7/JrbfeKm5YOnc/sbaHBx2EsIOoys8IZcA7EsKeffLJJ3ZfbrmZee50PwMHDrSh8DSkn6a700SOwS0n2nxadYDXHjV4Kopm/vPqzwfvNiNHjrQet/zrsAzBCcIhxestJKiMaGmxzmXevCENatBgPta99957cv/99we2H7R5eECBaMh//BDlwTMVrg9/28Vyr169ZNSoUXLbbbfF5d0HxxbrXES7DnDOIFaA6DHIIxmOAXWAxx/XQ5qyTKt9IF8inLB9on0IyojHOnbsKFOnTg1sg/BWBS9udesGD8ZDBIT1aKdBBnERvB35haSxzhnKScb1Dc87bhsL8s6EfUHAqQYvYq4h9Jx61+vcubMVVrrrM3O+WY2S8upVba3HhKD9YBD/szu6WA8k7vo84a7JTQ6cT+tLP93oYvPy5IGzm9ov2jVNpxjge/Ccpl5oHk2PZ5pWO9Ay/P2Ipid6v4cYGB4aNWyhlosp7o24BnG/h4AqXoN3nDeva2+92kA841qzmiXsuiAvG26+WPPwIgBxk/Ww4cs4oFt1GWIG9kubAVq1IFfnWdG2sP+gfSPdFXDkCxBz9O9UTV67uq0VzCG/3xAy6OPbOkuQByV/3qBlvIiDBzQ1eI4IMnVvj3U4d9E8l5Q14oJXrmxrhUVBX1/iheudRlwE8Qq89biWnus1SHzllnW+eWENry5qEHrg5SjEYh/d2tl4oKiQ6jpFG21Tt5Tlje2j9QnwgDT0po62DC1fp3ih+cLlre2LTU3TaaJ9B+pzh2F3dd+6gV+24rw8fF4zuapPvUBhEl603jugiX3prXXSKY4d/dcHN3eS8sZjR3osj/MMGG27fObk3ntWU7n/7CbWg5Y/H/Y/yLjyf/Oa9pnuaSgntnl4WYllOCbclzR8JcQ9KgRK61qJVS7WuX1UtLwYDHnvho72PvzSFW3k5SvbyDf3dJM3zPlEH7vbeERTi30kmityCm8x7j0E3teCDMJMta6NwvOahmlaPGqbEI543nBDa7rbu+eiQIzwGW7IL3f7eOczm2la57W5Cd/2/k2d5PROVQOrjDB/EJNf2KtWqvV5Au5lqTI5CX7vW7oK/Yaa5tGwKkjH/Q+h8+Kx+pUjw7vC+xAsrfaAPHjGgGAWg6nf3ttNbjbi1mj3dORPy248uYFcenztiDaNbdDGbzm1ofUE5R67yzMZz1Xghv1ouGB/fXGs79zQwd7r/ev6tq0kb5rQK5WMd8wgw9+UTz31lF2FvzvwfoZGAiRAAiRAAokQ0JBxNhyd8YqjYeha1inpPfsGlb9x+z4TZnuiaOgz/H13ifl7I6sNHqMe/Gimt1s8Y7rvKOBFV+2niatMuPRDuhgxhQfJSY6op3nNSEGQPgePNZ6aVFQDD03w1KTWPmVfYPKNEx68bZ2s8yjUuUH4GT1WyOo/HU/P8JRZ3Hhjgk1xQkXjg4QggxfMICtROK+okGzKwi0mbF+weAlid/0gx1/O+m37ZOayrfaHNua3GuWKyNV96nvJc83HJzQSIAESIAESyG0E/mO+avo3tx0Ujyf7Eli9erWsWbNGKlasaH/xhEJyj2bTpk2yYsUKK56oWbOmFC1a1F2d5jzck8PTEH4QicDrTjSxRZqFBWRA+JytW7cK9lO6dGkrpgjIFjXp4MGDtm46eA8PJuXKlYtbVBK14CSt2LNnjw1rBRFOyZLBccQz+xjiqUMyDnfbtm3WExJc2GNQHeKOWOKjZOwz0TIQBhFte/369bauuEZcMUla5aPdrVq1ygpGqlevftjaHb62RQg6tCV4coE3ongtnvaRCKfM7kPc49yxY4csWbLE9ifVqlVLl5AHHOBFDv1R8eLFbVi/jIhT3fpgPrOvb//+3GV42oOgCQYh6J133umuzrL5ncYb0jrjPWDfgYNSyrjfhpACnmIOh8EzE74Gw2AUvOXEM0CWVfVM5H6P62z58uWCe37VqlXtfTDRekNUssK4Tt934JAJdVIgqjAmI/tB2ZvMSyV4csAgZ5XSheMajPfvKzu1LX/dsAzPGfC6g9BjcLNernjBuAd1g8rL7LRDJvzcRnNONpsfDB5V4DI/DY1GZlcronzUbb0JjVjM8KxYslDUusFbibq8hycTDPzC9u4314pxU3/gINp1QSM4CgvpInbkW0i07wBbtPctO/fZkFwQW6Wn/8F26Ech0ihrvoR2Qxn4qpopi1t37jfc9xixGcIK5JMypm2kp/6ZUqkkFJoT2nwSDtMrAmFFDxwMvcoob/p1V/TjZTIzCFH51JchDzHw4HQ4wn+49Yl3fo8RZOEaR0iyEib8RVb0XdmR6X5z30Y/uX33fivoKWc8C/w/e+cBr0dR9u0hIb2TQkiBkIQkhEAIPTQJoEiR9wUFRQRUFBRRRBQEBVFQFAV5QVCKoNhQRAFByoeFXgKhBggQSCMhCamEJISQfHPtyb1nnj27z9mnnZLzv3+/c3af2Wl77ezM7Mw993QPJsny8pS/QgK8O7TpcKUORtEo6x0qDFn3qxr9Kvpkq3yfor0v3PQrksKzn7NoZVRXYxE1qZCc9G+/+X5HYT9LGd/86SgCIiACItB8BFg0Onr06ObLQM6U6XNpiDgAAEAASURBVIsd9oP7I6tL23vFa7Piw4INtlNNk3f8OA3bopslTxY9oaBcLTn0ggdihamHf3JgarTk4d6n58XWl/HU238rssjGlHRwoz3/1MWPxFaMWIBz/jHbF/Q7YfDFK5+I74ft0C/026+HMsUr/Hw12HKPa6d4C5PH+i3KTXxS7rAL6/OOO1vD/cUvEkzKWTc+4x6a+nbkfN8FkzItwX7u8sfjrahDFr+481Vv8XlmFJ5FQSP84gEEBa2jL344Oucf2/Ri0TKUWd6i5DE/eyR2OsNbsT7SL/hC+Kbg2wK56Lgdoi31oh8b/r04e5k77ZopsZUuFOCuPGmX2MuP/vqiM4Uq7v16v4V3dz+eZ/KB/0A944YpBVvKHTdpmPvSR0dGXthu7oxfPxOdD/WWsW44baJnU6hozzbr392wDfyn/fbHXzmk4SJ/S09HERABERABEWiNBBqOHrTGu1CeWw0BlEP4K1dQFuKvXGGAq9I8FEsbJal+/dKtDRQLZ9dQnEGZib+WKKyCLGYRiTzX+h7y5KEa7FAG4a81CVaJsKxVzLpWsftBgSvNalixMLW4hgIOlsrKkTzloxJOta5DwntGcXPcuHGhU+5zOKRZt8odQYbHWr/fGclGzuHWElgbay7p5ifTtm4hE2pM7I0aVG/OurmYpKVbSVvLe7bVVltFf2lxl+PGZB1bv9VC6pQzOkVKbpXE35LKVtp9oEA3bEB+RdO0OJrSDYVDlJnCLdmaMv08aaGIlFcZKS0+FOlGemsypUqldQdsUerkrxxhEr2plZnCfPbq1sHxt7FJayjz1WR+yW0vx1sasgUi1sKSgqLOtffWbyPHFnGtRVDiyKvIUa17aolMsZZUZw2sfluTat1vW44Hq1mVcK1GvwrLU8WsT/Hst9689DYuzcpxW37WuncREAEREIHyCfC99RFv5YhtXE2pidg+tF29dd4wdpSAvnXDM7ESENdQJv757XXbu4d+w/OjvOLMkDLGKy69rTDed1aucfOWvleQV9Lp6reIvviE8QVKTbjTnn/r42Pc1699mp/uPr/l3iy/cGZff39D+nZ2r8xd4e7325m96RfUmXwlsAhkbuO85eCk7O63cw7FJ+UmeavGf390Tuy8V2DxNHas4QmK0ljqvf6+16NUfvq3l91DLy50WI6m3/3sjKXuP56BCd8Oh+9Wr/iE5VZTbDr7d89FFjwn+kVHLLV4fuayeEtpC588ftUruD33xhK/OGlVxPS4Sx6NLIyP8enM8m7/eX6+m7HBsmcyLL93G9k3UgbjeRDH6b+e4g6aMDDaxv49vyjiqelL3HX3To+D7teEWzbHiepEBERABERABGpMQIpNNQas6EVABERABERABConYIpNWCGbMGFC5REqBhEQAREQAREQgVZL4NN+BfgDLyyM8v/7/870FgxXux2H93bbbNHDvectvbBNwx/+OyOyNocntpEYn9g2o9XefI0yLqY1AqtoRUAEREAEREAEWi2BgyZsESk22Q2wnVu4TbG5c3zDby8WKkDhdssjszkUFawglaPYlCfunfx25+f5bbmztoHd1SvLfMNbJbr01jolqVf89mX8pcmlX5jgttis4ZawKCrvvV2/2MoS1qHMSlIYD0pAoWJT1hbPYZhqnx+//zCvVLTSbyv4VhT1o377PP6SgkUkLFOFWyhPHNPf7TW2n3v4xbcj73dMnuv4CwVLVVd5i1FpwtZ8F392gjvRW5pa6a1WYj3zzw/OauD17KPGuotufrGBOwtZUEQ757fPReEpa8nyZoFO8Zaaxg5tqHBm13UUAREQAREQgdZKQIpNrfXJKd8iIAIiIAIi0IYIvPRS3TYyhx56aMnbfLYhTLpVERABERABEWgTBLbfqrdje4U/3l+3zcS//bYL/KXJnn4V9veOGVewrUaav7buJqZtvQTo/kVABERABERABJIE6B+xbZhZLTp45+ydKFA8KUc6eKvVeaVj++J+yWv/Pp3cuKG9HUpYw3NYP/y4txiFNfDf3z8jVk4K83PYroPccR8aVlT5auLoesWm/cb1T+137zSicBeOHbcu/G1pYkkqj3TyVpbSJNxmvEOCF7/P9Ypeu4/azN304OwGSlxYt/qU/8Zg+2oUkULBgtdFx433FmGnu394haalG7a9x88Av13yqYdtE1mlylJswh+WxC8/eWd39T2vFmw5x7U9t+3rTj10lFu3jl91krRuiSLaH7+1l/vFHdPcIy+9HW97h2/yPmbLnu6kj4xwlFuJCIiACIiACGyMBDZZs2YN1hIlIiACIiACIiACItBiCYwfP96h3HTDDTe4Y489tsXmUxkTAREQgWoT+MtDs9z//eOVKNpLPj/B7eFXukpEQATqCDz7xlJ3xZ2vuJdmL2+AhO0jPuS3YDhuv2EunOBo4FEOBQTEtACHfoiACIiACIiACFSZwLRp09zo0aOrHKuiqwaBVd6S0Pylq91qf+zeuYPr37uT6+QtMm2ssnTl++5tbzlpnZ8h7dW1o99uvWPu74aFy9e4xe+85zbr4bdp79ExVZmrGLflq9a6BUtX+XBsEdzVdelYOuclK953C5ev9kpYHdzAPp1LzkOx/OmaCIiACIiACLREAlJsaolPRXkSAREQAREQAREoILB27drod/v27aOP/oKL+iECIiACGzGBD/wo6/sf1C3bZIVuuSuBN2JEujURcLwn85ascguXved6dOngthrQ1SVXaAtTaQTEtDRe8i0CIiACIiACIpCPgBSb8nGSLxEQAREQAREQAREQgUICUmwq5KFfIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACVSYgxaYqA1V0IiACIiACIiACItBGCJRu37CNgNFtioAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAINB8BKTY1H3ulLAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIikEFAik0ZYOQsAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiLQfASk2NR87JWyCIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIhABgEpNmWAkbMIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiEDzEZBiU/OxV8oiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIZBKTYlAFGziIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAs1HQIpNzcdeKYuACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACGQQkGJTBhg5i4AIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAINB8BKTY1H3ulLAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIikEFAik0ZYOQsAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiLQfASk2NR87JWyCIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIhABgEpNmWAkbMIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiEDzEZBiU/OxV8oiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIZBKTYlAFGziIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAs1HQIpNzcdeKYuACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACGQQkGJTBhg5i4AIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAINB8BKTY1H3ulLAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIikEFAik0ZYOQsAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiLQfASk2NR87JWyCIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIhABgEpNmWAkbMIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiEDzEZBiU/OxV8oiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIZBKTYlAFGziIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAs1HQIpNzcdeKYuACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACGQQkGJTBhg5i4AIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAINB8BKTY1H3ulLAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIikEFAik0ZYOQsAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiLQfASk2NR87JWyCIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIhABgEpNmWAkbMIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiEDzEZBiU/OxV8oiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIZBKTYlAFGziIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAs1HQIpNzcdeKYuACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACGQQkGJTBhg5i4AIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAINB+BTZsvaaUsAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiJQawJrP1jvVq9d57p3al/rpBT/BgIvzl7mZi5cGf3ae2x/16Nz65qWXbZyrXvk5YVR/rce0M2NGdJTz1YEREAEREAEmoVA62pBmwWREhUBERABERABERABERABERABERABERABERABERABERABERABEdiYCdz3zFvu6TeWlHSLx+wzzA3p16WkMHk9L135vrv2ntfcrY+96fberp/7yfE75g0a+ftg3Xr36LS33W2Pz3GvzX3XLVi2Og4/Yovu7sDxA93BOw9y/Xt2jN1LObn+vtfdonfeSw3SoX07169nJ9e/V0c3couebsTA7qn+NnbHfz+3wP3pgZnRbd54+h6uRyvjMH/pKnfhn6dG+T9u0jApNm3sBVb3JwIiIAItmIAUm1rww1HWREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEak/g8VcXuX8+Oa+khD660xY1U2z6z3PzI6UmMvTQ1LfdtDffcaMH98iVvxkL3nVn3vCMe3PxqlT/0+etcNPnveZ+9+833MWf39FN2LpPqr9ijrc8OsctXbGmmJf42rZDe7qj9xrqPjJhi9hNJyIgAiIgAiIgAiKQl0C7vB7lTwREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREoI5Au002qRmK2594syDue57Op3T1/Myl7otXPFGg1DSgV2c3aYcB3krT5m7wZvUWplau+cCd+qun3F8fmV2QVrV/vDR7ufv+TVPdD/78glv9/rpqR6/4REAEREAEREAENnICsti0kT9g3Z4IiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiEB+AjectrsbNSifdaT8seb3icWlV7yFplD+8fib7ssHj3Rs85YlK977wH37xuccCktI7+4d3VkfH+P23ra/C5WwFi57z/3wry+4ya/Ubb3389umua6d2rtD/NZ05cjDPzmwINiqNevcIr/13RS/tR9KU1iIQu6Z8pZ7Z9X77uITJrga6oQV5EU/REAEREAEREAEWj+B7N5P67833YEIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAItCoC9zz9VpzfiWP6RucoKz3ht8srJtfe81q8PRxKTdecsqvbd+yAAqUmwvfv1cld+rmd3Cf32TKO7ue3TquaNaUuHdu5If27usN3G+x+45XETvzw8DidR15a5JLWqOKLOhEBERABERABERCBFAKy2JQCRU4iIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIikIfA417haMGS1ZHXLb1Cz/it+6QGe9pbMJqzcGV0bfthvd2wAd0a+Ptg3fpY8QflpNMPH+MeffnhyN9dT81ze43p3yAMDiu9taa/Ply/pdw5R23rBvet33YuGahdu03cSQeNdFiCQmmKv6emL8qMPxk+728sRX3+wOHu/Q/WuRv/PSMK9os7XnGH7LJFpvWp52YsdU+/vsTNXbwqCrd5785u5BY93N5j+7tOmxbabHj4pYVu8TtrongP9hanNm3fcHvA/z4/31uKWus29WEP3mmL1KzfNWWeW7t2nevnlb4mju4X+XnslbfdwqXvuY4dNnEf2XFQlJdX577jnp25zL325nKvINbZDdu8m/vQdgMii1epEedwLOV+k9Fhpev5GUvcGwtWujfeesfnY1M3enAPN2JgD8+su2vvn3MxeX3+CvfQi2+7OYtWOnxu7e9n4ph+bqv+DctmWjxvL1/jXn5zWWRhbPbCd92Qft3c8IHd3Nihvd3mvTulBZGbCIiACIiACJRMQIpNJSNTABEQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQARGoJ/DjW16Kf9x6zj6RVaTYwZ/M9woyp/7qqdjpD2dMjM/DkymvL46tLh2+26BIOWn81r3cs28sc/95boFbfuRa17NLw+m9x6e9HUez7dCeuRSUOndo5772sVHupodmRWHnvL0qjqPaJ589YLj71zPz3ZteWalOiWqx22NUnQKRpYXS17l/er7BNnx2vWvH9u6co8e6Sdtvbk7u8VcWu1v8dnfINn77wDFDesbXOGFbvO/8/vnYbbxXKBu0WaHC10KvnHPhn6dGfvYd1z9WbPr7Y3PcQ1PruO40op878zdPp+btF91fdRccu73baXi6QluceOKknPsNo5j82iJ3/p+mxuUlvMb5rqP6uB99ZsdMpatLbn3Z/e3ROclg7oo7XnWf2ndL9+HxAxtcCx3ueXqu+8FNL4ZOBednHrmt+5/dBxe46YcIiIAIiIAIlEOgUK25nBgURgREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQATaKIHdt+nrPr7n0Pjuf3ZbvZKTOV56e73baV6ZKM1aE37vmVK/Dd0BO9Qp8Hx0p0EWjVdumh+fhyePvVK/Td34rXuHl4qef8xvF/eHb0yM/j65d/3WdEUDlXERS0sH71J/Hw9OXVgQyxvz33Wfu/zxBopDKDOZoBD1Xa+khMKRye6jN7NT96y39JSUZ95YXOD01PTC31x8YeaS2M+eG6w1xQ4bTs6+8Zk4b+QpzNfSFWvcWTc845atXJsMlvm73Pu1CLFC9fVrny5QasLCF38mk19Z4r70y8leuesDc4qPNz04s4FSU3hPNz0wy11z72ux/+TJHx6YWaDUNNgri+04orDcXfy3l9zv/jsjGVS/RUAEREAERKBkAg1VukuOQgFEQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREoO0SOOWQbdxjL78dWSTCyg+KJ/ttsCx0vz83yz8of3wiUIIKibGdHNvNIUP7dYm2X+N8n7ED3E82WIT6x+Q3U63gzF+2Cq+RjBjY3U5b1HHPMX3ddfdOj/L05uK6Lfn4wfZ7P7x5amTJid8j/BZqXzl0G7fjsD5+u7pN3GtvrXA3PzzL/fPJOjY/+/vLbucRmzm2/Zuwdb1iE9aukspZk18tVGR61Fu2+tiuhVaEnn69XiFq55H18ZEXk5dmL3d7je3nTj1klH82XZ3fYc9NnbUsUrRasGx1lPebHpzhTvbb+zUmldwvca9f79z1/3ojTuaYfbeK7ru/30YPeW3eOz5fz7nZ3gLX9Hkr3DN+C0TbXo/rbJ2IVSaTL3xkRGSdaYgvc1ivesRv74dS0uPTCtmZ/3U+A3+8f6b9dBedsIPb15dRZO0H692DLy6IuPD7Rp9PnknHxBaCXJOIgAiIgAiIQF4CUmzKS0r+REAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAENnoC3/3dc65zp3pLQWk3vOPWfdw3/md0fIlt3b53zDh30pWTI7ef3jrN7ewtOSEX+3OT735inGvXzmvFpMgDUxfErocFyjd9undwe27b1yucLHIo2MzyW7ah1BPKwmVr4p9bb94yFZsG9KrfAu6txavj/D7hFW24LwSrQRcdNz7ags88jPJbzH3742PdW0tXuymv1VlX+otXdPrm/46JtllDWeyZ6UvdlFeXREpS7QO+DyUsQ93//MJI+WZTrzBl8sQrddvNoUyW3KbO/Gzvt7C74NgdHJanTLbbspc76xNj3Bm/fiZyesErOuWRSu6X+Of67fz69ezo/zbzSlbd3CmHjHTt0LTaICO36OHOPmo7d8ovn4xcnvGKW6Fi0w331StFHbXXUPe5A7a2oK6/j9e2j0O5KU1enbsithT1oe37x0pN+IUrWwWecshq99T0OitiC/w2jChNSURABERABESgXAL1rW+5MSicCIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACGwkBN70iiNYuin2N29JvcUhu20UXT5/4PDoJ9uT/fKfr7pr75keK4F85+ixbovNOpv3Bsc7n5obu6EcEspBO24R//x/z9ZvV2eOC5bUKwoN8RaFWqL06lpvb2GRtwxk8t/n6xW6vu6VxQb3bagEg7LS9z65vQVx93jLVlg+Qvbats5aEFvVTffWnUzeXLQqsqDF728eMcac3dTZ9QpIi99ZE1k24uJeY/vHfpInR+wxqECpya7vvk0/O3Wvv/VufF7spNL7hc+ln98p+jv98NEFSk2W7pjBPe3UTZtbf7/rPLPnN2zZN6BX58gyVuwxOEG5KdzmL7jkOmxar0Q1c8HK1K3ujv3QVnEepdQU0tO5CIiACIhAOQSk2FQONYURAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQARHYKAmgoIRSR7G/CSPqrDElARy//zA3anCPyPm2x990tzwyOzrfe7t+7pCdByW9x7/neQtGZo1o26E9Gyj3hEo3dzwx16GgEkr3Lh3in8u8sk5LlPfW1uc5zO8rc9+JsztmSL1CTuy44QQrRSjjICgxLVz2XnS+y4g+0ZF/z8+s31buqel1W6lhBYrt5yzsk6/Vb7H2QuB/t1Hpz5R4Rw/uxaGBYCgJS08Iymx5pNL7TUsDJa93Vq9187yCG8pdL8+pV2Z6328PZzLHK3uZbLdVT7/VX/ZU8Y7BNn8WhuOw/t0iy1qcz5j/rjvh54+5Pz80K7IkxjZ5EhEQAREQARGoNoF61ehqx6z4REAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAERKCVEcC6D9uflSMoipz3yXHuM5c+GgdHseasI8bGv9NO/vVcvRWmnt6y0eTX6rbxSvO7YNlq94y3urPT8HqFns37dHa4I68vXOGGJLaqS4unqd0Wv1OniES65NdkwQYFJX4PbcTa1Kgh3eP7XPruGjfQxzNyi+6Rog3KTigzfXzi0CjqR6fVbTG357b9oi3S9h3X3/314dnuoRcXuhM3WNaCo8mOw+p5mpsdN+9dn19zs2OXTqVNt1Z6v5buy3OWO6x3PTZtUaRgZO7FjtPn1SuRsWVdMRkxsFvqZbZSvPD4Hdw3rns6uo6Fs8v/8Ur0R1n/0PYD3EE7DfTlczMXbguYGpkcRUAEREAERCAHgdJa2hwRyosIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAItFUCWw3o6kZ4ZRu2skO22ryb69293qJSkgtWbm731p1MHp+22PFXTO6eMq9AsWmzHvXxv+G3RNu3uB5Vsahrdu2FWUviuPt760smZukIpZiOm2ZbEMJ/3+6dLJhbvfaD6LydN5s0afzm7s7Jc91kz22dB4oFowdeWBhd33PbOktMe4zuGyk2vfLmO44t6Dbr0dGZ9Sasc3XqUDztOOEKTyq9X8rLzQ/Pcv/nlYlKlaUr34+D9OpaX2Zix+CkZ5Hru2/T191w2u6RRbI7PHcTlMvu8tsE8oeFrJ9/YYIbNiBdQcrC6CgCIiACIiACjRFomha6sVzougiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAhsBAT+/ticWKmJ23lp9nJ3q3fLkhdnL3NYvSlFUOJZtWZdHGSHrXrH568GVnlix4wTFIBWvvdB9Md5LeW+Z+fH0e8ysn7bt8Gb1W3lhlLMkhX1ijex5+Dkdb/1mUnvrvXKURO90hJCHG94P1M9U5OdR/SLTid4C0ImU7xlp2Ur18bPaY9RdX7sei2Pld7vk9MXFSg1Hb7bYPf9Y8a5a76yq/vjNye6W7+zr7vvgkmpt7BVoGQ06+2VqX7McXYj17FqdvYnxvq09neXegWmz394uBvmlfhMsCD2xSuecIta6NaIlk8dRUAEREAEWj4BWWxq+c9IORQBERABERABERABERABERABERABERABERABERABERABERABEWgFBGYtXOkuvXValNOh/bq4RcvXRMo2l3i33bbp54Z4t6Tc83T9NnSf3GdLd9iug5Je4t8X/Hmqw+IQ8uDU+e4jE7aIzvfedoC74o5Xo/P/PLfAzTtktdsi2O4tupDyD6s/tzwyO7pyxv+Odkdu2MYtxWtFTmyt98hL9dvr7TO2fxxf/z6dYsWumW+vcH26p28JhyWm54Ot4zbrUW+9acet65WWnvN+TJlm1OAert8G61CdvUWmiWP6ukdfXuQef3WR69K5fZyHXb0FoqaSSu938qv1lq+O339rd/JBIxpkfW6GotyIgfXbz70yd3mDcKHD9LfqLI6FbmnnXTq2c1hw4u/zBwx3U95Y7C686cVoy0AUzZ72SmQH7jgwLajcREAEREAERCAXAVlsyoVJnkRABERABERABERABERABERABERABERABERABERABERABERABEQgmwAWjy78y9TYw7mfHOfO+vi28e8Lb57q1iWsIq1Zu87d9WT9Vl6fO3C4G75598y/rx42Ko7vn1Pqw6Ewte3QnvG1y/7xcoO04osbTlDCMqUmnA4YX6cklfRX6e8ZC9515/+pnstBOw2MtoGzePccXa/khCWqLHloat3WclznXnt2qbff0Mdv9Wf3jzWmB6YuiKLZd7sBBdHtOabOMtN/vfLXlOl1CkK9u3ds0u3SKr3fZ16vV2w6bJd0JTjbYq/g5v2PXl03jbaIw/2Z6Uvd6/PTlZewnHX3lHqFuzCemQu9RaxZy6K/996vtxqGH78roNvZW8b6zKSt4iCv5VSQigPoRAREQAREQAQSBKTYlACinyIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiJQKoE/PTAzUvYg3FF7DXXbbdnLKwsNdLuPrrMmhLWhvzw8qyDax15+O7LohOOkHQa4Hp3rlXUKPG74MX5Yb4ciDjL5lSVu/tL3Nlxx7ltHjInPH5r6dqRklVQ8MQ/P+rx88/qn7WeUX5ReqinvrF7rbnl0tjv2kkfd0hVroqjJ+9cPr88njvuNq1c++ueT89ytj89pkA2UsM7+3XOx+yE7N1TC2mvbOgWpf3ulpenz6hR2dtum3pITgbGahWBJ6KYH6p7FfuP6Rwo50YUm+Ffp/Y7conucy+kp2w6yteEV3hJXluw6qp7Jt3/zrFvhtyIMBQW97//5ufiZhdc4v3vKPHfSlZOjv5/+/aXk5ej3zAX129xtP6xXqh85ioAIiIAIiEBeAtXtoeRNVf5EQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREoAUSuOae19ygzboWzRmWaU6YtHVseeg1r2Dyy7tei8KgvHPSQSOjc/x94/Bt3Sd/+nD0m+3i9hjdL7YQdGdgdekjXgmqMWnfbhN3qLfS84f/zoi83vfcW+7Yfeus44we3NN93lt8uv6+16NrbHH3oLdy9JlJw9zIQd1dx03buRnzV7oXZy119z4zP/LDP/J79N5bxr9LPbn0tmkFQd5ZucbN8wpX4bZxeOjasb27+ITxBZaWcB/ct0tBvn/6t5fdQy8u9NvG9XOdO7R3KGH959n6/LK93OG7DSFogewyso+77t56J9IbM6TeihVXsGw1eLMu8dZ3uLGFWlNKpfeLstZtj78ZZRllL7YunDi6r1vvXZ6fucz9+cFC5bnkvWH167k3lrjZb6+KOBznFc9Qqhvjuc7ybv95fr4vJ+8mg8W/D9tlsLvx3zOi33c9Nc998MG66FmNHNTDLVz+nrvHu4XbK+4ysmn5xhnViQiIgAiIwEZDQIpNG82j1I2IgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAhUSuDRlxf5KPgrLgeO3zxSbGI7ue/96YXY81kfH+O6dmof/0aZ5pRDtnFX/fPVyI3t6q4+ZVe37N33HZaVTHbfsE2a/c46HuCVUEyx6R/eupEpNuH/xA8Pd5192lfdWZcWlomuuWd6VlRu11F93LlHb+/69qizApXpsciFcDu7LG87eaWj844e5/r36pTq5fj9h3klm5Xung3bn/EM6p5DofehnuWFx+7gNm3vNcYSMnZor0h5intG9vGWmFAES8q+3kIU1rVMJoyst2BkbrU+VnK/E8f0d3uN7ecefrGu7Nwxea7jL5RTDvXlbUMZCN05xyrYxZ+d4E68/PHIctWCZatTlaHOPmqsu+jmF5PBI0W0MH6U5EJFOQuAYtkFx23vOnmFOokIiIAIiIAIVEJAik2V0FNYERABERABERABERABERABERABERABERABERABERABERABERCBVk9g03blK1/c/Mjs2MLNvl6ZZt+x9VurGZij9x7q/vnU3MjfS7OXu9ufeNN16lCfJlZ38iqAjBrUM7Y6hNWdGQvejS1AkR6KTjts1cv90SvvPPDCQstCwXHY5t3cwTtt4T7t/bZLUf4p8Jzyo2P7+rynXI7y179PJzduaG930E4D3fDN67dPS/Pfwcd3rld82t1vk3bTg7PdK2++U+ANJZlPfWiryLJU1nZ9KDHtMaavYys6ZE9vGStN2BrQFJu291v7ZcXXDnNbOaSTtyqVJqFSFfcXSiX3S7m56Ljx7tp7p7t/eIUm2+aP+Af06uxOPWwbN2n7AZmKTfjbsn9Xd/nJO7ur73k12tIQN5M9t+3rTj10lFu3zlxcZO2r/lddGZuwdW/3iztfcc++sSy8FFkA22VEnyiOLEW2ggD6IQIiIAIiIAKNENhkzZo1WCaUiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiEBNCEybNs2NHj26JnEr0mwCby9f495c9K57a+kq9+7qDxzb1Y3Yooff4q1Q0SY7hua5snTl++5tb0lonZ/F7NW1o+vXs2Oq9aXmyV31U63kfhf6Z7z4nfe89bBOrp+3vJVTHyu+ieWr1roFvnxs4gOyBWOXjqWVjXXr17v5S95zy1e9HylW9eneIY5bJyIgAiIgAiJQDQJSbKoGRcUhAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiKQSUCKTZlodEEEREAEREAEREAERKAIgdJUbotEpEsiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiUC0CUmyqFknFIwIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiUDUCUmyqGkpFJAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiUC0CUmyqFknFIwIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiUDUCUmyqGkpFJAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiUC0CUmyqFknFIwIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiUDUCUmyqGkpFJAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiUC0CUmyqFknFIwIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiUDUCm1YtJkXUJghMnjzZTZs2LbrXQw891PXp06dN3LdusroEXnzxRTdlypQo0kmTJrnBgwfnSqC1l7/Wnv9cD0meWiSBO+64wy1dutR16NDBffKTn2yReVSm0gncf//9judHm7vffvule2ohripnLeRBtMFsqH0t/tCrwSfr/V67dq37y1/+4qZOnepOOOEEN2rUqOKZ0VURaKMEWlN7nucRzZ4923FPyC677OLGjBmTJ1hRP6pPiuLZKC5ubO9Ba3ko1egHlHuvLfG9zurTlHuPbTVcsXZAjNtqqdB9i4AIiIAIiIAIiIAIiEBtCWyyZs2a9bVNQrE3N4Hly5e78847zzGgUI6MHTvWnXLKKVHQs846y/385z+PzlFMGTduXDlRNmmYRx991P3hD39w11xzTfT32c9+ttH0maC57LLL3JNPPukOPPBAN3z48IIwXbp0cVtssYXbY4893MSJE90mm2xScN1+XHDBBW7+/PmuY8eO7tJLLzXnNn+88sor3emnnx5xuP32291HP/rRXExaY/kLb6y15z+8F53XE3j77bfd+eefH9UvH/vYx9wtt9xSfzHjbMmSJe573/ueW7duXaqPbt26uUGDBrkhQ4a4PffcM6pvUj3mdNx5553d888/73r06OEWLVqUM5S8NTeBOXPmFLQ/b7zxRm5F0ObIu8pZc1BXmhBQ+1q8HFSDT9b7TZt3zDHHRBnYZptt3AsvvJDZLy6ey+pd5Rvl+uuvjyI88sgj3f7771+9yBWTCJRBoLW153lu8c4773RHHHFE5PWKK65wJ598cp5gRf20xPqkaIZ1sSQCG+N7UBKAZvRcjX5Audlvie91Vp+m3Htsq+GKtQNi3FZLRf77ZtH06NGj8weQTxEQAREQAREQAREQARHwBGSxqQ0Ug7feestdddVVZd8pSiem2FR2JM0Y8PLLL48VDc4444xo8qVTp05Fc3TvvfdGSk14uu+++4r63X777SNrGig6JeXqq692CxYsiJyl2JSks3H9XrlypaPcrF+/3o0cOdJRLiRtgwCDtShOIv/4xz/c008/7SZMmFD05lFs+tWvflXUT3gRhakzzzzT7b777qGzzjdyAqyCDWXWrFktWrEpzKvONw4ClLmnnnoquhmUudP6OrW+05aQh1rfY2uO//XXX4+z/+qrr7rVq1c7FgA0p2AZ1NplFmhIsak5n4bShoDa83zloCXWJ/lyLl95COg9yEOp9fm5++673apVq1zPnj3dAQcc0OAG9F43QCIHERABERABERABERABERABERCBMgm0KzOcgrUiAu3aVfaYN9tss1Z0t4VZxTIJSgcm77zzTqR8Yr+rccQKClad5s2bV43oFEcrJfDYY4+5o48+Otrm609/+lMrvQtluxwCZhXCwv7xj3+006odUZjaZ599HIqaKM9J2gYBFEmOO+646GY58lsiAk1J4Le//W3UrrGFJUqbzSEtIQ/Ncd+tJc3PfOYzkWVBLAL+3//9X7MrNbUWbspn2yKg9jzf81Z9ko9Ta/Wl96C1PrnsfKPQdPjhh0d9xXPOOSfVo97rVCxyFAEREAEREAEREAEREAEREAERKINAZRovZSSoIE1PAOsxfsvB1L/Pfe5zcYaeeOKJVD+/+c1vYj+t7eTvf/97gyzfeOONDdyKOSS5MHjDqrPrrrvODRgwIArKCnWUm957771iUemaCIjARkbgpZdeajDZj6ITdW5e+Z//+Z8GdS+W9rCSwjaiVs8Q3ze/+c1om8y8cctf6ybANqe//vWvo7aFY9a2p637LpV7ERCB1kwAK17//e9/HduyfvnLX27Nt6K8i0DNCKg9z4dW9Uk+Tq3Vl96D1vrkKsu33uvK+Cm0CIiACIiACIiACIiACIiACIhAPQEpNtWz0NlGSCC0pLL33ntHd3jbbbe5hQsXln237du3d0OGDHHHH3+8mzx5smOFOoJy0x133FF2vAooAiLQ+giE1rnYthPBMtz/+3//r6KbwVIe2xl+97vfdS+88II79NBD4/jOOussh6U4SdshIIWmtvOsdaci0FoJqJ5qrU9O+W5KAnpP8tEWp3ycWqsvPd/W+uQqy7eee2X8FFoEREAEREAEREAEREAEREAERMC5TQVBBCohsHbt2mjS/dFHH3VYNtp6663d7rvv7nbbbTfXp0+folFj3ej22293zz77rJs1a5br3bu3GzZsmPvf//1fN3z48KJh81ycNm2ae/LJJyOvKCF9+MMfdg899FD0+29/+5s7+eST80RT1A+rzy644AL39a9/PfL3r3/9y3384x8vGqaxiytXrnQ33XRT5A0e+++/f2oQttlDSQuB+XbbbdfAH9vjYfWF7WNQvMJ6F/7wj3JWMbFt/AhHPNzrmDFj3JFHHtnos2WrrPvuu8898sgj7o033nAoaYwdOzYKW+2tDbGYc8899ziOCGUQCzjbbrttwe3deeedbv78+ZEbSiKbb755wfXwxz//+U+HxRwG39h+p2vXruHlgvP777/fTZ8+PU6fi88884wzpbqtttrKHXDAAQVh7EdLfX+4d7Zw5NkvXbrUbbPNNm7ixIlxWWRboA8++MD17ds3Ym33w3N48803XefOnd0xxxwTWSGCxcMPP+yee+45N3jw4Oi5YK6+Z8+eFiz1uGTJEofFNd5jyh/1w5ZbbukOO+ywqBymBULZB2VD5IgjjoiUDqlfsCTBNcr/hz70oWhLNwv//vvvu1tvvTWqh+bMmRO9H9Rf/HXp0sW8pR55fvacsarEFjyjR4+O/P7+978vUEZKjSCnI/d+8803R1bheKeQ888/v2CbzZxRFXj7z3/+46i7X3nllYjvqFGj3FFHHeX69+9f4M9+2HO3emnu3LkRW94BLFT96Ec/iuoJ848b7xJlYObMma5jx45u6NChbq+99nL77bdfgfWhdevWObMO2K9fv2hLA4vHjqtXr3a2zV/We7V48eLoeRJmp512cjvuuKMFdzwv6kLKxJQpUxzbtFIfjhs3Lirfm25avEvEfT744INuxowZUVjKI/XznnvuGacRniTLY7du3aI2Ce5Tp06Nwn7hC18Ig6SeozyHpcCBAwe6Qw45pIEfFOlo6+DMe8bz454mTJgQKcc1CJDTYdmyZVH5ePHFFx1/KPFanCjdNcYrKxneafjzLFAyDp9Br169soJF7tS19BsoT1iHGTRoUPRe028ILZsVjSTjYinl1aIg/2wTiVBH0u7wPOhjoJBIm0NZpc09+OCDHYrRxaScflE1690wb1bu6EOY3HvvvVHbyO+sfkc1n1G5eSB/Lal9TT4j+haPP/64o07hfaCtoX36xCc+kdk3o03mnaR9/fSnP80tpgpWSbl36lr6vcUkb/+pWBxcW758ufvrX/8aeUvWu2FYrJ3Sb+X9pW9BPWX+q903DNNNniefB+9+uX2VZNy00S+//HLkTD8k61sI5efZs2dHz/NTn/pU1KaEcVXaXtGuUzfRB1+xYkVUHnbeeeeoX9KhQ4cwqZLP6TfQjvEcEZ4hbQPPs1h/mXti22baE+pH6rvx48e7HXbYITraQpG0DFXazpXaflseKk3X4rGj1WnJ9rzcMkk/7O67746ib+ydp39OOgjPin5uKOX0u8Pwdl5pnorVJ+VysryFR8ogC5J4R/hu5Tv1Ix/5SHSkf0FfA7Hv5jBsnnPqV+Kg3kNgTh9uxIgRLuyr0m+g/4BUcwyA+Er9lk/2afju53194IEHojaL+uxnP/uZ43sAoR99wgknFPTnowsb/tG3xy98+ZZhDAHJeg+S/Wb6hNSn1Dn8UUeQJ54T3/vFpNxv2WJxhtfIK31u+vOUeZ4j9RnfHbzfpUqp31jEX269VixvpfT9aWcYW6MNNaGesW9j+ivWvqW914wlWFnim4Lxuiyh/TCr62nfieX0n9PSos/LdyKyyy67RO1Tmj/c6DfwPYPwPcj3cV4p9VsoWffxXcg78V8/xsE4CfXUxz72sagvaXmgnuF7hDJKW7brrrtGf7TXxRTMql22LT86ioAIiIAIiIAIiIAIiIAIiEDVCPgP0fX6a7sM/FZ0631hiv68YlKjZeH0008v8O8VSOLfFo8dvTJDZnxc85OQmWHPOOOMzLB5y6u3dBLH7wf31/tByvi3H6goGr8fWIn9NsbFDyrFfv1AW0G84T3mzbef6Ijj84NBBfGFcfiBl9hfGi+vJBBft2cSHq+66qrMuH/1q18VDesHJDPDwhm+YVp27gck15Ovn//85/F1P+ibGVd4v5wny9/Xvva1OB5Lw46nnnpqQbxnnnlm7NcPyhZcC9PxA2+xP+Lyk2+Zfgn32c9+tsC/pW9HrwAQh0/mvyW+P8WevR+QX+8Hz+L7Tb5HfkAtvuYnvNb7gbP4t/HgyHvhJ/ViLiF/PzC53isLpoazOEjHKww0CH/JJZfE4ShXfpI4/m1hOZ544onrvZLMet4hr7SV6sdbeFvvJ3kapBHm9a677orDeitKkV/CWVp+UD0zvB+oj/1RDsJ4s879JEwchjTSGGSFpRwShnfQK3Ctp66yfCaPv/vd71LzY/547l7BoUF4P8Afh/PKYkXreLj7weDYP/kOn4Wf3Cm4xnU/qBun6ZXkGlzHD3WT5dMrmsV+uOdJkybF18yPHXlufvIp9h9ypMxn1WmE98pyqWUlLI/w8NuVFqRfrH4P07d2xE/iNMifV45YDwu7j+TxlFNOabQOC9Oyc8q2pZuMk9/cC3W9+bdjWM7MzY7vvvvueq8EnJlX0vMD9A3iJLyfnFsPr7S8mNu3v/3t9X6gPzW85SHrWE55JS74W/rUAfQ1srhRvmnfs/JQbr+oGvVuWp6y7sPuN9nvqMUzKiUPLbl9DZ8RZaBYWabeSHseVj9Sh6ddNzeu84zCvgfXknxK6T9Z3Fnvd9ienXTSSQ3yR3uLu5WdtKOf3GwQztIt5+gnVuP0LrvssoK4w+dRbl8lK0/0Pe3+/ORgQbphGL8IIvaXbMsraa9gTR/H8pA88k4Vy1eYx+Q5+fQKjUXjzvpm8koe670ScGZY2rGsfFXSzpXbfnPvlaSbZGe/rU5Ltufllkn6mfaMeffT+k6W9rnnnhv7DeuZSvrdfgFCHOcVV1wRlfdK81SsPimXkzHgyDsSjn8YPzt+61vfWu8V8OL74vsxDJ/n/Ctf+Uoc3uK1I+MT9H/tN/0ii7NaYwDEV+x7jrTTvuWTfZrvfe97cT4JY+1P2CeGleU/efRKL3F4+o12Pes9CPvNfMcVazfCPr7Fa8di997Yt6zFkXWk71usjoWTV/SN7zUrnqS7lYc831jl1mthPyD5DUZ+Su3733DDDfHztfwnj9a+Zb3XYVnyCx4yuYXfgNQDIb9y+89pfRrKnd2DXwhXkE6YJufeUnPsl/HA5PW03+V+C4V132uvvbaeNsTyGR6vvvrqKB+839YfDK9z7re1T81ruWU7rR2we09jbNd0bLtzEOGzz+r7hX50rrKiMqAyoDKgMqAyoDKgMqAykCwD2orOf91JyiOAlSKzGOQ/nBtYS2BbJlb5JQXrTKxiXrBgQXyJ8KH4ga3I+knoVso5K8CuueaaKAhxs4oKCzF+Milyw7qFWfgpJd40v+HKZ1YmtgSBn1e4ibPCqkYs1YTiJ7zdT37yk9ApOmfl75e+9KUC9+TzwRoPq8SSAnc/WBxbyrLrFp7VYuQL60mVClt0XX755XE0loY5/OIXv3Beect+RhaE7IdZxLLf4fHf//53/NMPXBZdfY7H7t27RytIk+nzm78sKwQt8f3BgkCxZ4/1nRP8ytw8guUyLLIgxsLC8e6zapeVxEnxkwHOT74UOCfZYoVgjz32cKwuz5If/OAHsQWJZPhf//rX7oc//GFkFQirVIgfZC+IihWoxx57bIFb8odZD8IdS0dIGIZVktUULCrZlprEW852d7yD1INYXjFJ8jnuuONiy1fmJzxShxezTOcHUyPLe8XqeLhj5cGs6hE/lrxMWAWdFCzimbAimJXCScGikgn1PuIHaqO0sDBhgpUlryhgP6MVx6y0xopIKKwA5tmG+Qyvc86Kaeo16r8soUxjxa6aQhnFag4sEJ4j9XxYlqkDsQJTimApDetC4fMjzjBe7sUrikUrgPPGTZnxCgaxdz/YHa2GNgfSw5IX9xUKFgxwT9bbyXL74x//2FF2S5Vyy2syHaxW+omHmFsyf5R5LAD6jngyaGS1shr9onLr3QYZ8g5YNUzeA7/tL7TMUqtnVEoewntoie2r5Y82NizLScZeYSyydGf+a3Estf9UaR5Iz/rkFlfyvulbfP/737fLTXas5jtTjUxX0l6RvldEcPRxQglZU8/S1pa6JTfWIWDlFR/CqAvOiRsrQMk+Pn0GrJmYxUkCkSeseJrQjtEu+wkuc4qOlbRzlbTflaRbcANl/CilTPKNgX+E/l3IOJl0WO+E/YJq9bstvWrkyeIqdiyFUxjPhRde6LxCRuhU0Nb99Kc/jawxF3go4QffpldeeWVmCNLnG6SWUsm3vOWLb76sOpk+rwlWb7PExom4Xmr/jG23w3Yj7IMS32mnnRb1vzkPpZrfsmG8nNPP32effRrUsYyzhML7FX4jhtcaO2/sG6uSeq1Y2uX0/bHES10etjHk0DH8AABAAElEQVSkYW4ci1kGwm84rlCsLJE/k9CyU7XHFb0CXnw/tGVZYw2MYZi1PJ4/4xJ5hHqrnG+hMG6+47E0hyTfCyzS8+3HWB1tQpofrK6FecBPU5TtKDP6JwIiIAIiIAIiIAIiIAIiIAJVICDFpipAbKtRMHiKKWMmfBnMZhsnJqNxQ/iYDhVLcMO8dTjxx8AY5p4ZyPcruhzbN5n4FZMNBsftWmNHJrfJE8LghykfMalowmRmNQRT9iZsA9DcgnKVt4gUZ4PtQTB3zUCfXyUWmX+3ixdffHG0FYT9ZkIhVC5g4IOtJhi8YXsZJqdM2BLMBlXMjYFalE5MMC/OZAXhMdfNICRSjQl+U8zwqzLjPKJIFyrFMLlpygyY6LaySZm1LTQsr3YMlVGKbfdi/i+99NLo/tgqzMSvhIvcuO8s5ZOW9v6g6McWfSa8N0zUM/mFKXO/gjFSBDHu5i/rCGPi4/3g/YYF76VNZFE/JAfV2BLiuuuui6Nkgo5nSli/OjWaDLbBU8qet9AS+02ekD6TZKRPeBRWvvOd78Te2EKSsskAJgoy1F/kie3kTBjUp85KE0zqe8tG0SUUZNhKBQnfHzPFH12o0j+23DJJvn/m3tiRCTsGYRkkhg11L242OUZ4lCxgnibUrbBiGzWeKSyIh62U4BgOUjO471fSRmnAElP6fnVuHC1+/er56LcpIvGDMEkJ6xauhYpO5tfeN8qZbQvIc7T2gG1A2J4C0/2Y5qceMGUx7ilsF9g6AwVQ2CDkGyUm6lH8ogRpkxlM3oT1o+XHjtStDD4TP9uSMEnsrRvY5bKOtnUfgSnbPEfu36/4j7YgtXeF+jY5WZyVIPfMpJuJX90dbb3Hc+WP98oUwogz7TlZ2PBI+xFOAKD0yHYP1IOUHZQ5TJJc2HYxzD/vHXkhHG1bqKBLe1fKZFIl5dXya0dra+jXWN1JuaNtsIkH7vcb3/iGBYmO1ewXlVPvFmQm+MHzgXHYpsIet6R7rZ5RKXkIsh6Vq5baP2WijHeTuoB3lvaR+/SWKeJbYAI4TXEz9lDhibXjeftPlSTHBD99SRPaeCYiKUNs4ULZMaEP6S0R2M8mOVbznalGhsttr0ibPrfVh5Qx+rOUL/pxlDG+vxD6DijsWtsbORb5x4Tn5z//+bgtpA1gApoJX9pD2uJQqdtbrYq2Q7QowzodhVi+FckT+bBJafzSrobKN7iV285V2n6Xmy55rlRKLZOhwkg4+R/mgzbUFPnpB7G9OFLNfneYXiV5CuMpdl4qJ+Ki3g37OLwv1LXUR/QH7RskqZxXLB/hNd4FvgFNaD/5DkGhmfh/+ctfRpfYWrRWwrMOv0VK/Za3fFm/C0Uvxmrot1r9bFvK4Zd+Ae9bUhiPCPtjVv8k/WX95ruUPjbfGdQz9NeoM/huMzn77LPtNDpW+1u2IHL/g/rZFsbRr+ObgHqLvih9Ob5bTcLvSXPLcyz2jVVpvZaVfrl9f9oR3h2ejQl9L9zsjy0Ii0n47RmWlzAM29D94Q9/iJxo2w466KDovJr9Z0uPLfFQDjLxVqzstOAYuvMt25gCF4Er+RYKE6fu4/uU7z3Y88f2jCaMfyHe2lz0Lc91ylXYTv/lL38x79GxKcp2QYL6IQIiIAIiIAIiIAIiIAIiIAIVEJBiUwXw2npQBpsYEGVCv3379hGOMWPGuBtvvDFGk7TqwypGGxBC6QHFJ1bxMhjQp08fd/TRRxcMamOBoRwJB0aI0+SAAw6IV2GhdMBASSXCgEo4mZ20ilRJ3OWGZfDRJvFRTggHN1HwYgDpRz/6UTQAMnHixILBqK9+9atxsrD3W5XEg98obZ133nmOlb0IA3lMophgsSEcLGbAhNVi/fv3j7yMHTvWoUhlVrMsXCXHa6+9NppssQF6FCsYRA6tDoVlKFxhGq4itTwwyWOTAihG7LXXXnap6seW9v6Ykg43yuAYE5477rija9euXWSVCgtsKDeZskRjQFAq4j3EypAN9mFdhnhNmPwPhXJpghIcyho8U6Rv376RladQgYwV12atxsLZkefHpB7pI1gXYcA5HPhjco74hg0bFvnp1KmT+/KXvxzVQ5GD/8f7lCahkk2oyEN5Z9IIYeCx2pPTllfiZ1K8XEEBhDqY58kgLlYWqBNN+Y86JJzYS6aD4in1N8+0c+fOcTzh80URiDh33XXXKI0uXbpEVn6Y0DFFDybajGX4vqF4FMrcuXPjtsPcUZIKBYUlm7gLJ1DCdx2FttCKGnUHbRblm7LBJLAJebD3gvJE3UCdST1KWUEhirzbO4GlvBUrVljwgiP3y+QM9e+QIUOiNrNXr14Ffkr5QdtldRXp867wHBHeN6wh8f5xT/yhTJVHZsyYEdX5hKGuv+iii9ygQYPioLT34Qp67imPMGBuwoA7iqYm5B8La0yEki6TYWb9ionzUAGScouCspUf6lGUr2ibTLIsDNj18FhJeQ3jsXMm3HgvrO5kQsdvNVnQr4FfWG9Vs19UTr1reS/3WOtnVE6+Wlr7mrwHyjF1Af1ee1+ZBKUeQuhfhRYpk+Gr8bvU/lM5aVI2eD9NqE9Rmh44cGDkNG7cOHfOOec4m4TDMWltyMLW6tgc70yxeym3vaLMfPGLX4yjpr/GAgSs1dKPo02AvykWo2SZt/5GiTdUxKBvRT+nW7duUXuIBRPKk8VN/Ra2z7Qr1O20y7RLfCuSJ4SyED7zcOFDJe1cJe13JenGD6CCk1LLZGhhhP5M2rdtWK5CayfV7HeHt1xJnsJ4ip2Xyom4wv4EfQXqJ+tX0x+ETXLCv1gektfoY5qgeMA3qX2HED+WgMM+lPmt5rGSb/lkPqhH+B5jrIaxHtospF+/ftECCM55381CL79NUKa0vg5csXBcitA3RCGe7wxboEZfPPw24Tvr/fffj6O1PjsO1DmVfsvGEW84QSmTePmjHuSbgO8BhG8c+uIobyIwoQ0sR7K+sSqp14rlo1Z9/2Jp2rWwLPENl2btnQUmtHEI3wp8dyLV7D9HEW74x/iVSTjuYG4c6ceZ5B3bKvdbyNKxI98VLKzDqinCN1Eyn7xzjMsxfoLwPULdY99PvDsoK5o0Vdm29HQUAREQAREQAREQAREQAREQgUoISLGpEnptPCwDC6a0EqLASoZNjrPaD4UXk3AlLpN/NhFr1zmyCtAsaLDlQThgFfrLOmdi2Qa9GABjQMyEgRAbrGDi/oEHHrBLJR0ZNGaVHhZGTImIgYLQmkpJEVbRM2bBTV5++eV4IMjcOLKaFKU0/kaMGBFdwjoLEx0ICh9JqxLRBf8vHARnUMTEFNb4jaWjNBZM4PHcTRHAwpZzRCkjVCgJ42B1aThwYytJw1WBYVm0sAwY2sAZq9Nt4sWuV/PY0t6fxx57LL49JqjS3k3KCsobeQTrEwzyJoXBYBMs5pgwqGrlifc2LGfmhyPvnCnX8duUYjgPhfc8VGCxazbgzG/KAxNzSWGg2sRWJ9tvO4YKnOGWHlwPLX39+c9/tiBVOdoAJZGhyFOO8H4wyZkUnldoZQprGlkSTpyEfmxFLW4wssHn0A+TO6EFByYHEJTPbGKfd9GUW7gWbhFJ/hEGiMNB2bAMh+XMJh0Iw8BtUlA0YvKG+jC0ThNOBFLubQA5DM+EVThxbyvcQz+co2CLskW1JKybqLN4f5LCimar5xkEzyOmEEI4LP+F6Vh4a9/5nTaZZf7CY/gMsN5ndbL5YdKKyW3SZXDelKXDFdGsNA4VdS0sR1btM/GGsKI/6zlEHoJ/lZTXIJr4lL5HWt1JnyarnIRtUaX9olLr3TjjFZzU+hmVk7WW1r6G94AST9gO2TXKfFj/Tp482S5V/VhO/6mcTIRlg3YytJoaxofVJiaE2XqI9qEppTnemWL3F9aVpbRXZoWLuFGoCBWFLT3aWJRVTaiL80g4gcs2z2YNMQxLvUf55RnyFwp1OnU7ylFhH8b8oPBg32q0KaaYE7Y/pbZzlbTflaRr91TJsdQyyXcfCjMInJKLinA3a5R8f7HVLFLtfncU6YZ/5eYpjKOx81I5MR5hfRa+c7OsvvL9Glo2aSwfdp0+q31H8x3DYp40YZENdXAtpNJv+TBPMLI+eehu56GCXNoWYqFbOTxpM9L6zXzfh/ywWmMSfgdU41vW4rUj7ZT1q1kQkiYo3JmEYyPmlueY9Y1VSb1WLN1a9f2LpRleo89mEpabNLfwG7ua/WdLiyPfyPadnLYdHZasTUmJ5z18+PAweOZ52L6X8i2UjPBzn/tcg+8zvuHD9zWtv8W3lrW1xInFRJOmKtuWno4iIAIiIAIiIAIiIAIiIAIiUAkBKTZVQq+Nh91pp50yCYQf+Hz8I1g3Mmsa/GbgmsGotL/QkgXKOaVIqOjAQEk4QE08mM02CSc1zS15ZOCKQQD7w9IEkwMf/vCH48lTBtmYiMe9uYWV0KY4xIAaK6hZ0YblmORkcpjX0DINCmtpzwW30KIJg+cWZziRHCqGhGlwzgSGrepOXivltym/pYVh4MgGbsLJEJ6TWXJBiSa5HZ0pWBBn2oBQWlrlurWk94d30bbbYjC+2MRi1kBukkPW/aHcxmA5YkqBnIcrNPfYY494dS7XkhLmIW3iD/9YCUqTUNlp/PjxaV4iizp2wcq3/eZIubFtpyjLYX3HdZs04pyJvlBBB7dKJFQUDevJUuKEb5aYcgjX0ybHcOf5mcUNfpuwMtlWZ1MHmbUtux4ed9555/hnOBFhg7K8t6Him03aMpkRKumEebQyTMRYkDAJzxkMZgs9tmzLsq5k4cK4WaWeVSdafUu4sB61eDimTTKH10s9p10Lt+6jvsN6IPVaqcrAjaVN/cCzZQCcLVVChbe8aYVlDktrKJ4x0dqYch7pmYRxmJsdUQoJJ5PC+sT8JI/VKK9hnLwXplAbutt5mH8rJ9XuF5Va71reKjnW8hmVm68sDsQX1tdN3T8l/bCc8jsULBdY+8gEPNsX1ULK6T+Vk4+wbIT1cDIu+s5YVMTaCZZCm1KyykpWX6XWeQs5ldJehfUyykNZ7VVoNSUMU+y+QgWoYv17vj94hvyFigfJuOlXsYUtlhj5xmMRC39JqaSdq6T9riTd5D2U87ucMhlO9ps1R0ub99C+v/Fniw7CdpL2yaziWLjwmKffHfrnvJw8JeMo9rtUTmF9RB3IO54lxerprDBsM2UCz3ChkbnbsVYWnq1vQTrlfMtb/jgyzlFMuG79Xywlhd9LnJv1bPpF++67b7GoUq+FZS7pwaxs4U5dgtTiWzaKuJF/fJfRl2WcBStVodW5cr7/sr6xyEYl9Vojt9HgcjX6/g0izXAIy1JybI58mCUuFLDs+77a/edk1ljgZmJbadvvUGkbRcW8En4HlPItlIw/q+4LxziwiJkmobJg+M6m+a122U5LQ24iIAIiIAIiIAIiIAIiIAIiUA6Bun1LygmpMG2ewJZbbpnJwAa68GADh6FCDO5mKYjzYoLigq2aKubPrtngB7/ZguFf//qXXYqODJCY4BerFPgrJrbCM80PA3ZYEyk2iZ8WrlZuTPCygs0mFbBegYUm/ngurERlsJlB1dCyRKhkworTPM/HlIYYJAknPkLliLT7ZJseUwxJu57HLdzKKM0/Sium5MZgtg3kYOXJ3Fn5aJNo7733XrzVBkoCtnVAWtzVcGtJ709olagxpbO8XFCQypJwYs38hOUvazDO/Ibli9XJaZJHyZDJq3IktMLEIGKyjgnjRNEHhZtqTWKE288VU0AL85A8D/klr8GECR3qAJ4J9TaT7aFkKVQtXLgw9pY16GoesJJkYspQ/A6VdR5++OFoq1PqbFbMItRrTGgw8M9EHewtDMpKCBNWYR4ZdGYQ2gamsSRlFrco71hTQpExyTPMF9aP8kjWRHFamc8TXzE/P/vZzyJFJvJJXYx1ALMQwDZB3BOKnOWkzeQM5ZzthMpdcR7mnS3s2C6OLecQLB7yh/AsUVbDylqyrQ/f72LllnjCeqMxhSn8V6O8Eo+JTbbY7+QxzL+1l9XuF5Va7ybzWM7vWj6jcvJDmJbUvibvgW15iwlKn6aEMG3atAbvRLGwea+V23/KG7/5Q3HFpLE0zV9TH5vjnSl2j+W2V2GdZ8pFxdLhWt6t6MI+oineNRZ38jr1BIretNmhEnLSX/J3ue1cpe13uekm81/O73LKJN9VtDG012ylRl/AvvFCCyihslG1+93Jey0nT8k4iv0ulVO4ACdrYYOlF/YnzK2xY6g41Vj4WtWH4TMt51s+vMdwLCd0t3MUt1D+YBtV3jfGSqzvH25DxxaZZoXTwuY5ht8JSf9p33hhPVWtb9lkuvxm23qUUlBgYlEb/e9qSvj9koy30notGV/yd7X7/sn4s36zIM3KEv0flC6tr8S3oDFmYUpTjSti1dksrVKnmsV37iHc9i1cbJN1f+Ze7reQhbdjmrVpu2ZH42S/8xxrXbbz5EF+REAEREAEREAEREAEREAERCAPgfJmdfPELD9tmsC6desa3L8NSjS40IjDokWLGvFRf3nOnDkFK+XOOeecyHoKFlTszyz2WChTcrHfaccDDzzQhX9Mrn/pS1+KVpCxQi+vskda3LVwY+XbE0884VjtHQrPAGUuWDA5EVrDasx6SRhPeI7VCyRUuEjbaiIMk1SUCK/lPW8sjvB6OIGNpRAbrA1NmKNoZWW0lNV3efNbir+mfn+MB3m0la9Z+Q0tBmX5Kcc9jDdti8swzrB8lVtuw/hKOWd1I1tmmWBJyOqW8GjXOSZXn4bXSj0PJyLTrCbliS983mn+Q/6l1L+lPEMUqMJJKVM4xeKDudtWoSgL2btJPYzYVpdsCYGgIGIKOCj1hIJ1AgalmXxJKs5g4ejMM890W221VbQVUrh6NZwgCuMrdh7WNcX8VeMaeWbiiu0DkpaC2CIBJU4U75LWG4qlzf2zTSBWOS677LKYabEwea9hUYqtiJLPh0kMJpFR6OBaWAeF73f43qelGdb57777bpqXArdqlNcwwvC9Cd3tHKtfJqYMZOXa3PMeS3kv88ZZrr9aPqNy81QsXFO3r8m8hCvqk9f4HZbjWtUnYRq1zEP4HoblPy1NudURKLe9CuvNvCzztnFWT9F3SNtetrH0mPxH0eP73/9+SUpNxFtuO5f33sK8h+9buemG8TX1uVkY4d5Dyy62DR0LPEKLIaW0gWH7G9b5jd1jqXlqLL5Krod9X6y9FJNy3qew/DRWxzbWXyiWt2LXSnk2YTz2LR+65TkPlT1CBbrwvNYWkC2f4fNt7PmFZd/C5zlisZeFKqeddlq0SMrqxjxhq+Gn0notKw+17PtnpZl0/9SnPhU7heUn/IYJy1K57PP2n/nGtkWCLK5ZunRplD/eFduGjjyX2rcp51soBlPDk+Yu2zW8NUUtAiIgAiIgAiIgAiIgAiKwERKQxaaN8KG21FsKB/kYfGJCOY+UMmAQWlLJEzd+sNxx7LHHZnpHQYhVpy1NTBEgK1/k+eqrr3aXXHJJNMDNdk9//etf44lqVv2xPRLbPTF4Ez4fBmqYgMgjgwYNiryx+pRJa4RVk8VWo4YKVVGAMv6hUFZsRWaYBsoSJkzKHH/88e7KK6+MyiDbK2HdIRw4O+KII8x7izmGz6fa7w+KJChGMGDKe8nEb5Y1o3BFcjXhhPfHsy0mZs0CP5tvvnkxr1W/Rn2AFbRS5De/+Y279NJLy7KcE6bDSkreYZNwyxpzy3OkzDNplyXh9n5m6SzLb+geTtSE28iFfuycSQVbeUx5NssCXEf59Fe/+pVDaYyyaNs6oIxp20+goPjTn/40qs9QaA233zjggAMsmfjIe//lL385+sMKCgpBWAyyrTLwSHz4O/fcc6Nw3Ls9ayzs2PYtcaQpJ3n8pAQr2wkrU2zhhHITK62ZzISbMSNiJgKwWJXGJZkw1gfPOOOM2PnEE090kyZNispL7969I+uGWIAKJzljzzlOeLb8YV2EZ4Dljt/+9rex4hr5Pvzww6NV8EQXvt+NtSthvZFU9ErLWrXKq8VtinX2O3l8/fXXYydWbSNhvVftej1OrMYntXxGNc56HH1TPgfarzC9OBMbTsK+S2jlK+kv63eeyb5y+09ZaWa5h8q3pJlULM0Kt7G4h4qyyXsqts1gOe1V+B7SflJvNyZ5LTpYW0jZQikzad2wWDqEob02QTmZNoktIVHywzoJdR+WE7MsuZbTzlmeSbfc9rucdO0+m+MIw29961tR0nzT0Eekz259Zha7hM88rIfC9jMt7xYH18KyluY3dCs1T2HYap+H3/JZ1jUtTbOqaL/zHMNvTfqZxaQx3sXCci1rDCB8puV8yzeWbvI6Fprom1M+WDhlYwe2oIPv9JBLMnw1fzfFtywLBsyKN/fNIjfuj3cC69/8XXXVVbF10mreH3FVo15Ly1Ot+/5paSbdWNxgZYnyw+JEyrlZYqdNC61xhmW9Vv1nxovMYjDfUSjyhdvQhRbwkvdT7Hep30LF4qrWteYu29W6D8UjAiIgAiIgAiIgAiIgAiLQNghIsaltPOcWcZfhAAQD3QxOlGOavNjNsM2BCQoAWdupMdlg5tIZSDflFgvbnMdQoSS5TU2Yr9mzZ4c/M8+ZhMaCE3+sEmMyn8FtlAp4DlhFYeA5HKjGncGzUiQcMGYgvZhp7nIGjJN5aUxxIlTOSCpZMRCFYhPCdnQnnXRSrDCC6fHGLCok89IUv2v9/rD9HtbLrEzst99+qbcVKoCleijTMZwoC5VU0qILFQiGDh2a5qVmbrbynQRYsVvMuhcr1W0AHLbhyuZyMsjWIjwfhAnvcia9CQu/LMUmFI5MmWfChAmOrSbySlhGSYPtHdleIE3CSR1TVjJ/1FVMzHKvxGODyGalCX+h1QEG5K1MMLjd2BYjo0ePdvxRD2IpCIUmtiRFfv/738eKTUySGAuUymxbhMhjC/uHYhjvMH9f//rXHZNqKCih5ITw3uZRbAq3Vfz2t7+dOjkzY8aMKM5K/qHwcOSRR0Z/P/rRj6L61yw7oPCEshrbkJjiLGlR5+dtV8L6JCuf1SqvFn9oIcPcwiNba5hYGQ3zQHmvRb/I0qzVsZbPqFZ5TsbblM+BcoBFtCx5/PHHo0vUZWE5NuVPygmTffY7jCe0GBK6J88r6T8l4yr226zv4Yd+If2rjV3C75rFixdn3m64bVKmJ38hb3sVKpFhtaXUPnyxPNBGW1tI+Q3LZbFwXAutTNI+maWLZLiwT5C8Zr9Laeeq2X6Xkq7ltTmOPBesHsIYK5X0bULLJ6FFFPIXPsda9btLzVMtuYVjAvQbWcyRpgRN35Vvw1Il3H6use/c8Bs1TKfSMYBKv+XDvOQ9Z3uws846KxpX4L4/+OCDeOECyhJNKbX8lqU+p39qwvhJmpJ/3vEZi6eUYzXrtTDdpur7h2mmnVtZQlGO7zreUfvuTZalpui3ffSjH40Ub8kD44p8x1O3IvTRzIpw2r3kccv7LZQnrkr8tISyXUn+FVYEREAEREAEREAEREAERKDtEdBWdG3vmTfbHbMCORwAYGuCLJk+fbpj0BGlo2KrmsPwWJqxFaUMbGH1AYWWtD8GH88777w4eLglWezYTCcM1DBYgjDwmbZtCteyVjYzoc3EGH9JU+us1EVhha2XTGxwdddddzWnSNkJixpZMnny5Oj52AQc/sIBXaygZJnDZ/L3+eefz4o6tztpZE0acU82+MjkDivCQ+FeWRWIoKgCSxs4+8xnPhN6Leu8HFPxjSVU6/cnVBRh8jFtYBalD7bzqoWE1rdQvguVAML0UDCxlcC477///uHlmp6Ttq0cJSGs5KTVL+aGIpJJGM7cSjkyOXXhhRfGQU4//fT4vNSTa6+9NrNeCS0YhXVCnjRQYgotMxSzoEdZMjFT//Y7tETFfVs9g8KTCWnZJPndd98d1Udcw9paODFEPWT1YdpEMvUtXK3OZfLWtrA46KCDLLlI6S/+kThBAZX2ir9wS86Et6r+xGqG3VdaXc1k+EUXXRSn2Zh1AvMYTkJnKe2FEyAWrrEjls7IL1alkkLdRr0bKi2ZZbhQGYv3Pqtd4bmFfYo999wzmUyD39UqrxYxbUjW1rbvv/++w3KbiVmuqXW9bulV65imbF3LZ5SW77Q8pPkrxa0pnwNbmTJxniYoJFhfBIuaoYSKlVnKhVhAyyOV9J/yxG9+wjqb8p/VZ0PRCkVGJomxkNCaZeTIkXH27ZskdthwMnfu3FgZN7xWSXsV9oVoN7MsuuBu7VUeZSLyF24fijWSrO8SrO/xDPnDYixC3W9y8skn22nBEStlZsExvFBJO1dJ+11JumH+m+P8uOOOi5LlO4TvLVPGZ/uspBJ5U/W7S8lTLZmhdGh9VOpZFL3Sxhi++tWv5rYqHeaXcm/KnNTFWd+6bIUVfseEcVQ6BhD221G8SesfWnpp3/J2rZRjuD0YSvShMp3100uJrxK/tfyWDfuvtFM876RQN5qFn+S1avyupF4rln41+/5pdXmxtMNrYVmiHIWLqbByFEpT9Nuwwmv1F/17LK+aci6L4tIUzMM8Js/L/RZKxlPt3y2hbFf7nhSfCIiACIiACIiACIiACIjAxk1Aik0b9/NtcXcXKo1gJcisbIQZZcJmt912c6ySYgCHAcA8EionFdtazuI66qij7NQx0VRsy4jYYxOcoHxkq/kZmA4HdSx5JojN4pC52RGFARQD+GNwNk1CE/mWVteuXSMLJvhnwJdJZptgC+NgQIcJN54PgzrGDQswNqDLZA7m2ZPCZEHIPXm9lN8MnDHxzsrQUJYsWVKQRjixFvrDWguCQpwpoKDckOU/DJt2jvl5ExQtjIu5VeNYy/fnK1/5Sry1H8+dcsEKXAYW2a6RtM2iSjXuJRkHg4f2TLiGgsrSpUuT3tw3v/nNeMKBldZM1jSV3HPPPfE7wWA9W3MVE94TWw3OFltYoSlVUNhgaxHqSxPeveTKVbuW58jgLJaKkoLyyymnnBI777vvvvF53pPQLD8rb9NWrbPa9fLLL4+jTNYJcN17772j67atBT+srrKABx98cHTKKlqzjGWTVuYHBQKrD1EMMIUZu84xXBGMwom9y5/4xCdibz/84Q9dmqIWyqOs4OWZ8NeY1Z44wgpPUN60+0KxJE3hJ5xUz/uemMIN2UublGMiLFSMzXsbWJEivzxDJr+TguJPuFWbTbgySWeWR6xdSdatPAOelbVXvJt5t7CtRnkN74U2KU2Bji01aLcR2hmUH01qWa9bGpUcTemPOFCISEqtnxHpNZaHZJ7K+d1Uz4E+h20XFeaTvq9NoOGefGfNyijXfvGLX3AoEJQqsbKWRyrtP+VJAz/k2eqUrDRXrVrleA+tHqYeDeVvf/ubw1of1mdQLm7pYttMkk/auaTiBL/D7T7D+6mkvWJBh9WVKFVQ5yaFupM21dorLCPmEazrmdB/YIvrpFDvffGLX4zqYepi60uHliXT+gOU26y+ZSXtXCXtdyXpJrk09W/6RVZfYqXX+gFpfcam6neXkqda87rssstiPrwn9EtQAkcZhYUblNtQCbnU/IR9UMog36ShoFjIs8hS/qh0DKDSb/kwr3nPsdpo980iDlPaYhwhtKqTN75K/NXyWzbcUo/+cbJu59my5TVtWa2kknqtWJ6sncZPOX3/0Dov959XaTaZp7As8R7aoiAUyaxeC8M0Rb8ttLbMd61J6G5ujR3L/RZqLN5Kr7eEsl3pPSi8CIiACIiACIiACIiACIhA2yKwadu6Xd1tcxNg8oLVSqz4ZeCbyWsmIZnAYeUVE+tMXpiwujc0lW/uySOTATfccEPsHG5ZFDsmTrBowVZLTIijPEC+mBhoCcKKQ9tCiIETFExw4z6ZOC9mNYcJgp/85CfRbTAgxIQxg8pMtrBKnAHH0CpLuMr70ksvjQa0mHiDC5PLsGQy+t1333UoZ9iAJQkwaM4gLMKRCShjiPICE9WssEPp6bHHHouuV3PADwUiJs4Y6CMNBuNQcrABY6wyoZCQJqzUZbIZMSsHsCtl660w3nAlNPfIIC9lmwlsBs6rIbV6f8gbg+G33HKLw9IJ/LgHtueyLbos/+eff340qWVKBOZejSMTbjw/4uad5P2E4c477+xmzpzpeN5miYv0mNwt93mVk18UvEySW3qYe3hkJSeDsaZEhGJM2oQm73Q4CcmKX5QAeX+SA8y8k9dcc0383oXplXLOu4uFGyY4mdyC6+233x5HgXJoqEwVX2jkhNW21113XfxOoXSD9TzeAeoi6rXQqs2pp54aT3yHUVNn2XuJO4pu4cA5bqEFQH4jSWUAVlSjMGftA/URSpconXXr1i1SvDr33HPrAvv/4UA125Zg7cDcUDqgfFJnsgUiA/dXXHFFQX1z2GGHxXHV8oR7ZxKb94SJS9IlnygFoyiAAsoPfvCDOAt52kQ8M6nH80NQOIMdZYQySR1erO2JAmX84zmj9IMw+Q07ngFbr2Ghke3orKxTd9pkGNa36C9QHhDaFe6X50j9zkQ57Q4cTH784x/baaPHapVXS4i6izaQNon7w7rQHXfcUVCWuQfKnkkt63VLo5JjuH0PfQcm7ygTKDTRj6r1MyLvjeWhkvuzsE35HFAoQXkCa3X0cal/aR+sXZ00aVK01anljSPvtgnvBG007SP1Nwqb9PssvPkrdqyk/1Qs3vAa/UKU8+lXkN8wTfpGKErS7pjyBYrA3JMJliOtrUWpHqtOVh+bn5Z2DK2XUqfR9rHIgC2iqKewZGR1XTLvlbRXWKOhbaW/Tjmgn0C5oD5l60v6dby/YR+KejmP0N7xnGjLEaxV8j3Ab5RI6UvQfzThGQ4fPjz6GbbJKHrBgPYKHnzzsbDE+uwW3o6VtHOVtN+VpGt5b64jfXneEZ5/+Kzt2SXz1RT97lLzlMxjNX9jUY06yfqPfOuaYnyYDv12FlKUKtTD9F2p0yjrfKPSf6U/gGU63pO0RV1hOpWMARBPJd/yYT5KOedbh/59+C7j1tRSy29Z6kH6nTxbygx1O99JjK9gZZhyFb5ztbj3Suq1YvmptO9PPxAlVivblHmUjnCj7gkt6RbLB9esLIX9+lCBKQzfFP02+l72vWXfpdxXqMQc5qnYebnfQsXirMa1llC2q3EfikMEREAEREAEREAEREAERKANEfCrjdbrr+0y8JOW631xj/68Yk+jZcFvfxT79wPSmf79oETszw9MFPjz1hXW+1V88XVLP3n0Wx+s94PzBWGzyqqf2Izj84P4ucIQlx+4jMN5SyVxuDD/ebhk5ctP0sTxZ/lJc+e+/aBrHDbJht9eQSK+znkYj199Gl9LC4ubX/m23k+CFIQjDj+RtN4P4DQa3g+GNwhLeG8xqmhYPyi43m8DGPvxkyWp8YT3Y+dh+fOT73EcaffI/fmBxqJxJxn7ifui/i0fWUc/AdcgT34VZBxnmP+W9P6E9+Mn3Nb7ydYG90FZ9soh671yXVR2YO6VbOJ7Iw6vbBCH85bWCq6FaXiFpdhf6M653xYwjj/tuZrbBRdc0CB+b0UgjjetbBO/n1SM/fiJ5AZx4Ofmm2+O/fzyl7+M/PBeWNocly1blho2eT+UKQtH2bfrfuuV2N2uN3akjvLbpMVxWFx5jpRD4ue98JPiRdPm+XhrWQ3Ssfwln3syfa+Etj58xhYueaQdSEuH+Lx1m4I8+km6BvnBn90XcZNmMi/89ko0Bf6S+bDffoJifVq59RbdCvJi/sOjt1a33iuiFaSfpzym5TfpZu0I9XJ47a677sr1rnjlzui9DcNmnfM80t7/8F7D9sVPWhfkyZ4H5SxMg3LrlX0a5Uh4PzFSEJZ4vEJVo2HJo7e60CBsmI+080rKa1hOv/a1r0V1YsgqeU6fIy0PlfSLqlHvpuXJ3CgTlO/kvST7HbV8Rnny0JLb1/AZNdZ3gbVXbE0tJ14Js8FzCJ+Lt6IZ1wm8S/YMOYZ8GstDVv8p6/0O2zPyEKbLOf3oMJ9p59y33w6lIKzfHqcgnFfWLLieTCf8ff3118dhvZWWgnDh80ir8y2esB0ztzxH6qG0ezQ3OHrlwNiPt1oU56/S9spv5RvHa+mlHb2SWZxmnnvCD+1wWlyhG99gfvurgri9QnzRcDwP2hKLh/rQ8lRpO1du+11pupb/5DGrPa9mmfSKZjFLmHpF9ZhnMj/8rqTf7ZU54rS8ondmOqXkqVh9Ui1OfHtafWbljiP9W94hr7gS35e3Upl5X2k8vUJhXA+HcYfnXpk7jt8vbCiIv9IxAPJU7rd82Kfxi6oK8pV2r+ZGGx3eH21IsTGcrPcgb7/ZWz2M00sbp6nkW9buKe3It2V4n8lz2jFvNSr247duzs3Q4mrsG4t8lVuvhf2AcByi0r4/eeJ72e4hPFr7Vuy9DlknyxJlxS/YyORYSf/Z6oDkN0uYH879luUF95bVl0+GS/6u5FsoT93nFb3ifM6aNSuVGd8q9ny8gn3sp5KyXawdyMs4yUq/2878BPW1nnfbed561nrWKgMqAyoDKgMqAyoD1SoD2orOf9m1ZWGFbykS7iVfzFIKK8izhDjYisYrt8TbNIV+WQ2HpSEsYyQtdIT+wnNWyZmweiuvhNsrkKZtcdOhQ4e8URT1V2483Der91m15gd0CtLwg2aR1Ypi94lVmIcffjjezimMgPhYYciKcbb6SwqrqFl1GZrbDv2wytUPgruzzz47dI7PiZvt8HiOSTnttNOcn6iKVmrbtbzP2PzbkRWtzz77bGQ5wtzsyAp17oGVucUkZEh+w61eioXLuoY1E9j7AbJULy31/QkziwUO3icsJfCs/OROtAKTbXKw4sPWf36wOgwSn+ddkVmsfmBVMyth07YyJCGeLVYfsGKWlJBv8lra76w6LHxvrXyyDZ0JVmyK3YP54+gnRuPtYVjla6tZ8+SVMollFKzYYbGKLTSwbFeJkG/ebawvpL2jXGP7QVY9lytYIDGLQcn6izhZ6YrFEuq4rHRYCRu+R7a6PpkntrowybKWhDU16kPKDKtuk+InESIrGtRbYZrmD2tafpI8yre52RH/XskushyENZFQ8jzj0H/WeVgeQz9Yw8IiB3VuMt/8xuqLn6CLtr0yy3ph+LRznodX7Iu2m0s+O9oeLPb5iZG0oJGb3XPy/aDcYi0Ey1l+kLtBeMoi23OxGjq0zmMe2d6De/ED++ZUcOSdZMW8bX9UcLGRH9UoryTBPVNPYA0tKbDDwpyfUEhein7Drdx+UTXq3dRMbXCkTPjJuch6RbKcheFq+Yzy5MHKHnnKqtu5liybuJlU8hwsjsaOWDKgD0W9kxQsfWEJB8s9aULZ8koiqXURVs/StghLi6fc/pMxTjI097S0cNtxxx0ji29hfW1+eTew5oal0GTdgKUEeCG0G+FWfRY+61js+6bW7wz1EPUolqqScuKJJzqsT4VW20I/lbZXWGzCghJ9hzShjWc76tBaa5q/NDeeE1YM6dckhWfHdx39h80226zgMtZRqd/S+hxYFuT7q3v37gVh7Eel7Vy57Xel6Vr+k8es9ryaZZIyEPZ1sqydWN4q6XeH75n1ly3e8FhKnorVJ9XixPtBnYP1SOpc2jj62fQVyStWik3y9p/M/6hRo6JvUL5XkkKdQF/GrFAmr/O70jEA4ij3Wz58nsSTV2ijGbMw4bxYech6D4o9e4ubY2PfQpV8y4bpJM8ZN/GKVKl1O/eMxSYsSNdayq3XQr5hP6nSvj/3Sz8cq3y06WkSpp123dzIC+2kiVeWdsXKJfGW23+2PCX7NJa2HbHuGkpyC/XwWrHzSr6F8tZ9ln74fM2NY/hehn4qKdvh8wnjJ728jPErEQEREAEREAEREAEREAEREIG8BDZBQyqvZ/kTgWoTYEsTv5LLLVy4MBq0YEC/2MRZtdNvLfGhZOJXlUcDlQMHDixpGyq2ECL84sWLo208+vfvn/u2V69eHZmV99ZpXM+ePaNtg8JBkGIRkS7Plj8GjNiWImsgs1g8ea6tWLHCoXhDmpjTZmuMPIKiiF+JG3ll+6JvfOMbeYLl8uNX5UVbb3HvDNLVQqr5/lA+4IiwDVRWnlHMYVsTBCWDcPuRyLGK/9h6ke0TlyxZEg1iM1jaq1evKqagqKh72TqCgUgG47Oee7mkUISjDmAbImTQoEGOOqjUiaJy008LZ/UFA7EoP5ZSLxkvwlIXl1KfpuWlmm4w5n2h/mOLt2owZktEb30jutdS255i9+b7ntEWdJQPJmCzJvnT4kCxkjLLxGPv3r2jMtXYpERaPGlupZZXlDBt+1UU51ByQ6ibmSRlKzrqLZSnwoH/tLTNrZr1usVZrSPbSdIfoK1FecEmLJLx1/IZ5c1DMk+l/q7mc2BrLr8aPsoCfTnr59K2sRWj1b/0s/IKYen38L6jVJn1LBqLz+rDUvtPjcWbdZ305syZ4+hf0ubk6a9ZH7QadVpWvmrlzn2i1Mzz4Run1LrKnk857RX9UOpKtidFUbWUeqgxHtRtPEfaT+rwvH0HniVbDPEO8PxLLbeVtHOVtN+VpNsYy5Z0fWPvd9OnoQ1BqDezlAXYktdbSY38oTDKdpLlCPU0fQGE98S+YdiWzhQEUVLxFngyo69kDIBIK/mWz8xUygW2PEZpE0FJPdw+NcV7TZya8luWd4X2m7aTMY68dWC1b7ySei0rL5X2/Slz9NFpt+inN5VUs98W5hklSFNURimSxUHVkEq+haqRflYcLaVsZ+VP7hsXAZTtUUaViIAIiIAIiIAIiIAIiEApBKTYVAot+RUBEdhoCDApw0e0WR9iEC/LSsJGc9NFbsRvT+YYXEf23nvvaHA6uSKWAcPDDz88Wt2MPyxHsBJfIgIiIAJtkUCWYlNbZKF7ziaQpdiUHUJXREAEREAEqk0ASyu33XZbFC1WIv1WvQ2S4Htw1113jRXysea0zz77NPBXiUMpik2VpNNUYbESZxaqUADhd3OIvmWbg/rGnSbW3CnbWFpDsGSNRT+JCIhAdQhIsak6HBWLCIiACIiACIiACLQ1Apu2tRvW/YqACLRdAitXrowsXz33/9k7D3g7iuqPD4EkEEoILQQIhBYgVOkBka5IERAE+YOggFIVAaWJggLSlCpFBBRQkKb0Jk2KgPQSIKGG0GtoIQmQ95/vxrM5d9/ubXvfyyu/8/ncO7uzU3/TZ86c88QT4YwzzkiZmmDO6c1MTdQIVLz88pe/TDDhpi03EjfddNPkRjESBp599tlw8sknJ5IHcM9te8TOi4SAEBACQkAICAEhIASEgBAQAl0ZASTzGmMTap6RHgbTEuqPkTLzwAMPJCo97dILKkO57CFqjwDSkZAKx5rRpFXi6he/+EV7x51ko7VsJwHdw6OBmQlJaUg8RG26MTUhoVVMTT288JU9ISAEhIAQEAJCQAgIASEgBLoFAmJs6hbFpEQKASHQCgQQJb7RRhtVBIWaoH322afCrje+wKh0zjnnhB122CHJ/n/+85/AL49Qp4AYdtSaiISAEBACQkAICAEhIASEgBAQAl0ZgZEjR4YDDzwwYV4inVdccUXyy0szlzsuuOCClqj1zQu/u9udddZZ4de//nVFNsBs4403rrDrzBetZTsT7Z4bFxKqUVWepeOOOy5rpXchIASEgBAQAkJACAgBISAEhIAQmA4I9JkOcSpKISAEhECXQAAmJ27nzjvvvF0iPdM7EajLef7558MWW2yRm5Qll1wy7LbbbuH+++9P1PjlOpKlEBACQkAICAEhIASEgBAQAkKgiyFw7LHHhttvvz0gjSmPvvKVrySqtmF6GjhwYJ6TltrNOuusLQ1vegW27777FjKJdWaatJbtTLR7R1xc6LrvvvvC2muv3TsyrFwKASEgBISAEBACQkAICAEhIAS6OAIzTJ48ua2Lp1HJEwJCQAi0BIFPP/00jBo1KrCJzCbVgAEDWhJuTwwEMexvvPFGGDt2bOjTp08YMWJEon6uJ+ZVeRICQkAINIPAlClTEvU1+O3bt2/yayYc+enZCEyaNCl8+eWXSSY17+jZZa3cCQEh0H0QQDIL6xxUTg0aNCi5tNGvX78Oz4CfO/Tv3z/MOOOMHR5nqyNgjQhuc8wxR1hsscXCTDN1PUHwWsu2utR7R3jUG6R8M69fZJFFkr6hd+RcuRQCnY/A6NGjdWGy82HvlBhvePj1cN+z74bbn3g7nLnXqmHFYXPWjPfWx94Mj770Qa67PjPMEOaavX+YZ45+Yei8A8IKC88Z96lnyHVbxvLJsePDTY+8Ea66/7Vw6HdGhM1XXaBmcKNf+yj8/a6x4ZbH3gpzztYvrLdc5cXpGeN++txz9A+LDR4Q1hg+T+g3U76MifNvfTG89/Gk0HfGPuGn31qqZrxyIASEgBAQAkKgNyMgxqbeXPrKuxAQAkJACAgBISAEhIAQEAJCQAgIASEgBISAEBACQkAICAEhIAQ6AQExNnUCyNMhii++bAvfPPLOMGHy1Is9X112nnD8zivVTMkxl48KNzz0Rk13OJhv4MxhqzUXDN/92iKhfwGjUF0BZRwd/rcnwh2RGQsa0G/GcP0R6xYyIpnXGyMj1NGXjrLXqiZh/n63r4QVchi9NjvqrjD+k8mJ/3uP36hqOPooBISAEBACQqC3I5DPJtzbUVH+hYAQEAJCQAgIASEgBISAEBACQkAICAEhIASEgBAQAkJACAgBISAEhIAQqIrAg8+/lzI14fCeUe+G9z+eyrBT1WMDH9/+cGI45+YXwp5nPhhef/+zBnwWO/1wwhcpUxOuYMx6YMy7xR6a+EKYe531UHj85fFN+JYXISAEhIAQEAJCwBDoejKjLWUyhYAQEAJCQAgIASEgBISAEBACQkAICAEhIASEgBAQAkJACAgBISAEhIAQ6LII3PRwe6lLdzz1Vthm5NC60/zn/dYIwxeYPXU/+YspUU3b5PDCmx+Ha/77Wrj36akMR2Ne+zj88IwHw99/vlaYfeZyR5x3PvlWGp893BDzss6I+ey1prn/lkuFbdeqzOcHn3wenn/zo3DmDc8H0gvtHZmb/nbgyDBsvllrhikHQkAICAEhIASEQHsEJLGpPSayEQJCQAgIASEgBISAEBACQkAICAEhIASEgBAQAkJACAgBISAEhIAQEAJCoAoCH0/8Itz6+FQGoWUXHpioc8P5dQ++XsVX7U/9orq5IYNmDl9dZt5wwi4rheO/v2LqCfVtJ/3zmfS92YdrH3wt9briogOT57ueeifAmFSGBs3WN6y2xNzh3H1XD8s7FXT/uO/VMsHKrxAQAkJACAiBXo1AOXbmXg2dMi8EhIAQEAJCQAgIASEgBISAEBACQkAICAEhIASEgBAQAkJACAgBIdCTEJjS1hYefP798OTLH0a1ZxPCbDP3DYvNP2tYd9nBAaaV59/4JDwz7sMky6stOXeYPzLgQDDE3PP028kzDC1I53l7/KQwatz48OiL48Okz78MwwbPFlZYZGCACagWPRHVlz364geJ6rXPv5wSBs85c1hiyOzhqyPmDf0j408eXf/Q62HKlLYwZO5ZwqqLz5Wk6bEX3w+PxHDaooclhswWNlxx/gppR2Pf+TTc9+y74aW3Pg39+84Y0zZ7WG7hQWHBGEYt8lKPtlpzwfDU2A/D1Q+8lkgqeuHNT8Li889WK4i6vsPg9LtdVwo/O/+xxP0tj70Vdlh3WIWUp7oC+p8j8vzMuI+St01XHRJWX3Ku8PhLU8v0zihtaus1F2okuFy3M/aZIRwQJTr94NQHku93j3onec91LEshIASEgBAQAkKgKgJibKoKjz4KASEgBISAEBACQkAICAEhIASEgBAQAkJACAgBISAEhIAQEAJCQAj0BgSQQPSTcx5OVYj5PJ9x3XPh4G2WCR98+nk45ZrRySeYbYyx6e0PJ4bjrpwqSWjnDYaFxQbPGo68ZJQPIn3eco0Fw35bLBUZidozKL36zoTwy0uezE0DAQzoN2M4bLsRYf3lB6fh2cNvL386eVxm6BzhZ1stHXY7/b/2KTX/dMuLUQrSimHE0IHhjzc/Hy664+X0Gw9X/mfq63G7rFBTLdv1D01TQ7fOsvOFwZHJC8Ym6JZH3wx7fXOJqYG14H/kUvOEb6w8f7j5kTeT0O6IquS8+rpGorg1MkYZbbji4MhsNii+Ti0rmMNawdhE+J6xi/oB01mfyPAkEgJCQAgIASEgBBpDoP2MqTH/ci0EhIAQEAJCQAgIASEgBISAEBACQkAICAEhIASEgBAQAkJACAgBISAEujUCSEU67KLH2zEUwUgETZj8ZTjikqfCA2PerZnPO554q4Kpab6BU6U6mUeYfy6+a6y9piZSk35w2gOFacAh6Tj8r0+Gf95frNrsjQ8mhgP/PFW6EX4sDzyjyg3/59/2YgVT05yz9eNzSodc8ER4cuz49D37AAPWk1GqFPS15eZNpECtNGxQsHCuiwxCX0ZGnlbS5qstmAZ3m2NOSi3reIC56B//ww5cVl187jCg/4zh6ytNZRRDktPLb39aR0i1nWRZmFqLRu345UIICAEhIASEQE9BQBKbekpJKh9CQAgIASEgBISAEBACQkAICAEhIASEgBAQAkJACAgBISAEhIAQEAJNIXDSVaPDI89/kPhNpCJ9Z0RYJaqam2OWmQKqy26KkoIuvP2lqLbtvZrhj3v3s8TN0TstH9aMkoZmiQw0kz6fEs655fnw97teSb6de8sL4dsjh4aBA6Ye1cEEdMzloxLGJRwsHtXG7bPZkgFmob4zzhCej6rdLr/3lXDD/6Qk/e6fz4ZVorq5hecdkITn/2Begg7Zdpmw8UpDwsxRMhQq9H4emZ2QHMTv/H+9mLj59Q7LhXWWmy9Rb/f6+5+Fn//lsfByZLCC7n3m3bD8InMmz9m/f0XmLaNvrDR/8oj6tW+uPCRcEpm2SMNDL7wf1ogYtopWjCr+jF6LaQUz4myEHn35gyRt+Nl0tQXCTBFbaKOYB1TcQTdHaVN7fGPx5LnM36vvTa0HhAFzW6NpLRO3/AoBISAEhIAQ6EkISGJTTypN5UUICAEhIASEgBAQAkJACAgBISAEhIAQEAJCQAgIASEgBISAEBACQqAhBFBBd81/p6pQw+PxP1gprL/C4ISpifdF5p01YXTZbp2Fea2LTvjBiom6OJiaINTO7bvp8ICaOKOX3/7EHsN/n3svIC0IgrHq2O+tmDAF4Q/1ZahdO2SbEWHlJVCbNpUui4xORfSTLYaHLaKEI5iaoCUioxSMVp5+EVXawdDTf6apbhaYa5ZwzE4rpE6efCVfYtOUtrZwzf9UzuF45NLzpn5Q7WZ088PTVNWZXRkTxqBhUcWf0YdRLWCjZKrs8LeRS+tqkQHLJFtRF1ohbeqsm55Lk7f68LnSZz0IASEgBISAEBACjSEgxqbG8JJrISAEhIAQEAJCQAgIASEgBISAEBACQkAICAEhIASEgBAQAkJACAiBHoTAmNenMhSRpW3WGhpWXmwa85DP5r6bLpmqWvP22Wek86ztmH3s+wxROJBnpkFCktGdT75tj+GnWy4VFpx7lvTdHmDsOWL7acxJMA4VMeBsuuoC5i01l1pwGlMVlustN40JyRx5CVBjxn1s1hUmKuiQ+gRtuuqQhGnLHCwd41gwMkhBSD76ZNKX9qkl5lyzT1OZ9+GExhibPps8JVz/4OtJOiijZRcemKapX2Tu+vrKUyVPIW3q0ZemSu9KHdT5EHm+witRTd+hUa3hXU+9k/r69siF0mc9CAEhIASEgBAQAo0hIFV0jeEl10JACAgBISAEhIAQEAJCQAgIASEgBISAEBACQkAICAEhIASEgBAQAj0IgdGvTZOctOzCsxfmDMailRebUKnSaQAAQABJREFUM9z+xDQmpDzHKy06jWEm+33+OWdOrT6NkqKMxrw+jYlo6YUqGZDMDeY8c/RL1JrBWDRh8pfhnQ8nhfkHTQsTN0PnmSXMPnP7I0DUriGVCH8wHw3oP1WaFH6M+kTuK6QimTo6s/cmavmMkPjkCeatb0amKlTtQXc99VbYdJX2TFbeTyPPnzlGqZn/Jw2rXv93j5qmPm+TVYYE8uppwxXnD1fdP1Vy102RaWzVqOqvGp189ehw/UNTGaVwN/mLKbm4HbfLCiHLVFYtXH0TAkJACAgBISAEKhFoP6up/K43ISAEhIAQEAJCQAgIASEgBISAEBACQkAICAEhIASEgBAQAkJACAgBIdBjEXju1Q/TvC06uJixCUdLLzSwJmPT/P+TWJQG6h76FzDjvB0ZlIyGzjPAHnPN4QvNlkpMGv/p5HaMTbPN0jfXn7fs06ROl0mfT6lQ2zdlSlt48Pn3fNAVDFPXPfhaSxmb3vhgqqQoIpxrtmnSmyoSUPBywyPTmJBmi4xf2XR76Vc3RsamA7ZcuiIvecGOeW0aQ1re92MjU9M6I+bL+yQ7ISAEhIAQEAJCoE4ExNhUJ1ByJgSEgBAQAkJACAgBISAEhIAQEAJCQAgIASEgBISAEBACQkAICAEh0PMQGOCkG302aZoUpbycfjKxMfVneWHk2aH+DEKiEmrRqtHcs/VPP0/8orWq3tKACx7uHlUprepn5z9W4HKq9eMvfRhee++zXNV6VT3mfER1n8epf9/qOPkg3ho/KTw4Zpp6uTNveM5/zn2+K+Z1k5WH5H4zy9WGV6otnClyjM09e/+wxJDZw4YrDA5edZ75kSkEhIAQEAJCQAg0hoAYmxrDS667MALXXXddGD9+fOjbt2/Yfvvtu3BKOy9pr776anjsscfC448/HqZMmRI22GCDsPbaa3deAnpRTE8//XR45JFHkhyvv/76YcEFF+yWuf/3v/8daEubbbZZWG+99RrOQ0e2w3HjxgXSB6266qph6aWXbjh9XcXDpEmTwuWXX54kZ6GFFmoK666SF6Wj9Qh88cUX4bLLLgujRo0Ku+yySxg+fHjrI5nOIXZkXzGds6bohYAQ6AUIXHzxxcncetCgQcmcqRdkuVdmsSvM72+//fbw+utTb5SzxmWtK8pHQHOLfFxkWxuBMWPGhAsuuCCMGDEi2UuaaabO2yptxRq3FWHURqk5F1r3NodbR/uaPHlyst4kHvZV2F+pl3rDWrVeLOSuZyKwzNCBqQqy59/8JKy4aCWzis/1M066k7cv+4xquNci4w5q4j745PMwaLbi+d+Lb32aRjfngMakFqUem3y46dE3GvZ56xNvhV3WH9awv6wHGI2M1lpmHnusy7z1iWnq8+ryEB1d//DrVRmb9t9yqbDtWkPrDU7uhIAQEAJCQAgIgSYR6LzVepMJlDchUC8CRxxxRHjyySfD7LPPLsamCBpMEzvuuGMFfBMnThRjUwUirXu54447wv77758EeM0113RLxiYY4TbeeOMkD6eeemp46aWXGs5HR7bDJ554Iuy6665J+k4//fRuzdj06aefpnnZZpttxNjUuqbYI0K6+uqrw/e///0kL1dddVV46qmnwgwzzNAj8maZ6Mi+wuJotXnhhReGm266KVxxxRWBPr8eRmEY1E455ZTw0EMPhY022igstthiFcmaZZZZwpAhQ8Kaa64ZRo4cmVvOH3zwQQAvGJSXX375sMcee1SEoRchIAQ6HwHrozkIhBlc1DMR6Arz+zPOOCNce+21CcDf+ta3xNhUpap1x7lFlezoUychwPxq6623Ds89N1Vaw8wzzxxYn3UWtWKN24owOiq/Wvd2FLLlwvXlQv2/9NJL6w6wN6xV6wZDDnskAsMXmKZ+7s6n3g5br7FQ6NOn/X7Mm1ENmpf600ow5h3UP2FsIsyx734SGZvymaumtLWFJ18en0Y9V5QO1Fn0TlSXd9+z09TOXfDTNSNO+bG/8cFn4aA/P558vP6/r4Wd1xsW9z7y3dZj+97Hk8N5t7yYOt1opcHpcz0P1z7wauoM9XALzZ2v7i/CG3Y++f7E7SPPfxBQfTdk0MypXz0IASEgBISAEBACnY+AGJs6H3PFKAQ6HAGkNGWZmpZZZpkwzzyN3WDo8IQqgi6FADc9Pb3yyisVjE28P/zww4kTDuE5jBd1PQRUTl2vTBpN0YsvTtug4ZAFplQYYLoLIb1u7NixSXI333zzHnEI+/nnnyfMqx9//HGSr5NOOqkuxqZbbrklYWrC06233pr4LfqDaQlpE9m+Fcams88+O/G25ZZbNsTYNGHChEAa2uKO3BJLLJEwRhXFL/vuiYDKuHuWm1ItBISAEBACXQMBJAoZUxMp8vNw3jXOgkIxwfT/2WefhTnmmCNsuOGGxQ71pccg4NtId1yr9piCUEY6DIFh882ahg0zyzm3vBD23GSJ1I6HCZO+DAf++dEKu1a+rLXUvOGxF6YyLF3/4OthpWH5jE33jHonjXaZoXOEOWbpvKO+25zUox9stFhUtzZbmpbsw2KDZ4uSrwaGRBVdlET11Cvjw/KLzJl1Vtf7xxO/CEf+/clEmhUekG61+vD6zzueefWjMO7dz5K4ll14YPjaiPmqxrv71xcP58Y6AN32+Jthp8iUJRICQkAICAEhIASmHwIFfNTTL0GKWQgIgfII3HvvvWkg2267bXLAjDo6kyiUftSDEHAIwKz0ve99L7HB5N0T4vlRgcHv0Uc7bgHv49Rz4wionBrHrKv52GmnncJaa62VSCBEelp3YmoCywMOOCDtKz755JOuBm9T6bntttuCMTURANIz3nrrrabCKvKE1EmkOr3xRuPi3IvCvP/++8N2222XlMcll1xS5Ez23RgBlXE3LjwlXQgIASEgBKY7AsyzmW8j+Zv5N/NwTxpnPRqVzzA0IUmO/YHDDjus8qPeeiwC3X2t2mMLRhlrGQL9ZuoTjt5x+TS8i+54ORx0wWPhn/e/Gu555p1w7r9eDLuedn942amASx236GG95aYx29zw0BvhKidhyKJ45Z0J4dCLnrDXsOkqnXv59NrIcGXk02t2WfObKy+QWt38aOOq4D7/ckq46+m3w26nPhBgODP65XeXDf1jmdVLtzw2Le5NVp6/prcNVphWFtc88Fq8NFbTixwIASEgBISAEBACHYhA57Fxd2AmFLQQEAKVCCAtw2jPPfdsJ/3BvskUAh4BVF2dd9554dxzz81Vh+Td6lkICIGOQwCJPXfeeWciZaenqaDrONQ6NuS//vWv7SL4xz/+Efbaa6929kUW//3vf8NKK62Ufv7yyy8TJqbbb789OQx6++23E4kBMDcxjvfv33li5NNE6UEICAEhIASEgBAQAr0MAeZz7Jto3t3LCl7ZbQoBrVWbgk2euhkC668wOOwZJQudfePzScrvffrdwM/TnLP1C99afcFw4e0veeuWPC849yxh1ygF6fxbp0rzPvEfz4Z7nn4njFx6njBz3xnD41H93B2PT7toNXzB2WNaFmpJ3PUEMvq1j1PGrmGDZ60qrcnCWycyax135TPJ680PvxF+vNnw0L9ve4ak8259IQweOE1i+WeTvwhvjp8Ynn3lo1RKk4V50LeXaUjy0+QvpoTrInOS0brL1VZht8i8swbwHRPz/FqsE0+P+zAg6UkkBISAEBACQkAITB8ExNg0fXBXrEKgQxF4771pOq5XWWWVDo1Lgfc8BLSh2/PKVDnqngioLXaNckMV3GWXXZYkZo011ghPP/10Ir3pL3/5S0OMTdnczDjjjGGhhRYKO++8c9h4443Dcsstl4SLSgdU0m2zzTZZL3oXAkJACAgBISAEhIAQ6AAENO/uAFAVZI9GQG2mRxevMhcR2GndYaHvjDOEi+4cG8Z/MrkCk6+vNDj8aJMlw/2jK5mdKhyVfNl5g2GRkWZCuPmRqRKG7nv2vcAvS0PnmSVKmFohzBTT2ll0y2PTpExvuso0SUzV4p9zQN+w9oh5EgaxCZO/DP+J0q9gIMvSPaNqYzrfwJnDb3ZcriGmJuL573PvpcxRayw1V5h79n7Z6HPfN1l5SMLYxEekTYmxKRcmWQoBISAEhIAQ6BQExNjUKTBP/0jeeeedRG0KKRk5cmRYZpllwmuvvRYQq3333XcHREgvvfTSiehtDu2y9NJLL4U77rgjsTb/WTe8jxo1KjzwwAPJpy233DLMPffcyXNe/C+88EL497//HVCbNt9884WVV145bL311mGmmaZVS/s+ZsyYsPDCC4fVV189Sb+FmwRe5Y8033fffQH/c845Zxg+fHj4zne+E+add94qvqZ+wg+qZsg7qnSGDh0aYBLabLPNQt++fdv5z+YRPDn8vOuuuxJMBg0aFE4++eR2/qpZgNE111yTqJJ79913wwILLBCWWGKJsNVWWyWYeb/vv/9+uOqqqxIr0mzEwaupMfr617+eHKLatyLz5ptvTurHzDPPHHbYYYfw0UcfJeWEBJE333wz/PCHPwzrrLNOhfdG8arwHF8oJ8pr7NixySfqw1e+8pXkoHfAgAFZ5xXvjeBkHhvNY1uUNXvrrbeG//znP0mdmGuuucKIESPCt7/97cBzPTR69OhECgdq3Kgvyy67bJI/2tTAgfXf9rj++utTFUiojMurj//85z8Dh/H9+vVrJ07f0ooEksmTJyf1apNNNkmsUVVEfzD//POHTTfdtMLu4YcfNq/hlltuSeoCFvQZ5CWPJkyYEPB3zz33JO1whRVWSFTcIbXE6mWevzJ2jdQHpKI89thjSXRF7YO6+cwzU28V0fbyyhs1VdRd+q//+7//q+jHms3LF198kfTR9CNPPfVUmDRpUlhxxRUDGGKiLsGTlV2j5UQ/yzjw8ssvhz59+iR97QYbbJCMBz58e0Zd1oMPPpi80mdTd5999tmkDYMV6aL/A89FF13UvOWan3/+eaA+UwbgRz+56qqrJlJtllpqqQDjh9Hrr78ebrrppuSVvtDqrH33Jv3UDTfckFgx3tHGmiHaO3mDyCvpy6N//etfYdy4cYE+87vf/W6Co3dHWdLuUQlKnQNn3/79uIc/+twrrrgiCYK+0Ev5yfZdtGHwYyx94oknwoILLpiM8aiFmGOOOXwy2j1Tr2CgYcygj6NPo9wwGXMYfyDSmjc38AH6NHtVavQzs846a+K0qP3wsUxfATPvlVdemUg7Im5uEVMH6Z+Lysynvdazja24Y/xj7oRkO8oUDGFIKkuk+aijjgo//elPk6DoU8owNtGu6Qut7yJQ6sn555+fhL/IIouEDTfcMHn2f4wbjB+MV2DJ3In51+abb55g6t3W89zM3Ii+jrpHe3nllVeSNAwbNiyZ+yy22GJVo6UeM5dgzKFeM1+k/tJ+yQv9KeUH0c8RLoTbMvPcJBD31+ycqJG+otkydslMHju7jIj0xRdfDFdffXXS748fPz5pQ9bX5Y2xPs30efTvNm4wz2GOvvbaa4f11lsvV9pGM3lE1ST9CmX54YcfhiWXXDKJY9111/XJKXxGdeVDDz2UpJO+mbUHfQVz2+WXX77QX60PpIWxlrrMjzHXwiTc7Hjiw6NNM0eg74KBkjWF9e8wWTZCWUwbXVtm42p0LuL9lxkDWjG/Jy3Ntnn8Mu+m36XPo4zonxn3Gcfz5vj4qUV55cOYAM6tXns3Uiepf+QTYr7HnLaIaOMmhdj310Xui+zL7AeUqZfZ9HRmmRB3I+shS2t2jtkZewAWd9ZstL+iv6YuMhdnLVZEF154YWCsZdyAqdzIxlS/ljO7RuZSja7fLP6syTyc+Sf7a4yTzFe++tWvJnOXMswkZfoqn0bCYa7FmGzE/qLNM4vWROaW/LFvSH9EH846g70+xhK//jP3Zr766qvJOhRcSAO4sC5m/GOvL49Q046UVNzSl4AncTOWsv5kLKQvYu+jWtw+7ClTpgT22aB55pkn6a+TF/c3ceLEcPHFFyc2RfNuv4dn8yAXRLKf0+i8PLtWZx3GfIS+ENzAYPfdd/fRFD6zPrv00kuTdSKOvvnNbybrLL/uy6a7VXiDMesh1uPsU7DnwJyF9SRzKp9P2jJtWiQEWo3ADDOE8N11FgnbrDU0vPbeZ+GdjyaGWfvPFIZGCT6zzzz17OKzz6ek0eLeaMb2gojsU4XZt4oKtb4xkF9ut1xYY/hc4e93j0sZayyAAf1mDN9dd5Gw3VcXTtNj3xo1+0UpUEWEaj6oX4zP6KZHpqlzW3/5aara7HuR+fUV508lX9351NspY9NMcY+sGiEda8G5ZgmLRulQG39l/rDyooPivpoDvJpn9+3OJ99O374Rw6mX1ouSnU67dkzi/MaHXg/7f2upuO4MoVW8ZP3qrTD1JljuhIAQEAJCQAj0ZATiQrRNv56PQVy4t8V6nPwOPvjgtosuuih9N3sz4yK3LS72K+pFlFSQuj/77LMrvvn6c9ppp6Xu4gI8dZeN37uzeDHjhkZb3Kxoi4cJbXFjIQ3Lu4lMUG1xIz8N2+KPmxmJ+7jBn4QRD2dz/RMW+Td/WTNuQLTttttuhX6JPy6i2/nP5vGII46oCIN0ZeMqeo+bO23xcLzCv8eA50MOOaQtboSnYcaN36ru8XPmmWem7ovixn6LLbZIw4qHtm3k2cd/1llnpeE0i5fFT1lT7j58/0zcUX1PGp/5w2wGJ/PfSB7jxltb3HzPTSPlGje12iLTWvo9HshWpPfTTz9ti4fV6XefP57JY2Qaq/Bj6cwz99577zSsuCHXzl/cIEu/E37c9GvnJm7ipW4iE2L63co6MqS0s8um294PPPDA1G22HRKOufNmPCBsi4wqqb+8fGbt6FMsjNNPP72d32bqw9///vc0zBNPPLFdmKRhrbXWSt1Q1tl08W75pD7EDcBcN95fZLxJw4zMC+3cxw30ingt32ZG5pV2/ZCVnbnJmr6cSEs8MCis1/iNh7dtkcmhXdp+//vfp2mnrv/oRz9K37Nxnnrqqe38Gw70mdXSTPy+jnjMwDkynBaGfdxxx6VpOvroowvdWVqKzH333TcNJ6/fN3+UoeWdPs3sMRnT1l9//fS7uTMzHlK0xUP+Cj+RmSp1D74+PN930Y7jgXbq1sLEBNvIcFXh18Kh3/7BD36Q6w+/P//5z9si80f6/aCDDsoNx8LDjIwwqXufDv/s5wWt6iuYk/g4ss+R4a9m2n0+8p59H0D5RsbONE6wyvNjdlEaU+q2aCwzt/EALXXLHMbsfX3w/bV9zzO///3vp2FlMeEd/L2/yEzUFhmrqvqh7mXrtw8j77nRuVE84KraL2T7MR8nY4AvK59v+gzmsn/4wx/SPEZVgikGZee5lo4yc6JG+4pGy9jSmDU7s4zAp9qYQZnFA7G0XLJpjYe8VesHcwvmw1l/jebxz3/+c1pPfD3iOTLVtsXD2/Q788O8+Bins37tnXlcdq2VDSPv/cYbb6ya/6jGso05a55f5i8Wf55Z7xrBws5i2uja0sJpdi5i/suMAWXn96ShTJvHf2T0KSxT6jPzfD/uF5Wv4WFmtnw6Yu1NXI3WSeaNVv/iZaHcump5oK2ZW8ZHs69mZucWze4HlK2XeWnsrDJpZj1k6fV1raP3ACzOPLOZ/or2Qn1hvM8L0+z4jrvsPMjP1yKzcxJGo+NsM+s30pVd40bm+SQfVv+9yTyHtb7lx8xsGGZvZtm+ysIxs9o4aem1OaNfw7Fm8vNdc2vmdtttV7HHZfGRfr/fYu69yXoFd+bHTHPDeB0ZK6tiG5l+2/m3cLKm1TnCz1v/R0bBtA9jTpD1zzvrFEufXzeXmZf7tTrzJuYGFgcm+4zETfmYfbwA0C59zFO8X/pTm7v4tUl2rWphlsGbtBWtcWnD8eJMRX3I7r/lYS27rnfuUW1/ZXqX18SJk9rGvvVR8nvt3eJ9J9J56F8ebltt/xuS35MvvdeuLbUyL2+P/7Tt6bHvtT318ntt497+uO2zmM5Whq+wul47UZmoTFQHVAdUB1QHVAfa14Hq7NBxRSLqeQjEg5yAlBcjpDt4QgrBSSed5K1a+oykl5/85CdJmHFRWhF23PAL++yzT9h1111TaRu48e7efvvt5EY2UgXyiBvSSMwgHiPvHzvybxJHzI2ZkSEpnHfeefaamN4/8XODlluXRcRN8l//+tdFn6vacyuKG+eR4aLCnU8DH+LBfUU5crsQN1l3ZofJzblGCYlN5LmIyuDFDWUkUlDuRUTc3N5DqounZnHyYdhztTxyuy8yACS33Mw9puFMfYubnu3S592Sx1NOOSW1ihupyS1ls7A6za3HesjfLuWWY5ay4ZgUCu+Om29G3LyrRoMHD07za+58vcqTqAUu3KZDCgYUmSwqwkBSANLPuO3XCmq2PkTmmTR6JJJliX7GY+X7FXPLjWLLJ3mqJi3B/FQzkVDCbVUfL3j7vpobsXFjO7mpaGE1Uk5IREF6Hbc3iyhuOid1mzZQRJFRNpxzzjnpZ8rZ03777ZdIB/B2PCOtI26UVvQt1qbMLfGvttpqyY1z7JDise222yafqV98LyJulhptv/329tjpZjyATKQR+jZIucWN8DQttFduGseN4tSu3gf6FiRvQNYmzS/9ChKL4gGXWaVmZPYK8UAifefB4x+Z/BLpQRUOarxwwzmbBgvX7JGskqUyfQUSvPbcc8+KIH0++ED/zo3sZun5559P2yKSKJEAxY15q+vcSuZ2fivIS+bglnIZmm222aqWR1YqDnOvX/7ylxVRZrFEiuWaa66Z3B6vcFjnS625EX0fkpX8nCObhnhYE+LBT7sYwYu5o+83vSPqWTwsC0hX60hqdk7UTF/RaBnXk++OLCPiP/zwwyvGDOyyZbzLLrvkzqGRSsi8olr9YG6B5IBqY1utPNJfMO/z5NNIv7PTTjv5zxXP9OlInmCchvDLXMP6DOwiE1E6nvFeD8VD60RSgs8/YfpwkSwaGWkTlZY+TNoNc1WjyIydpMneMSOzVTj++OO9Vd3Pza4ty85FyowBrZjfA1CzbR6/tHvWlL5MsTeiPjPuIKmiDHXU2ruZOsncz9oTa7ui9TxzF5PSSX1l7GmE6POb3Q8oWy/rSWdHlUmz66G8NFdbH+O+TN3Pi8/sOrq/snjqMRsZZ5tdv2XTgTRDpOlQhyFrL+aOeU68hBcanSe2uryY05O2bPrMDjNPshSSBpECauTXt9ih+pn1Y5Z+9rOfhf3337/Cmr7Bx3/CCSdUVRGNNFL2UQzbbNxgC/ZI8quH6L+NkMyYJaQNGTEnQMJUlpCabIQkJaNWzcuZ2zM3aJToS5g3m1/2OJAmnLfvUxR2s3jHg5uk/7Y1roVvZU35MQ9DwpxICHQUAl9MaQs7n3Rf2Pa4e8JWx9wV7n02f///4RfeD7c+/laajIXnra5tIHXY5AOq3JYYMnsYvsDsYfCc/cOMTUgsajJqeRMCQkAICAEhIASEQJdBQIxNXaYoOi8hbJJCHBCwaciBPAeqpv6Eb7/5zW9yD0P5VpZYoLIoZaEfb+Ik6mfYwDBiM4eNTjbqORxgsxcmIltU4w67asww+GOjgw1X8kg82HEIbMThGQwJnjigtE190shGPZvOxI/o/HiLMXEOZjAFxBth3nv6jFhkiMNhxO3DwMPhaD105JFHVjArxBvQAZHb5IPNAUsfYbG5YOKtUbuDG36mQgw3qEcy+2oHMbjNI/LCQXy8kZvgyEYCG51QGbw4UOAQknKBOOhH3Dob3FHCUVI/dtxxx+Qbf1FySsXhcbM4pQG6h2p5POaYY1I1jnghz2xMgSkqEmzjzddPF3TClOE35qn/1CU2zggjSp9InUcpROlztQevBjCPucNvohGOxe/DLNpE827smfSSVn/oTb20euXtzQ8mB4scDrKJZ3U43qZLNyDBIi9tPox6n5utD6gp4gASot/JMih4nHDDwX7WjWeaqKYeDf/1kK8HHFCyUUofRL9jB/+EQ1v0DJD1lhObtRxgWtuLtykTJiHaHWHefvvtqQo5+mMOoosI1Qz0teCEf8qZdHJwZXTooYfaY2KSF5jpiAuiX6Ue00/T39KvWZnQ1n77298m7vjzfZipaks//u8BpinbCOUweZFFFsk66bR3DtDtwJJ+GRV5MNChBgDVBzDIQGDBmNwo0cbYaEYdGtjRJikL26gnXM9USfjEA2OTEWMKbRS/pAnmZijLTGrui0zUlVmfwJhhxNhn9p4p075jNtNX0G/7A4Xf/e53SfqJC/Urvt5ygEK9bIZ8GzPVJjAv2vhE+XrGtWbiMD+Uo1FZdQowqIPF5ZdfbkEGDoWsLDyDD+oIrdxxzOEXB0+4ZZ4EBnaYAI5RYmQaZiMP1eZGqI+hL7D2AhMG8yfqNX0DKg2NopSsdvWTsZr+yihKe0j6Iw5HGKvtMMy7MbetMsvMiZrpKxop43rz2JFldMYZZwTaqRF1jjGNeoa6KcZxI8rTz5sZW2B4MoLJFcZu6gZ1h8MtxjIj3DYzR2fMYX5vZPFQL6mLrAvoX6u1eeqe0S9+8YskjaaulHHa2hLzRsPb3BeZjNu+36Y+w+wCLvzoQ41hljA90zuH314VNmMn6wnSxLjtxx4OhWHqaJSaWVuWnYuQzzJjQNn5PRiVafOo4mU9RZ2DYGhn3GVNTrlQx6J0jKRPrLeeJAHl/HXE2rvZOsn4uccee6SpZH2ZR96e9pzHIJHnz9s1sx9Qtl76+Ks9d0SZEB/9qK8v9e4j5KWVcDpiDyAvLrPrjP7K4qrHbGScbXb9lk2H7SmwR8A8iDGSft6PLexxHXvssVmvhe9l+qqiQBkrLW3mBrWo2NkPFcBZYu3I+gQmdbscBBON3+Pi0oz1jfjHXZS4mQYFFozLjGWMzaghNOLiRhHDJPHij70L1jzMaZkrmPo8wmBNmneRycL3pmdE8uOuuWHfwFN2j4ZvNh9nboEadqiV83LaMfuqjPWskdmX9HU1iTDzhxuYmgwH9k25NNToJclm8WZ/zeZZzJlYh7CGpl6RH1uHtGofKZN9vQqBBAFUr+2y4aIpGgf9+fFw0tWjw42PvBFGvfJhuPeZd8KJ/3wm/OScR1I3O2+waJjFqWpLP+hBCAgBISAEhIAQEAJCoLUISIxVezFWPRETL/o81qBE3HU2n3Eju0ItUVxMpiJNy6royMaPWP1s/HGDmatR6S9P3RxqEsxNPHirCMNEz9v3eHhQ8Z344uFHhUjjKFUpdRMXymnYhOHzb2lF9DIilS2OuAGd+s/msRlxyPGAJg2bOOLhQxq+pQHzV7/6VeouMhW0c+PV+JFm77eeZy+GPjIGpCKnvd+yeIGd4YgZNynapTNuclXgHTfxEjetwKmePIKdTyPtwGPAM+0mqzbQl70XBe7Fi1s48fCiLUoQa0O0NyqG4kZSuzjMrTcpF9IWN3vaiT6nTvh080w83r+JTsf09nHjK/GbV6/iJmAaLmLNvT979u2Q/FCG9s3MuFmZhhMP59p9N3dZk/K3fMUNudRf2foQDwHScLOqouLhS/rN4o5MaWncpDHeqEzdoBosm+6896xIfu8G3KgP1NG4kdsuPK9qEBHt3i/PtcopKxY/Mj+2CwP1E9Qty7NXeeDrNG7ipnI7/3EDPvWbrX+o0bRwqS95fRSq2cwNJuGRN+qxpQszTx1d3BhP/caN6nZpy+JV7b2sKjrfz+SNSeQTVSuUN+Vmaakm3t+HGQ+cknHN/JkZN9JTDFCDZ/aYXqy/HwO9Gz/mg389qui8f9Jl5Uf79N/suWxf4eNA9aCF603fNg877LBcN9599hl1FvGgIc2Lr6v0A5bHyPBUGLZXbZLtX3x8keGvQh1RPLRJw/T1gf7B+6v1HDf903RGxqZcv35eEw8Tct34cMh3PAzKdZdNT71zI99vRWa93LEjHmykeUGFrcWVHatxZ9+8GZnRUv/kITKppO58nW9G5XLZOZFv1430FeTPl01RGXscss+dUUbZcRq1Zdl08O7V9nq1g/RB1t6or1HaYzv/jL82h8Ht3/72t9RNM3ksiod2bGnBxJ3lhTmPH6Py5kD0z/T5/CLjYerXwsgzGWfND/0afVPWHesWS5dXkenznqdqhnAiA3EaPqqUsmHnvftwidfm6N5ttbVl2blImTEg22c0M78v2+Z9/qkz9PMeO54ZF7Jz+niI385d1h/v2fJp9dq7TJ2kj7O6Sn+fl36/ls3DJs8Pdn5uQRx5/Wm1/QBfLoz/jc6Ri9KFfUeXSbafbWYfwY9FHbUHUC9GjfZXtralPVWLw/po6op35+dr2TlOPeNsmfWbX+NSb5mv+LTZc2ROSdsO7iLjSOrOh+HXyWX7Kou7yKQ9WXvOW5fiz697cRuZnNN0+3D9PM2PKczXbAwsmqPFi5lpOvxeDOFb+jD93MLHHaUQp+4Iy38revZjCW3Hu4vMx2l4Fj/9mncTmbtTN1ECbfqt7Lzcr9WZF+Wt1UmH7zOsvTG/8mpA2efKm8v4tUmRKrpm8PZpwn9k/Epx8dhFDQApdrjLlrl3q+eue+aRtwfclcrr/Y8/a9v7rPtSNXOmbi7P/OONo9smxr3hrpR+paXr1n2VjcpGdUB1QHVAdUB1oFwdkMSmuArqbcRtICQ8ZImbkF5lDzeYOoK4ybXKKqu0C/prX/taahcX82GJJZZI3+0Be6O4QLfHdiaSkuJmVTv7WWaZpeJGFjfEjexGEu9IM1l77bXtU2oietnfjkMKQB5xa7oZyS3+dirSIPxNZB8PElC42QtRTtxc6ihCDHaeyOmyeHlpK9zAsxtqPh/c6uUGHequ+Bm1GqeiPHKj0CgeXCcqUOzdTNoNKkXiJqlZVZj9+/dP36kv3AT2hOohVB9yMw/JGqhzqodMfRw34byUD27iWdv1t/HiQVwabNwwCna7Pq8vSB2WfADXPLVs3Pozipv89ti0WbY+eOlCSNLyFDdVk1duQFsZ201ac2dtgT5nyJAhZt20ST2gPnD7FIlSWUItgkk04sZ3VoJU1n323UssQd0DKuyyNHz48FTCCd+K+hikWcRDt6z35Gaor1tIjjPi9rjRhRdemNu/LLTQQiFuUKZtHylPEO0FFQEQdT9PYhm3Oo2K+lD73tGmb/95Kgosn5R3ZOxoODlxIzkwrmUpbv6nVkiHMoob06k0K8Ypu/Fq381E3RNjUGdRo30FN7etrZKPAw44IDepXtoXEk0aJeKwG+PxwKuirjKPsbqP5ESkxjRDtF/qMbe+TVoRN6spg84gpL4YNswPPWY+ftJHORllb6GbfTWz2tzIt1vG1LyxA9WKJuWMsQOJJ5Afq1E9hLs8QmKQ9eN538vY2ThAGM3MITu6r6g3bx1VRn6cZtzw6w2fNsZapBwx5/PjaWRSSp0xbuRJDcC9n/cgXSmPquXRrwuQCJEXz0orrVTYTvr0mba0ZoyifWXpG9/4RjLG0+/Hg/Ds59x3+hrc80P6ko/HPLC+MjKphbx7FaDxIDKVlmhuMZHmZuEvvvji/lNdz82sLcvMRcqOAb7PaHZ+X7bN+zkB69bFFlusHdYDBw4M1Pey1BFr7zJ1kvmyrdORUpWVrhKZ6VOV9JGBLRebejBpZj+gTL2sJ03mpiPKxPezrdhHKFofl637hkGe2Rn9VV68rbBr1fqNeQrzlTxC+jhjqFG1/TBz05HlZXE0atpaLuvPzw38eIzkVRujkPidR6gvN0LSVRFlVVibOz/v9hIj7XueyR6Z7fkhkderb0cCshF9EYR0TqQhGd1///32mEjo46XV83IkL9l6JY2s4AGJjcyjIyNf4oK1D3txeXPygiDaWTeKty875tORwbJdmFjESy0VqnhzHclSCJREYLb+M4aTd10lHLLNMmHBudrvuRD8SovPGY7ZafnwgyjdqU/cGxYJASEgBISAEBACQkAIdDwCM3V8FIqhqyHg1Vhl04YqGaN4W8ceW2qyQZlHgwYNSq09A1NqGR8WWGAB/1r4vOaaaxZ+M4YgHHgVUn7zBGYCfxDvA4OpwMj7MTvMInU73k3es2dQqZYHmF/A0TbmURljG8R54ZaxMwaKbBg+783g5ZnCRo4cmQ0+fUfF3lFHHZW+89BqnIry6Jk5qqWROkGdjbflK9LJiy9HRKPDeMSGHCrG5p9//nbu67Xwos+pxxy0QZYGNkWJh00fDubZXDNmPb+J1mxdrSedlqasWw5qSB+HfhxOlaWy9WHllVdO0wN+bKJBHAAaowGbloispwzZ7DOGEL53NJMYzHBgFaUTBfplGCjKMIT5fo9+t6iv8wwAbDLmtYHVV1+9sPiGDRuWfrPxhMMrYxQh/BEjRqRusg9gbpvF/huqW0ytDgfXvg7D1GcHuhzqzDHHHN5rpz8z3hoTJ2oZqV9s2oOlH0uaTRh1N49guOTwnrppdRh3vq3AIFJNtQtjjGcmyIunVXaN9hV+03veeectrMM+fdR72lK1PHv3PPv8+8MWvhFOlLaXqO7lncNQDgCqEe3FMx/Qpq3/MH8wNXE4ksdQbG5aaTJ/MGK8gnmwiEi/Hbb5Q/ki91l731b9N/o0jwPMXkX9EuOHEX00cx8/Vts4Z268Caa0SQ6WWk1l50Qd3VfUm9+OKiPf91Rbh1BGqEL0lB038i4+mHt/ccLPdew7ZlEe+fbggw9iJHMCGHyLKG88xC0MR8zPjDmC+eVee+2VMCquuOKKVdtXUVxF9rQT5gb8GGOj5IjUqTH9YcE82uZcrBuYr8KwwPjKONFIn5hGkHmoVqZFa8syc5GyY4DvM4rKkixWm9+XbfN+HVRtLuXHjAzsdb92xtqbxNRbJ3HLGsVUhDKvNjXnfPMMOqglbZb8GiwbRtF+QJl6mY2j2ntHlInvZ6vlvd59hKL1cdm6Xw2XzuivqsXfym/Nrt+Yx1SbA/Ld1hb0ZSussELVZHdkeVWNuOAjfVpR/rjwYcRFrGoEE46Nf4yBvu16BiMfBmNhkYpyGHSNGrmswFhKH0ZauExi5WEMZVz0gYkZNcoQ6bR9HFMLj72No62el1ebFxOvEQxXMDXZHJnLM6eddlouI7X5qWU2g7evr9XGRpituBhrbaFWWvRdCDSLALxKW6y+YPKb9PmUMO7dCeGjzz4PgwfOHIbMNbOYmZoFVv6EgBAQAkJACAgBIVACATE2lQCvu3otWsyTnzzJD63OZz2HufVKrSlKm9+szLrh0IHNRCQxcOAbRfqHeeaZJ9Hbbm5hpMky09g3b959993+NX1mEd8MeSaPankg7OWWWy6NAp3zHUVF5eXjbAYvfxOOg5VGqNU4FeXRHzrUKg8O5o2pyOeFza2oOjA9/EYyh0mZId9sdLGZ3yhjGuHaQRWH4BycQXbDDolOHFBz+5CDaG45mkQYv4lW72aXz1M9z6RtzjnnLHRKX8MGYCuobH1gY4xNRySGwADGZih9kN20JC+ULxuXMDbRd3DQClOQPzjdcMMNW5GdJAzyxA3J2267LfjyakUExlhEWEiOqIf8JqN37zegvT3PeZvWJnmJ7zDlNHOgSlnQHjmgjepjQlTxmEqksMNkwt9pp50wpitxIMcBnbVLJC+Y9AUOl7lFC8OMl0zSSIL9JnzWX16/5g9zOWSvRn6Mqeau7Ldm+grPrEV7rEfCCP0Nt6DrvbWMdCuk6RnRL9AePXnGOaS71GJswq8x3vlw7BmmJvqdaowb5rZVpseyVpn7cdD3u/WmhbLOI+ZhnuopT9zDXMXY2ehYbYc2Ps6yz2XnRB3dV9Sbv44qo9dffz1NwrLLLps+1/OQHTeq+fFjkh/rvJ+iPFKnrT0UMY1aOL4tmJ2ZUcVOIgWN+Ol3TjjhhOTH96iGJunzo8qapphbo1qtcOmll4aoLiu93GDxFpnMZ5jfmBRFGICR0MQPLJgnIrUIqQjNSmVoZm3py6fRuYiVE3luZgxotM/Im9+XbfNekmq1Ph8JNlkGzqKyLrLPmw9k3Ta79m6mThI3kmeMsYm5nGdsQvKNUb1Szcy9N6u106L9gDL10sdd67kjysSPy9XyTtr8eO/rsk93URq9+2b2AHwc2efO6K+ycbbyvRXrN2OMKUoXzF9G9GW1JKx2ZHlZOhox86TTmf9ZZ53VHnNN1nlIDGVd5ceBXMc5lnkSws1Zs/ugxqREOPfee2/C2ASTJ9LoIMbeYfGyj104YS1hfqKatcQNl02Mcd/ny7fTxGHmz7dz3/69s6J27N3wbGtVs6fvpZ8sQ83g7cfnahegSBdMcmJsKlNC8tsoAv379glLDJl20blR/3IvBISAEBACQkAICAEh0BoEyq1UWpMGhSIEWo5A0aGFRYSEB6P33nsveTSJImZfj+k3HupxX8sN0huM8lRQ2TdMmLGMPv30U3vsNLMsXsbUQlnlqfqolpHOwsnfFGykPLJpP/zwwxO1YhxoeUJCBQdgSBjgWyOYstHEoQCEarQpU6aEqJs1lRJgcdlhEYfplh9j2EFdVR7ziU9jd3huRX0wnKiXdlPSNvgQ+Q/e6623XgrHXXfdlTx7pqNqt6NTj3U8wKjGRuavf/3rljM1EX0z/ZY/WK4jC4VOJk6cmH7zfVhqWefDbrvtlrikvIxREAsOxyAYRIpE1ycOOumPTXJjvsoyL6L+66CDDkpuDqN6KaumsiOS6MfGWreRG+mPOiKt1cL0bb6au+y3rLqb7Hf/DjOoJ9QawjDqfzAGGNEXmBpQs8szUX3pfxx4oKYBFY1jxowJ1aTE5IVX1g4GLiM/NzI7b/pxsNky8OHZs80H7L1e0+ZvNrbhb6655qrqvVYeq3qu8rGZ9uL74q7WV2SzWraM/DzVS2jNxpP33kgdZaz2DJ8cLtZLVp9wX6ue2AFkXtgw+cBsQ7/OWOQJprpddtklqaem6tZ/L3pmfEDNHtKFTjnllLqZmiw8pFTBSIPkQE+UK30P/RqHrkhB6yzy9b/eOG0u0mz/Y2OA7zN8v5aXjqK5Stk2b8wG9ayDmmV+zstPq+zK1kmk1hqzHQwAJnGMMjLmU6SHNNpf+Pz5OY+3t2ffzq39l6mXFu70Mn27aKRe+/65nrSXrfu14uiK/VWtNPO9Veu3oj7H0uDL1vdl9j1rdnR5ZeMr8160FmIewNrvO9/5TnJBpJl2WiZd1fzCaGbzDtsf4EKQzZtM5b2purP1BUz9Jn3d9m2Ip5E5j68Lvv1XS2+93+h/61nX1Bteve78pZFaeWqmbtebDrkTAkJACAgBISAEhIAQEAJCoOsiIIlNXbdsumzKijYcSLBXfTA9M/DKK68UipkmXV6FiklvGDx4cJrks88+O1EVlloUPDQjbaQgqMTapwGJRtVutXMAapQ9ODH7jjR9WpvBC9zZLGHThxtmjWza+7g7Eifwv/LKKxMYa8VT6zCI2/n8OMjgwItD8AsuuCDd9II5iYNzNkXrJZhxkBIChjDj2IEN/lF1B5lYc55hAEGqkEltMWYevnVnakV9MLzAwW7/G2OTqUPjcIUblZQdNyy5yWgSXCjb/v37l4aRsoThzIjNUCT6cLuVA3tT44eknzwJAuavmmltDzfciqznhmo9bqrFad/8Zn2RFChzW81kY9uYSkwdHf0JzEIQ0k+alTxRFG+1sQ+mwiKCcROJavxGjx6d1C/a4sUXX5x6OfHEExMGT5Oqln5o8YNX+VYLf39jtsXJKB2cr0dsvMMEWA/Vq86WsP7617/WE2SFG6SiHHrooRV2/gXGAl8G/tv0evZY+nlFXnq8ujjf7+a5bcTOp4GDaGvHtcKwA+/sWF3thrsdIlULu1pbL5rnejyamRORnq7UV2TxKVtGXvUu9SzL6JmNz7975gPUvFQjDgRN4gp1qZFxwEsKqxUP0t+qEXNaVOrB3IREG1TPoJaGuZ4RYzsS/eqR9ghD+oEHHmhekwNe5i0wUSEdk4NApDL4Q87U8f8e6Hv++Mc/ht///vdJepA4iaQDaxPghhRP8u7LKxtOq97LzEV8fWxmDMj2GdXWW0Xz+7JtHqmJzCeZ93FIX20t1xXH41bUSaQcmlQT2gJSm7waOiSJlaFm9gPK1MsyaW2FX18na61b/Xhfre7lpcvH0+x4lxeut+vI/oo212pq5frN+uSiNL7wwgvpp2p9lznqjPKyuDrK5CIYTLgQY/t+++2XSP5lXm9rY/Y3YNKdHsQ+AG2BcZ7LZjbWwzCMtCaI9T3rPcr31VdfDV6lqp8H+PHNt9MkkMxfq+flzFtQyQtzKXWay10wa9WSpJVJVqlXJBqfc845SRiUKXsvRcT8SiQEhIAQEAJCQAgIASEgBIRA70NAjE29r8ybyrEXQ5xVGeIDZAOxKxAbBkVqETj0sNtHiC9GxD/kN/G5HcTGZmeTP3TlYKGa+H2/yd0IU1Cr8lQWLzZ5rBxgymkkD52Fkz+Afuqpp+ouj2oYg9u3v/3t5Pfb3/42OVTaddddEy8w1LDR5VWpVAvra1/7WvoZvyaCnHpteLIRBWMOTDpstvmNKb+JlgbUDR9aUR8IA3Hu9B0wnXi1IF5S0+abb54cRF111VUJM4UxiRnzU1n4vHrLNdZYI721ng231kZn1r1/51aptT0kKNUS8+79ln32m7WkgVvivk7WGz71m9utbLyaRCSvho6DzlaQV83y/vvvFwbJAVI9hEh+fkjNYJOeDe6TTz458QojTUczNvmDew4liw5TJ02alEp/qydfne3GH9Kw8d7q8Rq1WcbYSN7YOPfzIJ/fsWPHJqqcsIPR9JBDDmlKxaIPszOfbawgTn/IkpcGf9g2dOjQPCdN2fl+gfJceOGFE3Wg9QaWHavtVnye/yKGPl++zcxzy86Jsmmd3n1FNj1ly8ikGRAu8ymTOJmNJ+/dx00dpH8qYiT2Y6MdJuaFmWcHA6+p/CIexsciiaK+LeSFZXYwVjGW8/vpT3+aMLfCoMR8DEJqUz1zMWOixg99zG9+8xseK6gWs5U5hgEKiSj8kCjKnIcxCcYm2h+HmDBPdzSVmYuUHQOyfUa96y2PSdk2z+EtjE0QzFNFzCVIEupK0kkMg1bUSebOMClQ72Cyg7HJJG9ib5JOLM5GTdppo/sBZeplo+lrtftWrIfqSVPZul9PHOamkf7KGFmpT0jrs3cLC9Okvnm7Vjy3cv3m93jy0maShflWS600bjqzvIivI8gYIAmbSwSMX1mqR3pV1k+r3kkPjE3UPfodY9D081Ev2Zk1mM0j6Ot8OU7PeTnM2FyUI62s09nn2GOPPRKmslZf6CzC3o/P7Lf86Ec/yl0TjBs3LmUgKwpL9kJACAgBISAEhIAQEAJCQAj0TAT69MxsKVetRgBpIUZFN1e//PLLdKPe3E4v809/+lNyWyovfi8lY7XVVkudmK57LFhEF6mvwJ7NCH7+ACUNqMSDP9z429/+ForEL7PR4CX7rLXWWiVibc5rWby8yO0zzzyzsLyQasQNdH7cNIc6Cycv9YF6U1Qe3MQ3BpcsmkjoeOCBB5KD8ew3Dsx22mmnCoYpDvzqJaQYcDACUR+uueaa5Jlbg54Maw7QOMCCOECBkadZqnbw22yYzfprVX1AYhZ08803p30ZtwRNKgjfbCOVQyb6GSPfHsyuGZP6YsRGYh7RB5tEirzv3i6vnLykrmuvvdY7r3jGr/V1rdoshpHUVI8Q2XnnnVcRp38h/9b28zb5v/e97yXO2USmXtthGIx9vu36MBt99gxu/lasDwcmGNuc9vb0F7R9fnmMTxzWH3300cmhHv7o1ztapD6MWiYRDNxgAMuTNvXjH/+4bqk5Ps95z9UYwvLc12Pnx24O4U2lT55fbh5TjymHesnqEu7Z5IfZgVvxeT/6V7tNTBkiBaWrUt7huI0hpJl25A/MfD5g8mBeYtSqPo/wGAv9Abaf31h8ZiKpgPJEYp3VXd/eL7nkksJ2RB0okgZVdp7r8Wh0DtnKviKvjA27MmbZMrKxkzTAAFjUL8DUD3M3fT/SXCCYmKzf4v3SSy/FyCUvac2PNbmOcyx9e+DwNI+QxnDuuefmfUoYzK3fz+uXYFg79thjU79FjHapg/89+ENzJBLmkWc08d+RFGhp8ipucMNBJczbqEU18lJtza4jzDJzkbJjgO8zmp3fl2nz4OkPb//85z8XQlztW6GnTvhQpk5a8mAmtLkc89EXX3wxZejnMDuPMcX81mM2sx9Qpl7Wk6aOdNOq9VCtNJat+9XCL9Nf+YsaRYyexkxYLQ21vuWNs61cv6E+3ofn08M6wY9z9Ug/7Mjy8mnjud71adZftXfmSGACsX/h54ven7+Q4O0749lLyGYOaGsOP/dhLmNM3aSVuSy09dZbV1ye8POQzpyXkw6IfQ+vKpc1kV3CSRx08J/fn2KujxSpLNEOuGwmEgJCQAgIASEgBISAEBACQqB3IiDGpt5Z7g3nmo14Iw628iQznX766bmHu+avM002R5GGkSUOEPbee+/U2ku84Ta1SX1g04ub1VlCPQkqb7hhyo+bWa0kNuotDRyi77nnniGrEoVDCcRCcygNsUHiGS9amZ5qYZXFC6lFRpQXqjGyBDPAD3/4wySv5Nc2hzoLJ275mpQBK49sGpGShFqsIqIesdk1cuTIRPVc1h1qbdjIN/KbWWZXzTSmJW46G3OV4WT+7B0MTznllMSaG4SN3rzjRqGRbcbZ+/Q0W1UfbKMUnGwDL3swymGY3ar/1a9+lWSbNusl4ZTBwm/m5THzwGBkEr6K4qlVTvQfRsccc0zuITH9DDfnra+Dea9VhGQII9TJ3XvvvfaammyicphHWcAA5A8hzRHqBiyvHBQbw0LeoS/MRzCE8fMqGy2sInOFFVZIP5122mkpI4VZwljh1QOZPSZSRWj7/DhsyWNa5HCEPEIcTqBOqKOJPsBwY6wjfeDHbehTTz016WdhPChDqEYygvGo1TRgwIBEwgjhgh/SNgxHHxcSvVCtRD3mkDQ7nnq3/tkfJPuxyrvxzzCoGnnmabObnqavUxykZDHgYNm3SQ42xo8f3y7JtFVrY/SB6667bjs3ZSw8hkiLyWMW5KBy9dVXT8qTw2ckmUDZsRqmyGw+6TvtQCkvnWXnuWXmRGX7ilplnJffZuzKlNHKK6+cqp/j4JN+mgsRnj777LOA6inrF2m3Rl4l1e67756oUbVvZjJu0E8bVZubmZus6dcF9Bl54zD9JX1LHsEUZP0+TAZ5DPGeSbbeduQPr22u5+OHgdMzJ/lvHIJbmmBazSOYCYyYr3YGlZmLlB0Dsn0G660s1Zrfl2nzxEVfZsTa2jPLmz1Mnocddpi9dimzTJ30GWGuaUTbNvL2Zteo2cx+QJl62Wj6Wu2+VeuhWukqW/erhV+mv2KcMfrDH/5gj6nJPACJd81QrXG2Fes3ny7mnlkGKuY1zG9goodYf9o+hfebfe7I8iIuL0GRNLf64h9SuyyfhJ/HPHX++ecnkpyyee+sd9Y9dsnBq8fOjqemKo99G2PW8ozbpLcrzMtZt3omctpNEfN0qzGmPnnG8hNOOCFh/uKC43XXXZfsxYJr3jqh1WlReEJACAgBISAEhIAQEAJCQAh0TQSkiq5rlkuXS1Xfvn2TxbrdckMixlFHHRXQG88Gwz/+8Y/A5mFXItQrsCHMwQgbBKjqMok2pHPHHXesULWAJAvywEKZA1J0u3MQzWYD4qHZROHAknCM9t13X3tsiYkqFKQX2aYHhzQcgCCBB6w5YAFr29Ai0uOOO64lcTcaSFm8UGNDeZiUHKRi3Hrrrck7jFqU3ZVXXpkmiwNJk6jQWTjB+APebAhClAdMSJQHhyJI5uB7duMxTXR8oI5wgAfBpMVmHwftqNpB8gTq6OyQirrmVa4knmr8cXDmVZLAsLDKKqtU+ILphs1PX2+M2anCYY0Xz7xDW0B6GQdRSjoAAEAASURBVO2LjXR/KFwjmJZ/blV9sHL2CcxuNlInOPg36WG4zUrI8v4bffaHnBzQUmbcSETtCoyZSDjK29D18dQqJ74j1cQOjbgtzwYrN3ppl9RRGFUtHvqeVt6KpM1zUEfdh9Zff/2EWRMmPVTToaLHjyf7779/7q19DjbJA321jU2El8eIAuMGtz4h8mr9TmJR5c8zVNFOORzmYJjyoGyoB9Z+s8EgcYR4jUmGesLhKe0f9Xv05171nJVHNpxWvyOFipu4xsjHxrptrvu4YA6GmaUZos4YEQYY0b5oT61ixD3ppJOScGG2If0whcKwyRhOPWI88RKGmBPUw8xJWLZZzkGVP7y1PGVN6pMdjNM3Hn/88YH62RXIq+NirKIMGE+RPkV9hjiEoV0w96FeM8fDDWMJqvZgiPJzHw4MTY1vq/II4woSCpgDkQ4OiEgDfSLSguj/UN1oxOGeqeugXKnTxijA3AE1GrQ5xiYki9Qaq8vOc8vMicr2FfWUseFWxmxFGSFhlHpIneIQGiYC6iKMOcwJjekH5jnK32j77bdPpCRZX8/ch3ZHHYZBPDtuMPeqp+1a+GaSR1TIMN+DiId+hXiQEAADqI0l5seb9Ks23yIvjJ307dRNGLdgCvdzNq+mxoeTfWbOZlKiYNhibGH+hfQo5qIwpRYRzND0SdBFF12U4MU6A8ZdmH7pJz1DppfuURRmK+zLzkXKjAGtmN+XafPgx1h8xhlnhH322SeBE5P6RbkiqYi6Qr/cValMnfR5om1Ym7H2zdjrGcu9+0afG90PKFsvG01fK923aj1UK01l63618Mv0VzYHIHzmEow1jCPsA7GnQz+YxwRfLT32rdY424r1m8WFSdptjGROhqp6xkg/X6+3f+jI8iKt1DvarM2dWSfDCI0d4zTfyxJjJf0lxPxul112ScZlGFBhuLExu2w8ZfwzrlofRjjg4Jm+sLO1F89Gvu6YXVeYl5N+GJpsr5FLB6y56K87mljLs9ds62TGRn6emCfSX1j6/Dc9CwEhIASEgBAQAkJACAgBIdDDEYjSBtr06/kYRHHIbbEqJ7+DDz64sMzjhknqLkp1qHAXmTDa4gIy/W7heTMe7KXf4yFT6r+e+OOGU+o3bu6mfn39jJs6qZuoQqfCTTzASL5Fxo62uJmVuvPps+e4QdQWJRJU+Ld4osjnqn4tjHgoU+G/njxaHLXMeEBRVxriAr8iDRZuZBBI/Rfl09zmmfEwMPUfJSLkxmH+msXL/EemhDQuwzZrxoPYtqjSo106yuDUSB7j7dGqaYyH+G1Rek/qhnZk+YsHYW3x4C79ls2bvVN/44Zg6s/81zKjZJ026ryFExn2csOIzCGpG9zGW6u57qyNx02rdt+pS/HGZEU4hBUl1qRufTuslvZq8RT5o0+xfEbGmzROc1+mPlgYvl6QxihJo108Ph2kx5e3hVPLpD5bXuKme0UcRx55ZPrN3HiTNMZN0NQNdcDHV0854T7egEzD8OH7Z8o7MvNVhB+lq6X+IgNSxTefjp///Oepu8iwUOEOXCNDVfrdx+mfCSObPx9Htv+JErYq4jG3Vt8Iu6jum9usST/r05R9ps7Hg8jUjQ8/Mom1WZvI+vPvcbO4zfe1UbJUGl6UGlKRJ19HvZ9suhnnLI7sN96pt3lpiwxCbeAaD09S/1ESSEUa8sLzdt6vpQHTzwssbvov7zf7bGWX1yeNGzeuDXsfR95zPCCoGoePM0rZS8OLzHd1+6PuWdzxpnHqL6rTSu2z7cDHW+3Z14conSoNu5of/435kqXNTPD3biKzRsVYYu6yZjxoqPDnw8h7bmRuRFsnf9k4s+/MceLhZLt0RAaNqn6pS75fisxOFWGUmeda3rN9Ujbt9p6dQzbbV1i89ZSxuc2anVlGtAHDoMhk3Hn44YcryoY0Rya7Nt+vFfmnDmXnvo3kEb+14onSddJ80Gd6TCNjVF1tKUpMzJ1j+LDsmTT5PiYv71GSVJom5gjmF9N/y/OLHX1xtTHdh8dzvZhWW1sSTrNzEfyWHQPKzO8Nj2bbvPlnjC8qE+yZ1/txP6oJrihbCydr1lM+ZdbeZeukT29Uy1uBQWSsriuPPgx79nOLMvsBZeqlpSVrdnSZWHxl1kO+rlWbYxJX2bpv6c2aZfqryAhRUZeybYv2Zuvm7DzIz9cik3e7OlhrnC2zfvNrS+as7C1k0+7f4wWVdunzYeStkzuqvCi/s846Kze9tiaqtu715e/nu379E6UK1pzvR6bhNA2UhQ/XsMuO197NO++8k/pvZq7t2zfxscflw7dn66Nww1zD7LNmmXl5vWt1ysewiYxM7dLCvNyvcUl7lHycuCsqK/JhYZbBm70C+mFbB1qYmLTFKNm9LV60SONqZj8mi7neO/9cJF5+alfvVA6dXw7CXJirDqgOqA6oDqgOqA50tzpQ/vpMXFmIuj4C3NSqh6rdwEeSx7/+9a+AVI24IVQRXNxAT27wILY4j+qN3/xyOz+PuFFvVJRWbuUhyj4ubhMpR+beTL5dddVVhdIUkPZgkp7Mjzfxj8qG7I3mRvPow8w+77XXXiFuPhVKguGm9tNPP52qZsv6L5uWRm7WNYuXpRlpRkiPiRs7ZpWacfMkoO6L8pprrrlSe3sog1MjeeSGGqLxvRQSS8N+++2XSINAgouRv51HXeYmPFJbyE+WCDMetCY3/Lyknay7ondudaOSx8ikfdm7mV7yEBITiqSm+DZmfs1EAgm3IpHAku0DzA3pgWiH1QiJNY2Sr9ceYwunTH2wMLgpb8Tt0DwJL15VDW5N9Lz5q8f09S/b3yHN6IILLsitb0h6QOICYvmLqJ5ywi9qEhHdz43aLFG+3JREqtBCCy1U8dnKuMIy5yWbL+8EXOMmeCK1KW5Y+k/JM3WUfgFVedXi49auqSfAYzyUaBcWque4+QxVq/vtPP7PAqkEl19+eeI362a33XZLVBIV1WdueKNqLzIU595wjRu+idQn+hffpqrl2dedbHr8e602SF3n5i0SupBuRNtGOg/pNalHFl5eO7BveSYSWJBqgvSTIrI81kpnEbaES7+LpBavvsbHx81o0nHooYd666rPXnKJV0lT1VP86CVuIR3IqFqfam5qmYZVLXdF3+MhZ6Iy0dexrFskiSEJwCRPZb8zhiBlh7rcCPl+u5Y/8knfx7if1y8wXtL/IaUgbwxAkk3RWI2UTuo20haLqMw818Jsdk7UbF9h8dZTxuY2a3ZmGa200kqJhKF4aJhNRtKXMyekX8qbLyGhyyQe5dUPxjJURKM+JSsxrZE84pd5J3PtLFEHkRqwS5QWYe0pux5ByhPSQZg7mhsLh3ekFDLHZ+5Xb99KmhiHUDeXzTtjIFKXkG5YRKhMpf7nzVcIj7QiWc/PJ4vCMvt6Mc3iY/7NbHYugv+yY0CZ+b2lv9k2b/6RPHXEEUfk1hUkd6Kizvd39Y4H9ZaPpaNozubHMF+WZeukxYuJRDZPzaiR9P55LrsfUKZeZtNi7x1dJhZPmfVQvXNM4ipb9y29WbNMf4WEriOPPDJ3bYOk2MjwkY0uffd1PbV0D7XG2bLrN4uKsQ41zibNzewxGYPo771EQ/vu65fvM+x7R5UX4TNe0l/5NZnFi+nrVVFfg7u8dGOPlCAkh5Lv7LjK2o5vedKQ8Fsv1Sr/WuEgZc6nrSg9fv5TTSJymXl5q8YJwkE9OfhDzBOQsg7VG0fiOOevFt7Mj+iHkZaOml+kaTKPicxY4cILL0ykn3t1v/XOp3KSIishIASEgBAQAkJACAgBISAEuhkCM8CJ1c3SrOR2AQS+/PLLRI1WvEmTqC5Cr3xXpXj7KlGpxEYJB1rZw45q6UbtBOqYUB/Bxj8bTX7TqJrfVn1DZDppQLUOOC+wwAI1mUZaFXej4ZTFK95CTkSts9HBBkojZdUZOKHyg80UfmyYoxqv1qZMFsPY5yZthzZEHqsd2mf9dqV3VL98+OGHiRoUmM7Kbm61Om+dUR9anea88MAY1VBslNJ/NYpzveVk/ST92/zzzx/mnXfevOR0iB1tAcYj0kA/DYNfvfmMN0mTMYjyBiNUNWQZZTgkZ9MbgjEMsfrN0sSJExNVSaQPRoRsXLXCZQP25ZdfTsYR1NA02n/UCr+e76htoF5AMK35wwbvH7VHe++9d2LFQRAq+JohyogxlP4TVZsdtfFM2TBW0mbmmGOOZMPbH8I2k/ae6IdxmvKn7haNscztUFEFUyAHUBxUDRw4sFPhQNUpYy39Av0S7c0fGFVLTFtbW4jSAUKUKJLUN/zaQRqqK02NMAxoRYdKrZjnlpkTlekr6injavjV+61MGREHeaTPpu0yvhUxXOelh/KhfhjTKnNjxq1W9y/0XzB80iZoB82MjaSR9kT+UEPcijTSj1PHGa/5NRImfXGUdBTef//9ZAxoJk95ZdIKuzJzkTJjQCvm9+S/TJunX6Y90O9SJtS3ovG5FVi3OowyddLP02C65nJSq8nqVjP7AeZ3esyRy+LQWeuhMnW/Wh7L9Fe0Jebc9L3Md+tdW1RLj32rNc6WXb9ZPOwbwNhB/wYjZ6P9vYWTNTuqvIiHtLJvRXvpiD1C6kSU1pOMy5RrI3OHLA7d5b0rzMs7Cyvmd6znINbJpnY6L35UHpoawigxK/eiZJ4/2XUdBLgwjNpwkRAQAkJACAgBISAEhIAQaAQBMTY1gpbcCgEhIASEgBAQAl0Ggai+JGFWIkHcIEXqQZaQ/IR0DYibnquttlrWSa96RxLC1VdfneQZiSFIxcoSB5TgZEwDSHNaZ511ss70LgS6HQL1MjZ1u4wpwUJACAiBbogAjKhIBESKGYRUDqSeiYSAEBACQqD3IQBjHIy9MGVCSNBEY0CWkMjrpUxG1Zl1X4DIhqX36YeAGJumH/aKWQgIASEgBISAEBAC3RmBqTqDunMOlHYhIASEgBAQAkKg1yAA0w23sFFBhgQmozyVDXx77rnnEidIe8lTeWn+e4t5wAEHpIxNJ554YiIRDKYlVCiwmcyNVyQ02YYy6vLy1Bf1FryUTyEgBISAEBACQqB1CMDMhNQwpHKgOtKYmtZYYw0xNbUOZoUkBISAEOh2CCBhFbXXqJWEttpqq0SCMOtRVDEi4R0GWC4qGCGNuV6pruZHphAQAkJACAgBISAEhIAQEALdFwExNnXfslPKhYAQEAJCQAj0OgR23nnn9BDMMn/88ccnas7s3ZvPPPNM8rrZZpu1VA2Fj6M7PY8cOTIceOCBCfMS6b7iiiuSX14euCF7wQUXNKTmKC8c2QkBISAEhIAQEAJCAARQY4k63iwdd9xxWSu9CwEhIASEQC9DYI899gh33nlnuPXWW5Ocn3nmmYUI/OpXvwqHHXZY4Xd9EAJCQAgIASEgBISAEBACQqDnIdCn52VJORICQkAICAEhIAR6AwLczjz33HPD/vvvX5jdp59+OvnmxdUXOu4lH4499thw++23B26/5hGSrY488siE4WngwIF5TmQnBLo9ArPMMku3z4MyIASEgBDo7ggsuuii4b777gtrr712d8+K0i8EhIAQEAIlEWDtef3114ezzz47MD7k0brrrptI/EOyU58+OtbIw0h2QkAICAEhIASEgBAQAkKgpyIww+TJk9t6auaULyEgBISAEBACQqBnITBmzJhETdqQIUMCvxlmmKFqBpEMAM0444w13VYNqId+BJ+xY8cmKmEGDRoUllpqqdCvX78emltlq7cjQH2Pa58EhgEDBvR2OJR/ISAEhECnI4Aquoceeij07ds3LLLIIoG5h0gICAEhIASEQB4CEyZMCC+88EJ4//33w9ChQ8OwYcPEzJQHVDe0Gz16dLL30A2TriQLASEgBISAEBACQkAITEcExNg0HcFX1EJACAgBISAEhIAQEAJCQAgIASEgBISAEBACQkAICAEhIASEgBDoDQiIsak3lLLyKASEgBAQAkJACAiB1iMgma2tx1QhCgEhIASEgBAQAkJACAgBISAEhIAQEAJCQAgIASEgBISAEBACQkAICAEhIASEgBAQAkJACAgBIVASATE2lQRQ3oWAEBACQkAICAEhIASEgBAQAkJACAgBISAEhIAQEAJCQAgIASEgBISAEBACQkAICAEhIASEgBBoPQJibGo9pgpRCAgBISAEhIAQEAJCQAgIASEgBISAEBACQkAICAEhIASEgBAQAkJACAgBISAEhIAQEAJCQAgIgZIIiLGpJIDyLgSEgBAQAkJACAgBISAEhIAQEAJCQAgIASEgBISAEBACQkAICAEhIASEgBAQAkJACAgBISAEhEDrERBjU+sxVYhCQAgIASEgBISAEBACQkAICAEhIASEgBAQAkJACAgBISAEhIAQEAJCQAgIASEgBISAEBACQkAIlERAjE0lAZR3ISAEhIAQEAJCQAgIASEgBISAEBACQkAICAEhIASEgBAQAkJACAgBISAEhIAQEAJCQAgIASEgBFqPgBibWo+pQhQCQkAICAEhIASEgBAQAkJACAgBISAEhIAQEAJCQAgIASEgBISAEBACQkAICAEhIASEgBAQAkKgJAJibCoJoLwLASEgBISAEBACQkAICAEhIASEgBAQAkJACAgBISAEhIAQEAJCQAgIASEgBISAEBACQkAICAEh0HoExNjUekwVohAQAkJACAgBISAEhIAQEAJCQAgIASEgBISAEBACQkAICAEhIASEgBAQAkJACAgBISAEhIAQEAIlEZhh8uTJbSXDkHchIASEgBAQAkJACAgBISAEhIAQEAJCQAgIASEgBISAEBACQkAICAEhIASEgBAQAkJACAgBISAEhEBLEZDEppbCqcCEgBAQAkJACAgBISAEhIAQEAJCQAgIASEgBISAEBACQkAICAEhIASEgBAQAkJACAgBISAEhIAQaAUCM7UiEIXRexEYM2ZMuOCCC8KIESPC9ttvH2aaqbEq9eCDD4bRo0cnAG622WZh0KBB0wXM22+/Pbz++utJ3OSjb9++0yUdnRXpddddF8aPH5/kk/x2N3r66afDI488kiR7/fXXDwsuuGCnZ6G31ZlOB7gHR/jee++FG2+8McnhMsssE1ZZZZUenNvGstbW1haeeeaZ8PjjjwfGF/riHXfcMSyyyCKNBSTXQkAIFCIwadKkcPnllyffF1poobDeeusVus378MUXX4TLLrssjBo1Kuyyyy5h+PDhec4atiubroYj7AEexo0bF/79738nOVl11VXD0ksv3XCump1TdZU5fFGGu/tctyhfXcFeY3VXKAWlQQh0LALqQzsW3+4SeivmGd0lr70hnWrXvaGUlUchIASEgBAQAkJACAgBIdCzEZAqup5dvh2auylTpoTll18+PPfcc0k8l1xySdhmm20aivPggw8OJ598cuIHRpXllluuIf+tcky6r7322iS4d999N8wxxxytCrpLhgMjxZNPPhlmn332AJNFd6Mzzjgj7L///kmyr7nmmrDJJpt0ehZ6W53pdIBzIrzwwgvDTTfdFK644opwxx13hLXXXjvHVaXVUUcdFd56661Ky/+99evXL8w///yBg/0VVlih0/qfxx57LKy++upJKg466KBw9NFH56avp1nCCHHXXXcl2aLvHzp0aEUWOSg98MADwx/+8IcK++nVxisS0cEvMAjDJAD96le/CvPNN18Hx6jgezMC77//ftL3gQFjGfO3RujKK68MO+ywQ+JlySWXDE899VSYYYYZGgki123ZdOUG2sMtr7/++rD11lsnuTz99NPDHnvs0XCOm51TdZU5fFGGu/tctyhf09u+N4/V0xt7xS8EOhMB9aGdiXbXjasV84yum7velzK1695X5sqxEBACQkAICAEhIASEgBDoaQg0Jl6np+Ve+SmFADfrjamJgF588cWK8CZMmBBuueWWwAb4EksskTBBVTjQixAQAkKgTgQ+//zzhJnt448/TnycdNJJdTE2/fGPfwxvv/12XbEg7eLHP/5xemBfl6cu5uiVV14JDz/8cJKqNddcMwwZMqTLpJDxAOY0aPfdd2/H2HT22We3Y2qCeXbAgAFdJg8dlZCrrroqcHAAHXLIIR0VjcIVAi1BwM/3mAdOnDgxzDLLLC0JW4EIgZ6EQL1rIS53jB07Nsn65ptv3qUlx/bmsbon1U3lRQgIASEgBKYi0IoxuBVhlC2PrpCGsnmQfyEgBISAEBACQkAICAEhIASEQC0ExNhUCyF9L0SAQ6xTTz01HH744QnT0k477VTh9v777w/bbbddYvezn/1MjE0V6OhFCAiBRhC47bbbgjE14Q8Ja0hiGjx4cCPBVHX70EMPJWqVYMBBatCss85a1X1X/IjkH6RUQTDLdCXGplp43XrrramTY445Juy1115httlmS+168oNnCpl55pl7claVtx6AAPM9GPGQ/IjEOV9/e0D2lAUh0DIE6l0LHXDAAeE///lPEi9zm+mlmruejPfmsboefORGCAgBISAEuhcCrRiDWxFGWdS6QhrK5kH+hYAQEAJCQAgIASEgBISAEBACtRDoU8uBvguBaghw8IzqtjvvvLNbHaBXy5O+CQEh0PUQ+Otf/9ouUf/4xz/a2VWzmDx5cvA/1B49/fTT4ayzzqpgvPzb3/4Wdtxxx0TaXLXw9K21CDzwwANpgHvvvXevYWoi014qlRib0mqghy6KAAyTzPuY/zEPFAkBIdB7EOjNY3XvKWXlVAgIASEgBISAEBACQkAICAEhIASEgBAQAkJACHQ9BMTY1PXKpNulaIYZZuh2aVaChYAQ6D4IfPDBB+Gyyy5LErzGGmuE2WefPXn+y1/+UioTSANCTeZuu+0WHnzwwfDLX/4yDe+GG24I5513Xvquh45HwFQGUsbdUVpWGYS8ZCoxNpVBUn47EwHN/zoTbcUlBLoGAr15rO4aJaBUCAEhIASEgBAQAkJACAgBISAEhIAQEAJCQAgIgd6JgFTR9YJyR9f6Y489luT061//elhooYXa5fq+++4LzzzzTGK/1VZbhbnmmqudG1RBjR07Nsw000zh//7v/xLz3//+d3jhhRdy7Sw8AiL+888/PwlzkUUWCRtuuGG78LH44osvwlNPPRVIz3//+9+w6KKLBg65V1999VJqGT777LPwz3/+Mzz++OPhjTfeCKRhpZVWCt/61rdC3759c9OSZ4maCKQUgAOSX8ByhRVWCJtvvnk7VSyoaUGdBPS9730vNx7SBNNGv379QlaVn8WPpBriWmCBBcImm2ySWKNu6ssvvwzDhg0LG2ywQRg/fnzgBjW4kTaYNUjXpptuGmaccUYLqmGzkfxmA3/11VcTZpFRo0aFMWPGJGldccUVE8k4w4cPzzqveG9rawuouiD+l156KamPI0aMCN/+9rdz62aFZ/dCvKgsI4xPPvkkDB06NKyyyiphs802yy0P5zW0qs74MP2zhY8qn9deey1JG/jQ/qgP//rXv8K4ceMSL9QN7CDcw4QDbb311mHgwIHh2WefTcqe8ofpZ+mllw60ddpPLWqmjLP175133gl33313uDO2DcqOurfttttWtNnRo0eHm266KZGQhNoi2vSaa64ZFltssVpJTFSqmaMf/vCHAdUu5557bnj00UeT/mK55Zazz02bffr0SRibaGvHH398Es7BBx8cdt555xT7RgKn3lP3XnzxxcDhP/WX9rvUUkvVFQx9IflEohR94qRJkwL1A2wxjbnLArvkkkuSOvvwww+bVUCl3ptvvpm8048uu+yy6TcePvzww6TeEAc/wvzKV76StNHll18+6dcrPHTACzh56Q9EQVpsvKBcdthhh9C/f//C2F9//fWkbuHA95N5HsADpjVomWWWCSNHjqxwRn9Mv0x9ZayYc845w8ILL5z08bSrPKIN0QYh2mSRCiFr0zAuffe73w3kzcir8mKM9ZRt8zB9oTbxjjvuCODHGLD77rt7L0mf22zfVxFQfJkwYUL4+9//nljbmJN1w/t7770Xrr766uRTtr5l+4xmxyzKhDpO23/uueeSsY56TXx5c5uyZdMM9uBw5ZVXJukjvUg3ou4wfhXVjTw8p0yZEox5c5555knmK1l3EydODBdffHFiXTS3QjIdaimhlVdeOZn7JC+ZP6Qv0RbvvffepCxt7kU7yc4jPvroo3DFFVckIVQLM9ueFl988aSPYf5Fu6qHGklXUXidhWU2v53VfxTl2+xbNaey8KqZzP1vvvnmdE3BPGTLLbdM+ttq/vhWZs5WK2z7Tr/JXIm4KB/mo9/5znfCvPPOa04KzUbSZ+ujamuh1VZbLW1H9BVGzPuNubdoTUb4zLtefvnlZCyhPTEWrLXWWhZMhdlMX+YDaHasbsUckzGe+SV5Zo7229/+tqqUYL/+Yr5fTWUx8wHmBczTtt9++wrpieS/0fR3xHjZaP4t3WXnJYTDXJTxlvUz+wnMWxhzmXczf8rOV/DjqZE24/3V80w7pj2z7oUYi5jDkjYvBTMbVqPza+8fldjMv9jXeOKJJ5J+g/hs7uzd5j032m7zwqjXjn6Y9SVzTubR1HHGeNLAHJd5J/sFrNfy5k/1xsP65JprrknqyCuvvJL0q8wV6btqrfF6Slk007+WmSuWXb9l5yrNzM3YW6EN0kdSx+gPGNPqndsV1S/2FalPtGvmf6zrqKfUp/nmmy/XG3NuMCEd7FEW0YUXXpj0aewHbbzxxsHPZRsdgy2OMmE0Or5YnFmzTBoIi3GLtdU999yTzI3Ya2CPhrm6X59m4+W9I/v4vPhkJwSEgBAQAkJACAgBISAEhIAQSBCIG4Rt+vVsDOKBZFss7OR34okn5pZ33AhP3cSDtFw38XAicRMPv9viAjhxEw/9U39xgyOx+/73v5/aWbzejAfmafj7779/6jYyMrXFw4/03fvhOR62pf4aqbNxod4WN0Jyw11yySXb4qZM2xZbbJF+j5so7eKJB+1tcdMydZNNG5hExoIKf1GVUuqeOLJpjoeN6XfCixsD7dzETZ3UDdhYGBb/qquu2hY3m9uI3+y8SbnGw9/Un/mnDHCHP7PzZjP5Nf/xoLXt5JNPzk2Ppe2ggw5qw5358Sb4ky9z603SS/304cfNr3bhEHaUwpMbBuFRH+ImZDt/lo5W1BkLK8+MDCuFZUadpC0U1cnf//73ab7I+49+9KP03WPF86mnnlqYxzJlbPFQTtRte/cmGMdDt7a44d1Geftv/jluRham0bDz/VNkFmyLDDtpeD//+c+r+vdt38KrZsaN0Tbr60hnZA6pGn5eWHvuuWeaPp9Xnn/6059WYAY22TDiQWibz3M2jAUXXLBd/fX5zLrn/cADD6yI58YbbyzsF3G/0UYbteX1hdm0NvLuxwvqOH5PP/30QqwsH/Rx1eKJh5JpGPQRkYmx0P1xxx2Xuj366KNTd9TTo446Kv1mcXuTNkn9y6Zl3333Tf1V61e22Wab1F02nCgtLPmW1yf7Nh8ZVJKy8emKTFJpmsr2fdm88R4ZLNN0+7iybuk3LV3Z+mb2zY5ZxEXfb+HkmWeeeWaKg6WtbNk0gj1xnn322VXTmJ0nWDqLTMYDy6vNu7zbeHCZfqdf8N/smTgtDBsTfJuhXsaDztSNuTVzu+22a4uMuBVhxwPz1D1jkMXlzT/96U+pGwvLm/vtt186lzR/ZdNl4eSZHYUlcU3P/iMyYqY4059m896KOVU2THvPzuF/8pOfpGnxZc0zbdH8Zc2O6LeIw891I7N9W2T4LkzfRRdd1NL01bMWiswFhekx/Chfj1c8fC2cI+Nn3XXXbYuH1hV+8N9oX+bj5LnRsbpVc0w/3zNMIkNJu/z59Po55+9+97tCt/EwuAL/yHCbum02/a0eL5vJP1iUHfsIgzaz/vrrV2BkZYD51a9+tS0y76eY+TLoqDZNHMyfIuNtYbqYD9sc06eJ52bm1xZGZApqY5z1GPhn1v2+Dpk/zGbbrQ+j0We/jqReMn/z6fXP9A954fs+NO87ezPV1h/ZuaAPoyeVRaP9a5m5Ytn1WzNzs+w8g/1EX3/8c948xJd70XNk9KpaR4njkEMOaTcfJTyb3+WtoXx8fCcc24tsZgz24fHcTBjNji/ZuO290TT4dk0/7/c9fFmCa2Ssze0bOrKPt3zJ7NlnFCpfla/qgOqA6oDqgOqA6oDqgOpAmTowTVxAXMWIeiYCcZM7zRg3XrPErS1uDBkh5SNL3GLiZhbE7ddqNzRRqRM3DtpJFDG7PGlQhBsP/FNpD7iNG2VYp4S0k7gRkL7X8xAPdBIpB6Y2IesHiQ/cJOfGcxERJ5ILuLHqiTQacYOT25DnnHOOWSU3wewFCQhZ4laUJ26dZsmXyze/+c3s5+TGJTfOiB+KG64VbvCPJA9u69dLzebXwv/Zz34W4mGXvSYmN/Y9XieccELYa6+9KtzwghSqH/zgB8ltWP/R/JLPeFgUuI1djY444oh2asQsDPxRH5DWhaShLLWizmTD9O9IsiJuKzP/jWfqJBLAcFeLkCjk61y2zcSD4+RmbjacsmVs4XEzl/ZjlMUYqTSReSRQ3kbZNMZD9eTGp33Pms8//3zaPxEXEk/iYUraPyAJhhu/rSJuJiJhzQipN43QKaecEuKGdYUXjwvfqZ9FBKZISPFtH/++bXMDOzI+JdK7LBwkEvh4sOfdfv72OhKJ6E98v0i5+LJBYlo80CqspxZvWZPbtZZGH5bZYWalxXh3PDOmcOMcol1xG72ILr300vQT0hmM9tlnnwpVhNgTtyfqAjdYGTNbTSaRqtbNWNQlUjZFVKbvKwqzlfZx8z0ZG63/8/WaeIrGrHholPT9lhbGFD+3wT4eKqbS1sxdK81a2CORLjI1VkSZrUPME7jhXi8xVhghHSJLSNI0ol/g5nSWkOpihESXLDEeMOYYZcsENaCMJY0QYzTS9TxlsYhMVskNfG6K51Gr09WRWE7v/iMPP+xaNacqCt/bH3744eG0005LrbLl/Yc//CFE5sP0u3/o6H6L/ob5iF/fZNPHuG/SMH3aeG4mffWshRjbSEc2LWaHadI6SQeSUZAuhcSYImL8Y55M2RdRrb4sz18jY3Ur55jMERsl+lkjkzZo7968/fbb01dUEts8qVXpTwNv8oH5YDP5bzK6Cm+shZCA5NemzDvjQXfqjnUsEkSRwJilZtpMNoy8d6TdgklW0qd3y9wWqbDZtWKz82vCJq/sBTDOQrRN5iB+3kz/ZnPRxNH//lrVbn2YjT4zN/FtIdvn/H97ZwKvx3T+8RNEIiELCUESEsS+NaSWKkFLadVWpaJatJaqpSiqtS9FW7XVUvu+/Gsvse9bEWLfBUGIiCCySfKf77meuc87d97lvsvNTfI7n8/7zpkzZ5vvOXPmzJxnnicRQEq1mVaaNzzRUuqfJbL5MnfjXp91c3JblBtfa5kr1vr8Vo+5GRqCk4+K0ibNzhl///vfB/+slUYs4WEeuNFGGxX0UaJn+1PycUrBM3qJLCs61Np7cF6mrc2jEfeX1tbBzoO5EZqw7B0v45lnzjsp3vuiESrrGjXGZ8vRvgiIgAiIgAiIgAiIgAiIgAjkEZBgUx6VOSxskUUWiS/jOC1eaGSFAPyiF3FYvM3G8QtxZg6NuHnuH//4RzRjcv3116eHEXZB5TY/zPHkORY0UeXOC3tekiHYwUIeYTgevostiuTlN23atChsZC8hERbg/HkBO3HixPiyFnNdlIUK8TwHBwSDbBE2+cIpzYN0yReh0VSVpU2+kE0XFjfYYAMLzl1o9wuSRORFV9b5tslbkKRe1IOXaKjs5sVE8gVVasaJ/Fjk8Is52TL8fi3nSz4IwLF4ZQ4zOtSPxWxekqMq3NzFF1/cQkDghBNOiP3P4iC0QvvRb1D7b4urpRb2SWOmxHg5c8MNN8SyEWJCzXbyBWvMHlYsEMHLXD36jOWVt6XfIZwDE1yivSS2DS+MeKlHe1M/jmcF6fLyw8QJC/ykI2+uGc4r0baTRj/88MNTP55a29hnRj35nXfeebEtaScY20tO2i7RghOTYFoFNfHUkcV3rkdz2cUHC2frX8SbenkEK3feeecYjfL9wotPW60fE47mMCVXqWNsSzQFpNGPPPLIaI4HLlyfNn6Vuh6TL13T9AgWMQbSd2lXW0QgAte+ZwN3ymEsMJdooEjHXQtHyBFhM3MIISLYSbvwY/y1hSvGxTyhTEtbj+2uu+6a1tHyY/GMc7FfOdOVpPOmPM1EluVnW9rSrisWpDDdhbvtttuiaUOLx8taXjxTPmManO1FL+2QfDFsUeu2ZSxAOCIrGJMtgDbhxTMLC5wPi3zWZ2oZ+7LlNGq/mnsWZsQSLX1plWhf7ilcb4x7sDCHECWLiI1wpdhzzAvOJFpC4jVPH8KsBkIf5hAioh9V4vx9P+9azApeZucVlGFzLsblPFOY3EdoFxYfTYid+5HdR8kDAVqbS7FfyrHgzGKnOQRw4QMLxhruF7YYzFhY7Hqtd70axbI9jB/GOrutx5wqm2exfbuvIdjL/Y72Zhy1ew/p+IAhe79uq3ELwQTmSywMU7dE60sUVvCCI/RbrgHvqq1fJc9CmOyhLvy475lDoNvC+XgBx70b4U37KIJ7BvN7xkCuX4R0OD8cJkH9mBMD3V+pscxFK/BWeq+u9xyTc+M5jHkuc2W4YJaolMNUmj07MqehP+Y5ng/M2fyynvW3vKvdMr+t5vyrLc+nw0Qf5eOYE2Ouj4+jMEkITz4wwFE/fw8mrNprhrSlHMJ6u+22W3oNMFfFzCrC5lwH3P/s2YB8eCanPc3ZXIn91syvic/zrLkjjjgijh/cWzEZzvzb5og8n3J9mavndWt5VrPlOYs60laMfTyTU+9E42KaHcKdecLRaQTn4XnOnlcJRpgSc4XkS/4885lDCCb7nDcnt0Wp8ZVj1c4Va31+q9fcjPd19CXmn/QD5rO0uY2htDvPv61xRx99dMF1w/Mrz6SM98z3/XyUOaOZYG5NGXlxW3MPzktPWGvyaNT9pTV1yJ4H90g+KuTaN+aYArQxjefm7DvKRo3x2bppXwREQAREQAREQAREQAREQASKEqhF3ZPSzj7qwpIXBqjsib+sevY999wzPWZxkpcWBWqHkwXXNE7yQjM95k0LJS820nD6RvIQnKZJBJsKjlnf8WYskhfyM5OFsxbxkpdAaT6mOtrSl9p6Ey3Jw/lMTKdk4ycCAy3ULycv5dJ4mPoyJuSRvFxJj1leyQJggap+eNqxZPE8pict8SycLedreds2eTFbEAcV0Bxj69NafLbF1Lwni4lp/scee2xBeq+C2udb6/kmiwTR1AfmPlCz7vM2P3Wx+lOehaO+38LZJloi0mMWB3MvWVX6Po/kBVhBHskCWos8KAdzSFZW8rI1jVOPPmN1zdtiRsrKTRZ2Z/pryeJn60d83ye9uvtifTJ5MZWWQ3rfr2ptY+pp58A2z8xHsgBVEOeCCy5IGdt5Yl7M8uE6sXC/Rc15shifxoONHWeMsvTJy9Q03I7bFs4Wz8LKbRmHLE322iuVNlmYTNMVM7uTCDelcSgja4ouEXyL1xAmJJIF1hbn5U1YYh4zW59kETnNn/6WPc4YxvXJj3Edxtk4XDd2/uVM/WXTltr394vsfYh0ViYcS+WTd4w+zvVAHmzzzNElL8bTMi666KK0DD8eYB4rL39/P6MMf7+rh8mXvDItzF/z9Oe8+1CtY5+Vlbetp2kd2LX2noX5F+sbieBBbvuceOKJab/GvImdR61tUwl7yvLXPuYOrXy/9fOoP/3pT7lxfHz8/r7ImOCPJ0JCKRfjkyxAF8RJhCHTOJjItPTe5Btp88Zx4iaLxGl6TJFY+lKm6Pz1lAgkpGksLVvmClZnP47VWi9fRtbfKJb+fGfF+EG7GMtksTjl7c+X49XMqbIMs/t+Dk8ZmLjJxmGfvmd1xLSVxWnkuEUZNte1spOF/LRsqwPmZ+mDFueYY45J49Sjfv7eUexZiLr4MSRZJE7rYPX081PmRYzLdsy2L774Ynof5HyYL9ixSscyi19qa6zy7tX1nmNWOwfB7KbVM298wwydzRngaXOhWutf7/tltedf672P+43xy7tuMEGXfOgU77vMO62/1OOasbyyW57XrE5seT+QjcOzth+T/X2r2vk1eVpfYZt9nqcOiZBHOgdJPuxK61XrdZs9v9bs+zaEF3XJpsfMLO1oXLOmZW0M5bx9Wv+skWh0yWWSfBSQ5ovpQJ9+TmuLSsdXP863dq5Y6/Obvy5aOzfz8wz6Cs/5vj3x89zln9mZz2Xj5O1zv7P+xzYRXMpNlwhLpfF4h+bzsvdl2X7q4+C36zjvfaJvm7x7cDavvP1yedR6f8krMxtWrg7Et+sa3lyLeWNa8kFDypu5npXTyDHeytB29lljUFuprdQH1AfUB9QH1AfUB9QH1AdmVR+QxqbkiW5ucF6DC19aeZe8rIi7fC2VPPBHf1Yjjn2JnTwIh8UXX9wnr5ufLwV79+7dIj80DNiXt3zpljx8t4iTF+DNtpx66qlh4MCBLaJ17949XHbZZS3CLcDYsM/X1/Y1tB1ni/YY/yUnX5HZF6JmPo4vWpMFhzQZmjb4wg3nv1pEA5Q5vn5DBTQONdDFXDENH6iWNsfX35W4Ws8XTRRoL+DHV7V5bu21106D+brTHNoZzCWCKlE1tu3btkOHDlHrjfVTC7et9VP2+bJ9/fXXt0PpFlMTJ510UrqPJihz9egzllfedsSIEWkwJlvyriXq5/tTmiDHg8mDvD6JNgzfZ/ii2FytbWz52NabbbMwzFd45/uihXvNIZ6LHWfLWGVaQhKhmNRMCMcGDx6cnjvXHF+N1st5c5l8pV6J40tyG1uTF7sBdfl5Ds0DaIor5tB0x/WDdjO07WUd5m0wh4HjK0oba7Lxiu3TX+waRQvOPPO0nAbYeGtlFMurPYV37NgxanWgToy3eebovIYr+2IaDTJ8rYqj3RIBmejP/qHtBY1K5rKaciy80dsddtgh7fe+rFrHPp9Xo/2tvWd5U0yJQE1s32wd0Qpp/XqZZZbJHq7LfjH2aHixaz9ZXAl/+MMfcsvzfcv6XG5EF8j9wLRkoi3Dm5fyZpSY4+DQsoEWL3NPPPGEeUuOO4xLec6bayw2Tvt0aPKwc+M+xLwpzzFXQEMU2pwYD5MFsbxo6TWdPdjaepG+ESzb8/hRjzlVlnupfeYcu+66a24U+if9AUf/QPMEri3HLerAM0zWYf4zEXRNg30/b8v6pRUo4kELk7lkET1gfjbr0G6IFkZzPDPluWJjWV7c1obVe46JWaNqnNfE5e/9lhfjKXMFHM8rNheqd/2tvGq31Z5/teVZOjOPy75/NrLjffv2Dckifbzveq1sjbxmvHY/tAP75wirF8/kXM/cW/h5V+382voGedFnGPezbrPNNkvnIImgQHq4ntdtmmkVHrTloaUq6zBh5ce/YuY4s+n8NYU2Wrhn3bbbbptq9kJbEFqRzc3JbVFsfK11rljL81s952Zoa7PnUGtPtszVeX9jzr/jsbC87R133JEGo3HNns/SwG89aKA2bc+8Qyt2f8uma0/77e3+AhuebfOuX695levXXCPHeCtDWxEQAREQAREQAREQAREQAREoR6Dlima5FDo+WxJA0MCEQbwZCBYJTdU8i2cISuC8ymGOVyJgUyuYrDCEz88LJSVfIPtDRf1eYGXIkCFF4/lF/GwknweCFMUcAiosiuN46WmmLLzpE2/Oz9qANuGFuqX1C5V+QdJMUWTLJ72ZU8oeszwJr1Too9bzzdaBfcwCoZoeYS7y9xz8Iq1/QbXuuuvmZRXDEOxIvjrMPe4XpBAKQaAn70ce5nwaf/7V9hnLN2/rBddK9ScWx+16zcvHwkrVcemll7Zo0XyH7fhzLFWHYn3a8mFLPXv27OmDoh8hE6s/L2K7devWIg4LBfaCssXBbwOuvPLK9JBfyCYQITcvVOUXD9JEVXq8YEBe3fOyxdyUuXXWWSe+4LX97NZMeGTD8/ZZAMb8yocffhgYr3m56F8w5qVpbRjCUZjywNQdApj+mvALEa3Nt63j77TTTmmR3sQMgbwENzN0vDi3dsVUkjnajb5bzPnrLW+hr1i6eobnCWuSv2+zasa+etaxVF7V3LNWWGGFdDxBWIPxH8FQzCaYgESpMut1rBh7v3iDcHbePYcw7oPmuA9WWncTbGJugRkgc7a4gECJX0j191gzW0Uabx7X8mDLHAihnzzH4rU5hK3LOV8/eHXu3Llokr333juaKsVcqb8nW4J61svyrDfL9jx+1GNOZdwq2Za6ryEkYQuhXjCgLcctxvdizs9F/PXTlvUrVjcL9/Vi3lVsnLG5F+n82GT5sC02lvk41frrPcfs06dPVVVBkC7RWBPTIkzHwr53fo7g55f1rL8vrxo/c+xqz7+a8nwaf7/ATBHCr5heKyaEamkbec34tin1nMicgfsKP/+Rh9XRtpXOr3le8c/zjGWYeqRflZsj1/O6tXpXs020uBRN1qtXr9QENfPk5GvLonE5wDsFey/EPs8QxcYjPiAzxzNMMTcntUWx8dWPx/WaK1b6/FbPuVmpaw+TaOYwo16J8x/+lbpPI4Tn+7Gff1VSTnuI48ewWt/B1Ot81lhjjdysuHZtPmHvNYnYyDE+tyIKFAEREAEREAEREAEREAEREIEcAi0/r8qJpKDZnwBf4vByjy/sEJ5BoIQXBCZIw4MrD7Ys+lx88cVR+wAL3bw89wI2m2yyScNg+Jch2ULswZpwBBoqcV6IZNllly2ahC/M+IrbLwJZZNMWwz4vmEs5BLMsPsJg/fr1C6uttlp8KcBCDl8Hs5CHM8ExNDqxkI5Gm7PPPrvgy1e/IFnsJVne16pWR75Cb62z+pOumvO18hAyQaMJ52mCc3as2Na/7PGLTHnx6asmHOaPe+069lLbH8/zJ+rU0+B69Jk0sxzPo48+moaW6u/0cV4c2sJ1mijj8YvOmUNFF6rr1caU519YZ8u3/byvAO1YqS2a2S688MI0CmPWvffem+7jMeEU/JdccklAq1M9nO+zxQQHs+X4F7OrrLJK9nDBfp7WCB+BF4h8Qc35+nHAx6nVn5gWCddee21ITFMEr9mj1nxnZXrGBcYOzicxuxQ1wpi2Hy/4NmzYsLSavq3LtZsfl/xL3jSzNvDkCYBQbK1jXxtUPRZRzT2LuQpzF1ugREgNDU38mBtw/+Qr8cSkZe5Xx/U6t2LsfR9Cc1MlGqNMuAPBz3LOL6hyD2FewWJWYpYnJoXL0okgK/dsFhsZNywNC9E4hE6KjddecDxGdn9du3Z1e+W9XviJetbi6lkvq4dxYb8eLH3bt7fxox5zKuNWyXbllVcuGW311VeP80Iicb+k77fluOXH72xFEVxgwZTrlzZFCJHF/rasX7ZO2X0/d0M7TCXOL0D6+MXGMh+nWr+vZy3PEZRfbMyqtG5oEDPtiswB9ttvv5iUDy7QiolDSAVNV+bqWX/Ls9ptredfbbmk+9WvfhXQpGLPq2g3Ng3HCBejlQaBsKzm2UZeM177cLm+Vezcq51fJ+YMoyAT/YP79ymnnBJ/lJOYgI0sEKTLXlu+P9V63RY7p0rCV1pppZLRELIwYaXE5FmudjvLwAtpE1bJnId4fBDgn3/m1LbI9gHOHefnC7XMFat5fqvn3KzU+4ti595EIP/fP0+Vuk+T2s+z/FiTn3P7C/XjQbkxLO+9Yr3PiGeoHj16FM2Wd4mMd9557tW8a/N5yS8CIiACIiACIiACIiACIiAC1RKQxqZqyc2G6eyFGg+o9pWTvbBEUxMv9jfaaKP0zB566KHo9wvrpb6kShM2wDNjxoxW52oP3jy0l9IaQMbZF7NWmL2EIg+vlt+O+603C2Hm8mBq5hAw78d58CWkLbLzMhRnbcOXkvbyyYTOMNNSTJuCL78e/lrPl/Pefffdw89+9rP4Atzyq6Rudt7EzTPB5fNgwSnPodmmtc7XsR59plT5vt7lvoitVDNZqfLyjtn5Vtun8/JsRBhmpbxDNT2CgP6HYIM5xikz72hh1W69MOcSSyxRUTb+y9Q8k5o+E2/qzofjRwCSF7fHHHNMQ4Sa+Coa85cIzv3zn/+cY4SajCPjD477nDdHh6ATDi0OCMCYs7Ga/XLt5selcloLLP+22tY69rVVPastB62FCJ6iOcI72vnyyy+P4wKLBKU0Avh09fRX2xcQHq/EoX3CNDDavAyBBVtsMFPDZvLTxk4WH01o0eYalZTn41SqVcrSTJ482bxl7+NpxCo8ra2XFVFvlu15/KjHnMq4VbL185u8+P643S/bctxizlPK+fF/3LhxMWpb1q9U3Thmc7dy8fxx4+zDGu23eraHOSbPT9bu3nQWH0bY+IkAj3ftqf6+Xm3tZ0HbBMS9MAr1QFPRH//4x6gx+IgjjijQPtjIa8bajDYt91yfx6uW+TUfOSCMwvmaWU0rAxOwCNExt/empjhu/cniVrJtxHVb6rmDOuWNz8Xqau1Q7HixcBtXOT43tkWtc8Vant/a89zMc/HPWXn9yPfTiRMn5kVp12E2HrSH+2O1oBo5xldbJ6UTAREQAREQAREQAREQARGY+whIY9Nc1OZDhw5Nz9a+FDPBJjPPgYYmvuxHSIAv/TFvYlpS+BKxnHBPWkA78PB1OOfBCzheJGRfRPoq+i/bfThflCMsUUkeJixGev/iBaEltMmQB3H8Yqa1iVf5z2I8mrFMg5QJPfl6Ncpf6/nyRSuLzDhe2uy///6BL84QDuHLY8I4L4RTso6v/e0Lar7KLfX1f7HFay9cdu655wbjmy3L73sNYPXoMz7vrB+NACZ8wxexxTRaIPTEwkEjXK1t3Ig65eV5xRVX5AWXDGPh6vDDDy8Zp5KDJgRDXK/ho1RaFszNYSKrlLOvorNxGCNYiDOHwAJfxKO5hEUJu4b4Uj5PY5mlK7VFYPKggw5KoyAIxHXCog1fbaIFiy9uy71cTjNoZx6EKk3gDVMzCMRwzdn1xCKm1yLmx+rWtJsfazyCUgIX5YQZfT6t9fv6VDP2tba8vPhoEWqkQyPXeeedF/7+979Hk6YIIP7f//1fKrzDl9BoN8TkRp75nka1je9DO+64YxRKrIRDpUKT5MX8i3ZFix8C0ghK4xDmQlsTjrHj1FNPjTxGjx5dYIaqkdo2Y+Hf/nkWfk7k48xqfz1Z+vNtb+NHPeZUrWkrzr+YmWDy8fM2u1+25biFqdVSGhi9eVHmSbi2rF8ssMSfzd2IwjNLJVpZK4lTosiqDlk9a3luqqrgnEQIv6DJE424zAHoA2gb8cIn22yzTUHKtqp/o++X/qSqvffBD03D/Hhm4d0Bz6hXXXVVmj33HOL95S9/iWGNvGZ826DlpdhHSWnlnKce82vKO+qoo6JwE1pzMDPHPdnuxxTHnB1NV3bPtTpzbFZetzx3+PsV9fHOj8/ltOb4fHiut/m1zy/Pb6bL59a28NyqmSvW8vzmy25vczM/ZpR7/+PnWaXe6+X1P8Loe7PS2XjQHu6P1XLw7TWrnjerrbvSiYAIiIAIiIAIiIAIiIAIzDkEJNg057Rl2TNhEY2XVXzBz4tJb57Na2r68Y9/HAWCbrrpprhAZwI2JvxUtqB2EoEFFtM2xQu7Yi9A+ILQvqDKVp0X4F4QpVgeLDTywtecf+j//ve/b8ExjqncXnPNNdOXsph7gS+CZrwk9eZf7OVomkkDPbWer5nGoYoImSBUkHVei4A/xqK1OcyUIFRXzBUTRPOL2XwByAuk1rh69JlS5ZH/lVdeGaPccsstRQWbTOCwVF7VHqu1jasttzXpPvzww9T8BelYQED7WZ579913oykqqOw1AABAAElEQVQqjiFAeNhhh1VsrjIvPwQ5+fraHIvglTivHn/kyJElk3izdT6iN4uIeRRfDx/Pv9j14ZX4TVCVuLA69thjWyQbNWpUi7DZJYCFJ7TTwM60DZiGPM6BxQTv/MJYuXYz7Tekx9SoOUylmSulac2bUbH49drWOvaVqoe/9rImSHy6999/3+82zI/gHfcWfn/+85/jfAZNTmYiBq1GCP/h2qJt/P2exYrW3ncqAcW5soBA/vRDFk5xpqUJv9eoyQKY9VcWHhHabQvnhbXQQNkeXT1Ztufxox5zqta0HwKFpZwXHDLB9UaOW9m6cD0UE2xC85bN9ZmbmwnTtqxftr7ZfbS2WR3RvlHOtFQ2fVvtt7c5JmZKEWzCMRf47W9/GwVi2UejblaTTa31by/3y3rf+zAjy497LR+xINB02mmngTHwIYIJNjXymkGI164BhDP8+BsrUuKvnvNrhOOZo/M74IADotAXHwyY+XAE5+zZvb1ct/BCU2sx9+STT8ZDzBfKcfVCMsxJuGZ8fytWhoXPrW1R61yxlue39jw383VjHlHp+x/fT+2DFfojQqO2b32ObSM0ofn8K/HXen+ppIxGx2nkGN/ouit/ERABERABERABERABERCBOYdA/krxnHN+OpMMAcw54e688870BRwamuwrOo6x6IND2Off//539PNXqeaSNIHzFBMcclHq7vWLOhdffHHR/Esd89qSLr300qJ53HrrrekxhFf8i3LMWxCGQ/U6Ai24rMCEmYrhhaiZUEKQqtyXkzGzOv3Vcr4IEtlCJvU28zjZqhUT2vGCIXwN7FWT+zz4QtaE7Xw4ft9HEcwr9kU04Sz88vNCIvXoM9k6+X20V5lDoCSPBUIvmIZslKuljRtVp2y+XmMSZh8wg8FCaN6P64YxDMeChzcjl8233D4Ln5iTMLfzzjsXaGyw8LwtGo7MXBTXb7FFXl6s+q/dfV6Y2jK35557mrdgi5AmAhyVuDwhFL+gkDXBYnn6l+cWNjttd9lll1hdXnDTFtafWLD24wyRbGzGT9xiXzKzkGxCicT1Y40XEi6mjQthPRM0IX29na9PNWNfqfqwiMViFw7hhGKmYavVIlaqbI6hKYJFN37e9BfH0LiHYDZmccx5AYq2aJu1117big4IVZlJ0zTQeZ566ql437FFRHeopNdrdaR9Lb3N10iMRk0zfcu9hfsbDo0kfrE9Bjboj+vJ+gp19GOaLxITIiwKM24iCDZt2jR/uKH+erJsz+OHH+uqnVO1piEoo5hgJ9ekCf/T3mgfxDVy3MrWneeZYmOXvyf767ne9av0WSiPo5+7+WeO7Hly37f5bbEPCbJp6rnv61ntc1M960N7otkOd/XVV0dtl8wNcMOGDYtb/1dr/Wf1/dLOpZZ7H89fjN/88gSyOcfjjz8+HeuZe5t5onpfM3Y+bO05Gf+//vWvotcz/Y57Cz+0POL8vai182s+SDIeefd3BL5OOumkWA5/mIo15/vTrLxuL7zwwjBlyhSrVsGWDwHsmkDrZTmHhi7/jM+7jWLurbfeiuMR80PTWjq3toW/t1QzV6zl+a09z81MCJA+xHNWsfc/jDO+r6EF25wX9C32cY597GhpSm3z7sGl4ucdy8vDjwdtcX/Mq0NeXVsT1sgxvjX1UFwREAEREAEREAEREAEREIG5m4AEm+ay9rcXUbzAsi8tt9xyywIKLIaYZqIjjzwyHmMhYplllimIV24Hk0bmWGQrpQrf4tVzO2TIkDQ7XpR4IS07wAuSP/3pT7bbYrvtttumYZdddlluHgjGYP7IHGYPss5exmI2x4Ry/IIk8W2ftvnnP/8Zs0AbgzeVls233vu1nC9aNEywg8WbPOGLiy66KGpyyqs3X9JbeoQD9tprrxbReLnsWWcjsFBKX8XxAosvabOOfnjMMcdEDVloyUILhrl69BnLK2/L17K/+93v0kMIGu6xxx7h2muvDddff32s74Ybbpgeb4SnljZuRH3y8vTChr6+eXEJ84tTfoGyWPxsOOYhzznnnKjVxBYeGQMxedUaZ9cwaaj3hAkTCpIjUIfglJVRcDDZ8UKMeVrJWKTcbbfdsskK9k2ogEATbPAREBIzZ2OR7bNF8MILifhj+FmYgAtjE322PTpMXRoHFpvMTEaeIBemetBAYA4hkM8//9x20y3m7Swf+oa/Tr1JyTPOOCNdvLHEMPPm/yy8nttax75SdeEeZF/603e9GR9Lx6KfacWwsHpt0QaBMAq/3//+97nZIvxkzurKflu0TZcuXdI+xP2br81tkdDqxJbFQxYNue+gNaQ1cyLMRJoAJ/cvc/5cCTMzr8w1TNDYm7e0dI3aIlzlxyjGwbzx7tBDD431gxP169ixY6Oq1CLferJsz+NHPeZULeCVCGDOxxg7ffr0gljcX/28zd8nGzluFVQi2UGoAE0zWYcQwj777JMGey2r9ahfpc9C9EtzLHpnnRd4P+GEE+K8MRsHwc+ddtopnd/yIUBbOz9nq+W5qZ71tns89/BTTjklZs0cwfdFK6/W+s/q+6WdRy33PgRg7J6LwECellHGdbvPMa+0fl6Pa8bOIbv1bcP1nDdHRxDrN7/5Tawb9bM2rmV+jWCm8UAII0/wwgu1+/lhrdctbcEHDfz8hzhZNuX26fuHHHJIi2gIgdjHABz0dW8R2QX45y40ZOYJ7pM3z9XMeRDoQEM2bnZtC3f6VXlrnSvW8vzWnudmCHzZuxt7/5OdH3Nv41qyMQchfv9Rpv9w7KyzzmrRPjw/o6W4lCt3Dy6V1o6Vy8OPYY26P5arg9W12m0jx/hq66R0IiACIiACIiACIiACIiACcx8BmaKby9qch9Gsyy568VKWxV37ypH4We1C2Tzy9lEZb44XoJTDiwi0rvCCsNGOr1VZaDVBEraYSuMFGyqqWfRn8a+UGzhwYDR1w5epOPLgZSqLh7ygevTRR8N//vOfNAs0guy+++7pvnl4EepNPvFCffDgwXY4bhEc48WOqdkn0F7IFkRs4E6t54uwgy1uYxYHIQ7aGoEktMCY5pS8U6Df3XDDDVGLA8eJ+/bbb8e+xwIdmng4nrdIavmhCp/2YbGXl1/nn39+fCFP38MUDwtvCL6Y5gDS7bvvvpY8mmestc+kmRXxYL6BL1hNWxMvtvh5R31ZMPUmtPzxWvy1tnEtZVeSlsV4e0HOy2//IrdYegTETBCO9j355JPj9ZmNnxV040vG9957r6A/kIbrk+vaa17L5pW3T7mMCbyY5TpGAxgvYnnhyoIE/dfOLS+9X1BAQIY8MA2K+QIWX/niOk9g0OflBVBhgTAVYx4vjvmqnDHlggsuiElYbGbBj+NosuAaO/300312Lfxoizn88MNjOIIa5OvH+hYJZkEAYzOLu1z//gtd/0LZVwtBEe4FjBkwZxznXsUYjalDrlU/ZvDS3EwVkY/XjIKwGGMeAji0G/lxL80TIvN1qNVf69hXrnzGczOzAlsEUwhj0Y3F83L9plz+pY4jKMO1hbv88sujdh/uwSzcogkLwWUv0Oi/Jm6rtvnHP/4R25jFQ8Ywvo7nfsi9CO1E99xzT4HGL0zocc9rjeOcfX9mnsZilXcmvO7D/LjiwxvlZ77EQjAaGrhfM/4xDnJdMDZmryd/D25UnbL51pNlex0/6jGnynIrt0/bWnszb2PcY2y1+xaacxDKMdfoccvKsS3XHR80cM9jjsW4blpUiYOWRjNjyX496ufvj6WehUyrEOUiSAs7ntmYD7KAy70djUOMvziEEWDLeIdpVOYYZ555ZgFr5g9t7drjHBMTtPYRi42h3Ff8fdw41aP+s/J+aedRy70PTUfMDe0jA94BMMdGMBdT6Qjem+k5yrM+ib8e1wz55Dn6OderaZ9Goyv3Vva5Rri2/TM58zjaE+fvg62dX3Nftedz7mFcV5wzQjuTJk2K7xP8Mz73fnO1XrfMKYYOHRqz45monMlkKzdvy4c83Jv5oA0zXox/fFhjwiKUs//+++clbRGGiUc0L6E5i/QIXsMbzmh04pmF511zaMky02Gza1vYudSyrWWuWOvzW3udm6FRlH7EvAzH+x+uM8Yd7ouMNzw/8zxl7q9//at549Z/mEZe3Gvpj9znEczkGcL6eUFCt1PuHuyiFvWWy6Me95eihX97oFwdyqUvd7yRY3y5snVcBERABERABERABERABERABFICiSaBmfrNXQySFwUzkw4Qf4nmiZnJwmSLPpBoZEjjEDd5kdgiDv0m0U6UxkteOLSIk7xMTo9bmYmgQhrvwAMPTI8nL8HS8GyfLFdONr7fTzQjpGVYHfw2WciY6ZkkZhwK6pF8mTmTOD5Nnj95kTAz0RpRkNbqkXxpNjMRlkjzID875reeB2UkX5jlxrPyk8XT3OPkmZi8SstLNEgUxKMNyIM6+fLx13K+nH/y8jct1+rpt8nL3/T40Ucf3aL8RDtHetynMz+cE01iaZy8vpmYlEqPW7q8bbII16J8GNTaZ7JMs/v0sURDQG4dk8WCmYnAzcxkITg97vtk8oVyGp4IceXWn/KSL3PTeMnL54J4tbQxeRvLUv3P+jvtlT1/209e0se8fD9MhI/S/E888cSiaS0P2yYv6tN011xzTZqOMc7qW8k2ebE/M/nKOE1v+Ve6TV6gFlzreWUmAjdpnRLtSAVlcU3kpbEwxqpkUSCNw9ji65ZoG5qZaD5Lj1u6RGNQjMdxz8qO+22i5ShNT1k+f3+MNInwQsFxHzfr9+N4tk8S1+qQmBeoOM9sGbafHQM4ZzuWt+U8rM9aPfK2xx13XG4+idBsWv+8dIy5yWJ6GqfY2J5Xt0qvedJmzzuvLoQVG/vyyicsWRCYmSzupfXPy5c+ZuHW3yw/Cy81ZpS6Z2X7neXnt7Rf3phYS9u0hv37779f9v5HfRNBmNw+ZKyKbROtWClf8mEcyYtr93fiJEJ6uXESczppXsniT24c8k60RKTxuC9aecXC7XiyqDTTxnffRll/IqiR5knaWutl5Zfb1pMlZc3K8cPP1xPBlgKe1K0ec6piPP2cNRGYTftKtp3Z5/pMTH22qB95N2rcsmuBspPFzpL141rh/ph3rrXWr9yzEGUmApG59aN9fZ0SjUO58Txz5gDJhwEF6Vozlvny8vxWVrF7dVvMMfPqVSose/9KBLkL+Pi0tda/Le6Xvr7F/LXc+xJBuZl2/Vh7520TQcCZiSaeFixrvWaKnRPhfg6dVyfCEoHAeD/x+dQyv77jjjsqmiMmgpu571WqvW79ufJc58+nnN+/2yg3PjNmJB8htcjf+gBjaLY8nj94v1CsDSw80Vod55A+/ezYFr7+WX9rxtdq54q1Pr9R52rnZuXmGcYj0cyd9gfmHhZeyTb5QCJNa30nb8u4lpcf70/y4lsYc1j6Mfv062weld6Ds+n8fiV51Hp/8eXl+SupQ6nr2udp71B4t+fD8TdyjM+Wpf25a61C7a32Vh9QH1AfUB9QH1AfUB9QH6ikD8yTPNzJzWUE+FLZHF8V5mkN8KYYiGsmUCydbcuZD0GLAyZ4khcJlqRgi+Ykc3lfztoxvriq1vF13FFHHdWiDtSJrzYxUee1Hvg6USb1woTaJZdcEjV5ZOtBPny5iqYWvujMc+SJGnZz9lWa7duWL7PNJQsGBWq2LbzSbam2sXPM41rL+XL+fAHKV3LZNud8OJanUcKfE1/LY3rIf3Fmx/mS9OGHH46aUCzMt52FoSWDL3d9X7djbDH/hukir9nDH6+1z/i88vyYbMDcYCKwFL94TV7Sxa9bk5eWsS9h1i958ZUm9deotV16sIiHL2aLuVrauFiexcJL1cOO+X7oNa+g5aNS578Y58tOc6WuA+LQZxPhnWiiIXkZGO68886wxBJLWPJWbwcNGhTzyOvnmKREC4P/sjTbf9EqcOmll+b2f74IR2MN/aOYQ1sR2tHQ+JC9BknDcUzIYW4Ok2reYQoS7TfJYrUPLvDzlTZfjeOSRZPAdV2pK9cWleZTSTw0JnA+5vJMhNoxtmgioP1N85c/hp+xGW0kaCrKc3xJDdc8HmjxQ7sVmg6qcZVe8+Rd69hXrH70U77sh2Nev+ELa/pGLa5U/2AewT02by5CfbhvcG35+6zVpZa2aQ17NHSh1Yr7S55jTEgEYFKNZ3lxSoWhocpf03ljDOkxhWeumMYWvpA3Z+Ow7fttdnyyY+W4YAqD68U0Zlo6tpwDYyGaKJgreFdrvXxepfz1ZEk5s3L84Ot5c3ntVY85leVfasuYizaRvHkX4yfXBppU81yjxi0rizkG1yXaXvLmlhxDGyH3xzxXa/3KPQtRJtpsGR/KjaNonuSZxO7Dvr5cW4nwbdRw0bdvX38oaqotCGjgTlvOMSs9Dc+VPuBNF2XzqLX+bXG/zNY5b7+Wex+axrjnMufJe7ZFKyHaKHle8/clq0et14zlk7fF5CXay9CumXXJgn1IPn6J13NW62ot82s0L6P5hfE0e77so+0oWeiPzxL+mc3qV+11683PUYdqHRoeGV9ot6zjWQvNV2jqyjq71/vnNIvDMZ5X4J2dFxKH64xnFjTLZe9Ns2Nb2HnnbY1T3rFsWLVzxVqf36hHtXOzcvMMO8dsO1t4Jdu99947XkM8W+Y5tMglwtFFtZmjkfHoo4/OvTcmH0rlmq705VR6D/Zpsv5K8qj1/pItM7tfSR2sv+Zd1z6/Us+tjRzjfR3kFwEREAEREAEREAEREAEREIE8Ah2Qfso7oDARqDeBL774IpqQ4SG62OJBvcv0+U2bNi2MHj06jB8/PvTu3TsuevtFNB+3lB9hFMzfYLqpV69eoU+fPm26YFCqbo04Vu35wufNN9+MpopYYMFMQGsc6ROtJvFHn0F9d6mF72J50+8wg4K5AF68ogrfv6Arlo7wevUZKyP5ujUKM7HPi/BiTKZPnx7ramrTMfeU96Lc8q11W20b11runJ4eU3eMOYwzLBKVEkjKYzFhwoSoep++glkfexGZFzcvjP5LHlxLLPDkpcdMZKIlJY5jjGWV9LOZM2cGrqvu3bvnFdsuwrjWMFvCNQQ/2qHcC1yrONcbYzz3CoQ+EJBqzblOnjw5mlGAN+1eablWfr22tYx95eqQfHEeEi0NUci00n5TLs9Kj9OfKZ/ri3sL9/NKXVu1DeVw3+H6Q5C1f//+uWaPKq337Bwvec6ILLieuAdnBS5m53PLq3t7HT/qNafKO+dsGILZiebDeO9hHC4218mmY7+R45aVl2iHi32SRVjura15Jqm1fqTn3lzqWYj7F3NW2oznjGL3ZTsP5rSMw60ZC41FW2zbwxyTjwkQ6MZhxugPf/hDxadea/1n5f3STrLWe59d0/Q1BBRb8zxW6zVj55C3pW2Y31EfBLAqvZZrnV9j6op5ImMb9/di12henVtz3fIBGoLxOOrcmvkkgsOYZ8cxX2MujONejEl0G/+Yo9TqMHvNMzvnRh9h7mvllct7dmmLcudRzfFa5orVPL/5OrbnuRnPbsyhMeWMMBYfHLWm79PHmYNwfTLnzHv+9Syy/krvwdl0fr/SPGq9v/gys/5K65BN19r9Ro7xra2L4ouACIiACIiACIiACIiACMwdBCTYNHe0s85SBESgHRB47rnnUm09vPB95pln4svfbNWOP/74gHYeHNqE7r777mwU7YuACJQg4K+hI444ImrtKxFdh0RABERABERABOZAAiwcL7/88lHQmdNDICBPO80ceOo6pdmcAMJaCHig5RCtcq1xxQSbWpOH4oqACIiACIiACIiACIiACIiACIiACIhAeyPQbAesvdVM9REBERCBOYzAGmusEU3xofKfrxExXTBs2LBoGoCv7d97771w8cUXR5MAduqYFJMTAREoT4DFSr7SxeSRCQaSKs8cVvncFEMEREAEREAERGB2JICmCrTUPP/88+Hss89OhZowgSWhptmxRee+OtOHEWrC5ZnZnfuI6IxFQAREQAREQAREQAREQAREQAREQAREIAQJNqkXiIAIiEAbEjj55JPD9ttvH02M8cKa/WLuxhtv1MvsYnAULgIZAr/85S/Dgw8+WBDK9YUpHzkREAEREAEREIG5g8DTTz8dPyTwZ4tZWQk6eyLyt2cCmIszt/HGG5tXWxEQAREQAREQAREQAREQAREQAREQARGYqwnMM1efvU5eBERABNqYwKqrrhpGjBgRDjjggLDooou2KJ2wn/zkJzHOlltu2eK4AkRABMoTwNTjBRdcEA488MDykRVDBERABERABERgjiWw6aabhieffDL07t17jj1HndicReDtt9+OJ4RAHqYU5URABERABERABERABERABERABERABERABELoMHXq1JkCIQIiIAIiMGsIfPbZZ+GNN94I06dPDwMHDgyYpJMTARFoPYHXX389mptZfPHFA78OHTq0PhOlEAEREAEREAERmK0JTJw4Mbz00kuha9euYcCAAaFLly6z9fmo8nMfgZkzZ8ZnQ+ay8847b6sBTJkyJaYnofp/q/EpgQiIgAiIgAiIgAiIgAiIgAiIgAiIQDslIMGmdtowqpYIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIzM0EZIpubm59nbsIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAItFMCEmxqpw2jaomACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIjA3ExAgk1zc+vr3EVABERABERABERABERABERABERABERABERABERABERABERABERABERABERABERABESgnRKQYFM7bRhVSwREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQATmZgISbJqbW1/nLgIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIALtlIAEm9ppw6haIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIjA3E5Bg09zc+jp3ERABERABERABERABERABERABERABERABERABERABERABERABERABERABERABERABEWinBCTY1E4bRtUSAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQgbmZgASb5ubW17mLgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIQDslIMGmdtowqpYIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIzM0EJNg0N7e+zl0EREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAE2imB+dppvVStOhOYMmVKuP7662Ouffv2DRtttFGdS1B2IiAC1RLQ9VktOaWrJ4EvJ00Lr3/4ZXj9gy/DV5O/Cf17dwmbrbl4PYtQXiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiLQKgIdpk6dOrNVKRR5tiTw2WefhT59+sS6b7fdduHqq6+eLc9DlRaBOZGArs85sVWbzun2Zz4Mj786Ltz3/MfhnL3XCqst3aPsyd4zckx49u3xufHm6dAh9Fxw/tC7e6fQr1eXsNpSPcI883TIjduawHc+nhh+e/b/wtdTpqfJBi25ULh4v++m+/KIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIQFsTkMamtiau8kSgCgJff/11uOuuu8LMmTPDsssuG1ZdddUqclGSWUVg+PDhYdKkSaFbt25hk002mVXVULltTOCb6TPDaTe/lgoLXfXQuxUJNj35+rhw+9MfVVRbBJy2Xqdv2GmDpUKnjtVZl532zYwWQk1LLLxA6LtIl4rqoEgiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIi0CgCEmxqFFnlKwJ1JPDEE0+EHXbYIeZ48MEHS7CpjmwbnRUCTVtttVUsZs011wxPPvlko4tU/u2EwFNvjkuFmqjSwy+NDZ99NTUsnGhcqpcbO2FK+Pedb4UHX/wknDBstYBAUmvdO59MTOvZLzE/Rz7L9FmwtdkovgiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAjUnYAEm+qOVBmKgAiIgAiIQAjDn2mpden+Fz4O263br2I8F+//3TBoiYXS+GhXGvfl1PDmR1+GW576IDz68qfx2OsffBm1Ll198HphoQU6pvEr8ZCXuc3W7COhJoOhrQiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIwCwnUJ3dmllebVVABERABERABNovgS8nTQv3jPw4VnDl/t1Dl07zRv9tT31YU6U7zjdP6NOzc/jeSr3DKbuuEU7edfU0v/FfTQt/T0zftdZNmDgtTbJyv+6pXx4REAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAERmNUEpLFpVrfALCx/6tSp4eabbw4jR44M7733XlhyySXDaqutFrbZZpvQuXPnFjUbO3ZsuPXWW2P4uuuuG1ZYYYXw8ssvh4ceeiia1+rZs2c47bTTCtKNHz8+3HjjjeG1114LH330UejRo0fo379/+PGPfxzT+8gcv+OOO2LQqquuGtZee21/OPrffffdcO+990b/d7/73bDyyiu3iEOdMN2G23LLLcNiiy2Wxvnyyy/D008/HZ577rnw/PPPh969e4dVVlklYCKMMku5KVOmhFtuuSXlxbksvfTSYeuttw4DBw7MTXrnnXeGDz74IPLcaaedwhdffBEeffTR8MADD4QxY8aE3/zmN2GDDTbITUvggw8+GN56663wyiuvpHGo+0UXXRT3l1pqqbDJJpukx8zz+uuvx7Z65513wldffRX69esXBg8eHHl07Fham8vo0aPDU089FV566aVAPpzj6quvHvkMGjTIiijYXnrppWH69Okx7sYbbxzoKw8//HA8z5kzZ8Z+tf322wf6iDn6xPDhw2MfWmCBBcKQIUPCOuusU5SlpSu1pU/ffvvtsX3pK/PPP3889/XXXz9stNFGoUOHDi2SZ/v1iiuuGNuMPsQ5YEqOvr7eeusF+lylDnaPPPJIoE7m6AvWdlxjO+64Y5hnnnz50k8//TReV/SXcePGxbJhRP3mnbdJSMbyzW5raf9sXn5/RtKWT7/xWRg56vMwZvyk0LVzxzCwT9ew0SqLhh5d50+0CH0VXnl/QkwyZNAiYbEeTePI5xOnRjNsHFhlqR5hwGJdwycTJocX350Qnnvn8zBlWtJ3Fu0aVlu6R0AIqJx7Pil/xNvjw0efTQrfTJ8RenfvHJZbfKEo7NOpYz7P/z79YZgxY2ZYPDHVttayCwfq9GySx4i3xoeZSYHLLr5g2GS1xQq0Hb07dmJ44tVx4e2PvwqdOs6b1K1bWKV/j7DkIuXNvT2QmIYzt/U6S8ZzvfnJDwKald4a81XdtCIh4PS33dYIB1/0XCzu7mfHhF98f6kCLU9Wj+z2jhEfhW8SDVAvvtfUZhy/5/mPw8efT45Rl0mYrJQRdEJg64EXPgmw+TTRHLVQ5/mioNX6K/aObZgtg33fLzZaddHQef55k37yRXjmrc/C22Mmxvb46XeXDB8m7fnMm5/FLKyf5OX3dsLvpW/r/P2k73Xv0jSm5fWz0eO+Ds8mbUyf7ZmYAFxhyW6BOsw7T/NYQF+iT72XnBN9FuGuVZO+aPnm1UFhIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACbUOgQ7Lozpqu3BxO4LPPPgt9+vSJZ7nddtuFP/zhD2HYsGEBwZesW3TRRcNdd90VVlpppYJDzz77bCrYceihh0ZhnWOOOSaNs9BCC0UBDAIQZjnllFPCX/7yl/R41vOTn/wkXHDBBamwC4JNCOrgEEhCICrrjjvuuMAP9+tf/zqcd9552Shhv/32C+eee24MR4gJYS0c9d92222j0EoMyPzts88+4cQTTwxdunTJHAlR0AeBr08+aRZW8JEOOuigcNJJJ/mg6Ie1CYO9+OKLAaEfn8c555wTdt999xbpLOC3v/1tuOSSS2y3xRZhrGeeeSYNnzFjRvjd734XLrzwwjTMe2hbBMOWX355Hxz9pKU+Bx54YItjFvDHP/4xHHvssS2EcRAgwq211lrhzDPPDAi+ZR1l/+c//4kCTPQL+keeIw59o7UOgSZ4eb4+j+WWWy5ce+21UZDNh2f7NYJuu+yyi4+S+vfYY4/wt7/9LbePpJG+9Vx55ZWxj2bD/f7HH38c+3/2+qQPb7jhhj5q6t9hhx0CgmR5wk21tH9aQBEPAi37/XtEFMzJRkEb0aHbrZgIC00Lp32rMQhhm3WX7xWjvpYI8+x2xpPRv8vQpaNQz9FXv5jNJu4j4LLfTwaFzokgUda9/+nX4cirXsitA3Gpx+HbrxQ2TgSUsm79Q++JQSv26xYO3nqFsPuZ/8tGSQRfOiYakNaIwjzn3vlmuOL+US3iEPDXREvSBolAUSm31zlPhRdGNQkMDT96w/DGh1+F35/fdK0O22ipsPePliua/ITrXwq3P91kxi5riq5YouOufTEMHzEmHobxXpsvWyxqGv6DI+8PX0+Znu5nPZuuvlg45hdNAp/JkB4uf+CdcN7wt7LR0v0NVu4djvjZSgXCYRy87pH3wum3vh7jnfrrNeL+U4mAnLkfJObvjt5xlfBgIgz2p8ufj8GHJf3pJ0OWtCgF2xseHx3+ftOrMeyUX60R1l8xv58tmgi8WTyfAcJzaLqab94O4dhrXgqPvdpkzs/HoS+cs/faoV+vlvcDH09+ERABERABERABERABERABERABERABERABERABERABERABERABERCBxhLIV23R2DKV+ywm8Pbbb4fNN988V6iJqiEYghAPwhbFHEIkXqgpGw/hmqxQE4JP3iHwg4YetDrhFl988VRr0n//+99Ek8g3Pnr0m0YndoiDAFXWmUYnBGkQUsGhOQdtO2jMwVEXBEeIY+5f//pXQKtQ1qHNKivUlD2Xv//97+H000/PJi3YR2NTMaGbgohuZ8EFF4x1zZbHPr+FF17YxQ7hqKOOaiHU5NNS/lZbbRU1KhUkTHYOPvjgFkJNAwYMiOVYXISR9t57b9ttsYXVT3/60zQ8WzYaio4//vgCoSbfBiREGOzxxx9P86jEc/XVV0fNWZ6vL5s83njjjfCd73wnauwqlucNN9xQINSEFjPvEMT7xz/+4YOK+hH2og7ZelgY2zwNUmgcQ6OZuWwdrrvuurD//vvb4YJtLe1fkFFmZ1qiFemIK55vIVBk5tUQjjnqqhfD4zkCIpmsApqMvFBT7+6dCqKg1eiqB98tCGPnnURrEsJRaDzyzupAGPX4y5UvhBufGO2jFPjRNHXwxc+mYT49ptw4z4vuebtAqAkhF+8Ou3RkeOHdz31QgR8BLBNq+v4qvaOgz+oDekTBKSKiPWp6oj2qnm7LtZv76r3fmsArlz9atvz5E599+3VNtDGZO/XGV1oINWXTPvzS2KSN/hcQgivmzh3+ZvBCTcXi1Rr+5OvjUqGmbD3R9nRKcj7HXdcs1GTnbOXSF/ZOhNNKnYvF1VYEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAERKBxBCTY1Di27TZnNNRgkm2LLbaIpsK+/vrr8Pnnn0fNQpi5wqHJCY1OecJFHH/hhRfYhFNPPTWaZsNc15tvvhnDbrvttqiJKe4kfwhbIKyBOS20Ml1zzTWpsAflHHbYYRa1QFOPlWEHEVpBA5M59tGC5B35I8CCQ+uTmfnyWo+OOOKIgKacu+++O7z//vtR45EJn9xzzz3puZHHhAkTYp1MYOZXv/pVPF/MhJHHFVdcQbToDjnkkChsZfvZLeeDOTOEs0hLGyDsVMohRAO366+/Po2GABJh/DgHc2jxOfnkk+Mu54OQDvXE1BpanUwLEsx/9rOfhcmTJ1vS2C5nnXVWug8vzhlzceSBFiVzF198cSqMZmG2JQ0/NGkhsEYdKduEcxAsM41bsIMvpu8wnWZ9j7wQWqvUkX7XXXdNoyOchvk2GJM/5gDRJGWOuP7cLZyt9R0Epag7rLg2DjjggDQaGqs4Vs7BmHjUzxwmDwmzH+YMsw6zg/QNBOXoz9SBa9Talvjnn39+KqRn6Wtpf8uj2PYfN72WmAhrEkBEAOT4YauGO47aMNx97NBw1cHrhl9uvHRM+sRr5bm8P/brGPe4nVeN6W/60wbh3uOHhh036J8Wf+Hdb4cJXzcLxyAEdML1L6fahTCRdtrua8Z0dx69UUCr0RZrLZ6m/9uNryZmxZrKSQO/9SCwwu+w7VcM9xw3NNbh0gPWSczZNQlYjZ0wJQo2Ef2YX6wS7jt+43DbXzYM1x+6flg6MaFn7pFXWmr5sWN3P9ekOYn9zdZoqhemzzb/TpOf8s3kmqWpdbt6YjrNHCbdKhGc4pxow323bNYedeIvV49hhP9x26b7wSMvjw0InJnb44cDwzWHrBfj3Z70A/qDCQ9R9ln/bRqDLb7fvpWYK0RQjPa/8fDvhYdP2iRq0PJx6uFHAI46nb3X4DA86SMPJeWcuEuT9j7yf+jFseHRlz+NdTl/37UD/ejOYzYKZ+05OC2edvJm+tID8oiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACLQZAQk2tRnq9lUQZrkuv/zyKGgz33zzRdNam222WRRg8UI+TzzxRNGK33LLLVFzDAIpmMXq2bNnjIs5N3NolkGQaNlll41BiyyySDQH5wV1EJQxTUqbbLKJJQ2PPfZY6sfz4IMPFuyzY9qZ7ICv7w9/+MMYjHCWmbXj3KgP54xDYw7m3K666qpAfH5otDJ3xhlnBARNcAhKodWJ8yUd54tZMAS1zP31r381b4stGqLQdMU5krZTp04VmTRrkVFOAIIwv/nNb9IjtA1af7p16xaFuzhH2tsEfGD78MMPp/ERPrLzx4zfL37xi2BCN5wrQlEI9Jh78sknzdtii6k2zAR27dokBELZnhEJ0HwEuwUWWCCmX3rppQvilMo/W6CZHSSc87vooovC2muvHduY/IcOHRr7tWmGQnjJzANm82KfvoLWKLsOME2IUJGxI86rrzaZwcLfCAdDNGNxveDor5gI3HnnndPinnvuudRfa/unGeV40Fhzy/+ahVpOTkx/DV11sdCtS8cYe6neXcOemy0bdvhes2BSTjYFQZgPw1ycCcNgdm7fLQcFzMSZe/eTieYN/3tjXHjl/S/iPmn+mgjfDBm0SDRXN08iMDRoiYXCYdutFAYv2zQGEfG6R99L02c9mLr7SaLhaIH5542Hlk0EpU4Y1iz0QuARO6wUNl29T+jUsek2ucTCC4Tjd26Og9afPDcj0SLnea2zQlMbEneTJD9zw59tMjVn+7VuEZzygldeMKzWvC+57500i58nAmi/3mRgaqKte9IP6A8nJW1i7ranPgyfTGgWnLRwtgg1nf+7IbH9F+3RORmfOoQFnWYoH7dW/5m/HRzWGNAzwIbfhqssmpgAbLoXWd6Ym1u5X/dYj3mSsW7NgT1TgS7ivDq6qd9ZfG1FQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQATaloAEm9qWd7sp7bLLLksFN3ylEEA66aST0qCs1iQ7gGAU5uyybtSoUalWJbT0eCEnH3fjjTcOmKszZ4ImmIsz98ADD5g3btG8g9t0002jUAx+b5qOfS+sgyARzrQ24UcAhDpmHUJdaJri502peYEchJpMIMqn33bbbcP3vve9GIRAzrRpzZpmfDzOFyGZRri77rorzXafffYJ66+/frpvHsr2besFYxCCsvPfbbfdLEnBFmEhcyNHjjRvi+0uu+zSIgwTcN5tvfXWfjf6l19++TRsxIgRqb+c58orr0yj0K87d+6c7psHM4dnnnmm7UZtVumO89BnEWDLOoS7fv7zn6fBaFFqpNtjjz1ys/d18Ixqbf/cwr4NfOPDr9LD263XL3wnEfzIc2j9yZpsy4uHZqT1V+zV4lCCOPzACf58kGj+MffAC5+YNxyw1fIBIaOsQ3DlqB2bTE9y7M4RHxXVWrTF4GbtTpbP8ks2C1URtuHKzWYqLc5SizZfv68VEXjBBB1an3BokUJoy9wKSRlW9ztHjAlfTW5pbtPiVrNdZKH502QTJk5N/bV40MBkQmW03T4/Wi43u7WWXThsv36/9NgjiTakPIewmDHIO16vsEFLLhRW6FvYpuSN4JI5BOn69WpuUx9u/neLaP6y49qKgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAg0loAEmxrLt93mvvrqzdo1spUcMmRIGoTZujz3gx/8IC84mpyzA+uss07o2LFJq4uF+a0v5/nnn4+H5p9//lSw6L777gvTp0+P4TNmzEi1LiFQhRk93P333x+FleJO8mcanNCu06tXk/AEgk0IUplDeOrPf/5zFMAqJoREXMyYmWky9tH8hOm6vF/37t2JEl0xbT5eaMvi1mvrhVzQ8pNXR8IWXHDBtEifJg10nilTpkQzdGiwQgjq8ccfT49au6QB33oQeDPNXf4Y/cA0IA0YMCBqkvLH8dNO3hxd9njePubuTNsX+ZtmsLy4gwc3m5jymr183A022MDvFvj792/WSPTFF43T4oK5umICcH379k3rhKk9c74t69X+lverHzSf68r9WwqKWDwEi9YcuLDtFt2u4QRLspEWSzT4mJvohH5e//BLC84VVrGDiyzUKTUp9/WU6eHTL5oEjOw42369u4SFFmg5Ls03b4dUgxSCN11ztAih0cdrRfL5mn94IlBlzgtqEYbw1o+cUNVDLzULbFmaWracs7kF5m/SSmf71W5HOc1ZqyzVPcCpmEPzkbk3P2puMwtju5ozmefD6+0vVo5v+xVzBJ+oR+9unepdHeUnAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiJQJYH6rHxWWbiSzRoCCP3kaR6y2gwaNMi8oZhJMBNSSSN+6/nkk+aF+lVWadaeko3Hvhdi+eijZmEABJduvvnmKLD08ssvR1NxCD6hbQmHUJWZSWMfLU0IOo0dOzY1G2eCTxzHYdrr6aefjkIw5HPKKafEH8eIiyYczK15wZ9PPy3UOLLMMssQvayjrphfyzqfd/ZYrftjxoxJszjuuOMCv3LOa7eyuHBHe9bw4cODb0s7Xm7rBbyKxS3V94qlKRZOm5vLaoWycNt6oSAThrJjtl1qqaXM22JrZvNaHKhzwMCBA4vmaOb9shHq1f7ZfNn3QkUDFmsWjMuLu3yiJee+55sFrvLi9HHCS9njnebPl7Ud68ya9c/RsOPzQUvP2AlN/WL8V1ODF5YiXiVmz+YtIbzjy8r6J0+bXmCGbnpilu6pNz8riOYFpjDZtsXgJQqO17IzZnyzlqseicm3erjPvmzW/LRMn9Lt74W+Pv2ypVAZ9enSqW2mHWZmsBQDzODJiYAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAItG8CbbPC2L4ZzHW1W3TRliaWPASvLWb06NH+UFn/119/ncbp3bt36s/zoFnG3FdfNZu78tqVHn300SgkhPYmHKbCTCAKzTZolOIYwkleCCurUQqBlcceeyycf/754d///neB0M7tt98e+OGuvfbasM0220S/CVLFnVb8jRs3rhWx6xO1Gg1CXnCJdvv9738fLr/88vpUqI1yaU1/QyMU/ceEmtDAVU8hq7Y45ZmJoEyeq7X98/K0sK6dmk2pTXIagey439bbtJrlPf6rJvOOXZK6dJwvX/jJ4i68YLM5NgSN2tI98nKzoB3lHnzRcyWLH/nO5wFTb/UwzUY+npM3gVeyEmUOeoY9ujazzUvWvUuzMJXXHpUXV2EiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiUAkBCTZVQmkOizNy5MiSZ+S1J7XWfJqZf6OA119/vWQ53szbYostlsbFVBm/d955Jzz44INhr732CnfccUc8vvXWW6fx0LCEYBMahtDIZBqI0CblzY5ZgsUXXzwcddRR4YgjjgjPPPNMNK121113hXvuuceiRM1NlLXJJpukpuw4SJ5ofKrE5ZliqyRdLXE8v3PPPTcMHTq0bHYdsIv1rYOfCTVxrvvvv39AA9ISSywR0MJE2AsvvBB+9KMfWZJ2sfXCcy+99FLJOiEEZUJNnM/sJtRU6uRqbf9Sea/Yt3u4KXwQo7w55suw+oAeRaO/OrrZbF3RSFUcQPAHwR2EZdDC1NMJL2Wze/vjZiHJ7l1KC+Jk09a6f8czzZrnKs3r7ufGhF03HlBp9KLxvFm79VZoMsNZNHIrDvTo2iys9N7YZsHVvCze/7T5+CIl2igvbTYsX4SvKdY302dko2tfBERABERABERABERABERABERABERABERABERABERABERABERABERgDiUgwaY5tGFLnRbCHZ9//nmBOTcf/5VXXkl30YrUGofwkLlyAlS+nH79+lmyuN1qq63C6aefHhA8oq4IOOG8JqYf/vCH4dhjj40CUG+99VYqoLTZZpuVFFpBoAWBLX4HHHBAeO2118JBBx0Uy6KMG2+8sYVgE9qb+vfvH+adt1l7DXHbi+vTp09aFbRfIRjWGvff//43jX7NNdcUcLYDH39c2sSYxWvLrRekoz9NmTIldOrUKbcKXtBu6aWXzo0zuwbW2v6lzntQYl7O3IMvfhK2+W7fkGfC6+PPJ4en3ig0u2bpat0u1rNzFGwin3fHTiwq2DQj0Wj1wqgJaXGLLNR2gk1jv5gSnnitWVvbpQesE4pZOhuTsDrk4iZtTpij++XQAcHJGab1r9QzLjEXd+Hdb6fRN12jeTxIA6v09OrWfD298VGTOdBiWY36ZGJ6aNESJgfTSBmPF7b8fGKzCbxMtAA/OREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQgbmDQGmbPnMHg7nyLC+99NKi533JJZekx1ZfffXUX4lnrbXWSqMhjPTyyy+n+94zefLkcOWVV6ZB3vwcgZtuumk8hkDROeeck8bbcMMNUz8ahdC8g8OEHBqFcJtvvnnc2h8aqDBTx2/MmDEWnG6XX375cNJJJ6X7I0aMiP7OnTun9SDggQceiOF5fwhWYRLv/vvvD1OnFl+Qz0vb2jBvQs7Sen433XRTwMxaniOcevIzQR8EodB8hcNMobHPph8+fHg2aJbvI8SEgJs5+kExd8UVV6SHttxyy9Tflh7TGFXvMmtp/3J1GbBo1zTKM2+OD+fd9Va6b56Jk78Jf7ioqQ9ZWD236y7fbLbyv09/WDTrh50puBX7dQvdnGm0oonqdODekc1jy682GRCWXXzBMLBP/g+NSqb5Ck1UL773edW1+HLStHDMNS9EbVZkgnarIcs186o6428TorHL3LNvjQ/vOI1YFs526jczwvARzRqr1l52YX+4Iv+SiyyQxnvXCUmlgYlnxoyZ4cnXmwXI/DH5RUAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAE5jwCEmya89q0ojM65JBDwiOPPNIiLmbM0Nhjbu211zZvRdsFFlgg/PrXv07jbrPNNlHjUhrwrefggw9OTbshTOMFlojyve99L02C+TgcAktduzYLWaB5yUzTHX300TEOf17Ig/3nn38+bLDBBvGHiTkEebLOm8XzdRk2bFgadYcddghey5QdGDVqVBgyZEisH9qixo2r/6J7t27drLiAgNHMRDONd2ifMi1NtCuaqLKONMccc0ysJyxpa9yCCy4YllxyyehHaCpP+Oaiiy4q6Bcxcjv5+8UvfpHWZI899gjPPdekCScNTDzXXXddOOOMM9Kgn/3sZ6m/0R6vQQq+JlBWz3Jraf9y9eg43zzh+GGrptGuuH9U+OOlz4UbnxgdHkkEif6dCDrtftb/wqiPm7X1pJHr5NlolWZTlbc//VG46cnRLXLGTNqfLns+Dd9i8BKpvy08tyaal8wNXbW5vhaW3f7oO83a7e58tlkoKhuv2P60xBzbQy+NDbud8b+AwJm5I3dcOXTqWL9bO3n9eO1mln+8ZGT4alJLwcnTb30tvPJ+kynCngt2DGsu09OqVPF2qd7N4/vwEWPCmPEtNTNd9+h7De1r5SqLoCz3T8adSs2TlstTx0VABERABERABERABERABERABERABERABERABERABERABERABERABIoTmK/4IR2Z0wkgALT99ttHgR/O9Y477ohCM3be5513XiosY2GVbBGe+b//+7+AtqV33nknYM5uu+22C4MHDw7vvvtuLOOxxx5LszrrrLPC/PPPn+7jQYAJTTyYojP3ox/9yLzpFgGdyy+/PN1fccUVQ9++fdN9PGggQuiHuiDA9OMf/zjstNNOURhp0qRJUXsRJu3MmbAU+yxe/+9//wv/+te/4vkgcMW5IPyERie0O5166qmWNOy5557Bm+NLD9To8abTEI6BDfVYeeWVY/thIu/WW28N6667bqzn+eefH1588cUYD61bCCtdddVVwXPfd99901pxzmeffXbcX2eddcKuu+4a82UR/957742CQWnkdub5+c9/Hi644IJUUA/hNUwZIsw2bdq02IdgY47zXnXVZkEdC2/Udp555gn0SxOKQ9gPgTnCqCfHa3W1tn+58hHU2XPzr8N5w5u0NT368qeBn3cIs/xkyJLhsvtG+eC6+NHk8+tNB4SL73kn5nfqDa+GhxOhnvVW7BU6d5w3jBz1ebj/+WZTiZjP2yqpS1u51z74MhW2WXqxrlFbU7myv7/youGv/2ky+3lnoulo3y2Xi+eSTXfRPW+HRbt3ToMnTf0mYPYPIaKvp0xPw/H8cdsVw6pL9SgIq8fObzdbNtyX8KU8NEwNO+3xQJ9YsW+3xCzcpPDYq58WmAA8ZJsVQ8d5W9+v55u3Q9RkNfKdJg1WuyTl7Ln5sqF/ry7hs6+mhgcSU4i0+6x0J5xwQmB8xT3zzDPxuq7HNTwrz0lli4AIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiEB7JiDBpvbcOg2qG4IVaJFBMxMCSPyybp999inQvJQ9Xmq/T58+4ZZbbolCGwg3IVTjteX4tMcdd1yqdcmH40f7kRdsQmAl64YOHVoQhNBS1iH0gWASGpeoD8I9XsDHx2fRGu1L3v3tb3+L53DzzTfH9Jjq8+b6LO4WW2wRiNsI16tXr7DjjjumWpMw88cPAR0W13GDBg0Kt912W6r9qtR5ovVp4MCBaVX322+/cPvtt0fhLwSnENbyAltERPjryCOPTNO0Fw/ti1lDhLMwqUcbs+9NHVpdf/rTn4bjjz/edttsC9+99947lodwnWkh+/jjj0PPnq3XbJNX8VraPy+/bNguGw0I8yfam654YFQY/9W0gsM/WLNP2CsRfnn8tUJhp4JINe7suvGA8FEiOYMJmAAACOpJREFUVIMmH9wTr42Lv2y2/Xp3CScMWy0gJNNW7q5nm02wbTG4WRNTqfK7d+0Y1l+pVxQQQ2Do8UQ4KE/TUyWCPL27dwrH7bxqQ4SaOIdFFpo//H23NcNBiblB6jp2wpRw3SPv5Z7enpsvEzZcZdHcY5UEHrXjKmH3M5+MfYyyTrv5tRbJtl23b7jh8ZZau1pEbEDAe+81nzfCsphV7dKlSwNKUpYiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIQaL1KBXGb7QmwCHvhhReGf/7zn2GhhRYqOB/20biUFWohEgIklbr1118/CpnstddeuUnQOIRwzaGHHpp7nEAvyITGJQQ3sg6Bn/XWWy8N9mnSwMRDOBqMEG7KO2cEpBAUwsRQhw6FAhGYvLv00kujUA9m87JuueWWi1qjEBDzZseIV09NHqeffno46KCDWtTf1weNTQ888EA0N+fDzY+pttdee62FuT74IgiFFqgsH/hyDM1X9XBouirm7BgmDVvj0JJ13333ReGrvDZCOxKm96699toWQgiV9uusVrHW1A/zjAj3mcm/bFrfT4xBNg772f6VjVNt+2fzydvnsthxg6XCjX/aIFx50Lrhn7/5Tvj3vmuH4UdvGI5OhFH69OwcJk1t1iDUITRfR5Uq7yml5Ydjf95hlYCpNTQyZV2XTvOG3TYdGC743ZCwxMKt6z/ZvBDgKubsmDf3dqcTbMoTTiqW1w/X6JMeeuCFT1L/fGW0eKEda+X+3aOJuNOTdrjhsO/VJNQ07zzNbZVWIuNZbeke4fID1w0IFeW57w5aJFCXXw4d0OLwvK0QMlusR+dw5m/XCuut0CvQpt5h3u7SAxKzm4st6INTf6X9zBJYW9q+bb1QXMdM3Q888MBgYwyCsBJqMmraioAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiEBjCHSYOnXqzMZkrVxnBwIzZswIo0ePDp9++mnUHIMZt44dO9a16lOmTAkffvhhGD9+fDTfhnBH9+7d61pGazNDKxF1QltO//79WwgzFcvvm28SM1CJlp2xY8dGQS9MxGUFgYqlrWf4F198Ec2sIQBUbGGdOGjLwtweC/EI/1QixEOfePPNNwPtRn+ol0ahep5/qbymT58e24g2xi2xxBKhd+/eFbdxqbzrcQwNLxMnToxt0aNH/c2GWR2rbX9Lb9sZM2aGTxINPTgEPnp162SHWmyPuuqFcM/IJpNwF+333bB8jgBSi0RVBkyYOC2M/WJySKoXenTpGBZJ6lWJgE6VxSmZIzDtmxkJ+ynhy0nTohav3ompvAU7118BJH1v9LhJYWpSXp9E4GnBBepfhjutir3JvClwLyg29lackSKKgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiUJSDBprKIFEEEREAE5l4CCJVseeyD0QQZFE799RpRm06WyDNvfRb2O39EGnz3sUNbaNxJD8ojAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAhUQkGBTBZAURQREQATmZgKXPzAqnHvHmymC7dbrF1bs1y3079UljJ84NTz+6qfhpic+SI//cuOlw56bLZvuyyMCIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiAC1RCQYFM11JRGBERABOYiAl9N/ib8+Yrnw1NvfFb2rHf/wcDwq00GhHk6dCgbVxFEQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREoBQBCTaVoqNjIiACIiACkcDMmSHc9tQH4bL7R4UPP5vUgsqay/QM26/bL2y06qItjilABERABERABERABERABERABERABERABERABERABERABERABERABERABERABKohIMGmaqgpjQiIgAjMxQQmT5seRn86KXwxaVpYrHvnsPjCnaWhaS7uDzp1ERABERABERABERABERABERABERABERABERABERABERABERABERABEWgUAQk2NYqs8hUBERABERABERABERABERABERABERABERABERABERABERABERABERABERABERABERABEaiawDxVp1RCERABERABERABERABERABERABERABERABERABERABERABERABERABERABERABERABERABEWgQAQk2NQisshUBERABERABERABERABERABERABERABERABERABERABERABERABERABERABERABERABEaiegASbqmenlCIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAg0iIMGmBoFVtiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAtUTkGBT9eyUUgREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREoEEEJNjUILDKVgREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREoHoCEmyqnp1SioAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAINIiABJsaBFbZioAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIVE9Agk3Vs1NKERABERABERABERABERABERABERABERABERABERABERABERABERABERABERABERABERCBBhGQYFODwCpbERABERABERABERABERABERABERABERABERABERABERABERABERABERABERABERABERCB6glIsKl6dkopAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiLQIAL/DyDSVCPmVwWZAAAAAElFTkSuQmCC" - } - }, - "cell_type": "markdown", - "id": "88ddfe98-92b3-4c9c-906d-84d4835d2bf1", - "metadata": {}, - "source": [ - "![image.png](attachment:afcd4ecc-4e90-464b-91c7-9cd80b0e92ba.png)" - ] - }, - { - "attachments": { - "2f957256-5d08-40e1-b77c-5faa4f771fb2.png": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAACE8AAAMDCAYAAABZhalJAAAMQWlDQ1BJQ0MgUHJvZmlsZQAASImVVwdYU8kWnluSkEBoAQSkhN4EESkBpITQQu8INkISIJQYA0HFjiwquBZURMCGroooWAGxI3YWxd4XCwrKuliwK29SQNd95XvzfXPnv/+c+c+Zc2fuvQOA2gmOSJSNqgOQI8wTxwT50ccnJdNJPUAZaAJ1QASjOdxcETMqKgzAMtT+vby7ARBpe9VeqvXP/v9aNHj8XC4ASBTEqbxcbg7EBwDAq7kicR4ARClvNj1PJMWwAi0xDBDixVKcLsfVUpwqx3tkNnExLIjbAFBS4XDE6QCoXoY8PZ+bDjVU+yF2FPIEQgDU6BB75+RM5UGcArE1tBFBLNVnpP6gk/43zdRhTQ4nfRjL5yIrSv6CXFE2Z+b/mY7/XXKyJUM+LGFVyRAHx0jnDPN2K2tqqBSrQNwnTI2IhFgT4g8CnsweYpSSIQmOl9ujBtxcFswZ0IHYkcfxD4XYAOJAYXZEmIJPTRMEsiGGKwSdIchjx0GsC/Fifm5ArMJmk3hqjMIX2pgmZjEV/DmOWOZX6uuBJCueqdB/ncFnK/Qx1YKMuESIKRCb5wsSIiBWhdghNys2VGEzriCDFTFkI5bESOM3hziGLwzyk+tj+WniwBiFfUlO7tB8sU0ZAnaEAu/Ly4gLlucHa+NyZPHDuWCX+UJm/JAOP3d82NBceHz/APncsR6+MD5WofNBlOcXIx+LU0TZUQp73JSfHSTlTSF2zs2PVYzFE/LggpTr42mivKg4eZx4QSYnJEoeD74ChAEW8Ad0IIE1FUwFmUDQ0dfUB+/kPYGAA8QgHfCBvYIZGpEo6xHCaywoAH9CxAe5w+P8ZL18kA/5r8Os/GoP0mS9+bIRWeApxDkgFGTDe4lslHDYWwJ4AhnBP7xzYOXCeLNhlfb/e36I/c4wIROmYCRDHulqQ5bEAKI/MZgYSLTB9XFv3BMPg1dfWJ1wBu4+NI/v9oSnhE7CI8J1Qhfh9hRBofinKMNBF9QPVOQi9cdc4JZQ0wX3w72gOlTGdXB9YI87Qz9M3Ad6doEsSxG3NCv0n7T/NoMfnobCjuxIRskjyL5k659HqtqqugyrSHP9Y37ksaYO55s13POzf9YP2efBNvRnS2wxth87i53EzmNHsCZAx45jzVg7dlSKh1fXE9nqGvIWI4snC+oI/uFv6MlKM5nrWOfY6/hF3pfHnyF9RwPWVNFMsSA9I4/OhF8EPp0t5DqMojs5OjkDIP2+yF9fb6Jl3w1Ep/07t/APALyODw4OHv7OhRwHYK8b3P6HvnPWDPjpUAbg3CGuRJwv53DphQDfEmpwp+kBI2AGrOF8nIAr8AS+IACEgEgQB5LAZBh9BlznYjAdzAYLQDEoBSvAGlAJNoItYAfYDfaBJnAEnARnwEVwGVwHd+Hq6QYvQD94Bz4jCEJCqAgN0UOMEQvEDnFCGIg3EoCEITFIEpKCpCNCRILMRhYipUgZUolsRmqRvcgh5CRyHulEbiMPkV7kNfIJxVAVVAs1RC3R0SgDZaKhaBw6CU1Hp6EFaBG6DK1Aa9BdaCN6Er2IXke70BfoAAYwZUwHM8HsMQbGwiKxZCwNE2NzsRKsHKvB6rEW+JyvYl1YH/YRJ+I0nI7bwxUcjMfjXHwaPhdfilfiO/BGvA2/ij/E+/FvBCrBgGBH8CCwCeMJ6YTphGJCOWEb4SDhNNxL3YR3RCJRh2hFdIN7MYmYSZxFXEpcT2wgniB2Eh8TB0gkkh7JjuRFiiRxSHmkYtI60i7ScdIVUjfpg5KykrGSk1KgUrKSUKlQqVxpp9IxpStKz5Q+k9XJFmQPciSZR55JXk7eSm4hXyJ3kz9TNChWFC9KHCWTsoBSQamnnKbco7xRVlY2VXZXjlYWKM9XrlDeo3xO+aHyRxVNFVsVlspEFYnKMpXtKidUbqu8oVKpllRfajI1j7qMWks9RX1A/aBKU3VQZavyVOepVqk2ql5RfalGVrNQY6pNVitQK1fbr3ZJrU+drG6pzlLnqM9Vr1I/pH5TfUCDpjFGI1IjR2Opxk6N8xo9miRNS80ATZ5mkeYWzVOaj2kYzYzGonFpC2lbaadp3VpELSsttlamVqnWbq0OrX5tTW1n7QTtGdpV2ke1u3QwHUsdtk62znKdfTo3dD6NMBzBHMEfsWRE/YgrI97rjtT11eXrlug26F7X/aRH1wvQy9Jbqdekd18f17fVj9afrr9B/7R+30itkZ4juSNLRu4beccANbA1iDGYZbDFoN1gwNDIMMhQZLjO8JRhn5GOka9RptFqo2NGvcY0Y29jgfFq4+PGz+nadCY9m15Bb6P3mxiYBJtITDabdJh8NrUyjTctNG0wvW9GMWOYpZmtNms16zc3Ng83n21eZ37HgmzBsMiwWGtx1uK9pZVlouUiyybLHitdK7ZVgVWd1T1rqrWP9TTrGutrNkQbhk2WzXqby7aorYtthm2V7SU71M7VTmC33q5zFGGU+yjhqJpRN+1V7Jn2+fZ19g8ddBzCHAodmhxejjYfnTx65eizo785ujhmO251vDtGc0zImMIxLWNeO9k6cZ2qnK6NpY4NHDtvbPPYV852znznDc63XGgu4S6LXFpdvrq6uYpd61173czdUtyq3W4ytBhRjKWMc+4Edz/3ee5H3D96uHrkeezz+MvT3jPLc6dnzzircfxxW8c99jL14nht9urypnuneG/y7vIx8eH41Pg88jXz5flu833GtGFmMncxX/o5+on9Dvq9Z3mw5rBO+GP+Qf4l/h0BmgHxAZUBDwJNA9MD6wL7g1yCZgWdCCYEhwavDL7JNmRz2bXs/hC3kDkhbaEqobGhlaGPwmzDxGEt4Wh4SPiq8HsRFhHCiKZIEMmOXBV5P8oqalrU4WhidFR0VfTTmDExs2POxtJip8TujH0X5xe3PO5uvHW8JL41QS1hYkJtwvtE/8SyxK7xo8fPGX8xST9JkNScTEpOSN6WPDAhYMKaCd0TXSYWT7wxyWrSjEnnJ+tPzp58dIraFM6U/SmElMSUnSlfOJGcGs5AKju1OrWfy+Ku5b7g+fJW83r5Xvwy/rM0r7SytJ50r/RV6b0ZPhnlGX0ClqBS8CozOHNj5vusyKztWYPZidkNOUo5KTmHhJrCLGHbVKOpM6Z2iuxExaKuaR7T1kzrF4eKt+UiuZNym/O04I98u8Ra8ovkYb53flX+h+kJ0/fP0JghnNE+03bmkpnPCgILfpuFz+LOap1tMnvB7IdzmHM2z0Xmps5tnWc2r2he9/yg+TsWUBZkLfi90LGwrPDtwsSFLUWGRfOLHv8S9EtdsWqxuPjmIs9FGxfjiwWLO5aMXbJuybcSXsmFUsfS8tIvS7lLL/w65teKXweXpS3rWO66fMMK4grhihsrfVbuKNMoKyh7vCp8VeNq+uqS1W/XTFlzvty5fONaylrJ2q6KsIrmdebrVqz7UplReb3Kr6qh2qB6SfX79bz1Vzb4bqjfaLixdOOnTYJNtzYHbW6ssawp30Lckr/l6daErWd/Y/xWu01/W+m2r9uF27t2xOxoq3Wrrd1psHN5HVonqevdNXHX5d3+u5vr7es3N+g0lO4BeyR7nu9N2XtjX+i+1v2M/fUHLA5UH6QdLGlEGmc29jdlNHU1JzV3Hgo51Nri2XLwsMPh7UdMjlQd1T66/BjlWNGxweMFxwdOiE70nUw/+bh1SuvdU+NPXWuLbus4HXr63JnAM6fOMs8eP+d17sh5j/OHLjAuNF10vdjY7tJ+8HeX3w92uHY0XnK71HzZ/XJL57jOY1d8rpy86n/1zDX2tYvXI6533oi/cevmxJtdt3i3em5n3351J//O57vz7xHuldxXv1/+wOBBzR82fzR0uXYdfej/sP1R7KO7j7mPXzzJffKlu+gp9Wn5M+NntT1OPUd6A3svP5/wvPuF6MXnvuI/Nf6sfmn98sBfvn+194/v734lfjX4eukbvTfb3zq/bR2IGnjwLufd5/clH/Q+7PjI+Hj2U+KnZ5+nfyF9qfhq87XlW+i3e4M5g4Mijpgj+xXAYEXT0gB4vR0AahIANHg+o0yQn/9kBZGfWWUI/CcsPyPKiisA9fD/PboP/t3cBGDPVnj8gvpqEwGIogIQ5w7QsWOH69BZTXaulBYiPAdsivyampMK/k2Rnzl/iPvnFkhVncHP7b8Ah9d8bcAadJgAAAA4ZVhJZk1NACoAAAAIAAGHaQAEAAAAAQAAABoAAAAAAAKgAgAEAAAAAQAACE+gAwAEAAAAAQAAAwMAAAAALY2tZAAAQABJREFUeAHs3QeYFFXWxvEDQxpyziA5qAgIAmYMgCiY46K7Ys45u+qaXbOrfuawuurqGjAHUFQUFQQRUBiy5JxhYGDg67eweqqrU3VPD0z43+eBrq66davq19VdPX1PnVsuLy9vu1EQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIEyKlC+jB43h40AAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCDgCBE9wIiCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAmRYgeKJMv/wcPAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggQPME5gAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAJlWoDgiTL98nPwCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIEDwBOcAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCJRpAYInyvTLz8EjgAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAMETnAMIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggUKYFCJ4o0y8/B48AAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACFcoaQX5+vj344IO2efPmwIe+zz772MCBAwPXD1pxwYIF9sILLwStHlWvfPnyVr9+fWvcuLE1adLEeWzYsKFlZ2dH1WVG2RMYPXq0jRgxIu6B16tXzy688ELTeUQpeoHHHnvM1qxZE3dD/fr1s3333TfuchYggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggEDRCZTLy8vbXnTNF7+Wn332WbvkkktS2rHLLrvMCbhIaaUAlceNG1cknaWdO3e2oUOH2sknn2xNmzYNsCdUKY0C6qy/9tprEx6azsEuXbokrMPCzAh07NjRZs+eHbex3r1726hRo+IuZwECCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCBSdQJm65XzhwoV2ww03FJ1mMWl5ypQpdt1111mrVq1s8ODB9r///c+UcYOCAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAtECZSp44pprrrH169dHK5TiOZ9//rkNGTLEjj76aFu6dGkpPlIODQEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgfQEykzwhIII3n777fSUSsFaw4cPt+7du9v3339fCo6GQ0AAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQCBzAmUieCI3N9cuvPDCzKmV0JaWLVtmhxxyiD355JMl9AjYbQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBDIvUCaCJ+666y6bP39+5vVKaItXXnmlffPNNyV079ltBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEMitQ6oMnJk2aZA888EBm1UpBa3/5y19s5cqVpeBIOAQEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQKJ1Cqgyfy8/PtoosuSig0YMAAO+CAAxLW2ZULjzzySMvLy4v6t3HjRps9e7aNHj3aXn75ZTvssMNS2k0N4XHxxRentA6VEUAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQKI0CpTp44qWXXrKffvop4ev2+OOPJ1xeXBdWqFDBmjVrZj179jRlkfj0009t2rRpNnTo0MC7/M4779jbb78duD4VEUAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQKI0CFdI5qDFjxtjmzZsTrtq2bVtr2rRpwjrehRMmTLB169Z5Z0VMZ2dnO4ECETMTPFm0aJFdd911CWqY3X///daqVauEdUrSQh3LM8884zgFzSrxwgsv2Iknnpj2Yep1GzVqlM2fP9/mzp1rf/zxh61YscIaNmxoLVq0sJYtWzpBHn379rUuXboE3s6cOXNs3rx5Cet37drVatasmbCOu0/xKlWqVMl69+4db3F4/i+//GLr168PP/dPdOrUyRo0aBCe/cMPP9jWrVvDz/0Te+yxh9WtWzdidk5OjhPMoowis2bNsgULFliTJk0ct9133930r1u3blarVq2I9XbFE+2bAnb0euu116PmVa9e3Vq3bu289gru2Xvvve3ggw+2rKysjO6mbMeNG2dffvml6VxZunSp6T2/evVqZx/02dOoUSPbbbfd7NBDD3VeYwUcZaKsWrXKhg0b5gQrzZw50/RP+6PXVOekHvv06WP169fPxObituE10PmyZMkSx0EGtWvXdt6DMtDngjLT9OrVK+OvQ9ydYwECCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACJUwgrd5EBSVouIhE5fLLL7cHHnggUZXwMg2voQ7ORJ3Tqjx58mTr0KFDeL1EEzfccEPC9tSRf8kllyRqosQuO/fcc61x48Z2wgknJD0GdT6r01md9EGLOo+VseL55583BRXEKgoA8Gf96N69u5133nnOfqlzN1H54IMP7JprrklUxd54442kx3j77bfbq6++mrCdlStXOh3uiSqp8znR+Slr7Y9bFJCioVHilWOPPdbeeustZ7ECUG655Rb7/PPPo6q7Q7O4CxSgIfeBAwe6s3bao4aP+eyzz+zFF1+0Tz75JO52J02aFLFM+6zhc4YMGeJ05EcsTPHJwoUL7d5777XXXnst4evh3Yc777zTeX2VoeWmm25KKajLu3va9pNPPhn3c23KlCnhTC4KInn44Yftr3/9q5Uvn9kEPwpSue+++5IaePf9jjvucAzOOussu/766yMCfbz1mEYAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEECgrAqk1at38sknJ/VK1LnqX3nixIkJO0JVv3nz5tauXTv/qjGfjxgxIqIjO1alZ5991jJ1J3qs9nf1vMGDB9sZZ5wRaDfef//9QPVU6YsvvjBlFVFmi3iBE/EaU/0LL7zQ2rRpY1999VW8as78Aw88MOFyLRw/fnzSOursT1Z+/vnnhFWUvSJR4IRWVoaFVIqyA6h89NFHTkaAWIETsdpTQMYxxxzjOK5duzZWlSKZp+wK++67r5OlJJX3tnZG+6wgFgU+Pfroo7Z9+/aU91FZFhQwoCwKyq6S7PXwb0D19Z7X+gpqUHupFGUS2XPPPeMGTvjb0vYUKDRgwABTAEwmyrZt2+yee+5xMnuka/Cvf/3LOnbs6ATApPM6ZOI4aAMBBBBAAAEEEEAAAQQQQAABBBBAAIFMCSibLwUBBBBAAAEEEMiUQFrBE+q8TVamT5/upPJPVk/LR44cmbSa7hoPcgd3bm6u02mZqEFlxejRo0eiKqVimTJ/6A74ZEV38Scryg5y11132aBBg1LuuPa3rY7lI444wukIVruxijKDJNv3sWPHxlo1PE9BD4myP7gVv//+e3cy5qMyQyQrGpYk1aLAieOPPz7V1Zz6Gm4lSGaRtBr3raTgmn322ce82Rx8VQI/VdaaU045xRleI+hKW7ZscTI43HrrrUFXSVhPWWmUnSXeuedfWcFYGnok1YANtfPNN9847xl9LhWmyED7/I9//KMwzTjr6jguuOACJwtHoRujAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQRKiUBawRPNmjVzOhOTGXz99dfJqjjLg2QH0DAIQYruzJ4/f37cqhpCIFOdsHE3UkwW1K1b184555yke6PhNZYuXZqw3tlnn21K/Z/Joo7g888/P2aTygqiAItERedXog5wZQsIUtTBnagky7ChIA8NSZJKWbFiRdxjD9qO9nvYsGFBq6dV76WXXrKTTjoprcCBeBvUPisYYePGjfGqhOcrO4KGvtAwMZksChi64oorkjapgJEjjzwyab1EFRRIVtjPnKuvvjrp8DOJ9iHWsoceesjuv//+WIuYhwACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggECZE0greEJKygSRrAQZikB3QScLsmjdurV169Yt2eZs8uTJ9s9//jNhveeee85q1KiRsE5pWnj00UcHOpyFCxfGrffKK6/Y66+/Hnd5YRYkartfv35Jm54xY0bcOskySrgr6vzbvHmz+zTqccyYMVHzvDO0n6kOAaNO+SBZMbzbiTV9/fXX26ZNm2ItKvS8KVOmFDrAI95OqG0FBCQrH3zwgb3zzjvJqqW1XENfJDpHFLhx1VVXpdW2f6XHHnss7eE7pk2bZk8//bS/yYw8//vf/572fmVkB2gEAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgWIikHbwxODBg5MegjJKbN26NWG9H3/8MeFyLdSd58mKMhBccsklCatpmIPC3kWecAPFcGGfPn2SDn+h3V6+fHnMvVdwQpDsFTFXDjjzzDPPtFmzZkXVPuigg6Lm+WckGlLjyy+/9FeP+3z8+PExl23bts2SZbA4/PDDY667M2bOnj3bXn755YxvSgEZp59+esbb9TaooUfeffdd76yIaQ1VoWE+irIoU0288t577znDbsRbvrPmB80O0blzZ9N76bbbbrPLLrvMNPRNkBK0/SBtUQcBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBkiqQdvBE/fr1kwYiKKtEvE5pF2zEiBHuZNzH448/Pu4yd4GGFxg9erT7NOpRQysoTX1ZK8qIsO+++yY97MWLF8esc/nll8ecH2umsiCMGjXKcnJynMdrrrkmVrWY82Ld4d+2bVtr3rx5zPruzHjnl7I6aLiEoCVegISCE3QeJyoagqKwRR3dChS4/fbbnWAhZVsJWjTsSqbL448/bsqOEaScdtpp9sUXX5iySShLh7IsaHicIEWBObm5uTGrjh07NlBWBJ2jEydOdF4nBX3MmTPHtP96zycrw4cPt7lz58asdsstt8ScH2+mgrw0FI1ex0ycE+52Pv30U3cy7qM+2/ReePbZZ+3mm2+2Bx980H7++Wd744034q7jLlAQS6Lhb9x6PCKAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCBQmgUqFObgTj31VPvkk08SNvHVV19Zr1694tb58MMP4y7TAt1NrX+JyqJFi5Leof7AAw9Y06ZNEzVTapc1btw46bHJ0F/mz59v6lxOVtTRryCYFi1ahKtqXu/eve28886zQw891NRWoqLzSPvQpEmTiGrKFKIO4XglXuBAvPnx2vn2229jDtHwyy+/xFvFma8ggQ4dOiSsk2yhOriVFcVb8vLy7N5777W7777bOzvmtIJVMlk0XMXzzz8fqEkNzXPIIYdE1NUQO8qAcPLJJ1uyoXsUmKIMNccdd1xEG3qSbLgU1dG6Or+8Re/z888/3zScSqdOnbyLYk4r60nLli0jls2cOTNw8I3O8TvuuMPq1q0b0YYCcuSgAJx0y8aNG5MO7zJkyBC79NJLozZRrlw557xSZhLtR6KigBMFK1EQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQKKsCaWeeENjAgQOTuqlzM15ZsGBB0g7KIEMHXHvttQmzA+y33342dOjQeLtR6uc3bNgw6TEuWbIkqs5bb70VNc8/Q3f3+wMnvHVatWplCqAJUmIN4eDvmPe3o2wjsYaGSZSFxN+Gnit4I1Y78TJbuG0MGjTInUzrUUEK/sAJNVSpUiVn+IVYGTn8G1KGgUyWoBkf3nnnnajACXc/srOzTedP9+7d3VlxH1977bWYy5IFrlx00UVRgRPehtq0aeMENXjnxZqONWRMkIw4aktZL5Tlwh84oWXK+KJzP5UsIlrPW5IFHanu7rvv7l0lalpBLMmycMybNy9qPWYggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggUJYECpV5olatWnbiiSfa22+/HddMndirV6+22rVrR9X5+uuvo+b5ZyQbskN3tifr5H/qqaesfPlCxYn4d6tEPY9l7z+AFStW+GfZv//976h5/hk33nhjRMYJ/3I9VwDFbbfd5gxJEWu5O+/FF1+0iy++2H3qPB544IERz2M9mTp1qu25554Ri4KcWxErhJ5MnjzZlDXBWxRIkKj4sx4kqutfpo53DfWQqGjok4cffjhRFWfZ0qVLLUiQTNKGQhX++9//Jq2mrA6DBw9OWE8BFMr4cvjhhyes98EHH9jy5ctNQwF5y0033WQ9evTwzoqYPvrooyOex3qSKOuNW1/b9pcgQ2UoKEKZQZThIV5p1qyZPf300zZgwIB4VRLOr1q1asLlWqjXS8Fhfj93RQ3d8/7779vChQvdWRGPVapUyegwIxGN8wQBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBEiJQqOAJHaPuak4UPKE6o0aNitnRmuzu7p49eyZMJZ+bm2sXXnihNhG33HrrrUmH/Yi7cilZoKERkhV/gIUyUUyZMiXZanbBBRckraMKyhJw++23J6w7adKkqEAbBQQoe0GiLAS//vprRPDEunXrLF42htNOO800TEasomEWvMETykTxzTffxKoanhckuCNc2TcRJGuFOsTV8Z5s+Au9XpkKnvjyyy99exr9VEEdQcpBBx2U9PVTOwpS8Wey6dixo+lfYUq6Q/VoGJdkReezMoQkK8qeomCTIEPg+NsKMuSO3jcKErnllltMw9w0atTI34wV5jyNaowZCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCJRCgUKnYwhyR3Wsztht27Y5d0MnMlVHd6Kiu74TpbVv3769Be3kTbSdkr4s1p31/mPyd9Iqk0Gy0rdvX6tRo0ayas7yOnXqmIZPSVZibVcdz4nKuHHjIhb7n3sXaoiXeEVBPt4yY8YM79Oo6c6dO1u6nfNqrGvXrlFtxprRtm3bWLMj5m3fvj3ieWGeBAma6dOnT+BNHHXUUUnrLl68OGmdWBWU1WbmzJmm4VWUbWTYsGH2yiuv2L/+9S+766677NJLL421WsJ5CpoJEnAU5LPP3ZCCzNIpyhoR5H2jz8Hzzz/fyQKj9+UNN9zgBLXJJpPnRjrHwDoIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIlASBQmeeUGp+DT2gDst4RWn5H3300YjFEydOTNpBedxxx0Ws432iIRbuv/9+76yoaaXLV0r6sl6UlSBZ8QdPBFlHnbSpFN39rmFcEhVtt0OHDhFVNDRGotf6xx9/jKj//fffRzx3nzRo0MDJUBEvC8Bnn33mdDS7wzBMmDDBXTXmYyqd5/4GFNjjz/bhr+M+b9GihTtZ5I9BggYOPvhg0/s+aAnS+b9o0aJAzc2dO9fJZKOMIB9//LEtW7Ys0HqpVFq1alXS6sqKo4CgoKUww7uce+65Sd833v3Qe8z7PqtevbopA4j2Qee+gn4oCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCAQKVA+8ml6z5LdVa27onUHtLfoLvFE5YADDrDmzZvHrKKsFZdccknMZe7MoUOHkqr+T4ycnByXJe6jP3hi4cKFceu6C/zruPPjPQbJ0hBru8myHGiIjs2bN4c3G2+oDXdYiHgd2QocmDZtWrgdZTNIVDQcQ7qlWbNmgVetWLFi4LqFrRgkaCbI6+jdjyDDicR63d028vPz7T//+Y8zhEe7du1M7+2XX365SAIntM2VK1e6m4772KpVq7jLYi1I1czbximnnGIKWEm36Lz+5JNPnCw8ynaioVCee+4527hxY7pNsh4CCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACpU4gI8ETykCgu5sTlZEjR0Ys/vzzzyOe+58kGrLjpZdeiriz2r+u9uXee+/1zy6TzxW0Mn369KTHrqwM3hJr+Azvck3XqlXLPyvh85o1ayZcroWxtlu1alVLluXCHWpCQRTxAnPcYAfdhR+veLNYjBkzJl41Z36QjAoJGyiGC4MM8ZJKxgUdYpDzJN6wHfPmzXOGrTjrrLNs9uzZO0UsSPBE3bp1U9qXrKyspJ+R8RrU0B3K7KNsJZkocrz44oudLCw//PBDJpqkDQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQRKvEChh+2QQKVKlez00083DZMRr3zxxRd2zjnnOItzc3Ptyy+/jFfVmT948OC4y3XXeaKijvZk7XvXT3a3/fDhw+3KK6/0rmL169e3m2++OWJecXwi9yDFn0UiSLaDrVu3Bmk6XEcZBJIVnUuxSv/+/e3rBNlKNMRGt27dLNFQG/vvv7/TdPfu3WNtwpk3atQo+9vf/mZbtmxJGKCjwIkgQQFxN1RMF6ijPllJ9XUPUj/W+abAHw0zocw1O7MEMYgX7FFU+9mkSRP76aef7Iorrkg4RFIq25erMlq88847lujzNpU2qYsAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBASRVI3lMa8Mg0dEei4Ilhw4Y5HdLqJE12t/Nhhx1m/s58724k64T/6KOPTP8yVZTVwM1s4LbZunXrEhE88eabb7q7HPexc+fO5h9WIJG/29CqVavcyUCPQeo3atQoZlvJMk9o6I4zzzwz7rmlIWDcoRbUOT5o0KCY58hXX33lbH/q1Kkx98OdqWCO0lji+XuPdcWKFd6nSadXr16dtI5/GBMNzaPPlJ0dOKEdrVevXtL9TTaki7+BvLw80/AZhSnKqPP88887ARSPPPKIvfrqq4VpLrzuCSec4AxX474/wguYQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQKAMCWRk2A557bvvvuYf+sHvOHbsWGfWiBEj/IsinicasiOiIk8SCihwYvTo0QnraOGQIUOi6uhO92Tljz/+SFYlYvmcOXMinsd6Em+7yiqRaGgYNyDnu+++i9WsDRgwIGK+AnRiFXXWz50713799ddYi8PzdMd+aSzJ3sM65lmzZqV06EHOE3+wjob1mTRpUqDtKBDmpptucgIL3n77bSfrjIJppk2bZt98802gNryVggzJofNk3bp13tUSTufk5CRcnsrCPffc01544QVbs2aNffbZZ3bNNdc4Q5uk0oa/7nPPPeefxXMEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEypRAxjJPZGVl2RlnnGEPP/xwXMCRI0c6nXwff/xx3DpaoM5QSuEEVq5caRdeeGGgRo4//vioeg0bNoya55+hIUHuvfde/+y4z4MMIRJvu8oWoQAIDTEQq6ijXZ3ZbuYIfx1/sMOBBx7orxJ+rkCMcePGhZ/HmujZs2es2SV+XuXKlZ0glURZEn755Rdbvny5M3RNkAP+9ttvk1bzB80888wzSddRNhLVUxaYeGXjxo3xFsWdH3Q4FgVn9OjRI2473gUa+ifTJTs72w499FDnn9rWUDPKkKOsGBri44MPPrBly5YF2uwbb7xhd999d6C6VEIAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEECgNApkLPOEcJT+PVFR0MTChQujhsDwrqPAiSB3fnvXYTpSQMMqnHLKKYGGCejevbu1a9cusoHQM39ndlSF0AwFLChLQ5Ayc+ZMmz59etKq/gwE3hUOP/xw79OoaWXaiNfpf8ABB0TU32OPPeJmsvj++++dzueIFTxPjjzySFOQQWktnTp1SnpoybLHuA1s3brV6cR3n8d79A/bMXHixHhVnfnKkPHWW28lDJxQxXSG/ShXrpxpmJdkJWhAhAz+/e9/J2uu0Ms1JNJee+3lDF/z1FNP2bx585xgoiCBPnLSflIQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQKKsCGQ2eUCddok5HpdJXWv1ERZ3+lPQFfv/9dye7R9DhCk4//fSYG9Pd97qzP1kJmnkiSD0FJehu+njFnz3CX++BBx7wz3KeKzOB/7xUphT/UB7uyh999JHpXI1X+vXrF29RqZh/9NFHJz2OO++8M1Bn++uvv540gEHDsfTp0ye8zby8vKTrKJCmdu3a4XXiTXz66afxFiWcnyxQRyvfeuuttmTJkoTtaOHLL7+cMGAsUQMKujjvvPPi/nv++efjrl6+fHlT0JAM/Od/rJWUrYaCAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAQFkVyGjwhO7YPvPMMxNaXnPNNQmXDxw4MOFyFkYLbNu2zb7++mv729/+Zt26dbPZs2dHV4oxp0uXLk6nbIxFzqx4gRXe+i+88ELcoTLcespS8Morr7hP4z6edtppcZdpgTJkJOoEjnfc/fv3j9muhjyIVZJlKzjooINirVZq5p100klJj0VZRO67776E9ZSV5MYbb0xYRwv/8pe/WJUqVcL1gmRA0LAhycro0aPtySefTFYt5vJ4gTX+ygr2WrNmjX92+LnelxdddFH4eaoTGpZEwRfx/l133XWWm5ubsFkFQnXu3DlhHS0MOlxJ0oaogAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggEAJFKiQ6X0+/vjj7a677kqr2RNPPNFq1qyZdF11bLZv3z5pvaAV3njjjaRV/R37DRs2TLpOJipMmTLF7r///qim1q1b59ydr45+ZZtYtmxZVJ1kM3RXe6LhJwYPHpysCWf5EUccYf/973/tuOOOMwXQuGX79u327rvvmt/OXe5/POqoo/yzop5rW4nuto9aITQjXsaKAw88MFb1hPOUJUFDfpTm0rZtW+vdu3fCoUt0/HfccYcpcOfaa6+NyhiiIV30fg5yXvqzzVStWtUZUiXeECzatobMUEaFeMFWGsLljDPOUNW0yiGHHBJoPQVoKJhGgSQ6N93zf/Xq1aahM2677bZA7cSrpOwvibKgyEgZMOJlXVG7yiiRbIgRZWdJ9FkQb/+YjwACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggEBpEch48MSee+7p3OWsTv9US5A73tVmYTsk/fv14YcfWqKO2ssuu8wefPBB/2o75bmyKfz973/P+LYUkKHXKlGpU6eODR061F566aVE1Zxlp556qnXv3t2OPfZYpwNZgRNyTdTx6230ggsucDrMvfNiTStbRKrBE/vtt1+spqxjx47WoEGDQB38bgMa0kLDIZT2otfjp59+SnqYCpRSdgSdJwp60D8FFAwbNizpuqqgIKhYr0+nTp2SnjvHHHOMk9VhyJAh1rRpU1uwYIGNGzfORo0alXR4oGQ7V7duXWdYl88//zxZVWdIDu2LAmt0PulRwSOZKAr8SfbZ89hjj9mqVatMWSg6dOgQ3mx+fr6NHDkyYXYZt7Iy1lAQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQKMsCGQ+eEKY6M9Pp8Ned25SiF+jXr59deumlgTakO+p113qyoSzU2C+//OL8C9Swp5Lueg+areSAAw7wrJl8Up3z6liPVZQlQEN6vPbaa7EWx5wXb6iPmJVL8EwNpfHee+/ZBx98kPQolF0iVnaUpCuGKsg+KysrquqgQYOSBk9opf/7v/9z/kU1kIEZ9957rwUJnnA3pQCsREFYbr1UHg877LBAwWgaFkf/NKxNy5YtnWCKVALYFCBGQQABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQKAsCxTJLfQnnHBCyqYKuMjOzk55PVZITeDyyy93sgLE6rCO1ZKyT7z66quxFmVsntoPMlyLNti4cWPr0qVL4G0rOCJRCTo8g9tGvCFA3OWl5VGBJU8//bSTSaGojklDTcTLeHDWWWcV1WYDt6vMLBdffHHg+kVRsUKFCvbII48EblpBTsr8kUrghIZB2n///QNvg4oIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIlEaBIgmeaNu2rfXs2TMlr5NPPjml+lROXeD11183dVhXrFgxpZXVsZpuZoFkG9KQA7169UpWLWK5OnuDloMOOihh1VQ6jZUhY7fddkvYXmlaWL9+fXvzzTeL5JBOPPHEhNlPFCRz5513Fnrbp512WqHaUAYdve6FLQ899FDa7SjbyfXXX1/YXYi5vjJVPPHEEzGXMRMBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBsiRQJMETAlQmiaClevXqVlaGQwhqksl6ffv2tYkTJ5o6rNMtV1xxhX344Yem1yoTRe189tlnduGFF6bcXCrnSrLgCAX6NGjQINA+DBw4MFC90lRJw6T8/vvvKWX7SHb8CsTRcB3lyyf++LnuuutMw4ekW7TujTfemO7qznr16tWzkSNHOkNnpNuQht4obAYLBZLcdttt6e5CzPU6d+5s3333XZkKCIoJwUwEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEQgKJey8LQXTssccGXvvUU0+1ypUrB65PxeQCuqP8H//4h+Xk5NgXX3xhnTp1Sr5SkhrK+DBhwgQr7NAVCuaYNGlS2gEzffr0SbKnOxarc7hhw4ZJ6w4aNChpHVXQfpfF0q5dO6eT/bzzzivU4SuDgwIRFIijYUGSFdV5/vnn7e67705WNWr5rbfeak899VSg7USt7JvRtGlT++qrr0yBJKmWa665xt55552kgSJB2r355pudgKNUhq2J164CMRQ4oWOjIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAEQZPNGvWLHAn+0knnbRLX4vs7OyE2w+amSBhIzEWVq1aNcbc1GZp33r37u1klVCntIblGD58uE2fPt1uuummtIcKiLcXLVu2dNpXEMXVV18dOBOFMk1ce+21TgYMBXPo/Ei3qK0gARz9+/cPtIkgbamhAw88MFB7qpSpDB1BN6gMCf6SyX3Qe0TDO8ydO9c5x9q3b+/fXNznZ5xxho0YMcKmTJliyTKB+BupUKGCc97ofFP2hmTHpIw3M2fONA23oX2uXbu2v8mo540aNYqa558hXwVQ6L3Vr18//+Ko5/vtt5+NGzfO7rnnHnPf502aNImql+oMZV0ZM2aMk7lDmWSSeXjb1+fE7bff7ryGCsSoUaOGdzHTCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCJRpgXJ5eXnby7QAB18ogdD542S3WLhwobn/srKyLD8/3wmQ0J3t6jRW5ouKFSsWalusXHwEtm/f7gTo6DVfsGCB80/z1q9fb8p6otdd/5S1olatWhnb8S1bttjkyZNt8eLFzj8FANSsWdM6dOhgLVq0MJ17O6PMmTPHZs2aZbNnz7b58+c7gRrKcqJsJx07dgwUtJGJ/ZTH+PHjbd68ebZs2TJbvny5Y6DXQQEfCq7Sv3322cfq16+fiU3SBgIIIIAAAggggAACCCCAAAIIIIAAAsVGQJmX9XscBQEEEEAAAQQQyIQAwROZUKQNBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQ2KkCJTV4In/bdtuYl281qlTYqV5sDAEEEEAAAQQSC3BlTuzDUgQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEECgUALf/r7UJsxabb/PW2uT5qx22mpYq4rtuVtN271lbTuiexOrU53szYVCZmUEEEAAAQQKKUDmiUICsjoCCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgjsfIGSkHli89Zt9tCwqfbx2IUJgWpXr2QPnNnVdm+RuWGQE26QhQgggAACCCAQJVA+ag4zEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEECiWwbtNWu/jpnyMCJ5Rt4qA9G9igfZpa5xY1w+2vXp9n5z4x1kZOWhKexwQCCCCAAAII7FwBhu3Yud5sDQEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBMqAwFvfzbUpoWE6VKpWyrKbTt7dDunSKOLIl67ebHf+b7KNn7HKmX/PW79bz/b1rEYVum8ioHiCAAIIIIDAThAg88ROQGYTCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggULYEPh+3KHzAt5y2R1TghBY2rF3ZHj17b2tWN9upuzEv336ZsTK8HhMIIIAAAgggsPMECF3cedZsCQEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBMqAQP627bZgZW74SHu3rx+e9k9klS9nZ/dvba+M/MNZtGrDlnCVRas22Vd/DuXRrVVt26NlrfAy78TytXn2+YQdwRo929a1js1qhBd/Mm6hqc1qlbPs2N7NbVmo7viZy+3nULaLDZu3WoemNe3wvRpb8/o7Aji04vxlG+3LyUtt1qJ1lr99u+3eMrTt0DAjXUP74C+q+82UZc7sfTvWs90aVLPJc9eEtrHKfp+32prUqWpddqtph4W2UT50rCry+WriYvtt7lqbv2KjtQits0fzmrZ3aN/r1qjk1In139rcrTZuxgqbtWSDzQjtW5UK5a1981rWvkk127NlHcuuFH3P8LiZK23qgnVOc0f3amahwwkFqKywcbNWh7a9wQ7cvaEN7NHU3vtxvm0LLaxbvZIN3LtJrM0789Zvzrf3f5rvTNeuWtGO6tk0bl0WIIAAAgiULAGCJ0rW68XeIoAAAggggAACCCCAAAIIIIAAAggggAACCCCAQDEXUEBE7VAn/Or1ec6erg4FLzQKZZmIVwZ0b2r65y+LVuXa/3083Zl90ZHt4wZPTF2wJlzvmuM6RQRPPPf5LFu6ZpM1rFXFurWuY0Me+iFiM99MWmbPfT7T7hjSJRTg0CgUxDHHnvlsRkSdkROXOs/PPKy1ndu/bcSy3+cXbLt+jYr25qi59tHYhZ46K+yd0eYEJzx01t62IhS8cdN/frWZi9aH6/wwdYUzLbNnL9rHmtUrCORwK30/dZnd878pYVN3/hcTljiTrRpVs4dD7fudR4SWfzBmgVOnZ9s6dsO/Jzoe7voNalZxAiBe/GKmKfOHyv6dG1jN7NhdaKN/Xxq2Pmn/Fm4zPCKAAAIIlAKB6BC8UnBQHAICCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggsCsF1FHvln+++5ttDGUs2JVlfe4Wu+6lCeFdaOHJNKGZt742yV4YMSsicEIBCd7y8pezw4EI3vnu9H9HzQsHTmgokqqVstxF9uvsNfbAe1Ps+lcmhAMnVEcBE25RsMklz4yzzVu3ubOcx29DAQvXvfRrROCE9t+7f3NC2SjOevwnJ7NGxMqeJ7e9PikicEL7V7VKBasUymAxuHezcM3v/8ykEZ7hmfjyz0wgmtW/e2PPEiYRQAABBEq6QOywuZJ+VOw/AggggAACCCCAAAIIIIAAAggggAACCCCAAAIIILALBQ7as6GN+HVHVoSfclY6GR8G92pqfbs0tNYNq1u5HSNY7LQ9VFaFjaGhRK47vnNomIomTsDAqvVb7MZXf7VJc1Y7+/Hi8FnO480n7279ujW2ilnlbfOWbXbnW5PNzT4xKhTIoOEvYpVpoeExOoSGDLn79L2saSgwQkNkfDFhod3x39+d6p+PX+w8aviRO4fsFc4S8cvsVXbJ0+OcZcqSMTM0JMfuLXYMUaI2XhoxO7y50/u2stMPaWU1QkEPKsvWbLY7Qvs3PjQMiYIvfsxZZoP3ib1/85bnOvt32eAO1qlZzdAwH1nOUB1qp3/oeJU1Q0VDisQaumPdpq323W/LnToK3nD30ZnBfwgggAACJV6AzBMl/iXkABBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQKC4CWgIjIuOah/eLQUFvBAKTjjj4R+t/60jnaCFd36YZyvW7RjaI1yxCCfOCQ25cUwow4IyLajUqV7R7goFMXiL9vnIHk2dwAnNr1yxvN16yp7hKhNmrnaCIsIzPBPK5PDg0O5O4IRmK0BEw5GcsF/B8BbKNPHQ2d3DgROq1z00nMiFA9tp0ik5oSAMt2wKBW/s3qKmE7Ch/T//iLbhwAnVaVCrst1w/O5udftl1qrwtH+ic6idx8/v6WxPgRMq5f+MYunUvKa52ThGT1lha3O3+le3HzwZKQb3ah61nBkIIIAAAiVbgOCJkv36sfcIIIAAAggggAACCCCAAAIIIIAAAggggAACCCBQTAWGHLSb/f2UPSKGl9CuKgvEt5OX2cPDcuzou7616/49wSbMid/pn6nDU3YFf6lfs1I4aEDLDt69ob+KE2yhbBEq2ndlYIhVDunayOrVKBiGw63TvU1td9L27VgvIvjBXdA+lLHCLQtW5LqToewQ5e3a4zrb9Sd0tqGHtQ4HO4QrhCaa1SsYIuT3uWu8iyKmlZGieuWCoUQiFoaeHNOnIMgj1tAd3iE7FBxDQQABBBAoXQIET5Su15OjQQABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgWIkoOEfXrtqX3vp8t52WiiYolWjalF79/3vy+3ip8bZN5N2DPMRVSEDM5QVQkEGsUrNqgUBD81Dw1HEKo1qVw7P1lAascoefw614V9W9c8hNjS/XZPq/sXO8wY1Pe1bnA38uaaGElm2Ns/mLttov89bY2NnrHCCOmI27Jm5V6uCIA7P7PDk4Z6ACA3d4S3eITv2blfHGtep4l3MNAIIIIBAKRDYMSBUKTgQDgEBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQKK4CHZrWMP27JDQshjriJ4YyTSj7xEdjF4Z3+ab/TLKnL6psXXZL3MkfXiGFierZFVOonV7VKpVC43QkKeX+HCYjSbWoxVPmr7VPxy2yMdOW27zlBZkpoiommFGlYvysE1pNQ4D07ljXfspZae7QHTWzd3Sl/Th1WbjlQT2bhKeZQAABBBAoPQJknig9ryVHggACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAiVAoEYoE8P+nRrYjSfubq9dva81rFWQxWD01BUl4Ah23i4qy8Xbo+fZOY+PsXdCj+kGTgTd4yP3bhqu6h26Y8TEgqwgB+3BkB1hJCYQQACBUiRA5olS9GJyKAgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIFCyBFo1rGY3nNTZrnr+F2fHf5m1KuYBbI83Vkao9tat22KuUxpmTp672h55Pyd8KMf2aWa92tW1xnWrWvVQEEqNqhWtWuUsO/ruUbZ6fV64XroTB+zRMLyqhu7QsCvrN+fbd78td+YP7NHEskNDoFAQQAABBEqfAMETpe815YgQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEBgFwqMnbHChk/YkangqFBne9fWdRLuTcv61cLLV67dHJ7O8oyCsWpD/MCARasL1gmvXEomxk5fGT6SUw9qaZce1SH83J1QcEMmAifUXpWK5e3oXs3sgzELwkN3jMnZETih5QP2bqwHCgIIIIBAKRRg2I5S+KJySAgggAACCCCAAAIIIIAAAggggAACCCCAAAIIILDrBNSR//HYhc6/Z4fPTLojP4eCLdzSvEG2O2lN6xUEVfyxdEN4vn9inGd9/7KS/nziHwWZOI7sUTCkhve4xs8s8PPOT3d6QI+CAAkN3fHlpB2BMLWrV7K929RNt1nWQwABBBAo5gIETxTzF4jdQwABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgZIl0K1NvfAOT5i52l79eo5tyY89tMZvc9fY058VBFj0al+wboOalazqn0NE/DB1hc1cvD7crjsxYsJi07LSWto1rhk+tOkL14Wn3YnZSzbYP9+Z6j7NyONeu9W2hrWqOG29M3qefTt5mTOtjBRZ5T3pQDKyNRpBAAEEECguAgzbUVxeCfYDAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEESoWAgh7O6tfGXhw+yzmepz+dYZ+NX2RH7N3EWtbLtlo1Ktm8ZRttyry19v5PC8LHrA77Qb2ah59ronenejZy4lJn3gVPjrWh/dta64ZVbd3GLfbjtBX2+fjFEfVL25N9OtS1N779wzmsO9/8zX6esdL6dKhnFUNjmvw2f529Fwpu2JiXn9HDLl+unB3du5k9/8VM5zVyG+/frSAjhTuPRwQQQACB0iNA8ETpeS05EgQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEECgmAmcd1sZqV6toDw/LcfZoTihDgoIo4pVubWvbXX/patUrZ0VUufqYzjYjlHFh3vJcJ0jgyY+mRSzXk9P7trL/hLJblMayd5s61r9bI/tiwo6hMz4dt8j0z1vOOKSVfRgaJkXDpWSq9Ova2AmecNvr0KyGtW5UMIyKO59HBBBAAIHSI8CwHaXnteRIEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAoJgIhJIX2An7trBnL97H9mhZK+5eKduEgh8eO7uH1aleMaqe5j1yTg87aM8G4SE83Erq0H/qwp7WpVX89pWhQaVyxR2P7rqxHt0hQmItq1ihoEsp6882VU9ZGtxSqUJk4Ic73/tYydNOxPzyBe1761TMKm+3nLqnnTegbXgoDXe92tUr2Q0ndrbzQtk4KoXqxSqeZq1CnG3HWq95/Wzr3KJgyJBB+zSNVY15CCCAAAKlSKBcXl7e9lJ0PBwKAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIlAGBnJwc69ixY4k50vxt20PZIzbazMXrLT9/mzWsU8XaNq5hNaoETxK+PdSjsyDUxqatofVrV7Ga2cHXLTFQSXZ05bo8W7Z2cyirRyVrUKtSRPBGklVTWrwt9Hr95aHRTsYPrfjRLQfHDG5JqVEqI4AAAggUa4Gyd1Ut1i8HO4cAAggggAACCCCAAAIIIIAAAggggAACCCCAAAKlUSCrfDlr1bCa8y/d41OSh+YNqqa7eqlYr26NSqZ/RV0+Gb8oHDihrBOxsoIU9T7QPgIIIIDAzhUgeGLnerM1BBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBYiiwbtNW25S3zcZOX26PvZ8T3sMz+rYOTzOBAAIIIFB6BQieKL2vLUeGAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCAQUODh96bYFxOWRNQ+af8W1rx+dsQ8niCAAAIIlE4BgidK5+vKUSGAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCBRC4LwBbe2vh5B1ohCErIoAAgiUKIFyeXl520vUHrOzCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggUOYFcnJyrGPHjmXeAYDMCcxZusFWrs+zutUrWbN62VYxq3zmGqclBBBAAIFiL0DmiWL/ErGDCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACRS3QqmE10z8KAggggEDZFCBkrmy+7hw1AggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCPwpQPAEpwICCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIlGkBgifK9MvPwSOAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBABQgQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQKJ7ByfZ5NmbfWZi/daAtXbbJFoX+5m/MtNy/ftuZvL1zjrI0AAggggEAJE6iQVc6yK2VZduUsa1KnijUN/WvdsKp1blHT6lavVCyPhuCJYvmysFMIIIAAAggggAACCCCAAAIIIIAAAggggAACCCBQ3AWWr91so3NW2HdTVtiCFZuK++6yfwgggAACCOw0AQUOrsvd6vxbunqz/Tp7TXjbzepVsQM617P9O9W3ejWKTyBFuby8PMIdwy8TEwgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIFASBHJycqxjx467ZFfnLd9o749ZZD9OW2nb6WXZJa8BG0UAAQQQKPkC5cqZ9elQ147p1cRa1K+6yw+IzBO7/CVgBxBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQKAkCKzL3WJvjJpv3/y2vCTsLvuIAAIIIIBAsRZQAOIPOSudfwfvUd9OO7C51ciuuMv2meCJXUbPhhFAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQKCkCIwJZZl4fsQc27A5v6TsMvuJAAIIIIBAiRFQYOLPM1bZOYe3sl6hbBS7ohA8sSvU2SYCCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgiUCIH8bdvt1a/n2vBfl5aI/WUnEUAAAQQQKKkCClB87OOZ1m/+Ojujb0vLKh8a12MnFoIndiI2m0IAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIGSI7B5y7ZQJ84M+3X2mpKz0+wpAggggAACJVxAAYtL1262y49qZ5Urlt9pR7PztrTTDokNIYAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAKFE1DgxL3vTiVwonCMrI0AAggggEBaAgpc1HVY1+OdVQie2FnSbAcBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQRKhICG6lDGiekLN5SI/WUnEUAAAQQQKI0Cug7reqzr8s4oBE/sDGW2gQACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAiVG4NWv55JxosS8WuwoAggggEBpFlAGCl2Xd0apsDM2wjYQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgZIgMGbaStNY6+mUrPLlrFvrWtZlt5rWplE1a1irslWtVMGyssql0xzrIIAAAgggUGIF8vO328a8rbZ0zWabtWSDTfpjrU0IBUKkk0VC1+Xdm9ewXh3qFqkHwRNFykvjCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggUFIE1uVusedHzEl5d6tVzrIjezS2w7s2tOpV6HpJGZAVEEAAAQRKnYACB2tkV3T+tW1c3fp1bWTrN221EaFAiE/GLbYNm/NTOmZdnzu3qOG0l9KKKVRm2I4UsKiKAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACpVfgjVHzU+7M2a9TXXtoaBc7tndTAidK76nBkSGAAAIIZEBAAYa6Xuq6qetnKkXBFrpOF2UheKIodWkbAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEESoTAvOUb7Zvflgfe1/LlytnZh+9mFw9sW6R3wQbeISoigAACCCBQQgSUkULXT11HdT0NWnSd1vW6qArBE0UlS7sIIIAAAggggAACCCCAAAIIIIAAAggggAACCCBQYgTeH7Mo8L6qo+fyQW3t0C4NA69DRQQQQAABBBCIFNB1VNfTVAIoUrleR24t+TOCJ5IbUQMBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQRKscDytZvtx2krAx/h0MNaWs92dQLXpyICCCCAAAIIxBbQ9VTX1aBF12tdt4uiEDxRFKq0iQACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAiVGYHTOCtu+Pdjuaox2Mk4Es6IWAggggAACQQR0XdX1NUjR9VrX7aIoBE8UhSptIoAAAggggAACCCCAAAIIIIAAAggggAACCCCAQIkR+G5KsE6YapWz7K99g98dW+IfomUAAEAASURBVGIA2FEEEEAAAQR2sYCur7rOBilBr9tB2vLWIXjCq8E0AggggAACCCCAAAIIIIAAAggggAACCCCAAAIIlCmBlevzbMGKTYGO+cgeja1GdsVAdamEAAIIIIAAAsEFdH3VdTZI0XVb1+9MF4InMi1KewgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIFBiBKbMWxtoX7PKl7PDuzYMVJdKCCCAAAIIIJC6gK6zut4GKUGv30HacusQPOFK8IgAAggggAACCCCAAAIIIIAAAggggAACCCCAAAJlTmDWkg2Bjrlb61pWvUqFQHWphAACCCCAAAKpC+g6q+ttkBL0+h2kLbcOwROuBI8IIIAAAggggAACCCCAAAIIIIAAAggggAACCCBQ5gQWrgo2ZEeX3WqWORsOGAEEEEAAgZ0tEPR6G/T6ncr+EyKZihZ1EUAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAoFQJLF69OdDxtGlUzfLy8mzz5s22devWQOtQCQEEEEAAAQRSE6ifvS3QCgtXbLRVq1bFrVuhQgWrXLmyVapUKW4d/wKCJ/wiPEcAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIEyI5C7OT/QsVarsNU2bNgSqC6VEEAAAQQQQCA9gfo1goUw5G7ZnnADCnTUPwU+Vq9ePWFddyHDdrgSPCKAAAIIIIAAAggggAACCCCAAAIIIIAAAggggECZE8jNCxY8UaFcsDthyxwgB4wAAggggEAGBbIrZQVqbdOWYNfvLVu22Pr16wO1SfBEICYqIYAAAggggAACCCCAAAIIIIAAAggggAACCCCAQGkU2Jqf+M5V95izypdzJ3lEAAEEEEAAgSISCHq9zQ8WO+HspQIolIEiWSF4IpkQyxFAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEECgxAps3rw56b4HGzAkaTNUQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQKDsCNz3/izbnFcwnEv/rvVt3w61SyzAY5/MsdUbtob3//C96tn+HeuEnzOBAAIIlGSBrVsLPt/iHQfBE/FkmI8AAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIFEOBt35YZMvWbonasw5Nqlq/vepHzU80Y/jE5TZt0ca4VTRaSe1qFa1u9YrWtE5l2715dQuaUj1uo6VkwXdTVkUcyd5takY8L2lPhk9cEbHLe+1WI+I5TxBAAIHSLkDwRGl/hTk+BBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQKDUCP05fba98szDm8WzaUjfl4ImxM9fY6JzVMduLNbNWtQp2VPcGdkLvxla5IqPDxzJiHgIIIIBAyRTgqlYyXzf2GgEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBMqYwIZN+fb4Z3/s0qNeExrW4fXvFtnVr061RauSjx+/S3eWjSOAAAIIIJCCAMETKWBRFQEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBDYVQKvjlpgCl4oDmXO0ly75j9Tbd2m4rE/xcGEfUAAAQQQKNkCDNtRsl8/9h4BBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQTKgMDUhRvso3HLIo60S8vqNmnu+oh5hX2iYTnuOqWD08zWbdts1pJcmzxvnY2fvTYqcEOBHE99MdeuO7pN0s3mb9tuazZutfLlzGpVrWjlQo/FtWhfV4eOrU71CqH9zeyOZsJhewhu1fotViU0bErVylkpM2r9LVu3WaUKhb/HenXoNa0QelGrV0l9P1LecVZAAAEEiliA4IkiBqZ5BBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQKDsCCjR47sv5EQd8+oFNbZ+2tSLm6cnnvy63T36JDIi48dg21rh25Yi6W0Od+U/4hus497DmtiA0bEamgyeyQx3yrRtmh7ffvnE1G9C1vm3N3253vjvDxs1cG16miW9/X2Wn7JtruzUoWMetsDZ3q42YtMI+m7DMFq6MHOKjfZOqTrt9d69nVSoVdOJ/N3WV/e/HxW4TViGrnN0/pKNlKerizzJnWa498vEc96nzeMMxbaxJnQI37e+1ocwYIbpwOW3/JtanfW17f+wS++q3leH5LetVsasHtzZt+9spK+2XUKBIbt42Z7n2828HN7NurWqG66c6kY6DfxvL1ubZuz8tsRlLNpiyfrj7V69GRevYtJqzfwO7N7ACpcgW8kLBEl9O1mux3GYu3ugs1Lp77VbDdH42qlVgF7lm5LPcvHx7b8wSUzDPlPnrI/ajXeOq1qVlDRvco2HE6xXZAs8QQACB4iuwy4MnFixYYK+++qojtP/++9uBBx5YfLXYMwRKocDq1astOzvbKlcO9sUoEwTDhw+3cePGOU2dffbZ1qBBg0w0SxsI7BSBMWPG2EMPPWStWrWyG264werUqbNTtrszNrJx40b717/+5Wxqn332scMOO2xnbHanb2PZsmX2ww8/2C+//GILFy60+vXr2913373T94MNxhcoymvThg0brEKFCjv1uhf/SFmCQPEVKG7f17Zu3Wrr1q0rsuuu2tZ3Yn0+UAoEdL385ptvnBmnnnqq8/2nYOnOmXrzzTdt9uzZzsauueYaXqOdw85WilAg0e9gxeE9V4SHXmaaLit/VyU6l8vMi82BIpBAoGmdKuHOabfa6JxVMYMnvv5tRURddWY38gVOqI2Pxy11Oszd9tqGOqkHhTqonxkxz51V5I8KYlCAwg2vT4vYZ2149LTVUcETv4c61u9+b2ZUtgp3R6cv2mjTF821d0Md8bee0M6ahwIYVJTBwO3cd+suCAVetKy/Y7nmTZ67LqqOgla8wRN/LM8Ntb8jSMBtxw1KWbR6c9T634deo/uGzXKrhh/Vxt//O93OPrS5HderUXh+0Il0Hdz2FfvxeSj45InP5rqzIh5XrNtio3NWO/8mhlyuPLKVVQ4FwHjLhk359o+3p4eCHTZ4Z5vWHTl5pfPv3r/syDYSUcH3ZPriDfbPkNHi1Xm+Jea0tWLdGvtp+hqT5fWhc6V+jUpR9ZiBAAIIFGeBtH4Z2rx5s9188822adOmtI6tcePG9ve//91Zd/78+Xbrrbc603okeCIt0mK70sSJE+3ZZ591/t1zzz2mH7uSlZycHHv88cfjVqtVq5Y1a9bMmjdvbgcddJDVrl07bt1duWDq1Kn2xBNPhHehRo0adu+994afpzPx1ltv2bfffuus2qNHDxs6dGg6zdikSZPsjjvusK+++sr5EVqNtG7d2k4//XS7/PLLrWbN9CNog+zQF198YY899phT9eijjyZ4IggadYqFwPbt25333fTp0539UeCEAihKS9GPfO41+cQTTyyVwRMzZ860gw8+2JYuXRrxspWl4Al9j7v66qsjjj/Ik7322svOO++8qKorV660Tz75xH7++WdTcJGu4127drXevXtb9+7dTZ/zVaoU/LgR1cCfM4rq2qT37bvvvmsvvPCCjRgxIrx57VuvXr3s2muvtZYtW4bnpzIR5Fqfae9U9o+6CBRGIJ3va/PmzbN//vOfKW/2hBNOsEMOOSRqPX1W6zvjsGHDzL32NmzY0PmbUZ/l55xzTtod6dtCqYffe+89GzVqlI0cOdKmTJnibL9///623377Od+Lg342BP2Ofvvtt5sC+IKUNm3a2FVXXRWkapHW+f7778PfDfr06bNLgid0s4XOR5Urr7wy7de8SKFoHIEUBBL9DlYc3nMpHApV4wiUhb+rdOiJzuU4NMxGoEwJ1K1e0bq1rmETZq8LH/eYmWtMneDlwnMsdMd+flTWiH571Y+oo+rq4PZnsrj0iN12yZ392ZWy7KqjWtnFL/zuORJzOsuV1cEtygxx3X9y3KcJH5WR4sp/T7Hnzt/TaleraJ2bVY+qPzOUbcEbPKEgAX/RPPm5ZdaSyMCJ7FB2i1jZMVR/4cpNdu970YETblt6fOGr+XZQ57qmAJegpTAO7jZ+nbM2buCEW8d9/G7KKtsWSrVx03Ft3VnO46OfzIkKnIioEHpy3/uJj39laJiQK1+e6l8t5nMFadzy5nR76pw9Yi5nJgIIIFBcBdIKnli7dm34ztR0Dqxz587h4Il01medkiPgBk5oj2+66SY799xzTcEPicqMGTOcYItEdbzLzjjjDLv++uutQ4fkUZHe9YpyWnfGnXXWWU5HkrudwgRPrFmzxglqeP31193mTHd+pRM8obvKYwWx6G6uO++805555hknqKI4eYYPOsDE119/bX/88YdTUx12pSkrQLLDVyfeTz/95FRTp2WnTp2SrVIqlxflOaBOWL0f3ZJuEKG7fll6XLVqlX3wwQfOIe+2227Wt2/fXXL4Rx55ZETgRJcuXaxjx467ZF921UZ1jdL1OdVyzDHHRAVP/P7773bccceF7wh22/zuu+9M/1T0efS///3PFDwbrxTVtUmdowoK1LXNX5R5RP90bVWw42mnneavkvB50Gt9Jr0T7hALESgGAvouks7nyx577BEVPKGgrGOPPTbqqBRQ8c4774T/vfLKK9akScEPtFErxJih9+UFF1xgWtdf1Emvf//3f//nBIYpcCxeSfU7uj7rlOEiSDnggAOKRfBEkH2lDgIIIIBA5gSKy99N/L6QudeUlsq2gIai8AZPrNmw1ckc4R0O47dQZgZ/2b9jdJbTF0ZGZpcY3LOhaXiEXVXcDBHe7S8JZXJwy7bQb2gPfrgje5g7T4+1qlWw/TrUsU1b8u3HUKYKd9gJLdP0/30x1+n0V9YEDSUx8Y+C788zQsNMHLJHPVW1UPPOsBrOE89/40NDbXjL9D+HpnDn7Rey9QavuPP16O6LAiw0PEduaB+9r59b98vJy+3kfYP9DVJYB3ebH/wceROQ5h+7T0MnU8fMJbmm7CXu/muZslBoiI5KFXZkn/ht3nr7IeQdqyiDiQJHtL7O0UTli4nLoxb/rW8z692utq3akBfaj5U2fOKKcJ15yzeFMn9ssPZNqoXnMYEAAggUd4G0gicKe1D16u24wBW2HdYv3gKKtPf/ePrhhx86d3Flcs91J5L+6Y6vWD+wZnJbQdvSHXK6AzcTRZ3hCpRQOsTCFhl5Ayd69uxpurtO6dFlqB9z9YP0gAEDnJT2iTq6CrsvRbX+iy++aP/973+d5tVhV5aCJ3SX0oUXXugc+1NPPVVmgyeK8hwoX768Pf/8884QD8p+c/755xfVqVzq2l2yZIkTQKcD02fargieWLRoUbiTX3cuKw1527aRUfilDj7GAWVlZZkC+oJ24MVowpmlu7W9Q7uoTV1XFByjO7jdYC49ar6yUjRt2jSquaK6NuXn59sll1ziZJxwN6rMVQMHDrTc3FwnmEcG+ve3v/3NuRa6n6Fu/USPQa/1mfJOtC8sQ6C4COg6mU5RcKK3KDua93u9PrOPOOIIJ1vZb7/9Zp999plTXZ/jGmZKnzn6DApSFPg4ZMgQ098lblHbyuqm7Baffvpp+DuxPrv0WafvlP6S6nd0fe6k8rkbJGOPf594jgACCCBQ8gWKw99NUuT3hZJ/LnEExUOgd/vomwgn/rHWvMETE+YUBAdor5vWrRyxXPMmhbIpfPv7Kk06RQEIpx8Q/fe1u3xnPGaVL2edm1eLyGSgzvfNW7Y5w0Uo68CcpbkRu9KqYbY9/NdO4Q791Ru22LnPTI7q9FeWDWV26NGmZkTwxNSFBcNNzFuRG7GeuyF1/i8OBXG4Q3NouAxv6dYq8d8NOqa7T+0Q3kcNPeHPRqEsGUFLJhw2bM63FaGMDwpycMtZhzSzrrsVZI/uHjque3xZM6aFghb2bLHjeGNl6dCx3hIaKqVmdgXLD2WqGBkKfHj04znuJmI+zluxKWJ+l5bV7aQ+O26WUVaQvVrWtIqhgA29Bm6ZHwrMIHjC1eARAQRKgkBav241aNDA8vLyYv7zpi/XD1Kx6unHMErpF9APj/7y73//2z8r4fNbbrkl4hzSj51KB6wfMXUnqfdH0pNPPtk+/vjjhO3tjIXTpk2zG2+80dmUfuj17mMq29cdcRrmQ0PZuIETai/dsn79+nDHutqQrRz/8Y9/2KOPPmr6IVopzFW0vfvuu8+Z5j8EEIgUUAeL3jtvvPFGyne6RrbEs50toKGk3KJsCWUxcELHrw65FStWRFxfY31f0zxdK9yiNPbeouGf3PKXv/zFyfrz+eefO4GTeo9MnjzZGRJKdRSY9/7777vVw49FeW164IEHIgInFFilLEu6m/yll15y9sl7fBpSTkOQBCmpXOsz5R1kv6iDwK4WUEBVvM8T/3zvZ4oCINyi7/tnn322+9T++te/mu5+VfCivhsri9G4ceOsffv2Th19vuj9HbQoYNgNnNB3619//dVp87bbbrP//Oc/TgCFshK5RRnuvCXd7+j63HWLglz9Hv7nyrxBQQABBBBAAAEEECjZAjWqVDB/AMU4X2aEMTMiswEc3qVgyAkdvTq1lY3BW845tLlVq5LlnbVLpls3LOjMd3dAHf0qo6cVBHu4y64e1DoclKB5Gp7jiqNauYvDjz/9aaLME96Ss2CDbc3fEXg9JTTtFgWTeMuUBTsCJhTI4Q/gcIMJvPW901f59lFZQBT04S0LVkUGEHiX+acz4VCtcpY9dmbniH/ewAlts3f76KHNF3iCPGYvjR6+5MZj2zqBE1pfwTCHd6nnZLPQ83ilZuic9pZJc9c7w7W4r0u5UFqPi/q3tDtObh/+52YL8a7HNAIIIFCcBdIKnijOB8S+FR8B/TDplsMPP9yZ1N1hc+bMcWen/Ki72Ro1auTc/aVOEaXb9v64qR9X9QPqripKD64UwG7RD6P160d+4XWXJXtU8IJ+xHXLzTffbB999JH7NOVH/eDs3u2mzl91EuluWLcoy4SbsUHz1Lmk8SspCCCAQGkR8A654u2oKy3Hl+njWL58uTOck9pVIOB5550X3sTcuXOdzB2aodTyL7/8slWvHjkeqYZ/8nZoxgqqLKpr05YtW5yhONwd1rAdp59+uvvUedQ1UMETV1xxhfNc18gggYOZvNZ7dyiRt7ce0wiUBoEvv/zSRo8e7RyKhlPyfiYruMkNHFa2GA114f980fd/7/dW/V2gzA5Bitp3izLfaEhJb6lbt254mCnN1356A6vS/Y7u/RulJGZ38xoxjQACCCCAAAIIIBBcwN9xPH7WWic7g1pYtjYvNFxCwR36mndAp8ghOz7/dblp6AO3KFtA3z+HrnDn7arH5aH995eqlXb83qxsA96ioTC8GTfcZXu1jAyQ0PyFq3aYtAkFZ2g9b/lj+Y7v/ZND2TjcogAHubhlcmiICpU5yyL/RlBWjwY1K7nVoh61rSa1K0fNb90gMngib2tk5ryoFTwzMuHgac6ZXLdpq2l4kuGhITTeH7vEXv9uob00MvHv+LOWRAZP7NOultWtXtHfdNJza48Wkb/9qAFl5jjtsQl2x9sz7K0fFjmZUhT0Q0EAAQRKqkBkmFgxOQqNn60fqTRWtn6g3nfffZ0f1HRXvLez17+7SveqrBYjRoywGTNmmO4Kat26te2///529NFHW8WK0RcDfxuJnquj/t1337WZM2c6P85pbN5DDz3U+achKtRRrqLOgsGDB4ebGjlypI0fP955rruoKlWq5KSyVgo8De2gYIBOnTrZCSecYC1btgyvF2vCTTOtNLF//PGHU0Xr6AdHpbatWjU62lOVNJ7vsmXLrGbNmk7adKUu137JS50FGstXadS9d+HKUGOUKyOBUl9rG0pZK89kRe27d0sdddRRTmp7vS4q+qHTm6EkWVuJluvY1a5+QNUPkjqWxx9/PNzZk2hdLXNdyoVCIi+99NKE54heX73OKqqr19Ff1EnkjvGuTBg6D7zDZPjrJ3rubkt3xL322mt28MEHm94b6RbdJe8W+euY/UXvF3WOucOt6K68VFKYu+1p3998803nrkB1sGkc6q5duzrjyQcdRkM/Uusc1THrbvHs7Gzr1q2b047OQ++P6LpD8cknn3Q2r/PVLXo99P5SUeeeP+WyPiM0prW2ofXWrl0b3obO91THz3a3q0cFnuhzTJ8bSiWtIR723HNP69Wrl+29997eqlHTOh6N5T127Fgn2EjH3qZNGxs0aJDzeehfwT2Pf/zxx/AipbPWcCwqep+cdNJJ4WVBJ3RntT4DZs2a5Xx+qHNBKa21/+3atUvYTKY+q9SZqM9Kva+USlvnqD57TzvtNKtWreCPonTPgVTOM/eA9br+8MMPztMzzjjDvBlh3NfC/awNuv9u2+6jOvl1zDp/9E8d1/qc0zmkYLRE10K3jXiPEyZMcM4vfcbrLld56k5hfcYEKam+b77++mvns0DpZ92i99tDDz3kPrWrr746PO1O6Dqna6fq6nNE10l9Buj803Qq5bnnnnPe3wrgc4s68nVdVNFwYmeeeaYz7b9m63vIt99+azoOmelz3T9ci64/b7/9tpNpQe99fT61atXKcT3kkEMsVhp7fU7qs1bXV70GCmrTsWoftQ86h3S8Gk5C027Rcl339Lmlz9M+ffo4GYo6duzoVsnYo4alcMutt94a8Z7zBvOdddZZbrWoR31muEXvZX8pqmuT7lJ3Oyr1/pFjvHLttdc6GZi0XJmYdI1U52m8kslrvXcbiby99ZJN69zQNUSfmboO6Pqj73mnnHJK1FBW3s8zfQf0DpPg3Y4+j/SeVNH7T9/tvKUkvAe0jzrf5KOOeWXSU+YCff/VNTZRKcw1PVG7qX6eqi19DrlZXPS5oWuzrhN6LfVP1wfN07XC/73Hvy+Z+L7mbzPIc/3N5s364p3W+gqqcosCJ+L9faProrJQ6Fqrz9kg10Zt2zu0nr6XxSoK2tD5ofeRis4Z93Mh3e/o7meS2nO/n2o6E0V/0+k8UDn33HMjrhtu+/pccIPY4/0to785Fi9e7PydcOWVV8b8e0Hnrb6j6jNd34f0fVnXIv0rqu+H7jEkeiyuvwV49zmdz6FMfbfUfvBZ7X01Mjedzmd55rZe0JL/+qDvhrp263ulPvf03VS/rZ144onhz0vtuz4bVE/r67csfS7q74JEn1Pp/A3l/45du3Zt5zNEWcv0HVif4/oMOf74452/OQuOrGAqE20UtLbjPZHudwO1U9i/q7z7oul0/25K929v//bd5+7nTrq/L+i7lr6T6PtjcfpN1z0+HhHYFQI920QP3aHMCN1a1bRf/ygIANC+aViGpnUKOu/Xb8qP6hQ///CWFv2r7q44MrOc0LAQ/lLlz2CHpWsiAyvaeYac8K5TIzRkhIIWNOSHW1au37GusiH0aFvLvptSkMVCQQBtG1W18XPWutVDQ0XUsNpVK4SHEPn1z2Uz/QEDobYSlaZ1q8RcnB3K/JBuyYSDu21lKXnl24VR2TTc5fEec/PyQ8NoRL4erRrE7kdqXi+2gdv2PiHDbq1r2ITZkeeuXr8xM9Y4/1RX2UAO2b2unbp/U6teDLKkuPvPIwIIIBBEoFyo4ySjIWD6cd29a08drwMGDEi4H/ojTcMSqGhddUJpfOpYRZ0V+gEtVqevOpo0hrX3xzBvG/oBTF/c9Zhq0Q8xF110UUTqZ28bxxxzjD344IPh1LH6Y/T1118PV1Hn8wsvvOA8V1pYPdcfErGKfixU9oRYRZ2hGp/XzR7gr6POAWV70N1b/qIOR/3op+NXUIM6smMV/WCmTla9hno9YpWbbrrJGeoh1jJ3nl4nN2hA6W/1Y7x+WNO+a1/UqRHrddT6GnpD6dRV9GOq/wdVZ4HvP+86OkZ19sZr37uqAlbctL3yVTBMrKL9VceDioJ43A4Eb10FjKhjU8eo10J/MOoHB/1ooTThmudN1+tdN9a0nHNyckx3y7rZK9SmOtNU9GO//qgNUtR54nbw6lFDn8TzUcdcv379nGb1OigIIpWifVYa5ljnqQx0t5/SubudRPrBYffdd4/YhF5Pvd+9PzJ7K6hTQHXUIaTiPT5vPe/03Xffbeogc4teU3X4xfvM0L4qWCpoh7Lbrh51F6P/Dmfvcg05o3T3Corwl0mTJjmfZfGOXe9vte8N3lHniPuDub89Pe/fv39KWUv0mad9fPrpp2M158zT+an3ZqyOikx9VumuVAWxxDqX9D7Xuel2eqRzDqR6nrkYSt/9yCOPOE/Vua/3vVu8n7Wp7L+7vh71ntB7z73r1rtM0+qM1/uoadOm/kVJn1911VURd+N7V1BnqI5LP5qq+K9lmpfO+0ZZc3RHcKKiIA63rFq1yrSfuh7FK/fff384W0C8Ot757uvineed1meKrs8q3mu2fjDUdcL7WgwdOtT5XFZdvVe0L4muU2pbQUiuq9ZTUUCI28mkNvVZ4wZw7Kix43+d67pOqWNby9977z3v4vD0sGHDYl7/wxVSnFCwS4sWLZy19Hmo/fUGLCnoQ8evos+BeNcU/RDvfsarM9cNrNR63vdtpq9N+hxS4KyKghn1XSRRca/VqpPo+2umr/XuPiXzdusletTrcdlll4XPz1h1FTSkYCm36PPG/RzVPF0T3e87bh19d9H5634W6/u0u05JeQ/o9U8U5HP77beHh1xzj9t9LMw13W0j1mM6n6dqR508bjCQMr7oe4M3GM27rYsvvtj5/K1QITpePhPf17zbSmVanwNuoI6uPd7PNQVCuNe3nj17xv2bKZXteeuqo1BuOncVQOPuh7eOO63vs+73RH2X1+exSrrf0fW9/ZxzznHa0N8q7vdYZ0Yh/9P3XJ3HKgooUWCNt+gzW5+z7vtYHZD+gHhdi93gZAWmaGgUFf2dq2NW0WeIhmH0Zv1wFvz5n/4WVaBWrFKY74cKIFbAs4qOoXLlgg4FzSvOvwVo/1TS/Rxyv8Po/Ev3uyWf1eb8bRPv768dr1B6/6f7We7/HUxZId3ifc/pvO/bt6+7KOGj//qgv+u9mXbclXVTgYLw9PemviPpOuIv+rzQ3+w6//wl3b+hvN+xNbTbPffcE/G7mXc7+m6sv0X93y8z0Ya7nXTfk+76hf27ym3H+5jq301atzCfrd5te6dT+X3Bfy7r3Cluv+l6j43p0iug77aZuKFgyCNjAyE9cWbiG4piNfLQh7Nt5G8rw4tO6NPIhvZtbg+E5n/jmX/uYc3tmH123Aimyq+NWmhvfL8ovF7j2pXs7EN3/K0enhmaGBbKPvDbn9kWNF9BGP1CQzCo9Ax1djeOkU3BWej57573ZtronB03Ymm2tvX8BV08NSInV2/YYqc/XjA8qn+d856dHJFVY+82NZ1hHCJb2fFsyOO/2poNW8OLlH3jhmN3BLkr88bjn/4RXjawewM7vlcjO/eZyeF5r1yyly0IZbq48fVp4XkvX9zF8Rs+cUV43q0ntrVe7WqHnz89fK59NG7HjTWaKTcNj+EvGjblk/Hx6w26b8d3Z3e98/u1sME9GjpPM+XwzPB59uG4pe4mAj1eOnA3G9C1vilTxWmP7vjdy13x7NDQL8eFHP1Fw28c+8D4iNn+uhoO5YVQpguvScQKnica8kRDeMTKcuGpxiQCCCAQU+CSl2fEnO+fmeq1OdlN3uX9G9iVz/VjtfdLtv5Q0w/2blEncqwOfaVmVlCB++OW6ms9fWl3izo+9CO6+4OROz/Io8bWdYMf3PrePyL1h6c3lbVbJ9ajMk+4gRPaP/dHOLeuflBT1L2/qBPXv/9a33uMOjb9AKhOmnhFd9Z7fyR0xwp268vxzjvvjHBWx4+36I9cv4d3uaa9y9XZq45eta2iHx/HjBnjTGfqPwXpuOeKXmu3EyxZ++6Pz6rn/eHWv546pdyizqtYRXdOu+eXsl8kulMj1vr+eQrY0Z3MbuCEf3kqz93MJ1pHr6f/RwhvW967L91sId7liabV6ek/T1XfPc/low5Z7x0M/vb0g686jr3BAzpPveehMjno7jZ1YqnoB1T9yOs/n7VdzdM/74fhwoULnc4h72eG3ksKjHHPI+2rgkj0I2UqRT/yeAMntF86HtdAbSlwRHcF+ouOR0Fg3mP3rqf66nDQ3YLeEuvYdRzusbudEN51Ek3fddddUYETrou7nj4H9Frqx3hvyeRnlSzc95T/81Lvc/0476boTvUcSOc88x5nsml91qay/2576qhQp6TbWa/XX5kOdG66RR0equMNOHCXJXpUloMnnngioor3WqYfQmOdl+4K6b5vdJebzkX/OeSen3p0i+5MUge7N3BC66kDzXu9u+6660znadCibBX+fVB77j54HbxtKrOI+1povvbFexz63PcHTvjb0ueV7vJTJpd4RZ+J7rUl1rmu66euCe51Svvg346u7bF+/I63zWTzlYHBLRpCyhs4ofn/z955wFtRXH98pHcQREABEVAUFcTee2yJPRprYok1amzRmNhrNGo0ln+sMSbGWGONvffeUVQUBUFEFBFEqv/9Lp595+7be9+tj/fwdz6fe7fNzsx+d3d2d86ZczCYQCHLL98zBWWNN8LC8MdLLZ9Nvm3KUhz7ejDPu4mJr5ets2m1n/WWb0O8LV2hKe+rvCt7SV8ntEsYYppgkOnvJdoAlMteUJpaW4xyxwwnSNMc7gHazLThRJoL17g3fLbjr+SZbnlkTcttT9N50aab4QTtQvqdAa9cKLrTUo33tXSexS7TLpiSn33Sbag3ULZrDe9SKIc4Voxrjz/++Ng7hXkPKrZs0tEe8L3Fte6/idJ5YNxl74lptuW+o/v3Oww3pk+fHhvE8u2FYSbfD/7403UqtMyz0yTLyw/fRnYfky7r/dYb4prxmeVpU86XGU6kuZCG56Y3krP9qvV+aPn5aXPoC6ikHbJjLffdkv3VVuf//jK+5Uyr1ZaXU3ZD+/C9aYYTPPO4X00wgsTYEg8P9u5IGv+uTXvFwBL71rJ9q/UNRcg0/9xNP5epu383svL9tJI8Kr0nK/2u8sfh50v5bmK/WrWt5fYvNNU+Xc9Y8yKwIAlsEI3A98II/XnRu/EL79cZK7B9nSj8hJfJP3hgsHV4DzjzttH1ft5wgrSjP/s2/C1StvMbOzk3fIblVen0Lmd0YHmtPqjOMGHxrm1sdTxNe4Gwjd9FHgu84QTrF3XhJNJhPfDawc+EUBwo5pft09FWxdN3P50e3h5Xl46VQ/vWPRNzEtdwoRocPolClaQNJ/DssMXKi4UjfjognLjToHD27vMHQ2UdSud2rWJPEH4beWbJ+K8avl7atm4RDtm8f7jl6BHh2O2WDluv0jNgJJElYz6fEe4s0egjKx+tEwEREIHGJNCkjCfosOGjjhEtuEPFapSReHRompxzzjmBDhIvuBS1kSi85NPpxMceo+v5GLSR48zToeM71H0+WfMoKk455ZRkE6NnGX1J3RjhQl35yOTjqxihE46RQIT+wAUwnfWMyvRudX0nNnnCwCu0GAVLxz7Hxw9uKDFNDjrooESpbOtsSqcZZV522WVxBxqGGiiGGFllQgcegheMadOmxYYIdCBSrgkfRfmEUYwoi5Ddd989GcHEqAYTrxizdZVM6Qj1o5wspElDeTIi3zoS+HhPKwxsf0ZxmHgOto5OQgwdEDovCSlQqTAaLZ9CqtS8GcVn4o0jbJ2f+lAVXC/5mPh9mOe+whjFFFAoJemY5RpiHaNLzNV9vo5hOtQZOWeCpwjuZa5TOn1xNWzKN9bTkY7gwQGlM+nwyGHC/ck6fjbSj210TpuQH/lyP1Iv7im8Lpgwgq4UsfA97MNoVeqFhwQYeKMhtlGWCR3odOJzXAjKUkYysR/baGOsQ4vOJFOWkJZ7lWP0ZTMa3o7dwrCQtiHB8MnaANIyOpM2iJHH1Nc64diGsv3BBx9kNpZatFUo7cjX2kuuKeNA22VKoVKugXKvMzvOYqbW1hZbf8vTtzVc/7gLN1e6dNDyjEO4TrxRl+2fb0onqTdOxBCRUa88y2jf6QilLWSEWj4p977h+cW16JU53Kd2fTI14Z61TlzOM/cMyjGMDnn22vkmPUpNzmUxAkPK8fcIHpasDvlYwh/DFQzJuAf4cW8hXIveGIV3FWNKu8c9a0ZfXA8YWeZ7/+CZCX/crnOc1l7Ytc52npukYRQgbTrnjnTe+KRUg7d87DDksjaGOvj2M98+fj3PDc4j++GJCuFdzF+DrKvls8kbjTXEhXvASz6FbC2e9ZRbKW/y4Jni31e5pjkurhPeifxzjZH+9qxhX0ZO2nsg75S8I5r4UavcCz7sWnO4B3iO+ndk7l/aUrhwPxOCxQQDJjNwtnW+zSjlmW7755uW256m8+O7AoMJ3l+4bmkTMIzw9yzGZv5drhrva+l6lLJMyB9T0mMcmA5lxvPehBAxPL8I/4MyH6MJewfCgIFjN09mtk+1poxQNzEDcFsu9x2d9xmEthw39YRVw+CW9y48P6HgxiMj96OltTIbmsKIfBHuzbSk20He4dLin9PeQ41PxzXHuwhtPG041xxhPvDEaOLbENZV8/3QyvDTpt4XUGk7ZMda7rul2uq6QRvp7y9jW+60Wm15ueUX2o92luc2xrs887hf+a4z4b2S90v6oez9lfbXtxV8a/ENb1LNbyjKoc1C+U8IEHtfMS+2lIlRmf/WtHrYtNw8Kr0nq/FdZceQnpby3VTLtrXc/gWuO85rU+rTTTPWsggsSAKE6CA0hcnYL74Lz703JSdUxQr9OoWeXXINDix9U5s+8MYX4cZn5g9q83VbZ4gznkgdCwYSX07L1euw7wcTp/ss4nnPoU8UxqRH59ZJGpTxL4z+Olledemu8TwK/WFL1RlHPBsZpoz/cmaSbsiSHRdI+IjFq8DhlY/qQpTYAf1t/xXCYVsuFTaLPIysuUy30G+xbOMFSz8kZVxCnniQSEtWWek0ttwuYr7B8t1jQ4pL9h0a/nXYsMgzSl/bnEwtjEqyQjMiIAIi0MQJ1D2xm0hFUeDQWWOjBJnius4MIKgmHzsmGBGYYpAOfvbnI9FcSOOyi49kUy7Q8V1o9Kfla1M/YpLRdnQ+9+7dO96Mso668mFQrFA3lGPmCpv96DjznhrSo/Jx8UpnCUJnFWlxE49inR+x0llH3ghp/YdxvNL9oTSjU9XcnTLyySvsSMroRcKHWGgAYg17pSnKm3xKKx/mwRtMMPLWFEF8rKdHMbgqljWLlb4JnXjFSLt27ZIwKXDjuNLCh7wZg9DJa8dg6TD0wS2yCZ0o1TJ6sDwrndKRbsL1Vki45/zIRYyEihE6Uc2YgfQoK+kAtmsIl9+MHsFgJZ9gJECYBjy0cJ3SmUwsVBOUYf6efOKJJ2xTSVNcElMGhkaMnvNKNq51rn8b/eI7kBoqBKMou1Zos9IjGhnhS2c55VI+HVUm3MOmTMAAh3bNDF1at24du1a2GOfsg+eHagv3JK5QTRjBjAGUee3AmwoKBGtzSefPR7XbKjihDLTyKY9ryhvYFOtlhn1NGus6K6f+NpqTujK6056FLOOFhvYV5QrXT7H3JvtamBHmcYPL88zchXPNY9RnXg1IkyW1um98WYwu5tj4YaTHPUP8Y4QphmnmoQHlr8Wi93lUcx6PFxhnbrDBBolSyurjmWIYwbuKMaXdwx067aAps1DKEhs+n9B5jBtly59jN8MD24d3GDq57RlDW03npgkx6KshPswKykqukYYEA0TeufiRHkWeGZ9huAqLdKiiWj6bULoae64Vys8nXkFOGl8v26eWz/pyeFu9mOKFxrfdvJfi9cvOG0aRGB/bOxnKEN6XTWhn/HsoYdcwKuSZ4D2rYWhgz3T2bQ73ANevvUPzXsEoVfPoxfWB4torv7zSt5JnurHNN61We8ox8F7BN4C1HXiJ4X3L3uU4fgxGTKrxvmZ5lTrFcMO7pvfzlhdKNBMMXBj5XKitx9Aw3Vba/uVOeZ814zgYe0P+cvNkPzOI4Jxg1GPXZjpPDBR4X+b4ixXuYzzLIOyPlwIvPD8Qaxd557T6WDr/Xm1eP2ybTfkOwvCCtt6eRd27d4/fDS1vnnX+O7Ha74dWF6bNoS+gknbIHyvz5bxbqq3O//2V5lvqcrXa8lLLLSY99yPfjtZHwv3Kdx2GZybWf2bvr6znndcP5rHvU7ZV+xuKPiFC8sAR4X0Fg05v8EkIk0JSTh6V3pP+nir3u6rQMRW7rZZta7F1yErX1Pp0s+qodSKwoAi0brlI2GiFHjnFXxOFPfCy0Qrd/WKTm58xa254bczU8M8nxoe//u/jevXrt1i7yLPD/HadjT48hiUm/IYfBjNrzrxw6f2f2OZkuloU4sNLOq+n3qnr6/YGExipmPhwKKxbbeB8Iwvb3ljTdN0pt1QOaa8dGJN0bNsy5xAefrNu8GTOhh8WBvbK7duZ/M3sQDgSL+9PmB6uejj3uvTb8RJC+BD/45ow6daxdRwKZM1lcll/MyPXw6Wl11QEREAEmiqB+RqJJlI7DBzSsVetargUNHnjjTdsNlau2AIuYK2j0NYxRfGGUsPE72/rsqZ08JlHCT4sszr42A+DBj9SOysvW4dBQtr1NdtQLNsIVTq1USCZeGXalVdemXSG23amKCTYZuL3sXU2TY+eYj0fqmZgwnJa6cs6DA3MQwadfVnKBbyCmGKVD3Y/agmDFguTwf509lZTMAIxyTdq1Lb7KZ0IJlnKQz8i2epv6ZkyipFzhtDRQFz6piZ+VK3vHMlXTzMcYHu68zXfPv6+QkmD4iotXAN+lGd6Ox0ndFajyOJ+M0WAT0fdrHPWe3LwaRqapz2gDDrbvWLe9qMD2kZConRLdy5buvTUFFWsx4iC0cRpwdMF5VK+Nwrz4XYuuOCCgMFEWlBG0kGDcA95zxXptOUsW3vHvnTaW1npvLgPcAXOte/bCt/uVKOtSrtZt3qYcoBljJtKlca6zsqpf9eudR8XFmvcH9/gwYNj4x6uH++RyKfJmjdvL9w7+Vzg0lnqOyvT+dTqvvHl4NmHY+NnBoF+O/N2bzLvww+wXG3hHPpzYvkzes88XsHUvDTYdptyvnwHtDeAsjRMecfw7YFtw+jQhDT2DLZ1TM0bCfPl3A/s54V2xZSGlJmvHfD7ME+bxAhkfl4wCEEJ55Xutr2Wzybei7xBAYY3/nlOHQgTQzuWVoz6dzCra62e9eXytnoxxfAT/gheXfy7V7wy+uN56q/FdGgS3l2470zwEoJRh51Pjh9jXZPmcA9gYGaj67lP/beAHQdTvGLZ94MfeV/JM93nnzVfrfZ0o402ir8h0mVwv3lPad5Ysxrva+nyil3mHjQj03RIKsvDG09YeA++UfDwxvs2nn245n3bhMGP90xkeZUzxYOeD1mBZ4sePXI7ucvJl33S74UYfjAowDwuYgxHu4vACSOoUozNMYQ08cZ0fLOZVxWv9PPepvBOYgYWeJHIarPJe+edd04GElhZTHmfxtAFoT3CAMuk2u+Hli9T7w2xKfYFVNoO+WNlvtR3S7XV8wnm+/5K8y11uVpteanlFpOeZ4AN+vHpMUQ3IfRp1rewfwfHkNCkmt9QtOG+zbIymDJIwNpCjMG8MZZPV04e1bgnq/Fd5Y+j3Platq3l1qmp9emWexzaTwRqSWD95XJDchCCw8vakfeAtOywRu84HAMhGQr9BvXOVYxjUGDphyyRG84iXUa+Zep36DUj498BV7wVdr7gtXDCf97P9DhBHsdss3Ro2WKRJLtVls71tsGGFyOPEafc/H6497VJ4e5XPg/H3/BewAuHl2X6dAj9U14UVh5Q51HCp2V+eWewsVL/OuONdLp0+I/09lotV4ND+hxi+IABw8goLAm/qx6OvAU/Ol8/ke840nmQ7uE3J4dfXfpGOP/uj8IfonNx5D/qBi1n5dMu8p7y3mfT4xAihBHhxzXxfOTlY/p3c8Oced+Hlz78Orzx8fw+Cstj6cVzr09br6kIiIAINFUCrZpSxehgzyde4etH4XjlEh3lhMDIEpShJnQY+xAPtj499XmhwMhS5No+jJYvRrzSJ50epbB1KNKJhrECBhyMEDPB40Q+GTp0aLKJfOgE88fNRjqPvWI82SGaYdSQST4DADxm2Mdi1kcsbkGtAx+jBPNuYfnS4WYjLOnk9IpXS1PuFGYmNnrBlgtNOXd85DGqjZELKK49N4vFCTs6GLzQ4WkeAMijkOLR79fY8360r1dW5auHv8e4DosR3xnPaO18QkcI16ApZPKls/WcVzo5uK6YYsxh15ilqXTKqF24kC/58/OjlFGwFSMYIdmxYXTB/YpXEkbUMIo8X0c0+dt9ZeX49sfWMfVGFTD3Xmx8unLmffgEr7RN58XIpbTivtptFWX6Ns3XwRtKcU1UQ2pxnZVTfz/Clo5eOgUZnYrSvEuXOuv5Uo6Za5EfwjPItwfpfPKNNE2nY7la901W3raO68ruf7s3TblDGrbXUiyUQboMPwqa9i79rPPpufdNfDtp65iiAM0Sf87ztas873g+VatdxPjNhLAzXoFs67OmtBn2DORcoaxFMYdrY34YjeFdg9HKJv5arMWzCaMIDErMaAXPCzyD6Kxn9CQGMMaNUBamaE8rEmr5rC+XtzFkirLXpNC7sH+WpZ857I9SDkUk9xhszECI9/PDDjvMioinzeEe8J7quJe8AijnYKIFez6jnEd5zztxuc/0dN7FLJfbnmYZVFl5/tuJ693Et0P52hXSlvq+Zvnnm/JdgvcPE7wrZUn6+wLjcgyuvRKQ4+Z5RfuEMSeCEhMDcf8On5V/oXWETeKdzeTwww+PvZPYcqVT7wGEME3+25f3R36cE5SbtE2M+OaeNK8xDZXPe4MJhkBmSOU96/HthVcg2me4Wt7ek5c3UrX8bFrom9dGuJMWgw2Opxbvh1YXpk29L6DSdsgfK/Olvluqrc7//ZVmW43lctvyapSdziPfO71/t/QGuH5/75Ux3Sb7dMyX+w211lprpbNKlvnepZ2n/aMtJPyYb18sYTl5VHpP1uq7yo6p2Gmt29Zi65FO559r6W3+vcT3N9WyHU/XQcsi0BQIEJaja8dWgfAVaVkl8rTAqP209OvRLvBrSAgNMfqzur5xPBOs1D+/wUFD+dl2QmQUI0f8dEAYlPJs0KZVi3DsdgPDqTfn6mteHj018Msnv916QL1NK/TLPha8XXTrUKf3Gdw7v6HIsmUakdSrTIkrqsFhpYzjv+eVSYFfsbLaoK6RoUnH8M64uu9D9sUQ49G36jwANpTftqsuHv78ae7AmdNvrTO4zNp/u9XnG4lnbdM6ERABEWiKBOqeLE2gdoWUgPkUuDbin+qbK++GDsWPxCmU1sd3HD58eKGkeTsy0jv5D9H0Nq9EsG1+9BWdh9a5a9v9lM5CPoDN2ALvC3T8evEfy359teb/9a9/JVlRVlbMXUuAkoIR/YQCqIb40Vzp424ofxSUKIn4OEfJY4osQryYQQuj7b2CjI4EUxSRPyM2/faGymzM7d4whs6HhsSOmXQ+bEah/RgVYpLldcK2MUWBW8h4gry4lohx6jv9fB6VznO94CWFsBxZSqRy82cECGE3uJb4EbfVYrcyghCjIjrmvUIy7cVl2LBhRRVPpzoKv2qJ97BRbB2s7Gq3VYwCztfeYbxRDWVxLa+zcut/yimnBDyqmItcwiVZyCQUKowqxwitlDbOP8u8It/OnZ+aByS/zs/X6r7xZTDqH88lPD+8oYRP01jzWZ6iKNt7N2roXvHtIbGksyRfOT4t132thXbZvEehOC32vYp6wcGMI62eXC+MrCZ8Gm057R/u3O3ervWzic53niXcN2YYQac3bo69MDqT8A2Wxo8yr+WzvhLevv6+7fZthk+TnuddkRHt/t2Ta4x3GQz/eH6Z4DEKz1FemsM94OvI90I+paM/LuYxLrD3wHKe6en88i1Xoz31ioh0Of7c+m3VfF/z+TY0j1GqvdPh2SDf8yjt7Yc2yRtOWDlcr3j9wXOXKbP4xitk/Gn7Zk3J4yc/+UlibIjhor2/ZaUvZx1hYfAEwLdPPgUT1yneIQixiMDNDBwaKpN3D57jvMdjnGHGKrxPIxhX8H3GuyPGE3gC4XnLAAHvdcU8SGSVt6C/ZdN1aup9AdVoh+yYy3m39OU31fcVX8em2FYb/3zTarTl+fKuZL3/1syXT6HBQfn2YX01vqEaeibT/2aeZfiWGTBgQL0qlZNHpddbNb+r6h1QCSuq/e1dQtEFkza1Pt2CldVGEVhABPDKsHEUuuP2FybWq8FGQ+sGNdbb2IRXYKRx/A6DwnJ5DBNWjxT2h2zRP1yWEZoj67BO+vmgMKBn+3qbMJDAu4Y3ECHRqqlQHIRHWXVQl3rGGdSDbQtKKuXQP2Ky67p9wn+eru/l2I5ps5V6hIciTxL5hKM/ZpuB4Y83jAppryd+n4bO17qRB5WPJs0Itzz7md8tc7595KnisK2WCitmGH9k7qCVIiACItBECLRoIvUouxr+o6HYTLyVc6F9LCYyaejoKiTF5lkoj6xt3nU0ioyGxBsi+H0b2q8a21EAoyAxQYnCyKX0z7Yz9aP7/fpy5ukkNPEcbF2hKYoVE+/W28/j8tsLnbUW5oD9cXnfVMWPoi1ktED909dyvs739LHScWTSkMGFv7dsH6YoqehYZrQ3U+tk92mqMU+HMcqhM888s6qGE9QNN6d03qMwRMHvBUUwCjo6FezaYbv3muLTNzRfzEjthvLw232bka67T5c17/dt6m1VY11nWZwaWofSlpGgxPdNGzLQUYlr8qWWWire3lBett0b5zR0b3pltu1v01reN1YGo35R2hx99NEL3HDC6pQ19W7UG2Lq76VqeUrJqlM11nlFIaO4i+l4L1QuRj4o3m10Owr7e++9N9mlMZ5NGDWiAMcdPs8WOx8ooXbYYYdAuK4bbrghHtVoFfPGE7V81leLN2EMyhE8hKSFc+a9GcApS3HdHO4B720hfZyFlv2ztZxneqG8bVtjtKdWVnpajfe1dJ4NLRfrdYJ80sYThbz2ofjDYNWk3HBmtM2EEbF3ZLzTXHvttRV5sbA6+SnhmTDWymc4YWl9GMt8nsgsbXrKcSCE6bB7wMISmsEtRiIIRlLmcYJrEsFbRJaSMt5Yxl+t3w+bel+AnYNS0fl2qNR9fXq11SF+n8z6/vKcyp1fkG15uXWuZL9qfkP5d8CsOvn363T/hKUvJ49K78lqfVfZMZQ7rXXbWm69ytmvlu14OfXRPiLQGATSoTuszDUG1w/ZYduKmfpwGaQvx1CghQu5ka9MPGcMWbJj2Hx4j3DmbsuGvx+yUl7DCctj6xE9w1/2Xi5sMDQ3bIltZ7pVlObKA1cMhTgQ/iItwzLCdKy8VP10K2fsS15pbun88y23aVW6IUYlHChtz/WXiA0RBiyea1yCgcJ+m/QNh265VGDeS/o66NW1TThvr+XCNqvV1zP17tYm/HHHQYF6FpJW0XWy94ZLhnP3HBJ7sshKy3WyXmRkcel+K4QNlm+ehkFZx6V1IiACPx4CrZr7oTLiykacMGKGTt6GJD16Ll96PzqDkcCFxDqeCqUpZ5vvwE/Hp87Kz7vi9ftmpa32Om9oUGzeV199dTjkkEOKTZ43Hd4U/Eg6U9Tk3SG1geuIzle8EODKFsUlnjxuvPHGOCUhOdJuaqm7Ca4GbZSirbOpdcTSQWkxRhklcfnll1uSmk/9yGcf9zqrYN/xnM9lfdZ+q666atLpjGtsX2Y6vQ8P4bc999xz4YgjjkhWHXDAAfF5QVlMBwod6oyYo1OXEYLlCB0N1mnM/ptvvnk8GppQNdwzKNYo5+CDD47DuJRTxsCBA2PDDLwI4EGAkdZ33313PMqP/LgWCAHDdYO3mLTC2seJLlR+sYYthfLw27zRES6ADuhKAABAAElEQVRN813Tfh+b9+1NU2+rGuM6My7lTLnWcRXOj5ADXD+0Td44DU85dBjut99+DRbh70XyKyR428mSxrhvKPeggw5K2nLa3UMPPTQeLc61afc/ymzahgUp3gCsIab+fu7fv/+CrHbBsjn35uWkVK8ThTLGy8Ree+2VnFcMKBh1jvhrs1bPJsrBgOKXv/xl/GN59uzZOSGQWOc9LvE8M6nVs76avL3BGmFAiglNx/H569iOl3aG9saEd+zTTz89fqbZOqZ+36Z6D/hnK56fMMosRrzChvSlPtMbKqOx2tN89ajG+1q+vPOtJwSevQ9jtOS/sdL7+NA+bPPhytJpWfahBssxUEO5jJcJ8/iEdwYMrsxDTlaZtV7He69JqUolQnWce+658e4Y82L8ZO/MZmjCdwjtBuu533kXfeyxx+J9rH228iud1vr9sKn3BVSrHSr3PKitzv/9VS5T229Bt+VWj8acVvMbikESyy67bN7q+28S/77odygnj0rvSV+Xht5//DH4eldjvtZtazXqWGwetWzHi62D0olAYxMYEnlouPv3dd+c1Sr/99sPrDir30chNsL8z/WK80pnsEwUTuPYbQeGw7acGz7/elaYOmNONIguCiPeqXXoGYUcads6V+mf3p/lX0UKe34NyQ5r9Ar8ipH9N+0X+DUkh2zeP/DLJ8We00o5bDF8scDv25kRx6mzQqd2LUOPTm3CIj/Yctx81Ih8VUzWEx7mwM36hX037hu+iPKYHuWFUUXn9nWqwmKOZ2jfTuHPey4Xn8fPp84ME6fMCq0jo5K+UZiZzu3q8koK1owIiIAINCMCzb4V40XbXO7TuZRWcFdyLlBMMfqGzj4U87joY7R6WhhN5cNVpLdXssyoT5S5KFv5FQpzgUW+dY5RZq1DdKSP6x//+EeyChewhQwYGMmHoETJxzXJrIiZY489NkmFa1tiwJcqhOWgAxHOGOIw+pL6IcQBT4uPHc6HezFeEuxaJUZlYwody9ZJioKIUYf53P7byDPqV8htb7r+uF++5ZZb4tWU4TsWfFpGrBAaJUu8wgYjCuv89WnpGPfXud9WzDyKaBM6i3EHmuUOv6HOEMuj0JQOf+LN8iPEC9fTgQcemCgRMaigDrjst/uc/Lh+G/v+pVxvfOYNsdjWkDSntqoxrrOGeBW7HSUSP8In4M3n5JNPjkfDsj9KzmKMJ3zHpI8pm1WHkSNHZq2ODThsQ63uG0bP+3ND2I6sEe8NKdmtnrWc+no1xNTHVvb3WC3rV07eZ599drLbCSeckBPOIdngZvCug6cQ2i6e+VntqCX37ZkfPVjrZxOxxxHq5hWwfp7teBdDuWvi319q9awvlbfVLWvqn+e8Cxdyq5+1v63j3QDDQYRrlXaddxvaHsJN+XAIzeEe8Fx4byiXi/Ep9plu6fNNG/M9JKsO1Xhfy8o33zruQ55dJrQvhST9Lcf96RXA6X09z1LPMd9wjEi3d1+MhvGKV6nXnXQdWeZZcNppp8Wb8GyBQVc+8cZc3pAiX3q/3t+nvG+bopB72lzc0ybuuOOO4W9/+1vsDQiDXr5/EG9g7PMtd77W74dNvS+g2u1QqedBbXX+769SWabT+7anVu/G6TIX9LJ/T6/0W50+IPOGk3Vc3hjf2q50unLyqPSerMZ3Vfo4ylmuddtaTp3K3aeW7Xi5ddJ+IiACtSXQvk3LsFRGWI7altr0cq+UQ4e2LTPDm5RypHil6LNo21J2yUyL4Uavrm3jX2YCrRQBERCBJkaAgfMNScMmfQ3lsIC3M2rc5LbbbrPZelPc4vOBy68UC3BG75jgBtXHSLT1uFH3H5K2vlrTbbfdNskKrwj5xG/zYSjypa/mejwN4B4WweAEQ4QVVlgh749Yvia4yy5XUMTTqW/uaMmHkcvlCIoBE/K74447bDFzFCfHRydrQ78kk2jG0poHCr+t1vP+OvIjaX25jMb1IzNLMZ7wowgZvZzPQMQMLHy5Nu87ofJ1KlsHt+1TaOpdU1s670WG0etZCj+ULN6Tie3b0BSvHRhI8MtyCUrHmlcaeAMFc7NMGRhV5BOOydqyzz7LH1tu/Pjx+bLIu963d3hd8V5I/E7Ugeufjg5/jfhrzLdHfl/m/bZat1VZ10C1r7P08ZW7jNLTrh8M5dJCZx+jyk2KvUZR+JkyGEWoj2tueTHlOZmvbaj2fYPSPS3+fsCtue/w92l92+zXN+Y8IVVstD9M/TXl64Hi3TNFYdYUBUXd9ddfH1eN4+IZ3pBwvfKsvO6668KTTz5ZMPmDDz6YbE8rAn274VklO0Qz5TybuJ4xROOHgVqh9hIvQaY4ZNS19+pTi2d9Obw9j/Q8I+VN7rzzzoKhoLiXuV4Zke6F9ymM+4zDFVdckeMhCwMu/1xrDveAryPtJe+q+YRvA3u2WiitSp7p+cphfbXb00JlZW2rxvtaVr751vHMNy+BtO28CxUSlP3e+wEhz/IJ72v+Gyyf4W7W/rTPfDNgRIvwnOT5Uo4Bdlb+6XWEbOMdmB/eozDcyCf+mLIM9/Ptx/p27dolCkneme+77744uWfKCgwmEAwsjAHLPmQIy9UQ3877d8B03n5bse+HTb0voNJ2KM2o1GVfflN9X/F1bEptdUOsF3Rb3lD9arHdv+9W+q3O+6O9c6TriuGEfefgiQ5D3SwpJ49Kr7dqfFdlHUuhdVnfTaSvZduaVZ9y+hey8kmvq3U7ni5PyyIgAiIgAiIgAiIgAiKAl+KGpNkbT2Ctbh9TKGwvuuiiesdMp/tvfvObQJxZfoUUk+mdzzzzzMAHG0LHH51yKFzpVD7xxBMDrm+9sjm9fzWWfecRnW3mVtXnjeLCe1/w+/h0tZr3BhDFKF1w2WuCx4pCHYiWLj197bXX4nALxGU3YQREQ3GELW16inJln332iVfTeXdtFOsYwcUtSuK0XHjhhfG54HwU+tlIY65TS+cVoPfcc088ygsX/YWUO+nys5YJh7HbbrvF8ZTN/bClw/OBCSPf4JeWU089NXGrTMzzUlj6mNR01PpRtVYOo9r32GMPW6w39R3qWaFw2L+hMC/e3fYTTzxRrwzfCZ01YpwYw7iYL0dw80ybwI8OJT9i2fLzI/v9deW5oKTynVO2LyO2uR6tLUt3pPhjf+CBB2y3oqcoNckboTML1++4pPXCMe2///7xaGSUFt7gwrc7C7Kt8hyyroFqXGeeSbXm8XZi189aa60Vj4ZP5+2N//z1k06XXvZGLpzXLKMS2k+MN7KkGveNj2OPsV26w9SP5MKQwhSYVh+uPa4rPyLXtjX2tEWLFsnzgrJ33nnnTKYY99HGm3gjPVvXFKaEZTA56aSTcowHbH16uvvuuyerjjzyyPDBBx8ky34Gowzv1cEUdpam0mcT1wX3hf3sfYIReXjHMKGOM2fOtMVkSlvLO52Jf6dgXbWe9ZY/03J4+/3T89w7PLMR7g/ew4yDT4uHEJ7rtPO+DqS55pprEiUrbTmjz0lr3m3wwuaN/5rDPUCYvl//+tcJAkJ38NxKC+9LtHFw4R7FkASp5JmeLsMvV6M99fmVOl+N97Viy+QdwnudSN9f+fLx75Ccw0ceeaReUt6Jttpqq2Q958+H8OAdydqF9POGnX7/+9/Hxl/M4xGPtto/p1hfTeE7g/c7hOvw+OOPz7xPeYc+7rjj4nT8+ffDZGUDM8bFG0945RS7b7DBBkkuvP8jpKmF141avh829b6AStuh5CSVOaO2ej64fN9fbG2orciHfkG35fnqVcv11fyGwpiHfjV75lq9Mc7F0M6kkDeccvKoxj1Z6XeVHVuhqX8eZX03sW8t21arm/+uLqd/wfIpNK11O16obG0TAREQAREQAREQARH48RHAILqYUK0N+6Zo4uwYIckIHuuMp6McV9+MwqMzGffeuCTlwwpBgW0K8mIOjdAdjMbBhSwdb/xQqvPzQger/3jx2yqd59gYLWSjbenY4oPSlJZ0KPrR/Hx80EHcWILiwo8WJW5wQ4JbXc7Ro48+GncgMs36MMbQxbv4RhmAEQudoXZOrSxG7lvnn60rdUoHJUY4dq7ZvxhjkFLLsfSEoDBDEjo4uT4x2ClXUH6aZ4Zx48YlIW3ID9f/XPsW057r509/+lOsHEFJiRGQH/F1xhlnlFQN7sWbb745ViKyIwYaGPVwLfLxz/ztt99eME8MA8wrCXXl2ub6pzFjdM/ll19eT+GaztB3nMMShTT50kk8ePDgHIMQ7mNGUDBqo3///oFRLij60tdWuox8yxhMmGKAdgOFKvcunfJ4reH4aY9MCDFjwvXP6Gd+CEoA2hTuE9oh3JLCxhQAHBPhQLwMGDAgWSREDHlyfdHRVay3EwzQcOmNMOJn+PDhcSxwRmSi0GYEqDfMwZDCpKm0VQ1dA9W4zuyYqznF1TbnCgMG2jnactyJY0hBO4vHCJQ9JqaEseVCU65L7ifOKUobnmlcG+RNpzHXq43wysrHG1KVe9/06pUbb5KyaXMxUORewS071xn14B6EB8ZgGJSwzPPAj8bNqmdjruN9g5BdnCtjuv3228dMud9RgPFsMznvvPNCmoFtW5BTrjd7h6AdzzeSMF1H2ijOHeeGPHCpjCcu2gy8pND28jwivIzJoYceGhjx56XSZxPPOq/AoI0012uUhwELgit+3h0wNKVMwsTwvuifuRy7tX++jtWcL5d3Q3WAM/c11yLvixhT8F7E/cP1iEcKP4LfK2d5V7ZwHbyH+JBZ8CFvuF566aXx89I8XTSHe4C2j2c79yMGIBgO8J7K6HreKVFI8G5hAheU3Eglz3TLL2tajfY0K99i11Xjfa3YsnhecE0icPf3aqE8eF/DsMqM4vHawzLvrrwT8U7J+6y9r3HdWlrLlzaK9hmhLfLhLDBixjDKhPenhr4hUJb5Ub62bylTvilgglBfjJ55zvPs51lMPX298Abj6x3vWMSfV+xZcm8swTqY8U3plWFmdGH7VGtay/fD5tAXUEk7VI1zoLY6//cXfAu1FYX4L+i2vFDdarWt2t9QvJvxPcD7ysCBA2OvWPQn2HODd8a0sWf62MrJo9J7stLvqvQxZC2nvxnS303sU8u21epUjf4FyyvftNbteL5ytV4EKiWA4oXBmhIREAEREAEREIHmQ4Dnd7EeR5u98QSnhU5cvBeYkpsOUn5poZOIkf90upUifMjRSYcy2RQMtj+dTqwnTS2Fjl1GxJtinI9EfmkhLAQjCxtT6Hi2zkmUxH70cKF6MGrVFEsorLOMJ1DSekVtvvzo3D/66KMDo2sqETpB8BRhx0NetRwpjPLGiy/Xry92no5XE/JiJIcPS0GHLB3NuOhFEYJHliy5+OKL446krG2F1mEogEcW6+Tg/No5tv24Z+gUz/LYYgYDGCMhGHN4gw7Wofii49k6VVjnBYMEDDfMyIB7lh/XCJ2HGHJghMAoZIROY99xzDquAzossu4xtucT9rnkkksCCjsEhTS/LOEY0nG9GVWPIvCqq66Kd4GDsfB5cJ+Zi32/HqUfbQD3JEJ7wQ/mxRpPoADluG3ED8omUz76smhP4Upnh5em0FY1dA1U4zrzx1zNee496s/1Xaj9o72z66yY8glDwHk15Sr5c6680pB8MAZAkZOWatw3tM8Yf2C0hdAWmbEQxhMISlvaEe5fRtDjBcEL1x3eZ7z3Hr+9Mee7dOkSK6RRNsGTHx4MvBcDqw91bshrjqVt7CntpQkjxHH5XoxgoMCzBEM3U8pjIJJPOO9HHXVU5uZKnk3e4wUGR97tGkYcGK3hTYhrCsOFfJ6F2DfruZRZ4QpWlsu7oSI5Vp5ltPV2rBxvlqB0Ntf8hNjad999k2Tnn39+TsgcQijAxbiRFs9VtAnN4R7go4jnJQof2lTuU44n61zj4QADIJNKn+mWT3pajfY0nWepy5W+rxVTHoa53hAXZVMpgqcT3onsXQxjg7SBBPnxHoJhnQ/ZQdn+ndpCV1n5PGu9+PB/fr2f5+O6UuMJ7jvaJAztEOqdzyiQd/QLLrjAV6Hoed6z/fcM74FZnQMYOPt3YDOMKrqgEhLW8v2wqfcFVNIOlYA4b1K11XVo0t9fDbUVdXvWn2sKbXn9WtV2TTW/ofje5bmb73uHd37aZqb5pNw8Kr0nK/2uync8fn0x302kr2XbSv7V6F8gn4ak1u14Q+VruwiUQ4B3q1mzZsXeDbO8/pWTp/YRAREQAREQARGoDQH6sekzLsbjhNWg6sYTfIiUIl7ZXUrF02UwOpWRYij5GHHthQ8uYtoSFiFtwe3TFZpHoYjbaTqc6YwDNKNkrZPeh1vwx0SeuAY0KfcY6bzGnSwfRyhnUWh6oYOMEVmMHLQ6+e1WbjGuWAt9oPq8bWQnoxlNspRuti09ZYSBCWwx+uD68bxsu59SPyzg+ZEHo6fpvKiGcO5QDJjyH6WQjUAsN39jn7U/5w0lKMoK5g877LCsZMk6Y56sSM3QSc21jmAs4A0nWMeHPp22KB6zFOJLL710rNg0bxjsU6rQOc75QAmKksILXDnGs846K1ntrylY0alFBzjXg+/4pnOc/RkJmmU4YBmiQMJggM4UrxzxLOiQxtMEitu0colRpxhZ+FG5lncxU9yPYsCAkhh38GbEwb5cuxtttFEc0iSfkdFf//rXeDQ3U3/87M81Qr4w4FymhXvnxhtvjN2vo8BN759On2+Z+4qOLBShadacB5RzKEIJ85GWxmyr0mXbckPXQKXXmb8P0/e3LRfT1lp9/ZRrh5A1uPNGIZ2+hzDsQblXjnchuDz44IOxQYJ5MrKyKZd2CIVLPqnGfYOBEMaGXJ9Zni44Pox/MAwxY0GrDwY9tGvpZ7xtL2bqz12+9P4ZZOczX1pGC3McKPQ4Jn+/sw9ceTZntam+nKz7OV1mIaMG9qds356m989axhODXQvc27QtpQjGqCg2MX7g2ZI+N9bmEfqh0DVbybPJG08wAi8tlEuIJjy1mGGZT0MdMfrj2dnQ+fb7peeL2bdS3uky08u8q+JNg2e8KZx9Gu4h7kGuWxMMFI0L91/WNYBBF0bKKHl5rtD+W1iF5nAPcI55V+WZlqV8R7GOoh5DKP+uAKNKn+nGOT2tpD31bUep97yvRyXvaz6ffPN4LLFnGNfQCiuskC9p5nreJQkLiFEf7Wi6fWUnFHl4REm/U/nvJK779PdpejmzAqmVDbEu5vlClrRJeFPjfTjdZrKd65VvA94D0tcj24sVnjt8MyL52l+Mikx4BqQ9A9m2alxzlb4fer6+PlbHptwXQB0raYfs+VLuuyXlq63O/v5qqK2AXSGppC33fUZ2jq0sf4031PbYPkxL3S9f3n69n6eelX6rW31pv3mH5ts2bUSGtyGMTRsaoFRJHpXckxxDpd9VxqHQtKHvJvattG0tVD7buKYa6l8odC03lL/fXut23JeleRGoFgHaxXQbXq28lY8IiIAIiIAIiEBpBEp1mtBQ7otEVpLzA/s2lLIZbSdOIp27jKbr3bt3bDBRbucTRhFYkiJ8IOXrbKOz2lyd0sGXpZiuFkLct9MZaQYbGITw8x8t1SpL+TQOgenTp8dKL98xWG7JFtPdd3Rk5cX1g+EA9wov+yhNcbfe0H5ZeWWtw/KakBiEXSFWJsYKvkMna5/0uokTJ8Z59OzZMxDqpdRrHBd6ePfAAweNZ1Y7wHZclqOYxCCnmh8+lAsD7lfaD9qjYoX7nOPH3Tr17tevX8yxlP3xVsO+dA6Ve20xIotjQGnBOSjFAK0ptFXFXAOVXmfFnpNy0vE8w6MMowa5Pku9B/KVScgg8rVrq1QDtGrcN9SBa4R7L8t4gHM3evTo2BUmhl1Zo2bzHd+CWE99J0yYEDhntHV9+/Yt2dPVgqh3Ncuk3cdAgHuKc4aBVVa7W6jMUp9NGLuZQpxnGiE58gntGGkIg8T1RB2HDRtWsZFkvvIW5HreK3i+c6/26NEjNr4r9zlQ7HE0h3uAOvJM4z5FEcm7SVb7k3XMlTzTs/KzddVoTy2vcqbVeF8rp9xS9qGOGEoRPoxrm2saYwwfpsvnh7GMhREkXJr3ruLTLeh53rEwmESBy/OQ5wYhd4q9Jhd0/cstv9bvh029L6CSdqhc5n4/tdV1NKrZVizotrzuqBpvrtRvKAb6WLhXPNCZIT7szBiWdYU6PauRR5pQpfdkpd9V6fpkLTf03cQ+tW5byb8a/QtZx5deV812PJ23lhdeAoSNLPQtWOyR7/GXF4tKev2RqxeVTolEQAREQAREQAQqI7Cgns0LpfFEZacid2+8VdDphuCy2D72fCo6vhiJbSPY8U5BHHeJCIiACIiACIiACIhA7QgQWgu383jm8SNIa1eichYBEWjqBPAywohdhI50DKUkIlAOAfUFlEOt+eyjtqJxz1U+w4dSalGNPEopT2lFQASaDwEZTzSfc6WaioAIiIAIiEApBBaU8UTVw3aUctDNIS2uw814AtfGWFpvuummcew/PFswepHwBIzuQ3B5uuOOOzaHQ1MdRUAEREAEREAERKBZE3jttdfi+mNEIREBERABCOABB8FoQoYTMQr9lUlAfQFlgmsmu6mtaCYnStUUAREQAREQAREQAREQAREQgUYmIOOJBoATQ/fUU08NJ598cpzyrrvuCvyyZMSIEeG2225b6F2tZh271omACIiACIiACIhAYxLAzTNhkZDNNtusMYtWWSIgAk2YAMbtyDbbbNOEa6mqNQcC6gtoDmep/DqqrSifnfYUAREQAREQAREQAREQAREQgYWZQIuF+eCqdWzHH398eOaZZ+IYtFl5LrPMMuG3v/1tePTRR2O30VlptE4EREAEREAEREAERKB6BHyYjg022KB6GSsnERCBZk3gpZdeiuu/ySabNOvjUOWbBgH1BTSN81CLWqitqAXV/Hm2bNky/8Yit1QjjyKLUjIREAEREAEREAEREAEREIEfMYFFZs2a9f2P+PhLPvQ5c+aEMWPGhA8++CD06NEjDB06NHTs2LHkfLSDCIiACIiACIiACIhA+QRmzJgRxo8fH+hIHzBgQPkZaU8REIGFisDo0aPj4+nfv39o3br1QnVsOpgFS0B9AQuWf7VLV1tRbaKF8+P+4d0NoQ+tRYvSx3JVI4/CtdRWERCB5kpg1KhRYciQIRVXf0HFVa+44spABERABERABBZSAgvq2aywHSVeUK1atQqDBw+OfyXuquQiIAIiIAIiIAIiIAJVItC+ffswaNCgKuWmbERABBYWAmoXFpYz2fSOQ30BTe+cVFIjtRWV0Ct9X+6fzp07l76j26MaebjsNCsCIiACIiACIiACIiACIiACmQRKN/XOzEYrRUAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAERKB5EpDxRPM8b6q1CIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIhAlQjIeKJKIJWNCIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIhA8yQg44nmed5UaxEQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQgSoRkPFElUAqGxEQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQgeZJQMYTzfO8qdYiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAJVIiDjiSqBVDYiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIALNk4CMJ5rneVOtRUAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEqkRAxhNVAqlsREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEmicBGU80z/OmWouACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIhAVQnMnfd9mPLt7DBn7vdVzVeZiYAIiIAIiEBzINCqOVRSdRQBERABERABERABERABERABERABERABERABERABERABERABEag+gVGfTg23PDM2vP7hlPDplzOSArp1ahM2XmnxsNUqfcIK/bsm6xfWmX8/+Un49IvpmYfXskWLsFiXttGvTRjUu1MYsmSXzHRaKQIiIAIi0LwJ1Mx44vvvvw9fffVV6NKlS2jVqmbFlEXf6tauXbvQoUOHovK48cYbw0cffRSnPeaYY5rcMRV1EE040fPPPx9ee+218Oabb8a13HXXXcN6663XhGusqomACIiACIiACIiACIiACIiACIiACIiACIiACIiACIhA8yUwY9a8cNqNb4Yn3pqUeRBTps0K/312XPw7eKvBYY8NB4RFFslMulCsvO/l8WH0hGlFHcuAXh3Dzuv2C9uusWRoUSMoYz6fHt7+5Ou4PhivDFi8Y1F1ay6JHnh1QpgdeThp3XKRsPmIPs2l2qqnCIjAQk6gqlYNY8eODZdffnm46667wjvvvJOgW2eddcLqq68eRowYEXbYYYfQvn37ZFt65oILLggffvhhenWy3K1bt7DaaqvFv759+ybrG5r59NNP47rdcccdOXXr3Llz2GSTTcJuu+0W122RPA+5f/7zn+GBBx6IiznyyCMrMp748ssvw//+97/w0ksvhRdeeCGMGjUqDB8+PKy55poxo2233TZg2NGQPPvss+Hpp58OL7/8cnjyySdD69atw/rrrx9WXXXVsOGGG4aVV165oSyaxPYTTzwxnHPOOTl1GThwoIwncohoQQREQAREQAREQAREQAREQAREQAREQAREQAREQAREQASqQ4DQHMdc82p4Z+zUJMMObVqGEYMXDYt2bBM+mlinuCfB/937QcBDxR92XjG0b6OI8GMiPn++7d3wzLtfhBN/sWLo3K6q6rb4nLwxZko459b5urbjdlp+oTOegN+3s+YGrjsZTyS3oWZEQAQWMIGqtOZz584NJ510Uvjzn/+ceTjPPPNM4Iecf/754aabbgqDBg3KTHv99dcn3gcyE7iVSy+9dGyoseyyy7q1ubN4mTjrrLPCqaeemrvhh6VvvvkmYFDBb6eddgpXXnll6NSpU2baaqwcOXJkbKRhXiwsz6eeeirwQzCiuPnmm0Pv3r1tc850zpw5Me/zzjsvZz0L//nPf+If82effXY46qijIkvQpmsKyrWQNpzYcsstw3LLLcchSERABERABERABERABERABERABERABERABERABERABERABKpM4KI73s0xnDhk62XCjmv3yzGMmDVnXvjHIx+Fax+e75X7kTc+D9+Ht8IZewyrcm2aXnaPnrlJaNOqzkhk5ux5YdLXM8Nbn0wJt0XeOMwjxNMjvwhHXvVKuPyQ1UPLFk1XF9P0CKtGIiACItA0CdS1/GXWb8aMGYEQC2nDic022ywccMAB8TY8TpgQlmGNNdYId999t60qe4oBwtprrx2He8jKZN68eeGggw6qZzix8cYbh/322y9svvnmAc8TJrfeemtYd911C3q+sLTlTPEOgTcIM5ygbOqy9957xwYTlichLPCuMX78eFuVTGfOnBm233774A0nMCLhHPz85z8PSy65ZJL2+OOPD/vss0/AgKSpihnVUD88UEydOjXceeedYeutt26qVVa9REAEREAEREAEREAEREAEREAEREAEREAEREAEREAERKDZEnjxg8nhgdcmJvU/a8+VopAcS+UYTrAR44H9Nx8Uzt1neJL20ciAAo8IPzZp27pF6LtY+7DlKn3CFb9ZPRy+Td2gXrx3/POxMT82JDpeERABEVgoCVTseeLMM8+MvTYYnSOOOCIcc8wxYfHFF7dV8fS1114Lf/jDH8JDDz0U8Paw4447hjFjxoQlllgiJ51fQJGeDl/xxRdfBIwLjj322PD+++/HeW266aaxwUPXrl397uHaa68Nf//735N1e+21VzjttNNyDAwwsPjvf/8bh+0gIeFGNthgg/Dee++FDh06JPtWY4ayTXbfffdwySWX5Hi5oMxtttkmNq74/PPPY64HH3yw7RJPffgQVuBpApZeCJ1y2GGHxav+/e9/h1122aXJGiMQtsQEg5b0+bZtmoqACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACFRO4OanxyaZbL/WkmHDlXoly1kz6y7XM2w8bPGA4QTyyBsTw7AB3eolZRznKx99GV4Y9WUY/+W3YUYUkmHxru3icBObDe8dunduU28fVrw8+svw7qffxNu2XWPJaEBoCK9GBh4vfzgljJs8Paw/dPGww1q5Ydy/mjY73P/q+Di8yKSp34VuUaiRpXp2DJSzZI/8oeMzK1DGyl+s1z8euHrx3e/He195/+iw0zr9MsN3TJ0xJ7wcHc+HUaiPDyZ8E9pFRinL9O0alunTMazYf9F6Riv/e3l8+Gr67PDWx3VGKs+O+iJ8892cuKze3dqFTYflnrO5874Pz733RRgz8dsw+rNvwvSZc8KyS3QJyyzRKSzft1vo2SWbvR36BxOmRZ5Ivo7Ow9Tw+dffRSw7hYG9O4YRA7uHPosWDjNfyrkY98WM8PjI+dcRITsQptc/8bFVJWwencOeXdsmy5oRAREQgcYkUJHxxKuvvhrOPffcpL4XX3xxOPDAA5NlP4PHBYwUMBq466674k2XXXZZOOOMM3yyBucXW2yx8NOf/jSss846YaWVVgoYGWCMgdeIfffdN9l/4sSJ4Xe/+12y/Nvf/jauazqERYsWLeJwHRhNbLjhhnF+5MmxHHfcccn+lc588skn4fHHH4+zWW+99WLDjnSehB+55pprYm8UbLv33ntD2njinnvuSXb729/+Vs9wgo2cg0mTJsWGIiyTT1P15DB58mSqGBvbFDKkiRPpTwREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREoGwC386cGwg1YbL3JgNttuB0380Ghk8mfRun+eKbmfXSohT/w79eD6MjJXyWXHTXe2H/LQaFX248ILRIhRp/KPKCcecLn8a7rTZo0fD7f7wRK/Atn55dcpX3974yIZxx49u2OWd6RWTEcMCWg8OvNh6Qs74WCzuv2z8y4PgsvPeD4cfTIyfFnil8WU+/OymcdfM7Ycq0WX514vljQK+O4YJ9Vwm9utUZC2DcYnnaTk+8NSnwQ9Yc0j3HeGLM59PDGTe9nROGhXRPvT3/PHdo0zKcs8/KYZWBi7I6RzC6uDxidv1jY3LWP/POfN0NK4/feWj42WrZA6FLPRcffzEtXHbPfIMTX6BfN2yprjKe8HA0LwIi0KgEKjKeuOiii5LKEjIin+GEJWrbtm34v//7v8R4AsMLDBzSHiMsfaHpoosuGghLceSRR8bJ3njjjZzkeGTAqAJZZpllwllnnRXShhN+h0GDBsVhI8xjw3XXXVfQeAKvGISc4EfZK6ywQhx6Y6211qrndYNyfJgSb+Th68D8qquumqx6+umnk3mb+fDDD202EBoln/zkJz9JjCfGjq2zIs2X3q9/9NFHwyuvvBKvwhsE3jmeeOKJ8Nhjj4UPPvgg9o6RPtcYnNxwww1h5MiR4dNPPw09e/aMuRNOZODA3Jevt99+O9x3331x/hbChPAv559/flINPHBgTOKllDJsv1ofi5XD9YLBSpcuXcL+++8f8JDC+XvqqadiDymEVuEa2W233ULHjh1tt8wp+950003hrbfeCuPGjQt9+/aNrwsMkIYPHx5atcp/2xKi5ZFHHok9vHCu5syZEyibcDTbbrttaN26dWaZxaz8+uuv4+PBaIofYWcwYFpxxRXja7Fly5Z5s6m0Xt9++23M5KWXXgoYIhGeBhYYY8Gc65Vzjeyxxx6hd+/e8Txpb7755ngeo6U111wznk//TZgwIeClBdlkk02CDzXk03J9Y6iF15spU6bE52bYsGHhF7/4RaBNSgv1vuKKK8LcuXPj87/llluG0aNHJ9cGxkPLL798HKZnu+22K9hGkTfeaTge2gGuN/alzVhllVXC4MGD08XnLH/33Xdx3V988cXY60/79u3je/NnP/tZHP4oJ7EWREAEREAEREAEREAEREAEREAEREAEREAEREAEFkoCr0aeIUy6dWpTtJJ6YK9O4boj1rJdc6YYTuxz0XOxBwG/Ycnu7cOnX85IVuGdYfLUmeHo7ZdL1qVnTv73mzmGEyj+O7Sr6xPHS0XacCJdzhX3fRB6d2sTthiRrfBPl1nucssWiwQ8ZZz333fjLB59a2KO8cQTkYeF4yNDEC/9otAfLVu2iDxETI9XM9334ufDtb9dK/EOMbhPpzAj8hwxNuJqAoceP3iPWMwZk0z6embY4/xnLVk85bwuHnluGBcZu+DVgd9hl78cLtx/RFh9cI+ctCff8GbiUYQNK0UeRbp0aBV5/vgqOZ9n3zwy6uP+Pmy3Zl3YeNKWcy4W69w2wADxx2frWN+2dX5dA9slIiACIlBLAnVPnBJLQSloykZ2Pfvss4vKgXAe55xzTnjwwQfj9ITzwONDOeKV6yjsveDlwuSUU04pSmn8q1/9KjYAMKMLlKPdutV3PfXll1/GymIUqCb/+9//4lkUyhgaoCj3grHBAQccEK8qpGRGWW6SpehFEY6XDIS0/fv3t+Q5U58PyvdSBMX91VdfHe+y8cYbx545PF8U117+9a9/5Xj98Ntgf+qpp8aGLrb+9ddfz1lmPcwxhjFBEezPb6llWD61PhYr5+STT46NRmBDGJnVV189Md6xNEwJc3PjjTeGNdZYw69O5rmn9t5772TZZq666qp4FuX7P/7xj0xFPcYNW221VcDAIC2EiKFuGHOkz186bdYy9+kOO+wQH2PWdq4TQuRkeQ+ptF4YDKy99tqZPPFcQ7l4dTEvOPA34wmMc+y6gn3WPcXxvPzyy0k6WKWNJzD+OPzwwwMhcbKEbXh4oWwvGMIQYgjZZ599YmOWdJgd88QDQ86t1d3nQ/l4z8HbjBczQmIdYZFOPPHE6MW7/ovlm2++GV8bGCCl5c9//nPsmYZ7pU2bNunNWhYBERABERABERABERABERABERABERABERABEViICKBsNxnar7PNlj2dF/VdnnXLW4miHSX48T8fGob27xpaR0YCn0+ZGe57dUK4PDJoQG57dlxYd+hiYa1lF8ssE4X6skt2Dodvs2xYbskuUUiLloEyEDws/P7a15P9DvvZMmHLVZcI3Tq0jkOEPPbW54lhxWn/GRmFm+iQGV4kyaAKM2sPqTsOjEhMqPLfH/rIFsOeGw0Ie248IAnrwXk47aa3wiuRkQJeKZ4bNSlss/p83csfd56vX8Ibxzm3ztcHHRbxwFAjLTc9/UmyapXBi4aTdlkxMYiZOXte5FXig3Djk/PT3PvShBzjicnfzEoMJwivct6+K4dBvTvF+c2LPFJw3s68aWS8fMMTY8I2ayyReA0p91wMic7pf363bpznT058NL5uMAyxdcnBaEYEREAEFhCBFuWW670irLbaamGppZYqOiu8RWBswK9cwwkKw4jBxCscv/rqq9gjhG1jVHYx0q5du9i7AopUflmGE+Sz0047xSPPmcdYAoMGE4wAtthii/Dxx3XxmdiGQhOPAfzyecBAQeqVoyhT04Jy3ARPDYwmTwtGH4QdMdl8881ttuTpXnvtlaMw53j5mTDaP+1Jw/MgHYYF3tCmT58+sVcKPIJ4Ydl+HTp0SDaVU0ays5upxbG47ONZPJJwjswAB2Mhb6yAEQpeCvC0kRYMitKGE5416VGW490ETwleZs+eHXtc8IYT7Ev5JpSN9wmrm61vaMq9gLGHGdBwPHgG8QYGnCPSzJqV63qs0npxL2O0ka6zMcUYgDA+eFOopWAcljacSF/nnHc8U+ST5557LifMDvv78wtDM7RI54GRiG8b2O73ZRnvOngAwsuFF64V6uYNJ4yfpaMtNq87tk5TERABERABERABERABERABERABERABERABERCBhY/AlOmzk4Ma3KdLMl/uzNuffB1e/+jrZPdz9x4Rhi+9aGw4wcrFo3AUhOrYaZ1+SZrrH8/VnyQbopnl+3UJFx+4WhgR5YHhBGJhPi679/3ESOPXmw8Ku66/VGw4QRrSbrVKn3DMDnVeLW59Ziybaip4eDD5/Ks6fc13keHC0OhYMHigrgduOSgxnCB9z2i/3+841HYNr374VTJfykzHyCsHZey4dt9w1l7DE8MJ8mjbukX4zdbLBDxzIM+/X6dTi5ffqwvfsv1aSyaGE2xrEXnV2DoyTPn9TsvH+Y8Y2D1M/qbu2mmK54J6S0RABESgUgJlG0/4UBBbb711pfUoa39GSpt4LwVpxfKAAQMsWVWmKKhRxBMSALf7o0aNisMYmDEASkoLFVBMgYRWYGT4r3/96/DXv/413gWjkkMPPbTe7hgqmDEEI9YJz4GXDUbnv/vuu3FoA0I0EE4EwVMBiu5yBe8aKMkfeuih+Fg5XhvhT3koa01YP378+JgH6a655hrbFBsFWJ0wCiF0Bz9TQKPkt3VMOS6k3DKSgt1MLY7FZR/PouTH2wFeACZOnBh7B2H54YcfTgwZMELAw4AXwmBgBGCCEp36whFjmNtvvz0OkcF28sM7ghcMkh544IF4FaE0nn/++VhZzn3KtWVGSsxz7aYV7D6v9DzhWEwIs0O9CF1BGZxvykO47qmnl0rqRR3xBkN5CPcX1+G0adNiBhgqHHLIIfE2DA9qJbQzeFAx4Rg5J9z3GEnhEcKEc+iNFGw9U/MYQ0ghjGzYH88Ul112WZKMbZwjL3iBOf3005NV1157bXxtcW1wfvG8YXLPPfckXn1YN3369LD99tsndSKkCfcU1xDb4GYGNuTjQ+dYnpqKgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAgsPATwcmCyVM8ONlv29Im3JyX74i2if5488RKBhwEEbwtfRl4PsgTvC53azk/nt0+bOTc8PXK+sp989t5kab85md9hrb5RyIp28fIbY+qMOpIEVZ7ByMCOi/AYs+fOi0to36ZF+N0Oy4fjIuODfTZdOjEA8cUv2aN9su/IyAilHIEDZRAKpbMLb2J5EVpk2b7zB8Ry7j339i48xlufTEnqbvsy3SYyzCB/fj1/CBvSVM+Fr7fmRUAERKBcAmUbT3z22WdJmaWGhUh2LHMGbwuMxDZ392TjlfgoJE3wipHlxt62lzPFIIFR6N7bBWE6/u///i/JjtH6hQRPDEOGDIl/eFlYddVVwz//+c94F5TbKKfbt59vDejzad26dXzcV1xxRTzyHAU2ngxWXHHFMGzYsLDnnnvGymZGpf/pT3+KQ0Tk83Th8803Dz+U8htssEEy0r1Fi/mXDeEQzCPASSedFI444oiw2GLzXVRRPnXxHjC8kjhfeen11SyjsY7loIMOipXtiy66aHI466+/fhyyw1YQusQL4RZMUHBzfZs3F64PDJTs+iAdXggInYO88sorgesBQRF+5513xgYvXPece64zDADMuAcvAxjbFCso9E2oJ95TTDjfhCE5+uijw3777RcI0WFSab0wIvBhKW655Zb4OrTQEoR2QdlfS+MtPGkcfPDBdkhxaA7KM88oeFEhDNEuu+wSp8EwBv755Prrr4+9T+DlBuH8YDTFOTd56623bDb2UOLLp93Zfffdk7AtvXr1ive188+O3kMFhhcY5iCbbbZZfJ0MHDgwXqYtwdDqjjvuiJf5w3uFRAREQAREQAREQAREQAREQAREQAREQAREQAREYOEl0N4ZJnzlvFCUe8SjP/sm2XW5KNxGPiGEx0pLd002j/1iejLvZ4YNqB9Kne0fT5yWJOvUvnX49Itvw7hJ2b/WLReJ037+9Xdh6ow5yX61msFowqTVD/oTW/ZTwmhMmjorfBLVe+TYr8OLH0xOPGn4dJXMY7zx1bTZgRAioz79JrwSebR49I3Pkyznfp/MhhX617F+5p3JYe+Lng83Pz02fDxpevghUkpdYjfXlM+Fq6ZmRUAERKAsAnVa0BJ39wYKXknss8GjAorkQoJXhO222y4zyTHHHJOjqJ03b17s7QHPD3509wknnBBQYpr4cB4YFVRb9tlnn5x6Wf4YGJg8+eSTNps5NQ8F6Y3rrbdeHP7AFMTp7SyzL6PGCwmGFyjSzdChUNpC2/B00bVr3QuNpUVJzih3BEOJP/7xj7YpZ3rggQfGRhwolX2ol5xEeRaqXUZjHUs6jIkdng+5gtcBEzwImNcIWF566aW2KWc6dOjQ2LMDhg8o3c17hDciOvXUU3PChFgG3KOco7333jte9cYbb4Tll1/eNheccv7tfsMoCIW7F4wYCGuRlkrrRR1NMFDIqi8GInhMwIigFsJ9bAZCu+66a9h0003rFcM9hrGLecLBaCSf7Ljjjpmb8A6BYQUyevToJI33qIHHGdqeLMFDByFSaBd8uCHvAeeCCy4IGEykBcMt8oUjx4o3i3796lzopdNrWQREQAREQAREQAREQAREQAREQAREQAREQAREoPkSWLRjm6TyoyfUGT4kK0ucmThlZrJH/56dkvmsmUG9O4fnR80PHeE9IPi07Zw3BL/+q+l1niowivjFefO9b/s0WfPvT5gaVo1CTtRKvo08Ypjg8SLqus+Rd8ZNDfe+PCG8EIXIGBsZNNRCMMi44/lxURmTA2FUihVCqhy/89Bw9s3zw1GPmTg9XHjnfN0F3jQ2GrZ42DIKhUIIFTxsmDTVc2H101QEREAEKiFQtvGEeRig8EmT6twy+cp8H5mmXXfddX5VvfkBAwbkNZ7wo6nr7fjDCkJFHHbYYTmbvccGU/rmJKhwgTAW+QQFL+75Gyp37bXXTtz948L/ww8/DI8//nh46qmn4h/hO2677bbYa4AvC4MCjDQsBADbKHPNNdeMlacvvPBC7HmC8lHiEzrj3nvvDW3b1sXd8vk1NL/OOutkJsH1v0mXLl1yFL623qZmCIIBBYYt3bsX96JS7TIa61gwcsiSnj17Jqu9hwbvBWKVVVZJvBokid0MXg/Snha8lxOu/Q8++MDtUTfrPUag4MdjSTGyySabJKEzCLmCoh1PL1xznPt8Umm9vPEEXkPyCYYhdt/lS1Pu+tdeey3ZtRBbDLtM8AaTJXh+yOcFZ8kll0x2MWMNVhDCxoQ2I59gTLP//vvnbKZO6brkuza8UQXcZTyRg1ILIiACIiACIiACIiACIiACIiACIiACIiACIrDQEOjeqc54AsV+pfLtd3XGA53bF1Y5delQN7hr5py6PtVi6jBjZnkeJKZVwbtGofq9GYW7MOnTvU4Pg+eGW58dG/5yR91ASktXzSmeJY77+2tle7D42WpLhH6LdYiNL+5/pc7jPN40/vfShPjXb7H24aL9Vwu9ImMLpKmei2pyVV4iIAI/XgKFn2QFuDDa3GTMmDE2mzNFoUeoAK8oJkFDhgU5mRRY+Pjjj3M8TlhSPC6Y4KWi2uK9XKTz7tixY3pV5jIhNv785z/nbJswYUL43e9+F49gf//992P3/M8++2ww4wOUoYT0MMMJFMaE9/DnggxRjO+0004BYwWMMQ4//PA4zEhOYUUu5DsebzBDOfkMBtLFoJjdaKON0qszl6tdRmMcC0pwO1/pg+J+wLOEV46Txt8PK6+8cnq3Bpfhb2KeJWw53/TFF1/Mt6ne+lNOOSVglGPhH/BQwA/BqAGPDDvvvHO9e7HSevl7d7nllqtXL79i9dVXT+4Lv77S+YkTJyZZ+ONOVmbMEG5kxowZ9cLuFDJIsDAe6ex8+bQZpchXX32Vk7zY/TnPP/3pT3P21YIIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiMDCQWC5vnWepvE0MCsyYmjTan6o7nKOsGfXtgFPEMi4yd+GAYvn15F85EJvdO1YZ0hRTLldnMeMdZbvEY7dIXsQYzovb7CR3laN5Uder+tDXmPZ+WHNyfetyKjCG05sv9aSYY3B3UPv7h1Cp3atQufIkKRjFEJl2zOfDFOm1XnVKKVOnLvDLq8LIb/mkO5hixG9Q98eHUPXKLRJh6icTpFBy59uHRm8YUS6jOFRqBR+v9th+bjeb4z5Otwfecv49Mv5njLwmHHQZS+G/xy7TmgbXStN9Vykj0vLIiACIlAOgbKfiIMGDUrK827mk5XRDCPdGTk9bty4nN8ll1ySJMsKCWEb8cgwa9as5IciEeWzST4FsB/hj2LahxixfZviFKMMPEXYKHuUsHiNMBk5cmS477774kWU9BhGpA0n2Ij3Aj/iHKVvtRk0FDbE6pyeTplSZ4WZ3pZebowyKLOxykkfny3PnFnn1qzQ/WDp01Mfpia9Ld8yoUKKlR49eoT7778/nHfeefVCZ2DgQHidpZZaKt7u86y0XhgTmfhQFLbOT6ljLWTatLo4eqXkT9tVDfnuu/kfHeTl275i8v7222+LSVYvTSn3aL2dtUIEREAEREAEREAEREAEREAEREAEREAEREAERKBJE+gbeREY0KvOwOHB1+q8DRSq+PPvTw7rHvdQ/Dvkb3WD88wbAft+7IwjsvL6YEJdf2vPLnVeGrLSptct1rku/VfTZgeMNor5tW1dthosXYV6y6M+/Sbc/eL4ZP1GK9YN7H3x/fnhSdi46wb9Y8OEDVfqFYYs2Tks2aN96BIZNcyYPa9swwnyffPjOn3LoD6dwvn7rBIZTywRVujfNfTt2SF079wmNoz5ZFJxfcXto1Adqw/uEfbbbGBsKHH+fisHwncgGMi8O3Z+SJCmeC7iSupPBERABKpAoGzPEwMHDkyKf+CBBwKjnHGfX4w89thjSbIVVlghmW9ohvxPOumk2DsDafHSsOWWW9Yb6Y9hAd4nbEQ/4R/WW2+9hrJvEtvxWoB3CRt1jwHFdtttF9ftueeeS+q42267FVSmcvy77LJL7MWCnTCmqOZoch96gzASl112WVK3QjMNKcH9vo1RBuU1Vjn+2Py8D4HjwzT4NIXm+/btG3sZIc3TTz8dfAiIfPvlCx+RLz3nDQ8m/EaNGhXwiPLQQw8l1xf7/eEPf4jbgP322y/OptJ6rbrqquGjjz6K8yLcBJ5W8kkx3AgjlE9mz56ducl7sTnnnHOKDnXiz2lmxkWu7NWrV5KSdqxYry3s5K9rlvN5CGKbFx/2yK/XvAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIwMJBYOsoVMNl97wfH8yFUViJtYYsFnpEivZ8Mm/e9+HSH9KTZpd1+ydJ2feRNz6Pl+9+eXxYPzIgaBF5YU7L2598HUb/YDzRLQodMrBXp3SSgstLRx4t2A8vDe+MnRrGRd4QMATJEowFvv52vjeHZZfoEmphQDHhy+/Cyf9+Iyl+lcGL5njdeOPjOs/AW6+6RJLOz7wyuvhBjl9MrRuEaXmMjDiY7LBW35CBPWBoAq8sGfP59DBn7vfxfpwPvz/ncK3Ik8aO6/QL/3psTLz76M+mheFLLxqqfS4IEfJdZEjSroaGLlnHr3UiIAIikEWgbOMJDBlGjBgRu/InDAHeJE488cSsMnLWEXqCUewmhRSilsZPDzjggHDhhRfGymIUq1dffXU4+OCDfZKogV8kYFxw0UUXxetJU4zxBMYWKHxNGJ1f6mhv2zc9xdDjk08+ifO78sor4zqm09hyly5dbDZ4DwGmSGaj966RJE7N+PAihDippvi84bbEEtkP/0rKbIwyqF9jlZOPhTd28AYy+dKn13PNmqcRvD0QwqKWMmTIkMCPECGEnjn55JPDtddeXlf2JAAAQABJREFUGxd50003BW88UUm9CGFyyy23xPkSqqZQW4ExR5Z4I5FC3lfyGRb4awO2tbjOs+pt6/y1QcibUoQwNT5MTKdOnYJvW0rJS2lFQAREQAREQAREQAREQAREQAREQAREQAREQAQWHgI/jxTidzw7Lg7LgOL6N5Enib/st2ro071dvYOc/M2scO5/RyaGD4t3bRfWX6HOw8K6Q3sm+zzzzuRw3aNjwt6bLJ2sY+bLKI9j//F6su6nkfFGixb1DSySBBkzpN9+zSXDtQ/PH3B31NWvhMt/s0ZYtFNu+A+8Qez71+fjHPCacNdJG2bkVv6qGbPmRcYinwWMTmCHUM4ff547UHhw7y7hxffmG1C8P/6bMKh3rrHIR1HIlHNufbdgRTpH3ilMnhs1OewbeYTwMtB5EHln3NSwg98YzX/z3Zxw0g35+5X/eveo8Pyo+R4yDvvZMmHX9ZfKyWFeNCBx9GffJOsWi7x9INU6F4tGxjDf/hAa5M3I2ASvFxIREAERWNAEKvJXdO655yb1P/3008OHH36YLOebOeOMMwLGFgiKQa+czLePX8+o6DPPPDNZdcIJJ8ReL5IVP8z8/Oc/T1Zdf/314fHHH0+W88344/nNb35TNcMJykPx+t///jdcd9114cknn8xXhXj9gw8+mGwnHIKJn7/jjjtsdeaUUfameCZB//51lqCZO5S4EkW2jcrHS0a+0C1k+95778WeClBwlxJKoDHKoH6NVQ5lZcmyyy6beIv49NNPw//+97+sZGHOnDlh++23jw18MJgwzyqbb755kv62225L5tMzsOcc8OOcFCNct3g/4UfYnLRw/+KRwcQ8prBcab2GDRtm2cbhbObOnf8imqz8YYb7ytqU9DYfXgjPDfnk0Ucfzdy08cYbJ+vvvPPOgtfvCy+8ELPNF04oyaiEmU033TRJfeONN4axY8cmy36GECd48eG62GSTTZJN22yzTTJ/9913J/PpGfa3a+Ozz4pz05fOQ8siIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIALNg0DbVi3CH3cZmlR2bOTF4efnPBXOv/3d8PibE8MbY6aE+18dHy6794Ow67lPh6fe/iJJe8jWg0JLZ/jQrUPrcNT2Q5LtV94/Ohx25cvh309+Eu57ZUI4L8pzrwufS8JT4D1ir40HJOlLmdln04Fh7eXmK9g/jZTue/7l2XBBZMTw8BsTwwOvzi/LDCfI91ebLl22N4OL7hoV503+/E678a1AuJLNTnwknHXzyBzDidP3Win0XjTX8GT1Zbsnh3b6jW+HM256OzwUhUiBL1wPuOSFhEmSMDXTZ9H2yRo8d/zmipfCLc+MDa+NmW+UMXxgXRn3vDg+HHXNK+G/z40Lz476IvzjkY/C/hc/H175oM4DRpLZDzM7rd0vWXXx3e+HC+8cFZ546/PIYGJaePqdSeG3V70Snn13vncMDES8cUM1zsWA3nXhY/7wjzfi8u95aXyY8YNRSlI5zYiACIhAIxKoyHhiww03zAkFwYh3r/j3x4HHCbwvYDxhctVVV9lsSdNf/OIXySh0lKaMfk/LmmuuGX75y18mq3/yk5+Ehx9+OFn2MzNnzgynnnpq+Otf/5qsPvTQQ5P5aszsvvvuSTZHHnlkIAxBlmDo8e9//zvZtMUWWyTzXin6zDPPhOOOOy5khRtASf7rX/86CeVABmuttVaSTzVmGNFPGSaE7jBlvq1j+uqrr4YVV1wxcK387Gc/C4VCJ/j9mG+MMhqznPTx2TKeUjxLwrZ4LyOW7vzzz48NK+DsDT4Ix2IeUv7+978nHldsP6ZcJxgEcR74FVKk+/0I0UH4DH5cQ1neG7whhvfcUmm9VllllaQqhAY666yzkmWbwSCC9iCfYNxhbO67777w1ltv1UuKtwy2ZQmGLbQlCN4vfvWrX8VGLOm0eJPBuw1sMSSrlmAwRZ4IbR3H+t133+VkT9u6//77h/fffz++B73BxR577JGkxVMIBhJpwbvNZpttllwbeMjxcs899wTaT0K2yLDCk9G8CIiACIiACIiACIiACIiACIiACIiACIiACDRfAoRfuOzg1WKvCXYUt0XeKP7wrzfDwf/3UjjtPyPD9Y+NSYwEMHq45KBVw09W7mPJk+kOa/YNv1i/bgAnCvtL734vYDTw3yhPQm0g5PGX/UaEzu3qPCokmRQx06rlIuH0PYaFZZfsHKcm31sjY4KTrn8znPqf+WVZNttFXip237BucKqtL3Z6+3OfxnmTP7/7X/ksvP7R1zm7U4+/H75mHN4iZ0O0sMrARcPmK9eFZb735Qnh5BveivkaV4xIYJJPll2ic1hpQLdk82ujp4S/RIYc10WGEUinti3DEdvWGa7gReK8/74bjrnmtXBFZMSCUczwpbuGjYfVeQpJMotmCLmy9Wp15/Pmp8eG4//5RvjlX54Lx177emJ4sWT39vG5bx8ZUJhU41zsFHlAMcGLB+VjmPLBhDpvF7ZdUxEQARFoLALlPaFc7f70pz+FJ554IlbsodxDYbrDDjvECsfhw4fHo9VR2D3yyCOxcs92JfyGV/LZ+mKmKNUZ7b7tttvGyc8777xYebj00rmuoM4+++xYKWpK/a222iqg5EcBiSeGSZMmxcrUm2++OVaMWtnUzY9Yt/WVTFGALrPMMjEDRvEPHTo0HHPMMQFGKHhRUuMdA0WuCQYcKMlNBg8eHBugmLHIX/7yl9iLBUYJ5N26devYQwAeJ1D0msBnscUWs8WqTf/4xz+GV155JWaMsh9lNx4/1l133VjBjIHH5ZdfnpSHsQehBEqRxiiD+jRWOfmOHYMavJLAkftotdVWi1lyj4wfPz489NBDAQMCE9Kb4AGEc26GNhgpYSiE1wSU/3iE+dvf/pbcfxgT7LPPPrZ7wenaa68dVlpppfi6wisG9/eee+4ZG1KgtH/66afD73//+yQPFPQmldaL/bk3d9555zhLjBJoa7iHu3fvHs/ffvvtVlzeKR4wbr311ng79yHnmvvvq6++iplisFRIuCcxDKMdweMLxhR4dMCghDYEjxTeWwjXeTWF8EOEMEHw7EGbwX3GNUIoD8rGSMkEQwoTjB5OOeWU+Mc6jn/XXXeNrw1CL2FMQjvCNYdgRLHGGmvE8/x9/fXXcXvOPO0T1473/MN6iQiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIQPMkMDxSzF931NqR0vqTcGPkKSJL8Diw3tDFwmE/GxK6d85W9BPG4fCfLRtGDOwWrn/8k/Bm5LnCC3lsu9aSUViIAaFnl/p5tHDDfFu1cgs+kx/mUeCfv8+I8K/Hx2TWefl+XcI+my0d1hnSMwqfnpFBgVVtGiibkCV9urcNQ/p2DVus3Dss17dL3txat2wRTtx1xTCgV6eAIcbnX9cNisNg4qAtB4WfrrpEbJSRLxO4nrXnsHBX5I3h9sgIxedh++y8br/I60XbcOUDHyahVWzbLzcZEPbaaOlwcWTIkiV4EPnjziuE9ZfvGf4eGWS8F4U88YLRxBpDeoSDtlomNtTw25iv9FysuUyPcN6+K4fbnx+X492kRaknLl0xLYuACIhABQQWmTVr1vcV7B/vinKXEdnFhMZgh0MOOSRWwGUp0lFIYlyATJ06NbRrl+vqKN7wwx+KQSsTZaL32GDpqBuKTsvT1ueboqg86KCDoodq7lMVAwVTXqNobNu2bWYW66yzTqzgZGPENicNylqU1l7RmpPALWCUctRRR7k1dbNXX311OPjgg+tWFJhD8Uuoh1KEvCkDYTS7DxeSzgcWKFy98jadhmU8K1xyySVRLKzcF58hQ4bEBgMoyseNG5e1a6zYLbeMxjoWDHcwLiAUTZbXCDuwHj16xMeDQcLLL79sq+MpBjQYBBXan4QYz/z2t7/N2ZeFG264Ib4P621wK1B+P/bYY7FBhFtdcBYjmF122SXTs4jf8eijjw6nnXZabMTj11daL4wmCnlzwHAIQ5ErrrgiLpbwGWZswAoMHDbaaKPEeMTXzeYxODGjJK5TDKi8jBw5Mqy//vqJkYHf5ufx/OG9PeDFAaMnhHvfGxP5/TBiME8bGMb4UCiku+uuu8JOO+3kd6k3z7nFiMaHGrFEtLkNefoZMWJEbAiFUYUJ17Q3SsODzrXXXmubNRUBERABERABERABERABERABERABERABERCBBUqAPlX6mCuVPf7yYlFZXH/k6kWla46Jvp05N3w0cVr4bMp3YdaceaFbx9ZhcO/OoWfXbF1IoWP85rs54fMonzlzvw9dorAePbu0DXgqqLaQ/6SvZ4apM2aHdm1aREYE7QMhSZqifPnNrDBp6syIa5uIaZtQqoHAvChU+7Tv5sYGIRijYPiQlhmz5oVPJ08PbVq1jIw82gUMOEqRufO+j/afEZ//JSLDiQ6RZ4tipdJzMXP2vDBr7rzQMtLNlVJusfVTOhEQgeZHYEE9m0trOfNwXWKJJcK9994bh77wirZ0ckZKM1L9wgsvzOuBwBsl4GGikOBZwgSlIQrOtFA3lMXnnntuQEGfTxiR/dxzz8VGCWnDCfZp1arOSUdD9cpXBkpJRsBTbwsF4NOi/MTQg9H0+QwnSL/ffvuFp556KlamoqxPC+cAJSej0ks1nCAvf3xt2rRJZ5+zTJ0ZeZ+lzCch55zjufTSS+sZTrDdc2U5Syopo7GOxTh16NAh6xCKWsdLPvfHsccem4SasB1hgFL8/vvvz8t6t912i5Xn+a4tDAS4RzDcKEUwCHr99dcDXiWy7iHCVXCOua7xfpKWSuuFpwi8p2SVzXXH/d2tW7d0sclyz5494/Zpu+22q8cVgwH2x8NGIcFTBd488hkwsB5jGG84QX7++mvfvi4+XaGysrbRLmCglM6ftHChfLzAZBlOkIaQRBhkZLUXrLv44otjDt5wgv3YhlGMzR922GHxvP5EQAREQAREQAREQAREQAREQAREQAREQAREQAQWLgIorFfo3zVsOqxX2GqVPmHtKKRDOYYTUCEsx6DencKQKKxFn0Xb1cRwgnIwyMBIgHKW6tmxyRpOUFe8dlDPXt3almw4wf4YW3Rp3ypmm2U4QZr2kQHJ4D6dQ/+eHUo2nGB/8mXfwX06lWzAUOm5aNu6RXxsMpzgTEhEQAQWJIGqeJ5IH8CUKVNid/Bjx46NlYeEDuBXiWI5XUY5y7Nnzw5vv/12oF7m1QJFMiE6vJKznLzL2WfOnDnhvffei0ObYPCAh4csw42G8p48eXKcD+lQ8nbt2rWhXWqyHb54+vjyyy/jc01olEoUxlmVbIwyKLexysk6RtZxbcCSc4thwIABA0q6NjgHeA2YO3du6N27d+jVq1dJ++erF+vJG48KXbp0ieuV9ibS0L7l1gsmEyZMiLkQhobry4w1TjjhhNhAirLTnid8fb6PrHNHjx4dZsyYERsGEP6jVJk+fXrMdtq0aQFPIhgYFGMEVGo5+dJ/++23MQO8vmAcxrktVgi1MnHixNgbB21Nv379ChqeWL4cM4ZtjXmcVramIiACIiACIiACIiACIiACIiACIiACIiACIpCPgDxP5COj9SIgAiIgAiLQvAksKM8TNTGeaN6nQrUXARFobgSKNZ5obsel+oqACIiACIiACIiACIiACIiACIiACIiACIiACOQnIOOJ/Gy0RQREQAREQASaM4EFZTxRlbAdzRm86i4CIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIvDjJiDjiR/3+dfRi4AIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiMCPnoCMJ370l4AAiEDzJ9CqVavmfxA6AhEQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQgQVGQMYTCwy9ChYBEagWgRNOOCFMnjw5/q200krVylb5iIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAI/EgIaLj2j+RE6zBFYGEmgOeJzp07L8yHqGMTAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQARGoIQF5nqghXGUtAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiLQ9AnIeKLpnyPVUAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREoIYEZDxRQ7jKWgREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREoOkTkPFE0z9HqqEIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiEANCch4ooZwlbUIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiEDTJyDjiaZ/jlRDERABERABERABERABERABERABERABERABERABERABERABERABERABERABERCBGhKQ8UQN4SprERABERABERABERABERABERABERABERABERABERABERABERABERABERABERCBpk9AxhNN/xyphiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAjUkIOOJGsJV1iIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAk2fgIwnmv45Ug1FQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQARqSEDGEzWEq6xFQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQASaPgEZTzT9c6QaioAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAI1JCAjCdqCFdZi4AIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAINH0CMp5o+udINRQBERABERABERABERABERABERABERABERABERABERABERABERABERABERABEaghARlP1BCushYBERABERABERABERABERABERABERABERABERABERABERABERABERABERABEWj6BFo1/SqqhiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiKw4AnMnjsv/Pvxj8Nbn0wJ26/VN6y7XM8FXynVQAREQAREoCoEZDxRFYzKRAREQAREQAREQAT+n737gK+izB4+fkhIQkJ6SKcGCL2DgNgQBVQsuCgqFlAXd/2rq66vuupaVtfVta+rC9Zdy7IWFBVFFFFBeov0UAMkQBICIQlJIBDeORPu3JJ7b24qhPye93O5U5555pnvTNz3859zz0EAAQQQQAABBBBAAAEEEEAAAQQQQKC6Aj+uyZblW/abh43unyi92kX6NMSx8uPyj5mb5KgRzKDtrjFdJCig/hOu/7I+V96YvdU858INeTLnyfMlOLD+z2uekH8QQAABBOpVgOCJeuVlcAQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAU8CpWXlMmNxlrm7oLjM5+CJtIwD8umCXeZx3dqEN0jghJ6s5Mgx85y2f46Wa/DGqRM88d2qPVJ27LgE+DeTkf0SbdPkGwEEEEDABwGCJ3xAogsCCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggEDdC5zbI06eknXmwHNX58gD445JaJB/lSf6IS3b6nPJwCRrub4Xzu+dIL9uz5cNmQVy9VltJazFqfWq7bnPNkqxEeAREuhP8ER9PwyMjwACp53AqfVf9NOOlwtCAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBDwJBBiBEqM6p8gs1fuNbssWJ8to/p5D4Y4crRcvl9V0V8PGt473tPwdb69hVEa5E/jutf5uAyIAAIIIHDyBU6dPEIn34IZIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIINLDARQPs5SW+d8go4WkayzbnmdkVdP+5vWIlMiTAU1e2I4AAAggg4LMAmSd8pqIjAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAXQv0T4mWyNBAyS86Ios25smBojKJCvUcEPGdQ9aJiwdUzlJRUHJUVmzJk23Zh2TLnkJp0dxPOreOkM6JLaVn2ygJDqz82+IVW/fLxqxC89IuOyNZjh8XWWWMsWJbvmTmHZKzu8fJ2CGtpexYuUxfuEuOGfvbtAqWc4ztru1Y+XFZvGmfZGQXy9a9hXLo8FFJTQqXzkmh0q11pMSGB7oeIofLyuXzxRXjpsS3lKFdWknmvhJZveOApBllQg4WH5EOccbxyWFyTs94adbMPoT2+3l9jrlBS3Zo0+8P5+0wl/WfkX0SJDYiyFrXOf6akS+bsgok3ShBUmpk8+iUGCYpcS1lsHFuzQhCQwABBJqaAMETTe2Oc70IIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAwCkk4O/XTC47I0nem5thzuqntdlmoIK7KRYfPiZzfs02d4UE+svg1Binbgs25srTn2wwAzEcd3x3IqNFeyMw4cWb+0t8pD2QQPvNMfZ/uTTLPGRgxyh58D+rJedgqTVEbHgLc7nkSLm8OnOzuTy8d1yl4ImMnEPy1MfrZMOuAutYXfhl3T5zXef87KS+0j8lymn/fiNwxDbumEFJosEND/z7V6c+tjH6d8qUx6/pJTFhFUEYO/YVyetfV8zJ8QDHbb3bRVjBE/nFZfL4tNWybNMBx+4yb22uuR4X0UKeur6X9Ggb4bSfFQQQQOB0F6gcWne6XzHXhwACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggcEoJXNg3wZrPbIfMEtbGEwsLNlRkWNDVMYOTJcDf/qprnpF94f53f3UKnNDsEBowYWsZRjaKm19dIrkFR2ybKn0/9t81ToETGvAQ0qLq3yPnHjwsE15Y5BQ4oRk1Uo1sETqGNs0IcefUFbLMyGrhqa3dedApcCI5Otg6Xo9ZueWA/HNmunV4q7AgMwuGXqtj03XbJyig4vylRoaLSS8vsQInzACULtHSv5M9mEODRia/tszImlHkOBzLCCCAwGkvUPV/6U97Ai4QAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEDgZAqkxIeaQQabjNIZa4xyEnv2l0pidEW2B8d5fZe211od5RBwoWU23p2z3dp3/Xnt5frh7SXsRNCDBjb85eO1ZuCBlgdZnJ4rlw5Ktvo7LuwyymBowMNdl6ZK1+Rwo8yHv5TrCapoHy/YafXQYIRHr+5pZXvQshxTZ2+Rj+ZX9Jm1fI8M6uScNcN2sAZ4aHtqQi8Z1j1WAo2yI3p6zYzx9882mPs0k8aE8zoYpTZCpYsxx//9v2Hm9gv//KMZoKFBEbZt5o4T/yxN32cFhgxKjZInru0jESEVrwsPG6U7/vFVusxYXJGB47NFu+T/je3meDjLCCCAwGktYA/HO60vk4tDAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBA4lQW0XIWtzTVKd7i2A0VlsnBDRcYGzajQtXW41UUzKnRvE26U/0iWW0d2lNtGd7QCJ7RTbESQPHhld6v/qm3OJSusHcZCN2OcV28bKP06RJmBE7rPr1kzxy5ul1sagRp6/iuHtpanb+hjBU5o56AAP/m/izuLZpHQtmTzfvPb0z9/MQInhveONwMntI+e/nIj08ao/vYMHdv2Fno63OP2+RsqSnNoh4kjUqzACV0PMoI07rq0i9x8QYp5HYEnslXoPhoCCCDQFATIPNEU7jLXiAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgic4gLn90qQF2dUlKP4ZvlumXBOO6cZz1tnL9lx6eDWTvuCA/2qzJKQHFNR/kJLZ6w3SmN4apqRIjSoosyFpz7utk88v4O7zdY2f79mkto6TLL2l5ilRfYXHpHosEBrv+PC8J5xjqvW8nk94mT2yorsG1lGdo7qtuBA+6vB1dsPSt/29nIdOpYGUNxyYUp1h6U/AgggcFoI2P8LeVpcDheBAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCDQGAWiQgPkrB6t5Jd1+0RLV2zLLhIt52Frs1busS3KBb3tGRisjS4LWiqjoOSolBw+KkWlZXLI+NbAiapa7/aRVXXxaX/ZsXIpKjkmh0qPmufW8/+42h4AcsxDJRAtp+FnBFq4a7GR9lImOm51W58OkTJ94S7zsKnfbpHVGQdkVL8E6ZsSI7Hh7gM5qnsO+iOAAAKNVYDgicZ655g3AggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIHCaCVzSP8kMntDL0kCDlAsrgif2GFkW1mTkm1erwQXxkUFur3xDZoHMWrFHlm7aJ7v2lbjtU9XGFrUoV5FbcES+WJJpnD9P1nnJbuFtDvERFaU93PUJNDJD1KZpRotLjPIoXy/bbQ6zaGOe6EeblhTRUiFaGsQxaMXcyT8IIIBAExAgeKIJ3GQuEQEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBoDAJDuraSkEB/M0PETOMF/80XpEgzIwnDjw4lOy42Aixc23Eji8P0RbvkpS8qyn647m+I9ZXbDsgD76b5lN2iIebj7hya0eLBK7vJGZ2iZeaKLFm26YDVTcuJfPBThvkZ3jtOHh3fU2obrGENzgICCCDQCAQInmgEN4kpIoAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAJNQUBf1l80MMksLZFzsFTW7zooPdpGyLcrKjIlqMHZPeIrUazdme8UOHHFkGQzQCAhOkRCWzSXsJAAaRnkL5f9db7kFx2pdHxtNxw5Wi53Tl1hDTO4S7RZDqN1TEuJCA6QEGMOocHN5Znp62X2yr1Wv5OxoAEUF/RNMD+aKWOtUbojzcjq8Y0RrGIra6JZPwL81slj1/Y6GVPknAgggMBJESB44qSwc1IEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAF3AqP6JZjBE7rvh9XZEhLUXLbuKTK7asmJ4MDKpSuWbd5vDXXNOW3lzktSrXXbQtHhY/USOKHjr9lRUVJElzsmhsoLk/qbGTN03bHtzC12XD3py7HhgWapDi3XcftFneXLpVny8pcV2Tu+S8uWB6/qIUG1LBVy0i+SCSCAAAI+ClT+XxcfD6QbAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAnUt0L1NhCRHB5vDfrUkS75L22OdYnT/RGvZcWH1Dnv5iYsHVC7roX1Xbs1zPKROl9fvKrDGGzuktdvAiQNFZbLBoZ91QD0saAaJ0rJyp5E1O8YWIwhFP1l5JU77dCUowE+uGtZGUpPDrH27TrFgD2tiLCCAAAL1IEDwRD2gMiQCCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggEDNBJo1E7lscLJ5sAYBvDc3w1yODA2Uvu0j3Q7aKSHc2r55d6G1bFvYnn1Inp2+0bZa598p8S2tMTdk2gMpbBsLS4/Ko9NW21br7TvKMLK1NQ4BJbqt/LjI719fJje9vFiu/vsCp2wZtmOKjewcmQ4BEzFhQbZdfCOAAAKnvQBlO077W8wFIoAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAKNS2BE7wT516wtTpO+0sjo4OdnRFa4aYNSo2XavB3mnic/WifLt+yXIakxEuDfTNZlFsrnC3eJBmLUV+uTEm0N/fWy3bKvoFTO7h4nCVEtZFNWocxasVt27auc7cE6qI4W2ie0lKz9Fed56D+rRcucdE4Kk/ONshzBgf5yuWFoc7r3rVVy3XntpXf7CAkLDpDt2YUyZdY2y+nMbjESFRpQRzNjGAQQQODUFyB44tS/R8wQAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEGhSAonRLaR/pyhZucVejuPCvgkeDfqnRMnIvvFGiY9ss8+sFXuMgAV7uQ/deMPw9vKVEdiQX3TE7FOX/4QG+cvdl3WRl79MN4ddkr5f9OPY+nSIkGgjk8OPq3McN9fp8m/ObCML1u8zx9RgkU8W7DKX28aGSK92kTL+7HaStv2AWT5E97/13Va35x/cJVr+9JsebvexEQEEEDhdBSjbcbreWa4LAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEGjEApcMSLJm361NuGgAgKcW4O8nf76mp0we1VHiIlo4ddNyHw+O6yaTR3aUQKOfu+bnsLl5c4cVl85aUsTWAl36XTWsjTxzU2/pmBhq62J933h+e3l+Un8Ja+E+k4O/w8BBAf7WcdVdGNw5Rp6/ua+c1aOV06F+J8aPDQ+UqbcPkttGd5Lk6GCnPrqic79jTKo8P7GfEehhLwFSqSMbEEAAgdNQoNmRI0eMCkc0BBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQKDxCKSnp0uXLl1qPeEJLy3zaYwP7xnkUz86nRoC+wuPSG7BYYlsGSixEYFiCx5oqNmVHCmXrLxDEtjcXzSLhgZ3NHQ7XFYuR46ViwZmhBiZMdw17ZO1v1iaGf8vOSbYmG/Dz9PdvNiGAAJNW+Bk/W8zZTua9nPH1SOAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACp52AZk04mZkTggP9pFNi2El1DQrwE/14a7o/Jb5ypgxvx7APAQQQOF0FvP8X83S9aq4LAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBA4IUDwBI8CAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCDRpAYInmvTt5+IRQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAgOAJngEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQaNICBE806dvPxSOAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAwRM8AwgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCDQpAUInmjSt5+LRwABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAGCJ3gGEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQKBJCxA80aRvPxePAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgRP8AwggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAQJMWIHiiSd9+Lh4BBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEECJ7gGUAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBJi1A8ESTvv1cPAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggQPMEzgAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAJNWoDgiSZ9+7l4BBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEECB4gmcAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBJq0AMETTfr2c/EIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggQPAEzwACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIINGkBgiea9O3n4hFAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEECA4AmeAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBo0gIETzTp28/FI4AAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggADBEzwDCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIINCkBZo36avn4hFAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBJq0wJy0vfLtqj0yqHOMXD2srTRr1qQ5uHgEEECgyQoQPNFkbz0XjgACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgic+gIZOYfkkwU7zYkO7Bgtw3vH19mks/MPy2PT1prjLdqYJ11bh0uf9pF1Nn5dDLQj95B8/EvF9fs63tghbaRTYqiv3emHAAIIIGAIEDzBY4AAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIHDKCuQVHpYZi7PM+bVsEVCnwRNlR8udrru07JjTem1XCkuPyry1OeYwCdEtZEBKdLWHzMwrtq7f14PP7NaK4AlfseiHAAIInBAgeIJHAQEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAoEkKtG4VLLdf0llmr9wjAztFyyAjs0VdtryCw/L0J+vNIUf2ja9R8ERN5hNqBJnQEEAAAQSqJ0DwRPW86I0AAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIHAaCUw4p53opzG0Wy5MkZsvSGkMU2WOCCCAQKMT8Gt0M2bCCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAHQqQeaIOMRkKAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEDg5AgcPlou89Zmy7qdBbInv8ScREJksHRvEybn9UyQoAD3vyn+Pm2P5BQckUB/P7lqWBtr8pm5xfLzhlxzfWiXGGkf11I2ZRXK6ox8Wb0jX/ybNZMOCaEyyCj30aNthHWcLqzYtl82ZhbK/sLD1vat2Yfkw3k7rPWGynaxYqsxF2Pe2i47I1mOHxdZtSXPmGO+ZOYdkrO7x8nYIa2teenCdmOuc9dkS2buISksPSpxES2kU2KoXNgvUcJaeH+9WG6cYFH6Plmx5YAxfrG0DPSXlMQwOb9XvCTHBMuBojL5ZuVu83z9U6KkW+twc7m8/LhM+2WnuZwU1UKGG/3dtWNGv88XZ4re77ZG2RWdv7um55m9ard5LbkFpRLZMlDaxbaUC/okmPNwd4yrlT4Ta3ca9zvjoKzflS/RoUHSPj7UeJ7iJNGYo7eWX1wmc9L2yra9RZJzsNQ07Gpca2pSmHQ2Pv5+zazDS8vKzWtSu+jQQLmof6K1z3Wh6PAx+WJJprk5MiRALhmY5NqFdQQQqKGA9/+61XBQDkMAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEECgoQT0Zf2jH6yR4iPH3J7y+cB0eXxCTxnWNbbS/vd/2iFb9xRJiPGS3zF4Yn3mQXn9681m/1ZhATJrxR7578/24Adzx6/Z8ubsrTLOCLq4a0yq9UJ8afp++eCnDKdz6Tls4+mOhgqemJOWLV8uzTLnMrBjlDz4n9Xmy3zb5GLD7UEAGljxwhcb5fNFFS/nbX1s3y/MSJeXf9vPCBiJsW1y+j5sBAHc+cYKI4DloNN2MeYwZdYWuf3izpKS0NJyuPuyLlbwxDHj5DafwV2iPQZPFJUek5e+SDfHP793nNvgiVkr98hTH61znsOJtTeM+zV5dCe5aXj7SvsdrYZ1bSXPTN8ga4xgGdf2z5mb5OGru8vFA9wHLmjQxl/+t971MCPooeI+DO0aI49d28sKRNE4ine+22o9v8O6xUp4sPvXuAvX51hOjs9rpZOxAQEEqi3gPsSu2sNwAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAINL/Dj6my5750068WzziDS+PW+fmxNgyruf/dX+cHoW5P2yYJMK3BCgyw0E4Nj+3TBLvl6eUU2Bd2eGN1C2hhZEbSvY9Ntto/j9oZafuy/a5wCJ3R+IQ6ZJN77cXulwInk6GCn6d395iozm4PTRmNFAy+e/mRdpcAJx+Nf/2azmWHB9di6XNfsEa6BE45z0HO98e0WMyuFt/M+9fE6K3BCnyXXe/7Xj9fLtuyiSkMs2ZxXKXDC9TlYtDFPbnllieQaGU+0BTb3k0sHJ1tjLTiR8cTa4LDwg5ERxNZG9kuwLfKNAAJ1IOA+ZKkOBmYIBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBOpTYH/hEeOFvf0X/sONTASTRqRIilFaQdv2nCJ5d842mbs6x1x/xujbu32UxIbbAyvMHVX8s2FXgfny/Jmb+hglF0LFzyjZoaUW/vFVupVN4NWvNpklFLQcwxWDW5ufjJxDMuGFReboI/vGm9kGqjhVve7eta9EUpPD5K5LU6VrcrgEG8ETWipCm5aY0KwMtvb3SX1kYMcYs9yJvuSfNi9DPppfUVbj3rdXyTt3DZao0ABbd/mvUZJkjpGJw9aeuLanDDayN2iZDy2h8fO6bHnus42yYP0+W5c6/1bvB//9qzXunWM6y2gjO4SWtygxAmh+WptjBVZoZojEqBDjeYi0+jsu6D3XDBH3XdFNEk6U6NhzoFQ0AMWWWeMd49l6akJv67B0ozzKvW+tstZvGN5eLj+jtRlMo1k5lm/Nk6nfbjUznWTtL5FPF+yU31/Uyew/sm+C5Tt39V63pTu0hMov6yr8NAinexvncjHWiVlAAIEaCZB5okZsHIQAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIHCyBbQ8g61UR8fEUPnz1T2lY0KoGLEN5keDKB4Z39MMGNC5at9vVtgzRPg6f80c8Mpv+0sXI/BAAye0tQjwk3su72JlJNCxcw4e9nXIGvXbvKfQzJ6hGTQ8ffQFv6fWrU24vHrbQOnXIcoMnNB+ej1lx8rlWaNEha1paQ4tcRJkXKM2DTa545LOckGfeHM952CpzFtXEZCiGzQAQ7NK2Nqj13SXC4xgAA2c0KZBFhpQcrsxRn2212dttp6HW0d2lGvObmcGTug5NVDkov6Jct/YrtYUpi/cZS27LmiQyVPX97ECJ3R/ohFE8cjVPayu63YUWMu6MHW23WBU/wT5nVEeRLOQaFNLNX3CKNdha58Z59egCm1dW4ebWUl0eeGGPCkoOaqLTm2RQ0aKS42gDBoCCNStAJkn6taT0RBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBpIYPaqPdaZHr6qu/Wy39poLAQZJRF0300vLzE3f2ccc9Pw9uayr//07xwlbWNDKnUP8PeT84xsFx+fyMiw+0Cx+YK9Usc62jBvba7ox1ubPKqj3HR+B7ddLh2ULKFBzqVEtGPa9gNW0IFmyBjUKabS8RpkcZsRDGDLLpGepYEDFaUmdufZAzbO7BYjo/olVTpeN1xnBDNomRXN6lDXrejwMSurhQa7TPRgMHZIa3lvboZZvmR1xkGP07jYyFihATKuTZ+D9vEtJSP7kDnGkaPlZtmNg8VHZUn6frO7nv+BK7u7HmqudzCO1aweu3KLzXVb5g9duXxIG/nnzE3mdi3docEejs2xZMeI3hWBLI77WUYAgdoJEDxROz+ORgABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQOAkC5eXHzfIHtlOnGBknPLUOJ8p46H596X3MOFbLa/jaerV1X9pBj4+PCLKGKTVe4J/KzVOJik27i6xpBwb4S+aJF/vWxhMLFTkSKlbW7rQHHmzbW2h17enFSpN26BzqI3hiR7b9GkKDAyRrX0VwgjUxh4UA/4p7rxk0NMNDeHDlV6ZdW4c5HOG8mGRkk9DnSJuWbwk0AnR25trPn9omzG0gj20UzUAh9gQYts1ygREQYQuecC3d4Viyo3+nKKeMGNYALCCAQK0EKv+XoFbDcTACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAAC9S+gv/S3Nc0EoFkgPDUNlNCyHlv3VLzgPlBUJq2MUhS+ttgIz32DjGCDhmqaFeLac9t7PV10qD2Yw7VjCw9z3V9oLzcyc9lu0U9VTS0PG1kXNLPH5r32wIEOCS29HtrJuA/10Q4cOmINq0ER459faK17W9i8p0AGpERX6tIqrKLcRqUdxgZ39/xAof38XZLC3R1W5bZYIxBncJdoM4OFrXSHLbBj8UZ7xpExA50zUlQ5MB0QQMAnAYInfGKiEwIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAwKkkcLjMnuUhMjSgyqlFhwUYwRMV3RyPrfLAU6hDm9iWkprkOSNCTadaUsOMGYeMrA1BYYFy9Jg9J0WYkfXBW4sI8b7f27He9pUctgfTeOvnuq/oUJnrphqta/kOW6vKwNbP3ffF/ZOs8h+OpTvmGOVObO2cHpTssFnwjUBdChA8UZeajIUAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIFCnAsc9jBYVas8GsWmXvWyEh+6yeXdFmQXd73isp/5Nabujxx1jUs3yEb5cf2TLikCIuAh7loadOcXSr0OUx8MzjP1VtfLjnu66OAVqOI4T3tL+PJzZLUbuH9vdcbfH5fA6CuaINIJIbG2rQxkT2zZfv8/qEWd1tZXuKDKCW35Zt8/cftGARAkObLhsJ9ZkWECgCQg0WPBEcXGx7N69W7KysiQzM9Nc9vf3l/j4eElOTja/O3bsKIGB9v+wNAF/LhEBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQaLICZUbGgn0HK8odaPYIdy+Fi4rtmQEc9wcF+EmI8RK5+Mgx87PfKJsQ7fAC2xFVS3zkF9nLKoQE8fLZ0adVuL3UR0HxEdHyEdVpjqU4tjqU8HA3xpbdBe42i1+zZtb2/YX2e25tPLGQnV/iuslcbxVmn7OWZanuNbgdtBobYx0M1+1wf42+DNfCeK4vOyNZvlyaJbbSHUvTKwIn9PhR/RN8GYY+CCBQA4F6DZ4oLS2VmTNnytSpU+Xnn3+ucnqhoaFy4403ylVXXSVDhgwRDa6gNZxAdna2DB06VPLz86t10sjISGnbtq20bt3a/GgwzIgRI6R7d98i+qp1MjojgAACCCCAAAIIIIAAAggggAACCCCAAAIIIIDAaSPw05pseXzaOvN6rj2nndxxSedK17Yj156pIDU51Gn/2T1jZfbKvea2WSv3yIRz2zntt63MWpFlW5SRfU9OyYM9+YetOZxqCwM6RltTmrcuVyaenyIanOKurdt5UDQzhL9fM+neJsLs0iHBXkrkB6O8xMTzO7gNZMncVyK/rLcHAjiOr+MlRwdL1v4So7xKkWgZjMDmleewarv791gd4lpKpJGNRINkNuwqED1X61bBjqewlncaz9RBI0hEW2pSuMdrtQ7wYaFtq5aiGThyDpaanwUbc2VY19hKRx4rPy4Pvpcm609kS/ngnqFGJhTnUiajBiSYwRN6sJbumLcuxxxHr69/iv1eVRqcDQggUCuByv/FqdVwFQdrlolHHnlEkpKS5LrrrvMpcEKPLCoqktdff12GDx8u/fv3l6VLl9bBbBjCVwG9b5oVRO9DdT56zMKFC+Xjjz+WF198Uf74xz9K3759ZfDgwTJlyhTJzc31dQr0QwABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgSYk0CW54uW7XrIGP+QW2LND6LbC0qPywY8Zumi21CR7f90wsp/9V/ivf7NZVmzbX9HR4d+0jAPy6szN1pYLHI6xNtbTQssW9pfiazLypcTIknEqtraxIdKjbYVtRvYhefx/a0Rf8ru2GUsyZfJry+R3ry+Xd+Zss3aHGpk8urUJN9c1eOHP01ZXOr60rFwe+uBXM0uIdaDLQo+2FWPo5q+X73bZK6JBD69/bb+Xjh38jOCLKwYnW5vufXulaAYK15aeVSjXPr/QvIZ731olla/S9Qjf1jVxxuVD7Od//MO1kpVXOUvGf+ftMDNKqFP7+JBKgRN6tt7tIs1ADF2evnCXzFtb8a5NM1JokAkNAQTqR6DOM09s375dxo0bJ2vWrKnVjDds2CBnnXWW3HvvvfLYY49JcLD7yLBanYSD61Vg1apVop+77rpL3njjDZk4cWK9nq+mg8+aNUt27tzp9vDU1FQzmMftTjbWWiAnJ0c+//xzj+Ncc801EhHh/P8R9tiZHQgggAACCCCAAAIIIIAAAggggAACCCCAAAKNTqBNqxDjBXJL0Rf2+jL5//61TK41skfERQbJwUNl8ubsbdbLdu0XG+5c/n1Iais5x8g+YXu5fNfUlTK8d5wM6hRjWizfkidzV1f8al83DOveym02gPqCiwmzB0/oOSa9slguGpBkZEQIkRG9T04GDE/X+tcb+shEY356H9Rz0j+WyNndY6Vr6zBjW5nMW59jvvS3HX/D8A62RfP78Wt6mdenZVTStubLhBcWGvciQTrEhUj67kKZ+2uOmZHB6SCXlV7tI+W7tGxz6/Ofb5Rd+4qlX0qkHC8X2WAEPbw3d7vLEc6rk0akSHpWgSzamGdmsLj+pUWmc58OkXLMKBGzesdB+XxRpnXQTSM6iJbJqKt27dnt5Jtlu81zq8PElxfL+X3ijecxWvYVHpalm/NkSbo9wOc6I9uKu6YlTC4zAkHe+m6rmUXD1mdkX3uwkG0b3wggUHcCdRo8MXfuXDNwQrMW1FXTTAa//vqrzJgxQ4KC7LWK6mp8xmkYgcmTJ8v8+fPl1VdflZCQkIY5qY9nefvtt+XLL79021sDPjQTCq1+BLKysuTOO+/0OPjIkSMJnvCoww4EEEAAAQQQQAABBBBAAAEEEEAAAQQQQKDxC+iv9R+7pqfx0n2JeTFaskFfmrs2LYfw/KR+rpvN9T+N6yEFJWnmC3vd8KMRLKEf16Yv5h+6qofr5npd15fgNxolLGwv/XcZpSTemL3VPOepFjyhgSn/nDxAJv9zqRmwoqUz9OOu/Xl8D+ljeDo2LZHx9E295e43V5mb9Vpt1+3Y77bRnWTqt1scN1nLlw9uLSu3HbDu30fzd4p+HNtEI+Dh3z+4D6Jo7t9MnpzQW26fslw2GcEWGgiimRv049ouN4ITrvNQ5sW1r6/rWurkuZv7yv97J80KoJhpBFPox7XdOaaz10CeC/skmMETtuNSk8OkgxFAREMAgfoTqLNQqkWLFsno0aPNcg91Pd0ffvhBbrnlFiMi7NRMZVTX13u6jvf+++/L0KFDJT/ffS2q0/W6uS4EEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBDwLJCaFCZv3jFI9OWwu6blIP552wBJjGrhbreEBzeXl2/pL3+4NFWSoytnMtfAC31R/Y/f9pfIEOdMEDqgrQxCYKC/0/ga+GBrgc2d99m2+/I9yXjZ/6erultlLXw5xrGP4zwCmlf/1Z6fwyHNqzheX86/9vuBZvYOxznYljWrx3/uHiKj+yfaNjl9a8aPv0/q4/ZeataP9+8dIp2TQp2OcVzRe/Ho+J5y5dDWVtkK2/7I0EB5+OruMu7MtrZNbr+Djfv4ghFoM/5s9/30edI5/r+x3cTRVgerjpXbkxsb28W2lDfuPENuGN5eQlyeKV3v3ylK/jG5v1xjZKnw1jQYxVYKRfuNGZTkrTv7EECgDgSaHTly5Hhtx9FMEwMGDBAt2VGfTct3PPzww/V5iiY9tt6/Ll261LvBhAkT5N1336338/h6Ai0z4y3zhJYcodWPgJZ1GTx4sMfB09PTpa/zlhkAAEAASURBVEMH57RfHjuzAwEEEEAAAQQQQAABBBBAAAEEEEAAAQSalID+3w/r4v+mPeGlZT65fXjPIJ/60anmAsfKj8uO3EOyK+eQkUniqLSODZGuyRESHOjw9r+K4cuPH5cDRomJPKNEgrbo0CCJNkpnuL4kr2KYettddPiYHDfmGGgEMQRVEchQb5PwceDSsnLJyS+VkiNHjQCVQLOUii3QxJch9hcekeyDpRLg72eWKbGVx1iUvk/uMzIzaLv7si5y1bA2HofbV3BE9hcdlqiWgRJjZMao7n08euy45B48bDxPZdLCeI4SooIb1F2f6Rw9f3GZhLZoLklGcI9DTI7H69Yd5cax1xmlTzSDh7aZfz5XokIrB/+YO/kHgdNM4GT9b3OdlO3405/+5FPgROfOneWhhx6SgQMHStu2bWX//v2iL0/18+mnn8qGDRu83tYnnnjCzECRkEA9H69Q9bTzwgsvlOuuu85p9Lw8o2aUUXpBAy+0tIov7cMPP5RRo0bJNddc40t3+iCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggEATENAX8ynxoeanpperL9djwowX7cbnVGyhQTXPYNHQ16PBDm2NAJaatmjjHuinNq2VETChn5o2LeORGN1CEsV91pKajuvrcfpMa8YUT1lTvI3zzco9VuCEZp0gcMKbFvsQqBuBWgdPLFiwQKZOnVrlbN5880254YYbjHQ39ujA5ORk0c+YMWPkvvvuk9/97ncybdo0r2O98MIL8txzz3ntw876EdD75y3g4cCBA/LJJ5/Igw8+WGX5lttvv13OOeccSUoixVD93C1GRQABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQaEwChaVHpfRIuSzbvE9e+SLdmvoN55Gl28JgAYF6FKh18MR7771X5fSmT58ul156qdd+wcHB8u9//1u6d+8uf/7znz32feWVV+TRRx+VsDD3da9cD9y0aZN8/vnnsm3bNtm5c6f5KSkpMTNftGvXTlq3bi0XXHCB+SLf39+3aL8ff/xRdu/e7Xoqc/2iiy6S6OhoM+WSZtOYOXOmrF27VjSwQDNmPPPMM+a53B5sbDTKqJjHLFmyxJyrzjszM9M8VssXaMYOLZEyduxYCQmpebSfp/PXZntUVJRMnjxZLrnkErnyyivNjCKextNSLx9//LHcfffdnro4bS8vL5e0tDSZPXu2rF69WrKzs81Pfn6+eQ/j4uLM7/PPP9+8nzoXT03vxTfffGPt9lZuRp8fzZTh2EaOHCmxsbGOmyot6zO2aNEi+e6772TLli3mXHNycqSsrMy8lxo0kpKSIqNHj5YzzzxTWrSoWcTj1q1bZc6cObJw4ULZs2ePeZ59+/ZJq1atzMAUfeaGDRsm+lxqoFJNW10+l/PmzZNdu3aZU8nIyPA6Jc1movfW1hITE0XvMQ0BBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQON0EXvx8g3yXlu10WVrWpHWrYKdtrCCAQP0INDNeih6v6dClpaXmC1p9Ee6paakNLetRnaYvk5cvX+7xEA1e0BfC3poGLvzzn/80Xyp762fbp0EUv/3tb+XOO++U0NBQ22a331dccYXTy3fHTlqW5I9//KNcfvnl8ssvvzjuMpc1A8dNN91Uabu+0Nf5TpkyRXJzcyvtd92gc5w4caJ5rtq8FHccV4MIvNWH00AZb5knHMfS4AEtz7J582bHzU7LvXr1khUrVjhtc105duyYmY3kgQce8MnFdvyECRPkr3/9q9vMFmvWrDEDUGx9q/ut9/WMM85we1hhYaG89NJL8tRTT7nd72nj448/Lvfcc49oEJEvTQMQNMOHt78T13FGjBghmrlFA5R8bfXxXI4fP94MaPJ1Do79tNzLV1995biJZQQQQAABBBBAAAEEEEAAAQQQQAABBBBoogLp6ele/2/avrKcrLrqvs6PfgicbgJLNufJvW+tMi/r7su6iAYH0CoEnpi2xil4YvKojnLj8A5iVKOhIdCkBE7W/zbba2jUgHvu3LleyzNoQIKvmQUcT3/vvfc6rlZaXrZsWaVttg3FxcUyadIkue6663wOnNBjNbvDY489JoMHD5aNGzfahqv29+HDh83zuwuc8DTYhg0bZMiQIfLkk0/6HCCgASsabKEBCFo65VRrGgTw1ltveZ2WBjHo/+fWU9MgkrPPPltuvvlmn11sY2m2iPbt24sG0TRU00CGrl27VjtwQuenwRM9evSQ9evXe52uBpNokIVmS6lO4IQO+sMPP0jfvn3NAAqvJzmx83R8Ln25bvoggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBA/QkM7hwjc54cbn6uGFLzrNn1N8OTN/JNI1Lk1dsGyId/HCo/PX2+3HQ+gRMn725w5qYoUKvgiU8++cSrmWYL8PWX9I4DadYGb2URli5d6tjdWtayBUOHDq1UZsHq4MOCZkro3bu3WW7Bh+6Vumg5iC+//LLSdk8bNAClT58+4q10hKdjdbsGUQwfPrxW1+xt/Nrs03tx7bXXeh1CS6q4a1qWoyYBAq5jaRCNY4kO1/11ta5lVjRjii9ZQzydUwN4LrzwQrPEjKc+t912m7z22muedvu0XTPB/OMf//Da93R+Lr1eODsRQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEECg3gWCA/1FPwH+tXpVWe/zbOgTtI9rKf1TokS/sWlofc6HgEjz2iBU9Sv5kSNH1mj4gIAAs1SDp5IPSUlJlcYtLy+XW2+9VfTX8nXRtDyFZkaobkmM6pxfgz3GjRtXF9M1s10MGDDAzHxQJwPW0SBjx44176Wn4TxlntCSFNWx9DS+btcyK3v37pXo6Ghv3Wq8T7ONVBUk4uvgGnyhmTZ++umnSodohhEtnVIX7b777jODU9yV8GgKz2VdGDIGAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgicPgK1Cp7wFNygPJ07d5YOHTrUWOqcc84R/fjatITF999/72v3KvtpRoeJEyfKt99+K/7+/lX2r26H48ePy//93/95LXtiG1MtvVnb+t10000yf/58CQwMtG066d8jRozwOoesrKxK+9PS0nzOpBEaGuqT4ZQpU+Shhx4yzxUSElLpnLXZ8Pbbb5tlX3wZw5f5Lly40LyPWrLEsT399NOOq5WWtUzOJZdcIm3atJF9+/aZht4yYeh4H3zwgdM4TeW5dLpoVhBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAoMkL1DgXTllZmdeX1oMGDWow3Pz8fNFf0ntrGsgxbdo0ycnJkYKCAtFf8Y8ZM8bbIfLzzz9XqwSHu8EGDx4sf/jDH8z5nXfeeRIWFmZ200CPmTNnujvE3KYv2XW+mjFh3bp1cujQIXM+5557rsdjVq1aJZ7KYHg8qJ536PV269bN41ncBU94c9GBNAjixx9/NO/j/v37ZefOnTJ58mSP59AdH374obW/Y8eOogEav/zyi/nRoANP7eKLL7b62fq7Zmv4+OOPPR1ulp955ZVXZMWKFVJaWio6X10+66yzPB6jOz777DOn/ZpZxVtwkGa+WLt2rbz66qty//33y9///nfZsmWLGQDkNJDDis772LFjDlvEPIc3/7p4Lp988knL9OWXX3Y6v+vK//73P6uv+j///POuXVhHAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEai1Q48wT3n7RrrOKjY2t9eR8HeDLL7/02lVf+M6ZM8f8Rb6towZ3TJ8+3XzRrC+3PTV96a6lJ6rbbrjhBtFsGMHBwW4P/eijj9xut2386quvZNiwYbZV0VImQ4cOFX3hrS/ePWWi0ICL8ePHW8edCgtaZsVTCQ5316GBLZ7am2++KZphw7ElJCSY1hoYM2PGDMdd1rKeRwMFbFlEHAMg+vfv7zFzRFxcnJxxxhnWOK4LWrJDM0V4aj/88EOlUiq9evUyg1z69evn8bwa+ODYtJSGt/bwww+La0YNffZee+0189nPzMx0e/iOHTskJSXF2tcQz2Vqaqp1Pn2uvTU1qk0GG29jsw8BBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBCwCdQ4eEJfVHtrMTEx3nbX6b7333/f63jvvPOOU+CErXOzZs3kb3/7m3z33XceX+5rYIaWQGjVqpXtsCq/x40bJ1OnTpXmzd3zlpSUiLc567GOgROOJ4yKijKzYXjK5vDNN9+Y2TX0pf+p0uLj471ORT0cg0w02MJduY+WLVvKhAkTPI6lZVY8BU/oQfrMJiYmejy+Jjs0i4m7uepYQ4YMqRQ4YTtHRESEXH311fLiiy/aNjl9b9u2zWlds1Z4a5rBwzEowdZXgxMee+wx+emnn2ybnL61TIetNbXn0nbdfCOAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAALu3+43Ihd9ea3lNTy1K664QvTjqWmAwwMPPOC1vIG+eNaACF+bliLwFDihY3jLrKD7q8p0oWUn9Bf5WqbDXVu+fLlouYlTpTm+oHc3Jz8/5+oxb7/9trtuVW6rKkOBlr6o66YZVmbNmlWjYTt16uTxuKNHjzrtqyoAZdSoUWbJDn12XANnNFOHa7YOp8FPrDS159KdAdsQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQKBpCtQ4eKKqshx5eXkNIrp3716v59Ff/1fV+vbt67XL7t27ve533Nm6detKL68d9+vyrl27XDc5rT/66KNO6+5WPAVOaN+qSjy4G68+t3mbj5ZUCQoK8vn0ei/0nufn55sfDZ45ePCg6PePP/7o8zgN0VHLhGhZDC1xo3O0zdM292effdbnaaiTZhvxVP5EB7rzzjvNz5lnnin6GThwoGhJknbt2olmWamqNbXnsioP9iOAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAQNMRqLfgCX1h3BAtOzvb62m6du3qdb/uTElJ8drH28t/1wN9CdaoarwpU6a4Dlut9aoCSqo1WB109naP2rRp4/UMGiwxb948M7vI7NmzJTMz02v/k71Tgxt0vpqtROdbVFRUZ1O6/fbbzeCIqgZcuHCh6MfWNPDi0ksvlZEjR5oZSbT0i7vW1J5LdwZsQwABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBpilQ4+CJwMBA0Zeynl4OL1u2rEFEq8oKkZqaWuU8WrRoIZ07d5bNmze77VvVORwPat++veOq2+WqXlK7PagaG+t7/GpMxcwI4S1bgmbqcNc0O8MzzzwjL774orvdp9y2LVu2yIMPPihffvllvc3tlltukRkzZsgPP/xQrXPo3+i0adPMjx74hz/8QR555BGJiIhwGqe+n5v6Ht/pYlhBAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEqiFQ4+AJPUeHDh1kzZo1bk+ngQhaskBLBtSk6bieygj06dNHkpOTzWFLSkq8Dh8ZGel1v22nliHxFDxx6NAhW7cqv30pj+Ap4KTKwX3sUFZW5mPP+u9WVSkN2310nIm+ZB89erTXEhWO/U/2smZ5OO+88+p9Gs2bN5ePPvpIfve738mnn35a4/O98sorMn36dPn222/FMbioKT2XNcbjQAQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQOC0FahU80bNnT4/BE6r1/fffy6233lptuGPHjsm4ceNk+/btbo8dO3as+RJZd8bExLjtY9uYkZEhrVq1sq16/F69erXHfRpYUZfNl/nU5flO5lhVZWLo16+f0/T03o8ZM6bRBE7s3LmzQQInbEjh4eHy3//+1wyg+PDDD+Xdd9+17arWt5Y/0b+j5cuXS3BwsHlsU3ouq4VFZwQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQOO0FahU8ceWVV1qlANxJPffcc3L99deLlsWoTvvmm288Bk7oOJp5wtYSEhJsi26/09PTZeDAgW732Tbm5eV5LD+ifdxlR7AdW5PvxMREj4dpKZQFCxZ43O/LDtdyDL4cUx99Vq1aJe+//77XoS+//HKn/VqWwlM2E1vHwYMHy5AhQ6Rjx46imUWioqJEgwq0vMq1115r69Yg376UFdFgEH1mtUSJ3huds35//PHHolkgatLOOecc0c9LL70kX331lejfzPz580WDInxtmmlFn7ULLrjAPKSpPJe++tAPAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQSajkCtgidGjhzpVUozR/zrX/+Se+65x2s/1536QthbcwyGqCp4wlMpDsfxt2zZ4rhaabmqc1Q6oIoN8fHxXnt07dpVfCn/4XWQk7xTS4doeQlv7dxzz5WkpCSnLppNwVubPXu2DB8+3G0XzaLQkK28vFxef/11j6fs3LmzzJw50yxv465TbYNkdMyQkBAZP368+dH1nJwcSUtLk8WLF8sXX3xRZSDKokWLrOCJpvBcqhENAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQcBXwc91QnXVN9z9hwgSvhzzwwAMyd+5cr30cd06dOlV++eUXx02Vlh1LPegLX83W4Knpr/L1Jbe3NmfOHG+7RV+C12VLTU31OFxRUZFoqZGqWmlpqWRnZ5ufvXv3iu2jL89Pdtu/f79cdtllopknvDV96e/a1q1b57rJWn/mmWc8Bk5op+o8Z9agVSx4e3bU3FvTkhodOnTw2EUDQXxtR48elfz8fLcfDVSxtbi4ONGgpkcffVRWrFhhBlDY9rn7/vHHH63Np+Jz6c3fmjgLCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAQC0FahU8oee+8cYbq5zC6NGj5bPPPvPa7/Dhw3LHHXfInXfe6bWfBmvExsZafQIDA61f3VsbHRa0BMS0adMctjgvZmVlyRNPPOG80WFNAzOGDRvmsKX2iwMGDDBLOHgaSTN16Mtyb+33v/+9tGnTxvy0bdtWbB8tDVEfQQTe5mLbpwEdn376qQwdOlR++OEH22a333oPf/Ob31Tap9lKPDXXLBWO/dRr+vTpjpvqZHnPnj0ex9HgFW/NWxkMDbyoyshxbM3ioYER7j76d+OpXXTRRTJq1ChPu0VL1tjaqfhcngrBQDYfvhFAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBA4PQVqHXwhJZQ8CWA4pprrpGzzz5bvvnmGzNLwvHjx6W4uFi0bICW9tBx3njjjSqlH3nkkUp93GUwcOw0adIk87yO23Q5MzPT/JW+63bH9VtvvVWaN69VdRPH4cxlPz8/uemmmyptt21Qo7vvvtu26vStv8R/9dVXxVt5i759+zodU1crWg5CsyXYPrNmzTLn8eyzz8rtt99uluC47rrrxFsAhG0u77zzjkRFRdlWrW/HwBhr44mF999/321QSWFhoYwbN67KTBeu49nWIyMjbYuVvvX53LdvX6XtusHbcbpf5+uuaZkYLVlSneatpIZmuHDMIOE6rgYmeWpdunSxdp2M5zI8PNw6v7uF6gSYuDuebQgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggIAvAnUSFfD888+LvkjPzc31es4lS5bIFVdc4bWPt536gr5jx46Vupx11llmeQRvL+31vCNGjBDNgqEvkzVwYsqUKZXGct1www03uG6qk/Vrr71W/vrXv3ocSwNJ1q5dawZ36PVpiZQNGzaYL+R//vlnj8dpIEt0dLTH/bXZ8eKLL4p+attuu+02j9kQunfvLp6u7/vvvzezgGhJEA0+0HIVS5culf/+97+mTU3n1alTJ4+HahkVPZfeLw3w0UCabt26ib70T05O9nic7nj88cfN+Wnmh4EDB8ru3bvNdQ0W0nGr08455xx57rnnPB5yyy23yCuvvCKaaULnqMFJ+oxr+Y6ffvrJ43G9evVy2tfQz6VmTPHW/vKXv8jGjRvN69JnQ6/Ndc7ejmcfAggggAACCCCAAAIIIIAAAggggAACCCCAQNMSyMk/LN+uqsgq3btDhPRtb/8h55od+bJqW74JckGfeEmKDq53nDlpe835DOocI1cPayvNmtX7KU/5E5yse/T+TxnG+xORuIggGd0/8ZR3akwT/D5tj+w5UPFj3gnnthN/Px70xnT/mKtdoE6CJ/QX+Porew1MqK+mL7D/9re/uR1eX6jq+TXIwFvTX7FX55fsjz32WL29qE1NTZWnn35aHnroIY9TXrhwoeinOu2uu+6qTvcG79uvXz+P91Enc8kll3gMntD9q1atqnGGCT3eXfMWPKH9N2/eLPoSXz/afvnlFznjjDNES8ZcfPHFbrOamB2NfzSLiH5q2zTwR4M2NIDGXdNACVsZFC3douu+tIkTJzp1a+jnMiAgoMrAp48//lj0o00DUb766iunObOCAAIIIIAAAggggAACCCCAAAIIIIAAAgggcHoKbNlTKJ8vzpQZi7Pk9os7i76UrarlFpTK1G+3mN1uHdnRKXhidcZBa1+PduH1HjyRbQRyPDZtrTmXRRvzpGvrcOnT3nM27Kqu7XTZf7Lu0ZRZFc9FHyOohuCJun2aZq3cI0vS95uDXnN2W4In6paX0RpQoNZlO2xzPf/88+Wjjz6yrdbpt75w//TTT83sC54G1pfZTzzxhKfd1d4+ePBgeeCBB6p9XHUO0NIcVQV8VGc8zcDQu3fv6hzSoH21fIpmQQgNDfV4Xm/lTDweVMsd+nzVtHkqr1LT8TwdpwFCL730kqfdTtt9DZy47777pE2bNk7H6kpDP5dazoeGAAIIIIAAAggggAACCCCAAAIIIIAAAggggICrgC1wQre//s1mKTp8zLXLKb1edrTcaX6lZc7zz8g5JF8v321+dJmGAAIIIHByBeoseEIvY+zYsZKWlmb+kryuLkvLCOgv9yMiIqoc8v7775dHHnmkyn5VdTjvvPNk+vTpZomAqvrWZr++ENdf1F944YW1GcY89qmnnpJx48bVepz6GmDq1KmiHy0/4q1FRUXJjBkzvHXxuO+f//ynx33edmgpmJoGyuiz8sc//tHb8G73aXYIzWxSnaYBSm+99VZ1DvHYVzNO2DJpuHZq6OfyySef9BpQ4zo/1hFAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQROf4HDZeVmxgnHK52/Lsdx9ZRfbt0qWG6/pLN0TAyV8cav8Qd1dC67vjojX57+ZL350WUaAggggMDJFajT4Am9lO7du8vixYtl8uTJtbqy2NhY8yX6f/7zH4mJifFpLH9/f3n00UfNtP7esht4G+zhhx82gzXi4uK8dauzfa1atZIvvvjCa/kObyfr1auXfPvtt6KBI6da69y5szz77LOSkZEhmnXC16alMLQMi6/3UPtp1g0NZKhp0/IpalmTpoEr1QmgUBe950lJSdU+3Y033mge26FDh2ofqweold6TKVOmeA0OasjnMjExUf71r3/V6Ho4CAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQOD0FFi4MbfShc1cnlVp26m+YcI57eS9u4fIXWNSxc+v2ak+XeaHAAIINGmBOg+eUE3NHqBZAHJzc+W1116r1kvp3/zmN2b5jy1btoi+RK9JGzVqlOzYscP8lf6ZZ55Z5RC2LACbNm0yswHoL++9taqyJ3g71t0+Pd/jjz8umzdvNs+vgSNVNX3R/+6778rSpUtFMxLURQsMDKzxMBoQoBk0NEhCMyrMnz9f1q1bJ/fcc0+NggTGjx8vv/76q9x+++1egyi0xIQ+K5p1Izw83Ov8vQVj6D3VoJ+XX35ZfPF3PJEG7fztb3+Tn3/+WfT59dR03FdffdXMzqL3T/9OPDUNKPDULrroIlm9erX5N3buued66ua0Xc+n90Wfcb0nfn5V/+k35HNpu99jxoxxmjcrCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAk1T4JsVu60LH5Ra8X9PT9uaL7v3l1jbWUAAAQQQQKAuBbxHCdTyTFpq47e//a35ycrKEtsnMzNTioqK5MiRI6K/cI+Pjxd9WdyzZ0+fynP4Mq2wsDDRX+nrR8+7c+dO2b17txw6dMh8cdysWTPRoAk9r5Zt0BfgvrZp06b52rVa/dq1ayea+UJLSGzbts2cr869ZcuWkp2dbc5T59qmTRuvWQOqdVKHzsnJyeY9cdh0Uhf1OjWY4e9//7ukp6ebBuXl5ea1d+rUybx/jkEACQkJtZp/QECAGayhARv6jK5atco8pwZWFBQUmPdBn1XNruKuDR06VPRz8OBBM6BD75kGpISEhIgGl7gGZVxxxRU1nm9QUJCZ3UUzvOj51qxZY8513759pk9xcbF5Pv376tatm+i9rWlrqOdS5/nZZ59JSUmJrF271rznhYWFZlBMaWmpGUTjyb6m18ZxCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAqeeQG7BEVm4Ic+c2LDurWTskNaybNMBc33Or9ly4/D25nJD/3Os/Lj8apTX2JRVIOmZBVJ6tFw6JYZJSlxLGdyllYQEVX7X9H3aHskxrifQ30+uGtbGnLIGhhw4VCZrd9hLdSxK3yeFpUfN/QmRLWRE7/hKl3egqExmr9ot27MPSW5BqUS2DJR2sS3lgj4JkhzjvWx6dv5hWZNxQNJ3F0pGTpHERbSQjgmh0qNthHRJ9v7j1EoTcdhQUHJUVmzJk23GnLbsKZQWzf2kc+sI6ZzYUnq2jZLgwKp/zOkwnM+LajB3TbZk5h4y3fR6OhnlUS7slyhhLWr++vOIcU/nrs6W9bsKZM+BYgkK8Jfk6BA5y3gOe7WL9Hl+jh1t97ul8XxcMbi15BeXyeptByTNeJZ27TskScb4KfGhMqp/orQIqOxle4Z0TM1k4qn9ZHhkHSh1eta0b2Zusfy8oSKTy9AuMeYzs3bnQVm59YBxnfmSGBViXFu48cwlWNlR9Fmfu3qvrNtZIJl5xdLGeM56tA6X/kbpmegw336MvWRznqzcckC2G89bkPFctIsLNZ7VeGlv/L1U1Wpyf12ds/JKZNX2A8Z17pcCw/yG89pLnw72HzbX199EVdfG/lNboOb/9ajmdenL29q8wK3m6Zy6n8xzO03ExxX9xX9qaqr58fGQ07qbBiBo5gT9NFTTwBr91KRp0NCAAQNqcmiNjtHznXXWWTU6tjoHNdRzqcEqgwYNMj/VmR99EUAAAQQQQAABBBBAAAEEEEAAAQQQQAABBE4PAX1pa2sjjcCAgZ2iJSTQX4qPHJOZS7PMl6DGb2QbtOkL78enrbaCOGwnn7e24qW0vrx/6vpeZjCCbZ9+v//TDtm6p8icvy144pMFu4wAjELHbqLj2MYa3CW6UvDErJV75KmP1jkdY1t5Y/ZWmTy6k9w0vL1tk9P3nLS98ti0tU7bHFfGn91WbjOO1xfc1WkLjNIqT3+yQfKLjjgd9l1atrnePr6lvHhzf4mPDHLaX5uV48dFXvhio3y+KNPtMC/MSJeXf9tPBnWKcbvf28Ytxn36w1srK12PHvPBTxlyZrcYefqGPhJgBMJUp705e5vkHCw1A1Z0XhNfXmw+y/YxKgKF/v3DdrfP0OeLM+XX7QfN7t6CJ94xjnd91vSg9ZkH5fWvN5vHtwoLkI/m75SZy+yZXUTyZPpCET3PC8b9yjOCfR764FdzLPMg459FGyvmGBkaKG/cPshrsE5B8VF56pM1lf5WRHLk3Tnb5OYLUuSWC1NsQzt91+b+Ojp3NoKaJr+2zGnsC/vGSx+pCJ6or78JpxOy0igFqvfX3SgvkUkjgAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgg0FoEvjQAJWxvWPc58WT16QEW56yyjbMf6XRUvkm196vu7tKxcJr28xHoZrIEcGuDQv5P9V+z6clxf1m7dW1TldDRDQptWzpkidEzdpp9W4S2cxlhh/HLeNXAiOdr5+De+3WJmpXA60Fj5bNEup8CJjsa5z+0Va77It/XVl+lPf+w+MMPWx/V73vocuf/dX50CDXTuGjBhaxlGdoibX11iZMlwDq6w7a/J93s/bq8UOOFqcfebq8zsHNUZX+foGjihATGOTbOhPP/5RsdN1VouKimTe4zgDA0C0qaBCI7n0GfokQ/WyGEj+0V9tf/N32UFTqibPne2pgEaz32+QR54L80KnNA+Ok9b00CZO6au8DrHx/7nHGTkeI06zjtGAIVm03DX6uL+qvP9//m10vDBARU5Berrb6LSCdnQKAUaLPNEo9Rh0ggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAg0msEnLShgv3bWN6pdglX3QdP+fncg28K2RhUHLTTRUW2qU1NAX29oGpUbJE9f2kYiQilds+qL7H1+ly4zFFQEf+mL2/43t5nVqD1/Vw9yvQSLPTt9gLt95aapcdkblEtwZOYfkwX/bXwTfOaazjB6QJJEhAVJivIT/aW2OFVjxl/+tN0sw9G5vLy8x3SFDw9NGZoxze9nLgaj1pFeWmOfXcii/v6izJEQ5Bwy4uxDNDvDunO3WruuNcgjXD29vlcvIPXhY/vLxWrNkg75sX5yeK5cOqnxt1gA+Lmi2AM2yYWt/n9RHBnaMMUpr+JkBGtPmZZhZFXT/vW+vknfuGixRoQG27h6/NTjm/n+vsgJBRvVPkFsu6GhmVzh67LisM4J1Hnp/tblfMza0NcpOeMsA4elEGjRRbAT/TBzRQa4xym/YyoukGeVUHn5/jTm+PmdfL8uSK4dWlHjxNFZNt2vGk9TkMPnr9b2NciHBovfyu7Tdos+OttkrK7K+6N/XkxN6W1lDtPzFHVNWmH10jluNEi3d27j/G0zbmm8GhTx0dTfp3T7KzGiy27juL5ZkmRk8dJDHp62TtrGhRsmYMHNM/aeu7q/pbFjrfRx/VjuzPI2/XzOxZaupj78J6yJYaPQCZJ5o9LeQC0AAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEETg+B740X5LY2wkizb2u92kVav4D/dsUer798tx1TV9/zN1SU5tDxJo5IsQIndF1LXdx1aRezFIEGPwQG2H/Jr/tr216ftdnKVHDryI5yzdntzMAJHTfYyBpwUf9EuW9sV+s00xfuspYz95VYgSh9O0Y6BU5op9SkMPnH5P7Gi/rWZuDG7gMl1rHeFjTYoHubcPMYndNtoztagQB6XGxEkDx4ZXdriFXbDljLNV0oO1ZuBZroGFqaY1jXWDNwQtdjwwPljks6iwbZaNMX/PPW5ZjLVf3zxZJMq4yKBsc8NK6HVZaiuX8z6WMEo7wwqa81zL+/32YtV3dBrX9rmNkCJ/T4vkaAwe0XdbKG2ry76uwlVudqLmimiecn9TMDJ/RQDSgY1S9JfnOmPVhDM028cEs/K3BC+/XrEGUE19jnmO5Sdkb7OLZnbuptlk6xlYLRQI3fGaVhzu8dZ3X7dOFOa7mu7+9Yw/nPV/c0gzP0HtoCJ+rrb8K6EBYavQCZJxr9LeQCEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIHGL6C/8p9xIlOCvuQd1CnGuig/45fjYwYmmb9c11+WLzYCGhyzKFgd62EhOND+Om21UdpAX3Y7Nn1BfMuFKY6b6mS56PAxWbB+nzmWekw8v4PbcccOaS3vzc0wAwZWZxy0+rQwjrG1jOxi2WeUpmhlBBk4tgEdo0U/1WnBgX5VZtdIjqkoCaH3av1O+5yqcx7HvmlG5gMdS9tII6jG8dmw9fMz3pDfZryg1ywa2tKzCox/q8548cOJ/nrM3Zd2FX3Z7tq6tg6XMYOSzJIXOo+9B0p9ytLhOs6lbrKLaJ8zjUAQW9uRW3/BE8ON4JKYMOdnQM/bLyVSbIE3Q7vEOAV32ObV2SFLRFae50AbDajpkhxuO8z61gCGPxmBKXNXVwS1rN+l96ei1fX9HWcEg9gCJmzn0O/6+ptwPAfLjVvA/l/7xn0dzB4BBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQKARCyzbkme9IB81IFECjaAExzbCePH7wU8Z5qavjdIdDRU80aeD/cXy1G+3yGqjzIKWFOmbEmNmPHCcY10u78i2v0QPDQ6QrH3FHocPOPHCXzMuFJQclfDg5magRLLxi/8so2SCls+49rkFMu6stnJWt1Zm6YYAf2dfj4P7sOOwkY1Cz1ty+KgUlZbJIePbFuzgw+FVdtnkkI1Bs3tk5rq3KHcYaa0PQRvlRt2KdS79PI3tGFSxdW9hjYInOsS3dJihfTGypb28SFFpRZCIfW/dLfXwUGojpIX9lXGnxFC3J4wND7K2Hxej3oeH1rW1vRSHa5eQIH/paIy/dU+RmRVFnxstu1KX91cDjdrFunfW4KGG+ptwvXbWG4eA/S+hccyXWSKAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCJyGAlqOw9ZaBjUXDabw1DQjw/7CIxLt5lf0no6p6fbhPePkEiPrwNfLdptDLNqYJ/rRpi9ih/eOl1H9EyQl3v1LZ7NjDf45cOiIdZQGRYx/fqG17m1h854CGZBSkU3iyet7yx1TlpuBDBrM8N7c7eZHjz+zW4yM6psoZ/eIs8pfeBvXdd+GzAKZZdyzpZv2yS6jREh9tv2Fh63hZxr3QT9VNX1Bf/io8XLeJQjH8bjCEudAhQkvLHLc7XFZX/YP62bPFuGxo8OOuIgW4ilgRbMk6Ev/ugw4cTi1tdgisHJWDWvniYVm7lI2uHbyst4hzvvfQRcjg4XeG23bjQAhzepRl/dXA428XUJ9/k14YWFXIxEgeKKR3CimiQACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgicrgKFpUetcgt6jZphwpZlwtM1z12TLZqev76blgx58MpuckanaJm5IkuWbTpgnVKzOtjmOrx3nDw6vmeljBlW52ouaBaHmrSiQ2XWYfqi+t93D5Evl2bJZwt3Ob2cX7ghT/SjL+2fmdjH5/IdRrIGmb5ol7z0Rbp1nvpeKDFKmNSkHTKyYQR5CbCpqXFBid24JvM6nY+JaFm5LIjj9UaE2PcfPOFYX/fX8by25fr4m7CNzXfjFyB4ovHfQ64AAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEGjUAj8ZgRDVbRoQ0BDBEzovDaC4oG+C+cktOCJrjdIdaRn58o2RAcGWLeDH1TkS4LdOHru2V3UvxW3/cIeX0Jol4v6x3d32c90YHmIvAaH7kmOC5fcXdZLfjuwo6VkFsmZHvszfkCtpW/PNQ3X+d72xUv5jBFl4KtngeI61O/OdAieuGJJsBpYkRIdIqFH+Icw4f0ujPMNlf51vlgtxPLamy1Gh9hfud4xJlQuMbB++NMdyGO76RzqMq/tnPHS2u26VtrUwru9kNA1c8ZRV4UhZzQJM6vo6duYWSZfkcI/DZuTYy9G0a1VRXqO+7q+nSdT134Sn87C98QkQPNH47hkzRgABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQROK4Gvl9tLdjx0VXfp1sbzy9cbXlxsXrum/t+6t0g6JngvE1DXULHhgWapDi3XcftFnc2sDi9/WZGF4bu0bHnwqh5eS0X4Op9WYUFW1wNFZRIbYV+3dlRjobl/M+nRNsL8XHN2O9li+D0zfb1s2FVgjrJg4z6fgieWbd5vnfWac9rKnZekWuu2hSIjU0R+kb3siG17Tb9bhduvvaD4SK0tbPNoEeDnVC6jpRH8EXKSAiNsc3L99vf3szYVGJk0IkIqv94tLz9e76VTrElUsbA9+5DX4IkNmYXmCJrxJD6yhblcX/e3iqlKXf1NVHUe9jceAftfW+OZMzNFAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBA4TQQy95XIGiOLg7bk6GC5ZGCSpMSHevzcfVkX68q/W7XXWq6PhSNHy80gAw00yMorqXSKIOPl+1XD2kiqUR7D1nblFtsWff7eV3C4Ut8OcS3FlhlBAxzUyVPbaZxTM0ro53BZudlt74FSa+6lJ7Y5Hq9ZJiZd0MHatHl3RRCFtcHDwuod9rIlFw9Icttr5dY8t9trunFAx2jr0Hnrcq1rtDY6LKzbedB0WL/roMNWz4tn94i1ds5f7zkDyj4j44jNOK+w7gJDrJN7WGgfW5GdQXdn7jvktteGTN/unduD63jjjCVZcvSYkSLDTVuUvs8KqunRPtzKolGf99dxGvX1N+F4DpYbtwDBE437/jF7BBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQKBRC3z/qz0A4pJB7l/GO17geT3jrNWZy3fLMeNX9/XVdOjfv75Mbnp5sVz99wXmy3PXcxUbWRYyHQImYhwyRrj2dVwPC7ZnEFicXjnYQEuFXDE42Trk3rdXimagcG3pWYVy7fML5XevL5d731olNo0fVmeb89a5PzZttZRrzQeXlpFtD/SIi6jIAuDSpdJqpwR7VpDNuyuyCDh20swDz07f6Lip1sttY0PMjBk6UIYx/uP/W+P2vs9YkimTX1tmWrwzZ5tP5x01INHq95f/rXd7jw8WH5U7plaMq857D3gOZLEGq6OF1CR7YM7/5u8Q19uoWT5eOpH5pI5OWathNBDq9VmbK42xZ3+pPPrBGmv7oE6trOX6vL/WSYyF+vqbcDwHy41bwP5f5cZ9HcweAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEECgkQnoC/0vjV+q29rwXvG2RY/fWr6if6coWbnlgPkr9uVb98vgzjEe+9dmh5Z1uHxIa5k2b4c5jAYnXHdee+ndPkLCggNke3ahTJm1TYqPHDP3n9ktRqJCA3w6ZWJUsNVPsyX83xvLZXjPeOmUFCp920eZ+yaNSJH0rAJZtDFPsvaXyPUvLZIRRrmQPh0i5dixclm946B8vijTGuemER1E56ztov6J8vo3FS+xf1m3T/70/q9ybo84SU0Kl3yj9MXPa3LkM4djL+hTtb2OOyg12vJ48qN1snzLfhmSGiMBRlmQdUZJhs8X7rI8tH9dtb/e0EcmvrLYvOfz1ubKpH8skbO7x0rX1mHGtjKZtz5HFm6wB6HcMNyeVcPbHPTZmTyqo7wxe6vZTYMjRvaNN56xaAk3ynhsyymW//6UYV3ToNQoK5DD27h1ta9bmwhrqLmrc6S0bJWM6psoLY3gmx05h+T9n3ZY2Rysjid54aP5O2W9kS1F74/+PazJOChz0vZahvr3O/6stk6zrK/763iS+vqbcDwHy41bgOCJxn3/mD0C/5+984Dzojj//0O744CjH733jqAIKliwG3vsWEAjxhr9a0yisUWjYomxi5pmiejPHhua2BtVEAHpvfd6cMDdfz5zPPud795+636vwee51/d2d3ZmdvY9s7NlnnkeEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiCBSksAs9RXb9phyw/XF5iBnoyc0K+5VZ5A3LGTVpSa8gTyP3dIW5myYIPAdQaUJJ7/uHiQHftcGdi1ofzhlz3doLjrsCjQu119z2XJlHkbBT/kc8ClxcoT1Y1Cwt3D+shVz0yU2cbCxMatBfKGUU7Azy+nGSsVFxzR1gtumJslN53RTR56q9gKBBQo8AuS28/rIT2cQfqgOBrWv0MDq1zw8ZRiFxcfGv74uXLRUe3kPxOWZ3RQP69uljwx8kAZ+cR4Ww/zjCsV/ILktnN7Sl/DNlm5ZGh7WbVxh7yzV5EH56bn5+aBNnr3sL5uUKmvw73KDad1lUfemWWPBQURV0kEgYf3yhO4boFVjvKWey7sLX80FiZwbas7HrdMsHCCNo227Upp1q8ep7SuCc2fy8pPgG47Kn8d8gxIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIoFIS+HLGGq/cmBWerAwxFhRUxv6wUnbvKXZJUcUZj4UlBFfgBkMlq1ryQ2QY1B191QC54oRO0rJhxFqE5tXRDG5fc3IXeWh4P8HgrCvV9h4zK6uaG2zXUZ57L+wjI02+8Vxm5Ji0D4/oZ5Q4omfqa4bdW9eVB0b0ld+e0V2qugBMhDOM1YwXbhhkFTJq+cqA7cE9G8srNx0qx/dL7C5Fj1fDsLvtvF7WWoO/3PXrZMnvz+ouI4/rKLEYu0VMtY7aN60tT155kBzVJ1L/Wi4sEf6v6wfJCXHaUtZeyxxuOqzfeHo3W4/+c8I+hEER5RnTDnKNNYpURM8xu0ak/aWSHnHPOrS1XH9qV4Hyhl9GHNNBbj+3t2hb8+9320RW9ZLt0B8/q3rwtZFVNRLuj1PDSXO4uTafNnWEdumXoaZ+HjcKMPVrBVtnCVO/yXIujWvCf57crrwEqhQUFJR0cFR5z4clJwESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAES2A8IzJo1S7p27Rr6TIc9MiGpPF6+YUBS8Rhp3yewc1ehcaGxXaqYv5aNcsQ/kJwOAbgv2bpjj0CxAEoNsQbCoSSyZtNO2Zy/S2pmVZVmxvVHtjNwHe/Y5hA27YZtBdK4brY08il6xEsbb9/6LQWyZvNOqV87S/LqZZVQ4IiXNsy+HaYeVhtrEfkFu6VuTpY0qZ8dk1sqx0FdrN+ySzZu22mSVZGmDWqmrDCRyvFSjZtvrJ8sWbvdtJPqpv5rlrDgkGp+pRl/y47dsmrDDtuuWxjFIygCJSulVb/u8UvrmnCPwfX0CJTXvTk11aj0zo2pSIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESGCfIJBtLBd0aFono+cC6wB1cxIP28HVQfOGNaW51Ez5+FDMgIIBfpkUWNvwW9zIZP6x8qpp6iFZNy+x8ggKR100NtZG8KuIAgUEuHypDAIrHbnGMks6Ulr165altK4J9xhcr1wEIvZVKle5WVoSIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESyAgBKk9kBCMzIQESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESqKwEqDxRWWuO5SYBEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEsgIASpPZAQjMyEBEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEqisBKg8UVlrjuUmARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARLICAEqT2QEIzMhARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARKorASoPFFZa47lJgESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESyAgBKk9kBCMzIQESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESqKwEqDxRWWuO5SYBEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEsgIASpPZAQjMyEBEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEqisBKg8UVlrjuUmARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARLICAEqT2QEIzMhARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARKorASoPFFZa47lJgESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESyAgBKk9kBCMzIQESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESqKwEqDxRWWuO5SYBEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEsgIASpPZAQjMyEBEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEqisBKg8UVlrjuUmARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARLICAEqT2QEIzMhARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARKorASoPFFZa47lJgESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESyAgBKk9kBCMzIQESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESqKwEqDxRWWuO5SYBEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEsgIASpPZAQjMyEBEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEqisBKpX1oKz3CRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAvs3gdUbd8pHP6ywEPq0rycHtGuQFpAXP18oRUUiTeplywn9m6eVBxORAAlUbgJUnqjc9cfSkwAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkEClJlCwu1CeeH+OvPHtEnsepw9qWeJ8GtetKZ2a15YOTXOlRcMcqVKlRBQGlCOB2cu3yDvjlqZdgv4dG8rRfZqmlX7N5h0y+qO5Nu2vjuuYtvLEMx8W59HXKGBQeSKtqmAiEqj0BKg8UemrkCdAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAApWXwE6jPKGKEziLt79fFvdkBnRpIHcP6yu5NTnMFRdUGe5cuTE/Yb3FK05WjWppK0/Ey5f7SIAESCAVAlVTicy4JEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJFCaBGplVRP35z/WhNkb5PLHx8maTTv9u7hdTgTCGgKpm1OjnErOw5IACZBAhABV8iIsuEYCJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJFCOBHq3qy/PXHlQVAkKi4pk3eYC+XjKSnnqgzl235K1+XZ72BFto+Jyo3wIDOnRRL4ZdUzgwX/1xHiZuWSz3fffu4+SHKMcQyEBEiCBikiAlicqYq2wTCRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAApZA1SpVJK9etkBR4o7zenpUvp21xlvnCgmQAAmQAAmEJUDLE2EJMj0JkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkECZEBjap5ncNWa6PdaUeRsFVimgXKHywaTlsmHbLqmdXU1OH9hKlq3Llx8WbJDJ89bL5u275KIj20nf9g00ul0uXL1NPpu22sTdLuu37pT6tbOkdePacmSvJtK+ae2ouIvXbJevZhYrbRzatXGJ/Yg8ffEmmbJwo013ZM8m0rJRTlQe2Jg8f4PMXFpsjeFYc05N6md7cbbu3CNTF6yX2cu2ys/LNkntrOrSsUWudGxWWw7u1EiqVo2cr5do74rBIRPnrZPxs9fLUnM+ewqLpEWDHHPLFPGPAABAAElEQVTO9QXWIapXK5l2qTmnL/ae0yFdG0mrRrXkx0UbZer8jaaMm6RJvZpy85nd/YcqlW2U9/vZa2Xhqu0yb+UW2bZzt3RpUVc6t6gj3VvVl7y6WUkdd6Op67GTV5g8tsr6LTulmWHQs009ObpPU8mqnv7c8oLdhfLpj6tkhrGksWLDdsmuUU1aNqwlg3s0lt5t68ctW5h6jZsxd5IACWSMAJUnMoaSGZEACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZQVgdaNc6IUJ3Dc58bOl9WbdtgB/87Nc2XkkxOiinPsAU2lrxQrT+QXFMq9//eTGQxfHRVHN57/eJ4c0TtP/nh2L6lllDEg64xyxVPvF7sO2WIG6H99QieN7i1f+WqRfLY3zz17iuTio9p5+3Tlpc8XyLhZ6+3mKQNaarDMXr5FfvfPqfYcvECs/LDSbvbv1EBuP6eXtcQRtd9sYHD++ucmeS4y3P3/980Sy2T0VQOiFDUQZ4ZRkNBzalQnS54z5/3lTxGrHlCeKAuBEss9r00vUf6vp6+1h69l3H2MGnGA9O8QrfziL9snU1bIA2/8LNsL9kTteuu7pfKEqbvnrz5YmjdM/Zzmrtgqv3l+smzcWhCVLzZe+nyhHNq9kdx7UV+pUa2kckaYei1xMAaQAAmUGoGSV2+pHYoZkwAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkED6BL6aEVF0OKR7XsyMtubvkpv/NbXE/pwaxfOKYUHgqmcmlFCcgEKGK19MWyO/fnqC7DTxIT1b1/N2T5xbrPzgBZiV3UZZYtzP67ygb38uHvj3AszKrj2FnuIErCHUzSku08/GEsWIR8d5ihNQWhjcs7F0aZnrJZ88d4MMf2yczcMLNCs47u0vT41SPICyQX2jDKECpZKb/vmD5PuUCnQ/lv/83/woxQnkUatmseKIGy/T62s27ZRhD38XVX6UHeeOMkCgDHHt6EkyYW6Er78c42avkztfme4pTvgVP6D48LsXpsiOXcX16U8fa3vN5oISihP+vL+duU4eeuvnElmEqdcSmTGABEigVAnQ8kSp4mXmJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACYQjAFcXaLQXy8Q8r5KkPiq0+tGyYI5ce0yFmthhox+/4/s3k3MFtjcuLOlLNuLtQDx8vGksBs5dt8dLfc2FvOahzI8mtWd1acJhoXEfc+tI0u3+esTgApYIrju9kXT5AoQHWEGYa1w3bjbUHtUqByHBz4Vo8mGbcd2zZsdvmqwdzj3tYj4gCyNgpxdYlEO9C415k5PEdbZmxDTcU1z07SVAWKAB8YdyMHHNAM+yy8si7P3sKGR2b15Fbz+4pnc2yijnhxWu3yQNvzRS4OUH62//9o4y6+IBA9x9L1uZbZYVbzukhfdo1kEa5WdY1ih6ntJavfbPYy9pvXWOnUXQYPXauvPpVcZwPJ66QAcZ9SZCAN+SCI9paty1wmQJFmWnGDck9r86wiilg8OfXfpI/XdDHaw9BeWkYFC1uNkonanECbeqyYzpadyxQWpm+ZJPc8uKPdv97E5ZLmya1ZdjhbTW5hKlXLxOukAAJlAkBKk+UCWYehARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIIBEBDH6fM+obL9ouMzgNiwmuHN4rT64+oXOUQoK7X9fPOKSV3HhatxID5BiM//sn8zWa3HV+Lzmqd1Nvu45x0XGk2b7nQpE/7lWgeOHThXLJ0A5Ss0ZVObRrnlWeQIJpizfKQKN0oTJhTrE1ClhLUCWKyXPWGfcfkfx/XLRJo8tBHSMuKD7e65oDOy87toOnOIHt+rVqyL3D+sg7E5bJ1vzdRsFjN4KtzFq2Wd7+fpldh7WGh4b3i3LN0TavttxvlCUuf3ycQDkCFhIWr90u7cwgv19Q7ueuPThqX1XVOPFHzuB2baO0curBLaV6tSoy0rhCgRKLSrZhfvVJnQ3zNbJsfb6M28tY9/uXR/VpIled2Nmr96zqVeXAjg3l/kv6yKWPjbfR4arliuPzpZXP0og/L2y/M26pp2gzoEsDueWsnrac2Ify9m1XXx427kQue7w473+atuUqT6Rbr8ifQgIkULYE6LajbHnzaCRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAnEIYIBcf37FCSRraBQEVm/ZGSeH4l1nHdraG0B3I0+cF3H7cFiPxlEWHNx4UKiAoobK+DnFLjgO6tRQg2TawogiBALVTcepg1pK99Z1bbzxPvcek/ceH4oK3VoVx0HEXMc9xkzjwsMvrfJqWSWC3/2yu7WqoPu/mhFxDXKFsVbRpH627vKWUEYYcUx7b3vO8pL5Y+eh3RtHKU54CUp5ZfjQ9oLzuvH0blGKE3pYWA3p0qrYfQksQKw3lkhiCaxuBOl7dG1ZN8payfyVEcsjsfJC+P+mrvJ2X39KN09xwgs0K6jHkwe0sEFQmlm5IaLwk269uvlznQRIoGwIUHmibDjzKCRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAkkQOG1gS3F/xx3QVLq0LB44R3JYWbh29CSB641YAsUEWFwIkoWrtnvBPdvU99aDVno5+xfsTQdXEHAbApnoKEZs2LrLuvJA+KCujWTIXpccn/+0RuB6BLKnsMhafsD6YKO4AaUAFbgNUbnq6Yly3+szjJWFddY1iIYHLX82rkJUsmtUkaVrtgf+qlWJDAvOWrZVk0Qt+zmWMKJ2lPHGrj2FAp5LjaWMWca9yuT5G+QzYy1CxRgkCRQorOSYuo8l3VpH2tGclcEM3LSFpuKmL47wxb5YfGGFQmWeo5iRbr1qXlySAAmUHYGIzZuyOyaPRAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIlCPQ2LhBuPrN7iXAEQAHhbeNC4aG3frb7n/lwrrQyigyuyw1NWCenRqD1Aexf51itaN+0liYJXLZz9q/bHLF2Mbhnnrz61WJjeWKj7DBuQODOY/L8YpcdyKhPuwZSp2YNeXbsPIGlhIWrt0n7prVl7oqItYNB3SLKEkhz+XGd7ED9bKMsAHlvwnL7wzqUAo49oJkc3aeZNK6bhSBPVm+KlOtPY2Z44fFWZizZGLg7JyuiYBEYoRQD12wusC4yxs9eV0JhIdnDdmkRUY4IStMur44XDHcniWRL/p6oKMMe/i5qO9bG7OVb5bDuxVZL0q3XWHkznARIoPQIlF8PWHrnxJxJgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgAT2MQJwxXDGoFZy1/m9vDP7eMpKbz3ZlR3GrYJKrlGyiCe5RgFCZceuSLoBnSOuO6YvLlZE+H5WsfsMuALJrl5VupqBfFjAgEwwFiQgUxdElBb6d2xsw/RfvVrV5bGRB8p1p3SRdkbRwpWZSzbLY/+ZLaf9+Ut5+YtF7i7Zsn131HYyG5vSSJNMvunGgWWJCx78Rv7x3/lpK07g2HVrReorqCy5zv54rj80bf7O1Nki7eb8XZqFpFuvXgZcIQESKDMCtDxRZqh5IBIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIggbAEBnaLKB1MnL3eWqSAYkWy0jA324u6xLi46Ne+gbftX1myNuLio2GdiMWHA9pHlCd+XLhJ+nVoIJ/vdStx6N7yVTUuOY7s00Q+mLhCvp+9Vs4Z3EZ+WLDBHqJj8zqS57MggR25NavLuSYefovWbJNpizbJBGOJ4b9TV3lFe+qDOZKbU11OPbilDcurly2rN+2w689dM8DkW9OLG2vFdRcSK05ZhRfsLrRuWPR4A7s2lOP7NTNWRWpLPaPcUsswqWPO9/43ZsjYyfGVZeaviu+KY4lhqpLISgXi1XfqHNtv3zIEi4RSMzvadUg69ZrwIIxAAiSQcQJUnsg4UmZIAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRQWgTgIkNlu7EisaewSKpXS157olFuRAli/sr4g+3uYDyUFFTg3mJAlwZGsWGDsSqx1rhoaCwoC2RAp4g7DihSQHli3Kz1sn3nHoGyB0RdOtiNGP/a5tUW/E4+qIVce3JXefbjufK+ceUB+WTqSk95okn9bGOtoTgTWDzo0bpe8UYl+T9tUcQaB5RKHh7RP9DlymKj6JJIpi+O74oD7lNUOidw8YF4aGuwHqJ1W9soctTyKUZofskuk63XZPNjPBIggcwRiNxdMpcncyIBEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiCBUiEwcW6xAgIyh2WAVBQnkGZAx4jViE+MRYeN2yMuFrBfBa4tPp26WjflQCcdAg/pmmf3TV2wSb6escaut26cIy0b5dh1/OvfMaJI8fq3S7xBeNftB+Jtzt8tc1dstb8gdxKNjZWKa0/ugqhWfnaUBAZ2iRzjs73WLzSeu9y5q9BYsthof8koIrhpS3N9hnFJogK3LEFWRDZs3SVwXZJINm4tkO/2uk/xx929p0j+s1f5BPs6GUWNZGRIz+J6RtyvZkQsgPjTrt1c4PFdt6XA7g5Tr/78uU0CJFD6BGh5ovQZ7xdH+OSTT2TSpEn2XC+77DLJy4vcSCo6gO+++06++OILW8zzzjtP2rVrV9GLzPI5BLZv3y6PPfaYDRkwYIAcffTRzt7kV8eNGydTpkyRadOm2URoC4MHD04+A8Ykgf2IQGXu85OpptmzZ8ubb75po5555pnSpUvkpTSZ9BU1zvLly+W+++6TLVu2yM033yw9evSoqEUNLFdlLz9OKsw969VXX5UFCxZYNjfddJNUr175HuP3hXMIbJwMJIFyJBCmXynHYkcdevz48fLwww/b97Df//730qBBbHPJUQm5QQIkQAIkQAIkQAIksN8SmDR/vdz+UvF3XEA4pm/TlFm0yqsl3VvXtYPxGGy/85UfrbUD15VFobFmcfer0zx3GF1a5kq7JrWjjuUqQPztk/l23+G9ostTr1Z16d2uvkxbuFFGfzTXS9+rTbR1iEWrt8qvn5po9zepV1P+cf1AqV+rhhcfK4sdqwlNGkRccwzu3sRYR5htFTPeM8oB7ZvWlvOGtI1KC8WBUW9G3F5cbRQxLshrExWnvDY6mPKqzFy6Wc7Qjb3LLTt2y+2mjpIVtI9/Xj8oSokFaZ8x/FEPEFiT6NQ8164n+nf8gc1l7A/F7kL+NGaGtGhYS3q3rR+VDIo214yeIEvW5tvwZ68eILBwEqZeow7ADRIggTIhUPm+upYJlrI5yL333iv4iDxz5kyZNWuWtG/fPuGB//KXv8j8+cU3YH9kfERv1qyZtGjRQnr16iX9+/f3Rym17Y8//lgeffRRm/+pp55aqZQnvvnmG7n99ttt2QcNGkTliVJrJaWTMT4Ya/2dddZZaSlP3HbbbTJq1KioAnbo0IHKE1FEuEECEQKVuc+PnEXsNdyTtV9p1KjRPqM8cf/998vo0aPtia9YsULGjh0bG0IF3FPZyw+kYe5ZL774ouDag9xwww2VUnliXzgHWwH8F0hgX3q3CTzBChoYpl+pCKdUVFQkI0aMkDlz5tjiQHECChQUEiABEiABEiABEiCB/ZsABref/jCiZAAauwsLZfXGHTJ/1TZZaH4qUDI4b3C0koDuS7T87Rnd5dLHxtlocL1x8V+/l8ONhQEM5C9cvV0+/2l11LFuPrN7iSzbN6ljLV9AAUNlYJeGuuoth/TI8wbtETi4Z2PJqh5tHB6D8XBZMc9Yn1i9aYfc8PxkObF/c+nVtp6YR2eZumiTPPnebC/Pkwe09NYb1Kkh9w/vK9c9O9mGPf7eHIF1jgON+5A2xhLGsnX58uZ3S7yBfSgOnDKghZe+vFf6dogwg1uStZt3yJAeTaSZURCZvWyLfDhpuVf2ZMoKFxvDTX0ONYo1fdvXlw3bdsk3M1YLLISo3HtJH8kxHJKRgZ0bycjjO8qzY+fZ6FByOe6AptK/U0Opa9x4zDft5d+fL4xYFTHuXHruVY4JU6/JlI1xSIAEMkuAyhOZ5Zl0bkuWLJE777zTi//SSy8JBnATycsvv+zNjE8Ut3v37nLNNdcILEFUrRp9E06UtiLtf+WVV6SgoECysrLk/PPPr0hFY1n2AQKvvfZaCcWJE044Qbp161Yhzu7nn38WWMWADBw4sMKUq0LA2c8K8fnnn8uiRYvsWUNJjbMy97MGkIHTxQCbiruuYWGXpd1G3TK762HLzfSZIcDntcxwrKy58N2mstZc6Zc70bMslCc2bYp8vNyxY0fpFyrDR2D/l2GgzI4ESIAESIAESIAE9hJ4yQxEJ5K+7evJny88QKA4kI50NZYk7jq/l9zxyk82OZQyXMUMN8/bz+sh3VvVdYPsepUqIkcYhYt3xi3z9vktEmCHa6EC24d0bYxFCbnp9G7yhxd/FChjQGkAvyC54Ii2cvahraN2waXIHef1lLvGTLfh3/28TvDzCxQnnr5qgOSaQf+KInWyq8n1p3aVv747yxZp3Kz1gp8rqO+GudkSzy0J4l94ZDv5Yf4Gmb54k8AKB35+ufbkzjLAKJakIpcMbS+rjAKP1vXHU1YJfn6BhZK7h/WNCg5Tr1EZcYMESKDUCVScnrHUT7ViHQAWJ1z5+9//LrfeemtGlRxg0eLqq6+WDz74QJB/ZR1ogwIITIzn5uZSecJtNFzPCIFvv/3WywcKTL/97W+lZs2IuTNvZzmtwDLKlVdeaY/+9NNPU3minOqhIhwW/fiYMWNsUaBIU1n79IrAcn8tA1x1rF69WvLz8+VPf/pTxjGUdhst7fJnHMh+liGf1/azCvedLt9tfEC46RFI9CwLJf/nn39e/vznP0urVq3kiiuu8NJWlhX2f5WlplhOEiABEiABEiCBik6gCrQQEggG/Xu2qytdW9STzsZCwxG9m0iNaiUnjtaoVpxXdo3EeR5zQDNpY1xxvPLFwsCB8KF9mpjB+PYCRYtYMrBzQ29A/fBeeSUsSiBdJ1Pe+nWyrFIEtg/qGDxw38e49/j3jYfKkx/Mlm9mrvXiIw0ECgTDjHLAYd2CXacf16+51DSKCC99tsgqDxSnKv4PfmcahYtzB7cxSghZ7i6p6vDPqp6cNYaoDBJsVA+oJ3+Ssw9rbSxNZMtzH8+31jfc/RcPbScXmXp43LG84e5388/NqS6PXn6g/NvU6d//G23JHZZKkNcZg1q5yUusZ9Uo2a4Q6Uaj3NI6r7a89tViz52LJta8TzqohWT7rIqErVc9BpckQAKlT4DKE6XPuMQRMLvmH//4R1T4smXL5Ouvv5bDDz88KjzexubNm6MGeTELE2a4v//+e3nmmWe82ervv/++/OIXv5Avv/yyUpp4jseA+0ggLAH4WFaBlZaKpDih5eKSBEiABDJBoEuXLvLuu+9mIqtyyaOyl79coPGgJFAGBPhuUwaQ9/FDwOobfhQSIAESIAESIAESIIH9mwAsD3wz6piMQHjtd4ellE+XFrlyx/m95fdn9ZQ1xrLAtoLdxp1DdWlav6ZkxxhEdw9wRO+mpuxN3aAS61BOeP+25MZ/6tWqLrec1cPmsTl/t6zckC+1s6tL84Y1o5QcShxkb8Dhxt0FfkgLVyeFZkyqkbHY0NAobzg6ElHJoUSCX2nJM1celFTWcNWBX35BoXE1ss0oolSz561KMr/7ZXfBzy9QbvG3n8uO7SDDj24vK9abOt25W+rXzpK8ullmEnNspRp/Hv7jVDNpzx/SxiigtJb1W3bJxm07TZQq0tS4F0lkySNsvfrLwm0SIIHSIRCsOlU6x2KuewlMnDjR8+l63HHHeVzgkiOM1KpVSzp27CjDhg2Tr776Sh566CEvOxxz1KhR3jZXSIAEigmsW1dstqxJkybSokXF8fHG+iEBEiABEiABEiCBykCA7zaVoZZYRhIgARIgARIgARIgARIggWQIQFGiVV4tY2WirrQxy2QUJ5LJN0ycusaKApQ7WjbKSUpxwj0W0sLiBdI3MpYmYilOuGkqynpOVlVT9lxbD6o4kU7ZoOzQqnGOtRzStH52XMWJVPKHMkxjo4iBMoJxIsUJf95h6tWfF7dJgAQySyAjlie2bdsmMNU6efJkWbx4sTRr1kx69+5tB/EbNmwon376qfzwww+25Jdccok0blzsywmWEp599lnZs2eP9OzZ0842mTdvnsC0J6wwYFCze/fuctBBB8lpp51mOvbY2mDIHP5UX3/9dVmwYIGsWrVK8vLyrDLBmWeeKT16FGvp+fHNnTtX3nnnHRuM2S5du3a1Fhs+++wzwYfAdu3aySGHHCJnnXWWVKtWbKpo9+7d8sYbb9h4SI+ZkAcffLAcccQR0rRpfO1CHOjf//63VwyYzV6zZo3lA2sUf/nLX6R27dre/jAr1113nWAmGNwQQO666y656qqr0jL1jrpCHU+aNMnWcfPmzaVv377WjUaypuO1bqdPny6zZs2yA9UHHHCAbSvgp3xRVsR9++23sWpddujy4YcftmH4d/7555cY7F6/fr2g7mbMmCE//vij5OTkCI6BssLMfZ06dbz08VZQRhwfy507d0qHDh1s+xw6dGjCdjhu3Dh7LSAtrodu3brZMvTv3z+hy4Vp06bJhAkTbPqlS5fa9ohr48gjj5Q2bdrEK7I1xQ5/uzh3WDJB++/cubOcd955tvxxEyfYmUrdaVYvvPCCbdt169aVyy+/XNauXetd23PmzJH27dvb6x71mKjNT5kyxV5zuN4KCgpsuqOPPtpec3q8VJaom48++sgmQX8BgRl7t32dcsop9tq2O/f+g7n7dBmn2jaVHyzJqKDMGzdutJtoD2effbZdx7WJ9gK58cYb7TLo31tvvSXz58+31jXg0kfF3w9CCQvuTNAPox+ECeWnnnpKo9sl/FGjH0R7Xbhwob3WcJ2cfPLJts+MiuzbQB+Kfh71ij4F7Pv06WPr9ZhjjhG0mXQF5cLMenBbtGiRLRfuIf369bP3kqC2pqy1raJNfPHFF/aH+xBcBQwePDiqSLjOcP5oy6gTMMI5nHvuuQn72FTaAs7nySeftMdGu1WBewS936Bs6N/8EqaMmejz/eXxb6faV2bymaGwsND2AXg+Qf+GdtGrVy97r+/UqZO/qElvB5UR9Yb2hHsT2hjuSXgWcts59v/3v/+1/TfuqYMGDZIhQ4bYe0Csg+M6+vjjj20aHAPWqPR+N2DAAMF92i9LliyR1157zQbjfobrQsV/HSTbZ6fbRitK+fX83WWYvh75ZPqe5ZbNv/7JJ5/I559/btsBnnnwHHvOOefY52c3rvssfvrpp9vnY3e/u457jfY3eP6Od02k+7ymx0O7xf0GPzy34ZkH/RmuASg1xpOw9RQvb77b7JvvNkF9NFwDQoEd7Q/PUi1bthQ8s+P5NOi9ISgPvAPDwh+U13F/wfstnsNV8D6Gfh7XK54xtm7dap8b8J6L61Xv5xo/aJluvxL2GdEtS6rPWHpfSeZZFn3Ad999Zw930UUXBV7/6XLE/Rd1BIGVuaysLPsej2dRPOeCP97XfvnLXyZ837KZ7P2Xbv+H80CfjPs+nsFxP8R70WGHHSannnqq1KgR31d3Jt7LYK0SXFAOXAN4hsU7I94BVFC2//u//7P3A3yvwbMF+meUk0ICJEACJEACJEACJEACJEACJEAC+zQBMxBZFOZnPjgU5ebmFhlIJX4IN4N1Rb/5zW+8febDj3c880LuhY8YMaLozTff9Lb9+R111FFFZiDaS+uW2QxEFRnlhphpkdcZZ5xRZAYCSqT/17/+5aX75z//WYRy+I+NbTM4VWQG0YpmzpxZZBRDAuOYj7xFRimgxDHcspqPEx4v85HExjUDtl5+L730Utz07rHNB+e4cXFc84GvyAyOePkbBY2EadzyYt0M6Htl9rNBHRuFlZh1rGW49957vTL488A26s89H6O4EDc+0piPkFHngraGOgjKH2HmA2WRGTiOSoPyuWUzAwZF119/fcw8zMBuEerQzwjbRmGnyFj9iJkWZXjggQcC06KebrrpprhpzYfYwLQ4thlIjZvWKM7ETBt0LhqGcrl8gtj6607Tmo/PtkxYGsWmmG0I+80gfczyGR/CMc/NuKMpmj17trcfZdHjx1viWg86FzfMfCyMyisM43TapnvduuXSdWO1xisf+icNj3fe2n/gunXjuf0g+ggzWOblh3xRR258o/AQ91o76aSTiszAQFQaTb98+fIiXEdaXv8SxzKDD4FpNY9Yy0TlQp/r3oM0HxxTzxNt0V8mtBeNa5Spiowv7hJx3DQffvihF1/T6TLVtmAGB+MeC8c1PsKjjhe2jGH7fD3XWMt0+8pMPTNs2LChyHz8j8n1j3/8Y5FRjPH2G+WVKL6xzgvh/jLG6mvQ5sxATtGmTZvs84nbftx13AuDjmcG+YqMUpBXRjcN1nGNm0G6EmnR/jTu448/HrXfvQ5S6bPTaaMVqfx+vmH6euRVGvcsLSP6fa0/oxwWty9FO9Z0WD7yyCNeWqNUG7XPjYf+Q9sCjoXjuPv966k+r/nPwSh5euXSc8MSbdgoXsc8dth68p+Hu813m8g73b72buPvo8eOHRvzeQZtEG3BbRtY9+fhXlvaho1ipZcu3rujxr/jjjuKjGKCl8Z/zDD9SthnRC1LOs9YqTzL3nDDDV5fgPujHleXYTgahQkv76lTpxYdeuih3rbWgS6ff/75EsfWMviXqfZ/SG8mTcS9f6P/NQo2gWXI1HsZGOj5+pdGkcge20zwiBnnlltuCSyfnw+3w31nIz/yYxtgG2AbSK0N4DtGJpidPeqbomR+mTgW80itjsmLvNgG2AbYBvbPNpDMfRlxMt0+QrntwIwFM0jmWQYwL99iPjTZGTtYxywGo7RgZyZjO55gRgosRKhg9gXyUsHMCMz+9QusAmAGOixOuIIZ966YAQMxChh2hrMb7q4/+uijAusPEP/xMQMblhxQRlgH0DjurDjMgMNMTsyijiWYJQoukIsvvtguMctFBTN0MinVq1e3M2w0T6OgoqtJLc0gk50Bo2XWRObDjl1FuBmwtrO8dZ9/+Yc//EHMR5aoYMx2BWMV1B9m+mMmDgTWS1CH/nrUMCwxw1IFM83R1lAHKoiDGV0q5qObncmIdhtL7rvvPvnrX//q7XbLiEDMEDIf97z9uoJZZpgx77peQfvFjHe3jaAN33PPPZrMW2KGletmxXzUE6MYEHUNjBw5UswHPS+NruDauPTSS3XTLv3lNh9loyyeREWOs5FO3fmzw6zSE0880Wv34KHtB3FhJQOz9YOuG8zce+KJJ6KydM/t/ffft1YtoiIksYEZ2dqW3OgahiXc4KiEYZxu24T1HpTDFbQpLWNpuRgxyjKeNR4cG8d0Z8jj+kF9uteaW59I88EHH8i1116L1SjBTF7MWsN1BEHecF2EvlkF7QEz7n/66ScNSmqJGfX+ciF/VzDbEzPzMfszSNBW3fuQxnGtVaCPGD16tO6yS7dNIgDlgNUHv6TTFrKzs611Hn9bAHNtC37rP2HKmIk+33/e7nbYvlLzSveZAfcYWMKB1QtX3DpEH/3YY4+5u9NaRxmHDx9u0wb1e3CxBWtQeD6BoL265UAYLAToMwe2IUYByc4QxWxZFeSP+6q2edybjz32WPnf//6nUZJeptpnp9pGK1r5XTBh+nrkU1r3LLeMuo5nSO1LEebvh9GOMeNcxX3WhAU0fd7S/brE7Hb0wxA84wdZMNG4WKb6vOamRZlgvQfib/9ow8cff7y1IOSmwXrYevLn527z3aZ91HPrvvhuo/WN+zTeYfR5Bv2o9qGIgzYIyyuwEBhL8H4Y9F4AywYQWAiAdT1/P+7v62Ed0ChvBx6mLPuVwAKYwHSfsTL1LJsJjnpusDwBKxcQ/70ZYb/61a88yzvYjiep9n+7du2yljnd+zfaHMqhgv4X1ifQ/vySqfcyPFuo+J8v8Wxy9913y+23365Rot6nEYh3hb/97W/efq6QAAmQAAmQAAmQAAmQAAmQAAmQwL5GIG3lCZjtxIu3fnDCR3uYKoW7DAxQwYWGfkzSDxTx4GFgGzJmzBhrehpuHWAy2jUVj33+j09mJr/nEgTpYVIfZYK5YXzscj8cIy1e9mMJXIvgPMxMdutWAsc3s0a96BgYRzlhrhKm71FGmHd1P17jg0e8QT9XOUJN7mMQVAcPoVyBgYVMCgbyVMxsKV1NuIR5zkuMaXHUJwQfVzAQA1OzCMN5mhnYdp9/IMoGmn8rV64UKKWooH7wMQjxwQ/mWfWDEQY09SM6zOWiDvHTD5lYahiWGASFYADAzLzWQ1g3JdoGzMwa61JA+SJc3TV4CZwVHVSFkgLKjjKiTatSDaJiHz5kumJmmnttE+czfvx42/7Q9uG6w8zs96I/88wzUYMWOA7M/0Mw+AGzsjDBjQE1lNdVmDCz26w5YM0M1xk+/KrgekD7QbnhbsDMzNRddhAvmWtRE6Rbd5pel6hvtBco0IAlrhlsoy1p3eO6cRkhLT5Im5l2mo39iKfXHdwkYCAabULrzIuYxArag7Yl/YCNsmgYlhh4hIRhHKZtot5Rjqeffto7I9SvltHfBr1IIVdwDYIrrlW0XbQjdbsE5Qe338cHVvBBfWIfBrS0TnHNuG5QUCz0lTooB2Uj9LXvvfeemJmfYmbgCxSEVHCdJCsY8IfbJVwvEAz46TVoZunZe5N7nQQp4iEd2irywHmhj8I5QUEPgycQuDu488477Tr+mRmH1mUHrje4CDFWlrx9UH7S8iAw3bYAJTG4NkG9w5yyCvocbQv40K8SpoyZ6PO1HLGWYfpKN890nxkefPDBKGVL3NfxrIA6RN9krDHYw6TTr7jlwzrKiGsJJrFxLeE6QbvUawT7cXzEwfMTnjlQDsRzBzPcZwzkq2XEOvoyuM1B2dFmMcDltsMXX3wR0VKSVPvsVNtoRSu/wgnT1yOP0rxnaRndJdoonhlwTaH/RLtBn6qu2hAXipnaf2OQD/0SBP2wO3hnA/f+U1d22ET6RJLK85o/L5QBx9B7Ddo/yqvtH30oTMa7Erae3Lz863y32fffbdw6R5+J/g6KSOqyA8+puLbwPgjBtXLBBRcIBr2DRN9b8H6JPh3PDGhHUDqCsiCU9XAMCNo17gd4j9K+Hu4bVfDcg+chV8q6X3GPrethnrEy8SybCY56Llii38EzIxQy9J0E78d4v1cJUnTXfe4y1f4P30bwrg+BYgnaIPo53LvxnQIuQCFYR9+I5zKVTL+X4RsL2iaeJdHOobivAuUJCOoP7RXv03j3cpXw/vOf/2h0LkmABEiABEiABEiABEiABEiABEhgnyOQtvIEBnP0gywGAmDRAB8dYOkA0qFDB7n//vuT+vCqVDGIgFm/NWvWtEFVqlSxsz8wkKXiKiZgUExf7rHfuLywL/X169e30evVq2etEWAQUGXUqFF2QEy33SUGMPDRuF27djYYx8cHM8wMVcG5YtAW/u1VDj/88ChrAspF9+sSAzT6URof5bp06aK7rF9d3XAVPjQszNKdoY6PRMkKPty4igYY4MeMcJ1NhfLDSgNmjscSnDNm+OCn9YNZqioHHnigoE5UUhnc1zQ6mx3HwCwZtAltA4iD83cHYuGTOJ5gxjE+pDZs2NBGw6xutEF3JrL7sROR8KFUzxMfk6DYUbVq8eWFJfwm6wxkfCTTj61Iqx/RsI6PrL169cKqlWrVqtmyoPzIH20NH3ZVMANJP8ri3DFrrXHjxnY32vOFF14YNdDmKiNpHrGWmay7X//613bQ2Z0hj7bkKr3gw5wrUBRRMe50xJgg9647WIXAh0+dsa3xSmMZhnGm22ZpnJ8/T7Qb+IDGB1IMtkG0LWOWmfZvUH6AAgf6egj8M8MHsvZxCPMrq7kfWsG1UaNGiGYFA7AY2EY9o63rfUD3x1uiXHpNYXACSmp6DeKehHsTPgCrogzOYcKECYFZQiEMSkfoo3FOuA9AjNknufLKK700GLCEkoZaKMFACfoy+C6H4EM07hUqZdEWwpYxE32+nm+sZZi+0p9nqs8MGIBB+1KBciSUGPGsAMH9HfXv7981fjpLPBsZk+neNYR26d5LkCcstaCNalvDgDjaq4q/rdapU8deI+hXoVTq3uPRHmF5RNu6X/FC80y0TKfPTpSn7q+o5Q/T1+PcyuOehecyWF9TS1x4fsWgn6ssZtzOKHrP4hkCoPzlFyh5uc/MrvKtP24mtnEfhyUfvdcgz549e0YpDeJ9w5Ww9eTm5V/nu82+/27jr3MMGENJtVu3bnYXnhkOOeQQq3yP5yEIlCkwyB1L8H5jXO9Jx44dbT+uz0xIA+UHFTyz4n6g71Ho63//+99HvWf+5S9/0eh2WR79SlQBzEYmn7H8eSeznQmO7nHwfId+rnXr1l5wmzZtoiwpwHJUpgXK8ar4rN8TUBa86+H+37VrV6ukq8pjeDaAQpxKJt/L8M4IxVt9J8/Ly4vq+3FMPEvgfVjbK54v3MkEUPrEPYNCAiRAAiRAAiRAAiRAAiRAAiRAAvsigbSVJ/ABQAUDoPgA5Bd8CPCb3PfHcbeDzKVjv2taErNEVDDLWQWz6XTQSsN0iUFAnTmMsFhmrN3BQk2LJQZ5VWBC2B0A1nB8/FBxy6hhWLouM1yFEOyDeU4Vd9BEw8Is8VFGPwBioB0DbMkIZmGpYFBQPyxqGJbI27Vu4O7DOmbV4KMkfrHqp0+fPl4y95heYIIVDMSgneEYGBjTj5ZuMgwkKQPM/I0l+KiJQaMgQbjOyoECBH4qaDt6nm5b0P1YYnaSimvSH+VXQdmC6gduOTR/NaGNmaZwWwHBud16662aTdQSg4F6fWJQPFnJZN353YpoGdyBGczCc0U/VOPcXFcqbhwok7izrN19mVgPyziTbTMT55NMHqiToGsdad0ZwPjAD+UCv0AhCsouEPQ3mE2n4rb1oLaIAUB80EVbd93YaPpYS7dc6D9dNyOaBh994R4I1jvwC4qDuFCW00FsTYslPhKrohIsQGDA0i/oe9zZiu59sizaQtgyuv1vun2+n4l/O0xf6c8r1WcGzMxXgeILlCODBJZJ0P+FFQyO6CxSNy8MzKkgjjvbVcPd4/v7RvT1uEaghBH0PILBP73f4D7lKtxp/omW6fTZifLU/RWx/GH7epxbWd+z0FdqPStbLNF/uQqjrvINlBX0WSjIdQdcduh1goE1VQ5z88/kOu4VqnTt5ot7uwr6NZVM1JPmFbR0+2y+24hnfQGs9pV3G3+9w+pZ0LMMFJFc5W4oFwYJridXWcmN4ypQ4pnGVZp34+GZRK9LvNu6fXZZ9ytuuXQ9k89Ymmcqy0xwdI8HhQDXHZvuQ/2ou0cowELZM5PiKhDDTYu+m7nHwD3dfZ9zn8sy+V7m/w6BMuD9UhU3sO1+f8E2BIrN+syCZ2JYJaGQAAmQAAmQAAmQAAmQAAmQAAmQwL5IoNhMRBpn5n6MjTVYjGwxGIYB50QWBTCLGQPxQeJ+XNDBK8RzB6DhTzaeYL/OiIZ5SldZQdPFysMdZHMHNDQdlu7Mz1izMFwlAwwguQIrB6eccorgwwpmUOMDbtBHcTdNKusut6CPhEF5uR9sDjrooKAoNgyDP1BO0A/uMSOaHWCDsuCHj+BYurN7MDM4EwKrJJo/lvDh7jKIdQxVjoi1H4Ne2pZhBWXo0KGBUWFmVY+PY+OHGUQqrhlW/QiFfYgzYMAA674A1wQ+5AUN5CIuTFeroI3G+rCNODprCB8D169f71nV0PTJLMPUXY8ePQIPgZlOKuCl4iqn4DrQWbW6313Gum7dOOmulwbjdNtmuueQarqgwV7kgWtTP+JrnrHcALl9DPoRnd0HyxRq/QQDf7iW8AEXA2WqFKR5J7vEtaTWMJAm3v0I/XesPhxpMXgRS3EEg4oqaI+xzt3tw/y8NL0uM90WwpaxNPp8PddYy1T6SjePdJ4ZXMtV8foNKMHgXhBrsMwtR7z1I488MnC3+0wR694KZRu0x2TuW1C4gzltxNX7jbqCQgHcNhlYoIDAVPvsgCySDqoI5Q/b15fHPStW2wF4tDH0dWjDcCWAvgaKEOi70OdCuQLPAzBfj2cOFX1OxnbQ4JrGy9QyXn+NQUyU3VVUDVtPicrNd5toQvviu417huhj27Zt6wZFrUMZVMW9v2oYllCqD1Laxj73HhLvnQ7P6Hi/UEt0eA9s2rSpbfva/svrWTiTz1hgko6E5eg/Zry6wPss+h0I+s1UrKD5j+Pfdq3oxHuOdBXK8D3g3HPP9Wdlt9N9L0O7x3kGiVpdxD5YUgkSPNPr822sbx5B6RhGAiRAAiRAAiRAAiRAAiRAAiRAApWJQNrKE+4HAJiZjCf4OKoDzrHi6eBa0P5YHy70gxLSwMxvPHEHAtwZPW6aZGbYxfpA5uYTtI4PMe4AHz4Aux+BkcZ1NQFzovE+7gQdI1YYBlNUoIgSazBe4+jS9Ycda0BR46Ks8ZQnYB4aP5gQd+tN02diifLCdO4nn3zimfBPNd94A6vIy21n+JjnKk9ghtJzzz1nLZu4ihKJyoA6gRnXkSNH2qhoK/CJC8EHrjPOOMMbYHYVjGC+VQWDIG4b1/CgJQZIYw3qBcUPW3c4P1Xe8OePthg0QOgOcsLMfTzRWWLx4qS7L1OMM9E20z2HVNMFzcZDHv7ZZa7FmHjHQL8Hy0AQWAoYPny4wF0CBG6B1DUQPuRi9iasAbjXmY0Y59+6deu8vWgLse4XXqQ4KxhwjNU/uvcNmC12TRfHyhJ9RH5+fpTyT2m2hbBlzGSfH4sJwtPtK90803lmcJVDXPdIbr66nmi/xou3jHUtuWlitTc3TtD6ihUr7H0D91QdxAiKl05YOn12qsepaOUP29eXxz0rUT+JZ28ddMRzhQ4Eq/IE6gz3d1WewCCYuuxAG3AtpKRav8nGj6c0F3T9hK2nROXiu00iQtH7K+O7jXsGUOiMJ66lCPf+6KbBM2wscS1vJXpXxvuHKk/oe1J59Cv+c8nkM5Y/72S3w3L0H8dVCvLvi6es7Y+b6jbe1VTwLJyMuApdGj/se5mrwKl5ckkCJEACJEACJEACJEACJEACJEACJBBNIG3lCcyIUR/zmMke7wOoO6ATffhwW/Ahr+IqHmiYu3RNW2MmSVmLfpDW47ruCjTMXcJKBUwGxxp0duMmWncHVmLNNAnKA4MbKon4Nm7cWKNGLTGj9MYbb7Q+raN2ZHADH/xhwvz6668PnWu9evXi5uG2I/eD4uLFiwWm/GN9XI2bqdmJj2gwlQqXAy+//LIXHTOJX3jhBfvD/rFjx0qrVsU+qd327yVIYgUzlJORsqi7WOVwB+oTtT13llSs/NIND8s4k20z3XPIVLp0+023vUH5B9cqrAZAgQIDvypQvnrwwQftD5Z5oJyQjCIE2qlKo0aNdDXjy61bt6aVJ5TX8DG+LNpC2DJmos9PBClsX5ko/3j73bZSnv1KvDIms++LL76wikjJWKVIJr+yjlMRyx+2ry+Pe5b7PBJUh25/iOd0FVhdwbMg+ly47oCrISjxTJ061VOCveyyy2LOptd8ymMZtp4SlZnvNokIRe+vjO827hkken50lerTeZd1ldcT3XPc/VC6hJRHv+Lywbp733T7FH+80twOy7E0y5ZK3m4/nGw6912zPN/Lki0v45EACZAACZAACZAACZAACZAACZDAvkIgbeWJQYMGyddff205YGZMPOWJ7777rlR44SOnChQ5XB/JGq5LVfTANtxMlKXs3r1bXJcdyRwbgyKwoKAztpNJEyvO66+/7u06+uijvfVEK5ilqNYk4BIinvUJuEIJkkcffdRTnMDsLFhUgKlpKABAUQGzX1auXBnXlH5Qvm4Y3H64ihOw4IDBWZjixcdIPQ78F+tsLje9uz579myBT/BY4vqed2d9/vrXv/YUJ6DkcM0111hLEGijenz4DFbrEkH5YwYcfvBjP378eGutBZY0tA7QhocMGWLd1WAw1v3oe9JJJ3nuEILydsPcD7RuuH+9LOrOf0zddtuay1z3u0vUWWlJWMaZbJvJniMG6WPNZg/jv9llgbIsXLgwqSL5Z/FBgeKcc86xPwzW4/4An/ZQEtLBYLgcgOsPhCUS92M+Bv/inX+ivOLtd+8b8IMey4yyPw9VLCuLthC2jJno8/3n79/ORF/pzzPZbddaRaJnhkT9TrLHzHQ8XMPHHnusl+1xxx1nrbXAvDauBdxncc+58soroxTxvATlvFJRy+/2b+ncT8vjnoV7XzwLZbAKoOKWD/eHSy+9VG677bYo1x2uy47zzz9fk1aoZdh6SnQyfLdJRCiyv7K+20TOINqthhuu666lgHjXmsb3L/Guo3kkeo9yrRHqc4173Sa6JyX7LBzvGSnoGVHLgnMrzWcsPzt3OyxHN6/yXHfP45tvvhFY+EkkrsXB8nwvS1RO7icBEiABEiABEiABEiABEiABEiCBfY1A2soTav4XQDBT3v2Y70L6/PPPvQ9Hbngm1l2FjViD93ocd38yHys0XSaWX375pTdoj8EtWA+IJe+99579oI39GDgPqzwBk/mueXmYzU9W4C5BFS/wEd79iOfmgQ9xqkjjhmP9/fff94L+9a9/ycknn+xt6woUBcKIO3sdShQPPPBAiew2bdrk1UGJnU6AayLXCfZW1QQ2AtSsO2Z7u2X43//+J82aNfPS6Mr8+fN1Ne4Sg19QcsHv1ltvtUo0cGWAgWV8hIVZ6cGDB0cpLEEpJJ4Z2rgHjLGzLOouxqHFNZXsmtEOij9jxoyg4IyEuX1MOozddhG2bcY7ISgaqGBmm/uxW8Pht9pVItPwZJcwoY62qQoOderUscpPyaYPige+6JPwg6Ud9FXqsmbMmDFW8cqvfOHPB/u1XCjb0qVLxR0k98dPd9ttC2Cc6vVWFm0hbBkz0efH45vpvjLesYL2uW6ZEvX1GCSqiOIqo+J8/vOf/wQqSyUaaCuvc6uo5XevnXT6+vK4Z+G5LN6A7uTJk201o3/EoJ0rsJQF5QmIuu6AFQrIoYceGtPXvY1Qjv/C1lOiovPdJhGhyP7K+m4TOYNi5QnM5o9l5c9VQIp3rbl5uut4FlHrf1COiPUehTSuWyl9vshUvxLmGbGsnrFcbv71sBz9+ZXXNvphbQ94jlSXScmWpzzfy5ItI+ORAAmQAAmQAAmQAAmQAAmQAAmQwL5CoGq6J+J+YMQH17/+9a8lssIsGJhfLy0ZOnSol/Vrr70ma9eu9bbdFZi8xKx/laOOOkpXy2TpumF45JFHBBYLYv0wcIgP3RDMvk7HxKee1KJFi+TCCy/UTcF5d+/e3dtOtNKnTx8vCgY1MfgaJKpg4d+HWWnffvutDcY5xXJVoj5+/en92xgYDTLZ7A7GXHzxxf5kdhtmwpMRMMfga5Ag/N133/V26UdN94Mn2nuQ4gQSubM6vUzMCj7OQikDg3lQRHGlatWqcvzxxwtma6vooB/qUmeaw10IZrXFElyL4IRfMu4XMl13scoVKxwfemGhBIIBf8zQChKcy9/+9regXRkJC8s4k20TJ7R8+fLA83J9ac+dOzcwTrouZdzMTjnlFG8Til6xRC1K4PxhWQayc+dO287R1tWaipse5rGvvvpq6devnxcc61y8CHtXzjrrLC/omWee8db9K/fdd58dRMQH7A8++MC/O+62e99APxDvOoJCGM7d9VWd6bbgutjQgoctY9g+X8sRaxm2r4yVb7LhPXr08KLimSCWJSK0u1j9tZdBOa24yoawZBRkZQbnlYnrPewpBrXRilr+sH19edyznnvuOdm1a1dgNX300Ude+x44cGCJdgLLXEcccYRNi2d4KNpqvxzrOSrwQDECYz2vxYiedHDYekp0IL7bJCIU2V9Z320iZ1C85p6Huw/P467VQFf5zo0Xbx3P7ypwVVZYWKibUUsMqKtyNp7r1bJdpvqVsM+ImX7GivUsGwXF2QjL0cmqTFZj9X+wFKXy5ptv6mqJJZ4v8cyIn1oUKe/3shKFZAAJkAAJkAAJkAAJkAAJkAAJkAAJ7OME0laegAuEJ5980sNz8803y5FHHin333+/DYfJ30MOOcSbpexFzOBKp06dvAFWDBbggy8+LriCAf8RI0Z41i8wMBdv5o+bNhPr+IDy4osvelnFUiDQCJj9dNFFF+mmxPu44kXyrWB2L6w8YJaUzjSH8sLzzz/vixl/051lhQ/xGHj0C2b9Dxs2zB9st6tXr+654wCHIDP/OD+YIY0navYecWD63i/uB82g2cIo41VXXeVPFriNcsKlAAZ6XcE22jT2Q/ABTGdyqRIFwjE46B9UxcfSW265xSpJII5ffvvb3wo+2IN3EAuk14+qSKsz0mDK9Ve/+pWXHUyNBw0GYlAEVjIwUALLH34FDS8DZyVTdedkmfKqqxwFFwlBA3Gw5uCySfkgCRKEZZyJtum6WYmlaASLASpoQ/46huUVteig8dJZutf68OHD7Yddfz5QVoPbHLQ3/BYvXmyjoG/GPQJtHR/yXWUCzQN+rV2FiViKSBpfl265HnzwwSglJ40D6zh33HGHvUZwnWB2dSqC6xyDkBAoPF1yySUl7jfYhwFNWIbBud99990IspLptoBZv34JW8awfb6/PP7tsH2lP79Ut+HOQpWy0AZwr/U/M+D+WZpKn6mW2R9fLR4hPMgqz8aNG6OeIfzpS3vb7a+C2mhFLX/Yvh5cy/qeBeVUPFv4BYqzbp/oKlW5cdGHQ2DR6rrrrrPr+HfGGWd466muJHpeSzU/f/xM1JM/T3eb7zYujdjrlfndxn9WV1xxhaiVFnff448/bpXYNSxVKwFI51oPhMJm0HvUqlWrou45eJdFO1fJRL8S9hnR7U/SfcZy7w2xnmX1nP3LTHD051ka24n6P5yHTpDApISgdz4oxEGRWJ+hVVG5IryXJcMM1jFgjRT3FFWeTiYd45AACZAACZAACZAACZAACZAACZBARSOQttsOnMjll19uB+fV6gQ+5KqlAT1RDKLhY7nG0fBMLaHAoQNaMIuOgblTTz3VHhMDXG+99VbUoLWr8JGpMsTLBya1VfDxCabuE8nZZ58tTz31lI0GJQh3gNxNe9NNNwk+pqhggBQfzf0uNPChBjMLUzVlj9lPmJ2L8kD+9Kc/yVdffSUYpMcgFNZh7jme4EORDm7jQxDcT2AAFVZCMLDywgsvxEtu92G2sM6IhGIDBi379u1rTf3j3NDGYNEDAkWZTz/91FprgCIKZrmOHj3aU3qwkRL8w4xdzMDGTCu0Xbh8QTtSRRRwefbZZ71c8LEMA3JIhzhQGoKiBdoitvHhyzXZ7yXcuwLf9PohEUpIGGwGK/iwR30+9thj8tlnn9nYOF93IARuPfDRF8otYITBT5T7sMMOs4OCuB5x/iq/+93vBO4XkpFM1F0yx4kVB+eGugRXDHTiwzUGdeCTHIxwbZXF7OowjDPRNjGYo4LZifgoCQ4YjB8yZIjd5X7UhyUYKPDgWqtbt67AfD8+dgcp1mi+yS5x7DvvvNP+kAbtFObf0SYbNGhgrafgWlQlI5z/wQcfbLNHu0NfptcqFHmg0IG2irRQcgJrTYt+Ji8vL6miHX744XawUGeQ4hqAlQy0YVhvQTtyzR2j73Q/5Cd1EBMJFo7AGixhmQD3HhwH1/qaNWus0oZr0QLXm0om2gL6BBW4OUHdIl+cP5QJIWHKmIk+X8sXtAzblpeyZwAAQABJREFUVwblmWoYlBnRJtHO0K+i7nA9QbFjypQp9p6nPupTzbss4kMxRwUzmTGDF888bdq0sfcCXAN6r9J4ZblM1EYrcvnD9PVgXB73LAy+wcIN+lNcv1BKQx+g/Sj6ZigZBolrSUhNyaPvRH+criR6Xks3Xzdd2Hpy8wpa57tNEJXosMr8bhN9JsVbeLbB8wLeT3bs2GEtU+lzOWLAAgX62FQF9zxco7/5zW9s0rvuusu++8CSQtOmTa1CON4v9PkM1zDeA1zJRL8S9hkxE89YyTzLuuftrmeCo5tfaa0n6v9Qv3hGV0saUJ6Hq0f003gGgXtHWE/Tezje+fBeq1Le72VajlhLfIdQ5TtYfET58axKIQESIAESIAESIAESIAESIAESIIFKScD4ei0K88vPzy8yg2FFLVu2hL8B72demItGjRpVZF6ki8yHIC/cDE54xzMzjL1w83HAC/eXxwwOe/HMYFuJeC+99JK33y2Df90MNJRIa5QTvLRB+1EWM+jmxXnooYdK5IE4Zna/F8d8qPbimA8iXrhRNPDC/efoboOp+cDipTNuGrx0ZsDUC/efX9C2sbRRZAYlvfTucZJdN36x4x7TWGEoMpYdvDhuHRtrE0XGzLK3L6iMxlqJtx/5+Mvl8nfTmw8zNq6ZKVxkBnC9PNw4uo42qEw7d+4cdYx7773XS/v0008Xoe1quqClHtctpxmcjZsOeZqBVC/fV155xSuDGeguMjPNvH1Bx0RY+/bti4zlDS+dHt/M9C9CPcdKp+Fm4LrIfBQukV7z8S/D1p32CVj683a3lTfathuOdaM84tWbnod/6V7/ZuCnRB7+PP3b4Io80T78+3Q7XcZh2yaOj/7AWEkoUb+47rR8WBoFtRJxXFannXaady2CuZs2mX7QjY+25OYdtI42aWZURh0H9WkUjRKmxbktWbIkKq17/KB1o5BVdMIJJyTM2yiVFJnZ+VF5J9tWcVz0b9pmg85bw8yswqhjZKItgF/Qsc3H6ahjpVtG5Rqmz9c8Yi3D9JWZemb48MMP47YT9AVmwMuLY5Quo/jGOjeEJ1PGDRs2eHmbwZCYeWtd+/tGPHNpOwtaGgWFImM9w4uDdqNlNgN1XriZWe2FY3+y10GsciGPZNpoRS5/un298sX567NGUN0gLMw9C32j5ovnCF0PWqI+jXJNVB1rOXVprK9E5ZHsc6qm9y8TPa8hvnsORskjZvnce4X/OGHryZ+ff5vvNsXvhvviu43bR+PZ2yhqRl0D/mvJKD6UaKNuHvHeX9Gu0JaQhz9f/zb6DaPwXeJYyCMT/UqYZ0SUIcwzlnJI9CyLd3zlgnd/pNNfWI6XXXaZl7dRTvDy1fx16d47jeWEmPE0vrtMpv9DfPeZW8/Xv8R91liXijp+WbyXGaVgj5N7bu463rW0vMYqoFdGo8TvhWM/nrfddFyPtGeyIAu2AbYBtoHSaQNm4l5G7j1nj/qmKJkf67F06pFcyZVtgG2AbYBtwN8GkrkvI44/XdjtqublNpTAtCjMS2LWO8zqwzenGfQS82HTzirOycmRbdu2ecdw/XO7ZkkRL12BNQJYGMAM6CDBTDrMqsNMbL+4ZcjOzvbvLrEdK44bruuwruBaDMAM4WQEZRq+15wy4rszvDTvWPmYj+XWZDzMZWIGIs5bZyTHSpMoHLOejNKIndXojwuz9Jjl6FrUcMsIFxOwMAGrG+ZDUFRyuFCBRQbUTzzBjLB3333XzvB242FGOQQWJjADFzPicf6umI+R1vICZnupmw13P9bd8mLWENxcBJUJ1iVg4QGWJfyC2bSw8oCZ+H6BCXjMDEXeQQLrIXCpAisfYOIXM7gvMCuMNu6a1dd44Ao+OrNNw3WJcsNCCKyuKDPdF28Ztu5QL5BatWrFO0zcfc2bN5dPPvlEzMB/iXhwu4A2rjO4SkRIMsC13hIrSbqMw7ZNlAf9wauvvipow/727ZYXrmlg1SGoDeEahongWOeaaj8IayhGOS6wPCgjzF1//vnnJWYwoz7RH8CKDdq1X2BNA/nCqgNmZaYisLIBN0AoW1DeuA4wAxR9hb9NptJWcR1jpmAs1w4IhzsF18w1ziMTbQH8MJvP74bIva/iWOmWEWkhYfr84hxi/w/TV7rtNMwzw9FHH237xKBrBSbT0V8HtaHYZxXZk2oZa9asGUnsW9NzdO9RiIJnrjfeeMNzi+Umg7UT9PexLKu45fPnm8p14B7TXU+mjVbk8qfb1yuD0r5nuXWG+yL6WfRtfsEzDJ6vMGM7nrjPzTh3PG+FkUTPa8jbvQ+57TGV44atp0THQrn4bhP9fKxtb195t0EbQD2PGTPGPnegTbmC7XvuuSfQ1YbbbrWfdtO664gL61/os4PcheE4sA6D+47rXsPNIxP9SphnRJQlzDMW0oNDomdZt2/Q+xHSQsJydOvMn3fxEcL/T6b/w1FgnRAWKNRypntktAdYpIA1NjwTu1KW72X+68Eth/YFCHPrDM//N954o42K9WuvvdZNxnUSIAESIAESIAESIAESIAESIAESqFQEqkD7Ip0Sw6ypmhnFh6N45tVhWl5NAsMcdry46ZTFTQNz9TBjvXnzZjug36pVqxIDZW58ridPAL7hwRaKMRiYgQlb92NUopyKioqskg18yuMDUKKP+kH5oX537txpj4sPeUEC/8EoJ9oZjpOKwoCbn5nlZE2oFhYWSrNmzZJut/BXO2/ePMESA3CuYombf6x1cIbpVpxn27Zt7QfLWHH94Tgmzn39+vW23aOOEn3Y9ecRtJ2JugvKN5UwmIOFuw4MFMMFDVzHlIeEYRy2baItGqsJlgE+bLofLV0WMNmONog4aAOxFIfcNOmsozw4J7is0HqJNWgblD+uZyjeIS3M/bsfZIPiJxuG9opy4R6Fc4cCWWkwgGIg7mno0xo1amSVSWLVib/sYdsC2iGOi3OFmX2/AoUeL0wZw/b5WoZYS5xDmL4yVr6phGs7wb2sQ4cOEk+ZIZV8yyou2gDuFyg3zKKX1qBQOueTTBut6OUPcz8ty3uWsWYiS5cutf0AnhviDXy5dQnl1wsvvNAGYQD3gQcecHeHWk/meS3UAfYmDnNP9h+f7zZ+IvveNp4jVakcLhHUtR2eZ3AN4Z4OZQW8PyZ7P0+FEq5VHAPtFs8NOFYqzyeZ6FfCPiOGfcZK9lk2HtewHOPlnYl9yfZ/eF9De9izZ49914TicKznObdcFeG9zC2Pu47nTjzPl8b14x6H6yRAAiRAAiTgJwC3pl27dvUHp7w97JEJSaV5+YYBScVjJBIgARIgARIggXAEyuvenLbyBD4wYaBBBTNt/TMksA+zTIxZYBsNsxAwUEYhARIgARIgARIgARIgARIoHwJQFOjbt6/3XD5z5kyrxFY+pakYR+W7TcWoh9IsRSzlidI8JvMmARIgARIgARIgARIofQJUnih9xjwCCZAACZAACZQHgfJSnqie7sliRg7Mkr/88ss2ixNPPFEuueQSaz4YM52Nn1CrOAFzqCp/+MMfdJVLEiABEiABEiABEiABEiCBMiIAazKwzIYPi5hxrwrNcFcD6z/7u/DdZn9vATx/EiABEiABEiABEiABEiABEiABEiABEiABEjCuKsNAuO2222T8+PEyZ84cax4dPl1jyRNPPCEjR46MtZvhJEACJEACJEACJEACJEACpUQAbnL8VuLg4oPKzRHgfLeJsOAaCZAACZAACZAACZAACZAACZAACZAACZAACeyPBKqGOWm47YC7jltuuSXQvzI+yB5zzDHy8ccfU3EiDGimJQESIAESIAESIAESIIEMEujevbtVgqbViQhUvttEWOyLa1Wrhnr13ReR8JxIgARIgARIgARIgARIgARIgARIgARIgAR8BKoUFBQU+cLS3ly/fr21QrFhwwbBB1m476hSpUra+TEhCZAACZAACZAACZAACZBAeALbt2+X77//XmrXri3t27eXJk2ahM90H8+B7zb7XgVv27ZNCgsLpXr16pKTk7PvnSDPiARIgARIgARIgAT2QwJwTdi1a9fQZ15eftVDF5wZkAAJkAAJkMA+SqC87s2h3Hb466Jhw4YycOBAfzC3SYAESIAESIAESIAESIAEypFArVq1ZOjQoeVYgsp3aL7bVL46S1RiKA9RSIAESIAESIAESIAESIAEKieBgt2Fkl9QKLk51aQqJ+1WzkpkqUmABEigEhDIqPJEJThfFpEESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESKACEygsLJLvZq2Vt75fKjOXbpGNWwu80rZunCPH9msuJx3YQpo3qOmFc4UESIAESIAEwhKg8kRYgkxPAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiSQEQJL1+bLTf+YLEvMMkgQ/vdP5suYLxbJ3Rf1lkFdGgdFYxgJkAAJkAAJpEygasopmIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAEMkxg1rLNMuLR76MUJ1o2zJGhfZrIiQc2F1idUNlesEdu/NsUedkoURQVaSiXJEACJEACJJA+AVqeSJ8dU5IACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACWSAwM5dhXLbS9MEShGQWlnV5I/n9JAhPZtI1apVvCNs2LpL7n39J/l25job9tQHc6RWdjU5Y1ArLw5XSIAESIAESCAdArQ8kQ41piEBEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEsgYgRc/XyjL1he76qhfJ0uev+5gOaJ30yjFCRysQZ0aMuqSA+TCI9t5x37q/TmydWex0oUXyBUSIAESIAESSJEALU+kCIzRSYAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAEMkdg155CefXLRV6GN5zSRdrm1fa2/StVq1SRS4/tIO9NXC4btxZYaxWTZq+1yhb+uHDpMXnBehk/a70sX79d8o1liyb1akq7JrXlmL7NpGFuVlSSifPWy6xlW2zYUb2aSAvjNiSWfD1zjSxas93uPtJYyGjZKDruglXb5NNpq2Tpmm2yZcdue9xOzevIsf2aS27N4CG6DyYtlw3bdkltY03j9IGtZNm6fPlhwQaZbMq1efsuucgojfRt38Ar0p7CIvnenPvCVdtl3sotsm3nbunSoq50blFHureqL3l1o8/PS7h3ZYex+PHJDyvkZ+MyZdXGHYZHtnRqVkdOOLCF1M2pLi6PXxzUQurXquHPwrpNmThvnYyfvV6WrtsuKFOLBjmmnPVlSI8mUr1axHJIicQMIAESIIEKRCC4Z65ABWRRSIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAE9l0CUxdu9Nx1tG6cI0P7Nk14stnVq8o1v+gsr+xVuli2cWeJNEvX5sstL02VeSu2ltiHgEf/M1suP76jXHxUO4FCBmTBym0CSxaQHUbR4rJjOth1/79CoyBw3+szrfIG9kGxQAUKGw+/87O89d1SDYpaPvz2LPnr5f1kQKdGUeHYeG7sfFm9aYdVtOjcPFdGPjkhKs6xBzSVvlKsPLFw9Ta557XpMnPJ5qg4X09fa7fh+mTUiAOkf4eIsoUbce6KLXLlUxM99u6+58bOkzuH9ZJJczfIq18ttrsO7dq4hPIELH5c/9ykEmVAgv/7Zok9j9FXDZAm9bPd7LlOAiRAAhWSAN12VMhqYaFIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIYP8gAIsFKr3b1fcUGTQs1vLE/s3lhesH2d8FQ9pERYPixIhHvy+hONHSZ0kCSgKPvDPLSzu0T0RxY+ykFV64f2Xa4k2e4sQRvfOilApe+GxBCcUJ/3Gvf+4HgWWKWLI1f5fc/K+pJXbn1CieF71m004Z9vB3UUoLcHfSpWWuQGkCst0of1w7epJMmLuuRD5rNhfIb57/IUpxAulglUPT3vyPqTLDp5jhZrR7T5Hc/vLUqDIgD5RDBYogN/3zB2vxQ8O4JAESIIGKSoCWJypqzbBcJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJLAfEFhh3GmodDQuI8JKoTH9cO/rP3mKAbBm8YezekiPNvWkRrWqstpYqfjIuKoY/dFce6g3jYWIw3o0lkFdGksj48YD69/MWCvL1ufLXGO1Aq42/PLFT6u9oF8YFxcq/52yUp41ChkqD4zoKwd1bCTZNaoKFBZe+XKhZ8nh//3tB/n7dQOlQZ2SrjCg+IDf8f2bybmD2wq4VKtaRfYayJDXvim2BoHj9O/UQG4/p5fk1Su27rDTuOIYPXaud5wPJ66IsnJRsLtQbjYKDXB5AoHCxU2nd5NureraY8BVyFvfL7VWPaYZqyCx5JF3f5Zxxh0KpKNhdOvZPaWzWVYxhVy8dps88NZMmTJvo1Vguf3fP8qoiw+QquYcKCRAAiRQUQnQ8kRFrRmWiwRIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgAT2AwLrtxUP4uNU22dAeWK6sQoxdcEmj9wDw/tJ3/YNrOIEAuFCAq46fnloay/Oy18s8tZPMhYtVL6cHlGS0DC47Bj7w0q7CUsLB3cpdr+xa0+hjHpjpkazrjkO65ZnFScQmFc3y7oaOWavWxJYZQjKXzM445BWcptRiuhqlBuqV4soTmB/7ZrV5dSDW8qZJs69F/X1FCewD4oaV5/UWdTaxbg5Ecse2D9z6WaZvWwLVq2VCCg19DSKJVDOgLRslGPTn3hghIPd4fybtWyzvP39MhsCSxMPGcYoJ5QjoODRNq+23G/yheIK5NuZ64xCRURJxgbyHwmQAAlUMAJUnqhgFcLikAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkMD+RGCdcUGh0qphLV1Ne/nl9DVe2utO6SJt8oLzvPbkzp6Li8lzN8j6LcVKHId0z/PCPzYWKvzyk+Oy45SBLT2ljCkLNnjWLo47oGmUtQfNo6rRLLjihE66KVBCiCVnGeUOtTThjzN8aHv53S+7y43GYkSuUaTwCxQhurTKtcGwMKHnhoBZRnlC5aoTO1llEt3WJY772zO762aJ5VfGMofKFcd3DMwD5RpxTHuNJnOWR47rBXKFBEiABCoQgZK9aQUqHItCAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiSwbxOokwO3Ffn2JDdtL7CWD8Kc8byVxVYVkEc3Yw0hlsCFR+/29TzXE0uMq4mGxm1HdvWqcuJBLeSNb5fIkrUlXXd87rjsOL5fMy/72cu3eutZNarJ0jXBlhYKvVgiUMQIEli0gPWGZAVWL7bm75FtO3bLtp3Fv89+jFjN2FMUyWnmksgxYS0iloBD73b1Jch1x89LI3lk16gS81yrVYnM4561bKsce0CsozGcBEiABMqfAJUnyr8OWAISIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAES2G8JNDLuLFQWrt4mPVrX0820lqs2RixZtMmrEzePjs1yPeUJ1zoDlCKgPAH5asYa6dS8OB/XZQdcUnRtWdfLf/2WyHHfm7Bc8Esk81ZslZ27C63ChhsXCiWxrE5ovDWbC+SdcUtl/Ox1AlclyQrcdqi0SaCgAeWKIOWJ1Y61kD+NmaHZxV3OWLIx7n7uJAESIIHyJhBR9yrvkvD4JEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEAC+x2BxrnZ3jnPNcoEYWX7jj1eFrk58ecR160FqxfFAiUGFShwtGyYYzfHTo4oQUw3VhvgBgNy2qDWdqn/8ndGjqthySy35e9OJlpUnMnzN8gFD34j//jv/JQUJ5AJrGuobNoe/9iuQoimwXJLgnRuXF1PdCyNxyUJkAAJlBeB+HeM8ioVj0sCJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJLBfEOjZpp68/f0ye65zVkRcbqR78nn1smX1ph02+dJ126Vdk9juLxasiihr1KsdUaSA1YdTB7aUpz+ca113zFu5VTo2qyOuy45j+jSNKmKDOhGlhGtO7iL+/VGRnY36znGd4JirBUbJ49rRk7z9A7s2FFjKaNWottQzFitq1awudYzSyP1vzJCxk1d68XSlV9sGMnVBsaWK+au2SF7dRrqrxPKnRRErFe5Ol/Fz1wwwedR0dweuV6tqoFJIgARIoAIToPJEBa4cFo0ESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAE9nUCg7o09k5x8twNsmjNNmmbwJ0EEoweO09e+HSBTfur4zrKiKPb2/Wm9bONNQa7KouMckQ85QnX0kVe3YgFDKQ+um8zqzyB9S+nr5H2Rgnjo73KCId0ayRQIHClsZN+8/aCEvvduGHWpy2KuL/oaNyJPDyif6CLj8VrtgcepnurXC987KQVMrBzsPLEpPnrPSUUL8HelSYO4835u0K7WvHnz20SIAESKA8CdNtRHtR5TBIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgAUsAbiSgjKDyyLs/y57CIt0MXK7euNNTnECEkw9q4cUb1DWijPHepOVSWBSc1/TFm2TeXjch9Y3ViA5N63h5YKV5g5rSv1MDGwbXHa7LjhMPjBxPEx3YsaGuWmWLnbsibkC8HXtXcGwoQcwwbkBSlRlLItYgzhjUKlBxYsPWXTLTieceo2vLut7m2B9WypivFnnbugLFi9//Y6pullgO7BKpr89+XF1ivwaAAc4Tv1jKHBqXSxIgARIobwJUnijvGuDxSYAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESGA/J3CtcXOhMmH2Brnt3z/KjhjKB7OWbZYb/j5Zo8tJBzWPsvJwWI88b9+3M9fJC58t9LZ1Zf2WArn5XxHlgF8Y5YuqAW4lTjZ5Q5aszTdWKOZochncPXIMDWyTV0vgggSycNU2uXPMtEAlkLfHLZWRT06QXz81Uf7+3/maPOllh6YRNyQzl0YUKTSDLTt2y+2v/KibJZYtGubIb8/s5oU//t4c+fXTEy2n//tmifzx5R/lssfGyfaCPV4c/8rg7k2kVlY1G/zehOWBChi79xTJqDdn2PPEuX7981p/NtwmARIggQpFgG47KlR1sDAkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIksP8RgJuOq37RWZ56v1hB4Ytpa+SUWV/IhUe1ky4tc6WmGahftHqbtaaAwXoVDOAPO6Kdbtpl/Vo15P+d3lX+8vYsu/2cce8xad56Y90iTxrWriE/GasPn01bLRu3FhTHN1YnLjqqnV33/zu8Z1MTNMMGT11QbCXitIEtJbtG8PzkP1/UV4Y/+r3N+8uf1sgIo4QwxChzdDOuMjYaaxBfzlgtUOhQueioYlcjup3Msm+HiIWL9w2LtZt3mGM0kWbGUsbsZVvkQ2NtA8oe8eT0ga1MnO0y5sti/ybTFhrrEObnyoAuDaRjs1wvjruvQZ0acv/wvnLds8VKLFDAmDh3vRzYqZG0aZwjy9bly5vfLfHKgXo6ZUBJax1unlwnARIggfImQOWJ8q4BHp8ESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESECGHd5WsqtXlUfeKVZ6gOWDZ43iQyyBlYe7Luht3Wv445xhlAMwgP/qV8XKAZPnbhD8/AJ3HY9c1k9yawYPmeWYQX9Ytvhg4gov6fH9i61ReAHOSl7dLHli5IEy8onx1nID3IKoaxAnml297dye0rddfX9wwu062dXk+lO7yl/fLeY0btZ6wc+Vvu3rScPcbInnUuPqEztLs/o58u8vFsnqTTu85FB0uPS4jnLmIa3kH3EsY8BNyR3n9ZS7xky3ab/7eZ3g5xfk9/RVA2Iy9sfnNgmQAAmUF4HgO0F5lYbHJQESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAES2G8JnHVoa+neqq68/OVCgfWJIGlp3E4c26+ZDD+6vdSoFmwBAi44rjOuQPp1qC8vf7G4hFUFDOifOqilnDeknUDhIZ6cYJQlVHmiSb2a0rttsWuOWGnaG7caT155kHGDsSBQeeGoPk1k+NAO0ql5nRJZ1KhWxYZl1yheloiwN+Dsw1obSxPZ8tzH80soZ1w8tJ1cdGR7efy92bGS23AwQj74bdq+W7bt2CU1a1QzShcRHvmO644qAUU6rl9zqWmUOV76bJFMNxY9XAHjM019nju4TVSebhyukwAJkEBFIlCloKCg6P+zdx/wVVTZA8cPBBISkhASEgihBELvRZpdQRAVsS4qNnRX117+7tp2dXfdRV27a1nLWrF3xYJiwUKR3gk1QGgJ6YEUEvjfM2HmzXt5L7yEYEL43f083sydO3dmvvOS+Nk575z6dEKcCwIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCBwIIHU1FTp3r37gYYdcPvEx+YecIwOeOOWIUGNY1DtCWTml5qyD7tkR26xaExB65hm0jkxqkYZDAqKyyTDzFNWvk+iTVmP+OgwabI/UKH2zrjyTMV79lrHLSotk+jwUEmICZMQE7RQm62odK/JsrFLQpuESGJss4ABJfYxS8v2SlZBRckSDZbQEhyB2lVPz3WCIqb+9YQqx+YXVRjv3bdP4kzWi1iT1cNfwEWgY9GPAAII2AJ19beZzBP2HeAdAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEECg3ghoRogDZYUI9mS1LEdUm8qZHoLdv6bjmjVtLB3iI2q6e1D7hYc2NlksooIaq4NyCvfIeQ/87Ix/9ebhfrNgfLNomxM4oRk3qgqy0Mmiw5uY129v7FwICwgggMBBChA8cZCA7I4AAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIDA4SLQ2mS/GDOojUxbsN065ZteXCBnHNXWlEuJMqVAwk1WihKZvmi7fL1oh3NJWgqEhgACCDR0AYInGvod5voQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQcAlcOSpFVmzKM2VRiiS3sFSm/JDm2uq9eNvZPeTs4e28O1lDAAEEGqBA4wZ4TVwSAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggEEEiKC5fXbhkhl4/sJBGhIZVGad+Qbi3lyasHEThRSYcOBBBoqAJknmiod5brQgABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQCCAQGiTxvKH0SnWK7+oTDZn7pL8oj2SHB9pync0k0aNAuxINwIIINBABQieaKA3lstCAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAIBiB6PAm0rtDi2CGMgYBBBBosAKU7Wiwt5YLQwABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIFgBAieCEaJMQgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCDQYAUInmiwt5YLQwABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIFgBAieCEaJMQgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCDQYAUInmiwt5YLQwABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIFgBAieCEaJMQgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCDQYAUInmiwt5YLQwABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIFgBAieCEaJMQgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCDQYAUInmiwt5YLQwABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIFgBAieCEaJMQgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCDQYAUInmiwt5YLQwABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIFgBAieCEaJMQgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCDQYAUInmiwt5YLQwABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIFgBAieCEaJMQgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCDQYAUInmiwt5YLQwABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIFgBAieCEaJMQgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCDQYAUInmiwt5YLQwABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIFgBJoEM4gxCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCNSFQPnefVJYXC4tInis5eufmVcir36/QXYXl8klJ3WSTq2b+w5hHQEEEEAgSAH+ygQJxTAEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIHfRmDF5jz5cFa6LNmQK1uyi6yDRoSGSP/OMdKzXQvp1SFaRnRv9ducTD0+ymsmcOIj46Qts6BE/vOHwfX4bDk1BBBAoH4LEDxRv+8PZ4cAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIHDECBSaDwr1vLpE5qdmVrnl3abnMWpVlvXTj6AGt5c/n9pbw0IZZpT4tY5cs35RnOfTu0EKSEypnlSjeU+44lZTudZZZqJ8CwdzT+nnmnBUCR4YAwRNHxn3mKhFAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBei2wLbtYbvnffNm8syLThJ6sZpsY1LWlxEc3kyyTWWHV5gLJyCu2ruPrRTtkZXq+PHDZAL+BBfX6YoM4uSVpufLgByutkbef29PvNV5yYifJKSyVIhNE8ccxXYKYlSF1KRDMPa3L8+PYCBzpAgRPHOmfAK4fAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEKhjgb1798m9by31Cpz48zk9ZezgRAlt4skssXffPpmVulOe+GS1Vc5DAy3unrJEXr9luDRu1KiOr+K3P3yH+Ah5eNLA3/7AHBEBBBBogAKevzYN8OK4JAQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgfov8OHsdKdEhWabeP66ITJ+WJJX4IRehQZIHNMjXp66+ihJig23Lixtxy6Zszqr/l8kZ4gAAgggUK8FyDxRr28PJ4cAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIINGwBzTrx8rcbnIu89vSu0rtDC2fd30JCTJjcclZ3ue2lRdbmKTPSZET3Vv6GSmnZXvluyQ5ZsTlftuXslrCmISbwIkKO7dVK+naM8btPeuZumbEy09o2onucVTJj9ZYC0bILSzbmSogJ4ujUJlKGdIk94LmaZBkyb12W/Lo6W9Kzdku5ud62LcOlf6cYOa5XgjQJ8c6Y8cX8rZKza48sM8exm2bbKCgus1bbxDSTkf1aW8vbc4rl26U7rOWjUmKle1KUvYvX+yZzPd+Zcek7d0vurlJzPZHSw4ztkRQt7Uz2ipq2/KIymb82S9abAJa12wqkmckS0rVdC+ma2Fz6dGgp4aGVv8dd27YLN+TInNQs2Zq9W0rL95praiHdkiKlp3mPjQqt8tJyCvfItIVbZYM5/8z8YolpHiod45vLqP5tJCmuIjgn0AQ7cktkaVqOpG4tkLSMQklo0UxSzGdCP7vdjau7Veee+vq0i4uwPnOL1+eaMjV51nFuHNddPjIBR5qJJTYyVMYOSnQfzmu5sKRcPpmTbvXFRDSV049q67X9QCuZeSXGaJu5xl3WZyfJnE+v9lHGKFFCGjeSz+dtldzdeyTM3Pvzjm7vTBfMdWh2GXcrMT+rPy7bYQKpzM9qbkX5njYx4dbxTuzTxvzsVv486e+Pt37eZE3TtmUzOalvxc+Ge15d1p87NdNjdGgVbv3s2WPmr8uWVebnW9uZQ5MkqlkTWWp+/mabz9X6HYWiSW3axzU3cydIj3be99aeg/eGIUDwRMO4j1wFAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIHBYCizfnCe5haXWuWs2CX14GUwb3q2VjBnURrILS6zh+gBXHw6729pthXLTiwuc+d3bpvyQJkf3jJPJl/SXpiHeD2VXmIfUz3y+xhreKqqpfDl/m7w5Y6N7d5HFO+SFaevkvGPay41ndLMeJHsPENEH1ze/MF9WmsAN3/beL5utB+HPXTtENBjEbtqvgRru9uOyTPNQuSKYY1j3WCd4Yt32Auc8bzu7R6XgCQ3cePSTVfLhrIqH5/acs1Z5MnVcPrKTXDmqszQ2D8Kr035ZlSmT31tZyfbrRRXBHMmtm8ujVwyS1q5r0/lr0/ZWc2+Xb8rzOu2fl+901idf3FdOCPAw/csF2+Sf7yx3xroXnjf39apTu8hlJyW7u53l6Yu2mzIzy5x134UJx3WQq83+GlCgrTr31O0TZwIjXvh6nXPvdS4N0rj5TJGXTP/u0nLtkmN6xkt0uP/HvjNXZDifkfPNZ7U6TYM+/vXuCp9dKj47r32/Ue43Pztv/rhRNPuLZoxxB08Ecx3uiTVA6J4pS51rcm/T5YdDU+VvE/tYmWfc28rNh9z+WdWfjUDBE4XF5fLYJ6nWrif3S/AKnphuPrOf/rrF2nacsXzs41UmYGS7+zBmOVP0d8YZQ9rKHef2sgIqfAaw2gAEvP8SNIAL4hIQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQOHwH9drfdRg5o4zcIwd7uftdvg98zoY88fuVg6+UbOJGZX1opcEIfPLvbzJVZ8vBHq9xdlZbf+yXdCZzQB8S+c7xvgh302/e+rax8n9zzxmKvwAndP8Y8ELdbRl6x3PbKQina/xBc+7skRkp78814d9P9tE9fraK9r8E9znf5pW/XVwqc0Lnc7RWT9eOO1xeLfoM/2PajeSD/55cXewVO6LlpwITd9IH6Ff+ZYzI6VATG2P3u95raajaRv0xZVClwwvfa7jIP49/8qSIrgfu4mmnAN3DCLgNjj3v+q7VWVgp73X7/cNZmr8CJFHO/Tugb7/W5eMccc/K7nsCMmt7TV8z9s4Nm9Ph6fRHNQqxyNuNMWRu7/bI/S4q97n63M5No3+iBbdybqlyevz67UuCEfnZtY72/fzaf3VyTJeVALdB12Pt9bzLDaBYZOxhE+/VY7p8V3aafuW/N2EPZHv10pVfghO/nYurcrfL2/kwXh/I8mLtuBPyHINXNuXBUBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBI0xgqyllYbejura0Fw/qvXjP3ooHu/szWmiGiitHpVilGDSoQbNd3PX6Euvhvz4M7ZDQXCYe39HvMTVrhAZMPHBZf+naNlIam6gNnf/Jz1JNOYSKb6v/57PVVjkELWNgt8c+XWXKSWRbq/qA/e7ze5tyFpHmG+uNZNPOXfLvj1bKonW5ss5kx7jnzSXy4KUDrOwPOk6bfhP+wQ9WWss3jOsWdEYOa4f9+7/0zXp7Ve65oJfJtJFglSTILiiVX9dkyX37My/8smKnzDHrgUqfOJOYBc1m8fL0DU7XxScmy8UnJVvzaqeWefjHu8tkwdocy3d2aqaMG+J50O/saBZqYqvHf+D9FTJ3dY41lT7cvv28nlYJllCT6UFLlOgD9hdNZgZtT09dLacNTnSykmj5iTteWWxt039uOKOrnDq4rbVdg1h+WJbhBFb84+0VktgyQvole8q7fODK4uGb2WK1KeEx6Yk51tzTTWaSa8Z2lTamlERN7+nmnUVWsMJdv+tlzqGlxJkyJFqqQ9toE2ikQRravluy3W/pDi31Ymfi0OCWXu2rLodjTWb+STfHvcMEKtjttKMSRe+zljTRIJs15jP73LQ1zufbHhfovarr0M/i5Pc82S1OMlkhJo3sLJ1bR1rTbTAlUV6evt5cY4a1/oAZqxbx0Z4gpEDHrUm/fq40QOTei/rI4JQ4q/SMBgB9s3i79VnSOZ8yn6nObZrLsK5xNTkE+9RjATJP1OObw6khgAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAg1dIKOgouyGXmd8VPBZFapy+WROulP6Yki3lnLXeb2twAndp0lII+lvHoY/MmmAM8UrriADp3P/gj5IfeIPg6ySGBo4oa1Z08Zyy/juTrYB/VZ8hgkasFvqlnz5eHZFYIV+e/7hywdW7G+CK3QKfQj9gAmW0Afa2jQDxqadniASe56avpeYzAx24IXOcYcJLhgzsK0T4BBrHsKfOihR7jy/l3MIzagQTNPAkV7to61gjt+PTjHlKVKceXX/+BZhcsc5nnkXrq8IcvA3d01sV5jAF3dJhcmX9jcPuWOtbAx6jA7xEebheyerpIt9TC27YrdnvlzjZDjQ87/guI5OYEW4uddjjYuWQLHbBzM9LhpUoBkXtA1IialUEqRb2yh58qpBcs6IdpbP1pwie5oavavPCzcMtUpRaOCENvsz2KNdtNfnJ7+orNIxZrkyUowb2q7S9kAd3y3d4Rjpdd5u7qd+ZrVpeZfuSVHyj4n9vTKNBJpL+6u6Di2fYmec0CCjv/6uj6S00SAjsV4aRPEXk2GmmzmmNh2r5UQOZfuHKfdyrCnfER5a8ShdAzUuMqVYtByL3bSEB63hCZB5ouHdU64IAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEDhsBLJcQQdR4U39nrdmC3hjRprfbXbnxBOSJdlkkND2rfnWv91uHtfDCpiw1+13ffh8xpC2opkn9IHs9pxiK0uAvd1+H2SyYegDed/WNKSxnGi+Jf/u/m//b83ZbbIUVAR//GQyOdjt6jEpkhATZq8671HNmsikUZ1EsxtoW7M13zl/Z1ANF+at9ZRCGdY9NmDmh9NNxoWy8r1SbK4/MoC97ynoA+U/nd3Tt9trPSku3Hpgrq4rNuV5bXOv1MR2xvJMZ4prT+tqlTlxOlwLN5/ZQzSYQVtKYsXnorCkXDTLhjZ9oH/5yZ2sZd9/zh7eTl77Ls0ExBTLkjTP+Tcz+9gtbcdu2WkyErTyyYCggRz6qo12dM9WVX4mxg9vb2VB0GNp6Q4N/HA3d8mOkf1auzdVubx8c66z/c6ze/n9+YkMCzFBFT3lmmfnOWMDLVR1HdMWegJb7jbBPGEmMMm3hZmMIrrtsscrsnp8bfa57KRk32G1sq6/EwJlYLnWZBLRwJ1ck9Fm1aZ8KwvL/niqWjk2k9S9AMETdX8POAMEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBA4IgViDOZCjStv7a83aXSMrJyAEXOrlL5Yp7nIas/rFNNaQYNntCyBst9Htinm1IO/ppmobDbuu0FfoMn+nbwlGywx9rvrc25263YPJi326p0zwP3sKaNJNDxQxp5HhSnbimUUzzJMOypavSuD/btpiUOAjV98HvWsOAzEgSap8Rko9DMB0UlZVJYvEd2mXc7m0CgfbS/JrZrt+U7U/bqEO0s+y5Ehzexskq4+zfuKHRWNVhkSxXZPpru/2xoAIVem86ngRJaJmRLdpH1AP3Ch36R847tYLIUtLIyI2hATW22gSmB750eZ5QJiNASEtp8S3e4S3YM6tLS72fb2tHPPwvWVGQL0QCTpFaVA4fsXbonBfa3x+h7oOvQEiBatsZunU3GiUCt0/4yHrpds3+Um33dZXIC7Vfd/j4dA5c20d8XfTpGW6VQ9PO9zWQWaWs+D7SGI0DwRMO5l1wJAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIHDYCSSbcgCL1lV8010fRtrZI9wX0iKiqVUio9RkSXA3/Qa4byso8gQx6LaJj8zyHeJ3ffXWQjnGpOr3bfEtKsol+PbrelhTTyYC93Z3CQ87s4R7u7/lFa5v+/vbXp2+na5SKCltKrIuVGf/YMauTM8XLYfx6+qdTvBLMPu5x9TEdkeupzyK+4G6e95AyxqEYzcNipjw8Ex7tcr3NSZgY3DnimwS913cT67/7zwrOEQfoL/23QbrpRMc3TNOxgxIlON6J/jNoFDlQfxstMtG+NlkdWmJFM0sMic12yr9Ygd56MbZqzwZOs44yjsjRaD5tD/TZNOwA1+6JlWUzwg0XrNEaOkZO/gp0LhA15G321NqJLl1c6kq+EQDJbSshx1skVO4p1LWj0DHr06/lgmpqnVLrAie0DHrTTAOwRNVaR1+2wieOPzuGWeMAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCDQYgfaub7ZvM9/o99f0geZHdx1badNf31hivnGfYfVHhlVkrNDsBzVp+UV7arKb330KXA+F/Q7w0+l+kOxnc7W6Svd4AkgiTHmQ2mwmsYd8MGuzPPZJam1OG/Rce0yWC7tpZoTqtJp+Ngp3eT4b3ZOi5JWbh8unv26RD2dudgIN9DxmrsyyXnpeD1zev9bKd1R1jacNamsFT+gYd+mO6Us8pWuO7x18yQ7NsGG37AJPsInd537Xz0KWCbaoaStxfU5j/GSc8Z03NqqpCZ6o6HXv6zvuYNYDlQ6y54x0+eS5Phf2dt4PbwHPp//wvg7OHgEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBA4DAUaB/vKQswffF2OWdE+6CuQstzzF6V5Yy1M1bERHpnivj4ruOcMVUtNAur3oP4qubSjACa2UDbC9cPkfjoZlUNt7bVZgmC2ChPOZGNpsSBnTXhgCcRxIBlm3K9AifOGp4kQ7vESpvYCIk0gRpRJktIc2N55r9+skpbBDFltYbERodZZTN0p02mHEsXk40g2Bbd3PPZ0CwRfz67V1C7RptrcrekuHC5ZmwX+cPoFEndki9LN+bKTysznQwqmrnhxucXyKsmyKI65+c+RrDLx5osF3azS3cUmhIyPy/faXWPNeVswqsRZKLZJLqZAJHVWwqsjBJF5loC7a+ZYuwsFfY5VOe9petndfXmggPuumbrLmeMe1+7U38nBGplPllrAo3bvHOXdHD9TvIdtynTcw727xzfMawfvgIETxy+944zRwABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQOe4GeSS2ca1i8IU/mr8sO6hv7G0xQgP3gVksH6ENfbc3Mu37z397W3DzQj6jFwAjnZKtYSIgJk+WbKgZoRote7T3XWMVutbYpwQQY2G3ttkJ7sVbe567Jdua54PgOcsPp3Zx1e0Ef3vsrqWJvP5j3RGO7dP8EG3YUVCs4oZUrqETLPmiQy8G0JiGNpHeHFtbrguM6ilo/8MEKWbk535r2l1U7q3V+NTkX/byfOTTJyoShmS+0dMevqRWBEzrfmEFtqj1tH3NNGjyhbfqi7TLOzO+vTVu43V930H36M2v/rOrPq2a6iI3yBLi4J9LMLO7PlP0z3bhRI2dYdoEnQ4jTuX9hR67/rDa+49ab3yv+yvfY41L3u+h65zbBB+7Y+/NevwUq/orU73Pk7BBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBqogD4s/b35Br/dnv1yrRS7SjPY/e73ErP96S9WO12DUmKdZV04rne8s/7TCk/5Aqdz/8JOU3JAswboK+sAJQp8961qfVi3OGfz9/vLijgdrgW9Dvv4mkUhUNuZXxJok9/+o7p4jv+NecC9PaciC4bvYL3+Cx76RU6/70e59r9zfTf7XV+yMcfpP21wW2fZvbBgnScjiLu/NpaH9/Bc2weztsieABkF5q7Nsq5Lr+2Fr9dZh+6U0FzszCQa4JC+M/ADdb0f9r3R+6RNHTVAQl/+PqOaZWLSqE7WWP1nzdaKIAqnw7VQ3Xvq2rXS4pjBngAJLd3x7dKKz7xe66DO3j8blXb209Ev2RPs88AHKy0H32Hfm2O8uN/Vd1t11o/r4/lZ/XLB/pocfib4cv4Wp3f0AE8ZEs3YkhQbbm1bZ+5LaZmnrIuzg1lYuCHXvRpw+fO5W0SzbfhrmmXEDozRgK1AGTn87Uvf4SFA8MThcZ84SwQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEECgwQrot/bdD7WvevpX2ZLl/8G2ZjW45X/zZU5qRQYE/eb6lad4gi8UaYwpVWC3f7y9wu/DX/0m+/XPzZU/PjPPem03JQhqqx3bM8H6Rr3ON3XuVnn7p42Vpi4r3ycPfrjCOf7PJkuBu0WFexLIz06tXjBCYmwzGZASY02n3+j/yxtLKj1U1hIHk99fZpVm0G/0D+3Wyn34gMtd2kQ729ZsrchO4HSYBc0I8uAHq9xdtbp8tMt2aVquaLCNb9OsEn97a7mVqUCv7aiuFQEEjc2D9rOGebIo3Pq/BaJjfZtmF7jw4ZnWvbn1xYViF4P4dskOuezx2dbr3reWiL8yEWk7PEEwCS28y7UczD31PUf3er+OMWIf64OZm+XHZZnWZs1IUZNyMCP7txF3gIL+jNz+2iLrc/zGjI1ywwvz5S9TlrpPocbLowd6Aj+e+WKNzF/vyWxiT7ooLUf+M3WNvSqjXPtoZ+8Ons/k5/O2OuPsBQ2EeeZzz/52v7/3zSag5l/vLRffCiCa0eOOV5c4uwT78+LswMJhIeD5rXtYnC4niQACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggg0NAEwkMby21ndXceyOo3yC83D6lP7t/aKnnRznzLOy1jlywzD8t/XZvjlb7/9nN7SpxPqv9hXePkqjEp8vy0iowD+vBXHwYP6hIr0aaMx/qM3fLmD2lOaY8h3VpapRdqy7VlZFN54PL+cuPzC6wp9cHvvLWmHInJCNHBXIsGhnw4a7MVuKADNABk3BDvLA6JLSu+Ta/bl2/Kk+uenycn9WktXdpGyoDkltpdZbttfE+5+NFZ1hj9tvzFj8ySk/q1lp7tomTt9l2iGQrs0gw6aPzQdlXOZ28c0i1W3vqxIhjkvneWW9c13GTaaGpKWCxPL5CPzMN7u2SKvU9tvkeZ+3fT+O5y/3srrGnf+WmTLNuYJyf0SZA2LZvJYpNh4Kflmc5npFtSlAzs5PGaNLKzaAaBWauyZEt2kVz82CwZaVz6d4qRcpPFYomZ66NZ6c4pXzayk1UKRjvGDkoUfcCv7eflO+XO1xfLCb0TpFvbaMndXSozlmaY++rZd5T5/Lrbwd5T91zuZS1dcaYJCtFMEHZmBN0+eoAnMME9/kDLOt8d5/eWbbklogEq2vR69eVumjFGP0fuY7q3B7M83ATtHG+yT9gBHzc+t8B8ThNkyP7sKfNMBpHvXNlbjunVSo7p4clWocfomxwjXy+qyLbx8EerzM/VbhnYOUb2mSQUK00gzGvfbQjmVJwxmi3miqw5cry5t21jw2TF5gKZvniH85lKbt1crhnbxRnPQsMRIHiiGveypKREli9fLvreu3dviY72RDFVYxqGIoAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAII+Aic1Le1PH9dMyuAIiOv2HoAr1kb9BWo/Z8JuBgV4AHxZSd3kh25xfLJnIp0/zKFmU8AAEAASURBVPpw1X7A6p5PH67fN7G/u6tWlgebUiL3XtBb/v72cms+fVivL9+mgRPPXjtENCjA3bq1jbIeCtsPrxetyxV9DeseKwOu8AQDuPdxL3cyD3gfuKyf8215DRSYYgJGfJseXwM9NOAjmDaoc0srEMW2/HL+NtGXu11yUrJ8Zu6bZn04FO10Uy5EA1Dsh+IaXKIv35ZiymhMvtj73jYxQR73TexnypTMs4JH9Bw1W4O+fNt4E5Bw0QkdnW4tMXPb2T1EH9Br8xdQYA++54JeVuCPva7vB3tP3XP5Lp9iskW4y2jo51o/AzVtYU0ay4OXDTCfmQ3ypsk24W5asuLasV1NeZwEK3jCva0my3ee11vyixZZn2/dX4MX/JW70SCJu0xQh28bP6ydLFif4+yjATX6crfLTRDMK98eOIji7t/1kn+9u8L6bLiDi+y59Ofl38aFkh22SMN69/4t3LCurVavZuXKlXLWWWfJhg0VP1SRkZHy1ltvyZgxY2r1OEyGAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCBypAr07tJDXbh0uT36WKj+YB6iBMhicbL6ZfuO4HhIfHVol1f+d1UPaxzeXd82DVA3IcDctc3Dpycly2lFtRR8Uu5t+895uoU1C7MVqv48emCjNwkJkyvcbKz3c14ew5xzdXiYc20H0obxv0xITky/uJ5+ZMgQfm2wGvuev43WM3Zr6XIP2H9crQV43nho0MW3Bdnuo9a5lUvTb+deN7SZa5iPY1jSksfz1gj6S3DpSPp69xeu8dM4/npoiGtzgezx7/tqw1dtz9ZgU6ZfcQqbMSHMeutvH0If7R/eMN2O6SFhT73urY/TB9yOTBlr7+j5k1+0920fLpFGd5Oju8eL6KOgmOXt4O3PcGHn6i9WydEOe12dU7+mgri0t0w7xEdZ49z9B3VPXAavz2dPsLHredhaIM3wymbjPI9jlFhFN5LrTuso1p3aRrIJS2WMyc8Q0D5UI85m2W2FR5bInuq069znalKh5/MpBVsaP93/ZbGUEsefXd/1ZnXBcezlnRHsJ9fM519Ik90zoIy2br5afV+ys9Jm87rQuMsLcy2CCJwZ2ipVXbx4mT5n7O3d1jvs0ZEQPzWjTRZLiPFlhvAawctgLNCotLd1X3avYZ4q85OVVjt7SeTSooEmT4GIyqponLCxMwsPrzwdv2LBhsnDhQi8qvda0tDQyUHipsIIAAggggAACCCCAAAIIIIAAAggggAACCCCAwKEXSE1Nle7dux/0gSY+NjeoOd64ZUhQ4xhUuwKZ+aWydlu+5O7aI1HmAWuHVs2tB5f6sLQ6ba95tpVdsMfMU2J2ayStTXkH30wP1ZmvJmPzi8okw2TC0HOJiwqTWBNo4HpOXuWUuk9hcbk1Xh/QV/f6dfKSPXsl0xx/V2m5CToxx/cTsFHlSQTYmG0eqmfml1gP1eNbhHo9NA+wS613FxRX2Bom8/mIMMERlQMmAh20rHyfZOaVmMwHe6SZ2a+NKZfiG0wTaF89nu6bs6tUWhlT3/IxgfbT/tq4p+759+7dJxc9MtMpBTP1rycEnU3EPY8uq2eh+bxqi2neNGCWhaLSvTLqr99Z47SUxRu3jrCWD+Yfdckp3GOCNfRnVczPiX5Wm1brc7XT/N7ILiwxwRShEmcCrNyBHP7O7cEPVsqnv1ZkqHn/9mOdYCK9vs07d1m7JMaG/+a/M/yd65HSV1d/m4OLcvC5C1999ZWMHz/ep7di9fXXX5cJEyb43ebbOW/ePDnmmGN8u631e++9V+6++26/237rzvz8/EqBE3oOhYWFVhmPESMO/hfBb31NHA8BBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQqO8CmlkiPrrVQZ+mPjxtZebSV101/XZ9dHhkjQ6v56/7H0zTDAzt/GRDOJg5dV8NwqitQIyanosGwkS1qZmtlvHQzBsmR0i1D6/BLwkxYdarujvXxj11H/OLBducwAnNOhFsGRb3HPbyvDVZVvkcXdegiBeuG+qVbcIe99TnqfaiaNaY2mjqokEo1QlE8T1ubf2saxCOllqhHTkCNfotO2RI4OhKDawINnjim2++CSh92mmnBdz2W2/QLBiBWvPmNa8VFGjO37J/9WqTcmZu5ajawYMHS48ePX7LU+FYCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCAQpIBmiCg22RHmrtkpT3ziCWS45MROQc7gf5iWe9FSGVoqJm3HLrnuuXlyUt/W0r1dlESGNZGt2bvlvV/SvUrRnGdK0NAQONwFahQ80apVKxkzZoxMmzat0vV/8sknUlZWFlTpjqlTp1baXzs6deokAwYM8LutLjo1eOLyyy+XV155xevwffv2lV69enn1HW4rP/30k1xzzTWVTvuJJ54geKKSCh0IIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAII1A+BRz9aKV8v2uF1Mucf017atQr36qvuimbj+PO5PeSeKUtltynzsnpLgfXyN4+WkXn4igFkaPCHQ99hJxB8wR+fSzv//PN9eipWtZTF/Pnz/W5zd27fvl20bIe/duGFF5qaTdWrVeVvntrse/zxx+Wmm26S+Ph463XeeefJZ599FlSQSG2eB3MhgAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACvgJXjUmRm8Z19+2u0fqI7q3kzT8dIyf3S/C7f0xkqJxktr126wjp36ml3zGHS2fjGj8xP1yukPMMVqBGmSd08qrKakyfPl2GDRtW5Tl89913AbePHz8+4La62hARESEPPfSQ9aqrc+C4CCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAgApcNrKzjBvWTmJNIENSXLg0DandKID46FC5b2I/+cdFIpl5JbI5e5cF3zkhSlpGNm0wN+HW8T3k+tO7WdcT1rR2DRsM0hFyITW++3bpDn9On376qb9urz5/JT90QH0r2eF10qwggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAAC9UAgOaG5DOrcUvS9tgMn3JenBQMSYsJkcOdY69WQAif0OkMaN5JwU35EX43rWXUE931g+dAL1DjzhJ6alu7wFwSxcOFC2bZtmyQmJvq9grKyMqvkhb+NgUp2bNiwQX799VdZtWqVLF26VBYsWCDp6enSrl07adOmjQwfPtzKhnHiiScGLKXx0UcfWfu5jxseHi633HKLhIWFydSpU2XKlCmyfPlyKSoqkqSkJHn33Xet63j22Wdl69at7l2t5fvuu69Sn92xc+dOmT17tqxYscJ6qcvKlSutsh96zn379pWxY8fKqaeeKi1atLB383pftGiRfPDBB159unLFFVdYgSZ5eXny5ptvyocffmgdIzMz05p3wIABVvYPHdekifdt1rIqH3/8sTWnOvprGgDjvt5x48bJ0KFDKw3NyMiwrlHNlixZYvnqvdLyJh07dpTBgwdb92XkyJESGhpaaX86EEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQqGuBRqWlpftqehIaHNC2bVu/u7/88ssyceJEv9tmzZolJ5xwgt9tGiChD/7tpoEWjz/+uNx11112V5XvGpDw1FNPyYgRIyqNu/baa+XFF1+s1K9BDW+//bY8+OCDlbZpsENKSooViKDjfFtJSYk08olA2rNnj1Xe429/+5vvcL/rkZGR1jVeeumllbbrefnr12s899xz5eijjxYNVgjUjjrqKNF70b27p77Ra6+9Jr///e8D7eK3X4NHrrzySq9tGoyifYWFhV79/la6du0q//nPf+Tkk0/2t5k+BBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQSqJZCamur1/31Xa2fX4ImPzXWtBV5845YhgTeyBQEEEEAAAQRqTaCu/jbXuGyHXnlVpTu+/PLLgDjffPON321asqN///7Oto0bN8qoUaOCDpzQHTUrhQZm/PDDD848B1rQTAz+AicOtJ+/7ZqxQjNyBBs4oXNo8IEGM9x///3+pvTbV1xcLBdccEGVgRO647x586xAktzcXL/z1KRTr/Hqq6+WCRMmBBU4ocdYs2aNlWHjnXfeqckh2QcBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIFDJnBQwRN6Vhoo4K998cUXohkY/LVPPvnEX7dcdNFFThaH8vJy0RIeM2fO9Dv2QJ3nnHOOBBswUN0sDFUd+x//+Ifotdek3XvvvfLTTz8Ftettt90mM2bMCGqsBmc89NBDQY0NZtATTzxhZbMIZqzvmEsuuUTWrVvn2806AggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACdSZw0METp59+ut+T1wf2WoLDt23ZssXKDuHbr+vjx493ujXAQrMmBGqnnHKKaEmKQE2P/+qrrwbafEj69doeeeSRgHMPGzZM9Lyrao899lhVm2u8TYMn8vPzrf1DQkJES4Xoq6pmj9H39u3bW0M148W///1vv7tpCZFnnnlGXnrpJavUSKD5D9U1+j0pOhFAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQKBBCyzdmCuvfZ9mvbZmFx3W1zp90Xa57eWF8s7Pm2TfPv+XklO4R35ckSEvfrNe7n9/hTz75Vpn4PJNeXLXlMXy1OdrpKC4zOk/HBb2lO+VV7/bIH96ZaH8sirzcDhlzhEBBBqYwEEHT8TFxcmYMWP8svgrz/Htt9/6HaslOwYMGOBs++6775xl94JmZ9i9e7d8/vnnVlaK9PR0mTRpknuIsxxsZgZ7B70ODTLQc9SyH//9738lNjbW3nzA959//tnvGA2YyMvLs7JK6Hnr8pNPPul37NSpU80fwwB/Df3s8fDDD8uyZcus8hlz5swRDdAI1NavX29tmjhxomRnZ1uvZ5991u9wzS5hj9H30aNHW+PS0tL8lurQa1Q3zeJx8cUXy4svviizZ8/2O/f333/vt59OBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQKC6AkvS8uS5r9Zar225h2/wxI7cErn3rWUya1WWPPnZalligkJ8W/rOIrn4sVly56tL5OXp62Xq3K0y5Yc0a5g+XrrvnWUyY2mmvPXjRvloVrrv7vV6/ecVmfL8tHUyc2WW/PnlxVJUurdeny8nhwACDU+gSW1ckpbumDZtWqWpPvvsM/nb3/7m1f/ll196rdsrWrLD3WJiYuSss85yd0lycrLceeed0rixJ+YjISHBCnh4+eWXvcbqSmpqaqW+QB1aBmPy5MlemzWTQnWb7zk3adJEnnrqKQkPD3em0uU//vGP8tprr/nNrpGRkSGtW7d2xgda0ACFSy+91Nk8cOBAUd8OHTr4DXDYsGGDV4CKs2M1FrZv3+53dP/+/UUzWrhbt27d5PXXXxffoBLfce59WEYAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEjkSBPWXewQLFe8orMdz6vwWSW1jq9KckRkrH+AhrfZ/sM9kmPPuU+Nnf2fE3XtAsGD8uy7CO2ia2mQzuXPnLy0WlnnPXgWV71cPzTNDamX8QQACBQyhQK8ETgUp3LF26VLSURVJSknUJpaWl8sEHH/i9HHfJDh3wz3/+0+84f53R0dESHx8vmZneKXyKioKLLtSME76BE/6Oc6C+CRMmiL6CbX369PEbPKGlMQ7U+vbt6xU4YY/XUhnXXnut39IamzZtsofV+L1r165+99UMGJo9RK9f74fdqmti78c7AggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIHAkCbRrFS7Xnt5Vpi3YJkd1iZUhKd4BBpn5pbJlf1mSmMhQee6aIaL72K1xo0byl9/1MhkpNkhCTJicNby9vanO37PyS2Tyeyus8xg9oLXf4ImT+7WRxRtyZWV6vvzu2A4S1axWHmPW+bVzAgggcPgI1MpvHbt0h7/sE9OnT5fLLrvMEtGyEv6ab8kOf2O0r6SkRFavXi1ZWVlW6Qstf1FQUCC5ubmVAicCzeGvf9SoUf66a6Vvr4mK03IZO3bssM45JyfHOedXXnmlxscYMWJEwH0144O/psErB9s0EEbvl2ax8G3XXXed6GvkyJGiWTsGDx4smg0jMTHRdyjrCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACPgITj+8o+vLX1m3Pd7pP6pvgFThhbxjRvZXo63BszZo2ljvP63U4njrnjAACDUSgVoIn1CJQ6Y4vvvjCCZ746quv/LL5luxwD9IyEVreYsaMGfLNN9+4N9Xa8tChQ2ttLp1IgzymTJki3377reg1FxYW1ur8Olnv3r0Dztmq1aH9ozhp0iS55557Ah5fr1tfdtNACr3Hml0kmHIk9n68I4AAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIVAgU7i5zKHq192QBdzpZQAABBBA4KIFaC54IVLrjo48+soIJwsLC5OOPP/Z7sr4lO+xBmsniwgsvPCTBB/Yx9N1dZsLdX5NlzYxxySWXyMKFC2uye9D7hISEBBzbyKRlOpTtjjvukPz8fNFSHcG0mTNnir6uv/56eemll+Tiiy8OZjfGIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAwBEmUFq2V35cliHLNuXJttwiadYkRHqaQIFuSdHSq30L0ewENWnpO4tkycYcWb99l2zMLJT46GbStW2UdEmMlN5m3saNAz9bKSwpN+UksmX1lkJZtSVPmoc2kRSzb0qb5jK0S1zAfcv37pPFablmv3xJNaUois21dUmMks4JzWWYyQ4REVb5Wc83i7ZJhinPERrSWM4/pqLsxsdz0mWXOYeF67KdS5+5aqfk7NpjrbeIaCpnHNXWWl5ijrfU2Gk7bVBbaRnZ1Fr2/WdT5m75bukOSd+5W3J3lUpyQqT0SIoyr2hpFx/hO9xrfbmZf5W5pvXbC2VHbrF0NNfTrW2kdE9qYeZp7jV2/vpsWZVeINkFJU7/uh275I0fNzrrdqaNPeV75YOZm6V8n0h7U47k+F4Jzhj3Qk7hHvl2yXbr+Bl5xRIeGiKJsREypGtLGWxKnWj5Et9WsmevfDS7Yu7OrZtb2Tnsz8QiUyokb3epdDIGPY3B8X1ai58pfKdkHQEEGqBArQVPVFW6Y/bs2ZKcnCxr1qypRBioZIc+mL/rrrsqja/PHZod45RTTqnPp1hr5zZ58mQr+8ULL7xgBUYEO/EVV1xhBV5ce+21we7COAQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEDgCBNZuK5SbXlwguYXeZcinL95hXX1SbLg8ePkA6WQefgfbNIDh7Z82yTNfVH5GZc9xcr8E+euEPhLapHJgxuqtBXL7K4tFH9J7tYXbrdVBXVrKPb/rI/Etwrw25+7eI397a4nMXZ3j1f/jskxrPaFFM/nnxX2ld4cWXttf/2GjrDMOESYgwA6eePXbtErH/35JhuhLW7LxsIMnflyeKW/tD0wY3i2uUvDEPhOY8Ognq+TDWelex521KstZv3xkJ7lyVOdKQSEFxWXymNl32oKKa7d3cO97wxld5YLjPGVHfk3Nlik/pNlDrXe9vmc+99wPO3iiqHSv/GdqRf9J5p74Bk/ouU+ZkSb//XKt13z2yhvmOGpx/yX9pYNPAEi2+UzZc58xpK3o50Lvq7v9vHyntTqoS7r87YK+EhcV6t7MMgIIHAEClf8KHMRFT5gwwe/emkFi+vTpfrf5K9mxbdu2gIET8fHxog/eH3vsMXnllVfkk08+kR9++MHv3L9l5z7zG/vWW28NeEjNRnH//ffLiy++KO+//75V1qJnz54Bxx8OGyZOnGjZr1y5Uu677z4ZM2aMREZGHvDUb775ZisbyQEHMgABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQSOCIHtOcWVAic0gMDdtmQXycWPzpIF670DEtxjfJefNkETvoET3Ux2AQ3EsNt3JgjhlpcWiD6cd7dVJlvEpCfmOIELGvBwbO9WJgtGlDNswdocufzJOaJZE+xWbLIcTHp8jhM4odcxrHusaKCF3TQY46qn58o6k73hQK1bu0grE4PbIyYy1OrTDA1tY5sdaApn+0vfrq8UOOGeVwe+8u0GueP1xbLXBBjYba/Bue6/87wCJ3Q/zQqi52I3DVB42exvt0RzbnqOvsfQPvtljz3Q+xOfpVYKnHDfR90/zWS1uNLcD82sEahpVhN34ITO4T4/vadPTU0NtDv9CCDQgAVqLfOEGo0dO9YvlQY4BAoU8Fey46uvvvI7z7nnnmsFTGgJEHcrKyuzHtoXFh74D4x7v9pc1qwaS5curTSlZtbQjBRt2rSptC0lJUU08OBwb3odt99+u/XSIJL169db16yBIvPmzfN7eYsWLZJhw4b53UYnAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIHDkCmtHg5hfnOxknju4ZJ38Y3cUqqaEBDRrE8PZPG0WDHLT9Z+pqefnGAz9jyCoolXdM1gm7aaaHY3rGOxkmdN7/e3mRddxF63Jlsylh4c5YMG2RJ8PCxScmy1VjUiRkf3kPzSxx4/PzrSwRmiljxtIMGTWg4lnQr6k7nYCLId1ayt8v7C8tIioeyZWY0h1PmiCAj2dvsU7rw1mb5U9nV/1l2wcvHWCNnW7O5963llnL15/eVcYOSrQvLaj3T3/dIi99s94Ze88FveTongkS1ayJKatRKr+uyZL73llubf9lxU6ZY9ZHmPIi2maZa9KMEdo0WOKxKwda90dLZGhghZ7b39+u2Pd9U3rj8pM7WaUvzhrWTvSVlrFLJj4yy9p/9IDWcu+Ffa3lYP+ZuzZL3vtlszP8D+ZejDVlSVrHhFmBKys258u/P1xpBU/sLi2Xye+vkGeuHlwpe4ZOoAEW2v450XweelV8HvRzpj46h7avF+2QiSd2sq7R6uAfBBA4IgRqNfOEXbrDV04DCz799FPfbglUskMfvvtrt9xyi/gGTui4OXPmSF0GTug5bNrk+eOr63a7+uqr/QZOFBUVydSpU+1h9e59wwZPVKD75DIyMkQDH9wvd9BII/NHUoMptDzHL7/8IkcffbR7d2dZ96chgAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAp/O2WICF4osCM1G8PcL+0m3tlGiD+Y1WEFLW/zFlMawswys3lIgKzbnHRAuxwQ1nDk0yXr9/cI+clLf1k7ghO7co1203GCCEOy2ZGOuvWi9f72/NIeuXHlKZydwQtdjIprK5In95KITOlrzF5aUabfVflpZUZpDVy4f2dkJnND1MFMa5MZx3eUKUxZDzy20qXd2DR1zKJoGbTz4QUVggM5/x3k9ZczAtlbghK7HmhIVp5pgjDvP76WrVtPADruVmmwatuWjVwx07o9u1/s0emCinG7KYWjTYBINRKnNZpci0TnPGp5kBWdo4IS2piGNpX9yjDxoynXYGSSWpuXKUp/7aQ3e/88/TODESf08nwdzCTJ+WJKMGeT5MvT67QXuXVhGAIEjQKBWM0+ol5bu0DIdwTQt++Cv7d3rSW3k3r569WoZOnSou0uysrLk7rvv9uqri5Xy8nK/h12xYkWlfs2Uceedd1bqr4uOpk2b+j2slhZ58MEHTVSg+WvhaloyxV8gzMsvvyy+91P31ewSM2fOdM1QsaiBNjQEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAYPpiT4aHu3/XWyLCKgcUhDVtLJMv7S/zTAYCbc1NtoQDtS6JkXL7uVVndeiS6CnBsXar98PyqGYhJhCg4igrTZYKfUDvbu3iI+S60zzBF/a28FDPuS3ZkCcDkj3lOnSMBlBoMMZv2Ww3PaaWEBk3JMnv4U8f3FbKTAmSYpO9ITLc8wxJA0/0VVXrYcqZfD63YsQGE3jgzuJR1X4H2qZZPuakZlvDNDjiJhN84q/p/fjjaV3k0Y8rSm7MWJ4p/Tt529v7ndQnwV70ej+xd4JTmmRLdrHXNlYQQKDhC3h+e9fStQYq3eFv+jPPPNNft3To0MFvv2YzSE1NldGjR0tUVJQsWLDAesAfKEuC30kOUWdSkv8/Mq+99pp1xHHjxknXrl1l+fLlVumRb7755hCdSfWm1ewf/lp6eroMHz5czjrrLOt+DBw4UHr16mUFQ/gLnpg0aZKEhITIcccdJ2qxZ88eeffdd+WFF17wN7107+7/D5vfwXQigAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAgxTYu3efaCYJu3VPirYXK71rMIS+atq0NEORCQooLCqTXSZTxG7zcmcnMKfi1Y7qGmcyKKRbfdc+O0/OMJkVTu7fWvp2iPEb4GHv3L9TjHxgSldoe+6rtbIkLcdkeWgjAzrHSXx0qD3sN31P2+HJBNHPJ5jDfSL6nVots3GgpvetsKRcdu23VM+Zq3Y6u/n/mrSzuVoLmzMrymzoTj06RHtlD/GdSDOW2G3NNs/nyu7Tdy2l0nh/+RV3vy7HxzRzunaZcjI0BBA4sgRqPXhCMwqcdtpp8sUXX1QpGahkh+40atSogPtqNgR91bfWo0cPadeunWjQgW/TAAo7iMJ3W12vd+4cOLJx4cKFoi9tzz77rBU8cdFFFwXM9HHppZdaYyMjI6sso3LCCSdI377Vq2VlTcw/CCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggg0KAE8nZ7HlAnt25e5YPxml74jKU7RLMQzFmTbZWUCHaeP4zuIss35TnBHVPnbhV9aevZPlpOGdBGRvZrI618AiI0q4GWsPh8/9hZq7JEX9q09IiWi9DyEJ1b1zwQxJqsGv/sLChxRqe0ae4sV2eh1JT++Hh2usw12T9mrqy4nursX9OxObtKnV27ujKFOJ2uhWSXaWau/8wRrVuEu/bwXgw1WUFoCCBw5Aockt8A55133gFFfUs8uHdISUmRq6++2t1V5bI+rK/r1qRJE7n//vvr+jSqffy2bdvKyJEjg95Ps0o89dRTVY4vLNyfw8rPqPj4eHn88cf9bKELAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEjjQBfSBvtxYRtfud3z2m/MTDH6+Su6YslWkLt1crcELPSc/nyasGy43juokGdrjbys358uRnq2X8v36UN2ZsdG+yshrccU5P+fuFfawsB+6NW7KLZMoPaXLJo7PlL28sEff1u8fV9nLpHk/5+YggSp74Hn9bTrFc+9958oS55t8ycELPo8RkC7FbdISnlIjd537Xsh52Kyj27Gf38Y4AAghUJVC7f4X2H0kzTxyoaTmIqtoTTzxhleZ4+OGHqxpmbfvyyy/lwgsv9Jv14YA71+KACRMmSGhoqOj7gdpjjz0my5Ytk//9738HGnpItzcy+Ze0tEa/fv2qzBbhPomrrrrKKtFxzTXXuLsPuHzuuefK008/LbGxsQccywAEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBo+AIxkZ6H4Wu2FIqW1tDSEbXR3v15s3w0qyJjuD5Uv+jEZOnRLkoSWjST5mFNJNI8iM/KL5aLHp4V8HBRJtBgwrEdrNdGUz5i6cY8mbs6S6Yv3uHs88wXayQqvImcOdRT4l3LQowymSn0lZlfKstM6Y5FabnyhclGsXt/MMD3SzKkaePlcu+Fhz5bd2xUmHO+G3fsksGdq/es5sEPl4sGjGhr3ypczjcmnUyWh9jIUGnerKl1/dMXb5f731vhHKe2FmLMMey2cUfgL/DqmG1ZRfZQSWzpKcHhdLKAAAIIVCFwSDJP6MPxqgIotGSHPqyvqjVu3FgmT54szz33nJx44ol+h/7+97+XDRs2yLBhw6xAC99BUVFRXl0a2FDTFmhfDT5wt7PPPlu+//570eAQfxkx9Fpmzpwp1113nd/tOld4uCddUNOmnv9ocB+nNpe13Mj69evlX//6l+i9CaZdeeWVlv31118vmk2iqjZw4EB56aWX5K233iJwoiootiGAAAIIIIAAAggggAACCCCAAAIIIIAAAgggcIQJhJkyCXa2AA0q2BGg1EJNWH5akensdu9FfWTSyE4yonsrSWkTKW3Mg/XIsBDZXo3jdYxvLmcc1Vb+flFf+eTu463SHPYBvjGBA4FavCnroaU6bjmzu0y95wS52bzb7etFO6TElX3D7q/t94RoT/DE2m1VByD4HruodK8JGMlxup/+4xA5d0R7GdS5pSQnNBe9vmZNG8sWV+CCM7gWFuJcgR8r0ysCOAJNm7Zzl7MpvoXnmp1OFhBAAIEqBA5J5gk93scff1zFYYPfNGnSJNFXWVmZrFy50kQc7pPmzZtLhw4dxB1YsHjx4gNOquUialoy4qeffjrg/PaAY445RvSlLS0tTXJzc61MDVqOJCIiwh4mDz30kPVyOvwsaLaG0lJPLSc/Qyp1jR07ttr7xMTEyJ/+9CfrVV5eLhkZGVJSUmK5axBKQkJCpeNoCY9HH31UHnnkEVmzZo1s2bJFsrIqalyFhIRY+3Tp0kVat25daV86EEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEVOLl/a5lqMjJo+2h2ulwztou17PvPq9+nybs/b7K67zq/pxzTI/CXO8v37pOlJtODNg3OONoETfhrc1Irnmv4bssvKpOM/YEVml0hNsr7C7qtTMDADWd0k8/3n/eqTRUP9bUMx6bM3dZ04ea4SXGeL8xqZ5gJMjj/mPbyxfytsnpLgTVusxnfJfHQlqg/qkucdSz95xtTwuTSkzpZASRO5/6FnSZLxvXPzRUtedExPlyeMYESa7Z6AhZO6pcgcT4W9hw/Ls+wF6t835ZbUuV2340aoKHZJ3ILS2XzziKT/SNX+naM8R0me80zxE9/3eL0a6AMDQEEEKiOwCELnqjOSQQztkmTJtK376FPWxTMuVRnTHJycnWG14uxGviQmJgY9Llo9o1u3bpZr6B3YiACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggYAROHZzoBE9M+SFNeneMluN7eX+pc/GGHHn+q7WOV7/kls6yv4UQUzYjxQQkrDNZFjSjxdbsYmlnyk242/dLdsg7P1UEY7j7dXljRqH88Zl5VreW+Xj55mESY8p8uNumDE+Wg4T9JSJMzIZc88xcpzTHf689qtKD/t0l5ZK+P8BC53NnVnDPX5vLibHNZEBKjCxal2ud21/eWGICI46SUJP5w24afDD5/WVWgIL2aZCHtg4meMFua7cWSMmevVYQiN2n+/33q3WSZsqBBGpa2sNuGtRSZO6JBpcE0xqb51BnDm0rr32XZg2/47Ul8upNw0UDWNztjRkb5ZcVO52uY3sGDq5xBrGAAAIIuAQOm+AJ1zmziAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggg0EAEBnZqKWMGtZFpCypKX9z56hI5tncrOdZklmhkgiDmr8mSn10PxSeemCxRzQ78iOsY8/Bcgye0Xf3sXDnVHGNQSkvJ27VHFq7PkS/mbQsoqJkN7OCLjLxiueXFBTJ2UKL06djCZEkXWbwxT56eutrZ/4whSdaylq8YP7ydvPXjRmv91hcXykXmfPslt5Co8KayYUeB/PfL9U5wxdE946RlpCewwJnwECzcNr6nXPzoLGvmlZvz5eJHZlnlRHq2i5K123fJLysznWwYOmj80HbWWA0a6dk+WnQfzfxwxX/myJiBidLd7KdZM35emeFV1sPayeefuCjva5z0xGwZO7itCWiJkJGmpMmB2iUndpKv5m8XvReageIys/+JfeLN/YiRXHM/Z67KlAVrPaVFbhzXrVK2kAMdg+0IIIDAgf+yYIQAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIDAIRS47ayekr97j8xaVVFG4+flO0Vfvm3MwDZy5ajOvt1+188xQQxaSkIzIugD97d/3GS93IOvM6U33EEQ7m23ndVD7nx9ibWvltiwy2y4x+jyRSd0lPOPrsjSoOsTjusoi0ymDA020KwXL369TrsrtWHdY+XOc3tX6j9UHZ1aN5cHLusnd5jgFG1bsotEM334Ni1z8sDl/b2COm44vavc9tIi63rU8zlXFhDdX/c579j2TnYI3zk1e8SlJ3cy2zdYmzQI4/lpFS7BBE9EhIXIQ5MGyE0miEXvpb4+nr3Fevke61xzL85z3Q/f7awjgAACgQQ8uXgCjaAfAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgUMooA/HH7xsgPzfWd0lKda7vIYeVjMf3Gq23XNBH6+SEbqtsclOYbfQEM+jr/gWYfLcdUOtrBb6cN/duiVFyVN/HCwn9fEuD+Ie0y85Rt78v6Pl9CFtJSbSu0SEjuvfqYX8e1J/ue60rtIkxHMO8aacxHPXDpGrT+3i91o0o8X1Jmjj4csHVsqOoOVGtIX6nK/22dt0OVBzj2nqsrDHH2fKobx+63DLxO6z3/UaT+qXIK/dMkIGp8Ta3dZ7f5Md5MUbh1qlP7w2mBXd55Wbh0snV3kP3zG6PmlkJ7nz/F7WvfS33cRXOM1dTsTu7GLcXjPH0WAV3/upY/qa+/Wvi/vKreO7V7IKcU0e1tT7s2DPzzsCCCDQqLS01CQXoiGAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACh49AamqqdO/e/aBPeOJjc4Oa441bhgQ1jkEHL6BlMbJNZoGcwhITlNBY2sVFeAUn1OQIOudWk2mhqLRMWrVoJlqKorotv6hMtucUSfOwJpIY20w0m0IwrWTPXpPlYbc0Mv9LigsXf4EBwcxT22P0vDJzi2WXyY4RHx1WKZAj0PHKyvdJetZu0fckc2/CQz0BK4H28e0vLCk35U/2WRZhTaq/vx47M79ECor2WPehdctmQZVy8T0P1hFAoH4K1NXfZsp21M/PA2eFAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCByRAhqTEBcVar1qC0Dn1MCFg2nR4U0kOjyq2lOENW0snVtHVnu/Q72Dnle7+IhqH0azbCQfIMvEgSaNNJlGDqbpOSSagAl90RBAAIHaEqh+KFdtHZl5EEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBeiBA8EQ9uAmcAgIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgjUnQDBE3Vnz5ERQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAoB4IEDxRD24Cp4AAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACdSdA8ETd2XNkBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEKgHAgRP1IObwCkggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAQN0JEDxRd/YcGQEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQTqgQDBE/XgJnAKCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIFB3AgRP1J09R0YAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBeiBA8EQ9uAmcAgIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgjUnQDBE3Vnz5ERQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAoB4IEDxRD24Cp4AAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACdSdA8ETd2XNkBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEKgHAgRP1IObwCkggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAQN0JEDxRd/YcGQEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQTqgQDBE/XgJnAKCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIFB3AgRP1J09R0YAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBeiBA8EQ9uAmcAgIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgjUnQDBE3Vnz5ERQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAoB4IEDxRD24Cp4AAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACdSdA8ETd2XNkBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEKgHAk3qwTlwCggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggccQLfLNom23JKrOueeEJHCWnc6Igz4IIRQACB+iJA8ER9uROcBwIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCBwBAqUlu2Vpz5fI+V790rbuAiZeHzHI0bhywXbZE5qtnW9FxzXgeCJI+bOc6EIIFAfBQieqI93hXNCAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBI4QgRITPPHBzM3W1fZNjjmigieOkFtcby6zoLhMflyWYZ1Pm9hmMrhzbL05N04EAQTqXoDgibq/B5wBAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggcYoGs/BKZ/N4K6yijB7QmeOIQezM9AoebQOPD7YQ5XwQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAoDYFCJ6oTU3mQgABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIHDToCyHYfdLeOEEUAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEfAX27RNZsCFbfk3Nlq3Zu6WotFwSWjST5ITmMqp/G4mNCvXdpdJ67u49Mn3Rdlm/vVAy8oqt/Xu0i5ZubaOkq3mFNG5UaR+7I31nkSzZmGP23SUbMwslPrqZtU+XxEjp3b6FNK5iX3uO6r6X790ns1fvlLQdu2Xd9gLZVVJmzjXaHDdSeraLMedQ+ZrTM3fLjJWZ1qFGdI+zfFZvKZAlabnm/HMlpFEj6dQmUoZ0iZXeHVpUeUpqvnBDjsxJzbLMS8v3So+kFtItyRzfvB/IvLRsr3y3ZIes2Jwv23J2S1jTEEmKjZBje7WSvh1jqjx2YUm5LDb3e/WWQlm1JU+ahzaRFHOPUto0l6Fd4ry856/PllXpBZJdUOLMuW7HLnnjx43O+sTjO1rLvj7t4iIsl8Xrc2Vlep71mbhxXHf5aHa67DUAsZGhMnZQojOP74Ke5ydz0q3umIimcvpRbX2HsI4AAvVEgOCJenIjOA0EEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIGaCWjgwl1TFsu6bYV+J3jis9XyhzEpculJydLYBAf4a9MWbpV/vL2i0qZP5myx+kb0iJN7L+wrUc28H69pAMPbP22SZ75YU2lfu+Pkfgny1wl9JLRJ7SWFT8vYJf98d7msNIEH7vbz8p3WakRoiDw4aYAM6tzSvVlWmACAZz6vONdWUU3ly/nb5M0ZniACa/DiHfLCtHVy3jHt5cYzuvkNGtGggFtfXCDLN+V5zW8fXzsnX9xXTujb2mu7vbLW3KubzP65haV2l/M+5Yc0ObpnnEy+pL80Dalstnprgdz+ymIrwMXZSRcWbrdWB3VpKff8ro/Etwiz1jWgRud0N/2s2A7abwdPuH3iTGDEC1+vkx+XVQSb6DgNyLn5TJGXTP9uE6Cj7Zie8RId7v25sDaYf2auyHCOc77xpCGAQP0VqPzbpv6eK2eGAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAgJeABk5MemJ2pcCJpNhwr3EaDPDYJ6leffbKnDVZlQInNPjA3WatypIrn5gjmfneD/ufNkETvoET3ZKiTAYFz/G/W5Iht7y0QDRTQ220zLwSmfjILK/AiRjzoF+Pa5+3Pti/4bn5MndtVsBDvvdLuhM4oftpYIC7vf/LZvl83lZ3l7WsGSP+MmVRpcAJ+9j2DndNWSpvmsAS36aGvoETvseeuTJLHv5ole+uJoNEvrnfc5zACd3v2N6trGu3By9YmyOXPzlH9phMGNoSY5tJ+1bhjo09Tvvsl93nfn/l2/VegRN6fRHNQqwgmHHDkpyhv+zP5OF0uBa+XbrDWRs9sI2zzAICCNQ/Af8hUPXvPDkjBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBLwEtGzC5PeXORkA9EH4nef1kl6m3IRmLMjILZGvFm6T575aa+334ax0OcaUhBjerZUzT6opWXHriwud9UtOSpbxQ9tZD9xL9uyVeeuyzP7rrOCMLdlF8v4vm+SasV2s8VkFpfKOKzjgnybTgmYhsDNM6IP+/3t5kZVdYdG6XNm8c7d0iI9wjlXThXfNOdjNN8uCnvNz09Y65/XlvG2mBEecPdzrXbNWaPDBA5f1t0p9aFaOYrP/k5+lmlITFRk3/mOydmipCbtkiQaAPPD+Cpm7OseaS4NEbj+vp1VmQ697kykL8q0pxfGiycyg7empq+W0wYmiJSu06fx/fmWhk3FizKA2cuWoFEmKC5ey8n2yfHOe3PX6Emv71LlbpYMpu2JnhdD9p5myKna7+MRkuWpMinNuWnblxufnW/dKM1rMWJohowa0kbOGtbNemq1Dg060jR7Q2sokYs/l732zCczRgIm7ftdL+iW3lDhT+kU/c9pGm3nte//dku1+S3cUFJeJnYlDP5u9TPkWGgII1F8BMk/U33vDmSGAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCFQhoCUjFm/wlI349+UDpX+nlk6ph4SYMKtUx7lHe8olvOFTouK5aZ5yG/og/4+ndrECJ/SwYU0byzE94uXvplyH3T6cuVk0QEFbjnlAf+bQJOv19wv7yEmmRIUdOKHbe7SLlhtO76qLVluyMddePKj35qZ0iB73nBHtrNIWdnkKnVTP+brTujqZL+asyQ54LA0MeOIPg6S7yVhhlzNpZva/ZXx3JwuFZrDIMJku7LbCBDdM218eQ/smX9pfBqfEOtetwSGTRnYStbSblgax2ydz0mW1CVjRNqRbS7nrvN5W4ISuNwlpJP2TY+QRU27Ebq98s95etN6/dh37ylM6O4ETulEDNCZP7CcXndDR8iksKfPat7or6vPCDUOt+6qBE9psJ723GhChTbNk5BdVPtYsV0aKcSYgh4YAAvVbgMwT9fv+cHYIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIBBH5cnulsuXFct4BZHW44o6t8acpPaCCAlnTINhkjYs3D8LzdZTIntSK4QB+U335OL2c+90Kn1s3l35P6y2aTVUGbnX2gS2Kk3H5uT/fQSstdEqOcvrVbK4IGnI4aLlx+cqcq99QsEd3aRYlmytAMDPb1+u40qGtLv2aatePEfgny7v6sGltzdktiy4qSHjNc5teaIA018NduPrOHdGtbce0pic2dId8u9pSxuHlcDytgwtm4f0EDE84Y0lY084Tes+05xdJm//GjTNmM3MKKgStNZg8NtnC3diZ4Q4NHaqMd3bOVJJvMF4Ha+OHt5SmTWUOblu4YOyjRa6i7ZMfIfq29trGCAAL1T4Dgifp3TzgjBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBIATWbfcEI/Qw2RMCNQ0G6NuphRMosXnnLit4YlPm/qfwZsdu7aOsrA2B5tAMFNIj0NaKfq3oUGQe9heaLAS7TNaD3ea11JVtYm9FxYeqJ6nB1j3le80xy2WXKROhx9XX90synJlMNQy/rW8H78AD96DWLcKc1eKScmd57bZ8Z7lXh2hn2XchOryJXHBcR69uDTrRbCHulr4/IMXdp8uahcJuep/t4ImjusaZ8ifp1qZrn51nBVmc3L+16LVEhIXYu9TK+8CUllXOM8oERNjBE76lO9wlO7S0in3+VU7IRgQQqFMBgifqlJ+DI4AAAggggAACCCCAAAIIIIAAAggggAACCCCAwP+zdx3gVRRd9EoJkBBCSAihJiFA6L33jqAgYAcUsYu9oqjYCxbsKKKiAmJDVIo0pf1I7zX0AKEnJCGEjv+ceZl98zb7+nuh3ft9L7s7OzM7c7bMZu+ZcxkBRsBXBA5m2MNJVCptrYCg6k6MDTfIE1BigB3NXWI9qZxzIgD2u7J56w4SFBkQIgNKD/lhh7NOE0JgLN2SloeQ4OnxS0fYQlFY5S9S2JqIoGOeUMY15uZ6jwmCh27931+kbzpd37Ivm1rVEOQVYfd0rSL7q0J/QJ0CP1iNiiWoS/1Y6lQ3lqJLOO+bzOzBn2IhBVzmQriUZkml5HWlQneANAJbvNmuinJtY0dFCpeV8k5GgBG4YAgweeKCQc8HZgQYAUaAEWAEGAFGgBFgBBgBRoARYAQYAUaAEWAEGAFGgBFgBBgBRoAR8AeBnJN2Z3x4rtPaWX0lQgsbu06dPS/XT+cusRFezL7fyOhmBYoPH03eQpMW2ZQQ3GQP2O6VO47SkDGrZUiLgFXqYUVnztiwQ3aEOvHGTghFDF8s68QZo1hEaCH6+N5GNE2EYflzaSrtOnjc2LdpTxbh97E4Jwgp0r+do/KFkTGAKz0aljNIOXrojtlr7eFJ2tbikB0BhJyrYgSChgCTJ4IGLVfMCDACjAAjwAgwAowAI8AIMAKMACPACDACjAAjwAgwAowAI8AIMAKMACMQTAQw8/9Q5kl5iL1pORQfE+b0cDsP2kN0RITZiBIlw+3qBHoIEKeVmHb8/L89BnECRIJ+7eOpeoVwiokoSmFFClFxQdhIyzpJ/d7zTGHBVL3lJggfD49aYeyD8kG3BrFUISqMIgQBJLSoOK4gkrw9cSPNWHnAyBeolVIlilBq+glZ3W4RcqNKWc/VJ0oWt+ONCn4f2sajZhU1heMIF328uXUl+Us5fFyERsmkZUKBY/YaO2Fh5LStghBTiHo1Le/RMXzN1LpWjFFUhe7IFmFO/rfhiEzv3qgsFfOSZGJUyCuMACOQrwgweSJf4eaDMQKMACPACDACjAAjwAgwAowAI8AIMAKMACPACDACjAAjwAgwAowAI8AIBAqBMiWLiBAOttpSBDnCFXli2347eaK0IADA1BLrG1KysPDKFmy0h2Z4qV9tap0bWkKvZEOGjdyhp/mzvi4lwyieKIgL7w9qSFddZSQZKyA2BMPKCszX5Va88+Axr8gTRQsXkGoVOadtiiFhggQRaiJGeNvmuNJhhN+1jcvRw9cm0Zczt9HU3DAes9YcCDp5An0CQQMqGCp0x9JkG3ECfenWMNbbLnF+RoARuEAIuA7Uc4EaxYdlBBgBRoARYAQYAUaAEWAEGAFGgBFgBBgBRoARYAQYAUaAEWAEGAFGgBFgBNwh0Dwp2sgyZcU+Ov/ff8a2vrJhdyZtzyVPQP2gchmbWkKl6DCpEoG8ULBYuNlOhtDLnzv/Hz397Sq65rX58nc0+wwhbd0uG5EBqhMttbboZZckp+mbfq9vFGEplPVpXsGSOIH2IXxFMKx59Sij2omLUgk2CvvSAABAAElEQVShS6xs2bY0A6/RM7cbWdrUKm2sL9hoV4owEnNXjmSdFooSGfKXduy0TM06cZZAgsEvPTdNLxddIkQQKKoZSZt3O8dgf8YpI5+/K90a2QkSCN3x9zpbv3CtNaxcyt/quTwjwAjkEwJMnsgnoPkwjAAjwAgwAowAI8AIMAKMACPACDACjAAjwAgwAowAI8AIMAKMACPACDACgUWgVU27Ix6z/r+fsyvPAeBkf+a7NUb6NUKhoEABm1QDFBuua24P6/Dy+PWUmmYLSWEUECs/zE+RqgIZ2acpvkwoRRYvTAVFHVB+gEFJYV96XoWJOWsP0k8LcqUxZE7//1QuYw9NsmlvXnLAsZNnadiEtf4fyEkNLWvESPUI7AZ55PO/tuXJCfLGyxM2EPDCr3FVO4GgmwhjoezVHzdKcoTaVsvMnLP00KhldP/I5fJ34KjtnKQcyqaBHy6Wv7s+WUoZOWdUEWO5+9BxYz0msqixjpWworZwLVhH20/kKmBg2x+rG1fSIOFM/HcPzV9vI+FAkQLXCRsjwAhcGghw2I5L4zxxKxkBRoARYAQYAUaAEWAEGAFGgBFgBBgBRoARYAQYAUaAEWAEGAFGgBG47BHYcySHRvyR7LafjRMjqW3tGCoZWpie6J1EI363lRk9Yzut2J5OLaqXplJhhWm9UJyYs+6QdOCjUigB3NYhHquG3domjqaJMA+p6SckCeIO4ZzvWK8MNalSio4cO0VLt6bRkuR0I3+/tnHGeisRpkMpWtz3+TK6WoRoaCjalnn8DK3acZSmLd9v5A3USj1NyQDhKY5knaQ2NWMoVhAFtqQeo7+EAseeI3kJIIE6frgItfHodUn01i8bZZUgh6xPyaR24nygDWt2ZtCCDYcNzKuVD6cGCZHG4ZtVjaJ7uyXSl+JcwUCQ6Fq/DDUUeJcQde84lEM/zN0lzwX2N6kWSbUqRWCV6giSAggrwBxKIY9/tZK6NyxLteMiCKIja0Q7PpuyRebFn2ub2Ikx2I4Kt5MnsD3oo8XUvVE5qhAdSp3qlkGST1ZAsHB6NStPXwmFDV3xo2t9uyKFTxVzIUaAEchXBJg8ka9wX9oH27dvH7311lt07NgxeuaZZ6hmzZpB6dC2bdto6dKltGrVKsrOzqbmzZvTwIEDg3Ksy71S4Pj+++9TfHw8PfvssxQZaX85udz7fin1Lycnhz7++GPZ5CZNmlCnTp0C3vzhw4eLF8f/qGLFitS/f/+A188VMgKXGwInz5yj80Jt0N94i1a4QM4x59RZCi/m+I+aVV53aZAtxD/hsM71YqlcqWLuiuTZj38yp6+0/RNfN74k1df+kc2TmRMYAT8Q2LJlC/3222+yhr59+1K1anYJTT+qNYqmpqbS2LFj5XarVq2oTZs2xj5eYQQYgeAjEMixc9bqA7Q/d1ZZ/3bxPs3SCsQYGXzU+AiMACPACDACjAAjwAgwAlYIQKUAM/fdWTERJgPkCVifZhWkWoRSeFi57SjhZzYQJz64qwHB+a9bkcIF6N0769PT36w2CBRTBCkBP7M9fG1VaiWIGcr6irAZ8zccol0Hj0uywI/zdxN+uj0owkjoDn19ny/rxYsUpMd6JdGHf9oIIyB26OQO1FkvIYJKhRehOWsP+XIIt2WuEYQDKHR8/89OmRdhUfAzG4gObw6oZ06mgR0T6GDGSfpjSarcN3P1QcLPbCBevNbfsfxTvavTc2PXSrxBFsHPyvq1i6MbW1Z02AWSw+3i2KrdIJkoEoc/5AkcpIv4PgfyhDK0PUFTCVHpvGQEGIGLFwHH0cHLdo4YMYJ27Njhcany5cvTc88953F+znhxIfD222/TqFGjZKP2799PM2bMCHgDp06dSn369HGoFx/CmTzhAIlHG3CUDxo0iLZu3SrzgzgBAgXbxYcAyBPDhg2TDbvhhhuCQp548cUXZf2tW7dm8sTFdwn41SLIyn02bStNWrRXsq+/eKCxITnoqmLIDKam5VhmKVigACE2YHSJIpQYW5ySypewzHehE+Gk+UJIAuoxFe/snCjY4yE+NS1d/GP+nfhnb976Q3Q485SsA/KLLapH06BOlX0iJqiGnD57Xp6jP5elyn+kkQ5iBpjyd3RKIJAWfLG1Qlpw1HTbP2S1K5X0qY3oq6rjri6VmTzhy4ngMh4hkJycbIx3UVFRASdP7N2716gf4yqTJzw6LZdMpm37j9GkxXvp98WpNLhHFYJD3Z3h2fvp1K0iBvF5y6xFCheUY11MRBE5hpaN9J6AZllxgBN3CbnZXxbaP7yGFilED/ao6tdRNgtZ3ynL90lyrT/1BWvs/GvFflqyxRYTGjMAfZG4DcQY6RfIXJgRYAQYAUaAEWAEGAFGwCsErhIObW8tpJA9Mj1CcDwiCAoNKpek8fN2y3AMen2hgmjRS4TmuKVNPJUW372sLK50GH35cFNBfEihiQv3GKoHyIvy1SuVoDuE071Roj38BPaVFv9TjHqwqVC+2EQLRKgGhO9QBuf5Iz2rUWzJYk7JE/r7rr6u6nC2vLFVRaHyUIRGz9xhKF+ovLd3jKfb2ifQJ5oCg9qHJQgEykIKFVSrXi1RxX3dEsV3rQgaN28Xrd6e4VC+YnQxailUOe7rVoVATrGyJwUJoqLA/WehXIEJPrrFRBQVJId46iFCrBTRzjXy4FvaD0+2FN9Ft9DCTUcMhQtVHsSR/u3jHUguah+Wg8T3uPJRxcT/mHsdVCJUHl/xqSD6XKNiCaPOa5uUU1XykhFgBC4RBPwiT4wfP57WrVvncVcbNGjA5AmP0br4MsLBq0xfV2n+LlNSUvIQJ9q1a0eYOciWF4HNmzfTkiVL5I5mzZpR9erVHTKBPJGZaWd5njzp+OLhkJk3LmkEJkyYQKdPn6aQkBC69dZbL+m+cOO9R2DhpsPSKY+SYHav2nk0zz9wVrVCaUDJCVrt19PiBTsa/4whPp/+j4Oe50Ksfz1rh3AmOc5CuLl1nE/kCThYHvh8eZ5uIDYjpBXxe31AHepQx3vpvjQRU/PBUctpz2H7OIoD5Zw6Jx1DcA7d0qYSPSz+wWe7MhGYueqAJAEVLliAujZgKUerq+Do0aP0559/yl1xcXHUvn17q2ycdhkjoIgT6OLIadvoOjGrrLhpppi5+6cEyc6T2WqqXBMRfxcf1yDLe7EY1Ipe/3mD8eEN7QL5zlfyxHlR3wTxUXKkIF4q87W+YI6dqm28vHQROHbijJh9aYvxDGISZKvZGAFGgBFgBBgBRoARcIUAlBQWDu/sKotH+xC6Ar9jJ8/SIaFqcPbcf1RChPUoLSYJFSpoJww4qwwhQO6/ugrd0zVROPNPUVbOGfm/B9Q+Nb5BnuJo/7Cba9N/NxHtE6E/Tpw+S9HC+Y/6lDnr37t3NFBZvF6q/p44fV5MlDpOIEKULVWU8I0BNuT6GvJnrrizCCWBnzvrI1Q18HNlLZKiCT+FuXBNCGJCKBULsSZM6HWBLHKr+C52c+uKlH7sDGUcx4Smq6iMCP1hVgfRy2E9IrQQDb3BppCedeIsHRDqdWGCbI7+u/uGCeLNtYKUgV+2+EYHf4pOxvEUH3Ob8D9XtngXVtaxjnuMVV5eMgKMwMWBgF/kCW+7gBlmbJcuAgjVcejQITpx4gS9+uqrAe/I8uV2p9XVV19N33zzDUVHRwf8OJdLhQsXLqQHHnhAdufzzz/PQ54oUKAAffXVV/TGG29QhQoV6L777rtcus79MCHw0EMPyXA64eHhTJ4wYXMlbJpjJoIUYWa/+4sDJAff/W0z/bv5CL14U62AhJvwt00givwwL8XfamR5zOh98ptVRl1Qm+jaoKz4J/Mqmic++ivSwwvj1tFn94d4pcwAZZCnxqwy6sBBQEKBqseaXUdpRa585I/CkRUpZCMHCKcd25WHwLuTNkkyDRyYTJ6wPv8HDx6ke+65R+685ZZbmDxhDdNlmwqlIShO6LZg42EZ01ZP83d92dZ0wg+KQHd2ruyT2oG/bTCXx/igx8o17/dm+0jWKXr1p/XG2ONNWXPeYI6d5mPx9qWJAMijb+bGv+4iiIFMnrg0zyO3mhFgBBgBRoARuJQRgOM9XCiq+mpw6pcVDnz8vDEQLKBokN8GokKVsuH5fViH4/mDOcgONiVca1UQhwNZbJQoVohKFPOt/yC+BMqmiW+zCAMCg+oEvjOyMQKMwKWFQMDIE1lZWVS0qHeDyKUFFbcWcanVjL9goLF69Wqj2ttuu42JEwYavq+AhIIfGyPACFyeCBwWThAlaa16CDLF472qy1mpKs3dcs4bHR2Y1XBSwcGyPiWTfhPhQFSswoUbj9DjX6+iUYObXFCHEmTYXxOzcJVVLB3qQE5Q6Z4uPxOS7lCBgLUUITpevrU2heXOZr67SyK99/tmI77l2xM30Q9PtPAoNArqg/SfirkICcdP72tEFQTzXtnkpamEOmGfixAkXQTjv0xJfp9S+PCSEWAEGAEg8K+QYDXbVBFyonvDsuZkp9t1hIzsFw80cdifLWYmQRZ2UfIRqWSkQjZ9+/dOwljjq7qDw0H82NgtFIuUQgQ+uJ06c94Yr7yt9n+CbPLKj+uN8qgP6kq+WjDHTl/bxOUYAUaAEWAEGAFGgBFgBBgBRoARuBAIQHHjpFD+WLb1CH30R7LRBIRNYWMEGIFLDwH3mjmXXp+4xZcoApBjVtawYUO1yktGgBFgBBgBJwjMXn3A2NOsml3dacHGQ0a6LytFRQx4OPivFk6pLx9sIuMyqnow+/X7OTvV5gVZjp2zyyBL3Cxk/Rr7Ia++ScR8h6IGDI6kF2+uZRAnkFZYSPg9JWIvJpa1zVSACsW8DZ7hC9WJb2bvQDXS3hhQ14E4gcSeQoWibwu79OH4AKlp2I7IfxkBRoARuDwQ+GvFfqMjCK0BW7X9qJTCNXb4sFJczEyqLGai9W8XTz8+3ZK6NbTLqULdaOUO+/8nPlTvV5HzQjL27YkbjTqGXF+TSob5NgML/Rjy3RqDONGqZjSNf6KlV0RLoyFiJZhjp34cXmcEGAFGgBFgBBgBRoARYAQYAUbgUkBghFAU7f3GfHrj542UI74HwhACuUJ0/iuQXAp4cRsZgYsdgYApT/jTUcQSmjdvHs2aNYt27txJ2dnZMsxAjRo16KabbqIyZazji3///fd0+PBhKlGihJTxRVnUg19aWhohzETr1q3dNs1cz/79+2nOnDn0zz//SCn8unXrEuSBExMTjbq2bdtGv/zyC23YsIHOnTtHTZo0oWbNmlGrVq2MPFYrCHkB9YYlS5ZQSopNbrxSpUqyfO/evSk01D4bVS9vbqMnfd24cSNNnDiRtm7dShkZGRJT9OXmm2+myEjv443u2bOHfv75Z9msjh07UoMG9jhc5vYdOXKEEFbif//7nzx+QkIC1apVS4YUCAsLM7qGdn399ddyG5grQ8iOUqVsH0br169PnTp1Urvk0hccc3Jy6Msvv5TnC22BIsPKlStp/vz5tGDBAjp//rzcX7p0acL5/eOPP+SxkC8pKUmeM7QR4UXi4+OpRYsWdMMNN1DBgjZJp7Nnz0q8cW5RHkodTZs2pXbt2jm9hnGA9PR0eb3hfK1du5aKFStG6HO9evXkNVW8uKO0mMJ68eLFsn34M336dHmOsY7r6cYbb8Qq/fvvv7Ro0SK5DjWPmJgYua7/8fX+AxbAD3bXXXdRSEiIxAjnHRjhvq1evTpdf/31sk36MQOxrnDw5v73557w9jyZ+whlFdyPuDZOnz4t7wdc17g+fLHt27fT77//LoseO3bMWL7//vtGdbfeeiuVK1fO2NZX8JzDdY97NDU1lRo3biyvt+bNmzt9DqnyCN8zYcIEAp4oi3umatWq8jlZuXJllc2nJZzNIARsTs0SMepOUpQIbVBFODXgxEdswuXb0ik51dZfxKOLCLPJntnkvPfSufMknCBhMsbe3rQcQizu1TszZGzCuJgwqlmhBLWtFeMyPiEaDinqf9YelE6ZdCE5DKc64vR1qBNDCWUc70nV0RXb02nzXlvbrhMO8QJC2m+VcFYgHQ532S6halA/wf78RSzoGasO0NZ9x0RMv9OUVCGcalaMkLLGIDC4sz+EagEMUv9Db6xJ172xQG5jNm43EXYiUHZz60pEIlbhx1O2yCq/mrmDbmhZ0aPwHfo5A36ID+nMMCs2RWAFa187xlLicPuBbIOQACUHxJ/8TIvb7qxuZ+lz1x00dt0k+onrzGwgUNzeIZ5e+mG93DV7zUFxLVi/m+hlV+88ajiq4OyrVSlC322sI1QHFD5gf63YR4/1rOaxsoVRibayQ2AEgseOA8fpjLgpgHkLce01Tizl9trXqsmzejT7NP0t7gvUf1DEDA3NjSHZpGqUCBUT6TaWpK/3d56GmBLM9x6coetSMmhxchrtOJgt21VByGXinFUXzwB35m8/t+3PFhL7mfI5dijjFMXFhErnbMPKpShWk/rEM2reelsseKV8gqVOoEEID8Rk9cbwHoLxGe+ou3fvlmMx3itATMW4bDar9yOMMeo9Du/UeCfHOHHdddeJa+gqcxXGNt6l8E6Cd2jUgXe+2rVry/elKlWqGPm8WZk7dy6tWLGCELZDGfqmj3dPPvmk2pVnibEK70MY79A+vL/hvR3vseodLk+h3AR/3huc1anSoRyEMEspYrzBNVchOlQ8/0tQ53qxUtkHz/GM42eoSOEC8nmryu05kkPzRTghWIukKIovEybVbTDerRXXfUFxfpDWVNyXzp45qi7EoMU4tWTLETHenRTPq7NS+SZejJeI7VpKhBKysmniOQXFgrCiBal3swpSqQj3IZ73uIarCLIZVHR0lR20G+Mqnh/nxIEx1tUWz8S68SWtDuGQBiUkRXKD0x+xdhFaAzZ7zQHxfE5wyO/rBsbdF2+qTdlixhCUlmBQffjqoaYeValwwS1yU6tKLmMpT1y0R85KQsU3ibi+KhaxfqDJS/fRGvEOA+tcr4yI2VyaPp5sG4f1fJ6sn8z9eIe8T/ROor7NK/o1HgRz7HTVn6Vb0uR71U5x3xQRcZwrCeUp3DMJ4pr3x3x579OPh3fTOeJ9IjXtBJ06e06+KzYRxE6QO/GOOvFf2xiP9uI8emrqmlL3GmInz11/iNaL0GV4twwX8Z1xv+I9OUbE0nZn/vQT9wWux2Txjr5FvLfi3TMxNlz8iovnTSmH95aVgtgEgk36McSqthnufX18698uTu3iJSPACDACjAAjwAgwAowAI3DZIXBvt8SA/a962YHDHWIELgEELjh5Ah9WQZBYt26dJVz4GPrSSy/Rc889J/4hdxTKQDocd+XLl5eOZjNRAoQHT0yvB3XAaa3bpEmT6JVXXqHx48dLp/Tbb79Nw4YN07NIpygShg4dSi+//LLDPrWBj8n9+/eXhAyVpi/Dw8Np7Nix1KNHDz1ZruttRPtc9RXO8EceeYRGjRqVpx4kYN9ff/2Vh5BgmVlLhGMf5wH2ySefOJAn9PbBIYyP0sqhq1VBb7zxBv3000+SVID0zMxMo04937vvvmtsor06ecJXHEHoAKEGNmjQIPlR//HHHzeOgxU4EGDLli0z2lW2bFn6+OOPacyYMXKf+jNy5EiJMUgWcCabr2O0EwbCApzUIJCYberUqXTffffJ8vq+H3/8UW7CWYE8FSrYZyV/9tlntGrVKj27JHooskfXrl0N8gTSPvjgA5m3W7duecgT/tx/INIo4guu2QceeEA6JxwaJjaGDBlCX331Fd1+++3mXX5t69dcsO8JX86T3rknnniCPv30Uz2JJk+eTHiWXHPNNcY5csjgZiM5Odm4RvWs6h5FWsuWLS3JE3BCwXmkG9oDg3MM1y5IKVY2btw4uvPOO612yWcfnpV6GywzOknctv8YPfD5csPZrGcbPXO7CKVQR34w/0nE/oa1rB5lkCcyhBPnkylbZTpiyZ0795+cYSkTcv8syHU2NaoSSS/dUoeiwvM6heDcRWxmOHis7OtZO6i9IAAMvaGmgzoB8s5efZD+zCUzNBcOLUhjbxdOVGVw/Iybm0JQSnjk2mpSInzY+HUO/VXOITja3x5Yj1wRKPDxGh/OYXCwRgsHa5tapQn9XLHtqHRuBzL8ww2tKtL0VfuNEBQLhYQ6Pta7M3yoV5LjcN7c1cWaYAOHAGbYKglxkGPMhjzDc0NcYN8LN9WiYiHuSSbmevTtpbkOOKR1rOucENGmZoxRDM4btAUEGVe2WpuxjHPkzHCe6iWUlE4JOB53HDwunY/O8jtLxyzlTwTB5cfce0TPh/sG19W7d9SXahr6PnfrcLCOnbuTRk3fbpl1vLiu4ax967Z60pFllcmf+9uqPj1Nv/fglBrx52aasfKAnkWu4/7D8+FZMXsbzk2z+dvPc+KaGDVjGwEP3f7dbN96Tjw70AaYLsdvz2Fz1qrtuiLMgKfkCSh4YbzB+6pu6n0Eae+88w499thj+m4yvx+BDNq3b1+HPGqM6NChA3333XcUG5v3ej5+/LgkpoK8oRveF/De/MILLzi8O+p5XK2DXK2/FyIv/m/Qxxpn5AmQZh966CGH6tU7Ft6/8H5nRQYJ1ru0aggcopiN4mCC7AP7fs4ueS/9MD+FdolnARyUIKspg/qPeqYiFuxfgoABhQSzSZKbeG5jvEGcXrOBvDN07FqHcUrP85Fw0t/dtTIN7JiQhxj15YzthPAWILDVi4+kASNsRF1Vfu66Q4Tjv9qvDnUSTn+oFZmfH3PW2hR87uiUIElwqqzVEqQtZV0FKQMOaeCC5yUIBpBBtbqnVRlvlqjnmT416LqNNjIi8N6XfsIl8U/VD1KLeteoVi7cqSoSxsURvyfLYtXKhwvVi7xOZBBGPp1qI0qgr4/2SlKH8XmJEFev96/r0/hiPmgwx07zsbCdJcimr/20wSDN6HkQYmVQ5wRCmC1vzZ/3PhwL48Y7v20y3v/U8UG+GSfu5ba1S8t7UN2zeM/whjyh32stkqLp2e/XGO9h6lhY4v56/qaa1KNR3ncn7Pe3nyBLPPPtannfoz672cZavFu/eHNtY7wCIQtjrm54Jx653/aujnSr617Pz+uMACPACDACjAAjwAgwAozApYTAwE6VqaeYXIBJCOXFBB4rgvyl1B9uKyNwpSPgyEbIZzTguMXMfDNxwuxkhjPO/KFXb2pWVlaej7zYrysc6PmdraMeqD8ow0xq3UB8eO211xyIE3Bu6/bmm28aDmU9/bfffqNevXo5EArgVNeVAEA2wPGhaOHMPOnrW2+9lYc4Yca0e/fucta4s+P4mo72oW5FnED/QG5RBrILlC+gHAGDqgIwNGONMkjDTylQIH+gcMTsQzNxAvVDPcFsH330kUGcAI4guShDPSB3wMmgrmPk0c8riBVQ6lB9VmWhQNKnTx8H4gT6q19TmzZtIigBQCVAWZ06dfLghTYpvJwpDajyahmo+w/1QXkCszph5nOOtLvvvlvOgMV6oC3Y94Sv50n1E44bM3FCvx9BzLjnnntUdo+XcFypc64XUmlYQsXEbDt37iQQbJThXtOvV6iG4Dl06tQplcVYQm3ETJzQ+4KMILX88MMPRhlPV+AkeOyrlQ5EAjgL4JiBwUGCj7YbxWxud4bZeJCmVoZZ96hLGYgFn+Q6JFQalmdEbPPBXyzPQ5yAs0E3OIUeEPkQd9yZvf7zBsMhZS4PJzbIIE99s9roLxzPumFG7dsaSUDfp9ahWKEMsy5hcCopw2zcQBqcb72EooYyzHz0xHSFBsyydmY4b4o4AYKKUhXR80NpY4PIB4MD2p9wHagDs0G35CqZYDu2ZN57BukwzP7Wr8c9wvHoztaImeDKXCluIA9mjiqDaoEv9u0/Ox2IE+Zj4rr64E+bw86b+j+anJzH8WmuG07euz5ZIgkB5roDeX+b6zZvj/jDkThhbueUZfsERo4OHVWHv/18acI6B+JEHUF8wCx5/fnz1q8b6Y8lqfKQIHDh+WB+Rqg0LIuImfCeGBQVOnfu7ECcwLsBCHH6Mx4k0tdff91plVC10okT5vcejAOKiKpXArIBxjIzcUIfI3BckBW8tfj4eDne6e9fqEMf76zqBOFDJ06Y+wKSsZkMreoJ5rs0ZmSbiRNQN1LXCe6lZ75bTZnHT6vmOF3+snCPQZzQx0xV4FexHwoWZgNxYtBHS4xxSu033y8gQHygxWpV+dTyuJiJjrFZmflaHvbDOgLpUCdOmMc7OL4V8VDVY17q+1vVKC0/QinyHogNnrwbmOt0tQ0yok6mU8RGV2WwT3dcuxoj52uhnxSZylw3yCt494E91ae6UxUQczln21D5+PbRZgEhTgR77LTqw0sT1jsQJ9R4rPKOmb2TZmmhzFS6q2Ug3vu+E8Qg/frE8fT7aL5QF8Jz31/DvaYTJ3C/47mhG54rUF0ym7/93CwUJPC8AGEKBuxB1gXxRxnerQd9tFiqXSGtrHj3xvNAPddUPn18U2m8ZAQYAUaAEWAEGAFGgBFgBC4HBPBdr2HlSPl9j4kTl8MZ5T5c6QhcMPIEPvLiI6tysuMDKCR+EbIDM6rh4Hv11VeN8/PFF1/QjBkzjG19BXXAQQ1yAz7aYuYbHH+QFvbGUA+OC0UBrEMSGM5+zN5WBvIEDDPp0dY1a9bIcAkITaBMzc5T25AZ1p2jyAs5ZYTBwA8qAgj/oOz+++93cJardCzd9RWz+3TlC8j6IzQGMEWYkEcffdSoDjPegVsgTWEIBQ70e+/evRLTv//+2/h4D0wxaxEWFRUlMQTW9957r9EU5EcafqgLFkgcEcoEBrILCAq4Xk6ePElQmTAbzg+knbds2SJxxAzNb7/91siGGZ6oA2FbduzYIfOg37NnzzbyoM/r19vk3pEIJwNUOJQ9/fTT8lygv7imdu3aRZjdCcM50meN4tpDvs8//1wVlzNJFV5w1ruzQN5/OBYc7ghvAkKGOucITwFMlLly1qg8viyDeU/4c57QF5BrdMcNnDTqGsF9CWIGnEEINeStQX5dnXPlUMJSpWEJmXaz4VoEZh9++KEMGYNnHs4ZQoooQ7sRZkS3zZs3OzynMHt537598nqHpDtC7Si74447DDKNSnO1PC1IC08L54tynONj7JcPNqHpL7en34e2oZ+faUW3tq0kq1i3y71TGY4n2OsD6tCcNzrSL0Na0cxXOtAzfe1kt1mCeABpfd0w21d3pL/Wvw7NEG348amWNOOV9vTGgLpGdsyeG/P3DmPbvIJ64BCZ/nI7WX7umx0Jyg3K4CyCXS9mE6Pu8U+0oAVvdZKzE1UetBEz2a0MoRgm56pc4ON5vVzZc4RmUDZZOIkDbS21+iHB7onBQQwHMgxOLjPuqg7d0dS9Ud5nMRzw703aLLPjY/yDPaqqoj4vs3LOGGXhDChU8Cpj22pFJzhA7cSdpWXZnZ/u5LT1cA7pQsLfF1slnLIwzD7966V28trHNfjizbWM6uC4n7TYJh9uJLpYWSZk+OGgVYaZ6JOeay3rxnX9+QONpeoE9sPR9+avG6Qqh8of6Ptb1etsCYIIro/hQrll9msdZDv/eL4NPXiN/Xr5dOpWgnqIbv72M02E3VEz6XEtff94c/rigSb0zsD68jmCc6JsgiBvQCUkqXwJ+XzAM0Y5mLDEtvph9ronBkUxReIEWWLp0qUytB2IjQjdod67UBfeqTG+WRneZ2BQZwA5Ee+PeO/Bu7Ey7FPHUmlQhvj111/VpiRxILQeymOMgWIZzJfxDu/QGNMQRkQZ1OX08U6l60u8v2FcBDZQFkNb8C4Jkp+y4cOH05kzjvdyMN+lQVoYIogRyno0Lks/PNWCprzYTl4n3zzSjJpVi5KqQmpMVHmtllBFwPWGchhLMGbiur+uWXkjO9Ro9LEE1x4UlpRjHs7Mkfc3JtzPGC8nDW1N912daJRHSCGEwLEy1IHnOsbXuWK8xXU7dVhbAnFI2TezbWMl7gEcA+Pd3693oA51Y1QWQ63BSNBWMONdjevdGsYaakOKNIisroh5WlVerbYVzmFlCMXgiUF1St3LMwRZUMddL6+THztahIACWUMpYEExqGv9vGOiXp8n6whJ5UrNypM6VJ5gj53qOPoS4xuu9Q/vaUj/vN5RXuu4Xge0jzOyvSwIFiq0m5HoYsXf9z6QaUcLFRZlUHn584W28j5CG9FWvKOBWOCv4V7Du2UNEdrni8FCJU68n+K5MU7cT1eL+0LZc0KZAiGBdPO3n/r1CrwnPtua3r69Ho0Rz51pw9pRogjTA8Mza14usRbhfPA8GP1QU6MpXYQClxrbsGRjBBgBRoARYAQYAUaAEWAEGAFGgBFgBC5WBAoEqmFQBIBigrPftGnTHA4FkgMcdMoQGgOhKNTMf8yGfvbZZ2nw4MEqC40YMcJYN69AehfOOzi5CxcubCnBay5jtQ3nJmbJFylim+1cunRpmjBhgkNWzEZDCALV1tDQUEOZABkRokH/KP39998bJBGoBiDUAeI/QyYYv1q1ask0tB0Gx6bunJeJ2h9nfT19+rQMnaCy4mMxwimgfTAQA/CRGOElYHCiwnkbaAP5AwSOyMhIo+o2bdo4kAVAEPDWAo0jwg889dRTlJiYKM+DOSyMah8+vCP8RXx8vEzCOevXr5/DtQlHBbDUw2u0bdvWYXanHmoDBB+ENoFiA645kHJKliypDilDLcC5oWz+/PlqNSDLQN9/uHZxn1SsaHcOV6pUyUGFBbNZg2XBuif8PU8qZAr6jVAxkCxX1wjuSxBO8OzLbwMxDc9WKL8o69mzp4NDSb9ekQfy6Hg2wXDNQg0oOtrmEMc9MmDAAMM5hjy6ow3brgwz2hRpAR+Z4fREnHYlMw6pswd7VCMrh7qzeiEVDsWDkEK2YU7cttKZpH9gRuxlZZhFqRw8SHulX20567R4sUIyS/GihWS4DhAqlI0VZAvIIFsZnB1wJoUXKyx3g3H8eK8khxnmICI81qsaoW4YQkAgpAfKKksR0t5WtnSLLa489vUQ4S1U+AiEsFB9REiPQM/G1cMHHMo4adU0y7QeDcsZ6fqMW5V4XpBEZoqQIDA4nuA8NBtm4Sobcn0NgiPIXzt24qxRRYVo21hpJFis6LNJjwkJcXeWoc0ch9PHlZWNtKte6I4pV2Ws9j3Zu7qc/azwwTWIGdpIV/b1LLuzR6U5W07QwgH0bl6eBgkZwhgRZgSG67quIO7AiaIchiA4rUuxk5yCcX87a6tKf1Xcp61F+A4V0gWzyPu1jZP3l8ozbt4utSqX/vYTEuXKejevIGPAq23cn5iR/qy4bqHe0iAhUsSB940go+o0L0EAxTsFfiDxgjyn3muwvPXWWwnENhhImYpEKhNMf0AKhfpE0aK284z3Hrwbg6SsTCeEgpCJ8U0Z3mFvvPFGioiwOdDxjoRxWidFq7zBXuLdDKHfChWyPWexfP7556ldu3bGoUEOVBbsd2k4xBVpoUFiJA3pW5PiSttUZ3CdJAnyIK5fszqDap95ifvu43sayXIFMNAJw3X/+HVJDko5asY49kO9Z83ODKxKA8EHYYPUzBgQvW7vkCDJfSrPD/N3qdU8S4RiAlmjcO54WzIsxIFsiAKDBdkN94A6Bpz4w4TEv7LVO4/K8AdqW1/qagI6YaJOXIQx8x7kCVdqUHp9nq7rhLbDWZ6Nd3jnwJgMw3lGv8yWcvi4QQbB7P1IIemqG95HEAZCGVQnck+tSrrgy2CPnc46iPfDJlVKSSUo5MGYfP/VVR1UQn79d7ez4g7pgXjv+22xnViIsCF4h1Mh4aBWhbZ+eHcjh+P6s4H7/U1B5K0TV9J4R04QymUIRQVSBQwEhmma2kwg+jlrte39DPXfJUKjqPdzbEMlDOTifiL0DMa3bKGQwcYIMAKMACPACDACjAAjwAgwAowAI8AIXOoIBIw8gQ+y+Kjq7AcZeMRQVqY77d977z2qVq2a2uWwxOxmOOZgkArGjDErgyMQH3f9Nf3DsKoLpAMoYyjTQ3uoNHxgVrPs4WBE3GllKrYytkePHm2QGdR+LCGvj33K9DIqTS2d9RWkDeXcxIw8fCw2Gz6g6woAUMAItJll/VX9COehDLP/vDUdE39xxDWlq324aguUQqxie4MQoqxbt24OZBGVrggx2IYqgzI4rRHKAeoRcDgoB4faj6UuL40ZpIG0QN9/IBNZhcnBfa3CkICsA+dOMCxY94S/50nJl+N6g9KDlYFkoyvCWOUJdJpyoJnrBYFCmf5syMzMJIQXgaEvcDxZGZxjKkyPPkPYKq+eBueqsge6VyWrGfp4vD8tYpB7ah1E2Acra1vbno4ZwMr0WYFQSdAdNCoPlpDxRvxqZZjlbmVwVusfl1WeplXtpADMulXOLrUfSxBHlO07aj3b9a+VdlWJTqJNunXWQnfMFOoVgTQ495STHI4hKGB4YlDEUOVmWshq6yE7eoqP78rBpuqGSoCahQtihbPzo/J7uoQMtrIybsgNyAcnvDJ3DgIQQpSTFKQgc59UPWoZpdV9TGuX2u/JEg7Qvi0qWGZFupoNDufKUQ/ULTKPn6EluQoNOH+P9UyyrLuiIJ7c372KsW+eJkkfjPvbOJDFChRfEBfeygaL5wvOBQwz9pX4QiD6qYgaqHuDII9Y3Ru4tkH8wU+/llDGX8O7Ct4p8NPfPfR6oVikbOPGjWo1z1IP26Hv1N9/9XcaKBgpA2kXBFMrQ7gPkIjzy/Du3qpVK8vD6X1cu3atkSfY79IbxXWnbIgg2Fmp3YBQh32eWCPhnK0klCPMhueNHjIJ6hDK5m84rFbpkZ7VLMsjw8PXVjWe2xgjnSniqPAZRqViJSq8iANZsJ02bqp8IBqo8Q7PSitC2tlz/9HvuUo5eAbBGa0M49E1GlFhcbKdwKTy+LOMCLWTGrwhO3UTs+uVQZnAbGpmPtL1MB8qH4iZiuyC52qFqLznV+W9UMtgjp3O+gSSDtR6zIb3QxDTlOn3mEqzWvr73ocxXtWBceXOzpWtDiPDpOhKLpaZPEwEkUaRF/UiIC49f6NdYQpqLcpUG7Ht6/tt8VwiMOrQx3Rsw/AOADUwjG1QnGBjBBgBRoARYAQYAUaAEWAEGAFGgBFgBC51BAJGnvAWCF3uV/+Ya64H6g4tWrQwkq1mysGZV726fUalkdnLFdSjx2bWi5cqZf9YB6UCK9Nn3SvliXPnzjlIG0NxwpnVrFnT2AXZZJ1sona46qsusw8yBsImWP0wq06Zcu6q7UAs9X7o9UHFQxmcsd5YoHEE2cGKsGDVpqZNm1olU4kS9g94zpwB5crZZp+hAnVNWFYmEiEpvX//fhkeZNmyZYTQJYoM46yMr+mBvP/QBlf3sH5PoY+Btvy+Jzw9T5jZq8LiAB/ck87M2TXmLL8/6SA3WJGBUKd+vUJuXZk+KxfXPZxmVs8WpClFHpBl0tOtiQWqXrXcqJEnMOvWmWEWn3L+OsuDdCg3wKliZToxI+eU3XG+86BdhaJWRTt5waoOfb9eTs9r9YEf+8NzlSywroeAwLYyB6fqfyrVvswUoSZUeADMujQfq7FwLimiAmLdI9Z1IE0RAlBnIUHI88Rw7rqLWccwKGKYQ3foITt0xxPyYzbxu7nhOrD9RG9rBz72eWtolzJPCAs6YUKpmqjy5qV+DYKsoBz15nxqW3dG+SqtXic3fIuq07zEbFVl2zXlFZVmXu4+Ylc+waxWNbPcnA/beniJbfvtjptA399Wx9bTaovZ6M4MjurauRjgOt6fS04KRD+VExjHhuT+HSI+/K//7iHMMnd37p211590vDfhGYyQbRjzQWjTVeCw38o6d+5MBQsWtNplkOOwU38/0VUoXI1neO/SQ+FZHiSAiVC0c2ZKBQr7EXpKWbDfpVeIMDgwPKNdOcURvsoT0687c/4yJe1kr5zT9vEOYaeUVbdwRqt9IGDozww8u82GfmAcsrISmsPVWV/L5KrYoLzFcEfLtqUZJLRugpRofgZ1qmcnKkxdYScVWrXH2zTM2FcWVsSmXKK2XS1rincIhEKBQRHDHLpDhUAAdi1EmA/ddgm1KRXWC3Xc0rqSvvuiWQ/m2Omsk0pZwWp/mCAcqdARCPGinzur/EjT39/09zqr/Pp+VW6PRsDF2GtFhlV14ZoIhNWo4LyeuBg7yQbqMspUe7Gt90Pt15f6fr0c3iuVPfD5cnrr140y9JX+3qL285IRYAQYAUaAEWAEGAFGgBFgBBgBRoARuBwQ8PxLkJveYqaWCnXhLKv+MXbPnj1GtqQk144QOKZnzpwp8ytnpFFYrMCZFwjVCd0Zrtfvz7ruPMQMfOVYtKoTUsLoq3Jsw3kJ1QvdXPVVV+UYM2aMQygRvQ59Hcc6ceKES8eunt/dOhyzzvqIcwRHt/7B3V19an+gcUQ7PDUV9sRVfk+JGOY6li9fTggfMmvWLJcS2uZy/m4H8v5DW3Snu7ltrkgD5ry+bOfHPeHLedKdSZBPd2VKncNVnkDt08ks5jqVRLs5XSdSgBThjCBlLofZvO3btzcn59nWZ7Ep+fI8mXITQBRAWABXpjtjzPmcObz1GbUJZYqbizls6/vTnEjvFw2xO+UdCmsbVsoU2m6nq/pMVoQVWZbrjNMLwLEB5zB+i4VyQBsRwiAQpn8oRxgKbwSfQIqYKJzJMITuqJIbI1sP2QFnkZkMMmFBCqlZ03d3rezS4ehtH4sXtakQoNxuC8eguT7VDqSrsBjmPPo2ZqOCOAE7KkJ4lDLJs+t5D2phUCJ8DElSJdb1tVtZ2w8Hqu4Q0dui1lXbsV2lrOtxUycDHcq0x1sP9P2t2uZsWdnN/YvrbkHuzHuE7oHjNxD9BDHruRtqSqcS2gYH3gd/2FS24CRtL9RwMEMfITt0Yo2zfviSDnUnKHOBfKkTJbypSycCm8s5GyN05QZXJGHU526/+Zj+bPvSl2C+Sx/JOmUQAaqWC3f5/ASBCs9DK8KCjkmMC8WcIqIOKzuYaVcB0x2uVnnhkFbqM+nZ9vta5YXTOpg2fcV+o/owcR9ZjXcqw8KNR6Q6hqvnrMrryTLtmL2/7sIumevrKRRwRk7bJs83QqQ0FCFaYBhn8GyAQTVDJ4OAZDXij81yH/5AfUTfb+y4CFaCPXZaddHdsx3kW0UMAsbVK9hJ7lb1+fvep46Fuqu6GR/190artniahjB2zgzkDRCM8Y4M5RIQbfEu4W8/cbx7uibKcD8qxN6UZfsIPxhILV2E4lnnemWk4oxM5D+MACPACDACjAAjwAgwAowAI8AIMAKMwCWOQMC+eNWrV8+IjewJJllZdtnakiXtMyGtyur74ei/lEwPU4CYz+6sTJkyBnlCL+uuHPZnZ9tnknmSX+XBuQi2g1sdy9eljkWwcfS1jd6UgwoFpLUfe+wxb4oFLO+Vcv/5e0/4c5700D36M8zqJOrKNlb7L3Ta8eP22efetCUjI8Oj7HB0KAcRPvY6KC+YavBGOttU1OXmydP2Gaa6OoRVIX2/J7MbrerwJ23yslSjOD5kPzZ6pbFttTJNzMYNFHlCn83obLaxVRuQhpmXKAMCAkJ3KInrDXsyDef1dSKsgW7IO3qGLeQRnFf92sbru/1e188lrkE4r1wRQnTyRLg2q9pZQ0oJ6XrlmD8sHJaunHr7NVl9vV3O6rZKB5nGlen1ZuTYVaiclTmlzbzWy1rlD9VmZmefsBFGkC+/729350Xfj+cNLBD9RD0IGYIQCn8s2StmnNtD5oDENG35fvmDQ/zjuxtaSq+jDl9t9+7dhJBtIPvlt+mKZpf6eOfve4Mr7PX7U3doWpXBsyhNkC2CYToJTneCWx1Lv++hApSfhjAes9ccNA45bm4K4efKEN7phpYVXWXxeN/aXfZ3GFfvJVYVdhGKGCBPwKCspMgTekijrlp4D+T7e+0BIwxEF7GvQWUb4QL7LjbTr4tgjJ1W/XVHWNRJh1m5z3arelSav+99JTUyZIYIceXKMgV50l8DCc8d6VbHCBgAE3/7iXajnk/uaURQd/lzaapBAMI+hMDC7+PJW2hwjyrUv108ktkYAUaAEWAEGAFGgBFgBBgBRoARYAQYgUsaAddf2YPYNcjlYgYzDBLwrsJu6JLxUVGO8qZBbGJAqtbbu3KlawcXDqjP3tPLetIYnVQwfPhwuvnmmz0pRtHR1rHBPSqcT5l0LIKNY350afHixQ7EiXvvvZcglR0XF0dwPEREREhFlfj4eCP0QyDbdaXcf/7eE/6cJ/2Zlpxsm33s7Bxu2bLF2a6LIl0ndyCe/ciRIz1qlzsnmqoEMvuYmQnDTHBXTop1KXZnhiofiGWk9hF8z5Ecl04L7Feml1NpwVxi1io+Untj89cfpgzx4b5kmD1+uzfl9bx/C8eUMoRH8cZASujVrDx98dc2SZZB2IhEoYSgK2l0FrMXdZu9xu6APnvuPD361Qp9t7GuzwB98ptVpM7Lx/c2JFchMOBo0NUhgJMqa1SurejHgZPcnekzYQ8IZQmzqoZefl9uCAmkJWgKEXoed+u4Plq4EPPS1TXczeLFsXTnUIqo25XpxJLYSPvs2Py+vxGCw9W52S3CaChTahmB6Keqs66Qb8fvyd41CMSgteLZBul+hQ8cjfeOXEY/Pd2KdOl7Vd7X5f33328QJ6pWrUoPPfSQVAkCKVe9U/zyyy+E941Am67wgPB6bdu2dXoId+Oh04L5tMPf9wZXzcSzCOE4QHrDdQBSDRyiVoaQMtgfDINKCmamw/aK0APqPrA6VooII6EsIsyu1KPSgrnUwzl5ehw4dgNBnoAi0uzV9vHOWyJDjAhHgjFy2dZ0+ks4nB/tWU06vmcJ4iAMJCpzKAe0XRkUe+7/fJnadFiqZwmuj3s/s+VJKBMmlW8cMgZxI9hjp1XT8ex2NYbuzFX0QNm4mDCrKhzS9LHel/e+qrnqWah0o3jWu7KtWigrV/lc7cP5BiFCJ0iY8+88YL9fFcHV336qY4D8dbMII4MfwlFB4WLZ1jQHghMIQyAo9jIRYVUdvGQEGAFGgBFgBBgBRoARYAQYAUaAEWAELhUELhh5Ah9alyxZInECOUJ3NJrB0wkFrsIDmMtdDNsI+aBCVSBcBeSA8SHbyhBzWQ9L4m0YET3EB8JcXGpYWWGi0vITR3XMYC5nz55tVA/1iXfeecfYViuZmZkO14NKD8TySrn//L0n/DlP1apVM07VihXWDl+VYePGjWr1olzqOOIZFehnix5zffqq/dS0mjVJbuX2o4bDJ9BA6YQNEDhcmb7flWS6qzp83accLyh/dcNYlzP8Pp6yRTpukHfOukPUp3kFrPpsycLhp2SaUUn72tZjmasDYDYuyBOweWI2boJwcMwQ5xzWXMR+L12iiFxXf4T/yjAoOBzNdu2gQGY4lpRzCbO33VmL6tFSEQD5Vu88Sh3qWPdLDz8BaexiIdZOT/14cLhBcQC2YttRalcrRt9trGNG93LhZFNWu5LzuOYqj9UShBRXtl1z4IC44s6iNFKR3n+rcrqTVZe4z+/7G/dn6xqlrZoo03AdK1NS6oHop6pTLeEUbyLixOM3qHOCiA+fTi+OXysd4nBcA896CSVVdr+WUEvQxyuE7YiNdSQi4QA7duzw6zjOCiPknDI9ZJVK05dr1qzRNy+6dX28C8a7NO5tJX3/tyCH9XTiZAThJliG0FZKRQj3rSvyxFYR3keZ+fms0oO1nLrcFhYA9Q+9sSbVcBGG4bYPFstmgOCmiHn+tGuSUI9R4wgIdiBEeWsIywHyBJzea4SKRbRQIlIEvJ5NHFWWULc+3oFcs+ew+yOq83jek8HOfXVe5Qjm2GnVEJAjXJEnklNtxFI8e0EQcmf+vveBJKDUtEBqdXbdnRMn9i8t/Iy7drnav0vcr86uRVxn6pqtJZ4zSqXC335atQch9vCD2tIjghg0SiiETV1mu19BemXyhBVqnMYIMAKMACPACDACjAAjwAgwAowAI3ApIeA+KHuQetOtWzej5m+//ZbOn7eWggXBYt26dTIvZoPVqlXLKHeprPTq1cto6tixY41184q+D9LL3lqHDh2MIn/++Sfl5DifJbp06VJatGgRLVtmm7FkFLyIV/ILx/yAANgru/3229Wqw3LevHkO26429u2zf2B2lU/tu1LuP3/vCX/OU+HChalx48YScszEXbhwoYLfYYn79Ouvv3ZI83UDBC1fQ2y4OmaNGjVIzcaFJDzUgpwZVDSAG36unkF6eT0u9Qwhdf/jghR9t1zHjPkh363Okx6ohMbCwakMH34znUgwQ+ZfV19olGgvp8oHa4mZsJMW7zGqv+/qKlRZOMCd/Qb3qGrk1We0GolerGAW9EsTbGMxijWqEkmY6eqtxUYWlWVRDqE79JAdPRqVy1MdnHUgKrj76bO3E8VsUOTHrN9CBYXchRtrWtVO1pm4aK/T3L8ttu9rkRTtNJ++o2Fl+/Ux8d89BBl6K5uz7qAxyxzYekLMsKxHKIMcEgoXVob0+Rvs3rhKwvHhzuLFOYbjEAZnnjPlFzju/tTCyej45Pf9PU04qeBEsjI415RyC2Z+q+smEP2EY29bruPW7MdELHqQg/q2sBOYnBFd0PYTWhghq36Y03SS8fXXX29JnECZP/74w1w0INs1a9Y06oG6hU4ENnaIlW3btgWsDQhTEgzz973BXZt0x+fbEzdZ3lMIPfH1rOAQXdA+XIvKQIhz5niHY145+/Ec8EStRtXr7xKKGJjZDoODGkQEZ2Md0h+/Lsk45MxcQp6R4OXK8m3pNOJ3u2LYTWKmvXJEe1NV65p2EhcUluZvOGQU71IvL0kP+Lob67BfN5W/foCIWHrd7taDOXZaHft3QWg5e86aEbko+YgRIgvEAVfht1TdgXjv0xW4oHoF9SqzfSTCWYBEEwhDSChn9tdK+/+C+rjrbz+hdoGxDT+rcENRghT08DX29001xlq184CmsGW1n9MYAUaAEWAEGAFGgBFgBBgBRoARYAQYgYsFgQtGnrjmmmsMDKZNm0ZvvfWWsa1WoNKAj8DK4GQuWND9TE+V/2JZ6kSIoUOH0ty5c/M0bcGCBfTMM88Y6XoZI9HNCma6N2vWTObatGkTDRw4kM6ePZun1OjRo6l169bUrl07eu211/Lsv1gTdEyCiWN+9F+fpWk1CxNKBIMHD3bZFD0kwsyZM13mNe+8WO4/OD/gbMcPjv9Am7/3hL/nqWPHjkaXEEZn//79xrZagfKIIoipNG+XeugdhBoJtOG5e/fddxvVInSHlXNs1apVVLt2bflsufbaa+k/swfRqMFxBY6Rp/tWNxI/mbJVylV/P2cn/Soczi+I2dp3fbLEqUPUKOjHSsXoUKpRsYSsAQoHIApgtqBuIC+8+uN6Q/0C8uuuZuzqZQOxvlrMXEXbYA0SI93OrKxWLlxKgyM/ZjrrktZI88TgxMXs39vFrF44z2FwOD9/Yy1PilvmgRMMhvo+z1WhwHarmnkJCcj7xQNN3P66aOE+Xu9fV+b/8O6GVLig7TUHH/+hxDH4i+UEx6Ru7evEkFJKWCXUTSZpJAmVD44ZNasSab2b2Z3guMx/mJ8i5dO/+2enw3UDsggUQpS989tmcV+oLdsSpIb3f99sJA5oF2+se7sCx/vQcWvpzFlHQiq2Xxi/zriHmgl1F0+IJXD6X6vNkH7u+zWUdswm96+3bdzcXbRw4xEjSXca5vf9jevqzV835MEZ18CQ7+yqB7rjLxD9/ERcXwM/XCzvlZ/+l5cABgc1nE/K9NnASNPD6qwXTmtvTFc6ApHCTFwDQRnvTXg3DIYhLIgiC2JsuO222/K8f0IdQ3+n96UdOI6yf//996J8b1Dtc7bsJJzmXRrYnwn3j1xOz4r7CqTB8fN20SOjVwiFknXOigckknr/2AAAQABJREFUXVdm+XfzEcJzy2xwkuqExR7iWVyggHsymrkeX7dnrjpgFL1GzG53Z+1q21V9MGaZx2935bH/cNYp+mrWdnp09EojO94L+rWNN7a9WQEJDjPzYQjdMSVXSQMOd4T1MNsTggDiyXinxiuMxSr/Q9dUM6qD+g7em3Bd6Uo7RgYvVoI5dnrRDJkVZJqRf23NUwzkzmHaPaOTBfJk1hIC8d73QPcqxnsWFIVuHL5QjD8b5XvEF9O30e1iTABxMlA2XRCMf7MgeYKIqhN+dDKNv/1EiA6Mbfjd+fESS3KxHhLMfG0XL1rI6D7OoTNy44YNG+jWW2+V4wT+n2BjBBgBRoARYAQYAUaAEWAEGAFGgBFgBC4kAvb/ZvO5FXD2ffTRR/Too4/KI7/yyis0f/58wox4hLWAA3DSpEmGgw6znnVyQT4316/DoU/XXXedMduua9eu8sNAp06dZL3//PMP/frrr8Yx4NiGc9IX+/nnn6lJkyYSN8wwBJmiZ8+e1KhRIzp8+DBBkQJkFWVDhgxRqxf9Mj9xDDYYnTt3pg8++EAeZtCgQYRrAP0LCQkhqIKMGjXKrVMgPj7eaCYUWrp06UJ9+vQhOPzbtGlj7LNauVjuPxB4UlNTZROhtNGiRQur5vqV5s894e95ev755+W5hVoDHEq4N3GOmjdvTiCOTJ482YhR708nMet3506b8+Omm26SxKl69epR3759Zdggf+pWZdGXlStX0vTp0+WxGjZsSDfccAO1atVKOsngyMJ1qwzPlrAw9zPbVX44o+H0/HGBbTYxPrCqWacqDxwOCDWg8qj0QC2f7lNDfhhGfZgliI/ebcTMURwTUsmIv75Li6n9TN8agTq0R/XM0GTcr25Q1qMyPRqVpVHTbUohUNS4p2uiZbmPJieLmbV2PuXxk2do/9GTtGZnhkN+OGteE+QEyL77am1qwsm1QRZX9V/XrDwVLVzQ1yrdloNqxE+51xaO2VCQT5SzGgQLOEBe/dHWpvcmbZbS192Eg/MqQR6Ac1GFGsGB7u5amSLCbGoM2Eaoj8+m2hw6mKldVZBWWopQIMoGdqxMcHjAQNzIOXWW7uiUQBGhIcKxlUXAXjkTQIpxFrZG1eduiVmf/d5fRB3rxohrN5y2H8yWIVIU+QUzyJ8TEvie2m3t40X790vSEMg7cKDAUVk7riRlCAcriCUISaIMEt6lioeoTbnM7/t7ztpDdGfaEnn/lo8qJuLRZ9Hf4vpX5CMoTdwvlFt087effVtWoCVb0mSVIIAdEPcPzmeFqFBxL52gn/+328AJ95HZwZcQG2ZIrg8VTk8Qh3AtIYwM8rsyjOkgL2CsgdIRxlI4ofDuh+0pU6Y4hPVwVZev+6Ce1rRpU/nuMmfOHHlsjHcgdqxevZqgSKHGe1+PYQ57h7G0f//+VLVqVbrxxht9rTZPOX/eG/JUZkoAUee562uK6+OEMcYtEIow+Ol2V5fK8tnjaha3nt+bdTy/nuidZDhbv5q5g1btOCoUKaLlvQvyzlyhhqPuFzwzbm+f4M0h/MorlWyW2t4NUVFHJ6GU9INApQiqPXgWod0rhHqE1bN075EcGvFHsl5UzKY/Je9XM9ZQp3m1Xx2PiGYOFWobVzcsK8Nd4RmfI95xYIpAqGUL6OqIP5MJREDYQUHOG/OIjVjvy0GCOXb60h6M4xsFUQDvZpFinMF7It5t1BiKa+CWNnEeV+3vex9Cd7w/qAHd8dFi2Qa0A0RLnWyJxrw+oA69MC4wpCiQLf+38TC1rBFNIYUK0Epx787SyEY9GpcV438ZBwz86WcdMdZD0QsqNCCIPPb1SuouruvacRGSpIiQNOodCAe9NpcgqxpQKtzxfeBOQYbGfVFRjI0gkykDmVypLu7du9cI76r285IRYAQYAUaAEWAEGAFGgBFgBBgBRoARyE8ELhh5Ap289957ZfxlkChg+NiKn9lAnMCHX32mvTnPxb4Np2JGRobxUWDixImEn9latmxJUIbw1RCrGSoEcJ5jJj9mtDub1T5mzBjp+PT1WBeiXH7hGOy+gTQAJY0ff/xRHgpOBz1sCxJBFkJIG6sZ/thfv359wvUCpzUMH5zwAznHHXkC+S/0/YeZsbojRc1aRdsCaf7cE/6ep2LFisn7XBGacC5xDeskA/R13LhxNGDAAJ+7DZWSqVOnyvK47z/99FO5DqdVoAgpCEMyfvx4AqEEM8LQl5EjR8qfueFQqXjqqafMyW63HxRhJsoKFQrMYscHWmVwHN7ZubKQvK9I3/wdPCnzJKEk8Uq/2vTSD+vloUGU0MkSqj1YDrullsv463reQKxDAQLy6sra1CqtVl0u4XhV5AnIPd8lcLSaPfz7YrujylmFUNqAIwmzGP0xnE983J+23K7Egg/pwbQ0MaNYt6ycswZ5AundBBkFs3XHzU2R2X6Yl0L4ma2z+NA/sIOjE/GoIBDoZlZmqCQccMPvqEdDvrWpHixOTiP8zAZH3RsD6pqTvdoecn0NggIC4p6rvpgreOv2egRHo6cWJmaNviecQ499tUI6JeGYxPVidc1c37Ii3SB+VpZf9/fzN9WkN37eKNVWoLhiNlx/7wysn4eQ4G8/EapEv65/WbiH8DMblDjgSDMTIm4Qzzel3gEHnCqL6wfOK3f2zjvvSKIuxgAoTAwbNsyhSHh4uFS0Gj58uEN6oDYSExMJpIPu3bvLKtEGs9IF3udBxFPEaW+PXUAQvJ599ll6++23ZVEQQ15++WW5HkjyhD/vDZ70qUjhAjRcXIMY68zPGTwHQOZqK0hmIG4Fy/oIwmJq2gmDVAbSgU6CUscFcWLEXQ2peLH8+5cRDnH1DoBxB/eAJ4bnuOrDdBG6w4o8geeXJ0oA3YRi0FO9a+S5Tz1ph56nnginAaUI1R/s05V59LyBWj8oiFvKDmeelA5uwdnxyYI5dnrboNf615GqLFbkWtQFnF/rV9crsksg3vtA0PvywSb0zeydeZStoPJ0v7ify4vnvr+G/mF8hWIXiHqKrKfXC6UUECXM5m8/n+pdnYaOXSPfATCuWo2tOGa/dnF0Y6tKDocHYez2jvH0/T+7ZDqInKNn2Ei9OnlCD8WE/w+hXgcCKxsjwAgwAowAI8AIMAKMACPACDACjAAjcCEQsE8z9eHoRYrYP777Ek4DZd59913pXIQT2Gz40ItZCMuWLZOOYvN+zNKHhYZ69lHNXF5te1MP2uTMdDwKFXL8yFiqVCnp3Hz//fcpIcHR8YL6ypcvT/jwPWPGDNIl+NWxvGkjZqH//fffTuWRIZu8YsUKOVtP1e/JUj/Hel9R1pv2OTuWGTOrfP7gqLcfTm1Xpuc199WqnLM8erq+DrxAjMBHf5x73eBcgHMdaixwWDsztPGnn36S+cx1qDI6puocqX0o78/9p2Nkrlsdw9VSKSUgD65JV321qkcd05P739d7IhDnCU6YWbNmSaeWuR947i1atEiqjpj3ebMN1RGoykBlRjc4msxWtKjvigF4/uE4zhxfIMD8/vvv9NlnnwkHfd5jm9ti3oZTHx+Gfx/ahqa91I5+GdKKJr/Ylma92oFubRtHcDidFCQCu9k/quqHK+KHgkHnerE05tFmDrLq9uOJGbBiNt83YhYnnDRm09ugwkWY8+jbhXJDSuhpWMdMQmUqD2bRKgNxIiLU+bNB5cPSLNe8aW+WsVs/jpGoreBDPRw/iPf+9cNN5exVf4kTqnqdLIHjYAajP2ZFCNHr69uiAsFpDevdvLylM+4+oUQANRGzU1vVA4fmCzfVykM+aVWjtFQYQD7EWreaJQ2Z/E/ubSRnb6r69GWvpuVp5P2NPT6veln9WksQigpjH2+RZ9Yp8sOp8tE9DS0d8bp/orB2/anjVBGzTr97rIV0jFjhUyc+QhI/IDtf0Im0vz/3t2qHJ8sGlSNFW5uRHotelWueFEWfCZzh7LIyf/qJfiOczZu31yU4fM2G66+PuA7xfEkqbwsRpOeBo/e9O+uTmRgFx5MnhnBsIFOC9Gc2jLF4l8ZYaGX6eO7u/ciqvEqDohrGgAYNGqgkY4nQe2iD1TuwkcmDFYQf+fLLL40wIeYi+tij3hPMeTzZ9vW9wZO6kQfPcBCKFrwlMHu+jRzvZr7Snn58qiW1qxUjnIZE2Sfzht5DWW/HGpQxG+7HR66tRm8PrEe4f82G+/yWNpXo20ebE0JAmU09d4qK0BTuzOqZocqEFLJf3+rZMX/DIbVbznA3NtysQI1A2Qyh9nP23H9y0xMHLEgreGbcd3UiTXy2NQ27ubbTsUAdw5Ml7l8835UhjAfCefhjCntndUBVB5jj90D3qvJacpbXXXowx053x8b+EPHepwyKR58/0NgIsabSscS72af3NXJQhVL79WdoYe16U/v9ee9TdSSUKS5UuerQ3Dc60s/PtKJJQ1vL9RF3NZD3z8kz9lBaToZIVZXL5YD28QQCpHqf0TNjfHnnjvoO75D6fn/6WTe+JI1/siUhhA4IVWbDu+K7g+rLZ5pVSLBBnSrTczfUtDx3qq7XX39dquXhf4033niDiRMKGF4yAowAI8AIMAKMACPACDACjAAjwAhcEASuOn36tO3L0gU5vONBjx49KmeinzlzhqKioghOR28dqo41XpxbiD2NWdsHDthkvCFDjJ/+wTdQLT9+/LjEFLGmgSmc7LpDPVDHuRD15CeOwe7fwYMHad++fVS6dGkqVw5xpe0fCz05NrCAsgk+EOOjky/nOL/vPzjhEfYB9sUXX9Cdd97pSVf9zuPPPeHvecrMzJThOnCeKlasSHr8dr87llsBFD1OnTpFcIaVKJHXQReo4+A5jWs2PT1dEtgqVapEvjrdTp89T+nHbLP3i4YUcFAEMLf33s+WEUIjwKYOa+syr7mst9snz5yTs0URZqFYSCERo7xIUENLeNs+zu8dApCCPyUcGO4cV1D52LrvGO1Ns0msx0YWo6qCPAB5blcGR6ce29sq7/nz/9HW/cdoj5COPyHUBaIFcaSycLr4EwbF6jhIQ19TRR/EISm6REjA7hU4JI8IJY+sE2cITqky4r5whU1+3N/DJ26iP3Nl/n99thWVFecMhnMJrGFlI4u6bKfMpP3xtp9aUbl6TgCPmf3oP44NZQtPDc+eM6Ic8PWmnKofz+ft27cTliArFC9eXO3KtyXGS7zrYiyqXLky+UPcc9ZojKl4/0Hdvo4/zurW0/15b9DrwXr2ibMGKaKEIFA4Ixbg2u384hxZHGFmxj/RwlxVQLePifv5kFB8wnUPYke0UKexcoIG9KBcWdAQwPMDZkWG8/agwR47vW0P8uN6PZhxShJD8Lx3dh95W7e3731p4t1VYe3qnlkmCLCPjV4pm3OzICWBuOSp9X5zgXwXBdEU5GJlGcdPyzEGqjB4h/Am9Jm3/VTHVMusnDN0QISECStSSCjGFZVjldrnbol3JahKhBQqKEnRen78/wLTJxzo+3mdEWAEGAFGgBFwhUBycjIlJSW5yuLRvv4fLPMo3/jHm3iUjzMxAowAI8AIMAKMgH8IXKix2fMvuf71z6PSkZGRhN/lbnCMx8bGyl+w+xoWFibjTQf7OBei/vzEMdj9UwQaX48DLKDK4Y/l9/23ZcsWo7kdOnQw1oO94s894e95AlmiTp06Qe0ilDg8UePwtxEgtsXFxcmfv3VliLAH17/9P6Oa7x5rTpgBbrZZqw8YxAl8RC4ZZlMfMucL1DY+RAdKaSFQbeJ6fEcAjmh3xAnUjjyYZYmfN+aOOIG6MNsbqgNWygPeHMuTvFBqqRyb9z7ypKyrPHCoxgoyAH6e2IW8v3EurWbNe9Jub/tprhOz6D0NN2Aui2ePN44wc3k8n6tXr25Oztdtf8dLTxobDAKi1XH9eW8w17d0a5oMPYB0kCK+HNzEkiDz6VT7OxIUbYJtIEC5IkEF+/hcf2ARCARpQrUo2GOnOo43y2Bdr96+93379w76bdFe2fTujcpKdSpzP0BUQDgtZb6OSaq8WuId2Nf3YG/7qY6pliB+4eeLuXpXYtKEL4hyGUaAEWAEGAFGgBFgBBgBRoARYAQYgWAgcFGRJ4LRQa6TEWAELk4EFHkCs2L9lfG+OHvIrfIUgRgxY+5qEV98upDZhj321Qq6pnE5qlEhQjpojxw7RbPXHKRZq2z7kWdgxwQs2BgBRuAiR4Dv74v8BHHz8hWBtiIkB8h/h4XKw66Dx+mhL1dQhzoxVF2QqqAysi/9BP2ycI9BFETjEM6KjRFgBC4+BG5sVckgT/y1Yr9UlWlcpZQk7UGxY/uBbBo7Z5e839F6hLzoUKfMxdcRbhEjwAgwAowAI8AIMAKMACPACDACjAAjwAg4IMDkCQc4eIMRYATyC4H169fLQ/Xs2TO/DsnHuYgRuLNzIm3Yk0V7DufQ0ewzNG5uitPWPtWnOvVpXsHpft7BCDACFxcCfH9fXOeDW3PhEICiyZDra9Cw8esoR4Tu2ZJ6TP6sWoRQBO8NauCzeopVnZzGCDACgUMA6kL3dkukL2dsl5Uu2HCY8LOyauXDafjAenlCVVjl5TRGgBFgBBgBRoARYAQYAUaAEWAEGAFGgBG4sAgUuLCH56MzAozAlYrA8uXLZdc7dux4pULA/dYQKB9VjL4X4Tru6JRgGbsaTqQmVUvRJ/c2YuKEhhuvMgKXAgLBvr9F5Co2RuCSQaBFUjRNeKoldaxrPQNdzk6vG0NjH29B9RK8Cx90yYDADWUELhMEoIT21cNNyVl4nYqCYHFzm0r0+QONKSbCs3BXOjSFC/IAp+PB64wAI8AIMAKMACPACJw+e54yc84SlL7Y8heBDbszaei4NfTp1K107OTZ/D04H40RYAQYgXxG4KrTp0/zSJPPoPPhGAFGgGj7dtssrUqVKhHis7MxAjoCWTlnaM+RHMo6cYbiY8IotmQxuuoqPQevMwKMwKWKQKDv73Pn/6NTZ85LOIqGFKAC/LC4VC+NK67d+N53OOsk7T1yQva9cmwYlQwLueJw4A4zApcDAhiLEHpnb1oORYQWpoQyxalYSEG/ugbnwNlz/8l3YH/r8qshXJgRYAQYAUaAEbjIEUhOTqakpCS/W9n/g2Ue1TH+8SYe5eNM/iNwXrxjLUo+QpMW76VNe49RRvZpo9KK0cWoS4Oy1KNROSob6T1R1aiIV9wigP9db31vofhWa/vf9b6rq9DtHeLdluMMjAAjwAj4i8CFGps5bIe/Z47LMwKMgE8IJCYm+lSOC10ZCJQQH52dzeK7MhDgXjICly8Cgb6/Cxa4ylKx5vJFkHt2uSAAng9mo/syI/1ywYD7wQhcLghgLKoYHSp/gepTSKECFMJfbAIFJ9fDCDACjAAjwAgwApcYAiCZPzVmpeGwNzcfjvxvZu2gH+el0Gu31aHm1aLNWS75bSg8zF9/SPYjtlRRalS51AXp03/0n1CbOGcc+9QZ+7qR6OfKih3pdCD9pKylbe0YCi/KL8J+QsrFGQFGwA8E+AnkB3hclBFgBBgBRoARYAQYAUaAEWAEGAFGgBFgBBgBRoARYAQYAUaAEWAEGAFGIDAIJKdm0UNfrKCc03YnfflSxSipQjgVKVyQ1qdkGKQK5Hny69U0uEdV6tc27rJSrk3LOkVv/rJRgtq1fpkLRp6AwucLN9WkMbN3UkzJItS7ecXAnGitlilLUmnm6oMyBRPqmDyhgcOrjAAjkO8IMHki3yHnAzICjAAjwAgwAowAI8AIMAKMACPACDACjAAjwAgwAowAI8AIMAKMACPACOgIICzni+PWGcSJUBEKDY77NrViqIBQ+1J2NPsMvfnrevp3U5pMGjltq1Sl7NO8gsrCywAi0CIpmvBjYwQYAUbgSkCgwJXQSe4jI8AIMAKMACPACDACjAAjwAgwAowAI8AIMAKMACPACDACjAAjwAgwAozAxYvA2Lm7KDX9hGxgyeIh9NUjTaldnTIOxAnsjCxemIYPrE8D2sfLvPgzcupWyj5lV6swdvAKI8AIMAKMACPgBQKsPOEFWJyVEWAEGAFGgBFgBBgBRoARYAQYAUaAEWAEGAFGgBFgBBgBRoARYAQYAUYgsAicOXeefpqfYlT6eM9qFFc6zNg2ryCcxJ1dKtOU5fsoI/u0VKtYseWIJFuY8/73H9HKnem0NDmd9qXn0AkR7iMmoijFx4RR53qxVCo8xFxEbk9bsY+OHj9DYUUKUu9mFSgj5wyt3XGUVu9C6JDjVK5UKFUuU5y6NSxLRQs7n6sMUscacfwtqdm0OTWTwkIKUWK5cEqMDaOmVaIcyCErdqTT5r3HKP3YKaNN2w8ep/EaNv1FiBLY3sM5NG/TYbneIimKKkSF0loR1mTNjgzatDdT9vGZvjXkfvUn68RZWrEtjXaIOrftP0ZFCxWgqhUiqGrZMKpdKZKKheTtx1rR33W7M2UVPRqWk+QVVZ+vGJ0+e55++XePrAb9UzZ5Wao4H0XkZv34koQwHmyMACPACOQnAkyeyE+0+ViMACPACDACjAAjwAgwAowAI8AIMAKMACPACDACjAAjwAgwAowAI8AIMAIOCKwRDvocQWqAVYwuRh3rlXHYb7VRRDj+H7qmKk3IJRakZtgJByr/3iMnaOi4NbR9f7ZKclh+NHkL3dMtkW7vEE8gZOg2esYOOpR5UpIQmgiSwx0fLjbaaMtnCxvy7d876fUBdSwd/Vv2HaMh366R9eh106oDcrNhlUgadlNtKh1hIwyA4DFOKHDohrZDWUOZIk9sFAQJlR4llDpGz9xO89fbyBTIC4KIbgs3H6Y3f9kkySZ6+szVB+VmfJkwGnFnQypT0tYWlWf+hsMGxs2rRTmQJ3zF6JQgT6i2q+Ng+eP83cbm4B5VLTE1MvAKI8AIMAJBQCAvhSwIB+EqGQFGgBFgBBgBRoARYAQYAUaAEWAEGAFGgBFgBBgBRoARYAQYAUaAEWAEGAErBJZuSTeS6wjFATORwdhpWukuVB++f6y5/PVrU8lhL4gTgz5anIc4Ub5UMYd8o2dspw/+SHZI0zeyT5yhx79aaRAnEFJEJyaAYPHCuHUEQoBum/dmieMvMYgTKNO6VjRVKx9uZFu57Sjd8fESgvIGrGypopI8EhpS0MiDFRBK1M9hR+7Gt3/vcCBOoHxoUXsd8zceomfGrHEgTqA+ECaU7RIKEHd+soQOZ51WSR4vvcUoRBBfEssWl33SDwKMVD+LF+X53zo2vM4IMAL5gwA/efIHZz4KI8AIMAKMACPACDACjAAjwAgwAowAI8AIMAKMACPACDACjAAjwAgwAoyABQL7RTgNZYmxxdWqz8vzIlbHm7+uNwgPcMg/d0NNqinCQBQuWIAOCZWK6av206jp2+Qxflu0l1rVjKbm1aLzHBOKGDnpJ+iOTgl0iwiZEZ7r1F+96yg9P3adJCSAQDFVhJzo26KiUX7Gapu6BBIGtI+ne4XCRcECNnULhAB55MsVktiBsCPz1h2izvVjZXgQhAjZdeg49X9/kayra/0y9NKtdYx6rVb2CKIICBNDb6pJdeMjKUqEIgEGMCzGzN5pFENbBnSIN/pxOPMUvfrzegKRA21ZnHyYejYpb+T3ZMVbjKAaAtIL7JUJ60ipX3xwdwMZTsWTY3IeRoARYASCgQArTwQDVa6TEWAEGAFGgBFgBBgBRoARYAQYAUaAEWAEGAFGgBFgBBgBRoARYAQYAUbAIwTSj9vVDhICQJ7YsDuT1uzMNI79zh0NqF5CpCROIDFGhKZAqI7rW9rJDuPnpRj5zSt9W1Sge7omGoQD7K8vSAqDu1cxsm7d5xgaZGZuaA5kuKtLZYM4ge2SoYXpzf51qV+7OOrVtDxlnzqLZJ8NxInRDzelDnXKSOIEKlLqHSfPnKeaFUvI49wt+nDf1Y79QMiQZ/vWNI69asdRY92bFV8w8qZ+zssIMAKMQH4gwMoT+YEyH4MRYAQYAUaAEWAEGAFGgBFgBBgBRoARYAQYAUaAEWAEGAFGgBFgBBgBRsASgTShfqCsQqlQterzcv6Gw0bZR3pWo0qlret8+Nqq9NfyfVKhAsoL6cdOUymh2mC2noLgYGUtq5c2klMOO5InwkXYjIzcpE0ihEc9EY5EtwqiTQ/2qKon+bzeska0U8WGYiEF6Ok+NVzWXT6qmFSugILERkE88cV8wciX43AZRoARYASCiQArTwQTXa6bEWAEGAFGgBFgBBgBRoARYAQYAUaAEWAEGAFGgBFgBBgBRoARYAQYAUbAJQLFixU29mfm2FUojEQvV7YfOGaUqF4+3Fg3ryCER52ECCN5z5Hjxrq+klAmTN801kuG2dudffKckY6VxlWjjO3Bny+nt37dSEu2plHOKcd8RiY/VhokRnpV+pRQozicdZp2H86hjXsyadk20S5BnPDHfMHIn+NxWUaAEWAEgoEAK08EA1WukxFgBBgBRoARYAQYAUaAEWAEGAFGgBFgBBgBRoARYAQYAUaAEWAEGAFGwCMEokrY1R52HTouwkzYCQ0eVWDKdDDDrmRRqXRx017HzcTYcFqSnC4ToTxhtpiIoka4D/O+q64iQ7HBvO+erlUI4UO2pNqIHFOW7SP8YDVEGI0u9WOpU91Yitb6bq7D022oS7gzqF/8tWI/Ld1yhPYcOeEuu1f7fcXIq4NwZkaAEWAE8gEBJk/kA8h8CEaAEWAEGAFGgBFgBBgBRoARYAQYAUaAEWAEGAFGgBFgBBgBRoARYAQYAWsEosOLGDu27XcMf2Hs8GIlR1OBCC/m2hVWItSuHnHq7HkvjuI6a0RoIfr43kY0TYQF+XNpKu06aFe12LQni/D7ePIWGixCd/RvF+e6Mj/2/vcf0cRFe+iDP5L9qIWLMgKMACNwZSDgesS4MjDgXjICjAAjwAgwAowAI8AIMAKMACPACDACjAAjwAgwAowAI8AIMAKMACPACFwgBGpViqDfF6fKo2/dbw+54WtzSkcUoUOZJ2XxvWk5FB9jHXYDGXYetJM1IrQwHL4eWy8XXrQQ3dy6kvylHD5O61JEiIwtaTR7zUEj28hpWwkEj15NyxtpgVxZvzvDgTjRu3l5alqlFMWWCqXion3hgjwSVqQg9XpjAWVk51XeCGRbuC5GgBFgBC52BJg8cbGfIW4fI8AIMAKMACPACDACjAAjwAgwAowAI8AIMAKMACPACDACjAAjwAgwApcxAs2rRRu9W7ntKIFoEFfaOeFBZR41Yzt9/89OuXl310Qa1ClBrpcpWUSEzLDlShHkCFfkCV3ponQJuwKGOkaglugPftc2LkcPX5tEX87cRlNzw3jMWnMgaOSJZVttIUnQj1vaVqKHr6mWp0vZp84xcSIPKpzACDACVyIC7oMgXYmocJ8ZAUaAEWAEGAFGgBFgBBgBRoARYAQYAUaAEWAEGAFGgBFgBBgBRoARYATyBYFS4SHUonqUcawP/txM586LeBMu7FDGKYM4gWwgJShrnmQnY0xZsY/OI3aFhW3YnUnbc8OElCweQpXLFLfI5X1S1omzBFIGfunH8qo5RJcIEQQKO4lh8+4spwfZL/rpj61NOWoU79HIjpGRKFZWbk/TNy/Yetox//p6wRrOB2YEGIHLBgEmT1w2p5I7wggwAowAI8AIMAKMACPACDACjAAjwAgwAowAI8AIMAKMACPACDACjMCliYBOJli25Si9+MNaOnnmvGVnklOz6PFvVhr7ejQuSwjVoaxVzdJqlf7dlEbfz9llbKsVkBqe+W6N2qRrBPmiQIGrjG1/VlIOZdPADxfL312fLKWMnDN5qtt96LiRFhNZ1FjHSljRwsb2ul0ZdOL0OWPb25UqsSWMIlv35Q2JsvPgcRo+cbORJ79Xihez93XVjoz8PjwfjxFgBBgBBwQ4bIcDHLzBCDACjAAjwAgwAowAI8AIMAKMACPACDACjAAjwAgwAowAI8AIMAKMACOQ3wggpMXga6rSyKlb5aHnrTtMPZPn0YAO8VStfDgVDSlIKYJwsGlPFk3JDXeBjKEivX+7eKwaVjK0MD3RO4lG/J4s00aL8B4rtqcLdYvSVCqsMK0XihNz1h0yQlVAdeK2DvFGeX9X6sSVpMSyxaWqxaHMk/T4Vyupe8OyVDsugiCCsSYlkz6bssU4zLVNyhvrWIkKtxMKsD3oo8XUXahGVIgOpU51yyDJY2tSrRRNmJ8i87/20wZavi2dmleLosIFr6INe4/RpH/3UI4f5AyPG+IkY/moYsaeMbN3iHOcTU2rRlGDhEiqUDrU2McrjAAjwAjkBwJMnsgPlPkYjAAjwAgwAowAI8AIMAKMACPACDACjAAjwAgwAowAI8AIMAKMACPACDACLhHo3zaOihQqQB/8YSM9wKn/pSA+OLNalSLolX51qKxJuQH5+zSrQKlpJ+inBbtl8ZXbjhJ+ZgNx4oO7GlB40cC6zJ7qXZ2eG7tWEjS2pB4j/KysX7s4urFlRYddBa66im7vmGCEJdlz5ISBg7fkiYaVI6lr/TI0c/VBeYy/Vuwn/HQDcWSyIKRkZOcNMaLnC8Z653pl6euZOwwCxz9rDxF+g3tUFaSYuGAckutkBBgBRsApAoEdCZwehncwAowAI8AIMAKMACPACDACjAAjwAgwAowAI8AIMAKMACPACDACjAAjwAgwAq4RuEEQCWpUKEHj5+8iqE9YWflSxahLg1i6o1OCUFCwjlCPEBz/Z+884KOo1jb+SkiDJEAgQKghQOgdBAQUFEWKhYsoChbsyodXFNu1XvVaUVAuir0i4hVFRRRFFKR3CL0GktACCYRAChC+85wws7Ozs8mmkcLz+tvMmdPmzH9mcc+cZ973gUEx0iG6qkyZt0cQ/sJq8Fhxdbe6MqxXlESEBViLdBqeGWCB/gUL5dE2qqp89fBFMmnWVlm46ZCHMKFdoyoyvHeU9FDeMJxspDo3eGWYsSRBe9uw14HAwrCAin5G0mMLPk8Pay1RtUJUX4kCTxiGQThy75WNZaDyajF71X4j223rZwllYmddWEY4UA3FfvKoLvLD0kSZrrxg0EiABEigJAlckJWVpRwE0UiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEig7BDYsmWLNGvWrNADHj5+uU99TBnTxad6rFR0BJJSsyT+0HE5cCRDoGWoVTVIoiNDC+Ql4ljGKTmo+jl1+oyEqbAeEWGBUvGsQKLoRuy9p9T0U7I/JV0qB1aUyPAgsYofvLfKKUnLPK3CfZyRAOWVA545CmPJx7IkKTVTqlYOkIgqAfkaR2GO60tbXJv0kzhX0dfYog/xpTnrkAAJlCMCJfX/ZnqeKEc3EU+FBEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABMoLAXiEcPIKUZDzQ1iO0NohBWlaJG3CgitKWHBogfoKCfTuWSK/HYaHBgg+pdEgZgn149Jlabw2HBMJnC8ECidPO18o8TxJgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgATKLQGKJ8rtpeWJkQAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJ+EKA4glfKLEOCZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZBAuSVA8US5vbQ8MRIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgAV8IUDzhCyXWIQESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESKLcEKJ4ot5eWJ0YCJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJOALAYonfKHEOiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAuWWAMUT5fbS8sRIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgAR8IUDxhC+UWIcESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESKDcEqB4otxeWp4YCZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZCALwQonvCFEuuQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmUWwIUT5TbS8sTIwESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAES8IUAxRO+UGIdEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiCBckuA4olye2l5YiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAr4QoHjCF0qsQwIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkUG4JUDxRbi8tT4wESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESMAXAhRP+EKJdUiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABMotgYqFObOUlBQ5ceJEgbuIiIiQgICAArdnQxIgARIgARIgARIgARIggbJLID09XebOnSs7duyQ+Ph4SUhIkMDAQImMjJQ6depI7969pU2bNmX3BDlyEiABEiABEiABEiABEiABEiABEiABEiABEiCBMkOgUOKJjh07SmJiYoFPdvHixdKpU6cCt2dDEiABEiABEiABEiABEiCBskcAIonJkyfLu+++K8eOHcv1BBo1aiSPPfaY3HrrreLn55drXRaSAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQQEEJMGxHQcmxHQmQAAmQAAmQAAmQAAmQQL4J/PHHH9KuXTt57bXX8hROoPNdu3bJvffeKxdddJFO5/uAbEACJEACJEACJEACJEACJEACJEACJEACJEACJEACPhCgeMIHSKxCAiRAAiRAAiRAAiRAAiRQeAIffvih9O/f3yfRhP1oq1evll69eukQH/Yy7pMACZAACZAACZAACZAACZAACZAACZAACZAACZBAYQlQPFFYgmxPAiRAAiRAAiRAAiRAAiSQJwGIH+6///486+VW4eDBg3L11VdLVlZWbtVYRgIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAL5JlAx3y3yaHDzzTfLoEGD8qiVU4z4xTQSIAESIAESIAESIAESIIHyTSAjI0Nuu+02x5MMDQ2VZ599Vm688UaJiIiQ06dPS1xcnMBLxRtvvOHRZtu2bTJp0iQZM2aMRxkzSIAESIAESIAESIAESIAESIAEyh+BtMzTEuxfQfwqXFD+Tu48PKMv/oqTM2dEalYJlCs7RpYbAnPW7JdfV++TLk2ry/U9GsgFvF3LzbXliZxfBIpcPNG+fXsZPHhwvijGx8fLjz/+6NGmY8eO0r17d4/8TZs2ydy5cz3yr7zySmncuLFbfmpqqnz33XeybNky2bNnj+zbt0/Cw8OlXr160qJFC7nhhhukYcOGbm2sO0uXLpUVK1ZYs6Rt27baZfDhw4fl008/lQULFui+69evr8uGDh0qbdq0cWsTGxsrM2bMkDVr1uiHwZ07d9Z9IHZzdHS0W12nnTPq/yQ4zk8//aRjPeNcAgIC9NibN28u119/vcTExDg19cjbuXOnrF27VjZs2KC32Efb1q1b63Fj7BS2eGBjBgmQAAmQAAmQAAmQQAEJTJ06VfAb3m5169bVv+utvz39/Pz0b/qXX35ZBgwYIJdddpm9mRZVPPjgg+pBhPOTiMzMTD2/mD9/vuzevVsSExP1HAC/+zHHwG/nGjVqePSLDLT97LPP5OTJk27lt99+uwQHBwvmB19++aVs3bpVDh06pH9Ht2rVSo8VfftimP9MmzZNM8Hv+uTkZImMjBTMJy688EI9n6patapjV7mNLygoSHDOX331lWzZskV76MBve/R5yy23iL+/v9knvHegHuY6mBtAxNKjRw/B/KRbt276XM3KXhI4f5wHvIqAM84D17RBgwbSp08fGThwoGBMedmJEydk1apVen6yfv16PWfCfYC5JeYoLVu2lA4dOvg0pryOxXISIAESIAESIAESIAESIIHST+DgkUz5fd1+2Rx/VNbvTpWDRzP0oNtEVZVWDcKkc5Nw6d7MeU5X+s+OI5z8y3YNoV2jKuVGPHFA3bPPTl2vz2vx5sPSvF6YtFP3K40ESKDsEbhAPTRT+q6CGR5y4kGk1fB22OjRo61Zeabx8NAuekCjmjVrCt4sw0NKq/Xu3VsWLVpkzdJ1IQaoUqWKzj916pS8+OKL8tJLL7nVc9q55ppr9NtrOJ7d8EYb3myzGvLwsLZLly4C18FOhoe9Dz/8sH7o+txzz8nrr7/uVE3nffvtt9r9sLcKy5cv12/qgUVuhofL7733ntSqVcuxGh6QvvDCC/Lqq686llszn3nmGXn88celYsUi19dYD8M0CZAACZAACZAACZDAeUCgX79+8ueff3qcKYQIWBTPzd5991355z//6VFl5cqVHoJlVPr888+1V4pjx455tLFm4Dc9fhtDkGy1/fv368V/ax7SyIdwGr+RvdlTTz2ly+19GvUhNsBcafr06UaW1+2jjz6qPXJYBQ+onNv4wOrf//63Y5/gDBELhNsQTNx66616ruVUuWfPnlq0XblyZadiLcrAuU6YMMGx3MiEIGP8+PFauGHk2bcQlw8fPtzrWIz6TZs2FcybIICnkQAJkAAJkAAJkAAJkIBBAKLhZs2aGbsF3g4fv9yntlPGdPGpHisVnMDauCMy9qPVciLrdK6dDLmovowe1FT8/Tyj08cdPC4b9hzV7Vs1qCJRNZ3nNrkeoBQVHss4JfPX56xF1Q4Pkk7R4aVodPkfSo/H5uhGEE+8c2/5+E4lHEqXG15faMJ4884O0lV5oCgttnJnsuxPzhEhXdy6poQGce2vtFwbjsM7gZL6f7Pn/1W8j7HYSvCG1bhx4zz6hzDhgw8+cMufNWuWh3ACFfCg0BBOHDlyRPr37++TcAJtf/jhB/0GGrxD+GJ42wtuhb0JJ9DHE088oR8Qv/baa7kKJ1D3uuuuk19//RVJD/vmm2/0G2B5CSfQEGw6deokeFvLbvC4AdGJL8IJtH3++ef1m2J4wEsjARIgARIgARIgARIggYISwO9QJ+EEFszzEk7gmPCYAC8G8Ihg/UCAbTV4ahs7dqzceeedkpdwAu2wqA/PdUeP5jxQs/bllIYHuNyEE2gD8fZbb73l1Fz/Rof42hfhBDrAPAKik5SUFMf+7JkzZ870KpxAXXiHAJsDBw7ofnObX8DjHbzppaen2w+jxwNueQkn0BDXAcfEdXGyyZMna68YuY3FaIc67dq1054ujDxuSYAESIAESIAESIAESIAEyheBX1btk/vfXeEmnID4YVCXOtKzVQ2pGuISv09fFC+j318lGSezPSCsUwKMl/63UX+QLut2ODXTPJ+ZS91faC7r51Zexl+vRrDcP7CpNI4MkRt6NZAujUuXwAX3jfGdwP1EIwES8E6gVIgnMLz777/f8c0xvDkFMQQM8Y8hSrAbwoRcddVVZja8QsybN8/c9yUBIQREDL48aH3nnXccBRz249x88825PsC01r/vvvusuzoNEcSIESM88nPLwHkgFAlc31rtX//6l0f4EWu5UxoPuZ988kmnIuaRAAmQAAmQAAmQAAmQgE8E4F3CyZzCcTjVg/eD2bNny19//eX2gdc1q33yySfy9ttvW7PyTEMk8NBDD+VZDxXuuusun+rh9zMEClZLS0uTIUOGeHjts9ZxSmN8o0aNciryyINIIS9DfwjJ4cucZ86cOTrsoL1PeAFBP/kxXBd4BLEawp488MAD1iyf0phj7dixw6e6rEQCJEACJEACJEACJEACJFB2CKSmK2/i0zaYA4ZYYubTl8j7o7rIE9e1lFdvaS8zn7pYHr/O5Y0uVgkjvlmwx2zDBAmUJIHhFzeUzx/sJg8MipEKFZzDjJbk+HhsEiAB3wgUuXgCD9J+//33PD8bN250GyHCQyDkhN3wYG/ixIk6G14Y7LGS4QrW+tYT3ghD7F4nQ8xdvGE2cuRIHdPXXmfXrl3aNa4939s+wpagL7i1dTKrZwrEGr7jjju81kX4E7jgNQxvzqG+k0Ec8uOPP+q31u6++26PKngrC2+qGYa36aZMmWLsmtvbbrtNcM6pqan6bUCIR+yGh9B2IYa9DvdJgARIgARIgARIgARIwBsBeJ5wsubNmztlFyhv7969cu+993q0RVg+iLExP/n444/liiuu8KjzxRdf6HKPAi8Z8JZxzz33OPZlNPn555+NpN5iDPjdbTfMZTCfwBzFKga31kOoihkzZlizck1DVHLTTTfpsIZOFY2wizg2whcOGzbMa91ly5a5dYHz+vrrr93ysNO5c2c9Z5s7d672KIgQG3aDuCMpKcnMtospUIDrhXOFeB68cM2czNt8z6ku80iABEiABEiABEiABEiABMoGgeXbDpsDjapVWYslqoX4m3lIXKDWo6/qUleeHdbKzJ+92nnOaVZgggRIgARIgATyQaDIg9p8//33gk9ehgeOhijCqIuHbnj7yP7GGGIRw10vvCfYDWEoIiMjzWx7mA+jAA/6Lr/8cmNXnnvuOWndurXHW1f//e9/tbvdSpUqmXWdEhAeQOxxAf5vreyjjz4SJ+8RKMPDUqvHDJz3ww8/jCI3Q9xmCDxgiEMM17p2wwNEqzcKPGStXbu2DrNhrfvhhx8K4hBDlOL0oBZ1J02aJEYM5R49eujQJXjwvH37dmtXun2rVq4fI26F3CEBEiABEiABEiABEiCBXAhYBcXWat7iEiNEHjzO5WWBgYHi5+enq02bNs2xOkLj4Te/YfDQBsEAvCpYDYJh61zBWmZNY55j/F5HPvbRp9127txpZiH0hZMIAOIFeJoz5jLwMPHHH3/o8INm47MJ/La/9tpr7dke+5hPQLQNO3z4sFx66aUe4nOU1a1bVxYuXCh16tTBrg5H2KtXL495w/z583W58cdprtWiRQsdgjAsLExXg7AcIT8QosR+7SGMMDx4IDa13eAFxPAogvkY5j24zmPGjHGrag/Z4lbIHRIgARIgARIgARIgARIggTJJIPGwK2zgZW1r5XoOfVT5d0sS5Vj6SfFTb/ifzj6jt7NW7pWU4ydl/W5XqI7FWw7JsYxTur/aVYPE6HvljmTZnHhM5199YV1R77PK6u2HZeXOI5Jw+Lj0allTBnerJ/tSMmRubI53wfZRVQVhRJzsUGqWzF6TI+TorEI2NKsb6lRN9iSd0P0lHDohR45nSVTNEGmu6javGyb1ItzXpVbuVGNMOCbJxzLNvnYcOC5T5u829+HtAFYU4zT4VQ70k2u71hNck9W7UmSVYpV64qTc3DtK2jWqZh4b3JdsPSRxB07Ijv3H5HjmKYmpEyZN64RIi3pVJSIswKxbmARCs3y/JEGy1UWqEeov/TrkzGWd+jyixvnzir26qLoK83JlR9f6ITI37Dmqrnuq7NyfJgeOZEjDmpXVmEPU9aqirkVljy4z9bHj5bS6P6KVqKd7sxqyRbVfvTNFs8F988SQVgKhz+/q+h9U90GAXwUZ2qO+R1/ISDiULut2p6jjH5fdSWmKUZDiFSpNVLiPVvWrOHqssF8XnOM6dfw1yvNK/KHjUie8khpbiPRT5xrk73pnPutUtvxPhbeB4b4x7KfliRIeGqh3ne7p7fvSZFN8DqeDRxWjiBCJrl1ZOkSHS2S1IKMbbkmg3BIocvFEYUk9/fTT+m0m+4M2LO7b8xDz+PbbbzcPCfe4eEBqN7iWtT8MxUPKTz/9VLvPtdfHm2l4qOrN8KATwgNDOIF68BKBGMfGm1xGWzxMtAonkD969Ggt3rC7y7XG+v3uu++MLswtPENYhRNGAVwD48FtbGyskaVZ4YHoJZdcIgEBzv+DgutjK5fg4GDtCtnshAkSIAESIAESIAESIAESKCQBiHPthsV7/KZ2MoS3+O2335yK3PIgRn755Zd13pdffulWhh2Ioq3CCeRBOPzZZ59p8QD2DYN3BwgDECLEmz366KNuwgnUQ/jAvn37eogxrL/rIdSw/+5HWwg2DOEE9mEIZYK5y1tvvZWTcfYveMBLHUTT3gxtDOEE6lSvXl0ef/xxufXWWz2aoK4hnEAhPD6MHTvWI0SIdX5x6NAhmTVrlkdf8AJhCCeMQpzXu+++6zHXmjp1qimeMETcRhtsMT+ByN56HSDEwIdGAiRAAiRAAiRAAiRAAiRQvgmEh7rWMQ5bxAJOZ+2vFqcn39fZo+h/C+Nl61lBhFE4f32S4APr2izcFE/MWXNAflyWqPM7N64mj3+2TrBQbBgWtWH7UtLlnZ+36fT9A5p6FU9sTjxq1hs7uLmHeAKL7G/+sFm+W5yg+zL+LN7s8rhx22WN5I6+0eYC+rItyfLlX3FGVb3doRa2jfEgwyWeKPw4P5i9UzOoWUUt6EeGyt2Tlrsd+/L2taSd5Ign4g4elxe/2aAW2VPd6izYcEjvVwrwk1dHtpeO0S6xhVvFfOwofYx8/NsOOZGV86JFr5a1pJISeDjZ/PUHTT7DldjDMAhoxiv+s1ftN7L01sp/9KCmMqxXQ7fy5LQsmTgz5/oP6lJHix8m/Oj+MkDGVRiXv3zx127B9cG528UTEJp8/fceeWdWTl9uBzm7c2nbmvL0Da0loKJLAIEi63Xp0qS63DZhickip2nOPfTpH7vkxRFtzHs0U4knrPfK2cPI1/P3GEmx3tMY43uzd8gU2z23aJPrHn1iaEsZ1Nm7eMXsmAkSKMME3L+BpeBEqlSpooUJ9qHYhRMonzx5svqfiOsU7CE9jD7gtcLJ4LXB6aGt9SGhU7vevXubHhus5d27d7fu6nSfPn088pABLxt2y87ONrOcYkPDfS3eRrN/4B43Li7ObGskjIe2cInsdJ54aw5vmL3++uv6QSX6p5EACZAACZAACZAACZBAURLIy6NbQY9l/HaFpwqn3+/efjuvW7fO8ZB79rgeHjhV8Pa73mkOYIwN/axdu9ajO/w2v/rqqz3ykeFt7rJ582bH+kam0zjatm1rFLtt4RXCbi1btrRnue1v2LDBbd/YgTjGPj/BPsQWdrOywDzEbhDCN2jQQHv0g9Bi69atYp0j2etznwRIgARIgARIgARIgARIoPwQaG3x6DBDeZX4e+PBfJ8c3t6vXyPYrR0WspGHT42zggi3Cmrn2a9i3YQTaFMpqGjfPf74j50ewgkcx2pY/H78i7VqHqSUFsoiw4P0uO31jPOxn6u1r8Kk05RHj0c/85zLBvvnMEk6minD31jsJpyoqrw8xCgPGsZYIXQY/d5KWa68eRTWICa4qmtdsxt4E/Fmv691iSOuaJ/zAgI8VoyavMJNOIFxtqgfJhi3YRBJfKKugTdbq7xw2IUTqOtvEzs4tZ+kRBN24QR41Q133a9z1x2UMR+v0l5QnPrAdRnz4SpTOIGxQ+hiGMQ/T30ZKxBNwMCtscN3Am2MeyjEcp8/OzXWTTjRRnla6dGyhnlN0efL/9soPyzNER1hn0YC5ZFA0f7rrwjhQSA8GORljRo18loFXh+wsG+PFWxt8Mwzz4g9TrKTwAJtoqOjrU3d0ng7a9GiRW55Tm/HWSs0btzYumumnR4M4y0uJ6tatapTtpln92CBAry1ZnfYef4AAEAASURBVHcxbDZwSODtNBgEJvBagbfb7AaRhlWogRjOcD38j3/8Q6KiouzVuU8CJEACJEACJEACJEAC+SIQExPjUR+/dbOylCvLANdDCo9KPmYkJeW8QWSvjhB2+TF4sYPXOG/mTVyQmzcI9GX8Jrf2660v1PE218D4crP69T1dggYFuR6iWNtGRERYd3Xa7j3CXsHb8a1hTOxt7PvwwJGRkSEYF7xsOBnqICQiPjBDaII5CgQsCONBIwESIAESIAESIAESIAESKH8EGqiQFVjQjVdhDWDwBHFx6wjBAng3FSoh2CY0cCLw5NBWOhseJV6dvkmnR18VIwjLkZvhmFjIfkDVRfgMHAsL7kVlGM/Hv7vCOz4zrKVc1KKmhKqF6+RjWbJs22F5YVqOYH3hxkOyVO0jPARCZ+ADLw8QK8CuUN4fnr2xTVENzbEfCB/w6dexttzQs6E0rh2iw6KcjWIv3yx0vXzQsUk1eeb61hJRJWeuhjAX783eLtP+zqnzy4p9Am8JhTXcB0aff6zbb3oQsfYLlqu2p+gsiAYgpoFBbAGPEDAIDsbf0UGXVVAnhOs8Z81++ffXOfy/VWEubru0kfI8r6u7/THuTXhruKRVTalbPVjOqP/QT252WI3LGDvqwTtEjxYRpoeJzQmp8vAna+SI8nKxZgdCcZwQfB/spq9LcrrAQ8kwFa4F9w9sTVyKPPlFrG4PAcXPKizHP7rXl0Alnvj8wW66zr+VMOI35W0FNv7ODh4hSjDGP5V4AwZxxbjb2+vrjn2IeX5dvU/+881G7MrU+XFy1YV18jxvXZl/SKAMEihy8cRzzz2nw1IUlgVcyXoTT+AB2iOPPOJxCKcHehAvWN2+2hs1adLEQzyxb98+ezW3fWu4DreCItzZtcu7us3XwyDOsWHgCT5OrnaNOtiuXr1af+Did9iwYdp9MR9QWgkxTQIkQAIkQAIkQAIkkB8C+L3tZBBQOAmqncI5OLU3BNvexBNObXLLS0nJecDirY6338RWT3hObZ3mFs2aNXOqqvMgyMYcxi4Md5rrWDsp7jlKXse3jiW3NLxyQHACUQ3me3mJLyCmmDJliv5gHohwhRdffHFuh2AZCZAACZAACZAACZAACZBAGSSABeiJd3fWHgIS1QIxzBpyA+KGDioERJem4WobLkH+FYrsLOGBYMJdnSTEEgoirwVxXw8OLwCGkANtHr+uhfTr4Ap7gHAlV3aMlFNqgRpv9cO+WxyvxRN6p4T+DO5eTx6+prmjiKCyWrSHIKWi3wVy95VNzEV8DDVQXZdRSlywYEOS4Dou3ZZcJGfQvF6YKa6ZF5sk6UrcYRfULNzkerniqi4uwUyWEnQYAppru9WTmDqh5phwna/oECkrdqQo0cFeLUDwJl5Ao3/f2Fr6nvVogf0L1H95WYoSRRjH76RCxPRpU8utCc5t9MCmpoBm3e4jjuIJNPqHui53XeH+gnf7qGpyf/8m8tLZ+2fb3hyhiNtB8thZutXlzePabnVN4QSaVVBxUwZ0qiOnT5+RjWfDtBw+dlIiwgr/Qkwew2IxCZQIgSIXTxTVWezc6VLh2fvEA7T58+fL5Zdf7lZkPEC1ZuKh4xmlHPP2MPHo0aPW6jqdm9jCo3IxZeDBIM6zqAxvd3399dfy/vvv67e4vIU4sR4P9ZOTk2X69Ol8w8sKhmkSIAESIAESIAESIAGfCXjzAvf33387iiewOG43hLhASAerGV4ivHlXsNYtybTTHMVpDmKMEXMXu3ACZU5e7ow252LrdB6FPS7mc4sXL5Z33nlHvvjiizy7w/yob9++8tNPP0m/fv3yrM8KJEACJEACJEACJEACJEACZYsAvBdMurezvP/bdpmlPBZYbWviMcHHeIN/RO8oub1vtF6st9YrSBoL7VbhREH68NZmhSVsRddm4WJd1Le2GagWp0+dzpYMJQoICfa3FpVI+rqL6jsKJzAYeGbIzfzUYntMvVAtnoA3BXiEgEiksHZNt/ry35lbdTdLlDcJuwjhj1hXyI5L27oECqhnr2sfS3Mlzvl5eU7urv3HHMULCPVxaTtXv/Y+vO3DA8ZjQ7x7ukS7JpEuQcf2vd7XBq/y4kXlouYuD5O7k/Ivngj29zOHv37PETmp7kV/P3eBEo7t7fhmYyZIoBwQKJXiiRMnTsg999yTK97/+7//0x4SrA8RvbnMhavcyMhIx/42bsxR8lkL69Rxqf6s+ecyHRUV5RG7+e2335Zrr73W52FY2aARHiw/8MAD+rNmzRqZO3euDtmxcOFCxwe0aPPbb7/pOny7CzRoJEACJEACJEACJEAC+SXQsGFDxyb/+c9/5KabbpKKFXOfkqSlpXkIJ9ChEcLPW5i8lStXilN4CsfBqMy8wup5a5dXvtPcYt26dV6bOYX5QGVvcx2vHRVxgdPxIfjesCHHtamvh7Nfr06dOmlx9/jx42X27NmybNkywfxkxYoVXrscN24cxRNe6bCABEiABEiABEiABEiABMo2AQgoEH5jzNXNZf6Gg4IQDQhlgJAFVvvyrzhZH39Ext3WwcMDgbWeL+m2UbmHWfelD2914g6cMIvaKg8B3gyRHxCiozQYRAINIyr7PBQstKeln5bjGafkeGbOxwgBgU6Uw4Iisb5KEGGIJ/5Yd8BNEAGBxvKtOR4le7SsIdVzEWsgDEVaphpvumu8iza7PC9kexltt+bViyRUBSLCwHNG2tnjn1DMYpW3CcPU8Lxao1rO16VqZZfgJi3D/bvitTNLQasGru/Aok2H5ba3lur78cKYcGlQo7JXIY2lCyZJoNwQyP1JZQmd5muvvSZ5ha1A+SuvvCLPP/+8OUpvAgk8nHQqg8vYbdu2me2NRN26Lnc+Rt653jZo0MBDPAGXxE4PLQsytvbt2ws+hi1fvlw+/PBD+eSTT4wsc7tgwQK6xjVpMEECJEACJEACJEACJJAfAhBHwFvAnDlz3Jrh9/xXX30lt9xyi1u+fcdbKD8j9EV4eLi9id7Hb+c2bYo3DqzjgW2ZTnMLnDvmIk6CDW/CCqf5jO1QxbrrdHx4gggLCysSrxjoZ+jQofqDE4F3jm+//Vac5obz5s2T9PR0KQ5vGMUKkZ2TAAmQAAmQAAmQAAmQAAn4TKCSCqGBcBb4ZKvV5j1JJ2TxlsMyc3mixB04rvuBqOLpKetk3MgOPvfrVDHI8ta9U3lh8g4dyzSbN67tvPBtViglCXi+gJgjN0tKzZIflibIsq2HZcMeTw/vubUtaBmENfDesXRLskCckT7UFbpj4eYks9uB6p6xW5YKnzJjSYIsV55AIA4oiFUKLNyS6rzYAzJPhTNBKBN45Miv1awS5OENwugD1wuiF7vIyCjPa1uzaqA8MbSlGToG37EJP27RzdBv77Y19XexQ6NqOoxHXv2xnATKMoHCfdOL4cxjY2PlpZde8uj5kUcekddff90tH+KJG264QVq1aqXz27VrJ07hLh566CGBOMDuiWHs2LFu/Rk7eLhb0jZgwAAdA9g6ji+//FLuv/9+qV69ujVbp3///Xd9jnDzaxjYIMY03roDV6uBVYcOrh8UXbp0EXzgiWPp0qXWqhIfH++2zx0SIAESIAESIAESIAESyA8B/G7v3LmzR5M777xTsrKyBFsnQ/i4m2++2aMIggTDgwHC81133XV6od1a8b333pPevXurSb27m0nU+eijj+TAgQM6vB/2IfAYPXq0x3wBZYU1e6hBoz/MRSBetho88GHuYjfMcfD7vSQNxwdze0gRiK9HjRrlMbTjx4/LxIkTVUxU1xsvEGDcfvvtkpmZKdOmTZPsbNf7PLhOVk8kVapUkTvuuEOilEe+/v37e/QPcQwE5zQSIAESIAESIAESIAESIIHyT6CCmvdF1aysP9f3qC+f/LFLPpmzU5/44s2H5YTyIgCxRWm0rJOuOVGloFK3JFcgZKt2pshjn6wp8EJ9gQ56ttGAjnW0eAK71tAd8FACw0J/txauEBbI25eSoUU2m+JTsXvODZ453vppq3y/OOGcHzs/BxzUuY7Ur1FJi2Jmr3KFQIEgA2F08KlfI1jeuquz1FJiCxoJlFcCRf4vNUJBnDp1yidew4YNc/MIgQdrEAfY7dFHH5XnnntOZs6cKZs2bXIrxoM6HBMP2/DQEw/j3nrrLbc68C5x7733yr/+9S/t3heucD///HP9cauodhA72RBj2MvO5T7iOtsfQuINtSFDhsh3330n1jfsvvnmGxkxYoTH8CDAgH399dceTPAAFq5wGzVqZLbD213JycnmvpGw1jHyuCUBEiABEiABEiABEiABXwm0bdtW7r77bnn//fc9muD3//z582XQoEGCEA6wVatW6TwIIJxs0qRJbtk33nijh3ji+++/l8cff1x7qkP4Ohi8FUCo/eqrr7q1x29jhLcrDmvZsqWeY9jnMZiPxMTEaM8b8C63efNmPTYnz3gjR47MM7xJcYzd2ifmWuBsn2uNGTNGe8cbPHiwKVTZt2+f3HfffTJr1ixrF3LVVVfp+RrmHU6CGQi+7YL5uLg4tz6MHadwKEYZtyRAAiRAAiRAAiRAAiRAAuWXgF+FC+SOvtFuHg82JhyVzo2dvRIWJQnry6v2fk8pzwZOFh7qWmTerd7m7xRdOsfpNHanPHhwGP3eSrMIniD6dagt9apXlirKYwUEIiHBFeWV6RvFugBvNihkolermmYPRuiOlLSTZsiO/koAEFjR/SWKV7/bIIZwAov/Q3s2kEa1QiQ8JEAqB/lLqBrvnLX7Ta8L5gGKKPHNgnhTOAFxx029o6R5vVCBJ4nKyptFSCV/OZyaITeNW1xERyx4N+1UCBt8HhncQtbvOSLr4o7K7JX7JDE5XXcafyhd7n1nuXz96EUenAt+VLYkgdJFoMjFE3Cr6821rv3UL774YjfxxAcffODh9QAPMvFWFh7Wvfnmmx5vHS1atEiHmsBbSbB//vOf8vHHHwtcyFoNAgJ88jInrxd5tSmO8lq1aomTtw2cLx6uwmsE3rSCW1+IKuzWs2dP07PEFVdc4fGQE3zw9t+ll14q0dHR4ufnp8Uk9jfJ0C/a00iABEiABEiABEiABEigMASeeeYZmTp1qsfvdPTp62911IV3AkMkjH0YPBN07drVYy4xYcIEwQee5QICAuTvv/92PD4EAMUZAuLll1+Wa6+9Nmewlr9PPfWU4JObYT6EOU5psAcffNBxrgVRBcbZW3n6SElJEYT9czJ494DBg4XT9YIwA8L4Pn366OsFIckPP/zg0RVEGJgf0kiABEiABEiABEiABEiABMoHAYTlwJv56eoN9xC1+P7AoJhcT0w5opDGtUPMcBFHj5/MtX5hCv3UsQxLOe491MK+I67wHEZ9bGuGucQT2/elWYuKNF3Ycfo6mNjdR8yqjSND5I2RHR1DfCDMSnFYoH8FuaZrXeUdIfFs6I5ssYbsgJDDaulZ2aawAvmT7u0i1UMDrFV0OvFwjjjAo6AIMv7e6Aop8uxNraWnzTMGDrHhSEYRHKnoughWIo8uTarrz8jLGsmybYfl6S9itbeRg0czZHP8UWmnQnjQSKA8EnCXX5XgGSYkJDi+7YUHjUYs4Msuu8zjQSmGDM8UeLsJVq9ePZk8ebJO5/cP3oYbOHBgfpsVW/2nn37aa5zm1atX6weJTsIJPIz89NNPzXHBVbDTeUFAgYeR48ePl3Hjxnm44EUHeMutffv2Zl9MkAAJkAAJkAAJkAAJkEBBCOA36ldffaUX2QvSHm3Qh90zAfKxkG79/Ys8q82ZM0d7QbALrFEHC/UQLRenQexxzz33FOgQ7777rtSvX79AbYu6EcKleJtrge1PP/3kVTgBL4AQVxiG+YeTwfvE22+/recnTsIJtHnhhRecmjKPBEiABEiABEiABEiABEigjBJAWI7565Pk5+V7Zdrfe2RNXEquZ5KdfUbmWxaka1fN8Tbo1OhQqrOowamuU14d5VHBsN0HjxtJj+3K7Yc98pDRWS1AG/b76v2yX4WQcLJDqVky7PWFMvCF+XL/5OVOVXSeN5FGYcfp9YC2go2W0BeDu9VzFE7AE4Th6cHWvEh2rQKJJZuTZO7ZkB11w4OlZf0qbsfYttcVqqNP25qOwgk0mL/hoFu7oto5re7V2LgcwQm8TlzUrIZj10u3ON8/jpULmXn4mOd3Ik7d2xD37NifpkKcuh8A389uMTXkHxe5nk2gHo0EyiuBUiOecHqbqmnTpnrx3gof8ZLthgd11geeQ4cO1TF07fVy23/sscf0W2m51TnXZXAvjAe99jfrchsHQmz88ssvHvF/EVP4ySefzK2pRxlEFXhYSyMBEiABEiABEiABEiCBoiDQr18/2bhxow7fkN/+4Glu7dq1EhHhHrvU6Kdx48YCgXF+Qs7Bwxp+JwcGut4EMvor6i1+W+f39zg8dVx//fVFPZRC9Ye5FsIG5scefvhhefbZZ92awPPEsmXLBHM+Xw1ttmzZIgiFQiMBEiABEiABEiABEiABEihfBLCwbdibM7bohVxj37rNVGEjJigvFUfScrxAYEG6SWSotYoOw2BkLCnkonREWIDgGLDFmw/rxWWjb2M7Z81+XWbsW7eR4UHSvnFVnXVCedZ4aso6QegLq8HzxkvfrheERMB5XagWqq2G0BKGYSEeHjrsVthx2vvzth9dyyUm2ZTgEiYY9Y9lnJJnpq4zdotl20aFlUDIC9i0hfGydEtOOPqrlUcKeCWxWoOarvFu33tMMk96sn/nl+0Sp0KqFIchzAw8dMBw/fcme4pn/lx3QIuGiuP4Rp8hKqSKYat3uryHGHlvz9wit05YIreMXyLTFuw2ss0t7tEd+10e/2tUKf7nKObBmSCBc0ygUOIJuL4tCoNbV7ylZDe8Vebv7/pCo7x58+YyatQoe1X9AA+xkQ1DzF3EDcaDOriQ9WbDhg3TrmHx9pKT61enPG99VapUyVuRR75TXae8atWqyfTp0+Wzzz4ThOLwZngL7J133pH169c7eqvAtcIDy3nz5ukwHHhrz8nQzzXXXCMrV67UnCtUKNQt4nQI5pEACZAACZAACZAACZzHBBCeDr9vEbIPvz3zMoSrw29YiHqrV3e9sePUrlWrVjp0BwTXuYkosAgPwfHMmTNNL3dGfwhnVxyGeQV+j//111+COYg3w9wF4TE2bdokQ4YM8aiWn/HlJxSJU11v8yiEIMFcC+P0VgcDx/gxP4E3wQvsT7BUOTzcLV++XHsSbNGihce5Ghm4Xpiv/fnnn7leV6M+tyRAAiRAAiRAAiRAAiRAAmWPwIhLokyRwg71BjwWcl/7bpP8uCxRVu5MloWbkuTzP+Pk9reXyvRF8eYJ3jugiSCUg9UiqwWbuxv2HJVR76+Qb1WbvDxamI1sia7NXXPReyctl6+Ud4zFWw7Jb6v3yfPT1suzU9fbWrjvjr3GNd+BR4YRbyyWd9WC/V+xB+TD33fKHROXmQIAtLzmwnpuHVQPdV8nG/nWEvls7i75Qy26W62w47T25S3dLjrcLIKnkIc+XiXfL0nQPDCmuyYulVXbc/ccYnZQwAQ8IVzTLed5guHVAV1d1q62R49VK/lLi/phOh/ilNvV+HAfLVVhKHBPYPxT/orzaFeUGT0sYTrueXe5TPx5qw41MmvlXvnP/zYoQU1sUR7Osa+61V3fiU/m7JSnlYjnJ/XdSjgbXmVId5dXiYkzt8mEH7cobzAHtVgI371/frjKFAhBTISQHjQSKK8ELsjKyrI5YCl/p6rOUeLi4mTv3r1y/PhxLZKoU6eONGzYUMLCcv7RLCtnjfAkiYmJcuDAAcGDUzxwjo6OlsqVXeo5X88lOTlZEEf40KFDUqNGDWnWrJnHw2Nf+2I9EiABEiABEiABEiABEigIAXgSWLFihf59e/r0aTl58qT+XRoTEyPwJuEkMPblONnZ2bJ7924d3u/IkSP6t3OTJk10CIyiEoH7Mg5vdVJTU/X4MEc5deqU/j1vzFHOhScMb+PKb35mZqY51zpx4oQWU+C6RUZGSn6F2OgL8xOEJoQXPsxzoqKi9LXL77hYnwRIgARIgARIgARI4PwggPkEnmsX1oaPX+5TF1PGdPGpHisVjMA+FdICi7q+hnx4dlgruaJDpMfBENbj/vdWmuESjApdm4XLm7d31LuvTs8RZmDn28d6CjxEeDOEobjv3WXaM4S3OiN6R8mXZxfhxw5uLghpYbW/Nx6Uxz/L3SMDFqVfua2ddGrsEigYfbw3e4d8rsQJdlv4al8zq7DjHPzSAjl4NEN7dfj+X95f5v2f8vaAxXVv1q5RFQkPDZQ/1+WEwpjx5MUCzxiG9Xhsjk6i3jv3Fuw7laCEEDeoMCeGdWxSTSbe1cnYdduu3ZUiYz9eoz0/uBWc3QH363rWV3zjdM6LI9pInza1dBr35HWvLNDpQV3qyBPXefeEeIsS/ED4g/5+f6GPboM/SUcz5cGPVuXq3WLUoBiZNHOrbjNEhcd46BrXv2u+XpfLn/5TnyM8XXz+YDfz+EggLMyNihe8X1jt/gFNZfglDQXhRV6ZvlFmrdhnLfZIIzTKC4pPs7pla23V40SYUSYIlNT/myuWCTqFHCQejuLhKz5l3fAQEp+isPDwcMFbXDQSIAESIAESIAESIAESKCkCeNBZFA877ePHwj28T+TmgcLe5lzuQ8Tdpk0bR69x53IchT0WhB5FdQ3RV+vWrfWnsONiexIgARIgARIgARIgARIggbJHILJakFpM76y9Mfy8Yq8ZmsN+Jgjb8OBVMdK8nvMCbgUVKuGlEW3lJ9XHjMUJWhBg78PqdLtiRXfPFfa61UL8ZfydnQShDVZsTXZbgI6pGypjrm4mqekn7c3c9nu1rClfPNRNCyxmr9rvVlY1JEA6RFeVUf1jvIo4Rl7WSOA9YIby8uBNXFLYcfr7XaDHFeifs3UbpGVnaI/6UrtaoHzw204tFrAUyS2XRsnNvRvJxLNCAGuZPR1g8xhiL89tv16NYMF9YHieGNTZ+7pZu0bV5MMHLpTXvt8ka3a4h6xAuJj7rmwqG/a45xvH9rvAxSLQP3dPlQjRAQtQ4gmrRagQF++NulDenLFJ/l6f5HH/PKDu5dpVg03xhLUt0r5eF3s7634NJV6ZPKqL/LA00c1zi1EHY39yaCvppbxkfKJEOlsTjxlFegvRxIXNqsu9/ZtKSKD7+blV5A4JlAMC54XniXJwnXgKJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACFgL0PGGBUQ6TR06clJ3709Sb++kSUNFPGtcO1QICY5Hal1POPnNG0jJOq1CCoj0C5KetU/+qO0k8dEIyTmVLzapBEhac/3eUM09mS9KRDDmuvABEhAUqLw0urwxOx7TnpWWeljNqIAFK9BHoRfhRFOO0H9dpPz0rWxIPH9fXB947/P1yF6I49XEu806dPiMJh08ItnWrV5LggHM7XlyXvcnpkp51SmpUCRKEFTnXhnNPP4l7SCQ0qKL+btjHAE8UiYfTJUvd53WUcKISBRN2RNw/BwToeeIcQOYhSIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESj8BLCx3jK6mBopPwayCUk0URODg7WgQYdSLqOSt2Kf8QOVxoTB9+PLmf1GM05eTgfigSWSoL1VLRZ2KyrtGVM3KJTYWXBd4EClJA4NQv9xFPxAZNSjkfV6S58hjk0BhCJxbSVVhRsq2JEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJFAMBCieKAao7JIESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESKDsEKB4ouxcK46UBEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEigGAhQPFEMUNklCZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZBA2SFA8UTZuVYcKQmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQQDEQoHiiGKCySxIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIggbJDgOKJsnOtOFISIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIIFiIEDxRDFAZZckQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAJlhwDFE2XnWnGkJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACxUCA4oligMouSYAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAEyg4BiifKzrXiSEmABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABIqBAMUTxQCVXZIACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZQdAhRPlJ1rxZGSAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAkUAwGKJ4oBKrskARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIoOwQonig714ojJQESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESKAYCFE8UA1R2SQIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkUHYIUDxRdq4VR0oCJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJFAMBCieKAao7JIESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESKDsEKB4ouxcK46UBEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEigGAhQPFEMUNklCZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZBA2SFA8UTZuVYcKQmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQQDEQqFgMfbJLEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEigSAlmnsiU9K1tCg/2kwgUXFEmf7KR0E4jdfURW7zyiB9m3XS2pEx5cugdchke3Yc9RmTI/TupUqyS3XtZIQoO4fFyGLyeHXkgCvPsLCZDNSYAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAEio5AdvYZWbzlkHy/JEE2JRyTI2lZZuf1awTL5R0iZUCnOhJZLcjMZ6J8EVgXd1Te+3W7PqlWDcMoniimy3vmjMgL09ZL/KF0fYSwSv5yS5+oYjoauyWB0k+A4onSf404QhIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARI4LwgkqEXcsZ+sMhdz7SeNRd6Pf98pX8/bLS/c3Ea6xdSwV+E+CZCAjwTOyBk5lnHarJ150pU2M0swEXfwuMAzBqxVgyoSVbNyCY6Ghz4fCFQ4H06S50gCJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJFC6CWxJTJWRby1xE07UVeEaLm1bU/p3ihR4nTDsRNZpefijNTJFiSjw9jyNBEgg/wQQBuep61tqYUIf9T27tlv9/HdSjC3WxR2Rl/63UX+QppFAcROg54niJsz+SYAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAEciWQeTJbnv4yViCKgFUK8NOLur1a1ZQKFS4w26aknZSXvl0vizYd1nnvzNomlQL9ZHC3emYdJkiABHwn0L1ZDcGHRgIkIELPE7wLSIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESpTAF3/FSWJyuh5D1ZAA+fCBC+WSNrXchBMorBbiL6/e2l5G9I7SdfHnnZ+3SVpm6Qo3YA6OCRIgARIggTJDgJ4nysyl4kBJgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIoPwROHk6W6bN322e2JirYqRhRGVz355AqIHbL4+WmSv2ypG0LO2tYuXWQ1psYa+LkB6rdiXLsi3Jsjf5hKQrzxY1qwRJVM3K0rddbQkPDbA30fuzVu6VlOMnpbLyanFt13qSnX1G5m04KLG7j6qwIsclNMhfomqFyJUdIqVm1UC3PlbsSJYticd03iUta0o9S7gRt4pqZ/GWQ7LzwPGcui0ipF5EJXsVj/2Vqv/NZ/u/+sK6EuBXQdbvOSLr4o7KxvgjEh4SqMfWu3VNiawW5NEe4Q9i9xzV+VcoBhFV3MdvNNiUkCqrdqbo3QEd62jhCnbgJeT7JfFyWrGNrlVZey3YeSBNVu1IEYytcmBFiakTKoO61NVeQYz+0NfybYfV+aZJWLC/tG5QVdpHV831WhttsUW7+RuSZMe+Y5Kl7pm64ZWke/Pq0rlxdVG3RK4GjyWzV++VXYp1UmqGVK0coI+Le6BudVc4GGsnds64l1ZvPywrdx6RhMPHpZe6trl5PMnQnBIkWzWsEeov/TrUsXbvlj5y4qT8rO5nWHUlHrqyY6Rb+QZ1vTarsDY796fJgSMZ0lDdvzF1QqRZ3Sr6XnarfHbHfg8nHk6X1btS1HVKllR1vJuVAKldo2rqvnHdD9brbO0zNf2UrFTnjnt1u+IfVLGCNK1XRZpGVlbXsZoEB3i+r2/nl5/71Bj7+t2uUB34rhzLOKWHVbtqkFzWtpZ1iIpLpsTGpciWvcck7mCa/p43rh2iQ5I0qxvmVpc7JOCNAMUT3sgwnwRIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIoNgJrFWLt0a4jvpKaHBpO/dFUacBBKrF2/8b2FSmnhVdJKqFU7slHEqXf325Vi22p9mL9P5bP22Vu/o1llv6RAkEGVb7YPZOOXg0Qy/AdoupIU98sVa2nhUsWOu99+t2efL6ljKgk2thfNf+49obBuqlKgHGff2bWJuYaSzGvzZ9sz4OMq9o775gbla0JeasOSA/LkvUuT2a15BXpm9Si8auRWaj+n9nbvUYG8pWKpHDh7/t0NXaNqziVTwxZ+1++Xr+Hl2ve7PqpngiWQlWJs7cpvMHdamjFuKz5PmvN+p9488vK/epa7NHxt3eXolHKsm/v46VebFJRrHezlqxT29fG9lOejSPcCuz7oDTxJ+3mmOxlk37e490iakmr93aQQLUPeFkv6zaJy9O2+BUJO/P3iF3X9lEbu0T5VFu5dy5cTV5/LN15rVC5YgwT2GKtRNEm/lYcTbu7V4ta7mJSax1568/aN4zw5WowTCIBcb/sFlmr9pvZOnt4s05YWuwM3pQUxnWq6FbOXas93DTyFC5e9JytzqXt68l7aSaFqQY36NuMa7rbFReuDlJXvrfJi1UMvKw/U3dh7AoJaB58/aOUssmIrLyy+99+r+F8R7ft/nrkwQfWNdm4W7iiTlr9suzU9frMqc/N/RqIPeo64x/N2gkkBsB3iG50WEZCZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZBAsRJYtjXZ7L9NVFUPIYNZaEv0V2/nf/5gN/25SS2OWg3CiZFvLfEQTtQNd/cy8IFaPB//wxZrU7d0WvpJN+FEpQA/QVgRq/3nm43KI4VLvHCp5Y3431bvFyz+O9lW9YY8BBqwi1pUV4vx7v06tbHnvfjNBlM4gXHBq4bVMDZ4bCguW688IhjCCfvxcW7PfBUrr07faAonwM9+DR79ZK3yZuB9jJ/8sdNNOGFvv3xrikz40fkawvuBXThhb/++EsDAK0Vu9qw6D+NaoR7Oo1JQ7u+oQ8xxVde6ZrfwnODNfldCFcOuaF9bJ+GxYtTkFW7CCRy3Rf0wt3sQQpZP/thlNPfY4h5+9LO1HvnB/rmPHw3mbzwouD7w8GIYBE4QTBgWp7xR3D5xqfLo4apjlBnb/N6nTSJDBMexGs4defjUsAhXvlsc7yacaKzaXtImwu27AJHNS+q7QiOBvAjk/a3IqweWkwAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkEABCexT4TQMg5v9whoWnV/6dr35xj8WW5+4rqW0bFBF/FWIi4PKS8Wvq/cJvEbAvlucID1a1hB4mLAbvAbA4wQWrP+pwom0rF9F/JRLgbiDx+XzP3eZC9uPf75OPn2gq/biUF2FAkF/Czce0gvumxKO6nb2vuerMCCGWT1XGHm+bDfFp+rQFWOvbSG1z4bo2JeSIVjsR6gH2MdzdsqLw9v60l2+62DhHIva8DBhCF8gChnz0Wq94I5yo86EuzpqDnDygWvwwAcrVAiUdH3M5duTBQvmTrZmR44wBR4+eqpQGWHBFXX4hoUbk+SFsx4lfliaKE1VqBBrGA1co8c/dYkG4KHhSuUhpGolfx2+5S/l7cEQVkAAElmtkrRV4h0nwzhj6obKA+oeaK5CQASrc8Z9lpdBCIGFe9gf6/a7eUsw2iYfy5JV23PCo2Dh3+AAsYXhNQXClPF3dNBl8JKCY8Pbwr+/zhEEfLsoXm67tJFj+BLcw/j061hbbujZUPAdwz1sc7ZiDMfc4vQ+meMSZYxQHjFG9IlSIWtylpeTjmbK89+s12OHuGLJliS5SoVqcbL83qdPDm2lu4GHlVeVZxXYaMUeYWrsNl19fw17aUQbt/A9uBdHvrVUF89Ze0B5gWlqfk+MNtySgJUAPU9YaTBNAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRwTgkkH3e9sd6oCMQTEA2s3ZUjHMCJvHZbB2nXqJoWTmC/pgovgFAdQy6qj11tU+btNpIeW4gD/jOinbRpWFUvOqNCVM3K8viQllpUgX0sHs9S4SEMG6C8Yhg272yoAWMfWyxM/668Uhh2US5hK4w6Tlss6L+oxmYIJ1AnUokonro+Z/EZ+xt2p2JTbPbqyPaarxH6JEaJGMZe08zteBBOtFLiFWPBHtfgScsYN+5xee5wa3h25+Frm+nQKBBOwLCAf6VijHzDPvx9p5HU23d+2WYKaO68orEObQHhBAziB3guGTu4ud7Hn+lKgODNIJ6ZeE9n6aDuI7SFGefrrQ3ym9cLMz0oIGxJuhIx2G3hppxQFMi3ig+yTmZrsQAEA2/e3kHA1Tgmtld0iJSBKmwKDPdf/CGXCElnWv4M7l5Pnr6+tTRT90tFv7yFE2iaoY7fUp03jg9+91zZ2BROoDyiSqA8/o+WSGpbvTNHAGLsW7fFdZ/CwwzEObD2jau6CSeQB2Zv391R/qHOH+exNyVHrIMyGgk4EaB4wokK80iABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABM4JgcPqDXbD6oVXMpIF3s7f4FqMhqeABhHOfcITAYQRMLz5Dw8ATjb2H82kllrstxvCMlhFClsSXYKN7i0izL6dQnfgjfjE5JyF3GtUaIdA/4It2cFjRZBDW5yzEVoB4SayTmXbh18k+/CI0DG6mkdfraNceagD4YTdmkSGmVm7k7wv/LdrVEUtfruELmYjlUA+PF7AICBISTup02mZp7XnD+zgGsMrg5PBU4UR6mRdnOv62etC1BASmHOv2Mvy2r+mm2vsSxxCd/wR6xLRWEO+9GlTSx4b0kJ/IHpwsuaW/F37jzlV0XnXKaGQIVzxWslWEBxQQR4ZnHP8kZc1MoUb1mp1qweb9/nGs55OrOVGurju06Cz318cJ+7ACTnkEDqkU+NwJbJprjk63avGGLklARAo2L/EZEcCJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACRUAgJDjHGwC6OnrCWcCQn8PssCwiWxeX7X0ghEcbtTBvWPyhnDfYjX1j26KecygHlFuFGZv2uBavA5Ww4spOOd4nIF5A6A6rWUN29LN4qbDW8SXdvJ7zojra1gkPMruAF4HisM6NXSIJa/+hZz1EIK9lfecxYnHeEK9Y29rTbS1CDHsZ9ts0dF3DHQdyrsHuA2lmVdxficorQ4ISaDh9/JUnBhiuU2r6KbOdNeEtnIe1jrd037a1zKI/1h0w00hAsLN8a47HBoR6QcgXb5adfUaPb19yhmzflyZr447Ios2HzOrerjAYN4yobNYrTCJT3UdJSqCwR7HcGH9Ulm8/bHr3yK3f4rpPa4QFSN3wYH1oiGdufH2hvDd7hw5Zc/K0NyK5jZRl5zuBHN825zsFnj8JkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkECJEKiuFkANizt4XC22uxbDjfz8bA8ccXmyaBARkmvTxrVDZemWZF3Hm+cJvF3vzRA+AZ4PYtVCNhbfj544JVUq5Sy/IazEd4sTdFOE7jDOyxqyA14PrIv/3o7jLb9GqEsgYa8T6F8wTwn2fnLbt775763eBfl1eWDrqHHt3Bf+oy2hXrYrjx6dlaeBFEsoGFyXG8YtsvXqvLttX6p0ig73KAwqBEuEt+jaLFzfZ3+uOyjpQ0+boT8WbnZ5SRnoIKKBx5AZSxK0SGHRpsMe4/IlA+KRwlyCTQmp8svKfbJs6yEVGqRgYS+K8z59YURb+b/JK7SI44QKi/L53F36AzYXtagu/dpHSq9WNQvs3cUXxqxTfgjQ80T5uZY8ExIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIocwRqhLpCYuCN+sLaiYzTZhdWDwhmpiURVsnl9SLTIbQF3tr3q5DjmcDSzC0ZdlYsgcxjlkV7iCWMt+KtoTu27XOF7LhaheyAAIPmnYDVM4lTrTCLlwuIV2Dpmc4eJJzaW/PSjueE/bDmFUV6QMc6ZjfW0B1/rMsJ2YH7rJsK9WK1fSkZcr8SBbz101YpqHDC2l9+0xD5fLsoXu6cuEymq21BhRP5PW5+6yOkyacPdpMRvaM8PJmA27NT18ug5+fJyh05Iqn89s/65xcBep44v643z5YESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAEShWBVg2qqLfrE/WYICworOFNf3gbgCUcPiFRNb17LthlCe9QpbJLSGGMAW+yI5SDdYHeKDO2cftd4T4iLV4qoIm4SokjJv+yXY8HoTsgqJi/weVt4PJ2tY1uSt321Gm1el4KDCEiujfzPpDdFm8I0bUq6YphlV3eTOB94NHBLb13YCmximks2YVOwvOBYQjd0adNLUlJO2mG7OjfuY4g1IvVXv1ug2yKT9VZ9WsEy9CeDaRRrRAJDwmQykH+AmHQnLX75eX/bbQ2K7L0+j1HZPwPW8z+ru1WVy5sEi61wytJSFBFCVXCo8qBfnL1f/4WhMwoSYN3mPv6N5G7rmgsWxJTJXb3Efl7U5Ks2XFEDwvf4wfeXyWfKZFFk8jcvdGU5Hnw2CVPgOKJkr8GHAEJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJnLcEusXUMM991fYU2Z10XBpGeBc8GJXfm73DdM9/p1o0HXlZI11Uq2qgbNiTU2u3EkfkJp6werqICHN5wDCOgW2c6qOtCs3hZOlqUTYxOSeUAUQgdi8VfdvW1uIJtDVCd/y2ap/uCuE+6qlF8XNtFSyeNI6e8O5pYW/yiXM9NMfj7difuzeS7XtzBAZo3DgyVPdh9WYCkQIENSVpgf4V5BolpPlhaaLkhO7IFmvIjn4d3EU06VnZprAC4550bxepHuoShBjnkni4YGE0jPa5bZdvc3lqGHZxAxk9MMajelrm6RIXTlgHVdHvAsH3EJ9hvRoKvt+vTN9oilAWbj5E8YQVGNMeBNwlTB7FzCABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiCB4iMQrhaFuzevbh5g/I+b5XR27l4PDh7JNIUTaDhIvblvWLdmLjHGzJV7JRvxBxxsw56jsuNsmJCq6m3+aPVWv5PNWJrglK3zZqn+DWteL8xImtvI8CBp3zhHeIHQHVsSXSE7BnaKNOudy0QDi2Bjt/Lq4GQn1KK48da+U/m5zPtz7QE5oK63kyH/7/UuTx4NauSIbhopbyO4pjB4b0iweKew9wPPFvBUgE/myWx7cZHtWwUSSzYnydyzITsQ2gUeSay2zSII6dO2pqNwAvXnbzhobVak6XW7U8z+BnRyfb/MTJVYteOwdbdY04dSPe+B/Sq0CQQS+GQ4XDt4mRjZN0dUhcFZuRbrYNl5mSVA8USZvXQcOAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmUDwKjB7neal++NUWe/mqd42IozhZu+cd8vMo88QGdI908C/RoGWGWLdp0WD7/M87cNxLJx7Lk0c/WGrsyUIkvrB4ZzAKVmL1qv3y3ON6apdMQX7w5wxXWoEO0s3eKqzrX1fURSuSNGZvNfnq3rWWmz2UiurZLJPLtgngPwUC2Eq5M/nW7INRBaTCM48kv10rWKXdhA/afnrLOHGfXZuECzwMwXMtrlacHwx76aJUOk2HsG1uIWW4ct0jufWeFPPThanGW2Ri1C7eFp5GaVYJ0J9MWxsvSLTmeHa5W40SIF6s1sISa2b73mOc1UoKgd1Q4mLgDrpAx1vZFkW5S2yUG2qbGYLdd6tivTnfdz/byothHaBLDlmzxFGogBMqtE5boz7NT1zkKpeIOuARCBn+jT25JwE7AdcfZS7hPAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAueAAMJ03D+wqbzz8zZ9tHmxSXLVlnkyok+UxNQNlaAAP9l98Lj2IjBzucvbQyWVP/ySKLcRVq3kLw9d28wUNnygwnus3JGsvFtESHhlf1mvRA9/xh40ww3AQ8HN6ji52RtKJLFgU5JcpPoIqFhBVqv+fltzwGwCAUefNs5iiItb1VT1Nui6EFzALlXeBEKDSmaZrl71SgJuECVA0HHrhMWKcyMtQDmg3uSftXKfxMYd0eMsLX/gPWLEG4uljxKcNK5dWXaqhfu/Yg9I/FmPEriGTwxp5TbckZdFa6HN4s2HdWiVEeMXy2WqfbtGVeX06WxZt/uofL/Y5VXkVhX2JUiF1yguq6AUEtd0qyu4H618L2vnHrIDx8c93KJ+mL7fcY63T1wq/TpESrN6oRKvPGUs2HTQLaxHcYy5S0y4TJ2/W3f9wrQNsmJ7snSLqS7+SqCyIeGYfL8o3hSuFMfx0WdkNVdYG3x3Rr2/Qvq0riVN6oRI+6hq0r9jpLwzK+ffjAUbDskTX6yVS9T3LaZOmBw5kSXz1Pf8O8s17tvO+TtaXONnv2WPQMn8q1z2OHHEJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACxUhg+MUNJVAJE8b/kOPNAYv776uFZm/WqkEV+fdNbdQCa87b/NZ6g7vWk8TD6TLt7z06e9X2FMHHblh0H39HB69CBrypfl2P+nqBFp4CDG8B1n6wyP3I4BbWLLd0pUA/6a9CdPyiRAmGXVlCITtwfD/llWHCXR3l7knL9XCwOP/y/zYaQ9NbnHenJtXcxuxW4RzuPDakhUz8aasWQHz5V5zjkV+5pa2b9xFUgheKF4a3lfsnr5CtysPEkbQsma4W/PGx2zXK+8NNlzS0Zxf5ft+2tbV4wui4o2LsdP+ifLQSE439eI0WKMDDxHvKG4jVIIC5rmd9Fb4mzppdZOmO0dXkiva1TJEQ7l/rPYwDQXT0kxIzgW1xWEydUIHHDkNsglAy+MDLSPvbqwlC/owd3FzGfZ/jAQMCCnyc7JlhLT3CozjVY975TeC8EE+cOJHjjqVSpUp5Xu29e/fKyy+/LMeOHZNHH31UWrZsmWcbVsg/gaysLBk3bpwsW7ZM7r77bhkwYIDZSWJionzxxRd6v0ePHtKrVy+zrLQmXn31VTmjXCTVr19fhg8fXqBhFkUfBTowG5EACZAACZAACZAACWgCnDeUzhvhm2++kS+//FL69u0ro0ePVq5Mc3yZnq/zhmnTpsmuXbv0xRo7dqxUrHheTOtL583JUZEACZAACZAACZAACRQLgesuqi8t6oXJlPlx6q3xJMdj1A0Plss71JbblKcAfz9nTwEI2/CACgWCUBpT5u0xF1+NDrHwfLXyAjCsV5REhAUY2Y7b4WpRvX5EsPz3p216Ad9aaXD3enK78nAAbxS5GcZrLDzj2F2b1siteq5lFSyHqpjHcb11BOHJhLs6yKdzd+nFaGs9eMW4f0CMfLsoR3hiLUPazxJjItDfz17ssZ8bmwDFAiIZex14NzCsUa3K8vlD3ZWAZavMXXfQyNZbCFfu7d9E2jR0DpkSrPp/Y2QH+XJenCmksXaA9iP7NpKLmkV4hM4oCs7WYyFdr0awmxhgkPJY4s3aNaomHz5wobz2/SaPa9RHXaP7rmwqG/Z49xBiMAz0d7F0OhbENIZZv09IPz2stUTVCpEZSxK1lxKjHkRH917ZWAZ2qqPD2hj51m1R8MP3+KURbeWnFXtlhvIgAU8pdhvcrZ60VQKLSer+iN111M0bBr5rHZtWk1H9Y6RBRN7rxPa+uX/+EbhALWKfKW+nnZ6eLlOmTJHly5fLihUrJDY2Vp9imzZt5MILL5SuXbvqBW5/f3+PU3/ggQdk8uTJOr9Pnz4ye/ZsjzplNePNN9+UnTt36uFPmDDBp4dsBw8elOeff163adu2rRY6FMX5T58+XW688Uazq+TkZAkJyYmxtXTpUlMw8cwzz8hTTz1l1vOWyMzMlCeffFIyMjz/0fTWxppfu3Ztn45jbWNNBwTk/LDq2bOnzJ0711rkc7oo+vD5YKxIAiRAAiRAAiRAAiQgnDc43wSlad6QkJAg0dHR5kD//PNPgcAadr7OGwYNGiS//fabZgDRf2BgoE7zDwmQAAmQAAmQAAmcjwS2bNkizZo1K/SpDx+f8/Z9Xh1NGdMlryosL2ICSalZKizDcTlwJEMt2IvUqhok0ZGhXr1E5Hb4Yxmn5KDq59TpMxKmQiJEhAVqzwTe2gx+aYFeqIUHhu//1dOslpJ2UvYmn5CQ4IpSu2qwBPoY5mHOmv3y7NT1up9hFzdQXgVizD5LOnFShbCAl47T2WcEIT18PaeSGHfmKYz1hGRni1QPDZRqIZ5rfd7GhWufdDRTUtNPqjAwFaS2CgkBTydlwTD2BHXe2NZV1yhYjf9cW/KxLElKzZSqlQOUl48AQRiSc2nZ6iXmtIzTWuQCUYRV9GGMQ1XR1zjleJbUUN/x6sozBa1sEiip/zeXu1dU8PbR0KFDtWjCfitARIHPRx99JJ9//rkWWERGuiu6jLfN0NaaNvqaOnWqwGsCFrqti/9GeWneQlBiCEng9cGXN5TwMO7999/XpzV48OAiE08cP37cDdXJkyfd9vO7k5qaKm+//XZ+m5n1W7RoUSjxhNkREyRAAiRAAiRAAiRAAmWCQHHPG/766y/ZvXu3ZnH11VdLtWrVygQXDLI0zRsgkraa0xzNWp5XmvOGvAixnARIgARIgAQGLs5kAABAAElEQVRIgARIgARKFwF4hMjLK4SvIw4NqiihtXNe4vS1jVM9LNZXC6niVOQ1L0st+FvDjwzuWt9r3ZIogIeBqJqVS+LQ+T4mxA7RyhNCQQxhPCLDgyRSPMO8FKS/c9kGYy/pa4QQGfiUlEGsEaZES7kZ9Bw1qwbqT271WEYC3gjkfod5a1VK89esWSOXXXaZDrlhDBGL4h06dNC78ESxbds2nV6wYIF06dJFfv/9d0EdwxCqA94W8Baa4XHBKMP2//7v/3T/oaGhZU48YT2Pkk4PGTJEFi5cqEUucL1b0g+Tq1evXtJIeHwSIAESIAESIAESIIFzROBczBs+/vhj+frrr/UZwfNdSf/ePUdoi/wwjRs31mEVv/rqK7n00kv1p8gPko8OOW/IByxWJQESIAESIAESIAESIIHznAC8OBzPPC27D6bJ9yrcQGJyuiYyQIVpQOgGGgmQAAmQQOkjUK7EEw8++KApnGjatKl+Y6p9+/Zu1BcvXiw33XST4E0ziCTQxhqaIyYmRn788Ue3NtwpegKVK1eW9957r8g6joiI0B5BnDpE6I9XXnlFF/3000/Sr18/p2rMIwESIAESIAESIAESOE8IcN5Qti70ww8/LPgUhXHeUBQU2QcJkAAJkAAJkAAJkAAJkIAvBBBi4aZxi92qItTArX1coQndCrlDAiRAAiRQ4gTOfUCcYjrlvXv3yqJFi8ze586dK3bhBAq7d+8uKDMMMXMhoqCRAAmQAAmQAAmQAAmQAAmUfwKcN5T/a8wzJAESIAESIAESIAESIAESIIGiIOCvwiQUpUXVqiyf/LMbvU4UJVT2RQIkQAJFTKDceJ7YtWuXieaiiy6SWrVqmfv2RKNGjWTUqFGmiCIhIUFq1qypq8XHx8s333yj03ALi5AfO3bskBkzZui8Y8eOmds33nhDp/HnxhtvlDp16pj7SJw5c0YfY86cObJ9+3Y5deqU4Ng9evQQxD329/d3q2/fiY2NFYQaWbVqlWCMzZo1k1atWknv3r2lQYMG9uolur906VI9zg0bNsiePXukefPmWrzSsWNHnbYPLisrS959913NBF5CwKO0WH7PxWncOD/cRytWrJCdO3fq+wvXbsSIEYK33QpqGRkZMn36dH1fxMXFSXBwsERHR8ugQYO0MKig/bIdCZAACZAACZAACZwvBIpz3oDfapMmTdIo8bvYMITwMOYnPXv2FITxsBrnDe3F27wBnKZNm6bnQ0FBQXoeZ2VXkunSPG8o7D1Vklx5bBIgARIgARIgARIgARIoLQS+fLi7IPSGSMFEFLWrBstbd3eUYH8/qRNeSaqF5L4mVFrOm+MgARIggfOZQLkRT1gXpPft25fnNR0/frxjnXXr1skTTzyhyyZOnKjFE1u2bDHzrI2MesiDYMMqnjh69Kj0799fL55b2yD93//+V+rWrSsLFizQW3s5RBYINTFu3Di3olmzZpn777//vtx2223mfkklUlJS5KGHHtIhUqxj+PXXX83d1157TYdHMTNUIi0tTR555BGdNWTIkFIhnijouVjPC2nE0L7hhhvE+mDeqPPYY49pIc6AAQOMLJ+3ENPgnnLylPL6668L+oRgIyAgwOc+WZEESIAESIAESIAEzjcCxTlvgHjCOkcw2E6YMMFIyn/+8x838QTnDbnPGwAO8wn8Fg4NDS0V4onSPm8ozD1l3qhMkAAJkAAJkAAJkAAJkAAJSEDFwjlvD/SvIJ0bh5MkCZAACZBAGSJQuH/5S9GJwnsBHqbBsGgN8QHetikKq127tqB/fKxm5GELDwCGnTx5UoYPH+4mnMDYDO8WqJeYmKgFA4YnC6MttjfffLObcALCjIEDB5rnhzp33323fPjhh0iWmGVnZ0vfvn3dhBM4z86dO7ud66OPPiovvvhiiY3TlwMX1bngusILhCGcAA/jvjTGce211woEOfkxCILswgkIcKwGcc3o0aOtWUyTAAmQAAmQAAmQAAnYCOC3u/H7rKjnDYGBgdKmTRuPeQN+txlzh2rVqpkj4ryB84ainjcU9p4yb04mSIAESIAESIAESIAESIAESIAESIAESOA8JHDOxBNPPfWUREVF6bfiscV+UdoFF1wgN910k9nlK6+8osNjTJ48WXzxRGE2dEjAhSzc7uJjPGjF1sjDtn379mbLMWPGyG+//ab38fAU7lzhLQAhQfDG1CWXXKLLkIZQ4vTp02bb/fv367AMyMBDVoTs+Ouvv+T777/XfVgFE/CegUX/krJffvlFnw+OD2HIsmXLJCkpSRYtWqRDd3z22Wfm0HAdikrMYnZahImiOhc8/MS1vuKKK2TJkiWaB5iAzZVXXmmOGGFK8MaaL3b8+HGB4MLwOAFhzubNm7VAA2V//vn/7F0HnBTF0y3J8chwZI4j3ZEzSE4CCiKCiqAIKmJWDKjgH8GAqJgwIhJEED9BFEERJAgKCCg555xzjvrV66Vne2dn8x7cHVW/397M9HT39Lzp3Zvqfv1qtkVWGTlyJJnhZIKpX/IIAoKAICAICAKCgCCQnBBIyX4DCNX//POP8hM6depkwYp3Te07PPjgg1a6+A3iN0TTb0DHiqRPWR1TdgQBQUAQEAQEAUFAEBAEBAFBQBAQBAQBQUAQuE4RuCphO5o0aULz5s2zIN6zZ4+SXkUaJn6jZZg0Bvlg0qRJqsq///5bqT88+eSTFBcXRw0aNFCT2lAGyJIlS7Qu61EPyA4IqQEDoeCnn37yCM1RtmxZFVoBsY43btxIUAvYsGEDJSQkqDKadIGDHj16UIUKFVQ6/qRNm5a6du1KCOuxePFilb5//34qWLCglSfYnerVq1O6dIEfP6SHfRnOPfDAA+o0lDBMAkmaNGno7rvvVs931KhRauIf91umTBlf1V3T9GjeC/ra119/TeaqQmAzevRoJdEMggU+kydPVs8z0I0PHz6cli5dqrJB6QP9K316V2w0bOvVq6f6fN26dVWegQMH0rPPPhuoWjkvCAgCgoAgIAgIAoJAskNA/Aa3spj4DeI3hOo3ROqLJrsfBGmQICAICAKCgCAgCAgCgoAgIAgIAoKAICAICAJXGYHAs+cRNggrx0zihFkd0nE+WiEdMmTIoEJIvPnmmzRs2DBrpT6uqQeeMIENw4ovhJOACkY0DRPi2gYMGOBBnNDpmFTv27cvdevWTSWtWLHCIk9ky5ZNZ1NqBRcuXFBqHVYi79x///3qY6aFug8iQ6TWoUMHwsefQbUD5AnYmjVrki15Ipr3MnToUA/ihLp5/pMzZ0769NNPVfgNpOG5B2Pjx4+3sr333nsWccJK5B2QYbp3705QnkAoGKicFC1a1Mwi+4KAICAICAKCgCAgCCRrBMRvcBMn9IMSv0EjkXy2ydlviNQXTT4oS0sEAUFAEBAEBAFBQBAQBAQBQUAQEAQEAUFAELg2CCQ5eWLMmDF+7wzno0WewIVAoHjllVcUOWHmzJlK5WHatGkeRArkQ/gLqEIgD1Z1Rcsg06sNsr2bNm3Shx5bU/UBK4Tuuusudb527dpWPqhS1KxZk6DqAMUBqDYgPEk0DMoXmTJlClgVJuIRdiQYQ/iR48ePq8n7EydOED64B21meBKdlly3kdwLCCO+zDwHZZRAhrAsdvx99SmtRoE6QcwQ8kQgdOW8ICAICAKCgCAgCCQnBMRvEL9B90fxG4hC9RuAXaS+qMZftoKAICAICAKCgCAgCAgCgoAgIAgIAoKAICAIXK8IJDl5AiE6/Fmg8/7K+jsHckLLli3VB/lwnRkzZigyhQ6NceDAAbrxxhtpy5YtlCNHDn/VBX1u9+7dVl6tLGEl+NjRIThwunDhwiosAwgTsLVr16q4tdjPnj07tW/fnrp06UINGzZUYTyQHo6B1BAMeWLz5s2WKobTdRDuAiofIKGYRAmnvMk9LRr3gucXExPj81axehDhXND35s+fTxgYRjgWX3b06FGPU5UqVfI49nWAMB+33HKLr9OSLggIAoKAICAICAKCQLJDIJBfEOh8uDckfoN/5MRv8MYnOfoNaGWkvqj3nUqKICAICAKCgCAgCAgCgoAgIAgIAoKAICAICALXFwJpkvp2CxUq5PcSgc77LRzCSVyna9euNGXKFJo4caJVEsoKixYtso4j3Tly5EjIVRw+fNijDEgXs2fPViQJ8wTairAjIIVgEn3Xrl3m6au+v2PHDmratCk9++yzKZ44Ea17KViwYMDnUKBAASvPmTNnrH2nnUDnncog7dixY75OSbogIAgIAoKAICAICALJEoFAfkGg89G6KfEbooWku55ovWu7a7x2e9G6l2j7DUAkGr7otUNWriwICAKCgCAgCAgCgoAgIAgIAoKAICAICAKCwLVHIMmVJ+655x56++23fd4pzl9ta9OmDb344os0aNAgdem//vqLWrRoEZVmFClSxFrxM2/ePKUkEahiJ+WBevXqET5DhgxR5A6oFEDKeOvWraq6jRs3UoMGDWjNmjWE8CDXwh5++GHSoSdKly5Njz/+OCUmJhLIAVDygALD+PHjVdiRa9G+UK4ZrXsBHgi1kSaNMy/p0qVLtHLlStU0qFRATcSf5c6d2+P0tm3bPI59HVyrPuGrPZIuCAgCgoAgIAgIAoJAIATEbygcCCJHxTLxGwLCFtUMydVvwE1GyxeNKmBSmSAgCAgCgoAgIAgIAoKAICAICAKCgCAgCAgCKQiBJCdPvP766wQSAT52w0AfzkfDPvvsM0KoAtirr75KsbGxfqtNSEiwziOEQrQMA1YLFy5U1WHlT82aNSOqGpPrzZo1U5++ffvSb7/9Rp07dyaoUECWFXFt69evH9E1wil86tQpFQZFl0XYDifMERIluVu072X79u0UFxfneNsm+aFu3bqOeczErFmzKoIFnjcsW7ZsfsOCmGVlXxAQBAQBQUAQEAQEgZSEgPgN4jck9/6anP0GYBdtXzS5Pw9pnyAgCAgCgoAgIAgIAoKAICAICAKCgCAgCAgC0UbAeXl8lK+CEBS9e/cmLbWLLY6RHi3Dav5Ro0apz4gRIwJWO23aNCtP8eLFrf1gdzCZffr0aa/sN910k5VmhgexEq/sIBzDggUL1GfDhg3W6bVr1yplglWrVtF///1npWMHagYI2YHVTtqQ71rYihUrrMt26NDBkTiBDJMmTbLyJdedaN/L8OHDfd7qyJEjrXNVqlSx9v3ttG3b1jqNsDO+bO/evVaf2rdvn69ski4ICAKCgCAgCAgCgkCyRSA1+g0AG+9pdhO/wRMR8Rs88QjHb4i0T3m2QI4EAUFAEBAEBAFBQBAQBAQBQUAQEAQEAUFAELj+ELgq5AnAipVkWHV/4cIFtY2W4oR+ZK1bt9a79O6779LkyZOtY/sOSBbffPONldykSRNrP9BO3rx5rSwI92G3W265xQrFgAGvDz/80J6FLl68SI899hg1atRIfcwJ8eeff56qV69O1apVcyyLkBA67AMq1oQUr4skcUKZMmWsK4B8ADKIaWhnnz59CGSQ5G7RvheEqXHqf3jO77zzjgUHwq4EY126dLGydevWTREkrIQrO4cPH6bmzZtbfQqxmMUEAUFAEBAEBAFBQBBIiQikFr8hZ86cFvxz58619vWO+A0uJMRv8PZbw/UbIu1Tum/KVhAQBAQBQUAQEAQEAUFAEBAEBAFBQBAQBASB6xWBJA/bcbWAbdOmjQpf8eeff6qQFlBDaNWqFbVo0YJKly5N6dOnp3Xr1hEUJ3799VerWe3atVNkBSshwE5iYiJt3bpV5brzzjvpvvvuo8qVK9Ptt9+uSBP58+enCRMmKIUIZAIZAiEtQNDAJD3CWHz++ee0ceNGVQfCcnTv3l3t488jjzxC06dPV8dQ58AkOEgW8fHxhHAQQ4YMsRQ7UDYU4od1kSjsgERSo0YN+vvvv9W9IATF3XffrbDEvWHAb8aMGVG4UtJXkRT3gv4HxQgohcAQbsVcTfe///2PggnbgbLow/3791cfHKM/dOrUST37XLlyEdRH3n//fdXvcR4kilq1amFXTBAQBAQBQUAQEAQEAUHAhsDV8hvw/q7tjTfeoPXr16v3tIYNG1KpUqVI/Ibqyo8QvyF6fkOkfUr3V9kKAoKAICAICAKCgCAgCAgCgoAgIAgIAoKAIHC9IpBqyBM33HCDmrDv1asXaYlTkCRMooT9IT/55JM0aNAge7Lf40cffZR+/vlnlQehOz7++GO1D2KEngwHoeGrr75SxAqc9NUOkB9+//13wgS4Nky2d+3alUaPHq2SUL++hs6DbVxcHI0bN85SuTDPXa19KCyAfAIcoDDRr18/j0vj/oDXW2+95ZGeHA+idS/169enmjVrKjID1CecFChAqujbt29IMEDFY9euXfTll1+qct9++y3hY7eqVavS2LFj7clyLAgIAoKAICAICAKCgCBwBYGr5TeAaP3qq69aBFcQrPEBkQIEa5j4Da6HIn5D9PyGSPqU62nIX0FAEBAEBAFBQBAQBAQBQUAQEAQEAUFAEBAErl8ErlrYjqsBcZYsWWjo0KFqghlqE74sISGBRowYQYMHD6Z06Tz5I2nTprWKZcyY0drXO1AB+Omnn5SqgE7DNk0aTyihwoDB0dq1a5vZ1D4GBzFgumbNGqpYsaLHebQHE+Tjx48nTITbDaSJnj170qJFi1RoD/t5f8fm/Zj36a9MhgwZrNNmeSSCKDB//nylhGBlurID5YXFixcTlDqczMQrU6ZMHlnMc+b1PTKFcADVkUAWyb2YdeNe3nzzTUXgwcovu+G5g9xj3qM9jx0PfR6qIyCiFC5cWCdZW6R99NFHXmQcK4PsCAKCgCAgCAgCgoAgIAhYCFwNv6FgwYI0Z84cRSa2Lsw7IG+YJn6Df78BWGmfLXPmzCZ0Hu/U15PfoPEAGE5+Xbh9ygNcORAEBAFBQBAQBAQBQUAQEAQEAUFAEBAEBAFB4DpE4IYLFy78l1rv+/Tp00oRAWE2Ll68SCBNlCtXjuyDbuHe/5kzZ+j8+fNqwComJsZnNUeOHKHdu3fT5cuXKTY2lgoUKOA1aOqr8KVLl1SoD1ynePHi5O86vuq4GunAd/PmzQpnEDyyZct2NS6bJNeI1r38999/tG/fPvXBcytSpAjZCSjh3ADiQu/fv58OHjyo+lHRokXJjKkdTp1SRhAQBAQBQUAQEAQEgesZgaT2G/B+eerUKcL7IVTn7AQKjb34DRqJlLFN7n4DUIykT6WMpyCtFAQEAUFAEBAEBIHrHQGExytbtmzEMHR5f3FQdYztVTOofJJJEBAEBAFBQBAQBCJD4Fr9b07V5InIHomUFgQEAUFAEBAEBAFBQBAQBAQBQUAQEAQEAUFAEBAEBAFBQBAQBASB5IqAkCeS65ORdgkCgoAgIAgIApEhcK3IE56xJiK7ByktCAgCgoAgIAgIAoKAICAICAKCgCAgCAgCgoAgIAgIAoKAICAICAKCgCAgCAgCgoAgIAgIAoJAikMgXYprsTRYEBAEBAFBQBAQBAQBQUAQEAQEAUFAEBAEBAFBQBAQBAQBQUAQEAQEAUFAEBAEoorAxcv/0jdzttOqHcfotjpFqF65fFGtXyoTBJIKgR0Hz9Dvqw6o6htXyE/F8mVJqktJvakcASFPpPIHLLcnCAgCgoAgIAgIAoKAICAICAKCgCAgCAgCgoAgIAgIAoKAICAICAKCQHJG4MKlf+njnzfS9/N3qmbeVqewV3NjsqSn2JyZ6cZyeSlfjoxe5yUhcgT+XHOQvpi2WVU0f+1hmvFaU8qcQUTsI0dWakhqBLYfPEVDf92kLhOTJZ2QJ5Ia8FRcv5AnUvHDlVsTBAQBQUAQEAQEAUFAEBAEBAFBQBAQBAQBQUAQEAQEAUFAEBAEBAFBILkjcJ7JE5o4gbb++Nduv02+p3EJerhVKbrhBr/Z5KQNgelL99LFy/9R+rQ30E1VC9rOEp29cNkj7dK///KxkCc8QJEDQUAQSNUICHkiVT9euTlBQBAQBAQBQUAQEAQEAUFAEBAEBAFBQBAQBAQBQUAQEAQEAUFAEBAEUhcCY37fxiSAf+mJW8oIgSKER/vOxHV0hgkSWTKkdSRPNK0US8u3HqO1u07QnfWLUfZMMo0YArySVRAQBFIBAvKrlwoeotyCICAICAKCgCAgCAgCgoAgIAgIAoKAICAICAKCgCAgCAgCgoAgIAgIAqkBgYolctLnj9TwuJXzF/+l3UfOKEUKrVDxf3/sIITy6NY0ziOvHISPQKb0aeiljonhVyAlBQFBQBBI4QiI1k4Kf4DSfEFAEBAEBAFBQBAQBAQBQUAQEAQEAUFAEBAEBAFBQBAQBAQBQUAQEARSMwIZeVK/ZIFs9Ey7svRihwTrVsfO3kYgVogJAoKAICAICALRQECUJ6KBotQhCAgCgoAgIAgIAoKAICAICAKCgCAgCAgCgoAgIAgIAoKAICAICAKCgCCQ5Ai0qVmYxs/fSZv3nlIhKNbvPkGVWK0C9s/mI7Ru90m1f2utwvTff0RLNx2mf7Yco12HT1ODxPzUvk4RdV7/OXrqIs1csY+27DtFB46fo8wc0qJg7ixUs3Quqh6fm9LccIPOam1B2Pjhr510mesvWSAr1S2bl85yOIyp/+yhTdwu1JMvJhOVLZKdWlYtxHX6X8uMdi7ZeoQWrT9Ce1hhA3Xlz5GJSuTPSs0rx1Lu7Bmsa5s7wdxvzVJ5aM6aA6oYQnbAsB07d7vax5+b+Br5cmRUoVCg7IH7Kpo3MzVkvJwsWpjtOnSWVmw/Sss4VMjxMxcoLn82SiicnRpWKBBROJYLl/6lWSv205qdJ2jv0TOUMX1aKszPtH5iXqpY3NVX9H0h/Iu+Z6S1qlqQ8jjgjTonLnBhg3xtuR/GZE5Huw6eoTlrDyKJ+0EeRfLZe+QczUCf2nuSTp2/pK5drVQuql8uH6VJ492f7HUUyZOFcTlGy7nfrt11XPWF3re7SUO4Vij3iPymnTp/mcOzHKENu0/x9+U4Zc2QjuILZaf42KxUi/uLUxtR/vK//9Hybce43Alaz6FdzjEmpQpmp5LcT2vzdyBLxrTmZbz2t+4/TbNW7mfMTtPJc5fUfZUqmI1aMOaBQsT8y1+SBesP0d+bjtLuw2coMz/TeL520wr5qUi+LF7XCidB98ct+07T9oOn1He4NOOCNpYvmsMnLvpaO7gvqPs7dIaOnb7A399sVI77c7nCMY5tDOe5n2fM567aT6t3cN8+dlZdOjZnZkosmp0aV4jlvu7/t2b/sfO0cttRWr/nJG07cEo9g/hYvr9iOagst9OXhdtnfNWXnNOFPJGcn460TRAQBAQBQUAQEAQEAUFAEBAEBAFBQBAQBAQBQUAQEAQEAUFAEBAEBAFBwEIAXIayPCEJ8gTs4Inz1rkZy/bTT4t2q+Ma8bnoxa9WKCKDzgBCgzYQFsbM2UafT92kkzy2Y3/fRiWYGPHmvZWpmG1y9sipC/TRlI0qf5uahShDujTU75tVdIzTPWwR0Sec77NHa6hJZo9zVw4wYdtnzHLrfux5Ppy8gXq0jKeuTUp4ETmCud/8OTPSpz+72mrWbaZVKp5DkSfOXvjXuq8mlfJ7kSeiiRkm4l8YtdxsEv25+pA6rlZqF/XvVNGRxOBRwOEA5JWnvlzi/Sw47xh+pjcm5KGB/EzTp3VNMmO7asdxmr3CRTBZu/M4vd6lklfN4zhMzBe/uvpKPSZhdG5QXOVZw+QGjWXe7Olp0YbDFobuSg7T+Hk7qQz324961qBsNpKBWUeebBlo2PTNPEHuImSgDhBpTAv1Hs2yG3jSHLiD4ONhS/epQ5A8+t1ZQfUH8/yxMxep/7gVtHjDUTPZaifa+Po9FdUkvEcGPkC/eXfSOvphwS77KXX87o/r6YMeVQlEHyc7x2SlJ7/4hwkDxz1Oz1i+n4byM7m/eUnGNpvHuVAO0Be/5ef76S/e3xNdT1P+Pvzvrgrqu67T9Bb39x7f30Tb/S1Yd1hnoW7N4ugBbqdJTAn1uYM80m/MSkV+sio2dgZnWE/9u1SgekzScbIZy/bRK+NWOZ1SaXc1KEY9W5WijPx7Zlq4fcasIyXte959Smq5tFUQEAQEAUFAEBAEBAFBQBAQBAQBQUAQEAQEAUFAEBAEBAFBQBAQBAQBQeC6Q0BPfOPG/+OJTyd75ZuVHhPEWVhRIksm95riDyev9yJOFM6d2aOqbbxS/oEhCwkryn0ZVtO/yJPRmjiRkye/cS1tUHl4fuRyglqD3UCc6P7hX17ECXs7hk3bTO9PWm8v7nHs637zZs+oVCSgJGEajvUHygzBWLQwA1nBJE7gfk3MlrC6wMdT/N+vU3sPnrjgRZywEw/mrz1Mg39Y51H8ufYJhOcGA4li3hUlCZ0Jz18TJ9DO3u0THZUxpi7Z60GcsD/HDayK8uq3K+lfH30W1xs1c4tFSMCxq9+6n0+494i61rFaRPcPF1rfC2BTv3xeRerAeRiw78Z9Hooc2kBe6P7BQos4gTbVLpubQLTQBjLGQ58sps2s4GK30bO3ehEn7Ng8PWwp4btkNxAT3vhulRdxwiw/YsYW+vbPHfaiQR9/wqQJO3ECRBfzGrO4X/QasUQRQewVj+BnZidOmP0Z+UfN3Eovfr3c57MP9Nxns5LKcyOWeRAn0Gd1v8U18FvTm39rZnJeu0E1xSROxLOaRqOK+TyIOf/HBJKB3632KBpun/GoJIUduP9LpLCGS3MFAUFAEBAEBAFBQBAQBAQBQUAQEAQEAUFAEBAEBAFBQBAQBAQBQUAQEASuPwS2GJOsCDfhZDuZmIAJ0CfbllGy+QjHAel/2OJNLiUAXQ7KDq2rFaICrNKASWOEe3h74loCeQITkgMnrKFPe1b3WDWuy+rV8DfXKEhdGpVQoTawkn0NKxi8x4QHTJhjYvnlb5bThw9Up3RpXWEb0JaBE1ZZk6EgMrzUMZESWT4f5JADLK//69K9amU9roXJWSge1CmTV1/aY+vrfhF25Nvn66m8Lf43W10PE7s6zaMSPwfRxAy4wl7vUpHvKZ9azY9HA9UQ4A6bzioiXRrHqZAJKiHAH0zw9x611CKxtKwWyyv946lwnsx0ieOQrObn0efrFer8lMV7qBiHmujSsLiqNWeW9PTynYlqchoJAyespf/rnVspRKBdb/2wxrp6X86XN8Y5jIpWZXiiTWkOt1JQ5UMIFmD32rjVCvt5aw7RSJ5If6BFSatOcwfPEc+nD1+nUolcSn1D99tI7hHXmMbKA9ruaVyCHuJ+n/ZKGBEoS0DdAYouIALNWXmAmleJVdkXseKBVqqoWSYXDbi7MuXI4ppiRhiJIUxE+vEvl+ILJumfZzKKNqgdfMHkH21vd69MNeLzqPASIIKMm7uNMGkPe2b4UhrxZG3KlS29zk5jWR0GxAVtr3KfQYgQqHeAkPQ7h7AAGWbZ5mM6S0jbwycvWNdHQahn1Etw9Ukcgzzw7MhlChNcYyeH5DCVaNBnR/y2BVmV9euUyOom+VUYkiNc96KN/Oz/z0VIwLNfyMcI82M3f88d9Qwc7+6DUIXp3qykChGDerZy+I2RTCDROA3ivOg7+Yx++r2hijGQ77FRxQJWE6AsAVINDGoej7QuTbG5XGon4fYZq/IUuCPKEynwoUmTBQFBQBAQBAQBQUAQEAQEAUFAEBAEBAFBQBAQBAQBQUAQEAQEAUFAELgeEfhjzQFauc09UVqmcIwjDAlFY1SIhKpxuQjECRiIBLBxc7erLf7cVqcwdWsap4gTOAZxoXKJnPQWh3bQq8dxvZXb3ddEPtMqcv4Xbk9UxAmkY0K6YvGc9MY9law6MPG6eoe7DpAulm91hyF4u1tVqsxt1aoaCLeBUB0dbixqXWrsHHe7rcQrO/7u1543nONoY4ZJ8CaVClhhEPBo2tUuTCA9aNuy76TeDbidtHCXIqogIyb4+3Qsr4gTOAZhBc/03e5VcKhslDHhjQRMaLevW0SdA3lAK01MXbLHmphH2xobk84qs+1P16YlqBOH9NAEC/S9hon5qd/d5a2cUEq4wKQDJ0OfG/ZELWrC18mT3UXS0P020nucfiU0B64L8oYmTuAYBJKBHK6kc6PidGutwnTq/CUkK/vDUOLoxpP2mjiBkwjx8GTbsip0BsplMFRMQER663sXGQZ5EZoDISUypndNT2Ny//FbQDRxTeSDoDF3tZsoAdLIZ0ZYHRATmnGf0WFPQLJoX6eICjWB+sOxo/ys0W58BtxdQeGOMDzayhWJoSe4jdpWGL8DII6Y9/dixwRqWbWQIk4gf25+fq2qFaSX7kjUxZkEtdPaN3f8PXcomoDEBYNixP84rEp8bDalfoLvTckC2ehlDikCshgMeX/5Z4/axx8o3GjCUpX4nB7ECZwvUyg7DXmoGt3O/R847Dl6FsnKwu0zunxK3F4XyhNnzrjklLJkyRLwGe3evZu+/vprla9evXrUoEGDgGUkQ+pAYNOmTbRo0SJaunQpnTp1iurUqUP33Xdfirg5/JPdyGzA9btPERhoWTOlVfGoSvGPZ4n8gft9irjJFNDIWbNmqT6UNm1aeuyxxyiY35wUcFvSxBAQkD4QAljJPCtezPccOUe7D5+ltOxcIUammCAgCKR+BMRvSP3POBp3ePDgQVqwYIHyG/bs2UN58+alN954IxpVJ3kd4jckOcRBXQC+54QJE1TeO+64g+Lj44MqJ5lSDwLSB1LPsxS/IfU8S7kTQUAQSBkInDl/mSbxKu+Pp2ywGnw3KwdoYoSVeGWnbc3C1iSreQ4r7BeuP6KSMGH5FE/8OlmRfFno4ZtL0Xs/usJHzFl9UJEbnPK+whOXWlHCPF+Iw1E83qaMpaawiUMagCABm8v1aYM6hrmaXadjCxWDqX/vUROiCKmAOQBMytrN1/3a84VznBSYNamQ37Epjcvnp2lLXAoJu3l8LlibySvmtT3dtpzj88BEeJuahQjKE5hg3nf0nLXCHmUfu7kMLVp/mHYfOUvfz99J1UvmpPevPH+ER+jVrpy+hOMWYR4ebOH8ft+ACRQgCWBlPwyhQErxRLjdbkzIa5Fw7OcivcfsPHd07EpUjbWsqABCiWno84/d7CYK6HOZM7ink1cw4acKqxqYBgKFk5LGsq1HrUn/m6oUoJql8pjF1D6IIT1blbJwWb/7BKcXVuf2HHY//xsT8ihiglcFnHBP4+Jcfp9X+BunvPY0PIMXOriVMuzncVyqoIuUgP1NrNKg7W9WFNGGMCb4DjrZLdULsfrJv3SO+1y2zG5VDTOvv+c+jRVotPVlIoYmn+g0bPEMcO4+Dq8Cm85l7mtSAruUiX/ntG3bf4YOseKHJvfo9OrxuQkfu4XbZ+z1pKRjd29PSa0O0NazZ8/S2LFjafHixfT333/TypUrVYmKFStSrVq1qHbt2tSlSxdKn967g+7atYv69eun8mN7vZAnvvvuO5o7d6667169egU1ePMfTyz17duXTpw4QbGxsfTyyy97PJn33nuPtmxxS9V4nOSDnDlzUo0aNdSnSBEXm8+eB8c///wzTZ06VZ164oknqGxZ5xcZp7LBpuEa7du398gOIk1yJ0+sZumwj3/ZTCfOuBmAHjfBBzEsndSyagG6rVYh+6lUczzst60szXRI3c8DzUtQU47TdC1s8ODBNGPGDHVp9NVw7eVvVnNsLxfpC3W81KEsVSjmzJ4O9xpSLmkQCLUPPDJ0qcf3F1JY73arGFTjdvGk/gujV3nk7dq4mPq+I/HUuUvU87Ol6nymDGlo+GPVPfLKgW8E/uS4h19M30qQV4SBvTvm6Zq+C8gZQUAQSLEIiN8Q+qNbsmQJjRgxQhVs06YNtWrVKqhKUAZlYYMGDaJs2dwDRCnJb9i8eTM1atSIDhxwr4TBPSV38oT4DXhKRMnFb5g4caI17tCwYcOg/G/XHXj+Fb/BE4+UdBRqH/hwCi/22HjUukW8n454vLq1StM64WOn20f/0EVjZWPF4jH04u3usZWen/MikrOucYUPH6jsNZDqo9rrPln8huu+CwgAgoAgkIQIQOWh+xDXBKC+zIHj55Vsvj7GFpOxj7QuZSZ57FeyTQzrkzsPukJG4Lgcj7uaq8x1Hr3FimxtG/e6J011GrYgYBTM7ZK4N9P1PibstSGEh7bNhqpCuSsrxvU5cwsliopxOSzCx85Dpx3JE77u16wr3P1oYwZliDRXwkXY25QvpxvL0zzGGYyB0KjDp+j8u5ic4GQmyQXPQIcnQN7MPI76CqsPPPTJYlW0zxjX/CIO+rNyRPZM/qdVKxTP4aHmoCox/pTnkCyaPLF53wlH8kRVH4u4onGPNUrn4bATu1SLHv3sb0UkacqEjorFclIWDoPhyyrH5VRkEpwf+usmWrHtKI9Dx1KVknk8QkPYy2/Yc4WpwSegSOHrmZgaHKtYkUWbqTxSgdvoy0DAQP9HyJFIjbsSIdQK3o9Ps/rGGf6YqjNXhozVZUBE0IYwGb4M7++31S7i67RK9/nc+YLmfZXkRdO+LI4VKLRBaQLj21AXAVECxB6QgqCqcvc786hj/WJUn4k6UKvQaje6rLkNt8+YdaS0ff/f8pR2N9xeTHhj5QZIE3YDiQKf4cOH0+jRoxXBomDBgvZs1+UxVk598cUX6t5BLAlm5cvly5cJE4WwhIQEL/IECCyauKIy+fkTFxdHkydPpjJlynjl+vPPP622dejQIerkie3bt3sRJzAgCuWR5Gr4Jzlq1naaucLNTPXVVhArxs/bTRv5n9Sz7UpbsmS+8qfEdNf0pqvlmDC+Fnb+/HmLONGkSRPKlMn9ghdKe07wP2STOIGyU5llK+SJUFC8Nnmj0QfAdD52+iLlzOpN7rPf1Qwjzps+Z34XdJpsQ0Pg4Inz9Nmvvol/0zjW4j+bXPKK7WoXpPIs/ygmCAgCKRMB8RvCe254d9Z+Q7FixYImT4wbN47mzJmjLtq/f38P8kRK8RvQ+JtvvtmDOAGCflKQu8N7Ot6lxG/wxMR8V7pWfgNapBcuYL9atWrYhGziN4QMWbIqEGofMPsubgQDuvPXHabGFQIvHFi5/bgHcUKXNwHB4hix0BAQvyE0vCS3ICAICALhIGCSDJzKgzgBmXoz7IA9XyYjfIB57ujpC9ZhaWNFuZVo7JQwJiMPHnOvgjeyUGVWJ/BnxfNntU5jtb+2/cfO611WnXBPelqJxk58bHaLPAHlCSfzdb9OeUNNizZmBXJk9tkEf2QWX4VOnnWFNNDnu7y7QO/63WJyv16C5zsVCA73Ny9JCK2hrWO9oo6qCfq83sYbZBudZm7jYt19AdduWdU869oHgcPJonGPPW4qpUgm+vsFBQ58YAj70qJKLIfFiPUi00Il5BZW7Pj5St4F/C6KDwyT8gi/gpAmCB9h2pGT7j5uXsvMY98HUQDhMKCksJGVWrSZ2Ok0c4swFpHYnJX7CeoyCzce8SJq+ar3kHF/8caz9ZXfX7qv537cWDxdokBWv0QH/B4irIcmWxw9ddF6lq9xCKHHP/9bKYFAdWX0rK3qgzYpVY8qBakBq77YVS3C7TP+7jW5n0tV5Illy5ZRs2bN6ORJN3MPk/pVq7p+faBEsXHjRvVMMCFfs2ZN+u2339TEf3J/UKm9fVu3bqW6devSzJkzqUqVKlf1dk2iDVbOYVUcpHeTs/Xm1eZ7DbkqsNYg6VWafxQLMcMVL0+b9p2mdbvc34VlLKX08jdr6LW7E/2+UCbn+07ObcPvjzaQb8K1aUbMMV3Hyu0nLIagTpNt8kMgWn1gJpMiOtR1lvcy73rBFWlBM833Pv9IiAWFAH4rteG3tXnl/FQ0jzv80eodJwird2HVOT6ckCc0WrIVBFIWAuI3pKznZbb2WvoNe/fuJVwflj9/fkUGCYZ0brb/au+L33C1EQ98vQsXLtD06dNVRvgN4ZKuxW8IjHVyzRGtPjBr5cGgyBO/LfdUygmESxrnsfpAxa678+I3XHePXG5YEBAErgECUCawW/ZM6alI3izUIDEfJRbNYT8d9PF5njjUFpPF/yImqEpoO3nOXU6nYRvjQ4Zf58EksLbDBvHhjFFf9sz+p+vMdmJi+WpbtDGLdvvPsjpAOHbi7EXHYnXK5vEgTziF13AqGBPoORp95SgrAIRi0bjHHKxUPuSh6vQLh4H5iUPgQJ1A21oe88RnyOQN9CiH7ujSqLg+pVRCXrw9gWqVyk1T/tlNize4VdGgZjDm923q06RSfurHpCZNgDnLoXbCsdO8yDQjh6ZBqAtt2Q3sdJq5Nb8jZnqg/Yt8jQ/5nn9YsCtQVq/zFy667y9LAFUSr8JBJpw3rpEzm//fK1SZO3t6Jk+4KjfLlmWFiVFP11HPfSKHpAGBQtt8VmLGB793g7pV9gjfEW6f0XWnxK3/X+MUdkdPP/20RZwoXbq0UpawT8RDYaFz585KoQJSqygzbdq0FHanKa+5CO1hHxQ6dOgQLVy4kHr37q1ILSC9gPyCUB85coT/4hMqOuaE57333pvsiRM//7PPgziRg1eo/++OclSQ5f7tdoJjt7394wZLyWD7gTMcR+0QNblGYS3s7UtNx/Pnz7dup379+tZ+qDsYALMbpJUgB9qofPIm9djbfb0dR6sP/LHmcEDyxI5DZyxZXV84I9YjQr7AglGy8FXP9ZZuOrCVSuSgbk3cTsL1hoXcryCQmhEQvyH5Pt3k7DesWLHCAg4h/5I7cUL8ButxJaud5cuXW+1p3LixtR/qjvgNoSKWfPJHqw9s4YHuczyQ6m+F6X9828u3ucnBvlDo3b6sir+MQe7cHMtbLDAC4jcExkhyCAKCgCAQCQIVWX7/gweqR1KF37I5jf932/e7V7Y7FdrLoXO1OY3B49wmY3W8zmtuEXJEW0IRdxiQfDky0oHjLjWLXYfPUAlDoULn19utRjsxJ3C1LdqYRbv9ZvtQ9499GgR1iUwOoSouMDll4IQ1HuWH/LSB6pTJS3hm/gxzMP5spxFKJD6A6om9nmjdI0KP3MUhG/DZziFsoFS2eMNhK5wIrvvpLxsJhJ5ba7kX+SHMSnNWpsDn4IkLtIpDdyzjEDu/sBqFnoifzQsD06dZzaFPXKGpcxnftcfblKHmrFARjOnx7Pw53PNewK5qnDepSte3w8BWpwWz/e7PnRZxAuSBzo1LUDn+nuLaWTOmo2xMsDp84hx1HrzAq7rc2d39YTu/n1cvmdsrT6QJJoYbdroXTPuqd+MeNyHGLIv8hfNkVqGOetwUT+t3n1DhSP5Ye5CWbXYpLeM5PvnFEvqKSRYmYSjcPuOrjck93U13S+4tDdC+PXv2kDlxNWvWLEcFA6gb4Jy22bNne8iu6nTZJj0CUHe45ZZbCCogWLkFA4Hi+++/T/qLG1c4etTNkAtXMtWoLkl3zzBL77t5bvZbSZbo+ejByo7ECTQETLsBnRKVGoVuGCTnxaKPgJahRs01atQI6wKbWS0EYVZgSl7JkHn6bbk8t7BAvYqFotEH0FzIvx4JwDr+bVng1WPoQwj3gk8RfikSCw4BU7JYBo6Dw0xyCQIpDQHxG1LaEyNFbk4OfsPx4+4JSKgYJmcTvyH5Pp158+ZZjQs3VKT4DRaEKXInGn0AN45IGyBe+7MVTJy4dBkUCv9Win1P+A1lCkUmdez/KqnrrPgNqet5yt0IAoLA9YdAHmPC0wyj4YTEtkPuiUhfE+eQyMfqdV+27aCboFG2sDsEbIGc5sSrO49TPZv4GtryxbjL6bSk3kYbs2i3N1P6NGrVvK43KxME8LwCfTApbLeRM7dYigy1y7omwzGp/NbENeodzJ7fPN60z6VYa6aZ+5sNpQdzctrM42s/mveor1E8X1ZqU6MQDehckSb1bahCc+hzvy3fp3e9tvliMqhQHb1uLUtT+jWip3mrbTrPQWl1lLxGXz1x5kLA56GfF4gaMBOjzQFIShv2+Mdet8++/WONe0HrK50rUPdmcVS3bF5CGJBYXrScjQk2+3yE7Mlv3J/5HbVfI5JjhNHQCjjoh77C9uAaCPFxzJhbyOJADkK+dGlvIISn6dSgOH3yUA1FlkDYFm3z1h3Su17bcPuMV0XJOMH7VyEZN9Zf07R8KvLceOONVKCAb/ZSXFwcPfbYYxaJYteuXdbkvdM11qxZo4gZmOT/999/VXgJDJYhHEjatG7JJqey69atowkTJih51/3791O+fPnUCqXbb7+dEhMTPYps2LCBJk+erNJat27tdR4nFi1aRH/88YfKgzpwL3bDBJ4ORdGpUycqXNjNDLPnTQ7HuXLlopdeeol69eqlmmOu6Eqq9h07doyGDx+uqgeBRhtCduTO7fpnCNUSKGGYdvbsWfrpp5+UYgbiPcMQ6xn94bbbbqMsWdzS7ma50aNH08GDBykmJoZ69Oih+gOeEz6HDx9W6hvBqBUMn7HNGviAnPxTbUoFDMGBCdT7m5Wg18evU03aeegsHTt90edKdPzAL9hwhGV9TtNOZtWC4VeCQ4JULB4TlCRopOW3MzvwH2a5IeTIv/SfipfVqmoBRRDZw6FKdnGbICNaI943w9DEXu9juOifzUdpLde7kWOJ4WUWcvtVOR5dOZYrAk7h2qVLl+iXX35RxfH746sfBKp/yt97rSxY8V6nTG767NctKm3rflYaOHeJsjm8zCHDH2sOMUvZxWBuX6cQXbj4L01atJfWcAy9Uyz/lpclrlCfqToCRulSDlGwbvdJjpN1AyUUiaEapXIRBs58GXDEtRZvPKquh5VOkKXLyy9L9RPyqjAG9rL7uV1/cplgLT+/1DZIzOuVHSt7fl91kDZyH93KDF60GeFqynC4mpurx1pSYGbBQ8yARZwyWOW4nOresEJryZZjtIZZmsAUscjQF4APXhrCsWj0gYIcckeH44G07l31ivhsCuKuacML3L6j3vEWEeMcSjMXebA0K78k3Vgujy7isUUIir84BAhwBXEjZ9YMFMuOG753FYt7qwChn57n/oUX2Yb8nPDiOH7ebtrOahjAsXvT4h71R/KbAOm6iX/tUb9Fh7htWZjpWzRvZvUcm7MEXHpD8tDjonxwkRniM1jJBfH78P05zdJ9IJGU5OfdimNiov2mIdTRVu4b+I3Qtot/L/Es0NdARsN59B9t+K1CH9JY6HTZCgKCQPJGIDX4DadPn6YvvvhC+SYVKlSgli1beoGOEBPffPONSse7asOGDb3yQPHthx9+UOl4hwHRPDnbtfAbgMewYcMIihgmUXLq1Knq/R7n8+TJQ926dcOuZZhUQ36EiUSfO3XqFBUpUkSFjLzzzjt9+qviNwTvdySV34CHiPcXrNZHDGKQWvG+WJXfJSvzO3omQ7bZeuAh7Jj9KFwSTiR+A9511vD7H6x+Qh7KnzMTzVpxkP7ilWZ438Y7TwL7R/AptNQufMhF/P65isOXneXBOgxgVuL3xFql/ftk8DNm8LsU3hdBEs+aKa1SNcA7ZjNWQ3R6l5u6dD+d4ferYOwGdopv53baLRy/AWp/U/7ep2SBsRoLvgHq0fe9j+OR4z0U2NThAfQcjFO4FmkfMP2G2ewfteAwc77MDNlhlrPnh3+E+4VB8VA/ezOf+A0uNMRvMHuF7AsCgoAgkHIRgMIDVvFjkhHvOiu3H+NxsJxeN4TxNYQ20IYJVV/265K91Lam91wMCI+TjTrMyeA6XN8sXqkPm/LPHmpQIT+lwcC/zVbvOM7j9S7yBNpdskDkhEdMwp7jMT5MyAdjSYFZMNcNJU+D8vlIh7f7Y81+alnV+10R9WHMeO9Rl0JEodxZKA+PnWtDXxg9a5s6hALKO92q0rMjl6gwFQvWHaYpi3dTW0ONQZfTW4SzgD9hPmd97iS/585c5iYklCzgViHReQJtI7nHExwK48AVEgAWjeU27hvXxRj/E6wO8fPiPaoZ6/j9HwYlDq3qALVjvC+bhsn9O+oVpV+4D2MsFgaVCGBQPd4134a0uTxO361pSUJ+J0M/x3cOczU6LE9crBujGbzAFOVzOYSu2MXXm8vvxqEa/ICVrJ4BA0HhRh/f8YXrnUnLNUq5x9x/45DsXZvEKcKFvR3oc48PXUwI/VM8X2b69OHQFmQ0qMB9e4mr70zl3xozpIp5ran/uH+vbuIxcG2YP8A4Ngyhj+zfezyr7s3jqPfI5SrPxitElHD7jKokBf9JNeQJkBK0YaAwkL3//vuBsqjzGJR8/PHHPfJ+++236rhnz540ZMgQgsNuNwyOPfTQQ4o4YT+H41dffZUg9YqBOEyow/bt26dIBNiHGsLrr7+OXQ9Du7Uyw8WLF+nFF1/0OI+Dd955x4qh2r17d6/zyTGhTJkyVrN273Z/ua3EKO9g1RgIG3YDdtqefPJJD/LEr7/+Sl26dLFCw+h8eps9e3b6+uuv6eabb9ZJ1vaVV15RoWJAZKlcuTLZiRIguQRjize5VTIwUY1/ZsEYpMAw+HOS/znCMCiiZY90eUyKf/37Dn658FQ42McvUfhh/YsJFT8t3kvP31bGUekiGuWH/7aNMPhj2lqe4MaAW7NK+VhG6JQiT+D82F7B/3PBBOxrTB7ZzwNepu04eJamLtmvBkAHdEoIe3X+ypUrrWqbNm1q7Yeyg3/SmIjVdguTAUrzP6zPp22x2KzA4bbazi98X8/ZQaevxMjDYOQbE9ZZRBvUiWeIwU7gO+DuRPpwyiZFgNDXw3YTE2Ym8zPu2TJOTYqb57AP8sr/xq1mOVdPFjX+8WNCeRETKsBkfL1zIhXgQVhteLHHBHiwBua0nTyxgCf3QSQBTqYdPXWcljMBZDJP6D/WOp6qMRnGNBBE9LXxkreQ+/EvHPrGtN1MyAHJAIPQb3QpHxaRJhp9AIPXICHAQFDxRZ7YxsQR/azxYg/5tH3unwbr1rDidBh/p2CZMqTxIk/gRfSL6Vu9Vqvtu3BO9RfE8C3GL3Kv3V3eg1Qy7o9dqk5cG86c2UfNQdZIfxOgsoPfHDiY2o6eukh4XiB74NzLHLKocG7Pl3XkBckK3/lTV37zdHlMgOCD37nb6xT2GGz/lV8+0c9MA6EEH/ybBzEE3yHTMICMD36LQSQREwQEgZSBQGrwG+B/vPDCCwpwKF45kSdA+NXvu02aNHEkT0ycOJH69Omj6tEkiuT+FK+23wA8Bg4cqN7lTWzgk2m/LCEhwYM8sXnzZgJBwnw/MMs+++yzBP8AzycNWMGGid8QnN+RVH4D3jU//mWzeq81Hot6D8YKf7wTPNqqpNd7lZnX3z4It3PnzlVZQFjKmjWrv+yO5yL1G/AujIlyGOSef5qw3po0Rxp8JpDNp/PA5EcPVqF5PEA8atZ2nLIMEwyzmaRal0kEj98cb6XrHSgdvDhmlUUM1umHeRwVPhjeM7+Zu5Pf30tSbfZTtYH8OoZ90lDMTp4I128AKUSrPIIkAVL1B5M3ebyLwqcCify7+bvorXsrBu2Pm/cTjT5QkVeIoS14T4YsNNqOQWy74TUa/pC2mrwA4acjzuNleKfXPgaIQuZYg/gN4jfoPiRbQUAQEARSEwIY07q1ViFrkvzF0Svoq6fqePwPxP2OnbOd5hmLwuonuOeh7HgMmrCWVZyyk6ksgTzfzdtBCGWgrVyRHHqX6iW665vPYZtHz97Gk8Nx1nnsYJV5769cE5o4vqVGIfYj+MU0TIOM/5kjZ1XplduPUk1j8tdflUmBmb/rhXOuZfWCFnni1W/XsCI3yNme48VYmY9JbLzTwr54rKZFnjjL496vfbvaunTv28upseLn2iXSXe/MU+mDvl9L1Uvl5rq9xyR1wT6jl9Pwp2qTqWqBd6rXv1tFu69gj3dOqDeEapHc4/YDp+jhT/9Wl0RIipFP16acNlLwjgOnrSblBm9A4QAAQABJREFUvxIqHkPyj3y62ArN8fmjNbxwxVg0CAzatFIJFj9C4QDEiG08h9D/25X0epdKXmPwPy7cRe9MXKeK1+VFgIO7V1X7UH2AIsJaHoMF2anfuBUc0qeaR3k8txe+dn9HdBuC2YKoEc/zMJjDAKEIcyBF+NmYNnvFfvq/P5z9FBCUq8TnVGEvUP7lsSuYGFHDg4yMZz9wwiqrz4FoEqrdVDXWIk8gpEq5otm9QoQs4zAqH03ZaFXdnMtom8n3gHKw+kyWfvPeyl5ErW28AFGbDpcSbp/R9aTUbaohT5QuXZoweY2wD1jZ069fPxowYIAjsSHYhwUViKVLl1rZofJw6NAha/J86NChlDNnTnrttdesPNg5f/68mnQ3yyIdbdy40d1xMUC5adMmFbYic+bMVLt2bWRTZoYW0WkgS0yfPl0fEibz7eSJCxcuWHlQn1ZRsAol050jR9wTVrGx7i90UjU3W7ZsatUXBi7MZwJyg1YNMLHDwLKd4KBDjRw44HrxQd+D+sTYsWPpjjvucGw6VqxBMcRuwQya4Z+POXHcrlZBezV+j5+4xXtQyyww4Nu1apLQTMPKIFxXT15iIO35r1bSEA4VYpezj7T8/75ZrVaHm9c392fyaqhwDJP6A/5vrQeRwF7POf6n1mfManrm1tJUJc798mrP5+t4wYIF1qlwpXfn86Ckfr5YzaZj3yWyGgQmZ2GIa+yLPGE1gHde/W6t9czMdOxD4vfBT5aoeLb2c/p46LStVIhfjEx2LNo28Pt1HsQJTMjjpRl9RBv2+4xdTV884vkCo8+Hs/1+wW6LAKHLAyMMrmrMQOh4d9JGQj8HUcjJsJLMNAx+676NdLwwv/3DBnqpQ1kzW1D70egDIMtkYNYtVENAEjjIih12dQQ0xgzhAsKFfUI/qAZzpr78nDB4bRquD1w1Ljg/5OdN6rth5sM+VmFqZRT7ORxH8psAhREop5iG3yOoaAAfGFYvvjB6FcuKVfFY+YfVlCAP6XtAXgx+46OJPziHfoVVkJgAgfmSMFMngziv88lWEBAEkj8CqcFvwPtqq1atlD8AxTkQg3Pk8HyHga+gDUpreFeFv2SansRFWoMGwcWDNctfi/2r7TfgHhHaD5iD7A4cYfAFNOamGiCIE7Vq1bLyqcz8B3lM1RP4qlAmBBnfycRv8O13JJXfAEW1Z0aupOOs0ufL8A7xydQtiqh5px+VMF/lV61aZfUNkJrCsWj6DSNnbvfZBLw3PfHlcr9+A4gKGDS2ExjwjqgV1XABvIfh/d0ktuI9fsjPm+kNJl2XyJ/FZztCOREtvwF+wfs/bfJ5aWDzwter2OdhNdIQJy6i0QfgxyAGMxYawH5nInhrVo2z21ImyeiQHcDYSenDXsbpWPwG8Ruc+oWkCQKCgCCQGhC4t3Ec/crE0gPHz6lJ2fs+/EspL1fgyXYoN89fd5CWGIsZn2xbxmulvh2Hxz//h+rzAptqvNoeYQtQx0Jjsc7Ld5X3WJiIietnbitL7/24XlU1bNpmXmB3hOqWy0e5mei6iiecZ688YMnwQ3Xi3iYl7JcN6bgEq6rpCfw+X61QYRpKM+mjaaUCjoRMs/KkwMysP9L92qXz0EMt4+kLxhEGogBW31djskMMKzpvYeLpN79vs0gANcvkUhP7+rqfTd1oYdO9eUlL4QOT6Q+3LkWfT3W9I74xYTV91KO61+Szrgf4dnpnPiuEFeCJ/+w8IX+en+N+Sz0E+QZ2rayzh7SN5B5BJNFEAfT7Xl8uodbVClIFXowJX2c5E28/mbLBak+bK0oqUCloV6cIjZvr8h+e+XIpdW5cgqCenZ1VqbfuP8nYbLFwvZHHrE11iDd4or4bf79AfoA6RPchC3nxZD71TnuMx8HnrjlAIA9pu5fVG0zr36kidefyICfgO9n1A3xX86uFf1goN4sXneJ+wrV6TIrSyi49P1tMrarF8nc4l/INl245Sr8YiuFO13iuXQLd855rjggkj3veXaBCmmCOB6pl89a61JF12Xa1iujdoLd1yuSlhqw+odU1nhy6hK+R3yI//b3psKVig0rr8e9QPf4d0YbnrMkTf7L/8BKTTRqVz8+Erxg6xuFU5vDvzMQFrkWTKNOc+y4s3D6jCqfgP6mGPIHVV507dyYQGmCDBg2iGTNmUNeuXaldu3ZUsGBoE82oA+QHDDB+99131KhRI0qXLh1hsv2tt95SxAzkwT6IGunTp8ehsrffftuDdDFu3DhFpgDRAgObIEbcddddKi9WI2ElEwgYGTNmpLZt26rQHRgExYCZVqVAZqTpwTocz58/XylUQL5W27Jly/SuowKCdTKZ7QBjbeZqMp0W7S2kdZcvdzHRoCwChRHYzJkzqWRJ10SaviYGNRFqQ1uHDh2ob9++VL58eZWEsC5vvPGGpTLy8MMPK2UJpz6H54cPFCygbAGZZfQrJ/USfT293Wow/pBmxkPTecLdQjEAq6u1ta5WQK16x+AKBrUgWYtVN9jHP1Hsv8rqBdoiLY/VTJDV14bJ76aV+J8nS6Jisv9T/seLcALh2JApm60BIwzYPXNrKbWCHPcC+az3+F4wiIfj9ydvpJFP+H7p8XV9M/RLuNK7kKfVhglxbc1ZglWTJ6AYspdXGBW8wvjUeexbPKOYLOnUKrBEZmWCnQwCiZZhBVkEhpi29zcvQbn4RRzKIiN5RZmemEZ7nuDJfG1YhYUJfRgmmft2LGcNcoIwATnbL2dsU/0Dg4l4adEEELxE9enom5AwbPo2j+d7Sw03ger4mYv0w0K3akXJAlnphdvLWOFLoDCAiXJMpMOGspIC1CdMBQR1wvhTnAcOn2WiDJQTEFLknR83WIO7ICJg4DxTeu+VW0YVXrvR6AP/ch9EOBoMiMOm80tfl4ZFva6F75s29I+V213kGp0WzBbXMIkTjSvkpY51C/NLbQb1XYBiBdQvYFBEcSJyoJ/BMHiLFYMgf+ADi/Q3YQITG7RBFvlB7qd6NR2UN976Yb165mjDuD920sMt3b/bGKzXbUNffeUut6oMHF+sqtOYzeOX8pbsQEGKG+GNuvMHqyC1OglIandcmRjh2+RAQkTvMUlHr9a8t3Exlv/zHqjWbZetICAIJE8EUoPfAGShNqEJEgjt16JFCwvwc+fO0c8//2wdYweh/0yFNBCzdXlM4pp+h0fBZHZwtf0G3L5WmMC177nnHoUI/E29ryFCiEf4DdpnA1EH/inIFBkyZFDqFVCqg/8I+/zzz+mWW25xVA4Rv8HZ70hKvwEqfJo4gfebexoVU+EQMDmOwc8v+f0I77gwkDxrlc5tvQ+rxCD+mIRbKE+EY9H0G3B93F/XJsWoEQ+uwSf6jInUf1+ZJNB+A96bH2WVCLzrIeTHqNk7lPIBys/gVZQmeWI9y/TCt4ABx543xVmqcqgfoTzgT2oC9h9rDzGOxVT+dOx/+vMb/uR3NyjGaTOJ70nhN4C826ttaeXXQOIWfQRtgAEbKGhU51VmoVg0+gBWrrXggVJNnpjDA9BO5ImZxgpXhG/Eu3CoJn6Dy9cSvyHUniP5BQFBQBBIGQhg3Oid7lXoKZ5AxqQuPj/+tVt97HfQ4cai1JE/vuzmGgX5f+0FNQE8fdl+wsdudzUopiaq7entaxdRSqt6ZTsmh03Shs4P4sT7D1T1UDPQ50LZ4l60mgYmo8fP26mKQyHArtJgrzeamNnrjtbxfU3jWE3tHE1a6Bpf9PU8yvDcw2td3ASGhRsP0/fzXVhA6fbexiU8mnRX/WIczmK3WoC3jMdLv2c1MicFgUdvKU3fsGIJ+pPG1qMiPnjzvkoWMcN+LpjjcO8RdT93WzmeOF+h2ocQGzrMhv26nRsVpzuMPn9Xg+L8/sth0dkfQL/5cvpmexF1XJvHcl/q4Jo70xmgsPHxQ9XpoY8XqbIgKmiygs6jt/9jglFlDpdiGsgrAxmzp4ctVclQsBi1f6uZRYXhuZ/DTmgiksfJAAe3MzFk7uoDShkDz+3buTvUxyz2WJsyHsQS81wcz1kM4va9yGQkGPzHMUzSsRvCggzqVtmDWGLP4+/4pY7l6cTZZUrlAvmgaGOq2uiyCDfT5w7PZ4AQLc+1L0eDf1insoFAgY+T9euUaIVNwflw+4xT3SklLU1KaWgw7Xz33XcVUULnBdkAE9TFixensmXL0oMPPqiIEGfOuCdpdV5fW8jdNmvWTE1wIw8mujFxDjKFtnXrXJ0Nx6jbVKIYM2YMYbIdxAkYVichXAcIFdpAwEDcYljr1q11Mi1cuNDaxw7IIDBzxZgZKxPn5s2bh40ytDu5GwZ2EZ4EKh/aOnbsqHeTxRZxh/UAaMWKFWn48OGK9ICBd3xAokBa1aouGSHkHTVqlM+2I9zLiBEjVH6QboIhTqAyHVMK+1gdjhX/TgaiA8IU+PsgdIE2TAaOnLVNH6rwGBgo1KtSMJiGyWhMWGsDoUHLf0ZaHgM/X83erqtWcYShHgCJfFy7TKFs9G73iixhldHKE+wOVq9r0gVWO334QCVVL8qj7rL8gvTOfRVVSAOkYVWOXbYf6f7s8uXLihCFPJDNDmfiAQN9kFvVdjOTV7TVKJXTYzWTntTV5522uNf3urvuFb0Eg512OV1MFkNhoUCOjIpogJADd95Y2KpOy5bpBAxyaru7QVGPgWK8NDdm1mONUm4il0nGycasXjxPpw8mwvUzQv0NWTLKjNk7/AohA+dimTQy4O4EiziBtCIcX+2teytYzxDkj7E8+e3LGiTmoYEcmgOYwHD/rxtEIKSZzwLHgSwafUBfo2WV/HpXSSRbB1d2oKSiB5rxnbArwNjzOx3jOzfK+M5h1VqPFnGKOIH8+G48zKFb8Fy1/b3ZTdjQadjid+KtrhXoCZZrbsUkAvSrSH8TEF5FE3VwjR7N3cQJHGPVHIgO2vB7pA3feU0SwvcA32/0EW0IV/TC7WUproB7deMnU90v+vi+8O1bhp9ZHOokta8PrqSb562CsiMICALJHoHU4DeYocJMHwDgm5Nz2nfQvoR+OCbp2insh86XXLYpwW+A//bnn39akEFpEOH6QJyAQeUOyoGPPvqolee9996z9u074je4VNO035GUfgPeR+cYA0d4T8a7Dd6LYBg87ceETBB5tSHcXahmqr2AVBOqRdtvwPVxr815Ih7vdSCbP9Um3rpvnIfvObhbRUVsBx4IEfii4RueYF/GtNVX1BCQVoXDP5jh+FAePgEIqNq2GO9yQNvJZ0AaiLSa3Iuy+fk9HsqB2qLtN6D+Tx+qahHC4dM8wopl5go600fS7Qi0jbQP6Prhe+n+Cd9Nxy/W5/F90YRhvNOaBH2dJ9BW/AbxGwL1ETkvCAgCgkC0ETDHyTNlcL2HhXMNMzIeyJn+DMq7o5+uQ5goxsSm3TAJ+cY9FemZdmWt/732PDjGWP0b91Smx3mC1V4Pjh9h1YLHbna/u5h1IATHk1wOk6+4nt1QvlPDYjSKw4ogLIjdQrlflIVyweD7qyjpfrMuPd9gTjs4LVCLBLO0RuUZQ1y8ZrY10P6zTBDAs9ChB8z8SMMk8ueP1rSIKCD5vvrtaivb8x3KUUZ+DzYNWJgT0h/85Bn+TufNmz296lO31XGPtetzJdifQH9qmOgeA9bnNP44zpDOuy/qfHob6j3qcpW4j33z7I1KcQSEHLtVZmXut7tXVv0V46vaQIAYypj1bFXKMYwyFC2A+eBuVR0VWkAw+OSRGkotQddpbqGi8BV/F1uxQoKTIbwM2gXSi91AXsL3w18oFXsZ8xjqz0Mfq0UtWXHC/v3F9T5+uDo1YaULf9aAn+nXz9RRddjzAWfc3+hedZl8ndvjdCjPPYbDdyNkyVNtyzg+A/TtJ9qUpiE9qnmFY8FF2zNJZHSvOgSCi/0+cYxwHuOeu5EXCxbyaGO4fcajkhR2kGqUJ4A7BqUQMuHNN9+kYcOGkQ6ngHOQSMUHE+EwECl69+5NJUqUUMdOf7BSyJcEP0IvaOLCihUrCJPqMHP1MVYRIdatk4FQAUWMSZMmqdNQPLj11lvJHASdz8oS5gqyqVOnqrwPPPCAGpQDOQSDoAgVoU23CYOkkJdNLvbcc89ZBBS0CauyduzYodQ0zOf08ssvh6USkpT3+e2331rVo1/psB5WIu8g7ArOYfIchjI6xrRKMP5gsNR8ETRO+d3dwQMi2vAj6csQj/YAr6b3Z4inpWPLYuJRr9rHuwsmxp0MA1aYrNUT3Vihj4GzSMtDcULHVsU/46fblvK6PAaFHmhenAZNdEtGeWVySJhshGm4g4kBGPCyG7CE0sXvq1wsu2msuFCPY2oFa2vXrrXINeFK7/66xM1ERmzZAixdqw3/PCsWj1GrmpA2f/0RxqKEPu24vZn/yetV+jpDHE84m9bVGLDU6SXyuweD7YNvN5bNoybq0R5fA288PmeZloe1Ehx2MBCOVf7aoAjxEK9MMw2rubRBhcF8mdDpMSxvV7dMHprNE+cwrHZzMvQvc9Jd58EgMZQ69Pcg1BVZ0egDui1wPtAerGTDyke70sj0ZQd0Vh6IDr6fWoV4Z4vxnUP6U228v3NIb8MvnTruM0hZrblf2Q3PBJMJpkX6m2DWhX2sZkRbTMNgMUhW6HOmEgvUOrTVYwUXkCXshlf+DqyyMfjHjepUoN9Le3k5FgQEgdSBQGrwG8qVK6dCR+BdGr5E//79rYeDYxh8FKhNgKwNJQpzot4kXDRv3twqe613UrLfAOK9tsGDB5MvRT0oFUKBAqRr+I9QuitQwE2e1XWI3+DyabTfkZR+w88s16zfZUEshe9jN7xDtK9TSIWKwzlf5FJ7OX0MH1iH4QTxXod90eeD2UbbbyiWL7NFDtDXx/t2NvaRtAoHVLrsg+bwC+E7AjN88O6vB1bLFs7GqhwuUnXbmp7vcPoaGmscY6A6kIE08tp4d1g2EDoGdErwmMCIpt+A9oAooe/JbB/UN7QSHNoVikWjD+jrwUdOZAloTZCAP9vGUPCDUprGFqSfUJX1cB3xG8Rv0P1NtoKAICAIXC0EsvFCnnlvRe6bPN8+gfAJ1rDICsSGni1LqbHvk2cvqjHIAryQK7vDeLKvevHOdDerS9xVvygrH5ynQyfO8QKujGqsV5MefZVFOiZf8TnJilcHWDkB71gY98S7l9N7ia4r1PtFubpl86rPeV6IduHyvwRSg15IhXsO9BzCxSx/zowB60b74mOzBZUPeZ0MeOtnceTkRVYFgW9xA/l6psj/8/8aOlXlkYZJ5EDYoADwwXN5+taySlXkzPlLTOTIrNLxHu1kzavEEj7BWqj3aNabg8fC+3RMVEknWJV739GzlDVjOiqYO5Pj+Lsui2t2bVJCfdB3dh85w6jeQIV58ZrdZ9BlzC3IP693qUTn7vxX9fGzFy5RTOYMhH6BugMZwlDgA6VthJRGGfPa+WLyBvV8nK6D359+d1Wg/3hKdw8rR6BteZmMgNA62gI9+5IFsqk6Xrg9kQ7yd/g0j/GrBZDcH3xZqM89fdo0dGf9YtSxXlG1APHwSZffnDsbL7Rk4o7T/Il5bXy33ru/mvLjoDZ9lBVz8vJvjF5sauY198PtM2YdKWk/XUpqbDBtxUDoK6+8otQhMGgIadVp06Z5EClQz5dffkkY3EIeqFI4GVYJ+bIiRYpYpw4fdsk2IgEhHLQFWkmC85o8sXr1akWeQMiIuDhXPFwMpOFeYBgUBVkChpVhULLA8Y8//kgfffSRmoxHSJFffvlF5QFxAyoZycV0WAx/7cEg4hNPPOEvy1U/hxXlCK2iDWE2fFliouufDc5jMhXPw/4MQGrBQHc4ZjLBzvE/pmjZzoNnrKpK8Q+nfdLdOsk7WK2tyRNamSDi8ofc18egjq9/siBq4J+hHgAy2+VrH/9AteEfs31VlD6H0BaaPIHJ6lDMXNnpi2wVqL7fV7sm/ZGvGTMQ7Ya4bHowEJPqCOPhNKCry5VmtQ67aSURnQ4ZNruZLyj/mSOanBGhCczwBFiFhEnnPUfOqZeJv1mqbOMVGWN7vU7HrnAZrslrnMcAbb87yvGrlttA4NDPG+2HAoovwyC3Jk8cPOF+7mZ+kFJ89S+cO3HGJcMc6vcrGn3AbCcGm7Uc8W9MBjCJLouNOItOfcWsx9f+LuM7B1x9kbEQsgIff9aI2ah2i/Q3Ac8oB5Me9ID9uD92ESY0QGqCPDb6N/oJSE92O2SE9wGJyJchJJA2dHUQZpyIFjqPbAUBQSB1IpDS/QaQcUGixns2FA9OnTpF2bK53gG0qpsmZ4M8ASL55s2bKT4+Xj1QTbrOnz+/UlVLLk85pfoNwM/0G/wR2dH36tata02kb9y40Ys8IX6Dg99hvMNE22/Qvg2eYylW0vLlN5iEZAxmIx8GtIMxKFZqRcNwCUvR9htMJQ3zHjLwgJy2Yky8D2SXmBiSLq1rdRz8FLuvcpT9st3sN0C+FqET569zKyEGqhv+QL9xa6zwghhsfuXOBA/co+034BpQQHQyEL41eQIDxqFYNPqAeT3E0NbkiTnsU5rkiRkGqbgJqwSGY+I3kFJc0diJ36CRkK0gIAgIAqkXARAUsEjHXKgTzt1i8jKSekBeyM7j9FfDoK5gV1gI5brRwiyUa4aSF88CixXxuRaGiW5zwWJStCHSe8TYcExm91hpsG1EvwFZIBzLxGWd5ieCrQshKPBJCoMvAEJGJAZsijjMv0RSp70snjsID4FID/Zy+hj3CdIKPqFauH0m1Otcy/zJZ3Y9yihg0hokAy1Bu2fPHqXSADKFXu0BQgLijG7ZssVx1UfRos4r8NHUTJncK8PNppsqCgjn4M/MyXasNtKGQc4PP/yQoDyBcB5Zs2a1VC6QB23GKpX+/fsrUgUm6lEXFDC0tWrVSu+miO327duTneIEgDtyxD2ok5CQYEnuOoGKPofVfXrQ9ODBg173hJAO4ahO4HqQqtd29vxlveu1xcp9pxUws1ceJKzastvOw25Fi0J5nPu1LoMwF3qgSJMMIi2/y7g+FDH8GWLOanUAf/lwDtL/COGgbcD/rdW7frcoF4rpiQeUqVOnTihFVV4MHpr3NGnRHjVR7K8irDizD0ia+QsxQ9Sf4R+jLxKBv3LABhPZ89cfplPMSA3Xzl28rAZANTECpI1XeeUYFBdM224Qe8Bs9GcJTJ7QBoIJyB14gTDNXx3+2NtmHU77kfYBe51Y3afJEwsYa02eQF/BvcEK8EtNuJP95ncWcmvhGjBz6kdm/eH8pqA9T7Maxuu8ulD3EXxHpnK/xwf9BQSK+kymgAy0+ex0SBPU4e97AJJYpgxpGE/X9x3hY8yY2SgvJggIAtcPAinZb7jpppsUeQJPa9GiRUrFDn4P/AMYJmhr1qyp9vFn1qxZijwBki+UKGAgXacxdV5VavL9k1z9BiC2c6dbUcsXQV8jC7/B9Et1ut6K3+DtdySV3wDMERNZ2xRWr8MnGDsWAnkC/r02+PShWlL4Db4mBszXaKxCCsegHvbTor1qRRgmncO1d37cwKs23eRoKEKYvjHqjbbfYCeem23HAHi4FmkfsF+3askc6l0YRB6Q2rFqEAOZeIdecyV8Cp4lFNnCMfO9XvwG8RvC6UNSRhAQBAQBQUAQEAQEAUFAEEiJCITv9aWwuy1UqBB17dqVpkyZQhMnTrRaj5UfGGiMloHsoA3qEP4sVy6XlCXynDnjXn3frFkzq5huG9QzYBjcRIgIyHzq+MValteU3g03fACugXjCwdiFC+4BjED5T5w4QcivPyCL6Paj7OLFiwNVcU3Om1hgVV4gM+V2zbKBygVzHjGhtGEwxJwk1OnYYhIZK7LtHzM2q5nfHCjM7RDjysxrTtbqAbBIyx9iiSVtWQPIoOmJVJ3f3xbSaOGYvq9gykKdQYfTwQB47tzeK+ED1WOGFkFeTOaCmGD/mPUghII/LGIyB7f6zawz0D6UL3p8uoSmL9vvSJzARLSWdgtUFybFTfLF87eV9ghVosvvO+p+hoHuKUcQK/7s5Ax9nUi20egD9utjMBhEIRhIA3qiwAxJ0ZBJA+Ga+d0oltdNygq1Pl9EsEh/E9AOrPQbeE95RRIyB+9xDn1/3a6T9OWMbdTjsyUqtAnSsfJTf39BsLCTZ5DHNFNl5z+KYETfrFT2BQFBIFUgkJL8hgYNGliYa18ABAkY3rWhdAeVg44dO6q0X3/9VW012RcHIGCEa6H4A8G+G6dUvwEYou3aAvmC5vmzZ91kZl0+kq34DcGFgjAxPhkmMfjCpeDfIebOnWtdMhzSdVL4DU5hDa1GhrkDlYlHhi6lkTO302H29fT7ma4O72m+fFOdR28RQk4rKyCtdbUCjiEWo+03pGeScFJYpH3A3ia871ZihUZts1YeULt/s1qd9hehLulEeNZl/G3Fb3ChI36Dv14i5wQBQUAQEAQEAUFAEBAEBIHUh8B1Q54wH12bNm3oxRdftJL++usvaz/SHXPyHPKr/sw8b07Mm+FCMAiKuJg//PCDqgoxi2FpWRKzffv2al8TK7QjjkncggX9S62rgsYfM97q0qVLjTO+d5cvX26dNIkgVqKfHeTv16+fleP5559XxAorIZns5MnjXqGxZMmSgK0y1T/MsgELBpHBvooak9ihmJ6AtZcxCRGQrvdnpiR+vhyuFeuRljcJGyd5otiXQUnAF2HEqYxdrggrlB5tHfjzGOcJ1vAd1tK7TZs2DbaYlQ8DWks5Fq02EBAwae7ro/Oh3IL1blUUnZ5UW8jgvj95o4qzh2tgMjue5Yw71S/CsdHK0tBHqtLwx6o7hlGwt+mL37YS4lVru7tBUUJIFiczB1XRBn926EpsL+RBDGSnifOkGAKNtA/4uiczJIX+rv+z+aiVvWnF8KR3UYE5SH6RYxpG2yL9TdDtKcLyaOhfIx+vTk+xEsWNrDRh9gnkg7oMZJxhJvkK35FAUxmnDQWfIrn9q96oC8gfQUAQuC4RSO5+A96p9Qp2hPyDaTUDKPClT+8iVGpVOoTzOH/+PJkhpxo1ahTSs9WhQVBIE70DVYBrIrSINrMOneZrm1L8BrTfDO2IECn+DPL92sRv0Ei4t05+R1L5DbiqSQJuUSV/UH4DfItCLOscjIFwq4lNUDQM9ZmnFL8BWLzx/XoPZb1Yxujm6rH0bLvS9MEDlWj0UzWoR4u4gLAt3HCEJrFyhTaE6bunUTF96LE13xGj4jfY2bseVwvvINI+4OuqzSu7F3lo9bpZrDqprWkl8RuAhfgNukfIVhAQBAQBQSCaCDiNP0azfqkr5SAgfSHlPCtpqSAQDAL+ddCDqSGZ5Pnss89IT/q/+uqrFBsb67dlGLDQZoba0Gnhbk3SwurVq/1WY54vXLiwlReDiZDYnTFjhhpgwaCtnqA1Y6O2bt2aRo8erQZIscpJD8ZAnSJUMwf6/vjjD3rmmWcCVmEOusbFBR78sFf40EMP0QcffEC7d+9WMZiHDx9OjzzyiD3bNT3OkiWLWrUH/PGBYoZJkDEbd/jwYRVGRadBajeahn/AMRy6QId4wMqjdrULUTATwgdPnCfI0jtZUWPlOaQ+/dm63aes04WuTDZGWr6wMWm5/7jv6+84eNZr1ZLVGIcdDIBCzh8SpjDE87UTUHQx5Dh9ZXI+Y7rgOWXmd8Bc+anrDbT9c+1ha0UQxueGPlzNIwSBvfzTw1cQniVs2tL9VD9M+VV7vYGOEapF44iVYm/eW57M56bLHzjuVorQaeYW0r1zVh2ykkAQMOPyWieu7BQ34oIdDUDs0bK0KJora/SVN+xt08eR9gFdj317E4fumLnCNej5Fw8c12PigA4xUZDDsgQbW9teL46L58tMf1w5Ya4ms+dFmJ9xf7jkxyH1e3M1//9XdflIfxPQ1xDaBYZVXpBNrlU6l/ogDQoT4+fvJj0oDFIV1C4K5MzkEYpj39FzPmNUgihmhvXJmyM8OWq0R0wQEARSHgKpyW8A+iBXQwr+zz//VMoHZjgO/XRatGihdwnEcU20qFGjBuXNG5qakek3QMkCIUAQ+sSfmaRrkMZ9hUD0VUdK8BvQdoR91CQRkCPKlSvn65Y8Qi5C7SSaJn5DaH4DsM/HoSm0nwWSBt69fBnePUDsTsfvxcEqm4FMo8cdwlF7SSl+A8JH7jV8ShDYnXyWPfye5s92HjpLH/3iJiCBHPFi+zI+i6QEvyHSPuDr5iuVyKHely9yiEW82yPEyVpWaYPBx7yxrO++7KtOnS5+A5H4Dbo3yFYQEAQEAUHACQGE1Z35elMes+bwwfxuKHb9ItCscizVS3SRViMJ83b9Iih3LggkLwSCnyVMXu32ag2kZ0eNGqU+I0aM8DpvT9BqDUgvXry4/XTYx+bq8++++44OHXJPFJqVYqJ9/PjxVpI9zIZeHYZBUKwQg5UuXZpMkkLjxo1VOv58+umnFsHCDPthZQiwU7t2bSsHBlxNBQXrhLFz9OhR+uqrr6wUveLNSghiB+FH3njjDSvnyy+/TKg3udmtt95qNenrr7+29u075rlOnTrZT0fl+F5jpc25C5dp4oLdQdU7+MeNPokHRfO6V1xv2HPSp7oDBghXcLgIbaULZlO7kZYvkse9Wms9kzNwX0722/L9Tsl+08wV8LNXuVff2At9zzj2/Gyp+gye5F8xxiyr1V6QZn6HzDz+9n9dus86XaFYjF/iBDLWT3QPfG3Zf9rns7IqjdLOhj1u0kwpfu5OxAlcasNedz77pdfvPqmke3U6iCyP3VxSHzpuoR6iF31hMPCfzW6VDnuBmUzM0GYOnuq0pNpG2gd8tQuqCyBLwU6fu0yjZm+3sjaKIGQHKimRP6tVFxRpQEZwshEztynSFYhXoai+RPqb8P1f7u/jmDk7vJoG4sgDzUtQYcZImyaHmStSf1rsXqmo8+mtVvPAMXAW91YjI1tB4PpAILX5DSa5+pNPPrF8AtMvAcEb6nQwKFNo0rVWtQvlycfHx3uE3zPfgZ3quXz5MoGwoq1hw4Z6N+htSvEboPahDb4pFASdDAQLHToFZJLy5cs7ZYsoTfyG0OAz3yvmMcHZl23ad1qFsoPv8NiwZb6yeaWD4KStXr16ejfobUrxGzYa/gAIsE7ECdy0qahmBwHKEf3/b63lv6Ke1+5OVAQBe159nBL8hkj7gL5X+xbvsVXj3Ep+7/60wSLolymUPaCPaa/PPBa/gf9nGoqf4jeYvUP2BQFBQBAQBDQCmVgBF4t/QlmQp8vKNvUggDFs9AN8sKBTTBAQBFI2AqmGPAEVBm3vvvuuRTjQaeYWA1nffPONlWQnLlgnwtgpVaoUYQUXDCtLunbtqlZjmVVhALF79+5KcQHpVatW9VqVZBIgXnvtNVW8Xbt2ZjVK6lOTFswQGOHET8Vgqjn5C0yWLXMeDDpy5AiB3LF27VqrPXfccYe1H8rOXXfdRVoFBMoO77zzTijFr0pekwjRp08f+v33372uC7WO3r17W+lmGSsxCjuQrS+eP4tV08S/9tDHvCIHxAYnwyqJ1yesI18hO1CmXOHs1oopVIOwCk42YsZ2axAGqg5YiQ6LtDwUIRBmAQY52qHTva+PlVa/G4oFKnMQfxqVd0uUYtDDKSwJYvL+ZMjBNghhYlqTsEBs8qVI4quZaAvUNLS1DmJVf/NKbklWlPttuZswoOtJim2OK5P4qPvsBe/wGeh9WBlmruQ323GEMX5z4gYrCf1nQKdEx9AaVqYrO+WLuhVcRs7a5kiugaSvnjxHMYQTuVoWSR8I1Ma6xioxs680iSBkB64JyWNNzMCx03du9c4TauUazsNCWbEW6W+CJmbhulDdcDL0Oaxs1KZ/F5sZ3xFMfDj99u1nhZRflrjJWLexgk+4djJAOJlw65VygoAgkLQIpDa/oXLlyhaZ4ZVXXlHgwb8wFfGQeNttt6lzeN/WqnamIoU6GcSfDBky0BNPPGHl7Nmzp1LDsxKMHfg9jz76KI0dO9ZKffDBB639UHZSgt9gKgD+8ssv9Oabb3rdIpTsOnToYKXDX0RIxmib+A2hIdrCCH2A94dlW92kcV0TfJVPp7rVECr5CD2n85tbk3Abqr+ekvyGmMzprdv+l/ECAdpuUFdbu/OkPVkdw6995du11js/BqH7dCjLodsyOOY3E5O73xBJHzDv02nfDN1h+g3NIgjZgeuI3yB+g1N/kzRBQBAQBAQBQUAQEAQEAUEgtSPgX181Bd09QlvUr19fydViMBADUpjgx4AgJjYR7xfSqZjogrysNhASqlevrg+jssWKL01EQOgN1A/1ggoVKijCwQ8//OBBPEB+uyUmJhJWIWlpT5x3GtzEAJ25gqFt27aUMWN48uNQr9BYAMNatWoR8MHKGKwwg4oGJOoxEGi264svvqCcOXPabyGoYwwUvvXWWwofFBg8eDD16NHDQ2HDrGjIkCE0adIkM8lxf+DAgYSQG9EwrCADDvq6kFlF/9IEF6zcmzBhgnUpPJNwVvFZFQTY6dWmFPUaucJaibNg/RFayfL6pWKzUnxsNhWaAuE3trIywdKtx6x8GHhy4lggDEP3psXps1+3qCsv5hANr363jtrXLkhxTGzApDRUG/7i62jrULewtVI70vJYSXQ/X//zaS7SBEJE9B69ihowOeMiy/cv2XKU78U55Ihuj69t+zqFmGCwX0nwIhTA0yNWEFbhVSiWnS7xYN7SLcfpu3m7LFJIDg73ULdsbl/VeaRv3brV+h44fTc9MjscTF3iVp0AeaQyy60GMihpQA5Oh1qYtfIAtatVMFCxiM8nFImhKRwmBobBOKhztK5WgLJnTsfP5xghtq5uk74YVEwwSZ0vJgP15wFQc+A0W6Z09MHkTTqr1xZ99SUeJIX1bBlHT365XPXdo6cuqr5/X5PilMAEABxj1doPC/dYdUDBA+EbroZF2gcCtfEmjreN8CymYVUk8IvEwH2+v1kJ6xlgcmAAr+5rVbWAwm7F9uM0gcNiaEOYEF8hb3Qecxvpb0Ji0eyEOjBBAfns575aSQ+3LEklOIwLwnks5T73C39/Tp11EXkyZUhDsVeeeUu+h0mL9qhyKN9nzGrq3LCo+n6B9b2c1XPG/bHL6o+Q2kaIlFAMz0CroOB7nJXJQOhz1UqG938wlGtLXkFAEIgOAqnNb8D7NHwNk6CAe7QbFCo0KRvnsmfPbr372/MGOkaIP6jobdzoUuwCIQLXhz8GFQWE8li8eLFSuTAJ1126dCFTESPQdczzKcFvQAiUDz/8kJ566inV9AEDBhAmTOFPgGiLkCnwBbUvBX/PJGCb9xuNffEbgkcRhG6ECYMvAnvnxw3UtmZBQpg5vPNCiW3079vVOwbO4301FMKuHoPA2ESgEKOo37SU5DfEs0+qDe9iL/K7WHsmqpYtlI1WbD/B+B4hhIYzDWEJ93IYD4Teg9oaQq9pg69ovpfqdHOLd70SvMAgOfsNaG8kfcC8X6d9EEfgU5pkdvRR9N9ITPwG8Rsi6T9SVhAQBAQBQUAQEAQEAUFAEEipCEQ2A5OM7voG9gynTJlCvXr1opEjR6qWwTnVDqpTU5988kkaNGiQ06mI0rDSa8yYMXTPPfeoejBgaA4ampVDBUMrVZjpuB8Mgn755ZdWct26da19vYNJ2759++pDRRixDkLcgfrEjz/+SPfee6+1Gg2EAU0acKoOihfdunVzOhV0GkgujRo1ojlz5qgyuB9TGcSsSMdwNtOc9vv37x818gTqHzp0KB07dsxq4/fff0/42A1KIMOGDbMnR/U4X46M9HTbUorscO6CayUPJhExAeq0QgoXx6DTq3cn8ATpOmsVj9koyKn+vtq9AgghFgZNdF4NVIUlQTGpa1qk5aH2sHjTUWtCcjev9vr2z13mJQhqBecv/msRHTxO+jjAYE+vtqXp9fHrVDlM4CMUgZNhsrbfneXUpK3TeXsaiETaGjRooHeD3v7OhANttUsHP6jVkLEaf2ViG/Fs9x87l+RkATxzTBjjucAweY2P3UAAweQ0bCUPjj7DZJXPHq5KUJ4w7QCTKvAJxhCG4Y4biyiSC/JjMv2jn90r/sw6INeLuMpXyyLtA4HaCUIA4juDJKKtcYXQ4tLrcvZtzVK5FFEI5CsYJgTM8Cw6P347Xu5YTh8GvY3kNyFT+rTUhQfBR/++Q10PcbNfGbfG57WfZkKZNnznn7ylFL35/Xr1nceg/ddcj1PAJZApnmtX2iKC6ToCbTEIrdVq8Bs8Zs5OysskISFPBEJOzgsCyQeB1OY3AFm8T5vkCZB97VazZk1FmNCqE5jQT5cuPHcwJiZG+QggGGsCxezZswkfXwaCsRNp3Fd+p/SU4Dc89NBDtGXLFkWiwD34wgXECfiv4ZLQnfCxp4nf8J8dEr/HPVrE0Tr2g/C+CZvMIcDwcbKHbooL+h18+/btFmFGE/Cd6vSVlpL8BvhUIOT+eoUADCKEJumb9wey7NpdJxVBWpFlR61UYdnspHmQAaCI5s8OnTyvyBPJ2W+ItA/4u399rkZ8Tpq/zr3gAWRzPI9ITfwGUtLb4jdE2pOkvCAgCAgCgoAgIAgIAoKAIJByEHBp5aec9vptKZQGMMkNwgFWdPgyhIkYMWKEUjmwDximSeOGBJK04dqdd95JixYtIl/hGzp27EiIddu5c2eflzAHPTEwmSmT92rqSpUqKYUKXUm4K7l0eSgmIFwHCBT+DCvXoLjw8ssv+8xmKmAEkqI1JW2h4rBmjXuiLFBZpwZAaSRYs/cBp3K5c+cmEDcQEiYuLs4rS+HChentt99WyiZYcWY33ZeipYZRIz4Xfd6zKjUKMJGK1SaY0Pu4R2UqljeLWvGDtjnF3cIEKVZPoYwvu7tBUXr+tjKO4RYiLf/MraUVKQTqD6ZhBQ1k/N/tVpEljV2Nsw8CpfHT6DK8ymnIg5XV5L9Zr7mPFVID7ylvrV43z/naR6gWbaFK70IKWK+aRx03Vw9+5XtTW8gGPZiKiaBAFihLBp4o92V9O5ZVg5JO57NmSquUInq3L8NKE97KN/6ej1N99jSoa0CJQod3sZ/HMfr5+/dXIqhzmJYmyAHDDGnd9+4PB7PuSPqAWY/ed7puPQ7VY1pjIxSNTje/z2YdJu7mvi73+M3x1I1VX3z1iwQe1H6nawUvTHX5QNtIfhOgIKEUbvx0a/Q7EMkq2iSzMVCMvpCfiWa+DP30A86DvHYDYUSbua/TirMCRqSr+HRdshUEBIFrh0Bq8xtARNbmS1EC77xQqdMGIkIkhnCFUJcA8RlEAF8G3wvk4okTJ/okN6cmvwG+C0KjgGitQyya2OD5PP300wq7KlWqmKfUvvgNLkj8+R1J5TeArP1xjyqEkCe+7P/buw74KortfaQHCJ0ASeglofcmgqKAgL2joIK994LlWZ797/M9e+9dHlhQUCmioiBIbyGBAAFCDyWEAKG8//nmZvbO3ey92VuS3CTn8Lvs7O7M7Mw3k905M9+cA7Iuxh8gNLsV01IkrLMEI0WhN7gZH5vjS3/ldRpfIu6YU5oRiLROgrHVxQMS6SHWPZ3GtcZ0jFPyQq+FpTf4GxTbnmqOtyvn66e2KAVOw+kDOrOKRvkqG7qLvj+0q69Oabqz03F8ym6MeXHf1CcrV/IdhIveIHqD7kNyFAQEAUFAEBAEBAFBQBAQBMoDAifk5eUFtx2jFKFy4MABZfEBptWPHDlCmLhLTk6mmJiYYq1Fbm4ubdnCZsSzs6lmzZqUmJjod+KwWAtWyMNycnJo4cKFBL+8KDsm8uA7Ge5H7D6UC8mqTN0+fvy42jm0bds2VS+Y4MXPJN4UZ4XhjmLDzlxaszVHuerAJBZ2QcfXrUbYJeK0+BeofLmHj1Equ1xIy8yh3Lxjyu0CyAtwCeJmEi3c9Cgbdotv2nWQ6vHkZC02k6uvXfnyArU7Cab237u5h7oezH+Zuw+qHU5rGStMHMXVrkZ929V1XPAvLN+kpCTCuwVkmtTU1MKil5n72I2HH6xewPxu15Z1rDZCJdEfsTts9/48imMXIx3YhKzv1FvoUCDv9G053D9z+PmHlfuKdvGxBIIMJruLW8pKH8AgIIPd86DdYN2laYMY/nuvQdi9FwkJ552AtHANg7KBcFSVyVTx9WKoWcMYRZjxN2mPcqNem/k9gv6KXY/woY13WVJCLGHhI1yB//H1Ow6odwkIFeG6Uwm3PJJeEBAEwkNA9Ibw8IObjsWLF9PmzZuVtTaMl+GaAK7/oH+VZ9mzZw9lZmYqfbR+/fpKjwqG6B1J7ERvcI8mvvOrePyBcWceW68D8RLu4TDuDFZuueUWgqtLCKySYD6gPAhcccAqHcZjCfWrUXcmO2tXa7r+6dsOUAbrsrWrV2ZCLLuesC3o63jBHqNNbygrfUD0hmB7oie+6A2h4SapBIFgEMC8HOZowpXR//nbVRaf3dnbVTyJJAiUBgRmLNnGVsO2Uu+29Znk2szvJqvSUBc3Zfx91Q7awC7CsXYypFtjN0lKfZxDPN874Y+Nqh79kuqzTlNwM1mpr6RUoMwiUFLf5jJNniizvUUqJgiUIQRAlICLjiPHjlNVnizDLjMngVlXuN+ANKlXjf51ZWenaMVyDRPg2gLJ1VdfTW+88UaxPFceEj0ISB+InraQkggCgoAgIAgIAoJA+UCgNOoNaBlNuIW1QpCvRcofAtIHyl+bS40FAUGgeBEQ8kTx4i1PKzsIbN97mM5/xmtd+fUbe1HXFnXKTgVtNYFr4Auf+0Ndve2sdnTJSc1sMcru6X0fLaE/V+2iFo1q0Md39IuIe7eyi5bULJoQKCnyRGhObqMJOSmLICAIlGoEYDb2Z/aJi8lQSCv+gPdtV8+nTth9/vKUtda1/rb71o1iCvz111/WkwYOHGiFJVB+EJA+UH7aWmoqCAgCgoAgIAgIAtGBQGnUG2CBUhMmTLec0YGolKI4EJA+UBwoyzMEAUFAEBAEyhICG9jK58qN+1SVOjarzW6Ea5Sl6kVVXY6whTVTDh05Zp5GJBxN7fnaj2mqTgls1fb8/mXHGpwbjG8b2U6RJzZsP0CT52fSef3KTv0j0lElE0HAhoCQJ2yAyKkgIAgULwJw6QDCBNyOQF7/aR1t3XuIujSvrUzkrtyYTTOX76Ts3KPqfrUqFWhoN19/rupGMf43e7aXkdu/f/9ifLI8KloQkD4QLS0h5RAEBAFBQBAQBASB8oJAadQb5s6dazXPoEGDrLAEyg8C0gfKT1tLTQUBQUAQEAQig8CyDXvpuUkpKrP7L2gv5InIwOqYSyK77r3pjLb086Kt1KtNPerd2ndDo2OiIC9GS3suTN9Ns5btUKW/7vTWVLlihSBrEr3R3WCcyC6Hz+mbQN/Ny6TXp6yhwV0aUR12nSciCAgCzggIecIZF7kqCAgCxYjALSNb070fL6c89r8F/7T//TNT/exFqFK5Aj17eSeqFVOyr6758+erosXFxVnuO+xllfOyjYD0gbLdvlI7QUAQEAQEAUFAEIhOBEqb3rB48WILSCFdW1CUq4D0gXLV3FJZQUAQEAQEAUGg1CEwelBzwq+syxs/eq1aD+gQV9ar61i/Id0aK/JEbt4x+mp2Bl1/ehvHeHJREBAEiMoOvUpaUxAQBEotAg1qVaFnxnSk9k1jHetQqeIJ1KxhjCJONKxV1TFOcV785ZdfKCsri9LSPKa+ivPZ8qzoQED6QHS0g5RCEBAEBAFBQBAQBMoXAqVNb3jssceU3gDdoVWrVuWrsaS2CgHpA9IRBAFBQBAQBAQBQUAQKFkEtu89TCmbslUhhrFF6xi2bF0epWuLOlSnZhVV9ZlLtpdHCKTOgoBrBEp2+7brYkpEQUAQKOsINK5TjR6+MJlyDh2ljJ25tGX3ITafdQJ1Yt92mCSNJqlWrRrhJ1J+EZA+UH7bXmouCAgCgoAgIAgIAiWLQGnSGypVqkSxsc4E8ZJFUZ5eXAhIHygupOU5goAgIAgIAqUdgakLt9CeA0doRcZeqypzU3fRfp4rhmAMeBq7GoBs5rnj31J2qnD/pPqUWL86LeN0S9ftpZTN+yiudjW67/z26r7+L/vgUVq4NovWbT9Aa7fup2qVKlDbxNrUtkkNnn+u67igDlcPqzP3qyzO7pNAVdjVw4qNe2nZhn20atNeqlezKrVoVJNO6RRHTer6nys+dvx/tJTdkaRlZlPq5mw6dPQ4tWkSS63ialDfpAZUvWpFXUzH40au7y/Lt9PmXbm090AeuzKpSckJsfyrRXDHYJdg8Jm+ZCvtyM5TdbtoQFMrK3serbieW3m+fsaybbSO8cs5fJQS6lWnHm3q0knJDalCBTjZ80ow7alT5Rw+RkvX72acchj3fVSjSiVqHR9LrRvXoD5t6hd4hk5X2HFe2i4ryuCuBd2Bh1tXK/P8wP/+R7QgPYvmp+2mzVm5hPaPrxtDXVvWoYFs9QIbRbUcOXacJs3ZRGyMW8nw7k2ofmzBtZA87jNfz/XGO6t3Av2xaofrvxlkXpHbaFj3xjRh9kbK3H2Q12AOUPOGNTwPlv8FAUHABwEhT/jAISeCgCBQ0gjUrFaJOjatpX4lXRZ5viAgCAgCgoAgIAgIAoKAICAIRCcCojdEZ7tIqQQBQUAQEAQEAUFAEAgFgf/+uYkXzT1EBZ3+9xU7CT9I36R6FnliFRMkXp+yRl2vzzvp35mWbsXDRZAnTPlz9U56+r8ptDcnz7xM0/J337doVIP+fVUPalTH1+LxDL4/eX6mSjMguQE9OymFljMJwi6v/pBGD13cgUb2jLffor25R+ixL5bR32l7fO7peqGsT47pTB15A6FdsAj/7+9W86L5Zp9bc1dnWedjT2tJVw9p5UMsCAafT37NoPStOVS9SkUyyRNmHg1iKzMRIIte+cGDufVwymLX25uoHRM5Xrm+F9U0SCDBtCfyS9uyn+7/cCnt2HfImz1Ci7epc5A0Hrm4EzWs7dtGvpGdz2YzyUBL+4SCOIdbV503jiCA3PHOQsvShXkPmKC937qpN8Xl97XKipCzj2Yt85QxZdM+enJ0FzOZCn/BhIe3f/K4HhnQoQFdNrC5wt7t34zOsGNiLR2kuat3CXnCQkMCgoAvAuXTPo0vBnImCAgCgoAgIAgIAoKAICAICAKCgCAgCAgCgoAgIAgIAoKAICAICAKCgCBQAgi0aVKTmjaI8XkyFvRxDb8GtXwJETrihzPX+RAnkKZ6Na8lh9954fy+D5b6ECeQHwgTWjawNYqrXplHO9kCgz95csJKizgB1wd2gsZTE1axVYscn+SHjhyncS/Os4gTKBtIICACaAFZ4LrX/qb0bb5pcf99rpudOIE8TPlw5noa/8lSOs7WDZykMHyc0tiv/bhoqw9xIqGebzthAf+fXy73KUMw7bmarXGMe2meRZwAtid1bKBIGbosi9buobEvzyNYaghGDnMbzEnxkE3QboWRL0Kpqy7PUTYf8chnS32IE2gv7SoD8dDe93y4mA7mHdPJ6J7z2ltxQKL4M9+qio4AyyOaOIH87juvA53AxiuCwVjn1Y6tlWiZbXuOvi5HQUAQIBLLE9ILBAFBQBAQBAQBQUAQEAQEAUFAEBAEBAFBQBAQBAQBQUAQEAQEAUFAEBAESgSBhy7qqJ4LSw/PsYUHyK1ntSO4ywgkm3YdVFYTHmTLD11a1FUuD47DZAMLDh/MWG8lH3NKCxozuAXFsuVjyM59h+mfE1YQFuZhleKv1J0EdwhOkrIpm/on16d7zm1PjfNddGzdc4ge/Xw5rdy4TyV5f8Y6H6sB89ntiLak0LtdXXr80q5Uu7rn2YfZDcPL36fSt395LFvAJcO9vIiuBTi8P32dPqVHRnWgE9vHqbLv3p9H89dk0RNfrVT3/1y1i9x1hd4AAEAASURBVObxeX92AWKXQPjY4/o711Yzbj2zLQ3p2kS52Mbi/9/sBuWJL1ZSLodRhg+YyHH10FYqm2Da8+clHusSSIg2uu701srFBM5hueO2txcq6xhoo9+W76Ah3RrjlitBG2vp1NxLHNDX7MdQ6qrz+M/k1TQvdbc6bc1kIGDQlo8nMNNh464D9H/fpNCS9L2qLo98voyeu6KbshhSp3plepj77z3vL1Fpn56YQl/dV09Z8kAffu6bVfoRysKJdnEeDMY6g8T6XuLLhu25+rIcBQFBwIaAWJ6wASKngoAgIAgIAoKAICAICAKCgCAgCAgCgoAgIAgIAoKAICAICAKCgCAgCAgC0Y0AduK/c2sfGty5kSJOoLQVsC2fBZYfOrB7aBAwrhnWmq4f3toiTuA+rBCMP78DgkoWr/N1raGv4wjXFE+O6WoRJ3CtCZMoHr7YQ/rA+cqMbBwsMXf2jz2tlUWcQISqlSrQbWcl0VXscgPlq1LZa1ECxApNIEHc8Re2p9O7x1tlrxdbhYb3aEIPXOQtO8gXThIIH6f4/q5dcWoLGsWuIvTCfQzjPqhDHD1yqbf+II/kcdmDlWn5rjmQDuSLihU87YdzEAueZjcWl53cXOGUc/goLruWfbleayKtGtV0lS6UuqZmZltEGFia+NfY7pTEfaYC1wXdsXnDGvQskyW0dRVYw9i4y0teAPHlvP6JqnwgiWhLEz8u2qIIF7hxeo/GdAr383AE5WnPfxMQPEcTjcLJU9IKAmURAbE8URZbVeokCAgCgoAgIAgIAoKAICAICAKCgCAgCAgCgoAgIAgIAoKAICAICAKCQBlG4MT2DahFnNcFh1nVmCoVfKw5mPd0OIF34oNgAOsJq/ItSOh75nFkz3iqVrngXuRmDasrFyBw/QErEyAPVGFiBCSminf5bdn6fdSNLWOYAgKFttRgXl/AFh20wM2HP2sYZ3CZjrIbi0Nc9poxlXUSn2MgfHwiBjiBm45rhrZ2jDGQCRRDujaiGUu3q/twMQF3EsFILLtZ2ZvvtSSFXXh0bVHHJ3kiY3zzyLY+19ye7D3gJU/UZiJGYRJqXWez5Q0t17PljLg6VfWpdYTFk3FDWrKLE48liTVbsn367s0j29H81CzK3H2QJs3ZRD1b1aH/fJuq0oOQcec5yVZe4QTq1vTicODwMYuUE06eklYQKGsIFHzbl7UaSn0EAUFAEBAEBAFBQBAQBAQBQUAQEAQEAUFAEBAEBAFBQBAQBAQBQUAQEATKFALdW/sSEgqr3GG2RrEzO4+wyL9q0z7legLEicIkOTHWb5T4etWse7B2oaVrSy8J4K2f1tI9Hyym6Uu2qufrOE5H050CXJH4E1g0OLdvorIIcWaveMdoweLjlEmn5rV9rEHY43RsVtu6lL7N1/qGdSNAoFfb+tbdm95YQM9MXKXckOTywn64sufAESuLWi7IE6HWdfVmj+sWPKxq5RNoM/cvp1/FE7xLsqmZ+YyR/BKC7PPopZ2s8j746XJF6sGFx9jCh3Y3Y0UIMRBrEG32sQsYEUFAECiIgJf6VvCeXBEEBAFBQBAQBAQBQUAQEAQEAUFAEBAEBAFBQBAQBAQBQUAQEAQEAUFAEBAEog4BLDgXJrBm8OPCrTQ/bRdt2nWwsOiO9xvEegkS9ghVDZcb5r3BneLojN7xNOXvLery3NVZhB8EFg4Gd2mkXDHY3Uns2n9YxcF/rRs7W9WwIhQScINPIVlQ63j/xBGkbWmUMW1LDrsYKSxH3/vXDmtDK9nqR1rmfnXjB8YLPwhcTAzt1phO69LYchmibrj8b59BnqgZU/hyaKh13bHP22baskRhRVy1aW+BKCCiwJULXKBouXBAU+rdxksw0ddDPdauUcVKuu/gEfI4C7EuSUAQEAQYgcLfFmUEpqNHj9LevXupdu3aVLmy1yxNGameVCMEBHbu3Elz586lxYsX05YtW6hBgwb01FNPhZBT8SeBL6qNOw9SCg8oMrMOUuWKFSiudhVKZDNjYEd6vYIVf9nK0xPXrl1LEydOVFW+6KKLqHVrZ/Nl5QmT8lZX6QNlq8WzmG2dwcxw7ELo1rI2m1esWLYqKLURBAQBVwiI3uAKpnIV6eDBgzRnzhylN6xZs4Zq1KhBd999NyUkJEQ9DqI3REcTHTp0iF588UVVmL59+9LgwYOjo2BSimJDQPpAsUFdLA8SvaFYYJaHCAKCgCAQNgI8hU6T5m6i/3zncX0QdoZBZlChwgk0/vz21KdNPfphYSb9nbbHygGuGT79dYP6De4SR49c0sly95F3xGtxoTq7eihpqVUI6aCWYclgT07wlgxqV69EL1/Xk6Yu2EKT52cSXKBoSdmUTfi9/H0a3cSuO0af3FzfcnXULlQQ+chR7hCFSKh13Z97tJCcC97e5ydNv6T6PuSJYN2gFHyS7xWzf1XOdzHjG0POBAFBoOTfvEXYBosWLaLXX3+dZs+eTevXr7eeFBcXR+eddx6NGTOGMHFRHgXYvP/++6rqZ555Jg0fPtwVDEiDtJBnn32Watb0+q+aMmUK/fjjj37zqVatGnXp0oV69+5N7dq1o4oVnRelUlNT6ZVXXlH5jBgxgs444wy/eYZ6Iz09nU4++WTasWOHTxbRTp6Agv78t2kBGbL44PVpW5euGdLCGnD5VLIMnCxat5de+G6Nqkl39v11zzltS6RWX3/9NT3yyCPq2YMGDQqZPDFxbiZ985eHTYvMhnVrRFcOblYidZKHBodAsH3gpR/W0vw1XkUJ5vXev6Wn67/Vsa8s5IH+cauQnZvXYiUsyTq//s3FlHPQM1h/6equITGyrczKUWDjrlx68r+r6cAhr3L6j4uTKTkhMLO+HEEkVRUEyjwCojf4b+J9+/bRQw89pCJgDH/bbbf5j2zcgQ721VdfqSvXXHMNdevWzbpbmvSG3NxcpTvOmjXLKj8Co0aNimryhOgNnuaKFr0BhH2tNzzxxBMhkydEb/D5MyxVJ8H2AfjNfvNn7zwWKjv+/HbUmTdLuJHHv0oh7PzUUo1Jwe/d3EOf0guT19CidM9uxzGnNKMR3RtZ9yTgHwHRG/xjI3cEAUFAEIhGBFZs3OtDnDi3X4IiMjSuV51qMikhlt041Khakc5+ajbtDWHR302dQaAYwpYT8IO7kBUb9tCSDXtpKltW0O5CZi3bQZUrrGSXDZ1VlvViq1pZZzCRoGeretZ5SQQyduQGfOwm3oikpXWT0ObS4JLikpOaqV/GzgO0PINdqqRl0Yyl23XW9PrUNRTLRI6z+7gnsdet4d1InZ17xMrLXyDUujasXZV27Duksn3nlt7UsJZ/SyX62RW5b9glj+d9n2a3Jaa8PDmN+rVrQHhGJGSfgUNdwwpFJPKWPASBsoJAmSRP5OTk0Lhx4+i7775zbCcsmL/11lvq9+STT9K9995LJ2AFqxxJRkYGvf3226rGzZo1c02e+OKLL+i3335T6R577DEf8sQff/xh5VkYlLGxsfTRRx8RiBt2wU5uXbZGjRoVCXli5MiRPsSJzp07U1KSdwHSXqZoOP+dJ0/enb6Bjh0PzJDEwuqfKVnssy2bnh7dkdz48oqG+oVahgOHgmd1hvose7rff//dutSjh3ciyrroMjCTB8im/JGyS8gTJiBRHA62D9j/esGAn8Pm+k7p1LDQWkJpMIkTSID0pvzPfsG8KWG/CDz+1Wo65Me/JSadJ87JVGm7tapNI3s09puP3BAEBIHSh4DoDYW3Gawu6LH5kCFDgiJP6HSnn366D3miNOkN9913H5nECRDxe/XqRU2aNCkcvBKKIXqDM/AlqTf8+eefVqFOOukkKxxsQPSGYBGLnvjB9gHbMF9VZNrSHa7IE9AZ1mz1Eic8KNhytJ1GD1LRXRLRG6K7faR0gkC4CFSqeAIdPVb4C/IYx6nIcUWiH4G/1+y2CjlqUDO69Yx21rkO5Bw+VmTECf0MfWxYq4py1QF3HTeNaKusLLw42WMVY9qS7TT+oo5UlTdGxtXyLpKvLfBN17kV33HttuyAD0s3LEVEwkpC84Y1CL8ze8XTrWcm0dvT1lquT6Yv3RYUeaJOrNdFxf78DWeBKhNqXePqVGXXI56cs9kVRoem7giv9rJ8MHOdZXmjb1I9mpe6W5Fsnvt6FT0/tjuvY9pTBH9ukidqG+SS4HOSFIJA0SKA760bwfc70lK4Q6hIP7GI89u1axcNGzbMhziBhXpYLwChwm5p4uGHH6bRo0cTJk5Fig+B/fv30/nnn0+ff/558T00/0lbt261LJFg8jMlJYUWLlxYImVxW/kPZ2XQW7zrxCROxDHT8MTkeoRdIuf1i1fWJsyXxJ6cI3TnB8tpp+Fvy+3zJF7hCOTl5dG0adNURFgxgWWVUGQdDy6zbSa6cnnQnprv4y2UPCVN8SAQqT7wy/Kdrgo8nSdLg5EKZe4LH0zt3cfdy74PTeJEz9Z16KITE6hVI49PyS1sRnElk9HwW7Zhn/uMJaYgIAhEPQKiN0R9E6kClqTegAKYxInJkyfTxo0b6dtvv6WmTZtGJYCiN0Rls1CwhFunWoje4IRK6bkWiT6Asaib6cM/mZwdDKda1AZ3/Uj0Bnc4SSxBoDQj4NZ1Z25eyW3kKs34hlL2XdmHQ0lmpVmW4bX+OrJnvHXdDCxKzzJPIxaGBQEQH/CD2227VK1cgS4a0JTaGVZPtQWHXm3qW9GnL95G2/Z4LBpYF/MDu9iSxajn/6Qznvidbnrzb/vtiJ3D3Yg/Esd+3tg4c8k261mtGvm3POHUntlMaNA47War23ZpwISTW8/0kl5WbwxM5LCnr1PdS55wer49fqh17dvO22awJOJP4Cp4ecZe9dtoWOxAfFz/+JcNKmnnFnUUWaJ3u7rqfC6P737427O5S13w85+bOm7f7elP1dkymenWxE+WclkQKDEE3H5v3X6/g6lImbM8cdddd9GCBQssDJ5++mm64YYbfCwkHD58mJ555hnCPcjEiRNZsfwfwaqCSGQQ+PnnnwuYIgVBZdWqVQRrHz/99JN60NixYwmWL8LZfRNsiZctW2YlgfuW1q1bW+fRGNi06yBNX+L94IIgcdsZbQgLfHYBO/qz3zcRmKoQLAh+/OtGuruE3FrYy1eWzpcuXWpV55RTTrHCwQamLPAOLs20UxdtpyRj8Gzek3B0IBCpPoCJ8EPsy7BaZWdXRqgtJkmXuli4v++8JPV3j4FvvZpe5SA6EIvOUphKRXU21XjX2W2js6BSKkFAEIg4AqI3RBzSkDKMZr0hOzub1qzxuIpr2bKla2t9IQERgUSiN0QAxCLI4siRI5b+C9J1TExMSE8RvSEk2KIiUaT6APT9xezCsge7rgwks1YUTs6+bFBTOj3fVUdSvNcda6B8y/s90RvKew+Q+pcHBGJ4TsDNzvQdvFEtNqZyeYCkROoItwxa/krNoquGtNKnQR/bNK7Frh88BIo1W/ZT68a+37z1PCf33KTVQefrJgGMR9/4+t+Wa443b+rFFqR8v+HYQLfZWECvn++uo0m9atSN5/6XsIstuPZ4+LNl9PoNvXwWuo/zetbTE1dY7r1BxChKefDjpfTe7X0J7jW0oAxPTlhBmbzxCNK0QQy7q/CdjyysPTN25NANr3vW8+JqV6MP7uhLddidiikbdxywTuPqBreBsbbhlmLVJnebokKp60nt46h6lTTVXj+wS5aWvClr1MDmVrkRwFgOFiR+XuRZD7iZSSGXNfS47j6Yd5ye+HKlFf++85MJbj3uOacDXcIEGcizk1KoZ5t6FF/PV58oDGMrUw6gz+n2qm9rKzOehAWBaEAA31s3Ur2a/3UVN+md4njfdE53S9m1mTNn0pdffmmVesKECXTuueda5zpQtWpVgsuJ3r17K/+1uD5p0iSaM2cOnXjiiTqaHCOMQM2aNalPnz7KKghIC1OnTlVPgDnf4iRPwG+zFvSBaJdXpqZbRYSf0hfGdqY6fswpgVhx5eBmhIHLjPxd6lhwhcUKJx9aVsYSCBoB0+zqgAEDgk6PBGiXBeleBjQmweCXGbJk/V7VjhUiYYtL5Sj/RRqBSPQBlIn/XGn2qiwa2jXObxGxy8yN6cg2jT3WEvxmJDcKIGB6QoK/SxFBQBAoHwiI3hDd7RwtegOsXmgpTn1FPzPYo+gNwSJWPPFNwi3IE6GI6A2hoBY9aSLRB3RtZvBOxkDkCexyTd/mXWDQ6ezHJrzwgJ+IewREb3CPlcQUBEorAo3Z7P6OvYUv1GATjH0RvrTWORrL3aSud2F45cZ9dPPbC2hwp0bUhsl+3Vp4duG7LXfvdvXoi98zVPQnvlpJC9bupn5sIaAyz6Gv3LyfvpmzySI3uM3TbbxqbFninH6J1vPvencxXXZKC+rSorYi36zfvp/e/HGd9fwT29enujW9pIF7zmlPY/49Vz0uha2hjnlhrnL50T4xltbyt/7PlJ2UZlguPqdPotuihRQPC+6jnp/D85eNqH3TWNqy+zDNWr6d0g23Ik9f0bVA3oW1JwglrZvUVPns2HeI7nx3EY3o0YQ6Na+t5kyXshvj135Is/I9s3eCFXYTAJkDpAzkDRyPHDvO7R/Y7lYodUXbPTu2K9329iJVrFd+WKP6W0+2ItKMSSWwPvL13E0W2QVWH87q7bWG8saPayxSwzgmDLVq5CH6JHLaG0a04b6yVuX71MSV9Mq1PclcMygMYxOnNVu9Om73VvXMWxIWBKIOAXxv3UjjOpHXa8rUKsGrr75q4Xjdddc5EiesCByAK48LLrhAESdwHRYonMgTsErx22+/0fTp05W7B1hQSExMpPbt29PFF19MjRo1MrO1wjDxumiR52V59dVXU506dWju3LmE3VUrV66kCmxTvU2bNsp9Rc+ePa10CKxdu9ZyPYJ7gXa2Iy9tyaF79+506qmn+uQVbScn8GIwyCuaPAGXGcUh77zzDmH3GNpSy48//kg7d3p2ZdSvX59gCcOUSLX98ePHlanWX3/9VbXtWWedRddff735KMfwHylZPma9QIzwR5wwMxjDu0hmsSsATLLhN3vVLjqlU0MzihWGWay5abt5gHKANvFHHPm3aFidmbC1/KaxEnMgi81p/co7W+BTdf2OXDX4bMbp2/GgZ2TPxj6MWDOdDu/JyaP5a/ewT7Bs5b4C/sEG8mCxMw+Qctjs16pNng96Bx6UBbuwibqBPJK2JYd283Na88Jy95Z1qCsPUkFECUfMfhQqCWcu+yzTC+I1mB137bCWdOObi1WxcH0eM6P7s28zJ0nhAf4qHvBBTmK84vgD8cuynfRXWpZqk1rM0G3Plivg0kWb38JuxPns628FY32QWcvwQdeFce7TNrDisZoH4iDjbNt7SLURygqrBmij0zo3pMps5cAuPy7eTrncfm4E74TzuZx2ga/eGdyPoQis355LBw4fpcT6MdSK23F4t0bUkF3X2AX9/Qe25nGUB8IJHLcfK0noo7re21gJBgsa2PRjbGvbmMz2/AKdh9sHwCLfmm8mDbvDApEnTJcdZjp7+UC+QX0hJ3dsYLW9GW8rm/r7beUuQruiT9Tk9gSWvVvXpWG8+8zuIWwevx8255sXvKB/grJs8dWfm1V6KBv/vLSDmX1Y7wS0+eS/t6q/2e35ExYJ9aspFxond2xIMNUXSFBWKFV4n+1iHBrx+6RlXHX+G2lAUC5NwTthITP4dd1wD2x+jXVzfo8t57xSDEV0C7fXpLmZ7F/Quc+a+UtYEBAEohsB0RuIRG/w30ehW0HHMknXK1asoBdeeMFKdOONN1L16tWt8/KgN4Q77g83fVHqDXB1uIDHUXCdh7FBEx5bd21Zm3oyublumNa8sElDS6ik63D0Bphz/m2lR+eFZbtOzWopd2Q/saU7jO8xlseE7oX9E62xFtwTYFy1nPUGxGneoDr7ba5FA9htZCA9aieb1sZYHCaI4UaycqUTlN7QgsdjI3o0dtRloUvq8avGKdARem19w3c14ka73hBuH4DLTr3rakVGdkCSPeYQQM6GBNIbNrDuDh0e0oV1/0YOE46iNyh41FyC6A0eLOR/QaCsIxDPpLJlGzxzbYHqupzfxVhAFikaBNrFxxJcFizfkL/BjOduYIGhL8/jdbsq8BymvUQ9WvFcF88haivNPy7cSviZcvngFvQ9WwrYy/NEkZZL2PLAkvV71KI95pzenebdJGk+C3V74IKO5iVlueDZK7vQ+I+WqetY0P/01w0+cXCCRXgs2pvEiwKRwrxw0xlt6fPfMhRG//1zk2Nuz3BZ9YK/GcFNe95zbjI98MkylT/mgU1SiJnXZSc3Z1e7wVvYGNwljr6avVFlBWsjKJM/CaeuPVvXo0dHdaTH8y1IwNUGfnZBm71xU2/Lise8NVk0iYk8kAS2KnE5k2xMueSkZjSFXXZgHhd/C5PmbFYuX3QcNxjruCa2Azo00JflKAhEJQL43roRfL8jLWWGPIFF8SlTplj4PPjgg1Y4UODhhx+mtLQ0FWXrVt8PJy6mp6crgsTy5csds7n77rvp0UcfpQceeECRIcxIsHzx3nvvqUtYLL/jjjvo888/N6Oo8PPPP0/jxo2jN998Uy3I4CIIGsgTgonNefPmqbDTf5j81c/BM0uDtG3b1iqmNoVrXSiiANy0ZGZm+uQOiyP4QUCGMckTkWr7wYMHK5KO+eyEBHcMyZ95AVoLJogGufygYQIMi5wgJEDMHRI6P8ynfMIuPcxn4N42HsjBj9pfPFmGRcx7z23nd0cKJvHe+GmdImjofHHck7OPlq7fR98v2Eo3j2jtd2fM70zqeHvaemtyB2kxgfMnT/g0axij3FZolyUoRzeewHQjWEB/lS12zF/jteqAdFj4xA5/GHO4aXgrOjG5vpvsCsQ5evSoIsPgBghXNWqEttv/x3wTXchnIC/u1mKzdFjw137w0Db+yBNTF26zrFTUZsLL5ImpPpOOWHhew6SRaUu30yvXdCP4vf3wlww8yhIMuECywTNuGdnauq4DIHCM/3SFtcCvr2cxn2XjTh6scRt/zm5ibh7RivoySUELJi8/5b4VjNjJE5i0fuK/qymH/d6ZAiIMfsDm/H4JBUgXIIVM4IV9CEgSsMby4vdrffoY+vff3Dcm8EDzucs7W5PE5nMKC0eiD3RuVlv9rWFyM4MnL1F2J/9c+FvFIr4WkBwm7y74vcL9N39eRwcOHVNRQRSykw1+4fZ+f+YGHzzg3geT6ilMVJrIxACQIcxdaJ/P3qTuI1MQTh7+fBXlsX8+iN2iTTjvBBA/Xp6Sria/Veb5/2ESHn3tu/l4n/j2NR0P2D33dZo1AayvA1f8fl2xi3qwucOb+e9eT/inZuYU+JtAf9N/JzBjbH8/YmL/67+2qOztfVY/U46CgCAQ/QiI3uDRT0Rv8N9Xv/nmG/rggw98IixevJjw03L55Zdb5ImyrjegzuF84yORvqj0BpRtCo+rv+Dxjl5wxjUQXDE2+WBmBp3KZOGrh7TA5ZAkXMItHhqO3oBxpB6/gFgMywUYC5uC8RL0pH9cnKx24v1zQopF8kY84OHRD7fQ81d2diTovsV63e9M0LULdDCQt0GqGNotjsYObu4TZcKcTNrHZA23AiK1SZ6Idr0B9Qq3D8AnejwTr4EldN0Fa/f6JcBDv9MCHVPrRvqaPoIQrK0ejjmlGY3o7jvhKHqD6A26r8hREChPCLRiM/tuBHMU2PAV7CYvN3lLHOI1lhPo6TFdeF55C307d7OyGGDHxdx1X6WS/w1y2PTzj1GdqAXv4v/2r0yfvOowQfaG4a3pjJ7xlhuFAs8x9otVctg8Zo9vP4fVg7d4kfwzJh78MD/Tsiyg48Hiwgh+/iXscgP1tsvADnH0yV39FGlCu3rQcVD+7kz0vXkEz93zOMEUt/ggjZ7bqxJgo2GD2Mr08R396P0Z6QpH81kt+O/m2qGteN3C2aKum/bswmSZz+8+kV6bmsbrArsKEFlAah7NhIIByc6bQ83yOIUH8JhIkycWpe8OSJ4Ip6549rDuTagauwD6dFYGr81453NxD6SJ85n8ATJEvXwyMMZ2/8wnWyDOvRckE8Z+pmBj5IMXdaQb3/C4N3lxciqd2qWRNSZ2g7HOb/4a73gdZA8RQSBaEcB3Ft9bN4LNk5GWMkOe+OOPPyxs4uLiKD4+3joPFOjYsSP5s3yASTC4mTDNtSIv+Ltdv369le3jjz9O27dvp5dfftm6Zg+AODFjxgzrsj0PTM4lJyfTnXfeqeJ069ZNLeanpKSoSbp169ZRq1atrPQ6kJeXR3riMzY2lk4//XR9K6qPu3fvtsoHLIpDevTooSY4t23bZrUp+krt2p4FebMckWx7TKyaxAm0E35uZAcvGmoJtCtdxzGP5/RpQvj5k8e/TCmw0AiLAvB7pScOsQB/70fL6eVruqodQ2ZemGzRk3D6OhYlsXCOjz7kEPvqeuG7NXTrGa2VBQAdD0dM4mAx1J9gcR6/YOXQkWN01wfLA07AoX6vsVk0TLRdPCAx2EcQdh7q9wLIMaHIvtwjhN0+WrATCzK4UwP69DcP0xREEn8L6jodjpjU9Sdog1vfXaqsBfiLg8lw+EqzLwaDGKMtIyAtiAhoY5PQgLbGgvdTvFMJO8oiIbCq8dTE1VY/1M/G81EfCNoQfRA74UCEcRKQQ/4zea3TLXUNed3/yQp6+8bulqLgN7LtRiT6AEg8yWwNAaQFyK882TyCF+ztAr/G2kIJMHay9GFP43SORQFMWpsCTIGl/pvF3z8my0G4wT27PPKFlzhhvxfOOwETwf+evManzatVqaBM0KFMEN3XbmfgTGspuG/v48AWRBSdFukXMTP7Hn6fvXJtN2VdozorMoHErqgEiiv3BAFBoHQhIHoDqbGo6A3++y2sA4LsDcsTO3bssCKaBPCKFT3fkfKgN4TzjQd44aYvKr0BZYOuoheQce4kWESG3vDQhcmO4yOnNPoaCLewPgjp27cvwSVNsBJJvQEEiEDyNBOy4QIS40MnAeH2SSY42y2PwdqBSZzAWAy+l0Hq1eNM5AdifAP25X1mL4/u4/SMYK6VBr0hEn0AGMLiBojrkJlMgDHHwxoz6MLr832CYyEEFhf9kSd0Gqej6A2iNzj1C7kmCJQHBNqzlSU3gvcyLLSe29fd+oObPCWOLwJYWL5ycAvegd+ciSrH1EY4LDxrGdKtMeHnRkAkuPLUluq3mzfFYJNOnRpV2AprFcv1wTcPnuSY1b3ntSf8CpMnR3chGu0cC9/kKwa3UL/DvBkpc3cuz0udoDbQaWvBzik9V2HN4ZFLOtH953egnTwPeoA3EDWsVdVafHdKGww+H9zW1ymLAtdAXgUWd5ydpDb+5bKF4LjaMWoBH2O/QFJYeyJt7eqV6MELO6hssnlz07Y9B6lG1UqKGGKSQQI9x989kDO0TGXLI6PYIkggCaeuyBdEEvxQjx3cZhhf1+cxMCw527FC/5jyj0GBiqPuoQ5/PjfEbzw3GMMy3Bwet0PgJsZpE5/fB8gNQaCYEcB31tQlAz3e7fc7UB72e2WGPGEuTvfq1ctez6DP4Wbh2muvtRZIMVH21ltvKTJFlSpV1GL4J598Qo888ojKG1Yj4AbE3yQkiBNYMP/oo4+UCw5MmsDSxRdffEHjx49Xedx///3UqVMnGjp0qDq/6qqr6N5771Xh7777ziJWqAv5/2EHg17EHT16NMXEeH2CmfGiLfztt99aRUKdi0O0hQmQTcaMGaMe+eyzz1phXYZItz0sa8B6CCyM4Ih+gGe4kQOG2wNYJIiUwCKDNtGJPEf0aMQM10S1KIsXElxdYLc+wpg4Q9icIMME3jfzPLuvkR7M7PvPb2cxrjG5iMXv7NyjuE3YhQS/rHpACJO7sGqhBRYCzukTTz15Zzgm5DBZU9gkpk5rP8Kaht65hMHImJObKXcIGIjAvNm70zcoywVIB/JGn7b1gl70h/sdLU6ufvS9QMefDKsicC2gLQRgUkyTJ5B+JrvicDO56BmIN6OT2ToJ2u2Nn9fzjiTPjjJYFoBg4HcT79xvy6xmuPz4cNZGZfkA97ADzSRPwGSxnlwFjtezS5GB+ZZPkD9cPqBf6MXp2cwKbhHXDFkRmNgPXpikwk7/2SdX7RZFQNrQE7ZY4H70kvbKXQfygglhWFfQJptgpeR0Nr8Hlyz+BKSgO89qq9w2gLGIPoIyQIANGIzoe8FIJPoABs5D2WycJk/8xiaLncgTmBzVMph3PgKDYAVpsKtSCyy73HB6K4JrCgh2qL07Y4MK4+92Olss0YQedTH/P01egW9DmHxuxiacIeG+E76Zl2m1OcwSP3xRssWeRpv969s11jvr0982+kwWf/xrhkUOQl+9la2o9OFdldDbMIE8deF2tWiDckJJ+JpJN7DMg8nkT+/srUwB/nPCatxW74InR3dUYaQHuepXAxvUefwF/vu2Sij/CQKCQNQjIHoDz+uJ3hCwn0IHww99RROsr7jiCnr33Xd90pUHvSHcb3y46YtSb4C+YeocA3gCcdypzdUkoh47wdobBJbPvpu/RY0hfDpBISerVq2y9PVQSdeR1htQ5NO6NFTjHEyYwoy11j8wzoeArHvVac0VAR5k5Ulzt1i6RTr72IYOoImoSANrglqQ91jGUU9yZ7ALj/d4nIl0EFgRMfWbe85pqwjjOr15hNsIkyheiyfVOxoLW6VBb4hEH0CzDDbIEyCNAHfogKaYLjvghjMU0X1fpxW9QfQG3RfkKAiUBwSwsAnXoZlZhwqtLsYI+ObFxlQuNK5ECB0BjCdgqTdSggVm/EpKsFHHybWFm/IgbWL+PJ6b+EUVB9Y8WsT5n4cN9Fy37Yk2rxXjbvNpoOfpeyjzJQObKesT6bxZMWPnAZ4TLbwO4dQVz/bUI3jytC53KMdAGM9e5Z1jPqtXQijZSxpBoFgQ2H/wCM/pe9cyAj0U3218vyMtvvZfIp17MeZn7gjq0oWZfmEK3GSYu9JguvWkk04iECcgcLsA0sNNN91kPenf//63FXYKfPbZZ3TmmWdau02aNGlCd911F91+++1W9H/9619W+OKLL7bCX375pRU2A19//bV1eumll1rhaA6ACAJ3J1pAEokmiXTbg8wzbdo0GjRokGVxokKFwv/0wILVC8jAp6kf8gQIAbAAEehn7jbHdNgHv2xAlkow0AfBQO9mxwQMiA4gQ2jBRJfpNgCTX7psjdmf0OOXtreIE0iTyGV97vJObKXAU0+Y+P8sf5cM7r9jpK/JgyEQM+A6AuQKmCO9myfQ9EI94rsVYPabYSr2AV7kHM47+fWkEnyGPcIL8aYZvu8NEofb5/z+++9WVFinCUXg21fLkK5es2aYwDQtOJgL5zq+0xF1HcIL8WhHWIe4/czWVr0RvwoPsP81tjMls59j4NG5eW0ab7RxNhNiTFmZbw0B17qx+wezPZAek5aXs3lXLevyJ0Nxjik83Hf6oX6zecJUCxbK7zq7rT5l9wpen8ewfACzwOhPWuqwi5L7z09iv3+eRXtcf+3HdH27wBH5v35dd0WcwE2YVLyRLVWYfgBBBAlWItEH8Mxebepa7QRLGSAKmAKChSaKgBhwEk/qhyLvTPe6x1GElIvbW8QJ5AdShkliWbzOv0ksWJJ5mHdensuEJ7wrIOG+E8z+BsKCaYoZbXbfee0sZvZuwwclyFYwMa0F7n3gQkZPI1erzObw+sX7WOEB8SuPLeRAEO8EAJsvCKpr+pyPxm0VNu/rdHIUBASB0oWA6A1EojdEps+Wdb0BKIX7jQ83fVHpDdCJMD7SMpzJ5LBmpndfYcw5elBT3lHqteQHsnGwMmfOHCvJgAEDrHAwgUjrDSDOX3VaCzUuxrgehFmQ2U35BxNZ4TIS+hnIsnee1cbS7RAPhAgt2pUEzkFaRt6aOIFrIOuO5/G7lh37DuugOkI3c9IbcN20mgDdAHqjJuSXFr0hEn0AQGEMDyIDBMQJu4tKXDdddpzGumEoInqD929e9IZQepCkEQRKPwJu510OMJHw4yBd1pZ+dKQGgkDpRWDckFbKbQZqMJldqJQ3Oc7jx2/+2qyq3YPnowd1Cm2sWN5wk/qWDAL4vuI760bcfrfd5GXG8axsmldKaTgry7t4kpTkVcxDrc7kyZOtpCA0tGvnXUi2bnDg//7v/6wF8VmzZin3HeZ9HR43bhwNHz5cn/ocn376aYL7CMiCBQt4URpTOUQgV4wcOVKF4V8XrjtMMV12tGzZkvr162feLtEwXJjAVYn5u+yyywhuUi666CKrbCCkjBgxwjqPhkCk2x7kEO0aJJj62V1WNOBFYCf5aZFnVzXM4fr7ffmHx7wn0oMIoS1CYFHw0oFNnbJVE1gwAaYFfmq1mL6GMKloTo7pOLWqV6b+7bwLvbBkoGVFhjev+3ixU0+A6fs4XsEL85r0YF4PFMbOek3qgDsETMLZBQuf5/FiqpYF6b7+fvV1f0fsMAQZBgJLIqG07VpbG5zKu4hMObWzd/CCyUWQQgIJJtHac31NQZuAmKIF1hnsOKN99cIwcNOuIZAmKaGm2t0Pc7CmRQqdH44aa4T1LjWE/Ql2Hj7BZn51OhA6Hh/V3qedp7E5Ji3Y/YeJa7ugDWE5QIt9AlZfxxFECSf3E7C+oQXlCkYi0Qf089DHO7AVBy2/rvASS3ANuyE1tphABhkgFNEEDKS9jP/mQbCxi/kuSN/u2RlojwNrDfCVbZdw3wkMgyUzl+9Q5uysCxzAZDEIQrewVQkQJLSY5CJYb0H5nMTsL+h/psscp/hyTRAQBMo2AqI3iN4QqR5e1vUG4BTuNz7c9EWlN6zI2GfpRBiTYnzkJLCOpwU61MZdufrU1RGWIrXAbUewEmm9AWPPUScVrKtp5RC6hZNVN3M3j2kJDe45MD6E3gBSvpOAEKxFz3foc6cjYj/+VYpy+6Hvg0xr6qelQW9A2cPtA7r+OMJKoRY7mQcW9fQYF/oPfKCHIqI3ePVM0RtC6UGSRhAo/QicmFTfmisrrDZzVu+mX3gOQ0QQEASiH4FY3px161meOcUvf9/I7sKDG9dHfw0Dl/CnxVuV9V3EuvPs8NdPAz9N7goCoSOA7yq+r24Ea1sDkhu4iRp0nDJDnqhRw2tmx9xNFjQi+QmWL19uJe3Ro4cVtgdgiaJ///7WZbhocJJAxIbKlSsr/6dIBxccGRkZVhaXX365FYbFBlNMlx0gZ5i7Z814JRGeMmUKvf766z6/iRMnkonPddddR3Cl4cYKQ3HWIdJtH6pbB20GVdf9oEumlY7v77jJGBi0aVzT2l3lFN/c3Y9d8RDsjNeLubByoHeeO6UHgUHLTt4hDoGJVzO908Qc4qH+ibYdULgeSHQZEacNu3GANQWnX8u46lY2IAzYrS5YNx0Cq1evtkzvDhkyxCFG4Zd+WLDVioRFfPtC9sAOvoraj0yQCSSmJQ0zXhU2SaalmQssjxruZEA8uf3MNuqn84fZZJBofmbTvrD2YJrn1c/xd0SbP/LFKoIVEgg+bI+y9QOQbEzZZRBFRvIuOH8CCxpaMKllTuDq63hGu3gvSUJfx7G50QfgbzAYiUQfMJ83tGsj6/S3lV6LJLgI315aYKo3FDH/ZpG+HRNjnAQWPj5jNxb4vXez83dvUMeCgxEz/1DeCSiL2Z5wY3LVq4vo1anptDB9r2UlAn0SFmpMggRcBGkJhA8WCmDmWYu5W1Jfk6MgIAiUHwREbxC9IVK9vazrDeF+48NNX5R6gzkWiGdLenCX6KQ3YEHatFi2ZoszwdSpT9kJt3XqBL+YHWm9AQQIJ2JxjEHQjWdrfU5iEtu1Pod4IDvDMhl0B1irgKDt4OoE1iE+YZdrt7yzVF13+x/ccZi63Rgm1tuJ8aVBb4hEHzAxg4tGLdicYJLffzOs+3VhK4OsCgUt5t8sEove4GtlJWhAJYEgIAiUSgQa8EYjp00j/irzwcyNlmsrf3HkuiBQGhFw2ixZGuthlvmMXvE8vvHMKb/xk3cdryzW1az3kWPH6bWpa9UluC8J1XWMmaeEBYGiQABu6PFddSv4XpsWrN2mcxPPu5LgJnYUx9GWG1DEFStWhF3STZu8O/ULs2TRuXNnaye6P+JGhw4dApapa9eu9P3336s4KH+LFi1UGFYZYmNj1WItXHfceeedVj5wJaLlkksu0cFSccQuLX+WOEq6ApFue3OCPpi6ma4bkG4L+3sFIcAuMDHbsVlBCwswZ//FbG8/1uk2GYuN8ewPKJAk8WBCmwOFv1mIOdFY21iMdMrHtIaAiUfsODJ3a9Wr6btwbs8DLhcydrhngW5nf7xa4KrEdFeirzsd9zLJwr6I7xQP10yzq6EQYzDRuIgXhLWsYT9r17+5WJ9aR2NzFv2RsktZ4rBu2gJNeMLXSUAe0ALlLxTBjqbJ87cSXCWYZQo2r+e/TSP0SS2wCGHv47iHiVYtcOHiT2BSGW5hDuV5iA/YZWW6nUA67YrGKQ/4rAtVwu0D9ud2b1VbTWJj8hNmj7MPHlU+8dBXVuW7T0FbwhJHKGJOPCMffxPibvI2Xajo+OG+E6CgXDG4Oa3clM2LFh63JUfYrcbc1N3qh+dgNyQGQ3AzVNsg3MAHt5Zmhfh9hMlpbUHHLLNOL0dBQBAoPwiI3iB6Q6R6e1nXG8zvZSjj/nDTF6XeYJYN48gb31riqlsEY7EsNTXVIl2feuqprvI3IxWF3lCfLXU5iqE3mBYmHOP6uZiyeb8iSmxm0r1JrvAT3e/lnxZvpz9Tsqz7JybXpxHsitEupUFvCLcP2OsM0j02OKzfnqt0s7mpWZZ7RX/uXex5BDoXvcGDjugNgXqJ3BMEygcC5/RpYs1HFFZjzHW+9EM6jTutGZmWZAtLJ/cFgWhH4LSujWlAB89GrnDmUaOpniADv3tLH7VRy9yIXBbrauKO9pt4/wB1yW6Z2ownYUGgJBGAxQkQJ0yrhYWVB9/ropLQV4+KqkQh5tuokVeZhuuLcCU72+tWoLAdIub9gwcPOj66bt26jtf1RTMP05Rw9erVLZ/EpuuOI0eO0FdffaWSw/UF3HaEKnD/4VYOHfIuVAVK8/PPPxPyNX+DBw+2ksycOdMKR1sg0m0fav2wOGzuCtqy27lvJfDOICwq2n+N6jgvlpsEg8ImxkyXCXrhfNserwuJWjGByQ/mIqfGwXSxYLe4oOPo4zFeTA5G9vOicyiSd9T9c37//XfrEYEsyliRbIE/eCLQnEwErjlcbvvPTHbg0DFayyQLf1KTzY5FWmBl4sa3FvMHK4Oy9hckTmCwae7CC/R8+Co2zb/Cz/IAngS1C3b76X6G/Atj/Wqf1Mjnf/zPLpXZXG1RSLh9wF4m1BO7w7Rok49gWuq+AisxoQ5uNfEJ+cOscjioOLVJuO8ElKsWl+uFsV0I1iPM9x7uQTKZ9AW3RDe/vYTJRN7JdNPiSGHvM9PyhEN38TxI/hcEBIFygYDoDaHrDW51AXQk6CtuRPQGNygFjlNUekO43/hw0xel3mDmHRhd37sgeLqVuXPnWlGhswcrRaE31GDrfoUJD8ODEozC4ZrvSf6B+K7HrzoTD3nXPylax8MRZNpPDP/xTdl63k0jWplRVLi06A3h9oECFecLp3X2unicudxjtQ5EEu32EwTyLn5c2TnlZ14TvcGDhugNZq+QsCBQPhFoypsvTnawvOkPDSz0vDcjQ1lp3X/Q3RjYX15yXRCIFgQwhoOeYdc1oqV8oZYDc86oUzV23aelrNZV1w9H3Zaov4ggEE0I4LsJK+f4jgZDnMB3Gt/ropLIr7gVVUkLybdnz55WjJSUFDp8+DBVreq8eGxFDBBITEykzMxMFSM9PZ2Sk5P9xoYJdy316xdcEMQ9uKto187rp13H18e0tDQdLPCsyy67jN5++211H647YH0Ci3dw8QEZO3asOgbzX82aXrPt8+fPd5UUmM6bN8+Ka+ZhXQwQePrppy0XJy+99BJdf/311KZNmwApSuZWpNs+nFrUrVGFdua7Mfhl2U7LDKqbPDfscDYpaxIizIVHpzxNU6gNa3t2KZkL5jDrGUh27fcSLeBLGAuvphmdXCYFBBJY2whG4OpD71wf2i2O4BLDjcBUrxuBf95ffvlFRW3fvj35+3sPlNdPi7dZt7FIXNUYqFk38gOYBNNkgikLtylTuPY4RXX+1KRUC0s8ozFjBBctsCaCSUz4G166YR/93zfed5dTWeal7abv2HKFFrhy8ecLuYZBAsGkKyZiAw3nDhhWKhIdzAubDGL9/HCPkegDTmUY0jWOFq3zWCT5feUuOpf9a/+SPxmK+KeyxYVQxZz8Y1gjLuG+E3SB8Pd7zdAW6reazRD/vWYPLWN/5LDGoQV/D2/+vE754YbFlRpVK1nWSgp7n+3O8U5gFGZ1Rz9PjoKAIFA2ERC9Ibh2hRU8LX/88YciRcDtYGHy999/W1FEbyByozNagIUQKAq9IdxvfLjpi1JvqMvuK4g8+hLcCJ7uYNnAqRm0Ozune/ZrJuG2b9++9tuFnpcWveHjWRtpNVud0IKxJ9ysdW1Rh2C1LIGtHUIPHP0f7ztBxzWP0HtN3aJGtYr06CXtHfWB0qA3oG7h9gETHx2GNbr3Zm5QeiII9nlM6DFddsAaXyAdSufjdBS9wYOK6A1OvUOuCQLlD4FLByYqdxzm3FNhKMBH+9L1+2hkz8aEeZ6i2OxUWBnkviAgCAgCgoAgUBoQwNoiXJZP5XWvYL61qBs2BeA7XZRSZsgTrVu3JixmgjgBgYuLK6+8slDspk+fTmeccYaKh90gemG0adOmFlEAE12ByBPLli2znhMfH2+FzQBccejnmNd1eNGiRTpIdhcf2N0OyxLr169X9QJ5wnTZcfbZZ1tp3QZAENDy008/0dGjR6lSpcDdYelSr59SmDuuVs3dgrN+DiaqL774YpowYYK69MADD9B///tffTtqjpFu+3Aq1oJNcmryBNw7wGpEozqF4w6G1qwVuxwfbbKxzEVJp8irM73WDrSp/+aGafw9B7yLkU7ptcsB3KvLvnAhTXkCTcu+QtjYO/d5yRc6TaAjFvQ1eQK70J2sG+j0ICYAp0rMtizMAoZOAyKVds0zbNgwfdn1EYu7ekcQEo0/P0mREfxl8M709ewn2NOOWFhHeZ12/vtLH+p1mCPeaixYw8XGSQ4uIwojt8Ds6ytT061iYAJ9/Hn+SWRgvpquOLYxecafSxJgmXfEu/OvAbt4KQ4Jtw/4KyN2h2GXGHYzbt97WLk4geljCNjPJyY5E/P85WdeN/9m4c/bHykFfxNPT1qtJmKB+y0jW5vZ+A2b+YfyTkB5UC4IrGvgl8wug/CDAJNfmVDy0awMVTYQKBay65szezXm92FV6x25aVdB1y0qg/z/cF+L+R7S1+QoCAgC5QcB0RuCa2u4oNNuBJESuo9JQHHKDVYnpk2bZt1KSEiwwm4Coje4Qck3TlHoDeF+48NNb36vI603IG8QNSEYgwbSGw4dOUZwr4ZxOMiebmXGjBkqKuYpGjRo4DaZilda9AYU9s/VXr0T1hBvPaPgGNJ03+cEBAgAj3yxSuGM+2iTx0d1UDvknOKXBr0B5Q6nDzjVG9cwVm7DmwTWbMlRY2O4OPnVIF0P5cW6UMX8mxW9wYOi+R4KFVdJJwgIAqUTgVi2tnvNkBb00hTvvJabmmAB6L9zMunrv7Yo97Kdm9cikC/hmrh6lUpUsYispLopm8QRBAQBQUAQEARKAgFYmM/NO0qwALlu+wFlpXwJkw3tVgvdlg3fZ3yni1ICr5YX5ZOLIO8rrriCsCAPueuuu+j000+nxo0b+33SsWPHaPz48db9W2+91Qoj7cSJE9X5hx9+SCAoVKjgNeWjI8ISw/Lly9UpCAUdO3bUt3yOH3/8Md10001q4tHnBp+AOKFdjbRt27ZAHDwXRJDHHnuM4LoDfjO/+OILlc2oUaPIdPlhz9vfOSaNzUnQTz75hMaNG+cvOgGrN954w7o/aNAgKxxM4PHHH7fIE7Cigd1roZgwDeaZwcaNdNsH+3wz/uUnN1MsZywWQt74aT09cklyoQvoX8zeTPv8EBtgNUBL2pb9ate20yQgFuqXsWUBLdqKA3aAYTEXZcKiJhYxe7auo6P5HGcu22Gd64mYWtUrW+mx+L1iYzZ1albLiqcDIAsE+/JM4EnQ9G2eHWSYRDq7dxOdnc9xLcd5lCfnIFisf+/mnj73/Z3MmTPHujVgwAAr7DYA/71aQNiAFYdAMrRrI4s8gQlbTPD25QnJohYQdbRgQd+JOIH7C9M9E846rnkEc/Cxr1JUP8F15PPEpR3U0YxnD4P0okk9k//eStcPa2mPos6nLfFiiR1S3CWLRcLtA/4KifJ3511i8/Mn8V+YnGb1/3bxsY6uLPzlZb8OUpH+m8XfLf42nNr0K3avAv/JEMR3K+G+E9bx3yMmyyGwcPLC2M4+j0bfwSTwNiaP/bTI0+7aTzn+5vEOgczg981Zfv7mMSiD+xstzeNq6KAcBQFBoJwiIHpDcA0/ZMgQi7z9+uuv0zvvvOOoG+lcoVtogY4EIniwInpDcIgVhd4Q7jc+3PRFqTe0MMYC0B+weI9Fabvg+g1vLlF6D+69dHVXalALVisCi0m4Pe200wJHdrhbWvQGqKnmGGvMyU0dakM0b81ux+v64lMTV1skeFy78+w2fknUOk206w3h9gFdT6fjaZ0bKvIE7k1ZtM0ivsPaY8emBXVrpzycroneQGoy1+zTojc49RS5JgiUHwT68BzcUN7YMp13xgYrmNPEnCl+IoKAICAICAKCgCAQGQSwToDvc1FLwdmBon5iEeYPcoKemINLC0xSZGRkOD5x27ZtygqCJj5gN9RZZ51lxTWtREydOpWeeeYZ654ObN++nS644AJ9SpiErVjReScK3HZcd911vJCYvwqen2r37t0+eQwdOtTKzwyAJKHlmmuusVx2XH755fpyUMcqVaqQSRaBCw0QPJwExAlg+9lnn1m3UYZQBKSNW265xUp633330fHj3t3j1o0SDES67cOpCiYczcVALGrf+9EK8ucuAwvsH7OPWJi68SfYza0tLaA7vs3WDZzkffYxpMkLIFfAPKgWc0Lmg1820KE876KkjgN3DRvY562WUSd5rZ1gp4yWt6etp4O29FgkffH7tTqK66O5y2Zz1kECe80uqNPr7ENJS5fmtXWw0KNpdhUWYYKVWSt2WkkGJBf+gm8RV51grlbLjwb5Ql8rimMtg7V3nPFy8u08k93IpGza7/h4EG8e/TLF6hdYiH/wgiTymEd2TGJdPK1LnBXGIj/a0S7bmaE4NX8RHffO7ets8ceeLhLn4faBQGWASUctpoWS08Jw2aHz69Wmrg7S57M3WW2jL2JH5Sxjx1qftoX3T50Wx3DeCZpYhXxgbQQ+rJ1kB1vk0NK8oYcENsToL9jR+BtbqLAL3ouv/bjOuoxdH7ViQuOOmhOpVoYSEAQEgVKJgOgNwTWbOfYHMeLGG29U5GqnXKBT3HDDDdYt6Blu3HxYCfIDojfYEQl8XhR6A54Yzjc+EumLSm/AeAALzRDoB5+wDuUkH7LlKz0WBmHXDXEC+cydO9fKbuDAgVbYbaC06A3g25qk26z9eQWqCBIrduD6k/dnbqC1W70uJy8akMCkYmdyvplHtOsN4fYBs672cH+2SqdxNy0G9nCBmz0v+7noDaI32PuEnAsC5R2By09pRl15s4uIICAICAKCgCAgCJQsAvge47tcHBLa6kFxlCyEZ8TExNB7771Hp556qkoNwgIsOWDyDtew62nDhg0EFxpvvfWWRUBA5GeffdbHbQXMar700kt0++23q7ztaAGMAAAQ5klEQVSw8wmLZrBK0KhRI/rrr7/U7ittwh95gwgQSCZNmkRYcAVJo1WrVgQ/wHBbofOAOc8nnnjCMQvEh4UGWGqAtQsInjl48GDH+G4uwjoHng+cIJgUBUECz4EFDbjyQBlhcle7Q0G80aNHWxjjPFi5//776dVXX1XJYHEDFj7gzsNJfvjhB8rKynK65XMNZe/UqZPPtVBPiqLtQy0L0l10YgJbH9hp7cTB4uIt7ywl+OaF2beWvMC+lxcbQVSAJYBDeYHJKDBxOu7U5mzFwjMpAGsG/5ywms7r24Racn7IB5N1f6V6dwdd0D/BZ2f/9ae3pNveXaqsCuzJOUJ3frCMrhzcXFlSwDnK8c28LVa1YVnCdDdyy4jWdMf7nvSYYENeWDjG7rKl6/cS3BVo4oaViYsA8OjTtq61e//5b9MU+QTmY2N5sTSNTZt+/GuGhSUmnExSR2GPgIsbCN4rgazaOOWDZ+cc9LgmwP0RPRo7RStwDWUHUQECn7YgqmjyS4HIEbqAvqUF7TD+05XcP+IpKb4mLcvIZnx3W7v9dTy4l9nKfRPuWTDJjH6qBZYDJgaYMEW8ywY1JZBF4G/6u/lbVBvh2Q/ys3EPfpMrsWnDpWwNBZZV9CQ2sBjWrZF+VJEfw+kDhRUOixOYxDfdkaCPog+EK1fx3/yCtXvU3yys0tz14XK6oF+Ceo9k7j5In/620fqbA86ndGoY1CPDeSfgebAgkZlPlMH75PphrZRFGuwAhWWJ2at2EazRaNGTuvH1qvn8zYOMtWHHAbas0YAasknMlE3ZylSm2R/HMhbBiOnqCJP/E+dmEnY6nso7/kQEAUGg9CIgekNwbQeC92WXXUaff/65SvjBBx8ofQhuzPr06aOsUKxatUrpKrNmzbIyx5jpjjvusM6DDYjeEBxikdYb8PRwvvGRSF9UegPGGBgfvfmzh0j+C5NId+fkKR/lCfViCO6+Js3dQqZFtssGNnXdIOEQbkuT3gBAYK0A5lchz3ydSuf2iVfjV4ybFrNu9wcTos09JCC24h4IP6tZ79O6jsqA/1u1cT//UvVpgSNI/Sd3bBD1ekM4faBApW0XMH5O4k0RwM8Uk4xtXg8mLHqDV48VvSGYniNxBYGyiwDmUW8/ow1/41az1R8v2a/s1lhqJggIAoKAICAIRB8CbeNrqO8xvsvFIWWKPAHAsPCPCTu42YD1Ccibb76pfurE9h8ICJgEdHJDAUsR69atUyQKJEO+5mSgzgp5YJE/kPuMd999V5ET4HYDP7vAhcY333xTwGWHGW/s2LFqQlJfgyuPSpVCb8JatWoRXGecc845FoHCXx31M2GV4bXXXtOnIR1BPnnsscfUDxlgUhSEEkxi28UfXvZ4mLiNFHkCeUey7e1lDfYcvnX/cVF7+td3abQ9f+c1Fo4xUWKfLDHzvnZoC/qLrT8s58Vuu8Bk/68rvZYDUjP307Nf+0686DTdmM01rJt3RzyuY+HwohMTaQKb+Ydk5x6lV/z4AMSk2I3DW6l4+j/s2BrNLkk+zd/hlcv+ACfP36pvqyMWjWtUq+RDOPCJ4Ofk2qEtaTXXB2WCfM+uH/BzkuvYJYRJ6nCKo6/Bio0mOoVieveHBd4yAJMm7J7AjYAYoCcUMen4CxNbRrokXrjJ3ykOPkDDmcSgzQVj4VmTbcz4HZrGKqILygW87+EF+auHtLBcP+i4IAOs5EXsQLJr/2FFnsCn7zYopZNS1WK+3gn4iUNiTBrec05bH2KPQ7SIXQq3D7gpSC92gTNntZe4BNcukRgQgJh01Wkt6L0ZG1QxQKDALj8nuevstkFbZgj3nXAb+8a+/+MVqjgggL30g3/LM+ibjet4/37Q58y/+WlLdhB+TnLpwESftE5x7NdAJkJfw0Q/5Bv2WwoR8oSCQf4TBEo1AqI3BNd8cNexb98+mjJlikoIcrVJsLbnBuIEdA3oOaGK6A3BIVcUekO43/hw0xel3jCwQwP6c3WWpS/Bap2T5Tq0AsisiO9Wpk+frqLCMmaTJk3cJlPxSpPegAJfdVpz1iXTVNkxjvvyj83qpy7k/1e3ZmU1ttc62j8+X0XdW9Vx1IkK0xvqsS4F8kQ06w2odjh9wMTOXxhWF835AJCwC3ML6S8v87roDR40RG8we4WEBQFBoCq/Yx84P5lemrKWN30VtHIrCAkCgoAgIAgIAoJA0SEAixMgMuJ7XFxSfE8qrhrxcwYMGKAICtpqhNOjMYkHVxgLFy50JE4gDVxwPP/88wSLESeeeGKBbJAHdlLBOkO3bt0K3DcvnHzyyQQrC/AXbJfhw4fTzJkzlTUK+z3zHCQHU0xXHub1YMJt2rRR5X/ooYeUJQt/aWEVA76Nv/76a6pevbpjNNNlSdWqVR3j6ItwGaInUjMzM+nTTz/Vt/y6PrEiOAQKe56ZxA3hJNy2N7GAi5RwBbur/z2uC10xuJlaxAuUX3Pevf/U6I5q53jP1h5T/ZhItcvDFyYrqwsOt6yol/LuqnvPbUdO6c/p04QeYFcM2tytlcgI9OAJsf9c1YXqsDUCu4zgBdDnruhEibzj3CwDFoobM7HgHxclq3s6XU3DzL5TeXQ8uBh59dpudGJyfX2pwBHkhTvOakODgpgAnTNnjpUPFluCFVhs0BLMrn7gAxPBWrBzC1LBBcMOC76FiT8sx7D5I5BsnASWJC4ekEgPcR86pWPB3fcVwvyyYNIP/SaOLQf4E+xwe5Hj2CcI/dXHno/p07qyC5yQPtw+gDwqGp29csWCQA3t6mtFwzRHjPQQn7JzW5hygpl/Jd/2x2L/46Pa+7VcgsWJBy9MUlY+zDzdYhrOOwH9HO+aQO8TvBvO6xdP6Jum1GSS1cvsf7wnE0/8Cfrsw/xOObNXwcULE89KDm2CPC9ht0Nu/p78PV+uCwKCQPQiIHqD+7aBDgBdADoBdAN/AmL5gw8+qHQM6BpOYo6VCxvHl6TeUMHFoKY86A3hfOPR/uGmLyq9AWUbf34SXcFjC2MIhcuWYGxyPo8/bmWip1vZuHEjQceF+HPLGSivktAbzPGQv7I5jV0RtzO7QcQOfSfCL3DtwWO0F6/qSmPZUqFdnNLY4wQ6j1a9Idw+gDqb2FRy0P16s1s+Mw5I2HYx29WMi3imPlnFNgYWvUH0BntfknNBQBAgtWBzN282MV0GCy6CgCAgCAgCgoAgULQI4LuL729xEidQoxPy8vI8WymLtn4llnt2drbaEQXl9fDhwwSXDF26dKH4+Pigy7Rnzx41CXLkyBGqX7++2kESyH8vfAHDjQgErjGaN/dMFuTk5NDatZ5dtbhWt67XF32gQm3atIng+xfSuXNnRfwIFD/Ye3DTAUsPmzdvpr1799Lx48eVawI8Mzk5OdjsylT8YNu+KCuPP9gtbGZ/DbuBSN92gA6yG4cGvJCMxeRebepQbd5hHozA6kPqlv2UlplDuZxXQ15AbdukJpvzr+lqsRC7sdO35XAeObSLXTdgIbNdfCz/ahKIDG4FLh8wJ2RagribLRloc/uvXNtVWbxwmx/i7eXd9avY4gHKlsfWOoARXIigbMHKLbfcQm+//bZKBos0iYmJwWZRKuOjXeAqY/Oug+xaoZraIWbu+kel0A8zduaqvqf8R9sW9EOtOPo6ngurAugHx9nEBfomTNSCAFPcUpb6wE42rYxdfTCxHM+mqZs3rE5NGxS0/hMKxuG8E2BpBG46sOsTprMhsNICcgWs4OD9EkjgBgj9BaagkRfSJfH7KJHr5kslCZSL8z28Q+BSCO8pELzwPhERBASBsoWA6A3Btefq1aspPT2dtm3bxgvPJyidJiEhgXr06BGWdbzgShF9scuy3hDONx4tFW563dpFoTfANR50BnzrMZ4AqbQFj4/6sMWJYMcQEyZMoDFjxqjiYpOAPxeVuj5l5Zhz6Ci7b9yrXKjBgmA3drvXmsfuJn7beewJawkgpcJlnRPJPhQ8ok1vKEt9QPSG4Huk6A3BYyYpBIFwEUhNTaWkpKRws3Gdfj5b+n2XLXse4DlVEUFAEBAEBAFBQBCIPAI1eG3xGrY4DZ28JKTMkydKAlT9TH/kCX0/2OO4cePos88+U8k+/PBD5Xc42DwkviAQDQj8vGQ7YdITAp+4TpNmWCi/4qUFyj8udix9dFsvn501xV0PKGHr168nLArgKFL+EJA+UP7aXGosCAgCgkBxISB6Q3EhLc8pbQiURr3BJNxi00SzZr5Ws0pbG0h5g0dA+kDwmEkKQUAQEATCQaC4yRMo6/6DR+iL2Zvpt5W7wim6pBUEBAFBQBAQBAQBGwJw0wg3erExwW0Ut2UT1mngLZxhZS2JI4FAVlYW7dq1S5nI1cQJ+E0tL7tXIoGh5BF9CECxyNiRqwp24NAxunlEqwKF/L9v0hRxAjdaNapRosSJLVu2WISJYcOGFSirXCj7CEgfKPttLDUUBAQBQaC0IyB6Q2lvQSm/EwKlTW9AHaZPn66qAtK1ECecWrXsX5M+UPbbWGooCAgCggAWdK4b1pJG9GhE383fSn+xNQreByYiCAgCgoAgIAgIAiEggA3U/djKBNx+Nm1QPYQcIptEyBORxTPiubVr147279/vk++zzz5brk3h+oAhJ6USgT7sn1WTJ+aszmJiBNEpnRpStcoVKYVN7v+VmkVrtx6w6nbxgJJ1kTF37lyrLIMGDbLCEig/CEgfKD9tLTUVBAQBQaC0IiB6Q2ltOSl3IARKm96wdetWi3Q9dOjQQFWTe2UUAekDZbRhpVqCgCAgCPhBAAs8t4xsTaNOSqQ5PJ/5R0oWZWZ5rO36SSKXBQFBQBAQBAQBQSAfAbiKP6l9fToxqT67z4weN9lCnijCLlqxYsWI5h4bG6vcdgwfPjyi+UpmgkBxI3BW7yasUOxmZeKgevTsVVmEn5PcdXZb6tSsltOtYru2ePFi61n9+/e3whIoPwhIHyg/bS01FQQEAUGgJBAQvaEkUJdnlgYESpvesHTpUgtWIV1bUJSrgPSBctXcUllBQBAQBCwEsOBzdu949dudk0cpm7Jp3fYDtIXdFm/be5gOHj5GB/OO0dFjYp7CAk0CgoAgIAgIAuUCgUoVT6CYKhUppmpFalynKsXXraaszbdvWovq1awSlRickJeXJ1/sImqao0eP0sGDnsXhGjVqUIUKvL0+SJkzZw6b/PofJSYmUtOmTUPKI8hHSnRBoFgQyDt6nN6fmUGwPHHsuO9rCCZ6GsRWpTGnNKVeresWS3kCPcT8WwaJSaT8ISB9oPy1udRYEBAEBIHiRMD8zojeUJzIy7NKAwKlSW+A7p6Tk6NgjYmJEYuRpaGDRbiM0gciDKhkJwgIAoKACwRSU1MpKSnJRUyJIggIAoKAICAICAKCQOEICHmicIwkhiAgCBQhAkeYRJGxM1cxscHCTkqIpeZx1Yn5EyKCgCAgCAgCgoAgIAgIAoKAICAIKAREb5COIAgIAoKAICAICAJOCAh5wgkVuSYICAKCgCAgCAgCoSIg5IlQkZN0goAgIAgIAoKAICAICAKCgCAgCAgCgoAgIAgIAoKAICAICAKCgCBQYggIeaLEoJcHCwKCgCAgCAgCZRKB4P1IlEkYpFKCgCAgCAgCgoAgIAgIAoKAICAICAKCgCAgCAgCgoAgIAgIAoKAICAICAKCgCAgCAgCgoAgUF4REPJEeW15qbcgIAgIAoKAICAICAKCgCAgCAgCgoAgIAgIAoKAICAICAKCgCAgCAgCgoAgIAgIAoKAICAIKAT+H51GlAuAzvT9AAAAAElFTkSuQmCC" - } - }, - "cell_type": "markdown", - "id": "f97431a4-78a0-473f-99a0-67eeefb8bbc6", - "metadata": {}, - "source": [ - "![image.png](attachment:2f957256-5d08-40e1-b77c-5faa4f771fb2.png)" - ] - }, - { - "cell_type": "markdown", - "id": "8e609a46", - "metadata": { - "tags": [], - "toc": true - }, - "source": [ - "

Table of Contents

\n", - "" - ] - }, - { - "cell_type": "markdown", - "id": "8e713032", - "metadata": {}, - "source": [ - "## Import modules" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "id": "e69953f7", - "metadata": { - "ExecuteTime": { - "end_time": "2024-12-06T20:08:40.044647Z", - "start_time": "2024-12-06T20:08:37.758061Z" - } - }, - "outputs": [ - { - "data": { - "text/html": [ - " \n", - "
\n", - " \n", - " Loading BokehJS ...\n", - "
\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/javascript": [ - "(function(root) {\n", - " function now() {\n", - " return new Date();\n", - " }\n", - "\n", - " const force = true;\n", - "\n", - " if (typeof root._bokeh_onload_callbacks === \"undefined\" || force === true) {\n", - " root._bokeh_onload_callbacks = [];\n", - " root._bokeh_is_loading = undefined;\n", - " }\n", - "\n", - "const JS_MIME_TYPE = 'application/javascript';\n", - " const HTML_MIME_TYPE = 'text/html';\n", - " const EXEC_MIME_TYPE = 'application/vnd.bokehjs_exec.v0+json';\n", - " const CLASS_NAME = 'output_bokeh rendered_html';\n", - "\n", - " /**\n", - " * Render data to the DOM node\n", - " */\n", - " function render(props, node) {\n", - " const script = document.createElement(\"script\");\n", - " node.appendChild(script);\n", - " }\n", - "\n", - " /**\n", - " * Handle when an output is cleared or removed\n", - " */\n", - " function handleClearOutput(event, handle) {\n", - " function drop(id) {\n", - " const view = Bokeh.index.get_by_id(id)\n", - " if (view != null) {\n", - " view.model.document.clear()\n", - " Bokeh.index.delete(view)\n", - " }\n", - " }\n", - "\n", - " const cell = handle.cell;\n", - "\n", - " const id = cell.output_area._bokeh_element_id;\n", - " const server_id = cell.output_area._bokeh_server_id;\n", - "\n", - " // Clean up Bokeh references\n", - " if (id != null) {\n", - " drop(id)\n", - " }\n", - "\n", - " if (server_id !== undefined) {\n", - " // Clean up Bokeh references\n", - " const cmd_clean = \"from bokeh.io.state import curstate; print(curstate().uuid_to_server['\" + server_id + \"'].get_sessions()[0].document.roots[0]._id)\";\n", - " cell.notebook.kernel.execute(cmd_clean, {\n", - " iopub: {\n", - " output: function(msg) {\n", - " const id = msg.content.text.trim()\n", - " drop(id)\n", - " }\n", - " }\n", - " });\n", - " // Destroy server and session\n", - " const cmd_destroy = \"import bokeh.io.notebook as ion; ion.destroy_server('\" + server_id + \"')\";\n", - " cell.notebook.kernel.execute(cmd_destroy);\n", - " }\n", - " }\n", - "\n", - " /**\n", - " * Handle when a new output is added\n", - " */\n", - " function handleAddOutput(event, handle) {\n", - " const output_area = handle.output_area;\n", - " const output = handle.output;\n", - "\n", - " // limit handleAddOutput to display_data with EXEC_MIME_TYPE content only\n", - " if ((output.output_type != \"display_data\") || (!Object.prototype.hasOwnProperty.call(output.data, EXEC_MIME_TYPE))) {\n", - " return\n", - " }\n", - "\n", - " const toinsert = output_area.element.find(\".\" + CLASS_NAME.split(' ')[0]);\n", - "\n", - " if (output.metadata[EXEC_MIME_TYPE][\"id\"] !== undefined) {\n", - " toinsert[toinsert.length - 1].firstChild.textContent = output.data[JS_MIME_TYPE];\n", - " // store reference to embed id on output_area\n", - " output_area._bokeh_element_id = output.metadata[EXEC_MIME_TYPE][\"id\"];\n", - " }\n", - " if (output.metadata[EXEC_MIME_TYPE][\"server_id\"] !== undefined) {\n", - " const bk_div = document.createElement(\"div\");\n", - " bk_div.innerHTML = output.data[HTML_MIME_TYPE];\n", - " const script_attrs = bk_div.children[0].attributes;\n", - " for (let i = 0; i < script_attrs.length; i++) {\n", - " toinsert[toinsert.length - 1].firstChild.setAttribute(script_attrs[i].name, script_attrs[i].value);\n", - " toinsert[toinsert.length - 1].firstChild.textContent = bk_div.children[0].textContent\n", - " }\n", - " // store reference to server id on output_area\n", - " output_area._bokeh_server_id = output.metadata[EXEC_MIME_TYPE][\"server_id\"];\n", - " }\n", - " }\n", - "\n", - " function register_renderer(events, OutputArea) {\n", - "\n", - " function append_mime(data, metadata, element) {\n", - " // create a DOM node to render to\n", - " const toinsert = this.create_output_subarea(\n", - " metadata,\n", - " CLASS_NAME,\n", - " EXEC_MIME_TYPE\n", - " );\n", - " this.keyboard_manager.register_events(toinsert);\n", - " // Render to node\n", - " const props = {data: data, metadata: metadata[EXEC_MIME_TYPE]};\n", - " render(props, toinsert[toinsert.length - 1]);\n", - " element.append(toinsert);\n", - " return toinsert\n", - " }\n", - "\n", - " /* Handle when an output is cleared or removed */\n", - " events.on('clear_output.CodeCell', handleClearOutput);\n", - " events.on('delete.Cell', handleClearOutput);\n", - "\n", - " /* Handle when a new output is added */\n", - " events.on('output_added.OutputArea', handleAddOutput);\n", - "\n", - " /**\n", - " * Register the mime type and append_mime function with output_area\n", - " */\n", - " OutputArea.prototype.register_mime_type(EXEC_MIME_TYPE, append_mime, {\n", - " /* Is output safe? */\n", - " safe: true,\n", - " /* Index of renderer in `output_area.display_order` */\n", - " index: 0\n", - " });\n", - " }\n", - "\n", - " // register the mime type if in Jupyter Notebook environment and previously unregistered\n", - " if (root.Jupyter !== undefined) {\n", - " const events = require('base/js/events');\n", - " const OutputArea = require('notebook/js/outputarea').OutputArea;\n", - "\n", - " if (OutputArea.prototype.mime_types().indexOf(EXEC_MIME_TYPE) == -1) {\n", - " register_renderer(events, OutputArea);\n", - " }\n", - " }\n", - " if (typeof (root._bokeh_timeout) === \"undefined\" || force === true) {\n", - " root._bokeh_timeout = Date.now() + 5000;\n", - " root._bokeh_failed_load = false;\n", - " }\n", - "\n", - " const NB_LOAD_WARNING = {'data': {'text/html':\n", - " \"
\\n\"+\n", - " \"

\\n\"+\n", - " \"BokehJS does not appear to have successfully loaded. If loading BokehJS from CDN, this \\n\"+\n", - " \"may be due to a slow or bad network connection. Possible fixes:\\n\"+\n", - " \"

\\n\"+\n", - " \"
    \\n\"+\n", - " \"
  • re-rerun `output_notebook()` to attempt to load from CDN again, or
  • \\n\"+\n", - " \"
  • use INLINE resources instead, as so:
  • \\n\"+\n", - " \"
\\n\"+\n", - " \"\\n\"+\n", - " \"from bokeh.resources import INLINE\\n\"+\n", - " \"output_notebook(resources=INLINE)\\n\"+\n", - " \"\\n\"+\n", - " \"
\"}};\n", - "\n", - " function display_loaded() {\n", - " const el = document.getElementById(\"a8702bf8-b019-4dc5-b5ff-b8a2fe2976da\");\n", - " if (el != null) {\n", - " el.textContent = \"BokehJS is loading...\";\n", - " }\n", - " if (root.Bokeh !== undefined) {\n", - " if (el != null) {\n", - " el.textContent = \"BokehJS \" + root.Bokeh.version + \" successfully loaded.\";\n", - " }\n", - " } else if (Date.now() < root._bokeh_timeout) {\n", - " setTimeout(display_loaded, 100)\n", - " }\n", - " }\n", - "\n", - " function run_callbacks() {\n", - " try {\n", - " root._bokeh_onload_callbacks.forEach(function(callback) {\n", - " if (callback != null)\n", - " callback();\n", - " });\n", - " } finally {\n", - " delete root._bokeh_onload_callbacks\n", - " }\n", - " console.debug(\"Bokeh: all callbacks have finished\");\n", - " }\n", - "\n", - " function load_libs(css_urls, js_urls, callback) {\n", - " if (css_urls == null) css_urls = [];\n", - " if (js_urls == null) js_urls = [];\n", - "\n", - " root._bokeh_onload_callbacks.push(callback);\n", - " if (root._bokeh_is_loading > 0) {\n", - " console.debug(\"Bokeh: BokehJS is being loaded, scheduling callback at\", now());\n", - " return null;\n", - " }\n", - " if (js_urls == null || js_urls.length === 0) {\n", - " run_callbacks();\n", - " return null;\n", - " }\n", - " console.debug(\"Bokeh: BokehJS not loaded, scheduling load and callback at\", now());\n", - " root._bokeh_is_loading = css_urls.length + js_urls.length;\n", - "\n", - " function on_load() {\n", - " root._bokeh_is_loading--;\n", - " if (root._bokeh_is_loading === 0) {\n", - " console.debug(\"Bokeh: all BokehJS libraries/stylesheets loaded\");\n", - " run_callbacks()\n", - " }\n", - " }\n", - "\n", - " function on_error(url) {\n", - " console.error(\"failed to load \" + url);\n", - " }\n", - "\n", - " for (let i = 0; i < css_urls.length; i++) {\n", - " const url = css_urls[i];\n", - " const element = document.createElement(\"link\");\n", - " element.onload = on_load;\n", - " element.onerror = on_error.bind(null, url);\n", - " element.rel = \"stylesheet\";\n", - " element.type = \"text/css\";\n", - " element.href = url;\n", - " console.debug(\"Bokeh: injecting link tag for BokehJS stylesheet: \", url);\n", - " document.body.appendChild(element);\n", - " }\n", - "\n", - " for (let i = 0; i < js_urls.length; i++) {\n", - " const url = js_urls[i];\n", - " const element = document.createElement('script');\n", - " element.onload = on_load;\n", - " element.onerror = on_error.bind(null, url);\n", - " element.async = false;\n", - " element.src = url;\n", - " console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n", - " document.head.appendChild(element);\n", - " }\n", - " };\n", - "\n", - " function inject_raw_css(css) {\n", - " const element = document.createElement(\"style\");\n", - " element.appendChild(document.createTextNode(css));\n", - " document.body.appendChild(element);\n", - " }\n", - "\n", - " const js_urls = [\"https://cdn.bokeh.org/bokeh/release/bokeh-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-gl-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-widgets-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-tables-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-mathjax-3.3.4.min.js\"];\n", - " const css_urls = [];\n", - "\n", - " const inline_js = [ function(Bokeh) {\n", - " Bokeh.set_log_level(\"info\");\n", - " },\n", - "function(Bokeh) {\n", - " }\n", - " ];\n", - "\n", - " function run_inline_js() {\n", - " if (root.Bokeh !== undefined || force === true) {\n", - " for (let i = 0; i < inline_js.length; i++) {\n", - " inline_js[i].call(root, root.Bokeh);\n", - " }\n", - "if (force === true) {\n", - " display_loaded();\n", - " }} else if (Date.now() < root._bokeh_timeout) {\n", - " setTimeout(run_inline_js, 100);\n", - " } else if (!root._bokeh_failed_load) {\n", - " console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n", - " root._bokeh_failed_load = true;\n", - " } else if (force !== true) {\n", - " const cell = $(document.getElementById(\"a8702bf8-b019-4dc5-b5ff-b8a2fe2976da\")).parents('.cell').data().cell;\n", - " cell.output_area.append_execute_result(NB_LOAD_WARNING)\n", - " }\n", - " }\n", - "\n", - " if (root._bokeh_is_loading === 0) {\n", - " console.debug(\"Bokeh: BokehJS loaded, going straight to plotting\");\n", - " run_inline_js();\n", - " } else {\n", - " load_libs(css_urls, js_urls, function() {\n", - " console.debug(\"Bokeh: BokehJS plotting callback run at\", now());\n", - " run_inline_js();\n", - " });\n", - " }\n", - "}(window));" - ], - "application/vnd.bokehjs_load.v0+json": "(function(root) {\n function now() {\n return new Date();\n }\n\n const force = true;\n\n if (typeof root._bokeh_onload_callbacks === \"undefined\" || force === true) {\n root._bokeh_onload_callbacks = [];\n root._bokeh_is_loading = undefined;\n }\n\n\n if (typeof (root._bokeh_timeout) === \"undefined\" || force === true) {\n root._bokeh_timeout = Date.now() + 5000;\n root._bokeh_failed_load = false;\n }\n\n const NB_LOAD_WARNING = {'data': {'text/html':\n \"
\\n\"+\n \"

\\n\"+\n \"BokehJS does not appear to have successfully loaded. If loading BokehJS from CDN, this \\n\"+\n \"may be due to a slow or bad network connection. Possible fixes:\\n\"+\n \"

\\n\"+\n \"
    \\n\"+\n \"
  • re-rerun `output_notebook()` to attempt to load from CDN again, or
  • \\n\"+\n \"
  • use INLINE resources instead, as so:
  • \\n\"+\n \"
\\n\"+\n \"\\n\"+\n \"from bokeh.resources import INLINE\\n\"+\n \"output_notebook(resources=INLINE)\\n\"+\n \"\\n\"+\n \"
\"}};\n\n function display_loaded() {\n const el = document.getElementById(\"a8702bf8-b019-4dc5-b5ff-b8a2fe2976da\");\n if (el != null) {\n el.textContent = \"BokehJS is loading...\";\n }\n if (root.Bokeh !== undefined) {\n if (el != null) {\n el.textContent = \"BokehJS \" + root.Bokeh.version + \" successfully loaded.\";\n }\n } else if (Date.now() < root._bokeh_timeout) {\n setTimeout(display_loaded, 100)\n }\n }\n\n function run_callbacks() {\n try {\n root._bokeh_onload_callbacks.forEach(function(callback) {\n if (callback != null)\n callback();\n });\n } finally {\n delete root._bokeh_onload_callbacks\n }\n console.debug(\"Bokeh: all callbacks have finished\");\n }\n\n function load_libs(css_urls, js_urls, callback) {\n if (css_urls == null) css_urls = [];\n if (js_urls == null) js_urls = [];\n\n root._bokeh_onload_callbacks.push(callback);\n if (root._bokeh_is_loading > 0) {\n console.debug(\"Bokeh: BokehJS is being loaded, scheduling callback at\", now());\n return null;\n }\n if (js_urls == null || js_urls.length === 0) {\n run_callbacks();\n return null;\n }\n console.debug(\"Bokeh: BokehJS not loaded, scheduling load and callback at\", now());\n root._bokeh_is_loading = css_urls.length + js_urls.length;\n\n function on_load() {\n root._bokeh_is_loading--;\n if (root._bokeh_is_loading === 0) {\n console.debug(\"Bokeh: all BokehJS libraries/stylesheets loaded\");\n run_callbacks()\n }\n }\n\n function on_error(url) {\n console.error(\"failed to load \" + url);\n }\n\n for (let i = 0; i < css_urls.length; i++) {\n const url = css_urls[i];\n const element = document.createElement(\"link\");\n element.onload = on_load;\n element.onerror = on_error.bind(null, url);\n element.rel = \"stylesheet\";\n element.type = \"text/css\";\n element.href = url;\n console.debug(\"Bokeh: injecting link tag for BokehJS stylesheet: \", url);\n document.body.appendChild(element);\n }\n\n for (let i = 0; i < js_urls.length; i++) {\n const url = js_urls[i];\n const element = document.createElement('script');\n element.onload = on_load;\n element.onerror = on_error.bind(null, url);\n element.async = false;\n element.src = url;\n console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n document.head.appendChild(element);\n }\n };\n\n function inject_raw_css(css) {\n const element = document.createElement(\"style\");\n element.appendChild(document.createTextNode(css));\n document.body.appendChild(element);\n }\n\n const js_urls = [\"https://cdn.bokeh.org/bokeh/release/bokeh-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-gl-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-widgets-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-tables-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-mathjax-3.3.4.min.js\"];\n const css_urls = [];\n\n const inline_js = [ function(Bokeh) {\n Bokeh.set_log_level(\"info\");\n },\nfunction(Bokeh) {\n }\n ];\n\n function run_inline_js() {\n if (root.Bokeh !== undefined || force === true) {\n for (let i = 0; i < inline_js.length; i++) {\n inline_js[i].call(root, root.Bokeh);\n }\nif (force === true) {\n display_loaded();\n }} else if (Date.now() < root._bokeh_timeout) {\n setTimeout(run_inline_js, 100);\n } else if (!root._bokeh_failed_load) {\n console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n root._bokeh_failed_load = true;\n } else if (force !== true) {\n const cell = $(document.getElementById(\"a8702bf8-b019-4dc5-b5ff-b8a2fe2976da\")).parents('.cell').data().cell;\n cell.output_area.append_execute_result(NB_LOAD_WARNING)\n }\n }\n\n if (root._bokeh_is_loading === 0) {\n console.debug(\"Bokeh: BokehJS loaded, going straight to plotting\");\n run_inline_js();\n } else {\n load_libs(css_urls, js_urls, function() {\n console.debug(\"Bokeh: BokehJS plotting callback run at\", now());\n run_inline_js();\n });\n }\n}(window));" - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "import hail as hl\n", - "from gnomad_toolbox.load_data import get_gnomad_release" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "id": "8649f215-0afc-4f66-920a-53b707f41c4a", - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Welcome to\n", - " __ __ <>__\n", - " / /_/ /__ __/ /\n", - " / __ / _ `/ / /\n", - " /_/ /_/\\_,_/_/_/ version 0.2.132-678e1f52b999\n", - "LOGGING: writing to /Users/jgoodric/PycharmProjects/gnomad-toolbox/gnomad_toolbox/notebooks/hail-20241209-1355-0.2.132-678e1f52b999.log\n" - ] - } - ], - "source": [ - "hl.init(backend=\"local\")" - ] - }, - { - "cell_type": "markdown", - "id": "5335a135", - "metadata": { - "tags": [] - }, - "source": [ - "## Variant data\n", - "\n", - "Available versions for each data type and reference build are (as of 2024-10-29):\n", - "\n", - "| Data Type | GRCh38 Versions | GRCh37 Versions |\n", - "|-----------------|----------------------------------|----------------------|\n", - "| exomes | 4.0, 4.1 | 2.1, 2.1.1 |\n", - "| genomes | 3.0, 3.1, 3.1.1, 3.1.2, 4.0, 4.1 | 2.1, 2.1.1 |\n", - "| joint | 4.1 | N/A |\n", - "\n", - "For a description of all fields the the HT, see the [Help/FAQ](https://gnomad.broadinstitute.org/help/v4-hts) page." - ] - }, - { - "cell_type": "markdown", - "id": "d1a4ae8933ba6421", - "metadata": { - "tags": [] - }, - "source": [ - "### v4.1 exomes Hail Table" - ] - }, - { - "cell_type": "markdown", - "id": "318a034c-ac84-4147-9f25-e5e8783e9b91", - "metadata": {}, - "source": [ - "#### Load the Hail Table\n" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "id": "100cf576", - "metadata": { - "ExecuteTime": { - "end_time": "2024-12-06T20:08:59.197890Z", - "start_time": "2024-12-06T20:08:50.859108Z" - } - }, - "outputs": [], - "source": [ - "ht = get_gnomad_release(data_type='exomes', version='4.1')" - ] - }, - { - "cell_type": "markdown", - "id": "77d7a05e31c1f37a", - "metadata": {}, - "source": [ - "#### Print the schema of the Hail Table\n" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "id": "95c14f2c8cc3e699", - "metadata": { - "ExecuteTime": { - "end_time": "2024-12-06T20:09:00.032524Z", - "start_time": "2024-12-06T20:09:00.029271Z" - }, - "tags": [] - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "----------------------------------------\n", - "Global fields:\n", - " 'freq_meta': array> \n", - " 'freq_index_dict': dict \n", - " 'freq_meta_sample_count': array \n", - " 'faf_meta': array> \n", - " 'faf_index_dict': dict \n", - " 'age_distribution': struct {\n", - " bin_edges: array, \n", - " bin_freq: array, \n", - " n_smaller: int32, \n", - " n_larger: int32\n", - " } \n", - " 'downsamplings': dict> \n", - " 'filtering_model': struct {\n", - " filter_name: str, \n", - " score_name: str, \n", - " snv_cutoff: struct {\n", - " bin: int32, \n", - " min_score: float64\n", - " }, \n", - " indel_cutoff: struct {\n", - " bin: int32, \n", - " min_score: float64\n", - " }, \n", - " snv_training_variables: array, \n", - " indel_training_variables: array\n", - " } \n", - " 'inbreeding_coeff_cutoff': float64 \n", - " 'interval_qc_parameters': struct {\n", - " per_platform: bool, \n", - " all_platforms: bool, \n", - " high_qual_cutoffs: dict>, \n", - " min_platform_size: int32\n", - " } \n", - " 'tool_versions': struct {\n", - " cadd_version: str, \n", - " revel_version: str, \n", - " spliceai_version: str, \n", - " pangolin_version: array, \n", - " phylop_version: str, \n", - " dbsnp_version: str, \n", - " sift_version: str, \n", - " polyphen_version: str\n", - " } \n", - " 'vrs_versions': struct {\n", - " vrs_schema_version: str, \n", - " vrs_python_version: str, \n", - " seqrepo_version: str\n", - " } \n", - " 'vep_globals': struct {\n", - " vep_version: str, \n", - " vep_help: str, \n", - " vep_config: str, \n", - " gencode_version: str, \n", - " mane_select_version: str\n", - " } \n", - " 'frequency_README': str \n", - " 'date': str \n", - " 'version': str \n", - "----------------------------------------\n", - "Row fields:\n", - " 'locus': locus \n", - " 'alleles': array \n", - " 'freq': array \n", - " 'grpmax': struct {\n", - " gnomad: struct {\n", - " AC: int32, \n", - " AF: float64, \n", - " AN: int32, \n", - " homozygote_count: int64, \n", - " gen_anc: str\n", - " }, \n", - " non_ukb: struct {\n", - " AC: int32, \n", - " AF: float64, \n", - " AN: int32, \n", - " homozygote_count: int64, \n", - " gen_anc: str\n", - " }\n", - " } \n", - " 'faf': array \n", - " 'fafmax': struct {\n", - " gnomad: struct {\n", - " faf95_max: float64, \n", - " faf95_max_gen_anc: str, \n", - " faf99_max: float64, \n", - " faf99_max_gen_anc: str\n", - " }, \n", - " non_ukb: struct {\n", - " faf95_max: float64, \n", - " faf95_max_gen_anc: str, \n", - " faf99_max: float64, \n", - " faf99_max_gen_anc: str\n", - " }\n", - " } \n", - " 'a_index': int32 \n", - " 'was_split': bool \n", - " 'rsid': set \n", - " 'filters': set \n", - " 'info': struct {\n", - " FS: float64, \n", - " MQ: float64, \n", - " MQRankSum: float64, \n", - " QUALapprox: int64, \n", - " QD: float64, \n", - " ReadPosRankSum: float64, \n", - " SB: array, \n", - " SOR: float64, \n", - " VarDP: int32, \n", - " AS_FS: float64, \n", - " AS_MQ: float64, \n", - " AS_MQRankSum: float64, \n", - " AS_pab_max: float64, \n", - " AS_QUALapprox: int64, \n", - " AS_QD: float64, \n", - " AS_ReadPosRankSum: float64, \n", - " AS_SB_TABLE: array, \n", - " AS_SOR: float64, \n", - " AS_VarDP: int32, \n", - " singleton: bool, \n", - " transmitted_singleton: bool, \n", - " sibling_singleton: bool, \n", - " omni: bool, \n", - " mills: bool, \n", - " monoallelic: bool, \n", - " only_het: bool, \n", - " AS_VQSLOD: float64, \n", - " inbreeding_coeff: float64, \n", - " vrs: struct {\n", - " VRS_Allele_IDs: array, \n", - " VRS_Starts: array, \n", - " VRS_Ends: array, \n", - " VRS_States: array\n", - " }\n", - " } \n", - " 'vep': struct {\n", - " allele_string: str, \n", - " end: int32, \n", - " id: str, \n", - " input: str, \n", - " intergenic_consequences: array, \n", - " impact: str, \n", - " variant_allele: str\n", - " }>, \n", - " most_severe_consequence: str, \n", - " motif_feature_consequences: array, \n", - " high_inf_pos: str, \n", - " impact: str, \n", - " motif_feature_id: str, \n", - " motif_name: str, \n", - " motif_pos: int32, \n", - " motif_score_change: float64, \n", - " transcription_factors: array, \n", - " strand: int32, \n", - " variant_allele: str\n", - " }>, \n", - " regulatory_feature_consequences: array, \n", - " impact: str, \n", - " regulatory_feature_id: str, \n", - " variant_allele: str\n", - " }>, \n", - " seq_region_name: str, \n", - " start: int32, \n", - " strand: int32, \n", - " transcript_consequences: array, \n", - " distance: int32, \n", - " domains: array, \n", - " exon: str, \n", - " flags: str, \n", - " gene_id: str, \n", - " gene_pheno: int32, \n", - " gene_symbol: str, \n", - " gene_symbol_source: str, \n", - " hgnc_id: str, \n", - " hgvsc: str, \n", - " hgvsp: str, \n", - " hgvs_offset: int32, \n", - " impact: str, \n", - " intron: str, \n", - " lof: str, \n", - " lof_flags: str, \n", - " lof_filter: str, \n", - " lof_info: str, \n", - " mane_select: str, \n", - " mane_plus_clinical: str, \n", - " mirna: array, \n", - " protein_end: int32, \n", - " protein_start: int32, \n", - " protein_id: str, \n", - " source: str, \n", - " strand: int32, \n", - " transcript_id: str, \n", - " tsl: int32, \n", - " uniprot_isoform: array, \n", - " variant_allele: str\n", - " }>, \n", - " variant_class: str\n", - " } \n", - " 'vqsr_results': struct {\n", - " AS_VQSLOD: float64, \n", - " AS_culprit: str, \n", - " positive_train_site: bool, \n", - " negative_train_site: bool\n", - " } \n", - " 'region_flags': struct {\n", - " non_par: bool, \n", - " lcr: bool, \n", - " segdup: bool, \n", - " fail_interval_qc: bool, \n", - " outside_ukb_capture_region: bool, \n", - " outside_broad_capture_region: bool\n", - " } \n", - " 'allele_info': struct {\n", - " variant_type: str, \n", - " n_alt_alleles: int32, \n", - " has_star: bool, \n", - " allele_type: str, \n", - " was_mixed: bool\n", - " } \n", - " 'histograms': struct {\n", - " qual_hists: struct {\n", - " gq_hist_all: struct {\n", - " bin_edges: array, \n", - " bin_freq: array, \n", - " n_smaller: int64, \n", - " n_larger: int64\n", - " }, \n", - " dp_hist_all: struct {\n", - " bin_edges: array, \n", - " bin_freq: array, \n", - " n_smaller: int64, \n", - " n_larger: int64\n", - " }, \n", - " gq_hist_alt: struct {\n", - " bin_edges: array, \n", - " bin_freq: array, \n", - " n_smaller: int64, \n", - " n_larger: int64\n", - " }, \n", - " dp_hist_alt: struct {\n", - " bin_edges: array, \n", - " bin_freq: array, \n", - " n_smaller: int64, \n", - " n_larger: int64\n", - " }, \n", - " ab_hist_alt: struct {\n", - " bin_edges: array, \n", - " bin_freq: array, \n", - " n_smaller: int64, \n", - " n_larger: int64\n", - " }\n", - " }, \n", - " raw_qual_hists: struct {\n", - " gq_hist_all: struct {\n", - " bin_edges: array, \n", - " bin_freq: array, \n", - " n_smaller: int64, \n", - " n_larger: int64\n", - " }, \n", - " dp_hist_all: struct {\n", - " bin_edges: array, \n", - " bin_freq: array, \n", - " n_smaller: int64, \n", - " n_larger: int64\n", - " }, \n", - " gq_hist_alt: struct {\n", - " bin_edges: array, \n", - " bin_freq: array, \n", - " n_smaller: int64, \n", - " n_larger: int64\n", - " }, \n", - " dp_hist_alt: struct {\n", - " bin_edges: array, \n", - " bin_freq: array, \n", - " n_smaller: int64, \n", - " n_larger: int64\n", - " }, \n", - " ab_hist_alt: struct {\n", - " bin_edges: array, \n", - " bin_freq: array, \n", - " n_smaller: int64, \n", - " n_larger: int64\n", - " }\n", - " }, \n", - " age_hists: struct {\n", - " age_hist_het: struct {\n", - " bin_edges: array, \n", - " bin_freq: array, \n", - " n_smaller: int64, \n", - " n_larger: int64\n", - " }, \n", - " age_hist_hom: struct {\n", - " bin_edges: array, \n", - " bin_freq: array, \n", - " n_smaller: int64, \n", - " n_larger: int64\n", - " }\n", - " }\n", - " } \n", - " 'in_silico_predictors': struct {\n", - " cadd: struct {\n", - " phred: float32, \n", - " raw_score: float32\n", - " }, \n", - " revel_max: float64, \n", - " spliceai_ds_max: float32, \n", - " pangolin_largest_ds: float64, \n", - " phylop: float64, \n", - " sift_max: float64, \n", - " polyphen_max: float64\n", - " } \n", - "----------------------------------------\n", - "Key: ['locus', 'alleles']\n", - "----------------------------------------\n" - ] - } - ], - "source": [ - "ht.describe()" - ] - }, - { - "cell_type": "markdown", - "id": "a071f738b2c888e", - "metadata": { - "tags": [] - }, - "source": [ - "#### Show the first 5 variants in the Hail Table\n" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "id": "222de580c305d72a", - "metadata": { - "ExecuteTime": { - "end_time": "2024-12-06T20:09:20.949958Z", - "start_time": "2024-12-06T20:09:05.622171Z" - } - }, - "outputs": [ - { - "data": { - "text/html": [ - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "
histograms
grpmax
fafmax
info
qual_hists
raw_qual_hists
age_hists
in_silico_predictors
gnomad
non_ukb
gnomad
non_ukb
vrs
vep
vqsr_results
region_flags
allele_info
gq_hist_all
dp_hist_all
gq_hist_alt
dp_hist_alt
ab_hist_alt
gq_hist_all
dp_hist_all
gq_hist_alt
dp_hist_alt
ab_hist_alt
age_hist_het
age_hist_hom
cadd
locus
alleles
freq
AC
AF
AN
homozygote_count
gen_anc
AC
AF
AN
homozygote_count
gen_anc
faf
faf95_max
faf95_max_gen_anc
faf99_max
faf99_max_gen_anc
faf95_max
faf95_max_gen_anc
faf99_max
faf99_max_gen_anc
a_index
was_split
rsid
filters
FS
MQ
MQRankSum
QUALapprox
QD
ReadPosRankSum
SB
SOR
VarDP
AS_FS
AS_MQ
AS_MQRankSum
AS_pab_max
AS_QUALapprox
AS_QD
AS_ReadPosRankSum
AS_SB_TABLE
AS_SOR
AS_VarDP
singleton
transmitted_singleton
sibling_singleton
omni
mills
monoallelic
only_het
AS_VQSLOD
inbreeding_coeff
VRS_Allele_IDs
VRS_Starts
VRS_Ends
VRS_States
allele_string
end
id
input
intergenic_consequences
most_severe_consequence
motif_feature_consequences
regulatory_feature_consequences
seq_region_name
start
strand
transcript_consequences
variant_class
AS_VQSLOD
AS_culprit
positive_train_site
negative_train_site
non_par
lcr
segdup
fail_interval_qc
outside_ukb_capture_region
outside_broad_capture_region
variant_type
n_alt_alleles
has_star
allele_type
was_mixed
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
phred
raw_score
revel_max
spliceai_ds_max
pangolin_largest_ds
phylop
sift_max
polyphen_max
locus<GRCh38>array<str>array<struct{AC: int32, AF: float64, AN: int32, homozygote_count: int64}>int32float64int32int64strint32float64int32int64strarray<struct{faf95: float64, faf99: float64}>float64strfloat64strfloat64strfloat64strint32boolset<str>set<str>float64float64float64int64float64float64array<int32>float64int32float64float64float64float64int64float64float64array<int32>float64int32boolboolboolboolboolboolboolfloat64float64array<str>array<int32>array<int32>array<str>strint32strstrarray<struct{allele_num: int32, consequence_terms: array<str>, impact: str, variant_allele: str}>strarray<struct{allele_num: int32, consequence_terms: array<str>, high_inf_pos: str, impact: str, motif_feature_id: str, motif_name: str, motif_pos: int32, motif_score_change: float64, transcription_factors: array<str>, strand: int32, variant_allele: str}>array<struct{allele_num: int32, biotype: str, consequence_terms: array<str>, impact: str, regulatory_feature_id: str, variant_allele: str}>strint32int32array<struct{allele_num: int32, amino_acids: str, appris: str, biotype: str, canonical: int32, ccds: str, cdna_start: int32, cdna_end: int32, cds_end: int32, cds_start: int32, codons: str, consequence_terms: array<str>, distance: int32, domains: array<struct{db: str, name: str}>, exon: str, flags: str, gene_id: str, gene_pheno: int32, gene_symbol: str, gene_symbol_source: str, hgnc_id: str, hgvsc: str, hgvsp: str, hgvs_offset: int32, impact: str, intron: str, lof: str, lof_flags: str, lof_filter: str, lof_info: str, mane_select: str, mane_plus_clinical: str, mirna: array<str>, protein_end: int32, protein_start: int32, protein_id: str, source: str, strand: int32, transcript_id: str, tsl: int32, uniprot_isoform: array<str>, variant_allele: str}>strfloat64strboolboolboolboolboolboolboolboolstrint32boolstrboolarray<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64float32float32float64float32float64float64float64float64
chr1:11994["T","C"][(0,NA,0,0),(2,3.18e-06,628784,1),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(2,3.18e-06,628784,1),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0)]NANANANANANANANANANA[(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]NANANANANANANANA1FalseNA{"AC0","AS_VQSR"}NA2.50e+01NA603.00e+01NA[0,0,2,0]2.30e+002NA2.50e+01NANA603.00e+01NA[0,0,2,0]2.30e+002FalseNANAFalseFalseFalseFalse-5.25e+001.00e+00["ga4gh:VA.ps4-9woXy7o4rS39i8hDK_cUPBa-UcyP","ga4gh:VA.nHlWYJXgiuvXrLAxQsraJ6r-daZ8ELL-"][11993,11993][11994,11994]["T","C"]"T/C"11994".""chr1\t11994\t.\tT\tC\t.\t.\tGT"NA"non_coding_transcript_exon_variant"NANA"chr1"119941[(1,NA,NA,"transcribed_unprocessed_pseudogene",1,NA,NA,NA,NA,NA,NA,["upstream_gene_variant"],16,NA,NA,NA,"ENSG00000223972",NA,"DDX11L1","HGNC","HGNC:37102",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",1,"ENST00000450305",NA,NA,"C"),(1,NA,NA,"processed_transcript",NA,NA,126,126,NA,NA,NA,["non_coding_transcript_exon_variant"],NA,NA,"1/3",NA,"ENSG00000223972",NA,"DDX11L1","HGNC","HGNC:37102","ENST00000456328.2:n.126T>C",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",1,"ENST00000456328",1,NA,"C"),(1,NA,NA,"unprocessed_pseudogene",1,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],2410,NA,NA,NA,"ENSG00000227232",NA,"WASH7P","HGNC","HGNC:38034",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000488147",NA,NA,"C"),(1,NA,NA,"transcribed_pseudogene",1,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],2368,NA,NA,NA,"653635",NA,"WASH7P","EntrezGene","HGNC:38034",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"RefSeq",-1,"NR_024540.1",NA,NA,"C"),(1,NA,NA,"transcribed_pseudogene",1,NA,121,121,NA,NA,NA,["non_coding_transcript_exon_variant"],NA,NA,"1/3",NA,"100287102",NA,"DDX11L1","EntrezGene","HGNC:37102","NR_046018.2:n.121T>C",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"RefSeq",1,"NR_046018.2",NA,NA,"C")]"SNV"-5.25e+00"AS_MQ"FalseFalseFalseFalseTrueNATrueFalse"snv"1False"snv"False[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][314391,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][308845,5547,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]001.26e+011.08e+00NANA-1.10e-011.09e+00NANA
chr1:12016["G","A"][(0,NA,0,0),(6,9.54e-06,628784,2),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(6,9.54e-06,628784,2),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0)]NANANANANANANANANANA[(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]NANANANANANANANA1FalseNA{"AC0","AS_VQSR"}NA2.50e+010.00e+002622.18e+016.74e-01[2,0,10,0]2.67e+0012NA2.50e+010.00e+001.00e+002622.18e+016.74e-01[2,0,10,0]2.67e+0012FalseNANAFalseFalseFalseFalse-2.75e+006.67e-01["ga4gh:VA.VFxwcI4knOzk6SHzS2qowyDGnkG3mfEH","ga4gh:VA.ctgP7qNjQAGjI2eTDopAF-qoBBPmtsW5"][12015,12015][12016,12016]["G","A"]"G/A"12016".""chr1\t12016\t.\tG\tA\t.\t.\tGT"NA"non_coding_transcript_exon_variant"NANA"chr1"120161[(1,NA,NA,"transcribed_unprocessed_pseudogene",1,NA,7,7,NA,NA,NA,["non_coding_transcript_exon_variant"],NA,NA,"1/6",NA,"ENSG00000223972",NA,"DDX11L1","HGNC","HGNC:37102","ENST00000450305.2:n.7G>A",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",1,"ENST00000450305",NA,NA,"A"),(1,NA,NA,"processed_transcript",NA,NA,148,148,NA,NA,NA,["non_coding_transcript_exon_variant"],NA,NA,"1/3",NA,"ENSG00000223972",NA,"DDX11L1","HGNC","HGNC:37102","ENST00000456328.2:n.148G>A",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",1,"ENST00000456328",1,NA,"A"),(1,NA,NA,"unprocessed_pseudogene",1,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],2388,NA,NA,NA,"ENSG00000227232",NA,"WASH7P","HGNC","HGNC:38034",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000488147",NA,NA,"A"),(1,NA,NA,"transcribed_pseudogene",1,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],2346,NA,NA,NA,"653635",NA,"WASH7P","EntrezGene","HGNC:38034",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"RefSeq",-1,"NR_024540.1",NA,NA,"A"),(1,NA,NA,"transcribed_pseudogene",1,NA,143,143,NA,NA,NA,["non_coding_transcript_exon_variant"],NA,NA,"1/3",NA,"100287102",NA,"DDX11L1","EntrezGene","HGNC:37102","NR_046018.2:n.143G>A",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"RefSeq",1,"NR_046018.2",NA,NA,"A")]"SNV"-2.75e+00"AS_MQ"FalseFalseFalseFalseTrueNATrueFalse"snv"1False"snv"False[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][314388,2,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][308845,5547,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,2,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]001.60e+011.54e+00NANA-7.00e-026.55e+00NANA
chr1:12060["CTGGAG","C"][(0,0.00e+00,4,0),(1,1.59e-06,628784,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,0.00e+00,2,0),(0,0.00e+00,4,0),(1,1.59e-06,628784,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,NA,0,0),(0,NA,0,0)]NANANANANANANANANANA[(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]NANANANANANANANA1FalseNA{"AC0","AS_VQSR"}NA2.60e+016.74e-011233.08e+01-1.15e+00[1,0,3,0]1.61e+004NA2.60e+016.74e-016.25e-011233.08e+01-1.15e+00[1,0,3,0]1.61e+004TrueNANAFalseFalseFalseFalse-2.22e+00-1.59e-06["ga4gh:VA.P573ZtUtAaRcceE7NLanEyynSefvcAPL","ga4gh:VA.CHmk9uDiHW2LIHndZWqNHxD1fN_Ta1vn"][12059,12060][12065,12071]["CTGGAG","TGGAGT"]"TGGAG/-"12065".""chr1\t12060\t.\tCTGGAG\tC\t.\t.\tGT"NA"splice_donor_5th_base_variant"NANA"chr1"120611[(1,NA,NA,"transcribed_unprocessed_pseudogene",1,NA,NA,NA,NA,NA,NA,["splice_donor_5th_base_variant","intron_variant","non_coding_transcript_variant"],NA,NA,NA,NA,"ENSG00000223972",NA,"DDX11L1","HGNC","HGNC:37102","ENST00000450305.2:n.48+10_48+14del",NA,NA,"LOW","1/5",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",1,"ENST00000450305",NA,NA,"-"),(1,NA,NA,"processed_transcript",NA,NA,193,197,NA,NA,NA,["non_coding_transcript_exon_variant"],NA,NA,"1/3",NA,"ENSG00000223972",NA,"DDX11L1","HGNC","HGNC:37102","ENST00000456328.2:n.199_203del",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",1,"ENST00000456328",1,NA,"-"),(1,NA,NA,"unprocessed_pseudogene",1,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],2339,NA,NA,NA,"ENSG00000227232",NA,"WASH7P","HGNC","HGNC:38034",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000488147",NA,NA,"-"),(1,NA,NA,"transcribed_pseudogene",1,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],2297,NA,NA,NA,"653635",NA,"WASH7P","EntrezGene","HGNC:38034",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"RefSeq",-1,"NR_024540.1",NA,NA,"-"),(1,NA,NA,"transcribed_pseudogene",1,NA,188,192,NA,NA,NA,["non_coding_transcript_exon_variant"],NA,NA,"1/3",NA,"100287102",NA,"DDX11L1","EntrezGene","HGNC:37102","NR_046018.2:n.194_198del",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"RefSeq",1,"NR_046018.2",NA,NA,"-")]"deletion"-2.22e+00"AS_MQRankSum"FalseTrueFalseFalseTrueNATrueFalse"indel"1False"del"False[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][314380,0,0,0,11,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][308833,5557,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]008.52e+007.07e-01NANA-9.00e-02-4.41e+00NANA
chr1:12074["T","C"][(0,0.00e+00,4,0),(2,3.18e-06,628784,1),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,0.00e+00,4,0),(0,0.00e+00,2,0),(0,0.00e+00,4,0),(0,0.00e+00,4,0),(0,0.00e+00,4,0),(2,3.18e-06,628784,1),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,0.00e+00,4,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0)]NANANANANANANANANANA[(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]NANANANANANANANA1FalseNA{"AC0","AS_VQSR"}NA2.56e+014.31e-01991.24e+01-2.53e-01[4,0,4,0]6.93e-018NA2.56e+014.31e-016.87e-01991.24e+01-2.53e-01[4,0,4,0]6.93e-018FalseNANAFalseFalseFalseFalse-2.18e+001.00e+00["ga4gh:VA.neBeBT28ISe_1-yKPFsYxntP2jz1pj7E","ga4gh:VA.1RPHSwBHNUwoECJ9VVK3hf-KasFb1nfl"][12073,12073][12074,12074]["T","C"]"T/C"12074".""chr1\t12074\t.\tT\tC\t.\t.\tGT"NA"non_coding_transcript_exon_variant"NANA"chr1"120741[(1,NA,NA,"transcribed_unprocessed_pseudogene",1,NA,NA,NA,NA,NA,NA,["intron_variant","non_coding_transcript_variant"],NA,NA,NA,NA,"ENSG00000223972",NA,"DDX11L1","HGNC","HGNC:37102","ENST00000450305.2:n.48+17T>C",NA,NA,"MODIFIER","1/5",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",1,"ENST00000450305",NA,NA,"C"),(1,NA,NA,"processed_transcript",NA,NA,206,206,NA,NA,NA,["non_coding_transcript_exon_variant"],NA,NA,"1/3",NA,"ENSG00000223972",NA,"DDX11L1","HGNC","HGNC:37102","ENST00000456328.2:n.206T>C",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",1,"ENST00000456328",1,NA,"C"),(1,NA,NA,"unprocessed_pseudogene",1,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],2330,NA,NA,NA,"ENSG00000227232",NA,"WASH7P","HGNC","HGNC:38034",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000488147",NA,NA,"C"),(1,NA,NA,"transcribed_pseudogene",1,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],2288,NA,NA,NA,"653635",NA,"WASH7P","EntrezGene","HGNC:38034",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"RefSeq",-1,"NR_024540.1",NA,NA,"C"),(1,NA,NA,"transcribed_pseudogene",1,NA,201,201,NA,NA,NA,["non_coding_transcript_exon_variant"],NA,NA,"1/3",NA,"100287102",NA,"DDX11L1","EntrezGene","HGNC:37102","NR_046018.2:n.201T>C",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"RefSeq",1,"NR_046018.2",NA,NA,"C")]"SNV"-2.18e+00"AS_MQ"FalseFalseFalseFalseTrueNATrueFalse"snv"1False"snv"False[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][314369,1,0,0,20,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][308823,5567,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]001.52e+011.41e+00NANA-4.00e-026.01e+00NANA
chr1:12102["G","A"][(0,0.00e+00,32,0),(2,3.18e-06,628784,1),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,32,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,16,0),(0,0.00e+00,16,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,16,0),(0,0.00e+00,16,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,0.00e+00,6,0),(0,0.00e+00,4,0),(0,0.00e+00,14,0),(0,0.00e+00,8,0),(0,0.00e+00,30,0),(0,0.00e+00,22,0),(0,0.00e+00,32,0),(0,0.00e+00,26,0),(0,0.00e+00,32,0),(2,3.18e-06,628784,1),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,32,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,16,0),(0,0.00e+00,16,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,16,0),(0,0.00e+00,16,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,0.00e+00,6,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,0.00e+00,10,0),(0,0.00e+00,4,0),(0,0.00e+00,20,0),(0,0.00e+00,12,0),(0,0.00e+00,32,0),(0,0.00e+00,20,0),(0,0.00e+00,22,0)]NANANANANANANANANANA[(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]NANANANANANANANA1FalseNA{"AC0","AS_VQSR"}NA2.45e+01NA902.25e+01NA[0,0,4,0]3.26e+004NA2.45e+01NANA902.25e+01NA[0,0,4,0]3.26e+004FalseNANAFalseFalseFalseFalse-2.86e+001.00e+00["ga4gh:VA.ZXRhPWtip8HseOMWpCnaja0-ATo8hLE1","ga4gh:VA.Qi95g6E8nt6DaqTGpH5JX9x4n-pi-kBO"][12101,12101][12102,12102]["G","A"]"G/A"12102".""chr1\t12102\t.\tG\tA\t.\t.\tGT"NA"non_coding_transcript_exon_variant"NANA"chr1"121021[(1,NA,NA,"transcribed_unprocessed_pseudogene",1,NA,NA,NA,NA,NA,NA,["intron_variant","non_coding_transcript_variant"],NA,NA,NA,NA,"ENSG00000223972",NA,"DDX11L1","HGNC","HGNC:37102","ENST00000450305.2:n.48+45G>A",NA,NA,"MODIFIER","1/5",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",1,"ENST00000450305",NA,NA,"A"),(1,NA,NA,"processed_transcript",NA,NA,234,234,NA,NA,NA,["non_coding_transcript_exon_variant"],NA,NA,"1/3",NA,"ENSG00000223972",NA,"DDX11L1","HGNC","HGNC:37102","ENST00000456328.2:n.234G>A",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",1,"ENST00000456328",1,NA,"A"),(1,NA,NA,"unprocessed_pseudogene",1,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],2302,NA,NA,NA,"ENSG00000227232",NA,"WASH7P","HGNC","HGNC:38034",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000488147",NA,NA,"A"),(1,NA,NA,"transcribed_pseudogene",1,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],2260,NA,NA,NA,"653635",NA,"WASH7P","EntrezGene","HGNC:38034",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"RefSeq",-1,"NR_024540.1",NA,NA,"A"),(1,NA,NA,"transcribed_pseudogene",1,NA,229,229,NA,NA,NA,["non_coding_transcript_exon_variant"],NA,NA,"1/3",NA,"100287102",NA,"DDX11L1","EntrezGene","HGNC:37102","NR_046018.2:n.229G>A",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"RefSeq",1,"NR_046018.2",NA,NA,"A")]"SNV"-2.86e+00"AS_MQ"FalseFalseFalseFalseTrueNATrueFalse"snv"1False"snv"False[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,2,0,12,0,2,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,14,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][314323,1,0,0,54,0,12,0,2,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][308789,5585,16,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]004.42e+003.11e-01NANA-8.00e-021.38e+00NANA

showing top 5 rows

\n" - ], - "text/plain": [ - "+---------------+----------------+\n", - "| locus | alleles |\n", - "+---------------+----------------+\n", - "| locus | array |\n", - "+---------------+----------------+\n", - "| chr1:11994 | [\"T\",\"C\"] |\n", - "| chr1:12016 | [\"G\",\"A\"] |\n", - "| chr1:12060 | [\"CTGGAG\",\"C\"] |\n", - "| chr1:12074 | [\"T\",\"C\"] |\n", - "| chr1:12102 | [\"G\",\"A\"] |\n", - "+---------------+----------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| freq |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [(0,NA,0,0),(2,3.18e-06,628784,1),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,... |\n", - "| [(0,NA,0,0),(6,9.54e-06,628784,2),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,... |\n", - "| [(0,0.00e+00,4,0),(1,1.59e-06,628784,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),... |\n", - "| [(0,0.00e+00,4,0),(2,3.18e-06,628784,1),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),... |\n", - "| [(0,0.00e+00,32,0),(2,3.18e-06,628784,1),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0)... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+------------------+------------------+------------------+\n", - "| grpmax.gnomad.AC | grpmax.gnomad.AF | grpmax.gnomad.AN |\n", - "+------------------+------------------+------------------+\n", - "| int32 | float64 | int32 |\n", - "+------------------+------------------+------------------+\n", - "| NA | NA | NA |\n", - "| NA | NA | NA |\n", - "| NA | NA | NA |\n", - "| NA | NA | NA |\n", - "| NA | NA | NA |\n", - "+------------------+------------------+------------------+\n", - "\n", - "+--------------------------------+-----------------------+-------------------+\n", - "| grpmax.gnomad.homozygote_count | grpmax.gnomad.gen_anc | grpmax.non_ukb.AC |\n", - "+--------------------------------+-----------------------+-------------------+\n", - "| int64 | str | int32 |\n", - "+--------------------------------+-----------------------+-------------------+\n", - "| NA | NA | NA |\n", - "| NA | NA | NA |\n", - "| NA | NA | NA |\n", - "| NA | NA | NA |\n", - "| NA | NA | NA |\n", - "+--------------------------------+-----------------------+-------------------+\n", - "\n", - "+-------------------+-------------------+---------------------------------+\n", - "| grpmax.non_ukb.AF | grpmax.non_ukb.AN | grpmax.non_ukb.homozygote_count |\n", - "+-------------------+-------------------+---------------------------------+\n", - "| float64 | int32 | int64 |\n", - "+-------------------+-------------------+---------------------------------+\n", - "| NA | NA | NA |\n", - "| NA | NA | NA |\n", - "| NA | NA | NA |\n", - "| NA | NA | NA |\n", - "| NA | NA | NA |\n", - "+-------------------+-------------------+---------------------------------+\n", - "\n", - "+------------------------+\n", - "| grpmax.non_ukb.gen_anc |\n", - "+------------------------+\n", - "| str |\n", - "+------------------------+\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "+------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| faf |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.... |\n", - "| [(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.... |\n", - "| [(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.... |\n", - "| [(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.... |\n", - "| [(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+-------------------------+---------------------------------+\n", - "| fafmax.gnomad.faf95_max | fafmax.gnomad.faf95_max_gen_anc |\n", - "+-------------------------+---------------------------------+\n", - "| float64 | str |\n", - "+-------------------------+---------------------------------+\n", - "| NA | NA |\n", - "| NA | NA |\n", - "| NA | NA |\n", - "| NA | NA |\n", - "| NA | NA |\n", - "+-------------------------+---------------------------------+\n", - "\n", - "+-------------------------+---------------------------------+\n", - "| fafmax.gnomad.faf99_max | fafmax.gnomad.faf99_max_gen_anc |\n", - "+-------------------------+---------------------------------+\n", - "| float64 | str |\n", - "+-------------------------+---------------------------------+\n", - "| NA | NA |\n", - "| NA | NA |\n", - "| NA | NA |\n", - "| NA | NA |\n", - "| NA | NA |\n", - "+-------------------------+---------------------------------+\n", - "\n", - "+--------------------------+----------------------------------+\n", - "| fafmax.non_ukb.faf95_max | fafmax.non_ukb.faf95_max_gen_anc |\n", - "+--------------------------+----------------------------------+\n", - "| float64 | str |\n", - "+--------------------------+----------------------------------+\n", - "| NA | NA |\n", - "| NA | NA |\n", - "| NA | NA |\n", - "| NA | NA |\n", - "| NA | NA |\n", - "+--------------------------+----------------------------------+\n", - "\n", - "+--------------------------+----------------------------------+---------+\n", - "| fafmax.non_ukb.faf99_max | fafmax.non_ukb.faf99_max_gen_anc | a_index |\n", - "+--------------------------+----------------------------------+---------+\n", - "| float64 | str | int32 |\n", - "+--------------------------+----------------------------------+---------+\n", - "| NA | NA | 1 |\n", - "| NA | NA | 1 |\n", - "| NA | NA | 1 |\n", - "| NA | NA | 1 |\n", - "| NA | NA | 1 |\n", - "+--------------------------+----------------------------------+---------+\n", - "\n", - "+-----------+----------+-------------------+---------+----------+\n", - "| was_split | rsid | filters | info.FS | info.MQ |\n", - "+-----------+----------+-------------------+---------+----------+\n", - "| bool | set | set | float64 | float64 |\n", - "+-----------+----------+-------------------+---------+----------+\n", - "| False | NA | {\"AC0\",\"AS_VQSR\"} | NA | 2.50e+01 |\n", - "| False | NA | {\"AC0\",\"AS_VQSR\"} | NA | 2.50e+01 |\n", - "| False | NA | {\"AC0\",\"AS_VQSR\"} | NA | 2.60e+01 |\n", - "| False | NA | {\"AC0\",\"AS_VQSR\"} | NA | 2.56e+01 |\n", - "| False | NA | {\"AC0\",\"AS_VQSR\"} | NA | 2.45e+01 |\n", - "+-----------+----------+-------------------+---------+----------+\n", - "\n", - "+----------------+-----------------+----------+---------------------+\n", - "| info.MQRankSum | info.QUALapprox | info.QD | info.ReadPosRankSum |\n", - "+----------------+-----------------+----------+---------------------+\n", - "| float64 | int64 | float64 | float64 |\n", - "+----------------+-----------------+----------+---------------------+\n", - "| NA | 60 | 3.00e+01 | NA |\n", - "| 0.00e+00 | 262 | 2.18e+01 | 6.74e-01 |\n", - "| 6.74e-01 | 123 | 3.08e+01 | -1.15e+00 |\n", - "| 4.31e-01 | 99 | 1.24e+01 | -2.53e-01 |\n", - "| NA | 90 | 2.25e+01 | NA |\n", - "+----------------+-----------------+----------+---------------------+\n", - "\n", - "+--------------+----------+------------+------------+------------+\n", - "| info.SB | info.SOR | info.VarDP | info.AS_FS | info.AS_MQ |\n", - "+--------------+----------+------------+------------+------------+\n", - "| array | float64 | int32 | float64 | float64 |\n", - "+--------------+----------+------------+------------+------------+\n", - "| [0,0,2,0] | 2.30e+00 | 2 | NA | 2.50e+01 |\n", - "| [2,0,10,0] | 2.67e+00 | 12 | NA | 2.50e+01 |\n", - "| [1,0,3,0] | 1.61e+00 | 4 | NA | 2.60e+01 |\n", - "| [4,0,4,0] | 6.93e-01 | 8 | NA | 2.56e+01 |\n", - "| [0,0,4,0] | 3.26e+00 | 4 | NA | 2.45e+01 |\n", - "+--------------+----------+------------+------------+------------+\n", - "\n", - "+-------------------+-----------------+--------------------+------------+\n", - "| info.AS_MQRankSum | info.AS_pab_max | info.AS_QUALapprox | info.AS_QD |\n", - "+-------------------+-----------------+--------------------+------------+\n", - "| float64 | float64 | int64 | float64 |\n", - "+-------------------+-----------------+--------------------+------------+\n", - "| NA | NA | 60 | 3.00e+01 |\n", - "| 0.00e+00 | 1.00e+00 | 262 | 2.18e+01 |\n", - "| 6.74e-01 | 6.25e-01 | 123 | 3.08e+01 |\n", - "| 4.31e-01 | 6.87e-01 | 99 | 1.24e+01 |\n", - "| NA | NA | 90 | 2.25e+01 |\n", - "+-------------------+-----------------+--------------------+------------+\n", - "\n", - "+------------------------+------------------+-------------+---------------+\n", - "| info.AS_ReadPosRankSum | info.AS_SB_TABLE | info.AS_SOR | info.AS_VarDP |\n", - "+------------------------+------------------+-------------+---------------+\n", - "| float64 | array | float64 | int32 |\n", - "+------------------------+------------------+-------------+---------------+\n", - "| NA | [0,0,2,0] | 2.30e+00 | 2 |\n", - "| 6.74e-01 | [2,0,10,0] | 2.67e+00 | 12 |\n", - "| -1.15e+00 | [1,0,3,0] | 1.61e+00 | 4 |\n", - "| -2.53e-01 | [4,0,4,0] | 6.93e-01 | 8 |\n", - "| NA | [0,0,4,0] | 3.26e+00 | 4 |\n", - "+------------------------+------------------+-------------+---------------+\n", - "\n", - "+----------------+----------------------------+------------------------+\n", - "| info.singleton | info.transmitted_singleton | info.sibling_singleton |\n", - "+----------------+----------------------------+------------------------+\n", - "| bool | bool | bool |\n", - "+----------------+----------------------------+------------------------+\n", - "| False | NA | NA |\n", - "| False | NA | NA |\n", - "| True | NA | NA |\n", - "| False | NA | NA |\n", - "| False | NA | NA |\n", - "+----------------+----------------------------+------------------------+\n", - "\n", - "+-----------+------------+------------------+---------------+----------------+\n", - "| info.omni | info.mills | info.monoallelic | info.only_het | info.AS_VQSLOD |\n", - "+-----------+------------+------------------+---------------+----------------+\n", - "| bool | bool | bool | bool | float64 |\n", - "+-----------+------------+------------------+---------------+----------------+\n", - "| False | False | False | False | -5.25e+00 |\n", - "| False | False | False | False | -2.75e+00 |\n", - "| False | False | False | False | -2.22e+00 |\n", - "| False | False | False | False | -2.18e+00 |\n", - "| False | False | False | False | -2.86e+00 |\n", - "+-----------+------------+------------------+---------------+----------------+\n", - "\n", - "+-----------------------+\n", - "| info.inbreeding_coeff |\n", - "+-----------------------+\n", - "| float64 |\n", - "+-----------------------+\n", - "| 1.00e+00 |\n", - "| 6.67e-01 |\n", - "| -1.59e-06 |\n", - "| 1.00e+00 |\n", - "| 1.00e+00 |\n", - "+-----------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| info.vrs.VRS_Allele_IDs |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [\"ga4gh:VA.ps4-9woXy7o4rS39i8hDK_cUPBa-UcyP\",\"ga4gh:VA.nHlWYJXgiuvXrLAxQs... |\n", - "| [\"ga4gh:VA.VFxwcI4knOzk6SHzS2qowyDGnkG3mfEH\",\"ga4gh:VA.ctgP7qNjQAGjI2eTDo... |\n", - "| [\"ga4gh:VA.P573ZtUtAaRcceE7NLanEyynSefvcAPL\",\"ga4gh:VA.CHmk9uDiHW2LIHndZW... |\n", - "| [\"ga4gh:VA.neBeBT28ISe_1-yKPFsYxntP2jz1pj7E\",\"ga4gh:VA.1RPHSwBHNUwoECJ9VV... |\n", - "| [\"ga4gh:VA.ZXRhPWtip8HseOMWpCnaja0-ATo8hLE1\",\"ga4gh:VA.Qi95g6E8nt6DaqTGpH... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+---------------------+-------------------+---------------------+\n", - "| info.vrs.VRS_Starts | info.vrs.VRS_Ends | info.vrs.VRS_States |\n", - "+---------------------+-------------------+---------------------+\n", - "| array | array | array |\n", - "+---------------------+-------------------+---------------------+\n", - "| [11993,11993] | [11994,11994] | [\"T\",\"C\"] |\n", - "| [12015,12015] | [12016,12016] | [\"G\",\"A\"] |\n", - "| [12059,12060] | [12065,12071] | [\"CTGGAG\",\"TGGAGT\"] |\n", - "| [12073,12073] | [12074,12074] | [\"T\",\"C\"] |\n", - "| [12101,12101] | [12102,12102] | [\"G\",\"A\"] |\n", - "+---------------------+-------------------+---------------------+\n", - "\n", - "+-------------------+---------+--------+--------------------------------+\n", - "| vep.allele_string | vep.end | vep.id | vep.input |\n", - "+-------------------+---------+--------+--------------------------------+\n", - "| str | int32 | str | str |\n", - "+-------------------+---------+--------+--------------------------------+\n", - "| \"T/C\" | 11994 | \".\" | \"chr1\t11994\t.\tT\tC\t.\t.\tGT\" |\n", - "| \"G/A\" | 12016 | \".\" | \"chr1\t12016\t.\tG\tA\t.\t.\tGT\" |\n", - "| \"TGGAG/-\" | 12065 | \".\" | \"chr1\t12060\t.\tCTGGAG\tC\t.\t.\tGT\" |\n", - "| \"T/C\" | 12074 | \".\" | \"chr1\t12074\t.\tT\tC\t.\t.\tGT\" |\n", - "| \"G/A\" | 12102 | \".\" | \"chr1\t12102\t.\tG\tA\t.\t.\tGT\" |\n", - "+-------------------+---------+--------+--------------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| vep.intergenic_consequences |\n", - "+------------------------------------------------------------------------------+\n", - "| array, impact: st... |\n", - "+------------------------------------------------------------------------------+\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+--------------------------------------+\n", - "| vep.most_severe_consequence |\n", - "+--------------------------------------+\n", - "| str |\n", - "+--------------------------------------+\n", - "| \"non_coding_transcript_exon_variant\" |\n", - "| \"non_coding_transcript_exon_variant\" |\n", - "| \"splice_donor_5th_base_variant\" |\n", - "| \"non_coding_transcript_exon_variant\" |\n", - "| \"non_coding_transcript_exon_variant\" |\n", - "+--------------------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| vep.motif_feature_consequences |\n", - "+------------------------------------------------------------------------------+\n", - "| array, high_inf_p... |\n", - "+------------------------------------------------------------------------------+\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| vep.regulatory_feature_consequences |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+--------------------------------------------+\n", - "| histograms.qual_hists.gq_hist_all.bin_freq |\n", - "+--------------------------------------------+\n", - "| array |\n", - "+--------------------------------------------+\n", - "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,2,0,12,0,2,0,0,0,0,0,0,0,0,0,0,0] |\n", - "+--------------------------------------------+\n", - "\n", - "+---------------------------------------------+\n", - "| histograms.qual_hists.gq_hist_all.n_smaller |\n", - "+---------------------------------------------+\n", - "| int64 |\n", - "+---------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+---------------------------------------------+\n", - "\n", - "+--------------------------------------------+\n", - "| histograms.qual_hists.gq_hist_all.n_larger |\n", - "+--------------------------------------------+\n", - "| int64 |\n", - "+--------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+--------------------------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| histograms.qual_hists.dp_hist_all.bin_edges |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+--------------------------------------------+\n", - "| histograms.qual_hists.dp_hist_all.bin_freq |\n", - "+--------------------------------------------+\n", - "| array |\n", - "+--------------------------------------------+\n", - "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,14,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "+--------------------------------------------+\n", - "\n", - "+---------------------------------------------+\n", - "| histograms.qual_hists.dp_hist_all.n_smaller |\n", - "+---------------------------------------------+\n", - "| int64 |\n", - "+---------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+---------------------------------------------+\n", - "\n", - "+--------------------------------------------+\n", - "| histograms.qual_hists.dp_hist_all.n_larger |\n", - "+--------------------------------------------+\n", - "| int64 |\n", - "+--------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+--------------------------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| histograms.qual_hists.gq_hist_alt.bin_edges |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+--------------------------------------------+\n", - "| histograms.qual_hists.gq_hist_alt.bin_freq |\n", - "+--------------------------------------------+\n", - "| array |\n", - "+--------------------------------------------+\n", - "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "+--------------------------------------------+\n", - "\n", - "+---------------------------------------------+\n", - "| histograms.qual_hists.gq_hist_alt.n_smaller |\n", - "+---------------------------------------------+\n", - "| int64 |\n", - "+---------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+---------------------------------------------+\n", - "\n", - "+--------------------------------------------+\n", - "| histograms.qual_hists.gq_hist_alt.n_larger |\n", - "+--------------------------------------------+\n", - "| int64 |\n", - "+--------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+--------------------------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| histograms.qual_hists.dp_hist_alt.bin_edges |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+--------------------------------------------+\n", - "| histograms.qual_hists.dp_hist_alt.bin_freq |\n", - "+--------------------------------------------+\n", - "| array |\n", - "+--------------------------------------------+\n", - "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "+--------------------------------------------+\n", - "\n", - "+---------------------------------------------+\n", - "| histograms.qual_hists.dp_hist_alt.n_smaller |\n", - "+---------------------------------------------+\n", - "| int64 |\n", - "+---------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+---------------------------------------------+\n", - "\n", - "+--------------------------------------------+\n", - "| histograms.qual_hists.dp_hist_alt.n_larger |\n", - "+--------------------------------------------+\n", - "| int64 |\n", - "+--------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+--------------------------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| histograms.qual_hists.ab_hist_alt.bin_edges |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", - "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", - "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", - "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", - "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+--------------------------------------------+\n", - "| histograms.qual_hists.ab_hist_alt.bin_freq |\n", - "+--------------------------------------------+\n", - "| array |\n", - "+--------------------------------------------+\n", - "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "+--------------------------------------------+\n", - "\n", - "+---------------------------------------------+\n", - "| histograms.qual_hists.ab_hist_alt.n_smaller |\n", - "+---------------------------------------------+\n", - "| int64 |\n", - "+---------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+---------------------------------------------+\n", - "\n", - "+--------------------------------------------+\n", - "| histograms.qual_hists.ab_hist_alt.n_larger |\n", - "+--------------------------------------------+\n", - "| int64 |\n", - "+--------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+--------------------------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| histograms.raw_qual_hists.gq_hist_all.bin_edges |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+--------------------------------------------------+\n", - "| histograms.raw_qual_hists.gq_hist_all.bin_freq |\n", - "+--------------------------------------------------+\n", - "| array |\n", - "+--------------------------------------------------+\n", - "| [314391,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [314388,2,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [314380,0,0,0,11,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0] |\n", - "| [314369,1,0,0,20,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [314323,1,0,0,54,0,12,0,2,0,0,0,0,0,0,0,0,0,0,0] |\n", - "+--------------------------------------------------+\n", - "\n", - "+-------------------------------------------------+\n", - "| histograms.raw_qual_hists.gq_hist_all.n_smaller |\n", - "+-------------------------------------------------+\n", - "| int64 |\n", - "+-------------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+-------------------------------------------------+\n", - "\n", - "+------------------------------------------------+\n", - "| histograms.raw_qual_hists.gq_hist_all.n_larger |\n", - "+------------------------------------------------+\n", - "| int64 |\n", - "+------------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+------------------------------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| histograms.raw_qual_hists.dp_hist_all.bin_edges |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+----------------------------------------------------+\n", - "| histograms.raw_qual_hists.dp_hist_all.bin_freq |\n", - "+----------------------------------------------------+\n", - "| array |\n", - "+----------------------------------------------------+\n", - "| [308845,5547,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [308845,5547,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [308833,5557,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [308823,5567,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [308789,5585,16,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "+----------------------------------------------------+\n", - "\n", - "+-------------------------------------------------+\n", - "| histograms.raw_qual_hists.dp_hist_all.n_smaller |\n", - "+-------------------------------------------------+\n", - "| int64 |\n", - "+-------------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+-------------------------------------------------+\n", - "\n", - "+------------------------------------------------+\n", - "| histograms.raw_qual_hists.dp_hist_all.n_larger |\n", - "+------------------------------------------------+\n", - "| int64 |\n", - "+------------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+------------------------------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| histograms.raw_qual_hists.gq_hist_alt.bin_edges |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+------------------------------------------------+\n", - "| histograms.raw_qual_hists.gq_hist_alt.bin_freq |\n", - "+------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------+\n", - "| [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,2,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0] |\n", - "| [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "+------------------------------------------------+\n", - "\n", - "+-------------------------------------------------+\n", - "| histograms.raw_qual_hists.gq_hist_alt.n_smaller |\n", - "+-------------------------------------------------+\n", - "| int64 |\n", - "+-------------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+-------------------------------------------------+\n", - "\n", - "+------------------------------------------------+\n", - "| histograms.raw_qual_hists.gq_hist_alt.n_larger |\n", - "+------------------------------------------------+\n", - "| int64 |\n", - "+------------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+------------------------------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| histograms.raw_qual_hists.dp_hist_alt.bin_edges |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+------------------------------------------------+\n", - "| histograms.raw_qual_hists.dp_hist_alt.bin_freq |\n", - "+------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------+\n", - "| [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "+------------------------------------------------+\n", - "\n", - "+-------------------------------------------------+\n", - "| histograms.raw_qual_hists.dp_hist_alt.n_smaller |\n", - "+-------------------------------------------------+\n", - "| int64 |\n", - "+-------------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+-------------------------------------------------+\n", - "\n", - "+------------------------------------------------+\n", - "| histograms.raw_qual_hists.dp_hist_alt.n_larger |\n", - "+------------------------------------------------+\n", - "| int64 |\n", - "+------------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+------------------------------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| histograms.raw_qual_hists.ab_hist_alt.bin_edges |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", - "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", - "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", - "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", - "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+------------------------------------------------+\n", - "| histograms.raw_qual_hists.ab_hist_alt.bin_freq |\n", - "+------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------+\n", - "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0] |\n", - "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "+------------------------------------------------+\n", - "\n", - "+-------------------------------------------------+\n", - "| histograms.raw_qual_hists.ab_hist_alt.n_smaller |\n", - "+-------------------------------------------------+\n", - "| int64 |\n", - "+-------------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+-------------------------------------------------+\n", - "\n", - "+------------------------------------------------+\n", - "| histograms.raw_qual_hists.ab_hist_alt.n_larger |\n", - "+------------------------------------------------+\n", - "| int64 |\n", - "+------------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+------------------------------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| histograms.age_hists.age_hist_het.bin_edges |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", - "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", - "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", - "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", - "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+--------------------------------------------+\n", - "| histograms.age_hists.age_hist_het.bin_freq |\n", - "+--------------------------------------------+\n", - "| array |\n", - "+--------------------------------------------+\n", - "| [0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,0,0,0,0,0] |\n", - "+--------------------------------------------+\n", - "\n", - "+---------------------------------------------+\n", - "| histograms.age_hists.age_hist_het.n_smaller |\n", - "+---------------------------------------------+\n", - "| int64 |\n", - "+---------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+---------------------------------------------+\n", - "\n", - "+--------------------------------------------+\n", - "| histograms.age_hists.age_hist_het.n_larger |\n", - "+--------------------------------------------+\n", - "| int64 |\n", - "+--------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+--------------------------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| histograms.age_hists.age_hist_hom.bin_edges |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", - "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", - "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", - "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", - "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+--------------------------------------------+\n", - "| histograms.age_hists.age_hist_hom.bin_freq |\n", - "+--------------------------------------------+\n", - "| array |\n", - "+--------------------------------------------+\n", - "| [0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,0,0,0,0,0] |\n", - "+--------------------------------------------+\n", - "\n", - "+---------------------------------------------+\n", - "| histograms.age_hists.age_hist_hom.n_smaller |\n", - "+---------------------------------------------+\n", - "| int64 |\n", - "+---------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+---------------------------------------------+\n", - "\n", - "+--------------------------------------------+---------------------------------+\n", - "| histograms.age_hists.age_hist_hom.n_larger | in_silico_predictors.cadd.phred |\n", - "+--------------------------------------------+---------------------------------+\n", - "| int64 | float32 |\n", - "+--------------------------------------------+---------------------------------+\n", - "| 0 | 1.26e+01 |\n", - "| 0 | 1.60e+01 |\n", - "| 0 | 8.52e+00 |\n", - "| 0 | 1.52e+01 |\n", - "| 0 | 4.42e+00 |\n", - "+--------------------------------------------+---------------------------------+\n", - "\n", - "+-------------------------------------+--------------------------------+\n", - "| in_silico_predictors.cadd.raw_score | in_silico_predictors.revel_max |\n", - "+-------------------------------------+--------------------------------+\n", - "| float32 | float64 |\n", - "+-------------------------------------+--------------------------------+\n", - "| 1.08e+00 | NA |\n", - "| 1.54e+00 | NA |\n", - "| 7.07e-01 | NA |\n", - "| 1.41e+00 | NA |\n", - "| 3.11e-01 | NA |\n", - "+-------------------------------------+--------------------------------+\n", - "\n", - "+--------------------------------------+\n", - "| in_silico_predictors.spliceai_ds_max |\n", - "+--------------------------------------+\n", - "| float32 |\n", - "+--------------------------------------+\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "+--------------------------------------+\n", - "\n", - "+------------------------------------------+-----------------------------+\n", - "| in_silico_predictors.pangolin_largest_ds | in_silico_predictors.phylop |\n", - "+------------------------------------------+-----------------------------+\n", - "| float64 | float64 |\n", - "+------------------------------------------+-----------------------------+\n", - "| -1.10e-01 | 1.09e+00 |\n", - "| -7.00e-02 | 6.55e+00 |\n", - "| -9.00e-02 | -4.41e+00 |\n", - "| -4.00e-02 | 6.01e+00 |\n", - "| -8.00e-02 | 1.38e+00 |\n", - "+------------------------------------------+-----------------------------+\n", - "\n", - "+-------------------------------+-----------------------------------+\n", - "| in_silico_predictors.sift_max | in_silico_predictors.polyphen_max |\n", - "+-------------------------------+-----------------------------------+\n", - "| float64 | float64 |\n", - "+-------------------------------+-----------------------------------+\n", - "| NA | NA |\n", - "| NA | NA |\n", - "| NA | NA |\n", - "| NA | NA |\n", - "| NA | NA |\n", - "+-------------------------------+-----------------------------------+\n", - "showing top 5 rows" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "ht.show(5)" - ] - }, - { - "cell_type": "markdown", - "id": "b7a158a3-f21a-4f87-9596-1f918156d713", - "metadata": { - "tags": [] - }, - "source": [ - "### v4.1 genomes Hail Table" - ] - }, - { - "cell_type": "markdown", - "id": "30f86500-afc5-419e-ae2e-f944dc461fee", - "metadata": {}, - "source": [ - "#### Load the Hail Table\n" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "id": "62ca9934-20dd-437e-898b-86a056e2606e", - "metadata": { - "ExecuteTime": { - "end_time": "2024-12-06T20:08:59.197890Z", - "start_time": "2024-12-06T20:08:50.859108Z" - } - }, - "outputs": [], - "source": [ - "ht = get_gnomad_release(data_type='genomes', version='4.1')" - ] - }, - { - "cell_type": "markdown", - "id": "9cf4b782-f289-47b6-9123-d08ca761b074", - "metadata": {}, - "source": [ - "#### Print the schema of the Hail Table\n" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "id": "09de90df-0b03-4a54-817c-c8a0606026f6", - "metadata": { - "ExecuteTime": { - "end_time": "2024-12-06T20:09:00.032524Z", - "start_time": "2024-12-06T20:09:00.029271Z" - }, - "tags": [] - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "----------------------------------------\n", - "Global fields:\n", - " 'freq_meta': array> \n", - " 'freq_index_dict': dict \n", - " 'freq_meta_sample_count': array \n", - " 'faf_meta': array> \n", - " 'faf_index_dict': dict \n", - " 'age_distribution': struct {\n", - " bin_edges: array, \n", - " bin_freq: array, \n", - " n_smaller: int32, \n", - " n_larger: int32\n", - " } \n", - " 'filtering_model': struct {\n", - " filter_name: str, \n", - " score_name: str, \n", - " snv_cutoff: struct {\n", - " bin: int32, \n", - " min_score: float64\n", - " }, \n", - " indel_cutoff: struct {\n", - " bin: int32, \n", - " min_score: float64\n", - " }, \n", - " snv_training_variables: array, \n", - " indel_training_variables: array\n", - " } \n", - " 'inbreeding_coeff_cutoff': float64 \n", - " 'tool_versions': struct {\n", - " cadd_version: str, \n", - " revel_version: str, \n", - " spliceai_version: str, \n", - " pangolin_version: array, \n", - " phylop_version: str, \n", - " dbsnp_version: str, \n", - " sift_version: str, \n", - " polyphen_version: str\n", - " } \n", - " 'vrs_versions': struct {\n", - " vrs_schema_version: str, \n", - " vrs_python_version: str, \n", - " seqrepo_version: str\n", - " } \n", - " 'vep_globals': struct {\n", - " vep_version: str, \n", - " vep_help: str, \n", - " vep_config: str, \n", - " gencode_version: str, \n", - " mane_select_version: str\n", - " } \n", - " 'frequency_README': str \n", - " 'date': str \n", - " 'version': str \n", - "----------------------------------------\n", - "Row fields:\n", - " 'locus': locus \n", - " 'alleles': array \n", - " 'freq': array \n", - " 'grpmax': struct {\n", - " AC: int32, \n", - " AF: float64, \n", - " AN: int32, \n", - " homozygote_count: int32, \n", - " gen_anc: str\n", - " } \n", - " 'faf': array \n", - " 'fafmax': struct {\n", - " faf95_max: float64, \n", - " faf95_max_gen_anc: str, \n", - " faf99_max: float64, \n", - " faf99_max_gen_anc: str\n", - " } \n", - " 'a_index': int32 \n", - " 'was_split': bool \n", - " 'rsid': set \n", - " 'filters': set \n", - " 'info': struct {\n", - " FS: float64, \n", - " MQ: float64, \n", - " MQRankSum: float64, \n", - " QUALapprox: int64, \n", - " QD: float32, \n", - " ReadPosRankSum: float64, \n", - " SB: array, \n", - " SOR: float64, \n", - " VarDP: int32, \n", - " AS_FS: float64, \n", - " AS_MQ: float64, \n", - " AS_MQRankSum: float64, \n", - " AS_pab_max: float64, \n", - " AS_QUALapprox: int64, \n", - " AS_QD: float32, \n", - " AS_ReadPosRankSum: float64, \n", - " AS_SB_TABLE: array, \n", - " AS_SOR: float64, \n", - " AS_VarDP: int32, \n", - " singleton: bool, \n", - " transmitted_singleton: bool, \n", - " omni: bool, \n", - " mills: bool, \n", - " monoallelic: bool, \n", - " only_het: bool, \n", - " AS_VQSLOD: float64, \n", - " inbreeding_coeff: float64, \n", - " vrs: struct {\n", - " VRS_Allele_IDs: array, \n", - " VRS_Starts: array, \n", - " VRS_Ends: array, \n", - " VRS_States: array\n", - " }\n", - " } \n", - " 'vep': struct {\n", - " allele_string: str, \n", - " end: int32, \n", - " id: str, \n", - " input: str, \n", - " intergenic_consequences: array, \n", - " impact: str, \n", - " variant_allele: str\n", - " }>, \n", - " most_severe_consequence: str, \n", - " motif_feature_consequences: array, \n", - " high_inf_pos: str, \n", - " impact: str, \n", - " motif_feature_id: str, \n", - " motif_name: str, \n", - " motif_pos: int32, \n", - " motif_score_change: float64, \n", - " transcription_factors: array, \n", - " strand: int32, \n", - " variant_allele: str\n", - " }>, \n", - " regulatory_feature_consequences: array, \n", - " impact: str, \n", - " regulatory_feature_id: str, \n", - " variant_allele: str\n", - " }>, \n", - " seq_region_name: str, \n", - " start: int32, \n", - " strand: int32, \n", - " transcript_consequences: array, \n", - " distance: int32, \n", - " domains: array, \n", - " exon: str, \n", - " flags: str, \n", - " gene_id: str, \n", - " gene_pheno: int32, \n", - " gene_symbol: str, \n", - " gene_symbol_source: str, \n", - " hgnc_id: str, \n", - " hgvsc: str, \n", - " hgvsp: str, \n", - " hgvs_offset: int32, \n", - " impact: str, \n", - " intron: str, \n", - " lof: str, \n", - " lof_flags: str, \n", - " lof_filter: str, \n", - " lof_info: str, \n", - " mane_select: str, \n", - " mane_plus_clinical: str, \n", - " mirna: array, \n", - " protein_end: int32, \n", - " protein_start: int32, \n", - " protein_id: str, \n", - " source: str, \n", - " strand: int32, \n", - " transcript_id: str, \n", - " tsl: int32, \n", - " uniprot_isoform: array, \n", - " variant_allele: str\n", - " }>, \n", - " variant_class: str\n", - " } \n", - " 'vqsr_results': struct {\n", - " AS_VQSLOD: float64, \n", - " AS_culprit: str, \n", - " positive_train_site: bool, \n", - " negative_train_site: bool\n", - " } \n", - " 'region_flags': struct {\n", - " non_par: bool, \n", - " lcr: bool, \n", - " segdup: bool\n", - " } \n", - " 'allele_info': struct {\n", - " allele_type: str, \n", - " n_alt_alleles: int32, \n", - " variant_type: str, \n", - " was_mixed: bool\n", - " } \n", - " 'histograms': struct {\n", - " qual_hists: struct {\n", - " gq_hist_all: struct {\n", - " bin_edges: array, \n", - " bin_freq: array, \n", - " n_smaller: int64, \n", - " n_larger: int64\n", - " }, \n", - " dp_hist_all: struct {\n", - " bin_edges: array, \n", - " bin_freq: array, \n", - " n_smaller: int64, \n", - " n_larger: int64\n", - " }, \n", - " gq_hist_alt: struct {\n", - " bin_edges: array, \n", - " bin_freq: array, \n", - " n_smaller: int64, \n", - " n_larger: int64\n", - " }, \n", - " dp_hist_alt: struct {\n", - " bin_edges: array, \n", - " bin_freq: array, \n", - " n_smaller: int64, \n", - " n_larger: int64\n", - " }, \n", - " ab_hist_alt: struct {\n", - " bin_edges: array, \n", - " bin_freq: array, \n", - " n_smaller: int64, \n", - " n_larger: int64\n", - " }\n", - " }, \n", - " raw_qual_hists: struct {\n", - " gq_hist_all: struct {\n", - " bin_edges: array, \n", - " bin_freq: array, \n", - " n_smaller: int64, \n", - " n_larger: int64\n", - " }, \n", - " dp_hist_all: struct {\n", - " bin_edges: array, \n", - " bin_freq: array, \n", - " n_smaller: int64, \n", - " n_larger: int64\n", - " }, \n", - " gq_hist_alt: struct {\n", - " bin_edges: array, \n", - " bin_freq: array, \n", - " n_smaller: int64, \n", - " n_larger: int64\n", - " }, \n", - " dp_hist_alt: struct {\n", - " bin_edges: array, \n", - " bin_freq: array, \n", - " n_smaller: int64, \n", - " n_larger: int64\n", - " }, \n", - " ab_hist_alt: struct {\n", - " bin_edges: array, \n", - " bin_freq: array, \n", - " n_smaller: int64, \n", - " n_larger: int64\n", - " }\n", - " }, \n", - " age_hists: struct {\n", - " age_hist_het: struct {\n", - " bin_edges: array, \n", - " bin_freq: array, \n", - " n_smaller: int64, \n", - " n_larger: int64\n", - " }, \n", - " age_hist_hom: struct {\n", - " bin_edges: array, \n", - " bin_freq: array, \n", - " n_smaller: int64, \n", - " n_larger: int64\n", - " }\n", - " }\n", - " } \n", - " 'in_silico_predictors': struct {\n", - " cadd: struct {\n", - " phred: float32, \n", - " raw_score: float32\n", - " }, \n", - " revel_max: float64, \n", - " spliceai_ds_max: float32, \n", - " pangolin_largest_ds: float64, \n", - " phylop: float64, \n", - " sift_max: float64, \n", - " polyphen_max: float64\n", - " } \n", - "----------------------------------------\n", - "Key: ['locus', 'alleles']\n", - "----------------------------------------\n" - ] - } - ], - "source": [ - "ht.describe()" - ] - }, - { - "cell_type": "markdown", - "id": "ed916197-3b0e-45dc-bacd-a13cb66d70ee", - "metadata": { - "tags": [] - }, - "source": [ - "#### Show the first 5 variants in the Hail Table" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "id": "00b0ea2f-5685-4bae-886a-b9ea31866818", - "metadata": { - "ExecuteTime": { - "end_time": "2024-12-06T20:09:20.949958Z", - "start_time": "2024-12-06T20:09:05.622171Z" - } - }, - "outputs": [ - { - "data": { - "text/html": [ - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "
histograms
info
qual_hists
raw_qual_hists
age_hists
in_silico_predictors
grpmax
fafmax
vrs
vep
vqsr_results
region_flags
allele_info
gq_hist_all
dp_hist_all
gq_hist_alt
dp_hist_alt
ab_hist_alt
gq_hist_all
dp_hist_all
gq_hist_alt
dp_hist_alt
ab_hist_alt
age_hist_het
age_hist_hom
cadd
locus
alleles
freq
AC
AF
AN
homozygote_count
gen_anc
faf
faf95_max
faf95_max_gen_anc
faf99_max
faf99_max_gen_anc
a_index
was_split
rsid
filters
FS
MQ
MQRankSum
QUALapprox
QD
ReadPosRankSum
SB
SOR
VarDP
AS_FS
AS_MQ
AS_MQRankSum
AS_pab_max
AS_QUALapprox
AS_QD
AS_ReadPosRankSum
AS_SB_TABLE
AS_SOR
AS_VarDP
singleton
transmitted_singleton
omni
mills
monoallelic
only_het
AS_VQSLOD
inbreeding_coeff
VRS_Allele_IDs
VRS_Starts
VRS_Ends
VRS_States
allele_string
end
id
input
intergenic_consequences
most_severe_consequence
motif_feature_consequences
regulatory_feature_consequences
seq_region_name
start
strand
transcript_consequences
variant_class
AS_VQSLOD
AS_culprit
positive_train_site
negative_train_site
non_par
lcr
segdup
allele_type
n_alt_alleles
variant_type
was_mixed
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
phred
raw_score
revel_max
spliceai_ds_max
pangolin_largest_ds
phylop
sift_max
polyphen_max
locus<GRCh38>array<str>array<struct{AC: int32, AF: float64, AN: int32, homozygote_count: int32}>int32float64int32int32strarray<struct{faf95: float64, faf99: float64}>float64strfloat64strint32boolset<str>set<str>float64float64float64int64float32float64array<int32>float64int32float64float64float64float64int64float32float64array<int32>float64int32boolboolboolboolboolboolfloat64float64array<str>array<int32>array<int32>array<str>strint32strstrarray<struct{allele_num: int32, consequence_terms: array<str>, impact: str, variant_allele: str}>strarray<struct{allele_num: int32, consequence_terms: array<str>, high_inf_pos: str, impact: str, motif_feature_id: str, motif_name: str, motif_pos: int32, motif_score_change: float64, transcription_factors: array<str>, strand: int32, variant_allele: str}>array<struct{allele_num: int32, biotype: str, consequence_terms: array<str>, impact: str, regulatory_feature_id: str, variant_allele: str}>strint32int32array<struct{allele_num: int32, amino_acids: str, appris: str, biotype: str, canonical: int32, ccds: str, cdna_start: int32, cdna_end: int32, cds_end: int32, cds_start: int32, codons: str, consequence_terms: array<str>, distance: int32, domains: array<struct{db: str, name: str}>, exon: str, flags: str, gene_id: str, gene_pheno: int32, gene_symbol: str, gene_symbol_source: str, hgnc_id: str, hgvsc: str, hgvsp: str, hgvs_offset: int32, impact: str, intron: str, lof: str, lof_flags: str, lof_filter: str, lof_info: str, mane_select: str, mane_plus_clinical: str, mirna: array<str>, protein_end: int32, protein_start: int32, protein_id: str, source: str, strand: int32, transcript_id: str, tsl: int32, uniprot_isoform: array<str>, variant_allele: str}>strfloat64strboolboolboolboolboolstrint32strboolarray<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64float32float32float64float32float64float64float64float64
chr1:10031["T","C"][(0,0.00e+00,56642,0),(2,1.65e-05,121094,0),(0,0.00e+00,25546,0),(0,0.00e+00,4326,0),(0,0.00e+00,192,0),(0,0.00e+00,782,0),(0,0.00e+00,352,0),(0,0.00e+00,1550,0),(0,0.00e+00,14642,0),(0,0.00e+00,1712,0),(0,0.00e+00,1120,0),(0,0.00e+00,6420,0),(0,0.00e+00,29308,0),(0,0.00e+00,27334,0),(0,0.00e+00,14998,0),(0,0.00e+00,1060,0),(0,0.00e+00,102,0),(0,0.00e+00,402,0),(0,0.00e+00,154,0),(0,0.00e+00,814,0),(0,0.00e+00,7978,0),(0,0.00e+00,770,0),(0,0.00e+00,260,0),(0,0.00e+00,2770,0),(0,0.00e+00,10548,0),(0,0.00e+00,3266,0),(0,0.00e+00,90,0),(0,0.00e+00,380,0),(0,0.00e+00,198,0),(0,0.00e+00,736,0),(0,0.00e+00,6664,0),(0,0.00e+00,942,0),(0,0.00e+00,860,0),(0,0.00e+00,3650,0),(0,0.00e+00,1078,0),(0,0.00e+00,2476,0),(0,0.00e+00,38,0),(0,0.00e+00,36,0),(0,0.00e+00,40,0),(0,0.00e+00,26,0),(0,0.00e+00,46,0),(0,0.00e+00,62,0),(0,0.00e+00,36,0),(0,0.00e+00,34,0),(0,0.00e+00,30,0),(0,0.00e+00,46,0),(0,0.00e+00,64,0),(0,0.00e+00,40,0),(0,0.00e+00,42,0),(0,0.00e+00,50,0),(0,0.00e+00,42,0),(0,0.00e+00,28,0),(0,0.00e+00,18,0),(0,0.00e+00,42,0),(0,0.00e+00,52,0),(0,0.00e+00,44,0),(0,0.00e+00,36,0),(0,0.00e+00,40,0),(0,0.00e+00,48,0),(0,0.00e+00,42,0),(0,0.00e+00,34,0),(0,0.00e+00,62,0),(0,0.00e+00,536,0),(0,0.00e+00,542,0),(0,0.00e+00,18,0),(0,0.00e+00,10,0),(0,0.00e+00,18,0),(0,0.00e+00,14,0),(0,0.00e+00,30,0),(0,0.00e+00,30,0),(0,0.00e+00,16,0),(0,0.00e+00,16,0),(0,0.00e+00,22,0),(0,0.00e+00,16,0),(0,0.00e+00,38,0),(0,0.00e+00,18,0),(0,0.00e+00,20,0),(0,0.00e+00,26,0),(0,0.00e+00,22,0),(0,0.00e+00,14,0),(0,0.00e+00,10,0),(0,0.00e+00,16,0),(0,0.00e+00,24,0),(0,0.00e+00,24,0),(0,0.00e+00,20,0),(0,0.00e+00,18,0),(0,0.00e+00,28,0),(0,0.00e+00,22,0),(0,0.00e+00,24,0),(0,0.00e+00,22,0),(0,0.00e+00,20,0),(0,0.00e+00,26,0),(0,0.00e+00,22,0),(0,0.00e+00,12,0),(0,0.00e+00,16,0),(0,0.00e+00,32,0),(0,0.00e+00,20,0),(0,0.00e+00,18,0),(0,0.00e+00,8,0),(0,0.00e+00,30,0),(0,0.00e+00,26,0),(0,0.00e+00,22,0),(0,0.00e+00,22,0),(0,0.00e+00,24,0),(0,0.00e+00,20,0),(0,0.00e+00,14,0),(0,0.00e+00,8,0),(0,0.00e+00,26,0),(0,0.00e+00,28,0),(0,0.00e+00,20,0),(0,0.00e+00,16,0),(0,0.00e+00,22,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,10,0),(0,0.00e+00,40,0),(0,0.00e+00,812,0),(0,0.00e+00,812,0),(0,0.00e+00,12,0),(0,0.00e+00,32,0),(0,0.00e+00,54,0),(0,0.00e+00,6,0),(0,0.00e+00,18,0),(0,NA,0,0),(0,0.00e+00,20,0),(0,0.00e+00,8,0),(0,0.00e+00,2,0),(0,0.00e+00,22,0),(0,0.00e+00,8,0),(0,0.00e+00,8,0),(0,0.00e+00,36,0),(0,0.00e+00,26,0),(0,0.00e+00,2,0),(0,0.00e+00,8,0),(0,0.00e+00,60,0),(0,0.00e+00,6,0),(0,0.00e+00,18,0),(0,0.00e+00,6,0),(0,0.00e+00,4,0),(0,0.00e+00,10,0),(0,0.00e+00,8,0),(0,0.00e+00,10,0),(0,0.00e+00,32,0),(0,0.00e+00,22,0),(0,0.00e+00,26,0),(0,0.00e+00,30,0),(0,0.00e+00,22,0),(0,0.00e+00,6,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,0.00e+00,16,0),(0,0.00e+00,26,0),(0,0.00e+00,10,0),(0,0.00e+00,22,0),(0,0.00e+00,28,0),(0,0.00e+00,10,0),(0,0.00e+00,8,0),(0,0.00e+00,8,0),(0,0.00e+00,2,0),(0,0.00e+00,4,0),(0,0.00e+00,26,0),(0,0.00e+00,52,0),(0,0.00e+00,32,0),(0,0.00e+00,4,0),(0,0.00e+00,298,0),(0,0.00e+00,514,0),(0,0.00e+00,8,0),(0,0.00e+00,4,0),(0,0.00e+00,34,0),(0,NA,0,0),(0,0.00e+00,12,0),(0,NA,0,0),(0,0.00e+00,10,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,0.00e+00,4,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,0.00e+00,12,0),(0,0.00e+00,8,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,0.00e+00,24,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,0.00e+00,10,0),(0,NA,0,0),(0,0.00e+00,26,0),(0,0.00e+00,16,0),(0,0.00e+00,8,0),(0,0.00e+00,6,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,0.00e+00,6,0),(0,0.00e+00,4,0),(0,0.00e+00,6,0),(0,0.00e+00,4,0),(0,0.00e+00,4,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,0.00e+00,40,0),(0,0.00e+00,8,0),(0,0.00e+00,4,0),(0,0.00e+00,4,0),(0,0.00e+00,28,0),(0,0.00e+00,20,0),(0,0.00e+00,6,0),(0,0.00e+00,6,0),(0,NA,0,0),(0,0.00e+00,10,0),(0,0.00e+00,8,0),(0,NA,0,0),(0,0.00e+00,18,0),(0,0.00e+00,6,0),(0,0.00e+00,8,0),(0,0.00e+00,24,0),(0,0.00e+00,18,0),(0,NA,0,0),(0,0.00e+00,6,0),(0,0.00e+00,36,0),(0,0.00e+00,6,0),(0,0.00e+00,18,0),(0,0.00e+00,6,0),(0,0.00e+00,2,0),(0,0.00e+00,10,0),(0,0.00e+00,6,0),(0,0.00e+00,8,0),(0,0.00e+00,22,0),(0,0.00e+00,22,0),(0,NA,0,0),(0,0.00e+00,14,0),(0,0.00e+00,14,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,0.00e+00,14,0),(0,0.00e+00,26,0),(0,0.00e+00,4,0),(0,0.00e+00,18,0),(0,0.00e+00,22,0),(0,0.00e+00,6,0),(0,0.00e+00,4,0),(0,0.00e+00,6,0),(0,0.00e+00,2,0),(0,0.00e+00,4,0),(0,0.00e+00,22,0),(0,0.00e+00,12,0),(0,0.00e+00,24,0),(0,NA,0,0),(0,0.00e+00,32,0),(0,0.00e+00,6,0),(0,0.00e+00,16,0),(0,0.00e+00,16,0),(0,0.00e+00,2,0),(0,0.00e+00,4,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0)]NANANANANA[(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]NANANANA2True{"rs1639542312"}{"AC0","AS_VQSR"}7.30e+003.48e+016.70e-02962.74e+00-1.07e+00[21,6,4,4]9.60e-02355.10e+003.51e+01-5.72e-016.87e-01772.96e+00-1.38e+00[21,6,3,3]9.64e-0226FalseNANANAFalseFalse-4.57e+00-1.65e-05["ga4gh:VA.oTAtTrgYxm81O9fu6Mrhfo1t3eHsgg4L","ga4gh:VA.Y283OnlLjyi1T1IT_JzvW255rC6YJsW6"][10030,10030][10031,10031]["T","C"]"T/C"10031".""chr1\t10031\t.\tT\tC\t.\t.\tGT"NA"upstream_gene_variant"NANA"chr1"100311[(1,NA,NA,"transcribed_unprocessed_pseudogene",1,NA,NA,NA,NA,NA,NA,["upstream_gene_variant"],1979,NA,NA,NA,"ENSG00000223972",NA,"DDX11L1","HGNC","HGNC:37102",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",1,"ENST00000450305",NA,NA,"C"),(1,NA,NA,"processed_transcript",NA,NA,NA,NA,NA,NA,NA,["upstream_gene_variant"],1838,NA,NA,NA,"ENSG00000223972",NA,"DDX11L1","HGNC","HGNC:37102",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",1,"ENST00000456328",1,NA,"C"),(1,NA,NA,"unprocessed_pseudogene",1,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],4373,NA,NA,NA,"ENSG00000227232",NA,"WASH7P","HGNC","HGNC:38034",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000488147",NA,NA,"C"),(1,NA,NA,"transcribed_pseudogene",1,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],4331,NA,NA,NA,"653635",NA,"WASH7P","EntrezGene","HGNC:38034",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"RefSeq",-1,"NR_024540.1",NA,NA,"C"),(1,NA,NA,"transcribed_pseudogene",1,NA,NA,NA,NA,NA,NA,["upstream_gene_variant"],1843,NA,NA,NA,"100287102",NA,"DDX11L1","EntrezGene","HGNC:37102",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"RefSeq",1,"NR_046018.2",NA,NA,"C")]"SNV"-4.57e+00"AS_QD"FalseFalseFalseTrueTrue"snv"2"multi-snv"False[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,23215,2435,1647,594,176,118,49,29,19,9,11,6,5,2,4,2]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,16,121,475,973,1736,2409,2950,3134,2995,2803,2514,2194,1773,1335,911,665,439,351]0527[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][14149,7330,6840,3904,23217,2436,1647,594,176,118,49,29,19,9,11,6,5,2,4,2]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][10,66,471,1445,2990,5808,6940,7906,7262,6236,4943,3919,3129,2527,1993,1476,1023,741,500,418]0744[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]008.97e+007.57e-01NANANANANANA
chr1:10037["T","C"][(2,2.60e-05,76882,0),(4,3.15e-05,126902,0),(0,0.00e+00,34670,0),(1,1.80e-04,5568,0),(0,0.00e+00,234,0),(0,0.00e+00,998,0),(0,0.00e+00,494,0),(0,0.00e+00,2066,0),(0,0.00e+00,20394,0),(1,4.07e-04,2456,0),(0,0.00e+00,1706,0),(0,0.00e+00,8296,0),(1,2.49e-05,40172,0),(1,2.72e-05,36710,0),(0,0.00e+00,20498,0),(0,0.00e+00,1316,0),(0,0.00e+00,122,0),(0,0.00e+00,528,0),(0,0.00e+00,238,0),(0,0.00e+00,1106,0),(0,0.00e+00,11132,0),(1,8.98e-04,1114,0),(0,0.00e+00,420,0),(0,0.00e+00,3698,0),(0,0.00e+00,14172,0),(1,2.35e-04,4252,0),(0,0.00e+00,112,0),(0,0.00e+00,470,0),(0,0.00e+00,256,0),(0,0.00e+00,960,0),(0,0.00e+00,9262,0),(0,0.00e+00,1342,0),(0,0.00e+00,1286,0),(0,0.00e+00,4598,0),(0,0.00e+00,1628,0),(0,0.00e+00,2912,0),(0,0.00e+00,54,0),(0,0.00e+00,54,0),(0,0.00e+00,54,0),(0,0.00e+00,54,0),(0,0.00e+00,74,0),(0,0.00e+00,88,0),(0,0.00e+00,76,0),(0,0.00e+00,44,0),(0,0.00e+00,60,0),(0,0.00e+00,64,0),(0,0.00e+00,84,0),(0,0.00e+00,62,0),(0,0.00e+00,56,0),(0,0.00e+00,76,0),(0,0.00e+00,80,0),(0,0.00e+00,42,0),(0,0.00e+00,30,0),(0,0.00e+00,74,0),(0,0.00e+00,56,0),(0,0.00e+00,48,0),(0,0.00e+00,54,0),(0,0.00e+00,64,0),(0,0.00e+00,78,0),(0,0.00e+00,48,0),(0,0.00e+00,72,0),(0,0.00e+00,82,0),(0,0.00e+00,830,0),(0,0.00e+00,798,0),(0,0.00e+00,26,0),(0,0.00e+00,24,0),(0,0.00e+00,20,0),(0,0.00e+00,28,0),(0,0.00e+00,40,0),(0,0.00e+00,48,0),(0,0.00e+00,44,0),(0,0.00e+00,16,0),(0,0.00e+00,36,0),(0,0.00e+00,30,0),(0,0.00e+00,46,0),(0,0.00e+00,34,0),(0,0.00e+00,26,0),(0,0.00e+00,36,0),(0,0.00e+00,38,0),(0,0.00e+00,26,0),(0,0.00e+00,20,0),(0,0.00e+00,36,0),(0,0.00e+00,32,0),(0,0.00e+00,22,0),(0,0.00e+00,30,0),(0,0.00e+00,34,0),(0,0.00e+00,38,0),(0,0.00e+00,24,0),(0,0.00e+00,38,0),(0,0.00e+00,38,0),(0,0.00e+00,28,0),(0,0.00e+00,30,0),(0,0.00e+00,34,0),(0,0.00e+00,26,0),(0,0.00e+00,34,0),(0,0.00e+00,40,0),(0,0.00e+00,32,0),(0,0.00e+00,28,0),(0,0.00e+00,24,0),(0,0.00e+00,34,0),(0,0.00e+00,38,0),(0,0.00e+00,28,0),(0,0.00e+00,30,0),(0,0.00e+00,40,0),(0,0.00e+00,42,0),(0,0.00e+00,16,0),(0,0.00e+00,10,0),(0,0.00e+00,38,0),(0,0.00e+00,24,0),(0,0.00e+00,26,0),(0,0.00e+00,24,0),(0,0.00e+00,30,0),(0,0.00e+00,40,0),(0,0.00e+00,24,0),(0,0.00e+00,34,0),(0,0.00e+00,44,0),(0,0.00e+00,1028,0),(0,0.00e+00,1028,0),(0,0.00e+00,16,0),(0,0.00e+00,34,0),(0,0.00e+00,64,0),(0,0.00e+00,2,0),(0,0.00e+00,22,0),(0,NA,0,0),(0,0.00e+00,36,0),(0,0.00e+00,8,0),(0,0.00e+00,2,0),(0,0.00e+00,34,0),(0,0.00e+00,8,0),(0,0.00e+00,12,0),(0,0.00e+00,40,0),(0,0.00e+00,30,0),(0,0.00e+00,2,0),(0,0.00e+00,16,0),(0,0.00e+00,76,0),(0,0.00e+00,8,0),(0,0.00e+00,30,0),(0,0.00e+00,10,0),(0,0.00e+00,10,0),(0,0.00e+00,8,0),(0,0.00e+00,8,0),(0,0.00e+00,12,0),(0,0.00e+00,38,0),(0,0.00e+00,30,0),(0,0.00e+00,30,0),(0,0.00e+00,42,0),(0,0.00e+00,26,0),(0,0.00e+00,6,0),(0,NA,0,0),(0,0.00e+00,8,0),(0,0.00e+00,24,0),(0,0.00e+00,26,0),(0,0.00e+00,8,0),(0,0.00e+00,24,0),(0,0.00e+00,32,0),(0,0.00e+00,14,0),(0,0.00e+00,12,0),(0,0.00e+00,14,0),(0,0.00e+00,8,0),(0,0.00e+00,12,0),(0,0.00e+00,28,0),(0,0.00e+00,60,0),(0,0.00e+00,38,0),(0,0.00e+00,6,0),(0,0.00e+00,372,0),(0,0.00e+00,656,0),(0,0.00e+00,14,0),(0,0.00e+00,4,0),(0,0.00e+00,44,0),(0,0.00e+00,2,0),(0,0.00e+00,14,0),(0,NA,0,0),(0,0.00e+00,12,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,0.00e+00,6,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,0.00e+00,12,0),(0,0.00e+00,12,0),(0,0.00e+00,2,0),(0,0.00e+00,10,0),(0,0.00e+00,26,0),(0,0.00e+00,4,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,0.00e+00,12,0),(0,NA,0,0),(0,0.00e+00,30,0),(0,0.00e+00,18,0),(0,0.00e+00,12,0),(0,0.00e+00,4,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,0.00e+00,4,0),(0,0.00e+00,6,0),(0,0.00e+00,6,0),(0,0.00e+00,6,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,0.00e+00,6,0),(0,0.00e+00,46,0),(0,0.00e+00,8,0),(0,0.00e+00,4,0),(0,0.00e+00,2,0),(0,0.00e+00,30,0),(0,0.00e+00,20,0),(0,NA,0,0),(0,0.00e+00,8,0),(0,NA,0,0),(0,0.00e+00,24,0),(0,0.00e+00,6,0),(0,NA,0,0),(0,0.00e+00,28,0),(0,0.00e+00,6,0),(0,0.00e+00,12,0),(0,0.00e+00,28,0),(0,0.00e+00,18,0),(0,NA,0,0),(0,0.00e+00,6,0),(0,0.00e+00,50,0),(0,0.00e+00,4,0),(0,0.00e+00,30,0),(0,0.00e+00,10,0),(0,0.00e+00,8,0),(0,0.00e+00,8,0),(0,0.00e+00,6,0),(0,0.00e+00,10,0),(0,0.00e+00,26,0),(0,0.00e+00,30,0),(0,NA,0,0),(0,0.00e+00,24,0),(0,0.00e+00,14,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,0.00e+00,8,0),(0,0.00e+00,22,0),(0,0.00e+00,26,0),(0,0.00e+00,4,0),(0,0.00e+00,20,0),(0,0.00e+00,26,0),(0,0.00e+00,8,0),(0,0.00e+00,6,0),(0,0.00e+00,12,0),(0,0.00e+00,8,0),(0,0.00e+00,10,0),(0,0.00e+00,22,0),(0,0.00e+00,14,0),(0,0.00e+00,30,0),(0,0.00e+00,2,0),(0,0.00e+00,40,0),(0,0.00e+00,14,0),(0,0.00e+00,24,0),(0,0.00e+00,16,0),(0,0.00e+00,2,0),(0,0.00e+00,12,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0)]14.07e-0424560"eas"[(4.32e-06,1.62e-06),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]NANANANA1False{"rs1639542418"}{"AS_VQSR"}8.58e+003.83e+011.37e+001802.20e+00-4.80e-01[49,12,13,8]1.51e-01828.58e+003.83e+011.37e+001.00e+001802.20e+00-4.80e-01[49,12,13,8]1.51e-0182FalseNANANAFalseFalse-3.18e+00-3.15e-05["ga4gh:VA.6pIoPAYDsphCprRcyrititenuEWlZaxV","ga4gh:VA.iHyQ1mh_iQX6WcqXcx5vvZF9_jPYDePo"][10036,10036][10037,10037]["T","C"]"T/C"10037".""chr1\t10037\t.\tT\tC\t.\t.\tGT"NA"upstream_gene_variant"NANA"chr1"100371[(1,NA,NA,"transcribed_unprocessed_pseudogene",1,NA,NA,NA,NA,NA,NA,["upstream_gene_variant"],1973,NA,NA,NA,"ENSG00000223972",NA,"DDX11L1","HGNC","HGNC:37102",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",1,"ENST00000450305",NA,NA,"C"),(1,NA,NA,"processed_transcript",NA,NA,NA,NA,NA,NA,NA,["upstream_gene_variant"],1832,NA,NA,NA,"ENSG00000223972",NA,"DDX11L1","HGNC","HGNC:37102",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",1,"ENST00000456328",1,NA,"C"),(1,NA,NA,"unprocessed_pseudogene",1,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],4367,NA,NA,NA,"ENSG00000227232",NA,"WASH7P","HGNC","HGNC:38034",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000488147",NA,NA,"C"),(1,NA,NA,"transcribed_pseudogene",1,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],4325,NA,NA,NA,"653635",NA,"WASH7P","EntrezGene","HGNC:38034",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"RefSeq",-1,"NR_024540.1",NA,NA,"C"),(1,NA,NA,"transcribed_pseudogene",1,NA,NA,NA,NA,NA,NA,["upstream_gene_variant"],1837,NA,NA,NA,"100287102",NA,"DDX11L1","EntrezGene","HGNC:37102",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"RefSeq",1,"NR_046018.2",NA,NA,"C")]"SNV"-3.18e+00"AS_QD"FalseFalseFalseTrueTrue"snv"1"snv"False[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,29394,3741,2868,1281,401,358,163,63,69,31,18,20,10,4,5,15]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,9,69,387,913,1737,2859,3749,4216,4302,4223,3745,3280,2661,1954,1380,943,607,519]0888[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][10121,5441,5610,3838,29394,3741,2868,1281,401,358,163,63,69,31,18,20,10,4,5,15]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][7,37,269,903,1948,4127,5519,7075,7322,6972,6095,5249,4374,3624,2893,2106,1501,1031,679,590]01130[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,2,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,2,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,1,0,0,1,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]008.90e+007.49e-01NANANANANANA
chr1:10043["T","C"][(1,1.17e-05,85634,0),(1,8.24e-06,121430,0),(0,0.00e+00,39236,0),(0,0.00e+00,5820,0),(0,0.00e+00,254,0),(0,0.00e+00,1148,0),(0,0.00e+00,568,0),(0,0.00e+00,2276,0),(1,4.39e-05,22760,0),(0,0.00e+00,2912,0),(0,0.00e+00,2158,0),(0,0.00e+00,8502,0),(1,2.23e-05,44904,0),(0,0.00e+00,40730,0),(0,0.00e+00,23244,0),(0,0.00e+00,1280,0),(0,0.00e+00,136,0),(0,0.00e+00,594,0),(0,0.00e+00,284,0),(0,0.00e+00,1234,0),(1,8.03e-05,12446,0),(0,0.00e+00,1296,0),(0,0.00e+00,502,0),(0,0.00e+00,3888,0),(0,0.00e+00,15992,0),(0,0.00e+00,4540,0),(0,0.00e+00,118,0),(0,0.00e+00,554,0),(0,0.00e+00,284,0),(0,0.00e+00,1042,0),(0,0.00e+00,10314,0),(0,0.00e+00,1616,0),(0,0.00e+00,1656,0),(0,0.00e+00,4614,0),(0,0.00e+00,1788,0),(0,0.00e+00,2700,0),(0,0.00e+00,74,0),(0,0.00e+00,66,0),(0,0.00e+00,62,0),(0,0.00e+00,50,0),(0,0.00e+00,84,0),(0,0.00e+00,84,0),(0,0.00e+00,76,0),(0,0.00e+00,56,0),(0,0.00e+00,62,0),(0,0.00e+00,76,0),(0,0.00e+00,100,0),(0,0.00e+00,62,0),(0,0.00e+00,64,0),(0,0.00e+00,66,0),(0,0.00e+00,86,0),(0,0.00e+00,48,0),(0,0.00e+00,40,0),(0,0.00e+00,66,0),(0,0.00e+00,70,0),(0,0.00e+00,54,0),(0,0.00e+00,46,0),(0,0.00e+00,68,0),(0,0.00e+00,72,0),(0,0.00e+00,80,0),(0,0.00e+00,84,0),(0,0.00e+00,92,0),(0,0.00e+00,926,0),(0,0.00e+00,862,0),(0,0.00e+00,36,0),(0,0.00e+00,26,0),(0,0.00e+00,28,0),(0,0.00e+00,34,0),(0,0.00e+00,48,0),(0,0.00e+00,34,0),(0,0.00e+00,40,0),(0,0.00e+00,20,0),(0,0.00e+00,38,0),(0,0.00e+00,36,0),(0,0.00e+00,58,0),(0,0.00e+00,22,0),(0,0.00e+00,28,0),(0,0.00e+00,40,0),(0,0.00e+00,54,0),(0,0.00e+00,26,0),(0,0.00e+00,22,0),(0,0.00e+00,34,0),(0,0.00e+00,36,0),(0,0.00e+00,34,0),(0,0.00e+00,24,0),(0,0.00e+00,36,0),(0,0.00e+00,36,0),(0,0.00e+00,42,0),(0,0.00e+00,48,0),(0,0.00e+00,46,0),(0,0.00e+00,38,0),(0,0.00e+00,40,0),(0,0.00e+00,34,0),(0,0.00e+00,16,0),(0,0.00e+00,36,0),(0,0.00e+00,50,0),(0,0.00e+00,36,0),(0,0.00e+00,36,0),(0,0.00e+00,24,0),(0,0.00e+00,40,0),(0,0.00e+00,42,0),(0,0.00e+00,40,0),(0,0.00e+00,36,0),(0,0.00e+00,26,0),(0,0.00e+00,32,0),(0,0.00e+00,22,0),(0,0.00e+00,18,0),(0,0.00e+00,32,0),(0,0.00e+00,34,0),(0,0.00e+00,20,0),(0,0.00e+00,22,0),(0,0.00e+00,32,0),(0,0.00e+00,36,0),(0,0.00e+00,38,0),(0,0.00e+00,36,0),(0,0.00e+00,46,0),(0,0.00e+00,1154,0),(0,0.00e+00,1154,0),(0,0.00e+00,24,0),(0,0.00e+00,30,0),(0,0.00e+00,70,0),(0,0.00e+00,6,0),(0,0.00e+00,32,0),(0,0.00e+00,2,0),(0,0.00e+00,34,0),(0,0.00e+00,16,0),(0,0.00e+00,12,0),(0,0.00e+00,40,0),(0,0.00e+00,8,0),(0,0.00e+00,12,0),(0,0.00e+00,44,0),(0,0.00e+00,18,0),(0,NA,0,0),(0,0.00e+00,22,0),(0,0.00e+00,80,0),(0,0.00e+00,14,0),(0,0.00e+00,36,0),(0,0.00e+00,10,0),(0,0.00e+00,10,0),(0,0.00e+00,14,0),(0,0.00e+00,10,0),(0,0.00e+00,10,0),(0,0.00e+00,46,0),(0,0.00e+00,32,0),(0,0.00e+00,34,0),(0,0.00e+00,44,0),(0,0.00e+00,22,0),(0,0.00e+00,6,0),(0,NA,0,0),(0,0.00e+00,14,0),(0,0.00e+00,32,0),(0,0.00e+00,28,0),(0,0.00e+00,14,0),(0,0.00e+00,28,0),(0,0.00e+00,38,0),(0,0.00e+00,14,0),(0,0.00e+00,12,0),(0,0.00e+00,12,0),(0,0.00e+00,8,0),(0,0.00e+00,10,0),(0,0.00e+00,28,0),(0,0.00e+00,64,0),(0,0.00e+00,46,0),(0,0.00e+00,14,0),(0,0.00e+00,404,0),(0,0.00e+00,750,0),(0,0.00e+00,14,0),(0,0.00e+00,6,0),(0,0.00e+00,50,0),(0,NA,0,0),(0,0.00e+00,18,0),(0,NA,0,0),(0,0.00e+00,10,0),(0,0.00e+00,4,0),(0,0.00e+00,4,0),(0,0.00e+00,8,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,0.00e+00,14,0),(0,0.00e+00,6,0),(0,NA,0,0),(0,0.00e+00,12,0),(0,0.00e+00,30,0),(0,0.00e+00,6,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,0.00e+00,16,0),(0,NA,0,0),(0,0.00e+00,30,0),(0,0.00e+00,20,0),(0,0.00e+00,6,0),(0,0.00e+00,6,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,NA,0,0),(0,0.00e+00,6,0),(0,0.00e+00,4,0),(0,0.00e+00,10,0),(0,0.00e+00,6,0),(0,0.00e+00,6,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,8,0),(0,0.00e+00,50,0),(0,0.00e+00,12,0),(0,0.00e+00,6,0),(0,0.00e+00,10,0),(0,0.00e+00,24,0),(0,0.00e+00,20,0),(0,0.00e+00,6,0),(0,0.00e+00,14,0),(0,0.00e+00,2,0),(0,0.00e+00,24,0),(0,0.00e+00,12,0),(0,0.00e+00,8,0),(0,0.00e+00,32,0),(0,0.00e+00,6,0),(0,0.00e+00,12,0),(0,0.00e+00,30,0),(0,0.00e+00,12,0),(0,NA,0,0),(0,0.00e+00,10,0),(0,0.00e+00,50,0),(0,0.00e+00,8,0),(0,0.00e+00,36,0),(0,0.00e+00,10,0),(0,0.00e+00,6,0),(0,0.00e+00,14,0),(0,0.00e+00,8,0),(0,0.00e+00,8,0),(0,0.00e+00,30,0),(0,0.00e+00,32,0),(0,0.00e+00,4,0),(0,0.00e+00,24,0),(0,0.00e+00,16,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,14,0),(0,0.00e+00,28,0),(0,0.00e+00,28,0),(0,0.00e+00,8,0),(0,0.00e+00,24,0),(0,0.00e+00,28,0),(0,0.00e+00,8,0),(0,0.00e+00,6,0),(0,0.00e+00,10,0),(0,0.00e+00,8,0),(0,0.00e+00,10,0),(0,0.00e+00,20,0),(0,0.00e+00,14,0),(0,0.00e+00,34,0),(0,0.00e+00,8,0),(0,0.00e+00,40,0),(0,0.00e+00,14,0),(0,0.00e+00,18,0),(0,0.00e+00,22,0),(0,0.00e+00,2,0),(0,0.00e+00,12,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0)]14.39e-05227600"afr"[(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]NANANANA1FalseNA{"AS_VQSR"}3.11e+013.52e+011.23e+00972.77e+00-8.96e-01[25,0,5,5]1.00e-03353.11e+013.52e+011.23e+001.00e+00972.77e+00-8.96e-01[25,0,5,5]1.48e-0335TrueFalseNANAFalseFalse-5.79e+00-8.24e-06["ga4gh:VA.HdrkFJS16zwJPcGSKX9___fJcdqSATlQ","ga4gh:VA.LSHuFx03sqw8WJGN2-n782ME4o04Vl4U"][10042,10042][10043,10043]["T","C"]"T/C"10043".""chr1\t10043\t.\tT\tC\t.\t.\tGT"NA"upstream_gene_variant"NANA"chr1"100431[(1,NA,NA,"transcribed_unprocessed_pseudogene",1,NA,NA,NA,NA,NA,NA,["upstream_gene_variant"],1967,NA,NA,NA,"ENSG00000223972",NA,"DDX11L1","HGNC","HGNC:37102",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",1,"ENST00000450305",NA,NA,"C"),(1,NA,NA,"processed_transcript",NA,NA,NA,NA,NA,NA,NA,["upstream_gene_variant"],1826,NA,NA,NA,"ENSG00000223972",NA,"DDX11L1","HGNC","HGNC:37102",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",1,"ENST00000456328",1,NA,"C"),(1,NA,NA,"unprocessed_pseudogene",1,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],4361,NA,NA,NA,"ENSG00000227232",NA,"WASH7P","HGNC","HGNC:38034",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000488147",NA,NA,"C"),(1,NA,NA,"transcribed_pseudogene",1,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],4319,NA,NA,NA,"653635",NA,"WASH7P","EntrezGene","HGNC:38034",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"RefSeq",-1,"NR_024540.1",NA,NA,"C"),(1,NA,NA,"transcribed_pseudogene",1,NA,NA,NA,NA,NA,NA,["upstream_gene_variant"],1831,NA,NA,NA,"100287102",NA,"DDX11L1","EntrezGene","HGNC:37102",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"RefSeq",1,"NR_046018.2",NA,NA,"C")]"SNV"-5.79e+00"AS_FS"FalseFalseFalseTrueTrue"snv"1"snv"False[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,31093,4532,3696,1752,595,585,261,88,82,59,17,26,14,5,3,9]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,8,40,264,690,1525,2691,3754,4574,4813,4940,4490,3907,3242,2387,1704,1158,760,638]01232[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][6578,3782,4202,3336,31093,4532,3696,1752,595,585,261,88,82,59,17,26,14,5,3,9]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][2,24,149,466,1201,2614,4035,5568,6331,6725,6267,5855,5101,4268,3465,2554,1836,1244,831,692]01487[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,1,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]008.90e+007.48e-01NANANANANANA
chr1:10055["T","C"][(1,1.06e-05,94224,0),(5,4.64e-05,107704,0),(0,0.00e+00,44382,0),(1,1.80e-04,5570,0),(0,0.00e+00,216,0),(0,0.00e+00,1228,0),(0,0.00e+00,682,0),(0,0.00e+00,2370,0),(0,0.00e+00,26032,0),(0,0.00e+00,3020,0),(0,0.00e+00,2668,0),(0,0.00e+00,8056,0),(1,2.02e-05,49580,0),(0,0.00e+00,44644,0),(0,0.00e+00,26312,0),(1,9.67e-04,1034,0),(0,0.00e+00,110,0),(0,0.00e+00,624,0),(0,0.00e+00,344,0),(0,0.00e+00,1246,0),(0,0.00e+00,14152,0),(0,0.00e+00,1256,0),(0,0.00e+00,600,0),(0,0.00e+00,3902,0),(0,0.00e+00,18070,0),(0,0.00e+00,4536,0),(0,0.00e+00,106,0),(0,0.00e+00,604,0),(0,0.00e+00,338,0),(0,0.00e+00,1124,0),(0,0.00e+00,11880,0),(0,0.00e+00,1764,0),(0,0.00e+00,2068,0),(0,0.00e+00,4154,0),(0,0.00e+00,1478,0),(0,0.00e+00,1784,0),(0,0.00e+00,56,0),(0,0.00e+00,54,0),(0,0.00e+00,40,0),(0,0.00e+00,58,0),(0,0.00e+00,68,0),(0,0.00e+00,78,0),(0,0.00e+00,72,0),(0,0.00e+00,66,0),(0,0.00e+00,58,0),(0,0.00e+00,64,0),(0,0.00e+00,84,0),(0,0.00e+00,52,0),(0,0.00e+00,60,0),(0,0.00e+00,54,0),(0,0.00e+00,58,0),(0,0.00e+00,22,0),(0,0.00e+00,34,0),(0,0.00e+00,66,0),(0,0.00e+00,70,0),(0,0.00e+00,42,0),(0,0.00e+00,32,0),(0,0.00e+00,44,0),(0,0.00e+00,56,0),(0,0.00e+00,70,0),(0,0.00e+00,50,0),(0,0.00e+00,70,0),(0,0.00e+00,766,0),(0,0.00e+00,712,0),(0,0.00e+00,32,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,26,0),(0,0.00e+00,34,0),(0,0.00e+00,38,0),(0,0.00e+00,52,0),(0,0.00e+00,38,0),(0,0.00e+00,38,0),(0,0.00e+00,32,0),(0,0.00e+00,32,0),(0,0.00e+00,28,0),(0,0.00e+00,26,0),(0,0.00e+00,30,0),(0,0.00e+00,28,0),(0,0.00e+00,10,0),(0,0.00e+00,18,0),(0,0.00e+00,36,0),(0,0.00e+00,32,0),(0,0.00e+00,26,0),(0,0.00e+00,18,0),(0,0.00e+00,24,0),(0,0.00e+00,28,0),(0,0.00e+00,36,0),(0,0.00e+00,32,0),(0,0.00e+00,32,0),(0,0.00e+00,24,0),(0,0.00e+00,34,0),(0,0.00e+00,20,0),(0,0.00e+00,32,0),(0,0.00e+00,34,0),(0,0.00e+00,40,0),(0,0.00e+00,20,0),(0,0.00e+00,28,0),(0,0.00e+00,20,0),(0,0.00e+00,32,0),(0,0.00e+00,52,0),(0,0.00e+00,24,0),(0,0.00e+00,34,0),(0,0.00e+00,24,0),(0,0.00e+00,30,0),(0,0.00e+00,12,0),(0,0.00e+00,16,0),(0,0.00e+00,30,0),(0,0.00e+00,38,0),(0,0.00e+00,16,0),(0,0.00e+00,14,0),(0,0.00e+00,20,0),(0,0.00e+00,28,0),(0,0.00e+00,34,0),(0,0.00e+00,18,0),(0,0.00e+00,38,0),(0,0.00e+00,1312,0),(1,7.61e-04,1314,0),(0,0.00e+00,22,0),(0,0.00e+00,40,0),(0,0.00e+00,58,0),(0,0.00e+00,10,0),(0,0.00e+00,48,0),(0,0.00e+00,8,0),(0,0.00e+00,38,0),(0,0.00e+00,18,0),(0,0.00e+00,12,0),(0,0.00e+00,38,0),(0,0.00e+00,16,0),(0,0.00e+00,16,0),(0,0.00e+00,36,0),(0,0.00e+00,26,0),(0,0.00e+00,12,0),(0,0.00e+00,26,0),(0,0.00e+00,72,0),(0,0.00e+00,18,0),(0,0.00e+00,30,0),(0,0.00e+00,8,0),(0,0.00e+00,10,0),(0,0.00e+00,8,0),(0,0.00e+00,8,0),(0,0.00e+00,10,0),(0,0.00e+00,48,0),(0,0.00e+00,40,0),(0,0.00e+00,34,0),(0,0.00e+00,52,0),(0,0.00e+00,20,0),(0,0.00e+00,6,0),(0,0.00e+00,14,0),(0,0.00e+00,18,0),(0,0.00e+00,34,0),(0,0.00e+00,22,0),(0,0.00e+00,14,0),(0,0.00e+00,28,0),(0,0.00e+00,36,0),(0,0.00e+00,14,0),(0,0.00e+00,14,0),(0,0.00e+00,10,0),(0,0.00e+00,12,0),(0,0.00e+00,10,0),(0,0.00e+00,40,0),(0,0.00e+00,58,0),(0,0.00e+00,50,0),(0,0.00e+00,14,0),(0,0.00e+00,484,0),(0,0.00e+00,828,0),(0,0.00e+00,16,0),(0,0.00e+00,6,0),(0,0.00e+00,38,0),(0,0.00e+00,2,0),(0,0.00e+00,26,0),(0,NA,0,0),(0,0.00e+00,12,0),(0,0.00e+00,4,0),(0,0.00e+00,6,0),(0,0.00e+00,6,0),(0,0.00e+00,6,0),(0,0.00e+00,2,0),(0,0.00e+00,12,0),(0,0.00e+00,10,0),(0,0.00e+00,8,0),(0,0.00e+00,14,0),(0,0.00e+00,28,0),(0,0.00e+00,6,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,0.00e+00,18,0),(0,NA,0,0),(0,0.00e+00,30,0),(0,0.00e+00,24,0),(0,0.00e+00,10,0),(0,0.00e+00,4,0),(0,0.00e+00,12,0),(0,0.00e+00,2,0),(0,0.00e+00,4,0),(0,NA,0,0),(0,0.00e+00,8,0),(0,0.00e+00,6,0),(0,0.00e+00,14,0),(0,0.00e+00,8,0),(0,0.00e+00,4,0),(0,0.00e+00,4,0),(0,0.00e+00,4,0),(0,0.00e+00,4,0),(0,0.00e+00,8,0),(0,0.00e+00,42,0),(0,0.00e+00,12,0),(0,0.00e+00,6,0),(0,0.00e+00,6,0),(0,0.00e+00,34,0),(0,0.00e+00,20,0),(0,0.00e+00,8,0),(0,0.00e+00,22,0),(0,0.00e+00,8,0),(0,0.00e+00,26,0),(0,0.00e+00,14,0),(0,0.00e+00,6,0),(0,0.00e+00,32,0),(0,0.00e+00,10,0),(0,0.00e+00,14,0),(0,0.00e+00,24,0),(0,0.00e+00,16,0),(0,0.00e+00,4,0),(0,0.00e+00,12,0),(0,0.00e+00,44,0),(0,0.00e+00,12,0),(0,0.00e+00,30,0),(0,0.00e+00,6,0),(0,0.00e+00,8,0),(0,0.00e+00,8,0),(0,0.00e+00,6,0),(0,0.00e+00,10,0),(0,0.00e+00,30,0),(0,0.00e+00,40,0),(0,0.00e+00,4,0),(0,0.00e+00,28,0),(0,0.00e+00,10,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,0.00e+00,16,0),(0,0.00e+00,30,0),(0,0.00e+00,22,0),(0,0.00e+00,6,0),(0,0.00e+00,22,0),(0,0.00e+00,22,0),(0,0.00e+00,6,0),(0,0.00e+00,10,0),(0,0.00e+00,6,0),(0,0.00e+00,8,0),(0,0.00e+00,6,0),(0,0.00e+00,32,0),(0,0.00e+00,16,0),(0,0.00e+00,38,0),(0,0.00e+00,8,0),(0,0.00e+00,58,0),(0,0.00e+00,14,0),(0,0.00e+00,32,0),(0,0.00e+00,26,0),(0,0.00e+00,2,0),(0,0.00e+00,12,0),(0,0.00e+00,20,0),(0,0.00e+00,10,0),(0,0.00e+00,16,0),(0,0.00e+00,4,0),(0,0.00e+00,2,0),(0,0.00e+00,12,0),(0,NA,0,0),(0,0.00e+00,20,0),(0,0.00e+00,10,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,0.00e+00,12,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,12,0)]NANANANANA[(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]NANANANA2True{"rs892501864"}{"AS_VQSR"}0.00e+003.55e+011.07e-012202.12e+00-1.16e+00[51,29,15,9]6.16e-011045.94e+003.48e+017.15e-012.27e-01911.21e+00-1.16e+00[51,29,7,8]4.69e-0175FalseNANANAFalseFalse-3.72e+00-4.64e-05["ga4gh:VA.xis4Nhtveh7q75mtkipQAUqZfWUfboWB","ga4gh:VA.Ciou33oFTNEilAEegbFai_K0nu3F18A7"][10054,10054][10055,10055]["T","C"]"T/C"10055".""chr1\t10055\t.\tT\tC\t.\t.\tGT"NA"upstream_gene_variant"NANA"chr1"100551[(1,NA,NA,"transcribed_unprocessed_pseudogene",1,NA,NA,NA,NA,NA,NA,["upstream_gene_variant"],1955,NA,NA,NA,"ENSG00000223972",NA,"DDX11L1","HGNC","HGNC:37102",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",1,"ENST00000450305",NA,NA,"C"),(1,NA,NA,"processed_transcript",NA,NA,NA,NA,NA,NA,NA,["upstream_gene_variant"],1814,NA,NA,NA,"ENSG00000223972",NA,"DDX11L1","HGNC","HGNC:37102",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",1,"ENST00000456328",1,NA,"C"),(1,NA,NA,"unprocessed_pseudogene",1,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],4349,NA,NA,NA,"ENSG00000227232",NA,"WASH7P","HGNC","HGNC:38034",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000488147",NA,NA,"C"),(1,NA,NA,"transcribed_pseudogene",1,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],4307,NA,NA,NA,"653635",NA,"WASH7P","EntrezGene","HGNC:38034",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"RefSeq",-1,"NR_024540.1",NA,NA,"C"),(1,NA,NA,"transcribed_pseudogene",1,NA,NA,NA,NA,NA,NA,["upstream_gene_variant"],1819,NA,NA,NA,"100287102",NA,"DDX11L1","EntrezGene","HGNC:37102",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"RefSeq",1,"NR_046018.2",NA,NA,"C")]"SNV"-3.72e+00"AS_QD"FalseTrueFalseTrueTrue"snv"4"mixed"True[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,25677,6107,5433,3528,1753,1702,1130,485,518,282,119,125,77,35,29,76]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,4,22,120,354,999,1950,3037,4168,4734,5196,5380,4766,4238,3206,2398,1776,1236,1052]02440[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][1429,1382,1901,2026,25677,6108,5433,3528,1753,1702,1130,485,518,282,119,125,77,35,29,76]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][1,9,42,122,294,787,1537,2717,3751,4972,5404,5762,5875,5161,4526,3415,2525,1883,1294,1116]02622[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,1,2,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,3,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,3,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]008.88e+007.46e-01NANANANANANA
chr1:10057["A","C"][(3,2.64e-05,113536,0),(3,2.41e-05,124252,0),(2,3.78e-05,52912,0),(0,0.00e+00,6886,0),(0,0.00e+00,266,0),(0,0.00e+00,1504,0),(0,0.00e+00,742,0),(0,0.00e+00,2768,0),(1,3.25e-05,30736,0),(0,0.00e+00,3850,0),(0,0.00e+00,3424,0),(0,0.00e+00,10448,0),(2,3.37e-05,59380,0),(1,1.85e-05,54156,0),(2,6.43e-05,31106,0),(0,0.00e+00,1472,0),(0,0.00e+00,132,0),(0,0.00e+00,764,0),(0,0.00e+00,378,0),(0,0.00e+00,1532,0),(0,0.00e+00,16598,0),(0,0.00e+00,1670,0),(0,0.00e+00,784,0),(0,0.00e+00,4944,0),(0,0.00e+00,21806,0),(0,0.00e+00,5414,0),(0,0.00e+00,134,0),(0,0.00e+00,740,0),(0,0.00e+00,364,0),(0,0.00e+00,1236,0),(1,7.07e-05,14138,0),(0,0.00e+00,2180,0),(0,0.00e+00,2640,0),(0,0.00e+00,5504,0),(0,0.00e+00,2810,0),(0,0.00e+00,3122,0),(0,0.00e+00,100,0),(0,0.00e+00,102,0),(0,0.00e+00,92,0),(0,0.00e+00,90,0),(0,0.00e+00,122,0),(0,0.00e+00,130,0),(0,0.00e+00,132,0),(0,0.00e+00,110,0),(0,0.00e+00,124,0),(0,0.00e+00,112,0),(0,0.00e+00,140,0),(0,0.00e+00,90,0),(0,0.00e+00,126,0),(0,0.00e+00,106,0),(0,0.00e+00,118,0),(0,0.00e+00,76,0),(0,0.00e+00,72,0),(0,0.00e+00,98,0),(0,0.00e+00,120,0),(0,0.00e+00,68,0),(0,0.00e+00,84,0),(0,0.00e+00,124,0),(0,0.00e+00,134,0),(0,0.00e+00,108,0),(0,0.00e+00,118,0),(0,0.00e+00,114,0),(0,0.00e+00,1450,0),(0,0.00e+00,1360,0),(0,0.00e+00,56,0),(0,0.00e+00,50,0),(0,0.00e+00,46,0),(0,0.00e+00,42,0),(0,0.00e+00,66,0),(0,0.00e+00,64,0),(0,0.00e+00,64,0),(0,0.00e+00,50,0),(0,0.00e+00,82,0),(0,0.00e+00,44,0),(0,0.00e+00,72,0),(0,0.00e+00,48,0),(0,0.00e+00,68,0),(0,0.00e+00,52,0),(0,0.00e+00,60,0),(0,0.00e+00,42,0),(0,0.00e+00,36,0),(0,0.00e+00,56,0),(0,0.00e+00,58,0),(0,0.00e+00,44,0),(0,0.00e+00,42,0),(0,0.00e+00,72,0),(0,0.00e+00,66,0),(0,0.00e+00,56,0),(0,0.00e+00,64,0),(0,0.00e+00,50,0),(0,0.00e+00,44,0),(0,0.00e+00,52,0),(0,0.00e+00,46,0),(0,0.00e+00,48,0),(0,0.00e+00,56,0),(0,0.00e+00,66,0),(0,0.00e+00,68,0),(0,0.00e+00,60,0),(0,0.00e+00,42,0),(0,0.00e+00,68,0),(0,0.00e+00,68,0),(0,0.00e+00,42,0),(0,0.00e+00,58,0),(0,0.00e+00,54,0),(0,0.00e+00,58,0),(0,0.00e+00,34,0),(0,0.00e+00,36,0),(0,0.00e+00,42,0),(0,0.00e+00,62,0),(0,0.00e+00,24,0),(0,0.00e+00,42,0),(0,0.00e+00,52,0),(0,0.00e+00,68,0),(0,0.00e+00,52,0),(0,0.00e+00,54,0),(0,0.00e+00,64,0),(0,0.00e+00,1300,0),(0,0.00e+00,1300,0),(0,0.00e+00,28,0),(0,0.00e+00,44,0),(0,0.00e+00,66,0),(0,0.00e+00,8,0),(0,0.00e+00,44,0),(0,0.00e+00,2,0),(0,0.00e+00,40,0),(0,0.00e+00,14,0),(0,0.00e+00,14,0),(0,0.00e+00,38,0),(0,0.00e+00,12,0),(0,0.00e+00,12,0),(0,0.00e+00,44,0),(0,0.00e+00,32,0),(0,0.00e+00,2,0),(0,0.00e+00,24,0),(0,0.00e+00,78,0),(0,0.00e+00,16,0),(0,0.00e+00,40,0),(0,0.00e+00,10,0),(0,0.00e+00,14,0),(0,0.00e+00,12,0),(0,0.00e+00,16,0),(0,0.00e+00,14,0),(0,0.00e+00,50,0),(0,0.00e+00,38,0),(0,0.00e+00,38,0),(0,0.00e+00,46,0),(0,0.00e+00,22,0),(0,0.00e+00,10,0),(0,0.00e+00,2,0),(0,0.00e+00,14,0),(0,0.00e+00,36,0),(0,0.00e+00,34,0),(0,0.00e+00,12,0),(0,0.00e+00,32,0),(0,0.00e+00,36,0),(0,0.00e+00,20,0),(0,0.00e+00,12,0),(0,0.00e+00,14,0),(0,0.00e+00,12,0),(0,0.00e+00,14,0),(0,0.00e+00,32,0),(0,0.00e+00,66,0),(0,0.00e+00,52,0),(0,0.00e+00,14,0),(0,0.00e+00,472,0),(0,0.00e+00,828,0),(0,0.00e+00,18,0),(0,0.00e+00,8,0),(0,0.00e+00,42,0),(0,0.00e+00,2,0),(0,0.00e+00,22,0),(0,NA,0,0),(0,0.00e+00,14,0),(0,0.00e+00,4,0),(0,0.00e+00,6,0),(0,0.00e+00,6,0),(0,0.00e+00,4,0),(0,0.00e+00,2,0),(0,0.00e+00,16,0),(0,0.00e+00,12,0),(0,0.00e+00,2,0),(0,0.00e+00,12,0),(0,0.00e+00,32,0),(0,0.00e+00,6,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,NA,0,0),(0,0.00e+00,6,0),(0,0.00e+00,2,0),(0,0.00e+00,18,0),(0,NA,0,0),(0,0.00e+00,36,0),(0,0.00e+00,20,0),(0,0.00e+00,6,0),(0,0.00e+00,8,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,0.00e+00,10,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,0.00e+00,6,0),(0,0.00e+00,14,0),(0,0.00e+00,6,0),(0,0.00e+00,4,0),(0,0.00e+00,4,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,0.00e+00,8,0),(0,0.00e+00,50,0),(0,0.00e+00,14,0),(0,0.00e+00,4,0),(0,0.00e+00,10,0),(0,0.00e+00,36,0),(0,0.00e+00,24,0),(0,0.00e+00,6,0),(0,0.00e+00,22,0),(0,0.00e+00,2,0),(0,0.00e+00,26,0),(0,0.00e+00,10,0),(0,0.00e+00,8,0),(0,0.00e+00,32,0),(0,0.00e+00,8,0),(0,0.00e+00,10,0),(0,0.00e+00,28,0),(0,0.00e+00,20,0),(0,NA,0,0),(0,0.00e+00,12,0),(0,0.00e+00,46,0),(0,0.00e+00,10,0),(0,0.00e+00,40,0),(0,0.00e+00,10,0),(0,0.00e+00,10,0),(0,0.00e+00,12,0),(0,0.00e+00,10,0),(0,0.00e+00,12,0),(0,0.00e+00,32,0),(0,0.00e+00,38,0),(0,0.00e+00,2,0),(0,0.00e+00,26,0),(0,0.00e+00,16,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,0.00e+00,12,0),(0,0.00e+00,26,0),(0,0.00e+00,34,0),(0,0.00e+00,8,0),(0,0.00e+00,26,0),(0,0.00e+00,22,0),(0,0.00e+00,14,0),(0,0.00e+00,8,0),(0,0.00e+00,10,0),(0,0.00e+00,10,0),(0,0.00e+00,12,0),(0,0.00e+00,24,0),(0,0.00e+00,16,0),(0,0.00e+00,38,0),(0,0.00e+00,10,0),(0,0.00e+00,54,0),(0,0.00e+00,16,0),(0,0.00e+00,30,0),(0,0.00e+00,24,0),(0,0.00e+00,2,0),(0,0.00e+00,14,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0)]23.78e-05529120"nfe"[(7.02e-06,2.95e-06),(6.27e-06,2.35e-06),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]6.27e-06"nfe"2.35e-06"nfe"1True{"rs1570391741"}{"AS_VQSR"}3.30e+013.60e+017.88e-012921.79e+00-6.84e-01[97,29,17,20]3.75e-011633.79e+013.61e+017.88e-011.00e+002642.06e+00-6.84e-01[97,29,13,19]7.58e-01128FalseNANANAFalseFalse-3.31e+00-2.41e-05["ga4gh:VA.TV0UyS-jCvsVkEOMbipUnzTc4hYuVNTg","ga4gh:VA.33zGTKcHyj5wWpTfc3OfD8-UlPQ-YOfx"][10056,10056][10057,10057]["A","C"]"A/C"10057".""chr1\t10057\t.\tA\tC\t.\t.\tGT"NA"upstream_gene_variant"NANA"chr1"100571[(1,NA,NA,"transcribed_unprocessed_pseudogene",1,NA,NA,NA,NA,NA,NA,["upstream_gene_variant"],1953,NA,NA,NA,"ENSG00000223972",NA,"DDX11L1","HGNC","HGNC:37102",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",1,"ENST00000450305",NA,NA,"C"),(1,NA,NA,"processed_transcript",NA,NA,NA,NA,NA,NA,NA,["upstream_gene_variant"],1812,NA,NA,NA,"ENSG00000223972",NA,"DDX11L1","HGNC","HGNC:37102",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",1,"ENST00000456328",1,NA,"C"),(1,NA,NA,"unprocessed_pseudogene",1,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],4347,NA,NA,NA,"ENSG00000227232",NA,"WASH7P","HGNC","HGNC:38034",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000488147",NA,NA,"C"),(1,NA,NA,"transcribed_pseudogene",1,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],4305,NA,NA,NA,"653635",NA,"WASH7P","EntrezGene","HGNC:38034",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"RefSeq",-1,"NR_024540.1",NA,NA,"C"),(1,NA,NA,"transcribed_pseudogene",1,NA,NA,NA,NA,NA,NA,["upstream_gene_variant"],1817,NA,NA,NA,"100287102",NA,"DDX11L1","EntrezGene","HGNC:37102",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"RefSeq",1,"NR_046018.2",NA,NA,"C")]"SNV"-3.31e+00"AS_FS"FalseFalseFalseTrueTrue"snv"2"multi-snv"False[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,25460,7448,6933,4978,2881,2833,2048,1038,1129,685,321,364,212,90,117,231]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,2,23,108,320,888,1844,3110,4447,5361,6012,6379,5879,5289,4273,3400,2503,1787,1521]03622[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,1,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][995,1036,1539,1788,25460,7448,6933,4978,2881,2833,2048,1038,1129,685,321,364,212,90,117,231]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][2,6,39,104,247,638,1325,2417,3685,5047,5927,6484,6763,6192,5525,4439,3518,2603,1850,1572]03743[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,1,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,1,0,1,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]008.53e+007.09e-01NANANANANANA

showing top 5 rows

\n" - ], - "text/plain": [ - "+---------------+------------+\n", - "| locus | alleles |\n", - "+---------------+------------+\n", - "| locus | array |\n", - "+---------------+------------+\n", - "| chr1:10031 | [\"T\",\"C\"] |\n", - "| chr1:10037 | [\"T\",\"C\"] |\n", - "| chr1:10043 | [\"T\",\"C\"] |\n", - "| chr1:10055 | [\"T\",\"C\"] |\n", - "| chr1:10057 | [\"A\",\"C\"] |\n", - "+---------------+------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| freq |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [(0,0.00e+00,56642,0),(2,1.65e-05,121094,0),(0,0.00e+00,25546,0),(0,0.00e... |\n", - "| [(2,2.60e-05,76882,0),(4,3.15e-05,126902,0),(0,0.00e+00,34670,0),(1,1.80e... |\n", - "| [(1,1.17e-05,85634,0),(1,8.24e-06,121430,0),(0,0.00e+00,39236,0),(0,0.00e... |\n", - "| [(1,1.06e-05,94224,0),(5,4.64e-05,107704,0),(0,0.00e+00,44382,0),(1,1.80e... |\n", - "| [(3,2.64e-05,113536,0),(3,2.41e-05,124252,0),(2,3.78e-05,52912,0),(0,0.00... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+-----------+-----------+-----------+-------------------------+----------------+\n", - "| grpmax.AC | grpmax.AF | grpmax.AN | grpmax.homozygote_count | grpmax.gen_anc |\n", - "+-----------+-----------+-----------+-------------------------+----------------+\n", - "| int32 | float64 | int32 | int32 | str |\n", - "+-----------+-----------+-----------+-------------------------+----------------+\n", - "| NA | NA | NA | NA | NA |\n", - "| 1 | 4.07e-04 | 2456 | 0 | \"eas\" |\n", - "| 1 | 4.39e-05 | 22760 | 0 | \"afr\" |\n", - "| NA | NA | NA | NA | NA |\n", - "| 2 | 3.78e-05 | 52912 | 0 | \"nfe\" |\n", - "+-----------+-----------+-----------+-------------------------+----------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| faf |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.... |\n", - "| [(4.32e-06,1.62e-06),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.... |\n", - "| [(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.... |\n", - "| [(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.... |\n", - "| [(7.02e-06,2.95e-06),(6.27e-06,2.35e-06),(0.00e+00,0.00e+00),(0.00e+00,0.... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+------------------+--------------------------+------------------+\n", - "| fafmax.faf95_max | fafmax.faf95_max_gen_anc | fafmax.faf99_max |\n", - "+------------------+--------------------------+------------------+\n", - "| float64 | str | float64 |\n", - "+------------------+--------------------------+------------------+\n", - "| NA | NA | NA |\n", - "| NA | NA | NA |\n", - "| NA | NA | NA |\n", - "| NA | NA | NA |\n", - "| 6.27e-06 | \"nfe\" | 2.35e-06 |\n", - "+------------------+--------------------------+------------------+\n", - "\n", - "+--------------------------+---------+-----------+------------------+\n", - "| fafmax.faf99_max_gen_anc | a_index | was_split | rsid |\n", - "+--------------------------+---------+-----------+------------------+\n", - "| str | int32 | bool | set |\n", - "+--------------------------+---------+-----------+------------------+\n", - "| NA | 2 | True | {\"rs1639542312\"} |\n", - "| NA | 1 | False | {\"rs1639542418\"} |\n", - "| NA | 1 | False | NA |\n", - "| NA | 2 | True | {\"rs892501864\"} |\n", - "| \"nfe\" | 1 | True | {\"rs1570391741\"} |\n", - "+--------------------------+---------+-----------+------------------+\n", - "\n", - "+-------------------+----------+----------+----------------+-----------------+\n", - "| filters | info.FS | info.MQ | info.MQRankSum | info.QUALapprox |\n", - "+-------------------+----------+----------+----------------+-----------------+\n", - "| set | float64 | float64 | float64 | int64 |\n", - "+-------------------+----------+----------+----------------+-----------------+\n", - "| {\"AC0\",\"AS_VQSR\"} | 7.30e+00 | 3.48e+01 | 6.70e-02 | 96 |\n", - "| {\"AS_VQSR\"} | 8.58e+00 | 3.83e+01 | 1.37e+00 | 180 |\n", - "| {\"AS_VQSR\"} | 3.11e+01 | 3.52e+01 | 1.23e+00 | 97 |\n", - "| {\"AS_VQSR\"} | 0.00e+00 | 3.55e+01 | 1.07e-01 | 220 |\n", - "| {\"AS_VQSR\"} | 3.30e+01 | 3.60e+01 | 7.88e-01 | 292 |\n", - "+-------------------+----------+----------+----------------+-----------------+\n", - "\n", - "+----------+---------------------+---------------+----------+------------+\n", - "| info.QD | info.ReadPosRankSum | info.SB | info.SOR | info.VarDP |\n", - "+----------+---------------------+---------------+----------+------------+\n", - "| float32 | float64 | array | float64 | int32 |\n", - "+----------+---------------------+---------------+----------+------------+\n", - "| 2.74e+00 | -1.07e+00 | [21,6,4,4] | 9.60e-02 | 35 |\n", - "| 2.20e+00 | -4.80e-01 | [49,12,13,8] | 1.51e-01 | 82 |\n", - "| 2.77e+00 | -8.96e-01 | [25,0,5,5] | 1.00e-03 | 35 |\n", - "| 2.12e+00 | -1.16e+00 | [51,29,15,9] | 6.16e-01 | 104 |\n", - "| 1.79e+00 | -6.84e-01 | [97,29,17,20] | 3.75e-01 | 163 |\n", - "+----------+---------------------+---------------+----------+------------+\n", - "\n", - "+------------+------------+-------------------+-----------------+\n", - "| info.AS_FS | info.AS_MQ | info.AS_MQRankSum | info.AS_pab_max |\n", - "+------------+------------+-------------------+-----------------+\n", - "| float64 | float64 | float64 | float64 |\n", - "+------------+------------+-------------------+-----------------+\n", - "| 5.10e+00 | 3.51e+01 | -5.72e-01 | 6.87e-01 |\n", - "| 8.58e+00 | 3.83e+01 | 1.37e+00 | 1.00e+00 |\n", - "| 3.11e+01 | 3.52e+01 | 1.23e+00 | 1.00e+00 |\n", - "| 5.94e+00 | 3.48e+01 | 7.15e-01 | 2.27e-01 |\n", - "| 3.79e+01 | 3.61e+01 | 7.88e-01 | 1.00e+00 |\n", - "+------------+------------+-------------------+-----------------+\n", - "\n", - "+--------------------+------------+------------------------+------------------+\n", - "| info.AS_QUALapprox | info.AS_QD | info.AS_ReadPosRankSum | info.AS_SB_TABLE |\n", - "+--------------------+------------+------------------------+------------------+\n", - "| int64 | float32 | float64 | array |\n", - "+--------------------+------------+------------------------+------------------+\n", - "| 77 | 2.96e+00 | -1.38e+00 | [21,6,3,3] |\n", - "| 180 | 2.20e+00 | -4.80e-01 | [49,12,13,8] |\n", - "| 97 | 2.77e+00 | -8.96e-01 | [25,0,5,5] |\n", - "| 91 | 1.21e+00 | -1.16e+00 | [51,29,7,8] |\n", - "| 264 | 2.06e+00 | -6.84e-01 | [97,29,13,19] |\n", - "+--------------------+------------+------------------------+------------------+\n", - "\n", - "+-------------+---------------+----------------+----------------------------+\n", - "| info.AS_SOR | info.AS_VarDP | info.singleton | info.transmitted_singleton |\n", - "+-------------+---------------+----------------+----------------------------+\n", - "| float64 | int32 | bool | bool |\n", - "+-------------+---------------+----------------+----------------------------+\n", - "| 9.64e-02 | 26 | False | NA |\n", - "| 1.51e-01 | 82 | False | NA |\n", - "| 1.48e-03 | 35 | True | False |\n", - "| 4.69e-01 | 75 | False | NA |\n", - "| 7.58e-01 | 128 | False | NA |\n", - "+-------------+---------------+----------------+----------------------------+\n", - "\n", - "+-----------+------------+------------------+---------------+----------------+\n", - "| info.omni | info.mills | info.monoallelic | info.only_het | info.AS_VQSLOD |\n", - "+-----------+------------+------------------+---------------+----------------+\n", - "| bool | bool | bool | bool | float64 |\n", - "+-----------+------------+------------------+---------------+----------------+\n", - "| NA | NA | False | False | -4.57e+00 |\n", - "| NA | NA | False | False | -3.18e+00 |\n", - "| NA | NA | False | False | -5.79e+00 |\n", - "| NA | NA | False | False | -3.72e+00 |\n", - "| NA | NA | False | False | -3.31e+00 |\n", - "+-----------+------------+------------------+---------------+----------------+\n", - "\n", - "+-----------------------+\n", - "| info.inbreeding_coeff |\n", - "+-----------------------+\n", - "| float64 |\n", - "+-----------------------+\n", - "| -1.65e-05 |\n", - "| -3.15e-05 |\n", - "| -8.24e-06 |\n", - "| -4.64e-05 |\n", - "| -2.41e-05 |\n", - "+-----------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| info.vrs.VRS_Allele_IDs |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [\"ga4gh:VA.oTAtTrgYxm81O9fu6Mrhfo1t3eHsgg4L\",\"ga4gh:VA.Y283OnlLjyi1T1IT_J... |\n", - "| [\"ga4gh:VA.6pIoPAYDsphCprRcyrititenuEWlZaxV\",\"ga4gh:VA.iHyQ1mh_iQX6WcqXcx... |\n", - "| [\"ga4gh:VA.HdrkFJS16zwJPcGSKX9___fJcdqSATlQ\",\"ga4gh:VA.LSHuFx03sqw8WJGN2-... |\n", - "| [\"ga4gh:VA.xis4Nhtveh7q75mtkipQAUqZfWUfboWB\",\"ga4gh:VA.Ciou33oFTNEilAEegb... |\n", - "| [\"ga4gh:VA.TV0UyS-jCvsVkEOMbipUnzTc4hYuVNTg\",\"ga4gh:VA.33zGTKcHyj5wWpTfc3... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+---------------------+-------------------+---------------------+\n", - "| info.vrs.VRS_Starts | info.vrs.VRS_Ends | info.vrs.VRS_States |\n", - "+---------------------+-------------------+---------------------+\n", - "| array | array | array |\n", - "+---------------------+-------------------+---------------------+\n", - "| [10030,10030] | [10031,10031] | [\"T\",\"C\"] |\n", - "| [10036,10036] | [10037,10037] | [\"T\",\"C\"] |\n", - "| [10042,10042] | [10043,10043] | [\"T\",\"C\"] |\n", - "| [10054,10054] | [10055,10055] | [\"T\",\"C\"] |\n", - "| [10056,10056] | [10057,10057] | [\"A\",\"C\"] |\n", - "+---------------------+-------------------+---------------------+\n", - "\n", - "+-------------------+---------+--------+---------------------------+\n", - "| vep.allele_string | vep.end | vep.id | vep.input |\n", - "+-------------------+---------+--------+---------------------------+\n", - "| str | int32 | str | str |\n", - "+-------------------+---------+--------+---------------------------+\n", - "| \"T/C\" | 10031 | \".\" | \"chr1\t10031\t.\tT\tC\t.\t.\tGT\" |\n", - "| \"T/C\" | 10037 | \".\" | \"chr1\t10037\t.\tT\tC\t.\t.\tGT\" |\n", - "| \"T/C\" | 10043 | \".\" | \"chr1\t10043\t.\tT\tC\t.\t.\tGT\" |\n", - "| \"T/C\" | 10055 | \".\" | \"chr1\t10055\t.\tT\tC\t.\t.\tGT\" |\n", - "| \"A/C\" | 10057 | \".\" | \"chr1\t10057\t.\tA\tC\t.\t.\tGT\" |\n", - "+-------------------+---------+--------+---------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| vep.intergenic_consequences |\n", - "+------------------------------------------------------------------------------+\n", - "| array, impact: st... |\n", - "+------------------------------------------------------------------------------+\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+-----------------------------+\n", - "| vep.most_severe_consequence |\n", - "+-----------------------------+\n", - "| str |\n", - "+-----------------------------+\n", - "| \"upstream_gene_variant\" |\n", - "| \"upstream_gene_variant\" |\n", - "| \"upstream_gene_variant\" |\n", - "| \"upstream_gene_variant\" |\n", - "| \"upstream_gene_variant\" |\n", - "+-----------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| vep.motif_feature_consequences |\n", - "+------------------------------------------------------------------------------+\n", - "| array, high_inf_p... |\n", - "+------------------------------------------------------------------------------+\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| vep.regulatory_feature_consequences |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| histograms.qual_hists.gq_hist_all.bin_freq |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [0,0,0,0,23215,2435,1647,594,176,118,49,29,19,9,11,6,5,2,4,2] |\n", - "| [0,0,0,0,29394,3741,2868,1281,401,358,163,63,69,31,18,20,10,4,5,15] |\n", - "| [0,0,0,0,31093,4532,3696,1752,595,585,261,88,82,59,17,26,14,5,3,9] |\n", - "| [0,0,0,0,25677,6107,5433,3528,1753,1702,1130,485,518,282,119,125,77,35,29... |\n", - "| [0,0,0,0,25460,7448,6933,4978,2881,2833,2048,1038,1129,685,321,364,212,90... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+---------------------------------------------+\n", - "| histograms.qual_hists.gq_hist_all.n_smaller |\n", - "+---------------------------------------------+\n", - "| int64 |\n", - "+---------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+---------------------------------------------+\n", - "\n", - "+--------------------------------------------+\n", - "| histograms.qual_hists.gq_hist_all.n_larger |\n", - "+--------------------------------------------+\n", - "| int64 |\n", - "+--------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+--------------------------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| histograms.qual_hists.dp_hist_all.bin_edges |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| histograms.qual_hists.dp_hist_all.bin_freq |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [0,0,16,121,475,973,1736,2409,2950,3134,2995,2803,2514,2194,1773,1335,911... |\n", - "| [0,0,9,69,387,913,1737,2859,3749,4216,4302,4223,3745,3280,2661,1954,1380,... |\n", - "| [0,0,8,40,264,690,1525,2691,3754,4574,4813,4940,4490,3907,3242,2387,1704,... |\n", - "| [0,0,4,22,120,354,999,1950,3037,4168,4734,5196,5380,4766,4238,3206,2398,1... |\n", - "| [0,0,2,23,108,320,888,1844,3110,4447,5361,6012,6379,5879,5289,4273,3400,2... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+---------------------------------------------+\n", - "| histograms.qual_hists.dp_hist_all.n_smaller |\n", - "+---------------------------------------------+\n", - "| int64 |\n", - "+---------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+---------------------------------------------+\n", - "\n", - "+--------------------------------------------+\n", - "| histograms.qual_hists.dp_hist_all.n_larger |\n", - "+--------------------------------------------+\n", - "| int64 |\n", - "+--------------------------------------------+\n", - "| 527 |\n", - "| 888 |\n", - "| 1232 |\n", - "| 2440 |\n", - "| 3622 |\n", - "+--------------------------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| histograms.qual_hists.gq_hist_alt.bin_edges |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+--------------------------------------------+\n", - "| histograms.qual_hists.gq_hist_alt.bin_freq |\n", - "+--------------------------------------------+\n", - "| array |\n", - "+--------------------------------------------+\n", - "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0] |\n", - "+--------------------------------------------+\n", - "\n", - "+---------------------------------------------+\n", - "| histograms.qual_hists.gq_hist_alt.n_smaller |\n", - "+---------------------------------------------+\n", - "| int64 |\n", - "+---------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+---------------------------------------------+\n", - "\n", - "+--------------------------------------------+\n", - "| histograms.qual_hists.gq_hist_alt.n_larger |\n", - "+--------------------------------------------+\n", - "| int64 |\n", - "+--------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+--------------------------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| histograms.qual_hists.dp_hist_alt.bin_edges |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+--------------------------------------------+\n", - "| histograms.qual_hists.dp_hist_alt.bin_freq |\n", - "+--------------------------------------------+\n", - "| array |\n", - "+--------------------------------------------+\n", - "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,1,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "+--------------------------------------------+\n", - "\n", - "+---------------------------------------------+\n", - "| histograms.qual_hists.dp_hist_alt.n_smaller |\n", - "+---------------------------------------------+\n", - "| int64 |\n", - "+---------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+---------------------------------------------+\n", - "\n", - "+--------------------------------------------+\n", - "| histograms.qual_hists.dp_hist_alt.n_larger |\n", - "+--------------------------------------------+\n", - "| int64 |\n", - "+--------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+--------------------------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| histograms.qual_hists.ab_hist_alt.bin_edges |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", - "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", - "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", - "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", - "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+--------------------------------------------+\n", - "| histograms.qual_hists.ab_hist_alt.bin_freq |\n", - "+--------------------------------------------+\n", - "| array |\n", - "+--------------------------------------------+\n", - "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "+--------------------------------------------+\n", - "\n", - "+---------------------------------------------+\n", - "| histograms.qual_hists.ab_hist_alt.n_smaller |\n", - "+---------------------------------------------+\n", - "| int64 |\n", - "+---------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+---------------------------------------------+\n", - "\n", - "+--------------------------------------------+\n", - "| histograms.qual_hists.ab_hist_alt.n_larger |\n", - "+--------------------------------------------+\n", - "| int64 |\n", - "+--------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+--------------------------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| histograms.raw_qual_hists.gq_hist_all.bin_edges |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| histograms.raw_qual_hists.gq_hist_all.bin_freq |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [14149,7330,6840,3904,23217,2436,1647,594,176,118,49,29,19,9,11,6,5,2,4,2] |\n", - "| [10121,5441,5610,3838,29394,3741,2868,1281,401,358,163,63,69,31,18,20,10,... |\n", - "| [6578,3782,4202,3336,31093,4532,3696,1752,595,585,261,88,82,59,17,26,14,5... |\n", - "| [1429,1382,1901,2026,25677,6108,5433,3528,1753,1702,1130,485,518,282,119,... |\n", - "| [995,1036,1539,1788,25460,7448,6933,4978,2881,2833,2048,1038,1129,685,321... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+-------------------------------------------------+\n", - "| histograms.raw_qual_hists.gq_hist_all.n_smaller |\n", - "+-------------------------------------------------+\n", - "| int64 |\n", - "+-------------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+-------------------------------------------------+\n", - "\n", - "+------------------------------------------------+\n", - "| histograms.raw_qual_hists.gq_hist_all.n_larger |\n", - "+------------------------------------------------+\n", - "| int64 |\n", - "+------------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+------------------------------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| histograms.raw_qual_hists.dp_hist_all.bin_edges |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| histograms.raw_qual_hists.dp_hist_all.bin_freq |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [10,66,471,1445,2990,5808,6940,7906,7262,6236,4943,3919,3129,2527,1993,14... |\n", - "| [7,37,269,903,1948,4127,5519,7075,7322,6972,6095,5249,4374,3624,2893,2106... |\n", - "| [2,24,149,466,1201,2614,4035,5568,6331,6725,6267,5855,5101,4268,3465,2554... |\n", - "| [1,9,42,122,294,787,1537,2717,3751,4972,5404,5762,5875,5161,4526,3415,252... |\n", - "| [2,6,39,104,247,638,1325,2417,3685,5047,5927,6484,6763,6192,5525,4439,351... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+-------------------------------------------------+\n", - "| histograms.raw_qual_hists.dp_hist_all.n_smaller |\n", - "+-------------------------------------------------+\n", - "| int64 |\n", - "+-------------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+-------------------------------------------------+\n", - "\n", - "+------------------------------------------------+\n", - "| histograms.raw_qual_hists.dp_hist_all.n_larger |\n", - "+------------------------------------------------+\n", - "| int64 |\n", - "+------------------------------------------------+\n", - "| 744 |\n", - "| 1130 |\n", - "| 1487 |\n", - "| 2622 |\n", - "| 3743 |\n", - "+------------------------------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| histograms.raw_qual_hists.gq_hist_alt.bin_edges |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+------------------------------------------------+\n", - "| histograms.raw_qual_hists.gq_hist_alt.bin_freq |\n", - "+------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------+\n", - "| [0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,2,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,1,2,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0] |\n", - "+------------------------------------------------+\n", - "\n", - "+-------------------------------------------------+\n", - "| histograms.raw_qual_hists.gq_hist_alt.n_smaller |\n", - "+-------------------------------------------------+\n", - "| int64 |\n", - "+-------------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+-------------------------------------------------+\n", - "\n", - "+------------------------------------------------+\n", - "| histograms.raw_qual_hists.gq_hist_alt.n_larger |\n", - "+------------------------------------------------+\n", - "| int64 |\n", - "+------------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+------------------------------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| histograms.raw_qual_hists.dp_hist_alt.bin_edges |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+------------------------------------------------+\n", - "| histograms.raw_qual_hists.dp_hist_alt.bin_freq |\n", - "+------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------+\n", - "| [0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,2,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,3,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,1,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "+------------------------------------------------+\n", - "\n", - "+-------------------------------------------------+\n", - "| histograms.raw_qual_hists.dp_hist_alt.n_smaller |\n", - "+-------------------------------------------------+\n", - "| int64 |\n", - "+-------------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+-------------------------------------------------+\n", - "\n", - "+------------------------------------------------+\n", - "| histograms.raw_qual_hists.dp_hist_alt.n_larger |\n", - "+------------------------------------------------+\n", - "| int64 |\n", - "+------------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+------------------------------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| histograms.raw_qual_hists.ab_hist_alt.bin_edges |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", - "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", - "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", - "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", - "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+------------------------------------------------+\n", - "| histograms.raw_qual_hists.ab_hist_alt.bin_freq |\n", - "+------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------+\n", - "| [0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,3,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "+------------------------------------------------+\n", - "\n", - "+-------------------------------------------------+\n", - "| histograms.raw_qual_hists.ab_hist_alt.n_smaller |\n", - "+-------------------------------------------------+\n", - "| int64 |\n", - "+-------------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+-------------------------------------------------+\n", - "\n", - "+------------------------------------------------+\n", - "| histograms.raw_qual_hists.ab_hist_alt.n_larger |\n", - "+------------------------------------------------+\n", - "| int64 |\n", - "+------------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+------------------------------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| histograms.age_hists.age_hist_het.bin_edges |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", - "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", - "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", - "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", - "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+--------------------------------------------+\n", - "| histograms.age_hists.age_hist_het.bin_freq |\n", - "+--------------------------------------------+\n", - "| array |\n", - "+--------------------------------------------+\n", - "| [0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,1,0,0,1,0,0,0,0,0] |\n", - "| [0,0,1,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,1,0,1,0,0,0,0,0] |\n", - "+--------------------------------------------+\n", - "\n", - "+---------------------------------------------+\n", - "| histograms.age_hists.age_hist_het.n_smaller |\n", - "+---------------------------------------------+\n", - "| int64 |\n", - "+---------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+---------------------------------------------+\n", - "\n", - "+--------------------------------------------+\n", - "| histograms.age_hists.age_hist_het.n_larger |\n", - "+--------------------------------------------+\n", - "| int64 |\n", - "+--------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+--------------------------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| histograms.age_hists.age_hist_hom.bin_edges |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", - "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", - "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", - "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", - "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+--------------------------------------------+\n", - "| histograms.age_hists.age_hist_hom.bin_freq |\n", - "+--------------------------------------------+\n", - "| array |\n", - "+--------------------------------------------+\n", - "| [0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,0,0,0,0,0] |\n", - "+--------------------------------------------+\n", - "\n", - "+---------------------------------------------+\n", - "| histograms.age_hists.age_hist_hom.n_smaller |\n", - "+---------------------------------------------+\n", - "| int64 |\n", - "+---------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+---------------------------------------------+\n", - "\n", - "+--------------------------------------------+---------------------------------+\n", - "| histograms.age_hists.age_hist_hom.n_larger | in_silico_predictors.cadd.phred |\n", - "+--------------------------------------------+---------------------------------+\n", - "| int64 | float32 |\n", - "+--------------------------------------------+---------------------------------+\n", - "| 0 | 8.97e+00 |\n", - "| 0 | 8.90e+00 |\n", - "| 0 | 8.90e+00 |\n", - "| 0 | 8.88e+00 |\n", - "| 0 | 8.53e+00 |\n", - "+--------------------------------------------+---------------------------------+\n", - "\n", - "+-------------------------------------+--------------------------------+\n", - "| in_silico_predictors.cadd.raw_score | in_silico_predictors.revel_max |\n", - "+-------------------------------------+--------------------------------+\n", - "| float32 | float64 |\n", - "+-------------------------------------+--------------------------------+\n", - "| 7.57e-01 | NA |\n", - "| 7.49e-01 | NA |\n", - "| 7.48e-01 | NA |\n", - "| 7.46e-01 | NA |\n", - "| 7.09e-01 | NA |\n", - "+-------------------------------------+--------------------------------+\n", - "\n", - "+--------------------------------------+\n", - "| in_silico_predictors.spliceai_ds_max |\n", - "+--------------------------------------+\n", - "| float32 |\n", - "+--------------------------------------+\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "+--------------------------------------+\n", - "\n", - "+------------------------------------------+-----------------------------+\n", - "| in_silico_predictors.pangolin_largest_ds | in_silico_predictors.phylop |\n", - "+------------------------------------------+-----------------------------+\n", - "| float64 | float64 |\n", - "+------------------------------------------+-----------------------------+\n", - "| NA | NA |\n", - "| NA | NA |\n", - "| NA | NA |\n", - "| NA | NA |\n", - "| NA | NA |\n", - "+------------------------------------------+-----------------------------+\n", - "\n", - "+-------------------------------+-----------------------------------+\n", - "| in_silico_predictors.sift_max | in_silico_predictors.polyphen_max |\n", - "+-------------------------------+-----------------------------------+\n", - "| float64 | float64 |\n", - "+-------------------------------+-----------------------------------+\n", - "| NA | NA |\n", - "| NA | NA |\n", - "| NA | NA |\n", - "| NA | NA |\n", - "| NA | NA |\n", - "+-------------------------------+-----------------------------------+\n", - "showing top 5 rows" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "ht.show(5)" - ] - }, - { - "cell_type": "markdown", - "id": "22e6f759-a0ee-4e9c-8ca4-eb154cb08763", - "metadata": { - "tags": [] - }, - "source": [ - "### v4.1 Joint Frequency Hail Table" - ] - }, - { - "cell_type": "markdown", - "id": "0a569b77-d3d2-45a4-803a-1214c77e46f2", - "metadata": {}, - "source": [ - "The joint frequency Hail table includes frequency for the exomes, genomes, and the exomes+genomes. We have also added statistics for the combined exomes and genomes frequencies, more details on these stats can be found on our [Help](https://gnomad.broadinstitute.org/help/combined-freq-stats) page." - ] - }, - { - "cell_type": "markdown", - "id": "46d4fc43-609d-4a16-8a0a-ab1e870b5d3d", - "metadata": {}, - "source": [ - "#### Load the Hail Table\n" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "id": "c1c1fbb0-4ef9-4892-bd91-aae9985317a7", - "metadata": { - "ExecuteTime": { - "end_time": "2024-12-06T20:08:59.197890Z", - "start_time": "2024-12-06T20:08:50.859108Z" - } - }, - "outputs": [], - "source": [ - "ht = get_gnomad_release(data_type='joint', version='4.1')" - ] - }, - { - "cell_type": "markdown", - "id": "163df47b-70de-4e1e-91be-a65c90cf2db5", - "metadata": {}, - "source": [ - "#### Print the schema of the Hail Table\n" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "id": "750c0111-4566-4b86-8c08-18c504ff1a79", - "metadata": { - "ExecuteTime": { - "end_time": "2024-12-06T20:09:00.032524Z", - "start_time": "2024-12-06T20:09:00.029271Z" - }, - "tags": [] - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "----------------------------------------\n", - "Global fields:\n", - " 'exomes_globals': struct {\n", - " freq_meta: array>, \n", - " freq_index_dict: dict, \n", - " freq_meta_sample_count: array, \n", - " faf_meta: array>, \n", - " faf_index_dict: dict, \n", - " age_distribution: struct {\n", - " bin_edges: array, \n", - " bin_freq: array, \n", - " n_smaller: int32, \n", - " n_larger: int32\n", - " }\n", - " } \n", - " 'genomes_globals': struct {\n", - " freq_meta: array>, \n", - " freq_index_dict: dict, \n", - " freq_meta_sample_count: array, \n", - " faf_meta: array>, \n", - " faf_index_dict: dict, \n", - " age_distribution: struct {\n", - " bin_edges: array, \n", - " bin_freq: array, \n", - " n_smaller: int32, \n", - " n_larger: int32\n", - " }\n", - " } \n", - " 'joint_globals': struct {\n", - " freq_meta: array>, \n", - " freq_index_dict: dict, \n", - " faf_meta: array>, \n", - " faf_index_dict: dict, \n", - " freq_meta_sample_count: array, \n", - " age_distribution: struct {\n", - " bin_edges: array, \n", - " bin_freq: array, \n", - " n_smaller: int32, \n", - " n_larger: int32\n", - " }\n", - " } \n", - "----------------------------------------\n", - "Row fields:\n", - " 'locus': locus \n", - " 'alleles': array \n", - " 'region_flags': struct {\n", - " fail_interval_qc: bool, \n", - " outside_broad_capture_region: bool, \n", - " outside_ukb_capture_region: bool, \n", - " outside_broad_calling_region: bool, \n", - " outside_ukb_calling_region: bool, \n", - " not_called_in_exomes: bool, \n", - " not_called_in_genomes: bool\n", - " } \n", - " 'exomes': struct {\n", - " filters: set, \n", - " freq: array, \n", - " faf: array, \n", - " grpmax: struct {\n", - " AC: int32, \n", - " AF: float64, \n", - " AN: int32, \n", - " homozygote_count: int64, \n", - " gen_anc: str\n", - " }, \n", - " fafmax: struct {\n", - " faf95_max: float64, \n", - " faf95_max_gen_anc: str, \n", - " faf99_max: float64, \n", - " faf99_max_gen_anc: str\n", - " }, \n", - " histograms: struct {\n", - " qual_hists: struct {\n", - " gq_hist_all: struct {\n", - " bin_edges: array, \n", - " bin_freq: array, \n", - " n_smaller: int64, \n", - " n_larger: int64\n", - " }, \n", - " dp_hist_all: struct {\n", - " bin_edges: array, \n", - " bin_freq: array, \n", - " n_smaller: int64, \n", - " n_larger: int64\n", - " }, \n", - " gq_hist_alt: struct {\n", - " bin_edges: array, \n", - " bin_freq: array, \n", - " n_smaller: int64, \n", - " n_larger: int64\n", - " }, \n", - " dp_hist_alt: struct {\n", - " bin_edges: array, \n", - " bin_freq: array, \n", - " n_smaller: int64, \n", - " n_larger: int64\n", - " }, \n", - " ab_hist_alt: struct {\n", - " bin_edges: array, \n", - " bin_freq: array, \n", - " n_smaller: int64, \n", - " n_larger: int64\n", - " }\n", - " }, \n", - " raw_qual_hists: struct {\n", - " gq_hist_all: struct {\n", - " bin_edges: array, \n", - " bin_freq: array, \n", - " n_smaller: int64, \n", - " n_larger: int64\n", - " }, \n", - " dp_hist_all: struct {\n", - " bin_edges: array, \n", - " bin_freq: array, \n", - " n_smaller: int64, \n", - " n_larger: int64\n", - " }, \n", - " gq_hist_alt: struct {\n", - " bin_edges: array, \n", - " bin_freq: array, \n", - " n_smaller: int64, \n", - " n_larger: int64\n", - " }, \n", - " dp_hist_alt: struct {\n", - " bin_edges: array, \n", - " bin_freq: array, \n", - " n_smaller: int64, \n", - " n_larger: int64\n", - " }, \n", - " ab_hist_alt: struct {\n", - " bin_edges: array, \n", - " bin_freq: array, \n", - " n_smaller: int64, \n", - " n_larger: int64\n", - " }\n", - " }, \n", - " age_hists: struct {\n", - " age_hist_het: struct {\n", - " bin_edges: array, \n", - " bin_freq: array, \n", - " n_smaller: int64, \n", - " n_larger: int64\n", - " }, \n", - " age_hist_hom: struct {\n", - " bin_edges: array, \n", - " bin_freq: array, \n", - " n_smaller: int64, \n", - " n_larger: int64\n", - " }\n", - " }\n", - " }\n", - " } \n", - " 'genomes': struct {\n", - " filters: set, \n", - " freq: array, \n", - " faf: array, \n", - " grpmax: struct {\n", - " AC: int32, \n", - " AF: float64, \n", - " AN: int32, \n", - " homozygote_count: int32, \n", - " gen_anc: str\n", - " }, \n", - " fafmax: struct {\n", - " faf95_max: float64, \n", - " faf95_max_gen_anc: str, \n", - " faf99_max: float64, \n", - " faf99_max_gen_anc: str\n", - " }, \n", - " histograms: struct {\n", - " qual_hists: struct {\n", - " gq_hist_all: struct {\n", - " bin_edges: array, \n", - " bin_freq: array, \n", - " n_smaller: int64, \n", - " n_larger: int64\n", - " }, \n", - " dp_hist_all: struct {\n", - " bin_edges: array, \n", - " bin_freq: array, \n", - " n_smaller: int64, \n", - " n_larger: int64\n", - " }, \n", - " gq_hist_alt: struct {\n", - " bin_edges: array, \n", - " bin_freq: array, \n", - " n_smaller: int64, \n", - " n_larger: int64\n", - " }, \n", - " dp_hist_alt: struct {\n", - " bin_edges: array, \n", - " bin_freq: array, \n", - " n_smaller: int64, \n", - " n_larger: int64\n", - " }, \n", - " ab_hist_alt: struct {\n", - " bin_edges: array, \n", - " bin_freq: array, \n", - " n_smaller: int64, \n", - " n_larger: int64\n", - " }\n", - " }, \n", - " raw_qual_hists: struct {\n", - " gq_hist_all: struct {\n", - " bin_edges: array, \n", - " bin_freq: array, \n", - " n_smaller: int64, \n", - " n_larger: int64\n", - " }, \n", - " dp_hist_all: struct {\n", - " bin_edges: array, \n", - " bin_freq: array, \n", - " n_smaller: int64, \n", - " n_larger: int64\n", - " }, \n", - " gq_hist_alt: struct {\n", - " bin_edges: array, \n", - " bin_freq: array, \n", - " n_smaller: int64, \n", - " n_larger: int64\n", - " }, \n", - " dp_hist_alt: struct {\n", - " bin_edges: array, \n", - " bin_freq: array, \n", - " n_smaller: int64, \n", - " n_larger: int64\n", - " }, \n", - " ab_hist_alt: struct {\n", - " bin_edges: array, \n", - " bin_freq: array, \n", - " n_smaller: int64, \n", - " n_larger: int64\n", - " }\n", - " }, \n", - " age_hists: struct {\n", - " age_hist_het: struct {\n", - " bin_edges: array, \n", - " bin_freq: array, \n", - " n_smaller: int64, \n", - " n_larger: int64\n", - " }, \n", - " age_hist_hom: struct {\n", - " bin_edges: array, \n", - " bin_freq: array, \n", - " n_smaller: int64, \n", - " n_larger: int64\n", - " }\n", - " }\n", - " }\n", - " } \n", - " 'joint': struct {\n", - " freq: array, \n", - " faf: array, \n", - " fafmax: struct {\n", - " faf95_max: float64, \n", - " faf95_max_gen_anc: str, \n", - " faf99_max: float64, \n", - " faf99_max_gen_anc: str\n", - " }, \n", - " grpmax: struct {\n", - " AC: int32, \n", - " AF: float64, \n", - " AN: int32, \n", - " homozygote_count: int32, \n", - " gen_anc: str\n", - " }, \n", - " histograms: struct {\n", - " qual_hists: struct {\n", - " gq_hist_all: struct {\n", - " bin_edges: array, \n", - " bin_freq: array, \n", - " n_smaller: int64, \n", - " n_larger: int64\n", - " }, \n", - " dp_hist_all: struct {\n", - " bin_edges: array, \n", - " bin_freq: array, \n", - " n_smaller: int64, \n", - " n_larger: int64\n", - " }, \n", - " gq_hist_alt: struct {\n", - " bin_edges: array, \n", - " bin_freq: array, \n", - " n_smaller: int64, \n", - " n_larger: int64\n", - " }, \n", - " dp_hist_alt: struct {\n", - " bin_edges: array, \n", - " bin_freq: array, \n", - " n_smaller: int64, \n", - " n_larger: int64\n", - " }, \n", - " ab_hist_alt: struct {\n", - " bin_edges: array, \n", - " bin_freq: array, \n", - " n_smaller: int64, \n", - " n_larger: int64\n", - " }\n", - " }, \n", - " raw_qual_hists: struct {\n", - " gq_hist_all: struct {\n", - " bin_edges: array, \n", - " bin_freq: array, \n", - " n_smaller: int64, \n", - " n_larger: int64\n", - " }, \n", - " dp_hist_all: struct {\n", - " bin_edges: array, \n", - " bin_freq: array, \n", - " n_smaller: int64, \n", - " n_larger: int64\n", - " }, \n", - " gq_hist_alt: struct {\n", - " bin_edges: array, \n", - " bin_freq: array, \n", - " n_smaller: int64, \n", - " n_larger: int64\n", - " }, \n", - " dp_hist_alt: struct {\n", - " bin_edges: array, \n", - " bin_freq: array, \n", - " n_smaller: int64, \n", - " n_larger: int64\n", - " }, \n", - " ab_hist_alt: struct {\n", - " bin_edges: array, \n", - " bin_freq: array, \n", - " n_smaller: int64, \n", - " n_larger: int64\n", - " }\n", - " }, \n", - " age_hists: struct {\n", - " age_hist_het: struct {\n", - " bin_edges: array, \n", - " bin_freq: array, \n", - " n_smaller: int64, \n", - " n_larger: int64\n", - " }, \n", - " age_hist_hom: struct {\n", - " bin_edges: array, \n", - " bin_freq: array, \n", - " n_smaller: int64, \n", - " n_larger: int64\n", - " }\n", - " }\n", - " }\n", - " } \n", - " 'freq_comparison_stats': struct {\n", - " contingency_table_test: array, \n", - " cochran_mantel_haenszel_test: struct {\n", - " p_value: float64, \n", - " chisq: float64\n", - " }, \n", - " stat_union: struct {\n", - " p_value: float64, \n", - " stat_test_name: str, \n", - " gen_ancs: array\n", - " }\n", - " } \n", - "----------------------------------------\n", - "Key: ['locus', 'alleles']\n", - "----------------------------------------\n" - ] - } - ], - "source": [ - "ht.describe()" - ] - }, - { - "cell_type": "markdown", - "id": "d6843db4-9e8f-42f4-9178-fc945f61a827", - "metadata": { - "tags": [] - }, - "source": [ - "#### Show the first 5 variants in the Hail Table\n" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "id": "477ed281-4ee9-4799-b5b6-e6a0c528fa9a", - "metadata": { - "ExecuteTime": { - "end_time": "2024-12-06T20:09:20.949958Z", - "start_time": "2024-12-06T20:09:05.622171Z" - } - }, - "outputs": [ - { - "data": { - "text/html": [ - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "
exomes
genomes
joint
histograms
histograms
histograms
qual_hists
raw_qual_hists
age_hists
qual_hists
raw_qual_hists
age_hists
qual_hists
raw_qual_hists
age_hists
freq_comparison_stats
region_flags
grpmax
fafmax
gq_hist_all
dp_hist_all
gq_hist_alt
dp_hist_alt
ab_hist_alt
gq_hist_all
dp_hist_all
gq_hist_alt
dp_hist_alt
ab_hist_alt
age_hist_het
age_hist_hom
grpmax
fafmax
gq_hist_all
dp_hist_all
gq_hist_alt
dp_hist_alt
ab_hist_alt
gq_hist_all
dp_hist_all
gq_hist_alt
dp_hist_alt
ab_hist_alt
age_hist_het
age_hist_hom
fafmax
grpmax
gq_hist_all
dp_hist_all
gq_hist_alt
dp_hist_alt
ab_hist_alt
gq_hist_all
dp_hist_all
gq_hist_alt
dp_hist_alt
ab_hist_alt
age_hist_het
age_hist_hom
cochran_mantel_haenszel_test
stat_union
locus
alleles
fail_interval_qc
outside_broad_capture_region
outside_ukb_capture_region
outside_broad_calling_region
outside_ukb_calling_region
not_called_in_exomes
not_called_in_genomes
filters
freq
faf
AC
AF
AN
homozygote_count
gen_anc
faf95_max
faf95_max_gen_anc
faf99_max
faf99_max_gen_anc
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
filters
freq
faf
AC
AF
AN
homozygote_count
gen_anc
faf95_max
faf95_max_gen_anc
faf99_max
faf99_max_gen_anc
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
freq
faf
faf95_max
faf95_max_gen_anc
faf99_max
faf99_max_gen_anc
AC
AF
AN
homozygote_count
gen_anc
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
contingency_table_test
p_value
chisq
p_value
stat_test_name
gen_ancs
locus<GRCh38>array<str>boolboolboolboolboolboolboolset<str>array<struct{AC: int32, AF: float64, AN: int32, homozygote_count: int32}>array<struct{faf95: float64, faf99: float64}>int32float64int32int64strfloat64strfloat64strarray<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64set<str>array<struct{AC: int32, AF: float64, AN: int32, homozygote_count: int32}>array<struct{faf95: float64, faf99: float64}>int32float64int32int32strfloat64strfloat64strarray<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<struct{AC: int32, AF: float64, AN: int32, homozygote_count: int32}>array<struct{faf95: float64, faf99: float64}>float64strfloat64strint32float64int32int32strarray<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<struct{p_value: float64, odds_ratio: float64}>float64float64float64strarray<str>
chr1:10031["T","C"]NATrueTrueTrueTrueTrueFalseNA[(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA)]NANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANA{"AC0","AS_VQSR"}[(0,0.00e+00,56642,0),(2,1.65e-05,121094,0),(0,0.00e+00,25546,0),(0,0.00e+00,4326,0),(0,0.00e+00,192,0),(0,0.00e+00,782,0),(0,0.00e+00,352,0),(0,0.00e+00,1550,0),(0,0.00e+00,14642,0),(0,0.00e+00,1712,0),(0,0.00e+00,1120,0),(0,0.00e+00,6420,0),(0,0.00e+00,29308,0),(0,0.00e+00,27334,0),(0,0.00e+00,14998,0),(0,0.00e+00,1060,0),(0,0.00e+00,102,0),(0,0.00e+00,402,0),(0,0.00e+00,154,0),(0,0.00e+00,814,0),(0,0.00e+00,7978,0),(0,0.00e+00,770,0),(0,0.00e+00,260,0),(0,0.00e+00,2770,0),(0,0.00e+00,10548,0),(0,0.00e+00,3266,0),(0,0.00e+00,90,0),(0,0.00e+00,380,0),(0,0.00e+00,198,0),(0,0.00e+00,736,0),(0,0.00e+00,6664,0),(0,0.00e+00,942,0),(0,0.00e+00,860,0),(0,0.00e+00,3650,0)][(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]NANANANANANANANANA[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,23215,2435,1647,594,176,118,49,29,19,9,11,6,5,2,4,2]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,16,121,475,973,1736,2409,2950,3134,2995,2803,2514,2194,1773,1335,911,665,439,351]0527[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][14149,7330,6840,3904,23217,2436,1647,594,176,118,49,29,19,9,11,6,5,2,4,2]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][10,66,471,1445,2990,5808,6940,7906,7262,6236,4943,3919,3129,2527,1993,1476,1023,741,500,418]0744[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]00[(0,0.00e+00,56642,0),(2,1.65e-05,121094,0),(0,0.00e+00,25546,0),(0,0.00e+00,4326,0),(0,0.00e+00,192,0),(0,0.00e+00,782,0),(0,0.00e+00,352,0),(0,0.00e+00,1550,0),(0,0.00e+00,14642,0),(0,0.00e+00,1712,0),(0,0.00e+00,1120,0),(0,0.00e+00,6420,0),(0,0.00e+00,29308,0),(0,0.00e+00,27334,0),(0,0.00e+00,14998,0),(0,0.00e+00,1060,0),(0,0.00e+00,102,0),(0,0.00e+00,402,0),(0,0.00e+00,154,0),(0,0.00e+00,814,0),(0,0.00e+00,7978,0),(0,0.00e+00,770,0),(0,0.00e+00,260,0),(0,0.00e+00,2770,0),(0,0.00e+00,10548,0),(0,0.00e+00,3266,0),(0,0.00e+00,90,0),(0,0.00e+00,380,0),(0,0.00e+00,198,0),(0,0.00e+00,736,0),(0,0.00e+00,6664,0),(0,0.00e+00,942,0),(0,0.00e+00,860,0),(0,0.00e+00,3650,0)][(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]NANANANANANANANANA[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,23215,2435,1647,594,176,118,49,29,19,9,11,6,5,2,4,2]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,16,121,475,973,1736,2409,2950,3134,2995,2803,2514,2194,1773,1335,911,665,439,351]0527[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][14149,7330,6840,3904,23217,2436,1647,594,176,118,49,29,19,9,11,6,5,2,4,2]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][10,66,471,1445,2990,5808,6940,7906,7262,6236,4943,3919,3129,2527,1993,1476,1023,741,500,418]0744[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]00[NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]NANANANANA
chr1:10037["T","C"]NATrueTrueTrueTrueTrueFalseNA[(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA)]NANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANA{"AS_VQSR"}[(2,2.60e-05,76882,0),(4,3.15e-05,126902,0),(0,0.00e+00,34670,0),(1,1.80e-04,5568,0),(0,0.00e+00,234,0),(0,0.00e+00,998,0),(0,0.00e+00,494,0),(0,0.00e+00,2066,0),(0,0.00e+00,20394,0),(1,4.07e-04,2456,0),(0,0.00e+00,1706,0),(0,0.00e+00,8296,0),(1,2.49e-05,40172,0),(1,2.72e-05,36710,0),(0,0.00e+00,20498,0),(0,0.00e+00,1316,0),(0,0.00e+00,122,0),(0,0.00e+00,528,0),(0,0.00e+00,238,0),(0,0.00e+00,1106,0),(0,0.00e+00,11132,0),(1,8.98e-04,1114,0),(0,0.00e+00,420,0),(0,0.00e+00,3698,0),(0,0.00e+00,14172,0),(1,2.35e-04,4252,0),(0,0.00e+00,112,0),(0,0.00e+00,470,0),(0,0.00e+00,256,0),(0,0.00e+00,960,0),(0,0.00e+00,9262,0),(0,0.00e+00,1342,0),(0,0.00e+00,1286,0),(0,0.00e+00,4598,0)][(4.32e-06,1.62e-06),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]14.07e-0424560"eas"NANANANA[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,29394,3741,2868,1281,401,358,163,63,69,31,18,20,10,4,5,15]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,9,69,387,913,1737,2859,3749,4216,4302,4223,3745,3280,2661,1954,1380,943,607,519]0888[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][10121,5441,5610,3838,29394,3741,2868,1281,401,358,163,63,69,31,18,20,10,4,5,15]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][7,37,269,903,1948,4127,5519,7075,7322,6972,6095,5249,4374,3624,2893,2106,1501,1031,679,590]01130[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,2,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,2,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,1,0,0,1,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]00[(2,2.60e-05,76882,0),(4,3.15e-05,126902,0),(0,0.00e+00,34670,0),(1,1.80e-04,5568,0),(0,0.00e+00,234,0),(0,0.00e+00,998,0),(0,0.00e+00,494,0),(0,0.00e+00,2066,0),(0,0.00e+00,20394,0),(1,4.07e-04,2456,0),(0,0.00e+00,1706,0),(0,0.00e+00,8296,0),(1,2.49e-05,40172,0),(1,2.72e-05,36710,0),(0,0.00e+00,20498,0),(0,0.00e+00,1316,0),(0,0.00e+00,122,0),(0,0.00e+00,528,0),(0,0.00e+00,238,0),(0,0.00e+00,1106,0),(0,0.00e+00,11132,0),(1,8.98e-04,1114,0),(0,0.00e+00,420,0),(0,0.00e+00,3698,0),(0,0.00e+00,14172,0),(1,2.35e-04,4252,0),(0,0.00e+00,112,0),(0,0.00e+00,470,0),(0,0.00e+00,256,0),(0,0.00e+00,960,0),(0,0.00e+00,9262,0),(0,0.00e+00,1342,0),(0,0.00e+00,1286,0),(0,0.00e+00,4598,0)][(4.32e-06,1.62e-06),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]NANANANA14.07e-0424560"eas"[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,29394,3741,2868,1281,401,358,163,63,69,31,18,20,10,4,5,15]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,9,69,387,913,1737,2859,3749,4216,4302,4223,3745,3280,2661,1954,1380,943,607,519]0888[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][10121,5441,5610,3838,29394,3741,2868,1281,401,358,163,63,69,31,18,20,10,4,5,15]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][7,37,269,903,1948,4127,5519,7075,7322,6972,6095,5249,4374,3624,2893,2106,1501,1031,679,590]01130[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,2,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,2,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,1,0,0,1,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]00[NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]NANANANANA
chr1:10043["T","C"]NATrueTrueTrueTrueTrueFalseNA[(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA)]NANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANA{"AS_VQSR"}[(1,1.17e-05,85634,0),(1,8.24e-06,121430,0),(0,0.00e+00,39236,0),(0,0.00e+00,5820,0),(0,0.00e+00,254,0),(0,0.00e+00,1148,0),(0,0.00e+00,568,0),(0,0.00e+00,2276,0),(1,4.39e-05,22760,0),(0,0.00e+00,2912,0),(0,0.00e+00,2158,0),(0,0.00e+00,8502,0),(1,2.23e-05,44904,0),(0,0.00e+00,40730,0),(0,0.00e+00,23244,0),(0,0.00e+00,1280,0),(0,0.00e+00,136,0),(0,0.00e+00,594,0),(0,0.00e+00,284,0),(0,0.00e+00,1234,0),(1,8.03e-05,12446,0),(0,0.00e+00,1296,0),(0,0.00e+00,502,0),(0,0.00e+00,3888,0),(0,0.00e+00,15992,0),(0,0.00e+00,4540,0),(0,0.00e+00,118,0),(0,0.00e+00,554,0),(0,0.00e+00,284,0),(0,0.00e+00,1042,0),(0,0.00e+00,10314,0),(0,0.00e+00,1616,0),(0,0.00e+00,1656,0),(0,0.00e+00,4614,0)][(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]14.39e-05227600"afr"NANANANA[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,31093,4532,3696,1752,595,585,261,88,82,59,17,26,14,5,3,9]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,8,40,264,690,1525,2691,3754,4574,4813,4940,4490,3907,3242,2387,1704,1158,760,638]01232[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][6578,3782,4202,3336,31093,4532,3696,1752,595,585,261,88,82,59,17,26,14,5,3,9]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][2,24,149,466,1201,2614,4035,5568,6331,6725,6267,5855,5101,4268,3465,2554,1836,1244,831,692]01487[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,1,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]00[(1,1.17e-05,85634,0),(1,8.24e-06,121430,0),(0,0.00e+00,39236,0),(0,0.00e+00,5820,0),(0,0.00e+00,254,0),(0,0.00e+00,1148,0),(0,0.00e+00,568,0),(0,0.00e+00,2276,0),(1,4.39e-05,22760,0),(0,0.00e+00,2912,0),(0,0.00e+00,2158,0),(0,0.00e+00,8502,0),(1,2.23e-05,44904,0),(0,0.00e+00,40730,0),(0,0.00e+00,23244,0),(0,0.00e+00,1280,0),(0,0.00e+00,136,0),(0,0.00e+00,594,0),(0,0.00e+00,284,0),(0,0.00e+00,1234,0),(1,8.03e-05,12446,0),(0,0.00e+00,1296,0),(0,0.00e+00,502,0),(0,0.00e+00,3888,0),(0,0.00e+00,15992,0),(0,0.00e+00,4540,0),(0,0.00e+00,118,0),(0,0.00e+00,554,0),(0,0.00e+00,284,0),(0,0.00e+00,1042,0),(0,0.00e+00,10314,0),(0,0.00e+00,1616,0),(0,0.00e+00,1656,0),(0,0.00e+00,4614,0)][(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]NANANANA14.39e-05227600"afr"[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,31093,4532,3696,1752,595,585,261,88,82,59,17,26,14,5,3,9]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,8,40,264,690,1525,2691,3754,4574,4813,4940,4490,3907,3242,2387,1704,1158,760,638]01232[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][6578,3782,4202,3336,31093,4532,3696,1752,595,585,261,88,82,59,17,26,14,5,3,9]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][2,24,149,466,1201,2614,4035,5568,6331,6725,6267,5855,5101,4268,3465,2554,1836,1244,831,692]01487[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,1,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]00[NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]NANANANANA
chr1:10055["T","C"]NATrueTrueTrueTrueTrueFalseNA[(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA)]NANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANA{"AS_VQSR"}[(1,1.06e-05,94224,0),(5,4.64e-05,107704,0),(0,0.00e+00,44382,0),(1,1.80e-04,5570,0),(0,0.00e+00,216,0),(0,0.00e+00,1228,0),(0,0.00e+00,682,0),(0,0.00e+00,2370,0),(0,0.00e+00,26032,0),(0,0.00e+00,3020,0),(0,0.00e+00,2668,0),(0,0.00e+00,8056,0),(1,2.02e-05,49580,0),(0,0.00e+00,44644,0),(0,0.00e+00,26312,0),(1,9.67e-04,1034,0),(0,0.00e+00,110,0),(0,0.00e+00,624,0),(0,0.00e+00,344,0),(0,0.00e+00,1246,0),(0,0.00e+00,14152,0),(0,0.00e+00,1256,0),(0,0.00e+00,600,0),(0,0.00e+00,3902,0),(0,0.00e+00,18070,0),(0,0.00e+00,4536,0),(0,0.00e+00,106,0),(0,0.00e+00,604,0),(0,0.00e+00,338,0),(0,0.00e+00,1124,0),(0,0.00e+00,11880,0),(0,0.00e+00,1764,0),(0,0.00e+00,2068,0),(0,0.00e+00,4154,0)][(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]NANANANANANANANANA[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,25677,6107,5433,3528,1753,1702,1130,485,518,282,119,125,77,35,29,76]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,4,22,120,354,999,1950,3037,4168,4734,5196,5380,4766,4238,3206,2398,1776,1236,1052]02440[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][1429,1382,1901,2026,25677,6108,5433,3528,1753,1702,1130,485,518,282,119,125,77,35,29,76]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][1,9,42,122,294,787,1537,2717,3751,4972,5404,5762,5875,5161,4526,3415,2525,1883,1294,1116]02622[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,1,2,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,3,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,3,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]00[(1,1.06e-05,94224,0),(5,4.64e-05,107704,0),(0,0.00e+00,44382,0),(1,1.80e-04,5570,0),(0,0.00e+00,216,0),(0,0.00e+00,1228,0),(0,0.00e+00,682,0),(0,0.00e+00,2370,0),(0,0.00e+00,26032,0),(0,0.00e+00,3020,0),(0,0.00e+00,2668,0),(0,0.00e+00,8056,0),(1,2.02e-05,49580,0),(0,0.00e+00,44644,0),(0,0.00e+00,26312,0),(1,9.67e-04,1034,0),(0,0.00e+00,110,0),(0,0.00e+00,624,0),(0,0.00e+00,344,0),(0,0.00e+00,1246,0),(0,0.00e+00,14152,0),(0,0.00e+00,1256,0),(0,0.00e+00,600,0),(0,0.00e+00,3902,0),(0,0.00e+00,18070,0),(0,0.00e+00,4536,0),(0,0.00e+00,106,0),(0,0.00e+00,604,0),(0,0.00e+00,338,0),(0,0.00e+00,1124,0),(0,0.00e+00,11880,0),(0,0.00e+00,1764,0),(0,0.00e+00,2068,0),(0,0.00e+00,4154,0)][(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]NANANANANANANANANA[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,25677,6107,5433,3528,1753,1702,1130,485,518,282,119,125,77,35,29,76]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,4,22,120,354,999,1950,3037,4168,4734,5196,5380,4766,4238,3206,2398,1776,1236,1052]02440[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][1429,1382,1901,2026,25677,6108,5433,3528,1753,1702,1130,485,518,282,119,125,77,35,29,76]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][1,9,42,122,294,787,1537,2717,3751,4972,5404,5762,5875,5161,4526,3415,2525,1883,1294,1116]02622[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,1,2,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,3,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,3,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]00[NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]NANANANANA
chr1:10057["A","C"]NATrueTrueTrueTrueTrueFalseNA[(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA)]NANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANA{"AS_VQSR"}[(3,2.64e-05,113536,0),(3,2.41e-05,124252,0),(2,3.78e-05,52912,0),(0,0.00e+00,6886,0),(0,0.00e+00,266,0),(0,0.00e+00,1504,0),(0,0.00e+00,742,0),(0,0.00e+00,2768,0),(1,3.25e-05,30736,0),(0,0.00e+00,3850,0),(0,0.00e+00,3424,0),(0,0.00e+00,10448,0),(2,3.37e-05,59380,0),(1,1.85e-05,54156,0),(2,6.43e-05,31106,0),(0,0.00e+00,1472,0),(0,0.00e+00,132,0),(0,0.00e+00,764,0),(0,0.00e+00,378,0),(0,0.00e+00,1532,0),(0,0.00e+00,16598,0),(0,0.00e+00,1670,0),(0,0.00e+00,784,0),(0,0.00e+00,4944,0),(0,0.00e+00,21806,0),(0,0.00e+00,5414,0),(0,0.00e+00,134,0),(0,0.00e+00,740,0),(0,0.00e+00,364,0),(0,0.00e+00,1236,0),(1,7.07e-05,14138,0),(0,0.00e+00,2180,0),(0,0.00e+00,2640,0),(0,0.00e+00,5504,0)][(7.02e-06,2.95e-06),(6.27e-06,2.35e-06),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]23.78e-05529120"nfe"6.27e-06"nfe"2.35e-06"nfe"[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,25460,7448,6933,4978,2881,2833,2048,1038,1129,685,321,364,212,90,117,231]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,2,23,108,320,888,1844,3110,4447,5361,6012,6379,5879,5289,4273,3400,2503,1787,1521]03622[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,1,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][995,1036,1539,1788,25460,7448,6933,4978,2881,2833,2048,1038,1129,685,321,364,212,90,117,231]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][2,6,39,104,247,638,1325,2417,3685,5047,5927,6484,6763,6192,5525,4439,3518,2603,1850,1572]03743[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,1,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,1,0,1,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]00[(3,2.64e-05,113536,0),(3,2.41e-05,124252,0),(2,3.78e-05,52912,0),(0,0.00e+00,6886,0),(0,0.00e+00,266,0),(0,0.00e+00,1504,0),(0,0.00e+00,742,0),(0,0.00e+00,2768,0),(1,3.25e-05,30736,0),(0,0.00e+00,3850,0),(0,0.00e+00,3424,0),(0,0.00e+00,10448,0),(2,3.37e-05,59380,0),(1,1.85e-05,54156,0),(2,6.43e-05,31106,0),(0,0.00e+00,1472,0),(0,0.00e+00,132,0),(0,0.00e+00,764,0),(0,0.00e+00,378,0),(0,0.00e+00,1532,0),(0,0.00e+00,16598,0),(0,0.00e+00,1670,0),(0,0.00e+00,784,0),(0,0.00e+00,4944,0),(0,0.00e+00,21806,0),(0,0.00e+00,5414,0),(0,0.00e+00,134,0),(0,0.00e+00,740,0),(0,0.00e+00,364,0),(0,0.00e+00,1236,0),(1,7.07e-05,14138,0),(0,0.00e+00,2180,0),(0,0.00e+00,2640,0),(0,0.00e+00,5504,0)][(7.02e-06,2.95e-06),(6.27e-06,2.35e-06),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]6.27e-06"nfe"2.35e-06"nfe"23.78e-05529120"nfe"[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,25460,7448,6933,4978,2881,2833,2048,1038,1129,685,321,364,212,90,117,231]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,2,23,108,320,888,1844,3110,4447,5361,6012,6379,5879,5289,4273,3400,2503,1787,1521]03622[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,1,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][995,1036,1539,1788,25460,7448,6933,4978,2881,2833,2048,1038,1129,685,321,364,212,90,117,231]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][2,6,39,104,247,638,1325,2417,3685,5047,5927,6484,6763,6192,5525,4439,3518,2603,1850,1572]03743[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,1,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,1,0,1,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]00[NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]NANANANANA

showing top 5 rows

\n" - ], - "text/plain": [ - "+---------------+------------+-------------------------------+\n", - "| locus | alleles | region_flags.fail_interval_qc |\n", - "+---------------+------------+-------------------------------+\n", - "| locus | array | bool |\n", - "+---------------+------------+-------------------------------+\n", - "| chr1:10031 | [\"T\",\"C\"] | NA |\n", - "| chr1:10037 | [\"T\",\"C\"] | NA |\n", - "| chr1:10043 | [\"T\",\"C\"] | NA |\n", - "| chr1:10055 | [\"T\",\"C\"] | NA |\n", - "| chr1:10057 | [\"A\",\"C\"] | NA |\n", - "+---------------+------------+-------------------------------+\n", - "\n", - "+-------------------------------------------+\n", - "| region_flags.outside_broad_capture_region |\n", - "+-------------------------------------------+\n", - "| bool |\n", - "+-------------------------------------------+\n", - "| True |\n", - "| True |\n", - "| True |\n", - "| True |\n", - "| True |\n", - "+-------------------------------------------+\n", - "\n", - "+-----------------------------------------+\n", - "| region_flags.outside_ukb_capture_region |\n", - "+-----------------------------------------+\n", - "| bool |\n", - "+-----------------------------------------+\n", - "| True |\n", - "| True |\n", - "| True |\n", - "| True |\n", - "| True |\n", - "+-----------------------------------------+\n", - "\n", - "+-------------------------------------------+\n", - "| region_flags.outside_broad_calling_region |\n", - "+-------------------------------------------+\n", - "| bool |\n", - "+-------------------------------------------+\n", - "| True |\n", - "| True |\n", - "| True |\n", - "| True |\n", - "| True |\n", - "+-------------------------------------------+\n", - "\n", - "+-----------------------------------------+-----------------------------------+\n", - "| region_flags.outside_ukb_calling_region | region_flags.not_called_in_exomes |\n", - "+-----------------------------------------+-----------------------------------+\n", - "| bool | bool |\n", - "+-----------------------------------------+-----------------------------------+\n", - "| True | True |\n", - "| True | True |\n", - "| True | True |\n", - "| True | True |\n", - "| True | True |\n", - "+-----------------------------------------+-----------------------------------+\n", - "\n", - "+------------------------------------+----------------+\n", - "| region_flags.not_called_in_genomes | exomes.filters |\n", - "+------------------------------------+----------------+\n", - "| bool | set |\n", - "+------------------------------------+----------------+\n", - "| False | NA |\n", - "| False | NA |\n", - "| False | NA |\n", - "| False | NA |\n", - "| False | NA |\n", - "+------------------------------------+----------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| exomes.freq |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(N... |\n", - "| [(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(N... |\n", - "| [(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(N... |\n", - "| [(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(N... |\n", - "| [(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(N... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+-----------------------------------------------+------------------+\n", - "| exomes.faf | exomes.grpmax.AC |\n", - "+-----------------------------------------------+------------------+\n", - "| array | int32 |\n", - "+-----------------------------------------------+------------------+\n", - "| NA | NA |\n", - "| NA | NA |\n", - "| NA | NA |\n", - "| NA | NA |\n", - "| NA | NA |\n", - "+-----------------------------------------------+------------------+\n", - "\n", - "+------------------+------------------+--------------------------------+\n", - "| exomes.grpmax.AF | exomes.grpmax.AN | exomes.grpmax.homozygote_count |\n", - "+------------------+------------------+--------------------------------+\n", - "| float64 | int32 | int64 |\n", - "+------------------+------------------+--------------------------------+\n", - "| NA | NA | NA |\n", - "| NA | NA | NA |\n", - "| NA | NA | NA |\n", - "| NA | NA | NA |\n", - "| NA | NA | NA |\n", - "+------------------+------------------+--------------------------------+\n", - "\n", - "+-----------------------+-------------------------+\n", - "| exomes.grpmax.gen_anc | exomes.fafmax.faf95_max |\n", - "+-----------------------+-------------------------+\n", - "| str | float64 |\n", - "+-----------------------+-------------------------+\n", - "| NA | NA |\n", - "| NA | NA |\n", - "| NA | NA |\n", - "| NA | NA |\n", - "| NA | NA |\n", - "+-----------------------+-------------------------+\n", - "\n", - "+---------------------------------+-------------------------+\n", - "| exomes.fafmax.faf95_max_gen_anc | exomes.fafmax.faf99_max |\n", - "+---------------------------------+-------------------------+\n", - "| str | float64 |\n", - "+---------------------------------+-------------------------+\n", - "| NA | NA |\n", - "| NA | NA |\n", - "| NA | NA |\n", - "| NA | NA |\n", - "| NA | NA |\n", - "+---------------------------------+-------------------------+\n", - "\n", - "+---------------------------------+\n", - "| exomes.fafmax.faf99_max_gen_anc |\n", - "+---------------------------------+\n", - "| str |\n", - "+---------------------------------+\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "+---------------------------------+\n", - "\n", - "+----------------------------------------------------+\n", - "| exomes.histograms.qual_hists.gq_hist_all.bin_edges |\n", - "+----------------------------------------------------+\n", - "| array |\n", - "+----------------------------------------------------+\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "+----------------------------------------------------+\n", - "\n", - "+---------------------------------------------------+\n", - "| exomes.histograms.qual_hists.gq_hist_all.bin_freq |\n", - "+---------------------------------------------------+\n", - "| array |\n", - "+---------------------------------------------------+\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "+---------------------------------------------------+\n", - "\n", - "+----------------------------------------------------+\n", - "| exomes.histograms.qual_hists.gq_hist_all.n_smaller |\n", - "+----------------------------------------------------+\n", - "| int64 |\n", - "+----------------------------------------------------+\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "+----------------------------------------------------+\n", - "\n", - "+---------------------------------------------------+\n", - "| exomes.histograms.qual_hists.gq_hist_all.n_larger |\n", - "+---------------------------------------------------+\n", - "| int64 |\n", - "+---------------------------------------------------+\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "+---------------------------------------------------+\n", - "\n", - "+----------------------------------------------------+\n", - "| exomes.histograms.qual_hists.dp_hist_all.bin_edges |\n", - "+----------------------------------------------------+\n", - "| array |\n", - "+----------------------------------------------------+\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "+----------------------------------------------------+\n", - "\n", - "+---------------------------------------------------+\n", - "| exomes.histograms.qual_hists.dp_hist_all.bin_freq |\n", - "+---------------------------------------------------+\n", - "| array |\n", - "+---------------------------------------------------+\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "+---------------------------------------------------+\n", - "\n", - "+----------------------------------------------------+\n", - "| exomes.histograms.qual_hists.dp_hist_all.n_smaller |\n", - "+----------------------------------------------------+\n", - "| int64 |\n", - "+----------------------------------------------------+\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "+----------------------------------------------------+\n", - "\n", - "+---------------------------------------------------+\n", - "| exomes.histograms.qual_hists.dp_hist_all.n_larger |\n", - "+---------------------------------------------------+\n", - "| int64 |\n", - "+---------------------------------------------------+\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "+---------------------------------------------------+\n", - "\n", - "+----------------------------------------------------+\n", - "| exomes.histograms.qual_hists.gq_hist_alt.bin_edges |\n", - "+----------------------------------------------------+\n", - "| array |\n", - "+----------------------------------------------------+\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "+----------------------------------------------------+\n", - "\n", - "+---------------------------------------------------+\n", - "| exomes.histograms.qual_hists.gq_hist_alt.bin_freq |\n", - "+---------------------------------------------------+\n", - "| array |\n", - "+---------------------------------------------------+\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "+---------------------------------------------------+\n", - "\n", - "+----------------------------------------------------+\n", - "| exomes.histograms.qual_hists.gq_hist_alt.n_smaller |\n", - "+----------------------------------------------------+\n", - "| int64 |\n", - "+----------------------------------------------------+\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "+----------------------------------------------------+\n", - "\n", - "+---------------------------------------------------+\n", - "| exomes.histograms.qual_hists.gq_hist_alt.n_larger |\n", - "+---------------------------------------------------+\n", - "| int64 |\n", - "+---------------------------------------------------+\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "+---------------------------------------------------+\n", - "\n", - "+----------------------------------------------------+\n", - "| exomes.histograms.qual_hists.dp_hist_alt.bin_edges |\n", - "+----------------------------------------------------+\n", - "| array |\n", - "+----------------------------------------------------+\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "+----------------------------------------------------+\n", - "\n", - "+---------------------------------------------------+\n", - "| exomes.histograms.qual_hists.dp_hist_alt.bin_freq |\n", - "+---------------------------------------------------+\n", - "| array |\n", - "+---------------------------------------------------+\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "+---------------------------------------------------+\n", - "\n", - "+----------------------------------------------------+\n", - "| exomes.histograms.qual_hists.dp_hist_alt.n_smaller |\n", - "+----------------------------------------------------+\n", - "| int64 |\n", - "+----------------------------------------------------+\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "+----------------------------------------------------+\n", - "\n", - "+---------------------------------------------------+\n", - "| exomes.histograms.qual_hists.dp_hist_alt.n_larger |\n", - "+---------------------------------------------------+\n", - "| int64 |\n", - "+---------------------------------------------------+\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "+---------------------------------------------------+\n", - "\n", - "+----------------------------------------------------+\n", - "| exomes.histograms.qual_hists.ab_hist_alt.bin_edges |\n", - "+----------------------------------------------------+\n", - "| array |\n", - "+----------------------------------------------------+\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "+----------------------------------------------------+\n", - "\n", - "+---------------------------------------------------+\n", - "| exomes.histograms.qual_hists.ab_hist_alt.bin_freq |\n", - "+---------------------------------------------------+\n", - "| array |\n", - "+---------------------------------------------------+\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "+---------------------------------------------------+\n", - "\n", - "+----------------------------------------------------+\n", - "| exomes.histograms.qual_hists.ab_hist_alt.n_smaller |\n", - "+----------------------------------------------------+\n", - "| int64 |\n", - "+----------------------------------------------------+\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "+----------------------------------------------------+\n", - "\n", - "+---------------------------------------------------+\n", - "| exomes.histograms.qual_hists.ab_hist_alt.n_larger |\n", - "+---------------------------------------------------+\n", - "| int64 |\n", - "+---------------------------------------------------+\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "+---------------------------------------------------+\n", - "\n", - "+--------------------------------------------------------+\n", - "| exomes.histograms.raw_qual_hists.gq_hist_all.bin_edges |\n", - "+--------------------------------------------------------+\n", - "| array |\n", - "+--------------------------------------------------------+\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "+--------------------------------------------------------+\n", - "\n", - "+-------------------------------------------------------+\n", - "| exomes.histograms.raw_qual_hists.gq_hist_all.bin_freq |\n", - "+-------------------------------------------------------+\n", - "| array |\n", - "+-------------------------------------------------------+\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "+-------------------------------------------------------+\n", - "\n", - "+--------------------------------------------------------+\n", - "| exomes.histograms.raw_qual_hists.gq_hist_all.n_smaller |\n", - "+--------------------------------------------------------+\n", - "| int64 |\n", - "+--------------------------------------------------------+\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "+--------------------------------------------------------+\n", - "\n", - "+-------------------------------------------------------+\n", - "| exomes.histograms.raw_qual_hists.gq_hist_all.n_larger |\n", - "+-------------------------------------------------------+\n", - "| int64 |\n", - "+-------------------------------------------------------+\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "+-------------------------------------------------------+\n", - "\n", - "+--------------------------------------------------------+\n", - "| exomes.histograms.raw_qual_hists.dp_hist_all.bin_edges |\n", - "+--------------------------------------------------------+\n", - "| array |\n", - "+--------------------------------------------------------+\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "+--------------------------------------------------------+\n", - "\n", - "+-------------------------------------------------------+\n", - "| exomes.histograms.raw_qual_hists.dp_hist_all.bin_freq |\n", - "+-------------------------------------------------------+\n", - "| array |\n", - "+-------------------------------------------------------+\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "+-------------------------------------------------------+\n", - "\n", - "+--------------------------------------------------------+\n", - "| exomes.histograms.raw_qual_hists.dp_hist_all.n_smaller |\n", - "+--------------------------------------------------------+\n", - "| int64 |\n", - "+--------------------------------------------------------+\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "+--------------------------------------------------------+\n", - "\n", - "+-------------------------------------------------------+\n", - "| exomes.histograms.raw_qual_hists.dp_hist_all.n_larger |\n", - "+-------------------------------------------------------+\n", - "| int64 |\n", - "+-------------------------------------------------------+\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "+-------------------------------------------------------+\n", - "\n", - "+--------------------------------------------------------+\n", - "| exomes.histograms.raw_qual_hists.gq_hist_alt.bin_edges |\n", - "+--------------------------------------------------------+\n", - "| array |\n", - "+--------------------------------------------------------+\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "+--------------------------------------------------------+\n", - "\n", - "+-------------------------------------------------------+\n", - "| exomes.histograms.raw_qual_hists.gq_hist_alt.bin_freq |\n", - "+-------------------------------------------------------+\n", - "| array |\n", - "+-------------------------------------------------------+\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "+-------------------------------------------------------+\n", - "\n", - "+--------------------------------------------------------+\n", - "| exomes.histograms.raw_qual_hists.gq_hist_alt.n_smaller |\n", - "+--------------------------------------------------------+\n", - "| int64 |\n", - "+--------------------------------------------------------+\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "+--------------------------------------------------------+\n", - "\n", - "+-------------------------------------------------------+\n", - "| exomes.histograms.raw_qual_hists.gq_hist_alt.n_larger |\n", - "+-------------------------------------------------------+\n", - "| int64 |\n", - "+-------------------------------------------------------+\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "+-------------------------------------------------------+\n", - "\n", - "+--------------------------------------------------------+\n", - "| exomes.histograms.raw_qual_hists.dp_hist_alt.bin_edges |\n", - "+--------------------------------------------------------+\n", - "| array |\n", - "+--------------------------------------------------------+\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "+--------------------------------------------------------+\n", - "\n", - "+-------------------------------------------------------+\n", - "| exomes.histograms.raw_qual_hists.dp_hist_alt.bin_freq |\n", - "+-------------------------------------------------------+\n", - "| array |\n", - "+-------------------------------------------------------+\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "+-------------------------------------------------------+\n", - "\n", - "+--------------------------------------------------------+\n", - "| exomes.histograms.raw_qual_hists.dp_hist_alt.n_smaller |\n", - "+--------------------------------------------------------+\n", - "| int64 |\n", - "+--------------------------------------------------------+\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "+--------------------------------------------------------+\n", - "\n", - "+-------------------------------------------------------+\n", - "| exomes.histograms.raw_qual_hists.dp_hist_alt.n_larger |\n", - "+-------------------------------------------------------+\n", - "| int64 |\n", - "+-------------------------------------------------------+\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "+-------------------------------------------------------+\n", - "\n", - "+--------------------------------------------------------+\n", - "| exomes.histograms.raw_qual_hists.ab_hist_alt.bin_edges |\n", - "+--------------------------------------------------------+\n", - "| array |\n", - "+--------------------------------------------------------+\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "+--------------------------------------------------------+\n", - "\n", - "+-------------------------------------------------------+\n", - "| exomes.histograms.raw_qual_hists.ab_hist_alt.bin_freq |\n", - "+-------------------------------------------------------+\n", - "| array |\n", - "+-------------------------------------------------------+\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "+-------------------------------------------------------+\n", - "\n", - "+--------------------------------------------------------+\n", - "| exomes.histograms.raw_qual_hists.ab_hist_alt.n_smaller |\n", - "+--------------------------------------------------------+\n", - "| int64 |\n", - "+--------------------------------------------------------+\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "+--------------------------------------------------------+\n", - "\n", - "+-------------------------------------------------------+\n", - "| exomes.histograms.raw_qual_hists.ab_hist_alt.n_larger |\n", - "+-------------------------------------------------------+\n", - "| int64 |\n", - "+-------------------------------------------------------+\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "+-------------------------------------------------------+\n", - "\n", - "+----------------------------------------------------+\n", - "| exomes.histograms.age_hists.age_hist_het.bin_edges |\n", - "+----------------------------------------------------+\n", - "| array |\n", - "+----------------------------------------------------+\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "+----------------------------------------------------+\n", - "\n", - "+---------------------------------------------------+\n", - "| exomes.histograms.age_hists.age_hist_het.bin_freq |\n", - "+---------------------------------------------------+\n", - "| array |\n", - "+---------------------------------------------------+\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "+---------------------------------------------------+\n", - "\n", - "+----------------------------------------------------+\n", - "| exomes.histograms.age_hists.age_hist_het.n_smaller |\n", - "+----------------------------------------------------+\n", - "| int64 |\n", - "+----------------------------------------------------+\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "+----------------------------------------------------+\n", - "\n", - "+---------------------------------------------------+\n", - "| exomes.histograms.age_hists.age_hist_het.n_larger |\n", - "+---------------------------------------------------+\n", - "| int64 |\n", - "+---------------------------------------------------+\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "+---------------------------------------------------+\n", - "\n", - "+----------------------------------------------------+\n", - "| exomes.histograms.age_hists.age_hist_hom.bin_edges |\n", - "+----------------------------------------------------+\n", - "| array |\n", - "+----------------------------------------------------+\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "+----------------------------------------------------+\n", - "\n", - "+---------------------------------------------------+\n", - "| exomes.histograms.age_hists.age_hist_hom.bin_freq |\n", - "+---------------------------------------------------+\n", - "| array |\n", - "+---------------------------------------------------+\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "+---------------------------------------------------+\n", - "\n", - "+----------------------------------------------------+\n", - "| exomes.histograms.age_hists.age_hist_hom.n_smaller |\n", - "+----------------------------------------------------+\n", - "| int64 |\n", - "+----------------------------------------------------+\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "+----------------------------------------------------+\n", - "\n", - "+---------------------------------------------------+-------------------+\n", - "| exomes.histograms.age_hists.age_hist_hom.n_larger | genomes.filters |\n", - "+---------------------------------------------------+-------------------+\n", - "| int64 | set |\n", - "+---------------------------------------------------+-------------------+\n", - "| NA | {\"AC0\",\"AS_VQSR\"} |\n", - "| NA | {\"AS_VQSR\"} |\n", - "| NA | {\"AS_VQSR\"} |\n", - "| NA | {\"AS_VQSR\"} |\n", - "| NA | {\"AS_VQSR\"} |\n", - "+---------------------------------------------------+-------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| genomes.freq |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [(0,0.00e+00,56642,0),(2,1.65e-05,121094,0),(0,0.00e+00,25546,0),(0,0.00e... |\n", - "| [(2,2.60e-05,76882,0),(4,3.15e-05,126902,0),(0,0.00e+00,34670,0),(1,1.80e... |\n", - "| [(1,1.17e-05,85634,0),(1,8.24e-06,121430,0),(0,0.00e+00,39236,0),(0,0.00e... |\n", - "| [(1,1.06e-05,94224,0),(5,4.64e-05,107704,0),(0,0.00e+00,44382,0),(1,1.80e... |\n", - "| [(3,2.64e-05,113536,0),(3,2.41e-05,124252,0),(2,3.78e-05,52912,0),(0,0.00... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| genomes.faf |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.... |\n", - "| [(4.32e-06,1.62e-06),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.... |\n", - "| [(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.... |\n", - "| [(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.... |\n", - "| [(7.02e-06,2.95e-06),(6.27e-06,2.35e-06),(0.00e+00,0.00e+00),(0.00e+00,0.... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+-------------------+-------------------+-------------------+\n", - "| genomes.grpmax.AC | genomes.grpmax.AF | genomes.grpmax.AN |\n", - "+-------------------+-------------------+-------------------+\n", - "| int32 | float64 | int32 |\n", - "+-------------------+-------------------+-------------------+\n", - "| NA | NA | NA |\n", - "| 1 | 4.07e-04 | 2456 |\n", - "| 1 | 4.39e-05 | 22760 |\n", - "| NA | NA | NA |\n", - "| 2 | 3.78e-05 | 52912 |\n", - "+-------------------+-------------------+-------------------+\n", - "\n", - "+---------------------------------+------------------------+\n", - "| genomes.grpmax.homozygote_count | genomes.grpmax.gen_anc |\n", - "+---------------------------------+------------------------+\n", - "| int32 | str |\n", - "+---------------------------------+------------------------+\n", - "| NA | NA |\n", - "| 0 | \"eas\" |\n", - "| 0 | \"afr\" |\n", - "| NA | NA |\n", - "| 0 | \"nfe\" |\n", - "+---------------------------------+------------------------+\n", - "\n", - "+--------------------------+----------------------------------+\n", - "| genomes.fafmax.faf95_max | genomes.fafmax.faf95_max_gen_anc |\n", - "+--------------------------+----------------------------------+\n", - "| float64 | str |\n", - "+--------------------------+----------------------------------+\n", - "| NA | NA |\n", - "| NA | NA |\n", - "| NA | NA |\n", - "| NA | NA |\n", - "| 6.27e-06 | \"nfe\" |\n", - "+--------------------------+----------------------------------+\n", - "\n", - "+--------------------------+----------------------------------+\n", - "| genomes.fafmax.faf99_max | genomes.fafmax.faf99_max_gen_anc |\n", - "+--------------------------+----------------------------------+\n", - "| float64 | str |\n", - "+--------------------------+----------------------------------+\n", - "| NA | NA |\n", - "| NA | NA |\n", - "| NA | NA |\n", - "| NA | NA |\n", - "| 2.35e-06 | \"nfe\" |\n", - "+--------------------------+----------------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| genomes.histograms.qual_hists.gq_hist_all.bin_edges |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| genomes.histograms.qual_hists.gq_hist_all.bin_freq |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [0,0,0,0,23215,2435,1647,594,176,118,49,29,19,9,11,6,5,2,4,2] |\n", - "| [0,0,0,0,29394,3741,2868,1281,401,358,163,63,69,31,18,20,10,4,5,15] |\n", - "| [0,0,0,0,31093,4532,3696,1752,595,585,261,88,82,59,17,26,14,5,3,9] |\n", - "| [0,0,0,0,25677,6107,5433,3528,1753,1702,1130,485,518,282,119,125,77,35,29... |\n", - "| [0,0,0,0,25460,7448,6933,4978,2881,2833,2048,1038,1129,685,321,364,212,90... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+-----------------------------------------------------+\n", - "| genomes.histograms.qual_hists.gq_hist_all.n_smaller |\n", - "+-----------------------------------------------------+\n", - "| int64 |\n", - "+-----------------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+-----------------------------------------------------+\n", - "\n", - "+----------------------------------------------------+\n", - "| genomes.histograms.qual_hists.gq_hist_all.n_larger |\n", - "+----------------------------------------------------+\n", - "| int64 |\n", - "+----------------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+----------------------------------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| genomes.histograms.qual_hists.dp_hist_all.bin_edges |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| genomes.histograms.qual_hists.dp_hist_all.bin_freq |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [0,0,16,121,475,973,1736,2409,2950,3134,2995,2803,2514,2194,1773,1335,911... |\n", - "| [0,0,9,69,387,913,1737,2859,3749,4216,4302,4223,3745,3280,2661,1954,1380,... |\n", - "| [0,0,8,40,264,690,1525,2691,3754,4574,4813,4940,4490,3907,3242,2387,1704,... |\n", - "| [0,0,4,22,120,354,999,1950,3037,4168,4734,5196,5380,4766,4238,3206,2398,1... |\n", - "| [0,0,2,23,108,320,888,1844,3110,4447,5361,6012,6379,5879,5289,4273,3400,2... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+-----------------------------------------------------+\n", - "| genomes.histograms.qual_hists.dp_hist_all.n_smaller |\n", - "+-----------------------------------------------------+\n", - "| int64 |\n", - "+-----------------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+-----------------------------------------------------+\n", - "\n", - "+----------------------------------------------------+\n", - "| genomes.histograms.qual_hists.dp_hist_all.n_larger |\n", - "+----------------------------------------------------+\n", - "| int64 |\n", - "+----------------------------------------------------+\n", - "| 527 |\n", - "| 888 |\n", - "| 1232 |\n", - "| 2440 |\n", - "| 3622 |\n", - "+----------------------------------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| genomes.histograms.qual_hists.gq_hist_alt.bin_edges |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+----------------------------------------------------+\n", - "| genomes.histograms.qual_hists.gq_hist_alt.bin_freq |\n", - "+----------------------------------------------------+\n", - "| array |\n", - "+----------------------------------------------------+\n", - "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0] |\n", - "+----------------------------------------------------+\n", - "\n", - "+-----------------------------------------------------+\n", - "| genomes.histograms.qual_hists.gq_hist_alt.n_smaller |\n", - "+-----------------------------------------------------+\n", - "| int64 |\n", - "+-----------------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+-----------------------------------------------------+\n", - "\n", - "+----------------------------------------------------+\n", - "| genomes.histograms.qual_hists.gq_hist_alt.n_larger |\n", - "+----------------------------------------------------+\n", - "| int64 |\n", - "+----------------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+----------------------------------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| genomes.histograms.qual_hists.dp_hist_alt.bin_edges |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+----------------------------------------------------+\n", - "| genomes.histograms.qual_hists.dp_hist_alt.bin_freq |\n", - "+----------------------------------------------------+\n", - "| array |\n", - "+----------------------------------------------------+\n", - "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,1,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "+----------------------------------------------------+\n", - "\n", - "+-----------------------------------------------------+\n", - "| genomes.histograms.qual_hists.dp_hist_alt.n_smaller |\n", - "+-----------------------------------------------------+\n", - "| int64 |\n", - "+-----------------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+-----------------------------------------------------+\n", - "\n", - "+----------------------------------------------------+\n", - "| genomes.histograms.qual_hists.dp_hist_alt.n_larger |\n", - "+----------------------------------------------------+\n", - "| int64 |\n", - "+----------------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+----------------------------------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| genomes.histograms.qual_hists.ab_hist_alt.bin_edges |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", - "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", - "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", - "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", - "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+----------------------------------------------------+\n", - "| genomes.histograms.qual_hists.ab_hist_alt.bin_freq |\n", - "+----------------------------------------------------+\n", - "| array |\n", - "+----------------------------------------------------+\n", - "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "+----------------------------------------------------+\n", - "\n", - "+-----------------------------------------------------+\n", - "| genomes.histograms.qual_hists.ab_hist_alt.n_smaller |\n", - "+-----------------------------------------------------+\n", - "| int64 |\n", - "+-----------------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+-----------------------------------------------------+\n", - "\n", - "+----------------------------------------------------+\n", - "| genomes.histograms.qual_hists.ab_hist_alt.n_larger |\n", - "+----------------------------------------------------+\n", - "| int64 |\n", - "+----------------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+----------------------------------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| genomes.histograms.raw_qual_hists.gq_hist_all.bin_edges |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| genomes.histograms.raw_qual_hists.gq_hist_all.bin_freq |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [14149,7330,6840,3904,23217,2436,1647,594,176,118,49,29,19,9,11,6,5,2,4,2] |\n", - "| [10121,5441,5610,3838,29394,3741,2868,1281,401,358,163,63,69,31,18,20,10,... |\n", - "| [6578,3782,4202,3336,31093,4532,3696,1752,595,585,261,88,82,59,17,26,14,5... |\n", - "| [1429,1382,1901,2026,25677,6108,5433,3528,1753,1702,1130,485,518,282,119,... |\n", - "| [995,1036,1539,1788,25460,7448,6933,4978,2881,2833,2048,1038,1129,685,321... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+---------------------------------------------------------+\n", - "| genomes.histograms.raw_qual_hists.gq_hist_all.n_smaller |\n", - "+---------------------------------------------------------+\n", - "| int64 |\n", - "+---------------------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+---------------------------------------------------------+\n", - "\n", - "+--------------------------------------------------------+\n", - "| genomes.histograms.raw_qual_hists.gq_hist_all.n_larger |\n", - "+--------------------------------------------------------+\n", - "| int64 |\n", - "+--------------------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+--------------------------------------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| genomes.histograms.raw_qual_hists.dp_hist_all.bin_edges |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| genomes.histograms.raw_qual_hists.dp_hist_all.bin_freq |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [10,66,471,1445,2990,5808,6940,7906,7262,6236,4943,3919,3129,2527,1993,14... |\n", - "| [7,37,269,903,1948,4127,5519,7075,7322,6972,6095,5249,4374,3624,2893,2106... |\n", - "| [2,24,149,466,1201,2614,4035,5568,6331,6725,6267,5855,5101,4268,3465,2554... |\n", - "| [1,9,42,122,294,787,1537,2717,3751,4972,5404,5762,5875,5161,4526,3415,252... |\n", - "| [2,6,39,104,247,638,1325,2417,3685,5047,5927,6484,6763,6192,5525,4439,351... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+---------------------------------------------------------+\n", - "| genomes.histograms.raw_qual_hists.dp_hist_all.n_smaller |\n", - "+---------------------------------------------------------+\n", - "| int64 |\n", - "+---------------------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+---------------------------------------------------------+\n", - "\n", - "+--------------------------------------------------------+\n", - "| genomes.histograms.raw_qual_hists.dp_hist_all.n_larger |\n", - "+--------------------------------------------------------+\n", - "| int64 |\n", - "+--------------------------------------------------------+\n", - "| 744 |\n", - "| 1130 |\n", - "| 1487 |\n", - "| 2622 |\n", - "| 3743 |\n", - "+--------------------------------------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| genomes.histograms.raw_qual_hists.gq_hist_alt.bin_edges |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+--------------------------------------------------------+\n", - "| genomes.histograms.raw_qual_hists.gq_hist_alt.bin_freq |\n", - "+--------------------------------------------------------+\n", - "| array |\n", - "+--------------------------------------------------------+\n", - "| [0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,2,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,1,2,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0] |\n", - "+--------------------------------------------------------+\n", - "\n", - "+---------------------------------------------------------+\n", - "| genomes.histograms.raw_qual_hists.gq_hist_alt.n_smaller |\n", - "+---------------------------------------------------------+\n", - "| int64 |\n", - "+---------------------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+---------------------------------------------------------+\n", - "\n", - "+--------------------------------------------------------+\n", - "| genomes.histograms.raw_qual_hists.gq_hist_alt.n_larger |\n", - "+--------------------------------------------------------+\n", - "| int64 |\n", - "+--------------------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+--------------------------------------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| genomes.histograms.raw_qual_hists.dp_hist_alt.bin_edges |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+--------------------------------------------------------+\n", - "| genomes.histograms.raw_qual_hists.dp_hist_alt.bin_freq |\n", - "+--------------------------------------------------------+\n", - "| array |\n", - "+--------------------------------------------------------+\n", - "| [0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,2,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,3,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,1,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "+--------------------------------------------------------+\n", - "\n", - "+---------------------------------------------------------+\n", - "| genomes.histograms.raw_qual_hists.dp_hist_alt.n_smaller |\n", - "+---------------------------------------------------------+\n", - "| int64 |\n", - "+---------------------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+---------------------------------------------------------+\n", - "\n", - "+--------------------------------------------------------+\n", - "| genomes.histograms.raw_qual_hists.dp_hist_alt.n_larger |\n", - "+--------------------------------------------------------+\n", - "| int64 |\n", - "+--------------------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+--------------------------------------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| genomes.histograms.raw_qual_hists.ab_hist_alt.bin_edges |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", - "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", - "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", - "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", - "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+--------------------------------------------------------+\n", - "| genomes.histograms.raw_qual_hists.ab_hist_alt.bin_freq |\n", - "+--------------------------------------------------------+\n", - "| array |\n", - "+--------------------------------------------------------+\n", - "| [0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,3,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "+--------------------------------------------------------+\n", - "\n", - "+---------------------------------------------------------+\n", - "| genomes.histograms.raw_qual_hists.ab_hist_alt.n_smaller |\n", - "+---------------------------------------------------------+\n", - "| int64 |\n", - "+---------------------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+---------------------------------------------------------+\n", - "\n", - "+--------------------------------------------------------+\n", - "| genomes.histograms.raw_qual_hists.ab_hist_alt.n_larger |\n", - "+--------------------------------------------------------+\n", - "| int64 |\n", - "+--------------------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+--------------------------------------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| genomes.histograms.age_hists.age_hist_het.bin_edges |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", - "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", - "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", - "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", - "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+----------------------------------------------------+\n", - "| genomes.histograms.age_hists.age_hist_het.bin_freq |\n", - "+----------------------------------------------------+\n", - "| array |\n", - "+----------------------------------------------------+\n", - "| [0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,1,0,0,1,0,0,0,0,0] |\n", - "| [0,0,1,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,1,0,1,0,0,0,0,0] |\n", - "+----------------------------------------------------+\n", - "\n", - "+-----------------------------------------------------+\n", - "| genomes.histograms.age_hists.age_hist_het.n_smaller |\n", - "+-----------------------------------------------------+\n", - "| int64 |\n", - "+-----------------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+-----------------------------------------------------+\n", - "\n", - "+----------------------------------------------------+\n", - "| genomes.histograms.age_hists.age_hist_het.n_larger |\n", - "+----------------------------------------------------+\n", - "| int64 |\n", - "+----------------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+----------------------------------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| genomes.histograms.age_hists.age_hist_hom.bin_edges |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", - "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", - "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", - "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", - "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+----------------------------------------------------+\n", - "| genomes.histograms.age_hists.age_hist_hom.bin_freq |\n", - "+----------------------------------------------------+\n", - "| array |\n", - "+----------------------------------------------------+\n", - "| [0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,0,0,0,0,0] |\n", - "+----------------------------------------------------+\n", - "\n", - "+-----------------------------------------------------+\n", - "| genomes.histograms.age_hists.age_hist_hom.n_smaller |\n", - "+-----------------------------------------------------+\n", - "| int64 |\n", - "+-----------------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+-----------------------------------------------------+\n", - "\n", - "+----------------------------------------------------+\n", - "| genomes.histograms.age_hists.age_hist_hom.n_larger |\n", - "+----------------------------------------------------+\n", - "| int64 |\n", - "+----------------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+----------------------------------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| joint.freq |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [(0,0.00e+00,56642,0),(2,1.65e-05,121094,0),(0,0.00e+00,25546,0),(0,0.00e... |\n", - "| [(2,2.60e-05,76882,0),(4,3.15e-05,126902,0),(0,0.00e+00,34670,0),(1,1.80e... |\n", - "| [(1,1.17e-05,85634,0),(1,8.24e-06,121430,0),(0,0.00e+00,39236,0),(0,0.00e... |\n", - "| [(1,1.06e-05,94224,0),(5,4.64e-05,107704,0),(0,0.00e+00,44382,0),(1,1.80e... |\n", - "| [(3,2.64e-05,113536,0),(3,2.41e-05,124252,0),(2,3.78e-05,52912,0),(0,0.00... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| joint.faf |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.... |\n", - "| [(4.32e-06,1.62e-06),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.... |\n", - "| [(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.... |\n", - "| [(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.... |\n", - "| [(7.02e-06,2.95e-06),(6.27e-06,2.35e-06),(0.00e+00,0.00e+00),(0.00e+00,0.... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+------------------------+--------------------------------+\n", - "| joint.fafmax.faf95_max | joint.fafmax.faf95_max_gen_anc |\n", - "+------------------------+--------------------------------+\n", - "| float64 | str |\n", - "+------------------------+--------------------------------+\n", - "| NA | NA |\n", - "| NA | NA |\n", - "| NA | NA |\n", - "| NA | NA |\n", - "| 6.27e-06 | \"nfe\" |\n", - "+------------------------+--------------------------------+\n", - "\n", - "+------------------------+--------------------------------+-----------------+\n", - "| joint.fafmax.faf99_max | joint.fafmax.faf99_max_gen_anc | joint.grpmax.AC |\n", - "+------------------------+--------------------------------+-----------------+\n", - "| float64 | str | int32 |\n", - "+------------------------+--------------------------------+-----------------+\n", - "| NA | NA | NA |\n", - "| NA | NA | 1 |\n", - "| NA | NA | 1 |\n", - "| NA | NA | NA |\n", - "| 2.35e-06 | \"nfe\" | 2 |\n", - "+------------------------+--------------------------------+-----------------+\n", - "\n", - "+-----------------+-----------------+-------------------------------+\n", - "| joint.grpmax.AF | joint.grpmax.AN | joint.grpmax.homozygote_count |\n", - "+-----------------+-----------------+-------------------------------+\n", - "| float64 | int32 | int32 |\n", - "+-----------------+-----------------+-------------------------------+\n", - "| NA | NA | NA |\n", - "| 4.07e-04 | 2456 | 0 |\n", - "| 4.39e-05 | 22760 | 0 |\n", - "| NA | NA | NA |\n", - "| 3.78e-05 | 52912 | 0 |\n", - "+-----------------+-----------------+-------------------------------+\n", - "\n", - "+----------------------+\n", - "| joint.grpmax.gen_anc |\n", - "+----------------------+\n", - "| str |\n", - "+----------------------+\n", - "| NA |\n", - "| \"eas\" |\n", - "| \"afr\" |\n", - "| NA |\n", - "| \"nfe\" |\n", - "+----------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| joint.histograms.qual_hists.gq_hist_all.bin_edges |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| joint.histograms.qual_hists.gq_hist_all.bin_freq |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [0,0,0,0,23215,2435,1647,594,176,118,49,29,19,9,11,6,5,2,4,2] |\n", - "| [0,0,0,0,29394,3741,2868,1281,401,358,163,63,69,31,18,20,10,4,5,15] |\n", - "| [0,0,0,0,31093,4532,3696,1752,595,585,261,88,82,59,17,26,14,5,3,9] |\n", - "| [0,0,0,0,25677,6107,5433,3528,1753,1702,1130,485,518,282,119,125,77,35,29... |\n", - "| [0,0,0,0,25460,7448,6933,4978,2881,2833,2048,1038,1129,685,321,364,212,90... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+---------------------------------------------------+\n", - "| joint.histograms.qual_hists.gq_hist_all.n_smaller |\n", - "+---------------------------------------------------+\n", - "| int64 |\n", - "+---------------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+---------------------------------------------------+\n", - "\n", - "+--------------------------------------------------+\n", - "| joint.histograms.qual_hists.gq_hist_all.n_larger |\n", - "+--------------------------------------------------+\n", - "| int64 |\n", - "+--------------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+--------------------------------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| joint.histograms.qual_hists.dp_hist_all.bin_edges |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| joint.histograms.qual_hists.dp_hist_all.bin_freq |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [0,0,16,121,475,973,1736,2409,2950,3134,2995,2803,2514,2194,1773,1335,911... |\n", - "| [0,0,9,69,387,913,1737,2859,3749,4216,4302,4223,3745,3280,2661,1954,1380,... |\n", - "| [0,0,8,40,264,690,1525,2691,3754,4574,4813,4940,4490,3907,3242,2387,1704,... |\n", - "| [0,0,4,22,120,354,999,1950,3037,4168,4734,5196,5380,4766,4238,3206,2398,1... |\n", - "| [0,0,2,23,108,320,888,1844,3110,4447,5361,6012,6379,5879,5289,4273,3400,2... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+---------------------------------------------------+\n", - "| joint.histograms.qual_hists.dp_hist_all.n_smaller |\n", - "+---------------------------------------------------+\n", - "| int64 |\n", - "+---------------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+---------------------------------------------------+\n", - "\n", - "+--------------------------------------------------+\n", - "| joint.histograms.qual_hists.dp_hist_all.n_larger |\n", - "+--------------------------------------------------+\n", - "| int64 |\n", - "+--------------------------------------------------+\n", - "| 527 |\n", - "| 888 |\n", - "| 1232 |\n", - "| 2440 |\n", - "| 3622 |\n", - "+--------------------------------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| joint.histograms.qual_hists.gq_hist_alt.bin_edges |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+--------------------------------------------------+\n", - "| joint.histograms.qual_hists.gq_hist_alt.bin_freq |\n", - "+--------------------------------------------------+\n", - "| array |\n", - "+--------------------------------------------------+\n", - "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0] |\n", - "+--------------------------------------------------+\n", - "\n", - "+---------------------------------------------------+\n", - "| joint.histograms.qual_hists.gq_hist_alt.n_smaller |\n", - "+---------------------------------------------------+\n", - "| int64 |\n", - "+---------------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+---------------------------------------------------+\n", - "\n", - "+--------------------------------------------------+\n", - "| joint.histograms.qual_hists.gq_hist_alt.n_larger |\n", - "+--------------------------------------------------+\n", - "| int64 |\n", - "+--------------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+--------------------------------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| joint.histograms.qual_hists.dp_hist_alt.bin_edges |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+--------------------------------------------------+\n", - "| joint.histograms.qual_hists.dp_hist_alt.bin_freq |\n", - "+--------------------------------------------------+\n", - "| array |\n", - "+--------------------------------------------------+\n", - "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,1,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "+--------------------------------------------------+\n", - "\n", - "+---------------------------------------------------+\n", - "| joint.histograms.qual_hists.dp_hist_alt.n_smaller |\n", - "+---------------------------------------------------+\n", - "| int64 |\n", - "+---------------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+---------------------------------------------------+\n", - "\n", - "+--------------------------------------------------+\n", - "| joint.histograms.qual_hists.dp_hist_alt.n_larger |\n", - "+--------------------------------------------------+\n", - "| int64 |\n", - "+--------------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+--------------------------------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| joint.histograms.qual_hists.ab_hist_alt.bin_edges |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", - "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", - "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", - "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", - "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+--------------------------------------------------+\n", - "| joint.histograms.qual_hists.ab_hist_alt.bin_freq |\n", - "+--------------------------------------------------+\n", - "| array |\n", - "+--------------------------------------------------+\n", - "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "+--------------------------------------------------+\n", - "\n", - "+---------------------------------------------------+\n", - "| joint.histograms.qual_hists.ab_hist_alt.n_smaller |\n", - "+---------------------------------------------------+\n", - "| int64 |\n", - "+---------------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+---------------------------------------------------+\n", - "\n", - "+--------------------------------------------------+\n", - "| joint.histograms.qual_hists.ab_hist_alt.n_larger |\n", - "+--------------------------------------------------+\n", - "| int64 |\n", - "+--------------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+--------------------------------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| joint.histograms.raw_qual_hists.gq_hist_all.bin_edges |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| joint.histograms.raw_qual_hists.gq_hist_all.bin_freq |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [14149,7330,6840,3904,23217,2436,1647,594,176,118,49,29,19,9,11,6,5,2,4,2] |\n", - "| [10121,5441,5610,3838,29394,3741,2868,1281,401,358,163,63,69,31,18,20,10,... |\n", - "| [6578,3782,4202,3336,31093,4532,3696,1752,595,585,261,88,82,59,17,26,14,5... |\n", - "| [1429,1382,1901,2026,25677,6108,5433,3528,1753,1702,1130,485,518,282,119,... |\n", - "| [995,1036,1539,1788,25460,7448,6933,4978,2881,2833,2048,1038,1129,685,321... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+-------------------------------------------------------+\n", - "| joint.histograms.raw_qual_hists.gq_hist_all.n_smaller |\n", - "+-------------------------------------------------------+\n", - "| int64 |\n", - "+-------------------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+-------------------------------------------------------+\n", - "\n", - "+------------------------------------------------------+\n", - "| joint.histograms.raw_qual_hists.gq_hist_all.n_larger |\n", - "+------------------------------------------------------+\n", - "| int64 |\n", - "+------------------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+------------------------------------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| joint.histograms.raw_qual_hists.dp_hist_all.bin_edges |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| joint.histograms.raw_qual_hists.dp_hist_all.bin_freq |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [10,66,471,1445,2990,5808,6940,7906,7262,6236,4943,3919,3129,2527,1993,14... |\n", - "| [7,37,269,903,1948,4127,5519,7075,7322,6972,6095,5249,4374,3624,2893,2106... |\n", - "| [2,24,149,466,1201,2614,4035,5568,6331,6725,6267,5855,5101,4268,3465,2554... |\n", - "| [1,9,42,122,294,787,1537,2717,3751,4972,5404,5762,5875,5161,4526,3415,252... |\n", - "| [2,6,39,104,247,638,1325,2417,3685,5047,5927,6484,6763,6192,5525,4439,351... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+-------------------------------------------------------+\n", - "| joint.histograms.raw_qual_hists.dp_hist_all.n_smaller |\n", - "+-------------------------------------------------------+\n", - "| int64 |\n", - "+-------------------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+-------------------------------------------------------+\n", - "\n", - "+------------------------------------------------------+\n", - "| joint.histograms.raw_qual_hists.dp_hist_all.n_larger |\n", - "+------------------------------------------------------+\n", - "| int64 |\n", - "+------------------------------------------------------+\n", - "| 744 |\n", - "| 1130 |\n", - "| 1487 |\n", - "| 2622 |\n", - "| 3743 |\n", - "+------------------------------------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| joint.histograms.raw_qual_hists.gq_hist_alt.bin_edges |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+------------------------------------------------------+\n", - "| joint.histograms.raw_qual_hists.gq_hist_alt.bin_freq |\n", - "+------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------+\n", - "| [0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,2,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,1,2,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0] |\n", - "+------------------------------------------------------+\n", - "\n", - "+-------------------------------------------------------+\n", - "| joint.histograms.raw_qual_hists.gq_hist_alt.n_smaller |\n", - "+-------------------------------------------------------+\n", - "| int64 |\n", - "+-------------------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+-------------------------------------------------------+\n", - "\n", - "+------------------------------------------------------+\n", - "| joint.histograms.raw_qual_hists.gq_hist_alt.n_larger |\n", - "+------------------------------------------------------+\n", - "| int64 |\n", - "+------------------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+------------------------------------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| joint.histograms.raw_qual_hists.dp_hist_alt.bin_edges |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+------------------------------------------------------+\n", - "| joint.histograms.raw_qual_hists.dp_hist_alt.bin_freq |\n", - "+------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------+\n", - "| [0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,2,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,3,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,1,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "+------------------------------------------------------+\n", - "\n", - "+-------------------------------------------------------+\n", - "| joint.histograms.raw_qual_hists.dp_hist_alt.n_smaller |\n", - "+-------------------------------------------------------+\n", - "| int64 |\n", - "+-------------------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+-------------------------------------------------------+\n", - "\n", - "+------------------------------------------------------+\n", - "| joint.histograms.raw_qual_hists.dp_hist_alt.n_larger |\n", - "+------------------------------------------------------+\n", - "| int64 |\n", - "+------------------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+------------------------------------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| joint.histograms.raw_qual_hists.ab_hist_alt.bin_edges |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", - "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", - "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", - "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", - "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+------------------------------------------------------+\n", - "| joint.histograms.raw_qual_hists.ab_hist_alt.bin_freq |\n", - "+------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------+\n", - "| [0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,3,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "+------------------------------------------------------+\n", - "\n", - "+-------------------------------------------------------+\n", - "| joint.histograms.raw_qual_hists.ab_hist_alt.n_smaller |\n", - "+-------------------------------------------------------+\n", - "| int64 |\n", - "+-------------------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+-------------------------------------------------------+\n", - "\n", - "+------------------------------------------------------+\n", - "| joint.histograms.raw_qual_hists.ab_hist_alt.n_larger |\n", - "+------------------------------------------------------+\n", - "| int64 |\n", - "+------------------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+------------------------------------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| joint.histograms.age_hists.age_hist_het.bin_edges |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", - "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", - "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", - "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", - "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+--------------------------------------------------+\n", - "| joint.histograms.age_hists.age_hist_het.bin_freq |\n", - "+--------------------------------------------------+\n", - "| array |\n", - "+--------------------------------------------------+\n", - "| [0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,1,0,0,1,0,0,0,0,0] |\n", - "| [0,0,1,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,1,0,1,0,0,0,0,0] |\n", - "+--------------------------------------------------+\n", - "\n", - "+---------------------------------------------------+\n", - "| joint.histograms.age_hists.age_hist_het.n_smaller |\n", - "+---------------------------------------------------+\n", - "| int64 |\n", - "+---------------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+---------------------------------------------------+\n", - "\n", - "+--------------------------------------------------+\n", - "| joint.histograms.age_hists.age_hist_het.n_larger |\n", - "+--------------------------------------------------+\n", - "| int64 |\n", - "+--------------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+--------------------------------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| joint.histograms.age_hists.age_hist_hom.bin_edges |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", - "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", - "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", - "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", - "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+--------------------------------------------------+\n", - "| joint.histograms.age_hists.age_hist_hom.bin_freq |\n", - "+--------------------------------------------------+\n", - "| array |\n", - "+--------------------------------------------------+\n", - "| [0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,0,0,0,0,0] |\n", - "+--------------------------------------------------+\n", - "\n", - "+---------------------------------------------------+\n", - "| joint.histograms.age_hists.age_hist_hom.n_smaller |\n", - "+---------------------------------------------------+\n", - "| int64 |\n", - "+---------------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+---------------------------------------------------+\n", - "\n", - "+--------------------------------------------------+\n", - "| joint.histograms.age_hists.age_hist_hom.n_larger |\n", - "+--------------------------------------------------+\n", - "| int64 |\n", - "+--------------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+--------------------------------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| freq_comparison_stats.contingency_table_test |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,... |\n", - "| [NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,... |\n", - "| [NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,... |\n", - "| [NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,... |\n", - "| [NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+------------------------------------------------------------+\n", - "| freq_comparison_stats.cochran_mantel_haenszel_test.p_value |\n", - "+------------------------------------------------------------+\n", - "| float64 |\n", - "+------------------------------------------------------------+\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "+------------------------------------------------------------+\n", - "\n", - "+----------------------------------------------------------+\n", - "| freq_comparison_stats.cochran_mantel_haenszel_test.chisq |\n", - "+----------------------------------------------------------+\n", - "| float64 |\n", - "+----------------------------------------------------------+\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "+----------------------------------------------------------+\n", - "\n", - "+------------------------------------------+\n", - "| freq_comparison_stats.stat_union.p_value |\n", - "+------------------------------------------+\n", - "| float64 |\n", - "+------------------------------------------+\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "+------------------------------------------+\n", - "\n", - "+-------------------------------------------------+\n", - "| freq_comparison_stats.stat_union.stat_test_name |\n", - "+-------------------------------------------------+\n", - "| str |\n", - "+-------------------------------------------------+\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "+-------------------------------------------------+\n", - "\n", - "+-------------------------------------------+\n", - "| freq_comparison_stats.stat_union.gen_ancs |\n", - "+-------------------------------------------+\n", - "| array |\n", - "+-------------------------------------------+\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "+-------------------------------------------+\n", - "showing top 5 rows" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "ht.show(5)" - ] - }, - { - "cell_type": "markdown", - "id": "354d7a5e-07a2-4f33-a830-970877cd4d63", - "metadata": { - "tags": [] - }, - "source": [ - "## All sites allele numbers\n", - "\n", - "As part of gnomAD v4.1, we [released](https://gnomad.broadinstitute.org/data#v4-all-sites-allele-number) allele number across all callable sites in the gnomAD exomes and genomes. For more information, see our [v4.1 blog post](https://gnomad.broadinstitute.org/news/2024-04-gnomad-v4-1/#allele-numbers-across-all-possible-sites)." - ] - }, - { - "cell_type": "markdown", - "id": "81008401-eec4-4e95-9709-4781db066f7f", - "metadata": { - "tags": [] - }, - "source": [ - "### Exomes all sites allele number Hail Table" - ] - }, - { - "cell_type": "markdown", - "id": "f7f1c013-a013-4fde-a7e6-fcb18d8d8a5c", - "metadata": {}, - "source": [ - "#### Load the Hail Table\n" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "id": "3b7c75d0-1eec-4b92-883e-410337b09c92", - "metadata": { - "ExecuteTime": { - "end_time": "2024-12-06T20:08:59.197890Z", - "start_time": "2024-12-06T20:08:50.859108Z" - } - }, - "outputs": [], - "source": [ - "ht = get_gnomad_release(data_type='exomes', version='4.1', dataset=\"all_sites_an\")" - ] - }, - { - "cell_type": "markdown", - "id": "6868a2d1-6e62-492a-8086-822c910e8608", - "metadata": {}, - "source": [ - "#### Print the schema of the Hail Table\n" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "id": "f9c6d73b-7683-47fe-bf7d-2f5bef1d23d3", - "metadata": { - "ExecuteTime": { - "end_time": "2024-12-06T20:09:00.032524Z", - "start_time": "2024-12-06T20:09:00.029271Z" - }, - "tags": [] - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "----------------------------------------\n", - "Global fields:\n", - " 'strata_meta': array> \n", - " 'strata_sample_count': array \n", - "----------------------------------------\n", - "Row fields:\n", - " 'locus': locus \n", - " 'AN': array \n", - " 'outside_broad_capture_region': bool \n", - " 'outside_ukb_capture_region': bool \n", - " 'outside_broad_calling_region': bool \n", - " 'outside_ukb_calling_region': bool \n", - "----------------------------------------\n", - "Key: ['locus']\n", - "----------------------------------------\n" - ] - } - ], - "source": [ - "ht.describe()" - ] - }, - { - "cell_type": "markdown", - "id": "626f20d9-43c1-4687-9b05-01d53115c168", - "metadata": { - "tags": [] - }, - "source": [ - "#### Show the first 5 variants in the Hail Table\n" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "id": "ee361058-54ae-4793-951b-1e0a6df6f685", - "metadata": { - "ExecuteTime": { - "end_time": "2024-12-06T20:09:20.949958Z", - "start_time": "2024-12-06T20:09:05.622171Z" - }, - "tags": [] - }, - "outputs": [ - { - "data": { - "text/html": [ - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "
locus
AN
outside_broad_capture_region
outside_ukb_capture_region
outside_broad_calling_region
outside_ukb_calling_region
locus<GRCh38>array<int64>boolboolboolbool
chr1:11719[0,628784,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,628784,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]TrueTrueFalseTrue
chr1:11720[0,628784,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,628784,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]TrueTrueFalseTrue
chr1:11721[0,628784,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,628784,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]TrueTrueFalseTrue
chr1:11722[0,628784,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,628784,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]TrueTrueFalseTrue
chr1:11723[0,628784,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,628784,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]TrueTrueFalseTrue

showing top 5 rows

\n" - ], - "text/plain": [ - "+---------------+\n", - "| locus |\n", - "+---------------+\n", - "| locus |\n", - "+---------------+\n", - "| chr1:11719 |\n", - "| chr1:11720 |\n", - "| chr1:11721 |\n", - "| chr1:11722 |\n", - "| chr1:11723 |\n", - "+---------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| AN |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [0,628784,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0... |\n", - "| [0,628784,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0... |\n", - "| [0,628784,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0... |\n", - "| [0,628784,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0... |\n", - "| [0,628784,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+------------------------------+----------------------------+\n", - "| outside_broad_capture_region | outside_ukb_capture_region |\n", - "+------------------------------+----------------------------+\n", - "| bool | bool |\n", - "+------------------------------+----------------------------+\n", - "| True | True |\n", - "| True | True |\n", - "| True | True |\n", - "| True | True |\n", - "| True | True |\n", - "+------------------------------+----------------------------+\n", - "\n", - "+------------------------------+----------------------------+\n", - "| outside_broad_calling_region | outside_ukb_calling_region |\n", - "+------------------------------+----------------------------+\n", - "| bool | bool |\n", - "+------------------------------+----------------------------+\n", - "| False | True |\n", - "| False | True |\n", - "| False | True |\n", - "| False | True |\n", - "| False | True |\n", - "+------------------------------+----------------------------+\n", - "showing top 5 rows" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "ht.show(5)" - ] - }, - { - "cell_type": "markdown", - "id": "dc4a4f23-d754-4e31-8e59-f62f9be65942", - "metadata": { - "tags": [] - }, - "source": [ - "### Genomes all sites allele number Hail Table" - ] - }, - { - "cell_type": "markdown", - "id": "65cb8d93-c5ef-409b-9c51-7c282a63bdc2", - "metadata": {}, - "source": [ - "#### Load the Hail Table\n" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "id": "0bb38926-f803-4be5-852c-782023b387bb", - "metadata": { - "ExecuteTime": { - "end_time": "2024-12-06T20:08:59.197890Z", - "start_time": "2024-12-06T20:08:50.859108Z" - }, - "tags": [] - }, - "outputs": [], - "source": [ - "ht = get_gnomad_release(data_type='genomes', version='4.1', dataset=\"all_sites_an\")" - ] - }, - { - "cell_type": "markdown", - "id": "7d5c2549-151c-4b99-bac3-23fd9024f114", - "metadata": {}, - "source": [ - "#### Print the schema of the Hail Table\n" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "id": "64d2c64c-b533-433a-89e6-72d473bd6464", - "metadata": { - "ExecuteTime": { - "end_time": "2024-12-06T20:09:00.032524Z", - "start_time": "2024-12-06T20:09:00.029271Z" - }, - "tags": [] - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "----------------------------------------\n", - "Global fields:\n", - " 'strata_meta': array> \n", - " 'strata_sample_count': array \n", - "----------------------------------------\n", - "Row fields:\n", - " 'locus': locus \n", - " 'AN': array \n", - "----------------------------------------\n", - "Key: ['locus']\n", - "----------------------------------------\n" - ] - } - ], - "source": [ - "ht.describe()" - ] - }, - { - "cell_type": "markdown", - "id": "140f66aa-83d4-4752-abcf-c674bf208194", - "metadata": { - "tags": [] - }, - "source": [ - "#### Show the first 5 variants in the Hail Table\n" - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "id": "e2271a6e-16f6-48ca-805f-735e17a8f711", - "metadata": { - "ExecuteTime": { - "end_time": "2024-12-06T20:09:20.949958Z", - "start_time": "2024-12-06T20:09:05.622171Z" - }, - "tags": [] - }, - "outputs": [ - { - "data": { - "text/html": [ - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "
locus
AN
locus<GRCh38>array<int64>
chr1:10001[16,18232,0,0,4,0,0,6,0,6,0,0,8,8,0,0,0,0,4,0,0,0,0,0,2,4,0,0,2,4,0,0,0,0]
chr1:10002[78,32090,12,0,22,2,0,26,0,14,2,0,30,48,8,4,0,0,4,18,2,0,0,0,12,14,0,0,2,12,2,0,0,0]
chr1:10003[200,38154,48,0,48,6,4,28,6,48,6,6,102,98,38,10,0,0,8,40,6,0,0,4,14,14,2,4,26,22,6,0,2,4]
chr1:10004[948,62380,202,0,248,18,12,172,10,258,18,10,400,548,112,90,0,0,66,182,14,4,2,10,70,102,4,6,118,140,10,8,4,6]
chr1:10005[1774,70720,356,6,444,30,18,288,18,552,32,30,782,992,206,150,2,4,134,310,18,12,6,12,116,172,6,12,268,284,16,16,10,20]

showing top 5 rows

\n" - ], - "text/plain": [ - "+---------------+\n", - "| locus |\n", - "+---------------+\n", - "| locus |\n", - "+---------------+\n", - "| chr1:10001 |\n", - "| chr1:10002 |\n", - "| chr1:10003 |\n", - "| chr1:10004 |\n", - "| chr1:10005 |\n", - "+---------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| AN |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [16,18232,0,0,4,0,0,6,0,6,0,0,8,8,0,0,0,0,4,0,0,0,0,0,2,4,0,0,2,4,0,0,0,0] |\n", - "| [78,32090,12,0,22,2,0,26,0,14,2,0,30,48,8,4,0,0,4,18,2,0,0,0,12,14,0,0,2,... |\n", - "| [200,38154,48,0,48,6,4,28,6,48,6,6,102,98,38,10,0,0,8,40,6,0,0,4,14,14,2,... |\n", - "| [948,62380,202,0,248,18,12,172,10,258,18,10,400,548,112,90,0,0,66,182,14,... |\n", - "| [1774,70720,356,6,444,30,18,288,18,552,32,30,782,992,206,150,2,4,134,310,... |\n", - "+------------------------------------------------------------------------------+\n", - "showing top 5 rows" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "ht.show(5)" - ] - }, - { - "cell_type": "markdown", - "id": "1bf9f31f-34ff-4385-a80e-985cbb0acfe8", - "metadata": { - "tags": [] - }, - "source": [ - "## Coverage\n" - ] - }, - { - "cell_type": "markdown", - "id": "de70c319-787b-4d6c-9058-255a1137d81f", - "metadata": { - "tags": [] - }, - "source": [ - "### Exomes coverage Hail Table" - ] - }, - { - "cell_type": "markdown", - "id": "3278430c-4279-4d89-85e7-276184ec42b8", - "metadata": {}, - "source": [ - "#### Load the Hail Table\n" - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "id": "7f005af0-df6d-4a0a-a2e0-9cb4ff6782c2", - "metadata": { - "ExecuteTime": { - "end_time": "2024-12-06T20:08:59.197890Z", - "start_time": "2024-12-06T20:08:50.859108Z" - } - }, - "outputs": [], - "source": [ - "ht = get_gnomad_release(data_type='exomes', version='4.0', dataset=\"coverage\")" - ] - }, - { - "cell_type": "markdown", - "id": "128e58ce-c219-472a-88be-6babc2ba5a15", - "metadata": {}, - "source": [ - "#### Print the schema of the Hail Table\n" - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "id": "6058bf38-4ce9-4d37-89a7-d11af0e4d9f1", - "metadata": { - "ExecuteTime": { - "end_time": "2024-12-06T20:09:00.032524Z", - "start_time": "2024-12-06T20:09:00.029271Z" - }, - "tags": [] - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "----------------------------------------\n", - "Global fields:\n", - " None\n", - "----------------------------------------\n", - "Row fields:\n", - " 'locus': locus \n", - " 'mean': float64 \n", - " 'median_approx': int32 \n", - " 'total_DP': int64 \n", - " 'over_1': float64 \n", - " 'over_5': float64 \n", - " 'over_10': float64 \n", - " 'over_15': float64 \n", - " 'over_20': float64 \n", - " 'over_25': float64 \n", - " 'over_30': float64 \n", - " 'over_50': float64 \n", - " 'over_100': float64 \n", - "----------------------------------------\n", - "Key: ['locus']\n", - "----------------------------------------\n" - ] - } - ], - "source": [ - "ht.describe()" - ] - }, - { - "cell_type": "markdown", - "id": "5969ab0c-7cee-4061-8740-8b82366ae806", - "metadata": { - "tags": [] - }, - "source": [ - "#### Show the first 5 variants in the Hail Table\n" - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "id": "49fcf64b-1a91-4052-bb98-b329a0e8031b", - "metadata": { - "ExecuteTime": { - "end_time": "2024-12-06T20:09:20.949958Z", - "start_time": "2024-12-06T20:09:05.622171Z" - }, - "tags": [] - }, - "outputs": [ - { - "data": { - "text/html": [ - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "
locus
mean
median_approx
total_DP
over_1
over_5
over_10
over_15
over_20
over_25
over_30
over_50
over_100
locus<GRCh38>float64int32int64float64float64float64float64float64float64float64float64float64
chr1:118191.12e-010816952.79e-027.59e-030.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+00
chr1:118201.12e-010816952.79e-027.59e-030.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+00
chr1:118211.12e-010816952.79e-027.59e-030.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+00
chr1:118221.12e-010816952.79e-027.59e-030.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+00
chr1:118231.12e-010816952.79e-027.59e-030.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+00

showing top 5 rows

\n" - ], - "text/plain": [ - "+---------------+----------+---------------+----------+----------+----------+\n", - "| locus | mean | median_approx | total_DP | over_1 | over_5 |\n", - "+---------------+----------+---------------+----------+----------+----------+\n", - "| locus | float64 | int32 | int64 | float64 | float64 |\n", - "+---------------+----------+---------------+----------+----------+----------+\n", - "| chr1:11819 | 1.12e-01 | 0 | 81695 | 2.79e-02 | 7.59e-03 |\n", - "| chr1:11820 | 1.12e-01 | 0 | 81695 | 2.79e-02 | 7.59e-03 |\n", - "| chr1:11821 | 1.12e-01 | 0 | 81695 | 2.79e-02 | 7.59e-03 |\n", - "| chr1:11822 | 1.12e-01 | 0 | 81695 | 2.79e-02 | 7.59e-03 |\n", - "| chr1:11823 | 1.12e-01 | 0 | 81695 | 2.79e-02 | 7.59e-03 |\n", - "+---------------+----------+---------------+----------+----------+----------+\n", - "\n", - "+----------+----------+----------+----------+----------+----------+----------+\n", - "| over_10 | over_15 | over_20 | over_25 | over_30 | over_50 | over_100 |\n", - "+----------+----------+----------+----------+----------+----------+----------+\n", - "| float64 | float64 | float64 | float64 | float64 | float64 | float64 |\n", - "+----------+----------+----------+----------+----------+----------+----------+\n", - "| 0.00e+00 | 0.00e+00 | 0.00e+00 | 0.00e+00 | 0.00e+00 | 0.00e+00 | 0.00e+00 |\n", - "| 0.00e+00 | 0.00e+00 | 0.00e+00 | 0.00e+00 | 0.00e+00 | 0.00e+00 | 0.00e+00 |\n", - "| 0.00e+00 | 0.00e+00 | 0.00e+00 | 0.00e+00 | 0.00e+00 | 0.00e+00 | 0.00e+00 |\n", - "| 0.00e+00 | 0.00e+00 | 0.00e+00 | 0.00e+00 | 0.00e+00 | 0.00e+00 | 0.00e+00 |\n", - "| 0.00e+00 | 0.00e+00 | 0.00e+00 | 0.00e+00 | 0.00e+00 | 0.00e+00 | 0.00e+00 |\n", - "+----------+----------+----------+----------+----------+----------+----------+\n", - "showing top 5 rows" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "ht.show(5)" - ] - }, - { - "cell_type": "markdown", - "id": "19b2e9be-48fd-4859-af3d-a0775656d24c", - "metadata": { - "tags": [] - }, - "source": [ - "### Genomes coverage Hail Table" - ] - }, - { - "cell_type": "markdown", - "id": "5918f8e0-a723-439a-a11f-558d5ed13be8", - "metadata": {}, - "source": [ - "#### Load the Hail Table\n" - ] - }, - { - "cell_type": "code", - "execution_count": 21, - "id": "a8d0be07-c35d-425a-b554-c86034e367fc", - "metadata": { - "ExecuteTime": { - "end_time": "2024-12-06T20:08:59.197890Z", - "start_time": "2024-12-06T20:08:50.859108Z" - }, - "tags": [] - }, - "outputs": [], - "source": [ - "ht = get_gnomad_release(data_type='genomes', version='3.0', dataset=\"coverage\")" - ] - }, - { - "cell_type": "markdown", - "id": "d129b898-d642-44d1-8243-66a9cca8d1b1", - "metadata": {}, - "source": [ - "#### Print the schema of the Hail Table\n" - ] - }, - { - "cell_type": "code", - "execution_count": 22, - "id": "18afb20f-7429-4fe2-a6c5-73a22dcbdb76", - "metadata": { - "ExecuteTime": { - "end_time": "2024-12-06T20:09:00.032524Z", - "start_time": "2024-12-06T20:09:00.029271Z" - }, - "tags": [] - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "----------------------------------------\n", - "Global fields:\n", - " None\n", - "----------------------------------------\n", - "Row fields:\n", - " 'locus': locus \n", - " 'mean': float64 \n", - " 'median': int32 \n", - " 'count_array': array \n", - " 'over_1': float32 \n", - " 'over_5': float32 \n", - " 'over_10': float32 \n", - " 'over_15': float32 \n", - " 'over_20': float32 \n", - " 'over_25': float32 \n", - " 'over_30': float32 \n", - " 'over_50': float32 \n", - " 'over_100': float32 \n", - "----------------------------------------\n", - "Key: ['locus']\n", - "----------------------------------------\n" - ] - } - ], - "source": [ - "ht.describe()" - ] - }, - { - "cell_type": "markdown", - "id": "05d8e22c-93d6-4ecf-b9e7-711945268c82", - "metadata": { - "tags": [] - }, - "source": [ - "#### Show the first 5 variants in the Hail Table\n" - ] - }, - { - "cell_type": "code", - "execution_count": 23, - "id": "b27cb655-3abb-4501-bcc9-3f634db64591", - "metadata": { - "ExecuteTime": { - "end_time": "2024-12-06T20:09:20.949958Z", - "start_time": "2024-12-06T20:09:05.622171Z" - }, - "tags": [] - }, - "outputs": [ - { - "data": { - "text/html": [ - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "
locus
mean
median
count_array
over_1
over_5
over_10
over_15
over_20
over_25
over_30
over_50
over_100
locus<GRCh38>float64int32array<int32>float32float32float32float32float32float32float32float32float32
chr1:100011.93e+0116[0,20,65,141,226,328,386,442,415,385,292,198,362,367,337,273,289,266,241,226,191,169,168,151,227,194,179,190,177,166,143,131,150,130,125,121,136,94,93,83,67,60,68,68,59,33,39,39,39,38,20,18,21,25,10,9,16,8,7,6,2,3,2,4,1,2,2,2,0,0,2,1,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]1.25e-011.19e-019.12e-026.95e-025.15e-023.88e-022.62e-022.27e-030.00e+00
chr1:100022.10e+0118[0,10,41,108,209,339,482,570,581,575,483,390,702,689,639,556,587,534,516,435,417,366,346,320,437,415,405,359,333,308,283,266,272,248,218,231,241,184,176,162,138,119,127,137,118,63,82,87,66,66,46,33,39,43,22,25,26,19,19,11,7,6,7,5,3,5,2,4,2,6,2,3,2,0,1,1,1,0,0,0,1,0,0,2,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2]2.20e-012.15e-011.79e-011.39e-011.02e-017.60e-025.06e-024.83e-032.79e-05
chr1:100032.44e+0123[0,6,16,62,100,162,233,289,294,346,342,310,537,612,664,649,661,711,723,658,649,590,548,486,679,656,640,571,533,491,439,398,412,404,349,383,360,298,263,242,207,182,186,194,159,118,123,116,96,96,67,59,61,64,34,33,34,31,30,15,12,11,13,10,7,7,3,7,5,10,3,3,5,0,2,2,1,0,0,2,1,1,1,4,0,2,1,0,0,1,0,0,0,0,0,0,0,0,0,0,4]2.62e-012.59e-012.41e-012.07e-011.59e-011.18e-017.77e-027.61e-035.58e-05
chr1:100042.43e+0123[0,4,21,70,101,178,270,396,417,515,550,486,864,1003,1098,1138,1183,1270,1242,1181,1162,1083,966,845,1149,1088,1047,922,857,804,725,645,633,658,525,610,537,451,411,369,343,285,290,260,235,184,190,174,151,152,96,83,96,91,52,52,56,43,47,30,20,19,22,16,13,9,9,10,10,14,8,7,8,0,5,3,3,2,1,2,1,1,1,5,3,3,2,1,0,2,0,0,1,0,1,0,1,1,0,0,12]4.27e-014.24e-013.99e-013.43e-012.60e-011.87e-011.21e-011.20e-021.67e-04
chr1:100052.45e+0123[0,4,22,67,98,177,257,381,423,511,580,560,1013,1158,1257,1314,1338,1472,1401,1341,1300,1266,1105,966,1288,1243,1198,1068,976,905,842,725,728,740,600,678,613,515,464,414,396,338,324,300,268,213,210,198,175,165,113,100,108,102,61,58,61,50,53,35,22,22,27,22,15,11,12,10,13,14,10,8,9,1,6,4,6,5,3,3,4,2,2,5,3,7,3,1,0,2,0,1,2,2,2,0,1,1,0,0,17]4.83e-014.80e-014.56e-013.92e-012.96e-012.14e-011.38e-011.42e-022.37e-04

showing top 5 rows

\n" - ], - "text/plain": [ - "+---------------+----------+--------+\n", - "| locus | mean | median |\n", - "+---------------+----------+--------+\n", - "| locus | float64 | int32 |\n", - "+---------------+----------+--------+\n", - "| chr1:10001 | 1.93e+01 | 16 |\n", - "| chr1:10002 | 2.10e+01 | 18 |\n", - "| chr1:10003 | 2.44e+01 | 23 |\n", - "| chr1:10004 | 2.43e+01 | 23 |\n", - "| chr1:10005 | 2.45e+01 | 23 |\n", - "+---------------+----------+--------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| count_array |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [0,20,65,141,226,328,386,442,415,385,292,198,362,367,337,273,289,266,241,... |\n", - "| [0,10,41,108,209,339,482,570,581,575,483,390,702,689,639,556,587,534,516,... |\n", - "| [0,6,16,62,100,162,233,289,294,346,342,310,537,612,664,649,661,711,723,65... |\n", - "| [0,4,21,70,101,178,270,396,417,515,550,486,864,1003,1098,1138,1183,1270,1... |\n", - "| [0,4,22,67,98,177,257,381,423,511,580,560,1013,1158,1257,1314,1338,1472,1... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+----------+----------+----------+----------+----------+----------+----------+\n", - "| over_1 | over_5 | over_10 | over_15 | over_20 | over_25 | over_30 |\n", - "+----------+----------+----------+----------+----------+----------+----------+\n", - "| float32 | float32 | float32 | float32 | float32 | float32 | float32 |\n", - "+----------+----------+----------+----------+----------+----------+----------+\n", - "| 1.25e-01 | 1.19e-01 | 9.12e-02 | 6.95e-02 | 5.15e-02 | 3.88e-02 | 2.62e-02 |\n", - "| 2.20e-01 | 2.15e-01 | 1.79e-01 | 1.39e-01 | 1.02e-01 | 7.60e-02 | 5.06e-02 |\n", - "| 2.62e-01 | 2.59e-01 | 2.41e-01 | 2.07e-01 | 1.59e-01 | 1.18e-01 | 7.77e-02 |\n", - "| 4.27e-01 | 4.24e-01 | 3.99e-01 | 3.43e-01 | 2.60e-01 | 1.87e-01 | 1.21e-01 |\n", - "| 4.83e-01 | 4.80e-01 | 4.56e-01 | 3.92e-01 | 2.96e-01 | 2.14e-01 | 1.38e-01 |\n", - "+----------+----------+----------+----------+----------+----------+----------+\n", - "\n", - "+----------+----------+\n", - "| over_50 | over_100 |\n", - "+----------+----------+\n", - "| float32 | float32 |\n", - "+----------+----------+\n", - "| 2.27e-03 | 0.00e+00 |\n", - "| 4.83e-03 | 2.79e-05 |\n", - "| 7.61e-03 | 5.58e-05 |\n", - "| 1.20e-02 | 1.67e-04 |\n", - "| 1.42e-02 | 2.37e-04 |\n", - "+----------+----------+\n", - "showing top 5 rows" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "ht.show(5)" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.12.2" - }, - "toc": { - "base_numbering": 1, - "nav_menu": { - "height": "613.99px", - "width": "526.312px" - }, - "number_sections": false, - "sideBar": true, - "skip_h1_title": true, - "title_cell": "Table of Contents", - "title_sidebar": "Contents", - "toc_cell": true, - "toc_position": { - "height": "calc(100% - 180px)", - "left": "10px", - "top": "150px", - "width": "202.438px" - }, - "toc_section_display": true, - "toc_window_display": true - }, - "toc-autonumbering": false, - "toc-showcode": false, - "toc-showmarkdowntxt": true, - "toc-showtags": false, - "widgets": { - "application/vnd.jupyter.widget-state+json": { - "state": {}, - "version_major": 2, - "version_minor": 0 - } - } - }, - "nbformat": 4, - "nbformat_minor": 5 -} diff --git a/gnomad_toolbox/notebooks/toolbox_for_gnomad_users.ipynb b/gnomad_toolbox/notebooks/toolbox_for_gnomad_users.ipynb deleted file mode 100644 index 326a2a3..0000000 --- a/gnomad_toolbox/notebooks/toolbox_for_gnomad_users.ipynb +++ /dev/null @@ -1,3778 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "id": "8e609a46", - "metadata": { - "toc": true - }, - "source": [ - "

Table of Contents

\n", - "" - ] - }, - { - "cell_type": "markdown", - "id": "853c94b9", - "metadata": {}, - "source": [ - "# README\n", - "\n", - "This toolbox is meant to use Hail tables of gnomAD releases on cloud computing, if you want to query variants for gene(s), you should use gnomAD API (https://gnomad.broadinstitute.org/api).\n", - "\n", - "If you want to import your own data to use other gnomAD notebooks, such as for ancestry inference (https://github.com/broadinstitute/gnomad_qc/blob/main/gnomad_qc/example_notebooks/ancestry_classification_using_gnomad_rf.ipynb), you may use Hail's `import_vcf` functions." - ] - }, - { - "cell_type": "code", - "id": "e77d32b1", - "metadata": { - "scrolled": true, - "ExecuteTime": { - "end_time": "2024-12-06T18:02:57.909455Z", - "start_time": "2024-12-06T18:02:56.316003Z" - } - }, - "source": "import hail as hl", - "outputs": [ - { - "data": { - "text/html": [ - " \n", - "
\n", - " \n", - " Loading BokehJS ...\n", - "
\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/javascript": "(function(root) {\n function now() {\n return new Date();\n }\n\n const force = true;\n\n if (typeof root._bokeh_onload_callbacks === \"undefined\" || force === true) {\n root._bokeh_onload_callbacks = [];\n root._bokeh_is_loading = undefined;\n }\n\nconst JS_MIME_TYPE = 'application/javascript';\n const HTML_MIME_TYPE = 'text/html';\n const EXEC_MIME_TYPE = 'application/vnd.bokehjs_exec.v0+json';\n const CLASS_NAME = 'output_bokeh rendered_html';\n\n /**\n * Render data to the DOM node\n */\n function render(props, node) {\n const script = document.createElement(\"script\");\n node.appendChild(script);\n }\n\n /**\n * Handle when an output is cleared or removed\n */\n function handleClearOutput(event, handle) {\n function drop(id) {\n const view = Bokeh.index.get_by_id(id)\n if (view != null) {\n view.model.document.clear()\n Bokeh.index.delete(view)\n }\n }\n\n const cell = handle.cell;\n\n const id = cell.output_area._bokeh_element_id;\n const server_id = cell.output_area._bokeh_server_id;\n\n // Clean up Bokeh references\n if (id != null) {\n drop(id)\n }\n\n if (server_id !== undefined) {\n // Clean up Bokeh references\n const cmd_clean = \"from bokeh.io.state import curstate; print(curstate().uuid_to_server['\" + server_id + \"'].get_sessions()[0].document.roots[0]._id)\";\n cell.notebook.kernel.execute(cmd_clean, {\n iopub: {\n output: function(msg) {\n const id = msg.content.text.trim()\n drop(id)\n }\n }\n });\n // Destroy server and session\n const cmd_destroy = \"import bokeh.io.notebook as ion; ion.destroy_server('\" + server_id + \"')\";\n cell.notebook.kernel.execute(cmd_destroy);\n }\n }\n\n /**\n * Handle when a new output is added\n */\n function handleAddOutput(event, handle) {\n const output_area = handle.output_area;\n const output = handle.output;\n\n // limit handleAddOutput to display_data with EXEC_MIME_TYPE content only\n if ((output.output_type != \"display_data\") || (!Object.prototype.hasOwnProperty.call(output.data, EXEC_MIME_TYPE))) {\n return\n }\n\n const toinsert = output_area.element.find(\".\" + CLASS_NAME.split(' ')[0]);\n\n if (output.metadata[EXEC_MIME_TYPE][\"id\"] !== undefined) {\n toinsert[toinsert.length - 1].firstChild.textContent = output.data[JS_MIME_TYPE];\n // store reference to embed id on output_area\n output_area._bokeh_element_id = output.metadata[EXEC_MIME_TYPE][\"id\"];\n }\n if (output.metadata[EXEC_MIME_TYPE][\"server_id\"] !== undefined) {\n const bk_div = document.createElement(\"div\");\n bk_div.innerHTML = output.data[HTML_MIME_TYPE];\n const script_attrs = bk_div.children[0].attributes;\n for (let i = 0; i < script_attrs.length; i++) {\n toinsert[toinsert.length - 1].firstChild.setAttribute(script_attrs[i].name, script_attrs[i].value);\n toinsert[toinsert.length - 1].firstChild.textContent = bk_div.children[0].textContent\n }\n // store reference to server id on output_area\n output_area._bokeh_server_id = output.metadata[EXEC_MIME_TYPE][\"server_id\"];\n }\n }\n\n function register_renderer(events, OutputArea) {\n\n function append_mime(data, metadata, element) {\n // create a DOM node to render to\n const toinsert = this.create_output_subarea(\n metadata,\n CLASS_NAME,\n EXEC_MIME_TYPE\n );\n this.keyboard_manager.register_events(toinsert);\n // Render to node\n const props = {data: data, metadata: metadata[EXEC_MIME_TYPE]};\n render(props, toinsert[toinsert.length - 1]);\n element.append(toinsert);\n return toinsert\n }\n\n /* Handle when an output is cleared or removed */\n events.on('clear_output.CodeCell', handleClearOutput);\n events.on('delete.Cell', handleClearOutput);\n\n /* Handle when a new output is added */\n events.on('output_added.OutputArea', handleAddOutput);\n\n /**\n * Register the mime type and append_mime function with output_area\n */\n OutputArea.prototype.register_mime_type(EXEC_MIME_TYPE, append_mime, {\n /* Is output safe? */\n safe: true,\n /* Index of renderer in `output_area.display_order` */\n index: 0\n });\n }\n\n // register the mime type if in Jupyter Notebook environment and previously unregistered\n if (root.Jupyter !== undefined) {\n const events = require('base/js/events');\n const OutputArea = require('notebook/js/outputarea').OutputArea;\n\n if (OutputArea.prototype.mime_types().indexOf(EXEC_MIME_TYPE) == -1) {\n register_renderer(events, OutputArea);\n }\n }\n if (typeof (root._bokeh_timeout) === \"undefined\" || force === true) {\n root._bokeh_timeout = Date.now() + 5000;\n root._bokeh_failed_load = false;\n }\n\n const NB_LOAD_WARNING = {'data': {'text/html':\n \"
\\n\"+\n \"

\\n\"+\n \"BokehJS does not appear to have successfully loaded. If loading BokehJS from CDN, this \\n\"+\n \"may be due to a slow or bad network connection. Possible fixes:\\n\"+\n \"

\\n\"+\n \"
    \\n\"+\n \"
  • re-rerun `output_notebook()` to attempt to load from CDN again, or
  • \\n\"+\n \"
  • use INLINE resources instead, as so:
  • \\n\"+\n \"
\\n\"+\n \"\\n\"+\n \"from bokeh.resources import INLINE\\n\"+\n \"output_notebook(resources=INLINE)\\n\"+\n \"\\n\"+\n \"
\"}};\n\n function display_loaded() {\n const el = document.getElementById(\"e603302b-40d4-4f8c-aa3c-1000266b48fa\");\n if (el != null) {\n el.textContent = \"BokehJS is loading...\";\n }\n if (root.Bokeh !== undefined) {\n if (el != null) {\n el.textContent = \"BokehJS \" + root.Bokeh.version + \" successfully loaded.\";\n }\n } else if (Date.now() < root._bokeh_timeout) {\n setTimeout(display_loaded, 100)\n }\n }\n\n function run_callbacks() {\n try {\n root._bokeh_onload_callbacks.forEach(function(callback) {\n if (callback != null)\n callback();\n });\n } finally {\n delete root._bokeh_onload_callbacks\n }\n console.debug(\"Bokeh: all callbacks have finished\");\n }\n\n function load_libs(css_urls, js_urls, callback) {\n if (css_urls == null) css_urls = [];\n if (js_urls == null) js_urls = [];\n\n root._bokeh_onload_callbacks.push(callback);\n if (root._bokeh_is_loading > 0) {\n console.debug(\"Bokeh: BokehJS is being loaded, scheduling callback at\", now());\n return null;\n }\n if (js_urls == null || js_urls.length === 0) {\n run_callbacks();\n return null;\n }\n console.debug(\"Bokeh: BokehJS not loaded, scheduling load and callback at\", now());\n root._bokeh_is_loading = css_urls.length + js_urls.length;\n\n function on_load() {\n root._bokeh_is_loading--;\n if (root._bokeh_is_loading === 0) {\n console.debug(\"Bokeh: all BokehJS libraries/stylesheets loaded\");\n run_callbacks()\n }\n }\n\n function on_error(url) {\n console.error(\"failed to load \" + url);\n }\n\n for (let i = 0; i < css_urls.length; i++) {\n const url = css_urls[i];\n const element = document.createElement(\"link\");\n element.onload = on_load;\n element.onerror = on_error.bind(null, url);\n element.rel = \"stylesheet\";\n element.type = \"text/css\";\n element.href = url;\n console.debug(\"Bokeh: injecting link tag for BokehJS stylesheet: \", url);\n document.body.appendChild(element);\n }\n\n for (let i = 0; i < js_urls.length; i++) {\n const url = js_urls[i];\n const element = document.createElement('script');\n element.onload = on_load;\n element.onerror = on_error.bind(null, url);\n element.async = false;\n element.src = url;\n console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n document.head.appendChild(element);\n }\n };\n\n function inject_raw_css(css) {\n const element = document.createElement(\"style\");\n element.appendChild(document.createTextNode(css));\n document.body.appendChild(element);\n }\n\n const js_urls = [\"https://cdn.bokeh.org/bokeh/release/bokeh-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-gl-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-widgets-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-tables-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-mathjax-3.3.4.min.js\"];\n const css_urls = [];\n\n const inline_js = [ function(Bokeh) {\n Bokeh.set_log_level(\"info\");\n },\nfunction(Bokeh) {\n }\n ];\n\n function run_inline_js() {\n if (root.Bokeh !== undefined || force === true) {\n for (let i = 0; i < inline_js.length; i++) {\n inline_js[i].call(root, root.Bokeh);\n }\nif (force === true) {\n display_loaded();\n }} else if (Date.now() < root._bokeh_timeout) {\n setTimeout(run_inline_js, 100);\n } else if (!root._bokeh_failed_load) {\n console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n root._bokeh_failed_load = true;\n } else if (force !== true) {\n const cell = $(document.getElementById(\"e603302b-40d4-4f8c-aa3c-1000266b48fa\")).parents('.cell').data().cell;\n cell.output_area.append_execute_result(NB_LOAD_WARNING)\n }\n }\n\n if (root._bokeh_is_loading === 0) {\n console.debug(\"Bokeh: BokehJS loaded, going straight to plotting\");\n run_inline_js();\n } else {\n load_libs(css_urls, js_urls, function() {\n console.debug(\"Bokeh: BokehJS plotting callback run at\", now());\n run_inline_js();\n });\n }\n}(window));", - "application/vnd.bokehjs_load.v0+json": "(function(root) {\n function now() {\n return new Date();\n }\n\n const force = true;\n\n if (typeof root._bokeh_onload_callbacks === \"undefined\" || force === true) {\n root._bokeh_onload_callbacks = [];\n root._bokeh_is_loading = undefined;\n }\n\n\n if (typeof (root._bokeh_timeout) === \"undefined\" || force === true) {\n root._bokeh_timeout = Date.now() + 5000;\n root._bokeh_failed_load = false;\n }\n\n const NB_LOAD_WARNING = {'data': {'text/html':\n \"
\\n\"+\n \"

\\n\"+\n \"BokehJS does not appear to have successfully loaded. If loading BokehJS from CDN, this \\n\"+\n \"may be due to a slow or bad network connection. Possible fixes:\\n\"+\n \"

\\n\"+\n \"
    \\n\"+\n \"
  • re-rerun `output_notebook()` to attempt to load from CDN again, or
  • \\n\"+\n \"
  • use INLINE resources instead, as so:
  • \\n\"+\n \"
\\n\"+\n \"\\n\"+\n \"from bokeh.resources import INLINE\\n\"+\n \"output_notebook(resources=INLINE)\\n\"+\n \"\\n\"+\n \"
\"}};\n\n function display_loaded() {\n const el = document.getElementById(\"e603302b-40d4-4f8c-aa3c-1000266b48fa\");\n if (el != null) {\n el.textContent = \"BokehJS is loading...\";\n }\n if (root.Bokeh !== undefined) {\n if (el != null) {\n el.textContent = \"BokehJS \" + root.Bokeh.version + \" successfully loaded.\";\n }\n } else if (Date.now() < root._bokeh_timeout) {\n setTimeout(display_loaded, 100)\n }\n }\n\n function run_callbacks() {\n try {\n root._bokeh_onload_callbacks.forEach(function(callback) {\n if (callback != null)\n callback();\n });\n } finally {\n delete root._bokeh_onload_callbacks\n }\n console.debug(\"Bokeh: all callbacks have finished\");\n }\n\n function load_libs(css_urls, js_urls, callback) {\n if (css_urls == null) css_urls = [];\n if (js_urls == null) js_urls = [];\n\n root._bokeh_onload_callbacks.push(callback);\n if (root._bokeh_is_loading > 0) {\n console.debug(\"Bokeh: BokehJS is being loaded, scheduling callback at\", now());\n return null;\n }\n if (js_urls == null || js_urls.length === 0) {\n run_callbacks();\n return null;\n }\n console.debug(\"Bokeh: BokehJS not loaded, scheduling load and callback at\", now());\n root._bokeh_is_loading = css_urls.length + js_urls.length;\n\n function on_load() {\n root._bokeh_is_loading--;\n if (root._bokeh_is_loading === 0) {\n console.debug(\"Bokeh: all BokehJS libraries/stylesheets loaded\");\n run_callbacks()\n }\n }\n\n function on_error(url) {\n console.error(\"failed to load \" + url);\n }\n\n for (let i = 0; i < css_urls.length; i++) {\n const url = css_urls[i];\n const element = document.createElement(\"link\");\n element.onload = on_load;\n element.onerror = on_error.bind(null, url);\n element.rel = \"stylesheet\";\n element.type = \"text/css\";\n element.href = url;\n console.debug(\"Bokeh: injecting link tag for BokehJS stylesheet: \", url);\n document.body.appendChild(element);\n }\n\n for (let i = 0; i < js_urls.length; i++) {\n const url = js_urls[i];\n const element = document.createElement('script');\n element.onload = on_load;\n element.onerror = on_error.bind(null, url);\n element.async = false;\n element.src = url;\n console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n document.head.appendChild(element);\n }\n };\n\n function inject_raw_css(css) {\n const element = document.createElement(\"style\");\n element.appendChild(document.createTextNode(css));\n document.body.appendChild(element);\n }\n\n const js_urls = [\"https://cdn.bokeh.org/bokeh/release/bokeh-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-gl-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-widgets-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-tables-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-mathjax-3.3.4.min.js\"];\n const css_urls = [];\n\n const inline_js = [ function(Bokeh) {\n Bokeh.set_log_level(\"info\");\n },\nfunction(Bokeh) {\n }\n ];\n\n function run_inline_js() {\n if (root.Bokeh !== undefined || force === true) {\n for (let i = 0; i < inline_js.length; i++) {\n inline_js[i].call(root, root.Bokeh);\n }\nif (force === true) {\n display_loaded();\n }} else if (Date.now() < root._bokeh_timeout) {\n setTimeout(run_inline_js, 100);\n } else if (!root._bokeh_failed_load) {\n console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n root._bokeh_failed_load = true;\n } else if (force !== true) {\n const cell = $(document.getElementById(\"e603302b-40d4-4f8c-aa3c-1000266b48fa\")).parents('.cell').data().cell;\n cell.output_area.append_execute_result(NB_LOAD_WARNING)\n }\n }\n\n if (root._bokeh_is_loading === 0) {\n console.debug(\"Bokeh: BokehJS loaded, going straight to plotting\");\n run_inline_js();\n } else {\n load_libs(css_urls, js_urls, function() {\n console.debug(\"Bokeh: BokehJS plotting callback run at\", now());\n run_inline_js();\n });\n }\n}(window));" - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "execution_count": 1 - }, - { - "cell_type": "markdown", - "id": "8e713032", - "metadata": {}, - "source": [ - "# Import modules" - ] - }, - { - "cell_type": "code", - "id": "e69953f7", - "metadata": { - "ExecuteTime": { - "end_time": "2024-12-06T18:04:56.165634Z", - "start_time": "2024-12-06T18:04:55.603516Z" - } - }, - "source": "from gnomad_toolbox.load_data import get_gnomad_release", - "outputs": [], - "execution_count": 3 - }, - { - "cell_type": "markdown", - "id": "5335a135", - "metadata": {}, - "source": [ - "# Import data\n", - "\n", - "You can choose which version of gnomAD release you want to look at, here we listed the available version per data type per reference build. \n", - "\n", - "Available versions for each data type are (as of 2024-10-29):\n", - "\n", - "| Data Type | GRCh38 Versions | GRCh37 Versions |\n", - "|-----------------|----------------------------------|----------------------|\n", - "| exomes | 4.0, 4.1 | 2.1, 2.1.1 |\n", - "| genomes | 3.0, 3.1, 3.1.1, 3.1.2, 4.0, 4.1 | 2.1, 2.1.1 |\n", - "| joint | 4.1 | N/A |\n", - "\n", - "We use gnomAD v4.1 exomes to demonstrate for examples below." - ] - }, - { - "metadata": {}, - "cell_type": "markdown", - "source": "## Loading gnomAD v4.1 exomes sites Hail Table\n", - "id": "d1a4ae8933ba6421" - }, - { - "cell_type": "code", - "id": "100cf576", - "metadata": { - "ExecuteTime": { - "end_time": "2024-12-06T18:08:08.225100Z", - "start_time": "2024-12-06T18:07:55.852971Z" - } - }, - "source": "ht = get_gnomad_release(data_type='exomes', version='4.1')", - "outputs": [ - { - "data": { - "text/plain": [ - "\u001B[?25l" - ], - "text/html": [ - "
\n"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    },
-    {
-     "data": {
-      "text/plain": [
-       "Output()"
-      ],
-      "application/vnd.jupyter.widget-view+json": {
-       "version_major": 2,
-       "version_minor": 0,
-       "model_id": "4720d6aa643c489bb768ba33f92dbc45"
-      }
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    },
-    {
-     "data": {
-      "text/plain": [
-       "\n",
-       "\u001B[?25h"
-      ],
-      "text/html": [
-       "
\n",
-       "
\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/plain": [ - "\u001B[?25l" - ], - "text/html": [ - "
\n"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    },
-    {
-     "data": {
-      "text/plain": [
-       "Output()"
-      ],
-      "application/vnd.jupyter.widget-view+json": {
-       "version_major": 2,
-       "version_minor": 0,
-       "model_id": "782f39c8b7904334873519d3c7da2b37"
-      }
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    },
-    {
-     "data": {
-      "text/plain": [
-       "\n",
-       "\u001B[?25h"
-      ],
-      "text/html": [
-       "
\n",
-       "
\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "execution_count": 5 - }, - { - "metadata": {}, - "cell_type": "markdown", - "source": "## Print the schema of the Hail Table\n", - "id": "77d7a05e31c1f37a" - }, - { - "metadata": { - "ExecuteTime": { - "end_time": "2024-12-06T18:14:53.139250Z", - "start_time": "2024-12-06T18:14:53.136478Z" - } - }, - "cell_type": "code", - "source": "ht.describe()", - "id": "95c14f2c8cc3e699", - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "----------------------------------------\n", - "Global fields:\n", - " 'freq_meta': array> \n", - " 'freq_index_dict': dict \n", - " 'freq_meta_sample_count': array \n", - " 'faf_meta': array> \n", - " 'faf_index_dict': dict \n", - " 'age_distribution': struct {\n", - " bin_edges: array, \n", - " bin_freq: array, \n", - " n_smaller: int32, \n", - " n_larger: int32\n", - " } \n", - " 'downsamplings': dict> \n", - " 'filtering_model': struct {\n", - " filter_name: str, \n", - " score_name: str, \n", - " snv_cutoff: struct {\n", - " bin: int32, \n", - " min_score: float64\n", - " }, \n", - " indel_cutoff: struct {\n", - " bin: int32, \n", - " min_score: float64\n", - " }, \n", - " snv_training_variables: array, \n", - " indel_training_variables: array\n", - " } \n", - " 'inbreeding_coeff_cutoff': float64 \n", - " 'interval_qc_parameters': struct {\n", - " per_platform: bool, \n", - " all_platforms: bool, \n", - " high_qual_cutoffs: dict>, \n", - " min_platform_size: int32\n", - " } \n", - " 'tool_versions': struct {\n", - " cadd_version: str, \n", - " revel_version: str, \n", - " spliceai_version: str, \n", - " pangolin_version: array, \n", - " phylop_version: str, \n", - " dbsnp_version: str, \n", - " sift_version: str, \n", - " polyphen_version: str\n", - " } \n", - " 'vrs_versions': struct {\n", - " vrs_schema_version: str, \n", - " vrs_python_version: str, \n", - " seqrepo_version: str\n", - " } \n", - " 'vep_globals': struct {\n", - " vep_version: str, \n", - " vep_help: str, \n", - " vep_config: str, \n", - " gencode_version: str, \n", - " mane_select_version: str\n", - " } \n", - " 'frequency_README': str \n", - " 'date': str \n", - " 'version': str \n", - "----------------------------------------\n", - "Row fields:\n", - " 'locus': locus \n", - " 'alleles': array \n", - " 'freq': array \n", - " 'grpmax': struct {\n", - " gnomad: struct {\n", - " AC: int32, \n", - " AF: float64, \n", - " AN: int32, \n", - " homozygote_count: int64, \n", - " gen_anc: str\n", - " }, \n", - " non_ukb: struct {\n", - " AC: int32, \n", - " AF: float64, \n", - " AN: int32, \n", - " homozygote_count: int64, \n", - " gen_anc: str\n", - " }\n", - " } \n", - " 'faf': array \n", - " 'fafmax': struct {\n", - " gnomad: struct {\n", - " faf95_max: float64, \n", - " faf95_max_gen_anc: str, \n", - " faf99_max: float64, \n", - " faf99_max_gen_anc: str\n", - " }, \n", - " non_ukb: struct {\n", - " faf95_max: float64, \n", - " faf95_max_gen_anc: str, \n", - " faf99_max: float64, \n", - " faf99_max_gen_anc: str\n", - " }\n", - " } \n", - " 'a_index': int32 \n", - " 'was_split': bool \n", - " 'rsid': set \n", - " 'filters': set \n", - " 'info': struct {\n", - " FS: float64, \n", - " MQ: float64, \n", - " MQRankSum: float64, \n", - " QUALapprox: int64, \n", - " QD: float64, \n", - " ReadPosRankSum: float64, \n", - " SB: array, \n", - " SOR: float64, \n", - " VarDP: int32, \n", - " AS_FS: float64, \n", - " AS_MQ: float64, \n", - " AS_MQRankSum: float64, \n", - " AS_pab_max: float64, \n", - " AS_QUALapprox: int64, \n", - " AS_QD: float64, \n", - " AS_ReadPosRankSum: float64, \n", - " AS_SB_TABLE: array, \n", - " AS_SOR: float64, \n", - " AS_VarDP: int32, \n", - " singleton: bool, \n", - " transmitted_singleton: bool, \n", - " sibling_singleton: bool, \n", - " omni: bool, \n", - " mills: bool, \n", - " monoallelic: bool, \n", - " only_het: bool, \n", - " AS_VQSLOD: float64, \n", - " inbreeding_coeff: float64, \n", - " vrs: struct {\n", - " VRS_Allele_IDs: array, \n", - " VRS_Starts: array, \n", - " VRS_Ends: array, \n", - " VRS_States: array\n", - " }\n", - " } \n", - " 'vep': struct {\n", - " allele_string: str, \n", - " end: int32, \n", - " id: str, \n", - " input: str, \n", - " intergenic_consequences: array, \n", - " impact: str, \n", - " variant_allele: str\n", - " }>, \n", - " most_severe_consequence: str, \n", - " motif_feature_consequences: array, \n", - " high_inf_pos: str, \n", - " impact: str, \n", - " motif_feature_id: str, \n", - " motif_name: str, \n", - " motif_pos: int32, \n", - " motif_score_change: float64, \n", - " transcription_factors: array, \n", - " strand: int32, \n", - " variant_allele: str\n", - " }>, \n", - " regulatory_feature_consequences: array, \n", - " impact: str, \n", - " regulatory_feature_id: str, \n", - " variant_allele: str\n", - " }>, \n", - " seq_region_name: str, \n", - " start: int32, \n", - " strand: int32, \n", - " transcript_consequences: array, \n", - " distance: int32, \n", - " domains: array, \n", - " exon: str, \n", - " flags: str, \n", - " gene_id: str, \n", - " gene_pheno: int32, \n", - " gene_symbol: str, \n", - " gene_symbol_source: str, \n", - " hgnc_id: str, \n", - " hgvsc: str, \n", - " hgvsp: str, \n", - " hgvs_offset: int32, \n", - " impact: str, \n", - " intron: str, \n", - " lof: str, \n", - " lof_flags: str, \n", - " lof_filter: str, \n", - " lof_info: str, \n", - " mane_select: str, \n", - " mane_plus_clinical: str, \n", - " mirna: array, \n", - " protein_end: int32, \n", - " protein_start: int32, \n", - " protein_id: str, \n", - " source: str, \n", - " strand: int32, \n", - " transcript_id: str, \n", - " tsl: int32, \n", - " uniprot_isoform: array, \n", - " variant_allele: str\n", - " }>, \n", - " variant_class: str\n", - " } \n", - " 'vqsr_results': struct {\n", - " AS_VQSLOD: float64, \n", - " AS_culprit: str, \n", - " positive_train_site: bool, \n", - " negative_train_site: bool\n", - " } \n", - " 'region_flags': struct {\n", - " non_par: bool, \n", - " lcr: bool, \n", - " segdup: bool, \n", - " fail_interval_qc: bool, \n", - " outside_ukb_capture_region: bool, \n", - " outside_broad_capture_region: bool\n", - " } \n", - " 'allele_info': struct {\n", - " variant_type: str, \n", - " n_alt_alleles: int32, \n", - " has_star: bool, \n", - " allele_type: str, \n", - " was_mixed: bool\n", - " } \n", - " 'histograms': struct {\n", - " qual_hists: struct {\n", - " gq_hist_all: struct {\n", - " bin_edges: array, \n", - " bin_freq: array, \n", - " n_smaller: int64, \n", - " n_larger: int64\n", - " }, \n", - " dp_hist_all: struct {\n", - " bin_edges: array, \n", - " bin_freq: array, \n", - " n_smaller: int64, \n", - " n_larger: int64\n", - " }, \n", - " gq_hist_alt: struct {\n", - " bin_edges: array, \n", - " bin_freq: array, \n", - " n_smaller: int64, \n", - " n_larger: int64\n", - " }, \n", - " dp_hist_alt: struct {\n", - " bin_edges: array, \n", - " bin_freq: array, \n", - " n_smaller: int64, \n", - " n_larger: int64\n", - " }, \n", - " ab_hist_alt: struct {\n", - " bin_edges: array, \n", - " bin_freq: array, \n", - " n_smaller: int64, \n", - " n_larger: int64\n", - " }\n", - " }, \n", - " raw_qual_hists: struct {\n", - " gq_hist_all: struct {\n", - " bin_edges: array, \n", - " bin_freq: array, \n", - " n_smaller: int64, \n", - " n_larger: int64\n", - " }, \n", - " dp_hist_all: struct {\n", - " bin_edges: array, \n", - " bin_freq: array, \n", - " n_smaller: int64, \n", - " n_larger: int64\n", - " }, \n", - " gq_hist_alt: struct {\n", - " bin_edges: array, \n", - " bin_freq: array, \n", - " n_smaller: int64, \n", - " n_larger: int64\n", - " }, \n", - " dp_hist_alt: struct {\n", - " bin_edges: array, \n", - " bin_freq: array, \n", - " n_smaller: int64, \n", - " n_larger: int64\n", - " }, \n", - " ab_hist_alt: struct {\n", - " bin_edges: array, \n", - " bin_freq: array, \n", - " n_smaller: int64, \n", - " n_larger: int64\n", - " }\n", - " }, \n", - " age_hists: struct {\n", - " age_hist_het: struct {\n", - " bin_edges: array, \n", - " bin_freq: array, \n", - " n_smaller: int64, \n", - " n_larger: int64\n", - " }, \n", - " age_hist_hom: struct {\n", - " bin_edges: array, \n", - " bin_freq: array, \n", - " n_smaller: int64, \n", - " n_larger: int64\n", - " }\n", - " }\n", - " } \n", - " 'in_silico_predictors': struct {\n", - " cadd: struct {\n", - " phred: float32, \n", - " raw_score: float32\n", - " }, \n", - " revel_max: float64, \n", - " spliceai_ds_max: float32, \n", - " pangolin_largest_ds: float64, \n", - " phylop: float64, \n", - " sift_max: float64, \n", - " polyphen_max: float64\n", - " } \n", - "----------------------------------------\n", - "Key: ['locus', 'alleles']\n", - "----------------------------------------\n" - ] - } - ], - "execution_count": 8 - }, - { - "metadata": {}, - "cell_type": "markdown", - "source": "## Show the first 5 variants in the Hail Table\n", - "id": "a071f738b2c888e" - }, - { - "metadata": { - "ExecuteTime": { - "end_time": "2024-12-06T18:16:28.722532Z", - "start_time": "2024-12-06T18:16:00.055352Z" - } - }, - "cell_type": "code", - "source": "ht.show(5)", - "id": "222de580c305d72a", - "outputs": [ - { - "data": { - "text/plain": [ - "\u001B[?25l" - ], - "text/html": [ - "
\n"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    },
-    {
-     "data": {
-      "text/plain": [
-       "Output()"
-      ],
-      "application/vnd.jupyter.widget-view+json": {
-       "version_major": 2,
-       "version_minor": 0,
-       "model_id": "a239765de31846aab6def7bc857e326e"
-      }
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    },
-    {
-     "data": {
-      "text/plain": [
-       "\n",
-       "\u001B[?25h"
-      ],
-      "text/html": [
-       "
\n",
-       "
\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/plain": [ - "+---------------+----------------+\n", - "| locus | alleles |\n", - "+---------------+----------------+\n", - "| locus | array |\n", - "+---------------+----------------+\n", - "| chr1:11994 | [\"T\",\"C\"] |\n", - "| chr1:12016 | [\"G\",\"A\"] |\n", - "| chr1:12060 | [\"CTGGAG\",\"C\"] |\n", - "| chr1:12074 | [\"T\",\"C\"] |\n", - "| chr1:12102 | [\"G\",\"A\"] |\n", - "+---------------+----------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| freq |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [(0,NA,0,0),(2,3.18e-06,628784,1),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,... |\n", - "| [(0,NA,0,0),(6,9.54e-06,628784,2),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,... |\n", - "| [(0,0.00e+00,4,0),(1,1.59e-06,628784,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),... |\n", - "| [(0,0.00e+00,4,0),(2,3.18e-06,628784,1),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),... |\n", - "| [(0,0.00e+00,32,0),(2,3.18e-06,628784,1),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0)... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+------------------+------------------+------------------+\n", - "| grpmax.gnomad.AC | grpmax.gnomad.AF | grpmax.gnomad.AN |\n", - "+------------------+------------------+------------------+\n", - "| int32 | float64 | int32 |\n", - "+------------------+------------------+------------------+\n", - "| NA | NA | NA |\n", - "| NA | NA | NA |\n", - "| NA | NA | NA |\n", - "| NA | NA | NA |\n", - "| NA | NA | NA |\n", - "+------------------+------------------+------------------+\n", - "\n", - "+--------------------------------+-----------------------+-------------------+\n", - "| grpmax.gnomad.homozygote_count | grpmax.gnomad.gen_anc | grpmax.non_ukb.AC |\n", - "+--------------------------------+-----------------------+-------------------+\n", - "| int64 | str | int32 |\n", - "+--------------------------------+-----------------------+-------------------+\n", - "| NA | NA | NA |\n", - "| NA | NA | NA |\n", - "| NA | NA | NA |\n", - "| NA | NA | NA |\n", - "| NA | NA | NA |\n", - "+--------------------------------+-----------------------+-------------------+\n", - "\n", - "+-------------------+-------------------+---------------------------------+\n", - "| grpmax.non_ukb.AF | grpmax.non_ukb.AN | grpmax.non_ukb.homozygote_count |\n", - "+-------------------+-------------------+---------------------------------+\n", - "| float64 | int32 | int64 |\n", - "+-------------------+-------------------+---------------------------------+\n", - "| NA | NA | NA |\n", - "| NA | NA | NA |\n", - "| NA | NA | NA |\n", - "| NA | NA | NA |\n", - "| NA | NA | NA |\n", - "+-------------------+-------------------+---------------------------------+\n", - "\n", - "+------------------------+\n", - "| grpmax.non_ukb.gen_anc |\n", - "+------------------------+\n", - "| str |\n", - "+------------------------+\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "+------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| faf |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.... |\n", - "| [(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.... |\n", - "| [(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.... |\n", - "| [(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.... |\n", - "| [(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+-------------------------+---------------------------------+\n", - "| fafmax.gnomad.faf95_max | fafmax.gnomad.faf95_max_gen_anc |\n", - "+-------------------------+---------------------------------+\n", - "| float64 | str |\n", - "+-------------------------+---------------------------------+\n", - "| NA | NA |\n", - "| NA | NA |\n", - "| NA | NA |\n", - "| NA | NA |\n", - "| NA | NA |\n", - "+-------------------------+---------------------------------+\n", - "\n", - "+-------------------------+---------------------------------+\n", - "| fafmax.gnomad.faf99_max | fafmax.gnomad.faf99_max_gen_anc |\n", - "+-------------------------+---------------------------------+\n", - "| float64 | str |\n", - "+-------------------------+---------------------------------+\n", - "| NA | NA |\n", - "| NA | NA |\n", - "| NA | NA |\n", - "| NA | NA |\n", - "| NA | NA |\n", - "+-------------------------+---------------------------------+\n", - "\n", - "+--------------------------+----------------------------------+\n", - "| fafmax.non_ukb.faf95_max | fafmax.non_ukb.faf95_max_gen_anc |\n", - "+--------------------------+----------------------------------+\n", - "| float64 | str |\n", - "+--------------------------+----------------------------------+\n", - "| NA | NA |\n", - "| NA | NA |\n", - "| NA | NA |\n", - "| NA | NA |\n", - "| NA | NA |\n", - "+--------------------------+----------------------------------+\n", - "\n", - "+--------------------------+----------------------------------+---------+\n", - "| fafmax.non_ukb.faf99_max | fafmax.non_ukb.faf99_max_gen_anc | a_index |\n", - "+--------------------------+----------------------------------+---------+\n", - "| float64 | str | int32 |\n", - "+--------------------------+----------------------------------+---------+\n", - "| NA | NA | 1 |\n", - "| NA | NA | 1 |\n", - "| NA | NA | 1 |\n", - "| NA | NA | 1 |\n", - "| NA | NA | 1 |\n", - "+--------------------------+----------------------------------+---------+\n", - "\n", - "+-----------+----------+-------------------+---------+----------+\n", - "| was_split | rsid | filters | info.FS | info.MQ |\n", - "+-----------+----------+-------------------+---------+----------+\n", - "| bool | set | set | float64 | float64 |\n", - "+-----------+----------+-------------------+---------+----------+\n", - "| False | NA | {\"AC0\",\"AS_VQSR\"} | NA | 2.50e+01 |\n", - "| False | NA | {\"AC0\",\"AS_VQSR\"} | NA | 2.50e+01 |\n", - "| False | NA | {\"AC0\",\"AS_VQSR\"} | NA | 2.60e+01 |\n", - "| False | NA | {\"AC0\",\"AS_VQSR\"} | NA | 2.56e+01 |\n", - "| False | NA | {\"AC0\",\"AS_VQSR\"} | NA | 2.45e+01 |\n", - "+-----------+----------+-------------------+---------+----------+\n", - "\n", - "+----------------+-----------------+----------+---------------------+\n", - "| info.MQRankSum | info.QUALapprox | info.QD | info.ReadPosRankSum |\n", - "+----------------+-----------------+----------+---------------------+\n", - "| float64 | int64 | float64 | float64 |\n", - "+----------------+-----------------+----------+---------------------+\n", - "| NA | 60 | 3.00e+01 | NA |\n", - "| 0.00e+00 | 262 | 2.18e+01 | 6.74e-01 |\n", - "| 6.74e-01 | 123 | 3.08e+01 | -1.15e+00 |\n", - "| 4.31e-01 | 99 | 1.24e+01 | -2.53e-01 |\n", - "| NA | 90 | 2.25e+01 | NA |\n", - "+----------------+-----------------+----------+---------------------+\n", - "\n", - "+--------------+----------+------------+------------+------------+\n", - "| info.SB | info.SOR | info.VarDP | info.AS_FS | info.AS_MQ |\n", - "+--------------+----------+------------+------------+------------+\n", - "| array | float64 | int32 | float64 | float64 |\n", - "+--------------+----------+------------+------------+------------+\n", - "| [0,0,2,0] | 2.30e+00 | 2 | NA | 2.50e+01 |\n", - "| [2,0,10,0] | 2.67e+00 | 12 | NA | 2.50e+01 |\n", - "| [1,0,3,0] | 1.61e+00 | 4 | NA | 2.60e+01 |\n", - "| [4,0,4,0] | 6.93e-01 | 8 | NA | 2.56e+01 |\n", - "| [0,0,4,0] | 3.26e+00 | 4 | NA | 2.45e+01 |\n", - "+--------------+----------+------------+------------+------------+\n", - "\n", - "+-------------------+-----------------+--------------------+------------+\n", - "| info.AS_MQRankSum | info.AS_pab_max | info.AS_QUALapprox | info.AS_QD |\n", - "+-------------------+-----------------+--------------------+------------+\n", - "| float64 | float64 | int64 | float64 |\n", - "+-------------------+-----------------+--------------------+------------+\n", - "| NA | NA | 60 | 3.00e+01 |\n", - "| 0.00e+00 | 1.00e+00 | 262 | 2.18e+01 |\n", - "| 6.74e-01 | 6.25e-01 | 123 | 3.08e+01 |\n", - "| 4.31e-01 | 6.87e-01 | 99 | 1.24e+01 |\n", - "| NA | NA | 90 | 2.25e+01 |\n", - "+-------------------+-----------------+--------------------+------------+\n", - "\n", - "+------------------------+------------------+-------------+---------------+\n", - "| info.AS_ReadPosRankSum | info.AS_SB_TABLE | info.AS_SOR | info.AS_VarDP |\n", - "+------------------------+------------------+-------------+---------------+\n", - "| float64 | array | float64 | int32 |\n", - "+------------------------+------------------+-------------+---------------+\n", - "| NA | [0,0,2,0] | 2.30e+00 | 2 |\n", - "| 6.74e-01 | [2,0,10,0] | 2.67e+00 | 12 |\n", - "| -1.15e+00 | [1,0,3,0] | 1.61e+00 | 4 |\n", - "| -2.53e-01 | [4,0,4,0] | 6.93e-01 | 8 |\n", - "| NA | [0,0,4,0] | 3.26e+00 | 4 |\n", - "+------------------------+------------------+-------------+---------------+\n", - "\n", - "+----------------+----------------------------+------------------------+\n", - "| info.singleton | info.transmitted_singleton | info.sibling_singleton |\n", - "+----------------+----------------------------+------------------------+\n", - "| bool | bool | bool |\n", - "+----------------+----------------------------+------------------------+\n", - "| False | NA | NA |\n", - "| False | NA | NA |\n", - "| True | NA | NA |\n", - "| False | NA | NA |\n", - "| False | NA | NA |\n", - "+----------------+----------------------------+------------------------+\n", - "\n", - "+-----------+------------+------------------+---------------+----------------+\n", - "| info.omni | info.mills | info.monoallelic | info.only_het | info.AS_VQSLOD |\n", - "+-----------+------------+------------------+---------------+----------------+\n", - "| bool | bool | bool | bool | float64 |\n", - "+-----------+------------+------------------+---------------+----------------+\n", - "| False | False | False | False | -5.25e+00 |\n", - "| False | False | False | False | -2.75e+00 |\n", - "| False | False | False | False | -2.22e+00 |\n", - "| False | False | False | False | -2.18e+00 |\n", - "| False | False | False | False | -2.86e+00 |\n", - "+-----------+------------+------------------+---------------+----------------+\n", - "\n", - "+-----------------------+\n", - "| info.inbreeding_coeff |\n", - "+-----------------------+\n", - "| float64 |\n", - "+-----------------------+\n", - "| 1.00e+00 |\n", - "| 6.67e-01 |\n", - "| -1.59e-06 |\n", - "| 1.00e+00 |\n", - "| 1.00e+00 |\n", - "+-----------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| info.vrs.VRS_Allele_IDs |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [\"ga4gh:VA.ps4-9woXy7o4rS39i8hDK_cUPBa-UcyP\",\"ga4gh:VA.nHlWYJXgiuvXrLAxQs... |\n", - "| [\"ga4gh:VA.VFxwcI4knOzk6SHzS2qowyDGnkG3mfEH\",\"ga4gh:VA.ctgP7qNjQAGjI2eTDo... |\n", - "| [\"ga4gh:VA.P573ZtUtAaRcceE7NLanEyynSefvcAPL\",\"ga4gh:VA.CHmk9uDiHW2LIHndZW... |\n", - "| [\"ga4gh:VA.neBeBT28ISe_1-yKPFsYxntP2jz1pj7E\",\"ga4gh:VA.1RPHSwBHNUwoECJ9VV... |\n", - "| [\"ga4gh:VA.ZXRhPWtip8HseOMWpCnaja0-ATo8hLE1\",\"ga4gh:VA.Qi95g6E8nt6DaqTGpH... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+---------------------+-------------------+---------------------+\n", - "| info.vrs.VRS_Starts | info.vrs.VRS_Ends | info.vrs.VRS_States |\n", - "+---------------------+-------------------+---------------------+\n", - "| array | array | array |\n", - "+---------------------+-------------------+---------------------+\n", - "| [11993,11993] | [11994,11994] | [\"T\",\"C\"] |\n", - "| [12015,12015] | [12016,12016] | [\"G\",\"A\"] |\n", - "| [12059,12060] | [12065,12071] | [\"CTGGAG\",\"TGGAGT\"] |\n", - "| [12073,12073] | [12074,12074] | [\"T\",\"C\"] |\n", - "| [12101,12101] | [12102,12102] | [\"G\",\"A\"] |\n", - "+---------------------+-------------------+---------------------+\n", - "\n", - "+-------------------+---------+--------+--------------------------------+\n", - "| vep.allele_string | vep.end | vep.id | vep.input |\n", - "+-------------------+---------+--------+--------------------------------+\n", - "| str | int32 | str | str |\n", - "+-------------------+---------+--------+--------------------------------+\n", - "| \"T/C\" | 11994 | \".\" | \"chr1\t11994\t.\tT\tC\t.\t.\tGT\" |\n", - "| \"G/A\" | 12016 | \".\" | \"chr1\t12016\t.\tG\tA\t.\t.\tGT\" |\n", - "| \"TGGAG/-\" | 12065 | \".\" | \"chr1\t12060\t.\tCTGGAG\tC\t.\t.\tGT\" |\n", - "| \"T/C\" | 12074 | \".\" | \"chr1\t12074\t.\tT\tC\t.\t.\tGT\" |\n", - "| \"G/A\" | 12102 | \".\" | \"chr1\t12102\t.\tG\tA\t.\t.\tGT\" |\n", - "+-------------------+---------+--------+--------------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| vep.intergenic_consequences |\n", - "+------------------------------------------------------------------------------+\n", - "| array, impact: st... |\n", - "+------------------------------------------------------------------------------+\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+--------------------------------------+\n", - "| vep.most_severe_consequence |\n", - "+--------------------------------------+\n", - "| str |\n", - "+--------------------------------------+\n", - "| \"non_coding_transcript_exon_variant\" |\n", - "| \"non_coding_transcript_exon_variant\" |\n", - "| \"splice_donor_5th_base_variant\" |\n", - "| \"non_coding_transcript_exon_variant\" |\n", - "| \"non_coding_transcript_exon_variant\" |\n", - "+--------------------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| vep.motif_feature_consequences |\n", - "+------------------------------------------------------------------------------+\n", - "| array, high_inf_p... |\n", - "+------------------------------------------------------------------------------+\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| vep.regulatory_feature_consequences |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+--------------------------------------------+\n", - "| histograms.qual_hists.gq_hist_all.bin_freq |\n", - "+--------------------------------------------+\n", - "| array |\n", - "+--------------------------------------------+\n", - "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,2,0,12,0,2,0,0,0,0,0,0,0,0,0,0,0] |\n", - "+--------------------------------------------+\n", - "\n", - "+---------------------------------------------+\n", - "| histograms.qual_hists.gq_hist_all.n_smaller |\n", - "+---------------------------------------------+\n", - "| int64 |\n", - "+---------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+---------------------------------------------+\n", - "\n", - "+--------------------------------------------+\n", - "| histograms.qual_hists.gq_hist_all.n_larger |\n", - "+--------------------------------------------+\n", - "| int64 |\n", - "+--------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+--------------------------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| histograms.qual_hists.dp_hist_all.bin_edges |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+--------------------------------------------+\n", - "| histograms.qual_hists.dp_hist_all.bin_freq |\n", - "+--------------------------------------------+\n", - "| array |\n", - "+--------------------------------------------+\n", - "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,14,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "+--------------------------------------------+\n", - "\n", - "+---------------------------------------------+\n", - "| histograms.qual_hists.dp_hist_all.n_smaller |\n", - "+---------------------------------------------+\n", - "| int64 |\n", - "+---------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+---------------------------------------------+\n", - "\n", - "+--------------------------------------------+\n", - "| histograms.qual_hists.dp_hist_all.n_larger |\n", - "+--------------------------------------------+\n", - "| int64 |\n", - "+--------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+--------------------------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| histograms.qual_hists.gq_hist_alt.bin_edges |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+--------------------------------------------+\n", - "| histograms.qual_hists.gq_hist_alt.bin_freq |\n", - "+--------------------------------------------+\n", - "| array |\n", - "+--------------------------------------------+\n", - "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "+--------------------------------------------+\n", - "\n", - "+---------------------------------------------+\n", - "| histograms.qual_hists.gq_hist_alt.n_smaller |\n", - "+---------------------------------------------+\n", - "| int64 |\n", - "+---------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+---------------------------------------------+\n", - "\n", - "+--------------------------------------------+\n", - "| histograms.qual_hists.gq_hist_alt.n_larger |\n", - "+--------------------------------------------+\n", - "| int64 |\n", - "+--------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+--------------------------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| histograms.qual_hists.dp_hist_alt.bin_edges |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+--------------------------------------------+\n", - "| histograms.qual_hists.dp_hist_alt.bin_freq |\n", - "+--------------------------------------------+\n", - "| array |\n", - "+--------------------------------------------+\n", - "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "+--------------------------------------------+\n", - "\n", - "+---------------------------------------------+\n", - "| histograms.qual_hists.dp_hist_alt.n_smaller |\n", - "+---------------------------------------------+\n", - "| int64 |\n", - "+---------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+---------------------------------------------+\n", - "\n", - "+--------------------------------------------+\n", - "| histograms.qual_hists.dp_hist_alt.n_larger |\n", - "+--------------------------------------------+\n", - "| int64 |\n", - "+--------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+--------------------------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| histograms.qual_hists.ab_hist_alt.bin_edges |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", - "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", - "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", - "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", - "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+--------------------------------------------+\n", - "| histograms.qual_hists.ab_hist_alt.bin_freq |\n", - "+--------------------------------------------+\n", - "| array |\n", - "+--------------------------------------------+\n", - "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "+--------------------------------------------+\n", - "\n", - "+---------------------------------------------+\n", - "| histograms.qual_hists.ab_hist_alt.n_smaller |\n", - "+---------------------------------------------+\n", - "| int64 |\n", - "+---------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+---------------------------------------------+\n", - "\n", - "+--------------------------------------------+\n", - "| histograms.qual_hists.ab_hist_alt.n_larger |\n", - "+--------------------------------------------+\n", - "| int64 |\n", - "+--------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+--------------------------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| histograms.raw_qual_hists.gq_hist_all.bin_edges |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+--------------------------------------------------+\n", - "| histograms.raw_qual_hists.gq_hist_all.bin_freq |\n", - "+--------------------------------------------------+\n", - "| array |\n", - "+--------------------------------------------------+\n", - "| [314391,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [314388,2,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [314380,0,0,0,11,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0] |\n", - "| [314369,1,0,0,20,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [314323,1,0,0,54,0,12,0,2,0,0,0,0,0,0,0,0,0,0,0] |\n", - "+--------------------------------------------------+\n", - "\n", - "+-------------------------------------------------+\n", - "| histograms.raw_qual_hists.gq_hist_all.n_smaller |\n", - "+-------------------------------------------------+\n", - "| int64 |\n", - "+-------------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+-------------------------------------------------+\n", - "\n", - "+------------------------------------------------+\n", - "| histograms.raw_qual_hists.gq_hist_all.n_larger |\n", - "+------------------------------------------------+\n", - "| int64 |\n", - "+------------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+------------------------------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| histograms.raw_qual_hists.dp_hist_all.bin_edges |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+----------------------------------------------------+\n", - "| histograms.raw_qual_hists.dp_hist_all.bin_freq |\n", - "+----------------------------------------------------+\n", - "| array |\n", - "+----------------------------------------------------+\n", - "| [308845,5547,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [308845,5547,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [308833,5557,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [308823,5567,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [308789,5585,16,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "+----------------------------------------------------+\n", - "\n", - "+-------------------------------------------------+\n", - "| histograms.raw_qual_hists.dp_hist_all.n_smaller |\n", - "+-------------------------------------------------+\n", - "| int64 |\n", - "+-------------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+-------------------------------------------------+\n", - "\n", - "+------------------------------------------------+\n", - "| histograms.raw_qual_hists.dp_hist_all.n_larger |\n", - "+------------------------------------------------+\n", - "| int64 |\n", - "+------------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+------------------------------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| histograms.raw_qual_hists.gq_hist_alt.bin_edges |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+------------------------------------------------+\n", - "| histograms.raw_qual_hists.gq_hist_alt.bin_freq |\n", - "+------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------+\n", - "| [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,2,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0] |\n", - "| [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "+------------------------------------------------+\n", - "\n", - "+-------------------------------------------------+\n", - "| histograms.raw_qual_hists.gq_hist_alt.n_smaller |\n", - "+-------------------------------------------------+\n", - "| int64 |\n", - "+-------------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+-------------------------------------------------+\n", - "\n", - "+------------------------------------------------+\n", - "| histograms.raw_qual_hists.gq_hist_alt.n_larger |\n", - "+------------------------------------------------+\n", - "| int64 |\n", - "+------------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+------------------------------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| histograms.raw_qual_hists.dp_hist_alt.bin_edges |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+------------------------------------------------+\n", - "| histograms.raw_qual_hists.dp_hist_alt.bin_freq |\n", - "+------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------+\n", - "| [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "+------------------------------------------------+\n", - "\n", - "+-------------------------------------------------+\n", - "| histograms.raw_qual_hists.dp_hist_alt.n_smaller |\n", - "+-------------------------------------------------+\n", - "| int64 |\n", - "+-------------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+-------------------------------------------------+\n", - "\n", - "+------------------------------------------------+\n", - "| histograms.raw_qual_hists.dp_hist_alt.n_larger |\n", - "+------------------------------------------------+\n", - "| int64 |\n", - "+------------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+------------------------------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| histograms.raw_qual_hists.ab_hist_alt.bin_edges |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", - "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", - "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", - "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", - "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+------------------------------------------------+\n", - "| histograms.raw_qual_hists.ab_hist_alt.bin_freq |\n", - "+------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------+\n", - "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0] |\n", - "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "+------------------------------------------------+\n", - "\n", - "+-------------------------------------------------+\n", - "| histograms.raw_qual_hists.ab_hist_alt.n_smaller |\n", - "+-------------------------------------------------+\n", - "| int64 |\n", - "+-------------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+-------------------------------------------------+\n", - "\n", - "+------------------------------------------------+\n", - "| histograms.raw_qual_hists.ab_hist_alt.n_larger |\n", - "+------------------------------------------------+\n", - "| int64 |\n", - "+------------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+------------------------------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| histograms.age_hists.age_hist_het.bin_edges |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", - "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", - "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", - "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", - "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+--------------------------------------------+\n", - "| histograms.age_hists.age_hist_het.bin_freq |\n", - "+--------------------------------------------+\n", - "| array |\n", - "+--------------------------------------------+\n", - "| [0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,0,0,0,0,0] |\n", - "+--------------------------------------------+\n", - "\n", - "+---------------------------------------------+\n", - "| histograms.age_hists.age_hist_het.n_smaller |\n", - "+---------------------------------------------+\n", - "| int64 |\n", - "+---------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+---------------------------------------------+\n", - "\n", - "+--------------------------------------------+\n", - "| histograms.age_hists.age_hist_het.n_larger |\n", - "+--------------------------------------------+\n", - "| int64 |\n", - "+--------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+--------------------------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| histograms.age_hists.age_hist_hom.bin_edges |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", - "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", - "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", - "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", - "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+--------------------------------------------+\n", - "| histograms.age_hists.age_hist_hom.bin_freq |\n", - "+--------------------------------------------+\n", - "| array |\n", - "+--------------------------------------------+\n", - "| [0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,0,0,0,0,0] |\n", - "+--------------------------------------------+\n", - "\n", - "+---------------------------------------------+\n", - "| histograms.age_hists.age_hist_hom.n_smaller |\n", - "+---------------------------------------------+\n", - "| int64 |\n", - "+---------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+---------------------------------------------+\n", - "\n", - "+--------------------------------------------+---------------------------------+\n", - "| histograms.age_hists.age_hist_hom.n_larger | in_silico_predictors.cadd.phred |\n", - "+--------------------------------------------+---------------------------------+\n", - "| int64 | float32 |\n", - "+--------------------------------------------+---------------------------------+\n", - "| 0 | 1.26e+01 |\n", - "| 0 | 1.60e+01 |\n", - "| 0 | 8.52e+00 |\n", - "| 0 | 1.52e+01 |\n", - "| 0 | 4.42e+00 |\n", - "+--------------------------------------------+---------------------------------+\n", - "\n", - "+-------------------------------------+--------------------------------+\n", - "| in_silico_predictors.cadd.raw_score | in_silico_predictors.revel_max |\n", - "+-------------------------------------+--------------------------------+\n", - "| float32 | float64 |\n", - "+-------------------------------------+--------------------------------+\n", - "| 1.08e+00 | NA |\n", - "| 1.54e+00 | NA |\n", - "| 7.07e-01 | NA |\n", - "| 1.41e+00 | NA |\n", - "| 3.11e-01 | NA |\n", - "+-------------------------------------+--------------------------------+\n", - "\n", - "+--------------------------------------+\n", - "| in_silico_predictors.spliceai_ds_max |\n", - "+--------------------------------------+\n", - "| float32 |\n", - "+--------------------------------------+\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "+--------------------------------------+\n", - "\n", - "+------------------------------------------+-----------------------------+\n", - "| in_silico_predictors.pangolin_largest_ds | in_silico_predictors.phylop |\n", - "+------------------------------------------+-----------------------------+\n", - "| float64 | float64 |\n", - "+------------------------------------------+-----------------------------+\n", - "| -1.10e-01 | 1.09e+00 |\n", - "| -7.00e-02 | 6.55e+00 |\n", - "| -9.00e-02 | -4.41e+00 |\n", - "| -4.00e-02 | 6.01e+00 |\n", - "| -8.00e-02 | 1.38e+00 |\n", - "+------------------------------------------+-----------------------------+\n", - "\n", - "+-------------------------------+-----------------------------------+\n", - "| in_silico_predictors.sift_max | in_silico_predictors.polyphen_max |\n", - "+-------------------------------+-----------------------------------+\n", - "| float64 | float64 |\n", - "+-------------------------------+-----------------------------------+\n", - "| NA | NA |\n", - "| NA | NA |\n", - "| NA | NA |\n", - "| NA | NA |\n", - "| NA | NA |\n", - "+-------------------------------+-----------------------------------+\n", - "showing top 5 rows" - ], - "text/html": [ - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "
histograms
grpmax
fafmax
info
qual_hists
raw_qual_hists
age_hists
in_silico_predictors
gnomad
non_ukb
gnomad
non_ukb
vrs
vep
vqsr_results
region_flags
allele_info
gq_hist_all
dp_hist_all
gq_hist_alt
dp_hist_alt
ab_hist_alt
gq_hist_all
dp_hist_all
gq_hist_alt
dp_hist_alt
ab_hist_alt
age_hist_het
age_hist_hom
cadd
locus
alleles
freq
AC
AF
AN
homozygote_count
gen_anc
AC
AF
AN
homozygote_count
gen_anc
faf
faf95_max
faf95_max_gen_anc
faf99_max
faf99_max_gen_anc
faf95_max
faf95_max_gen_anc
faf99_max
faf99_max_gen_anc
a_index
was_split
rsid
filters
FS
MQ
MQRankSum
QUALapprox
QD
ReadPosRankSum
SB
SOR
VarDP
AS_FS
AS_MQ
AS_MQRankSum
AS_pab_max
AS_QUALapprox
AS_QD
AS_ReadPosRankSum
AS_SB_TABLE
AS_SOR
AS_VarDP
singleton
transmitted_singleton
sibling_singleton
omni
mills
monoallelic
only_het
AS_VQSLOD
inbreeding_coeff
VRS_Allele_IDs
VRS_Starts
VRS_Ends
VRS_States
allele_string
end
id
input
intergenic_consequences
most_severe_consequence
motif_feature_consequences
regulatory_feature_consequences
seq_region_name
start
strand
transcript_consequences
variant_class
AS_VQSLOD
AS_culprit
positive_train_site
negative_train_site
non_par
lcr
segdup
fail_interval_qc
outside_ukb_capture_region
outside_broad_capture_region
variant_type
n_alt_alleles
has_star
allele_type
was_mixed
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
phred
raw_score
revel_max
spliceai_ds_max
pangolin_largest_ds
phylop
sift_max
polyphen_max
locus<GRCh38>array<str>array<struct{AC: int32, AF: float64, AN: int32, homozygote_count: int64}>int32float64int32int64strint32float64int32int64strarray<struct{faf95: float64, faf99: float64}>float64strfloat64strfloat64strfloat64strint32boolset<str>set<str>float64float64float64int64float64float64array<int32>float64int32float64float64float64float64int64float64float64array<int32>float64int32boolboolboolboolboolboolboolfloat64float64array<str>array<int32>array<int32>array<str>strint32strstrarray<struct{allele_num: int32, consequence_terms: array<str>, impact: str, variant_allele: str}>strarray<struct{allele_num: int32, consequence_terms: array<str>, high_inf_pos: str, impact: str, motif_feature_id: str, motif_name: str, motif_pos: int32, motif_score_change: float64, transcription_factors: array<str>, strand: int32, variant_allele: str}>array<struct{allele_num: int32, biotype: str, consequence_terms: array<str>, impact: str, regulatory_feature_id: str, variant_allele: str}>strint32int32array<struct{allele_num: int32, amino_acids: str, appris: str, biotype: str, canonical: int32, ccds: str, cdna_start: int32, cdna_end: int32, cds_end: int32, cds_start: int32, codons: str, consequence_terms: array<str>, distance: int32, domains: array<struct{db: str, name: str}>, exon: str, flags: str, gene_id: str, gene_pheno: int32, gene_symbol: str, gene_symbol_source: str, hgnc_id: str, hgvsc: str, hgvsp: str, hgvs_offset: int32, impact: str, intron: str, lof: str, lof_flags: str, lof_filter: str, lof_info: str, mane_select: str, mane_plus_clinical: str, mirna: array<str>, protein_end: int32, protein_start: int32, protein_id: str, source: str, strand: int32, transcript_id: str, tsl: int32, uniprot_isoform: array<str>, variant_allele: str}>strfloat64strboolboolboolboolboolboolboolboolstrint32boolstrboolarray<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64float32float32float64float32float64float64float64float64
chr1:11994["T","C"][(0,NA,0,0),(2,3.18e-06,628784,1),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(2,3.18e-06,628784,1),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0)]NANANANANANANANANANA[(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]NANANANANANANANA1FalseNA{"AC0","AS_VQSR"}NA2.50e+01NA603.00e+01NA[0,0,2,0]2.30e+002NA2.50e+01NANA603.00e+01NA[0,0,2,0]2.30e+002FalseNANAFalseFalseFalseFalse-5.25e+001.00e+00["ga4gh:VA.ps4-9woXy7o4rS39i8hDK_cUPBa-UcyP","ga4gh:VA.nHlWYJXgiuvXrLAxQsraJ6r-daZ8ELL-"][11993,11993][11994,11994]["T","C"]"T/C"11994".""chr1\t11994\t.\tT\tC\t.\t.\tGT"NA"non_coding_transcript_exon_variant"NANA"chr1"119941[(1,NA,NA,"transcribed_unprocessed_pseudogene",1,NA,NA,NA,NA,NA,NA,["upstream_gene_variant"],16,NA,NA,NA,"ENSG00000223972",NA,"DDX11L1","HGNC","HGNC:37102",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",1,"ENST00000450305",NA,NA,"C"),(1,NA,NA,"processed_transcript",NA,NA,126,126,NA,NA,NA,["non_coding_transcript_exon_variant"],NA,NA,"1/3",NA,"ENSG00000223972",NA,"DDX11L1","HGNC","HGNC:37102","ENST00000456328.2:n.126T>C",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",1,"ENST00000456328",1,NA,"C"),(1,NA,NA,"unprocessed_pseudogene",1,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],2410,NA,NA,NA,"ENSG00000227232",NA,"WASH7P","HGNC","HGNC:38034",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000488147",NA,NA,"C"),(1,NA,NA,"transcribed_pseudogene",1,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],2368,NA,NA,NA,"653635",NA,"WASH7P","EntrezGene","HGNC:38034",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"RefSeq",-1,"NR_024540.1",NA,NA,"C"),(1,NA,NA,"transcribed_pseudogene",1,NA,121,121,NA,NA,NA,["non_coding_transcript_exon_variant"],NA,NA,"1/3",NA,"100287102",NA,"DDX11L1","EntrezGene","HGNC:37102","NR_046018.2:n.121T>C",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"RefSeq",1,"NR_046018.2",NA,NA,"C")]"SNV"-5.25e+00"AS_MQ"FalseFalseFalseFalseTrueNATrueFalse"snv"1False"snv"False[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][314391,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][308845,5547,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]001.26e+011.08e+00NANA-1.10e-011.09e+00NANA
chr1:12016["G","A"][(0,NA,0,0),(6,9.54e-06,628784,2),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(6,9.54e-06,628784,2),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0)]NANANANANANANANANANA[(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]NANANANANANANANA1FalseNA{"AC0","AS_VQSR"}NA2.50e+010.00e+002622.18e+016.74e-01[2,0,10,0]2.67e+0012NA2.50e+010.00e+001.00e+002622.18e+016.74e-01[2,0,10,0]2.67e+0012FalseNANAFalseFalseFalseFalse-2.75e+006.67e-01["ga4gh:VA.VFxwcI4knOzk6SHzS2qowyDGnkG3mfEH","ga4gh:VA.ctgP7qNjQAGjI2eTDopAF-qoBBPmtsW5"][12015,12015][12016,12016]["G","A"]"G/A"12016".""chr1\t12016\t.\tG\tA\t.\t.\tGT"NA"non_coding_transcript_exon_variant"NANA"chr1"120161[(1,NA,NA,"transcribed_unprocessed_pseudogene",1,NA,7,7,NA,NA,NA,["non_coding_transcript_exon_variant"],NA,NA,"1/6",NA,"ENSG00000223972",NA,"DDX11L1","HGNC","HGNC:37102","ENST00000450305.2:n.7G>A",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",1,"ENST00000450305",NA,NA,"A"),(1,NA,NA,"processed_transcript",NA,NA,148,148,NA,NA,NA,["non_coding_transcript_exon_variant"],NA,NA,"1/3",NA,"ENSG00000223972",NA,"DDX11L1","HGNC","HGNC:37102","ENST00000456328.2:n.148G>A",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",1,"ENST00000456328",1,NA,"A"),(1,NA,NA,"unprocessed_pseudogene",1,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],2388,NA,NA,NA,"ENSG00000227232",NA,"WASH7P","HGNC","HGNC:38034",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000488147",NA,NA,"A"),(1,NA,NA,"transcribed_pseudogene",1,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],2346,NA,NA,NA,"653635",NA,"WASH7P","EntrezGene","HGNC:38034",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"RefSeq",-1,"NR_024540.1",NA,NA,"A"),(1,NA,NA,"transcribed_pseudogene",1,NA,143,143,NA,NA,NA,["non_coding_transcript_exon_variant"],NA,NA,"1/3",NA,"100287102",NA,"DDX11L1","EntrezGene","HGNC:37102","NR_046018.2:n.143G>A",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"RefSeq",1,"NR_046018.2",NA,NA,"A")]"SNV"-2.75e+00"AS_MQ"FalseFalseFalseFalseTrueNATrueFalse"snv"1False"snv"False[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][314388,2,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][308845,5547,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,2,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]001.60e+011.54e+00NANA-7.00e-026.55e+00NANA
chr1:12060["CTGGAG","C"][(0,0.00e+00,4,0),(1,1.59e-06,628784,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,0.00e+00,2,0),(0,0.00e+00,4,0),(1,1.59e-06,628784,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,NA,0,0),(0,NA,0,0)]NANANANANANANANANANA[(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]NANANANANANANANA1FalseNA{"AC0","AS_VQSR"}NA2.60e+016.74e-011233.08e+01-1.15e+00[1,0,3,0]1.61e+004NA2.60e+016.74e-016.25e-011233.08e+01-1.15e+00[1,0,3,0]1.61e+004TrueNANAFalseFalseFalseFalse-2.22e+00-1.59e-06["ga4gh:VA.P573ZtUtAaRcceE7NLanEyynSefvcAPL","ga4gh:VA.CHmk9uDiHW2LIHndZWqNHxD1fN_Ta1vn"][12059,12060][12065,12071]["CTGGAG","TGGAGT"]"TGGAG/-"12065".""chr1\t12060\t.\tCTGGAG\tC\t.\t.\tGT"NA"splice_donor_5th_base_variant"NANA"chr1"120611[(1,NA,NA,"transcribed_unprocessed_pseudogene",1,NA,NA,NA,NA,NA,NA,["splice_donor_5th_base_variant","intron_variant","non_coding_transcript_variant"],NA,NA,NA,NA,"ENSG00000223972",NA,"DDX11L1","HGNC","HGNC:37102","ENST00000450305.2:n.48+10_48+14del",NA,NA,"LOW","1/5",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",1,"ENST00000450305",NA,NA,"-"),(1,NA,NA,"processed_transcript",NA,NA,193,197,NA,NA,NA,["non_coding_transcript_exon_variant"],NA,NA,"1/3",NA,"ENSG00000223972",NA,"DDX11L1","HGNC","HGNC:37102","ENST00000456328.2:n.199_203del",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",1,"ENST00000456328",1,NA,"-"),(1,NA,NA,"unprocessed_pseudogene",1,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],2339,NA,NA,NA,"ENSG00000227232",NA,"WASH7P","HGNC","HGNC:38034",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000488147",NA,NA,"-"),(1,NA,NA,"transcribed_pseudogene",1,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],2297,NA,NA,NA,"653635",NA,"WASH7P","EntrezGene","HGNC:38034",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"RefSeq",-1,"NR_024540.1",NA,NA,"-"),(1,NA,NA,"transcribed_pseudogene",1,NA,188,192,NA,NA,NA,["non_coding_transcript_exon_variant"],NA,NA,"1/3",NA,"100287102",NA,"DDX11L1","EntrezGene","HGNC:37102","NR_046018.2:n.194_198del",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"RefSeq",1,"NR_046018.2",NA,NA,"-")]"deletion"-2.22e+00"AS_MQRankSum"FalseTrueFalseFalseTrueNATrueFalse"indel"1False"del"False[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][314380,0,0,0,11,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][308833,5557,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]008.52e+007.07e-01NANA-9.00e-02-4.41e+00NANA
chr1:12074["T","C"][(0,0.00e+00,4,0),(2,3.18e-06,628784,1),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,0.00e+00,4,0),(0,0.00e+00,2,0),(0,0.00e+00,4,0),(0,0.00e+00,4,0),(0,0.00e+00,4,0),(2,3.18e-06,628784,1),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,0.00e+00,4,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0)]NANANANANANANANANANA[(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]NANANANANANANANA1FalseNA{"AC0","AS_VQSR"}NA2.56e+014.31e-01991.24e+01-2.53e-01[4,0,4,0]6.93e-018NA2.56e+014.31e-016.87e-01991.24e+01-2.53e-01[4,0,4,0]6.93e-018FalseNANAFalseFalseFalseFalse-2.18e+001.00e+00["ga4gh:VA.neBeBT28ISe_1-yKPFsYxntP2jz1pj7E","ga4gh:VA.1RPHSwBHNUwoECJ9VVK3hf-KasFb1nfl"][12073,12073][12074,12074]["T","C"]"T/C"12074".""chr1\t12074\t.\tT\tC\t.\t.\tGT"NA"non_coding_transcript_exon_variant"NANA"chr1"120741[(1,NA,NA,"transcribed_unprocessed_pseudogene",1,NA,NA,NA,NA,NA,NA,["intron_variant","non_coding_transcript_variant"],NA,NA,NA,NA,"ENSG00000223972",NA,"DDX11L1","HGNC","HGNC:37102","ENST00000450305.2:n.48+17T>C",NA,NA,"MODIFIER","1/5",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",1,"ENST00000450305",NA,NA,"C"),(1,NA,NA,"processed_transcript",NA,NA,206,206,NA,NA,NA,["non_coding_transcript_exon_variant"],NA,NA,"1/3",NA,"ENSG00000223972",NA,"DDX11L1","HGNC","HGNC:37102","ENST00000456328.2:n.206T>C",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",1,"ENST00000456328",1,NA,"C"),(1,NA,NA,"unprocessed_pseudogene",1,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],2330,NA,NA,NA,"ENSG00000227232",NA,"WASH7P","HGNC","HGNC:38034",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000488147",NA,NA,"C"),(1,NA,NA,"transcribed_pseudogene",1,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],2288,NA,NA,NA,"653635",NA,"WASH7P","EntrezGene","HGNC:38034",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"RefSeq",-1,"NR_024540.1",NA,NA,"C"),(1,NA,NA,"transcribed_pseudogene",1,NA,201,201,NA,NA,NA,["non_coding_transcript_exon_variant"],NA,NA,"1/3",NA,"100287102",NA,"DDX11L1","EntrezGene","HGNC:37102","NR_046018.2:n.201T>C",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"RefSeq",1,"NR_046018.2",NA,NA,"C")]"SNV"-2.18e+00"AS_MQ"FalseFalseFalseFalseTrueNATrueFalse"snv"1False"snv"False[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][314369,1,0,0,20,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][308823,5567,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]001.52e+011.41e+00NANA-4.00e-026.01e+00NANA
chr1:12102["G","A"][(0,0.00e+00,32,0),(2,3.18e-06,628784,1),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,32,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,16,0),(0,0.00e+00,16,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,16,0),(0,0.00e+00,16,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,0.00e+00,6,0),(0,0.00e+00,4,0),(0,0.00e+00,14,0),(0,0.00e+00,8,0),(0,0.00e+00,30,0),(0,0.00e+00,22,0),(0,0.00e+00,32,0),(0,0.00e+00,26,0),(0,0.00e+00,32,0),(2,3.18e-06,628784,1),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,32,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,16,0),(0,0.00e+00,16,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,16,0),(0,0.00e+00,16,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,0.00e+00,6,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,0.00e+00,10,0),(0,0.00e+00,4,0),(0,0.00e+00,20,0),(0,0.00e+00,12,0),(0,0.00e+00,32,0),(0,0.00e+00,20,0),(0,0.00e+00,22,0)]NANANANANANANANANANA[(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]NANANANANANANANA1FalseNA{"AC0","AS_VQSR"}NA2.45e+01NA902.25e+01NA[0,0,4,0]3.26e+004NA2.45e+01NANA902.25e+01NA[0,0,4,0]3.26e+004FalseNANAFalseFalseFalseFalse-2.86e+001.00e+00["ga4gh:VA.ZXRhPWtip8HseOMWpCnaja0-ATo8hLE1","ga4gh:VA.Qi95g6E8nt6DaqTGpH5JX9x4n-pi-kBO"][12101,12101][12102,12102]["G","A"]"G/A"12102".""chr1\t12102\t.\tG\tA\t.\t.\tGT"NA"non_coding_transcript_exon_variant"NANA"chr1"121021[(1,NA,NA,"transcribed_unprocessed_pseudogene",1,NA,NA,NA,NA,NA,NA,["intron_variant","non_coding_transcript_variant"],NA,NA,NA,NA,"ENSG00000223972",NA,"DDX11L1","HGNC","HGNC:37102","ENST00000450305.2:n.48+45G>A",NA,NA,"MODIFIER","1/5",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",1,"ENST00000450305",NA,NA,"A"),(1,NA,NA,"processed_transcript",NA,NA,234,234,NA,NA,NA,["non_coding_transcript_exon_variant"],NA,NA,"1/3",NA,"ENSG00000223972",NA,"DDX11L1","HGNC","HGNC:37102","ENST00000456328.2:n.234G>A",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",1,"ENST00000456328",1,NA,"A"),(1,NA,NA,"unprocessed_pseudogene",1,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],2302,NA,NA,NA,"ENSG00000227232",NA,"WASH7P","HGNC","HGNC:38034",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000488147",NA,NA,"A"),(1,NA,NA,"transcribed_pseudogene",1,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],2260,NA,NA,NA,"653635",NA,"WASH7P","EntrezGene","HGNC:38034",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"RefSeq",-1,"NR_024540.1",NA,NA,"A"),(1,NA,NA,"transcribed_pseudogene",1,NA,229,229,NA,NA,NA,["non_coding_transcript_exon_variant"],NA,NA,"1/3",NA,"100287102",NA,"DDX11L1","EntrezGene","HGNC:37102","NR_046018.2:n.229G>A",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"RefSeq",1,"NR_046018.2",NA,NA,"A")]"SNV"-2.86e+00"AS_MQ"FalseFalseFalseFalseTrueNATrueFalse"snv"1False"snv"False[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,2,0,12,0,2,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,14,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][314323,1,0,0,54,0,12,0,2,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][308789,5585,16,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]004.42e+003.11e-01NANA-8.00e-021.38e+00NANA

showing top 5 rows

\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "execution_count": 9 - }, - { - "cell_type": "markdown", - "id": "1ba4bfaf", - "metadata": {}, - "source": [ - "# Get variant count" - ] - }, - { - "cell_type": "markdown", - "id": "df28f17d", - "metadata": {}, - "source": [ - "## Get variant count by AF for a release\n", - "\n", - "**Note: this will take long if your notebook is NOT using multiple nodes.**" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "id": "c276fb7e", - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "[Stage 1:====================================================>(8782 + 7) / 8789]\r" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "{'number of variants with AF < 0.01': 68398090, 'number of variants with AF < 0.001': 67709028}\n" - ] - } - ], - "source": [ - "print(get_variant_count(ht))" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "id": "c0243c4b", - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "[Stage 5:====================================================>(8781 + 8) / 8789]\r" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "{'number of singletons': 34047562, 'number of doubletons': 10161819, 'number of variants with AF < 0.01': 68398090, 'number of variants with AF < 0.001': 67709028}\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - "[Stage 5:====================================================>(8786 + 3) / 8789]\r" - ] - } - ], - "source": [ - "print(get_variant_count(ht, singletons=True, doubletons=True))" - ] - }, - { - "cell_type": "markdown", - "id": "ec659eeb", - "metadata": {}, - "source": [ - "## Get variant count by AF for coding variants" - ] - }, - { - "cell_type": "code", - "execution_count": 44, - "id": "d65b0ea8", - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "[Stage 21:===================================================>(8784 + 5) / 8789]\r" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "{'number of variants with AF < 0.01': 23762097, 'number of variants with AF < 0.001': 23643787, 'number of variants with AF < 0.0005': 23569893}\n" - ] - } - ], - "source": [ - "ht = get_ht_by_datatype_and_version(data_type='exomes', version='4.1')\n", - "\n", - "ht = filter_by_csqs(ht, ['coding'])\n", - "\n", - "print(get_variant_count(ht, afs=[0.01, 0.001, 0.0005]))" - ] - }, - { - "cell_type": "markdown", - "id": "f07ca88f", - "metadata": {}, - "source": [ - "## Get variant count by VEP consequence" - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "id": "b515bfc0", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "18231426" - ] - }, - "execution_count": 20, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# total number of missense variant in exomes data\n", - "ht = get_ht_by_datatype_and_version(data_type='exomes', version='4.1')\n", - "\n", - "ht.filter(\n", - " hl.any(\n", - " hl.map(\n", - " lambda x: (x.consequence_terms.contains(\"missense_variant\")),\n", - " ht.vep.transcript_consequences,\n", - " )\n", - " )\n", - ").count()" - ] - }, - { - "cell_type": "markdown", - "id": "725f9a57", - "metadata": {}, - "source": [ - "## Get variant count by AF for a gene\n", - "\n", - "**Note: This isn't necessarily equal to the number of variants annotated to this gene by VEP.**\n", - "\n", - "Here we show two ways that you can load a variant table on the gnomAD browser, one is the [gene page](https://gnomad.broadinstitute.org/gene/ENSG00000149295?dataset=gnomad_r4) (filtered to MANE Select transcript of that gene, and only variants located in or within 75 base pairs of a coding exon (CDS)), the other is the [region view](https://gnomad.broadinstitute.org/region/11-113409605-113475691?dataset=gnomad_r4). We use *DRD2* gene as an example. " - ] - }, - { - "attachments": { - "Screenshot%202024-11-01%20at%209.31.00%E2%80%AFPM.png": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABCAAAAESCAYAAAAsZqRkAAAKrGlDQ1BJQ0MgUHJvZmlsZQAASImVlwdUU+kSgP9700NCS6hSQm+CdAJICT303myEJEAoIQaCgqioLK7giiIiAsqCLIoouCpF7FiwLQpKUdEFWRTUdbEgKirvAofg7jvvvfPmnjnz3cn8M/Pf8//nTAAgU1kCQTIsDUAKP10Y7OlCi4yKpuFGAR4oADKgA0sWO03ACAz0BYjM27/Lh14Azdh7xjO5/v33/yoyHG4aGwAoEOFYTho7BeFTiI6zBcJ0AFA1iF9rTbpghq8jTBUiDSI8MMPxczw+w7GzjEbPxoQGuyKsCACexGIJ4wEgaSN+WgY7HslDckPYlM/h8RFG3oFjSkoqB2GkLtBHYgQIz+Snx36XJ/5vOWPFOVmseDHP7WVW8G68NEEyK/P//Bz/W1KSRfM1dBElJQi9ghGL9AX1J6X6iJkf6x8wzzzObPwsJ4i8wuaZneYaPc8clpuPeG2yv+88x/E8mOI86czQeeamuYfMszA1WFwrTujKmGeWcKGuKClM7E/gMsX5sxJCI+Y5gxfuP89pSSE+CzGuYr9QFCzun8v3dFmo6yHee0rad/vlMcVr0xNCvcR7Zy30z+UzFnKmRYp743Dd3BdiwsTxgnQXcS1BcqA4npvsKfanZYSI16YjB3JhbaD4GyayvAPnGbgBd+CLPDQQCMyBJaIWM7507tqZMwpcUwWZQl58QjqNgdwyLo3JZ5ssppmbmlsCMHNn547Eu/7ZuwjJ4xd8fB4AljcRaFnwcU4DcGYZABT1BZ9WEwBSDwG4EMEWCTPmfDPXCWAAEUgBKlACakAL6ANjpDdrYA+ckY69QQAIBVFgJWCDBJAChGANyAabQB4oADvBHlAGKsFBcBgcAydACzgLLoFr4Ba4C3rAIzAIRsBLMA4+gCkIgnAQGaJASpA6pAMZQeYQHXKE3CFfKBiKgmKgeIgPiaBsaAtUABVBZVAVVAf9Cp2GLkE3oC7oATQEjUFvoc8wCibBVFgV1oWXwHSYAfvAofAKOB5eDWfBufAOuBSuho/CzfAl+BbcAw/CL+EJFEBJoORRGihjFB3ligpARaPiUELUBlQ+qgRVjWpAtaE6UPdQg6hXqE9oLJqCpqGN0fZoL3QYmo1ejd6A3o4uQx9GN6OvoO+hh9Dj6G8YMkYFY4SxwzAxkZh4zBpMHqYEU4tpwlzF9GBGMB+wWKw8Vg9rg/XCRmETseuw27H7sY3Yi9gu7DB2AofDKeGMcA64ABwLl47Lw+3DHcVdwHXjRnAf8RJ4dbw53gMfjefjN+NL8Efw5/Hd+Of4KYI0QYdgRwggcAiZhEJCDaGNcIcwQpgiyhD1iA7EUGIicROxlNhAvEocIL6TkJDQlLCVCJLgSeRIlEocl7guMSTxiSRLMiS5kpaTRKQdpEOki6QHpHdkMlmX7EyOJqeTd5DryJfJT8gfJSmSJpJMSY7kRslyyWbJbsnXUgQpHSmG1EqpLKkSqZNSd6ReSROkdaVdpVnSG6TLpU9L90lPyFBkzGQCZFJktssckbkhMyqLk9WVdZflyObKHpS9LDtMQVG0KK4UNmULpYZylTJCxVL1qExqIrWAeozaSR2Xk5WzlAuXWytXLndOblAeJa8rz5RPli+UPyHfK/9ZQVWBocBV2KbQoNCtMKm4SNFZkauYr9io2KP4WYmm5K6UpLRLqUXpsTJa2VA5SHmN8gHlq8qvFlEX2S9iL8pfdGLRQxVYxVAlWGWdykGV2yoTqmqqnqoC1X2ql1VfqcmrOaslqhWrnVcbU6eoO6rz1IvVL6i/oMnRGLRkWintCm1cQ0XDS0OkUaXRqTGlqacZprlZs1HzsRZRi64Vp1Ws1a41rq2u7aedrV2v/VCHoEPXSdDZq9OhM6mrpxuhu1W3RXdUT1GPqZelV683oE/Wd9JfrV+tf98Aa0A3SDLYb3DXEDa0MkwwLDe8YwQbWRvxjPYbdS3GLLZdzF9cvbjPmGTMMM4wrjceMpE38TXZbNJi8nqJ9pLoJbuWdCz5ZmplmmxaY/rITNbM22yzWZvZW3NDc7Z5ufl9C7KFh8VGi1aLN5ZGllzLA5b9VhQrP6utVu1WX61trIXWDdZjNto2MTYVNn10Kj2Qvp1+3RZj62K70fas7Sc7a7t0uxN2f9kb2yfZH7EfXaq3lLu0Zumwg6YDy6HKYdCR5hjj+LPjoJOGE8up2umps5Yzx7nW+TnDgJHIOMp47WLqInRpcpl0tXNd73rRDeXm6Zbv1uku6x7mXub+xEPTI96j3mPc08pznedFL4yXj9curz6mKpPNrGOOe9t4r/e+4kPyCfEp83nqa+gr9G3zg/28/Xb7Dfjr+PP9WwJAADNgd8DjQL3A1YFngrBBgUHlQc+CzYKzgztCKCGrQo6EfAh1CS0MfRSmHyYKaw+XCl8eXhc+GeEWURQxGLkkcn3krSjlKF5UazQuOjy6NnpimfuyPctGllstz1veu0JvxdoVN1Yqr0xeeW6V1CrWqpMxmJiImCMxX1gBrGrWRCwztiJ2nO3K3st+yXHmFHPGuA7cIu7zOIe4orjReIf43fFjCU4JJQmveK68Mt6bRK/EysTJpICkQ0nTyRHJjSn4lJiU03xZfhL/Sqpa6trULoGRIE8wuNpu9Z7V40IfYW0alLYirTWdigxHt0X6oh9EQxmOGeUZH9eErzm5VmYtf+3tTMPMbZnPszyyflmHXsde156tkb0pe2g9Y33VBmhD7Ib2jVobczeO5HjmHN5E3JS06bfNppuLNr/fErGlLVc1Nyd3+AfPH+rzJPOEeX1b7bdW/oj+kfdj5zaLbfu2fcvn5N8sMC0oKfiynb395k9mP5X+NL0jbkdnoXXhgZ3Ynfydvbucdh0ukinKKhre7be7uZhWnF/8fs+qPTdKLEsq9xL3ivYOlvqWtu7T3rdz35eyhLKecpfyxgqVim0Vk/s5+7sPOB9oqFStLKj8/DPv5/4qz6rmat3qkoPYgxkHn9WE13T8Qv+lrla5tqD26yH+ocHDwYev1NnU1R1ROVJYD9eL6seOLj9695jbsdYG44aqRvnGguPguOj4i19jfu094XOi/ST9ZMMpnVMVTZSm/GaoObN5vCWhZbA1qrXrtPfp9jb7tqYzJmcOndU4W35O7lzheeL53PPTF7IuTFwUXHx1Kf7ScPuq9keXIy/fvxJ0pfOqz9Xr1zyuXe5gdFy47nD97A27G6dv0m+23LK+1Xzb6nbTb1a/NXVadzbfsbnTetf2blvX0q7z3U7dl+653bt2n3n/Vo9/T1dvWG9/3/K+wX5O/+iD5AdvHmY8nHqUM4AZyH8s/bjkicqT6t8Nfm8ctB48N+Q2dPtpyNNHw+zhl3+k/fFlJPcZ+VnJc/XndaPmo2fHPMbuvlj2YuSl4OXUq7w/Zf6seK3/+tRfzn/dHo8cH3kjfDP9dvs7pXeH3lu+b58InHjyIeXD1GT+R6WPhz/RP3V8jvj8fGrNF9yX0q8GX9u++XwbmE6ZnhawhKzZUQCFKBwXB8DbQwCQo5DZ4S4AxGVzM/WsQHP/A2YJ/Ceem7tnxRqA+hwAghGdGR/3XwRAG1EpZwACEQ11BrCFhVjn59/ZWX1GpI8C0MU0DbX2fWI1nAP+IXNz/Hd9/9MCcda/2X8BEaoHZfbhPqoAAABiZVhJZk1NACoAAAAIAAIBEgADAAAAAQABAACHaQAEAAAAAQAAACYAAAAAAAOShgAHAAAAEgAAAFCgAgAEAAAAAQAABCCgAwAEAAAAAQAAARIAAAAAQVNDSUkAAABTY3JlZW5zaG90xVc9TwAAAj5pVFh0WE1MOmNvbS5hZG9iZS54bXAAAAAAADx4OnhtcG1ldGEgeG1sbnM6eD0iYWRvYmU6bnM6bWV0YS8iIHg6eG1wdGs9IlhNUCBDb3JlIDYuMC4wIj4KICAgPHJkZjpSREYgeG1sbnM6cmRmPSJodHRwOi8vd3d3LnczLm9yZy8xOTk5LzAyLzIyLXJkZi1zeW50YXgtbnMjIj4KICAgICAgPHJkZjpEZXNjcmlwdGlvbiByZGY6YWJvdXQ9IiIKICAgICAgICAgICAgeG1sbnM6ZXhpZj0iaHR0cDovL25zLmFkb2JlLmNvbS9leGlmLzEuMC8iCiAgICAgICAgICAgIHhtbG5zOnRpZmY9Imh0dHA6Ly9ucy5hZG9iZS5jb20vdGlmZi8xLjAvIj4KICAgICAgICAgPGV4aWY6UGl4ZWxZRGltZW5zaW9uPjI3NDwvZXhpZjpQaXhlbFlEaW1lbnNpb24+CiAgICAgICAgIDxleGlmOlVzZXJDb21tZW50PlNjcmVlbnNob3Q8L2V4aWY6VXNlckNvbW1lbnQ+CiAgICAgICAgIDxleGlmOlBpeGVsWERpbWVuc2lvbj4xMDU2PC9leGlmOlBpeGVsWERpbWVuc2lvbj4KICAgICAgICAgPHRpZmY6T3JpZW50YXRpb24+MTwvdGlmZjpPcmllbnRhdGlvbj4KICAgICAgPC9yZGY6RGVzY3JpcHRpb24+CiAgIDwvcmRmOlJERj4KPC94OnhtcG1ldGE+CiJWpAsAAEAASURBVHgB7J0HYBzV1bbPqrjKDdvYBtxNxzTTq+kEQk0CJPQSCKT9kAL5CBB6gHQgBFIoAZJAqAFCMzj03ptp7gX3bku2pf88V77L7HpXXkkrq/g9MJ7ZKXfuPDO7mvPec89NVVVV1ZhMBERABERABERABERABERABERABERABJqQQEkTlq2iRUAEREAEREAEREAEREAEREAEREAERCAQkAChB0EEREAEREAEREAEREAEREAEREAERKDJCUiAaHLEOoEIiIAIiIAIiIAIiIAIiIAIiIAIiIAECD0DIiACIiACIiACIiACIiACIiACIiACTU5AAkSTI9YJREAEREAEREAEREAEREAEREAEREAEJEDoGRCBFkZgyZIl9sEHH7SwWqk6IiACIiACIiACIiACIiACItA4AhIgGsdPR4tAUQlUVlbahhtuaFtvvbX97Gc/K2rZKkwEREAEREAEREAEREAEREAEmpOABIjmpK9zN4rA1Vdfbe3atUtPn3766SrlzZ49O709ue8GG2xgJ5xwgt1www02fvz4VY5rrhXTp083Juy1115r0mq8+OKLNmrUKHv++eeb9DwqXAREQAREQAREQAREQAREQAQgkKqqqqoRChFojQS22mor+/DDD9NVv/TSS+3cc89Nf2Zh1qxZ1q9fv4x12R+6dOli9957r+25557Zm5rl87XXXhuEgfPPP9+23377JqvD4MGDbfLkybbuuuvapEmTmuw8KlgEREAEREAEREAEREAEREAEICABQs9BqyTw3nvv2bbbbptRd7ouvP/++xnrkgIEjvYZZ5xh5FgYPXp0RoQB2959913r0aNHxvFt+YMEiLZ8d3VtIiACIiACIiACIiACItDyCKgLRsu7J01ao3/961/2zW9+0+iCsPfee9ujjz5qv//9723kyJFhmjJlSjj/aaedFj4fccQRRteGb33rW9azZ0/Daf3xj39sCxcuzKjnW2+9ZT/5yU9sxIgRocvDoYceatdcc03GfoT6x/M89NBD9qtf/cqIYqBc6jR16tTQHYLleK5zzjnHli5dmnEuPtx3333pdV/72tfC8ieffBJEhPSGrIVNN93ULrjgArviiivshRdesFdeeSW9B90e7rrrrvTnuDBv3rx0nY8++ui4Oswfe+yx9LZbb701rCOi4Hvf+16aw+abb24nnXSSffbZZ+lj6fYRObz66qt2+umnh/vBcYsWLUpvu/jii9PHLF682C677LKwja4k3D+umzpEy+bLfd1xxx3D/dh9992D6MK+iC+cn7piXDufk9f3zjvv2HHHHWcbb7xxOH6XXXYJOSkWLFgQjtE/IiACIiACIiACIiACIiACIlBfAoqAqC+xVrz/TTfdFJzj7EsgcgDnHaNLw9ChQ4MwELs3IDqMHTs247CTTz7ZbrzxxrCOXAU4qLlsr732CmJBp06d7D//+U9wmtlv+PDhq4gFu+22m33xxRfpusTyjj32WLv55pvjR6upqbFNNtkk1Im6IarssMMOYfvPf/5zu/DCC9P7JiMg6GLxxBNPpLexQNeLY445JqwjJ8Rf/vKXjO18wDlHsMDgNHDgwLB85pln2l//+tew/NxzzwXRBJEjl9HNA4GAeiPUIA5gSfaHHXaY/fnPfw5dItiGwPCPf/zDli9fHgSNeD/YlrS///3vQTxI8qUeufZnHWIRIk+2xa4Yzz77rO2zzz7Zm8NneHN8x44dc27XShEQAREQAREQAREQAREQARHIR6Ak3watb1sE6ONPC3u073znO3b99dcH4SCKD3Fb9rxDhw5h3+OPPz69CUHA84eE7gwHHHBAej3OP9EJ++67b1j39NNPG6JAttHd4aKLLgpREHEbTvy0adOCc54UEe64447ghMf93njjjbQg8o1vfCOIJTjPGPVCoCjUknkfSMqYy4j+iMb1YJwDhx9bf/31Q66GKMiwjuiO//3vfwZnjMiBZNRGWOn/wJ4oE6IbmOcyolSimIDwQ7nkiYj2t7/9LS6m5+x/9tlnG4k6EQ2iIdYgFlEXRBGMOZ9jFMftt98ed7cnn3zSJkyYkM6tgRD1+OOPp7drQQREQAREQAREQAREQAREQAQKJVBW6I7ar3UToNU6GiH/f/jDH8JHwu4322yz9MgLcZ/k/J577rFhw4bZt7/97ZA3ITrDhPDPmDEjONfsf+qpp6bFBpxcjsHxTnYTiOWeddZZRpJFjHJ++9vfhuWrrrrK6P6BEVnxyCOPhGX2iZEH1CfawQcfbKlUKrToE1XAfq+//rptt912cZc653T1wAGnnogBiCp0cUgakQlRvOFa6FIBgzhaBaIAdUBoIbqhtLTU1llnnVAEbP/0pz+FZYSTbDvvvPPskksuSa+eO3duejkuEI3AdWGUS/k777yzITy8+eabFkWRuD9zokZgiQ0ZMsS+/vWvh+Vx48aFpJxw69q1a7huohn4HI0olGjsTzcZ6hiHBc3mE/fVXAREQAREQAREQAREQAREQATqIqAIiLrotKFtSQEiGbGAExqjFfJdLkJCtGTEwLJly4KzH7fR3SIayRyjCIBjP2fOnLgpzMmNEK1v375xMXT/iB/IcxCturo6LK5YscJuu+22uNpKSkpCHaLDz4akQJHeMc8CuSxiXgMiBXI513369LEDDzwwlEDrP9dNHoVoRx55ZFiEJZEdv/jFL0KUAfkTevfuHXezeA3pFb5ArozVGQIB/BCNqAfsYIP4kM9ilxS2J0fSQGBZnR111FHpXRCDuIatt97afvnLX4bRMsrKpFumAWlBBERABERABERABERABESgYALyJApG1bp37Ny5c/oCSGiYNBIf5rMYph+3ZzvoyWOztyXzBGQnkiRioCH20ksvpSMPOJ7kitlGTgS6NBApsDp7++2307uQsDGfkSeCrhCIFURmsIyRa2GLLbYIy1deeWXoVhI++D90C0nmeIjrk/PkfUmuTy6PGjXKvvKVr6RXcU8QbWIERnpDYqG8vDz9qRAO6Z19gS4ndLu57rrrjG4xGBEfTIgQrEsKHGEH/SMCIiACIiACIiACIiACIiACqyGgCIjVAGorm2nBjkZffxIbYoxw8cADD8RN9Z4z6kU0Rk6IRpQAjjqGI96vX7+4qVHzf//73xnH44zHKW7AMc+XzyHuw3zmzJl2yimnpFclryW9cuVCsosCuR+iABHzYhCZQd4HjJwQjHpB3g3yNTTWYqJLynnqqadCvRluNF/Cy/qej2FJs42oDs5FFxuu9ZBDDknvcuedd6aXtSACIiACIiACIiACIiACIiAChRKQAFEoqVa+37bbbpseXYHEgrT209JdV6t/IZecFDaIOsBZJV/Bueeem26hZxSJYhiiSbL7Bd0SGOUiTowYES1bqGA9Q4wy1CYCDDkd6JoQR/eg+0WukSFied26dUvnUYhCA9viEKCVlZXprhxEgjARLUF3jMYaiTmjUW7kEHNxxG31ncfEndSTRJ/cN7qJkL+D7iNEl3BdDNdKzo5o2VExcb3mIiACIiACIiACIiACIiACIlAXAXXBqItOG9qGA/3QQw+lQ+fJVcCEM0legdiiX99LJtcDyRBjJEF2TgOiAQjbL4YRTRDzNdAin919ITl0JN0wrrnmmozTkoviuOOOy1jHBxxxRJnokK+yw8oVCDZJYQPxJo4wwTCj5NKgHESN/v375yum3uu5P7ErBEOVFssYdjTmkSCRJtdP1AaCA6NncB3kmuAao1DDuaPoUqx6qBwREAEREAEREAEREAEREIG1g4AiINaO+xyukmiFqVOnGkMxEqFAH3+6YCASRCOpI5Yv0WCu3A049bfccktGNAXCBqNHkL8gJpNMHhvPw7nyrU/uw3JyGEvKzrbu3bvb/vvvH1YjVDz//PMZZSf3x9lGUIDByy+/XJBggMCQbP3n+KQRWRHPz3rOkSshZr7r5ZjkNj5j55xzTnoUjto1Zpdeeqklk36yPnlskl1yfXKZiI/YhYTjY96Iiy++OAgQ8Vqj+EBSUbq2JKNeOE4mAiIgAiIgAiIgAiIgAiIgAoUQSHlW/JpCdtQ+rZvAxIkT0xEB5A4488wzwwXNmzcvDNOIw47DPGHChDCyREOvlqSU5GBgyMykE9zQ8lrjcST5jDyTDn9jr4WuF+RkYFSKfAJRQ89Bzg7KzK4v95KhQbmf7du3b2jxOk4EREAEREAEREAEREAEREAETALEWvIQ0Ld/+PDhRjcEjGUiH5JdL37yk5/Y5ZdfvpYQ0WWKgAiIgAiIgAiIgAiIgAiIgAisSQKtS4Bg4IZKDzVfWjs3Plf7tMLX+RSWfWbei6CGERiZ6FFApgtvvK3pUDsPn31xbbOPP/7YTj/9dHvhhRdWufQrrrgihPqvrVELqwDRChEQAREQAREQAREQAREQAREQgaISaHkCRJWLCYv8Guf73KcwX+hzRgr0KYgPCBBLUxYEiKT4gAiBrRQe0iIEAkQH72niAkQQITr6Z59qKnze1ec+hXlnn7fzqQ0bkRAkGiT3A90Ehg4dahtuuKHC69vwPdeliYAIiIAIiIAIiIAIiIAIiEBLINC8AoRHLwSxYZbPmWY6ktk+n+fz+anaOcsIEIt9Wu6iQ2MzVngRVuaFdPI5AkQ3L9In61pTO1/HP/fyqaev86kGUUKpOh2CTAREQAREQAREQAREQAREQAREQAQaTmDNCxB0oXChITXFp2k+TffKz3SxYYbPmRa6QkC3iuYwhIYKFyd6u/Dgk/VyUWJdX+7r03o+uTBBVw6ZCIiACIiACIiACIiACIiACIiACIhA/QisGQGCrhOIDZN8muzTFBccfNm+8GkxIQkt2Dq5INHHxYcNECFckPARK8OyixJ045CJgAiIgAiIgAiIgAiIgAiIgAiIgAisnkDTCRCeIDJ0qxjnc6axLjpM8ArRzWJZA0UHcju0d0GAZJJM5GuIySZjwklfFRNTkpwyTJ5XwkLeCJ9X+rljrgj/WC8r93PTPWOAT4NdjBjkcya6a5BnQiYCIiACIiACIiACIiACIiACIiACIpCTQPEFCHf0iXIo+djnn7ro8Lmfd6pPOP6FGN0gOruj393n6QSR/tnzNYQEkggPJJCkK0RSgOA4Jqx65ZQQIFLe9SMksqR+iBHklSDPxMpElzbXPy/yOnJsIYYQ0s/rMcSnYTVWvZHPPToiCCOFHK99REAEREAEREAEREAEREAEREAERGAtIlA8AcKTRJaMd+f+I59/4I78p05xns/dT6/T2vkOPXwP8i6QY4G8CySCRIDo4nOfwjyOUOFFNsqoTxxpY4HX1ydj7gJEyhNghnwURGmQj2KOT1WrOSGbu3mhw1y72MzrvonPB/o6klzKREAEREAEREAEREAEREAEREAEREAEAoHGCxAeTRCEh3d8/p5740Q8kEgyn7GJRI9ED5DYsZ877X19nXdjoCtDEB6IcmgO82sJQoSPyGGMyjHNp6keJTHFPxPFwXUhYOQzrssjIqq38GvacqUQ0VzXkq+OWi8CIiACIiACIiACIiACIiACIiACzUCg4QIEOR7cMS9BeHjdHfNPvPZ0YchndKsgkeMgd877+zyIDz73aIfQlSLfcc25nkgJhgV18SGM2jHR5+P8Gkmgubpr3dAFiBHeNcOFCK5VOSKa80bq3CIgAiIgAiIgAiIgAiIgAiIgAs1NoEECRMq7JqTec+HhVY8O8LnNySM8lLnowDCW3j0hnbRxgC/TvSLma2huAoWe33NDhOiICYgQPpFUk24mDCO6PM/193CxZQsXIravndfQ1UQmAiIgAiIgAiIgAiIgAiIgAiIgAmshgfoJEEQ9uANe8hKTO92TfcqVtJEEjUQ7bOIRABv7fKhPnuPBytsI4WXOwXNEpD5zDmN8/pFzICoiV6JNhJb1ncNOTM7BBRhFQ7SR50CXIQIiIAIiIAIiIAIiIAIiIAIiUDCBggUIkjWm3neH+5mVUQ8LcrT6k1ByoDvZw93Z3nSl8EC0Q45dC65hS97RLzdERSBEfOjL7/qFjvcK50pc2WVlNMQePt/c2ZBcUyYCIiACIiACIiACIiACIiACIiACawmBgjpCpHxUiJJnzEr/7eLDK+5kZ4sPdLUY4I71ATW24hifDvPAiO3cyabLQVsVH3hA/Nq4Rq6Va15xdC0DWBhMkubMYAdDWMK0Jdr999+fUa1nnvHK5rB869n1vPPOy3FE4avqKrvwUurek3OsifPUXQttbYkE9Fy0xLuiOomACDQXgcb+TW+ueuu8IiACIiAC9SPw3e9+N6cfd/PNNxfVb6pbgKCFf7KLD4/79JB725/5tCLrQshzsKuvPsqFh8PdGd/GnfKuWfusBR+55uptnYMzgAVMzNlkGOycISxhCts6R9XIOLjpP/CS8dprr6UfMByxv/3tb8bDmLTf/OY3du2116b3S26jjLKyspzbkvvlW7700kvt0Iu+Zlvut1W+XYqynuv617/+lbcsrn2nnXZq8HXkLVgbWjQBnt/TTz/deA5lIiACIrC2E6BRYvPNNw9/D9d2Frp+ERABEWjLBHgHxvcZPXp0xmVG364uvynjgAI+5BcgSLo41qMeHnLx4UkXHqb5lLRyd6439K4Wh7jw8LWV+Q0Y0SJrt+QhbX7Zr51RPcj1EJg4GxgZrJLmLGFa+rDjGucbcuXRSO6/hpanTZtmG2+8cdoxf+SRR2yfffaxHj16pB1xHPMXX3zRDj30UJs924cIybLsMrI2r/bj7Y/dYeWH9bPxPcnuaenzrvbAeuzAFyleV3bERyyGa0d4KeaXLZatecsl8Nxzz9mJJ55ojz32WMutpGomAiIgAmuIQPwbOWLEiDV0Rp1GBERABESgGATw2fB5CjV8OGzffffN8L/wDbGkPxhWNOKf3AJEFB8e9m4Dz7pXnT3KBfkMdlwZ9bCfO939vQaljahFWzvUWcBkhbMJ0RDOypxZhjlT2JZ6NARCT3OIEPHFgnrR4rvBBp451O3ll18O83XX9SFM3HjwcMgx5ogP2BNPPBHm8Z9kGa+//npcHeacq5Cogso+tSE2K2pWhDqdc845q0RgZBSc9QHRgDChugx1D+O6sq8hHhe/hMX8ssWyNW+ZBHh+u3SpTc7Sp0+fjB/flllj1UoEREAEmo5A8m+6/hY2HWeVLAIiIAJNQYBo70Kj0vHRoiX9Ptb973//C5tYn6vxOR5Xn3lOASI10fWER711Hj90UVZIQ28XH/b2qIcjPerBu1tYRX1Ot5bt62xgBCuYmbPLsIUuPjjjwNqZr0lDEVuwYEHauV+0aFFwyKnDgQceGJyvd955J10l9sXinGWOSRqfO3XqZBMnTsxQz+K5br/99jqjCnjZmbN0XiiybHgPo6vHD3/4Q8sWM5LnTC7z5Zk+fbp99tlnlhRXkvuwXNc2tlNOFGP4XGxLfsmLXbbKazgBnt/+/VFTzfr169fwgnSkCIiACLQBAsn3gjZwOboEERABEVhrCOB74csgGqwumpt9v/e972X4PtHfw2dJ+nv5Gm7rC3YVASLl0RelTyE+uPCQLT70d9HhKy4+HOQt/IP9VIp6WD1voiGcFcxgZ84ww5wxrAPz2siXjM1N9SG28MdoBx7QpBHpkHzg4rbkOh7spDNN1wy2MyEERIvnevrpp8OqoUOHxk0Z8+mLplvZ0FpFq7yivQ3bfFjYnh0KlHFQ4kOMzuBaCv2CJK8nFkU5kQdzPhfL+JI//vjjq43SKNb5VE7hBJ599lkbPJgfNrNu3brZT3/608IP1p4iIAIi0MYILFmyJH1Fxf5bmC5YCyIgAiIgAk1CIPoyq2vIpcGXxuPKyspV6pH0ie69915btmzZKvs0ZEWGAJHyxueSF1x8eN7Fh+yRLnxkh+qDfNrbHerayPyGnG+tPQZmsINhGCUjSYIRMpx5YF8bAJDcWvTlZAt/jHaYM2dO+jw8sDfeeGPaCWdDLkc9fcDKhSlTplhFRUWYunfvHhz3GMLJQ3vUUUfZrFmzQvhOUriI5Xwy+zMrGVJhQ16Yb11Gz7JuHbqFTYW++EShg4Py1Td57eyXLaKwLtuiCpi9viGf6dbC9RClcdT3j7bNjtkyQ8RpSJk6pjgEPvjgg3RBPMft27dPf9aCCIiACKxNBOjKuHz58vBSGq+7mH8LY5mai4AIiIAIFJ9A0ieqqyEXv4iu6dtvv32oBH4alvSjopCxdOnSnCJFOKCe/3wpQLigkfKI+5JnXHyY5VPSoviws4sPtT5hcquWCyQAu2pnmFOEcOaw5x5YccSlvLVKqlnRuU92t+DAzTbbLEOAwFGPYkIsOB4bP5MpO9rcuXNDdw0e4Pjg4tR98cUX4XOuqILZ1fOC8HD4zv2tdHyN9dtwvVhcRteP9Mo6FvIJC8lrz3d4U75kJTm/NfU9G3TENnbd3dfnq4rWr0ECG220UcbZ3n777YzP+iACIiACawsB+vx+/vnnNm7cuLXlknWdIiACItDmCIwZM8beeuutvN0w8Is6d+5sNTWZEfrRj4p582hI3mOPPTK6aTQGVlqASI33HhXPufAwMUt86OdRD/v5JPGhMZzTx6ZFCGdqzjbDnD33gHvRlBYfpngOHO6xY8fGj3nnMQlJrh1Q0KqqqtKbevfubR999FFaOIghOytW1CaZzOXkT3h/rG3cuZNtseU6NmLzXlZesiJETKQLrWOB8yN2ROWujl0zNmWLKGxMqn7xM8w4R2MsKeC88v6rtnSTslDc6y9mJuxszDl0bMMIcG/XWceHsEnY8OHDE58yF1eX6DRzb30SAREQgdZDgK6CjBSF8bc8/l1dXRhv67lC1VQEREAE2i6B6BNxhe+//77tuuuuoWs865n4jY+GPxbzn5HHD98tabFLe/TjktsasxwEiNR8j3x4zYshAjk5JGQ3Fx52Wyk+dG3MaXRskkCNswyREM7WnHHaYO/3gHvBPWkqy07CyGeUrnfffTd9SkIvk4ajzstHjGaI26KQgDhBGdkWnfkoPGRv5/Oee+4Zvgwd1uuc3lxVVWJlNbUOOisphy/MdtttF16MWGbEi+SXiP1mzJgRriOXsMD2aCRkeeONN+LHvHP2e+WVV+pMnpn34KwNXEPkt2Tgl/2s+h4ypNHiRtap9LEIBOguww91tiE+kFWY508mAiIgAm2NAII7rWa8lMbIRa5xk002aWuXqusRAREQgTZJIPobdJvAGMmI3GaMjEHEenyHvfPOO0OkG37fzJkzw2ACEcgll1wSIuEQoevy4+L+9ZmXmPu/qU/c6X3dIx98VIa0lfvIDVu7o7ybd7vomV6rhSIRgGlg64zNWafN7wH3gnvCvSmW5XKkKPvBBx8MpyD8hm4T0UpK0sExcVXeOS37f/zjH23hwoX28ccfh4f71VdftQkTJqxyTHV1rcIVhQm+EDz05ESY8p/xtvu2vfxzlS2rKrfKquW2eNniUAbiBv2ZeCHiC8LL0YYbbpgeXoYQojiEYnl5eWixGT16dPr8iCyIFQgmXDPRGjiYV1xxRTpKI73zygXCjQg/3XTTTe3RRx9t9Pi3Uayh+NmfzvYvc63I022Tfnb3I3dnn76gz9zXXEJMQQdrpzSBZJcgooGeeuope+mll9Lbkwvsi1j3/PPP5xQokvtqWQREQARaGwG6XiSt2C+eybLrs5zdclefY7WvCIiACKwtBHhPRYCIQjLXTW6+0tLSdGNxHISA7sfxN75Dhw6hITdyIuqBZMQkaY/7IEoXw0pC4kkavrN9xYE4yC5CrNqoXYzzrhVlLF68ODjl+S4WtjA2Z51hfi9K/J5wb4plDK9y2mmnrRIxgPOPEjbYs/8nQy3pCxTDLmMdDj744LiYMUdM2GGHHYIggMN+9NFHhwR+8+Z9eQHz58+3Tz75JIgNfCGIPkAQGDlypH31q181hIle63Sw4Vv3tI/enxumubNm26MPPWoocA899JBtvfXWYT/2R9Ej6SVfsDhaAV8c6s01sW3EiBGhnpznjjvuCGIFoUVs32uvvTKuIX7gBSdGcnCOyZMnh1Yf2PTq1asoI2Jw/XNXzLdOHdvZnNkzw6nr6t4S65ZrjnBDa1Uy2Uyu/bRu9QRiCNqAAQNsl112CS1/F956sW2585eJQnmWCGVDgOA5/7//+7/VF6w9REAERKAVESBXEWG7vBckjb+N+Rozkvs1xTLnzW65a4rzqEwREAERaCsEsn/HabiNkRFxEAIanGP+h44dOxq+FL+1119/vSFOMKohDcrFHp6+JDXWHd0PPPKhKhH9UOHdLrZz8WFjvwUlzX8bGBakXbt29s1vfnOVyrA+TvyxxMkuJLR+lYJWrkDtwfmgzHx5EWjl33HHHdM3MbssbuRZZ50V1Cb6lZ988snB6c3eD7YwhrU587T5veCecG+KZQyvQhISnF+uLVoMzeG6UbVw3OtjiA84vxyPQsa1M/HQElHBC0tU4HDwiE6gK0ffvn2NKAn2IXJi2oJpNnynHnbPHZ/aRde/YakBJTZl0kwrLSm1Qw45xBBz7rvvvlC/0R7ZANcY6YDQQNcLoil4VhANEEKi8WVj4vr5Es2aU5vhle277757qE/cN86p86hRo4whQ1OpVBBUYJOMYoj7FjqPUR+U3XloZp+mTbbbtNBiMvaLLfdwzu5ak7GjPhREIEY/sHP3/j3shXdftM8rJtq+394/vHg/99xz9u9//9u22WabUB7PWnO9kBd0QdpJBERABOpBgN+z+LcqHhYjF+Pn5pjzty7mpWiO8+ucIiACItCaCfA7TiNsbFzGL2J0DNYNHDgwfWk00h5wwAGhgZhtffr0Cd0yaIgtppWkPvXiJmUVOdQd46186pK1vpk+4ghi99xzT2gBz64G4dI4wXfddVdwovfbbz9LjjaQvX9dnxkLNTroURFK7v/www/bFltsERzrZNLF5D4oR4T5jx8/3iZNmhRyCFx33XXJXdLLMIa1OfMM83sS7s2XqQIyNjfkA2oXCUbiw0cZn376aejSkO9a2AeH+fxrL7AvlkwPxxJ6nhyyEOcXxx4HndZhuKGica54fGSJODRo0KAw3AutyBxLf/plVcus/+AK61JWbhXtym1Qp4FWUlpiO++8cyiH8riniEwIAuuvv34om38QHkiSwlCiOIQIHIgasY633357eKGaUzXHFvl/qdKUzVtQG51BeZw/21ANic6I3TrYjlhSjCRc85bPt86Du9mMBXPtrY/fClEQH732YXYVVvs5tsazIz8kMVHMag/UDnkJIFzFyJlPzMOQD+5hVSP9S7prJ/veud8LzwPiGj/kRJ8cc8wxdsEFF+QtTxtEQAREoLUR4O9J0hiSOPnekNy2ppZpsKCRg7/r/M2X8LumyOs8IiACrY1AbCylcbgu23bbbdObYxQwDbw09OLz4COynigJum/QyFssK0mN98iHJYnoh44e/bCpTwNqT0Efkb333js45WeccYadeuqpwdFnKwrJ1VdfbVtttVVwgK699tp0vbh4ohF69uwZXuhvu+229LaLL744hC7j4LH9sssuC2XijDIl9+UghIWrrroqOJ25+mV369YttIgzhunvfvc7o6vAr371q/T54sKvf/1rO/vss+PH4EDwh5buARgOBc7EDTfckN4ne4FhJHHAv/Od72RvSn+mvj//+c9DuAp5Bs4//3z7xz/+kd6evQBrmJuzT5vfE+5Nanp6TaMW6L6AIRIQRsPLBCIJ9w4nmwgDWn+ffvrpEEHCg8a+v/vz7+2Pr//Vvug/35YsWBKiFog84CFEQODhRqDAiY/CDQIBggNs6baAuEHyKlqPcdw499133x2OHeRiBNajyzJ7ZtRUu/HfY2z5wFIb++nn3kWhUxAbKCvmk6A8zo9x7igy8NzwbPDF4ZkiwgK1DnWP+/vmm2/aws6LbcnMJbbdTtsHESIUsrKcuBz7TfE5RlFQX55nBBW6O5Bz4aSTTlqlO0ssI9eclyXqCLd58+fZxC+m2PJ1Sj2/SjsbN2WcrbNZYcoi5XB+EiHSL4vrhytROdmtVrnqoXW5CfBiixjF9xuODzz5gC3qU232rOdFcSHMepRZh54dw8Eowi+88EJYRvDiedTLcG6uWisCItC6CMSouny1nj17dr5NTbae31dEEH6jeREuVnfIJquwChYBERCBFkAg5m2gKkSKb7nlluE9N1YNnwwfP2k0FPMejK8bG5LZjl+I31EsK0llRz+s5y3ytMZ74zXqx0EHHRQEhNdeey386P/9739Ph6HjoN1666325z//OTjuP/rRj4LTSuXOPPPMkDnzscces3PPPTeIEbGfOw7djTfeGI7BkaKPP0kM6ef///7f/wv7EgKC4fiRofPwww+3Y489Ni1+hI15/jnssMMsJtdI7kK4PeJGbO2PzmbXrrXh8D/+8Y9DXbPV/2QZp5xySmi9T67LXqb1PFkGyzjAMQoge39YB+bOPmncm1T9ekQkD89YjsoWK4kmwNGCLX/QEQx4qBAUiDjgvvPQISrM7zDfOry5yC7YeUP7Yuy08BKA4MP2qVOnBuGC+8mzgOMfjWvlYcViVxaUtBgpgQjCuXn4yc/w1ruf2sLpy22DoZ7cZFB7W750RVDdqNfbb78dnHfCgKIhPiAsUBcEEL5YXM+HH34YvmCIIUSfELFAfyZswYJaoYm6raheYUurajPDxjKT8/XWWy/cL5JzItDQPYXzURcc/vfeey8s18fxRNChnjWuNSytrlUlaz5fZOXPLLY5b88sSNCgDOqE4ECXEq4TsYXEnNzX+tQneb1arn1OEbCYqv2RSU33ezSym6uDnp/k9fY2Y0xtBBDdcjAELtgPGTIk7/jK4ioCIiACrY0A7yy5Ws5Yn6sRqKmvjwYL3t8w/hYjvPP3XiYCIiACIlAYAXw2GkLx2aKREwKfL5cl/Vi24yvm+ruQ69hC1pXYjMzdarw1vqZ/7TqcZpwaog9QTYhUwGlMGq37JCA87rjjbPjw4TbawzYQD4gC+P3vfx+GTTzqqKNCTgS6L0Q7/vjjQ3++Qw89NCQvJGcCrfRETWA4ath///vf0N+a8yJCIIBEASHskOMfnG2c3qTyw25ESCA2oOpg5BQgkRxGNw9C/GJCw7CyAf/gUJOwI+mM49BgdAvIZzCHfYY5ghAB4Q2xjTUS60WjBeHJJ58MIk2y+wFOLKIBjjZO7hMvPGmzqufZ5nv1tE2H9wiH44xzjUxcFw4/TjHPSbbh+BNZQf4JnHY+03LBsJvUgRYN7sXihdNtn10G2jZb9bQFqeXW4fNU+EJQB3JU8GVBTKClmSyuLLMexggU1JuEl8kvFtuo22abbRbq+sI7L1jZ7hXWa/3eVpPySBNv1I6hRNmJVTgf9aVcniXOy0R9eLa5Jrrh8J0oNAkh4ls836QxkzzlylJbNmq6dbpvma23vI/NmT4njLRRl4DAaCMIaPxY0B0pihGwoG4k+WyO1qns+95aP8fM73SdGrd0QnhubLF/+f47y6ORqq1qcVX4XeJ5Rh3mN4pnhN8jRDSZCIiACLRFAjj9xXzxrC8julHKREAEREAECiMQI6Kz/WCOxo+Khj+TbTTS8n6Lv5P0HdkPX6hYVpLR/YKhN/v6VOsvBweHk+MsYqgfsfUvViDpvLEvDmEMl0/ui5JC6HK0pIOOY8ofOCy2Vsf9iKRACCGRI3kUUL3J+VCX0ZWCoRNjC3zcl/qf5KHzRD4gEuBk0l0DyOecc04YkjHZ5z9vxEIsMMccVuQnIMIgGuei3GTZcVucwxz2GUNy0g2DaMf8DfXx8HrN4UBLPoYDRV1pUSB3BkICDjjsiBjoPKfSzjhxY/vgnTlhfyIfCD9nYpn7HUWMZJQF54BfHAkDwYLnIylUoLxRj0037GfPfTjFqhYtt6r+ZVZe3S6cizLo68kzQW4JvjQvrzwv5fBCxDbKxilHgIjCAxE1CFqcn2tjeeYYH3GCR9l7HC1auCjkiwgn8n+Sjj9fSL68dJ9J1veZ0Y+GyAcSYfHcc904/sljY3nZc54BRAtEqHk+AoZ1KrWe07uG87Rv19522XWXILTVJYBRBs4u0T2LOiwJ3Vp43qgHyiYRIs3ROpV9ra31M1E8PKOIl0uXE2bm4sP0Kuvap7v1GdA38OWZiM82zxq/HXyv+e4U8hy0VjaqtwiIwNpNoDnFbfLuJI3os+T7ZHKblkVABERABGrz9w1a2c09H4/om+G38/6L8Y6LxciIpG/H+mKJ0T72BsWtNJJOEkW/UuBANKDrRQzXoDK5ujbEw+M8ihI4RdFotSZUuT6GAoPg8IMf/CB0DWB0CoxuH/kMh4B8C4xSkcuOPPLIsP3RRx+1I444Iji11JPWcqIvCGmPIggiRkNGFmBYy+jgUweWaYmv02AOe+5BNO7NPBchihxpSMs59xahBF6IDTjdOPu0olNfWuvHz5xoKyZX29/+/rH98TcTQsTCiy++GB5SBAGWiZbAKctlvCTQTYDsqjjOtDDHBxxx4p///Kfttttu1q9PbReY/73yha2Yt9zKp5QFcYP7gNDBiwbdLBA7xvtzxMsI0RPUnS8P14MzSJlxGjZsWPiScB18eSbOmmQLF8+3Xr7f+DHj7J3X3rFJEyaF+mXXn8gYnHrOHwWI8R8/ZVO/mBecUEQEEj5SN17KVtdnFja04PCc3XH/nbasssrsOc+pMXGR0V2oammVayKpkIOkrhFceGZxcj+c+KFVTpoX6sePBkIaXMlHQASSrP4EEKn4nXvllVdqswG38x/gSSvMupVZj3Gdbfb4WUH55dlDoCB3CjlUuCfcW34nZSIgAiLQ2gm0tK4N/M3L1YrHb7FE39b+tKn+IiACa4oAPlS2xS7y2euTjejZ24r1uTa0IZbmfmBy5AtajXEQ999//9D9gqSThRhO21577WUXXXRRGJkAp+pPf/qTjRw5spDD0/s88MADoVWYhJKnn356mHC2CD9PdmdgBAwEDrpRkKOBsH5GCMhldBMhb8Dll18eMtizD4IJAkSc6N+P4VzQskluBJJK4tzmM7qnRHHmhBNOsCuvvDI43IRrs0zkxeossK/1xb/cleiYVSNkvtxezyWuIUaooGLF5IUwQHjA0cfIY9GjstQOOnaAverOFw4/+6KMRTUsZk+l5RhnPa6PVaLFHkNIYhlnnX14maAcogdg1q6k0qbNXWQ91mtvVRPdOV9cmz+CyBeiGhBL6LrBKBjUnXojmPBl4mUJcQMxhdB5rgNHnPMxR6AgUmPWUg8l6Vpui2cvts8/+TxEIyAwUQeczmg4oXBAlImRHZ988D+7a9Tr1rtP7yBAsC/JLenSg+O/Oqc/viTRxWfKnClmHuDR+Y12QUihKwx9Wwe5SolohkgX9491inOiVfhOWq8Sq+i6TnCUaX2Pfbg4nuuRNYwAzxC/DR/NdDFhukc/YHNd5JqzPDwLPEcIahg/2giy/DYyPDDfj0KEqHCw/hEBERABESiIAL+rNGYkjYhZ/h7KREAEREAE6kcAvyhpyc/RP8RXzP7d5Rh8o9idPFlGQ5YzBQhy9dXm6wtl4YCR/AenHif/wgsvTCcCyneyGLpxyy23hJZpwsJx4kkuSQ6H+hjJJ7/xjW9kHLLddtuFFneSW0ajGwWOGxEM9E9BiKgr2uLEE08MDkQUVLhOuoskJ8rGKcShQ0BhZIxc6hH74VAjsMTwd3Je4JQw8gNlIrzQhWS1lsWf/VPuj6fqHkVltcXm2gHnifB9Wn55yBBfcPi5FiIhyCtQ1bXGbrv5Y5vf1xuC3TEjygCnHSEhhmPGxJDsn8vYj+N4WcDBQzwgwgBRIkaavP7uNBu0bheb40KCDW8XzgU3nD2+BCSv5PmjHMQIBAe+BDFig3tOVwv2Q4hCnOI5JPICAQhBrEMP9/o9JyZfLo6jiwX7IVggoESjbl/5ylfC9XGeJ158ws/niR9rvBV85uwgwnCO2PWBSAuiQFZnPEucp2Izz5XhUSVde3YNAgndMqg/YgnRN7SsR7bJMhHU4PXWp29Zr/ntwr6IN0Sh8DJGNAjHcd35BIxkeVr+kgC86N5DThOelfFjXSTqngrP4rZT+vr6nuGZI9KGe819Ys73m2eM54lkvY8//viXhWpJBERABNoQgVxRCG3o8nQpIiACItCmCNCQvDrDl6KhtzmsLOOk7qCFPvIrV+Kg0fLPsH9MtPqhRjNaBBZby1fuHhzLuIxjR64GWqpxnHDYov3hD3+Ii2HOSAXR2BfHD8uV64FycACjxX3j50Lm9LOvq689NyRZLoIFSTZZHw1RJYausJ7W9+R28lUQZYEDnUz4EY/POQfRl6eo3QWhKlOsynlofVbSyg9nHKnBgwcHJ53jcabpJoBDy8vGrA7LrGLzDtZzcUVwzBBqWB+3J7vY1HV+hBvYoJoRBYAIATtGmujer51t6s/+y5/Xtmb0+qQkiD50u6C1Pz43CBycF2edqAMEDJ4DolVikk+2EzaE0MH9o4sEAtL8OZNtaftltuHE9W1Rt9oQJLqaUA/2wYGMxr2iqwj1DaLKzGk2rjxlJVt4borx5SECgu4n0diPqBqc2D322COuzpjznUFhhHvFJBdC3GqqagJTroOuKJRJXdiPiJ9ssY5uR0Q7zPKkIEs8V0a3HqXh+onEINoD55gRGahPLgEjo0L6kEGA+8OzwDOxYr1qm1/iit+0Gtss1dEWz6q0GQvnhO8LzxTfAZ4LIm8QqqIhXPCbV9dzEPfVXAREQAREoHEEkq12jStJR4uACIhA2ySAj9cQK9hvbUjhK4/JFCC8y3PS2cWhw0kk1B6njlba73znO7bTTjsVfErCltuC4djVZbm2EzVQL0No4B4kDVHiS+0muaVeywghySgF7gsiBPVmPa25CE44sThjnTtU21QfgmPhzCobsLSrlbUvCw4wggB/+HH+Y7QLggCJP6MRdZA0WouJssABx4HjOJ4rBJDpPrTn0ull1ndIR+vcq9xKJ9dGMyAqcJ4YkYGIQZg7IgYONnXfZpttQpQEy9Ex5DyxKwaqHte9oP1s6/yxJzrdqKulKkpDmXR7oJ50CXn22WfTTjs8KA8+XOsG63sEzMTZtv5yH5azW+1oGFEo4HiGLSWKpC4j2gIHFUFl2uKPbVn58vAZcYRnhNwmlBXnuZJrwSOIMZ4PpP+APlZdUxq6pdAthvVcB2Vw/UTiZAsYddVvbd/G/eFZ5B59sugz69O7k/Vp196mvL/Iers4hbCAkIoRacN9iz/OPKPhvvi2en/fQ4n6RwREQARaFgH+VmO8E2AI5UTZ0ei0JnNEIOjyvkm0H+8l/P2nLg19qQ4Xo39EQAREYC0hkPzdJN9djNjmt5yI8qThZ+EPZkf740dRTlxfrPwQmQIEUfRZkfQXXHBBSAKJ+ICTU9dIDskL0XIDCOTgX+MN5jVFGPVkzpw5wVGOLxY42jhTCA4kyMSJwrHC0WKo0mVlldZ1frkdv9sge31M9/Dg8QASZs5+dIegWwSGGBFfVHDOeVgxzkXuBspDdBjk3RA4lueICAjEhQN3bW/j5yyyJe2qrdSd6j6du9tYjzQg0gGHnC4GOHsDO7lY4dupNy8gbOOaEAuoO+t5NvnyIIhQV0QzbJ3+U2xYux4230ES7cC+dNOhXiQPZD+ec5x8zoWYwfVR7rp9XTRZVGbdrbeXuTy8ANENBcGF8Hu6dDAniiFfBAQvbNSnQ48VXrcuNqR/X7MlfUO3FEQS6sJ1wIT7gdCSNIbfZB3XN7BfV+tVtYFVLquNqECMoT5cN4IhXV34YfnlL3+ZLELLdRDgpZaX6/BseN6TzuuUW9/OHW2jnhU2+Ys+4TvB88B3g2cEwYI5xrOIeMH9494RTZHvOaijCtokAiIgAi2CAAI4f8MR8vlbSvfM+Dedv1Gxj3BTV5a/e/xt5D2C94aYLJx3Cf7GkfNIv7dNfRdUvgiIQGskQC5E/Av8tPgbjh9Pt3m6ZuDf4ENFozENgYF32myjyz6iA37Gx97gusJ/g4thmW3r3pU914gLtOzhpEp8KAby/GUE9tnpBAggKUIQCQ4SUQcYzjB/xHHyCStnouUcB5ZtOMyzZ8+xqvkr7FVv/cc5w3Dco3OPiBCjHigrGg88okNsDeah5jw4+7QwcxxGmQgglUuq7ePP51uJaxbzfMjPCVMqwxeDFx7KZX/qxzIvIXxBWMecFyHKRsjAqB+fOTfl82Xhy7R+h442c9G84JzHL1dUAaM4Qr0xzsGXjeN54elsZdZ+aSoID1wL3TOIjqBOGPWKDmxYkeMfroU6dixZYjXLamzajKp0NAi7w4XoBcriPjFP2p577hmcXBzgJUtX2KIltfeMfbgfSYNJTA6aXK/l/AQQd+DIfayurLaKdmWerHS5TZi8ODwL3D++FzzXPBc8Z7wUx2ebknnW+CwTAREQgdZOABEeQ1xFoOe3L4quUdhv6mvk7x7CL0Z9eGHmbyWGOCITAREQARHITQChgXfXLu1Kg++Hj4cPz/suPgZ+VBwogBLYF/+pv/tC2Y2g0Ydj/br9vAG1SFbio/99aQz3SORdkZMeMopEHFniy5OtuSWcB5T0pOEs4GjWx3A+6Gufz9EgCiBGGMRyUZqSOSvi+lXmMId9cshN7k03H1qyyyp713sFf7gJJecPOg8T10JLLteCM08oP33gMYSI7uVdbWn5Cnvlwxm2ZPnC8AKAg0Y3AkY44RhGAODFAOcaxxnDkcNBRwTgXOwHEx5ukkT+5z//Cc42LfW8UDz9zjTbYcOeNmt6pZV2924uPkRlcLT9OEY84YvC8W9PmR7qyDacbBJmkrCRa6EO7Ie4wHlw5jkvih3zJ5+fYuOWzA/15JzUlyFYEWT22WefILiQ/4KWaxRC6o04wnyWD5G5aOkyK2+XCt00SI7Js8w5eQnivNSHHCH5DJEDmzWjk42Zt9Bmer04DvY8G0RzkAOCbiGsj+JGLI96IQrxvE6fttgRzQ37cD94GeS5gz9zPtMSLyucAC/Z3AdEhBoPPhk31b/HSypt+hTPF1K5NKjEPGe0DPI94RnDeJZ4KYc90RM8OySjlImACIhAayVAd0xGeCKyD0GeOb9zRAfyd4q/V2vC+LvHiGfMeXHmhRpxnVGfzjjjjNAAUp/uwGuizjqHCIiACLQEAvg0vKN2Xqe3DRo0KIy6FyPAGcIYX+3QQw9NV5WGNXy/pe5XxHfcuJH1+DG86/bp2y/8TYjbGjN3STkxtOSylKWm+eQjFhbTfvOb39j111/fqCIZnYBw+YYYCSEZUhPD8T7//PMDSPrD0PIdt7Ed55QkgDgld911F6uC/fa3vw2ONQkHUZKSggbOIX3u+SONkz9y5MjQes6BOI2MiEG5dRnMYW9+D9Lm96aGSO9a3z69uiELOLax9YDjo/OEE0sYDg8f6hZiDc73uAmeFNKrUjHAu0gsqk36ifOPk8vDiJMbIw2y64OyxoTxIPPg4qQjTCBg4HhzDkSIeUtW2McTFtg8d/I/edWjLrosDqIC9aBOiAksw5h7h+PPCxLlEmKEUf8oBuAEUjbXh9PI8vq9e9mCnotc25mfvlaORcSgjykCRxxtBScUkQkuCDIvvTXbengXjPfGjgnn5Ly8gCEWcF8ZppbnqC7jJY5rpm7zF1Ta/IXLwjmJwiDKgm4rGNcKpy233HKV4uhqQTnm3XGm+zEIKzyjvBTybHH93BMilWT1I3DYYYeFe8vzaLM9CaWLYR9WLbBeQzrYUv955PkgjI3vD6IUz1uyD1z8XnHveFmWiYAIiEBbIMDfeqbBnsiMKIjsPsNr4hpj5C1/z2NdOC+/xTEqY03UQ+cQAREQgdZEAB8t/m7y20njJnN8sly/5fiJiAz4XhyXbfhVvO8WKwquxLu2Z1hqgvudmTkEM7Y35MPf/vY3++Mf/9iQQ9PH3H777SEfQHpFgQs4aueee25QzDmEHAYMmUmfGJzMK664IqhAOJ44uAceeKDde++9AXBUgWjxpgwiOXBGGBmEkTHi9h/96Eeh5RrHFYeXP4zkFMBoMcBxT4ocYUPWPzCHfYb5vanBt83sKJOxS0M+UB8cWhzgmMeBBw5HFl44WDx8PZa2sy7Lyqxqg+VBAIAXDnMUA7Jb6nPVhRcEnG/EBx5sWlbgRvmcq2/XgTZoQEU4tMrzGnywtDZSge4dDMMZjWMQSPgC4OiRgBIhAKGDLwRfKLbRWkO9cOYRS7gX/YfsZCvm+TCVuy4L14gjP9JFIoZ0JQICUSMaLzs4opSBQjik73Crdv4p/4f6sp7zUx8mPvNiVpfjSas40RkIFe3pcuWjamDUj2O5DsriWmCV66XqyCOPrBW1plRbzz0rwv4M4UlfWFqEaBlCkEBQUf6HgLde/3Af+bHeaf0drWsHT7zio5S81nGBlbkIyHPHfWHObwTPGc9QFI44EfePZ08mAiIgAm2RAO8ILcl4T5GJgAiIgAjkJoBvQN6epPH+WojF7uqF7NvQfUpqaru+f3n8FHe2PvOPnvT917/+tZ199tnpbTiFqCY4rjiHtALj9JAMiOEVMVoGB7tafuWVVwbnjyRBOPlEQWBcFC3HOIaUdfPNN4f18TiG6CQqAQfxscceC9vOOuusELr/i1/8Ih3i/Morr4Tzcn6GxCS8P5cRxk99CEfB+KNFKzGh9Kg9dCfAonOJY/v000+HSIawwf/B6bjpppvSitEBBxwQ+s7gyOOU33LLLSFqAscRx5qEhL/73e/i4UYL68MPP5z+vMqCsw7MnX3SuDc1tWkbkqsbvRxDKHGoYpglDhUPK4aIwj2eM7fSerTzPBFveubpRbXJ9hBuuE4mwniigIG4kM8QdxAtyJ8AH6IGOBf8KW+rYb1t3HRvca72+PcNysO+KGxES1BXBALqSTncJxxFnHfuZXweWce9o1sFdcEhJJKA844ePdq6prqG6vXr3y/9heSFaty4ccGxjHWnfpSFw8l5OX95u8623969gnLIesQNngmWGXEi2Y8qlpM9J3yUZ66SiKM+qdD9BbEDcQvnl2eeMlnOFcZPBBHX27NDT/tkinfjcJGEa+UZ5DvAjwoRELnEi+y66HMmAcQj+PHMBCGyswsQG7goNd6jckbMDFxhzL3hmWAi8Sf3ABGC6BO+30OGDMksWJ9EQAREQAQaRYBuFtkv0Y0qUAeLgAiIwFpAgPfW1RkNz9lpAmh8xXIdz3tysaykZqAXhlMUbUnKSj70aYIFgeG2224LL95sRkzA4aO1GVGAF/fXX389DEV40kknhRJwygg1p7vEQw89FLbRDSHmW8AxJ/cATn6MTEB8iMchLHAcLeU/+MEPQplEE5CQ6Mwzz7QbbrghrDv++OONVmGEB+p04YUXhvXZ/7zxxhs2YsSI9GqcO5xryr7FhYNvfetbdtppp4U+3LTSX3311RkOKQfiCMfr4zP9EhFdcNpxPnAkH3jggeD4Usb3vve9jBtHt43YXYDjsw3WMDdnnza/J9ybEAGRXlm8BZx0hAac9igekFNhhx12CNdF5EanHp1t+vgltu9+61tZVVnog4mDHlt+meMEDxo0KDjCOOZJo+sE4T50WUFwwEFmH4QHDGcZkeC9z6qsb/fOVtGxzNqRCLVrbR4E6sY5YIpYgDDAsYgKLLOeiQgInrnoHLKOer399tvhuWPf8pQ7lJU1PnpEpW282cahXMQwolrYNxriEsY1xS/l4YefYO0qe1pZaW23B0QJntMnn3wyRDAgxNVlfE94TvhSd57iSbQ8rn/xNstC9wmOoyx+BBDLeF7zRVNwHiJwql/2XAX+I4ADTD0RcbiHRD8g7sjqTwAhh+5T/DZ8deiB3hVjRW0h3T1Sp9yThzpvfvcQirhXPFNEr/CMPPHEE+H7nks4qn9NdITCEeYbAABAAElEQVQIiIAIiEAkwHsC7xFJowGCfDz5/lYm99WyCIiACIhAYQTwU4jyxtfCr8o2fPViWUkNgQHZURAeAZF622yHTbYPL93ReSYPw9FHHx3OjWN4+eWXh8iCr3/966G/PC240Yhk2HnnnYNjH9cx55gHH3wwtCDGBBj8IYnGdhx+xAlUbxw3HANe/mlFjmHOOF+0hrOeHA933nlnLCJjjsOG0xCNVn8cbbphEKXB+NI43YXaU089ZQwPFSMccKhxiGGDGPPss8+Gbh6XXHJJukgcb+qRyxj5AtZG1EnSvMrh3nhQQDGNh4roAlpzcbb4jFBARAo8EQqYyC1QurTEZpVV2c5b97bf/214aB1G9MHIn0A5vAjg+OcK60E9I/KEexj7zEf1jC4gdDngxWLqF7VDfyxc4iMMzK22qhVV4RzUB2cfR49IE843wkUJjPMhSjCxjFNI2R/4EDEIF4gelI84xbn799zASqtqQ0gHbjzItt55G+u2TrcQjYNgkXyRoWsGzx4CE3XABm60tw0ZOMC6dukUvpzUC7GCqA72W51RD64B4a5DZx/WZPcuNnb+ONtimy2s/8D+NnHSxFAeybXyGa3zCGbhe9VvndCNhu8DdSGSQ/kf8pFb/XrY8ZuG8Bla277wH9kSP27BMlvYcYkN2G5gEBr53vC88H3mOeG7zfOGwJp8hlZ/Ru0hAiIgAi2PAO8xLcn4XeXvfNL4W8rvrkwEREAERKAwAtEPS/prNConP1MSAgT+Ntvwo7INP7oYVlIz2B3dzTwCol0iCmKhR0C85tPHKTvlxFNC5ANh5rTQHnzwweG8RCLg2NMSuPfee4d10bnkAw5tLsNBRwDAacMpw5LHcdEYTicWHcDwIfEPgsPdd98d+tXT8pjMF5DYLTjISQcR0QEHAwGD/vMvvviinX766UE8SB6Xa5ks+CQrvPXWW9NRFfE6SVxJpAOREXQ5QZCIRgt9zjB993FSH7mf46zNmafN7wX3hHvTFAZvcgYgPnD/EBAQjxAK4I3zjkBw0B5fsTJ/AP9060cWa4cTjAPMH38EAZwxHlYe1KRRNlO02F0HRxmDGy8R7DNjtjt11WW2zVY9rR2h8DuVhqgGuNHtgGeBOuP0DXVxhDwUOIK8lCBycA0Y5SGmsD/l0mUIgYPnbNb4Wda7Ww9bgXrn/5emSm3Y0NpuOeHgxD/UFRGMyBZEmvh8lrbvZRMmTgnPGg4n277yla+k830kilhlkcgajPpUpFywYGjPke1s+uzpQbwbN3ZcCOO/9tprVzk2ruDZ5YeCL/+G/YcF8QM1kmvGEY7fnbi/5vUjgJjDc0O0VefuFZbq4+FrFWU2c+NFNmPS9PD80eWIZ585zyPRVTzLMWStfmfU3iIgAiLQsgiMHDmyZVXIa5P9ftHiKqgKiYAIiEALJzBo0KBVahgjHuKcHRAd8LF4H6aRPRndTmNvsX6PS2rcd6se7mcckFWv8e4YP5eyb+52jP3jH/8ISRQZupCWcRzAH/7wh3bjjTeG0HtC3Qs1ujt87WtfCw4uIgBOXqEWHUH2p/WZIS5p8SZE79hjj81ZDNti9w92INydyAsiJzAcCISD1V0DyhHOJpEZ5LCIFh2PpCLEcjIaBEcVZz3bUpOc8fPupDvrDPN7wT3h3hTLEAmi8QCRv2Gw58ZgfXSgcKoQIHjoeMBYv+xzz/8wb6nd84+x4XAEgaiW0YUBh5ooB64xRsqwY7xXRK/wMMMJQQBnmZZm6kD0BCLW4spS69Gtg7359izrUlNmC8uXBoGI8hk2BiPBJ6IIIgP3M84JgY/dJngeqDMiCdfGaBlcE2FE1GGxr585eYZXzscVLy/1Lxhjn9bmLQkLK/+hDIQNWCCYwIN64+DTQo7AgYhF2fUJu49RMF27dLX2y8utdFgXmzBirs1eMsc6965I5yNJ1iW5TEsQItEg/xFBIIEP0TcIbDxvCDL1qU+ybC1b4M+zyfNdPtvDH/p7XhNPXmpDKmxWu7mhqwviHM82vytR8EGE47mQiYAIiEBbJMDf6vh71xzXR8LlEJm28uS8nyQblpqjTjqnCIiACLRUArGRPykexBH7khFlvL9mWzwGX6oprYSm7RrPPVg9wr2yikQUBENy+iAEG0/f0LbouXnoOnHMMceEusRK4YixTLLKQo38D4gO/AH561//GhyoQo4FHAn/+ENI7gKEA7pD4PzSIk8rfi7jj2byDxd95G/x3A9EP+BUks+BPAB1ORD0D99///1DtAUh8Di0TChEOCJ0QaFbBs4gQsVVV12V4Qji5Ce7gVDP1CwEHp8z0ENy6E2/B9wL7kk67IADGmnxgaIeOKtwwVnFmaJ+PIQ4ttwXrhcnjLwCQ3YaZu16dbB7Pp9iK7xbCMIB/OMLCS8GOMMk5ct+IWAfLF477Ilq4DyUE8+JeDRrfo1VrFtmPcq91Xmc52nwqIVYZ8QSIja4X9QNMQMBCfZR2BnsggP15ZlEoOALxjNCqzb7MW/3YY317t/bprqYUV1ZbV0rasUvIltyGcID+SF4xmGGIIGIQFIshBeSStYn7B5GCDXdyrt+GVI6pLPNOshs7JSxBY1ecdFFF4Xnne8R10d9EEJgjxhTn/rkuua1dR2/HzxDcEToGrntSCuZWNsVyL8MNn3TRdZ3cN/wO0HUCROiJd95RM3sZ39t5ajrFgERaN0EeC/g/Yh3gWxjfXMY7138zcP4m0eXufo0XjVHnXVOERABEWhJBPCLYm67ZL1i42hcRw5AfCZ+Z+luHw1/MdnYHtc3dO7NfC5AeDBA9Xa+sJlPYQ1r3eZ5NwyPgjh/5P/ZwvEL0i3NvKjTl51QdZy7XApKbQGr/nvNNdeEKAL+eIwaNSo49avu9eUanEAMJ5W+iXRxIOT+hBNOCENm0lJN9wfyQOQynF66fcTEGQyZiWBB1ANOA90v/vKXv4TPuY5n3X//+9/Q+smNINM918/0zjvvhEM4P10saDmnpR3n/rLLLksXR70Z7jFaylMelLyIAOHX5ozTBnu/B9wL7kkxLT5gOPA43NQVJ58knkQp4LwjJiAQkOcDp5aw/u8cebrtMmgn22b94Vb58eIw4gj3mymZc4CIhBj1QL25b0RLEOWCeIDIEZMoIhKMHDkyCEPxy1DRdV3r1M2jAqpStvTlJVZdsSK8aLgUE8oiEgEBgutAmEieizIoE0GALxj3if1IhDp69OiQN4HPX93+IJs7f665tGalJbkFq/jyxbXxBeRcMEGQQQTj/jLM5fe///2CBIN4DxEGqCflduvazQb33cA6VZZZ9YR5tnH/Da3/VgPjrnXOKefkk082RsVANKNLFMJG8l7UWYA25iTA84tQyT0mygGmnmHERQhPRlm5zCNmfOzjvuuHnDF818m7wXeH/YkKi8Pu5ixcK0VABESgFRPA+eedAWuOKDv+7jHSEL/RCCMIIc1Rj1Z8C1V1ERCBtZBAMtqBd9tsIzI9+tlxWwwywG+Kv/v4cEm/K+7bmHnaC6tx/2fFbjVW+oUXNz7hFE9N2d4DRtq0B7zV2CPWY4wESRjpk47hoJF0EsOZJTIgaYgO0ei+QB4FHOHYDSJuyz4u+RkhgT86sWsDXUBwAmmBjDkAYjnJOfkmcE6JnsBpwHFGcCAJJQ5yrhvC8YRiR6PLSLIucX2c00qOyEE3AVjEbgNsp77kqiDxJpaa58LDSz494YydbYb1rwn3gHtRbONBoosErbuIONFwoLg2hBws+bDymYfv+COPY9EeK60dFhWhImmPPvpouE5Y8pASocB5iBiIxmfW49gxZCuRCyzzQoFTv2n/TeyDCZPssGMG2FvXz7buG/SwMZ+MsUkTJ4VoA54rjmd/kv/hBHJfub90CeL6iMTgnjLnmtgP4wuGqMIIE+XV5TZ5/GTbcpMtwzbKi7lIwoqV/8CDLyXlRkNsi9fUmEiDHTbf3u4a+6B1W7ejDd3GE7Wu40N8dqp/qBMvYI8//ni6/ghGsoYRQBDjGUVYjM9w1+kdbOYG8630+UW2fPxSe3HMRDvuuONCNxgEKYSge++9Nz0EccPOrKNEQAREoGUTyBdhuiZrTSMU0YcYjVeN+Ru8Juutc4mACIhASyGAH8R7bDR8HRrgkoZvhY9FtAP+HhHr+Gk0AkdBIrl/Q5e/jHfwaLsa98mq93CJoWeUGVYWO8EjIR7xyVvtcaCj4Wwz1df4Y5YtPhRaRvIPIU5AXeIDZbIPEQoxCWA8D+XkEx/iPvWdI0QkxQeO/+c//xmSdIakj4gPRD44S3OmGebMYc89sFUjHzN2bcgHxBfUq4svvjjkRkiWASNaFegyEfkmla+4b+wSET/HOYIGjhsRDoSl47gTlp58NuiyQJm0Fp966qlBTKLbCudkP877xSdLbAtPRHn3TfvY7DGTbP8D9w5hlyQchS0iFJEsRDoQERFDMHG8R7oDiWpH+dSFbhvREB8Qr4h4GTZ4mHe9+DK8hGuiK0O2IUpEEQJufBERu+I5s/cv5HNdYfp9Oq9bSBEZ+/AChuCC8UJGZIascQR4dmJUzua9N7Nd+uxgPz3uR1Y1plYgojsRP8j8iGOIXTIREAERaCsE+LvCbyCjYSHQY435u1csLvwdpyGHv+US24tFVeWIgAi0RQLxNzu7Kx2NzEkRAd8m/s5HH49u9jQQ02WcYAH8LRrviWgvpn0pQHipISHlLj7f1QWILnlEiKdchJhezCo0fVmHHHJISJjZ9Gda9Qyc+6abbgrMSpxdTvHBWcO8GvZFTDyZrA3RIqO9O8Lhhx+e7jrCdhwowit5AFHBouNOa3+2xS4nyfU41bwYkByRkHSUMyIi4vG8yODM07pM1EP8UuDE8aJDme+9914YWWJh95S9/4471C5gDBzQ3jpUpGzoxkMtjgzx5JNPhkSgJB5F0EBw4IUkhmLyRYk5KhA04rk4D5EoOOucl2uOXzi6niSNfWPd6daAmMK+5JXg+uK5ksfUdxke5ePMFi+pCtEP9T0+uT9dMUi+ecoppyRXa7meBGhZiz++e/uoPuR44fm65MSL7OITLkiXxv3nx5vnhvwxxx9/fHqbFkRABESgLRDg73qMiuR64kssf8/5G9kcxnlpfODvuMT25rgDOqcIiEBrIRCjxTbffPO0v0NjM8ICIi5Gw+UTTzwRfLTY8BajvGm0prcCfiMBAwgVyb8JxeCQIUBQYI1Hca/Y2+c7ugDROUuEmOhREP/1/vOPuI841nf27tGtxZorg3O3im7WcWqHwAx25gwzzBnDOjBvwgj65EtDsiUeZxjnGhEivmRk1K+AD5RNFxwezv322y+MchKTesZzoaDlMrpKENpDdMPSL3wEDs/NUJKq7Rm0dMVyW2/d9cJhlEOUA+IGYgb5GYhgiYkgozCAiMK+UUiJ5+SFBWcd45rpLkOXlCOPPDItVMR9o9BCnhBaxB955JEQ+km5SY5x/0LnURBh/y4lPhTnSpv30VT7xkHfiB/rPefaGlOvep+wDR4QRad4aTxXWDZXPvMCzHMTRbR4jOYiIAIi0BYJEP3XEiz5d7wl1Ed1EAEREIGWSIB3WoQG/B1SBGBEPxA9RmMuFiPJaLDF1yFKnUZXurxHoys7PhGCRGykiwMMxH0aOk/ngEgWUNPftYUDvbLVLjS87CLEooTTPCNlKW/JL/Wu8dV7eqv9Jn5kRfJoLacJLPSIh498+p8ze9vXLkhwZKcgPtSyhnlzGY41UzKRIeGXSeNBPuecc9IPdNyWdKqTAgaCBjkbokWHLjp6nC9abM2454377P4XJ9oWW9ZGXyxbmKlwxf3icdlzWqaJwGBOfZPniPvG+hK1kc+Sx+Fo8qVDvMjuxpPv+HzrEUlizoYpn02xfvvWdhMpn7BiFUc3Xxla33QEGNa0EONZuPnmmxV1Uggs7SMCItDqCNCQQBJn/qYnu2a2ugtRhUVABERgLScQ/S8aU4koxxchqiFG8BI5jiE+4P/EJJSsu/DCC+1f//pXECuycwSyvTG2SgREKMzX1gx2x/hgb53f3QWIHlmREO5Ip152EeIuj4Z4wis90Y/K9BUbU6fWf6yzgAlsYASrVcQHZwrbwNhZZ4w+0sQEohMeT0NkQXaSzdhFIe6zujktwx9++GF6NxQ1un1knyu2pGSv58DBGw21T/uW2HvvzLaqch/qsF1Zuq9SUhRInySxwPkJIYp9mxAg9txzz8QetYt88dhWH6OlmySm2a3h9SmDfTk+CjAnHHG8zfuoti/TcM81IGteAtyb7B9XRoLJZySgbOzzkK9srRcBERCB5iQQ/059/vnnGV0zV/d3uDnrrHOLgAiIgAjUEuD9NHaroMGVKAYizVnPlMxfhg+I2MygBEnDV0q+58ZG5uyklclj6rOcW4CghChCfNUjHfZ1AaJvlgixzFvzP/EuGf9xEeIen7/kTvdsPy5rt/pUptXv69cOA1gEJs4GRgarpDlLmK5wtgg9a1J8oBpJJzxGCmS/WOCMJR11HuTsoQbjsfHSkmE5dHnBaY/n4mEn1wPCRPZx8fjZn82wkiEV9uf/fW7Pzp1mU8dNiZtWETLSGxILyWtgOfnFSeyWsUhdqGPSGDY1aclyk+sbssyIHBg8tyndxMbd92ajul80pA46JjeB5PPOHiQ+lYmACIjA2kaAv510NeM9IL50wiBXw8HaxkbXKwIiIAKtgUDSdyEPXuyGnl13fKCXX345REDEXHnsE4+Pv/vJfBLZZTTkc34BgtLcb65Z3wWI/X36qnvXQ30qzTrNHG/hf762pb/0fvel3/TD5mftsxZ85JpLPDE+DELUgzMxZ5NhsHOGsIQpbGG8po2XC3IpYLmEhbrqE49jHxy2pChBq0kUIRgFA0ueiySR5GbId879d9vPqj9faAtG9rR2+/W1CZMmhDLyCRZhY+KfpHCQK/qBXakP54/GMuuSdt555yU/FvWlK2bypu/VXdf+y/501nWrnD/j5PqwxggwpGs0nuOdd945ftRcBERABNYqArys0hc42TVzrQKgixUBERCBNkIgigm5LgcfiAgJBhNI+kdbbrll2D02JJNPgq7KSV8rV3mFrqtbgFhZSk0vFyDcR1vxde82sIOLENkjZCx3L9qHlUw95tEQ//TpAXfGX3Pf2gc0aNMREUQ8+DVyrVxz6b9qGYQhNmGSNEa6cHYwhCVMm9MYOhOLSUiiwsU6HP7LLrss40GMD288jv3iOpYx8j4wTizDVmIxsoBjeHBJHonlEweSiRiXLay0Puv0CfvnEyzCxsQ/5GiIrdhxnticXvzoI0/MUYchpMTj47yO3eu1iS8645nHfBbZ4ke9CtPORSVAV5vY9ahYIWZFraAKEwEREIE1SCB2aeSU/C2Mf9PXYBV0KhEQAREQgQYQoMEz+jDR18tXzLe//e3w/ksevWg9evSIi+k5efF++MMfpj83ZqEgAYIT1HRxEWK7WhGi+kB3MPv7lH10lTvd3uUg9fBKIeIe3+U5d9KJpF/WmGq2sGP9Wrgmrq3UrxHRhWsO3S1gkDQYOSuYBfHBGcKyuY3WDUSH6AhHhYt6xaiApMAQBYqk8pXcznEIAIyEwagWbIvOdTzXpZdeGrplxIQoHJM09m83emlYVbK4xpb7fwwTs7ovTiyD4wkfItQoXlfclpyPGDEi/TFX2ZQTIz1gUVdZ6YLqscBQqLKWR4Af62eeeSZUjCFXi33fW94Vq0YiIAIikJ9ArveC/HtriwiIgAiIQEshgC/DiBcPPvjgKg3G2XXET2PfZD7AKF4kfSKOo3t9MSznKBh5C/a9a4a4EOGiSI071SWvuiP+nu+d3dWg0p1w7+qeGu/O+Zu+7zCfBnsEwCCfD/Cpux+TLV7kPWkL2VDt1zPXpwk+jfNprIsOn3rdyCOYHe0Qq0yiyS2c1/a185pVxaS4Z7PMk44wDxijXBCpkFxPxXh4SSiJITLEkRyiKBE2+D+UwTYs27GPZbJPXTZoG09EafNs4T0T7MUxH9e1a85tfIlWZzHDN9eaz5KRHvn20fq2RYBnM6n+tq2r09WIgAiIQP0I8JvIaBhYDMetXwnaWwREQAREoLkI0KX8iSeeyOgun68u/N4z4gWW9Pv4HH2i7PVsa6jVT4BYeRYc6RrvHl0z0EWIjVxLeN03fOJTcrhO9sUx90gBogVS7LOBH4MQwdzzu9X4UKM1jLjYjp1boFV5vb3XQGrqymuY5HMXHsznq1xrsvo+vKb5KJbVIzzywbvQcK3WINLJQpt++bvf/W4I1yGCAMGAFmGGbKEvfBQOmP/0pz8NURK33HLLKpUiAgHVLDs6YpUd86y46tTL7ZA/Hm1nHPHtPHs0fjVdLIhsYMp1DZyBa+c6s/NBNP7sKqElEyAPxO23326HHHJIS66m6iYCIiACa4QAiZN79+5t06fT2iITAREQARFoLQTw5WIDcCF13m47D9N3S0ax8xmfiAbm7PVsa6ilPNyitsN+Q0vwiPkSj3RIve3z9905/9wLWujzfMamCj8l4kMQIVyQ6OvrevpnJqIE2uc7uInXV/p1eE6H1Cw/j08pH4UvNdUjHVxAMRchwnXVRYvrIkJkC78mFx6qB/oxHXxqRUYIehQbqPb999+f8+HN3i95iXVtS+6Xb/n7533frv3ltfk2F2U914UQkbzWohSsQlo9gcY+v60egC5ABERABBIEbr75ZmPoYZkIiIAIiEDbJsDvPQ3J2d2QaZClW16x/KbGCxDxPixyAYLuCZ7fr+QDVxnonjDP53U57BzbzndAdOjtu/Zi8s8eFRG6aXTxuU/W1eed2NcnBIzGGPUhssHrawt87lOY073Cox1spgsOM30+wycXIyw7p4OvyjDq080LHeaCw2YuPGyyUnigvjIREAEREAEREAEREAEREAEREAEREIFAoHgCRATqERGpyS5CfOzzT92ZJyKC6AHyQhRi5IagCwN5IhAefLKu/rnClzv6MhEFPtUQJYEgwdCWTBzHhHm+hjCt8DkTgoNHN5jXjSm1xOcLfZrv9WPIUCYXIEK3Co4txNp7nYjiGOLTMO9qsZHPGVazlUU8FHKp2kcEREAEREAEREAEREAEREAEREAEGkug+AJErNFyd/TpxjBu5UTSxgm+keiCZQWKEbGsOEdowPFfKUJkCBBRhGBfRIQoPqwUIKL4EIQQ1jXEyv3cRGkM8Ckm1Rzky951pDXkeGjIJesYERABERABERABERABERABERABESgGgaYTIJK184iDkE+BJI4eHZGa4mIEiRy/8GlxA8WIZPlNudzJRYc+LjKExJnexcKjHMJyXz8pERkyERABERABERABERABERABERABERCB1RJYMwJEshokevQoiDAyxjSfk1iZvAvkXGAigWWh3SCS5RZjmS4cJJIkH4VP5vkoatb1ZRcbQsJMj35otgSZxbg+lSECIiACIiACIiACIiACIiACIiACzURgzQsQyQt1oSEkg6SrBqKEz80TQabm+dwTWIb8DCyTr2GxTwzr6fpAo4yAizIvhCSRnlfCunmR5JnwRJI1vhwSYHqXChJihpE5Ovs85pbwRZkIiIAIiIAIiIAIiIAIiIAIiIAIiED9CTSvAJGrviSMRHBghIqVCSLDZxJH0pVjZSJJW+pKgueZINdDKuZ7iJETCAaeE6KGvBBMZT51cNGB5JXkj6DrhE81CBAx0aWPthE+k9hSJgIiIAIiIAIiIAIiIAIiIAIiIAIiUFQCLU+AqOvyEBzowoEIwagWKwWIIEIgPiQEiJqVIkRagPBRM4L4wOgZCBIyERABERABERABERABERABERABERCBNUagdQkQawyLTiQCIiACIiACIiACIiACIiACIiACIlBMAspuUEyaKksEREAEREAEREAEREAEREAEREAERCAnAQkQObFopQiIgAiIgAiIgAiIgAiIgAiIgAiIQDEJSIAoJk2VJQIiIAIiIAIiIAIiIAIiIAIiIAIikJOABIicWLRSBERABERABERABERABERABERABESgmAQkQBSTpsoSAREQAREQAREQAREQAREQAREQARHISUACRE4sWikCIiACIiACIiACIiACIiACIiACIlBMAhIgiklTZYmACIiACIiACIiACIiACIiACIiACOQkIAEiJxatFAEREAEREAEREAEREAEREAEREAERKCYBCRDFpKmyREAEREAEREAEREAEREAEREAEREAEchKQAJETi1aKgAiIgAiIgAiIgAiIgAiIgAiIgAgUk4AEiGLSVFkiIAIiIAIiIAIiIAIiIAIiIAIiIAI5CUiAyIlFK0VABERABERABERABERABERABERABIpJQAJEMWmqLBEQAREQAREQAREQAREQAREQAREQgZwEJEDkxNL2Vj7zzDNt76J0RSIgAiIgAiIgAiIgAiIgAiIgAq2GgASIVnOrGlfRa6+91r773e82rhAdLQIiIAIiIAIiIAIiIAIiIAIiIAINJCABooHgWtthhx56qE2fPr21VVv1FQEREAEREAEREAEREAEREAERaCMEJEC0kRtZyGUgQtx///2F7Kp9REAEREAEREAEREAEREAEREAERKCoBCRAFBVnyy/siSeeaPmVVA1FQAREQAREQAREQAREQAREQATaHAEJEG3ultZ9Qa+//nrdO2irCIiACIiACIiACIiACIiACIiACDQBAQkQTQC1JRe57777mkbEaMl3SHUTAREQAREQAREQAREQAREQgbZJQAJE27yvuioREAEREAEREAEREAEREAEREAERaFEEGiVAVFZW2oMPPmjLli0rykWRn6CYIzVMmzbNRo0aVZS65SvkxRdfNM6Tyz7++GP76KOPcm1q1nWzZ89u1vPr5CIgAiIgAiIgAiIgAiIgAiIgAmsfgToFiMsvv9wYOSHbTjvtNDv77LNt7Nix9vWvf90mTJiQvUu9P1dXV9vJJ59sTz75ZL2PzXfA448/btS1vvbaa6/ZfffdV9BhP/rRj+yVV17Jue/f//53++tf/5pzW3Ot3Hjjje2ll15qrtPrvCIgAiIgAiIgAiIgAiIgAiIgAmspgToFiCOPPNIeffRRmzlzZhrPkiVL7LbbbjO2bbLJJrZ06VIbOnRoentDF0pKSoKQ8a1vfauhRaxy3AknnGCfffbZKutXt4Kohttvv311u2m7CIiACIiACIiACIiACIiACIiACIhAgQTqFCA23XRTGz58uD388MPp4p566ilbd911bZdddjFC+REfFi1aFLbT3eDwww+3nj172hFHHGHjx48P66+88kq74oorwjKCBa3wo0ePDp9x9vfbb7+wTLRFTJB4wAEH2NVXX21bbbVV2P/aa68N+/AP3TS+8Y1vhPNw7KWXXmrnnHNOentcoEsH+2GPPPJIWD7rrLPCcQgddJHINsSVX/ziF/af//zHBg8eHMSXGTNm2De/+c1wHHW/+eabMw57++23bccddwzbzzjjjCDKZOyw8sMvf/nLcC2bb765XX/99bl2WSPrFixYsEbOo5OIgAiIgAiIgAiIgAiIgAiIgAiIQCRQpwDBTscff7zdfffdcX/797//bSeeeKKVlpbaihUrbPLkyUb3icWLF9thhx1mG264Yci70Lt3bzvqqKPCcTjcDz30UFhmGEi6bsSuFs8++6wNGzYsbJs4caIRYYGNGzfObr31Vvvzn/9sF1xwgdHVYcqUKWEb3Srmz59vdLE46aSTggCRjNIIO/k/lDV16tTwkeUHHnggiApEdcydO9eSokY85pBDDrEzzzzT9txzT3vsscesR48e9rvf/S6ILE8//bSde+65hsjwxRdfxEPC+X/+858H0eK5556ziy66KL0tLnAt1113nd10003261//2i688MIgisTtTT0fM2ZMU59C5YuACIiACIiACIiACIiACIiACIhAXgKrFSC+9rWvBUefKACc+DvuuCMdVZAs9d133w3CAmIBgsIll1xib775ZhAodt11VyOvAiIFkQ/HHnusEZ2AvfDCC7bXXnsli0ovn3/++bbDDjvYcccdFyIxOJYyEBAQD0aMGBHKOv3009PH1LWw/vrr209+8hPbfvvtjUiIKIokj0Fw6NOnj3Xt2tU22mijILSQC4Nkm0SExJwYyegJrhnhgqgQojbuv//+ZJFh+c477wwiCnXebbfdQr4LoizWlD3//PP2z3/+c02dTucRAREQAREQAREQAREQAREQAREQgQwCqxUg+vfvHxxmumHQ/YIIh6233jqjED58+umnYV2vXr1snXXWsQEDBoTPRDvQJWObbbYJggTCAwksiZwgioAIiN133z3sm/1Pv3790qsoDwEkRh6st956GdvSH+pYGDhwYHorZRNFUYhRR7qCdO7cOXSh4Jiampr0oXTLiIb4wjVXVVXFVWEeoydgw/SHP/whb/LKjAOL9IH6plKpIpWmYkRABERABERABERABERABERABESgfgRWK0BQHBEId911V+h+QZeMXEZ0AROOd3KitR/bf//9Q9QDQsUWW2xhBx10UOiO0LdvX0sKDbnKTq5DEMFefvnlMMexjnkjwooi/UO3kmh0+SAShJwXdPXo0qVL3BTmdB2JhrBCjox27drFVWEOB0bFSLKhO8qaMs5/9NFHr6nT6TwiIAIiIAIiIAIiIAIiIAIiIAIikEGgIAGCbgfkbMjX/YISiRAgouCGG24IkQqjRo0ycj/MmjUrnHDkyJEhESXJJRnxYt999w25Ew4++OCMCq3uQ1lZmZ133nkhD8XFF18c8kyQyLKYRhTHW2+9ZdOmTQvFkmQT0aG8vDwMq5mdxPG3v/2tffjhh2F/up4ceOCBq1SHZJkk4iQxJ/knEDWuuuqqVfZrqhXJKI1sAaWpzqlyRUAEREAEREAEREAEREAEREAERCASKEiAwCFHKNhuu+3yDrlJ7oR77703JFrs1q1bEAZI2Ej3C2ynnXYK83322SfM99hjjzBHmCjUYhcCEjiSa4G8FHvvvXdIDFloGXG/WFb8nJwjFnTq1Cl0I6HLxzXXXBPOgeOOsEKEQ9IYkpQIA7qJIFKwf7bF3BN0YeF4oiZOOeWU7N30WQREQAREQAREQAREQAREQAREQATaJIGUdwn4MplBkS5x3rx5IWKASIemMIbdpBsHQ30uXLgwdO8gCeTPfvazop6O7hKxK8Xy5ctDAkySU+YyRgQhR0VFRUWuzel1lElZCBxr0uj+Ee399983hgSViYAIiIAIiIAIiIAIiIAIiIAIiMCaItAkCgEREE0lPgBm2223DV0YNthgg5DQEZHg1FNPLTqzKD5QMF0/8okPbGdY0tWJD+xHmWtafOC8MhEQAREQAREQAREQAREQAREQARFoTgJlzXnyhp6b7iAkeySfAmIHiSxlhREYM2ZMSABa2N7aSwREQAREQAREQAREQAREQAREQASKQ6BVChBceocOHdJDYhYHxdpRyqRJkyzm31g7rlhXKQIiIAIiIAIiIAIiIAIiIAIi0BIINEkXjJZwYaqDCIiACIiACIiACIiACIiACIiACIhAyyEgAaLl3Is1UpM999xzjZxHJxEBERABERABERABERABERABERCBJAEJEEkaa8EyOSBkIiACIiACIiACIiACIiACIiACIrCmCbTaHBBrGlRbON+oUaPslltuaQuXomsQAREQAREQAREQAREQAREQARFoZQQUAdHKblhDq/vggw9qtJCGwtNxIiACIiACIiACIiACIiACIiACjSaQqqqqqml0KSqgxRN45plnNPpFi79LqqAIiIAIiIAIiIAIiIAIiIAItF0CEiDa7r3VlYmACIiACIiACIiACIiACIiACIhAiyGgLhgt5laoIiIgAiIgAiIgAiIgAiIgAiIgAiLQdglIgGi791ZXJgIiIAIiIAIiIAIiIAIiIAIiIAIthoAEiBZzK1QRERABERABERABERABERABERABEWi7BCRAtN17qysTAREQAREQAREQAREQAREQAREQgRZDQAJEi7kVqogIiIAIiIAIiIAIiIAIiIAIiIAItF0CEiDa7r3VlYmACIiACIiACIiACIiACIiACIhAiyEgAaLF3ApVRAREQAREQAREQAREQAREQAREQATaLgEJEG333urKREAEREAEREAEREAEREAEREAERKDFEJAA0WJuhSoiAiIgAiIgAiIgAiIgAiIgAiIgAm2XgASItntvdWUiIAIiIAIiIAIiIAIiIAIiIAIi0GIISIBoMbdCFREBERABERABERABERABERABERCBtktAAkTbvbe6MhEQAREQAREQAREQAREQAREQARFoMQQkQLSYW6GKiIAIiIAIiIAIiIAIiIAIiIAIiEDbJSABou3eW12ZCIiACIiACIiACIiACIiACIiACLQYAhIgWsytUEVEQAREQAREQAREQAREQAREQAREoO0SKL3gggt+0XYvT1eWTWDq1Km2YsUK69ChQ3rT2LFjrXPnzlZaWhrWLVq0yN555x2rqamxrl27pvfLXmD7559/Ho5Lljdx4sSwvm/fvpZKpdKHzZkzx1555ZWwf7du3dLrkwuLFy+2l156KRyXvQ91WrJkiXXv3j19COeaOXOmUTYT11FWVpbenr2Qfa2VlZVGGT169EjvOn36dHv//fetU6dO1rFjx/T67AXqOmHCBOvSpUuaXa7y6rqmWOaMGTPs1Vdftfbt24fy4vpc5RVav1hGc8znzp0b7gdsomU/e8uXLw+c2Rf+JSW59dBczxnH8jxw79Zdd900f87FM/nuu++GMuGZy3gOxo0bF/ZJPi/57kO+9bnKbo51xeRN/SdPnmw8txUVFenLyce1kO81heT6vtT1DOS6pnRlmnEhV72K+WxzabDO9Xzy2/3GG2/YrFmzwnOf/H2NSObNmxf26dOnT8b3Ih/r6urq8D387LPPLPuYWGZzzov5mw03fj+Tf0O4tly/MazP98yzLdqnn35qY8aMsd69e6/ytyfXM89x+X5/YpnNOc9+lmN9G/KOkO/6KTPXbwy/52+++abxtz/f395c94R3Fo6N7wH83eRvD+uS7wd8N5J/65uTM+cu5m8J5WUz5dq5n5ELvxdwzceLMpLG371870K5nvt850uW2ZzLud6nct2DfL+/2XXP5s12nvlc77Cs5x0P9r169couKv05+7co+15xL3lXiu/cdX3H0oU2w0KxWef67c739/D/t3cWcHYV1x+fKPqHIsUpCUFKobhrkAKB4g7FnRIo7u5QoLhTtAQrxRoktLgUaSkUKFKgWNDikkD2P9/ZPS+zN/fed5/lvbf7O599e21m7sxv5s7MOXPOmaJjWhpPAVRZ7T5rDM2Ct559abJdJL812oXN1xhf7Junfaf1eVnt9Ntvv3VPP/10iM98IKa0byV+Xul5+oy/0lQUvuUR4EPYaaed3AILLOCuv/76kF8a2RprrOHmnXde9/LLL4d7f/3rX93666/v/vznP7t9993XHXbYYZllO/nkk92SSy7pbrnllhCGj/43v/mN23///d11113nVl555fAh8/CGG25wG2ywgXvwwQdDmNNPP32CdG+++Wa31lprub/85S9u7733dr/97W9DGD6kVVZZxV111VXu8MMPd7vssoujI4BWW201d9FFF5V+fJRplFZW8rTiiiu6xRdfvBTljDPOcLvvvru7++67Q35vu+220rP4ZMyYMW7rrbcO5edjh9LSyypTnNYf//hHt+2227pHHnnEbbXVVgG7rPSK5i9Of2Ke03mdeOKJbpFFFgnth3entT0G7mHDhrkRI0a4Cy+8MNQ7A1YaJdsZHee6664b2vFNN93kfvGLX7gvv/wyRD3ggAPccccd5x544IHQ/p5//vluSdJuNtlkE3faaae5W2+9NcRlEIKy6iHrfreEm3TRCLzvv/9+t9RSS7lDDjmkVKosXIt81ySS9r1ktYG0MpUy0sSTtHzVu23TPrfYYgvHd06/Sr/HRB964YUX3AorrBDa6cUXX+y23HLLgGsMyR/+8Ae33nrruZEjR4awTz31VHichfXnn38evsNLL73U3XHHHW6dddYJQtU4zWad17vPpq5WX311t/zyy09QpGQfQ4CsNm+RmYzRD/3ud79zd955p1tzzTUDw2vP09p8Xv9j8Zp1TGvLaXVQdI6QVn4rW1ofs88++4S5w0MPPeQ23XRTd99991nw0jGrTmi7O++8c2kecNddd4U4N954Y+ne8ccfH76JUmJNPGlEX5KG6ZFHHumOOeaYEgYI5qEsvGJImKOBKXOhzTff3NG3QHntPut9cbrNOk/Oz9LqIK//TeY7De+s+d5LL70U5ji0aeZHe+65ZzK50nWyL2J+Gc9xmSPbvDTvGysl2ISTemOd1ndnjYdFxrQ8niKr3WeNoWnw1rsv5R3JdvHYY491axfzzTdfGH/efffdbnzRZZddNkEWs9op82XmHPQPF1xwgdtuu+0c30natzJBolXcyF4qriIxRWldBF588cXA3M4+++ylTDIYnX/++aGR2U0kszCF0003nWNFjM7uhBNOsMelI5NjtBn22muv0j2EGEwekPIioT322GPDoIUwgUGQTnPIkCEOQQXSWwa1WWedtRSfcKx+fPHFF+7ggw8uCRlgABdbbLHANBJ46NCh7tlnn3WLLrpoiHvUUUc5Op2ZZ565lFbyJK2sdOx/+tOfglDGwvMe8oE2yBxzzOHuueeeMMm053Y86KCD3EorrRRW0+xeWnpZZbI4HMHqiiuuCCuaSy+9tDvrrLMCE5KWXtH8xelPzHOk1KwE0nldeeWV4dVpbY82gODB2sNPfvKTsFIVtwcip7UzBg8GcNomBFPGYER7+OlPf+p23HHHcJ93UH8I3YxoW3TcrC6j+cCE49FHH3ULLrhgZj1k1Y+l2cxjvfF+88033a677urOPvtsd/vtt4eigVEWrkW+axJJ+16y2gDhk22Ie82memOd1rbR8Npvv/1KQlEmPWg8zDXXXA4GCrx/9rOfhZWOAQMGTLDiPnz48LAaTz9OP0nfzXuysGaljjEBJhqink466aTw/TYb73r22bThX/7yl0Gwg5A3prR6yGvzFhfmduGFF3YwzkzQvDZp6EPseVqbz+t/LF6zjmn9dFodFJ0jpJWfsqX1MUzYwfPtt98OxX/iiSdCvw6DZZRXJzbhZyxg1W7gwIEhGosoRgim4/mK3W/Gsd59SRqmlAtmBIaKvoLv3DSmsvCKsYBJgfH9+c9/7hDoMJ4j9Mxr91nvi9Nt1nlyPpVWB3n9b5zvLLyz5nvMT+lj6S9YQEEDizGWuUVMaX0R85dTTz01BGPuA/4sEkJZ31h42MR/9cQ6q+/OGg/vvffesmNaFk/B/Dqr3WeNock5K7DXuy9NaxcsFvCDEAojPGA+zaIDgvYDDzwwzA+S2n6Ez2qnLETstttubptttiGYW2ihhQLfttxyyzVkTiYBRIC55/9DqgWhgWCEdCtJDDYIHhBMIK0988wzk0GCGQQCArQkrrnmmtJz1NaIb50qEjl732yzzeaQAvOBoBYJYb5gHy+DAYPkhhtu6D755BM3evTosELNahX5YdJtxDt415xzzhmYVhhP1NQ40jmnqd2nlZXOm8EgJoQKfMx0Yki4r7766vhxOIfZhbH9xz/+Ed5nAZLp5ZXJ4nC0wQQVK5hy61SS6RG2SP4I1yyiPlk1iVev0toekyEml6wGIABA68TaguWdyUBaOyOchUVgxaQVAQICBRM+oGp7hRfqIMmNCVU0JqVovqD5g+q0rSZk1UPW/TjdZp3XE2/KABN19NFHBxVoK1MeruW+a9LI+l7y2kCyDVlemnmsJ9ZZbRu1cTSymOzzXbDaaP0BbfXyyy8P6r1MaNEGg/k1YnIKmXov/S/YQ1lYw6zBZDLJo55ZuULw2gpUzz4bPNHWW2KJJboVLase8tq8JfDKK6+EsYnxCIL5tfEiq83n9T+WbrOOaf10Wh0UmSNklZ+ypfUx4IJpDOM+ppu0dcjaJed5dfL++++7Sy65hGAhjWuvvTZopIQb/h9zCphpzAlagerZl1CeNEy5z1wLbRI0BBlvmdPwfZfDi7gIIlkkYg728MMPh/GU+3ntPut9xGs2JedTaXWQ1//G+U/DO2++R99jxLxk4403Ls2T7X5WX2TPOZ577rlBAxjT6LxvLI7TjPN6Yp3Vd2eNh0XGtCyeAgFEVrvPGkPT8K1nX1qkXSBcZcEX4tvmO0dogEY4Wum0V6O8dgp2pjWMRjKCFIRt9CGNmJN1F79ZDnXs1QiweoAGBD4QMAtIEkzyRhttFIQJ8bOxY8eGSYLdY8JgavV0SEjVkKCzco3dPgIHIybUrPYxoWaSwATi17/+dXjMwBmHJV3useqEWQdqoggz0Fow8xJLt5oj5Tb/EwgZknTooYcGbYw4T8kwXOeVKS08EnEEKdtvv33a49K9cvkrBWzxE1ZjWOlmwomgivqMKaudWRg6VyZIMGVmD8kz7AJ32GGHYHI0//zzW/BwZCJG24LJY2WBzhghRkxZ9ZB1P47byufl8EZzCXX/zTbbLLUYabiW+65JKO97KZen1Iy0wc1y5SrXtlm1oA9mpRJtHQhBAcTqEuesAGGrakT/G9vNIwimPzFKyxOmNnyDCOTQEGBim7ZiYmm06jGvT0TrAKxQD09SuXpIa/OWBsIhtIRgyKgT6gqhPJTV5ov0P5Z+Kx/LzRGyyp/Vx9B/o8m4zDLLBO0/6gWyxYwYi7Q6YeIM48DcAfMjzE1jOu+884KQ28b1+Fmrn6d9t3GeszAlDCvuzIlg1tCOglGByuFFGEwuBg8e7BhDp5122mCKwf28dp/1PuK1E6X1v5b/LLyLzPfQ7MH8M80EuVxfZEI0VqihrG/M8tkuxzys8/rurPGwyJiWxVOAWVa751m5b5EwlVK5vrRcu2DBFN7HTAvpSzHpRniAVjqCVxZsjfLaKfEoP3zVsssu6+aee+5uvJelUa+jBBD1QrKHpIMK3SyzzOL22GMPh309jT/pV4HJHIwbUrVRo0aFcHTKSNbjho7kDI0HCIkgkrVf/epXIQ4TgUGDBoVn/DPzCVSHoFVXXTV8QKyAoOlgk3CeMdljYKTjwi4KxytMVNZee+3SygnhKiUmNpSfDgzGCu0PVuhjQurMJJPVScpPXhhMYkbAwueVycLYERVH7LrRKEHAkkZF8pcWrxXv0X4YBJCqovaF1kqsNUGes9oZzxBsIZVFYIWvkZiO9iv4pBf7MLDntFfaE8IEVN2p43POOcceB1XTtHooUj+lRFrwpAjeYMFEE0YAu0FMrFgRN0rDtdx3nfe9FMmTvbudjkXKldW20cgiPn4c6HsQ9OL7BqLPw88ARB+NxhfMrxGCBFZLTOhrmkE8z8oTQlTUO5kUo20Ek86ko12oSJ+ISSECCrT6MGFhpd369ax6sPKntXl7htkYPogQ+oAjYxeTvrw2X67/sbRb+VhujpBX/rw+Bn9TaKwxCabNo8GTJoBIqxOEpmaSx2oz3wFacJAxbsxp2o2yvtu4HFmYolHJqijmWxA+l4xpy8OLsKyiMv/DRBWzFQRtpMV8LKvd572PNNuB8vpfy38W3uXmeyySsWCClq6FtTQ5luuLEKJhHom2UN43FqfZyudFsM7ru7PGwyJjWhZPkdfui3yLleJdri8lvXLtAqEiwigj5gV8s/SdLGIMHTq05OOPMNb20ngt5hW0LYRcaPPhX814OEu/nkcJIOqJZg9ICym5MR2m0svkjUkbHyCEc0gGeQQICBJQ+UV1bZ555gkNnUkYzCUqkSaVw2Yfpp1JAjbNCA2IZ+kitcO8gNULCBMHVD1hxlkVgSFiUoGAAz8TmGTw8aJmxKoSgx/OkpIr3iGxgv+w8aJcqGdBqIPaignCFDpM8ox/Azo/yk9nh2oWxyTllcnKTRw+eFZsmHzBAGZRXv6y4rTqfQYWHIpRb2g+IOSiTVCXZgec1c4oEx0kWgy2GmDlRHpL26G9xJNXqz+YNKTCSNYhNFzQwICy6iHrfojUJv+y8IaBMwe0aCgh+aZds0JG2wcvKAvXct913veSlac2gTQzm1nlKtK2qQsmBqa5wKo6uw9AMGbmVJJvhH4U3xzWl7A6w2TDzOLQDEKzAcrKE301fTKTFr4n7JQR/rYL5fWJ9s0jUMbsinYN8wRxDuX1MVlt3tJlvGLCyrjEeMfYhVZVXpvP639ChtrgX7k5Ql75s/oYGFvqiTETx9j032jkQNa+Oc+qE8yRUNWG0GhDk8fGbhg3HFfDuLUbZX23RfptxlYw5RuHEH6hoQBl4WVYM59jjLQFJQQXaK0yH8tq93nvCy9tg39Z/W8RvPPme2AJM4cJBf2sUZExgbBJIVreN2Zpt/oxC2vybX1sXt+dNR5mjWlxHWbxFHntPutbrAXncn0paeeNUWg/MAbGi3AICxG28j3Cw6HFzjzB2lpeO2XugMCDPpg+FCFk3F5rKWtqXD9wdujXezDwA0+HX/HtVuf+I+/wg3a453cE6PArDx1+FazDDzgdfhIb7vuJQ4eXiHWLR7vxkrcOv2Jcuu8bbIhHXO/opHTfm0l0eJu7kK5n3ju4Jn6crp9Ql8IQ3wssSvH96lwpXf+RlO57TYVwn7T9qmGH7+hLz9LadVxWnnt1wg7f6ZTieOl0SI/yk0+vMheekR8vmCiFs7RJz2t2lO4n08sqU1xuv6rZ4T/O0o93W/rJ9LLyZ+Fb5egn4x3ezrFUDvIVtz2vMdLhNVZCfYOtN7fp8AKeDq8N0eGFMd3iETduZ14AVcLKcKNtEt+u7ehXDEJaVn+eWejwWhOhzmkzvnPt8ANhCJNVD1n3WwVr8lEt3n6wDnWQLIv36t/hnfUFXPJwLfJdx2nH30tWG7DwaWWyZ808puWrXm3bay90WJ9G/+MnFh1e0BrqAbz85D/0S/RZfkU/3I/7EuqTeLRtr0IZ+jewysPaT1ZKfSvfYTOxTXt3PftsPyELZU17T9zH5LV560tIgzGOa37edK6D/iWZdtzm8/qfZLxmXcdt2fIQ10Glc4S4/JYex7iP4Zo+nHZN2/ULFx3UFfetfefVCWMw7Z65C3XhNdZCXC8gCtf2DcXvb4XzavuSIv025fPO9gKmNqfzAoWASxZehjVxqQ+wBFeO5NUwy2r3We+zeM0+JudT5Ceug6z+tyjeWfM9bx40wdyEeUeR+Q559JppHcyBs/DL+saywk+M+9ViTd5ob8n5drLvzhoPiZ82piXrMIunyGr3eWNoFp717kvjMYp30k/Sj8bv98KqDr+IUfpuvUAhPI/bWlY79QLIMG8w/u+KK67olnb8rcTvrPa8DxH9ZF0kBLohgPoi0kBbRcYeCO+wpr7TLXDiwrepsCpkKxD2GAkkEvY4jWS6FoYVWHu3xcd2CdX6pJNJJHvYP9drhQPJIeU3W2jS9x181Q6s0sqULLeVscgxmb8icVo1jJ9UBvs1q1NUwPG8i+p5vSit/lhxY+WSNt6bKIk3zlbZQtB2QagGC2vfed91XrrJPOWFbadnyXJV0rZpn2gG2b7ecbnRzKKvs28m2ZfQP6BRZNorcdxknuyZnyyG1c2091mYVj4m+8S0b74e+U9Ll1UmxqrkeJf3vp7Q/9QyR8jChjYPxqzwGiXbt91PHmkDfBueeQljSvJ5O18nv9tK+m3ammeeus27wCINryTWhKFvSJtbZbX7rPe1E/7J/rcSvG08TJvDJjGoZExIxu0p10ms0/rYvLImx0MLmxzT0uowi6fIa/fJb9HeV8uxEX0pcwC0J80vVLKt5bVTNPsw38gyB6+lrHHcdGPzOITOeyUCyckUTGHMYOSBglMVfknCUUoyjWS6aWEsHVSCnq+0+QAAQABJREFU0qjek2ZUmU34wPv4kG13hbT3l7uXVqZkuculET9P5i9+1m7nmPfEhCmLqY3H92s5T6s/OtbeJnwAwyTeCGFsl4VqMa61fSfzVG0+Wi1eslyVtG3aZ1a/ZiZDVt5kX2KOsux5fEzmyZ7F/Z3da6djsk9M++brUZ60dNOYs3Lv6gn9Ty1zhCx8UA/mF1OyfcfP4nPaQHJ+ET9v5/Pkd1tJv01bS8MlDa8k1oTJat9Z97Pe1074J/vfSvBOGw+zyl7JmJCVRrvfT2Kd1sfmlTE5HlrY5JiWVodZPEVeu09+i/a+Wo6N6EtjIS55S7a1vHaK8GxikDQgJgbKLfAOBAJoJogaj8DSSy8dHJ5hVy1qLALYyIM3NoOixiOAw1Cvvhfad+PfpjfgkwP/MDjYFTUeAY2TjcfY3oDmFf0JTlBFjUcAu3DmJMkdQhr/5t75BpyyP/7446nCn96JSONKzZyE9g3eosYjUK9xUk4oG19XeoMQEAJCQAgIASEgBISAEBACQkAICIFej4AEEL2+CQgAISAEhIAQEAJCQAgIASEgBISAEBACjUdAAojGY6w3CAEhIASEgBAQAkJACAgBISAEhIAQ6PUIyAdEL2kCaU4he0nRVUwhIASEgBAQAkJACAgBISAEhIAQqBGBevgU1C4YNVZCu0SvR2Npl7Iqn0JACAgBISAEhIAQEAJCQAgIASHQegjIBKP16kQ5EgJCQAgIASEgBISAEBACQkAICAEh0OMQkACix1WpCiQEhIAQEAJCQAgIASEgBISAEBACQqD1EJAAovXqRDkSAkJACAgBISAEhIAQEAJCQAgIASHQ4xCQAKLHVakKJASEgBAQAkJACAgBISAEhIAQEAJCoPUQkACi9epEORICQkAICAEhIASEgBAQAkJACAgBIdDjEJAAosdVqQokBISAEBACQkAICAEhIASEgBAQAkKg9RCQAKL16kQ5EgJCQAgIASEgBISAEBACQkAICAEh0OMQkACix1WpCiQEhIAQEAJCQAgIASEgBISAEBACQqD1EJAAovXqRDkSAkJACAgBISAEhIAQEAJCQAgIASHQ4xCQAKLHVakKJASEgBAQAkJACAgBISAEhIAQEAJCoPUQkACi9epEORICQkAICAEhIASEgBAQAkJACAgBIdDjEJAAosdVqQokBISAEBACQkAICAEhIASEgBAQAkKg9RCQAKL16kQ5EgJCQAgIASEgBISAEBACQkAICAEh0OMQ6N/jSqQClUfgkw9d3/vvdH2ef8q5999x7ofvy8dRiNZHoJ//nGec1XUssLgbN3Rt56b9ccV57hjzsRv78X3u+8+fdeO+G+1ch9pGxSAqghBoBQT69HN9J5nZ9Z9qITdgulVdn4HTVZyrtz5/x13w1BVu5Kuj3Msfv+bGjlN/UDGIitBQBAb07e/mmW6IGzbXam73xbdzs081a8Xv+/TTT90TTzzh/v3vf7uPPvrI/fDDDxWnoQjtg0C/fv3c9NNP7+add1631FJLuR/96Eftk3nlVAj0EAT6jBkzpqOHlEXFKIBAn4fvcX2vu8B1LLacZ1BndB39+7k+Pl6HbwV9/Ek9jx3rbFkgRwpSNwS8IKnP22+4Pk8/5Prcd5sbt8XurmP51QsnP/bjB9x371zl+k+9hOs7cHrfIPoVjltpwIEzbVBpFIUXAkKgEgS88HDct2+77z99wo358G43yazbekHESoVTuPwf17rhIw9xG8+3jptj6tldfy/gZKxoBB2x4v6NSFZp9gIExvww1j3/wYvuxhdudWf/7RJ3zrCT3A4Lb1W45E899ZS77bbb3AILLBAYUZjTRtGqq67aqKSVbgUIIGAaPXq0e+6559yjjz7q1l13Xbf44otXkEJ60HHjxrl3R7/vPvnfp+6bb7718+nGs1d9/MR9sskmddNO8yM3y0wzur59pdieXju622oISAOi1WqkgfkJwoe7bnAdq2/oXBhk+/gJJR2kP/ap/7HxXW8DwWrHpD2D0DHHXOHXZ7EVXN9LT3XjfDmKCCEQPoz94HY3cIa1ugseOpvFeDTqfT0+ZZ0JASFQTwT69Hd9JxvkBvpf/x8t5b5947yQehEhBMKHkx852+23zB5uQL8BvhPxUYOkuuto+Uzet+tKn1t4HYVAhQgM9O1z0ZkXDL9Nfrae2/KWXUMKRYQQCB/uv/9+t8IKK/gpUeMEDxUWScEbjAB1Peuss4bfz3/+czdixIjwxlqEEG+/+5575bU33NixYxuc+wmT/+zzL9zo9z8M7597yCA32ywzTxhId4RAiyEgUVmLVUjDsoPZBZoPi6/oOvr2C5oO/ENAi5Q2CGrrfd2wwijhcgggiBi304Ghzp2v+zzC7CJoPkyztOczfJfQ2SjC0beMzmPXPbu2MHYdJP20n67wZZ/nZUjPhIAQqCsCCCImHfRr/51f6fje8wizCzQfNp9/A4d6e9fg0P1ofYR978ljxc/zcqRnQqAYAggi/rDBRaH90o7zCLMLNB8WXHDBsGrcOQ/yIxjjWIN+efnRs+YggCBi8803D22BNlENvfLa6+6Fl15pivAhzi/CD/JBfkRCoNURkAZEq9dQnfKHz4dgdtEfNdrxS1mmAeFnl/5N4zUi6nFNij2Vvv76a/fll186b8IUJiuNLidqdgMHDnRTTjmlm3zyyQu9LmhDrLpu8PcxbsPtMuPg8wGzC+dXTPvAOES2OHadPAamxIdL3rfrss8zc6MHQqD9EGiH/iBoQ/x4jeDjZeDMm2aCjM8HzC46NR+69wf2Xdf9mJkbPWglBNqhnSOE2GvJnYPvkhNXOSwTPnw+YHbR38+JEDgwxjb6mJmZHvqgHdoL0COEWHbZZYMfkDXWWKOi2kDz4fU33yrFeW/0B+699z/wZhj/875E0EFtLPXr19ebX0zjZp5xBjfzTDOEl5EfzDKkCdFY7JV6bQhIAFEbfm0TG4eTHQsu1TVvRMIPn9nYY9uAU2FGkZJ/9913bqqppnKTTjppmLhUmETFwZkYffvtt+7zzz8PQo+iTpM6MMW48nfO5QggcDjZf6pFulY4fdZoHFCjj51v0X8h0NYItFN/EEwx/nuJyxNA4HBynbn9JLzR338y/bZuBT0/8+3UzjHF2PH2vV2eAAKHkz/96U99M+8c7ybWsee3lM4StlN7IceYYtx8882uEgEEPh8wuzB6+dXX3Td+nrb2Gqu6eeYa4gYMaDyLNXbs9+7lV19zd426333x5Vf+vYNDdsiXfEJYzejYigjIBKMVa6UReWK3C7QfghcxfD7wkkYfG1GQ5qaJRB/hwwwzzOAlzJNNFOFDqClfYbyP9/J+8lGEOmYb1LnTSU7gsNuFN8vpbBS+YdA47Ie2jJ1zrNd1Tn70SAi0CwLt1h/0nXQ2v7vNe7nwsttFf/w+xN+7ffcNO+ZmSQ+bjEC7tfMFZpgv7NqSBxu7XeALAM2H0s+379J5aP98BtG9Gp/n5acnPWu39gL2M800U9gBpZJ6wOGk+XxA8wHhw1677ejmn2/eiSJ8IK8IOXgf7+X95AMiX+RPJARaFYHGi+dateS9LV9stekl/cj6MbsIxy4NCP8goLHXJVe6qx941H3pvffm0ZRetetXKy3rzt1lm65Fss74pXS70s9Lo12fYXaB5gOTkmYQ7+X9X3zxRTFTDLbmLLfNKltthirsahed1RmKxyn+Sfc5/DJ33c0Pui+/KtM2ppjUbbHRiu7M43fsFt+wsvTsWkch0M4ItF1/4M2sXEf+FoNstRlM86wfSDmOPPs29897/+7GfPNdbvUNnGwSt+AvFnHD9lrXhpnsY25KethMBNqtneOYstyWsbbVpmk+lPC19u5vnHfeee6+++7zOxp8U3qcdsLiADtc/PrXvx7fvrsCTpB+WgI97F67tRfgRxhlbaJodbDbhRFmF2g+TAytB3tnfOS9a6421N15930lUwzyJzOMGCWdtxICEkC0Um00Oi9I8jtFD+OPXbtfDL/4Svf1mLHu1QtOc9N7BrdzFIXJDixjt+NHn3/pDrrqejf84qvdObts7Z+NDxenH43jPkzPIHw+YHZRL0JK/dJLL7khQ4YUEyj4F/P+jz/OdyRXef58HfKHOirCla5q53qfwy/3kvUx7vlHz3XTT/N/3Z4HCVQU/qOPP3OHn3htiHPmCTumphfSrzyDhWOAze9//3u34447umm8bWRPIdQ9KRcqorPNNltNxWJC/ec//9m9+eabbrfddivc9mp6aQWRmbSfe+65YVL/s5/9rIKY44M+9thj7n/eDnettfzOLmXo5Zdfdo8//rjbZpttyoTs/rje/QH5ffvtt4M6cPc3ZV81pj/w7wvftfUH448jz7nNjf1urBt+7QFu8qm8P5qMcNz/+tMv3ahL7nIILIbtvZ7vV8an0y1edvEyn9BG3njjjfB80KBBPjnfb4kagkC92zmZZNybdtppg1ZfkUw3qp3TbmhLySPCB7QNr7jiitKiQ1o44mFucPnllweBxZ577pmaXq3tE42Nzz77LMwViuBVbZ9WJO1yYXpye4nLzlabRvh8wOyiVornhAMGDKhofsj7rx5xUykLcf5KN3UiBFoEAZlgtEhFTJxsdPp8gLtkHhgf0Xw4ZZtN3XT/5xnMlOdx+OmnmtKdvPWmXlvikQnSicPVs0wM8DhhvOuuu6pKFmaL+MnfUkstVVF6NgGpKFJO4HfeeccttthiYT/qnGDdHtlEqdvNmi98g+isvK7j+Ovrbn7AHX/oVp3CB94Two1/Hl9PP+1UISxxstIr3S+YZ6v7DTbYIDUG6p5WrwTAudihhx7qnnnmmdTw7XrzxRdfdLvvvntJ5TMuB+34sMOyHa7FYTnfY4893C677OKefPLJ4FMk+bzZ15988onbb7/93E03jZ9MVZqnP/7xj0GIUSTe3/72N7fPPvsUCdotTL37g5EjR4b+oNtLylw0pj/wL+3WH4y//uc9f3er7bJmp/CBvGWE4/7kU0/hVtt5zaAtkReOZCqhq666yk0//fRu3nnnDT/Or7vuukqSUNgKEKh3O+fVw4YNc9RjUWpUO6dsUPKI5gNCbDQO057H4aeeemq3ww47BG2J+H5avJBYBf+uvPJKR/8+yyyzuPnmmy8In/fff//gEypOBiz/85//lG5V26eVEqjhBAxqFbgkX98q7SXOl9U193A4WQ/tB+aESyy+mHv+uedcfB6/N+uc98eOL+P8ZcXJuk9buvDCC92aa67pTjjhhHAet6+seLovBIoiIA2Iokj1iHDYMjLYTnjE7CLWfMgK9+C/XgzxV1pg3mCq0bnoNGF6wcFlC2LGKieTBaNJJpnETnv30VYPO5vHeCz8NWYX00/XhVnK86AA42M89Ni//CzOuRWWnb/TVIM0c8KPf0mxszvvvDOseA7yq50xGZM699xzh9useL///vs9SvuBgj366KNhtXDw4MFx8as6v/baa90555zjdt1116riNzrSdNNNF+xx2fVF1AQEkv2Bfcf+iNnF5D/qqpfofugH7Npn+c1nPTPkr+dYeM5OU4069QcPPPCA22mnndxFF13k1l9//QDO9ddf77bddtvAnK2wwgpNAEyvbEcE8phktMSKOHv+5z//GYrOdp7EyUuzUoxOO+20IFg++eSTHX32//kFoqeeeipoar3wwgtBQMuuWGjH8U1cffXVbs4556z0NQovBLohgNDhL3/5S+lefH7UUUdVtNhRSkQnQiCBgDQgEoD06EsvlUbYj1SUI//sOpQ7uk4+5/rYEbe4VY882R17/S2d8TuT8OcTphfiVwAm0nsYR1axWNVCxXz48OHB10HRZEhjlVVWcTAvG220kXvooYcmiIqpQ/yrVZXdXoD6JZoMvPsXv/hFWIW3Z6zcUy4mCDCPQ4cOdUyik4TKJxh8/733ydBFN9xwQygTPh8aSUFSTj3CMVB5Xb9w7V+c+9yHPeGMG9ywTY9xJ/7uxs64ZDZKb4L4VRYGddgkgRtkgqVXX33VLb300kGVnftoUIA9dW3tChvVcs94jhr/JptsEup13XXXdffee2+Ixz/a5xFHHBGOpEvdXnbZZaXnee8lUF7apUSiE9pzEQ/d9i3BoPEt0SZ/85vfhHaFWi73oOOOOy6cs7uKxWHCS1mOP/74EObuu+8O25ORBu2bcEaU//DDDw+aFDxnGzPUqn/729+WsOYdMV1zzTWlbxRzh9deey1+3O2c7+j2228P98phTaDf/e53pW9w3333DerTcYLvvfdeELhQPvJq7SYOU49z8DzooINCe+Bdv/rVr9y7774bkv7vf/8byg+uv/zlLwNOMNH23N6PKQZ9GYy1Ef0CcViVajhZH2D9QXzk5XnP/bMHrhzlrtr3EvfAVfd16w/8xfi4pGHXFRQIrR1o6623DkJGzKwwIxo1alTYTg/NJ9o4uxwYgef8888fNOhg3Hh+4403lto2dUD7MOIcDSHqb6GFFgoTbtTKobz4qOwT/g9/+IMlFY6MAfZN8Zxvk2+Z72azzTYL76aP4prnt912Wyk+Ktn0M9wnP4TDTMeI9kXbj4lv9Y477gi3yvVDcbxKz3vCuNc5f2EO0/0HFsl7yWsY/gMPPNDRr/GsXJwQoOA/hBlotR199NGO/myuueZyM844o1t77bVDW6e9//Wvfw1CeTQjIDTbaOcx0Ra5R9uhH6U9GeWNQYTl/dttt11olzETavErPfI+m6PZeGK48X2cdNJJYbWd/NLeL7jggglewThIGnyHRow73CP9diDyO3z4nm7InIPdiiuu4I703zd9RysQ2qRW1yuttJLjR//DETrmmGOCxmkr5FV5aG8EJIBo7/qrLPd+BYpFKCT0HPln1yGh6Dr5/Lgb/uSO9T/oyM026Izvzy1+Mny4DqGL/WOSxIDKYMuAfsghh4RJXNEVWiaTTMwY1GyCjlOoeJAqlpPKQ2GXzwQYFUEGTLQqWIUz5urBBx8Mq3PYbzJBeM6r1m244YalCYu9cZ555gkYsNJtZAwtKx+NJJpDaA9dx/AuX4nhPo+67tsxfn7imTe5k/wPOvQ3m3Q2Ci4sfsqRx5XSVlttFVbtYfCMWA36+9//7nhmxPPXX3+9ZFpAe2LScumll7ozzjgjtCtWlKC8Z6gbwvBBtCmYAyZ/1B8EE3DKKaeEVa/TTz89TPIwkTDhRi1phxdE/5ikoQGy4oorRnfTT+1bQuiFAABG7fzzz3cPP/xw8PQNBhCYcY6dqcUZMWKEY4WDcr/11ltunXXWCcwa2C2++OLhGzPTFsp/6qmnBv8RF198cbBPXm655QJjd9ZZZwXBDe9/5JFHwvtgqlBTXmaZZUJ+EBQh1MkSrvHcnpXDGsEIeDMJ5Rtkgmf9AC+nTSCUpL2QZ+oRk4s0gVbIbA3/6AvOPPPMIIQ48cQTg5kLwhQYWJgK6gFc2fZtiy22CL44UKmOCaYaRgHcjTAtuueee8LWgXavoUfrxJNHe2nyftc1QocHETx4WmmbVbr1B+FmRrzwrMA/hEcQ2CGMMMdxfBus/rISjb18zMQjOHzllVdC27P+gfpnfLHv1PpaTLoQSNBuqT/GFdoSDBmUF5++H+YpFkDQdvl2afcQplSkRdun/7jlllvcAgssENoHeZh11lndxhtvXFKxh/kkHN8O/RZlXm+99Ur9DOknfQLRR7FlM2TlS+v/QoAq//WEcY+im8ZC8miwJO/bNRoJ/CD6Urtf7mjpljvSTiD6iiQtssgiQRvuH//4h/vxj38chL6EoY3QvxnRf9IXH3nkkWEcQPCFbx2oyPiGQPqrr74KaZiQw9Ku9MhcDCaWcZTxgjkS35aZTiEcZ+xh0QU/Gghc9957b/evf3nNyojoN+lD+W6M/vSnP4V7fEetTpRrk403cg/7Ocmhhx4WxqVTTz3FXeuFWM0mTC2MEDrQb/Kzc45GaEmIhEAtCPSvJbLithsCSPgZcCc8dpakwx0z4k8OYcOoYw92Qxdgj2y/UnrDLV7roVP4wH3ML7qE/Znp2fNKEWJFYckllwzRcFCFWi2T+XKmEoSB0WLAhJjcLbroomFlgkmkERO3OK299torMCP2vJojnTLMja1wMWFgtQFGiNVgaPXVVw+MGefsPU74eMWN+2hGIGhg5YrJNJNoVjhgHicKWaUlj10vP9FrOSBsGHn9UW6FZbxjQB/uxDNvDPcIEt8PUZLpJK+70i16YKWPCd+tt94aVg2Jd8kllwRscVQYr3jGacK4MdmxARN7WpgIKO8ZbZGtuWAmYNIRGjGJ4pqVGohJGXlg0kmdzTHHHGH1gPZXa9rhBV3/YJ6YTBoTEz/LOmf1nBWzTTfdNEwiYIJoYzDfEN+ZnVsa+FhhQguxagwTxmS3f//+QSiBuQu2xXxbEEIJW32FEaSOYOrBBbzQMnj++ecdggm+TVaVbZKDsABmCwFdMh8h8cS/PKx5D0yAff9oEvGdGVEOhA8IBWefffZwGwYNMxRW+OpFpE/7OPvss4NQknRpmzDN+HewPNFXwBgaxcyy3dtyyy3DBPzDDz8MdUK/wDa8yy+/vAVp7DH5vdp111vRckDQsM3pO7k5Fpoz9Aex8CG+H6JY/KxjwdKAJUwUQmr6AvpMNAzYgcDaKrb7tNUDDjggpAqzAlNvWlLcpM0wHkD0xQix0eihrSDU5Ftn1RmCaaKdmOCSe1nxqTfaPn5MGMP47qg3W0EkLnUfdkzw5zCRMGEw9HjiHzRoUBBEI4CjP4FpRHhgDlKpf4TVfDe083KU1w+Vi5v3vJZxD38GRs0e92wFPnm0/DEOMO4gBEK4RTg0Hkz4EN8nTjKd5LWlW+5IvwmZaWEyPH0vbWeKKaYo9Z/cS/al5J/2gqYNGgIscCB8KzK+wewzjvTt2zf5+oqvEXbzrdLWGU+YA+EEGfz4ZiCe0675TtE8pJ3wHcZaHZjF8L3j48f8HvHtMs4Rv9WJcZxx4Mijji45G0YYQR+1g++3mkUIpNBuMDJhA9q61AnX/DjnHloSxJHJjyGmY6UI1N6rVPpGhW8iAl2aD349u3MRavyxM1N27dxq3tTigef/HYQRJny479hDglDCizC64tvill0nj5UXdYkllihFYmIC2UpAuEj5x0ohzAUaD0YIGWBwTF3X7sN8MoG1HxPDWohJ5gcffNBtcsmWXDCKrMIaxSvXxgAlV61gchGiMJgyaWG1E0pbAbF063akQYRG0XWMr3mJPfOnwzY7xj30+AtB8IBAAhp5gxdKeN8PtI3ujSMlvZBWiFbRP5yBITCyFRzb7YIV5zxicsMKOXUO88sKp5kh5D2DkYbxZzWGlVK0V2BMcGhqRHuyFa+ZZ545MBqsSEK1pm3v4MjEkbaaNRmNw3JOWIQPRrTHN954wy5TjwgDTPhAAFbhmdAh3GPFdvvttw9CEPAzWnjhhe205HMDpgkCl8GDBwfVUlZ9YIRY+QJLfjB70LPPPhuO5f5lYc33T72gZWCE7wi+fyMm6hCMv72fcrFSXE/VV/vmEbgYoUoMscJnFPspGDRoUOr+8+bfAHMN+gO0U1j1Z/LeeLLvOOUYXu7vd9FV+13q/T287roLH3b2vh+G+BAWn1Pi2HXy2JVYwQOCLL4zJu30mXzftA/aGATzQpvA5IX2evPNN5eYHHsFzKQRjJuNM7RHvgUTPhDGxiJjCrmXFX+11VYL3w31BsEo0RfE9QZjZ4SQgmuED5B9g2jMwHxB8fhBe+G7sjYdAuT8y+uHcqLlPuox454vJf1U6efbp50bAFxDmFU998/nguAhFj7wfcdx7NziJa8t3XJHhF4Q2mlpxLzD2krac7uH8MEIobPNO4qOb/UQPvB+vkcWYuLvgDGZ747xAeIbNiEhjmUhy2+46PqHMIW+GwYYbUfOEUC0AzGuXnzJpe4xLwja1wuC1vZCRDM1bGb+bb5pecAUgzGVX9KU0sIk49h9HYVAEQQkgCiCUk8J4yex/i+sVIWjt7/laBJ6Lo7YdH13pP9Bqx55UnfNh/m7NB98uM74IakQP1zbfTuGVIr/g9mxQZtYMOSQrVaHi5R/NnjFmg0E4zoZl90RUPOzXyzwSEm67C3MKiCYz5hiO0vuF3Wmx8QZz8dMLpk0M2DHjGT8jrqeU4HUm9lkx9e8yF8fus/G7hD/g4K/B6/9AAXNh6U7NSJK8XmQlR5pV0msbMJkgA+TQBht02zISpKJI9J6JjesJDJhNK2SvGeW3k9+8hNnP1ZBEUgYMUjHZG2We7WmHafLqgMMdfx9xM+T56yKxWTMTXwveZ4sCyvBMFmsJPNtxsIGi1t0cmrfAwIUw5IjeBb9BpP5M6zt+7dry1scHtMHKH43TCwraKbCb/FqORqzgOaMEQ7ioLjuEFIaxfftHkf6lJVXXjkw2TDF9Aus4k8c6uwP/EccvuNux5CBDm9esapb0f+gq/a7pGR20an5MDgRzwcK331KelX2B2DIai8aOKykQqbOjUABJh3tA7TIaL8IBmKK20fcjhFIxc+IY0yT+YHgXhwmjs92kQiKUAuHeeL99OsxZdV5HIZzE44lxzbeYd8U4UpjOBcJKtIPJaKUvewx454vKdiVfmFO1HltIKBZxQ868KBOfw+cx5oPFp/7ds4x7TrcLPDPVv1NqBlHoc9j0cWEm/Gz+Jx2H1Oyj+RZ3Ccmx7e4XcfpVHOOY2gEezFZ3233kuOW3U8ezRcS37ctCMQC6GT4VrpG826euefyY8+h7quvv3JrrLmGF3Cu3PQspgl60HRAc8t8X3HNz4g+TiQEqkVgYiylVJs3xas3Akj6mVAi5bdj164Y4VVdz4/c3G932Mc7newyu0DzAbOLbvFCfH/HhwuBLb3o2Dn8hpQL/UM1DbVTW3l6+umnQzwbiLMSYSLKChI7XKDWBzH4o2oI09lIsgGVd5s6L4Mqk05WzCslnCfCVKPGjVScVYqJQ74i+WPSRKV2NpPO65CBzueH7bNJaD2YXkBB+IDmQxy+s1GEdFLTs+chhcr+oYbPgIhaMkIFNCKMOchKCfVqmFxUl1HRR5UZ9WnqJ+8ZzB71amqepM8gXZRhrWfarKYiNJuYxOSC9g0GMEwI8xDgVUN8o9QdqrMxnjhfLCqcy3ovaSPYwDTEGD2+QbRGTBvDJuoIj2yFDdtmVnLxIl8vMu0m8mKq0GbDXI2qKowsghLiUhdmnlav/OamE/oB6w+io0XyzxFCQObzIQgf0Hwo9SNd8QiUlR73KyD8ZVB3sYM6hDW0LyPaK9852gdgB44w7UUIQRuqyGb6Qhzze8JYlHQYmpYmq7EIPBAaDh48OJgqpYUrd8/GPphN04SjzbJqbBoYfD/WxkiPlfGY8vqhOFwl5z1n3KNZ+tmQb6/Jo+HBfUzLOGJ6ASF8oE9JxuNZMp34mudFib4LAQJae4xd8ThnfnzweRWTCazie1nntY5vWelm3ef7ZF4UE/0kfXdctvh51jmCCoRC5gcC7TzGgXagm7yGK3Pdp5/5e8m05M93jteqbFYZ0py2k5dY+JAU8sSafM3Kt97bvghIA6J9666KnCPZJ9qEx87Ext8PmhCbrR98QYz3+TD+eWc6nfPMtPTseaWZZNLIai+dHqr1qOjhT8GIiRjP4h/MBvFwtoQTL1bHWfUhbKNXDFkFY7KJPSUqhkyMze8DqsGVEivV+L2gLFARG99K35Ee3jcMq7RwjK5DhPHXaELw6+7zYfzz7un4yMn07D3pGSl7F8EB9YzqJfWeR7QNhA8wpviIwEYfUwTs8vOekSZ23Ghb0JZQ8UQghDprzPhkvbueaVNOmAq+hYlJrOKz6o7vAsoPI1wLsbqGPxaEajBQ+EkYNGjQBGZS1byDb82+f5hFBFOYzxhhEoFgj0krdYpwgskU6un1JAQEMGc4JYXxw48LDASMRDlNnbR8GNNJ2cAPZmaikX2nyaNloOu+aUJU7PMhK11LP+MIxnz/xx57bGC8aUsItTjGE2S+eVbr8K1ggqmMJLvdxlyJOoTppJ0g/MO5LNposWZLt0iJC2tvmC7RNqutN3N8y/vxz0J+6PNoyzb5hxFmJRihNSYi5luCLJXrhxLZLnzZc8Y9hic/dnlKHg0Mu2+aELHmQ1o8C591tHTLHWkzaEHShmlDzHmY02BGhvka/k3Q9IHQVICRx4GjLdyUS7+W8a1c2mnPzWyCMmEWRXum3VY7rvBN44ySX7uYX4DLTDN3ase9+eYb7hO/oHHOOWe7++//q9+6/MuSKUoafo2+ZyZ/yfdgfsEv7lstjJkJ2bWOQqASBKQBUQlabR/Waz50aTwkj1NONqn76PMv3fRTTelL2RmO3S78sFy6tvscP/7ic0eczvlwerqdw3px0Ab7lSJ2kjBVWVa6se2NJ29MOpOEah/eklmdZpUYZo3B+MorrwzO7+LwcVrx/VrOWVVnAIy1LWAYkqsT9g5TayQvaflhYkCaTHiK7ENu6dZ0NMams7rHJ+Wvp5zCt43/feGmn3Yqaw7u0H277C1Twn/0P982fJzQOFKe++ZTE7FDAxNwVheNIYhxjM9ZWcF2HtMNs7tGrZ0VpLxnZBBGhBUvVkPxFwDhtRuBBGT1GC6if7y/1rSj5ALTAQMbr/DGz5PncfntWVZe7XlaHDyq33fffWFHAMLB1PNdWdisNO15Mm22AoUh32+//cIKEGXiO4l9t1ic5LHcu5iM4xMARg2C2Ydht9Vq7OwRpCC8MsaN/oVtBOtJrLLDCDI5Nu0LyomzxCxNiyRecX6MAWWizir+RKNkf2DfsT8OnGwS9/XnX7vJp/ZmPl33V9rGmzfwXVs4y6i//vrzr0KcevUHYEufTzuCGYPAGIeipnXCPYSFCBIQosWOO9Pwju/RVhA20pZoIxCCIIQeUBw23Ei5Z4Jk+vFKhB+WHkd7D+PYzjvvHBwrc59xBoekZiMPDphL0d4hc25K/HL9UIhQ5b9axj17pZWR62aMe/H7LU92ZEUddXnTmOJ+3qICZinEyUvT0i56xPcIYxACTWvbtGnqPDkXwikr8yDGrdhUKPkuM8erdnxLplf0moUVhCNxP4YwDZ88eRTjGZ8zbvDdg7l9p3nptMqz1VdfwzPzq7sNvTYghBDpGD+vPcrvVHLM0Ue7nfy3bhSX1+416oiANY3wP8OiYBplxUkLq3tCIIlAH99RMWUQ9XAE+u22jutYe4swP7Si2nyR6+GXXOW+GTPWnbz1pl4I0Wk3GD8njF1/9PkX7uCrb3CTDxzgzt55/Aq0PScs1LFO8dVFVkNRi2eVGlVvBlCcDlZKrDpgh42jn0YQTA4TgOTAgJ03dshMQpj4ZjEbRfKEszq2k4L5M2YpjkcZmVTHmiHx8+Q5df/Dhbcnb5euv3x2WzdgxvVL9Us9GtE57Hv4Ze6bb8e44w/dyk3nhRDJ51bvHD/85HN3xInXuskmHejOPH7HEj9COnG4gTN1Dr72nolxpG5YuUtT1cx7Rt7YEQJV5zQb2nJ5rzVtGCHUrvFG3gxCXZRJay1tOs437RdhIYxelmAhDl/JOf0G/Ude34GWElTU3jjv/Vn9AfngO6a9DBkypGIV4/idMJZ876yAplGl/QHf+5QLXZmWVLg38IRZ3BEr7Jv5fOTZt7mx3411q+2yZqcQIjOkFz589pUbdfFdbsAkA9ywvdbNDHnEivtnPst6YH0ufTF27Mm2hDo6ZgowPEf7iX01RFuhDmN/D0XTQS0ck8Is1eai6Vg4fD7QrrLaLcwyAoes77RcP2TvSTtmtXOrA9JutXGPdjzmsHfTihPuoTWDEDuLmI/QhhBex0KItPCUHwEVvjpiDZRk2CLC1mQcu6bPpC8eNGiQ3ZrgiHkgv0rbay3j2wSZ8Dey2gthER6yxfPgwYPD7jJp8YvcQ7sHLBAqp5kGVtov8k7ahO3SVCQPTzz1d/eZnw9Do+5/yB13+EG+v+hfJGrAgO/V/IehDTHQt59aTBLHjv3eHXH8KW61oSuEPEzt5/JLLb5IofwQCME9pq1GCHZs3EEDIvb/wGJfbE5pcXQUAkURKPalFE1N4VobgT5+xT3BEtr1ubts44ZffLWbe48D3JffdG5RmFUYNB+2XmlZd84u2/og3VlLS4/7PKmGWEUsaq+bTJ/JaKOED7yLgR0GJ8nEMvllQK2FmMzR2eMokdX6eNUuTpf3VzrBiOOnnffhJu0DdVR/DGYTXddnnrCT2+ewS90Cyw33aoJl2obXfNhio5W88GGHbulZunZMy0Oj7+VNIvOeka9a2lStaaOqaquajcYoLX1WmepJfKO2elvPdEmL76Lct5HFwFWTl6z+gPu17kmPMBaVejQq8GWQRY3oD8K7on7A+gOOw/Zez40861Z3zq9+68Z8811WtsJ9tCUWXH0RN2y4Fz5kpBfu56aS/jCvz8U2HO0aNG5MKyY9lfy71bQVTAAxw0MdHs2VehGCkDwBaJ7QjTyU64fy8pnVzvPqIC+9+Fkzxz3yQX8Es5o84i+GHZcQJJkT2zjf8TnzAYQLCB+S6cTXcZxKz9GGKqfyjqDYNBwqSb+W8S3tPVnthbA41a7VsTZmdMyV0HalftKoYf1i9LLJ/FzYBBDT+kWvl199zc0/H/7SypP5C7KQ03btemLX1Rx5P/kwIn+VEHMN6s4IgQPmF2hBxMIHnkv4YCjpWC0CEkBUi1xbxuv04YD5RSef2f14zi5be40G7FVL/Gc875zgfhAyBH61ezqWfiUQ0cGVG1wrSa9RYZFOs9KEgISJRT2JiRiqvqi1sZqSlj4TJd5fb6YwlINGAaUc0WbgVxGlpBPi2/2KEuudgVnlQfhgvgB6JwqtW+pG9ge33XZbYKKP9Kq5pn6dRKJZ/QHaDHkaDcl8hmv77rOOqZGquwljjP8chLm1MjuV5oB3s83vqFGjum2fWWk6rRS+ke282eMe3xCUdkSgkKfRkFZHaenE6afF6Wn3GtlewAqmGC0Kdr0xDYIYw4b2i9GLpp3mR270+x+GOzPPOIO7a9T9bp65hhTWgoiSqvkU7QfeTz6MyF+lhJYVWiCYnkJgHRNaQwgqREKgVgQkgKgVwXaJ34+q9ivcGT4gGnG/i50thBCex9O2+SsUeSIGQr2VDhrJOytO9RREoI5H2mnEgIpEH+EDap5ZarYTxP3B768d6n6CJ+Nv9PFtI8hSkDz527FcpdHX43OhsxQEaBO1rOCmJKlbdUSgkf0Bfi34pVHV/UGH7w/69EtLsnRvQN/+vhtgrPC37Ptv9LH09vqc2I5E9UmtslQw+7AdKiqL2bqhG9nOGzHujflhrKMd55FpCnQT9Fs774rId1bX53kZ6kHPGtlegAkfKGlUdb/oE8N0xdpEWtpp92aZaUb3ymtvhC1xZ55pBvfFl1+5sy+8zK252tCJJohA8IDmw11e+DCZXxgjHxDaUuSvGkK7AdO1e+65J5hLYkaGk0oWx6rZzamaPChOz0cgv4fu+eXvPSWc0e+/7FdTO7yKHmYSYZzt0oTonGXCd3bdt2ONz3squDiGxIsz9pjYZTLoNZqYBKEah+ZDYeGDz1Sft9/wOo/d995O5rXvJN4r87gfAmMS2kVUnEZfJ/OiayHQbgi0U38w7tu3Xd9JZs6FeJ7phrjvYeBMcGn9QaOPubnSw2Yj0E7t/PkPXnS04zzCDCyV6bR23hV5gvG91ud5mepBz9qpvQD76NGjKzYNRNtp7iGD3Asvde64NM9cg917oz9wd959n7t6xE2+fY1reI3269c3mF2g+WDCB15KvshftYSggZ3oREKgUQhIANEoZFss3Y4F/HZNn7zv+swwi8+ZX93qFEGUNCJsqat0vw7PE+N0iyFSW3YQAlQiCKjtbdXH7vP0Qy7UfU4S/adayI0b85HrO+lMkQ8IH8GvgJZ8NlCZ9bzOyY8eCYF2Q6Bd+oPvP33C8b3n0bC5VnNvfvaWm2u6Of2w4D/8ojZ5tYTLy5CetQwC7dLOb3zhVkc7ziPMZHBYjSDCNB0afczLT0981i7tBezZapo2USnNNsvM3kfIt+71N98KURECxIKAStOrR/jBc8zuyJdICLQyAtWLx1q5VMrbBAiMG7q26/P0I0ELAmFD56J9o48TZEM3JiICfd581fW57zZH3efRgOlWdd9/9qRvFl49GwqNwzMeptnRkOvOV+m/EBACEweBcd+84cZ8eLfje8+j3Rffzt304u1urNeCCNStH/B3GnWdlyk9EwIFEXjmvX+6s/92iaMd5xHbmeLkFS0IyDQdGn3My5OeNQcBdhl69NFHu22lXklO5h4y2P3sp3PnOomtJL1qw2J2QT7Ij0gItDoC0oBo9RqqV/6m/bEbt8Xuru9dN7iOJVbyZsD9fMqN9QnRkzUg6lUtjUoH4UPfS08Nde583edRn4HTuUlm3caN/eB213+aZXyzoG10UZfmg112KcaULmu+Hp+SzoSAEGgQAggfvn3jPP+db+v43vNo9qlmdecMO8md/MjZbvP5N/CmGAM8d+ZjxD4hLIHkfbuu9LmF11EI1IAAwoctb9k1tF/acR5hIrDuuuu6+++/3y200EIV2//npa1n7YMAwocRI0aEtkCbqJbQOMDnwruj33ef/O/ToBVhwqxq0ywSD/NcdrvA4STvr8Xsosj7FEYI1AsBCSDqhWQbpNOx/OoOi7S+113gOhZbzrlpZww+ITpnl8wvO31A1Ou6DSDpWVn0Difx+YDZRdB88AIn6rwIDZhupRDsu3eucv2nXsL1HTh9EEQEfsL/M77Cri1Nu672uaWjoxAQAnVGwGs04fMBsws0HxA+2Hde7k07LLxVCDJ85CFu4/nWcXNMPbvr731CIIMInUGcAB8/lDx23p3wvoVLPrdrHYVABQjgcBKfD5hdoPmA8Mzab7lkFl/cm6Z6YscZts2FAa3UEWG5d+h56yGA1gs+HzC7QPMBQZS1hVpyC/OPIELmD7WgqLi9BYE+3ut+cjrQW8ree8v5yYeu7/13uj7PP+Xc++94979dqve9F5GeUXKcxnmHk/h8CGYXZTQf0grdMeZjN/bj+9z3nz/rxn032jMPahtpOOmeEGh5BLwmEw4n8fmA2UU5zYe08rz1+TvugqeucCNfHeVe/vg1N3ac+oM0nHSveQiw2wUOJ/H5gNlFOc2HtJziC+KJJ55w//73v91HH31UMstIC6t77Y8AQiZ8f+DzAVOcWjQf2h8NlUAINAcBCSCag7veKgSEgBAQAkJACAgBISAEhIAQEAJCoFchICeUvaq6VVghIASEgBAQAkJACAgBISAEhIAQEALNQUACiObgrrcKASEgBISAEBACQkAICAEhIASEgBDoVQhIANGrqluFFQJCQAgIASEgBISAEBACQkAICAEh0BwEJIBoDu56qxAQAkJACAgBISAEhIAQEAJCQAgIgV6FgAQQvaq6VVghIASEgBAQAkJACAgBISAEhIAQEALNQUACiObgrrcKASEgBISAEBACQkAICAEhIASEgBDoVQhIANGrqluFFQJCQAgIASEgBISAEBACQkAICAEh0BwEJIBoDu56qxAQAkJACAgBISAEhIAQEAJCQAgIgV6FgAQQvaq6VVghIASEgBAQAkJACAgBISAEhIAQEALNQUACiObgrrcKASEgBISAEBACQkAICAEhIASEgBDoVQhIANGrqluFFQJCQAgIASEgBISAEBACQkAICAEh0BwEJIBoDu56qxAQAkJACAgBISAEhIAQEAJCQAgIgV6FgAQQvaq6VVghIASEgBAQAkJACAgBISAEhIAQEALNQUACiObgrrcKASEgBISAEBACQkAICAEhIASEgBDoVQhIANGrqluFFQJCQAgIASEgBISAEBACQkAICAEh0BwEJIBoDu56qxAQAkJACAgBISAEhIAQEAJCQAgIgV6FgAQQvaq6VVghIASEgBAQAkJACAgBISAEhIAQEALNQUACiObgrrcKASEgBISAEBACQkAICAEhIASEgBDoVQhIANGrqluFFQJCQAgIASEgBISAEBACQkAICAEh0BwEJIBoDu56qxAQAkJACAgBISAEhIAQEAJCQAgIgV6FQP9eVdpeXNj//e9/7v3333c//PBDWRT69evnZpxxRjfNNNOUDasAjUPg9qf7uLNGOve/L8u/Y5opndt7mHPrLNZRPrBCCAEhIASEgBAQAkJACAgBISAEmoBAnzFjxohjaQLwE/uVL730khs3blzh1/bt29f99Kc/LRxeAeuPwGrH9ykkfLA3I4QYdbg+Z8Mj7yjhTh46eiYEhIAQEAJCQAgIASEgBBqDgEwwGoNry6VaRPPhxz/+sZtkkklC3ouEb7lC9rAMFdF8uGyPfm6JIX1CyYuEN4jGjh3rXnzxRffBBx/YrV51LKpZAijgSnhRz0PgP//5j7vwwgvdmmuu6U444YRwzj2REBACQkAICAEhIASEQGMQkACiMbi2XapTTTVVED4ghChKSy21lBs4cOAEv4suuqhoEgpXAwJ7rNE3CB8QQhSl7777zh1wwAFuiimmcAsttJCbbbbZwvGZZ54pJUG98uybb74p3ePktddeC3X9j3/8wxGeun/ooYe6heHijjvuCM8I36pURFhTrXAnrcwff/yx++1vf+swhYKuu+4698ILL6QFnWj3qN9LL73UjR49uuHv7OjocOecc07TyxwXFKEDWl577bWX+8tf/uKOOeaYcM49hBEiISAEhIAQEAJCQAgIgfojIAFE/TFtuxQRPvCDPvzww4ryv/3224eVdFbT7bfZZptVlIYCV44AwofdVu/8fHc8v7xfD3vDaaed5i6//HJ37733Bmb49ddfd0svvbT7xS9+4T799FMLFurykEMOKV1zAhNptOiii7q5557bXX/99XardPzDH/7gEGIMGTKkdK/dTioV7oBdmjCOewgdnnjiCXfooYcGwQ1YIAQy4Q2+Wa666ir31VdfTVSYvvzyS7fHHns42kCj6ZNPPnH77befu+mmm+ryqueee8798Y9/rDot6gWhA7TSSiuF3xFHHBGO3EMYQRiREBACQkAICAEhIASEQH0RkACivni2RWpmZkFmOTfhw+eff+5YIa+Epp9++sBowmza70c/+pG77bbb3Lzzzuv++c9/huQw6Vh//fXdb37zm3CNCQATfluF32mnndzbb79dejX30aRYY4013HTTTecQarz33nuOcFzznHcYff/99+7oo492888/f3jv/vvv777++mt77PCBsdZaa4W4hDn77LO7MdSlgC16YmYWZI9zEz5ceM849+Rr4wUD5bL/+OOPuxVWWCEwWmhBzDrrrO7MM890I0aM6IbHIoss4s4///wgqMhKc4cddggr+XGbgRGHyUQwBbUj7tUKdyjvBRdcUBLEmUBu6qmnDm0PQcOqq65KsG6EpgjtGia9pxLf7EcffeQOP/zwuhTxz3/+cxBoVJNYrN1AH4Qwjp+dczRCS0IkBISAEBACQkAICAEhUD8EJICoH5ZtkRLCBvP1gPDBTC4QPvCrhlgZj3+ksfbaa7uZZ57Z/frXvw7OL1nhhWkwAcS+++7rTjnlFAcTe/LJJ7snn3zSrbfeeo5VWQjmbfjw4W7dddcN4W655Ra3wAILOO801V122WWBcd54443dt99+G8KzWo+K95577ukOPPBA9/vf/z68m4fkbdiwYWFF8+abb3bbbbedQ0Bx9913h7it/g+G2MwBED6YyQXCh/PvLu5YlHIifKAeENaYicTkk08eNCDiXU8Q/LBKjyABxjGNEAp98cUXbtSoUaXHd955ZzjfYIMN2gb3egl3KDgCHRPE2RGHrq+++mrQNImFbIRnFX/TTTfl1K244opu1113Def8u+aaa9wqq6wShGbbbLNNqb54hgDuvPPOC89ZqUfYVk4I9/LLL7stt9wypIeGymOPPUZSqXTxxRe7ZZddtpvjWph0hHeYk3z22Wfh+xw8eHAw46EtmD8RTEsQPl5xxRUhn5QBQsvm9ttvD+dF4t94440hDwgvEF4igIT41k899VT3zjvvhPeg0QORNuUiPHm/7777wv34H/4d0G4wMmHDAw884I477rhwm3toRUBoScgnRIBC/4SAEBACQkAICAEhUBcEJICoC4ztk4hpPyB4MM0HVrCrFT6g0k+a8e9f//qXYytP7MtRPT/99NMDw3/WWWe5QYMGBaYV7Qae77333u5Xv/qVu/XWWx1q1Q8++GAJTAQJCDBYHd5ll13CfQQLMCMnnnhiuIaxQ2hB2qw+77777m7HHXcMKu3XXnttUH+HYYJZQWAxdOjQwFg//fTTgTkqvayFTxbrcjKJ4GE3L4yA0HqoVPhAPNTgwRL85ptvPgcDeeyxx5aYO8IYwYjBzFEHaYT/iNVWW82BsxHn4Iwwox1wr6dwxzBIOyIow9QBAVpMiy++eGDkuQfeCOQgtHs4X2aZZYImCu0cYRwCHwgB3T777OOWWGKJwOgjhMgTwvGNIBR69tlng8YLQg/TUgkJJv4tt9xy7qmnnnJ8J0YIBNielzaBJgOmNkcddVRoP3/7299KwhMrK20NwclBBx0UkqAMlv8i8SkfAhn6AcxVEDxC5B0B5//93/+5M844IwgLEBJstNFGoT2igUPbRuhIG4zpnnvuiS+DUBLBCD8TQHQL4C+ScZLPdS0EhIAQEAJCQAgIASFQHIH+xYMqZE9AAB8PsQYEZarU70OMA1oLMPwx/eQnPwmXc801l0NAwUo6K5ImRDDne6z4GiGYgBnGwSGmEtDPf/5ze+ymnXbacI1gAzLNDRg6BB4QDIqteqLuDj3//PNh1R9GGYYODQhW92HGYKbagfDxEGtAkOdK/D7EZezfv78799xzA+PIijaaJccff3zQGIHhhLk0mnTSSQNzy6oyGizUYZK23XZbt/XWWwfhD6vwaEOYaQzmOa2OeyzcMVOWaoU7YAOzjUmLEW38sMMOs8sJjnwraKVAMMGzzz57OOe74XsxcwG0CNCuQEAH8w0hvEOLCDIhHFoTplEx00wzhXYOk462wyuvvBK+h3nmmSfEQfOFNNIITQe+PzRaEHJgMsW3gyNNiLwhGLD84tDyyCOP7JYUGhDrrLNOt3t2USQ+Gh70LxDaDwhAEFxgHkT+EEoYFqZZgbCSfgQBym677TaBH4ekQIK00X5A48HMQ7jmZ/SnP/0ppGXXOgoBISAEhIAQEAJCQAhUj4AEENVj17YxYyFELcIHAICZybOTxgwDgtlBFR0ynwGmjRFu+n8wvDA6Rn369LHT3KOZYbDqaYIJGCMEDCZkgNFmdwZ+eL3nBwMDc90OFAshqhU+xOUEJ9Tx+WGSgVbJ/fffH1aR43Awe6xyw9jBiCXJGEAYVfw/sCod+zloddxjXM0UoxZ8f/azn4WdFQwnY/btusgRUwo0h/jF3wNx0WAwzNGeMConhEMQhwAjzs/KK69s0VOPJljCXOeRRx4J2gtoYUDsFEHdIsyCqUdAlaSFF144eat0XST+ggsuWApPWfFJkkV8xzPMMIMjHMJFhIzgRL8Tkzn+jO9xjjAOQvCAICgmExDF93QuBISAEBACQkAICAEhUB0CEkBUh1vbx0LwgAmGCQMaUSDegUkEq6yYSFx99dVBJZvVS4gVd1shxQEfauUx01E0T5YeDIcxDzBx7777rmMVGC0JdiLYcMMNA4P9u9/9zsEcYS7QLgIIsIAxxmTAVuqL4mPhxo0bF1Z6Ub03VX+eLbnkkhYk9chKN1oNCCmSNOWUUwZVftTxqUNWtgcMGBCCtQvusRCiFuEDhUYjJE8gl8Qv7dqEDuwyYtpEhMN3CdoIRrGArpwQjrpI7upg9WTpJY+YNFD3aCwhuONbNQ2ZTTbZpKSBgFADQdXf/1DWrxgAAB1vSURBVP73bkmYwLHbza6LIvHj/OalRZIIHxDO3HDDDW7kyJFuq622CpoQjz76aCnPhKMN2+4XXBuZ+YUd7T5HK3N8T+dCQAgIASHQexBgPokPJ7Rw8XHE3KcZxFiOSTELCvEYObHyAg4sNPFrFcLP2xtvvBEWHJOLDuQRJ/hoUTJPaAZmrYJTq+VDAohWq5EG5YdOEwY0pjy/D2bqEIdPO8f22lYP7TmaCPgHwAYcM4yTTjrJsRMANt0ICNCKQFiAcAImiGeomtM5VLPaiKo/ZhswvxdeeGHomBEysCo7evTo4EQRB5aox2NTTp4pO/lsZZrGj2//6/TJWcpmnt8HwucRTBzOCzGJwRQDNXUEM/iAgLKwp47wvZG1oo0WhQl+4lVqBoR2wb1W4U4e7kWfMbGAJptsstA2WcmPzTcY+LMmPeWEcNQDPihwFMl3BiEAzCO0iDBNQPjELinsHAORBlozV3gTC+oeYlBPCiDCg5R/tca3JE1Qw7U5r6VP4cfuO2hDJLV6Vl99dYve7YipTOx/Jn6YFScOo3MhIASEgBDoeQjA3LLAYqbDzJ1Y4EIwjY8j5p8Tk9A4xH8ac9l4gWJi5QFfa4yXNuer5b34V4JHmHPOOSdIBn9RaCQuv/zyjp318gjeBkwwP2WOmyTmueQbc/G0dyXD63riINCpEz9x3qW3NBEBTBFgQOPdKrLOCWemC+WyjF04woT4hzo+DApMCztT0GGz6wUaFxyhK6+8MjDAqHTD5OAVn1XWSjtzWwUmPRgOVmkXXXTRsDpL54bvCFZoyQfMMZ0Pfgm22GKLsFpdrnzNfL73MOfKCRUsf4QjfDli9wBWtjGpQACDXwecf9LRG2NKGskVZ0wLzN9A8h0MEEjjSS8WUrQy7mm41iLcSWJSyTU+CyB8mCAkgNB2wFEoTD6aQTD/+Elht5g0ioVw7O6CyQU+EBjcYc4RNlG/mFXgD4JvdI899khLqts9NAnwR4HQwDQ7bDLA98qkjJ08stpGt8S6LmqNTzKsQJEnNB7QtMLxJIJN/ESw0oFTTAgtkpj4/m1XDrtP/8Mv3v3CnmF+pAmLoaGjEBACQqB3IYCgnnEO7TkWa9hFCa1e5qzMcXsbsdBXTmu2KCaYRGbtMsW8hbkKOIt6JgLSgOiZ9TpBqdiVIN5mcYIAVdzARj2PbEWXMKhFGXPFNcKI66+/Pti4E26KKabgdoniuNy0VXoLAMMbh0GLAuaDe1999dUEZUVazA/pMWERirQ6rbNYh1tnsfrmknpgi0UEMtQHbSIpbMqqVzRY+CUJbZm4buPnrYo7wpqzRk6oYRLn3c6LCncsfNrRBGXxM7sH44wwAAePrNzD2LNdLdufokXESgDqjpgxxf414rQ4RwiHYMnMmhBsmBCO5zDraAfAbJMeAg62us0jBIRMOFjpMdVGtB0wpyLPMP58iwg7EFRAVq6sdKuJn0wTISLCM3bQoRzs1MKOHQhMIMMrzaTrrrvu6qaGifAN0wtWdTiPKdZAie/rXAgIASEgBHo+AmjRQmyrbZrBCPMZZ//73/+WAEAQjl8kBOAI2VmYWWyx8RO4v/71r2F8x1R1jjnmCOMXvpAgxiQ0+vCLBtONliqOnZnTYm6BtgUr+0OHDg3h+ceuUjhfRhCPqTHaiMxtY2Lln0UMxjbLCwuPaAOwYIQfKBYreCfmJZQL59OEh9LyxQIHJpekRx65fumll4KZA3MONCPwMWa+obhGExF8mGuy+Me8E21lNBfwL4WJBH6bjMCIOQZ03XXXBazR8szDkLBvvfVWCMO7WZRhsQ1t7CSBAWkhXMIMnUUGBExJPiQZT9f1RaCPZ9g66pukUhMCQkAICIFKEWACAqMdC8cYKBlM0eRJaqVkpZ8lhLPwTEpg0OP32LNKjkwemCgwOUoKCIqkU2t83oHvCwQahg2qsayYFPHbgNkXq1lphJYEky+REBACQkAI9F4E0BBF0wHmnm2x0eyEUY/HPBYJ0C5lLEIwjtDCtCbw24TmIk68Ye5h0rlmXEfAzTgMsw0TDyHo2GyzzcKCBM8wjX3zzTfDcxYEMLvA+TOEEAGTzWeeeSbEi317hQD+H+McAhHbTv21115zl19+eVhUYF6BuTKLCGgOYzZLeQk7yyyzTJAvBP4mrEewgGkKGprgwqIiTD1pkQ8EMZZP0kbIgJ8mys9CCUIPFlsQxrAoglajETuqsaPd448/HjSbwRRhTxaG1IXtwoXpKHkwLchDDz00LEqyO5mZYPBe3k9d8n4WHsD64IMPLgmZLC86Ng6B1l8GblzZlbIQEAJCoGUQSHMKycBaqVkSkyB+WVQvTSiY/krzFuep1vikxc45MTGJKCJ8IA6TP1Zj0BJhMog6KKsg+HyQ2UWMqs6FgBAQAr0TAYQGbOsOk4pQmh/jDBoJaOIZ441AHdMMriG0DBhTEECgKWA7NPEMjQU0UWGq47Fmzz33DKaEOE9mIQGG2VbwERSwlbb5fUAwYWaRMPf//ve/SXoCQlOBfJAHhBVsdU/+MU9Ec5X0EBgw/yCv7KiFEAIBhJHly67tyBiOJoiZZKBNkHTyHOeTeJZPhBaYalP+WPhAGLQtwQsBBMILNCeIl4UhQgQIX1eM6RBmwwhaKG9siolwA+EDWhwbb7xxCIt56yWXXOJefvnlINQJN/Wv4QhIANFwiPUCISAEhIAQaEUEmPxgPiISAkJACAgBIZCGAIIGzB9R8cf0AXM/fpzvv//+4T7M+KhRo0rRMQU2/wWYNMDcYjKBKQIaDRAajkZoWNi29WgPkB4r+UaYZUI8g2LBBZoMCCzSyAQQCBY4x8wTpp700bbAsTVCA0w5MPdAkJKVr2T67GaF9gV+oDAZtXLF4WLmnwULhBvVUBEM0QgxQqgAsbgQ5wFhEkR+yTdEmSGexWmEm/rXMAQkgGgYtK2VMJ0L3uxRsSpHfLioeqFmJmoeArc/3adiPwX4jRCVR0DYlsdIIYSAEBACQkAI9GYEMCuAcUYTAm0Bfpjo4f+InZ9gWllVh6GPt7VHeGDaC5gTwOSTDvNr0iDdmMzHEvcQXqDFGJt5xGE5T2r/JZ/bNf4Y0HpE8IB2IGaKtp23mWPwbhxWo62QND2M82Vp2hE/DuzORXkoK9ofSQFDmmanxa/kWARDEySQLvXBL0nUFYSQJa4vtCfASjTxEJAAYuJh3dQ3IXxghwKc0JUj1JMIj52WqHkIFHWSSA7ZrpPw9XZa2bzSN/bNwrax+Cp1ISAEhIAQEALtjgCMO4wqAoiY8GWAAAKmF8aerd0333zzktCAeKy+w+hiUoGZAA6dIUwp8giNBkwOzAE1YTEnwJcDpguVEgIHTA3RdkDTwswrzPcBTi8ReKBFgVlEEUITA+ED2iE4s4SKxi2SfhymKIamHUJczqmbpFDBTDQx0cD3BET9gk+9zFNDovpXFoEJxUNloyhAOyKA5kPRjotwRTQlYhyQKqLihVM4UX0QQKhQji7bo59bYkifEKxI+HLpFXnO1qvY1RWh+733YyTXrUZFsGoEtkxI2O0CR5C1EhMe9r7GEWQrESsg2L8WpXJtpNzzou+JwzGhYScY29s9ftaK55Vi2oplUJ6EgBAQAu2GAGYLtuUmTC3jLnNdNAXQDsA/Ab4JYHZxksgYzyIeO1gwzqPFwO4WzI0RKOD3gd0yIPwypBHpQewAgVkEggK0FcxEIy1O3j38HUA4gbS0uUYYQb4pHyYJvA+CIWeMzCPbMQI8mP8zRlFuKKtcyfTQUECIwZabScJPBYRZB4KRIhgi6MEpJnMi6of0kzthUV8Ich5++OFQj+B71VVXBX8TVqZkXnTdGAQkgGgMrr0mVTzNrrXWWuGDppNDBWuDDTYInUqvAaFJBd1jjb5B+ACjXJRwvLfUUksVDZ4aji1RkRYXoWuuuSYwyUXCtlKYSrH99NNPwwqCOYDkyHdx/PHHh4HdysYWp3hlxm6yVmLCwFaYDOCtRHgMxxkXE5MiVK6NlHte5B3JMExQ2OIUNdp2oEoxzSsTKsNMuFDzFQkBISAEhEA2Asstt5xbeumlA4PNrg6nnHJK2BWDlXS0hGGUYXJZuGNbxzPOOCPs7oCwYO211w4J49gY3w8nn3yyu+iii4IDS5hdGH5j1mNzC5xU/vKXvwzM9/nnnx/MNxCEkI9qiHm5+ZMgHSNMLjDlwMElu0QgdGBnCOb1CFmgOF8WjyNpMpckLDttMJbiJwOm33a/iMNznkwLngFNDxPIxOExVwFjtvlE0yQPQ1v4xAyE+cLpp58eHGyyNSmON2MiD1tvvXXIC7t4gC9CIbbsRCAjmngIaBvOiYd1U990+OGHh46zaCYOOuigwDzlhX/wwQeD+tU222zj8JKLHRgrinRkMFpIItnuT1QdAosd3KnZkBYbBnm31Tvlhzue/4N78rVOafXTJ+dLrRFA4CiJ+qmW8P681VZbuQMPPLBsEgzQMDomWS8bYSIFqDe2CCDwmcLK/9ChQ0urJHwLSPdxPsXADrEqUg9Vv//85z+OfcQRZmC/2CrEigplZoJShMq1kXLPi7wjLQwCElRS0+xE08I3816lmObllVUi2igramxZJhICQkAICIF8BGBy8aUGweimjRtoAhCGsQ8zipjYqYLtOVmBR2hhmgd5cwH8NSAshxlPe1+cfi3naHagFWDMOvMZ5u79+pVf3KLMaHbY1qRoK6BBUXTuD668J8tXBPNH8kX5i2DI+9FCIT95+Qd/6orwCHxYNBJNXASkATFx8e5Rb2M/YOy/cESDfwk63OWXXz6sruFlF7UxI6SSOO5BoonAgsmvEQwtquQ4vuQ5UlVT5SLM2LFj3RFHHBGkxnT8MCRvv/22RXfDhw93CFiwryM+ewazpzKq7oTnR15jyssPcVm9Jq3555/fnX322WXV0eK0G3FuZhakzbkJHy68Z1xJ+FDNe8thz+CC92UwxObxiiuumOA1eVjGgenwTzrppIAp2LLlIUx0s6me2LLKgGdpJPvsmX3vvfeGyQZaIxBes1nFsPab19Zo1+xtjcYEeFFXtOksIm0wJSzbWiFEZAKDgIJr2/6K+AhBaNtJh1M8Y3Wc9s9KDfFIjzZAWkZ8n3jA5hnfLeU0QvWUfBghiGRrLMLybWMnSrqxGQ9t45BDDgntjHylmXCgTUI75DnfM3GMmEDx/fMcnBC0MbGAEIryPtouz+iHIPYxRzAEgTV9DEdr65dddll4Zv9YVWH1iHLg+Zw8mE2vheHI5Iv3XH/99fHtgBPtH2JVh36KtEgTzI3IA/nfbrvtwnOclyUxLRc/qyx4/d50003Dq/Aqvuuuu4bzvHZo+dJRCAgBIdBbEUBTgEU2flnCAEwycDKZFD6AGcww8wMzLSCNPOEDcQgLI531PsLUg9DWMOED6SGMyGPe43eaGYppN8DIFxU+kA64ZgkfeI6miJW/CIa8n/KUyz9pInigPiV8AOmJTxJATHzMe8QbkUQiYGAPYOtQrWB0GDixRIUM4px9hlFRQ90JRgmmBakpBIOCKjkT8tNOOy2snjIBN9p3332D9gZpoML25JNPuvXWW69kNwYzd+qppwZ7PPZWxp4NtTkm7WeddVZglGAWHnnkkZBkXn5QQRs2bFjokPB1ABMAs8GEv1mEtoP5I4BZNpMLhA/n3z2eCasmf+WwhxmiznBSdNRRRwUBAnGM8rC0MHZEC4I0YIyvvfbaIH2GSW8mNRJbysVEBEbd2h7Sfvbehjku19Zo19beqQO+J4QR7FedJJhxvgkk+ggEEdKhfUE81EMx16CujBAY4AgrzS8Mqx9oyVBffDeoK5IONpMQQiP7tnkXTDSqpub9mvhsOQZxjjCCawR5OOkiPTAw1VPCoYKJ3xnUV3EOhQkH37kR3yKCC75z0iBf9BUQQjLeAcYnnnhiKDv5ou1ChjkmFwg/aX8Q/ZD1QWCNai15QtCAkAOHvWabikAEAQn7rnNOeciDCZJCgl3/sFUlfqz1Q3kR9tDHsZUb/SZCEQSv2ORSX2aWQ5qUjZUf+i+2BYsxLRI/qyy8y3BBSEGfWq4dxmXTuRAQAkJACAgBISAEakWg08tHrakofq9DAGYBivfMZUXT7MZ4xrY+rHgymWalEDsxiBVIJMGYcJiN3F577eUOPvjg8Bw7LFZMYaaQyrISy0Qd5gFCywJ1duKzUgsxscaODUI4AmPLiif523DDDd15553nnn/++SCYyMsP+cUpDczF0KFDww+mAxW4ZtFiXU4mETyYqQXHWoUPVp4s7JEKX3311Q6hDoIYCM2W2IlRHpZWtyGi/0f7QIsCBpK0l1xyyW6aMBZuYh4bjS1lgRmlTSUdT6ImWK6tsfqBbSXfxGabbRbUMWnnO++8czeYEEDQ3vnmbFXl8ccfD5pE1O+OO+4Y0kGQBMHwb7zxxrk2j6zgoy7KijkCizvvvDN8D7QJVg6wn2Tlgu8LLQOubYXfMoeQEuY7VvdHKJPMP/0B6SLMRACIUAN7WtsuzPJMfiCECjiRRJiA4AEbUfJA+SHi02YR4BiBD4x/FtFXINxhJQftALyWo32AsBSBRtyHkQ5aX1mE7Sm4IDhgNQnhCXVJ34XpB3lGS4byIsyhjrGl5fuC8LgO/rbyE78Hs5Fy8fPKgt0vhAYIJhgIp8q1w/j9OhcCQkAICAEhIASEQC0ISABRC3q9OK7tDQwjYMS+xqweQggPdtttt6BejL8BfphSxIRHXmNSmYwb2TnO9VBnhmAIjFBxg5GFoTUBRMwMGAMGAwHBUBCetFAjL5cfzEpYGWTVdY011ghONY3xsTxMzCM+HmINCN7NvXqR4U16dg72tkKNIMaI1XRTryuCpcXjCCPHii4rv2gFUHdxvcZhJ9Z5o7GlHCZ4gHGMCaFWubaGhkLsGInwmAaw6h8TjCzfBVo/qNPzTswLTEAI3ggucLbEe2nbqONnEcxy3ObJhwkdYeRhWPH7YoQAgL4gKYBgKzK+vdjXQNyeLD6Mt2lS0b5gwBHQGMG4x/lBiInwC4eK9CMIMEz4QBx7B0JH82wd9xGWbnxE+GhqpKhwggHaCGCN1g/mMEYIRnkH2ghpRD1RDnaAwbkVeG+77bZBLZT+iWdoqFAf1BWaGHGdkpc04QPvKho/rSxpeS3SDtPi6Z4QEAJCQAgIASEgBKpBQCYY1aCmOCVmgAm+0T777BMm7Ezambyz/64JHeaee+6S/Rw2V6xOxqubsQ1YbLtlAgjUmmPCbszS5n7WZD2Ow7nFycsPq8OoT7NyyeoxzFMtThuTeajmOnY0WU/hA3kph33SPs5sBYtgGZeVlVdWqVmNZ2Ucr8as6jebGoktZXv66aeDJlCMs5W5XFtLxrG6iP0xkBbMOsIjfE3wDCEPZI4g0VpBEIAWA4JCGGCY5Cwypt2ex9+k3TN7WPueY4GEheH9rLDHlLY7hpXLwpkwwq753mOy8LRB+gi7tjAW3/xAcL9cH5FMw7C3vieZ7+S1vZsj+UWLC8EDjscwX0EIBKG9gCAPrQfqIU0wkpfXIvGzyhIykPKvXDtMiaJbQkAICAEhIASEgBCoCgFpQFQFmyIxQUaVnlVVbKVjhgXVaTQgWMWEWWUVlq05Y78OrLAnV4TTUEV9HSJNU5/GKzArkkziK6Vy+YFhYUUS9WlWLikfDAI+C1iVbCbBKOOzwMwwGp0XWz2HgZ5lllnC61jxpW6hcliGQNE/mGRWsXEYyg9bemz9cSDIinMzqVHYImj5/e9/X/I7EJexSFvD2SNMtjHDqOmz2p9k7GFKqRf8GiAQgDBRMkac1XBMmNB6mHPOOQNznGTq47zlnWO6gXlH/D1Tt5g+JQmhCKv77I9ujimztuhKxo2vEQCiIWCaV+AA8w4WfJ/HHHNM2OYMoSdk/hToP2rdphThy0orrRTMMxAqgBuCNIQLeUIcTFd4juANgacJGsCCfIMh9YLmCL49ilKt8e09Jpwp0g4tjo5CQAgIASEgBISAEKgVAWlA1Ipgm8RHPTveWSIv24QjfDlCJRmmB3VoVI1xzIYdOGYLCB/MUR3aDjiHQ3UbwQHO6Eg/djKX9S5zcIeQAydu5A1GCg0Ls2XOipt1Py8/qJnDwFE2NDlQ72al05jxrDQbcX+a7hr74RV5fh/SwteSL4QFK6+8chAwgT2ruDgQjCkPyzgc5zjzBEeYSZhCTGhgIo1pTIZv5HUaVvXAFkEZ/hJuuOGG4OwPQRbMa8ysW7mKtDVMHWj7CIHYKQHngttvv70lUTqaecKIESPCbhc4a8SRZEyswJtAxFbj4+dFzykTdYj/BRxP2hajaTtX8I3iDwFmnH4CgQCMd6WEEAPNGfoMsMUhpO3ljXkIDD1+X+gfcBgLZmjY4KuiHoRpGXWLmQemQwgTyvUJOMKln0LYZv5ryAt5ol5HjhwZ8EvbSSMvz7XGRxMGwpQH/xxF2mFefvRMCAgBISAEhIAQEAKVICANiErQauOw2N/jBZ/Vs3KEcIDw5YjJOIwRTCiO44zQVMBBnK2+soUfath4oYeRgOnEF8Cqq65qUbodzXbZ1JCvvPLK4LTO8oQmwh133FFyDGnhuiXiLywdu2/X5fJD3lmRhNmDYBCw357YtLeH9KyR3ofAl+XfDENN+FrJMDJMcQxI/Rr2MJ1oiFi4cliSHwuLY08EDyY4ghGiPVo7qTXvlcRvFLa23SZ5YfUbsyR2HTBtA8OC5zhSLdfW0DJCu8B2q6AukqvlpImJBdokpl2C0AOm33ZxsPfBqMP84lMhi+I8WhhrD1yTF7ZeResAPwYQuzjY7hJxfM5x4IjA49FHHw1bXCIYSDLvcZyQoP8X36NPwRQCph5CC8McTOLUEiEIQgfKDRHettGM0wkPU/7F5YsfW1y0rdB6wISFvuzoo48OZlrx1qZxPM7RnKDfwFdFLPDBvwwCW9MIwcwLDQl7V1pe7BnpVhOfeJYG2kbsOsSWrvjooC8t1w6JLxICQkAICAEhIASEQD0Q6OPVLzvqkZDS6N0IYBaBKj2OH7NMK9juDWYKhiFtkl0OQVTRUReOzT3Kxcl7Xi4/5BUHgM1gkPPy3YxnMLIwVOb/IZmHcljG4XFuST3GzhXj573xPK2tYbaEwACTBbaWRYhh/giyMMIfAqYK5og1DsczGGnMCGCg60EIo/jezUQkmSbCDvKPrw8zQTDTG4RRle4uQzvkezSBTvJ9bF1JXpI+EJLhKr1GCPrhhx8GISqMPG0YoQHaHWibVEMIY/mmzKyk0jRqjU9/Slni/i2tHVaaL4UXAkJACLQqAvUeG1q1nMpX70OAeXU7kQQQ7VRbyqsQEAK9BoFYAFFroXEyiNYRJhOs5JvJRq3plovP9qCYXvBedjxB6MCOGWhroBnQLoQJElpAmJbhQ4PtORHGYW6T1OZolzIpn0JACAgBISAEhIAQaAYCEkA0A3W9UwgIASFQBgHU/Vkdxw9HrXTrrbcG3xD4b4i3q6w13SLx2ZWD9yP4gGnHXIQtLNuNMLfArwa7WrDLCCY29fIx0W5YKL9CQAgIASEgBISAEKgWAQkgqkVO8YSAEBACQkAICAEhIASEgBAQAkJACAiBwghoF4zCUCmgEBACQkAICAEhIASEgBAQAkJACAgBIVAtAhJAVIuc4gkBISAEhIAQEAJCQAgIASEgBISAEBAChRGQAKIwVAooBISAEBACQkAICAEhIASEgBAQAkJACFSLgAQQ1SKneEJACAgBISAEhIAQEAJCQAgIASEgBIRAYQQkgCgMlQIKASEgBISAEBACQkAICAEhIASEgBAQAtUiIAFEtcgpnhAQAkJACAgBISAEhIAQEAJCQAgIASFQGAEJIApDpYBCQAgIASEgBISAEBACQkAICAEhIASEQLUISABRLXKKJwSEgBAQAkJACAgBISAEhIAQEAJCQAgURkACiMJQKaAQEAJCQAgIASEgBISAEBACQkAICAEhUC0CEkBUi5ziCQEhIASEgBAQAkJACAgBISAEhIAQEAKFEZAAojBUCigEhIAQEAJCQAgIASEgBISAEBACQkAIVIvA/wOkDhV15NIjKwAAAABJRU5ErkJggg==" - } - }, - "cell_type": "markdown", - "id": "164a07b7", - "metadata": {}, - "source": [ - "### On region view (the interval of a gene)\n", - "\n", - "This is for 'DRD2' gene. \n", - "![Screenshot%202024-11-01%20at%209.31.00%E2%80%AFPM.png](attachment:Screenshot%202024-11-01%20at%209.31.00%E2%80%AFPM.png)" - ] - }, - { - "cell_type": "code", - "execution_count": 58, - "id": "9f8e1ba4", - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "The total number of variants in this gene interval is: 8126\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "[Stage 37:=============================> (1 + 1) / 2]\r" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "{'number of singletons': 1390, 'number of doubletons': 384, 'number of variants with AF < 0.01': 2711, 'number of variants with AF < 0.001': 2662}\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - "[Stage 38:=============================> (1 + 1) / 2]\r" - ] - } - ], - "source": [ - "# Filter to interval, e.g. for DRD2.\n", - "gene_interval = \"11:113409605-113475691\"\n", - "\n", - "gene_ht = filter_by_interval(ht, gene_interval)\n", - "\n", - "# Filter the exome release Hail Table to the ASH1L gene interval.\n", - "print(\"The total number of variants in this gene interval is: \", gene_ht.count())\n", - "\n", - "print(get_variant_count(gene_ht, singletons=True, doubletons=True))" - ] - }, - { - "attachments": { - "Screenshot%202024-11-01%20at%209.28.50%E2%80%AFPM.png": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABB4AAAEdCAYAAACrCqQ6AAAKrGlDQ1BJQ0MgUHJvZmlsZQAASImVlwdUU+kSgP9700NCS6hSQm+CdAJICT303myEJEAoIQaCgqioLK7giiIiAsqCLIoouCpF7FiwLQpKUdEFWRTUdbEgKirvAofg7jvvvfPmnjnz3cn8M/Pf8//nTAAgU1kCQTIsDUAKP10Y7OlCi4yKpuFGAR4oADKgA0sWO03ACAz0BYjM27/Lh14Azdh7xjO5/v33/yoyHG4aGwAoEOFYTho7BeFTiI6zBcJ0AFA1iF9rTbpghq8jTBUiDSI8MMPxczw+w7GzjEbPxoQGuyKsCACexGIJ4wEgaSN+WgY7HslDckPYlM/h8RFG3oFjSkoqB2GkLtBHYgQIz+Snx36XJ/5vOWPFOVmseDHP7WVW8G68NEEyK/P//Bz/W1KSRfM1dBElJQi9ghGL9AX1J6X6iJkf6x8wzzzObPwsJ4i8wuaZneYaPc8clpuPeG2yv+88x/E8mOI86czQeeamuYfMszA1WFwrTujKmGeWcKGuKClM7E/gMsX5sxJCI+Y5gxfuP89pSSE+CzGuYr9QFCzun8v3dFmo6yHee0rad/vlMcVr0xNCvcR7Zy30z+UzFnKmRYp743Dd3BdiwsTxgnQXcS1BcqA4npvsKfanZYSI16YjB3JhbaD4GyayvAPnGbgBd+CLPDQQCMyBJaIWM7507tqZMwpcUwWZQl58QjqNgdwyLo3JZ5ssppmbmlsCMHNn547Eu/7ZuwjJ4xd8fB4AljcRaFnwcU4DcGYZABT1BZ9WEwBSDwG4EMEWCTPmfDPXCWAAEUgBKlACakAL6ANjpDdrYA+ckY69QQAIBVFgJWCDBJAChGANyAabQB4oADvBHlAGKsFBcBgcAydACzgLLoFr4Ba4C3rAIzAIRsBLMA4+gCkIgnAQGaJASpA6pAMZQeYQHXKE3CFfKBiKgmKgeIgPiaBsaAtUABVBZVAVVAf9Cp2GLkE3oC7oATQEjUFvoc8wCibBVFgV1oWXwHSYAfvAofAKOB5eDWfBufAOuBSuho/CzfAl+BbcAw/CL+EJFEBJoORRGihjFB3ligpARaPiUELUBlQ+qgRVjWpAtaE6UPdQg6hXqE9oLJqCpqGN0fZoL3QYmo1ejd6A3o4uQx9GN6OvoO+hh9Dj6G8YMkYFY4SxwzAxkZh4zBpMHqYEU4tpwlzF9GBGMB+wWKw8Vg9rg/XCRmETseuw27H7sY3Yi9gu7DB2AofDKeGMcA64ABwLl47Lw+3DHcVdwHXjRnAf8RJ4dbw53gMfjefjN+NL8Efw5/Hd+Of4KYI0QYdgRwggcAiZhEJCDaGNcIcwQpgiyhD1iA7EUGIicROxlNhAvEocIL6TkJDQlLCVCJLgSeRIlEocl7guMSTxiSRLMiS5kpaTRKQdpEOki6QHpHdkMlmX7EyOJqeTd5DryJfJT8gfJSmSJpJMSY7kRslyyWbJbsnXUgQpHSmG1EqpLKkSqZNSd6ReSROkdaVdpVnSG6TLpU9L90lPyFBkzGQCZFJktssckbkhMyqLk9WVdZflyObKHpS9LDtMQVG0KK4UNmULpYZylTJCxVL1qExqIrWAeozaSR2Xk5WzlAuXWytXLndOblAeJa8rz5RPli+UPyHfK/9ZQVWBocBV2KbQoNCtMKm4SNFZkauYr9io2KP4WYmm5K6UpLRLqUXpsTJa2VA5SHmN8gHlq8qvFlEX2S9iL8pfdGLRQxVYxVAlWGWdykGV2yoTqmqqnqoC1X2ql1VfqcmrOaslqhWrnVcbU6eoO6rz1IvVL6i/oMnRGLRkWintCm1cQ0XDS0OkUaXRqTGlqacZprlZs1HzsRZRi64Vp1Ws1a41rq2u7aedrV2v/VCHoEPXSdDZq9OhM6mrpxuhu1W3RXdUT1GPqZelV683oE/Wd9JfrV+tf98Aa0A3SDLYb3DXEDa0MkwwLDe8YwQbWRvxjPYbdS3GLLZdzF9cvbjPmGTMMM4wrjceMpE38TXZbNJi8nqJ9pLoJbuWdCz5ZmplmmxaY/rITNbM22yzWZvZW3NDc7Z5ufl9C7KFh8VGi1aLN5ZGllzLA5b9VhQrP6utVu1WX61trIXWDdZjNto2MTYVNn10Kj2Qvp1+3RZj62K70fas7Sc7a7t0uxN2f9kb2yfZH7EfXaq3lLu0Zumwg6YDy6HKYdCR5hjj+LPjoJOGE8up2umps5Yzx7nW+TnDgJHIOMp47WLqInRpcpl0tXNd73rRDeXm6Zbv1uku6x7mXub+xEPTI96j3mPc08pznedFL4yXj9curz6mKpPNrGOOe9t4r/e+4kPyCfEp83nqa+gr9G3zg/28/Xb7Dfjr+PP9WwJAADNgd8DjQL3A1YFngrBBgUHlQc+CzYKzgztCKCGrQo6EfAh1CS0MfRSmHyYKaw+XCl8eXhc+GeEWURQxGLkkcn3krSjlKF5UazQuOjy6NnpimfuyPctGllstz1veu0JvxdoVN1Yqr0xeeW6V1CrWqpMxmJiImCMxX1gBrGrWRCwztiJ2nO3K3st+yXHmFHPGuA7cIu7zOIe4orjReIf43fFjCU4JJQmveK68Mt6bRK/EysTJpICkQ0nTyRHJjSn4lJiU03xZfhL/Sqpa6trULoGRIE8wuNpu9Z7V40IfYW0alLYirTWdigxHt0X6oh9EQxmOGeUZH9eErzm5VmYtf+3tTMPMbZnPszyyflmHXsde156tkb0pe2g9Y33VBmhD7Ib2jVobczeO5HjmHN5E3JS06bfNppuLNr/fErGlLVc1Nyd3+AfPH+rzJPOEeX1b7bdW/oj+kfdj5zaLbfu2fcvn5N8sMC0oKfiynb395k9mP5X+NL0jbkdnoXXhgZ3Ynfydvbucdh0ukinKKhre7be7uZhWnF/8fs+qPTdKLEsq9xL3ivYOlvqWtu7T3rdz35eyhLKecpfyxgqVim0Vk/s5+7sPOB9oqFStLKj8/DPv5/4qz6rmat3qkoPYgxkHn9WE13T8Qv+lrla5tqD26yH+ocHDwYev1NnU1R1ROVJYD9eL6seOLj9695jbsdYG44aqRvnGguPguOj4i19jfu094XOi/ST9ZMMpnVMVTZSm/GaoObN5vCWhZbA1qrXrtPfp9jb7tqYzJmcOndU4W35O7lzheeL53PPTF7IuTFwUXHx1Kf7ScPuq9keXIy/fvxJ0pfOqz9Xr1zyuXe5gdFy47nD97A27G6dv0m+23LK+1Xzb6nbTb1a/NXVadzbfsbnTetf2blvX0q7z3U7dl+653bt2n3n/Vo9/T1dvWG9/3/K+wX5O/+iD5AdvHmY8nHqUM4AZyH8s/bjkicqT6t8Nfm8ctB48N+Q2dPtpyNNHw+zhl3+k/fFlJPcZ+VnJc/XndaPmo2fHPMbuvlj2YuSl4OXUq7w/Zf6seK3/+tRfzn/dHo8cH3kjfDP9dvs7pXeH3lu+b58InHjyIeXD1GT+R6WPhz/RP3V8jvj8fGrNF9yX0q8GX9u++XwbmE6ZnhawhKzZUQCFKBwXB8DbQwCQo5DZ4S4AxGVzM/WsQHP/A2YJ/Ceem7tnxRqA+hwAghGdGR/3XwRAG1EpZwACEQ11BrCFhVjn59/ZWX1GpI8C0MU0DbX2fWI1nAP+IXNz/Hd9/9MCcda/2X8BEaoHZfbhPqoAAABiZVhJZk1NACoAAAAIAAIBEgADAAAAAQABAACHaQAEAAAAAQAAACYAAAAAAAOShgAHAAAAEgAAAFCgAgAEAAAAAQAABB6gAwAEAAAAAQAAAR0AAAAAQVNDSUkAAABTY3JlZW5zaG90ZcvxbAAAAj5pVFh0WE1MOmNvbS5hZG9iZS54bXAAAAAAADx4OnhtcG1ldGEgeG1sbnM6eD0iYWRvYmU6bnM6bWV0YS8iIHg6eG1wdGs9IlhNUCBDb3JlIDYuMC4wIj4KICAgPHJkZjpSREYgeG1sbnM6cmRmPSJodHRwOi8vd3d3LnczLm9yZy8xOTk5LzAyLzIyLXJkZi1zeW50YXgtbnMjIj4KICAgICAgPHJkZjpEZXNjcmlwdGlvbiByZGY6YWJvdXQ9IiIKICAgICAgICAgICAgeG1sbnM6ZXhpZj0iaHR0cDovL25zLmFkb2JlLmNvbS9leGlmLzEuMC8iCiAgICAgICAgICAgIHhtbG5zOnRpZmY9Imh0dHA6Ly9ucy5hZG9iZS5jb20vdGlmZi8xLjAvIj4KICAgICAgICAgPGV4aWY6UGl4ZWxZRGltZW5zaW9uPjI4NTwvZXhpZjpQaXhlbFlEaW1lbnNpb24+CiAgICAgICAgIDxleGlmOlVzZXJDb21tZW50PlNjcmVlbnNob3Q8L2V4aWY6VXNlckNvbW1lbnQ+CiAgICAgICAgIDxleGlmOlBpeGVsWERpbWVuc2lvbj4xMDU0PC9leGlmOlBpeGVsWERpbWVuc2lvbj4KICAgICAgICAgPHRpZmY6T3JpZW50YXRpb24+MTwvdGlmZjpPcmllbnRhdGlvbj4KICAgICAgPC9yZGY6RGVzY3JpcHRpb24+CiAgIDwvcmRmOlJERj4KPC94OnhtcG1ldGE+Cv9SrqcAAEAASURBVHgB7J0HgF9F8cfnd7235C699x6S0EKAhC5IEUFAARGQoqCCNJUihCr6BwREQWki0hFpUhISUoD03sulXq7f5Uqu338+79hf3v1yl1zKpcAMXH6v7Nvd993Z2ZnZ2X2BqqqqejEyBAwBQ8AQMAQMAUPAEDAEDAFDwBAwBAwBQ6AVEAhrhTwtS0PAEDAEDAFDwBAwBAwBQ8AQMAQMAUPAEDAEPATM8WCMYAgYAoaAIWAIGAKGgCFgCBgChoAhYAgYAq2GgDkeWg1ay9gQMAQMAUPAEDAEDAFDwBAwBAwBQ8AQMATM8WA8YAgYAoaAIWAIGAKGgCFgCBgChoAhYAgYAq2GgDkeWg1ay9gQMAQMAUPAEDAEDAFDwBAwBAwBQ8AQMATM8WA8YAgYAoaAIWAIGAKGgCFgCBgChoAhYAgYAq2GgDkeWg1ay9gQMAQMAUPAEDAEDAFDwBAwBAwBQ8AQMATM8WA8YAgYAoaAIWAIGAKGgCFgCBgChoAhYAgYAq2GgDkeWg1ay9gQMAQMAUPAEDAEDAFDwBAwBAwBQ8AQMATM8WA8YAgYAoaAIWAIGAKGgCFgCBgChoAhYAgYAq2GgDkeWg1ay9gQMAQMAUPAEDAEDAFDwBAwBAwBQ8AQMATM8WA8YAgYAoaAIWAIGAKGgCFgCBgChoAhYAgYAq2GgDkeWg1ay9gQMAQMAUPAEDAEDAFDwBAwBAwBQ8AQMATM8WA8YAgYAoaAIWAIGAKGgCFgCBgChoAhYAgYAq2GgDkeWg1ay9gQMAQMAUPAEDAEDAFDwBAwBAwBQ8AQMATM8WA8YAgYAoaAIWAIGAKGgCFgCBgChoAhYAgYAq2GgDkeWg1ay9gQMAQMAUPAEDAEDAFDwBAwBAwBQ8AQMATM8WA8YAgYAoaAIWAIGAKGgCFgCBgChoAhYAgYAq2GgDkeWg1ay9gQMAQMAUPAEDAEDAFDwBAwBAwBQ8AQMATM8WA8YAgcBAhs27ZNlixZchDUxKpgCBgChoAhYAgYAoaAIWAIGAKGwL5FwBwP+xZPy80Q2G0EKisrpU+fPjJ8+HD5zW9+s9vP2wOGgCFgCBgChoAhYAgYAoaAIWAIHMwImOPhYG4dq9sOCPzhD3+QqKio4N+qVat2SFNQUBC870/buXNnufTSS+Wpp56SdevW7fDcgbqQk5Mj/EGzZs1q1Wp88cUXMmHCBJk2bVqrlmOZGwKGgCFgCBgChoAhYAgYAoaAIeAQCFRVVdW7E/s1BA52BIYNGyZLly4NVnP8+PFy6623Bs85yM/Plw4dOjS6FnqSmJgob731lhx//PGhtw7I+eOPP+45BH73u9/J4Ycf3mp16NGjh2zatEkyMjJk48aNrVaOZWwIGAKGgCFgCBgChoAhYAgYAoaAQ8AcDw4J+z3oEVi0aJGMGDGiUT1ZorB48eJG1/yOBwzsq6++WthDYdKkSY0iCri3cOFCSU1NbfT8N/nEHA/f5Na1dzMEDAFDwBAwBAwBQ8AQMAQOTgRsqcXB2S77tFavvvqqXHTRRcJSgxNOOEH+97//yWOPPSZjx471/jZv3uyVd+WVV3rn3/ve94QlDD/84Q+lTZs2grF60003SWlpaaN6zZs3T26++WYZOXKkt7ThrLPOkocffrhROkL6XTnvvfee/PGPfxSiFsiXOmVlZXnLHjh2Zd14441SUVHRqCxO3n777eC173//+97xypUrPedB8EbIwYABA+SOO+6Q+++/X6ZPny4zZswIpmB5w2uvvRY8dwfFxcXBOl9wwQXusvf70UcfBe+98MIL3jUiCK677rogDoMGDZLLLrtMVq9eHXyW5R0Oh5kzZ8pVV13ltQfPlZWVBe/dfffdwWfKy8vl3nvv9e6xZIT2472pg6NQfGnXI4880muPY4891nO2kBanC+VTV4h359z/fgsWLJCLL75Y+vXr5z0/evRob8+JkpIS7xn7xxAwBAwBQ8AQMAQMAUPAEDAEDIE9QcAiHvYEtUPomaefftozikOrTKQARjvE0oVevXp5DgG3jAFnw9q1axs99pOf/ET+9re/edfYiwDDtCkaN26c5ySIi4uTd9991zOWSTdkyJAdnARjxoyR7OzsYF1cfj/60Y/kueeec6dSX18v/fv39+pE3XCmHHHEEd7922+/Xe68885gWn/EA0spPvnkk+A9DlhiceGFF3rX2PPh73//e6P7nGCU46iAwKlbt27e8bXXXiv/+Mc/vOOpU6d6zhKcG00RyzlwDFBvHDQ4BSA/9meffbY888wz3tIH7uFY+Pe//y01NTWeI8O1B/f89M9//tNzGvjxpR5NpecaTiKcO6HkllxMmTJFTjzxxNDb3jl483xsbGyT9+2iIWAIGAKGgCFgCBgChoAhYAgYAjtDIGxnN+3eoY0Aa/iZUXd0zTXXyJNPPuk5DJzTwd0L/Y2JifHSXnLJJcFbOAJ0TxBv2cKpp54avI7RTzTCSSed5F377LPPBGdAKLGs4a677vKiHtw9jPctW7Z4RrnfefCvf/3LM75dujlz5gQdIeeff77nJMFohqgXjomWkn9fBzZbbIqI9nDE+0CUgaEPderUyduLwTliuEY0x+TJkwWcISIF/FEa3kX9B+yJKiGagd+miKgU50TA4UO+7APh6Nlnn3WHwV/S33DDDcIGnDgLHOGkwUlEXXCGQPxy7qI2XnrpJZdcPv30U1m/fn1w7wwcUB9//HHwvh0YAoaAIWAIGAKGgCFgCBgChoAhsDsIROxOYkt7aCHALLUjQvv//Oc/e6eE1w8cODD4JQWXxv/75ptvSu/eveWnP/2pty+CM4IJ1c/NzfWMatJfccUVQScDxi3PYHD7lwO4fH/2s58JmydC5PPII494xw899JCwzAMikuKDDz7wjknjIg2oj6MzzjhDAoGAN4NPFAHpZs+eLaNGjXJJdvrLkg4Mb+qJEwBnCksZ/EQkgnPa8C4snQAD9/UJnAHUAQcL0Qzh4eGSlpbmZQG2f/3rX71jHCahdNttt8k999wTvFxUVBQ8dgdEH/BeEPmS/9FHHy04HObOnSvOGeLS80uUCFhCPXv2lPPOO887zszM9DbbBLekpCTvvYle4NwRUSeOSM9yGOroPu8Zio9La7+GgCFgCBgChoAhYAgYAoaAIWAI7AoBi3jYFUKH8H2/48EfoYDx6aITmns9HAiO/BEC1dXVnpHv7rGswhGbNDrjH4O+sLDQ3fJ+2fvAUfv27d2ht8zDnbCPgaO6ujrvsLa2Vl588UV3WcLCwrw6OEOfG37HRDBhMwfsVeH2LSAyoCmjul27dnLaaad5OTDbz3uzT4Kjc8891zsESyI5fv/733tRBeyPkJ6e7pKJe4fgBT1gL4xdEY4B8MNZRD3ADmxwOjRHbukJ9/1fxsCxsiv6wQ9+EEyCE4h3GD58uDz44IPe1y8iIsxHGQTIDgwBQ8AQMAQMAUPAEDAEDAFDYLcQMGtit+A6tBLHx8cHK8xGhX5iQ8PmyIXju/uhhrn/2dB7/n0AQjeIJEJgT+jLL78MRhrwPJsmhhJ7HrB0gciAXdH8+fODSdiIsTliHwiWPOCkIBKDY4i9FAYPHuwdP/DAA97yEe9E/2H5h38PB3fd/+tvF/91//GECRPkO9/5TvASbYKzxkVcBG/4DiIjI4NnLcEhmFgPWFrC8ponnnhCWP4CEeHBH84HrvkdG14C+8cQMAQMAUPAEDAEDAFDwBAwBAyBFiBgEQ8tAOlQTcKMtSPW8rNhIcQXK9555x13a7d/+YqFI76E4IioAAx0CAO8Q4cO7tZe/b7xxhuNnscId3/uBgZ5c/s1uDT85uXlyeWXXx685H+X4MWvD/xLEdjbwTke3L4XRGKwrwPEng98xYJ9NdiPYW/JbWBJPhMnTvTqzWdDm9vIcnfL4/OioUQUB2WxlIZ3PfPMM4NJXn755eCxHRgChoAhYAgYAoaAIWAIGAKGgCGwOwiY42F30DrE0o4YMSL4tQQ2DGR2n5ntnc3yt+QV/Q4NogwwUtmP4NZbbw3OyPNViH1BOEv8yyxYfsBXK9wfX4BwFOqg4DqfCuWTmThe2LOBJQjuax0ss2jqSw8uv+Tk5OA+Cc7BwD33Kc/Kysrgkg0iP/gjOoJlF3tLbLjpiHwdDm6vDXdvd3/dhpzUkw08aTeWg7A/B8tEiCbhvfjsKntyOAqNgnHX7dcQMAQMAUPAEDAEDAFDwBAwBAyBXSFgSy12hdAhfB/D+b333guGyLMXAX8Ykewb4Gbwd/cV2cuBTQ5d5EDongXM/hOevy+I6AG3HwMz8KHLFPyfgGS5xcMPP9yoWPaauPjiixtd4wQDHGeMM8R3SPD1BRw1focGThv3xQg+F8peGeSDM6NLly7NZbPb12kft+SBT47uK+LzoW6fCDbI5P2J0sDRwNcweA/2kuAdnYOGsp2zZV/Vw/IxBAwBQ8AQMAQMAUPAEDAEDIFvDwIW8fANb2uiE7KysoRPKhKRwBp+llrgHHDEZo1QcxsINrU3A8b8888/3yh6AocGX4NgfwK3SaT/WVcOZTV33Z+GY//nKMk7lFJSUuSUU07xLuOgmDZtWqO8/ekxsnEkgMFXX33VIkcBjgX/bD/P+4lIClc+1ymjqY0um3tfnvHf4xy68cYbg1/VaLgiMn78ePFv5sl1/7N+7PzX/cdEeLilIjzv9oW4++67PceDe1fndGCzUJaw+KNceM7IEDAEDAFDwBAwBAwBQ8AQMAQMgZYiENAd7+tbmtjSHVoIbNiwIRgBwN4A1157rfcCxcXF3ucWMdQxlNevX+99KWJP347NJtljgU9f+o3fPc3vUHyOzTsdnn5Df2/fhSUW7LnAVyaacwztaRnsyUGeofWlLfnEJ+0ZHR29p9nbc4aAIWAIGAKGgCFgCBgChoAhYAh4CJjj4RvMCKzdHzJkiLDcAOKYSAf/Eoubb75Z7rvvvm8wCvZqhoAhYAgYAoaAIWAIGAKGgCFgCBgCBxIBczwcSPT3Q9krVqyQq666SqZPn75Daffff78X0v9tjVLYARC7YAgYAoaAIWAIGAKGgCFgCBgChoAhsM8RMMfDPof04MuQyAc2EGRvB5YD9OrVS/r06WNh9AdfU1mNDAFDwBAwBAwBQ8AQMAQMAUPAEPjGIXBoOB7KdRO94oBIYX3Db6W2Q/XXf1X6yx8U9fVfpP7yp8vT65N1C4vUQMNvnF4zMgQMAUPAEDAEDAFDwBAwBAwBQ8AQMAQMgf2GwEHzOc1AnjoWNqpjYVNAApvV0bBRz7foeZH+OseC6PFuk3tGf9UxUZ+ijoj26ojoXC/1HfW8k5531vO2tsfmbkNrDxgChoAhYAgYAoaAIWAIGAKGgCFgCBgCu0DgwEQ8EMGg+x0GlgckbKU6GpZrLUt2UdPWvp2oToh+InV91CHRT//6aIEWIdHaqFv+hoAhYAgYAoaAIWAIGAKGgCFgCBgC33AE9o/jQYMJAmv0b7Y6Guaoo2GFonqwBxhogER9X3VEjFAnxEj966l1dsET33CmsNczBAwBQ8AQMAQMAUPAEDAEDAFDwBAwBPYVAq3neMDZsEgk7HN1NsxSi71oX1X5AOWTok6IUfVSd5w6IQZrHcwJcYAawoo1BAwBQ8AQMAQMAUPAEDAEDAFDwBA4lBDY544H9mYIm6R2OX/5+8g6j9HogyT1ZLBJJL/xCjGbR7KZpPvVQ28vCDadZE8Ifsu0Dlu1DmxKyW+FXtsHVN9GnQ9j1RGhf+wVYWQIGAKGgCFgCBgChoAhYAgYAoaAIWAIGAJNI7BvHA9EN8wWCf9vmAQWNl3QLq+y8WMP/dPNHtn0UTrpcUc9ztBjdTzsE1LHQyBH/zarE2ITv/rHZpZrNXecFXtA9UNEas+q0+UY+rBma2QIGAKGgCFgCBgChoAhYAgYAoaAIWAIGALbEdg7x0ONLqX4TCMc3mkw4Ldnu+uj+vbqVBikzgXdxLGeDR276TPhu36uVVLUav3X6R8bXbLp5WL927J7XgQcJnVnaxTEOPXCHDTfCmkVtCxTQ8AQMAQMAUPAEDAEDAFDwBAwBAwBQ6DFCOyZ40Ft67Cp6nB4SQ30nBYa6Bq1UDdYHQyHqaNhhP6p4+FgJhwPgTn6fnP1XRfpO7ZwmUZ9hjogLtZ3HaPv10JoDmYcrG6GgCFgCBgChoAhYAgYAoaAIWAIGAKGwN4gsNuOB5ZShL+gSypWt6BYnfmvG67OhuP193A1xKNb8MzBmKRSnQ8z1RExWX/nqTdBIz12RfW9dAnGj3UJhi7FMDIEDAFDwBAwBAwBQ8AQMAQMAUPAEDAEvq0ItNzxoBs1hv9Doxx0acWuyFt2cLo6G/QLEJKwq9SH2P1SdT7wpY4PNKBB94fYFdWdUC+1lysObIhpZAgYAoaAIWAIGAKGgCFgCBgChoAhYAh8yxAIa8n78jnMiOt34XRQG5wNFmvurJOax3W5wenfQKcDYKkjhXfjHXnXXW0qGTaxAbvAzJYgvf/S3HbbbfuvMCvJEPgWIfD8f174Fr2tvaohYAgYAoaAIWAIGAKGgCGwawR27njQJQXhfw1I+H26zKCw+dl99myo+aM6HG5XQ1z3cPhW7G2Ao0XflXfm3cGgOQK7iPvDPCxbskyjuXz21fV58+ZJRESEfP755/sqS8vHEPhWIfCD6y9osv9c8uhP5Q+v/KnJe98qgOxlDQFDwBAwBAwBQ8AQMAQMAR8CzTseivTjDHeGSdhHO3E49FPD+341vO9Qw7unL9dv2SHvDgZgUa+YNEdgCaai2B5Iuu+++6Rfv35yyy23HMhqWNmGwCGJwPW3XS+lY2LkidefbFR/HHmzv/xKun/vMFlTsLbRPTsxBAwBQ8AQMAQMAUPAEDAEvs0INOl4YOPIiF9rlMPSZqDR/Qpqr9GlBg+ooT2gmTTfwstgASZg09yeDmDqYduSzTlbAUOWWJx11lleziNH6toYI0PAENgtBBbmLvHSb2pb2Ciy4fUPXvecDtz8YIJuAmNkCBgChoAhYAgYAoaAIWAIGAIeAjs4HgKL1TC+Q79aUdB0pEPdkfVS/Xid1J2qxnXTSb7d0ComYONhpFg1RWDrYaxYH0hKTU09kMVb2YbAIYcAUQ05ZblevZP7d2hU/+yynOB5Tnle8NgODAFDwBAwBHYfAVsOuvuY2ROGgCFgCBzMCDRyPHiz8eP10rYmqqyfxqy9Qr/QcJsa02avNgFQyCXFCKzATBS7HUgxjlCsm40q2eGBfXNhy5YtjTKygb0RHHZiCOwUAaIaUge0D6a57tbrgsd+Z0N11/BG0RDBRHZgCBgChoAhsEsEnnvuOXn88cdNjipStmHxLtnFEhgChsAhgkDQ8RBYp4bwvXpauWPN69vosor7NMrhu03P4O/4hF1xCIAZ2IHhDqRYgznYHwhin4eCgoIDUbSVaQgcsgj4Ix36j2p+rVl0mPWtQ7aRreKGgCFwwBBgQuSDDz7wloW++uqrB6weB0PBd704Xp6Z/y9zwBwMjWF1MAQMgb1GoMHxoJsdho/XNQLlO+ZX31Fn7R/ULzj03fGeXWkZAmDnYahY7kCKefi9iv1+2HCSwbysrKxRFR58UBvXyBAwBFqEgH85BQ8sm9WwEQ59iygHR7UrsiVQ8q7c/bur3CX7NQQMAUPAEGgBAs7pQNJQnaUFj3+jkkyePElwdoduZvyNekl7GUPAEPjWIBAmrAR4RGfd89X4DaH67rpZ4n31Ut+2CYM5JK2d7hwBMPSwVExDKZCnez5oG9AWrU1EOfjJNpj0o2HHhsDuIZA2MN17YPLkyY0e7BodkKrqShk9JNpmqhohYyeGwMGDAJstX3bZZdZHD54m8WpSUlISrFHnzp2/te3DF5TiTunsYRG6mXEQIDswBAwBQ+AQQiAs7D/69YoFO9a4vrMayvfUiaTseM+u7CECiiWYgm0o0Qa0RWtSqHHUmmVZ3gcOAdbGolAb7TkCze194t/HgdzdXg45urGkW4KR+fZcSfo6+GHMkT3l7jtv2vOK2JOtjoD1l1aHeJ8W0Fzf3JNC2PPoxBNPlG97OP+eYNeaz/ijHGxJaGsibXkbAoaAIbB/EQgLf6UJYzdJlwbcqRVJ3L+V+VaUpph62CrGoURbBLY00R6hCffwnME8NOJh9uzZe5ibPXYwIoDDISIiQlavXv2tnSXa23a5566b5fe/vWqPl0kkhQfkx5cNCVbjuGOGB4/t4OBCwPUX+sy+NGgPrrf85tSG9vr444/l5z//+V6/FHnhdIDsC097DWerZvDJJ5+0av4Ha+bu083UD8e2fzPjg7XOVq9DEwHkIX9GhkBrIxAmVSFFqN1b82udlU/fcVY+JKWdNoFAeXm5lJaWNnFn+yWwBeMdPkeqbRH23PZ0++Oof//++6MYK2M/IeC+WnLWWWfZLN4eYl67bb28/8+rd1gmgWHqPqUZmnXawIzgpU6D2gWPOairLm50vrcn1IMQ3KaouetNpT1Q11BuRo0adVAoOa6/4JC95ZZbDhQkVm4LEaC9aKujjjpqr50P/nB+ijfHUwsboZWT0Q4srzDaEYGdbWa8Y2q7Ygi0DAH6HJNVgwYN8mRry5469FP94PoLZOCFQ/eL7LfxZTu/BL9q4S7Vnal7Ogx1Zwfut7KyUqKiouSiiy7aoRJcd389evSQK6+8UubMmbNDupZeqK6ultGjR3t5rl27tsnHVqxYIUceeeQOEQMucX19vfzsZz+TlJQUSUtLk5/85CdSU1Pjbu/wC8ZgHUphMzTqYUXoVTs3BHaNwPjx401h2zVMO00BhlLbsL6YZRKfffSSl54B6pq/XCcVaeow9BGzUHxic+nMRcGrg2IbDqtqq+X+x96WOnVk7KtBB8cC9ZgTu3yHPNn9fPVhW4W6HsyE8fjLX/5SJk2atMM77M96H8wGDss/+DtYCL6Dvw4k0V7+EPy9rYs/L3M87S2a++55NpYMjczcd7kfOjnB7/4Niw+dmltNDzUE/Ju5fpMmI+lD6ENNTchwrXRMjHT/3mGtvnGr0x+bqsehxiv7or6NHA988rH2oh2N4X1R0O7mMWHCBO+RN998U+rqGiv73Jg4caKgwL722muSkJAgJ598sixY0MRmFS0o+P/+7/88pwNJcSCE0vvvvy+DBw/2jLqqqtAQkYbUzz77rPz3v/+VdevWycaNG2XGjBnyxBNPhGbV6Bysm/rMZthbrbPcInSGh8rsr42bEAD8tRbtTMC0VpkHW76hS2lycnIOtio2W59JH7/R7L39eaO+Zqvcdt3JjYpksFiUu1RSB7SXnPxdY7psYUOadz5eK7/56XC56sKB8pfHbm+U556eHHXxOG+gDN3lHIcJDhBof21Ctif92R/e3qVLF0Fu7s/N/fzhpKEGzkknndSqMqqlbU4dWfrBHzP7B5rgfxxdM6NXHVCnll85BpNevXrtFTR+xwMZ2UbLewVnqz4c2latWthBkjl7cq3dnClfzv9CFi9v0G1D9xg6SKpq1dhLBPZkLN3LIhs97iL/uLi/bIJGFWilkztfuNtzLjQ1UeNfxtSaOpPfwWH77DU0dCPHQ92FejFG5KuvvpITTjjBM8avvvpqueKKKzwDn0dOPfVU+cMf/iDDhg3zvNKPP/54Q076L4Yt0Qdt2rTxBvEXX3wxeO/uu++W3/72tzJ27Fjv/r333uvlCZPz50/LQzgUHnroIenUqZN8+eWXwXzcQXJyshdZcPjhh8ujjz4qZ5xxhvzxj390t4O/f/rTn+SGG24InhNOhDd969at3jXO77jjDnnqqaeCaUIPsrOzZdq0aXLNNdeE3gqeU9/bb79dOnToIBkZGfK73/1O/v3vfwfvN3mgWHuYh9wMm6mOh4KQi4fwKR3vN5/dKwiBvRGwPOvNSDeBRaiAOVgM2Saq2mqXQh1L8Lkfb/9xq1ViDzLmk5NH9tmwx3sq7EGRzT5SX9N4WQRfpRh51CjP2Oeh6HYJsjF7ww7PN6UQ1pY2fJ+4TUq8nDOufaO22CGDFl545pEngyn9gyWbW+K5h0KdEsEH9uEBs/F7stber+AgJ/nbX5v7OYOecFL2CDgYjPqmmsSPkbu/M9nn0rTWL8uI4CkouldSaxWz2/kWFBTssk/Bpzi2aHs/gWforPq30bj1Y3IwHw8dqiGi3zJamrdMqgfESHhGjBTm5Xtv7zYzPpigQJbOmzdvl33xYKrzwVQXN5YeyAg3v+xDLn4Tlh1iK7ilsYxfO9sfpTV1Jr+DI/G0faMHtjb/tra+EXQ81KfWS924eikqKpLTTz/dcxzMmjVL2rZtK//85z89pwIvm5mZKS+88II888wznsH+61//WjZv3uzhcO2118qaNWvko48+kltvvdVzQjgPT35+vvztb3/znqGD3XPPPfKXv/xF3nvvPfnVr37lpXVLEzCgXn75ZTnnnHPkRz/6UdDpsTOwzz77bM9hEprm2GOP9ZwaLlLBzXIlJTUoUDfddJNX11AlxJ/P5ZdfLjg4dkaLFy9upMiQ39y5c5uMoPDnA+Zg34g0wCNsautEPTQqZz+d0PHo2HwWak+/RY3zghDzfy9+fYewKe65T05Rzi+uPe+gMWT3E8ReMf7BgwvwIPwOoXhjKO7J7DJCCOUiVHn3Mt7Lf9jI8ZYrB3i58Mv5gaSm9mN4/t0GB+qWReslrGeC5OZmN6pithr9joqXZcmxI9upIpYjI4e0lUWrt3i3BvRJlrqK7elc+t35hc/9obfw+pqCtV4W/sGNC7O/aL1NYxnQnRzFeG+OL+Cb5u4tX75cVq5cGXx9NvcjfWsSBr2T85THUg8/+fuL//r+PAZbfz8mCoM/+i4Rfc3h2Zp1nDx5UjD7NcXr5Pn/vBA8358HOKn8RHsx7jfHg2DFxAKOrdDNQx3/+vOz45Yj0Jp9NdSBTq1a4mRqee0PjZRv/LMhgo3ahmXESmFBXqtUfG/akj5G/1u4cKHtKbUHreMfS5FVe9MWe1C89whtyJ5gfvomRH/5J2P878YxOPt1qdD7rXWOzrYzB0hrlbs7+cIPTt9oLX7c7nggujhcPGM5NjbWizbAy0xkAvso+InZ/COOOEIuvvhiGTJkiKfA4TRg1v+xxx7zNg77wQ9+4O15wDIFR5dccomnBMDkffr08e4PHz7cczqQJjc310v64YcfymGHHeaVi/MBx4dzHLi8Qn8J22V/htra2ka3cBjgZCBiAXr77bflggsa1kCznGPmzJl77d1jKQhh7UR6OGKfB2hXG02CeX3jyG7vubDZe+94gGkQbPuC9jQvv1OAeuzJjBllfzD7I0k+vos3q+s39MiTGWlHBf+dJ395/AzvFEOW2fSDnXi/1jLs3bs7oyt0drklZRMOj3IRqry7vPflb2jEwb7M25/X7kTE5JRk+R+VsuLt35hvdMN3snh+jqR3iZXypBr562tz5NlX5sjkyR/7UuzZIQOXnz6Y0OBY8l/juP2ZPVtNicEw9isqTRkKDF5Ew7nNquCz4447zotuo344apHZhYWFglMaIxLjorUo1KCnPMab0OgC3oW6HigKxZZ6tmvXzsMHzEOdJa1dTye/5y6aJZu0H9RlREpzPNfadQldSsnSRvQPZGdTsgns+IP43dUnM79JIcat2RbgvadO7Nas177OGznQ3PrwfV1WaH6heltkQrRkbs4MTbbX587I2JMJCQr3y8+dOY/BkrKMGiPgl/c7k1Fg15yDtXGO++aMeh3q7YXN4JYogYo/2oBlqaG61LJZS/cKvKbkBf041MFxsG8Q62wF9I1djZl7CljQ8VA3umHWneiFrl27SlhYw61AILDDWkqWEzgi7bZt22T9+vXeJf+6SzrSsmXLXNJGhnlMTIy3NwM3OfYTkRNEC7BBI/skoAyyp8POCG/hgAEDJDxcLXkfUX+EKjMcOAemTp3qLcvAUXLjjTfK/fffL4mJicEnmtrjIXizmQOwYkkISzIcURb5+vN290J/Hfb+6wFga35vSn/SZo+d1wpFAUKY+Amm4nOablbcf89/TOdh1u2dd96RY445xn8reEwajPyJ/7mnkeIe6iRgxowOStq7brmg0Qw311F0/cT59288XzbKFpm9aq6gALMhjH/Wzc1I89wpo9rJtupyKVBjBvp82jzv1/3jf85dO9C/GPb0uw0bNniOOSfwwYO/nRH3Sc9vXl6eLFmypFFy+g73cTg48isIu3Iq+J/d2cDo8t7dX74g4SeWNuzqnf3pd/eYvJtb2sG9MSMaz6q++fl8qRny9W6RXxe2s9mn2hXZMnx4hrTvFycx7SLl3y+tkC7t4+TXV/ST+uq9M6xdXyKqwk/UO3Rw89/f18d+ZZO8/fzkyiKNc04wXuCEwDHrHMjI2fbt23tLLVzE3IMPPuge36e/46+5Qj5//RXp372b5+RwmS9dutSL8GO2zhEhw8jNMWPGtCofuvJCf1Eu/fTWW295Y4u71pr7UDTX71DeatqEy+bSLbJ46XasXJ0O1O/xxx/vKeOU35RsctGWB6p++7tcosXcuNpcW+5tnRgP4FHwDnViN5U39aCdrr++8bjeVNpdXeOTmpTfWoSTYewVJwZ1EP/yzVBHwL6oQ3NtRBu++skzOknTWC8O5FTLinfnB6Pc9kUdnJHRkrYMLc+vG3APnnC6JHihd6J7kw49Ayc05829N+n3ZftSTqg+GfoO3A9t99A0TZ039w5Npf3Pf/7T1GXvmhtL0cWJ8maCNDRvsMS+AR+3TLC5DHl2dzEMHXNw6FKPXbVXc3XY3euh79vU837ZBh4tcQjWJtXrxE+tt0eKixba2ZiQNjC9qaJbfO2yuy+WeW0XyUfx0736Ucc3J7y5g4OjqWW5LS5kHyZsCvfQPt2UbrcvqtDgXUjWWfduDdkhPFhiwSwUxNIL9nzYFTlnRFbWdqWYTRZ79uy5q0cb3WcWCmPpF7/4hRx99NHe1yZIwPKO5ggnAvsp8NWJpujcc8/17v/vf/+T733ve96XJ6gniid7UvCFDOf8wHmxM0HRVP5co5POnz8/eJvjgQMHBs93duBhr23QiHQPy8CGRld2+4S2RPlvinlQaHEiMAu5qzBGOjp7c3z/+9/33rMpwVZTssgLmT96WGLwSwBUOLST4WW88Aff9dLedu1RcvSACs/5QBkM9OzK7z5vQ8f429tPS/GaQqk/PkEktlZKqku9kMPmZt3Y2C8qIUo25Tbw4W3XHOkJcvIn39cqJ3pCoalOt9sA74MHXEevqKjwNjAlxI1BxoVXY7A5xxHFwZucu0GafsLmqEQTYdjhBHR911UvdGBxCoIrm0GPGeim1vWFhjc3xUuunN399drg6y9ItOTZ0DbjHCWtKuv1Fkf21Jboe369tAMnB8/vkuqrGyWpKa2Q/LyGJRQ4AVZM/EzWr1kmq1Y0fNmiqrRKJnzQ4FCJCw+TL4ry5WdPfCkfTp+xg1JBxrwH/LkzIs2spTNl+atTZObiL+XTp96QBa9M8fqX21TS/zz9rKnrLo3DrrmlLdxvqp/zPA4yjHVknHN0sYcP6eFPnvU7OeFtFzUXGRnpfa0hOjra++qPc0TAg9xrrkxX79Bf+sHOPs157y03yV1DusnIzu2lb1KM5G/aKCzzYNkfMpuZcurA+6BwEQGHM5Y9g4js4132J7FUcWdE3wWr5mhP64uSxFI2fv00efbnkl++3WEW3TNFvlw8w59kvxw7noLn+KO9/NGUVIJ2c0R/IoLBT/5JEXSM1iTqi2xprn+1Rtk4cZFtjKvuazzUoyVKenP1CX3eGUouvR9Td83/y1IYeLZjx46ePkd/dcaoP53/uKk8cQjiWGdsxCnIuHTXXXfts/6JATovfals7l7kbaQ6fOzwRss3F+Zs/2qRv667c+x44rP3n/LahP72r0VvNXoH7vU4sVbK02qlWpfgFuc2TGZVfbJF8pZsFLm4ndz0ZMNEw87KpiynIzSXDlkLjk6GM1nGMzh4djUeNZen61f0PfQOHBpMBhLZDFEeX6pzct7V0zkRnYHdVP7w8dCjh+7SmUCe/cb0l3P/+WP5b9xUz5nEtaaIJYpMZLFUd0Lm5EZt0VR6rtGvKze/7k2c7QwnyoTXweT8889vNm+/Lk4keSgR1eVmn++77z7PQeFP4zDkWSLOncNgZ3XzP097+4m2I2IdPXJPHFL+vDimfrSd36nn0nCd/d+4t7P6+mXbc5Oe8TbQ3tkXvOjP+enlXjHskUK0UHn1Nnku61WvrI+/avzOJGTypjk+cfUN/SU9/HDCd0bKwEu6SN9uKdI2sVZmzJ8pGwaWSkl6hTdZ6n9uT8rxPx96TB2Qibvj3KWfNxW11pStgF1AGXtiF4fW1Z1HcFDfy52KJyB4iVNOOcUz0t99993tN3dyxPKMcePGeYMBxhLLHv7617/KP/7xj508teMtZtVZZuHfKBKhRZ1YtsAXLCAGQIwglEicEnjoUBqbIjoum1HSad2sGo4SHA+OWKLBlytwTuDAQLFBwaMzEDXRFLEMha9pkP7SSy8VIjVwcqBAP/DAA95mk00919Q12iAwp/GdwJaA1PcI2f+hcZKdnoE9Sj/vSkizI95t06ZNnlMJQxWD1SmzOCL8xPsjfNx1DAiW1CBMMS6YtYyLrvWUHZ6b+tUa8c9as7lLd2msAB57TM9gEXyy8MG//lsuf+I2+WLxKu86m+Td/9pDkhaeojvlhYl0UzYN0zaICReJjPZm3cpm6T0lOoSb7cUI/I6ur3/0mdmSnbNVwlKmS9XGKvnDvefroDIpuPkeAw17Tbh38jLaB/+AFQrKpuVLpEu3ntK9zYAgv7m6hpYJH8PDXKfP8AePYwyhsPHHfd4Tby0DM+0Bsc8KbZuenu4p2TjgWOLDDLJ/2Q8Cwz3jPaj/0H5EI7HcCB6Gx/msLOX460h4c+izfGmGmQ36Eumvu/taOf32iyV+ao23h4srY1e/kya8G/yCBHwDwQ8PP/+uVwfypp3axWdIm7osqa3KkfG/XSt33P8vT7HOXDlD7r1xrORu0qiEkpW7Ks6r66SJ78pRAxvWNlHW9IXbZQD1ufmy7bxJhiNHdpHJWUWyavlcKS7Mk20bo6RHWqy00y8ArVo2Sy4Y0EdOfeAU+e0rs2V1sS4VK6yRPz29Vdp0jJLXXl4t1bV1sihvq6QcHyuJdbFy3e+vlAUTt38vlwGSHZcLl26RmhdVqbn0jkbvAQZ/vO8mueiM9rJxwyaRBO0Pp6eKdK2VnNV5Ej0/TIacNHAHr3qjTEJO4FMchRgoEAPnXfc9HUyFUohB7hQY9riBcFAiO1iCh+yFkMnwAtfgv5tvvlm6desm3/3udz3FBZ6Fn5wzjGVpRIih5LLcDuId2cyYvCiTQfHJJ5/07u3sH+rJQOkGyyaf25ip8mOoZHTuIm9NmiZrcvOksqpa+Fyzc4bEx8dLZmamd46D1fVFflH4evfu7clznCX+vrGzuu3pvdD+hsHW1FedmsqfdkT23nXLkxKROLjFfdEzutpnSu8xh0mpZowy+NrjDc6NZeuXSfjx7aVyW4nysi5jDKijJqNiBznRVH1aeo32Z/whOpC2YLPnpiguLi4o1z777DPp3r27N4a5tC4ahDZibIKX/OQc7P42RLbidGXcRtbCy/777nkniwYcPlgKluTI4w8+7t3iemh6+lf26vfkpxcNlb59Owb7F2nvvvMmCYurk9GDdcBXCo/tKmNPPFOQPXfe/bC4JWCfT/vKO/cShfzTVJk4OFx/JjkOiKNPHCXF6VXeuFcqDZ/Zde0akmWzp0wGYJS55+MktlFaMOV9GcecPuB0LPonS10Zi5joQT7QvoxPTGahr9HfaG/eyY0poX3AGWZsCE45yI/rrrvOk0dsWE4Ua0vIlcEeZqFttiBrhvQdl+hls2L9Fono76nGwWzdRr6hzwUTtODg7tuvk9TeUfLUPW9IwWCRK0aOks8eu0dK1K83acLJXnufeskvpaduRFxZVyPhYeFSFx0upds0UvX4JLWMYqRa9YLkY9vvVH+hPdCj0c3QyZlgckuN/dVElxgxYoR3CbmO/GVPNzDmXlN85p7n3hdffLFDH8P5R/nIV/oTxKfu0cEZC9BVrrrqKm9CEnkNzxQXF8tpp53mjS3IWxzAoYSMQm/rrDJqzrLlnvPB9cHQtBvS8qQwrVQCg9KkuLRcKkd1bBIv8qwcFSObdWyXQKT0Vr1zV3oh/cxNXKA/fPfHzzUpr8AH3mSPOQgsiGhAzuFYY/yDDzHy/ZHSpGUMffjhhzn00oMfYw8b+9OW6IjodCxDh4gmQUfDac2nMGk/xmfS4fiAD1yf9B4I+Yc28BN6oeMLrofe96f1HzNuuInGE7s39Gvu0x6ec0ftgLdfeV9WXrVa+qQ1yD++FtZd21T6i7z+6OtNYumXbTc8/LZUxlfKgs2LJHb2EqnfvKPOCv/97f/+JoGLE6Vya4GEb6qR+uklUpS6QWJHpkhEp3jZumSrN4GZmtbW/wq7ffzkY7+Q63+sduPyXKkrSZKExGTZMilXNpcVSMnyOqkt0nFTkvZJWVQutE/yrshLJkog7OSm5CHPIV/hOX6dzgRfwpNOrmG7wzOh5Hgs9Pqenjc4HtptN25ROF9//XV55ZVXPMP8zjvv9AycnRXgDPPnn3/e2wySNakoEWwa6TrHzp7336Nz4h30EzNaeErZtJJZd8gBzRIHlFYMqJ1FV/z4xz/2HAF0Xoj39HvW3d4QKDMMjnR2vnSB8EDhCSXS41jhPXE84CGkcd03cNkUk6UiLaV6bYOA/teIGoJOGl3anRO8yKwJZmYInBBALIlhGQsz5RBCZdWqVbJo0SJPEcAhwdc7eBal4tNPP/UGeoxSHCpQeXm5hxF7Z+DNXrFogtzwcKyUdKqX2XPWyeDkDClc85Xcdc8fvU8Qeg99/U/m23PlyiFt/JeEqISLb7heep47XIonb5A8nWErb1srVdN0RB4Tr5JLZ5xrlUfDA1JVXiptklNl2AUN0S3eWq3DGpb+EOY+aW21zCnMl06ntdW9PVJk1bsbvOiBw383tlGZTkA2urgXJyzhePTjxyVmTaScdTahqF3ljVc/DXr2wRH+ZAaIJT5O2XJCHUUaxYyBimVFGEUoXLQfBhqfZ4XnnFDgHlE6RAUxoNOutC+OJtoJQw+Fj/wZgJjVgOf79u3rvSUKAkq344MpU6Z4s1J8wYY+hmOCfkc0EDOMEIoigiolJcVTOEafOEwKUgqlt3p635r0nGS+ss7jGyfEvIda8M/9j/5Xlzi0kamzNkl9LaZPW0+xYAYCJ9SKe16V9/9+mqQmDZf88/vIj264UMYdM1ievAsnWZ2sXL/JU7qdAU0/dDThvQYDNiwyWW2m5KCjw913TrLm6vzRtOVS2V6jcPp2kiW6zjY2MkySUqKlurJaUhfrErO16vA49zD5cvYaScmOl9LFNRJxcqyUra2SqnYRsjp8m7Q9OlHbTjeR1UIzK7M8OXHP72+X+roKWRi+Tnqdp1/N6H+YfLpsiiz1GX3UEUNl9JBwOfvE7iKsRPiuKsexKidiw/UvQTbM2iCzZs+S1MMa2pVnHLE0AyzY1HLsKee5y3LMkHo5etj2kP5QDFA6UQAhFBo83sg1jnE6wXOO4AnkAAYyshA5iNLLxpHwITIE2cHgiLKFEY9S6l8ShyGBA9QRPEu9XZuwGTF1IoIOueTkKgqW37h00TiUyQBKnaPXrRY5Zqi8PGmqhKe2UcVtjMzXutBXMOjpL4xfKMQovPA2/Q+FkD7G7Bw8T1mMMa5Orq7Uk4Gcfkq0Eg4Tf91dOn6bu+5PE3qMMul/R+47meFPi3I2Wo2ZTFV4skuzZOWXS5tU4vzPcMwM6/z1n4r0qfWca737HSbrC5bJiccNlTFHDRCJCkh8TIPcj4oMl7KKKolM3B4CvifvxDO0Ec5wZBDYwlsQGIfmiQFLmxCN6J98wEhyETMYThC6C22E/Aol2pG2cm2IwsXzOJ2YUQdX2ju0fPJxBvhMWaXp53rO2uzSbG/d8JYb18hz//dsMN+6wk/k1p9qY6hsWrF0jvTrVCtnnTFO/vfFNOnWI0GO69VBRg4vkfapHeTd/82SzYs2qcPzcLngrGHyvdMGydnfOVwdq4u9aAmcEX5CuccIjnyhVoakD/QcINS3TeImWbisQDqld5A0lftQtuRI/++NCz7ujGfGTGZ6M+Layvy586VDv07e7u/nn36+nNj9+OB7XHfz5UIEgKhSPSSivcyculhOOPy04NhCxmCKjnjmmWd6egL93jkAiSrCyGRcw7mDnkY70k+ZqKH96dfIF8YZ+NyNb8FK6wF9lPGRT5XTZ3ES4YRA7jA28v4Q42BzTit4iLLgH3Q76kOULLzAeyaOi5DcD7Jk2+oyGTY4VT6et0aSh3UQZ5gQQbYro9SrRMg/jpfon0ed20XmpxRJbXaYdMmPkJKFG+Tqq0cJEXK5qzd5PHL5hbpRY1K+rPmXRjp0DlMWipPapaoILq6U3ud1kNKicklJjg5+Mtnxsr9YjIrp06d7Rir8Da6uHrQNei/6vV+vRScES5bAMd4z2ec3SFz+4IjTCHmP3CQtstJNdCD/kfNOZiFDqSP6CO2IXkMbcI4DCnmOXg8xXtDOpGH2FhnuCH6N+3oCi7aY/Ohkd6vRL4bY+EfGS/Kdaskqub0xevca7WHAZswszYX3c9evk/zoAunbI91Lu0IdEDGzvMNm/2lYGtoxeP+2n6mOrZ8C94+vjtcYD+HRv//9714/waDHAcMv7867giNGPrzJRCg6IvYE0TzwOvog+TBm0l/ACHyYmMW2oixkJ2OX4wU27KdfukkpIoVc+wcr3sQBsphn2QOPNnKEXLzujusloGp4c84e5xhybTTh40ly/OfHe32SDeHR44jQrNTI5QVLV0l2RIlkTVkjI352kivGk6XkE1oGmE+bnikxidG6V9aXknBbZ6mpqpX6AclCJBCbNS74YoGXD+8JD0iXgET3j5faiUVS3SVSUgbESpsRSZIaGy15BYU6/uRLwewvJCGjrUSHR8phg0cF64Eu7yKqd+aoveS6c+W6G4fISy8skoB21UBAbRbtbwmxETLqJ111aW1ANmp/youukzazVkm/6C2qB+VIgPF0u1gOlrurA//EAvosk0XwEn3NjYv0Jyd/XX6cp2StlWERdfLe7RNlRk14sH+SxulN9HfkMLYA/dlF7MOP2AL7khrcumrbOeIF+CwkleUPo4XBmq8/QDCnn9is0RGMzsCCYYpRhELp6M9//rM79H79YZGkdQoEz4cS+aB0OnJp3XlLfhnc+GuOUIT9+eKoYPNMv4LMzDB4QFxnIPTfZz8KoioQ3iiwu0W+Ngg+VxE82qMDGAiv9OjRoz3GYXBB+LuwNzKFwRBaDDps9sa9f/3rXx5D044rVqwQsED48K54Ws877zzPmECoIgxf03WHPc9sL72P6CK9O3URqp2bmdtknZPUeXDEiE6N7j38/iQpPSpSVlVukK25mQquRuH0TRPR2WWZWiaBjpEeL9VW1+lAXC+VtdXi9opolJGerC0rlU7f0YGkql4Kl2+VnGWqOGlTbAzkSrJ0CCZ34U5OWAdv7MGBG+x6HdtZuiW1k559OkhNbY2ce84x8uifn1Vls5/nOAP7yy67zHP8YEzRl+j0OA1QxOngLDWCf1Dg8HJjAML/OIYgfjlnwELo0DcZ+OkfOJdwTrhZJdqWvLhPW9G3UdAZ/FA+SA/BJ/AIacmTc3AhbwY8ooUQSAyWvXp2k63F+bJi+WLZmlEoXce18/LwBu8LRa4bf70s+KTBUcENBgJHhP/y1YhxJ50vU75qiDR48M8fqrOhTKbMKNNk9fL59MWyalO9zCwrloxz+wibhZ5yXCepD6vTmeoqWbKqWPr30C9E1G/vHGlJYd6eHuzngXDOKlsu06auEd1aQf74u9PU2dKw5Omhp6ZpGduVBurFrMVXK3M4bJrqq6RrhwTvXkJkuCS2j5G6SnUufFEm/dISJUar8Zt7J8rA3m2kRAN76uOqpVCdEoN0UHz2zRVy4oN9vGeL15SrfKmTvmd1lXf++5S8+4/vyUsTZ6n/IFJWzlwrSaWbpGRxrqzYVu0NnCjQKKsnj24rv/iRzrj/daZEdo2U6jYNRqAEtJPo0iNpt13Ghr7A5iUa0aKOl2VLFslTT9wjAwYOkxNO/6lMVoyd44EZhLyKctm0drJ88VnDVxOc08Gfn5MZRDMQVeMckczWEN2AcQHhIINIA5+SHtkBr8NHeOOR9xiNKJ8oscxU+2f14VfeH3mE05T7OCycccq4hDJGOj+hbFF3BuLi7C2yfuF8efnkkfLLv78kq3PzpUdCkhdeuFWNUvod/QRnHH0GZRn+xzGHYgdlqkFKXak7y0tIx2ekicgjCoQ+gsJIHrwPs4oM/OSDAulmmugDOBuZ1UOZxonekogO927IAedIdNf8v/DJpE//I89PKpL0wxOkILVOwtvWyNHjhkpcfYxXp7pKnSmObu89xgw7ffFv/3hFktpFSf7AcEmtT5BATalM/NPrcvGwvnLVb0bJkP6D5fnlk6VY5W2E8ikUHxMlpbVbPR7FuKeNmA1x7+olauIf2gyZgwMKWYJSg3yiDRl3kTkQOgQKEH+MNaSlTRiLwB8+oz1oL8YesCayD95ivyn4krIgnK1MglAOhBGEnEVZx0HBMlIUe2Qu/Eqd4EfGTMfHPIcy7L6aRFRd6oD2snDiYknr1kZy/7NIxo3KkEceulomvdNJJs/MkV4dqiW/oL20SYlS2VYp732s42O7RDnq5E7SLjpSLtb+PGt2rjz2+EI5++Suug/RArn0V2/IVRf0l3bJlRTpOUgffOKTRgYDTgdmDr1xTO0qZn7hLZwiGfX5GoY+RBZkLpY2uTrTWxwnpRkNfZL83L4wXl86t79nCGzSd9kYvkUqusXKIHU44VRZ+voij6/hqQWbvpC+Omtc/fFWqSlYJUWZ5RJxRED7xRpvHMFZh07xwx/+0OsD9Cl4gihZ+AE+p/9AtDNGE+3JLDxEn2e2m3T0XYh0tD0RtET+0bdwRjGTR/QE4xz5oIvQJ9HHLrxQHdGaJ2kZ05xDAWzIizYlP57hWYj0TALgJJ01Y7oUqXwek5oklz4yQp1QubI4uUxnkJdKj7pealREBR0Q3sMt+OekE46TMcoXGUlbVQanygN/f1vGPjhMVv1ns9SPS5G+c+tUHifLay8ukiG6J9Da5VVy7BE95Kl5H8rRyWkSPbq9LCotkQo1YmJzw6SNOh0SEiPU6RCjSy4KZensFfKLz34hf77nz0GDk2rxzhj/6LpggwwDZ3RZ5BpLiyEcN2COTgD/gzXtR39CtjLWhxJ6DhHBGKbkzbP0J37hBfop5zijkcH0U4hoF+QXsgKiLMYN9CEMXfo1/ZbnkAXoohjL1IdlpE++8BfJuLZhDPcy0H/cRoGh+htfMuhyYk+N79lO26JrZObaOTL//RnS+cqGJTSlejv7xQ3SvdN2faAtesQRDeH25AuWjtx56B5Q6A9/+PvHnuMBfBivqDeYIO9wLvB+6HPoXfQXeBmeR+bRX+gD8C1jCXoduIEjEdikQf6TF/nQPrQN/cpfP+Qi8gz9jV9wpO3JB92OCVTwhuhj6KHIPO5TLmnhD/KnbRm7uUc5S7Ytl9kRa6X/4EHeMoXLzrxULjvnxw4a79fvGMLBsE2b+gd3XCTD+w3zZA0TjiVVpVKnsqRYIS/JK9PJm2JvGYIz+nEoZU9t0MV4N7dcbNmqBXLUiTqJkBAj8UfGS82aMkmfrmNST5Vv2p/j+zasU7/rxfHywG33SpuTk0RjxaVEzYXaOp3u6aH7CX5VrXynY70qYymtAABAAElEQVQ6g2vmlEhYZ7UpesRL+eoC6VEcK/NefVvbpaeccdmpMvTHx0rymA6e7jl8UIacrU5jItP8TmDaurJ8jcqKdrJmRaFUHhYmETW1UltTIrWq/4WFqcNQy6pYVSY/KEmXuy7VKFHtu0VbK+U/EzbI+HtvkU8+/rIRhjs7QR77I22IED5x7BGytaze042QffRp5Bz2m9MvqOd///mi3DdulAzPSJc6tUvKAvEyd/o0OWz0MV6RyAGi9+Ex+injILzy5Zdfeg5axtnWcTz43hih4LxwdAY3A+5CM3xJmz30e1KbTXQI3PA7FZqqblP3UYAOFkIRQ+jwhwccIQdz4hRhhhGPNcwF0yLU+EPxQzng3RBgMCD3GbwYwFHkIBflQpqzzu8tW49v7DmpUsXo1vG3SuqVfT2lJ+/DJdJbPwmVWFAh1eUlsmLlCunbp6+gXM1ZtEHq+quCo0alqCusvk4Nqol5Kp1qpXP/ZClQIVqra+Ujdba5Wp0PlTrrlq8ey53Ruo9ypbR7hIT/JEMiP8yT4rByWblxhfTp3DAzjJDzPkWoYwszwoS2Qn7hsrP83T283eOfvlfiRibIls8L5Se3f8e7xfz28lVqTJZVe7gxWIMZAw8KEwMKfW3s2LGesw6DCecA/Q3Bz54NtA19kLZjUKBf0QYo1ODODCuDEu3McxDtxH0GEhxKKAMMhDiQSOMUd2YZKZ/0CBsGGQiDCSOPtOThlMRZMz6XcWPHSFpqijpVlBemT5TIuBopL90qVbr8ZduUUhkWGyVFdYXeLOrn0zV8UYnZ9Ae0jY85LFWu+dGRktZugJx+8a1y5JA0ef3DVbKtslb+fu9oVdI6eoPd1NlZ8tiHE6V6dLxs2bxEBmVWynWPjJMv5ubIe1Nn6frTzfLPJ46T9z9WbHVwT9R3aJMS70U9jFHF7fUp/5Pul3eRjjkx8rtrhsnm7M0y791C6ZieJh98NFW+d2KqYrJdiUGAP/Dyv+TyP9wiqVWRcsLIw+Xlt1R5T9HIAqXps9dJ72ENBts2VbzTx8VLj/xIaTsySSb8a4O89dQJ0mvcm9LvBFW6NX28jnOblpfql1YaHI+bF5TItqmq1I5Ml2Q12p6/f6VceWvDBpb/nDBHkk5Jk6GldXL5D3toewyRGVM2yp8efVjqa7Z6e+3066TrBEvbSW11lQRS1NngaK1GCPSIVaeaKghSJNmTZ0v42iLpXqvOuvJqHeCqZP6yQjm6p8ijvxuhK5XUsVobLqf/5Fz57XWj5cvpn8sVj34uEd/ReuKu7x7rKRXhmQ371eCgQllixh3eQzHkGgYZAxX8i7yA+MUggLdRKDHO4TP+4EUcaxzDq8gWZA8KjpND8B6GJDyNIYDiS3k44hgE4WF4kZkxFwpMPihmRGvB3+RF/ZgVTw0PSH99Nm/DOnlzdZacPriDvLKlQcHD2RCjg7MbYCkHJYs6QrwvZdFXqQd9lVk9BmX6Bf2FwZ2oIGQl13E4kJay6a9gwIwqhjMKNDiyFIVrEIojDgquQSihOFpQElAKIerHs05Z5xoKKXkgH0jrnnnztRdkU125HHGTLj1YWS4JyhqlWZVy+rExsjGrQjYue0/OO7On5BYWyYo1lXL3b9+RIf1SPUN3lS4DWjG0RsJy66RDbIwua0qVs8Z19JbMvf/xBqmpVuWuLlJqMsukLqCyWfmubvk2qelW4xn41Clz4TyZNldDrBVb6gRh3CNjcJQyfqBsgzPvRLgwfMF7YxjCD86JTTuCLzoI4fQYkcg5+I4wUfgGRZk2R3FGNuKUAHt4jPYCb54HX4wZ2oR2hpdoP8Y2zqkH58hecCZv6kKd/aHMRe0bFPbaD+bLzDeXqFctIOFHxcuQjYVy7c1D1Zm1UR674zApKVLlX8fXUQPSpVuHGIlUHkXZ3JS9TZZmFUvBybqWfEWVfqVrhaRGKaZadq6Oh/f/eqQk675Ev7l2uKzZsFXe+XCmLF2Zp87ZVfLvt/ST4j88T8JiusiCMOV1dWhAbib+ln/fLkUJZdJblzP//BefqDKuY7f25+J16sA4Rp35uhwsZ2qWVHTRgVXbL/o4Had6Vkjd9EWS9cVa/YR6kuTlqrLfz8s2OJNeW7pYlufkyvCPq6VDWKzMXacz8EoZ6Q2yK6BlwPfgyC/9hbYlyggnJaHdOApoE9odvnVyAJ6hDfgDb56jjzG20Y/gBQwe+Ib+Tf9n/Tpt3b17d6+dOOYZxlXukRflEC3LxAjyxIUH099wfqLLoMeSDvrlL3/pLaEqC1RJt+hojcLoL1XK75/PVmdM54DEbi5X53WuzJi4Tuo7t5OEtsO85/gHw4jlMZM/+8iLDBp7/FiZOifP438MgtHDY+SWH2PUdpQLfvFf6aEh3rVqeNVUVUrN6lqZ8HqBDIxLkJsu031mdFyQ4fVyyU2TpUIjLq7+1ZFy0R2TpaR7QJ3ctZKao7OmxZWyvlD73YwSqT9JdcxTUiW7rlp+cuPlcu33z5fyihqN6Evy3tPp6sgJZDMyBUMUrFnXTX+CkLfoFPA7Dhn6AmloA86ZgUdOIdtxJNEv6Z8Y1dxzMpy8aF/kOHmQHicf7Uq7oFMgU5nZd04I6kPdKI/+iawgX3jGRbcgM55++mkpKMuXVVMnqaNmcJDv0d+I3Al1PBDlV7I+TyL7YFSqcatNHZ1fJ9XJupS0YUimuoIhHBmhxqnqL4nqkGY8SUOPYOJLyUUWcbxl+QaJ+G29Lv1NlV9e0EOv9PTk40efr5ScglrZsKVcctTZidGPYw/e433BBznOmIPeDd6Uw7vSNtyDx3lnHPLgg5zDEYQjByzBENwx/JBt8C5/yDcmhnCSsicfvE1+6IL0M8rDgUMk1xtvvOHpeshIxizyY18HnqcPMOaxtB5ZSZmMsRB9d0b+bCkdXstcoEc4YMffO17Wz22YCIPn4JH10dlSu7xAtmVtldou+uz0PCnJqZSJBTqRnJImSQWqGKnPr6q2SvWWFKlbXyN1w+Mlv6ZINmZvkM7t9CElIpHZxyMpvtTT315/e7UcfXy6xGuE57RpayRRRdVQjQK65Oe9VJ6pQFP6YmWJHP6dobKyerOED1YdY4s6stprw2eqnOserU4K7XMNSb30NbmVEpuq8leTHF+ZpF9X1HFBJyrXr6mRSes2SMGM5bL2qS/l8fGjZaAuWduyuUTS2hYFl8yRCQ6uqR+s8f5qY+pl2A++Hrc/KdYICq8Y759KHW/bd43WCbMi2aC8Pm9BgbRVfbmqaEtw/59QmwObwtkjTBLA46GRNji8Vt7yjqd/0E4QfEWfYmxk/IWwIW459ViJ1GiMPy9aK1/lFElXlad9wwKeTYBsfeihhzw5js6PTgXfEhiA3EQ+wJc4HOGtfUWB+jNq6uu+Uy+1Vylj+AgvHBVhQEYQGbUuAuFPByTsQ1/v0OJqr6iXuu82bpfdqQVKMYIG4c+gwICA4wAHBDOR/CLkcJYgHBnwGRAQPgg3Bh+iOmBGlD2EIecIS48vIrdIlHaid1cvk67HtJG0koDEqIhKqA+X4oIqKdXevumoMIl6sUjO+U5X+WpZnqRr+lwd6Ht0SZAp87KlUFQQJep7n5IibWaqwbRBZ7ba6nlurfRLSZKSpDopKtSw9a6qWOSoD3Gren11h3VFS1IyNYRJvXgbR1ZIbHS07ryYJ1Udw6SXBuUVFlSqIVgtMXERsqlMI3C0zm0763IQvV6teQ8YrvsGFKmRuLlM+nZNkWW5RZKqyuL0WVt0pApISkKipHaMk0GdO8nKKSulswrL6rR6ySzcKgXrKiRZDc86lb0d2sbI2qpiKVPlcnCbHtIxQw2bqHr58JOVnrAHW3AkPN2FFNIGDNwM5ggLFHCEBwMwRh6dnnMGefohAwiKOgMGhFJGWyIUaCtC7jD6KIsBB8WOMrhP/sz4MSghlGh3PJj80ebUjbQMPiiPlIlnngGQNCiSDGQo99f+9BJ1FNTJ3K/eUfSrpeBwXXbQM1ZqJ6nim5ggUcozs+bm6Wx6Z1mhRnCXrjGyJbtCo7Xr5KYrhsglv/tcUlKjZPTADA1Dq5V3PtkoN1w5SDq2i5NnXl0hHXQToC9W5ku5BmKEq/FYvlpD8tUfMnxoqizeqnuKHB0t8XN1RvO7fSRHDawZc3PluCMaBP4nU9dLfHsNQS0o0+bTwVmnNLp3TlDFpka2qVJWofU+/fhOkpVbIasy1TOsfLFidbGWGStZOis5aECKbF1fKV06x0t2WaXEJ0fKpDlZ0lnbObC1XsKyamWherbH3tdbsh7JkUoViWN6tpW2qdHypc6QlauOuaZim6QWhUuKGviByIAOdvWSHoiSqHid+W+bKLMW6SxOcpSccFQHySuskDdXbJbImIB02RYtSXGRyktx8vK7azT0UyOJKqskLixCcvIrpF/3RCkqrZay5DqdMY2WutJ62VC/TVKSoiWmNkzmrc2Xi37TXxY9vUXDdmtl9Ih2kl+0TXGNlyxVSLI2qWHWKVEydaZga0SNnHhSJ/njkwuk++Ha1vGJUpYbrnyikUIdu8rMpWsUg86yWvmBAQznFHyE/MDhgJHhDGaUSHjXyRcURwYteAWeIloGZYvxgzxQMpEh8CQzzcgSeIz7pMUwhO8wZhjkUJQwRigPQxDDE75HGaN/oCyRlj6A3KJ/Ibd6aZ89RcO6Z02bIh98OVN+e1o/eXOtLuBRhQpehu/pEzhkKZ/neD/qiAxEEcR4xYHCffLH4EFp5x3BBdnKe5AfERDkiUx86aWXPCUQJwv5OYPIyV7X33hf7rn8SU//RmkFI65DHEOUC968A+XXZW+UzM05EtkhXEYNS5f1teWSpTyzdYpGpiWGyaBeKdKjV4Ikq6Kbk6fyUXGBsnNYihWQQX1SZFNOubw8ca2MHKbRJxsrJGNovMSqfdlD+W1beY2s21gqX67Kk66jU2R9kS5xS4qVtBxdelEbpzlFSqCsSvrHJ8ji8lpp176drMsv9Nqe+jFewAfUlzEIYwcDh3egPeEL3hnlBpmTqYo6z9GOYEB6MIO/wII2R86hSGPYoqjTfu4LJJSHUo9BCsbkiUMBOYuST/vBm7QTBgK/8I7jTfiG9owuKZQ+PXvIrNWrpLaTztDHR0h+xVbtt9Fyyoj28v5ElYU61MTHRMij14yUKROzZNPGcvnpxf3k7b+tlLyaagnEhklmcbl07a7RJ6WVsuwrVfZGJUi+ts+xqboEMF4jl6rr5e1P18uct78rU2blyH1/XSDPPTBGCnVG7N2JG+S2qw+TR55bLPOn5kufuGh5OUejAXWHdsmIkGh1LKUVR0jWCvU29NAxV6NW2lRGSvqFDQbDpmdzPLkWdkaCLvmqkHXLi3XuTf1HmdpXVBbHjU6U8nq9kl8tXbZESX+dMYwpDUhRTpV06hIny1eoXEyPla/Sy6RdXrgMTmwjcTFxXr0Yx2gr+gl4MW7ghKOtGFtwFOB48/cxDCaMScYtCNlAm8D//JEX5PoIbY7TEf0TByftCpGWfosTgfZCd+Ea7U3bki91oxzkFn2GdnfpuU4fpRz6bbTK6+Q2SbJOsuSoIemydUOldOgZJ/NXFUqY6hhLJuTLcI2eXLtOnZYbKyW6qzp1dLldsk6ldomIkTuvH6kGUby885Xuh7A0W1aUlklMVo30TE2We28YLm98lClvvZMp3z9Vl10u26j7FEVJYZTqOLE1cs/Rg6V7uwT53+cbpUDbfGCvVJk4M0vaqY4ysm8beVvTM57U674TFc/mSrRa0H010i9bZ+QjZ22TBA3XTimPkFOP1BlyNWoStW/mLNoqE1eXeLIR3cLh5WQMmIABegB9jKUvkyZN8vAFD6IUwBy9ECw55z7pMXTpK7QteNNXaRecPiyPpg2RybQLRPnoHBD9nDzgCfQT2gq9hnPkIM/gHIF3yMc5RJC7XJ+3aZZk9EqUOl3P37FNrOJVJUnquOvXK0lyVU5NmLlRorS9qrJrpG1YjLQZHit5W7ZJSd8ICejnfztvCkjZqgqpOjVO9Ubtz3/eIl06xEvy0BjJVkO4Xsf2zr3jZeN8nTrQUIm26tBf075ShhTFy9rqMqnsqBNv+l/nNWHyyK+OkDsfnCNt0jtL+/RIWbFBJwZUXyhX3yTjF3wNNoxt4IGujCyCGP+Qhcg82gFZh8yH13HcIOvhadoG2QSvkwbs0M04xsHAPZ7njzEGeUjkyGWXXSZEoNNGOGVpA7CED8CadmCc45y6kS99DQcev9QfOcrYW6cTH2nqwX5t4QLpofxYrhFB7XWJHfpGO9V5Nym+y9agmybLvPXazt3DJS4vTMo3VkvnU5Ila7Q6XtW4rZqo4+dxqiwtKpMOpdFSpJNVgQVVUq5Os4izUyV9oupauh9WpJoBeUW65KioXCd91NhNTpL22tafr86VY1TPKiislk1V2yRraZm89ddxqvvlab/TZdmqzyUrxr2OS5U3l26SimJ1lFZGSXV6mIdZycAoaTuvWmoi9StaZepcUt7Ni9eln5/n6fLWJOnUOU7rUivZ5ZWyeV6JhI+OlWNK1IGnX5DpPzxZZszLU9shXLor/81S3TSsqF514lRZVaD6qC6nHdI3Vd+/QPrfoAqgUmDaNtmYrO+oy2yzX8+XbvWxslw3UO+SliCdeupk2qJSnQToIWsXb5US9Xxk5qhDmndWXa4iPiDdJVoiK9WJG65juUYa5mn0RExahIzomCobVpTIcG2LlLgomTYrVzZk13v9EvkGT9Bv4T36J9fgGXhkcHiNfLIxV7qpfRGl/BaueJGW8Zn78CgyGp7BGY+M/Mtf/uJFaNIn0YPos9Du7tnoPdTEP56UCGQHdriFEQMjImyMWh+BptpAGiJE97hwmBEmQkFA+CHEYUoGDIQ9Ag5hhKBygz+DNcKRNAwcTmghjFDGOUf5IN2MBbpWCgVZHW6p6onsk6GecmV2KF2N9i1btkq4DgZJqryx9IGOtECNt+RIDQvKVsWbKeJtXztW9Ln8tWotjmowrnGxVqpyFBapDpD+umxni24QowNAuCaBwtRwzIhU4a2KHmuQIxrGO29WJ1xnhjOX6UyzBmEc3lGXbOTVSc/2iRouHCYdVKnmt0u6GkI1MWqkJGhsgnq+62s0lF8VOzV4U+NjJdBHZ1S76MyCUtdOCbJ+myr2CZqmRkO12gdUwOlA1FeV14pqL02V7i2xTHedHjm4YUaIQYQ+ROdG0WFAoXMzmEIM5Aw6ziBDYCAsmPGFGDS4z6BCG5IfgzTCgTy4D9GODEa0Me3IgILAoZ0ok+eIdkC4UAaEEOE5+IPr1I82xbBkcCN/BBI8gDMEvmmrywpoqQgFuk3bNjJP1xM7YbRyabFEfN3uIzU0N15D4uYs1g26NH2+Oo2ycjVENyLgDeijj2rAp1iXTiSoQEfxitR7hw3U91cl4rBh2l5KbTUkuSaugTdQAqt14AjTMpgphA4fnu4Z2N6J/oOivGxpoaSqUE5S54b609UJFKd1VF2irEaOGZkhE7/M0g271M+lIXdbSyrVcCuVOA1lzcwpkUhd6aEuLVm8ulAH3Cgp3qQOE3WkFS9SA1/5NSU+Wjrp+myoc/d4KaqolA1ZZXKUGvk4NSo6Nri54+vDJF6dCHE6QJfrwJ6jA1qCOkT+/voKGTg0RVaq0yMlKUpGDGro3CVr9WsmOpBl68zntLk50k358bjD20maLunorbx65NC2kp6mirTWc12ubpil3aun8mP3QGwQf+q04D1VJI/pIEcMV+M6S7/8ogPwwnXqYKqpks7K6xtVKU1JipQNa8ukkGgJxSVN32uuKtnJyldJaenqKGxodwrB+YTyiaIIj0DwI4SSCu/AT/AA58gPeAelijGDc7zpPAuv0Q94HsUWmeMnjFMUJPoH8olfeB6iDyFr4EH4Eh4nH8qH4HWe4Xn6CmWXqaMRytR8xp+oYYPqfEpSxYt6OmXYS6D/oAxClEe9XLkoYq7P8k70se7du3tpnVOAekL0L45J4wZ+6oUSivIIBvRX6kkZYOCIPg/R18CINDzLu4KnM8aoA9dJB9W1aS/HDNNdtNslS+fkhnZJ7hPr8U9lP/2Syhf6dR+Ncpn81RYZOixVXvqPLj1qEyNztd9+MHmTZKhSB3XrmCCR6doHKspkSIcUiYoLkxidskmIjZSrLxogMTqDXqeyVxeG6jY79TKiZ5psUWUvPKatDGuTIEvyizXyKU6yChocJdQPnsBoAUv4gHfhOu/K+zHuIKdwCtCenJPOKcTIIbADM7ACQ7B1BE4ozeQFgb1TuhinnKLPPcrheeqA8s1SD4cr92h/cKXO1HGdGhGLN26WuvQoqVRHX5TKm/pttRKjY9jHb6+XzolxEqZjWu16jUBSRbG8Qtf1agRYjUbiVSUEZPPWCunUPl4S1Sgp3LRNnQQBOUcNzxVrdcPZ6Cidua5S2ci42jBO6qPaPwLSp2uiGkU6jibq2NxwS/r3zpBS3cxzdNcMSVO5pqE86pDXMUgjK6p1TBt0dKpERIZLRbW2j/4fxiBYp8uFBiR7ssnLRs8DGmqMJK2L1SijHqpoL1OlVDddlmXqOOqgRr/WISolQqbMztaIjWo586Te6lDVsGDFAsorqpSZC7M9DOFD+h6GFbiDN/0bDPmjjcEXPgdTrkFgy1jCeMd1xhfaD/zpM6SnvRnHHNFfaTfaHl5ybUT+GK6UhXzgHv2VdG7cwsAiP8qjH9OPSOf6LLzQOUUdc2qERCuGWlFPDudH1UhpQYNskdSAbFhX5vE9e2pWK37l6oxLLY2Q5MRI7ScNjpRCjS4ppztp20pevTovVH/Q/xbppsQQxzFqZAzolyy5a8t1trdaJk7ZLF/My5FUXY6TquNB2zTdN0hxyVVH80w1djZlNcgwno8OC5deagTVqhgOy9ENpBXLDVqPKK3z0vXFOtGhyzEUP1QjZE1XfU8cfMhVDAfwpR3oX7QdONJfIPQJMEe+gil40aakByuwpi+Dteu/5MNz4Akhe+mTODZoT/KAP1zepOE+z0GUTT3hCSZVKBuivqSjzSEizJDXtE+qpk/X8XemOtmT20RJoo6H2XnbZMKcjTowqRtUJxvatE9Th0yELP+qULqooYjOyPKUpDqWSOqYvlIdQ5FhktAnRo48PUPa9lfHh8qR/p2TpL68XjLidcwdmKhRL+pIbaP9XPXIGAU9UdtapzIkrA4ls15G90qXhSs1iq9eZ9T1eZwOvBM4ggG/yBbeC75244XjZd6bMQ2s3D14FP0O+cS4S36MvfA07YCzlLzhd3gcGUc7ghdRD/A6xC/9zPE5eZIXshaiTWgv1y/pJ/RDrsMz4M34mhBTq/qY9t126hhU4ZGuy7F6d9VJGL2ELMF5/ftfjJIs/VJEwkB16Kj86D4wSeKOjpHcFaUS+bV888pBBKjTKGqjymDVrao76P4LnaIloNGsdRnhkq28vlUjezzS6J4jFd/TxnVVEyAg65Yon2qBndvr2BYZ69kSKTp5k6S6TJru+dBBx7GtpTUya6FGSK/Qfluk0Q6KC1TApKZShZajWUmcOm25p/u2SqyOa30ykjSSVCcTM0ulMq9G4tqqA0R1tyXzi2S2yuh8Nfp7DVIbQJfghEepvrypViNXM6QqrFYKN25TPBLUZtDMlCK/NkDy1rJnlCdSpY1iBnXVSZ8BX9sSXXTZbs56jU4coREtKnq3xejkaa94KYtS55Iuxc0trJQMtWfiysOke5Lqm2oDkd+WlaqHKnbZOolQpstxq+piPN5wfZIxDt0Hhz28BI+hf7kxsle7dIlSXizSPk6bwJe0OWOv62/wCQRfQoy9OPyRATzjdC7v5l7+E/77vnf+PqAyru6chsbay/yCjxP2CgAMCAeCAGmSemsJ89ob4h0A3TXgrvKi82aq1x3hsTsU/pxyV8M4H3ys7vvaJg22YvDa7hzgBcWTSvghAy8MBkMivAhjQ8HjGswF4zLgICwJuWJWCgxRAFmbjKHs2hKjpHv37jJ27FgJi9JNegpXSacfdZMaVZ4i+6hw6psoK/LKpWNtN+l5wRGSemI/yVfPZZUO4t11R9nbfzpUrjj/BLnt52fq7GqKrotdI3Uq8BN0HWylCgHppkqWyqGicA2D1gGjeot6pU9KkbAOalAOUY99RJ2M6DNS/nTdE1Kpg0TUiA6S0aGbROnsUmwfHSyOTFTBXyuVat+sPz5W6tQIKzlOlU9VlPsdO0Y6jR0gVd06Sr/wAfL88x/J0hUb1JM4Qq644Er58QXXyhMPPSU3X/Br3ezrZ3LB2VfKjy77lfz8J7+Wn591g9x46a3ym8t+Izf98CZ9h+slZ1OpfDThU4nTGa2uGqY84ohR0l4F/4hRvXRQKdI+oGFaXw/S4M4fs7jwFIMTay6ZCSSygNkD0jKr5zZlZYBGeWBAgZdRDhiAcAIhPOBLrjOYEJLlIlkQFtyjDWlrBniO+eN5Bi3alHXzPMt9N0hiwKHYI3jwgDKQVVeph3QbQjVCOupylchAha6bVyOwW4x0OKadFOqgntg3QVbNK1DFZ4AccdSJctrJp+i68ULp0a29LFmZKzdfrJuwnnGqfDVnvTz17Hx95wxJ1GiAUYPayo/O7ivnnNxTliwsks0522RBXKlu0thJehcH5Lnbj9HPV9XIsA46k7Bwq1x4fHcNdcyX3157hIw7qpsce3hnGTq4q6SndpGZmZul/SW61lvb/MZrh6gjKE0u+O5IWb9Jl+jojONN14yR73/3aLnq0pPkN9efLJ06ZEhBVkBWqdNjw+Zceeruk2WjRga0T1WjXyM3ZmqofvKZqZJ4pH4ZZlaBJA1XxVkjZo7ooUqOtk2vbkkyd4lGk+gAUVqjSp3ONpfozOHJh3eQjz7fJB3P0WUAOjM1algbyVTHWm+NZhjSr5OMHXOEfLJ4nSQfrY6Womr55S+GyjnnDVKnXLiueyzTgV/30iiLkJG6JOX31x0mU2Zmy5oUnb0cFyWLO1XLxhhdbjRSI0qm6ICrfSVCvejlOiv3/ltrVHGI8JawHDGwrXROiJW7f3aYfqGon5x0fE+ZNq9SfnrhSOmVESavfqUzl+e0lZx+qgj1UwUtMlXGDDrGC1Wm7VHOcUKiSBJOiZICXzGTjJxDpsDHrJXmGD6Br/iF55AppEfxZTBDWSJPzuFr+AyjnegBFCxkEXKT+8y8IGcwPnCAw6MMjMgv6kZ+9BmUM66hBBNWyEAcrppFvl7PSFKZUlYh0SpXv8hvGFSdkUSZ5Ee/6tGjh5c/dfh/9s4DUKriasDnFXrvXXpvSlfpTcUWG7GLscWWRI1Ro8YaNRorGlv87Ynd2LCiiFhQFKygoqIgIgLSO2//881jlvsud/fte+y+xhnYd3dvmTvzTTtz5swM53knAhsCHsIvgiTxom4kvsyhRtjj3ZRnhDyEZsozYcIfhHX8IVzEBXNF4gUDlIGEk/hT7qgDWCwMIYDfLIDM85RreOAH1h3U14QLwZBRsn89+KTs0r6v/POGu3ThLVVuDKur+bSGrNOOUM8eqkRYkyXDNB9OmfKTTLxkoMzUMjp0QGeZ9sE8+d3h/eRj3Z1h+ToVznQx1OZta6lJqaaRru4+4Sgtv7t2lPd0Luzn63+RlfvUkModVMmrSsQ5G9fIqgabpH/jvjL26BOlbkvteG5YK2u1Xhq9737OMuWUU05xC/gx9/7BBx90HQ64skYSgvJIHWklb7AAM20NDD1z6ibShTzGSAsj6kz3QkEBE/INnRoUFfiJf6Q/9/IsaeKFctIL1qQjbdw+++zj0oe0oF2j/iNv8T7yK4Ia7d56VcCNHbq3vPzAy3KG7jIw84uPpca4ztKvfR01T56tHX/tbPTOkZha6B18uFq+qCB50MhdpH+vJvLUy9/LIWPbyEXH7SpH7dtJxo9tL7fc/7lU13K9YPdKcmj3ZtJBR9o2qLC8QYXtX9QC76gD2stX2u4dMLqtWjxs1O1ydQHBeo1VufuzTP/0e/mmamM5YP+jZUHtJdJu717SfEA7qd+tuVRqq1vE1m0nDfu0kpP2bCHfvq2dtIW6sY4KzPVa19PO0WLtZDWTpVN/UqFTlfM9VQmkytQ6g1tK97bdZeW3y+TrQbnybZWN0nzkMF3cuaf8qtPlTtj7Mvnfsy9Lo76q9NO6uFOTujpiV0k++2q5Lr45XrpoPmyn7CtVqhwvt5Qr8j/sybOUCdKCdCGtabcoO6QJ+Zg8TftE2sEc2QNZizTEH35TLvlN2iOD0Elro3IHUwnwm7YMP5BDyAukH51b2jHWUiEM5COeo6yR18iD+Is11cYq1aV6/VbKS+VUNb2eMEHzvU6Tad+6jry5eqm0HFNfKi3NkpqqdG61awOp9H0tWaKLw/3+9HPVmq+vtpE1ZfJb87QcLZFxfQ/URbIvk0MPO1Je+t9Unb++We74y3Bt1zq66TOfLlgmuXtr2Vyj6u2D6knOTLVIq19d/nRyD1UYt5SeHRvJP+/6RH5dulGuv3mQvD1nsSxRxc96nYte/Xsd+eyrirAOOlqv+WVhdx3db5crG9o3ka+naJtUubW06bC7HHnc8dKkeVuZqfID1mF0YqlD4E4ZgCX1GXU58jnssGalTqFeplxSf1E+SE/KHvUedTT+UGfRHlAOqf/5UL7gTzrynfTGSgXe1OfIjKQXz1LWSCfSEPmCtKJ9ID3IF4SJ9YIo4+QXHG3PsuUrZYmORHfeb4S0G9tDdyZoLzn920rHrN7y7qR35OI/XqyLS/9V/nzqn+Wtbz6SRetVUTyijuQ21ZHf91bJ4vU6zUStBxu1bS5dB+0uLYd1lTlqLbnu5xXSfKzWD93rSR1V8NcepAMqPy+Xhy58XGrVaSQffvetdDx+qPz46LdSf2M9GTXiAGmkZvWnnbmfnPm7ITL53YXSRDuvG3WQoW+/QU6ZAFvaAvIy+ZE8SPzJw1jGURbI36QF7QR5FWa0b8h/5GnaNsoQ98CNssI6KjCGEzIezyGb8R6egRf1GNdpH2lHqPNIR8okz/KhTaVs8YE/dTXyJmFA6UD4XFvVcBdV8LRSK6hfZeXu1TUfqgw0tI9U3qO9zNM8t9/eB8mGrJZyzumXyuEjjpBn57wkm3s1kqxfY7JJLUk2z1otm2aqdYtOX8jZRRWxy3U6rk5H1tUnJK8fymi1stc2a03bytK8d3vpvNce0nT3ztK0cj1ZrwsnrlKFxvi920pTlSk7dKgtY/dtIzk62Djt659locpRTGEeM7ilDlg1kB+1s96rx4Eye+3XsqmWKjXVeitL5bDNrbTM6KBD425qhaz1l+ymAxZdKsm8GaoQVCXudy10WsKGXLn+ggEydvdm0r+jTmdbvExq1K4uzXJy5fh9O8oErcNHdGkkowb0kHH7HytnX/iAHHfkWTJ/8SJZumiufKlWs7HqWdJs99o6oKl1qw56Lfley/ZuqiBSC6lvZq2QCQPayMHDdpFlSzbqVOUq2jdoKHfdM0f2GnG4/OGYU2S/kRPkhiv/JWee9BdXt3z640ppSx25S3c574zL5eZL/iUL5r4vt185Xn67/0DZZ2RfOfGIgfLkS3M0n7RwMjzlinqU/h7petVVV7l8Nk/7ovW07N89YleZ/csyVXyvks6dOkrrNm1lqJZbpqWRX0h78g/+kF8on7StyBp8J1/RN2EqUTqcUzzQ4Y3trp3cfIugdPjr5phg/k1FUlyH2RAFDwGhqI7FLHk/AhuO+UwIMFSmVMrXX3+9qzCZKxv8cI33UQnSaLG1DfMVqWTxi0QNOq4TRypmEp5KhYqYuYepWotkfa+a7Geygt7qEIH2J47XNMkueLoov6ZMmeIYECbMh2mA+U5mIoNxpAJCCEP4QzCmcqLCojLjHBmShgaHsAcHMiEVmr+3U90N8mNMBeKG2tPf6la9ulJuvPQ2eWHGJKmqZubZHZtKrWEdddG3FbLv0A46atvB3dlLG4MHnlSzfl0MLVdNzUVNfkVHdGIjG+hQtZpIfa3zs3K0MtNKZLOOLsU2x6RmFRXec+vK6LZDtUP7hfzaLF9js+5LtexYqaNRurYDIzs5KoTlfr9Rlr+3Qnrt3187wPnv5MUstvWHsae6SnzYiLHCp037bu731iikdKChGdZvmNxzw78lVyf4N6rdUFcV19GrWJZqRFvKR7O+cY0IghINEo0u+QJB1zfMXHvnnXdcQ0VDS4NEZUDepxKgwPObBpnnyWsIDQgMpA0VBh8acNKXBp7GifyLSTKNGMIeggF5GyGOxo10RwDD0eDwbioZ8j6NII0R33kuL5arHbsZ0q1LGx2N0UXdsqrIl6qFbzqooU5bqCE5qrX9cMkyGdRkX7n2H//neLbt1F8X5Wkl7boM1nmQ62WOmvpeffPz0rZjb7fjyYwPpmsnvIHOQ18tb+toW5aaAf+g2u91v2olvq6W1Omumv93f5Fuqmk/ZK82smfbJtJDhe11KpA9O/lHOfag/LAvXb5G1m2qJJ98rdYDbXVBvL9PkubV68h7asp8yNjdpFvn7rqIZEed2vGlHH/kSA0vpuL5bhdtUOf9Ulceufd/skbD/9u9u8roob10Vf+eMkRX9Z/x9XeyvoXmdR3d+vkDHQ3ooaNcbXRBIx1FWazz3leq0mDRL2p2uFQtA7QhZbpJSzXjpHNSv6qWh7Y64q/zfRdsWCdrG+soeKXN8uvnOXL0wQPklXfmSKW+NWT2kg2yYE11+WDyd/LZ7FXy14vvlPP/eom0bddZXnrucVXWdJEGKqQ+/u5c2dJpaxnTBs7p1X/RjuP3W2TQhNFSSRUadB4oZ3zmvaGjyYs2yC8rKsmDT8+RZRtayFEnXCBb1syVww8ZKhccPVrmqql4v5bN5edXdK75H692DRflm/xC3uDDfFDM2hGcyKdcI69xjoYOYZVnuBcBig40Ag55lIaPuoe6yAs+XnmGsIujDiJfcqRh436E3RdffNEJc+RfOtrU31xD+GUBZOoihDoEM/Io0zdcnu7VW9aqYMDc9bO7t5FZOgVg2oLFTvimnFCHoxwhPNR51GWURYQ5wsZ7KGfsREM8iCv1IEIeZZe68ayzzpKbbrrJKQ2pA3g/7RV+EV4EbhYaZsV/wk7HmjLJebiwOwhtDR/44fDngQcecOWbskh9wdQW4gsr4gljRp39Ys34+euvS2Th7K9lynPzJKYjOQ061lSzUZ1PvqaJdOg0XC0/lkqlOgNUkG0gw0ePl+N+d6pUq9VWHn7kSTlgeHeZrCvq1+9cW5ap0FZFzWkb6Jz+lrrQ3iH77in/+N+but12FclVq5tcNUPnw4hg40X5bQNpMG/hItlt0O5y4403unjwh12nyC+s+QAr0hIhnI4P87ZRAhBHnif+1FnkK5SntE3UdcSReop08uxJNxiTr2BO+iHUkyZ8p86kTqRuhDuKJQRp8gnpiYKMdo82jnoVZRphoG3ET/I3eYh7vUM+qD2omayoU0sa7NJAmup2uj99pkrXts3kBzVtZ7Trof9+KZ/O3Sj9dusoDVWOytF2m2kTy3RufjWduvfS6wt1jRe1zNH5xUeoouEjneubtz6mz6rZqy4Qxno3LBzYuFFdOeLQMdK6VRO1gFohT70wQ47VDiV5Y+qk1yVH06latequTV301lypubCartBfX35QZcx5OvVjzzZN5JBB3WRw667y/DdzpcfgPaXdHt2ldZ8uEpulbZDWrU3aN3Pb79bSdnm1dqSr697zzRrny1gN51RyHbjvdQHJj6Z+KO2OUQWomvIv0fUORKdQNmmqW2uqRRGKffInPOlg0dGkDFP+UaSz8wzyF2lKfif/01EiH9DBhT1lifaGfMA10ou0JM3xm3JK+cMffz/llHQmH5C/qGsom7yD/EV7h5kw+YhnuJ8BGMq1Dy+KK5SB7G5B+brj9ttkrVo+NFbLgRY6OrlI5+x/smalrK5cQ5U6avXTuZk07K4LcsYaCzt/4Ch3tG8jxhwmxx1/qmvvOMfnuAknyVtT35f/PP2evDjlK1m1voZMff07LWN1pZLW22t1JL2h4hzQp7E8P3mRWj78oqPnNaSNyiffrVsi0z7+SWpWypVleTqa2r6qrHl/pbQeqGbpuptS0+Y1JDZF5QKVgap8sEUeuPZ+11Z4+QUlA9NafH0Nd85R71F3Uv5o6+FEWKmr4M/gBmmFox6EPfxQIlCGTzrpJCeDkLbU08gHjKLDlLLGGgTkATorpCm7lnAfClqOlGc+1GGkH/UgHV7Cg1KE85wjXcgf1L+kE53vanWqS5eD+7uw+T/Ib802N5Rxo8f5U+74+ItPyNyvvpUtAzXt1YIht0sd2VxXO4a6g0yNz9SSjI6p5vu6XZvJnPtnSutR+e0ADy9TOeK71xfIsXsfIxMOOFZ6NtZpoJt0LZxDTpJ/6u4yNSvrdNLN3wkyA25vbWP5LFxeX268+V/OKoG62a8JBFfKBLIb9TdtJOUDZQ91HlYPyHrEm+te7oIp7SrphWLGK42Qx73CAuasA0Y95ncSwU/KD2WSASXqRNIEOY7ywsL9nKOew98LL7zQ1XeUH+o/6lnCR/5AJqVMNaymAyaffqMZngWhG8taXc9mv/77yt8uubJAnn/wunulw367SrOeKoMu03WAVEldp15dWaMLvI869UCpqSyWrFsmWWoRsGXuKqk+sIls+l6twBo2ku5dejme/Kn3U2V54Y7npGH1zvLOe0ukvbZDH37wpVqi1JMVOg1m0rR5MrvqOvl29Tp59bWF8r/qa2XNN7ky6T+TZMYHM2T2S59JVbU6zVZLio29Vc6bpRaeNdXy6hNdJL1nDVGVhGzQXfJWqsJ9Uw+dnqSWq7PUaujbd1fIlz9vlFXzsqXdCYOd/PTWlO8Ea6ZX3tNBnjWNZMLvL4+Hk7zw2Q9TnJVUTPscWEpVUeXGTz/qoNF6tdJWKzMWRVqpHLCYbV2vhpw2vqv0U3n3s890Eeh2feSqq++M7HO4PsXWPgllFDd1iq6T1qdR/P2sTfbRF7q4668rnExAm0jaUhczVZs6EFkKeeGNZ59y614d3qGltNH2XVdAkYa7aF3Vtp3zj/xInuB+8gHtI+WRvgflGb8p74SFvJQOF+/WZr+TlQ7/4n6wsA+R3xH30EMPuYqrqH7QcJ133nlOm8ezl112mSukJAoNEY6Vrymk/uPn3yNkApvRGraIogBSAdJgshBW0CGkEE+0i2iGcVSqVAQIpam6KPYxZNHcVH2Ivo8KH2UIjStzpKnkaKxpAGiQcFQ6ZDwaYToYCG5sV8VK0jRECG5eWENQoEJ77LHHnMCGPwjpy9ZUkZ4r6snKV3SLNK1oqk7dIIcNOyQyUDmdmsh7U+cVuHaE7uPbv45qYmu3kFad2krtqrUl++VlOi9svWzWSmOLVhTak9fFDTS7auVYVTWSlX7Y4oQLBAG/Yjee/mawjmTq/H9ch/1bSWVtQIfupgtK6ZytoPPPB88V9ztCDprjWt1ayuvTPnRKh/Vr82TqtC/d/FeEXgotay/QKPGbVWfplNDA05iQZ8i3CNP8puHliADMyAWOtECgQEjH+U4MCiHSinSiseBD2uAwvSLdycdUJAhy3iGM+Q4Rggj5eYp2EAkTyg38o9HjOYQRGtFPv5jn8lSnzt1kz/a7yk9a+eFotNlOM7wVEmz4sIAO2/9MnvqJO3Ku3wBdbflPB8iQ3btKVnaOLs6lDVNODek3aJicffrZboGiDuePkXue1K0Zc9RSp1ZtGaKLUN7+ny9kz/75FTLvbtCohVuolJWHecdGXV/kmov+IUP3OlmWbe7j9tq+7r6F8vvTzuP2Ao7FTVnAJ5Gb881ynbaQb+adpeaBv+paCxuzsuQHXbxolY4IttutgVx9sY7gasNSv7Vu36RzfFlckoXjdutaX3Ln5ZsQ1lLz23odqkudXyrpvN/puhL2bN1yNlvmzlCLmB5tZZ12Blbv1Vu69RnteBEeGC1ZXUPngC908d6g5t2yTusvV9foUc0Da67ROcH9+kYGf7f+QzU/6taIB+kuRX9RK55L8rf8e+fTbaZVN557kOTOj8m44Qe696EwZVHSoGO0BSERR6eQBs4rDciDCPzkGRx5k/yCAEZd4pVn5G8EGwQm7kdgQjBDmGJdB/KZd9Q9bI1HI4jQRr2DIoLyg1UDimDYkD+Dzj9HfXz4KadKvzH7yHwdwb9hwpG6sG1DJxAfofU64SMOCMgcKSvEg7KAgEY5QOAmfCiq6fhTJyKks80bZZf34+BFOBHkKFuEmwW7gvdwL79RXPPhe1EczBAGEznK1rARo+W7p8+VEUtby4n1Vcma11TefWuGK3eTp7wfL39s+0Z4OM76XKfnjNUR7Kz6Wu5UkZWrI0NqsXXfo/PkhTdWy7s653n1z5g+x8UEt51mzewaru667777HA/SpLA4cZ37iT9pisUWz9H2UD+hNOJDOpO+fOCKUgCBnfoLAYg0QbFAWnCevHHCCSe4vEV+wD/ehRBOfRnkRhoiOHGdTi4dMuo9hCzyAp1Y2n8/3c3zZqu2mtPy6wAWtVu5JSZ9m/bRPNtQfmzdWB64/wsZonXNvY99KKMOPF+enfKrlodK0qldc+Va1a0B073nQPn2zSXyyWfLdMtpXa9CF/u84KwRai24RUaPHCivP/UXeeb1n6Vh4/x6DcGS+izozjjsdBcOFsZroAI6W1/SZrPl2+alVaTKysrSuVVHtxsJi48Nr9Mj+Lj7zi4IfdZ1dv7QBrZf0UqGLO/hOhTE0W8fR57K3lRXvvphlXzYVOdAN68rdfrrdD/lNHjwEKcooC1i4IXOJewoK3QksbCks0r6kbbeUda8tQnnaKco/xwp2zh+k3YoIpBVSD/KM3mG9KWDHCy71Cl0rti1gXJHOHzZ5IjlIIvvEVb8IO9QV5H2bBuOO3TvAyVXFecPT5svE+/5zE05QRnepEkbt5ihX8izSY3G7v5U/lxy1e0uP5x67j3yf/99Ry48d4K0VqVPHVUabdHpFl833qLTQ3PlqON66BaqnXTkVBcgVavQLh2ayJJmlVRJv0KWawduvW61KXvUlHkzf5Xvflgtq1dp+9NNy+kyHcW87K54XH2YiDP1md/xAPmMckOngsE2yh31JFxhRz1Onqc8cY16jHSjbFF+go4ySbogw8AS+QTlBJ0bX85II+p8HOeQockD1KG0CTg63ISRdzM4Qj1AHiAcKDBoDyiPWIER1hsuv94tBuke3vqHvBuWNbhEGWnao4XkfZsvl3CucrYqbFbXlVlTZkmLJbpukeZzPs07tZF5P+ZbViC/xHJq66Kge8SZwpLdG4L56Zo7puNlpIPPfVrHYQHoLVKpj4gn8UOx4Ns72lgsX1Eu0NmHJfkaFvRReA7FDvmWvEqakI6kGWUMmZBw0f5QdigDcGbK7PDhw10fBtmfOpXrtG/4ce2117pwwJXnCTPcsbrjXb6PRHpRt5J/jhz0W2kyrZKMrzJSLj/uEle2wwC69Osal8Pb9+0u3Rp1lvlPfiuvPfOaO0+9WW2+ivBjm0tNtcLrvk4HGxbUK7CNJX76MkbYqIOO/+O/pVUb3VJ0Yy3pqAqo9WrpkN22mqwYqgvk/66FbP5mtYwdPMYFh7qL9+Vq+75a12vR2Tf509a067Bq7Ua3Fg9TvluOaS5b1PIzW5O+fqeWsqSmKigO2kNWt2vsylT7mbrO04YO8vvDzpb9Dr1KHnlyqpMrg3EmfHWqt1AlY0/57bE9tC3I0R0t8qSRTqFdNF8XgdU0RGal//Fit5jcp3X++DNfl70mvCIvLNwgBx5watC7Qr8j1773RVW3GD9tQ26tbvLa61PdYDDKOvIICgMU6ay54x3hbDt4pNww7SO5dtbXGs5q8tBrU6RTt/zBZH8f/VfyF/1h8hjyPmlP24rS0pdvf/+OHuNd26xX1avxoiuqX+8qeD96QaQYlcFMjYYFwYsCQ6PA9pEUHAJLZ4o9m6ksMK9ES40wec4557jRij/84Q9uISi0eay4iUbcP8eICAWCAnXBBRc4U9PTTjvNbcs0RTtCdPqxWKBC4v34jVbo9ttvd8+EISBMUJjwDwdUNLXcj8CLI2xBYZdRGBpRKlIqbZQPhJNnqYBZ3I/E9Y4KGi0wnNgTOegQrijIrBZaqNN+iWMfujGvr5aWHXQIcYT5T3/6k8tUmAxTuXAkM5FJqVz4UDlSaQYdlRIs2AqOBts7uCEMsKiQa0Cq5skDNx3mLlMoEHro6EU5KqCZT80ueCmnljYI2iB10c6Hrm7bTjekX/L8V1qRrpE5c1Ug6axCcY6yz2POqGoTN25Lh6BHKDVwHZZWle+/XSVV61WTc8YNkZ9+aC6fLflBtjVF4vZADz67o99pBBkZm1xjilpwvCjN6raQC8+7It5o4T8sqQi84zvbXnFEYcVIBfmOtOCDZYLvCNLhoxxiQkpjTUNDw4TiCCsH8ihHKg/OBTWTCAl+6oZ/N/7jH5p1GhnCQBmnfCE04iijEyZMcII5wjmNGKtVM4JEmb3yyivdVnMfz58tq6eultfuphJJ3dHhnzb9cRmyhyrHPvpZBvdvH887NPgfqoWFzFT/dh0nU95fqtYAs1UYb+EUCnnr58vVd38hh+7VSho2qi13PfaeXHbtNsUgHavhY/PDMmLf/Eoe/tOmv+neEQ+l5r1gmsTPb/3CPOu3fl0q67Ys16kPqinX+b2rNY3aNNGFrTTfv/LxChnYoZW01LVEvtSVmHN0nt4p+3eW/76oJuK7N5fXJv0sG77KljqqeNiimviqK2s6n2lIcKyevXiG7rqyy09OKJo48X533v+55PJ/yifT7pRpM2dJJe0Abp6jC461rqKTFFV4/mCNrJ6ro6wn95NvWBUrgQvHb8ReR8s1t9+m5qmD3Orc2VXzt6/kce5FwYpgRD5DQCHvUTdQH9JxQAlBPY6jXkAQpQ6hrmE7Mepd/CEfMm2AEWSUYwhGCLjc6x3KUeprBFrvwgKv79SGyw95GKHKj9TxGxfMv2MG9pfxe4gMatdKflTd42ytx7nPW13QWOMQlgk3ShFG4ymLKBKoK4kvz/gtNN0DW/8QzzDf8G9/f6Lz/nrU0St0gtcQKMOO/MRWsk1qqoD/bQ1VROwVviXyN2Xj9pemyPwqOg2oc36atu+9a7wstb35P7pw5TrZpB0BbamkSuXqsnnu0rhfRY2Tv9+nKR5Rb5In6ETDOOy4l3qQha0QiHAoaBHufT4kr5JnEfpxwTzmTugf8gp1nnf4ST3qlUacpz70YfT3cUSoZVtNVs2/47Rb4/e4PHnJK/Fb85+9Xu7+v3PlgtN20fUW+kiXXtWc4Mq97IQw/6cF8oXulvP9T4tUjhkn9zy3QYbu2UpO//NE/f6c+16leV/52+Hb2gpegN98wuWAaytWxJzCge/eLftqvY7GznTb2XGuR6OucT/8Pf4Y5eet/7jVbdXZQa3GcHTWmKIRdDD1223T9qAg8mnLVBqUZnR4kMdQyiHMMl+dThh1iS9T1C2kGb8ZzAk6ZA3KJ8Iv8ijpjtxJB5b0YoHRwhyyDB8GYA466KB4+vEcHZx7D3lCuu/fXNbp76++Xy5VX6oa30GBexjcaFwjX57kd6rO5yXK5yi1pGsmVeSDV7X8jKkhr32yUqfVfCq/frVUhow6XE7/4/4y+Rm1rq28QVY30fVQNuq6ElW0nteOVtbbqoionaMcdNeBWrpw6injC8QhGB5kaRQNfNgVhs48ccf5tOE7yhrvkBd83Y3ymHo/LA9yr3+e9CJdgnKG94v3kya+XuY89T75w7cFPIf8SUeb9gVHPqHORdmIksQ7GOYGxgxIiz6N8gdf/D3+yL09HtedCF5Xi6V2uubEohXSQC2Cem693yvWuJ88f/KTZ+kCK4HB4gAAQABJREFUketV7m+kOxc0l/YqSyRzQ/fUhW23yrjcd43ufhCUOzhH+0P/hCOMjjjiCE7Ht1KmzWHKD30N5DlkPwZ1+MAH+erhhx925YV2hwEplBN+0Ii+jO9cEl/aa/pftFOUMzdApOUL+ZD+Dnx9m+jzowvQ1j++3fTphfIO5zubKJPeffXdrXdHH3z9+OkrultR9YYyfv9j3Y28r8Xjur2o/up1uCpBnpguuboI5ejjh8ioKy+SC9640llfcTPWFBPvmeyeC/5hm/S/nJjP8IAx8+WTar/KgskaRp3qte7d5TLxhYnx23nff295WEYfqhag3+hCnANrSo5ufb5Fp18s0QHJKlXr6/SYFlK/y2LpMyhfYRF/eOuXKIVW+B5+HzP+PLn8vKNk/CG7yur3dZriUbrtfJUa0nhoE/lILdwad6yvfV+VyxbnyNedamr9MlKoQYIDpVH+JjpHW80nWFfTdvr+GfUhZZj6Megos+dvlbkaaft3VJ1WBeQmyjp+4hiQZ7Ay6JDruIdB53S5bYqHX3WfgDfEdS4QvOg0o/mgw0+GRHBEGUDDgSUDQgCdEip+NHR0btAsU2jQWAdXMWb0n4aDc9zD6DACgH8OhYIvbCgoaMwoKABkZIIOPg7TIhom9uCmcmPEmM5v2DF6H4R36aWXhm8p8JsCiukrlg04FCxUjCgP8B9tIRYUdMq8u+OOO1zFQeUdVjwgjMODQu8FI/9c+Jj9RpbOiwp1pFVTlzd4xxUPXshCIAsKq4z8UFlRQeEIP2ke5SjIKBeoEKnUUBYNHz7cZXYyPI5M6zsyKB0YzfUdq0r3q8DapaDPa9YXjC8jO2fst7/8/l9nOCGJCmj/TuNk2EnDZPRRY3RHAV1TWJUOskEXp9lSSbr37iXje410nhK+dh+1lqU6dwylxlsvfyx/Okm3mdTRH/ahZ0R71IGnyHC9m/3ON+nuGGi9wx28giEs3i/yLP+CFUPQJ8IaduRTGhTSg7JFZ418g4acdKPskY4oAXCURyoBGgum+JAGNOrkXbTdOJ71jvuCZcGfR8hDqUdFgzIBbTv++AbK3+cbJf+bvI1izccl1UraP5/oeP4Z+Y0AjfrwUflKrLDfzTSf+ffiD5Vu1127uO06R+13eiKv4+d59rILH1LFQ/xUgVFFrwghD3vXsGp1ademutRr3Fa+/Gy6rNQV5FfqdKFfVuv8/y4q/GjePv/mWaLj+9JuSC+J6W4DVWvrnEZdNIy5fyO7NZU1Ou3i3bt03/KcPDl+vxO81+7oBaFkeYZwc/3LLbfJO/Ony6rPV8q6WroNWa+2skvHfPPfYANe4AURP/CPD3tDD91zmJbVQwvc5RqqQEeAe3FeeEWRSQeQDgTWAygNECBR0vpVj73gSV5mpAtLAtoFlFwIY3Q8yHM46hMUu9yLEgK/opwPh7/mw+nLgxeK/XWOCIBvfpNfrx88fE/5Shf/i+m0GbYYY1QP5/M+9eFz2vGDNWWRdoSwhcuEeyhDf8LlLeo1XjAMX/N1bvh8Yb/Jg04BtlZ3kVCh0edJnquSqyPpurpXpZr5HX7OrVi4skA55NyOOM83rBwN+4lSlvqRvIeyAFZ0Zrzjt88j1Jk+D/rrCND+uj/nhW3/O9kxXB9xb9g/f27K5KHy1S9tZeozM+NtIfdG3R98Z2HXvf/BZ/iOgvLafz8U3+udDhEjYihL3rzpTWFEMpiu4eej3su5KUMnxxUujCbTTqH08Q6mUR1UrqPYQTndpk0bp9SjbFEHUM5QVgTT29ctPMc7gg4FBedonxiRxRoJ5QRKSzrWRXHBdwaf6998gMyaP1dHqXREdVlVnRZTOz5Sy32MsF98T75CPvhcUb4P12kZ552o7VWzV2Xzbq3lyScelTqqDHp12rb4vvHyQ9Lsp8XyUzai+Qb9v0Vq69TNvI66JtQUtRLbt4389KDuypK1WWRE9NtJN+QCOpy07152CN/N6DuKIqwLqAsZZUcW51yUAjD4POlFZzecb3wZ9GlI+WIrPtIOOQdZA4tZlFK+vkaJwSAmA3/I/mHFM+/F6sgr/vr3HyKXHZs4Lcjne588Tt575gNpd1BPqf9xlnZot3VOfTwIe6/HO8jqTlXdKeTOw3REP5mjjn3jhdv1lvVOtsypWVAR55/Fb+QT8inxQZbD+sPXddxHO4PMxhQIZGvcvHnz3AAuz3u2KNtg7eU0+lIoJryjnPEeFBrI8n/+85+d8oa+U/B9/v5kR9ILBQaWZb6cR6VHlB9R9SP3UW9M2vK23P+niTJk6BB57PFt+R2lxGdqwdW4hk5l2KqsCPtN3eb7Fw9efJQMOH6iDNfpG7iaujVw2MGtS/su8l2WLkRar4HIuIbSvKbusvLCXFk57Repqqco3zvqeM+r0+Y7OWrxd69Luyr5CrS11fPUWlvXnfjtMF1MX7cdr15NunfeNljw6+xFMvSS7fsCqYbH5wvu5zsKRmQsBuS9/BX2K1i/8sy9997r8iTltbCyjgzE85TTdLm44gEPsx/R1eIn9ndKBszzEb6Yt4q5BQ4TVBwaOBalQAHBKKt3zMlEwAw75rriEPBodDBxYzTeWyRwHVN0Kr+bb77ZdaL4jbKDCovvOART3s15KqpEDuHEC5WJ7gmex0qDMCEU4zC5pYOHBQcCMQIoCgYEZkahEfyYvoFgExR8vJ8oKnBodJMqHrTMZEe0m3n9tZNd3/tW/KPvuHqNJ4oi76isqMjoPDCnLpgx/T3+iJKHkSQqIDqxTIEJOjIyIzkIO9m6MAwjqt4hyKLt9A5t3/nnXKcWEc+5vWm53wvMXwzNb1yo/H3hOuWok+XOh++SnC90WyEd6a2l21fhGA1nVBz38aPTpeWf8kdlVqieY6OaJ7ZrlJ9ndG+5uF8IUYk6eM6jNP3xYU/FO9KBRppGAxNfhCmmOfj0CIfXn/d++1E8RpMYraWx8Jpqfw/adSxcvCNfoETDLwQTFFH4EyzL/l6OXPMCepTwHry3KN/hdMlfbitggTDtIy1boZE+72eYq29UL/l7vqLC35fs6Ef7B/dpLEw58Hkv0TN9+7aSKTM/VcXDtjuydX2LtroeiHfNu3WRXN1/unp9Xe+iu67erNvDtm5TR5V9agWh8/kaqiLo9TvGyROvrZYzL7rOP1bgGI5bgYv6g+u3Pn6b9DpimLtEOULRhrAU5bh+2LiCSo7wfYz0JXLhfBa8j3qcfOYFEzr+wTnx3BsUPFFOo4il/kSZzOg0+RHLKYRc6njaGu5L9t5gGPz3wu6/6Np/ylt33iLfTp0h9VTp0KlX/hxF2i9GPykrKNj9aBLKccKDJVvQ+se/r6SP3rIpamQxnWFJ1Ckd1neoPLHhdZ3ylv+2Lbod529PPTadr07JL/I/wjUcaN/pwJLHUHx5FxaQGVEsivN1aVGeSXSvL1sj9k10R3rPwyfYBvtpGok6A0V5e9AP2plgexBmHvSXMCEjUY4o24kUZsFnEn2nHDClg8EmlBnpduT/Sx64QkeZp6iycrhcdvPFThmH7EJdmmiEvSjhCLdXYxoPicsm3h/ap7znV+hicjqqq/m8+sj86Q7ZOnpfQ3djqv32Rjl8zImFdigLqxd5H7IH6eOnbjLnH86puijLBm9p5DvDyOF0YpFNUBqh7GD0PugIKx86NigMyTdRLpgPo64Hz7101ySnqKhft7GMOi6/zQxe99/pFPsBKdI40bv9/RwZdUZpz7SqZPdzjQ/xogyE7+U3Fq/BwR8Gg0iToPPphJyGoywFnX8PsiL9Fm85FH5f8Jlk38kDlHNkfdr2RIrFZH4Er7nwyVAZN3HP7RgkanfCzwfrNqZx/zJzvbM+S/Q81lrjLz5CtujAEG1W9SqVpOauHWTv7CGu7KBoD/ZLeF9xp19T1/Op3Er7J4c00/W4asspB5/srHVfe3OBjD4831rDxwklSzpdKmU9/D6UkfQLw3kk3Fegrkc5gSvOe8Lv9b8LKB6ydAXf3EeynSUDGZjRTUag6KDimKqAkiDYgDDK5V24w+PPo6E+44wznOmPr5iCzyHo4XwnHeVClMP6AE0uK3ai5eEYVVFicuL9jPIneA5tIlNDAOydDweWGoz2oyBBIKVCQPHAezHXC44k+7Uj8MMrIxihSeZy/qvWDsuytrsl7+BtTLe7WIQTWDkw4uczl89A3gvf4WQEO5njeczgwp3g4DNe0Aqe4/ucGbOlpa7h4J0v3D5M/rw/hhsXfvOhopi/i25lpZ27sEkWozm+EmGe1kfv/CR7TBjkvPQCmPc/0Xv99ZI+Eh4qecoFjRMuGMbg96iw+cqA+1Ashcsg/jLKQ+OG1hyHYsz760eNEzX4XOc5FA+UkWSCZlT4CjuH4qkkHfHmQ16+JKTg4HxYEdKmRtE6L4vyB/F1QSHd7ujnTXLE0Z3k4bu/lmmz1krPAUfuUFSDZQmlA86bkLark2/141+AVj3RiJi/J5NHLyyRbxA26QQiVFFv41C0UacghNLYZdINOeUPMkX3y8bs2zvCRSeW0dhgmWE6kS9T/t6SPPr20b+TcAYF0XQIgt7vVI6sofPRG1/KgpW6K9GmjdJB1xAY1WxwKo9m7B6fXrT9XhYJc6Eso5jwyjECE6y7wpwzFtgS9DhRG5zOINB5pi3BYZnkR62TvQNz8nQ4lA6ka6acG0UPjKTTqWGUHQVuJt4b5Sfn+OTqaPlHN1yh1uSV49FtqQt71qqSK4eNSF3RHn844gvvCVpQMtoeJU9HPOpO8bxXMHOCAQ1vWevjQTvrFUV0wJONrqa73g3LklHxIJzFGZAqSllLFi/fh/BKBd/3CIY1nE6JypxnHnw2le/hupA2BysVzidLr1T8Dt5D+IrrisKbdzgWvQbL9JVfSXNts+g3zHtTp+iflq+EYi2J1UmmpxYnnBeffJG06rmLTJo8yU2hwQ/az7A1aque7YrjfdqfiUqPcF8hmUXbjgRom53iVl+yn8uS43Y91pmwkfnoYDOqwLwrFu+588473Tx05vWm6piywJwkLACwWghn9GT+BBUUzBdG24cVAoIs5lpRjmthrWrUfZxjZAt/vKkT57yFhVcgcA7zTj8izMg0q48zUsaH0T7i6KceeBPi4GgMfgRd1ieqoFDWYZc3ICaxTuGzxfuNkBCVuYrnW8EOcap+oHlkxMA731Hyv1M9opmuMmO98yvsB9f8O+iQLVqTb3XDlI+iVliphied95FONE6ustyByhnrlUSOModggIAeLn/+3YmeZYV6nqGjmKwRTfR8svOM8DC9wruwosifT/cxUbmY9t7s7V616b18BWLtzvmaat/x2e7GwInuvRvL16xevKWK/O20AdKpbT2Z+vb0wB1F/xouS94H4rLhm5X+pzuiVU8UxwI3FuMHSoWgojbYofPe8W7qSzonCC/kG77TkOFQarPmg7cOI1+mO2/5sHCkjJF/veN91M+ppKV/piSOKACDbPmOkoaymwnFX6pxwlR0tx79nADn1l5J9cE03hdWnCMgw8TnsfCrgvk0lfyVTmuucFgq0m86PrQHiTpAFSmudF4zVY8m40R91bb7tg7KJt0qfMXybfVXsmeLco06lxFt0pJ37ojDYiLsR5Ad7wr+3pF3pfvZ0gpXsI4iTlFtKeeD6cTvdLpwm4PfTNOgE1paXNIVP9otvzhsUCYKL0rP+7DO3hFH3scKO5EVhve77qL8qT3+d1k8Zlre0GVSQ9HWwfaOT7WXbg27OesGdnfAISTi0MjxPbj4i7uQ5A9zkmiomHvOHJSg2XeSx5xQilCBBQOLgaEdZD4UFgjMjcIaIcph7cCaBIU5BA2/qGTwXqYeIBBfd911TnhmXQqsIjAHxjFCzboQ/sPiPViCsDAmDrMyXJT2kvNZv6hlyfWq8wkbNmha5B3PHRXHUXGNbjvERQhLhcZFWBk6SAF/ptwzWa4ecdF2qxlzbdVLOsKrjhW/69bpJtO/blWoGX3Q/4rw3WvPfVwQymlUcDRcjEb4TqC/J5UjFSqNUCYETdLOrxTNVJ3SVhQNHZJvFeK5MPWj7+593c/qlaq51bI3rsmvC/09aM99o+UtEXbdtbE8NmmetG2qU1/q1tD5oFN07Yr9/SNpOZLXaUCjXKL5klH3FvUcaYaZHg7lAnkrynGePMP93vnOI51G5iX69UjIX5l2QSEvSsCjvPjwZTosifyHVVBBQhtFe0PZxTItEetE/u3oecLDmjjeOWsz7YyVBUd6MY86nMd82Ag7+ZPpm+H0jhK2/XN2LJxAJstrWDFOaHZGpRCr9aNwwGWvjbl54m5+eKA+dRdL8Q9lzyuYmTZnrmgEqKNoS70CtaTr90ShjSqDie4tq+eDA5KEMThgCXesr4PO76gRPLej38PtJwOkxe0D7WhYUn2eMp1peSN7y+Hh3q8GT+uPx7s9IisWrHCrkhNgLAJYXBJTVCwKmLeVqqMDz+KMZGZGHvwoV6Ln/e4RWCKwJynaN8x12RuYqQ5YGbAuQ6J1HgYPHuwWIApOf4h6FwIJaxf4OW7+HkaYMCHDRJB4shMEccf6A8c8fCoL/yFerA/hzTqxBiHMbJGzndOp9jmX69mIOpq0iDWNSI/tPEnfCSq8TDtMGNmiJtFWPEV5PwU5ytEBQyhm5W46yuxqsLO7sLAGl0T8SpMV2/2xC0oqC0SWRjiDDdiGn1cXWCgoKjxvffizO91XlQ+4pbpV1xUX/36H2YcbsaAGPxhGGrdMj0ozR5B6L9HCZS7iEX+oz73DrJd1g2gTaFMy7eCHkOyVJWHhivJCGSltF2TkO8ylWXaDeSsovJU0p/CUnHD9FhUeBPkbbrghJYVNaSudosJv53ZeAsg01XWrY+aoN6yRr/xL9/zwdNClDUik/EuH/xXdD/gxeAnD0nC0i8E1msqCAj4dHILyUtQgjR8s4l1R19MRBu+Ht8h2i9SWARnDhyvRMdPyRtbGDRtjuZdmC6b/YRdroyNal+SJbFu/yS3uyH10zoviEPZY84CFIYvqeNZbN6BMwGICRUQixz3sLczKnSgNiut4L9YLKBWCW28W5h8KEioSdugo4HRNndzLlPW8Amfdj5guerr5UmW9/eyL7W8u5pngPH/vBUI/pnbmyj8B5lMyH5zRZJylbdHTFIYbFj4eX/AShQhWGCw89vikx2V9/TzpMizfAsL7jlKNbfZWD843odsy6WO56OSe8vG7i+XnBfnr1VRuMCYtnVrCx+4v9bo2lT7rOhew/nELJmkY2PauMHM/H/aSPgbzKPnTzyFFSChpFwwL7y5L5YW2C0u70hJGw2nhV5QvzXyV7vSijWb6qHfFWdzUP2vH9BEIpzM+l6Wymb6YJvcJDswPz2tcKW4uzuAKlp/mjEA6CQT7BhWprFGGkNuwMggPKvjy5RfpzmS56rV7L6m19/YyWzrTsDz5pb1g7fCelSexhtuPtNNBzr1QF0Bcsq03jMKhqEoHgKA4KI7SwT/LEce6C8mUDv4eLCJYdXdHHGHG0qMoSgd265g+fXp8C1D/fhg6lvP8mW1H2JMGmVQ68LbwCN+2ENi3ikAgrLn2o6UVIW4lFQcYstsFjq1Y/fQIrHaO6H6YNGuSvwWtD4/XZPvfwWO39nXlr388SN75aPl2jV7wvqJ8J3yj2gyTk3ofVUDpgB90ClGClGbnsLC4EH4Uut78nd98SsPx3uBIT1kqL34UsTS4RL2Tue6lna9Ir+A0lB1NL6wSzZUPAjujNQr5nRFSP0edlAqO0paPlLNQlgcChU1DLA9xiAojZYi2K6x04F6uMY0Qa4dMW/KxHWzUNPGoMO8M5/IXSVCLhi0XxST3r6pgCG3EkLUwS3LOV3Ovv+iSBJ3KDxL2zB0wYECJB7hVq1bywQcfFFDOZH2l0ytUB8KuIds5nbEC+6BVyXb32AkjUEQCFUlrXcSo7/DtfsvN4SP3L9AppvGafMIokS4FX4FJLFp1v0ryis35StzKOZXcjeF1Iwo+XfRfyVbrTnat6G/KzBNlZR5rMHYspuR3lQmet+9liwDTLbAEYZrFjlrqeb+wELP6smylczg0O+ugCYoGv2MXTDIxDz3M2n7vfATohLPDCWvqlRUru5JIBZTpWD4Q/0y7knhHpuOQLv/ju1rEWqvlw0U66l5le6/dNpsXZkv28xEd5+1vLzNnUt1SM50BxhokaNkBs1xlF6l0UNYwh31JuKgFtXbGkYSSYF1a76DhwGQ4k4t/lVbcSuq9NBCXXfuo26+7sHe6bStDN+V0aiKzZi2On83KTTwtLH6TfSkVAr68sF6PCQalkgRFein1GhYzfopOkR4O3RysI9l22lzZIEA5DFoilY1QWSiMQMUmwIDAzqR08Klp7b4nUXLHuOKBV8a6akf4YlU+RC3fsFlH7e9R64drVPmQ/l19Si7GJfUmZQQrmImy284pY1jD3JwRSCcBGpCgUJ1Ov3d2v8Kmrn6BR6we/LQL5gxO/PenUrlSlQLTNXZ2dmU1/pSXsmiFUVZ5lXa4SKt0CYsoMVA+oXgyV3YIBHdoYrE7vztT2QlhyYRk3Khx8XalLO0oUzKxt7cYASNQEQlstx9lrLt2iK/Ik5yrdG2HZdtbOGRPz5Lsz7JkyzExyRurJsXb31IROaUeJ0WS/YoqHB5UMGuiH4vV16krf9UdLMqArLOzmjBGp4ydNQLpIdC2V/6OFpJTK22dpPSEzHwxAkbAEzCFkydRto5BuSSV3UvKVujTF5p29dvGPWvVs138u30xAkbACJRXAgUsHnwk6BBvvl47xolG47VDnXOHTiG4QKcQzPZP2REWMIFNQqWDMnVsS0HpwCgRjbg5I2AEikcgPMfWW0BQttrV2TZnanW7xnLlrd+6KRvFe5M9ZQSMgBHYOQkEp4Xu6CKi5Zkg7crotkPcAnh1F+XvmlSe42NhNwJGwAhEKh4cFl1wcvPleZK3lw7hJ3BZX2pH+6/ZknuFKiC+TXDTTnCauMMAFjBJ5GAJ09JcSDK4psPObMKYKI3svBFIRiA4pYL7goqIdx56I/4oaz/8+bzL4r/tixEwAkbACKRGgA43O5iw6GtQZknt6Yp1Fzsq3XHardvtYlSxYmmxMQJGYGchsN1UiwIR16tbfq+WD/10+sC/dFbFrzqSH+GyPtKO98xsifXR+/fVdQt21Zuib414upyeUn1M1iy1/HhBlQ0af0msn5FYPZ2WcppIXr8kN5UChp3ZhLEUcNsrKziBvrv3ja9A7td+qOBRtugZASNgBDJCgIXuSmrF+YxEII2eoogxZwSMgBGoCASSKx62xpAOc95E7WTfowqINxJoFOiIf6gKiA9VAdFC7x+nHe2herJmRcAUiIPubZQ9Vde5mKTx/TEBi8DteSN0PYcTlEONwMlS/MoWYqtWrSrFENirjUD5JYAA2OLxek7BwP7Pkx75JB6Z+Z/8IPUG5+85PGzY8Ph5+2IEjIARMAJFJ2Ad7qIzsyeMgBEwAmWZQOKpFuFQa8d5yx/ypwoUtigiHfKcu7Ok0vG63sHftZM+TTvoG8IelqPfGnbiQFxcnDRuhSkd3DoZOq0CZmVF6QDx+vXrC1MscDvz3EkHwP4YgWIQmDMjf2GbvoMGFnj6H1f8I74C+bIvtm2nWeAm+2EEjIARMAJGwAgYASNgBHZCAlkbN27UnnERnT5BRzz7IR31X1z4qL/zXdfFyeuh0zZ201kJOiUj1rTory1iKHfo9qxFqlzQKRRZMzWuuouHrE/Nu1hjtfY4WuM6WOOXIprUfE7fXaeffrosXrxYevXqJRdffHH6PDafjMBOQmD8mb8Vtjqb8JvjCsS41+69pH63RjLlnskFztsPI2AEjIARMAJGwAgYASOwMxMonuLBE9usnXKdepH9TGrTDvxjHFE8sHVnrCMf/d5aT+YE7yjB71s0/N/r52tVNnytx8/1o4qHojg3veRAVTjo1ApJaQJLUXxP/702dzL9TM1HIwABK1uWD4yAETACRsAIGAEjYASMQEECO6Z48H4xuK/rO+Q8qwstfupPFvFYWRUQbfWj60PEmuuzLfR7c/3eWL+naxchtVrIUgvorIWqVPiRo350WkjWd/qOjUUM79bbYz11CsoBuqBmXz1RNF1F8V5oTxkBI2AEjIARMAJGwAgYASNgBIyAEShHBNKjeAhEOGu+WkC8qX3wKfpZmqaeuCoeYnVUu1E3K/9YXV9YST+qrIgf9atTHmwKHNdqGFZoGJbH8o8pTpfAq2Qu1kAVIsPVumGYhquVhsucETACRsAIGAEjYASMgBEwAkbACBgBIxBJIO2Kh/hbtD+e9ZlOxXhTFREf0vmPXymfX+qqoqGvrt8wTJUOPTQKadKplE8YFmojYASMgBEwAkbACBgBI2AEjIARMAKpEcic4iH4fpQQ3+jnI1VC6CfrK71Y1g0FVLEQ053x8vqoooFPew2zKRuCqWrfjYARMAJGwAgYASNgBIyAETACRsAIFEqgZBQP4WAwBYJFHL9URQQLOrK746rwTSX8u5YqGjqrooGFLjvrRxe9FKZ0mDMCRsAIGAEjYASMgBEwAkbACBgBI2AEik2gdBQPEcHN+kXNCX7UtRgWqCJi66KPskh/L9fzxVz4cbvX6JoQsbpqatFU14rYuohlrKX+bqG/G5V1E4ztYmMnjIARMAJGwAgYASNgBIyAETACRsAIlHkCZUbxkJQUFhIoIPwikRv0bhaR9AtJesUEi03yYeFJPlVU0eAXpUThYBYMCsWcETACRsAIGAEjYASMgBEwAkbACBiBkiNQPhQPJcfD3mQEjIARMAJGwAgYASNgBIyAETACRsAIpJFAdhr9Mq+MgBEwAkbACBgBI2AEjIARMAJGwAgYASNQgIApHgrgsB9GwAgYASNgBIyAETACRsAIGAEjYASMQDoJmOIhnTTNLyNgBIyAETACRsAIGAEjYASMgBEwAkagAAFTPBTAYT+MgBEwAkbACBgBI2AEjIARMAJGwAgYgXQSMMVDOmmaX0bACBgBI2AEjIARMAJGwAgYASNgBIxAAQKmeCiAw34YASNgBIyAETACRsAIGAEjYASMgBEwAukkYIqHdNI0v4yAETACRsAIGAEjYASMgBEwAkbACBiBAgRM8VAAh/0wAkbACBgBI2AEjIARMAJGwAgYASNgBNJJwBQP6aRpfhkBI2AEjIARMAJGwAgYASNgBIyAETACBQiY4qEADvthBIyAETACRsAIGAEjYASMgBEwAkbACKSTgCke0knT/DICRsAIGAEjYASMgBEwAkbACBgBI2AEChAwxUMBHPbDCBgBI2AEjIARMAJGwAgYASNgBIyAEUgnAVM8pJOm+WUEjIARMAJGwAgYASNgBIyAETACRsAIFCBgiocCOOyHETACRsAIGAEjYASMgBEwAkbACBgBI5BOAqZ4SCdN88sIGAEjYASMgBEwAkbACBgBI2AEjIARKEDAFA8FcNgPI2AEjIARMAJGwAgYASNgBIyAETACRiCdBEzxkE6a5pcRMAJGwAgYASNgBIyAETACRsAIGAEjUICAKR4K4LAfRsAIGAEjYASMgBEwAkbACBgBI2AEjEA6CZjiIZ00zS8jYASMgBEwAkbACBgBI2AEjIARMAJGoAABUzwUwGE/jIARMAJGwAgYASNgBIyAETACRsAIGIF0EjDFQzppljG/pk6dKldccUUZC5UFxwgYASNgBIyAETACRsAIGAEjYAR2JgKmeKjAqf3KK6/IJ598IqeffnoFjqVFzQgYASNgBIyAETACRsAIGAEjYATKMoEiKx42bNggzz77rGzatCkt8Xr11Vdl8eLFafELTxYtWiSTJ09Om39RHr377rvuPVHXvvrqK5kzZ07UpRI/17lzZznggAOkXr16gvWDOSNgBIyAETACRsAIGAEjYASMgBEwAiVNYDvFw9///nfXWQ0H5MQTT5SzzjpLvvvuOzn00EPlhx9+CN9S5N95eXly/PHHy2uvvVbkZxM9wCg/YS2qmzFjhjz99NMpPXbOOefI+++/H3nvgw8+KPfcc0/ktZI+SThuu+02+fzzz+XRRx8t6dfb+4yAETACRsAIGAEjYASMgBEwAkbACMh2ioeDDz5YXnrpJVmyZEkcz7p16+SBBx4QrnXp0kXWr18v7du3j18v7pfs7GynwDjyyCOL68V2zx177LHyzTffbHe+sBNYMTz00EOF3Vaurg8bNkyqVKkiL7zwgkyaNEmOPvpoW/OhXKWgBdYIGAEjYASMgBEwAkbACBgBI1D+CWyneOjatav07NnTdVZ99F5//XVp3Lix7LHHHrJs2TKndFizZo27zLSC3/zmN9KgQQM56KCD5Pvvv3fnr776arnqqqvcdxQVmP1PmTLF/aaTP2bMGPedqQB+GsBee+0l1157rfTu3dvdP3HiRHcPf5iOcdhhh7n38CyLJp599tnx6/4LUze4D0dnm++nnXaaew4FB1Mhwg6lyqWXXirPPfectG3b1ildfvnlFzniiCPcc4T93nvvLfDYxx9/LAMHDnTXTznlFKeMKXDD1h/XXHONi0v37t2d9UHUPZk699ZbbwmsSbdDDjlEOnXqJPD53//+l6lXmr9GwAgYASNgBIyAETACRsAIGAEjYAQKENhO8cDVY445Rh5//PH4jU888YQcd9xxkpOTI1u2bJEff/xRmCaxdu1aOfDAA6Vjx45uXYVGjRrJ+PHj3XN0tJ9//nn3/cMPP3RTNPyUCjrEHTp0cNfmz58vWFTg5s2bJ/fff7/cfffdcvHFFwtTGhYuXOiuMX1i5cqVwlSKCRMmOMVD0CrD3aR/8Ounn35yP/n+zDPPOGUCVhzLly+XoDLDP7P//vvLqaeeKlgIvPzyy25NhJtuuklQrrzxxhty3nnnCcqFn3/+2T/i3n/RRRc5ZcW0adPkkksuiV/zX4jLrbfeKnfddZdcf/318re//c0pQ/z1TB932WUXp3RA8cBUkjfffFMqVaok5557ri04mWn45r8RMAJGwAgYASNgBIyAETACRsAIOAKRigdGx+ngM+pP5/3hhx+OWxEEuX366adOoYCSAEXC5ZdfLjNnznSKiT333NN1dlFOYOlw1FFHudF2nn/nnXdkxIgRQa/i3y+88EIZMGCAmxaA5QXP4geKA5QGffv2dX6dfPLJ8WeSfWnRooXraPfv399ZPnhlSPAZFl9s0qSJ1K5d21kFoGBhrQsW0cQCBKsMXNBagjijsKBTj5VGlBXBf/7zH6c8IcyDBw9261lgVVFSDgXP5s2b5e2335alS5c6xQ4WK9WqVXMKkEGDBhVrPYySCr+9xwgYASNgBIyAETACRsAIGAEjYATKP4FIxUOrVq1cR5m1AZhmgUXDrrvuul1s586d6841bNhQ6tevL4yw41iAkqkXu+22m1NEYN7PwpRYSmA1QId4yJAh7t7wn2bNmsVP4R+KD29p0Lx58wLX4j+SfGndunX8Kn5jNZGKI4xM+ahRo4abKsEzsVgs/ijTL7xD6UKcN27c6E+5o7eWgA2fW265JeGilAUeTNMPdh4hLdnpo27duu4DTxzWKayxUadOnTS9zbwxAkbACBgBI2AEjIARMAJGwAgYASOwPYFIxQO3sRDhY489JkyzYOpFlMOagA8d7uCH0X3c2LFjnZUDCooePXrIuHHj3LSDpk2bSlDBEOV38BydZ9z06dPdEQWAXxfCnUjTH6aPeMfUDiw/sBBgSketWrX8JXdkioh3KFRYA6Ny5cr+lDvCgV0ugmyYdlJSDoURu28QD5QMKD8IJ4qIkSNHOssTpoCYMwJGwAgYASNgBIyAETACRsAIGAEjkCkCCRUPTC9gTYZE0ywIEBYBWBDcfvvtzjJh8uTJwtoOmPXjhg8f7haYZNFIOr6jR492ayPsu+++7nqqf3Jzc+X8889360xcdtllbh0JFk1Mp8NqY9asWa5Tjr+s74CygTUR2JZy1apVBV534403yuzZs939TDHZe++9C1znB4tgssAmC26yvgTKjH/84x/b3ZepE1iMoDiBFdNXUDagtDnzzDOFRS/NGQEjYASMgBEwAkbACBgBI2AEjIARyDSBhIoHOuIoCPr165dw60zWRnjqqafcAoqY7LOwJAsxMs0CxxoCuFGjRrnj0KFD3RGFRKouKyvL3crCjKylwLoTdKB5T1Gd9yvqOZQE1atXd9NFmNpx3XXXuXegfEChgqVA0LG1KBYNdO5RTnB/2LGII2tLYHnA81hJ/O53vwvflrHfhK1Xr15ujQfWoGCbUdauYH0Kc0bACBgBI2AEjIARMAJGwAgYASNgBEqCQJZOA9i2cMEOvHHFihXOQgDLhkw4ts9kugZbdq5evdpN42BxxwsuuCCtr2NahJ8ywcKMLGzJopNRjh0+WDOhZs2aUZfj5/ATv1BslKRjO1B2+MDagXQxK4eSpG/vMgJGwAgYASNgBIyAETACRsAIGAEIpE1LgMVDppQOBLRPnz5uqkLLli3dWgUoB0444QQupdV5pQOeMsUjkdKB6+x+UZjSgfvws6SVDryXNTVgxMKXLJJpzggYASNgBIyAETACRsAIGAEjYASMQEkTSJvFQ0kEfP369W69BJQcLFBpLjmBww47zO3IgbWFWTskZ2VXjYARMAJGwAgYASNgBIyAETACRiAzBHIz421mfK1atWp8a8vMvKFi+cr6DsOGDRO/tkbFip3FxggYASNgBIyAETACRsAIGAEjYATKA4FyZfFQHoBaGI2AETACRsAIGAEjYASMgBEwAkbACBiBbQTStsbDNi/tmxEwAkbACBgBI2AEjIARMAJGwAgYASNgBPIJmOLBcoIRMAJGwAgYASNgBIyAETACRsAIGAEjkDECpnjIGFrz2AgYASNgBIyAETACRsAIGAEjYASMgBEwxYPlASNgBIyAETACRsAIGAEjYASMgBEwAkYgYwRM8ZAxtOaxETACRsAIGAEjYASMgBEwAkbACBgBI2CKB8sDRsAIGAEjYASMgBEwAkbACBgBI2AEjEDGCJjiIWNozWMjYASMgBEwAkbACBgBI2AEjIARMAJGwBQPlgeMgBEwAkbACBgBI2AEjIARMAJGwAgYgYwRMMVDxtCax0bACBgBI2AEjIARMAJGwAgYASNgBIyAKR4sDxgBI2AEjIARMAJGwAgYASNgBIyAETACGSNgioeMoTWPjYARMAJGwAgYASNgBIyAETACRsAIGAFTPFgeMAJGwAgYASNgBIyAETACRsAIGAEjYAQyRsAUDxlDax4bASNgBIyAETACRsAIGAEjYASMgBEwAqZ4sDxgBIyAETACRsAIGAEjYASMgBEwAkbACGSMgCkeMobWPDYCRsAIGAEjYASMgBEwAkbACBgBI2AETPFgecAIGAEjYASMgBEwAkbACBgBI2AEjIARyBgBUzxkDK15bASMgBEwAkbACBgBI2AEjIARMAJGwAiY4sHygBEwAkbACBgBI2AEjIARMAJGwAgYASOQMQKmeMgYWvPYCBgBI2AEjIARMAJGwAgYASNgBIyAETDFg+UBI2AEjIARMAJGwAgYASNgBIyAETACRiBjBEzxkDG05rERMAJGwAgYASNgBIyAETACRsAIGAEjkHPxxRdfahgqNoGffvpJtmzZIlWrVo1H9LvvvpMaNWpITk6OO7dmzRr55JNPJBaLSe3ateP3hb9w/dtvv3XPJfNv06ZN8v7770vNmjWlWrVqYW/c77Vr18p7770nWVlZUqdOHXeOcBK2X3/91X2WL18u9erVc9fmz58vS5YsiV8j/Lm5uZF++5PpjDvh/eGHH6RWrVpxbrwnzDKVuBOXmTNnuniH+ZAO69atk7p16/pouCPvmTdvnuNRWLwLPFiCP0qD9y+//CIffPCBVKlSxaVNVHSj8lrwvh9//FG4h/xKWSB9fB7kmJ2dXaD8BJ8tze+UD8JHnvQunAabN2+Wzz//XHxZIi5RLlHZDvsHJ3jDqWHDhlFeuTBR/qlffNn2N8KWOqRp06au7PvzUXHx18rCMcyBMIXLfqr1aKp1Ce9IlC5cwxX2zmDezn9CJJU6yt9bWscw2w0bNrhy6dsDwrV48WKXt6tXr56wneG+pUuXunuDdWrYP9oW0tiXe9qlcN2MX7go/5IxJb+X9bo7nbxTyd/hepb0CNZj+aRFqN9nzJhRoK1M9GxYRlixYkVcfvD+laVjppkH83iYWaJ2LZH8Ea6faVe4F+aNGzcuIBOVJcaEJcjBhy0cH86nWk6jyn+Uf6RvYeU+ql0hLFH1dqr1Hc+XlouKTzifF9Zm+bBHtX2F5buotPH++WPwnnCfg3IRrIuKwjwcz6h8l6p/wTD6cBcme0XlmcLil0h+5rmPPvrItXWUb9rDdLloCTRdvps/pUqACuDEE0+UHj16yKOPPurC8uGHH8pee+0lnTt3lq+++sqde+ONN+Q3v/mNTJo0Sc4++2y58MILE4b7mmuukQEDBsjTTz+d0L9PP/1UBg8eLC+88IIccsghcs8992zn35NPPinjxo2T119/Xf74xz/KP//5T3fPwoULZfTo0XLnnXe6T/DZ4HmuIygmcumO+8aNG+WYY45xcadywUWxTCXuZ511lvz5z3+Wt956S8aPHy+TJ092/lHhjRw5Uh544AG56KKL5OSTTxYqWT6HHXaYXHfddfLMM8/ImDFjXIPvHiojf0qL91NPPSXHHXecvP3223LUUUfJf//73+2IJMpr/sYpU6bIwIED5YILLnCnSF+f/ziST5999ll/e5k4rl+/Xq666irZbbfdXJklUFFpQEO0zz77yCOPPCJ33HGHiwuNYZQLl+0o/+bMmeP8IM/y/jPOOGM7rx577DE56KCDZOrUqfKnP/1Jrr/+endPXl6e+03eJ51GjBjhOhVRcdnO01I8EcUhquynWo+mWpf4KIfTxZ/nWNg7w3mbZ1Kpo7ivtFwUW/LU0KFDpV+/fvFg3XDDDXLqqafKyy+/7PJbojJK+o0dO9a1Sf7hKP/+9re/yWWXXRYv+3CKclH+JWJK3X3EEUcIYaXNpH6fO3dulLeldi7dvFPN388//7ycdNJJcd4vvfRSAQbUF3/961/l97//vatLqFOQF3CJnn388cfj/l155ZUyZMiQAn6WlR8lwTycxwtr1xLJH1H1Mx2gAw44wMmVTzzxhJNJVq9eXVbwFghHmENUfIpSTsPlP5F/hclsUe2KD3hUvZ1qfef9KOljVHyi8nlhbVYw3OG2r7B8F06boF/+e/ge5KGgvHfaaaeJDsi721NlHhXPcL7Dw1T9C4eRZwuTvaLyDM8li18i+fmLL75wdSfX77rrLjnyyCOFej1dLvlwcbreYv6UCoHZs2e7zlirVq3i70dA+te//iUTJkyIn2PUko5JgwYN5JtvvnEdi7///e/x6/4LghOjmH/4wx/8KSfEhv2jg0zHef/995eVK1dK27Zt5fjjj3ejxv5BlA2M+K9atUrOP/9817nm2s8//+yExL/85S/OmsGPUKH5xF1yySXOz2bNmrnfif6kO+7nnXeeDBs2zI2a+XdGsSws7lQoCEcLFixw3kyfPt0VcAo1hbxv375OwcDF4cOHy8cffyzt2rWTd99912nOsXSgkXznnXekV69ePiilfiwt3oze33fffW7EZdCgQXLzzTc7QT8IJFFe457vv/9eTjnlFLnlllvkueeec4+hqLv22mvdd4Qx0gvFXFlyaMMbNWokt99+u9x///0uaFFpgPCOwqF9+/bC91122cUp7Fq0aFEgOlFlO8o/yvNNN90ku+66q7MQoXzCLmhFQeeNTqB/J5ZRhx9+uCvrKNuwluD+yy+/XP7zn//IoYceul1cCgSulH9EcYgq+6nWo6nWJUQ7Kl2COJK9Mypv82xhdVTQ/9L4HsWWTtP//vc/p0T3YaKupGxjVdO6dWt55ZVXXGfIX+dIXbnffvs5gQ/FpHdR/qH0RklWqVIloc2MGuFJ5F8ipliunXPOOXGFCYpARpE6dOjgg1Lqx3TyJjKp5m/aQgZGUA40adJEKleuXIAFgjb1BYol5IKgnJDoWQZOvLviiisKyCr+fFk4lgTzcB4vrF1LJH9gmRZua2gXUTqjlMeRhnRWGJQqay7MIartTLWcRpX/KP+QawuT2aLaFdglqrdTqe9Kk31UfKLyebI2Kxj+qLYvWb6LSpugf3yPugdrOS/vcQ/K4RNOOIGvTh4vrI3hvqh4hvNdqv5FhZFnk8leifIMzyWLXyL5GaUtcly3bt2cFTBtYjqtrE3xQMpUUEcBwjHy6F1Q4eDP9ezZ0ykcUCAwknnjjTf6S/EjFTMNP1YRDz30UPx8lH9ffvmls6jgJqZtUNEsWrRImjdv7p6joiYjH3zwwbJs2TJ3jZF8rCQQMNDc7bnnnq6DxIgp2kfM2LBw6NOnjzMt5kiHEPP6KJfOuNOgItTOmjXLvdO/rzhxx0wYUyt40KDDCkdlg9KHgu4d6YLpHw0OAhUjfliq8Eyi0T3/bEkfS4u3VwigmKKDjbIr6JLlNe4jb1166aXbTQfwftx6663O8iTZ9CN/b0keURwwWuitZXh3VBrQgUKphXUCyipGiMNKh0RlO8q/oGCJwgelQVDpQDhatmzptPMoHjDDxTFFCaGBPO3v79q1q6ubouLiHiojf6I4RJX9VOrRotQlidIliCXZOxPl7cLq56D/pfE9ii2dWUa7gg5FMKNnr776qmszHnzwweBl9x2lHHm2f//+Ba5F+UdexQKNkVvKDO0QCo2gS+RfMqZYafAc5Y92LFxHBf0vje/p5F2U/E1bf/fdd7so0x4+/PDDsvfee8cR0PYhJ3Tv3t0pJRB8qe+Y/lLYs8gVjGIyxawsupJgHpXHPYuodi2Z/BFua6izfTvCABIDKWVpIMTHk2OYQ1R7wxSfVMppVPmP8g85rzCZLapdIbyJ6u1U6jueLy0XFZ+ofJ6szfJhT9T2Jct3UWnj/fPHwu6hPaHO2X333d0jqTKPimc43+FhKv4lCmMy2StRnvHx9sdw/BLJz7Rn//d//+emwqPwYCAZS+10OZtqkS6S5dwfRhuweEA7htl62NGpY9oEnYnCHKZnQe0Y34Pm3WRkRn7IyAgGCBynn36685bRUUzn0Z4yFQThAQEEPzG1xKSJTgyjXH76SGHhKex6YXHH3JMRLSqkwlxhcSd+WG1QsWGCC1ccnTGE3eA74MY5BGEY0TAyakFnmsa+vLp08vYMGHVn3iCWNUGXLK8x8o7Z829/+9vgI/HvXnjF1Lc8O0ZuGbFC0YUSkjwadEUp2/45LHUoE34ahT/PkQb32GOPdeZ5jIgxP5B8zRz4ZPVC0I/y+j2deTvVdIl6Z7K8XVgdVZ7Y0175NURQDAcdo46M3DCFIhWHFQ9tCkLXmWeeKYyYB10y/wpjimUQ7Ssj9fN0nZ7y6pLxJk5FaSuxcrj66qudDPDiiy8664cgF9ZnmDZtmlMukSYIyb6+KezZ2267zSlZfd4I+lvevqeTOXFP1K4lkj+S8WIwCGs2OinBNb+SPVOWryUrp8nKfzhOxZXZktXbvKOwvBAOR1n9HdVmBcNaWNsXzneppE0q91Dnh6eap5t5Mv9SCWNY9ioszwS5RsWP62H5GQsOHFYbfKcdZS2IdDlTPKSLZDn2BxNTrBGY28R8PQp9eP0EMh4dXjRrr732mruPDB/lOnXqFB/pZIGSr7/+2pmu+nv9NAnm3eJGjRrlFA2M+mPJwFQOOuIIasOHD3cKCBoE5nux+B/X9t1337i1gPe3OMfC4s4IDlYejFYRdwoiwk+iQlhY3AkjFRtzVFGwsJ4DI7/EiSkVQaGUdzFNBd5co3LAbBeLlIkTJxYnuqX+TLp5EyHmBjMPDUucYMeWa8nyGhzr16/vFEGsJcI0IubleYfwyjSM4GJ2/lp5OVJmESgZsfr3v//tLISCVhLEoyhlm/tR/CFsYnHk+XLeO0Y+PvvsMzn66KNd3kX4b9OmjRs9RonoHeaBqSgy/f1l/ZjuvJ1KuiR6Z7K8nUodVdZZ064Qd9ZmQdFFfLHqCTqmDyLkYcmH2SiWZuF7/P1YTDH1x0+BYF0UL3z5e5L5l4gpVhqUwQMPPNC9G+U9dX55c6nwLmpbicLXm+ozmscoJ8oG7/yIOnUHDmsIb8GQ7FnfsUaeKc8uE8zhkahdSyR/JGLIYBIWQgwgsV5PeXaplNNk5T8c9+LKbInq7VTyQjgMZfV3ojYrGN5kbV9UvkslbQq7B2sAHJbFuHQzT8W/wsIYJXslyjMuEoE/4fj5S1HyM/0Ob31G35B+Gf24dDlTPKSLZDn2h9Ed3+HCHBqHwIaghtCEY/FHhAOEADoSTJ+IWoGae1EW0JFDmEORQaNEhxAtMCZ5aMYxOWKUA8c0BsyvuId59ggMPEtYsL7o0qWLEzKZfoEfXGPeJyaYO+oKizvxZB49BZG4M3KL+XrQMiEYhkRx9yxRriAsw4BFPuHEHGQcVhD8RgCjg8b8VqZeMFqN9QfaUBwje4xel0eXbt4Iu8wTRpGDEsE7zztZXmNUHisa0pURNPI1rHEVRXilITv33HNdmWFUFoUiyjtfFolrUco2eZDFTTHVDS70F/SPub8o6uhUMJ+d91GO6JyRj7FmQhmCmTXTqyqKS3feTpQuQdaJ3pksbyeqo8pTOrBeCe0R5uE4TPX96DYKLToS1LOYO1O+WdsEx/coR5vC/eRNHB0HLCBwqfiXiCn5HQU71lg4LB7Yjam8uWS8fV1b1LYS813MinFY8DGdjTT0vOGPtZRPY+r43r17u/sTPctFOtYszFyeFcbEIxlzz6iozMPtGp0h8igukfzhLkb8wRKQNqC8WwQStUTlNMinKPVJMpnNp10EUmcpGCWTJMsLUf6U5XOJ2qxgu5ao7SNeUfkuWdp43snuwd+wNUC6mSfzL5UwJpK9ErX1QZ5R8eNcIvmZQVF2EsLRZ0OOox+WNqcCYMw+FZuBNtIxHSEvkM5aCGPa2LtzuiVSTEfdYx07doxpQx9Tszl3XjN0TOfNFniOvKLmlDEdYS5wPuifZviY7kAR0xEL99EFEt29OuIa006i+64Z2V3z79SOijuvDWNMBbWYdvRdWFTzGX+Pjmy5c/irI0gxLYjxa4nycLrjTjx1NLfAe1OJe5AlTFVp4+KvHa+YKlji/uk6Gi6OpIOO4LvzqoiI6ahC/Blt7GPaUMafSRT30jhf0rxVK8uqo/EP+Yl4B3knymtBProDS0wXn4szVfPsGGkRvKcsflflXUzXWSgQzmAaqGVOTK2DXF4jT+mUpph2ymLBshiMV1TZDvqnptFx1p47eTHon06HipdtyjG//TtUERnP37poU/w816Pi4p8rC8cgBx+eYNkvaj1aWF3i38ExmC5B1oneGXw2nLcT1c/BZ8rC9yBbwqPrI7g60IdNLW5cXqLMk8/UBNXlJ/K5dlYL5C3qWM77Z6P808X1nP++LVTlb8r+JWKqo3Mx324RRlXCx3TEr0A4gmEqze/F5R2sa4PhLyx/047CBN6kjY68bcdbpxi6NOE+2j1V3Lh7Ej2raz84v8oq4yAfvheXeVQe9/4F5ZNwmQm3a6poc3W1D1eU/OGvBetnHRTZrh2IkhX9s6V9DHMgPMH4JCqnYT4+HlH1SdC/ZDJbOO2i2hXeE663E9V3Pkxl5RgVn2A+T9RmBdu1YFyCbV8q+S6cNmHe+B2+R9cJcmUx+F6+F5V5MJ48H853ifxLJYyJZK9gmIN5JsgzUfwSyc/IjTo47Opn+ipqNZjWNiuLQKdNi2EelWsCmDlixYDZP26PPfYQtiKMMqdOJaKMrjJdwq8OzlxbRiwwN8WhTWa0hNFm/07vL88yMhTeRx0tHnPF0wEQgzYAAEAASURBVD2akem4h1ky+kxcGLEIO9YlYNHM8MKZWEtgDZHI0iTsT1n+nW7e4biGeSfLa+FnK+JvRoBZF8XnqXBZ3NE4h/3zvKPqDm1zXD72I9Q7+u6y9nym83aYNfEPvzMVJuH6OZVnyto9WCoQd6bi4ahTVfiLm+QXNbzUsUyj8/m2qP4lYoq/1PlY/5RnF+ZNXMJ1bVHih39Yq6jg7eqnKN60ebSJyAlBF342eK0ifQ8zj2JU3PiyMKt2VtxORd6PRPKHv16Rj+FyGsWnKPEPy2w7mnbhvFCUsJS1e8NtVlS7tqNh3lHevD/dzMP+pSOMUZzSwZO6mb6Wlxuj3lOcc7arRXGoVdBnwh0BlAReACtOlMOdaqYn+PlT+EdHKJH/4Wf9+zMluGU67mGWTAHgE+US7aDAVJSKoHQgzunmHeYY5p0sr4WfrYi/mToVdOGyGLxWnO9h/5LxZmEpPhXVZTpvh1nDMfzOVNgmqmNTebas3INS2ysdCBMdf78VWnHCSB0bbJOK6l8ipvibqbarOPEs7jNh3vgTrmuL4jf+FcabwYfwAATvCD9blPeWp3vDzIuaJ5PFFaVOeJeVRPJHMn8qyrVwOY3iU5S4hmW2HU27cF4oSljK2r3hNiuqXdvRMO8ob96fbuZh/9IRxihO6eCZqSndZvEQlWIV5BzCPaOL5jJPYNCgQW4RMxZhMZdZAsyThjfz4sxlnoCa7Lk5fizSZy7zBJjjy7olLKBrLvMErJ3MPGP/BkbXqU+efvppf8qOGSTAelnIJNQn5jJPgO1333vvvQLKtMy/ded8A+sOkL/hbS7zBNLZTtrikplPL3uDETACRsAIGAEjYASMgBEwAkbACBiBnZaAKR522qS3iBsBI2AEjIARMAJGwAgYASNgBIyAEcg8AVM8ZJ6xvcEIGAEjYASMgBEwAkbACBgBI2AEjMBOS8DWeKjASV+RF3CrwMlmUTMCRsAIGAEjYASMgBEwAkbACJQJAulaM9B2tSgTyZmZQKQrk2QmdOarETACRsAIGAEjYASMgBEwAkbACOwMBGyqxc6QyhZHI2AEjIARMAJGwAgYASNgBIyAETACpUTAFA+lBN5eawSMgBEwAkbACBgBI2AEjIARMAJGYGcgYIqHnSGVLY5GwAgYASNgBIyAETACRsAIGAEjYARKiYApHkoJvL3WCBgBI2AEjIARMAJGwAgYASNgBIzAzkDAFA87QypbHI2AETACRsAIGAEjYASMgBEwAkbACJQSAVM8lBJ4e60RMAJGwAgYASNgBIyAETACRsAIGIGdgYApHnaGVLY4GgEjYASMgBEwAkbACBgBI2AEjIARKCUCpngoJfD2WiNgBIyAETACRsAIGAEjYASMgBEwAjsDAVM87AypbHE0AkbACBgBI2AEjIARMAJGwAgYASNQSgRM8VBK4O21RsAIGAEjYASMgBEwAkbACBgBI2AEdgYCpnjYGVLZ4mgEjIARMAJGwAgYASNgBIyAETACRqCUCJjioZTA22uNgBEwAkbACBgBI2AEjIARMAJGwAjsDARM8bAzpLLF0QgYASNgBIyAETACRsAIGAEjYASMQCkRyC2l99prS5rAsl8ke8oLkvXZDJGffxTZsrmkQ2DvywSBHC3CTVpIrEc/yRu+r0j9RkV+S2zjUtm0dLJsXvmx5G1YJBKzvFFkiPaAESgLBLJyJbtKU8mt3VsqNRglWZUbFDlU81f+KLfPuE9enPuafLX0G9mUZ/VBkSHaAxklUCk7Vzo1aC/7dBgtp/abIK1qtyjy+5YvXy7Tp0+XL7/8UpYsWSJbtmwpsh/2QPkhkJOTIw0bNpTOnTvLwIEDpW7duuUn8BZSI1CBCGRt3LgxVoHiY1GJIJA17RXJ/u/tEuu7p0iDJiJaAYtk6YekT+8xb78jI0JgpzJGQBVIWQvmSdaHb0nW5Gcl74hTJTZ4bMqv27T0Tdnw4wOSW6e/dlgaSVZWjsR8tvC+pOl35Sa/8T7a0QgYgUwQUKVh3voFsunX6bJpyStSpcWxqoAYlvKb/m/Ww3LmixfIoV33l9Z1W0luTiXJ8uU/zceLh5yTcrjsRiMQJLBxyyb5bPFsefyLZ+SW9++WiftcLb/b9ajgLUm/z5gxQ5599lnp0aOH1KtXT0UiZKJ8F9MGMCsLuWir8/ne/yzi9ZEjR3qf7FiKBFAsLVq0SD799FN555135IADDpB+/fqVYojs1UZg5yRgFg8VPN2d0uHFxyQ25mCJaeNKe+o6lk7pgNohtlX9sPWoUuaOXK/gOMte9NTiIda6g/tk9R0i2f++VvI0lKkoH1A6bFr8nFRutI9mhHzBC6HLyVn82erS/dv7a0cjYATSTACLh2ptpIp+KtUbKOvn3eZekIryAaXDNW/fIucMOk0qYUmFy28M8nXU7rc7m77fW72zgxEoCoHKqhDr06yX+xzW7UA58ulT3OOpKB9QOkyZMkUGDx4cVzjQ7gVd+LdrFAM3FPl64Fn7WjoEUC61aNHCfXr27CmPPPKIC4gpH0onPeytOy8BW+OhIqc90yuwdOg/TCQ31ykdUDWgfECj75T64eMOX6/IQMt23FBA5J34F5fmommfzDG9wlk61Ns9X+mQnxnIGM4GZmvmSPPvZCGya0bACKSTAAqIqm1Od+Wc8p7MMb0CS4fDux+Ur3Rw9YE+keljskDZNSOQAgEUEP856E6Xf8nHyRzTK7B06N27t1M6eMuGTB+ThcmulTwBFBCHH364ywvkCXNGwAiUHAGbalFyrEv8TdlP3SeyfInEGjV38iNKfeTITB5j+1fcqRZr166V1atXi05PUoYFR0gykbgIQ5UrV5aaNWtK9erVU35F9lP36r1ZknfwhITPbPzpMcnbuEynV+jUmxJylZseVEJvstcYgcwTKC/1wYaFj2q9r3VJs/EJofz19b/LjysXSof6bRPek+4LFw/9c7q9NP8yQKC85PMLJl+h+Txbrhp5YUIKL7/8sqxYsUIaNCj62icJPS3kwqhRowq5o2JdLi/5BeovvfSSqxv32muvHUqEjz7+TN59/0P5YcGPsnlz5tcKyc3NkV1atpDdB/SVPr177FDY7WEjUNIEbKpFSRMvwfexkGSs90CnbKAjmrV1sm4mj5nvjpcgwMCr0Ipv2LBBateuLVWrVnWNVeByRr6i3Fi/fr2sXLnSKTtSXQwpxpSL+28SSaJ4YCHJ3Dp9tmqiNPiqkIo7EjGTv+Mvsi9GoHwSKE/1gZty8cPdSRUPLCS5fycVvp1mWtOE8u/rAX/0SeV/h49Fve7vt2OZJVCe8jlTLk547o9JFQ8sJNm1a9cSab/LbKJmMGDlKb+AgSkXTz75pOyI4uHZF1+Vb779XkaPGCKdOrSXSpUy363atGmzfDX3G3ntjbdkwcKf5IB9xmQwVc1rI5BeApkvIekNr/lWFAK6ewXrOuTPT0RKRJ7Mn8PvJ+mm+3dRglde7kWDj9KhcePGJSqwMEpZrVo1p+hYvHixEI5ULB9iLdvk71ySBLDbvUJ0ppUqN1z/IT97uCf8b3fUM/63987/Lu51748djUB5JFDe6oPsqi3zd6tJApvdK3J1p4BC13TwflD4ceFj/tntz/v7wtf9bzuWOQLlLZ/3aNzV7cKSDCS7V2RnZ5eIxWKycFTEa+Utv5AGTZs2dTuaFDc9sHRA6XDaSRNKROHgw4lyo3vXzk7R8a+77xPCYZYPno4dyzoBUzyU9RTakfCx4wFDV6FlyVE2+CGtM+96UB58821ZvW590jfVrFZVjhm2h0w8+TinvPDPcwz6F5Yvk3paTi4yvQJLBz8PtKSDzXt5/6pVq1JSPAgLwxW2XarfMlP9zgrNvfG/z77w3/LfJ6fK6jWF5I0aVeWIQ4bJjVf+TrPDNv+8P/5Y0tzsfUYgEwTKXX2gC04WtkUuW2Y6Iyctv075EHF88eZn5JNXZ8rGdRuSYq1crYr0Grub7HPmAa4+SORfUk/sYqkTKG/5nAUnC9v61W+ZSZuKRWHU8dZbb5XJkyfLunXrkqYBgwJMozj99NMj/fH+J/WkAl0sb/kF9Cw46fNEcZKC6RVYOpSElUNU+Hgv75/69numeIgCZOfKJAFTPJTJZElnoPJ3qWB6RX7/ctvxjLsekHUbN8nX/7pOGtWplVA+5Lml2uk974HH5My77pdbTjpWG9pt/gT9TWfIy4pfrOnA9Ip0uU2bNsmcOXOkffv2qSkS9MW8f+nS5AvEFSt8JB4udDxLlQ7r1m+Uz96eKA3r186/J8HfJctWykVXPSxnXXSPKh9OyL8r5F/c/wR+7Ohp2Nx77/+3dx6AVhRXHx8UNLFGxc/YImCN+tmwN1ARxV4QYsNeP7FXLIgFRWPDiL2AGsESuySKsWPFkmCJkURj7yV2FL79zX3nMm/f3t297b13H/8D922bmZ397+zunP+cc+Zat88++/jp0aotr73knzZtmr8uTEEXW2yxqqpFR/q+++5zb731ljvwwANzt72qTlpGZjrqdPrpzC+//PJl5JyR9Mknn3Sff/6522KLLWbsLLH2+uuvu6eeesoNGjSoRIrk3bV+H1Dfd955x5v9Jp+x5d7Wfh9AOkz9YaobfMPRbo5552xZoWDPt19+4yZc8Wc3fuRdrt+hEfmA1Oh9QBt58803fZHdunXzCp/f0J+aI1Drdk4F+e7NP//83nowT4Xr1c5pR0h8yfsH60a+JfPOO29qFYkVcfXVV7tLLrnEkw9J5Vn5qQWlHMRCg/PQV8gjlb7T8pSdlaYjt5dS105MB9wrqpWwT9ilS5ey+oec/4Zxt1VbBeUXAq2GgGa1aDWo2+pE0Qh0YSirxfKGRya6EYMGetLBWy6USEf+rtGI+4hBAyLriIktymlefu2uE39BgisSAKgSQckif/y31lprlVUcnYdaWju8++67rmfPnn4+6bwVsZGZvOlzpePG+ZvXtAy2sXQ448TdXNcF6Hy1PO7zNaXvOv+8Pi15SpVX2J+rVj6R3fvtt08OSIlZp91XMjz99NNuyJAh7vnnn89/kgZI+eqrr7qDDjrI0TGJC+34xBNLB1KLpz/44IPd/vvv75599lkfMyR+vK23P/vsM3fUUUe5W2+9teKq/OlPf/LkRZ4CnnnmGXfEEUfkSdosTa3fB+PHj/fvg2Ynydioy/vAnvOEJZYOffbv5+b41VxRzWLvjdj2HPPO5foc0M9bRzR7H8TSZVxii8NjxoxxXbt2dcsuu6z/sX7TTTe1SKcdtUGg1u2cWvXr189xH/NKfdo5nyn6RU2/qF3aOpYOkNfEU7J90dEZ63zzIuEYafbdd19vHVFMGxy3fXmvNUw3evRox/t9kUUW8TEpIJ2PPvpoH/MpTAeW//rXv4q7Kn2nFQuoYqUjt5dSsBBIshbWDvQJ11i9p5v897+7cL3UecP9nL9WAS1pS5dddpnbfPPN3ZlnnunXw/YVnlfrQqBSBGTxUClyjZIvUprh9i2Wg1kqRFy/d6/oOvdcfjAq6TiXyP6HX34tWjq34QrL+TyFwYLCiEExX5SuaeycbO1KGNUMRy9mn332dlW/NquMjfpEFfDeOE0V4T7iXtF1vrn9SKVvP8HNDbcfe/IVf983XGf5gkuGtbcS6cu91nvvvdePcHbr1q1ZVlNOl156ab+fEe4PP/ywQ1k7cGETJ070o4Pdu3dvdv2VbNx4443u4osvdgcccEAl2eueh0jzjPAxi4ukLRCIHlp7bmNL3CvmmDeaWafpnVEq3VsvFpSgJVbuUXDJyEif9yofeeQRr+RdfvnlbrvttvPZxo0b5/bYYw9vCbTBBhvkLUrphEDR0qEIRVN7xyqMvgJKdDOJbb700kv+8EorreRdMuLp49vNysrYOPfccz2hfPbZZzve2XPPPbd77rnnvGXWK6+84olZYj1hDQfxcf3117sePXpklKrDQiAdAciGv/71r8VE4frQoUPLGuQoFqIVIZCAgCweEkDpULsiBt6T8LaMKAS2YeO92H5bBsdJctrNd7g+p5ztl0EWn99vWz5blgEebD0KI6NWjGLB6g8ePNjHMshbDGVsvPHGfnqsHXfc0T322GMtsmKmGP6qNVm3E1xzzTV+pBKFadNNN/Wj7naMkXqui44BSmPv3r0dnee4YKYJBj/99FPx0M033+yviZgO9RXfEKI7HknhZvql3/YnTjkepR9+wa2u38Bh7qwLb2nKXygnsTxfvi+07D/XXXddizzghhih9MYbb7i1117bm6yzH4sJsOdeW7vCBzXrGMcx199pp518m9pmm23cAw884PPxh/Z58skn+yXlcm8xtzVJOy9p0sq2MsIl7TlPxG17llDMeJZok4cffrhvV5jfsg85/fTT/TqzpVgeOrpcyxlnnOHTMOXcuuuu68vAMod0Jlz/SSed5C0nOAfpMJ/+/e9/X8Sac4Ryww03FJ9R3BqmTJkSHm62znN09913+31ZWJPowgsvLD6DRx55pDeTDgt8//33PdHC9VFXazdhmlqsg+dxxx3n2wPn2m233dx7773ni/7Pf/7jrx9ct9pqK48TyrMdt/PjcsG7DIXahPcCeRiFahWx5zS+tJPH9wfbj4x50I056ir3yJio8xrs91lLbVu5GUusdJDdd9/dk4vzzTefdxeaMGGCW3TRRb2lE22cWQtMwHOFFVbwFnMobBy/5ZZbim2be0D7MGEdiyDu38orr+w72piPI2n5Mc0n/R//+Ecryi/5BtgzxXGeTZ5lnpuBAwf6c/OOYpvjd911VzE/Fk68Z9hPfUiHO44J7Yu2HwrP6j333ON3Zb2Hwnzlrjf+d4/mWfjKxZeGRXx/uM37jGcdUiDcT95S21Zu1hLiAyu2U0891fE+W2qppdxCCy3kttxyS0db5/fQQw95Mp7ZORAs2WjnodAW2Ufb4T0aWsylfYNIy/n33HNP3y5D5TMsv5x1zmd9NPueGDHD83HWWWf50XXqS3u/9NJLWxTPd5AyeA5N+O6wj/IbQajv4MGHuCV7dHcbbriBOyV6vnl3tAfBetTuda9evRw/3j8skWHDhnkL0/ZQV9Wh8REQ8dD49zDjCgqxGBjKKpD4M5aFjDO248eHjb3DnTbuDp/slAHbzRjs8ux/qXwZ1QkO0zniQ8pH9thjj3UnnHCC77zlHZGlE0mHjI+ZdczxDw8/TsHparqKDyh+8piO8qHEioJRN1OqHn30UT8ah38mHYO/RyZ0O+ywQ4uRlGWWWcZjwMi2iSmyjHTUV6IbaSM7fhls+xMH27Hjw8+/OSIeIsIhkiGH7xQrJ9oZS188j8+R/8+uu+7qR+lR7EwY/XnhhRccx0w4/u9//7voQkB7orNy1VVXufPPP9+3K0aQkLRjmBWi6CG0KZQCOn3cP4TO/4gRI/wo13nnnec7d7hCGKlRTdn+BMEfOmdYfGy44YbB3uRVe5Ygu1D8UdBGjRrlHn/8cR+5GwwQMGMdP1LLM3bsWMeIBtf99ttvu6233toraWC3+uqr+2fMXFi4/nPOOcfHh7jiiiu8//F6663nFbqLLrrIEzac/4knnvDnQ5nae++93TrrrOPrA0EEmVOKVOO4HcvCGkIEvOl88gzSsbP3ACenTUBG0l6oM/cR14okIstXtoo/vAsuuOACr5AMHz7cu7NAoqC4okxwH8CV6dt23nlnH2sD0+lQUKZREMDdBBei+++/3y233HK2q75L/9xGp4gv7azx/U3bj4ye4B6NiAek16CNW+Yvkc+KzVpCGiFgBwlhAeF4NhjtZeQZa5lQeYcw/Oc//+nbnr0fuP98X+w5tXctrlsQEbRb7h/fFdoSihiSlp93P0pTSDzQdnl2afcILlOURdvn/XH77be7FVdc0bcP6gB50r9//6IpPUon6Xh2eG9xzdtuu23xPUP58Zg/vKOYehmx60t6//kEFf7pGN89mqfvxLRYGiyljmNdAOGA8C4tlS6+38rNWtJOEN4VcVl11VW99duLL77oFlxwQU/2koY2wvvNhPcn7+JTTjnFfwcgvIhdgeT5vkFEf/PNN74MIzes7HKX9MVQXvmO8r2gj8SzZS5SkOJ8exhsOeSQQzxRfthhh7mXX3652al4b/IO5bkxueOOO/w+nqP2LhDIO/Xf0T0e9UmGDDnRf5fOOWeEuzEisdpacKkwgWzgvcnP1lmaYBUhEQLVItC52gKUv70jgIUDH9mWy0LNO7nTb77dEwwPnna867Uic1xP99unR9YOiO2PPtd+uzBY0LI878bhU5T3h4/5mmuu6TMReArzWTrxWS4RpEHB4kOJ0KlbbbXVHCMSdB5N6LCFZR166KFeCbHjlSx5GaPU2IgWHQVGF1CAGP1F+vbt6xUy1lEcSB+OsLEfSwgIBkaq6ETTeWZEA6Wx7mKjkIXmMeN0hdvsRy2Hn3+LJxjG3zzUbbBOYVSlsO9Wn97vXzvab2YSlJlUnh2fcZZca4zs0dG78847/Sghma688kqPLQEIwxHOsEAUNjo59qHEXxblAUk7Rltkii2UCJRzyCI6T2wzMoPQGaMOjG5xz5ZYYgk/WkD7q7Zsf4KmPyhNdCJNeQmPlVpntJwRsgEDBvjOA8oPbQylG+E5s3UrgxgqdGQRRolRvujkdu7c2ZMRuLXgO8yzhUBG2GgrCiD3CGUeXMALq4LJkyc7CAmeTUaRrXMDSYCSBTEXr4cvPPYnDWvOQ+ffnn8sh0IFneuAdIAMXHzxxX3JKGa4mzCiVyuhfNrHyJEjPRlJubRNlGXiN1ideFegEJqESrLt22WXXRwd748//tjfE94LTOO7/vrrW5L6LePvA3uOg/eBEQyDzt/PLbFSD//c2z4qFu73Fa3R+wAsUZ4gp3kX8M7EooAZBayt4ptPWz3mmGP8qVFSUObNKoqdtBm+BwjvYshrLHhoK5CZPOuMMiMoS7QTIyzZVyo/9422T5wSvmE8d9w3GzEkL/ee+iIojyhfKPJE1u/WrZsnoCHeeJ+gLEIaWOBT7j8kNc8N7TxL0t5DWXnTjlfz3SNegUlbfvfMKsHqEl9ynD4EPxR6SC2EbSMdwv0cyyqTNHmE9yZiLoTxPLx7aTtzzjln8f3Jvvi7lO8Y7QXLGiwCGNiAdMvzfUPJ5zvCtKPVCiQ3zyptne8JfSCCG0Oq8cwgHKdd85xiaUg74TkMrTiIp8HzTgwfi2vEs8t3jvztXfiO8x04ZeipxSDCkBC8o/aO3lttJRBRWDOYGMmAdS73hG1+rLMPqwjyyLXHENOyEgSqf7NUclblaT0EImYfch8G3pP8wbavhO2PNjaJXCoemfyqCy0dIB2I7VDMH6WjnOJ2UB77K5E11lijmI0OCWLMv99I+MPIIEoFFg4mkAsoNmaWa/tROum42o8OYTVC5/Kjjz5q1qlkai0UREZdTcKRalN84qNUKLeQJ3xEwZTRTSRpxMPKrdWS83Ez+dd0U2dsRyfxx5vIpn4DhrnHJr7sQkuH+8ZFZMTay8/IT8WC8lqUX0HFmUYUoshGbGz2CkaY04RODSPi3HOUXkY0zd0g7RgKNAo/oy+MjGKtgkJCoFIT2pN1NBdeeGGvYDACiVRbtp2DJR1G2mqpTmiYlnXSQjqY0B7ffPNN20xcQgIY6UACRt3pyEHqMUK71157efID/ExWWWUVWy3G1EBZQsCle+R+ggkpozwoQIx0gSU/lDzEfKT9RsqfUljz/HNfsCowITYEz78JHXQEhd/Oz3UxMlxLE1d75iFaTDAZRhjRMwnjEKBoQjLGxeIX4JbB84M1CqP8dNrrLk3vg+gh9s9xsyUn53iTjDnySvfWS1NcM9LhvH0jMqI7CWek9XmatluUb6XlW0Jg8ZzRWeedyfNN+6CNISgttAlcW2ivt912W1G5sTOYEsk2Cpt9Z2iPPAtGOnDcvkWmDLKvVP4+ffr454b7hqAg8S4I7xsKnQnkBNuQDog9g1jIoHQh4feD9sJzZW3aJ0j5k/YeSsmWeqgjffd4tpJ+AGD7WYcsom2gsEM8ICjN3Lswna0nLX2mnH8guxCs0ZKEfoe1laTjtg/SwQSy2fodeb9vtSAdOD/PIwMw4XPAN5nnztxLeYaNHCRgLGL19RtNfyBReHej+GLdyDrEQyMI39UrrrzKPRkRQEdGBNCWEXloLoVtWX/rb1odcLngm8ov7jJpaeJ5bL+WQiAvAiIe8iLVqOkiRSD67xUClmzYtr+kaGPo77Zzpwzczm9CPsQtHSw9S6TZdrTRbLuQJPdflBxT4siEIo7Y6LTfSPhjH63QkoFkbMfzMtsB5nz2C4mOhKIzd+E+gaB0hhL6UbI/b5A8OsxEMqZTSWeZD3WoQIbnqOW6v53cPwrlJjYtm9b8/iFHDnBDjujvDxHPgbgOCJYOBJQkX2L+YH+z4z53eX8YyUS5AB9GnFCwzZKhVEn44MLO06lh5BBF0KxI0o5Zeb/5zW+c/Rj1hIgw4eMcirVZ9lVbdlguowwo0uHzER6PrzMKFoopNeG++Hr8Whj5Rbli5JhnMyQZLG/eTqk9DxAnhiVL8Mz7DMbrZ1jb82/bVrcwPS4OSHhulFdGzMxU3/JVszQlAUsZEwK/IeG9g5w0CffbPpa8UzbaaCOvXKPw8F5g1L7VJHgP+HPadlMFeu3Rx204qED2Es/B3Cu8pUMUUDJ8jzTLb+XEl2VeGBgyuovFDSOniJltQyR0j5RzrA2wGqP9QgiEEraPsB1DRIXHyGPKksV5YF+YJszPtI8QRJh/ozRxft7roZS652Ea1o0Ui3/bOIc9U6RDyS0led5DpfKW2t9Rvntcn92L+NKuHWILayoELOOWDvF8WdtWbtbSRvmNzAzT885jsMVIzfBYuE67DyX+juRY+E6Mf9/Cdh2WU8k6AZ8h9EKxd7fti3+3bH98abGOeL5tICAknuPp29M2lnbLLL1U9O0Z4r759hu32eabRcTmRm1exSSCB8sGLLUsthXb/Ex4x0mEQDUItMIwSjXVU97qEShYOthsFuGyUHbhOMQD/ZiQdMDSgdEr9ls+8oTbtt+WhTLz/8UEDfNSG2maNGmSz2wf4FIl0QFl1IEZKzDfQ+iIYVKIsllPsQ8p5zazXT6mdDYZIS9XCIqIMo25Niw4oxKtJtxMJL4s7PX7hxxR6EAXSYcmS4fEfPFy4ttWbhlLzO35EGJ+DJmABYQpBaWKwYwa5RYTZUzxMVnGTJr7k3YMJY/7auaclM/HOa+iWsuyGT2FLGtNoVNB+wYDOtOQeBB3lQjPKPcOE9kQT4Iq5iXlSp2XsiE0cAExBY9nECsRs76wDjqkkY2o4bvMyC1R4WslZs1EXczk2XyUKzFJRYGFICEv98Lc0GpV39Ry4s+rbVumaLtXE/FQJB2Klg5RIkufd2nlZiyJh8G9CwPPQdLQvkxorzznWBuAHTiirOcRCDZMjs3FhTwW14RvUTwQaFKZjL5CdEAWQoBAhFQi9u1DyTTLN9oso8RmccHzY22MczASHkraeyhMV856R/ruGWkTXxoe7MeFDDHSwSwd2BfPl7VNnjzCuwviACs9vl3hd87i9BDTKhQjqsJ9pdar/b6VKrfUfp5P+kWh8J7k3R1eW3i81DoEBWSQxXnAGo/vQCPIrZFFK33dSc+/UHQhue/eGVaUbXUNScHYqUtIOsTJndByr63qrfM2NgKyeGjs+5ej9tGIdGHIucWykHnGcbN8sJgOyfkgIcg5I1/z7RxViiWhs8joLi87TOgxxSNeggkdMI6FP5QM8hFEieBcjIYzMkHaeo8QMupFJxPzS0wJ6RBbXAdGSsoVRqaJa8G1IHl8eMs9R2J6bpy/eU3LcJsMwXbB8mEnb+ngYz3YsTC/5cEGotTxxIpk74Qw4D5jYsl9TxPaBqQDCikxIPDBx+UAv/u0Y5SJnzbWFbQlTDkhgjBbDRWeUueuZdlcJ8oEz0JrCqP2jLITm4DrRwGuRhhNI94KZBqKE3EQunXr1sIdqpJz8KzZ84+SCCGFm4wJrg8QenRWuaeQEnSiMEOvpUAMoJQRbBSFDxcKFAcUiCzLnKR6mLLJtYGfjaYmpa3tvtj7wJ5jll5mHDfLh4Klw5LN3yPFfFGmZu+HGfkL+5uKzbEAY57/0047zSvctCXILJZhx5hnntE5YicYIZWjeO8mxz1E2aSdQPoRNBbrs9CSJa0sa2+4KNE2K71vFtCW8xN/hfrwzqMtW6cfUo2RX8hqXEEsdgT1y3oPpV1D2rEO892LLpJ7U/xF7dXW7fptm/u42667+VgPYM5+xI7n3bZys5aUh9UjbZhz0+ehT4O7GG5qxC8xQgvLBBR4AjPagE1W+dV837LKTjpu7hFcE+5PtGfabaXfFZ5pgkzyaxQ3C3D59cIFa7i33nrTfRYNZFx88Uj38MMPRVOQf110OUnCr977zLUvfh7cLPiF71ZLY+5Atq2lECgXAVk8lItYo6WPmHvGtDthucAyChxZGIya7ub65S/cJ19+5RaYJ3J3aDpulg/G4Nt+lh9/9V+fx/IDRXic8suV7t27+5khzCSWkW18d+2DTnl0NuOCCR9B2BiNZlQYJY2P8OjRo31QuzB9WFa4v5p1RtH58IXWFSgK8dEIO4eZL1KXpPrQIaBMlCQCKbWKFG5koV0EN4/VueaM2sanX7qu889TPG4uF7QkH6+0qZKk//TTr3weGhfb8ePhdlO2shbMuEDHm9FEUwRCHMN1RlLwjcdFw/yqMV9nxCjtGBUiLgK+vIx+Eg8AIQo3RARi99FvBH84f7VlB8V5ZQPFNRzRDY/H18Prt2Ol6mrHk/IQIf3BBx/0Ef5JhzLPc2VpS5Vpx+NlM6UnivhRRx3lR3y4Jp6TMDaL5Ykvs85FJxyffxQ0BCUfRd1Gp/Gjh0CBtDKFjfcL0wHWUhhVRwGkU2zWFlwnQRBLWVbE8QrrY4onHXRG7VtPoieXhxeJLWf75ezu2y+/dnPM2+TOEx03ywefOJb+2y++ceSZYQFRKDZebtPezAXY8s6nHaGEIWBMoFCzMmEfJCEEAuRZGJAzCe9wH20FkpG2RBtBIIAgO5Awrd+RsM8IZN7j5ZAeVh5LOw/fsf32288HTGY/3xkCjZoPPDjgFkV7RyxoKfmz3kM+Q4V/qvnu2SntGtluk+9edF7r31idrF0ygo5LiVlIcXzX3QouF2EeWycteWzbyotv2/48S2KL8A2CyLS2TZvmnsf7QgRbpR/Edyt0CYqfx9zuKv2+xcvLu82ACqRI+B6DRCPmTpqEbSRc57vBcw/m9pymldNejvXtu1mkxPd1O0TWfwjk0bCoXzs0mnlk2Kmnun2jZ90kvF7bV68lxGqSEF+GwcAkKZUnKa32CYEkBDpFLyvrMiQd174GRmDWA7d207didI9bDFPffDn4itHu2x+nuhGDBriuURC/+PFw+5OvvnbHjRnn5ohG+y/en1H9luWRfpo/X3Q4hzD6ifk7o9KYdPPhJJhgucJHHj9rAvjUQ1Bu+PDHPwj4ceNnTOeDDm8pJSNPnQhCx7RQKH2mJIX5uEY606ElSHg8vs69//myu+O7i9tfv7SHm22h6CPob2PULqIO64zmMd0dcdI17rvvf3BnnLib6zpf5DMaOx5uQ1CcNPxG98tfzO4uOHOfqJyW5ZF+toUKcUSKlWiFFe4NI3VJJplpx6gaMzxg0pzkI5tV9WrLRgHCvJro4m0hmIXSWa2mTYf1pv1CEqLglSIUwvTlrPPe4P2R9u7AKgnJ60+cdv5S7wPqwXNMe1lyySXLNiUOz4lCyfPOiGeSlPs+4Hmfa+XRSUX5fbOduYg7eYMjm55ze35nLMdffJeb+v1U1+eAfm6OeSI3Ff8+mHE83P72i6/dhCv/7LrM1sX1OyyaQaL4Pmie/uQNjipZn1IH7J3Luxg/9XhbwuwcdwQUnVOjDn0lQlvhHobxHPKWg/k3roOlTJjzlmPpiOlAuyrVbvEdh2go9ZxmvYfsPEnLUu3c7gFlt7fvHu34xxPfS7ocvw8rGYubwzNEOwqX9EdoQ5DNvE/ix8Nt+hyQmLQT3LnCcsJ0nK9S4Z3Ju7hbt24li8ANkF+57bWa71tSZUq1F9JCGjJVc/dooKmaEXOsecACMjnJBbDc9yJ1o03YrEtslyPHDR3uTjvx2Oh9kW8MFwx4Xi0+GNYPs0VxyapxPZw69Sd3ypnnuBHDKnOJhLDHhdUEQse+O1g8hPEdGOQL3SYtj5ZCoBwE8j0t5ZSotO0MgYKFg1k6hMuR+w1yh145xi110DHu6+8KUw2WqjzWEbv1WteTDoV+ZHK5pfJn7WfUMK8/brwsPvL1Ih04Fx90FJu48kqnlw9pNUInjpc8ARAZnQ9H6cJyOX+5HYswf/J6pAhE/71wU5GmxQVn7B2RD1e7Fdc9JDIHzGgbkXXEzjtu6MjjlQxfTvPyivv9SVrvTzhyFT9r2jHSVtOmqi0bk1QbxYzXuzW2GVWqpfCM2mhtLculLJ6LrGejlOJWSV1KvQ/YX+2c8pCwmM5jQUGsglJSn/dBdLbie8Ce38Ky3+Bt3PiRd7mLdz3X/fjdD6Wq5fdj6bDSpqu6foduU7K84nlSS2p5MO2di+831jRY2JgVTMsSsvdU0lZw9cPdDrN3LFVqJRAgacRnGtlGHbLeQ2n1LNXO0+5BWnnhsbb97tEsC+06vsRlBfIB4s+C04b1DtfpDzACT554OfHtMF856yjpWYo6BLFZNJRTdjXft6TzlGovpCVYdrUBs3GXo6+EdSsEX5LU7b2YdLJo328WW9S9/sYUt8Jvly2Rovluiwdke+dvmsXEtitZcn7qUanQ1+DemUA04GaB1UNIOnBcpIOhpGU1CIh4qAa9hsiLaT8f2eTlxfvvEZEJ+Mx3in6FdFnLtPIKn/N8wPBiy/qo5iupvqlgoxlZghhBgaql0AHDpBfzNcx6k8qnE8P5a60MRicrXIrddruwpu0Lztw3smDYd0ZziB23zWKzsR0lyrPDWqYjwKgOpIP5+qen1tHWRqCe74O77rrLK8+nRCa4ZmYdv75Wex/Yc9y0xHqhYMEQ1Sjpc2EVjeXLfD9YviqXKMTEx4HErVbJKbcqnJvpeidMmNBsGsxyy2lP6evZztvyu5f0jQ1xx3ohnMUoPKb10gjUs71wVpRhLAaYxcYsBsLa1O29GJ4ktr7Omj3dhIcec8sstWRuq4dYEVVtYu3A+Xutv3ZV5WBVhdUHLqYIWIeC1Q4EhUQI1AIBEQ+1QLG9ljFr56jPF/UC6QgW/kT9xYIPfr22y4GCSOJJ0/WVU0ZrpMWMlRczTDsjTLUkIDC7o+wk4UMKgw/pwNRqpcxpW+T9+SfnonufKp2i4zbqEyUMYzB4vaGp2RT1C9+GCiVWezy1XjroTTGrGbEVhPVFoJ7vA+JW8EuSit8H06P3Ac97inSZJfpWRO+DJirSPg8tl1aGvQ/iy3KPW/oaLG2GoRoUVXYRuHfYjBNlZ26nGerZzuvx3fvx56mOdpwmWAbQziW1R6Ce7YXaEuMkSSp+L0aF4aJSibWI1WO1lVd077z3vht15XWuz0YbtBoBAeGApQOkw5I9lnDUo1rBmgEXtfvvv9+7ReIuRvBJBsUqmZ2p2voof8dFIP0t3XGve+a4soWiuATRizV6s0bXW1QhPflQr+2O+kkn4CNRmfG3xO+yNTovjMxgAoelQ27SgTv9zpuRbWO66d0ss/86Shm1jUgh6URHDOuHpqVtx5dVH4/OKBECHQGBRnofTPv+HVd43ksjv8wCS7qfpv3kuszapfgesOe9bsvS1dGRdoJAI7XzyR+96mjHaYK7F9YWRkDwjfWEWx2XafXpaMcaqb2A/QcffFC1C+A2/TZ1z7802T36xFPuhnG3RbNURP2qOkvnzrN69wosHWpBOlh1IRiYWU4iBOqJgIiHeqLbxmVPXzGaR/zTD930BReJ9MrkmAy13t/Gl1zX06P8l0MA1LUyKYV3mvSY8/c+JU3neVZ20374JFJIFiqkslGgei9T6qRDQqCREGiU98HUz592PO9p0m+pPu6tL952S83fvZCs3u8BKz+tUjrWLhBolHZ+yyt3OtpxmuAOQ1BFc/G0AYR6L9Pq1NGONUp7AXemjKZNVCso/7UkAKqtj/ILgfaMwCztuXKqW3UITOu9pes06QnXaRoMLDEeKK/ey+rqrNzVIdDprTdcpwfvctz7NOmywCbupy+fjZJMi35Rw6Bx2K9e22kV0jEhIARqjsC07950Uz+53/G8p8lBq+/pbn31bjc1snoovg/sPVC3ZVqNdEwI5Efg+ff/5kY+c6WjHacJ05ISvBWrB6wd/C9q38X1Qiep2XZ0tNk25Yfps46n1UfH2g4BZg2aOHFisynR2642OrMQmHkQEPHQke/1/Au6aTsf5Do984iL7L+8xSxOuww2wfD7Qaf4surjHRnQ9n1tkA6zXHWOv+cuuvdp0mm2Bdzsiw5yP33+ZNQYImWj0Cj80kcBqcd2WoV0TAgIgZoiAOnw/ZuX+Oec5z1NFp9nUXdxv7Pc2Jdvd1MjX/mmj0Odl2k10jEhkA8BSIddbj/At1/acZrgCrDNNtu4l156KeoS0Sfia0dfaMaP/OF2tcfT6qNjbYMApMPYsWN9W6BNSISAEGg9BORq0XpYt8mZpq/f149pz3LTpc71XM+5BRZynUrEfCDwJKNdNmtF9PktbMeXTbNkJB0nh6QVEYgCSRLTAfcKb+kQEU3c8zzSZYFePtkP745xneddI3K7iMiKTrMGMR+iwxhCQEIwElRoDpVv56mU0ggBIVA5AhGJSEwH3CuwdIBctOc8q9C9V9nVJxk8/gTX/7dbuyV+tbjrPEuX6BVgz3+Nl1kV0nEhUAIBAkkS0wH3CiwdIM2s/ZbIUty9+uqRC2okzCDD9LdMK1nPmA/FE2ulTREgkCQxHXCvwNIBAsraQptWTCcXAjMZAp2iiPqoE5KOjsBnH7tZHr7XdZr8nHMfvhvFFcSkVtLwCDB7RRRIkpgO3r0iw9Ih6Xqn//ipm/rpg+6nr16K4j58EBEMahtJOGmfEGj3CETBYgkkSUwH3CuyLB2Sruftr951lz53nRv/xgT3+qdTmtwvklJqnxBoGwSYvYJAksR0wL0iy9IhqZZffPGFe/rpp90//vEP98knn/gZDpLSaV/HQAByieCixHTA5UaWDh3jvuoqGg8BEQ+Nd89UYyEgBISAEBACQkAICAEhIASEgBAQAg2DgGI8NMytUkWFgBAQAkJACAgBISAEhIAQEAJCQAg0HgIiHhrvnqnGQkAICAEhIASEgBAQAkJACAgBISAEGgYBEQ8Nc6tUUSEgBISAEBACQkAICAEhIASEgBAQAo2HgIiHxrtnqrEQEAJCQAgIASEgBISAEBACQkAICIGGQUDEQ8PcKlVUCAgBISAEhIAQEAJCQAgIASEgBIRA4yEg4qHx7plqLASEgBAQAkJACAgBISAEhIAQEAJCoGEQEPHQMLdKFRUCQkAICAEhIASEgBAQAkJACAgBIdB4CIh4aLx7phoLASEgBISAEBACQkAICAEhIASEgBBoGAREPDTMrVJFhYAQEAJCQAgIASEgBISAEBACQkAINB4CIh4a756pxkJACAgBISAEhIAQEAJCQAgIASEgBBoGAREPDXOrVFEhIASEgBAQAkJACAgBISAEhIAQEAKNh4CIh8a7Z6qxEBACQkAICAEhIASEgBAQAkJACAiBhkFAxEPD3CpVVAgIASEgBISAEBACQkAICAEhIASEQOMhIOKh8e6ZaiwEhIAQEAJCQAgIASEgBISAEBACQqBhEBDx0DC3ShUVAkJACAgBISAEhIAQEAJCQAgIASHQeAiIeGi8e6YaCwEhIASEgBAQAkJACAgBISAEhIAQaBgERDw0zK1SRYWAEBACQkAICAEhIASEgBAQAkJACDQeAiIeGu+eqcZCQAgIASEgBISAEBACQkAICAEhIAQaBgERDw1zq1RRISAEhIAQEAJCQAgIASEgBISAEBACjYeAiIfGu2eqsRAQAkJACAgBISAEhIAQEAJCQAgIgYZBoHPD1FQVLRuBzz//3H344Yfu559/zsw766yzuoUWWsjNN998mWmVoH4I3D2pk7tovHOff519jvnmcu6wfs5t3XN6dmKlEAJCQAgIASEgBISAEBACQkAItBECnX788UdpLW0Efr1P+9prr7lp06blPs0ss8zilltuudzplbD2CPQ5o1Mu0sHODPkw4SQ9woZH2lKkTho6M8+xf/3rX+7+++93d9xxh9tggw3cAgss4Pr27et69Ogx84CgKxUCQkAICAEhIASEQCsjIIuHVga8NU+HpUOnTp1ST7ngggu6r776yv3www+5LCNSC9PBqhHIY+lw9cGzusv+Ms09O2V6WSTF1KlT3RtvvOEVrf/5n/+puq6NVkBeSxKui/tA+q17NtpVqr5pCGy++ebur3/9azFJuD506FB34oknFo9pRQgIASEgBISAEBACQqB2CCjGQ+2wbLiS5plnHjf77LM7yIe8stZaa7nZZputxe/yyy/PW4TSVYHAwZvN4tZYspODfMgrkErHHHOMm3POOd3KK6/sFltsMb98/vnni0VwXzn23XffFfexMmXKFH+vX3zxRUd67v1jjz3WLA0b99xzjz9G+vYqeUkd8EXypE+71k8//dT9/ve/d7g8ITfddJN75ZVX0rLU/Rj396qrrnIffPBB3c81ffp0d/HFF7f5NduF0naNaOjVq5fjd/LJJ/slaYYNG+bbsKXXUggIASEgBISAEBACQqB2CIh4qB2WDVUSpAM/5OOPPy6r7nvttZd79dVXm/0GDhxYVhlKXD4CkA4H9i08svuMyo7bYWc499xz3TXXXOMeeOABrwT/+9//dmuvvbbbdNNN3RdffGHJ/P084YQTitusoDyarLbaam7ppZd248aNs13F5R//+EcHebHkkksW9zXaSrmkDtglkXDsg2x4+umn3ZAhQzxhAxaQP0baEHtlzJgx7ptvvmlVmL7++mt38MEHO9pAveWzzz5zRx11lLv11ltrcqq///3v7k9/+lNFZZ155pnFfJANPAv8bJ2lCVYREiEgBISAEBACQkAICIHaIiDiobZ4ttvSsGwwYd1IB3OzsGN5ll27dvUKJkqm/X71q1+5u+66yy277LLub3/7my8GV4/tttvOHX744X4bU386+Dbqvu+++7p33nmneEr2Yzmx2WabeXcAyIz333/fkQ4/bI5zDpOffvrJnXrqqW6FFVbw5z366KPdt99+a4cdMS622GILn5c0I0eObKZIFxO20xUbead6rBvpcNn9BTeLvNV+6qmnvC87I7xYPSy66KLuggsucGPHjm2Gx6qrrupGjRrlFbJSZe+9995+5B4rChMUcJRLCCmkEXGvlNThei+99NJmJByk3LzzzuvbHgTDJptsQrJmgmUI7RrlvKMKz+wnn3ziTjrppJpc4n333eeJjHILI6YD1gwmRjI88sgj7vTTT/e72cfzgWAVQR6JEBACQkAICAEhIASEQO0QEPFQOyzbbUmQDLhTQDiErhWQDvwqEUbCwx9lbLnllm7hhRd2//d//+eDWjKii7JgxMORRx7pRowY4VBezz77bPfss8+6bbfd1jEKi6CwDR482G2zzTY+3e233+5WXHFFFwVAdVdffbVXmPv37+++//57n57ReUy5DznkEHfssce6a6+91p+bg9StX79+fkT6tttuc3vuuaeDmPjLX/7i87b3PyjCuFNAOPAz1wpIh1FRfIdyhAB63AdIGnOFmGOOObzFQziLCYQPo/IQCCiMSQIZ9N///tdNmDChePjee+/169tvv33D4F4rUocLh8gxAs6WBGolngaWJSG5RnpG7QcMGMCq23DDDd0BBxzg1/lzww03uI033tiTZYMGDSreL45BvF1yySX+OFYVkGxZ5Nvrr7/udtllF18eFilPPvkkRSXKFVdc4dZdd91mAWmxCoC0w23kyy+/9M9n9+7dvbsObeGjjz7yZeFCAul43XXX+XpyDQhWNXfffbdfz5P/lltu8XWAtIC0hHhEeNbPOecc9+677/rzYMGDUDbXRXrq/uCDD/r94R8CSYYCdtSLnxEP4XHW43nix7UtBISAEBACQkAICAEhUB4CIh7Kw6shU5u1A+SDWTowYl0p6YDpvpEYtnz55ZcdU3LiP46J+XnnnecV/Ysuush169bNK6tYM3D8sMMOc7vttpu78847HebTjz76aBFXCASIC0aD999/f78fQgElZPjw4X4bhQ6ygrIZbT7ooIPcPvvs403Xb7zxRm/mjqKEkgJR0bt3b69QT5o0yStFxZO145WeTXEGIBwOjEgIhGCS5ZIO5MPcHSzB77e//a1DcTzttNOKSh1pTBj5RYnjHiQJ8SH69OnjwNmEdXCGxGgE3GtJ6hgGSUsIMlwaIM5CWX311b0Czz7whohDsOZhfZ111vGWJ7RzSDiIHgRi7ogjjnBrrLGGV/BRoNPIN54RyKCXXnrJW7hAdphVii8w9me99dZzzz33nOM5MYEIYJpd2gSWC7jUEISR9vPMM88USRO7VtoahMlxxx3ni+AarP558nN9EDG8B3BLgXBEqDvE5txzz+3OP/98b52AVcKOO+7o2yMWN7RtyEbaYCjxbY5h7YCFA8SKbbPPhBkvJEJACAgBISAEhIAQEAK1Q0CzWtQOy3ZbEjEcQosHKlpuXIfw4rBSQNEP5Te/+Y3fXGqppRzEBCPnjEAaeWBB9RjhNYGQQAkmcCEuEcj//u//2mE3//zz+20IDcSCYKLIQXQgKCY2yolZOzJ58mTvWoCCjCKHxQOj+ShhKFGNIMRwCC0eqHM5cR3Ca+zcubP7wx/+4BVGFC0sSc444wxvIYKiiVJp8otf/MIrtYwiY7HCPYzLHnvs4XbffXdP+jDqjvWDucDghtPecQ9JHcgcpFJSh7wo2biumNDG02ZH4FnBCgVh1H3xxRf36zw3PC8WjwCrAawpIOZQuhFIO6yGECPfsJIwC4pf//rXvp2jnGPd8M9//tM/D8sss4zPg6ULZSQJlg08f1iwQG7gGsWzQ4BMhLpBCFh9CVR5yimnNCsKi4ett9662T7byJMfiw7eLwjWDhAfEBa4AVE/yAjDwiwpICl5j0CcHHjggS0CRFpcDauHLUPSgfsQit2fcJ/WhYAQEAJCQAgIASEgBCpHQMRD5dg1VM6QfKiGdOCiUWLSArDhboGg5GByjlhMALO+8DujPyi6KDgmWdN/Wjpzt2CU0wgJFCKIBSMXULCZbYHfoYce6n8oISjVjSAh+VAp6RBeJzhhds8P1wusSB5++GE/ahymQ8ljVBuFLmnk1xQ/FFTiOzAKHcYxaO+4h7iay0U1+C6//PJuueWWK0JoSn5xR44VXCawFOIXPg9kxWLBMMdawiSLfIOAg7gI67PRRhtZ9sSlEUq45TzxxBPeWgGrC4Rr5N5CYmFFADEVl1VWWSW+q7idJ/9KK61UTM+1EnOklPAcMy0s6SAVIRfBifdOKLRzm80i3G9uFrYMj4VkXLhf60JACAgBISAEhIAQEAKVIVDQCivLq1wNhgCEQyXBJMu5TM6B6wOjqoyEX3/99T47o5UII+wmBNbDfDxUNuxY1tLKQ9FgdJnf8ccf75dYUmAVwcwCO+ywgx/Zp14oYaGLQNY52sNxFOJyg0mG9Z42bZofXTefeDu25ppr2mrikpFtCAiUtrjMNddc3mQfs3tG2xnJ7tKli0/WKLiDq1k7VEM6cNFYgEDU2G+nnXaKQ5a5bWQDs4ZgEWE/YpNgfWASEnMh+WbpUcJxp4B8417gjhGK3adwX7iO6wLuIVgoQdhhvWBKONf16dEyAAAc60lEQVTFs40lAs8Y7SMuRjTG97OdJ39Y37SyKA/SAVIG6x1iTey6666+TnHXir59+5K8hYTWV/GDpfLE02lbCAgBISAEOiYC7733nncpxP3QYpG1xZXyLU9y22ytuoCDuUy21jmzzkMcNzAJA8qHeQhuT3wtsJO0LwRk8dC+7kdNa4OLAopnKGlxHcylIUyftI5vtZkp23EsD/D/x8cbd4uzzjrLR/bHZxszZqwgIAlQXFB+iPqPSTnKQyVmzZj0456B0nvZZZd5UuHCCy/0o7AffPCBD45IYErM4PEZp85cO/VszzLfXM59Xoi1WaxmWlwH0qcJyhtBCXF9weUCc3QIGXz0kVLYc4+IrVFqBBurCTNPD0el33zzTR8QtBFwh3Ag3oMREGk41uuYfRR/+ctf+rbJyH3opsEHH6InSULyze4FlhPkweWC9s+HGaWc5wwJib+kMrEaIvYBrjPMesJMMAhlYCVzXeRKwb1HIAleeOEFv571p9r8Vr4RNGxbR5B3Cj9m04F4iVvx9OjRwwfkDK0euEb74coSxneAQCKPRAgIASEgBGY+BFBqGVgxF2H6TnxbIeGJYUT/szUFMp34aPRlGWRobSGWGkS99TOqOT+Bm9ERkr6xkBt8i9dff33HTHlpgm4DJriZ0seNC/1c6o1beNK54um13XoIyOKh9bBu9TMx6oniGc4+UWqddOaikFVR/L4hEcIfZvcoJigrzDTBi5pZLAhmyRIZPXq0V3wx3abTT5R7RlXLfYnbqC/loWgwKrvaaqt5/29easSGwLyceqAU89Ih7sDOO+/sR6ezrq8tjx/Wz7ksMsHqRzrSZwmzATCSjesExAtxGwjqyQveFFLKoA2EgguBxRMI97POhwELEsoLyYn2jHsSrtWQOnFMytkmJgFCjBLIAQTrBgKAotxjCYTSj2UBs78kSUi+MVsLrhXEOOCjjlIOycT9xX2CeA88owcffHBSUc32YTlAvAnIAnOpsk4AzyudMWbmKNU2mhXWtFFtfoph1gzqdPPNN/sYNQSUhNAkDgRWGAS7RLAaicuf//znZrto+7hYsOQXSkj8hPu1LgSEgBAQAh0fAQh6vnNYfDJIw3TMWPHSZ6WPO7MJA3xZVrJ5McHdudR01fRb6KuAs6TjIiCLh457b/0sA+F0ibW4VHzQ08RGcEmDr7UpVWxDQowbN877sJNuzjnnZHdRwrzstFF5S4CiG6bBagKlg33ffPONv15LyxJ2mB9sMWkhQ9q7bN1zutu6Z21ryX1gqkSIGO4HbSJOMpW6r1is8IsL1jHhvQ2Pt1fcIWkuGt/SoiSsu63nJXUsfdLSCLLwmO1DYYYEIHAjI/Uo9Ew7yzSmWA3B/BM7g5lbwvgZYVmsQ75BKFlARwgNI984jpKONQBEH+VBbDBlbZpADNLRYGTH4iVg3YDbFHVG4edZhOSAoEDsukqVW0n+eJmQh5BmzIjDdTDzCiawECWI4VXKdYv3BFZWdCKReGwHgnnGCQqfUH+EgBAQAkJgpkEAq1mE6bHNEhgSn+/sf/7znyIOuPAS9wjiG3KdAZmePWd04B566CH/fceteIkllvDfL4sHxbcGCz7inqFsY5VKwGb6tMzIhnUFI/m9e/cuno9ZogiqDAGPVSPWh/RtQ2Gkn8ELLBSsLgw4MvrPQBFxnhik4Jy4InBdBJU218OkejGwgWsl5VFHtl977TWHOwN9DiwhiCFmsZ/YxvIQfOhrMuhHvxPrZCwViB9FXuIymYCRuWbfdNNNHmusOtMwJO/bb7/t03BuBmMYZMP6Oi5gQFmQSsScY0ASYimuh8Tzabv2CHSKOmOFsO61L1slCgEhIASEQAoCdDxQsENSjA8kH1Esd+JWKKWKKkW+WXo6Iyjm4XnsWDlLOg10EOgUxYmBPOVUm59zENsCIsOwwQSWERKLRZFVD0ZbIGfAmNEXOh/EdJA5ZhZyOi4EhIAQ6PgIYBGKZQNKPdNbY8mJgh5+8xgcwJqUbxGEOGSFWUkQlwlLRYJzo9SjnLPNNweLOr7DKNko7wgEx8CBA/1ABMdwgX3rrbf8cQYCcK8gqDMCeYBr5vPPP+/z2XTc/mDTHwh2iBCbFn3KlCmOOF8MJtCvwC2ZwQMshXGP5XpJu8gii7SoF0Q/JL25WuCCgkUmuDCYiDJPWdQDAsbqSdmQC8Rh4voZIIHsYJAFEobBEKwYTYjVwAx1Tz31lLdkBlNInlIYci9sVi1cRKmDWT0OGTLED0Yy25i5WnBezs+95PxYOoI1seGMXLK6aFlfBNr/EHB9r1+lCwEhIATaDIGkYI98UMt1P6Lzw6+U1MryCWW/3LqFdao2P2UxE04odB7ykg7kg2DAWkMiBISAEBACQiCOAGQB07OjnGIBwI/vDBYIWN6Zwg2RjgsG2whWBZDZEA9YBtiMSxzDQgHLU5TpkOQ+5JBDvMvgxIkTvfUuirKN2EMQMCW2xXWAkDD3R5T6f/zjHxTdQrBMoB7UAZKCKeupP26IWKpSHkQB/Q/qygxZkA8QDyZWL9u2Jd9wLD/M9QLrgTB+EunCerJt9YSswCWb6w9JB9JgXQleEA+QFlhKkK8UhpAHCLGssKhAcA+GYOF6Q5dLSA1IB6w2+vfv79PixnrllVe6119/3ZM5fqf+tAoCIh5aBWadRAgIASEgBISAEBACQkAICIH2jgAEA26OmPLj4oBbHz/Wjz76aL8fJZzZ20xw+bX4BFgIoNTiGoHLARYMCBaNJlhU2PTzWAtQHiP3JrhfIhxDQsICywUsHZPEiAcIBdZx50SZp3ysKwhYDVmAywZuHRAopeoVL5/ZqbC2IM4TrqF2XWG6UOlnoAJSoxLJgyEWICaQCQiWJWEdIJEQ6ku9Ea4Z4VhYht+pP3VFQMRDXeFt28J5qRCdHlOqLOGBxaQLczJJ2yFw96ROZcchIC6EJBsBYZuNkVIIASEgBISAEJiZEcB9AIUZywesA/gRA4j4RszkhLLKKDqKPCP+JpAGZq2A2wDKPeXQv6YMyg3FYiixD9ICq8XQnSNMy3rc2i9+3LaJt4CVI4QD1oC4I9q03OZ2wbkJRI11AhYdoYT1CvezTpwGZs7ierhWrD3ixEKSJWe8nDzbeTA0AoHyuB/84mJTbkKuhPcLawmwkrQuAiIeWhfvVj0bpAMzDhBcLkswQyI9fliStkMgb/BDasi0m6SvdTDKtrv6+p5Z2NYXX5UuBISAEBACQqDREUBhR0GFeAiFWAUQDyi7KPRM0f673/2uSBaQj9F2FFxcJ3AHIFAzgstEmmDBgGuBBZYmLW4DxGrARaFcgWgglhHWDVhWmBuFxTYgmCVEB1YTuD/kESwvIB2wBiFIJZI3b57ywzR5MTRrEPKyzr2JkwnmiokrBrElEO4v+NTKDdUXqj+5EGhJDeXKpkSNgACWDnlfWKTLYxkRXjcsIqZcBHuT1AYByIQsufrgWd0aS3byyfKkzyovz3GmUMVvLo88HEUzhqlub5IHq3pgS0eE2SsI8Fit0NFh7moCPLYnYcQD/9a8ktVGso7nPU+Yjo4MM7vY3Ozhsfa4Xi6m7fEaVCchIASEQKMhgHuCTZ2JMst3l74ulgFYAxB/gNgDKLkEP+Qbz+AdM1Lwncdqgdkq6BtDJBDXgdkvEOIuJAnlIczogPsDBAHWCeaKkZQnbR/xDBCCO1rZbENCUG+uD9cDzoegiPONTBObAQI86P/zjeK6kVLXFS8PiwTIC6bOjAtxKBDcNyBE8mAIwUOwS/pE3B/Kj89sxf2CwHn88cf9fQTfMWPG+HgSdk3xumi7fgiIeKgfth22ZCLHbrHFFv5B5uWGqdX222/vXyYd9qLbyYUdvNksnnRAQc4rRFFea6218iZPTMfUprDDeeSGG27wynGetO0pTbnYfvHFF37EwAI7suS5OOOMM/wH3a6NqUqJsoxfZLVCR4EpLflwtychAjhBtuiQ5JGsNpJ1PM854mnomDBVKeayjSDlYpp2TZgG09HCnFciBISAEBACpRFYb7313Nprr+0Va2ZpGDFihJ/lgpFzrIJRkFFuGbBjesbzzz/fz9YASbDlllv6gpkpidgOZ599trv88st9YEqUXBR9U9JDtwqCT2611VZe6R41apR304AAoR6VCP1yixdBOSa4VuCyQeBKZn2AbGCmB/r1kCtIWC/Lx5Iy6UuSlpkz+JYSBwNl32azCNOzHi8LnQHLDiNiwvS4pYAx03ViWZKGoQ144u5Bf+G8887zgTOZYpSAmqFQh913393XhVk5wBcyiKk3IWIkrYuAptNsXbxb9WwnnXSSf2HmPelxxx3nlaa09I8++qg3s2JaHqLe4ufFCCIvMBQsmEem7ZNUhkDP4wuWDEm5UYwP7FvgCvcZ9bN7dkqBnZ50djpLDfFAACTuT6VCNOddd93VHXvssZlF8GFGwTEmPTNDKyWoNbYQD8REYaS/d+/exVERngXYfIJK8UFHGAWphUkfU0EyDzgkBv6J7UUYQeGa6Zjkkaw2knU8zzmS0kCMYHqa5AealL4t95WLaVpdGRWijTKCxtRjEiEgBISAEEhHAOWWWGkICm7Sd4ORf9Lw7cNdIhRmnmCaTUbcISvM0iCtL0A8BkhylPCk84XlV7OOJQdWAKak05+h755nakmuGUsOm2IU6wQsJvL2/cGV85SKBUH/kXpx/Xkw5PxYnVCftPqDP/eK9BA9DBZJWh8BWTy0PuYNfUbm88W/iwAzxI/gRbv++uv70TSi5mIeZgILSUAeGEyICjq9JiiymIwT0JLjsKhmskWaqVOnupNPPtmzxLzwUUTeeecdy+4GDx7sIFbwnyM/c/4yJzIm7aTnR11DSasPeRmtpqwVVljBjRw5MtPsLCy7HuvmTkHZrBvpcNn904qkQyXnzcKejwrRlMEQn8brrruuxWnSsAwT86I/66yzPKZgu9122zmU57aWWmLLqAKRomHymfP6gQce8J0MrEQQomAzamHtN62t0a6ZmxoLCfDiXtGmSwllgylpmZ4K8pCOC8QE2zaNFfkhP2jb8UBSHGM0nPbPyAz5KI82QFkmPJ9EtOYYzy3XaYKJKfUwgYBkiivS8mzjB0q5obsObeOEE07w7Yx6JblqYD1CO+Q4zzN5TOg48fxzHJwg2OhQIJChnI+2yzHeQ8imm27qCSHWwZp3DEtr61dffTWHisIoCqNFXAeRzKmD+ewWE0UrdLo4z7hx48LdHifaP8IoDu8pyqJMMDehDtR/zz339McJShbHNCt/qWshiveAAQP8qYgSfsABB/j1tHZo9dJSCAgBITCzIoBlAINr/EqRALheEDwyTjqAGUow/QNzIaCMNNKBPKRFgS51PtLUQrDOMNKB8iAh0pT28JzmbmLWDCjweUkHygHXUqQDx7EMsevPgyHn53qy6k+ZEA7cT5EOIN02IuKhbXBvyLPCPEIsMIevvUjtQnhREJwSUzGEdeYJxhQNsyYUJJQVWFIExQSTcTri5557rh8tpeNtcuSRR3prDcrAVO3ZZ5912267bdEvDCXunHPO8f52zI2MvxrmcXTWL7roIq8goSQ88cQTvsi0+mBq1q9fP/8iIpYBnX+UDDr6bSVYN1i8AZRkc62AdBj1lxnKVyX1y8IeJYh7RvChoUOHeuKAPCZpWFoaW2L1QBkoxDfeeKNnm1HO21LqiS3XRQcEBd3aHuw+c2ejFGe1Ndq1tXfuAc8TJATzTccFJZxnAgYfIhByDmsL8mEGilsG98oEooAAV0lxXxjtwCqG+8Vzg1ki5eATiUAW2bPNuVCeMSm1aNbkZ+owhHVICLYh8Ai+RXlgYCampMPUkrgymKkS9AlXDZ5zE55FCAuec8qgXrwrEMgxzgHGw4cP99dOvWi7iGGOawWkJ+0P4T1k7yCwxoSWOkEwQG4QiNd8TyFCIEaYN511roc6GIHkC2z6gy8q+UMrH64Xkod3HFOy8d6EDIFwxeeW+2XuN5TJtTHSw/uL6b1CTPPkL3UtnMtwgZzgnZrVDsNr07oQEAJCQAgIASEgBGqBQCGSRy1KUhkdHgGUBCSc85YRTPML4xjT8zDCSSeakUH8wBBGHGF+cdUwH7hDDz3UHX/88f44flaMkKJEwcIy8koHHaUBwaoCs3XyMzKL0KHGTw2BFEGhZYST+u2www7ukksucZMnT/aERFp9qC/BZlAqevfu7X8oG5i6tZX0bAoeCeFgLhUsqyUd7HpKYQ8LfP311zvIHAgYBEuWMDhRGpZ2b33G6A/tA6sJFEfKXnPNNZtZvli61lzWG1uuBSWUNhUPKIk5YFZbY7QD30meiYEDB3qzS9r5fvvt1wwmiAfaO8+cjaI89dRT3nKI+7vPPvv4ciCQEBT9/v37p/o0MmKPWSgj5BAV9957r38eaBOMFOAfyUgFzxdWBWzbiL5VDnISpTs064eMidef9wHlQmJC/EFm4C9r035ZnakPAplAcEhIBAgHfECpA9ePkJ82C3FjAj4o/KWEdwWkDiM3WAMQhRxrA0hSiIzwHUY5WHmVEnxLwQXCgNEjSBPuJe8uXDyoM1YxXC8kDvcYX1meL4QI6uBvIz3heXAPycqfdi349SJYfOBqASmV1Q7D82tdCAgBISAEhIAQEALVIiDioVoEZ6L8NrcvCoAJ8xIzWohAGhx44IHejJh4AvxwmQiFCLumnNIJN7F1guZhtoygCJhgyoYCiyJrxEOoBJjiheKAoEiQnrIwF8+qD+4jjAQyyrrZZpv5YJmm8FgdWnNJDIfQ4oFzs69WYnhTnq2DvY1IQ8CYMHpuZnR5sLR8LFHgGMFlpBcrAO5deF/DtK21Xm9suQ4jHFAYQ4HMymprWCSEAY9IjwsAo/yhoMDyXGDlg9k85ySuhBGD4A1hQRAlzkvbxuy+lKAkh22eehjZiAKPokpcFxMUf94FceKBKcV49sJYAmF7svwo3GY5RftC8YaYMUFhD+sDeQnpRaBE3iMQF0Y6kMfOAdlokarDd4SVGy4hHc1cFFNNMMD6AKyx8sHtxQRClHNgfZAk3CeugxldCFoF3nvssYc3/+T9xDEsUrgf3CssL8J7Sl2SSAfOlTd/0rUk1TVPO0zKp31CQAgIASEgBISAEKgUAblaVIrcTJjPlAA69iZHHHGE76jTWafTzvy5RjYsvfTSRf84fKoYjQxHM0Mfr9A3y4gHzJdDwS/MymZ/qU56mId1y5NWH0aDMZNmpJLRYpSmaoIxxutQyXYYQLKWpAN1ycI+7v9mvoB5sAyvlZFWRqUZfWcknCjFjOK3tdQTW65t0qRJ3vInxNmuOautxfPYvQjjLVAWSjqkEbEkOAa5g1iAR6xUIACwWoAgRPFFOS4lpqzb8fCZtH3m72rPc0hEWBrOz4h6KEmzXdh1WTojIWyb5z0US08b5B1h25bG8lucB/ZnvSPiZRj29u6J1zu+bedmSX2x2oJwIKAYbiqQPwjWChB4WDlwH5IIkbS65slf6lp8BRL+ZLXDhCzaJQSEgBAQAkJACAiBihGQxUPF0M18GekYYzLPKCq+0KGigok0Fg+MWqKkMurKFJth3AZG1OMjwEkoYqaOUKaZSRPllxFIOu/lSlZ9UFQYgcRMmpFKrg/FgJgEjEK2paAgE5PA3C3qXRcbLUdxXmSRRfzpGOHl3iJZWPpEwR+UYwgrAoHyw1ceX34CAzLC3JZSL2whWK699tpiXIHwGvO0NYI4olybEow5PqP7cYUeZZT7QtwCiAAEVyRTwBn9xlUJK4cePXp4pTiuzId1S1vHRQM3jvB55t7i4hQXyBBG85nf3AJOlppqK5433Ib4wyLALK3AAaUdLHg+hw0b5qcrg+xELF4C749qpxuFdOnVq5d3w4BMADcINEiFNPIGFxWOQ7hBdBrBABbUGwy5L1iKELsjr1Sb385jpEyedmh5tBQCQkAICAEhIASEQC0QkMVDLVBsp2Vghh3OFJFWTdKRPkswPUbZwewZk2ICruHnjXsCpIMFoMO6gaBvmGhDGBBkjvLD4HGlzmWB6yA3CM5G3VCgsKgwX+VSeUvtT6sP5uQoblwblhuYcTOyaUp4qTLrsX++5pb5/hRpcR2S0ldTL0iCjTbayBNLYM+oLYEBQ0nDMkzHOkE6wRElEmUQVxmUR1MW4+nruZ2EVS2whSAjHsLNN9/sg/hBYKG0hkq6XVeetoZLA20f8oeZDwgauNdee1kRxaVZII0dO9bPXkEQRgJEhsKIuxEhNvoeHs+7zjVxD4mvQEBJmyo0aSYKnlHiHaCE856ACEDhLlcgL7CU4Z0BtgR6tLm4cQNBkSeuC+8HAsGCGRY1xKKoheBCxr3FnQMXIUiErHcCAW55T0GyWXwa6kKduK/jx4/3+CXNjJFW52rzY/mC4LJD/I087TCtPjomBISAEBACQkAICIFyEZDFQ7mINVB6/OuJas9oWZZACpA+S+iEoxChfBIQzgTLBAK/2WgrU/Fhbk1UeRQIlE18/TfZZBPL0mxpvslmbjx69GgfjM7qhOXBPffcUwz4aOmaFRJtWDm237az6kPdGYFEyUNQDPDPbm05LIL0ovFRjICvs8+MIk36asUwMkwJ+Mf9NexRNrEIsXRZWFIfS0vATggHI4xQgGiP1k6qrXs5+euFrU2bSV0Y7cb9iFkEzLrAsOA4AVKz2hpWRVgT2OwT3Iv46Dhl4kqB9YhZk0B2oOzbrAx2PhR0lF5iJpSSsI6WxtoD29SFKVSxMiBOAcKsDDZbRJifdQIzQnRMnDjRT1UJIRBX2sM8vsDoT7iPdwouDyjzCFYXFjiSYJWQH5ANXDdCepsOMyzHH0z4E15feNjyYl2FlQOuKrzLTj31VO+OFU5RGuZjHUsJ3hvEogiJHuLHQNSaBQjuXFhE2LmS6mLHKLeS/OSzMrAuYhYhpmYlBgfv0qx2SH6JEBACQkAICAEhIARqhUCnyORyeq0KUzkzFwK4P2AyT0DHUi4UTNuGEoWikNS5zkIMk3PMgkO3jqw8acez6kNdCezXFopxWr3b4hgKLIqUxXeI1yELyzA9QSu5j2HQxPD4zLie1NZwT4IowDWBKWIhLyzeQCmMiHeAS4IFWA3TcQwFGncBFOdaCCQUz7u5gsTLhOSg/sTyMFcDc7GBhCp3thjaIc+jETnx8zEFJXWJxziIpyt3G/Lz448/9uQpCjxtGLIAaw6sSyoRSFieKXMfKbeMavPzPuVawvdbUjsst15KLwSEgBBorwjU+tvQXq9T9Zr5EKBf3Wgi4qHR7pjqKwSEQIdFICQeqr1IggdiZYRrBCP35ppRbblZ+ZnmExcLzssMJpANzICBdQaWAI0iuBph9YMLGTEymGYTEg63mrj1RqNck+opBISAEBACQkAICIG2QkDEQ1shr/MKASEgBGIIYNbPaDhxNqqVO++808d+ID5DOO1kteXmyc8sG5wfwgNlHbcQpqJsNMGtgrgZzFLBrCG40tQqhkSjYaH6CgEhIASEgBAQAkKgGgREPFSDnvIKASEgBISAEBACQkAICAEhIASEgBAQAqkIaFaLVHh0UAgIASEgBISAEBACQkAICAEhIASEgBCoBgERD9Wgp7xCQAgIASEgBISAEBACQkAICAEhIASEQCoCIh5S4dFBISAEhIAQEAJCQAgIASEgBISAEBACQqAaBEQ8VIOe8goBISAEhIAQEAJCQAgIASEgBISAEBACqQiIeEiFRweFgBAQAkJACAgBISAEhIAQEAJCQAgIgWoQEPFQDXrKKwSEgBAQAkJACAgBISAEhIAQEAJCQAikIiDiIRUeHRQCQkAICAEhIASEgBAQAkJACAgBISAEqkFAxEM16CmvEBACQkAICAEhIASEgBAQAkJACAgBIZCKwP8DIqC8hHMGKEEAAAAASUVORK5CYII=" - } - }, - "cell_type": "markdown", - "id": "ac393319", - "metadata": {}, - "source": [ - "### On gene page\n", - "\n", - "To get the number of variants shown on the gene page, if you click 'all' and check 'exomes', 'SNVs', 'Indels', and 'Filtered variants' as this: \n", - "\n", - "![Screenshot%202024-11-01%20at%209.28.50%E2%80%AFPM.png](attachment:Screenshot%202024-11-01%20at%209.28.50%E2%80%AFPM.png)" - ] - }, - { - "cell_type": "code", - "execution_count": 49, - "id": "e6bf7236", - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "[Stage 26:> (0 + 1) / 1]\r" - ] - }, - { - "data": { - "text/plain": [ - "1764" - ] - }, - "execution_count": 49, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# gene_symbol can be upper or lower case\n", - "ht = get_ht_by_datatype_and_version(data_type='exomes', version='4.1')\n", - "\n", - "drd2 = filter_by_gene_symbol(ht, 'drd2')\n", - "drd2.count()" - ] - }, - { - "cell_type": "markdown", - "id": "7bff63bb", - "metadata": {}, - "source": [ - "# Filter to variants by VEP annotations\n", - "\n", - "You can get the variant table either by gene_symbol or gene interval, we recommen you to get by gene_symbol because it's already filtered to MANE Select transcript of a gene. " - ] - }, - { - "cell_type": "code", - "execution_count": 57, - "id": "700582e4", - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "
histograms
grpmax
fafmax
info
qual_hists
raw_qual_hists
age_hists
in_silico_predictors
gnomad
non_ukb
gnomad
non_ukb
vrs
vep
vqsr_results
region_flags
allele_info
gq_hist_all
dp_hist_all
gq_hist_alt
dp_hist_alt
ab_hist_alt
gq_hist_all
dp_hist_all
gq_hist_alt
dp_hist_alt
ab_hist_alt
age_hist_het
age_hist_hom
cadd
locus
alleles
freq
AC
AF
AN
homozygote_count
gen_anc
AC
AF
AN
homozygote_count
gen_anc
faf
faf95_max
faf95_max_gen_anc
faf99_max
faf99_max_gen_anc
faf95_max
faf95_max_gen_anc
faf99_max
faf99_max_gen_anc
a_index
was_split
rsid
filters
FS
MQ
MQRankSum
QUALapprox
QD
ReadPosRankSum
SB
SOR
VarDP
AS_FS
AS_MQ
AS_MQRankSum
AS_pab_max
AS_QUALapprox
AS_QD
AS_ReadPosRankSum
AS_SB_TABLE
AS_SOR
AS_VarDP
singleton
transmitted_singleton
sibling_singleton
omni
mills
monoallelic
only_het
AS_VQSLOD
inbreeding_coeff
VRS_Allele_IDs
VRS_Starts
VRS_Ends
VRS_States
allele_string
end
id
input
intergenic_consequences
most_severe_consequence
motif_feature_consequences
regulatory_feature_consequences
seq_region_name
start
strand
transcript_consequences
variant_class
AS_VQSLOD
AS_culprit
positive_train_site
negative_train_site
non_par
lcr
segdup
fail_interval_qc
outside_ukb_capture_region
outside_broad_capture_region
variant_type
n_alt_alleles
has_star
allele_type
was_mixed
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
phred
raw_score
revel_max
spliceai_ds_max
pangolin_largest_ds
phylop
sift_max
polyphen_max
locus<GRCh38>array<str>array<struct{AC: int32, AF: float64, AN: int32, homozygote_count: int64}>int32float64int32int64strint32float64int32int64strarray<struct{faf95: float64, faf99: float64}>float64strfloat64strfloat64strfloat64strint32boolset<str>set<str>float64float64float64int64float64float64array<int32>float64int32float64float64float64float64int64float64float64array<int32>float64int32boolboolboolboolboolboolboolfloat64float64array<str>array<int32>array<int32>array<str>strint32strstrarray<struct{allele_num: int32, consequence_terms: array<str>, impact: str, variant_allele: str}>strarray<struct{allele_num: int32, consequence_terms: array<str>, high_inf_pos: str, impact: str, motif_feature_id: str, motif_name: str, motif_pos: int32, motif_score_change: float64, transcription_factors: array<str>, strand: int32, variant_allele: str}>array<struct{allele_num: int32, biotype: str, consequence_terms: array<str>, impact: str, regulatory_feature_id: str, variant_allele: str}>strint32int32array<struct{allele_num: int32, amino_acids: str, appris: str, biotype: str, canonical: int32, ccds: str, cdna_start: int32, cdna_end: int32, cds_end: int32, cds_start: int32, codons: str, consequence_terms: array<str>, distance: int32, domains: array<struct{db: str, name: str}>, exon: str, flags: str, gene_id: str, gene_pheno: int32, gene_symbol: str, gene_symbol_source: str, hgnc_id: str, hgvsc: str, hgvsp: str, hgvs_offset: int32, impact: str, intron: str, lof: str, lof_flags: str, lof_filter: str, lof_info: str, mane_select: str, mane_plus_clinical: str, mirna: array<str>, protein_end: int32, protein_start: int32, protein_id: str, source: str, strand: int32, transcript_id: str, tsl: int32, uniprot_isoform: array<str>, variant_allele: str}>strfloat64strboolboolboolboolboolboolboolboolstrint32boolstrboolarray<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64float32float32float64float32float64float64float64float64
chr11:113410731["C","A"][(2,1.37e-06,1461866,0),(2,1.37e-06,1461894,0),(0,0.00e+00,33480,0),(2,4.47e-05,44724,0),(0,0.00e+00,26136,0),(0,0.00e+00,39698,0),(0,0.00e+00,53416,0),(0,0.00e+00,5752,0),(0,0.00e+00,1112010,0),(0,0.00e+00,60394,0),(0,0.00e+00,86256,0),(1,1.36e-06,734628,0),(1,1.38e-06,727238,0),(0,0.00e+00,19326,0),(0,0.00e+00,14154,0),(1,3.89e-05,25690,0),(1,5.25e-05,19034,0),(0,0.00e+00,12636,0),(0,0.00e+00,13500,0),(0,0.00e+00,20710,0),(0,0.00e+00,18988,0),(0,0.00e+00,27646,0),(0,0.00e+00,25770,0),(0,0.00e+00,2494,0),(0,0.00e+00,3258,0),(0,0.00e+00,572288,0),(0,0.00e+00,539722,0),(0,0.00e+00,31800,0),(0,0.00e+00,28594,0),(0,0.00e+00,22038,0),(0,0.00e+00,64218,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,996,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,1994,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,3990,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5752,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,19998,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,26136,0),(1,3.83e-05,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26134,0),(0,0.00e+00,26134,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26134,0),(0,0.00e+00,26136,0),(0,0.00e+00,33480,0),(2,5.97e-05,33480,0),(0,0.00e+00,33478,0),(0,0.00e+00,33476,0),(0,0.00e+00,33480,0),(0,0.00e+00,33478,0),(0,0.00e+00,33478,0),(0,0.00e+00,33480,0),(2,5.04e-05,39700,0),(0,0.00e+00,39698,0),(0,0.00e+00,39696,0),(0,0.00e+00,39700,0),(0,0.00e+00,39698,0),(0,0.00e+00,39698,0),(0,0.00e+00,39700,0),(2,5.00e-05,40000,0),(0,0.00e+00,39996,0),(0,0.00e+00,40000,0),(0,0.00e+00,39998,0),(0,0.00e+00,39998,0),(0,0.00e+00,40000,0),(2,4.47e-05,44724,0),(0,0.00e+00,44720,0),(0,0.00e+00,44724,0),(0,0.00e+00,44722,0),(0,0.00e+00,44722,0),(0,0.00e+00,44724,0),(0,0.00e+00,53416,0),(0,0.00e+00,53420,0),(0,0.00e+00,53418,0),(0,0.00e+00,53418,0),(0,0.00e+00,53420,0),(0,0.00e+00,60396,0),(0,0.00e+00,60394,0),(0,0.00e+00,60394,0),(0,0.00e+00,60396,0),(0,0.00e+00,86258,0),(0,0.00e+00,86256,0),(0,0.00e+00,86256,0),(0,0.00e+00,100000,0),(0,0.00e+00,99998,0),(0,0.00e+00,200000,0),(0,0.00e+00,199998,0),(0,0.00e+00,400000,0),(0,0.00e+00,399996,0),(0,0.00e+00,999998,0),(1,1.00e-06,999978,0),(0,0.00e+00,1112010,0),(2,1.80e-06,1111990,0),(2,3.18e-06,628756,0),(2,3.18e-06,628784,0),(0,0.00e+00,17694,0),(2,4.57e-05,43740,0),(0,0.00e+00,20984,0),(0,0.00e+00,36068,0),(0,0.00e+00,53140,0),(0,0.00e+00,4132,0),(0,0.00e+00,350106,0),(0,0.00e+00,33096,0),(0,0.00e+00,69796,0),(1,3.49e-06,286232,0),(1,2.92e-06,342524,0),(0,0.00e+00,10286,0),(0,0.00e+00,7408,0),(1,3.99e-05,25040,0),(1,5.35e-05,18700,0),(0,0.00e+00,9838,0),(0,0.00e+00,11146,0),(0,0.00e+00,18296,0),(0,0.00e+00,17772,0),(0,0.00e+00,27396,0),(0,0.00e+00,25744,0),(0,0.00e+00,1904,0),(0,0.00e+00,2228,0),(0,0.00e+00,162220,0),(0,0.00e+00,187886,0),(0,0.00e+00,16752,0),(0,0.00e+00,16344,0),(0,0.00e+00,14500,0),(0,0.00e+00,55296,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,198,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,996,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,1990,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,3984,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4132,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17692,0),(0,0.00e+00,17694,0),(0,0.00e+00,17692,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(1,5.00e-05,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,19998,0),(0,0.00e+00,20000,0),(0,0.00e+00,19998,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(1,4.77e-05,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20982,0),(0,0.00e+00,20984,0),(0,0.00e+00,20982,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(2,6.04e-05,33098,0),(0,0.00e+00,33096,0),(0,0.00e+00,33094,0),(0,0.00e+00,33098,0),(0,0.00e+00,33096,0),(0,0.00e+00,33096,0),(0,0.00e+00,33096,0),(2,5.54e-05,36070,0),(0,0.00e+00,36068,0),(0,0.00e+00,36066,0),(0,0.00e+00,36070,0),(0,0.00e+00,36068,0),(0,0.00e+00,36068,0),(2,5.00e-05,40000,0),(0,0.00e+00,39996,0),(0,0.00e+00,40000,0),(0,0.00e+00,39998,0),(0,0.00e+00,39998,0),(2,4.57e-05,43740,0),(0,0.00e+00,43736,0),(0,0.00e+00,43740,0),(0,0.00e+00,43738,0),(0,0.00e+00,43738,0),(0,0.00e+00,53140,0),(0,0.00e+00,53144,0),(0,0.00e+00,53142,0),(0,0.00e+00,53142,0),(0,0.00e+00,69798,0),(0,0.00e+00,69796,0),(0,0.00e+00,69796,0),(0,0.00e+00,100000,0),(0,0.00e+00,99996,0),(0,0.00e+00,199998,0),(0,0.00e+00,199990,0),(0,0.00e+00,350106,0),(1,2.86e-06,350088,0),(1,2.50e-06,399978,0)]24.47e-05447240"amr"24.57e-05437400"amr"[(2.30e-07,9.00e-08),(0.00e+00,0.00e+00),(7.41e-06,2.77e-06),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,(5.30e-07,2.00e-07),(0.00e+00,0.00e+00),(7.58e-06,2.84e-06),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]7.41e-06"amr"2.77e-06"amr"7.58e-06"amr"2.84e-06"amr"1True{"rs140938110"}{}5.56e+006.00e+010.00e+0038621.02e+01-1.98e-01[134,83,109,52]9.81e-013781.31e+016.00e+010.00e+002.94e-0118951.06e+012.52e-01[134,83,56,19]1.42e+00179FalseNANAFalseFalseFalseFalse5.27e+00-1.37e-06["ga4gh:VA.RY2FNHeS0QpJNM9lQpQ_pzX7Q27-MXmI","ga4gh:VA.ZonDIhdwyghm7SuWkXynZVYg2s9ceaeP"][113410730,113410730][113410731,113410731]["C","A"]"C/A"113410731".""chr11\t113410731\t.\tC\tA\t.\t.\tGT"NA"missense_variant"NANA"chr11"1134107311[(1,"C/F",NA,"protein_coding",NA,"CCDS8362.1",1317,1317,1241,1241,"tGc/tTc",["missense_variant"],NA,[("Gene3D","1"),("Superfamily","SSF81321")],"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000346454.7:c.1241G>T","ENSP00000278597.5:p.Cys414Phe",NA,"MODERATE",NA,NA,NA,NA,NA,NA,NA,NA,414,414,"ENSP00000278597","Ensembl",-1,"ENST00000346454",1,["P14416-2"],"A"),(1,"C/F","P2","protein_coding",1,"CCDS8361.1",1682,1682,1328,1328,"tGc/tTc",["missense_variant"],NA,[("Gene3D","1"),("ENSP_mappings","5aer"),("ENSP_mappings","5aer"),("ENSP_mappings","6cm4"),("ENSP_mappings","6luq"),("ENSP_mappings","6vms"),("ENSP_mappings","7dfp"),("ENSP_mappings","7jvr"),("Superfamily","SSF81321")],"8/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000362072.8:c.1328G>T","ENSP00000354859.3:p.Cys443Phe",NA,"MODERATE",NA,NA,NA,NA,NA,"NM_000795.4",NA,NA,443,443,"ENSP00000354859","Ensembl",-1,"ENST00000362072",1,["P14416-1"],"A"),(1,NA,NA,"processed_transcript",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],3644,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000535984",3,NA,"A"),(1,"C/F","A1","protein_coding",NA,NA,1334,1334,1334,1334,"tGc/tTc",["missense_variant"],NA,[("Gene3D","1"),("Superfamily","SSF81321")],"8/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000538967.5:c.1334G>T","ENSP00000438215.1:p.Cys445Phe",NA,"MODERATE",NA,NA,NA,NA,NA,NA,NA,NA,445,445,"ENSP00000438215","Ensembl",-1,"ENST00000538967",5,["P14416-3"],"A"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],4563,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000539420",3,NA,"A"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],3133,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000540600",1,NA,"A"),(1,"C/F","P2","protein_coding",NA,"CCDS8361.1",1649,1649,1328,1328,"tGc/tTc",["missense_variant"],NA,[("Gene3D","1"),("ENSP_mappings","5aer"),("ENSP_mappings","5aer"),("ENSP_mappings","6cm4"),("ENSP_mappings","6luq"),("ENSP_mappings","6vms"),("ENSP_mappings","7dfp"),("ENSP_mappings","7jvr"),("Superfamily","SSF81321")],"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000542968.5:c.1328G>T","ENSP00000442172.1:p.Cys443Phe",NA,"MODERATE",NA,NA,NA,NA,NA,NA,NA,NA,443,443,"ENSP00000442172","Ensembl",-1,"ENST00000542968",1,["P14416-1"],"A"),(1,"C/F","A1","protein_coding",NA,NA,1358,1358,1325,1325,"tGc/tTc",["missense_variant"],NA,[("Gene3D","1"),("Superfamily","SSF81321")],"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000544518.5:c.1325G>T","ENSP00000441068.1:p.Cys442Phe",NA,"MODERATE",NA,NA,NA,NA,NA,NA,NA,NA,442,442,"ENSP00000441068","Ensembl",-1,"ENST00000544518",1,NA,"A"),(1,NA,NA,"lncRNA",1,NA,NA,NA,NA,NA,NA,["intron_variant","non_coding_transcript_variant"],NA,NA,NA,NA,"ENSG00000256757",NA,NA,NA,NA,"ENST00000546284.1:n.245-816C>A",NA,NA,"MODIFIER","2/3",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",1,"ENST00000546284",3,NA,"A"),(1,"C/F",NA,"protein_coding",1,NA,1682,1682,1328,1328,"tGc/tTc",["missense_variant"],NA,NA,"8/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_000795.4:c.1328G>T","NP_000786.1:p.Cys443Phe",NA,"MODERATE",NA,NA,NA,NA,NA,"ENST00000362072.8",NA,NA,443,443,"NP_000786.1","RefSeq",-1,"NM_000795.4",NA,NA,"A"),(1,"C/F",NA,"protein_coding",NA,NA,1595,1595,1241,1241,"tGc/tTc",["missense_variant"],NA,NA,"7/7",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_016574.4:c.1241G>T","NP_057658.2:p.Cys414Phe",NA,"MODERATE",NA,NA,NA,NA,NA,NA,NA,NA,414,414,"NP_057658.2","RefSeq",-1,"NM_016574.4",NA,NA,"A"),(1,"C/F",NA,"protein_coding",NA,NA,1410,1410,1328,1328,"tGc/tTc",["missense_variant"],NA,NA,"8/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","XM_017017296.2:c.1328G>T","XP_016872785.1:p.Cys443Phe",NA,"MODERATE",NA,NA,NA,NA,NA,NA,NA,NA,443,443,"XP_016872785.1","RefSeq",-1,"XM_017017296.2",NA,NA,"A")]"SNV"5.27e+00"AS_MQ"FalseFalseFalseFalseFalseTrueFalseFalse"multi-snv"2False"snv"False[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,21,0,124,0,314262,0,99,0,416424,0,0,0,0,0,0,3]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,98,374,11344,107362,344923,189028,36319,5607,2388,2759,3074,2931,2955,2915,2973,2922,2564,2682]07715[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0]01[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][7,0,0,0,28,0,124,0,314262,0,99,0,416424,0,0,0,0,0,0,3]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,7,98,380,11345,107362,344923,189028,36319,5607,2388,2759,3074,2931,2955,2915,2973,2922,2564,2682]07715[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0]01[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]10[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]002.77e+014.10e+006.02e-010.00e+000.00e+008.78e+000.00e+009.89e-01
chr11:113410731["C","T"][(1,6.84e-07,1461866,0),(1,6.84e-07,1461894,0),(0,0.00e+00,33480,0),(0,0.00e+00,44724,0),(0,0.00e+00,26136,0),(0,0.00e+00,39698,0),(0,0.00e+00,53416,0),(0,0.00e+00,5752,0),(1,8.99e-07,1112010,0),(0,0.00e+00,60394,0),(0,0.00e+00,86256,0),(1,1.36e-06,734628,0),(0,0.00e+00,727238,0),(0,0.00e+00,19326,0),(0,0.00e+00,14154,0),(0,0.00e+00,25690,0),(0,0.00e+00,19034,0),(0,0.00e+00,12636,0),(0,0.00e+00,13500,0),(0,0.00e+00,20710,0),(0,0.00e+00,18988,0),(0,0.00e+00,27646,0),(0,0.00e+00,25770,0),(0,0.00e+00,2494,0),(0,0.00e+00,3258,0),(1,1.75e-06,572288,0),(0,0.00e+00,539722,0),(0,0.00e+00,31800,0),(0,0.00e+00,28594,0),(0,0.00e+00,22038,0),(0,0.00e+00,64218,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,996,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,1994,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,3990,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5752,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,19998,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26134,0),(0,0.00e+00,26134,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26134,0),(0,0.00e+00,26136,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33478,0),(0,0.00e+00,33476,0),(0,0.00e+00,33480,0),(0,0.00e+00,33478,0),(0,0.00e+00,33478,0),(0,0.00e+00,33480,0),(0,0.00e+00,39700,0),(0,0.00e+00,39698,0),(0,0.00e+00,39696,0),(0,0.00e+00,39700,0),(0,0.00e+00,39698,0),(0,0.00e+00,39698,0),(0,0.00e+00,39700,0),(0,0.00e+00,40000,0),(0,0.00e+00,39996,0),(0,0.00e+00,40000,0),(0,0.00e+00,39998,0),(0,0.00e+00,39998,0),(0,0.00e+00,40000,0),(0,0.00e+00,44724,0),(0,0.00e+00,44720,0),(0,0.00e+00,44724,0),(0,0.00e+00,44722,0),(0,0.00e+00,44722,0),(0,0.00e+00,44724,0),(0,0.00e+00,53416,0),(0,0.00e+00,53420,0),(0,0.00e+00,53418,0),(0,0.00e+00,53418,0),(0,0.00e+00,53420,0),(0,0.00e+00,60396,0),(0,0.00e+00,60394,0),(0,0.00e+00,60394,0),(0,0.00e+00,60396,0),(0,0.00e+00,86258,0),(0,0.00e+00,86256,0),(0,0.00e+00,86256,0),(0,0.00e+00,100000,0),(0,0.00e+00,99998,0),(0,0.00e+00,200000,0),(0,0.00e+00,199998,0),(0,0.00e+00,400000,0),(0,0.00e+00,399996,0),(1,1.00e-06,999998,0),(0,0.00e+00,999978,0),(1,8.99e-07,1112010,0),(1,8.99e-07,1111990,0),(0,0.00e+00,628756,0),(0,0.00e+00,628784,0),(0,0.00e+00,17694,0),(0,0.00e+00,43740,0),(0,0.00e+00,20984,0),(0,0.00e+00,36068,0),(0,0.00e+00,53140,0),(0,0.00e+00,4132,0),(0,0.00e+00,350106,0),(0,0.00e+00,33096,0),(0,0.00e+00,69796,0),(0,0.00e+00,286232,0),(0,0.00e+00,342524,0),(0,0.00e+00,10286,0),(0,0.00e+00,7408,0),(0,0.00e+00,25040,0),(0,0.00e+00,18700,0),(0,0.00e+00,9838,0),(0,0.00e+00,11146,0),(0,0.00e+00,18296,0),(0,0.00e+00,17772,0),(0,0.00e+00,27396,0),(0,0.00e+00,25744,0),(0,0.00e+00,1904,0),(0,0.00e+00,2228,0),(0,0.00e+00,162220,0),(0,0.00e+00,187886,0),(0,0.00e+00,16752,0),(0,0.00e+00,16344,0),(0,0.00e+00,14500,0),(0,0.00e+00,55296,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,198,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,996,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,1990,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,3984,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4132,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17692,0),(0,0.00e+00,17694,0),(0,0.00e+00,17692,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,19998,0),(0,0.00e+00,20000,0),(0,0.00e+00,19998,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20982,0),(0,0.00e+00,20984,0),(0,0.00e+00,20982,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,33098,0),(0,0.00e+00,33096,0),(0,0.00e+00,33094,0),(0,0.00e+00,33098,0),(0,0.00e+00,33096,0),(0,0.00e+00,33096,0),(0,0.00e+00,33096,0),(0,0.00e+00,36070,0),(0,0.00e+00,36068,0),(0,0.00e+00,36066,0),(0,0.00e+00,36070,0),(0,0.00e+00,36068,0),(0,0.00e+00,36068,0),(0,0.00e+00,40000,0),(0,0.00e+00,39996,0),(0,0.00e+00,40000,0),(0,0.00e+00,39998,0),(0,0.00e+00,39998,0),(0,0.00e+00,43740,0),(0,0.00e+00,43736,0),(0,0.00e+00,43740,0),(0,0.00e+00,43738,0),(0,0.00e+00,43738,0),(0,0.00e+00,53140,0),(0,0.00e+00,53144,0),(0,0.00e+00,53142,0),(0,0.00e+00,53142,0),(0,0.00e+00,69798,0),(0,0.00e+00,69796,0),(0,0.00e+00,69796,0),(0,0.00e+00,100000,0),(0,0.00e+00,99996,0),(0,0.00e+00,199998,0),(0,0.00e+00,199990,0),(0,0.00e+00,350106,0),(0,0.00e+00,350088,0),(0,0.00e+00,399978,0)]18.99e-0711120100"nfe"NANANANANA[(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]NANANANANANANANA2TrueNA{}5.56e+006.00e+010.00e+0038621.02e+01-1.98e-01[134,83,109,52]9.81e-013780.00e+006.00e+010.00e+009.04e-0119679.88e+00-5.01e-01[134,83,53,33]6.81e-01199TrueFalseFalseFalseFalseFalseFalse5.40e+00-6.84e-07["ga4gh:VA.RY2FNHeS0QpJNM9lQpQ_pzX7Q27-MXmI","ga4gh:VA.Hp20SlFHUdM7jlWmVV27L6utrtRpDmAq"][113410730,113410730][113410731,113410731]["C","T"]"C/T"113410731".""chr11\t113410731\t.\tC\tT\t.\t.\tGT"NA"missense_variant"NANA"chr11"1134107311[(1,"C/Y",NA,"protein_coding",NA,"CCDS8362.1",1317,1317,1241,1241,"tGc/tAc",["missense_variant"],NA,[("Gene3D","1"),("Superfamily","SSF81321")],"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000346454.7:c.1241G>A","ENSP00000278597.5:p.Cys414Tyr",NA,"MODERATE",NA,NA,NA,NA,NA,NA,NA,NA,414,414,"ENSP00000278597","Ensembl",-1,"ENST00000346454",1,["P14416-2"],"T"),(1,"C/Y","P2","protein_coding",1,"CCDS8361.1",1682,1682,1328,1328,"tGc/tAc",["missense_variant"],NA,[("Gene3D","1"),("ENSP_mappings","5aer"),("ENSP_mappings","5aer"),("ENSP_mappings","6cm4"),("ENSP_mappings","6luq"),("ENSP_mappings","6vms"),("ENSP_mappings","7dfp"),("ENSP_mappings","7jvr"),("Superfamily","SSF81321")],"8/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000362072.8:c.1328G>A","ENSP00000354859.3:p.Cys443Tyr",NA,"MODERATE",NA,NA,NA,NA,NA,"NM_000795.4",NA,NA,443,443,"ENSP00000354859","Ensembl",-1,"ENST00000362072",1,["P14416-1"],"T"),(1,NA,NA,"processed_transcript",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],3644,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000535984",3,NA,"T"),(1,"C/Y","A1","protein_coding",NA,NA,1334,1334,1334,1334,"tGc/tAc",["missense_variant"],NA,[("Gene3D","1"),("Superfamily","SSF81321")],"8/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000538967.5:c.1334G>A","ENSP00000438215.1:p.Cys445Tyr",NA,"MODERATE",NA,NA,NA,NA,NA,NA,NA,NA,445,445,"ENSP00000438215","Ensembl",-1,"ENST00000538967",5,["P14416-3"],"T"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],4563,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000539420",3,NA,"T"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],3133,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000540600",1,NA,"T"),(1,"C/Y","P2","protein_coding",NA,"CCDS8361.1",1649,1649,1328,1328,"tGc/tAc",["missense_variant"],NA,[("Gene3D","1"),("ENSP_mappings","5aer"),("ENSP_mappings","5aer"),("ENSP_mappings","6cm4"),("ENSP_mappings","6luq"),("ENSP_mappings","6vms"),("ENSP_mappings","7dfp"),("ENSP_mappings","7jvr"),("Superfamily","SSF81321")],"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000542968.5:c.1328G>A","ENSP00000442172.1:p.Cys443Tyr",NA,"MODERATE",NA,NA,NA,NA,NA,NA,NA,NA,443,443,"ENSP00000442172","Ensembl",-1,"ENST00000542968",1,["P14416-1"],"T"),(1,"C/Y","A1","protein_coding",NA,NA,1358,1358,1325,1325,"tGc/tAc",["missense_variant"],NA,[("Gene3D","1"),("Superfamily","SSF81321")],"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000544518.5:c.1325G>A","ENSP00000441068.1:p.Cys442Tyr",NA,"MODERATE",NA,NA,NA,NA,NA,NA,NA,NA,442,442,"ENSP00000441068","Ensembl",-1,"ENST00000544518",1,NA,"T"),(1,NA,NA,"lncRNA",1,NA,NA,NA,NA,NA,NA,["intron_variant","non_coding_transcript_variant"],NA,NA,NA,NA,"ENSG00000256757",NA,NA,NA,NA,"ENST00000546284.1:n.245-816C>T",NA,NA,"MODIFIER","2/3",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",1,"ENST00000546284",3,NA,"T"),(1,"C/Y",NA,"protein_coding",1,NA,1682,1682,1328,1328,"tGc/tAc",["missense_variant"],NA,NA,"8/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_000795.4:c.1328G>A","NP_000786.1:p.Cys443Tyr",NA,"MODERATE",NA,NA,NA,NA,NA,"ENST00000362072.8",NA,NA,443,443,"NP_000786.1","RefSeq",-1,"NM_000795.4",NA,NA,"T"),(1,"C/Y",NA,"protein_coding",NA,NA,1595,1595,1241,1241,"tGc/tAc",["missense_variant"],NA,NA,"7/7",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_016574.4:c.1241G>A","NP_057658.2:p.Cys414Tyr",NA,"MODERATE",NA,NA,NA,NA,NA,NA,NA,NA,414,414,"NP_057658.2","RefSeq",-1,"NM_016574.4",NA,NA,"T"),(1,"C/Y",NA,"protein_coding",NA,NA,1410,1410,1328,1328,"tGc/tAc",["missense_variant"],NA,NA,"8/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","XM_017017296.2:c.1328G>A","XP_016872785.1:p.Cys443Tyr",NA,"MODERATE",NA,NA,NA,NA,NA,NA,NA,NA,443,443,"XP_016872785.1","RefSeq",-1,"XM_017017296.2",NA,NA,"T")]"SNV"5.40e+00"AS_MQ"FalseFalseFalseFalseFalseTrueFalseFalse"multi-snv"2False"snv"False[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,21,0,124,0,314262,0,99,0,416424,0,0,0,0,0,0,3]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,98,374,11344,107362,344923,189028,36319,5607,2388,2759,3074,2931,2955,2915,2973,2922,2564,2682]07715[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][7,0,0,0,28,0,124,0,314262,0,99,0,416424,0,0,0,0,0,0,3]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,7,98,380,11345,107362,344923,189028,36319,5607,2388,2759,3074,2931,2955,2915,2973,2922,2564,2682]07715[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,1,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]002.75e+014.07e+007.19e-010.00e+002.00e-028.78e+000.00e+009.89e-01
chr11:113410735["G","A"][(75,5.13e-05,1461876,0),(75,5.13e-05,1461894,0),(0,0.00e+00,33480,0),(0,0.00e+00,44724,0),(58,2.22e-03,26136,0),(0,0.00e+00,39700,0),(0,0.00e+00,53418,0),(0,0.00e+00,5762,0),(8,7.19e-06,1112004,0),(9,1.49e-04,60396,0),(0,0.00e+00,86256,0),(39,5.31e-05,734640,0),(36,4.95e-05,727236,0),(0,0.00e+00,19326,0),(0,0.00e+00,14154,0),(0,0.00e+00,25690,0),(0,0.00e+00,19034,0),(29,2.30e-03,12636,0),(29,2.15e-03,13500,0),(0,0.00e+00,20712,0),(0,0.00e+00,18988,0),(0,0.00e+00,27648,0),(0,0.00e+00,25770,0),(0,0.00e+00,2504,0),(0,0.00e+00,3258,0),(5,8.74e-06,572286,0),(3,5.56e-06,539718,0),(5,1.57e-04,31800,0),(4,1.40e-04,28596,0),(0,0.00e+00,22038,0),(0,0.00e+00,64218,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,18,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,198,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(1,1.00e-03,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,998,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(4,2.00e-03,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,1998,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(7,1.75e-03,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,3996,0),(0,0.00e+00,4000,0),(1,2.50e-04,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,3998,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(11,1.91e-03,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5762,0),(0,0.00e+00,5768,0),(1,1.73e-04,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5766,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(22,2.20e-03,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(2,2.00e-04,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,9998,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(46,2.30e-03,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(3,1.50e-04,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,19998,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(58,2.22e-03,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(3,1.15e-04,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26134,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(6,1.79e-04,33480,0),(0,0.00e+00,33480,0),(1,2.99e-05,33478,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(7,1.76e-04,39700,0),(0,0.00e+00,39700,0),(1,2.52e-05,39698,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(7,1.75e-04,40000,0),(0,0.00e+00,39998,0),(1,2.50e-05,39998,0),(0,0.00e+00,44724,0),(0,0.00e+00,44722,0),(0,0.00e+00,44724,0),(7,1.57e-04,44724,0),(0,0.00e+00,44722,0),(1,2.24e-05,44722,0),(0,0.00e+00,53418,0),(0,0.00e+00,53420,0),(9,1.68e-04,53420,0),(0,0.00e+00,53418,0),(1,1.87e-05,53418,0),(0,0.00e+00,60396,0),(9,1.49e-04,60396,0),(0,0.00e+00,60394,0),(2,3.31e-05,60394,0),(0,0.00e+00,86258,0),(0,0.00e+00,86256,0),(4,4.64e-05,86256,0),(0,0.00e+00,100000,0),(5,5.00e-05,99998,0),(0,0.00e+00,200000,0),(9,4.50e-05,199998,0),(3,7.50e-06,399998,0),(21,5.25e-05,399998,0),(6,6.00e-06,999994,0),(50,5.00e-05,999992,0),(8,7.19e-06,1112004,0),(58,5.22e-05,1112000,0),(60,9.54e-05,628768,0),(60,9.54e-05,628784,0),(0,0.00e+00,17694,0),(0,0.00e+00,43740,0),(50,2.38e-03,20984,0),(0,0.00e+00,36070,0),(0,0.00e+00,53142,0),(0,0.00e+00,4142,0),(2,5.71e-06,350102,0),(8,2.42e-04,33098,0),(0,0.00e+00,69796,0),(30,1.05e-04,286244,0),(30,8.76e-05,342524,0),(0,0.00e+00,10286,0),(0,0.00e+00,7408,0),(0,0.00e+00,25040,0),(0,0.00e+00,18700,0),(24,2.44e-03,9838,0),(26,2.33e-03,11146,0),(0,0.00e+00,18298,0),(0,0.00e+00,17772,0),(0,0.00e+00,27398,0),(0,0.00e+00,25744,0),(0,0.00e+00,1914,0),(0,0.00e+00,2228,0),(2,1.23e-05,162218,0),(0,0.00e+00,187884,0),(4,2.39e-04,16752,0),(4,2.45e-04,16346,0),(0,0.00e+00,14500,0),(0,0.00e+00,55296,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,18,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,198,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(1,1.00e-03,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,998,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(4,2.00e-03,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,1998,0),(0,0.00e+00,2000,0),(1,5.00e-04,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,1998,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(6,1.50e-03,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,3994,0),(0,0.00e+00,4000,0),(2,5.00e-04,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,3998,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(7,1.69e-03,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4142,0),(0,0.00e+00,4148,0),(2,4.82e-04,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4146,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(19,1.90e-03,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(3,3.00e-04,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,9998,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(42,2.37e-03,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(6,3.39e-04,17694,0),(0,0.00e+00,17694,0),(1,5.65e-05,17692,0),(0,0.00e+00,20000,0),(49,2.45e-03,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(6,3.00e-04,20000,0),(0,0.00e+00,20000,0),(1,5.00e-05,19998,0),(0,0.00e+00,20984,0),(50,2.38e-03,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(6,2.86e-04,20984,0),(0,0.00e+00,20984,0),(1,4.77e-05,20982,0),(0,0.00e+00,33098,0),(0,0.00e+00,33098,0),(0,0.00e+00,33098,0),(0,0.00e+00,33098,0),(8,2.42e-04,33098,0),(0,0.00e+00,33096,0),(3,9.06e-05,33096,0),(0,0.00e+00,36070,0),(0,0.00e+00,36070,0),(0,0.00e+00,36070,0),(0,0.00e+00,36070,0),(0,0.00e+00,36068,0),(4,1.11e-04,36068,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,39998,0),(5,1.25e-04,39998,0),(0,0.00e+00,43740,0),(0,0.00e+00,43738,0),(0,0.00e+00,43740,0),(0,0.00e+00,43738,0),(5,1.14e-04,43738,0),(0,0.00e+00,53142,0),(0,0.00e+00,53144,0),(0,0.00e+00,53142,0),(5,9.41e-05,53142,0),(0,0.00e+00,69798,0),(0,0.00e+00,69796,0),(6,8.60e-05,69796,0),(1,1.00e-05,100000,0),(8,8.00e-05,99998,0),(1,5.00e-06,199998,0),(21,1.05e-04,199998,0),(2,5.71e-06,350102,0),(31,8.85e-05,350102,0),(37,9.25e-05,399992,0)]87.19e-0611120040"nfe"25.71e-063501020"nfe"[(4.19e-05,3.82e-05),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(3.09e-06,2.24e-06),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,(7.54e-05,6.91e-05),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(9.50e-07,3.60e-07),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]3.09e-06"nfe"2.24e-06"nfe"9.50e-07"nfe"3.60e-07"nfe"1True{"rs201801648"}{}0.00e+006.00e+010.00e+001275011.23e+013.70e-02[3240,2211,2993,1962]7.34e-01104040.00e+006.00e+010.00e+001.00e+001274801.23e+011.60e-02[3240,2211,2991,1961]7.34e-0110383FalseNANAFalseFalseFalseFalse8.85e+00-5.13e-05["ga4gh:VA.SBSoboxxiC0V-mhjjHg2geRlf3I0Ib2d","ga4gh:VA.GzUD_86k_EDbtk-R58BTRVazmjZW2O1U"][113410734,113410734][113410735,113410735]["G","A"]"G/A"113410735".""chr11\t113410735\t.\tG\tA\t.\t.\tGT"NA"missense_variant"NANA"chr11"1134107351[(1,"H/Y",NA,"protein_coding",NA,"CCDS8362.1",1313,1313,1237,1237,"Cac/Tac",["missense_variant"],NA,[("Gene3D","1"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("Superfamily","SSF81321")],"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000346454.7:c.1237C>T","ENSP00000278597.5:p.His413Tyr",NA,"MODERATE",NA,NA,NA,NA,NA,NA,NA,NA,413,413,"ENSP00000278597","Ensembl",-1,"ENST00000346454",1,["P14416-2"],"A"),(1,"H/Y","P2","protein_coding",1,"CCDS8361.1",1678,1678,1324,1324,"Cac/Tac",["missense_variant"],NA,[("Gene3D","1"),("ENSP_mappings","5aer"),("ENSP_mappings","5aer"),("ENSP_mappings","6cm4"),("ENSP_mappings","6luq"),("ENSP_mappings","6vms"),("ENSP_mappings","7dfp"),("ENSP_mappings","7jvr"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("Superfamily","SSF81321")],"8/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000362072.8:c.1324C>T","ENSP00000354859.3:p.His442Tyr",NA,"MODERATE",NA,NA,NA,NA,NA,"NM_000795.4",NA,NA,442,442,"ENSP00000354859","Ensembl",-1,"ENST00000362072",1,["P14416-1"],"A"),(1,NA,NA,"processed_transcript",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],3640,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000535984",3,NA,"A"),(1,"H/Y","A1","protein_coding",NA,NA,1330,1330,1330,1330,"Cac/Tac",["missense_variant"],NA,[("Gene3D","1"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("Superfamily","SSF81321")],"8/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000538967.5:c.1330C>T","ENSP00000438215.1:p.His444Tyr",NA,"MODERATE",NA,NA,NA,NA,NA,NA,NA,NA,444,444,"ENSP00000438215","Ensembl",-1,"ENST00000538967",5,["P14416-3"],"A"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],4559,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000539420",3,NA,"A"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],3129,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000540600",1,NA,"A"),(1,"H/Y","P2","protein_coding",NA,"CCDS8361.1",1645,1645,1324,1324,"Cac/Tac",["missense_variant"],NA,[("Gene3D","1"),("ENSP_mappings","5aer"),("ENSP_mappings","5aer"),("ENSP_mappings","6cm4"),("ENSP_mappings","6luq"),("ENSP_mappings","6vms"),("ENSP_mappings","7dfp"),("ENSP_mappings","7jvr"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("Superfamily","SSF81321")],"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000542968.5:c.1324C>T","ENSP00000442172.1:p.His442Tyr",NA,"MODERATE",NA,NA,NA,NA,NA,NA,NA,NA,442,442,"ENSP00000442172","Ensembl",-1,"ENST00000542968",1,["P14416-1"],"A"),(1,"H/Y","A1","protein_coding",NA,NA,1354,1354,1321,1321,"Cac/Tac",["missense_variant"],NA,[("Gene3D","1"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("Superfamily","SSF81321")],"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000544518.5:c.1321C>T","ENSP00000441068.1:p.His441Tyr",NA,"MODERATE",NA,NA,NA,NA,NA,NA,NA,NA,441,441,"ENSP00000441068","Ensembl",-1,"ENST00000544518",1,NA,"A"),(1,NA,NA,"lncRNA",1,NA,NA,NA,NA,NA,NA,["intron_variant","non_coding_transcript_variant"],NA,NA,NA,NA,"ENSG00000256757",NA,NA,NA,NA,"ENST00000546284.1:n.245-812G>A",NA,NA,"MODIFIER","2/3",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",1,"ENST00000546284",3,NA,"A"),(1,"H/Y",NA,"protein_coding",1,NA,1678,1678,1324,1324,"Cac/Tac",["missense_variant"],NA,NA,"8/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_000795.4:c.1324C>T","NP_000786.1:p.His442Tyr",NA,"MODERATE",NA,NA,NA,NA,NA,"ENST00000362072.8",NA,NA,442,442,"NP_000786.1","RefSeq",-1,"NM_000795.4",NA,NA,"A"),(1,"H/Y",NA,"protein_coding",NA,NA,1591,1591,1237,1237,"Cac/Tac",["missense_variant"],NA,NA,"7/7",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_016574.4:c.1237C>T","NP_057658.2:p.His413Tyr",NA,"MODERATE",NA,NA,NA,NA,NA,NA,NA,NA,413,413,"NP_057658.2","RefSeq",-1,"NM_016574.4",NA,NA,"A"),(1,"H/Y",NA,"protein_coding",NA,NA,1406,1406,1324,1324,"Cac/Tac",["missense_variant"],NA,NA,"8/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","XM_017017296.2:c.1324C>T","XP_016872785.1:p.His442Tyr",NA,"MODERATE",NA,NA,NA,NA,NA,NA,NA,NA,442,442,"XP_016872785.1","RefSeq",-1,"XM_017017296.2",NA,NA,"A")]"SNV"8.85e+00"AS_MQ"FalseFalseFalseFalseFalseTrueFalseFalse"multi-snv"2False"snv"False[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,12,0,76,0,314251,0,32,0,416492,0,0,0,0,0,0,75]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,65,332,11308,107353,344982,189073,36327,5607,2387,2756,3080,2935,2956,2918,2972,2924,2564,2682]07717[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,75]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,1,2,3,4,7,3,7,5,1,4,1,3,0,2]032[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,1,1,6,12,25,24,5,1,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][6,0,1,0,14,0,76,0,314251,0,32,0,416492,0,0,0,0,0,0,75]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,2,67,335,11310,107353,344982,189073,36327,5607,2387,2756,3080,2935,2956,2918,2972,2924,2564,2682]07717[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,75]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,1,2,3,4,7,3,7,5,1,4,1,3,0,2]032[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,1,1,6,12,25,24,5,1,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][1,0,0,2,3,3,8,4,0,0]31[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]002.28e+012.69e+002.67e-010.00e+001.00e-028.67e+001.30e-011.18e-01
chr11:113410736["G","A"][(15,1.03e-05,1461882,0),(15,1.03e-05,1461894,0),(0,0.00e+00,33480,0),(0,0.00e+00,44724,0),(0,0.00e+00,26136,0),(0,0.00e+00,39700,0),(0,0.00e+00,53420,0),(0,0.00e+00,5762,0),(15,1.35e-05,1112010,0),(0,0.00e+00,60396,0),(0,0.00e+00,86254,0),(10,1.36e-05,734642,0),(5,6.88e-06,727240,0),(0,0.00e+00,19326,0),(0,0.00e+00,14154,0),(0,0.00e+00,25690,0),(0,0.00e+00,19034,0),(0,0.00e+00,12636,0),(0,0.00e+00,13500,0),(0,0.00e+00,20712,0),(0,0.00e+00,18988,0),(0,0.00e+00,27648,0),(0,0.00e+00,25772,0),(0,0.00e+00,2506,0),(0,0.00e+00,3256,0),(10,1.75e-05,572288,0),(5,9.26e-06,539722,0),(0,0.00e+00,31800,0),(0,0.00e+00,28596,0),(0,0.00e+00,22036,0),(0,0.00e+00,64218,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,1998,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,3996,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5762,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26134,0),(0,0.00e+00,26136,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33478,0),(0,0.00e+00,33480,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,39698,0),(0,0.00e+00,39700,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,39998,0),(0,0.00e+00,40000,0),(0,0.00e+00,44724,0),(0,0.00e+00,44724,0),(0,0.00e+00,44724,0),(0,0.00e+00,44724,0),(0,0.00e+00,44722,0),(0,0.00e+00,44724,0),(0,0.00e+00,53420,0),(0,0.00e+00,53420,0),(0,0.00e+00,53420,0),(0,0.00e+00,53418,0),(0,0.00e+00,53420,0),(0,0.00e+00,60396,0),(0,0.00e+00,60396,0),(0,0.00e+00,60394,0),(0,0.00e+00,60396,0),(1,1.16e-05,86258,0),(0,0.00e+00,86254,0),(0,0.00e+00,86258,0),(2,2.00e-05,100000,0),(1,1.00e-05,100000,0),(2,1.00e-05,200000,0),(2,1.00e-05,200000,0),(7,1.75e-05,400000,0),(4,1.00e-05,400000,0),(14,1.40e-05,1000000,0),(10,1.00e-05,999994,0),(15,1.35e-05,1112010,0),(12,1.08e-05,1112006,0),(1,1.59e-06,628772,0),(1,1.59e-06,628784,0),(0,0.00e+00,17694,0),(0,0.00e+00,43740,0),(0,0.00e+00,20984,0),(0,0.00e+00,36070,0),(0,0.00e+00,53144,0),(0,0.00e+00,4142,0),(1,2.86e-06,350106,0),(0,0.00e+00,33098,0),(0,0.00e+00,69794,0),(1,3.49e-06,286246,0),(0,0.00e+00,342526,0),(0,0.00e+00,10286,0),(0,0.00e+00,7408,0),(0,0.00e+00,25040,0),(0,0.00e+00,18700,0),(0,0.00e+00,9838,0),(0,0.00e+00,11146,0),(0,0.00e+00,18298,0),(0,0.00e+00,17772,0),(0,0.00e+00,27398,0),(0,0.00e+00,25746,0),(0,0.00e+00,1916,0),(0,0.00e+00,2226,0),(1,6.16e-06,162220,0),(0,0.00e+00,187886,0),(0,0.00e+00,16752,0),(0,0.00e+00,16346,0),(0,0.00e+00,14498,0),(0,0.00e+00,55296,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,1998,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,3994,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4142,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20982,0),(0,0.00e+00,20984,0),(0,0.00e+00,33098,0),(0,0.00e+00,33098,0),(0,0.00e+00,33098,0),(1,3.02e-05,33098,0),(0,0.00e+00,33098,0),(0,0.00e+00,33096,0),(0,0.00e+00,33098,0),(0,0.00e+00,36070,0),(0,0.00e+00,36070,0),(0,0.00e+00,36070,0),(1,2.77e-05,36070,0),(0,0.00e+00,36068,0),(0,0.00e+00,36070,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(1,2.50e-05,40000,0),(0,0.00e+00,39998,0),(0,0.00e+00,40000,0),(0,0.00e+00,43740,0),(0,0.00e+00,43740,0),(1,2.29e-05,43740,0),(0,0.00e+00,43738,0),(1,2.29e-05,43740,0),(0,0.00e+00,53144,0),(1,1.88e-05,53144,0),(0,0.00e+00,53142,0),(1,1.88e-05,53144,0),(1,1.43e-05,69798,0),(0,0.00e+00,69794,0),(1,1.43e-05,69798,0),(1,1.00e-05,100000,0),(1,1.00e-05,100000,0),(1,5.00e-06,200000,0),(1,5.00e-06,199998,0),(1,2.86e-06,350106,0),(1,2.86e-06,350104,0),(1,2.50e-06,399994,0)]151.35e-0511120100"nfe"12.86e-063501060"nfe"[(6.16e-06,4.89e-06),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(8.10e-06,6.42e-06),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]8.10e-06"nfe"6.42e-06"nfe"NANANANA1True{"rs1159504221"}{}5.49e-016.00e+010.00e+00123071.16e+017.40e-02[386,195,316,166]6.55e-0110639.64e-166.00e+010.00e+009.11e-01118991.17e+019.70e-02[386,195,304,161]6.47e-011013FalseNANAFalseFalseFalseFalse7.50e+00-1.03e-05["ga4gh:VA.QVbOetW6APM1_3jfGLLwArt4GfwgT6jE","ga4gh:VA.OXPDvbuulFZ9CSk4XtIFat1UOKdMachQ"][113410735,113410735][113410736,113410736]["G","A"]"G/A"113410736".""chr11\t113410736\t.\tG\tA\t.\t.\tGT"NA"synonymous_variant"NANA"chr11"1134107361[(1,"L",NA,"protein_coding",NA,"CCDS8362.1",1312,1312,1236,1236,"ctC/ctT",["synonymous_variant"],NA,[("Gene3D","1"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321")],"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000346454.7:c.1236C>T","ENSP00000278597.5:p.Leu412=",NA,"LOW",NA,NA,NA,NA,NA,NA,NA,NA,412,412,"ENSP00000278597","Ensembl",-1,"ENST00000346454",1,["P14416-2"],"A"),(1,"L","P2","protein_coding",1,"CCDS8361.1",1677,1677,1323,1323,"ctC/ctT",["synonymous_variant"],NA,[("Gene3D","1"),("ENSP_mappings","5aer"),("ENSP_mappings","5aer"),("ENSP_mappings","6cm4"),("ENSP_mappings","6luq"),("ENSP_mappings","6vms"),("ENSP_mappings","7dfp"),("ENSP_mappings","7jvr"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321")],"8/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000362072.8:c.1323C>T","ENSP00000354859.3:p.Leu441=",NA,"LOW",NA,NA,NA,NA,NA,"NM_000795.4",NA,NA,441,441,"ENSP00000354859","Ensembl",-1,"ENST00000362072",1,["P14416-1"],"A"),(1,NA,NA,"processed_transcript",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],3639,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000535984",3,NA,"A"),(1,"L","A1","protein_coding",NA,NA,1329,1329,1329,1329,"ctC/ctT",["synonymous_variant"],NA,[("Gene3D","1"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321")],"8/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000538967.5:c.1329C>T","ENSP00000438215.1:p.Leu443=",NA,"LOW",NA,NA,NA,NA,NA,NA,NA,NA,443,443,"ENSP00000438215","Ensembl",-1,"ENST00000538967",5,["P14416-3"],"A"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],4558,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000539420",3,NA,"A"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],3128,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000540600",1,NA,"A"),(1,"L","P2","protein_coding",NA,"CCDS8361.1",1644,1644,1323,1323,"ctC/ctT",["synonymous_variant"],NA,[("Gene3D","1"),("ENSP_mappings","5aer"),("ENSP_mappings","5aer"),("ENSP_mappings","6cm4"),("ENSP_mappings","6luq"),("ENSP_mappings","6vms"),("ENSP_mappings","7dfp"),("ENSP_mappings","7jvr"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321")],"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000542968.5:c.1323C>T","ENSP00000442172.1:p.Leu441=",NA,"LOW",NA,NA,NA,NA,NA,NA,NA,NA,441,441,"ENSP00000442172","Ensembl",-1,"ENST00000542968",1,["P14416-1"],"A"),(1,"L","A1","protein_coding",NA,NA,1353,1353,1320,1320,"ctC/ctT",["synonymous_variant"],NA,[("Gene3D","1"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321")],"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000544518.5:c.1320C>T","ENSP00000441068.1:p.Leu440=",NA,"LOW",NA,NA,NA,NA,NA,NA,NA,NA,440,440,"ENSP00000441068","Ensembl",-1,"ENST00000544518",1,NA,"A"),(1,NA,NA,"lncRNA",1,NA,NA,NA,NA,NA,NA,["intron_variant","non_coding_transcript_variant"],NA,NA,NA,NA,"ENSG00000256757",NA,NA,NA,NA,"ENST00000546284.1:n.245-811G>A",NA,NA,"MODIFIER","2/3",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",1,"ENST00000546284",3,NA,"A"),(1,"L",NA,"protein_coding",1,NA,1677,1677,1323,1323,"ctC/ctT",["synonymous_variant"],NA,NA,"8/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_000795.4:c.1323C>T","NP_000786.1:p.Leu441=",NA,"LOW",NA,NA,NA,NA,NA,"ENST00000362072.8",NA,NA,441,441,"NP_000786.1","RefSeq",-1,"NM_000795.4",NA,NA,"A"),(1,"L",NA,"protein_coding",NA,NA,1590,1590,1236,1236,"ctC/ctT",["synonymous_variant"],NA,NA,"7/7",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_016574.4:c.1236C>T","NP_057658.2:p.Leu412=",NA,"LOW",NA,NA,NA,NA,NA,NA,NA,NA,412,412,"NP_057658.2","RefSeq",-1,"NM_016574.4",NA,NA,"A"),(1,"L",NA,"protein_coding",NA,NA,1405,1405,1323,1323,"ctC/ctT",["synonymous_variant"],NA,NA,"8/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","XM_017017296.2:c.1323C>T","XP_016872785.1:p.Leu441=",NA,"LOW",NA,NA,NA,NA,NA,NA,NA,NA,441,441,"XP_016872785.1","RefSeq",-1,"XM_017017296.2",NA,NA,"A")]"SNV"7.50e+00"AS_MQ"FalseFalseFalseFalseFalseTrueFalseFalse"multi-snv"2False"snv"False[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,8,0,71,0,314313,0,37,0,416496,0,0,0,0,0,0,16]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,61,328,11304,107355,345020,189098,36329,5607,2382,2757,3074,2931,2955,2914,2974,2923,2564,2680]07685[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,15]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,1,3,1,2,3,1,0,1,0,1,1,0,0]01[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,1,0,0,1,1,11,1,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][5,0,0,0,9,0,71,0,314313,0,37,0,416496,0,0,0,0,0,0,16]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,1,62,330,11305,107356,345020,189098,36329,5607,2382,2757,3074,2931,2955,2914,2974,2923,2564,2680]07685[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,15]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,1,3,1,2,3,1,0,1,0,1,1,0,0]01[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,1,0,0,1,1,11,1,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,1,2,4,2,4,1,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]003.44e+002.28e-01NA0.00e+001.00e-02-2.55e-01NANA
chr11:113410736["G","T"][(1,6.84e-07,1461882,0),(1,6.84e-07,1461894,0),(0,0.00e+00,33480,0),(0,0.00e+00,44724,0),(0,0.00e+00,26136,0),(0,0.00e+00,39700,0),(0,0.00e+00,53420,0),(0,0.00e+00,5762,0),(1,8.99e-07,1112010,0),(0,0.00e+00,60396,0),(0,0.00e+00,86254,0),(0,0.00e+00,734642,0),(1,1.38e-06,727240,0),(0,0.00e+00,19326,0),(0,0.00e+00,14154,0),(0,0.00e+00,25690,0),(0,0.00e+00,19034,0),(0,0.00e+00,12636,0),(0,0.00e+00,13500,0),(0,0.00e+00,20712,0),(0,0.00e+00,18988,0),(0,0.00e+00,27648,0),(0,0.00e+00,25772,0),(0,0.00e+00,2506,0),(0,0.00e+00,3256,0),(0,0.00e+00,572288,0),(1,1.85e-06,539722,0),(0,0.00e+00,31800,0),(0,0.00e+00,28596,0),(0,0.00e+00,22036,0),(0,0.00e+00,64218,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,1998,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,3996,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5762,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26134,0),(0,0.00e+00,26136,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33478,0),(0,0.00e+00,33480,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,39698,0),(0,0.00e+00,39700,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,39998,0),(0,0.00e+00,40000,0),(0,0.00e+00,44724,0),(0,0.00e+00,44724,0),(0,0.00e+00,44724,0),(0,0.00e+00,44724,0),(0,0.00e+00,44722,0),(0,0.00e+00,44724,0),(0,0.00e+00,53420,0),(0,0.00e+00,53420,0),(0,0.00e+00,53420,0),(0,0.00e+00,53418,0),(0,0.00e+00,53420,0),(0,0.00e+00,60396,0),(0,0.00e+00,60396,0),(0,0.00e+00,60394,0),(0,0.00e+00,60396,0),(0,0.00e+00,86258,0),(0,0.00e+00,86254,0),(0,0.00e+00,86258,0),(0,0.00e+00,100000,0),(0,0.00e+00,100000,0),(0,0.00e+00,200000,0),(0,0.00e+00,200000,0),(1,2.50e-06,400000,0),(1,2.50e-06,400000,0),(1,1.00e-06,1000000,0),(1,1.00e-06,999994,0),(1,8.99e-07,1112010,0),(1,8.99e-07,1112006,0),(0,0.00e+00,628772,0),(0,0.00e+00,628784,0),(0,0.00e+00,17694,0),(0,0.00e+00,43740,0),(0,0.00e+00,20984,0),(0,0.00e+00,36070,0),(0,0.00e+00,53144,0),(0,0.00e+00,4142,0),(0,0.00e+00,350106,0),(0,0.00e+00,33098,0),(0,0.00e+00,69794,0),(0,0.00e+00,286246,0),(0,0.00e+00,342526,0),(0,0.00e+00,10286,0),(0,0.00e+00,7408,0),(0,0.00e+00,25040,0),(0,0.00e+00,18700,0),(0,0.00e+00,9838,0),(0,0.00e+00,11146,0),(0,0.00e+00,18298,0),(0,0.00e+00,17772,0),(0,0.00e+00,27398,0),(0,0.00e+00,25746,0),(0,0.00e+00,1916,0),(0,0.00e+00,2226,0),(0,0.00e+00,162220,0),(0,0.00e+00,187886,0),(0,0.00e+00,16752,0),(0,0.00e+00,16346,0),(0,0.00e+00,14498,0),(0,0.00e+00,55296,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,1998,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,3994,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4142,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20982,0),(0,0.00e+00,20984,0),(0,0.00e+00,33098,0),(0,0.00e+00,33098,0),(0,0.00e+00,33098,0),(0,0.00e+00,33098,0),(0,0.00e+00,33098,0),(0,0.00e+00,33096,0),(0,0.00e+00,33098,0),(0,0.00e+00,36070,0),(0,0.00e+00,36070,0),(0,0.00e+00,36070,0),(0,0.00e+00,36070,0),(0,0.00e+00,36068,0),(0,0.00e+00,36070,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,39998,0),(0,0.00e+00,40000,0),(0,0.00e+00,43740,0),(0,0.00e+00,43740,0),(0,0.00e+00,43740,0),(0,0.00e+00,43738,0),(0,0.00e+00,43740,0),(0,0.00e+00,53144,0),(0,0.00e+00,53144,0),(0,0.00e+00,53142,0),(0,0.00e+00,53144,0),(0,0.00e+00,69798,0),(0,0.00e+00,69794,0),(0,0.00e+00,69798,0),(0,0.00e+00,100000,0),(0,0.00e+00,100000,0),(0,0.00e+00,200000,0),(0,0.00e+00,199998,0),(0,0.00e+00,350106,0),(0,0.00e+00,350104,0),(0,0.00e+00,399994,0)]18.99e-0711120100"nfe"NANANANANA[(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]NANANANANANANANA2TrueNA{}5.49e-016.00e+010.00e+00123071.16e+017.40e-02[386,195,316,166]6.55e-0110639.64e-166.00e+010.00e+003.28e-024088.16e+00-9.23e-01[386,195,12,5]7.90e-0150TrueFalseFalseFalseFalseFalseFalse5.00e+00-6.84e-07["ga4gh:VA.QVbOetW6APM1_3jfGLLwArt4GfwgT6jE","ga4gh:VA.4qhkDG1qrfqiD2TeOA6LYLsi4UGWF19l"][113410735,113410735][113410736,113410736]["G","T"]"G/T"113410736".""chr11\t113410736\t.\tG\tT\t.\t.\tGT"NA"synonymous_variant"NANA"chr11"1134107361[(1,"L",NA,"protein_coding",NA,"CCDS8362.1",1312,1312,1236,1236,"ctC/ctA",["synonymous_variant"],NA,[("Gene3D","1"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321")],"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000346454.7:c.1236C>A","ENSP00000278597.5:p.Leu412=",NA,"LOW",NA,NA,NA,NA,NA,NA,NA,NA,412,412,"ENSP00000278597","Ensembl",-1,"ENST00000346454",1,["P14416-2"],"T"),(1,"L","P2","protein_coding",1,"CCDS8361.1",1677,1677,1323,1323,"ctC/ctA",["synonymous_variant"],NA,[("Gene3D","1"),("ENSP_mappings","5aer"),("ENSP_mappings","5aer"),("ENSP_mappings","6cm4"),("ENSP_mappings","6luq"),("ENSP_mappings","6vms"),("ENSP_mappings","7dfp"),("ENSP_mappings","7jvr"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321")],"8/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000362072.8:c.1323C>A","ENSP00000354859.3:p.Leu441=",NA,"LOW",NA,NA,NA,NA,NA,"NM_000795.4",NA,NA,441,441,"ENSP00000354859","Ensembl",-1,"ENST00000362072",1,["P14416-1"],"T"),(1,NA,NA,"processed_transcript",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],3639,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000535984",3,NA,"T"),(1,"L","A1","protein_coding",NA,NA,1329,1329,1329,1329,"ctC/ctA",["synonymous_variant"],NA,[("Gene3D","1"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321")],"8/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000538967.5:c.1329C>A","ENSP00000438215.1:p.Leu443=",NA,"LOW",NA,NA,NA,NA,NA,NA,NA,NA,443,443,"ENSP00000438215","Ensembl",-1,"ENST00000538967",5,["P14416-3"],"T"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],4558,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000539420",3,NA,"T"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],3128,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000540600",1,NA,"T"),(1,"L","P2","protein_coding",NA,"CCDS8361.1",1644,1644,1323,1323,"ctC/ctA",["synonymous_variant"],NA,[("Gene3D","1"),("ENSP_mappings","5aer"),("ENSP_mappings","5aer"),("ENSP_mappings","6cm4"),("ENSP_mappings","6luq"),("ENSP_mappings","6vms"),("ENSP_mappings","7dfp"),("ENSP_mappings","7jvr"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321")],"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000542968.5:c.1323C>A","ENSP00000442172.1:p.Leu441=",NA,"LOW",NA,NA,NA,NA,NA,NA,NA,NA,441,441,"ENSP00000442172","Ensembl",-1,"ENST00000542968",1,["P14416-1"],"T"),(1,"L","A1","protein_coding",NA,NA,1353,1353,1320,1320,"ctC/ctA",["synonymous_variant"],NA,[("Gene3D","1"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321")],"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000544518.5:c.1320C>A","ENSP00000441068.1:p.Leu440=",NA,"LOW",NA,NA,NA,NA,NA,NA,NA,NA,440,440,"ENSP00000441068","Ensembl",-1,"ENST00000544518",1,NA,"T"),(1,NA,NA,"lncRNA",1,NA,NA,NA,NA,NA,NA,["intron_variant","non_coding_transcript_variant"],NA,NA,NA,NA,"ENSG00000256757",NA,NA,NA,NA,"ENST00000546284.1:n.245-811G>T",NA,NA,"MODIFIER","2/3",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",1,"ENST00000546284",3,NA,"T"),(1,"L",NA,"protein_coding",1,NA,1677,1677,1323,1323,"ctC/ctA",["synonymous_variant"],NA,NA,"8/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_000795.4:c.1323C>A","NP_000786.1:p.Leu441=",NA,"LOW",NA,NA,NA,NA,NA,"ENST00000362072.8",NA,NA,441,441,"NP_000786.1","RefSeq",-1,"NM_000795.4",NA,NA,"T"),(1,"L",NA,"protein_coding",NA,NA,1590,1590,1236,1236,"ctC/ctA",["synonymous_variant"],NA,NA,"7/7",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_016574.4:c.1236C>A","NP_057658.2:p.Leu412=",NA,"LOW",NA,NA,NA,NA,NA,NA,NA,NA,412,412,"NP_057658.2","RefSeq",-1,"NM_016574.4",NA,NA,"T"),(1,"L",NA,"protein_coding",NA,NA,1405,1405,1323,1323,"ctC/ctA",["synonymous_variant"],NA,NA,"8/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","XM_017017296.2:c.1323C>A","XP_016872785.1:p.Leu441=",NA,"LOW",NA,NA,NA,NA,NA,NA,NA,NA,441,441,"XP_016872785.1","RefSeq",-1,"XM_017017296.2",NA,NA,"T")]"SNV"5.00e+00"AS_MQ"FalseFalseFalseFalseFalseTrueFalseFalse"multi-snv"2False"snv"False[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,8,0,71,0,314313,0,37,0,416496,0,0,0,0,0,0,16]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,61,328,11304,107355,345020,189098,36329,5607,2382,2757,3074,2931,2955,2914,2974,2923,2564,2680]07685[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][5,0,0,0,9,0,71,0,314313,0,37,0,416496,0,0,0,0,0,0,16]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,1,62,330,11305,107356,345020,189098,36329,5607,2382,2757,3074,2931,2955,2914,2974,2923,2564,2680]07685[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,1,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]002.96e+001.86e-01NA0.00e+003.00e-02-2.55e-01NANA

showing top 5 rows

\n" - ], - "text/plain": [ - "+-----------------+------------+\n", - "| locus | alleles |\n", - "+-----------------+------------+\n", - "| locus | array |\n", - "+-----------------+------------+\n", - "| chr11:113410731 | [\"C\",\"A\"] |\n", - "| chr11:113410731 | [\"C\",\"T\"] |\n", - "| chr11:113410735 | [\"G\",\"A\"] |\n", - "| chr11:113410736 | [\"G\",\"A\"] |\n", - "| chr11:113410736 | [\"G\",\"T\"] |\n", - "+-----------------+------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| freq |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [(2,1.37e-06,1461866,0),(2,1.37e-06,1461894,0),(0,0.00e+00,33480,0),(2,4.... |\n", - "| [(1,6.84e-07,1461866,0),(1,6.84e-07,1461894,0),(0,0.00e+00,33480,0),(0,0.... |\n", - "| [(75,5.13e-05,1461876,0),(75,5.13e-05,1461894,0),(0,0.00e+00,33480,0),(0,... |\n", - "| [(15,1.03e-05,1461882,0),(15,1.03e-05,1461894,0),(0,0.00e+00,33480,0),(0,... |\n", - "| [(1,6.84e-07,1461882,0),(1,6.84e-07,1461894,0),(0,0.00e+00,33480,0),(0,0.... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+------------------+------------------+------------------+\n", - "| grpmax.gnomad.AC | grpmax.gnomad.AF | grpmax.gnomad.AN |\n", - "+------------------+------------------+------------------+\n", - "| int32 | float64 | int32 |\n", - "+------------------+------------------+------------------+\n", - "| 2 | 4.47e-05 | 44724 |\n", - "| 1 | 8.99e-07 | 1112010 |\n", - "| 8 | 7.19e-06 | 1112004 |\n", - "| 15 | 1.35e-05 | 1112010 |\n", - "| 1 | 8.99e-07 | 1112010 |\n", - "+------------------+------------------+------------------+\n", - "\n", - "+--------------------------------+-----------------------+-------------------+\n", - "| grpmax.gnomad.homozygote_count | grpmax.gnomad.gen_anc | grpmax.non_ukb.AC |\n", - "+--------------------------------+-----------------------+-------------------+\n", - "| int64 | str | int32 |\n", - "+--------------------------------+-----------------------+-------------------+\n", - "| 0 | \"amr\" | 2 |\n", - "| 0 | \"nfe\" | NA |\n", - "| 0 | \"nfe\" | 2 |\n", - "| 0 | \"nfe\" | 1 |\n", - "| 0 | \"nfe\" | NA |\n", - "+--------------------------------+-----------------------+-------------------+\n", - "\n", - "+-------------------+-------------------+---------------------------------+\n", - "| grpmax.non_ukb.AF | grpmax.non_ukb.AN | grpmax.non_ukb.homozygote_count |\n", - "+-------------------+-------------------+---------------------------------+\n", - "| float64 | int32 | int64 |\n", - "+-------------------+-------------------+---------------------------------+\n", - "| 4.57e-05 | 43740 | 0 |\n", - "| NA | NA | NA |\n", - "| 5.71e-06 | 350102 | 0 |\n", - "| 2.86e-06 | 350106 | 0 |\n", - "| NA | NA | NA |\n", - "+-------------------+-------------------+---------------------------------+\n", - "\n", - "+------------------------+\n", - "| grpmax.non_ukb.gen_anc |\n", - "+------------------------+\n", - "| str |\n", - "+------------------------+\n", - "| \"amr\" |\n", - "| NA |\n", - "| \"nfe\" |\n", - "| \"nfe\" |\n", - "| NA |\n", - "+------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| faf |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [(2.30e-07,9.00e-08),(0.00e+00,0.00e+00),(7.41e-06,2.77e-06),(0.00e+00,0.... |\n", - "| [(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.... |\n", - "| [(4.19e-05,3.82e-05),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.... |\n", - "| [(6.16e-06,4.89e-06),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.... |\n", - "| [(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+-------------------------+---------------------------------+\n", - "| fafmax.gnomad.faf95_max | fafmax.gnomad.faf95_max_gen_anc |\n", - "+-------------------------+---------------------------------+\n", - "| float64 | str |\n", - "+-------------------------+---------------------------------+\n", - "| 7.41e-06 | \"amr\" |\n", - "| NA | NA |\n", - "| 3.09e-06 | \"nfe\" |\n", - "| 8.10e-06 | \"nfe\" |\n", - "| NA | NA |\n", - "+-------------------------+---------------------------------+\n", - "\n", - "+-------------------------+---------------------------------+\n", - "| fafmax.gnomad.faf99_max | fafmax.gnomad.faf99_max_gen_anc |\n", - "+-------------------------+---------------------------------+\n", - "| float64 | str |\n", - "+-------------------------+---------------------------------+\n", - "| 2.77e-06 | \"amr\" |\n", - "| NA | NA |\n", - "| 2.24e-06 | \"nfe\" |\n", - "| 6.42e-06 | \"nfe\" |\n", - "| NA | NA |\n", - "+-------------------------+---------------------------------+\n", - "\n", - "+--------------------------+----------------------------------+\n", - "| fafmax.non_ukb.faf95_max | fafmax.non_ukb.faf95_max_gen_anc |\n", - "+--------------------------+----------------------------------+\n", - "| float64 | str |\n", - "+--------------------------+----------------------------------+\n", - "| 7.58e-06 | \"amr\" |\n", - "| NA | NA |\n", - "| 9.50e-07 | \"nfe\" |\n", - "| NA | NA |\n", - "| NA | NA |\n", - "+--------------------------+----------------------------------+\n", - "\n", - "+--------------------------+----------------------------------+---------+\n", - "| fafmax.non_ukb.faf99_max | fafmax.non_ukb.faf99_max_gen_anc | a_index |\n", - "+--------------------------+----------------------------------+---------+\n", - "| float64 | str | int32 |\n", - "+--------------------------+----------------------------------+---------+\n", - "| 2.84e-06 | \"amr\" | 1 |\n", - "| NA | NA | 2 |\n", - "| 3.60e-07 | \"nfe\" | 1 |\n", - "| NA | NA | 1 |\n", - "| NA | NA | 2 |\n", - "+--------------------------+----------------------------------+---------+\n", - "\n", - "+-----------+------------------+----------+----------+----------+\n", - "| was_split | rsid | filters | info.FS | info.MQ |\n", - "+-----------+------------------+----------+----------+----------+\n", - "| bool | set | set | float64 | float64 |\n", - "+-----------+------------------+----------+----------+----------+\n", - "| True | {\"rs140938110\"} | {} | 5.56e+00 | 6.00e+01 |\n", - "| True | NA | {} | 5.56e+00 | 6.00e+01 |\n", - "| True | {\"rs201801648\"} | {} | 0.00e+00 | 6.00e+01 |\n", - "| True | {\"rs1159504221\"} | {} | 5.49e-01 | 6.00e+01 |\n", - "| True | NA | {} | 5.49e-01 | 6.00e+01 |\n", - "+-----------+------------------+----------+----------+----------+\n", - "\n", - "+----------------+-----------------+----------+---------------------+\n", - "| info.MQRankSum | info.QUALapprox | info.QD | info.ReadPosRankSum |\n", - "+----------------+-----------------+----------+---------------------+\n", - "| float64 | int64 | float64 | float64 |\n", - "+----------------+-----------------+----------+---------------------+\n", - "| 0.00e+00 | 3862 | 1.02e+01 | -1.98e-01 |\n", - "| 0.00e+00 | 3862 | 1.02e+01 | -1.98e-01 |\n", - "| 0.00e+00 | 127501 | 1.23e+01 | 3.70e-02 |\n", - "| 0.00e+00 | 12307 | 1.16e+01 | 7.40e-02 |\n", - "| 0.00e+00 | 12307 | 1.16e+01 | 7.40e-02 |\n", - "+----------------+-----------------+----------+---------------------+\n", - "\n", - "+-----------------------+----------+------------+------------+------------+\n", - "| info.SB | info.SOR | info.VarDP | info.AS_FS | info.AS_MQ |\n", - "+-----------------------+----------+------------+------------+------------+\n", - "| array | float64 | int32 | float64 | float64 |\n", - "+-----------------------+----------+------------+------------+------------+\n", - "| [134,83,109,52] | 9.81e-01 | 378 | 1.31e+01 | 6.00e+01 |\n", - "| [134,83,109,52] | 9.81e-01 | 378 | 0.00e+00 | 6.00e+01 |\n", - "| [3240,2211,2993,1962] | 7.34e-01 | 10404 | 0.00e+00 | 6.00e+01 |\n", - "| [386,195,316,166] | 6.55e-01 | 1063 | 9.64e-16 | 6.00e+01 |\n", - "| [386,195,316,166] | 6.55e-01 | 1063 | 9.64e-16 | 6.00e+01 |\n", - "+-----------------------+----------+------------+------------+------------+\n", - "\n", - "+-------------------+-----------------+--------------------+------------+\n", - "| info.AS_MQRankSum | info.AS_pab_max | info.AS_QUALapprox | info.AS_QD |\n", - "+-------------------+-----------------+--------------------+------------+\n", - "| float64 | float64 | int64 | float64 |\n", - "+-------------------+-----------------+--------------------+------------+\n", - "| 0.00e+00 | 2.94e-01 | 1895 | 1.06e+01 |\n", - "| 0.00e+00 | 9.04e-01 | 1967 | 9.88e+00 |\n", - "| 0.00e+00 | 1.00e+00 | 127480 | 1.23e+01 |\n", - "| 0.00e+00 | 9.11e-01 | 11899 | 1.17e+01 |\n", - "| 0.00e+00 | 3.28e-02 | 408 | 8.16e+00 |\n", - "+-------------------+-----------------+--------------------+------------+\n", - "\n", - "+------------------------+-----------------------+-------------+---------------+\n", - "| info.AS_ReadPosRankSum | info.AS_SB_TABLE | info.AS_SOR | info.AS_VarDP |\n", - "+------------------------+-----------------------+-------------+---------------+\n", - "| float64 | array | float64 | int32 |\n", - "+------------------------+-----------------------+-------------+---------------+\n", - "| 2.52e-01 | [134,83,56,19] | 1.42e+00 | 179 |\n", - "| -5.01e-01 | [134,83,53,33] | 6.81e-01 | 199 |\n", - "| 1.60e-02 | [3240,2211,2991,1961] | 7.34e-01 | 10383 |\n", - "| 9.70e-02 | [386,195,304,161] | 6.47e-01 | 1013 |\n", - "| -9.23e-01 | [386,195,12,5] | 7.90e-01 | 50 |\n", - "+------------------------+-----------------------+-------------+---------------+\n", - "\n", - "+----------------+----------------------------+------------------------+\n", - "| info.singleton | info.transmitted_singleton | info.sibling_singleton |\n", - "+----------------+----------------------------+------------------------+\n", - "| bool | bool | bool |\n", - "+----------------+----------------------------+------------------------+\n", - "| False | NA | NA |\n", - "| True | False | False |\n", - "| False | NA | NA |\n", - "| False | NA | NA |\n", - "| True | False | False |\n", - "+----------------+----------------------------+------------------------+\n", - "\n", - "+-----------+------------+------------------+---------------+----------------+\n", - "| info.omni | info.mills | info.monoallelic | info.only_het | info.AS_VQSLOD |\n", - "+-----------+------------+------------------+---------------+----------------+\n", - "| bool | bool | bool | bool | float64 |\n", - "+-----------+------------+------------------+---------------+----------------+\n", - "| False | False | False | False | 5.27e+00 |\n", - "| False | False | False | False | 5.40e+00 |\n", - "| False | False | False | False | 8.85e+00 |\n", - "| False | False | False | False | 7.50e+00 |\n", - "| False | False | False | False | 5.00e+00 |\n", - "+-----------+------------+------------------+---------------+----------------+\n", - "\n", - "+-----------------------+\n", - "| info.inbreeding_coeff |\n", - "+-----------------------+\n", - "| float64 |\n", - "+-----------------------+\n", - "| -1.37e-06 |\n", - "| -6.84e-07 |\n", - "| -5.13e-05 |\n", - "| -1.03e-05 |\n", - "| -6.84e-07 |\n", - "+-----------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| info.vrs.VRS_Allele_IDs |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [\"ga4gh:VA.RY2FNHeS0QpJNM9lQpQ_pzX7Q27-MXmI\",\"ga4gh:VA.ZonDIhdwyghm7SuWkX... |\n", - "| [\"ga4gh:VA.RY2FNHeS0QpJNM9lQpQ_pzX7Q27-MXmI\",\"ga4gh:VA.Hp20SlFHUdM7jlWmVV... |\n", - "| [\"ga4gh:VA.SBSoboxxiC0V-mhjjHg2geRlf3I0Ib2d\",\"ga4gh:VA.GzUD_86k_EDbtk-R58... |\n", - "| [\"ga4gh:VA.QVbOetW6APM1_3jfGLLwArt4GfwgT6jE\",\"ga4gh:VA.OXPDvbuulFZ9CSk4Xt... |\n", - "| [\"ga4gh:VA.QVbOetW6APM1_3jfGLLwArt4GfwgT6jE\",\"ga4gh:VA.4qhkDG1qrfqiD2TeOA... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+-----------------------+-----------------------+---------------------+\n", - "| info.vrs.VRS_Starts | info.vrs.VRS_Ends | info.vrs.VRS_States |\n", - "+-----------------------+-----------------------+---------------------+\n", - "| array | array | array |\n", - "+-----------------------+-----------------------+---------------------+\n", - "| [113410730,113410730] | [113410731,113410731] | [\"C\",\"A\"] |\n", - "| [113410730,113410730] | [113410731,113410731] | [\"C\",\"T\"] |\n", - "| [113410734,113410734] | [113410735,113410735] | [\"G\",\"A\"] |\n", - "| [113410735,113410735] | [113410736,113410736] | [\"G\",\"A\"] |\n", - "| [113410735,113410735] | [113410736,113410736] | [\"G\",\"T\"] |\n", - "+-----------------------+-----------------------+---------------------+\n", - "\n", - "+-------------------+-----------+--------+--------------------------------+\n", - "| vep.allele_string | vep.end | vep.id | vep.input |\n", - "+-------------------+-----------+--------+--------------------------------+\n", - "| str | int32 | str | str |\n", - "+-------------------+-----------+--------+--------------------------------+\n", - "| \"C/A\" | 113410731 | \".\" | \"chr11\t113410731\t.\tC\tA\t.\t.\tGT\" |\n", - "| \"C/T\" | 113410731 | \".\" | \"chr11\t113410731\t.\tC\tT\t.\t.\tGT\" |\n", - "| \"G/A\" | 113410735 | \".\" | \"chr11\t113410735\t.\tG\tA\t.\t.\tGT\" |\n", - "| \"G/A\" | 113410736 | \".\" | \"chr11\t113410736\t.\tG\tA\t.\t.\tGT\" |\n", - "| \"G/T\" | 113410736 | \".\" | \"chr11\t113410736\t.\tG\tT\t.\t.\tGT\" |\n", - "+-------------------+-----------+--------+--------------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| vep.intergenic_consequences |\n", - "+------------------------------------------------------------------------------+\n", - "| array, impact: st... |\n", - "+------------------------------------------------------------------------------+\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+-----------------------------+\n", - "| vep.most_severe_consequence |\n", - "+-----------------------------+\n", - "| str |\n", - "+-----------------------------+\n", - "| \"missense_variant\" |\n", - "| \"missense_variant\" |\n", - "| \"missense_variant\" |\n", - "| \"synonymous_variant\" |\n", - "| \"synonymous_variant\" |\n", - "+-----------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| vep.motif_feature_consequences |\n", - "+------------------------------------------------------------------------------+\n", - "| array, high_inf_p... |\n", - "+------------------------------------------------------------------------------+\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| vep.regulatory_feature_consequences |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+---------------------------------------------------------+\n", - "| histograms.qual_hists.gq_hist_all.bin_freq |\n", - "+---------------------------------------------------------+\n", - "| array |\n", - "+---------------------------------------------------------+\n", - "| [0,0,0,0,21,0,124,0,314262,0,99,0,416424,0,0,0,0,0,0,3] |\n", - "| [0,0,0,0,21,0,124,0,314262,0,99,0,416424,0,0,0,0,0,0,3] |\n", - "| [0,0,0,0,12,0,76,0,314251,0,32,0,416492,0,0,0,0,0,0,75] |\n", - "| [0,0,0,0,8,0,71,0,314313,0,37,0,416496,0,0,0,0,0,0,16] |\n", - "| [0,0,0,0,8,0,71,0,314313,0,37,0,416496,0,0,0,0,0,0,16] |\n", - "+---------------------------------------------------------+\n", - "\n", - "+---------------------------------------------+\n", - "| histograms.qual_hists.gq_hist_all.n_smaller |\n", - "+---------------------------------------------+\n", - "| int64 |\n", - "+---------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+---------------------------------------------+\n", - "\n", - "+--------------------------------------------+\n", - "| histograms.qual_hists.gq_hist_all.n_larger |\n", - "+--------------------------------------------+\n", - "| int64 |\n", - "+--------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+--------------------------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| histograms.qual_hists.dp_hist_all.bin_edges |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| histograms.qual_hists.dp_hist_all.bin_freq |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [0,0,98,374,11344,107362,344923,189028,36319,5607,2388,2759,3074,2931,295... |\n", - "| [0,0,98,374,11344,107362,344923,189028,36319,5607,2388,2759,3074,2931,295... |\n", - "| [0,0,65,332,11308,107353,344982,189073,36327,5607,2387,2756,3080,2935,295... |\n", - "| [0,0,61,328,11304,107355,345020,189098,36329,5607,2382,2757,3074,2931,295... |\n", - "| [0,0,61,328,11304,107355,345020,189098,36329,5607,2382,2757,3074,2931,295... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+---------------------------------------------+\n", - "| histograms.qual_hists.dp_hist_all.n_smaller |\n", - "+---------------------------------------------+\n", - "| int64 |\n", - "+---------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+---------------------------------------------+\n", - "\n", - "+--------------------------------------------+\n", - "| histograms.qual_hists.dp_hist_all.n_larger |\n", - "+--------------------------------------------+\n", - "| int64 |\n", - "+--------------------------------------------+\n", - "| 7715 |\n", - "| 7715 |\n", - "| 7717 |\n", - "| 7685 |\n", - "| 7685 |\n", - "+--------------------------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| histograms.qual_hists.gq_hist_alt.bin_edges |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+--------------------------------------------+\n", - "| histograms.qual_hists.gq_hist_alt.bin_freq |\n", - "+--------------------------------------------+\n", - "| array |\n", - "+--------------------------------------------+\n", - "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2] |\n", - "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1] |\n", - "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,75] |\n", - "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,15] |\n", - "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1] |\n", - "+--------------------------------------------+\n", - "\n", - "+---------------------------------------------+\n", - "| histograms.qual_hists.gq_hist_alt.n_smaller |\n", - "+---------------------------------------------+\n", - "| int64 |\n", - "+---------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+---------------------------------------------+\n", - "\n", - "+--------------------------------------------+\n", - "| histograms.qual_hists.gq_hist_alt.n_larger |\n", - "+--------------------------------------------+\n", - "| int64 |\n", - "+--------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+--------------------------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| histograms.qual_hists.dp_hist_alt.bin_edges |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+--------------------------------------------+\n", - "| histograms.qual_hists.dp_hist_alt.bin_freq |\n", - "+--------------------------------------------+\n", - "| array |\n", - "+--------------------------------------------+\n", - "| [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,0,1,2,3,4,7,3,7,5,1,4,1,3,0,2] |\n", - "| [0,0,0,0,0,0,0,1,3,1,2,3,1,0,1,0,1,1,0,0] |\n", - "| [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0] |\n", - "+--------------------------------------------+\n", - "\n", - "+---------------------------------------------+\n", - "| histograms.qual_hists.dp_hist_alt.n_smaller |\n", - "+---------------------------------------------+\n", - "| int64 |\n", - "+---------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+---------------------------------------------+\n", - "\n", - "+--------------------------------------------+\n", - "| histograms.qual_hists.dp_hist_alt.n_larger |\n", - "+--------------------------------------------+\n", - "| int64 |\n", - "+--------------------------------------------+\n", - "| 1 |\n", - "| 0 |\n", - "| 32 |\n", - "| 1 |\n", - "| 0 |\n", - "+--------------------------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| histograms.qual_hists.ab_hist_alt.bin_edges |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", - "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", - "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", - "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", - "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+----------------------------------------------+\n", - "| histograms.qual_hists.ab_hist_alt.bin_freq |\n", - "+----------------------------------------------+\n", - "| array |\n", - "+----------------------------------------------+\n", - "| [0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,1,1,6,12,25,24,5,1,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,1,0,0,1,1,11,1,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "+----------------------------------------------+\n", - "\n", - "+---------------------------------------------+\n", - "| histograms.qual_hists.ab_hist_alt.n_smaller |\n", - "+---------------------------------------------+\n", - "| int64 |\n", - "+---------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+---------------------------------------------+\n", - "\n", - "+--------------------------------------------+\n", - "| histograms.qual_hists.ab_hist_alt.n_larger |\n", - "+--------------------------------------------+\n", - "| int64 |\n", - "+--------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+--------------------------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| histograms.raw_qual_hists.gq_hist_all.bin_edges |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+---------------------------------------------------------+\n", - "| histograms.raw_qual_hists.gq_hist_all.bin_freq |\n", - "+---------------------------------------------------------+\n", - "| array |\n", - "+---------------------------------------------------------+\n", - "| [7,0,0,0,28,0,124,0,314262,0,99,0,416424,0,0,0,0,0,0,3] |\n", - "| [7,0,0,0,28,0,124,0,314262,0,99,0,416424,0,0,0,0,0,0,3] |\n", - "| [6,0,1,0,14,0,76,0,314251,0,32,0,416492,0,0,0,0,0,0,75] |\n", - "| [5,0,0,0,9,0,71,0,314313,0,37,0,416496,0,0,0,0,0,0,16] |\n", - "| [5,0,0,0,9,0,71,0,314313,0,37,0,416496,0,0,0,0,0,0,16] |\n", - "+---------------------------------------------------------+\n", - "\n", - "+-------------------------------------------------+\n", - "| histograms.raw_qual_hists.gq_hist_all.n_smaller |\n", - "+-------------------------------------------------+\n", - "| int64 |\n", - "+-------------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+-------------------------------------------------+\n", - "\n", - "+------------------------------------------------+\n", - "| histograms.raw_qual_hists.gq_hist_all.n_larger |\n", - "+------------------------------------------------+\n", - "| int64 |\n", - "+------------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+------------------------------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| histograms.raw_qual_hists.dp_hist_all.bin_edges |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| histograms.raw_qual_hists.dp_hist_all.bin_freq |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [0,7,98,380,11345,107362,344923,189028,36319,5607,2388,2759,3074,2931,295... |\n", - "| [0,7,98,380,11345,107362,344923,189028,36319,5607,2388,2759,3074,2931,295... |\n", - "| [0,2,67,335,11310,107353,344982,189073,36327,5607,2387,2756,3080,2935,295... |\n", - "| [0,1,62,330,11305,107356,345020,189098,36329,5607,2382,2757,3074,2931,295... |\n", - "| [0,1,62,330,11305,107356,345020,189098,36329,5607,2382,2757,3074,2931,295... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+-------------------------------------------------+\n", - "| histograms.raw_qual_hists.dp_hist_all.n_smaller |\n", - "+-------------------------------------------------+\n", - "| int64 |\n", - "+-------------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+-------------------------------------------------+\n", - "\n", - "+------------------------------------------------+\n", - "| histograms.raw_qual_hists.dp_hist_all.n_larger |\n", - "+------------------------------------------------+\n", - "| int64 |\n", - "+------------------------------------------------+\n", - "| 7715 |\n", - "| 7715 |\n", - "| 7717 |\n", - "| 7685 |\n", - "| 7685 |\n", - "+------------------------------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| histograms.raw_qual_hists.gq_hist_alt.bin_edges |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+------------------------------------------------+\n", - "| histograms.raw_qual_hists.gq_hist_alt.bin_freq |\n", - "+------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------+\n", - "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2] |\n", - "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1] |\n", - "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,75] |\n", - "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,15] |\n", - "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1] |\n", - "+------------------------------------------------+\n", - "\n", - "+-------------------------------------------------+\n", - "| histograms.raw_qual_hists.gq_hist_alt.n_smaller |\n", - "+-------------------------------------------------+\n", - "| int64 |\n", - "+-------------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+-------------------------------------------------+\n", - "\n", - "+------------------------------------------------+\n", - "| histograms.raw_qual_hists.gq_hist_alt.n_larger |\n", - "+------------------------------------------------+\n", - "| int64 |\n", - "+------------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+------------------------------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| histograms.raw_qual_hists.dp_hist_alt.bin_edges |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+------------------------------------------------+\n", - "| histograms.raw_qual_hists.dp_hist_alt.bin_freq |\n", - "+------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------+\n", - "| [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,0,1,2,3,4,7,3,7,5,1,4,1,3,0,2] |\n", - "| [0,0,0,0,0,0,0,1,3,1,2,3,1,0,1,0,1,1,0,0] |\n", - "| [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0] |\n", - "+------------------------------------------------+\n", - "\n", - "+-------------------------------------------------+\n", - "| histograms.raw_qual_hists.dp_hist_alt.n_smaller |\n", - "+-------------------------------------------------+\n", - "| int64 |\n", - "+-------------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+-------------------------------------------------+\n", - "\n", - "+------------------------------------------------+\n", - "| histograms.raw_qual_hists.dp_hist_alt.n_larger |\n", - "+------------------------------------------------+\n", - "| int64 |\n", - "+------------------------------------------------+\n", - "| 1 |\n", - "| 0 |\n", - "| 32 |\n", - "| 1 |\n", - "| 0 |\n", - "+------------------------------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| histograms.raw_qual_hists.ab_hist_alt.bin_edges |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", - "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", - "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", - "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", - "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+------------------------------------------------+\n", - "| histograms.raw_qual_hists.ab_hist_alt.bin_freq |\n", - "+------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------+\n", - "| [0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,1,1,6,12,25,24,5,1,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,1,0,0,1,1,11,1,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "+------------------------------------------------+\n", - "\n", - "+-------------------------------------------------+\n", - "| histograms.raw_qual_hists.ab_hist_alt.n_smaller |\n", - "+-------------------------------------------------+\n", - "| int64 |\n", - "+-------------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+-------------------------------------------------+\n", - "\n", - "+------------------------------------------------+\n", - "| histograms.raw_qual_hists.ab_hist_alt.n_larger |\n", - "+------------------------------------------------+\n", - "| int64 |\n", - "+------------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+------------------------------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| histograms.age_hists.age_hist_het.bin_edges |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", - "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", - "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", - "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", - "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+--------------------------------------------+\n", - "| histograms.age_hists.age_hist_het.bin_freq |\n", - "+--------------------------------------------+\n", - "| array |\n", - "+--------------------------------------------+\n", - "| [0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,1,0,0,0,0,0] |\n", - "| [1,0,0,2,3,3,8,4,0,0] |\n", - "| [0,0,1,2,4,2,4,1,0,0] |\n", - "| [0,0,0,0,0,1,0,0,0,0] |\n", - "+--------------------------------------------+\n", - "\n", - "+---------------------------------------------+\n", - "| histograms.age_hists.age_hist_het.n_smaller |\n", - "+---------------------------------------------+\n", - "| int64 |\n", - "+---------------------------------------------+\n", - "| 1 |\n", - "| 0 |\n", - "| 3 |\n", - "| 0 |\n", - "| 0 |\n", - "+---------------------------------------------+\n", - "\n", - "+--------------------------------------------+\n", - "| histograms.age_hists.age_hist_het.n_larger |\n", - "+--------------------------------------------+\n", - "| int64 |\n", - "+--------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 1 |\n", - "| 0 |\n", - "| 0 |\n", - "+--------------------------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| histograms.age_hists.age_hist_hom.bin_edges |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", - "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", - "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", - "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", - "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+--------------------------------------------+\n", - "| histograms.age_hists.age_hist_hom.bin_freq |\n", - "+--------------------------------------------+\n", - "| array |\n", - "+--------------------------------------------+\n", - "| [0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,0,0,0,0,0] |\n", - "+--------------------------------------------+\n", - "\n", - "+---------------------------------------------+\n", - "| histograms.age_hists.age_hist_hom.n_smaller |\n", - "+---------------------------------------------+\n", - "| int64 |\n", - "+---------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+---------------------------------------------+\n", - "\n", - "+--------------------------------------------+---------------------------------+\n", - "| histograms.age_hists.age_hist_hom.n_larger | in_silico_predictors.cadd.phred |\n", - "+--------------------------------------------+---------------------------------+\n", - "| int64 | float32 |\n", - "+--------------------------------------------+---------------------------------+\n", - "| 0 | 2.77e+01 |\n", - "| 0 | 2.75e+01 |\n", - "| 0 | 2.28e+01 |\n", - "| 0 | 3.44e+00 |\n", - "| 0 | 2.96e+00 |\n", - "+--------------------------------------------+---------------------------------+\n", - "\n", - "+-------------------------------------+--------------------------------+\n", - "| in_silico_predictors.cadd.raw_score | in_silico_predictors.revel_max |\n", - "+-------------------------------------+--------------------------------+\n", - "| float32 | float64 |\n", - "+-------------------------------------+--------------------------------+\n", - "| 4.10e+00 | 6.02e-01 |\n", - "| 4.07e+00 | 7.19e-01 |\n", - "| 2.69e+00 | 2.67e-01 |\n", - "| 2.28e-01 | NA |\n", - "| 1.86e-01 | NA |\n", - "+-------------------------------------+--------------------------------+\n", - "\n", - "+--------------------------------------+\n", - "| in_silico_predictors.spliceai_ds_max |\n", - "+--------------------------------------+\n", - "| float32 |\n", - "+--------------------------------------+\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "+--------------------------------------+\n", - "\n", - "+------------------------------------------+-----------------------------+\n", - "| in_silico_predictors.pangolin_largest_ds | in_silico_predictors.phylop |\n", - "+------------------------------------------+-----------------------------+\n", - "| float64 | float64 |\n", - "+------------------------------------------+-----------------------------+\n", - "| 0.00e+00 | 8.78e+00 |\n", - "| 2.00e-02 | 8.78e+00 |\n", - "| 1.00e-02 | 8.67e+00 |\n", - "| 1.00e-02 | -2.55e-01 |\n", - "| 3.00e-02 | -2.55e-01 |\n", - "+------------------------------------------+-----------------------------+\n", - "\n", - "+-------------------------------+-----------------------------------+\n", - "| in_silico_predictors.sift_max | in_silico_predictors.polyphen_max |\n", - "+-------------------------------+-----------------------------------+\n", - "| float64 | float64 |\n", - "+-------------------------------+-----------------------------------+\n", - "| 0.00e+00 | 9.89e-01 |\n", - "| 0.00e+00 | 9.89e-01 |\n", - "| 1.30e-01 | 1.18e-01 |\n", - "| NA | NA |\n", - "| NA | NA |\n", - "+-------------------------------+-----------------------------------+\n", - "showing top 5 rows" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# lof, missense, synonymous variants passing filters\n", - "variants_of_interest = filter_by_csqs(drd2,['lof','missense','synonymous'])\n", - "variants_of_interest.show(5)" - ] - }, - { - "cell_type": "code", - "execution_count": 50, - "id": "9887fdb0", - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - "[Stage 27:> (0 + 1) / 1]\r" - ] - }, - { - "data": { - "text/plain": [ - "17" - ] - }, - "execution_count": 50, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# number of lof variants passing filters\n", - "filter_by_csqs(drd2,['lof']).count()" - ] - }, - { - "cell_type": "code", - "execution_count": 51, - "id": "86596aaf", - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - "[Stage 28:> (0 + 1) / 1]\r" - ] - }, - { - "data": { - "text/plain": [ - "409" - ] - }, - "execution_count": 51, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# number of missense variants passing filters\n", - "filter_by_csqs(drd2,['missense']).count()" - ] - }, - { - "cell_type": "code", - "execution_count": 52, - "id": "b7e4368b", - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - "[Stage 29:> (0 + 1) / 1]\r" - ] - }, - { - "data": { - "text/plain": [ - "238" - ] - }, - "execution_count": 52, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# number of synonymous variants passing filters\n", - "filter_by_csqs(drd2,['synonymous']).count()" - ] - }, - { - "cell_type": "code", - "execution_count": 55, - "id": "4141ccb3", - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - "[Stage 30:> (0 + 1) / 1]\r" - ] - }, - { - "data": { - "text/plain": [ - "783" - ] - }, - "execution_count": 55, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# number of 'Other' variants passing filters\n", - "filter_by_csqs(drd2,['other']).count()" - ] - }, - { - "cell_type": "markdown", - "id": "b1031947", - "metadata": {}, - "source": [ - "## Filter to 'HC' LOF variants for certain genes" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "id": "5b08a706", - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "INFO (gnomad.utils.vep 928): Filtering to canonical transcripts\n", - "INFO (gnomad.utils.vep 931): Filtering to MANE Select transcripts...\n", - "INFO (gnomad.utils.vep 934): Filtering to Ensembl transcripts...\n", - "INFO (gnomad.utils.vep 940): Filtering to genes of interest...\n", - "INFO (gnomad.utils.vep 948): Filtering to variants with additional criteria...\n" - ] - } - ], - "source": [ - "# Filter to variants in ASH1L that are LOFTEE high-confidence (with no flags) in the MANE select transcript.\n", - "ht = filter_vep_transcript_csqs(\n", - " ht, \n", - " synonymous=False, \n", - " mane_select=True,\n", - " genes=[\"ASH1L\"],\n", - " match_by_gene_symbol=True,\n", - " additional_filtering_criteria=[lambda x: (x.lof == \"HC\") & hl.is_missing(x.lof_flags)],\n", - ")" - ] - }, - { - "attachments": { - "Screenshot%202024-10-01%20at%2010.20.53%E2%80%AFAM.png": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABokAAAFWCAYAAAC1jnTEAAAKrGlDQ1BJQ0MgUHJvZmlsZQAASImVlwdUU+kSgP9700NCS6hSQm+CdAJICT303myEJEAoIQaCgqioLK7giiIiAsqCLIoouCpF7FiwLQpKUdEFWRTUdbEgKirvAofg7jvvvfPmnjnz3cn8M/Pf8//nTAAgU1kCQTIsDUAKP10Y7OlCi4yKpuFGAR4oADKgA0sWO03ACAz0BYjM27/Lh14Azdh7xjO5/v33/yoyHG4aGwAoEOFYTho7BeFTiI6zBcJ0AFA1iF9rTbpghq8jTBUiDSI8MMPxczw+w7GzjEbPxoQGuyKsCACexGIJ4wEgaSN+WgY7HslDckPYlM/h8RFG3oFjSkoqB2GkLtBHYgQIz+Snx36XJ/5vOWPFOVmseDHP7WVW8G68NEEyK/P//Bz/W1KSRfM1dBElJQi9ghGL9AX1J6X6iJkf6x8wzzzObPwsJ4i8wuaZneYaPc8clpuPeG2yv+88x/E8mOI86czQeeamuYfMszA1WFwrTujKmGeWcKGuKClM7E/gMsX5sxJCI+Y5gxfuP89pSSE+CzGuYr9QFCzun8v3dFmo6yHee0rad/vlMcVr0xNCvcR7Zy30z+UzFnKmRYp743Dd3BdiwsTxgnQXcS1BcqA4npvsKfanZYSI16YjB3JhbaD4GyayvAPnGbgBd+CLPDQQCMyBJaIWM7507tqZMwpcUwWZQl58QjqNgdwyLo3JZ5ssppmbmlsCMHNn547Eu/7ZuwjJ4xd8fB4AljcRaFnwcU4DcGYZABT1BZ9WEwBSDwG4EMEWCTPmfDPXCWAAEUgBKlACakAL6ANjpDdrYA+ckY69QQAIBVFgJWCDBJAChGANyAabQB4oADvBHlAGKsFBcBgcAydACzgLLoFr4Ba4C3rAIzAIRsBLMA4+gCkIgnAQGaJASpA6pAMZQeYQHXKE3CFfKBiKgmKgeIgPiaBsaAtUABVBZVAVVAf9Cp2GLkE3oC7oATQEjUFvoc8wCibBVFgV1oWXwHSYAfvAofAKOB5eDWfBufAOuBSuho/CzfAl+BbcAw/CL+EJFEBJoORRGihjFB3ligpARaPiUELUBlQ+qgRVjWpAtaE6UPdQg6hXqE9oLJqCpqGN0fZoL3QYmo1ejd6A3o4uQx9GN6OvoO+hh9Dj6G8YMkYFY4SxwzAxkZh4zBpMHqYEU4tpwlzF9GBGMB+wWKw8Vg9rg/XCRmETseuw27H7sY3Yi9gu7DB2AofDKeGMcA64ABwLl47Lw+3DHcVdwHXjRnAf8RJ4dbw53gMfjefjN+NL8Efw5/Hd+Of4KYI0QYdgRwggcAiZhEJCDaGNcIcwQpgiyhD1iA7EUGIicROxlNhAvEocIL6TkJDQlLCVCJLgSeRIlEocl7guMSTxiSRLMiS5kpaTRKQdpEOki6QHpHdkMlmX7EyOJqeTd5DryJfJT8gfJSmSJpJMSY7kRslyyWbJbsnXUgQpHSmG1EqpLKkSqZNSd6ReSROkdaVdpVnSG6TLpU9L90lPyFBkzGQCZFJktssckbkhMyqLk9WVdZflyObKHpS9LDtMQVG0KK4UNmULpYZylTJCxVL1qExqIrWAeozaSR2Xk5WzlAuXWytXLndOblAeJa8rz5RPli+UPyHfK/9ZQVWBocBV2KbQoNCtMKm4SNFZkauYr9io2KP4WYmm5K6UpLRLqUXpsTJa2VA5SHmN8gHlq8qvFlEX2S9iL8pfdGLRQxVYxVAlWGWdykGV2yoTqmqqnqoC1X2ql1VfqcmrOaslqhWrnVcbU6eoO6rz1IvVL6i/oMnRGLRkWintCm1cQ0XDS0OkUaXRqTGlqacZprlZs1HzsRZRi64Vp1Ws1a41rq2u7aedrV2v/VCHoEPXSdDZq9OhM6mrpxuhu1W3RXdUT1GPqZelV683oE/Wd9JfrV+tf98Aa0A3SDLYb3DXEDa0MkwwLDe8YwQbWRvxjPYbdS3GLLZdzF9cvbjPmGTMMM4wrjceMpE38TXZbNJi8nqJ9pLoJbuWdCz5ZmplmmxaY/rITNbM22yzWZvZW3NDc7Z5ufl9C7KFh8VGi1aLN5ZGllzLA5b9VhQrP6utVu1WX61trIXWDdZjNto2MTYVNn10Kj2Qvp1+3RZj62K70fas7Sc7a7t0uxN2f9kb2yfZH7EfXaq3lLu0Zumwg6YDy6HKYdCR5hjj+LPjoJOGE8up2umps5Yzx7nW+TnDgJHIOMp47WLqInRpcpl0tXNd73rRDeXm6Zbv1uku6x7mXub+xEPTI96j3mPc08pznedFL4yXj9curz6mKpPNrGOOe9t4r/e+4kPyCfEp83nqa+gr9G3zg/28/Xb7Dfjr+PP9WwJAADNgd8DjQL3A1YFngrBBgUHlQc+CzYKzgztCKCGrQo6EfAh1CS0MfRSmHyYKaw+XCl8eXhc+GeEWURQxGLkkcn3krSjlKF5UazQuOjy6NnpimfuyPctGllstz1veu0JvxdoVN1Yqr0xeeW6V1CrWqpMxmJiImCMxX1gBrGrWRCwztiJ2nO3K3st+yXHmFHPGuA7cIu7zOIe4orjReIf43fFjCU4JJQmveK68Mt6bRK/EysTJpICkQ0nTyRHJjSn4lJiU03xZfhL/Sqpa6trULoGRIE8wuNpu9Z7V40IfYW0alLYirTWdigxHt0X6oh9EQxmOGeUZH9eErzm5VmYtf+3tTMPMbZnPszyyflmHXsde156tkb0pe2g9Y33VBmhD7Ib2jVobczeO5HjmHN5E3JS06bfNppuLNr/fErGlLVc1Nyd3+AfPH+rzJPOEeX1b7bdW/oj+kfdj5zaLbfu2fcvn5N8sMC0oKfiynb395k9mP5X+NL0jbkdnoXXhgZ3Ynfydvbucdh0ukinKKhre7be7uZhWnF/8fs+qPTdKLEsq9xL3ivYOlvqWtu7T3rdz35eyhLKecpfyxgqVim0Vk/s5+7sPOB9oqFStLKj8/DPv5/4qz6rmat3qkoPYgxkHn9WE13T8Qv+lrla5tqD26yH+ocHDwYev1NnU1R1ROVJYD9eL6seOLj9695jbsdYG44aqRvnGguPguOj4i19jfu094XOi/ST9ZMMpnVMVTZSm/GaoObN5vCWhZbA1qrXrtPfp9jb7tqYzJmcOndU4W35O7lzheeL53PPTF7IuTFwUXHx1Kf7ScPuq9keXIy/fvxJ0pfOqz9Xr1zyuXe5gdFy47nD97A27G6dv0m+23LK+1Xzb6nbTb1a/NXVadzbfsbnTetf2blvX0q7z3U7dl+653bt2n3n/Vo9/T1dvWG9/3/K+wX5O/+iD5AdvHmY8nHqUM4AZyH8s/bjkicqT6t8Nfm8ctB48N+Q2dPtpyNNHw+zhl3+k/fFlJPcZ+VnJc/XndaPmo2fHPMbuvlj2YuSl4OXUq7w/Zf6seK3/+tRfzn/dHo8cH3kjfDP9dvs7pXeH3lu+b58InHjyIeXD1GT+R6WPhz/RP3V8jvj8fGrNF9yX0q8GX9u++XwbmE6ZnhawhKzZUQCFKBwXB8DbQwCQo5DZ4S4AxGVzM/WsQHP/A2YJ/Ceem7tnxRqA+hwAghGdGR/3XwRAG1EpZwACEQ11BrCFhVjn59/ZWX1GpI8C0MU0DbX2fWI1nAP+IXNz/Hd9/9MCcda/2X8BEaoHZfbhPqoAAABiZVhJZk1NACoAAAAIAAIBEgADAAAAAQABAACHaQAEAAAAAQAAACYAAAAAAAOShgAHAAAAEgAAAFCgAgAEAAAAAQAABomgAwAEAAAAAQAAAVYAAAAAQVNDSUkAAABTY3JlZW5zaG90uT88RwAAAj5pVFh0WE1MOmNvbS5hZG9iZS54bXAAAAAAADx4OnhtcG1ldGEgeG1sbnM6eD0iYWRvYmU6bnM6bWV0YS8iIHg6eG1wdGs9IlhNUCBDb3JlIDYuMC4wIj4KICAgPHJkZjpSREYgeG1sbnM6cmRmPSJodHRwOi8vd3d3LnczLm9yZy8xOTk5LzAyLzIyLXJkZi1zeW50YXgtbnMjIj4KICAgICAgPHJkZjpEZXNjcmlwdGlvbiByZGY6YWJvdXQ9IiIKICAgICAgICAgICAgeG1sbnM6ZXhpZj0iaHR0cDovL25zLmFkb2JlLmNvbS9leGlmLzEuMC8iCiAgICAgICAgICAgIHhtbG5zOnRpZmY9Imh0dHA6Ly9ucy5hZG9iZS5jb20vdGlmZi8xLjAvIj4KICAgICAgICAgPGV4aWY6UGl4ZWxZRGltZW5zaW9uPjM0MjwvZXhpZjpQaXhlbFlEaW1lbnNpb24+CiAgICAgICAgIDxleGlmOlVzZXJDb21tZW50PlNjcmVlbnNob3Q8L2V4aWY6VXNlckNvbW1lbnQ+CiAgICAgICAgIDxleGlmOlBpeGVsWERpbWVuc2lvbj4xNjczPC9leGlmOlBpeGVsWERpbWVuc2lvbj4KICAgICAgICAgPHRpZmY6T3JpZW50YXRpb24+MTwvdGlmZjpPcmllbnRhdGlvbj4KICAgICAgPC9yZGY6RGVzY3JpcHRpb24+CiAgIDwvcmRmOlJERj4KPC94OnhtcG1ldGE+ChwqqdIAAEAASURBVHgB7J0JvE5V98e3ookG0kBJg1ApRcO/gUqakUoypFGJQrMGQpKhwRsNmlSiSC+lQWiek1QSDRo1qaRB8/S/3+VdT+eee57p3su9+K3P57nnPOfsvc8+373PUfv3rLUq/P777/8EmQiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIwCpFYLVV6m51syIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAkZAIpEmggiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAisggQkEq2Cg65bFgEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAGJRJoDIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIrAKEpBItAoOum5ZBERABERABERABERABERABERABERABERABERABERABERABCQSaQ6IgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIwCpIQCLRKjjoumUREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAERkEikOSACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACqyABiUSr4KDrlkVABERABERABERABERABERABERABERABERABERABERABERAIpHmgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAisggQkEq2Cg65bFgEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAGJRJoDIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIrAKEpBItAoOum5ZBERABERABERABERABERABERABERABERABERABERABERABCouKwS//vpr+Ouvv8I///wTlixZEtZZZ52w1lprhTXWWCPvSy5evDi89dZbYeHChWGbbbYJ9erVC2uvvXbGdn7++We7thdac801Q8WKmW833zp//vln+O233/wSoUKFCnafqQMFO9w/7UatcuXK0a/aFwEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREIHlTmCZeRLtscceoWrVqqFatWphiy22CNWrVw/HHntszjf4xRdfhJNOOskEoU022SQ0a9YstG/fPuy+++5h/fXXDw0bNgyXXHJJQIyKG+LNBhtsYNenD3xGjx4dL1boO2JOvM6oUaMKlYl+ef7558O2225b6BrU//7776PFAuW8D7595513CpXRFxEQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQARFY3gQyu9YUszdz584N8+bNK1L74YcfDosWLQobbrhhkXPRAy+88EJo27Zt+Oqrr6KHC+3TPp8nn3wyjBs3zoSoQgViXxCB8rWkOngODRgwIAwdOjSxuXid+HcqJR1LbEwHRUAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAERGAZEVgmnkT//e9/03Z38uTJac9xgvP77bdfRoEo2sDMmTPDLrvsEhYsWBA9vEz258yZE/baa6+0AtEyuagaFQEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREIFlQKDURSK8ZMaMGZO2q3fffXfac3/88Ufo2bNnkfOHHHJIGD58eLjnnnvMi2ezzTYrVObHH38MV155ZaFjpf1l+vTpoVGjRuHNN98s7abVngiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAgsdwKlLhLh2fPhhx+mvZGnn346fPbZZ4nnydUTP3feeeeZd9Hpp58ejj766NCrVy8Tavbdd99CbTz44IOFvpf2l/fff79QkxtvvHHo1KlToWNl+QWBDbGMfEy5GGHzZs+eHR599NHwySefpA2BR7lffvkla5PZytEv2snWP87feuut4Y477khd87vvvgs33nhjeP3111PHHnrooXDLLbfk7HGWqpjnDp5tXOebb77JWvOvv/4KiKDLei5m7chyLJAPn+J265lnngm33XZbTvOwuNdYUerxfmQ+Tp06tVS7vKzaLdVO5tkYgj7vDXLXPfvss3nWVnEREAEREAEREAEREAEREAEREAEREAEREAERWDUIlLpINGHChELkTjvttIAnUNQmTpwY/Zra//jjj1P7vnPkkUf6bmpbpUqVcNFFF4V111039fnhhx/C77//niqzLHfatGljgkVS35bldTO1jWhGrqeTTz45U7GwcOHC0Lp1a+O26667hlatWoU6deqE6tWrm7dWPF/SNttsE9Zff/2AgJfJatasaeU++uijIsUef/zxsOWWW9r5Cy+8sMj56AHEpm7dugXmjdt1111nHmYtWrTwQ+Gaa64JZ5xxRkZBMlW4BDt4qHEdhLRsxkL0iSeeaGLmBx98kK14kfMIZNlEtCKVyvhAPnyK01WEz+bNm4euXbuGTGEsi9N2ea7Dc8hc+Pvvvwt1k3xvzMeRI0cWOl7SL+napQ+InyuaPfLII6Fx48b23mCOPvfccyvaLai/IiACIiACIiACIiACIiACIiACIiACIiACIrBcCJSqSMSCYjycHAv7RxxxRKGbSReOLh5Gjkpjx45NXKRs1qxZWLRoUaHPGmusUeg6pf0FUYqQd9wjokp5sXnz5gU8uLBx48aZR1FS3xB6WDhlAZV7Oeigg0LHjh3DjjvuaHXw2konMsXFo6T2ORYth+CDmHfooYeWyOOHnFMYY16eDbENrltttVXYdNNN8+oqC/HrrLOOffCcki0lULlyZcsDBtfttttulcEydOhQmwt9+vQps3t+4YUXrA/kYVvR7Nprr7Uut2vXLrz44osBT1SZCIiACIiACIiACIiACIiACIiACIiACIiACIhAUQIVix4q/hF+rf3VV18VaqBp06Zh8eLFhY699tpr4d133w1169YtdByxgsVgvAfcbrjhBlvk69ChQzjggANC/fr1Q8WK+XcbLyNEi3QW/8V+vByeOnPmzAk1atSInyrz7+PHjy/UB8KdwStuhHFjfFj0ReyK3sukSZPCsccea6LcueeeGxo0aBCvntd3vMLatm0bGGvGdM899wzTpk3Lqw0vfPjhh4effvopVKpUyQ+Vy+3mm2+emv+rr756sfsYFdqK3chKUnG11VYLTz75pAnFxXnuV1QMPgd8Wxb3UZbXLun9umjet2/fgDekTAREQAREQAREQAREQAREQAREQAREQAREQAREIJlAqXoS3XvvvYWuQg4hvCPwECK0WdSSQkexsJ4kbiA0nH/++aFRo0bWHh4liEfx/EXR9uP7PXv2NLECwSLpQ0i1TIYXQ1RUyVR2eZ7DewvxByMsG3bnnXfaNv7nvvvus0Pk6IjfC6HzPMcSglFJjdBrjBveSohrhx12WLGbJJfRp59+Gr7++uusbSAEkhOLD3maoobn2fTp062t6PF89gk7Rz6YpLnHovqCBQvC559/XqRJ+kVOJeoioEUX4LmvaJg+9un/zz//XKQdONDGF198UeQcBxDTqPvtt9/aeQRX8oA9//zzqWOJFQsOEiKP0IDF9WRinLh20v1zTe/bl19+WagL33//vfWPfiaNMeXhylyPtlOceyzOHGCsuS+EZDy+Zs2aFZ544gnzYvQbYTzx1CPHFwJ4dHy9jG9pg2cDT524cM09ci36ibHle7rxhjntvPzyy0Xa8nmUFC6OY7SbFOKT6zLPfI4vWbLEytIe9+V1fZwZP54rPBqjxo8D6BusCHMZN58P+Y5jpvnC/OG+/IcG/j7gHqIGN+Yb76akHwjE+waLhx9+uMh9wIBnBv7xa0Svl+n5j5ZjP9P8iJfVdxEQAREQAREQAREQAREQAREQAREQAREQAREoKYFSE4l+/fXXEPdoId+NWzx/T7qQc8OGDUuJFV43vsVj6ayzzrKwXghGxcn/Em9zRf3+zDPPpLyDCBWHAIbnRaYcOiyQJtlNN91kAgEh4kpqhAm76qqrwuTJk4sIUvm2zSJzvXr1LL9IprrcF8IkZU866aTUojnhpvCeQhjDK2nrrbcOO+ywQ0iXGyvpGggVDRs2tPxNLVu2tLlH6L7o4jeL4njH7bzzzqkmWFQfPny4jcvuu+8eqLvtttuap9abb75p5c4+++xCodT22GMPu4fHHnss1c6oUaPsGH2njdq1a9s9xHOAIfBx/5deemm44IILLE/VgQceGPbff38LgYe4GrfbbrvN6uClR2jAjTfeOOy3335FFv3j9eLfeQ65NvmnWGSPG3mkOI93B4YIdsopp4SNNtrI+kc/EZR5V7hIQjlCVlLP82IV5x5LMgd8PKZMmWJs/u///s/yrDGfCD3J3CDvGp6QvPPwwoMlQkvUEIAYa/jSJox5Xtu3b58SGN577z27Vw+Xdvvtt9v3eF432h0xYoTl+aKdJk2aWFvXX3+9XZJrMT/hhlATNwQSzlE3SdBirh933HFWzfvE3P7mm29MWKIuc4r5xPjxXDFHMZ4DxP5NNtnE2qfvtWrVsmcwKnblO465zBe8IOmbG88i3wnDifG8Mr/4UQDzjR8ebLHFFqF///5exbbRvnEvhJCk3owZM+w8ghh8mes8M/CvVq1a6Ny5c+q9Q8Fcnn9rsOBPLvPDy2orAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAqVFIP+4bWmuzK+p/dfbXgQvEjc8SfBgcWPhEc+K6II65wgpdfPNN9sCHIvXvpDu9eJbBCNC2uFdwcL/qmbkbMLILQQ7hCIWmFkURSSIGuH6Ro8ebQIKi88s3kbzOFG/tEJ6xUXBpIXoaN9Kuo9ISbg8QtqxeI2nWpUqVcL7779vIgNzE2+2ffbZx7wHEGDIV4Kgtvfee2e9PF5Wa6+9dujSpYstkuMxwtxEFECAICxakrFwTq4nrFevXmGDDTYwbxMW6VlkZtEd0YdF9KuvvtrKdevWLSCykeMIw0PPc6rQ/9122808F1j8Z9zXW2+9cPDBB1tZ/8MzhHnbd911lz2fiKvkeCL8H3b//feHrl272j7PKAIWDGmb7y+99JIt9luBLH94/mgbLxk8S1q3bl2ohgvD7i3IPTFPEYa4Z0Q+hGY8Nhgb2shkud5jac0B5jT317x5cxtz3j0nnnhi6p7ZZ87hyYc3C+EWowLNhRdeGBBxEIYYN+YTIipzlfmL4Lfhhhua1yTiL94pfj2EpahxHk68Yxkz6hJKEhEKARFhjbmKUIvggYgRNY5hiHQVKlSInrJ92pk7d27A+5D++vxjXvp7nntkPuFliXCG4IIh1MKGPjP/8NShHULAIdYyHtHnJddxzGW+cN88S1deeaX1pUePHmHNNdcMO+20k4mSbdq0Ma7MOXLlwYy+DRw40MYOkSlq3jf6zX1SD087RDQMYdB/qECYT96veMQiuGO5PP88v1gu86O03s92Qf0RAREQAREQAREQAREQAREQAREQAREQAREQgQICpSYSxb2IoEsoHg9JlESbxbm4SEQ5FtlYNObDL7ZZyGbBlBBmvkAZbY+FPhYHWbRMZyzmRX9hHi+HiJEUAi9erjx9/+GHHwKL/xgLnhiLoIhECGyE6IsuAF922WXGEE6UY/GXRWYWkF1MsEYS/vTp08d+KZ9wyg4ljUu6sqV9nAV2RAWEG+4HUYUwhxiCBH0788wzA54sbnisIdogLBHKLMrJy0S31atXN3a+WI8QgjcI2/nz5xfJr+V1PQQjAgmiAcYCPN4HCFT0mT4wHi4S4WlTtWpVK4vnhXt03HjjjbaobycK/rAQjvDK2OG9wQJ+1Mg7xYI9Rlk8JxAteFYRifCq8D5xzIW9QYMGWZ9Y9GbhGkExV0MogQnPdlQkQlBj3rHIjtCFV4h7dyAocBxDCEBsQERjXFjwz2TZ7pG6pTUHEM24LxbqET5gi1DD/XIPeIpheJPwXkMUITQaXiuPPPJIyqOMd5kLgP369bN5RDvMEfghWAwePNjeeQi7fI8bcxoBCBEEY3wRMnmH8eF9iIcSZZiDnPc8WXis4AGFUSbJevfubSEAuV/6mtQH6iGAXnHFFakm8PZygYj79HFlTm266aYWwu6tt94ycSVVqWAn2zjmOl+Yz3y4XwwPIX8ueFboE2IxIrG/I3g34FGFByXPUjxXHh6H8HS74447bJc8dYyr50pD1MSjCmZ4WME7l+ef/uYzP7wf2oqACIiACIiACIiACIiACIiACIiACIiACIhAaRBIdn/Is2UWLH3BN1oVT4noJ3qOfRbbkvJBRMvx620W7xCK8LogHwgLmHEjZ0S6/BqURXBiYTTTJ95mef/OIj7G4rWLFyxUszDLgryHRvL7qFmzpi2+42FEecaNBWW8AUjuzi/i8e5KsgceeMDEAgSDpE9SneVxjFwfLHSzyAoHPCp88Zdf/LOAjxg2dOjQQt1BqIETAmOm0HxeCUbOmGN4eODBgb3xxhu2TfrjeZE8VBpl8KLA8+33339PiTRJdTlG/zG8o/D6iBoL9Iif2OzZs6OnzOvBBSJOsJDtog2iFvbqq6/aloVxF4g4gAiCiIY99dRTts31j1+TxXEW9t14fjE83Vys8HNRNjAmTBtssglEvBv8erSVdI+lOQe6d++e8rRjDJ0ZXiYuENGP7bff3sKTse/CNTmhMIRaF4j4zv26yIJHWq7GnEbccGPMEBox915ibvBhjkfbdrGdfvPcl8QQEaOGEM/YMYYuEHGeUGw+VuQBilou4xgtX9z54uEbEXD8HUG7cPBnC2EvaghKUYGIcwh53COikAtEHOf9ybjwXvV8Trk+/6U9P+iPTAREQAREQAREQAREQAREQAREQAREQAREQARyIVAqnkTk6iiOsXhJOCsW6XIxvD3I98GHX+fjKRM1fiVOqKVVxfwX7SzyRxfkjznmmPCf//zHfp2Pt0vU+DX/5ZdfHvoVeDAgIvEhvBgLqHgA4LlA6MC4hxdhk8jLkc4QMcrCCP3lhjcMoaXcXDhh0TY+VyjjC7mUyzZvPLyUt80WzxzCJn777bfRw4X28QKC64ABA0xIRajBcwte0b4WqhT5giiKxceRYzwPeAThpYO45yHkOEdIuri5kOFzxQUoxEZEs6h5eEAYIc7iSZWLIXowH2mTRXT3cPNQc3hNYSzS4/2FuEzYQ7yL2OKdQT+zeXbRRi73WJpzIO6JSGg5LOm5IGwcApFzdBGA/FQu0lnlgj+8tzDehbka8yEaso16/h5lvNwQ5RhbRDoYYx5q7oQTTvBixdoiAnmotHgD5Kdi3iPc4/GIp5t7ajoTr5PLOJZ0vhDK0Oc7oeDWWmstv7xt8bzEKOPhEPkefw9yDPvrr79MmGXM8MhDjMRrjHcN5j9+yPX5L+35YZ3QHxEQAREQAREQAREQAREQAREQAREQAREQARHIgUCpiESECiqu4XHgi5uIG3isuJ100kmp3A5+zLeE64ov/BN2bFWxjz76yLyCuF9yynhemej984t5wlbFF0Qpg+cB3PngJfPuu+/aL+ER7m699dZw3XXXRZuyEE3169cvdCz6xX9BHz22vPcRugj35OZeHHwnF0w6I6xZNktiSE6ZbMYiPXUJJYeYQxgsPvAi/NU555yTsQnyt2Cbb755Yjn31mBRPmpJ/Y178ETFikx88ArJVSSiD4gPiESIAohEHmoOr4xoKC/mGd5YLNojKPDBEF2Yf4hwmSyXeyzNOZCLcJWuvzDA6E861oTWzNWSBMYkHnjvIBIhxg0ZMsREK89j5p5luV4zXi6az8zP4Tlz8cUXW8hLP5Ztm9Tv+FyljZLMFxeEaccFIfbjxns1anEhjnOIQscff7yFi4yWTdrP9fkv7fmR1BcdEwEREAEREAEREAEREAEREAEREAEREAEREIEkAiUON8ev1smnETU8AtxLJb71EF1enpw6HpInuoDMecKaxdvmODk1PKE439223HJL313pt9EcUHilxD8OgJw3GN4jiALpckTB3pO2E45qRTHmE55RGOG/ELvcfK4RGo5f+qf7nHbaaV5lmWzxTCC0GyIAcxpvGTwOCNUVHceki++www522MWieBk/ToizfM1FP8LWpWPD8SQvqkzXIi8UIhjCBPPOhV9E36ghMpDrioV53hOIZwhECCmIfXHhK1o31/3yMgfcEwyPnnSs8UQpbcNzEJbutYkQx9wjNJ3nvSrNa5KPh5xojD8hHpn3X375pc2D+Pjne92SzJctttgidTnyfKUbAxfQUoUTdvDCJJ8YYfIQrt5+++3w9ddfB36k4KJttFouz39ZzY9oP7UvAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiKwahIosSfR5MmTi5Aj70a6MD0sHHouDyqyYEneE7wGDj744FTCcW+UsohOe++9d6hRo4bljyH/TDx3BGGuPJyW1y2v29NPPz3jAi2Lj56nJOkeCNdE+DeMRWdy8cSNnDK9evUKd955p+WiIQ8I4aZYvMVzJpqTw+v6L/q33nprP1Tut3Bg3Am3xgI184X8K4TB8nw9hJCCmSew95vCQ+ann36y3Dd4VpW2IWYSbguvCARM8r/w6dixY+jRo0cYOXJkeOKJJ4KHYPPrE8rKDYEL4xnheNTDgnxMLuh5Oa+Xy7ZRo0ZWjIX8pPmA4Aa3eJi1bG0zj/C0wGOGkHPuaXjUUUelqi5ZssQ8MhgThAzeF3zIs7PTTjtZGD/GsaRzsazngN8wXlR4uhH+Lv68EgqNvFiMQTwPkwvo3k5xtowFYjvvCm+PMGi5Wj4emoSqxMgBh4di1JjDxbWSzhcEJsaAfzcQdfj3JGqEjEToIUxgNq85zwXHv2X8m+WGAB/1WMrn+S/u/PBraysCIiACIiACIiACIiACIiACIiACIiACIiACxSVQYk8iXwD2DiDWZPI82G+//bxoauveFE2bNk0lX0+dLNjBGwaPg86dO1vi97hARFlEFRc5onXL4z6J5Vm0TffJtphKHgy8LRB8yCGUZJ4knmsQHom8H3hVIMohUi1atKhQNfKiDBw40I7FF7ELFSyHXwgDhmcZ4ho5gkhCT04Q+HgoQxbFSTbv9sorr5gAgYiAZ8GyMBb/6RNeWoyDG31DnMJcBImKP9H5jZDDfSB04cHguU4QjPAAYh7wzHGdfM3bxisCL56oIWCR+wuBlsXufM3zuhBCkjFBvGMB3g1Rjz7jKRUN94cg4ddLyvXj9XPdlvUc8H76e+/SSy8NzzzzjB827xMEFeZh//79U8fpN+a5alInirHDGNIeHj6EoGQ/Wyg/LuOiKh5w5BTKxTbZZBMr5vl/vM6gQYNsrvr3fLelMV8IUYrxLog+83g64YnJGPADhGzm3kIeIo7yeMx17969UNV8nv9850ehC+mLCIiACIiACIiACIiACIiACIiACIiACIiACJSAQIlEIjwxnn766UKXb9++fcak8yw8ktg+aqNHj7ZFNo4Rfs7FimiZdPsseLIAz6/lVxW7++677VZZiE/KTcJJwit5onpywyCk8Mt3jDBgeGU1adIkMF6IeuwTkgpRxQUmK7yC/KlSpUqYOHGiLYAT3szvFRGTRV3mCGXIw9KsWbOUJwHeDnj3LAtjbnoIP0QSvA64HuPCPOc8Yb/cfLxatWplosqsWbPM4+yhhx6yIuSUYVxbtGhhwhC5fLApU6aknQdWIM0fRBuYYeRHIu8Rog7zAU8nDGGhOF5WLkpaIwV/OnXq5Lu2xZMD7ydESzyImId4ESFMIXwhIHkIrkIVi/GlLOeAd5c5N2DAAPvavHlzYwzrOnXqBEKcMRcuuugiL24c+IJgiJDWu3fv1Ll8d8idFeWPiFqpUqWszbiASUEEFN43ePRkMuYmNm3aNAsdSB080fr27WtzNlPdTOdKY74Q3hEBHG+f2rVr23uA9wHPFEIY861t27aZumHnGDeM3EvU4TseYHFxP5/nP9/5YR3QHxEQAREQAREQAREQAREQAREQAREQAREQAREoBQIlEommTp1apAu5eKGwYB43D5uFR8X5559vv6BHTPJfbcfLE56nS5cugTBqufwqPuqpEW8r3fdsdZKSmsePZWsj6dpJCeG9HF4WLhJlW9AkrBk2ZswY25KbhF+/uxiB9xACEgukLGgiDDCm1apVs/LRP/H7ip6L7qcr58cRqzJZ0nk/5m1Q37lGjyH2OBv32EAMwxMNFnjc4ClAXhb2hw8fHgYPHpypO4nX8Qrxfvl3P88WwfOqq66y6+GxgycHC/8IBXgzRQWqESNGpELkIWohwmJ77rmnCUGeW4YFeIznCJGWBXw35+FbP8426Rj5kQgZyXOLSIjAxnxAwEF8QrDKZEnj4OVPOOEE22VuxZ9RWBF+De9AjHmIN9gPP/xgx/Cg8bZdpPL+x7fWwP/++LnosZLOARdU4m37d+9n9Jp+LDonCP/IXEBYgDGsYc44ElovOhcYF+YO8xRPLA9x5tf0bfSamfajIQ0R5OLm7fmW84RsxMuTPtBPwjniHRMtE2+HuTpp0iR7byPGUIe8dXfccYfdZ7S8t+PbpHN+LJ/54nXYRvkzjrwLe/bsaV6VvAfccwgxF8bujep98m20TcryfmFe4zHFOG5ZEE6Sd6d7v/l183n+85kf0f5oXwREQAREQAREQAREQAREQAREQAREQAREQARKQqBCQQiuf0rSwPKoi7cB+VFI7M6vvlmQ84Xj5XH9lfEaiE0sPpOLA48BFtJXdiO/DqHNWAhm4Xt5GyH+mMt47GSav3hrEL4KsS5ejpwyLL5na6M490Y4PvjAhgXwkhrh8BDiWJSPh7OLts24EP6LhfVlPQ/Leg74fSOGMR9q1qyZ0QuMsILkysFjsGrVql497y1CBh4veGi98cYbedf/7rvvLJ8R+XpcAMnWCGHceM8wpi6aZauTy/nSmi8IX8z54vaPfiDkIup7mL1M/c/1+aeNXOdHpuvpnAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAjkQmCFEIlyuRGVEQERKB8EELKmT59uof3o0fz5803cLR+9W7V6gZAxd+5cC1GIuEhoOw+XtmqR0N2KgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAgkEaiYdFDHREAERKA4BAjhRX4Vtz59+kggchjLeYtYRw44N0LYHXXUUf5VWxEQAREQAREQAREQAREQAREQAREQAREQAREQAREIEok0CURABEqNwPrrrx8OOeQQC+FF3iV5rZQa2rwbIiwcuaaqVKkSGjduHLp161aqYd/y7pAqiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIlDsCCjdX7oZEHRIBERABERABERABERABERABERABERABERABERABERABERCBZU9gtWV/CV1BBERABERABERABERABERABERABERABERABERABERABERABESgvBGQSFTeRkT9EQEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREIHlQEAi0XKArEuIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIQHkjIJGovI2I+iMCIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACy4GARKLlAFmXEAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREIHyRkAiUXkbEfVHBERABERABERABERABERABERABERABERABERABERABERABJYDAYlEywGyLiECIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiAC5Y2ARKLyNiLqjwiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAgsBwISiZYDZF1CBERABERABERABERABERABERABERABERABERABERABERABMobAYlE5W1E1B8REAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAERWA4EJBItB8i6hAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiUNwIVS9Kh2bNnl6S66oqACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACJQRgQq///77P2V0bV1WBERABERABERABERABERABERABERABERABERABERABERABESgjAgo3FwZgddlRUAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAERKAsCUgkKkv6urYIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIlBEBiURlBF6XFQEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREIGyJCCRqCzp69oiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiUEYEJBKVEXhdVgREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQATKkoBEorKkr2uLgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIQBkRkEhURuB1WREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREoSwISicqSvq4tAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAmVEQCJRGYHXZUVABERABERABERABERABERABERABERABERABERABERABESgLAlULMuL69oiIAIiIAIiIAIiIAIiIAIiIAIiIAIikI7AggULwg033hgefujhMH/+/PDnn3+kK6rjJSBQsWKlUKdOnXB4i8NDt65dQ61atfJujbG6sWCspkyZEt59993wxx8aq7whqsIyIVCpUqVQt27dcOihh4auxZzfy6RjalQEREAEygkBiUTlZCDUDREQAREQAREQAREQAREQAREQAREQgX8JjBo1Kpx5ZvfQ4fgTwiX9B4Y629YLLPbKSp8Ags78994J06c+EurVqx+uu25EOPnkk3O+EGPVvXv30KNHj3DbbbeFBg0ahDXWWCPn+iooAsuSwO+//x7mzJkTJkyYEOrXrx9GjMhvfi/LvqltERABESgPBCQSlYdRUB9EQAREQAREQAREQAREQAREQAREQARSBBAdrhg0KNw+dnzYbvsGqePaWTYEEN/gzOfAgw8Ll1xwtl0oF6GIsRo6dGh49tlnQ6NGjZZNB9WqCJSAAIIlc5PPMcccEzp06GCt5TK/S3BZVRUBERCBFYZAhQI1/Z8VprfqqAiIgAiIgAiIgAiIgAiIgAiIgAiIwEpNgLBleLNIICq7YZ43d044qeOx4Z133s4Yeo6xwjNDAlHZjZWunD+BWbNmhSZNmoS33848v/NvWTVEQAREYMUksHqfPn36rZhdV69FQAREQAREQAREQAREQAREQAREQARWNgKDhwwJ29StH1q0OnJlu7UV5n422mjj8PMvP4W5b80JzQ84IG2/hxSM1R577BE6deqUtoxOiEB5I1CjRo2wZMmSMHPmzHBAhvld3vqt/oiACIjAsiKw2rJqWO2KgAiIgAiIgAiIgAiIgAiIgAiIgAiIQL4EHn7oYQt5lm89lS9dAoSdYywy2ZQpUyx8V6YyOicC5ZEAYeeYvzIREAEREIEQFG5Os0AEREAEREAEREAEREAEREAEREAERKDcEFhnncrh2RmvB/LkyIpP4LNPF4QXnnsmPPn49NCo8W5h/Q02CHvt0zRstnmtnBr9448/QpPddw4///xT2vKVK1cOixcvDuR8kYnA8iTwwQcfhGnTpoX777/fQsdtuOGG4aCDDgpbb711Tt0oSL8RqlatGn76Kf38zqkhFRIBERCBlYCARKKVYBB1CyIgAiIgAiIgAiIgAiIgAiIgAiKwshBAcJj55rtpbwfx4pOPPzSxY6211k5brjye+Oeff8K4saPDHv+3V9i6zrbLrIvdTj0xzHjphcT2Tz+jZ+h8+hmJ5+IHd92xbmAxPZ0xVpnOp6uX7/E333wzPPfcc6Fr1675VlX5lZDAIYccEp544onEO+vbt2+45JJLEs/FDy6v+Ru/rr6LgAiIQHkjoHBz5W1E1B8REAEREAEREAEREAEREAEREAEREIEiBD7//LNwbo9uYc9GO4Rjj2wR9tmtYTjrjNPCV18tLFJ2WRz4dtE34cEHJoZffvml2M3/8P334eohA8P0qbmFuSrONRF2XCBqvNsegc9pXbvblo6PvP7aQJllYcOHDzevIvK9xO2CCy4Im2++eUAoy9fGjRsXevbsGX744Yd8qxYpv3DhwjB69Gh5kBQhs2IcQNhxgWjfffcNfAryrduWO+jfv78821aMoVQvRUAEyhEBiUTlaDDUFREQAREQAREQAREQAREQAREQAREQgaIEPv/s09D5+Pbhh++/C6PuGheeevHVcPd9k8Pff/8d2rQ6JPy8HEJGLfjkk9C/94Xh++8WF+1gjkcI+fb0i7PCqV3PzKlGvte8deT1qXYRhm4adZd9Tuu2dJ9jbngblba1adPGmnzkkUcKNf3nn3+G2267LZx66qmhQoUKhc7l8mXAgAHhm2++Ceutt14uxTOWef/990Pnzp3Dt99+m7GcTpY/AgMHDkx1CmFo+vTp9vF9tm54G8lEQAREQARyIyCRKDdOKiUCIiACIiACIiACIiACIiACIiACIlBGBB68f2L4syDM3NXDbww77dwoVKmybqhbr364fMjVYdu69cLL/wuthhhx/bVXh7atDwsH7buniToLv/wi1evBl/ez82w5f1jzpmHSffemzv/44w9Wh3N8KPfzzz+Hx6c9Gs4/a2mItpM7tQsD+i4NZ8X5EcOuCpdedH5o+n+7hBkvv1ggXP0Vxo6+PRzV4iA7duoJHcJbb85OXaPLyZ3C008+bt8z9SfdNVMNxXbIQYSXkBvCEPbqKy+Hm28YYfscw7MIw9uIOqVpNWvWDCzO33PPPYWaffrpp8OPP/4Y2rVrZ8enTp0a9tprr0AemcaNG5tnj1fo3r27hQs78cQT7TxeIxMmTAitW7f2IiFbfcQC2sFzaauttjKBisoTJ04Mbdu2tXaaNm0aunTpkmozusM86tevX2jYsKG10b59+/DFF//OI/ZPO+00O0cZwpvlGnYPL6ZmzZrZvR199NHh2WefjV46vPjii+GYY46x83vssUe49dZbU+cz9Yt69erVs/nqFe6+++5w4IEH2te5c+fa+TvuuMPuiz5g9P/666+3PuGlw3z36+ywww5W57zzzivULnXoV6tWrVL95PpuXj8TP9gzPswDrp/NyEGEl5CbC0LMLUREjGN4FmHMG+rIREAEREAEshOQSJSdkUqIgAiIgAiIgAiIgAiIgAiIgAiIgAiUIYF5c+eERrvuHtZbf/1CvVhvvfXDbaPHhf0PWLoQftXgy8Ptt94UWh91TOh5bq/w1pzZFpKOhW/sq4Vf2vnffv01nNvrkrBNQV6ggf17pxbAh105OMx69ZXQb+CQcN6FvcMjDz0QRt18Y9i+wY6hfacTrQ28cVoffYzt096do24uCEH3c+h1cd8CQWKb8Ni0qWHYlYPC4S1bh959Lw+rrb566HrqCbbwTqVPPvko5fmUqT/prmkXTvjzwnPPFDpKSDkEKT4337hUJCpUoOBLvE78fHG+H3fcceHhhx8OX3/9dar6+PHjw6677mqCw4IFC0LLli1tH6GB43j2zJo1y8p/+umn4corr7RwcNdee23YbrvtwnfffRfefXdpnqpc6g8ZMsTCAl599dUBoYNcRoTA41qIRxiCwsknn2z78T+IIldccUVAqEKAQGDZb7/9wl9//WVzBcHq+eeftzL0feTIkal2421FvyN2UR5hjDrYAQccYO2zP3/+/NCiRYvw22+/hRtvvDEgZHXr1i3ce+9SITNTvwiD+OGHH1ofaQv7viC8IW1ivxbMec6fe+654fjjjw+9evWy4/PmzQtnn3122G233QICEkLRRRddFEaMGBHOPPPMQJjA22+/PZxxxr95rKhDvxB4GCvYRvMAZeon/UAcmzlzZhg6dGg4/PDD7fpcO5NNmzat0Gn6iQDGx0WiQgUKvsTrxM/ruwiIgAiIwFICFQVCBERABERABERABERABERABERABERABMozgblz3gxtju2QsYuEnLtv/N2h7+WDQ8sjjrKyuzTeNbQ6pFmYNXNG2KfpfnZs623qhEsHDLKwZwhPhx6wj3nV7NeseZgz+/XQqPFuYa99mlrZBg13Dr8XLNjXqLmZHefg/+21d9i0Rk07zx88mYZcMyKsttrS3+HuuFPDMG7iQ6HOtkvz/tTecqvQsW3r8OEH71vZVMX/7WTqD33B4tf8X9VCm+8LhJS44UW0NCfRmXaK73zcnnx8ejimXUf/WipbRA7s/vvvt/ByCHQIAO4tUqVKFRNYdtlll1CxYkUTRe67774wY8aM0KhRI6u74447BoQlZ2oH//cnl/oIS7fccouNMUJL7dq1zbMEz5cmTZpYS4gLtWrVijZt+3g83XDDDSbiuIiEGDJ48ODw2WefhXfeeSe89tprJuzUqVPH6uARhaBEmapVqxZp0w8MGzYsdOrUyYQVjtEf7nnMmDEmOOFlREg9cjCts8465vVUvXr18OWXX5onVqZ++TWybRkLRLqoke8JYQ1D8EGco0/udbXpppuGI488MlxzzTWp++vRo0e48MILrc76BeIt3lZfffVVWHvttTPye++990wgIuyf8yfXFKIUDNPZokWLipzCiwjPod69e9s5vvNxYw6efvrp/lVbERABERCBNAQkEqUBo8MiIAIiIAIiIAIiIAIiIAIiIAIiIALlg8AGBQvv3xfkI8pk77//np1uXCD8uNXcbPOw2ea1wjvz5qZEogY77ZzKi7PRxhuHatU2NA8j6hza4ggLR0dbTfdrFpo1Pzgg4mSyHQvai4oZCEozZ7wURl53bVi06OvwztvzrDreS0mWqT9J5dMdwwMqychLhCEO4VUUNRehosdKuo+4gbfM2LFjTSQiNBx21FFLhTtElHXXXTcgmHxSkOdp8eLFJoC4txdlCbMWZcoxt1zre+6jGjVqhI0LxhkPpVxszpw5VszDsfGFMG5402B49Wy22WbBBSKO4WWEUZdQay4u2cGCPwgwiCx4z+Cd47bmmmtamLdXXlk6dnhTHXTQQSYQeRn3+PFwbun65R5DXi/ddueddy5yCg8rt7feest2ySH1+ONLwyIuXLjQjnF/LrIh8rn5/ueff24eXBxP10+8qbDLL7/ctvxxtnhQwSTJ4mH5vAx5iTDEIQ+t5+e8r/5dWxEQAREQgWQCEomSueioCIiACIiACIiACIiACIiACIiACIhAOSGwQ4Odwvz3loYbi3eJRfnVVqsQ/vj9dztVqdIahYqw6PxHQT4jt0qVKvmubStGvp/UuUvYuVHj8NjUKWHihPEm9Fxw8aWhbfvjCtWJfqnwPw8iPzbmzlHhP1cNDnvu3STQ750bVQ54QqWzTP1JVyfpOCH3yDMUN89HlBRybv0NNogXL5XvHTp0MJHgo48+CuTFIbwY3jYYYdr233//gLBAqDW8fDycml88nUCUa31CkUUtzjh6Lr7PfMLS1UHIiLePRxRGXiLEI/ewsYMFfxo0aJAKNxgXQfhOCDaMttNdN1u/rIGCP//884/vFuTH+ju17ztJbF1Qo4z3BW+sjTbayKrh8bPJJpvYx9uJ9nP11Vf3w6n7jJ5PnSzYISwetsUWW9iWP+R34lqE80tnhPgjz1DcPNScb6Pnfc5Fj2lfBERABESgKAGJREWZ6IgIiIAIiIAIiIAIiIAIiIAIiIAIiEA5IkB+ngcfmBhemzUz7NLoX6+HTxd8Elof1jxcNujKsPc+SxPWz31rdth34+bW+x8KcrJ88P78cPoZPXO6m28K8ugg7HCNcy64OPTudW4YN3Z0IZEoKjglNTp50n3hiIKcSH36D7TTs1+fFe4evdQLJal8LseyXZM2PERevL3Gu+1e4EU0I37Yvqerk1g4j4OEZ8Pbhrw6DzzwQJg0aVKqNiHAOPfSSy+ZRxeixMUXX5w6n22npPW9fQSdJEPQwegf4hZGfqV77rknHHvssQFPnP79+9sxF1E8nxL5jwjN1qVLF6sX/0MYvWi7CDovvPCCeU5RlrxA5HNCEHLhie+IPfvss481F60f7VflypXtPB5FHraPHET5GveAkSvIPXPoD15C3Fs2y8avYcOG1gQeVYSpw34qCBX57bffFvKgshORP3hYJRnhBJ955pmkU+aVlXhCB0VABERABAoRWBowt9AhfREBERABERABERABERABERABERABERCB8kOg9dFtTbjpdXb3gAjz8UcfhueeeSqccdpJFi6u+YGHBLxiCBE3sF+f8MJzzwTEmUt6nWPnyT2UzfBi6NCmVTivZ7fw0YcfhAWffFyQg2ZB2KbOtlaVsHXYpP/eGz77dIHtJ/0hX9FrBaHf8B5647VZ4fJ+S/OlJJXNdizXa9IOZXf/v70KNUk+IstJ1K27baMnEc68/ejx0tjHW+WUU06xkHKElnOxgbYRGsjtM2XKlPDmm2+aF0k+1yxp/a222souRzi1JBGFcHZHHHGE9QuB5uWXX7Z7GTp0aNigYI7tueeeJnIdd9xxgRBwhNPr2rWrCRLZRJTjjz/e8v1w7ddffz0QSo4QdG3atLE+EZJv3rx54ayzzrLz5CgiTB28svWrbt261sagQYPCq6++Gv773/+G4cOH54PWypID6bDDDrP7594IMUdeHzykyFeUzbL1c++997bwfx07djS2MGR+4H2WybbeeutCIewoSz4iPn369LFttH7fvn0DdWQiIAIiIALZCUgkys5IJURABERABERABERABERABERABERABMqQAKGrhlwzPDTcpVG47NKLw9EtDw5nnXFaqFngkTLm3klhjYKQXdiAQVeFnRvvGnp07RxO7tQuLPnxxzBi5G2BnEZYhQrplkEqBEJmDRk2wgSoNq0OCXzwzji31yVWt3pBOCzCzo0edUsYfHk/O5bUXvezz7ewWce3Pzqccny7cHir1v8rW8G20T9J9ZeeX1o26ZrR+vH9G265o9Ah8hARbo4tn6h1Pv2M6NdS32/fvr21SX6eaHg2vjdv3jwQPqxx48YmGGy77bapPFHZwqEVpz4d8ZBq5Cjq1q1buOqqq0L37t0T75scOXiuINCQ1+b9998PkydPtnw51apVCw8++GAghxICRcuWLc1zZ8yYMYltRQ/27NnTQtEhYOy+++7mNXTnnXcGhBOM3EDjx48PTz75pJ0ntxN1ENywTP1CnLnpppssJBtCFt5Z1Hfz+/fvmbb0ib74vZEPaNq0aQWCa7XEat62j12mftIGAuH3BV5+sIUhzxlhCbPZo48+WqgIeYgIM8eWT9QuuWTpcxs9pn0REAEREIFkAhUK3Gv/DVaaXEZHRUAEREAEREAEREAEREAEREAEREAERGC5EEBQmPnmu2mvReg1vHzw2FlnnXUSyxEei3Jrr7124vlsB5cs+dFyw6y55lpFitI2i+LRPCxFChUcINTdOgWL3x42LKlMrsdyvaa3d+vI68PI66/1r4W2eBvFxaRCBSJfdt2xruXZiRwqtMtYpQvbVqhgwpcfCwQ8GKYbw4QqhQ6VtD7zg3HMND6UIYfOeuutV+ja/oUwaQiYURHMz2XaEmbuu+++M++gdOUWL15s102aZ5n6hUccdcnH4+JNumtkO87Yco8IUMWxTP2kPdrGPFSefcnhz8CBAy3kX1LRZs2ahbiYlFSOYyWZv+na1HEREAERWBEJSCRaEUdNfRYBERABERABERABERABERABERCBlZTAOutUDs/OeN0W31fSW1wut0VIPMLufV8gRsx69ZWw/wEHWt6iXEPMscDfZPedCzxmli7kJ3WaxX0EiXxFkqS2dEwE8iHwwQcfmHfTokWLAp5OeKbh/ZVriDkEMMQvF6ryubbKioAIiMDKRqDiynZDuh8REAEREAEREAEREAEREAEREAEREIEVlwC5T+a/907YbvsGK+5NlIOeIwYd065jsXvCGDAWmYw8OOSsadSoUaZiOicCpU4AMYhcScU15q3ncSpuG6onAiIgAisLgXTBeFeW+9N9iIAIiIAIiIAIiIAIiIAIiIAIiIAIrEAEDm9xeJg+9ZEVqMcrZ1cZA8Yikx166KFhwoQJmYronAiUSwLMW+avTAREQAREoCBvn3ISlc00IP4sVtL4sGXTe11VBERABERABERABERABERABERABJYNgQULFoR69eqH28eOlzfRskGctdV5c+eEkzoeG9555+1Qq1attOUZq/r161u4L3kTpcWkE+WMwKxZs0KTJk3C229nnt/lrNvqjgiIgAgsMwKl6klEHM/XX389/PDDD8usw2Xd8NNPPx0uu+yy8MADDxS7K7/99lvYeeedQ4MGDSwBIoLRgAEDrF1i+SYZiQe5Lp/vC5JfZjOSWs6dO9cSIWYrm+08/Xv33XfDt99+W6Qox0ePHl3keNIB4sSSmDGTffHFF+HXX3/NVCR1jrK33nqrJSNNHSzYYf5xPKm/0XK57HPvn3/+ecY+/fzzz4G+yERABERABERABERABERABERABEpOAFHiuutGhEsuODsgVsiWLwGYw54xyCQQ0SvOjxgxInTo0CGw8C4TgfJOgHnKfGXeZpvf5f1e1D8REAERKC0CpSISkSCuWbNmlvBt9913D9WrVw977LFHmD17dmn1s9y08+KLL4bLL788PPJI8V3flyxZEubNmxfee+89E3z+/vtvE4loN53ARhnOZyoDpIULF4bjjz8+bLLJJiZEbbzxxqFx48bh5ZdfTjGk7ySVjH74BcXtt9+eKsPOL7/8Es466yz7RxNBa9NNNw0NGzYMMHCbMWNGOPvss/1r4hZhrV69eqFGjRqB/tDGa6+9liqLEMM/zhtuuGGoXbt2WG+99UKrVq1MnEkVSth58MEHw8CBA4skM/3mm29Ct27dstZPaDJ1iD7dcMMNNpe33HJL69ORRx4Zvvrqq1SZDz/8MBx88MFhgw02sH5vvvnmYdSoUanz2hEBERABERABERABERABERABESgegZNPPjlcfNFF5s0yfNhQE4v++OOP4jWmWlkJwBZxCNZ4EMGeMcjFKHfBBReYZ8ZFBfVYhC+IWpNLVZURgeVCgPnIvGR+sv7FfM11fi+XDuoiIiACIlDGBCqW9PrPPPNMaN68uTWz4447hl133TW89NJLJgKwj4iA14zsXwKIIQgMCBEIL3gJlYbh8XLggQeGKlWqhPvvv988lT7++OMwceJE+0fwueeeC4h4bozN+uuvb949U6ZMCV26dDHhqGPHjiYQHXPMMSYI3XXXXSb6IW6NHDky7LvvvuZKjhCYzT777DPr0xVXXBFOOeUU8/rp1atXaNmyZfjoo49CxYoVw6RJk8K5554b/vvf/4b999/fhBj6cuyxx9p10l3jqaeeCgcccEC60yU6DjMEssmTJ4d99tnHBKf27dvbsbvvvtvGrkWLFmHbbbcN8+fPN4EU8a1Tp04mqjEOMhEQAREQAREQAREQAREQAREQgeITYBGX/7e64cYbw8C+l9j/e/35p4Si4hNNX7NixUqhTp06loMoW4i5pFZ8rG4sGCv+35+oIxL1kkjpWFkQqFSpUqhbt67lIFKIubIYAV1TBESgvBMosUjUvXt3u0e8LMaNG2c5dvB6YQH9scceC9dee23KQwUPlOHDh4dp06aZZ8lhhx0WLrzwQhMKEJvwSNluu+1M0LjmmmtM7Dj11FND586drQwXYoGeD20hSh1++OEmMKy22moh2sbee+8dhg4dav9RgvfNTjvtFM4888yCeLrvBM7bLUbVAABAAElEQVTddNNN5tlCm4QKI9wbQgneNfxH6KWXXmpeL5xPMg//hvcNHjIIK2eccYYVpS1EGticeOKJdox7wHuGPiGu4CmDPf7442Hddde1/eifL7/80kLL0Sfap81sRl+oh5cSHjtY1apVTaRD4IF7VCTaaqutTCSi3C677BLGjx8fHn74YbuXF154wcrjJeZiEOLWoEGD7Br0y49TnzHBq4dQeMwFxo9/hAmth8jUtm3bVP4l5sbYsWMDfcILB7GI/iIcYYhc7Pfv3z8wlxjbuCGwTZ06NQwbNix+KvX91VdftTF/8803i4w5jAjdBxP+Q7hv3742/2CAqFmzZk2bDy5C8R8T/NoEYQ3jVyh4gvHrky222MKOtWnTxkSiTz75xL7rjwiIgAiIgAiIgAiIgAiIgAiIQMkIEA5qUMGPDvnIyjcBxoofiPKRiYAIiIAIiIAIrDgESiQS/fjjjyZIcLuIKhUqVLA7Z1H/vvvuC+SgQSjAWKjHAwXDw4iFdBbpCY9GqDHaogyfe++918rxp0ePHhaebM8997TcN4gtGAIHQgYfQoBdeeWVads47bTTTIQgfBrXefTRR8M555wT7rnnHhM1DjnkELsPvEKwm2++ObzyyivhiSeeCJUrV7Zj8T/RPDx4y8ycOdPEHkK9kbiR+4iGJsPbhGPk5EFgYh9L8iIinxAeKYRpw2j/0EMPtf1Mf3CdxavLBaJoWUSbTEYeoE8//TQcffTRVoz+IV5FhSCvHw9LB1PEQOYAOamuvvrqsPXWW5vowpYPYg/CCiId/8GIaIRAhLVu3doEpt69ewe8deCHmMa4JQlE1OFXSVx3r7324muiMcZDhgwxMQqRrWvXribeMQZcEzEK0ZJxgjftMUcw5hvGWCB0MRaIXbSHrbnmmiYKci+EmSO832233WbnED9lIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIlDeCRR10cijx3Pm/JtAEm8MDA8NvE0QDcaMGWNCDMevu+46NuY5hLCDlwciBB49ixcvtnP+h3Ms5BPmC8O7BcPbA8N7BLEBsQfjWniwRA33UXLTuJcOuWMQrRCAMDxkMNqmz4gNb7zxhn24Ll4/hDPLZLRBDiG8iDBCsZWG0XcXiAjF9vPPP4fzzjsva9PkHcK7yg0PKTx2/EPotKgR3g1BDndwvKcQSVzgQCSKthWtl7SPgEJ4OMYeloxx1MjVw1ggECKo+DhQBhGJMUUYwqMJL6vNNtssEJYundE+Ytg222yTroiJVYiKhI3r2bOnjTkeSLAl3B/eXowdHmzpRDQ8wfDGQlSinIuUXLRPnz4mNCHgNWrUKFx//fXhzjvvTHmope2YToiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIhAOSBQIk+iqJcHi+8YgouLOXxHGGBxnTxF2ODBgy0sHPuIEhjeJ25487g4gbBDHh28jvD2wKMGI6wX1qxZM2ufdhB43AhZh/CAsXiPKOBhwzw/knuM4H2DITp4biUXODhHOLskw/vIvWwIM4cQgzcRniclNQQwjPvw6xO67qqrrsrYNPmF/L4o+MEHH6SEFvjhfeVh7jh//vnns0mNA6HXEHGwatWqpcbMDmT5Qzg2N0LawSJqXJeQfzBFlCJ0G95azCGEKsQX8hLBlZB5hCFEmJk+fXrKGy3aHqEFGX/3Xoue830fa74zD5gnxESePXu2scAV3m2//fbz3UJbQt6dfvrpJhgiZCEKImYh3CGs4YGFRxqh+BCdTjjhBAvh52Jbocb0RQREQAREQAREQAREQAREQAREQAREQAREQAREQAREQATKEYESiUSIDm543hCiC6GFRXgW91n0JxQXxuI6Rh33OsLTBbGAsF8sumPsu6299tq+ayG//At5g9wow+J/VBxZa621/HRqu/rqq9t+VNjiwE8//ZQq4/36+uuvQ+PGja2vqZOxHcKNuUX3CavmFhWMCLWWqxHeDIveh4fty9QGQk1ULCP3EiHkMEK3EaItaohICEsTJkwwj5qKFf+dDg0bNjQPLUSQaD+o7/fl5d1by9tO6iteP3wQkPAWYtyff/552xKeDo8evJDcGAvmE0JSUkg55hcCTibz/lEmOu7rrbeeeZlF6/r8jB5jH08lPniXMdcuuugiC6uHeIm3Fd50LpAhNH388cfmNSeRKE5S30VABERABERABERABERABERABERABERABERABERABMobgRKFm2PR3z1PWDwnRBwL8LVr1w5Tp061e8WDA0MUwAj9deutt9qHHC5HHXVUxpBhVqngD14fLkZ4GDi8ljzvD6JGccz7f8QRR6T6RT6ldu3apfLSJLVLviJELoyQcBiePwhYnsdoxowZdhwu7h1kB7L8qV+/vpVAeOMeMbxUslnLli0D3kBRzyzqcP1HHnnEvGmS2mAM6Dtj6B5hzpNQflFDINphhx0sH0/0eLr9G264IeARFjUX4/AYwpYsWZJi5uVcIIyKf37u/ffft3H3vEF+PNctIhXCYpSph0P0Nsgt1a9fP/9q23r16tkWQQnxDPOxti8Ff1y09O/aioAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiEB5JfCv60gxe4gXyL777mvh2vC4IAQbnkQu3iA8YHiKjBs3znLDvPXWW5YfiJw4CD/z58/P6eqEdSNcHblvjj766FReIbw2Nt1005zaiBdCwKAPDzzwgLWJGIWwgT3++ONpBSxEhgYNGpinlAs57du3t3qEVcMQZvBI+vbbb1Mh3exElj/bb799IOzee++9FxBrCL+H10o269Spk+XhIbQeId0Q6GB72WWX2Xgg0CUZXlZXXHFFOPLIIy1HU4sWLeyaF1xwgeXdQTgi7B3eXnj7kM8H76NcDA8crktOpZNPPjngUeUeQPvvv781gSA3YMCAgAhDCLeFCxeGc845x8YlyYuI0IWMmYtpufQjWgbBskOHDqFt27bmIcT1ol5HlEWAIo9RzZo1LVQhIQ/xjENU5BhzHqPvQ4YMsbxFDz74YEBgJBydTAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQATKO4ESeRJxcyymk/MHUQPh5LHHHjNBAs+UJ598MhWKCzHmjjvusHI333xzQCBC/MDjqGrVqjlxwrMDsQEPJurjZcIi/d133521vueu8a1XIBweYhDiFov8CES0T1/d+8nLRrfkReK8C0SEc/McPwgQnksIcQdGnr8ofv1om75PeDfuz+vQRtSjJ10bhHnzXD3HHXdcQGwiFxAh9Z599tmwxRZb+CVsG20HoQ0BpFevXilvIngjlOBlg9jl94snlwthhRqMfPHwfpTD04r7IUcQ4eYIc4fQU716dauBkEgOIq5HeYQiRKAXX3zRPHMizdou93jQQQcVCiEXL8P36P1Fw81xfOTIkdYvxubMM88MEydOLNREly5drD/0jbnM/GWLmIgxZ1999VUTvQgzh5iHWIQA1qNHj0Jt6YsIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIlEcCFQo8O/4prY4tWrQoLFiwINSoUSNssskmaZv95ptvzHNjgw02SFsm2wlCvSHmuBiRrXwu5wl7hrcM7eZq1CEnUVIenu+//97y92y44Ya5NlekHMIbIczini5FCsYOcB94/HAvG220Uexsfl/xJCLEG6EE82ETvwoeVYwXeZCSjOsQgo554eHmksqR1wovp65duyadznrss88+M+ELjzSEKwzPKwSxzz//PCVecdz7VK1aNRtnjsUN1oSgK643W7w9fRcBERABERABERABERABERABERABERABERCBVYHAX3/9Varru+WF2cp6X+WFr/pRugRKVSQq3a6pNREoSgARkrCGM2fOzOrNVLT20iN///13aNasmYXwa9q0qQlD5H9CJLryyivTVdNxERABERABERABERABERABERCBMiDAj0TJtUsEk3x/QFkG3dUlVxACRJAhtDyh94l0k874wevHH38cttxyy5wj4aRrqyyOf/TRR/YDWH5wGzciA/EhOgq5uld0I/IN0WfIRU3e7nTGj33fffdd+yE0KQVWNOOHykTpqVu3blhnnXVWtO4X6i/RoU488cRA1Cm2K4uRaoU1R9KlcG8yESjvBEocbq6836D6t/IRIPTeDjvsUOwbI/QcYRF5SZO36ZhjjgnTpk2TQFRsoqooAiIgAiIgAiIgAiIgAiIgAqVPYPjw4fb/frVr17ZFbBZDu3fvbqHnc73ajBkzLHIEYeZl6Qnce++9YY011kj8kCagvBi/zCcSCB8WyktiY8eODZdffnmYO3duYjMcJ/Q+UUNIB0DEHLaIC27kVoYbIfajdtVVV9nxbt26pSLMUI58zFG75ZZbUswXL14cPVWi/T/++MPSCSAMISTQT9ItkCaBXNFuhPmHATm1VwZ7/vnn7X6mTJmSeDswJp84EWxIh4DwB5fo/ZOSgLGK5/V++eWX7biLbSz+U44UBFFj3nCcz6OPPho9VeJ93mNcj/QN9J/7IH3Ep59+WuK282mgNN+r/vwhquRqpXn9XK9JOSIT8e4ZPXp01mr8yJ3oUMwbmQisCAQqrgidVB9FwAnUqlWr2GHmvA22/PqMf9D5yERABERABERABERABERABERABMoXgSuuuMLyxNIrctLya38W4m+66SaLCkEO5Gge2nS95weBl112WTjppJPCAQcckK7YKn+cUOtuLDpHzfMJR4+V1f6ff/5pUUC4/qGHHmph8ZdFX/A08fD0zD/Eoeeee85yb5PbmFD1pB5wwYU81QhKiA6Y82TL+gN5rW+//fbw0EMPhT59+lgZ/rg4ccghh5SalxJ9OuGEE1LClXsIkWOZH93iWYRAhoixqlmnTp3sR8LknD7qqKNSLFq3bh0QHhhzos9g5Czff//9Ux5WftyZsZ5EbvMXXngh4G1GmgJs+vTpXqSIgJQ6UYwdBCLmPIanFPMNLzB+BI0n2Jw5cyz9RzGazrtKab5X+xXkJ+f5yOfH4KV5/Xxu/r333rP3z2abbRaOP/74jFV5pl9//fVAWZkIrAgE5Em0IoyS+igCIiACIiACIiACIiACIiACIiACqwgBwsuxcIjhTcTCOpEgCBOOsSjLgi5GuDAW6/h1P/mADz744IB3BHbJJZeEYcOG2f59991ni6rz58+375TBo4A6e+21l3kfIEC48etv8tjiZUA4MjxtWJSN/tCQfuJ1wOIm5RCi3nzzTW8idOjQweogDiC8cK3JkyfbMUSH3377zcriEUPbfN55551U/bLYYfH8/vvvL/ShX+5Vw76PA7+o5zscycnMPh+8J2AKky5dutiv7/1e8HDp37+/iS7wgBHh5KN266232jhyHk6MIWILuZLxnnA7/PDDw0UXXWRfs7XL2OLFw2I6XjWIjZns2WeftdPrrruuCQEIO9wXYhCiEX2JGh4DCBD0I8kQJDDYMW8whKiHH37Y9lkkxxAd8BTh3plXeLOQCzsfw/PLPZsQUydMmGAfBAUMsciv6+3ioYWYynPE2F1//fV+yjyhhg4damOLsMSYjBgxIiWEURDPCp/jbMePH5+q/5///MfqDhkyxJ4R5gXnfb6QTxujD02aNLHj7n2RqV3q3HPPPZZOgDZh9euvv3I40ZijiAvYXXfdFfr27WvCHf3juY6PKeVOPvlky73OftxcsOE4nN14X2G8l9Zaay17dniH0Ec+RLMhVFy+1qNHD6tCX+GDiMWzs+uuu5rHCmHbMJ/rjCPzCAGMMXcjHB/sjzvuOHsOeB74PnLkSKtLOTyu8ILjHG2QssG9MdO9V6PtksqBucQzx7M7atQom1fMH+Z1r169Uu8/3iOnnHKKzSmu7fMFbzzuGWatWrVKeWWluz51o+bvX+ZaixYt7D7Y8vzx3uC+4u+CTO8Rnine8RgeRTDj2Yq++/zfiQMPPDDg1cY74fTTT091i7CVvEO4rs+F6Lwrjec/dTHtiECeBORJlCcwFRcBERABERABERABERABERABERABEVh2BGbPnm2Ns0CPyOC2xRZbmMjy5ZdfWh4OftnPYhyLzCxI4vHCYi0fFvHcy4P6LOKzgEwdhJx9993XmmWBFaGJBfKFCxfaQiVhgljopg7GgrovqvsiNDmSWHCkLfq59tprm3cGIhACFrl0EXw4H72HBg0apISkV155Jeyzzz7moUK5jTfe2PIu2UXL6A8LzD/99FOhq1euXDlsv/32AQGJRVAEExbZe/fubYyuvvpqW+DnHjAWdN0QyBCYWGBmgbhr164mKMCMNhHvEDVYUK1fv74tfHuYL8YUUYUPi7csjjt/2kdkcaEtW7uDBg0qFOqNsIWZjNByGHOAhWoW1Hfaaadw3XXXpa3Gwj0CGOHb4obwwz3THixoz4UoyiJ4cZ8uQrZt2zYwPxACWISGY6726quvWlE8iPbee+9UNTygaJ/F7lmzZpn46Sej4bN4dhAf6C9CB4IaY838bNeunT0L5557rp0nhwx1O3fubE0hTODZwgdPP+6DRXnmhs8PCnoeHY7xvDLWb7zxRio0F6yztQtHPKbcYJXJqlSpkhoDwu6dffbZJnghhvBJMsaLhX7uJ25Vq1a1cePdQHg72PJecDEOYZB5i/BFO4iLCH4INojUeHTlmmMNIRkvFoyxcOO9g7jDeLrHCqKEjydc8Vbjw7PGs0lffDx4nt2Y54iozBPGE8GCXF28s9hHFMNbKd17Nald+s01XCjhfcvcQvjl3gcOHBh4n9MftljSfEGg5cOzkO76fh++9fcv4+fPHiLhbrvtFr766is7xr8dvAuYt9xrpvcIImZUBOZdxPuS4z63ea4x2nIe3p9vvvnG5gDXpD8Yc+GJJ54wgZLjpfH8+/W0FYF8CciTKF9iKi8CIiACIiACIiACIiACIiACIiACIrDMCBCiB2PBMh5SjhA+LEyzCMeCIZ48LNyTz+Ltt9+2xWbqItTwa3YWgjF+AU4Z8rP4Qv+FF15oXkksqrNox2I4v6CfNGmSLfCx6IpgxEJn8+bNrR0WBTEWhVkYpAy/BGfBF+GJhcH4gj6eFywAImpsvfXWqYVA9z7wbceOHQM5dMvSWIhm8Tv64Z4weGIstNJXjiMiIIBEjQV3FsPdawPxhDHlV/QsXsOaxWZEEhea7rzzTmuCMIMY3gUs8npuGb4jvLmASBm4XXPNNTm1i3cCxpgzDngAZDLmly/YMi9Y6F9//fXN88nnZ7S+eybhceMeF9HzhKZzbyEXHD0sGXMar4aXXnrJqhDi7I477jDhjPtGCM3H3MuO5ydu3BfmZaLnGQ/mOmOLIT5gTz31lG1dfOA7/SJXGIZHDsZ9cc7HDM+hqDHuiIG//PKLCQ54emDOwa/DnEL8yNYuHmcYzx3h3hAjffHdTsT+rL766iYGc5i5g2CCGIiXDN5zcWNuIoziuejzMl4GryCMdwZigQtE9IN2582bZ88JZcaMGWOCAF41iIn5eIjxvLjxHEQNQY13IvMEwdsFIoQoniEPbzh48OBoNdvn3YewhViN+dxEFMIQgBEVOc6Y4xWU7r1qFf73h/nL/cGNvEm0A0c+cMAQfTIZAtfXX39tz7eXg28u1/fybPHcWbRoUfD7RyCCJ3mcuAaGyJbt/YTg6X3nvc+/J3hRRo13H2KQP8vRcwh1/DvANbkW/YA771GEcq9T0uc/ek3ti0A+BMr2vz7y6anKioAIiIAIiIAIiIAIiIAIiIAIiIAIrPQE3Msg6jWSdNMIGSy8s+jMAjb7LMJhcW+YaH1fjGPREIGDsHIuhCAAuBDBIjaLyISMOvXUU6NNBPfWIIwUi6D8Kt4XDD1Ulldg4ZBFRfcaYLER88V0z0vjIcm8Xllt8aKKfrzfNWrUsJw29AvPChbC8dCJG/eL1xBsEcgwFvBdXIE1rDjvXjcsaONBwMIpBleMPFLMg2hIJjsR+ZNLuz6+iIrcD142vkAcaSq1i6DAYjveF4hFLj7wnZB38f7gBcUiOoZ3CzmL4ubjy6I7HlBsMZ8PeDhgCBjMuzPOOCNUqlTJwoXZiRz/ILBgSc+PH/NnzJtEqGKsmOtcF8PjA1EUgQzD244wWYiszGfGj/HC88jPc6xfv372HREVQc6N++QeYcsYOA/ERK7j3jo8x7m0y8I+xpjiJVSnTp2UwOXXjG+5N8Qw3hc+/uSaom8+Hl4Hji4KME+TxD8POcf8oj8ufDB/YYmg43MHTyy8D/FY5PnivZGr+ZhSPurNEq+PNxq27bbbWjg09n1+MZ68K90og2jIXCBMJ4bIhOHZhuH9hJcNAh5jx/hnM+YG707eAcxf2uZaeM1w3L1tsolkMEKY5b2DcIL5XMvWh+h5vze8mDD6x48FYIrAhsEl23vECmb5c84551ieNO47bj5fCf/HfOU5YE7xTPqzQZ2SPv/x6+q7CORKoGKuBVVOBERABERABERABERABERABERABERABJY1AZLHYyxqsoDGYqvb2LFjbSET8YDFQ8qyQMsiJOHLcjG8JTAWiVlYxhAoWAxn8c6vF13g9sV1F0z8nJelDRZFsbhAxUJn1HzRkvtjURfvHRaQXSSIll3e+56TKN11fWGd8yyy4iETt+gx54Mo4swo79wpSwhAhBf30uJ8dJE1m3dVtnY9JB3t+hix731jP8noA94mfPASYaHcRQEEjbhHB/lrEPzwwojm9PG2WehGMGC+4k3iC94shmMsYuNVgwcPwgneKXwI7efeNt5Wpi0s6UNcrKSOH4vPteiYRfcZG8JxMYcRTPDkQIjFWw5PH0J5ubHw7p5/iDw8T1H2iLpRYy55+DGEGxce4YSQ4pauXQ87Fp0r0b57/fgWMczFS7xB8FxC0HJBMFoeEQUvGMLrIZLFjXtCUMHTBoHIPXBcACNUI15b5HBCJOEe+eBhg3DqYQ3j7ca/81y64QVDSDg32CF0wcmfId5jblE+UYEpWiYqQlEPzz7EQPL58J7igwcPHi8u2Hj78S3vsqiRQ8i9EPHI9GcgWiZpP9qnuKiZVD7dMcSYXCzbeySXNlwQTCqbNF95XvyZKa3nP+naOiYCuRBYLZdCKiMCIiACIiACIiACIiACIiACIiACIiACy4MAOTDcCPlEiCOMhUrCxrE4zWI/i60suPNLdxZ7SWLPr8STjBBAbu4ZQe4bQlbxue2228yzgYX/XXbZxYqy0I8wwAKye7z4IixJyzEWTf2Yh1fzBWgrkPCHBU8P6UX4M4zF9mxiSEJTy/UQi6g9e/a0ayLKIQQ4l2hH3CMDMcHDb+Fp41xZRB4+fLhxZzGakIAIMSRy90VWr8dCOmG78PaKG6EBsWztksvKjYV6jIV2QoGlM7yCCAGHRwgCEQvNTZs2TeWM8n5G67PYi8ATXyT3MsxZ9+rwvDIIRNWqVbMihEukDbyzCLPFfMZg4fdqB7L8cQGIeh56jCqIPHgpYPE5Sl4UhFIMYQpDmKDPeN4h6JBbhhCPHsKR/FuwdRbMDZ4l2F177bXm2ZfNW8afg0svvdSuCR+EnlzadTHZQwfyLqBP6QxBljHlXghPh+2www4mULK/3nrrsSlieB/hUZPOfEwJacgzAQ/mLAZTxMATC8LB8Tzgpch5+ureiOnajR5H0HRPGAQr9wjienhF8U4kp4+HGOReCaeG+ZjzzKa7x+i1eM7xquE96e14Dre4WBl9r0bbiO572ELelYiozI3Sslyun+u1sr1Hou3wQwN/70ePZ9r39mHodS+++GKbKwiMpfX8Z+qDzolAJgISiTLR0TkREAEREAEREAEREAEREAEREAEREIHlSoBf53teH8SEWrVq2UIaYhDGgiULxHgSYeS5IOQUv1J37ww7UfCnUaNGtssv/PHgIZySL0yzqE09Qp+xqItQwyJ9u3btLAwTFVkcRhBicTxqtMViLwIS4gGL/ePGjbMivmgcLR/f91wmvoBLCKLyYAgnLKJHP88884x1DW8AFrpbtmyZyunDwriHafL+I3zBzENTIdwxDixSM4YsbOON0KtXL/OI4N4RKWDfuXNna4aQbYSmgj9eEi70ICD4YiveGnh5ZGsX8Q1xESNsIH3zeWEHE/5wXRby8RCh7CmnnGJzDq8vLJ03xUYbbZSauwnNpkKs0TbmeYrYZy4wh8lTglDkghb3F/fCoXw6Yy4T8g+DJ0IIHzydMM7hiRc1+oM4i8jgwp+HT2SM6Rch6RBO8VzB9t57b9viaYTxDJx//vn2LCH6DRs2LOUlYQUS/hD2D3MPpyiPbO36M4R3Ife35ZZbpsJNJlzK7g2RhHdENI8PAjFGKLgkY/7ccsstKTEsXgYumI+ph5rjGCIG7PDuuuCCCwJ99XLZ5iD1o3bzzTdbHxDL8eziHYSQ556IhEX0Z4F6iDww6tq1qzUTD5kZbTu6jyDKPTBHEGcRcl1Q5T4w73v0vRptI7rv7wHeCz169EjNw2iZfPfzuX6ubTu7dO8n2vEfMDCGzH8PL5jLNXin8G8Gwhv/ZvCMXHXVVfZ+47krrec/l76ojAgkEZBIlERFx0RABERABERABERABERABERABERABMqMAEIOAhELdyzaIRRgLPa7twCLryQlx1hAxWsh7iFBMndfiGYRjsU9FlfvKEisTtvUw/OFsFL80p3FeEJEsfh3ww03mDjAYreHD/Nwc3i90B7XY9EWryYWbCdOnFgoFJR1LuEPC7AsGGLlIdQcAo0bi+jRD14L7777bhg4cKAVIVQWof26dOli330x3+sTWuujjz6yrwg68OVeWXzGSwWRiYVSuHIdhAU+GG0j3GGE/2LsCQfWv39/O8YfvE4QnqiLN0Yu7V5zzTWpPEcIe8wjxBgseu92oOAPHmX84p/rsEBOyDcW45kziJIuUEbD13ld5px7XMXbRuD0cae8h5pjnz7hpcM9c7+IjswvOORrHiKN/tNvPuzTPgvTcUOcQVRwMYDnyscEkYh+MmZ4PjDfEVL79OljzTAe5513nu3jJYLgwxi7F5N7yMVZUIHnyMVfuLB47patXUREPLKox/1F56Rf09tiyzG8qxh3GN999932nfp4QNFnL2c7kT+MN++MJOOd4XU5HxW6eK/QNteA45AhQ2wceE9suummSc2lPYZAwfPjvPx9xv3g7UV70WeB5wOhkfcLnkZ4TuZiCLF4/PA+oz7h4ngHMCddSEt6r6ZrmznB3GP+IJL5s5GuvI9d0nzxY/lc36/jdaPPbPRaUXbp3k/Vq1e3nFuMJ2UWLFhQ6P3h1/BrRre1a9e2f1d4J/IM8W8MXPBAZX6V5vMfva72RSBXAhUKYiIu9dvOtYbKiYAIiIAIiIAIiIAIiIAIiIAIiIAIiMByIkDIJjx5yGPjIk300uQLInxPNMdG9Dz7hKzj44uCfp5f+tNmNCwWnjMebszzkCBcsFhP2CiEpaiRg4h8E7l6exC+DO8bzysyePDgQMLzFdkI3+WL3uSTwWMDQS7KNXp/5EaBPZ43SWPKWBE+K9152vIwcPm0y1whz04+OU4QFD7//PPAIm+uYxztU7779A+GeIvk08901/n4449t7uNpk82WLFli4d6ieWy8DvmFCIPHOGcaM8Y8mk/G6xd363MhXbvMA/odz/2V6XqU/+CDDwKL/jVr1sxUtNTOMY/gWhpziGcLIRYxM90c4Z3IM+bPZXFuhPcu4edoI0kASfdeTboWIRN5LyDGlJblc/18rpnt/URbSe+fXK/B+HENDzUZrVfaz3+0be2LQCYCEoky0dE5ERABERABERABERABERABERABERCBVYoAC6OEVSK0WtT4Rf5DDz1kYceix/PdJwSYe1nwa/3nn38+o8CVb/tlUT4uEpXGQnhZ3IeuKQIiIAIiIAKrIoGKq+JNozQTY5UtbtFJ//GSS5lVkV1J7hmm/NIB4xcsSb9C4By/dsCVnV9zpPvVEeX4JQ+/TkkaP85jtMOvfXCXTTKSzfE/AMS4TmelcZ10bWc6Tr/45RS/DEn6lU6mun6OX3zQjrvC+3HfMib8eoZfnqQr42W1FQEREAEREAEREAEREAEREIFVgQAeCYQSmjBhQpgzZ479+p9QVoSpw7OlpEYuC/5ft27duuG4445L6wlQ0uvkUz8aggmvqHy/R70V+P/LfOur/Bqp4UrHn+O5mFhmZ+kc07Fenuf9WtqKgAiIQFkSKHFOIhKQ8Q9Q/OMxMsvy5tJdG9e9AQMGmFCESJBkuZRJqlfWx3w8+HUThkt8fGyIIUqc33T37vdA7Nt4Xb7fdNNNVoS4pHxHiIkbcWWJ3+zGr6Rw46V/fNi/5557/LRtcacm1vAmm2xiv8ziV1oklPQEhl74nXfeCfvtt58JTZQlEd93333np21L8jyuQ8xWxCb6iiDiRjgA/mOcfiDCMF/jyTZL6zrOiW3UiGNMckUYRvv/6aefWgI7/ueD+LXcIzGc3XAVTxqXfv36eRFLxsr/wPA/HohkjAfxdqM2fvx4E8f45RplSG5J2+ksXX+9PO7afj/xsfUy2oqACIiACIiACIiACIiACIjAikAAoeOEE04IV155pf3/M///WBoCEfdO7gnywpD3JV2oqOXNiMVy/3Bt32eb73d+pFmS+vleb1UpbwORwx+xL725vDzmVg5DqiIiIAIisMwJlFgk8v9gYDGbRHb+4ZcxsuVPwMfDBRHELoxkaIwNSRZJioagcMghh4RFixZl7CT/8Uriwujn2GOPLVQHMYJYmumMxIC40/MfwQhBfEh4yX9wP/vss1YNbx1ECoSZ+++/38rMmDEjHH744ZY8kX0Mr5ijjjrK/uMcQYOEk4hUxIX2e0XsOfroo619rkXcaP7DnsSNbiTYxKV/1qxZlmgOQQnxjBixWGlch34gUpHAFMHLx4T2SRaJ0LXVVlvxNXWOuKQkVSVG6+zZs008GjRoUGjfvn145ZVXrCz3hM2dO7fQuPTo0cOOw+HQQw8NG264oXkJEYMWgQpGb731lpV54oknQqdOnew4c4AwCpRnjuB9FLd0/Y2WwysvnxjA0braFwEREAEREAEREAEREAEREAEREAEREAEREAEREAERWP4ESiwSeZcRHVjc9w+L8th//vMf8wZBIGARG4+GVq1ahUcffdSr2mL3kUceaec4j2cIIbDcECD69+8f8GxhIbtDhw5h5syZftq+43GCZwQL/ZRhS3LLiy66yL4jArgHTKpiwc4bb7wRDjzwQLs2gkiSV0y0fHQfzwyve9ZZZ4Vhw4bZvQ4ZMiRVDA8aFt59AZ4+uuXChrKZ2vC2sm3btGljY4NI4IILDBmXTOaeNnjb+CcaAg7xCY8kPJPSmYsbiBKEhuNz+umnm3hCfez222+30Gp4ADVp0sTK7LzzzoEkoXhDIWxhzz33XHjvvffCiBEjLDwa4wrHRx55JOUFgxcLouWFF15o7ey///6hT58+Vo42iJV877332ndEHDx1GDsEounTp1OkVK7D3EKMos9+n9Z4wR/EsFdffdXuzY+xffLJJ034IhFq/fr17Vdl/LoMYYh7wkgUSXskbfUxYesJ73755RcTf6699lqb1yQGbN26tdVdsGCBbeG8yy67hK5du4Z1113X2hs6dKixnTp1qpWJ/knXXy8zZsyYMHbs2CLeYX5eWxEQAREQAREQAREQAREQAREQAREQAREQAREQAREQgfJHoNRyErEwTQgvN8JhVapUyYQavD34uCEQ8cFbg1wriAJ4UBx00EGBkFUPPPBAePHFF8NHBflrOM9CNkIJi9nEAcYzhIVsPEFYSGcBm/YRIShDW4gKu+22my38cwxPCTwdCCtGG26IJ24sciOg8FlrrbX8cOIWUQLPDLdoaDXuB6PPeNBgXBePEj7k4mnbtm1WNuTbydaGNZ7nH8QXRD0+8VBuSU1FPWA4H80lRB6bG2+80YQ/BLOkMIN+DG+YCy64IDRq1Mg8ZZo2bZq6HB49zZs3N4+b1MH/7VxzzTWpQwhEeOVE4x03bNjQziMs4pnDfEA0XG21fzVQrokIxBx1AXKnnXZKtYvwhQgzf/58O1Ya18FTKp0xf7DPPvusUBFEyl133dXmNp5P9PmAAw4wsdNzLyEYwb13795h0qRJds+w7dixo7VVuXJlE075gsCKWHrppZdaOffw47niWYuae4PFk7NSJl1/Obd48eLQs2fPMHjwYAtbxzGZCIiACIiACIiACIiACIiACIiACIiACIiACIiACIhA+Sfw7yp6CftKfF73EmGLB0jUWLzHAyKa84QwZIQxQ9TB8EYgDNaoUaPMc4hFbMq7QETCSMKTsThOnTvvvDN6CYvnS+gsFqsxFtipQ44XD+uFGBG1du3amScM+VYwxAEPgRYtF9+/5ZZb7FDLli1tsR3hAfEC87Bnffv2te8PP/xweOqpp8KUKVPse9TTiAPp2HAu1zYom48hFGF4uXh/k+rjEUY84ejHQ5Z5ecLWnXLKKSZSIPzFDZHouuuus7FFpIAT4hmJQN0Qq9xThmMIG4h2/pk8ebIVff/9982DxuuxdQ8azmHMqVq1atm+/yEvEYbw6CIIQkvUtvx/9s4DTIri6cMlOeecBckIgggGFEE/MYCoGFAURQUDqIiCiooJUYyYUYLCXxEREUHMIEkFJOecJecc9Zu3j1pm53bv9u5WglQ9z96knu6ed3bndvvXVVWmjBOY2BePdvx1x7qOSISHFzwRTfEi4n0DY8QYbN26da4M4egQPrl+vOD43PgNDghGeBzxWUPoQTDF6tev797reHAhAhJiTnMmwT4lRuhARDs8vsyMgBEwAkbACBgBI2AEjIARMAJGwAgYASNgBIyAETACRuDkIRA3TyJCV/kH3cl94zdCrpGvhBfhvwirhRcFXjfq/YN4gDcJnhOElMO7g8FtDFEIbwlMBR28jfxGbhwMTwyMkFwVKlRw63iNIA7g8eQ3BrbxGuIc+shAOrle8IpJyjSEGoP5eE1pmLz33nvPnYZApV4iCGYMpB8+fNgdw+vJn/clGptY6khtkkvlAHO/x03wmsmPwzX6rVSpUv5Nt47whXdYhw4dpE+fPomOI3bg6YUISEg3PK8Q/xDkCCPI+0L7xMmIbo899pirBw4IaYQppJyKitqIesBwDCO0X7CMerkRek2FEvb5PcYQJQk9h8WjHVdRCv+ol9bAgQND70FCxVWuXNlxwwONEHuEXySUIkboPrzO8Dy68847Qy0ievFZ4X2P2FanTh2Xg6l06dIu1xPnEQ7v0Ucfdbz4DNCOMghVlMQKguHbb78tCKF8DsyMgBEwAkbACBgBI2AEjIARMAJGwAgYASNgBIyAETACRuDkIRA3kQjvHrxqohmD2Gp+YQNPB8K7kWOGMHMako0cN4g1fjEFjwgMrxa8Xxj09lv69On9mzGt+0UC6sX279+f7Ln0O1h23759bh+ii66zA6FKB/8RPBDG/G1EYxNLHX6WrvEY/6jARki+pIy+48WSnCG+fPLJJ07YQPSKZFznVVdd5V4IQIgV5A9CJKIdcvio4XGEBxiGwKS5ongP4A3kN/V8KVu2rNuNiOL3WGOn5uLBo0jFqDVr1jhBSeuiDb3WeLSj9aZkibCDIaSqkW8I0XX69OkuTGGzZs30UGgJV7yCEMdUBIM3wg8vjuNdhVjUuXNn934kZ1Hr1q1dyEG4IM5yblDgDTUSYaVr167OM2zlypVh4iCf4xw5ciT5TIhQne0yAkbACBgBI2AEjIARMAJGwAgYASNgBIyAETACRsAIGIFjSCBuIlFq+8wAPx435Pfp0aOHzJ8/XxAIGOyeMmWK4KGE4fGCxwKiCOG2CBuHx0habciQIYKXEf1gYBurVq1astUibOChQWg7RAlECPWgQcDC20Y9pMjXQht4vIwcOdLVjZdUchaPOoJtILqR0wmWWL169YJFUr1NCDOuVT2+tCI8VfDaIXeRGl5neK2oITDi2YIQoqHwOLZt2zbn3YUHDYaYxHuD8H0XX3yx24e4iCGmYOSpeuWVV1x4Ns3jwzXzXkJIRJzCOE9D3BH6jvch9xKLRzuuohT+0f6QG4nrwGBHGEQVSdu3b+/283lR03CHvOcI3deyZUvHSL37+NwgQKmghoce4uwjjzwSYqAc/fdF64+2RPwk9xhikd+GDh3qBN6khGN/eVs3AkbACBgBI2AEjIARMAJGwAgoAYtSoCRsaQSMgBEwAkbACJzIBA4cOHAidy/mvsVNJELkwZtErVatWvLVV1/pZtTlpk2bXIg5CjD4jTePhgqjjoIFCwo5bQibhXcFwsCgQYPcgD4htxBr0mJ4LH399dfOa0W9MM4777xkqyR/CyG2EBdU1EDIwlNIjXwx1I9nDcLJhAkT3AA+16EeK1o22jIedVA3XiMIJRoCj314lzz44IOsRjXEB8LD+Q0RgfB6kYx7Qv4gzftDGTy+yFmFYIEXDJ5W5J8iZw58MELRES4NbxbEJO49Qgmh+mCqwgj3hlw9iBuErCNPz7PPPisdO3YM5SbCOwaRCMEKrxlCGw4fPtz1i7Z4jyFq4P1Wo0YNF5aQsryXNGRhPNqhrZTaFVdc4cSzFi1aCHmv8HTTXEENGzZ01cGTz1vVqlXdPUQw7dSpk9x///3uOGIYnyvKvPDCCy5sIx5bhDlU3uQxol74Ic6RBwmmhJ9DIEPQJOQi713qjmYDBgxIdIgfdOSgCoqFiQraDiNgBIyAETACRsAIGAEjYASMQAQC/5UBlwiXZruMgBEwAkbACBgBI3DCEUizSKQzfBBYVNzhKtWDQfPdaLg1PwH24TnRu3dvefjhh50nEcfJJUT4uSJFirjiiDh33323G+hHlMEQBXhFMm1L+0aZaP1ATGAgnb7TFzxsChQoEMofFKl+9uFxgnCF9wWhthB+8IIhN4+GvevSpYvw5ZbcO4g0GJ4ViBtYtD5xTK8huToo6ze9Zj1f26CMCkSILHgQIRDhBZKUIfQFxT7uDWICpteqdeCxwvUSUk/thhtukPXr1zsRQj1O8HihHoQqjH6MHTvWCRYISmoIUuQt0jxIXBcCBAKItkHeJBVSOA8BBPGC68ODi7YQhPzCHO+32bNnO9GKcwjJhieYXk+82qFujHr1niTsCf+rxygHb0Sic8891xVCfCSXU5kjoegQX5YsWSJt27Z1LwqRw4v3MsZ7gHCCMFJPMero27dvSATjvc42OYxee+01d961114rL730kltHJEKk05B/bqfvj/bXt8tWjYARMAJGwAgYASNgBIyAETACRsAIGAEjYASMgBEwAkbgJCNwmidi/HOi9BmPEcQCDREW7BcD13hI4F2UIUOa9a1Q9YcPH3YiUSwh4PSknj17CiG78HjB24cQeHih4EFDbhgG+dX++ecfd5z6/fmH9Hgsy3jUEUs7/2YZwvCRKwiBAdHHL2D52yUkHhwRNrjX0YzQaXjaRHu/cB5iCrl4VDwL1rVjxw537xEmo1k82olWd1L7CWHIfVeBLFiWvFZ4ehE+L1puKlgigBYuXDh4uts+dOiQY4RnmObZ0oJ8LlQ00322NAJGwAgYASNgBIyAETACRsAIGAEjYASMgBEwAkbACBiB/w6BE0okOpmw/vnnny53UrDPhCwj3FpSwkXwHNs2AkbACBgBI2AEjIARMAJGwAgYASNgBIyAETACRsAIGAEjYASMwLEmYCJRGogTvm3o0KGyaNEiyZ8/v1SrVk0aN26cbAi3NDRppxoBI2AEjIARMAJGwAgYASNgBIyAETACRsAIGAEjYASMgBEwAkYgLgRMJIoLRqvECBgBI2AEjIARMAJGwAgYASNgBIyAETACRsAIGAEjYASMgBEwAicXgXQnV3ett0bACBgBI2AEjIARMAJGwAgYASNgBIyAETACRsAIGAEjYASMgBEwAvEgYCJRPChaHUbACBgBI2AEjIARMAJGwAgYASNgBIyAETACRsAIGAEjYASMgBE4yQiYSHSS3TDrrhEwAkbACBgBI2AEjIARMAJGwAgYASNgBIyAETACRsAIGAEjYATiQcBEonhQtDqMgBEwAkbACBgBI2AEjIARMAJGwAgYASNgBIyAETACJzmBffv2yZw5c2TPnj1pupJ41ZOmTtjJRsAIxETARKKYMFkhI2AEjIARMAJGwAgYASNgBIyAETACRsAIGAEjYASMwLEnUKJECcmUKVPE16RJk+LSoUOHDsmjjz4quXLlkpo1a0qePHnkscceE/ZHsr///lv69+8v+fPnl7p164aKpLSe0Im2YgSMwHEjkOG4tWwNGwEjYASMgBEwAkbACBgBI2AEjIARMAJGwAgYASNgBIxAkgTGjx8vhw8fDpVBiLnuuuskS5YsUr169dD+tKy8/fbbMnDgQEF0qlatmowbN04aNWokVapUkdtvvz2s6q1bt0qzZs1kxowZUrFixbC+paSesEptwwgYgeNGwDyJjht6a9gIGAEjYASMgBEwAkbACBgBI2AEjIARMAJGwAgYASOQNIEyZcpIuXLlQq/hw4fLokWL5NNPP3VCUdJnx3Y0a9as8uqrr8pZZ50lGTJkkAYNGsiZZ54p06ZNS1TB+vXrBe+mBQsWuHL+Aimpx3+erRsBI3D8CJgn0fFjby0bASNgBIyAETACRsAIGAEjYASMgBEwAkbACBgBI2AEYiYwdepU6dy5s7z77rtSuXLliOd99dVX8sorr0Q8ds4557hzgwfvu+++sF0rVqyQWbNmycMPPxy2n41KlSq5UHOJDng7UlJPpPNtnxEwAseegIlEx565tXiEAG6y6dOnPyY8li5dKj/99JMMHTpULrzwQhcv9bLLLpOyZcsek/atESNgBIyAETACRsAIGAEjYASMgBEwAkbACBgBI5AWArt27ZKbb75ZmjRpIq1bt45a1emnn+7C0UUqUKpUqUi7w/bt37/fhZhDhLrpppvCjqVkI171pKRNK2sEjEDKCZzSIhHxO5csWSKnnXaac9dMiWCBmt6vXz+XzK19+/YpJ3+Kn9GuXTv5/PPPZeTIkc6N9d/Ecfnll8uoUaNCTfjXn3nmGXnyySdDx47Hyp4Dh2XV5r1SMn9WyZYpdaLZocP/yKote6VMgWze+znyVezad0h2eq+iebJELuDtXbZxjxTPm0UyZYgciTIe7fzzj8iGHfslT/aMkjlKO7v3H5Z12/ZJCY9JtDIc9y7b9TfqBSVzIDkmsfTV38Thv/+Rjd61FcyVWdKni3IjfCcw+2fVqlXStGlT394TY3XhwoVSunRpyZw5c4o7tHbtWsmbN2+aXN737Nkj27dvl6JFi0Ztn3Yoh9t9LM/vzZs3u3Ik3zQzAkbACBgBI2AEjIARMAJGwAgYASNwshHo2LGj7N69W3r27OnGM6P1v1atWsIrNfaPNxhy7733Oi+iP//8UzJmzJiaaiRe9aSqcTvJCBiBFBGIPBKcgipITpYpUyY5++yzE52FkMIxXpEG4jlHj69bty7s/EGDBoXq3bdvX9gxPYfBVQzBQfcFlzt37gw7lw3EoRdeeEGyZcvmYmuSjI14mS+99FJYorVEJ/p2rF69Wrp27SpvvfWWb2/aVv/66y/54IMPorprUnssZdLWi2NzNoPj3Bu9h7G0SuI8+CAsxWq8H1QUql+/vvB6+umn3ZI6nnvuOffeibW+MfM3S5XHRiV6ndNljKti595D7tgzX81PVOXXk9e6Y3oAoaRNn+lS++kxcm2PSW7Z9pOZsnnXAVfk0QFzErXjbxshBXv/l2Vy3nNj5arXJkjDl36TEdPXu/36Z68nQlFXnWfGyiUv/S43vjNZ5q0J/1yMmrtJGnX/w9VxwfPj5I3vl3j/zLWGhGVa26G+z35f7fVjjDTo9pvUfHK0cL1bjlwvrWzfc1Du+3iGwLPJGxNdmc//+CusI3P+2un62tC7lv97+Xe3vmDtrrAyuvH4F3Mj3o/kmMTSV22DJfU9O2S+nPnEr949+N0tuw1bKPsO/u0vlmj9tddekxEjRiTa/91337n3JUJq0O666y654YYb3O5t27a5ctdee22wmNtGQNFnYsQCEXYS15jnOs/FYsWKuWc3X+zU+DLK85x6/c91yrzzzjvOSw9xKVeuXHL11VfLmjVr9NSw5SeffOLqYHaT35YtW+YSYyLkUA8xjvv27esvIjNnzpQaNWq448xqOuOMM2Ts2LFhZfwbY8aMcdeE4FSoUCF3bqSYyv5zbN0IGAEjYASMgBEwAkbACBgBI2AEjMCJRIDoOH369HGT1gsWLPivdY2xss8++0wYm0hLBJ541fOvXahVbASMQIhAmkWiAwcSBrSJUTl9+vRQxazwQFHzDzKyb+7cuU6R1uPffPONrrqllqfep556KuyYbmiZv/9OGIgtXry4XHnllWGvSLPLe/To4USinDlzyiOPPCIPPfSQsI5XyUcffaTVH/MlCefoC/2IZrGUiXbuibT/hx9+cInvcI+N1QgXBx8ExFjsxRdfDBVDGPr555/dS9dZquFtlBL78sFz5IdO54VeQx6qE3b6l5PWyMg5G8P2BTce8YQbvIiGd6grU7vWl6/b15GNOw/II5/NcUUfa1I+VP/tF5aUfDkyhbZpO2umdDJo4hp59+dl8tot1WTicxfJnReVko6fz5Gpy7eFmnt68HyZ4m0PfbiOjHu6npQtlE1a95kREmcQjNr1mynX1i4qE569SN69vbr0Hr1C+o5dEaojHu38NGuDvPjNQnmjRTWZ/EJ9GfHoubLG8wbq6u1Ta+v1Y/OugzLsCBP68sLQBYLAhiG63PHhVLnszEKuDvpbuXgOuav3dMGLx29D/lzr7gHeVUFLjkksffXXiaiGgMj7gnv5edva8t2MDfLRr8v9xcLWeW79+OOPctFFF4Xt92/cfvvtgtjuN33e+fchNC1fvty/y60PHjzYLcuXL5/oWKQdPMObNWvmXMpJQsn5JK18/fXXXXGOIx798ssvTmzRZzAHv/76a/c8RfzZsmWLzJ8/X/bu3RvRLZ3neps2beT8888P6wb1NW7c2In2ixcvFjx/aJsZTHx+MequXbu21K1bV1auXCkbNmyQe+65Ry699FKZN29eWH1sIKz/3//9n3PD55oQ+JlNxbOHCQNmRsAIGAEjYASMgBEwAkbACBgBI2AETnQC/LZl0ij5gS655JJku8tkS500Glxec801Uc/v3bu3dOvWTZhAyu/u1Fq86klt+3aeETACKSOQZpHI3xzh19QYyHz22Wd1M9GSBGrYVVdd5ZaRZsy7A96ft99+O+Jsez2uy+uvv97lnEFZ1xfeQkEbMmSI24UnEN5DDIIyGMrg6KZNm0LF//jjDxfnM3/+/G4wk/JJDSoS+uj+++8XZsYzEx8PJwYw1fCIYuY9D1nqZOASsQSDR6tWrdw6D368rL788ku3rX+ilWEGPeVvvfVWdy20j6cUNn78eCea0R4z8olbSj8x/3kffvih6zP14LKq18mSRHfq9UXf8RbwDw7z4G/UqJG7Jo6/+eaboeO33HKLO/fjjz8O9WPr1q2OTcuWLYUZ/oSUon5e8GDgmL4y8AsLDG7Ui3GvKMsgcjQjBxEzFtRUEKI9ZcM+PIswvI04J1Yr5YVB878IFee3KsVzCl4seAtFMgSNKcu2ySVVC0q5wtklS8b0UrFoDnmn5ZnSukFp58VTMGemUBt5s2eSjOlPC23Tdjovrtznf6yWlvVKSv1K+SVnlgxym7d+9ul5ZMgRUQXPnO9mrJcnr64gFYrkkPye0MQ63jvjF25xXft22nrXdpuGnvdH1gxSt1xeaft/p8vHYxM89SgUj3YK5c4sfe4+Sy6smN+F1Tu9YDap7fV19ZYET8FNnkA2dfl27oC8FAAAQABJREFU1/YZR5g0rFJAePX6NUEo2bhzv1zjiVl3X1zK1UF/m9Yq6q5ny+6DIdRLvbB5Tw2eJy/eUNmJYqED3kosTJLrq78+1ld64QLhVtW779zLGqVySY2SuWS1tz+aEc4Nb7rzzjsvWhEnhvBc0M9j1ILeAcSZoL333ntuV+7cuYOHIm7zHD7zzDPl8ccfd+HiGjRo4DzvENaxGTNmuM8lzxVEeb8hUuGlg/iSI0cON9uIdSYE+IUtnoM8q3lW8sz1G5MOEMLxjCJGMuI9ZTEEIYzPMNa9e3cpUqSI4HFEf7FIIj/xj//3v/85AYsQePQRIYpnM7GczYyAETACRsAIGAEjYASMgBEwAkbACJzIBMjpfeedd7oukmdbJ0HrkgmRQWNCKpP3I72ipc3Ac4jf6owFpEuXLtTOxIkTXfWMSxLVQ8cVg23qdnL1aDlbGgEjcOIQiGtOIgYkEV2yZMmSZOgfBIZPP/3UUXj++eeF+Ja///67mwlPbolIhqBAiKHgwKS/7MGDB11cTt3HA40wckHTHBeIHwye8uDkAchLjZnuKiAwa50BSvrKgxeRJGgIHXijMJNdZ+0zYMm1IUDQD7wCmG2PcR0MdvL69ddfXZg7+q/GQGpwYJh/CpHKMNBMf3mpl82OHTucB0LDhg1dlTVr1nSiCg90xBAe8JHOo/CDDz7oHvoMXiMe4cnFwGrz5s2dWIf3FYO3d9xxh7z//vui/1wQpwjhxIt+durUSRYsWOD6heCjxnXofvrANn3HCE+lhrDEADPh5dRjjWOcAx//wLOeo0u8jvzGrAnupw4wq2jkL8M5eCzEZJ7Tii8CV6I8QA9cVlZ6jlwmeKx80Kq6E3T89ZKv5vzy+VyouNxZM0rDqgUkT7aMUtgTUnjFYn97HSDMWivPe8hv1T1xQj2JyFOEVSyWI1QkpyesIEit2LTH7Vu6YbdULZEzrI+IXAhJhFHLnDFdXNqpWTpBqEAgO3Dob5m01PNumrJWOl6V4OWiOXw45jdC4WFcb8l8WZ3I5T8+bsFmx6yAJ4CpdfO8kxCj8DgaNjU8lGUsTJLrq7ajy2bnFJX2n852QhEC0WRPAPx13iZ5/47qWiTRkmcen6ty5colOqY7+AwgmiKQEnc4mrVo0cI9lxBLeP5ikydPdp9FjvF5i8UohwDLs1MNrxsEFcLM8QyLZsxEwnuP5wViNKEkecbiMeSvjxCd1MUkAsQbv5H/qG3btm7WEkJx4cKFnSs9ZfASxTJkSPi35X8mqGhNjrmg4RrPi+cF53CNzIq68cYbncAULG/bRsAIGAEjYASMgBEwAkbACBgBI2AETiQCRNRg7BC77rrrEnXtiy++cJMt/QcIy84rJdarVy9XnLa0PXYwLsoYBmOijHsS2t5v5Hr3W3L1+MvauhEwAicGgaMjgWnsz6OPPupq+P77791SB/8QFII2ZcoUIe8EQgmz1tXNEQEjaJdddplzp0QYQJQICif+8ggWzBTXVzT3S+0rXirUyQAinj/kB9H63333XVc1g648COkzwgiiCZ4wQSPcEw9KBnSZbc+rXr16bpB29OjR7npVICIfD9ev+TxQ9RmwVOEMLnPmzHEDrf52YimDNwGz4xkEZUmoJjySEIUQ2TBEHP7B+I3rI78JfcY0Twp9xxBP+vfvL2yTF4hcIRjtYOxj8FXvP9t+w8OIa+YfSYECBfyHwtaZsUC/VeSh34S4wtsLl1oMzwr4VKhQIexc/wZhqoKGQIRQpGGrVKTTcnifxWp1nx0rVR8fFXp1+Gx22KkZPBGo241VBAFj4IQEb6iwAt7GyzdV8TxPcjmPl/OfG+fyEpGzZ39AJAmep9sbdxxwq4VyhYtKRTyRafH63e7YqiOeLMEyxfNmkWWetw22dMMeKZo7QVhwO7w/hY/UiZdPvNrRuh8bOFfO9vIwkXsIgevGusXcobzZMzrxitxH6hU0ccnRz9o2n6eQ1jXaE2Lg+3jj8iGh7pfZG+X3RVvkyaaR3x+xMNH6o/VVj+sSj7Bm53j5e76cJ41fn+jlJ1ogN51b3AlVWia4xJMPb8KkjGcBzyKeFTw3ohlehDwj/WE7+VLG87NKlSrRTku0n2dYyZIlw/aTlwjDUygp4zmKmIUwhCiN4Ev/H3vssdBphHpDoOXzjAdQJOM4nkhXXHGFCwvH5AO8VFXcr1MnIbQj5RB9EJk1HF4wNJ+/flzteYbz5RbxKZLXkb+8rRsBI2AEjIARMAJGwAicGASYsMT3VP+EyROjZ6deLxgLIay0jptEIoCHAZM6zf7bBOw+H9v7S/4hfv9Ge0XLU5zSXjJuGakNxkUxxuwY1wtOdiXyknobUS65eihjZgSMwIlFIG4iEQIGxsx3xAZEIgbkIw3kqxjEMUIuqeCACBHJGFDES4VBfUIMRTMGJP05iS644IKIRfGQQdDo0qWLG8ykEAJG586dRQWkCRMmuHNffvllufjii11eDQZhsWDuJfbpAC4PTnJj8CIkkx5DNMIQxcjpgZF7iC9PKki5nWn4w/UT3g2vmYwZM0rVqlUFN1TEIcQwZuirkStEDc8n+kVoPsLGYRraifMxvKgQ0ugr7cCELwUaTk//ISHMcU3BGf38I+E89QJwlUb4Qzn6T/0ISxjeRCm1cePGRTwFgUg9ioID9HqtEU8M7HzTy6vz4Z01Qi9CxAWNcGpPXVNBug5dGBJt/GUKeOHkPrmnpsvN8/Q1FQVPGnL2PBIQnPzn+NezZU7vNvH28Rt5jnJ4oecwXQbL7N5/2IWWo0xuz4OJbb9p+RxZ0ku82tH6H2xUVv53by1p50LarZRXvj0aNvC1m6t64ef2Sr3nx0m9F8ZLq4+mydW1irhT6affyKV0/yczndDUqHohd4icRS8OWyj3XlLGhebzl9f1WJho2aT6qmVYklfpqz/XuPvNtT3miVZfeOLVWz9GD2FIXp9Y3nN45fD5uu222xLN1tE+5MqVy3kA6rMEkZRnccyecUcqIiylPue0brx+MNpIyvBivPvuu11YNz5n/A/g+cAkAP1BzzMWIR2vxEjGl00+lzxDCH2HWMwzAQ8m3NUxBB4EdQRxxCS8sfBgJXRpUODyt4FoxTOZ8KVMEIB9Ut6I/nNt3QgYASNgBIyAETACRuDYE5g0aZL7TYuHOeGNsmfP7iZPMYBp9u8QIBoAvz34Ta7fv2lp48aNbqyF7+LVq1d338nxXFDDs5+IK/yeYHyH3w58/16zZo0rwqQv6oz08v92Z0JopDLsS0qY0n7Y8iiBaPeS30CMvXGvdMzl6FkJa7Nnzw7dBx0b4khy9zlYj23/NwkkN67337xqu6qThQBjWpqChsheZrETSBhJjr181JJ8WeDLBGqx5q/gHzz5IPzGP3adwY3rogomlGF2EIJAcOY7A4F42zC46M8z46+XdXJXICjFYohOhEXihdjBkkFNXsyGJ1wbRjl1z6QcA4v0J/jFVAdSOUfL80WK0E3UoYOkhFPymz8Mk39/atYZLPUb3kAq3vDP3z+AquGZKM/1qAXD8z3wwAMuJB+Dsoh0iGkMPiNwEQJQDVFKLdI1xZoTxc9Hw2YF30PaTlJLBqYjPQw0H5Eu/XXwJSlWO79CPpcDKLnyzT1vkp9nbZSOn8/xPGbCc7jouYhJvG4+r7i88f0S6T16hctlFPT+0fK6JAdRPi/E2trt4bO01mzdJ5W8cHJYCS88G7Z++34Xzs5teH+We6HmLvLyGGFlC2WTNduOiobsW7stoU76gHgVj3aoF9NcTuROIn/Pa98tlnaXne5yDJGfadQTF7hwbVs9z6GzT88t4xdskTl/7XT9SKhBhGts3WeGIA51uKKc7nbh67hW2Hw5KeEHyQrPm2qzFzpv0MQ1nrdP0ZiYaIVJ9VXL7Nx7yAlCXa+vLNd59WNcG9b920VODMuUIZ3b1j+IqAgoPNNiMX5wVa5cOZR7J9I5JLBEAEHExkuJ54GGwIxUPtI+hOCgNw4/LjD1KIp0Hvvw5iG0HYKNGs9CRHnCbvJDceDAgU5IwqsHQ1TnWYvXEyIPgjahJ/lRohMMEIzpEwKYhpxjUgLseCbx7EGcJqxdpUqVtOlES3jwwhMJTyee5b/99ltMQl2iymyHETACRsAIGAEjYASMwL9KgO+IRLngOx6Tq/AIZ5Y63wMRi5h8ZBZfAgMGDHCTS/U7t792fmvgwc/3ciK34O3PJDbGO/jOzzgQUWSYEEwYf37rEHL+pptuEkQgxiU0aonWO3z4cBeinogEakzSZWzGb0QQYNJt+vQJkyT9x2w9MoFo9xJPMPLCwpPfftzToDHAyn3j95Z6j2iZ5O6zlrPlyUkAMVaNMc9/e1vbsqURMAInBoHwkcs09knzVWgIMn9+Ga2aQTmdqd6uXTuXZ8Ofa0O9jLS8LgkRFGlgX4/HukSsYSYSggADqRhhjPD8wRjIJJamzvAn307v3r3dq0+fPi72Z9CtkvPoH9a0adNQ+cGDB7sZ8wyS4qmDkScEsQlj5j05g4LeUXwhTm6WTCxlCDOH8aWKL2a4f6oF44Xq/uASjypELvpK3iUN+TZs2DDHkS/rGIO1GCIf18SXitSY3n/EKK0zOPC7aVNCjpqk6ifMViQj/1Q0i3ZOtPKx7E/nvZe63lDZ5fR5YejRvDCEemvyxkTBG8Zv5LNJiSEGfT9jQ+iUfQcPy0gvh88ZhRNEIsLKYSPnbAyVmesJLggpZQtld/tY/rZwi+zwxA61H2ZuEPISaZ6geLTTyRPK3v5pqTbhlohjGEILuYoINbfUY9OgSgEnuCByDfY8dKoUS3ifUZZ+3t17uhPCCNmnfeTY4cP/uPxE/cevcnVR3xIv9N6MlTvkg5HLXBuxMEmur7SlpuEBs2QKf5xmPbJ90OtT0HgO8tnhi3kshriBONuzZ08nmEc6BxEJLzlCYvKjjdxiKZ3hw2eNH+H+kJo8xxBVkvtRRphIfrD7TUVnPBcR0vEmJCQlzyJeeArx/4D/Gfzg1LAUkerR/xuEveNc+oMoxUAB9fMjE+/JoBGGVD0k9ZgK+evWrdNdtjQCRsAIGAEjYASMgBE4gQgwgRRjjIHf60xsZGIQvxH53cZEQryLGAz3G2KE/u7lOL/lGZdQr4k//vgjVJyxAX4rU44xArziCY+sltT5lNXcvFqesMuNGzd2m0y2ROxA5KJtBtwJ00aIe9riFRzfwLuD39KUZyDf72HD93siDPiN9snzieEdwmQtvg9zPpMmyUWcEmNiF2MIeP34DSGB3y1w5V4wmfOOO+5wRTSkPd/R+c3SpEkTd68QflhnfIC+Mc7COIq+GGNggi6RD/iNoMbkYy3Dkt8T/B4hskmsYxha16m8jHYvySfDe4/IOv6c3H5WjPlwj4PjVJRJ7j7767H1k4+AP8wcvf+3t08+QtZjI/DfJhA+qpnGayVMkIoGeBH5PVS0ahUu8Pp54403XKJzkp1rDhs8VvxeLnoeS2amBGef+I+TEJ0vG/6X38OHssw6Z2YMA44IQ4gZvFTgol8Yg4/YQw89JIhZfCHjCxuzZSJ9OWEQkmsnJwhf6PjCxpdKvpzhYs2seBWS+IJIfeQRIfwRg7uYelXRN0Ll/fDDD26//08sZbQ8//wxBo35R+/P0RSNsZ6rS7zC4IRHAl9M9Ysq/YMDX44x+BHqji/sXFOpUqW0ihQtyQHFbCQdPOcLY61atVwdumQwGN5+t+dgI3wp5X75jQF0XvwQYOk3PKP8M5j8xyKtT1i81QkriCu8/LlzguURJV70hCK/lSmQTQ54odE6efl5OJ8Qa+O9/EWEXqvoCT/JeRFpXfdferpMWbZNeo1e4XIMvfjNItnvCUW31Uu493iwPOx52rz78zIZ5YlHeOQgViFG1fO8obCbjuQE6urtX7phtwz4Y7Ur+5AXFk4tHu2cVSa39By53HndrPS8e2D28vBFUq1ELifsIPYs8gSd9p/OctdEXiXC7y1Yu0vaeqHpMASZtv1mOk8ochlNXrotdB/wPGpxQQn5tfMFYa8GlQvIDXWKuX3wiIVJcn1FyLry1Qnyh5f7iLCBtbxr6zZskRPjEAC/n7FeXh2xWOp73lrZj4QFVJYs+YzwHo70LPGX86/z41afS/79/nVCsyFmI7L6Pf38ZZJab926tTvMc48fsTyX+bwl5cGp9RFCDi9RvJ44lx/wPC95LvLM07xk9E1ffO74jLONmK6fS+pi1hqDA/zY5ochz1WsSJEiTixjNiM/bmDJ/xuEeJ5B/NjH+4jzMP5n4LVKKFF+pOJppc+taD+M3In2xwgYASNgBIyAETACRuC4EdDJP3xvI+yZhkvn9zC/q4lAQRm/SITAQzQNvldifJfk+zHfRYk4wqQmzQvM8Q4dOriB8DvvvFPwYGFgnUmflMOSOh/vdCYjab8oz/dwzZ9JX/g+Skh3viMz4ZLf0IyHMG5xww03OJGIyWMY+7lWfgszMQzj9zvfXzFyCgc9/gmhrBNQCdXMd2vygRKFBU8exhtSYkRU4fqDxuQs+J1zzjmhQxq1gzEPjHEPWCCMkT+YsQyuH5EsUqQRxk2IIKDh/kMVB1Zol/D41G8WO4Fo95JJgYiR0fJE8xuM47y3/V4k2nJK77OeZ0sjYASMwLEigFMFKRAYR9JUMseq7ZO9nQxpvQD/Pw4EGGaC8I88OEDJYCjeMXx5wXSGjbavM70ZLJw2bVrEwVNmxTObHrEAIUUHWP1fOvii5LdIOScQPqiLWUW4y6oxMIpghdGfTz75xG1reDwGIRFccK8OGoLMyJEjhRlDDKpizKThi5F6JeF9o19y8Zhh8JS8SOpxxT9qZgIRtgkGGubJ31akMtHCQNEX/skziIrAwxc2nVWl7Px1R1qHFbO0+GJOnzAGcBFaMDwAGJRlthEfQIx7H8ugsisc+MMAs4YOwHuBQWoVHhEh+dLKF0oGfdWzIFBFaJMvpv73J4PWzNbCm0i9lLSw/8eC7ktq+dD/ZoUdRgj48/lw4clf4Jqzi8pPszbImPmb3W7v4yB929SUxwbO8cKmTQ8VJUzZ67ck9oagfKb0iTVdxIlHriznxJc3vVB1hXNnlm43VgkTmVpdWEoWeUJLO09cwRBlXrqxcsgDh1w/5Fh6wcud1Pj1iU7UQBS6sGL+UL/i0Q6h93bsOeTCy2kOJESUF73+qj3VtII8OmCO3NZzqttV0vMkom+EfcMWrdvtBCTW2386m0XIyBHl73PoQISV5Jgk19fd+w45oWrrnoOu9vdury7PDJkvD/Q/+r5ofFZh6XJtxQiti/uHhSCanAU/pwjr/LOLZjxXee4gkCKmYME6op3L/nz58rkf2nghEWuczx7PDUTioPFj0V/3E0884Z4FPMMQ9DF+kDNbUz2KgnUEt3m2TpkyxT0nEXow+sDzhD5hzGrjGYCgrx6atMMziMEC8hotXrw4NAuU6+A5j9hPOD4MYZ4vC9F+HLlC9scIGAEjYASMgBEwAkbguBFgwuno0aPdZCAVCJiQiOigv5+ZIHTdddc5AYXvsQhEfBfWiUd0nu+Q+r2bEOhM1kRA4fspv+0ZE9CxCyYXMbmTiCMaci3a+fSJ75f8LqUs4ZIZy9CJTbSNmKWh+PHGQbRhjIHvovSb3+ich3jEoD4TrBhLwbhGxj2YRKuRWtyBKH+YCMVkWX6r8xsYsSqYJzjKqSnejTcJ4z688PbBmHDJNTDeoZO1+D2PaBU0WPCbgXB0SU0uZTwERoheyUU1CLZh2yknwHgdY0hMxmOCn47/+GtKyX32n2frRsAIGIFjQYCJF0zCYBye/y+Mw/MsU4eVY9GHk7mN0zz3wcSxkE7mK0pB33Gd5IscA538s4sWmonwZhzLkychz0hyTTDziIFKvqBGMkQV6mQQ1z/I6i/LF6fkvgjFUoY6EVMQ8DTHj7+dWNcRisixRJ8jccIzidBNBQsWjHg8qXaYFaUD2rg/44pOn6Pxpi1efnEwqfoR/qKJVgymR/LYSqq+eB/b5QkOa7ftl2Kex1Ekr5NY2iNU219enh5EFQSlSEY7iDMISdEMD5+ieTJLxgiCFOfEox3v1snGnQk5kvDqiWRbPK8ghJiSR8ShSGXisS85Jkn1FRb+UHf0h32bdh5w3kXBY9pfPOAId4YYoiKHHvs3l4SbUAE7Ujs8i1SI4Tg/Kslj5hdaI50X3KfPAj6/sYpDwTrY5hnKDBB9NgTL0A4sea4RlsJv0Z6NPGt4rsaaI81fp60bASNgBIyAETACRsAIHHsCTPokFxGeK0wgROBhUiWD2YQqxiud3JWIP0z0xLNFRQq+xzLJVL3x+T6MJ8WkSZPcREgGkRYuXChlypQJXRgRLYiSwcTFpM4/66yznHcL4dfoF55IDELxHR8j7B3H8MjAmOhFDs5t27Y57yL20Vbbtm3lvvvuc2GbEZAQvtS4Rjz0OZfJjoRtZhKoGgNhiGOIXUT8wPMIHuxHuGJyZKy/mbVOlng98buexN8qlulxwlIzmYvJXfRHv+8Tnh4RjMliTDBjbABxrnTp0q7/jEeoMWGW+7Vo0SJ3XPcHl/w2YSIuIe2SGxsJnmvbCQSSupdMlCXUOJ8vDE+4Tp06OQ86xrIYWEUsYgKeinkpuc8JPbC/RsAI/FcJbN682Y2tRBojPl7XzOQMJivo5BL6wf8SvHQjTVo4Xv08UdtNsyfRiXphsfSLL30a1iyp8imdbc6sp0ih9rQNviDxhTEpi+VLUCxlaEM9cZJqL7ljzNDX8HWRyjLAnNw1RTov0j6uK5pARHnaiiauRaqPLz98CSX/CQ8xvkDzwGAmWkpCzEWqOx77cmTJIOWLpO2jiCCh3jbR+kQ7vJKy5OqIRzve7QvzdIrUn3zZMwqvf9uSY5JUXyOJQOxLSoTjevCs4TNZpcpRD6p/+zqpnx9qfs/JSG36RSKdFRipXFL74vUsIDQHr2hGO/zojGTRno38iDYzAkbACBgBI2AEjIAROHkIIHIQPo4XockQggjHhoDCZCF+5yFm8NsOrx6NnKFX6Bcn/N8RmQSJ8TvXb9TJpE61aOdzHEEHgYdoGAhEwfBusQo0mo842Be2NWen9se/9EdNQfAiNN3AgQPdxDA8mIjCEc/Z0zDDU4k+Ua8KRPQJ4Q4xjrxIakyM474Rxg/Pf4xrJZoKHmHRvstTjtB63Gc8qfz3jWNm8SfAfUEgQmTViYV4jGHcAz5fDL7Gep/difbHCBiB/yQBxlWZjEDUKsa2eKYTmet4G+kIcNrwC0T0if9N5AOMRSQiihb/n6iDCSinmiU9Ynyq0bDrPS4EGAjWL5NJDQqnpXOIQbjDmxmB402AWVi9evU65j92+GE22gvZYWYEjIARMAJGwAgYASNgBE50Al988YXL3YMniYoRiCbkxWEQR+3GG290OXSJEEG4NQayYzHNeTR58mRp0qSJOwWvc/IQEa44FrviiitcBAwG0cmvo/mNYznXX4brI8IA4ZA1XB1e83gN4cmBUYa+Mpivs7bx8NAJrQza4V1PqGheeDcxaEfOonhM5kSQIjwc+YboF55GfmNgLnv27P5dofvmz9uEFxEeRP57GHbSkY3u3bu7XESE5TP79wnwfiOiC5F2VGhVsRRvOO4tn61Y7/O/32NrwQgYgeNFgJz3+fPnd56x/M/UiRyak+949Sut7RKBihQFiOX+SRhprfdkOt9EopPpbv1H+8psLc1h8h+9RLssIxAiwD9QMyNgBIyAETACRsAIGAEjYASiE+A7Mzl6yBeEhwMDUuSVfeutt8J+O5LPh9BYeBYxmznWiBPUR/g3PIHwFiIcMWHKqUtzCkfvXcIRZlDjTcSsY/IZEao5tcZ1duzY0YXDIyzOgAEDnCikOYqqVavmqiY/EUIS3lMMzp177rluP15WhKVDhKEf5Ciif0ExJ7X9gy19QrxhtjYvDGEOjyE8jAiJR6QWcgkTRr5Dhw6uD8l5EdHn559/3oWBR9AiLCC5ohDfVBBLbb/tvNgI8BlAIPLb1KlT3fsLUVDDzcVyn/112LoRMAL/LQKIx3isElqVSf78v2rVqpXLG328RSL+/xDVi/+Pfm8i8tqRvzs5QywnTyCTLEgRcyqaiUSn4l23azYCRsAIGAEjYASMgBEwAkbACBgBI3CCEmBQmnDhhHBDCFIj18Czzz6rm847nxxCiCmEv0nKVEDSMHD9+vWT1q1by9VXX+1Ow2vn22+/DXnnBOsKns9xPJkQT2INNad1aN26jdcP3kDPPPOMy7tUvnx5oX967YT74trx8uB16aWXuhBgei0INGvWrAkJXIg3DJSlRmTRPmkfWWqep2C4HgQ8+vPEE0+4MH3cG50AijhEqG31BEMMQohA0PIbghKCFzlJMcICcf3mReSnlLr1SPdSa0rqmJYJLmO5z8FzbNsIGIH/DgHyQmM8o9VIpTB27FjdPK5LJpLwXYDws3yPIN0IEyeC/7siddL/3SLS8VNh32kHDhzw0sibGQEjYASMgBEwAkbACBgBI2AEjIARMAJG4MQiQG7Nbdu2uXyy5BUOGrOYCb3GYFBqjJnR3rhIonBpsdSlQhN9jEf+S2Yyc6158+aN2Dz5gHhFy+FLaDeuBc+o42H0Hxb0T8WhWPrhD6MXS3krc3wJpPY+H99eW+tGwAiklQDCf/369d3/Ga0LT5333nvPhSLVfcdz+ddffwlet9u3b3e5wDt37pyi7uA5iycRoTZPNUt3ql2wXa8RMAJGwAgYASNgBIyAETACRsAIGAEjcHIQKFKkiAvDFhSICKmGBw8DVAzqpNYItRXMp5NcXQw+tWvXzoVUYwAqHgIRbeLdEU0g4jih2qMJRBxHmDleAhHt039CxqVEIOK81Hg8cZ7Z8SGQ2vt8fHp7arVKLpU+ffrI6tWrj+mFL1y4UPbv3x9Tm3gNki8tKeP4kiVL5PDhw0kVCx2j7Jdffhna1hU8LLdu3aqbSS4Rq+EWa5tJVpaKgynp686dO50HJpMGUmojRoxwefRSeh7lixcv7k7bvXt36HQmBpQuXTq0fbxXyK9G2FPyBGpI1uPdp5OlfROJTpY7Zf00AkbACBgBI2AEjIARMAJGwAgYASNgBBwBQq2Rg+CXX35xA0LHGgvC0LvvvpsmgepY9zmp9hDh9EU5XVdx7kTYTqr/dswIGAFxwgG51vCQPBY2fPhw9xwmb1qxYsXkySefFDzNIhnhJhs1auSEbkSFEiVKSN++fcOKzpw5U2rUqOFEh8qVK7ucZ8mFMkPcIYcdYoUaedMuvvhiKVOmjBQuXNiFIMNLM5IheNx///0ux07ZsmWdyE1ONTwz1e65556wZ6I+D/1iiZZN6TIlfd2yZYvLt0NePTghiPTs2TNqk3ja0lfeE2qIdAgoGuJT98ey5B5j5O5RIz8R/4vNTn4ClpPo5L+HdgVGwAgYASNgBIyAETACRsAIGAEjYAROKQLVq1cXXsfD8NZ5/vnnj0fT/1qbhKnz24m+7e+rrRsBI5BA4Pfff5dChQoJecn+bcObs1mzZi5PHCIE24hAeEMGc48hHDVu3NjlsiE8KGW+++47J+6QMwbPDwSQ2rVryx133CE//vij85xEACEH24wZMwTRKJLhQYTQQt42DE9PcpqRK2fFihWyY8cOlz+OeocMGSKay03rQtj6/vvvZcKECc5rddasWe66EGA0Tw2eTR07dpQ777xTT3PLbNmyhW2ndCOlfeW6eDbDGgFs5MiRrq/0o2XLlmHNf/LJJzJs2LCw/EEU0Hv20UcfSfv27cPOSW4Dr882bdrIc88957x4uS+DBw+WadOmRT0Vz7ZjaenTpw953OJFpu3fddddx7IbJ2Vb5kl0Ut4267QRMAJGwAgYASNgBIyAETACRsAIGAEjYASMgBEwAqcCAbyDnn76aedBghcOokgwrBy52RBqMDxsEDmqVq3qPD0QblLjPRKN7eeffy5nnnmmPP744070adCggetfjx49Ep2CsLFo0SK59tprpVSpUpIzZ07nzULBlStXuvJjxoxxy+7duwthRgmtSd0YgkY0GzRokNxyyy2hMJfjx493bb3zzjsu/CVeLvQJUQrRKGhLly51Xke1atVy3kR169aVc845R9ivRp4bOJYrVy7sRejFtFhK+oqnFCLgU0895QQwhKEmTZq4F8z8hmiGmNOrVy8nfPmPIZLBi/uXGnvhhRfc+wgPLQSnN99807GJVhcC4bF88b4npxAvRCJtO1r/bP9RAuZJdJSFrRkBI2AEjIARMAJGwAgYASNgBIyAETACRsAIGAEjYAROKAKEQPvwww/l1VdfFcKNsWzatKkgruTIkcMNhpNv5o033nD9fuKJJ1w4t65du7qQY506dZLNmzfLxx9/nOi6vvrqK3nllVcS7WcHggmhNYOGEHH22WeHeeYgtGzYsEEIw+bP9ZY5c2Zp27atdOvWzYWZQ2BQD48rr7zSVa25yfxejAzwY+QcimQc55rhooYYhTcVQpMaodkwhJ+glxUeRs2bNxdErjp16ghCG3V+/fXXerosX75cNFwewhyeT3gWaY6eUMEUrqSkr5H40Bwh/zDyUamX1MMPPyyXX36586gib1/QzjrrLOcNhIiSVB684HlsU3706NEurxRhV7m3SZl6eCVV5kQ69l/zEk4JWxOJUkLLyhoBI2AEjIARMAJGwAgYASNgBIyAETACRsAIGAEjYASOEYGdO3c6IaR3796hsGL16tWTChUqCDl7EFoQHCh33nnnya5du+Stt96STz/91IVao5uIJnjyICIFhQGEE0KZRTI8fyLZvHnznEjkP6Y5axBV8LzxG15Q9PWKK64I7e7Xr5/z9mEHAg1GOUQpwobhpYJF8gBiv+YZ8vcRQemMM87gcMgQMzCOXXLJJaH9rFx99dVC7h6/mIEXDiILhgcXXAmx9swzz0jGjBnlgw8+kJ9//ll+++23UGgzVziFf1LS1wIFCjjPLTx5LrjgAilYsKD8+uuvoRbxnEEc++abb1yuPu5PNCMnFLZx48ZE74Vo5wT3Fy1aNLjLtk9yAiYSneQ30Lr/3yDAbIaffvpJhg4dKhdeeKGbFXLZZZcJSfPMjIARMAJGwAgYASNgBIyAETACRsAIGAEjYAROTQJz5851F37RRReFAJCTBnGH/DSIRH/88YcTCcqXLy+TJk1y5fDWIW8Ntn79erecPXu2G3dyG0f+4AHEKyWGNxPiid/wIMLI5+M3wtzhfbNv3z4X5oxzGf+6/fbbhRxv9B/vIkStW2+9VcinQ0g67KqrrnJCjb8+XccTBiM0nRr1BfuF0INxLGjk5cG7ClGN8HlTpkxxXkKUffHFF2X//v0udNs999zjjnP+9ddf78K4jRo1KqK4hhjHfVFDvJk4caJuhpYp7St8EAfxYKJOvLZatGjh8gMhhO3du9flGercubMLixdqKLCivJRf4LBtnqIETCQ6BW784cOHnQJ/Clxq3C5RXVrTGl80lg4xO4F/LGr+dWYpkETPzAgYASNgBIyAETACRsAIGAEjYASMgBEwAkbg1COAUIEFQ3tlyZIlJKDgpdOwYUNhHAsxBqtcubLzOGG9ZMmSTohBjImHkesn6OGzatUqV7V6FGk79G3WrFmCQIX3E3bxxRe78/Ea0pBzN954o5x//vkuhB4eO3j94NVTqVIlrSpsmSlTJrdNHho1vIjwZPLb2rVr3WZwIjaeSOQ74kXYOQwRBiOcXJcuXVwov2C4PeqB7bRp0yKKRAhd6olEXVmzZmWRyFLSV06mTbyPyGWE5xB9/fHHH2Xq1KlCODpEQfInIdJpOL/Fixc7MQkvNDym8NBS0QzGZkZACZySIhECADE5WT7wwAMRXetiKaMQT+TlgAED3IPO/8BLS3+JdcqLeJ7EPv0vGv98cXPln8zkyZOjPszjce36D4266tev76pkZgj/QOGMOysvf0zWeLQbax2Ef129da8rXiJvVu/LRqxnhpfbte+Q7PReRfNkCT/g21q2cY8Uz5tFMmVI59t7dPXQ4X9k1Za9UqZAtqj9iEc7h//+Rzbu2C8Fc2WW9OkiX/DGnQdk74HDrr+RyvztgVu+aa/ky55R8mRL/T/d5JjE0tejBEX2HTwsO/YekkLetZkZASNgBIyAETACRsAIGAEjYASMgBEwAic+AQ3dxhhVkyZNXIe3bNkihBSrXr2620YsYKIxpuXxwsGDB2OMa82aNWG5etwB70/fvn3l3nvv1c2wJQIOXj9BQ7ghj5E/r83gwYOlZs2aiSaqq2jlz1NEfYgniB0Ywg6eMnfddZfzjmEf+X/IuePPOcR+NQ0jR64lNUQoPInIm4MQhRGCDStXrpxb6h/tV7Zs2XSXW+o2Y3H0i5B0w4YNE4QxjP2wJ/dPJGvWrFmk3Yn2paSv3L+XX37Z3c/GjRu7utjHvYM5xjZeRu+8847b5g+iEQbL2267zd0b9SDCo8vMCCiBNItEfEBI3hW02rVry++//x7cfUJsk8yLGI4Yro3BWJzsj6UM5U50U5fUOXPmxKWruK8isKE+RxKJcGnFNZMHXTDOZ1w6cAwqIXarxu7cvn17zCIRSe3WrVvnZm7oP46kuovbqhoxV3n5jfeovk+ZgfDDDz/4D0dcf+P7JdJ79IpExxpVLyRvtqgmenzEo+fK6QXD/wnWe2G83HdJGWlxfgl3/teT10q3YQtl9/7Dbjt75vTyzLUVpXHNIrJk/W5p8kZiV1ltuE2D0tL+8nJOSHl68Hz5bkaCW3O1ErnkuWYVpXKxBLdhyo+au0m6D1/kBCDauPm8EvKwd65fkHr/l2Xy8diVri+Fc2eWR688Q6466+jsFwSbtLaDgNL928XyxYSEf6D07a76peWhRmUlQ/oEsWjB2l3y6Odz3PVznL680ryqnFP2qGvzN1PWSddvFoS41auQT165uWoisWiP1+fr3/rTE5P2eHVUcVypE0uOSSx9Tagp4S/iWhfvPkxckuCKnS9HJmnvXdf1dYr5i9m6ETACRsAIGAEjYASMgBEwAkbACBgBI3CCEWAwH8HnvvvuczlxNBQaIcdIWcC4LKHH8MLByF+DuIMXTs+ePZ1w0KNHD+nfv78bt1JxRS+TycqfffaZboYtyX0TyVq3bu1EooceekgIb0Z+HAQdxBTsq6++kueff96NZemk6ObNm0v37t3dOCxlEZUQmjByJtFXxpLJRUS+HCZNEwLulltucWWCfxBzCEu3YMGCkDcSOZlI3/DII4/I+++/70SsZ5991nkGcd2UJf/S22+/7cYtYdahQwfBKwvha8aMGfL444+7+qib8U1EIcLNIb7gzcW4KKYiVLBfsW6ntK+M7eIh9L///U+4FnIj4aE1aNAg12Tbtm2Fl98IfQdbyqrNnz/frfL+MTMCSiDNIpF6OPChxXVRjRiYZsefAA9CYmXqLIJ/u0fk1eGfACLSySoS8c+Xf7B4k/EgjdX4Z4HLJ7FTkxOJyEHEPzs1FYjwHsKLSEUj9SgiBB3nBF1j9Xz/Ek+bnnfW8O+SrJnSh23f2Wua/PzY+SHxI+ygtzFp6VZ58st58sL1leT/qiX80xgxfb10GjhXinjeQDVK5ZIfOp3nTsOb5arXJkjHq86QS6omfHnIlTXh0YJwM2X5Nhn6cB3J7wkTr45YLK37zJBh3jZCxbw1O6Vdv5ny4GVl5RZPnGK71UfTJHe2DE6goYFBE9fIuz8vkw9a1ZBaZXLLUE+86ugJNUXzZPa2E8SZeLTz+ndLZPKybfJ1+zpSKn9WmfPXTmnZc6qUyJdFbjq3uGzfc1Cu7TFJrjunqHzcuqZk9jyePv9jtdz+4VQZ3qGulCucXWau3CFPDJorPW49UxpUyS9rtu6T+z6eKS97ItjLN1VxvPTP818vkBxZEj+CY2GSXF+1DZZ4g93jMS9dIKv88vj5HtuMMnrepiMMs8gFnohlZgSMgBEwAkbACBgBI2AEjIARMAJGwAicuAT69esnCDN4tWB169aVb7/91glCjMUhaBCOTI3yd999d8jziPxFlAsKRJQn7BmvlBj1EL3owQcfdN5MtP/UU0+FwqyRA4kJ2OQjKlq0qJtQTn9UWKE842KcjyHS4PHDGCZjzBgCDtcRDLPnDh75g9eO5mBiF+H2CA9H+DgENIxJ7prKYceOHbJo0SJR76MhQ4Y48Y121RCzNMQc9f38889CO2effbYrgrjCvjJlyugpqVqmtK8IfS1btnST02mQe/r5558n8pBKrjN4pCGkRQuDl9z5dvy/SSByXKdUXCtiBO6H+nr11VddLbyB+RC99tpr7oNfokQJ90Dze0Xg7YKyyTFeN9xwgxsQ124QK5EHBw9ABvBRkHlDq7FNG1988YXgckcZlsScfOKJJ9w2g/aR3BNRiHG9pF2EjYULF2q1yS5xXbzppptC9fNgwwsFQ2DA5Y8HGiHFEGkee+wxl/CM4wz+02fiVNIv+sc2qjnugWo8cPWaeJDCFS8nLJY6UIpx1fS7GhKHslGjRq7fMEWhp79Ycv12haL84YFLXRizAbgeYl/qe4DZAjCGNQ9TEtpxDqHrYAQrmKnpeWl57+A6Shv63uFe63sPLyH6yAvVnSXHuYf80+WfCPFJ/ZxR7LmXvIhNqnE8ifuKQIR16tQp9E9PryW45B+z37h+2ual3kP+46wHzwke1+1snjcOIof/VTBnQpxWyuD9Qli2D0Ym9gDUOmat2uFWrzm7qCD48Lr5vOLS755aUtgLVZYxfbpQ/YgPGCHMtE1CrCGq4EH05NUVpEKRHE4kYn3LrgMyfuEWd86309ZLxaI5pE3D0q6NuuXyStv/O93zGlrljvMHIaZlvZJSv1J+yemJKrd562efnkeGeGIRFq92aPuNW6q5/iCq1fbaQHBD6MEmLtnmlp2uKi8FPJ45PSZtGpZx+wZOTPA+IqRe20tPl8vOLOgYlfbOv7hyASceuYJH/uBtNGzqOnnz1mr+3W49FibJ9dVf6cHDfztvpcvOLCTFvHB+eGtd7nmWYWu2JVybv7ytGwEjYASMgBEwAkbACBgBI2AEjIARMAInFgHyzDDuyVga4cLGjRsnZ511lusk65deeqmkS3d0mBdvoy+//NKNcSHY4EHDuGI8jbFF6kUMYgyWcTK1+++/3wlEGuIN4WfixIlunG3lypVOpGHM1t9nxuWYII2IQ36j0d64a7VqicdNtA2WjN3htaTjsexDvOFcciZx7XDQEHLnnHOO6xf5jzDELrgiZhFabu/evc7jCt5qCGiMH1MffSN0m3pHaZnULlPSV/JJEVaQEHJ4A8E+udB2RD3yexGRt54xUMbhzYyAn0Diaez+oylY50PEg0qNQW8SYPGQwPWNlxqD9LwYpCexFsou8SJRMflQoxwT1owPJ8dxp8QlEpW5SpUqToDgQ/Hbb785V0A+FNRPbEXKUBcD6nzwcbdkH54h5B9CiKAONb9SjGsl6jMvFOykjAcb/cWI90j9CDyIIt999537wGk8T0LvIWohoHA9hBmjj8pF3QKpC6EJ0QSXQ64ZlR1DHcblkhfXhFgUSx2EP6Mdlhiulu3bt3fr1EmSNV6IHYgb9CWpfrsTo/xRrzIO0zcEGgStSO8BjpEEDsGK+0P8TBjxwnsHt9hI56XkvcM/GsIJ8kDEuE+aUwk3WGZY6PsSsQ7jnxYPTN3PejTOxAKF20svvRRKCkgdfBZ4JWU6Y8Ffhr7xT4aZF5j2VcsgwOq90X3Rlkc0v9Dh0xKipbntgjkzy/PNKsk9fWd4XiT5nXdOqOCRlZqlEzx0Hv5strS+uLRUKZ7T5efxh1ULnhPcJsQZVrFYjtAhhBVEoRVeiDVs6YbdUrVETknn6yBtISQRQi5zxnRCiLdWF5UK1cFK9ZK5ZKrnoYTFox1EoUurJXhB4RmF2DN0ylonrlxeI0FQ0ZBziC5qynmll38IwyvH75lDXeMWbpaangeUGjmBCEeH5xU5mIKWHJNY+uqvM5Pn8dTighLSc+RyKeIJhPk9gevLSWtcEQQsMyNgBIyAETACRsAIGAEjYASMgBEwAkbg5CDAWCsvvzFWxpheJGN8lte/aSoEBdtgDDRoiDUq2ASPsY13TenSpSMdiriP8UPGehlDRZjyGx5MkSxSv9hXrFixSMVD+6LVFyqQhpVodUfqKyEAo4UBTK4LjC0iIDKGbmYE/ASOSsz+valYZ5Cd3D76IuSY3xAkiCeJ6qrGIDhqM4PwGAnKCKuFNwmeQwhGlFeBaPbs2U4pZxCdc3A59BuxNhl8Z/AeQ0zhHBRe2semTp3qlvoHF0JcDTV/EoowCnxy1qtXL1eE8xGIaAOx45dffhEU8Tx58sjrr78eEna4NowHd9DI4YPHSr169dyhESNGuKUmnENcQgjTc9966y0nsPnriVaHvwzr3bp1c7tQkanz+++/D22zkpJ+uxN9fxCuNGkbHkPEyiR2pxp8EPYQUK644gpBPIMR9wjRjfuHBfmn9r3DfVGBiPvOtrqXBmOt8o+EZHkTJkzQ7kZc8p5jdoHGH6X/eH7x/tH7h9cW15OUBa9Ry+JhhVDEZwOvIr+pm6x/X6T1uV6YtKqPjwp7+fPscM6FFfPLDV4+mkcGzHaCSLAewrqRf+iPRVvkpncny7nPjnXh56g7Vlu1OUE4wcPIbwgjyzaqSOS5HecOF0rwVMJWb9knG3cccOvBOhA7Fnt5kbB4tOMqOvKHaz3/uXHyipefiBB3mj+JEHvYmz8sEYQiBKC+YxOeZ9E8cnr8sNTlL7r3kjLuXP6QXwmh7lZPuIlkSzckzcR/TrS++suw3s7zbsLD7K7e0+WaNyfJZ7+tdnmQ/B5mwXNs2wgYASNgBIyAETACRsAIGAEjYASMgBE4sQkwJoVA1KRJk2PWURWeVHw6FtvRLg5RiQnojGcei35oG/RHrz9a35Lar/VoHcdqG9GJMVFtN6k+2rFTi0BiSTeV148niF/1DOYkQtlFqeTVoEEDl9AM9zgGvhEPEH2I6Yh7JLlsCCHHB5zBcozjN998s1tXQQdvI7/h5oghPmB4jqhIUb16dScSBD082rVr57yGOIc+4gVE+LvgAL2r0PdH2ybcHEbfEcEwPFhKlSrlQrfhFfXGG2847yeO+d0f2YaTxtqk/4QsQ2RC4IIPpt5OhDRTVrg5qkWrQ4/rEs8c6sXUrRDWePWo0QdCziXXby2fkiWunHh3qXE/cfnEswpxD/dQTEVDLZfa9w6CIwZfdU9FeNP8PwhzaiSp87uS6n7/knus70ESwanHD66w+j7zl09q/ZprrnGCaLCMhprTpf84YRRjsZL5sspT1xwV5zinXKHsiU7Fk2Xsgs3y0rBF0u3Go3FrtSB5eJp64eYmLN4iv3nh4T77fbV87YV4+7xtbZeTSMtFW2q+HecR5HmzqO3ef9iFa2Ob/Dhs+43yWI4s6Z2wwbruYx3b45XR+nWZlnYSak342//eWrJ55wEZM3+zl09ohrx125leXqaCLlzea7dUlUcHzJEhf651Yds4o4HnjeP3LtK6vvpzjfQZs0Leu726cE+wRet2S//xq6TXXWe5cHRa1r9Mjom/bLS++svsO3hY7vDyPO0/+Le82aKa5MmeUX6ZvdHll8qZNaML4+cvb+tGwAgYASNgBIyAETACRsAIGAEjYASMwMlBgEF/IjAdS/NHEqLdY70dvFbNqcRYst+Od7/8fQmuH+u+BdsL9se2jUDcRCIGzJNSrf3JsPxuhdmzZ3fh3fC+QJjAE4cXHi+INXhtqGkSNRKWEcasTp06esgt06dPH7Ydy4Y/rJwmQtu/f3+yp2q//G3642jisaJ5mRC+VNwJVpwjx9FQXH5G/j741V3KIKL4xa5odQTb8uc68rumpqbfwbpj2cbLTA0hiliohLqDzUUXXaSHEi39XFLy3tF8QXpftWL/9eo++pCc+Zn53T1T86DVUIXBNuFADqRIFu2cYFlCuuEplJwhrnRvXkXu+HBaVKEgixfujZBkvMi/U7/rePl22rqYRKISR4SR9dv3CzmK1JZ7oeYu8vILYWULeTl/tiV4HOnxtUfy5OA9lD7daZIvRyZZu/2okEk58gRV8sLWYfFox1V05I96DtXzGK70vKHwukEkwq6sUVhqlc4tk5ZuE8LPnV8+nzz15TzvOsJFuHGe+Pb04PkuH1ODKkdDur3v5YHievA80pBv1Pv7oq2eIJZBGnplk2NCebWk+qpl/vT6Ssi+EY+eK6cXzOZ2k9MIhv/zBCtyPZkZASNgBIyAETACRsAIGAEjYASMgBEwAkbACBgBI3BqEjg6vf84XT/eLXjM3HHHHc7TZ+bMmSFBhRBqeChheHG8/fbbzoWQkF+ENbv66qvT3OshQ4a4OugH4hSmXiduI8ofcgZh6q2CaIN3CN4+1EV+IozcSXgnESIuJVayZEnHgXNGjx7tTiU0n3oCkbcopVaiRIlQneqhhRBHn9UjKq391j4Rui0pI6wfAhGG5xRh4Vq2bJnUKYmOJffeUQ8t8hxRFiPnEtfbvXv3RPUlt4P3KfmqsG+//TZUXMVL3REp35Ae02XZsmVdP3SbJWHmeOHpxNJveEBxTrytTtm8cvuFJYXcQ+QBUnt5+CJ55qv5uumWhCYrVzhcDAkrENjQfDsj5yR42HGYcHWIRiqqsMRLiTw9aj/M3BDKgcQ+xKDvZyR4wLGNZ8zIuZvkjMIJIlE82tnnedlc+eoEGT0v/H2LB5aKVqu9HEuEikufPp1cXcvLm+UJRvs8j6ZRXl/KFznKhWsk39P9Xog3cgH57TRvI6MnLlGPvjj+8+wNMtwT37DkmMTSV1fRkT+Ux7J5eZf8Rr6n3fuPcvcfs3UjYASMgBEwAkbACBgBI2AEjIARMAJGwAgYASNgBE4NAnHzJELk8YfrqlWrVih8WFIoERPwtMHat28veH1ouDHqIBEXCcgIMUeYOrxPGOhnwJ68RXXr1k2q+mSP4bGEQEFOIdrFo0QFoKROxoVx8ODB0qNHD1myZIksX75cZs2aJZUrV3Zh9ypWrCiIE48//rjro4ovSdUZPEZIM/IrIeA0a9YslKuH8GtFihQJFk92mzidd999t5Dj6PbbbxdCy+G1gvD00EMPufPT2m/uGTZ8+HBXv+Zucjt9fxD91Hjv4KUDz5RYcu+dAgUKuNCD3AfeQ+eee27oPcl7LTVG3iHEJ+41Rtg+9UajfsIFPvvss0I4wgEDBiTZBDmm/F5iCHeEmcObSEU8rUBzKel2UsudnuCC8OK3Ap7AU/GI541/P+sPNSoro+ZsklWeCKJW3cu/Q1i1gp43T6MzC4nn0CPfTF3n8us8ckU5LZbkMpMXYu5hr+yb3y+RSsVySmEvj1DXoQucF1K9CvncuTfVLSa9fl3u9pO3Z8KSrU50+fDOoyIoYsutH0yRXqNXyKVVC0rfMSu90GmH5bZ6CQJMPNrBY6pC0ezy3NcLXJLEsp7HzfSV2+WTcSulTYOEhImwGPDHXzJ1+Xbp3LSCbPVEtXd+Wua4NqmZ8HlESLr9w6nu2mp6Hkf++3DuGXnlDS/cW9CqPDbK5X9qfKSO5JjE0tcfPaHtXU+I6tu6puA1hLX/dJZ0vKq85PY8zUZ5YhhiXKfGZwS7Y9tGwAgYASNgBIyAETACRsAIGAEjYASMgBEwAkbACJxCBNIsEukgNwKLijvw0/xEGtoLgSJo7GPAnQRjeAYhuGDkEiL8nAohiDiIGwgP6n3SsWNH4RXJtC3tG2Wi9eOVV15xA/P0nb7grYS4cPhweJ6UYDuNGzeWjz76SF566SXXL44jRPTv398VxXOIHDz0d/HixU6ESak3EWIDIeKok3w9CFjNmzcPeSkF+xTLNqIYYdjwxlJRBg8eBDcs1n4rz2Cb5Fpj8msAAEAASURBVHJq2rSpCx3466+/uveEltX7wjnkm/rggw9ccj3CDJJXqUWLFi55mtYZ6Tw9Fut7Z9iwYe69gzeXMuzSpYvzQtu6datW54SB0EaUFbza8EJ6/fXXXQnEOr/4d9dddzmvL0QpPMhiMULVkZNJ+QdzEdEeYlJKDLGndZ/pYac0ql7I5aNhp+cIE2ZZMqaXV26uKje/Nzm0/4rqhV1enpc8jyI8XrDsmdNLl2srutBzoYK+lQgfcWl1YSlZ5IU6a9dvpitZrUQuecnLf0QYOYz8O+TJeWHoQmn8+kTXBqKQP1xerTK55ZEry0nPkcud4ITY1O3GKkI4OrV4tNP1+sry7JAFLg8R9XK9eFk9cFlZ10xmT/Tq2aqGPNB/pjR+bYLbR98I2YdQhY30xDbNsRS8B5OeuyiUR8kVjvInFibJ9XWTJ2AtWb/b5XLCA+zr9nXkSS8sHmIbxrUhDrasVzJKL2y3ETACRsAIGAEjYASMgBEwAkbACBgBI2AEjIARMAKnAoHTvEHqf06UC8WjBY8Sf+4af98QN/AewbvInxPGXyY16whCiEQIF6kx+kSuHH++HK0HIQIPK3/uIj2WkiXh0vC+SWs92iY5gdatWxeVZVr7Tf28VOjRdoNL2O/YsSPqPQ+Wj7Yd63sH4dEvVkWrz79/xIgRzmMIkWjixImyb98+lxMr0v3mPK4bS0k7S5culZ9++kkIVTdu3DgXupAcRP9GiDnXuRj//O1dy19e7hoknWJ5s3geRYnF3liq2rXvkBNPEHiiGfl/iubJ7IVjC6hYR044/HdCX0p6uY6idSNe7WzaecDzosoU8Xq5veQUwqMnv5df6N+0WJhE6yu8VIzTPhKqb9e+w4JnmZkRMAJGwAgYASNgBIyAETACRsAIGAEjYASMgBEwAkbghBKJ7HYYgRORQFAkOhH7aH0yAkbACBgBI2AEjIARMAJGwAgYASNgBIyAETACRsAIGAEjkFICaQ43l9IGrbwRONkIVKpUyYUVLFy48MnWdeuvETACRsAIGAEjYASMgBEwAkbgpCMwc2ZCuOqTruPWYSNgBIyAETACRuCUIlC9evX/xPWaJ9F/4jbaRRgBI2AEjIARMAJGwAgYASNgBIyAETACRsAIGAEjYASMgBEwAkYgZQQiJ/9IWR1W2ggYASNgBIyAETACRsAIGAEjYASMgBEwAkbACBgBI2AEjIARMAJG4CQjYCLRSXbDrLtGwAgYASNgBIyAETACRsAIGAEjYASMgBEwAkbACBgBI2AEjIARiAcBE4niQdHqMAJGwAgYASNgBIyAETACRsAIGAEjYASMgBEwAkbACBgBI2AEjMBJRsBEopPshll3jYARMAJGwAgYASNgBIyAETACRsAIGAEjYASMgBEwAkbACBgBIxAPAiYSxYOi1WEEjIARMAJGwAgYASNgBIyAETACRsAIGAEjYASMgBEwAkbACBiBk4yAiUQn2Q2z7hoBI2AEjIARMAJGwAgYASNgBIyAETACRsAIGAEjYASMgBEwAkYgHgRMJIoHRavDCBgBI2AEjIARMAJGwAgYASNgBIyAETACRsAIGAEjcJISWLlypdzV8mYpVCCPZMqU6Zi8aIs2advMCBiB40fgtAMHDvxz/Jq3lo2AETACRsAIGAEjYASMgBEwAkbACBgBI2AEjIARMAJG4HgRQKRpeOG5ctc5p0mbC/NIoZwZjklXNuw8JB+N2yZ9/vxHRo2bIKVKlTom7VojRsAIhBMwkSicx0mxdfjwYUmfPv1J0VfrpBEwAkbACBgBI2AEjIARMAJGwAgYASNgBIyAETACJy4BvHnO2DNWnrqywHHpZNfvNsnibBdJn/6fH5f2rVEjcKoTiGu4uT179sj06dOFZaw2ZswYef755+Wbb76J9ZRTutycOXOkUKFC0qZNm/8Ehy27DsiS9bvl0OHUO7Tt2ndI1m7blySP9dv3y469h6KWof1lG/fIP0l0Ix7tRO2A78Du/Ycdk/2H/vbtDV9d513vX1ujX3Msdew7eFg27NgfXnEqt5LrTyqrTfFpew4clgVrdwnL1Nqxei/Eq53UXqf/vHi8F/js8Bnavuegv+qw9YOH/5ZF63bLvoPR39thJxzHDT5/k5ZsT9N76Th235o2AkbACBgBI2AEjIARMAJGwAgYASMQM4Hh333vPIhiPiHOBfFeog9mRsAIHB8CcfEd/OOPP6RLly6C4KNWv359eeaZZ6RevXq6S77++mtZt26dNGzYUCpWrOj2c27Xrl2lVatW0rRp01DZf2MlUvv/Rjv/Zp2rVq2SnTt3ysSJE2NuBs+jjz76yJVv0aKF5MqVK+Zz/QXf+H6J9B69wr/LrTeqXkjebFFNxszfLPd9PENeaV5FGtcsElau86B5smv/IXn7tjPd/pkrd8jjX8yV5ZuOCop3X1xaHrjsdMmYPp2c02WMIHREsmolcsmgB2rLXk8IeHrwfPluxnpXjP3PNasolYvlDJ221Bu07jJ4nkxdvt3tu7RaQXnx+sqSM+vRt/77vyyTj8eudO0Vzp1ZHr3yDLnqrMKhOuLVjlY45M+18pTXJ9r6tfMFutsNrsMEjmpPX1NRbj6vuG7KnL92SodPZ8uqLXvdvpL5ssrbLc+UikVzuG0G6JOrg3O7eNwmLtnqzsmXI5O0b1RWrq9TzG3Xe2G8IN4FrU7ZvPLJPTXDdifXn7DCgQ19vwR2S/bM6eXP5+vLTk/Uq/vsWLnB69dzzSqFFft68lp58st5Mrd7Q7cfsespb3v8wi2hcg0qF5Dnr68k+b3re3TAnND7JFTAt0J7tHus3gvxaKdBt98E8dNvNUrlks/b1vbvcuvR3nPJvRc4OZZ2Pvt9tXs2aH9g3/WGypI3e0bXPuJQt2GL5Ntp60Kf6zYNy8gD/3e6pE93mivj/8Nn7oORy12dPBc6XFHOf/iYrK/dtt/r8xLvPVReqpc8+kwJNv7+Lytl9qqd8n6rqsFDbvuAJzbd1Wu25MmeQd5pWSViGdtpBIyAETACRsAIGAEjYASMgBEwAkbgeBLYtmPPMQsxF+k6CW9HH8yMgBE4PgSOjpSnsv3x48c70YfTy5cv70ShCRMmOMEIMejnn38WBCPsnXfeEcp/8sknIZHIHThGf453+/G4zMsvv9x5axUvflQ4SK7eQ4cOyUMPPeSKXXHFFakWiaigTIFs0vPOGmFNZs0UHvqu08C5UrNMHimeN0uo3N8+Fx08cpq/N1luOre4Ex1yZMkgM1Zslwf/N0uyeXXde0kZGdK+Tsir57GBc6RInizy8OUJA8WZ0icMKiMQTVm+TYY+XMcJAa+OWCyt+8yQYd42wsdOr512n8yUM4pkl9FPXuCJVIflIa+NTl59791RXdKddpoMmrhG3v15mXzQqobUKpNbhnriQ8fP50jRPJm97Tyu//FoR0Hg5YJARFtBT6C2/WbKgUP/yLAOdaVEvizy+6Kt0s7blyVjOrm2dlHnfXHHh1Ol+bkl5L5Lyzjvqy5fzZO7ek+XMd71MdieXB3chns8RqULZJVfHj9fcmfLKKPnbTpyzVnkggr55It2teXw30ddqv7xTrrjo2lSvmh2vQy3xBskuf6EnRBl48sHz5Gc3ntALSgZfDlpjVxUKb9cUrWgFkm0fMQTgejncI9dcY/dik17nYD4yGdz3HvssSbl5UFPCMM+/2O1DJ+2Xgbcf3aonqyZ0h2z90I83nPcRwQZxNnKxY8KGJkzJHYOjfaei+W9EEs7w6aukxe/Wej6wvtnsycwdvx8rnQeNNd9roD83NcL5DdPwPvorrOciDt79Q4nKOfJlkHuuDA83vC8NTvlfu9zi7jH55g+nIj23YyNMvevXTJ+wVbJ5ROdg319efhS9yzKmSX8ORksZ9tGwAgYASNgBIyAETACRsAIGAEjYASMgBEwAkbgeBBIPKKYwl60bdvWnYF4MXPmTPnwww9l2rRpctVVV7n9999/v1siGCEQYZ06dZKLL77YresfBng7d+4sJUqUkKpVq0rfvn31kBw8eFCee+45qVu3ruTPn19uueUWmTx5cuh4jx495Oyzz5bu3bs7jyTqQJzyW7T2o527e/duefLJJ6VGjRqSKVMmOf/888P6RB9oc9CgQXLNNde4ft1zzz1CODi1uXPnyrXXXuuuiT7dcMMNsnTpUj0sK1ascGHj8KrS40uWLHHHx44d6+q/9dZb5dVXX5XTTz9dXnjhBfntt9/ktttuk3vvvdeV0/6/8sor0qFDB1cPbPv37++OU1+dOnVCbXJfnnjiCbedXP9CJ/lWsnneFqXyZw17FcyZyVdCBI8evFn8QoO/wJINCTMDrvOEj0K5Mjth6Lzy+eQzb9C+XsV8rigeMtpO9swZJLc3CKvbCEZ4zOBB9OTVFaRCkRxuQJl1PGDUm2Tysm3OU6mL541DO2ULZpOnmlZwnjoq0CAYtKxXUup7IgRCxW3e+tmn55EhnliExasd6iJ81YP9Z0mL80tIozMLsStkm3YecN5ObT3PijMKZ/eEofTSsEoB9+r1a4L31sad++Uaj9ndF5dyzBiYblqrqLvmLbsPSix14NGB99ZlXvvFPBEP75nLPU8wbM2RkH2Ie8qaJeHBECTuvCh8MD+5/oQuLpkVf1usl/RefqviiSC8n6KFxuN9NsW714hI5Y6ww7PqHc/DqnWD0k5k4D2q7eTNnsnzVjsttM1+BMNj9V6IRzs79h50iKqWyBl2HXin+S2p91ws74VY2unleRe28TjjUYjgW9oTkj+9r5Z0b57gWcN7E0+mFzxvsJqlczvRs7b3GRvzVD25sW5isXv+ml1ysycgD/Q8oooErsd/bZHWe/26Su7sNUuavTXNE4TnyZh5Rz3LXh2xTF7/bpm85r1ueme6NH93ulBeDe+lLoMXuWN3954tv8w+6tGnZfzLLyaslZkrd4r31olqP3hC0gyvTFIiEiff03eO9B2z2hPXFsj1b0+Thz+dJzwnHxuYsN2y50zvPZ7gDUn51Vv2eQKy9/+lx1RX/sVvljjPSo7Rb+r73mv7lvdnhK6D/a0+SmDT9pO5rl+UNzMCRsAIGAEjYASMgBEwAkbACBgBI2AEjIAROLUJHJ2+nwoOu3btknnz5rkzCRmXPn3CTOl06dI5QWPEiBGyaNEi2bFjh+zbdzR/yt69e4WX3/AuUtuwYYMTQWrXri3Vq1eX++67z4keOXPmlCpVqsjgwYPlxx9/dIJJpUqVZO3atTJr1iz30jr87bHPv+1vP9q5HTt2lN69ewtt1qxZ04lSCFNFihSRK6+8UhYsWODaQ8RR+/jjj4VwcN99950Tti688EIXGu6yyy4TWJF3ifB6y5cvl23btgn7ly1b5tqgDo6PGjVKEHYIKafXhBCFwVH3ux3en0j9h9/vv//uhCv4+K+dfFH79+9Ptn8ZMkR/awRn9gcHSV/2ws3d9M6fLoQboaKCVt7z7ME6e+HBCO1Wt1xeN3CM2BOrabi1isWOnkMIOcSBFUdC2LHEE6GAT8SqdCQs2+rNe52nE14WrQLiR/WSuTzBZpvrSjzaQfDC+o1bJbu9gegHLysrQ6ckiFDugPdHQ24Rmspvo+Zucpt4YlEPQpjfxi3Y7MLWFfCuc9uRXDBJ1ZHJ8zRpcUEJ6emF8mIAPr/HBk8d7GIvRFjQEGDe+mmp571U3POuOuoZRrnk+hOsK+q25ynif08F308PeLx6jlzmPIM+aJXgAeavC3bneyIjIdxyZ80oDasWkDyehxSCSVA08Z/nX4fvsXgvIMDFo53NnvCC4W02aOJsJ3JdXDm/E8UI16iW1HsulvdCcu3w/iCnWGvvc/7MV/NlrPd+LJ0/mzQ9u4jzfqMfq7zPGobATDjK+d5n7ixPLLrVE0sRZIOG11xqbPCkdTJi+kapWjyHJ8IWkJ89UeSdn1fIueXzCB5WCCt4mOGZd2m1/E48ofz55fNK1RI5PA/DBV5f98npBT3R0HtPfTttQ5Ld6HdPdXf8gf5zPTE5cb4z2vvQE6HuaVDS81zb6DzdolWIADps6gb3fiW03dTlO+SRz+Y7ZvUq5PXu8zZB5BrY7iznUdjeE5EyeH1sfm5R2egJzAhAXb5aLK/eXNGJxYi6H45a5YnnGZ1X5Ki5mz2PyRXe8zCjF0qzoCekb/Xu1yJXXp/H0fpm+42AETACRsAIGAEjYASMgBEwAkbACKSWwJ4Df8u2vX9LsdzRxxlTW7edZwSMQPwIHB1NTEWdiBhqFSqED14Tek6NcogWmp+IsG/BnDqFChWSv/76S9asWRMSTRBl8LbBKwaxZvbs2TJu3Dh56qmnnFjSr18/bcItKYOnDSIQYdX8llz7wXMRqF5//XXXJn1t06aNq472/da8eXMnwpDvCPvll19k69atTjxD0ME+/fRTJ/7gHYVHFIIRQhICER5CXCPCDnw4BwHMbwhonNOtWzf/7rB1+o8HF+KTenHh1VWuXDnn4aWFf/31V3njjTeS7Z+WDy7nejlxqj4+Kuz1xYS/woohPjxzbUUhhxE5a4JGSLlP7ztbDnjhyhg0rvXUaGnTZ7qMnLMxWDTqtg484yHkNwbhl3l5iLCV3oBwGS+smt8Ir4at9AauN+5IyLsTrIP+L/YGvrF4tEM96zwvnR4/LJHHG58Rlg+JYxi5WxC4EDrwvMA0ZxDr247sY12NMHEDPfaPNy7vvBliraPdpae7wWfC1F3z5iT57LfVLo9U0COMdn6ZvdGJAJHEPu2HLoP90f3JLck75H9PdfhsdtgpDIZ3u7GKIIhxvZHs5ZuqeOJALhfK7//ZOw/4KKouit8EQq+hQ+gQQu+9Swfp0pEiHREQBT5FAaWooIAUqdJFqoWOdAHpvXcINZQkEFoSkv3euctbJsu2kKXfy293ZmfevPfmP5MAc/bcW+abLcphoc5L1cmBk8aVeFn3grvG0TWjZqpaWg2LpqNSOZJz2sQBqvaXDmf3HNo5uxecjaPdZ0P+OsnpEztXzqJSQ8blelH6WmnRtsv0gyyCwN11U4kiH07aR0cuP/v7Qc8/ukuklyyWLSkNa+qrUlmmo+5VM3FKxgMX71q6ggA5+aN8SkzLSOPbmesDHVfOpTMBD1ggqpzHm0a3zk0/tfRT4nVSy3HRXYF49rVyJfkqQbxmQftpEo39pkoSR80tLw1smIOFHez7Uc2jd80sLHohvSPcTn/sDuDz+rJ+dj7PHtUyU7V8Kdnxd+PJ7zQc27BYGvq1U34WwGb+e4WQFnS6+vxRRR+a0DYP/85AXxJCQAgIASEgBISAEBACQkAICAEh8PoTQAYiZDqy9dq1a9dLPYG2M65SrK7HqcvcqF+ANk7i3K1wqjranxL3PEkZ+5+mdH1P069bzV/INraTdSEgBF4PAjGScePHf/oAPiwsjOLFe+o0wGcdxnZ6m/US6eBSpTI/TKtRowa7hW7fvs31d9AW4kmLFi34MAg+CLhyjNG0aVMqXry4cZPL69bHYqxFixbRsGHDCPNYsmQJ96WFH90x0snBOQVXkI6AgAAWZyDcoD0EsKpVq1KVKlU4VV6yZMlo37593Byp6hIlMrth1q9fz98291BPMiEiIVB7CKntnEW9evU4TR/a9ejRg+Di0mPYOhbikaP52ToG2+Ae+aqBb5Td2VObnUHGje8XTkvrlOjTV9WK+aP3s9cENXlW9SulUh7dpR1ngviB/icqFdsXqnYMUr45C6S1QuChqbEOy31Vd0g7h5A+Dp+N8TjCXOAEx8PZgEAfxnigPuv+9TIm46BvCGY45zqF0hqHirL+Y4u8XKup3Ldb2AGFB/T1iqRVDoPrXDvI2FjXbYELCmm+dDjr41F4BNcXClUPnFHPJpkSpyAEoY5UYuXCQdo9HewiWnOOa0chNZ2jsDcfR8fofZiHvhbYpq+f3o9lVqQKVPfd0L9OUYlsyY27eB3HzOxSmAVC3E9Ldl/lOjnbTwfS+LZmx8czBxk26PFf9L3grnGQJhBpC3upOkv6HoUjpL+6jn2VaAjBz9k958q94GwcnWkNP2eTVa0yuLpalM5AsVU6vxmb/dmBpp1hqEEG5yCiUbH01EgJebhO+XxyGa7E86+2r+CjhMQg+mH5OboWFEqXlJMHofQaS3ir+z2pqoOE0KJosHIBabGq/JN0l9gPh9HOs09TvGGbqzFq1QWuQzS2TW5XDyE/Q80vpKfDvNIrwQ2RIrFZ3MY3sE6p9I9gmk+5n3QUyZpEOaducYo6va1B0TS8ip/juw8fs0g05C9zOlPsQIpFzUgfI0shIASEgBAQAkJACAgBISAEhIAQeD0JoIRHRMTT51eoP96oUSN+FossTC8rZvwXTH8fDCHfNHHsDolsMXXG+VOO1HHo3PAc5J0gFq04fI9a/XqFMnl7UbU8zz5HtNuZ7BACQuClEIiRSJQ799MHYAcPHiSkV9OB+kQ6kCLOWRiFpAQJEliaIz2ajhw5zA8Y48aNS5GRkVFq7aBN8uTPPjzWxzpbGo9FfSTU9YEzB0JKhQoV7B6OuSC8vMwP8XTDhAkTEpR8uKaQRg4OI7zgBkItIC2iGY+DOISXMSAwuRL4JoEOvW6d0k/vx9LZ/NKkMT9gNB6DdaR0K5/rqZBgvd/4GbWAaozYrtIknTFutqzjISVqlODVoWImVUtkv6oLc8UlkcjnSQo3pFVCajEdqLdT4YnQgdool1XNIWPoujaoQwMRCenort15mgoRba8GPVIPbM0PYN0xzqnr92j5gQBVfyU9LVYPxRH7Lt6he8r5sHDnFSXMpGSHBerpbPiiLKGWUpByDhXNmpS2ngxkN5ZOR4djMb9Ovx5kcahPrezYZAlnfSBtFdKdrfi8FAsvOBDp/tDnnK2XoohEaw7f4PpFUzsWsvRva8XRfGy1t95Wxtebr4X1duvPSHm39rASHn8/arOWDdpDTMILQgVEkmmqXg6uubVbzLrvl3UvuGuc3OkT04D6iaOcRllf88/lyashFKTccM7uOdyXzu4FZ+OUymGuIYa0ccZ7tLyaC+oQQZxI/yRNYYGMT505SPlWVl33/ernwF0xcb0/rTl0i0UgCGa+SnT557A5XaMewygo621Yhjw0/0PbWANJi0nGdq6ub1Pp3MCjt6qLhNDuwA6qXtLQJr4Wp5CxP9wbxogTO+rfBXoffm/gPPD7U0fEE/FbDWkJPX8tfKK5XkejXIoPUutJCAEhIASEgBAQAkJACAgBISAEhMDrTyBLlixRJvnjjz9yiQ88jzV+aT9KIzd/OHE9jDrOvkYLO2eguTufZu2wHiZM/R/1VEAY9a+RgjIrUQjRpGgSFokuBpqz51gfI5+FgBB4tQRilG4OAkmZMmX4DOBeQc0cBJbdu3fn9ZIlSz7zywrOHFcD9YAQEEvGjh3LdYKQZu7TTz8luGeeJ5yNjzpKEIgQ/v7+hFRybdq0idZQqBWE9Hnt2rXjtHIQzbRzZ+/evVznCB2uXbuWoP4jvvzyS4KjavXq1fw5Om9wDgUGBvIh2vVUsGDBZ7pAKjyEs/k9c+BzbIAAgzRgEH7ghtGxAoLJuD1cW0NvQ32U/KoWkKuBtHIIY4o6pMKDaJTtibMpixIL4HAwpm3T7SESISAGrTp4g9fxBnfFelUHKEcas0jkjnEeqm//ozbO5hO3OZ0cUsptVanTMLeJ6y8QUnbh2/7Yfk6lyqucJyU1Kp6OIFBBVMqjBAEdeOjeUaWJw7zB1vhg3pU+kLIKgZR/xoirHtrfD31aVwV9jf/nPLuINANje73uaD66jbuWeCg+tEluFjaQ3kwH0gvWHbWT4GYyRsFMrt9POO5l3AvuGmfZ/uv8M4TrpONq0ENezaDuG1fuOVfuBWfjwDGENInp1P1tDNzHcCFB+MDPIeLOw6j/EDytHDHZnuwzHvs866Cw8Vgg1xlDraCvVCq2gpme/tw46zODt3n+e88/Fa12n3u67ux46/0V/LxVCsBk5KdqpuEVR9WJQq0orEMgi0kgnR+u3e17T3keumS+9/XvNWP/cJpBIEJ9ouEqFZ9+QSDK6O3YIWjsR9aFgBAQAkJACAgBISAEhIAQEAJC4PUggMxBeIY4fvx4Mn6B3zg7PBvEM1lbLzzDfZ7oteA61cyXiBoXcfy8Ja760mOPyt40bOUtWn/8Ph2+Ekp9FgXwkHXym5+3Pc/4cowQEAIvjkDUry4/xzhTpkyh0qVLc42blClTsmik08FBFJk6daql11KlShHskYMHD+ZUcfPmzbPss7eC2kYQotBn5cqV2eGzcOFCFmBQ3we/7FwNV8c3uncg8sDts3jxYleH4Xa3bt3iFHP40Lt3b4KgplPVFSlShFPDgQ/EKDiVwE6LQ7/99pvDVHG2JoKaRmCVNm1a/iYB2jRp0oSbYmyIbRgLVlT8ZYD0eEiBh7A1P95h4y1EiRTbTpnFKL0bqb7woNhWVMmbypIyTe+HcwhukH7zj3LBeziBdp0LollbLql6GZl0M4dLiEqfKhfNaOUW8VMiCkSYoUo4gDBQTjkUEBgH698vO02DG/kpV0M4jf3nHKG+jq5N1F3V52k9cS9NVY6Tqmqu01WKrFAlFH1Yzof7cMc4BTN50cYvy3J/+m22cu3M+Nc/yvbTqg7Sol1XCSnjML95qqYOnB4/f5ifD0N9nY9nHWJ3T++a2WjPuae5XPNkSMx1jZz1AdcQovfcw9S3Tk5KqpxhG1Rto9WHblA/VS9Jx8qDATzOlA5RhcYRy8+olG73aWL7glzvx9l8BgwYwA7DmjVr6q6fWSI9nFG0gvCg52ndGILVMCUUDVhkdmhgfxblGEN9K6TMQ32mzKoO1QUlUmCuuC+duYj0GC/jXsBY7hinkLq3kVpu2N+n+GcGqcm+UPWIwAIviALO7jkIfAhH94KzcXB8typZuY88Pomper7UdMD/Do1TP2etyvo8ESfi8PqI5ac5xVsO5Zj7c881/pkf09p8bxvvK/RpL+zdT+p0OcUdRN6bIWF0RaWam7DOn7vB7yxnUVoJOhPW+qufv+tUMHMSrkm29shtZ4fZ3d+nVpYo+3opR1G4+vntWydrlO3P86GWqnG0VaXVG/fPRfqsdhblAgylTccD+Xdguifp6az7LazOad+FuzR321XlBE2uHIzX1e/xIOryXkbrpvJZCAgBISAEhIAQEAJCQAgIASEgBF5jAqhZjhIZdevWpU6dOtmdKWqg4xmgrciUybVnb8Zj/zoQQuuU4HNySNSMNsY2xvVB76ekf0/dp+o/m/9vjn1zPkqvvmQa40fRxmFkXQgIATcRiPFPpq+vL61atYrw8G7z5s0s5mBuFStWpKFDh5Kfn59lqh06dKBNmzbRnj17aM2aNZbtWEFdH+tA6rVYsWKxk6djx460bNkyi8Onb9++hBdCH2udqs26P1vj2zoWNYMmTpxI/fr141RxEF9atWpFEG9cCcwjf/787HqC42nMmDF8GOoLIf0chBwERCEINuCBwP4ZM2ZQunTp+HN03tq3b0+XLl3ilHYQnz766CPq2rWrpYuBAwfyWHA3wcn02WefOZ2f5WDDyqXAhyrV2QHDFuK0Z6growMPbI3xZT1f2moQllDfZkbnwvSZqlfUbLz53NEe6dh6Vs9mPNSybuvati+fiU4rEaWHEk4Q+XyS0HdNc1vcNXhQPrBhLvrfgmPUYoJ5nKr5UqmH9Fm4Pd5QJ+iz2tlpknL0QHCC2DS8aZ4owoI7xrEM6GDlq/q+9Lli8uGkfdwK9Z/AVbsD4LzYq1LRIXrPPcJL/YZ6MEgD6KwP1Dr5s3cJFlkgjiHg+EBtmzblzA+MI1W6RbiIcD10uj09zmXlVrl466Gq82IiZ/Px846kkSNHEsRZR9FrzuEouzGf3d9WjLLN+KFB0XQqjdgNdmZhO67zdHU/9YfoaLg3kQLtp5Z5jYfyOtrD2WEdL+tecMc4uDd+aVeAxdb5O67wqeD+H9chP/OwPjdbn125F1wZp2q+lFxrCEIPXghco/5KhNTRS/1c31VCVveZ5p9VXOMB6vdC9fypuInxvjKmUcM6rhfi5s2bDu+nFqXTKZH3MnWaZv7ZeC9vCvpPCSG/KLEIrh57ge7jK2cdhJ0fV56nnrOPcdN8SvRCrSJjCjdbfeB4PUdb+/U2W7/D9D5bSyMHRYGbYC55MySi+kVT0997b9CHE808E8WLRV83ePIPdXPTKF32rpmF/jf/JC1WIhheiBLZkxIEJwkhIASEgBAQAkJACAgBISAEhIAQeHMI4Fno/fv3adKkSer/ojb+A/jkVPAFdbzcEQ/DTdRrQQANqJ2ScqR6Wu7CXt+op1tl1EV69NhECzploJSJYtMf++/Sh9OvUrL4sai2uInsoZPtQuCVEfBQtXGe5iuK4TRQP+js2bOUPXt2MtYVsu4WNX8Qjn6ZWR+Dz+Hh4QSHTqpUqSh27OfXt1wdHwXhkDrPWK/I1rycbYPLB24ke/3AYYRz8/b2dtbVM/v79+9Po0ePps8//5zrHd25c4frDdnjg3OC8GYMZ/MztnX3+i31rX84fDKq9G9Ix/Q8gRodSN0GgcdeoC5NPK9YhAfjtgJpu66oujx4KG7v71h3jGNrbOttqF9yX50TmDxvuNIHXBf3HkUQnGCuBn50TeqP8QG2vWN37tzJLqKAgAC79769Y593O67RteBQghAJIeJ54mXdC+4YB2LdZeWaQUox74Rez3O6fIyze8GVcdAH5uKjUpjhZ81WBD8I5/o8mdW9bUyV6Mp95cr9FKbcOqeUmOqrahLBBQjGuB8wJ1cCadxOXL3HP3tIz/Y6R4i6109du0+pksRV8433REZyPGNcn+sqJSfqdr3u5+f4TGSvEBACQkAICAEhIASEgBAQAkLg3SPw119/UdOmTfnL+lWqVHErANQ3j5iU22afkzYH0ce/X6cRjVOrjDTm/+//vD6QksTzpHZlktFHZVGn+Omhq4/cozrjL9Gxb7JTrjRPnznV/+WSSp9uojW9bDuZYnU9bqnh/rQ3WRMCQuBlELD9xPw5R4YwBAeNs4iuOKT7g9DyPC4bfbxeujo+xBR7wo7uy5WlMX2drfZw/rgrkiZN6rAra4EIjZ3Nz2GHMdwJgSI6IoWt4fCAHC9H4SzlGB5Ya8eOvX7cMY69vo3b8bA/Jg/80ZcrfeBBvr2H+cb5GNchoGlXg3G7rXUIxkgV6Y6fIVv929qGa5QzreN7wdZxxm0v615wxzgQ65zdt8Zzs7fu7F5wZRz0gVRyjgKpJfGyDlfuK1fuJwhDcADpAGNXBSIcg3pBhVRqtjchUO+paFbHv++tzwMsosPD+nj5LASEgBAQAkJACAgBISAEhIAQEAKvhgAyAyFDEjIWuSIQTZ8+PUqGIeOsa9euTRCcXI3H6guYPsm9aOwGc51zHHc5yFwn93LwY2pTOmmUL4LCeYRIGCeq0ym++j/3rZCn9XW5kbwJASHwWhCI2dPU1+IU3u1JoNYLRJ6iRYu+2yDk7F87AllV/tuvv/76tZuXTOjNJCD305t53WTWQkAICAEhIASEgBAQAkJACAgBIRAzAsgKhLISiPLly9PatWujdFigQAFKkyZNlG2of26vbAYyNEUnelT2JryMAVdQ2iSxaXJrc8mMxXvv0jfLb9E/vTNRpVwJuGmzKVdoxAdpKHkCT1p28B4tUm1+VJ8lhIAQeP0IuDXd3Ot3ejIjISAEhIAQEAJCQAgIASEgBISAEBACQkAICAEhIASEwJtJADV6UcfcXixYsIAaNmxob7dL2x2lm7PVgbVINGFTEPWcf51ODsnOdYsOXQmlDrOu0j7/R3x4YpWarl+NFPS/mint1v6VdHO2SMs2IfByCIhI9HI4yyhCQAgIASEgBISAEBACQkAICAEhIASEwAsgcPv2bZoxYwanYnqZ6a5fwKm8Fl2CJ1LVJ0uWzO58kPoK9Z59fHxstgkKCiLUp82RI4fdmtLXrl3j9OTx4jmvIfro0SOugY0MA45qYNuczDu6MTIykk6fPk0pU6akFClS2KTw+PFjun79Opd2sFWeAAeh/jjqXzsq/+DsfrA5uGx8rQhEVySyNXmkpYut0r4b40FYJN19FMmuI+N2W+siEtmiItuEwMshYCgr9nIGlFGEgBAQAkJACAgBISAEhIAQEAJCQAgIASFgj0BwcDDhgaW9b8bjoTX244XYuXMnffnll7Rv3z57Xcp2Fwhs3ryZcuXKxWIA0toXLFiQ9u/fH+XIjRs3UsmSJQliTbZs2Shv3rx0+PBhSxs4HlDvBKmvdAosuBx0QFgaN24cixaZM2emJEmSUL169ejq1au6SZQlRIzPP/+c2xUuXJiFq/79+xO2S9gnMHfuXEJKMdQNh7jz/vvvE8Q/Hffv36fu3buz4IbrGD9+fOrTpw89fPhQNyF/f3+qUaMGM8e1giA4b948y36sOLsfojSWD289AWuBCCecII6nSwLRWw9HTvCFEcDfO6ixdeHChRc2xrvQsYhE78JVlnMUAkJACAgBISAEhIAQEAJCQAgIASHwhhFYsWKFzYc+ixcv5jPJmTMnLyFKwLXiSjH3NwzBS5sunCDVqlWjTp06McvLly9TkSJFqG7duhZB5siRIywa1KpViy5evEhwApUrV47w+e7duzzXDh06EOqnYD+2Qbz78MMP6cyZM7z/zz//pM8++4xmzpxJgYGBdOLECRYmmjVrZvNcx44dS/Pnz6ddu3axo2XNmjU0evRou7VWbHbyjm0EK9SvmTZtGt27d4+OHTtG58+fZ7FNoxgwYACtWrWKduzYQRBlt2zZQgsXLqQffviBm8CFhOsKB9K5c+fo1q1bhGPatWtHR48e5Tau3A96PFkKASEgBITA601ARKLX+/rI7ISAEBACQkAICAEhIASEgBAQAkJACLyzBCAmWMeECRN4U9KkSXkJAaJUqVIEYQMB4QHCER5ww+kCoQEOFmf7sB8OjPfee4+PbdOmDac44wPV2yeffEJff/01L+GqgJvm119/1bv5YXvHjh3ZcYH9aI+H9Doc9a3bvKplaGgozZkzhwUcpOyDkwjukxs3bljOYdasWewiGjhwILtTwPeXX35hJ1HChAlZHIITaejQobwfaeQgKiAOHTrES3zTG31DfEqUKBG7kbAOIQPChHXA4TJy5EgqVKgQp62rXLkyu2OsHU7Wx73Ln5EaDvcpnHhw2yHlX506dVho01wg/FSqVImFQKTvgzusePHiLAihDRxFEIV+/vlnvp/h+GrQoAEffunSJV46ux+4kby9MQSSJUlAN0JenUMPY2MOEkJACLwaAiISvRruMqoQEAJCQAgIASEgBISAEBACQkAICAEh4IBAq1atODUZ6tHo2LNnD6dAwz4d2A+nRFhYGItBcEDg4fiSJUtYpEC6MjhQIBTZ24e+li5dyg6M0qVLs/gB8Qmp0EJCQngoiFBwWuAB+k8//cQCVLdu3SwiSr9+/diRAQfHqFGjODXX999/z8c665sbvcI3pByDmweMIBhB1Bk+fDg1bdrUUpvo+PHj7BwaMWIEp6IrWrQoC0IQGVDPBi8IOhAbdGzYsIFXkboOAaEB/L766it2pKxevZrQX+fOncnT89lHVODbokULPhZvcCghvV2xYsUs22QlKgE4wiAS6UBqPtz/uK91QLz77bffaPbs2SyqTp06leDc044uiH4tW7bklHXh4eGceu6LL75gYbRs2bLcjbP7QY8lyzeDQN3atWjKluBXNlmMjTlICIHoEsDfr4sWLeK/82192SC6/b2r7T3UP6LMX6d5VwnIeQsBISAEhIAQEAJCQAgIASEgBISAEBACrw0BpL+C2wTpsCDqwOGiH1536dKFkBqtYsWKhNRl//33HyHtFVKjwUEEx0P69Olp+vTp1Lp1az4niAopU6YkLy8vu/tQt6V8+fIsfowfP56PQ52DDBky8DhwYsCZAQfGgQMHyMPDg9OtoVYL0t9BTIIQAoEEIhECggYELLhrnPXNB7wGb5g7atUgqlatyucGEQgBdxScRUjzB1EHKcggmjVu3Jh+//13bmN8g2sIQhIEPbi5dECYgONKB2oNQcRIliyZ3mRzCfEKNXKCgoIIYiGup4RzAkj59+OPP9LJkydZ5MEREI4+/vhjmjFjhqUDXFM4hyD26YAQpAU+/CysW7eOsmfPzrujez/oPmX5ehJADar3ypeiDsU9qHP5ZJQ6ceyXMlE4iCAQ/brbRBu27KBMmTK9lHFlkDefAL5wAMcrvmCAfwOcPn2af8/h3wa+vr5v/gm+5DN4OT/xL/mkZDghIASEgBAQAkJACAgBISAEhIAQEAJC4M0mAMGnZ8+eBNEGItHt27f5ofYff/xBeHhtKyAGQdxATRY4iSAqQNxJkyYNN7e3Dw/Nd+7cyS84J4xx8OBBTteFbUjLBYEIAWEJYpZOcwfnBRwcSJ0GUalRo0aUO3dufiDvSt/c6St+g9hVoEAB2rdvH02cOJHFrd27d/NDOC3KwB2keUIAA2sIdxARdEDIqV+/PqeG03VusA91byAQoS5RzZo16fr16/S///2PHUZr1661K/zA4dS1a1d2EWE+ei56PFnaJgARCAIRfmaQHlFH7969+WcJolD+/Plp79691LdvX0IKx2HDhulmlCVLFhZi4dSD86hEiRJ8b0Ac1dfAlfvB0qGsvLYEIM5ApPnmq/6Ue8gqCr774KXMFSnm4CDasOUHEYheCnH3DIK/j/H7InbsVyct4O8OiEGDBg2ynBRSwPbp04eWL19u2SYrrhF41svr2nHSSggIASEgBISAEBACQkAICAEhIASEgBAQAi+UQIcOHVi4gXsHD6khykBccBT4FjGcLXCmQGTKmDEj94Fj7O3TwhBcMnhYql9Iy2VMn4Y0dsbQD8qxrX///oQH5hCS4MiBAwM1e1zt29jvq1oHXwgBEGSmTJnCosy2bdt4Ovqb2VogwsYqVarwPghpOuD4ad68ObuokAIIdYV0IE0fnEXfffcdu8Eg/sGJBUcYxB978c033/D1X7lyJdcxstdOtj8lgFR+cN6NHj2av22v98Cph2uLF9L5lStXjnr16sWpApEuENdPB64dUvs1adKE0ydiO34OEa7eD9xY3t4IAvi99+vs3+nGrWBO34kUni/6hbEwJsaWeP0JQBxC3T58SQJ/F0BoflWxbNkywt/RxsC/Gf79919LGljjPmfr+PsFDskePXo4a/pW7n91ct9biVNOSggIASEgBISAEBACQkAICAEhIASEgBBwFwE4cZBabvLkySzAQPRx9M1lPNCEiwUuHqRBGzNmDBUqVIgfbCOtmb19EHYwFlxHAwYMsEz/6tWrlChRIstnRyvXrl1jQQkP3fGwvU2bNjRhwgRO3xbTvh2N6459ELP+/vtvTvum+8uRIwevwu2DgOh19OhRdkbpa4D0Pgidggz1ICBMoB2En1SpUvF+/Xbv3j1CvRtjaBEJqYNsBQQ31EfCA0FcJwnnBPbv388pEFH7CWnljKFrfOk0gnqf/oyfIYiyuH83bdrED4PRBvvhLMJ9jnDlfuCG8iYEhMBbQ+DTTz+lFClSEMRmOHpR6wwvfLngZYd29bpjXHwRAWlR8XvtXa1r9EY5iSIiItxx3aUPISAEhIAQEAJCQAgIASEgBISAEBACQuANIYAaOUghg5RXeHDtKFAHB99IHzhwIKeBg8Pl7t27LAA52oc+8Y1kiBEzZ87kh194YISH4o4cLnouSFcHxxEcF6j9cvbsWcJ4efLk4SYx6VuP8SKXELY2btxIn3/+OafLg0ig6wZVrlyZh4ZAh5pEnTp1olOnTtH27dt5HQKYdpWA+7x58zidHDgghRxeZ86c4T7gMIKDZdy4cVxDavPmzfThhx9S4sSJqUyZMswub968tH79em6Pb3bj+mMOqDuh+0P6PgnbBHDfIa0iAg9vNTMscZ+mTZuWWSMlEwq+41rC8YXUTbVr1+ZrAUEVNadw3+7atYvb4CEq6nuhBgjClfuBG8qbEBACbwUBuGLnz5/Pf79CNEbNufbt2/MXDF7FCeJ3Ef6+Ngb+rVChQgWXv9yhj0VKU9Q3xN+F72q8MU4i/CMDfznhHxNYvisR/CCcYnl4UOL4ti+Vuofpxt1QSpbQi+LGfj7NL/RxJPnfekgZU8SjeF6xbKINefSYboaEUeYU8SmWp4fNNnfUXKHiJrEzV5sHvSYbnZ1fTDkH3Akl/MJJmyyezTO++/Ax3QoJpcwpE9jla/NA2SgEhIAQEAJCQAgIASEgBISAEHjLCeBBENKgIcUNHnAjjN8gNq5DrIAA8eWXX5KuhdO5c2dq27YtOyHs7UOfqNOCB+OolxMSEsIPy5FKR6dUg0hhKzA+nDV4eIZUN6jxgoCwMWrUKF531jc3eoVvqEOEVHxIswNxDAHxZ8eOHYQ6Twik4YGogHRxOuUYnD2oM6SvwYgRI7gtUu8Zo1+/fjR06FD64osvOP3e4MGDmTPaQByC4ARHEQQ9uJOQ0ggxdepUXkLAwksHUqDBqSTxLAE4wnD/IlAbyxi4v1HrCzWKkGrugw8+sOyGgIf6XwikVcQ1wfM3/dAUP4PTp0/nOl9o48r9gHYSQkAIvB0E/P39+USQllUHvgiB9G6vIr7//nsWrfFFgyJFivDfHfhyAn6/RTfwd9K7Hh7KRqpkhucPFCnEt3mMgb9A8O0ed4o5sMjiHxs6T6pxPHeuPwyLoInrL9C0TRepY6XM1KdWdrvd77twh75adJwu3HpAOwdXsAg5lYdvI4gCxiiYKQn9/nEx3rRs/3XqP/+YcTevT+1QiMr6evP6rnNB9PWiE3Qp0Gy3zp4mIf3QLA/lyZCY90O0mLf9Mo1ZfZbuh5odVpVzp6QhH/iRdyJzjuSvF5+gJbuvPjPO3iEVKX6cWBQRaaKRK87Q7K2XLG3aV8jE56yFoOvBj2jQHydpy0nzP9ASxo1FQz/ITTUKpLYcs+NMEA1aEnWu3zb2o8KZk1ra2Fuxx9sVRu7g7Oz8XOFs7xxwzjvPBjHjY1fM/0DLokSg0a3zUa505nQFgffDqd/vyoZ/OpARge/gRn5Up1Aae8hkuxAQAkJACAgBISAEhIAQEAJCQAi4QMBRYW1H+/AFP+z39vZm94oLQ0VpcufOHX7IrtOoGXfGtG9jXy9qPTAwkGLFisVFyW2NATfKuXPnmI8WkGy1c7QNHJDGDnWjrDmhf53OzlEfsi/mBMAa7jDUFsE1txUPHjxg0clYi8rYzh33g7E/WRcCQuD1JADhGOlfkZJSB74wgLSqr1K0h3sI9QAhFCEdnr0vdOg5O1rCDQsxHSlY37WwbU+JBgV9Y0AYypo1K1uztm7dSnghnyy+meCOgKKHbzjAdvyi4vjVEOo+8xClUCILhBYIBDq2nQqkpfuUuFM3J3kr186wpafot22XqZwSdSAS6aY4BgLR6Fb5KPcTQQd9GF0+t5Qjp2jWZDSsSW7dPS9TJzGLOzi+3eT99Fnt7NSkRAZ6HBFJI5SY03n6Qdo8oCw7Tf45fIOG/X2KJn9UkPvCMX1+O0JD1bZRamwEHEYQuj4okZ4/6zftFoI4tPxAAC3pVZx80yaiPeeDqf2U/ZRDCVINi6Vj8amb4pFeuV+Wf1aS0iePR3/vvU6fqnEWJC9G+TMm4TE+mrqfulfNSh+W9aEIdf5TN16gVr/spR1KOHPkKnLE2xkjd3CGuObs/JxxdnQOp67fY55dq2ShX9oVoDjK6fXTyrPUYdoBWt23FCWKF5u+WHCMxbpN6romTeDF91RfJRrl80nMriJ9zWQpBISAEBACQkAICAEhIASEgBAQAtEjgLoJ9sLRPrhinlf8wHhJk9r/wmRM+7Z3Pu7cDnHMUUDA0enlHLVztA8cUPjcVohAZIvKi9kG1unTR31mZD0S0krpekXW+/DZHfeDrX5lmxAQAq8XgQwZMvCE7t+/b6ktB7E/c+bMr3Si9erV4zpJqD8YE4HolZ7EazC4ba/0c0wMSh2UO+SFhZUbsWDBAktPs2fP5tym+IcYcpwa96ER0slVq1aN7aqwYY8ePZpzG2p7+MSJE9m2DWu4DhwD2zn6rFSpEheG1MWlYHVDbsTWrVtzgUs4nvB50qRJnINV92Fcnrh6j1qUykDzleMnbdK4xl0s/GxTbo/QcLNr5/yNB/Rn7xL0YbmMUdrdfRjOn/Oqh/yZVGo2/Upj6A8CCBwlep9eavEmTKV/G9kiL31UITOLLBCs4BIKvBdGD564hlKr/n7tWIjK50pBCZQrKGuqBFRMCU+XAx9Z5gORKGfahM+Mo/4txhHXy5P+934Oyp0+MQtPJbMnZ4eLdr3sOBNIJ6/doyFKzMqWOiGnomum+ED88X3ihLkebHZM1S2chkUOCGjvFzbb/5E+zVE44u2MkTs4u3J+zjg7Ooc/91wjOMh6VMtKqZPEpWRKBBrcKBet/LyUxcmVLXUCdm5hP4TERsXN/0gGdwkhIASEgBAQAkJACAgBISAEhIAQEAIvgwDSi+kXxtPrWL7On3ly8iYEhIAQEAIvnIAWlFG7R8fevXsJz9wl3nwCMXYS2UKgLahwEiEgEOmCh8g1u27dOn7hmyNNmzYlFCJsp/Kc6jBausqXL8+boUyiQB6WCGOfcDDB1oYXbLIjR45kKyza44X8uDpQWK9gwYJcvE9v00u4Z+wFHt7rB/hoM00JNAgIMca4rdKHIf47HUQLdx4hT3WOlXKnoE6VM5NXLLMmd1MdE0cJNEgzdtD/LgsJLcr4WNKzZVTiEl6Ryi4T/thE528+oEkbLlDtgmksKe10KjekjIOotOtcMP219xr1rfM0L+RllaoOohHcQXAaIZUdnEVasGpZ2sc4dboS9IhFoXblM/F2OKTy+SShvcphNH3zRSVShVPpnMmpy3tZlHhlrq2TL2NiQiq84UtP0yfVs3HdHbiekBYPwpKjcMTbGSN3cHbl/JxxdnQOZwPus8tr2saLtEw5tmKrWk7v5UnJ/HQ6v/7vP71eYLX9Sdo5PyXcSQgBISAEhIAQEAJCQAgIASEgBISAEHgZBHSWGD3Wm/ZZz1uWQkAICAEh8GIIwDUIY8g333zDdekOHjxIixcvpv3799sdEIaSFx1eXl5ca23btm20fv16m8OhXqCEYwJucxJt2bKFlixZQt9++y2NGTOGR61VqxYvBw0axMsVK1bQpk2baNWqVfxZu4R0IcK6devSvXv3OLctCuIhtDOIPxjedJ9wHKEo1erVq3kvikoi/68xoGoGBwdbiu1hHi8q4PZBzPzXnxoWTUelciSn8WvP04CFxy1D3rgbRn/svsaCTxvlRLqq6v4gPRtSlxlj8a5rVGjAJmo4ZhenwBvaxM+4m9dR26jo15up24yDhHpCTUuabcKPVd43pFMb9885KqEcQg2VyLXu6E0WjEIePn6mHwhN/ecfZcFH18OBOHXk8l36cuExKqccS3ARbT5xmzpMPUB3n/QBEexH5XpCzaKm43ZTs/F76IQ6j+FNo6bSe2ZAJxucMXIHZ1fOT0/THme939bymHKmTd/sr8S76/RB8fRU0S8F17vqr1LM2QqIegNVbacWpTOw+8tWG9kmBISAEBACQkAICAEhIASEgBAQAkJACAgBISAEhIAQeNkEhgwZQqhTBoNI48aNOROYo9IwqD/3ol/4UgPqCMGsYm+sl83pTRzPbU4iLQxpCHXq1CGkjYOz58qVK7wZAtKwYcMoIiKCP8Plgxtr9+7d/BmqHqzMPj4+1KRJEy58pfszLo19ok4R4r333qPEiROzgwhKpo6cOXNS/vz5+WONGjW4VpK/v7/e7fZlwrixqJVyBfWqkY1rzmAApHyDyNBXuUZSJY5DJZVw1LJMBqqemBquAABAAElEQVSe3yyENVY1gxopIQjC0YD6Tx0kVfOmJL90xejolRCat/0ytZiwl+sHQZjR0VONA1Fh59kgmqGEqXuPIqifSiEXpuoYQdRprl65nqSGq6nGqzFiO21XaeT02OgH9X0gTiDF2R+9SlDsWOb+Pci8HNM6P7uQ0LZqvlRUU/Wx9dRtdjZBaIGIhXR4zdU8lLGJBTKIXkv7lKR0qp7Rx6qu0TGDAIaaT4t7Fkd3dsMZI3dwduX89ATtcdb7bS29nnCc060Ii3xokzVVQvpCiW4B74daHF3YDtEN9ZFwrYxuMOyTEAJCQAgIASEgBISAEBACQkAICAEhIASEgBAQAo4I4Iv2M2bMIDz/xLPVlxWnTp3iujRx40Yt3fE84wcGBhIyTyVPntylw2FaQB2asmXLRmnvzjnBjIDMVtmzZ+caXFEGiuGH6Mzz8ePHPA/Uc4sVK5bTkfH8fdasWQRTRqpUqZy2d6UBrgsMINeuXSPUr3N2zXVmMVf6fh3aQLt4V8NtTqJ+/frRokWLLByrVq1KyZIlo0ePntbIQWHDHDlycK5CpIhr06YNhYaGWopdYV2HPs5WwSljO50fF8fFjx+fD9dp7vAhUaJEvA1ver9lQzRWkFZuhUoZhvRujgL1fQbU97UIRGhb1tdcLPPkE6GkW5UsUUSaeCr1XEWVkg6p54yBWkQFVE0biEBDP8jNIs6+C1FdUqhnVFTVIupeNSt1q5KVZm7xpwdhEVynaFDDXBaBCP0ihR1Sw+maQ3qscWvP0dJ911UKvcLcRm/38TanlIMbSgfGQz2l41fMNXNQdwfzHNsmP9dHgltm8kcFufmy/QG8rFckLadYQ5o6vCCiOQtnjNzB2ZXz0/O0x1nvt7UEJwREMR1I14c4Yag5BBdXrzmHKSw8UnEsoGo/ue3HUg8rSyEgBISAEBACQkAICAEhIASEgBAQAkJACAiBt5jA8ePHqVu3bhQebi6F8aJPddmyZfyMN1++fIR6NQMGDGAnh/W47du3j1LnDM9y9QvCB2LDhg3cV9q0admlglIh27dvt+4qyuerV69SgwYNojzvdXVOEE/0HKyXEJ4Qly9fpnr16rHAAgMC3DPIouWOcHWeGOv+/fvUvXt3SpAgAWXLlo3Pt0+fPuyc0XNBG/DHuWCJgJCEVHB9+/bVzdy2hFDlTCBy22DS0Ush4Lan0SVLlqT69etbbsSBAweyqydTpkzs8MHZ9OrVi6ZNm0YTJ04kpIWDCwhCEo5FfP/993Ts2DFas2YN6ZyFttLNZcyY0dIn1EsEfhHCYYTALxJ3x9xtl6mvqiF0XKUQcxTL9l9Xadf2RBGTrgaZazNl8I7Prp0Pxu4mtDPGBeXIyZbaLCr89t9lTgtn3J85pVkAQ60eBOoZjVWp5IyRNZX5eKSTO6f6q/HDdl7qNuHKXYQ6OZlSmNth+8KdV2nS+gs0RQk7BZUgZQzftGaB7aKqTaTjoRKgUMtHz+dReAQljBOLdI0dtNProWofokaB1OxogqsJL0d1fNAeziZnjNzB2ZXzc8YZ87UXELIgoBmFxYu3zPcCBDsE6k59vfgEnVbXZUbnwuSd0Mted7JdCAgBISAEhIAQEAJCQAgIASEgBISAEBACQkAI2CSAWu0o34Ev5r/oOHDgAKcba9u2LQUEBHBtGtSI/+mnn54ZGs978dzW+MIzYWR/gpABV0rNmjWpVatW7JRBRqrq1atTxYoVKSgo6Jn+9AakPqtUqRIVKVKEN0VnTg0bNowyH8xtxIgR3A+EmJCQEH7OjfkdOnSIy5h899131KJFC0tGLD2P6C6jM0/0DdEHpVt27NjB84CItXDhQtJlXNAfhLp169bx9UfKNR0wdcybN4/27NmjN8lSCNgk4DaRSPfeo0cPXsUP0y+//MLrn3zyCS9r167N6iVSw0GJRT0hWAhxsyNVHNTNQoUKsQ1O1yTS/VovP/74Y97UrFkz/gGtVq2aZQyozu6OJiolHBxCudIldNh1ocxJuY7PsL9PEWrMHLkcotKLHWf3DZwlyBQH8eCH5Wdo26lAuq7qEaFuDWr9vJcnJfddTDmDkD7u+2Wn6YwSD1CrSNc0KpXDm9sUypKUxZ0FO66Q/+2Hlvb5fJJwGrOsaiyknBu4+Dg7kJAWTvdRInsy7gNjDv7jBJVUNYtwHTAfvLSjqYJyBcF59Nm8o5zyDnP5XK0jtLvovTyp6JI6T/SDecKl9KU6X9RDqqRS0D1PuMLIHZxdOT9nnB2dX5tyPoTaSQMWHSfw33/xDn2l1sEU1wfx8+pzLBh2qJiJ2+hrYBTmHI0h+4SAEBACQkAICAEhIASEgBAQAkJACAgBISAE3m4CcAd9/fXX/MV4pJJDGi84XYwB8QCp5hBw6AwePJhQLyZXrlz0+eefc8kPY/uYrP/+++9c3uN///sfp4arXLkyz8+6HAnGgAMHqdr0C5meFi9ezHXt8Tzy0qVLPJWWLVtyCjOkRoMYg4AAZStQhwZCSfPmzS27ozOnJEmSWOaDeUFYmzNnDnXt2pUyZMhAGzduJJRJmTJlCvn5+bGLp3PnzjwfXdbEMnA0V6IzT3R97tw5ixgGNxHMFsWLF+ft2I+yK126dOESK5i7MWC0gNj2559/GjfLuhB4hkCMaxLBxobADzUiRYoULPqg9hAUWPxwwVWEH97Zs2ezgwjtkA9Ri0j4ZQW1+++//ybUC8IvFqigUETt5VjELzr8wkOfsPpBZMIvhkmTJqH7GAfq/jw5Je4Lzg9HadLMZ69Suim30C/tCrDraL4ScBAQbsZ1yG/p7391c9Kdh+HU6dcDvB9vqCOk6wShLg36+ObPkzR7q/kXJYSFRaqOT/InThM4cu4+eEw/rjzDggz6QKq3YU3zYJXHmqmcKT1mH+aaQdgGV8vMLoXJR80RsfDJ/CBI4aUD8134STF2BI1XaeQgEjVR7icE+pjTtYilD4hFo1vlo++Xn2ZXEtqAwcT2BSl/xqjOJOyzF9a8nTFyB2c4npydnzPOxvOxPoe0qh4TUu/1+e0Ip/NDW7i1fv7w6b0wddNF7mLkijPGrqhTpcz0aa3sUbbJByEgBISAEBACQkAICAEhIASEgBAQAkJACAiBd48A0otNnjyZ4NbBs1cskdFp8+bNXGoD7pEVK1bQqFGjGM4XX3xB06dPp6FDh3IKMjhKbt++zTWLrOnhuap20Vjvgxgxfvx468108uRJKlq0KNcD0jvh6EGWJ6Q+S5jQ/pfsMXe4iJAqDlGsWDHKnTs34RwHDRpEyCrVv39/Kly4MAs0un/jEsIIDArGbFIxmROeSUMU0mIKagVhXtu2bWN3FM6rSpUqBK6u1ksyzte4Ht15tmvXjp9543l5iRIlCGIgrrWeK9xcjgLnsXr1asKzegkhYI+AhxJvnnrQ7LVy03b8wkKhL6SYM9YHgrCDX2r4ZQLXEdpA+T5//jz/8oLd0FHAlgjnkT1BydGxL2of0ohdDnzEtYnspRALefSYboaEUWYlQOkUbdbzufMgXP3C9aDE8WzreXAQ3gwJpWQJvChObNvGMNRTCo8wUYbk5hpD1mO48vmacjxhrPQO+rir0twhksS3PVdXxrFu44yRuzg7Oz9XOFvPXX9Gujm4vXCNtMin98lSCAgBISAEhIAQEAJCQAgIASEgBISAEBACQkAI2CMAMQTCEEp4oL474sKFC4Ta73/99RchcxNEDaQcO3LkCNcH8vb2prlz51LTpk25PUQFpFiDM8da5Ni3bx+tXbuW21m/oYyIdvUY9+EL/61bt2b3kN6ODFFwuWAJB5OtgGsIzp3ffvuNmjRpYmmClG4QM3TADIBnxTgnW7Fy5UoWmYKDg9nlgzbPO6eIiAh+Jl2hQgUaN24cDwfX0MyZM9mU0Lt3bx4DYhmcPFu3bn2Goa052tsW3XnCJIGMWjNmzLB0ifmhlIv1s3Dwh5g1fPhwS1uIi0jNZ+08szSQFSGgCLjvab4LOOE2QmEr64Dy3LNnT3YE6eJaaIMbG7/onIWtPp0d86L3w1WS6UndGXtjQfixJ/7oY5IqYcFRwO2UOklcR02c7nd48JOd6ZQrxlm4UxzSYzlj5C7Ozs7PFc56ztZLCIC6XpT1PvksBISAEBACQkAICAEhIASEgBAQAkJACAgBISAE7BFA/XYERAwdWbJk4RRpyMSEZ6fbt2/nL9DDobNr1y5uhnrv69ev53Wdtg0iUvny5XU3vMSX9nVdnyg7HHyAaAXxyhhwECGQys1eaBdRo0aNLE20a6dOnTqcNg1OIgggSJOG80PKNOsIDAzkTRBtdDzvnCC0oSbR0qVLdVcqQ5M5Z9T8+fNJlziB8wmOJwhqWnzTB9y9ezeKqwnbGzduTD/++KNuYllGd54QqSAQgQlS3e3du5fLuSRNmtQldxBEQTihwNXT07bBwDI5WXlnCbxUkcgeZVgX4RrCD+Xp06dZHYdS/P7775OXl2ORxF6fsl0ICAEhIASEgBAQAkJACAgBISAEhIAQEAJCQAgIASHwJhMIDQ3l6ceNG/VL4vHixSPUKkL8+++/hBrwEDcePXrE2yBooL4PAkILagPh5Y6AG+biRXMJBd2fri2UPn16vSnKEu2RTQoOJ6MDZtasWSxwoU6R3g43DPqZN28ep56L0pH6oMufIGuVFnSeZ05w6aBMCpw5mTNntgwDEQ6BFG864ICCCAfhylokwrVAfSZj5MiRw/jRsh6decIphbpIeCHtHKJcuXK87Nu3L8/d+r7gnYY3fY+IQGSAIqvPEHgtRCLMCoW1YJ2TEAJCQAgIASEgBISAEBACQkAICAEhIASEgBAQAkJACAgBsqRu27NnD9d4BxM4aeB+KVCgACNas2YN1/PBB53qDc4c7YKBGHL16lVKmzYttze+oXYRasrbCriU8KV+6/Dz8+M6RkFBQZbUaxB5UEdICz3Wx6D2PEQWo4sIbR4+fMg1jIzHxY5tfmStBS/rvuDGQdy5c4fLmmD9eeaEekwwLCB9nTHg2EGcOXPGUhcJTim0tSX+QLTq0qWLsQu769GZpz5/o2MKHevPqowMOROJUIsKz90lhIAjAuIxc0RH9gkBISAEhIAQEAJCQAgIASEgBISAEBACQkAICAEhIAReEQEIIhB8unXrRqtXr+bUcqhNhPrsSB2H7ExIJ1amTBmeYcqUKTkFHdwxEI+QYg4iEMSNe/fuPXMWSGOHGkG2Xkh1Zis6derEm3v16kUnTpygiRMn0rJly+ibb77h7RBfChYsSKgjjzh37hzXVBo0aBBpAYh3qDdkksI5dO/enV06qGnUoUMHTmdnrwyJj48PHw7RRoezOZ08eZIFNJ2Cz56LCP3VqlWLU8u1atWKULMJKf9QgwkBx1ZMIjrzhKiH69qnTx9Oh4fUfIsWLWLXEtigdpOzOHr0qE1hy9lxsv/dIvDaOIneLexytkJACAgBISAEhIAQEAJCQAgIASEgBISAEBACQkAICAHnBJCSDeJCvXr1uDHquC9fvpwgCP3zzz8sFiC9nA6079ixo8V5lDVrVm7n7e2tm1iWEI9suWMsDWysoB+kgkONebiZIFZ89dVXVLNmTW6NGkhwOj148IA/ozaPLRcRdkJ0+f333+nzzz9nIQnbMF84mFCixFb4+vqyOwYCjm7jbE6oGwRRCc4aBIQsiFMY1zrgasJ+iESlSpXi3RDlNmzYQDoVnfUxrn6O7jz/+OMPFgg/+OADyxDNmzen8ePHWz7rFcxbp9/T27Zu3Urt27fXH2UpBGwS8FC2NJPNPbJRCAgBISAEhIAQEAJCQAgIASEgBISAEBACQkAICAEhIAReCwKoL4MUYwkTJrTMBw4jpJ9bsGCBZZteQVukSUuePLne5Pbl2bNnueaRrhOkB4BTx9o1pPfZWyJ9HcKV+X7xxReEFHxr1659pjt3zgm1llD7KFOmTM+ME9MN0ZkneMIxhrpSxtR8juYA9xRS5x06dMiSNs9Re9n37hIQkejdvfZy5kJACAgBISAEhIAQEAJCQAgIASEgBISAEBACQkAIvMEE4Lrp168fu03e4NOI9tQhmMA9hfRxhQoVivbx78IBcHqFhobS5MmT34XTlXOMAQFJNxcDeHKoEBACQkAICAEhIASEgBAQAkJACAgBISAEhIAQEAJC4FUQgLsEAlHdunVf2vBGxxCcSi/6s70TQ/o3pIS7c+fOC5+D9Tnam5Oz7db9vMjPDx8+pDx58lCjRo2cTUv2CwESJ5HcBEJACAgBISAEhIAQEAJCQAgIASEgBISAEBACQkAICAEhIASEgBB4Bwl4voPnLKcsBISAEBACQkAICAEhIASEgBAQAkJACAgBISAEhIAQEAJCQAgIgXeegIhE7/wtIACEgBAQAkJACAgBISAEhIAQEAJCQAgIASEgBISAEBACQkAICIF3kYCIRO/iVZdzFgJCQAgIASEgBISAEBACQkAICAEhIASEgBAQAkJACAgBISAE3nkCIhJZ3QImk4mGDBlC3377LQUFBVntlY9vI4Hl+6/TmYD7dk/t/M0H9Oeea3b3u2NHwJ1Quhr0yGFXgffC6Kya5+MIk9126vYlzPfOg3C7bWRHzAmEPo6kXWfv0IOwiJh3Jj0IASEgBISAEBACQkAICAEhIASEgBAQAkJACAgBISAEXhEBj7CwMPtPnF2YVK5cuej8+fPPtCxWrBj9999/z2y33hAREUFTpkzhza1ataIkSZJYN3mpnzGf+PHj85inT5+mzJkzv9Tx34bBQh4+ppKD/7V5Kn99WoJ80yayue9VbSw3ZCv1qJaVmpfKYHMKf++9TkP/Pkm7v61oc79xI8SZ0t9soakdClFZX2/jLpq5xZ+mbfKnrV+Xs2z/7b/L9Nu2y3Th1gPe5p0oDn1aMxs1Lp7e0uaQ/13634JjljbY0bFSZvqkelbyimXWeR+FR9JPK8/QqkM3CGISInuahPRtYz8qnDkpf7Z+G7XqrJrPxSibi2ZNRr1rZCMsJewTuHDrIfWec5y+/SAnFciY2H5D2SMEhIAQEAJCQAgIASEgBISAEBACQkAICAEhIASEgBB4jQnEjunclMjEXeTPn58yZsxo6S5nzpyWdUcrjx8/pl69enGTWrVqvXKRyNFcZV/0CHyjBIqS2ZNHOShdsrhRPr9tH6KjuE5Ye54mrDtPAxvmoop+KShubE/adPw2fbX4OIU8ekztymeie2rZfMIeaqYErJldClOieLHp4MU71HPOYUoQJxZ1rZKFIBD1nH2I9qvtP7bMRwUzJaH7oRH0+/bL1OqXvfT7x8V4mz3W//QvzbuuBYfSLCVkfThpH20bWJ6SJ/Syd4hsFwJCQAgIASEgBISAEBACQkAICAEhIASEgBAQAkJACAiBt4BAjEUizWDw4MFUt25d/ZGXjx49otq1a9OdO3eoe/fu1KFDB9q5cyevx40bl8aOHcvb9EF16tShevXq0XfffUfh4eE0fPhwWrlyJZ05c4Zq1KhBffr0ITiUEC1btqSTJ09Sjx49aNGiRdwv2n388ce8vX///jRv3jzasmULffDBB9SzZ0/KmzcvH+vv709fffUV77t79y73ifmXLm1+WM6N7LyNGTOG5syZQ02bNqUTJ07Q2rVracaMGVStWjWaPXs2zZ8/n+dSsmRJatu2LTVr1ox7ghg2atQoWrBgAR0+fJgKFy5MrVu35vl7eHhwG8wXr+3btxNEN/D47LPPyNPTk1asWEEDBw7kOY4fP57bT5o0iaZOncpzwfk6mtu0adOY0549eyhHjhzUvHlz6t27N+mxYzp3W7jSJo1LmVKYXVnW++uO2kkfls1I64/epH0XgilzygQ0oL6vxfVy7sZ9Gr70NB30v0OpEsel5qUzcPsnqAjunsW7r9KJqyFUOXdK6lE9m2Us9N2qjA+tUa6aI5fvsqPny3q+9POac/TP4RuUNlk8dstUyZvKMq3g++HU7/ejtPH4LcqVLhG1VMfXLpjGst/dKw9VmjIIRJ/Vzh7FwdSoeDrCvn9P3qY25TLS2Rtmh1GjYukodRKzwFY6pzf91r0ohamUZ4j9it/WU4FRxKBkCbzo89o56FZIGG0+ccuuSJQnQ2Ly8TZfIywjVb66Dcdu0bXgRywSffvnSRamkA5vw7GbNK5NASqVIzmn3/tDpeADfwiB7SpkomLKfQRn1H9qLhPaFeC57TgTRIOWnKCpHQvx9YmINFGDMbt4buVzedPUjRf5Wt4MCeXjcZ0yPrlnbtwNpXH/nOdrkl5ds/pF0lKrsj7cL9L/rTgQwHOZueUStVT3R/eqWXmfvbd/Dt+ipftuqHMLJe9EXlQmZ3JqX8HsHhu54jx5qh9DiHy7VRo53GdV8qagTpXNwjeuyXdLz9HJa/cpcfzYalz7TquLymU0cMlpqls4Na09cpuC1L2VX7mNmpdKSxjn9r1wSpMkDg1p4ksp1DwQ208H06QN/nRXufDiecWi9wunUvdgesJvhp/XXKBQJQRCFNx0IpCmdcxHsdVkf1h+nk6p+Xiq9WJZk1DvmlkoFk5CQggIASEgBISAEBACQkAIvOEEDh069IafgUxfCAgBISAEhIAQeBcIFChgfgb6pp+r20Sihw8f0v37T+u6xIkTh+LFi8diDgSifv36UZMmTVicgUgCwSN58uQEIUnHgwcPKDQ0lD9269aNRZfEiRNTnjx5aPHixbRmzRratm0b+fn5sRCEfrp06aIPJ6SKg3CE7RBgdEDEuXTpEgtOkZGRLOggRV7WrFkpZcqUtHHjRn5duXKFvL2jpgjTfejltWvXuH+MoQPnAJGlY8eOvKlMmTK0bt06fkGEgaA0efJkPvfUqVOzQAPRBwIQzq9du3ZRjse8kKoPrxs3btDIkSMpODiYx02T5qlwgX2YR/ny5Xlce3P75ZdfWBBCI/S9f/9+fkGIw3WJ6dx5cBtvSg8g1MjRoQUefEZtncF/nGCxplq+VDR9sz8h/dmcrkX4mA7TDpCfEmvGty1Ahy/dpe+XnaasqRJQ+VwpWFj6YuExQso1pIibpUSCrtMP0qKexSlh3FjcN8SNAUpwqKWEHoyzTQkXEJOGN81DC3ZcoU9mH6b9wyqxewfzGfvPOXq/UBpOz7ZRiSSfzzvKogyEjxcRZ5UIhsD5WAeEEC2G5EybkHd/ueg4CysQZOJ5eUZJ2Xfy+j0+bziIrOP7ZnmsN0X5jNo6qHH0WF2sU9fu8XWASKZTAkIcmq94VVXX6Kv6uShb6gS06mAADVDzaVs+I4szEGvaKPfR0j4lKZu6RsP+PsUOKLietiix61LgQ4JYBMEQtZ9w7XOqVHjL9wewcDesSW5KmTgOC0KfKe4LPylGmFePWYcpPCKS+r+fgy4HPqJhS09RfCWUQEiD0+q/04FKcAmjnirtXv6Mz5678UTPKbHtl3X+6prGoSYl09Jh/xAlTimRKXtSyp0hEfcPcQdsq+ZLQeuUuLPiwE0WkvL6JKJ+80/SpduP1D0Yn0WZ5ftvGLuPsv4wLFLVhHpMc7ddpdzpE1Gc2B609/wdfqVXTrrSOZPR1pNB9PPqC5yu7uiVe0rwOUfY16BoGtpz7g4t2nmdBZ/mpdKpuYXS6evm+yVzyvjkpRxn3WccZUGpZPZkqn9P+leJR7dCwum7Zr5R5iIfhIAQEAJCQAgIASEgBITAm0jgbXng8iaylzkLASEgBISAEBAC7x4Bt4lERlEGGOFsGTJkCLVv356mT59OcLDAvbJ582YWKiCQoPYPviEEoQQBsSZLlix08eJFi0B05MgRSpcuHX377bc0dOhQmjVrFjuN+AD1BscO3DsQT2LHfno6GGvmzJm0atUqatiwIQs2QUFBfBjcR3AyffTRRxQrViwWnSAa7dq1i2rWrKm7drjEnFevXk1FikDUMJFOrwfxB66i9evXE9Ln/fDDDywSbdq0ifvr2rWrRSjDeLrm0aBBg3j/6NGj2Q21YcMGnsvPP//M7R1Oxmqn9dzAFDFx4kR2bum54TNEIj32886dO7fx1m3GwShbIeAY6/rAKdP5vSzcJrESFD797QjX04GwBnGid43s7FKBMAIxRac/Qx0dpF/rUys7HwtnTblvt9Duc0FUSQlBiE5KQNJCy3Hldlm+/7p6gJ6HH7z7eMej/34OpIuqDpAWQ4pkSWrZXz1/ahY2Fu28yu4W7tDNb/qhf6YUCRz2DPfI3G5F6QtVk0jzLKdqHeH8tRMKbhIIO88TEGwKfLnRciiu0dgP81PsWE8dKeh7TOt8ymlj3jbj30tKzEinxBtzSknMo8HoXewI+rhaFu7ryOUQdvlAcIN4tf1MIDUtmZ4OqJR4GZVjKX3yeHR8Wwivv184DddWKqCEHv/bD/n4feeD2QW2/osylE65iBBIvTdn2yUWiXiDevu1U2HydiEtXsCdMBZhRrXOzULQB8XTUpNx+9npA5EIgdOb/FE+SpogNjUoloY6TTtCx6/eo7hKOIJAVDmPN/WqkYXbfrf0LO1UjiNH8Z5yIvWsnpndSQ1H72NB8pf2ZjfjhZsP6eKTc52++TKPPbZNHubeUI3dZfpR+mtPgBJB01mGgAAE0WnD0dssQnWs5KMcR6l5P8QtOKUgTmH+EkJACAgBISAEhIAQEAJCQAgIASHw7hGIpEgKV38eqz8RT/7wmilC7YlU/z999o/63/AzfzzJk2J5qJf6E5vfsYxNXuoPtkkIASEgBITA20XAbU8TkT4NYo4OLZpAhIGTpUSJEizUYD/SpEEgshcHDhzgXSEhIdSiRQteh6sGgVRsxoBLKUMGc8oo43YIQ0jTVr16dcvmgIAAFoSQfm7hwoUEwQbCEQQihNEJZTnIzgrcQcWLF+e9cPTAhYSAmDVs2DB2NeEznD5wSMHt8/fff/N+pKurVKkSi1dYGo/H3BDvvfcei2dgcPBgVLGFGzh4M84N7iL0jwATRJUqVSwOLuPYzzN37tDO28fVshIe/OtAiixjINWZDr0eoFKM5U6fWDk4vAluIaSHK6cEour5U6nUXHEI6coO+t/lFxwwxjihHuhrkcjXIJokVanXIHToVFzeCePwYeGG4zGe3o9lWd8UtFI5ZF5UYE4ICB/xvMzzsTcWBKxV/UrxOcORg5RucEJ9UTcnfaiENogCgRfD7R3udDtS1yGQcm+TSrcHF9d0Jb4grRwCIo8WiMAcKfw+LGdO+4b9cLKgLRxfSJUGlqiPBNfRBSXEwR3WVQmGuHZ7lfhTOY9ZyIO4BBdY9R+2U60Caahi7hRUPJvZuQVxBvHLugu8xNsSlV4QodPspVHpDF0RiHAM3DspE3vRlA2XlAD4iJ1DcLnhn8c60JcWWFIpZxMiWIkuELwQSI+nA6nqnIlERTKb733c9RDd4EjSgXSASDuHuBoUShmUaGYU5vJkSEgbjwUyM7RJoMQ7CESIY8p5hMD4+y+a5wZRFQHXVtIET3+ueKO8CQEhIASEgBAQAkJACAgBISAEhMBbRQDCTxiF0iP1CjOFqXVIQ+F0l0LoGl2nANNNCqRgCqI7anmHbpuC1ad79JCPeqyOwytcvSKU7ONJ8ZUAFFe94qlPcdUrCSWgFB5JyJuSqlcy9ScppfZIQekpHX+Oy628KI5HHLVm/uOljofcJCEEhIAQEAJvHgG3iUSo8WNdk0jjSJs2rV7lZZIkT4WDKDuefICoogP1cxBw/iBVHMQmYyRNmtT40bKO9ggvL/PDeL0DaecKFSpEEF8gZCGV3fMEUuXpMKbM8/X1Va4A81+KEGAgDiGF3ieffEKY69y5c9lNBWEKafDg4mnTpo3uipCmTweENMwTqfx0IEWcDtQ5shXGuRnbGFlAQEPEdO4DBgywNQXeBoHIVjo1fYDxoTjqqhjjF1XTBi4U1Aga8tdJfv3+cTGLYyaLqmEEN4oOpCAzphx7cgn0bqdLpPAyBgQtiBrRDQgmiDsPn14n3QfqzSRUziAE0q0hzt98wKnW+MOTN9QFwthesZ7OCSJN4cxJ+dWhYib6aOp++n37FRaJ/NIlZrEFKdriWp2HPgctgBnHwTrEOfSrAwLOKZW+7g8lyGiRSN/PaIO0dIg4hrnxZzVu6OMI3ldWOZ2Q3g/p5eACK6xELsSxKyH0nxK5hnzgx5+Rym9V31JcWwh1kGZu8ee0dnAyPQo392W8xnBPQcgBH4T1HHijnbftZ4Lph2XnmI9vuoSq3lQq+mPP9SitrdnpnSEPzXNBjS0dWkzSn20tE8WL+u0qpMqzFRC9rMUuawEUjjIdd5WwiECbiEjz3JKoOkl5lCMqYVy3/UrXw8lSCAgBISAEhIAQEAJCQAgIASEgBF4hAXy5UUlBSuBRf0wPWRi6QTfotOk8naAzdEItTyth6ISSg0iJPm4L60cils8elJYSU25KTb4emdQyB+Wi7OTjkUFJS/Epvod68Z94Sn56+lzDbfOSjoSAEBACQsDtBF7KE0WkNENAlDl9+jTB/YPaQsb0cNgPV0+WLFkIriQE6veMHTuWEiRIQNevX6d9+/ZRihTP1nDhxi6+oVYQhBfUDUIKOIgomJd2ArnYTZRmmTJlsrh+evXqRcifDDEHad0QyZIlox07dnCaPTiYUKtp8ODBhNRyS5cuJQgtSBGHeWFOcPwcP37c4gAqWLCgxUEFBmFhYSx+7dy5M8o8bH3w8fGx9I1Uf++//z4dO3aMkHIvVapUtGDBAsv+5527rXFjsg11aCCoIO1bjQKpaUB9X6o3aict3XeNvm6g/umhBBbUMepWJYtlGDgpkCrteQPpzUilqNMBJ0wen+g7MvAwH/NDvZzaqh6SDog1W08GWgSTDCrlHeY7deMFKpq1oMWpg/aDlpykXWeD2D206uANFoBmKzcOUoohIERBENt8/DZ/9nviMIErp3Plp+eAMWuP3EEllFCjhRk+wMEbjrmuWGZIbtvphznAlXXA/w5fG3QFzWbfhTtU8IlzBuONXHGGhY8Kfin43HAtF6r0fYGqhlCxLGa3UPCDcCWQxaXuVbPya972yzT0r1N0Q7nJ/JSbDNFa1WdCKkLEw7AI5ewJZ7cSb4jG2/zt19gpNrNLfq5rhL6W7I4qEtnrLoO3WRxCXaH0yc3p3XarukHuCgg8pwOeCuPo99T1Byxo2RL3kC5xl3IRtS6XnvI+SZV39PI9Jbbd4JpL7pqX9CMEhIAQEAJCQAgIASEgBISAEBACr4YAEsbdV38emB4ob9A9OqXEoN2mA7TDdIQ2kb+aVNirmRiPqp4bKM8SXhtNZ9SWDea5mNSzCkpFpT3yUAkqRAXU0puSU0KPhKS+0khx1B9xGr3CyyZDCwEhIAQcEHCbpN+uXTsWQbJmzcrLxo0b87AQSlAzCIIPBBCkhtu/fz9NnTqV98Pxo0WhRo0a0U8//cSiDUQcOHEqV67M9Y1Kly5NDRo0INTqiUnolHj/qfR1EEqqVq0aI4FIzwVOIUTt2rWpb9++nC6uXr16LATBiTFmzBgeCzWPJkyYQFu2bOH2ZcuW5eXHH3/My2bNmnGKPdQ1QqA/OLHy5jXXMoGQlC1bNipVqhTXcOJGDt4wdseOHblF27ZtqWXLlpyCb+vWrQRxCxHTuXMnNt6QfgyOEuPrgXo47ywuq3RgFYZupZ/XnKXrwY8IaeSQlg3iC6JRsXQ0af0F5Xa5RqipM3vrJao8fBunO3PWt739m0/cVqnNzqsaNCG83HLytkqBZhYErI+BqId6VPYC88Pcxqw5Ryev3eM0cQMWHec0bbWeCEdwBo1qlY+2Kj5fLz6hRJZgbjtq1VlOq9ZeuYW0ewjp3frNP8rnd0nVsUHaNQhC7+U1p22DaIMaTGNWn1Xp1C5Yxuwx6xCnH4PQYi/g7tmlajnhtUzVbfps3hGuB4XUb/YC9Ygw/qJdV5kXBCHMUfPyU/OBALZcpevTbiS4izBvpM5LrEQRxPfLTlONEduZD0S+4yqNGo5DWsGiqp23Wn6m6lQhvSBEu7aT91Mf9dleOLouKRKZHUjXgkNVCryH9NXi09zNg1CVl/mJM8lev6VzJGOBadGu66pm0iPacOw21zKy1z662yv4JWcB7I/dAYSfD9QWAo+KuZ+mtzP2WTWf+bqPXXORU+GhRtHQv88q4S4kRkKpcQxZFwJCQAgIASEgBISAEBACQkAICIGXSwAp44JUUrhLpsu007SbJkZOp48i+1L+yLbUOHIwfW/6SwlEEGVepUDkiEkkHaYAmmLaSB1No6lEZCeqH9mdhkWMpn8iN9AZ0zm6SbeUH+pRlNTvjnqUfUJACAgBIfByCJif1sZgLJ0eDeIFXjogxsDxAtcQAnV64FwZMWIEtWrViuBagSiUJk0aGjhwIAs2cPPs3buXUMfozz//ZHFj2bJlLCqhD4gveD1vQDCBKNS5c2eaMmUKvyDClCxZklxx5WBcnaYNfRkD54DznT17Nv3888+8C+n3UI8JAZEIaedWrlxpOZ/mzZvT119/zfvhLIKrCccvWbKE3T3Yj/pNCKSxQ2q6b775hsUzOKogzM2cOZP3483e3IYPH87OplmzZtHixYu5PVLcoS9ETOfOndh4G7/2/DNb//q0BPmmfVqbRTfQNCGMZE2VgAY2zEU/rTxDUzZe5CZINQbxBdGufCYKUvVzvlt2iu6rh/wQFr5q4Kvqzth+qM4H2XjTY2JXRyWyIOUZ5oz+elbPxk4m68Nu3rxJI0eOZJHOep/+3L5CJq6bM23TRRZtsB2Cx48t81JF5azRgVR8cPj8usmf/txzjTdj7EHq3HG+CKRbm9G5sBJvjlKz8Xt4G96alkzPc9QbetbIRmHKgTV722UWp7A9o3d8mtutqCVFn25rvWynxBcdqD/0bWM/qlvYnCLS6jbnZm3LZ6Qg5ej5WYlgcAYh9d+I5nmUAGR2CMH9UtEvJW0+ccsydols5vSMqFeko7eaM8SQFhPM54X5TmxfkAUZ1Gz6tWMhGvzHCct+9PFds9x8uPHaYYOz69KyTHqC26bPbyf4+Kyp4ivRMQHX9Vl3xOzI4h1WbxgHaeL61MpCP648Tz1nH+MW+ZTLDLWKrLIkWh0d9aORpXG9lZrb8SsQO6/wC0dhbh9VfCruGdunTxaXOlXOSNM2XaKvFpnFLqTKG9w4R9QB5ZMQEAJCQAgIASEgBISAEBACQkAIvNYEIikSfiG6Y7rLbqHNpv/ob9M2OqbSyb0NcVSdx1H6h8ab/qEEpgTUjIpSNY/yVNAjr6p5lELVPkqsKhnF+NHk24BKzkEICAEh8EoJeChhQyWLej0iIiKCBSLjbJC27datWywwWaenM7aL7jpq8UCUSZToWcEiun0Z25uUKwGp8ZBiDjWFrANCER5owx1k73yuXbvGziuIZdaB4wMDA/l4a6HKuq31Zz03iHW2xtb7YzJ36zFj+hnpxZBuzFbaLRhAsB/1YSAuuSO4bpASamyNh/4hJqLOVEBAABlrP9kaG/O7HPSQa+ekMdSzsdUWKdbCVY2Z9MniqZpWtloQ3QoJU2n4wimjqvVjrFdkbI0x/W8/YGYQpl5kYKwQ5fBCurSYxKPwSHXukZa0ctZ9ITUcwl5NH+xz9bocV640MNY1ha4GhXKKNmN9LPRnKzBPuNrAH84kd0fAnTB2fkEkdaV/cDl57T6npcuVPqHbfgbcfV7SnxAQAkJACAgBISAEhIAQEAJCQAhEJRCuXEN3VLq2G6abtMm0leaZVtMuuhS1UbQ/4WECXkgaFEtVBcLLk+Kql5d6JVDviVTKt7hqGdfDi+KYYqu12KqKUQSFeTxWdY/CKdT0WElWYUq4UuvYrkQsLEPU0lzvCEu81AOBGEQqJQ6186hEdTyqUWbKRN4eySmempmko4sBVDlUCAgBIRADAq+VSBSD85BDhcBLITBv3jx2oCF1osTrQ0Cuy+tzLWQmQkAICAEhIASEgBAQAkJACAgBIWCbAFLKBas/p1QtnwWRS2kybVENw203drjVLATFUyKPtxJ+MlJSykZpKaNHOvJRy/QeaSm1qg+UTG2HWyepRxIlEiVwWYQJVdLQXVOIkrHusph1iwLpmuk6XVGViC6p5XmPq3TBdJtuq3Z3eP74cqfz8gK2Tqkm5aa2Ho2oqEchSu2RSglb6suzLHbZai3bhIAQEAJC4EUQEJHoRVCVPt9aAtu3b6cHDx5QlSpV3tpzfBNPTK7Lm3jVZM5CQAgIASEgBISAEBACQkAICIF3g8BjekyBpiCVeu0EzYlcQnNppzpxOHJcDYhCXkr+iUt+Sv4p6uGnljkop5KGcnhkU6nbvJVvKJarnbmlXYgSkc7TRa41dIrO0T7TMTpCl5Uf6oGSjiB8PY7WOGUpC3X2aEKlPIpROiVyxRVnUbT4SWMhIASEQEwIiEgUE3pyrBAQAkJACAgBISAEhIAQEAJCQAgIASEgBISAELBBwKTSsiGt3EnTaZocOeeJOORqqrbYlFwJJQWUNFTeo7Cq5lOACnnkp7QeaV66IGTj1GxuCjYFsxC233SYtpj20H4lIl1QyevMbinXzrukSj/3mUdbKuFRlJ1FUrPIJupnNg4YMIDWrVtnt+Y66rGjTjtqxrsjIiMjae7cufTpp59Sjhw57I7rjrGkDyEgBF48gZgVE3nx85MRhIAQEAJCQAgIASEgBISAEBACQkAICAEhIASEwBtF4JHy01w2XaH5pj/pW9Nfau5hLsw/lkofF58qKpdQZY9SShwqRTk9cqiEcu6vi+vCZKLdJJlHMipLpaismncP6kRXTFdphxKLNpr+o010mE4pwcwZh53kT01NQ6ilqSR18WxNeZRrKrGqpuSp/ki8HgSCgoKocePGdPDgQcqVKxehxryEEBACbzYB+Q37Zl8/mb0QEAJCQAgIASEgBISAEBACQkAICAEhIASEwGtCAO6hIFV3aH3kJvogspcSiBaqmTkSiDyU/BGPylFW+sGjNW32nERzY02grp7tKa9H7jdGILKFP4NHemrsWY/Gx/qe1nvOoNkevamxckWlU5WSyInoM0+l5KsY2YdmR85XdZCuqOR10UtfZ2s+b/K2ggUL0syZM6lJkyaUIkUKqlatGq1YseKVnFJAQAD5+PjQyZMnqXLlyq9kDjKoEBAC7iUgTiL38pTehIAQEAJCQAgIASEgBISAEBACQkAICAEhIATeQQIRFEFXTddphmkeDVUOIlKf7YencsjEp/oeBaglNaCyniXVp/j2m7/he9J4pKbmHo2pGTWio6bjtMi0lP4wbaWTSlKzX78onD4z/arkooPUmzoq0cxPyWnxyEP9edfi+PHj1LlzZ+rQoQNNmjSJ5s+fTw0bNqRdu3ZRoUKFYoRDp6qz1UnXrl2pffv2UXb5+fnR7Nmzo2yTD0JACLzZBEQkerOvn8xeCAgBISAEhIAQEAJCQAgIASEgBISAEBACQuAVEwhTbqHjppP0ZeRIWqukD/vhQckoAbVR3qFWnh+88W4h++dpew8EnnweefjVSTmE/jAtp9mmlXSIbqoDbItqC1XKun9Np2icx6dUybOs8iEleSeFotq1a9PEiRMZbP369alw4cIs1sRUJCpevDglSQJ317OBdHISQkAIvP0ERCR6+6+xnKEQEAJCQAgIASEgBISAEBACQkAICAEhIASEwAsiEKrqD+0w7aZPIr+nEyx22B7IQ7lg2ngUpW4ebZRIkveNTiVn+wyjt9XHIwP19OhCjU11aZZpPs01raMzFKg6MT3T0XVVz6iJaShNjOxG9T1rq9pN3iph3bvlKKpevbqFS5w4cTjl3L59+yzbnnelQYMGz3uoHCcEhMBbQkBEorfkQsppCAEhIASEgBAQAkJACAgBISAEhIAQEAJCQAi8XAKhykG02bSNOkV+R9eUkGE7YinfUCb6n0dnquBZhlOm2W73bm5F7aIvPfpQQ1MdGmWaTHNMeymSHtmAEUHdTBPoYeQjau7ZiFIooehdSj0HYcgYXl5eFBbmqN6VsbWsCwEhIATsE/C0v0v2CAEhIASEgBAQAkJACAgBISAEhIAQEAJCQAgIASFgi8Bjekz/mXZSRwcCUSwlCX3l0ZDmxRpL1Twri0BkC+STbbk9ctEEz+/pV88eVIDS2mlpoj6mabQkcikF0x3lOXrWdWTnwDd+87Zt2yznYDKZCJ9jmmoOHaLmEAQoW6+ffvrJMqasCAEh8PYSECfR23tt5cyEgBAQAkJACAgBISAEhIAQEAJCQAgIASEgBF4AAYgTR0zHOMUcUqHZilyUkkZ49KbKnuVFHLIFyMY2JVVQK48mVNgzPw2KHEV/02HVKvKZlp+YppB3ZDKq7VmDEqoaT+9C/Pbbb1SwYEGqVKkSLViwgPbs2UNDhgyxnHpwcDCtXbvW8hkrmTNnJl9f3yjbrD906tSJUO/IVuTNm9fWZtkmBITAW0ZARKK37ILK6QgBISAEhIAQEAJCQAgIASEgBISAEBACQkAIvFgCAXTj/+2dB3gUVReGz24IkNBbAOm9o9Kb0hUFRLCigoiK7VdAaQoizYYFRBTBgiCIqAhIExCVJggKUqT3EjqBUAKk7H+/G+4yW7IbAgm7yXf22d2ZuXdueWdm4blfzjnyasJ7sk2Oe+2ouZSTd+z9pIqtomRSL9rVEaisuI2xvy3FHCNltON3dXKsWwMJ8qTjI5nvKCK1bLdKqHqld3vttddk/Pjx0qdPH4mIiJARI0ZI8+bNndPevXu3tG7d2rmPjV69eslbb73lcsx9p0GDBu6Hkr1vs2WsvFDJBsOKJBBkBGwqdmXG8csMsovD4ZIACZAACZAACZAACZAACZAACZAACZAACQQWgYtyUYbGfyDDZZYamKeXSyupJCPsb0gpWwmxqxct5QRiJEaGJLwvHzjmq0bchSKR1lJFsR4kJWzF0nV+IoSCmzRpkjz44INy/PhxyZs3r9jtvLdSfmfxTBIgASsB/ppYaXCbBEiABEiABEiABEiABEiABEiABEiABEiABHwQWOX4R0bJAlXDUyBqKRXkQ/tACkQ++F1NUZiEyev2XtJTWqrTQjxOnSP/yQLlaXROvTKK5c+fnwJRRrnYnCcJpBEBikRpBJrdkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJBDeBGLkgoxMmqM8Yj4lUlALyrgoxRw8iDzTXdCBcCUX97S9LR1tN1Y5neLO3HZPlgCNSSXaeot01dRxAJ3/88cdyyy23BMSI4NVk3hiQdTsgBshBkAAJXDUBhpu7amQ8gQRIgARIgARIgARIgARIgARIgARIgARIICMS+C1hibR2vC7xSiZytRCZocKeNbc1lizqRbv+BLY7dkjHhFdkvRz2aHyE7WnpbH9Yckh2jzIeIAESIAES8E2AnkS++bCUBEiABEiABEiABEiABEiABEiABEiABEiABLSnyo8yWwlEFz1ovCQtpK6tFgUiDzLX70A5W1l53vaAajDUo9FvHHMlyhHlcZwHSIAESIAE/BOgSOSfEWuQAAmQAAmQAAmQAAmQAAmQAAmQAAmQQLonkJCQIFu3bpUTJ06k2Vzj4uLkwIEDEh8fn2Z9prSjkxIlixzr1ekOtyYyyWP2+yW35HI7Hpi7wcTcneADtnbSQG5yPyxr5KAckEiJUy8aCZAACZDA1RGgSHR1vFibBEiABEiABEiABEiABEiABEiABEjgBhOoW7eu9O/fP0WjOHXqlDOHhsmlYb6jojKuJ8KkSZOkQIECUq1aNSlcuLC0adPGRSz69ttvvXJbuHCh8zqUKlXKo85tt93mLLdunDt3Tp5//nkJDw+X0qVLS1hYmLz88ssSE+OZ68d63o3cXutYJ3u85CJ6QupLESVchKhXINj+/fulffv2+lrMnTvXOaRgZO4c/OWNHLYccp+thdrL5F4kfzv+lfNero9HRR4gARJIMwL4PZoxY4b8999/adYnO7p6AhSJrp4ZzyABEiABEiABEiABEiABEiABEiABEghyAmPGjJHNmze7vHPlCg5PkOuNftWqVdK1a1f54osv5OzZs7Jp0ybZvXu39OrVy9nV4cOHpVGjRi68wK9hw4a6jsPhkIMHD8qUKVNc6nz33XfONqwbEPnmzZsnK1euFAh3S5cule+//17effdda7WA2v7PsU35EHl6qrSwNZLstmwBMVaIeWXKlBFcD3cLRubuc8B+E1tD5bXlmfdpvWxRmaLcc0V5a4HHSIAESIAErAQoEllpcJsESIAESIAESIAESIAESIAESIAESOCGEoBAUaFCBZkzZ440aNBA8uXLJx07dtTCQ3IH9ueff8p9992nz23WrJl89dVXHqcWKVJEL6ZjQd287faMuUxy+vRpef31153eJ2XLlpXWrVsLxCNjR44ckXLlyjlZGWbwBIIZL6yaNWu61AFnb7Zr1y5p0qSJ1KhRQ3sTwTusdu3aguOBavtUSDNRGYncrZKtvGRVr0Cw1atXyw8//CATJkzwGE4wMveYhDpQ3lZOCkqYR9FOR6TEOmI9jvMACZAACZCAbwIZ838/vpmwlARIgARIgARIgARIgARIgARIgARI4AYRuHDhgvZi6dy5s9x7773y0UcfybZt2/R2dHS031Ghbtu2bXWOm88++0wgPjz77LMCDwuadwItW7bUIpEpRc6a+fPnS/369c0hOXTokPZOwXWBiIfvFStWOMuPHTumt3/99VfNHALfsGHD5NKlS8461o0uXbrI5MmTZeLEibJlyxb5/PPPtTD40EMPWasF1PYJxykv48ks4eplU69AsBEjRki7du28DiUYmXubSBbJLEVseTyKjsgZJeF5ingeFXmABEggTQjAMxUeoj9+P1V+Vf+m0AKXgGcAz8AdK0dGAiRAAiRAAiRAAiRAAiRAAiRAAiSQQQggNBZy1MAQ5qx8+fLy22+/abHIFwLk1smfP78gzFnWrFnlgQcekJMnT2qx6ZFHHnGe2rdvX8GCurHbb789xXmOTBvp5XvgwIHacwt5JIxBJFq8eLEW3F566SXtrdK4cWPtbXTLLbfI0aNHdVUwRa6hyMhIGTJkiBb4IAS52z333CNPPPGEPPXUU86ibt26SatWrZz7gbYRq0PNuYZxC1e5cewBIhD54xWMzJOaU1ZHZo+iC+r6uF4djyo8QAIBQWDfvn0yuF8fmTXvFzl17nyqjSl3tnBpe1creeOd4VK8ePFU68dbw+vWrZMOre6U+jkyS9mQBJm3arnMnTpFfvrtD8mWLTDCc3obd0Y9RpEoo155zpsESIAESIAESIAESIAESIAESIAEApgAwsQZK1mypA51tmHDBr8i0Zo1a3QYMwhExlq0aCHjx48XeCkZq1y5slSsWNHsahHKuZOBN8Dp/fffl59++klKlSrlJIHQcM8995x06NBBH0MOo1q1asnXX38tI0eOlBw5cmhxCMJQzpw5dZ0qVaoIvFeQZ6hw4cLOtrDRo0cPfU3gKVatWjX5559/pHfv3oK8UG+++aZL3UDZCdch5eAxdEWKOC+XlDQRHN4rwcjc27V3KP6n5ZxHUU6VpyhYBDuPwfNAhiEAgahZ/XryZHisbK6aRyJC86fa3I/Gxsu41Yt0f7+tWHndhKITJ07o3+pMmZKWFno987T0zWuX5wpeEXT/t2evDOn5krw77stUmzMbThmBpK9kytrjWSRAAiRAAiRAAiRAAiRAAiRAAiRAAiRwzQSyZHFNTI/FqIsXL/ptF3Xcz82cOXGRKj7+ymL+448/HtBeK34nmgoVfvnlF3nmmWe0h1WbNm1ceoBnl9XCwsLk7rvvluXLl+vD8CaCWGQ1hLGDrV+/3kUkOnXqlIwbN06/ISLB4C0Gg1AETyb3a6gLb/BHQVs+pQ+5ikSiJKKTEqXDnIVIyA0eYdLdBytzbzOKlmjZL56h/4pKi0OCMAAAP0hJREFUXuXXxaVOb8x4LHAIwIMIAtGAYrlSfVARoSGJ/ew/rT2Xvvz2u2vqE+IQvHOXLVum/zAAv9Xdu3f3aPPw4cOydccOea56XpeynoXCpeXcefKuy9HA2Jk7d67AmxVhbkePHh0Yg0rDUTAnURrCZlckQAIkQAIkQAIkQAIkQAIkQAIkQALJI7Bq1SpnxaioKB3+DB4n/qxGjRpauEhISHBWRVvlypVjiBsnEc+NtWvXCsKRDRgwQF544QWXCg6HQ+cZcs/rtH37dp2fCJVRhjxEyGdkbO/evXrT6pGEA8ajKzw83FTV32Y/qTxGLpVvwE5pKaF69RSC/nGsk/MScwNGlPwug5W5txmuTdggkeIpGJe3FZfMtiteC97O5TESuNEEEGKuW6HsaToM9Id+r9V69uwp+fLlE4jOCxYs0KK+9d/qa23/Rp0/ePBg6dSpk/Yotv7f4UaN50b0S3n9RlBnnyRAAiRAAiRAAiRAAiRAAiRAAiRAAj4JIB9Rnjx5pGDBgjr8GMKZIW+QsV27dsnChQvNrv6GNwvCoSEvTp8+feTRRx8V5EV47733AjaEmcsEbtDOnj17BCH5YPXr13fh2rRpU4EXF9iCaYECBaRSpUoydepUwV9eI/eTOQ9eQVhEfOWVVwR/cf7kk09qcQ4C3datW/W1GTVqlDRv3lwLSrjGCAuIsH+4Tv369dPeSbjWgWjVbZUlhyNUzkisy/BmO/6Qto47Jbstm8pOBE+jwLNChQoFJXN3kvHKZ2uB43flv+UpEt0qVVRAwCthJt3P5T4JBAIB5CBKzRBz3uYIj6JrzX0UGxurf+8RGhSCfs2aNXVeuZkzZ0qdOnVcusXvTYWyZWXMkQMq3NyVPwYYcfi8dLi7rUvdQNjBH0Js3LhRxowZI8ePHw+EIaX5GCgSpTlydkgCJEACJEACJEACJEACJEACJEACJOCPwKBBg/QC1JkzZ7QoMW3aNJeQZdjH22ozZszQIsOUKVN0yDIIEhAcevXqpd/Wuty+QgCLfOAMa9269ZUCtYUFM+QYQp6ikydPupQPHz7cmaMI3kLTp0+Xzp07y9ixY3UbyFn0448/is1mk+joaIHnEcQjGHIeIcfR/fffr/fx8fDDDwd0mJ8qSiSqIHnkb+U3ZLWFslU2ObZKhK2AZFavQDAwd7dgZO4+h/2OAzJNEOLwiqdgYh273GKrJmEUidyRcZ8ErgsB5FKCQfQ3htx+S5YsMbsu3++P/Vw6tLpTlsRekrIhCbIy1i6OAsXlpxGjXOoFwg7+v5HRzaZceK9k28voNDh/EiABEiABEiABEiABEiABEiABEiCBG0pgzZo1Uq9ePdm9e7fgr5ER1gbhbVJiCFOXO3duLVKk5Hye40ng9OnTgnwTZcqU0R5G7jUQqgfXDsISvI6shlB07onOcezo0aPaYywkxDOUm/X8QNh+M+EDGeyAOHklvxXGdbfyYhlpf0OKq5Bn9gD1JjL8go25GfdF5T00NP4DGS6z1CFXkaiD3CojQ4ZIIYkw1flNAgFJADny4hsVT/OxhSzbJ9cSynPFihXSuHFjlzYmT54sn3zyifz5559e53P27Fn9RwP4d7127drSo0cPr/UC5SByLOEPIz799NNAGVKajYM5idIMNTsiARIgARIgARIgARIgARIgARIgARK4GgIQDVIqEKEfhKvz5lFxNWNgXVcCuXLl0nmI3MUeU8tut2sByV0gQrm3c3DspptukmAQiDCHe213q8xEObHpYnPlP5njWCjR6uVQr0C2YGMOlggzt8yxQkbKArXnKhCh/CFba8nl5bqgLKMYBNovv/xSDhw4kKZT3rZtm1y86Bn+z9sg4FG4f/9+b0UpOvb999/Lzp07Xc5FWDSMCSHEkmORkZGCPygINDt4KV6i4jzv9WsZ56FDh2TixImSkrw7RYoU0V2fO3fOOQT8wUCJEsjV5t2yZ88uDz74oDzwwAPSsmVL75V4NCAIUCQKiMvAQZAACZAACZAACZAACZAACZAACZAACYBA0aJF5aOPPhKIEbS0IYC/bDdv9Gi28X2j9nXHAfhRxVZJOkh9NTLPJbWejvGyPGGlxMiFABx58A4pQYlC2x075bWEj+SSoutuTaWs1LXVyvCh5jZv3qxDOEIkSQubNWuWFoyrVq2qhd7+/fsnKcxAWHjsscckf/78WkRu0KCB/Pvvv3qYO3bscPnNsf7+vPXWW0lOZc6cOYK8ZhERV7zHhg0bpj1QMabSpUvr3GlJNYA8aU2aNJGSJUtqT0YIGfBcNbZ3716v40rt0GRbYmLl9vVHpPiqg5J/5QG5b/NxOeVDLFoefVEq/RMp8BTyVQ/zAv8PPvhAJkyYYKaZ7G+I+TDk7jGG/EQVKlQwu/wOYgLMSRTEF49DJwESIAESIAESIAESIAESIAESIIH0RgALfshVQ0s7Au4hiAJtP+1IJK+np+2d5NeENbJBDrudECfdHO/JREcWaWCrl+FFCzc4KdqFQLTbsUd6J7wpayXSSxt26Wl/QvLZ8nopy1iHEPILv5/ID5baBoHnvvvuEwgm+L3G/p133qm9N5EDzt2eeeYZWb58uSDsGLwM+/XrJ23atNH78ESBwGW1gwcPSosWLXQ+Outxsw0vIQhEffv21XnncPyLL76QIUOGCHLTNWzYUHvMdOrUSf/hAfathrCZHTp0EOTUgRgEDyd4vHTp0kXnS4NH5JEjR/QpmzZtcvFIhYdqatlpJQa133RMKodnlv11ikh0fII8oESiTttOyMzKBTyk6e67omR05Bm5I09W2RYT59eHMTQ0VAYMGCDPPvuszgEXFhaW7KnAA7Fbt24yePBgQZi5devW6Zxza9euTbINeLZlyZJF4FG0fv16WblyZZJ1kypIrkdYUufj+FNPPeWrmGWKgOefPRALCZAACZAACZAACZAACZAACZAACZAACZAACZCAVwJlbaXlRdtDalEtq0f5MTkjTyhB40/HSjmnXoEees5jAgF0IE7iZJcSiHomDJH5ssXryHpKK6ltqyFZ1Cs9G7yDXn/9dbn55pu16IFFb/ewckuXLtVCDTgg7xQEnCpVqmhPDwg358+fv26IpkyZItWqVdNiD0STpk2b6vGNHDnSo4+TJ08KwsKhDB4+BQsWlBEjRuhcZAsXLhQIF8hxZn3//PPPUq5cObnnnns82sMBiE3IfQahytiYMWPkpZdekrvvvlt7or744ovSqFEjr14zy5Ytk+3bt8vHH38shQsX1owwvrlz52rRCG0eO3ZMEGKtbNmyLmPLmzf1BMmlyisIYs8nZfLITZlDpGJYqIwqnUfmnoyRPRfizFSd31vOx8raWwtL95tyOI/524A4d+bMGfn999/9VfUoHzp0qL6PcA3BHtcR91hSBoHnwoULOs8PvMmwfzVvtIuQsdf6Tmp8PH6FAD2JrrDgFgmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAn4JfCo/QH5N+E/+dTxm6rrmjfksMpL9JASNj6zdZdm9tslt8qWY+ffaftlaq1wQYXs2+jYLK8mvCeLxTXnjKnXSErJs/YukldSz7PD9HWjv+E1M3bsWHnvvfd0njZ8t2vXThYvXqy9NLDwjvBrH374oR7qq6++Kl999ZUg/BrCt/Xp00dOnDgh48eP95jKtGnTZPjw4R7HcaB27doyevRojzKEaqtZs6bA48ZYjRo1tPADMSBbtmzmsOzatUtvV69e3Xksd+7cWmRCqDl3gxfRqFGjtLdKUrnKlixZoj2ITAg05NjZsGGD9i6ytofxw8PK3SAQweuqUKFCziIIcDCMF95Y8CSCgATPm+nTp+tjHTt2lEcffdR5zvXe2K4EoojQECmkBCJjN2dPDPu5W4lEpbO6LuXPr5oYai/ykqeAZM53/4b3EAQ+iIoQ1K7GIAj+8ccfgtxGEMvgJeTLgs2DB55oGdVc76yMSoHzJgESIAESIAESIAESIAESIAESIAESIAESIIFkEgiVUOlv6ymHHMdluqxTZzlczoxWXkSPON6RdxMOSntbayliK6LO4DKcCyQvO/C8ipJTsixhhfR0fCT71bY3K6mEoeH2PlJMcVV+Bt6qpJtj8PqAQIRwap07d9bzgodM+fLlBWIJFvoheqBe/fr15ezZszqv26RJk3QINZwAMaR9+/ZaRHIPlwZBBKHXvFnx4sW9Hdbh4SASWc0INnv27HHxLoHHDwyCi9WQCwhik7tBAIMXUVJjQn14+UDoMHb4cGLoR/c+kOMO4eLcbefOndpDyHrceAihrHnz5oI2//77b53HB15JEJueeOIJuXjxonTt2tV66nXb3nEhVsqFuf5O5M2UKMTtUCJR8+vUE+4dwywlTbpzTkkbPCewCLjedYE1No6GBEiABEiABEiABEiABEiABEiABEiABEiABAKSQAFbfnnb3k/OJwxS4dCw2O0qFMHDqK9jgqyQf6WHPClVbJUkh2SnV1ESVxPeQwcdh2S841sZ7pijasV7rRmhKH5mf1Wq2aoq2S39L20akeP222938oDAAnEHuYAgEq1YsUJ7xkBcWbVqla6HfDCLFi3S2ya/zsaNG+W2225ztoMNeADhfTWWL18+LUpZz4EHESxnzpzWw86cQSjPmvVKiEaIWQhbZrV9+/bJp59+KhC4kvIiQv2jR4/q/EfmXOO55B5SD324jwfn5MqVy2P8COlnyvBdoUIFnX8HXlkw5PGBF84HH3zgVSSCNxZC3lkN/EuXLm095HM7V4hdzqg8RFaLVV5iMJRdL8P1g5hHIwFDIP3/kpqZ8psESIAESIAESIAESIAESIAESIAESIAESIAEriOB0rZS8qH9deml8hDNk82qZXehSGSGY51695L3bY/JXbYWyquosISpV3r3gEku5ksSq7yHomRlwt8y1DFW1kuiV4i384uq0H2fKWGuoa2eykKUGIbLW730dAyeKzD30F4QXIywAY+iZs2a6dwtyAEDq1SpkhQoUEBvFytWTAsy7qKMLkzBBwSUvXv3upy5f/9+vW88ikyhEUkiIyN1qDxzfNu2bdKqVSuzq78htPjzIkJF69yxD9EH4ePMGHAMBtHJhJFLPJL4iTxD7iIJQqjBzHit+Y4SzxJp3bq1DtkHr60cOVzzAEF8wzis5u61ZS3ztg0vok8PuYqjkZcS991DzXk7P7nHLl26pHNBJbc+66V/AhSJ0v815gxJgARIgARIgARIgARIgARIgARIgARIgARSiUA5W1kZZR8sAxzDZapjjerFdZE3sdtL0svxlXzjmCc9bY9KA1sdibBFKKkoa4YViyAOnVav/1TuobGOyTLN8a9C5SmymctWXQrJCHtfqWurpeShjCEQYe5VqlTRCBD6rG3btnr75MmTOuSbyfMzf/58eeONN3SZqQ9Bo2XLlvpYXFycQKSx5uDRBeoDuYvgJePN4KU0Y8YMj6KKFSvqPEZRUVFOj54ff/xRbr31Vg8PoBIlSujzZ86c6QwRt3btWkHuIYhNxhCWbty4cdqLKFMm30vWEIRWr15tTtXfYPHDDz/Ic889p/fhVTRr1ixniD5rZYRbg9CD/DpNmjTRRRgfrEyZMvq7R48e+nvkyJH6Gx/IV4S+3QUilCHUH97XYuXDQrUn0R+nL0iTXIleVzNPxOgmy7qFobuWfhCuD/OgkYAh4PuJM7X4TQIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIk4JVACVtxGSXDpKjjYxkrv8lZOe+13jo5JF0c70tjRxnpausgdWw1lViUX7Kpl129MoLFqLByp9Rri2ObTEmYKV/Ln2rariG2XDmESBupJMPsvaWCrZyEqFdGMoQGg+AD8SM0NFR7q7z55pt6kR/eKxBXEH6tQYMGGkv+/Pl1CLpu3brJZ599JkWKFBEIHRMnTtR5aEzuHcMQYewmT55sdl2+jSeSy0G18/TTT2uRqHv37vLaa6/J77//rgWZn3/+WVedNm2aDBkyRH755Redi2jYsGEyYMAA7dWD8eC8unXryp133uls+p133kmWFxFOQK4hCE0Qv4yghPYh+MAb6d5779Vh4WJiYgT5hGB9+vQReC9B9IKYc8cdd8grr7yiw9tB7Bo0aJD07t1bDJ86depIly5dtEgH/mvWrNFtPP/887q91PhokDOL3JEnq/TcFSVjyuaVU3EJMnDvaelTNKcgN9GWmFhpv+mYjC6TV5rnThSRUjIOhCl86qmnUnIqz0mnBCgSpdMLy2mRAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmkHYE8ttwyLOQ1qZFQVd5TuYj+1WHTvHvGLJadstjxnlR2RMiTtrbS1NZIiUUFJKd6IYxaegtFFytxSjg7K6cd0fKPY63yqJopc2WTujje+ZirFqp8rQbY2snT9s6ST/KmOy5mnv6+J0yYoIWZe+65R1eFwDJ79myBILRgwQLt2YLwcsZQHyKA8TxC/iLUMwKIqYdvhF7D+2oM7Xz77bfy0ksvCTx44FkDkcaEj0MOpM2bN4vJEdSzZ09BPiQTwq1WrVqCnEkm7xBCv40fP16++eYbp+jjazxNmzbVxVu2bJGqVavqbYhkb731lrz99tt6LBCj0EfhwoV1OcS07du3S0JCgtjtdhk9erQWgUyOpnbt2kn//v2d3Xbs2FF27twpL7zwgn6j4JFHHtEilLPSdd6wqfY+VQLQ49tOSMN1R3Tr9+YLl9eLJ4axi45zyLaYODke611Uxfn+DNcGXlwtWrTwV5XlGYiATcUg9P1rnIFgcKokQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkcK0E4CUz3PGJfKfyEcVJYrgo322GymMqjFo7uUOq2CpKblsu7V2UVUlGwSoYIZzcefU66zgre2SfLHD8IRMdv0ukCjHn30KknhSV123PyW32+iooX8q9Jvz3FTw1kIMI+WSyZcvmHDQ8jBB+burUqc5jZgN1z5075wwJZ45fz28IKch5lDmzawhAq5eP6S86OlqHeYOAc61Ws2ZN6dChg4uwgzbRL/IlIbeQzXZFNnE4HII3BCKrIRcRchwllT8IOaEQZg5h88LDw62npmgbnOIbFfd7LnIRhdltkkd5EFlN6USS6cq0rEU+t0OW7dP3DsILDhw4UOdkMl5YPk9kYYYgQJEoQ1xmTpIESIAESIAESIAESIAESIAESIAESIAESCAtCVySSzIr4Rf5xPGtLJP9quu4ZHVfWHkT3SO1pImtfqJgJLkkzBamfGrCJFQyBaxoFK9yMSGUXIwjRotDO5U09KdjlcxzrJDVciBZcxc1u6Jq/s/b7pHO9oekgOQP2Pkmc0KpXg1eQgilZnLxpHqHAdLBokWL5PHHHxd4E2XPnj1ARuV/GMkVify3dHU1IBLBswviWt++fbVX1NW1wNrpmQBFovR8dTk3EiABEiABEiABEiABEiABEiABEiABEiCBG0rguOOE8qD5ToVYmy//yQk1luSJRYmDDlWCUSWpZ7tZakg1KWYrqjyMwiWrDT5GmdU7i87Rk9beRhCEIIJdxNtxUUlDF+SIHJMNjk3yt2O9zNHB9qKvgrtNSWHh8rCtrjxne1zK28oqOYxZMvwBhNfM559/rsPKIU9PWpjVYwieSqm972tOCHmH0HvWUHtpMSbMGf2kxG6kSAQPqzlz5kjXrl09PKpSMheek34IUCRKP9eSMyEBEiABEiABEiABEiABEiABEiABEiABEghQAgccB+UHlYtnshKL1stxNcqrEYvMpDJLCymp5KKyUsFWRspJaSloi1DB2LIoLyP1suET8komLR6FXP60i2vIKtOat28VlEtJQFdecWo7Vr3iHHH6G2HkotRrl2OvbFO5lTY5VH4ltXVUznhrzs8xu8o1FC4P2erJ47YHledUZSV9hfo5h8UkELwEIvLkls1V80hEaEiaTeJobLxU2hglR6NOpVmf7Ci4CFAkCq7rxdGSAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAkEMYHDjiMy0zFXCUYL5C85pLxxLqjZXEvKcLuUkdxKMCooxW2FpJgUlggVpi2POpZbhW7LZcupZJhwp8cRvI4SX4kQIQqZV4LagleQyhyjMgdFyynHaeUfdEIOymHZ5zgsu5W/0FotcKXMi+LKZcssFdTY2kkD6WjvoD2HIG/RSCC9E3jykYel7OpFMqBYrjSb6rD9p2VH7eby5bffpVmf7Ci4CFAkCq7rxdGSAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmkAwIQY5CzZ3rCPFkk62SH9sSJVTO7FsHIFxhku4f3gl3JMSEqbJ1dBYtzqPxB8eoY3gmX3+orVSyTEq2yyO1K0mpvbyl32JopL6K8ahTJ93JKlWGxURJIQwL79u2TZvXryZPhsdKtUPZU9SiCB9G4w2fly/Oh8tuKlVK8ePE0nCm7CiYCFImC6WpxrCRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAumOAELRLXf8JQsdS+VP2aoEo7NqjhCMINwEq0GUyqSEoCxSR4pLC1t9aWprpLyGyjGkXLBeUo77uhCAUDS4Xx+ZNe8XOXXu/HVp01sjubOFS9u7Wskb7wynQOQNEI85CVAkcqLgBgmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAncWAJHHEdlpWO1LJe/ZYVjo+xS+X+OqaB0iTmMAlk0SvRUClcSUHHlp1RbiUENpIbcpsShUraSynsp040Fy95JgARIgAS8EqBI5BULD5IACZAACZAACZAACZAACZAACZAACZAACZDAjSUQp8LA7XTskrWO9bJGNsg6x3aVF+iEFo3OaU8jhIlDeLrUClGX1PwRIs6ugtZlkgJKFCqq8gtVtZWUW6WK1LTdLFVsFXUeJOQ+opEACZAACQQ2AYpEgX19ODoSIAESIAESIAESIAESIAESIAESIAESIAEScBI46YiSnUoq2ubYocLS7ZE9KlTdbjmsXtHqFasC1cWrbEdGPILnkRGRrEKSddsq5JhtiEDYtisZyC45dA6jECUIZZOSEiElbIWltJSQCrYyUk7lGCpkK6TqId8RjQRIgARIINgIUCQKtivG8ZIACZAACZAACZAACZAACZAACZAACZAACZCAG4Gzck4Qqu6o8jOKklNyynFafZ9WW6fV66wKWHdJLjnUW+LUO1a94pSsY9f5gTKrYHCZbeqtvnMoISi38gzKI7kkt0291Xd+lVmosBKCsG1XLxoJkAAJkED6IUCRKP1cS86EBEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABJJNgNJ/slGxIgmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmkHwIUidLPteRMSIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESCDZBDIluyYrkgAJkAAJkAAJkAAJkAAJkAAJkAAJkEAqE1i/fn0q98DmSYAESIAESIAESODaCVSvXv3aGwmAFpiTKAAuAodAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAmlNgOHm0po4+yMBEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiCBACBAkSgALgKHQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAJpTYAiUVoTZ38kQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkEAAEKBIFwEXgEEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEggrQlQJEpr4uyPBEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABAKAAEWiALgIHAIJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJpDUBikRpTZz9kQAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkEAAEKBIFAAXgUMgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIggbQmQJEorYmzPxIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIIAAIUiQLgInAIJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJJDWBCgSpTVx9kcCJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACAUCAIlEAXAQOgQRIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgATSmgBForQmzv5IgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIIAAIUCQKgIvAIZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZBAWhOgSJTWxNkfCZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACQQAAYpEAXAROAQSIAESIAESIAESIAESIAESIAESIAHvBA4ePCj79u3zXhjgRzds2CBjxowJ8FH6H15qzWPbtm0yceJE/wNIoxp79uyRL7/8Mo16C85uYmNjZfPmzXL06NGrnsCUKVNk06ZNV31eRjohtZ41MFy6dKksX748VXA6HCL7T8boN7ZTakdOX5TomDifp+8+dl4uxSUkWScu3iGo42sc16Of+ASHHD51QfDtzdD/vhMxcjT6ordifeyimsf2w+fkQmx8knWSU+CPib+xuveB8Xgb95w5cwT3KC39EbBdunTJ+52c/ubKGZEACZAACZAACZAACZAACZAACZAACQQJgU8//VQ++eQT2b59ux5xRESEDB06VJ544ok0mcH8+fMlR44c0qBBgxT3179/f3nvvffk+PHjkjNnTr/tXI8+/XbiVgEiTaNGjaR06dJuJVd2r3YeV870vTVp0iTp3r27nDhxwnfFNCr9+eef5f7775eLFy+KzWZL1V5PnToluKdbt24t06dP9+jr/Pnzkjt3bn1crd25lOOaPfXUUzJt2jRp27atS1ndunXlwoULsnLlSgkLC3OW7dy5UypVqiSrVq2SW265Rcw1dVa4vHHfffcJxBx3A5MBAwbIRx995CxCe+PHj5caNWo4j/naKFq0qLz++uvyzDPP+KqWrDIsVOO3oUOHDknWvxHPU5KDSWaBuS7J/c04cuSIYJ64btmyZUuyl8jISKlWrZosXLhQX6/7R62WTQfPeNQf2L6CPFyviHw4b6d88cdemdOrnpQqEO5Sr9HQZfJc85LyaIOi+vj0vw/JWz9vk3MXE4WObFlC5A3VTptbC8nOI+ek7Yd/uZxv3enWtIT0aFVGdilRZ+CPm2XNntO6uEXVAvLm/ZUkR1gmZ/XfNh2Xd2dt10IU+uhYv6j0VOdaH9VPf90t45fs02MpmCuL9Lq7rLS+paCzjevRDwSUd2fvkKkrDzrbfbJxCel+Z2nJFJL4uzHn3yPythrrybOJz27NUrnlnYcqS5E8WfU5EG3em7NDJi7b72zjiduLy8t3lZEQu+tvz/lL8XL/R6tlz/HzMvzhypqrOckfk+SM1bSFbwh9A3/cIn/tjNKH82bPLD3UvO6vc5Pe/+GHH/TvwNq1ayU83PW+0BX4EbQE7EE7cg6cBEiABEiABEiABEiABEiABEiABEggXRKAGNSjRw956aWXBIvbBw4ckGHDhunF5ZEjR6bJnLEYDhHjWgzzSO5iL/q5Hn1ezXgTEhK02LB69Wqfp13tPHw2xkIXAvjLfHgwuduPP/6oD5UrV869SL7++mt9LCkvLHj6vPrqqy7nOby4VaBt1LW+P/zwQ5fzzA7Ezq+++kqLDFFRUbJ7926pV6+etGzZUiB4pbXNnTtXXnnlFZ/dpvXz5HMwySy82mcNv48QDE+ePOmzB7TbpEkTF0Hvvto3yS996ru8W998RVBBg10/XyvwzEnKVu2Kkv4/bJZ+bcvJykG36/fLd5WVPt9tkr93n5Li+cOc7UNwgvVuXdZ5rIsSRs5ciJP/fb1eIEj80b+hzFb14BnT57v/JOHyfbs58oz8b8J6aV+rsO5j9OPVtYj11ZK9zqF9/1ekjF64W95/pKr8Nfh26ara7j3lPyU8Jd6f16ufD+bu1HOb3qOO/DO0sUx8toZ8uXivTFsdqceyckeU7vf5FiVl9ZDG8vtrDSVPtlB5+ot/nR5DEIdmKyFpWvfasuHtpjK+261a3Pp5zWHnfMzGkOlbJXvWK2KZOZ4cJv7GatrCN1A/8+U6yRpql1/7NdBjf1Vd14HTtsjybYn3F8TITJkyybhx46yncjsdEKBIlA4uIqdAAiRAAiRAAiRAAiRAAiRAAiRAAumFwLlz57TH0FtvvaVFoWLFimmPiy5dusiIESPkt99+E4gbsD///FP/BX2+fPmkWbNmehHbcEBYqwoVKgj+8hneQKhz7733yqFDh0wVmTVrlsDzAmWos2jRIl2GxdRff/1VvvjiC93Gv//+q8NkoT0s0N988826P1TesWOHbhdtoLxv374SF5cYLgl9o0+Yv/F461OfaPmAKHD33XfLxx9/LKVKldJveL/Ak6BKlSp6Ho888oiAobEVK1bIAw88oMvuuecevciPMggT8ASBPf/88/p8bL/44ovaywS8MSfwts4DdcAQ3iDwDMGc+/Tpo71vUIZr8/bbbzvHg/nv2rULRUka5oDxo71u3bppYc1U9sXXX1/WceL6wjPNar/88ovceeedep7t27fXYqS13H0b7WF8GCfuAXh9WL18cAz3DDiDHe4t8PdnRvSx1jNjzZUrl/WwFmeWLVum78OZM2fKsWPHXMqxc+uttwo88eA14suyZ88uZcqUcXkXLlzY6ynwTLrtttukcePG2mOlSJEi+nn87rvv1OJyooiA+37QoEH6WuK+6NWrl8AjKimDCIvnFqw6d+6sBWFrXZRDhEI5vvG8wyCADR8+XBCKEv1AvHI3b8+TeQbdn2E8P+Y3ombNmi4hEM0zN3bsWN0XxgIB2zzj/u5B6/OH+wH3hzF/z5oZL4REM76OHTtqUQ9t/PTTT/Lggw/q5m6//fYkPbRwj37//ffy8MMPm671N4SL4vnCXN5Wzx144pxVAs6YRbtdzrPubNgfrXfvrVlYciqvH7w71i8iE56pIQVzZpHQELuz/RJKMIJFqOOm39zhoVpwgZfMwHsr6LLSynNpQLvysnjLCTkYdUGfM3vtEalQOLt0a1ZC91G3TB55oWUpJaxc8cSZsuKAdG5UTBpXzCc5lKjSSW3Dg+cn5ekEg2h1PfpB3x8qIQrjCcscIrVUHyXzh0vk5bEu2nRMKhfJIY8oTyd4PIEjhDH0vWRLotiSRQkx/dqUlUo35dCeQ2gT7bl7d83857BAOBrxWFU9B+tHcpj4G6u1vdj4BD3GO6pFyE3K4wljb1U9QleJVGH1YHa7XfBvjDdvQ12BH0FLgCJR0F46DpwESIAESIAESIAESIAESIAESIAE0h8BeDXAWrVq5TG5F154QSAoYKEK+WwQais+Pl4+++wzvSD/7LPPyrfffqvPQ8gteDv07NlTL55CyEBODpNzBsIF/iq6RYsWAq8NCCZ33XWXDn2GxX/sowyeFSVKlNAhvNAevBewoA0xCAvE7dq10/lZMAb8RT+ELCzQw+BhgXHC/I3HW5/6RMsH2oN4NW/ePPnggw902DCER3vyySf1eOBthblARIJhjm3atNHbGB8WuBHeDKG6ChQoIO+//74u69q1q150xw68tuA1AqEJnhjgYJ0HFv0h/ECoePPNN7VoAqbGqwOLh2+88YYez+TJkzWbxx57TPfj7ePMmTNapILXGEKRwUMEAhXY+uPrqy/wxvX9+++/9dwwb9wLRpD577//tJiDkGzIGwXhB4v/SZmZN3K6QMDEtQZTLPQbw70LwQ0L+mB49uxZLSSZcm/fjz76qL5eGK8xjBnhnFDmbhBlIAJBLIBQg5Bz7gbhq3fv3jo0IzzZfBkEHus7qboQiHBtIALBewWGcFMQb/LkyaP3Id7g3vvf//6nhUOEosMz683wHOO+q1+/vn5eIAZCXMP9AMO8UI4Qabg+CKUG4QfPIIQRXE+Eg8TzCeHK3bw9T+YZtD7D+/fv178jEJsg4NSqVUtf2zVr1ugmzTOHew3eOJ06ddLjxf0P83UPYk54/hCqD3OAkIP7A4INzN+zZsaL3xs8c3ge8XuC7ejoaD1Wc//h2QEvb7Zu3TrNFSKmu0Hfs76t5QVyZJEPH62qRKI9zjBw1nJs31oitz7Uc/JGgWBk8vPULp1biikBKjm2V4kn8CLKnyOzs3pFJZjADqicPrBdR89JlaI5xG6JLQchBuHcYlQ4NngcbT10Vosz+oTLH9WL5dQh77B7PfpBOwiFV65QNj3XU+dj5eul+7S40urmREElkwoXd/5y6D3UhxlvrINRifOBgIRwfMYghmH8VYvmNId0bqZhM7dqgcmEqXMWqg1/TFDX31it7WXOZJdHGxaVz9T1XrH9pGw7fFbemZ0Y7rVJpfzOqghXid8neBTS0g8BT1+19DM3zoQESIAESIAESIAESIAESIAESIAESCDICOCv52HwcPBl8DLInz+/YNE8a9as2lsGIZewkIq/dDYGjwwIOTB4gpicChAJYFjsh1dOw4YNBSJT5syZ9cI3FuBLliypF6NRD4vTMIgMJg8MvAmwX7ZsWedCOTwu4D0A0cObJTUeLLa79+ntfByDEIZ8NXXq1BF4GWDhHgvJMHj+YFEY9s0330ihQoV0/dDQUJ2/BXxxPrx9sNAOw8K42cY+FuanTp2qxTjsWw0iCRYI169fLxUrVtRFCFsG4QoGryvwhNcCWGKMRlTQFbx8QGSCsAGDIAexAAvsyJPki6+vvjBOiC3oG95oMCysQ8SACAUGGCcW+SEUQXg4fPiwwDvHm5l5gx+uNwyiG9p65513nNcf171fv366HF5AEHOOHj2qveH0QbcPCGgQ09DvQw89pEs///xzueOOO6Ry5cqydetW5xkQc8ADQgNyJiE/F4QY3LfuBtFg9uzZWqTBtfRmuI5ZsmRxKRo9erQW/lwOqh0IKxBUIJDhjXsV/T/99NMC7yMIYia8m/Fuwb0HDy0IOUZIMu1CRINXFoRGGDyK0OaSJUv0vQgRFPeQCX+HZ+7ll1/W9wWeFXieQfS13rembXx7e568PcNY6Ma1hfCGMFoQdSC0IneTNdcSGBYsWFDfJ/DQwnMH0crXPQgvJOQiw28UBDVwwW8W7jNjvp41UweCF+YOQ/6w8uXL6+ccYhHEOxjma+5zfcDyYbzNIIRaDTmH8LbazJ51tQBijt1WIZ88oPLRvPLtRvn55braQ8eU4btGyVw6/9D7c3fIrxuPae8TeKI82qCoh2BjPc+6ve94jPLEcRWUcikPI9g+JRLVLwdB5LyLgIIyeCrBDpy8oL2LsA0vJasVUl48O1ReJNj16AfikLF6g5Y48zCNeeJm7RWEsjql88iEpft1+LkOtW6Si3HxMuKXRGH1aPRFc7rz+1JcgvRVofXKFMzmkj8J+ZUg1D2mhBtv5o9Jcsbq3u7/WpSSv3edkidVaDxjyINUwCLg4TcahvvK/bk25/A7+AhQJAq+a8YRkwAJkAAJkAAJkAAJkAAJkAAJkEC6JWAWnU6fPq0X75OaKP7SH4u0EIiMwfMHi+ZWr4zq1aubYi2GGC8fhH6KiIjQx7CQDZECC87+knHjr6iNYVEZQhKEpy1btui/rEYIOxPGzdSzfic1HmsdX9tYSIdABDPfEDuMYSEbYbhgEBSwDc8OYxAGwAciUVIGNvDW8mZYFMcYjECEOhB18DbbEAvgmYEwdwiPBw8KX2b1BDF1IcZgMdwXX/SZVF8YJwzeVcZwb8Dg2QEOuH8gEBmD91pSIhGEN8zbCEQ4B+fDNm7c6Fysh9hgzGxHRkYmKRJBRICwBHEGItGJEyf0PYxQYsarzrQHARJCBwRU9IlvzAOsIChZDc8Frj+uJcQKeDe5G+4b8LOaezumDPc6xggvMYgk06dP12zBFGIcRD0YBD8TtvHIkSP6mJUPDkBc/euvv/Q7NjZW1zEf4AyBDG1a71vj8WXqXcu39RnG7w08kuABuG/fPv0Mw5vJGiYPvxN4rozB+wnhGmG+7kH8RmEu1t8UeCBazdezZupBQDOG5wGiLLwBIRIlx0y+Ius4cB68TCAAWQ1hxtwNodKWbD0hb/+8Xd56sJJ7sTxUr4i0U+HmVu44qXPXTP7zgExXId6mvFBLbi5+xTPG48TLBxAa7lwSnjcmFw9EI/c68CCCZc8aIuEqNBrMHNM76uO8qmPauB79mHbxjVxEJ85c0mHxnhu/Tj7qVE1aKqbwukHIvdd/3CLvzNquxw0PIYhAVm8ptAEvLuT8gRfRT93rSKYQGw7L9sPnBHmLPn/yFh2yTx90+/DHxFo9qbFa61yIjZcu49bKxdgEGaE8yHKrcIQQ/pBfKkdYqA7jh/rm3x16ElnpBf82RaLgv4acAQmQAAmQAAmQAAmQAAmQAAmQAAmkGwLwEIAhrBI8EayG8GNYYIaHChb63b0gcByGEHTGzDHsW4UPLPxiQRqhn+AFg9BeWDRH3hN4iCRl1jawoG+EgA4dOmhhBOdh4T8pS2o8SdV3P249370sqf3ixYs7i+D5Urt2bee+tw3rHN3LsajvawzwbIBoAe8JCGYjR47UnlwQ0pIyCBDGQkISF3uRR8UfX199xcTE6Catc4fnCsLs4f6AUOY+D3hbJWW439zrm3Fb8xJZ2zBzSapNcxzhAkeNGqW9UuBJg3sTgpW7SGS8anCvWQ1h73C+u+HehKgDb7kZM2a4F+vFXm9hHT0qWg6AHzz18Eb4OQgVf/zxh/aQQTUIpKgDg2cLxBWrwILjRhiC2GG9PubeNM+v4YtzrqdZ7294ETVt2lQ/x82bN9eebCYcnOkToe6sZr2uvu5B3DPW+8Hahtm2jsUcc/92/50DF7SdXDP3LTzR4IFmDHl04CnkzyCyvKu8SbqMXesUCtzPyapy7EAcwbtbs5LSeNgymb32cLJEohJqHAdUPiGrGY8b5C6ClY5QOX9OJT7Tpt6hy3ly4D0UokK8IWTdodNXwjaiHvIEmdB116Mf0ze+kU8I1kgxhMfT5OUHtEgExAPaVZAH6xaRdfuidU6i+mXzyC39/5AS+cL1Oebj44W7dM4hCGrW8HyfLtqt54NcQD+sijTV5c/tUUoQyyTNKuf3y8R5ktpIaqzWOquVBxHEqjm96kkplRcKhpxGYPiNEqyQ6wlmnl9/97auzI+gIXDlX+GgGTIHSgIkQAIkQAIkQAIkQAIkQAIkQAIkkF4J4C/l8Zf9SEyP0ErWRdTnnntOL0hj8RyhoJCfB8KRqYMQUVh4dl/U9cYK4bFgaBNvhE9D2DUseCOXDczfQiwWmBFKDF4UZrEbi/zXsrjtr089sGR+IF8RvE8QrsoYhBezCG+OXU2f8MIYNGiQDt2HMGMweO0gxB44on2IAgMGDNBv5GLp3r27S33Tr/nG+WAPMx5AEBv88fXVl8m/Am8UhH2DIc8SvCrgUYF5LF682OX+AaukDPUHDx6sQywZEcTkrTHCZlLn+juOucKbauzYsTqMGDyL3O8heLbAywnsrXl+EK4NofMgILmfg36Riwv5f5LrdeJtrHjGMD6El7PmvUEoQWOGAbzxEPoMBkEXXlTuYi+8gjBnePBZ703UzZ49u/YOhMAFwdaErsMY4KVUs2ZNZxg4s1htxuDt29+9DfEMHmK49hBQIB6+9tpr3pryeszXPQgxFmHpwMFcG+xjLiZkpddG3Q7idw28YPDewO+f+xitQqXb6U7RG96ZxgvEvY6/fYRQe/y2YoLcQ1aDpwy8dwbfV9F5GKHJ4DWTXCupBAl4Cf21M0qLEjhv0X/H9OlXRKJs8vnve3SenpxhicvZv6w/qkPaQSCCQQyat+6oIN8PDJ4xizYdl/bKywl2Pfq5oLxsOoxcJX3alNWCmG5YfZSJyOYc86pdUbJeiUNdGxeXCpdzK8EjB2bl8v1fkTr/z7iuN3uIaZhRqPIqQsg5qy3ceFRi1LwSRSLfTJIzVmvbqA8Lz5wo1JuyLEoAPHnuktl15iLy9ccUzsrcCBoC3n2Hg2b4HCgJkAAJkAAJkAAJkAAJkAAJkAAJkEB6IgDBBzlaFixYoHOWQChAaCUsJiO0FXJzoA68KXAci+AIuYXQWshzAm+E5BjyjkDkgIcLchVhIRYGkQmGcGrz58/XQoI19JQuvPxhPCTgNYPcMRC2IFyl1JLT59W0DUYI64UQV2AFzx6EcINwAwNHzBeeE//880+ymkbYMiyqw/MKwhBCj2GxH+IYrFevXnpBG/1i0R+iD0Q/I6x46wSeNL///rt+w9sHeVrAwh9fX30hxxQ8cjBOjAVjhXhh8lVhzGCCNnD/gMkXX3zhbXj6GEKMYd7IIYS2cG9AFEM4MXcRJMlGfBQgzxBEEISTM/mlrNVNzicINRC9zBvsIFRC8PJm+Gt/E2bPvfzUqVP6+uEamjfEUnfDfQLRrXfv3jp0HfI8IRycEYzgTYNcOwgtiOsHNggxh1xJCM9nBFlru3hOkdsIzy1ED3hCQSBevXq1roZyhIbEdcGY8PxDHDPeCwhniHnj3jU5d6ztYzs5zxOuHUIygi/uB4z/aszXPYjnD3Pr0aOHfg4Q9g/3nQkHmdx+8JsHoQ/38eOPP66fJxOW0YSaNPeOtzZNLqLt27e7FO8/GaPDwy3flhgmDt+HL3vnuFS8vNP9ztJSLG+iZ48pr67CycHTZfTC3TpE2k6V/+fDeTsF3w3L5zXVfH7fWiKXNFJ1ITjB82apCm03asEueapJCTG5iR6qmxgWb9iMrSo/0Tn5Vnke/aYEIIzJ2PMqn84/u0/J5yrP0u5j5+XNmdtV6LR46dQoUTS6Hv3AY6p84WwyePpWHWZuv/IgmqU8pr5euk/uujlCDyWXCs0GBiPm7dJeOAs2HJU3f94mD6uwfMZDZ/GWEzLopy1aFIM4aa4B5g/7UIV7+/21hi5vHH+jfQUdCg7b/pgkZ6zDZ+8QhMqDwWsI1mPSBlmz57S+hmAJMe7O6olzQzlCq8Lw+wrDv30QiU2YSX2QH0FHgJ5EQXfJOGASIAESIAESIAESIAESIAESIAESSN8EEAILXhXvv/++XpTGbCE0ICeKWcRFLo8pU6bIwIED9QIzyrFgizfMGlZJH3A7hvwvEEYgIsBwPvKzmJxBnTp10l4AEBaWLl3qEWoM58D7BV4yxmsG3hbwfDCL4tYxWLdxLsz9mHufmKPV3OubMvfjWNSHQdiYNGmS9oBBzhUYQo9Z86K8+uqreg6oC28Ec66ufPnD2j48ERBmDAKJySWE62Vy2wwdOlSLQxAOYFjEhreG8aS43KTzC9whdCAnFAxzhnAAMcAfX1995c2bVy/8Q3wxY8F4v/rqK90Pjn3yySeaDe4riGW4l4YMGaLL3T/QHkQ267zhDYLF+aTMcPPG1P2cNm3a6EVX5J8xopM5H3VxHREWzXhvmfMhlkBUw7OAcGkw9/6QZ+jdd991ue6oB0EKnj9Wgxcd2nI3CKC4P3D/GINoBnHKLBZPmDBBlxsvGVx7iL1gZ8zMCcLJ8ePH5ZVXXhHkADLPn5kDOEP8gacUxCCU49phrjDkH4NgCdEOYpN57k0/+HZ/nkzYNWsdCF1Y3DaeVvDiwr1gxmm+redY+fq6B3H/Tp06Vf8+jBs3TjeB3wvc7zBrO/qA+vDWH7zHIA6CEzyKpk2b5rwPcD/gHsdvJcS02bNnm6ac3xCGca3g+WYNNTlfLf7jbbWBSoSAmAELSfwZcRZnDQ2R4R2rSMdP/nYeu6t6QZ2X520l8Bivl2wqPxDaQeg5b6Y0ERfDPur3m7rJ2TbyJT3foqSzHsQi5MkZOmObtPngL0EfEIWs4fJqlMwlr9xdRnvnjFAiTcFcWVQOpcqCcHSw69XPsPsrKYFnq1NcwVjgZfXiHYmCFbyH3lb9vvr9Jvly8V7d9x3VCkgvldvJ2PcrD+pNeE/hbQy5i75/sZbZ9fmdHCb+xnogKkb2Ho+RBBWKEB5a03vUkf4/bJbHxiT+0QDmBiGuc6NizrFAIIY4bvK5RUdHCwRIeNXRgpeATf3AqxRZNBIgARIgARIgARIgARIgARIgARIgARIIPALw8sHiNMK5eVtAxYgRggniRVLlvmaFUFAIw+QtdA5yeCBcVdasnsncrW2iDryN8uRJ/Etsa9nVbie3z6ttF4wQyst4YljPR/g5vL0tolvruW8jfBvys3jjg5xAuG4m1Jv7ue77qItQX97yOfnj668vjBPmLQwheIONVchwH5v7PtoDx6vl5d5OMO7jWkBcwr1uPL3c54FrCUbJeR7AH4vL4O9NNPF3fUxuKW/nYlzJfZ4gwOBeRijClJi/exD3GO5taz4jf/1A1KlXr57mDeEQnl/efqfQDkLv4fcvKTEWYjAW9+ExlhoGkeGgyl0D/eemPFnF7q4EJbNT5CKCGGVCynk7Dfl/CufOosKxualYlyvHJySOBV5PSQ3jevVz/MwlKZAzs9f5Yhx7MVYlVoW5hXDzNq9rOZYcJt7Gqi6bONTL/XohVN/ZC/GSX4UOtBr+nShRooQW143YiXJrSEVrfW4HDwGKRMFzrThSEiABEiABEiABEiABEiABEiABEiABEiABEiCBDEDAKhLBE+haDN5Y8EKC1xTya9FIICUE4MUGj0uE6MyIInlKmAXLOd4l12AZPcdJAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAumMAHIJIYxjcr3xfE0fIQGxwA+vSRoJpJQAPNWQM5ACUUoJBu559CQK3GvDkZEACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZBAqhGgJ1GqoWXDJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJBC4BCgSBe614chIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIINUIUCRKNbRsmARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgAQClwBFosC9NhwZCZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACaQaAYpEqYaWDZMACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZBA4BKgSBS414YjIwESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIIFUI0CRKNXQsmESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESCFwCFIkC99pwZCRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiSQagQoEqUaWjZMAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAoFLgCJR4F4bjowESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAEUo0ARaJUQ8uGSYAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESCBwCVAkCtxrw5GRAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQQKoR+D8RE209v9CoYAAAAABJRU5ErkJggg==" - } - }, - "cell_type": "markdown", - "id": "f9b2d921", - "metadata": {}, - "source": [ - "### Filter to pLOF variants that we used to compute constraint metrics\n", - "pLOF variants meets the following requirements:\n", - "* High-confidence LOFTEE variants (without any flags),\n", - "* Only variants in the MANE Select transcript,\n", - "* PASS variants that are SNVs with MAF ≤ 0.1%, and\n", - "* Exome median depth ≥ 30 (**This is changing in v4 constraint?**)\n", - "\n", - "**Note: this number should match the number of observed pLOF SNVs on the gene page of gnomAD Browser.**\n", - "\n", - "![Screenshot%202024-10-01%20at%2010.20.53%E2%80%AFAM.png](attachment:Screenshot%202024-10-01%20at%2010.20.53%E2%80%AFAM.png)" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "id": "6ce87a77", - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "[Stage 4:=======================================> (2 + 1) / 3]\r" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Number of variants: 18\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "[Stage 5:=======================================> (2 + 1) / 3]\r" - ] - }, - { - "data": { - "text/html": [ - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "
freq
coverage
locus
alleles
AC
AF
AN
homozygote_count
csq
mean
median_approx
total_DP
over_1
over_5
over_10
over_15
over_20
over_25
over_30
over_50
over_100
locus<GRCh38>array<str>int32float64int32int64array<str>float64int32int64float64float64float64float64float64float64float64float64float64
chr1:155337668["G","A"]4593.14e-0414612700["stop_gained"]2.99e+0130218875281.00e+001.00e+001.00e+009.97e-019.86e-019.32e-016.07e-018.96e-046.02e-05
chr1:155337704["G","A"]64.10e-0614617140["stop_gained"]3.02e+0130220423721.00e+001.00e+001.00e+009.99e-019.94e-019.48e-016.21e-018.39e-044.93e-05
chr1:155337735["G","C"]16.84e-0714616940["stop_gained"]3.00e+0130219569141.00e+001.00e+001.00e+009.99e-019.92e-019.37e-016.12e-018.29e-044.51e-05
chr1:155338087["A","T"]16.85e-0714596480["splice_donor_variant"]3.16e+0131231113191.00e+001.00e+009.99e-019.95e-019.89e-019.59e-017.28e-011.35e-027.59e-04
chr1:155338161["G","A"]16.84e-0714618840["stop_gained"]3.19e+0131233084341.00e+001.00e+001.00e+001.00e+001.00e+009.76e-017.42e-011.35e-027.59e-04
chr1:155349380["T","A"]16.84e-0714617680["stop_gained"]3.21e+0132234449991.00e+001.00e+001.00e+001.00e+009.99e-019.76e-017.69e-015.01e-031.85e-04
chr1:155354631["C","T"]16.88e-0714534160["splice_acceptor_variant"]3.04e+0131222097141.00e+001.00e+009.95e-019.83e-019.70e-019.28e-016.53e-014.38e-044.93e-05
chr1:155357583["A","T"]16.84e-0714616800["splice_donor_variant"]3.13e+0131228588871.00e+001.00e+001.00e+009.99e-019.97e-019.79e-017.47e-018.14e-046.29e-05
chr1:155370984["C","T"]32.06e-0614557260["splice_acceptor_variant"]3.12e+0131228021811.00e+001.00e+001.00e+009.99e-019.97e-019.54e-016.97e-011.14e-033.69e-05
chr1:155415924["C","A"]21.48e-0613520320["splice_acceptor_variant"]2.73e+0130199323751.00e+009.84e-019.41e-018.72e-018.17e-017.64e-015.70e-011.35e-031.76e-04
chr1:155478020["G","C"]16.84e-0714618880["stop_gained"]3.26e+0133238300811.00e+001.00e+001.00e+001.00e+001.00e+009.72e-017.53e-013.11e-031.40e-03
chr1:155478203["C","T"]16.84e-0714618740["stop_gained"]3.27e+0133239248711.00e+001.00e+001.00e+001.00e+001.00e+009.72e-017.55e-014.07e-032.20e-03
chr1:155478439["C","T"]16.84e-0714618900["stop_gained"]3.28e+0133239948001.00e+001.00e+001.00e+001.00e+001.00e+009.73e-017.59e-014.64e-032.58e-03
chr1:155478528["G","A"]16.84e-0714618760["stop_gained"]3.28e+0133239977761.00e+001.00e+001.00e+001.00e+001.00e+009.73e-017.59e-014.67e-032.60e-03
chr1:155479767["G","A"]16.84e-0714618580["stop_gained"]3.30e+0133241434591.00e+001.00e+001.00e+001.00e+001.00e+009.74e-017.66e-016.55e-033.89e-03
chr1:155479862["G","T"]16.84e-0714611600["stop_gained"]3.24e+0132236512031.00e+001.00e+001.00e+009.98e-019.91e-019.42e-017.13e-016.42e-033.91e-03
chr1:155521291["C","A"]16.84e-0714618620["stop_gained"]3.30e+0132241144561.00e+001.00e+001.00e+001.00e+001.00e+009.81e-017.72e-011.94e-023.68e-03
chr1:155521474["C","A"]16.84e-0714617240["stop_gained"]3.29e+0132240775511.00e+001.00e+001.00e+009.99e-019.98e-019.79e-017.69e-011.94e-023.67e-03
" - ], - "text/plain": [ - "+----------------+------------+---------+----------+---------+\n", - "| locus | alleles | freq.AC | freq.AF | freq.AN |\n", - "+----------------+------------+---------+----------+---------+\n", - "| locus | array | int32 | float64 | int32 |\n", - "+----------------+------------+---------+----------+---------+\n", - "| chr1:155337668 | [\"G\",\"A\"] | 459 | 3.14e-04 | 1461270 |\n", - "| chr1:155337704 | [\"G\",\"A\"] | 6 | 4.10e-06 | 1461714 |\n", - "| chr1:155337735 | [\"G\",\"C\"] | 1 | 6.84e-07 | 1461694 |\n", - "| chr1:155338087 | [\"A\",\"T\"] | 1 | 6.85e-07 | 1459648 |\n", - "| chr1:155338161 | [\"G\",\"A\"] | 1 | 6.84e-07 | 1461884 |\n", - "| chr1:155349380 | [\"T\",\"A\"] | 1 | 6.84e-07 | 1461768 |\n", - "| chr1:155354631 | [\"C\",\"T\"] | 1 | 6.88e-07 | 1453416 |\n", - "| chr1:155357583 | [\"A\",\"T\"] | 1 | 6.84e-07 | 1461680 |\n", - "| chr1:155370984 | [\"C\",\"T\"] | 3 | 2.06e-06 | 1455726 |\n", - "| chr1:155415924 | [\"C\",\"A\"] | 2 | 1.48e-06 | 1352032 |\n", - "| chr1:155478020 | [\"G\",\"C\"] | 1 | 6.84e-07 | 1461888 |\n", - "| chr1:155478203 | [\"C\",\"T\"] | 1 | 6.84e-07 | 1461874 |\n", - "| chr1:155478439 | [\"C\",\"T\"] | 1 | 6.84e-07 | 1461890 |\n", - "| chr1:155478528 | [\"G\",\"A\"] | 1 | 6.84e-07 | 1461876 |\n", - "| chr1:155479767 | [\"G\",\"A\"] | 1 | 6.84e-07 | 1461858 |\n", - "| chr1:155479862 | [\"G\",\"T\"] | 1 | 6.84e-07 | 1461160 |\n", - "| chr1:155521291 | [\"C\",\"A\"] | 1 | 6.84e-07 | 1461862 |\n", - "| chr1:155521474 | [\"C\",\"A\"] | 1 | 6.84e-07 | 1461724 |\n", - "+----------------+------------+---------+----------+---------+\n", - "\n", - "+-----------------------+-----------------------------+---------------+\n", - "| freq.homozygote_count | csq | coverage.mean |\n", - "+-----------------------+-----------------------------+---------------+\n", - "| int64 | array | float64 |\n", - "+-----------------------+-----------------------------+---------------+\n", - "| 0 | [\"stop_gained\"] | 2.99e+01 |\n", - "| 0 | [\"stop_gained\"] | 3.02e+01 |\n", - "| 0 | [\"stop_gained\"] | 3.00e+01 |\n", - "| 0 | [\"splice_donor_variant\"] | 3.16e+01 |\n", - "| 0 | [\"stop_gained\"] | 3.19e+01 |\n", - "| 0 | [\"stop_gained\"] | 3.21e+01 |\n", - "| 0 | [\"splice_acceptor_variant\"] | 3.04e+01 |\n", - "| 0 | [\"splice_donor_variant\"] | 3.13e+01 |\n", - "| 0 | [\"splice_acceptor_variant\"] | 3.12e+01 |\n", - "| 0 | [\"splice_acceptor_variant\"] | 2.73e+01 |\n", - "| 0 | [\"stop_gained\"] | 3.26e+01 |\n", - "| 0 | [\"stop_gained\"] | 3.27e+01 |\n", - "| 0 | [\"stop_gained\"] | 3.28e+01 |\n", - "| 0 | [\"stop_gained\"] | 3.28e+01 |\n", - "| 0 | [\"stop_gained\"] | 3.30e+01 |\n", - "| 0 | [\"stop_gained\"] | 3.24e+01 |\n", - "| 0 | [\"stop_gained\"] | 3.30e+01 |\n", - "| 0 | [\"stop_gained\"] | 3.29e+01 |\n", - "+-----------------------+-----------------------------+---------------+\n", - "\n", - "+------------------------+-------------------+-----------------+\n", - "| coverage.median_approx | coverage.total_DP | coverage.over_1 |\n", - "+------------------------+-------------------+-----------------+\n", - "| int32 | int64 | float64 |\n", - "+------------------------+-------------------+-----------------+\n", - "| 30 | 21887528 | 1.00e+00 |\n", - "| 30 | 22042372 | 1.00e+00 |\n", - "| 30 | 21956914 | 1.00e+00 |\n", - "| 31 | 23111319 | 1.00e+00 |\n", - "| 31 | 23308434 | 1.00e+00 |\n", - "| 32 | 23444999 | 1.00e+00 |\n", - "| 31 | 22209714 | 1.00e+00 |\n", - "| 31 | 22858887 | 1.00e+00 |\n", - "| 31 | 22802181 | 1.00e+00 |\n", - "| 30 | 19932375 | 1.00e+00 |\n", - "| 33 | 23830081 | 1.00e+00 |\n", - "| 33 | 23924871 | 1.00e+00 |\n", - "| 33 | 23994800 | 1.00e+00 |\n", - "| 33 | 23997776 | 1.00e+00 |\n", - "| 33 | 24143459 | 1.00e+00 |\n", - "| 32 | 23651203 | 1.00e+00 |\n", - "| 32 | 24114456 | 1.00e+00 |\n", - "| 32 | 24077551 | 1.00e+00 |\n", - "+------------------------+-------------------+-----------------+\n", - "\n", - "+-----------------+------------------+------------------+------------------+\n", - "| coverage.over_5 | coverage.over_10 | coverage.over_15 | coverage.over_20 |\n", - "+-----------------+------------------+------------------+------------------+\n", - "| float64 | float64 | float64 | float64 |\n", - "+-----------------+------------------+------------------+------------------+\n", - "| 1.00e+00 | 1.00e+00 | 9.97e-01 | 9.86e-01 |\n", - "| 1.00e+00 | 1.00e+00 | 9.99e-01 | 9.94e-01 |\n", - "| 1.00e+00 | 1.00e+00 | 9.99e-01 | 9.92e-01 |\n", - "| 1.00e+00 | 9.99e-01 | 9.95e-01 | 9.89e-01 |\n", - "| 1.00e+00 | 1.00e+00 | 1.00e+00 | 1.00e+00 |\n", - "| 1.00e+00 | 1.00e+00 | 1.00e+00 | 9.99e-01 |\n", - "| 1.00e+00 | 9.95e-01 | 9.83e-01 | 9.70e-01 |\n", - "| 1.00e+00 | 1.00e+00 | 9.99e-01 | 9.97e-01 |\n", - "| 1.00e+00 | 1.00e+00 | 9.99e-01 | 9.97e-01 |\n", - "| 9.84e-01 | 9.41e-01 | 8.72e-01 | 8.17e-01 |\n", - "| 1.00e+00 | 1.00e+00 | 1.00e+00 | 1.00e+00 |\n", - "| 1.00e+00 | 1.00e+00 | 1.00e+00 | 1.00e+00 |\n", - "| 1.00e+00 | 1.00e+00 | 1.00e+00 | 1.00e+00 |\n", - "| 1.00e+00 | 1.00e+00 | 1.00e+00 | 1.00e+00 |\n", - "| 1.00e+00 | 1.00e+00 | 1.00e+00 | 1.00e+00 |\n", - "| 1.00e+00 | 1.00e+00 | 9.98e-01 | 9.91e-01 |\n", - "| 1.00e+00 | 1.00e+00 | 1.00e+00 | 1.00e+00 |\n", - "| 1.00e+00 | 1.00e+00 | 9.99e-01 | 9.98e-01 |\n", - "+-----------------+------------------+------------------+------------------+\n", - "\n", - "+------------------+------------------+------------------+-------------------+\n", - "| coverage.over_25 | coverage.over_30 | coverage.over_50 | coverage.over_100 |\n", - "+------------------+------------------+------------------+-------------------+\n", - "| float64 | float64 | float64 | float64 |\n", - "+------------------+------------------+------------------+-------------------+\n", - "| 9.32e-01 | 6.07e-01 | 8.96e-04 | 6.02e-05 |\n", - "| 9.48e-01 | 6.21e-01 | 8.39e-04 | 4.93e-05 |\n", - "| 9.37e-01 | 6.12e-01 | 8.29e-04 | 4.51e-05 |\n", - "| 9.59e-01 | 7.28e-01 | 1.35e-02 | 7.59e-04 |\n", - "| 9.76e-01 | 7.42e-01 | 1.35e-02 | 7.59e-04 |\n", - "| 9.76e-01 | 7.69e-01 | 5.01e-03 | 1.85e-04 |\n", - "| 9.28e-01 | 6.53e-01 | 4.38e-04 | 4.93e-05 |\n", - "| 9.79e-01 | 7.47e-01 | 8.14e-04 | 6.29e-05 |\n", - "| 9.54e-01 | 6.97e-01 | 1.14e-03 | 3.69e-05 |\n", - "| 7.64e-01 | 5.70e-01 | 1.35e-03 | 1.76e-04 |\n", - "| 9.72e-01 | 7.53e-01 | 3.11e-03 | 1.40e-03 |\n", - "| 9.72e-01 | 7.55e-01 | 4.07e-03 | 2.20e-03 |\n", - "| 9.73e-01 | 7.59e-01 | 4.64e-03 | 2.58e-03 |\n", - "| 9.73e-01 | 7.59e-01 | 4.67e-03 | 2.60e-03 |\n", - "| 9.74e-01 | 7.66e-01 | 6.55e-03 | 3.89e-03 |\n", - "| 9.42e-01 | 7.13e-01 | 6.42e-03 | 3.91e-03 |\n", - "| 9.81e-01 | 7.72e-01 | 1.94e-02 | 3.68e-03 |\n", - "| 9.79e-01 | 7.69e-01 | 1.94e-02 | 3.67e-03 |\n", - "+------------------+------------------+------------------+-------------------+" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "coverage_ht = coverage(\"exomes\").ht()\n", - "\n", - "#Filter to PASS SNVs with AF <= 0.1% and median exome depth ≥ 30.\n", - "ht = ht.filter(\n", - " (hl.len(ht.filters) == 0) \n", - " & (ht.allele_info.allele_type == \"snv\")\n", - " & (ht.freq[0].AF <= 0.001)\n", - " & (coverage_ht[ht.locus].median_approx >= 30)\n", - ")\n", - "\n", - "\n", - "print(f\"Number of variants: {ht.count()}\")\n", - "ht.select(\n", - " freq=ht.freq[0],\n", - " csq=ht.vep.transcript_consequences[0].consequence_terms,\n", - " coverage=coverage_ht[ht.locus],\n", - ").show(-1)" - ] - }, - { - "cell_type": "markdown", - "id": "b104a39b", - "metadata": {}, - "source": [ - "# Get 'freq' for specific genetic ancestry groups" - ] - }, - { - "cell_type": "markdown", - "id": "135565fe", - "metadata": {}, - "source": [ - "## Get 'freq' for multiple groups for an (gene) interval" - ] - }, - { - "cell_type": "code", - "execution_count": 60, - "id": "4f78166f", - "metadata": {}, - "outputs": [], - "source": [ - "ht = get_ht_by_datatype_and_version(data_type='exomes', version='4.1')\n", - "\n", - "# Filter to interval, e.g. for ASH1L.\n", - "gene_interval = \"chr1:155335268-155563162\"\n", - "\n", - "# Filter the exome release Hail Table to the ASH1L gene interval.\n", - "ht = hl.filter_intervals(ht, [hl.parse_locus_interval(gene_interval, reference_genome=\"GRCh38\")])\n", - "\n", - "# Filter to variants with adj.AC > 0 \n", - "ht = ht.filter(ht.freq[0].AC>0)" - ] - }, - { - "cell_type": "code", - "execution_count": 61, - "id": "ce7a1e8c", - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - "[Stage 39:> (0 + 3) / 3]\r", - "\r", - "[Stage 39:======================================> (2 + 1) / 3]\r" - ] - }, - { - "data": { - "text/html": [ - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "
afr
amr
eas
mid
nfe
sas
locus
alleles
AC
AF
AN
homozygote_count
AC
AF
AN
homozygote_count
AC
AF
AN
homozygote_count
AC
AF
AN
homozygote_count
AC
AF
AN
homozygote_count
AC
AF
AN
homozygote_count
locus<GRCh38>array<str>int32float64int32int64int32float64int32int64int32float64int32int64int32float64int32int64int32float64int32int64int32float64int32int64
chr1:155335497["A","C"]0NA000NA0000.00e+0013800NA0000.00e+00200NA00
chr1:155335570["T","C"]0NA000NA0017.25e-0313800NA0000.00e+00200NA00
chr1:155335571["TA","T"]0NA000NA0017.25e-0313800NA0000.00e+00200NA00
chr1:155335746["G","C"]0NA000NA0000.00e+0013200NA0000.00e+00200NA00
chr1:155335855["G","A"]0NA000NA0017.25e-0313800NA0000.00e+00600NA00

showing top 5 rows

\n" - ], - "text/plain": [ - "+----------------+------------+--------+---------+--------+\n", - "| locus | alleles | afr.AC | afr.AF | afr.AN |\n", - "+----------------+------------+--------+---------+--------+\n", - "| locus | array | int32 | float64 | int32 |\n", - "+----------------+------------+--------+---------+--------+\n", - "| chr1:155335497 | [\"A\",\"C\"] | 0 | NA | 0 |\n", - "| chr1:155335570 | [\"T\",\"C\"] | 0 | NA | 0 |\n", - "| chr1:155335571 | [\"TA\",\"T\"] | 0 | NA | 0 |\n", - "| chr1:155335746 | [\"G\",\"C\"] | 0 | NA | 0 |\n", - "| chr1:155335855 | [\"G\",\"A\"] | 0 | NA | 0 |\n", - "+----------------+------------+--------+---------+--------+\n", - "\n", - "+----------------------+--------+---------+--------+----------------------+\n", - "| afr.homozygote_count | amr.AC | amr.AF | amr.AN | amr.homozygote_count |\n", - "+----------------------+--------+---------+--------+----------------------+\n", - "| int64 | int32 | float64 | int32 | int64 |\n", - "+----------------------+--------+---------+--------+----------------------+\n", - "| 0 | 0 | NA | 0 | 0 |\n", - "| 0 | 0 | NA | 0 | 0 |\n", - "| 0 | 0 | NA | 0 | 0 |\n", - "| 0 | 0 | NA | 0 | 0 |\n", - "| 0 | 0 | NA | 0 | 0 |\n", - "+----------------------+--------+---------+--------+----------------------+\n", - "\n", - "+--------+----------+--------+----------------------+--------+---------+\n", - "| eas.AC | eas.AF | eas.AN | eas.homozygote_count | mid.AC | mid.AF |\n", - "+--------+----------+--------+----------------------+--------+---------+\n", - "| int32 | float64 | int32 | int64 | int32 | float64 |\n", - "+--------+----------+--------+----------------------+--------+---------+\n", - "| 0 | 0.00e+00 | 138 | 0 | 0 | NA |\n", - "| 1 | 7.25e-03 | 138 | 0 | 0 | NA |\n", - "| 1 | 7.25e-03 | 138 | 0 | 0 | NA |\n", - "| 0 | 0.00e+00 | 132 | 0 | 0 | NA |\n", - "| 1 | 7.25e-03 | 138 | 0 | 0 | NA |\n", - "+--------+----------+--------+----------------------+--------+---------+\n", - "\n", - "+--------+----------------------+--------+----------+--------+\n", - "| mid.AN | mid.homozygote_count | nfe.AC | nfe.AF | nfe.AN |\n", - "+--------+----------------------+--------+----------+--------+\n", - "| int32 | int64 | int32 | float64 | int32 |\n", - "+--------+----------------------+--------+----------+--------+\n", - "| 0 | 0 | 0 | 0.00e+00 | 2 |\n", - "| 0 | 0 | 0 | 0.00e+00 | 2 |\n", - "| 0 | 0 | 0 | 0.00e+00 | 2 |\n", - "| 0 | 0 | 0 | 0.00e+00 | 2 |\n", - "| 0 | 0 | 0 | 0.00e+00 | 6 |\n", - "+--------+----------------------+--------+----------+--------+\n", - "\n", - "+----------------------+--------+---------+--------+----------------------+\n", - "| nfe.homozygote_count | sas.AC | sas.AF | sas.AN | sas.homozygote_count |\n", - "+----------------------+--------+---------+--------+----------------------+\n", - "| int64 | int32 | float64 | int32 | int64 |\n", - "+----------------------+--------+---------+--------+----------------------+\n", - "| 0 | 0 | NA | 0 | 0 |\n", - "| 0 | 0 | NA | 0 | 0 |\n", - "| 0 | 0 | NA | 0 | 0 |\n", - "| 0 | 0 | NA | 0 | 0 |\n", - "| 0 | 0 | NA | 0 | 0 |\n", - "+----------------------+--------+---------+--------+----------------------+\n", - "showing top 5 rows" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "ht = extract_callstats_for_multiple_ancs(ht, gen_ancs=['afr', 'amr', 'eas', 'mid', 'nfe', 'sas'])\n", - "\n", - "ht.show(5)" - ] - }, - { - "cell_type": "markdown", - "id": "fe2e98b8", - "metadata": {}, - "source": [ - "## Get 'freq' for a specific group and a specific variant" - ] - }, - { - "cell_type": "code", - "execution_count": 62, - "id": "4846958a", - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "\n", - "\n", - "
afr
locus
alleles
AC
AF
AN
homozygote_count
locus<GRCh38>array<str>int32float64int32int64
chr22:15528692["C","G"]6351.90e-02333806
" - ], - "text/plain": [ - "+----------------+------------+--------+----------+--------+\n", - "| locus | alleles | afr.AC | afr.AF | afr.AN |\n", - "+----------------+------------+--------+----------+--------+\n", - "| locus | array | int32 | float64 | int32 |\n", - "+----------------+------------+--------+----------+--------+\n", - "| chr22:15528692 | [\"C\",\"G\"] | 635 | 1.90e-02 | 33380 |\n", - "+----------------+------------+--------+----------+--------+\n", - "\n", - "+----------------------+\n", - "| afr.homozygote_count |\n", - "+----------------------+\n", - "| int64 |\n", - "+----------------------+\n", - "| 6 |\n", - "+----------------------+" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "ht = get_ht_by_datatype_and_version(data_type='exomes', version='4.1')\n", - "\n", - "# When a variant exists...\n", - "extract_callstats_for_1anc_1variant(ht, gen_anc='AFR', contig='chr22', position=15528692, alleles=['C','G']).show(-1)" - ] - }, - { - "cell_type": "code", - "execution_count": 64, - "id": "9f4c689b", - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2024-11-02 02:02:23.969 Hail: WARN: No variant found at chr22:15528692 with alleles ['C', 'A']\n" - ] - }, - { - "data": { - "text/html": [ - "\n", - "
afr
locus
alleles
AC
AF
AN
homozygote_count
locus<GRCh38>array<str>int32float64int32int64
" - ], - "text/plain": [ - "+---------------+------------+--------+---------+--------+\n", - "| locus | alleles | afr.AC | afr.AF | afr.AN |\n", - "+---------------+------------+--------+---------+--------+\n", - "| locus | array | int32 | float64 | int32 |\n", - "+---------------+------------+--------+---------+--------+\n", - "+---------------+------------+--------+---------+--------+\n", - "\n", - "+----------------------+\n", - "| afr.homozygote_count |\n", - "+----------------------+\n", - "| int64 |\n", - "+----------------------+\n", - "+----------------------+" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# When a variant doesn't exist...\n", - "extract_callstats_for_1anc_1variant(ht, gen_anc='AFR', contig='chr22', position=15528692, alleles=['C','A']).show(-1)" - ] - }, - { - "cell_type": "code", - "execution_count": 67, - "id": "6fc82c5c", - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Copying gs://gnomad-qin/qin_notebooks/toolbox_for_gnomad_users.ipynb...\n", - "/ [1 files][747.1 KiB/747.1 KiB] \n", - "Operation completed over 1 objects/747.1 KiB. \n", - "[NbConvertApp] WARNING | Config option `extra_template_paths` not recognized by `EmbedHTMLExporter`. Did you mean `template_path`?\n", - "[NbConvertApp] Converting notebook toolbox_for_gnomad_users.ipynb to html_embed\n", - "[NbConvertApp] Writing 943138 bytes to toolbox_for_gnomad_users.html\n", - "Copying file://toolbox_for_gnomad_users.html [Content-Type=text/html]...\n", - "/ [1 files][921.1 KiB/921.1 KiB] \n", - "Operation completed over 1 objects/921.1 KiB. \n" - ] - } - ], - "source": [ - "notebook_name='toolbox_for_gnomad_users'\n", - "\n", - "#Uncomment top lines for the first time exporting on a cluster\n", - "#!/opt/conda/default/bin/conda create -n save-html-env --clone /opt/conda/default\n", - "#!/opt/conda/miniconda3/envs/save-html-env/bin/pip install \"nbconvert<6\" jinja2==3.0.3 jupyter_contrib_nbextensions\n", - "\n", - "# Download the notebook from Google Cloud Storage\n", - "!gsutil -u broad-mpg-gnomad cp gs://gnomad-qin/qin_notebooks/{notebook_name}.ipynb .\n", - "\n", - "# Convert the notebook to HTML with embedded resources\n", - "! /opt/conda/miniconda3/envs/save-html-env/bin/jupyter nbconvert \\\n", - " --CodeFoldingPreprocessor.remove_folded_code=True --to html_embed \\\n", - " --template \"/opt/conda/miniconda3/envs/save-html-env/lib/python3.11/site-packages/jupyter_contrib_nbextensions/templates/toc2.tpl\" \\\n", - " {notebook_name}.ipynb\n", - "\n", - "# Upload the converted HTML back to Google Cloud Storage\n", - "!gsutil -u broad-mpg-gnomad cp {notebook_name}.html gs://gnomad-qin/qin_notebooks/{notebook_name}.html" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "a9e4c9bb", - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.11.7" - }, - "toc": { - "base_numbering": 1, - "nav_menu": { - "height": "613.99px", - "width": "526.312px" - }, - "number_sections": false, - "sideBar": true, - "skip_h1_title": false, - "title_cell": "Table of Contents", - "title_sidebar": "Contents", - "toc_cell": true, - "toc_position": { - "height": "calc(100% - 180px)", - "left": "10px", - "top": "150px", - "width": "219.438px" - }, - "toc_section_display": true, - "toc_window_display": true - }, - "widgets": { - "application/vnd.jupyter.widget-state+json": { - "state": {}, - "version_major": 2, - "version_minor": 0 - } - } - }, - "nbformat": 4, - "nbformat_minor": 5 -} From b853fc20d2a78b6d6d533b8f00ea209f13c93e7a Mon Sep 17 00:00:00 2001 From: jkgoodrich <33063077+jkgoodrich@users.noreply.github.com> Date: Wed, 11 Dec 2024 08:40:57 -0700 Subject: [PATCH 028/121] Add notebooks to git --- .../notebooks/explore_release_data.ipynb | 6622 +++++++++++++++++ .../intro_to_filtering_variant_data.ipynb | 6288 ++++++++++++++++ gnomad_toolbox/notebooks/needs_a_name.ipynb | 602 ++ 3 files changed, 13512 insertions(+) create mode 100644 gnomad_toolbox/notebooks/explore_release_data.ipynb create mode 100644 gnomad_toolbox/notebooks/intro_to_filtering_variant_data.ipynb create mode 100644 gnomad_toolbox/notebooks/needs_a_name.ipynb diff --git a/gnomad_toolbox/notebooks/explore_release_data.ipynb b/gnomad_toolbox/notebooks/explore_release_data.ipynb new file mode 100644 index 0000000..1801596 --- /dev/null +++ b/gnomad_toolbox/notebooks/explore_release_data.ipynb @@ -0,0 +1,6622 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "853c94b9", + "metadata": {}, + "source": [ + "# Introduction to gnomAD Hail release files\n" + ] + }, + { + "cell_type": "markdown", + "id": "5cf83cfe-0fce-40ae-add7-c9f2c20c1e85", + "metadata": {}, + "source": [ + "In this notebook we will explore all of the available [gnomAD v4 release files](https://gnomad.broadinstitute.org/data#v4) that are in Hail formats." + ] + }, + { + "attachments": { + "afcd4ecc-4e90-464b-91c7-9cd80b0e92ba.png": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAACTYAAAMYCAYAAAD7RiqDAAAMQWlDQ1BJQ0MgUHJvZmlsZQAASImVVwdYU8kWnluSkEBoAQSkhN4EESkBpITQQu8INkISIJQYA0HFjiwquBZURMCGroooWAGxI3YWxd4XCwrKuliwK29SQNd95XvzfXPnv/+c+c+Zc2fuvQOA2gmOSJSNqgOQI8wTxwT50ccnJdNJPUAZaAJ1QASjOdxcETMqKgzAMtT+vby7ARBpe9VeqvXP/v9aNHj8XC4ASBTEqbxcbg7EBwDAq7kicR4ARClvNj1PJMWwAi0xDBDixVKcLsfVUpwqx3tkNnExLIjbAFBS4XDE6QCoXoY8PZ+bDjVU+yF2FPIEQgDU6BB75+RM5UGcArE1tBFBLNVnpP6gk/43zdRhTQ4nfRjL5yIrSv6CXFE2Z+b/mY7/XXKyJUM+LGFVyRAHx0jnDPN2K2tqqBSrQNwnTI2IhFgT4g8CnsweYpSSIQmOl9ujBtxcFswZ0IHYkcfxD4XYAOJAYXZEmIJPTRMEsiGGKwSdIchjx0GsC/Fifm5ArMJmk3hqjMIX2pgmZjEV/DmOWOZX6uuBJCueqdB/ncFnK/Qx1YKMuESIKRCb5wsSIiBWhdghNys2VGEzriCDFTFkI5bESOM3hziGLwzyk+tj+WniwBiFfUlO7tB8sU0ZAnaEAu/Ly4gLlucHa+NyZPHDuWCX+UJm/JAOP3d82NBceHz/APncsR6+MD5WofNBlOcXIx+LU0TZUQp73JSfHSTlTSF2zs2PVYzFE/LggpTr42mivKg4eZx4QSYnJEoeD74ChAEW8Ad0IIE1FUwFmUDQ0dfUB+/kPYGAA8QgHfCBvYIZGpEo6xHCaywoAH9CxAe5w+P8ZL18kA/5r8Os/GoP0mS9+bIRWeApxDkgFGTDe4lslHDYWwJ4AhnBP7xzYOXCeLNhlfb/e36I/c4wIROmYCRDHulqQ5bEAKI/MZgYSLTB9XFv3BMPg1dfWJ1wBu4+NI/v9oSnhE7CI8J1Qhfh9hRBofinKMNBF9QPVOQi9cdc4JZQ0wX3w72gOlTGdXB9YI87Qz9M3Ad6doEsSxG3NCv0n7T/NoMfnobCjuxIRskjyL5k659HqtqqugyrSHP9Y37ksaYO55s13POzf9YP2efBNvRnS2wxth87i53EzmNHsCZAx45jzVg7dlSKh1fXE9nqGvIWI4snC+oI/uFv6MlKM5nrWOfY6/hF3pfHnyF9RwPWVNFMsSA9I4/OhF8EPp0t5DqMojs5OjkDIP2+yF9fb6Jl3w1Ep/07t/APALyODw4OHv7OhRwHYK8b3P6HvnPWDPjpUAbg3CGuRJwv53DphQDfEmpwp+kBI2AGrOF8nIAr8AS+IACEgEgQB5LAZBh9BlznYjAdzAYLQDEoBSvAGlAJNoItYAfYDfaBJnAEnARnwEVwGVwHd+Hq6QYvQD94Bz4jCEJCqAgN0UOMEQvEDnFCGIg3EoCEITFIEpKCpCNCRILMRhYipUgZUolsRmqRvcgh5CRyHulEbiMPkV7kNfIJxVAVVAs1RC3R0SgDZaKhaBw6CU1Hp6EFaBG6DK1Aa9BdaCN6Er2IXke70BfoAAYwZUwHM8HsMQbGwiKxZCwNE2NzsRKsHKvB6rEW+JyvYl1YH/YRJ+I0nI7bwxUcjMfjXHwaPhdfilfiO/BGvA2/ij/E+/FvBCrBgGBH8CCwCeMJ6YTphGJCOWEb4SDhNNxL3YR3RCJRh2hFdIN7MYmYSZxFXEpcT2wgniB2Eh8TB0gkkh7JjuRFiiRxSHmkYtI60i7ScdIVUjfpg5KykrGSk1KgUrKSUKlQqVxpp9IxpStKz5Q+k9XJFmQPciSZR55JXk7eSm4hXyJ3kz9TNChWFC9KHCWTsoBSQamnnKbco7xRVlY2VXZXjlYWKM9XrlDeo3xO+aHyRxVNFVsVlspEFYnKMpXtKidUbqu8oVKpllRfajI1j7qMWks9RX1A/aBKU3VQZavyVOepVqk2ql5RfalGVrNQY6pNVitQK1fbr3ZJrU+drG6pzlLnqM9Vr1I/pH5TfUCDpjFGI1IjR2Opxk6N8xo9miRNS80ATZ5mkeYWzVOaj2kYzYzGonFpC2lbaadp3VpELSsttlamVqnWbq0OrX5tTW1n7QTtGdpV2ke1u3QwHUsdtk62znKdfTo3dD6NMBzBHMEfsWRE/YgrI97rjtT11eXrlug26F7X/aRH1wvQy9Jbqdekd18f17fVj9afrr9B/7R+30itkZ4juSNLRu4beccANbA1iDGYZbDFoN1gwNDIMMhQZLjO8JRhn5GOka9RptFqo2NGvcY0Y29jgfFq4+PGz+nadCY9m15Bb6P3mxiYBJtITDabdJh8NrUyjTctNG0wvW9GMWOYpZmtNms16zc3Ng83n21eZ37HgmzBsMiwWGtx1uK9pZVlouUiyybLHitdK7ZVgVWd1T1rqrWP9TTrGutrNkQbhk2WzXqby7aorYtthm2V7SU71M7VTmC33q5zFGGU+yjhqJpRN+1V7Jn2+fZ19g8ddBzCHAodmhxejjYfnTx65eizo785ujhmO251vDtGc0zImMIxLWNeO9k6cZ2qnK6NpY4NHDtvbPPYV852znznDc63XGgu4S6LXFpdvrq6uYpd61173czdUtyq3W4ytBhRjKWMc+4Edz/3ee5H3D96uHrkeezz+MvT3jPLc6dnzzircfxxW8c99jL14nht9urypnuneG/y7vIx8eH41Pg88jXz5flu833GtGFmMncxX/o5+on9Dvq9Z3mw5rBO+GP+Qf4l/h0BmgHxAZUBDwJNA9MD6wL7g1yCZgWdCCYEhwavDL7JNmRz2bXs/hC3kDkhbaEqobGhlaGPwmzDxGEt4Wh4SPiq8HsRFhHCiKZIEMmOXBV5P8oqalrU4WhidFR0VfTTmDExs2POxtJip8TujH0X5xe3PO5uvHW8JL41QS1hYkJtwvtE/8SyxK7xo8fPGX8xST9JkNScTEpOSN6WPDAhYMKaCd0TXSYWT7wxyWrSjEnnJ+tPzp58dIraFM6U/SmElMSUnSlfOJGcGs5AKju1OrWfy+Ku5b7g+fJW83r5Xvwy/rM0r7SytJ50r/RV6b0ZPhnlGX0ClqBS8CozOHNj5vusyKztWYPZidkNOUo5KTmHhJrCLGHbVKOpM6Z2iuxExaKuaR7T1kzrF4eKt+UiuZNym/O04I98u8Ra8ovkYb53flX+h+kJ0/fP0JghnNE+03bmkpnPCgILfpuFz+LOap1tMnvB7IdzmHM2z0Xmps5tnWc2r2he9/yg+TsWUBZkLfi90LGwrPDtwsSFLUWGRfOLHv8S9EtdsWqxuPjmIs9FGxfjiwWLO5aMXbJuybcSXsmFUsfS8tIvS7lLL/w65teKXweXpS3rWO66fMMK4grhihsrfVbuKNMoKyh7vCp8VeNq+uqS1W/XTFlzvty5fONaylrJ2q6KsIrmdebrVqz7UplReb3Kr6qh2qB6SfX79bz1Vzb4bqjfaLixdOOnTYJNtzYHbW6ssawp30Lckr/l6daErWd/Y/xWu01/W+m2r9uF27t2xOxoq3Wrrd1psHN5HVonqevdNXHX5d3+u5vr7es3N+g0lO4BeyR7nu9N2XtjX+i+1v2M/fUHLA5UH6QdLGlEGmc29jdlNHU1JzV3Hgo51Nri2XLwsMPh7UdMjlQd1T66/BjlWNGxweMFxwdOiE70nUw/+bh1SuvdU+NPXWuLbus4HXr63JnAM6fOMs8eP+d17sh5j/OHLjAuNF10vdjY7tJ+8HeX3w92uHY0XnK71HzZ/XJL57jOY1d8rpy86n/1zDX2tYvXI6533oi/cevmxJtdt3i3em5n3351J//O57vz7xHuldxXv1/+wOBBzR82fzR0uXYdfej/sP1R7KO7j7mPXzzJffKlu+gp9Wn5M+NntT1OPUd6A3svP5/wvPuF6MXnvuI/Nf6sfmn98sBfvn+194/v734lfjX4eukbvTfb3zq/bR2IGnjwLufd5/clH/Q+7PjI+Hj2U+KnZ5+nfyF9qfhq87XlW+i3e4M5g4Mijpgj+xXAYEXT0gB4vR0AahIANHg+o0yQn/9kBZGfWWUI/CcsPyPKiisA9fD/PboP/t3cBGDPVnj8gvpqEwGIogIQ5w7QsWOH69BZTXaulBYiPAdsivyampMK/k2Rnzl/iPvnFkhVncHP7b8Ah9d8bcAadJgAAAA4ZVhJZk1NACoAAAAIAAGHaQAEAAAAAQAAABoAAAAAAAKgAgAEAAAAAQAACTagAwAEAAAAAQAAAxgAAAAA0O33uAAAQABJREFUeAHsnQe8JEW1/2vzLnF3JaddwpIXBESSIllEJAgYUcGETzGDisJDn4lgFhTDI6iogDz8CwaCJEWQKEsOwpKDAssSF3Z3/ufbcNqanuqZnnDvzr33dz6fe7unu6q6+tvdFU6dOjUqhFCzP4kIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAI9A2B0X2TE2VEBERABERABERABERABERABERABERABERABERABERABERABERABERABERABERABERABERABF4mIMMmvQoiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAJ9R0CGTX33SJQhERABERABERABERABERABERABERABERABERABERABERABERABERABERABERABERABERABGTbpHRABERABERABERABERABERABERABERABERABERABERABERABERABERABERABERABERABEeg7AjJs6rtHogyJgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAjIsEnvgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIQN8RkGFT3z0SZUgEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAERECGTXoHREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAE+o6ADJv67pEoQyIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAmOFQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREoA8IjBodJk5dNSy13PSwxNQVw8QlJocJi7/8x/6kJcPY8RPD6LHjwugx48IY244aMzaMGT02LFg4P9QWzA8L5r8YFi6wP9vOf+H5MO+5p8K8p+eEec+89Pe87T/9+ENh7qOzw/OP3xdCbWEf3LiyIAIiIAIiIAJpAqPscC19SkdFQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAR6TsAMmJZYcd2wzLT1w9SV1zFDplXNkGmlMGmJqSGMYgh3kKRWC889/bgZOj1ohk73hccfuC38+56bw9MP3SqDp0F6BLqMCIiACIhAcwIybGrOR2dFQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREoCsCYyYsHVZYf5uwwlqbhamrrBOWXn41s18a01WaAxm5VlsQnnzk3vD4/beFh++8Jjx882VhwbwnB/KSSlsEREAEREAEkgRk2JTEooMiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIi0CEB88i0/HrbhpXW3TIst+YmYallVukwof6JNvff94dH/3ldePDWK8Ijt1wqj07982iUExEQAREY1gRk2DSsH69uTgREQAQGh8Aqq04LO7/hTWGppZYMtT6eYTI4NHQVERABEWgksPUWm4W//f2axhM6IgIiIAJDkMCo2sLw4P33hnvvuzf8/TJTZEtEQAREQAREQAREQAREQAREQAReImD68RU23CFM22g7M2jaIowdP2nYkpn/wnNm4PT3cM+si8PDN15oRk4Lhu296sZEQAREQAQWLQEZNi1a/rq6CIiACAx5AnvsvV/YbPMtwp677xpmrLVGWGzS8O2oDfmHpRsQARFYZATuuuuusMYaayyy6+vCIiACItBLAnfedXe485+zwx/PvzDMvvO28Luzzuhl8kpLBERABERABERABERABERABIYcgaVX3Sisvc0+YdWZrw1jxk4YcvnvNsML5s8L993wl3D7ZWeGJ++b1W1yii8CIiACIiACdQRk2FSHQz9EQAREQATaIYBR035vfWvY/637tBNNYUVABERgxBGQYdOIe+S6YREYMQTOOOvs8Iuf/1zGTSPmietGRUAEREAEREAEREAEREAEnMCoMePC9C3fHGZssUdYevnpfnjEb598ZHa44++/C7Ov+D9z4vTiiOchACIgAiIgAt0TGGNJfLH7ZJSCCIiACIjASCOwxTbbhtdtt2P46IfeN9JuXfcrAiIgAm0TeOKJJ8KUKVPajqcIIiACItDvBDZYb51wx933hjtvvy3Mnftkv2dX+RMBERABERABERABERABERCBrgmMGjMxrL/L+8M2+385rLrBa8PEJSZ3neZwSgAeK62zRZixzb5h9IQlwr9n32jL1M0fTreoexEBERABERhkAjJsGmTgupwIiIAIDBcCW23zmvDB9x0YVlh+ueFyS7oPERABERgwAjJsGjC0SlgERKAPCExeeunwrzlPhX9cc2Uf5EZZEAEREAEREAEREAEREAEREIGBITB67CQzaDoobP2u/wkrzHiVLTk3fmAuNExShc9yq28cZrxmvzBmwlLhMTNwqi2UgdMweby6DREQAREYVAJjB/VqupgIiIAIiMCwIbDyKquFGWutMWzuRzciAiIgAiIgAiIgAiLQGQHahEstuVRnkRVLBERABERABERABERABERABIYAgelb7Rs2fv37w/hJSw6B3PZXFsdNWCysv/07wlpbvilcf+5Pw+zLf9NfGVRuREAEREAE+p6ADJv6/hEpgyIgAiLQnwRqo8aExSZN6s/MKVciIAIiIAIiIAIiIAKDRoA2YW3U6EG7ni4kAiIgAiIgAiIgAiIgAiIgAoNFYMmVNwiv3ufQMHXlGYN1yew6856dG56d82h45omHw9OPPxSem/tYeP6ZJ8K8Z54Mzz9l26efCAvmPWsrvM0zL0gv2N8Ci1ezv1Fh1Ogx9jc+jBo7wTwlLRYmLDElTFxySpiw+NJh4uJTwqSlXhGWmLpiWHzKCmGxycuFCYsNzkQVjMI23+uTYc3Ndw9XnnlseOqBmwaVqS4mAiIgAiIwdAnIsGnoPjvlXAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREoNcEbPLGRrt/Iqy9zd5h1ABO5Fiw4MUw58E7w5yH7g5PPHRHePz+O8LcB2zJNjvemdSy5d6yJd/mPxsWPP9EeOHJB8JTTRIbNWZcWGrlDcPUVWaEKSvOCJNXXD1MXmmtMMaOD4RgJPb6j54Qbr/srDDrnO+YPdbCgbiM0hQBERABERhGBGTYNIwepm5FBERABERABERABERABERABERABERABERABERABERABERABERABESgcwITJq8SXvfeo8PSy0/vPJGSmPNfeC78a/YN4dG7rg+P3HVdePKeWRYST0uLTjCievJey4v93Z1nY1RYetpGYfk1NgnLrbFxWHb6zDB2fO9WcMBYbJ3X7BNWmLFZuOTEz4Z5c+7Pr6wdERABERABESgSkGFTkYh+i4AIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIjDgCy2+wfdjqrZ8P42wJt14Jy8k9eOvfw/03/SX8+44rLNlFa8hU7b5qZnR1ffZ3+0XEGBWWmbFlWGWD14aV1t0iW8auWjrNQ2E89oZPnRQuP+1r4ZGbsgs1j6CzIiACIiACI5KADJtG5GPXTYuACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACDiBtbbdP7xyt4N6svTcvGfnhntnXRz+eeXvw1O2tNzQl5oZZV2e/f3DbmZJW7puzVe/May20XZhwmJLdXV7GJG99l3/E/7xhx+FOy/9RVdpKbIIiIAIiMDwJCDDpuH5XHVXIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACFQist8uHwoY7vqtCyOZB/nXPjeHWv5wRHr7hguYBh/hZjLX+cRZ/R4cVZu4U1n3tfmHZaRt2fFcsTbfJG/8rjJu4RLjlvBM6TkcRRUAEREAEhicBGTYNz+equxIBERABERABERABERABERABERABERABERABERABERABERABERABEWhBYN2dP9iVUVOttjDzznTTRaeGZx66tcXVht9pjLj4W3zFdcMG278z8+KEoVIngnEZPG89/8edRFccERABERCBYUpAhk3D9MEu6tsaN25cWHHFFfNsLLfccmHChAnhgQceCPPmzQsPPfRQfq7KzvLLL5/FbxV24cKF4cEHHwxsB0KOPfbYcMghhzQkfdRRR4XDDjus4bgOiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAI9CeB6VvuE2bu9J6OM/fAzZeFa885Pjz/2D0dpzFcImLUdeUvjwizzp0WNt39I2Hl9bfp6NZ4Hs8/9ViYfcWZHcVXJBEQAREQgeFHQIZNw++Z9sUdfetb3woHH3xwaV6WWWaZ8Nhjj5Wej09stNFG4frrr48Ptdx/8cUXwzPPPBPuv//+cPzxx4ef/OQnYcGCBS3jtQqw5pprJoOMGTMmeVwHRUAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAE+o/A5Ombhs32/FhHGZvz8N3hijOODk/df0NH8YdzJIy8/nbKZ8KSq8wMW+732TB5hdXbvl2eC4znzL627biKIAIiIAIiMPwIdOYHcPhx0B31mMBb3vKWpikeeuihTc/HJ8ePHx//rLSPx6jJkyeHDTfcMPzwhz8Mzz33XDj99NODDJAq4VMgERABERABERABERABERABERABERABERABERABERABERABERi2BEaNmRhes/8Xw+jR7fmAWDD/hXD9n34Szv/2/jJqavF2YPQFJ3jBrR3hufB8eE4SERABERABEWivthYvEahAYN111w0sPddM9t9///C5z32uWZCensPQab/99gvbbrtt2HrrrcNdd93V0/SVmAiIgAgMBIH58+eHs846K0/6DW94Q1hiiSXy38UdluK87LLLiofz30suuWTAC95KK62UH9OOCIjA8CDw5JNPhiuuuCI88sgj4V//+le2LC8eMpdddtmw+eabB5b1HY5Sq9XCX//61+x+V1999bDaaqsNx9vUPYmACIiACIiACIjAoBFYbLHFwvPPP5+1r3px0aWWWirMnTu3F0kpjUEkMFSe21DJ5yA+Ol1KBESgDQKbv/XwMGnJV7QRI4SnH38wXHLSYeHZR+9sK95ID3z7RSeH+2/6a3jdgV8PS0ytrpvm+fCcrvzl4SMdoe5fBERABEY8ARk2jfhXoPcAPv/5z7dMdOWVV84Gnu69996WYXsZgEG92267LWyyySbhxhtv7GXSSksEREAEek7gwgsvDLEHvFNOOSW8+93vLr0ORk1x+LKAGJ/utttugWVDp0yZUhZswI9fcsklYbvttsuuc80114RNN920q2t+5StfCWeccUY48MADwyc+8YmO06J++M53vhOuu+66MGfOnLDNNttkhrG77rprWGWVVTpOVxFFYCAIYNhz3nnnhT//+c8NyWPgdMstt4RLL700rLHGGgHD8mbGkQ0JDIEDCxcuDGeffXaW0x122EGGTUPgmSmLIjCSCWBwimdhjNGfffbZpihoh6y99trhyiuvDNtvv33TsDr5EgEmNC299NJt43j66aczI462IypCwKj4TW96U3j1q1+dtTl+//vfh3/84x8i0waBCRMmhKlTp4bFF18863vEUV944YUBMwj63//93/C2t70tK4swhHdhEuLXvva18OKLL2b9oKuvvtpPdbQ999xzwy677BIeffTRbILNggULOkqn3yONHj06e46U84899ligje7CPscGQvj+fv3rX2dJv+51rwvtPK+JEyeGf//732HUqFHhm9/8Zvjv//7vLB283VNPoTc4//zzs+c3EHnvRZoj5f3qhlWzMobv8YknnmiafNl70jTSMDxJ+2KfffbJJgvynTO5homITCwqEyZZn3zyydnpdr/PsjSH0/Gyemgw73Hy6q8K0zZur5394K1XhL/97HOhtuDFtrPK98ik05TwLQ7XOjK+X4zB/vSNd4St331UWGndLeNTTfd5Tv++dacw997W7cyBrHebZnIEn6QdtPfee2fjrmuuuWY29koZefPNN49gKkPr1r0tS64ff/zxlhMcaC/6uBLtyV7IDTfckOmvB0oH8spXvjJ3CvD+978//OpXv8ruocpKT63KFSaGwIO02rV7IM5ee+0VyN9aa62V8Uef/4c//EFOWhIvlpaiS0DRoe4I7LnnnpUSOOywwyqF63WgsWPHZoN/FNQSERABEehnAhgyxVL8HZ9rZx+lMsqVV73qVeGmm25qJ2rPwtJAjo2wME7oRlD6H3PMMWHWrFnh4Ycf7jipn/70p2HmzJkBBcu1116bNR5//vOfhw984ANhs802C3feqdlYHcNVxAEhcNFFF9UZNb3iFa8I66yzTtYRjI2Y8FZ5wgknBDzBSURABERABAafAINhGJzecccdmQFIqxxgkIpyTEbVrUj95/w73/nOjDGc2/m79dZb/5OI9ioR+K//+q8wb968rK383e9+N8CeSQYY5DEoR7tcUo3AsccemxmRUDYU31s8cj733HOBSSAf//jHqyVYMRRGaZQxGFXFcvDBB2eGLuPHjw+f/vSn41Md7e+8885ZPIxkMMIZrkLfmufHIAT97fhZMtiDodjtt98efvCDH2QDHr3i4HUFzxLjuHYE/ShxiBt7d+U5uSf+nXbaqZ0kBz3sSHm/ugHbrIxBL8O7ef/994ef/exnthRXo6687D3pJk9DKS4GTUwkwugEPRFlMXXeD3/4w0z3RBl96KGHJm8Jb+l8X518n8kEh9nBsnpoMG9zszd9uK3L3XP9ReGykz7dkVETF+J7jOuHeB9dDd8jxnLf+973AgZ0w1UwCoMjPNuRt3/ym6X8YpbUu0x8kwwOAd5XJu385je/CV/4whcyw3n6BYw58E7/v//3/5L1y+DkTlepSsDbsnxLPL9WsuOOO+bfY69WZ8ILP3XmQOlAqL+9XmYSMOIrH8RlSGq/VblCX4721D333BPe+MY3tsKXncegiXEn/34OP/zw7Pv58Ic/HL7//e+Hf/7znwFdxWtf+9pK6Y2UQI2t1ZFy57rPASHALD1cAFeRfffdt0qw0jA09phV5H8UAlgDM1B+8cUXN7UopYNOgSERAREQgX4lgNLkl7/8ZV328OBU1eIbIygGG/zvqaeeyhTiHF9//fWzdDF02HDDDbNGUt2FBuHHBz/4wUzh24tLcW8HHXRQYNuN0KDFgMnlXe96V/jGN76RLWXKMRTUeEy47777PIi2IrBICTDY9ac//SnLAwpnOj6f/exnw/ve977woQ99KJt1zZZZtgjvMEpZiQiIgAiIwOATiAe9UNhNnz598DMxwFf829/+lnkpQYE9lAQDDkl1AqeeempmnBFzi73TMDDO+84SuXjRigXv3YTlDwOPXspQff9aMaAdh2dbPMr+6Ec/ahW86/Pu/Ydn9JOf/KTr9NyDF0vb/fGPf+w6vaGaAG31GTNmBIwCGehDh9mvwnNyr4LXX3/9Is0mHvV4F/G+nxK9Xykq7R3j3aRsRv/BRK5OPB+2d8WhExrDG3RwGNAx/pASymiMefEinDIMS8XRsf4gMHWtLcLUldepnJnZ110w4Euh8T0ybvXRj340G2x/73vfWzl/VQIOZDusyvWLYVhaDq5V5fYHnw433fdkpeDtGvtWSlSB6gjQzmdSMO8r3shSwju9xx57hLvvvjvEHkJTYQfrGMZX3h/pF4ORfuvHVPl+4noRY6GhIG4Q/8wzz4QHHnig7SyXccHLEsbMLlWcumC8ihEUqyuU9atJj8nLrHpCH0LyEoEhuRTdiiuumHXot9pqq8CsdB46a7VTOJ500knh+OOPz+6OJdFSlnFYD/7lL3/JwqBMRClTlP/7v//L3PDSOD3yyCOzZW2YxURhjZKOgSE6VQykVvXewKx58oSrZ15aPgIavKRHRw1rPqzwsP5v5rmChnJxRhXWgAcccECW3ic/+cnAH40g8sugNh/p6aefHoofFNdHOfKGN7whs4LkfjEYgudvf/vb8JnPfKYtd8nF9J0rjPi4Y4EBg+u9ckcIMwbp+WMpImYbUbHGBUp8/be//e3ZwB/KlV7Kl7/85ayy5t2iQCd9rDlRDMCTZ52St771reFjH/tYwyl/XzmPpSz3w3PCO8kRRxyRDboXI9HxIiwD8HRIJ02alHXAeBcY+EeJ8qUvfSng5aEoZd8EXOnkpoR04sKXMMxSw51fUXjnMDwrKnH+/ve/h0996lN1wXHdx+Asy0BtsMEGYdVVV83unWfN/WM5izs+OpDkr6q8+c1vzqzHuVfcv/Kd8N6juHnooYcyBetxxx1X+h2WMfJyA5eBeMXg/eY7J20Gkofz7MSq7BWuOgFmObhQvp988snZT8ryQw45xE+VbvnG4u+SfRTi/PEN8G2RFsJSA9Q9gyUoyM8888yuLodrfOov6hCWvOiFYBXvgrtcXIC6kGeMsairKXOoryUisKgJ0P5zwc099VNRmMVNfUy9hrRTXxbT0m8REAEREIHOCNB/23zzzesis+RPrwcr6i6wCH64crPY1xusrNDnpt1cFIx+11tvvexw6jx9QEk1Aiyl8453vCMLzIAAbeJvf/vbYfbs2dlgBe3lL37xi4FBjC222CJbHhrvBCmpOikuFTd1bFG/f6k8tXsMPQ7LYrugyEavs91222WH4Isivqg78fC92NLX5JmiH2m1RFWV69H/XHfddTNvdSNhiR2YoIuMvZahx9tyyy2zfjjfBs8V72YbbbRRFYSDHgbdId8nhlj94tEOvWZKRuL7leJQ9RjlM8u8uDC2gt6DicKUoeiTMaBk7GKkC/rrq666Kp/AzXeBzt/LRzx6089mbAh2u+++e7Z0Ix4sJEODwLrb7Fs5o/+654Zw1a+/WDl8lYC8T3jjQKgb+P7oL1DvM1bBO4iuljG+o446qkqSbYXpdTusrYtHgeG6+NTlw7LTZkZHy3fPu/ahMHXssw3jnMUYGIpIBpYA49SbbLJJdhH6BUzQZnIDfSsm8uCAgrYtRk/8xnOlL102sDmrnjrLxPeDDId+TD9wbJUH+iRI3N/yOLy3ZfYNHqasXKF9FQvtK7cliY/H+3jkxdgUYfz4xBNPzCYo40GKuLTPmHDPt8P7waQgbFJwfCAJgUW/h8yfDSzWzKjByslysUGemjUEavaSJQN95CMfye/XFC3JMGaNXzNlXM0GMJPn/aB1ymumkMzTK2NpL2XLfHua1lCu2YBzaZpmCOVB8y1MzIimZo2h/Fhqx4y/amYYlqVtCqmauZxNBcuPmRKjZgZIpXkp3q8pWPK4vmMuWWs22OY/67ZmVNYybXOBVxfHf8CheP3ib56hGXV5lIatudVumUacphmuNKTBAVNY1My6t2YGTMnzfpD3xVzWJq9pCkEPVreFkRnE1R3zH7ZkUl1a1iCtWYHop1tuzTCoZo2PujR4j1LCO2YN6rqwsDG3nqng2fueCv+a17wmGZ53M2ZtBXfNjMKSYYsHyZsZaGTfbJxGcd8MpGq801WE79AGGury5Ok1KzfMqCn5rfNtevzhsv3YoYdXQdlRGMoNMyyp2SBEzZS3NXOJnX/L5557bo1vMf62L7/88poZuWTvARc0w7oa35Qp3bPyx5TpNVMuluaF8sS8uNXMuLBmSuPszwxEa2bgmYzj1zNj2uy8KfJrZsxWs7Wka2bAWDPPPzUvqylnCcd92FKdNeu41i677LJkuvFB68xm74y53szKan9v1l577ThY3T7fgYf7xS9+UXeu+IPy2gz78vDUna3EGlAZZ+61THjXeRb8mRK0IZgZIuXXpNz0/JrCqCFsswNmDJnH9TR8y3vTrsT5MiPOZHRTRmfXhJsZVybD6KAIlBFo1UYri9fsuBkI1kxpkP21aoOYoX4WzjppySRt8KpG2Xb6aadl5aetM167+uqra2YQnQzvB6m/KXvMcKpGWWuK8KyMLmtDX3DBBTXKcdralJPsE5d7iYX62gaoa+biv/bVr361ZsvcZNexDl4crGadv5wB4bkPm7ldI//f/OY3a6ZYyfoEXibXRdYPERCBnhKgbeh1sbb1Opa4P+flkU0masrLvPJlz4c22lDhST2C0D/rpzyff/75Wb7410/5Gop5sUlkOUubfJXkaRN88jBmUF0XxpS3+Tn6K71k0K/vX6t7tOU7cibov1LhY70LbaRUmHaPmVI8uy56qnbjKnx9GQ8P82CfP0farSlGNjm3FutN+Z0K184xdIwu6HnbiWsTcD1q1oZvJ+5ghbXJoVke6TsM1jWH23WqlDG8v9TdiA3s1bEeCu/JQDyzmBvlpBki1nHxa6Jrdv0QDOPvupvv09MfzttFWQ+NGjOuts/XL67td/RlLf/2+tJ5tTETpySff7vPJ36vyup8xrNiHS3vH7rgdq+VCj+Q7bDU9aoeGzNxag3OVZ7H27/xt9p1s27qCY+q+VO4xnYPbY5YPvGJTySfCWPL1Csu6NwXNU/z2OTZqZkjgkWeH3j0Qz+mSls2fnavf/3rc47/8z//0xOOA6kDifuo6Mj9XrwOj8eG/FzVrbdX4/HsZrYH8Iplt912y/MTX5PxdcYdXegHpsbc4zgjYX9ILUXH7Dss4d160R5QUvAMdOWVV3bt/hOvMm4xl7yQHbSXKPN8Ey9dE4fF8hkrugMPPLBlvj0eXjXMYCWcdtppfqjSFi9UzMpvJszkxwsFnq5MudfSQhaLVWbnVHFDu8suu2QeiorXtwH8zDMHVodFGWgPNtbwC1bAZq4Fi9fmNx5LeiF40LKBuoxrs/R4X/AwYgVns2B153hWeFdqJcwUwYMJs5WqCl6zsAyN3di516JiGnx3eE4qCpbXKSG8u/aLzzODJSXwc+Hd5z0tc2Hp4XzLtfBUgQtqGKfk4IMPzjy1VbXC5jtkVkS7XmzwHNOqjErlT8f+Q4BlvrbddttgRkLh6KOPDj/+8Y/Du9/97qw8xoMZ3y0eh/Aq58L7Yw3owHneH2Zk4waVmQJ4cGO2AN8G9UhR8MBjiuLMI5l1MANlP3/MwsIymneWbysWvx5lO+X1dCtbWe6J95aZmeSfsscMGbKZmYTjPlhTGk9rfEvkq0zwQsTMMIT7ZTYD7zjC7AZmd3YreJSzBlaezDnnnJPvl+1wf3DmXstcwTO7jzD8MZs4FjzY+cw/+DB7vlOZNm1aNluOGU78xffSSZrUVS4895Tg3RDB8x1La0hEYFETwBuoy6xZs3w3uTXD/qy+Z1sU3Ot//etfD3gevOrqqzN3+8w0pzxldhXlTkooY5kxQnmF+1w8muKl0zrkwQZ0ghkXNUQzQ6aszUT70gyPsn3ixks84lmSGYnMQsHD1Jw5czJvaVyH2SruebWYuBmSZvUG3ljJ/8MPP5yVl5RdZiCVzYApxtFvERABERgMAnhZQfDeS7sFwXMsM7Krynve856sbMMbMLMJabvYpJGm0akn8JZDmUs8PN5SxuKlklmAReEY6fKX8n5NeFO65WHwpo1QNhNn5syXZlrTH/J0qFuGkpiSPqtnaP9Tr9jAUua9oplOBI9c1Hu0D5lhSVz0LXBO9U/xeAQf+hR4t+I3+zwj6j28/3IcIT51NP0D8sPz4zx9+UUh273sOcgGb0t1VuSVvgXtAtcDoafjnn/3u9/l2WZZCn9PbAJIftx36E/8+c9/ztoAsIEvnIt6unbfP74l8kf7h28C79H0A3mO/Sq0iS666KIse+g00BMVhfKEMPRvTemdtc1YshhdUTtCX4jnwjXpM6YEHai3tWBI2wwvwKklRijzSI9ZyCnhGujJ6F/yjlO+8azLyiBPYyg+x8ceeyzzHu73gCd5F5vMlXHCm19K0An491LWXyUeZQOemW3yQfYeUIbBt933m/Yz1zPDjFR2stnj9BUos3jf6C/Q9m+Wt3bKSt5dru+emvju/f7jWfGt3q9260H06n4dvLHjVQu9IBx5fugd4+un4AzFd5NxFO+PsQJCu9Jp+QNv6gXKY94jvP/TbqHug6M/i1Rd2m4e2w0fe9XkOyjrb5NHvjGE9o9Nyim9FEse8Z3Q/6WsYxWC+DqpiFXrQuIW2xeMu/At0y6hb0w/fZ999kldJj+20047BTxSkD/qXsp6ngVCHcz92uTNPHy8g26Udp8NwmbPk+fKPbKiQSfS7vcbX6PVfZx81sX2njW2heM0fP/68/43LHj+Cf854FvGszbeeOOsHcXFeP/RKadk1113zfTjlFHUobynPB+8hcTSbjusnfI6vk6n+wuefzzAuYrMN3vsu/7VOM5YJW67ZVXxm0IfzpgB9QHtXYS+A98FbaFUO4gw1O2EiccyOO5tWPRqtP0Jx1gdzxLveoxnudAOoN6lfuf6tJXaGWP0dHq1jb2IsVKJl4PF9ClH4nY+4yIp6fbZVCnvWPKL5xCPheJ9lmO0oWMdK3ns9Dugbcv4EH1wnhVtc8pCyvNifebvwHDoR6eea6/qBefEt4IwruR9b/rffDfN2qDEidvd5uCAQz0RymFfoo5vkvF1hPKiTOL2NWP/vB8poc9tRrB5mvQDKZckQ8RbkxXibpTW9baKx6Z2L4JFnhVKNXuh6v6sY9BuUnXhrYNWlx7p+wzPuoBt/iibRV+WDBajxXsr/o5nQcbp+Cw+awjHh/N9a2g1Tbsbj02ex7Jrw9LDVNniJSYlPqslda7s2IYbblh37TKPTWXxOe4em6yyrLlVaLPwZefIf/wc8BKVEmuw1OUZZqZ8SgXNjlnnvyG8NRSS4ZnhQnrWsEier3oQzw7FZ0na3QjlT5xmmcemZteQx6ZmdP5zjvfYXOzmvNm3DnTNDEryY/4sbNnRPGKqrDRFaM1c9Gfe1DwOW+sc5PGYLYlHJD9PHDOmqtkgRM09JnGOd4gZMi6p61mjomYNljovSJ4u18ATX5wm58q+WzyqeFy8TyF4M/FjeGhJSTsem4iPhzdP0wzBUknWHcOrlYenPCgKnlP8+cVW8B4OL1jEx+MRHres0Zan167HJk/Tt9ZRytPqxGNT7KHNOh2ebN2Wes7vHy8wkuFB4JennVHbdOvX1tbZeNPajJmvbPpHGMISp10ZCI9NNoCQeyuiXMDzAcfaaSuasrEuDepR2jt4UXJvUGzNoLLulvHm5Oet41YzF9SZ9yU8NvEN+rliG8yPF7emqMvSZyZKfM6Up1nap5xySt1xb8vGHps8nilKMk9NePujPPXjZV746m5MP0RABDomII9N9boAbzOY6/Cc6a9//euaKUxzrwhmtJG3LTy8b+PZij6DM08o2vH2lcfzrQ1MlrY1iY73XvqRHp4tv13wlh2f833KfBfv09pgih9q2DJr0eMuqm2sq2iWh29961sN+fcD3Efcb/B0TKnalDMei3jmHp4tdaUL/Y6U2IBizYypsueUOk/b1wY46tKNrzFQ+943IU94Sq96HRusSN1GfsyMYvK04Nys3YR3Xzwl+7Wrvn9muFdz7xD5haMdvKi5XsLTHoxtFe8N5IM+qIsZFuX3zznaS80kVU44C/q58X3G/bzUM77++utLL8WzKTLEkybCufg67NsAYNPvx3Vecbx+fY5VZ7nb4HLOD2+jfm/MwEZ4n/1YvLWBoTweXuP9XOwRBg8Esd4ij2A79HFtgC6PR3zKJhfKJU+TLV7MEfTa8XH2Kfea6UFtQlcyTpn+g+sUy8qy+yAs/QvPU7P3q5N6MPZAgZ62rF9lA8sN4wD9+m5WLWPM8AW8dR7D4dzsPeF8J+UP8WBd9h5Rx9kAfpYf/uHBxp/5YGzj77nsm4zzQf5sgLVG+XjyySfneY2/TzOIK73flP683bqQ/MTtCzxFlEnZCho2qaksSlZ/8t4jlCfx/bPfqlwwg6qGOGX1EOl18v16nqrcxykX3lXJO9Duh//O8j2qIe9+rXa3Vb9H0sXTjZeFeBSJxx5558xIO3seqX98W3FboZ12WCdt23Y5pMOPqsG7itemb51xddvPpJOyKv6mzHCnDrX3cVj9wQXOqXtj1QGEujU+721Y+n3+PXhavkWPRZlUVh+xakSc5mDtu5cb8lWljKZspIxMtSu6fTZVyzv6t83ElinLWXb6HbRq26Lz5Nv25+TvQCpf/o552IHexnUfz6TV9WDkkvLY1Em9EOtA4us7J86j6y2T1Niwp+O2GsU+ib/LZqzY8p49rXjLN4hQ7tLWjm0IfPWsODz9WBfeh/hc2T7joy5//etfK8UpS2s4HE+7NrE76yfBMhKLvH4WLPKKa9zjPYJ1cZuJvYzNTmczeQZizfXiDLemmbCTVqi19J6Dh5Ki2MeceyVh9nxKWq1bmYrT7jGrOJNRWL/YKt7kuXYOduKhx4wU2rlE07B4CXKr0FTAVu8Z+Wc2FDN0kTKL1dQzNkVX6pLZsVR4POkUxRpAmWU0x8tmPvEu4e2GmZSmxAjESUnRCxfPt5knGtJhZiDeIMoEzz3tfjNlael4cwLWaMpnpFA2MKOI7xerZWskZDPbm6fw0ux33hWeO95AiOez5InLzAoXM47KrOb5zQxT4thSctlMemYyuQU0lvtl3ruYbc/Maco4PIIU19rFQ5E1vjLPTtaAysL49YlXFGY1+7WoQ3ztX6y/XWyAP5/97Mc62cbvNV5WWkk8w4JZoEXBUp6Z2UjRKh1vWXxLCGXMSiutlO33yz+s+13wwpeSeOaN32cqnI4NLQJrrD49vH6nHcLKvJNWH6bq9OyYnSMMYYnTD7LmmmsGZt65mJIgWEc92JJH2WxKyjRmvVonzYM0bONvGc+ofLt4zMOz00EHHZTPJqKtEQuelxBmInE9vNvhvZPy1gyJ8qB3WvlXJsT98Ic/nHlZcu+ncfvIjOODKYmytPHcx28X92rnv31rg+zZLDdm4piL68ybm8+IYsabRAREQAQGm4AZAuWXxAueDexmbUcO0l9q1R+lnLflcDMvxMx8N6V3Xd+F9i4eAGKhfL3xxhvzPqIpRbMZjXj99DoBrx7UG15GxvHb3cf7APUCXi1d+M0f9dJQEPqRZvyRZZX+M21j+g3eT8SbMPzQT7nADs8E3henPYmHIWZw039F6C9zrEzMWCVr1+M1iD6H93NXWGGFzPsTz4nnxyxw+hl+Ho89zNoebLnkkkvyS/KOmcI6/91sx5S22fsQx4eXvyfxDHb23Rs5HmDpY3DvcEB4BrByqfr+0cdiNjjCu0o/kz/yhtCvi/ORHeyjf7GXJjwDu/De0l5CeHdtAknmMSzu35jRXksvHZ5esy19OtdR8o7TzuTZ2EBdFo1nw7s63bx2tBL0T5RB/v3wTHg/8Pzj3w/fJbPbYxnqzzH2hsOz6qVQx1Au8a3wjfB8nCV93Pi76fS6PH/6GN5nooykXnJvP6SLNzZ0jC6dlJX0CSgfPP+8Y15elHku8eux7UU9iKcM9MZ4u+GeKaddv8o7zncVy1B+N/Ec4O8m91pVOi1/qBvx8OHvEWW9DdRlHkrQiVHela0QUDVv3YRzj+mkUcVjuhmfZG01vOwccMAByUt7e5A6B51l7AEKr02x3pIE2q0LixdlLI33lTKV66GXdEHXWfT6Sf/ZjCM9SOatCW+SeJciHerPsrIdvaVNdMqfp7eH8Prkgt4BL2hVpJvvt+p9zH70mSpZCXdfc56Faz5+VymhDgLh6Qa9OEKdGbf3eZ/csyHfDLoOvIXi+Qzh26KsdG9ZVdthnZTX2QV78q/2Mu/WiT00d0HrQFGITsuqKIncgyH1HuUC7dNeCav+8I1RFtJviMsHdPG0raiPeCeoCznv9RHvReyBqFd5apYObQEfR8RzJ2VgK6FspIxknDmWXjybquUd9Q78zJg6zwKeGL19AV+k0++AdnDcB6ftQtuBY96eYQWKeBWMqv2YPMNDZKfX9YLfNt8Kul6E8pF6Kh6jQaft5z2ObzfYYINsl/Zxr4TvwCZ1ZMnRr6ENHntuTHli9dVMiFSljUG42Oux98U4PpKl7627YqtXK7DrxAqEmjX0srUw8Q7BbApmWTWTdjw2YaWHNRyzE5h1xCz4MrFlhepYunVhKjwzAbE8txcvW6PZFGapYNkxc4NXl64pskrDkl+r7LJZT9b5z626yyIwCw6Leesw1FjfFO8lZRJ79CHf8R9emVJiH2Yezgqd5MyEooVknC77vfDYZIP3qexlx9pZozi2tkwlyAwrLH+ZdcJMKTNaSAXLj5Evv99WHpusUMwst60wzN5JwttyXLVm94a1KR6QTAmbXQdvNNYhz69f3LGGRBbOKu/ku4OnG88vW3NpXkyi7jezCuLwVtDXnfcf1hjLw/FNF4Vj1nnKw5Ams1Oxck9JPHuT76BMeEZx/rDKdgvdYhxz45qHbeWxifziCQdLfr4rLJaL14qvO1T3mZXfS6FscxY2eJOciRB7DSvz2JSaaW0KvDxtvJAgXA/PQVzTGgTJW+G7i/PkgWKPTeYC0w/nW0+XuNa4yo+zw0xET9MUX3Xn+BHP2iymzfvkca3R3RC3XY9N8Tea8rDUcAE7YB2RPA824FMXhPra82eKjPwcM86diSlr8uP95LHJvWnhcapMTBGQ358ZcpQF0/EhRgCPP/c/8GDt68d+s7bxq7eqrb3RJg1emzjGOcIQljjtSjPPA+2mFYenLOPbd69EZVtbtqZmAw5x1BrtRg9vgw915/wHnpg8jCk1/XCN8tjc5dZiLxj5SdvBaxLxiuWcp8W2WD7CyM/bciVxctk+9euRRx6ZhXFvAjwLj4N3JsrtopiSIwvTiTe3Ylr6LQIiUE5AHpvq+8jeJnK9AN4H/FjskZr+mh+Ptx4P4rTZ3DuSh7EJIfnDwAuGH2cb6xdSM/riOskMO/K4NpCUp0m/Nk7T9ymHXYp5cs9SlNcevh+2cV2Vyg9etcgzQr1avC8bEPRbrvM4Gs8ORi8Vp83MZe+vso3PxbO/OYcHFz9Pn5Q8uOBZC12Kn6fNzvuA0N7244O1Rf9gBiievWyLHskGCmroE2IdRypPsf4CT5PFMLGHM3QX6BDiMDZwl18bFvG5Vu+fe2Xle3EdicePZ8nzDPz4YGyrem9wXU7chzMDsJwH7zD6szjPtiRDfp548X37PcfpEdfbWEQ044M8vdjzCAzxKBZfK267xfrRMo869Htd4j4wafJs/TvgvuKZ7f36HKvOcqfd7mJLJeUMe+GxiXRtgCdPE5bos+Nv9nOf+1x+vpknHi+/ip4V4roJryjxO4Ce2+Px3Pwd6bSsJG3eNQQvs/G1fL/s/eq0HkSfGwte9fxabG0AOT8d1+uc69d3My5jeD/wZsAf/TT0Su6piRtj3CO+X/bL3pNuyh9bnifnSH8zviblPjqkWKhT4zADvR97i0Kv3On14nKT+zGjm7q08KjjYsYM+blO68K4fUHZXvSgF3ucifVx3J+XueQHvV18z3GZzPmixya+BZfiqgexDrD4zZTVQ51+v+3cx3/98KpKnoEmT9+0jkXMpZP9+Hss1tmp9OK6Mn4uPv7JOEax3RLrxWM9Oum3aod1U16n8t/uMXhX8dj0vu+1Xl3Gr91NWVX8phiL83R9G49dd+qxie8HfVtc1jEmHUtcRnDtuPwwo4eGfHn+BmLLeLIL33Gn1+jls2mnvGOczsWWsGvIf6ffgZdppB17l4QP461xH9xXOXJ2rfoxHm4gt3FblvYAZUmzP/q/LkWPTZ3WC97OxENTfK/uscmvxzh3fJ6VVFyo/8zIrO48Y8sutsx73TkfD0ZHHqdZZT8ee2a1Fo/j7frieDrn8eLt4uPxHq/Z1vXd1NfNwo2Qc2nlWz/dvLsI84cdbw855JCGh8hL6i9jHNb3qxo28bFQ4BRZxIO1niZbOlMeloK0TGgce7h4y7I8KeFFjfMRNzTj8MXKj7TNw0ccpG6fTkKs1CA8DVVX6NUFth/xYHacb/a94C3GKT4fBoVTsttuuyWZkHYvDJtIp0xSlVfx/vx3M8MmlHkpV/A2e63s0rVYCdDMsIkC0A3hPC++jY07ihcqdpiIgyvbsneIjqWnW7bEXKxYZKCwlcSNitg9YRzP3c6j9EgJbD1f8ZYKC+Ox4l98TSqklKSUqKSNYin1DVAZ+bWbGTZRccbKKY8zHLe9NmyKDX7Msjn12LLly5xl/O7Hhka+PFGcQNyI4H1DaEym0orjse/vE4Y5LvH1UgavbiSD4WRRGJzw68ZKYw9nVtv5+eKgv82cy89h5FSUbgybYgVdMd34d9xhMQ8B+SnKFTdeMm8v+XG+CV9KkA5LrFSNFSmLeik6HxhJPTO/mViZikJYMrwIXGcukY/51ndqu+y+pxk3bZoZOGHQxD7HOEeYTiXuwHaaRrN4GIrTFmWZRNoXbuxT3Mb1O8ZMfj7udMbXId8eJu6kx2F8n++b9iiDWR6nzLApLsM9PoPvHg+D1JTQDqeN7mV9bNgUK53iuDDxdFN1fBxW+yIgAp0TkGFTo24lHiDFwNTbgPSpaCMhNmMwP+7n2bpSjzBlxk+xriR2c+7tLdIo9vlJm4lNPvhMue3XHamGTSgUXfbff/+ch3NhSxseidvy8KKfXtZXj/UHtIM9vbi+KiqBCePLVXC9VJ+edwahTvM0B3OLTsEH8LOMFP7RZsYYIPXutRpQY0DHmabiw8OlyM71UmVc/JtDF1bkhc7Nr1s8N9C/Ww1y8p5hOOYS95tp37gU9W+eb4wUXeJBAG/XwcXDso37qLFhU7zMQmowFoa0MxlsZetplhme+KAsRhUeNt6yVLhLvGx4vz7HeDCobPmOI4880m8pqwNiXa8PgBQHcpxJPCBTthQd7fl4UNTjxpMS40lfZQYrxPM6IjZs4htxoZzy9OMtgzo8W/58gKfTspJ0OzVs6rQejOvtWEca36MPrqEDiY/367sZlzH+/FJbDEdTxqll70k35Y+P2/D9x9+B8+Rdi3XXqffaww7ENjasKRo7t3O92LAJI7JUXG/vxWVhp3Vh3L6gv128Hqyda1xOx+UXxtzFePyODWVjwyYMT12KRt6eDrpMl3iwuawe6vT7bec+9v/25ZUMaEaPnZTk4ffW7jb+HlN1aTG9eHJWPBjPcld8J3yfxTiMr7je4+qr65dsa9UO66a8Luajk9/wrmLYxPPjHsv+YgPrbsqq+JvCMDB1T70ybIr7Cn4dd0LBfabaxf49323LRHqcwdjGhj9xm6Tda/fq2bRT3pHHVoZNnX4H3ralDCONIg/a1YxREc48NdWdb9WPKaY1EL/jMtTL7KrbuF/WTb3gdWKxPextL/KTet7wiA2G4j4P5+Jn7mNAztDbJKRdVqZwPC5XPK7ni28xbqvEEz4YS/bwbOM2RjEvcbjivl+LfBbPjbTfQ2IpOncRZg+nTnBRipu5ouBasRfuSnGpbS9sMflsaY+Gg3YAV+EuuHBNiRVqwRQxqVPBOk/J47gZZEmQVmKz5hvc/uH61z6qZFRTrObuoj2AGYHkLiv9mG+toeS7dVv7YBtcCHqAontg3LSnxBQwqcM9PfbS996Y5OTJkxsPdnCE98UUEQ0xd9hhhzqX/HEAK2Djn8l98j1jxozMDX0qQNm7gYtKXBkWxQYCsyVjisf5bQP6+VIEsdvoOCz342IGPL6bbVPvmi/lRQAzYKsL7z9++tOfZrtWcSXfV2sIZG75rMHvUbKtDVQGyofin7vXtg5bvoxXHBGmLGmTEtwX2iBuwyneE2v8NxwvHmApHdKQtE+AstuFdz4lcTmbOs8xlmsoCu+Qi5cF1uj3Q7lr3vxAtGONuuwX5Xfs2tKDpN6L8ePHZ6dxL9qOWOM2WCMsj8JSUNRn/sdSdy4s50aeuhEbmMmjp+4jPxntsGSKeTXKjsR5Zck/z8+BBx6Yx7BOe7AZRnn4srokj7CIdvyefLmRVDbiMj5eli4VVseGHoFXmivld7/z7eE122wdll5qycx1N+672ecY5wjTr4LLY9w60860DlugXUhdt8kmm9Rl2TpX4dlnn82OmZFQfu7YY48NZrDX8Be35azznYdnhzKEuhg3uyzjaR3ZYF7xgg2A1IVL/TAlXMPhKmUS3yrLMqXKrFT5z0W8TGbf6wD2JSIgAiIw0ATMe11+CZY9dqHf5Etq2izrbMkVP1fcUm7FbcD4PGW6i/e1aPd6e4tlnWxw2oPkWxuQypfD67flgfNMDuJO3Me1QblsqTPq1fgP1/IIy+PQz0SoT6lL4/qU4/Cnbx33j8vqqLg9TVwk7heldChVlpB+KaWB+Y9OAQ7oM1iGzIyM6y606qqrZkt706/2d7EuQJMfZhiQM43fXRvMCWbYkS3l6NHb1eX4sl/0Kc04KNB35xkj6P5Sz9KvNVhbloBiSQL+zCAoWwILPcnOO++cZYF3ymbJ59mJ312WdU8Jy1W6eDnhv9vZmuI9C075YQOlDVFhuM466wSWiGDbTOBuk2KyICzlEn9rvs/SSS477rij72ZL7fGjn5+jDXLmz5Fnie7BJiEE87SX3wd645TOOQ/QwY5NHGrQC5OMeRQP6BqQVs8mC1TyjyXmXGyw13frtjapIXsHeA/YR3pRVtZdpMWPXtWDrlssXs51hujrYxkKZQxtChsoz//iesoMeALlO0saVpFOyx/6cmbgnV2CpbNS3wHlsXOukpdeh4n7jF7nd3sNlkBKib83Nlk6P92LuvCss87K0/MdWHuf3oxf/HC29Lv/iPv/fowt7aNifc9xlqR3+c1vfpMsz+MxhlZL2Hbz/cZ5aXUfL7zYOObn9xFvF85/Lv456Pu+XCMXjt9LdCd8J2b8meeJMTqb6JDpSzxerA/PAzbZGezyupiVqrx5ftxj2R/tRpdOyyqP79u43+XHerU1w4q65dE8XddRo4+O28XF816m+vGB3sbldjdlZK+eTTvlXRU2nXwH9Hm8bUsfnDSKQnuQpYFpI5XZCBTjLKrflDc852Z/ZXmLy+Je1AvF65S1U8y7VB7U+05+wPtAfGvYQJRJWZnC8bhcIT56bdo0CP0Z6m6XOI9x+5/zcVnezvdDGS95iUB9C7xPqUyaNCmZMwZ1y8QbW8VORln44nEa9ig6UlK2fmp8LbOwTUXNFBNxwR8HQjlFYySl+Jk5c2ZgffFmkirACc9AfGrwJ16XMU4XJRoFbFVBGZT6AG3mZ95Y9rQY4LbZkP4z3xbXdc5P9GiH/FH4pMRmE6YOt3UMxQ6GdikxF3HZ2rg2s6HhtA+kN5yIDvD8SL9M4o5PHKbs+RLGlhsIZk0dB8/2YYQhBpWsLb0WUMYUBeUl684iKOFj4TgdlLgxxfrALub5xnfzLR3q+FvjO1hvvfXy877DOtwo/2kU2KySjDdKv7KOIfGmm+Iz9dw5hmKnTLxCKp6nk+8dzuI5/33qqaf6rrZtEogHBNo1CIovVWxkxOfifXPln/9EMV8mcXkYNzw8fLNOYqps9HiprVl+1x0u/q47aT9Q9tqs8uLhyr/d4IgIZcZkxcRoRB100EHZYAXfJGU9z8vzSiPeFRXw8jKf8o7rxddkjWmXb3/725mSlUYh6Q+2+KBeynjN8yLDJicxfLfLmmHkfnvvFZZfbtlw5lkvDabss/eeYVurvzjXT8L35UoOyqFi2Uf7mXqLPwYhGOwiPO1Q6nmMguN3uqx9Gt9zXAbyLV900UXx6Wyf9rDNQgo2k6ThXHwgVT7G+aliyBqnx36z8rgYVr9FQAREYC6CODgAAEAASURBVKAJUM5hEO5i3pR9N9ua15j8Nwapn/rUp/Lf8U5cNsbH2Y/7QvS7GESOr2MeNYpR8t8Y6mD8SrmNEY55Ic3PjbQdDINd3FDffxe39CW32mqr4APe1L/oOWj/oneJ9ULFuKnfrfQRqUGMKnV26lq9PoYRBX8I/XUmNe27775ZO4Bj8OA9W3PNNfnZlthM8GBLcGT9g9hAua1ECoHf//73Z30Rvk3aKgx68kf7Hx0iBtqt+vuFJHv+k75QyvibC6GItyXbM4MZvzC6QgS9Smyg4OfZmteZTIHu7258ruo+fUDvF7dq41VJ0/uLhN1zzz0zo59m8eJJbkPhOXIvfBNlglETkwF6LWV6Sa7jg2n+HDu5djxI5HrBqul0W1ZWvQ7helUPmgej5GUxNkzJUHg3mbhXNExkgNW8ogUmulCH0Sah3DBP96nbzI91Wv7Ek3y9Ls0TjXYwCuzGEC9Kqu3dWD+JYeWsWbPaTqMYocjdz8eGKX7Mt93UhWWTjRinKEo8LmPLXRVP57/hUhxjissFxuqajdeREOV/bLiaJ/7yTjffbzv3MX7c6DDvhdbGTeZBKFQ1tineSy9+b7fddnkyRWM/WJmHzGyC2+KLL54cA8kjt7EzmOV1MVvwriLjxo7KyqqysEz4d+m0rPL4vo3Hr/xYr7ap7zJOu6yNt6j6BIwFuJhXSN9te9urZ9NOeVc1k+1+B7ZaRZ40Ez+GutjqQqHMeYvfG+V5bLjqx3tdL3i6bPkWYj1KfI56Fr01fR7zkhSfChu9PFGZceUyMc+ngfGpMonLFcL893//dx6UcUZbLjT/He9gwEf/07/XeEwShvH4WByvuO/1b8rIuBh2uP/ue8MmChBexJTESrzUeSyXsVLuRHiJy4TOYCsp8+Tgs/zK4qNESTXaywylPB0+2DKFp38wHta3ZYO3rSpSj+9bc4vvu3VbOifmorzuGB8dhinFgScMYVCCMet/IGS6GbiUSS8UuMWGZfFaVGYpwya34i2Gj38zS6+Z8I2kpFjQxmH4NngWKaUrRkW841wXJWox/a233jpLCuOf4jkscHlXfSYfAWMjIRTmRaGjGguexMpmGhKOdwcFPH8f/ehHs8rMvbe5UtXTKxpe+XG2zZRMcbh4n2+zmfKGGXApxXOchvbLCcSD2GUd+152ImKFcbMyP25sVDFGLL/D1md8RiMhywa3mOnps/Z/9rOfdWXYFM82iZVLrXLKrAJbji8LhhElhkhu1PehD32ozjuKp0WdY673/WfD1sv/TTfddJEYNsXtBQx8U/UGsxddvDHpv7UdHgToaKy7ztpZ/XjJX14yWN7BPGqutWbaYH1R3jUKdXNFnmWBOrHZbB+UXLb0bq5k5F3GsAlPBz6AZy7Ok4bq8T2SDkK7x42aYGZLWWZ1PwaC3jZgRkpqhlKcXnE/bhel2iDF8PotAiIgAv1MAMVWPOGjzLsF92BLDJe2/TBYKBNbtiQ/5ToIvOW4NIsbt39XW221EW3YFHstcHbNtm4QT18X47GUoYArVZulM5zOoT/gDw+Ob37zmwO6AXR56AeYvFfWvysyoB2BLsOW9i6eyn53wxUdIgYyDN7jMd31IfTx+F75Y0A/9q6WzMQAHsSwLvZgid4GJT2TSM4+++y6mcBkw9tOrfR4DAJgINaulyu/1XjAtJXxn8dptsWwrB3xNihxhsJzJJ9F3QUGYRjQ4Vm9zDCGeN1I2UAPafqECL5LvGK1emdS+YjLumYTMItxB7us7FU9SHnTjgyVd7N4T3jwsSWWsgmk7k3y4IMPbmnY1Gn5c9999+VZiPWA+cGXdwZa/1a8Xvw7Njpmkm6zgc44Xq/2e1EXlo0HpfIYjxGhGysb+4rLYk8n1qX5sWbbZhNLidfN99vOfSw5cawZNr3QLKvZuaVWWS/MmX1ty3ADFcANP0gfg0MXjOoZF0kJzx49TScy2OV1MY/wriITzbCpanut07KqSj5Gaph4PLXZ+FsrPr16Nu2Ud63yxPlOvoN4nMm9ZFa51nAM0+t6IWZUZuRHGN4DvCbRx4udgZAfdyZjS6DGydXt0werWq4Q8W1ve1se31dbyQ9EO/TBWFEBZyNIbBiIQW7sXTcLkPiH92ef7MPY4EiXzmq4QaTWrNPNwGMziRszzcKlzjWzeqvSsWG2Q0qKRhzFMMWOr59vtzDweAO9xcgkbmDF18NQic5K8a9o1ORxUt6B/Fy323g5tGJazTr+xbBlv1tZVdoaqcmoPviXPPnywWbKAliWGf6VzQTxa5UpUmIFU8oQz42T3vnOd3pS+fa0006r88bCCZT5GBHFrsbzCLZT9ERGwzx21ReHTe2TPrOTf//732duBGOmrQwCU+k1O+aDBWVhmg0clMXR8f8QiA1Jbrnllv+ciPbKZsxFQSrvxu9HWdlMee/GbFh2l31vlS/aJCDliCuRmC1Hoyb194Mf/CA3HsRttxslNEk6eYp7dgNIFEZlgwepyBhAeni+e2Z0uYI79iAFL+7FG3fFLcYQLlivcz626vdzg7GNLfnLZrrG5RUz9SXDlwCGTKee9L/ZXz8aNUGeQVhXVt18000tH0bc0adORuKON14A6PgV/6hnmaHKnxvRx2Ux3ziGkbQfvA5moKRdo6ZifsrKNtoJDJoeddRR2T3onwiIgAj0K4Fi/5ZyuPjneUdRVTbxIi6rPbxvt4tmcbt3ptg7JkasZYJRrAvu8otS5urclYLF8EP5t+thqAtpv7b6c0+lGKv5QD91I8pN6kOUqdTRGMmMRGH5vNNPPz2/9dQkr/xkYYcJE97PYFCAmcK8x7RdeC7dTi6gD7TTTjtlegq8cPz0pz/N+zFkheV1U56mC9kcsJ/0ifBw5X9MrkL3gkFMvLyBZ8CXJYyV937Ot+gnXRHeqdcRDB+8bZeajOnXqrqNJ6oeffTRLb+54qTJfn+OtFf9GfoWzxpM5CvTxTm7srK3TM/s8dg2e3cZpENop3di1ERc1x+wHy8fw+9mMthlZa/qwWb3VHau39/NsnxzHD2yT9aMJ6yWxem0/Im9O8Q6oeJ1mrVhimF7/dsn3pEuk++qCBONWNWinUmDZekOdF1YvC66RRcmRKWEvn5qnM7bn8ThmbVqQ731rW9NJZ8f6+b7bec+Vpjykk4kv3DJzsrrvTTBu+T0gB6mD+DGf7RR3cMZ/QY3amIME4NtJqKjI4I/9UinYxSDXV4XAVblPXXx6sPanZZVxbxV+R1PaonDl61IFIcZSvuMYfBOIowpuC6w2T0wfkcZ+b73vS8PNpjPJr9ohZ1OvgPGJl3cMYT/HmnbXtcLMT/Gw8u+M8pMn7gS93li24BW3ijjazXbxwOm6wEIV9TzxDp4zvuKJuzHeUh5PPvEJz6RGZxjdO52Ifvttx9RM2k17u/hhvO2eg2wiCjErj+LWYgVccVz/C52fFNhBuqYdwSK6fuLWDzuv+OPwY+xrTq7LY4zGPs0omgw9UJQXpUVSt2mX+bFoOw5tXu9Zspm0mIGbEqaGdClwhePNVNGeMO3GMd/lzWofNCScCnXsFhSo1SM3SsSlm+V/OBBpihUHrEr2fj8KaecEv/M9o844ojw4Q9/uG2DDYwtmAXnA7atFEYNF25xoBnvFlF1ugKBuMxmTdzi94EyFRe7vRK+S58ZwOyr4vW4zqWXXprPtNx77717delkOnGjJm5wpQLHhoUYFrUrDLzE3+Q3vvGN3ECialoYMyB0rN1rDAofd+3p6eCFijym/ljuwQWFNmEWlbFCrHw67LDDGpQAGFn4kq/77LNPKCtD/X60FYGBJkD7yw1umWlY5nqZfGCkGXcsvT0at08uvvjiZJbxDkAHPe6kx0qy1IzLa6/tbEZjbHCaGmTHU5R7TluzZNnn5E3ooAiIgAgMMgHKRp+9yoxWH2RgoCH+i5djKvNsiUFCmTFHHN+N8bmet2vj5ZuKCHzQEi8ePvMx7h/HM+bjuGUTm+IwQ23/iiuuyLIMa68jq9yDG8aj2Ec/RVuWCXhugBIbnlVJr9/DYMjgStvY02wq3/4Ops75MVc8+2+28YDnbrvtli3zd/PNN+eD7e0YScXppvaZscsACwYjsV6CGbVDRXypCwzp/Jsu5j3W3TSbpVyMV/ztk0vxWFamu6NPdeihh9Y9x2I6/OaZ+jvSzLAhFbd4bDg8R+7JBwhThgOcZxnCVhIvwxSH5f1wT3OxJ5o4TJX9c845Jw8W95/zg7aDkd0hhxySvQded/WirPQJHfG1yva7qQfL0uzk+FB8N52zGzI2u+9Oyx/S9olx1JMMDhaFJdha6dqLcXr5Gw+EPhaDwTLejZsJ4w4YQ7G8Ke9/tzKYdSF5xRO7y5e+9KXcs4UfYxsbHMXHYz3BHnvsEZ/qaL+b77ed+5i+3EveqFtlcvXNdrEgvRn7anWt+DwTCW6yCWz+TcaGpSx76XL88cdnE7+YVI/eHKEfkvKu5XF8m2qH9aK89vTb344KL/FuHXPFpca0DvRyiE7LqqoXiMfSZsyYkYzm9WHy5BA96DpI3tELLrig6V2guyQMZWTsAW+gn03TTL18MtWm7eQ7wNOd96lT9ZrnhZUuaCsP5wnTva4XnJ1vyybF77777h4kG9PzH95m5fn0yigoXoZu2223rdPxuL4HHZB7QESH4pMU6Ae5J1V0LhinxoKNCJN7+GNsEt09Rk4uvpKL/x6J29FD4aa9s1vMK7OsmkmZkVCzOL06V+ZuLmWBF19z+vTp8c98v5uOZ57IAOzEDaluk6cSLFuHspu0qYjKFDyuwOwmfeKWpe/plilqqnQUPY3UFqWiV5jF8xSoZULhWuY5iw6Ey0knneS7dVsUjBtuuGHdMfdKhTWsK2Q8AJVNrEzz43ijiht/fpwtBTSGLjQIWZ+bb6CsLIjjURmwlAMS30schnQwDGnnD0MTN96I09J+7wjQofJKmlnTdIix3Oc7YckjvPlQ8fdKGLjwZ8pAOUsmuHKFa/AuxzOVfDZMr64fp8N37N8bMx1YGqGZYFjjUjaoADPc3PsfRoe400RBgvGRezXk24y9LHm6rbb77rtvHsQ72L2sE0icDjqNQP5YzqIXUpYmZSKdC4T3gWVWffY+hmBxmYpbdokI9AOBeHCPbwQPCRga+8wQ6mM6URiL+kwolFxuQET7xQdwmV18sRk3uWdS0mCQnOMI4Vy5HBtP02H1eh/lLzPw8SrgEg+S+7GyLcoe9wzJ94di0ut+2gwMGLtsUnHmrIfXVgREQAQGkwBG0rRfEDzClAllpvcJU/0lj5fyJon3DSaDIJTd3h/jt3u9wwuU94047oIRlZf/t912mx/ODHJ8IC+lkGXAGi83ZeIGPdx72QB7WdxFeTz2HlGmmKcOYuk/jDt8kMm94NCW93v3+6Av26pN72GHypZBeup1ni/9BzewLuaf92TPPffMD7uHAQ54m4H91GTF2KijqCtAj9FswNifQer9QyfDs+MvnjFLPpC4T+XP96Uz/f0/HmjGU0Ux7wyM/uQnP8lvIm6j5Qcr7rj+jAGg+Jvx6HzzGMQfc8wxlbxwu/d0BnbQMRUFnRPLwvPd+eDBcH2O3Lvrr/h+pid0w9QrrQSPTbGuwMPz3H3gztv2fq6d7TXXXJP3M+g7Fyc1kRblBAM0vAfu3aubstL7Jt4PqZrfTuvBqukXww2HdxPv4P6eMJDWSropf0499dQsecosJrRgyMS7j1H4d7/73YZBvlZ5GYjzxx13XJ4susNUu4gADDji3cOlF7rDbupCz0c7W5bf8TKIa+ONBWMt3ge8rKAXYJsSDBP8O2WicupbxYspZTl/zTzLefqdfr/t3Me6q6RXW/E8+HbSkq8Iq2/zFv85KFsmbPMMfBIZuhmfXEoGYn1MvLS0Z47Jq2XSqh3WTXldds2qx+EM7yoybeq4KsGyMN2UVVUuEnuhjHXlHhejikU5Tu356PU2bpPTBiybjI43J8oQb6P62A/5GehnU3bPrmfkfMpIptPvwCdi0v7B605RqEsY86SNFH/ThGvWjymm0++/B6JeiO+Zsa7i2DYe6/CY6hIbV7lNho/zeJhutv7eoDvxcbFUeieeeGJ2mP7p5z73uTxIPLGfbynuO9PvcY9T6HxYus7fScbz3Ht0ntgI3BkShk1ubVx8Ps0GFr/85S/nisRivMH4TUMtJT5rM3WOY95gKZ7v5UdXTLvT3+TVXRl3mkYxHq5Weyk0BOMZRcW0v//97xcPdfQbpSVKtjIpm1nllpll8aocL1tTs5nVb7OZu/F6zSiaUt8fRj5Fy/9f//rXeXaLxid4UkoxcKvsPGJih4FYZkxOmzYt61BtvPHGAc8u8ZrsxWjuWSe+lzgMHQJm0rTzR4XpA8VxWtrvLQEGZ7yTS+MWwzbeNWYH0wj2Ae9eXZUZuu5WGiUsltO4isdAjnfNDZ0YkCorn3uRFzpBbmh04IEH5m4zy9KmgexKRL631LKRKOf5Vv3vPe95T7YcRrwsBMZiLK9G46pdwfVxUWlKer0UH+gjTW/gd5t+szRZ+s8NUTGo5F2ADay9HkaBu53NKpSIQD8Q4B2NB00ZcOI9prP0+c9/PlMs0Gl2D6i0iyhn45l5LJvjCoY//OEPgUETlmEhDZaZRDh/wAEHZPv8o1PocVC4ocD44he/GPDCxoAw53wmCoZVLDEbe3nKE0rsUIdPMMNThIF87uMIS5+639tNePnsdRs0kRUdEgEREIGOCbgxEQM9rfqcrtBF6RvP0I8vziA3yi3KYvYxTGKA2cvzYl+FAUIfZDr55JMzBSpGJCid+e3eoejfMBMwFm/zUI5TDqPDYJ8BLs75NeM4vu9x+Y1RPXFaTQLyuItySz/A805+Yc0yCbT/GcijfqWdy2Adhj3eL/R+L/0V6lD62YRhAA9Pwq6AXJT31utru2EM94bRCQYM3Df6EOpm3j2O+5KF9Od9pip5YdDR3036enwfxKdvgfAsXDCeYfIJafFt4LnRjbM9TLz1Z8ix4vtHf4nBZ/QKtJWYKe3X5Lvw+yJucdYsx/pVYMS7huCRB+8OTBjEWBwDLnQi7qUYpXs3kyZpG3p7jv457USU8PTRmUBDf937lbHivowdzwAhDt7CMWagnKKMYxlHyjg3rGfSDjJcnyP3Fhun4mmVNj5td/qnTLSBSxVBN8d3RVmGwRg6UZ+whRFmlWfT7DruaYH2Pjo9nj154xvFqMmXVaUc4DfSTVnJ5AaEuof6kncPDzqtpJt6sFXaqfND5d3EKJX6zf8YeKW/SNnA5C6XZkbZHqab8odr+TvPe44hBpPEb7nllqwOpVxw4xa/3mBv6Rf7+A75oU1EPilfef+ZSM0EIuo4L2d51+kfdyvd1IWdXps+to8BUFeiM8cIhu94l112ydo+3h+Pr0GbiLYlwkAzz5A+PHUu5QH1MYYMtI8w7qjiLaOb77fqfcycNtnaLqOyfLf6t/Eu7wtjJk5pFazt83yH1NX8MbDNREzeM+panoEL5+P6O/4+eU9pd9JWdyO0WHfjafi2VTusm/Lar9HJdszEqQHOVWSsPbc1lh1bJWgWppuyqspF0Le5wdh2pi/GuIL3nbICA4W4jVklvaEShraKr2xAntEHMjnRnSHQPqSO4Z3zyQxwYtzeZaCfjV+nuKVd5UK/nTZp3Gft9DugbvN+DvUDRi3oT2nL8d269z/KzdgwjLw068d4XofKdiDqhfjeKe/o46DHYFyeOoO6x42d8Cbm/U/684RHvD8Rp9XJPu+M9/Ob2R6QNvWfvxNx2YyOO37mTFTG6NvfQx/fLuavF54Ri2kO1d81y3hf/9kgrD37tJh1WkPerbFVs48nHcGOfuQjH8njWCM0Gc4aC3mYIh/rsCXjmIV0Hsc6iskwHLROWB4uTtsqvdI41hjM41hHtCEc9xunFe9zLymxyjUZx2bTpYLXzJCsLrxZmCbDcdBm/Df9s45pMi73YUqruuuYkisZFg7xfRb3eU48kzIxhWTT+MX0+G0FTFlyNTNMSKZnxgSlcXi3/TqmeEiGswItD+Nh423Z8zKDp5pZqibjWuWcvJYZcTSEN+VUQ1gzMKg7xnMzRXwe1wYw687zoxiHY6bozuNwT6ZYrJkypOHPKqC6cH7/1tgnmQYx6+g8vFnNNpzngCkv8zCenm+tAqlZ46Luz4wZ8vCdlBue9nDafuzQw5Nsuz3It23Kgpo1THLm5sWoZoPvtfjZ2nIB+aVMmZaHzQ9GO7aMYH7eBuyjM7WaGbo0lG/+nEw5UbNGT114frS6nhlnZdczBWJDXGvQ53mxRm52nnLCr2kKsYY4qQPWAMrjmKvoLIh5bMmPeXrFLe+3NcBqNgMvlWxbx6zDkl/PBnvaiktg2Hr+rrrqqob4NuiQn29W/hLRFCx5WOsoNKTlB1qlSTpmdZ+n5fljS91uszo8KW1FoC0CNhjXVvh2AluHrkbda53x5B/fhA1y1MraX6ZEzsrdVHybqVqzgYmG7JiHj9rhX/hCw/VsMLBmhpo1zsfpcQ2EvHDcBrAa0vQDtpRszTp/dfGJQ1zaJfF3SPvCr2OeCjyJui1lo4dJtUfqAuuHCIhAxwRoG8b15kjdN4PonKEtzdmSiSk78/A22JOHpyxEbFCtZkrgPExxx5R4eZyYuSmSi0EbfpvRSENcmyCT7Lt5ZNqyLqa4rotvA/F+Kt/G7fA4f4O5H9cPZddFD1FWT/rN2EBTzQbU83um79pM90TfxcU8PeTxzLODH27Qf5A/8w6Vn0/l1+vQZnqgVLxeHDPFcM2W6Mnz12wHXZR5dcrv26+f0kd4/4o+IO9MmcRM0aF5mmxbvX828NqQbPH58a7EaQ7GfqwLRP/V7jVNiV+Lv8uGm7QD5omjZgPxdWnbYHUWlLZRfE2bQZwnEb/vhKEv2aw8IiLpxun5+4KOKj7OPu2zVmIep+ri9etz5Bt3MSOtujwX7zv1G/1dszIofsY20z9P3wZ1/LI16pxmYoZOeTzyQLnnQrkU5wudKWKDQ3XHCeNlkMctbnlHbIA9j9dpWcm14u/DrxPXrc3er07qwbgcgW3MxPfLyuh+fTdTDJ1lcUuZaAOzdffd7D3ptPyBpRnE1sw4rpiFrIyxiTO1E044IT9HWOc/mFszrmxZvnomeReLevj4++TdSuWdbwyJxyk6rQtbtS+4vhmMZdejfVnMjxkoZ3rXLED0j7KJ8oO6BOF3MS76vWbCu0VZEMcrq4cI08n362lXvY+vnz6rtt/Rl1X62+7DJ1jeR9Xl36/Xzrad75GydL/99kte04yaS3HTjvIynDZXMX/N2mHdlNfF61T/PaoG36rP4lu/vaWWuq9m1+u0rKryTXFdM+YrfR6cMC+k2fn4OyeeP0f6fan8N/teCW9GVVm68XhJKp2BOkbbsur4AgzM2LHhPgfy2ZTx45r+jWQAX/5nEyiy/HXzHdgEgzjJ5D51XPGZxO0PjzTY/eh227Kvf/3rPas1M2xruKdO6gXXgfBtxIz8W6E/zhh2mWAPEI9TYwviYgZmdWl6+t63qVqueNuTdIv6EE8z3tqkKc9CzSaN5XmgzWDGTfm5VjtmDJvHjdMfofv9bdTEQ2GAuJlQQJlniqyzw4BwqwGLwTBsonAsKkj8HjC0KBrvoDwsC1+smPrFsClWKPm9sS0qMVIfFh2SsudEQyCO08ywiY/f/8wSukYFYFbqNXOtXMrT88oAdXydKvutBtYxxogLzl133bWWel6eB4zw/LqdGjaZxxRPrmEbd/b9OimjI4/IoKeH8625RfTTpVsGPD08W7PILg3rJ3jfzaVtXTwGHlPC4Gicvu9TYabErK7z8GWGkTReMH7ztHyLEZXNUEklW6NDSzgZNr1UbwyUYVMMn4FwOtsutnRA/szMItoP92TLdczTSM1myGRGjHTY48HznlxEiQwZAnS4bOZ9DaMOm4FS9x4OmZtQRvuKwEAaNnGjtKuoj+lgMShnbndrNgs2MzBKddiLcKiXMUhiUN1m4GdbfjcT0mVAHUUGHUAMRWPBUJBOmnlZbNkui+P5Pm1m0iVPDI5WuQ+Pq60IiMDgE5Bh00ttZPP6mMOvqnxy48/YwCBW6tks19rdd9+dp+s7DIZhaOJ9meIWo4GU4o8BKZsxWBoP43xXwPu1qCd+8YtfZIbefoyBo+I1GYiK2++DrZAt5offNhvYs9yQ3zg8A4mxotIjce/UranJYfT5i/1HniOGDbGxPQZvfi1b7seTbtANEca8G+TnPU68daMC8hUfH8x9dB+uBM4z+/IOOhDa0UVDGs8fnNEbxToh9BTxefp9RSEOAw4uGFN7HN+2ev/Qb6S+CY4xucnTGcwtxtwunRg2kVf0Yeh/eCdi4TcTD9FRFu/JDf7icocwsc6oaNjEeQYFbEmE+DLZPu02N1CLr+XGNinDJsIxuJOakEY5FU8wi9Psx+cYG6l2YtjE/VHGwLb4HM17VTYY6NDjwaOi4QS6xfjbIg58i8YqXI/3wqVo2OQGhinDJuJSHxT1nVwXPUo8OdefWydlJXEpR0466aQaA1kusa6z1fvVbj0Yj0GUGTY1K6P78d2MyxhnGG8py+lrMYEkNsL1Z9fsPSFMJ+WPp+3xGUQ2jwvZZHDXq8ecy+qTOJ2B2uf+mVhffN+dId8Kk79T148HVBmzSIVx465iGUld2W5d2Kp9wfU9zaIuP84bRqy0YZnkTtnm5zxuyrCJZ4TurFj+wAm9fmqCcVk95Ndr9/v1eL5tdR9/u/HeysY0GN1s/rYv5Sz8Gu1um32PlP28B3yP5tUm2Ub06zG2VmxLwRr9C21Ob+swoO5xfNuqHdZpee3pt7uFa1WjJsLdeO+ctg2byFMnZVWVb8rvl3ZpXFfxPCgfqEvcMUHxO+fbQMoMm/ybSxkict1Fbdjk924e3Bv6Q9mN2T/KTnSMXrZ7nHg7UM/G+aXKu5122il7jzyfbBnT9Hx18x3QHyn2D/m+MbqxpQnza/i1fNuqH+PhBmrbbluWPoFL3Db1/HVSL7hepMywiW+F/mCqz873VOy7uNOOYn/H88jW+7RVDJu4J2+nx45u4vSK+3FbwDx31T1/0jPPmVnZ7yzLtuj4i2mP1N/4WwRG3wtrgLs7224zyxJ2uHZEcBvq68TH6bLMFS4zU2LGELkrs/i8NepyV9YcJ13STwnreHJPuKrFRaEvd5MKe+SRR2au/PycVQYN7t/tZc+XBPFwvrXGULaskv/2rTVikm5draINW2+9tQfLt6wR7etLE7dsKbB3vvOdmbvSPGLJDvfO8j5FwVU5LsldTLETzJOH/+zJ1gqpsMEGG7SdFi7hytzAeWI8C1MCZ+7S3SWdn4u3NjiXuZX2Y7iKTi2viOtXmDYTazTlrvaK4TiHG1PeT6uwg3m+KQbJf8+cObPBZa514HJ343nAwg5LW1kntO6oNdTq7q/upP1IfWMsC/bjH/+4GDT7bRa+mct4XE/jAtiUBdn7mGJss6cCS+sguL+M3UtmB1/+x5JULBlgBlWBfWuwBPLga8rHYa1izJZh4Fgn5Uac1nDZt8Gr8N1j/uM+tBf3hctOa/RnbjpT3wPujVmqDbEGjpYi6gV0pSECIjAoBHAx22z5lEHJhC4iAiIgAgNI4OOfOSJ879ivDOAVlDSu1Fk2iz6eDTbnS4a0ImMKvmyZZXQJpgRM6gFSadiErOx69G9t8DgQv6q423fzMhJsUL1qtL4Ix32zLDV6D/qS6A9ayZQpUzI9ig08ZLoeU3i2ijIszrNU2Bve8IZMt4Muh/41bZ4qYoNyma4K/ZhNnGuIQr8c3RTh0K/RZ68qrd4/G1zJlkDnGmb4ky0xWDXtfg6H/oZ3F30mS/fx/qJ7GghhKT+WdYelDVi19XxS+aGdjN6X8oLn7UsipcL6seH6HG2QI3v3WaKrnbLeuRCf94BlYNC9slzHQAjf5nrrrZfptNHPDHRZybI+fLM2wbmt+oh777Qe7JTbcH03m/Fop/xheUT003zv6HBTwrIyLIdL2c+Sr4taeKZe37GkGuM6Npko2MDmgGatm7qwnYyxLBpCXX7JJZc0ROV7R9dPfliCasstt2wIwwHCMb6wzjrrhNmzZ7fdfkwl2s732+59fOGXN4epK6+Tumzy2D3XXxSu/OXhyXOL6qAZJAbaoSzh2s77yLNaddVVQ1k7bDDatq9+x1fCtI23r4zu8QduC3/+3nsrh08FbKesSsVvdYy2MeOZtMOq1Iut0htK582AM7t32qF33313thwuZUpVGehnk8oH1zTDqmDGgMnvp5vvADsC6jHqOpbvrdo/bNWPSd1HPx/rRb3g44D0D8zRSXa7rqug3Ut7OVX+MSZOnU3/FBuMfhaWW6b9znvD+8gS42bAmtlGUFYjZvCbLYvbz/cxWHkbElZeWBJj3dmOWIGRDD4YHpvs4WUut93aL5mRCgetAmh4PikOWAlyzdQfVt4pSc02JL5bEBfjYKXv6cfWynE4LB+xMvRwzbZY3ZcJS5J53DKPTWVxWx3HYh0rYE+/nW0rj02trh2f5/7ja3fqsYk09tprrzjpjvaZARXnJ97HqrmZpJYwMEVUsyjZjKv4Guxb56jBsr2YiFvEFo/7b85b4V93LycnXM57+KpbrLQ9v/LY9FJZMxAem3Bh6ZxZWimWeFZevMRHHEb7IiACItCvBAbaY1O/3rfyJQIiMHIIyGNTuj/ubVttxUfvgN4BvQN6B/QO6B3QO1A/9sAYQ5FJ7KHfJro2nC+G1+/uv6t4HA3PnTFTM7Ks2aTpvFPzyU9+su58HHZR77d7H5NXf1Vb3oLwGLTNgd+sjRpTvwrFor7voXZ9+MGxHU9NhOV5DbV7VX67L5/EUAzx4ISUeTdLvSN4tnY58cQTh2zZwVi324Rgf8EKVqn7HUnHRtvNDglh9hbWx3jyqCJY+2M5vyiFmYl4lelUzCgq2JrknUYf0Hi2vm8y/RtvvLGy5WmZZx4S/sxnPpNMv9uD5I8ZPuamsduk6uK3Y3lMRGYsmHvKujS6+fHb3/42mBvojpMwV9e5F5xUInhLKhOrHIK5wm84ffbZZzcciw+YS+H4Z7bPDOCDDjqo4Xh8AG9NzcTWqs74xmH4DvFc1ql84QtfCLZ8QafRFa8NArYOcR4ai/a3vOUt4V3veldW/jMbFFlyySXDr371qzycdkRABERABERABERABERABERABERABERABERABPqfgE06zzOJ53Y8y+Epn7EcvDEcccQR2Xl0zkcddVQeVjsDRwB9usvvfve7zFsEXj7xOMMzsWUas9N4DbUBYg/ad9t272PO3VcHvDC1Iyutu2XY9ZBfhsWWW6udaAr7MgG4wQ+O7QjPieclEQEREIEqBPbdd988WJl3yDxAH+9gS4C3RDxfsTXjrj7O7eBkbcgYNoGDxi2uiTHiKHPbZmswZktQ+TJUg4Ox/CoYm+y8885tu37GrS73ykvbb2LrE9ctuRfnj2XTqgofYJmxSaul16pew8Phug1DIlyhVnFn7fGqbm0N6cwtXJXwuGHEVXOvBeMPOn50+toRW8+6pRu+n//856VJYnRolqIN50855ZSGY34AF6dlxlJ8M7iNLfvGPY3iFqPHPfbYI9hatMVTWVp8T7hHb0fIw1e/+tXwta99rZ1oCtsFAfP+FX70ox9lxkskY+vYZ0Z7vhwlrqpx3Uk5JBEBERABERABERABERABERABERABERABERABERg6BDCYQffvS2WOHz8+WzqR5SiZzIiwBB3LnZ177rlD58aGcE4///nPB1tNIh9X8GV5GcNgIBVhKR+Ww+nnQdVO7uOq074Snnvqsbae3hJTVwq7fvwnYe3tD2gr3kgPDC+4wa8d4fnwnCQiIAIiUJWArXKUBWW8nDHwoS6MVbc7Zj7U77ks/2PLTvTr8Yceeijsvffe2RrueO/gb9lll83WjTeXmHWeeFiLMiWsB+ziDWj/XWXLmpjtyAUXXBBsKb1wzDHHBDwd0TAsE+7vhBNOCF/5yldKX9Jevbx0EFJSdn+sR4kccMAB2Tb1j7y3I3j6+ehHP9oQZaWVVsoazXjwqeqlyxOBD894zpw5gbU3mdkx0J0grrXjjjtmBjnf/e53k2t/w/v4448Phx12WNIQqN379PuNt7w355xzTvau4e1r7Nj0J05hjvcqjHaqWKued9552fvIeqVFufTSS4uHst8YPPEupd53nkszYeYHs0Nsebzwmte8Jls3tcxTE0ZSl19+eWB99mYdK4yvdtppp/D2t789HH744U0NY3iHWCf9wAMPDP7ex/ntpNyI42u/OQG8Nr3jHe8IvHcYAmKMuOGGG4ZNNtkkM8Irexeap6qzIiACIiACIiACIiACIiACIiACIiACIiACIiACi5oAk6PRYeOx6VWvelVm2ITu9tprr80mprISQNkYxaLO+3C9/sc+9rFgSwOGd7/73dmY22qrrRZwIoDenfGtgR5f6RXXdu+jtuD58NdffDHseNC3w+jR6bGUVN7GjB0fNt71A2HaK3cKV5xxdHjq/htSwXTMCCy5ysyw5X6fDZNXWL1tHgsXzs+eD89JIgIiMDIJHHfccdnYYJmjlBQV6i3qMMYXe2VTkbqOjg0+AdZ0as+9y+DnMWy00UZh6623brgyBhW4w0wJbrlwjTlhwoSG0wyOMzNgUQnX33jjjcM666yTGe8waI+71SuvvDL7yBZVvnTd3hHAkA3DIp4xBec111wTZs2aNagFKN/AtttumxnwzJgxI7C04aOPPpq9axgBPvHEE7274UFIabPNNgs77LBDWHHFFa2TMTrcd999mRe3Cy+8sKOrL7PMMpkbXZY7wwiSzvPVV18digaSHSU+QiJ97NDDw3eP+fIIuVvdpgiIgAh0R4DZjXgPlIiACIjAcCXw8c8cEb53rGbSDtfnq/sSAREQAREQAREQAREQgeFKYPqW+4TN9/5Ux7f3wM2XhWvPOT48/9g9Hacx3CJOfMW0sOnuHwkrr//SUoad3N9VZ30rzL7izE6iKo4IiIAIiMAwJDAkDJvwuPPZz362AT/efPDYhOeZWDB6wNMHHnSKgqcavNjIQq9IRr9FQAREoD0CMmxqj5dCi4AIjGwCMmwa2c9fdy8CI4GADJtGwlPWPYqACIiACIiACIiACIjA8CSw7s4fDDN3ek/HN1ezVSDuveHicNNFp4ZnHrq143SGesTFV1w3bLD9O8NqG20XRo1qXAGk6v3dcMEp4dbzf1w1uMKJgAiIgAiMAALVfSsuQhgsb5YybGJ93+uuuy5bbsy9Ha211lqBtRNTy19xC6ylKKOmRfgwdWkREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAER6BMCGNFgiLPhju/qKEejzOHCtI13yP7+dc+N4da/nBEevuGCjtIaipFWmLlTWPe1+4Vlp23YdfZv/PPPZdTUNUUlIAIiIALDj8CQMGyaPXt2uPjii8N2223X8ATwvrTeeutlfw0nCwfmz58fPvCBDxSO6qcIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiMBIJXDLeSeEF59/Orxyt4O68jaEcQ9/8579dLh31sXhn1f+Pjz1QP3KM8OB8ZIrbxjWfPUbM+9MExZbqutbqtUWhn/84Ufhzkt/0XVaSkAEREAERGD4ERgShk1gf9Ob3hRuvfXWsPLKK3f0FDBq2n777cO9997bUXxFEgEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAERGJ4EMKp56rEHwlZv/XwYN2Gxrm4SY58ZW+6R/T3zxMPhwVv/Hu6/6S/h33dcYenWukp70UQeFZaZsWVYZYPXhpXW3SIsPmWFnmXjxXnPhstP+1p45KaLepamEhIBERABERheBIaMYdPTTz8dpk2bFs4888ywxx57mLX0qMpP4h//+EfYb7/9wp133lk5jgKKgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiMHAIY1/zx23eG1x14VFh6+ek9uXGMgGZstWf2N/+F58K/Zt8QHr3r+vDIXdeFJ++ZZdfoR0OnUWHpaRuF5dfYJCy3xsZh2ekzw9jxk3rCI07kyUdmh0tO/GyYN+f++LD2RUAEREAERKCOwJAxbCLXCxYsCHvttVdYfvnlw6c//emw6aabhrXWWiussMIKYcKECdmN1Wq18OKLL4bHHnssnHvuueG4444L11xzTd1N64cIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIFAnMe+K+cN633xU22v0TYe1t9u5qabpi2hgHrbj2q7M/zi1Y8GKY8+CdYc5Dd4cnHrojPP7AbWHu/TeHmh0fLBk1ZlxYapX1w9SV1wlTVpwRJq+4epi80lphjB0fKGHpudsvOyvMOuc7Zte1cKAuo3RFQAREQASGCYEhZdjkzB955JHwmc98xn9m23HjxoWFCxdmxk91J/RDBERABERgQAiMqi0Izz73XFhsUu9naQxIhpWoCIiACIiACIiACIjAgBCgTThKiugBYatERUAEREAEREAEREAEREAEFhEB6+PMOvtb4e5rzw2v3udQM/qZMSAZwXjoFauul/3FF5j37Nzw7JxHA8vYPf34Q+G5uY+F5595Isx75snw/FOPh3lPzwkLbAm32vx5Zhf0ov3Nt+h4fhoVRo0ea3/jwqixE8IYW1JvwhKTw8Qlp4YJiy8dJi4+JUxa6hVhiakrZsvJLTZ5ucCyeYMpjz9wR7jyzGPDUw/cNJiX1bVEQAREQASGMIEhadiU4o2XJokIiIAIiMDgEZg796lwx513hY1nbjB4F9WVREAEREAEREAEREAE+o4AbcIH77+37/KlDImACIiACIiACIiACIiACIhAtwQwvvnz9w4I07faN2z8+g+E8ZOW6DbJSvExNuJvinlOGi7ywnNPhevP/WmYfflvhsst6T5EQAREQAQGicCwMWwaJF66jAiIgAiIwMsEzv/j2WH69OkybNIbIQIiIAIiIAIiIAIjnMD/+/2fwr33ybBphL8Gun0REAEREAEREAEREAERGNYEMMa596rfh/V2em+YsfVeYZx5QpJUI/CieZa642+/DbdccGJYOP+5apEUSgREQAREQAQiAmNs/4vRb+2KgAiIgAiIQCUCc+c+GZZaaumwIIwOG224fqU4CiQCIiACI5XAE088EaZMmTJSb1/3LQIiMIwJ/PL0s8L55/4pXHjeH4fxXerWREAEREAEREAEREAEREAERMAWerPl3v5151XhtkvPCLVRo8OUFdcMY8aOF5oSAi8+/3S49dLTwl9P+mx49I7LX14urySwDouACIiACIhAEwIybGoCR6dEQAREQASaE7jt1pvDggW1cMdd94bJk5c2Q6clw7hx45pH0lkREAERGIEEZNg0Ah+6blkEhjGBZ597Ltx86+3hxyf9PDNq+t1ZZwzju9WtiYAIiIAIiIAIiIAIiIAIiECBQM0MnP55dbjtL6eFZ5+ZGxafvHyYuMTkQqCR+/PJR2aHGy/8Wfj7qUeEf91xpVmEzR+5MHTnIiACIiACPSEwylKp9SQlJSICIiACIjBiCWyxzbZh1VVXDSuvsprNVMFmViICIiACIhAT2GHbrcOFl/4tPqR9ERABERiyBEbVFoa5T80N5//h7HD/ffcM2ftQxkVABERABERABERABERABESgVwSWXnWjsPY2+4RVZ77WvDhN6FWyQyadBfPnhftu+Eu4/bIzw5P3zRoy+VZGRUAEREAEhgYBGTYNjeekXIqACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACPQzAZv4u8KGO4RpG20XVlp3izB2/KR+zm1XeZv/wnPhwVv/Hu6ZdXF4+MYLzZXGgq7SU2QREAEREAERKCMgw6YyMjouAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAp0QGDU6LL/etmbgtGVYbs1NwlLLrNJJKn0VZ+6/7w+P/vM6M2i6Ijxyy6VmzLSwr/KnzIiACIiACAxPAjJsGp7PVXclAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiLQJwTGTFg6rLD+NmGFtTYLU1dZJyy9/GphlHl46lepmQemJx+5Nzx+/23h4TuvCQ/ffFlYMO/Jfs2u8iUCIiACIjCMCciwaRg/XN2aCIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIhAHxIwj05LrLhuWGba+mHqyuuEpZZbNSwxdaUwaYmpwSyeBi/DtVp47unHw9OPPxjmPnpfePyB28K/77k5PP3QrfLINHhPQVcSAREQARFoQkCGTU3g6JQIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIDBoBM3iaOHVVM3SaboZOK4aJS0wOExZ/+Y/9SUuGseMnhtFjx4XRY8aFMWzHjg2jR40NC2vzw8L588OC+S+GhQvsz7bzX3j+/7N3H/BSVGcfxx96k957kyqIDQsWsKGINRoLxsSYxBZjyavGlmgsMWoM0Wg0scaa2I0dG6ioCCgISBPp0pv0/p7/3Hv2zt2+e3e57Xf8XHZ3ypkz35mdGe957nNs88a1tnndatu8vuBnk3u/buUiF8g0xzatnE8A0y47uGwIAQQQQCAbAQKbslFjHQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEMirQNW81k7lCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggEAWAgQ2ZYHGKggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIJBfAQKb8utL7QgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIJCFAIFNWaCxCgIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCORXgMCm/PpSOwIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCGQhQGBTFmisggACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAvkVILApv77UjgACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAlkIENiUBRqrIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAQH4FCGzKry+1I4AAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAQBYCBDZlgcYqCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggkF8BApvy60vtCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggkIUAgU1ZoLEKAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAII5Fegev8r3szvFqgdAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEMhQgIxNGYKxOAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCORfgMCm/BuzBQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEMhQgMCmDMFYHAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBPIvQGBT/o3ZAgIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCGQoQGBThmAsjgACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAvkXILAp/8ZsAQEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBDIUILApQzAWRwABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgfwLENiUf2O2gAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAhkKENiUIRiLI4AAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAQP4FCGzKvzFbQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgQwFCGzKEIzFEUAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAIP8CBDbl35gtIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAQIYCBDZlCMbiCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggkH8BApvyb8wWEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAIEMBApsyBGNxBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQyL8AgU35N2YLCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggkKEAgU0ZgrE4AggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAII5F+AwKb8G7MFBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQyFCAwKYMwVgcAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEE8i9AYFP+jdkCAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIZChAYFOGYCyOAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAAC+RcgsCn/xmwBAQQQQAABBBBAAAEEyoFAvdrVy0Ery18TcS1/x4wWI1DWBbiu5OcI4Zof19KqtXbNala1SpXS2jzbRQABBBBAAAEEEEAAAQQQQCBnAvzmPmeUVIQAAggggAACCCBQGgL169SwalWr2IbN22zLth0pm9CwXg2r4v5bt2mrbdu+M+XyqRa44Yy+Nnjv1rZp63Yb/Pv3Uy3O/DIq8PcL+tsBPZrZqnVbbMhNH9iOHSU/N8roru7SZuG6S7nZWAkEdnOBjfXr1rCNm7fb6vVbktZUs3pVq1sr/q9Tfti4NSfXj9+dtocN3a9thb63yPHdW49yd2Szp0fOtn++PTOpu2ZWdff7t246whrvVtPGzFhuv3lwbMp1SnMBBZbUrlEtZRPSfYZJWVEJFuB6XQK8Ulz15rP72f7dm1qDujXd98Psjhem2MufzbefHdnFLj6uh23bscN+ee/nNnX+mqCVR/ZrZTeetWfw/oL7x6ScXoq7xqYRQAABBBBAAAEEEEAAAQQQiAjE/01cZDZvEEAAAQQQQAABBBAo2wLv3HykVa9WxaYv/MHOuXt0ysZqef31+tdzVgUdPSlXSLFA26Z1TB2XNWuQDDUFVZmevX/3ZkH71Fl+6B4tbNSkJWW6veWlcbiWlyNVudupa/j7tx1tPrHJIVe/kzRQ9tITetrph3ZMiLbdBUb+sGGrvfvVInt4xLcpA6Wdfd0/AABAAElEQVTiVdSpRb0Kf2/RvbuOs1dpUr9WPIaYabo+6zqtsn+3gut2zEJlaMI/Ltrf+nRslLJFs5esszPu+DjlcvlcgOt1PnXzU/cDFx9g++7epFjlCvhXOf2QjsE1rUa1qnb2oM52w5MTgunNG9YOri364L9/ep9ouuZREEAAAQQQQAABBBBAAAEEEChtAQKbSvsIsH0EEEAAAQQQQACBnAjUcpkf0inK1qSiTBGUyiPwyKUHWd9OjUwBBwdd+XbMjs/4/gfr0bZBEMzw2dRlMfPL+wR1WL5x4+HBbrz46bwgo8Ou2KeK7rorDNlG/gV+4jr9fVCTtnbmYZ3siQ++y3rDyiKo4BsFP512SAf703OT7X9jFmRdX1lYcdSfBwdBEPOWrbfTbv+o1Jqk6/OmLduDwIyZ7rpd1osPwkrVTgWflHYpS9fr0rpnZXMMUj1fZFNnOusoMNAHNW3dvsNe/XyBvTdhkc1Zuj5YfYQLrFRA006XgPKVz+enU2W5Waa0zMsNEA1FAAEEEEAAAQQQQAABBCqgAIFNFfCgsksIIIAAAggggAACCCBQXMAHLShbV7yibF/KkDJv+YacDCMVbxtlZVq9BENo5aN9lck1H37UuWsETjqwfbEN/WhAh7QDmx5xGZkWrNgQrK+AprZN61rv9g1dwEHTIJugrjkaslQBLv9+P/tgqWINLMUPtdIYVi2fzdOQs4Oue9c6NKsbCeDI5/ZKWrfPnqOskk99ODthdUtWbUw4b1fNKKvX6115z8rG2j9WJHq+yKbOdNbZr1vTyGJvjfve7nxxSuSz3tzzv2n2zKg5QSDgWjdEZkUqpWVekQzZFwQQQAABBBBAAAEEEECgvAkQ2FTejhjtRQABBBBAAAEEEEAAgbwI+CwHeam8EleKayU++OVg19s0qWMtG9UOWrpt+84gGEnTWrhpS1dvSrkHH01ZalPnr4lZrqoLcnrhmsOsnQvAUbnouO724ddLTBmPKCUT2OEy75WX64qGOVSZPHe1vfPl9yXb8V2wdnlx3QUUZX4T7ZvVi7Txw68XR96H3yxbk/oaFl6e9wgggAACCCCAAAIIIIAAAgiUVQECm8rqkaFdCCCAAAIIIIAAAqUioE7Ii10H9IBezYMMG8oOsWjlRnvk3W9t9DfpD1F2zD5t7MduCKLNW3fYb/451lq5TvJrTutjXVvvFgyhs2LtFntr3MIgg8cOjROSZrlp2J5BR/nn05bbwy5TSHRRdojhv9o3mPykyw4xatKSYotoeJfzju5qfTo2MnXe/7Bhq323eJ295IYnG53lEGwnu2wnpx7cwZo3qGXqzFfH6ITvVtqzLlPAqnVbim3ff6hbq5r9cnA3O3SPFtaoXk3b6f7Tsur41RBQCjCILvecv5/Vq13dXv9ioX04abGdc3gXO6BHs2A/tO4389bYn1+YbBs2b4+setmJPYMh6Lq2rh9M01/5P3zpgcH7le4YXP3Yl8H7C4d0M2U/mOvafst/JsWsP/P7tcHwbcMGdnJtbmm7u/o2btnmghQ22F9emhLTyb5P1yZ28dDu5vrf7XduG/Ecfjl4dzuwZ7Ng3lWPFrQjsmH3prU7Plec1Mt6tGtgu7n91n7NWrQ2yMIwe8m68KIJ37d3QRU3unOmZvWCznUteFifFhGDJz9w58jk4ueIMs2obR2a1w3O1fWbttmcJevtH2/OsGkLYgM4Em7czUjH9a6XvrHzjurq2tXSZbupEwSTvPzZfHvuk7lB1Tqnr/3xHrZHh0bB8VdgyGfTltlD7xQ//5Up549n7xmsc+eL37g2r7OrT93DdCwa1qthazdusy9nrbThr0x172OzV4TPr7EzV9jPXZt0TtSvUz0wDw8llq6Rhrz8x8X7B20aM32Fa/PM4H30P8f3b2snH9Q+GDLo+icnFAuoycV5EL29M9wQafreNmtQ27bt2BGc93JRVpm/X9g/GHLs/QmL7dmP5kRWDfuk+/2LrOzelPQ7r+uTjsmB7juvc2L+8vV2r8tIMmH2qmAz3d1Qklec1NM6tdwtGHB0pvuuvP7FAndNWRRuRsz7Xx3TLTJN1+oHCo/Xr9x34DY3hFy2RcE3w/7yib16w6DgXqJsLted3scuvH9MVlX2bNfQdD3r1LKeVa9a1Zb9sMmed98RfVd8CZ9v479daQ+472y8csw+rd39qWMw6w9PTbTv3T0uUbn3/P5Wt3Y1q1WjYKi05g1rRa4f8c7psw7TNbKFdXQZ8HTd0XGa4q7Nuq5nGmSxR4eGdsXJvYKmfb9io/3h6YnB+7t+vo81rl/TDbu12P6T43P0kuN7BueYrhnr3LXP31cau/vUDWf2Dbb/99em28TC8y6Rm5/uh5hbsLwgq5efXpLX6OeLo/dqbSce0M66t2lg6zdvs8+nLw+y9+gc1HmnoLqB7rrf1N2jl/+w2b76bpU96M6N1euL358TXa+z/e7/5PDONqhvS3fcN9u1//4q7i7f/rO9TefUOHfNffCtmZbNPUvX+AvdPrZz9wCdp2vWbzVdw//+2rTgGMbbcC6ehdJ9vvDbz+Ya6NcNv57qMsoN2a+Ne+YqCMjUPLXl5+7ZTo+T1z0xIfiuDXT257hjsNU9x17x8Pggc1O4nly/P8Xdw5TtTs+CNdy9T8fhK/cseP8bM2zl2s3FNqdh9B789QHBtMfemxX3+fpg9xyufVK55vGvgnM3U/Ng5QT/ZHo8SvJc59utZ0nda395zO52cK8WwfPrxy441l/bEjTV+vZoYx3bNrUNG7fYB59Nj7vYEQf1sLp1atqipWts/OR5xZap4q4De/VuZ21aNLSG9eu482SnrV670eZ/v8omz0gccNmqeQPbt08Ha7Bbbavmhsvc7K4v37v6x349x7ZsLXrW9hs75tBeVqNGdZs5Z6l9v2SN9evVNthmzZrV7YuJc2zG7KV+0YSvmbRV/89x3KA+QV0Tpy6w+YsKngfClbdv3di1o10w6YNPp9uGTQXXva4dmlmv3VvbdjeM49sffWM9urS0Lu2bWZOGdW3j5q326ZffBfuuFb+etsDmOat45cC9O1uzxrvZJrfOe6OnFVskXb/W7rjIWUXHY86CFcXq8R/679nRWjZzw2Zv3WYjPp7qJ/OKAAIIIIAAAggggEClESCwqdIcanYUAQQQQAABBBBAIJWAhgp6xXVC1ynMsOCXb1q/lg3/5X6mwIZb/1sU9OLnx3tVB8ienRoHsxRA8DsXYKGgGl/UMa/OxqEuoOG02z/yk1O+qsNY6zbZzXUuxwls2s0FYfjt7tlpVbHAJnUS3XnePuY7WrUx1aWAENX7/sTFCTsfEzXsmSsPsd3bFAQN+WX26lzT9urc2IYN7Gy/fuCLmA7gJs7z5esHxjgrwOnCId3tTNcxfuItI2M64RTEpE5aBQtd4AKRdFx80X50aF7PjujXyn7iggl81omBLljGZ0zxy3ofBa35omClbm4/FDwQDmzy63dtVd9auKAwOfmiju9WjevYf393mAuAmBScH36e6vLb6eLWHf9tbCfFwb1buGCdhrbVdapEFwU83fOr/jHnjDLLKOhOnXwfJMjQEK6rRaM6kXb46XXdUHS+bXt0XFkssOn/TultCnoJF9lqP9Wmv706NRjaJjw/2ft0XDUEoAKFfNH2rvxRb+vfvak97jo8H770INMQX74oKE8//bs1s/Pv+9xPDrLu+P061gUWnu72Q4EevqjeNk3a2uC9XRCAO7+iO1r9+aVzTAFldVzwnS/6jviSiZHOsc4u0Ebb1rmVKLDpAnfe69gqyHF1KBgwV+eBb7ten/jtwa4tDcKTgu/Sk/93sAssmGH7O1ddqza6QLpwYJP3yeT75zdS0u+8OusvOb6HNahbw1fpgtUa2b9+c2AQcKjr3q+H9ojM05sD3PXhgO4KfKxr6jhPVA7fs2UwS0E3+p6ucB3wurboWlKSwCZVumnLdjvjjo/t7ZuPCK5dOj8LrmFuhzIoCpI898iCDn6/mq4/1/64jymo5WJ3nVUJn2+92zdKGNh0wbEuCMQFPco1OrjF1+9f9+/RNGiz/6z2+++ZhqXz57QyXP3TBSqEvytaR8dJ31cFPZx3z2c2wwXPpVN6ueH8HvrNQUEGLbVTgbK+DOjdPLiPKcArHNhUknNU39HX/jDIBeAV/ZpM01q7a5+Cc7Sffr8VKJtOYJMCcfVdUsllpq7w88W5R3YJ7psFW5F3DfuRs1Yg04/ds8VL7l6re6sv2iddk47cs5X96E+jigV5JrpeZ+s6oGfzwCxZ8LaeSxRQXtcFPiiwKdN7lq7VZw3s5HcveNU+6vzW85X2MTrzWq6ehfzzQXjj/hwJP19ofrbXwHDd/r2Oh9+On6aATl+6u+cPXc/6uu+dX66Je75NFsDo18329dmrDnGB+8WfBf1xOG6/tnbu8E+DwFlff3UXJOPbNsg9p8X7w4He7vnIL9PQncMKysvE3G8r3ms2x6Mkz3W+3XqW1PWwhwvE9aVzq6Jj56dFv7Zr1dhaNJVv4nuHAngUfKSgsnBg0251a9kJR/a1OrWLrgOqX59bN28YBPS88eHkIDAnvN0D9upke3RrE55kNV3QUg8X5NStU3N7/s0vbb0LtAqXtq0auY9VguveAf06WfVQUH39ekWBeOF1wu8zbavuRwUu5gK/msQNbFLQkV+mlru++8CmVm7f/XS1tXe31pGmVFdg3g8bI/P32aND3MCmau4e1NsFR6ms31A8eC8Tv+Lbah83sEn3kj7d2zjbKraxMDgr0mDeIIAAAggggAACCCBQSQSKfstbSXaY3UQAAQQQQAABBBBAIJ6A/nr8aRek44OaNri/SlZ2F3VG+k45ZUQ467BO8VZPOs0HNalOdZwvXLEh6FDWSgrGUcaCfBft392/3DcS1KQsJ+oQnuAyN/jAmiNdR772Md2iLA4+qElGypDz9ZxVQee66lBQyb8uOTDIPOTrVAfmf64uclbnn4boUaYY3w51wipgSh0W8YqCphR4oKw7yvKgzAx+XW3zDpfNwxdlgFJ2K9n7os/6eeXzokwnfl6iV3VQK6hJ21EGj0++WRpku9LyaqYyA4WDaBLVk850Bfr89Rf7RTrEFYCjfVSnni9/+tlepgw1qcqilRuCfdW57Ivq8wbhjF7DXOewD2pSIIE6RsfMWF4sAOhy14l8hOsQz1WRq4KaNroAEO3jty6bgS/qCFTgioKaFHyhNmu+2qayV5fGpswV8Yoyheh4+OOl88tnAdP0J387IMguFm9ddToqqGm7i+BRR7DW1bmtko3RBy5gUEXbVYd6dFFApR8KTeeW7xDP5Xngt3nz2f0iQU1yXLRqo30xY0WQWUPLKOAlwdfOVxEELab7/dNKufjO93PfeQU16TugbF2LXbt9uerU3i7LXkFQk46XOsi1X74ogFQd7PHK/i54zgeyvDmuIGvFiMIMT1pH15qSFp27ytCnouuwzttMiq6DPqhJGfb0PQlnPlJWMe2jL/5807Z0TY8uyv7mg49mfP9DsQx30cvqs4bP03fP3wd1fvrrRzhb1F9c0KyvV99nXdej7wcPu+9zOkWd/o+4gEbtg7b720fGBYG36ayrZTK5R2h5Zf146sqDI+eCvvu61ih4ScFpugYp6DbTEh4qTME117uMXe/ecpR9etexwasCpofsWzxwINNtqF1qr7zVXn+d03f07ZuPDIKadMx0r9fx8PMVAKX7SCYlU9dM6vbLZnLPCp7JCoOadD1TVixlKvMZ+XTNfcoFbOrVl1w+C6X7fJGLa6Bvv14/clkW9R1UhklflMXRfy/nO4ddWe6/aP9IUJN/FtRx8M9d+v48ctlBQYB0SduVrnmy7eT6eCTbVvQ8PfPo+qbzVUG0yoI5ac7q6MVy+nno4X0iQU1r122yabMWuyCdlUHWH21IGZwO6797sW127+wC70NBTVpv8TL3fOIyBalUdQE9Jw/uFwRSFVux8EPzJvWDoCZlhlq3fpOtXL3e1rgMUalKNm1NVWc6831Qk/ZPbV26Yl0QAKX9VmnSqG7cZ8YeXYr+2GH6d0XZTzP1U7CV31ajBnXjuu7esUUQ1KT2pJP5SstREEAAAQQQQAABBBCoaAJFf4pW0faM/UEAAQQQQAABBBCoVAItXVYF/eV+tuXuX+zrhmUqyACkjvPL/jUuUpWyGzzj/hpdnTMK7Hhr/Pcps1xEVnZvFCigod7+/MKUyGRlwHnpuoFBx606nxU0o+Eo8lVOPKB9JFBIQ3j5LBvanv7K/mnXqasOdA1PFB5yK1F7zjyskx3ksjGoqBN76E0fFBvy5fduyJ4T9m8X7PulJ/SMZIL626/2i2SPUCfsr/5elHFHdSmTkzrHlW1Bdfzx2a81OaZEr6sghLf+eETQganjpY5Mdeb+8+2Cob8edZ1qClhRZ9Kl/xobU186E9RZepLL9KPhiXzxWQq0vWNdB3U6dn7dRK8+S4nm/8UN0+aHZNNnZT1RlhYdq/sv3N+O/v17mpywKNBD+6thd9648fBgOQWyRA97InOd2yoyOvdvn9rU+WuCz/pHQ9po+CcVdYYf9rsRkQCcYGIJ/lGQysm3jTINm6SiLBs3nrVn8F7ZxRS85jPSaKIyoGlILxVlr3rRfbfiFQUlhrOhyezV3w8Kgojk8fszEp9fGi7mZ8NHR4IAVH+2Rg+5zGonuTarnOk64aOHfDx7UOdgnv759/vfRd7n8jxQpQqo0TmqokCIs+78OJLZTNP8uaX3qUq63z/Vk6vv/IivFtkNbpg+X+5ygTQKftNxVbnXDTv11Iez/WxT4KW/Rmn4xTfGLozM8280tJ0vT40ssH/8/VmRDDC/cMMF/ebB7K4Xvl69fusCiJo3KLheaoi2cKBheLlk7//qhi8KZyfq26mRPewyGmn3tR8a2lSZ6sLnm67nysQXLspkVkhWzCu8TPi9H0Js1J8HB4G/GlYz+hqq+5kykqko+OzEWz4s9t3x10kFFOj6nGwoTQVsPnb5gEhQ06VueEBdszItmZyjV7pMdcrMpKLAz+NvLt7+v7jng8PcPTrTomHVfLn3gv7BkIT+swKLDnaZp/RzlMu69X+PjPezMnpV8OaZLiuYD2ZRQOSzVx8aPK/ovqTAulPc9VVDiqrI/1kXXKzvjYauy7Rk4ppp3Vo+3XuWzrnrT+8bbELXs5/cPToYqtVv0x8zBUrf6e5dlz9U8EyXy2ehdJ8vcnUN9Pv2uruW6Uff76tcdkOVu1/+Jqvvia8z21fdv/q74EoVnWND3LOgggF9ucHdZxWApnPxn5ccEDxD+XnZvKZrnqzuXB+PZNuKN08BX2fd9UkwzHW8+bmcVstlQqvnMjapLF+1zv73XtEztbINnXXifkEWpjYtC67fWk5Zkw7ZryDQSYFJr7w70VatKQqWO+rgntahTROrVbOGHTmgR8Ih0VauWR9szz/bqe5kJZu2Jqsvs3k77YNPZ9ichcXvNVNdENj+/Tq5qqpYj84tTZ/Dpbsbvs6XSYVD+mXrV7Qts15dW8UMEdiza9G2vp4e+zzj28ErAggggAACCCCAAAIVWaDoz5Yq8l6ybwgggAACCCCAAAIVXkCZljQcSaof36EbDaKMICrq1AwHNWmaOmFvf36y3gYdwuokz6Tor+rDQU1aV8Ec4U56dWzms4SHvfDZZ/z2Zi1aa0dd/54de+MHdkFoaC8/P96rz9qjIJgL7x9TLNhHy9/238lBtit14Gj4Dl96FXZ+qwNMw9RFFwXU+OxL++7eJHp28FmdmBfcN6bYPAUdqaPPFw1jlOuijtFwUJPqv8sFHvmSi22qE1Yd3iqjXFaGcFCTpilDih+yRcupszAX5YjC4bhU199fn1YsqEnTlNnp1cIMV+oQ1zBxuSoX/eOLSFCT6lQAiu8Y1fnlO6T99pRpS+eAyu5RQ9/4ZRTU9vO/feY/Bq/KJKGhsPy6ic4vZTQ52w1n6DOb+EqyNVKmFnXWq+zdJfac1tB4KtpnHXOVfJwHR/UrusZouEU/XGOwQfePzi0FD6UqmX7/cvGd1/EMXy/VxuEu0McXZb4IBzVpugI4fQkPdeinKUvPXoXHY74LgluzfmswS4E7/njt27X4MGx+3Uxflb3EFw2Nl2lR5rRwUJPWV5aP8HCkCj5UCZ9vfhinYEbhP0PdsFAqus4q+0kuylKX3U33D/2cfOvImO+OgsV88ee7/xx+VQbAxy4vyNTkz7Nsgpr8uuG6k90j9iu81+ga8VM3ZFb0d/9KF3S0xH2PMy2tmxQES2k9ZWZTELCupS+575ruw7q+qSiw+bafZpY9qWBNN7SkC4b0QU2apu/1tAU/+NlBwIsPatJEPc/MW1YQpKDrTCYlU9dM6s50WV2P/fPczS4AWs8x4aJj5odZ1JBmvuT6WcjXm+w1F9fAZPWX5jx/3dG5rPurv3f7Nmn4ZmXSUmnlhsYtC6W0j8eF93+xS4KaZN24YdH9Zl3UUGnbd+ywZ18b537GBq/+2HRqV/R89/HYb4sFNWmZ90ZPs81bCu6XzZvEH0YvCIgaMbHYs52vP9FrNm1NVFem07+ZuTgmqEl1fPOtnokKLtQ9QkFMmqfAsCaFvstXrrPt7p6qkq1feFvK+BQuutZpSD2VVS5gbOvWouDB8HK8RwABBBBAAAEEEECgogvk5rfgFV2J/UMAAQQQQAABBBAoFwLqlEz1E29HFBzihyOa5IZz0efoHx9woPX9X6fHqyvetDfHFQXchOd/8PXiSAdqz3aZZ04I15XqvYZO8+WWc/oFGXGUucEXBewoqGvD5vR+We7XXbNhS0wQjOrUcVC2nEHXvhvJmqNsHRriS0UZSxSsEF0UXPDd4oJhv5RVJ15RB7Pqjy7T3ZAevrQJdSj7aSV51fbiDRei4X988Rm//OdsXg9x2Tt80ZBS0eehPiujmC8+I43/nO2rhrPyJTqAwk9/euRs/9YNqVa80yUyI8M3Cq7Q0IzRZa07H1UUjBDvPNF0FQ0rFK9Mdx37fpnwfA3hpSAWlWYN4p9fc5YWnH/h9fS+JEYvjJ4bVKfjFz5mCnZQ5hGV8Hc0H+fBnp0bBdvRVyfRNem/H88Jlkn2Tybfv1x958NDLvm2+eAjfZ65sHhQg6ZpWD9fatWI/dXHaQM6BFlttEz0sJT/G1MwTKXOr0yG5/Tbi371ARiavrOwkzR6mWSf/zNqTtzZT35YkGVKM8NBcy8Wnm9qf3g4Og2D1K5ZvaCuMdOXx60zm4nKyKH7h37C31ed7wruCd9XEg0LqGv2v68YEAyXqsAiBUkoO1A2JZNzVPW3cRnrVBQUpp94JZuMiuH7kLyPvP5du+qxL+3PLlD6dJdlSZno/L3saBfc7INa420/0bR4wYgazs0XDSUYXRYsL7gGRk9P9TlT11T1lWR++Hqs57N490pl3lNpWLdmJLNb+Dqbi2ehVPuQq2tgqu2U1vzOLQqeIxVEligT23sTCwJmdR1UprnSLKV9PPTMo+HndlVZsrwoyLFT26Y2ZNAe1rZV0TFQMM7GTVtdoFLBM5fa1bpFUSDg3IUrg2HRqrnsmeGflasLrjHK2hS+v/n9Wv1DQTC3/5zOazZtTafedJaZMTv2Oqn1dG9bsrzgOhI9HF33YBi6gmfQcAalbP3C24oejq5rh+bOuWBbk2ekDkBPZ59ZBgEEEEAAAQQQQACB8ijAUHTl8ajRZgQQQAABBBBAAIEYAWU/UEdhqjLm7iExv4QPBxpoaKNP7jwmaTWZZub5wmXbSFTUGaSAGB/ckGi5kk5Xlh919CtzgTLuaLgv/aiTRZkOnvxgtr07Ib1flivTSYO6BVmF5hdmfkinfQf1bBZZLBwQFJlY+EadkcqqoKH/OjSvF2R+Ci8T7rQNT/cZV8LTcvV+Y4KAr3Anfi62dUCPIqM/nt3P9JOsHOhMw0F3yZZNNs9nPlJGkehsJX49ZQJRUEwuOye3bI0NbvPb0+s2d37GK2pHshIeRi96uVkucK6TC+pT0EeLRrVjAhnWuO9kvFISo+c+nmuXHN8j+O4NG9gpEpw2bGDnyKbCGYbycR60LwxoiRfw5Ruh4D1/jP206NdMvn+5+s7/4AIok5XN22IDMn3ASKL1NIyTL1tdII2G4vMlnHXkDDd0W3Tgk18u3VdlfvLFZy/xn9N5He8CQeMVtVPXIAV1aEhRX/7rzrdfF55v4eHoTnf77Duhw+ebX6+krxqWSvcVDbenYSQzKeFz/nsXmJPsO5yq3kzO0d1csJf8VOIF0PltKWvWaQd38B/TetU6CiZb7+4fCmaKLuO/XWH3vT7dNFyryuC929jzn8yNXizp5yWrkwcQxLtHFSa8S1pvvJmZuMZbP5fTuoWG0Rt5++CkVft7lgLlcvkslHSjhTNzdQ1MZ1u7ehk9S/pnwXgByr49CmQ/98iCYT8P6d0ibpC4Xzbfr6V9PFI98+R6/3U//3raAtuzZ7ug6tbNG5p+FGK7dv1mmzF7aTDkmc82pIUUwOPLOacc4N8mfG3RtH4k+McvtKkwo5P/nM5rNm1Np950lpFFojJx6gIbfGhvN9sN3+mGo5tWOBydhqZTUearOQuKhrAriV/RtooPR9dr91bBtna4bX07t+gPVYKJ/IMAAggggAACCCCAQCUSyOw3TZUIhl1FAAEEEEAAAQQQqDwC4awK6ey1hr3LpCxdk/gX5hqqTcV3rGZSbybLqpNfw7ypM3v5D0XtUedzTzc8nIbBefuPR6SVMUL77zvHffvTaUvL0DAk4cCB6HVXu6GgfGnVOH5WHT+/or1mmvWpYWGAWUkdfMayVJ1u21ynikqirCslbUeu1l+5rugcj67TD0+k6S1dYFO6pSRGCi7wwXx7dy0ajm7wPq2Dzes7Gc52kY/zwH9XlbEiUdFx9d/tRMtkMr2sfueVKUvBN7789uRedu2P+0R+Lj+pl58VBAyV9HzvGhqOM1nwTGSjoTfq7E12vdxcOCRN+L4UPt/Cw9Ep6EhFQaAlCRwKNS94q/vX45cPsMtO7BkMDxkd1KR9yKQooPWi47pnskrWyyqblG9fsuPcKoNrhW+MsiX9/qmJcYOa/DKvfbHAv7XD3JB0lPQEFJCWSfHX1Fw+C6Wz/bJ6DUyn7amWqesycPr7xQ8bCrIoxlsn/MzZtH6teIvssmkV+XgkQhw3aZ6N/HxG1JByVax+vdq2b58O9lMXvNSyWVHW2Jo1Mvtu1a2d2ZCWidqp6Zm2NVlduZq3YPFqF2RfEDzds3A4Ov2Bhw9gmv998cyCJfELb8sPR6fvmB+GbtHSNZH7Va72j3oQQAABBBBAAAEEEChPApn930p52jPaigACCCCAAAIIIIBAmgKfh4bkeeKD74IMCmmumtZiGrou0dBPfri1VaFgnnQq1S/V4xVlh0hWHnpnpgtummnq2D9mnzZ2rPtRBir94ryJ63D61yUH2hkpMl+td8OEqaNdARIdQsEBybareZ9OXWYKIFDp0qpoGLxgQuifHqFh+fSX/uW9JBouLd7wWJPnrrF9dy/I7qLjEA52yafD/OUbXIBbA6tfN/H5o3PLByzM/L5oeJN8tivbunt3KBpqJbqOboVBJgpmmOK80y0lNXrsvVk2/Jf7BUGMyrQ1bf4P1rpwGLrXxy4o1ox8nAfKhKbrjYJQFBSg4SejS3gIvOh52Xwuq9/5847evdjuxMvupGwkvpx7VBf7+2vT/ceMXnVdbVq/oONXGfIyHV5NzdDQn4muBbvVLsiepyxH4fLv97+zu3+xb5CZTMPR6T7ns3a989X34UVL/F7ZrpQNUEUBDrrHfDFjRTDMpIKsFFTy5k1HpNzO9U9MsFvP2Su4H/38qK72tTLsuPtGPouOvdqsYeDaNy/KVBK9zfDQZ9HzSvJZQWa6Fuk4JwusKsk2yvK61VzmvGyKMgR1d5kd9Z06+Kp3Mq4iF89C6Wy0rF4D02l7qmV0D9H3W/cUBSMmKvt0KQrmVZay6JLoebZOzcTPI9F1pPs5V8cjk+e6dNtW0uVCt6yYqr6bv9z0o+HkOrZtYhrarJ0bkk7Dm+nnODdE3WMvfBast3bdJhe0U88Nw7bDHn/x85i68j0hk7aG2+KHagtP0/saNRIHc0cvm+izhuSTmR+OriBbU8G168sp84utVlI/vy0/HF3ndk2DY6SNfPVN8WfFYhvmAwIIIIAAAggggAAClUCAjE2V4CCziwgggAACCCCAAALJBdRhvL1wbJa9ujROvnAWc/fvXjQMUXh1BYr4LBuJOq3Dy+u9Hyasfp34HT59OyYO6AjXpUCq/3w0J8jiNPSPH0TqDWcxCS8f/X7RqoLhb5o3qB10nEfP1+eDeze3cw7vbEfvVZCVZt6y9RHnZMP5qRNfRUNm+f0NJpSjf9ZuLAoaSdTh18IFmUSX0d8UDTFxWJ/8ZO+I15H89ZyCvzhXMIf3j27bgJ7NI5PGzYztnIzMLANvfPBSvKZ0bF5wfq3btNXiBbTEW0fTSmqkIZA01J/KsMM627BBnYL3CmpQEEq45OM8GBs6ZsN/tV94c8F7BSr+9mQNt5K7Ula/88cUZsrSdf/A/3s77s+Aq96OnB9D9yvIdJSpjDKa/PfqQ4MhCLXuhO+KZ3ZIt75DE2Ty8UGpqmeKG2o0XD6esjSS6UnD0YWHoXv03VnhRTN6Hy+m9ui9C67xqujyh8aZhsLTPU1BDyoa4jVVeX/i4mA41L++8k1k0bvO2zfvw7RqY7MWrw22qcAiBVRFF2U1THQMopcNf37puoH2xV+H2KgkQ6UpkNUHJHwxM/GwteF6y8v7DYXXO91X4mWKU0CMD5ZNtk/x7lk+A57W99mYktWRaF5Jn4US1eunl9VroG9fSV+/X1nwLKhhXROVcJZCXZdU/LVB78NZlPTZFz/8q/+ci9eSHI9sn+ty0e6tkeFWq7hn7thf5StgqWrV2OnR29aQc9/NW27vfjLVnnhpjBuOblOwiIKCWjUvyNq0dGXB9VD15TIbU3RbUn1Op63+/91UV7268TNHNW6YOGA1VRv8/C8n++ClKtatUwvrUZi5adPmrbb6h+JBxSX1+yoUKNWrayvr6X5UtmzdZktXFBwb3y5eEUAAAQQQQAABBBCobAKp/6+nsomwvwgggAACCCCAAAKVUsAPldG3Y2M7uFdRAIfH6Nq6fpBxQsO1/XJw8WwffplEr0P2bRtkRYqe/5DLjuRLuh3ec11wkIo6YFs3qeNXj7yee2Rsp6xmKnPHq78fZE/938Exw95p3xcXBipFKkrxZtKc1cES+qv1e8/vH7P0Xp0b219/sZ/95oSexYYUWrqmoBNFmRaOixMs8Ktjdo90UmY6ZFNMI0ITfOeHOpDVtnyXcBawI/Ys6JQIb1NBXw3iDCP3tXNVoIvKL1xWGWV7iS5nHNoxGDZQ52K/NPdlm+vM8qWHs48un4Wyotx30f6RQAy/nAI0rj+jj/9ooyYXBWBFJpahN8qE9LMju8S06Dcn9IgMtzh/WfHOqJiFoybkwsh36u6ze5MgY5o28e2itaYsaOGSj/PgjbELI53JOm/+fkF/28cNi6fgAmVv++/vDo3YhNtS0vel9Z1P1G4FqTSqV9ABOmnu6kjwUvTyCqr8pjBYSN9D3QMyKXJ91gU1KROQioLobvnPpEyqiCx7wZBuQbatyAT3RllOhv9y38ikL2bEBsV8XBgoqeHo/DB08909ZOXazZH10n5TeF2Kd00KZxqKHpJK7fyJC3BNVfx6Cor64OvFweK6vzx++UEJg2dT1Znu/Cc/LAosvHBI9yCzYPtmdYNjp7Y/fOmBMdfEdOr+dFpBtqk67vr5owEdYlZRwM/vTi0KJnzTfUcrUpn4XVHGxR+5rF7R5Ro3/GOikvKeNa3ofL/f3bPilT8VDrGrZx+fgS3Xz0Labqrni7J2DYxnle20b+YVPAvqenf7z/aOqaZvp0bmn4GU6dNnCtzhgko3umEgVfYozPYWXlnXlP4J/ihAy6UyD9cV/T7b45Htc1309rP5vGR5UUCLD3QJ1zNgn9jnHc3fq1c7O2Povnb6cftEhjPz6213GZk0tJkvPuPRwkUFx1TTjx1YdH3yy+n18IO627AT+wd167k6FyWbtu5099VthUFfzZvE3qNruaxfbVoUZBMsSRsVALZhY8Ew2Qo28sPQzZwT+yxcUr8fXMYsvy0FUDVvslvQ9Nku41Z00Xfn7EGdY/6/Lno5PiOAAAIIIIAAAgggUFEECGyqKEeS/UAAAQQQQAABBBAokcC9/5sWrK9f0P/FBQH93ym9TQEgCh5SBocnfjsgCLhRp+64OENpJNu46vznrw+wXw/tYW2b1g0yGD162UG2e+GQWBs2b7NnRs1OVkVk3qTCzDqa8PjlAyKBCco09exVh8QNdtKym7duD4a9UkCRgpsU0KASBKyc3sfauU5clRkL0xti7P43pkeyz2iInn+4jkVl5VB2oouHdrd7XdCE7+y47/XpQd36555Xp0UCd/5wVl+75rQ9AmcFG9141p4uaKxbsKyCAP76ytTIeiV9o2FrfLnp7H4ukKN1wsxEfrmSvCpwQEPkqOzrgliudOeTzh0NBabAuL+4TCTxivbbD0umDBfPX3NocP61coE6OnY3DdszyKqjuhq4v06fOr+oUypefX6aslK4qoOi4aiu/FHvINjOB3h85jqJFfCg0twNG/UfF+Si4aXU3mEDO7l2HObOlYIsYQrCyzQQLqh4F/9z8XE97A/unOrjspjp/LrZHfdzDi/o/JPF8FczO79yYfSvt2cGCuoE9sPQPT0y9rufj/Ng9fotdtE/xkTOgwN6NLMH3XXpkzuPsVt+0i9oj7Kk+fMkV4ertL7zidr/Sxc86Us8ez9Pr8+OmhP5mCig9aQD2gXfEX1PFARz9al72EO/OdA+umNw5BirkuHuepbt90ZZaXR9171I1wJ9N59z31EfZLRk9SYbNSm2g/WhwvNNAUI+c9zzo+dF9imTN6s3FHTqVnOBSvecv5/put+mMLjWB+ypPl37D9+zZXBvUba+l68fGNz3MtnWNY9/ZT4TjPbxvgvjB65kUmeyZZVN7cG3ZgSL6L515mGd7EWXbendW46yS11wrr6vMs60hDNj6V6n5woNA6uiTE1PXXmwdSrMUKjv55ylBdfgTLdTVpf/NBR8dMnxPe3kA9sH54WCBBV0dHz/xJnQUt2zdM75+7qyDD7jvh8nuu+iAgllq2eso9z5p/Nnq8scpmuqSq6fhVSnb4fex3u+KGvXQLUzV+Ufb86IBMxqyEsFjilwW9cbBRI/cPEBkWdBDccaLt5N2Ut1zezkhjbWez2fvXLDQNO1JlHx62p+PPNE62l6tscj2+e6ZG1Jd96CxUXZ/vrv2THIGFSjejVTNiIFGSmLULyyeu1Gl8molu1Wr7Ydd/ge1qV9M+daNRjaTAE6fr1wkNO8RSsjmZw0HNopg/ey7p1bmIKEWrsgoROO7Gud2zWz2rVquACzHTl7Zsimrdpnn3VKHscf0cca1q8TDD/XpUMz+7EL6PIBW/F8Mpk2/bslweIaps8NHhq8nzh1QUwVufCbPrtgW9oX3/7oYeh0n33M/X/gZSf2DJ7RYxrCBAQQQAABBBBAAAEEKqBAwW+mK+COsUsIIIAAAggggAACCGQi8O6ERa7DuHaQYUidKcqKo5/o8urn8zMeTmiWy8iijjxlkInOIqPOtl/c+3lMxpbo7frPj7khhE46oH2Q7UcdpApMCBd1jvpglfD0e1+bboe5wCN10KojVeupn88HH2lZBeKkG0ykTsdzh39qT195SJBNQ53c+oku410QmM++oXl6/zcXUHLFyb2CDArKYhEvk8W1//7K/FAz0XVm8/l/YxZEMkSpM/6Wn+wVdMYdcvU72VSX1joPv/NtJFvV6e5c0k+4KIgknOnEz1NWlzZN6gYBUZp/0XHdI/X4ZXTsbnx6YqRD0U9P9jp36brg2OuYa1gq/Tz+/iz7xxszgk7fs+8ebf/7/aDg/FEH47Vxsmko+OnC+8ck20yZmKdhsNTZrY7zeJ3nGu5q4uyijsJ0Gq3vakmNNAzOMpchTcFjKvrOvTkufpaWfJwHyrT2h6cn2HWn940Mg+n3XWYaRkyBKFUKO+38vJK8ltZ3PlGbD3QBXSoaCmnUpILOw0TL6r5w09l7BsNlJRqKLN71K1yfMj/9/qkJpqHWsik675a6oBoFNMW7Fmg/fvrX0ZHAjfA2FCijjHx+qC7V9cLoueFF0n7/scvS5q9hB7lhKfUz3QXCnuOuG899MjcIBtL9RdfXO87dp1i9y1ymPgVJZlJ+Nny0vfb7w4MhzBSIq4BZXavyVRSE1GS3WnbaIR0i2X20LV1rlflKQW4PXJxZgJUCIf7+2jRTUI+uu4meK3QvOOOOj/O1a6VWr559FAirwGsF1113ep/gxzdI1z9dazQvXkl5z/rLJ+6edXjwPKRhy244o2/wE65LWYIu/efYyKRcPwup4lTPF2XtGhjByMEbXZt+cc9n9vgVA4JAJF0n410r9ewcHdh0+wuTg4AmZdNSFsHnXAB1uCR6ntUyqczD9US/L8nxyPa5LroNmX5etWaDLVn+g7Vs1iAIdDl4366mH192uAAjBcD4IBg/fc6CFbbOZRtSYFP1atVs0IHd/axirxO+KQrQ0TXvlRETg2xMNV0wk4KnDtlvd/dTbBXTUHHvfPRN8Ykl+JRNW7W50eO/CwKaFGzUomkDO/XY4pnDNm/Z6oKyCjInlqB5Nmn6Qtt7j6LMczomW9wfjUSXXPhNnv697d27aFvhjFF+e0f2KxoCVs8HFAQQQAABBBBAAAEEKoMAGZsqw1FmHxFAAAEEEEAAAQQiAjvN/cY+QXnyw9lB1oaNriMsumiYnD+/MMVue25ysVnu9/opy0X/+CLo1NYvu8NFdf7usa9MnX/pFg3jcdZdnwSZP6Lrm7bgB7vkwaIOvC1bixqnTCFDbvwgCBZS57aKOlpVNKSHhsM64eaRGQVtKRDi4gfGxM1CIkMFzWjfo8uzH80JOnv9MCTh+TK5+dmv7cOvYwMOovc3vJ7eKxODL+rsD5cvZ60MMqYkGoLJm4TX0ftE08PL+XYpgCFc1In3lDun1LEaLmqbAsjkp+LXDy/z6we+CIIu4m1fwTEX3Pe5Kegik3KJ69xVoFm4zvC21c4z7/wkCFYIT9c29FmGCuwJr59q+4mWTTTd1xcehshPy+T15c/m2wMuk4TPmuXX1WcdFw13FV2i9zl6vj7nwuh/roPXly+mr/Bv477m4zx458tFNvCaEXb+3z+3u1/+Jvi+nXzryCCwYtHKjUGggRoT7RH9ObrByb5/+frOp2pTdBuVSUTBNyrjZia39+t+NasgAE7r+eDNZOev2qTvuDL8PPrut3bUDe9mHdTk23D2X0YH313/2b8qYEjXAgWaJirhwLmvZ6+26OtUovWip+ua9bobKi36eqblFNzwoz+NskVxhjTVNef8+4qCIcPXZnfrSVjWrN9qv37wi8h5qGFW/ZBViY57oul+I8nOUS3zF/d9GHTtu3bFw+PsHpfF8XePf2mD//CeXfnIeKtdo+jXZxr+KN2i54orHx0fyXAYXk/nkYZcPfVPHyU9huF19D7Z+af5YWN9TrckqjfV7iZzVSCs7h1+6DDfFt2LdX3z1+htLjAjuqS6Z21wQ5kNc8FNM7+PfYZSm7+YscJOvf2jSPYv1Z+PZ6FUzxfabrbXQK2bqITvk+HnPb98tHm20/16iV4V4HjZv8aarkfRRcf3BZclLvrZWcsp0PaqR780BfaFi47d2+O/t3BGvegAknTMw3VGv8/2eGT7XJfouxXdrmSf3xw52RYv+8FdE4tffzZt3mpvj/omyJ6k9TXMX7g89+aXNsNlAFLwU3TRum9+ONmiMw9tdcO7vTxigq1cEz+L3PdLV9vzb7ljt774sKZRTYveXMrP2bR16Yq19t7oaS7IqPiQvtrYrHnLXEDS95HtKhjLl2hHPz3Rq75vK1YVPLdrmSkzi+qNXidbP1+P1g/bT5sVGxit/8fy108/7Kxfn1cEEEAAAQQQQAABBCqqQJX+V7xZ/P94Kuqesl8IIIAAAggggAACCGQgoCHjuretb+o4U+ag9S6gKJOibDcaLkhl0LUjgnqqukxQ6pht3qC2TVuwplhnWyZ1+2X1V+57dmpkNV2H65R5azJqo7Jq7NGhkX3jhjILD+nh6870VVmierRrEAQNjHUBA/E6v+PVqXZ0c0OsqcNgxsK1cTvG4q1XkmkaqqaeG1ZN2QB0fHdFUcaUXu0b2oLlGyIBTelsV+eMMlF0dMO6KGhA5022gQl+e6qzZaPaQUezAhLiFQ2D180NldiqUR1b4IbxU/Bdtp3l8erPxzRldfEZzBSE8R8XQKei7FPd2jSwuS4g7FvXAZ6LDkbVuyuNcnEeKGPOQT2bqelBAKMC5KKLhu3TEE4qGporPJRW9LLZfi6N73y2bS1r6ym4ak+X2UTXrynzVgfZmFK1UUN8Di0c8uuyf42zz6YtS7VKyvk6l5RlR4EM0dcjTd+zU2PTOat7Z7r3gpQbzeMCujbreqfyngsYjXdf0PCdynKncpILBFQQYKZFw6Id5YbraumyQ46ZvtwF163M2fUo07aUxvIafrelO3cUCKNMYumWdO5ZGlZX1/kWrn4FavvA4VTbyPWzUDrPFxX5GuifBXdzQ8rpuWHesg1pneM6fv06NwmCnDJ9zknHPNl5kO3xyPa5Lllb0p3XxGVR0hBzK1attw2bEge2Rten4eRaNW9gGzZusWUri4J0opcLf9YQb00aue3VqeWCbTbY6h82hGfn7X22bW3ZrL5t3rLNVqxeHxPklbfGJqk4W78zhu4bHGMXZm7/fnFMJHAtvCldG+vXqW4KBKYggAACCCCAAAIIIFAZBAhsqgxHmX1EAAEEEEAAAQQQ2OUC8QKbdnkj2CAClUggUWBTJSJIuqsdXHDcC9ceFiyjILUTbxlp4QxmGsrkyd8ebOokVjn2xg+KzQ8m8k+5ElDH++s3Hh4MraZjrWNKiRXQELG/HtojmKGAv9Nclp9wUaau+y7sHzhu2LwtyOoUns97BBBAAAEEciWwe8fmdtj+3YLq5n2/MshI5euuWrVq3Oxbfj6vCCCAAAIIIIAAAghUZIHqFXnn2DcEEEAAAQQQQAABBBBAAAEEEDCXOWN9kCmlh8uQpsw/b910hGnoR2Vsa7RbTWvtApv88JTKqBIOesKvfAkMG9jJDundIsjupMx+Kve+Nr187cQubO2TH8y2Xx3TLfheKADw87uPddmoNtsKl1VI2ZWaukxLvjz/yTz/llcEEEAgrwKNXWamUwbvlddtUHnpCzz6/KdBIwbs28VaNKkfZMjyrfpk3Kzg7Xk/HhC8alhBP80vwysCCCCAAAIIIIAAApVFoGpl2VH2EwEEEEAAAQQQQAABBBBAAIHKLHDh/WNswuxVAYHiXZSdqbcbHlND8figpvcnLrZz7h5dmZnK/b6fc0QXU5YhBbCpfDRlqb05bmG536987YCGpzz3b59GhkdTMJiG69R3wwc1uUXsjhem2P1vECCWr+NAvQgggEBlFujZpZULaqrnCAoCksdMmG2bNjPMXGU+J9h3BBBAAAEEEEAAgeICDEVX3INPCCCAAAIIIIAAAgjkRODAns3smL3bBHXd9twk27bd9YpSEEAgbwLNG9a2i4/rHtT/n4/mBNmJ8raxcl7x/t2b2mF9Wlr3Ng2skQtuWrxqk3313UobPXWZzXDZmijlW+CWn/QzZeaav3yDffj1Ynt9LEFN6R7REw9oZ3t1aWK7t97NqleranOXrrcvZ620kZOWuCxOm9KthuUQQAABBBDISODkwf2CkKZVazbY1FlLbMny2OcxhqLLiJSFEUAAAQQQQAABBCqYAIFNFeyAsjsIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCFQEAYaiqwhHkX1AAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQKCCCRDYVMEOKLuDAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggEBFECCwqSIcRfYBAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIEKJkBgUwU7oOwOAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIVQYDApopwFNkHBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQqmACBTRXsgLI7CCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAghUBAECmyrCUWQfEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBCoYAIENlWwA8ruIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCBQEQQIbKoIR5F9QAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEECgggkQ2FTBDii7gwACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBARRAgsKkiHEX2AQEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBCiZAYFMFO6DsDgIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACFUGAwKaKcBTZBwQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEKpgAgU0V7ICyOwgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIVAQBApsqwlFkHxBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQqGACBDZVsAPK7iCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggUBEECGyqCEeRfUAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAoIIJENhUwQ4ou4MAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAQEUQILCpIhxF9gEBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgQomUGXs2LE7K9g+sTsIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCBQDgSqVKli+lGpWrVq8F6v+qlerVq1crALNBEBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQqkoAPaAq/+qAmApsq0pFmXxBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQKAcCPpDJN1Wfo3+CwKbq1av7ZXhFAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBHaJQDjAKRzY5LM2ubgmApt2yZFgIwgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIBBkZwoz+ACn6OCm6jVq1Agvx3sEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAYJcJxAts0jQyNu2yQ8CGEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAIFqAwKZoET4jgAACXbma0QAAQABJREFUCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAqQv4wCY1RO/9DxmbSv3Q0AAEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBCq3gA9uCr9Wr1atWuVWYe8RQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEECg1AR8MJMa4N/rlcCmUjskbBgBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQk4AOawu+rV61aFR0EEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAYJcIhIOY4m3QzydjUzwdpiGAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggECpCQRD0fkIp1JrBRtGAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBJxAOJapevgDOggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIDArhaIF8NEYNOuPgpsDwEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBIK+CAnApsSEjEDAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEESkugamltmO0igAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAokEyNiUSIbpCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggUGoCZGwqNXo2jAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAokECGxKJMN0BBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQKDUBAptKjZ4NI4AAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAQCIBApsSyTAdAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEESk2AwKZSo2fDCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggkEiAwKZEMkxHAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBUhMgsKnU6NkwAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIJBIgsCmRDNMRQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEECg1AQIbCo1ejaMAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACiQQIbEokw3QEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBAoNQECm0qNng0jgAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAIgECmxLJMB0BBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQRKTYDAplKjZ8MIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCQSIDApkQyTEcAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIFSEyCwqdTo2TACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggkEiCwKZEM0xFAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQKDUBAhsKjV6NowAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAKJBAhsSiTDdAQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEECg1AQKbSo2eDSOAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggEAiAQKbEskwHQEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBEpNgMCmUqNnwwgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIJBIgMCmRDJMRwABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgVITILCp1OjZMAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCQSILApkQzTEUAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAoNQECGwqNXo2jAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAokECGxKJMN0BBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQKDUBAptKjZ4NI4AAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAQCKB6olmML3iCezYscNWrFiR1Y7Vq1fP6tatm9W6rIQAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAQKYCBDZlKlaOl1+1apW1bds26z2oX7++tWvXzjp27Bi8HnzwwXbiiSeaplMQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEMilQJUtW7bszGWF1FV2BZStqXXr1jlv4DnnnGPDhg2zQYMGWbVq1XJePxUigAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIVD4BApsq0THPV2CTJxw4cKA98cQTeQme8tvIxevYsWNtxowZCas66qijrGXLlgnnMwMBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAg/wIMRZd/40qzhVGjRlmfPn3sueeesyOPPLLM7vcLL7xgw4cPT9i+kSNHEtiUUIcZCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIDArhGoums2w1Yqi8DatWttyJAhdv/991eWXWY/EUAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBPIgQGBTHlCp0uyKK66wzz77DAoEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBLISYCi6rNgq7krnn39+sZ3bvn27LV682ObNm2dz5swxZWRKtwwbNswmTJhgDRs2THcVlkMAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAIBAgsIkTISJQv359u++++yKfo99s27bNPvzwQ3v00UftxRdfjJ4d83nhwoV2+eWX22OPPRYzjwkIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCQTILApmQ7ziglUr17djj766OBHw8z9+Mc/tqVLlxZbJvrD008/bddee6117949elbKz8oQNWvWLFuxYoUtX77c1q9fb02aNLHmzZsHP/369bO6deumrGdXL7Bx40b7+uuvbdmyZUG71f4aNWoEbW7WrJl16dLFunbtuqubxfYQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIFyJVBly5YtO8tVi2ls1gIKsGndunXC9ZWxScukW5SRafDgwTZz5sykq/zxj38MgpuSLlQ4c/bs2fbwww/bK6+8krJerXLCCSfYaaedZqeffrpVq1Yt7ibGjBljhx56aNx56U5csmSJNW7cOOHiGrJPWayef/55e/XVVxMu52d07tw5aPd5551HkJNH4RUBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEAgJENgUwqjob3Md2CSvdIKGunXrZlOmTEnKu27dOrvjjjuCn6QLJpi5995727333msHHHBAzBLKLjVw4MCY6ZlMWLx4cZAtKt46o0ePtksvvdQmTZoUb3bKaTfccINdeeWVZTL7VMrGswACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIJAngap5qpdqK4mAAokuu+yypHurjE4TJkxIuMyaNWvs+OOPzzqoSRV/9dVXQVam1157LeF28jFDGZoOP/zwrIOa1KZbb7012P8NGzbko4nUiQACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIlEsBApvK5WErW42+8MILUzbo/fffj7vMtm3bgqCeTz/9NO78TCeeeuqp9tFHH2W6WlbLv/HGG3b22WdntW70Sp988omdeeaZtmPHjuhZfEYAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBCqlAIFNlfKw53anu3btar169Upa6aJFi+LOf+KJJ4Lh7OLOzHLiFVdckfcAoU2bNtkll1ySZQvjr/b222/b66+/Hn8mUxFAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgUomQGBTJTvg+dpdZUpKVhYuXBgze+vWrfaHP/whZnr0hL59+wbZjE477bSUAVRad9KkSaYgIV/atGnj3+bsVQFZ8fYpvIH69evb0KFD7ac//akNHjw4PCvh+9tuuy3hPGYggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAKVSYDApsp0tPO4r126dElae7yMTVOmTLGlS5cmXK9t27amIdrGjx9vCiR65plnbOLEifbSSy8lXMfPGDVqlH9rHTt2tA0bNtjatWuDn4svvjgyL96bESNGRJb16zRp0qTYou+8806xz9Efrr76aps9e7a9/PLL9vDDDweZmObPn2+pAsC++uorW7lyZXR1fEYAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBCqdAIFNle6Q52eHmzVrlrTiuXPnxswfN25czLTwhA8++MD233//8KTg/fHHH2///Oc/Y6aHJ8yYMSP80apXr261atWK/BSbGfWhZs2akeX8OuFFdu7caSNHjgxPKvb+/PPPt1tvvdUaNGhQbHrLli3tkUcesc6dOxebHv1hzpw50ZP4jAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIVDqB6pVuj9nhvAhEZzSK3ki8YdsUQJRoiLb+/fsnDQA66aST7IILLojeTOTzvHnzIu9z/WbLli120EEHJaz20ksvTTivbt26dvLJJ9vw4cMTLhMvu1XChZmBAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAghUUAECmyrogd3Vu7Vt27akm6xfv37M/J/+9Kemn2yKAqlUp4aKi1dStSfeOulOUxan119/Pd3FY5br2rVrzLTwhB07doQ/8h4BBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEKiUAgQ2VcrDnvudXrFiRdJKW7VqlXR+vJlLly61ZcuW2Zo1a2z16tW2bt264FXvNS1RUFO8unbltE2bNpmyLq1cuTLSTr8Per3lllt2ZXPYFgIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggUC4FCGwql4et7DV6+fLlSRvVsWPHpPM1c8GCBfbxxx/byJEjbcSIERZv+LqUlZTCAps3b7bx48fbRx99ZB9++GHwUwrNYJMIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggECFEiCwqUIdztLbmSlTpiTdeOvWrRPOnz59ul1zzTX2xhtvJFymLM7YunWrPfroo3bdddeV2exRZdGNNiGAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAukIENiUjhLLJBXYuXOnvfjii0mXSRTYpPXOOuuspOuWxZkaUu6UU06xTz75pCw2jzYhgAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAALlXoDApnJ/CEt/ByZPnpxy2Lhu3brFNPS1114rl0FNW7ZssSFDhti4ceNi9okJCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAArkRILApN46Vupa777475f4fd9xxxZbZtm2bXXnllcWmJfpQv3596927tzVt2tQaN24cvDZq1MhuvvnmRKvkdfpzzz2XdlCTArratWtnTZo0Cdqu9j/44IMMXZfXI0TlCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIFARBAhsqghHsRT34d1337VnnnkmaQuOPfZYa968ebFlXn/9dZs9e3axadEfrr76arvooousbdu20bOCz8OHDy+VAKHbb789bnv8xL59+9ptt91mRxxxhNWsWdNPjrx27tzZLr744shn3iCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgjEChDYFGvClDQFpk6daj//+c9TLn366afHLDNx4sSYaeEJd955p11++eXhScXez507t1SCmjZs2GAzZ84s1pbwBwVhjRgxIsgqFZ4efj927NjwR94jgAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIxBGoGmcakxBIKfDmm29av379bOnSpSmXHTp0aMwys2bNipkWnnDWWWeFP8a8f+edd2Km5WrCxo0bE1Y1b968hPM046STTkoa1LR9+3Z74YUXktbBTAQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEzAps4C9IWWLt2bTDs3KBBg+zkk09Oa7177rnHGjduHLPs5s2bY6aFJyQLmFq4cKGp3mxLtWrVkq46Z86chPO3bt2acJ5mLFq0KOn8e++9t1QyTSVtFDMRQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIEyKMBQdGXwoJRWkxS4dMoppxTb/M6dO4NgnW+//TbjgJyjjjrKLrjggmL1+Q8dOnTwb+O+ar033ngjJihqwoQJdvzxx6eVKSpuxW5i+/btE80Kpv/1r381ZYyqW7duzHKtW7eOmRae8PLLLwfBX8OGDQtPtm3bttk111xjCmyiIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCKQWILAptVGlWkLBRLko9evXt4ceesiqVo2fFKxbt25JNzNu3Dhr2bKlnX/++UEg0ty5c2306NE2derUpOulM7Nz585JF5s5c6Z1797dFJzUvHnzYGi58847L1inWbNmpn1TEFiicu6559oDDzxggwcPDhYZO3Zs0PZk6ySqi+kIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggEBlFaiyZcuWnZV15yvbfq9YscJSZRzKhYkCf1544QU7/PDDE1a3bNkya9u2bcL5JZ3Rq1cvmzhxYtxqlH2qd+/ececlmrh48WJr0qRJMPv666+3u+66K9GiJZ7+4osv2gknnFDieqgAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBAozwLx0+mU5z2i7aUqsPfee9uXX36ZNKhJDVQmpEsuuaRU2tqpUydLlTEqWcMSDa+XbB3mIYAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCGQmQGBTZl4snURAw8aNHDnSOnbsmGSpoll/+tOfbMCAAUUTMnj38ssvB0PCZbBKZNHq1asHw+RFJmT4pkOHDvbSSy9luFbB4trf4cOHZ7UuKyGAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAApVJgMCmynS087CvGk7upptushkzZth9991nderUSXsrtWvXNg27duqpp6a9joa5e/zxx23o0KFprxNvQQUYaUi5bMvxxx9vzz33XEbBVccdd5z997//Ne03BQEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQCC5AIFNyX0q1FxlKsq2KKCoV69eduyxx5oyM9144402YsQImzVrll133XWm4d2yKU2bNrVnn33Wnn/+eRs8eHDSKq644gr79ttvbdiwYcFy7dq1S7i8Aq5SFe3D+PHj7YQTTki1aNz5J598sk2ePNmuuuoqa9GiRdxlNFHD87311lv2yiuvWMuWLYNh+BIu7GY0a9Ys2WzmIYAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAAClUKgypYtW3ZWij1lJ8uFwLJly+y7776zxYsXW40aNaxWrVrWo0cPa9OmjVWtmr84PG1v/vz5tmDBAps3b16w3bVr19puu+1mCqAaMmSIJQsM2759u02bNi1o98aNG23nzp3Wvn1769atm9WrV69c2NNIBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEECgLAkQ2FSWjgZtQQABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgUAgfylwAEYAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEshQgsClLOFZDAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACB/AkQ2JQ/W2pGAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQOD/2bsP+CqqtPHjD0lISCBAKIFQQw0tQAABUQTsCuIqNixY//qyu+666qqr62tZdNHd17L23taCigURwUYRQXovgdBrCJAAgUCA5H+eCTO35N70m9yb/M7nc7kzZ86cOfOdC4nmyfMgUEYBApvKCMdpCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggEDgBApsCZ8vMCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggUEYBApvKCMdpCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggEDgBApsCZ8vMCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggUEYBApvKCMdpCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggEDgBApsCZ8vMCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggUEYBApvKCMdpCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggEDgBApsCZ8vMCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggUEYBApvKCMdpCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggEDgBApsCZ8vMCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggUEYBApvKCMdpCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggEDgBApsCZ8vMCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggUEYBApvKCMdpCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggEDgBApsCZ8vMCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggUEYBApvKCMdpCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggEDgBApsCZ8vMCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggUEYBApvKCMdpCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggEDgBApsCZ8vMCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggUEaBiDKex2khJLB8+fIQWi1LRQABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIGaLNCzZ8+afPvcu5tArdzc3Hy3fTYRQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgSoXoBRdlT8CFoAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAALeAgQ2eYuwjwACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAlUuQGBTlT8CFoAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAALeAgQ2eYuwjwACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAlUuQGBTlT8CFoAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAALeAgQ2eYuwjwACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAlUuQGBTlT8CFoAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAALeAgQ2eYuwjwACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAlUuQGBTlT8CFoAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAALeAgQ2eYuwjwACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAlUuQGBTlT8CFoAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAALeAgQ2eYuwjwACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAlUuQGBTlT8CFoAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAALeAgQ2eYuwjwACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAlUuQGBTlT8CFoAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAALeAgQ2eYuwjwACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAlUuQGBTlT8CFoAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIVG+B1NTU6n2D3B0CCCCAAAIIIIBAQAQIbAoIK5MigAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAeQQIbCqPHucigAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAQAQIbAoIK5MigAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAeQQIbCqPHucigAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAQAQIbAoIK5MigAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAeQQIbCqPHucigAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAQAQIbAoIK5MigAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAeQQIbCqPHucigAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAQAQIbAoIK5MigAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAeQQIbCqPHucigAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAQAQIbAoIK5MigAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAeQQIbCqPHucigAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAQAQIbAoIK5MigAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAeQQIbCqPHucigAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAQAQIbAoIK5MigAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAeQQIbCqPHucigAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAQAQIbAoIK5MigAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAeQQIbCqPHucigAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAQAQIbAoIK5MigAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAeQQIbCqPHucigAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAQAQIbAoIK5MigAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAeQQIbCqPHucigAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAQAQIbAoIK5MigAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAeQQIbCqPHucigAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAQAQIbAoIK5MigAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAeQQIbCqPHucigAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAQAQIbAoIK5MigAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAeQQIbCqPHucigAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAQAQIbAoIK5MigAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAeQQIbCqPHucigAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAghUW4GTefly7Hhetb0/bgwBBBBAAAEEEAh2gYhgXyDrQwABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQKAyBPLzRWasSJcVWw/I6m0HZcXmLOuyrZtES3JiQ+naqr5c2KeFxESFV8ZyuAYCCCCAAAIIIFDjBWrl5uaab9FoCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCARGIDU1VZKSkgIzeQXNmpObJ09+tlJ+Xr6nyBk1yGn8jb0lMb5ukeM4iAACCCCAAAIIIFB+AQKbym9YbWbIN7+GoP9hsXPnTtm9e7fs2bNHcnJypHHjxtYrPj5eOnToIC1atKg298yNIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAQOAFgj2wae/BXPnzm4tkc/phByO+QR3p3Kqe1I2KkLRd2bLBvNzb87f3kX4dGrl3sY0AAggggAACCCBQwQKUoqtg0FCcbu7cufLFF1/IxIkTZfv27cXeQkpKilx66aVyzTXXSPv27YsdzwAEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAIJgF3p++yQlqiokMl0ev6yFndGnqseQtGYfl0Y9Xyrodh6z+Jyaslgn3DZLIiDCPcewggAACCCCAAAIIVJwAGZsqzjLkZtq8ebPcd9998tVXX5V57Xr+/fffL7GxsWWegxMRQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEECgegsEe8am8x6eLkdyT1oP4aWxfaV3YpzPB3LseJ6MeHymM/bl/+krvdr5HutzAjoRQAABBBBAAAEESiVAxqZScVWfwRMmTJAbbrih3Df09NNPy0cffSQ//fSTtGvXrtzzMQECCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggUJkCB46ccAKVNFtTzzYN/V4+qnaY3Hx+B/nsl63WmOxjJ5yxO/blyOIN+6395MSGkhhf1znmvrExPVtWbTlgdZ3Vo5k0iCn4cV1m9nGZvXqPx/nb9+bIko37ZdnmLImrFyldWtWXoT3iJTysljPl4o2ZssIc37LnsDSLi5bubepLcts4Z15noNn4duFOycvLl4TG0VYZPb3mUjO/zpFvjndMqCfn9GousXVcP0LUTFVz1+6VTaZMX1TtcDN/rPRoEyctzRz+2klzjZVbsmSjOWfj7mzJPZEnnVrESiczf+eW9SXaOHs3Lfe3ZluBy9CezaSOsV6z7aC1tg27Dkm/jo0lqWWsrN9ZkDGra+v6Zr3+f/F+nRmXuv2gdZm+HRtJi0b+1+u9FvYRQAABBBBAIHgEXN+VBM+aWEmABb7++usKCWqyl6nl68455xyZNWuWtGrVyu7mHQEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBAIeoGYKFcpOc3adNRkZYqJKhx4Y9/ItYPbiL68W9rOgzJ+4hqr+4FRXf0GNi01QUT/91WqNa5R/Uin5N2eA0ed88ecnShN60c549yv1b1NA3nqxt4SEVFLHv9khcxZs8/9sLXd0ARBvfY//aRV0xiPY09+ttra16Cge3/XRW59Yb7Hcd154/uN8vSNvaRb6wby2rQ0+WD6Zo8xE+cU7I6/sacM7hbvcUx3NBhr3GerrGCrQgdNR3yDOvLc/0uRtk09A780KOz5b9ZZp6jLZ79ulQXrMp0pIkwwV3zDKMfojG5NzDp7O8e9N143a5+7tsDm1d/3I7DJG4h9BBBAAAEEQkTA9Z1aiCyYZZZPYOXKlXLllVeWbxIfZ2tw0+jRo30coQsBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQCF6B2uFhclpnVzm5f36+So6ZDENV2X5L3ecENWkWKfe2ausBefrL1fKPCSudoCYd4z4uKztX7nh1oRw66soo5T7Hrsyjcs87S50u73P//t8V8vZPGz2CmjRYyr098N5yWWGyMrk3nffqf/3qEdSkc2swk900gOu2/8wXzdDkr702dYNHUJM9rn+nxs59/rp6r9/70yxcdlBTS5OpqUcRWbjsuXlHAAEEEEAAgeAUIGNTcD6XgK3qySefLPHcWlqucePGsnbtWsnO9v/NpT3hvHnz5LvvvpOLLrrI7uIdAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEAh6gbNM5iE7O9DPy/eYcmdzZcRpLWVo9/hCWY8q42bW7ThkBfD869beknwqKGf2qj3yoAk40jZrZYb1rsFGml2pqylRJ6Y6nZas++Ori6xjGtyk5eBOT2pi7bv/oce0PXBFVzmvd4JV9k0Djf5qgp008Ehfb/+w0Rrz2OgeMtiUv4uKCJOd+3Pkr+8ulc2mxJy2X9fsNWXvXKX7NMuS3fp0jJN7Lu0ibUzWqLBatWTfoVz5v6/XyMwVGVbpvx+W7jal5Drawz3eN5i16L3d+7skkzmqocleFSlHTCYtLcF32aDW8uGMzdb4OWv2yAUpLTzO1Z05awt8dHv4aS3EXJ6GAAIIIIAAAiEqQMamEH1wZVn2mjVr5PPPPy/y1E6dOsnPP/8sBw4ckNTUVJkzZ47s27dPNm/eLI8//niR5+rBp556qtgxDEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEgkng8tNby/VDE50lbTPl1F75Lk2u/vccGf6PWfLwh8tl0vwdopmAKqu9cEdf6Z0YZwXzaEDPkORm8vuLO3lcXsvNaWm6MHNcg4dS2sXJfZd3dcakmgApf+1Pl3SWS0zwVp3aBT8u7JhQT8Zdn+wx/KGrusm5vZtbQU16oIXJfvTE9T2dMSu2emdsypEBSY3kzO5NZNx1vaxyfLoubY1jI+Xhq1zzz19fUCbOmcxtQ4OaXv/9aTLM3HMzU35O76/eqfKA55v12O0nE4Tmq/28fLfTfW4v13inkw0EEEAAAQQQCBkBMjaFzKMq/0Lnzp1b5CSjRo2St956S2JiPOst1zLfcLZo0UIeeOABGT58uFx66aWiped8NQ2EOnbsmERFRfk6TB8CCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggEJQCYy/qKPEmiGbCrK2yw2QmsptmN9IsTvp6auIaGdYzXq4fkihdNEtSgFrnlrE+5+/dzpUdqWvr+j6zSWm/3bak+6/IcXG/wpmOklq6ztU5hvZoZk/lvGsGJrut2+YZOPXPG3rZh3y+R0eGWYFYWk5Ps1KdzMu3Are8B5/Xq5m0bBzt3W3tawBWB/PSrE52ObrYOq4feR7MOeGU6EtObOh3Hp+T04kAAggggAACQSfg+iofdEtjQRUtsH79+iKnfPDBBwsFNXmfkJycLA899JCMHTvW+5Czv27dOtFxdtuyZYvMnj3b3vV4j4yMlCuvvNKjz3snJydHvvjiC+9ua79+/fpyySWXeBxbtWqVLF261KPP3unTp4907Vrwmwp5eXkyZcoU+eqrryQtLU22bt0qbdq0ER3Tq1cvGTlypMTFuWpq23Po+6ZNm2T69OmyfPlyWbRokWzcuFHatm0riYmJcuGFF8rll18u9erVcz+l0Laev3PnzkL92qHl/Bo1amQd0/t///335ZdffhF9hhkZGdY96DpTUlKsdUZE+P6rPH/+fPntt99k2bJlsnChqaV96JC1Rs3MpYFsZ599tvg71+fCTnXqmjRQ7vvvv7fs0tPTZc+ePXL8+HFp3ry5FQjXvn17y2LQoEFSp46rdra/eUvikZ+fb2Udmzx5sqxcuVIyMzOt640fP17OPPNM+fjjj/1Nb9LM1pJrr73W73H3AxMmTJATJ3z/1s3AgQOlQ4cO7sPZRgABBBBAAAEEEEAAAQQQQAABBBBAAAEEEKgmAqNM5qbLB7aW1dsOyPemVNq81L2i2Zvc23QT4KSv/9zeR/p2KPh/+e7HK2K7pwnI8dVio2s73Vb5OWfPtdG0fvH/T751k2hxDwayz44Ir2WVwDuSe1JamuxMMaeyJNnH9V0zMCU2q+uUo3M/5r1t/re+5Ji5Dh89IYePmZd516Cm4lovtwAuX2M109Rzk1KtQ3PXZMj5KQnOsDlm324jTBk6GgIIIIAAAgiEtoDvaIjQvidW70dgw4YNfo4UdPfo0aPI4/ZBDQ7561//KtnZvqP8NcjHPbBJA2puvvlm+3SPdw3+KS6wSYNx/J2vky1ZskS6d+/uzKvBNvfff7+z774xYMAAK0BIg2Kuu+460fJ87k0zUWnWKW2PPfaYFSij59hNg11eeukl6/7tPvtdA470XrXc32233SbvvvtukYE0zz//vBVYZZ/v/q5BZo8++qg11+23317IWtf5ww8/WKcMGTJE3nvvPSuYyJ4jKyvLMnjnnXfsLuddz9VAMz3Wrl070SCe3r17O8eL2tBn8eyzz8q4ceP8DnPP5vXcc89Z4/Re/vKXv0h0tO/frtBBxXncc889VrYw7yA5vZ4Gmg0ePFgefvhhv9nE9Bp9+/aVpKQk3fTb9O/JDTfc4Pe4Po8XX3zR73EOIIAAAggggAACCCCAAAIIIIAAAggggAACCIS2gInbsbIKaYk3kSTRDEBL0vbJzFUZMm2Jq8TZn15fLP+9+3RpZ4J8Krr5CijyvoaWZytrq+cWIOVvjrCCCnX+DvvtzziYK98u3CHz1+2VZZuKD2LyNVG0j4Aq93Fn92zmBDb9uDzdI7DpJ7cydEN6xLufxjYCCCCAAAIIhKBAGb8lCcE7ZckSHh5epMKKFSuKPG4f1OAUzVS0evVqny/NAlSZTTMvlbSdPHnSyrB01llnFQpq8p5DA2Y0WEYDlbRpUM+wYcN8BjV5n6v7N910kzz++OO+DhXbp5mPNPBIg8j8BZDZk8ycOVM0KE0zZWnToC0N9PIV1GSfY79rQFD//v1l2rRpdpffdw3a6tKlS5FBTf5O1sAmXZN+ZsrStLyhBrd5BzW5z6UZmW688Ub3rkLbmhWquKaeRbXf/e53RR3mGAIIIIAAAggggAACCCCAAAIIIIAAAggggEA1E6gfHSFDkpvJ/17TQ9758wAro5F9i/PX77M3eTcCizbul2v/9au8MW1DmYOaSgLZODZSzujWxBpql6PTnUMmI9ScNQXP5PzezXxmpSrJ/IxBAAEEEEAAgeARILApeJ5FwFeiZdaKaho4oiXZStJatWolHTt29PmKjY0tyRRVMubw4cMlChZyX9x9990nGljzxBNPyLx589wPFbutmY1KEjTkPZFmkrrjjju8u/3ua/CTrk8zSmlGIc0eVZo2evRo2bFjh99T9L61pFxp53WfUAPFzjvvPKtsn3t/Sba1ZOCkSZOKHarl9YpqP/74Y1GHrWN2JixfAzXDmAbF0RBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQRqpkDnFrFy/6iuzs0v3ZTpbLtvmApsftuJk0Ud9Xta0B/QknN/em2xaBk7bad1jpMHr+wmL43tKx/cPVC++Ntgmfb4MOnTMa5C7uXiPq7yc1qOTtucNXucuc93O+50soEAAggggAACISdAYFPIPbKyL1gDkYpqmrGpW7duVoDM4sWLpTSZkIqaN5iOacCQZikqTdOAHC2j9swzz5TmNGfs2LFjS205efJk5/ySbnz88cdy1113WeXwSnqOPU4Do/xll9KgLg18qoimgVG33HJLqafyLhnobwLNXNW1q+s/KL3HaXBUbm6ud7ezr4FhRQWiaQatyMhIZzwbCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAqEvMGXRTnl8wkrrtXb7wWJvqE28q/RcZvZxZ3ytcFdpuANHXP3OgFMbu7OOendVi/3FJluT3bSM33O39pXh/VpI78Q4ad+snjRrGCX1TIm57Rk59rByvZ/etamTPeunFenWXD8uK3iPiQyX/p0al2t+TkYAAQQQQACB4BAgsCk4nkOlrKKkJbQee+wxGThwoLRu3drKGvTmm2/KggULJCenYr7RrJSbreCLqEFZmwZGzZ07t6ynl+q8119/vVTj3Qdr6TpfZe/eeust0XsoSdOMRsW1OXPmyC+//FLcsDIfL64cnZbU89eWLFni08Aef/nll9ubvCOAAAIIIIAAAggggAACCCCAAAIIIIAAAghUEwHNNDRt8W7r9d704n85esF6VwBPi7g6jkLLRjHO9qb0bGfbfSMvL1/mraue5etWb3UFhV12eiv323a2N+85LHsOVExgV1REmFxkAqe0zV61V3bsy3HK0P3OXD88zBVo5iyADQQQQAABBBAIOQECm0LukZV9wU2bNpVbb721xBNodh0Ndvn9738vZ5xxhjRo0MAqR6aZfTQwRTP5hHLTLESvvPKKPP/88zJy5MgS34o6qomWfnvyySflzDPPLPbcGTNmFDvG1wD7Wvoc1D0lJcXXMJ99mrnooYcekvHjx8v9998v7dq18znOvXPRokXuu9b2p59+WqjP7tD1qZ+ed/ToUdm/f7+1XZzJF198YU9RpvcBAwbIn//8Z7n33ntl6NCh4l7+sLhydNOnT/d7zZ9//tnvMQ3aGjx4sN/jHEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBAITYHTOroy+8xamSETZm+VkyYAyVebt36fvPvjRufQaZ1d57Zt6srkpIFSuzILB/B8+utW2Zx+2Dm/Om0kxrsCu9btPFTo1vYfypVxn64q1F+ejgtSmjunP/HZSmfbvd/pZAMBBBBAAAEEQlIgIiRXzaLLLPD000/LrFmzZP369WWaQ7Pd6GvcuHGigR4aWHLzzTdLQoKrjnGZJq7kk6ZMmSLnnnuuc1UtF/foo49agUpOp48NDeSZPXu2R5CQln+74YYbZOLEiT7OKOgqacYj9wn0Wr/99puVOcvu12CeSy+9VIoLlNLAom+//Vaio6PtU+XOO++0AnOKKsW3Y8cOZ7xuaPCaZljy13766Sfp0qWLx+Hk5GT58ssvrSAsf/edlpbmcU5Jd9T5xRdf9Lgv73Pbtm1rBeD5W/fUqVOtgC/v83S/qDJ01113ndSuXdvXafQhgAACCCCAAAIIIIAAAggggAACCCCAAAIIhLBAm6YxMmpQa5k4Z5t1F//5Zp18u3CnnNOrubRpHC2xdWvLVpNpaOWWAzJtyW7nTls3iZZzejZz9iNMKbpe7RrIsk0HrL4xz8yVOy7qKK3N/JkmqGf6ynQrs5BzQjXb6NPBFeT16S9bZef+I3KmKRfXKDZS1u3IlknzdlRYtiabrlvrBtKyUbTs2J/juCc2qysdE2LtIbwjgAACCCCAQIgLENgU4g+wtMvXzDaTJ08WLUu3Zs2a0p7uMV7LlmkwkL60BNpNN93kcTxYd5577jmPoCZ7nXofGpBTlMvnn3/uEdSk50ZERMjbb79dZGDTrl277MuU+F0Dk7QcoHvTQKUPP/xQWrZs6d7tsa0BZ5oRyT2oSQfEx8fLu+++K0OGDPEY776zZ88e9105ePCgnHPOOR599o6WK/QOarKPaXavq666Sp555hm7y+N940bXb7N4HChi54orrpDXXnvN8i5imHXo+uuv9xuQNW/ePMnMzJS4uDiPafReNWjNX9Pr0xBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQSqp8BdIztL0wZR8up3Bb+Yu2FXtmzY5f+XdM/o1kQevrqHRJpyaO7tf69OlltfnC9Z2blyxJS4e/brVPfD1vblpkzaF3O3F+oP9Y7GJoDp9gs6yOvTNli3ouXh9OXezuzeRLKPnpClG7Lcu8u8XctUmxs5oKW8cuq56UQj+/v/GUqZL8SJCCCAAAIIIFBlAp7fbVXZMrhwZQpoSTLNBKTl1Cqq3X777XLbbbdJfr7v1KwVdZ2KmOfiiy/2O01RQT96Uv/+/X2eq0FEgwYN8nlMO0+ePOn3mK8DrVq1kt69e/s6JJrJqaiycmeffbY0bNjQ57n+5rQHe69Tr/Xdd9/5fD3yyCP2aT7fO3bs6LNfO0+cOOH3mL8DGpCmQWQlaZrVqqimpRS929y5c727nH0NFtNyjDQEEEAAAQQQQAABBBBAAAEEEM0SflgAAEAASURBVEAAAQQQQACB6ikQZiJkbhiaKC/+T1/p2rq+35vULE23X9hRxt/QS2LrFP5/1s3j6shLd/SVQV0bS0xkuMc8vTs0lPfuGiDtTEYhXy28lD+18w6qsueMiDDRPqdahFfgld1fkvfI2p7rdz/Hvnak1z3eeHY7eeSa7qJO3u0O4/b46J5SN6qwm44NNxmvytLO6ekqR6fnn+21X5Y5OQcBBBBAAAEEgkfA93cOwbM+VhIgAQ3E0UCRu+++W15++WUr45JmYCpPe//99yUpKUn++te/lmeagJ6rASqJiYl+r6Fl1Py18847z3xT7f+b+JSUFL9ZgvzN6a9/8ODB/g5Z/X379hV/JeUGDBjg91x97p06dSpzKUL3iTUIasuWLZKRkSEHDhywXpr1KCsry3o99dRT7sPLta2BXppxqqRNA7JGjBhhZSfzdc7PP/8sI0eO9DikZfX8tTFjxpQ4qMrfHPQjgAACCCCAAAIIIIAAAggggAACCCCAAAIIBL9ASrs4efOP/eVkXr5s23tENqVnS9bh49K5Ray0bx4r0ZHFRx8lxteVf92UInlmju37ciT3RJ40MwFPdiCUlkm7/PTWhTC0/9enzi3U796hZfOKG6PX8TfGX7/7NX74xzD3XZ/b7/zJ/88izk9JEH1lHzspO/cdMQFeEZLQqI6EhxUELj19o+9f7B5lTPRV2pZ1JNc55fQujaVp/Uhnnw0EEEAAAQQQCH0BAptC/xmW6w7atGkj48ePl3HjxsnixYtl+vTpMmPGDNFyXWUJdHrooYfk2muvLbJUWrkWXM6T/ZVOs6eNioqyNwu9FxdYU7eu79+wKDRRCTo0kKeo5l1mzn1scevUMnFlbVqmb9asWdZnZNq0aWX6jJTl2lr2rrTt6quv9hvYNGnSJCuwz31OLf3nr40aNcrfIfoRQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEqqGABuFogJK+ytrCzBwaiFRTW72ocCsgLJD3r4VEXpyyzrnE1YPbONtsIIAAAggggED1ECCwqXo8x3LfhZb40jJr+rr//vvNbxHkyebNm2Xp0qVWIIuWI/OXIcj74h988IE88MAD3t3sh7BAWlqa9Uw1IKgqWlFZtvytZ/jw4f4Oyfbt22Xjxo3Svn17a4zur1+/3ud4zf50+umn+zxGJwIIIIAAAggggAACCCCAAAIIIIAAAggggAACCFSugAYz7c46KnsPHpUflqbL0g1Z1gK6t2kgp3VsXLmL4WoIIIAAAgggEHCB4vNlBnwJXCAYBcLCwqygj8svv9zKbJOamipLliyxsjEVt96pU6cWN4TjISQwZ84c6datm1RVUJNS1apV+rraWnbwuuuu8ys9c+ZM55j7ttN5amP06NGUofNGYR8BBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgSoS0DKBV4yfLf/z8kKZOGebs4o/DO/kbLOBAAIIIIAAAtVHgMCm6vMsA34n3bt3l3fffVfefPPNIq/lL/NNkSdxMCgFtm7dKkOHDg3KtZVkUddcc43fYd9//71z7Mcff3S2vTcuu+wy7y72EUAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAIEgEWjaKlrfu7C+9EhsGyYpYBgIIIIAAAghUpACl6CpSM4jnysnJkUOHDvlcYWRkpDRsWPJv9saMGSNabs5flpuMjAyrlJ1mfSquZWdnS77JGVpURh6dj1Y1As8880yxFx4xYoT06tVLWrVqJQ0aNLA+S/r+6aefyvPPP1/s+YEcMGzYMNHMTfo5827Tpk2TEydOiH5Ov/76a+/D1r6WoRs4cKDPY3QigAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBA5QuEh9WSN/54mkSEh0mCCWqKrcOPOyv/KXBFBBBAAAEEKk+Ar/SVZ12lV/roo49k7NixPtegwRsbN26UqKgon8d9dTZp0sRXt9NXkqAme3B6ero0b97c3i30npaWVqiPjsAL5OXlycsvv+z3Qp06dZLJkydLu3btfI759ddfffZXZqcG7Wkgnq/70GAnLa9Yu3Ztn4FPuk4tZRceHl6ZS+ZaCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggUIRArVoi3Vo3KGIEhxBAAAEEEECgOgkUn1KnOt1tDb6XDh06+L17zYj0zjvv+D3ufUCzP02cONG729lPTk52tnWjuICplStXeoz33pk0aZJ3F/uVILB79+4ir6KfGX9BTXqiZkQKhnbVVVf5Xcb06dNlxowZfo9Ths4vDQcQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBAIuACBTQEnDo4L9OzZs8iFPPjggzJnzpwix+hBLd311FNPFTmuc+fOHsfj4+M99r13xo0b593l7M+bN88qe+d0sFFpAppJq6iWkJDg97AGRf30009+j1fmAS0lp2XyfLWpU6fKDz/84OuQaCazAQMG+DxGJwIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggEXoDApsAbB8UVGjVqJFo6zF/TslxDhw6V2267TTZt2iT5+fkeQzWgafny5TJs2DB58sknPY5575x33nkeXcUFNmlA1Y033ihZWVke533yyScyePBgjz52Kk+gYcOGRV7sgw8+8HlcSwcOGTLE57Gq6NSyiFpSzlebPXu238CmG264QUpTUtHX/PQhgAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAQNkFIsp+KmeGmoBmZbr55puLXPb7778v+tKWkpIirVu3tgKdVqxYUeR59kHNcjN69Gh713pv06aNlf1GS975ax9//LHoSzPkREdHy8KFC0WDrWhVJ9CyZcsiL/7oo4/K/Pnz5YILLpB+/frJzp07rf1XXnkl6J6dlqMrLtOY981efvnl3l3sI4AAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggEAlChDYVInYVX2pa665Rp555hkpaZDSkiVLRF+laffdd58VmOR+jp0x57nnnnPv9rmtpedowSEQGRkpF198sUyZMsXvgvRYUcf9nljJB5KTk6Vr166yZs2aEl1ZS9dpsBYNAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBKpOgFJ0VWdf6VcODw+XDz/80MqeFIiLX3vttfKHP/zB59Ra4o4WegJ33XVX6C3az4q1tFxJmwYBUoaupFqMQwABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAIDACBDYFxjVoZ+3SpYvMmjWrwoObxowZI2+++aZERPhOAta5c2f55z//WSaXr7/+ukzncVL5BYYOHSr33HNPqSfSjEePPPJIqc8L5AmjRo0q8fSUoSsxFQMRQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBAImACBTQGjDd6JO3ToYJWju/fee8u9yHbt2slnn30mb7zxht+gJvsimv3noYcesneLfa9Xr568++670rdv32LHMiBwAuPGjStVcFOnTp1Eg9FatGgRuEWVYWb9rA4aNKjYMzUoi89csUwMQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAIOACBDYFnDg4L9CoUSN58sknZcOGDfLwww9Lv379SrXQK664Qt555x1Zvny5XHrppVKrVq1iz9dSeJrF55tvvpEhQ4YUOV6z66xcuVK0vF1pW3R0dGlPccbHxcU526XdaNKkid9TfB0rzzobN27s91rFHYiPj/c7xNe8+tw029bMmTOlqKxHTZs2lRdeeEGWLl0qycnJUpRlQkJCoTWUx6PQZH46Ro4c6eeIq/u6664r0efZdQZbCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIBAIgVq5ubn5gZiYOUNPYO/evbJo0SLR94yMDOu9bt26kp+fLxqYo0Evms0mJSVFIiMjy32DmzZtkrVr18qOHTusuY8dOyZJSUmiGX80WxMtOAUOHDggaWlpkp6ebn0OYmJirGemgU3B3PRzfOWVV8qkSZOKXKb+HdDALBoCCCCAAAIIIIAAAggggAACCCCAAAIIIIBAxQmkpqZaPwOouBmZCQEEEEAAAQQQQKAmCBDYVBOeMveIAALy2muvyZ133lmkhJaqmzFjRpFjOIgAAggggAACCCCAAAIIIIAAAggggAACCCBQegECm0pvxhkIIIAAAggggAACIhEgIIAAAtVNQDOBTZgwQTSL1ObNm2Xu3Lkyb968Ym/zD3/4Q7FjGIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAAClSNAYFPlOHMVBBCoRIHPP/9cnnjiiVJdUUssXnbZZaU6h8EIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggEDiBsMBNzcwIIIBA6Ai8/fbbEhFBrGfoPDFWigACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCBQ3QUIbKruT5j7QwCBYgUmTpwo3bt3L3YcAxBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEECg8gQIbKo8a66EAAJBJtCpUyeZOXOmXHLJJUG2MpaDAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAtRd4jOAAALVTqBWrVo+76lp06ZWZqZu3brJmWeeKZdddpmEh4f7HEsnAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCFStQK3c3Nz8ql0CV0cAAQQqViA/P1/2798vmZmZcuzYMYmNjZW4uDjrvWKvxGwIIIAAAggggAACCCCAAAIIIIAAAggggAACJRFITU2VpKSkkgxlDAIIIIAAAggggAACjgAZmxwKNhBAoLoIaMamxo0bW6/qck/cBwIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAjVNIKym3TD3iwACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAsEvQGBT8D8jVogAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAQI0TILCpxj1ybhgBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgeAXILAp+J8RK0QAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAoMYJENhU4x45N4wAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAQPALENgU/M+IFSKAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggUOMECGyqcY+cG0YAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAIPgFCGwK/mfEChFAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQqHECBDbVuEfODSOAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggEPwCBDYF/zNihQgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAII1DgBAptq3CPnhhFAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQCH6BiOBfIitEAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEE/AvMXpMhh3JOSIRJ63Be7wT/A4P0yKb0w7J2x0FrdX3bN5L4hlFBulKWhQACCCCAQOUKENhUud5cDQEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAoIYIvDd9s+zJynHu9uK+LaR7mwbOfkk2Dh09Ia9PTZO8/Hyfw6MjI6RJ/Uhp1rCOJLeNs7Z9Dqzmna9P2yAbdmVLTGR4SAY2LUzbL89NSrWe0r9v6U1gUzX/vHJ7CCCAAAIlFyCwqeRWjEQAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEECgRALTV6RbAUnug3smNih1YNPBw8fli7nb3acpcvvM7k1kzNB2pb5OkZNyEAEEEEAAAQQQqCIBk4yRhgACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACFSWQmX1cnvx0dUVNV6p5Zq/aK7e/tEAmzN4qfpI8lWo+BiOAAAIIIIAAAlUpQMamqtTn2ggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAtVO4D/frJUjuSet+2rdJFq27XWVoyvPzZ7Vo6n884ZeHlMczDlhyt0dlV9WZ8jnc7ZJVnaudfw/36wz5etERg9u4zGeHQQQQAABBBBAIJQEyNgUSk+LtSKAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCAS1wK9rM+T7penWGpMTG8oNw9oFdL31oyOkY0I9ufmcdvLJXwfJGd2aONd7cfI6SduV7eyzgQACCCCAAAIIhJoAGZtC7YmxXgQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgQoRyDhwTH5L3WvNFR9XRwZ0aux33j1Zx2TeuoKx7ZvXk+5tGhQae+TYSXnyszVO/4NXdJPV2w44+4HeiK0TYWV0+sNri2TF5izrcm/8kCZPjent99LLzbglGzNl5/4cOX4yT5o1rGMCpWLlzG5NJSrCM0fCr2syZP+hgoxQF/VtIRHhtQrNO2NFuhwyWaQizLkX9UkodFw7vlu8S06cyJMmDaLk9KSCQKxvF+6UPJNiKqFxtPTr0EgOHT0hq7Zmmfs4ILsyc6RN07rSoXldOaNLUwkLK3xdnxfy6tT7m2MyW60zwV46Z+3wMGkeFy09ExtIn/aNpFYx06abz8CabVmyac8R2bonW5o3ipHOLeqZdcWa9cV4Xc1zV8sCzk/bZ93Pzn1HpH5MbWnXrJ4M69lMNDitJG1LxmFJ3X5QUncekkyTmUuv296YJCfGSb2o8JJMwRgEEEAAAQRCTqBkXyVD7rZYMAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAJFC0RFhsv4iQWBSDFme+pjQyXcT9DM5IU75K0fNloT/vmSzj4Dm16fluaUght7UUcr2KUyA5t0cbp+Daga/e851lpnr9prBQlp0JN7255xRB7+eIWs23HIvdvZVo8Hr+omw5KbOX3z1u2XiabcnbZOLWKlS6v6zjHdyMnNk4f+u8Lp62UyVrVoFO3s60bGwVwZN2GV1ael9ezApic/W231dW1dX/5+VXf5fy/Md8r5WQdO/aFZsB65uockNKrj3l3stmbS0qAzu1Sf9wlaMvAJU+avgwla8255Jipp4pzt8tykVO9Dzv4NwxLl9gs6SJiP6CgNePvTG4tMUNRBZ7y9oVm17r08yd71+X7iZL68MnW9fDJrq9fx3dZ+w3qRJqCtpwnQauh1nF0EEEAAAQRCX8AzzDr074c7QAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQKBEApopZ1jPeGvskdyTsnxLQZYjXyd/v2SX0312z+bOtr2xausB+ezXgqCfDqY03DWD29qHKv1dswf1aufKKDVvbUGmKXshm9IPy83/mVcoqEmDmeymHn83QUpf/rbd7pIBSY2c7WWnMkI5HWZj6ab97ruyaIPnvh5cuSXTGTPoVLYmp8NsbDFr04xTen1t8Q08A5g0E9W4z1eKZkAqadNnd987yzyCmtzvVefZtjdHxjz7m6wxGZG823++WVcoqKmlCdhyn+OD6ZvlqVNBcu7naxaqxyasKBTUZJ+r9/n4J6vl17V73E/z2H7g/aUeQU36+dIAMLtpsNbYVxbKsk0uW/sY7wgggAACCIS6gGdodqjfDetHAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAoBQCF/VNkOnLC4JKZqzYIynt4gqdnWZKl2ngi7ZBXRtLk/qRHmM0o85TX7hK0P3NZEzyVabN46QA7wzp0cwEuhSUwduVddS52kkTaPPEZ6ucwCENkvnD8E7S25Qzq21Ky6XtzjYBWltlysKCQK5/f7lW+prScBosldLOFdi0eON+ufrMNs68urFgvWcg01xT5u+S01p6jFmy0RU81rejaz57kAb66OuW89rLpf1bWdaaMWnakt1OpqelG7Jk3vq9MrBzQRk7+1xf71o+7rFPCjJE6fGzTSDb6LPaSlLL+nLCWKw0wWyvfJfmBB49ZrJYvf+X0yXyVBm+vSbDlB2wpuf/7zXdzGcgXjQDlgZXzV6zRx54b7kekskLdsofR3S2jlkd5o93ftokmjXLbo9c011O69RE4urVFg0w+2bBDpnwy1ZZsM53UNJ287mbu3afdboGU42/qZe0NyXstOUYp7d/3Cgfzdxi7U8wz62Xj8+vdZA/EEAAAQQQCFEBMjaF6INj2QgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAuUX6N+psZN5Z4oJTNHAH+/2y+oMp+viPi2cbXvjM1OebYMJftJ2zVltpKtXiTZ7XGW+u5dq23fwmHPp+ev3OUE8mjXon6b82gBjEFU7TMJMGbvOpsTcA6O6SZ+OrgCvT03AjLaYqHDp3aGg3Nni9ZmFrGavcjnp+JkrMkSDvtzb/HUFQT5a+s27TJ097tohbeXWc9s7AWRa3u2iPgky5uxEe4jJNlXg7XT42fjyt4IsWnpYsxw9bMrYdWvdwCrZF2WClzRo659jeouWc9OmAWzuz3vtjgNWpirNVvXAqK5yQUoLJ3BJq84N7hYvd1zY0TpX/9BAKbsdO55nBR7Z+09enyznpyRYQU3a165ZXblzeGc5v7er3J891n6fY0ro2e1q89myg5q0L9o8vzsu6CganKfr00ArzRBFQwABBBBAoDoJENhUnZ4m94IAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIFAqgdrhYTJyYEFWIc0UtGKrKzDFnmja4p3WpgYCDerW1O623ndlHpUXJ6+ztjU45rbzOngcr6qdBjGurFL7DrkCmzQrld3uujRJWjaOtned93AT4PTI1cnO/rRFu5wgpjNMtiJtarXBZHey2459ObJjf0FWq3sv62J3y6ptBVmjtGP/oVwn89UZXo7OCWbj8oGt3Xed7SHdC66tHdv2Hnb6i9qYtni3c/hRE9RkZ2JyOs1GU5OB66+/S3K6pq9Id7bP7NpUnrmlj/W6pL9n9il7UNfWsfamaHYvu21Kd21fkNJchiQXDmDS4Kj7RnV3guvsc+332qcyR+n+uh2HCpXg08xgf7+qu7U+DVLT4DQaAggggAAC1UmAwKbq9DS5FwQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgVILXGCy6NhtxqmydPa+Bu/YZeguMJlxNMuPe3vum7XO7t+u6Gpl0XE6qnDj6PGTztXr1antbK/becjZ7lJEZikttxffoI41VoOYMg4UBEf16+DK5LTCLTvRog0FZeg0+EvLz9nnLkxzladzz2bUv3NjZx3uG3q+e7Yp92NNT61H+7KPnnA/5HP7kBmz50BBGT6dt5Upp+evJbVq4BxateWgs+1rI/dEnmQdOS4azKWeK93Gu2dM0rJ+dktOLMh0Ze+7v0dHhkmXNvXdu5zt5LaudVml7t5YKN8v2SX7TJAYDQEEEEAAgZogEFETbpJ7RAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQMCfgJZfSzRlwTanH5YflqXLnSM6W6XKdPwst/JqmnXHvf1qyoTNXlVQWu3M7k1Es/sES9PsSHZrUj/K3jSBPq7sTa2b+A/00RM6t6rnBAZlHc6V5nF1pGNCPSu7kAY7aTDTqNMLsivNTS1wGNS1iWgWobN6NJXPf90ms00ZPy0rp23pZlc2rN6JrgAp6+CpP9qa5+CvRZngpNK0TDeDzm5ZlXzN0ayhu1FBMJT7uFkr98gvazJkztp9kpXtsnUf472tGZbspp+volpSi/qyOC2z0JCOCbFy2/kd5M3vN1jHlm7IEn1p03J+Z/VoZkrZNbeei9XJHwgggAACCFQzAc+Q8mp2c9wOAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAiURuOS0FtYwDVpxL0dnl6Fr2ShaerRxZd05djxP/v1FqjP1XSNc5deczircWLrRFSTTKNZVls4OytEMRr7KsrkvuXE9V7DP0RMFGaDCTO20Yb0KSqotSN0vefn5cvxknsxamWGdOqhrQSamgUkF7xrcYwdZ2dmbBiQ1kqjagf8xpXvWqkZ1XQbu92hv633ZWaa072RevnVIn/O4T1fJ3z5YLlMW7ipxUJOevD/bFUTWIMaVNcua2OuPOFPG0F+7+Zx2Mv7GnmLb2uM0k9iHMzbLjc/9Jne9tUiOHHNl6bLH8I4AAggggECoC5CxKdSfIOtHAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBAot8A5vRLkhcnrrXm0HJ1mFHIvQzeif0sxsS9OW7hhn5PNSDsfm7DSOea+sW3vEWf3re83ycQ5O6z9ey/rIpopKhBNS6X9bDJP2S2lvSs7kgZo7difI5pxKTP7uMTV8x9ws9FksLJbwxhX4M3pJmjp2wU7rTk2mTGHjh63h0nfDk2s7ZT2jZy+xSaz02mdm8iGXQWl2Qaa7cpo7mt2vxdf19YAJveydeFhBQ/7vyZw6LtFu6xTNBjsmrPaSlKrWGlqsmDVjaotdetESNrug3LXG0sKTduheaxMP1XacHvGEWnfrF6hMXbHpvQCG3vf+31wt3jRl5agW74pU5aZ7Ff2M9CxC9Zlyt1vL5FXx/bzPpV9BBBAAAEEQlqAwKaQfnwsHgEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAoCIEmtaPtDLizFmzzypH9ydTjs69DN25p7IU2dcyiYo82gq3MmseB9x2NKBIX9qO5J5wO1Kxmx9M32wFHemsWgItMd5VBq1pXJSzhi17s01gkyvoyX0VmonJ/Z4axbqyN/Vu5wpaWm7uW4NttHVuGStNjKO2OiYj0+ldGstcU7pt3vp9El3HVUbutE4F2ZysgQH8o6Fb0JaWGdSAL39ZqrZkuIK4EhpHO6uabcrP2W3cmJ4ywMfa9x9yZWayx+p7pxauQKaNew7LWe4HvbbX7XSVrfM65LHb2GTfGtazmfX6/cWd5Kfl6TJuwiprjD6v9Kxj4l5Wz+NkdhBAAAEEEAhBgcDneAxBFJaMAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCBQ8wQu7utWjm5Llthl6Hp3aCgtTKYj9xZrMvUkJzYs9qUZkuymGX/sc5rUq2N3V+j7zBXp8vaPG505R5sMQ+5tUFJTZ1cz/vhrs1e5Anq6tq4v9aNd+RI0y5P2adNsTLNW7bG2z+oeb73bfwzqUpCZSTNgLd5QUBqvoSm55h5oZY8NxLsGMWnZO7v9uGy3vVno/bvFBVmZ9MAZXQuMcnLzREvpadN19+/oOyDrNxO85au5Z2iaumin6Hy+2grzWbOzWXkfX7X1gOhr7faD3oesIK2L+iTIWT1cz3RjeskCpApNRgcCCCCAAAJBKuD6DiRIF8iyEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEKgMgUFdmooGH2mZtlembpBtewuyK43o17LQ5Xu1iytR2a9vF+6UJz9bbZ1/7+VJckFKQfBUoQnL2bFjX45MnLtNJvyy1ZlJMyYNPxWsZXcO7REvL08pKLk3ZeEu6d6mgfxuQCv7sPW+1ZRN+9sHy52+i/smONv2hgb/rNl2UH4+VWpN+/t3cgURFexrYFOq5fnJrIJ1DTVBOO4l/XRcINsFKc1lXup+6xJPfLpaOibEFioB+OPS3fKpm9s5JiOStujIMIlvUMcqUZeVnWveC2dD+mb+Dvl+qavsn3XiqT8S4qKd8/WzNP7zVfLYtcnuQ2TvwVx54H2XtcdBs/PspFTLWfsfvLKbDO/n+fk5cTJf9NnbrWvrBvYm7wgggAACCFQLAQKbqsVj5CYQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQTKKxBlyqed36e5fPXbDo8ybEO8MhGV9zplPX/55gPyzNepzun5plzcXlMGTQNbvDP+aEalv13RvVAQUUtTZu2Wc9s7WZ3+9cVamb06w5SNa2LKx4XLMlPObPoyV6COlpcb2d8z8EkX0K9jnLz5vbMUKyCsS6uCLE52b6sm0aIZq+zye9rvq5SbPT4Q7+f1SpCv5+2QZZsOWNP/4ZWFMtgEV6WYwLQTefny27q9MnvVXufSV57R2gQ/uUrIaTakz3/dZh2/5YV5MsIEFvVu39AEJB2Thev3y49uVs4kpzY0gGv8jb3klv/Ms3p0rFoMNp+n5g0jZeUWExi2Yo9o0JS/duUZreTxTwoC4zRAToPOerZrYM43rnuPyDs/b3KevWanahhT299U9COAAAIIIBCSAgQ2heRjY9EIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAKBELggJcEKbLLnvsAEOsVEhdu7VfquATAT5xQE2RS1kFGDWssfh3eySpX5Gjfm7EQTYHPElNorKM0215RS05d3a20Ck8Zd11Miwk2EjlfrZjID2dmt9JAGC4WHFR53lskQ9fGsLc7ZKR09szo5BwK0EWbW9Ni1veS+d5dYZeU0G5fet33v7pfVIKaxF3Vy75Krzmgjc9fstQKS1P+/Mzabl8cQuePCjvLa1DTPzlN7SSYw7LHRPeSRj1daPZrlSl/uTZ0v6NPCBIptcO+2toclNzeBZ3udzFh6fZlRaJh0MMFYd4/sWvgAPQgggAACCIS4AIFNIf4AWT4CCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggEDFCSS3beiRZegiH2XYSnM192CfyIjSB0hpYE5xTQNjWjWJMVmUGsm5JkNRk/qRRZ5SOzxMHr6qhwzo3Eg++WWbFfDjfoIGLF0zpK1cdWYbia3j+8eJel8DTak7uxTdoCQtO1e4aRYhO7ApObGh3/kKn1m4p3YRFrZzpFm7d2tqPF4Ze5p8OnurTDAv7wxJic3qyjXmXoef1kLCvOrkaYarN+4cIP/6crXMM8FfGhhlN72fP1/S2dp9bardW/j93N7Nrc43f3CVN7RHXT24jdx0TnvjWBBkpv2REWH2YWv7Hya47Iyuu+QjEyDmnZlLn/2QHs3klvPaS5Tbec4EbCCAAAIIIBDiArVyc3PzQ/weWD4CCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggEAQC6SmpkpSUlIQr7BmLy3ryHHZe+ComMps0iAm0gqMsgOFqptMnrnJfYdyJfNwQfm3pvXrSMO6tQuV7PN133mm9N/2vTmSeyJPmsXVKXWQlp6/79Bxycw+Jlr2sGWjGJ/ZsHxd2+47fjLPKj140txHy8YxpnygKwjKHsM7AggggAAC1UmAwKbq9DS5FwQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAgCAUIbArCh8KSEEAAAQQQQACBEBAghDcEHhJLRAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEECgpgkQ2FTTnjj3iwACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBACAgQ2BQCD4klIoAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCBQ0wQIbKppT5z7RQABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAgBAQIbAqBh8QSEUAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBCoaQIENtW0J879IoAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCAQAgIENoXAQ2KJCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgjUNAECm2raE+d+EUAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBAIAQECm0LgIbFEBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQRqmgCBTTXtiXO/CCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgiEgACBTSHwkFgiAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAI1TYDAppr2xLlfBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQRCQCAiBNbIEhFAoIIE9u3bJ9999501W9euXaVv374VNHPVTpOZmSlvv/22tYibb75ZGjVqVLULCrKrF+UzefJkycrKktq1a8vVV19dISs/duyYfPbZZ9ZcrVq1kqFDh5Z63m3btsnMmTOt8/r16yddunQp9RzlOSE/P1/WrFkjy5Ytk3Xr1lk+1113nbRt27Y801bJuT///LPs3LnTurY+Y33W1bkF4jNdmV6BfF4V8XezMi2q8lpVbXX8ZJ6czMuXOrXDq5Kh0q+9etsB2ZJxxLrumV2bSGx01f97lWe+Hhw+ekLqRkVIWFitYk2On8iTH5enW+OaNagjfTrEFXtOMA6YtmSXmI+g1DfP4AzzLEKpVcTnyN8c+vfyx2W7ZePubBner6W0aRoTSjSstZoLLFiwQFJTU627HD58uMTFhea/P8H8mA7lHJdJ8wu+r77ktBZSP6bqv04Fs5e/tanjup2HZN2OQ5Jtvsbqv6UXpCT4G17ifvMl2/qaHVMnXMJqFf81u8QTMxABBEotYH3/XIcfO5QajhMQQAABBBBAAAEEEEDArwD/heGXhgMIuAT+/ve/WwFBmzdvllWrVknz5s1dB/1s/eMf/5D09IIfbHkPiYyMtObQoI+ePXtKjx49vIcEZF+DRW655RZr7vvuu6/aBDY98sgj8uqrr1r3pff43HPPBcQvVCctykePrVixQmJjYysssOnw4cPO52zUqFFlCmxavny5M8cLL7xQqYFNGtR0zz33yIsvvujxyPv06ROSgU0vvfSSfPPNN9a9jBw5stoHNgXiM+3xQQjwTiCfV0X83Qzw7QfN9JVtdeJkvvyyeo9MXrBTNpiAiYwDxyyL1uYHfT3aNJAurepL/06Nq30Qxc8mIOjjWVute3//LwOrLLBp7faDMnHuNlmx5YBsOxVopYtq2iBKzu7ZTC7skyCdW8Ra6/T+Iyf3pIybsMrqHtYzPmQDmx7/pOAeurauX6rAprd/3Chv/bDRuv/fDWzpzSP1zA+44hvWkQGdG0urxoEJCqqIz5G/OWau3CO2zcxVGfLxPYOkMn52rq77DhX8u+CNWjs8TBrXj5J48/nsmBArHZrX8x7Cfg0R+Pzzz+XZZ5+17nbx4sVBFdikgSyvT9tgAiZN5Imf1qJRtHRr3cD697VukP4wXO/hi7nbrTtIzzoqd1+a5Odu6PYnsCn9sNz+0nw5cuykM6Rzy9gyBzat2JIlX/22XVZtO+jxNVs/T0mtYuXSAa2krwkyrsmBTnwNcT5qIblx4LD59/P7NPM53yGDuzeV8WN6+b2PN3/YIJnZudbxO0d0LvKXJL5ZsEP0e15tF/dtId3Nf3P4a6k7Dpqgzh3WYf3vkktOK/w9nv5dnL9uvzXn0k2Z1t/xuHq1pVe7OOu/ZYYlxwfsez9/66YfAQQQQAABBBBAAAEEqpcAgU3V63lyNwEQWLlypTz99NPOzJqJ5s4773T2/W289tprsmfPHn+HPfo1I43OOXr0aI/+UNrR/3m+ZcsWa8kjRoyo1OCJjRsLfoCmF09LSwsltkpZKz6lY9YgOe+gpuTkZImJCcwPYEu3OkYj4F9g6tSpkpOTI/Xr15dzzjnH/0COBJWAZoZ58IPlTjCT++I0qEZf3y3aZXX/7YpuMsJkiKAFRkCzRjz28UqZs3avzwtowNmEX7Zar7+YH2ZfMai1z3E1ufMLExBmN/0BXFHtwj7N5W9XdJeI8NDJqrFzf45zS/p3M9dk6IqqHfjq7uqamX3cuXZRGxqMdtUZbeT8lOJ/EaOoeYo6pj/g3LX/qDXkzG5NQ+oZFnVfemxu6l45lpsndaMj5LSOwZMFduvWrbJo0SJr+QMHDpSEhPJntynOoiKPHzxywgkIKsm8+u/DA+ZrngbuBVPbsc/1b8D2vQUZBitifdX575S7j2Y19A5q0gCksgS67j14TP7+4XJZsfmA+yWcbf33Wl/Tl++RxGZ15akbe5XpOs6EIbzB15AQfnhm6T+vSLeCmvQufjFB1akm01mSCQb01VaaoPwF6/dbh87p1Vz6tPefuU8D0e1fptDAv6ICm2aYwG77+7o/jajrcWmNV/1o1mZ5eUrh/xen37vMWLHHer36XZr191C/b6AhgAACCCCAAAIIIIAAAmURILCpLGqcU6MEPv74Y4/7fffdd0sU2ORxUjE7CxculBtvvFG+//57K6Cibl3P/1FQzOlBcfjuu++WOXPmWGvRTFWVWfrg/vvvl/Xr11vX1kxUNE8BfDw9itv78ccfnSFPPPGEjB07VurVI/uBg8JGUApoQJNm5NKWkpIi8+bNC8p1sihPgVnmhxN/e3+ZR6dmaeqYUE9iTOmz3Zk5sigt0zn+z89Xy3Lz29CaIaKmlalzEAK0odlw/vLWEtmwK9u5QkxUuPQ2v2Xe0Py2eZrp15I5dnv261Tzg6WDcs/vuvAsbJRSvk9dvFuOmR9yP3pNcsgExmi2rtlrMqzPyf9c1LFSgppKySprTNaSxz5ZKfPW7ZV7L+sq0ZEVX9Ly2UmpTjDB1EeHVFl2tdLaFDf+2PE8ufftpdYwzSDzzp8GFHdKpR1/7733RDMCa/vqq69CLrCptFD670OWyVIy7vqeAfkMl3Y99vgxZyfKtlMBTTcMS7S7y/1eXf9OecNs2nPYydSk3+88YZ5vWbLM6dfku95c5BHwqV+zeyY2NNnr6si+7GOyeusB5/hmkyXq5ufnyTO3pkhy24bey2LfTYCvIW4YQbJpZ0qyl6Plgv0FNvU3GTHtwKblm7P8BjZtNcHZdlCTzvvL6gzre1r7Gt7v7v890rejK1gqz5TofcT8UoBmurSb/l3UICnN0Lk147Dz/YIev/+9ZTLWfP90/dBEezjvCCCAAAIIIIAAAggggECJBQhsKjEVA2uiwIkTJ0T/J7J707JdWiZLS8iVtOXmFqSCtsdnZ2fL7t27ZebMmfLyyy9bpcD02IcffiiZmZny5ZdfmrIWofPb6/Z9VdX74MGDJTU1taouH/TXxad0j8g9IOT3v/+9hGKgYenumNEIIFAVAtv3HfEIatJsAhqw1LeDZ4YQLd/zpSmx8trUDdYyvzXl6hLi6sjN57SvimVX22s+9cUaj6CmP5nyHSMHtPT4gfrR4yflze83OOXypiwsyKT10JXdq61LeW7s16fO9ThdM3XsyjwqPyzdLVoWR5tm0oiJWiMPXtHNY2yw7jSpHyWvjj1NNDtBVX2r7u2q5Q81c8mSjZny+ZxtzudYA0M0S87TN/WusrUG63NkXVUrcFaPpvLPGzxLKZ00Pxzfc6Dg3wf7691vqfvkX1+ukf+9unLKtpdERYNdP7v/jJIMZYwPgbRdrgDhC0xWubIENenXYg0Kd89i98CoriZLXYJHsKmW+Z2xMl2emrjGCqbS0nd63kemhGj9mNo+VlczuvgaElrPWUs3ugfW6+q/MSXhNDjIV0a7fm6ZBhdv2C83nd3O5w0vMsfcmwY5abBTGxNw6N30784qEyioTYOW2ruVvJ25ao9HUJMGfV97VlsJD3P9/8zsnBPyzKS1Ms18X6LtFZO5SbM2JcaH3i90WjfAHwgggAACCCCAAAIIIFBlAsGV17vKGLgwAr4Fpk+f7pSTu/DCC51B3lmcnAMl3NDsLx07dpRbb71VFixYIA8//LBz5pQpU+Stt95y9tlAAIHKFbBLSA4YMICgpsql52oI1BiBPBMVMd78oM1u+lvNr47tVyioSY/HRteWMcPayT+uS7aHy0czt4gGM9AqRkBLZPy62lV+7t+39JarB7fxCGrSK2mWrD8O72wyiLiehQY3rd1+sGIWUs1nqR0RZv3A7Nbz2suzJmuG3TRYL8ME5oRSq6qgJl9GmpGpdZMYGdm/pbz75wGivnbTsoremR7sY7wjEEwC+kPwhLho6+udBuPZTX8Qnpnt+UtC9jHeQ0/ggMnCZbfurRvYm6V6f+enTVaJOT1Jgyz+P3tnAS9HrbbxfPWWuntP3V2oQIUCBYpbkRa9WHF3KW4Xv8AFbnEp7lagSEtb6u5u1N2FL//seWezc2b27J7d0/a0efvbZiaTSTJPMsmcyTPP+7oe907Q45/fLShuTo/Urrg4XqFUYVMGZKgXvo0oPSdV6AGc2M0h+3fj/jg+QqKnlh0bljOVhWj018xYYpJcRT1NOuK+wFBZwmVukOF21W9+spMcx222WLdmFRVu68R+tpSaLulVV/XrnhFDaiJdce3aFYJq50bl5TT1m3Zt58wh4BBwCDgEHAIOAYeAQ8Ah4BBwCCSLgFNsShaxAyA97mpQBEJ5aMmSJapGjRqqZcuW6uSTT1aFChVSgwcPVosWLTJX2rdvXxPHDukh4WCnnHKKKlWqlJo+fboaPny4+ZUoUUI1atRIHX300ap27eCvgszJ+j8UjCDwjB8/Xi1YsMCUQT26dOmiunfvHqhWtHLlSvXVV1+ZLDp16qQaN26s5syZY1SPhg0bpipWrKjatGlj6lagQLRro4rE8ZkzZ6qaNWuqDh06KM4vVy7yUkDqFBSioCT21FNPGVWgefPmqVdeeUXdf//9qmDB1L/0y5cvnyE2gcljjz1misN12HnnnedhL3VIJJwyZYrBae7cuQbHJk2aKEhZDRs2TOR0hUrViBEj1NSpU9XkyZPV9u3bTf9AoYp+QjuLbdiwQX388cdmd9my6AuXd955xyOE0K/Klo1Vn1i/fr3pM5TBjzxxndS8eXPzs9tPyooX0rZDhw41SY477jhVuXLlLMlRdBo7dqwaN26coi81bdpUNWvWzPQF+nJOTRS8wH3p0qWmX4JTq1atYurBse+//94UQ18/6qijQovkvvzhhx/McepInxVLpn3knETwkbRBYaLXGHSuxNG/v/jiCzVhwgS1cOFCVa1aNaN6xlhSpEgRSZZ0yLUxLnBfooQGtm3btlW9e/dO6v6k/WylJipC3xw4cKCpE/fp2WefrQoXjrwUl4oyBn355ZdmHFu1apWqWrWqIS3S7xmTgoy2pY25bvLkPmKM+vXXX42S2yWXXKJQ2UrUZEwHW+7DWrVqmf6HW7JEx6hkxuQ9e/YoXHJi5cuX99yfmYjM/7Zt26bee+89s0d9evbsaR8222vWrDGuVNhh7OaeCRrnwYox6Y8//lBcK/NM586dFcSznFoy1xtUxuLFi818SL+hD2ZkZJjxkTGsQYMGQad4celoLy8zvSH3N9ckBmbSd+lnZ511lqIPBxn9lr5PH1y9erXBlTGHOTZ//shLcfs8VAx3795trvmII44w4x59l7mWOjz88MNZ3OPgppQ0zPekqV69urn/jz/+eFW0aFE7e7O9ZcsW9cEHH5htsKWcIKO+jCsY/YFx3W/0159//tm4Sp0/f755diEd92iFChVinm0YlxlDwixZrMLyIR43H+PmRF3M3Xd2s2xdOR3RopJiEQIiDQsa349dpk7pWD2wGNSg/tBu7lDHWb95h0JlpromPnTXixFlihcKPMeORCUKss8C7T5i1cYdqkSRAqqyVonq0jixr6tX63OGTFpuvvzetG2nIV3g+kW+Iv9m9FKF64qShxRU3ZoGj5V2ffzbY7UyzXj9W6Zd9aFwWVm7uiBvXNDkxD4YusA7rW/3WqpTw+jCi3fA2ujRvJLq0mSZR4biWhtVL2mlyH4zJxjjUmSBduODdW9eMbTP/DVztVq+bpsqVDCfOqpV5ZgFKKnZGk0UwG0IX+dvpo0qHGLwa1OnjCTJ1RBXKai2/D55pSmH9qSuGPXavG2XqX8vrcARZt+OWarHo39UJd3+5BfPUDzANRshVq1cUXV4k4qqtlZKS8aol7hbaajbvEHV6HOxnY+/fauVLardxkTScy/llrHYeNGRdcxC5ttD5ptiXvhmpjquXZVAZYdN+nomafeW4DJv+Sa9GFrAuLepW7mEcYlpKy7Y1756Q3TO+W7MMo8EyIKnXwllhe6LU/WYN1fnv1C78EJxrn4V8i8RqAxhY4OLSMbLmUs3mnOr63arU6m4apbp4sZO699ev2WnaSvchq3WxLlyehxEHaJHwL3DfTBh3lq1U/cnsZVaPQhVDCzoXkJhCHeUs5ZuMqGG3qhYoEDDeGdjJ3nmJOSDGp4dxowZ452O+3LUf7Gw+Y9j/N3A33P8vf7XX3+Zv9FJzzyfndtw/gbkGVee3UuXLq0y9JzM/FmnTpQ8Rznpti6Ny6vGNUqatifv+XrcC5q7kmljfx1xO4iaDy7NIFZW0sSX+vp+pg+jgiLjKOcd0zZ6/0hfIb6znhPLlcg6pybab5O9p2TurKLHE+Y86o0iy1j9PLFr9x6FUsqI6aupmpkbe7erqkOzm+U/CNbkp3SXh3TAvJaM7dTl/Tltlbk3cZtbQGPGWNyydmnt+qpslnK/088suzTBYnKm6gtl/aTHeuYqrK52wdskAaITak3vZI5tnHerVmoKG4c5jlUvV0zddWZTde2rY80+ZNrLj6mnylrPQ35seUYZpomhEJeXrNlq0jL29GxZyRvvTGYh/yX7nEI/nJZJHmF+P0Q/dzHfT1qw3ozRjM2MX4fqua6qbv/csv1xDklmnkoWF/9cncjz7t5sK+YZmYfKaLfIuD8+47Fh5jK/G7tUP5dnfV7Np0mihzet4KkjMU/53S+ioCmEfvrTUt3HsZH6+THobwueP8Xa1499t8eYKGYTlyTODs/Vz9izMlXbwghXdnq37RBwCDgEHAIOAYeAQ8Ah4BBwCDgE/AhE2R/+I27/gEQAYgcLdxs3bsxyffXr1zeu0F5++WWPQHT66ad75BoWJW+88UZzHov3X3/9tSH4ZMlIRzz77LPqiiuuCDpkCE2XXnqpp4TkT0Q9Bg0aZEgn9jEWki+//HITBfEHYsQ111xjJzHbvKz95JNPzIL+hRdeaMrzJ4JwwPWgmhRm69at8xbm27VrZ9L269fPEJrAj4VSW8UpLJ9E4++44w714YcfGoIG+aMW1atXr0RPN+nAg/bz280336yuu+461adPH/+hmH1IGqhIsQgdZGAOOUdIUiwqS5vY6aWfEFepUiVDMpHj4Hb++eeHtv+RRx5pFrRLlkx8gZAX9VIPSFVnnnmmFKd27typ7rzzTvXMM894cfYGfQHcIUokY5BR6Ifx1LUgfUEuwSAXSB0hci1fvlyFEbggJDzwwAPmvH//+98esSnZ9jEZ6P/i4SNpgsJkrzEoD+IgREKShHzkN/omizMQ8JIxyApXXnllKP60K31N+mp2eUOMu/rqq2OScR9Km3GAsQWyB8YxyhfyhYm0/rv3lIJ2AABAAElEQVTqqqvUbbfdpu69994s5BCIkULSZGyBtCEqUWTRrVu3hIlNkM6OPfbYmPOlGoylb731luyGhpBMkxmTIcjQL2fNinztDAnF35dZQBPsGDeC2p4xTtIwZ0Bs8o/zEPsYd4PsX//6l3ryySdVsWJZ5fKD0ktcstcr5xHS71566SV1/fXX29Ex27fccouZJ4KIROlor5jC9A73l+Aox+hPdhx9JGgBk3aiv9n2+uuvm13GUUhMfnITxDuMvguJCTKzbYyLVapEiAizZ89W5557riGU2mlkm7GQ++G0006TKBPa9x6krDBiE4RRuU7mnUceeSQmH1y7Mk9DaPUb9ydtCZlO2pMF3DBiU06w8pdp7/9qfaXct0dGwotUfbtnGLISef2duRho5wvh6XHttmfwuMiCt32M7Sc/m67OOyJDXXJUXU12y7raiXutt3+d57m985//4rezzWLJnWc0CSXVsABjq1HZebDgcVefpurhj6aaaBaukyE2sYh948Bx3mK3nff/Bs9VreuWUU9opQ/UBxI1XHhNmh/9Er1f99oJnfovjeGS1ZGFoL81gSxRSwVjCDUfDVtkimqhF49R8wqyL0ctMS7eOAbm/nSQ4h4YNCXoVKMGcLduo71hqHUIsQkXVGKvaHd/i/RCGYoD8YhNT38xw5D8WBB/K4TYxKLgs1/NVB8OXSjZeyHurs7oUkNdd2JDLy67jXVabUT698kdq6mbT4k8F9jnsUAufdyOl23UwK48rn7aiC+Srx3iqvLnCcvNYiXjAqoNovQg6UbNXqMGvD8pxp2THCNk8fKhvi3MAjv73H9y7eyLga9Y2RKFvYVWiBOfDl+saKcwY/y7TCs82OoPkvaHccvU/R8E91PS3HJqY3WSdhcZZPHGIdxSoYAHWVQMNQr/taHsYsfZ9xIKQvdq7MA1yCB33HdWM1VREz1SNZ6V7edE8sOVuVjQ/McxSE0Q6IUALOklhNDcvn172Y0Jebbg4wN/uSRi/gwrMyaTFHcgiEFqw4IUm5JtY7s6LPRf9d8xZvyw49muod0w3X9Oc/WpdgELQRijr4jLpylWXxlwTn6jCGQSZf6XTL9N9p6ScYW5s/+x9dXVr0TJbhTfT6s7fqHnYMGtftXihlBp10+2p2nCzqMfTzO73OvJEJtQgnv4oymhYwcYMnbYbuae+nx6FrwhGPHDjtSEoQEa9+xs1Kw1XhJw6NmisrcfbwMiGPcwdceGTVupTmgfHT9sbCGb3/f+ZA9HO99nv5qhnrywtSFw2fGyndPnFAhqMpaW1yS7oVNXqs9HRIiVkreEN5zcUJ3WKZyIL+lSCfeHOYT6JztPJXrNqTyL7c22giAnLheP1/0VEhLzy4R568xz3oZTdmYhE4NBh/rlPGITaf3EJptgyLPMME1SJB1jHqQnFDZtG62fF8T8LrPL63l/jibmYeuyUdfDlefndyT+AZeU6UKHgEPAIeAQcAg4BBwCDgGHgEPAISAIxP61IrEuPCARYMEYkgULhkHGIjXqCaTLzli4ZDFSzK9Mcu211xr1BjkuIV+c8pWn/ZLUVgAiHfVAvWP06NFyWpYQIoSQmvznozwB4eCiiy7ySE2ksdNRfvfu3RWLnmHGAqeYLKxD9BKDQJNOQ7VCyiFfIT4kWgbEHT+pyb5mjkOyCDNUdCBt2KQmzoeUIIYKCAQgFucxFrz92BIvcYSogImhFOYnYdB37P7z008/qR49eoT2U8kr0ZAFc5vUhKIKC/Ji0hdE8Uni44WolaCo4yc1+ZXK6C+iWoNqlSzecw/aOPvLssky0udy0j7+fJPZz8k1BuWPchjEgiBiC+nBn4UT1HuSMfqyH3/6mxj5Mt5BWkjEIJ5Jv7XTSxyhEDwg8jB+2O3EOXb57D/66KMx9zRxfmPBibrmxFCP4RrDzmcsPemkkxQqNWGW0zFZCHvkO3HixCzZQyoTY9xAVchvKDCJBRFXPv300xj87LGI81577TWFkl4yltPrlTJuuukmjwQjcdz3dts//vjjgcTedLSXlGmHjLHST+14iSNE0cZvKJIx54v58YXwyVweZoxJMqYFpSF/yIB+UpGNFWMh94D9PBGUV07iUIaCFBVWPmVDuBR1vHhlpIpVUN6oIYn10OoQiVotrarzwqVtze8KrTZgGyoGl780KgupSdxRSNq3fpmvF+Qny25M+IQmRUH2sM1/PoseFz33l+Ird7+hcGETAThun8+C4oCQsv15+fdZaLn9rQmBC42SFhWs+wdNNmpQEpddaLvdgCCDckUihkLEuzd0Mr9EFmMlz1QxlnxyGqLO4yc12W00YsZqdc97kee8nJaR6Hm4CRLT/KNcsZe/mx1DarKvlQIhin38Z4Qslo4KDNWL5bJALvn5yxz0x0J18+vjFfdsbhkumY7VKjNif0yNjjnEMQZd9+pYb8GUONQg+IlBILji5dEeGQHyEdfivx6JIyxotelzmvDkJzWxKGufj/IKRCO/vavdbdqkJs6DuGjb459OU28NmWdHmW2U7eKNQyS6+91JRgVFToa0ItchcYQSR/h/+h+GK61+Tw+PITU1zyhlCDEmgf6PBeJznxquNm3dJVE5DvlIxJ47ycie48MI3nzUIqQm0tt/b5EHz+fMb35jfveTmvzlQ3CHlJ6btlarDYqVtpR1iMtJG0teKIhBkIXwF2SQKm/431hPSSgoTVhcsv022XtKykUh6dY3x8tuTIhKk5hNopY4CX+3CNbHtY2eI8fDwh81cZrxS8gWpLPvafbB8LynRyjIU2KlDymUJZ19f6FQlIgNzyQmkRYyVMAjbmg2qC2JQeQIMu7vm/T1CTnMn4Z+c9Pr41QQoTldzykvfDMrhtRkj8vU56nPtRK1Jrzkpu0Pc0hO5qlEMUnXs1hut9UPmoguRn/HjmkTnduHWH9PSDpCW31zXEBfsYlKqIAd3qSCdzrkTdt4VmFOwzK0yiUqsLa1qlPa233265k5Gju9DNyGQ8Ah4BBwCDgEHAIOAYeAQ8Ah4BDIBgFHbMoGoAPl8ObNm80CtyyAQ+yAHIQiC4v0LDCfcMIJZoHcvwgYhMG0adOMlD3nkTdkKIgLqO2I3X777bJpQtKg1CMGYYMvRVGuwTUZi4s24YS0uDMKMurIC1YWzzmfa2ARVoyXuN988415gQthheuG4ABpRow4v+spOUYorpbYhoyF4QIJYgxGefGIUSZRkv/hRk0MQkiihvtAVELE7rnnHkUboaiE6x/5qpc2D7Pnn3/eOwSxCLICmNGu8oKbBCwGC6ED136Uwc9WPEKlQ+LF5do/+rO4Bx980CsDhQwIF/QLfhDZUJjBIE7RN1I1FI7E/RvkA/oNbhwgFVE/W1nKvv7sykXxBXwxFglwwQQuuLujL9sEMvulv01cg+QVZFy7KOHQH0T5xK5fou0TlH+icTm9Rn/+YA42XAsqadyrqKFB3BP1I/oYBAO+LE/EUJERt42MAxBgII3QX2lfxjKMfM8444zQccQui/FG+qzE06cljlBcjN13330euY+0b7/9tunDpKEPSN04hmqXkNvY9xvtTTnfffedGcvACqJHdoYSGekgDWFgyZgHtozJqCGhpMM4J0REf56pjMk2ESnoXvUTM22ik9SDcQuDUBOkrCX3AWQksKU9uT4W6sRwCcqxRCyV6yV/3Py98MILXlHMEeBLm9P/UAoUQ/XInh/S0V6Stz+kj4MB1yeGa0/i5If7GL8xhtHfGKO4NvDl/rT7L4Qj6WP+87l2zkc5i2cBnicoDyVE7mXiOY4xb0r/5DxU5HC3KobCWRD5TY7nJISUxX2AMU4wb+G2hzpyT6A4gckcYXZC/ksVK3+2e/b847l8YFGvQbUS/iQ52n/1hzneF9NkgOLA13d3VYPv76E+urWLuqp3ZI7lGMo/qErYhjrAFyMjYwrx/zq6jvrg5s7m/G/v7aYe7NvcW5TEZQWLObbhyur6/43zonB99fq1h6ofBnRXPz3QQz15USuz8I+bi2SNL+sf0yQGWVhBpeHl/u3Ubw/3VL8+dIR68fJ2nuoVCkAvfT874SLEDQ4nZOfOJuFMQxKminFItglHo4oEOUwMFZJXr2qvfrivu/pRt9Nj57dUFbRSRJgKjZyXrnCWdi8mVlGXmxsm/e220xqrL+483PRn+vXFR9XxioN8YxPcvANJbkzRLpZufSOKb78eGeq9mzqZMj/XZd92emOPOES9xKVdksUknNx2USPqYpzM/TTw5+jfGWd3ramo39d3dzO/N6871CPpoMIwYX5kAR0Xeown/CDyiH16+2FevLgExBWXqIuR7p6zmpp+xlj044Ae6lHd18S+1ootNlESpaf3f58vh9Uj57U0YxikTu551JbEcLcHmUAMF0E3DRwvu+qaExp47U49Lzwyqsh2gx6vxP0OhAeuCwzEGJvlegmF9Dhs+kqP1IECzHd6fHz5ivbqg5s6m7JQ08AgQPwwPnaclbyTCXm2Ze66++67vdN49pQ53o73EugN/t7heYC/sZh7eU7g7zviMOZo+RvRROj/+DtG3gkQd8EFFxhXdDzn8De3/WEPSlLM7blh9B/bXWt1TWwTy2kbc/7WHZqU8kaUlMNc8rzuV0P0PPL7Iz3VK1e2N6qEkHZmLomOT1J2vDAn/TaZe8oum/rRv1Aso87Unz5ao3wxdYTlUg43kdzvfqOuP1jKjritSsQghQ34IEqMljnkez2H/PLgEeq5S9sYF4KSF2nF3RT3PnW0n0Ue1ve23GMosCVics+SVtzbJnIeadpY5Eg7H/t84iFmNdXuLp+9pI3BlueM5y9r66k0gf0tmlhmk1PBOV3PKfP18xRkTtqWMY9x6bM7DjMqelLXF7+NfQaT+HSG+3IOAc+czFOJXH86n8Vys61wVck9jKGChvtWrKt1v36lFTqDDLVAzsEgrO/aHTsQiHIZpDlcz8rcTXqb9MQ+7hjF7D4hcR0t983g0VeTep/TBCeeifibx5lDwCHgEHAIOAQcAg4Bh4BDwCHgEEgnAo7YlE409+O8IF7I4jZEDBZgURxBpQQXQqgq8ILUJhbFuxwWCVkM5LyCBQuapCxO22QgXqKymCtmqwlRDu62kL+nfNSKIGtQL/malEVt/+K45EUISQfVHM7nB/nooYcespMYIkWHDh2M0gpugbp27RrzApcXxUEGqUgUfCBrCbmEtDY55fPPPw86PcdxtgscCEmJmn3dLBDfddddqm7duuZ06s4Cs//FtT9vSEYQIXiZDREDEpe4UqpcuXKMOo5NEPPnE7ZP/tSFMlDUwmUQLg3FWrRoEaPaYau5SJpkQ8g5YpAhmjaNulahD0OKoD2pEy6mUClKxFgU4Bx+kGo6deqkChcubE6lL+P6jv6MQewRggN9iXIxXIQFEXnky2rS2Av/ud0+lGdbTq/RzkO2IawxvkDg4V7ly3LcLHK/Cx70qREjRsgpoSGLMOIKi0Qoq6E6g+tC+isECnssY1EnHX1JKkRb2gpgEJdw8SjjFgQ6SHuQC8UGDBggm1lC3IDRT3v27GlchdGPwr68t09mfGJcx8AQohwkQs5lTO7SpYtxLepXEbPzSGVMJn8xCGu24R5MiH8S71fFgWAixCUhoklaO+S6UAWSfsL1Qbyx56rp06fbp4Rup3K9ZMp8Ifc9eZ1zzjlKCEMoInEdjCliNnE2He0l+aYzxJUfbmPLlStnsuX+pP/iPk5s/PjoArHESciiJnMLzwKiekYe3M+iukjbcZ9I/0T5DLeDYCjjJPnZ5E3JP6ch96mt6MY4feqppyqU8zCIdLSVKD8mUk6qWNll4KZEjIWHIBdMcjzREFLAB1oFRgwiwFGtKmsSRUQ1kQWys7vWiiFzvPZjlNjAeW/8Mk9OV7jKwg0Ji6RYqWIFjZsa8hWDjGC7D/tu7FI5pPj6+7bTmhiiENeHa7hOeuHjyQtbeeQoL3ECG2PnrvEWdyDePH5BK+NWA8Uf3GVAJPj3Ra29vN/Tai8sYCditupEPa3YlJuWKsap1o02k+tlQR+Xc020OzjcEqKWcZj+Yh9s94axUPb92KjLRL+blHTW4Y4zmqgTOlTzVAbo1xcdWUed2qm6V8ybVv/3IpPcePrLGd4ZEA4u16pqqKxhFbTCAW6PuC/EbOKPxKUzrGS5QbNdVy7Tai+4juE+PV274uuv3eJRPzEWT+84PVrP8QFqD5I2LETthPwjY0Fj41JQiEEorKAOcdkxkb9VyMN2izNr6Savn3ZvXjFmEZd7HjJF/+PqmbzpN8stN4ZPfh5Vf7pSkzn7HFbTa3fwwIUk14xBTsBtYLL2e6Z7Ms67TLdxST0+iqFkgQs63P5x7ai/7CvjGRDX8fyNJaqj/H1nuynGzaptzz33nPcM17t3bzPHQ57nOQeXtriplQ9cOA910nQbSjioCtI+GFjaLv1SaWOUS8RlEgv6kDkhuxTS80h+PQ5CZoEUzPiYrKXSb5Mti/R9u9cy7hipM/WHKM01lDqkoOK+wVau365mLo2SEkyk/o/xl2MYJORE3bd+ot3zidlzCOWi8IOLqkf1c4IoDEEQEnd+cl6q4UrtPlbMrxwj8WFhOT3uiS3TBKYwo/6PnNfCEKfAlucMFHBwryfXRj+CICOWzucU2hJSFW0ryoYVSxVR9+qxRYwx1k9WkWPpCvflHJKb81Q6n8Vys63+sPqXrcSG+hmkWox+sFDfZ0F2WONIGo7Z48Aa7S5OiJvdNRGSOblOpeJe3/armU2cv87Lvp2+x/3GRwGMpWKM3ShTXvqfUerw23/WCnjjjLri4tXB9ZTzXOgQcAg4BBwCDgGHgEPAIeAQcAg4BBJBwBGbEkHpAEgzduxY7yp4YWkTdeQAC8Y2MUnig0LUloIWzFnc5yWo2KJFi2TTLLLLDi9UWQT1G/WyFzdZjAwyvjRt27ZtlkMQl8RY+EY5wm/2gjhKG0E2aNAgL5rFa9ts1zsox6TTZNGVPFn4T8Qg44hbM8hlYS+YITexKB9mH330kXn5DdlEFrnttMWLFzeL18RB1gki5djp/dvycp0X7E8//bRHmrLTyRfExFFGqiZkI/JhcR7VKNsggLD4TZ24fnnpb6cJ2oa4xDn8IM4Fma1gJSQPXEZdfPHFJjkEHf9iAgdQp8EgA+C2Tyy320fKkTCn1yjn2yH3uxBT7HjuTwhuYkK+lP2g0FYd69+/vyHw+NMxltn5xiNm+M/Nbh9lJTHIH7ZLNoknRLHOVqQKuzZIftQ3WYN4JvbEE0+oOnXqyK4XlipVKmbxyjuQufHuu+96UcmOydQZFyYYxCabFPjLL794+VI3DPLW1q3RBQSbxBY2LjGe2fOJZMriGmQyMZSGErFUrpf8IdDJfY+r0yCDrCs2YUJUtSMd7SX5pjNkXggyG1/7+cGf9uqrr/ZHmX1bkQ53gUHPCxCg7GcOCLXJziuBhetIG3vGCQiEQcZ8KaTEoON2XKpY2XltsFy4CfHIPi7buHt56KMpoT/cMInJl9fsH9OmcgwRQNIQXnBEbeNGgm1UCVC+kG1xuwJxqP+x9U28/z/UEYQUwLGhU6OuXCYvWO8lv/PMJmaB1YvI3Kherpi69oSG/uhs93/TKkxi12oFlrKZhC2JI6ypv0yHvCU2e1liahu2u6OamSQUySOdIXininGq9Zm+JLrAfU+fZmYx3J8nC1SQRnLLULiATHL1K9GPC7o2q+ApbqW73C5Nyit7QdDO/5rjG3gLebSN7zHRTprtNouw0r4sfF93YnA/hzx2w8kNVb8eGYb4kigBL9sKBCQoWTRKuFltkQEgOj51cWvzu17XM4hcaSvJzUhSuYaqcJ1SBqSyIGusSXVitnqX7c5u/orNHsFF0hKe2y3Dy59xBVulr3HS/Mg4hFLFOdZ4YBJk/mePb9Jm9vHstnFbJxY0zkDCgWjJ9UOg21fGxxsVKmRV4oHcK39z8XyKWqOYTVqCuMxc7TeIwocddpiJhsRtf8jkTxu2P0kvlD+lldLs3yMfT1X9tevD0x4dGqPWdGmv6HiUahvbyiM3ntxI2UQXqWuRgvkV42OyltN+m2w5kv7Mw6LzncRJaLuhDHJH95vlhs52ayXnh4W2WyxINpB+/AbZ6KaTo+pLQyYv9ydJaR/VKLES1hgncfFCCFgQUTDIF2FqMhBQg/oGz2y3WaRPe9xK53MK5E3Gab9RPnOamK04KXHpDPflHJJb81S6n8Vys62+HRMl3tpKbLRxL/2sLzZ4fPB7w3b1Ih+ukE7mRrbHzllDYAziKAa56YgWkTwhPa3V5CexsdrNs1jzjNKyGRMy5z9zSRtP1cw+iEIlbq77PP6ncZmd22qVdtlu2yHgEHAIOAQcAg4Bh4BDwCHgEDjwEMj6purAu0Z3RRoB3L6IBRGC5BjKKhAQxH2MxPvDMDIH6TIyMrzkuKbBUE8QdzbkH0Q4kpPs+tmL33Kc0CaN2PF8SSpmE5gkjtBWCbLjZRvyi73Y6l9YR1WJl7kocEAowt2ZqCNJHjkN7YV/FGgSMcoX69ixo4I8E2bU2yaGhKUjHhzoB5s2bTIuhnBNYCuQxDs30WMsYlMGP/oKbqbEcvKSXM6VEDzEcA2FEheEBFRCUKFKp7EowDXw43psVSub9AFRThR/WPxHdUxs8uTJnooN6VB/CrO90T7+shO9Rv95LVtGv+DzH7PHkkTIbDbJAgKeTZ6084aIJ2afI3E5DWkjMbt/SZyEkOQYp4TUNnXqVM+NpaQhROkmJ2aTtWwM/XnJwpU/Ph1jMsQmlPvo71OmTDGKAJQjYwxj50knnaRQ9cEg8okLO1HEI96+B9gXC4vnOG4wxWSekf2gMB3XG5Tv9u3bvfGLethkRfu+T7W9gspONY6+EUaqq149qmKC65kg43khbBy1r9ee0/35QGaGwMbzAf0Il3i2cqE/faL79j0f7/5gwRZCNIpS8SxVrPx5o34kxiJtmEFC+Xb0srDDJl5ct8z5O0JQIrKZVjAJM5R5WujjuIrA5i3fpF1bFFeQB8Sa1YoqBEicHTbVZISPVYS4Lov6u7WrCXETBzEqaEFQ8mhaM7HnG0lPOGlB9PkAdZSwxbxDCkf/tEE9IxEVoGJaTUrMXsiRuHSFqWKcjnpM1W5BMBZ2IYKFWSK4hZ1rx1/43Eh71yyUiUqIHGit1VJyQiKQ87MLW2ZE/zbwp0WFg/sFRREWuSEnBS0m+88L2scVo1jL2hEFGNn3h6d1iigG+ePTvb/dctGGIlc84x7esn2X2rxtt9qsw01bd3nJd6XJlQwu48B5k3avQxmQW8TsIjIqHmL6KGkZq85/ZoQhVKL6htoWC7BBNssiM5bWqjVh44R9LmMLhLawPO20st2qTmnPjeADg6YYN4ZHtays3fOVTlj5RvLKzbBNmzah2UOIl+fuNWvWmOcB/tYTNU1O5O+0sOdsyPNiKGeKq3aJyy5EOe6TPyPzSFjajEqHqFu1e7KGlrvWVNsY10hijaqHz0X0M8ZJ+mCiltN+m2j+djqIe+VKhP/Nj1qY1B9XVpceXc/r4/R3cUMHCbO1Hq8SMZQhZfwmb1F0DDrXxtYmPQelTTYOtZot2yMfS2zTyozZjW12/ly73aY8EwVZE62UFGaNq0eP2aTPdD6noNQUZlXKRN8PMI7mpu1vc0g65ql0P4vlVlvxPCJugVFHq1Yu2u60eedGFbymxx3dhT1rG/VNL1JviFtU4sZo5VPUWLG/ZkWJTW3qlDVx/AfJScZlyEy4aGXeHpWZvn39snHnuPb64wd+uL4dPOFvo2jmJw9DsJo0f5Jaosn+/bpneGW7DYeAQ8Ah4BBwCDgEHAIOAYeAQ8AhkCgC8d9wJpqLS7ffIzBs2DCvjvaCsBeZuYESBm61ZGHaf1z27UVPiZMwaKF05crol/bxXrKSh523kKEkbwlt0oLE+cNE1Xf850GmshVA7AVSSWu/zEVhB9dv6bAVK1Z42dSqFf4VppdIb9hEi2bN4n9dmt1LZxaVcRH4888/e6747LLSsY07JxSxcE0lpI905BuUB64XcAkm7qFw3SXuu1iUh3Rx9tlnJ/0ynrK2bdumIEtBYEKxhkX5RAwXTCj5cO0ffvihevzxx72voW3Xhn6lMPLeG+1jX0NOr9HOA4Jh0NfekqZBgwaymRBxzlYye+CBBxS/7CydruhoAzFRZJJ9f2jfj3a97XSJjGV2etm2yarxiKIQHbnv/YpR6RiThaREnZhjuN9YBPvmm29MNSE2ZWiiK/caC2WMK3LO4MGDTRrIlvZ4aiIz/4s3BsYj/dl5yHY6rlfywl0kblIhddljthwPClNtr6A8U40LUvmSPA855BDZDA3D2o0T7Lmb9o9nPBNIevBMB7HJJlY1adIkXvFGtSI7YlOqWPkrwKKcLDjipgXFgKDFtUra7Yi4PLHzEFdidpytxsLiajyrq4lMYms2Rr7IlpD4upWjxyWdHbLYLLZqY4SYtWhVVPEjOxc+OVFFWmm5mrrmlbFSfNzQVieKl7CstThsE8TinZOTY6linJMy7XNW67aSvtMwzoI+52TXh+x8422Lq5OwNJCantCu7xJ1gxSWT7z4OpWj/TUoHcQ+cZVE++eU2AS+Yrnt0lDKyS60+1zlMlmVclGvQelhhFZTELJjdnkme/y3KSvM4ubw6au8/pddHoyHuHy6XruvwVDYeO6rmebH2NmtWUWtVlHFuIZCgUXMJiayeHrqI0PlUGgIySFZQtvx7aqpP6etUiNmrDb5QkAVEirj35F6MfhITXRK1k1WaCVzeCDe3/y2kip//2OrVq2KKSnRD3dQpczub8yYjBPYObxpBdMH7PbltFTb2HapVLl0LFHArhaQQPBEaSRRy2m/TTR/O13xbIiKqIqhlIY7KHFH17BahMjF3CgEpZMOrR74/GGXJdsyf7Cf3RxSsXRhOc0ry4tIcaNcyUJmTCAbXPsmQ2zarEmVYmFjPWNMkCqknAehTJ7hIMoJMTKdzym4nQuzItrl396y/WEOSfc8ZV9TTp53/djnVlv9NGG5VxTKWaNmR8lI3oHMDe7n8ZoojLtE23i2aluvjCFIjdNEJYhhjG1/TltpkgkBUs5pbZ3/16zVhtg0c2n0HRfpEzFIWCjE8kOlE3LTMF3mFyOXeMTCl7+bbe6zMEXNRMpxaRwCDgGHgEPAIeAQcAg4BBwCDoGDEwFHbDpI2r18+fIe8WLHjh3KdtHlh4CvNtNttsR9kCS+XV6+fPk8BQfiWSiPR4ywz03Htu2uiPxsd2BB+ePK7I477tAvBVN/yWQrVGWnLCV1sRfss8PWdnUn50sIOQc3e4kSdOS8REMUhl544QV14403JnpKWtJBOkMxiHbCHZYYRIsnn3zS/I488kiF64VEVbIWLFigzjzzTO9LZ8kz0RDVKFRsWMRH4UWUacQNHW6b/GpAud0+/rqneo2SX3Zunmwi5OLFi+W00DARdR7/yYmST/znBe2jYCYW5LJRjhEy7opt3hxVcpC4VEIhSrEwFeTW084bVRw/sSkdY3KjRo28sfr3339XV1xxhYIIKmMI9xV28sknK1zS4cbtoYceMgtnQmo87rjj7Krm2nY6rpc8cL329ttvJ13PVNsr6QJTPIHxOhWTe47+Ge95gzIqVarkFWW3kxeZgw17LLfv2aCscjKm2PnkFKvalYorUY6AHBS0MMKX1fJ1tZS5Q3853ePOiLtHlJHEtmjVAjFbEUri7NA+vlUvOGAsPIhBvIpn9vmifMAin5i9cChxdojCQrJmL6gmeu66zVE3GvHOsd0B2gs48c7JybFUMc5JmfY56zbv9HbLZNPG2S2aexlls8HX/X5jEbqKJtl0alResYgW5AbNf04q+9n1Z/v4Osv1SrJlcm+KlSoW/x6SdLkdTl4YVUSqUDK6UM4Q/9GwhepZTRbKLaO/P/nZdIVaTE6sg15Aff3aQ416xNejlnpZMOaQJz/GwGf+1cYj4sl45CVOcAMlGqXCSS7+bAprYsEj57VUqGSwUDsn06Un6VjA5ff817NU3+611OXH1PeUcvz57Mv9PXui/VXqIc9vsp9ouHp14uQfyRP3k4/0aym7Jhwyabm6651JZnuMXsTfqtu6eNHY11WptjH3u6j97Nq9R6HaFma229iwNP74nPRbfx7p2u/VurIhNpEf7uiE2GS7pjuqVeIKxvYclt0cwrjO/SkEKggVfpJaTq/TJgxCegkjKAXlP81yx1opgOzJObiSzM7KaXd7WzQxnf64fdduhfvC3HxOya4+uXV8X84huTVP2f3Ynv+DMAx63g1Kl+44rv1LPbeIQbDMjmT5/dhlWYhNnH9og/KG2ERfhbzNvSl91XZrSFqIUKg2QdqFiEQ9xs+LPke01WpMyRr3Bs96/M7umqHufneip/AK8dkRm5JF1KV3CDgEHAIOAYeAQ8Ah4BBwCDgEYt8UOTwOWARwiSQqRDNmzPBcBvkvGNLT6NGj/dEp79uEG1wWxTMWNkW9gUXRvUlqomwhl8Sro32MuuKSDuWRVA0FHzFRNpH9sBBygdjMmfEXKGz3AnIOIS+yjz76aC8KQkKfPn0UKhWQoVDmoC0g8wwZMsRLl8zGL7/8EkNquvjii41LOFRZSpcubUhFqNdkRxZJpkxJe8IJJyh+kAtoK9xgvfnmmx4BA9WlE088UUEeSsTOP/98j9SEGsnll1+uaAcW6FlQ5/fiiy96SlH+PMFR3HOJOzrbDd2FF16oF0GiX6Dvjfbx1zHVa5T8JkyYIJuBoa2AlIhbNpsE8fLLL5s+FJixFWljaUXnaNMuf/bs2app06ah+dj3Y3YEr9BMQg5A1qMf0zcgkcTL31avkezSNSZzX9EOqPyxSCYuGLkvMjIyTHGMLRCbIDNBXrP7RM+ePaVKuRqm43ohQgqpifHw2muvVagNQUKVMRICWRAZNtX2ylVwciFzyJk8cyTSP3HTKGaTASUuXgjxOchQinvllVfMIdok3vyMiuC+MFSPhNj0u3aDdXrnGglVg0U8MdvVi60usGj1FlUnjurSQr0YJyaLk7htErOPS5wd2upM5YpHCBwQs1CXYrGERf09ejUkjLCSE1UkFi5RbcHeuaGjKqwXSrKzRNKQB671xGZofFnIsaZgOZQlJB2uuzAWxwvFWSAnTaoYk4dtlB9mu3ZnPVi9XDEv+VztgjCeLdUuUNJhkE5y0xIhOSxcuVk1jqNQtcByw1grG7WzeNdS2iIz4eJxf7CfxkcVH9pZC5Kj56yJITWdqJVdUHXAxRFEElw6FtO/o+4ZkuPLeOfX+R6pCeIjJM1GWjEGsgPkNsqYrRdZr3s1XIGtQdUS6vbTm6jrTmxo3NZNWrBe/aLJL6IuBWnikhf+Uh/c3MW45bLvsaM0qePSo+smVP8KmqSQrHG/41KQ3wLdx1ACGjd3rfph7N9eVu/8usCMVRcdWceL25837DmY55xE3wnYruBTub7uzSqpxjUWmDmEe/ud3+ZrYli9mCxTbeMWGaW8uYR2q1elREz+srNTk56Yy3JiyfbbnJSRyDkQmXBZhzKkuKPjvB80AQJDXSwZdT4b++zmEMgjQmri/k8XqYl6t9Ku84ZMXMGmIV8c0SJKkDeRcf5DaU0szAUf4wtzaIH80b/F5RxCjoEpxrMJxA3Zzq3nFFPAPvhvX84huTVP2f04J8+7e6MZpi5a741TiZb3jSYAX6/nSr8Cpj334y5x167o82H7elkVmA5rUsEQm3ie5z4fr+c1jPs4VTVK1M7uO6uZOiVTTREVqTDV2kSv26VzCDgEHAIOAYeAQ8Ah4BBwCDgEDj4EHLHpIGlzFvlEiejLL78MJTbhWic3zH5RyuL29u3bQ1UcbDKALIznRp2C8vzuu+88sgtupt57772gZCaOYyzWY2Abb+HUJMrmP9w02YpCEAYSMdvdlU0YCDrXdltnH7dddUEusethp7Pbxo5PZJvrE7vtttsCST/z58+XJLkSVq5cWZ166qnm9/DDDyvcD6GehEF4gnRhu0IMqgSKZqQVQ6kmiIy1aNEiSZIlREEHpRpwhsxGP7Ld0J111lkx5+yN9rELTMc1Sn4Q/9atW2fIaxJnh6LcQ1zr1q3tQ4HbtKEYSiwQKPam2UpqkDRxZxhmNqGINk+nMaZDbMKmT58eSmziK3pRz7HLT9eYfNRRRxliEwQW2pIxFEOlScxWH4PgKG3OohmEn71h6bhecbFHfVF449r9tnx5dBHZPpZqe9l55YVt3N/YZOow4h1kOHs8FeKgrYDod41jX3/YOIvLTzHG1ksvvVQFuaflfCHjSfq9FbbXJAMWIbA3fp6rjm9f1Vsci1cHFs7F6lsLshUstyXz9KJct3DOpZq1bKNk4blKshUQ7ONeQmtjvkUEsZUNmmm3Pbj0YkF6/FztEkO7GQsyWy0i6HhQHGQIWTBEGQfFq3RZg2olPFIWdf918nLVo3n2C6WkE3WRHi0qqgfPbRG3SunA2HZZuEG74Akzm3wmaVCZwQ0h6jIs3IJjGBlLiCNy7t4OZRGc9ghT+khUkWuuJs/EM7u/xyMExsuDY/RRsRlLoveYxO3tELc1f2r3b2K49hIbpV3MiJ13RIa6rFcseYRjcr9JumTDYRaBALdyKNn4bY3lvs9/zN5noZbz+UESYhy8f9BkQ5ygj4ybu8a4fitbItoGkA6TUXKxy0t2u1aFQxS/E9pXU9ce31C9/es89f7vC002EEryIrGJ5zrm8qC5M1l8Ek0PobT/cfXV1f+NEI7fHjJfnXRoNUO4kzxSbePGmsj6fSb5DFJxGLFp+PToPSJlJxsm2m+TzTeZ9Cdp0uIL38wy9wqKhJCOhXCUrFKKEKEpnzlip55DwhSvbMJIFU3+Sacd1riCevqLGSZL2vKCnnVUjfJR4m5YWSs3bFcfDo3cl6Sxx0T/OYs1QTyM9MUxsaa1SsmmmQNk3Ez3c4pXyF7c2NdzSG7NU+l4FsvtZvhhXJQgCyn4+HZVQ4t84MMpStz+8gx+tCb12lZfP/dBSorMlWvVlm0R1VTmx5qa+Og3W2kT5SZ5juiqnyGCPljgI41Ph0feezFH92od/51HeetZiTrt0CTSIvki5EB/Xdy+Q8Ah4BBwCDgEHAIOAYeAQ8Ah4BAIQiBfUKSLO/AQQFVC7P7771dBBCZIL6effrokS2uIKxpbEWjQoEGh+b/zzjvesd69e3vbe2ND1Dgo66mnnjJqLCiyBP0g54jh5iwVFzos9KOQI3buuefGuOeR+KAQUk21atXMod9++02FKWLhsi6MqPXXX395WV922WXetr0BeUKUtOz4oO0gd4Y2OeeCCy4IOk3Z5KfABElGcl0jR45UQYocuO/q27dvDDEljPhlF2vndd555wWSmlist0kQ9vmy3a9fP7MJ6QR3dKIU1q1bN+Un9KW7faQOYWG6rlHyRx0rzN544w3vUCIkF1vJDMJCmGIL8ZBo+KVCyPMql7lhKwxBaAxzcwWpw1YAQzUvnWYTN15//fXQrMOOpWtMFjeKVID24H7DbNIPZeHmEmPuoU2wU045JS0uPE1m2fyX6vXSzuPGjTOlQNIRN3v+YoPmVtKk2l7+crLbT3Sszi6fnB7v1auXd2q8+/+rr77y0kH+EnepENEgvmETJ040amBeQmsjTEEQYrIYae69917Z9UJc0B1//PHe/t7e6KkVBiCZYHwVzQJudjZbE1JQQRFrWjO6oAZRSgx3FFtD3L2x6IaLHzHUK7DG1aN58QV1mOIMi3XkL2aX28yqz61vjlfL122TZF74nT530B/RhUXvQDYbuMYQYzE6zNZrd2uj9fXxW5OgWzEWak7Qi79iuOdaH4c0RDrUPF78dracok7UhIbsLB0Y24u3QeQl6sDibRgxyVYu+tFaOLPrzsI37rX2pdXWimZislAs+xJCnkvEWCAMI4HN1iS/SfPXm2xY5EvFBR/YsniIsdA3RSsuBBn35oXPjTRqSCc//IdR/whKl0oc5MYB70/ysjimTWVlq7rZ2B3fLrjvcg8lav77hWuUhVaU3NrXj96/dp7D9aJpkKGkYzDUONpug0gL+QXSZL8eGewam5XpCq6JVqARYxxbvXGH7GYJUcTgGkU5L0sCHbFyfdYxjGuTugXdg6W0+h3u56Qv0H+zc88ZVHZ2cfFIv9mdG3acv43s5xv7OdZ/zpw5c8zzHHMsis/psjbaXVFn7aZS7L8/zJFNE6baxg01kVXsf4PnquEzouQ/iUdV8Pa3JshuwmFO+21QAf57KihNInFHWq7mIOPaxOIjEiDw2mVAYjrUIigOnhAlX9jp2IbQJ9alcbQ9JS6VsLJ2IdfaIk4/8dk0Q7KKlycE2ae+mO4lQTXTJod7BzI3vvwrfA78dkyElE5S1LnEcvM5RcrYW+G+nkO4znTPU4JdOp7FJK/cCHnO/s7qYxdp4h6k67Df1cc38Kph902JhBDfRaswYSidiUu7bs2iZGdJS4i6J0pv2Bs/zzUh/wWRk4mHNA/BkN/zX880pHniw8xWwmOeFMWzsPQu3iHgEHAIOAQcAg4Bh4BDwCHgEHAI+BFwxCY/IgfofqdOndSVV17pXR1ut/71r38pCEYfffSRuu666xSEity0c845x8uesm01EzmAes1zzz0nu+qMM87wtnN7A5dYolTEgmp2eJDGVtbJjsgSVP+1a9eql156yaiWiKoKi+b//ve/g5KHxtkkAhSJ1q+PXUyB5AFxSsrwZ2QvAge1CyokomzkP1f2cScnhoqR35o3b+5F4RrIb6NGjVK33HKLPzqlffo1xAv6f9Di+s6dWmJ7bvSFDQvr2Znt+o/r8L/MB+srrrgiFGvJH3dVsnB/1113KXETaBPcJG062kfySiRM1zVKWbjdE3UhiSPEhRnKN2Lt27eXzdAQRTFRaSJP2thv/+hF2QEDBqhjjjnG/CgnXUYdpXzaDDeElGcbJEdIonztjkHqSZebDimnQ4cOsmkU41599VVvXzZYkLrjjjtkN0uYjjGZ+17U6sBcjHvONnHPhkqaEIRssqudNre2U7le3GQKgZRxNIg4NHDgwJj+bF9HOtrLzi9oG/KWGHVMJ6FP8k00ZB4Se+utt1RQ/6R+9hwPUVQM95HSh7gWXHb6DRLdf/7zH3+02QcLe2x5/PHHDZHuv//9r/r666/N+ED+oh4WmEkuR7LQcI21GPHGz/PUQx9NUdt37gksGZLEFS+NMl9ckwClAXsRDZcyok6Ci5RHP55qXKrZmUEQuE0v1vKFNIbKUImiBc02CxOoRond8sYEtWlrVld/z341w3PPA2HBXlw8vUsN49qGPCjj4udHaqWImeq3ySsUiy33vjdJPThoihSRVGi7mgGrweOzLqhyfXe+O1Fd++pY85ukXUMlav261zaqTaRHzaL/y6PVigBiFschbN38+nhP0YYF0jDiBunF0oGx7QZkkFaegGBlG/u0UZi11qQBsUd0H0HBw29v/jLP+0Lff2xv7eOyTOyjYRElANknhLT2n29n2VGh27TngA8mG3cndqKNW3dq8sJEL6pDgyg50ItMYoNFf5sgd+sb4zVpMSvhg3sC0g/3CCSBMHdHSRTtJeWaPtHKCX2fGm4IkxzgPr32hIZeGjbsfjT776x9ANIPC5TxrESRyNhBGltJjn2UakTBCuJmEEHoK00cGBxCrjNus/4zSl2qf09+FiUjkLfYghVR1ZQWWi0OY4FUxjHwven1cd54J+cRokBxyQujzDjxsG+sLFhAM6cyjbrbyjNEs+hMvfid9cSfKsi15ppN271yIbDiek9s6dKlRmmTD0b4OzAZk78bOEdI4smcn0haPvoQw3V20Dw5f/58xXMNz9kQmVEHTaddZrmfo4/QH8VSbePmuq8wV4ndNHC8mXuZU36esFyTX2aoy18cJYeTCnPab6WQePeUpEk2xM2ikJGon7ih66pJDZDwkrVemiQp9tCHwXPIT5rwZCsj9WwRPUfOTTW86eRGXhZjZq9Vt745IZTAumnbLnWXfjb4fXKUFH3H6U3iupyFgP3LxOVeGbLxx9SV6l3tYlKsZUb0/UduP6dImbkZ7i9zCNeYjnkqCKt0PIsF5ZuuOMiW9nM67mHjGX2QeR4bNWtN4LOrjAF2Poc2DCccos6EST3Ytp8f2RdDQVXKZ86EaEg/CjLUzp78PDqnd29eMSZZKvNjTEZuxyHgEHAIOAQcAg4Bh4BDwCHgEDigEYj/V9IBfekH38Xh7oqvK0VRgsVGfrax0Fy0aFH1xRdf2NFp2e7Tp4967bXXPIIDyicQrCCeQDD58ccfla3ecNVVVymbDJOWSsTJhAV3sQsvvFAVKJD97QGxSRZPUXuyF2klL0I/+QJFo4ULF8a44CEdL6w/+eQTT7WCuETsscceU8OGDTPkGJRiUAeBWIFSF4vHn376aeCLacnbJnFBLCMPlCxwCzR27FiFIlXQQr6cT1i/fn1v96abblKQfiCh0KcgdUC+ov0xcAJjXoijbjRixAj17LPPeuena4M+JOpQl1xyicGiS5cuxrUC9wLu6IRkRT1td1VhdahRo4a5VkgtEDTov7z4b9GihZo6dapZgLddK4XlU6xYMXX22WerV155JaYfcE/4LR3t488z3n66rtEuA6Ul+qQo/OCyTMYi0kE4EMKQfZ5/G5cYjBOQEiAOgR9KW7Qfik/0U5TJ7DagH6TLcJH14osvKiHqQMakL+A6knsAYiD3m7jhotxHH300XcV7+dSrV8+QOoSwSgi5knuKsYsFL3tM8060NtI1JoOFTVxDickm2VCkrQAgVbD7tcTlZpjq9eJeT4g0uNeDhEh/hhSL2hx9IczS0V5heUs8fRMSpCxC0g4sUBLHuGK7d5NzciusU6eOgrD54IMPmiLon9y39BXGPuYr5jox3FBefPHFsmtCMOa5AGOsvPXWWxVxuLJF5S67OQNy1QMPPKDuvvtukwf3h5+ADJEY0m5u3KOm0Gz+a6dVllBSEbc4345eZr5Qh7QEsYPF8OmLN6gJ89dqlaXoAjhfONuLehSD6tAtpzVW12lSD/aTXqBduGqLOlx/pY3KDwSWXyet8Mg4pLlSu/yx7VLtjoqFPBYyUBnp+/Rw45INJZq/1201ZABRt+G8m09prArmj34jwYLzY+e31ISmvww5iAUO3DG9rxbaxahLetXVC4PzYxZMYhIE7PAF+QPnNld3vxshRt/3/mT1y6TlCgwraTd8XCsLqeJih6/ND8v8Qj0guyxRYHrXmc3UjQPHmWMoHp3yyFB1WucaqlXt0qp08UJq6eqtCoUfP9Gm/7H14y6Q2oWlinHdyiW87HApB7nizMNqqnK6fkt0m302YrFxNecl8m3gImS4JnXQP7ArNYGrW7OK+hrLqM3addewaStj+prv9L2228RS//rkz0WGINRDL4AV0YQZiCRvafKVveCWXcVwp9LvmREKhZIqZYvodtxk+rrdX67Q7ZiqXaEJGfQR7lf6fz99Dx2hF/XpQyzoQaix76EzutTMUZGQL2zboBcR/167NSZvjtOvHzu/lSpZLLLoKed00ApKosp1hyZ3QQbqpBc5UeuarFWSElFVM4oOmeuTz2mVM/ojKnIQLiFM0q8+ziSlXaRJjri9aqWJdau0othovfgqfVDqZIcnagU1UbGDjLFLq6101vVjoZvzvx8HQSNKbmQcELvuxIamj6AKAYHsfN3uKFNAaEFtCfdGMuZyDmoYqECJMZZCVhTVs1u0+tyxbaoYt1SMzaU0luD1daYrUcaMUztVVy0zypj+OXPpBvXf76Nqbr18boH4+0fUBnlOC3rul7r4w7p163pRPOvyMQXPfZDuGzaMJa95CZPcgASOUizPujxnQ16HoM8zG4pO/F0ortjJGqXfdLtbpp2Pa1dFMSdiz2mS3UuXt/faKdU2hlS8WM8ZjAsY5UhZJkL/BxGgcKF8MWQYORYWptJvyTO7eyqs3OziwRKVFhnvSH9c2yiRObvz7eNHtaxsxo4J8yLEYeYQSBDMIdynlIM7LLEzNInMJqhIfKohbuKuOaGBYuzBKPfYAb8p3HahHllC36ebNTl72mLcZC2OmS8u6FnbjFXZ1YHnjR814Y2+wBhBGTY56uKj6sTkk9vPKdnVN5njeWEOScc8FYZJqs9iYfmmI545T+woS3FN4vwhrnuP0/OrEO4G6+e7c7vVikmGEp7fbFKe/1jHBuW9/DjG2FTRcnltp6f8G05q5D2fM5by9wYEUly0ct5yrX44S/8d4n+2OLdbhp2VeT+Y0/kxJiO34xBwCDgEHAIOAYeAQ8Ah4BBwCBzQCGTP3DigL//gujgWu3Hzds8995iXlf6rZ/Hv+uuvV5deeqn/UFr2ISTguonFYQghvCxln5/fTjrpJG9B1H8st/Ztl1hhBCV/2ZCzICNxLZA0WOAOernLy+HsrEePHgq3UVWrJv+iEeIQihZC9oDcEbToCwkkqH0rV66s7rvvPvOjnixA2yQz4iBu4LoHd3dBBoFIygSPF154wfyoFy4F+aKXUBaWuVa/m6xHHnlE3X777UHZ5yiOhW3UOYTgwYt4+2W8ZAqBTuoucfFC3BSCB0ZfFgUaOQdlF5sEIfH+kMUD2kQMF4QlS0ZVCiQ+He0jeSUapusaheQCAZB2kLaw69G/f3/zIsuOi7fdoEED065CjIHEZBOZ7HO5LyFZpNO47+kv1157rck2qA9IefT3WrViXy7KsVRDyHoTJkzw+hCKc6I6J3nTp7hv/fczx9M1JkNauvPOO6VIj/TlRegNxjXuMyESQmSBOLk3LdXrveaaawy+kNZQEQoaT3D1yhwbZKm2V1Ce/jjqiGIcBuFOXLChupdu1TB/2f593LWClczx3Is2mVHSQwhkfChYMHbhHaU37uuffvrJJIXA67cbb7wxrsIhKoCQ7J588sksKnoQkyFeBdXJX05u7kOmgcTx1OcRogKEIv+Lf7t8FtzvPKOJKq9VGPyGW7gbTm7o5cWivriD8qd9+uLWqkqZojHR5UoUUv++qLUh90AaYRHUVl2wE192TF1DXLDj2C5XorB69pI2Rk1n2NRYFz980X1V7wYKcg3EpmQNNYQVenHk+a8jSj0sMNqLjJIfSjHP/auNYrElGYOQQd1xQSSkGUg1/IKMch49r6VqpIlfiVqqGENUoe2u/1+EgEX7+lWwUIhBpUMW7e26sTh7u+4/EME4l+tkEc1eSCP9HTrNwx9NtU/dq9sswl10ZB018Ke5plwId371jJM7VlO405O2CqvgnWc2USiLQFQZuDySn50WTJ+4oFVKbugkP1SbHu7bUl2m1dUoD3JTWB+CqJfTBf+wPin1IGxbr4y6u08z0xfseLY7NiqnXdOUV3KPQtIRoo6k7a+Jjy9+G66KdbxeSJWxijaA8MfvcY0lrqf6aMLdn9NWGZIkOLyjVU742cY48t/vY12NcRz1Obt8VHuC1J1ouwfObWFc4Ui+qEVRh8s06Y/xlF8QwZL0l2qSZc+WWZ9FqPtjn0wzWaKA90qmO7Tv7+tmSFvnH1FbEyY2GDIX42TQNXDykTrvUzpG1YGIs12GC9mf+ESM50/+xpCPTSBU82Mu5G+odBlzJmXwoRN/0/E3Mj+/HXfccWZ+9cenY//iI+t6ZCPIgL9PXaG6NY2oe6TaxswN95/TXOHmLuheYuw5RxMDkh0DU+m3YJbdPZVTXP0kX+6bjpZLuWTyzZeJ3c1akU7mEHFD5c8HVajLj63nj07bPvdpCa1mw/guxpg0SHYCwms1GQoycDxDARMiJM8/kLRsopacB8kRgpTfcvs5xV9eTveD+r0/r309h6RjnvJfk+yn+iwm+aQ7RI3S7m8QjBIx3FsLsemrUUuyEJsqlS5iH8ycJAAAQABJREFUyEnMZxj3ZiH9vBJmzWuVijnERxLxjH4P8RxlVp4H+L31y/zQUxgrn7iwlSEM24lSmR/tfNy2Q8Ah4BBwCDgEHAIOAYeAQ8AhcGAjEP7XzIF93Qft1UGaeOaZZ9SqVavM15gsuvPl5bp164yqAe52Nm3a5OGDOxixRBSMSMvXnGEG6QclERZ/UUrwG8oSuI3CRR6qDraxKJ2MhdXDXjwtVKiQyRL1Hllw54Wx7TYoXpksmKIkISakHfbtcuS4HaJOAzGDxVuIET/88EOOSE2SJ2QP8ghSRuHFM9dnX5dfUQWXVbhrs5WXJG/aC0Uq+keYNW3a1HyBbLt7stPSnrg9ZKHZ3/ZgzuI3xLqcWFjfoA/wRTMEqiD1L65V3KTZX0FnVwdIWnzN3Llz5yxJcafEYnwiZBaIaLZKke3+wZ9xKu0Thg9lyH2NUptt6bpG2h3FL8Yd24UGZbGP+7IgspldZ39f5Vyww9UaX6oHGe4uZ8yYoVCKyg2DPALJTwhu/jL4Ih8FL9tNpKRJp3IOBDTIK0HYor6GCzAbP2lvqUsqY7LkgVqZXX7QGERaCKtiKMIFmd3uQcclTsZu2bdDuUZ/nyZNKtfLvcq9jXKBfb3ky1jAsbBrJw2WantFcgn/n35HuzOmBpnd98LmSM6z+0xQPonE0Ua452MxFCKb38AQQjXqTfY4KOmoA88CjKlBcwaLuWHzjeTBMwyKibgcnThxokIpjvIgeqFYWbNmzdBnnr2FFY9Zp3WqoV6/9lBDRJC6+0MWIlnof/PajqpJjdgFBzsteb3cv51xVWfHyzZKIx/c3Fl1CFnUbKFdWrx9fSejQCLn2CHKBZB/zuuRdUFP0vGF9uNaJearu7uqV65sr57R6Qfd0ll9cWdXrVBVxajChJFRbDKSrQYleZ91eC11V5+mRlFF4iQEI4gS79zQSVXUizg5MZRf3ryuY9yFTwhaRpnj+o6BpCYUX8QKBywcpYoxbffweS1U84ys/YB6PaNJXUU1FmGGshZEHnHZZafjq3yIU6jrgCeWrKu0ApaKl513stuQC1D3gsznt/7H1VPX+dyr+dPIfrOapU2fsF03yjH68/OXtjWqZhInYVhftOMlrR3iNuZZ3Qa2uys5DqadG5XXfexQreSUlVAj6YLC7HBloRDXkH2719L3cEf13CVtA0lN5E0feKRfS9W3R4bnQkbKhLAH6ePsrvEX/+tULq5euqKdsl1TSR6E1Oe1qzsYl5fSl+Q4fZdj8Vw4ojjx6lXtVcvaUVdPcj73IKSh927qHOOSU46XLV5IPXdpG3XSocFzYfv6ZU3dISgFGffGjdrVlbjT86cx13ZVB9WvR4bnAtROAzHittMbqwEaR/vacT0HMRrjuSFZwjHP1ChEoozrfw6R8uUZiP14z0pBz0h2HvxNCFHbP/+Shr+f+LuQjxWSeV7I7t6R8gkrlyli+rLECblM9lNtYxQRbzipofpxQHcz/zLuvaXvm58f7KFQ4oE8tUWr2InZ70TyW2O8HJcwlX6b3T0lZSQbcr+j2iSGugskzJwaxOoXL29n5ltxQWXnxZh922mN1UN9W5ixxj7GdjL9wH+ufx/lKdqNuS+eoY458JoOced2+/yre9c3zxpB18cYe48mjdpzvX1uTp9T8uePPjvY+fm3CxUIn9/9ae39vDaHpGOesq/fv53Ks1hutdUI7YZOjHkIt3mJWIOqse6o52litd+66GcPsS6N4hOVGB9wVy3GhxPZGc82/P0Aadqe9+zzuJ8Yi16/5tAspKZU50e7HLftEHAIOAQcAg4Bh4BDwCHgEHAIHNgI/N+OHTv+ObAv0V0dCGzZssWQmdjmRWjYi9Tdu3ebF5h8nYnh8sV+kWci0/QfZbG4KC94UfSoUKFCrpWXpmrniWxwdbd48WLjeigjIyMuISnogtavX2+UNugrEHTsl+RB6f1x9LetW7caN3O4dwvqQ6hb/f333wo1In5Bafz5prqvxzvjjpG+x0L6IYdkXSxLtgzuEYhxuNRDGchPyEs2v0TSp9o+iZRhp0nXNYIR/RJiJWNQ9erVsyUA2vUI20aRiC/L6XMswEBeSZQgE5ZnMvGMl5S/efNmVbp0aUNQjLdglEzeiabFnSfY8lKQcRRii03MSCSfg21MTuV66cuzZ882cyT9OGxODcM9He0VlrfEb9u2zfRJ7gX65b427vulS5d68wLjfjJzy6JFi9Tq1auN0ld2cwZtK4oWkIwZE8IMQqm4ERw5cmQgCSvs3NyIxxXUkkyXZ3y5XVeTB2pqohCLuMka5CEUjrZp90uQLSqULJLwIgll7dy1R63Ubp82ajdXfNldQbuTKK4Xg8Nsw5adnnpOab14waJUkLHg0vep4eYQqgeoHuXE1m3eoa9vu1lcLF+ykCp9SPIYxSt387ZdasHKzWr5um1GvYpFZxR20llOshj767tDt9FC/QU+C8WQLRJdBJN8tu3crZat2aZ27t6j3YUUTuu1SRnpCOmDS3U9UedAeSCnC+O4IkPB5x99n5EPLtNy08AVRR/qX0b3z5wS7nKzjuSNe7fVG3doxbVCRnUtDm8jsCr0o+079xhcSxUrpJ/pY5Mxri1etVXRXyuVLpw07pzPfbhhyy5zfjL3IGUyDnI/FytcwBBmgkiTsTWO7nE+/QYyC+NokEm/guiA688wMuDo0aO9jyL4aARlw5wazxH8PcDzSNmyZZOaT5MpE3d3/L2+cuVK82ydof+uDCNVJZNvOtMm08b01XVaQQw7pEj+0L64R7tV63Xfr96cNvTRI7P06+yuIZV+m909lV3Z/uM3vz7euMIk/hVNGGwahyDtPzfePjit1s8qa/UPQy2Q+9M/BsTLI13HNmnXcwtXbVYr1m1Xa/XzAW4jjVKNvif97jiDyuxya0QhFGLia5q4KMb4uEy7+uS6Kut5IxlSWG4/p0gd93WY23MI15dqGfEwSvVZLF7eB+MxPWWbOXvu8k3mmau2JjvWqVRcE6nDn9PTOT8ejJjn1WvmQ8R0udLNqxi4eucuAkO1m/WN+vkAPvdRrcLfCeVuLXKeO+9Npi/ZYDJoW6es/lsyq2p3znN3ZzoEHAIOAYeAQyDvIuCITXm37ZKq+fjx4z21Hl5GjhkzRvFi0m+4ZeFFK4aa0ODBg/1J3L5DwCHgEHAIOAQcAg6B/RYBSF2Q+4Sk/fnnnyuUC/02ZMgQ4yZV4iFO7W8LtlK3vBB+rF22Pf3FDFNVVFZQDvK7utitF0FvHDhOjZq1xqRDkeeCENWUvHDNro4OAYeAQyBRBN5//311/vnnm+SoB7Zv3z7RU126NCEwc+lGdeGzI01uqIqg0Acp1G+4wfzf4IjrSpTQXtDKbnnVxs5Zq65+ZYypPmppL1/h+l1QW4YRm4LSujiHgEMgvQi4+TG9eOaV3A4WYtPoOWvU5AXr1dRF69WUhRtUCU2sbqZdnjasVlKhHltTK+Ymaxs1Yf+V72cbJeSgc4sWKqBd1xcyBN/mtcqY7aB0B3rcec+MMK6ji2klzsEP9Mhzl4ub72e+jLxfefKiVqpTw6j6Xp67GFdhh4BDwCHgEHAIpBGB4M8O01iAy2r/QKBVq1bGRc5PP/1kFvp69OihUClo166dUctZuHChcdfFcTFk7p05BBwCDgGHgEPAIeAQyEsI4Gbv1ltvVXfddZep9sknn6z69+9vnnlwoYN6FG7pXnnlFe+yUM5wpCYPjhxt4BLmv/oFK0pRE+atU9e8OkZ1aVxBNaxaQisJ5VfzV2xW7/+xQC3SCkMYi8onaFcbzhwCDgGHwMGAwKxZs8xlMtcEuWg9GDDY19fYQM9HuCKEXMtc1f/l0cZFKio95UsUVn+v3aa+GrXEI99S377dMvZ1tZMuHwXFTXrRc8L8dWpgJkGLTC7qWSfpvNwJDgGHgEMgtxFw82NuI+zy3xcIoNz67Fcz1WfDF8cUv26TUou0kul3Y5aZ+If6NlfdmyfnonrD5p3qU1++MYX4dg5rWl6d1722alozqytzX1K36xBwCDgEHAIOAYeAQ2C/R8ARm/b7JkpfBR977DF1+umnGxdjuGhhP8w+++yzGBWDsHQu3iHgEHAIOAQcAg4Bh8D+hsBll12mfv31VyWE7RdffDG0ivfcc4+64447Qo+7A4khAFHp9tObqLvfnWROmDR/veIXZChk8NVhOb2Q7Mwh4BBwCBwMCEybNs1cZu/evXPNddzBgGOq13hV7wbq9rcmGBdJuIp8e8j80Cwfv6CV6tiwXOjx/fXAJ8MXqdd+jChOSR07NyqvOmhlCGcOAYeAQ2B/Q8DNj/tbi7j6pIrAdu3K+IaBY9X4Oeu8rDK0W8aG1UoY4jHKTesy3bje+c4kddMpO9UpHat7adO9MXTKKsXvmhMaqDO71NwnLmPTfU0uP4eAQ8Ah4BBwCDgEDl4EHLHpIGr75s2bq7Fjx6oBAwao9957T61YsSLm6itWrKgOPfRQc7xZs2Yxx9yOQ8Ah4BBwCDgEHAIOgbyCQKlSpdQ333xj1Cghcs+bNy9L1XG5i5LTKaeckuWYi8gZAke0qKSa1CilnvlqhvpjysosmdTQUvuta5dR/Y+rp0oULZjluItwCDgEHAIHKgJTp041l9arV68D9RLzxHXVq1JcvXV9R038maN+GLdMrd20M6beZYoXNC5iLjm6rqpbuXjMsby6c0aXGurq4xvk1eq7ejsEHAIHOAJufjzAG/ggvLwR01Z6pKbSxQupx89vGaOWhHt21Jw+0a7csfd/W5BjYlPXZhXUI/1axqC8YesutWLdNvXH1JUKd/FConpOl6mLVmcfXjMmvdtxCDgEHAIOAYeAQ8AhkJcQ+L8dO3boRxpnByMCa9asUUj+7t69W9WpU8e4pDsYcXDX7BBwCDgEHAIOAYfAgY3Ali1b1Jw5cxTPPjVq1FAZGRkqX758B/ZF7+Or+0f/hbFq43bt2meryvd//6dqVypu3M/t42q54h0CDgGHwD5BYNeuXabc/Pnz6y/l/2+f1MEVmhUB3LYtWrVFschYrVwxrSRYKGuiPBazWs+9K7Qa1SGFC+hrKqry53P9Lbsm3LZzt0nC80qhAu75MDu83HGHQDoRcPNjOtHMO3nNmDFDNWzYMO9UOIma3vrWeKOQxClvXtdRQaoOsnOfGq7mL99sDg26uYuqXr5oULIscUtWb1VnPj7MxAcRm+wTNmrXtA8MmqyGTV3lRcerk5foANg475kRas6yTapYofxq8AM98twVfTRskXrmyxmm3qhdd2pYPs9dg6uwQ8Ah4BBwCDgEcgMBp9iUG6jmkTzLli1rFJrySHVdNR0CDgGHgEPAIeAQcAjkCIFixYoplCud7T0EWLevULKw+e29Ul1JDgGHgENg/0SgQAH36mV/bJmSxQrGqCjsj3VMtk64eXWuXpNDrUjB/Mmd4FI7BBwCaUPAzY9pg9JllAYEcFM7YkaEBFSxTBF1aP1wN64r1m1XI2dG0tbRKo9Na5ZSW3fs9khNDbTruTBSE1VtU6eMR2yatXRDwsSmZC6zRJECRtHpyv+O0W7iI67xXh08Wz12XqvQbCbqdOPmrjVue3fu3qMqlS6ir6OEOqxJBVXYR/4dptWp1mzcYfI6tm1VVSB/VjL1r5OWq41aRaqAPvfYNlUCy/1u7DK1S7vwK1+qsEfg+Wb0UrVHE8+raJJ2u7plFSStKQvXGXf3y/THUzUrHKLVNQ9RXRpV0B+tZS03sCBfJNf3p1a2mqkJUORZMH8+VblMUdUio5Run7LZuu1brvvAtEXr1LwVW9TCFZtU5bLFVIOqxXW9Suj6FfOVFrvLh2B/zV5trmfp6i2KZ1I+BuuhVbBLFk3s74YFKzerGYs3qBlLN2oV0h2m3Doak+YZZVTxwu7ZJhZxt+cQcAg4BBwCBwoCic2SB8rVuutwCDgEHAIOAYeAQ8Ah4BBwCDgEHAIOAYeAQ8Ah4BBwCDgEHAIOAYeAQ8Ah4BBwCGQiUFir+zz6yTSzh9LP9wO6hyoffj16ifrf4Lkm7bUnNDDEpqL6nN8f6WnisqPaLFmzJbNUpepq4lBuGcqNd5zeRJ395J+miKFTVhmSEKQn2xav3KLufn+Smrlkox3tbYPHHWc2UT2aV/LiRs5c47nUq1+1hGpUvaR3jI2tO/aoO9+Z5MW1zCitqpaNVaZauWGHenDQFJMGBSpRJnr4o4gb58Y1Sqq7zmyqLnn+L7VFE8f81lzneW+fZqpK2SL+Q3H3h01fqR7+aJrnqs+fuIZW0HpIu/kLck28R7OSPvlzsaeo5D+X/X49MtSlveoa9Wr/8S3bd6trXh2jSVEb/IfUC1/PVDedGl/NbNfuf9RL389SH/y+0Hf+32YfF4iP9GuhCVqlfcfdrkPAIeAQcAg4BPI+Ak5jOe+3obsCh4BDwCHgEHAIOAQcAg4Bh4BDwCHgEHAIOAQcAg4Bh4BDwCHgEHAIOAQcAg6BHCCAUk6PFhXNmZBoJi6IqBwFZfXjuGVe9BEtKnvbEIn4xVMRmr1soxo5Y405BxJKjfLx1X28zHO4gXpQy9qlvLNHTo+6piNynnaJd+FzI7OQmiAziYHHXZqk9NmIxRKlDm1Y1tuekKkI5UXojfHzItcocWPmxO4TP3nBWjmsOge4W1ug64bilJCaKpaKJTChRPXgx5MVCkiJGm13y+sTYkhN9rWSz6JVW9V5T49Q07Qikt+e+2pmFlJTNU3YsvN4e8h89VgmSc4+HxWqAYMmZSE1yblc5/0fTFXDpq+wT4vZvk27O7RJTXW1u0MIYGLrtHrTFS+NVhPmRbGVYy50CDgEHAIOAYdAXkcglpqd16/G1d8h4BBwCDgEHAIOAYeAQ8Ah4BBwCDgEHAIOAYeAQ8Ah4BBwCDgEHAIOAYeAQ8AhkAQCx7atooZMjJBKfp20QrWuXSbL2bO16zKIL1jnxuVU+ZKFsqQJikCdaOycVYa4IsdR1sGNe25bt2aVNNFlvSlm2bptXnG7NdHmoY+meMQhSDJX9q6vWml3ZgW1a7nZf29SHw1bqL4dHSFyPfnZdNVWu4aDLNW6dpTYNHbuGtXnsJpevmyMmhVLZBqu3fyd0L5aTJpxc6Pksbb1ovlJIog+/C46qo46qUN1gzWKST+M+9tTeho/Z50aOWuV6tigvJwWGuI+bsAHEYUoEh2hiWxnd62lGlYrqXZpLCZrMttL3832iEcDtIrVW9d3UoUy3fCt0m340bBFXv73nNVE94GKCgUsyFVDp61Qt7050Rz/etRSddXxDcwxOeH1n+d57gqJu/espqp9/fKqTPGChmD21aglatAfC9WomcGkpMW63w2fvtpkB5nq0QtaqjrahR2GK8SBP81V7/22wOwP0u3WMqD/moPuP4eAQ8Ah4BBwCORRBByxKY82nKu2Q8Ah4BBwCDgEHAIOAYeAQ8Ah4BBwCDgEHAIOAYeAQ8Ah4BBwCDgEHAIOAYdA6gh0qF/OKO9ApvlWE1Ou0cQUFJhs+2PqSm/3uDZVvW3/xs7de9S5Tw430Zt1fijpiEEguvbEBnvNXZjtqm31hu1SDfXXrNUeiQfVoEe0+7Vq5aLu4hpoF3O3ndZE/a3JUGNnR8g2H2rCzE0nN1LFCudXreqWVhCLxs5aqyBJ2VgNnRLFiQJ/m7RS4UatgCZMif01M6Iehes3v5s6SXNOt1rq4iPryK5x73Zsmypq4crN6q1f5pv4mUs2JURs+mxElJSEytHd2o2dkJaoO6StR85rpS54doRpLwhstHfPFhEXfNOXrPeUqnposliv1tH2h6B2eJOK6rJj6qn/fj/b1AuilLjX275zjyEeyYU83Le56ma59qtd6RB1de8Gau3G7erH8cslWUz4p3ahJ9ana02P1EQcrhAv61VPrdX9bM2m7YZohUJUPPUwycuFDgGHgEPAIeAQyCsIOFd0eaWlXD0dAg4Bh4BDwCHgEHAIOAQcAg4Bh4BDwCHgEHAIOAQcAg4Bh4BDwCHgEHAIOATSjkDB/PnUiR0jqkKQmyYtjCoKSWE/jF1qNiECdW5SQaIDwyVrtip+NqmJhJBdyhUvHHhObkSWKhZVlVqtiTNiqFKJXXdSwxhSk8RD+Lm3T3PZVT+MWWZITER00WpFGFjN0epOYktWR66b/ZtOaSTRasqiiGoUEWs27vCUr7rEwfHUjjW88+2Nbk0jZRO3aNVm+1Do9g9j//aO3WeRmrxIvVFBK3DdfHJDL2rIpCjJ6LDGFdRTF7UxvxM6xKpPyQmNa5SQTYW6l9i85dHtXq0rx5CaJA3kqFtOaxrj1k6OERbMVI5ie+aSjVlc8EEau+vMpqZ+kNQcqQmknDkEHAIOAYfAgYSAIzYdSK3prsUh4BBwCDgEHAIOAYeAQ8Ah4BBwCDgEHAIOAYeAQ8Ah4BBwCDgEHAIOAYeAQyBpBHq1ruKd82umWzqJgLwjbuh6abd1hS2iiaSREELQRVppqM/hNdXpXWqow5qWVxVLFTGH3/l1vjr338PVh0MXSvJcDbft3O3lX7xIQW975tKN3naj6iW9bf8G7vak7pCYVq6PkKPa1Y266puk1YnExsyJuKGD/IX7OTl39OyoezrUjMQ6NCgnmzEh59tqU/bBCplYErdp2y77UOD2Rp1mxfqIGz7yra7d6YVZw+qlvENTFmzwtoM2duzao9Zt2akgc4HnZCs9ikliuPUTa55RWjazhEUL5VONaga3RfNa0XoZV3evjlY/jlumVmuSmDOHgEPAIeAQcAgcDAg4V3QHQyu7a3QIOAQcAg4Bh4BDwCHgEHAIOAQcAg4Bh4BDwCHgEHAIOAQcAg4Bh4BDwCHgEAhFAPdrGdot2Pzlm9XgCcvV1ZY7ut8t92qo7sSzfFp+5+Kjoi7USIu7tp8mLFP3fzDVnPrsVzNV3arFVds6ZeNllfIx1JHEypeMKkWtyCQocaxG+XCiD8cbVC/uEYPWbd6hKpcpouppl3qQhCA7QWY6rVNEXWn4jIiLuc6NyxvXc12bVVAfD1ukhmq3buJWbvz8KLGpVUaUIEVZYrV0O4RZYV1uMrbWwqCBpaoUlEel0jZGETKUne73ySvUH9NWqj+nr86ixmWns7dRWBKjf8WzhlVLeq7/7HT1qpRQ/zq6rnrtxzkmGjeA/DDc+XXV7vGOblXZtIuJdP85BBwCDgGHgEPgAEPAKTYdYA3qLsch4BBwCDgEHAIOAYeAQ8Ah4BBwCDgEHAIOAYeAQ8Ah4BBwCDgEHAIOAYeAQyB5BE5oX9WchAs52x2duKGrVraoalYzXHUnrERUnHq1rqpuO72xl+SNn+d527m1MX7uWi/rsiWibunERR7kpEJx1Kc42Xadt21XRAEK8laPlpVM3qNmrFF7/vlH7dy9R/0+eaWJ69w4osTUsWEkhNwjJCtRbzq0YVlVuGDuL1PaqlVlD4liYCrq+4/rEpUpDkFIw7bv3KMe/HCKuv3tierb0csSJjVx7ppNUReApYpFVbM45rcyxcPrd2HP2urR81sowVbORUnsXa0Edv4zI9R1/xujtmyPqnRJGhc6BBwCDgGHgEMgryOQ+08MeR0hV3+HgEPAIeAQcAg4BBwCDgGHgEPAIeAQcAg4BBwCDgGHgEPAIeAQcAg4BBwCDoEDHoGeLbO6o7Pd0B3foZrS3Jcc29GtovlPXxjf1VmOC8k8EVdpv2jlKbHWdaLqSBC0MBSX1m7aKUkCw7lawUqsdLEo8aZTJmmJPObpNFMWrZdkqm3d8ma7taVINVYrO63fskvNWRZxzdaxQSSNd1Iubdh1tq8lqDgITLbbOghpGC4EvxuzzGxDBsPV4GMXtFQDr+mgBt3cRX19dzf1zCWtzXH/f3Url/CiFq/c4m0HbcxbHnVbF3T88CYV1RMXtFZf3tVVPXhuc3WGdnVIfcRGzVyrbhg4TnZd6BBwCDgEHAIOgQMGAeeK7oBpSnchDgGHgEPAIeAQcAg4BBwCDgGHgEPAIeAQcAg4BBwCDgGHgEPAIeAQcAg4BBwCOUWgQslCRhHnz2mrjTu6a7Q7OtsN3ZGZKkV2/qNmr1afjVhsos4+vJZqXitc0alA/igrCkIQKkcF8+eOBsHbQ+Yb4hIVwwVaRsWoG7QKZQqrJWu2mjovWLVJlSkeJT2ZyMz/UGKaZLmOK1si6qqtVe2oG72JOs3qTJdvDaqVUOU1jlgRrcjUqVE5NVy7bhs5a7UqWiRKwmlfP6LmlFlUrgWli0dVknAzCOErTKVqwcooiatKuQj5i4oN1e7nxB48r4U6NKDuazZGlZkkLWF97XJQbO6Kzaqr7ASEM5dG3dYFHPaiymn1rR4tKplf/+Pqq58nLlcPDppijtNey9dtV7ZbPe9Et+EQcAg4BBwCDoE8ikDuPC3lUTBctR0CDgGHgEPAIeAQcAg4BBwCDgGHgEPAIeAQcAg4BBwCDgGHgEPAIeAQcAg4BA5eBI5ra7mjW7BOiRu6VnVLq6qZSkc2OsUKFVC/TVppfoOGLrQPZdmeaqka4fIst0hNv01argb+NNcr/+yutbxtNjo3rODtfzNqqbft3xg6JUroaVyjpCpZNKqXUEYThojDUGP6fcoKs921aUUTyn+dG0WUmX6duEKni7jGK61drtlEK0mbGyEkJtzeif004W/ZzBJ+NzaiysSBLo0jGG3dsUfhSg+j3h3qBROyRmjyVpDVqRQlNn0/ZqkivyCbpPuaqFn5j09ZuF7xm744q8oX13dsmyqqa7Nom85dnhhByl+O23cIOAQcAg4Bh8D+ioAjNu2vLePq5RBwCDgEHAIOAYeAQ8Ah4BBwCDgEHAIOAYeAQ8Ah4BBwCDgEHAIOAYeAQ8AhsFcR6Nyogufe66Xv56hFqyLKRse3qxZYjyY1Silx7TZEk3e++mtJYLq/125TT3w23TvWvUUsAcg7kMLGktVb1XNfz1R3vDPJywXFpN6ZZC2J7N4sWva3o5epz0dGFKfkOOFC7Tbt9rcnelHHtY260ZNIIf/8oq9bSDkd6kdJRKTrUD9CbEKh6oPfI8Sv7pqEk4pLPyk/0bBX68pe0oc+nKqClJF+Gv+3+vCPKDGtp1ZEwooWyqcgoWHrNu3QruqyKjPR5j+Oj7r9M4kz/6tSpqh3Pn3p0Y8jykp2mlUbdqjb3opibR9j++kvZ6hL/zNKXfz8X+qb0VmJaLt2/6Noe7HGuk86cwg4BBwCDgGHwIGEQJRafSBdlbuWPIvA1KlT1dixY039e/TooapVC/5DIc9eYB6vOP6l/9H/ihSMysXm8Uty1XcIOAQcAg6BNCKQ1+bxtWvXqoEDBxoELrzwQlW2bOyLtzRCc0BntXvPP4qvHef+vUn11i95a1Yo5l0vX6Iu0C9CscMal1clikbl371EeXRj9erV6rvvvjO1b9y4sWrbtm0evZIDo9pj565VQ6eu1P2sgmpTN+pCYX/vg8nWO979lmhLhpWZ6Pn7Kt1O7S5i5rKNapZ2zbB83TZVvEgBdeZhNXPtC/d9dZ2uXIfAgYjA6NGj1fTp01W+fPnUqaeeqooUiSwM7o/XumvXLvXhhx+qKVOmqPPPP181aNAg6Wp+/fXXat26dapgwYKqT58+SZ+fjhNGjRqlZsyYYbLq3bu3KlMmOjcmkv/MmTPVm2++qZo0aWKuoUCB/eMVsnv+SqT1XBqHgEMgHQgU1u7Tjm5TWX0+YkmMG7ZuPiUiKQuCTp+uNdVTn0fG3kc/maZ+0+pFHRuWNy7gNm3ZqWYt22RIM5B7MIgy52i3dTmxifPXq6e+iJTF+f9od3GrtBs0iC1CLpJ8UVS6/fSmWUhE1bSbtYuOrOOpOj3x6XTzN1Unra7E+/8J2p3ZkAlRog7u5U7sUF2y9cJ29cqo1370dg0hrFH1iIqTxFYvX9QQv8T1HfFBrtwkfW6ER7Wsor4YuURNmLfeZH/lS6PV4Zpc1bp2GbVLv9cYMXOVGjpllVf0GV1qqHpVokpLqCF9PGyROX7R8yPV8e2qqlZ1SqtVG7ar0bPW6PciUay8TDI36B+Pnt9SXfTcSBNDWrA4XPenyqULqckLNqhfJq0wpCn/ubJ/Rpfq6v4Ppprdhz+aakhnLWqX0ucXVUtWbVGv/zLPa3vUqUoXO3DevwgGLnQIOAQcAg6BgxuB/eOv0oO7DdzVWwgMGTJEXX/99Sbmyy+/TJnY9K2W9cR38y/av/BLV7RTLTLCfVtb1XCbmQhs3LpT/TDub7NYuVg/HK/dtNMcKVY4v6ql/XF301919NYP8GW1/OrBajOWbFBfhnyBAyYs4PJHaqXSRcwiW9FCjhR2IPWV+++/X61YEZFYfvzxx1WxYtHFfP91vv7662rMmDEmul+/furQQw/1J/H2IXgK2YKFcggXzhwCeQGBdM/juX3N9957r3r55ZdNMYsWLVLPPPP/7J0FuBXV+saXdHeKdHcIiqIixkW4dnd3d+e149p6Fa/xN67dhXG92CAKUgLSDdJdgv/1W5tv9tpzZufZBw7wfc9zzsysWTXvzJ5Z8a73e7ioi8xb/hCJhlsiB3Zyn6buO5NJ5gx8bti40VSrWMac9bfmmSRJG+fr0X/YwbXYasOvrUT9q1fsHgyY0gZ7ddNqzBcv67lNEZt4Zk4//XSHz9VXX73dEZv8NlCfjnVN9xaZEQPf/nGGI8EB3LkHtMjLM/GHJblc9HTsG/u6XV377vV7BKthi/MzmEu9U/3e0v5YbYRUZWaSfkvFWbnmT3PF88PtpFJsEkLqcciuOymxScDYire43BhoXX4wcXjdke3MgT1irl9SXZL/DoqKp/2wKFS2XNg777xjHnjgAVeBjh07Gv6Kq73//vvm1FNPddV77733zOjRo227xs5GZmG0MUeNGmUqV668xYhNb731lnnooYdcrelfZkNs2mjbiocddpiZMGGCSw8R7YgjjsgCgaKLur23v4oOWc1ZEVAEohDo27W+a5/Iub6W6MS4eDI7YreGVtmnpEENCGNegr8oa9+oqrn75M6mZuXcxtVRDXr7hxlRWSeEHbF7Q3Ph31saXJVF2cn7NLEEm1XW1V7MNVuyOje0xKQ7TuhkSpUs+E1EraqCvW4hbEEWKlmiYLy97FzCq99MC6rRNcM+ZJCgkDslbJ1uO76zufqF4c6tHPXluuXa/ewhMZ3Xr6UfZI7u1cj8OHaBIySB/8uDptq/hCjmHNvHfXrgxMTATUetLTHstuM6mFteHe1Cxs5YZvjzDZz7dtvREsUm+cFuv0/HepZ4tsDOdcXGoinfDCoQzTS3ZKzLD25b8ISGKAKKgCKgCCgCWzkCSmzaym+gVj85AkhvPmQn71atja2A+I9tNCuxKTle4TPvDp5pHvBkcf3zYCoN76c+nWjO7tvcTapmOdbnZ7nV7k+etzKhg5vuQg7t2cCcsk/TYLItXfxsz69Zv8EMGb/QrtIxZqdaFRJWlWSbV3GLj1Sz+BDv0LiqqVWl7Bav4uDBg82XX37p6nHUUUeZ3r17J60TJKhZs2Iy1KxUTkVsYgB9wIABLq/7778/aZ56QhFQBAqHwOTJk4MMJk6MHngKIhSznSG/LzRIxWNM7EOgzcRk4HPHGuXzRmyabVcZis2w6kzrrKoKq1vVtm0E/DZQ07qVMiY2DbYD+z+Mi62CPcWS8vKh4jVv6ZoEsFHzETcBCSc28wHEizmLYnXbo13tApMAudQ73e+tKMrczLBFFnfHm2MSSE1MKNW377GoCZPIDDSwWCPw+nfTDS5bsEc+HG9wE1I6yeSbXIj/DpKwVNvC9sNWrVplPv/8c6eG0KJFi2JNzEmFg55Lj4DfPoTYs2bNGlO+fPkgISShadNik7IHHnigU2UKTm6mnenTpweLZnr27Gnq16+f15LXrl0bkJrI2MckrwUVs8yKGtdidrlaHUVAEcgAgY6NqyWoDPWLcMMWzqa/dfdG/+iFryY7FR4IML6hntSjZU1z6r5NTdk07R0/HfsQc9IZxBjGhFl4sp9VKKpVJTVxqnTJEuamozuYXVvVMK99O8MRfvwyICwd27uxU0qtbBVTo4w2eU/r6k4IN7tblaooQ0VIiE0d7QL0ZPlFpQ2HlU6BhfQRyti6h622xeNf5/Uwb9j2J23Q8P1pUreiOdaqwv7dEu1LhCY7ULh65qJdrSvB38wQ268VIhdlcD2XHNTKFff0wHCp8eP9utRzB//+Iu7eUM4es2cj+1w0szjGSGaE+4Q09m+35LJebecY5rrCylzc+94d6prT92+W9bMlddCtIqAIKAKKgCJQnBGIbokU5xpr3RSBDBEYOtE2LjeRmkjyrVUQWGQ7EtuzulAm0EGIwQc3jXvfkJptahv2dJ/wAz1meny19IDPJlk3MyvN9VbSNmrVhp/P9r7PKuTPrQoWK3IyVTbIBrPR05aa6zf5PT9h78aW2JS4siSbvIpbXHyHP/dljIRw/2ldigWxab/99guITd9//31SYhMy/kJqAtcPP/zQPProo0khRvVGDLecaoqAIlA0CFxzzTXBpA2KO2q5IXBAt/rmu7Hz3aDauf1aKKkpNxg1VSEQ6NCommGS4dNf5rgtx8XBHvpgfEDGGXhr7wIkrlzqne73VhRlbmksN9oOyjej5wfVePisbqZbs+pKagoQ2bp3llq3LEJq4kroww+25N09LRkwn1bYfhgLGo4++mhXpSuvvFKJTfm8OcUsrxNPPNF8/PHHTnHpjjvuSCA1UdXLL7/c/PDDD67W8+bNy0oJKV+Xiou422+/3WXHoph8E5sgcj3yyCPmxhtvdM86mGwPVtS4bg8Y6jUqAtsaAvBa3rimV9aX1da6Ybv35C4u3cLl68zMBStNGevarXm9SglElWwzrl+9nPn+3v2yTZY2PtfZt+uO7m+JbZstsAtHrGc2U7VCGUeMEqJQqowg3Nx+QqoYxvRoUTOj+mdyjSymShbv+YuTq+RTw3I27cl9mpgTLWGL+7N4ZYx8VrtKOatuXTpQoI66mqoVSjnlKvooM+0cCQu76tr74pO0ktVL8oPctE/nurbs9dZDxlo3htKgRoVgXuVQu3iNv2RGn5C/9Rs2OteDuCtvULOCu65kaTRcEVAEFAFFQBHYFhBQYtO2cBf1GiIRGGgnNsL2v1HzDJKwaskRwH2fT2rq1a6WObdvC9PMdrx8m7nQ+m22JJOBm2RqkWxtZlejnLh3Ez/adrV/2SGtzZFW3ldso+1U0DHCt/lnw2OuFTjHYP0lzwwzAy7oYZAdVtt6Edhnn32Cyn/99dfm+uuvD479HZ+oRDgkJ8hOrVrFVvL4cZcvX26GDIn5W8d1QYcOHfzTuq8IKAJ5RGDPPfc048ePz2OO22dWKOg9ZVc8Qo4OLWjcPgHRq97sCPDc3Xh0e3PDUe23qmcwl3oX9veWS5mb/YaGCvRVqro2r24nRDJzexjKRg+LKQKDRsWUmvzq0SfNhtik/TAfPd0vLAKQhAYNGuTUubJ1QVfYsotT+vPOO8+ce+65WbvhK07XoHVRBBQBRaA4IICruVzdzW2J+lerUNrwtz0YCli1q5Z1f9leL2pOjWpXyDZZEJ/0qEfxl6uhttWkTsVck2s6RUARUAQUAUVgq0NAfURsdbdMK5wJAstXrzdfjpjnokIcEd/XHw2dnUny7TbOgmVrzcN2ZbkYcv13n9S5AKmJ8zvZVQA3WplaZHPF/mXd0k23LmjUYgjQOapZuaxzgXjVYW3NK1fsZnD9I3ar9ae92vryVtt6EejYsaOBfIRBXsJNQZQNHFhQg5jB8igbOnRoEHzooYdamWn9VAeA6I4ioAgUawQgTKgpAlsSga31Gcyl3rmk8e9NYdP7eRX1/jK7alyss3XxoLZtIfDh0JirZq6qc9PY/UWha8mmlfO5XK32w3JBTdOEEdieSU2ChWIgSOhWEVAEFAFFQBFQBBQBRUARUAQUAUVgSyOgik1b+g5sgfJnzpxpmDgfM2aMUwxp0qSJ6dy5s5OXjlIPoYrIMW/YsMEQF4WSJUuWOEWRH3/80UybNs20aNHCdOrUyfTv39+ULFnQd7Fc5l92Kf+XX37pZLunTJliatSoYdq1a2cOP/xwty/xCrsdNDq+6hNyDu653h9iFVJmLTeT5q5wsq9RZXxj3dUtzWIAtZ/1mS2u174aOc+sXPOnlZUtYWVb60dl78JYfbphw1+mbrVyZpdWNYN4g8cvNPOtzCvp/9alvlm59k8zcuoS88vERWahdaF36K4NTJem1YP47EAi+va3+Wb2olWOIFOnajmD1G2vtrWDeiUkSHNA3cR9X0O74uDSg1undPHAhMiZ+zc3wycvNiOmLHG5vzt4ZuBPmoCJc1aYsTNibuv27ljHueCYs3i1+X7sAjNl3gon1wrZp6f1vU3d0xmuCsB6xoJVZqElYtW0KhGsTOizKe+o9LgwQz2pvi0H928rVv9pRltXeqOmLTFzbV3wO96ifmXTq02tjHyVR5WRSRj1/Nd53c1xD/zgcGb1OXXzVZ78fMBu4pzlZrLFCdIZ6VvuWNm02rFKgZU+w+w9mGUxmfLHyiALnvcPf4pNFNSz1x5e3Y5MLb8N8p9sfxdI55J/S4sFWyEEBhl6O6QdP2uZmTB7hdvyLKDqhaQy/ufTSRRT31/tH88Cg6X17O+Be9MpYrIK131r128w42YuC2rA74X7j0FeDCuKLVy+1j53y8zvs5eb6RaXnawPdBTFOti4dWxZ+TLedwcddJD5z3/+47IcPny42W233RKyX7t2rXNlQGDTpk0N7z7ss88+M2effbbb9//h0k5s3333ld2ELepQ3377rZk6daojPjVq1Mi9m3ffffeEeJkczJ8/37nGIy51b9Omjfntt9/MN998497z1atXNw899FBCVlzTBx98YEaMGGGmT59uqlWrZprY7wNErGbNmiXEjTqYPHmyef/99933g+8JqlTdunUzXbp0SfstWLdunfnkk0/Mr7/+6tKXKVPGNGzY0PTq1cvsvffekSuKw9fYtm1bM2nSJAOO4F2nTh1X/mGHHWZKlYo3jeQ86lpgvMsuuziMataMv7vl+sLfScrkHslqb76RRx55ZIKrCpSCIL2BN+4eyL9nz55pMVy4cKF5++23nQu1OXPmONcT3De+pdyvKAvXr7h9x7mepUuXmnLlypnjjz8+6hJc2Isvvmj+/PNPd8/333//AvFQPPv555/d8zFy5EhTu3Zt93x17do10mUM9/a7775z+dCGqVevXpBnvjDbuHGj+e9//+vaPvxmq1atatq3b+9+L9Rv1KhRrl1GwVwTz/OWtj+WrDG/2Xco3wfeocjd823gWxm1IpH2D99mrLX9lrey35B8Gc8F7U1+J/xBJpX7CbnU/81KmbxfUcbjeTruuOMM7w3eGfzeeS4aNGhgeA8cfPDBpkqV1G0P2su4D+W9xfeKdusBBxxgWrduLcUVapvLO43viCgB8t7mWqKMuosC4CGHHGLk3RV+J2by3o/KvyjDsn0GqYu0F2gb7m7bdIW1XNv2/u9h4bKYSwPqgpu88mVi/aTeHeqYKptWQWdbbz9/+b35Yfkqc71tF9I3+t22RefZdwKuFWhL925fx7o5iBP1o3DOVztsqO0HzbXt5Zn2T+yXSYtMvZ9ibbmqFcuYvdonuivDHcMPtp9BG5B2fim7ipl+F4SZbs1q2N+x5BTfQqDBbTnWwbZjaXPTTxk+ZbFzv125fGlzme0XZWP0Ob+3LjpRbrVidrYdWtHsavt+TW17dOnK9RbbWH+VNqyv4JrPfgsKu1zXnMVrXB8XtS/6PXvb5696pTKRlxPuk679c4PtMy2N9Ult+5r29B7WRVxDm48YxLP/WdUlvhmrbB+2XcOq9o9vQZVIvCUdW9yZ02bH+nevb3ZpWTPoV5LnYT2Tu+BwiTL8l20/zM+W9iDtxrFjxwbBfFOee+45d9y4cWMT1WZfvHixeffdd50yJO012su0Jw888EDX3g4yy2Bn2LBh7jtG1L/97W9mp50K4sK3UupIm5yxlrDRHmH8hm8n7a3wNxT3arRdicP3iXJow1Jn2qpRFm4vzZ492+UBbuRx1113Zewmzb+GunXrmr///e9RRbow2lcvvPCC269Vq5b7pocjs+hE+mnJ7tOiRYsMrtww6Y8sW7bMvPXWW0nDuJ9iL7/8sqlYMaaUkAx34q5atcr88ssvrt1J+xNcaffT/0mGrZThb1999VWzevVql5eEf/7552bu3LnucNddd3XtTDnnb2lDjx492rWrfvrpJ9c3JT59kKg+hDz7yZ4X8qY/w/NJP5j2BW1c+na0T2jz5mqFbX9xrbiPpO3INdN/ZdwT3NnK4iSpXy645tJGlfJ0qwgoAoqAIqAIKAKKgCKgCCgCioAikD0C8dm77NNqiq0MAQZ+/vWvf5nLLrssac2vvvpq849//KOAQshZZ53l0nTv3t08++yzZo899jBMHoaNSXUGthg0ChuDQ0wEMeEYtmuuucY89thj4eCcjxkQFkPCvl618o7YRNjn1iXYef1ayumE7cuDprrB64TAFAf4Qy61icg14PNJZoYlGkEGSUVseuj98Y7U0rx+JfOiR2x6b8jMYEC97U5VzflPDbU+luOrk7s1qx4Qm/DhfP8748wHm0gr4SpWr1TaPHFud9O4dmyALXw+2fFnlkAidslBrQxypumMyYGLDmxlznzsJxf1i1/n2OOWBjlVbJidfHjkw9/dfm1LvJo0d7l58pOJ7tj/9+/PJ5t9OtU1tx7XISkpBpLOPW/HB5T99Pfa8NtP6Ojy8MPZv+vN31xQWzvAjouSs5/4KSBw+XE7Nqlqbjm2g53AjR609ePmus+EwiUHtTZ3vxWr08BhcwoQm5icevzjCUnvL2XffXLnhIkc8vk4pEg2dMIiwx/mnrdLe7p9/jHRcccbY8yoqTHSWXBi0w4yvI+c1S3yGVpsiXa3vDrKTnAsDidzx0wc3WpxjCIQQUy74rnhwQSGn8GzX0w2uBe5/1Q7uLtp4o/zj340PuG3QNjbP8xg4+x46w/9gv7x3zRu//7x2hg5XWB79eFtzSGWKJgvg4ggA+YQJMLEJplUpjzepZByiMdEOQOsZcuWTaiKTFYT2KdPn4RzEFogUkW9R3l39+7d2w3My+B6QuIkB5BdcTGA8S6GCHDbbbcFsRn09YlNEGMhAP3xR5xAKpGvvfZac8UVV5i7775bghK2fIcuvvhiM2DAgIRw/4BvCESEKAM7yGBRZRO/ZcuW5vXXXy/gvi98jZAaqEfYGNiHYFO6dGlz2mmnuXsVjgMJigkfCL2++d9Jvmfh54C44Er+TB7cdNNN5r777vOzME8++aQ7Jg73OcqYRJP7FT6PuwgG5Y844ojwKffsEVhcv+M333yzI2rxvKUiNtGGof0BoSVMbGJCBXIXhJYoO//8893kWoUK8clYJnUETyamjj766CCpf09zbfswqUnbh7qFjd8L7TImgaRtBmFwSxKbaF+88+NMQ1slmZ3Yp4k5p2/z4DtPvCV2kl6+zxDKUSnMhzEBe8oppyT9ze+3337mtddeK0BO4h3DOxbjPcpEY9Q94Pf8yiuvuHdnVH15Tzz11FMFTl111VXm0ksvNcccc0yBc9kE5PpOg1Qqzy31S0Zsglwp7zp/gjj8Tkz33s/mmgobN9dnkHKlvQBhPh/Eplzb9rR15Pfg4yHtYcJqWEXPXm1j5Kts6x31e8t3mb/ZRQlXv/BrgfYXdX/CtlHDbS/CxfLZDnvf9o/+NzKxvUHbVdqv9Lu++Ee8rfTDuAW23T8mst7Uj4Ubd57YqcAil3lL1gb37KQ+TUxZu9CEvokY5WRKbOIZpl8SpRT8mJlg3XY3dv0VeUZ4p/rEpnz0W1ioct+7Y80XXt9OroXtA++OMyfv08ScZReooGzkm98n7dykurlowC92EU2cWEZc+inXHtnWHNSjgSO10q+RxTGc/+TnGOnjBHut5yfpdxMP++LXeP9z30717AKJOBGCPn2+iE2UlUk/jHhh4zshBBo5x2It/jDaJBBWxFjMRRuPtl6U4bqadt6///3vSDJJVBqI0fLev//++80ll1xSINp1113nSNScSEYUpy0EOTbc3po4caI54YQTIr+V5Ed8vq3p2piQmCBe+Ub/Atdu6YxvIt9rMSEbyXF4i6rtP//5T9d+5BzEoTBRC6KU4Eb7XxaY+HnR95I4jzzyiCMaLViwIAij7/H4448b+mESz09P30fM/9ZKGFv6Lrg/9svnucLov0AggpyVidEGCfeFpA9B+mR9MYg+9LFYXBJlkL979OiRcOqll14yLCrAIO+Bodj69evNDTfcYB5++GEJStjSxnrjjTdMLgtvCtv+goh4xhlnBL+HhIrZA66DxSU+ST1bXHNto4broseKgCKgCCgCioAioAgoAoqAIqAIKAKZI5CetZB5XhqzmCNw5ZVXBhNnUlXUQxikEmMAjonRZMZqLCYShdTkD2yQhhV+Z555pmEwzzfUnpgkDk/GS9nkd+qppwaqJn7abPdR8pHB7r061HYKQRAtIPtgDJCiNhNllexKZAauk/2F0wh5Jxxe2OMbXxmZdECevAd8NqkA6YU6i0GIuvK5X7OS759rV/JOnRdX+0E9J1Nr06BK4IuaslEairJ3Bs9IIDX5dSY+K+MHfFaQ9MS5H8cvCCYcOMbC6W96ZZRTYYqdLfh/mlUzumjAz8HAO+Qd33hu7rQkqNDj60fJy/6+nesG+bBC+Q+r1CW20T6bZz85tMD99V3YEfe6F0cYJo7EKlgikDy3EsZWwkQVgDDu9TH3/RD8TiSej8f8pWsdWS18L1lhftJDPyaQmiCEMVEkhnrXCQ/+6JSxJIwtK/+pt6zK9s/J/vBJi80/Xh/tFLYkjMm/8L2W62Lrk6Be+XpaAqkJ3CBL+XbfO2PNi/+b4gcVah8ykRiTyGHziUoM9PuEFUgVvjEgL+oxTFT7kwCQoI466qgC71E/PYPivEt55+ZiTCj4pKZwHqgzhUlN8h6XuEwwMCkQZTfeeGMBUlM4PSSGqDpA2GGywx/ID6edMGGCW2kd/tb4dWFFs0z0h9NDQrvgggvM6aefHpCaiOPHo3yUoSCsRBkYoYwiFk577LHHmjvuuCOB1MTAv29MGjEREzYG4MMTKn7+xGfCIiqt5LU1fMelrtls+d1ATBNSE7jw2/SxZdIH1axsLVfMUCngfocJNXLPaPuceOKJTr0t2zoVVfxHLRE5TGriPeq/g1/+31Q3aV9UdZB8Ubno169fwm+e++nfUyaVIS5Ju1TS+lt+T3IPwF7wJw6/Z8hwTFaGjYm6MKnJT8v5W265JZws4+N8vdMyLjBJxHTv/STJiiy4OD2DuV4k/QNpp/h5SBjb0iUTySR+vFz281km7cQwqcl/B1C//9j21uvfTi9Q1Xy3wyqWjfXNwgUJltWsYpMYyldXPZ9IxgrXm0UoJz802Iz1VEAlvWwhR/mkJgnPdPvcl5MLkJr8erw8aJp51sZJZ7n2W9ZYldNz/zW0AKnJrwNlv/jVVLtQYXTKatAnFVKT9KUlwT1vjTVv2YUG9L+E1BSO84q91te+nSZJCmzp97xn1X4x6kf/s6Ltj+/ftZ4Lo88wxeufusBC/kvVD0uWdaVKldy3w/8GEFe+KWFlJNqSYVJTOC3kW9R6krUnw3Xx+xsQ7MNGPozFiNHeDRsqQ0KsQQlJSEAo2tCGkm+lpPPrzHeWNmaqxQm0gaOIT5Jfqi1tXJ/U9Omnnzo18FRpOIfyohiKjGGDfCJGGxGlpLD5/TfUyZMZSr1yz/04EsYWJdmwgR3XJtjTjvGxpf/C/WAhYCYGecpPTxq/Dj6B388PQraQmojvt6eIBxGfZyFT4177pCYIfiygEGPQ/FUAAEAASURBVJM+k/RtJTzdtrDtL55D+tH+74Hr9ccueRYgXKGaKpYNrvlqo0rZulUEFAFFQBFQBBQBRUARUAQUAUVAEcgMASU2ZYbTVh+LQSxWmYmx4pCBBibrWI2GOoTY888/n3SAjUEZ0jFQhzw5gzPIe4sMO3kwsR4eSLvzzjuDlfPEQZGDwQQmkpBxlxWHsuqROLmav+qzr3XphuEW64BusX2IN7h3i7IHz+jqVv2y8jf89/ltfRLUgK48rI1bzRuVT2HDJlliEGSRh8/qZgbe2tsMunMf87dNA7wQs16yk4oYA8D3ntLZfH7b3uYz+/d/VpFnz03uGBiEvtaSSHAvlonNXxYn10AIy0StSfJFnElWnRPmE3UkDtvvf1vgDi/8e0vz5jW9HMbvXLeHueyQ1kE0Bvu/HBFfucsJyDUQtcQutmpS79+wZ5D+tP2ayilz+bPDgwH4IHDTDoPu3P/T92tmPrhxT/Pe9Xuab+/Z19x4TPsgKsSaIb8XnOAMIuRhByJOr3a1gpyYQBL73k6mCMGMyYGnzu/u7j94fXXHPubMvzWTqHaiID6hhNtAnlmUnMRYJS3P8eNn7yzB5o3v4+l2blHdvHLFbu75AY8PbtzL4DIQAy8UuHz7ftz8gHSHGsKnt/Q2T53Xw7x25e7unkAixEj7mZcWsti9llAkLgtRz+Lavr5rX3d9T1qFMSFvfTN6vvnXwDjB7UX7XHMd3Dex247vGFybhLNC/tVvpkoUhwW4ce2Ug6KXGL8hiFb5MFw0sNIWY1Ce1au+MWmMMXgcVpnxSU/E8Vd7+64XIIuywloGhhk05l27cuVKN6H/1VdfOVcC5MGANQSiXEwGd1kJjiIIbg5YwY0htQ8pi28ABoGKOHxD5s2bZ1C7EWPF68cffyyHbvvEE0+YBx54IAhjlToDz3wHcF9w6623Buf4Zki5BKIuAuFJDHIKq4opl3rhdsofSCcu36YoY9KGwW0mOkgPmYzVxGLgR925X+DN9aKo43+fCPOVuCQtW87x9/TTT7tvKdfHfZXBdL59t99+u0sCZtSf62OixVddCePHvfEnb8CS7zD5syrZv+e4C5HJE79u7G8N3/FwnTM59pUUWD3Ovf3iiy/MjBkzHP7cc4z7KM95JvkSJ1fMaNvIb5zyURbCTQj3jDqg2ITx3igOhuuoN7+fEVTl5mPbm89u3dt9r2kD3WPbG2IokSxfnfiuk3P52PLOgwAohqIVahX8VviDvCjvXbDkfZDMiMv7FDckvK/An0lM+U1yf/2JOfLh2UHFVAxFMdz7kJbfnSgjhNu7Ej/dNp/vtHRlpTsvv4eo9366tPk+X5yewcJcWz3rulHaX7TnxWjzSrjvjlrOF2abrzJXWNXQK54fHrT1/t5jR/Py5bvZvkYf1ye57fgOQTUf/ci68rSu1sSKoh123ZHtHGbPXBhXEaHdLzjSzsNwXXjba3GSDiqwpBlo32G0nx89u5uh7SlG3GR9JPph2MVWkZZr//bufQ33LhODXPX8l1OCqH6fh77HDUe3c+ekTxREjNjJtd/yjF0AI9dAtqjhfnTTXg4z8KJOYiwq8RdKSLhsIRYdsXtD86FN/9FNvV0+uNMTEyIsqlOf2D4BcfhuHNCtnkSx/bp5wX5451e7GIK+Gda/e9zF+37eIpDPvf5EOH0ux6n6Ycnye/DBB937/8033wyisGiMbwJ/fDPEPvroI6fEJMcQYCGLEI8xGdoC0iahrSZtAYmfbIsrUchHGG1E1Hd888k5hEOcCsfxie+QWDDisDCNbyFGX4X8cVlMe5ZFGCeffLI7x78LL7wwkhzEOeKTD/lRH4g6XHdY5ZS4vtGO99u4tNGjXPv5aWTfJyJFtQVEvVHi+0QnCZP7R7vAV/CR87LFjaDcc1+FiD6LhIfVRCUtbREW+tHepw1AfFQ65Vmgf5Jpe5B+Bel98hzKSlIHP1zKZwvRB1e+1IV7RT0ggxGGce+kfeMCUvyj7yH1ZbEk9adelEE9fBWrbJTZ89H+8suD/M410pfj90bfk0U6GNfL71EsU1zz2UaVsnWrCCgCioAioAgoAoqAIqAIKAKKgCKQGQIlMoumsbZ2BOikoxTCH6vPcfNSrVqMgLCDZaUwWY0bI7FkE7acZ5CCwRJREkECHMUBJMbF/NV+TBr7k1NMILPar3bt2i56u3btnHIFqgaFNQbUffdsPdvEB1737RwfYB3oKd1kWuYb3013ikLE79+9fl5l8cN1QGHm4TO7mR521Wrl8qVN6VIlTLnSJR1ZRNwTkOafp3c1e1hXe6xsZaV2C+vejsFrGbhHgejXyYvD2UceL7LuxcRyccVWt1o5SW4WL4/nFQRu2jlj/2bmuL0aByQW0h1pB8zP7dciiPr0wEnBPjsPvDc2OL7ADsYfs0cj50qAQNKfad0oHNmroYvDJIDvijBIuGkH1xnUoaZVAcLArZ8lvZ3UpwmHzn6fndlqSYmfy3anmhWCZLh2E5s4Z7lhwoC/e61Lto6Nq7n7z3ncYpy2bzMDGQn7fdbynCaW5yxe7fKHBHf7CZ1MkzoVA5dCNSuXMTceHSd6/bTJlZ0r0P77Zkx8AuucA1oYXwkK9w64oOvZOlZ/1J3Ehk1eZD79JUaSQhnqvk3XVqrkDu76IETxPMtqcpQAVq/LTnVowuwVweQI5Ky9NpH8qAPlMMl1fv8W7trBdZ6nlCX1zHULkUQMsqYY5Ap5HzKIyvu2ffv2wQrZMHnFH5D33dCxMpsBa4xBd1aJ4uoMl2m4ssM9KAP3MjiOatKKFbGJOalLplsG2SFkQLJhZXL16rHn7dFHH3UT++QDSYCBb+JwTcTBhZc/OHzPPfcERbKKXFxtEci1MElSr17svdyhQweDWw5WEovh+kvMV02BwASZFlcJrDQvX768U2yBoCsrj1n5HJ7IkLzYQkbAHQTp+WMVNWQq38Acl3FgwHdur732Shjs57uazCAdMXkhLgGZJPKxIR3ELjCj/liTJk0S4oS/wxdddJGLxz+wRXVKvsO4LoN4gUIAxkA9BOJkVpy/48nqnCqcSTl+Exi/AYhNokLA8wn+uIuUdtDkyZNTZRd5LlvMeOb9Z/idd95xykCi6sDEGe0uUQ+LLDSLQNRVUMrL5C9Ztkxgy/fn2iPaOre6lcqXctEtjAbXvucc0DxIPnr60mA/3zuQmHi+uWc817i33HHHHYNiOnXqlKAaEZ7QDSLaHSYfuf+tWrVy7yvOMTnsv1fC6nn++4BJXIiDzZvHrp16MWmb6eSfXxfZ98vOxztN8s11m+y9n01+L/x3ckbPH88oijhRVpyewaj6bQ9h9HeEYA8J/xrrvrdp3Yr2t2Pfr7ZPsp/tT91xYpwojuqP2JZsh729SfWHutAPuskuWmjXsKpb3EL7eefmNcw9lvwvikIoN33rtWnlGmT7wOldzDF7NnLXjqs2rj0Te9VTJzq7b/OEPg99j/4772juOqlTJlm5ONn2WyCc+gsfWPCwv3WdXr1STEWGRQT0w+gLiaVSp2Kxy6UHtzI1NqUnH38RBXnQLz7P9gmqVohhxHfjuiPbB1jzu167Pnoxgd8n98lMu7SsGfQJcEWeTG1ZriHbbbJ+WLb5RMXHFZsY7WnaJELsgZyESqBPkGJRGaT3TAwVQzHIur4JOUfCaAv6fRLC/W+l9DMgfEN0wWhDvfXWW06hG9Uf2sBdunRx30uJTzyfOMKxbyxu4PvIdxZ3eOQpbTI/nuxDNBI1W+KycIM2eqbWq1eM3Eh82u6+zZ49O+i7SDgkKt8gnNNvwKQe/vl87aPmyiKPJra9Lwa5jD6bWKq+hcQpzBYCEsQ72lDcW6xNmzaBqzmOffIbx8lMFu5wnv4b/Vsx7iNt3JNOOsm143BFnqmacD7aX7QhaT9yP2n/cY305TD6nn773F+4IvVPt81nGzVdWXpeEVAEFAFFQBFQBBQBRUARUAQUAUUgEQElNiXisc0eMenOIAZ/uNiJMiaJxVDhSGZhNzgSz5cO95U2WOEuBqHKjyfhTDwyAMYgSGEMIg8utDAGWSEDieEuTRRhPhs217AiOVP7dcpiw6pkrLklD11xaJtMk+YU7yhL9PHrLpkMtu7YxFg926lJjJwmYWxJd37/lkHQ77Njqy+DgCQ7yzwSik9WSRK9QLCfZvHKOFHHj9iqQWVz6r5N/aBg/wRLOOI8htrUitWx+7Ng2drAZRruzo63g/FRdn6/+DUzgJ7MDt9tp8hTe3eIqRRxEneGRW3VKsYG/ynHxwviEsph/LW3EzJRBilHLBf3DHef1NnlzwSPTEJIfmxZydy+UaxsyFP+ZIKv5AUJK2x1LNEMghL1FyUl4nxtVZjELjkoPkEiYWwb2fvLZItYVP5yLmrru3WZat0OQnIL2wm9mwT4+pMa4XjZHvurhX3ZewbnxWRlNO87cYcF6YkVs2LffPON7LrJeDkQtwEcMwCOVH7YmLT3yUOiwhGOl+oYBRSpZzieT8zhfR01ScFkDSQrDGKOqFfhTkKMaz/mmGPkMGGLahMTQBBlhbRDhFdeeSWI9+KLL7qJkiBg0w7x/YkWiCRRxqrknXfeucApiEtiEA1kEkrC2PqqUCgeJjMG8sPWrVu3hKCob6G/ShwVKzFW+MtzxT26/PLL5VTC1p9Mk0mqhAibDorzdzyqvunCZLKCeEzkMeEQtr59+wbtIN9VYDhesuNsMfPbUait+S5k/DIgqQkhzw/Pdp+2D2SETP6S5Q1RWr4/B+3SIDJaW++7NCHD9kVkRmkCZfKNdutDDz0UTEj5yURhgDAhkPrnZf/ss88OCIQSxpZJL7ExY8bIrpt8k98bRFKfpBlEsjuQm/w8/HPp9vP5TktXVrrzqd776dL651FdyeT5E9KMn1b2i9MzKHXa3raf/zo3uGRITajehq1Px7pGFDrHWILjnxv+clG2ZDvss2Ex8jwVucWS7MuUKjjMAQH/ykPbBpfzv9HRSkL0N3ZrXSuIl+kOLuBoN2PkcXKf6D5Pb9vn8BWNUuWfbb/FJw1Shk/y98s5dZ+mpoklrGH0u8KupyXuQT0aBIsfJAyiGIsYxPb3Fg9JGAsKOnj9lblLVsupYMsCho+HznbHLHqQvgcB3D9RK+bdMjzDhTpB5ml2kvXD0iRLe5r2h7S/+H747TI/Mf0GIaMTnoqM76fbb7/9gkP5TkmAELxpS8uYSpi0ISqDEL6lnS3pyAdlKr6/YaPN7ytjQhYJq0FJGp+IL2HJtijOClmLOlM/Fm5kYxCwpO8Csckn0JC/GKqEGIQcFGnFBg8eLLs5f9ODDFLscL+j+k6iHkTS8KKGFNnldIr+iSwu9DOg/yFtKvqPLExMZyysEYNAh4qRbyy+gUBEOw4inxCp/Djhfe6dPNeFaX9RHuWy6AUyYdhwLSnqZ7Qfkz3L4XRynM82quSpW0VAEVAEFAFFQBFQBBQBRUARUAQUgcwQKDjil1k6jbUNILB27VrnkgPlAgYj/NVZ/oCQf6kMODVuHCce+OcYfBDDtY6YP7meaqCKAQZ/0ljSZ7Md6A1qhwdZLZfA9Nu5fpDdN2PiZIIgMGIHYs1Vz8cUWFCTgRQSRTqKSJpzkD+w62cyflacsMOA7DzrdiHqr4IlpoiN89JIWNS2vL02sWyVcki32iORVCgbU3iQ/GTb2RKxUEiKMsJ9otbkeTG1mQkeeSbVNS/xyFSjpi2xg2sFS+H+JVOjql21XJAgG9JbkCjLHR/jCmWi8ZIsmShZaFWwptvV5eNmLjNDPRUlVMoKa2Sx0hL95ttnHUIQk1T8RVmXZnFS1e2vjzF3vjnG/GRd9/nXE5WOeyIGCS7quSWsovfssPI/G0N5ShSfmDg95eHB5nWrPABueYApZVWSrRb2JxR84ow/GS7kJ97JEp+JC1H7oWD//Yw6Eu61ov5kIoM0PrGC40wsmfsE3umympl8GACOKp+wqlXjhLxx48a5Yv1V5alWYTM5gcsOXLWJkg3KN7KSneuLIhzJtfmEJX+iQs6z9V1H+OGiTEVYsm+Rrxjjp/X3IQn4eck5Bvjl/jAgXqVK3CWOxIGg47ujk3D/XjIhkQx73GyJ8cyEJxk4V9y/41L/bLbg5pMLmaxAYYfJRSHXZZNfOG4umPnENJS/khmTXP67IVm8dOEolPRoWSOjv3R5+edx2Yn63qyFqw1E6VFT4+/yjYX//PhFpd3nvcP7ADcivFN8jFPd5zCpUAqCZMrvFfMJprhXEevZs6cpU6aMHBbYCpGzwIkUAfl+p6UoKqNTyd77GSX2IrF4INNnUL7VXvKku8XpGUxayW3kBO1flIzEICwla6+JmhtxaTtiW6odhkqRLGzh2WpYK66K6irm/WuzU/zbO3padFsXtaBcbNLceLuVPk+SLo/LumPE4pRwmbn0W/w6+MSicN6oUHXyiEdTNvW7wvFa24VBUVbVW6DRrF6lqCgJfa6odrivmEUfPdxHTFBb9vr4kYVlGej3W9L1w7LJGpdzYnw/aPslM79tgKusTIzvmbQlxdUt6Whvy3cMko8soBBXYcThvLTlfXfXvqqT344mjW8QoWS8BxI5pPuw8U0VNdbwufAxClNCSOIcpKRU5YfT+8eSD/XyicpC5OJ6fVK7368SN9/kl6qP4peXyz7KV1FGv0nuaRSmUWlyDUvWHiK/Zs2aBdkuWrQo2E+2w/MthuoYfdtXX33VuVyW8Gy3RdX+oj+EW0QUvPitQCDLN4ks1zZqthhpfEVAEVAEFAFFQBFQBBQBRUARUAS2dwRSz6Zv7+hsg9eP6gcrAhnkksGvbC7TV5MIpxN3OuFwf7AsasLWj8+Ajz9I559Ltw/5w3dDt8EOYAydmDgog8s2sY/sClHcAaSy9Rs2mhtfGRkov9x2fEfToGbMbVCqdIU9l4wYBLlF7NkvJhv+0lmmruiqVYxP3Pmu0dLlL+d9YpG4K5BzskXtKpU19wbGWTkM0cmvC4pch9/9Xaos3DmUenC3JgpdkqCxJb4kM1Yfb06DMCdW3bp/822dnUj+cOgsR2D6xT7DUcpDfvxc9ilfyhgxJT5RnS6vA7s3MD+MXWAGj1/oon7y8xzDH8bEOm4kcFPCqnjf5ntu3y4eMMw/lXQ/U1KeZMAkzZ0ndjKXPTvcBbEC/dEPf3d/TA6xQr6vdTvYrVn1SAUCySeXLcRMXDTw/kJ1icFNyBYi089grwxak7+v3gKZ6aijjkpwFxGeaBZiD2lRnsnE/En/TOITx6+jn8YnzBAuLpn8OFH7TNSwKpyBZDHfVYGEpdrOnx9X+0o1IE8eO+0UV2TzMfPz516ls0xWFSfLwyd2JYsTtWI7WVzC/e81K5kzwV+Ui8Ir74vzdzwVBunO4f4PIhP3nWu/77773B/p+vfv71TCcEmRyf0Pl1VYzHC5m8pYJY/rl8LY1VZZpdWOmale9rrmy5RFfW2J39/9Nt/8aN2FoZSxJQ23LK+//rrBdYyvAJpNnWQiNipN1PPgEzFxk5nKeL9la/l+p2Vbfjh+svd+OF66Y9x24Vo4E2PBgK8sE05TnJ7BcN225WO/Lc91ZtLmJh4Km7jD3lLtMP891dojLlG3sNWpFm+fChkqHCcb4p2fdpLtu4i1TPM+9vs8kia8zaXfstDrX0A0S2V+v2yR18f006Dims4gieZin/wSbxtWsn30cL99wyYlMPLGnfVlB7d27tdzKSucJlU/LBw3m2O/vZbu++GPi2RKaKH9CEkHFVXUiFiMRptVlIl4nzOeAtEHsgltRsi0EO59wv++++4bXJbfXhayb3AytEM7XOJzrbhC9i2TNrDEv/baa2XXbXEXlqv55HbceuNqjb6YuPwGsyZNmjgyM+Qu3N9JGnHhB1E5m/pnU1fuS7Vq1ZImYRyNtmtRW6NGjZIW4bcFMvlNgzFusHE5h7FQRxbr8BxBJDvuuONcPzBpoaET+Wx/8ZvCdTn32ievhYos1GE+2qiFqoAmVgQUAUVAEVAEFAFFQBFQBBQBRWA7RCDO8tgOL357umTkpJEFf+mllzb7Zc+bF5f5j5KC9itUq1Yt/zCrfSbhfLvyuV/9wwL7kDkgPoTJL37EJz6eELhBw63W7m1yr5+fb677K9f+mXVSf7A/VeLqleLkmuGTFqeKGnluhKfi4OflR/bJU3647Ptu0YTQlCuph9Xb1qmaZF2stqxa9lWXanrYQ8i6/qWRgSuLoqj4MHt/r/m/X3MiTEEAu9u6sIMU9f6QWcafxMEFIH+PfTTBnLh3Y3PuAS2D1eqZPof+9YYn2PxzyfZ3aVXTPH/JrubtH2YYyItiPEdMivCHu4uHz+zmlAXkfD62kJcgNjEwzcAsEw0yweGvjKYs1JiYdIBkyqA7K0n9QVdIUr5JPn5Yun1/8jxd3HTncx1sX7gwRoBbuTKm5kA5UWpGqcr33SFEuU/w00Img8Qgky5MamRLIvLzKy77K1bEJ0uzqROTWWFiUzbpJe7m+o5LeblsUZNkAm/AgAHmmWeeCX575AXBUEiGkGR8tx+5lJVJGl+RK939YxV5cTAI4g+8O869J7d0fXgnPv744+aKK67Y7FXx353p3jk1atTIun76TksOWXF6BpPXcts9k2ube+mqOAFyS7TDeG7EqnsLNSTM36IKRDtQSE24W45yt+enyXTfJ0ShhJrKVq6J1zlVvGzPrbLu3cT8fpWE+Vv//GoPQz9OUe3/YVVa/b7Qk59MTFvUt7avf4BdoFBYS9UPK2ze2bzf/XGRdO0Ev14scIDYRNschSgItqLMhFITbeG99947SMKCC0gmfj/DV9uRPgbEFt+9WJCBt+O7wvav1YuS8+71119vxF1ctplAipL2P9d73nnnOVVH6b+ICz/cQFMGbsruvPNOp14upGlI8Nuzbdy4MevLRx21c+fOzuWctLPJBPIYCw74A3ueV79dnKygfLW/UP864ogjiowstiXbqMmw03BFQBFQBBQBRUARUAQUAUVAEVAEthcElNi0ndxpBhWE1MSg1SWXXGJYcYdbHZG/xmVcv3798o4I6hz4t8cmTpxoUql1iNuiXCoBYSFb++LXueaUfZpGJuPcm9/PcOd2tWSJ0/aNjheZOEVgrpMGZOkrIV17RFuzc4vsJ9SSVa1x7ZgbL+oH4Qv3XY1qJ3fl4OeDkhRqSmLJVCOmWVcVe7arLdEKbKcviLu/aFo3tsoY93Ni+3etZ87+W3M5TLmtHVIMShl5M59EiUgmVKpXKm38Fdm3vTY6IDU1tPgf3nMnR8CpYVWdUPJiRfNblrSTiVpX1GVxfy8a8EtwCrcx+3ep55TIqpQv7fKvYMu4/qUR5peJ0QS3MqVKmCN2a+j+ps1faUZaUtvwyYvNZ8PmBvm+PGiaKVu6pIEQiEEg5LnCXr68pzvnDlL8I30uxvN33ZHtzKV2ZTduk0ZZVyNfjZpncE+Hgf1Zj/9kXruql6kZUsvKpTxJIyt/OcbFwbp1cYU1f2W0xIfsJOp5uE349ttv3Sne0ayC9Q1yypQpU1wQKnjJFPL8NJnE8eOn2vdJp9QPZZxMTEhMvluK33//PavVuz6xwHcvEVU+kyxCaqKe2wKpiev08T/22GPNbbfdFnX5BcIycZ1XIFFEwOb6jkcUXSBIJqkKnLABuEnBleENN9xgWEXN7xA3JOLikTTHHHOM+fTTT03UbzIqz1zDcGcIyQqjfZXKZRl1LQ728qCpAamJCXoUeNpYN0SQAFC8xFXoROtq6dJnMlPdK8w1oT7hk5rOOOMMp4oHgQ3VAybIUFvyJ4YLU56f1leN4H2VysStT6o44XP5fqcxwZbMUrnoS5ZmS4YXp2cwGxwK07bPppyijlvNugoW4x3wf5fGXQ1JeNSW9qNvm7sd5vcVxJW1Xx9/HxKUtMG5xnyRmiij1Y5VgqLSqY7+PrtoCK1+X3HGwlUmmZs4KkpfTywdIUzi5Wv7xYj4wqdM80ThKR/EplT9sEzrkiye317L5vvhE4aS5S3h/uIHUfEUYpO4ZKP9TbsDMhOKRBCbUK7BUK/0CUzSx6B9BcmpTp06UlSBre9qz7/WAhEzDHjhhRfMqaee6mI/8sgjBgXL448/PsPUidG4rqeeesq1+yDpSNsP9SDUmjAWoUBsgsw0c+bMBLfdRd0udBXYBv+BO39z5851Cwx45v7v//4vIBVxHw4++GDnajDd5eej/cVzzH0Wg1hF2x9Xe5DRZezz6KOPzlkpfku2UeW6dKsIKAKKgCKgCCgCioAioAgoAorA9oqAEpu2kzsvMtxcLiumwm6OCPcVGTjOlyGHLoaKCQNrycx3W5csTlT4fCu7L66xOM9AvPVKFWlz7QpRXGBgKLqc3KdpoCojCSbZibtbXx3tDpnQu+W4Ds69gpyP2srAOJMbyVb/5qJA45dVs3LcfQIrclOpTfnpMtkvVXIH50JM3Pm9/PVUc70lh2Rir34zNYi2Z/vaSd0EMCGaysBdTAbia/jXbBWr8nnNUtbm3G60K8Mf+yg+Ufq3rvWDSZVldsW7TxB7+vwexl9NLfWcZ5/hXO3XKXGyUvtGVZ1yUVRe/mRH1HkJgxDH30E9GphLDmxtXho0xbz6zXR3GrKhEJv4HQmxCVd7TeumdwcmZeS6xX0GygH8UQ/IV/94fbSb0OJ3OnzyIvfM55p/OB1kJMg0DKiyWlgIGEwYtGrVKhzdrWCVQNwsyUpXBn9Zbe0bq5CF2LRmzRqTzrWVnzYf+/7kBdeFK4Ns3LX5rqD4DrCKNlPzy2YiYu3atQkTMn4+/iSSTGL457fWfX/CC/zzocKUDRab4zsuJDSuL5nSlr+SO1X9yWvXXXd1f5deeqkZP368I8lAcsLefffdIic2+Zi999575uyzz478zcyYMSOYfEt1TZvj3PfWzagYbj15d4Zt0fK4G9XwuXweywQseeKuRlyd+GVMnTrVP8zbvu8+aMSIESnz9d2mpIzonczHO83/RoRdhXpFmenTY99jP6w47xenZxCcNkfbvjjdj2qegijtpHrVyqXt/6Sq/+Zqh/mkHEjs6207s7Ql4UeZ376tb0n3+bSdPHflP09Y5NxpR6nYUr9vxiQqDeerHrWrlguymmKx6N0+OCywM8G6EBQLu5CW8KLaovwqhhKsj52Es4W2efJDg10QCy7mLl5j6lWPX6M7kcW/VP2wLLJJGhWCtVi674coBRE/7NJN8ojaQlrHjR3pcf3VokWLIJqv1HTggQc6YhNtEAjxkKwxIT9JItr00segvZSM2ARZCCKVmN82lbBsttQLlSTafSiLY5CcuDYITtka41sQm8gPbCCxY6g0iflKVZBT5B7Qf0N5SC13BFjEcvjhh7u/u+66y7lYPv30012GPDcQyXyX4VEl5aP9JQuFyJ++gPSvw+X5fcbwuXTHW7KNmq5uel4RUAQUAUVAEVAEFAFFQBFQBBSBbR2B6BG/bf2qt7PrQ9p8+PDh7qoZqBIp7jAMstIvHF7YY3+A4j//+Y9JJrWOsoIMuGVb5n9HxJViTrXKSi3qV3IrVCHHhP9wJ9e5aTVXBESL0dOXJBS3YvWf5tr/i09k3XtK50hySUIieyAKQ4QLgSMc59fJiWWFz6c77u4pNH09+g9HoIpKA7Hq54mL3J8/gB8V1w/r261ecPixJX0NtXmkszHTlwZEFuL22zk+oBtO+711IZAMG8g6nBdrWCumFtWuYXz1My7yUIdKZr/NWOqumToVR2Mw/anPJhrcIIod1GNH2TXjZsZXb/fvXj/yudtolRm+HxvHKUgcsSPu/PxTPjaH7baTfyrYn2qVtWQ1exBod1ZbMh3p+ZvhqWtJnKpWXQv3c+KKg3strjh6to5PkKeazFm6cn3w7C5akfxeR5EEUY+S+vluSaif9TxiujWvbk7q04RDZxPmxIl0ElaYLUQfcTmHSp2QKPwBdT//5s2bG1YRYwwAi0URT3E7Ifbhhx/KboEtE9wM1POXT7JquXLlEr4dSPwns0mTJrnyccsnqlX+NbE6e9Gi6HcLikwMeqPCcvLJJ7siWFXur7zFlVgye/nll4NTci+CgK14p0ePHkHtIc2xKjqZDR061OE/ZMiQZFGyDt8c33GfrJeMsOK7UfEvYs6cOYbr5S8Km9atW5u77747SDJs2LBgv6h2mJgT47eAklTYcEHHxGNxMN7vv8+KTXKjJNijZfyd7dfvx/EL/cMi2/cnpkTNIVyYP7EUPleYY94/QsZk0jiZUhxEO9q12Vo+3mkoD4glUzvdsGFD8B2SuMV5W9yeQbDKd9ved9m2ue5FNmWiyImSp9gvlhCezGZaNSD6Gr9MWmTWb4i5MNpS7TBITKjrin3h9QslTLa+wm+vtrUkOC/bEnZVjdQDYtgNL48MsPELuP+9cc51sx+Wr/0eXl9x4LA5ru0elTdt9F+8fl6nJlWjohVJ2Fjb35mxSS2KRRZ72UUx4f66HDe3ffkz9o+/71Ld23SVTdcPS5c+fF5cuPnhqDWK8f3wFY4knC2LFF555ZUgyFd9DQJT7LAIAmNhhPQ3UGgSpVTOSdubeuKiVyxclt/HQGknmfn9D64zF1esft5C5jrnnHMcoUnOQY7JlMguadjuueeewSGkKWkHCw6c5PsriysY+6K/hOGi2CcMu8As/iXr12SRRaGjpiI5FzrziAx++uknh3GU6ij9xhNPPDFhQWMmRPB8tL+olxjPVpTRbhKF36jzflgUrluyjerXTfcVAUVAEVAEFAFFQBFQBBQBRUAR2B4RUGLTdnDXcdUhEzQMbEV14p977jmn5FQUcOA2RMrHZce5555boBgmJY866qgC4ZkGfGhJOGJ9OtaV3aTbft3i5JvPhscniCGN3PHmmIB8c+2RbU3rBnFiTdIM7QnctYiJCzs5ZgtJ44lPJvhBWe93sIO/olgEOebB98cVyAOPJM98PslcYl3F8PfOjzMKxEkW0KVp9QRiEu5mBo36I1l08+P4BebsJ4YG5yGN9W6fXL5eBvnXro9NgEhCVi4z+M95DBKMrJIvZ92RHbiJ/MP5K58fHsST9Gx/GLfAuhcb6q75rrd+Myk8s/jJNts+hJurXvjVvGJdtImd379FgnKR75JuoiXdyESRxIewdu/bY+0K8PUSVGCLuyCxHy0mYRya1Kkop4NJ7CDA7vCc3vHGGD8o2EdpifvN37H3/2B8hS2JtGjF2uD+NLcEQ6nPPp3iv8sX/jvF4OoxbJCRbnhlZPDs4kbOt4rlSgaHTKaFjckqqd8D7xb8bRB/2h9xtxudGlcLsoCA889//tOt6n3zzTeD8Gx3fAKOpI0Kk3OiYMfqYrHevXvLbrA98sgjg/0777zTRJF7cMN23HHHuZXYrMaGLJpPY4BaDPl+WeUsYWwhpOyyyy6uDkyULFwYI0Hg+rRjx44uKt8giApMuvu2evVq536C7xR4+CvKfbcUZ555polS93vjjTfMo48+GmRZmG9KkEkx2alQoYI57bTTXG3AhufGf2akmqxK7tWrl8MOhaBULqokTSbbzfEd5xkRe/zxx2U32ELUQ7knykaOHOkmtJjUwpVIFIHadxkW9RuLyrcwYUyeoZApdt9997mJs6efftp89NFHTj1ht912i/wdSZrNuUVZBWU9jG/M/KVrChT/4U+zzBdem6lAhDwGyPuCLKNI7xD4rr766jyWmJiVPxHKJOvSpYmEaVTFTjnlFOe2JzFlZkeFfadB1hNjcjxKmemxxx4rNs+X1DXVtrg9g9Q1H237yuVKB5eNcuTmsMKU6S9QuP7FEQbVn7BBijntkSGuvXbxgGEGUjpWmHZYuIxsj/3FGXe+8Zv5fXa8XSV5fWkJT298N10Ozb6d6gX7+dq57JDWAcGfvhrt0v/7aopdlLDAvP7tdHOhdQfN4pGisrZ2QYj0FSEP3RPRJ6K9fa29t9Lv6tOpjqkccidYVPUj38+970gmruX27RzvQ3wwZFaBvk0mdc2kH5ZJPrhBFYMYE25n4QZa2mvEgzCzZElif4bwK6+8MnDrzMKzbNslslCNtuBDDz1ElsHiCndg/0FKF/Wlm2++2QWj+MnCCt/4xom9+OKLCSQoCUfdxm9Xy+IDOV/YLW7ohBRGP4E+B9/ZbAw3teL213fZTFvLt379+rnDt956K1j8l6qv5qf19ylPjEUHW8JQmhITkpYcF/UWRVTa3eAbRYjDFe7kyZODasj9DQKS7BS2/eUvLIjqL9KfECWpJFVwCsxyLgrXwrZR8zXuIHXUrSKgCCgCioAioAgoAoqAIqAIKALbEwLxGfDt6aq3w2tFMeSJJ55wV44EN5MxDERAKGLFOxPCRWU7WKmUd955x0lBUwZlMchx0EEHGSZLBw8e7M5HrXrMpE7jrcIAbgewJnUrOrWmdOn2suSbeyxBBPvMrma98O8tDQSa/3w9zXy7yTUAg8KVLEkkFbGHlb7i6qCdJR2Jvf3DDOd+oE/HOqacnSyEAPKiHdSWAWSJl+2WlcD/PL2rOeOxIS6v9wbPcnn3bF3LXTcqO58Nn5PgzuyoXo2yKuaiv7dyK7BFsQfCEYPkf+++o6lfvbx1CfCXWWDL+dTi5isPofBw5WFt0paFIsSJD/5oGERvUa+ymTRvhUF9Slbuks+1IRd4lx7c2l3n2BnLHBnnlIcHm94dapuOlpjCCv+hExaagcPiRJnT921WwL1g2orlIcLHP882vkLWn3YFOziigBRWqkKR6dg9GyeUWte6/GhYu4LDApyYDNmvcz3T0hKEmFj63+h5Cfc2IfGmgx3tPRJjcvqiZ34x+1iyX7N6FQ3EtW7N4yvxmdyZs3i14TnGzSGKUbgilHsv+cgWt3iQzHDhiF3x3HBzuFV96tykunvOf5+9zDw9cKJEN327xieMdqpZwdx+Qkdz0yuj3HlcPX41ap5BhayudZsx3SpAUR8pGxz2aFc7yIudBjYPsc/s/d6w4S/T05LpUPXCHd7BuzQwL/1vqovC5Nqflgi2+6bfxgLrrnKg/W2QTsxXQGNl73XXXedOQQ5BIScXV2ZRExMQTZIZA+kPPPBAcBoFJyGCBoF2h0mIV1991RGXCD/ppJOcxD+rrlnxzIQDk9hCXCWffCvBMBHPKtgnn3zSkWqYPGDVM9fMylxUcO6///6g2qySFZccfAdw/7X77rs7IgCTQRBZIGy1b9/eQFL44IMPjJBPmIiRFdVkeMwxx5h///vfzqUGx5BXWK3Od4yBc1ar+yvJL7zwwoBIRfxtwR588EFH8Pj555/dRAwTBHzbmVBYuXKlc2fmr/6/8cYb7XvQSpXlwYr6O04VIcSJ8YzRJuAZYJKQVd733ntvJJmLNEzwMVmHKxWeIZ59SH7kCWGOSQnflVkyFTUpP19bJgtvv/12c9NNN7kscQvsuwYmkGedCZZ77rknX8XmnE/vDnXMW9/HyNCn23YG3/0uzaob3p+4VfpyxLyc8842IRNb/OYxJlOZKIbsiCsc2o1Mghal8bx9//337nniucK1IO8r3lu8b2nXRpE7M61TYd9ppUuXdhO4omKG2x6eNd79/Haon/9OzLReWzpecXoGwSIfbXvaM2ZcDNlHP/zdTLLEdVRqIPEXFZmkMGX2tS6Sx0xfZujL0G85+4mfbJu9rulm3wUoOo2ftcy87JH0Uf8UN2aFaYcV9tnb37aX37ekF+mbXPDUz04JiLYv7cEhvy8M+niUdVSvhhn1GbOtF4qz953axVz49C8uKe15UcPz87r4oFaG5yHfVsJ+968+oq1hcQrGe5s29p62TU3dIHzRt/X7JRf0j6mH5rsuUfmxmOUjzw0dv/l0Rhu/VYPKDkfqjUIvv6GwFbYfFs4v6tjvG/CupR1PW4W2LG1SDFINpBlIR3w/eD8TZ+eddzbTpk0ztIF9l26QucuUKRNVXNIwXGyFLUzOoe0GsQpCtRjjL2FDAZA24x133OFOXXDBBe77AQEIYj3fQpRoxbieM844Qw7zsqWtxxgR7uDADaVL+mV+vyKTgqizfBeJz/VDNPdNSGF+WFT/zT8ftS+qu5yDqAYJm/vCffCVs6LS5ivMJ6mhIAkZjLYS/VifAJ2v8vx86GuxUAU766yzXNuIPi+uDVHvRY1YiOlg4rvhdYmS/Cts+8u/lyx44TdIvwDXifRVn3322aC/nKQKCeS/KFwL20bN17hDsvpruCKgCCgCioAioAgoAoqAIqAIKALbMgJKbNqW7653bRdffLHzL0/HnkE4BonCA0VM+slqPi9pXnYZAMNFkCh+MDHLn28MDjER6U8++ueT7X9uyQpi/VO4QZM4bHGZ1atdLev6bIEbtEfZBqWn/46MT9oxcHrjyzEShp/W3//45r1MtVKxgUgG/E/fr5l57svYyrSvbF78+XZozwZulWphCE6N7ATJg2d0Nec+GcNv1NSlSckuj5zVzZJB4kQXvy7J9sHm+Yt3Nde9NCLIF0IRf8kMZZ4H7CB+HUvMSWWsYob4Ara+cpGf5t5TupjaVRIHIFnFzyTBOZboQ1r+Xv1munnVxFddSx5n921u/JW9Er45tskmL8JlX314W3PIrg3Cwe740oNaO8IQB1H5oajhT/yFM+H+7W8JRaKqgfs+/rhHL17a0xKYypizLEbPfDbJJYXIJ2Q+yWtP6xJixZo/XToJk+0p+zQ1uJBgYg4S0tMDY/nIednuZ1dXH9azoRy6LapNf1gVkMc+muCOvxk93/AXNq7x0TO7Bapdch73KJwT8hOTNfwd37uxYVIGMuL5dvvkJmU0MBAcJA+2uMq7/YROpmzpuGjhjBmxyXyJB0HIn7yQ8HRbSEa8y4Sgg7IOpJ9kFl5FLK4louIzKYLqi6iUvP/++4a/sEGMwjVFqVL5/8RDwgIbymXiAbdy/IWtf//+CYQtzjPQjVKNEFggBTARHzbqD8nJn4jAzR+kHQgpuFalbI59Io/kA+YyOSNh28K2YsWKjhy21157uUF6vues0peV+v41Mqnmr6z3z+W6X5TfcerERAQEIHkmmBTkzzdUqCD4cf994/mADIWSGOeYMPQnDf24KJ7JM+iHF9U+v1eeZX47tL98O/bYY92zyiRncbBj9mhkfrCqInxjIcZCXvAJDNTxnAOaJ33v5/MaUHzDnaQQwZ5//nnDn2+4FxRCqh+ej30mJSFj8o7mmeK9F0WmGjBggOG5zNby8U5DIYH68VxRR9QTwoZK6lNPPRUOLrbHxekZBKR8tO0PtARBlHow2v+ouvJHuzbfrtBcIfZfYcu8xJJu5i9b49po1BmFoSiVIZRaLzmwlRRbqHZYkEmOOyz++MfxHZ06Ku1n6s2iB3/hg2S9l10ccW6/FnKY921X2yd84PQu5l+fTnTtZb8AFouAb8Wy+W+jSTm4o7v80NbmwffGu6Co/oTEfcj2KVm4srkMgpn0g3HbR78kE0PZievAUFuOIjaluk6/jFT9MD9e1D7kDL7dosiIuzn+UHARl1z16tVz7Vja9PL98BVF/Xxp8+RCtqZvAUlJCKyQpH23wVIGJBef2BRF6iEuipi0K6VdTbskqm1CH4drh1ybb8MVNYQPFi9gfHMhEzM+lKlxfTfccEMQXdSZggC7s+OOO7r7JaQb2reQXrI1SD3SLuA+Q1Djj7bD5nKHDVb0m2RhC+Qw/q644ooEF8zZXlsm8SHv06+TtnrU+CL58NsQnDLJt7DtL35/t956q/ujPH4j8juR8vnt4A6a326UpcO1sG3UfI07RNVdwxQBRUARUAQUAUVAEVAEFAFFQBHY1hGIz+pu61e6nV8fSgZM8jEx7ktWAwsKGpxLNtCVKXTpBriYcITc5K9uk7wvueQSg696f1DJn9SWeFFbFIrEMnFDJ3H/1qWe7AaqTKVLZveTKFUiMT7EJkgjKEeFDbdjkFaSmV1UmbGhVPSv87q71d5RiSDNvHlNL6eGE3U+XVj1SmXMo2ftbJWT2kZei6SHSHLFoW3M0+f3SEtqIg2qPS9e1tOqEBUcPGSA+tGzu0UOVJO2BnWy55MRgiC9gAnEm1ysVMksboBXQMk0Nw4SDauM97bqXbce18H8944+Sa+BbFnB//wlu5qOTQquREbl6d8X7mInIJITZcjjCksgg+xD2VF2qsXolmM7OHWo8HkmralnsrTcc+pwUp8mgasLPw8mbHhubrOTS1F5oFJ14zHtI58r4lP+y5fvFvk8oar2xDndzQl7J7+2E+x1P3NhD9O5adw9gNQPNTCevf9cuXuB3w5qRCJdz2An78VczR/M9vej8uM9x3tZDAWmVMbENa5Dpa5+XN7tTJAgu8/kQKbGBHumBlmKyXRIsOLewk/L+/2ll15yg9xR73BUT1BbERd8floG5pkkgPTqS/xLHNSfRHknqmwwYQIfN32sMPctm2skXTIymv+dy3Z1vV+fZPn7ZbN6PWx8I1Gnwh1flPEdl1XuUefThfnXFxW3qL7jUhaKAUxGRD3frPzGXWQyYxICZSfqGG7ncNynTx83gXHVVVclKFll+2yEy0+HGYoJ/G5RqsRl3qeffurUD3CFgcsXCH++67xsVLbCbZBw3dIdlwx999z7/aJdnKJi+P3NN+nf9lyPljUjsxX3sVEn/XOZtrP4DeMWFGJY+PfOu4LJ18suuyyqOBdWItQ+SxYx6ncmcVu1auVIolHtY8ibTIr6JLmod57kFbUtzDuN/CDSfvHFF4a6hJ95iIK8S9u1axdVtCnscy+ZpmsDSbzwtlSpeJurlFUBEivMM0gepZK043N5BqVOhWnbk0ezepVc+9R3lSZ5yzbbevvXI3n428KUST7kTzvxjP2bGdpOYUMRirbiPad0DpRrJU6u7TBJn2xbMoPfNMpRT57b3bUlo+pN/+xaq2Z054mdnFKvX1aSR8ePktX+blYx9P8u6en6Y4+fs7N54tydzfs37GmeuWCXmOLs+g1BfvFfQxCUdiddv+WI3Rqap87vblisEGUosL521e5mF0suCluark04uikd+pZIhDLe71ze/YNGxwm+qX4Tkods+3jKTp/+MjtwR5fuHcS3LJt+mJSXagtJA+JI+L3rp0G5BiI+5NIoQ8EG4tA111wTdTqjMN9lM+SoqPYDZHjfxFWbH8Y+bVr6FyxWgOgTNq4V8jnqTYwr5Wrpvj2oXj388MNB9qiMo3KVqXXq1CnhvkR9v8nL74ckU7hNt0AElS7a3L5r2XA9JY9UbQ3SsHghF6OthPo6ilHJnkepA/mn6rskq2Oydi59GdSMIJ1H9dvoE9LmRkHLV5bK5DoL2/66/vrrXX81atyRRZT0VStVqpS0KulwLWwbNZ/jDkkvQk8oAoqAIqAIKAKKgCKgCCgCioAisI0isIP17/3XNnptellJEMCNx8SJE83atWvd5PfmksqW6lA+E3r8MYCC/HmyARNJszVul69eb1UP1lg3E6UMLsbSTULkeo0rrbLOH1Y5Z92fG0z1imWcOwhWLefL/rJviBnWhcE8q7Tzx5I1ZqMNwHUY6kyoR+HyIJXhXuyRTa4WcKMHcQdbu36jyxd3beADmSpTW2fdGKD8w7VXsCue61mijwyYZ5rH1hAPdw0zF66ymOOGrXyBSZhMrgGMcMGBOhHEoLChzIQ6BwP/rNjO9jnFFSDpeQ5wcZFuosUvf8nKde7ZJW2tKmVMNfv8Zmp/Wjd0XBvPYxXrIi+q3pybZ5/ZZav+tM9Y2bT5/2Xjs3qzatWCpLJM67U5482fP9+t0GWSgNWptWtHT14VVZ1wd8B7nHpQhyZNmiQdVI+qA2SOmTNnmjVr1ji3pNl8izZs2ODKFgUcVl9z/VGTOlFlbwth4MYK7aVLl5oqVao4gkyqCYt8XvPm+I4vXrzYTJ061bnzgKjnT8xkci08G7Nnz3bpIQ9t7meDZ1RW0NPGEbeMUXVHzZIV9tiQIUMiJxWj0hVlGO/PmQtW27YF3+iyReYyK9NrwHXy3Llz3buO993mvp+LFi1y7ysIU7zrUk2IZXpNfrzCvtNIj+sX2vYQnqpVK0ju9cvbGvaL2zMIZoVt26+xZBbav7Q3qlYoY5/jor8ThS1zg21DLly+1ixZud619SCfhYmPya4i23ZYsnxyCd9IvVesc67BSY8aLO3MosYc1520UbE69t2ZrJ+E27z73hnr4qHgdLRVzCsqQyGJftMa22avZPultauUS1AtLapyt4d86TfgEpkxDcgOUcZ7mfYI7RrIIJBzi3tfY8ECq95o60x7D5UqvrvZtsOisNhWw1atWuVcHwtem7uNAq48h/QJqEONGjU2+/2y48quHUJ7BPJbrmSt8DNS2PYXmKBGBvGrcePGWeOSCa65tFG3tnGH8H3RY0UgHwiMHz++yN1m5qOemocioAgoAoqAIqAIKAKKQPFCQIlNxet+aG0UgW0OgWTEpm3uQvWCFAFFQBFQBBSBTQhAPGPyEvckGO5VUNYJG6v9cWkhtnDhwqwIgpJOt4qAIqAIKAJbHgFceYub5ROtwuh5/VoWqBTkp1MfGexcfnISNacuTasXiKcBioAioAgoAoqAIqAIbKsIKLFpW72zel2KgCKgCCgCioAioAgULQKlijZ7zV0RUAQUAUVAEVAEFAFFQBHYvhBAlQEXM7jXw3ATc/7555vu3bs7l7yoIeCWbsCAAQEw1157rZKaAjR0RxFQBBSBrQ+B4/dqHBCbXh40zan3dmlWzbSsX9mstQp4Y6YvNa8MmmpQUcJw4dy5iZKatr47rTVWBBQBRUARUAQUAUVAEVAEFAFFQBFQBBQBRUAR2NwIKLFpcyOu5SkCioAioAgoAoqAIqAIbPMInHPOOWbQoEHmyy+/dNf65JNPJr3mm2++2Vx//fVJz+sJRUARUAQUgeKPQMfG1czxvRub/3w9zVX2q5HzDH9RtnubWuaW4zoUuXu8qLI1TBFQBBQBRUARUAQUAUVAEVAEFAFFQBFQBBQBRUAR2NoQKLG1VVjrqwgoAoqAIqAIKAKKgCKgCBR3BKpWrWo+/vhj89RTT5mmTZtGVrd3797m9ddfd8pOJUposzwSJA1UBBQBRWArQuCC/i3Nk+d2d2pMUdVu1aCyOatvc3PPKZ1NpXK6ziwKIw1TBBQBRUARUAQUAUVAEVAEFAFFQBFQBBQBRUARUATCCOywbt26v8KBeqwIKAKKQL4Q2LDxL7N+w0aXXZmSJUyJEjvkK2vNRxFQBBQBRUAR2GoQWLVqlZk0aZJZtGiRadiwoWnSpIn9JiqZaau5gVpRRUARUASyRIB+0JzFq838pWtN5fKlTeM6FUxp2x9SUwQUAUVAEVAEFAFFYHtGYPz48aZ169bbMwR67YqAIqAIKAKKgCKgCCgCOSCgxKYcQNMkioAioAgoAoqAIqAIKAKKgCKgCCgCioAioAgoAoqAIqAIKAKKgCKgCCgCmSOgxKbMsdKYioAioAgoAoqAIqAIKAJxBHS5YBwL3VMEFAFFQBFQBBQBRUARUAQUAUVAEVAEFAFFQBFQBBQBRUARUAQUAUVAEVAEFAFFQBFQBBQBRUARUAQUgWKCgBKbismN0GooAoqAIqAIKAKKgCKgCCgCioAioAgoAoqAIqAIKAKKgCKgCCgCioAioAgoAoqAIqAIKAKKgCKgCCgCikAcASU2xbHQPUVAEVAEFAFFQBFQBBQBRUARUAQUAUVAEVAEFAFFQBFQBBQBRUARUAQUAUVAEVAEFAFFQBFQBBQBRUARKCYIKLGpmNwIrYYioAgoAoqAIqAIKAKKgCKgCCgCioAioAgoAoqAIqAIKAKKgCKgCCgCioAioAgoAoqAIqAIKAKKgCKgCMQRUGJTHAvdUwQUAUVAEVAEFAFFQBFQBBQBRUARUAQUAUVAEVAEFAFFQBFQBBQBRUARUAQUAUVAEVAEFAH0vSYTAABAAElEQVRFQBFQBBSBYoKAEpuKyY3QaigCioAioAgoAoqAIqAIKAKKgCKgCCgCioAioAgoAoqAIqAIKAKKgCKgCCgCioAioAgoAoqAIqAIKAKKQBwBJTbFsdA9RUARUAQUAUVAEVAEFAFFQBFQBBQBRUARUAQUAUVAEVAEFAFFQBFQBBQBRUARUAQUAUVAEVAEFAFFQBEoJggosamY3AithiKgCCgCioAioAgoAoqAIqAIKAKKgCKgCCgCioAioAgoAoqAIqAIKAKKgCKgCCgCioAioAgoAoqAIqAIxBFQYlMcC91TBBQBRUARUAQUAUVAEVAEFAFFQBFQBBQBRUARUAQUAUVAEVAEFAFFQBFQBBQBRUARUAQUAUVAEVAEFIFigoASm4rJjdBqKAKKgCKgCCgCioAioAgoAoqAIqAIKAKKgCKgCCgCioAioAgoAoqAIqAIKAKKgCKgCCgCioAioAgoAopAHIFS8V3dUwQUAUVAEVAEFAFFQBFQBBQBRUARUAQUAUVAEVAEFAFFQBFQBBQBRUARUAQUgXwgsHrdBlO+TMl8ZJVzHsvX/Gk++GmWS39QjwamSvmCU4Pr/txoJsxebibMWW7mLVlrKpUrZY7eo6EpXVL1EXIGXhMmIDB38RozfMpiF9Z2pyqmSZ2KCee3hoPPhs82G//awVSpUMr0alN7a6iy1lERUAQUgW0GgYKtl23m0vRCFAFFQBFQBBQBRUARUAQUAUVAEVAEFAFFQBFQBBQBRUARUAQUAUVAEVAEFIHNgwAkoq9GzDMjpi42wyctMX8sXWPqVC1nujavZro2rW4O2Ll+TmSh576cbBYuX+vSXnpw66wuZsDAieadH2e6NPMsueTyQxLTr1q7wVz+3HAzauqShHwP6bmTLS8hSA+SIPDlr3MD0k44SokddjA1Kpc1taqUMQ1rVzCdGlUzJUrsEI62zR9Pmrvc3PH6GHedVx7WZqskNv3jtd9c/ds2rKLEpm3+idULVAQUgeKGgBKbitsd0fooAoqAIqAIKAKKgCKgCCgCioAioAgoAoqAIqAIKAKKgCKgCCgCioAioAhsVQjMX7rWXPrsMDN13sqEekNu+mzYXPf3v9HzzJ0nds5axeltS0xasmKdyzdbYtOsRauC+sxcmFg3Ttz+xugEUlMFqzBVv2Z5U9IScsTmWELU+JlL3WH7xtVNbUvSUYsjMGTCQvPJz3PiASn2ILod2rOBOXavxqZsKVXESgGVnlIEFAFFQBFQBAIElNgUQKE7ioAioAgoAoqAIqAIKAKKgCKgCCgCioAioAgoAoqAIqAIKAKKgCKgCCgCikB2CMxcsNpcNOAXp9BESshBPdvUNA1qVjBjZiw1wybGXHANGb/InP/Uz+axc7qbSmU3jxzSyfs0NTPnr3YXdFKfpgkXtvGvv8w3o+cHYQ+f1dV0a1bDlAwpCn3yy2zz3BeTXbz7TutsiU3qhisALcsdiG4DPptkBo3+w5LcOpkda5TPMgeNrggoAoqAIqAIbH8IKLFp+7vnesWKgCKgCCgCioAioAgoAoqAIqAIKAKKgCKgCCgCioAioAgoAoqAIqAIKAJ5QuDBD8YGpKZuLaqb+07palWZ4mo8o6YtMec++bMr7fdZy82HP80yx+3ZKE+lp86mS5Pq5o1rekVGmr1wTRDexbrL69GiZnCsO7kh8Pwlu5pWO1YOEq/7c6N1I7jO4IrtA3vfv/9tgTvHc3DWE0PNa1ftbiqX0+naADDdUQQUAUVAEVAEIhCIt6oiTmqQIqAIKAKKgCKgCCgCioAioAgoAoqAIqAIKAKKgCKgCCgCioAioAgoAoqAIqAIRCMwb8lagxITVq1SGfPAqYmkJsI7Nq5mrjuqHbvOvrZqPcXBlq2OubejLhCg1PKPQBnrbq5+9XJmj7a1LeGti7n31M5BIbgXfPDdscGx7igCioAioAgoAopANAJKAY7GRUMVAUVAEVAEFAFFQBFQBBQBRUARUAQUAUVAEVAEFAFFQBFQBBQBRUARUAS2cQTmL11rBo+PqejUsQSUXVsmVy36AxLT77G4zepVMu0bVTUzF64MENrdup8rWzpaU6BbszhxaMaCVUGaot6ZPn+VGTEl5gpvd0uuqVm5jBk6caGZu2iNmbUo5qKOOvwyabGpZxWFsKqVSpu92tUxnw+fY9au32jGzVzqwvkHiWvRshghqn3jqqZZ3UrBOdnBNd+3Y+ebOTb/pSvXmVpVy5qdrFu+vTvUNdVt3r6Nm7nMTJi93AW1s3g2t7gms9+sW79Jc1a407u0qmXqViubEJVrpdzZC1eZ1Ws3mLr2frax6km97LWUKrlDQlwOJtq8xto8sb071TXl7L0bO2OZGTZ5sS1nueluFawO2bWBO5+vfxCcHji9i7nyuV9dlp//Os8c17tJgsqTX9byNX+aQSPnmWn22hYuW2MqlS9t6lUvb3q1rWWa1KnoRzXz7X0ZPC7mWrB5/UqmXcOqCec5mGPv+8/2/mPJ7t+UeSvNaKsyhvWy9a1hn5kwVhWtK8Vpf6wyqJHxV6FsKVefXezvp0HN3N3rZfPsuAp6/zZs/MvVe7Kt/+S5KwxqWS3t/W9psWjVoIpVUUvt/nGRVdb6atQ8w3O0Ys1607h2RdOxSTXrnjH+2/WKK7BL+eNn8TyvcNsd7CPHe4J70bFRtQIuHgtkoAGKgCKgCCgCSRFQYlNSaPSEIqAIKAKKgCKgCCgCioAioAgoAoqAIqAIKAKKgCKgCCgCioAioAgoAorAtoxAWUt2uOftmGpOBbs/8La9kxIQPvp5lnn2i8kOjksOauWITXWrljdXHNra/GVDO1jyQjIrXyY+JQe5aHPZGEvckeu77biSZr8u9cz7Q2aZ/41MVI0aNdUSVOwfBg5f3F7HPPLRBIOqkG9v/zAjODy+d2NzQf+WwfHqdRvMfW//ZiDrRNkD744zJ+/T1Jy1fzNTokSMaLTYEp+kfvt0qmNuP6FTVFIX9qitj9TxuYt3DYhNG//6y9z/zjjn6i0qMUpaT567syOq+OeHTVpkHvnwdxdUo0oZ8+b3083Q32MkMAJL2Trmm9hEvru1rmX6dqtnPhs2l0PzP0um8d3XEWYvybz89VTz1KcTOSxgT34ywezRvpa58egOCa7sBMte7Wo5hahwwk+HzQ6e4QN77GiuOzKuJCZx3/lxhnnnx5nu8P8ureKITT5WENW++22+eW9wjAgn6WR7uf09HLFbQznMaJvLs+NnDCHqjjfHBM+Hf479OlXLmYfP6lrgGZB4A4fNMbe/PkYOE7a7WcLiDUd1SAgLHyxesd7c/OpIM2xi/Pnx43RuWtXccmyn4Jn1z+m+IqAIKAKKQHoEomnj6dNpDEVAEVAEFAFFQBFQBBQBRUARUAQUAUVAEVAEFAFFQBFQBBQBRUARUAQUAUVgq0agSvlSpo8l1GCrLDFn5CalmqiLQsFIbJ9O9dzuTrXKm8MtiQMiR+sGleV0ge1vM2OkIU6kilcgYREEVLTqOpCXwkYYf9UtEQiDgBWOJ3HY+go4KDud8+TQAqSmcPoXv5pibnl1VFB0D6uKJHG+smSr1es2Buf8HZS1hNTUpG7FBAyf+XxSAVKT5EkekLOusgpJkE+S2dMDJyWQmpLFy1f4gT3iSlD/jSCC3W9d1IVJTf41UY/vxiwwZzwyxKDqhNW25CzUgbDvf1tgUBAK2w/jFgRB341d4AhUQcCmnaETYopOEMJQHArb4x9PSCA1Ec+3B98b71Sv/LBU+7k+O5LnnMVrzDH3fx88H4SDFWQmsT+WrjFnPvqTU56SMNmiOBUmNflY/zhuoSMtSfzwdsmq9ebEh35MIDWh9NTQvhvERkxZak785w/BvZJw3SoCioAioAhkhkCcHp5ZfI2lCCgCioAioAgoAoqAIqAIKAKKgCKgCCgCioAioAgoAoqAIqAIKAKKgCKgCGwzCPTbuX6gYDRo1B+ma9OCrqdwxTXDqsJgu7etaWpZEkmmhkusxzYpA5Fm744xIlWm6fMdD5Ue/nDtdtbjQ132p+/XzJxhlZR8e/HSnu7w2S8nm+c2KVXdekIH06tNbT+a2x/w+cTATRwBtx7X3rpyq+Vcz81auNp8YxV+Hv8opo4EgWmPdrNN3647Ohdxh+3e0LwyaKrLZ8j4+Rafum7f//ftb3GFqYOs0pDYxz/PNi9+NdUdQka55fgO1nVYDVOuTAnrjmyleeaLiY4AhNu9614aYR49q5spU6qg7gMu7iDoXGnVhto1rOZIQqssWauorLMlvohRN0hIJTepWH1n3emhqiV2Vt/mZj+LyU61K5ilq/60BJqF5q43f3NEPNKCqygv7dmudnAfeGZ9Eh3ELlztiUH4mmRdtrXYRIYifMGydcFzvod1d1cCf2ohm2pdvTWoUd7cclwHm38Vdw9x03jX26MDchiKUv++cJdQyujDXJ8dyQ2lLbFuLaqbKw5pYxpZrKj7Qute7p/vjzVfj5rv8Pri17n2eltIdEO9r31xZHCMathxezU2bex1rbH3f9jkReaf71qiVhIlJhL+YO+XKJvxbrjpmI4GwiSGe8Bb/jPCuoNc6sqHHJmtmpXLSP8pAoqAIrCdI1Dwy72dA6KXrwgoAoqAIqAIKAKKgCKgCCgCioAioAgoAoqAIqAIKAKKgCKgCCgCioAisP0gsEvLuGrQJ0NnRyrdfGuJOWL9u8WJNRKWavvUwIkBWQTiQxQxKFX64n4OxaDXvomTS+4+pZPZv0t9R2qi7g1qljfH7dnInPm35sGlPPv5lGD/b9Y9nth/R0a7sftyRMxtG/H27VzfRcd9GQQfsQfO6Gr2aFvbVChb0pFaIOz847hOpm3DKi4Kik/Dp0S7CoPUNOD8HqaPJRDVrVbWucqrZPMpKoPEhPKU2NKVcTWpF/4bx+YYi9up1n0fpCasagUUxuqau0/tLEnNR/aZhaCD9WhVIwgfucm1oARA0gnbz5Yk5dvoaXF8erau6Z8K9iGQPXRmN+eKsVTJGPGpjsXslmPibgQhUP25oaBiVJDJpp3CPjtkM2fxarNr6xrONd8dJ3Q2TepUDAhZqI7ddHTHoNifNqlRSQDuJYWUxHNy0zEdLLGtqrv/PEc8T/d6WEs6f/v1mDjp7py+LQNSE3FQ0cIFHe7sqKN/n/08dF8RUAQUAUUgNQJKbEqNj55VBBQBRUARUAQUAUVAEVAEFAFFQBFQBBQBRUARUAQUAUVAEVAEFAFFQBHYhhEoXbKEObhnzDUY7uhGTY+7jZPL/mzYbLcLqWN3q4qTqb31wwzz+rdx0s+lB7XJNOlWE++HsXFiR99u9cxe7aIVqU7p0yQg86A0hKIQBgFJXKih5oRSjm+o3qB4g0EQgSyCDR4fd6t2hFV98lWQXAT7r2zpEub8/i3l0EycHSszCNi0s3/nuo6AFQ4vyuMalnQjttS6M8NmW1xEVQlXauf3i9dd4rLt3ryGObJXwyDou033oL0l5YiFiUyCV49W1c1+9nqx7z3XdBz/OiX+7He1ZUTZPkmwql6ptOnVrlaQZN6SNcF+sp3CPjvke/dJnc2Dp3cz957cxRG/wmWVt+pd7RvFcPl91vIE4uK4WXEFq5stqSlKzavVjpUTnqFw/mXs+0Ns4pzlshtsIco9cFpXV0eU0dQUAUVAEVAEskcg/qbNPq2mUAQUAUVAEVAEFAFFQBFQBBQBRUARUAQUAUVAEVAEFAFFQBFQBBQBRUARUAS2egT6do2pAHEhgyy5xjfcdYkbur7WbV3ZCFdmfnzZ/2b0H+ah98fLoXnwzK6bnTwTFF6EO5Pmrgpy79g47mItCNy0U8KqFHXyzk+ZFyeBHNQjRiwj6pBxcXUsjr/z3ND12zmuljVuZjx9tYqlzdzFayL/IKOJjZ0ZI0jJsWw7N01eb4mT7+3qtRuCLMttquOUP+LEq/aNY27egkihnfablKgIFpIYJL29OsSIdz//vshstC7usI1//RU817u1ru3cKRKOizWUr8SGToypOqFeVK1CaQlO2ApJKCFw00H96uWD4JVr/wz2k+3k49kJ520v1ayy2M5futZM/WOlGTN9qfsLx+N4zPQYsYlnBPd1yaxD4zhhLBynS7O468rbXx9j7nxzjBlilaFWr0sk6IXT6bEioAgoAopA5gjEHHxmHl9jKgKKgCKgCCgCioAioAgoAoqAIqAIKAKKgCKgCCgCioAioAgoAoqAIqAIKALbFAKosuAabOq8leaLEfPMRQe2MrgLw74ZEyfa9O0ad5uWCoBfJi0y1700Mohyw9HtzK7W5d22aAuWxZV5fPdqUdfarF6lIHjh8nXB/j7WvdrDH8RIYF9ad3S9rUs4sS9+nSO7zjWYHCxcHnO/xvGzX0x2f3Iu2Xb45LgikR+nfBG6nfPL8ffnWCKWWA3rCg9bvCLukq5F/cpyOnLbpG4cywUeFru1rmW+GT3foD422T7PKGJBfOIY27VVzf9n7yzg4za2Ln5fw8zMzMycFAPltE25TcrMjK9ML2VKOW2/MlNSStI0bdIwMzMzQ785s77aWVm7XnvXju2cm99G0mg0Gv01Gsmao3ulaMGwaAmenRAeEftG+4d1MSHYohnCzkWzgvnCIrJoedz0ZLQdlAevXj+YsHL/zNvgefdy9xM0v8Fso2Ho6leLzbqWw9pf1olGlPe38Xz195xQWL8fJ6wW/GAQiME7FsInqqcx//ZcJgESIAESSJsAPTalzYg5SIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAEcjmBk9qFvAFB7OCGo9MwdFVKF5Km1dP27DN7xTa5fsgkj9YNJ9WXvo6nIW9FLplxPf6UiOLlRw+1ZJGwz4W9Tsi5MiYsm4Yxc8PRuWHoTulQxYaW07Li8QikeXWqQhZdPlxThJzTusBbEELmwfY43pPSYlm8UFic5LJo44SQm7Zksy13wsLQFOHtapYvImVNOL/6VUJingnGaxNs5vKw6Kt9veAwdDZjEv9LRtuZaIRZ5z49Rt4YvjBuURMOYeuusLCudJFwWMCgwysaQ/gGD26PmXB4N5/awAupqGUgrOCL38+XUx/9Q179aYHAmxSNBEiABEgg/QTCTw/p35ZbkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkECuIACvKhAhwBCOrmXNUuKGoTuxfRX5T8iJU9TjReir61+f6K2/sk9dOatrdW85N86otyEc24r1u6R2DO82yzbs9hCU9IlJ+rauJGNmbbDrEY4OXpvcMHQnmPWuufu9s38jae0Ietx87nxa58/Nm5nzf8wMhzvs3Kistys3/NuyDeEQf14GZ2bFpvD6skXDXpSqlCkkEOGtNOKpSYs2y+mdqsmY2aH9aZg6FNO9SXmZt3K7jDEeyW4wHsqmpHizgtCqYdXizp4yb9Y9hxlpOxBGXf96WETYrn4pOc5cx1XKFhIIv4oUML9CeeWuoVNs2D33SKqWDYeeg2erWLZqU9i7VlC+/Ebc1N9wxm/p+p0ybckWmWzEZMMnr/GyfzByiRWwDTq2tpfGGRIgARIggfgI0GNTfJyYiwRIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIIBcTQKiozo1C4eIQju7QoX8jwtAhpFQsW23ED9cYUZOG/Bp0XG25oGfNWJvkinXwAqS22Ai7Ytm8Vdu81WVLRHrJ6WTCn0FUA/t9ekiIo2HosI9mNUp422KmbPHwfsHcCnog6onxq2wEP4fbEILvrZ8XedU4tmW4XZV1wry5rLzMzsziNWHW5UuGWSBL1yahUHLjTHi07XsOyJSFIW9M7euHPTGpVyYIoFYYwdk/80Oh1Do2LOOFYXR2lymzibYdhNFTa1K9hDx3SRvp17ayFSVCYFfB8IS3pRXrw4I6zQ9PS3VMmD4YQvDtO3BIV6WaLlm/I1VatIQa5YrISSY83f1nN5UfHugh53Sv4WUdNjEUos5L4AwJkAAJkEBcBChsigsTM5EACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACeR2AhoyzoajW7pFNAxdyzolJZYoBmKVG96Y6IUXO98Imi7JhZ5Ztu7cn6oJtK0bFsv8NHGV7N4XLBBZudF4EJofCnuGQpobj1iuQWjSu03IK9OvRlgGDz5TF2+1WU7pWEWO8rlbalMnvP2oGWvloBGiBRnSJyzcZH/LTJmH0yAyevDj6Z74DZ6V2tcPe2xqVDUs3oIYaXEUT0IQ4QyfHBbJtPWFjlMBEwRfX/69wjvkNnVCwj0kwCuTCsl+m7ZGFq4OiXc6NQzXx9swk2YSbTuzloWFcqd1qhpYS3hRW7c12ONSI8cz1c9Twt6V3IIOmfhx34wLM3TXoa3PXLbV/tBe/QYPXFf2rutxhohs196D/mxcJgESIAESSIMAhU1pAOJqEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiCBI4NA54Zhr0GvDlsoy1NCp53YtkpUABCr3PTWJBv6C5kGdKsuV5kQdLnFihiPN2oT5oc95Ghao2rFbegzLIPXE5/PFKMFibC9+w/JXe9P9QQ9vZqXl2IF80bkwUJvJ9zcI5/P8tYf16KiN68zTY2HHgiDYBBADf5mjq7ypqjHm78slBuGTLK/L/9e7q3Lypn9Bw/JH7PWySXPj4sIiXbf2U0Egi41zJ/YrrIuyh3vTrEel7yElJnnv5srs5eHRD0li+aX1rXDIi9kaVkrLDYbMmyB3aqT8cRUMF94X3mO+o8J91ferhsyfKGd4j9X/OQlZtJMom2nZvlwOLl5q7anquUmIzh85NOZqdI1oZXD7fHPZklQGUNHLJG/Zoe8Wel2OoXA7PKXx9vfgGf+sqErdZ1OUQf14gYPUYWd60nzcEoCJEACJBCbQOonhtj5uZYESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAEciWBAkb4cXzrivL12JUyfUkofBcOtEeTkADEf9AQ7Nz2zhTP2w3WHzj4rzz77Vx/1ojlMztVk6rlwqKMiJUxFgZ/E7tcbAqxSB9HIBSjuLhWIbSb2vDJa6xnpI7Gq09jsx+E3YInpdv6N5Qb35hss8Hb0rINu6S7YVa1TEEjFtkho0xoOXirUbumT32djZg2rhYSKyGv8m9Ry6Q5ddANjjLCnGcGtZJLXhhnhSM4ZwtNeLZODcpIXSMgWbd1r/FqtMYrB9ud2aW6bp4p07d+XSgVSoR57d53QNZs2SNzjGchFbfojm8/vZEJr1dSF73p5SfUld8NQ+QHhwsHj5WeRgjWqEoxU9Ze+WvOhohjuv3UBpIvT1iwhIIgYOrQoLSMmxsWogV5YkLaT054tJoVitjwbV5lMnkm0bbT2vFA9enoZbJq0y7pakIali6WX+at3CHfjlsZ1VsTDu2EVpXkb8MTbRZ2zasTrNirpRE87TSCxT9nr48QotlMzn8lCue1QrTvx6+yqbe+PUVO71xVmpuwiQXz5zVtf5u8ZgSSatgfjQRIgARIIP0EKGxKPzNuQQIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkkEsJQHwAkYzaCUboFM3LyuK1OyJEJtjmi7/S9goEj0UZETbFUzYELckUNrWvV1bKlyjoCUQgAsHv3B415Jq+9SymdnXLyM1GYDP465Dwat7K7UZYktqDDjIPvrSVVCpd0G7n/w/R5k7qUEVe+ynkZQjr+8XwllXdiMNQ3pWvTLBFQQylgih/2c9f3jpQIOXPl8jynzM3pLk5WD50XtNAURM2LmNEOc9c0kpufWuyFTchjBpEO0F2pfEM1qNZhaBV0rF+2QhhE86R39o4YQSxDqKgrLZE2g5YXX5CHVGPU+DvPwddm5SVHUakhNB+fkN7u/vMJlaIh/YKMRmEXq7YC9vcfWZjecx4dAqyi46uJbNXbLPiRpwrt+26+Y9tUUFOjxIuz83HeRIgARIggdQEIuW7qdczhQRIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgASOGALwoqMhznDQfdpE97ICr0EZsXxHxT9El9/njSc9+8sTo3p54qwDvFi9dEUbOa9nTSmcPxyWzl+P/sYL1WtXtxUISYIMIdY+ubWzdKiXWmDj5j+2eWTYue5Ng71l6TY4X69e1VYQai3ITjFCqU9v7yJt64TDsyFfnlhwggqKkpY3DY4IFdfEhM3D8UNc9cWdXaKKmnQXLWqWlKE3d4oqhIF4DWVdYM5JNGvncEZ7hgjMbyUL55NmZl9q7epHMtL0eFnld0Ld6baYutdJPif0nuZJpO1AWPSACelXrWzYU5aWe0XvuvLQOc2lSIHovj7Qvp+6uFVECEDdHmVCONevbWWv7ef1XY+VDds3r20vFx5dM6Lf0DLgQe3OMxrJf89tJoViXD+an1MSIAESIIHUBP6zb98+X5Tb1JmYQgIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIZJTB37lxp0KBBRjfndtmEAMLs7dh7QP49JFLchOHKE0XYtdt4vllrQrDtMdOiBfNJuZIFpECAoCXZh7Vr70HrWWrv/oNSskgBKVc8f4SoJtn7y4ry9h04JOtNWL0de/ZL/rx5DMuCUrRAdIFZVtQpM/eRSNvZYc7/qo27jAgpr/UKFq19Rqs/Qkuu3rxbwLxc8YJSqmi+aFmjpu/ed8iGxMO+q5YpLHmTJKCLukOuIAESIIEjgACFTUfASeYhkgAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkMDhJEBh0+Gkz32TAAmQAAmQAAmQQM4lEL+fy5x7jKw5CZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZBADiNAYVMOO2GsLgmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAkcCQQobDoSzjKPkQRIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARyGAEKm3LYCWN1SYAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESOBIIEBh05FwlnmMJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJJDDCFDYlMNOGKtLAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAkcCAQqbjoSzzGMkARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIggRxGgMKmHHbCWF0SIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESOBIIUNh0JJxlHiMJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJ5DACFDblsBPG6pIACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZDAkUCAwqYj4SzzGEmABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEgghxGgsCmHnTBWlwRIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgASOBAIUNh0JZ5nHSAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAI5jACFTTnshLG6JEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJHAkEKCw6Ug4yzxGEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEshhBChsymEnjNUlARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIggSOBAIVNR8JZ5jGSAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQQA4jQGFTDjthrC4JkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJHAkEKGw6Es4yj5EESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAEchgBCpty2AljdUmABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEjgSCBAYdORcJZ5jCRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiSQwwhQ2JTDThirSwIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAJHAgEKm46Es8xjJAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIIEcRoDCphx2wlhdEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEjgSCFDYdCScZR4jCZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACeQwAhQ25bATxuqSAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQwJFAgMKmI+Es8xhJgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIIIcRoLAph50wVpcESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAEjgQCFDYdCWeZx0gCJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACOYwAhU057ISxuiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRwJBCgsOlIOMs8RhIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARLIYQTy5rD6srokEEhg48aN8tNPP9l1jRo1kjZt2gTmi5U4a9YsmTRpks3Sq1cvqVKlipd91KhR8v3330u/fv2kZ8+eXnq8M4luH+9+jtR8e/fulc8++8weftWqVTN0jrKC3b///iuzZ8+WqVOnyrx58yRfvnxy3nnnSY0aNWTz5s3y9ttv22oMHDhQSpcu7VUJbW/Lli02/4ABA7z07DgT61zgmN977z1p3Lix4Djy5s1dt6BYfUisczV+/HiZO3euzYI+plSpUrGyJ31drHOW9J2xwGxLgO0gc07N4rU7ZM7K7bbwNnVKSfkSBTNnRyw1Swn8OXu9bN99QIoVyitdG5XL0n1zZ8EE9h84JPNWb5f5q7bL2i17pGjBvHJW1+qSLw+/4wkmFn/q/oOH5Nepa+0GNcsXkUZVi8e98cFD/5pt18iiNTukX9sqUr1c4bi3zY0ZE+WBdv7rtNC5qGDuJ63NfYVGAskmMGHBJlm/ba8t9rgWFSVvnv8kexcsjwRIgARIgARIgARIgARIgARIgARIgATSTSB3jSqn+/CPrA0efvhhWbt2reTPn18GDx6cqw5++fLlMmjQIHtMt99+e4aETSNGjJCbbrrJlvHtt996wqYVK1bIcccdZ9Off/55Wbx4sbcuHoiJbh/PPo70PDt37vTOf//+/bOlsAmipltuuUVeeumliNPVunVrK2x64IEH5LXXXrPr0J6fe+45Lx/WTZ8+XYoVK2YFQd6KbDgT7VwcOnRITjvtNJk/f76tdcGCBQXnKjdZtD4krWP8/PPP5dlnn7XZIK7MamFTtHOWVr1zyvoFZqD7q7ErMlzdHk3KS/v6ZTK8fU7ZMLe3g8N1HiYu3CzPfhMSLj4zqCWFTYfrRCR5v2/9skjmpQjWxjx5bJJLZ3HpJbBzzwG55Z3JMn3J1ohNT+lQlcKmCCIZW9iz76A88slMu3HPZuXl0fObx13QqBnr5KGPQ9uOmrlePrqls/znCNZIJMpjt3MuejUvT2FT3C0x8zNu3blfhvy8QL4eu1K6NSknT1zYIs2dbt9tthm+UA6ZvxODrFD+PFKueEEpV6KAtKhVUsoUKxCULelpn/+1XEab6xXWvXE5I2zia8OkQ2aBJEACJEACJEACJEACJEACJEACJEAC6SbANxTpRpZzN3j99ddl3bp19gBym7ApM88KRCauLVu2LELYhOWJEyfaLB07dpRKlSq52SWt7SMyZ8OFYcOGye7du6V48eJyzDHHHJYaZoc6JHrgEC35RU3NmjWTwoVDX64vWrTI28WCBQu8+dwyA28wKmrCMbnHm+gx5ob2kSgDbh+dwJwV2+0gU/QcsddUKVP4iBA2xabAtSRAAiSQfQk88tnMCFFT4QJ5pFLpQpLnqCNYQZNNTteqTbu9mixfv0v2GY9DBfIduV600uIxd+U2Wb1pj2XW1QpK2Ia9BpTNZ36fvtZ73oQoaK4RvzaoUixmrbftOiBf/h2/+B6CqQt61pQm1UvELDc7r/x77gbZu++QFDEeD9vVDXsozs51Zt1IgARIgARIgARIgARIgARIgARIgASyBwEKm7LHeWAtsjEBiJUuuOACef/99+0Uy64htBa8YcG+/vrrVMKmtLZ3y8pu8xA0nXzyybZarVq1knHjxmV5FbNDHZJx0L/++qtXzKOPPipXXXWVFC1a1Eu74447POEPvI7lNitUqJDA49m9994rEHSdf/75STnE3NI+kgKDhQQSOCrB8dNiJpwRjQRIgARIIHsSgKeTP2aEPIughs9d1lpa1y5FUVM2OV29W1cShG5cuHqHXNmn7hEtasIpSYvHs9/O9UR6wx7sYcJd5ssmZ5LVSIvAt/+sjMgyfPLqNIVNERvEsQDBFH7Xn1RfzupSPcd5P9u7/5Dc+vYUe6T1jejrnes7xHHUzEICJEACJEACJEACJEACJEACJEACJEACIQIcrWNLIIE0CPzHxEt466235M033zQvD9P/1Wyi26dRPa7OIQRcUdjVV18tRYoUiah5t27dZO7cULiiiBW5aAFiriuvvDJD11EuwsBDyWICfdtUFvyC7NTHRsv6rXvtKoaTCiLENBIgARLI3gRcDzit6pSiB5BsdrrKFi8gr13VThBpKwN/RmWzo0m8OuSROMPsWMLitTu98KRav++M0OkqI+bLlyc+hX33puXk8Qsiw9dt27Vf1pnn1D9mrjOenZbL5h37bfEvfDdPDh36V87pXkN3xykJkAAJkAAJkEA2J4CQwggzS8t8ArOWb5WlxlssDF5Qc9oHi1uNV8+/5oQ+3qlVvog0rFo886FxDyRAAiRAAiSQQwhQ2JRDThSrefgJZETU5NY60e3dsjif8whoGMgOHTqkEjXlvKPJeI15HWScHbckARIgARIgARKIJICBf7UWNUvqLKfZjABFTZEnhDwieeT0pZ+nrPYOoWODMjJ27kbZtfeg/DNvk3RpVNZbl96Z4oXzCX51KxW1Hpoe+nSGjJm1wRbz0g/zpV29MnZdestlfhIgARIgARIggcwnsH3PAfl96lqZumSzTF64xYiV90j5EgWlVZ2S0qpWKendplLcAmi3tm//ukg2bg99oOemYx6Cagjpy5XIb54RikudiuFIAf68uXn592nr5KM/ltpDHHpTRymWwzis3bJbHvlkpq3/Bb1qUtiUmxsrj40ESIAESCDdBChsSjey3LfB+vXr5bvvvrMH1qlTJ2nUqJGsXLlSxo4dK6NHjxaEemrYsKF07txZIMrIqG3dulX+/vtvmTVrlv0VK1ZMEN4MYanwy5s3dnOcOXOmreeiRYusx5fGjRtL7969pUGDBnFV6V/zqTDCgf3111+yePFiKV26tKCM008/3c7HKuSjjz6yHCpWrCh9+/a1WTVt4sSJ3qY///yzrFmzxi6DVZMmTSLyutt7G6XM7Nu3T3788UeZMmWKLF26VPLnzy/VqlWTLl26SM+ePQO93GTWuZs3b578+eefgjqpoU28/fbbdrFgwYJy9tlny1G+GE8ZOQYt3z/NaB20nA0bNtjQeWPGjJGNGzfattu+fXvbvvPkif2FDPaNawLtZMeOHfY8tGnTRvr16yf58sUfEgJt1vXUhLqh/StH8DvnnHOkQIECoseLPGhjaCvpsb1798q3334rU6dOlWXLlknJkiWlZs2acuqpp0rt2rVjFrV9+3aZMGGCbXvTpk2TcuXKSdOmTb3rM+bG6Vg5atQoWbhwob3Wzz333MBrHl6rJk2aJJMnTxa0b1xDqAv6phIlSnh7U17pbaOJcEqkD/EqHufM7NmzZfjw4YIprFatWnLKKafY9ptWEWjvX3zxhQ1tuHr1ahseE304+rpSpUqltXnU9em5vg8dOiTvvvuuLats2bJeSEu38D179sj//d//2aQaNWrIMccc466285s2bbIhPrHQunVradmyZao8WZmwzHzxNXrWelm1aZfgazu8lGpkvpzq0qic5M2T2qPflp37bMgQ1LFpDXNNmi+tFq/dIZMXb5aZy7baEDM3nRy6h2EQbL150ZU/31FyfMtKsnPvAZm2ZItMXLBJNu7YJ6d2qCItzcsvtYPmS/0ZS7fKIlPeojU7ZN+BQ1KvcjGpV8n8zLRwgdj9nJYTa5rRfjSR+z3aLO6r6APmz58vdevWtf0A7qlVq1aNVd2Y69Zt2SOzlm+zvJZt2CWVShW0rOoaXtXLFY65bayV8EIyfv5G87Jyi6zevFuKm7BBtSoUlV7NytvByFjbuusSbVu1KhSRFRt3mRemm21dShXNLw2rFJeeph55jgq3zUmLNtt2tWz9TqlQsqA0qVZCmhkxSAkzcBrLUDbC36zevEe2mnaNl6VVyxaWnk3LC/aVHkNYqs3bQ88XfYw3taBrZ+T0dbJ9935znzhK+phQVkH206TVcsC0+7IlCkinBpEDx/sPHpK/Zm+Qeau2yxpzXvKaF7w43ha1SpowZaUDPcek53oNqo8/bcT0tbJj9wGbjJA7Dcz5UMOA9+wVW62HjwWrt0vJIvmljhm4rl+5eOAg9QITxmu2+eoUhnOK8FRob2PMMaJPwfVfuXQh6Wg4oE+KZYn2HQcO/mv2u95ji7o0qlbc1L2Y1ChXxDwbhttbUD3QBqeYH+oPsXNFc17a1i0tzdMpShpv+sY1m3bLCvNTm7hwk1T8p6BdLGGYdm9STld5U/SrqMNqs90B007KmX4c/Sa+5C1g+t8g+2HCKusdpZJhjLqu37ZXJpl9TTLXG8q4um89KVOsQNCmNu1IaPN79h+UX6aYv4FMnwjr1LCs7Sd2YkBn2lqb1sC0TbQTNT9XXC8zzL1x+tIt9rpFH4M+uospK612tdDcB9EuV27cbatQ2/SJHeqXsf3x1p37rccb7Le2GdRoUj38PKl1cacIb/jD+FU2KVo7wjU33PRBsIqmXbQz7cJvEN2NmrHOJuuxB/Fw0zZuC//t9dPE1d5X/T1MXwuBS5Dh+KYv22L7dsw3NcfX2PzwdXda3ILK07SMMk3mecV9APeDpeaetcHcN/C1fUVz/8ZzF56pgszfXxYukFfmm3vBRHO9LlyzXaqWKSytjXc395kK/RrO1TzTH+NZrLa5j4Mh7pHR+gXdN/pUeGeClSqaT245taGc+eQYu/zTpFUJCZtsISn/FS2U13p0uub1CV64wjd/WShPXBjp5cndJto8QsKNnLHWcgFX9MO4Nrs3KR94Tw4qJz3PVXjGmWqeffcbzmrgrNzw7Htcy4pylE/xh3OJeySedTeYfhfnHM+4uFeWKZa+Zw/dL6ckQAIkQAIkkBUE4Bn8xrcmyRLj1dE1iJuGT1pjfyPMvfjR81t4z3tuvljzX/y9QraYd0TxGP5OO6tLNTm+VfDf1PGUwTwkQAIkQAIkQAIkkJ0IxFaSZKeasi6ZRmDFihU2PBR2cMcdd1gRwQUXXBC4v0svvVSeeeYZKVw4fYOAv/32m1x00UWiXmv8hR977LHy8ccfS/HiwYMx119/vbz22mv+zeS2226TG2+8UQYMGJBqnZuwbds2K4KCeMNvOOYXX3zRnxyxjP2g7hAXqLBJ09yMr7zyird4yy23yOOPP26XNa+7vZfRzEDQdPnll0flU69ePfnkk0/suXG3y6xzN378eK9N6P5w/AgjptanT58IkURGj0HL808zUgctAwK6Hj166KKdvvPOO3Z61llnyXvvvSdB4iaIMa655hobejBi45SF8uXLC9pyvGI6iMOuu+66iKIgInI5YrAeYsJ//vnHS//ggw8E9YzXwOq0004LbD933nmnuG3RXybEAxC8QLgWZAib99hjj6X7mg8q6/3335ehQ4faVRCxVKlSxcu2f/9+ueeee+S5557z0twZsP/000+twBLpGWkfiXBKtA9xjyXW/IEDB+TWW2+VF154IVW2+++/X6699loZPHhwqnWaANGc2740HVOEAoQgs3///m5yXPPpvb4h2vvf//5nhSnYwa5du1IJ2XCdal3RFiAk9NuIESO8PM8///xhEzZhkPPpL+fItykDV/56YiDr5Svb2kF9d93aLXvliS9C4rQLetW0g2Nv/rzIywLxkQqbvh63whNBNapaQq5+bbwXcgQbtK4dHoSDyOSRT2d6A1tegSkz5YzQ4/nLWqeqjz9frOWM9qOJ3O8hdLv44oujVgv3WDyHpMdw7r40L/6e/WZu1M3O71VTrjihTqoBtagbpKzAYPQNb04ygpNtqbK+9MM8ufW0hqnS/QnJalsQ2f3v6zn+4u0A/pMXtbADlQ99PNO4Mw95enAzov2+akJFVTMiAr9BgPPUV7Pll8lGsBBgz3w1Ry48uqZcdpzhl4agRTeHB4sv/lpuFzFA6XerDtHgPR9M0+wCLzwQ7biGAU79ghHhe1xhE47xsc9mRlw/7rbVjJDt0fObp/p6NT3Xq1te0PzrwxfI0N+X2FW4Hl++oq2Xbe7K7XLHe1O8MJjeipSZ/p2rGaFMXSmYLyxOhIjmeRN6CAYhDgbnX/lxQcoW4Qn6l6ObV5AHz2kaIWjTHIn2Haj7LW9PisoWoeAePa+5lCiSWoCx1Yg8bnl7cuD18tYvi8yXy6Xk6Ytbxv1i/xvTZ44wX+K6Nn2JEcWYHwz96y8P9fJWLzeCxvv/b3qqcFGaAfnvOqOx5adpOn3ss1l2FgMDV/epJ9cNCX/UgBUX9KoVU9iU29s8RE13vjfViDw3WU4QFB3XKiTQ32KENnofPLVjFbnttEY2D/5zud5zZhO5/OV/rJcbL0PKTLOaJeSBs5saQWpkP4DV6EOfNPfZ71OESO62L8p8Ob9nDXtOtQ7o79MSNkFc8aH5wnu5EWPA/nj8mFTXE8RXWiau8a/v7mbzuv9NMOI7zXPzqQ2scCSIB64Nzedur9c80kob4VyQ5x/U48pXIv++VRbHtqhgucXbN+u+E2WajPNqTqu8P3KxvD5soVYrYor+r5sRLt5zZmMr9HRXuv0lhK8/Tljties031u/iJzc3rTH0xsacfhOuffDad751jyYQgz7v0GtYvZLEEpqiLgT21Wx9ytsN3XxFttHbTttf1RRmruveOYhVL77jCZyzjN/2ewQHEP8BYFpvAax0I1vTvTq7G6H++OD5lqLZRl5rkI4GH8bBzM3rbMRMOpx4PkKHqmiPXejfo8bQVeQeDVW3bmOBEiABEiABLKCwIoNu+3fCxAxwQqb8HMdG5aRKkZcPdPcEyct2GzTx83dZN77TJAXzd+KRZPwYZot1Pcf3lX817wHGDtvo9x+emPzN2bwhxy+zbhIAiRAAiRAAiRAAtmWAJ9msu2pOTwV+/LLL8UVNbnCA9TozTffjDmoHlTrr776SiCCcUVNECngpwZPSr169RKIPvwGoYNf1ARvT2pY/8ADD+hiqunBgwdl4MCB1iONu1LLwD4xkPrDDz+4q9Ocr1ChgmgZmhnL+otX/AWhAbzquHz85cJrBbyVBAmzdN/JPHfwFqXHoeVjqmmYuiHFknUM7r7SWwfdFh6RTjzxRF2MEM8gEeKYG264wVvvzqAdvfXWW25SxDnGOTr55JOtJ6GITFEW4NlKmblZNA3TIIGVmzeteXhn8ouaUK5rEJhAFOI3CK8grFJRE7aDIMy9NiEkOOOMM/ybJn0ZYhtX1AQvbm3bhgeCwb5nz57Wkxh2nt72kQinzOpDgiDee++9EaIm/7l86aWXxBVQumUMGzbMEwFpun97eAiDYCU9ltHrG9eKGjyB+Q0CGDW0QXjh8hu8BqodffTROpvl0yHDF6YaXHE9ImFw5ta3pwg8vkQziC1cUVO0fEjHAJsOkvnzrTEecwY89Zc3eI/1qAsGVtXwdeClL/5jvnLfoUnpmma0H03kfo9+yhU1QQjsF6hCaPnkk0+m61heMGIQv6gJIhn3/H0wYokdGE9PwYeMh4aHjbjML2rSciEIgpDoT+PhK5Ylo22NMy8pVdSk+9d9wjMYhEmoq4qakMfNh7Z21avj7eCobocpxApXmnS/qMndFvkg4HngoxmYjcsgelCDpyu/TTFeHVyDFx6/weuOWmfHW9PPRoB12ztTIq4ff30hVrjw2bHGY1JqQZqWmZ7rVbfRKTxoqKgJbe01IxqrUiYkyMBA96AXxnmiJtQNgh6Iy9Qg+oJIJJp9OXZ5hKjJf3zwjjPECKv8lmjfAU841xpPIW7f5N83PIZd9PxY6z3M3f9+493mrqFTU10vbh5s+9AnM6xnJDc92nwR44XFv3/kRRp+8IKlBq9W4D7PCLNcc7fHNXvfh9Plq7Er3CwR8/D+BVFaei03t3n0E3cPneaJmro0LitPGDGlK8xLi9fSdTvN4M8ET9Tk3s+wLcRqjxpxGcQufkMoDhXy6Dr3vH4wcqm8ZfKk17oZD15q8Bjjt39SRFxIxz0XHmn8NsVc72rw9BXNIKTSduvm0TRM8wV4hVxsPADc/NZkbxM/t19N6JP/fZNa8OptEGUmWUwTOa9Pm/uWX9TknldUHaKeQS/8k+re5R4WRJPqMcy/PUQz7/y6WG59Z7InanL7YpSDPvt+0y/EMvXchTwQk8F6O54GRxiPU8k0eJmEcEoNzwDxGjx64XjdftzdFvdHrF9lPNpFs4w8VyEsjrZnt1xNw/Q/5h8Mz1eXvzI+1XO3X+CMe8rwySGvaW6ZnCcBEiABEiCBw01g8Lezbdg51KN13VLy7X095GHz8ceVvevKi5e1kdeuDr/rxN8n6sEwI/Ue8+Sx4v5+ffho+eTWznJH/0bWI7CWCS9R9304NfB5WvNwSgIkQAIkQAIkQAI5gQCFTTnhLGVhHSGggWEgG+GM4EFjy5Yt1iuSVuOhhx6y63Q51hShmx555BEvy0033SRLliwReBrCD0IdeCOCTZ8+XRA2zLVffvlFbr/9di8JHksQmgl1Q7g2HeBHCLho9uijj3qh9pAH3nowiI4yEPZNRS4QV6XHECoHZdx3333eZvBIgzR/upfBNwMG8GSlBgEJGKxdu1YQygehz7gOLgAAQABJREFUqFxxB/IifFOQJfPcnXnmmfYYUD81hA3UY8MUoc5gyTwG3Rem6amDux3aB8RqEPIgpBHaMLzFuIPhQ4YM8cQ8ui3aheaBGARCMYRhQjg0nOuTTjrJZkV5qFu086DlYYrzpcw0HSEdNQ3T+vXr66p0T9FGUC8VxUEUgFB0qDfaEDw/qcFrmF+8p6HCkAfekrANrrnly5fbY1ZRDK4NXJ+ZZQhPB1EODGIGeJECc4SNBCN4nFJT72rpaR+JcsqsPkSPyZ1qXwYxJ/o4HD9EJm4/Ay918GTkGs6PKySCZz3dHnwhmFKD8A/tOB5L5Pp2hUj+vh371hCoWg9X6KRpaI8wiGzj9ZSm2yZripAq7xvhCwwDL/B+8/N/e8pw83vvxo7WYwDWYRDoTjPIgvA0QbYwRWR0/Yn15YObO8lo4wHiy7u6BmUV5IWHiucuay3DHuwhIx892rgOr2jzfjpmmbdNG/OS7MNbOtm6wFvEt/d2t2GqkAGD9L9MydiAT0b60UTu9/CW9+yzz3rH9fnnnwvCUuL879y50z6T6MqnnnpKEFIyHtu4fa98Nma5l/X+s5vI8Ad7ymd3dDHnsJcdfNeVGBiH14N47e3fFnketrANvIn8cH936yHmg5s7yoBu1W1R6sEkqNxktS28DEXbfPnKNqa99LTeRR67oLm3yz9mrJcxszZY8cyQa9tZBmi/L13RxsuDQU6EgHLtDSPo03aLdHgB+v6+0DGC4bX9Qs9vWIeB43gHGFs6A7KTjacLv/mZIUyj31zBQJsUwQDC4vz347DACp6L3jDHCya/P3K0vHB5axsyTctC3mRcr1oephAEYKAcBs8Xr1zV1oZNsgnmv+8nrNRZufiYWrZuL13eRr67t4ftT3AeYWAQTZiIcwkDf5wHeCVCX3LTKQ1sOv6DmOPXqZFethLpOyDavPHNSZ7wBJ5S8EIebNEfwnOGesGByOPd38L3GIhRnvxythUIoG7weoRtRz12jO3bXjHe7nTAGm311WGpRVnYzm/wroRjxzlWG3hsLZuGdLCBIUwURDHoE2EI+ffsJa3kt0d62WvhnRs6SN+2lew6/AcvZEEiFazDdYJyTjGhQYdc005GmL4Z+wrydob8arm1zSOcFURNKqxAmER4Q8tvQkimx8AUbAcdW9vcx7pZ70ejnzhG7h0QCumNsiB80/1o2RAy6vWGNPeaQDn3nNXYZtVrRreLZ+qGloO4xW9+0er4Ban7qX9MmFIYBEcI0xjNEFoN7Qg/3PvVcF1rentHEKrrEdoE7OAN6scHelhu8C7l9s1fj13pDazpdrGmyWSa0fMKtt+MC/eVlx5fWz6+rbNlgeN85Pxm9p6H48CzFzz7RDOIj8H0IzPAB5a47tH3qqHPRp/Vrl5p22d8bwYe8cwFpmoQuu4wHoSCDJ6FEDIQhj4foRNhrieh78aHj8WuTMJ/CE2oFkuEpHkwRbi9e4xwHscLq2nCNWpfiP74VXO/gggT16J777eZU/7L6HPVMUbwBf7gq4YQrdq+MUWoPdgYw1vD9kBohvsFzgn6dNzL0R7UPh69TGc5JQESIAESIIFsQQBegOGJCVayaH555mJ4fox8Nm5Wo6TcZbxOqmnoYl1OZIp9VTXPJPBM+a75O+eS48L3zb9mb0wlHE5kX9yWBEiABEiABEiABA4Hgcgnq8NRA+4z2xGAxwV4T1FRAzwPQfDhCmzmzJkTV70hYqpUqZIcf/zxNsQXQrNVrlzZ27Z58+YCkYma650DaRAUqCEEEwbn69SpY5NQLkLSqLhJ87lTCFpcYRW89cBjSblyoa9wGzduLBgkPfvss93Nsmze9UQFvggj1a5dOxuyqVChQtaL1RdffOF50IF4yS8GcCubzHPnlhtrPtnHEGtf8a6DqANht8qUKWM3yZs3r0BUd95553lFQNSmBiHUZZddpovy7bffWq9PCI2IkFrwHgTRml4DENz426q3cRbOIFwZBAiwfv362WsBYe3gTatUqVI2nB1CPKo98cQTOisIeYb2AsO1DmETOMGwPY4ZYaFw7eK3aFH6v3a3hcXxH8KcqUG006RJeCALdYOYEp7kUA8IIOBBKT2WCKfD0Ye88cYbMmjQINt34jjr1q1rhU0atg1p7rnEshvyEOsQvhN9JKxatWoCUSjCLMLQ3iHki8cSub67dAkNKmM/I0eOjNjdqlWrvLarKyDkdG3NmjVeKDsVFrrrs2Ieg3IaUgX7QziSrsaLQ5GCeW3YsrpmgBxiDwzUw+BVYkqAUMOuNP89M6ilFbzUMoNJCA2jITd0vU7hweW5S1sLBlaRJ58ZJFbvF6uNxxAMPEFYgK/+apY3ZZlrFlamWH6596zw9eN6lNCy452mtx9N5H4PQaYKNOGBzhXp5cuXzz6TICQm+oBOnTpZQW08x4EBTbDC707zxeIJrSp5A2dABo8cV/QOPVOgPL+wJ9o+4KHEHUyHiAjCM/UQU6tCUbmuX30vFFNQOcluWy8acUzLWqVsuCSEqsGg51V96kbsGuHmmlQrYdse2kwrE97w9tPDYaHmOB6MIPJyBwwhXDmuZUUjjgp5wYEQ5ZzuNSJelMbrkQzXD9o4bKIJ1QThiWvwwuHaSOPtAgOyrqlgAAPJKor5wvG0g2vyPiOKaGyOFzwKGJf7beqUlifMcahHDnim8O/L3Ue816tu844Ru8E7CAwDxgg/V654AV1tjxPHAoOACSIO1A2G9oj+BNe0ttmVm1J7gLGZzX94QQ3+euwVShaUM0wIuyudc+73dpJI3/HJn8s8Dx4QBqHfwwt51B/nE4P4j5zXTKtnB/o37wh5sJu0aJM38A+Bx1MXt7Tb5jUeaNC3aagnFXX936ilgnCEyTK0FfWshn2gDUAkgj4V/XB9Ew7xzv6NBUJRNVcEpmk6RWgzXDcQckHAgzL1PGoe/zQ3tnmIAu9+f6onNkLouYfObWY8C2Xs9cK5PUL9SRkTcg2GPqqP8XpzQa+aWLQ2b1Wkl7WPRi/VVXK5CSfqXhMop2+byuKKPL3Mccw0dwSYCDXm2noTClOFF5o+dk6ksGnj9n2eFyDX+5PmT9b0+pPqS/9O1aRE4Xy2SLRFcOjdOiSGRuK8Vdvj3l2ymWbkvL77+2KvvhAJDzymticexHH2albBiik1E4TJGupF03Rq+5yLWgq8HMFw3V92fB3bz2oe3Edwj9P+FP0SmKr3JeSbH4XhaMcrY7+24XcceB5AaDUY+p9oYkmbIQP/uWEZN5m2Fo9NXbLZCgSRF/3WU4aL9oXoj5ubsK8PmX5cOQSVmVnPVe6+4CFN74NPptwvcE5guJejPWh/DWF3ekTp7n44TwIkQAIkQAJBBCAAhgcl/MaliNSD8iFtnRExaV54Soat2LjTTvFfZxN+DveuIGtt/hZXQ8jszDA8T+NvToSOV3vp+3my/2Dwx3jIgzB6H41eJoO/mSsPmDDeL/4wz3q0hfDZb3NXbvOOH4KuIEPYZGW0bXewUBwfCCDPjxNXee8Gxs7bYNOGT15lvUzhbw8w/j9Tt4fMB0qv/rRAfpq02vt4JWjf8aTBE/R75tnz8c9nWe/BCCn/m/loa6/ZX1q2w7wv/HvuBlunRz+bKc9+O9ceA8K3+99xBJW1yHgVHjpiiTxm9o39f2z+tlm6Ptx+grZx0/A3M7xb43zB8zHOFRhG+0DK3ZbzJEACJEACJJCTCYRGsXPyEbDuSSUArxgQSPgNQocBAwZ4odDg7cMdtPbn12V4X/n+++91MXAKT0Bq8NSiBvECBCQw1Ms/kK/5IG76+uuvRT2daDqmKvrA/LnnnmtDvmHeNRwbxFHwZoMB/6y0Dz/80Nvd0KFDBaHL/AZxArzUgD8MnoTgrcZvyT53/vKjLSfzGKLtI73paBNBBoZa30mTJnlt3W07CHUU1LYh8IMw77jjjrNFQxil80H7yoo0V7SENqzCJHffp59+unTt2tWGcBs3bpzs379fIBSAYEsN7R6iBAhoXDvhhBMEv8y2AgXCA7/gCs8vuC7VUF9/iEBdF880EU5Z3Yeg/3W9uLnH9/TTT9vrHwIQeLtTTvBMpn0lPODdfPPN7mbePIQhL7/8sl2OFdbS28DM6PWCtPT2Ubhmevfubb1xQdiEPl1DL/7+++/ebnBc8CgGgdvu3bsFok7Y2LFjvTwQtBwOG2teUqj1N6IBDPr4DYNkV/etJ9e9PtGuwgBikGcFDJx1ckJm+ctxl880+1Ihk5uO+ccvaOFPilgulD+PHXDHSx8M+OCFSlqD7hEFpCyktx9N5H6P0JJqEE6jT1Jxtabfeuutgl96DCI0/GJZIyN8UcPAZTznyB3QPsEMHrueE7QsdGF3GPHDGDPoCRGT35LZtuD1oGHVkLjO3Q+ES2oQ+gR5lVFRHvItNUIfNQ1bh2UMkLveJzQPphcfXcu++AMTeI3ASzQIdNIyDPjCAwvYLFyzw4pLsA3Cnan3iVtPa2i95yB91vKt3vW3yQhmIEqCdUkZOMa8Gw4IHrSCvMaUNUKjW09tJPd8MA2byIgZawWeJPyWnusV2+JlqAq7cD6eu6S1lCgSEhpo2c5tzR43jtN/Tjo2KCP4xTKU73occfOeZ8Qh8J6Fax/l7zAvj9ULRiJ9h3okwb4eNGyD+qfyRlwFMZh6t4GwCUK4UcYLk9oNRoRR2qT5DaIDiDFUGIaBbQinkmEqJkNZN57cIHDQHn0k2szJj4y2u0RbusnkDeo7z+paI0PVyk1tHqEF73l/mqg3NXi8gjgsiFe8sE7vVDUwa08j0lSvie6gDwSmaOcwXK8X9qoVuD36Z/Rhw0z4jfQY2jiuRRwjBJiHzL0UQjjYBLOsBi+ML5gBIvSZ8GClg1czzCCOGkQamWXwHhZkxxohqh4zOHVtFPteiDIyg2l6zyv6LRUiQpR0dZ96QYcnCO13Rpdq8nmKV8Y/jSe7oH1BdFw8RfTlFgRPf+oBrJfxNIZnJ781M898COcHW2EGHN17qubF4JHa0UZw5RqeD/Re+suUNRFCYDdfRuZLOvcXiOjisQWrdnjZ0G41RKqXaGaKGqEqhKuXvzzeTfbmM+u5ytuBmYFwKS3D/WHigpDgECEZg57P0yqD60mABEiABEggiEAB80zwxBehD0gLm/lh/+0Z9RkX3nj17xf8nYMPHyqUKCS3GM+P+CynafXof88Uyh8eksMHaplpF5t7629T1spK85y1K0UM07F+SICt+4VI5qkvZsnPJl+QwavtheZv/8uOq+09E68yf7srq+tOrCdnd0v9d9LLPy4wHwCGnovz5/uP+dgsLATX/Tz9xRxbN/DGx2gwhAf/c2bofVzrOmXl9ncne8/+uh2mLxWdbz4OaiauUMxdH21+hXmfcN9H0wPLxDaoy93G+ysE9UEGMdaDH82ULeZv3iBrV7+UPHZ+S8/LqD/P/76eI1/+vcKfLC9+P1/O7l5djmsR/kghVSaTAPEUwtdHE/fj/eU15j2l/m0SVAbTSIAESIAESCCnEgiPbOfUI2C9k0qgW7duUcurXr26t27btsgvZr0VcczAU8zmzZtl2bJlMmPGDIHARA2iCzWET1Lr2LGjuAOfmq5TCDeCzA2fBS8P0axo0aKeN55oeZKdDgYIiQfDAK5fVOLur02bNt6iO9jvJZqZrDh37v4wn+xj8JefkWUI5SCoCLKqVcODJgi7pua2QXh5Qii2oB/aiZq7jaZl5RTh1TT8IPaL6yqozkgrUSI8cK/e1iBsckOFdejQwXpEg+DFvQ6z4phwfau988471isLwmHCY0+iliinrO5DovVl4AABGM4TTMVomIe3GzV4o4vWDhCiUO3vv/+2wihdDpom4/qGsAmG+s6cOdPbjYoJIeQ65ZRTvHTUS+3PP//U2Zj9m5cpE2bwBZoaBpHWmlBXQT+89FCb42yjaZi2rxf/wKaGdHK3jzZvdICCUCjWg8S6nfYrNv1aMNo2aaVnpB8NKjPe+33Dhg09IRPEhPCOB09r8+bNS7OdBu03VhoG5Lfu3G8FNBCh6Us2bONzHBS1GPcLuFjiCwyUusIht8Bktq1oA3quR7BGAcIn1Mf1KOTWD2IjtaYxBCYY6G/urF9svjqMxzAorYavONXwxSEM3iROalfFhnDCshuezs2vggF4bNDwOtjWLxhCGWquCGzG0q2aHDFNz/X6/sglMsSE7YNBdPTCZalFTViHL2bbmnBHaoNeGGfDrs02nrL8Hqk0T9C0hRlsR1lBhnS3PeAr0GgWb9/hZwuPZNEMwsAre9e1v9oVQ/nc8wWBQVAfirQiBcIv9+c7A/DR9hVvuuutxj33/u3h4QdCChgEdxuMVx6/QUCT0YGH3NLm95hBD4SzUsHGqR2rCMICJiJqwjXreqBxuZcrUdBbdMOBuX0Urokol4TdFgKVjFinFOEk2oN7Lakgpkvjsl44WpTvtnU3XGZLR2SakXpE2wb9TZDIEPnLO9wQPiweSzbTjJzXJeY5Rq1pjRICT0LRDB4I1SCGDLLGVcN53PXFC4f7m3op4ePc9ZjX/gDzGJz0G7zgqbgG93q/UKhzw7CYDOHoII5LluE6VIMYKR5zPZ41NgOv0QztKj2WjOeqtPYH0R0EXPB8Be+S7jPBIdzMaCRAAiRAAiSQJALFTWjUXs3L29IgAprm/K3q38XPk1d7SUc3DwlRqpYtZMTW1az3xwYx7qmzVoT/Bo6Vz9tBAjMF8h4lfRzPkn6vxRDnX/HK+FSiJvc9F3Y/1HzM84ARA6m1rht+x+X3cIo82817Kvd9i4bo0+0xXb9tnxU1Yb6rebYO+pvirqFTPAES6uTWC8KiO96ZIlt3BXuDQrl+gyh6oPlbXD+S0PVuuTj3934w3QqsdL1OR05fKze+MTlC1ISwg/ipjZ+3Wa58dXygJ2J4ZvKLmtx9f/zHMhny8wItKtV06uLNgncJKmrCti3rlIzY/xd/LZc7hk5OtS0TSIAESIAESCA3EIjvLUhuOFIeQ1wEatSoETWfetGImiHGiokTJ8onn3wiCDXkekCJsYkVPen6pk2b6mzgFGGzgswNN4YQXbGsZcuWMmLEiFhZkrpu/frwF+ytW7eOWbYryFExlH+DzDp3/v24y8k+BrfsjM7Xrh39K88iRYoEFusKaB5++GHBLy073KHoXJEK6qohGtOq97Rp02yYOeRDqCkImdCmIDxBWEb8YH379rVewhACzBV02ZVJ/g8hKREqDSHnYKNGjbI/zMMDEYQvCCEZ7TpHvmiWKKes7kPcMHxBx9SiRQsvHCWEofCSoyG8kB+em+JpCyqMwvbRLBnXtyueGzNmjOBcQ+wCD3kwCJtq1qxpzzOEer/99psnuPvll19sHoi9XHGeTcyi/9yv4PElnn6NF2v30ULRYYAvXivsDPAHbYMBdwySYWBHvaME5ctoWkb6Ud1XRu738OQFz2rqMRJeIdVDE4S/p556qvW62KNHj0DPdLrvaNNRM9fJn8Zz0t/Go0aQC/Vo20VLd4USCAUYyxDmSgc+3XzJbFtBnibcfWFePY3406Mtb3REHWkdI0KTqcUbEgdenXBNQDAwyXhuQtgfGFy5w+DdBgPa8LYCjxx/zl7vebtw27yGi3LPa4MoIi5bsPmvfMmQeAXLKobSdTpNz/X6mnGDrwahmyso03SdwksGvJFgvzj2D4zrefxgOGaE+0OYyVjn1OVtN/T9VydFUIRkiPBcoVNG+g4/21gCEl9V7OL6rXu85OuHhD9m8BIDZqIJRAOyppnk7r962WDhuxYC4dP6raHnc3icQog/1+IVELjb6HxuafPqpUmPq0eT8lGFdponrWmNGP1otK+MF5q2rVbP9LOxzL0mYuXzr3PFaFPNl+Z1jQAGXhDhiQ/WxQhXELYLgjd4kRtvwpXoNhouE6EWE2k3/jq5y34hjbsuVh/i5nPnk800I+fVvYekdd4Q8lNtQxTxVkFHeK55/dNoQlF/Pv+yenNCenETNni848nLnxd9/hTThtLrTcBfji5vdLwDlCkeHkTT9UHTmebeoxZL/ItwkrjPuO1Bt9Npsp+rtFydItyMPufCYxrulzQSIAESIAESyCoCfdpUkhHT1tndwftrKxPy3W/4O2u5CdsG69yojJSN836M/LjPvfjdPMxa62m8R2a2ISzemz+HPsbxhzyHiMa97z94ThPzTFvWhnCHR+U/zLMvQtjBfjdcujZeZT0vlTBCcXyUhw/rxhjvmX5v4ZNNSHLXIKjy55lhQuWqdTR1DDL8/YwPCq7tW99+wIS/R7FPCI8g7oEI6ePRS+SKE+oGbR6Rhv0jbBy2geGZ55p+9aRlzVImpPZ/ZIH5wOuzMcvkxwkh0Ro8VSGkvYY1hp767d8We2XC6/CArtU9QTzE9vca79BoG2A6xYiQXK/gCG8Ir0xqlx5fx3pngiAOIq+/zHuPp76cLUEiMN3m+wlhj6EDTajBgcfUsoIw1A0fKlxlRGo4Poir4vWorWVzSgIkQAIkQAI5gQA9NuWEs5SD64hQSQijBm9Jzz33XNyiJhyyO6gOLySxrHTp8Bfwbj7XKw888cSysmXLxlqd9HW7doVDvqR1fPCug1BzahAGZAfLaceA9hhkGfFA5opJgsrM7DQIUzJiGzdu9DaDGA5CmHvuuUfKl4/8QxphwRASDdfWV1995W2TWTP33nuvfPHFF1ZQ5e4DYhcIsOC1DGKr9J6rRDlldR+SVj/krtc+cseO8OCeyy6teXhkimXJuL7hiUf7rj/++MPuDt7O9Lwce+yxNg3CFZiGLoUgTUWwOO+Hy3buTX9f64oAMqPeEIGc88xfNuyVK/DIjH0FlRmtH03kfo/9ILTnP//8IwMHDozYLdrK+++/L3369LECOPU6F5EpygK+8H/k05ly99Bp9sVUss7Nph1h7xclAkLcuNUpWSR4wDE7ti233vqiD2lpHaO7frdhHo9hILlX85Bb93/mbTTesv6V/QcPyR8pYcs6Nwo9k2lYNnxNiRB0MA0DBW9N6q0E51qtVBTmuh77dj1x4OVmsgxfRv5hXthGM3ilefPa9jaUXKmikaHq4AHnvx/PkGPvGyFu+DR/WdHalOZzzwfEOWoZ7Tv2HQizdcMfablpTTNy3W3ZGa53WuWntV73D7FaPvO1cixzw+S5bSrWNvGuy61tHmEdNXxkvCySkc8VH8JrYSzbuSfchmPl86+DqFP7ismLQs9MEN2pyKJdige2HkaMCPtzdkiYCa+AGrK0S0pf5i87s5ej/MkTc7dZwTRmBcxK97pLT1+n5ySt8pO1Hny/HRfyvIwy4cXrxjcmpfq5+xtmQlwmy1wRPbzNxWMqWMZ5DgrV6pZRNkqZmfVc5e4bnrDgNWLw13MFA6BZfW7dunCeBEiABEjgyCQA773qQefH8ausGMdPYnSK0B3pfVtX9q+OufzasAURoiiI5TPbypsQeWprNoU/PIFXJXgIUnv8oubmY5tKVtSENAjpz+lWXSDAUXvr58U6K+6zruv9Exn+mRcpbMI7BvcjMeSB8FsNIeeCDN5XHz6vuRUX6Uc2EFTdcUZDL/sMI3SKx/DxgYY9xjlGuPYO5nzjYwp8DIYP0xBiu3XdsJjtUyN0UsPfPRCxdWgQCot8dd+63t8LyIMPIe46s4lmlymLwseHxHd+DbM704RVhigJoiZYOVMuwkzffnr0D/Px7mJkiugO9VdRE7YHG3xM8/AFzWz9UMdVG8NjT8hDIwESIAESIIHcQIAem3LDWczGx/D777/LLbfc4tXwkksukV69egkEFSVLlpTixYtbbzBBoiMMiKshHE0sc0Nyufng/QRiCdiCBQskljeU9AyWuvvI6LwrZnJDNAWVB4GBemqC94q8ebPHpZsbjgG8K1QIx8x+7bXXbBsNOg9u2n/0ryk3MQvnXYEL2gQ8L8VjpUqF/zhD/kqVKskDDzxgxU3wtIJQYAgT9uuvv3rFDRgwQH766Sc55phjvLTMmIF3KPzgQQuCK4Qie++99zwRDOp08skny8iRI+PefaKcsroPQV+HMFzRzO2ntI90j/Hss8+W//73v9E2j0ivXDn2y5dkXd84p7iu0K4OHTrktS1446pZs6at0/HHHy9PP/20FTOtWLEiIrxeZre7CCi+BXeQ+87+jaRN3WARrW+zTFvE4M51QyZ65WNQFR5e8LIJ3gLgFaKw+d39/tRAL0Hehpkwk8j9XqsDz4mvv/66/O9//7N9EUKvfv75557IDffBLl262LCGFStW1M2iTj8YuUR+mhgaSMRA3gDzQq5hleL2xVMRwwmhr/BFHgYj02O1TSiuERL6gnO5eVGkIbeCynDD6rjrs1vbcuuGebd+aR0jQsOopSUq0nyYdjTCpB/Mi2K0a7iDR8gzNfV60tL5OnaSCVPXzrx01K9JVfSEbVzBjRsySstzpxiYVU9NaBd5zAvMRAxfj6JdqUe3u4ZOlQ9u7iS1HG8ibvllixeQy8yL4UHm60qE1EH4KnjBcUPrQCzy3GWtpV1An7PUhGrq1jj6y+9lG8LnQ+uQSN9RwhGKzV2RflE1PNqo8OWDmzual8Zpe6+LJ4/LNNa87h8MIPQq5YQI8G/ntp0ShYNFif5t0rOcW9r8pcfXllnLttlwdOB6p2nzr1/dLqansfRwiidv/crFvWxpefhyQ3B5G8U5g2sNoSLGmWsUAky9TuGlCW0L1sGEYPxg5FIrZlpnwirOc8KitXVCdMS5y8OWLauYxjpAty937y1B2yx3+royMa7roG0TTZu1fKvXr8VbFu53N53cIOHrBF4efp+21tute5/0EgNm4NkMgvh4+sJo10xmPVe51YXAV0PD4Do7vWNVgciwdLH8xtNjXvus+7kREes9192W8yRAAiRAAiSQDALwXniyCbcMwQ/EONOXbbEefdyyh08Kec2BuKRzjL/N3G0wj3vYJ6PDQpkbTwqPffjzJnMZ3pXUNhrPQGp/zQ6918DyCa0rSvfGkR+9ar6LetWUX6eusc+7K424Rz0B4e92Dcs+zYiUIAxSG2G8XcEuP6GO9VJsvQgZr+ONHA/L41I8NsNzEoQ9QXZax8qCcHp+61AvLIRatGanf3XgsvsB0Y2nNEgVShgb4f3AAwOaySmP/mHLGG7eKeEZDul49zZ4UOyoG3g3oDZ3VVhwhbDEGpoPYaPhKSrIIG4aNXNtoNcmdygCPFcbj1pVzfOSax3rlzXvWsJs3HWcJwESIAESIIHcQCD8VJMbjobHkO0IIKyQ2p133umFmtI0TJcsWeIuevNu+LmpU6d66UEzCMkUZBgkVUMehLSKZm7IqWh5kpnuihHgmWTv3r1SoEDwF5eusEuFAMmsS0bLyg3HgGN3B8jh/SZWeK6Mskr2di57eDSpXr26IJxTRg1iuQ4dOtjfjTfeKHPnzrWiRIhRYPDalFUCE5yP008/3f4ee+wxK2wYNGiQrQcETxC+uOEZ7Yoo/yXKKav7kLREjgglqKZCTVeYh7aQrPbrskukj4InHgibUDeUA5EcTL00Yb5jx46YWINARr01QbSH8HuHy9yv4PHSQAcxD1d94MZaDV+oPXdp8AuVtAYDtYxkThO53/vrgfCXaDf4wZsbwlPCk5OGzYT3r7POOsu/WarlMSneM7Di0fObS3sjpPHbpijha/z53GX3Zd0iI4xCKKZo5v8iUfNlt7al9dJpOfOiTQ2iox7hjw412ZvOdwbxIdqJ11rXCQtt8RIUYdJg9asUE+WDcEoQMEH4A48YhfKH/3RRbynYxhVUwVPKfjPwG807j3t9VEoRJqCMjBraVl7jWROcdLD59nenyDvXd5CihcL19ZePF6O4jvE7u1sNWbp+pzz/7Tx7nMg7cvraQGETxHixzP1SVkV3ifQdrtAAAqXdpi9MT5greLxRYRMG5GsZYWBWWoVSBb39g3E0YRNEK9OXhF88lzGD6Mm23NLmBx5T2woRB73wj2ULseETn8+SB89pZr8UTja3oPKqmkEFtQlmgCSaaA19QSwvalpGtCnuGxA2QQyCvuWvlPuKemnCds3MNaw2wQgw0RfAIJysVzlr27vWIyPTrGIaq27uPcS9twRt4wqHy/vCRgblT2ba8MlrvOIgmj6xbfSPBR42niNVqAMPRMe3SluY7RUeMDN0xGLPixHC8amANSBrRBIGEdXTJ9hF6wu37tofNWxvZj1XaUW3mX27/TAEk64XQs231ggIaSRAAiRAAiSQmQROaFXJ82QEDzkIVaaGv7c0DN0JJmxdkOhG87rTP2ask2e/meslDb60VaCwxsuQxJm9B8Jeiouaj+LUFq4JfxSDsOrRDN6Mmpv16pV08drt1jsQQnlD3IX3ZRPNc/AZnavZIvCssSXFezD+nsffg98bkTe8FF/Yq6bNA8+6yrFLo+gf7jSoEn7Wthum/AeRTzXj7Qhl6L7c9UHz7vsZ1D2awSsTxEca6g4fRlU0f1cGGbwo4fh37D5gntEOmGn4g639B8PcVxgRklqTGsVN6LvUYi1d37JW6UBhE7wAt61f2vN0PfCFcdLfeH7q0bS81DPeovKacHo0EiABEiABEsjtBKLfQXP7kfP4soTA6NGjvf1cfPHF3rw74w6Guunw4qQhjDCoGW3AH+GY/u///s/d1Jt3xVHIEy1kE7zUTJ8+3dsuozMInxSvQcQELyVqn3zyic6mmn7wwQdeWr9+/bz5rJxRj1HuPrP6GILq4NYno/NHH320t+nXX38t0UL9IR2iC/xcsZm3cRbOFCxYUDSMF3Yby4vRwoULbZ1HjBgh+/aFvsxZvXq1jBs3zv7gIclvDRo0kMcff9xLRviwzDKEn0Jd4DHKbzjO888/P0KUGE3IGNQ+EuWU1X0I+qlNmzb5MdhliJog7IJBvFSiROiP+3bt2tk0/AfBR9D51Azjx4+3bQG807JkXd/dunXzdoXrS/cN0Yoa9tW/f3+7OGzYMFtHLJx22mnGHfThe1RRrzGoyyjzEipayCqkIzwWfq5oAtsl02Y67rVP61Q1sGi8QFJvNIEZMikxkfs9hJTaH7khEFFVeMfr2bOn3H777V7NXYGfl+ibgfhCBxIR8guefoLsbyOYSa+pWATbYXAT+woyeOJR70L+9dmtbfnr53oKQvicaMeIF5QTTbtXa14z+KWjrnenCDPUqFroZSLCpKk7f783In3Jia8r4bUJhnNas3xYMAARE0LTqf1iviaNZurFC+td1/nR8qeVjheSeKl695mNBYPMMHB56NMZxktd+EUmhFu4hvHbuD38layWX6NcEbm6b/irzbkm/F6QjTFhD1Qo5F+PwV6sV6tWNvT1ZiJ9B44PXqnUvv1npc6mmj5uxC3H3T/C/vSlsetZK5bABOG7tB/VsIOpdpCBhE7mRbraDxNW6WyqqbY/rEC7LJ5GmMlUBcSRkBvafM9mISFnMTMg8tTFLbyj/nXqWvlo9FJvObNnMLii1zxER/ByhnCWfnv66zleuAn/uniWWzle40bNXGevX2zXwfkKGv1Pr+YhLn/P2eiFywQrDD5k1CAwyUrLKqaxjqlR1fA9ZLK5LyxeGyzkhEjSDe3m3rNilZ+Mddj3TxPDfckgI/TDc0G033Un1vd2+6OznZeYjhk8i7ohTM4xoth4DaJhte/HR+/Ho61L9nPV+q2pxUnwYqjWt22lQFETRKhjZofvc5qfUxIgARIgARJIJgF8zKR/2/1innPdd0Hu3zQnxClYhujnrvfDHyrec1ZjGwItmXWOVZb7QRc+/FDbsC18P9bj1XX+qfseRP+excc6XVP+Vpwwb5P396+Gj4foCV4j9W8yeCxC+DvY9GWbvV24Hy15iSkzFWII2AsZb47psXVGoKSmfyvrsn9av2r4fYM/VDqeWV78YZ6cN/hv6X7Xb9L7gZFyxhN/yoXPjpWrX0v9bhtlL3Q+CEPIulhWp2LovUJQnuv7NbCiK6yDoOr9EUvk0hf/kR53/ya3vTtZfp6M9zep/y4KKotpJEACJEACJJATCRy+0cKcSIt1TjeBZs2aedsECYcwyO4OVnqZU2bcgW94cNm6NfwlNbJAaHLRRRfJunVh16luGQh5p+IohKu78sor3dV2HgKPM888M1V6vAnwKKIGwUt67Nxzz/WyX3rppRLkNerTTz+VF154wcuXSF29QuKcgdhADYyDxDyZfQzx1EHrmNEpPBWplxuEP4PHIr/9a16iIsRX79697Q8eaA63QfCjBu8l6uVG0zBdsmSJtG/f3tb5hBNOkI0bN9rVEAZAcIIfPDEFif7cEI89evRwi03qPHijHp06dbKh5/yF79+/XxYtWuQlu6Ha4mkfiXDKij7EOzAzA3EWRKAHD0YKJTZv3hzRT7l9Y+HCha03G5QDr0jwTIep33788Ucbxgtt+PLLLxe06bQsGdc3wo527drV7soNk4fz7VqfPn3sIkKPTZ482c674k8krFq1ShCODz8wyWxrarwwqJcmfOU++Js5qXYJjG/8vFBueGOS/X359/JUeZKVgFAcaira0WVMIQZ4xHgGOByWyP0e4l3tj6677rrA6kP8pOZvO5ruTuFRBp5iYPgSMGgA7Tsj0PjF8brgbh9rvlKpQl7Zy00YNngq8dtG4wkKIcmiWXZrW/56QtihbV+P0d9lIKQbQlBBVADDwD7EDumxzg1Dghl4OlIRmIoVtJz25otEGPbz8ehldh5fJPr1AnCdr/bop7NEhTWahinc53/6Z6gMLB/TPLwNlhMxtLknL2phvbSgnDGzNsg7vy32ioS7/stfHm9/17w+IVAstnzDTi9/q9rhr4K9RDOjIo69+yNfVsIzDcQdej4gKMKLZliifceJbavYcvDfC9/NE3jY8hvY4itc7B8CnjpmoB92dPNwuN93DY9fpqQWnaEt3fPhNK8fVRf9/n1kZLln0/D+f5ywWr4etyJVMRCk3j00PNDQt0107yupNk5nQm5q8/C+BY9lai//MF/GO0JHTc+s6U0mfAS8IsFwj8b19d7vi43oYYMN8XGtCd2K8F+JGLyutagV+nr9zZ/Dz6LNaoQFOCjfPa96f/b3ZfHUo1jBcB86eVHmP+f465QVTP37dJcL5DtKTmwXvv5uf3eq/frdzYP557+b6wnWIHRt5XgA9OdN9vLfJmSK9rO478XyzId9t6hZ0opxMY9QhghXmF6DmPWF7+eZUMPhfgp9fL8YnqL8+2hcLdxmh01aE9gXQmT8yo8L/Jva5WQ8V+XLGxb64dnM/zFADec5F/dMv1gRg8pPfjE7qkcpVBQf41x44YVy8803278bAg+GiSRAAiRAAiQQB4GTUp5J4A0I4ejUNAxdFeP9t2n10HOirguazjYimOuHTPJW3XBSfcnMvze8HTkzMxwRkRvyzf2AKchLolOE+RsvLCJy/xZFWGYYRDaLUjyXjk0JMXd0iwpW6N/G+dBscsrfC+pJEtvi/UhWmHp2guAqv/k4IZaVKRoeE9lzIPTOA+9E8D7hEiMkQqhC9WAVqxxdt8X5aCEt1rE+sqlUuqAMuba9DDy2tpQsml+Lt9O/Zm+U/348U46973frATpiJRdIgARIgARIIJcQCD+R5JID4mFkLwIYfH/zzTdtpSDIGThwoBVYHDp0SMaOHSvPP/98zAo/+eSTMmbMGIHAYvHixYKwUGeccYa0bt3aimy+/PLLQDGHFgpPD8gD4QoMIiEIJE466SSBYAF1wPpowigtJ9a0Tp063mp4W4HYCsIBeFGB15tYNmDAAMsHYhoYBCYnn3yyHeCFmANhwL777juviGuvvVbcwWNvRSbNwFNKo0aNPMbwngKRCNJQT6zP7GOIpw6JHj5CuIEzBsshCBkyZIjAKxBEFQiDBbEJzq16y8H+cC4Ot0F0Am9Hr7zyiq03xCPwegMREjwV4cXu008/7VXziiuukEqVKtlleHuCmAvXFa6vE088Uc455xwrgtq9e7f1mPPQQw9527phw7zEJM2AJcQ8sMsuu8xe2126dLHh9eBtCuHoVBiJc+KGSIunfSTCKSv6EHvgzn/wWIQ+Dn0d+ikcO8Q+6pGqXr168uijjzpbiAwePNjmmzBhghUFQfyFc4Y2vXPnTvn111/lww8/9LZBeC8cW1qWrOsboiXt57BP9CWuKA1prgcyLMP8gjrcQ+B5DAYm6Icy0+C94H+DWpmXFuPsINbXY1cK3I53NC9u6lYqaj0jDTdfQ7lhM87sUj3TqtS6TkjggR3gZcrqzbutxxmE7cIXY/Ckcji8NaE+idzvEWoS93vY+++/L7j/oc00b97cDkqh7aIPVnO97Gla0BTil8/HhIRmg8w5xABgSyMWgecchC6Ch5GMGC6dJy9qKYOM228YyllpBh3haQjuyWcs3SojTBgxDNpFs+zWtvz1hJeR2/s3khuNYA+GY1y2YZc9RnzZCNEQPCi5noOucbwN+cuLtowvM9/6JSwWgEjB7xK+apnCVmTl7isorOBxLSrKN+NWeqF2rnltgnRvUk5aGo8rB8xgKELZIQyQ2pnGZTuu42Qa6vrwec3llrcn22Lf/nWRDa2HttHeHCvEYjgOiMVuemuSIMQBBpv3GmEPvmp1WfQ07TeaQThxvvk6FIPqdSsWk4XGqwk8eaBcGAb67zyjsbd5on0HOF58TC2BMAl21asTrGCpc6Oysse8wPazPad7DU9UFWLSTO77cLrd9sGPZsjv5vqA17IKxr0/2hX6M+27qpUrbL76LWfzJuO/KiZk2cBja3leTp7+co5tB6h7wXx5ZKoRaY0wwjo1eDU5uX1YyKXpyZrmtjYPr0QXHl1Thv6+xCK624gd37uxoyeMTBa3oHLQFz11cUu59vWJdjWuCxUVufmvN4NHEORl1CBacgdecMz+UJdBXgHd6y7efaP9S4qGGnWG4BPhKiFiSa9wNN59uvmyiqm7T//85SfUtWE9IR5Cf3n+s6ava1ZBEEptzZbdNoSJ+9x122mNYoby8Jef6LLr9e+4lmmLYyEw7WuePz4cudTuGl4fzutRI1U1IOgc7ISnwQcIG4xIeqUJW6LCX90I4uO7z2ySSuCr64OmOLe3nd5Q0AfCMIUAt5Np36gj7kEaTjVoe6Ql+lyFZwt4g9BBwNvfmyJ9Wley4ttu5j4Djwy4BnAvw7UMseKx5t5ez9yrEeJxxIy1Ec/c/nriHdMFF1xg/7bFOvxN++qrr/qzcZkESIAESIAE4iJwTItK8uL3821eDUfnhqE70fzNgHcDsQweta9PeVZFviv71JWzumbeO6NodXHffbStG/ZoW9oRxqww99/aMcKGLzMh39TwIYtaG+c9FbxW45kDXkxh6qmpWEF8LFDCPFNvlXHzN0p387cuBN+wrk3KpikyshmT8B/EaHh3AxEW3tfg7+ZopiItrC9ZOHS8ExZuNAL78N8V+LuxjRHYI8Q9xO6FC+STogXzGGFR6L2lW7Yr4MbfwLFseRrrIU679LjaMtD8jY53geA+dt4GGT8v/GHEPR9Ml+cuy2vC24fPd6x9ch0JkAAJkAAJ5BQCFDbllDOVQ+sJDzEInfbDDz/YI3jnnXcEP9cQ7uquu+5yk7z5UqVKyVdffeUJTjCwHySGghAFHkiCrFWrVgJvEOq1BQP/+LkGoQBEHa6Qw10fax5iJHiFUtEBxFP43XLLLRGhvILKgKAGA7YQIMBDCUQ1WHYFCLodvLA88sgjuphl0+uvv16uuuoquz8IYB544AE7v3btWsH5yYpjSKsOyYBRv359+f777z0hBURMrpDJ3QeEJ7Vr13aTDtv8M888Y9veN998Y9vPu+++K/j5rW/fvoK8ajhvEETB0xPaXazjhYgGXp8yy+CNDewhVIFBjOUKsnS/EPUFXf/xtI+McsK+M7sP0ePDFEJQeG+D962HH37YXWXn4SEO51rD0GmGIkWK2L6ye/fuVqwGwdqzzz5rf5pHp/CaFK/nt2Rd3xAt3XPPPVoFK1rxFlJmKleubIWbKmID9woVwp42kM0NSQoPP1lh1c0Ay+BLWsmVr4TuGxhMcwfU3Do8f1lrwSB6ZlmZYvnlshPqyBvDF9pdQKThCjWQiIGhHca1N0K4ZKUlcr+HyNJ9Fvj4448FP7+h/UPgVKhQfIwHmBeGfxnPHRgYxUurD8ygIn6uXdG7jrw+LMTTTU9rvoERP/z33KbywP/NsFlnL9/meY/QbTE4d7wZ9HTFKroO0+zUttx66TxC+9x8agMZ/HXIW1Y00QDyP2uuEXiySq9B1AMxk3q/gIAGA6x+69G0nHxkvohUax3gzQhisYfObWbcr0+xA6IoE14p8PNbd1MeXipnhkGA4LarO9+bKh/e0skO3EIsBuEH6harL7nK1M31ruHWEx5VXh+2wLZrHSh312MewrtyxcNfmCaj77j0uDqCUHc6qI8B8KBB8PN71pBTOkQKg+C1aZ0JO6QDA3/MWC/4+Q1e1l64tHVgG/DnTc/yRUfXktWmH9C2MNaEoMTPb7hm4YEob57UbdCfN6PLubHNo22gfwBTtG14cnv96nYCDy+ZbfBs9syglvLqTwsCxR/4Ir5IOkNU+OsM0RLKV+uU8lW6LmOK662OEV+oAAUCOXegyM0ba/5EI4D5JMUzHVh+ZsS5+EHAlYzQmbH2reuygqnuK2iK/gqicghEwQCiR9fTnrsN+lqIbbLK4BnTfe7qWD/koSCt/R9j+kDtr78zYeCChE14Tvnir5AYO1Z5/TtXk2v71cvQAOCpHarKfCNMhlAf9tecDfbn7q+38X6403B3j1PXJ+O5CmXA6xIMAqYhKc+0wx7sYcV7N57UwBMHBz134D7hCqy0bpgi5Lrrcdj1+Ovm4zwJkAAJkAAJxEMA4pHOjcqYdwobBcLk6014WTcM3bHGG1EsW71pj1xjRE0Q0cAGGSHKBT1r2vms/G/8go32GHSfbuj38uZDE7XFRoTVXRcCpvNWbfNSy5YIC5twb1bhMkLHVy0bfi/gemrq2qSCFTaNNH8HXn5CPe+5OejZ2ttRkmfKlSpghU0odumGHUbYFOwlGaFvXS/Cpc3HhLDx88Pv2S40f2NeYd7P+c39IMtdV8d8kKTmstQ0dwoBXTyGdyf4CAK/s02I4qXrd1rPpuPmhkRj+BiNwqZ4SDIPCZAACZBATiIQ2+diTjoS1jVNAvnyBavQMXAdj+XPH35ojSc/8iBE0meffWbDzZUvH/nSEWIgCHhuuummmMVBcDJ8+PBAbx4Qa2AQ3BVd+L2AoHCINyBugoDJbzfccIOMHj06YgDdX0Y0digLx/jbb7/JrbfeKm5YOnc/sbaHBx2EsIOoys8IZcA7EsKeffLJJ3ZfbrmZee50PwMHDrSh8DSkn6a700SOwS0n2nxadYDXHjV4Kopm/vPqzwfvNiNHjrQet/zrsAzBCcIhxestJKiMaGmxzmXevCENatBgPta99957cv/99we2H7R5eECBaMh//BDlwTMVrg9/28Vyr169ZNSoUXLbbbfF5d0HxxbrXES7DnDOIFaA6DHIIxmOAXWAxx/XQ5qyTKt9IF8inLB9on0IyojHOnbsKFOnTg1sg/BWBS9udesGD8ZDBIT1aKdBBnERvB35haSxzhnKScb1Dc87bhsL8s6EfUHAqQYvYq4h9Jx61+vcubMVVrrrM3O+WY2S8upVba3HhKD9YBD/szu6WA8k7vo84a7JTQ6cT+tLP93oYvPy5IGzm9ov2jVNpxjge/Ccpl5oHk2PZ5pWO9Ay/P2Ipid6v4cYGB4aNWyhlosp7o24BnG/h4AqXoN3nDeva2+92kA841qzmiXsuiAvG26+WPPwIgBxk/Ww4cs4oFt1GWIG9kubAVq1IFfnWdG2sP+gfSPdFXDkCxBz9O9UTV67uq0VzCG/3xAy6OPbOkuQByV/3qBlvIiDBzQ1eI4IMnVvj3U4d9E8l5Q14oJXrmxrhUVBX1/iheudRlwE8Qq89biWnus1SHzllnW+eWENry5qEHrg5SjEYh/d2tl4oKiQ6jpFG21Tt5Tlje2j9QnwgDT0po62DC1fp3ih+cLlre2LTU3TaaJ9B+pzh2F3dd+6gV+24rw8fF4zuapPvUBhEl603jugiX3prXXSKY4d/dcHN3eS8sZjR3osj/MMGG27fObk3ntWU7n/7CbWg5Y/H/Y/yLjyf/Oa9pnuaSgntnl4WYllOCbclzR8JcQ9KgRK61qJVS7WuX1UtLwYDHnvho72PvzSFW3k5SvbyDf3dJM3zPlEH7vbeERTi30kmityCm8x7j0E3teCDMJMta6NwvOahmlaPGqbEI543nBDa7rbu+eiQIzwGW7IL3f7eOczm2la57W5Cd/2/k2d5PROVQOrjDB/EJNf2KtWqvV5Au5lqTI5CX7vW7oK/Yaa5tGwKkjH/Q+h8+Kx+pUjw7vC+xAsrfaAPHjGgGAWg6nf3ttNbjbi1mj3dORPy248uYFcenztiDaNbdDGbzm1ofUE5R67yzMZz1Xghv1ouGB/fXGs79zQwd7r/ev6tq0kb5rQK5WMd8wgw9+UTz31lF2FvzvwfoZGAiRAAiRAAokQ0JBxNhyd8YqjYeha1inpPfsGlb9x+z4TZnuiaOgz/H13ifl7I6sNHqMe/Gimt1s8Y7rvKOBFV+2niatMuPRDuhgxhQfJSY6op3nNSEGQPgePNZ6aVFQDD03w1KTWPmVfYPKNEx68bZ2s8yjUuUH4GT1WyOo/HU/P8JRZ3Hhjgk1xQkXjg4QggxfMICtROK+okGzKwi0mbF+weAlid/0gx1/O+m37ZOayrfaHNua3GuWKyNV96nvJc83HJzQSIAESIAESyG0E/mO+avo3tx0Ujyf7Eli9erWsWbNGKlasaH/xhEJyj2bTpk2yYsUKK56oWbOmFC1a1F2d5jzck8PTEH4QicDrTjSxRZqFBWRA+JytW7cK9lO6dGkrpgjIFjXp4MGDtm46eA8PJuXKlYtbVBK14CSt2LNnjw1rBRFOyZLBccQz+xjiqUMyDnfbtm3WExJc2GNQHeKOWOKjZOwz0TIQBhFte/369bauuEZcMUla5aPdrVq1ygpGqlevftjaHb62RQg6tCV4coE3ongtnvaRCKfM7kPc49yxY4csWbLE9ifVqlVLl5AHHOBFDv1R8eLFbVi/jIhT3fpgPrOvb//+3GV42oOgCQYh6J133umuzrL5ncYb0jrjPWDfgYNSyrjfhpACnmIOh8EzE74Gw2AUvOXEM0CWVfVM5H6P62z58uWCe37VqlXtfTDRekNUssK4Tt934JAJdVIgqjAmI/tB2ZvMSyV4csAgZ5XSheMajPfvKzu1LX/dsAzPGfC6g9BjcLNernjBuAd1g8rL7LRDJvzcRnNONpsfDB5V4DI/DY1GZlcronzUbb0JjVjM8KxYslDUusFbibq8hycTDPzC9u4314pxU3/gINp1QSM4CgvpInbkW0i07wBbtPctO/fZkFwQW6Wn/8F26Ech0ihrvoR2Qxn4qpopi1t37jfc9xixGcIK5JMypm2kp/6ZUqkkFJoT2nwSDtMrAmFFDxwMvcoob/p1V/TjZTIzCFH51JchDzHw4HQ4wn+49Yl3fo8RZOEaR0iyEib8RVb0XdmR6X5z30Y/uX33fivoKWc8C/w/e+cBr0dR9u0hIb2TQkiBkIQkhEAIPTQJoEiR9wUFRQRUFBRRRBQEBVFQFAV5QVCKoNhQRAFByoeFXgKhBggQSCMhCamEJISQfHPtyb1nnj27z9mnnZLzv3+/c3af2Wl77ezM7Mw993QPJsny8pS/QgK8O7TpcKUORtEo6x0qDFn3qxr9Kvpkq3yfor0v3PQrksKzn7NoZVRXYxE1qZCc9G+/+X5HYT9LGd/86SgCIiACItB8BFg0Onr06ObLQM6U6XNpiDgAAEAASURBVIsd9oP7I6tL23vFa7Piw4INtlNNk3f8OA3bopslTxY9oaBcLTn0ggdihamHf3JgarTk4d6n58XWl/HU238rssjGlHRwoz3/1MWPxFaMWIBz/jHbF/Q7YfDFK5+I74ft0C/026+HMsUr/Hw12HKPa6d4C5PH+i3KTXxS7rAL6/OOO1vD/cUvEkzKWTc+4x6a+nbkfN8FkzItwX7u8sfjrahDFr+481Vv8XlmFJ5FQSP84gEEBa2jL344Oucf2/Ri0TKUWd6i5DE/eyR2OsNbsT7SL/hC+Kbg2wK56Lgdoi31oh8b/r04e5k77ZopsZUuFOCuPGmX2MuP/vqiM4Uq7v16v4V3dz+eZ/KB/0A944YpBVvKHTdpmPvSR0dGXthu7oxfPxOdD/WWsW44baJnU6hozzbr392wDfyn/fbHXzmk4SJ/S09HERABERABEWiNBBqOHrTGu1CeWw0BlEP4K1dQFuKvXGGAq9I8FEsbJal+/dKtDRQLZ9dQnEGZib+WKKyCLGYRiTzX+h7y5KEa7FAG4a81CVaJsKxVzLpWsftBgSvNalixMLW4hgIOlsrKkTzloxJOta5DwntGcXPcuHGhU+5zOKRZt8odQYbHWr/fGclGzuHWElgbay7p5ifTtm4hE2pM7I0aVG/OurmYpKVbSVvLe7bVVltFf2lxl+PGZB1bv9VC6pQzOkVKbpXE35LKVtp9oEA3bEB+RdO0OJrSDYVDlJnCLdmaMv08aaGIlFcZKS0+FOlGemsypUqldQdsUerkrxxhEr2plZnCfPbq1sHxt7FJayjz1WR+yW0vx1sasgUi1sKSgqLOtffWbyPHFnGtRVDiyKvIUa17aolMsZZUZw2sfluTat1vW44Hq1mVcK1GvwrLU8WsT/Hst9689DYuzcpxW37WuncREAEREIHyCfC99RFv5YhtXE2pidg+tF29dd4wdpSAvnXDM7ESENdQJv757XXbu4d+w/OjvOLMkDLGKy69rTDed1aucfOWvleQV9Lp6reIvviE8QVKTbjTnn/r42Pc1699mp/uPr/l3iy/cGZff39D+nZ2r8xd4e7325m96RfUmXwlsAhkbuO85eCk7O63cw7FJ+UmeavGf390Tuy8V2DxNHas4QmK0ljqvf6+16NUfvq3l91DLy50WI6m3/3sjKXuP56BCd8Oh+9Wr/iE5VZTbDr7d89FFjwn+kVHLLV4fuayeEtpC588ftUruD33xhK/OGlVxPS4Sx6NLIyP8enM8m7/eX6+m7HBsmcyLL93G9k3UgbjeRDH6b+e4g6aMDDaxv49vyjiqelL3HX3To+D7teEWzbHiepEBERABERABGpMQIpNNQas6EVABERABERABConYIpNWCGbMGFC5REqBhEQAREQAREQgVZL4NN+BfgDLyyM8v/7/870FgxXux2H93bbbNHDvectvbBNwx/+OyOyNocntpEYn9g2o9XefI0yLqY1AqtoRUAEREAEREAEWi2BgyZsESk22Q2wnVu4TbG5c3zDby8WKkDhdssjszkUFawglaPYlCfunfx25+f5bbmztoHd1SvLfMNbJbr01jolqVf89mX8pcmlX5jgttis4ZawKCrvvV2/2MoS1qHMSlIYD0pAoWJT1hbPYZhqnx+//zCvVLTSbyv4VhT1o377PP6SgkUkLFOFWyhPHNPf7TW2n3v4xbcj73dMnuv4CwVLVVd5i1FpwtZ8F392gjvRW5pa6a1WYj3zzw/OauD17KPGuotufrGBOwtZUEQ757fPReEpa8nyZoFO8Zaaxg5tqHBm13UUAREQAREQgdZKQIpNrfXJKd8iIAIiIAIi0IYIvPRS3TYyhx56aMnbfLYhTLpVERABERABEWgTBLbfqrdje4U/3l+3zcS//bYL/KXJnn4V9veOGVewrUaav7buJqZtvQTo/kVABERABERABJIE6B+xbZhZLTp45+ydKFA8KUc6eKvVeaVj++J+yWv/Pp3cuKG9HUpYw3NYP/y4txiFNfDf3z8jVk4K83PYroPccR8aVlT5auLoesWm/cb1T+137zSicBeOHbcu/G1pYkkqj3TyVpbSJNxmvEOCF7/P9Ypeu4/azN304OwGSlxYt/qU/8Zg+2oUkULBgtdFx433FmGnu394haalG7a9x88Av13yqYdtE1mlylJswh+WxC8/eWd39T2vFmw5x7U9t+3rTj10lFu3jl91krRuiSLaH7+1l/vFHdPcIy+9HW97h2/yPmbLnu6kj4xwlFuJCIiACIiACGyMBDZZs2YN1hIlIiACIiACIiACItBiCYwfP96h3HTDDTe4Y489tsXmUxkTAREQgWoT+MtDs9z//eOVKNpLPj/B7eFXukpEQATqCDz7xlJ3xZ2vuJdmL2+AhO0jPuS3YDhuv2EunOBo4FEOBQTEtACHfoiACIiACIiACFSZwLRp09zo0aOrHKuiqwaBVd6S0Pylq91qf+zeuYPr37uT6+QtMm2ssnTl++5tbzlpnZ8h7dW1o99uvWPu74aFy9e4xe+85zbr4bdp79ExVZmrGLflq9a6BUtX+XBsEdzVdelYOuclK953C5ev9kpYHdzAPp1LzkOx/OmaCIiACIiACLREAlJsaolPRXkSAREQAREQAREoILB27drod/v27aOP/oKL+iECIiACGzGBD/wo6/sf1C3bZIVuuSuBN2JEujURcLwn85ascguXved6dOngthrQ1SVXaAtTaQTEtDRe8i0CIiACIiACIpCPgBSb8nGSLxEQAREQAREQAREQgUICUmwq5KFfIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACVSYgxaYqA1V0IiACIiACIiACItBGCJRu37CNgNFtioAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAINB8BKTY1H3ulLAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIikEFAik0ZYOQsAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiLQfASk2NR87JWyCIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIhABgEpNmWAkbMIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiEDzEZBiU/OxV8oiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIZBKTYlAFGziIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAs1HQIpNzcdeKYuACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACGQQkGJTBhg5i4AIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAINB8BKTY1H3ulLAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIikEFAik0ZYOQsAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiLQfASk2NR87JWyCIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIhABgEpNmWAkbMIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiEDzEZBiU/OxV8oiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIZBKTYlAFGziIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAs1HQIpNzcdeKYuACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACGQQkGJTBhg5i4AIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAINB8BKTY1H3ulLAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIikEFAik0ZYOQsAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiLQfASk2NR87JWyCIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIhABgEpNmWAkbMIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiEDzEZBiU/OxV8oiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIZBKTYlAFGziIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAs1HQIpNzcdeKYuACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACGQQkGJTBhg5i4AIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAINB8BKTY1H3ulLAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIikEFAik0ZYOQsAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiLQfASk2NR87JWyCIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIhABgEpNmWAkbMIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiEDzEZBiU/OxV8oiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIZBKTYlAFGziIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAs1HQIpNzcdeKYuACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACGQQkGJTBhg5i4AIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAINB+BTZsvaaUsAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiJQawJrP1jvVq9d57p3al/rpBT/BgIvzl7mZi5cGf3ae2x/16Nz65qWXbZyrXvk5YVR/rce0M2NGdJTz1YEREAEREAEmoVA62pBmwWREhUBERABERABERABERABERABERABERABERABERABERABERABEdiYCdz3zFvu6TeWlHSLx+wzzA3p16WkMHk9L135vrv2ntfcrY+96fberp/7yfE75g0a+ftg3Xr36LS33W2Pz3GvzX3XLVi2Og4/Yovu7sDxA93BOw9y/Xt2jN1LObn+vtfdonfeSw3SoX07169nJ9e/V0c3couebsTA7qn+NnbHfz+3wP3pgZnRbd54+h6uRyvjMH/pKnfhn6dG+T9u0jApNm3sBVb3JwIiIAItmIAUm1rww1HWREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEak/g8VcXuX8+Oa+khD660xY1U2z6z3PzI6UmMvTQ1LfdtDffcaMH98iVvxkL3nVn3vCMe3PxqlT/0+etcNPnveZ+9+833MWf39FN2LpPqr9ijrc8OsctXbGmmJf42rZDe7qj9xrqPjJhi9hNJyIgAiIgAiIgAiKQl0C7vB7lTwREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREoI5Au002qRmK2594syDue57Op3T1/Myl7otXPFGg1DSgV2c3aYcB3krT5m7wZvUWplau+cCd+qun3F8fmV2QVrV/vDR7ufv+TVPdD/78glv9/rpqR6/4REAEREAEREAENnICsti0kT9g3Z4IiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiEB+AjectrsbNSifdaT8seb3icWlV7yFplD+8fib7ssHj3Rs85YlK977wH37xuccCktI7+4d3VkfH+P23ra/C5WwFi57z/3wry+4ya/Ubb3389umua6d2rtD/NZ05cjDPzmwINiqNevcIr/13RS/tR9KU1iIQu6Z8pZ7Z9X77uITJrga6oQV5EU/REAEREAEREAEWj+B7N5P67833YEIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAItCoC9zz9VpzfiWP6RucoKz3ht8srJtfe81q8PRxKTdecsqvbd+yAAqUmwvfv1cld+rmd3Cf32TKO7ue3TquaNaUuHdu5If27usN3G+x+45XETvzw8DidR15a5JLWqOKLOhEBERABERABERCBFAKy2JQCRU4iIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIikIfA417haMGS1ZHXLb1Cz/it+6QGe9pbMJqzcGV0bfthvd2wAd0a+Ptg3fpY8QflpNMPH+MeffnhyN9dT81ze43p3yAMDiu9taa/Ply/pdw5R23rBvet33YuGahdu03cSQeNdFiCQmmKv6emL8qMPxk+728sRX3+wOHu/Q/WuRv/PSMK9os7XnGH7LJFpvWp52YsdU+/vsTNXbwqCrd5785u5BY93N5j+7tOmxbabHj4pYVu8TtrongP9hanNm3fcHvA/z4/31uKWus29WEP3mmL1KzfNWWeW7t2nevnlb4mju4X+XnslbfdwqXvuY4dNnEf2XFQlJdX577jnp25zL325nKvINbZDdu8m/vQdgMii1epEedwLOV+k9Fhpev5GUvcGwtWujfeesfnY1M3enAPN2JgD8+su2vvn3MxeX3+CvfQi2+7OYtWOnxu7e9n4ph+bqv+DctmWjxvL1/jXn5zWWRhbPbCd92Qft3c8IHd3Nihvd3mvTulBZGbCIiACIiACJRMQIpNJSNTABEQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQARGoJ/DjW16Kf9x6zj6RVaTYwZ/M9woyp/7qqdjpD2dMjM/DkymvL46tLh2+26BIOWn81r3cs28sc/95boFbfuRa17NLw+m9x6e9HUez7dCeuRSUOndo5772sVHupodmRWHnvL0qjqPaJ589YLj71zPz3ZteWalOiWqx22NUnQKRpYXS17l/er7BNnx2vWvH9u6co8e6Sdtvbk7u8VcWu1v8dnfINn77wDFDesbXOGFbvO/8/vnYbbxXKBu0WaHC10KvnHPhn6dGfvYd1z9WbPr7Y3PcQ1PruO40op878zdPp+btF91fdRccu73baXi6QluceOKknPsNo5j82iJ3/p+mxuUlvMb5rqP6uB99ZsdMpatLbn3Z/e3ROclg7oo7XnWf2ndL9+HxAxtcCx3ueXqu+8FNL4ZOBednHrmt+5/dBxe46YcIiIAIiIAIlEOgUK25nBgURgREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQATaKIHdt+nrPr7n0Pjuf3ZbvZKTOV56e73baV6ZKM1aE37vmVK/Dd0BO9Qp8Hx0p0EWjVdumh+fhyePvVK/Td34rXuHl4qef8xvF/eHb0yM/j65d/3WdEUDlXERS0sH71J/Hw9OXVgQyxvz33Wfu/zxBopDKDOZoBD1Xa+khMKRye6jN7NT96y39JSUZ95YXOD01PTC31x8YeaS2M+eG6w1xQ4bTs6+8Zk4b+QpzNfSFWvcWTc845atXJsMlvm73Pu1CLFC9fVrny5QasLCF38mk19Z4r70y8leuesDc4qPNz04s4FSU3hPNz0wy11z72ux/+TJHx6YWaDUNNgri+04orDcXfy3l9zv/jsjGVS/RUAEREAERKBkAg1VukuOQgFEQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREoO0SOOWQbdxjL78dWSTCyg+KJ/ttsCx0vz83yz8of3wiUIIKibGdHNvNIUP7dYm2X+N8n7ED3E82WIT6x+Q3U63gzF+2Cq+RjBjY3U5b1HHPMX3ddfdOj/L05uK6Lfn4wfZ7P7x5amTJid8j/BZqXzl0G7fjsD5+u7pN3GtvrXA3PzzL/fPJOjY/+/vLbucRmzm2/Zuwdb1iE9aukspZk18tVGR61Fu2+tiuhVaEnn69XiFq55H18ZEXk5dmL3d7je3nTj1klH82XZ3fYc9NnbUsUrRasGx1lPebHpzhTvbb+zUmldwvca9f79z1/3ojTuaYfbeK7ru/30YPeW3eOz5fz7nZ3gLX9Hkr3DN+C0TbXo/rbJ2IVSaTL3xkRGSdaYgvc1ivesRv74dS0uPTCtmZ/3U+A3+8f6b9dBedsIPb15dRZO0H692DLy6IuPD7Rp9PnknHxBaCXJOIgAiIgAiIQF4CUmzKS0r+REAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAENnoC3/3dc65zp3pLQWk3vOPWfdw3/md0fIlt3b53zDh30pWTI7ef3jrN7ewtOSEX+3OT735inGvXzmvFpMgDUxfErocFyjd9undwe27b1yucLHIo2MzyW7ah1BPKwmVr4p9bb94yFZsG9KrfAu6txavj/D7hFW24LwSrQRcdNz7ags88jPJbzH3742PdW0tXuymv1VlX+otXdPrm/46JtllDWeyZ6UvdlFeXREpS7QO+DyUsQ93//MJI+WZTrzBl8sQrddvNoUyW3KbO/Gzvt7C74NgdHJanTLbbspc76xNj3Bm/fiZyesErOuWRSu6X+Of67fz69ezo/zbzSlbd3CmHjHTt0LTaICO36OHOPmo7d8ovn4xcnvGKW6Fi0w331StFHbXXUPe5A7a2oK6/j9e2j0O5KU1enbsithT1oe37x0pN+IUrWwWecshq99T0OitiC/w2jChNSURABERABESgXAL1rW+5MSicCIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACGwkBN70iiNYuin2N29JvcUhu20UXT5/4PDoJ9uT/fKfr7pr75keK4F85+ixbovNOpv3Bsc7n5obu6EcEspBO24R//x/z9ZvV2eOC5bUKwoN8RaFWqL06lpvb2GRtwxk8t/n6xW6vu6VxQb3bagEg7LS9z65vQVx93jLVlg+Qvbats5aEFvVTffWnUzeXLQqsqDF728eMcac3dTZ9QpIi99ZE1k24uJeY/vHfpInR+wxqECpya7vvk0/O3Wvv/VufF7spNL7hc+ln98p+jv98NEFSk2W7pjBPe3UTZtbf7/rPLPnN2zZN6BX58gyVuwxOEG5KdzmL7jkOmxar0Q1c8HK1K3ujv3QVnEepdQU0tO5CIiACIhAOQSk2FQONYURAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQARHYKAmgoIRSR7G/CSPqrDElARy//zA3anCPyPm2x990tzwyOzrfe7t+7pCdByW9x7/neQtGZo1o26E9Gyj3hEo3dzwx16GgEkr3Lh3in8u8sk5LlPfW1uc5zO8rc9+JsztmSL1CTuy44QQrRSjjICgxLVz2XnS+y4g+0ZF/z8+s31buqel1W6lhBYrt5yzsk6/Vb7H2QuB/t1Hpz5R4Rw/uxaGBYCgJS08Iymx5pNL7TUsDJa93Vq9187yCG8pdL8+pV2Z6328PZzLHK3uZbLdVT7/VX/ZU8Y7BNn8WhuOw/t0iy1qcz5j/rjvh54+5Pz80K7IkxjZ5EhEQAREQARGoNoF61ehqx6z4REAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAERKCVEcC6D9uflSMoipz3yXHuM5c+GgdHseasI8bGv9NO/vVcvRWmnt6y0eTX6rbxSvO7YNlq94y3urPT8HqFns37dHa4I68vXOGGJLaqS4unqd0Wv1OniES65NdkwQYFJX4PbcTa1Kgh3eP7XPruGjfQxzNyi+6Rog3KTigzfXzi0CjqR6fVbTG357b9oi3S9h3X3/314dnuoRcXuhM3WNaCo8mOw+p5mpsdN+9dn19zs2OXTqVNt1Z6v5buy3OWO6x3PTZtUaRgZO7FjtPn1SuRsWVdMRkxsFvqZbZSvPD4Hdw3rns6uo6Fs8v/8Ur0R1n/0PYD3EE7DfTlczMXbguYGpkcRUAEREAERCAHgdJa2hwRyosIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAItFUCWw3o6kZ4ZRu2skO22ryb69293qJSkgtWbm731p1MHp+22PFXTO6eMq9AsWmzHvXxv+G3RNu3uB5Vsahrdu2FWUviuPt760smZukIpZiOm2ZbEMJ/3+6dLJhbvfaD6LydN5s0afzm7s7Jc91kz22dB4oFowdeWBhd33PbOktMe4zuGyk2vfLmO44t6Dbr0dGZ9Sasc3XqUDztOOEKTyq9X8rLzQ/Pcv/nlYlKlaUr34+D9OpaX2Zix+CkZ5Hru2/T191w2u6RRbI7PHcTlMvu8tsE8oeFrJ9/YYIbNiBdQcrC6CgCIiACIiACjRFomha6sVzougiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAhsBAT+/ticWKmJ23lp9nJ3q3fLkhdnL3NYvSlFUOJZtWZdHGSHrXrH568GVnlix4wTFIBWvvdB9Md5LeW+Z+fH0e8ysn7bt8Gb1W3lhlLMkhX1ijex5+Dkdb/1mUnvrvXKURO90hJCHG94P1M9U5OdR/SLTid4C0ImU7xlp2Ur18bPaY9RdX7sei2Pld7vk9MXFSg1Hb7bYPf9Y8a5a76yq/vjNye6W7+zr7vvgkmpt7BVoGQ06+2VqX7McXYj17FqdvYnxvq09neXegWmz394uBvmlfhMsCD2xSuecIta6NaIlk8dRUAEREAEWj4BWWxq+c9IORQBERABERABERABERABERABERABERABERABERABERABERABEWgFBGYtXOkuvXValNOh/bq4RcvXRMo2l3i33bbp54Z4t6Tc83T9NnSf3GdLd9iug5Je4t8X/Hmqw+IQ8uDU+e4jE7aIzvfedoC74o5Xo/P/PLfAzTtktdsi2O4tupDyD6s/tzwyO7pyxv+Odkdu2MYtxWtFTmyt98hL9dvr7TO2fxxf/z6dYsWumW+vcH26p28JhyWm54Ot4zbrUW+9acet65WWnvN+TJlm1OAert8G61CdvUWmiWP6ukdfXuQef3WR69K5fZyHXb0FoqaSSu938qv1lq+O339rd/JBIxpkfW6GotyIgfXbz70yd3mDcKHD9LfqLI6FbmnnXTq2c1hw4u/zBwx3U95Y7C686cVoy0AUzZ72SmQH7jgwLajcREAEREAERCAXAVlsyoVJnkRABERABERABERABERABERABERABERABERABERABERABERABEQgmwAWjy78y9TYw7mfHOfO+vi28e8Lb57q1iWsIq1Zu87d9WT9Vl6fO3C4G75598y/rx42Ko7vn1Pqw6Ewte3QnvG1y/7xcoO04osbTlDCMqUmnA4YX6cklfRX6e8ZC9515/+pnstBOw2MtoGzePccXa/khCWqLHloat3WclznXnt2qbff0Mdv9Wf3jzWmB6YuiKLZd7sBBdHtOabOMtN/vfLXlOl1CkK9u3ds0u3SKr3fZ16vV2w6bJd0JTjbYq/g5v2PXl03jbaIw/2Z6Uvd6/PTlZewnHX3lHqFuzCemQu9RaxZy6K/996vtxqGH78roNvZW8b6zKSt4iCv5VSQigPoRAREQAREQAQSBKTYlACinyIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiJQKoE/PTAzUvYg3FF7DXXbbdnLKwsNdLuPrrMmhLWhvzw8qyDax15+O7LohOOkHQa4Hp3rlXUKPG74MX5Yb4ciDjL5lSVu/tL3Nlxx7ltHjInPH5r6dqRklVQ8MQ/P+rx88/qn7WeUX5ReqinvrF7rbnl0tjv2kkfd0hVroqjJ+9cPr88njvuNq1c++ueT89ytj89pkA2UsM7+3XOx+yE7N1TC2mvbOgWpf3ulpenz6hR2dtum3pITgbGahWBJ6KYH6p7FfuP6Rwo50YUm+Ffp/Y7conucy+kp2w6yteEV3hJXluw6qp7Jt3/zrFvhtyIMBQW97//5ufiZhdc4v3vKPHfSlZOjv5/+/aXk5ej3zAX129xtP6xXqh85ioAIiIAIiEBeAtXtoeRNVf5EQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREoAUSuOae19ygzboWzRmWaU6YtHVseeg1r2Dyy7tei8KgvHPSQSOjc/x94/Bt3Sd/+nD0m+3i9hjdL7YQdGdgdekjXgmqMWnfbhN3qLfS84f/zoi83vfcW+7Yfeus44we3NN93lt8uv6+16NrbHH3oLdy9JlJw9zIQd1dx03buRnzV7oXZy119z4zP/LDP/J79N5bxr9LPbn0tmkFQd5ZucbN8wpX4bZxeOjasb27+ITxBZaWcB/ct0tBvn/6t5fdQy8u9NvG9XOdO7R3KGH959n6/LK93OG7DSFogewyso+77t56J9IbM6TeihVXsGw1eLMu8dZ3uLGFWlNKpfeLstZtj78ZZRllL7YunDi6r1vvXZ6fucz9+cFC5bnkvWH167k3lrjZb6+KOBznFc9Qqhvjuc7ybv95fr4vJ+8mg8W/D9tlsLvx3zOi33c9Nc998MG66FmNHNTDLVz+nrvHu4XbK+4ysmn5xhnViQiIgAiIwEZDQIpNG82j1I2IgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAhUSuDRlxf5KPgrLgeO3zxSbGI7ue/96YXY81kfH+O6dmof/0aZ5pRDtnFX/fPVyI3t6q4+ZVe37N33HZaVTHbfsE2a/c46HuCVUEyx6R/eupEpNuH/xA8Pd5192lfdWZcWlomuuWd6VlRu11F93LlHb+/69qizApXpsciFcDu7LG87eaWj844e5/r36pTq5fj9h3klm5Xung3bn/EM6p5DofehnuWFx+7gNm3vNcYSMnZor0h5intG9vGWmFAES8q+3kIU1rVMJoyst2BkbrU+VnK/E8f0d3uN7ecefrGu7Nwxea7jL5RTDvXlbUMZCN05xyrYxZ+d4E68/PHIctWCZatTlaHOPmqsu+jmF5PBI0W0MH6U5EJFOQuAYtkFx23vOnmFOokIiIAIiIAIVEJAik2V0FNYERABERABERABERABERABERABERABERABERABERABERABERCBVk9g03blK1/c/Mjs2MLNvl6ZZt+x9VurGZij9x7q/vnU3MjfS7OXu9ufeNN16lCfJlZ38iqAjBrUM7Y6hNWdGQvejS1AkR6KTjts1cv90SvvPPDCQstCwXHY5t3cwTtt4T7t/bZLUf4p8Jzyo2P7+rynXI7y179PJzduaG930E4D3fDN67dPS/Pfwcd3rld82t1vk3bTg7PdK2++U+ANJZlPfWiryLJU1nZ9KDHtMaavYys6ZE9vGStN2BrQFJu291v7ZcXXDnNbOaSTtyqVJqFSFfcXSiX3S7m56Ljx7tp7p7t/eIUm2+aP+Af06uxOPWwbN2n7AZmKTfjbsn9Xd/nJO7ur73k12tIQN5M9t+3rTj10lFu3zlxcZO2r/lddGZuwdW/3iztfcc++sSy8FFkA22VEnyiOLEW2ggD6IQIiIAIiIAKNENhkzZo1WCaUiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiEBNCEybNs2NHj26JnEr0mwCby9f495c9K57a+kq9+7qDxzb1Y3Yooff4q1Q0SY7hua5snTl++5tb0lonZ/F7NW1o+vXs2Oq9aXmyV31U63kfhf6Z7z4nfe89bBOrp+3vJVTHyu+ieWr1roFvnxs4gOyBWOXjqWVjXXr17v5S95zy1e9HylW9eneIY5bJyIgAiIgAiJQDQJSbKoGRcUhAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiKQSUCKTZlodEEEREAEREAEREAERKAIgdJUbotEpEsiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiUC0CUmyqFknFIwIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiUDUCUmyqGkpFJAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiUC0CUmyqFknFIwIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiUDUCUmyqGkpFJAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiUC0CUmyqFknFIwIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiUDUCUmyqGkpFJAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiUC0CUmyqFknFIwIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiUDUCm1YtJkXUJghMnjzZTZs2LbrXQw891PXp06dN3LdusroEXnzxRTdlypQo0kmTJrnBgwfnSqC1l7/Wnv9cD0meWiSBO+64wy1dutR16NDBffKTn2yReVSm0gncf//9judHm7vffvule2ohripnLeRBtMFsqH0t/tCrwSfr/V67dq37y1/+4qZOnepOOOEEN2rUqOKZ0VURaKMEWlN7nucRzZ4923FPyC677OLGjBmTJ1hRP6pPiuLZKC5ubO9Ba3ko1egHlHuvLfG9zurTlHuPbTVcsXZAjNtqqdB9i4AIiIAIiIAIiIAIiEBtCWyyZs2a9bVNQrE3N4Hly5e78847zzGgUI6MHTvWnXLKKVHQs846y/385z+PzlFMGTduXDlRNmmYRx991P3hD39w11xzTfT32c9+ttH0maC57LLL3JNPPukOPPBAN3z48IIwXbp0cVtssYXbY4893MSJE90mm2xScN1+XHDBBW7+/PmuY8eO7tJLLzXnNn+88sor3emnnx5xuP32291HP/rRXExaY/kLb6y15z+8F53XE3j77bfd+eefH9UvH/vYx9wtt9xSfzHjbMmSJe573/ueW7duXaqPbt26uUGDBrkhQ4a4PffcM6pvUj3mdNx5553d888/73r06OEWLVqUM5S8NTeBOXPmFLQ/b7zxRm5F0ObIu8pZc1BXmhBQ+1q8HFSDT9b7TZt3zDHHRBnYZptt3AsvvJDZLy6ey+pd5Rvl+uuvjyI88sgj3f7771+9yBWTCJRBoLW153lu8c4773RHHHFE5PWKK65wJ598cp5gRf20xPqkaIZ1sSQCG+N7UBKAZvRcjX5Audlvie91Vp+m3Htsq+GKtQNi3FZLRf77ZtH06NGj8weQTxEQAREQAREQAREQARHwBGSxqQ0Ug7feestdddVVZd8pSiem2FR2JM0Y8PLLL48VDc4444xo8qVTp05Fc3TvvfdGSk14uu+++4r63X777SNrGig6JeXqq692CxYsiJyl2JSks3H9XrlypaPcrF+/3o0cOdJRLiRtgwCDtShOIv/4xz/c008/7SZMmFD05lFs+tWvflXUT3gRhakzzzzT7b777qGzzjdyAqyCDWXWrFktWrEpzKvONw4ClLmnnnoquhmUudP6OrW+05aQh1rfY2uO//XXX4+z/+qrr7rVq1c7FgA0p2AZ1NplFmhIsak5n4bShoDa83zloCXWJ/lyLl95COg9yEOp9fm5++673apVq1zPnj3dAQcc0OAG9F43QCIHERABERABERABERABERABERCBMgm0KzOcgrUiAu3aVfaYN9tss1Z0t4VZxTIJSgcm77zzTqR8Yr+rccQKClad5s2bV43oFEcrJfDYY4+5o48+Otrm609/+lMrvQtluxwCZhXCwv7xj3+006odUZjaZ599HIqaKM9J2gYBFEmOO+646GY58lsiAk1J4Le//W3UrrGFJUqbzSEtIQ/Ncd+tJc3PfOYzkWVBLAL+3//9X7MrNbUWbspn2yKg9jzf81Z9ko9Ta/Wl96C1PrnsfKPQdPjhh0d9xXPOOSfVo97rVCxyFAEREAEREAEREAEREAEREAERKINAZRovZSSoIE1PAOsxfsvB1L/Pfe5zcYaeeOKJVD+/+c1vYj+t7eTvf/97gyzfeOONDdyKOSS5MHjDqrPrrrvODRgwIArKCnWUm957771iUemaCIjARkbgpZdeajDZj6ITdW5e+Z//+Z8GdS+W9rCSwjaiVs8Q3ze/+c1om8y8cctf6ybANqe//vWvo7aFY9a2p637LpV7ERCB1kwAK17//e9/HduyfvnLX27Nt6K8i0DNCKg9z4dW9Uk+Tq3Vl96D1vrkKsu33uvK+Cm0CIiACIiACIiACIiACIiACIhAPQEpNtWz0NlGSCC0pLL33ntHd3jbbbe5hQsXln237du3d0OGDHHHH3+8mzx5smOFOoJy0x133FF2vAooAiLQ+giE1rnYthPBMtz/+3//r6KbwVIe2xl+97vfdS+88II79NBD4/jOOussh6U4SdshIIWmtvOsdaci0FoJqJ5qrU9O+W5KAnpP8tEWp3ycWqsvPd/W+uQqy7eee2X8FFoEREAEREAEREAEREAEREAERMC5TQVBBCohsHbt2mjS/dFHH3VYNtp6663d7rvv7nbbbTfXp0+folFj3ej22293zz77rJs1a5br3bu3GzZsmPvf//1fN3z48KJh81ycNm2ae/LJJyOvKCF9+MMfdg899FD0+29/+5s7+eST80RT1A+rzy644AL39a9/PfL3r3/9y3384x8vGqaxiytXrnQ33XRT5A0e+++/f2oQttlDSQuB+XbbbdfAH9vjYfWF7WNQvMJ6F/7wj3JWMbFt/AhHPNzrmDFj3JFHHtnos2WrrPvuu8898sgj7o033nAoaYwdOzYKW+2tDbGYc8899ziOCGUQCzjbbrttwe3deeedbv78+ZEbSiKbb755wfXwxz//+U+HxRwG39h+p2vXruHlgvP777/fTZ8+PU6fi88884wzpbqtttrKHXDAAQVh7EdLfX+4d7Zw5NkvXbrUbbPNNm7ixIlxWWRboA8++MD17ds3Ym33w3N48803XefOnd0xxxwTWSGCxcMPP+yee+45N3jw4Oi5YK6+Z8+eFiz1uGTJEofFNd5jyh/1w5ZbbukOO+ywqBymBULZB2VD5IgjjoiUDqlfsCTBNcr/hz70oWhLNwv//vvvu1tvvTWqh+bMmRO9H9Rf/HXp0sW8pR55fvacsarEFjyjR4+O/P7+978vUEZKjSCnI/d+8803R1bheKeQ888/v2CbzZxRFXj7z3/+46i7X3nllYjvqFGj3FFHHeX69+9f4M9+2HO3emnu3LkRW94BLFT96Ec/iuoJ848b7xJlYObMma5jx45u6NChbq+99nL77bdfgfWhdevWObMO2K9fv2hLA4vHjqtXr3a2zV/We7V48eLoeRJmp512cjvuuKMFdzwv6kLKxJQpUxzbtFIfjhs3Lirfm25avEvEfT744INuxowZUVjKI/XznnvuGacRniTLY7du3aI2Ce5Tp06Nwn7hC18Ig6SeozyHpcCBAwe6Qw45pIEfFOlo6+DMe8bz454mTJgQKcc1CJDTYdmyZVH5ePHFFx1/KPFanCjdNcYrKxneafjzLFAyDp9Br169soJF7tS19BsoT1iHGTRoUPRe028ILZsVjSTjYinl1aIg/2wTiVBH0u7wPOhjoJBIm0NZpc09+OCDHYrRxaScflE1690wb1bu6EOY3HvvvVHbyO+sfkc1n1G5eSB/Lal9TT4j+haPP/64o07hfaCtoX36xCc+kdk3o03mnaR9/fSnP80tpgpWSbl36lr6vcUkb/+pWBxcW758ufvrX/8aeUvWu2FYrJ3Sb+X9pW9BPWX+q903DNNNniefB+9+uX2VZNy00S+//HLkTD8k61sI5efZs2dHz/NTn/pU1KaEcVXaXtGuUzfRB1+xYkVUHnbeeeeoX9KhQ4cwqZLP6TfQjvEcEZ4hbQPPs1h/mXti22baE+pH6rvx48e7HXbYITraQpG0DFXazpXaflseKk3X4rGj1WnJ9rzcMkk/7O67746ib+ydp39OOgjPin5uKOX0u8Pwdl5pnorVJ+VysryFR8ogC5J4R/hu5Tv1Ix/5SHSkf0FfA7Hv5jBsnnPqV+Kg3kNgTh9uxIgRLuyr0m+g/4BUcwyA+Er9lk/2afju53194IEHojaL+uxnP/uZ43sAoR99wgknFPTnowsb/tG3xy98+ZZhDAHJeg+S/Wb6hNSn1Dn8UUeQJ54T3/vFpNxv2WJxhtfIK31u+vOUeZ4j9RnfHbzfpUqp31jEX269VixvpfT9aWcYW6MNNaGesW9j+ivWvqW914wlWFnim4Lxuiyh/TCr62nfieX0n9PSos/LdyKyyy67RO1Tmj/c6DfwPYPwPcj3cV4p9VsoWffxXcg78V8/xsE4CfXUxz72sagvaXmgnuF7hDJKW7brrrtGf7TXxRTMql22LT86ioAIiIAIiIAIiIAIiIAIiEDVCPgP0fX6a7sM/FZ0631hiv68YlKjZeH0008v8O8VSOLfFo8dvTJDZnxc85OQmWHPOOOMzLB5y6u3dBLH7wf31/tByvi3H6goGr8fWIn9NsbFDyrFfv1AW0G84T3mzbef6Ijj84NBBfGFcfiBl9hfGi+vJBBft2cSHq+66qrMuH/1q18VDesHJDPDwhm+YVp27gck15Ovn//85/F1P+ibGVd4v5wny9/Xvva1OB5Lw46nnnpqQbxnnnlm7NcPyhZcC9PxA2+xP+Lyk2+Zfgn32c9+tsC/pW9HrwAQh0/mvyW+P8WevR+QX+8Hz+L7Tb5HfkAtvuYnvNb7gbP4t/HgyHvhJ/ViLiF/PzC53isLpoazOEjHKww0CH/JJZfE4ShXfpI4/m1hOZ544onrvZLMet4hr7SV6sdbeFvvJ3kapBHm9a677orDeitKkV/CWVp+UD0zvB+oj/1RDsJ4s879JEwchjTSGGSFpRwShnfQK3Ctp66yfCaPv/vd71LzY/547l7BoUF4P8Afh/PKYkXreLj7weDYP/kOn4Wf3Cm4xnU/qBun6ZXkGlzHD3WT5dMrmsV+uOdJkybF18yPHXlufvIp9h9ypMxn1WmE98pyqWUlLI/w8NuVFqRfrH4P07d2xE/iNMifV45YDwu7j+TxlFNOabQOC9Oyc8q2pZuMk9/cC3W9+bdjWM7MzY7vvvvueq8EnJlX0vMD9A3iJLyfnFsPr7S8mNu3v/3t9X6gPzW85SHrWE55JS74W/rUAfQ1srhRvmnfs/JQbr+oGvVuWp6y7sPuN9nvqMUzKiUPLbl9DZ8RZaBYWabeSHseVj9Sh6ddNzeu84zCvgfXknxK6T9Z3Fnvd9ienXTSSQ3yR3uLu5WdtKOf3GwQztIt5+gnVuP0LrvssoK4w+dRbl8lK0/0Pe3+/ORgQbphGL8IIvaXbMsraa9gTR/H8pA88k4Vy1eYx+Q5+fQKjUXjzvpm8koe670ScGZY2rGsfFXSzpXbfnPvlaSbZGe/rU5Ltufllkn6mfaMeffT+k6W9rnnnhv7DeuZSvrdfgFCHOcVV1wRlfdK81SsPimXkzHgyDsSjn8YPzt+61vfWu8V8OL74vsxDJ/n/Ctf+Uoc3uK1I+MT9H/tN/0ii7NaYwDEV+x7jrTTvuWTfZrvfe97cT4JY+1P2CeGleU/efRKL3F4+o12Pes9CPvNfMcVazfCPr7Fa8di997Yt6zFkXWk71usjoWTV/SN7zUrnqS7lYc831jl1mthPyD5DUZ+Su3733DDDfHztfwnj9a+Zb3XYVnyCx4yuYXfgNQDIb9y+89pfRrKnd2DXwhXkE6YJufeUnPsl/HA5PW03+V+C4V132uvvbaeNsTyGR6vvvrqKB+839YfDK9z7re1T81ruWU7rR2we09jbNd0bLtzEOGzz+r7hX50rrKiMqAyoDKgMqAyoDKgMqAykCwD2orOf91JyiOAlSKzGOQ/nBtYS2BbJlb5JQXrTKxiXrBgQXyJ8KH4ga3I+knoVso5K8CuueaaKAhxs4oKCzF+Milyw7qFWfgpJd40v+HKZ1YmtgSBn1e4ibPCqkYs1YTiJ7zdT37yk9ApOmfl75e+9KUC9+TzwRoPq8SSAnc/WBxbyrLrFp7VYuQL60mVClt0XX755XE0loY5/OIXv3Beect+RhaE7IdZxLLf4fHf//53/NMPXBZdfY7H7t27RytIk+nzm78sKwQt8f3BgkCxZ4/1nRP8ytw8guUyLLIgxsLC8e6zapeVxEnxkwHOT74UOCfZYoVgjz32cKwuz5If/OAHsQWJZPhf//rX7oc//GFkFQirVIgfZC+IihWoxx57bIFb8odZD8IdS0dIGIZVktUULCrZlprEW852d7yD1INYXjFJ8jnuuONiy1fmJzxShxezTOcHUyPLe8XqeLhj5cGs6hE/lrxMWAWdFCzimbAimJXCScGikgn1PuIHaqO0sDBhgpUlryhgP6MVx6y0xopIKKwA5tmG+Qyvc86Kaeo16r8soUxjxa6aQhnFag4sEJ4j9XxYlqkDsQJTimApDetC4fMjzjBe7sUrikUrgPPGTZnxCgaxdz/YHa2GNgfSw5IX9xUKFgxwT9bbyXL74x//2FF2S5Vyy2syHaxW+omHmFsyf5R5LAD6jngyaGS1shr9onLr3QYZ8g5YNUzeA7/tL7TMUqtnVEoewntoie2r5Y82NizLScZeYSyydGf+a3Estf9UaR5Iz/rkFlfyvulbfP/737fLTXas5jtTjUxX0l6RvldEcPRxQglZU8/S1pa6JTfWIWDlFR/CqAvOiRsrQMk+Pn0GrJmYxUkCkSeseJrQjtEu+wkuc4qOlbRzlbTflaRbcANl/CilTPKNgX+E/l3IOJl0WO+E/YJq9bstvWrkyeIqdiyFUxjPhRde6LxCRuhU0Nb99Kc/jawxF3go4QffpldeeWVmCNLnG6SWUsm3vOWLb76sOpk+rwlWb7PExom4Xmr/jG23w3Yj7IMS32mnnRb1vzkPpZrfsmG8nNPP32effRrUsYyzhML7FX4jhtcaO2/sG6uSeq1Y2uX0/bHES10etjHk0DH8AABAAElEQVSkYW4ci1kGwm84rlCsLJE/k9CyU7XHFb0CXnw/tGVZYw2MYZi1PJ4/4xJ5hHqrnG+hMG6+47E0hyTfCyzS8+3HWB1tQpofrK6FecBPU5TtKDP6JwIiIAIiIAIiIAIiIAIiIAJVICDFpipAbKtRMHiKKWMmfBnMZhsnJqNxQ/iYDhVLcMO8dTjxx8AY5p4ZyPcruhzbN5n4FZMNBsftWmNHJrfJE8LghykfMalowmRmNQRT9iZsA9DcgnKVt4gUZ4PtQTB3zUCfXyUWmX+3ixdffHG0FYT9ZkIhVC5g4IOtJhi8YXsZJqdM2BLMBlXMjYFalE5MMC/OZAXhMdfNICRSjQl+U8zwqzLjPKJIFyrFMLlpygyY6LaySZm1LTQsr3YMlVGKbfdi/i+99NLo/tgqzMSvhIvcuO8s5ZOW9v6g6McWfSa8N0zUM/mFKXO/gjFSBDHu5i/rCGPi4/3g/YYF76VNZFE/JAfV2BLiuuuui6Nkgo5nSli/OjWaDLbBU8qet9AS+02ekD6TZKRPeBRWvvOd78Te2EKSsskAJgoy1F/kie3kTBjUp85KE0zqe8tG0SUUZNhKBQnfHzPFH12o0j+23DJJvn/m3tiRCTsGYRkkhg11L242OUZ4lCxgnibUrbBiGzWeKSyIh62U4BgOUjO471fSRmnAElP6fnVuHC1+/er56LcpIvGDMEkJ6xauhYpO5tfeN8qZbQvIc7T2gG1A2J4C0/2Y5qceMGUx7ilsF9g6AwVQ2CDkGyUm6lH8ogRpkxlM3oT1o+XHjtStDD4TP9uSMEnsrRvY5bKOtnUfgSnbPEfu36/4j7YgtXeF+jY5WZyVIPfMpJuJX90dbb3Hc+WP98oUwogz7TlZ2PBI+xFOAKD0yHYP1IOUHZQ5TJJc2HYxzD/vHXkhHG1bqKBLe1fKZFIl5dXya0dra+jXWN1JuaNtsIkH7vcb3/iGBYmO1ewXlVPvFmQm+MHzgXHYpsIet6R7rZ5RKXkIsh6Vq5baP2WijHeTuoB3lvaR+/SWKeJbYAI4TXEz9lDhibXjeftPlSTHBD99SRPaeCYiKUNs4ULZMaEP6S0R2M8mOVbznalGhsttr0ibPrfVh5Qx+rOUL/pxlDG+vxD6DijsWtsbORb5x4Tn5z//+bgtpA1gApoJX9pD2uJQqdtbrYq2Q7QowzodhVi+FckT+bBJafzSrobKN7iV285V2n6Xmy55rlRKLZOhwkg4+R/mgzbUFPnpB7G9OFLNfneYXiV5CuMpdl4qJ+Ki3g37OLwv1LXUR/QH7RskqZxXLB/hNd4FvgFNaD/5DkGhmfh/+ctfRpfYWrRWwrMOv0VK/Za3fFm/C0Uvxmrot1r9bFvK4Zd+Ae9bUhiPCPtjVv8k/WX95ruUPjbfGdQz9NeoM/huMzn77LPtNDpW+1u2IHL/g/rZFsbRr+ObgHqLvih9Ob5bTcLvSXPLcyz2jVVpvZaVfrl9f9oR3h2ejQl9L9zsjy0Ii0n47RmWlzAM29D94Q9/iJxo2w466KDovJr9Z0uPLfFQDjLxVqzstOAYuvMt25gCF4Er+RYKE6fu4/uU7z3Y88f2jCaMfyHe2lz0Lc91ylXYTv/lL38x79GxKcp2QYL6IQIiIAIiIAIiIAIiIAIiIAIVEJBiUwXw2npQBpsYEGVCv3379hGOMWPGuBtvvDFGk7TqwypGGxBC6QHFJ1bxMhjQp08fd/TRRxcMamOBoRwJB0aI0+SAAw6IV2GhdMBASSXCgEo4mZ20ilRJ3OWGZfDRJvFRTggHN1HwYgDpRz/6UTQAMnHixILBqK9+9atxsrD3W5XEg98obZ133nmOlb0IA3lMophgsSEcLGbAhNVi/fv3j7yMHTvWoUhlVrMsXCXHa6+9NppssQF6FCsYRA6tDoVlKFxhGq4itTwwyWOTAihG7LXXXnap6seW9v6Ykg43yuAYE5477rija9euXWSVCgtsKDeZskRjQFAq4j3EypAN9mFdhnhNmPwPhXJpghIcyho8U6Rv376RladQgYwV12atxsLZkefHpB7pI1gXYcA5HPhjco74hg0bFvnp1KmT+/KXvxzVQ5GD/8f7lCahkk2oyEN5Z9IIYeCx2pPTllfiZ1K8XEEBhDqY58kgLlYWqBNN+Y86JJzYS6aD4in1N8+0c+fOcTzh80URiDh33XXXKI0uXbpEVn6Y0DFFDybajGX4vqF4FMrcuXPjtsPcUZIKBYUlm7gLJ1DCdx2FttCKGnUHbRblm7LBJLAJebD3gvJE3UCdST1KWUEhirzbO4GlvBUrVljwgiP3y+QM9e+QIUOiNrNXr14Ffkr5QdtldRXp867wHBHeN6wh8f5xT/yhTJVHZsyYEdX5hKGuv+iii9ygQYPioLT34Qp67imPMGBuwoA7iqYm5B8La0yEki6TYWb9ionzUAGScouCspUf6lGUr2ibTLIsDNj18FhJeQ3jsXMm3HgvrO5kQsdvNVnQr4FfWG9Vs19UTr1reS/3WOtnVE6+Wlr7mrwHyjF1Af1ee1+ZBKUeQuhfhRYpk+Gr8bvU/lM5aVI2eD9NqE9Rmh44cGDkNG7cOHfOOec4m4TDMWltyMLW6tgc70yxeym3vaLMfPGLX4yjpr/GAgSs1dKPo02AvykWo2SZt/5GiTdUxKBvRT+nW7duUXuIBRPKk8VN/Ra2z7Qr1O20y7RLfCuSJ4SyED7zcOFDJe1cJe13JenGD6CCk1LLZGhhhP5M2rdtWK5CayfV7HeHt1xJnsJ4ip2Xyom4wv4EfQXqJ+tX0x+ETXLCv1gektfoY5qgeMA3qX2HED+WgMM+lPmt5rGSb/lkPqhH+B5jrIaxHtospF+/ftECCM55381CL79NUKa0vg5csXBcitA3RCGe7wxboEZfPPw24Tvr/fffj6O1PjsO1DmVfsvGEW84QSmTePmjHuSbgO8BhG8c+uIobyIwoQ0sR7K+sSqp14rlo1Z9/2Jp2rWwLPENl2btnQUmtHEI3wp8dyLV7D9HEW74x/iVSTjuYG4c6ceZ5B3bKvdbyNKxI98VLKzDqinCN1Eyn7xzjMsxfoLwPULdY99PvDsoK5o0Vdm29HQUAREQAREQAREQAREQAREQgUoISLGpEnptPCwDC6a0EqLASoZNjrPaD4UXk3AlLpN/NhFr1zmyCtAsaLDlQThgFfrLOmdi2Qa9GABjQMyEgRAbrGDi/oEHHrBLJR0ZNGaVHhZGTImIgYLQmkpJEVbRM2bBTV5++eV4IMjcOLKaFKU0/kaMGBFdwjoLEx0ICh9JqxLRBf8vHARnUMTEFNb4jaWjNBZM4PHcTRHAwpZzRCkjVCgJ42B1aThwYytJw1WBYVm0sAwY2sAZq9Nt4sWuV/PY0t6fxx57LL49JqjS3k3KCsobeQTrEwzyJoXBYBMs5pgwqGrlifc2LGfmhyPvnCnX8duUYjgPhfc8VGCxazbgzG/KAxNzSWGg2sRWJ9tvO4YKnOGWHlwPLX39+c9/tiBVOdoAJZGhyFOO8H4wyZkUnldoZQprGlkSTpyEfmxFLW4wssHn0A+TO6EFByYHEJTPbGKfd9GUW7gWbhFJ/hEGiMNB2bAMh+XMJh0Iw8BtUlA0YvKG+jC0ThNOBFLubQA5DM+EVThxbyvcQz+co2CLskW1JKybqLN4f5LCimar5xkEzyOmEEI4LP+F6Vh4a9/5nTaZZf7CY/gMsN5ndbL5YdKKyW3SZXDelKXDFdGsNA4VdS0sR1btM/GGsKI/6zlEHoJ/lZTXIJr4lL5HWt1JnyarnIRtUaX9olLr3TjjFZzU+hmVk7WW1r6G94AST9gO2TXKfFj/Tp482S5V/VhO/6mcTIRlg3YytJoaxofVJiaE2XqI9qEppTnemWL3F9aVpbRXZoWLuFGoCBWFLT3aWJRVTaiL80g4gcs2z2YNMQxLvUf55RnyFwp1OnU7ylFhH8b8oPBg32q0KaaYE7Y/pbZzlbTflaRr91TJsdQyyXcfCjMInJKLinA3a5R8f7HVLFLtfncU6YZ/5eYpjKOx81I5MR5hfRa+c7OsvvL9Glo2aSwfdp0+q31H8x3DYp40YZENdXAtpNJv+TBPMLI+eehu56GCXNoWYqFbOTxpM9L6zXzfh/ywWmMSfgdU41vW4rUj7ZT1q1kQkiYo3JmEYyPmlueY9Y1VSb1WLN1a9f2LpRleo89mEpabNLfwG7ua/WdLiyPfyPadnLYdHZasTUmJ5z18+PAweOZ52L6X8i2UjPBzn/tcg+8zvuHD9zWtv8W3lrW1xInFRJOmKtuWno4iIAIiIAIiIAIiIAIiIAIiUAkBKTZVQq+Nh91pp50yCYQf+Hz8I1g3Mmsa/GbgmsGotL/QkgXKOaVIqOjAQEk4QE08mM02CSc1zS15ZOCKQQD7w9IEkwMf/vCH48lTBtmYiMe9uYWV0KY4xIAaK6hZ0YblmORkcpjX0DINCmtpzwW30KIJg+cWZziRHCqGhGlwzgSGrepOXivltym/pYVh4MgGbsLJEJ6TWXJBiSa5HZ0pWBBn2oBQWlrlurWk94d30bbbYjC+2MRi1kBukkPW/aHcxmA5YkqBnIcrNPfYY494dS7XkhLmIW3iD/9YCUqTUNlp/PjxaV4iizp2wcq3/eZIubFtpyjLYX3HdZs04pyJvlBBB7dKJFQUDevJUuKEb5aYcgjX0ybHcOf5mcUNfpuwMtlWZ1MHmbUtux4ed9555/hnOBFhg7K8t6Him03aMpkRKumEebQyTMRYkDAJzxkMZgs9tmzLsq5k4cK4WaWeVSdafUu4sB61eDimTTKH10s9p10Lt+6jvsN6IPVaqcrAjaVN/cCzZQCcLVVChbe8aYVlDktrKJ4x0dqYch7pmYRxmJsdUQoJJ5PC+sT8JI/VKK9hnLwXplAbutt5mH8rJ9XuF5Va71reKjnW8hmVm68sDsQX1tdN3T8l/bCc8jsULBdY+8gEPNsX1ULK6T+Vk4+wbIT1cDIu+s5YVMTaCZZCm1KyykpWX6XWeQs5ldJehfUyykNZ7VVoNSUMU+y+QgWoYv17vj94hvyFigfJuOlXsYUtlhj5xmMRC39JqaSdq6T9riTd5D2U87ucMhlO9ps1R0ub99C+v/Fniw7CdpL2yaziWLjwmKffHfrnvJw8JeMo9rtUTmF9RB3IO54lxerprDBsM2UCz3ChkbnbsVYWnq1vQTrlfMtb/jgyzlFMuG79Xywlhd9LnJv1bPpF++67b7GoUq+FZS7pwaxs4U5dgtTiWzaKuJF/fJfRl2WcBStVodW5cr7/sr6xyEYl9Vojt9HgcjX6/g0izXAIy1JybI58mCUuFLDs+77a/edk1ljgZmJbadvvUGkbRcW8En4HlPItlIw/q+4LxziwiJkmobJg+M6m+a122U5LQ24iIAIiIAIiIAIiIAIiIAIiUA6Bun1LygmpMG2ewJZbbpnJwAa68GADh6FCDO5mKYjzYoLigq2aKubPrtngB7/ZguFf//qXXYqODJCY4BerFPgrJrbCM80PA3ZYEyk2iZ8WrlZuTPCygs0mFbBegYUm/ngurERlsJlB1dCyRKhkworTPM/HlIYYJAknPkLliLT7ZJseUwxJu57HLdzKKM0/Sium5MZgtg3kYOXJ3Fn5aJNo7733XrzVBkoCtnVAWtzVcGtJ709olagxpbO8XFCQypJwYs38hOUvazDO/Ibli9XJaZJHyZDJq3IktMLEIGKyjgnjRNEHhZtqTWKE288VU0AL85A8D/klr8GECR3qAJ4J9TaT7aFkKVQtXLgw9pY16GoesJJkYspQ/A6VdR5++OFoq1PqbFbMItRrTGgw8M9EHewtDMpKCBNWYR4ZdGYQ2gamsSRlFrco71hTQpExyTPMF9aP8kjWRHFamc8TXzE/P/vZzyJFJvJJXYx1ALMQwDZB3BOKnOWkzeQM5ZzthMpdcR7mnS3s2C6OLecQLB7yh/AsUVbDylqyrQ/f72LllnjCeqMxhSn8V6O8Eo+JTbbY7+QxzL+1l9XuF5Va7ybzWM7vWj6jcvJDmJbUvibvgW15iwlKn6aEMG3atAbvRLGwea+V23/KG7/5Q3HFpLE0zV9TH5vjnSl2j+W2V2GdZ8pFxdLhWt6t6MI+oineNRZ38jr1BIretNmhEnLSX/J3ue1cpe13uekm81/O73LKJN9VtDG012ylRl/AvvFCCyihslG1+93Jey0nT8k4iv0ulVO4ACdrYYOlF/YnzK2xY6g41Vj4WtWH4TMt51s+vMdwLCd0t3MUt1D+YBtV3jfGSqzvH25DxxaZZoXTwuY5ht8JSf9p33hhPVWtb9lkuvxm23qUUlBgYlEb/e9qSvj9koy30notGV/yd7X7/sn4s36zIM3KEv0flC6tr8S3oDFmYUpTjSti1dksrVKnmsV37iHc9i1cbJN1f+Ze7reQhbdjmrVpu2ZH42S/8xxrXbbz5EF+REAEREAEREAEREAEREAERCAPgfJmdfPELD9tmsC6desa3L8NSjS40IjDokWLGvFRf3nOnDkFK+XOOeecyHoKFlTszyz2WChTcrHfaccDDzzQhX9Mrn/pS1+KVpCxQi+vskda3LVwY+XbE0884VjtHQrPAGUuWDA5EVrDasx6SRhPeI7VCyRUuEjbaiIMk1SUCK/lPW8sjvB6OIGNpRAbrA1NmKNoZWW0lNV3efNbir+mfn+MB3m0la9Z+Q0tBmX5Kcc9jDdti8swzrB8lVtuw/hKOWd1I1tmmWBJyOqW8GjXOSZXn4bXSj0PJyLTrCbliS983mn+Q/6l1L+lPEMUqMJJKVM4xeKDudtWoSgL2btJPYzYVpdsCYGgIGIKOCj1hIJ1AgalmXxJKs5g4ejMM890W221VbQVUrh6NZwgCuMrdh7WNcX8VeMaeWbiiu0DkpaC2CIBJU4U75LWG4qlzf2zTSBWOS677LKYabEwea9hUYqtiJLPh0kMJpFR6OBaWAeF73f43qelGdb57777bpqXArdqlNcwwvC9Cd3tHKtfJqYMZOXa3PMeS3kv88ZZrr9aPqNy81QsXFO3r8m8hCvqk9f4HZbjWtUnYRq1zEP4HoblPy1NudURKLe9CuvNvCzztnFWT9F3SNtetrH0mPxH0eP73/9+SUpNxFtuO5f33sK8h+9buemG8TX1uVkY4d5Dyy62DR0LPEKLIaW0gWH7G9b5jd1jqXlqLL5Krod9X6y9FJNy3qew/DRWxzbWXyiWt2LXSnk2YTz2LR+65TkPlT1CBbrwvNYWkC2f4fNt7PmFZd/C5zlisZeFKqeddlq0SMrqxjxhq+Gn0notKw+17PtnpZl0/9SnPhU7heUn/IYJy1K57PP2n/nGtkWCLK5ZunRplD/eFduGjjyX2rcp51soBlPDk+Yu2zW8NUUtAiIgAiIgAiIgAiIgAiKwERKQxaaN8KG21FsKB/kYfGJCOY+UMmAQWlLJEzd+sNxx7LHHZnpHQYhVpy1NTBEgK1/k+eqrr3aXXHJJNMDNdk9//etf44lqVv2xPRLbPTF4Ez4fBmqYgMgjgwYNiryx+pRJa4RVk8VWo4YKVVGAMv6hUFZsRWaYBsoSJkzKHH/88e7KK6+MyiDbK2HdIRw4O+KII8x7izmGz6fa7w+KJChGMGDKe8nEb5Y1o3BFcjXhhPfHsy0mZs0CP5tvvnkxr1W/Rn2AFbRS5De/+Y279NJLy7KcE6bDSkreYZNwyxpzy3OkzDNplyXh9n5m6SzLb+geTtSE28iFfuycSQVbeUx5NssCXEf59Fe/+pVDaYyyaNs6oIxp20+goPjTn/40qs9QaA233zjggAMsmfjIe//lL385+sMKCgpBWAyyrTLwSHz4O/fcc6Nw3Ls9ayzs2PYtcaQpJ3n8pAQr2wkrU2zhhHITK62ZzISbMSNiJgKwWJXGJZkw1gfPOOOM2PnEE090kyZNispL7969I+uGWIAKJzljzzlOeLb8YV2EZ4Dljt/+9rex4hr5Pvzww6NV8EQXvt+NtSthvZFU9ErLWrXKq8VtinX2O3l8/fXXYydWbSNhvVftej1OrMYntXxGNc56HH1TPgfarzC9OBMbTsK+S2jlK+kv63eeyb5y+09ZaWa5h8q3pJlULM0Kt7G4h4qyyXsqts1gOe1V+B7SflJvNyZ5LTpYW0jZQikzad2wWDqEob02QTmZNoktIVHywzoJdR+WE7MsuZbTzlmeSbfc9rucdO0+m+MIw29961tR0nzT0Eekz259Zha7hM88rIfC9jMt7xYH18KyluY3dCs1T2HYap+H3/JZ1jUtTbOqaL/zHMNvTfqZxaQx3sXCci1rDCB8puV8yzeWbvI6Fprom1M+WDhlYwe2oIPv9JBLMnw1fzfFtywLBsyKN/fNIjfuj3cC69/8XXXVVbF10mreH3FVo15Ly1Ot+/5paSbdWNxgZYnyw+JEyrlZYqdNC61xhmW9Vv1nxovMYjDfUSjyhdvQhRbwkvdT7Hep30LF4qrWteYu29W6D8UjAiIgAiIgAiIgAiIgAiLQNghIsaltPOcWcZfhAAQD3QxOlGOavNjNsM2BCQoAWdupMdlg5tIZSDflFgvbnMdQoSS5TU2Yr9mzZ4c/M8+ZhMaCE3+sEmMyn8FtlAp4DlhFYeA5HKjGncGzUiQcMGYgvZhp7nIGjJN5aUxxIlTOSCpZMRCFYhPCdnQnnXRSrDCC6fHGLCok89IUv2v9/rD9HtbLrEzst99+qbcVKoCleijTMZwoC5VU0qILFQiGDh2a5qVmbrbynQRYsVvMuhcr1W0AHLbhyuZyMsjWIjwfhAnvcia9CQu/LMUmFI5MmWfChAmOrSbySlhGSYPtHdleIE3CSR1TVjJ/1FVMzHKvxGODyGalCX+h1QEG5K1MMLjd2BYjo0ePdvxRD2IpCIUmtiRFfv/738eKTUySGAuUymxbhMhjC/uHYhjvMH9f//rXHZNqKCih5ITw3uZRbAq3Vfz2t7+dOjkzY8aMKM5K/qHwcOSRR0Z/P/rRj6L61yw7oPCEshrbkJjiLGlR5+dtV8L6JCuf1SqvFn9oIcPcwiNba5hYGQ3zQHmvRb/I0qzVsZbPqFZ5TsbblM+BcoBFtCx5/PHHo0vUZWE5NuVPygmTffY7jCe0GBK6J88r6T8l4yr226zv4Yd+If2rjV3C75rFixdn3m64bVKmJ38hb3sVKpFhtaXUPnyxPNBGW1tI+Q3LZbFwXAutTNI+maWLZLiwT5C8Zr9Laeeq2X6Xkq7ltTmOPBesHsIYK5X0bULLJ6FFFPIXPsda9btLzVMtuYVjAvQbWcyRpgRN35Vvw1Il3H6use/c8Bs1TKfSMYBKv+XDvOQ9Z3uws846KxpX4L4/+OCDeOECyhJNKbX8lqU+p39qwvhJmpJ/3vEZi6eUYzXrtTDdpur7h2mmnVtZQlGO7zreUfvuTZalpui3ffSjH40Ub8kD44p8x1O3IvTRzIpw2r3kccv7LZQnrkr8tISyXUn+FVYEREAEREAEREAEREAERKDtEdBWdG3vmTfbHbMCORwAYGuCLJk+fbpj0BGlo2KrmsPwWJqxFaUMbGH1AYWWtD8GH88777w4eLglWezYTCcM1DBYgjDwmbZtCteyVjYzoc3EGH9JU+us1EVhha2XTGxwdddddzWnSNkJixpZMnny5Oj52AQc/sIBXaygZJnDZ/L3+eefz4o6tztpZE0acU82+MjkDivCQ+FeWRWIoKgCSxs4+8xnPhN6Leu8HFPxjSVU6/cnVBRh8jFtYBalD7bzqoWE1rdQvguVAML0UDCxlcC477///uHlmp6Ttq0cJSGs5KTVL+aGIpJJGM7cSjkyOXXhhRfGQU4//fT4vNSTa6+9NrNeCS0YhXVCnjRQYgotMxSzoEdZMjFT//Y7tETFfVs9g8KTCWnZJPndd98d1Udcw9paODFEPWT1YdpEMvUtXK3OZfLWtrA46KCDLLlI6S/+kThBAZX2ir9wS86Et6r+xGqG3VdaXc1k+EUXXRSn2Zh1AvMYTkJnKe2FEyAWrrEjls7IL1alkkLdRr0bKi2ZZbhQGYv3Pqtd4bmFfYo999wzmUyD39UqrxYxbUjW1rbvv/++w3KbiVmuqXW9bulV65imbF3LZ5SW77Q8pPkrxa0pnwNbmTJxniYoJFhfBIuaoYSKlVnKhVhAyyOV9J/yxG9+wjqb8p/VZ0PRCkVGJomxkNCaZeTIkXH27ZskdthwMnfu3FgZN7xWSXsV9oVoN7MsuuBu7VUeZSLyF24fijWSrO8SrO/xDPnDYixC3W9y8skn22nBEStlZsExvFBJO1dJ+11JumH+m+P8uOOOi5LlO4TvLVPGZ/uspBJ5U/W7S8lTLZmhdGh9VOpZFL3Sxhi++tWv5rYqHeaXcm/KnNTFWd+6bIUVfseEcVQ6BhD221G8SesfWnpp3/J2rZRjuD0YSvShMp3100uJrxK/tfyWDfuvtFM876RQN5qFn+S1avyupF4rln41+/5pdXmxtMNrYVmiHIWLqbByFEpT9Nuwwmv1F/17LK+aci6L4tIUzMM8Js/L/RZKxlPt3y2hbFf7nhSfCIiACIiACIiACIiACIjAxk1Aik0b9/NtcXcXKo1gJcisbIQZZcJmt912c6ySYgCHAcA8EionFdtazuI66qij7NQx0VRsy4jYYxOcoHxkq/kZmA4HdSx5JojN4pC52RGFARQD+GNwNk1CE/mWVteuXSMLJvhnwJdJZptgC+NgQIcJN54PgzrGDQswNqDLZA7m2ZPCZEHIPXm9lN8MnDHxzsrQUJYsWVKQRjixFvrDWguCQpwpoKDckOU/DJt2jvl5ExQtjIu5VeNYy/fnK1/5Sry1H8+dcsEKXAYW2a6RtM2iSjXuJRkHg4f2TLiGgsrSpUuT3tw3v/nNeMKBldZM1jSV3HPPPfE7wWA9W3MVE94TWw3OFltYoSlVUNhgaxHqSxPeveTKVbuW58jgLJaKkoLyyymnnBI777vvvvF53pPQLD8rb9NWrbPa9fLLL4+jTNYJcN17772j67atBT+srrKABx98cHTKKlqzjGWTVuYHBQKrD1EMMIUZu84xXBGMwom9y5/4xCdibz/84Q9dmqIWyqOs4OWZ8NeY1Z44wgpPUN60+0KxJE3hJ5xUz/uemMIN2UublGMiLFSMzXsbWJEivzxDJr+TguJPuFWbTbgySWeWR6xdSdatPAOelbVXvJt5t7CtRnkN74U2KU2Bji01aLcR2hmUH01qWa9bGpUcTemPOFCISEqtnxHpNZaHZJ7K+d1Uz4E+h20XFeaTvq9NoOGefGfNyijXfvGLX3AoEJQqsbKWRyrtP+VJAz/k2eqUrDRXrVrleA+tHqYeDeVvf/ubw1of1mdQLm7pYttMkk/auaTiBL/D7T7D+6mkvWJBh9WVKFVQ5yaFupM21dorLCPmEazrmdB/YIvrpFDvffGLX4zqYepi60uHliXT+gOU26y+ZSXtXCXtdyXpJrk09W/6RVZfYqXX+gFpfcam6neXkqda87rssstiPrwn9EtQAkcZhYUblNtQCbnU/IR9UMog36ShoFjIs8hS/qh0DKDSb/kwr3nPsdpo980iDlPaYhwhtKqTN75K/NXyWzbcUo/+cbJu59my5TVtWa2kknqtWJ6sncZPOX3/0Dov959XaTaZp7As8R7aoiAUyaxeC8M0Rb8ttLbMd61J6G5ujR3L/RZqLN5Kr7eEsl3pPSi8CIiACIiACIiACIiACIhA2yKwadu6Xd1tcxNg8oLVSqz4ZeCbyWsmIZnAYeUVE+tMXpiwujc0lW/uySOTATfccEPsHG5ZFDsmTrBowVZLTIijPEC+mBhoCcKKQ9tCiIETFExw4z6ZOC9mNYcJgp/85CfRbTAgxIQxg8pMtrBKnAHH0CpLuMr70ksvjQa0mHiDC5PLsGQy+t1333UoZ9iAJQkwaM4gLMKRCShjiPICE9WssEPp6bHHHouuV3PADwUiJs4Y6CMNBuNQcrABY6wyoZCQJqzUZbIZMSsHsCtl660w3nAlNPfIIC9lmwlsBs6rIbV6f8gbg+G33HKLw9IJ/LgHtueyLbos/+eff340qWVKBOZejSMTbjw/4uad5P2E4c477+xmzpzpeN5miYv0mNwt93mVk18UvEySW3qYe3hkJSeDsaZEhGJM2oQm73Q4CcmKX5QAeX+SA8y8k9dcc0383oXplXLOu4uFGyY4mdyC6+233x5HgXJoqEwVX2jkhNW21113XfxOoXSD9TzeAeoi6rXQqs2pp54aT3yHUVNn2XuJO4pu4cA5bqEFQH4jSWUAVlSjMGftA/URSpconXXr1i1SvDr33HPrAvv/4UA125Zg7cDcUDqgfFJnsgUiA/dXXHFFQX1z2GGHxXHV8oR7ZxKb94SJS9IlnygFoyiAAsoPfvCDOAt52kQ8M6nH80NQOIMdZYQySR1erO2JAmX84zmj9IMw+Q07ngFbr2Ghke3orKxTd9pkGNa36C9QHhDaFe6X50j9zkQ57Q4cTH784x/baaPHapVXS4i6izaQNon7w7rQHXfcUVCWuQfKnkkt63VLo5JjuH0PfQcm7ygTKDTRj6r1MyLvjeWhkvuzsE35HFAoQXkCa3X0cal/aR+sXZ00aVK01anljSPvtgnvBG007SP1Nwqb9PssvPkrdqyk/1Qs3vAa/UKU8+lXkN8wTfpGKErS7pjyBYrA3JMJliOtrUWpHqtOVh+bn5Z2DK2XUqfR9rHIgC2iqKewZGR1XTLvlbRXWKOhbaW/Tjmgn0C5oD5l60v6dby/YR+KejmP0N7xnGjLEaxV8j3Ab5RI6UvQfzThGQ4fPjz6GbbJKHrBgPYKHnzzsbDE+uwW3o6VtHOVtN+VpGt5b64jfXneEZ5/+Kzt2SXz1RT97lLzlMxjNX9jUY06yfqPfOuaYnyYDv12FlKUKtTD9F2p0yjrfKPSf6U/gGU63pO0RV1hOpWMARBPJd/yYT5KOedbh/59+C7j1tRSy29Z6kH6nTxbygx1O99JjK9gZZhyFb5ztbj3Suq1YvmptO9PPxAlVivblHmUjnCj7gkt6RbLB9esLIX9+lCBKQzfFP02+l72vWXfpdxXqMQc5qnYebnfQsXirMa1llC2q3EfikMEREAEREAEREAEREAERKANEfCrjdbrr+0y8JOW631xj/68Yk+jZcFvfxT79wPSmf79oETszw9MFPjz1hXW+1V88XVLP3n0Wx+s94PzBWGzyqqf2Izj84P4ucIQlx+4jMN5SyVxuDD/ebhk5ctP0sTxZ/lJc+e+/aBrHDbJht9eQSK+znkYj199Gl9LC4ubX/m23k+CFIQjDj+RtN4P4DQa3g+GNwhLeG8xqmhYPyi43m8DGPvxkyWp8YT3Y+dh+fOT73EcaffI/fmBxqJxJxn7ifui/i0fWUc/AdcgT34VZBxnmP+W9P6E9+Mn3Nb7ydYG90FZ9soh671yXVR2YO6VbOJ7Iw6vbBCH85bWCq6FaXiFpdhf6M653xYwjj/tuZrbBRdc0CB+b0UgjjetbBO/n1SM/fiJ5AZx4Ofmm2+O/fzyl7+M/PBeWNocly1blho2eT+UKQtH2bfrfuuV2N2uN3akjvLbpMVxWFx5jpRD4ue98JPiRdPm+XhrWQ3Ssfwln3syfa+Etj58xhYueaQdSEuH+Lx1m4I8+km6BvnBn90XcZNmMi/89ko0Bf6S+bDffoJifVq59RbdCvJi/sOjt1a33iuiFaSfpzym5TfpZu0I9XJ47a677sr1rnjlzui9DcNmnfM80t7/8F7D9sVPWhfkyZ4H5SxMg3LrlX0a5Uh4PzFSEJZ4vEJVo2HJo7e60CBsmI+080rKa1hOv/a1r0V1YsgqeU6fIy0PlfSLqlHvpuXJ3CgTlO/kvST7HbV8Rnny0JLb1/AZNdZ3gbVXbE0tJ14Js8FzCJ+Lt6IZ1wm8S/YMOYZ8GstDVv8p6/0O2zPyEKbLOf3oMJ9p59y33w6lIKzfHqcgnFfWLLieTCf8ff3118dhvZWWgnDh80ir8y2esB0ztzxH6qG0ezQ3OHrlwNiPt1oU56/S9spv5RvHa+mlHb2SWZxmnnvCD+1wWlyhG99gfvurgri9QnzRcDwP2hKLh/rQ8lRpO1du+11pupb/5DGrPa9mmfSKZjFLmHpF9ZhnMj/8rqTf7ZU54rS8ondmOqXkqVh9Ui1OfHtafWbljiP9W94hr7gS35e3Upl5X2k8vUJhXA+HcYfnXpk7jt8vbCiIv9IxAPJU7rd82Kfxi6oK8pV2r+ZGGx3eH21IsTGcrPcgb7/ZWz2M00sbp6nkW9buKe3It2V4n8lz2jFvNSr247duzs3Q4mrsG4t8lVuvhf2AcByi0r4/eeJ72e4hPFr7Vuy9DlknyxJlxS/YyORYSf/Z6oDkN0uYH879luUF95bVl0+GS/6u5FsoT93nFb3ifM6aNSuVGd8q9ny8gn3sp5KyXawdyMs4yUq/2878BPW1nnfbed561nrWKgMqAyoDKgMqAyoD1SoD2orOf9m1ZWGFbykS7iVfzFIKK8izhDjYisYrt8TbNIV+WQ2HpSEsYyQtdIT+wnNWyZmweiuvhNsrkKZtcdOhQ4e8URT1V2483Der91m15gd0CtLwg2aR1Ypi94lVmIcffjjezimMgPhYYciKcbb6SwqrqFl1GZrbDv2wytUPgruzzz47dI7PiZvt8HiOSTnttNOcn6iKVmrbtbzP2PzbkRWtzz77bGQ5wtzsyAp17oGVucUkZEh+w61eioXLuoY1E9j7AbJULy31/QkziwUO3icsJfCs/OROtAKTbXKw4sPWf36wOgwSn+ddkVmsfmBVMyth07YyJCGeLVYfsGKWlJBv8lra76w6LHxvrXyyDZ0JVmyK3YP54+gnRuPtYVjla6tZ8+SVMollFKzYYbGKLTSwbFeJkG/ebawvpL2jXGP7QVY9lytYIDGLQcn6izhZ6YrFEuq4rHRYCRu+R7a6PpkntrowybKWhDU16kPKDKtuk+InESIrGtRbYZrmD2tafpI8yre52RH/XskushyENZFQ8jzj0H/WeVgeQz9Yw8IiB3VuMt/8xuqLn6CLtr0yy3ph+LRznodX7Iu2m0s+O9oeLPb5iZG0oJGb3XPy/aDcYi0Ey1l+kLtBeMoi23OxGjq0zmMe2d6De/ED++ZUcOSdZMW8bX9UcLGRH9UoryTBPVNPYA0tKbDDwpyfUEhein7Drdx+UTXq3dRMbXCkTPjJuch6RbKcheFq+Yzy5MHKHnnKqtu5liybuJlU8hwsjsaOWDKgD0W9kxQsfWEJB8s9aULZ8koiqXURVs/StghLi6fc/pMxTjI097S0cNtxxx0ji29hfW1+eTew5oal0GTdgKUEeCG0G+FWfRY+61js+6bW7wz1EPUolqqScuKJJzqsT4VW20I/lbZXWGzCghJ9hzShjWc76tBaa5q/NDeeE1YM6dckhWfHdx39h80226zgMtZRqd/S+hxYFuT7q3v37gVh7Eel7Vy57Xel6Vr+k8es9ryaZZIyEPZ1sqydWN4q6XeH75n1ly3e8FhKnorVJ9XixPtBnYP1SOpc2jj62fQVyStWik3y9p/M/6hRo6JvUL5XkkKdQF/GrFAmr/O70jEA4ij3Wz58nsSTV2ijGbMw4bxYech6D4o9e4ubY2PfQpV8y4bpJM8ZN/GKVKl1O/eMxSYsSNdayq3XQr5hP6nSvj/3Sz8cq3y06WkSpp123dzIC+2kiVeWdsXKJfGW23+2PCX7NJa2HbHuGkpyC/XwWrHzSr6F8tZ9ln74fM2NY/hehn4qKdvh8wnjJ728jPErEQEREAEREAEREAEREAEREIG8BDZBQyqvZ/kTgWoTYEsTv5LLLVy4MBq0YEC/2MRZtdNvLfGhZOJXlUcDlQMHDixpGyq2ECL84sWLo208+vfvn/u2V69eHZmV99ZpXM+ePaNtg8JBkGIRkS7Plj8GjNiWImsgs1g8ea6tWLHCoXhDmpjTZmuMPIKiiF+JG3ll+6JvfOMbeYLl8uNX5UVbb3HvDNLVQqr5/lA+4IiwDVRWnlHMYVsTBCWDcPuRyLGK/9h6ke0TlyxZEg1iM1jaq1evKqagqKh72TqCgUgG47Oee7mkUISjDmAbImTQoEGOOqjUiaJy008LZ/UFA7EoP5ZSLxkvwlIXl1KfpuWlmm4w5n2h/mOLt2owZktEb30jutdS255i9+b7ntEWdJQPJmCzJvnT4kCxkjLLxGPv3r2jMtXYpERaPGlupZZXlDBt+1UU51ByQ6ibmSRlKzrqLZSnwoH/tLTNrZr1usVZrSPbSdIfoK1FecEmLJLx1/IZ5c1DMk+l/q7mc2BrLr8aPsoCfTnr59K2sRWj1b/0s/IKYen38L6jVJn1LBqLz+rDUvtPjcWbdZ305syZ4+hf0ubk6a9ZH7QadVpWvmrlzn2i1Mzz4Run1LrKnk857RX9UOpKtidFUbWUeqgxHtRtPEfaT+rwvH0HniVbDPEO8PxLLbeVtHOVtN+VpNsYy5Z0fWPvd9OnoQ1BqDezlAXYktdbSY38oTDKdpLlCPU0fQGE98S+YdiWzhQEUVLxFngyo69kDIBIK/mWz8xUygW2PEZpE0FJPdw+NcV7TZya8luWd4X2m7aTMY68dWC1b7ySei0rL5X2/Slz9NFpt+inN5VUs98W5hklSFNURimSxUHVkEq+haqRflYcLaVsZ+VP7hsXAZTtUUaViIAIiIAIiIAIiIAIiEApBKTYVAot+RUBEdhoCDApw0e0WR9iEC/LSsJGc9NFbsRvT+YYXEf23nvvaHA6uSKWAcPDDz88Wt2MPyxHsBJfIgIiIAJtkUCWYlNbZKF7ziaQpdiUHUJXREAEREAEqk0ASyu33XZbFC1WIv1WvQ2S4Htw1113jRXysea0zz77NPBXiUMpik2VpNNUYbESZxaqUADhd3OIvmWbg/rGnSbW3CnbWFpDsGSNRT+JCIhAdQhIsak6HBWLCIiACIiACIiACLQ1Apu2tRvW/YqACLRdAitXrowsXz33/9k7D3g7iuqPD4EkEEoILQQIhBYgVOkBka5IERAE+YOggFIVAaWJggLSlCpFBBRQkKb0Jk2KgPQSIKGG0GtoIQmQ95/vxrM5d9/ubXvfyyu/8/ncO7uzU3/TZ86c88QT4YwzzkiZmmDO6c1MTdQIVLz88pe/TDDhpi03EjfddNPkRjESBp599tlw8sknJ5IHcM9te8TOi4SAEBACQkAICAEhIASEgBAQAl0ZASTzGmMTap6RHgbTEuqPkTLzwAMPJCo97dILKkO57CFqjwDSkZAKx5rRpFXi6he/+EV7x51ko7VsJwHdw6OBmQlJaUg8RG26MTUhoVVMTT288JU9ISAEhIAQEAJCQAgIASEgBLoFAmJs6hbFpEQKASHQCgQQJb7RRhtVBIWaoH322afCrje+wKh0zjnnhB122CHJ/n/+85/AL49Qp4AYdtSaiISAEBACQkAICAEhIASEgBAQAl0ZgZEjR4YDDzwwYV4inVdccUXyy0szlzsuuOCClqj1zQu/u9udddZZ4de//nVFNsBs4403rrDrzBetZTsT7Z4bFxKqUVWepeOOOy5rpXchIASEgBAQAkJACAgBISAEhIAQmA4I9JkOcSpKISAEhECXQAAmJ27nzjvvvF0iPdM7EajLef7558MWW2yRm5Qll1wy7LbbbuH+++9P1PjlOpKlEBACQkAICAEhIASEgBAQAkKgiyFw7LHHhttvvz0gjSmPvvKVrySqtmF6GjhwYJ6TltrNOuusLQ1vegW27777FjKJdWaatJbtTLR7R1xc6LrvvvvC2muv3TsyrFwKASEgBISAEBACQkAICAEhIAS6OAIzTJ48ua2Lp1HJEwJCQAi0BIFPP/00jBo1KrCJzCbVgAEDWhJuTwwEMexvvPFGGDt2bOjTp08YMWJEon6uJ+ZVeRICQkAINIPAlClTEvU1+O3bt2/yayYc+enZCEyaNCl8+eWXSSY17+jZZa3cCQEh0H0QQDIL6xxUTg0aNCi5tNGvX78Oz4CfO/Tv3z/MOOOMHR5nqyNgjQhuc8wxR1hsscXCTDN1PUHwWsu2utR7R3jUG6R8M69fZJFFkr6hd+RcuRQCnY/A6NGjdWGy82HvlBhvePj1cN+z74bbn3g7nLnXqmHFYXPWjPfWx94Mj770Qa67PjPMEOaavX+YZ45+Yei8A8IKC88Z96lnyHVbxvLJsePDTY+8Ea66/7Vw6HdGhM1XXaBmcKNf+yj8/a6x4ZbH3gpzztYvrLdc5cXpGeN++txz9A+LDR4Q1hg+T+g3U76MifNvfTG89/Gk0HfGPuGn31qqZrxyIASEgBAQAkKgNyMgxqbeXPrKuxAQAkJACAgBISAEhIAQEAJCQAgIASEgBISAEBACQkAICAEhIAQ6AQExNnUCyNMhii++bAvfPPLOMGHy1Is9X112nnD8zivVTMkxl48KNzz0Rk13OJhv4MxhqzUXDN/92iKhfwGjUF0BZRwd/rcnwh2RGQsa0G/GcP0R6xYyIpnXGyMj1NGXjrLXqiZh/n63r4QVchi9NjvqrjD+k8mJ/3uP36hqOPooBISAEBACQqC3I5DPJtzbUVH+hYAQEAJCQAgIASEgBISAEBACQkAICAEhIASEgBAQAkJACAgBISAEhIAQqIrAg8+/lzI14fCeUe+G9z+eyrBT1WMDH9/+cGI45+YXwp5nPhhef/+zBnwWO/1wwhcpUxOuYMx6YMy7xR6a+EKYe531UHj85fFN+JYXISAEhIAQEAJCwBDoejKjLWUyhYAQEAJCQAgIASEgBISAEBACQkAICAEhIASEgBAQAkJACAgBISAEhIAQ6LII3PRwe6lLdzz1Vthm5NC60/zn/dYIwxeYPXU/+YspUU3b5PDCmx+Ha/77Wrj36akMR2Ne+zj88IwHw99/vlaYfeZyR5x3PvlWGp893BDzss6I+ey1prn/lkuFbdeqzOcHn3wenn/zo3DmDc8H0gvtHZmb/nbgyDBsvllrhikHQkAICAEhIASEQHsEJLGpPSayEQJCQAgIASEgBISAEBACQkAICAEhIASEgBAQAkJACAgBISAEhIAQEAJCoAoCH0/8Itz6+FQGoWUXHpioc8P5dQ++XsVX7U/9orq5IYNmDl9dZt5wwi4rheO/v2LqCfVtJ/3zmfS92YdrH3wt9briogOT57ueeifAmFSGBs3WN6y2xNzh3H1XD8s7FXT/uO/VMsHKrxAQAkJACAiBXo1AOXbmXg2dMi8EhIAQEAJCQAgIASEgBISAEBACQkAICAEhIASEgBAQAkJACAgBIdCTEJjS1hYefP798OTLH0a1ZxPCbDP3DYvNP2tYd9nBAaaV59/4JDwz7sMky6stOXeYPzLgQDDE3PP028kzDC1I53l7/KQwatz48OiL48Okz78MwwbPFlZYZGCACagWPRHVlz364geJ6rXPv5wSBs85c1hiyOzhqyPmDf0j408eXf/Q62HKlLYwZO5ZwqqLz5Wk6bEX3w+PxHDaooclhswWNlxx/gppR2Pf+TTc9+y74aW3Pg39+84Y0zZ7WG7hQWHBGEYt8lKPtlpzwfDU2A/D1Q+8lkgqeuHNT8Li889WK4i6vsPg9LtdVwo/O/+xxP0tj70Vdlh3WIWUp7oC+p8j8vzMuI+St01XHRJWX3Ku8PhLU8v0zihtaus1F2okuFy3M/aZIRwQJTr94NQHku93j3onec91LEshIASEgBAQAkKgKgJibKoKjz4KASEgBISAEBACQkAICAEhIASEgBAQAkJACAgBISAEhIAQEAJCQAj0BgSQQPSTcx5OVYj5PJ9x3XPh4G2WCR98+nk45ZrRySeYbYyx6e0PJ4bjrpwqSWjnDYaFxQbPGo68ZJQPIn3eco0Fw35bLBUZidozKL36zoTwy0uezE0DAQzoN2M4bLsRYf3lB6fh2cNvL386eVxm6BzhZ1stHXY7/b/2KTX/dMuLUQrSimHE0IHhjzc/Hy664+X0Gw9X/mfq63G7rFBTLdv1D01TQ7fOsvOFwZHJC8Ym6JZH3wx7fXOJqYG14H/kUvOEb6w8f7j5kTeT0O6IquS8+rpGorg1MkYZbbji4MhsNii+Ti0rmMNawdhE+J6xi/oB01mfyPAkEgJCQAgIASEgBBpDoP2MqTH/ci0EhIAQEAJCQAgIASEgBISAEBACQkAICAEhIASEgBAQAkJACAgBISAEujUCSEU67KLH2zEUwUgETZj8ZTjikqfCA2PerZnPO554q4Kpab6BU6U6mUeYfy6+a6y9piZSk35w2gOFacAh6Tj8r0+Gf95frNrsjQ8mhgP/PFW6EX4sDzyjyg3/59/2YgVT05yz9eNzSodc8ER4cuz49D37AAPWk1GqFPS15eZNpECtNGxQsHCuiwxCX0ZGnlbS5qstmAZ3m2NOSi3reIC56B//ww5cVl187jCg/4zh6ytNZRRDktPLb39aR0i1nWRZmFqLRu345UIICAEhIASEQE9BQBKbekpJKh9CQAgIASEgBISAEBACQkAICAEhIASEgBAQAkJACAgBISAEhIAQEAJNIXDSVaPDI89/kPhNpCJ9Z0RYJaqam2OWmQKqy26KkoIuvP2lqLbtvZrhj3v3s8TN0TstH9aMkoZmiQw0kz6fEs655fnw97teSb6de8sL4dsjh4aBA6Ye1cEEdMzloxLGJRwsHtXG7bPZkgFmob4zzhCej6rdLr/3lXDD/6Qk/e6fz4ZVorq5hecdkITn/2Begg7Zdpmw8UpDwsxRMhQq9H4emZ2QHMTv/H+9mLj59Q7LhXWWmy9Rb/f6+5+Fn//lsfByZLCC7n3m3bD8InMmz9m/f0XmLaNvrDR/8oj6tW+uPCRcEpm2SMNDL7wf1ogYtopWjCr+jF6LaQUz4myEHn35gyRt+Nl0tQXCTBFbaKOYB1TcQTdHaVN7fGPx5LnM36vvTa0HhAFzW6NpLRO3/AoBISAEhIAQ6EkISGJTTypN5UUICAEhIASEgBAQAkJACAgBISAEhIAQEAJCQAgIASEgBISAEBACQqAhBFBBd81/p6pQw+PxP1gprL/C4ISpifdF5p01YXTZbp2Fea2LTvjBiom6OJiaINTO7bvp8ICaOKOX3/7EHsN/n3svIC0IgrHq2O+tmDAF4Q/1ZahdO2SbEWHlJVCbNpUui4xORfSTLYaHLaKEI5iaoCUioxSMVp5+EVXawdDTf6apbhaYa5ZwzE4rpE6efCVfYtOUtrZwzf9UzuF45NLzpn5Q7WZ088PTVNWZXRkTxqBhUcWf0YdRLWCjZKrs8LeRS+tqkQHLJFtRF1ohbeqsm55Lk7f68LnSZz0IASEgBISAEBACjSEgxqbG8JJrISAEhIAQEAJCQAgIASEgBISAEBACQkAICAEhIASEgBAQAkJACAiBHoTAmNenMhSRpW3WGhpWXmwa85DP5r6bLpmqWvP22Wek86ztmH3s+wxROJBnpkFCktGdT75tj+GnWy4VFpx7lvTdHmDsOWL7acxJMA4VMeBsuuoC5i01l1pwGlMVlustN40JyRx5CVBjxn1s1hUmKuiQ+gRtuuqQhGnLHCwd41gwMkhBSD76ZNKX9qkl5lyzT1OZ9+GExhibPps8JVz/4OtJOiijZRcemKapX2Tu+vrKUyVPIW3q0ZemSu9KHdT5EHm+witRTd+hUa3hXU+9k/r69siF0mc9CAEhIASEgBAQAo0hIFV0jeEl10JACAgBISAEhIAQEAJCQAgIASEgBISAEBACQkAICAEhIASEgBAQAj0IgdGvTZOctOzCsxfmDMailRebUKnSaQAAQABJREFUM9z+xDQmpDzHKy06jWEm+33+OWdOrT6NkqKMxrw+jYlo6YUqGZDMDeY8c/RL1JrBWDRh8pfhnQ8nhfkHTQsTN0PnmSXMPnP7I0DUriGVCH8wHw3oP1WaFH6M+kTuK6QimTo6s/cmavmMkPjkCeatb0amKlTtQXc99VbYdJX2TFbeTyPPnzlGqZn/Jw2rXv93j5qmPm+TVYYE8uppwxXnD1fdP1Vy102RaWzVqOqvGp189ehw/UNTGaVwN/mLKbm4HbfLCiHLVFYtXH0TAkJACAgBISAEKhFoP6up/K43ISAEhIAQEAJCQAgIASEgBISAEBACQkAICAEhIASEgBAQAkJACAgBIdBjEXju1Q/TvC06uJixCUdLLzSwJmPT/P+TWJQG6h76FzDjvB0ZlIyGzjPAHnPN4QvNlkpMGv/p5HaMTbPN0jfXn7fs06ROl0mfT6lQ2zdlSlt48Pn3fNAVDFPXPfhaSxmb3vhgqqQoIpxrtmnSmyoSUPBywyPTmJBmi4xf2XR76Vc3RsamA7ZcuiIvecGOeW0aQ1re92MjU9M6I+bL+yQ7ISAEhIAQEAJCoE4ExNhUJ1ByJgSEgBAQAkJACAgBISAEhIAQEAJCQAgIASEgBISAEBACQkAICAEh0PMQGOCkG302aZoUpbycfjKxMfVneWHk2aH+DEKiEmrRqtHcs/VPP0/8orWq3tKACx7uHlUprepn5z9W4HKq9eMvfRhee++zXNV6VT3mfER1n8epf9/qOPkg3ho/KTw4Zpp6uTNveM5/zn2+K+Z1k5WH5H4zy9WGV6otnClyjM09e/+wxJDZw4YrDA5edZ75kSkEhIAQEAJCQAg0hoAYmxrDS667MALXXXddGD9+fOjbt2/Yfvvtu3BKOy9pr776anjsscfC448/HqZMmRI22GCDsPbaa3deAnpRTE8//XR45JFHkhyvv/76YcEFF+yWuf/3v/8daEubbbZZWG+99RrOQ0e2w3HjxgXSB6266qph6aWXbjh9XcXDpEmTwuWXX54kZ6GFFmoK666SF6Wj9Qh88cUX4bLLLgujRo0Ku+yySxg+fHjrI5nOIXZkXzGds6bohYAQ6AUIXHzxxcncetCgQcmcqRdkuVdmsSvM72+//fbw+utTb5SzxmWtK8pHQHOLfFxkWxuBMWPGhAsuuCCMGDEi2UuaaabO2yptxRq3FWHURqk5F1r3NodbR/uaPHlyst4kHvZV2F+pl3rDWrVeLOSuZyKwzNCBqQqy59/8JKy4aCWzis/1M066k7cv+4xquNci4w5q4j745PMwaLbi+d+Lb32aRjfngMakFqUem3y46dE3GvZ56xNvhV3WH9awv6wHGI2M1lpmHnusy7z1iWnq8+ryEB1d//DrVRmb9t9yqbDtWkPrDU7uhIAQEAJCQAgIgSYR6LzVepMJlDchUC8CRxxxRHjyySfD7LPPLsamCBpMEzvuuGMFfBMnThRjUwUirXu54447wv77758EeM0113RLxiYY4TbeeOMkD6eeemp46aWXGs5HR7bDJ554Iuy6665J+k4//fRuzdj06aefpnnZZpttxNjUuqbYI0K6+uqrw/e///0kL1dddVV46qmnwgwzzNAj8maZ6Mi+wuJotXnhhReGm266KVxxxRWBPr8eRmEY1E455ZTw0EMPhY022igstthiFcmaZZZZwpAhQ8Kaa64ZRo4cmVvOH3zwQQAvGJSXX375sMcee1SEoRchIAQ6HwHrozkIhBlc1DMR6Arz+zPOOCNce+21CcDf+ta3xNhUpap1x7lFlezoUychwPxq6623Ds89N1Vaw8wzzxxYn3UWtWKN24owOiq/Wvd2FLLlwvXlQv2/9NJL6w6wN6xV6wZDDnskAsMXmKZ+7s6n3g5br7FQ6NOn/X7Mm1ENmpf600ow5h3UP2FsIsyx734SGZvymaumtLWFJ18en0Y9V5QO1Fn0TlSXd9+z09TOXfDTNSNO+bG/8cFn4aA/P558vP6/r4Wd1xsW9z7y3dZj+97Hk8N5t7yYOt1opcHpcz0P1z7wauoM9XALzZ2v7i/CG3Y++f7E7SPPfxBQfTdk0MypXz0IASEgBISAEBACnY+AGJs6H3PFKAQ6HAGkNGWZmpZZZpkwzzyN3WDo8IQqgi6FADc9Pb3yyisVjE28P/zww4kTDuE5jBd1PQRUTl2vTBpN0YsvTtug4ZAFplQYYLoLIb1u7NixSXI333zzHnEI+/nnnyfMqx9//HGSr5NOOqkuxqZbbrklYWrC06233pr4LfqDaQlpE9m+Fcams88+O/G25ZZbNsTYNGHChEAa2uKO3BJLLJEwRhXFL/vuiYDKuHuWm1ItBISAEBACXQMBJAoZUxMp8vNw3jXOgkIxwfT/2WefhTnmmCNsuOGGxQ71pccg4NtId1yr9piCUEY6DIFh882ahg0zyzm3vBD23GSJ1I6HCZO+DAf++dEKu1a+rLXUvOGxF6YyLF3/4OthpWH5jE33jHonjXaZoXOEOWbpvKO+25zUox9stFhUtzZbmpbsw2KDZ4uSrwaGRBVdlET11Cvjw/KLzJl1Vtf7xxO/CEf+/clEmhUekG61+vD6zzueefWjMO7dz5K4ll14YPjaiPmqxrv71xcP58Y6AN32+Jthp8iUJRICQkAICAEhIASmHwIFfNTTL0GKWQgIgfII3HvvvWkg2267bXLAjDo6kyiUftSDEHAIwKz0ve99L7HB5N0T4vlRgcHv0Uc7bgHv49Rz4wionBrHrKv52GmnncJaa62VSCBEelp3YmoCywMOOCDtKz755JOuBm9T6bntttuCMTURANIz3nrrrabCKvKE1EmkOr3xRuPi3IvCvP/++8N2222XlMcll1xS5Ez23RgBlXE3LjwlXQgIASEgBKY7AsyzmW8j+Zv5N/NwTxpnPRqVzzA0IUmO/YHDDjus8qPeeiwC3X2t2mMLRhlrGQL9ZuoTjt5x+TS8i+54ORx0wWPhn/e/Gu555p1w7r9eDLuedn942amASx236GG95aYx29zw0BvhKidhyKJ45Z0J4dCLnrDXsOkqnXv59NrIcGXk02t2WfObKy+QWt38aOOq4D7/ckq46+m3w26nPhBgODP65XeXDf1jmdVLtzw2Le5NVp6/prcNVphWFtc88Fq8NFbTixwIASEgBISAEBACHYhA57Fxd2AmFLQQEAKVCCAtw2jPPfdsJ/3BvskUAh4BVF2dd9554dxzz81Vh+Td6lkICIGOQwCJPXfeeWciZaenqaDrONQ6NuS//vWv7SL4xz/+Efbaa6929kUW//3vf8NKK62Ufv7yyy8TJqbbb789OQx6++23E4kBMDcxjvfv33li5NNE6UEICAEhIASEgBAQAr0MAeZz7Jto3t3LCl7ZbQoBrVWbgk2euhkC668wOOwZJQudfePzScrvffrdwM/TnLP1C99afcFw4e0veeuWPC849yxh1ygF6fxbp0rzPvEfz4Z7nn4njFx6njBz3xnD41H93B2PT7toNXzB2WNaFmpJ3PUEMvq1j1PGrmGDZ60qrcnCWycyax135TPJ680PvxF+vNnw0L9ve4ak8259IQweOE1i+WeTvwhvjp8Ynn3lo1RKk4V50LeXaUjy0+QvpoTrInOS0brL1VZht8i8swbwHRPz/FqsE0+P+zAg6UkkBISAEBACQkAITB8ExNg0fXBXrEKgQxF4771pOq5XWWWVDo1Lgfc8BLSh2/PKVDnqngioLXaNckMV3GWXXZYkZo011ghPP/10Ir3pL3/5S0OMTdnczDjjjGGhhRYKO++8c9h4443Dcsstl4SLSgdU0m2zzTZZL3oXAkJACAgBISAEhIAQ6AAENO/uAFAVZI9GQG2mRxevMhcR2GndYaHvjDOEi+4cG8Z/MrkCk6+vNDj8aJMlw/2jK5mdKhyVfNl5g2GRkWZCuPmRqRKG7nv2vcAvS0PnmSVKmFohzBTT2ll0y2PTpExvuso0SUzV4p9zQN+w9oh5EgaxCZO/DP+J0q9gIMvSPaNqYzrfwJnDb3ZcriGmJuL573PvpcxRayw1V5h79n7Z6HPfN1l5SMLYxEekTYmxKRcmWQoBISAEhIAQ6BQExNjUKTBP/0jeeeedRG0KKRk5cmRYZpllwmuvvRYQq3333XcHREgvvfTSiehtDu2y9NJLL4U77rgjsTb/WTe8jxo1KjzwwAPJpy233DLMPffcyXNe/C+88EL497//HVCbNt9884WVV145bL311mGmmaZVS/s+ZsyYsPDCC4fVV189Sb+FmwRe5Y8033fffQH/c845Zxg+fHj4zne+E+add94qvqZ+wg+qZsg7qnSGDh0aYBLabLPNQt++fdv5z+YRPDn8vOuuuxJMBg0aFE4++eR2/qpZgNE111yTqJJ79913wwILLBCWWGKJsNVWWyWYeb/vv/9+uOqqqxIr0mzEwaupMfr617+eHKLatyLz5ptvTurHzDPPHHbYYYfw0UcfJeWEBJE333wz/PCHPwzrrLNOhfdG8arwHF8oJ8pr7NixySfqw1e+8pXkoHfAgAFZ5xXvjeBkHhvNY1uUNXvrrbeG//znP0mdmGuuucKIESPCt7/97cBzPTR69OhECgdq3Kgvyy67bJI/2tTAgfXf9rj++utTFUiojMurj//85z8Dh/H9+vVrJ07f0ooEksmTJyf1apNNNkmsUVVEfzD//POHTTfdtMLu4YcfNq/hlltuSeoCFvQZ5CWPJkyYEPB3zz33JO1whRVWSFTcIbXE6mWevzJ2jdQHpKI89thjSXRF7YO6+cwzU28V0fbyyhs1VdRd+q//+7//q+jHms3LF198kfTR9CNPPfVUmDRpUlhxxRUDGGKiLsGTlV2j5UQ/yzjw8ssvhz59+iR97QYbbJCMBz58e0Zd1oMPPpi80mdTd5999tmkDYMV6aL/A89FF13UvOWan3/+eaA+UwbgRz+56qqrJlJtllpqqQDjh9Hrr78ebrrppuSVvtDqrH33Jv3UDTfckFgx3tHGmiHaO3mDyCvpy6N//etfYdy4cYE+87vf/W6Co3dHWdLuUQlKnQNn3/79uIc/+twrrrgiCYK+0Ev5yfZdtGHwYyx94oknwoILLpiM8aiFmGOOOXwy2j1Tr2CgYcygj6NPo9wwGXMYfyDSmjc38AH6NHtVavQzs846a+K0qP3wsUxfATPvlVdemUg7Im5uEVMH6Z+Lysynvdazja24Y/xj7oRkO8oUDGFIKkuk+aijjgo//elPk6DoU8owNtGu6Qut7yJQ6sn555+fhL/IIouEDTfcMHn2f4wbjB+MV2DJ3In51+abb55g6t3W89zM3Ii+jrpHe3nllVeSNAwbNiyZ+yy22GJVo6UeM5dgzKFeM1+k/tJ+yQv9KeUH0c8RLoTbMvPcJBD31+ycqJG+otkydslMHju7jIj0xRdfDFdffXXS748fPz5pQ9bX5Y2xPs30efTvNm4wz2GOvvbaa4f11lsvV9pGM3lE1ST9CmX54YcfhiWXXDKJY9111/XJKXxGdeVDDz2UpJO+mbUHfQVz2+WXX77QX60PpIWxlrrMjzHXwiTc7Hjiw6NNM0eg74KBkjWF9e8wWTZCWUwbXVtm42p0LuL9lxkDWjG/Jy3Ntnn8Mu+m36XPo4zonxn3Gcfz5vj4qUV55cOYAM6tXns3Uiepf+QTYr7HnLaIaOMmhdj310Xui+zL7AeUqZfZ9HRmmRB3I+shS2t2jtkZewAWd9ZstL+iv6YuMhdnLVZEF154YWCsZdyAqdzIxlS/ljO7RuZSja7fLP6syTyc+Sf7a4yTzFe++tWvJnOXMswkZfoqn0bCYa7FmGzE/qLNM4vWROaW/LFvSH9EH846g70+xhK//jP3Zr766qvJOhRcSAO4sC5m/GOvL49Q046UVNzSl4AncTOWsv5kLKQvYu+jWtw+7ClTpgT22aB55pkn6a+TF/c3ceLEcPHFFyc2RfNuv4dn8yAXRLKf0+i8PLtWZx3GfIS+ENzAYPfdd/fRFD6zPrv00kuTdSKOvvnNbybrLL/uy6a7VXiDMesh1uPsU7DnwJyF9SRzKp9P2jJtWiQEWo3ADDOE8N11FgnbrDU0vPbeZ+GdjyaGWfvPFIZGCT6zzzz17OKzz6ek0eLeaMb2gojsU4XZt4oKtb4xkF9ut1xYY/hc4e93j0sZayyAAf1mDN9dd5Gw3VcXTtNj3xo1+0UpUEWEaj6oX4zP6KZHpqlzW3/5aara7HuR+fUV508lX9351NspY9NMcY+sGiEda8G5ZgmLRulQG39l/rDyooPivpoDvJpn9+3OJ99O374Rw6mX1ouSnU67dkzi/MaHXg/7f2upuO4MoVW8ZP3qrTD1JljuhIAQEAJCQAj0ZATiQrRNv56PQVy4t8V6nPwOPvjgtosuuih9N3sz4yK3LS72K+pFlFSQuj/77LMrvvn6c9ppp6Xu4gI8dZeN37uzeDHjhkZb3Kxoi4cJbXFjIQ3Lu4lMUG1xIz8N2+KPmxmJ+7jBn4QRD2dz/RMW+Td/WTNuQLTttttuhX6JPy6i2/nP5vGII46oCIN0ZeMqeo+bO23xcLzCv8eA50MOOaQtboSnYcaN36ru8XPmmWem7ovixn6LLbZIw4qHtm3k2cd/1llnpeE0i5fFT1lT7j58/0zcUX1PGp/5w2wGJ/PfSB7jxltb3HzPTSPlGje12iLTWvo9HshWpPfTTz9ti4fV6XefP57JY2Qaq/Bj6cwz99577zSsuCHXzl/cIEu/E37c9GvnJm7ipW4iE2L63co6MqS0s8um294PPPDA1G22HRKOufNmPCBsi4wqqb+8fGbt6FMsjNNPP72d32bqw9///vc0zBNPPLFdmKRhrbXWSt1Q1tl08W75pD7EDcBcN95fZLxJw4zMC+3cxw30ingt32ZG5pV2/ZCVnbnJmr6cSEs8MCis1/iNh7dtkcmhXdp+//vfp2mnrv/oRz9K37Nxnnrqqe38Gw70mdXSTPy+jnjMwDkynBaGfdxxx6VpOvroowvdWVqKzH333TcNJ6/fN3+UoeWdPs3sMRnT1l9//fS7uTMzHlK0xUP+Cj+RmSp1D74+PN930Y7jgXbq1sLEBNvIcFXh18Kh3/7BD36Q6w+/P//5z9si80f6/aCDDsoNx8LDjIwwqXufDv/s5wWt6iuYk/g4ss+R4a9m2n0+8p59H0D5RsbONE6wyvNjdlEaU+q2aCwzt/EALXXLHMbsfX3w/bV9zzO///3vp2FlMeEd/L2/yEzUFhmrqvqh7mXrtw8j77nRuVE84KraL2T7MR8nY4AvK59v+gzmsn/4wx/SPEZVgikGZee5lo4yc6JG+4pGy9jSmDU7s4zAp9qYQZnFA7G0XLJpjYe8VesHcwvmw1l/jebxz3/+c1pPfD3iOTLVtsXD2/Q788O8+Bins37tnXlcdq2VDSPv/cYbb6ya/6jGso05a55f5i8Wf55Z7xrBws5i2uja0sJpdi5i/suMAWXn96ShTJvHf2T0KSxT6jPzfD/uF5Wv4WFmtnw6Yu1NXI3WSeaNVv/iZaHcump5oK2ZW8ZHs69mZucWze4HlK2XeWnsrDJpZj1k6fV1raP3ACzOPLOZ/or2Qn1hvM8L0+z4jrvsPMjP1yKzcxJGo+NsM+s30pVd40bm+SQfVv+9yTyHtb7lx8xsGGZvZtm+ysIxs9o4aem1OaNfw7Fm8vNdc2vmdtttV7HHZfGRfr/fYu69yXoFd+bHTHPDeB0ZK6tiG5l+2/m3cLKm1TnCz1v/R0bBtA9jTpD1zzvrFEufXzeXmZf7tTrzJuYGFgcm+4zETfmYfbwA0C59zFO8X/pTm7v4tUl2rWphlsGbtBWtcWnD8eJMRX3I7r/lYS27rnfuUW1/ZXqX18SJk9rGvvVR8nvt3eJ9J9J56F8ebltt/xuS35MvvdeuLbUyL2+P/7Tt6bHvtT318ntt497+uO2zmM5Whq+wul47UZmoTFQHVAdUB1QHVAfa14Hq7NBxRSLqeQjEg5yAlBcjpDt4QgrBSSed5K1a+oykl5/85CdJmHFRWhF23PAL++yzT9h1111TaRu48e7efvvt5EY2UgXyiBvSSMwgHiPvHzvybxJHzI2ZkSEpnHfeefaamN4/8XODlluXRcRN8l//+tdFn6vacyuKG+eR4aLCnU8DH+LBfUU5crsQN1l3ZofJzblGCYlN5LmIyuDFDWUkUlDuRUTc3N5DqounZnHyYdhztTxyuy8yACS33Mw9puFMfYubnu3S592Sx1NOOSW1ihupyS1ls7A6za3HesjfLuWWY5ay4ZgUCu+Om29G3LyrRoMHD07za+58vcqTqAUu3KZDCgYUmSwqwkBSANLPuO3XCmq2PkTmmTR6JJJliX7GY+X7FXPLjWLLJ3mqJi3B/FQzkVDCbVUfL3j7vpobsXFjO7mpaGE1Uk5IREF6Hbc3iyhuOid1mzZQRJFRNpxzzjnpZ8rZ03777ZdIB/B2PCOtI26UVvQt1qbMLfGvttpqyY1z7JDise222yafqV98LyJulhptv/329tjpZjyATKQR+jZIucWN8DQttFduGseN4tSu3gf6FiRvQNYmzS/9ChKL4gGXWaVmZPYK8UAifefB4x+Z/BLpQRUOarxwwzmbBgvX7JGskqUyfQUSvPbcc8+KIH0++ED/zo3sZun5559P2yKSKJEAxY15q+vcSuZ2fivIS+bglnIZmm222aqWR1YqDnOvX/7ylxVRZrFEiuWaa66Z3B6vcFjnS625EX0fkpX8nCObhnhYE+LBT7sYwYu5o+83vSPqWTwsC0hX60hqdk7UTF/RaBnXk++OLCPiP/zwwyvGDOyyZbzLLrvkzqGRSsi8olr9YG6B5IBqY1utPNJfMO/z5NNIv7PTTjv5zxXP9OlInmCchvDLXMP6DOwiE1E6nvFeD8VD60RSgs8/YfpwkSwaGWkTlZY+TNoNc1WjyIydpMneMSOzVTj++OO9Vd3Pza4ty85FyowBrZjfA1CzbR6/tHvWlL5MsTeiPjPuIKmiDHXU2ruZOsncz9oTa7ui9TxzF5PSSX1l7GmE6POb3Q8oWy/rSWdHlUmz66G8NFdbH+O+TN3Pi8/sOrq/snjqMRsZZ5tdv2XTgTRDpOlQhyFrL+aOeU68hBcanSe2uryY05O2bPrMDjNPshSSBpECauTXt9ih+pn1Y5Z+9rOfhf3337/Cmr7Bx3/CCSdUVRGNNFL2UQzbbNxgC/ZI8quH6L+NkMyYJaQNGTEnQMJUlpCabIQkJaNWzcuZ2zM3aJToS5g3m1/2OJAmnLfvUxR2s3jHg5uk/7Y1roVvZU35MQ9DwpxICHQUAl9MaQs7n3Rf2Pa4e8JWx9wV7n02f///4RfeD7c+/laajIXnra5tIHXY5AOq3JYYMnsYvsDsYfCc/cOMTUgsajJqeRMCQkAICAEhIASEQJdBQIxNXaYoOi8hbJJCHBCwaciBPAeqpv6Eb7/5zW9yD0P5VpZYoLIoZaEfb+Ik6mfYwDBiM4eNTjbqORxgsxcmIltU4w67asww+GOjgw1X8kg82HEIbMThGQwJnjigtE190shGPZvOxI/o/HiLMXEOZjAFxBth3nv6jFhkiMNhxO3DwMPhaD105JFHVjArxBvQAZHb5IPNAUsfYbG5YOKtUbuDG36mQgw3qEcy+2oHMbjNI/LCQXy8kZvgyEYCG51QGbw4UOAQknKBOOhH3Dob3FHCUVI/dtxxx+Qbf1FySsXhcbM4pQG6h2p5POaYY1I1jnghz2xMgSkqEmzjzddPF3TClOE35qn/1CU2zggjSp9InUcpROlztQevBjCPucNvohGOxe/DLNpE827smfSSVn/oTb20euXtzQ8mB4scDrKJZ3U43qZLNyDBIi9tPox6n5utD6gp4gASot/JMih4nHDDwX7WjWeaqKYeDf/1kK8HHFCyUUofRL9jB/+EQ1v0DJD1lhObtRxgWtuLtykTJiHaHWHefvvtqQo5+mMOoosI1Qz0teCEf8qZdHJwZXTooYfaY2KSF5jpiAuiX6Ue00/T39KvWZnQ1n77298m7vjzfZipaks//u8BpinbCOUweZFFFsk66bR3DtDtwJJ+GRV5MNChBgDVBzDIQGDBmNwo0cbYaEYdGtjRJikL26gnXM9USfjEA2OTEWMKbRS/pAnmZijLTGrui0zUlVmfwJhhxNhn9p4p075jNtNX0G/7A4Xf/e53SfqJC/Urvt5ygEK9bIZ8GzPVJjAv2vhE+XrGtWbiMD+Uo1FZdQowqIPF5ZdfbkEGDoWsLDyDD+oIrdxxzOEXB0+4ZZ4EBnaYAI5RYmQaZiMP1eZGqI+hL7D2AhMG8yfqNX0DKg2NopSsdvWTsZr+yihKe0j6Iw5HGKvtMMy7MbetMsvMiZrpKxop43rz2JFldMYZZwTaqRF1jjGNeoa6KcZxI8rTz5sZW2B4MoLJFcZu6gZ1h8MtxjIj3DYzR2fMYX5vZPFQL6mLrAvoX6u1eeqe0S9+8YskjaaulHHa2hLzRsPb3BeZjNu+36Y+w+wCLvzoQ41hljA90zuH314VNmMn6wnSxLjtxx4OhWHqaJSaWVuWnYuQzzJjQNn5PRiVafOo4mU9RZ2DYGhn3GVNTrlQx6J0jKRPrLeeJAHl/HXE2rvZOsn4uccee6SpZH2ZR96e9pzHIJHnz9s1sx9Qtl76+Ks9d0SZEB/9qK8v9e4j5KWVcDpiDyAvLrPrjP7K4qrHbGScbXb9lk2H7SmwR8A8iDGSft6PLexxHXvssVmvhe9l+qqiQBkrLW3mBrWo2NkPFcBZYu3I+gQmdbscBBON3+Pi0oz1jfjHXZS4mQYFFozLjGWMzaghNOLiRhHDJPHij70L1jzMaZkrmPo8wmBNmneRycL3pmdE8uOuuWHfwFN2j4ZvNh9nboEadqiV83LaMfuqjPWskdmX9HU1iTDzhxuYmgwH9k25NNToJclm8WZ/zeZZzJlYh7CGpl6RH1uHtGofKZN9vQqBBAFUr+2y4aIpGgf9+fFw0tWjw42PvBFGvfJhuPeZd8KJ/3wm/OScR1I3O2+waJjFqWpLP+hBCAgBISAEhIAQEAJCoLUISIxVezFWPRETL/o81qBE3HU2n3Eju0ItUVxMpiJNy6royMaPWP1s/HGDmatR6S9P3RxqEsxNPHirCMNEz9v3eHhQ8Z344uFHhUjjKFUpdRMXymnYhOHzb2lF9DIilS2OuAGd+s/msRlxyPGAJg2bOOLhQxq+pQHzV7/6VeouMhW0c+PV+JFm77eeZy+GPjIGpCKnvd+yeIGd4YgZNynapTNuclXgHTfxEjetwKmePIKdTyPtwGPAM+0mqzbQl70XBe7Fi1s48fCiLUoQa0O0NyqG4kZSuzjMrTcpF9IWN3vaiT6nTvh080w83r+JTsf09nHjK/GbV6/iJmAaLmLNvT979u2Q/FCG9s3MuFmZhhMP59p9N3dZk/K3fMUNudRf2foQDwHScLOqouLhS/rN4o5MaWncpDHeqEzdoBosm+6896xIfu8G3KgP1NG4kdsuPK9qEBHt3i/PtcopKxY/Mj+2CwP1E9Qty7NXeeDrNG7ipnI7/3EDPvWbrX+o0bRwqS95fRSq2cwNJuGRN+qxpQszTx1d3BhP/caN6nZpy+JV7b2sKjrfz+SNSeQTVSuUN+Vmaakm3t+HGQ+cknHN/JkZN9JTDFCDZ/aYXqy/HwO9Gz/mg389qui8f9Jl5Uf79N/suWxf4eNA9aCF603fNg877LBcN9599hl1FvGgIc2Lr6v0A5bHyPBUGLZXbZLtX3x8keGvQh1RPLRJw/T1gf7B+6v1HDf903RGxqZcv35eEw8Tct34cMh3PAzKdZdNT71zI99vRWa93LEjHmykeUGFrcWVHatxZ9+8GZnRUv/kITKppO58nW9G5XLZOZFv1430FeTPl01RGXscss+dUUbZcRq1Zdl08O7V9nq1g/RB1t6or1HaYzv/jL82h8Ht3/72t9RNM3ksiod2bGnBxJ3lhTmPH6Py5kD0z/T5/CLjYerXwsgzGWfND/0afVPWHesWS5dXkenznqdqhnAiA3EaPqqUsmHnvftwidfm6N5ttbVl2blImTEg22c0M78v2+Z9/qkz9PMeO54ZF7Jz+niI385d1h/v2fJp9dq7TJ2kj7O6Sn+fl36/ls3DJs8Pdn5uQRx5/Wm1/QBfLoz/jc6Ri9KFfUeXSbafbWYfwY9FHbUHUC9GjfZXtralPVWLw/po6op35+dr2TlOPeNsmfWbX+NSb5mv+LTZc2ROSdsO7iLjSOrOh+HXyWX7Kou7yKQ9WXvOW5fiz697cRuZnNN0+3D9PM2PKczXbAwsmqPFi5lpOvxeDOFb+jD93MLHHaUQp+4Iy38revZjCW3Hu4vMx2l4Fj/9mncTmbtTN1ECbfqt7Lzcr9WZF+Wt1UmH7zOsvTG/8mpA2efKm8v4tUmRKrpm8PZpwn9k/Epx8dhFDQApdrjLlrl3q+eue+aRtwfclcrr/Y8/a9v7rPtSNXOmbi7P/OONo9smxr3hrpR+paXr1n2VjcpGdUB1QHVAdUB1oFwdkMSmuArqbcRtICQ8ZImbkF5lDzeYOoK4ybXKKqu0C/prX/taahcX82GJJZZI3+0Be6O4QLfHdiaSkuJmVTv7WWaZpeJGFjfEjexGEu9IM1l77bXtU2oietnfjkMKQB5xa7oZyS3+dirSIPxNZB8PElC42QtRTtxc6ihCDHaeyOmyeHlpK9zAsxtqPh/c6uUGHequ+Bm1GqeiPHKj0CgeXCcqUOzdTNoNKkXiJqlZVZj9+/dP36kv3AT2hOohVB9yMw/JGqhzqodMfRw34byUD27iWdv1t/HiQVwabNwwCna7Pq8vSB2WfADXPLVs3Pozipv89ti0WbY+eOlCSNLyFDdVk1duQFsZ201ac2dtgT5nyJAhZt20ST2gPnD7FIlSWUItgkk04sZ3VoJU1n323UssQd0DKuyyNHz48FTCCd+K+hikWcRDt6z35Gaor1tIjjPi9rjRhRdemNu/LLTQQiFuUKZtHylPEO0FFQEQdT9PYhm3Oo2K+lD73tGmb/95Kgosn5R3ZOxoODlxIzkwrmUpbv6nVkiHMoob06k0K8Ypu/Fq381E3RNjUGdRo30FN7etrZKPAw44IDepXtoXEk0aJeKwG+PxwKuirjKPsbqP5ESkxjRDtF/qMbe+TVoRN6spg84gpL4YNswPPWY+ftJHORllb6GbfTWz2tzIt1vG1LyxA9WKJuWMsQOJJ5Afq1E9hLs8QmKQ9eN538vY2ThAGM3MITu6r6g3bx1VRn6cZtzw6w2fNsZapBwx5/PjaWRSSp0xbuRJDcC9n/cgXSmPquXRrwuQCJEXz0orrVTYTvr0mba0ZoyifWXpG9/4RjLG0+/Hg/Ds59x3+hrc80P6ko/HPLC+MjKphbx7FaDxIDKVlmhuMZHmZuEvvvji/lNdz82sLcvMRcqOAb7PaHZ+X7bN+zkB69bFFlusHdYDBw4M1Pey1BFr7zJ1kvmyrdORUpWVrhKZ6VOV9JGBLRebejBpZj+gTL2sJ03mpiPKxPezrdhHKFofl637hkGe2Rn9VV68rbBr1fqNeQrzlTxC+jhjqFG1/TBz05HlZXE0atpaLuvPzw38eIzkVRujkPidR6gvN0LSVRFlVVibOz/v9hIj7XueyR6Z7fkhkderb0cCshF9EYR0TqQhGd1///32mEjo46XV83IkL9l6JY2s4AGJjcyjIyNf4oK1D3txeXPygiDaWTeKty875tORwbJdmFjESy0VqnhzHclSCJREYLb+M4aTd10lHLLNMmHBudrvuRD8SovPGY7ZafnwgyjdqU/cGxYJASEgBISAEBACQkAIdDwCM3V8FIqhqyHg1Vhl04YqGaN4W8ceW2qyQZlHgwYNSq09A1NqGR8WWGAB/1r4vOaaaxZ+M4YgHHgVUn7zBGYCfxDvA4OpwMj7MTvMInU73k3es2dQqZYHmF/A0TbmURljG8R54ZaxMwaKbBg+783g5ZnCRo4cmQ0+fUfF3lFHHZW+89BqnIry6Jk5qqWROkGdjbflK9LJiy9HRKPDeMSGHCrG5p9//nbu67Xwos+pxxy0QZYGNkWJh00fDubZXDNmPb+J1mxdrSedlqasWw5qSB+HfhxOlaWy9WHllVdO0wN+bKJBHAAaowGbloispwzZ7DOGEL53NJMYzHBgFaUTBfplGCjKMIT5fo9+t6iv8wwAbDLmtYHVV1+9sPiGDRuWfrPxhMMrYxQh/BEjRqRusg9gbpvF/huqW0ytDgfXvg7D1GcHuhzqzDHHHN5rpz8z3hoTJ2oZqV9s2oOlH0uaTRh1N49guOTwnrppdRh3vq3AIFJNtQtjjGcmyIunVXaN9hV+03veeectrMM+fdR72lK1PHv3PPv8+8MWvhFOlLaXqO7lncNQDgCqEe3FMx/Qpq3/MH8wNXE4ksdQbG5aaTJ/MGK8gnmwiEi/Hbb5Q/ki91l731b9N/o0jwPMXkX9EuOHEX00cx8/Vts4Z268Caa0SQ6WWk1l50Qd3VfUm9+OKiPf91Rbh1BGqEL0lB038i4+mHt/ccLPdew7ZlEe+fbggw9iJHMCGHyLKG88xC0MR8zPjDmC+eVee+2VMCquuOKKVdtXUVxF9rQT5gb8GGOj5IjUqTH9YcE82uZcrBuYr8KwwPjKONFIn5hGkHmoVqZFa8syc5GyY4DvM4rKkixWm9+XbfN+HVRtLuXHjAzsdb92xtqbxNRbJ3HLGsVUhDKvNjXnfPMMOqglbZb8GiwbRtF+QJl6mY2j2ntHlInvZ6vlvd59hKL1cdm6Xw2XzuivqsXfym/Nrt+Yx1SbA/Ld1hb0ZSussELVZHdkeVWNuOAjfVpR/rjwYcRFrGoEE46Nf4yBvu16BiMfBmNhkYpyGHSNGrmswFhKH0ZauExi5WEMZVz0gYkZNcoQ6bR9HFMLj72No62el1ebFxOvEQxXMDXZHJnLM6eddlouI7X5qWU2g7evr9XGRpituBhrbaFWWvRdCDSLALxKW6y+YPKb9PmUMO7dCeGjzz4PgwfOHIbMNbOYmZoFVv6EgBAQAkJACAgBIVACATE2lQCvu3otWsyTnzzJD63OZz2HufVKrSlKm9+szLrh0IHNRCQxcOAbRfqHeeaZJ9Hbbm5hpMky09g3b959993+NX1mEd8MeSaPankg7OWWWy6NAp3zHUVF5eXjbAYvfxOOg5VGqNU4FeXRHzrUKg8O5o2pyOeFza2oOjA9/EYyh0mZId9sdLGZ3yhjGuHaQRWH4BycQXbDDolOHFBz+5CDaG45mkQYv4lW72aXz1M9z6RtzjnnLHRKX8MGYCuobH1gY4xNRySGwADGZih9kN20JC+ULxuXMDbRd3DQClOQPzjdcMMNW5GdJAzyxA3J2267LfjyakUExlhEWEiOqIf8JqN37zegvT3PeZvWJnmJ7zDlNHOgSlnQHjmgjepjQlTxmEqksMNkwt9pp50wpitxIMcBnbVLJC+Y9AUOl7lFC8OMl0zSSIL9JnzWX16/5g9zOWSvRn6Mqeau7Ldm+grPrEV7rEfCCP0Nt6DrvbWMdCuk6RnRL9AePXnGOaS71GJswq8x3vlw7BmmJvqdaowb5rZVpseyVpn7cdD3u/WmhbLOI+ZhnuopT9zDXMXY2ehYbYc2Ps6yz2XnRB3dV9Sbv44qo9dffz1NwrLLLps+1/OQHTeq+fFjkh/rvJ+iPFKnrT0UMY1aOL4tmJ2ZUcVOIgWN+Ol3TjjhhOTH96iGJunzo8qapphbo1qtcOmll4aoLiu93GDxFpnMZ5jfmBRFGICR0MQPLJgnIrUIqQjNSmVoZm3py6fRuYiVE3luZgxotM/Im9+XbfNekmq1Ph8JNlkGzqKyLrLPmw9k3Ta79m6mThI3kmeMsYm5nGdsQvKNUb1Szcy9N6u106L9gDL10sdd67kjysSPy9XyTtr8eO/rsk93URq9+2b2AHwc2efO6K+ycbbyvRXrN2OMKUoXzF9G9GW1JKx2ZHlZOhox86TTmf9ZZ53VHnNN1nlIDGVd5ceBXMc5lnkSws1Zs/ugxqREOPfee2/C2ASTJ9LoIMbeYfGyj104YS1hfqKatcQNl02Mcd/ny7fTxGHmz7dz3/69s6J27N3wbGtVs6fvpZ8sQ83g7cfnahegSBdMcmJsKlNC8tsoAv379glLDJl20blR/3IvBISAEBACQkAICAEh0BoEyq1UWpMGhSIEWo5A0aGFRYSEB6P33nsveTSJImZfj+k3HupxX8sN0huM8lRQ2TdMmLGMPv30U3vsNLMsXsbUQlnlqfqolpHOwsnfFGykPLJpP/zwwxO1YhxoeUJCBQdgSBjgWyOYstHEoQCEarQpU6aEqJs1lRJgcdlhEYfplh9j2EFdVR7ziU9jd3huRX0wnKiXdlPSNvgQ+Q/e6623XgrHXXfdlTx7pqNqt6NTj3U8wKjGRuavf/3rljM1EX0z/ZY/WK4jC4VOJk6cmH7zfVhqWefDbrvtlrikvIxREAsOxyAYRIpE1ycOOumPTXJjvsoyL6L+66CDDkpuDqN6KaumsiOS6MfGWreRG+mPOiKt1cL0bb6au+y3rLqb7Hf/DjOoJ9QawjDqfzAGGNEXmBpQs8szUX3pfxx4oKYBFY1jxowJ1aTE5IVX1g4GLiM/NzI7b/pxsNky8OHZs80H7L1e0+ZvNrbhb6655qrqvVYeq3qu8rGZ9uL74q7WV2SzWraM/DzVS2jNxpP33kgdZaz2DJ8cLtZLVp9wX6ue2AFkXtgw+cBsQ7/OWOQJprpddtklqaem6tZ/L3pmfEDNHtKFTjnllLqZmiw8pFTBSIPkQE+UK30P/RqHrkhB6yzy9b/eOG0u0mz/Y2OA7zN8v5aXjqK5Stk2b8wG9ayDmmV+zstPq+zK1kmk1hqzHQwAJnGMMjLmU6SHNNpf+Pz5OY+3t2ffzq39l6mXFu70Mn27aKRe+/65nrSXrfu14uiK/VWtNPO9Veu3oj7H0uDL1vdl9j1rdnR5ZeMr8160FmIewNrvO9/5TnJBpJl2WiZd1fzCaGbzDtsf4EKQzZtM5b2purP1BUz9Jn3d9m2Ip5E5j68Lvv1XS2+93+h/61nX1Bteve78pZFaeWqmbtebDrkTAkJACAgBISAEhIAQEAJCoOsiIIlNXbdsumzKijYcSLBXfTA9M/DKK68UipkmXV6FiklvGDx4cJrks88+O1EVlloUPDQjbaQgqMTapwGJRtVutXMAapQ9ODH7jjR9WpvBC9zZLGHThxtmjWza+7g7Eifwv/LKKxMYa8VT6zCI2/n8OMjgwItD8AsuuCDd9II5iYNzNkXrJZhxkBIChjDj2IEN/lF1B5lYc55hAEGqkEltMWYevnVnakV9MLzAwW7/G2OTqUPjcIUblZQdNyy5yWgSXCjb/v37l4aRsoThzIjNUCT6cLuVA3tT44eknzwJAuavmmltDzfciqznhmo9bqrFad/8Zn2RFChzW81kY9uYSkwdHf0JzEIQ0k+alTxRFG+1sQ+mwiKCcROJavxGjx6d1C/a4sUXX5x6OfHEExMGT5Oqln5o8YNX+VYLf39jtsXJKB2cr0dsvMMEWA/Vq86WsP7617/WE2SFG6SiHHrooRV2/gXGAl8G/tv0evZY+nlFXnq8ujjf7+a5bcTOp4GDaGvHtcKwA+/sWF3thrsdIlULu1pbL5rnejyamRORnq7UV2TxKVtGXvUu9SzL6JmNz7975gPUvFQjDgRN4gp1qZFxwEsKqxUP0t+qEXNaVOrB3IREG1TPoJaGuZ4RYzsS/eqR9ghD+oEHHmhekwNe5i0wUSEdk4NApDL4Q87U8f8e6Hv++Mc/ht///vdJepA4iaQDaxPghhRP8u7LKxtOq97LzEV8fWxmDMj2GdXWW0Xz+7JtHqmJzCeZ93FIX20t1xXH41bUSaQcmlQT2gJSm7waOiSJlaFm9gPK1MsyaW2FX18na61b/Xhfre7lpcvH0+x4lxeut+vI/oo212pq5frN+uSiNL7wwgvpp2p9lznqjPKyuDrK5CIYTLgQY/t+++2XSP5lXm9rY/Y3YNKdHsQ+AG2BcZ7LZjbWwzCMtCaI9T3rPcr31VdfDV6lqp8H+PHNt9MkkMxfq+flzFtQyQtzKXWay10wa9WSpJVJVqlXJBqfc845SRiUKXsvRcT8SiQEhIAQEAJCQAgIASEgBIRA70NAjE29r8ybyrEXQ5xVGeIDZAOxKxAbBkVqETj0sNtHiC9GxD/kN/G5HcTGZmeTP3TlYKGa+H2/yd0IU1Cr8lQWLzZ5rBxgymkkD52Fkz+Afuqpp+ouj2oYg9u3v/3t5Pfb3/42OVTaddddEy8w1LDR5VWpVAvra1/7WvoZvyaCnHpteLIRBWMOTDpstvmNKb+JlgbUDR9aUR8IA3Hu9B0wnXi1IF5S0+abb54cRF111VUJM4UxiRnzU1n4vHrLNdZYI721ng231kZn1r1/51aptT0kKNUS8+79ln32m7WkgVvivk7WGz71m9utbLyaRCSvho6DzlaQV83y/vvvFwbJAVI9hEh+fkjNYJOeDe6TTz458QojTUczNvmDew4liw5TJ02alEp/qydfne3GH9Kw8d7q8Rq1WcbYSN7YOPfzIJ/fsWPHJqqcsIPR9JBDDmlKxaIPszOfbawgTn/IkpcGf9g2dOjQPCdN2fl+gfJceOGFE3Wg9QaWHavtVnye/yKGPl++zcxzy86Jsmmd3n1FNj1ly8ikGRAu8ymTOJmNJ+/dx00dpH8qYiT2Y6MdJuaFmWcHA6+p/CIexsciiaK+LeSFZXYwVjGW8/vpT3+aMLfCoMR8DEJqUz1zMWOixg99zG9+8xseK6gWs5U5hgEKiSj8kCjKnIcxCcYm2h+HmDBPdzSVmYuUHQOyfUa96y2PSdk2z+EtjE0QzFNFzCVIEupK0kkMg1bUSebOMClQ72Cyg7HJJG9ib5JOLM5GTdppo/sBZeplo+lrtftWrIfqSVPZul9PHOamkf7KGFmpT0jrs3cLC9Okvnm7Vjy3cv3m93jy0maShflWS600bjqzvIivI8gYIAmbSwSMX1mqR3pV1k+r3kkPjE3UPfodY9D081Ev2Zk1mM0j6Ot8OU7PeTnM2FyUI62s09nn2GOPPRKmslZf6CzC3o/P7Lf86Ec/yl0TjBs3LmUgKwpL9kJACAgBISAEhIAQEAJCQAj0TAT69MxsKVetRgBpIUZFN1e//PLLdKPe3E4v809/+lNyWyovfi8lY7XVVkudmK57LFhEF6mvwJ7NCH7+ACUNqMSDP9z429/+ForEL7PR4CX7rLXWWiVibc5rWby8yO0zzzyzsLyQasQNdH7cNIc6Cycv9YF6U1Qe3MQ3BpcsmkjoeOCBB5KD8ew3Dsx22mmnCoYpDvzqJaQYcDACUR+uueaa5Jlbg54Maw7QOMCCOECBkadZqnbw22yYzfprVX1AYhZ08803p30ZtwRNKgjfbCOVQyb6GSPfHsyuGZP6YsRGYh7RB5tEirzv3i6vnLykrmuvvdY7r3jGr/V1rdoshpHUVI8Q2XnnnVcRp38h/9b28zb5v/e97yXO2USmXtthGIx9vu36MBt99gxu/lasDwcmGNuc9vb0F7R9fnmMTxzWH3300cmhHv7o1ztapD6MWiYRDNxgAMuTNvXjH/+4bqk5Ps95z9UYwvLc12Pnx24O4U2lT55fbh5TjymHesnqEu7Z5IfZgVvxeT/6V7tNTBkiBaWrUt7huI0hpJl25A/MfD5g8mBeYtSqPo/wGAv9Abaf31h8ZiKpgPJEYp3VXd/eL7nkksJ2RB0okgZVdp7r8Wh0DtnKviKvjA27MmbZMrKxkzTAAFjUL8DUD3M3fT/SXCCYmKzf4v3SSy/FyCUvac2PNbmOcyx9e+DwNI+QxnDuuefmfUoYzK3fz+uXYFg79thjU79FjHapg/89+ENzJBLmkWc08d+RFGhp8ipucMNBJczbqEU18lJtza4jzDJzkbJjgO8zmp3fl2nz4OkPb//85z8XQlztW6GnTvhQpk5a8mAmtLkc89EXX3wxZejnMDuPMcX81mM2sx9Qpl7Wk6aOdNOq9VCtNJat+9XCL9Nf+YsaRYyexkxYLQ21vuWNs61cv6E+3ofn08M6wY9z9Ug/7Mjy8mnjud71adZftXfmSGACsX/h54ven7+Q4O0749lLyGYOaGsOP/dhLmNM3aSVuSy09dZbV1ye8POQzpyXkw6IfQ+vKpc1kV3CSRx08J/fn2KujxSpLNEOuGwmEgJCQAgIASEgBISAEBACQqB3IiDGpt5Z7g3nmo14Iw628iQznX766bmHu+avM002R5GGkSUOEPbee+/U2ku84Ta1SX1g04ub1VlCPQkqb7hhyo+bWa0kNuotDRyi77nnniGrEoVDCcRCcygNsUHiGS9amZ5qYZXFC6lFRpQXqjGyBDPAD3/4wySv5Nc2hzoLJ275mpQBK49sGpGShFqsIqIesdk1cuTIRPVc1h1qbdjIN/KbWWZXzTSmJW46G3OV4WT+7B0MTznllMSaG4SN3rzjRqGRbcbZ+/Q0W1UfbKMUnGwDL3swymGY3ar/1a9+lWSbNusl4ZTBwm/m5THzwGBkEr6K4qlVTvQfRsccc0zuITH9DDfnra+Dea9VhGQII9TJ3XvvvfaammyicphHWcAA5A8hzRHqBiyvHBQbw0LeoS/MRzCE8fMqGy2sInOFFVZIP5122mkpI4VZwljh1QOZPSZSRWj7/DhsyWNa5HCEPEIcTqBOqKOJPsBwY6wjfeDHbehTTz016WdhPChDqEYygvGo1TRgwIBEwgjhgh/SNgxHHxcSvVCtRD3mkDQ7nnq3/tkfJPuxyrvxzzCoGnnmabObnqavUxykZDHgYNm3SQ42xo8f3y7JtFVrY/SB6667bjs3ZSw8hkiLyWMW5KBy9dVXT8qTw2ckmUDZsRqmyGw+6TvtQCkvnWXnuWXmRGX7ilplnJffZuzKlNHKK6+cqp/j4JN+mgsRnj777LOA6inrF2m3Rl4l1e67756oUbVvZjJu0E8bVZubmZus6dcF9Bl54zD9JX1LHsEUZP0+TAZ5DPGeSbbeduQPr22u5+OHgdMzJ/lvHIJbmmBazSOYCYyYr3YGlZmLlB0Dsn0G660s1Zrfl2nzxEVfZsTa2jPLmz1Mnocddpi9dimzTJ30GWGuaUTbNvL2Zteo2cx+QJl62Wj6Wu2+VeuhWukqW/erhV+mv2KcMfrDH/5gj6nJPACJd81QrXG2Fes3ny7mnlkGKuY1zG9goodYf9o+hfebfe7I8iIuL0GRNLf64h9SuyyfhJ/HPHX++ecnkpyyee+sd9Y9dsnBq8fOjqemKo99G2PW8ozbpLcrzMtZt3omctpNEfN0qzGmPnnG8hNOOCFh/uKC43XXXZfsxYJr3jqh1WlReEJACAgBISAEhIAQEAJCQAh0TQSkiq5rlkuXS1Xfvn2TxbrdckMixlFHHRXQG88Gwz/+8Y/A5mFXItQrsCHMwQgbBKjqMok2pHPHHXesULWAJAvywEKZA1J0u3MQzWYD4qHZROHAknCM9t13X3tsiYkqFKQX2aYHhzQcgCCBB6w5YAFr29Ai0uOOO64lcTcaSFm8UGNDeZiUHKRi3Hrrrck7jFqU3ZVXXpkmiwNJk6jQWTjB+APebAhClAdMSJQHhyJI5uB7duMxTXR8oI5wgAfBpMVmHwftqNpB8gTq6OyQirrmVa4knmr8cXDmVZLAsLDKKqtU+ILphs1PX2+M2anCYY0Xz7xDW0B6GQdRSjoAAEAASURBVO2LjXR/KFwjmJZ/blV9sHL2CcxuNlInOPg36WG4zUrI8v4bffaHnBzQUmbcSETtCoyZSDjK29D18dQqJ74j1cQOjbgtzwYrN3ppl9RRGFUtHvqeVt6KpM1zUEfdh9Zff/2EWRMmPVTToaLHjyf7779/7q19DjbJA321jU2El8eIAuMGtz4h8mr9TmJR5c8zVNFOORzmYJjyoGyoB9Z+s8EgcYR4jUmGesLhKe0f9Xv05171nJVHNpxWvyOFipu4xsjHxrptrvu4YA6GmaUZos4YEQYY0b5oT61ixD3ppJOScGG2If0whcKwyRhOPWI88RKGmBPUw8xJWLZZzkGVP7y1PGVN6pMdjNM3Hn/88YH62RXIq+NirKIMGE+RPkV9hjiEoV0w96FeM8fDDWMJqvZgiPJzHw4MTY1vq/II4woSCpgDkQ4OiEgDfSLSguj/UN1oxOGeqeugXKnTxijA3AE1GrQ5xiYki9Qaq8vOc8vMicr2FfWUseFWxmxFGSFhlHpIneIQGiYC6iKMOcwJjekH5jnK32j77bdPpCRZX8/ch3ZHHYZBPDtuMPeqp+1a+GaSR1TIMN+DiId+hXiQEAADqI0l5seb9Ks23yIvjJ307dRNGLdgCvdzNq+mxoeTfWbOZlKiYNhibGH+hfQo5qIwpRYRzND0SdBFF12U4MU6A8ZdmH7pJz1DppfuURRmK+zLzkXKjAGtmN+XafPgx1h8xhlnhH322SeBE5P6RbkiqYi6Qr/cValMnfR5om1Ym7H2zdjrGcu9+0afG90PKFsvG01fK923aj1UK01l63618Mv0VzYHIHzmEow1jCPsA7GnQz+YxwRfLT32rdY424r1m8WFSdptjGROhqp6xkg/X6+3f+jI8iKt1DvarM2dWSfDCI0d4zTfyxJjJf0lxPxul112ScZlGFBhuLExu2w8ZfwzrlofRjjg4Jm+sLO1F89Gvu6YXVeYl5N+GJpsr5FLB6y56K87mljLs9ds62TGRn6emCfSX1j6/Dc9CwEhIASEgBAQAkJACAgBIdDDEYjSBtr06/kYRHHIbbEqJ7+DDz64sMzjhknqLkp1qHAXmTDa4gIy/W7heTMe7KXf4yFT6r+e+OOGU+o3bu6mfn39jJs6qZuoQqfCTTzASL5Fxo62uJmVuvPps+e4QdQWJRJU+Ld4osjnqn4tjHgoU+G/njxaHLXMeEBRVxriAr8iDRZuZBBI/Rfl09zmmfEwMPUfJSLkxmH+msXL/EemhDQuwzZrxoPYtqjSo106yuDUSB7j7dGqaYyH+G1Rek/qhnZk+YsHYW3x4C79ls2bvVN/44Zg6s/81zKjZJ026ryFExn2csOIzCGpG9zGW6u57qyNx02rdt+pS/HGZEU4hBUl1qRufTuslvZq8RT5o0+xfEbGmzROc1+mPlgYvl6QxihJo108Ph2kx5e3hVPLpD5bXuKme0UcRx55ZPrN3HiTNMZN0NQNdcDHV0854T7egEzD8OH7Z8o7MvNVhB+lq6X+IgNSxTefjp///Oepu8iwUOEOXCNDVfrdx+mfCSObPx9Htv+JErYq4jG3Vt8Iu6jum9usST/r05R9ps7Hg8jUjQ8/Mom1WZvI+vPvcbO4zfe1UbJUGl6UGlKRJ19HvZ9suhnnLI7sN96pt3lpiwxCbeAaD09S/1ESSEUa8sLzdt6vpQHTzwssbvov7zf7bGWX1yeNGzeuDXsfR95zPCCoGoePM0rZS8OLzHd1+6PuWdzxpnHqL6rTSu2z7cDHW+3Z14conSoNu5of/435kqXNTPD3biKzRsVYYu6yZjxoqPDnw8h7bmRuRFsnf9k4s+/MceLhZLt0RAaNqn6pS75fisxOFWGUmeda3rN9Ujbt9p6dQzbbV1i89ZSxuc2anVlGtAHDoMhk3Hn44YcryoY0Rya7Nt+vFfmnDmXnvo3kEb+14onSddJ80Gd6TCNjVF1tKUpMzJ1j+LDsmTT5PiYv71GSVJom5gjmF9N/y/OLHX1xtTHdh8dzvZhWW1sSTrNzEfyWHQPKzO8Nj2bbvPlnjC8qE+yZ1/txP6oJrihbCydr1lM+ZdbeZeukT29Uy1uBQWSsriuPPgx79nOLMvsBZeqlpSVrdnSZWHxl1kO+rlWbYxJX2bpv6c2aZfqryAhRUZeybYv2Zuvm7DzIz9cik3e7OlhrnC2zfvNrS+as7C1k0+7f4wWVdunzYeStkzuqvCi/s846Kze9tiaqtu715e/nu379E6UK1pzvR6bhNA2UhQ/XsMuO197NO++8k/pvZq7t2zfxscflw7dn66Nww1zD7LNmmXl5vWt1ysewiYxM7dLCvNyvcUl7lHycuCsqK/JhYZbBm70C+mFbB1qYmLTFKNm9LV60SONqZj8mi7neO/9cJF5+alfvVA6dXw7CXJirDqgOqA6oDqgOqA50tzpQ/vpMXFmIuj4C3NSqh6rdwEeSx7/+9a+AVI24IVQRXNxAT27wILY4j+qN3/xyOz+PuFFvVJRWbuUhyj4ubhMpR+beTL5dddVVhdIUkPZgkp7Mjzfxj8qG7I3mRvPow8w+77XXXiFuPhVKguGm9tNPP52qZsv6L5uWRm7WNYuXpRlpRkiPiRs7ZpWacfMkoO6L8pprrrlSe3sog1MjeeSGGqLxvRQSS8N+++2XSINAgouRv51HXeYmPFJbyE+WCDMetCY3/Lyknay7ondudaOSx8ikfdm7mV7yEBITiqSm+DZmfs1EAgm3IpHAku0DzA3pgWiH1QiJNY2Sr9ceYwunTH2wMLgpb8Tt0DwJL15VDW5N9Lz5q8f09S/b3yHN6IILLsitb0h6QOICYvmLqJ5ywi9qEhHdz43aLFG+3JREqtBCCy1U8dnKuMIy5yWbL+8EXOMmeCK1KW5Y+k/JM3WUfgFVedXi49auqSfAYzyUaBcWque4+QxVq/vtPP7PAqkEl19+eeI362a33XZLVBIV1WdueKNqLzIU595wjRu+idQn+hffpqrl2dedbHr8e602SF3n5i0SupBuRNtGOg/pNalHFl5eO7BveSYSWJBqgvSTIrI81kpnEbaES7+LpBavvsbHx81o0nHooYd666rPXnKJV0lT1VP86CVuIR3IqFqfam5qmYZVLXdF3+MhZ6Iy0dexrFskiSEJwCRPZb8zhiBlh7rcCPl+u5Y/8knfx7if1y8wXtL/IaUgbwxAkk3RWI2UTuo20haLqMw818Jsdk7UbF9h8dZTxuY2a3ZmGa200kqJhKF4aJhNRtKXMyekX8qbLyGhyyQe5dUPxjJURKM+JSsxrZE84pd5J3PtLFEHkRqwS5QWYe0pux5ByhPSQZg7mhsLh3ekFDLHZ+5Xb99KmhiHUDeXzTtjIFKXkG5YRKhMpf7nzVcIj7QiWc/PJ4vCMvt6Mc3iY/7NbHYugv+yY0CZ+b2lv9k2b/6RPHXEEUfk1hUkd6Kizvd39Y4H9ZaPpaNozubHMF+WZeukxYuJRDZPzaiR9P55LrsfUKZeZtNi7x1dJhZPmfVQvXNM4ipb9y29WbNMf4WEriOPPDJ3bYOk2MjwkY0uffd1PbV0D7XG2bLrN4uKsQ41zibNzewxGYPo771EQ/vu65fvM+x7R5UX4TNe0l/5NZnFi+nrVVFfg7u8dGOPlCAkh5Lv7LjK2o5vedKQ8Fsv1Sr/WuEgZc6nrSg9fv5TTSJymXl5q8YJwkE9OfhDzBOQsg7VG0fiOOevFt7Mj+iHkZaOml+kaTKPicxY4cILL0ykn3t1v/XOp3KSIishIASEgBAQAkJACAgBISAEuhkCM8CJ1c3SrOR2AQS+/PLLRI1WvEmTqC5Cr3xXpXj7KlGpxEYJB1rZw45q6UbtBOqYUB/Bxj8bTX7TqJrfVn1DZDppQLUOOC+wwAI1mUZaFXej4ZTFK95CTkSts9HBBkojZdUZOKHyg80UfmyYoxqv1qZMFsPY5yZthzZEHqsd2mf9dqV3VL98+OGHiRoUmM7Kbm61Om+dUR9anea88MAY1VBslNJ/NYpzveVk/ST92/zzzx/mnXfevOR0iB1tAcYj0kA/DYNfvfmMN0mTMYjyBiNUNWQZZTgkZ9MbgjEMsfrN0sSJExNVSaQPRoRsXLXCZQP25ZdfTsYR1NA02n/UCr+e76htoF5AMK35wwbvH7VHe++9d2LFQRAq+JohyogxlP4TVZsdtfFM2TBW0mbmmGOOZMPbH8I2k/ae6IdxmvKn7haNscztUFEFUyAHUBxUDRw4sFPhQNUpYy39Av0S7c0fGFVLTFtbW4jSAUKUKJLUN/zaQRqqK02NMAxoRYdKrZjnlpkTlekr6injavjV+61MGREHeaTPpu0yvhUxXOelh/KhfhjTKnNjxq1W9y/0XzB80iZoB82MjaSR9kT+UEPcijTSj1PHGa/5NRImfXGUdBTef//9ZAxoJk95ZdIKuzJzkTJjQCvm9+S/TJunX6Y90O9SJtS3ovG5FVi3OowyddLP02C65nJSq8nqVjP7AeZ3esyRy+LQWeuhMnW/Wh7L9Fe0Jebc9L3Md+tdW1RLj32rNc6WXb9ZPOwbwNhB/wYjZ6P9vYWTNTuqvIiHtLJvRXvpiD1C6kSU1pOMy5RrI3OHLA7d5b0rzMs7Cyvmd6znINbJpnY6L35UHpoawigxK/eiZJ4/2XUdBLgwjNpwkRAQAkJACAgBISAEhIAQaAQBMTY1gpbcCgEhIASEgBAQAl0Ggai+JGFWIkHcIEXqQZaQ/IR0DYibnquttlrWSa96RxLC1VdfneQZiSFIxcoSB5TgZEwDSHNaZ511ss70LgS6HQL1MjZ1u4wpwUJACAiBbogAjKhIBESKGYRUDqSeiYSAEBACQqD3IQBjHIy9MGVCSNBEY0CWkMjrpUxG1Zl1X4DIhqX36YeAGJumH/aKWQgIASEgBISAEBAC3RmBqTqDunMOlHYhIASEgBAQAkKg1yAA0w23sFFBhgQmozyVDXx77rnnEidIe8lTeWn+e4t5wAEHpIxNJ554YiIRDKYlVCiwmcyNVyQ02YYy6vLy1Bf1FryUTyEgBISAEBACQqB1CMDMhNQwpHKgOtKYmtZYYw0xNbUOZoUkBISAEOh2CCBhFbXXqJWEttpqq0SCMOtRVDEi4R0GWC4qGCGNuV6pruZHphAQAkJACAgBISAEhIAQEALdFwExNnXfslPKhYAQEAJCQAj0OgR23nnn9BDMMn/88ccnas7s3ZvPPPNM8rrZZpu1VA2Fj6M7PY8cOTIceOCBCfMS6b7iiiuSX14euCF7wQUXNKTmKC8c2QkBISAEhIAQEAJCAARQY4k63iwdd9xxWSu9CwEhIASEQC9DYI899gh33nlnuPXWW5Ocn3nmmYUI/OpXvwqHHXZY4Xd9EAJCQAgIASEgBISAEBACQqDnIdCn52VJORICQkAICAEhIAR6AwLczjz33HPD/vvvX5jdp59+OvnmxdUXOu4lH4499thw++23B26/5hGSrY488siE4WngwIF5TmQnBLo9ArPMMku3z4MyIASEgBDo7ggsuuii4b777gtrr712d8+K0i8EhIAQEAIlEWDtef3114ezzz47MD7k0brrrptI/EOyU58+OtbIw0h2QkAICAEhIASEgBAQAkKgpyIww+TJk9t6auaULyEgBISAEBACQqBnITBmzJhETdqQIUMCvxlmmKFqBpEMAM0444w13VYNqId+BJ+xY8cmKmEGDRoUllpqqdCvX78emltlq7cjQH2Pa58EhgEDBvR2OJR/ISAEhECnI4Aquoceeij07ds3LLLIIoG5h0gICAEhIASEQB4CEyZMCC+88EJ4//33w9ChQ8OwYcPEzJQHVDe0Gz16dLL30A2TriQLASEgBISAEBACQkAITEcExNg0HcFX1EJACAgBISAEhIAQEAJCQAgIASEgBISAEBACQkAICAEhIASEgBDoDQiIsak3lLLyKASEgBAQAkJACAiB1iMgma2tx1QhCgEhIASEgBAQAkJACAgBISAEhIAQEAJCQAgIASEgBISAEBACQkAICAEhIASEgBAQAkJACAgBIVASATE2lQRQ3oWAEBACQkAICAEhIASEgBAQAkJACAgBISAEhIAQEAJCQAgIASEgBISAEBACQkAICAEhIASEgBBoPQJibGo9pgpRCAgBISAEhIAQEAJCQAgIASEgBISAEBACQkAICAEhIASEgBAQAkJACAgBISAEhIAQEAJCQAgIgZIIiLGpJIDyLgSEgBAQAkJACAgBISAEhIAQEAJCQAgIASEgBISAEBACQkAICAEhIASEgBAQAkJACAgBISAEhEDrERBjU+sxVYhCQAgIASEgBISAEBACQkAICAEhIASEgBAQAkJACAgBISAEhIAQEAJCQAgIASEgBISAEBACQkAIlERAjE0lAZR3ISAEhIAQEAJCQAgIASEgBISAEBACQkAICAEhIASEgBAQAkJACAgBISAEhIAQEAJCQAgIASEgBFqPgBibWo+pQhQCQkAICAEhIASEgBAQAkJACAgBISAEhIAQEAJCQAgIASEgBISAEBACQkAICAEhIASEgBAQAkKgJAJibCoJoLwLASEgBISAEBACQkAICAEhIASEgBAQAkJACAgBISAEhIAQEAJCQAgIASEgBISAEBACQkAICAEh0HoExNjUekwVohAQAkJACAgBISAEhIAQEAJCQAgIASEgBISAEBACQkAICAEhIASEgBAQAkJACAgBISAEhIAQEAIlEZhh8uTJbSXDkHchIASEgBAQAkJACAgBISAEhIAQEAJCQAgIASEgBISAEBACQkAICAEhIASEgBAQAkJACAgBISAEhEBLEZDEppbCqcCEgBAQAkJACAgBISAEhIAQEAJCQAgIASEgBISAEBACQkAICAEhIASEgBAQAkJACAgBISAEhIAQaAUCM7UiEIXRexEYM2ZMuOCCC8KIESPC9ttvH2aaqbEq9eCDD4bRo0cnAG622WZh0KBB0wXM22+/Pbz++utJ3OSjb9++0yUdnRXpddddF8aPH5/kk/x2N3r66afDI488kiR7/fXXDwsuuGCnZ6G31ZlOB7gHR/jee++FG2+8McnhMsssE1ZZZZUenNvGstbW1haeeeaZ8PjjjwfGF/riHXfcMSyyyCKNBSTXQkAIFCIwadKkcPnllyffF1poobDeeusVus378MUXX4TLLrssjBo1Kuyyyy5h+PDhec4atiubroYj7AEexo0bF/79738nOVl11VXD0ksv3XCump1TdZU5fFGGu/tctyhfXcFeY3VXKAWlQQh0LALqQzsW3+4SeivmGd0lr70hnWrXvaGUlUchIASEgBAQAkJACAgBIdCzEZAqup5dvh2auylTpoTll18+PPfcc0k8l1xySdhmm20aivPggw8OJ598cuIHRpXllluuIf+tcky6r7322iS4d999N8wxxxytCrpLhgMjxZNPPhlmn332AJNFd6Mzzjgj7L///kmyr7nmmrDJJpt0ehZ6W53pdIBzIrzwwgvDTTfdFK644opwxx13hLXXXjvHVaXVUUcdFd56661Ky/+99evXL8w///yBg/0VVlih0/qfxx57LKy++upJKg466KBw9NFH56avp1nCCHHXXXcl2aLvHzp0aEUWOSg98MADwx/+8IcK++nVxisS0cEvMAjDJAD96le/CvPNN18Hx6jgezMC77//ftL3gQFjGfO3RujKK68MO+ywQ+JlySWXDE899VSYYYYZGgki123ZdOUG2sMtr7/++rD11lsnuTz99NPDHnvs0XCOm51TdZU5fFGGu/tctyhf09u+N4/V0xt7xS8EOhMB9aGdiXbXjasV84yum7velzK1695X5sqxEBACQkAICAEhIASEgBDoaQg0Jl6np+Ve+SmFADfrjamJgF588cWK8CZMmBBuueWWwAb4EksskTBBVTjQixAQAkKgTgQ+//zzhJnt448/TnycdNJJdTE2/fGPfwxvv/12XbEg7eLHP/5xemBfl6cu5uiVV14JDz/8cJKqNddcMwwZMqTLpJDxAOY0aPfdd2/H2HT22We3Y2qCeXbAgAFdJg8dlZCrrroqcHAAHXLIIR0VjcIVAi1BwM/3mAdOnDgxzDLLLC0JW4EIgZ6EQL1rIS53jB07Nsn65ptv3qUlx/bmsbon1U3lRQgIASEgBKYi0IoxuBVhlC2PrpCGsnmQfyEgBISAEBACQkAICAEhIASEQC0ExNhUCyF9L0SAQ6xTTz01HH744QnT0k477VTh9v777w/bbbddYvezn/1MjE0V6OhFCAiBRhC47bbbgjE14Q8Ja0hiGjx4cCPBVHX70EMPJWqVYMBBatCss85a1X1X/IjkH6RUQTDLdCXGplp43XrrramTY445Juy1115httlmS+168oNnCpl55pl7claVtx6AAPM9GPGQ/IjEOV9/e0D2lAUh0DIE6l0LHXDAAeE///lPEi9zm+mlmruejPfmsboefORGCAgBISAEuhcCrRiDWxFGWdS6QhrK5kH+hYAQEAJCQAgIASEgBISAEBACtRDoU8uBvguBaghw8IzqtjvvvLNbHaBXy5O+CQEh0PUQ+Otf/9ouUf/4xz/a2VWzmDx5cvA/1B49/fTT4ayzzqpgvPzb3/4Wdtxxx0TaXLXw9K21CDzwwANpgHvvvXevYWoi014qlRib0mqghy6KAAyTzPuY/zEPFAkBIdB7EOjNY3XvKWXlVAgIASEgBISAEBACQkAICAEhIASEgBAQAkJACHQ9BMTY1PXKpNulaIYZZuh2aVaChYAQ6D4IfPDBB+Gyyy5LErzGGmuE2WefPXn+y1/+UioTSANCTeZuu+0WHnzwwfDLX/4yDe+GG24I5513Xvquh45HwFQGUsbdUVpWGYS8ZCoxNpVBUn47EwHN/zoTbcUlBLoGAr15rO4aJaBUCAEhIASEgBAQAkJACAgBISAEhIAQEAJCQAgIgd6JgFTR9YJyR9f6Y489luT061//elhooYXa5fq+++4LzzzzTGK/1VZbhbnmmqudG1RBjR07Nsw000zh//7v/xLz3//+d3jhhRdy7Sw8AiL+888/PwlzkUUWCRtuuGG78LH44osvwlNPPRVIz3//+9+w6KKLBg65V1999VJqGT777LPwz3/+Mzz++OPhjTfeCKRhpZVWCt/61rdC3759c9OSZ4maCKQUgAOSX8ByhRVWCJtvvnk7VSyoaUGdBPS9730vNx7SBNNGv379QlaVn8WPpBriWmCBBcImm2ySWKNu6ssvvwzDhg0LG2ywQRg/fnzgBjW4kTaYNUjXpptuGmaccUYLqmGzkfxmA3/11VcTZpFRo0aFMWPGJGldccUVE8k4w4cPzzqveG9rawuouiD+l156KamPI0aMCN/+9rdz62aFZ/dCvKgsI4xPPvkkDB06NKyyyiphs802yy0P5zW0qs74MP2zhY8qn9deey1JG/jQ/qgP//rXv8K4ceMSL9QN7CDcw4QDbb311mHgwIHh2WefTcqe8ofpZ+mllw60ddpPLWqmjLP175133gl33313uDO2DcqOurfttttWtNnRo0eHm266KZGQhNoi2vSaa64ZFltssVpJTFSqmaMf/vCHAdUu5557bnj00UeT/mK55Zazz02bffr0SRibaGvHH398Es7BBx8cdt555xT7RgKn3lP3XnzxxcDhP/WX9rvUUkvVFQx9IflEohR94qRJkwL1A2wxjbnLArvkkkuSOvvwww+bVUCl3ptvvpm8048uu+yy6TcePvzww6TeEAc/wvzKV76StNHll18+6dcrPHTACzh56Q9EQVpsvKBcdthhh9C/f//C2F9//fWkbuHA95N5HsADpjVomWWWCSNHjqxwRn9Mv0x9ZayYc845w8ILL5z08bSrPKIN0QYh2mSRCiFr0zAuffe73w3kzcir8mKM9ZRt8zB9oTbxjjvuCODHGLD77rt7L0mf22zfVxFQfJkwYUL4+9//nljbmJN1w/t7770Xrr766uRTtr5l+4xmxyzKhDpO23/uueeSsY56TXx5c5uyZdMM9uBw5ZVXJukjvUg3ou4wfhXVjTw8p0yZEox5c5555knmK1l3EydODBdffHFiXTS3QjIdaimhlVdeOZn7JC+ZP6Qv0RbvvffepCxt7kU7yc4jPvroo3DFFVckIVQLM9ueFl988aSPYf5Fu6qHGklXUXidhWU2v53VfxTl2+xbNaey8KqZzP1vvvnmdE3BPGTLLbdM+ttq/vhWZs5WK2z7Tr/JXIm4KB/mo9/5znfCvPPOa04KzUbSZ+ujamuh1VZbLW1H9BVGzPuNubdoTUb4zLtefvnlZCyhPTEWrLXWWhZMhdlMX+YDaHasbsUckzGe+SV5Zo7229/+tqqUYL/+Yr5fTWUx8wHmBczTtt9++wrpieS/0fR3xHjZaP4t3WXnJYTDXJTxlvUz+wnMWxhzmXczf8rOV/DjqZE24/3V80w7pj2z7oUYi5jDkjYvBTMbVqPza+8fldjMv9jXeOKJJ5J+g/hs7uzd5j032m7zwqjXjn6Y9SVzTubR1HHGeNLAHJd5J/sFrNfy5k/1xsP65JprrknqyCuvvJL0q8wV6btqrfF6Slk007+WmSuWXb9l5yrNzM3YW6EN0kdSx+gPGNPqndsV1S/2FalPtGvmf6zrqKfUp/nmmy/XG3NuMCEd7FEW0YUXXpj0aewHbbzxxsHPZRsdgy2OMmE0Or5YnFmzTBoIi3GLtdU999yTzI3Ya2CPhrm6X59m4+W9I/v4vPhkJwSEgBAQAkJACAgBISAEhIAQSBCIG4Rt+vVsDOKBZFss7OR34okn5pZ33AhP3cSDtFw38XAicRMPv9viAjhxEw/9U39xgyOx+/73v5/aWbzejAfmafj7779/6jYyMrXFw4/03fvhOR62pf4aqbNxod4WN0Jyw11yySXb4qZM2xZbbJF+j5so7eKJB+1tcdMydZNNG5hExoIKf1GVUuqeOLJpjoeN6XfCixsD7dzETZ3UDdhYGBb/qquu2hY3m9uI3+y8SbnGw9/Un/mnDHCHP7PzZjP5Nf/xoLXt5JNPzk2Ppe2ggw5qw5358Sb4ky9z603SS/304cfNr3bhEHaUwpMbBuFRH+ImZDt/lo5W1BkLK8+MDCuFZUadpC0U1cnf//73ab7I+49+9KP03WPF86mnnlqYxzJlbPFQTtRte/cmGMdDt7a44d1Geftv/jluRham0bDz/VNkFmyLDDtpeD//+c+r+vdt38KrZsaN0Tbr60hnZA6pGn5eWHvuuWeaPp9Xnn/6059WYAY22TDiQWibz3M2jAUXXLBd/fX5zLrn/cADD6yI58YbbyzsF3G/0UYbteX1hdm0NvLuxwvqOH5PP/30QqwsH/Rx1eKJh5JpGPQRkYmx0P1xxx2Xuj366KNTd9TTo446Kv1mcXuTNkn9y6Zl3333Tf1V61e22Wab1F02nCgtLPmW1yf7Nh8ZVJKy8emKTFJpmsr2fdm88R4ZLNN0+7iybuk3LV3Z+mb2zY5ZxEXfb+HkmWeeeWaKg6WtbNk0gj1xnn322VXTmJ0nWDqLTMYDy6vNu7zbeHCZfqdf8N/smTgtDBsTfJuhXsaDztSNuTVzu+22a4uMuBVhxwPz1D1jkMXlzT/96U+pGwvLm/vtt186lzR/ZdNl4eSZHYUlcU3P/iMyYqY4059m896KOVU2THvPzuF/8pOfpGnxZc0zbdH8Zc2O6LeIw891I7N9W2T4LkzfRRdd1NL01bMWiswFhekx/Chfj1c8fC2cI+Nn3XXXbYuH1hV+8N9oX+bj5LnRsbpVc0w/3zNMIkNJu/z59Po55+9+97tCt/EwuAL/yHCbum02/a0eL5vJP1iUHfsIgzaz/vrrV2BkZYD51a9+tS0y76eY+TLoqDZNHMyfIuNtYbqYD9sc06eJ52bm1xZGZApqY5z1GPhn1v2+Dpk/zGbbrQ+j0We/jqReMn/z6fXP9A954fs+NO87ezPV1h/ZuaAPoyeVRaP9a5m5Ytn1WzNzs+w8g/1EX3/8c948xJd70XNk9KpaR4njkEMOaTcfJTyb3+WtoXx8fCcc24tsZgz24fHcTBjNji/ZuO290TT4dk0/7/c9fFmCa2Ssze0bOrKPt3zJ7NlnFCpfla/qgOqA6oDqgOqA6oDqgOpAmTowTVxAXMWIeiYCcZM7zRg3XrPErS1uDBkh5SNL3GLiZhbE7ddqNzRRqRM3DtpJFDG7PGlQhBsP/FNpD7iNG2VYp4S0k7gRkL7X8xAPdBIpB6Y2IesHiQ/cJOfGcxERJ5ILuLHqiTQacYOT25DnnHOOWSU3wewFCQhZ4laUJ26dZsmXyze/+c3s5+TGJTfOiB+KG64VbvCPJA9u69dLzebXwv/Zz34W4mGXvSYmN/Y9XieccELYa6+9KtzwghSqH/zgB8ltWP/R/JLPeFgUuI1djY444oh2asQsDPxRH5DWhaShLLWizmTD9O9IsiJuKzP/jWfqJBLAcFeLkCjk61y2zcSD4+RmbjacsmVs4XEzl/ZjlMUYqTSReSRQ3kbZNMZD9eTGp33Pms8//3zaPxEXEk/iYUraPyAJhhu/rSJuJiJhzQipN43QKaecEuKGdYUXjwvfqZ9FBKZISPFtH/++bXMDOzI+JdK7LBwkEvh4sOfdfv72OhKJ6E98v0i5+LJBYlo80CqspxZvWZPbtZZGH5bZYWalxXh3PDOmcOMcol1xG72ILr300vQT0hmM9tlnnwpVhNgTtyfqAjdYGTNbTSaRqtbNWNQlUjZFVKbvKwqzlfZx8z0ZG63/8/WaeIrGrHholPT9lhbGFD+3wT4eKqbS1sxdK81a2CORLjI1VkSZrUPME7jhXi8xVhghHSJLSNI0ol/g5nSWkOpihESXLDEeMOYYZcsENaCMJY0QYzTS9TxlsYhMVskNfG6K51Gr09WRWE7v/iMPP+xaNacqCt/bH3744eG0005LrbLl/Yc//CFE5sP0u3/o6H6L/ob5iF/fZNPHuG/SMH3aeG4mffWshRjbSEc2LWaHadI6SQeSUZAuhcSYImL8Y55M2RdRrb4sz18jY3Ur55jMERsl+lkjkzZo7968/fbb01dUEts8qVXpTwNv8oH5YDP5bzK6Cm+shZCA5NemzDvjQXfqjnUsEkSRwJilZtpMNoy8d6TdgklW0qd3y9wWqbDZtWKz82vCJq/sBTDOQrRN5iB+3kz/ZnPRxNH//lrVbn2YjT4zN/FtIdvn/H97ZwKvx3T+8RNEIiELCUESEsS+NaSWKkFLadVWpaJatJaqpSiqtS9FW7XVUvu+/Gsvse9bEWLfBUGIiCCySfKf77meuc87d97lvsvNTfI7n8/7zpkzZ5vvOXPmzJxnnicRQEq1mVaaNzzRUuqfJbL5MnfjXp91c3JblBtfa5kr1vr8Vo+5GRqCk4+K0ibNzhl///vfB/+slUYs4WEeuNFGGxX0UaJn+1PycUrBM3qJLCs61Np7cF6mrc2jEfeX1tbBzoO5EZqw7B0v45lnzjsp3vuiESrrGjXGZ8vRvgiIgAiIgAiIgAiIgAiIgAjkEZBgUx6VOSxskUUWiS/jOC1eaGSFAPyiF3FYvM3G8QtxZg6NuHnuH//4RzRjcv3116eHEXZB5TY/zPHkORY0UeXOC3tekiHYwUIeYTgevostiuTlN23atChsZC8hERbg/HkBO3HixPiyFnNdlIUK8TwHBwSDbBE2+cIpzYN0yReh0VSVpU2+kE0XFjfYYAMLzl1o9wuSRORFV9b5tslbkKRe1IOXaKjs5sVE8gVVasaJ/Fjk8Is52TL8fi3nSz4IwLF4ZQ4zOtSPxWxekqMq3NzFF1/cQkDghBNOiP3P4iC0QvvRb1D7b4urpRb2SWOmxHg5c8MNN8SyEWJCzXbyBWvMHlYsEMHLXD36jOWVt6XfIZwDE1yivSS2DS+MeKlHe1M/jmcF6fLyw8QJC/ykI2+uGc4r0baTRj/88MNTP55a29hnRj35nXfeebEtaScY20tO2i7RghOTYFoFNfHUkcV3rkdz2cUHC2frX8SbenkEK3feeecYjfL9wotPW60fE47mMCVXqWNsSzQFpNGPPPLIaI4HLlyfNn6Vuh6TL13T9AgWMQbSd2lXW0QgAte+ZwN3ymEsMJdooEjHXQtHyBFhM3MIISLYSbvwY/y1hSvGxTyhTEtbj+2uu+6a1tHyY/GMc7FfOdOVpPOmPM1EluVnW9rSrisWpDDdhbvtttuiaUOLx8taXjxTPmManO1FL+2QfDFsUeu2ZSxAOCIrGJMtgDbhxTMLC5wPi3zWZ2oZ+7LlNGq/mnsWZsQSLX1plWhf7ilcb4x7sDCHECWLiI1wpdhzzAvOJFpC4jVPH8KsBkIf5hAioh9V4vx9P+9azApeZucVlGFzLsblPFOY3EdoFxYfTYid+5HdR8kDAVqbS7FfyrHgzGKnOQRw4QMLxhruF7YYzFhY7Hqtd70axbI9jB/GOrutx5wqm2exfbuvIdjL/Y72Zhy1ew/p+IAhe79uq3ELwQTmSywMU7dE60sUVvCCI/RbrgHvqq1fJc9CmOyhLvy475lDoNvC+XgBx70b4U37KIJ7BvN7xkCuX4R0OD8cJkH9mBMD3V+pscxFK/BWeq+u9xyTc+M5jHkuc2W4YJaolMNUmj07MqehP+Y5ng/M2fyynvW3vKvdMr+t5vyrLc+nw0Qf5eOYE2Ouj4+jMEkITz4wwFE/fw8mrNprhrSlHMJ6u+22W3oNMFfFzCrC5lwH3P/s2YB8eCanPc3ZXIn91syvic/zrLkjjjgijh/cWzEZzvzb5og8n3J9mavndWt5VrPlOYs60laMfTyTU+9E42KaHcKdecLRaQTn4XnOnlcJRpgSc4XkS/4885lDCCb7nDcnt0Wp8ZVj1c4Va31+q9fcjPd19CXmn/QD5rO0uY2htDvPv61xRx99dMF1w/Mrz6SM98z3/XyUOaOZYG5NGXlxW3MPzktPWGvyaNT9pTV1yJ4H90g+KuTaN+aYArQxjefm7DvKRo3x2bppXwREQAREQAREQAREQAREQASKEqhF3ZPSzj7qwpIXBqjsib+sevY999wzPWZxkpcWBWqHkwXXNE7yQjM95k0LJS820nD6RvIQnKZJBJsKjlnf8WYskhfyM5OFsxbxkpdAaT6mOtrSl9p6Ey3Jw/lMTKdk4ycCAy3ULycv5dJ4mPoyJuSRvFxJj1leyQJggap+eNqxZPE8pict8SycLedreds2eTFbEAcV0Bxj69NafLbF1Lwni4lp/scee2xBeq+C2udb6/kmiwTR1AfmPlCz7vM2P3Wx+lOehaO+38LZJloi0mMWB3MvWVX6Po/kBVhBHskCWos8KAdzSFZW8rI1jVOPPmN1zdtiRsrKTRZ2Z/pryeJn60d83ye9uvtifTJ5MZWWQ3rfr2ptY+pp58A2z8xHsgBVEOeCCy5IGdt5Yl7M8uE6sXC/Rc15shifxoONHWeMsvTJy9Q03I7bFs4Wz8LKbRmHLE322iuVNlmYTNMVM7uTCDelcSgja4ouEXyL1xAmJJIF1hbn5U1YYh4zW59kETnNn/6WPc4YxvXJj3Edxtk4XDd2/uVM/WXTltr394vsfYh0ViYcS+WTd4w+zvVAHmzzzNElL8bTMi666KK0DD8eYB4rL39/P6MMf7+rh8mXvDItzF/z9Oe8+1CtY5+Vlbetp2kd2LX2noX5F+sbieBBbvuceOKJab/GvImdR61tUwl7yvLXPuYOrXy/9fOoP/3pT7lxfHz8/r7ImOCPJ0JCKRfjkyxAF8RJhCHTOJjItPTe5Btp88Zx4iaLxGl6TJFY+lKm6Pz1lAgkpGksLVvmClZnP47VWi9fRtbfKJb+fGfF+EG7GMtksTjl7c+X49XMqbIMs/t+Dk8ZmLjJxmGfvmd1xLSVxWnkuEUZNte1spOF/LRsqwPmZ+mDFueYY45J49Sjfv7eUexZiLr4MSRZJE7rYPX081PmRYzLdsy2L774Ynof5HyYL9ixSscyi19qa6zy7tX1nmNWOwfB7KbVM298wwydzRngaXOhWutf7/tltedf672P+43xy7tuMEGXfOgU77vMO62/1OOasbyyW57XrE5seT+QjcOzth+T/X2r2vk1eVpfYZt9nqcOiZBHOgdJPuxK61XrdZs9v9bs+zaEF3XJpsfMLO1oXLOmZW0M5bx9Wv+skWh0yWWSfBSQ5ovpQJ9+TmuLSsdXP863dq5Y6/Obvy5aOzfz8wz6Cs/5vj3x89zln9mZz2Xj5O1zv7P+xzYRXMpNlwhLpfF4h+bzsvdl2X7q4+C36zjvfaJvm7x7cDavvP1yedR6f8krMxtWrg7Et+sa3lyLeWNa8kFDypu5npXTyDHeytB29lljUFuprdQH1AfUB9QH1AfUB9QH1AdmVR+QxqbkiW5ucF6DC19aeZe8rIi7fC2VPPBHf1Yjjn2JnTwIh8UXX9wnr5ufLwV79+7dIj80DNiXt3zpljx8t4iTF+DNtpx66qlh4MCBLaJ17949XHbZZS3CLcDYsM/X1/Y1tB1ni/YY/yUnX5HZF6JmPo4vWpMFhzQZmjb4wg3nv1pEA5Q5vn5DBTQONdDFXDENH6iWNsfX35W4Ws8XTRRoL+DHV7V5bu21106D+brTHNoZzCWCKlE1tu3btkOHDlHrjfVTC7et9VP2+bJ9/fXXt0PpFlMTJ510UrqPJihz9egzllfedsSIEWkwJlvyriXq5/tTmiDHg8mDvD6JNgzfZ/ii2FytbWz52NabbbMwzFd45/uihXvNIZ6LHWfLWGVaQhKhmNRMCMcGDx6cnjvXHF+N1st5c5l8pV6J40tyG1uTF7sBdfl5Ds0DaIor5tB0x/WDdjO07WUd5m0wh4HjK0oba7Lxiu3TX+waRQvOPPO0nAbYeGtlFMurPYV37NgxanWgToy3eebovIYr+2IaDTJ8rYqj3RIBmejP/qHtBY1K5rKaciy80dsddtgh7fe+rFrHPp9Xo/2tvWd5U0yJQE1s32wd0Qpp/XqZZZbJHq7LfjH2aHixaz9ZXAl/+MMfcsvzfcv6XG5EF8j9wLRkoi3Dm5fyZpSY4+DQsoEWL3NPPPGEeUuOO4xLec6bayw2Tvt0aPKwc+M+xLwpzzFXQEMU2pwYD5MFsbxo6TWdPdjaepG+ESzb8/hRjzlVlnupfeYcu+66a24U+if9AUf/QPMEri3HLerAM0zWYf4zEXRNg30/b8v6pRUo4kELk7lkET1gfjbr0G6IFkZzPDPluWJjWV7c1obVe46JWaNqnNfE5e/9lhfjKXMFHM8rNheqd/2tvGq31Z5/teVZOjOPy75/NrLjffv2Dckifbzveq1sjbxmvHY/tAP75wirF8/kXM/cW/h5V+382voGedFnGPezbrPNNkvnIImgQHq4ntdtmmkVHrTloaUq6zBh5ce/YuY4s+n8NYU2Wrhn3bbbbptq9kJbEFqRzc3JbVFsfK11rljL81s952Zoa7PnUGtPtszVeX9jzr/jsbC87R133JEGo3HNns/SwG89aKA2bc+8Qyt2f8uma0/77e3+AhuebfOuX695levXXCPHeCtDWxEQAREQAREQAREQAREQAREoR6Dlima5FDo+WxJA0MCEQbwZCBYJTdU8i2cISuC8ymGOVyJgUyuYrDCEz88LJSVfIPtDRf1eYGXIkCFF4/lF/GwknweCFMUcAiosiuN46WmmLLzpE2/Oz9qANuGFuqX1C5V+QdJMUWTLJ72ZU8oeszwJr1Too9bzzdaBfcwCoZoeYS7y9xz8Iq1/QbXuuuvmZRXDEOxIvjrMPe4XpBAKQaAn70ce5nwaf/7V9hnLN2/rBddK9ScWx+16zcvHwkrVcemll7Zo0XyH7fhzLFWHYn3a8mFLPXv27OmDoh8hE6s/L2K7devWIg4LBfaCssXBbwOuvPLK9JBfyCYQITcvVOUXD9JEVXq8YEBe3fOyxdyUuXXWWSe+4LX97NZMeGTD8/ZZAMb8yocffhgYr3m56F8w5qVpbRjCUZjywNQdApj+mvALEa3Nt63j77TTTmmR3sQMgbwENzN0vDi3dsVUkjnajb5bzPnrLW+hr1i6eobnCWuSv2+zasa+etaxVF7V3LNWWGGFdDxBWIPxH8FQzCaYgESpMut1rBh7v3iDcHbePYcw7oPmuA9WWncTbGJugRkgc7a4gECJX0j191gzW0Uabx7X8mDLHAihnzzH4rU5hK3LOV8/eHXu3Llokr333juaKsVcqb8nW4J61svyrDfL9jx+1GNOZdwq2Za6ryEkYQuhXjCgLcctxvdizs9F/PXTlvUrVjcL9/Vi3lVsnLG5F+n82GT5sC02lvk41frrPcfs06dPVVVBkC7RWBPTIkzHwr53fo7g55f1rL8vrxo/c+xqz7+a8nwaf7/ATBHCr5heKyaEamkbec34tin1nMicgfsKP/+Rh9XRtpXOr3le8c/zjGWYeqRflZsj1/O6tXpXs020uBRN1qtXr9QENfPk5GvLonE5wDsFey/EPs8QxcYjPiAzxzNMMTcntUWx8dWPx/WaK1b6/FbPuVmpaw+TaOYwo16J8x/+lbpPI4Tn+7Gff1VSTnuI48ewWt/B1Ot81lhjjdysuHZtPmHvNYnYyDE+tyIKFAEREAEREAEREAEREAEREIEcAi0/r8qJpKDZnwBf4vByjy/sEJ5BoIQXBCZIw4MrD7Ys+lx88cVR+wAL3bw89wI2m2yyScNg+Jch2ULswZpwBBoqcV6IZNllly2ahC/M+IrbLwJZZNMWwz4vmEs5BLMsPsJg/fr1C6uttlp8KcBCDl8Hs5CHM8ExNDqxkI5Gm7PPPrvgy1e/IFnsJVne16pWR75Cb62z+pOumvO18hAyQaMJ52mCc3as2Na/7PGLTHnx6asmHOaPe+069lLbH8/zJ+rU0+B69Jk0sxzPo48+moaW6u/0cV4c2sJ1mijj8YvOmUNFF6rr1caU519YZ8u3/byvAO1YqS2a2S688MI0CmPWvffem+7jMeEU/JdccklAq1M9nO+zxQQHs+X4F7OrrLJK9nDBfp7WCB+BF4h8Qc35+nHAx6nVn5gWCddee21ITFMEr9mj1nxnZXrGBcYOzicxuxQ1wpi2Hy/4NmzYsLSavq3LtZsfl/xL3jSzNvDkCYBQbK1jXxtUPRZRzT2LuQpzF1ugREgNDU38mBtw/+Qr8cSkZe5Xx/U6t2LsfR9Cc1MlGqNMuAPBz3LOL6hyD2FewWJWYpYnJoXL0okgK/dsFhsZNywNC9E4hE6KjddecDxGdn9du3Z1e+W9XviJetbi6lkvq4dxYb8eLH3bt7fxox5zKuNWyXbllVcuGW311VeP80Iicb+k77fluOXH72xFEVxgwZTrlzZFCJHF/rasX7ZO2X0/d0M7TCXOL0D6+MXGMh+nWr+vZy3PEZRfbMyqtG5oEDPtiswB9ttvv5iUDy7QiolDSAVNV+bqWX/Ls9ptredfbbmk+9WvfhXQpGLPq2g3Ng3HCBejlQaBsKzm2UZeM177cLm+Vezcq51fJ+YMoyAT/YP79ymnnBJ/lJOYgI0sEKTLXlu+P9V63RY7p0rCV1pppZLRELIwYaXE5FmudjvLwAtpE1bJnId4fBDgn3/m1LbI9gHOHefnC7XMFat5fqvn3KzU+4ti595EIP/fP0+Vuk+T2s+z/FiTn3P7C/XjQbkxLO+9Yr3PiGeoHj16FM2Wd4mMd9557tW8a/N5yS8CIiACIiACIiACIiACIiAC1RKQxqZqyc2G6eyFGg+o9pWTvbBEUxMv9jfaaKP0zB566KHo9wvrpb6kShM2wDNjxoxW52oP3jy0l9IaQMbZF7NWmL2EIg+vlt+O+603C2Hm8mBq5hAw78d58CWkLbLzMhRnbcOXkvbyyYTOMNNSTJuCL78e/lrPl/Pefffdw89+9rP4Atzyq6Rudt7EzTPB5fNgwSnPodmmtc7XsR59plT5vt7lvoitVDNZqfLyjtn5Vtun8/JsRBhmpbxDNT2CgP6HYIM5xikz72hh1W69MOcSSyxRUTb+y9Q8k5o+E2/qzofjRwCSF7fHHHNMQ4Sa+Coa85cIzv3zn/+cY4SajCPjD477nDdHh6ATDi0OCMCYs7Ga/XLt5selcloLLP+22tY69rVVPastB62FCJ6iOcI72vnyyy+P4wKLBKU0Avh09fRX2xcQHq/EoX3CNDDavAyBBVtsMFPDZvLTxk4WH01o0eYalZTn41SqVcrSTJ482bxl7+NpxCo8ra2XFVFvlu15/KjHnMq4VbL185u8+P643S/bctxizlPK+fF/3LhxMWpb1q9U3Thmc7dy8fxx4+zDGu23eraHOSbPT9bu3nQWH0bY+IkAj3ftqf6+Xm3tZ0HbBMS9MAr1QFPRH//4x6gx+IgjjijQPtjIa8bajDYt91yfx6uW+TUfOSCMwvmaWU0rAxOwCNExt/empjhu/cniVrJtxHVb6rmDOuWNz8Xqau1Q7HixcBtXOT43tkWtc8Vant/a89zMc/HPWXn9yPfTiRMn5kVp12E2HrSH+2O1oBo5xldbJ6UTAREQAREQAREQAREQARGY+whIY9Nc1OZDhw5Nz9a+FDPBJjPPgYYmvuxHSIAv/TFvYlpS+BKxnHBPWkA78PB1OOfBCzheJGRfRPoq+i/bfThflCMsUUkeJixGev/iBaEltMmQB3H8Yqa1iVf5z2I8mrFMg5QJPfl6Ncpf6/nyRSuLzDhe2uy///6BL84QDuHLY8I4L4RTso6v/e0Lar7KLfX1f7HFay9cdu655wbjmy3L73sNYPXoMz7vrB+NACZ8wxexxTRaIPTEwkEjXK1t3Ig65eV5xRVX5AWXDGPh6vDDDy8Zp5KDJgRDXK/ho1RaFszNYSKrlLOvorNxGCNYiDOHwAJfxKO5hEUJu4b4Uj5PY5mlK7VFYPKggw5KoyAIxHXCog1fbaIFiy9uy71cTjNoZx6EKk3gDVMzCMRwzdn1xCKm1yLmx+rWtJsfazyCUgIX5YQZfT6t9fv6VDP2tba8vPhoEWqkQyPXeeedF/7+979Hk6YIIP7f//1fKrzDl9BoN8TkRp75nka1je9DO+64YxRKrIRDpUKT5MX8i3ZFix8C0ghK4xDmQlsTjrHj1FNPjTxGjx5dYIaqkdo2Y+Hf/nkWfk7k48xqfz1Z+vNtb+NHPeZUrWkrzr+YmWDy8fM2u1+25biFqdVSGhi9eVHmSbi2rF8ssMSfzd2IwjNLJVpZK4lTosiqDlk9a3luqqrgnEQIv6DJE424zAHoA2gb8cIn22yzTUHKtqp/o++X/qSqvffBD03D/Hhm4d0Bz6hXXXVVmj33HOL95S9/iWGNvGZ826DlpdhHSWnlnKce82vKO+qoo6JwE1pzMDPHPdnuxxTHnB1NV3bPtTpzbFZetzx3+PsV9fHOj8/ltOb4fHiut/m1zy/Pb6bL59a28NyqmSvW8vzmy25vczM/ZpR7/+PnWaXe6+X1P8Loe7PS2XjQHu6P1XLw7TWrnjerrbvSiYAIiIAIiIAIiIAIiIAIzDkEJNg057Rl2TNhEY2XVXzBz4tJb57Na2r68Y9/HAWCbrrpprhAZwI2JvxUtqB2EoEFFtM2xQu7Yi9A+ILQvqDKVp0X4F4QpVgeLDTywtecf+j//ve/b8ExjqncXnPNNdOXsph7gS+CZrwk9eZf7OVomkkDPbWer5nGoYoImSBUkHVei4A/xqK1OcyUIFRXzBUTRPOL2XwByAuk1rh69JlS5ZH/lVdeGaPccsstRQWbTOCwVF7VHqu1jasttzXpPvzww9T8BelYQED7WZ579913oykqqOw1AABAAElEQVQqjiFAeNhhh1VsrjIvPwQ5+fraHIvglTivHn/kyJElk3izdT6iN4uIeRRfDx/Pv9j14ZX4TVCVuLA69thjWyQbNWpUi7DZJYCFJ7TTwM60DZiGPM6BxQTv/MJYuXYz7Tekx9SoOUylmSulac2bUbH49drWOvaVqoe/9rImSHy6999/3+82zI/gHfcWfn/+85/jfAZNTmYiBq1GCP/h2qJt/P2exYrW3ncqAcW5soBA/vRDFk5xpqUJv9eoyQKY9VcWHhHabQvnhbXQQNkeXT1Ztufxox5zqta0HwKFpZwXHDLB9UaOW9m6cD0UE2xC85bN9ZmbmwnTtqxftr7ZfbS2WR3RvlHOtFQ2fVvtt7c5JmZKEWzCMRf47W9/GwVi2UejblaTTa31by/3y3rf+zAjy497LR+xINB02mmngTHwIYIJNjXymkGI164BhDP8+BsrUuKvnvNrhOOZo/M74IADotAXHwyY+XAE5+zZvb1ct/BCU2sx9+STT8ZDzBfKcfVCMsxJuGZ8fytWhoXPrW1R61yxlue39jw383VjHlHp+x/fT+2DFfojQqO2b32ObSM0ofn8K/HXen+ppIxGx2nkGN/ouit/ERABERABERABERABERCBOYdA/krxnHN+OpMMAcw54e688870BRwamuwrOo6x6IND2Off//539PNXqeaSNIHzFBMcclHq7vWLOhdffHHR/Esd89qSLr300qJ53HrrrekxhFf8i3LMWxCGQ/U6Ai24rMCEmYrhhaiZUEKQqtyXkzGzOv3Vcr4IEtlCJvU28zjZqhUT2vGCIXwN7FWT+zz4QtaE7Xw4ft9HEcwr9kU04Sz88vNCIvXoM9k6+X20V5lDoCSPBUIvmIZslKuljRtVp2y+XmMSZh8wg8FCaN6P64YxDMeChzcjl8233D4Ln5iTMLfzzjsXaGyw8LwtGo7MXBTXb7FFXl6s+q/dfV6Y2jK35557mrdgi5AmAhyVuDwhFL+gkDXBYnn6l+cWNjttd9lll1hdXnDTFtafWLD24wyRbGzGT9xiXzKzkGxCicT1Y40XEi6mjQthPRM0IX29na9PNWNfqfqwiMViFw7hhGKmYavVIlaqbI6hKYJFN37e9BfH0LiHYDZmccx5AYq2aJu1117big4IVZlJ0zTQeZ566ql437FFRHeopNdrdaR9Lb3N10iMRk0zfcu9hfsbDo0kfrE9Bjboj+vJ+gp19GOaLxITIiwKM24iCDZt2jR/uKH+erJsz+OHH+uqnVO1piEoo5hgJ9ekCf/T3mgfxDVy3MrWneeZYmOXvyf767ne9av0WSiPo5+7+WeO7Hly37f5bbEPCbJp6rnv61ntc1M960N7otkOd/XVV0dtl8wNcMOGDYtb/1dr/Wf1/dLOpZZ7H89fjN/88gSyOcfjjz8+HeuZe5t5onpfM3Y+bO05Gf+//vWvotcz/Y57Cz+0POL8vai182s+SDIeefd3BL5OOumkWA5/mIo15/vTrLxuL7zwwjBlyhSrVsGWDwHsmkDrZTmHhi7/jM+7jWLurbfeiuMR80PTWjq3toW/t1QzV6zl+a09z81MCJA+xHNWsfc/jDO+r6EF25wX9C32cY597GhpSm3z7sGl4ucdy8vDjwdtcX/Mq0NeXVsT1sgxvjX1UFwREAEREAEREAEREAEREIG5m4AEm+ay9rcXUbzAsi8tt9xyywIKLIaYZqIjjzwyHmMhYplllimIV24Hk0bmWGQrpQrf4tVzO2TIkDQ7XpR4IS07wAuSP/3pT7bbYrvtttumYZdddlluHgjGYP7IHGYPss5exmI2x4Ry/IIk8W2ftvnnP/8Zs0AbgzeVls233vu1nC9aNEywg8WbPOGLiy66KGpyyqs3X9JbeoQD9tprrxbReLnsWWcjsFBKX8XxAosvabOOfnjMMcdEDVloyUILhrl69BnLK2/L17K/+93v0kMIGu6xxx7h2muvDddff32s74Ybbpgeb4SnljZuRH3y8vTChr6+eXEJ84tTfoGyWPxsOOYhzznnnKjVxBYeGQMxedUaZ9cwaaj3hAkTCpIjUIfglJVRcDDZ8UKMeVrJWKTcbbfdsskK9k2ogEATbPAREBIzZ2OR7bNF8MILifhj+FmYgAtjE322PTpMXRoHFpvMTEaeIBemetBAYA4hkM8//9x20y3m7Swf+oa/Tr1JyTPOOCNdvLHEMPPm/yy8nttax75SdeEeZF/603e9GR9Lx6KfacWwsHpt0QaBMAq/3//+97nZIvxkzurKflu0TZcuXdI+xP2br81tkdDqxJbFQxYNue+gNaQ1cyLMRJoAJ/cvc/5cCTMzr8w1TNDYm7e0dI3aIlzlxyjGwbzx7tBDD431gxP169ixY6Oq1CLferJsz+NHPeZULeCVCGDOxxg7ffr0gljcX/28zd8nGzluFVQi2UGoAE0zWYcQwj777JMGey2r9ahfpc9C9EtzLHpnnRd4P+GEE+K8MRsHwc+ddtopnd/yIUBbOz9nq+W5qZ71tns89/BTTjklZs0cwfdFK6/W+s/q+6WdRy33PgRg7J6LwECellHGdbvPMa+0fl6Pa8bOIbv1bcP1nDdHRxDrN7/5Tawb9bM2rmV+jWCm8UAII0/wwgu1+/lhrdctbcEHDfz8hzhZNuX26fuHHHJIi2gIgdjHABz0dW8R2QX45y40ZOYJ7pM3z9XMeRDoQEM2bnZtC3f6VXlrnSvW8vzWnudmCHzZuxt7/5OdH3Nv41qyMQchfv9Rpv9w7KyzzmrRPjw/o6W4lCt3Dy6V1o6Vy8OPYY26P5arg9W12m0jx/hq66R0IiACIiACIiACIiACIiACcx8BmaKby9qch9Gsyy568VKWxV37ypH4We1C2Tzy9lEZb44XoJTDiwi0rvCCsNGOr1VZaDVBEraYSuMFGyqqWfRn8a+UGzhwYDR1w5epOPLgZSqLh7ygevTRR8N//vOfNAs0guy+++7pvnl4EepNPvFCffDgwXY4bhEc48WOqdkn0F7IFkRs4E6t54uwgy1uYxYHIQ7aGoEktMCY5pS8U6Df3XDDDVGLA8eJ+/bbb8e+xwIdmng4nrdIavmhCp/2YbGXl1/nn39+fCFP38MUDwtvCL6Y5gDS7bvvvpY8mmestc+kmRXxYL6BL1hNWxMvtvh5R31ZMPUmtPzxWvy1tnEtZVeSlsV4e0HOy2//IrdYegTETBCO9j355JPj9ZmNnxV040vG9957r6A/kIbrk+vaa17L5pW3T7mMCbyY5TpGAxgvYnnhyoIE/dfOLS+9X1BAQIY8MA2K+QIWX/niOk9g0OflBVBhgTAVYx4vjvmqnDHlggsuiElYbGbBj+NosuAaO/300312Lfxoizn88MNjOIIa5OvH+hYJZkEAYzOLu1z//gtd/0LZVwtBEe4FjBkwZxznXsUYjalDrlU/ZvDS3EwVkY/XjIKwGGMeAji0G/lxL80TIvN1qNVf69hXrnzGczOzAlsEUwhj0Y3F83L9plz+pY4jKMO1hbv88sujdh/uwSzcogkLwWUv0Oi/Jm6rtvnHP/4R25jFQ8Ywvo7nfsi9CO1E99xzT4HGL0zocc9rjeOcfX9mnsZilXcmvO7D/LjiwxvlZ77EQjAaGrhfM/4xDnJdMDZmryd/D25UnbL51pNlex0/6jGnynIrt0/bWnszb2PcY2y1+xaacxDKMdfoccvKsS3XHR80cM9jjsW4blpUiYOWRjNjyX496ufvj6WehUyrEOUiSAs7ntmYD7KAy70djUOMvziEEWDLeIdpVOYYZ555ZgFr5g9t7drjHBMTtPYRi42h3Ff8fdw41aP+s/J+aedRy70PTUfMDe0jA94BMMdGMBdT6Qjem+k5yrM+ib8e1wz55Dn6OderaZ9Goyv3Vva5Rri2/TM58zjaE+fvg62dX3Nftedz7mFcV5wzQjuTJk2K7xP8Mz73fnO1XrfMKYYOHRqz45monMlkKzdvy4c83Jv5oA0zXox/fFhjwiKUs//+++clbRGGiUc0L6E5i/QIXsMbzmh04pmF511zaMky02Gza1vYudSyrWWuWOvzW3udm6FRlH7EvAzH+x+uM8Yd7ouMNzw/8zxl7q9//at549Z/mEZe3Gvpj9znEczkGcL6eUFCt1PuHuyiFvWWy6Me95eihX97oFwdyqUvd7yRY3y5snVcBERABERABERABERABERABFICiSaBmfrNXQySFwUzkw4Qf4nmiZnJwmSLPpBoZEjjEDd5kdgiDv0m0U6UxkteOLSIk7xMTo9bmYmgQhrvwAMPTI8nL8HS8GyfLFdONr7fTzQjpGVYHfw2WciY6ZkkZhwK6pF8mTmTOD5Nnj95kTAz0RpRkNbqkXxpNjMRlkjzID875reeB2UkX5jlxrPyk8XT3OPkmZi8SstLNEgUxKMNyIM6+fLx13K+nH/y8jct1+rpt8nL3/T40Ucf3aL8RDtHetynMz+cE01iaZy8vpmYlEqPW7q8bbII16J8GNTaZ7JMs/v0sURDQG4dk8WCmYnAzcxkITg97vtk8oVyGp4IceXWn/KSL3PTeMnL54J4tbQxeRvLUv3P+jvtlT1/209e0se8fD9MhI/S/E888cSiaS0P2yYv6tN011xzTZqOMc7qW8k2ebE/M/nKOE1v+Ve6TV6gFlzreWUmAjdpnRLtSAVlcU3kpbEwxqpkUSCNw9ji65ZoG5qZaD5Lj1u6RGNQjMdxz8qO+22i5ShNT1k+f3+MNInwQsFxHzfr9+N4tk8S1+qQmBeoOM9sGbafHQM4ZzuWt+U8rM9aPfK2xx13XG4+idBsWv+8dIy5yWJ6GqfY2J5Xt0qvedJmzzuvLoQVG/vyyicsWRCYmSzupfXPy5c+ZuHW3yw/Cy81ZpS6Z2X7neXnt7Rf3phYS9u0hv37779f9v5HfRNBmNw+ZKyKbROtWClf8mEcyYtr93fiJEJ6uXESczppXsniT24c8k60RKTxuC9aecXC7XiyqDTTxnffRll/IqiR5knaWutl5Zfb1pMlZc3K8cPP1xPBlgKe1K0ec6piPP2cNRGYTftKtp3Z5/pMTH22qB95N2rcsmuBspPFzpL141rh/ph3rrXWr9yzEGUmApG59aN9fZ0SjUO58Txz5gDJhwEF6Vozlvny8vxWVrF7dVvMMfPqVSose/9KBLkL+Pi0tda/Le6Xvr7F/LXc+xJBuZl2/Vh7520TQcCZiSaeFixrvWaKnRPhfg6dVyfCEoHAeD/x+dQyv77jjjsqmiMmgpu571WqvW79ufJc58+nnN+/2yg3PjNmJB8htcjf+gBjaLY8nj94v1CsDSw80Vod55A+/ezYFr7+WX9rxtdq54q1Pr9R52rnZuXmGcYj0cyd9gfmHhZeyTb5QCJNa30nb8u4lpcf70/y4lsYc1j6Mfv062weld6Ds+n8fiV51Hp/8eXl+SupQ6nr2udp71B4t+fD8TdyjM+Wpf25a61C7a32Vh9QH1AfUB9QH1AfUB9QH6ikD8yTPNzJzWUE+FLZHF8V5mkN8KYYiGsmUCydbcuZD0GLAyZ4khcJlqRgi+Ykc3lfztoxvriq1vF13FFHHdWiDtSJrzYxUee1Hvg6USb1woTaJZdcEjV5ZOtBPny5iqYWvujMc+SJGnZz9lWa7duWL7PNJQsGBWq2LbzSbam2sXPM41rL+XL+fAHKV3LZNud8OJanUcKfE1/LY3rIf3Fmx/mS9OGHH46aUCzMt52FoSWDL3d9X7djbDH/hukir9nDH6+1z/i88vyYbMDcYCKwFL94TV7Sxa9bk5eWsS9h1i958ZUm9deotV16sIiHL2aLuVrauFiexcJL1cOO+X7oNa+g5aNS578Y58tOc6WuA+LQZxPhnWiiIXkZGO68886wxBJLWPJWbwcNGhTzyOvnmKREC4P/sjTbf9EqcOmll+b2f74IR2MN/aOYQ1sR2tHQ+JC9BknDcUzIYW4Ok2reYQoS7TfJYrUPLvDzlTZfjeOSRZPAdV2pK9cWleZTSTw0JnA+5vJMhNoxtmgioP1N85c/hp+xGW0kaCrKc3xJDdc8HmjxQ7sVmg6qcZVe8+Rd69hXrH70U77sh2Nev+ELa/pGLa5U/2AewT02by5CfbhvcG35+6zVpZa2aQ17NHSh1Yr7S55jTEgEYFKNZ3lxSoWhocpf03ljDOkxhWeumMYWvpA3Z+Ow7fttdnyyY+W4YAqD68U0Zlo6tpwDYyGaKJgreFdrvXxepfz1ZEk5s3L84Ot5c3ntVY85leVfasuYizaRvHkX4yfXBppU81yjxi0rizkG1yXaXvLmlhxDGyH3xzxXa/3KPQtRJtpsGR/KjaNonuSZxO7Dvr5cW4nwbdRw0bdvX38oaqotCGjgTlvOMSs9Dc+VPuBNF2XzqLX+bXG/zNY5b7+Wex+axrjnMufJe7ZFKyHaKHle8/clq0et14zlk7fF5CXay9CumXXJgn1IPn6J13NW62ot82s0L6P5hfE0e77so+0oWeiPzxL+mc3qV+11683PUYdqHRoeGV9ot6zjWQvNV2jqyjq71/vnNIvDMZ5X4J2dFxKH64xnFjTLZe9Ns2Nb2HnnbY1T3rFsWLVzxVqf36hHtXOzcvMMO8dsO1t4Jdu99947XkM8W+Y5tMglwtFFtZmjkfHoo4/OvTcmH0rlmq705VR6D/Zpsv5K8qj1/pItM7tfSR2sv+Zd1z6/Us+tjRzjfR3kFwEREAEREAEREAEREAEREIE8Ah2Qfso7oDARqDeBL774IpqQ4SG62OJBvcv0+U2bNi2MHj06jB8/PvTu3TsuevtFNB+3lB9hFMzfYLqpV69eoU+fPm26YFCqbo04Vu35wufNN9+MpopYYMFMQGsc6ROtJvFHn0F9d6mF72J50+8wg4K5AF68ogrfv6Arlo7wevUZKyP5ujUKM7HPi/BiTKZPnx7ramrTMfeU96Lc8q11W20b11runJ4eU3eMOYwzLBKVEkjKYzFhwoSoep++glkfexGZFzcvjP5LHlxLLPDkpcdMZKIlJY5jjGWV9LOZM2cGrqvu3bvnFdsuwrjWMFvCNQQ/2qHcC1yrONcbYzz3CoQ+EJBqzblOnjw5mlGAN+1eablWfr22tYx95eqQfHEeEi0NUci00n5TLs9Kj9OfKZ/ri3sL9/NKXVu1DeVw3+H6Q5C1f//+uWaPKq337Bwvec6ILLieuAdnBS5m53PLq3t7HT/qNafKO+dsGILZiebDeO9hHC4218mmY7+R45aVl2iHi32SRVjura15Jqm1fqTn3lzqWYj7F3NW2oznjGL3ZTsP5rSMw60ZC41FW2zbwxyTjwkQ6MZhxugPf/hDxadea/1n5f3STrLWe59d0/Q1BBRb8zxW6zVj55C3pW2Y31EfBLAqvZZrnV9j6op5ImMb9/di12henVtz3fIBGoLxOOrcmvkkgsOYZ8cxX2MujONejEl0G/+Yo9TqMHvNMzvnRh9h7mvllct7dmmLcudRzfFa5orVPL/5OrbnuRnPbsyhMeWMMBYfHLWm79PHmYNwfTLnzHv+9Syy/krvwdl0fr/SPGq9v/gys/5K65BN19r9Ro7xra2L4ouACIiACIiACIiACIiACMwdBCTYNHe0s85SBESgHRB47rnnUm09vPB95pln4svfbNWOP/74gHYeHNqE7r777mwU7YuACJQg4K+hI444ImrtKxFdh0RABERABERABOZAAiwcL7/88lHQmdNDICBPO80ceOo6pdmcAMJaCHig5RCtcq1xxQSbWpOH4oqACIiACIiACIiACIiACIiACIiACIhAeyPQbAesvdVM9REBERCBOYzAGmusEU3xofKfrxExXTBs2LBoGoCv7d97771w8cUXR5MAduqYFJMTAREoT4DFSr7SxeSRCQaSKs8cVvncFEMEREAEREAERGB2JICmCrTUPP/88+Hss89OhZowgSWhptmxRee+OtOHEWrC5ZnZnfuI6IxFQAREQAREQAREQAREQAREQAREQAREIAQJNqkXiIAIiEAbEjj55JPD9ttvH02M8cKa/WLuxhtv1MvsYnAULgIZAr/85S/Dgw8+WBDK9YUpHzkREAEREAEREIG5g8DTTz8dPyTwZ4tZWQk6eyLyt2cCmIszt/HGG5tXWxEQAREQAREQAREQAREQAREQAREQARGYqwnMM1efvU5eBERABNqYwKqrrhpGjBgRDjjggLDooou2KJ2wn/zkJzHOlltu2eK4AkRABMoTwNTjBRdcEA488MDykRVDBERABERABERgjiWw6aabhieffDL07t17jj1HndicReDtt9+OJ4RAHqYU5URABERABERABERABERABERABERABERABELoMHXq1JkCIQIiIAIiMGsIfPbZZ+GNN94I06dPDwMHDgyYpJMTARFoPYHXX389mptZfPHFA78OHTq0PhOlEAEREAEREAERmK0JTJw4Mbz00kuha9euYcCAAaFLly6z9fmo8nMfgZkzZ8ZnQ+ay8847b6sBTJkyJaYnofp/q/EpgQiIgAiIgAiIgAiIgAiIgAiIgAiIQDslIMGmdtowqpYIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIzM0EZIpubm59nbsIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAItFMCEmxqpw2jaomACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIjA3ExAgk1zc+vr3EVABERABERABERABERABERABERABERABERABERABERABERABERABERABERABERABESgnRKQYFM7bRhVSwREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQATmZgISbJqbW1/nLgIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIALtlIAEm9ppw6haIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIjA3E5Bg09zc+jp3ERABERABERABERABERABERABERABERABERABERABERABERABERABERABERABERABEWinBCTY1E4bRtUSAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQgbmZgASb5ubW17mLgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIQDslIMGmdtowqpYIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIzM0EJNg0N7e+zl0EREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAE2imB+dppvVStOhOYMmVKuP7662Ouffv2DRtttFGdS1B2IiAC1RLQ9VktOaWrJ4EvJ00Lr3/4ZXj9gy/DV5O/Cf17dwmbrbl4PYtQXiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiLQKgIdpk6dOrNVKRR5tiTw2WefhT59+sS6b7fdduHqq6+eLc9DlRaBOZGArs85sVWbzun2Zz4Mj786Ltz3/MfhnL3XCqst3aPsyd4zckx49u3xufHm6dAh9Fxw/tC7e6fQr1eXsNpSPcI883TIjduawHc+nhh+e/b/wtdTpqfJBi25ULh4v++m+/KIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIQFsTkMamtiau8kSgCgJff/11uOuuu8LMmTPDsssuG1ZdddUqclGSWUVg+PDhYdKkSaFbt25hk002mVXVULltTOCb6TPDaTe/lgoLXfXQuxUJNj35+rhw+9MfVVRbBJy2Xqdv2GmDpUKnjtVZl532zYwWQk1LLLxA6LtIl4rqoEgiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIi0CgCEmxqFFnlKwJ1JPDEE0+EHXbYIeZ48MEHS7CpjmwbnRUCTVtttVUsZs011wxPPvlko4tU/u2EwFNvjkuFmqjSwy+NDZ99NTUsnGhcqpcbO2FK+Pedb4UHX/wknDBstYBAUmvdO59MTOvZLzE/Rz7L9FmwtdkovgiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAjUnYAEm+qOVBmKgAiIgAiIQAjDn2mpden+Fz4O263br2I8F+//3TBoiYXS+GhXGvfl1PDmR1+GW576IDz68qfx2OsffBm1Ll198HphoQU6pvEr8ZCXuc3W7COhJoOhrQiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIwCwnUJ3dmllebVVABERABERABNovgS8nTQv3jPw4VnDl/t1Dl07zRv9tT31YU6U7zjdP6NOzc/jeSr3DKbuuEU7edfU0v/FfTQt/T0zftdZNmDgtTbJyv+6pXx4REAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAERmNUEpLFpVrfALCx/6tSp4eabbw4jR44M7733XlhyySXDaqutFrbZZpvQuXPnFjUbO3ZsuPXWW2P4uuuuG1ZYYYXw8ssvh4ceeiia1+rZs2c47bTTCtKNHz8+3HjjjeG1114LH330UejRo0fo379/+PGPfxzT+8gcv+OOO2LQqquuGtZee21/OPrffffdcO+990b/d7/73bDyyiu3iEOdMN2G23LLLcNiiy2Wxvnyyy/D008/HZ577rnw/PPPh969e4dVVlklYCKMMku5KVOmhFtuuSXlxbksvfTSYeuttw4DBw7MTXrnnXeGDz74IPLcaaedwhdffBEeffTR8MADD4QxY8aE3/zmN2GDDTbITUvggw8+GN56663wyiuvpHGo+0UXXRT3l1pqqbDJJpukx8zz+uuvx7Z65513wldffRX69esXBg8eHHl07Fham8vo0aPDU089FV566aVAPpzj6quvHvkMGjTIiijYXnrppWH69Okx7sYbbxzoKw8//HA8z5kzZ8Z+tf322wf6iDn6xPDhw2MfWmCBBcKQIUPCOuusU5SlpSu1pU/ffvvtsX3pK/PPP3889/XXXz9stNFGoUOHDi2SZ/v1iiuuGNuMPsQ5YEqOvr7eeusF+lylDnaPPPJIoE7m6AvWdlxjO+64Y5hnnnz50k8//TReV/SXcePGxbJhRP3mnbdJSMbyzW5raf9sXn5/RtKWT7/xWRg56vMwZvyk0LVzxzCwT9ew0SqLhh5d50+0CH0VXnl/QkwyZNAiYbEeTePI5xOnRjNsHFhlqR5hwGJdwycTJocX350Qnnvn8zBlWtJ3Fu0aVlu6R0AIqJx7Pil/xNvjw0efTQrfTJ8RenfvHJZbfKEo7NOpYz7P/z79YZgxY2ZYPDHVttayCwfq9GySx4i3xoeZSYHLLr5g2GS1xQq0Hb07dmJ44tVx4e2PvwqdOs6b1K1bWKV/j7DkIuXNvT2QmIYzt/U6S8ZzvfnJDwKald4a81XdtCIh4PS33dYIB1/0XCzu7mfHhF98f6kCLU9Wj+z2jhEfhW8SDVAvvtfUZhy/5/mPw8efT45Rl0mYrJQRdEJg64EXPgmw+TTRHLVQ5/mioNX6K/aObZgtg33fLzZaddHQef55k37yRXjmrc/C22Mmxvb46XeXDB8m7fnMm5/FLKyf5OX3dsLvpW/r/P2k73Xv0jSm5fWz0eO+Ds8mbUyf7ZmYAFxhyW6BOsw7T/NYQF+iT72XnBN9FuGuVZO+aPnm1UFhIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACbUOgQ7Lozpqu3BxO4LPPPgt9+vSJZ7nddtuFP/zhD2HYsGEBwZesW3TRRcNdd90VVlpppYJDzz77bCrYceihh0ZhnWOOOSaNs9BCC0UBDAIQZjnllFPCX/7yl/R41vOTn/wkXHDBBamwC4JNCOrgEEhCICrrjjvuuMAP9+tf/zqcd9552Shhv/32C+eee24MR4gJYS0c9d92222j0EoMyPzts88+4cQTTwxdunTJHAlR0AeBr08+aRZW8JEOOuigcNJJJ/mg6Ie1CYO9+OKLAaEfn8c555wTdt999xbpLOC3v/1tuOSSS2y3xRZhrGeeeSYNnzFjRvjd734XLrzwwjTMe2hbBMOWX355Hxz9pKU+Bx54YItjFvDHP/4xHHvssS2EcRAgwq211lrhzDPPDAi+ZR1l/+c//4kCTPQL+keeIw59o7UOgSZ4eb4+j+WWWy5ce+21UZDNh2f7NYJuu+yyi4+S+vfYY4/wt7/9LbePpJG+9Vx55ZWxj2bD/f7HH38c+3/2+qQPb7jhhj5q6t9hhx0CgmR5wk21tH9aQBEPAi37/XtEFMzJRkEb0aHbrZgIC00Lp32rMQhhm3WX7xWjvpYI8+x2xpPRv8vQpaNQz9FXv5jNJu4j4LLfTwaFzokgUda9/+nX4cirXsitA3Gpx+HbrxQ2TgSUsm79Q++JQSv26xYO3nqFsPuZ/8tGSQRfOiYakNaIwjzn3vlmuOL+US3iEPDXREvSBolAUSm31zlPhRdGNQkMDT96w/DGh1+F35/fdK0O22ipsPePliua/ITrXwq3P91kxi5riq5YouOufTEMHzEmHobxXpsvWyxqGv6DI+8PX0+Znu5nPZuuvlg45hdNAp/JkB4uf+CdcN7wt7LR0v0NVu4djvjZSgXCYRy87pH3wum3vh7jnfrrNeL+U4mAnLkfJObvjt5xlfBgIgz2p8ufj8GHJf3pJ0OWtCgF2xseHx3+ftOrMeyUX60R1l8xv58tmgi8WTyfAcJzaLqab94O4dhrXgqPvdpkzs/HoS+cs/faoV+vlvcDH09+ERABERABERABERABERABERABERABERABERABERABERABERABERCBxhLIV23R2DKV+ywm8Pbbb4fNN988V6iJqiEYghAPwhbFHEIkXqgpGw/hmqxQE4JP3iHwg4YetDrhFl988VRr0n//+99Ek8g3Pnr0m0YndoiDAFXWmUYnBGkQUsGhOQdtO2jMwVEXBEeIY+5f//pXQKtQ1qHNKivUlD2Xv//97+H000/PJi3YR2NTMaGbgohuZ8EFF4x1zZbHPr+FF17YxQ7hqKOOaiHU5NNS/lZbbRU1KhUkTHYOPvjgFkJNAwYMiOVYXISR9t57b9ttsYXVT3/60zQ8WzYaio4//vgCoSbfBiREGOzxxx9P86jEc/XVV0fNWZ6vL5s83njjjfCd73wnauwqlucNN9xQINSEFjPvEMT7xz/+4YOK+hH2og7ZelgY2zwNUmgcQ6OZuWwdrrvuurD//vvb4YJtLe1fkFFmZ1qiFemIK55vIVBk5tUQjjnqqhfD4zkCIpmsApqMvFBT7+6dCqKg1eiqB98tCGPnnURrEsJRaDzyzupAGPX4y5UvhBufGO2jFPjRNHXwxc+mYT49ptw4z4vuebtAqAkhF+8Ou3RkeOHdz31QgR8BLBNq+v4qvaOgz+oDekTBKSKiPWp6oj2qnm7LtZv76r3fmsArlz9atvz5E599+3VNtDGZO/XGV1oINWXTPvzS2KSN/hcQgivmzh3+ZvBCTcXi1Rr+5OvjUqGmbD3R9nRKcj7HXdcs1GTnbOXSF/ZOhNNKnYvF1VYEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAERKBxBCTY1Di27TZnNNRgkm2LLbaIpsK+/vrr8Pnnn0fNQpi5wqHJCY1OecJFHH/hhRfYhFNPPTWaZsNc15tvvhnDbrvttqiJKe4kfwhbIKyBOS20Ml1zzTWpsAflHHbYYRa1QFOPlWEHEVpBA5M59tGC5B35I8CCQ+uTmfnyWo+OOOKIgKacu+++O7z//vtR45EJn9xzzz3puZHHhAkTYp1MYOZXv/pVPF/MhJHHFVdcQbToDjnkkChsZfvZLeeDOTOEs0hLGyDsVMohRAO366+/Po2GABJh/DgHc2jxOfnkk+Mu54OQDvXE1BpanUwLEsx/9rOfhcmTJ1vS2C5nnXVWug8vzhlzceSBFiVzF198cSqMZmG2JQ0/NGkhsEYdKduEcxAsM41bsIMvpu8wnWZ9j7wQWqvUkX7XXXdNoyOchvk2GJM/5gDRJGWOuP7cLZyt9R0Epag7rLg2DjjggDQaGqs4Vs7BmHjUzxwmDwmzH+YMsw6zg/QNBOXoz9SBa9Talvjnn39+KqRn6Wtpf8uj2PYfN72WmAhrEkBEAOT4YauGO47aMNx97NBw1cHrhl9uvHRM+sRr5bm8P/brGPe4nVeN6W/60wbh3uOHhh036J8Wf+Hdb4cJXzcLxyAEdML1L6fahTCRdtrua8Z0dx69UUCr0RZrLZ6m/9uNryZmxZrKSQO/9SCwwu+w7VcM9xw3NNbh0gPWSczZNQlYjZ0wJQo2Ef2YX6wS7jt+43DbXzYM1x+6flg6MaFn7pFXWmr5sWN3P9ekOYn9zdZoqhemzzb/TpOf8s3kmqWpdbt6YjrNHCbdKhGc4pxow323bNYedeIvV49hhP9x26b7wSMvjw0InJnb44cDwzWHrBfj3Z70A/qDCQ9R9ln/bRqDLb7fvpWYK0RQjPa/8fDvhYdP2iRq0PJx6uFHAI46nb3X4DA86SMPJeWcuEuT9j7yf+jFseHRlz+NdTl/37UD/ejOYzYKZ+05OC2edvJm+tID8oiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACLQZAQk2tRnq9lUQZrkuv/zyKGgz33zzRdNam222WRRg8UI+TzzxRNGK33LLLVFzDAIpmMXq2bNnjIs5N3NolkGQaNlll41BiyyySDQH5wV1EJQxTUqbbLKJJQ2PPfZY6sfz4IMPFuyzY9qZ7ICv7w9/+MMYjHCWmbXj3KgP54xDYw7m3K666qpAfH5otDJ3xhlnBARNcAhKodWJ8yUd54tZMAS1zP31r381b4stGqLQdMU5krZTp04VmTRrkVFOAIIwv/nNb9IjtA1af7p16xaFuzhH2tsEfGD78MMPp/ERPrLzx4zfL37xi2BCN5wrQlEI9Jh78sknzdtii6k2zAR27dokBELZnhEJ0HwEuwUWWCCmX3rppQvilMo/W6CZHSSc87vooovC2muvHduY/IcOHRr7tWmGQnjJzANm82KfvoLWKLsOME2IUJGxI86rrzaZwcLfCAdDNGNxveDor5gI3HnnndPinnvuudRfa/unGeV40Fhzy/+ahVpOTkx/DV11sdCtS8cYe6neXcOemy0bdvhes2BSTjYFQZgPw1ycCcNgdm7fLQcFzMSZe/eTieYN/3tjXHjl/S/iPmn+mgjfDBm0SDRXN08iMDRoiYXCYdutFAYv2zQGEfG6R99L02c9mLr7SaLhaIH5542Hlk0EpU4Y1iz0QuARO6wUNl29T+jUsek2ucTCC4Tjd26Og9afPDcj0SLnea2zQlMbEneTJD9zw59tMjVn+7VuEZzygldeMKzWvC+57500i58nAmi/3mRgaqKte9IP6A8nJW1i7ranPgyfTGgWnLRwtgg1nf+7IbH9F+3RORmfOoQFnWYoH7dW/5m/HRzWGNAzwIbfhqssmpgAbLoXWd6Ym1u5X/dYj3mSsW7NgT1TgS7ivDq6qd9ZfG1FQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQATaloAEm9qWd7sp7bLLLksFN3ylEEA66aST0qCs1iQ7gGAU5uyybtSoUalWJbT0eCEnH3fjjTcOmKszZ4ImmIsz98ADD5g3btG8g9t0002jUAx+b5qOfS+sgyARzrQ24UcAhDpmHUJdaJri502peYEchJpMIMqn33bbbcP3vve9GIRAzrRpzZpmfDzOFyGZRri77rorzXafffYJ66+/frpvHsr2besFYxCCsvPfbbfdLEnBFmEhcyNHjjRvi+0uu+zSIgwTcN5tvfXWfjf6l19++TRsxIgRqb+c58orr0yj0K87d+6c7psHM4dnnnmm7UZtVumO89BnEWDLOoS7fv7zn6fBaFFqpNtjjz1ys/d18Ixqbf/cwr4NfOPDr9LD263XL3wnEfzIc2j9yZpsy4uHZqT1V+zV4lCCOPzACf58kGj+MffAC5+YNxyw1fIBIaOsQ3DlqB2bTE9y7M4RHxXVWrTF4GbtTpbP8ks2C1URtuHKzWYqLc5SizZfv68VEXjBBB1an3BokUJoy9wKSRlW9ztHjAlfTW5pbtPiVrNdZKH502QTJk5N/bV40MBkQmW03T4/Wi43u7WWXThsv36/9NgjiTakPIewmDHIO16vsEFLLhRW6FvYpuSN4JI5BOn69WpuUx9u/neLaP6y49qKgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAg0loAEmxrLt93mvvrqzdo1spUcMmRIGoTZujz3gx/8IC84mpyzA+uss07o2LFJq4uF+a0v5/nnn4+H5p9//lSw6L777gvTp0+P4TNmzEi1LiFQhRk93P333x+FleJO8mcanNCu06tXk/AEgk0IUplDeOrPf/5zFMAqJoREXMyYmWky9tH8hOm6vF/37t2JEl0xbT5eaMvi1mvrhVzQ8pNXR8IWXHDBtEifJg10nilTpkQzdGiwQgjq8ccfT49au6QB33oQeDPNXf4Y/cA0IA0YMCBqkvLH8dNO3hxd9njePubuTNsX+ZtmsLy4gwc3m5jymr183A022MDvFvj792/WSPTFF43T4oK5umICcH379k3rhKk9c74t69X+lverHzSf68r9WwqKWDwEi9YcuLDtFt2u4QRLspEWSzT4mJvohH5e//BLC84VVrGDiyzUKTUp9/WU6eHTL5oEjOw42369u4SFFmg5Ls03b4dUgxSCN11ztAih0cdrRfL5mn94IlBlzgtqEYbw1o+cUNVDLzULbFmaWracs7kF5m/SSmf71W5HOc1ZqyzVPcCpmEPzkbk3P2puMwtju5ozmefD6+0vVo5v+xVzBJ+oR+9unepdHeUnAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiJQJYH6rHxWWbiSzRoCCP3kaR6y2gwaNMi8oZhJMBNSSSN+6/nkk+aF+lVWadaeko3Hvhdi+eijZmEABJduvvnmKLD08ssvR1NxCD6hbQmHUJWZSWMfLU0IOo0dOzY1G2eCTxzHYdrr6aefjkIw5HPKKafEH8eIiyYczK15wZ9PPy3UOLLMMssQvayjrphfyzqfd/ZYrftjxoxJszjuuOMCv3LOa7eyuHBHe9bw4cODb0s7Xm7rBbyKxS3V94qlKRZOm5vLaoWycNt6oSAThrJjtl1qqaXM22JrZvNaHKhzwMCBA4vmaOb9shHq1f7ZfNn3QkUDFmsWjMuLu3yiJee+55sFrvLi9HHCS9njnebPl7Ud68ya9c/RsOPzQUvP2AlN/WL8V1ODF5YiXiVmz+YtIbzjy8r6J0+bXmCGbnpilu6pNz8riOYFpjDZtsXgJQqO17IzZnyzlqseicm3erjPvmzW/LRMn9Lt74W+Pv2ypVAZ9enSqW2mHWZmsBQDzODJiYAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAItG8CbbPC2L4ZzHW1W3TRliaWPASvLWb06NH+UFn/119/ncbp3bt36s/zoFnG3FdfNZu78tqVHn300SgkhPYmHKbCTCAKzTZolOIYwkleCCurUQqBlcceeyycf/754d///neB0M7tt98e+OGuvfbasM0220S/CVLFnVb8jRs3rhWx6xO1Gg1CXnCJdvv9738fLr/88vpUqI1yaU1/QyMU/ceEmtDAVU8hq7Y45ZmJoEyeq7X98/K0sK6dmk2pTXIagey439bbtJrlPf6rJvOOXZK6dJwvX/jJ4i68YLM5NgSN2tI98nKzoB3lHnzRcyWLH/nO5wFTb/UwzUY+npM3gVeyEmUOeoY9ujazzUvWvUuzMJXXHpUXV2EiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiUAkBCTZVQmkOizNy5MiSZ+S1J7XWfJqZf6OA119/vWQ53szbYostlsbFVBm/d955Jzz44INhr732CnfccUc8vvXWW6fx0LCEYBMahtDIZBqI0CblzY5ZgsUXXzwcddRR4YgjjgjPPPNMNK121113hXvuuceiRM1NlLXJJpukpuw4SJ5ofKrE5ZliqyRdLXE8v3PPPTcMHTq0bHYdsIv1rYOfCTVxrvvvv39AA9ISSywR0MJE2AsvvBB+9KMfWZJ2sfXCcy+99FLJOiEEZUJNnM/sJtRU6uRqbf9Sea/Yt3u4KXwQo7w55suw+oAeRaO/OrrZbF3RSFUcQPAHwR2EZdDC1NMJL2Wze/vjZiHJ7l1KC+Jk09a6f8czzZrnKs3r7ufGhF03HlBp9KLxvFm79VZoMsNZNHIrDvTo2iys9N7YZsHVvCze/7T5+CIl2igvbTYsX4SvKdY302dko2tfBERABERABERABERABERABERABERABERABERABERABERABERABERgDiUgwaY5tGFLnRbCHZ9//nmBOTcf/5VXXkl30YrUGofwkLlyAlS+nH79+lmyuN1qq63C6aefHhA8oq4IOOG8JqYf/vCH4dhjj40CUG+99VYqoLTZZpuVFFpBoAWBLX4HHHBAeO2118JBBx0Uy6KMG2+8sYVgE9qb+vfvH+adt1l7DXHbi+vTp09aFbRfIRjWGvff//43jX7NNdcUcLYDH39c2sSYxWvLrRekoz9NmTIldOrUKbcKXtBu6aWXzo0zuwbW2v6lzntQYl7O3IMvfhK2+W7fkGfC6+PPJ4en3ig0u2bpat0u1rNzFGwin3fHTiwq2DQj0Wj1wqgJaXGLLNR2gk1jv5gSnnitWVvbpQesE4pZOhuTsDrk4iZtTpij++XQAcHJGab1r9QzLjEXd+Hdb6fRN12jeTxIA6v09OrWfD298VGTOdBiWY36ZGJ6aNESJgfTSBmPF7b8fGKzCbxMtAA/OREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQgbmDQGmbPnMHg7nyLC+99NKi533JJZekx1ZfffXUX4lnrbXWSqMhjPTyyy+n+94zefLkcOWVV6ZB3vwcgZtuumk8hkDROeeck8bbcMMNUz8ahdC8g8OEHBqFcJtvvnnc2h8aqDBTx2/MmDEWnG6XX375cNJJJ6X7I0aMiP7OnTun9SDggQceiOF5fwhWYRLv/vvvD1OnFl+Qz0vb2jBvQs7Sen433XRTwMxaniOcevIzQR8EodB8hcNMobHPph8+fHg2aJbvI8SEgJs5+kExd8UVV6SHttxyy9Tflh7TGFXvMmtp/3J1GbBo1zTKM2+OD+fd9Va6b56Jk78Jf7ioqQ9ZWD236y7fbLbyv09/WDTrh50puBX7dQvdnGm0oonqdODekc1jy682GRCWXXzBMLBP/g+NSqb5Ck1UL773edW1+HLStHDMNS9EbVZkgnarIcs186o6428TorHL3LNvjQ/vOI1YFs526jczwvARzRqr1l52YX+4Iv+SiyyQxnvXCUmlgYlnxoyZ4cnXmwXI/DH5RUAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAE5jwCEmya89q0ojM65JBDwiOPPNIiLmbM0Nhjbu211zZvRdsFFlgg/PrXv07jbrPNNlHjUhrwrefggw9OTbshTOMFlojyve99L02C+TgcAktduzYLWaB5yUzTHX300TEOf17Ig/3nn38+bLDBBvGHiTkEebLOm8XzdRk2bFgadYcddghey5QdGDVqVBgyZEisH9qixo2r/6J7t27drLiAgNHMRDONd2ifMi1NtCuaqLKONMccc0ysJyxpa9yCCy4YllxyyehHaCpP+Oaiiy4q6Bcxcjv5+8UvfpHWZI899gjPPdekCScNTDzXXXddOOOMM9Kgn/3sZ6m/0R6vQQq+JlBWz3Jraf9y9eg43zzh+GGrptGuuH9U+OOlz4UbnxgdHkkEif6dCDrtftb/wqiPm7X1pJHr5NlolWZTlbc//VG46cnRLXLGTNqfLns+Dd9i8BKpvy08tyaal8wNXbW5vhaW3f7oO83a7e58tlkoKhuv2P60xBzbQy+NDbud8b+AwJm5I3dcOXTqWL9bO3n9eO1mln+8ZGT4alJLwcnTb30tvPJ+kynCngt2DGsu09OqVPF2qd7N4/vwEWPCmPEtNTNd9+h7De1r5SqLoCz3T8adSs2TlstTx0VABERABERABERABERABERABERABERABERABERABERABERABERABIoTmK/4IR2Z0wkgALT99ttHgR/O9Y477ohCM3be5513XiosY2GVbBGe+b//+7+AtqV33nknYM5uu+22C4MHDw7vvvtuLOOxxx5LszrrrLPC/PPPn+7jQYAJTTyYojP3ox/9yLzpFgGdyy+/PN1fccUVQ9++fdN9PGggQuiHuiDA9OMf/zjstNNOURhp0qRJUXsRJu3MmbAU+yxe/+9//wv/+te/4vkgcMW5IPyERie0O5166qmWNOy5557Bm+NLD9To8abTEI6BDfVYeeWVY/thIu/WW28N6667bqzn+eefH1588cUYD61bCCtdddVVwXPfd99901pxzmeffXbcX2eddcKuu+4a82UR/957742CQWnkdub5+c9/Hi644IJUUA/hNUwZIsw2bdq02IdgY47zXnXVZkEdC2/Udp555gn0SxOKQ9gPgTnCqCfHa3W1tn+58hHU2XPzr8N5w5u0NT368qeBn3cIs/xkyJLhsvtG+eC6+NHk8+tNB4SL73kn5nfqDa+GhxOhnvVW7BU6d5w3jBz1ebj/+WZTiZjP2yqpS1u51z74MhW2WXqxrlFbU7myv7/youGv/2ky+3lnoulo3y2Xi+eSTXfRPW+HRbt3ToMnTf0mYPYPIaKvp0xPw/H8cdsVw6pL9SgIq8fObzdbNtyX8KU8NEwNO+3xQJ9YsW+3xCzcpPDYq58WmAA8ZJsVQ8d5W9+v55u3Q9RkNfKdJg1WuyTl7Ln5sqF/ry7hs6+mhgcSU4i0+6x0J5xwQmB8xT3zzDPxuq7HNTwrz0lli4AIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiEB7JiDBpvbcOg2qG4IVaJFBMxMCSPyybp999inQvJQ9Xmq/T58+4ZZbbolCGwg3IVTjteX4tMcdd1yqdcmH40f7kRdsQmAl64YOHVoQhNBS1iH0gWASGpeoD8I9XsDHx2fRGu1L3v3tb3+L53DzzTfH9Jjq8+b6LO4WW2wRiNsI16tXr7DjjjumWpMw88cPAR0W13GDBg0Kt912W6r9qtR5ovVp4MCBaVX322+/cPvtt0fhLwSnENbyAltERPjryCOPTNO0Fw/ti1lDhLMwqUcbs+9NHVpdf/rTn4bjjz/edttsC9+99947lodwnWkh+/jjj0PPnq3XbJNX8VraPy+/bNguGw0I8yfam654YFQY/9W0gsM/WLNP2CsRfnn8tUJhp4JINe7suvGA8FEiOYMJmAAACOpJREFUVIMmH9wTr42Lv2y2/Xp3CScMWy0gJNNW7q5nm02wbTG4WRNTqfK7d+0Y1l+pVxQQQ2Do8UQ4KE/TUyWCPL27dwrH7bxqQ4SaOIdFFpo//H23NcNBiblB6jp2wpRw3SPv5Z7enpsvEzZcZdHcY5UEHrXjKmH3M5+MfYyyTrv5tRbJtl23b7jh8ZZau1pEbEDAe+81nzfCsphV7dKlSwNKUpYiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIQaL1KBXGb7QmwCHvhhReGf/7zn2GhhRYqOB/20biUFWohEgIklbr1118/CpnstddeuUnQOIRwzaGHHpp7nEAvyITGJQQ3sg6Bn/XWWy8N9mnSwMRDOBqMEG7KO2cEpBAUwsRQhw6FAhGYvLv00kujUA9m87JuueWWi1qjEBDzZseIV09NHqeffno46KCDWtTf1weNTQ888EA0N+fDzY+pttdee62FuT74IgiFFqgsH/hyDM1X9XBouirm7BgmDVvj0JJ13333ReGrvDZCOxKm96699toWQgiV9uusVrHW1A/zjAj3mcm/bFrfT4xBNg772f6VjVNt+2fzydvnsthxg6XCjX/aIFx50Lrhn7/5Tvj3vmuH4UdvGI5OhFH69OwcJk1t1iDUITRfR5Uq7yml5Ydjf95hlYCpNTQyZV2XTvOG3TYdGC743ZCwxMKt6z/ZvBDgKubsmDf3dqcTbMoTTiqW1w/X6JMeeuCFT1L/fGW0eKEda+X+3aOJuNOTdrjhsO/VJNQ07zzNbZVWIuNZbeke4fID1w0IFeW57w5aJFCXXw4d0OLwvK0QMlusR+dw5m/XCuut0CvQpt5h3u7SAxKzm4st6INTf6X9zBJYW9q+bb1QXMdM3Q888MBgYwyCsBJqMmraioAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiEBjCHSYOnXqzMZkrVxnBwIzZswIo0ePDp9++mnUHIMZt44dO9a16lOmTAkffvhhGD9+fDTfhnBH9+7d61pGazNDKxF1QltO//79WwgzFcvvm28SM1CJlp2xY8dGQS9MxGUFgYqlrWf4F198Ec2sIQBUbGGdOGjLwtweC/EI/1QixEOfePPNNwPtRn+ol0ahep5/qbymT58e24g2xi2xxBKhd+/eFbdxqbzrcQwNLxMnToxt0aNH/c2GWR2rbX9Lb9sZM2aGTxINPTgEPnp162SHWmyPuuqFcM/IJpNwF+333bB8jgBSi0RVBkyYOC2M/WJySKoXenTpGBZJ6lWJgE6VxSmZIzDtmxkJ+ynhy0nTohav3ompvAU7118BJH1v9LhJYWpSXp9E4GnBBepfhjutir3JvClwLyg29lackSKKgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiUJSDBprKIFEEEREAE5l4CCJVseeyD0QQZFE799RpRm06WyDNvfRb2O39EGnz3sUNbaNxJD8ojAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAhUQkGBTBZAURQREQATmZgKXPzAqnHvHmymC7dbrF1bs1y3079UljJ84NTz+6qfhpic+SI//cuOlw56bLZvuyyMCIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiAC1RCQYFM11JRGBERABOYiAl9N/ib8+Yrnw1NvfFb2rHf/wcDwq00GhHk6dCgbVxFEQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREoBQBCTaVoqNjIiACIiACkcDMmSHc9tQH4bL7R4UPP5vUgsqay/QM26/bL2y06qItjilABERABERABERABERABERABERABERABERABERABERABERABERABERABERABKohIMGmaqgpjQiIgAjMxQQmT5seRn86KXwxaVpYrHvnsPjCnaWhaS7uDzp1ERABERABERABERABERABERABERABERABERABERABERABERABERABEWgUAQk2NYqs8hUBERABERABERABERABERABERABERABERABERABERABERABERABERABERABERABERABEaiawDxVp1RCERABERABERABERABERABERABERABERABERABERABERABERABERABERABERABERABERABEWgQAQk2NQisshUBERABERABERABERABERABERABERABERABERABERABERABERABERABERABERABERABEaiegASbqmenlCIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAg0iIMGmBoFVtiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAtUTkGBT9eyUUgREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREoEEEJNjUILDKVgREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREoHoCEmyqnp1SioAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAINIiABJsaBFbZioAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIVE9Agk3Vs1NKERABERABERABERABERABERABERABERABERABERABERABERABERABERABERABERABERCBBhGQYFODwCpbERABERABERABERABERABERABERABERABERABERABERABERABERABERABERABERABERCB6glIsKl6dkopAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiLQIAL/DyDSVCPmVwWZAAAAAElFTkSuQmCC" + } + }, + "cell_type": "markdown", + "id": "88ddfe98-92b3-4c9c-906d-84d4835d2bf1", + "metadata": {}, + "source": [ + "![image.png](attachment:afcd4ecc-4e90-464b-91c7-9cd80b0e92ba.png)" + ] + }, + { + "attachments": { + "2f957256-5d08-40e1-b77c-5faa4f771fb2.png": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAACE8AAAMDCAYAAABZhalJAAAMQWlDQ1BJQ0MgUHJvZmlsZQAASImVVwdYU8kWnluSkEBoAQSkhN4EESkBpITQQu8INkISIJQYA0HFjiwquBZURMCGroooWAGxI3YWxd4XCwrKuliwK29SQNd95XvzfXPnv/+c+c+Zc2fuvQOA2gmOSJSNqgOQI8wTxwT50ccnJdNJPUAZaAJ1QASjOdxcETMqKgzAMtT+vby7ARBpe9VeqvXP/v9aNHj8XC4ASBTEqbxcbg7EBwDAq7kicR4ARClvNj1PJMWwAi0xDBDixVKcLsfVUpwqx3tkNnExLIjbAFBS4XDE6QCoXoY8PZ+bDjVU+yF2FPIEQgDU6BB75+RM5UGcArE1tBFBLNVnpP6gk/43zdRhTQ4nfRjL5yIrSv6CXFE2Z+b/mY7/XXKyJUM+LGFVyRAHx0jnDPN2K2tqqBSrQNwnTI2IhFgT4g8CnsweYpSSIQmOl9ujBtxcFswZ0IHYkcfxD4XYAOJAYXZEmIJPTRMEsiGGKwSdIchjx0GsC/Fifm5ArMJmk3hqjMIX2pgmZjEV/DmOWOZX6uuBJCueqdB/ncFnK/Qx1YKMuESIKRCb5wsSIiBWhdghNys2VGEzriCDFTFkI5bESOM3hziGLwzyk+tj+WniwBiFfUlO7tB8sU0ZAnaEAu/Ly4gLlucHa+NyZPHDuWCX+UJm/JAOP3d82NBceHz/APncsR6+MD5WofNBlOcXIx+LU0TZUQp73JSfHSTlTSF2zs2PVYzFE/LggpTr42mivKg4eZx4QSYnJEoeD74ChAEW8Ad0IIE1FUwFmUDQ0dfUB+/kPYGAA8QgHfCBvYIZGpEo6xHCaywoAH9CxAe5w+P8ZL18kA/5r8Os/GoP0mS9+bIRWeApxDkgFGTDe4lslHDYWwJ4AhnBP7xzYOXCeLNhlfb/e36I/c4wIROmYCRDHulqQ5bEAKI/MZgYSLTB9XFv3BMPg1dfWJ1wBu4+NI/v9oSnhE7CI8J1Qhfh9hRBofinKMNBF9QPVOQi9cdc4JZQ0wX3w72gOlTGdXB9YI87Qz9M3Ad6doEsSxG3NCv0n7T/NoMfnobCjuxIRskjyL5k659HqtqqugyrSHP9Y37ksaYO55s13POzf9YP2efBNvRnS2wxth87i53EzmNHsCZAx45jzVg7dlSKh1fXE9nqGvIWI4snC+oI/uFv6MlKM5nrWOfY6/hF3pfHnyF9RwPWVNFMsSA9I4/OhF8EPp0t5DqMojs5OjkDIP2+yF9fb6Jl3w1Ep/07t/APALyODw4OHv7OhRwHYK8b3P6HvnPWDPjpUAbg3CGuRJwv53DphQDfEmpwp+kBI2AGrOF8nIAr8AS+IACEgEgQB5LAZBh9BlznYjAdzAYLQDEoBSvAGlAJNoItYAfYDfaBJnAEnARnwEVwGVwHd+Hq6QYvQD94Bz4jCEJCqAgN0UOMEQvEDnFCGIg3EoCEITFIEpKCpCNCRILMRhYipUgZUolsRmqRvcgh5CRyHulEbiMPkV7kNfIJxVAVVAs1RC3R0SgDZaKhaBw6CU1Hp6EFaBG6DK1Aa9BdaCN6Er2IXke70BfoAAYwZUwHM8HsMQbGwiKxZCwNE2NzsRKsHKvB6rEW+JyvYl1YH/YRJ+I0nI7bwxUcjMfjXHwaPhdfilfiO/BGvA2/ij/E+/FvBCrBgGBH8CCwCeMJ6YTphGJCOWEb4SDhNNxL3YR3RCJRh2hFdIN7MYmYSZxFXEpcT2wgniB2Eh8TB0gkkh7JjuRFiiRxSHmkYtI60i7ScdIVUjfpg5KykrGSk1KgUrKSUKlQqVxpp9IxpStKz5Q+k9XJFmQPciSZR55JXk7eSm4hXyJ3kz9TNChWFC9KHCWTsoBSQamnnKbco7xRVlY2VXZXjlYWKM9XrlDeo3xO+aHyRxVNFVsVlspEFYnKMpXtKidUbqu8oVKpllRfajI1j7qMWks9RX1A/aBKU3VQZavyVOepVqk2ql5RfalGVrNQY6pNVitQK1fbr3ZJrU+drG6pzlLnqM9Vr1I/pH5TfUCDpjFGI1IjR2Opxk6N8xo9miRNS80ATZ5mkeYWzVOaj2kYzYzGonFpC2lbaadp3VpELSsttlamVqnWbq0OrX5tTW1n7QTtGdpV2ke1u3QwHUsdtk62znKdfTo3dD6NMBzBHMEfsWRE/YgrI97rjtT11eXrlug26F7X/aRH1wvQy9Jbqdekd18f17fVj9afrr9B/7R+30itkZ4juSNLRu4beccANbA1iDGYZbDFoN1gwNDIMMhQZLjO8JRhn5GOka9RptFqo2NGvcY0Y29jgfFq4+PGz+nadCY9m15Bb6P3mxiYBJtITDabdJh8NrUyjTctNG0wvW9GMWOYpZmtNms16zc3Ng83n21eZ37HgmzBsMiwWGtx1uK9pZVlouUiyybLHitdK7ZVgVWd1T1rqrWP9TTrGutrNkQbhk2WzXqby7aorYtthm2V7SU71M7VTmC33q5zFGGU+yjhqJpRN+1V7Jn2+fZ19g8ddBzCHAodmhxejjYfnTx65eizo785ujhmO251vDtGc0zImMIxLWNeO9k6cZ2qnK6NpY4NHDtvbPPYV852znznDc63XGgu4S6LXFpdvrq6uYpd61173czdUtyq3W4ytBhRjKWMc+4Edz/3ee5H3D96uHrkeezz+MvT3jPLc6dnzzircfxxW8c99jL14nht9urypnuneG/y7vIx8eH41Pg88jXz5flu833GtGFmMncxX/o5+on9Dvq9Z3mw5rBO+GP+Qf4l/h0BmgHxAZUBDwJNA9MD6wL7g1yCZgWdCCYEhwavDL7JNmRz2bXs/hC3kDkhbaEqobGhlaGPwmzDxGEt4Wh4SPiq8HsRFhHCiKZIEMmOXBV5P8oqalrU4WhidFR0VfTTmDExs2POxtJip8TujH0X5xe3PO5uvHW8JL41QS1hYkJtwvtE/8SyxK7xo8fPGX8xST9JkNScTEpOSN6WPDAhYMKaCd0TXSYWT7wxyWrSjEnnJ+tPzp58dIraFM6U/SmElMSUnSlfOJGcGs5AKju1OrWfy+Ku5b7g+fJW83r5Xvwy/rM0r7SytJ50r/RV6b0ZPhnlGX0ClqBS8CozOHNj5vusyKztWYPZidkNOUo5KTmHhJrCLGHbVKOpM6Z2iuxExaKuaR7T1kzrF4eKt+UiuZNym/O04I98u8Ra8ovkYb53flX+h+kJ0/fP0JghnNE+03bmkpnPCgILfpuFz+LOap1tMnvB7IdzmHM2z0Xmps5tnWc2r2he9/yg+TsWUBZkLfi90LGwrPDtwsSFLUWGRfOLHv8S9EtdsWqxuPjmIs9FGxfjiwWLO5aMXbJuybcSXsmFUsfS8tIvS7lLL/w65teKXweXpS3rWO66fMMK4grhihsrfVbuKNMoKyh7vCp8VeNq+uqS1W/XTFlzvty5fONaylrJ2q6KsIrmdebrVqz7UplReb3Kr6qh2qB6SfX79bz1Vzb4bqjfaLixdOOnTYJNtzYHbW6ssawp30Lckr/l6daErWd/Y/xWu01/W+m2r9uF27t2xOxoq3Wrrd1psHN5HVonqevdNXHX5d3+u5vr7es3N+g0lO4BeyR7nu9N2XtjX+i+1v2M/fUHLA5UH6QdLGlEGmc29jdlNHU1JzV3Hgo51Nri2XLwsMPh7UdMjlQd1T66/BjlWNGxweMFxwdOiE70nUw/+bh1SuvdU+NPXWuLbus4HXr63JnAM6fOMs8eP+d17sh5j/OHLjAuNF10vdjY7tJ+8HeX3w92uHY0XnK71HzZ/XJL57jOY1d8rpy86n/1zDX2tYvXI6533oi/cevmxJtdt3i3em5n3351J//O57vz7xHuldxXv1/+wOBBzR82fzR0uXYdfej/sP1R7KO7j7mPXzzJffKlu+gp9Wn5M+NntT1OPUd6A3svP5/wvPuF6MXnvuI/Nf6sfmn98sBfvn+194/v734lfjX4eukbvTfb3zq/bR2IGnjwLufd5/clH/Q+7PjI+Hj2U+KnZ5+nfyF9qfhq87XlW+i3e4M5g4Mijpgj+xXAYEXT0gB4vR0AahIANHg+o0yQn/9kBZGfWWUI/CcsPyPKiisA9fD/PboP/t3cBGDPVnj8gvpqEwGIogIQ5w7QsWOH69BZTXaulBYiPAdsivyampMK/k2Rnzl/iPvnFkhVncHP7b8Ah9d8bcAadJgAAAA4ZVhJZk1NACoAAAAIAAGHaQAEAAAAAQAAABoAAAAAAAKgAgAEAAAAAQAACE+gAwAEAAAAAQAAAwMAAAAALY2tZAAAQABJREFUeAHs3QeYFFXWxvEDQxpyziA5qAgIAmYMgCiY46K7Ys45u+qaXbOrfuawuurqGjAHUFQUFQQRUBiy5JxhYGDg67eweqqrU3VPD0z43+eBrq66davq19VdPX1PnVsuLy9vu1EQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIEyKlC+jB43h40AAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCDgCBE9wIiCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAmRYgeKJMv/wcPAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggQPME5gAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAJlWoDgiTL98nPwCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIEDwBOcAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCJRpAYInyvTLz8EjgAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAMETnAMIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggUKYFCJ4o0y8/B48AAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACFcoaQX5+vj344IO2efPmwIe+zz772MCBAwPXD1pxwYIF9sILLwStHlWvfPnyVr9+fWvcuLE1adLEeWzYsKFlZ2dH1WVG2RMYPXq0jRgxIu6B16tXzy688ELTeUQpeoHHHnvM1qxZE3dD/fr1s3333TfuchYggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggEDRCZTLy8vbXnTNF7+Wn332WbvkkktS2rHLLrvMCbhIaaUAlceNG1cknaWdO3e2oUOH2sknn2xNmzYNsCdUKY0C6qy/9tprEx6azsEuXbokrMPCzAh07NjRZs+eHbex3r1726hRo+IuZwECCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCBSdQJm65XzhwoV2ww03FJ1mMWl5ypQpdt1111mrVq1s8ODB9r///c+UcYOCAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAtECZSp44pprrrH169dHK5TiOZ9//rkNGTLEjj76aFu6dGkpPlIODQEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgfQEykzwhIII3n777fSUSsFaw4cPt+7du9v3339fCo6GQ0AAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQCBzAmUieCI3N9cuvPDCzKmV0JaWLVtmhxxyiD355JMl9AjYbQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBDIvUCaCJ+666y6bP39+5vVKaItXXnmlffPNNyV079ltBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEMitQ6oMnJk2aZA888EBm1UpBa3/5y19s5cqVpeBIOAQEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQKJ1Cqgyfy8/PtoosuSig0YMAAO+CAAxLW2ZULjzzySMvLy4v6t3HjRps9e7aNHj3aXn75ZTvssMNS2k0N4XHxxRentA6VEUAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQKI0CpTp44qWXXrKffvop4ev2+OOPJ1xeXBdWqFDBmjVrZj179jRlkfj0009t2rRpNnTo0MC7/M4779jbb78duD4VEUAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQKI0CFdI5qDFjxtjmzZsTrtq2bVtr2rRpwjrehRMmTLB169Z5Z0VMZ2dnO4ECETMTPFm0aJFdd911CWqY3X///daqVauEdUrSQh3LM8884zgFzSrxwgsv2Iknnpj2Yep1GzVqlM2fP9/mzp1rf/zxh61YscIaNmxoLVq0sJYtWzpBHn379rUuXboE3s6cOXNs3rx5Cet37drVatasmbCOu0/xKlWqVMl69+4db3F4/i+//GLr168PP/dPdOrUyRo0aBCe/cMPP9jWrVvDz/0Te+yxh9WtWzdidk5OjhPMoowis2bNsgULFliTJk0ct9133930r1u3blarVq2I9XbFE+2bAnb0euu116PmVa9e3Vq3bu289gru2Xvvve3ggw+2rKysjO6mbMeNG2dffvml6VxZunSp6T2/evVqZx/02dOoUSPbbbfd7NBDD3VeYwUcZaKsWrXKhg0b5gQrzZw50/RP+6PXVOekHvv06WP169fPxObituE10PmyZMkSx0EGtWvXdt6DMtDngjLT9OrVK+OvQ9ydYwECCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACJUwgrd5EBSVouIhE5fLLL7cHHnggUZXwMg2voQ7ORJ3Tqjx58mTr0KFDeL1EEzfccEPC9tSRf8kllyRqosQuO/fcc61x48Z2wgknJD0GdT6r01md9EGLOo+VseL55583BRXEKgoA8Gf96N69u5133nnOfqlzN1H54IMP7JprrklUxd54442kx3j77bfbq6++mrCdlStXOh3uiSqp8znR+Slr7Y9bFJCioVHilWOPPdbeeustZ7ECUG655Rb7/PPPo6q7Q7O4CxSgIfeBAwe6s3bao4aP+eyzz+zFF1+0Tz75JO52J02aFLFM+6zhc4YMGeJ05EcsTPHJwoUL7d5777XXXnst4evh3Yc777zTeX2VoeWmm25KKajLu3va9pNPPhn3c23KlCnhTC4KInn44Yftr3/9q5Uvn9kEPwpSue+++5IaePf9jjvucAzOOussu/766yMCfbz1mEYAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEECgrAqk1at38sknJ/VK1LnqX3nixIkJO0JVv3nz5tauXTv/qjGfjxgxIqIjO1alZ5991jJ1J3qs9nf1vMGDB9sZZ5wRaDfef//9QPVU6YsvvjBlFVFmi3iBE/EaU/0LL7zQ2rRpY1999VW8as78Aw88MOFyLRw/fnzSOursT1Z+/vnnhFWUvSJR4IRWVoaFVIqyA6h89NFHTkaAWIETsdpTQMYxxxzjOK5duzZWlSKZp+wK++67r5OlJJX3tnZG+6wgFgU+Pfroo7Z9+/aU91FZFhQwoCwKyq6S7PXwb0D19Z7X+gpqUHupFGUS2XPPPeMGTvjb0vYUKDRgwABTAEwmyrZt2+yee+5xMnuka/Cvf/3LOnbs6ATApPM6ZOI4aAMBBBBAAAEEEEAAAQQQQAABBBBAAIFMCSibLwUBBBBAAAEEEMiUQFrBE+q8TVamT5/upPJPVk/LR44cmbSa7hoPcgd3bm6u02mZqEFlxejRo0eiKqVimTJ/6A74ZEV38Scryg5y11132aBBg1LuuPa3rY7lI444wukIVruxijKDJNv3sWPHxlo1PE9BD4myP7gVv//+e3cy5qMyQyQrGpYk1aLAieOPPz7V1Zz6Gm4lSGaRtBr3raTgmn322ce82Rx8VQI/VdaaU045xRleI+hKW7ZscTI43HrrrUFXSVhPWWmUnSXeuedfWcFYGnok1YANtfPNN9847xl9LhWmyED7/I9//KMwzTjr6jguuOACJwtHoRujAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQRKiUBawRPNmjVzOhOTGXz99dfJqjjLg2QH0DAIQYruzJ4/f37cqhpCIFOdsHE3UkwW1K1b184555yke6PhNZYuXZqw3tlnn21K/Z/Joo7g888/P2aTygqiAItERedXog5wZQsIUtTBnagky7ChIA8NSZJKWbFiRdxjD9qO9nvYsGFBq6dV76WXXrKTTjoprcCBeBvUPisYYePGjfGqhOcrO4KGvtAwMZksChi64oorkjapgJEjjzwyab1EFRRIVtjPnKuvvjrp8DOJ9iHWsoceesjuv//+WIuYhwACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggECZE0greEJKygSRrAQZikB3QScLsmjdurV169Yt2eZs8uTJ9s9//jNhveeee85q1KiRsE5pWnj00UcHOpyFCxfGrffKK6/Y66+/Hnd5YRYkartfv35Jm54xY0bcOskySrgr6vzbvHmz+zTqccyYMVHzvDO0n6kOAaNO+SBZMbzbiTV9/fXX26ZNm2ItKvS8KVOmFDrAI95OqG0FBCQrH3zwgb3zzjvJqqW1XENfJDpHFLhx1VVXpdW2f6XHHnss7eE7pk2bZk8//bS/yYw8//vf/572fmVkB2gEAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgWIikHbwxODBg5MegjJKbN26NWG9H3/8MeFyLdSd58mKMhBccsklCatpmIPC3kWecAPFcGGfPn2SDn+h3V6+fHnMvVdwQpDsFTFXDjjzzDPPtFmzZkXVPuigg6Lm+WckGlLjyy+/9FeP+3z8+PExl23bts2SZbA4/PDDY667M2bOnj3bXn755YxvSgEZp59+esbb9TaooUfeffdd76yIaQ1VoWE+irIoU0288t577znDbsRbvrPmB80O0blzZ9N76bbbbrPLLrvMNPRNkBK0/SBtUQcBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBkiqQdvBE/fr1kwYiKKtEvE5pF2zEiBHuZNzH448/Pu4yd4GGFxg9erT7NOpRQysoTX1ZK8qIsO+++yY97MWLF8esc/nll8ecH2umsiCMGjXKcnJynMdrrrkmVrWY82Ld4d+2bVtr3rx5zPruzHjnl7I6aLiEoCVegISCE3QeJyoagqKwRR3dChS4/fbbnWAhZVsJWjTsSqbL448/bsqOEaScdtpp9sUXX5iySShLh7IsaHicIEWBObm5uTGrjh07NlBWBJ2jEydOdF4nBX3MmTPHtP96zycrw4cPt7lz58asdsstt8ScH2+mgrw0FI1ex0ycE+52Pv30U3cy7qM+2/ReePbZZ+3mm2+2Bx980H7++Wd744034q7jLlAQS6Lhb9x6PCKAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCBQmgUqFObgTj31VPvkk08SNvHVV19Zr1694tb58MMP4y7TAt1NrX+JyqJFi5Leof7AAw9Y06ZNEzVTapc1btw46bHJ0F/mz59v6lxOVtTRryCYFi1ahKtqXu/eve28886zQw891NRWoqLzSPvQpEmTiGrKFKIO4XglXuBAvPnx2vn2229jDtHwyy+/xFvFma8ggQ4dOiSsk2yhOriVFcVb8vLy7N5777W7777bOzvmtIJVMlk0XMXzzz8fqEkNzXPIIYdE1NUQO8qAcPLJJ1uyoXsUmKIMNccdd1xEG3qSbLgU1dG6Or+8Re/z888/3zScSqdOnbyLYk4r60nLli0jls2cOTNw8I3O8TvuuMPq1q0b0YYCcuSgAJx0y8aNG5MO7zJkyBC79NJLozZRrlw557xSZhLtR6KigBMFK1EQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQKKsCaWeeENjAgQOTuqlzM15ZsGBB0g7KIEMHXHvttQmzA+y33342dOjQeLtR6uc3bNgw6TEuWbIkqs5bb70VNc8/Q3f3+wMnvHVatWplCqAJUmIN4eDvmPe3o2wjsYaGSZSFxN+Gnit4I1Y78TJbuG0MGjTInUzrUUEK/sAJNVSpUiVn+IVYGTn8G1KGgUyWoBkf3nnnnajACXc/srOzTedP9+7d3VlxH1977bWYy5IFrlx00UVRgRPehtq0aeMENXjnxZqONWRMkIw4aktZL5Tlwh84oWXK+KJzP5UsIlrPW5IFHanu7rvv7l0lalpBLMmycMybNy9qPWYggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggUJYECpV5olatWnbiiSfa22+/HddMndirV6+22rVrR9X5+uuvo+b5ZyQbskN3tifr5H/qqaesfPlCxYn4d6tEPY9l7z+AFStW+GfZv//976h5/hk33nhjRMYJ/3I9VwDFbbfd5gxJEWu5O+/FF1+0iy++2H3qPB544IERz2M9mTp1qu25554Ri4KcWxErhJ5MnjzZlDXBWxRIkKj4sx4kqutfpo53DfWQqGjok4cffjhRFWfZ0qVLLUiQTNKGQhX++9//Jq2mrA6DBw9OWE8BFMr4cvjhhyes98EHH9jy5ctNQwF5y0033WQ9evTwzoqYPvrooyOex3qSKOuNW1/b9pcgQ2UoKEKZQZThIV5p1qyZPf300zZgwIB4VRLOr1q1asLlWqjXS8Fhfj93RQ3d8/7779vChQvdWRGPVapUyegwIxGN8wQBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBEiJQqOAJHaPuak4UPKE6o0aNitnRmuzu7p49eyZMJZ+bm2sXXnihNhG33HrrrUmH/Yi7cilZoKERkhV/gIUyUUyZMiXZanbBBRckraMKyhJw++23J6w7adKkqEAbBQQoe0GiLAS//vprRPDEunXrLF42htNOO800TEasomEWvMETykTxzTffxKoanhckuCNc2TcRJGuFOsTV8Z5s+Au9XpkKnvjyyy99exr9VEEdQcpBBx2U9PVTOwpS8Wey6dixo+lfYUq6Q/VoGJdkReezMoQkK8qeomCTIEPg+NsKMuSO3jcKErnllltMw9w0atTI34wV5jyNaowZCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCJRCgUKnYwhyR3Wsztht27Y5d0MnMlVHd6Kiu74TpbVv3769Be3kTbSdkr4s1p31/mPyd9Iqk0Gy0rdvX6tRo0ayas7yOnXqmIZPSVZibVcdz4nKuHHjIhb7n3sXaoiXeEVBPt4yY8YM79Oo6c6dO1u6nfNqrGvXrlFtxprRtm3bWLMj5m3fvj3ieWGeBAma6dOnT+BNHHXUUUnrLl68OGmdWBWU1WbmzJmm4VWUbWTYsGH2yiuv2L/+9S+766677NJLL421WsJ5CpoJEnAU5LPP3ZCCzNIpyhoR5H2jz8Hzzz/fyQKj9+UNN9zgBLXJJpPnRjrHwDoIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIlASBQmeeUGp+DT2gDst4RWn5H3300YjFEydOTNpBedxxx0Ws432iIRbuv/9+76yoaaXLV0r6sl6UlSBZ8QdPBFlHnbSpFN39rmFcEhVtt0OHDhFVNDRGotf6xx9/jKj//fffRzx3nzRo0MDJUBEvC8Bnn33mdDS7wzBMmDDBXTXmYyqd5/4GFNjjz/bhr+M+b9GihTtZ5I9BggYOPvhg0/s+aAnS+b9o0aJAzc2dO9fJZKOMIB9//LEtW7Ys0HqpVFq1alXS6sqKo4CgoKUww7uce+65Sd833v3Qe8z7PqtevbopA4j2Qee+gn4oCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCAQKVA+8ml6z5LdVa27onUHtLfoLvFE5YADDrDmzZvHrKKsFZdccknMZe7MoUOHkqr+T4ycnByXJe6jP3hi4cKFceu6C/zruPPjPQbJ0hBru8myHGiIjs2bN4c3G2+oDXdYiHgd2QocmDZtWrgdZTNIVDQcQ7qlWbNmgVetWLFi4LqFrRgkaCbI6+jdjyDDicR63d028vPz7T//+Y8zhEe7du1M7+2XX365SAIntM2VK1e6m4772KpVq7jLYi1I1czbximnnGIKWEm36Lz+5JNPnCw8ynaioVCee+4527hxY7pNsh4CCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACpU4gI8ETykCgu5sTlZEjR0Ys/vzzzyOe+58kGrLjpZdeiriz2r+u9uXee+/1zy6TzxW0Mn369KTHrqwM3hJr+Azvck3XqlXLPyvh85o1ayZcroWxtlu1alVLluXCHWpCQRTxAnPcYAfdhR+veLNYjBkzJl41Z36QjAoJGyiGC4MM8ZJKxgUdYpDzJN6wHfPmzXOGrTjrrLNs9uzZO0UsSPBE3bp1U9qXrKyspJ+R8RrU0B3K7KNsJZkocrz44oudLCw//PBDJpqkDQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQRKvEChh+2QQKVKlez00083DZMRr3zxxRd2zjnnOItzc3Ptyy+/jFfVmT948OC4y3XXeaKijvZk7XvXT3a3/fDhw+3KK6/0rmL169e3m2++OWJecXwi9yDFn0UiSLaDrVu3Bmk6XEcZBJIVnUuxSv/+/e3rBNlKNMRGt27dLNFQG/vvv7/TdPfu3WNtwpk3atQo+9vf/mZbtmxJGKCjwIkgQQFxN1RMF6ijPllJ9XUPUj/W+abAHw0zocw1O7MEMYgX7FFU+9mkSRP76aef7Iorrkg4RFIq25erMlq88847lujzNpU2qYsAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBASRVI3lMa8Mg0dEei4Ilhw4Y5HdLqJE12t/Nhhx1m/s58724k64T/6KOPTP8yVZTVwM1s4LbZunXrEhE88eabb7q7HPexc+fO5h9WIJG/29CqVavcyUCPQeo3atQoZlvJMk9o6I4zzzwz7rmlIWDcoRbUOT5o0KCY58hXX33lbH/q1Kkx98OdqWCO0lji+XuPdcWKFd6nSadXr16dtI5/GBMNzaPPlJ0dOKEdrVevXtL9TTaki7+BvLw80/AZhSnKqPP88887ARSPPPKIvfrqq4VpLrzuCSec4AxX474/wguYQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQKAMCWRk2A557bvvvuYf+sHvOHbsWGfWiBEj/IsinicasiOiIk8SCihwYvTo0QnraOGQIUOi6uhO92Tljz/+SFYlYvmcOXMinsd6Em+7yiqRaGgYNyDnu+++i9WsDRgwIGK+AnRiFXXWz50713799ddYi8PzdMd+aSzJ3sM65lmzZqV06EHOE3+wjob1mTRpUqDtKBDmpptucgIL3n77bSfrjIJppk2bZt98802gNryVggzJofNk3bp13tUSTufk5CRcnsrCPffc01544QVbs2aNffbZZ3bNNdc4Q5uk0oa/7nPPPeefxXMEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEypRAxjJPZGVl2RlnnGEPP/xwXMCRI0c6nXwff/xx3DpaoM5QSuEEVq5caRdeeGGgRo4//vioeg0bNoya55+hIUHuvfde/+y4z4MMIRJvu8oWoQAIDTEQq6ijXZ3ZbuYIfx1/sMOBBx7orxJ+rkCMcePGhZ/HmujZs2es2SV+XuXKlZ0glURZEn755Rdbvny5M3RNkAP+9ttvk1bzB80888wzSddRNhLVUxaYeGXjxo3xFsWdH3Q4FgVn9OjRI2473gUa+ifTJTs72w499FDnn9rWUDPKkKOsGBri44MPPrBly5YF2uwbb7xhd999d6C6VEIAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEECgNApkLPOEcJT+PVFR0MTChQujhsDwrqPAiSB3fnvXYTpSQMMqnHLKKYGGCejevbu1a9cusoHQM39ndlSF0AwFLChLQ5Ayc+ZMmz59etKq/gwE3hUOP/xw79OoaWXaiNfpf8ABB0TU32OPPeJmsvj++++dzueIFTxPjjzySFOQQWktnTp1SnpoybLHuA1s3brV6cR3n8d79A/bMXHixHhVnfnKkPHWW28lDJxQxXSG/ShXrpxpmJdkJWhAhAz+/e9/J2uu0Ms1JNJee+3lDF/z1FNP2bx585xgoiCBPnLSflIQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQKKsCGQ2eUCddok5HpdJXWv1ERZ3+lPQFfv/9dye7R9DhCk4//fSYG9Pd97qzP1kJmnkiSD0FJehu+njFnz3CX++BBx7wz3KeKzOB/7xUphT/UB7uyh999JHpXI1X+vXrF29RqZh/9NFHJz2OO++8M1Bn++uvv540gEHDsfTp0ye8zby8vKTrKJCmdu3a4XXiTXz66afxFiWcnyxQRyvfeuuttmTJkoTtaOHLL7+cMGAsUQMKujjvvPPi/nv++efjrl6+fHlT0JAM/Od/rJWUrYaCAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAQFkVyGjwhO7YPvPMMxNaXnPNNQmXDxw4MOFyFkYLbNu2zb7++mv729/+Zt26dbPZs2dHV4oxp0uXLk6nbIxFzqx4gRXe+i+88ELcoTLcespS8Morr7hP4z6edtppcZdpgTJkJOoEjnfc/fv3j9muhjyIVZJlKzjooINirVZq5p100klJj0VZRO67776E9ZSV5MYbb0xYRwv/8pe/WJUqVcL1gmRA0LAhycro0aPtySefTFYt5vJ4gTX+ygr2WrNmjX92+LnelxdddFH4eaoTGpZEwRfx/l133XWWm5ubsFkFQnXu3DlhHS0MOlxJ0oaogAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggEAJFKiQ6X0+/vjj7a677kqr2RNPPNFq1qyZdF11bLZv3z5pvaAV3njjjaRV/R37DRs2TLpOJipMmTLF7r///qim1q1b59ydr45+ZZtYtmxZVJ1kM3RXe6LhJwYPHpysCWf5EUccYf/973/tuOOOMwXQuGX79u327rvvmt/OXe5/POqoo/yzop5rW4nuto9aITQjXsaKAw88MFb1hPOUJUFDfpTm0rZtW+vdu3fCoUt0/HfccYcpcOfaa6+NyhiiIV30fg5yXvqzzVStWtUZUiXeECzatobMUEaFeMFWGsLljDPOUNW0yiGHHBJoPQVoKJhGgSQ6N93zf/Xq1aahM2677bZA7cSrpOwvibKgyEgZMOJlXVG7yiiRbIgRZWdJ9FkQb/+YjwACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggEBpEch48MSee+7p3OWsTv9US5A73tVmYTsk/fv14YcfWqKO2ssuu8wefPBB/2o75bmyKfz973/P+LYUkKHXKlGpU6eODR061F566aVE1Zxlp556qnXv3t2OPfZYpwNZgRNyTdTx6230ggsucDrMvfNiTStbRKrBE/vtt1+spqxjx47WoEGDQB38bgMa0kLDIZT2otfjp59+SnqYCpRSdgSdJwp60D8FFAwbNizpuqqgIKhYr0+nTp2SnjvHHHOMk9VhyJAh1rRpU1uwYIGNGzfORo0alXR4oGQ7V7duXWdYl88//zxZVWdIDu2LAmt0PulRwSOZKAr8SfbZ89hjj9mqVatMWSg6dOgQ3mx+fr6NHDkyYXYZt7Iy1lAQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQKMsCGQ+eEKY6M9Pp8Ned25SiF+jXr59deumlgTakO+p113qyoSzU2C+//OL8C9Swp5Lueg+areSAAw7wrJl8Up3z6liPVZQlQEN6vPbaa7EWx5wXb6iPmJVL8EwNpfHee+/ZBx98kPQolF0iVnaUpCuGKsg+KysrquqgQYOSBk9opf/7v/9z/kU1kIEZ9957rwUJnnA3pQCsREFYbr1UHg877LBAwWgaFkf/NKxNy5YtnWCKVALYFCBGQQABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQKAsCxTJLfQnnHBCyqYKuMjOzk55PVZITeDyyy93sgLE6rCO1ZKyT7z66quxFmVsntoPMlyLNti4cWPr0qVL4G0rOCJRCTo8g9tGvCFA3OWl5VGBJU8//bSTSaGojklDTcTLeHDWWWcV1WYDt6vMLBdffHHg+kVRsUKFCvbII48EblpBTsr8kUrghIZB2n///QNvg4oIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIlEaBIgmeaNu2rfXs2TMlr5NPPjml+lROXeD11183dVhXrFgxpZXVsZpuZoFkG9KQA7169UpWLWK5OnuDloMOOihh1VQ6jZUhY7fddkvYXmlaWL9+fXvzzTeL5JBOPPHEhNlPFCRz5513Fnrbp512WqHaUAYdve6FLQ899FDa7SjbyfXXX1/YXYi5vjJVPPHEEzGXMRMBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBsiRQJMETAlQmiaClevXqVlaGQwhqksl6ffv2tYkTJ5o6rNMtV1xxhX344Yem1yoTRe189tlnduGFF6bcXCrnSrLgCAX6NGjQINA+DBw4MFC90lRJw6T8/vvvKWX7SHb8CsTRcB3lyyf++LnuuutMw4ekW7TujTfemO7qznr16tWzkSNHOkNnpNuQht4obAYLBZLcdttt6e5CzPU6d+5s3333XZkKCIoJwUwEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEQgKJey8LQXTssccGXvvUU0+1ypUrB65PxeQCuqP8H//4h+Xk5NgXX3xhnTp1Sr5SkhrK+DBhwgQr7NAVCuaYNGlS2gEzffr0SbKnOxarc7hhw4ZJ6w4aNChpHVXQfpfF0q5dO6eT/bzzzivU4SuDgwIRFIijYUGSFdV5/vnn7e67705WNWr5rbfeak899VSg7USt7JvRtGlT++qrr0yBJKmWa665xt55552kgSJB2r355pudgKNUhq2J164CMRQ4oWOjIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAEQZPNGvWLHAn+0knnbRLX4vs7OyE2w+amSBhIzEWVq1aNcbc1GZp33r37u1klVCntIblGD58uE2fPt1uuummtIcKiLcXLVu2dNpXEMXVV18dOBOFMk1ce+21TgYMBXPo/Ei3qK0gARz9+/cPtIkgbamhAw88MFB7qpSpDB1BN6gMCf6SyX3Qe0TDO8ydO9c5x9q3b+/fXNznZ5xxho0YMcKmTJliyTKB+BupUKGCc97ofFP2hmTHpIw3M2fONA23oX2uXbu2v8mo540aNYqa558hXwVQ6L3Vr18//+Ko5/vtt5+NGzfO7rnnHnPf502aNImql+oMZV0ZM2aMk7lDmWSSeXjb1+fE7bff7ryGCsSoUaOGdzHTCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCJRpgXJ5eXnby7QAB18ogdD542S3WLhwobn/srKyLD8/3wmQ0J3t6jRW5ouKFSsWalusXHwEtm/f7gTo6DVfsGCB80/z1q9fb8p6otdd/5S1olatWhnb8S1bttjkyZNt8eLFzj8FANSsWdM6dOhgLVq0MJ17O6PMmTPHZs2aZbNnz7b58+c7gRrKcqJsJx07dgwUtJGJ/ZTH+PHjbd68ebZs2TJbvny5Y6DXQQEfCq7Sv3322cfq16+fiU3SBgIIIIAAAggggAACCCCAAAIIIIAAAsVGQJmX9XscBQEEEEAAAQQQyIQAwROZUKQNBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQ2KkCJTV4In/bdtuYl281qlTYqV5sDAEEEEAAAQQSC3BlTuzDUgQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEECgUALf/r7UJsxabb/PW2uT5qx22mpYq4rtuVtN271lbTuiexOrU53szYVCZmUEEEAAAQQKKUDmiUICsjoCCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgjsfIGSkHli89Zt9tCwqfbx2IUJgWpXr2QPnNnVdm+RuWGQE26QhQgggAACCCAQJVA+ag4zEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEECiWwbtNWu/jpnyMCJ5Rt4qA9G9igfZpa5xY1w+2vXp9n5z4x1kZOWhKexwQCCCCAAAII7FwBhu3Yud5sDQEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBMqAwFvfzbUpoWE6VKpWyrKbTt7dDunSKOLIl67ebHf+b7KNn7HKmX/PW79bz/b1rEYVum8ioHiCAAIIIIDAThAg88ROQGYTCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggULYEPh+3KHzAt5y2R1TghBY2rF3ZHj17b2tWN9upuzEv336ZsTK8HhMIIIAAAgggsPMECF3cedZsCQEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBMqAQP627bZgZW74SHu3rx+e9k9klS9nZ/dvba+M/MNZtGrDlnCVRas22Vd/DuXRrVVt26NlrfAy78TytXn2+YQdwRo929a1js1qhBd/Mm6hqc1qlbPs2N7NbVmo7viZy+3nULaLDZu3WoemNe3wvRpb8/o7Aji04vxlG+3LyUtt1qJ1lr99u+3eMrTt0DAjXUP74C+q+82UZc7sfTvWs90aVLPJc9eEtrHKfp+32prUqWpddqtph4W2UT50rCry+WriYvtt7lqbv2KjtQits0fzmrZ3aN/r1qjk1In139rcrTZuxgqbtWSDzQjtW5UK5a1981rWvkk127NlHcuuFH3P8LiZK23qgnVOc0f3amahwwkFqKywcbNWh7a9wQ7cvaEN7NHU3vtxvm0LLaxbvZIN3LtJrM0789Zvzrf3f5rvTNeuWtGO6tk0bl0WIIAAAgiULAGCJ0rW68XeIoAAAggggAACCCCAAAIIIIAAAggggAACCCCAQDEXUEBE7VAn/Or1ec6erg4FLzQKZZmIVwZ0b2r65y+LVuXa/3083Zl90ZHt4wZPTF2wJlzvmuM6RQRPPPf5LFu6ZpM1rFXFurWuY0Me+iFiM99MWmbPfT7T7hjSJRTg0CgUxDHHnvlsRkSdkROXOs/PPKy1ndu/bcSy3+cXbLt+jYr25qi59tHYhZ46K+yd0eYEJzx01t62IhS8cdN/frWZi9aH6/wwdYUzLbNnL9rHmtUrCORwK30/dZnd878pYVN3/hcTljiTrRpVs4dD7fudR4SWfzBmgVOnZ9s6dsO/Jzoe7voNalZxAiBe/GKmKfOHyv6dG1jN7NhdaKN/Xxq2Pmn/Fm4zPCKAAAIIlAKB6BC8UnBQHAICCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggsCsF1FHvln+++5ttDGUs2JVlfe4Wu+6lCeFdaOHJNKGZt742yV4YMSsicEIBCd7y8pezw4EI3vnu9H9HzQsHTmgokqqVstxF9uvsNfbAe1Ps+lcmhAMnVEcBE25RsMklz4yzzVu3ubOcx29DAQvXvfRrROCE9t+7f3NC2SjOevwnJ7NGxMqeJ7e9PikicEL7V7VKBasUymAxuHezcM3v/8ykEZ7hmfjyz0wgmtW/e2PPEiYRQAABBEq6QOywuZJ+VOw/AggggAACCCCAAAIIIIAAAggggAACCCCAAAIIILALBQ7as6GN+HVHVoSfclY6GR8G92pqfbs0tNYNq1u5HSNY7LQ9VFaFjaGhRK47vnNomIomTsDAqvVb7MZXf7VJc1Y7+/Hi8FnO480n7279ujW2ilnlbfOWbXbnW5PNzT4xKhTIoOEvYpVpoeExOoSGDLn79L2saSgwQkNkfDFhod3x39+d6p+PX+w8aviRO4fsFc4S8cvsVXbJ0+OcZcqSMTM0JMfuLXYMUaI2XhoxO7y50/u2stMPaWU1QkEPKsvWbLY7Qvs3PjQMiYIvfsxZZoP3ib1/85bnOvt32eAO1qlZzdAwH1nOUB1qp3/oeJU1Q0VDisQaumPdpq323W/LnToK3nD30ZnBfwgggAACJV6AzBMl/iXkABBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQKC4CWgIjIuOah/eLQUFvBAKTjjj4R+t/60jnaCFd36YZyvW7RjaI1yxCCfOCQ25cUwow4IyLajUqV7R7goFMXiL9vnIHk2dwAnNr1yxvN16yp7hKhNmrnaCIsIzPBPK5PDg0O5O4IRmK0BEw5GcsF/B8BbKNPHQ2d3DgROq1z00nMiFA9tp0ik5oSAMt2wKBW/s3qKmE7Ch/T//iLbhwAnVaVCrst1w/O5udftl1qrwtH+ic6idx8/v6WxPgRMq5f+MYunUvKa52ThGT1lha3O3+le3HzwZKQb3ah61nBkIIIAAAiVbgOCJkv36sfcIIIAAAggggAACCCCAAAIIIIAAAggggAACCCBQTAWGHLSb/f2UPSKGl9CuKgvEt5OX2cPDcuzou7616/49wSbMid/pn6nDU3YFf6lfs1I4aEDLDt69ob+KE2yhbBEq2ndlYIhVDunayOrVKBiGw63TvU1td9L27VgvIvjBXdA+lLHCLQtW5LqToewQ5e3a4zrb9Sd0tqGHtQ4HO4QrhCaa1SsYIuT3uWu8iyKmlZGieuWCoUQiFoaeHNOnIMgj1tAd3iE7FBxDQQABBBAoXQIET5Su15OjQQABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgWIkoOEfXrtqX3vp8t52WiiYolWjalF79/3vy+3ip8bZN5N2DPMRVSEDM5QVQkEGsUrNqgUBD81Dw1HEKo1qVw7P1lAascoefw614V9W9c8hNjS/XZPq/sXO8wY1Pe1bnA38uaaGElm2Ns/mLttov89bY2NnrHCCOmI27Jm5V6uCIA7P7PDk4Z6ACA3d4S3eITv2blfHGtep4l3MNAIIIIBAKRDYMSBUKTgQDgEBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQKK4CHZrWMP27JDQshjriJ4YyTSj7xEdjF4Z3+ab/TLKnL6psXXZL3MkfXiGFierZFVOonV7VKpVC43QkKeX+HCYjSbWoxVPmr7VPxy2yMdOW27zlBZkpoiommFGlYvysE1pNQ4D07ljXfspZae7QHTWzd3Sl/Th1WbjlQT2bhKeZQAABBBAoPQJknig9ryVHggACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAiVAoEYoE8P+nRrYjSfubq9dva81rFWQxWD01BUl4Ah23i4qy8Xbo+fZOY+PsXdCj+kGTgTd4yP3bhqu6h26Y8TEgqwgB+3BkB1hJCYQQACBUiRA5olS9GJyKAgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIFCyBFo1rGY3nNTZrnr+F2fHf5m1KuYBbI83Vkao9tat22KuUxpmTp672h55Pyd8KMf2aWa92tW1xnWrWvVQEEqNqhWtWuUsO/ruUbZ6fV64XroTB+zRMLyqhu7QsCvrN+fbd78td+YP7NHEskNDoFAQQAABBEqfAMETpe815YgQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEBgFwqMnbHChk/YkangqFBne9fWdRLuTcv61cLLV67dHJ7O8oyCsWpD/MCARasL1gmvXEomxk5fGT6SUw9qaZce1SH83J1QcEMmAifUXpWK5e3oXs3sgzELwkN3jMnZETih5QP2bqwHCgIIIIBAKRRg2I5S+KJySAgggAACCCCAAAIIIIAAAggggAACCCCAAAIIILDrBNSR//HYhc6/Z4fPTLojP4eCLdzSvEG2O2lN6xUEVfyxdEN4vn9inGd9/7KS/nziHwWZOI7sUTCkhve4xs8s8PPOT3d6QI+CAAkN3fHlpB2BMLWrV7K929RNt1nWQwABBBAo5gIETxTzF4jdQwABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgZIl0K1NvfAOT5i52l79eo5tyY89tMZvc9fY058VBFj0al+wboOalazqn0NE/DB1hc1cvD7crjsxYsJi07LSWto1rhk+tOkL14Wn3YnZSzbYP9+Z6j7NyONeu9W2hrWqOG29M3qefTt5mTOtjBRZ5T3pQDKyNRpBAAEEECguAgzbUVxeCfYDAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEESoWAgh7O6tfGXhw+yzmepz+dYZ+NX2RH7N3EWtbLtlo1Ktm8ZRttyry19v5PC8LHrA77Qb2ah59ronenejZy4lJn3gVPjrWh/dta64ZVbd3GLfbjtBX2+fjFEfVL25N9OtS1N779wzmsO9/8zX6esdL6dKhnFUNjmvw2f529Fwpu2JiXn9HDLl+unB3du5k9/8VM5zVyG+/frSAjhTuPRwQQQACB0iNA8ETpeS05EgQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEECgmAmcd1sZqV6toDw/LcfZoTihDgoIo4pVubWvbXX/patUrZ0VUufqYzjYjlHFh3vJcJ0jgyY+mRSzXk9P7trL/hLJblMayd5s61r9bI/tiwo6hMz4dt8j0z1vOOKSVfRgaJkXDpWSq9Ova2AmecNvr0KyGtW5UMIyKO59HBBBAAIHSI8CwHaXnteRIEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAoJgIhJIX2An7trBnL97H9mhZK+5eKduEgh8eO7uH1aleMaqe5j1yTg87aM8G4SE83Erq0H/qwp7WpVX89pWhQaVyxR2P7rqxHt0hQmItq1ihoEsp6882VU9ZGtxSqUJk4Ic73/tYydNOxPzyBe1761TMKm+3nLqnnTegbXgoDXe92tUr2Q0ndrbzQtk4KoXqxSqeZq1CnG3HWq95/Wzr3KJgyJBB+zSNVY15CCCAAAKlSKBcXl7e9lJ0PBwKAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIlAGBnJwc69ixY4k50vxt20PZIzbazMXrLT9/mzWsU8XaNq5hNaoETxK+PdSjsyDUxqatofVrV7Ga2cHXLTFQSXZ05bo8W7Z2cyirRyVrUKtSRPBGklVTWrwt9Hr95aHRTsYPrfjRLQfHDG5JqVEqI4AAAggUa4Gyd1Ut1i8HO4cAAggggAACCCCAAAIIIIAAAggggAACCCCAAAKlUSCrfDlr1bCa8y/d41OSh+YNqqa7eqlYr26NSqZ/RV0+Gb8oHDihrBOxsoIU9T7QPgIIIIDAzhUgeGLnerM1BBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBYiiwbtNW25S3zcZOX26PvZ8T3sMz+rYOTzOBAAIIIFB6BQieKL2vLUeGAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCAQUODh96bYFxOWRNQ+af8W1rx+dsQ8niCAAAIIlE4BgidK5+vKUSGAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCBRC4LwBbe2vh5B1ohCErIoAAgiUKIFyeXl520vUHrOzCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggUOYFcnJyrGPHjmXeAYDMCcxZusFWrs+zutUrWbN62VYxq3zmGqclBBBAAIFiL0DmiWL/ErGDCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACRS3QqmE10z8KAggggEDZFCBkrmy+7hw1AggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCPwpQPAEpwICCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIlGkBgifK9MvPwSOAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBABQgQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQKJ7ByfZ5NmbfWZi/daAtXbbJFoX+5m/MtNy/ftuZvL1zjrI0AAggggEAJE6iQVc6yK2VZduUsa1KnijUN/WvdsKp1blHT6lavVCyPhuCJYvmysFMIIIAAAggggAACCCCAAAIIIIAAAggggAACCCBQ3AWWr91so3NW2HdTVtiCFZuK++6yfwgggAACCOw0AQUOrsvd6vxbunqz/Tp7TXjbzepVsQM617P9O9W3ejWKTyBFuby8PMIdwy8TEwgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIFASBHJycqxjx467ZFfnLd9o749ZZD9OW2nb6WXZJa8BG0UAAQQQKPkC5cqZ9elQ147p1cRa1K+6yw+IzBO7/CVgBxBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQKAkCKzL3WJvjJpv3/y2vCTsLvuIAAIIIIBAsRZQAOIPOSudfwfvUd9OO7C51ciuuMv2meCJXUbPhhFAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQKCkCIwJZZl4fsQc27A5v6TsMvuJAAIIIIBAiRFQYOLPM1bZOYe3sl6hbBS7ohA8sSvU2SYCCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgiUCIH8bdvt1a/n2vBfl5aI/WUnEUAAAQQQKKkCClB87OOZ1m/+Ojujb0vLKh8a12MnFoIndiI2m0IAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIGSI7B5y7ZQJ84M+3X2mpKz0+wpAggggAACJVxAAYtL1262y49qZ5Urlt9pR7PztrTTDokNIYAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAKFE1DgxL3vTiVwonCMrI0AAggggEBaAgpc1HVY1+OdVQie2FnSbAcBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQRKhICG6lDGiekLN5SI/WUnEUAAAQQQKI0Cug7reqzr8s4oBE/sDGW2gQACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAiVG4NWv55JxosS8WuwoAggggEBpFlAGCl2Xd0apsDM2wjYQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgZIgMGbaStNY6+mUrPLlrFvrWtZlt5rWplE1a1irslWtVMGyssql0xzrIIAAAgggUGIF8vO328a8rbZ0zWabtWSDTfpjrU0IBUKkk0VC1+Xdm9ewXh3qFqkHwRNFykvjCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggUFIE1uVusedHzEl5d6tVzrIjezS2w7s2tOpV6HpJGZAVEEAAAQRKnYACB2tkV3T+tW1c3fp1bWTrN221EaFAiE/GLbYNm/NTOmZdnzu3qOG0l9KKKVRm2I4UsKiKAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACpVfgjVHzU+7M2a9TXXtoaBc7tndTAidK76nBkSGAAAIIZEBAAYa6Xuq6qetnKkXBFrpOF2UheKIodWkbAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEESoTAvOUb7Zvflgfe1/LlytnZh+9mFw9sW6R3wQbeISoigAACCCBQQgSUkULXT11HdT0NWnSd1vW6qArBE0UlS7sIIIAAAggggAACCCCAAAIIIIAAAggggAACCCBQYgTeH7Mo8L6qo+fyQW3t0C4NA69DRQQQQAABBBCIFNB1VNfTVAIoUrleR24t+TOCJ5IbUQMBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQRKscDytZvtx2krAx/h0MNaWs92dQLXpyICCCCAAAIIxBbQ9VTX1aBF12tdt4uiEDxRFKq0iQACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAiVGYHTOCtu+Pdjuaox2Mk4Es6IWAggggAACQQR0XdX1NUjR9VrX7aIoBE8UhSptIoAAAggggAACCCCAAAIIIIAAAggggAACCCCAQIkR+G5KsE6YapWz7K99g98dW+IfomUAAEAASURBVGIA2FEEEEAAAQR2sYCur7rOBilBr9tB2vLWIXjCq8E0AggggAACCCCAAAIIIIAAAggggAACCCCAAAIIlCmBlevzbMGKTYGO+cgeja1GdsVAdamEAAIIIIAAAsEFdH3VdTZI0XVb1+9MF4InMi1KewgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIFBiBKbMWxtoX7PKl7PDuzYMVJdKCCCAAAIIIJC6gK6zut4GKUGv30HacusQPOFK8IgAAggggAACCCCAAAIIIIAAAggggAACCCCAAAJlTmDWkg2Bjrlb61pWvUqFQHWphAACCCCAAAKpC+g6q+ttkBL0+h2kLbcOwROuBI8IIIAAAggggAACCCCAAAIIIIAAAggggAACCCBQ5gQWrgo2ZEeX3WqWORsOGAEEEEAAgZ0tEPR6G/T6ncr+EyKZihZ1EUAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAoFQJLF69OdDxtGlUzfLy8mzz5s22devWQOtQCQEEEEAAAQRSE6ifvS3QCgtXbLRVq1bFrVuhQgWrXLmyVapUKW4d/wKCJ/wiPEcAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIEyI5C7OT/QsVarsNU2bNgSqC6VEEAAAQQQQCA9gfo1goUw5G7ZnnADCnTUPwU+Vq9ePWFddyHDdrgSPCKAAAIIIIAAAggggAACCCCAAAIIIIAAAggggECZE8jNCxY8UaFcsDthyxwgB4wAAggggEAGBbIrZQVqbdOWYNfvLVu22Pr16wO1SfBEICYqIYAAAggggAACCCCAAAIIIIAAAggggAACCCCAQGkU2Jqf+M5V95izypdzJ3lEAAEEEEAAgSISCHq9zQ8WO+HspQIolIEiWSF4IpkQyxFAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEECgxAps3rw56b4HGzAkaTNUQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQKDsCNz3/izbnFcwnEv/rvVt3w61SyzAY5/MsdUbtob3//C96tn+HeuEnzOBAAIIlGSBrVsLPt/iHQfBE/FkmI8AAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIFEOBt35YZMvWbonasw5Nqlq/vepHzU80Y/jE5TZt0ca4VTRaSe1qFa1u9YrWtE5l2715dQuaUj1uo6VkwXdTVkUcyd5takY8L2lPhk9cEbHLe+1WI+I5TxBAAIHSLkDwRGl/hTk+BBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQKDUCP05fba98szDm8WzaUjfl4ImxM9fY6JzVMduLNbNWtQp2VPcGdkLvxla5IqPDxzJiHgIIIIBAyRTgqlYyXzf2GgEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBMqYwIZN+fb4Z3/s0qNeExrW4fXvFtnVr061RauSjx+/S3eWjSOAAAIIIJCCAMETKWBRFQEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBDYVQKvjlpgCl4oDmXO0ly75j9Tbd2m4rE/xcGEfUAAAQQQKNkCDNtRsl8/9h4BBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQTKgMDUhRvso3HLIo60S8vqNmnu+oh5hX2iYTnuOqWD08zWbdts1pJcmzxvnY2fvTYqcEOBHE99MdeuO7pN0s3mb9tuazZutfLlzGpVrWjlQo/FtWhfV4eOrU71CqH9zeyOZsJhewhu1fotViU0bErVylkpM2r9LVu3WaUKhb/HenXoNa0QelGrV0l9P1LecVZAAAEEiliA4IkiBqZ5BBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQKDsCCjR47sv5EQd8+oFNbZ+2tSLm6cnnvy63T36JDIi48dg21rh25Yi6W0Od+U/4hus497DmtiA0bEamgyeyQx3yrRtmh7ffvnE1G9C1vm3N3253vjvDxs1cG16miW9/X2Wn7JtruzUoWMetsDZ3q42YtMI+m7DMFq6MHOKjfZOqTrt9d69nVSoVdOJ/N3WV/e/HxW4TViGrnN0/pKNlKerizzJnWa498vEc96nzeMMxbaxJnQI37e+1ocwYIbpwOW3/JtanfW17f+wS++q3leH5LetVsasHtzZt+9spK+2XUKBIbt42Z7n2828HN7NurWqG66c6kY6DfxvL1ubZuz8tsRlLNpiyfrj7V69GRevYtJqzfwO7N7ACpcgW8kLBEl9O1mux3GYu3ugs1Lp77VbDdH42qlVgF7lm5LPcvHx7b8wSUzDPlPnrI/ajXeOq1qVlDRvco2HE6xXZAs8QQACB4iuwy4MnFixYYK+++qojtP/++9uBBx5YfLXYMwRKocDq1astOzvbKlcO9sUoEwTDhw+3cePGOU2dffbZ1qBBg0w0SxsI7BSBMWPG2EMPPWStWrWyG264werUqbNTtrszNrJx40b717/+5Wxqn332scMOO2xnbHanb2PZsmX2ww8/2C+//GILFy60+vXr2913373T94MNxhcoymvThg0brEKFCjv1uhf/SFmCQPEVKG7f17Zu3Wrr1q0rsuuu2tZ3Yn0+UAoEdL385ptvnBmnnnqq8/2nYOnOmXrzzTdt9uzZzsauueYaXqOdw85WilAg0e9gxeE9V4SHXmaaLit/VyU6l8vMi82BIpBAoGmdKuHOabfa6JxVMYMnvv5tRURddWY38gVOqI2Pxy11Oszd9tqGOqkHhTqonxkxz51V5I8KYlCAwg2vT4vYZ2149LTVUcETv4c61u9+b2ZUtgp3R6cv2mjTF821d0Md8bee0M6ahwIYVJTBwO3cd+suCAVetKy/Y7nmTZ67LqqOgla8wRN/LM8Ntb8jSMBtxw1KWbR6c9T634deo/uGzXKrhh/Vxt//O93OPrS5HderUXh+0Il0Hdz2FfvxeSj45InP5rqzIh5XrNtio3NWO/8mhlyuPLKVVQ4FwHjLhk359o+3p4eCHTZ4Z5vWHTl5pfPv3r/syDYSUcH3ZPriDfbPkNHi1Xm+Jea0tWLdGvtp+hqT5fWhc6V+jUpR9ZiBAAIIFGeBtH4Z2rx5s9188822adOmtI6tcePG9ve//91Zd/78+Xbrrbc603okeCIt0mK70sSJE+3ZZ591/t1zzz2mH7uSlZycHHv88cfjVqtVq5Y1a9bMmjdvbgcddJDVrl07bt1duWDq1Kn2xBNPhHehRo0adu+994afpzPx1ltv2bfffuus2qNHDxs6dGg6zdikSZPsjjvusK+++sr5EVqNtG7d2k4//XS7/PLLrWbN9CNog+zQF198YY899phT9eijjyZ4IggadYqFwPbt25333fTp0539UeCEAihKS9GPfO41+cQTTyyVwRMzZ860gw8+2JYuXRrxspWl4Al9j7v66qsjjj/Ik7322svOO++8qKorV660Tz75xH7++WdTcJGu4127drXevXtb9+7dTZ/zVaoU/LgR1cCfM4rq2qT37bvvvmsvvPCCjRgxIrx57VuvXr3s2muvtZYtW4bnpzIR5Fqfae9U9o+6CBRGIJ3va/PmzbN//vOfKW/2hBNOsEMOOSRqPX1W6zvjsGHDzL32NmzY0PmbUZ/l55xzTtod6dtCqYffe+89GzVqlI0cOdKmTJnibL9///623377Od+Lg342BP2Ofvvtt5sC+IKUNm3a2FVXXRWkapHW+f7778PfDfr06bNLgid0s4XOR5Urr7wy7de8SKFoHIEUBBL9DlYc3nMpHApV4wiUhb+rdOiJzuU4NMxGoEwJ1K1e0bq1rmETZq8LH/eYmWtMneDlwnMsdMd+flTWiH571Y+oo+rq4PZnsrj0iN12yZ392ZWy7KqjWtnFL/zuORJzOsuV1cEtygxx3X9y3KcJH5WR4sp/T7Hnzt/TaleraJ2bVY+qPzOUbcEbPKEgAX/RPPm5ZdaSyMCJ7FB2i1jZMVR/4cpNdu970YETblt6fOGr+XZQ57qmAJegpTAO7jZ+nbM2buCEW8d9/G7KKtsWSrVx03Ft3VnO46OfzIkKnIioEHpy3/uJj39laJiQK1+e6l8t5nMFadzy5nR76pw9Yi5nJgIIIFBcBdIKnli7dm34ztR0Dqxz587h4Il01medkiPgBk5oj2+66SY799xzTcEPicqMGTOcYItEdbzLzjjjDLv++uutQ4fkUZHe9YpyWnfGnXXWWU5HkrudwgRPrFmzxglqeP31193mTHd+pRM8obvKYwWx6G6uO++805555hknqKI4eYYPOsDE119/bX/88YdTUx12pSkrQLLDVyfeTz/95FRTp2WnTp2SrVIqlxflOaBOWL0f3ZJuEKG7fll6XLVqlX3wwQfOIe+2227Wt2/fXXL4Rx55ZETgRJcuXaxjx467ZF921UZ1jdL1OdVyzDHHRAVP/P7773bccceF7wh22/zuu+9M/1T0efS///3PFDwbrxTVtUmdowoK1LXNX5R5RP90bVWw42mnneavkvB50Gt9Jr0T7hALESgGAvouks7nyx577BEVPKGgrGOPPTbqqBRQ8c4774T/vfLKK9akScEPtFErxJih9+UFF1xgWtdf1Emvf//3f//nBIYpcCxeSfU7uj7rlOEiSDnggAOKRfBEkH2lDgIIIIBA5gSKy99N/L6QudeUlsq2gIai8AZPrNmw1ckc4R0O47dQZgZ/2b9jdJbTF0ZGZpcY3LOhaXiEXVXcDBHe7S8JZXJwy7bQb2gPfrgje5g7T4+1qlWw/TrUsU1b8u3HUKYKd9gJLdP0/30x1+n0V9YEDSUx8Y+C788zQsNMHLJHPVW1UPPOsBrOE89/40NDbXjL9D+HpnDn7Rey9QavuPP16O6LAiw0PEduaB+9r59b98vJy+3kfYP9DVJYB3ebH/wceROQ5h+7T0MnU8fMJbmm7CXu/muZslBoiI5KFXZkn/ht3nr7IeQdqyiDiQJHtL7O0UTli4nLoxb/rW8z692utq3akBfaj5U2fOKKcJ15yzeFMn9ssPZNqoXnMYEAAggUd4G0gicKe1D16u24wBW2HdYv3gKKtPf/ePrhhx86d3Flcs91J5L+6Y6vWD+wZnJbQdvSHXK6AzcTRZ3hCpRQOsTCFhl5Ayd69uxpurtO6dFlqB9z9YP0gAEDnJT2iTq6CrsvRbX+iy++aP/973+d5tVhV5aCJ3SX0oUXXugc+1NPPVVmgyeK8hwoX768Pf/8884QD8p+c/755xfVqVzq2l2yZIkTQKcD02fargieWLRoUbiTX3cuKw1527aRUfilDj7GAWVlZZkC+oJ24MVowpmlu7W9Q7uoTV1XFByjO7jdYC49ar6yUjRt2jSquaK6NuXn59sll1ziZJxwN6rMVQMHDrTc3FwnmEcG+ve3v/3NuRa6n6Fu/USPQa/1mfJOtC8sQ6C4COg6mU5RcKK3KDua93u9PrOPOOIIJ1vZb7/9Zp999plTXZ/jGmZKnzn6DApSFPg4ZMgQ098lblHbyuqm7Baffvpp+DuxPrv0WafvlP6S6nd0fe6k8rkbJGOPf594jgACCCBQ8gWKw99NUuT3hZJ/LnEExUOgd/vomwgn/rHWvMETE+YUBAdor5vWrRyxXPMmhbIpfPv7Kk06RQEIpx8Q/fe1u3xnPGaVL2edm1eLyGSgzvfNW7Y5w0Uo68CcpbkRu9KqYbY9/NdO4Q791Ru22LnPTI7q9FeWDWV26NGmZkTwxNSFBcNNzFuRG7GeuyF1/i8OBXG4Q3NouAxv6dYq8d8NOqa7T+0Q3kcNPeHPRqEsGUFLJhw2bM63FaGMDwpycMtZhzSzrrsVZI/uHjque3xZM6aFghb2bLHjeGNl6dCx3hIaKqVmdgXLD2WqGBkKfHj04znuJmI+zluxKWJ+l5bV7aQ+O26WUVaQvVrWtIqhgA29Bm6ZHwrMIHjC1eARAQRKgkBav241aNDA8vLyYv7zpi/XD1Kx6unHMErpF9APj/7y73//2z8r4fNbbrkl4hzSj51KB6wfMXUnqfdH0pNPPtk+/vjjhO3tjIXTpk2zG2+80dmUfuj17mMq29cdcRrmQ0PZuIETai/dsn79+nDHutqQrRz/8Y9/2KOPPmr6IVopzFW0vfvuu8+Z5j8EEIgUUAeL3jtvvPFGyne6RrbEs50toKGk3KJsCWUxcELHrw65FStWRFxfY31f0zxdK9yiNPbeouGf3PKXv/zFyfrz+eefO4GTeo9MnjzZGRJKdRSY9/7777vVw49FeW164IEHIgInFFilLEu6m/yll15y9sl7fBpSTkOQBCmpXOsz5R1kv6iDwK4WUEBVvM8T/3zvZ4oCINyi7/tnn322+9T++te/mu5+VfCivhsri9G4ceOsffv2Th19vuj9HbQoYNgNnNB3619//dVp87bbbrP//Oc/TgCFshK5RRnuvCXd7+j63HWLglz9Hv7nyrxBQQABBBBAAAEEECjZAjWqVDB/AMU4X2aEMTMiswEc3qVgyAkdvTq1lY3BW845tLlVq5LlnbVLpls3LOjMd3dAHf0qo6cVBHu4y64e1DoclKB5Gp7jiqNauYvDjz/9aaLME96Ss2CDbc3fEXg9JTTtFgWTeMuUBTsCJhTI4Q/gcIMJvPW901f59lFZQBT04S0LVkUGEHiX+acz4VCtcpY9dmbniH/ewAlts3f76KHNF3iCPGYvjR6+5MZj2zqBE1pfwTCHd6nnZLPQ83ilZuic9pZJc9c7w7W4r0u5UFqPi/q3tDtObh/+52YL8a7HNAIIIFCcBdIKnijOB8S+FR8B/TDplsMPP9yZ1N1hc+bMcWen/Ki72Ro1auTc/aVOEaXb9v64qR9X9QPqripKD64UwG7RD6P160d+4XWXJXtU8IJ+xHXLzTffbB999JH7NOVH/eDs3u2mzl91EuluWLcoy4SbsUHz1Lmk8SspCCCAQGkR8A654u2oKy3Hl+njWL58uTOck9pVIOB5550X3sTcuXOdzB2aodTyL7/8slWvHjkeqYZ/8nZoxgqqLKpr05YtW5yhONwd1rAdp59+uvvUedQ1UMETV1xxhfNc18gggYOZvNZ7dyiRt7ce0wiUBoEvv/zSRo8e7RyKhlPyfiYruMkNHFa2GA114f980fd/7/dW/V2gzA5Bitp3izLfaEhJb6lbt254mCnN1356A6vS/Y7u/RulJGZ38xoxjQACCCCAAAIIIBBcwN9xPH7WWic7g1pYtjYvNFxCwR36mndAp8ghOz7/dblp6AO3KFtA3z+HrnDn7arH5aH995eqlXb83qxsA96ioTC8GTfcZXu1jAyQ0PyFq3aYtAkFZ2g9b/lj+Y7v/ZND2TjcogAHubhlcmiICpU5yyL/RlBWjwY1K7nVoh61rSa1K0fNb90gMngib2tk5ryoFTwzMuHgac6ZXLdpq2l4kuGhITTeH7vEXv9uob00MvHv+LOWRAZP7NOultWtXtHfdNJza48Wkb/9qAFl5jjtsQl2x9sz7K0fFjmZUhT0Q0EAAQRKqkBkmFgxOQqNn60fqTRWtn6g3nfffZ0f1HRXvLez17+7SveqrBYjRoywGTNmmO4Kat26te2///529NFHW8WK0RcDfxuJnquj/t1337WZM2c6P85pbN5DDz3U+achKtRRrqLOgsGDB4ebGjlypI0fP955rruoKlWq5KSyVgo8De2gYIBOnTrZCSecYC1btgyvF2vCTTOtNLF//PGHU0Xr6AdHpbatWjU62lOVNJ7vsmXLrGbNmk7adKUu137JS50FGstXadS9d+HKUGOUKyOBUl9rG0pZK89kRe27d0sdddRRTmp7vS4q+qHTm6EkWVuJluvY1a5+QNUPkjqWxx9/PNzZk2hdLXNdyoVCIi+99NKE54heX73OKqqr19Ff1EnkjvGuTBg6D7zDZPjrJ3rubkt3xL322mt28MEHm94b6RbdJe8W+euY/UXvF3WOucOt6K68VFKYu+1p3998803nrkB1sGkc6q5duzrjyQcdRkM/Uusc1THrbvHs7Gzr1q2b047OQ++P6LpD8cknn3Q2r/PVLXo99P5SUeeeP+WyPiM0prW2ofXWrl0b3obO91THz3a3q0cFnuhzTJ8bSiWtIR723HNP69Wrl+29997eqlHTOh6N5T127Fgn2EjH3qZNGxs0aJDzeehfwT2Pf/zxx/AipbPWcCwqep+cdNJJ4WVBJ3RntT4DZs2a5Xx+qHNBKa21/+3atUvYTKY+q9SZqM9Kva+USlvnqD57TzvtNKtWreCPonTPgVTOM/eA9br+8MMPztMzzjjDvBlh3NfC/awNuv9u2+6jOvl1zDp/9E8d1/qc0zmkYLRE10K3jXiPEyZMcM4vfcbrLld56k5hfcYEKam+b77++mvns0DpZ92i99tDDz3kPrWrr746PO1O6Dqna6fq6nNE10l9Buj803Qq5bnnnnPe3wrgc4s68nVdVNFwYmeeeaYz7b9m63vIt99+azoOmelz3T9ci64/b7/9tpNpQe99fT61atXKcT3kkEMsVhp7fU7qs1bXV70GCmrTsWoftQ86h3S8Gk5C027Rcl339Lmlz9M+ffo4GYo6duzoVsnYo4alcMutt94a8Z7zBvOdddZZbrWoR31muEXvZX8pqmuT7lJ3Oyr1/pFjvHLttdc6GZi0XJmYdI1U52m8kslrvXcbiby99ZJN69zQNUSfmboO6Pqj73mnnHJK1FBW3s8zfQf0DpPg3Y4+j/SeVNH7T9/tvKUkvAe0jzrf5KOOeWXSU+YCff/VNTZRKcw1PVG7qX6eqi19DrlZXPS5oWuzrhN6LfVP1wfN07XC/73Hvy+Z+L7mbzPIc/3N5s364p3W+gqqcosCJ+L9faProrJQ6Fqrz9kg10Zt2zu0nr6XxSoK2tD5ofeRis4Z93Mh3e/o7meS2nO/n2o6E0V/0+k8UDn33HMjrhtu+/pccIPY4/0to785Fi9e7PydcOWVV8b8e0Hnrb6j6jNd34f0fVnXIv0rqu+H7jEkeiyuvwV49zmdz6FMfbfUfvBZ7X01Mjedzmd55rZe0JL/+qDvhrp263ulPvf03VS/rZ144onhz0vtuz4bVE/r67csfS7q74JEn1Pp/A3l/45du3Zt5zNEWcv0HVif4/oMOf74452/OQuOrGAqE20UtLbjPZHudwO1U9i/q7z7oul0/25K929v//bd5+7nTrq/L+i7lr6T6PtjcfpN1z0+HhHYFQI920QP3aHMCN1a1bRf/ygIANC+aViGpnUKOu/Xb8qP6hQ///CWFv2r7q44MrOc0LAQ/lLlz2CHpWsiAyvaeYac8K5TIzRkhIIWNOSHW1au37GusiH0aFvLvptSkMVCQQBtG1W18XPWutVDQ0XUsNpVK4SHEPn1z2Uz/QEDobYSlaZ1q8RcnB3K/JBuyYSDu21lKXnl24VR2TTc5fEec/PyQ8NoRL4erRrE7kdqXi+2gdv2PiHDbq1r2ITZkeeuXr8xM9Y4/1RX2UAO2b2unbp/U6teDLKkuPvPIwIIIBBEoFyo4ySjIWD6cd29a08drwMGDEi4H/ojTcMSqGhddUJpfOpYRZ0V+gEtVqevOpo0hrX3xzBvG/oBTF/c9Zhq0Q8xF110UUTqZ28bxxxzjD344IPh1LH6Y/T1118PV1Hn8wsvvOA8V1pYPdcfErGKfixU9oRYRZ2hGp/XzR7gr6POAWV70N1b/qIOR/3op+NXUIM6smMV/WCmTla9hno9YpWbbrrJGeoh1jJ3nl4nN2hA6W/1Y7x+WNO+a1/UqRHrddT6GnpD6dRV9GOq/wdVZ4HvP+86OkZ19sZr37uqAlbctL3yVTBMrKL9VceDioJ43A4Eb10FjKhjU8eo10J/MOoHB/1ooTThmudN1+tdN9a0nHNyckx3y7rZK9SmOtNU9GO//qgNUtR54nbw6lFDn8TzUcdcv379nGb1OigIIpWifVYa5ljnqQx0t5/SubudRPrBYffdd4/YhF5Pvd+9PzJ7K6hTQHXUIaTiPT5vPe/03Xffbeogc4teU3X4xfvM0L4qWCpoh7Lbrh51F6P/Dmfvcg05o3T3Corwl0mTJjmfZfGOXe9vte8N3lHniPuDub89Pe/fv39KWUv0mad9fPrpp2M158zT+an3ZqyOikx9VumuVAWxxDqX9D7Xuel2eqRzDqR6nrkYSt/9yCOPOE/Vua/3vVu8n7Wp7L+7vh71ntB7z73r1rtM0+qM1/uoadOm/kVJn1911VURd+N7V1BnqI5LP5qq+K9lmpfO+0ZZc3RHcKKiIA63rFq1yrSfuh7FK/fff384W0C8Ot757uvineed1meKrs8q3mu2fjDUdcL7WgwdOtT5XFZdvVe0L4muU2pbQUiuq9ZTUUCI28mkNvVZ4wZw7Kix43+d67pOqWNby9977z3v4vD0sGHDYl7/wxVSnFCwS4sWLZy19Hmo/fUGLCnoQ8evos+BeNcU/RDvfsarM9cNrNR63vdtpq9N+hxS4KyKghn1XSRRca/VqpPo+2umr/XuPiXzdusletTrcdlll4XPz1h1FTSkYCm36PPG/RzVPF0T3e87bh19d9H5634W6/u0u05JeQ/o9U8U5HP77beHh1xzj9t9LMw13W0j1mM6n6dqR508bjCQMr7oe4M3GM27rYsvvtj5/K1QITpePhPf17zbSmVanwNuoI6uPd7PNQVCuNe3nj17xv2bKZXteeuqo1BuOncVQOPuh7eOO63vs+73RH2X1+exSrrf0fW9/ZxzznHa0N8q7vdYZ0Yh/9P3XJ3HKgooUWCNt+gzW5+z7vtYHZD+gHhdi93gZAWmaGgUFf2dq2NW0WeIhmH0Zv1wFvz5n/4WVaBWrFKY74cKIFbAs4qOoXLlgg4FzSvOvwVo/1TS/Rxyv8Po/Ev3uyWf1eb8bRPv768dr1B6/6f7We7/HUxZId3ifc/pvO/bt6+7KOGj//qgv+u9mXbclXVTgYLw9PemviPpOuIv+rzQ3+w6//wl3b+hvN+xNbTbPffcE/G7mXc7+m6sv0X93y8z0Ya7nXTfk+76hf27ym3H+5jq301atzCfrd5te6dT+X3Bfy7r3Cluv+l6j43p0iug77aZuKFgyCNjAyE9cWbiG4piNfLQh7Nt5G8rw4tO6NPIhvZtbg+E5n/jmX/uYc3tmH123Aimyq+NWmhvfL8ovF7j2pXs7EN3/K0enhmaGBbKPvDbn9kWNF9BGP1CQzCo9Ax1djeOkU3BWej57573ZtronB03Ymm2tvX8BV08NSInV2/YYqc/XjA8qn+d856dHJFVY+82NZ1hHCJb2fFsyOO/2poNW8OLlH3jhmN3BLkr88bjn/4RXjawewM7vlcjO/eZyeF5r1yyly0IZbq48fVp4XkvX9zF8Rs+cUV43q0ntrVe7WqHnz89fK59NG7HjTWaKTcNj+EvGjblk/Hx6w26b8d3Z3e98/u1sME9GjpPM+XwzPB59uG4pe4mAj1eOnA3G9C1vilTxWmP7vjdy13x7NDQL8eFHP1Fw28c+8D4iNn+uhoO5YVQpguvScQKnica8kRDeMTKcuGpxiQCCCAQU+CSl2fEnO+fmeq1OdlN3uX9G9iVz/VjtfdLtv5Q0w/2blEncqwOfaVmVlCB++OW6ms9fWl3izo+9CO6+4OROz/Io8bWdYMf3PrePyL1h6c3lbVbJ9ajMk+4gRPaP/dHOLeuflBT1L2/qBPXv/9a33uMOjb9AKhOmnhFd9Z7fyR0xwp268vxzjvvjHBWx4+36I9cv4d3uaa9y9XZq45eta2iHx/HjBnjTGfqPwXpuOeKXmu3EyxZ++6Pz6rn/eHWv546pdyizqtYRXdOu+eXsl8kulMj1vr+eQrY0Z3MbuCEf3kqz93MJ1pHr6f/RwhvW967L91sId7liabV6ek/T1XfPc/low5Z7x0M/vb0g686jr3BAzpPveehMjno7jZ1YqnoB1T9yOs/n7VdzdM/74fhwoULnc4h72eG3ksKjHHPI+2rgkj0I2UqRT/yeAMntF86HtdAbSlwRHcF+ouOR0Fg3mP3rqf66nDQ3YLeEuvYdRzusbudEN51Ek3fddddUYETrou7nj4H9Frqx3hvyeRnlSzc95T/81Lvc/0476boTvUcSOc88x5nsml91qay/2576qhQp6TbWa/XX5kOdG66RR0equMNOHCXJXpUloMnnngioor3WqYfQmOdl+4K6b5vdJebzkX/OeSen3p0i+5MUge7N3BC66kDzXu9u+6660znadCibBX+fVB77j54HbxtKrOI+1povvbFexz63PcHTvjb0ueV7vJTJpd4RZ+J7rUl1rmu66euCe51Svvg346u7bF+/I63zWTzlYHBLRpCyhs4ofn/z955wFtRXH98pHcQREABEVAUFcTee2yJPRprYok1amzRmNhrNGo0ln+sMSbGWGONvffeUVQUBUFEFBFEqv/9Lp595+7be9+tj/fwdz6fe7fNzsx+d3d2d86ZczCYQCHLL98zBWWNN8LC8MdLLZ9Nvm3KUhz7ejDPu4mJr5ets2m1n/WWb0O8LV2hKe+rvCt7SV8ntEsYYppgkOnvJdoAlMteUJpaW4xyxwwnSNMc7gHazLThRJoL17g3fLbjr+SZbnlkTcttT9N50aab4QTtQvqdAa9cKLrTUo33tXSexS7TLpiSn33Sbag3ULZrDe9SKIc4Voxrjz/++Ng7hXkPKrZs0tEe8L3Fte6/idJ5YNxl74lptuW+o/v3Oww3pk+fHhvE8u2FYSbfD/7403UqtMyz0yTLyw/fRnYfky7r/dYb4prxmeVpU86XGU6kuZCG56Y3krP9qvV+aPn5aXPoC6ikHbJjLffdkv3VVuf//jK+5Uyr1ZaXU3ZD+/C9aYYTPPO4X00wgsTYEg8P9u5IGv+uTXvFwBL71rJ9q/UNRcg0/9xNP5epu383svL9tJI8Kr0nK/2u8sfh50v5bmK/WrWt5fYvNNU+Xc9Y8yKwIAlsEI3A98II/XnRu/EL79cZK7B9nSj8hJfJP3hgsHV4DzjzttH1ft5wgrSjP/s2/C1StvMbOzk3fIblVen0Lmd0YHmtPqjOMGHxrm1sdTxNe4Gwjd9FHgu84QTrF3XhJNJhPfDawc+EUBwo5pft09FWxdN3P50e3h5Xl46VQ/vWPRNzEtdwoRocPolClaQNJ/DssMXKi4UjfjognLjToHD27vMHQ2UdSud2rWJPEH4beWbJ+K8avl7atm4RDtm8f7jl6BHh2O2WDluv0jNgJJElYz6fEe4s0egjKx+tEwEREIHGJNCkjCfosOGjjhEtuEPFapSReHRompxzzjmBDhIvuBS1kSi85NPpxMceo+v5GLSR48zToeM71H0+WfMoKk455ZRkE6NnGX1J3RjhQl35yOTjqxihE46RQIT+wAUwnfWMyvRudX0nNnnCwCu0GAVLxz7Hxw9uKDFNDjrooESpbOtsSqcZZV522WVxBxqGGiiGGFllQgcegheMadOmxYYIdCBSrgkfRfmEUYwoi5Ddd989GcHEqAYTrxizdZVM6Qj1o5wspElDeTIi3zoS+HhPKwxsf0ZxmHgOto5OQgwdEDovCSlQqTAaLZ9CqtS8GcVn4o0jbJ2f+lAVXC/5mPh9mOe+whjFFFAoJemY5RpiHaNLzNV9vo5hOtQZOWeCpwjuZa5TOn1xNWzKN9bTkY7gwQGlM+nwyGHC/ck6fjbSj210TpuQH/lyP1Iv7im8Lpgwgq4UsfA97MNoVeqFhwQYeKMhtlGWCR3odOJzXAjKUkYysR/baGOsQ4vOJFOWkJZ7lWP0ZTMa3o7dwrCQtiHB8MnaANIyOpM2iJHH1Nc64diGsv3BBx9kNpZatFUo7cjX2kuuKeNA22VKoVKugXKvMzvOYqbW1hZbf8vTtzVc/7gLN1e6dNDyjEO4TrxRl+2fb0onqTdOxBCRUa88y2jf6QilLWSEWj4p977h+cW16JU53Kd2fTI14Z61TlzOM/cMyjGMDnn22vkmPUpNzmUxAkPK8fcIHpasDvlYwh/DFQzJuAf4cW8hXIveGIV3FWNKu8c9a0ZfXA8YWeZ7/+CZCX/crnOc1l7Ytc52npukYRQgbTrnjnTe+KRUg7d87DDksjaGOvj2M98+fj3PDc4j++GJCuFdzF+DrKvls8kbjTXEhXvASz6FbC2e9ZRbKW/y4Jni31e5pjkurhPeifxzjZH+9qxhX0ZO2nsg75S8I5r4UavcCz7sWnO4B3iO+ndk7l/aUrhwPxOCxQQDJjNwtnW+zSjlmW7755uW256m8+O7AoMJ3l+4bmkTMIzw9yzGZv5drhrva+l6lLJMyB9T0mMcmA5lxvPehBAxPL8I/4MyH6MJewfCgIFjN09mtk+1poxQNzEDcFsu9x2d9xmEthw39YRVw+CW9y48P6HgxiMj96OltTIbmsKIfBHuzbSk20He4dLin9PeQ41PxzXHuwhtPG041xxhPvDEaOLbENZV8/3QyvDTpt4XUGk7ZMda7rul2uq6QRvp7y9jW+60Wm15ueUX2o92luc2xrs887hf+a4z4b2S90v6oez9lfbXtxV8a/ENb1LNbyjKoc1C+U8IEHtfMS+2lIlRmf/WtHrYtNw8Kr0nq/FdZceQnpby3VTLtrXc/gWuO85rU+rTTTPWsggsSAKE6CA0hcnYL74Lz703JSdUxQr9OoWeXXINDix9U5s+8MYX4cZn5g9q83VbZ4gznkgdCwYSX07L1euw7wcTp/ss4nnPoU8UxqRH59ZJGpTxL4z+Olledemu8TwK/WFL1RlHPBsZpoz/cmaSbsiSHRdI+IjFq8DhlY/qQpTYAf1t/xXCYVsuFTaLPIysuUy30G+xbOMFSz8kZVxCnniQSEtWWek0ttwuYr7B8t1jQ4pL9h0a/nXYsMgzSl/bnEwtjEqyQjMiIAIi0MQJ1D2xm0hFUeDQWWOjBJnius4MIKgmHzsmGBGYYpAOfvbnI9FcSOOyi49kUy7Q8V1o9Kfla1M/YpLRdnQ+9+7dO96Mso668mFQrFA3lGPmCpv96DjznhrSo/Jx8UpnCUJnFWlxE49inR+x0llH3ghp/YdxvNL9oTSjU9XcnTLyySvsSMroRcKHWGgAYg17pSnKm3xKKx/mwRtMMPLWFEF8rKdHMbgqljWLlb4JnXjFSLt27ZIwKXDjuNLCh7wZg9DJa8dg6TD0wS2yCZ0o1TJ6sDwrndKRbsL1Vki45/zIRYyEihE6Uc2YgfQoK+kAtmsIl9+MHsFgJZ9gJECYBjy0cJ3SmUwsVBOUYf6efOKJJ2xTSVNcElMGhkaMnvNKNq51rn8b/eI7kBoqBKMou1Zos9IjGhnhS2c55VI+HVUm3MOmTMAAh3bNDF1at24du1a2GOfsg+eHagv3JK5QTRjBjAGUee3AmwoKBGtzSefPR7XbKjihDLTyKY9ryhvYFOtlhn1NGus6K6f+NpqTujK6056FLOOFhvYV5QrXT7H3JvtamBHmcYPL88zchXPNY9RnXg1IkyW1um98WYwu5tj4YaTHPUP8Y4QphmnmoQHlr8Wi93lUcx6PFxhnbrDBBolSyurjmWIYwbuKMaXdwx067aAps1DKEhs+n9B5jBtly59jN8MD24d3GDq57RlDW03npgkx6KshPswKykqukYYEA0TeufiRHkWeGZ9huAqLdKiiWj6bULoae64Vys8nXkFOGl8v26eWz/pyeFu9mOKFxrfdvJfi9cvOG0aRGB/bOxnKEN6XTWhn/HsoYdcwKuSZ4D2rYWhgz3T2bQ73ANevvUPzXsEoVfPoxfWB4torv7zSt5JnurHNN61We8ox8F7BN4C1HXiJ4X3L3uU4fgxGTKrxvmZ5lTrFcMO7pvfzlhdKNBMMXBj5XKitx9Aw3Vba/uVOeZ814zgYe0P+cvNkPzOI4Jxg1GPXZjpPDBR4X+b4ixXuYzzLIOyPlwIvPD8Qaxd557T6WDr/Xm1eP2ybTfkOwvCCtt6eRd27d4/fDS1vnnX+O7Ha74dWF6bNoS+gknbIHyvz5bxbqq3O//2V5lvqcrXa8lLLLSY99yPfjtZHwv3Kdx2GZybWf2bvr6znndcP5rHvU7ZV+xuKPiFC8sAR4X0Fg05v8EkIk0JSTh6V3pP+nir3u6rQMRW7rZZta7F1yErX1Pp0s+qodSKwoAi0brlI2GiFHjnFXxOFPfCy0Qrd/WKTm58xa254bczU8M8nxoe//u/jevXrt1i7yLPD/HadjT48hiUm/IYfBjNrzrxw6f2f2OZkuloU4sNLOq+n3qnr6/YGExipmPhwKKxbbeB8Iwvb3ljTdN0pt1QOaa8dGJN0bNsy5xAefrNu8GTOhh8WBvbK7duZ/M3sQDgSL+9PmB6uejj3uvTb8RJC+BD/45ow6daxdRwKZM1lcll/MyPXw6Wl11QEREAEmiqB+RqJJlI7DBzSsVetargUNHnjjTdsNlau2AIuYK2j0NYxRfGGUsPE72/rsqZ08JlHCT4sszr42A+DBj9SOysvW4dBQtr1NdtQLNsIVTq1USCZeGXalVdemXSG23amKCTYZuL3sXU2TY+eYj0fqmZgwnJa6cs6DA3MQwadfVnKBbyCmGKVD3Y/agmDFguTwf509lZTMAIxyTdq1Lb7KZ0IJlnKQz8i2epv6ZkyipFzhtDRQFz6piZ+VK3vHMlXTzMcYHu68zXfPv6+QkmD4iotXAN+lGd6Ox0ndFajyOJ+M0WAT0fdrHPWe3LwaRqapz2gDDrbvWLe9qMD2kZConRLdy5buvTUFFWsx4iC0cRpwdMF5VK+Nwrz4XYuuOCCgMFEWlBG0kGDcA95zxXptOUsW3vHvnTaW1npvLgPcAXOte/bCt/uVKOtSrtZt3qYcoBljJtKlca6zsqpf9eudR8XFmvcH9/gwYNj4x6uH++RyKfJmjdvL9w7+Vzg0lnqOyvT+dTqvvHl4NmHY+NnBoF+O/N2bzLvww+wXG3hHPpzYvkzes88XsHUvDTYdptyvnwHtDeAsjRMecfw7YFtw+jQhDT2DLZ1TM0bCfPl3A/s54V2xZSGlJmvHfD7ME+bxAhkfl4wCEEJ55Xutr2Wzybei7xBAYY3/nlOHQgTQzuWVoz6dzCra62e9eXytnoxxfAT/gheXfy7V7wy+uN56q/FdGgS3l2470zwEoJRh51Pjh9jXZPmcA9gYGaj67lP/beAHQdTvGLZ94MfeV/JM93nnzVfrfZ0o402ir8h0mVwv3lPad5Ysxrva+nyil3mHjQj03RIKsvDG09YeA++UfDwxvs2nn245n3bhMGP90xkeZUzxYOeD1mBZ4sePXI7ucvJl33S74UYfjAowDwuYgxHu4vACSOoUozNMYQ08cZ0fLOZVxWv9PPepvBOYgYWeJHIarPJe+edd04GElhZTHmfxtAFoT3CAMuk2u+Hli9T7w2xKfYFVNoO+WNlvtR3S7XV8wnm+/5K8y11uVpteanlFpOeZ4AN+vHpMUQ3IfRp1rewfwfHkNCkmt9QtOG+zbIymDJIwNpCjMG8MZZPV04e1bgnq/Fd5Y+j3Platq3l1qmp9emWexzaTwRqSWD95XJDchCCw8vakfeAtOywRu84HAMhGQr9BvXOVYxjUGDphyyRG84iXUa+Zep36DUj498BV7wVdr7gtXDCf97P9DhBHsdss3Ro2WKRJLtVls71tsGGFyOPEafc/H6497VJ4e5XPg/H3/BewAuHl2X6dAj9U14UVh5Q51HCp2V+eWewsVL/OuONdLp0+I/09lotV4ND+hxi+IABw8goLAm/qx6OvAU/Ol8/ke840nmQ7uE3J4dfXfpGOP/uj8IfonNx5D/qBi1n5dMu8p7y3mfT4xAihBHhxzXxfOTlY/p3c8Oced+Hlz78Orzx8fw+Cstj6cVzr09br6kIiIAINFUCrZpSxehgzyde4etH4XjlEh3lhMDIEpShJnQY+xAPtj499XmhwMhS5No+jJYvRrzSJ50epbB1KNKJhrECBhyMEDPB40Q+GTp0aLKJfOgE88fNRjqPvWI82SGaYdSQST4DADxm2Mdi1kcsbkGtAx+jBPNuYfnS4WYjLOnk9IpXS1PuFGYmNnrBlgtNOXd85DGqjZELKK49N4vFCTs6GLzQ4WkeAMijkOLR79fY8360r1dW5auHv8e4DosR3xnPaO18QkcI16ApZPKls/WcVzo5uK6YYsxh15ilqXTKqF24kC/58/OjlFGwFSMYIdmxYXTB/YpXEkbUMIo8X0c0+dt9ZeX49sfWMfVGFTD3Xmx8unLmffgEr7RN58XIpbTivtptFWX6Ns3XwRtKcU1UQ2pxnZVTfz/Clo5eOgUZnYrSvEuXOuv5Uo6Za5EfwjPItwfpfPKNNE2nY7la901W3raO68ruf7s3TblDGrbXUiyUQboMPwqa9i79rPPpufdNfDtp65iiAM0Sf87ztas873g+VatdxPjNhLAzXoFs67OmtBn2DORcoaxFMYdrY34YjeFdg9HKJv5arMWzCaMIDErMaAXPCzyD6Kxn9CQGMMaNUBamaE8rEmr5rC+XtzFkirLXpNC7sH+WpZ857I9SDkUk9xhszECI9/PDDjvMioinzeEe8J7quJe8AijnYKIFez6jnEd5zztxuc/0dN7FLJfbnmYZVFl5/tuJ693Et0P52hXSlvq+Zvnnm/JdgvcPE7wrZUn6+wLjcgyuvRKQ4+Z5RfuEMSeCEhMDcf8On5V/oXWETeKdzeTwww+PvZPYcqVT7wGEME3+25f3R36cE5SbtE2M+OaeNK8xDZXPe4MJhkBmSOU96/HthVcg2me4Wt7ek5c3UrX8bFrom9dGuJMWgw2Opxbvh1YXpk29L6DSdsgfK/Olvluqrc7//ZVmW43lctvyapSdziPfO71/t/QGuH5/75Ux3Sb7dMyX+w211lprpbNKlvnepZ2n/aMtJPyYb18sYTl5VHpP1uq7yo6p2Gmt29Zi65FO559r6W3+vcT3N9WyHU/XQcsi0BQIEJaja8dWgfAVaVkl8rTAqP209OvRLvBrSAgNMfqzur5xPBOs1D+/wUFD+dl2QmQUI0f8dEAYlPJs0KZVi3DsdgPDqTfn6mteHj018Msnv916QL1NK/TLPha8XXTrUKf3Gdw7v6HIsmUakdSrTIkrqsFhpYzjv+eVSYFfsbLaoK6RoUnH8M64uu9D9sUQ49G36jwANpTftqsuHv78ae7AmdNvrTO4zNp/u9XnG4lnbdM6ERABEWiKBOqeLE2gdoWUgPkUuDbin+qbK++GDsWPxCmU1sd3HD58eKGkeTsy0jv5D9H0Nq9EsG1+9BWdh9a5a9v9lM5CPoDN2ALvC3T8evEfy359teb/9a9/JVlRVlbMXUuAkoIR/YQCqIb40Vzp424ofxSUKIn4OEfJY4osQryYQQuj7b2CjI4EUxSRPyM2/faGymzM7d4whs6HhsSOmXQ+bEah/RgVYpLldcK2MUWBW8h4gry4lohx6jv9fB6VznO94CWFsBxZSqRy82cECGE3uJb4EbfVYrcyghCjIjrmvUIy7cVl2LBhRRVPpzoKv2qJ97BRbB2s7Gq3VYwCztfeYbxRDWVxLa+zcut/yimnBDyqmItcwiVZyCQUKowqxwitlDbOP8u8It/OnZ+aByS/zs/X6r7xZTDqH88lPD+8oYRP01jzWZ6iKNt7N2roXvHtIbGksyRfOT4t132thXbZvEehOC32vYp6wcGMI62eXC+MrCZ8Gm057R/u3O3ervWzic53niXcN2YYQac3bo69MDqT8A2Wxo8yr+WzvhLevv6+7fZthk+TnuddkRHt/t2Ta4x3GQz/eH6Z4DEKz1FemsM94OvI90I+paM/LuYxLrD3wHKe6en88i1Xoz31ioh0Of7c+m3VfF/z+TY0j1GqvdPh2SDf8yjt7Yc2yRtOWDlcr3j9wXOXKbP4xitk/Gn7Zk3J4yc/+UlibIjhor2/ZaUvZx1hYfAEwLdPPgUT1yneIQixiMDNDBwaKpN3D57jvMdjnGHGKrxPIxhX8H3GuyPGE3gC4XnLAAHvdcU8SGSVt6C/ZdN1aup9AdVoh+yYy3m39OU31fcVX8em2FYb/3zTarTl+fKuZL3/1syXT6HBQfn2YX01vqEaeibT/2aeZfiWGTBgQL0qlZNHpddbNb+r6h1QCSuq/e1dQtEFkza1Pt2CldVGEVhABPDKsHEUuuP2FybWq8FGQ+sGNdbb2IRXYKRx/A6DwnJ5DBNWjxT2h2zRP1yWEZoj67BO+vmgMKBn+3qbMJDAu4Y3ECHRqqlQHIRHWXVQl3rGGdSDbQtKKuXQP2Ky67p9wn+eru/l2I5ps5V6hIciTxL5hKM/ZpuB4Y83jAppryd+n4bO17qRB5WPJs0Itzz7md8tc7595KnisK2WCitmGH9k7qCVIiACItBECLRoIvUouxr+o6HYTLyVc6F9LCYyaejoKiTF5lkoj6xt3nU0ioyGxBsi+H0b2q8a21EAoyAxQYnCyKX0z7Yz9aP7/fpy5ukkNPEcbF2hKYoVE+/W28/j8tsLnbUW5oD9cXnfVMWPoi1ktED909dyvs739LHScWTSkMGFv7dsH6YoqehYZrQ3U+tk92mqMU+HMcqhM888s6qGE9QNN6d03qMwRMHvBUUwCjo6FezaYbv3muLTNzRfzEjthvLw232bka67T5c17/dt6m1VY11nWZwaWofSlpGgxPdNGzLQUYlr8qWWWire3lBett0b5zR0b3pltu1v01reN1YGo35R2hx99NEL3HDC6pQ19W7UG2Lq76VqeUrJqlM11nlFIaO4i+l4L1QuRj4o3m10Owr7e++9N9mlMZ5NGDWiAMcdPs8WOx8ooXbYYYdAuK4bbrghHtVoFfPGE7V81leLN2EMyhE8hKSFc+a9GcApS3HdHO4B720hfZyFlv2ztZxneqG8bVtjtKdWVnpajfe1dJ4NLRfrdYJ80sYThbz2ofjDYNWk3HBmtM2EEbF3ZLzTXHvttRV5sbA6+SnhmTDWymc4YWl9GMt8nsgsbXrKcSCE6bB7wMISmsEtRiIIRlLmcYJrEsFbRJaSMt5Yxl+t3w+bel+AnYNS0fl2qNR9fXq11SF+n8z6/vKcyp1fkG15uXWuZL9qfkP5d8CsOvn363T/hKUvJ49K78lqfVfZMZQ7rXXbWm69ytmvlu14OfXRPiLQGATSoTuszDUG1w/ZYduKmfpwGaQvx1CghQu5ka9MPGcMWbJj2Hx4j3DmbsuGvx+yUl7DCctj6xE9w1/2Xi5sMDQ3bIltZ7pVlObKA1cMhTgQ/iItwzLCdKy8VP10K2fsS15pbun88y23aVW6IUYlHChtz/WXiA0RBiyea1yCgcJ+m/QNh265VGDeS/o66NW1TThvr+XCNqvV1zP17tYm/HHHQYF6FpJW0XWy94ZLhnP3HBJ7sshKy3WyXmRkcel+K4QNlm+ehkFZx6V1IiACPx4CrZr7oTLiykacMGKGTt6GJD16Ll96PzqDkcCFxDqeCqUpZ5vvwE/Hp87Kz7vi9ftmpa32Om9oUGzeV199dTjkkEOKTZ43Hd4U/Eg6U9Tk3SG1geuIzle8EODKFsUlnjxuvPHGOCUhOdJuaqm7Ca4GbZSirbOpdcTSQWkxRhklcfnll1uSmk/9yGcf9zqrYN/xnM9lfdZ+q666atLpjGtsX2Y6vQ8P4bc999xz4YgjjkhWHXDAAfF5QVlMBwod6oyYo1OXEYLlCB0N1mnM/ptvvnk8GppQNdwzKNYo5+CDD47DuJRTxsCBA2PDDLwI4EGAkdZ33313PMqP/LgWCAHDdYO3mLTC2seJLlR+sYYthfLw27zRES6ADuhKAABAAElEQVRN813Tfh+b9+1NU2+rGuM6My7lTLnWcRXOj5ADXD+0Td44DU85dBjut99+DRbh70XyKyR428mSxrhvKPeggw5K2nLa3UMPPTQeLc61afc/ymzahgUp3gCsIab+fu7fv/+CrHbBsjn35uWkVK8ThTLGy8Ree+2VnFcMKBh1jvhrs1bPJsrBgOKXv/xl/GN59uzZOSGQWOc9LvE8M6nVs76avL3BGmFAiglNx/H569iOl3aG9saEd+zTTz89fqbZOqZ+36Z6D/hnK56fMMosRrzChvSlPtMbKqOx2tN89ajG+1q+vPOtJwSevQ9jtOS/sdL7+NA+bPPhytJpWfahBssxUEO5jJcJ8/iEdwYMrsxDTlaZtV7He69JqUolQnWce+658e4Y82L8ZO/MZmjCdwjtBuu533kXfeyxx+J9rH228iud1vr9sKn3BVSrHSr3PKitzv/9VS5T229Bt+VWj8acVvMbikESyy67bN7q+28S/77odygnj0rvSV+Xht5//DH4eldjvtZtazXqWGwetWzHi62D0olAYxMYEnlouPv3dd+c1Sr/99sPrDir30chNsL8z/WK80pnsEwUTuPYbQeGw7acGz7/elaYOmNONIguCiPeqXXoGYUcads6V+mf3p/lX0UKe34NyQ5r9Ar8ipH9N+0X+DUkh2zeP/DLJ8We00o5bDF8scDv25kRx6mzQqd2LUOPTm3CIj/Yctx81Ih8VUzWEx7mwM36hX037hu+iPKYHuWFUUXn9nWqwmKOZ2jfTuHPey4Xn8fPp84ME6fMCq0jo5K+UZiZzu3q8koK1owIiIAINCMCzb4V40XbXO7TuZRWcFdyLlBMMfqGzj4U87joY7R6WhhN5cNVpLdXssyoT5S5KFv5FQpzgUW+dY5RZq1DdKSP6x//+EeyChewhQwYGMmHoETJxzXJrIiZY489NkmFa1tiwJcqhOWgAxHOGOIw+pL6IcQBT4uPHc6HezFeEuxaJUZlYwody9ZJioKIUYf53P7byDPqV8htb7r+uF++5ZZb4tWU4TsWfFpGrBAaJUu8wgYjCuv89WnpGPfXud9WzDyKaBM6i3EHmuUOv6HOEMuj0JQOf+LN8iPEC9fTgQcemCgRMaigDrjst/uc/Lh+G/v+pVxvfOYNsdjWkDSntqoxrrOGeBW7HSUSP8In4M3n5JNPjkfDsj9KzmKMJ3zHpI8pm1WHkSNHZq2ODThsQ63uG0bP+3ND2I6sEe8NKdmtnrWc+no1xNTHVvb3WC3rV07eZ599drLbCSeckBPOIdngZvCug6cQ2i6e+VntqCX37ZkfPVjrZxOxxxHq5hWwfp7teBdDuWvi319q9awvlbfVLWvqn+e8Cxdyq5+1v63j3QDDQYRrlXaddxvaHsJN+XAIzeEe8Fx4byiXi/Ep9plu6fNNG/M9JKsO1Xhfy8o33zruQ55dJrQvhST9Lcf96RXA6X09z1LPMd9wjEi3d1+MhvGKV6nXnXQdWeZZcNppp8Wb8GyBQVc+8cZc3pAiX3q/3t+nvG+bopB72lzc0ybuuOOO4W9/+1vsDQiDXr5/EG9g7PMtd77W74dNvS+g2u1QqedBbXX+769SWabT+7anVu/G6TIX9LJ/T6/0W50+IPOGk3Vc3hjf2q50unLyqPSerMZ3Vfo4ylmuddtaTp3K3aeW7Xi5ddJ+IiACtSXQvk3LsFRGWI7altr0cq+UQ4e2LTPDm5RypHil6LNo21J2yUyL4Uavrm3jX2YCrRQBERCBJkaAgfMNScMmfQ3lsIC3M2rc5LbbbrPZelPc4vOBy68UC3BG75jgBtXHSLT1uFH3H5K2vlrTbbfdNskKrwj5xG/zYSjypa/mejwN4B4WweAEQ4QVVlgh749Yvia4yy5XUMTTqW/uaMmHkcvlCIoBE/K74447bDFzFCfHRydrQ78kk2jG0poHCr+t1vP+OvIjaX25jMb1IzNLMZ7wowgZvZzPQMQMLHy5Nu87ofJ1KlsHt+1TaOpdU1s670WG0etZCj+ULN6Tie3b0BSvHRhI8MtyCUrHmlcaeAMFc7NMGRhV5BOOydqyzz7LH1tu/Pjx+bLIu963d3hd8V5I/E7Ugeufjg5/jfhrzLdHfl/m/bZat1VZ10C1r7P08ZW7jNLTrh8M5dJCZx+jyk2KvUZR+JkyGEWoj2tueTHlOZmvbaj2fYPSPS3+fsCtue/w92l92+zXN+Y8IVVstD9M/TXl64Hi3TNFYdYUBUXd9ddfH1eN4+IZ3pBwvfKsvO6668KTTz5ZMPmDDz6YbE8rAn274VklO0Qz5TybuJ4xROOHgVqh9hIvQaY4ZNS19+pTi2d9Obw9j/Q8I+VN7rzzzoKhoLiXuV4Zke6F9ymM+4zDFVdckeMhCwMu/1xrDveAryPtJe+q+YRvA3u2WiitSp7p+cphfbXb00JlZW2rxvtaVr751vHMNy+BtO28CxUSlP3e+wEhz/IJ72v+Gyyf4W7W/rTPfDNgRIvwnOT5Uo4Bdlb+6XWEbOMdmB/eozDcyCf+mLIM9/Ptx/p27dolCkneme+77744uWfKCgwmEAwsjAHLPmQIy9UQ3877d8B03n5bse+HTb0voNJ2KM2o1GVfflN9X/F1bEptdUOsF3Rb3lD9arHdv+9W+q3O+6O9c6TriuGEfefgiQ5D3SwpJ49Kr7dqfFdlHUuhdVnfTaSvZduaVZ9y+hey8kmvq3U7ni5PyyIgAiIgAiIgAiIgAiKAl+KGpNkbT2Ctbh9TKGwvuuiiesdMp/tvfvObQJxZfoUUk+mdzzzzzMAHG0LHH51yKFzpVD7xxBMDrm+9sjm9fzWWfecRnW3mVtXnjeLCe1/w+/h0tZr3BhDFKF1w2WuCx4pCHYiWLj197bXX4nALxGU3YQREQ3GELW16inJln332iVfTeXdtFOsYwcUtSuK0XHjhhfG54HwU+tlIY65TS+cVoPfcc088ygsX/YWUO+nys5YJh7HbbrvF8ZTN/bClw/OBCSPf4JeWU089NXGrTMzzUlj6mNR01PpRtVYOo9r32GMPW6w39R3qWaFw2L+hMC/e3fYTTzxRrwzfCZ01YpwYw7iYL0dw80ybwI8OJT9i2fLzI/v9deW5oKTynVO2LyO2uR6tLUt3pPhjf+CBB2y3oqcoNckboTML1++4pPXCMe2///7xaGSUFt7gwrc7C7Kt8hyyroFqXGeeSbXm8XZi189aa60Vj4ZP5+2N//z1k06XXvZGLpzXLKMS2k+MN7KkGveNj2OPsV26w9SP5MKQwhSYVh+uPa4rPyLXtjX2tEWLFsnzgrJ33nnnTKYY99HGm3gjPVvXFKaEZTA56aSTcowHbH16uvvuuyerjjzyyPDBBx8ky34Gowzv1cEUdpam0mcT1wX3hf3sfYIReXjHMKGOM2fOtMVkSlvLO52Jf6dgXbWe9ZY/03J4+/3T89w7PLMR7g/ew4yDT4uHEJ7rtPO+DqS55pprEiUrbTmjz0lr3m3wwuaN/5rDPUCYvl//+tcJAkJ38NxKC+9LtHFw4R7FkASp5JmeLsMvV6M99fmVOl+N97Viy+QdwnudSN9f+fLx75Ccw0ceeaReUt6Jttpqq2Q958+H8OAdydqF9POGnX7/+9/Hxl/M4xGPtto/p1hfTeE7g/c7hOvw+OOPz7xPeYc+7rjj4nT8+ffDZGUDM8bFG0945RS7b7DBBkkuvP8jpKmF141avh829b6AStuh5CSVOaO2ej64fN9fbG2orciHfkG35fnqVcv11fyGwpiHfjV75lq9Mc7F0M6kkDeccvKoxj1Z6XeVHVuhqX8eZX03sW8t21arm/+uLqd/wfIpNK11O16obG0TAREQAREQAREQARH48RHAILqYUK0N+6Zo4uwYIckIHuuMp6McV9+MwqMzGffeuCTlwwpBgW0K8mIOjdAdjMbBhSwdb/xQqvPzQger/3jx2yqd59gYLWSjbenY4oPSlJZ0KPrR/Hx80EHcWILiwo8WJW5wQ4JbXc7Ro48+GncgMs36MMbQxbv4RhmAEQudoXZOrSxG7lvnn60rdUoHJUY4dq7ZvxhjkFLLsfSEoDBDEjo4uT4x2ClXUH6aZ4Zx48YlIW3ID9f/XPsW057r509/+lOsHEFJiRGQH/F1xhlnlFQN7sWbb745ViKyIwYaGPVwLfLxz/ztt99eME8MA8wrCXXl2ub6pzFjdM/ll19eT+GaztB3nMMShTT50kk8ePDgHIMQ7mNGUDBqo3///oFRLij60tdWuox8yxhMmGKAdgOFKvcunfJ4reH4aY9MCDFjwvXP6Gd+CEoA2hTuE9oh3JLCxhQAHBPhQLwMGDAgWSREDHlyfdHRVay3EwzQcOmNMOJn+PDhcSxwRmSi0GYEqDfMwZDCpKm0VQ1dA9W4zuyYqznF1TbnCgMG2jnactyJY0hBO4vHCJQ9JqaEseVCU65L7ifOKUobnmlcG+RNpzHXq43wysrHG1KVe9/06pUbb5KyaXMxUORewS071xn14B6EB8ZgGJSwzPPAj8bNqmdjruN9g5BdnCtjuv3228dMud9RgPFsMznvvPNCmoFtW5BTrjd7h6AdzzeSMF1H2ijOHeeGPHCpjCcu2gy8pND28jwivIzJoYceGhjx56XSZxPPOq/AoI0012uUhwELgit+3h0wNKVMwsTwvuifuRy7tX++jtWcL5d3Q3WAM/c11yLvixhT8F7E/cP1iEcKP4LfK2d5V7ZwHbyH+JBZ8CFvuF566aXx89I8XTSHe4C2j2c79yMGIBgO8J7K6HreKVFI8G5hAheU3Eglz3TLL2tajfY0K99i11Xjfa3YsnhecE0icPf3aqE8eF/DsMqM4vHawzLvrrwT8U7J+6y9r3HdWlrLlzaK9hmhLfLhLDBixjDKhPenhr4hUJb5Ub62bylTvilgglBfjJ55zvPs51lMPX298Abj6x3vWMSfV+xZcm8swTqY8U3plWFmdGH7VGtay/fD5tAXUEk7VI1zoLY6//cXfAu1FYX4L+i2vFDdarWt2t9QvJvxPcD7ysCBA2OvWPQn2HODd8a0sWf62MrJo9J7stLvqvQxZC2nvxnS303sU8u21epUjf4FyyvftNbteL5ytV4EKiWA4oXBmhIREAEREAEREIHmQ4Dnd7EeR5u98QSnhU5cvBeYkpsOUn5poZOIkf90upUifMjRSYcy2RQMtj+dTqwnTS2Fjl1GxJtinI9EfmkhLAQjCxtT6Hi2zkmUxH70cKF6MGrVFEsorLOMJ1DSekVtvvzo3D/66KMDo2sqETpB8BRhx0NetRwpjPLGiy/Xry92no5XE/JiJIcPS0GHLB3NuOhFEYJHliy5+OKL446krG2F1mEogEcW6+Tg/No5tv24Z+gUz/LYYgYDGCMhGHN4gw7Wofii49k6VVjnBYMEDDfMyIB7lh/XCJ2HGHJghMAoZIROY99xzDquAzossu4xtucT9rnkkksCCjsEhTS/LOEY0nG9GVWPIvCqq66Kd4GDsfB5cJ+Zi32/HqUfbQD3JEJ7wQ/mxRpPoADluG3ED8omUz76smhP4Upnh5em0FY1dA1U4zrzx1zNee496s/1Xaj9o72z66yY8glDwHk15Sr5c6680pB8MAZAkZOWatw3tM8Yf2C0hdAWmbEQxhMISlvaEe5fRtDjBcEL1x3eZ7z3Hr+9Mee7dOkSK6RRNsGTHx4MvBcDqw91bshrjqVt7CntpQkjxHH5XoxgoMCzBEM3U8pjIJJPOO9HHXVU5uZKnk3e4wUGR97tGkYcGK3hTYhrCsOFfJ6F2DfruZRZ4QpWlsu7oSI5Vp5ltPV2rBxvlqB0Ntf8hNjad999k2Tnn39+TsgcQijAxbiRFs9VtAnN4R7go4jnJQof2lTuU44n61zj4QADIJNKn+mWT3pajfY0nWepy5W+rxVTHoa53hAXZVMpgqcT3onsXQxjg7SBBPnxHoJhnQ/ZQdn+ndpCV1n5PGu9+PB/fr2f5+O6UuMJ7jvaJAztEOqdzyiQd/QLLrjAV6Hoed6z/fcM74FZnQMYOPt3YDOMKrqgEhLW8v2wqfcFVNIOlYA4b1K11XVo0t9fDbUVdXvWn2sKbXn9WtV2TTW/ofje5bmb73uHd37aZqb5pNw8Kr0nK/2uync8fn0x302kr2XbSv7V6F8gn4ak1u14Q+VruwiUQ4B3q1mzZsXeDbO8/pWTp/YRAREQAREQARGoDQH6sekzLsbjhNWg6sYTfIiUIl7ZXUrF02UwOpWRYij5GHHthQ8uYtoSFiFtwe3TFZpHoYjbaTqc6YwDNKNkrZPeh1vwx0SeuAY0KfcY6bzGnSwfRyhnUWh6oYOMEVmMHLQ6+e1WbjGuWAt9oPq8bWQnoxlNspRuti09ZYSBCWwx+uD68bxsu59SPyzg+ZEHo6fpvKiGcO5QDJjyH6WQjUAsN39jn7U/5w0lKMoK5g877LCsZMk6Y56sSM3QSc21jmAs4A0nWMeHPp22KB6zFOJLL710rNg0bxjsU6rQOc75QAmKksILXDnGs846K1ntrylY0alFBzjXg+/4pnOc/RkJmmU4YBmiQMJggM4UrxzxLOiQxtMEitu0colRpxhZ+FG5lncxU9yPYsCAkhh38GbEwb5cuxtttFEc0iSfkdFf//rXeDQ3U3/87M81Qr4w4FymhXvnxhtvjN2vo8BN759On2+Z+4qOLBShadacB5RzKEIJ85GWxmyr0mXbckPXQKXXmb8P0/e3LRfT1lp9/ZRrh5A1uPNGIZ2+hzDsQblXjnchuDz44IOxQYJ5MrKyKZd2CIVLPqnGfYOBEMaGXJ9Zni44Pox/MAwxY0GrDwY9tGvpZ7xtL2bqz12+9P4ZZOczX1pGC3McKPQ4Jn+/sw9ceTZntam+nKz7OV1mIaMG9qds356m989axhODXQvc27QtpQjGqCg2MX7g2ZI+N9bmEfqh0DVbybPJG08wAi8tlEuIJjy1mGGZT0MdMfrj2dnQ+fb7peeL2bdS3uky08u8q+JNg2e8KZx9Gu4h7kGuWxMMFI0L91/WNYBBF0bKKHl5rtD+W1iF5nAPcI55V+WZlqV8R7GOoh5DKP+uAKNKn+nGOT2tpD31bUep97yvRyXvaz6ffPN4LLFnGNfQCiuskC9p5nreJQkLiFEf7Wi6fWUnFHl4REm/U/nvJK779PdpejmzAqmVDbEu5vlClrRJeFPjfTjdZrKd65VvA94D0tcj24sVnjt8MyL52l+Mikx4BqQ9A9m2alxzlb4fer6+PlbHptwXQB0raYfs+VLuuyXlq63O/v5qqK2AXSGppC33fUZ2jq0sf4031PbYPkxL3S9f3n69n6eelX6rW31pv3mH5ts2bUSGtyGMTRsaoFRJHpXckxxDpd9VxqHQtKHvJvattG0tVD7buKYa6l8odC03lL/fXut23JeleRGoFgHaxXQbXq28lY8IiIAIiIAIiEBpBEp1mtBQ7otEVpLzA/s2lLIZbSdOIp27jKbr3bt3bDBRbucTRhFYkiJ8IOXrbKOz2lyd0sGXpZiuFkLct9MZaQYbGITw8x8t1SpL+TQOgenTp8dKL98xWG7JFtPdd3Rk5cX1g+EA9wov+yhNcbfe0H5ZeWWtw/KakBiEXSFWJsYKvkMna5/0uokTJ8Z59OzZMxDqpdRrHBd6ePfAAweNZ1Y7wHZclqOYxCCnmh8+lAsD7lfaD9qjYoX7nOPH3Tr17tevX8yxlP3xVsO+dA6Ve20xIotjQGnBOSjFAK0ptFXFXAOVXmfFnpNy0vE8w6MMowa5Pku9B/KVScgg8rVrq1QDtGrcN9SBa4R7L8t4gHM3evTo2BUmhl1Zo2bzHd+CWE99J0yYEDhntHV9+/Yt2dPVgqh3Ncuk3cdAgHuKc4aBVVa7W6jMUp9NGLuZQpxnGiE58gntGGkIg8T1RB2HDRtWsZFkvvIW5HreK3i+c6/26NEjNr4r9zlQ7HE0h3uAOvJM4z5FEcm7SVb7k3XMlTzTs/KzddVoTy2vcqbVeF8rp9xS9qGOGEoRPoxrm2saYwwfpsvnh7GMhREkXJr3ruLTLeh53rEwmESBy/OQ5wYhd4q9Jhd0/cstv9bvh029L6CSdqhc5n4/tdV1NKrZVizotrzuqBpvrtRvKAb6WLhXPNCZIT7szBiWdYU6PauRR5pQpfdkpd9V6fpkLTf03cQ+tW5byb8a/QtZx5deV812PJ23lhdeAoSNLPQtWOyR7/GXF4tKev2RqxeVTolEQAREQAREQAQqI7Cgns0LpfFEZacid2+8VdDphuCy2D72fCo6vhiJbSPY8U5BHHeJCIiACIiACIiACIhA7QgQWgu383jm8SNIa1eichYBEWjqBPAywohdhI50DKUkIlAOAfUFlEOt+eyjtqJxz1U+w4dSalGNPEopT2lFQASaDwEZTzSfc6WaioAIiIAIiEApBBaU8UTVw3aUctDNIS2uw814AtfGWFpvuummcew/PFswepHwBIzuQ3B5uuOOOzaHQ1MdRUAEREAEREAERKBZE3jttdfi+mNEIREBERABCOABB8FoQoYTMQr9lUlAfQFlgmsmu6mtaCYnStUUAREQAREQAREQAREQAREQgUYmIOOJBoATQ/fUU08NJ598cpzyrrvuCvyyZMSIEeG2225b6F2tZh271omACIiACIiACIhAYxLAzTNhkZDNNtusMYtWWSIgAk2YAMbtyDbbbNOEa6mqNQcC6gtoDmep/DqqrSifnfYUAREQAREQAREQAREQAREQgYWZQIuF+eCqdWzHH398eOaZZ+IYtFl5LrPMMuG3v/1tePTRR2O30VlptE4EREAEREAEREAERKB6BHyYjg022KB6GSsnERCBZk3gpZdeiuu/ySabNOvjUOWbBgH1BTSN81CLWqitqAXV/Hm2bNky/8Yit1QjjyKLUjIREAEREAEREAEREAEREIEfMYFFZs2a9f2P+PhLPvQ5c+aEMWPGhA8++CD06NEjDB06NHTs2LHkfLSDCIiACIiACIiACIhA+QRmzJgRxo8fH+hIHzBgQPkZaU8REIGFisDo0aPj4+nfv39o3br1QnVsOpgFS0B9AQuWf7VLV1tRbaKF8+P+4d0NoQ+tRYvSx3JVI4/CtdRWERCB5kpg1KhRYciQIRVXf0HFVa+44spABERABERABBZSAgvq2aywHSVeUK1atQqDBw+OfyXuquQiIAIiIAIiIAIiIAJVItC+ffswaNCgKuWmbERABBYWAmoXFpYz2fSOQ30BTe+cVFIjtRWV0Ct9X+6fzp07l76j26MaebjsNCsCIiACIiACIiACIiACIiACmQRKN/XOzEYrRUAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAERKB5EpDxRPM8b6q1CIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIhAlQjIeKJKIJWNCIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIhA8yQg44nmed5UaxEQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQgSoRkPFElUAqGxEQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQgeZJQMYTzfO8qdYiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAJVIiDjiSqBVDYiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIALNk4CMJ5rneVOtRUAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEqkRAxhNVAqlsREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEmicBGU80z/OmWouACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIhAVQnMnfd9mPLt7DBn7vdVzVeZiYAIiIAIiEBzINCqOVRSdRQBERABERABERABERABERABERABERABERABERABERABERABEag+gVGfTg23PDM2vP7hlPDplzOSArp1ahM2XmnxsNUqfcIK/bsm6xfWmX8/+Un49IvpmYfXskWLsFiXttGvTRjUu1MYsmSXzHRaKQIiIAIi0LwJ1Mx44vvvvw9fffVV6NKlS2jVqmbFlEXf6tauXbvQoUOHovK48cYbw0cffRSnPeaYY5rcMRV1EE040fPPPx9ee+218Oabb8a13HXXXcN6663XhGusqomACIiACIiACIiACIiACIiACIiACIiACIiACIiACIhA8yUwY9a8cNqNb4Yn3pqUeRBTps0K/312XPw7eKvBYY8NB4RFFslMulCsvO/l8WH0hGlFHcuAXh3Dzuv2C9uusWRoUSMoYz6fHt7+5Ou4PhivDFi8Y1F1ay6JHnh1QpgdeThp3XKRsPmIPs2l2qqnCIjAQk6gqlYNY8eODZdffnm46667wjvvvJOgW2eddcLqq68eRowYEXbYYYfQvn37ZFt65oILLggffvhhenWy3K1bt7DaaqvFv759+ybrG5r59NNP47rdcccdOXXr3Llz2GSTTcJuu+0W122RPA+5f/7zn+GBBx6IiznyyCMrMp748ssvw//+97/w0ksvhRdeeCGMGjUqDB8+PKy55poxo2233TZg2NGQPPvss+Hpp58OL7/8cnjyySdD69atw/rrrx9WXXXVsOGGG4aVV165oSyaxPYTTzwxnHPOOTl1GThwoIwncohoQQREQAREQAREQAREQAREQAREQAREQAREQAREQAREQASqQ4DQHMdc82p4Z+zUJMMObVqGEYMXDYt2bBM+mlinuCfB/937QcBDxR92XjG0b6OI8GMiPn++7d3wzLtfhBN/sWLo3K6q6rb4nLwxZko459b5urbjdlp+oTOegN+3s+YGrjsZTyS3oWZEQAQWMIGqtOZz584NJ510Uvjzn/+ceTjPPPNM4Iecf/754aabbgqDBg3KTHv99dcn3gcyE7iVSy+9dGyoseyyy7q1ubN4mTjrrLPCqaeemrvhh6VvvvkmYFDBb6eddgpXXnll6NSpU2baaqwcOXJkbKRhXiwsz6eeeirwQzCiuPnmm0Pv3r1tc850zpw5Me/zzjsvZz0L//nPf+If82effXY46qijIkvQpmsKyrWQNpzYcsstw3LLLcchSERABERABERABERABERABERABERABERABERABERABERABKpM4KI73s0xnDhk62XCjmv3yzGMmDVnXvjHIx+Fax+e75X7kTc+D9+Ht8IZewyrcm2aXnaPnrlJaNOqzkhk5ux5YdLXM8Nbn0wJt0XeOMwjxNMjvwhHXvVKuPyQ1UPLFk1XF9P0CKtGIiACItA0CdS1/GXWb8aMGYEQC2nDic022ywccMAB8TY8TpgQlmGNNdYId999t60qe4oBwtprrx2He8jKZN68eeGggw6qZzix8cYbh/322y9svvnmAc8TJrfeemtYd911C3q+sLTlTPEOgTcIM5ygbOqy9957xwYTlichLPCuMX78eFuVTGfOnBm233774A0nMCLhHPz85z8PSy65ZJL2+OOPD/vss0/AgKSpihnVUD88UEydOjXceeedYeutt26qVVa9REAEREAEREAEREAEREAEREAEREAEREAEREAEREAERKDZEnjxg8nhgdcmJvU/a8+VopAcS+UYTrAR44H9Nx8Uzt1neJL20ciAAo8IPzZp27pF6LtY+7DlKn3CFb9ZPRy+Td2gXrx3/POxMT82JDpeERABEVgoCVTseeLMM8+MvTYYnSOOOCIcc8wxYfHFF7dV8fS1114Lf/jDH8JDDz0U8Paw4447hjFjxoQlllgiJ51fQJGeDl/xxRdfBIwLjj322PD+++/HeW266aaxwUPXrl397uHaa68Nf//735N1e+21VzjttNNyDAwwsPjvf/8bh+0gIeFGNthgg/Dee++FDh06JPtWY4ayTXbfffdwySWX5Hi5oMxtttkmNq74/PPPY64HH3yw7RJPffgQVuBpApZeCJ1y2GGHxav+/e9/h1122aXJGiMQtsQEg5b0+bZtmoqACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACFRO4OanxyaZbL/WkmHDlXoly1kz6y7XM2w8bPGA4QTyyBsTw7AB3eolZRznKx99GV4Y9WUY/+W3YUYUkmHxru3icBObDe8dunduU28fVrw8+svw7qffxNu2XWPJaEBoCK9GBh4vfzgljJs8Paw/dPGww1q5Ydy/mjY73P/q+Di8yKSp34VuUaiRpXp2DJSzZI/8oeMzK1DGyl+s1z8euHrx3e/He195/+iw0zr9MsN3TJ0xJ7wcHc+HUaiPDyZ8E9pFRinL9O0alunTMazYf9F6Riv/e3l8+Gr67PDWx3VGKs+O+iJ8892cuKze3dqFTYflnrO5874Pz733RRgz8dsw+rNvwvSZc8KyS3QJyyzRKSzft1vo2SWbvR36BxOmRZ5Ivo7Ow9Tw+dffRSw7hYG9O4YRA7uHPosWDjNfyrkY98WM8PjI+dcRITsQptc/8bFVJWwencOeXdsmy5oRAREQgcYkUJHxxKuvvhrOPffcpL4XX3xxOPDAA5NlP4PHBYwUMBq466674k2XXXZZOOOMM3yyBucXW2yx8NOf/jSss846YaWVVgoYGWCMgdeIfffdN9l/4sSJ4Xe/+12y/Nvf/jauazqERYsWLeJwHRhNbLjhhnF+5MmxHHfcccn+lc588skn4fHHH4+zWW+99WLDjnSehB+55pprYm8UbLv33ntD2njinnvuSXb729/+Vs9wgo2cg0mTJsWGIiyTT1P15DB58mSqGBvbFDKkiRPpTwREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREoGwC386cGwg1YbL3JgNttuB0380Ghk8mfRun+eKbmfXSohT/w79eD6MjJXyWXHTXe2H/LQaFX248ILRIhRp/KPKCcecLn8a7rTZo0fD7f7wRK/Atn55dcpX3974yIZxx49u2OWd6RWTEcMCWg8OvNh6Qs74WCzuv2z8y4PgsvPeD4cfTIyfFnil8WU+/OymcdfM7Ycq0WX514vljQK+O4YJ9Vwm9utUZC2DcYnnaTk+8NSnwQ9Yc0j3HeGLM59PDGTe9nROGhXRPvT3/PHdo0zKcs8/KYZWBi7I6RzC6uDxidv1jY3LWP/POfN0NK4/feWj42WrZA6FLPRcffzEtXHbPfIMTX6BfN2yprjKe8HA0LwIi0KgEKjKeuOiii5LKEjIin+GEJWrbtm34v//7v8R4AsMLDBzSHiMsfaHpoosuGghLceSRR8bJ3njjjZzkeGTAqAJZZpllwllnnRXShhN+h0GDBsVhI8xjw3XXXVfQeAKvGISc4EfZK6ywQhx6Y6211qrndYNyfJgSb+Th68D8qquumqx6+umnk3mb+fDDD202EBoln/zkJz9JjCfGjq2zIs2X3q9/9NFHwyuvvBKvwhsE3jmeeOKJ8Nhjj4UPPvgg9o6RPtcYnNxwww1h5MiR4dNPPw09e/aMuRNOZODA3Jevt99+O9x3331x/hbChPAv559/flINPHBgTOKllDJsv1ofi5XD9YLBSpcuXcL+++8f8JDC+XvqqadiDymEVuEa2W233ULHjh1tt8wp+950003hrbfeCuPGjQt9+/aNrwsMkIYPHx5atcp/2xKi5ZFHHok9vHCu5syZEyibcDTbbrttaN26dWaZxaz8+uuv4+PBaIofYWcwYFpxxRXja7Fly5Z5s6m0Xt9++23M5KWXXgoYIhGeBhYYY8Gc65Vzjeyxxx6hd+/e8Txpb7755ngeo6U111wznk//TZgwIeClBdlkk02CDzXk03J9Y6iF15spU6bE52bYsGHhF7/4RaBNSgv1vuKKK8LcuXPj87/llluG0aNHJ9cGxkPLL798HKZnu+22K9hGkTfeaTge2gGuN/alzVhllVXC4MGD08XnLH/33Xdx3V988cXY60/79u3je/NnP/tZHP4oJ7EWREAEREAEREAEREAEREAEREAEREAEREAEREAEFkoCr0aeIUy6dWpTtJJ6YK9O4boj1rJdc6YYTuxz0XOxBwG/Ycnu7cOnX85IVuGdYfLUmeHo7ZdL1qVnTv73mzmGEyj+O7Sr6xPHS0XacCJdzhX3fRB6d2sTthiRrfBPl1nucssWiwQ8ZZz333fjLB59a2KO8cQTkYeF4yNDEC/9otAfLVu2iDxETI9XM9334ufDtb9dK/EOMbhPpzAj8hwxNuJqAoceP3iPWMwZk0z6embY4/xnLVk85bwuHnluGBcZu+DVgd9hl78cLtx/RFh9cI+ctCff8GbiUYQNK0UeRbp0aBV5/vgqOZ9n3zwy6uP+Pmy3Zl3YeNKWcy4W69w2wADxx2frWN+2dX5dA9slIiACIlBLAnVPnBJLQSloykZ2Pfvss4vKgXAe55xzTnjwwQfj9ITzwONDOeKV6yjsveDlwuSUU04pSmn8q1/9KjYAMKMLlKPdutV3PfXll1/GymIUqCb/+9//4lkUyhgaoCj3grHBAQccEK8qpGRGWW6SpehFEY6XDIS0/fv3t+Q5U58PyvdSBMX91VdfHe+y8cYbx545PF8U117+9a9/5Xj98Ntgf+qpp8aGLrb+9ddfz1lmPcwxhjFBEezPb6llWD61PhYr5+STT46NRmBDGJnVV189Md6xNEwJc3PjjTeGNdZYw69O5rmn9t5772TZZq666qp4FuX7P/7xj0xFPcYNW221VcDAIC2EiKFuGHOkz186bdYy9+kOO+wQH2PWdq4TQuRkeQ+ptF4YDKy99tqZPPFcQ7l4dTEvOPA34wmMc+y6gn3WPcXxvPzyy0k6WKWNJzD+OPzwwwMhcbKEbXh4oWwvGMIQYgjZZ599YmOWdJgd88QDQ86t1d3nQ/l4z8HbjBczQmIdYZFOPPHE6MW7/ovlm2++GV8bGCCl5c9//nPsmYZ7pU2bNunNWhYBERABERABERABERABERABERABERABERABEViICKBsNxnar7PNlj2dF/VdnnXLW4miHSX48T8fGob27xpaR0YCn0+ZGe57dUK4PDJoQG57dlxYd+hiYa1lF8ssE4X6skt2Dodvs2xYbskuUUiLloEyEDws/P7a15P9DvvZMmHLVZcI3Tq0jkOEPPbW54lhxWn/GRmFm+iQGV4kyaAKM2sPqTsOjEhMqPLfH/rIFsOeGw0Ie248IAnrwXk47aa3wiuRkQJeKZ4bNSlss/p83csfd56vX8Ibxzm3ztcHHRbxwFAjLTc9/UmyapXBi4aTdlkxMYiZOXte5FXig3Djk/PT3PvShBzjicnfzEoMJwivct6+K4dBvTvF+c2LPFJw3s68aWS8fMMTY8I2ayyReA0p91wMic7pf363bpznT058NL5uMAyxdcnBaEYEREAEFhCBFuWW670irLbaamGppZYqOiu8RWBswK9cwwkKw4jBxCscv/rqq9gjhG1jVHYx0q5du9i7AopUflmGE+Sz0047xSPPmcdYAoMGE4wAtthii/Dxx3XxmdiGQhOPAfzyecBAQeqVoyhT04Jy3ARPDYwmTwtGH4QdMdl8881ttuTpXnvtlaMw53j5mTDaP+1Jw/MgHYYF3tCmT58+sVcKPIJ4Ydl+HTp0SDaVU0ays5upxbG47ONZPJJwjswAB2Mhb6yAEQpeCvC0kRYMitKGE5416VGW490ETwleZs+eHXtc8IYT7Ev5JpSN9wmrm61vaMq9gLGHGdBwPHgG8QYGnCPSzJqV63qs0npxL2O0ka6zMcUYgDA+eFOopWAcljacSF/nnHc8U+ST5557LifMDvv78wtDM7RI54GRiG8b2O73ZRnvOngAwsuFF64V6uYNJ4yfpaMtNq87tk5TERABERABERABERABERABERABERABERABERCBhY/AlOmzk4Ma3KdLMl/uzNuffB1e/+jrZPdz9x4Rhi+9aGw4wcrFo3AUhOrYaZ1+SZrrH8/VnyQbopnl+3UJFx+4WhgR5YHhBGJhPi679/3ESOPXmw8Ku66/VGw4QRrSbrVKn3DMDnVeLW59Ziybaip4eDD5/Ks6fc13keHC0OhYMHigrgduOSgxnCB9z2i/3+841HYNr374VTJfykzHyCsHZey4dt9w1l7DE8MJ8mjbukX4zdbLBDxzIM+/X6dTi5ffqwvfsv1aSyaGE2xrEXnV2DoyTPn9TsvH+Y8Y2D1M/qbu2mmK54J6S0RABESgUgJlG0/4UBBbb711pfUoa39GSpt4LwVpxfKAAQMsWVWmKKhRxBMSALf7o0aNisMYmDEASkoLFVBMgYRWYGT4r3/96/DXv/413gWjkkMPPbTe7hgqmDEEI9YJz4GXDUbnv/vuu3FoA0I0EE4EwVMBiu5yBe8aKMkfeuih+Fg5XhvhT3koa01YP378+JgH6a655hrbFBsFWJ0wCiF0Bz9TQKPkt3VMOS6k3DKSgt1MLY7FZR/PouTH2wFeACZOnBh7B2H54YcfTgwZMELAw4AXwmBgBGCCEp36whFjmNtvvz0OkcF28sM7ghcMkh544IF4FaE0nn/++VhZzn3KtWVGSsxz7aYV7D6v9DzhWEwIs0O9CF1BGZxvykO47qmnl0rqRR3xBkN5CPcX1+G0adNiBhgqHHLIIfE2DA9qJbQzeFAx4Rg5J9z3GEnhEcKEc+iNFGw9U/MYQ0ghjGzYH88Ul112WZKMbZwjL3iBOf3005NV1157bXxtcW1wfvG8YXLPPfckXn1YN3369LD99tsndSKkCfcU1xDb4GYGNuTjQ+dYnpqKgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAgsPATwcmCyVM8ONlv29Im3JyX74i2if5488RKBhwEEbwtfRl4PsgTvC53azk/nt0+bOTc8PXK+sp989t5kab85md9hrb5RyIp28fIbY+qMOpIEVZ7ByMCOi/AYs+fOi0to36ZF+N0Oy4fjIuODfTZdOjEA8cUv2aN9su/IyAilHIEDZRAKpbMLb2J5EVpk2b7zB8Ry7j339i48xlufTEnqbvsy3SYyzCB/fj1/CBvSVM+Fr7fmRUAERKBcAmUbT3z22WdJmaWGhUh2LHMGbwuMxDZ392TjlfgoJE3wipHlxt62lzPFIIFR6N7bBWE6/u///i/JjtH6hQRPDEOGDIl/eFlYddVVwz//+c94F5TbKKfbt59vDejzad26dXzcV1xxRTzyHAU2ngxWXHHFMGzYsLDnnnvGymZGpf/pT3+KQ0Tk83Th8803Dz+U8htssEEy0r1Fi/mXDeEQzCPASSedFI444oiw2GLzXVRRPnXxHjC8kjhfeen11SyjsY7loIMOipXtiy66aHI466+/fhyyw1YQusQL4RZMUHBzfZs3F64PDJTs+iAdXggInYO88sorgesBQRF+5513xgYvXPece64zDADMuAcvAxjbFCso9E2oJ95TTDjfhCE5+uijw3777RcI0WFSab0wIvBhKW655Zb4OrTQEoR2QdlfS+MtPGkcfPDBdkhxaA7KM88oeFEhDNEuu+wSp8EwBv755Prrr4+9T+DlBuH8YDTFOTd56623bDb2UOLLp93Zfffdk7AtvXr1ive188+O3kMFhhcY5iCbbbZZfJ0MHDgwXqYtwdDqjjvuiJf5w3uFRAREQAREQAREQAREQAREQAREQAREQAREQAREYOEl0N4ZJnzlvFCUe8SjP/sm2XW5KNxGPiGEx0pLd002j/1iejLvZ4YNqB9Kne0fT5yWJOvUvnX49Itvw7hJ2b/WLReJ037+9Xdh6ow5yX61msFowqTVD/oTW/ZTwmhMmjorfBLVe+TYr8OLH0xOPGn4dJXMY7zx1bTZgRAioz79JrwSebR49I3Pkyznfp/MhhX617F+5p3JYe+Lng83Pz02fDxpevghUkpdYjfXlM+Fq6ZmRUAERKAsAnVa0BJ39wYKXknss8GjAorkQoJXhO222y4zyTHHHJOjqJ03b17s7QHPD3509wknnBBQYpr4cB4YFVRb9tlnn5x6Wf4YGJg8+eSTNps5NQ8F6Y3rrbdeHP7AFMTp7SyzL6PGCwmGFyjSzdChUNpC2/B00bVr3QuNpUVJzih3BEOJP/7xj7YpZ3rggQfGRhwolX2ol5xEeRaqXUZjHUs6jIkdng+5gtcBEzwImNcIWF566aW2KWc6dOjQ2LMDhg8o3c17hDciOvXUU3PChFgG3KOco7333jte9cYbb4Tll1/eNheccv7tfsMoCIW7F4wYCGuRlkrrRR1NMFDIqi8GInhMwIigFsJ9bAZCu+66a9h0003rFcM9hrGLecLBaCSf7Ljjjpmb8A6BYQUyevToJI33qIHHGdqeLMFDByFSaBd8uCHvAeeCCy4IGEykBcMt8oUjx4o3i3796lzopdNrWQREQAREQAREQAREQAREQAREQAREQAREQAREoPkSWLRjm6TyoyfUGT4kK0ucmThlZrJH/56dkvmsmUG9O4fnR80PHeE9IPi07Zw3BL/+q+l1niowivjFefO9b/s0WfPvT5gaVo1CTtRKvo08Ypjg8SLqus+Rd8ZNDfe+PCG8EIXIGBsZNNRCMMi44/lxURmTA2FUihVCqhy/89Bw9s3zw1GPmTg9XHjnfN0F3jQ2GrZ42DIKhUIIFTxsmDTVc2H101QEREAEKiFQtvGEeRig8EmT6twy+cp8H5mmXXfddX5VvfkBAwbkNZ7wo6nr7fjDCkJFHHbYYTmbvccGU/rmJKhwgTAW+QQFL+75Gyp37bXXTtz948L/ww8/DI8//nh46qmn4h/hO2677bbYa4AvC4MCjDQsBADbKHPNNdeMlacvvPBC7HmC8lHiEzrj3nvvDW3b1sXd8vk1NL/OOutkJsH1v0mXLl1yFL623qZmCIIBBYYt3bsX96JS7TIa61gwcsiSnj17Jqu9hwbvBWKVVVZJvBokid0MXg/Snha8lxOu/Q8++MDtUTfrPUag4MdjSTGyySabJKEzCLmCoh1PL1xznPt8Umm9vPEEXkPyCYYhdt/lS1Pu+tdeey3ZtRBbDLtM8AaTJXh+yOcFZ8kll0x2MWMNVhDCxoQ2I59gTLP//vvnbKZO6brkuza8UQXcZTyRg1ILIiACIiACIiACIiACIiACIiACIiACIiACIrDQEOjeqc54AsV+pfLtd3XGA53bF1Y5delQN7hr5py6PtVi6jBjZnkeJKZVwbtGofq9GYW7MOnTvU4Pg+eGW58dG/5yR91ASktXzSmeJY77+2tle7D42WpLhH6LdYiNL+5/pc7jPN40/vfShPjXb7H24aL9Vwu9ImMLpKmei2pyVV4iIAI/XgKFn2QFuDDa3GTMmDE2mzNFoUeoAK8oJkFDhgU5mRRY+Pjjj3M8TlhSPC6Y4KWi2uK9XKTz7tixY3pV5jIhNv785z/nbJswYUL43e9+F49gf//992P3/M8++2ww4wOUoYT0MMMJFMaE9/DnggxRjO+0004BYwWMMQ4//PA4zEhOYUUu5DsebzBDOfkMBtLFoJjdaKON0qszl6tdRmMcC0pwO1/pg+J+wLOEV46Txt8PK6+8cnq3Bpfhb2KeJWw53/TFF1/Mt6ne+lNOOSVglGPhH/BQwA/BqAGPDDvvvHO9e7HSevl7d7nllqtXL79i9dVXT+4Lv77S+YkTJyZZ+ONOVmbMEG5kxowZ9cLuFDJIsDAe6ex8+bQZpchXX32Vk7zY/TnPP/3pT3P21YIIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiMDCQWC5vnWepvE0MCsyYmjTan6o7nKOsGfXtgFPEMi4yd+GAYvn15F85EJvdO1YZ0hRTLldnMeMdZbvEY7dIXsQYzovb7CR3laN5Uder+tDXmPZ+WHNyfetyKjCG05sv9aSYY3B3UPv7h1Cp3atQufIkKRjFEJl2zOfDFOm1XnVKKVOnLvDLq8LIb/mkO5hixG9Q98eHUPXKLRJh6icTpFBy59uHRm8YUS6jOFRqBR+v9th+bjeb4z5Otwfecv49Mv5njLwmHHQZS+G/xy7TmgbXStN9Vykj0vLIiACIlAOgbKfiIMGDUrK827mk5XRDCPdGTk9bty4nN8ll1ySJMsKCWEb8cgwa9as5IciEeWzST4FsB/hj2LahxixfZviFKMMPEXYKHuUsHiNMBk5cmS477774kWU9BhGpA0n2Ij3Aj/iHKVvtRk0FDbE6pyeTplSZ4WZ3pZebowyKLOxykkfny3PnFnn1qzQ/WDp01Mfpia9Ld8yoUKKlR49eoT7778/nHfeefVCZ2DgQHidpZZaKt7u86y0XhgTmfhQFLbOT6ljLWTatLo4eqXkT9tVDfnuu/kfHeTl275i8v7222+LSVYvTSn3aL2dtUIEREAEREAEREAEREAEREAEREAEREAEREAERKBJE+gbeREY0KvOwOHB1+q8DRSq+PPvTw7rHvdQ/Dvkb3WD88wbAft+7IwjsvL6YEJdf2vPLnVeGrLSptct1rku/VfTZgeMNor5tW1dthosXYV6y6M+/Sbc/eL4ZP1GK9YN7H3x/fnhSdi46wb9Y8OEDVfqFYYs2Tks2aN96BIZNcyYPa9swwnyffPjOn3LoD6dwvn7rBIZTywRVujfNfTt2SF079wmNoz5ZFJxfcXto1Adqw/uEfbbbGBsKHH+fisHwncgGMi8O3Z+SJCmeC7iSupPBERABKpAoGzPEwMHDkyKf+CBBwKjnHGfX4w89thjSbIVVlghmW9ohvxPOumk2DsDafHSsOWWW9Yb6Y9hAd4nbEQ/4R/WW2+9hrJvEtvxWoB3CRt1jwHFdtttF9ftueeeS+q42267FVSmcvy77LJL7MWCnTCmqOZoch96gzASl112WVK3QjMNKcH9vo1RBuU1Vjn+2Py8D4HjwzT4NIXm+/btG3sZIc3TTz8dfAiIfPvlCx+RLz3nDQ8m/EaNGhXwiPLQQw8l1xf7/eEPf4jbgP322y/OptJ6rbrqquGjjz6K8yLcBJ5W8kkx3AgjlE9mz56ducl7sTnnnHOKDnXiz2lmxkWu7NWrV5KSdqxYry3s5K9rlvN5CGKbFx/2yK/XvAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIwMJBYOsoVMNl97wfH8yFUViJtYYsFnpEivZ8Mm/e9+HSH9KTZpd1+ydJ2feRNz6Pl+9+eXxYPzIgaBF5YU7L2598HUb/YDzRLQodMrBXp3SSgstLRx4t2A8vDe+MnRrGRd4QMATJEowFvv52vjeHZZfoEmphQDHhy+/Cyf9+Iyl+lcGL5njdeOPjOs/AW6+6RJLOz7wyuvhBjl9MrRuEaXmMjDiY7LBW35CBPWBoAq8sGfP59DBn7vfxfpwPvz/ncK3Ik8aO6/QL/3psTLz76M+mheFLLxqqfS4IEfJdZEjSroaGLlnHr3UiIAIikEWgbOMJDBlGjBgRu/InDAHeJE488cSsMnLWEXqCUewmhRSilsZPDzjggHDhhRfGymIUq1dffXU4+OCDfZKogV8kYFxw0UUXxetJU4zxBMYWKHxNGJ1f6mhv2zc9xdDjk08+ifO78sor4zqm09hyly5dbDZ4DwGmSGaj966RJE7N+PAihDippvi84bbEEtkP/0rKbIwyqF9jlZOPhTd28AYy+dKn13PNmqcRvD0QwqKWMmTIkMCPECGEnjn55JPDtddeXlf2JAAAQABJREFUGxd50003BW88UUm9CGFyyy23xPkSqqZQW4ExR5Z4I5FC3lfyGRb4awO2tbjOs+pt6/y1QcibUoQwNT5MTKdOnYJvW0rJS2lFQAREQAREQAREQAREQAREQAREQAREQAREQAQWHgI/jxTidzw7Lg7LgOL6N5Enib/st2ro071dvYOc/M2scO5/RyaGD4t3bRfWX6HOw8K6Q3sm+zzzzuRw3aNjwt6bLJ2sY+bLKI9j//F6su6nkfFGixb1DSySBBkzpN9+zSXDtQ/PH3B31NWvhMt/s0ZYtFNu+A+8Qez71+fjHPCacNdJG2bkVv6qGbPmRcYinwWMTmCHUM4ff547UHhw7y7hxffmG1C8P/6bMKh3rrHIR1HIlHNufbdgRTpH3ilMnhs1OewbeYTwMtB5EHln3NSwg98YzX/z3Zxw0g35+5X/eveo8Pyo+R4yDvvZMmHX9ZfKyWFeNCBx9GffJOsWi7x9INU6F4tGxjDf/hAa5M3I2ASvFxIREAERWNAEKvJXdO655yb1P/3008OHH36YLOebOeOMMwLGFgiKQa+czLePX8+o6DPPPDNZdcIJJ8ReL5IVP8z8/Oc/T1Zdf/314fHHH0+W88344/nNb35TNcMJykPx+t///jdcd9114cknn8xXhXj9gw8+mGwnHIKJn7/jjjtsdeaUUfameCZB//51lqCZO5S4EkW2jcrHS0a+0C1k+95778WeClBwlxJKoDHKoH6NVQ5lZcmyyy6beIv49NNPw//+97+sZGHOnDlh++23jw18MJgwzyqbb755kv62225L5tMzsOcc8OOcFCNct3g/4UfYnLRw/+KRwcQ8prBcab2GDRtm2cbhbObOnf8imqz8YYb7ytqU9DYfXgjPDfnk0Ucfzdy08cYbJ+vvvPPOgtfvCy+8ELPNF04oyaiEmU033TRJfeONN4axY8cmy36GECd48eG62GSTTZJN22yzTTJ/9913J/PpGfa3a+Ozz4pz05fOQ8siIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIALNg0DbVi3CH3cZmlR2bOTF4efnPBXOv/3d8PibE8MbY6aE+18dHy6794Ow67lPh6fe/iJJe8jWg0JLZ/jQrUPrcNT2Q5LtV94/Ohx25cvh309+Eu57ZUI4L8pzrwufS8JT4D1ir40HJOlLmdln04Fh7eXmK9g/jZTue/7l2XBBZMTw8BsTwwOvzi/LDCfI91ebLl22N4OL7hoV503+/E678a1AuJLNTnwknHXzyBzDidP3Win0XjTX8GT1Zbsnh3b6jW+HM256OzwUhUiBL1wPuOSFhEmSMDXTZ9H2yRo8d/zmipfCLc+MDa+NmW+UMXxgXRn3vDg+HHXNK+G/z40Lz476IvzjkY/C/hc/H175oM4DRpLZDzM7rd0vWXXx3e+HC+8cFZ546/PIYGJaePqdSeG3V70Snn13vncMDES8cUM1zsWA3nXhY/7wjzfi8u95aXyY8YNRSlI5zYiACIhAIxKoyHhiww03zAkFwYh3r/j3x4HHCbwvYDxhctVVV9lsSdNf/OIXySh0lKaMfk/LmmuuGX75y18mq3/yk5+Ehx9+OFn2MzNnzgynnnpq+Otf/5qsPvTQQ5P5aszsvvvuSTZHHnlkIAxBlmDo8e9//zvZtMUWWyTzXin6zDPPhOOOOy5khRtASf7rX/86CeVABmuttVaSTzVmGNFPGSaE7jBlvq1j+uqrr4YVV1wxcK387Gc/C4VCJ/j9mG+MMhqznPTx2TKeUjxLwrZ4LyOW7vzzz48NK+DsDT4Ix2IeUv7+978nHldsP6ZcJxgEcR74FVKk+/0I0UH4DH5cQ1neG7whhvfcUmm9VllllaQqhAY666yzkmWbwSCC9iCfYNxhbO67777w1ltv1UuKtwy2ZQmGLbQlCN4vfvWrX8VGLOm0eJPBuw1sMSSrlmAwRZ4IbR3H+t133+VkT9u6//77h/fffz++B73BxR577JGkxVMIBhJpwbvNZpttllwbeMjxcs899wTaT0K2yLDCk9G8CIiACIiACIiACIiACIiACIiACIiACIiACDRfAoRfuOzg1WKvCXYUt0XeKP7wrzfDwf/3UjjtPyPD9Y+NSYwEMHq45KBVw09W7mPJk+kOa/YNv1i/bgAnCvtL734vYDTw3yhPQm0g5PGX/UaEzu3qPCokmRQx06rlIuH0PYaFZZfsHKcm31sjY4KTrn8znPqf+WVZNttFXip237BucKqtL3Z6+3OfxnmTP7/7X/ksvP7R1zm7U4+/H75mHN4iZ0O0sMrARcPmK9eFZb735Qnh5BveivkaV4xIYJJPll2ic1hpQLdk82ujp4S/RIYc10WGEUinti3DEdvWGa7gReK8/74bjrnmtXBFZMSCUczwpbuGjYfVeQpJMotmCLmy9Wp15/Pmp8eG4//5RvjlX54Lx177emJ4sWT39vG5bx8ZUJhU41zsFHlAMcGLB+VjmPLBhDpvF7ZdUxEQARFoLALlPaFc7f70pz+FJ554IlbsodxDYbrDDjvECsfhw4fHo9VR2D3yyCOxcs92JfyGV/LZ+mKmKNUZ7b7tttvGyc8777xYebj00rmuoM4+++xYKWpK/a222iqg5EcBiSeGSZMmxcrUm2++OVaMWtnUzY9Yt/WVTFGALrPMMjEDRvEPHTo0HHPMMQFGKHhRUuMdA0WuCQYcKMlNBg8eHBugmLHIX/7yl9iLBUYJ5N26devYQwAeJ1D0msBnscUWs8WqTf/4xz+GV155JWaMsh9lNx4/1l133VjBjIHH5ZdfnpSHsQehBEqRxiiD+jRWOfmOHYMavJLAkftotdVWi1lyj4wfPz489NBDAQMCE9Kb4AGEc26GNhgpYSiE1wSU/3iE+dvf/pbcfxgT7LPPPrZ7wenaa68dVlpppfi6wisG9/eee+4ZG1KgtH/66afD73//+yQPFPQmldaL/bk3d9555zhLjBJoa7iHu3fvHs/ffvvtVlzeKR4wbr311ng79yHnmvvvq6++iplisFRIuCcxDKMdweMLxhR4dMCghDYEjxTeWwjXeTWF8EOEMEHw7EGbwX3GNUIoD8rGSMkEQwoTjB5OOeWU+Mc6jn/XXXeNrw1CL2FMQjvCNYdgRLHGGmvE8/x9/fXXcXvOPO0T1473/MN6iQiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIQPMkMDxSzF931NqR0vqTcGPkKSJL8Diw3tDFwmE/GxK6d85W9BPG4fCfLRtGDOwWrn/8k/Bm5LnCC3lsu9aSUViIAaFnl/p5tHDDfFu1cgs+kx/mUeCfv8+I8K/Hx2TWefl+XcI+my0d1hnSMwqfnpFBgVVtGiibkCV9urcNQ/p2DVus3Dss17dL3txat2wRTtx1xTCgV6eAIcbnX9cNisNg4qAtB4WfrrpEbJSRLxO4nrXnsHBX5I3h9sgIxedh++y8br/I60XbcOUDHyahVWzbLzcZEPbaaOlwcWTIkiV4EPnjziuE9ZfvGf4eGWS8F4U88YLRxBpDeoSDtlomNtTw25iv9FysuUyPcN6+K4fbnx+X492kRaknLl0xLYuACIhABQQWmTVr1vcV7B/vinKXEdnFhMZgh0MOOSRWwGUp0lFIYlyATJ06NbRrl+vqKN7wwx+KQSsTZaL32GDpqBuKTsvT1ueboqg86KCDoodq7lMVAwVTXqNobNu2bWYW66yzTqzgZGPENicNylqU1l7RmpPALWCUctRRR7k1dbNXX311OPjgg+tWFJhD8Uuoh1KEvCkDYTS7DxeSzgcWKFy98jadhmU8K1xyySVRLKzcF58hQ4bEBgMoyseNG5e1a6zYLbeMxjoWDHcwLiAUTZbXCDuwHj16xMeDQcLLL79sq+MpBjQYBBXan4QYz/z2t7/N2ZeFG264Ib4P621wK1B+P/bYY7FBhFtdcBYjmF122SXTs4jf8eijjw6nnXZabMTj11daL4wmCnlzwHAIQ5ErrrgiLpbwGWZswAoMHDbaaKPEeMTXzeYxODGjJK5TDKi8jBw5Mqy//vqJkYHf5ufx/OG9PeDFAaMnhHvfGxP5/TBiME8bGMb4UCiku+uuu8JOO+3kd6k3z7nFiMaHGrFEtLkNefoZMWJEbAiFUYUJ17Q3SsODzrXXXmubNRUBERABERABERABERABERABERABERABERCBBUqAPlX6mCuVPf7yYlFZXH/k6kWla46Jvp05N3w0cVr4bMp3YdaceaFbx9ZhcO/OoWfXbF1IoWP85rs54fMonzlzvw9dorAePbu0DXgqqLaQ/6SvZ4apM2aHdm1aREYE7QMhSZqifPnNrDBp6syIa5uIaZtQqoHAvChU+7Tv5sYGIRijYPiQlhmz5oVPJ08PbVq1jIw82gUMOEqRufO+j/afEZ//JSLDiQ6RZ4tipdJzMXP2vDBr7rzQMtLNlVJusfVTOhEQgeZHYEE9m0trOfNwXWKJJcK9994bh77wirZ0ckZKM1L9wgsvzOuBwBsl4GGikOBZwgSlIQrOtFA3lMXnnntuQEGfTxiR/dxzz8VGCWnDCfZp1arOSUdD9cpXBkpJRsBTbwsF4NOi/MTQg9H0+QwnSL/ffvuFp556KlamoqxPC+cAJSej0ks1nCAvf3xt2rRJZ5+zTJ0ZeZ+lzCch55zjufTSS+sZTrDdc2U5Syopo7GOxTh16NAh6xCKWsdLPvfHsccem4SasB1hgFL8/vvvz8t6t912i5Xn+a4tDAS4RzDcKEUwCHr99dcDXiWy7iHCVXCOua7xfpKWSuuFpwi8p2SVzXXH/d2tW7d0sclyz5494/Zpu+22q8cVgwH2x8NGIcFTBd488hkwsB5jGG84QX7++mvfvi4+XaGysrbRLmCglM6ftHChfLzAZBlOkIaQRBhkZLUXrLv44otjDt5wgv3YhlGMzR922GHxvP5EQAREQAREQAREQAREQAREQAREQAREQAREQAQWLgIorFfo3zVsOqxX2GqVPmHtKKRDOYYTUCEsx6DencKQKKxFn0Xb1cRwgnIwyMBIgHKW6tmxyRpOUFe8dlDPXt3almw4wf4YW3Rp3ypmm2U4QZr2kQHJ4D6dQ/+eHUo2nGB/8mXfwX06lWzAUOm5aNu6RXxsMpzgTEhEQAQWJIGqeJ5IH8CUKVNid/Bjx46NlYeEDuBXiWI5XUY5y7Nnzw5vv/12oF7m1QJFMiE6vJKznLzL2WfOnDnhvffei0ObYPCAh4csw42G8p48eXKcD+lQ8nbt2rWhXWqyHb54+vjyyy/jc01olEoUxlmVbIwyKLexysk6RtZxbcCSc4thwIABA0q6NjgHeA2YO3du6N27d+jVq1dJ++erF+vJG48KXbp0ieuV9ibS0L7l1gsmEyZMiLkQhobry4w1TjjhhNhAirLTnid8fb6PrHNHjx4dZsyYERsGEP6jVJk+fXrMdtq0aQFPIhgYFGMEVGo5+dJ/++23MQO8vmAcxrktVgi1MnHixNgbB21Nv379ChqeWL4cM4ZtjXmcVramIiACIiACIiACIiACIiACIiACIiACIiACIpCPgDxP5COj9SIgAiIgAiLQvAksKM8TNTGeaN6nQrUXARFobgSKNZ5obsel+oqACIiACIiACIiACIiACIiACIiACIiACIiACOQnIOOJ/Gy0RQREQAREQASaM4EFZTxRlbAdzRm86i4CIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIvDjJiDjiR/3+dfRi4AIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiMCPnoCMJ370l4AAiEDzJ9CqVavmfxA6AhEQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQgQVGQMYTCwy9ChYBEagWgRNOOCFMnjw5/q200krVylb5iIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAI/EgIaLj2j+RE6zBFYGEmgOeJzp07L8yHqGMTAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQARGoIQF5nqghXGUtAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiLQ9AnIeKLpnyPVUAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREoIYEZDxRQ7jKWgREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREoOkTkPFE0z9HqqEIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiEANCch4ooZwlbUIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiEDTJyDjiaZ/jlRDERABERABERABERABERABERABERABERABERABERABERABERABERABERABERCBGhKQ8UQN4SprERABERABERABERABERABERABERABERABERABERABERABERABERABERABERCBpk9AxhNN/xyphiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAjUkIOOJGsJV1iIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAk2fgIwnmv45Ug1FQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQARqSEDGEzWEq6xFQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQASaPgEZTzT9c6QaioAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAI1JCAjCdqCFdZi4AIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAINH0CMp5o+udINRQBERABERABERABERABERABERABERABERABERABERABERABERABERABERABEaghARlP1BCushYBERABERABERABERABERABERABERABERABERABERABERABERABERABERABEWj6BFo1/SqqhiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiKw4AnMnjsv/Pvxj8Nbn0wJ26/VN6y7XM8FXynVQAREQAREoCoEZDxRFYzKRAREQAREQAREQAT+n737gK+izB4+fkhIQkJ6SKcGCL2DgNgQBVQsuCgqFlAXd/2rq66vuupaVtfVta+rC9Zdy7IWFBVFFFFBeov0UAMkQBICIQlJIBDeORPu3JJ7b24qhPye93O5U5555pnvTNz3859zz0EAAQQQQAABBBBAAAEEEEAAAQQQQKC6Aj+uyZblW/abh43unyi92kX6NMSx8uPyj5mb5KgRzKDtrjFdJCig/hOu/7I+V96YvdU858INeTLnyfMlOLD+z2uekH8QQAABBOpVgOCJeuVlcAQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAU8CpWXlMmNxlrm7oLjM5+CJtIwD8umCXeZx3dqEN0jghJ6s5Mgx85y2f46Wa/DGqRM88d2qPVJ27LgE+DeTkf0SbdPkGwEEEEDABwGCJ3xAogsCCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggEDdC5zbI06eknXmwHNX58gD445JaJB/lSf6IS3b6nPJwCRrub4Xzu+dIL9uz5cNmQVy9VltJazFqfWq7bnPNkqxEeAREuhP8ER9PwyMjwACp53AqfVf9NOOlwtCAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBDwJBBiBEqM6p8gs1fuNbssWJ8to/p5D4Y4crRcvl9V0V8PGt473tPwdb69hVEa5E/jutf5uAyIAAIIIHDyBU6dPEIn34IZIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIINLDARQPs5SW+d8go4WkayzbnmdkVdP+5vWIlMiTAU1e2I4AAAggg4LMAmSd8pqIjAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAXQv0T4mWyNBAyS86Ios25smBojKJCvUcEPGdQ9aJiwdUzlJRUHJUVmzJk23Zh2TLnkJp0dxPOreOkM6JLaVn2ygJDqz82+IVW/fLxqxC89IuOyNZjh8XWWWMsWJbvmTmHZKzu8fJ2CGtpexYuUxfuEuOGfvbtAqWc4ztru1Y+XFZvGmfZGQXy9a9hXLo8FFJTQqXzkmh0q11pMSGB7oeIofLyuXzxRXjpsS3lKFdWknmvhJZveOApBllQg4WH5EOccbxyWFyTs94adbMPoT2+3l9jrlBS3Zo0+8P5+0wl/WfkX0SJDYiyFrXOf6akS+bsgok3ShBUmpk8+iUGCYpcS1lsHFuzQhCQwABBJqaAMETTe2Oc70IIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAwCkk4O/XTC47I0nem5thzuqntdlmoIK7KRYfPiZzfs02d4UE+svg1Binbgs25srTn2wwAzEcd3x3IqNFeyMw4cWb+0t8pD2QQPvNMfZ/uTTLPGRgxyh58D+rJedgqTVEbHgLc7nkSLm8OnOzuTy8d1yl4ImMnEPy1MfrZMOuAutYXfhl3T5zXef87KS+0j8lymn/fiNwxDbumEFJosEND/z7V6c+tjH6d8qUx6/pJTFhFUEYO/YVyetfV8zJ8QDHbb3bRVjBE/nFZfL4tNWybNMBx+4yb22uuR4X0UKeur6X9Ggb4bSfFQQQQOB0F6gcWne6XzHXhwACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggcEoJXNg3wZrPbIfMEtbGEwsLNlRkWNDVMYOTJcDf/qprnpF94f53f3UKnNDsEBowYWsZRjaKm19dIrkFR2ybKn0/9t81ToETGvAQ0qLq3yPnHjwsE15Y5BQ4oRk1Uo1sETqGNs0IcefUFbLMyGrhqa3dedApcCI5Otg6Xo9ZueWA/HNmunV4q7AgMwuGXqtj03XbJyig4vylRoaLSS8vsQInzACULtHSv5M9mEODRia/tszImlHkOBzLCCCAwGkvUPV/6U97Ai4QAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEDgZAqkxIeaQQabjNIZa4xyEnv2l0pidEW2B8d5fZe211od5RBwoWU23p2z3dp3/Xnt5frh7SXsRNCDBjb85eO1ZuCBlgdZnJ4rlw5Ktvo7LuwyymBowMNdl6ZK1+Rwo8yHv5TrCapoHy/YafXQYIRHr+5pZXvQshxTZ2+Rj+ZX9Jm1fI8M6uScNcN2sAZ4aHtqQi8Z1j1WAo2yI3p6zYzx9882mPs0k8aE8zoYpTZCpYsxx//9v2Hm9gv//KMZoKFBEbZt5o4T/yxN32cFhgxKjZInru0jESEVrwsPG6U7/vFVusxYXJGB47NFu+T/je3meDjLCCCAwGktYA/HO60vk4tDAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBA4lQW0XIWtzTVKd7i2A0VlsnBDRcYGzajQtXW41UUzKnRvE26U/0iWW0d2lNtGd7QCJ7RTbESQPHhld6v/qm3OJSusHcZCN2OcV28bKP06RJmBE7rPr1kzxy5ul1sagRp6/iuHtpanb+hjBU5o56AAP/m/izuLZpHQtmTzfvPb0z9/MQInhveONwMntI+e/nIj08ao/vYMHdv2Fno63OP2+RsqSnNoh4kjUqzACV0PMoI07rq0i9x8QYp5HYEnslXoPhoCCCDQFATIPNEU7jLXiAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgic4gLn90qQF2dUlKP4ZvlumXBOO6cZz1tnL9lx6eDWTvuCA/2qzJKQHFNR/kJLZ6w3SmN4apqRIjSoosyFpz7utk88v4O7zdY2f79mkto6TLL2l5ilRfYXHpHosEBrv+PC8J5xjqvW8nk94mT2yorsG1lGdo7qtuBA+6vB1dsPSt/29nIdOpYGUNxyYUp1h6U/AgggcFoI2P8LeVpcDheBAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCDQGAWiQgPkrB6t5Jd1+0RLV2zLLhIt52Frs1busS3KBb3tGRisjS4LWiqjoOSolBw+KkWlZXLI+NbAiapa7/aRVXXxaX/ZsXIpKjkmh0qPmufW8/+42h4AcsxDJRAtp+FnBFq4a7GR9lImOm51W58OkTJ94S7zsKnfbpHVGQdkVL8E6ZsSI7Hh7gM5qnsO+iOAAAKNVYDgicZ655g3AggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIHCaCVzSP8kMntDL0kCDlAsrgif2GFkW1mTkm1erwQXxkUFur3xDZoHMWrFHlm7aJ7v2lbjtU9XGFrUoV5FbcES+WJJpnD9P1nnJbuFtDvERFaU93PUJNDJD1KZpRotLjPIoXy/bbQ6zaGOe6EeblhTRUiFaGsQxaMXcyT8IIIBAExAgeKIJ3GQuEQEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBoDAJDuraSkEB/M0PETOMF/80XpEgzIwnDjw4lOy42Aixc23Eji8P0RbvkpS8qyn647m+I9ZXbDsgD76b5lN2iIebj7hya0eLBK7vJGZ2iZeaKLFm26YDVTcuJfPBThvkZ3jtOHh3fU2obrGENzgICCCDQCAQInmgEN4kpIoAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAJNQUBf1l80MMksLZFzsFTW7zooPdpGyLcrKjIlqMHZPeIrUazdme8UOHHFkGQzQCAhOkRCWzSXsJAAaRnkL5f9db7kFx2pdHxtNxw5Wi53Tl1hDTO4S7RZDqN1TEuJCA6QEGMOocHN5Znp62X2yr1Wv5OxoAEUF/RNMD+aKWOtUbojzcjq8Y0RrGIra6JZPwL81slj1/Y6GVPknAgggMBJESB44qSwc1IEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAF3AqP6JZjBE7rvh9XZEhLUXLbuKTK7asmJ4MDKpSuWbd5vDXXNOW3lzktSrXXbQtHhY/USOKHjr9lRUVJElzsmhsoLk/qbGTN03bHtzC12XD3py7HhgWapDi3XcftFneXLpVny8pcV2Tu+S8uWB6/qIUG1LBVy0i+SCSCAAAI+ClT+XxcfD6QbAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAnUt0L1NhCRHB5vDfrUkS75L22OdYnT/RGvZcWH1Dnv5iYsHVC7roX1Xbs1zPKROl9fvKrDGGzuktdvAiQNFZbLBoZ91QD0saAaJ0rJyp5E1O8YWIwhFP1l5JU77dCUowE+uGtZGUpPDrH27TrFgD2tiLCCAAAL1IEDwRD2gMiQCCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggEDNBJo1E7lscLJ5sAYBvDc3w1yODA2Uvu0j3Q7aKSHc2r55d6G1bFvYnn1Inp2+0bZa598p8S2tMTdk2gMpbBsLS4/Ko9NW21br7TvKMLK1NQ4BJbqt/LjI719fJje9vFiu/vsCp2wZtmOKjewcmQ4BEzFhQbZdfCOAAAKnvQBlO077W8wFIoAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAKNS2BE7wT516wtTpO+0sjo4OdnRFa4aYNSo2XavB3mnic/WifLt+yXIakxEuDfTNZlFsrnC3eJBmLUV+uTEm0N/fWy3bKvoFTO7h4nCVEtZFNWocxasVt27auc7cE6qI4W2ie0lKz9Fed56D+rRcucdE4Kk/ONshzBgf5yuWFoc7r3rVVy3XntpXf7CAkLDpDt2YUyZdY2y+nMbjESFRpQRzNjGAQQQODUFyB44tS/R8wQAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEGhSAonRLaR/pyhZucVejuPCvgkeDfqnRMnIvvFGiY9ss8+sFXuMgAV7uQ/deMPw9vKVEdiQX3TE7FOX/4QG+cvdl3WRl79MN4ddkr5f9OPY+nSIkGgjk8OPq3McN9fp8m/ObCML1u8zx9RgkU8W7DKX28aGSK92kTL+7HaStv2AWT5E97/13Va35x/cJVr+9JsebvexEQEEEDhdBSjbcbreWa4LAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEGjEApcMSLJm361NuGgAgKcW4O8nf76mp0we1VHiIlo4ddNyHw+O6yaTR3aUQKOfu+bnsLl5c4cVl85aUsTWAl36XTWsjTxzU2/pmBhq62J933h+e3l+Un8Ja+E+k4O/w8BBAf7WcdVdGNw5Rp6/ua+c1aOV06F+J8aPDQ+UqbcPkttGd5Lk6GCnPrqic79jTKo8P7GfEehhLwFSqSMbEEAAgdNQoNmRI0eMCkc0BBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQKDxCKSnp0uXLl1qPeEJLy3zaYwP7xnkUz86nRoC+wuPSG7BYYlsGSixEYFiCx5oqNmVHCmXrLxDEtjcXzSLhgZ3NHQ7XFYuR46ViwZmhBiZMdw17ZO1v1iaGf8vOSbYmG/Dz9PdvNiGAAJNW+Bk/W8zZTua9nPH1SOAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACp52AZk04mZkTggP9pFNi2El1DQrwE/14a7o/Jb5ypgxvx7APAQQQOF0FvP8X83S9aq4LAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBA4IUDwBI8CAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCDRpAYInmvTt5+IRQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAgOAJngEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQaNICBE806dvPxSOAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAwRM8AwgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCDQpAUInmjSt5+LRwABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAGCJ3gGEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQKBJCxA80aRvPxePAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgRP8AwggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAQJMWIHiiSd9+Lh4BBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEECJ7gGUAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBJi1A8ESTvv1cPAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggQPMEzgAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAJNWoDgiSZ9+7l4BBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEECB4gmcAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBJq0AMETTfr2c/EIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggQPAEzwACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIINGkBgiea9O3n4hFAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEECA4AmeAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBo0gIETzTp28/FI4AAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggADBEzwDCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIINCkBZo36avn4hFAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBJq0wJy0vfLtqj0yqHOMXD2srTRr1qQ5uHgEEECgyQoQPNFkbz0XjgACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgic+gIZOYfkkwU7zYkO7Bgtw3vH19mks/MPy2PT1prjLdqYJ11bh0uf9pF1Nn5dDLQj95B8/EvF9fs63tghbaRTYqiv3emHAAIIIGAIEDzBY4AAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIHDKCuQVHpYZi7PM+bVsEVCnwRNlR8udrru07JjTem1XCkuPyry1OeYwCdEtZEBKdLWHzMwrtq7f14PP7NaK4AlfseiHAAIInBAgeIJHAQEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAoEkKtG4VLLdf0llmr9wjAztFyyAjs0VdtryCw/L0J+vNIUf2ja9R8ERN5hNqBJnQEEAAAQSqJ0DwRPW86I0AAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIHAaCUw4p53opzG0Wy5MkZsvSGkMU2WOCCCAQKMT8Gt0M2bCCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAHQqQeaIOMRkKAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEDg5AgcPlou89Zmy7qdBbInv8ScREJksHRvEybn9UyQoAD3vyn+Pm2P5BQckUB/P7lqWBtr8pm5xfLzhlxzfWiXGGkf11I2ZRXK6ox8Wb0jX/ybNZMOCaEyyCj30aNthHWcLqzYtl82ZhbK/sLD1vat2Yfkw3k7rPWGynaxYqsxF2Pe2i47I1mOHxdZtSXPmGO+ZOYdkrO7x8nYIa2teenCdmOuc9dkS2buISksPSpxES2kU2KoXNgvUcJaeH+9WG6cYFH6Plmx5YAxfrG0DPSXlMQwOb9XvCTHBMuBojL5ZuVu83z9U6KkW+twc7m8/LhM+2WnuZwU1UKGG/3dtWNGv88XZ4re77ZG2RWdv7um55m9ard5LbkFpRLZMlDaxbaUC/okmPNwd4yrlT4Ta3ca9zvjoKzflS/RoUHSPj7UeJ7iJNGYo7eWX1wmc9L2yra9RZJzsNQ07Gpca2pSmHQ2Pv5+zazDS8vKzWtSu+jQQLmof6K1z3Wh6PAx+WJJprk5MiRALhmY5NqFdQQQqKGA9/+61XBQDkMAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEECgoQT0Zf2jH6yR4iPH3J7y+cB0eXxCTxnWNbbS/vd/2iFb9xRJiPGS3zF4Yn3mQXn9681m/1ZhATJrxR7578/24Adzx6/Z8ubsrTLOCLq4a0yq9UJ8afp++eCnDKdz6Tls4+mOhgqemJOWLV8uzTLnMrBjlDz4n9Xmy3zb5GLD7UEAGljxwhcb5fNFFS/nbX1s3y/MSJeXf9vPCBiJsW1y+j5sBAHc+cYKI4DloNN2MeYwZdYWuf3izpKS0NJyuPuyLlbwxDHj5DafwV2iPQZPFJUek5e+SDfHP793nNvgiVkr98hTH61znsOJtTeM+zV5dCe5aXj7SvsdrYZ1bSXPTN8ga4xgGdf2z5mb5OGru8vFA9wHLmjQxl/+t971MCPooeI+DO0aI49d28sKRNE4ine+22o9v8O6xUp4sPvXuAvX51hOjs9rpZOxAQEEqi3gPsSu2sNwAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAINL/Dj6my5750068WzziDS+PW+fmxNgyruf/dX+cHoW5P2yYJMK3BCgyw0E4Nj+3TBLvl6eUU2Bd2eGN1C2hhZEbSvY9Ntto/j9oZafuy/a5wCJ3R+IQ6ZJN77cXulwInk6GCn6d395iozm4PTRmNFAy+e/mRdpcAJx+Nf/2azmWHB9di6XNfsEa6BE45z0HO98e0WMyuFt/M+9fE6K3BCnyXXe/7Xj9fLtuyiSkMs2ZxXKXDC9TlYtDFPbnllieQaGU+0BTb3k0sHJ1tjLTiR8cTa4LDwg5ERxNZG9kuwLfKNAAJ1IOA+ZKkOBmYIBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBOpTYH/hEeOFvf0X/sONTASTRqRIilFaQdv2nCJ5d842mbs6x1x/xujbu32UxIbbAyvMHVX8s2FXgfny/Jmb+hglF0LFzyjZoaUW/vFVupVN4NWvNpklFLQcwxWDW5ufjJxDMuGFReboI/vGm9kGqjhVve7eta9EUpPD5K5LU6VrcrgEG8ETWipCm5aY0KwMtvb3SX1kYMcYs9yJvuSfNi9DPppfUVbj3rdXyTt3DZao0ABbd/mvUZJkjpGJw9aeuLanDDayN2iZDy2h8fO6bHnus42yYP0+W5c6/1bvB//9qzXunWM6y2gjO4SWtygxAmh+WptjBVZoZojEqBDjeYi0+jsu6D3XDBH3XdFNEk6U6NhzoFQ0AMWWWeMd49l6akJv67B0ozzKvW+tstZvGN5eLj+jtRlMo1k5lm/Nk6nfbjUznWTtL5FPF+yU31/Uyew/sm+C5Tt39V63pTu0hMov6yr8NAinexvncjHWiVlAAIEaCZB5okZsHIQAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIHCyBbQ8g61UR8fEUPnz1T2lY0KoGLEN5keDKB4Z39MMGNC5at9vVtgzRPg6f80c8Mpv+0sXI/BAAye0tQjwk3su72JlJNCxcw4e9nXIGvXbvKfQzJ6hGTQ8ffQFv6fWrU24vHrbQOnXIcoMnNB+ej1lx8rlWaNEha1paQ4tcRJkXKM2DTa545LOckGfeHM952CpzFtXEZCiGzQAQ7NK2Nqj13SXC4xgAA2c0KZBFhpQcrsxRn2212dttp6HW0d2lGvObmcGTug5NVDkov6Jct/YrtYUpi/cZS27LmiQyVPX97ECJ3R/ohFE8cjVPayu63YUWMu6MHW23WBU/wT5nVEeRLOQaFNLNX3CKNdha58Z59egCm1dW4ebWUl0eeGGPCkoOaqLTm2RQ0aKS42gDBoCCNStAJkn6taT0RBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBpIYPaqPdaZHr6qu/Wy39poLAQZJRF0300vLzE3f2ccc9Pw9uayr//07xwlbWNDKnUP8PeT84xsFx+fyMiw+0Cx+YK9Usc62jBvba7ox1ubPKqj3HR+B7ddLh2ULKFBzqVEtGPa9gNW0IFmyBjUKabS8RpkcZsRDGDLLpGepYEDFaUmdufZAzbO7BYjo/olVTpeN1xnBDNomRXN6lDXrejwMSurhQa7TPRgMHZIa3lvboZZvmR1xkGP07jYyFihATKuTZ+D9vEtJSP7kDnGkaPlZtmNg8VHZUn6frO7nv+BK7u7HmqudzCO1aweu3KLzXVb5g9duXxIG/nnzE3mdi3docEejs2xZMeI3hWBLI77WUYAgdoJEDxROz+ORgABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQOAkC5eXHzfIHtlOnGBknPLUOJ8p46H596X3MOFbLa/jaerV1X9pBj4+PCLKGKTVe4J/KzVOJik27i6xpBwb4S+aJF/vWxhMLFTkSKlbW7rQHHmzbW2h17enFSpN26BzqI3hiR7b9GkKDAyRrX0VwgjUxh4UA/4p7rxk0NMNDeHDlV6ZdW4c5HOG8mGRkk9DnSJuWbwk0AnR25trPn9omzG0gj20UzUAh9gQYts1ygREQYQuecC3d4Viyo3+nKKeMGNYALCCAQK0EKv+XoFbDcTACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAAC9S+gv/S3Nc0EoFkgPDUNlNCyHlv3VLzgPlBUJq2MUhS+ttgIz32DjGCDhmqaFeLac9t7PV10qD2Yw7VjCw9z3V9oLzcyc9lu0U9VTS0PG1kXNLPH5r32wIEOCS29HtrJuA/10Q4cOmINq0ER459faK17W9i8p0AGpERX6tIqrKLcRqUdxgZ39/xAof38XZLC3R1W5bZYIxBncJdoM4OFrXSHLbBj8UZ7xpExA50zUlQ5MB0QQMAnAYInfGKiEwIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAwKkkcLjMnuUhMjSgyqlFhwUYwRMV3RyPrfLAU6hDm9iWkprkOSNCTadaUsOMGYeMrA1BYYFy9Jg9J0WYkfXBW4sI8b7f27He9pUctgfTeOvnuq/oUJnrphqta/kOW6vKwNbP3ffF/ZOs8h+OpTvmGOVObO2cHpTssFnwjUBdChA8UZeajIUAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIFCnAsc9jBYVas8GsWmXvWyEh+6yeXdFmQXd73isp/5Nabujxx1jUs3yEb5cf2TLikCIuAh7loadOcXSr0OUx8MzjP1VtfLjnu66OAVqOI4T3tL+PJzZLUbuH9vdcbfH5fA6CuaINIJIbG2rQxkT2zZfv8/qEWd1tZXuKDKCW35Zt8/cftGARAkObLhsJ9ZkWECgCQg0WPBEcXGx7N69W7KysiQzM9Nc9vf3l/j4eElOTja/O3bsKIGB9v+wNAF/LhEBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQaLICZUbGgn0HK8odaPYIdy+Fi4rtmQEc9wcF+EmI8RK5+Mgx87PfKJsQ7fAC2xFVS3zkF9nLKoQE8fLZ0adVuL3UR0HxEdHyEdVpjqU4tjqU8HA3xpbdBe42i1+zZtb2/YX2e25tPLGQnV/iuslcbxVmn7OWZanuNbgdtBobYx0M1+1wf42+DNfCeK4vOyNZvlyaJbbSHUvTKwIn9PhR/RN8GYY+CCBQA4F6DZ4oLS2VmTNnytSpU+Xnn3+ucnqhoaFy4403ylVXXSVDhgwRDa6gNZxAdna2DB06VPLz86t10sjISGnbtq20bt3a/GgwzIgRI6R7d98i+qp1MjojgAACCCCAAAIIIIAAAggggAACCCCAAAIIIIDAaSPw05pseXzaOvN6rj2nndxxSedK17Yj156pIDU51Gn/2T1jZfbKvea2WSv3yIRz2zntt63MWpFlW5SRfU9OyYM9+YetOZxqCwM6RltTmrcuVyaenyIanOKurdt5UDQzhL9fM+neJsLs0iHBXkrkB6O8xMTzO7gNZMncVyK/rLcHAjiOr+MlRwdL1v4So7xKkWgZjMDmleewarv791gd4lpKpJGNRINkNuwqED1X61bBjqewlncaz9RBI0hEW2pSuMdrtQ7wYaFtq5aiGThyDpaanwUbc2VY19hKRx4rPy4Pvpcm609kS/ngnqFGJhTnUiajBiSYwRN6sJbumLcuxxxHr69/iv1eVRqcDQggUCuByv/FqdVwFQdrlolHHnlEkpKS5LrrrvMpcEKPLCoqktdff12GDx8u/fv3l6VLl9bBbBjCVwG9b5oVRO9DdT56zMKFC+Xjjz+WF198Uf74xz9K3759ZfDgwTJlyhTJzc31dQr0QwABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgSYk0CW54uW7XrIGP+QW2LND6LbC0qPywY8Zumi21CR7f90wsp/9V/ivf7NZVmzbX9HR4d+0jAPy6szN1pYLHI6xNtbTQssW9pfiazLypcTIknEqtraxIdKjbYVtRvYhefx/a0Rf8ru2GUsyZfJry+R3ry+Xd+Zss3aHGpk8urUJN9c1eOHP01ZXOr60rFwe+uBXM0uIdaDLQo+2FWPo5q+X73bZK6JBD69/bb+Xjh38jOCLKwYnW5vufXulaAYK15aeVSjXPr/QvIZ731olla/S9Qjf1jVxxuVD7Od//MO1kpVXOUvGf+ftMDNKqFP7+JBKgRN6tt7tIs1ADF2evnCXzFtb8a5NM1JokAkNAQTqR6DOM09s375dxo0bJ2vWrKnVjDds2CBnnXWW3HvvvfLYY49JcLD7yLBanYSD61Vg1apVop+77rpL3njjDZk4cWK9nq+mg8+aNUt27tzp9vDU1FQzmMftTjbWWiAnJ0c+//xzj+Ncc801EhHh/P8R9tiZHQgggAACCCCAAAIIIIAAAggggAACCCCAAAKNTqBNqxDjBXJL0Rf2+jL5//61TK41skfERQbJwUNl8ubsbdbLdu0XG+5c/n1Iais5x8g+YXu5fNfUlTK8d5wM6hRjWizfkidzV1f8al83DOveym02gPqCiwmzB0/oOSa9slguGpBkZEQIkRG9T04GDE/X+tcb+shEY356H9Rz0j+WyNndY6Vr6zBjW5nMW59jvvS3HX/D8A62RfP78Wt6mdenZVTStubLhBcWGvciQTrEhUj67kKZ+2uOmZHB6SCXlV7tI+W7tGxz6/Ofb5Rd+4qlX0qkHC8X2WAEPbw3d7vLEc6rk0akSHpWgSzamGdmsLj+pUWmc58OkXLMKBGzesdB+XxRpnXQTSM6iJbJqKt27dnt5Jtlu81zq8PElxfL+X3ijecxWvYVHpalm/NkSbo9wOc6I9uKu6YlTC4zAkHe+m6rmUXD1mdkX3uwkG0b3wggUHcCdRo8MXfuXDNwQrMW1FXTTAa//vqrzJgxQ4KC7LWK6mp8xmkYgcmTJ8v8+fPl1VdflZCQkIY5qY9nefvtt+XLL79021sDPjQTCq1+BLKysuTOO+/0OPjIkSMJnvCoww4EEEAAAQQQQAABBBBAAAEEEEAAAQQQQKDxC+iv9R+7pqfx0n2JeTFaskFfmrs2LYfw/KR+rpvN9T+N6yEFJWnmC3vd8KMRLKEf16Yv5h+6qofr5npd15fgNxolLGwv/XcZpSTemL3VPOepFjyhgSn/nDxAJv9zqRmwoqUz9OOu/Xl8D+ljeDo2LZHx9E295e43V5mb9Vpt1+3Y77bRnWTqt1scN1nLlw9uLSu3HbDu30fzd4p+HNtEI+Dh3z+4D6Jo7t9MnpzQW26fslw2GcEWGgiimRv049ouN4ITrvNQ5sW1r6/rWurkuZv7yv97J80KoJhpBFPox7XdOaaz10CeC/skmMETtuNSk8OkgxFAREMAgfoTqLNQqkWLFsno0aPNcg91Pd0ffvhBbrnlFiMi7NRMZVTX13u6jvf+++/L0KFDJT/ffS2q0/W6uS4EEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBDwLJCaFCZv3jFI9OWwu6blIP552wBJjGrhbreEBzeXl2/pL3+4NFWSoytnMtfAC31R/Y/f9pfIEOdMEDqgrQxCYKC/0/ga+GBrgc2d99m2+/I9yXjZ/6erultlLXw5xrGP4zwCmlf/1Z6fwyHNqzheX86/9vuBZvYOxznYljWrx3/uHiKj+yfaNjl9a8aPv0/q4/ZeataP9+8dIp2TQp2OcVzRe/Ho+J5y5dDWVtkK2/7I0EB5+OruMu7MtrZNbr+Djfv4ghFoM/5s9/30edI5/r+x3cTRVgerjpXbkxsb28W2lDfuPENuGN5eQlyeKV3v3ylK/jG5v1xjZKnw1jQYxVYKRfuNGZTkrTv7EECgDgSaHTly5Hhtx9FMEwMGDBAt2VGfTct3PPzww/V5iiY9tt6/Ll261LvBhAkT5N1336338/h6Ai0z4y3zhJYcodWPgJZ1GTx4sMfB09PTpa/zlhkAAEAASURBVEMH57RfHjuzAwEEEEAAAQQQQAABBBBAAAEEEEAAAQSalID+3w/r4v+mPeGlZT65fXjPIJ/60anmAsfKj8uO3EOyK+eQkUniqLSODZGuyRESHOjw9r+K4cuPH5cDRomJPKNEgrbo0CCJNkpnuL4kr2KYettddPiYHDfmGGgEMQRVEchQb5PwceDSsnLJyS+VkiNHjQCVQLOUii3QxJch9hcekeyDpRLg72eWKbGVx1iUvk/uMzIzaLv7si5y1bA2HofbV3BE9hcdlqiWgRJjZMao7n08euy45B48bDxPZdLCeI4SooIb1F2f6Rw9f3GZhLZoLklGcI9DTI7H69Yd5cax1xmlTzSDh7aZfz5XokIrB/+YO/kHgdNM4GT9b3OdlO3405/+5FPgROfOneWhhx6SgQMHStu2bWX//v2iL0/18+mnn8qGDRu83tYnnnjCzECRkEA9H69Q9bTzwgsvlOuuu85p9Lw8o2aUUXpBAy+0tIov7cMPP5RRo0bJNddc40t3+iCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggEATENAX8ynxoeanpperL9djwowX7cbnVGyhQTXPYNHQ16PBDm2NAJaatmjjHuinNq2VETChn5o2LeORGN1CEsV91pKajuvrcfpMa8YUT1lTvI3zzco9VuCEZp0gcMKbFvsQqBuBWgdPLFiwQKZOnVrlbN5880254YYbjHQ39ujA5ORk0c+YMWPkvvvuk9/97ncybdo0r2O98MIL8txzz3ntw876EdD75y3g4cCBA/LJJ5/Igw8+WGX5lttvv13OOeccSUoixVD93C1GRQABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQaEwChaVHpfRIuSzbvE9e+SLdmvoN55Gl28JgAYF6FKh18MR7771X5fSmT58ul156qdd+wcHB8u9//1u6d+8uf/7znz32feWVV+TRRx+VsDD3da9cD9y0aZN8/vnnsm3bNtm5c6f5KSkpMTNftGvXTlq3bi0XXHCB+SLf39+3aL8ff/xRdu/e7Xoqc/2iiy6S6OhoM+WSZtOYOXOmrF27VjSwQDNmPPPMM+a53B5sbDTKqJjHLFmyxJyrzjszM9M8VssXaMYOLZEyduxYCQmpebSfp/PXZntUVJRMnjxZLrnkErnyyivNjCKextNSLx9//LHcfffdnro4bS8vL5e0tDSZPXu2rF69WrKzs81Pfn6+eQ/j4uLM7/PPP9+8nzoXT03vxTfffGPt9lZuRp8fzZTh2EaOHCmxsbGOmyot6zO2aNEi+e6772TLli3mXHNycqSsrMy8lxo0kpKSIqNHj5YzzzxTWrSoWcTj1q1bZc6cObJw4ULZs2ePeZ59+/ZJq1atzMAUfeaGDRsm+lxqoFJNW10+l/PmzZNdu3aZU8nIyPA6Jc1movfW1hITE0XvMQ0BBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQON0EXvx8g3yXlu10WVrWpHWrYKdtrCCAQP0INDNeih6v6dClpaXmC1p9Ee6paakNLetRnaYvk5cvX+7xEA1e0BfC3poGLvzzn/80Xyp762fbp0EUv/3tb+XOO++U0NBQ22a331dccYXTy3fHTlqW5I9//KNcfvnl8ssvvzjuMpc1A8dNN91Uabu+0Nf5TpkyRXJzcyvtd92gc5w4caJ5rtq8FHccV4MIvNWH00AZb5knHMfS4AEtz7J582bHzU7LvXr1khUrVjhtc105duyYmY3kgQce8MnFdvyECRPkr3/9q9vMFmvWrDEDUGx9q/ut9/WMM85we1hhYaG89NJL8tRTT7nd72nj448/Lvfcc49oEJEvTQMQNMOHt78T13FGjBghmrlFA5R8bfXxXI4fP94MaPJ1Do79tNzLV1995biJZQQQQAABBBBAAAEEEEAAAQQQQAABBBBoogLp6ele/2/avrKcrLrqvs6PfgicbgJLNufJvW+tMi/r7su6iAYH0CoEnpi2xil4YvKojnLj8A5iVKOhIdCkBE7W/zbba2jUgHvu3LleyzNoQIKvmQUcT3/vvfc6rlZaXrZsWaVttg3FxcUyadIkue6663wOnNBjNbvDY489JoMHD5aNGzfahqv29+HDh83zuwuc8DTYhg0bZMiQIfLkk0/6HCCgASsabKEBCFo65VRrGgTw1ltveZ2WBjHo/+fWU9MgkrPPPltuvvlmn11sY2m2iPbt24sG0TRU00CGrl27VjtwQuenwRM9evSQ9evXe52uBpNokIVmS6lO4IQO+sMPP0jfvn3NAAqvJzmx83R8Ln25bvoggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBA/QkM7hwjc54cbn6uGFLzrNn1N8OTN/JNI1Lk1dsGyId/HCo/PX2+3HQ+gRMn725w5qYoUKvgiU8++cSrmWYL8PWX9I4DadYGb2URli5d6tjdWtayBUOHDq1UZsHq4MOCZkro3bu3WW7Bh+6Vumg5iC+//LLSdk8bNAClT58+4q10hKdjdbsGUQwfPrxW1+xt/Nrs03tx7bXXeh1CS6q4a1qWoyYBAq5jaRCNY4kO1/11ta5lVjRjii9ZQzydUwN4LrzwQrPEjKc+t912m7z22muedvu0XTPB/OMf//Da93R+Lr1eODsRQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEECg3gWCA/1FPwH+tXpVWe/zbOgTtI9rKf1TokS/sWlofc6HgEjz2iBU9Sv5kSNH1mj4gIAAs1SDp5IPSUlJlcYtLy+XW2+9VfTX8nXRtDyFZkaobkmM6pxfgz3GjRtXF9M1s10MGDDAzHxQJwPW0SBjx44176Wn4TxlntCSFNWx9DS+btcyK3v37pXo6Ghv3Wq8T7ONVBUk4uvgGnyhmTZ++umnSodohhEtnVIX7b777jODU9yV8GgKz2VdGDIGAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgicPgK1Cp7wFNygPJ07d5YOHTrUWOqcc84R/fjatITF999/72v3KvtpRoeJEyfKt99+K/7+/lX2r26H48ePy//93/95LXtiG1MtvVnb+t10000yf/58CQwMtG066d8jRozwOoesrKxK+9PS0nzOpBEaGuqT4ZQpU+Shhx4yzxUSElLpnLXZ8Pbbb5tlX3wZw5f5Lly40LyPWrLEsT399NOOq5WWtUzOJZdcIm3atJF9+/aZht4yYeh4H3zwgdM4TeW5dLpoVhBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAoMkL1DgXTllZmdeX1oMGDWow3Pz8fNFf0ntrGsgxbdo0ycnJkYKCAtFf8Y8ZM8bbIfLzzz9XqwSHu8EGDx4sf/jDH8z5nXfeeRIWFmZ200CPmTNnujvE3KYv2XW+mjFh3bp1cujQIXM+5557rsdjVq1aJZ7KYHg8qJ536PV269bN41ncBU94c9GBNAjixx9/NO/j/v37ZefOnTJ58mSP59AdH374obW/Y8eOogEav/zyi/nRoANP7eKLL7b62fq7Zmv4+OOPPR1ulp955ZVXZMWKFVJaWio6X10+66yzPB6jOz777DOn/ZpZxVtwkGa+WLt2rbz66qty//33y9///nfZsmWLGQDkNJDDis772LFjDlvEPIc3/7p4Lp988knL9OWXX3Y6v+vK//73P6uv+j///POuXVhHAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEai1Q48wT3n7RrrOKjY2t9eR8HeDLL7/02lVf+M6ZM8f8Rb6towZ3TJ8+3XzRrC+3PTV96a6lJ6rbbrjhBtFsGMHBwW4P/eijj9xut2386quvZNiwYbZV0VImQ4cOFX3hrS/ePWWi0ICL8ePHW8edCgtaZsVTCQ5316GBLZ7am2++KZphw7ElJCSY1hoYM2PGDMdd1rKeRwMFbFlEHAMg+vfv7zFzRFxcnJxxxhnWOK4LWrJDM0V4aj/88EOlUiq9evUyg1z69evn8bwa+ODYtJSGt/bwww+La0YNffZee+0189nPzMx0e/iOHTskJSXF2tcQz2Vqaqp1Pn2uvTU1qk0GG29jsw8BBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBCwCdQ4eEJfVHtrMTEx3nbX6b7333/f63jvvPOOU+CErXOzZs3kb3/7m3z33XceX+5rYIaWQGjVqpXtsCq/x40bJ1OnTpXmzd3zlpSUiLc567GOgROOJ4yKijKzYXjK5vDNN9+Y2TX0pf+p0uLj471ORT0cg0w02MJduY+WLVvKhAkTPI6lZVY8BU/oQfrMJiYmejy+Jjs0i4m7uepYQ4YMqRQ4YTtHRESEXH311fLiiy/aNjl9b9u2zWlds1Z4a5rBwzEowdZXgxMee+wx+emnn2ybnL61TIetNbXn0nbdfCOAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAALu3+43Ihd9ea3lNTy1K664QvTjqWmAwwMPPOC1vIG+eNaACF+bliLwFDihY3jLrKD7q8p0oWUn9Bf5WqbDXVu+fLlouYlTpTm+oHc3Jz8/5+oxb7/9trtuVW6rKkOBlr6o66YZVmbNmlWjYTt16uTxuKNHjzrtqyoAZdSoUWbJDn12XANnNFOHa7YOp8FPrDS159KdAdsQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQKBpCtQ4eKKqshx5eXkNIrp3716v59Ff/1fV+vbt67XL7t27ve533Nm6detKL68d9+vyrl27XDc5rT/66KNO6+5WPAVOaN+qSjy4G68+t3mbj5ZUCQoK8vn0ei/0nufn55sfDZ45ePCg6PePP/7o8zgN0VHLhGhZDC1xo3O0zdM292effdbnaaiTZhvxVP5EB7rzzjvNz5lnnin6GThwoGhJknbt2olmWamqNbXnsioP9iOAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAQNMRqLfgCX1h3BAtOzvb62m6du3qdb/uTElJ8drH28t/1wN9CdaoarwpU6a4Dlut9aoCSqo1WB109naP2rRp4/UMGiwxb948M7vI7NmzJTMz02v/k71Tgxt0vpqtROdbVFRUZ1O6/fbbzeCIqgZcuHCh6MfWNPDi0ksvlZEjR5oZSbT0i7vW1J5LdwZsQwABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBpilQ4+CJwMBA0Zeynl4OL1u2rEFEq8oKkZqaWuU8WrRoIZ07d5bNmze77VvVORwPat++veOq2+WqXlK7PagaG+t7/GpMxcwI4S1bgmbqcNc0O8MzzzwjL774orvdp9y2LVu2yIMPPihffvllvc3tlltukRkzZsgPP/xQrXPo3+i0adPMjx74hz/8QR555BGJiIhwGqe+n5v6Ht/pYlhBAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEqiFQ4+AJPUeHDh1kzZo1bk+ngQhaskBLBtSk6bieygj06dNHkpOTzWFLSkq8Dh8ZGel1v22nliHxFDxx6NAhW7cqv30pj+Ap4KTKwX3sUFZW5mPP+u9WVSkN2310nIm+ZB89erTXEhWO/U/2smZ5OO+88+p9Gs2bN5ePPvpIfve738mnn35a4/O98sorMn36dPn222/FMbioKT2XNcbjQAQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQOC0FahU80bNnT4/BE6r1/fffy6233lptuGPHjsm4ceNk+/btbo8dO3as+RJZd8bExLjtY9uYkZEhrVq1sq16/F69erXHfRpYUZfNl/nU5flO5lhVZWLo16+f0/T03o8ZM6bRBE7s3LmzQQInbEjh4eHy3//+1wyg+PDDD+Xdd9+17arWt5Y/0b+j5cuXS3BwsHlsU3ouq4VFZwQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQOO0FahU8ceWVV1qlANxJPffcc3L99deLlsWoTvvmm288Bk7oOJp5wtYSEhJsi26/09PTZeDAgW732Tbm5eV5LD+ifdxlR7AdW5PvxMREj4dpKZQFCxZ43O/LDtdyDL4cUx99Vq1aJe+//77XoS+//HKn/VqWwlM2E1vHwYMHy5AhQ6Rjx46imUWioqJEgwq0vMq1115r69Yg376UFdFgEH1mtUSJ3huds35//PHHolkgatLOOecc0c9LL70kX331lejfzPz580WDInxtmmlFn7ULLrjAPKSpPJe++tAPAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQSajkCtgidGjhzpVUozR/zrX/+Se+65x2s/1536QthbcwyGqCp4wlMpDsfxt2zZ4rhaabmqc1Q6oIoN8fHxXnt07dpVfCn/4XWQk7xTS4doeQlv7dxzz5WkpCSnLppNwVubPXu2DB8+3G0XzaLQkK28vFxef/11j6fs3LmzzJw50yxv465TbYNkdMyQkBAZP368+dH1nJwcSUtLk8WLF8sXX3xRZSDKokWLrOCJpvBcqhENAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQcBXwc91QnXVN9z9hwgSvhzzwwAMyd+5cr30cd06dOlV++eUXx02Vlh1LPegLX83W4Knpr/L1Jbe3NmfOHG+7RV+C12VLTU31OFxRUZFoqZGqWmlpqWRnZ5ufvXv3iu2jL89Pdtu/f79cdtllopknvDV96e/a1q1b57rJWn/mmWc8Bk5op+o8Z9agVSx4e3bU3FvTkhodOnTw2EUDQXxtR48elfz8fLcfDVSxtbi4ONGgpkcffVRWrFhhBlDY9rn7/vHHH63Np+Jz6c3fmjgLCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAQC0FahU8oee+8cYbq5zC6NGj5bPPPvPa7/Dhw3LHHXfInXfe6bWfBmvExsZafQIDA61f3VsbHRa0BMS0adMctjgvZmVlyRNPPOG80WFNAzOGDRvmsKX2iwMGDDBLOHgaSTN16Mtyb+33v/+9tGnTxvy0bdtWbB8tDVEfQQTe5mLbpwEdn376qQwdOlR++OEH22a333oPf/Ob31Tap9lKPDXXLBWO/dRr+vTpjpvqZHnPnj0ex9HgFW/NWxkMDbyoyshxbM3ioYER7j76d+OpXXTRRTJq1ChPu0VL1tjaqfhcngrBQDYfvhFAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBA4PQVqHXwhJZQ8CWA4pprrpGzzz5bvvnmGzNLwvHjx6W4uFi0bICW9tBx3njjjSqlH3nkkUp93GUwcOw0adIk87yO23Q5MzPT/JW+63bH9VtvvVWaN69VdRPH4cxlPz8/uemmmyptt21Qo7vvvtu26vStv8R/9dVXxVt5i759+zodU1crWg5CsyXYPrNmzTLn8eyzz8rtt99uluC47rrrxFsAhG0u77zzjkRFRdlWrW/HwBhr44mF999/321QSWFhoYwbN67KTBeu49nWIyMjbYuVvvX53LdvX6XtusHbcbpf5+uuaZkYLVlSneatpIZmuHDMIOE6rgYmeWpdunSxdp2M5zI8PNw6v7uF6gSYuDuebQgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggIAvAnUSFfD888+LvkjPzc31es4lS5bIFVdc4bWPt536gr5jx46Vupx11llmeQRvL+31vCNGjBDNgqEvkzVwYsqUKZXGct1www03uG6qk/Vrr71W/vrXv3ocSwNJ1q5dawZ36PVpiZQNGzaYL+R//vlnj8dpIEt0dLTH/bXZ8eKLL4p+attuu+02j9kQunfvLp6u7/vvvzezgGhJEA0+0HIVS5culf/+97+mTU3n1alTJ4+HahkVPZfeLw3w0UCabt26ib70T05O9nic7nj88cfN+Wnmh4EDB8ru3bvNdQ0W0nGr08455xx57rnnPB5yyy23yCuvvCKaaULnqMFJ+oxr+Y6ffvrJ43G9evVy2tfQz6VmTPHW/vKXv8jGjRvN69JnQ6/Ndc7ejmcfAggggAACCCCAAAIIIIAAAggggAACCCCAQNMSyMk/LN+uqsgq3btDhPRtb/8h55od+bJqW74JckGfeEmKDq53nDlpe835DOocI1cPayvNmtX7KU/5E5yse/T+TxnG+xORuIggGd0/8ZR3akwT/D5tj+w5UPFj3gnnthN/Px70xnT/mKtdoE6CJ/QX+Porew1MqK+mL7D/9re/uR1eX6jq+TXIwFvTX7FX55fsjz32WL29qE1NTZWnn35aHnroIY9TXrhwoeinOu2uu+6qTvcG79uvXz+P91Enc8kll3gMntD9q1atqnGGCT3eXfMWPKH9N2/eLPoSXz/afvnlFznjjDNES8ZcfPHFbrOamB2NfzSLiH5q2zTwR4M2NIDGXdNACVsZFC3douu+tIkTJzp1a+jnMiAgoMrAp48//lj0o00DUb766iunObOCAAIIIIAAAggggAACCCCAAAIIIIAAAgggcHoKbNlTKJ8vzpQZi7Pk9os7i76UrarlFpTK1G+3mN1uHdnRKXhidcZBa1+PduH1HjyRbQRyPDZtrTmXRRvzpGvrcOnT3nM27Kqu7XTZf7Lu0ZRZFc9FHyOohuCJun2aZq3cI0vS95uDXnN2W4In6paX0RpQoNZlO2xzPf/88+Wjjz6yrdbpt75w//TTT83sC54G1pfZTzzxhKfd1d4+ePBgeeCBB6p9XHUO0NIcVQV8VGc8zcDQu3fv6hzSoH21fIpmQQgNDfV4Xm/lTDweVMsd+nzVtHkqr1LT8TwdpwFCL730kqfdTtt9DZy47777pE2bNk7H6kpDP5dazoeGAAIIIIAAAggggAACCCCAAAIIIIAAAggggICrgC1wQre//s1mKTp8zLXLKb1edrTcaX6lZc7zz8g5JF8v321+dJmGAAIIIHByBeoseEIvY+zYsZKWlmb+kryuLkvLCOgv9yMiIqoc8v7775dHHnmkyn5VdTjvvPNk+vTpZomAqvrWZr++ENdf1F944YW1GcY89qmnnpJx48bVepz6GmDq1KmiHy0/4q1FRUXJjBkzvHXxuO+f//ynx33edmgpmJoGyuiz8sc//tHb8G73aXYIzWxSnaYBSm+99VZ1DvHYVzNO2DJpuHZq6OfyySef9BpQ4zo/1hFAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQROf4HDZeVmxgnHK52/Lsdx9ZRfbt0qWG6/pLN0TAyV8cav8Qd1dC67vjojX57+ZL350WUaAggggMDJFajT4Am9lO7du8vixYtl8uTJtbqy2NhY8yX6f/7zH4mJifFpLH9/f3n00UfNtP7esht4G+zhhx82gzXi4uK8dauzfa1atZIvvvjCa/kObyfr1auXfPvtt6KBI6da69y5szz77LOSkZEhmnXC16alMLQMi6/3UPtp1g0NZKhp0/IpalmTpoEr1QmgUBe950lJSdU+3Y033mge26FDh2ofqweold6TKVOmeA0OasjnMjExUf71r3/V6Ho4CAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQOD0FFi4MbfShc1cnlVp26m+YcI57eS9u4fIXWNSxc+v2ak+XeaHAAIINGmBOg+eUE3NHqBZAHJzc+W1116r1kvp3/zmN2b5jy1btoi+RK9JGzVqlOzYscP8lf6ZZ55Z5RC2LACbNm0yswHoL++9taqyJ3g71t0+Pd/jjz8umzdvNs+vgSNVNX3R/+6778rSpUtFMxLURQsMDKzxMBoQoBk0NEhCMyrMnz9f1q1bJ/fcc0+NggTGjx8vv/76q9x+++1egyi0xIQ+K5p1Izw83Ov8vQVj6D3VoJ+XX35ZfPF3PJEG7fztb3+Tn3/+WfT59dR03FdffdXMzqL3T/9OPDUNKPDULrroIlm9erX5N3buued66ua0Xc+n90Wfcb0nfn5V/+k35HNpu99jxoxxmjcrCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAk1T4JsVu60LH5Ra8X9PT9uaL7v3l1jbWUAAAQQQQKAuBbxHCdTyTFpq47e//a35ycrKEtsnMzNTioqK5MiRI6K/cI+Pjxd9WdyzZ0+fynP4Mq2wsDDRX+nrR8+7c+dO2b17txw6dMh8cdysWTPRoAk9r5Zt0BfgvrZp06b52rVa/dq1ayea+UJLSGzbts2cr869ZcuWkp2dbc5T59qmTRuvWQOqdVKHzsnJyeY9cdh0Uhf1OjWY4e9//7ukp6ebBuXl5ea1d+rUybx/jkEACQkJtZp/QECAGayhARv6jK5atco8pwZWFBQUmPdBn1XNruKuDR06VPRz8OBBM6BD75kGpISEhIgGl7gGZVxxxRU1nm9QUJCZ3UUzvOj51qxZY8513759pk9xcbF5Pv376tatm+i9rWlrqOdS5/nZZ59JSUmJrF271rznhYWFZlBMaWmpGUTjyb6m18ZxCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAqeeQG7BEVm4Ic+c2LDurWTskNaybNMBc33Or9ly4/D25nJD/3Os/Lj8apTX2JRVIOmZBVJ6tFw6JYZJSlxLGdyllYQEVX7X9H3aHskxrifQ30+uGtbGnLIGhhw4VCZrd9hLdSxK3yeFpUfN/QmRLWRE7/hKl3egqExmr9ot27MPSW5BqUS2DJR2sS3lgj4JkhzjvWx6dv5hWZNxQNJ3F0pGTpHERbSQjgmh0qNthHRJ9v7j1EoTcdhQUHJUVmzJk23GnLbsKZQWzf2kc+sI6ZzYUnq2jZLgwKp/zOkwnM+LajB3TbZk5h4y3fR6OhnlUS7slyhhLWr++vOIcU/nrs6W9bsKZM+BYgkK8Jfk6BA5y3gOe7WL9Hl+jh1t97ul8XxcMbi15BeXyeptByTNeJZ27TskScb4KfGhMqp/orQIqOxle4Z0TM1k4qn9ZHhkHSh1eta0b2Zusfy8oSKTy9AuMeYzs3bnQVm59YBxnfmSGBViXFu48cwlWNlR9Fmfu3qvrNtZIJl5xdLGeM56tA6X/kbpmegw336MvWRznqzcckC2G89bkPFctIsLNZ7VeGlv/L1U1Wpyf12ds/JKZNX2A8Z17pcCw/yG89pLnw72HzbX199EVdfG/lNboOb/9ajmdenL29q8wK3m6Zy6n8xzO03ExxX9xX9qaqr58fGQ07qbBiBo5gT9NFTTwBr91KRp0NCAAQNqcmiNjtHznXXWWTU6tjoHNdRzqcEqgwYNMj/VmR99EUAAAQQQQAABBBBAAAEEEEAAAQQQQAABBE4PAX1pa2sjjcCAgZ2iJSTQX4qPHJOZS7PMl6DGb2QbtOkL78enrbaCOGwnn7e24qW0vrx/6vpeZjCCbZ9+v//TDtm6p8icvy144pMFu4wAjELHbqLj2MYa3CW6UvDErJV75KmP1jkdY1t5Y/ZWmTy6k9w0vL1tk9P3nLS98ti0tU7bHFfGn91WbjOO1xfc1WkLjNIqT3+yQfKLjjgd9l1atrnePr6lvHhzf4mPDHLaX5uV48dFXvhio3y+KNPtMC/MSJeXf9tPBnWKcbvf28Ytxn36w1srK12PHvPBTxlyZrcYefqGPhJgBMJUp705e5vkHCw1A1Z0XhNfXmw+y/YxKgKF/v3DdrfP0OeLM+XX7QfN7t6CJ94xjnd91vSg9ZkH5fWvN5vHtwoLkI/m75SZy+yZXUTyZPpCET3PC8b9yjOCfR764FdzLPMg459FGyvmGBkaKG/cPshrsE5B8VF56pM1lf5WRHLk3Tnb5OYLUuSWC1NsQzt91+b+Ojp3NoKaJr+2zGnsC/vGSx+pCJ6or78JpxOy0igFqvfX3SgvkUkjgAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgg0FoEvjQAJWxvWPc58WT16QEW56yyjbMf6XRUvkm196vu7tKxcJr28xHoZrIEcGuDQv5P9V+z6clxf1m7dW1TldDRDQptWzpkidEzdpp9W4S2cxlhh/HLeNXAiOdr5+De+3WJmpXA60Fj5bNEup8CJjsa5z+0Va77It/XVl+lPf+w+MMPWx/V73vocuf/dX50CDXTuGjBhaxlGdoibX11iZMlwDq6w7a/J93s/bq8UOOFqcfebq8zsHNUZX+foGjihATGOTbOhPP/5RsdN1VouKimTe4zgDA0C0qaBCI7n0GfokQ/WyGEj+0V9tf/N32UFTqibPne2pgEaz32+QR54L80KnNA+Ok9b00CZO6au8DrHx/7nHGTkeI06zjtGAIVm03DX6uL+qvP9//m10vDBARU5Berrb6LSCdnQKAUaLPNEo9Rh0ggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAg0msEnLShgv3bWN6pdglX3QdP+fncg28K2RhUHLTTRUW2qU1NAX29oGpUbJE9f2kYiQilds+qL7H1+ly4zFFQEf+mL2/43t5nVqD1/Vw9yvQSLPTt9gLt95aapcdkblEtwZOYfkwX/bXwTfOaazjB6QJJEhAVJivIT/aW2OFVjxl/+tN0sw9G5vLy8x3SFDw9NGZoxze9nLgaj1pFeWmOfXcii/v6izJEQ5Bwy4uxDNDvDunO3WruuNcgjXD29vlcvIPXhY/vLxWrNkg75sX5yeK5cOqnxt1gA+Lmi2AM2yYWt/n9RHBnaMMUpr+JkBGtPmZZhZFXT/vW+vknfuGixRoQG27h6/NTjm/n+vsgJBRvVPkFsu6GhmVzh67LisM4J1Hnp/tblfMza0NcpOeMsA4elEGjRRbAT/TBzRQa4xym/YyoukGeVUHn5/jTm+PmdfL8uSK4dWlHjxNFZNt2vGk9TkMPnr9b2NciHBovfyu7Tdos+OttkrK7K+6N/XkxN6W1lDtPzFHVNWmH10jluNEi3d27j/G0zbmm8GhTx0dTfp3T7KzGiy27juL5ZkmRk8dJDHp62TtrGhRsmYMHNM/aeu7q/pbFjrfRx/VjuzPI2/XzOxZaupj78J6yJYaPQCZJ5o9LeQC0AAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEETg+B740X5LY2wkizb2u92kVav4D/dsUer798tx1TV9/zN1SU5tDxJo5IsQIndF1LXdx1aRezFIEGPwQG2H/Jr/tr216ftdnKVHDryI5yzdntzMAJHTfYyBpwUf9EuW9sV+s00xfuspYz95VYgSh9O0Y6BU5op9SkMPnH5P7Gi/rWZuDG7gMl1rHeFjTYoHubcPMYndNtoztagQB6XGxEkDx4ZXdriFXbDljLNV0oO1ZuBZroGFqaY1jXWDNwQtdjwwPljks6iwbZaNMX/PPW5ZjLVf3zxZJMq4yKBsc8NK6HVZaiuX8z6WMEo7wwqa81zL+/32YtV3dBrX9rmNkCJ/T4vkaAwe0XdbKG2ry76uwlVudqLmimiecn9TMDJ/RQDSgY1S9JfnOmPVhDM028cEs/K3BC+/XrEGUE19jnmO5Sdkb7OLZnbuptlk6xlYLRQI3fGaVhzu8dZ3X7dOFOa7mu7+9Yw/nPV/c0gzP0HtoCJ+rrb8K6EBYavQCZJxr9LeQCEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIHGL6C/8p9xIlOCvuQd1CnGuig/45fjYwYmmb9c11+WLzYCGhyzKFgd62EhOND+Om21UdpAX3Y7Nn1BfMuFKY6b6mS56PAxWbB+nzmWekw8v4PbcccOaS3vzc0wAwZWZxy0+rQwjrG1jOxi2WeUpmhlBBk4tgEdo0U/1WnBgX5VZtdIjqkoCaH3av1O+5yqcx7HvmlG5gMdS9tII6jG8dmw9fMz3pDfZryg1ywa2tKzCox/q8548cOJ/nrM3Zd2FX3Z7tq6tg6XMYOSzJIXOo+9B0p9ytLhOs6lbrKLaJ8zjUAQW9uRW3/BE8ON4JKYMOdnQM/bLyVSbIE3Q7vEOAV32ObV2SFLRFae50AbDajpkhxuO8z61gCGPxmBKXNXVwS1rN+l96ei1fX9HWcEg9gCJmzn0O/6+ptwPAfLjVvA/l/7xn0dzB4BBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQKARCyzbkme9IB81IFECjaAExzbCePH7wU8Z5qavjdIdDRU80aeD/cXy1G+3yGqjzIKWFOmbEmNmPHCcY10u78i2v0QPDQ6QrH3FHocPOPHCXzMuFJQclfDg5magRLLxi/8so2SCls+49rkFMu6stnJWt1Zm6YYAf2dfj4P7sOOwkY1Cz1ty+KgUlZbJIePbFuzgw+FVdtnkkI1Bs3tk5rq3KHcYaa0PQRvlRt2KdS79PI3tGFSxdW9hjYInOsS3dJihfTGypb28SFFpRZCIfW/dLfXwUGojpIX9lXGnxFC3J4wND7K2Hxej3oeH1rW1vRSHa5eQIH/paIy/dU+RmRVFnxstu1KX91cDjdrFunfW4KGG+ptwvXbWG4eA/S+hccyXWSKAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCJyGAlqOw9ZaBjUXDabw1DQjw/7CIxLt5lf0no6p6fbhPePkEiPrwNfLdptDLNqYJ/rRpi9ih/eOl1H9EyQl3v1LZ7NjDf45cOiIdZQGRYx/fqG17m1h854CGZBSkU3iyet7yx1TlpuBDBrM8N7c7eZHjz+zW4yM6psoZ/eIs8pfeBvXdd+GzAKZZdyzpZv2yS6jREh9tv2Fh63hZxr3QT9VNX1Bf/io8XLeJQjH8bjCEudAhQkvLHLc7XFZX/YP62bPFuGxo8OOuIgW4ilgRbMk6Ev/ugw4cTi1tdgisHJWDWvniYVm7lI2uHbyst4hzvvfQRcjg4XeG23bjQAhzepRl/dXA428XUJ9/k14YWFXIxEgeKKR3CimiQACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgicrgKFpUetcgt6jZphwpZlwtM1z12TLZqev76blgx58MpuckanaJm5IkuWbTpgnVKzOtjmOrx3nDw6vmeljBlW52ouaBaHmrSiQ2XWYfqi+t93D5Evl2bJZwt3Ob2cX7ghT/SjL+2fmdjH5/IdRrIGmb5ol7z0Rbp1nvpeKDFKmNSkHTKyYQR5CbCpqXFBid24JvM6nY+JaFm5LIjj9UaE2PcfPOFYX/fX8by25fr4m7CNzXfjFyB4ovHfQ64AAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEGjUAj8ZgRDVbRoQ0BDBEzovDaC4oG+C+cktOCJrjdIdaRn58o2RAcGWLeDH1TkS4LdOHru2V3UvxW3/cIeX0Jol4v6x3d32c90YHmIvAaH7kmOC5fcXdZLfjuwo6VkFsmZHvszfkCtpW/PNQ3X+d72xUv5jBFl4KtngeI61O/OdAieuGJJsBpYkRIdIqFH+Icw4f0ujPMNlf51vlgtxPLamy1Gh9hfud4xJlQuMbB++NMdyGO76RzqMq/tnPHS2u26VtrUwru9kNA1c8ZRV4UhZzQJM6vo6duYWSZfkcI/DZuTYy9G0a1VRXqO+7q+nSdT134Sn87C98QkQPNH47hkzRgABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQROK4Gvl9tLdjx0VXfp1sbzy9cbXlxsXrum/t+6t0g6JngvE1DXULHhgWapDi3XcftFnc2sDi9/WZGF4bu0bHnwqh5eS0X4Op9WYUFW1wNFZRIbYV+3dlRjobl/M+nRNsL8XHN2O9li+D0zfb1s2FVgjrJg4z6fgieWbd5vnfWac9rKnZekWuu2hSIjU0R+kb3siG17Tb9bhduvvaD4SK0tbPNoEeDnVC6jpRH8EXKSAiNsc3L99vf3szYVGJk0IkIqv94tLz9e76VTrElUsbA9+5DX4IkNmYXmCJrxJD6yhblcX/e3iqlKXf1NVHUe9jceAftfW+OZMzNFAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBA4TQQy95XIGiOLg7bk6GC5ZGCSpMSHevzcfVkX68q/W7XXWq6PhSNHy80gAw00yMorqXSKIOPl+1XD2kiqUR7D1nblFtsWff7eV3C4Ut8OcS3FlhlBAxzUyVPbaZxTM0ro53BZudlt74FSa+6lJ7Y5Hq9ZJiZd0MHatHl3RRCFtcHDwuod9rIlFw9Icttr5dY8t9trunFAx2jr0Hnrcq1rtDY6LKzbedB0WL/roMNWz4tn94i1ds5f7zkDyj4j44jNOK+w7gJDrJN7WGgfW5GdQXdn7jvktteGTN/unduD63jjjCVZcvSYkSLDTVuUvs8KqunRPtzKolGf99dxGvX1N+F4DpYbtwDBE437/jF7BBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQKBRC3z/qz0A4pJB7l/GO17geT3jrNWZy3fLMeNX9/XVdOjfv75Mbnp5sVz99wXmy3PXcxUbWRYyHQImYhwyRrj2dVwPC7ZnEFicXjnYQEuFXDE42Trk3rdXimagcG3pWYVy7fML5XevL5d731olNo0fVmeb89a5PzZttZRrzQeXlpFtD/SIi6jIAuDSpdJqpwR7VpDNuyuyCDh20swDz07f6Lip1sttY0PMjBk6UIYx/uP/W+P2vs9YkimTX1tmWrwzZ5tP5x01INHq95f/rXd7jw8WH5U7plaMq857D3gOZLEGq6OF1CR7YM7/5u8Q19uoWT5eOpH5pI5OWathNBDq9VmbK42xZ3+pPPrBGmv7oE6trOX6vL/WSYyF+vqbcDwHy41bwP5f5cZ9HcweAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEECgkQnoC/0vjV+q29rwXvG2RY/fWr6if6coWbnlgPkr9uVb98vgzjEe+9dmh5Z1uHxIa5k2b4c5jAYnXHdee+ndPkLCggNke3ahTJm1TYqPHDP3n9ktRqJCA3w6ZWJUsNVPsyX83xvLZXjPeOmUFCp920eZ+yaNSJH0rAJZtDFPsvaXyPUvLZIRRrmQPh0i5dixclm946B8vijTGuemER1E56ztov6J8vo3FS+xf1m3T/70/q9ybo84SU0Kl3yj9MXPa3LkM4djL+hTtb2OOyg12vJ48qN1snzLfhmSGiMBRlmQdUZJhs8X7rI8tH9dtb/e0EcmvrLYvOfz1ubKpH8skbO7x0rX1mHGtjKZtz5HFm6wB6HcMNyeVcPbHPTZmTyqo7wxe6vZTYMjRvaNN56xaAk3ynhsyymW//6UYV3ToNQoK5DD27h1ta9bmwhrqLmrc6S0bJWM6psoLY3gmx05h+T9n3ZY2Rysjid54aP5O2W9kS1F74/+PazJOChz0vZahvr3O/6stk6zrK/763iS+vqbcDwHy41bgOCJxn3/mD0C/5+984Dzojj//0O744CjH733jqAIKliwG3vsWEAjxhr9a0yisUWjYomxi5pmiejPHhua2BtVEAHpvfd6cMDdfz5zPPud795+636vwee51/d2d3ZmdvY9s7NlnnkeEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiCBSksAs9RXb9phyw/XF5iBnoyc0K+5VZ5A3LGTVpSa8gTyP3dIW5myYIPAdQaUJJ7/uHiQHftcGdi1ofzhlz3doLjrsCjQu119z2XJlHkbBT/kc8ClxcoT1Y1Cwt3D+shVz0yU2cbCxMatBfKGUU7Azy+nGSsVFxzR1gtumJslN53RTR56q9gKBBQo8AuS28/rIT2cQfqgOBrWv0MDq1zw8ZRiFxcfGv74uXLRUe3kPxOWZ3RQP69uljwx8kAZ+cR4Ww/zjCsV/ILktnN7Sl/DNlm5ZGh7WbVxh7yzV5EH56bn5+aBNnr3sL5uUKmvw73KDad1lUfemWWPBQURV0kEgYf3yhO4boFVjvKWey7sLX80FiZwbas7HrdMsHCCNo227Upp1q8ep7SuCc2fy8pPgG47Kn8d8gxIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIoFIS+HLGGq/cmBWerAwxFhRUxv6wUnbvKXZJUcUZj4UlBFfgBkMlq1ryQ2QY1B191QC54oRO0rJhxFqE5tXRDG5fc3IXeWh4P8HgrCvV9h4zK6uaG2zXUZ57L+wjI02+8Vxm5Ji0D4/oZ5Q4omfqa4bdW9eVB0b0ld+e0V2qugBMhDOM1YwXbhhkFTJq+cqA7cE9G8srNx0qx/dL7C5Fj1fDsLvtvF7WWoO/3PXrZMnvz+ouI4/rKLEYu0VMtY7aN60tT155kBzVJ1L/Wi4sEf6v6wfJCXHaUtZeyxxuOqzfeHo3W4/+c8I+hEER5RnTDnKNNYpURM8xu0ak/aWSHnHPOrS1XH9qV4Hyhl9GHNNBbj+3t2hb8+9320RW9ZLt0B8/q3rwtZFVNRLuj1PDSXO4uTafNnWEdumXoaZ+HjcKMPVrBVtnCVO/yXIujWvCf57crrwEqhQUFJR0cFR5z4clJwESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAES2A8IzJo1S7p27Rr6TIc9MiGpPF6+YUBS8Rhp3yewc1ehcaGxXaqYv5aNcsQ/kJwOAbgv2bpjj0CxAEoNsQbCoSSyZtNO2Zy/S2pmVZVmxvVHtjNwHe/Y5hA27YZtBdK4brY08il6xEsbb9/6LQWyZvNOqV87S/LqZZVQ4IiXNsy+HaYeVhtrEfkFu6VuTpY0qZ8dk1sqx0FdrN+ySzZu22mSVZGmDWqmrDCRyvFSjZtvrJ8sWbvdtJPqpv5rlrDgkGp+pRl/y47dsmrDDtuuWxjFIygCJSulVb/u8UvrmnCPwfX0CJTXvTk11aj0zo2pSIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESGCfIJBtLBd0aFono+cC6wB1cxIP28HVQfOGNaW51Ez5+FDMgIIBfpkUWNvwW9zIZP6x8qpp6iFZNy+x8ggKR100NtZG8KuIAgUEuHypDAIrHbnGMks6Ulr165altK4J9xhcr1wEIvZVKle5WVoSIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESyAgBKk9kBCMzIQESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESqKwEqDxRWWuO5SYBEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEsgIASpPZAQjMyEBEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEqisBKg8UVlrjuUmARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARLICAEqT2QEIzMhARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARKorASoPFFZa47lJgESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESyAgBKk9kBCMzIQESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESqKwEqDxRWWuO5SYBEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEsgIASpPZAQjMyEBEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEqisBKg8UVlrjuUmARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARLICAEqT2QEIzMhARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARKorASoPFFZa47lJgESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESyAgBKk9kBCMzIQESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESqKwEqDxRWWuO5SYBEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEsgIASpPZAQjMyEBEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEqisBKg8UVlrjuUmARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARLICAEqT2QEIzMhARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARKorASoPFFZa47lJgESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESyAgBKk9kBCMzIQESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESqKwEqDxRWWuO5SYBEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEsgIASpPZAQjMyEBEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEqisBKpX1oKz3CRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAvs3gdUbd8pHP6ywEPq0rycHtGuQFpAXP18oRUUiTeplywn9m6eVBxORAAlUbgJUnqjc9cfSkwAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkEClJlCwu1CeeH+OvPHtEnsepw9qWeJ8GtetKZ2a15YOTXOlRcMcqVKlRBQGlCOB2cu3yDvjlqZdgv4dG8rRfZqmlX7N5h0y+qO5Nu2vjuuYtvLEMx8W59HXKGBQeSKtqmAiEqj0BKg8UemrkCdAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAApWXwE6jPKGKEziLt79fFvdkBnRpIHcP6yu5NTnMFRdUGe5cuTE/Yb3FK05WjWppK0/Ey5f7SIAESCAVAlVTicy4JEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJFCaBGplVRP35z/WhNkb5PLHx8maTTv9u7hdTgTCGgKpm1OjnErOw5IACZBAhABV8iIsuEYCJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJFCOBHq3qy/PXHlQVAkKi4pk3eYC+XjKSnnqgzl235K1+XZ72BFto+Jyo3wIDOnRRL4ZdUzgwX/1xHiZuWSz3fffu4+SHKMcQyEBEiCBikiAlicqYq2wTCRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAApZA1SpVJK9etkBR4o7zenpUvp21xlvnCgmQAAmQAAmEJUDLE2EJMj0JkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkECZEBjap5ncNWa6PdaUeRsFVimgXKHywaTlsmHbLqmdXU1OH9hKlq3Llx8WbJDJ89bL5u275KIj20nf9g00ul0uXL1NPpu22sTdLuu37pT6tbOkdePacmSvJtK+ae2ouIvXbJevZhYrbRzatXGJ/Yg8ffEmmbJwo013ZM8m0rJRTlQe2Jg8f4PMXFpsjeFYc05N6md7cbbu3CNTF6yX2cu2ys/LNkntrOrSsUWudGxWWw7u1EiqVo2cr5do74rBIRPnrZPxs9fLUnM+ewqLpEWDHHPLFPGPAABAAElEQVTO9QXWIapXK5l2qTmnL/ae0yFdG0mrRrXkx0UbZer8jaaMm6RJvZpy85nd/YcqlW2U9/vZa2Xhqu0yb+UW2bZzt3RpUVc6t6gj3VvVl7y6WUkdd6Op67GTV5g8tsr6LTulmWHQs009ObpPU8mqnv7c8oLdhfLpj6tkhrGksWLDdsmuUU1aNqwlg3s0lt5t68ctW5h6jZsxd5IACWSMAJUnMoaSGZEACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZQVgdaNc6IUJ3Dc58bOl9WbdtgB/87Nc2XkkxOiinPsAU2lrxQrT+QXFMq9//eTGQxfHRVHN57/eJ4c0TtP/nh2L6lllDEg64xyxVPvF7sO2WIG6H99QieN7i1f+WqRfLY3zz17iuTio9p5+3Tlpc8XyLhZ6+3mKQNaarDMXr5FfvfPqfYcvECs/LDSbvbv1EBuP6eXtcQRtd9sYHD++ucmeS4y3P3/980Sy2T0VQOiFDUQZ4ZRkNBzalQnS54z5/3lTxGrHlCeKAuBEss9r00vUf6vp6+1h69l3H2MGnGA9O8QrfziL9snU1bIA2/8LNsL9kTteuu7pfKEqbvnrz5YmjdM/Zzmrtgqv3l+smzcWhCVLzZe+nyhHNq9kdx7UV+pUa2kckaYei1xMAaQAAmUGoGSV2+pHYoZkwAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkED6BL6aEVF0OKR7XsyMtubvkpv/NbXE/pwaxfOKYUHgqmcmlFCcgEKGK19MWyO/fnqC7DTxIT1b1/N2T5xbrPzgBZiV3UZZYtzP67ygb38uHvj3AszKrj2FnuIErCHUzSku08/GEsWIR8d5ihNQWhjcs7F0aZnrJZ88d4MMf2yczcMLNCs47u0vT41SPICyQX2jDKECpZKb/vmD5PuUCnQ/lv/83/woxQnkUatmseKIGy/T62s27ZRhD38XVX6UHeeOMkCgDHHt6EkyYW6Er78c42avkztfme4pTvgVP6D48LsXpsiOXcX16U8fa3vN5oISihP+vL+duU4eeuvnElmEqdcSmTGABEigVAnQ8kSp4mXmJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACYQjAFcXaLQXy8Q8r5KkPiq0+tGyYI5ce0yFmthhox+/4/s3k3MFtjcuLOlLNuLtQDx8vGksBs5dt8dLfc2FvOahzI8mtWd1acJhoXEfc+tI0u3+esTgApYIrju9kXT5AoQHWEGYa1w3bjbUHtUqByHBz4Vo8mGbcd2zZsdvmqwdzj3tYj4gCyNgpxdYlEO9C415k5PEdbZmxDTcU1z07SVAWKAB8YdyMHHNAM+yy8si7P3sKGR2b15Fbz+4pnc2yijnhxWu3yQNvzRS4OUH62//9o4y6+IBA9x9L1uZbZYVbzukhfdo1kEa5WdY1ih6ntJavfbPYy9pvXWOnUXQYPXauvPpVcZwPJ66QAcZ9SZCAN+SCI9paty1wmQJFmWnGDck9r86wiilg8OfXfpI/XdDHaw9BeWkYFC1uNkonanECbeqyYzpadyxQWpm+ZJPc8uKPdv97E5ZLmya1ZdjhbTW5hKlXLxOukAAJlAkBKk+UCWYehARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIIBEBDH6fM+obL9ouMzgNiwmuHN4rT64+oXOUQoK7X9fPOKSV3HhatxID5BiM//sn8zWa3HV+Lzmqd1Nvu45x0XGk2b7nQpE/7lWgeOHThXLJ0A5Ss0ZVObRrnlWeQIJpizfKQKN0oTJhTrE1ClhLUCWKyXPWGfcfkfx/XLRJo8tBHSMuKD7e65oDOy87toOnOIHt+rVqyL3D+sg7E5bJ1vzdRsFjN4KtzFq2Wd7+fpldh7WGh4b3i3LN0TavttxvlCUuf3ycQDkCFhIWr90u7cwgv19Q7ueuPThqX1XVOPFHzuB2baO0curBLaV6tSoy0rhCgRKLSrZhfvVJnQ3zNbJsfb6M28tY9/uXR/VpIled2Nmr96zqVeXAjg3l/kv6yKWPjbfR4arliuPzpZXP0og/L2y/M26pp2gzoEsDueWsnrac2Ify9m1XXx427kQue7w473+atuUqT6Rbr8ifQgIkULYE6LajbHnzaCRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAnEIYIBcf37FCSRraBQEVm/ZGSeH4l1nHdraG0B3I0+cF3H7cFiPxlEWHNx4UKiAoobK+DnFLjgO6tRQg2TawogiBALVTcepg1pK99Z1bbzxPvcek/ceH4oK3VoVx0HEXMc9xkzjwsMvrfJqWSWC3/2yu7WqoPu/mhFxDXKFsVbRpH627vKWUEYYcUx7b3vO8pL5Y+eh3RtHKU54CUp5ZfjQ9oLzuvH0blGKE3pYWA3p0qrYfQksQKw3lkhiCaxuBOl7dG1ZN8payfyVEcsjsfJC+P+mrvJ2X39KN09xwgs0K6jHkwe0sEFQmlm5IaLwk269uvlznQRIoGwIUHmibDjzKCRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAkkQOG1gS3F/xx3QVLq0LB44R3JYWbh29CSB641YAsUEWFwIkoWrtnvBPdvU99aDVno5+xfsTQdXEHAbApnoKEZs2LrLuvJA+KCujWTIXpccn/+0RuB6BLKnsMhafsD6YKO4AaUAFbgNUbnq6Yly3+szjJWFddY1iIYHLX82rkJUsmtUkaVrtgf+qlWJDAvOWrZVk0Qt+zmWMKJ2lPHGrj2FAp5LjaWMWca9yuT5G+QzYy1CxRgkCRQorOSYuo8l3VpH2tGclcEM3LSFpuKmL47wxb5YfGGFQmWeo5iRbr1qXlySAAmUHYGIzZuyOyaPRAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIlCPQ2LhBuPrN7iXAEQAHhbeNC4aG3frb7n/lwrrQyigyuyw1NWCenRqD1Aexf51itaN+0liYJXLZz9q/bHLF2Mbhnnrz61WJjeWKj7DBuQODOY/L8YpcdyKhPuwZSp2YNeXbsPIGlhIWrt0n7prVl7oqItYNB3SLKEkhz+XGd7ED9bKMsAHlvwnL7wzqUAo49oJkc3aeZNK6bhSBPVm+KlOtPY2Z44fFWZizZGLg7JyuiYBEYoRQD12wusC4yxs9eV0JhIdnDdmkRUY4IStMur44XDHcniWRL/p6oKMMe/i5qO9bG7OVb5bDuxVZL0q3XWHkznARIoPQIlF8PWHrnxJxJgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgAT2MQJwxXDGoFZy1/m9vDP7eMpKbz3ZlR3GrYJKrlGyiCe5RgFCZceuSLoBnSOuO6YvLlZE+H5WsfsMuALJrl5VupqBfFjAgEwwFiQgUxdElBb6d2xsw/RfvVrV5bGRB8p1p3SRdkbRwpWZSzbLY/+ZLaf9+Ut5+YtF7i7Zsn131HYyG5vSSJNMvunGgWWJCx78Rv7x3/lpK07g2HVrReorqCy5zv54rj80bf7O1Nki7eb8XZqFpFuvXgZcIQESKDMCtDxRZqh5IBIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIggbAEBnaLKB1MnL3eWqSAYkWy0jA324u6xLi46Ne+gbftX1myNuLio2GdiMWHA9pHlCd+XLhJ+nVoIJ/vdStx6N7yVTUuOY7s00Q+mLhCvp+9Vs4Z3EZ+WLDBHqJj8zqS57MggR25NavLuSYefovWbJNpizbJBGOJ4b9TV3lFe+qDOZKbU11OPbilDcurly2rN+2w689dM8DkW9OLG2vFdRcSK05ZhRfsLrRuWPR4A7s2lOP7NTNWRWpLPaPcUsswqWPO9/43ZsjYyfGVZeaviu+KY4lhqpLISgXi1XfqHNtv3zIEi4RSMzvadUg69ZrwIIxAAiSQcQJUnsg4UmZIAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRQWgTgIkNlu7EisaewSKpXS157olFuRAli/sr4g+3uYDyUFFTg3mJAlwZGsWGDsSqx1rhoaCwoC2RAp4g7DihSQHli3Kz1sn3nHoGyB0RdOtiNGP/a5tUW/E4+qIVce3JXefbjufK+ceUB+WTqSk95okn9bGOtoTgTWDzo0bpe8UYl+T9tUcQaB5RKHh7RP9DlymKj6JJIpi+O74oD7lNUOidw8YF4aGuwHqJ1W9soctTyKUZofskuk63XZPNjPBIggcwRiNxdMpcncyIBEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiCBUiEwcW6xAgIyh2WAVBQnkGZAx4jViE+MRYeN2yMuFrBfBa4tPp26WjflQCcdAg/pmmf3TV2wSb6escaut26cIy0b5dh1/OvfMaJI8fq3S7xBeNftB+Jtzt8tc1dstb8gdxKNjZWKa0/ugqhWfnaUBAZ2iRzjs73WLzSeu9y5q9BYsthof8koIrhpS3N9hnFJogK3LEFWRDZs3SVwXZJINm4tkO/2uk/xx929p0j+s1f5BPs6GUWNZGRIz+J6RtyvZkQsgPjTrt1c4PFdt6XA7g5Tr/78uU0CJFD6BGh5ovQZ7xdH+OSTT2TSpEn2XC+77DLJy4vcSCo6gO+++06++OILW8zzzjtP2rVrV9GLzPI5BLZv3y6PPfaYDRkwYIAcffTRzt7kV8eNGydTpkyRadOm2URoC4MHD04+A8Ykgf2IQGXu85OpptmzZ8ubb75po5555pnSpUvkpTSZ9BU1zvLly+W+++6TLVu2yM033yw9evSoqEUNLFdlLz9OKsw969VXX5UFCxZYNjfddJNUr175HuP3hXMIbJwMJIFyJBCmXynHYkcdevz48fLwww/b97Df//730qBBbHPJUQm5QQIkQAIkQAIkQAIksN8SmDR/vdz+UvF3XEA4pm/TlFm0yqsl3VvXtYPxGGy/85UfrbUD15VFobFmcfer0zx3GF1a5kq7JrWjjuUqQPztk/l23+G9ostTr1Z16d2uvkxbuFFGfzTXS9+rTbR1iEWrt8qvn5po9zepV1P+cf1AqV+rhhcfK4sdqwlNGkRccwzu3sRYR5htFTPeM8oB7ZvWlvOGtI1KC8WBUW9G3F5cbRQxLshrExWnvDY6mPKqzFy6Wc7Qjb3LLTt2y+2mjpIVtI9/Xj8oSokFaZ8x/FEPEFiT6NQ8164n+nf8gc1l7A/F7kL+NGaGtGhYS3q3rR+VDIo214yeIEvW5tvwZ68eILBwEqZeow7ADRIggTIhUPm+upYJlrI5yL333iv4iDxz5kyZNWuWtG/fPuGB//KXv8j8+cU3YH9kfERv1qyZtGjRQnr16iX9+/f3Rym17Y8//lgeffRRm/+pp55aqZQnvvnmG7n99ttt2QcNGkTliVJrJaWTMT4Ya/2dddZZaSlP3HbbbTJq1KioAnbo0IHKE1FEuEECEQKVuc+PnEXsNdyTtV9p1KjRPqM8cf/998vo0aPtia9YsULGjh0bG0IF3FPZyw+kYe5ZL774ouDag9xwww2VUnliXzgHWwH8F0hgX3q3CTzBChoYpl+pCKdUVFQkI0aMkDlz5tjiQHECChQUEiABEiABEiABEiCB/ZsABref/jCiZAAauwsLZfXGHTJ/1TZZaH4qUDI4b3C0koDuS7T87Rnd5dLHxtlocL1x8V+/l8ONhQEM5C9cvV0+/2l11LFuPrN7iSzbN6ljLV9AAUNlYJeGuuoth/TI8wbtETi4Z2PJqh5tHB6D8XBZMc9Yn1i9aYfc8PxkObF/c+nVtp6YR2eZumiTPPnebC/Pkwe09NYb1Kkh9w/vK9c9O9mGPf7eHIF1jgON+5A2xhLGsnX58uZ3S7yBfSgOnDKghZe+vFf6dogwg1uStZt3yJAeTaSZURCZvWyLfDhpuVf2ZMoKFxvDTX0ONYo1fdvXlw3bdsk3M1YLLISo3HtJH8kxHJKRgZ0bycjjO8qzY+fZ6FByOe6AptK/U0Opa9x4zDft5d+fL4xYFTHuXHruVY4JU6/JlI1xSIAEMkuAyhOZ5Zl0bkuWLJE777zTi//SSy8JBnATycsvv+zNjE8Ut3v37nLNNdcILEFUrRp9E06UtiLtf+WVV6SgoECysrLk/PPPr0hFY1n2AQKvvfZaCcWJE044Qbp161Yhzu7nn38WWMWADBw4sMKUq0LA2c8K8fnnn8uiRYvsWUNJjbMy97MGkIHTxQCbiruuYWGXpd1G3TK762HLzfSZIcDntcxwrKy58N2mstZc6Zc70bMslCc2bYp8vNyxY0fpFyrDR2D/l2GgzI4ESIAESIAESIAE9hJ4yQxEJ5K+7evJny88QKA4kI50NZYk7jq/l9zxyk82OZQyXMUMN8/bz+sh3VvVdYPsepUqIkcYhYt3xi3z9vktEmCHa6EC24d0bYxFCbnp9G7yhxd/FChjQGkAvyC54Ii2cvahraN2waXIHef1lLvGTLfh3/28TvDzCxQnnr5qgOSaQf+KInWyq8n1p3aVv747yxZp3Kz1gp8rqO+GudkSzy0J4l94ZDv5Yf4Gmb54k8AKB35+ufbkzjLAKJakIpcMbS+rjAKP1vXHU1YJfn6BhZK7h/WNCg5Tr1EZcYMESKDUCVScnrHUT7ViHQAWJ1z5+9//LrfeemtGlRxg0eLqq6+WDz74QJB/ZR1ogwIITIzn5uZSecJtNFzPCIFvv/3WywcKTL/97W+lZs2IuTNvZzmtwDLKlVdeaY/+9NNPU3minOqhIhwW/fiYMWNsUaBIU1n79IrAcn8tA1x1rF69WvLz8+VPf/pTxjGUdhst7fJnHMh+liGf1/azCvedLt9tfEC46RFI9CwLJf/nn39e/vznP0urVq3kiiuu8NJWlhX2f5WlplhOEiABEiABEiCBik6gCrQQEggG/Xu2qytdW9STzsZCwxG9m0iNaiUnjtaoVpxXdo3EeR5zQDNpY1xxvPLFwsCB8KF9mpjB+PYCRYtYMrBzQ29A/fBeeSUsSiBdJ1Pe+nWyrFIEtg/qGDxw38e49/j3jYfKkx/Mlm9mrvXiIw0ECgTDjHLAYd2CXacf16+51DSKCC99tsgqDxSnKv4PfmcahYtzB7cxSghZ7i6p6vDPqp6cNYaoDBJsVA+oJ3+Ssw9rbSxNZMtzH8+31jfc/RcPbScXmXp43LG84e5388/NqS6PXn6g/NvU6d//G23JHZZKkNcZg1q5yUusZ9Uo2a4Q6Uaj3NI6r7a89tViz52LJta8TzqohWT7rIqErVc9BpckQAKlT4DKE6XPuMQRMLvmH//4R1T4smXL5Ouvv5bDDz88KjzexubNm6MGeTELE2a4v//+e3nmmWe82ervv/++/OIXv5Avv/yyUpp4jseA+0ggLAH4WFaBlZaKpDih5eKSBEiABDJBoEuXLvLuu+9mIqtyyaOyl79coPGgJFAGBPhuUwaQ9/FDwOobfhQSIAESIAESIAESIIH9mwAsD3wz6piMQHjtd4ellE+XFrlyx/m95fdn9ZQ1xrLAtoLdxp1DdWlav6ZkxxhEdw9wRO+mpuxN3aAS61BOeP+25MZ/6tWqLrec1cPmsTl/t6zckC+1s6tL84Y1o5QcShxkb8Dhxt0FfkgLVyeFZkyqkbHY0NAobzg6ElHJoUSCX2nJM1celFTWcNWBX35BoXE1ss0oolSz561KMr/7ZXfBzy9QbvG3n8uO7SDDj24vK9abOt25W+rXzpK8ullmEnNspRp/Hv7jVDNpzx/SxiigtJb1W3bJxm07TZQq0tS4F0lkySNsvfrLwm0SIIHSIRCsOlU6x2KuewlMnDjR8+l63HHHeVzgkiOM1KpVSzp27CjDhg2Tr776Sh566CEvOxxz1KhR3jZXSIAEigmsW1dstqxJkybSokXF8fHG+iEBEiABEiABEiCBykCA7zaVoZZYRhIgARIgARIgARIgARIggWQIQFGiVV4tY2WirrQxy2QUJ5LJN0ycusaKApQ7WjbKSUpxwj0W0sLiBdI3MpYmYilOuGkqynpOVlVT9lxbD6o4kU7ZoOzQqnGOtRzStH52XMWJVPKHMkxjo4iBMoJxIsUJf95h6tWfF7dJgAQySyAjlie2bdsmMNU6efJkWbx4sTRr1kx69+5tB/EbNmwon376qfzwww+25Jdccok0blzsywmWEp599lnZs2eP9OzZ0842mTdvnsC0J6wwYFCze/fuctBBB8lpp51mOvbY2mDIHP5UX3/9dVmwYIGsWrVK8vLyrDLBmWeeKT16FGvp+fHNnTtX3nnnHRuM2S5du3a1Fhs+++wzwYfAdu3aySGHHCJnnXWWVKtWbKpo9+7d8sYbb9h4SI+ZkAcffLAcccQR0rRpfO1CHOjf//63VwyYzV6zZo3lA2sUf/nLX6R27dre/jAr1113nWAmGNwQQO666y656qqr0jL1jrpCHU+aNMnWcfPmzaVv377WjUaypuO1bqdPny6zZs2yA9UHHHCAbSvgp3xRVsR9++23sWpddujy4YcftmH4d/7555cY7F6/fr2g7mbMmCE//vij5OTkCI6BssLMfZ06dbz08VZQRhwfy507d0qHDh1s+xw6dGjCdjhu3Dh7LSAtrodu3brZMvTv3z+hy4Vp06bJhAkTbPqlS5fa9ohr48gjj5Q2bdrEK7I1xQ5/uzh3WDJB++/cubOcd955tvxxEyfYmUrdaVYvvPCCbdt169aVyy+/XNauXetd23PmzJH27dvb6x71mKjNT5kyxV5zuN4KCgpsuqOPPtpec3q8VJaom48++sgmQX8BgRl7t32dcsop9tq2O/f+g7n7dBmn2jaVHyzJqKDMGzdutJtoD2effbZdx7WJ9gK58cYb7TLo31tvvSXz58+31jXg0kfF3w9CCQvuTNAPox+ECeWnnnpKo9sl/FGjH0R7Xbhwob3WcJ2cfPLJts+MiuzbQB+Kfh71ij4F7Pv06WPr9ZhjjhG0mXQF5cLMenBbtGiRLRfuIf369bP3kqC2pqy1raJNfPHFF/aH+xBcBQwePDiqSLjOcP5oy6gTMMI5nHvuuQn72FTaAs7nySeftMdGu1WBewS936Bs6N/8EqaMmejz/eXxb6faV2bymaGwsND2AXg+Qf+GdtGrVy97r+/UqZO/qElvB5UR9Yb2hHsT2hjuSXgWcts59v/3v/+1/TfuqYMGDZIhQ4bYe0Csg+M6+vjjj20aHAPWqPR+N2DAAMF92i9LliyR1157zQbjfobrQsV/HSTbZ6fbRitK+fX83WWYvh75ZPqe5ZbNv/7JJ5/I559/btsBnnnwHHvOOefY52c3rvssfvrpp9vnY3e/u457jfY3eP6Od02k+7ymx0O7xf0GPzy34ZkH/RmuASg1xpOw9RQvb77b7JvvNkF9NFwDQoEd7Q/PUi1bthQ8s+P5NOi9ISgPvAPDwh+U13F/wfstnsNV8D6Gfh7XK54xtm7dap8b8J6L61Xv5xo/aJluvxL2GdEtS6rPWHpfSeZZFn3Ad999Zw930UUXBV7/6XLE/Rd1BIGVuaysLPsej2dRPOeCP97XfvnLXyZ837KZ7P2Xbv+H80CfjPs+nsFxP8R70WGHHSannnqq1KgR31d3Jt7LYK0SXFAOXAN4hsU7I94BVFC2//u//7P3A3yvwbMF+meUk0ICJEACJEACJEACJEACJEACJEAC+zQBMxBZFOZnPjgU5ebmFhlIJX4IN4N1Rb/5zW+8febDj3c880LuhY8YMaLozTff9Lb9+R111FFFZiDaS+uW2QxEFRnlhphpkdcZZ5xRZAYCSqT/17/+5aX75z//WYRy+I+NbTM4VWQG0YpmzpxZZBRDAuOYj7xFRimgxDHcspqPEx4v85HExjUDtl5+L730Utz07rHNB+e4cXFc84GvyAyOePkbBY2EadzyYt0M6Htl9rNBHRuFlZh1rGW49957vTL488A26s89H6O4EDc+0piPkFHngraGOgjKH2HmA2WRGTiOSoPyuWUzAwZF119/fcw8zMBuEerQzwjbRmGnyFj9iJkWZXjggQcC06KebrrpprhpzYfYwLQ4thlIjZvWKM7ETBt0LhqGcrl8gtj6607Tmo/PtkxYGsWmmG0I+80gfczyGR/CMc/NuKMpmj17trcfZdHjx1viWg86FzfMfCyMyisM43TapnvduuXSdWO1xisf+icNj3fe2n/gunXjuf0g+ggzWOblh3xRR258o/AQ91o76aSTiszAQFQaTb98+fIiXEdaXv8SxzKDD4FpNY9Yy0TlQp/r3oM0HxxTzxNt0V8mtBeNa5Spiowv7hJx3DQffvihF1/T6TLVtmAGB+MeC8c1PsKjjhe2jGH7fD3XWMt0+8pMPTNs2LChyHz8j8n1j3/8Y5FRjPH2G+WVKL6xzgvh/jLG6mvQ5sxATtGmTZvs84nbftx13AuDjmcG+YqMUpBXRjcN1nGNm0G6EmnR/jTu448/HrXfvQ5S6bPTaaMVqfx+vmH6euRVGvcsLSP6fa0/oxwWty9FO9Z0WD7yyCNeWqNUG7XPjYf+Q9sCjoXjuPv966k+r/nPwSh5euXSc8MSbdgoXsc8dth68p+Hu813m8g73b72buPvo8eOHRvzeQZtEG3BbRtY9+fhXlvaho1ipZcu3rujxr/jjjuKjGKCl8Z/zDD9SthnRC1LOs9YqTzL3nDDDV5fgPujHleXYTgahQkv76lTpxYdeuih3rbWgS6ff/75EsfWMviXqfZ/SG8mTcS9f6P/NQo2gWXI1HsZGOj5+pdGkcge20zwiBnnlltuCSyfnw+3w31nIz/yYxtgG2AbSK0N4DtGJpidPeqbomR+mTgW80itjsmLvNgG2AbYBvbPNpDMfRlxMt0+QrntwIwFM0jmWQYwL99iPjTZGTtYxywGo7RgZyZjO55gRgosRKhg9gXyUsHMCMz+9QusAmAGOixOuIIZ966YAQMxChh2hrMb7q4/+uijAusPEP/xMQMblhxQRlgH0DjurDjMgMNMTsyijiWYJQoukIsvvtguMctFBTN0MinVq1e3M2w0T6OgoqtJLc0gk50Bo2XWRObDjl1FuBmwtrO8dZ9/+Yc//EHMR5aoYMx2BWMV1B9m+mMmDgTWS1CH/nrUMCwxw1IFM83R1lAHKoiDGV0q5qObncmIdhtL7rvvPvnrX//q7XbLiEDMEDIf97z9uoJZZpgx77peQfvFjHe3jaAN33PPPZrMW2KGletmxXzUE6MYEHUNjBw5UswHPS+NruDauPTSS3XTLv3lNh9loyyeREWOs5FO3fmzw6zSE0880Wv34KHtB3FhJQOz9YOuG8zce+KJJ6KydM/t/ffft1YtoiIksYEZ2dqW3OgahiXc4KiEYZxu24T1HpTDFbQpLWNpuRgxyjKeNR4cG8d0Z8jj+kF9uteaW59I88EHH8i1116L1SjBTF7MWsN1BEHecF2EvlkF7QEz7n/66ScNSmqJGfX+ciF/VzDbEzPzMfszSNBW3fuQxnGtVaCPGD16tO6yS7dNIgDlgNUHv6TTFrKzs611Hn9bAHNtC37rP2HKmIk+33/e7nbYvlLzSveZAfcYWMKB1QtX3DpEH/3YY4+5u9NaRxmHDx9u0wb1e3CxBWtQeD6BoL265UAYLAToMwe2IUYByc4QxWxZFeSP+6q2edybjz32WPnf//6nUZJeptpnp9pGK1r5XTBh+nrkU1r3LLeMuo5nSO1LEebvh9GOMeNcxX3WhAU0fd7S/brE7Hb0wxA84wdZMNG4WKb6vOamRZlgvQfib/9ow8cff7y1IOSmwXrYevLn527z3aZ91HPrvvhuo/WN+zTeYfR5Bv2o9qGIgzYIyyuwEBhL8H4Y9F4AywYQWAiAdT1/P+7v62Ed0ChvBx6mLPuVwAKYwHSfsTL1LJsJjnpusDwBKxcQ/70ZYb/61a88yzvYjiep9n+7du2yljnd+zfaHMqhgv4X1ifQ/vySqfcyPFuo+J8v8Wxy9913y+23365Rot6nEYh3hb/97W/efq6QAAmQAAmQAAmQAAmQAAmQAAmQwL5GIG3lCZjtxIu3fnDCR3uYKoW7DAxQwYWGfkzSDxTx4GFgGzJmzBhrehpuHWAy2jUVj33+j09mJr/nEgTpYVIfZYK5YXzscj8cIy1e9mMJXIvgPMxMdutWAsc3s0a96BgYRzlhrhKm71FGmHd1P17jg0e8QT9XOUJN7mMQVAcPoVyBgYVMCgbyVMxsKV1NuIR5zkuMaXHUJwQfVzAQA1OzCMN5mhnYdp9/IMoGmn8rV64UKKWooH7wMQjxwQ/mWfWDEQY09SM6zOWiDvHTD5lYahiWGASFYADAzLzWQ1g3JdoGzMwa61JA+SJc3TV4CZwVHVSFkgLKjjKiTatSDaJiHz5kumJmmnttE+czfvx42/7Q9uG6w8zs96I/88wzUYMWOA7M/0Mw+AGzsjDBjQE1lNdVmDCz26w5YM0M1xk+/KrgekD7QbnhbsDMzNRddhAvmWtRE6Rbd5pel6hvtBco0IAlrhlsoy1p3eO6cRkhLT5Im5l2mo39iKfXHdwkYCAabULrzIuYxArag7Yl/YCNsmgYlhh4hIRhHKZtot5Rjqeffto7I9SvltHfBr1IIVdwDYIrrlW0XbQjdbsE5Qe338cHVvBBfWIfBrS0TnHNuG5QUCz0lTooB2Uj9LXvvfeemJmfYmbgCxSEVHCdJCsY8IfbJVwvEAz46TVoZunZe5N7nQQp4iEd2irywHmhj8I5QUEPgycQuDu488477Tr+mRmH1mUHrje4CDFWlrx9UH7S8iAw3bYAJTG4NkG9w5yyCvocbQv40K8SpoyZ6PO1HLGWYfpKN890nxkefPDBKGVL3NfxrIA6RN9krDHYw6TTr7jlwzrKiGsJJrFxLeE6QbvUawT7cXzEwfMTnjlQDsRzBzPcZwzkq2XEOvoyuM1B2dFmMcDltsMXX3wR0VKSVPvsVNtoRSu/wgnT1yOP0rxnaRndJdoonhlwTaH/RLtBn6qu2hAXipnaf2OQD/0SBP2wO3hnA/f+U1d22ET6RJLK85o/L5QBx9B7Ddo/yqvtH30oTMa7Erae3Lz863y32fffbdw6R5+J/g6KSOqyA8+puLbwPgjBtXLBBRcIBr2DRN9b8H6JPh3PDGhHUDqCsiCU9XAMCNo17gd4j9K+Hu4bVfDcg+chV8q6X3GPrethnrEy8SybCY56Llii38EzIxQy9J0E78d4v1cJUnTXfe4y1f4P30bwrg+BYgnaIPo53LvxnQIuQCFYR9+I5zKVTL+X4RsL2iaeJdHOobivAuUJCOoP7RXv03j3cpXw/vOf/2h0LkmABEiABEiABEiABEiABEiABEhgnyOQtvIEBnP0gywGAmDRAB8dYOkA0qFDB7n//vuT+vCqVDGIgFm/NWvWtEFVqlSxsz8wkKXiKiZgUExf7rHfuLywL/X169e30evVq2etEWAQUGXUqFF2QEy33SUGMPDRuF27djYYx8cHM8wMVcG5YtAW/u1VDj/88ChrAspF9+sSAzT6URof5bp06aK7rF9d3XAVPjQszNKdoY6PRMkKPty4igYY4MeMcJ1NhfLDSgNmjscSnDNm+OCn9YNZqioHHnigoE5UUhnc1zQ6mx3HwCwZtAltA4iD83cHYuGTOJ5gxjE+pDZs2NBGw6xutEF3JrL7sROR8KFUzxMfk6DYUbVq8eWFJfwm6wxkfCTTj61Iqx/RsI6PrL169cKqlWrVqtmyoPzIH20NH3ZVMANJP8ri3DFrrXHjxnY32vOFF14YNdDmKiNpHrGWmay7X//613bQ2Z0hj7bkKr3gw5wrUBRRMe50xJgg9647WIXAh0+dsa3xSmMZhnGm22ZpnJ8/T7Qb+IDGB1IMtkG0LWOWmfZvUH6AAgf6egj8M8MHsvZxCPMrq7kfWsG1UaNGiGYFA7AY2EY9o63rfUD3x1uiXHpNYXACSmp6DeKehHsTPgCrogzOYcKECYFZQiEMSkfoo3FOuA9AjNknufLKK700GLCEkoZaKMFACfoy+C6H4EM07hUqZdEWwpYxE32+nm+sZZi+0p9nqs8MGIBB+1KBciSUGPGsAMH9HfXv7981fjpLPBsZk+neNYR26d5LkCcstaCNalvDgDjaq4q/rdapU8deI+hXoVTq3uPRHmF5RNu6X/FC80y0TKfPTpSn7q+o5Q/T1+PcyuOehecyWF9TS1x4fsWgn6ssZtzOKHrP4hkCoPzlFyh5uc/MrvKtP24mtnEfhyUfvdcgz549e0YpDeJ9w5Ww9eTm5V/nu82+/27jr3MMGENJtVu3bnYXnhkOOeQQq3yP5yEIlCkwyB1L8H5jXO9Jx44dbT+uz0xIA+UHFTyz4n6g71Ho63//+99HvWf+5S9/0eh2WR79SlQBzEYmn7H8eSeznQmO7nHwfId+rnXr1l5wmzZtoiwpwHJUpgXK8ar4rN8TUBa86+H+37VrV6ukq8pjeDaAQpxKJt/L8M4IxVt9J8/Ly4vq+3FMPEvgfVjbK54v3MkEUPrEPYNCAiRAAiRAAiRAAiRAAiRAAiRAAvsigbSVJ/ABQAUDoPgA5Bd8CPCb3PfHcbeDzKVjv2taErNEVDDLWQWz6XTQSsN0iUFAnTmMsFhmrN3BQk2LJQZ5VWBC2B0A1nB8/FBxy6hhWLouM1yFEOyDeU4Vd9BEw8Is8VFGPwBioB0DbMkIZmGpYFBQPyxqGJbI27Vu4O7DOmbV4KMkfrHqp0+fPl4y95heYIIVDMSgneEYGBjTj5ZuMgwkKQPM/I0l+KiJQaMgQbjOyoECBH4qaDt6nm5b0P1YYnaSimvSH+VXQdmC6gduOTR/NaGNmaZwWwHBud16662aTdQSg4F6fWJQPFnJZN353YpoGdyBGczCc0U/VOPcXFcqbhwok7izrN19mVgPyziTbTMT55NMHqiToGsdad0ZwPjAD+UCv0AhCsouEPQ3mE2n4rb1oLaIAUB80EVbd93YaPpYS7dc6D9dNyOaBh994R4I1jvwC4qDuFCW00FsTYslPhKrohIsQGDA0i/oe9zZiu59sizaQtgyuv1vun2+n4l/O0xf6c8r1WcGzMxXgeILlCODBJZJ0P+FFQyO6CxSNy8MzKkgjjvbVcPd4/v7RvT1uEaghBH0PILBP73f4D7lKtxp/omW6fTZifLU/RWx/GH7epxbWd+z0FdqPStbLNF/uQqjrvINlBX0WSjIdQdcduh1goE1VQ5z88/kOu4VqnTt5ot7uwr6NZVM1JPmFbR0+2y+24hnfQGs9pV3G3+9w+pZ0LMMFJFc5W4oFwYJridXWcmN4ypQ4pnGVZp34+GZRK9LvNu6fXZZ9ytuuXQ9k89Ymmcqy0xwdI8HhQDXHZvuQ/2ou0cowELZM5PiKhDDTYu+m7nHwD3dfZ9zn8sy+V7m/w6BMuD9UhU3sO1+f8E2BIrN+syCZ2JYJaGQAAmQAAmQAAmQAAmQAAmQAAmQwL5IoNhMRBpn5n6MjTVYjGwxGIYB50QWBTCLGQPxQeJ+XNDBK8RzB6DhTzaeYL/OiIZ5SldZQdPFysMdZHMHNDQdlu7Mz1izMFwlAwwguQIrB6eccorgwwpmUOMDbtBHcTdNKusut6CPhEF5uR9sDjrooKAoNgyDP1BO0A/uMSOaHWCDsuCHj+BYurN7MDM4EwKrJJo/lvDh7jKIdQxVjoi1H4Ne2pZhBWXo0KGBUWFmVY+PY+OHGUQqrhlW/QiFfYgzYMAA674A1wQ+5AUN5CIuTFeroI3G+rCNODprCB8D169f71nV0PTJLMPUXY8ePQIPgZlOKuCl4iqn4DrQWbW6313Gum7dOOmulwbjdNtmuueQarqgwV7kgWtTP+JrnrHcALl9DPoRnd0HyxRq/QQDf7iW8AEXA2WqFKR5J7vEtaTWMJAm3v0I/XesPhxpMXgRS3EEg4oqaI+xzt3tw/y8NL0uM90WwpaxNPp8PddYy1T6SjePdJ4ZXMtV8foNKMHgXhBrsMwtR7z1I488MnC3+0wR694KZRu0x2TuW1C4gzltxNX7jbqCQgHcNhlYoIDAVPvsgCySDqoI5Q/b15fHPStW2wF4tDH0dWjDcCWAvgaKEOi70OdCuQLPAzBfj2cOFX1OxnbQ4JrGy9QyXn+NQUyU3VVUDVtPicrNd5toQvviu417huhj27Zt6wZFrUMZVMW9v2oYllCqD1Laxj73HhLvnQ7P6Hi/UEt0eA9s2rSpbfva/svrWTiTz1hgko6E5eg/Zry6wPss+h0I+s1UrKD5j+Pfdq3oxHuOdBXK8D3g3HPP9Wdlt9N9L0O7x3kGiVpdxD5YUgkSPNPr822sbx5B6RhGAiRAAiRAAiRAAiRAAiRAAiRAApWJQNrKE+4HAJiZjCf4OKoDzrHi6eBa0P5YHy70gxLSwMxvPHEHAtwZPW6aZGbYxfpA5uYTtI4PMe4AHz4Aux+BkcZ1NQFzovE+7gQdI1YYBlNUoIgSazBe4+jS9Ycda0BR46Ks8ZQnYB4aP5gQd+tN02diifLCdO4nn3zimfBPNd94A6vIy21n+JjnKk9ghtJzzz1nLZu4ihKJyoA6gRnXkSNH2qhoK/CJC8EHrjPOOMMbYHYVjGC+VQWDIG4b1/CgJQZIYw3qBcUPW3c4P1Xe8OePthg0QOgOcsLMfTzRWWLx4qS7L1OMM9E20z2HVNMFzcZDHv7ZZa7FmHjHQL8Hy0AQWAoYPny4wF0CBG6B1DUQPuRi9iasAbjXmY0Y59+6deu8vWgLse4XXqQ4KxhwjNU/uvcNmC12TRfHyhJ9RH5+fpTyT2m2hbBlzGSfH4sJwtPtK90803lmcJVDXPdIbr66nmi/xou3jHUtuWlitTc3TtD6ihUr7H0D91QdxAiKl05YOn12qsepaOUP29eXxz0rUT+JZ28ddMRzhQ4Eq/IE6gz3d1WewCCYuuxAG3AtpKRav8nGj6c0F3T9hK2nROXiu00iQtH7K+O7jXsGUOiMJ66lCPf+6KbBM2wscS1vJXpXxvuHKk/oe1J59Cv+c8nkM5Y/72S3w3L0H8dVCvLvi6es7Y+b6jbe1VTwLJyMuApdGj/se5mrwKl5ckkCJEACJEACJEACJEACJEACJEACJBBNIG3lCcyIUR/zmMke7wOoO6ATffhwW/Ahr+IqHmiYu3RNW2MmSVmLfpDW47ruCjTMXcJKBUwGxxp0duMmWncHVmLNNAnKA4MbKon4Nm7cWKNGLTGj9MYbb7Q+raN2ZHADH/xhwvz6668PnWu9evXi5uG2I/eD4uLFiwWm/GN9XI2bqdmJj2gwlQqXAy+//LIXHTOJX3jhBfvD/rFjx0qrVsU+qd327yVIYgUzlJORsqi7WOVwB+oTtT13llSs/NIND8s4k20z3XPIVLp0+023vUH5B9cqrAZAgQIDvypQvnrwwQftD5Z5oJyQjCIE2qlKo0aNdDXjy61bt6aVJ5TX8DG+LNpC2DJmos9PBClsX5ko/3j73bZSnv1KvDIms++LL76wikjJWKVIJr+yjlMRyx+2ry+Pe5b7PBJUh25/iOd0FVhdwbMg+ly47oCrISjxTJ061VOCveyyy2LOptd8ymMZtp4SlZnvNokIRe+vjO827hkken50lerTeZd1ldcT3XPc/VC6hJRHv+Lywbp733T7FH+80twOy7E0y5ZK3m4/nGw6912zPN/Lki0v45EACZAACZAACZAACZAACZAACZDAvkIgbeWJQYMGyddff205YGZMPOWJ7777rlR44SOnChQ5XB/JGq5LVfTANtxMlKXs3r1bXJcdyRwbgyKwoKAztpNJEyvO66+/7u06+uijvfVEK5ilqNYk4BIinvUJuEIJkkcffdRTnMDsLFhUgKlpKABAUQGzX1auXBnXlH5Qvm4Y3H64ihOw4IDBWZjixcdIPQ78F+tsLje9uz579myBT/BY4vqed2d9/vrXv/YUJ6DkcM0111hLEGijenz4DFbrEkH5YwYcfvBjP378eGutBZY0tA7QhocMGWLd1WAw1v3oe9JJJ3nuEILydsPcD7RuuH+9LOrOf0zddtuay1z3u0vUWWlJWMaZbJvJniMG6WPNZg/jv9llgbIsXLgwqSL5Z/FBgeKcc86xPwzW4/4An/ZQEtLBYLgcgOsPhCUS92M+Bv/inX+ivOLtd+8b8IMey4yyPw9VLCuLthC2jJno8/3n79/ORF/pzzPZbddaRaJnhkT9TrLHzHQ8XMPHHnusl+1xxx1nrbXAvDauBdxncc+58soroxTxvATlvFJRy+/2b+ncT8vjnoV7XzwLZbAKoOKWD/eHSy+9VG677bYo1x2uy47zzz9fk1aoZdh6SnQyfLdJRCiyv7K+20TOINqthhuu666lgHjXmsb3L/Guo3kkeo9yrRHqc4173Sa6JyX7LBzvGSnoGVHLgnMrzWcsPzt3OyxHN6/yXHfP45tvvhFY+EkkrsXB8nwvS1RO7icBEiABEiABEiABEiABEiABEiCBfY1A2soTav4XQDBT3v2Y70L6/PPPvQ9Hbngm1l2FjViD93ocd38yHys0XSaWX375pTdoj8EtWA+IJe+99579oI39GDgPqzwBk/mueXmYzU9W4C5BFS/wEd79iOfmgQ9xqkjjhmP9/fff94L+9a9/ycknn+xt6woUBcKIO3sdShQPPPBAiew2bdrk1UGJnU6AayLXCfZW1QQ2AtSsO2Z7u2X43//+J82aNfPS6Mr8+fN1Ne4Sg19QcsHv1ltvtUo0cGWAgWV8hIVZ6cGDB0cpLEEpJJ4Z2rgHjLGzLOouxqHFNZXsmtEOij9jxoyg4IyEuX1MOozddhG2bcY7ISgaqGBmm/uxW8Pht9pVItPwZJcwoY62qQoOderUscpPyaYPige+6JPwg6Ud9FXqsmbMmDFW8cqvfOHPB/u1XCjb0qVLxR0k98dPd9ttC2Cc6vVWFm0hbBkz0efH45vpvjLesYL2uW6ZEvX1GCSqiOIqo+J8/vOf/wQqSyUaaCuvc6uo5XevnXT6+vK4Z+G5LN6A7uTJk201o3/EoJ0rsJQF5QmIuu6AFQrIoYceGtPXvY1Qjv/C1lOiovPdJhGhyP7K+m4TOYNi5QnM5o9l5c9VQIp3rbl5uut4FlHrf1COiPUehTSuWyl9vshUvxLmGbGsnrFcbv71sBz9+ZXXNvphbQ94jlSXScmWpzzfy5ItI+ORAAmQAAmQAAmQAAmQAAmQAAmQwL5CoGq6J+J+YMQH17/+9a8lssIsGJhfLy0ZOnSol/Vrr70ma9eu9bbdFZi8xKx/laOOOkpXy2TpumF45JFHBBYLYv0wcIgP3RDMvk7HxKee1KJFi+TCCy/UTcF5d+/e3dtOtNKnTx8vCgY1MfgaJKpg4d+HWWnffvutDcY5xXJVoj5+/en92xgYDTLZ7A7GXHzxxf5kdhtmwpMRMMfga5Ag/N133/V26UdN94Mn2nuQ4gQSubM6vUzMCj7OQikDg3lQRHGlatWqcvzxxwtma6vooB/qUmeaw10IZrXFElyL4IRfMu4XMl13scoVKxwfemGhBIIBf8zQChKcy9/+9regXRkJC8s4k20TJ7R8+fLA83J9ac+dOzcwTrouZdzMTjnlFG8Til6xRC1K4PxhWQayc+dO287R1tWaipse5rGvvvpq6devnxcc61y8CHtXzjrrLC/omWee8db9K/fdd58dRMQH7A8++MC/O+62e99APxDvOoJCGM7d9VWd6bbgutjQgoctY9g+X8sRaxm2r4yVb7LhPXr08KLimSCWJSK0u1j9tZdBOa24yoawZBRkZQbnlYnrPewpBrXRilr+sH19edyznnvuOdm1a1dgNX300Ude+x44cGCJdgLLXEcccYRNi2d4KNpqvxzrOSrwQDECYz2vxYiedHDYekp0IL7bJCIU2V9Z320iZ1C85p6Huw/P467VQFf5zo0Xbx3P7ypwVVZYWKibUUsMqKtyNp7r1bJdpvqVsM+ImX7GivUsGwXF2QjL0cmqTFZj9X+wFKXy5ptv6mqJJZ4v8cyIn1oUKe/3shKFZAAJkAAJkAAJkAAJkAAJkAAJkAAJ7OME0laegAuEJ5980sNz8803y5FHHin333+/DYfJ30MOOcSbpexFzOBKp06dvAFWDBbggy8+LriCAf8RI0Z41i8wMBdv5o+bNhPr+IDy4osvelnFUiDQCJj9dNFFF+mmxPu44kXyrWB2L6w8YJaUzjSH8sLzzz/vixl/051lhQ/xGHj0C2b9Dxs2zB9st6tXr+654wCHIDP/OD+YIY0navYecWD63i/uB82g2cIo41VXXeVPFriNcsKlAAZ6XcE22jT2Q/ABTGdyqRIFwjE46B9UxcfSW265xSpJII5ffvvb3wo+2IN3EAuk14+qSKsz0mDK9Ve/+pWXHUyNBw0GYlAEVjIwUALLH34FDS8DZyVTdedkmfKqqxwFFwlBA3Gw5uCySfkgCRKEZZyJtum6WYmlaASLASpoQ/46huUVteig8dJZutf68OHD7Yddfz5QVoPbHLQ3/BYvXmyjoG/GPQJtHR/yXWUCzQN+rV2FiViKSBpfl265HnzwwSglJ40D6zh33HGHvUZwnWB2dSqC6xyDkBAoPF1yySUl7jfYhwFNWIbBud99990IspLptoBZv34JW8awfb6/PP7tsH2lP79Ut+HOQpWy0AZwr/U/M+D+WZpKn6mW2R9fLR4hPMgqz8aNG6OeIfzpS3vb7a+C2mhFLX/Yvh5cy/qeBeVUPFv4BYqzbp/oKlW5cdGHQ2DR6rrrrrPr+HfGGWd466muJHpeSzU/f/xM1JM/T3eb7zYujdjrlfndxn9WV1xxhaiVFnff448/bpXYNSxVKwFI51oPhMJm0HvUqlWrou45eJdFO1fJRL8S9hnR7U/SfcZy7w2xnmX1nP3LTHD051ka24n6P5yHTpDApISgdz4oxEGRWJ+hVVG5IryXJcMM1jFgjRT3FFWeTiYd45AACZAACZAACZAACZAACZAACZBARSOQttsOnMjll19uB+fV6gQ+5KqlAT1RDKLhY7nG0fBMLaHAoQNaMIuOgblTTz3VHhMDXG+99VbUoLWr8JGpMsTLBya1VfDxCabuE8nZZ58tTz31lI0GJQh3gNxNe9NNNwk+pqhggBQfzf0uNPChBjMLUzVlj9lPmJ2L8kD+9Kc/yVdffSUYpMcgFNZh7jme4EORDm7jQxDcT2AAFVZCMLDywgsvxEtu92G2sM6IhGIDBi379u1rTf3j3NDGYNEDAkWZTz/91FprgCIKZrmOHj3aU3qwkRL8w4xdzMDGTCu0Xbh8QTtSRRRwefbZZ71c8LEMA3JIhzhQGoKiBdoitvHhyzXZ7yXcuwLf9PohEUpIGGwGK/iwR30+9thj8tlnn9nYOF93IARuPfDRF8otYITBT5T7sMMOs4OCuB5x/iq/+93vBO4XkpFM1F0yx4kVB+eGugRXDHTiwzUGdeCTHIxwbZXF7OowjDPRNjGYo4LZifgoCQ4YjB8yZIjd5X7UhyUYKPDgWqtbt67AfD8+dgcp1mi+yS5x7DvvvNP+kAbtFObf0SYbNGhgrafgWlQlI5z/wQcfbLNHu0NfptcqFHmg0IG2irRQcgJrTYt+Ji8vL6miHX744XawUGeQ4hqAlQy0YVhvQTtyzR2j73Q/5Cd1EBMJFo7AGixhmQD3HhwH1/qaNWus0oZr0QLXm0om2gL6BBW4OUHdIl+cP5QJIWHKmIk+X8sXtAzblpeyZwAAQABJREFUVwblmWoYlBnRJtHO0K+i7nA9QbFjypQp9p6nPupTzbss4kMxRwUzmTGDF888bdq0sfcCXAN6r9J4ZblM1EYrcvnD9PVgXB73LAy+wcIN+lNcv1BKQx+g/Sj6ZigZBolrSUhNyaPvRH+criR6Xks3Xzdd2Hpy8wpa57tNEJXosMr8bhN9JsVbeLbB8wLeT3bs2GEtU+lzOWLAAgX62FQF9zxco7/5zW9s0rvuusu++8CSQtOmTa1CON4v9PkM1zDeA1zJRL8S9hkxE89YyTzLuuftrmeCo5tfaa0n6v9Qv3hGV0saUJ6Hq0f003gGgXtHWE/Tezje+fBeq1Le72VajlhLfIdQ5TtYfET58axKIQESIAESIAESIAESIAESIAESIIFKScD4ei0K88vPzy8yg2FFLVu2hL8B72demItGjRpVZF6ki8yHIC/cDE54xzMzjL1w83HAC/eXxwwOe/HMYFuJeC+99JK33y2Df90MNJRIa5QTvLRB+1EWM+jmxXnooYdK5IE4Zna/F8d8qPbimA8iXrhRNPDC/efoboOp+cDipTNuGrx0ZsDUC/efX9C2sbRRZAYlvfTucZJdN36x4x7TWGEoMpYdvDhuHRtrE0XGzLK3L6iMxlqJtx/5+Mvl8nfTmw8zNq6ZKVxkBnC9PNw4uo42qEw7d+4cdYx7773XS/v0008Xoe1quqClHtctpxmcjZsOeZqBVC/fV155xSuDGeguMjPNvH1Bx0RY+/bti4zlDS+dHt/M9C9CPcdKp+Fm4LrIfBQukV7z8S/D1p32CVj683a3lTfathuOdaM84tWbnod/6V7/ZuCnRB7+PP3b4Io80T78+3Q7XcZh2yaOj/7AWEkoUb+47rR8WBoFtRJxXFannXaady2CuZs2mX7QjY+25OYdtI42aWZURh0H9WkUjRKmxbktWbIkKq17/KB1o5BVdMIJJyTM2yiVFJnZ+VF5J9tWcVz0b9pmg85bw8yswqhjZKItgF/Qsc3H6ahjpVtG5Rqmz9c8Yi3D9JWZemb48MMP47YT9AVmwMuLY5Quo/jGOjeEJ1PGDRs2eHmbwZCYeWtd+/tGPHNpOwtaGgWFImM9w4uDdqNlNgN1XriZWe2FY3+y10GsciGPZNpoRS5/un298sX567NGUN0gLMw9C32j5ovnCF0PWqI+jXJNVB1rOXVprK9E5ZHsc6qm9y8TPa8hvnsORskjZvnce4X/OGHryZ+ff5vvNsXvhvviu43bR+PZ2yhqRl0D/mvJKD6UaKNuHvHeX9Gu0JaQhz9f/zb6DaPwXeJYyCMT/UqYZ0SUIcwzlnJI9CyLd3zlgnd/pNNfWI6XXXaZl7dRTvDy1fx16d47jeWEmPE0vrtMpv9DfPeZW8/Xv8R91liXijp+WbyXGaVgj5N7bu463rW0vMYqoFdGo8TvhWM/nrfddFyPtGeyIAu2AbYBtoHSaQNm4l5G7j1nj/qmKJkf67F06pFcyZVtgG2AbYBtwN8GkrkvI44/XdjtqublNpTAtCjMS2LWO8zqwzenGfQS82HTzirOycmRbdu2ecdw/XO7ZkkRL12BNQJYGMAM6CDBTDrMqsNMbL+4ZcjOzvbvLrEdK44bruuwruBaDMAM4WQEZRq+15wy4rszvDTvWPmYj+XWZDzMZWIGIs5bZyTHSpMoHLOejNKIndXojwuz9Jjl6FrUcMsIFxOwMAGrG+ZDUFRyuFCBRQbUTzzBjLB3333XzvB242FGOQQWJjADFzPicf6umI+R1vICZnupmw13P9bd8mLWENxcBJUJ1iVg4QGWJfyC2bSw8oCZ+H6BCXjMDEXeQQLrIXCpAisfYOIXM7gvMCuMNu6a1dd44Ao+OrNNw3WJcsNCCKyuKDPdF28Ztu5QL5BatWrFO0zcfc2bN5dPPvlEzMB/iXhwu4A2rjO4SkRIMsC13hIrSbqMw7ZNlAf9wauvvipow/727ZYXrmlg1SGoDeEahongWOeaaj8IayhGOS6wPCgjzF1//vnnJWYwoz7RH8CKDdq1X2BNA/nCqgNmZaYisLIBN0AoW1DeuA4wAxR9hb9NptJWcR1jpmAs1w4IhzsF18w1ziMTbQH8MJvP74bIva/iWOmWEWkhYfr84hxi/w/TV7rtNMwzw9FHH237xKBrBSbT0V8HtaHYZxXZk2oZa9asGUnsW9NzdO9RiIJnrjfeeMNzi+Umg7UT9PexLKu45fPnm8p14B7TXU+mjVbk8qfb1yuD0r5nuXWG+yL6WfRtfsEzDJ6vMGM7nrjPzTh3PG+FkUTPa8jbvQ+57TGV44atp0THQrn4bhP9fKxtb195t0EbQD2PGTPGPnegTbmC7XvuuSfQ1YbbbrWfdtO664gL61/os4PcheE4sA6D+47rXsPNIxP9SphnRJQlzDMW0oNDomdZt2/Q+xHSQsJydOvMn3fxEcL/T6b/w1FgnRAWKNRypntktAdYpIA1NjwTu1KW72X+68Eth/YFCHPrDM//N954o42K9WuvvdZNxnUSIAESIAESIAESIAESIAESIAESqFQEqkD7Ip0Sw6ypmhnFh6N45tVhWl5NAsMcdry46ZTFTQNz9TBjvXnzZjug36pVqxIDZW58ridPAL7hwRaKMRiYgQlb92NUopyKioqskg18yuMDUKKP+kH5oX537txpj4sPeUEC/8EoJ9oZjpOKwoCbn5nlZE2oFhYWSrNmzZJut/BXO2/ePMESA3CuYombf6x1cIbpVpxn27Zt7QfLWHH94Tgmzn39+vW23aOOEn3Y9ecRtJ2JugvKN5UwmIOFuw4MFMMFDVzHlIeEYRy2baItGqsJlgE+bLofLV0WMNmONog4aAOxFIfcNOmsozw4J7is0HqJNWgblD+uZyjeIS3M/bsfZIPiJxuG9opy4R6Fc4cCWWkwgGIg7mno0xo1amSVSWLVib/sYdsC2iGOi3OFmX2/AoUeL0wZw/b5WoZYS5xDmL4yVr6phGs7wb2sQ4cOEk+ZIZV8yyou2gDuFyg3zKKX1qBQOueTTBut6OUPcz8ty3uWsWYiS5cutf0AnhviDXy5dQnl1wsvvNAGYQD3gQcecHeHWk/meS3UAfYmDnNP9h+f7zZ+IvveNp4jVakcLhHUtR2eZ3AN4Z4OZQW8PyZ7P0+FEq5VHAPtFs8NOFYqzyeZ6FfCPiOGfcZK9lk2HtewHOPlnYl9yfZ/eF9De9izZ49914TicKznObdcFeG9zC2Pu47nTjzPl8b14x6H6yRAAiRAAiTgJwC3pl27dvUHp7w97JEJSaV5+YYBScVjJBIgARIgARIggXAEyuvenLbyBD4wYaBBBTNt/TMksA+zTIxZYBsNsxAwUEYhARIgARIgARIgARIgARIoHwJQFOjbt6/3XD5z5kyrxFY+pakYR+W7TcWoh9IsRSzlidI8JvMmARIgARIgARIgARIofQJUnih9xjwCCZAACZAACZQHgfJSnqie7sliRg7Mkr/88ss2ixNPPFEuueQSaz4YM52Nn1CrOAFzqCp/+MMfdJVLEiABEiABEiABEiABEiCBMiIAazKwzIYPi5hxrwrNcFcD6z/7u/DdZn9vATx/EiABEiABEiABEiABEiABEiABEiABEiABEjCuKsNAuO2222T8+PEyZ84cax4dPl1jyRNPPCEjR46MtZvhJEACJEACJEACJEACJEACpUQAbnL8VuLg4oPKzRHgfLeJsOAaCZAACZAACZAACZAACZAACZAACZAACZAACeyPBKqGOWm47YC7jltuuSXQvzI+yB5zzDHy8ccfU3EiDGimJQESIAESIAESIAESIIEMEujevbtVgqbViQhUvttEWOyLa1Wrhnr13ReR8JxIgARIgARIgARIgARIgARIgARIgARIgAR8BKoUFBQU+cLS3ly/fr21QrFhwwbBB1m476hSpUra+TEhCZAACZAACZAACZAACZBAeALbt2+X77//XmrXri3t27eXJk2ahM90H8+B7zb7XgVv27ZNCgsLpXr16pKTk7PvnSDPiARIgARIgARIgAT2QwJwTdi1a9fQZ15eftVDF5wZkAAJkAAJkMA+SqC87s2h3Hb466Jhw4YycOBAfzC3SYAESIAESIAESIAESIAEypFArVq1ZOjQoeVYgsp3aL7bVL46S1RiKA9RSIAESIAESIAESIAESIAEKieBgt2Fkl9QKLk51aQqJ+1WzkpkqUmABEigEhDIqPJEJThfFpEESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESKACEygsLJLvZq2Vt75fKjOXbpGNWwu80rZunCPH9msuJx3YQpo3qOmFc4UESIAESIAEwhKg8kRYgkxPAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiSQEQJL1+bLTf+YLEvMMkgQ/vdP5suYLxbJ3Rf1lkFdGgdFYxgJkAAJkAAJpEygasopmIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAEMkxg1rLNMuLR76MUJ1o2zJGhfZrIiQc2F1idUNlesEdu/NsUedkoURQVaSiXJEACJEACJJA+AVqeSJ8dU5IACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACWSAwM5dhXLbS9MEShGQWlnV5I/n9JAhPZtI1apVvCNs2LpL7n39J/l25job9tQHc6RWdjU5Y1ArLw5XSIAESIAESCAdArQ8kQ41piEBEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEsgYgRc/XyjL1he76qhfJ0uev+5gOaJ30yjFCRysQZ0aMuqSA+TCI9t5x37q/TmydWex0oUXyBUSIAESIAESSJEALU+kCIzRSYAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAEMkdg155CefXLRV6GN5zSRdrm1fa2/StVq1SRS4/tIO9NXC4btxZYaxWTZq+1yhb+uHDpMXnBehk/a70sX79d8o1liyb1akq7JrXlmL7NpGFuVlSSifPWy6xlW2zYUb2aSAvjNiSWfD1zjSxas93uPtJYyGjZKDruglXb5NNpq2Tpmm2yZcdue9xOzevIsf2aS27N4CG6DyYtlw3bdkltY03j9IGtZNm6fPlhwQaZbMq1efsuucgojfRt38Ar0p7CIvnenPvCVdtl3sotsm3nbunSoq50blFHureqL3l1o8/PS7h3ZYex+PHJDyvkZ+MyZdXGHYZHtnRqVkdOOLCF1M2pLi6PXxzUQurXquHPwrpNmThvnYyfvV6WrtsuKFOLBjmmnPVlSI8mUr1axHJIicQMIAESIIEKRCC4Z65ABWRRSIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAE9l0CUxdu9Nx1tG6cI0P7Nk14stnVq8o1v+gsr+xVuli2cWeJNEvX5sstL02VeSu2ltiHgEf/M1suP76jXHxUO4FCBmTBym0CSxaQHUbR4rJjOth1/79CoyBw3+szrfIG9kGxQAUKGw+/87O89d1SDYpaPvz2LPnr5f1kQKdGUeHYeG7sfFm9aYdVtOjcPFdGPjkhKs6xBzSVvlKsPLFw9Ta557XpMnPJ5qg4X09fa7fh+mTUiAOkf4eIsoUbce6KLXLlUxM99u6+58bOkzuH9ZJJczfIq18ttrsO7dq4hPIELH5c/9ykEmVAgv/7Zok9j9FXDZAm9bPd7LlOAiRAAhWSAN12VMhqYaFIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIYP8gAIsFKr3b1fcUGTQs1vLE/s3lhesH2d8FQ9pERYPixIhHvy+hONHSZ0kCSgKPvDPLSzu0T0RxY+ykFV64f2Xa4k2e4sQRvfOilApe+GxBCcUJ/3Gvf+4HgWWKWLI1f5fc/K+pJXbn1CieF71m004Z9vB3UUoLcHfSpWWuQGkCst0of1w7epJMmLuuRD5rNhfIb57/IUpxAulglUPT3vyPqTLDp5jhZrR7T5Hc/vLUqDIgD5RDBYogN/3zB2vxQ8O4JAESIIGKSoCWJypqzbBcJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJLAfEFhh3GmodDQuI8JKoTH9cO/rP3mKAbBm8YezekiPNvWkRrWqstpYqfjIuKoY/dFce6g3jYWIw3o0lkFdGksj48YD69/MWCvL1ufLXGO1Aq42/PLFT6u9oF8YFxcq/52yUp41ChkqD4zoKwd1bCTZNaoKFBZe+XKhZ8nh//3tB/n7dQOlQZ2SrjCg+IDf8f2bybmD2wq4VKtaRfYayJDXvim2BoHj9O/UQG4/p5fk1Su27rDTuOIYPXaud5wPJ66IsnJRsLtQbjYKDXB5AoHCxU2nd5NureraY8BVyFvfL7VWPaYZqyCx5JF3f5Zxxh0KpKNhdOvZPaWzWVYxhVy8dps88NZMmTJvo1Vguf3fP8qoiw+QquYcKCRAAiRQUQnQ8kRFrRmWiwRIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgAT2AwLrtxUP4uNU22dAeWK6sQoxdcEmj9wDw/tJ3/YNrOIEAuFCAq46fnloay/Oy18s8tZPMhYtVL6cHlGS0DC47Bj7w0q7CUsLB3cpdr+xa0+hjHpjpkazrjkO65ZnFScQmFc3y7oaOWavWxJYZQjKXzM445BWcptRiuhqlBuqV4soTmB/7ZrV5dSDW8qZJs69F/X1FCewD4oaV5/UWdTaxbg5Ecse2D9z6WaZvWwLVq2VCCg19DSKJVDOgLRslGPTn3hghIPd4fybtWyzvP39MhsCSxMPGcYoJ5QjoODRNq+23G/yheIK5NuZ64xCRURJxgbyHwmQAAlUMAJUnqhgFcLikAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkMD+RGCdcUGh0qphLV1Ne/nl9DVe2utO6SJt8oLzvPbkzp6Li8lzN8j6LcVKHId0z/PCPzYWKvzyk+Oy45SBLT2ljCkLNnjWLo47oGmUtQfNo6rRLLjihE66KVBCiCVnGeUOtTThjzN8aHv53S+7y43GYkSuUaTwCxQhurTKtcGwMKHnhoBZRnlC5aoTO1llEt3WJY772zO762aJ5VfGMofKFcd3DMwD5RpxTHuNJnOWR47rBXKFBEiABCoQgZK9aQUqHItCAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiSwbxOokwO3Ffn2JDdtL7CWD8Kc8byVxVYVkEc3Yw0hlsCFR+/29TzXE0uMq4mGxm1HdvWqcuJBLeSNb5fIkrUlXXd87rjsOL5fMy/72cu3eutZNarJ0jXBlhYKvVgiUMQIEli0gPWGZAVWL7bm75FtO3bLtp3Fv89+jFjN2FMUyWnmksgxYS0iloBD73b1Jch1x89LI3lk16gS81yrVYnM4561bKsce0CsozGcBEiABMqfAJUnyr8OWAISIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAES2G8JNDLuLFQWrt4mPVrX0820lqs2RixZtMmrEzePjs1yPeUJ1zoDlCKgPAH5asYa6dS8OB/XZQdcUnRtWdfLf/2WyHHfm7Bc8Esk81ZslZ27C63ChhsXCiWxrE5ovDWbC+SdcUtl/Ox1AlclyQrcdqi0SaCgAeWKIOWJ1Y61kD+NmaHZxV3OWLIx7n7uJAESIIHyJhBR9yrvkvD4JEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEAC+x2BxrnZ3jnPNcoEYWX7jj1eFrk58ecR160FqxfFAiUGFShwtGyYYzfHTo4oQUw3VhvgBgNy2qDWdqn/8ndGjqthySy35e9OJlpUnMnzN8gFD34j//jv/JQUJ5AJrGuobNoe/9iuQoimwXJLgnRuXF1PdCyNxyUJkAAJlBeB+HeM8ioVj0sCJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJLBfEOjZpp68/f0ye65zVkRcbqR78nn1smX1ph02+dJ126Vdk9juLxasiihr1KsdUaSA1YdTB7aUpz+ca113zFu5VTo2qyOuy45j+jSNKmKDOhGlhGtO7iL+/VGRnY36znGd4JirBUbJ49rRk7z9A7s2FFjKaNWottQzFitq1awudYzSyP1vzJCxk1d68XSlV9sGMnVBsaWK+au2SF7dRrqrxPKnRRErFe5Ol/Fz1wwwedR0dweuV6tqoFJIgARIoAIToPJEBa4cFo0ESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAE9nUCg7o09k5x8twNsmjNNmmbwJ0EEoweO09e+HSBTfur4zrKiKPb2/Wm9bONNQa7KouMckQ85QnX0kVe3YgFDKQ+um8zqzyB9S+nr5H2Rgnjo73KCId0ayRQIHClsZN+8/aCEvvduGHWpy2KuL/oaNyJPDyif6CLj8VrtgcepnurXC987KQVMrBzsPLEpPnrPSUUL8HelSYO4835u0K7WvHnz20SIAESKA8CdNtRHtR5TBIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgAUsAbiSgjKDyyLs/y57CIt0MXK7euNNTnECEkw9q4cUb1DWijPHepOVSWBSc1/TFm2TeXjch9Y3ViA5N63h5YKV5g5rSv1MDGwbXHa7LjhMPjBxPEx3YsaGuWmWLnbsibkC8HXtXcGwoQcwwbkBSlRlLItYgzhjUKlBxYsPWXTLTieceo2vLut7m2B9WypivFnnbugLFi9//Y6pullgO7BKpr89+XF1ivwaAAc4Tv1jKHBqXSxIgARIobwJUnijvGuDxSYAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESGA/J3CtcXOhMmH2Brnt3z/KjhjKB7OWbZYb/j5Zo8tJBzWPsvJwWI88b9+3M9fJC58t9LZ1Zf2WArn5XxHlgF8Y5YuqAW4lTjZ5Q5aszTdWKOZochncPXIMDWyTV0vgggSycNU2uXPMtEAlkLfHLZWRT06QXz81Uf7+3/maPOllh6YRNyQzl0YUKTSDLTt2y+2v/KibJZYtGubIb8/s5oU//t4c+fXTEy2n//tmifzx5R/lssfGyfaCPV4c/8rg7k2kVlY1G/zehOWBChi79xTJqDdn2PPEuX7981p/NtwmARIggQpFgG47KlR1sDAkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIksP8RgJuOq37RWZ56v1hB4Ytpa+SUWV/IhUe1ky4tc6WmGahftHqbtaaAwXoVDOAPO6Kdbtpl/Vo15P+d3lX+8vYsu/2cce8xad56Y90iTxrWriE/GasPn01bLRu3FhTHN1YnLjqqnV33/zu8Z1MTNMMGT11QbCXitIEtJbtG8PzkP1/UV4Y/+r3N+8uf1sgIo4QwxChzdDOuMjYaaxBfzlgtUOhQueioYlcjup3Msm+HiIWL9w2LtZt3mGM0kWbGUsbsZVvkQ2NtA8oe8eT0ga1MnO0y5sti/ybTFhrrEObnyoAuDaRjs1wvjruvQZ0acv/wvnLds8VKLFDAmDh3vRzYqZG0aZwjy9bly5vfLfHKgXo6ZUBJax1unlwnARIggfImQOWJ8q4BHp8ESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESECGHd5WsqtXlUfeKVZ6gOWDZ43iQyyBlYe7Luht3Wv445xhlAMwgP/qV8XKAZPnbhD8/AJ3HY9c1k9yawYPmeWYQX9Ytvhg4gov6fH9i61ReAHOSl7dLHli5IEy8onx1nID3IKoaxAnml297dye0rddfX9wwu062dXk+lO7yl/fLeY0btZ6wc+Vvu3rScPcbInnUuPqEztLs/o58u8vFsnqTTu85FB0uPS4jnLmIa3kH3EsY8BNyR3n9ZS7xky3ab/7eZ3g5xfk9/RVA2Iy9sfnNgmQAAmUF4HgO0F5lYbHJQESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAES2G8JnHVoa+neqq68/OVCgfWJIGlp3E4c26+ZDD+6vdSoFmwBAi44rjOuQPp1qC8vf7G4hFUFDOifOqilnDeknUDhIZ6cYJQlVHmiSb2a0rttsWuOWGnaG7caT155kHGDsSBQeeGoPk1k+NAO0ql5nRJZ1KhWxYZl1yheloiwN+Dsw1obSxPZ8tzH80soZ1w8tJ1cdGR7efy92bGS23AwQj74bdq+W7bt2CU1a1QzShcRHvmO644qAUU6rl9zqWmUOV76bJFMNxY9XAHjM019nju4TVSebhyukwAJkEBFIlCloKCg6P+zdx/wVVTZA8cPBBISkhASEgihBELvRZpdQRAVsS4qNnRX117+7tp2dXfdRV27a1nLWrF3xYJiwUKR3gk1QGgJ6YEUEvjfM2HmzXt5L7yEYEL43f083sydO3dmvvOS+Nk575z6dEKcCwIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCBwIIHU1FTp3r37gYYdcPvEx+YecIwOeOOWIUGNY1DtCWTml5qyD7tkR26xaExB65hm0jkxqkYZDAqKyyTDzFNWvk+iTVmP+OgwabI/UKH2zrjyTMV79lrHLSotk+jwUEmICZMQE7RQm62odK/JsrFLQpuESGJss4ABJfYxS8v2SlZBRckSDZbQEhyB2lVPz3WCIqb+9YQqx+YXVRjv3bdP4kzWi1iT1cNfwEWgY9GPAAII2AJ19beZzBP2HeAdAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEECg3ghoRogDZYUI9mS1LEdUm8qZHoLdv6bjmjVtLB3iI2q6e1D7hYc2NlksooIaq4NyCvfIeQ/87Ix/9ebhfrNgfLNomxM4oRk3qgqy0Mmiw5uY129v7FwICwgggMBBChA8cZCA7I4AAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIDA4SLQ2mS/GDOojUxbsN065ZteXCBnHNXWlEuJMqVAwk1WihKZvmi7fL1oh3NJWgqEhgACCDR0AYInGvod5voQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQcAlcOSpFVmzKM2VRiiS3sFSm/JDm2uq9eNvZPeTs4e28O1lDAAEEGqBA4wZ4TVwSAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggEEEiKC5fXbhkhl4/sJBGhIZVGad+Qbi3lyasHEThRSYcOBBBoqAJknmiod5brQgABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQCCAQGiTxvKH0SnWK7+oTDZn7pL8oj2SHB9pync0k0aNAuxINwIIINBABQieaKA3lstCAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAIBiB6PAm0rtDi2CGMgYBBBBosAKU7Wiwt5YLQwABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIFgBAieCEaJMQgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCDQYAUInmiwt5YLQwABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIFgBAieCEaJMQgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCDQYAUInmiwt5YLQwABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIFgBAieCEaJMQgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCDQYAUInmiwt5YLQwABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIFgBAieCEaJMQgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCDQYAUInmiwt5YLQwABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIFgBAieCEaJMQgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCDQYAUInmiwt5YLQwABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIFgBAieCEaJMQgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCDQYAUInmiwt5YLQwABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIFgBAieCEaJMQgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCDQYAUInmiwt5YLQwABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIFgBAieCEaJMQgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCDQYAUInmiwt5YLQwABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIFgBJoEM4gxCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCNSFQPnefVJYXC4tInis5eufmVcir36/QXYXl8klJ3WSTq2b+w5hHQEEEEAgSAH+ygQJxTAEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIHfRmDF5jz5cFa6LNmQK1uyi6yDRoSGSP/OMdKzXQvp1SFaRnRv9ducTD0+ymsmcOIj46Qts6BE/vOHwfX4bDk1BBBAoH4LEDxRv+8PZ4cAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIHDECBSaDwr1vLpE5qdmVrnl3abnMWpVlvXTj6AGt5c/n9pbw0IZZpT4tY5cs35RnOfTu0EKSEypnlSjeU+44lZTudZZZqJ8CwdzT+nnmnBUCR4YAwRNHxn3mKhFAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBei2wLbtYbvnffNm8syLThJ6sZpsY1LWlxEc3kyyTWWHV5gLJyCu2ruPrRTtkZXq+PHDZAL+BBfX6YoM4uSVpufLgByutkbef29PvNV5yYifJKSyVIhNE8ccxXYKYlSF1KRDMPa3L8+PYCBzpAgRPHOmfAK4fAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEKhjgb1798m9by31Cpz48zk9ZezgRAlt4skssXffPpmVulOe+GS1Vc5DAy3unrJEXr9luDRu1KiOr+K3P3yH+Ah5eNLA3/7AHBEBBBBogAKevzYN8OK4JAQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgfov8OHsdKdEhWabeP66ITJ+WJJX4IRehQZIHNMjXp66+ihJig23Lixtxy6Zszqr/l8kZ4gAAgggUK8FyDxRr28PJ4cAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIINGwBzTrx8rcbnIu89vSu0rtDC2fd30JCTJjcclZ3ue2lRdbmKTPSZET3Vv6GSmnZXvluyQ5ZsTlftuXslrCmISbwIkKO7dVK+naM8btPeuZumbEy09o2onucVTJj9ZYC0bILSzbmSogJ4ujUJlKGdIk94LmaZBkyb12W/Lo6W9Kzdku5ud62LcOlf6cYOa5XgjQJ8c6Y8cX8rZKza48sM8exm2bbKCgus1bbxDSTkf1aW8vbc4rl26U7rOWjUmKle1KUvYvX+yZzPd+Zcek7d0vurlJzPZHSw4ztkRQt7Uz2ipq2/KIymb82S9abAJa12wqkmckS0rVdC+ma2Fz6dGgp4aGVv8dd27YLN+TInNQs2Zq9W0rL95praiHdkiKlp3mPjQqt8tJyCvfItIVbZYM5/8z8YolpHiod45vLqP5tJCmuIjgn0AQ7cktkaVqOpG4tkLSMQklo0UxSzGdCP7vdjau7Veee+vq0i4uwPnOL1+eaMjV51nFuHNddPjIBR5qJJTYyVMYOSnQfzmu5sKRcPpmTbvXFRDSV049q67X9QCuZeSXGaJu5xl3WZyfJnE+v9lHGKFFCGjeSz+dtldzdeyTM3Pvzjm7vTBfMdWh2GXcrMT+rPy7bYQKpzM9qbkX5njYx4dbxTuzTxvzsVv486e+Pt37eZE3TtmUzOalvxc+Ge15d1p87NdNjdGgVbv3s2WPmr8uWVebnW9uZQ5MkqlkTWWp+/mabz9X6HYWiSW3axzU3cydIj3be99aeg/eGIUDwRMO4j1wFAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIHBYCizfnCe5haXWuWs2CX14GUwb3q2VjBnURrILS6zh+gBXHw6729pthXLTiwuc+d3bpvyQJkf3jJPJl/SXpiHeD2VXmIfUz3y+xhreKqqpfDl/m7w5Y6N7d5HFO+SFaevkvGPay41ndLMeJHsPENEH1ze/MF9WmsAN3/beL5utB+HPXTtENBjEbtqvgRru9uOyTPNQuSKYY1j3WCd4Yt32Auc8bzu7R6XgCQ3cePSTVfLhrIqH5/acs1Z5MnVcPrKTXDmqszQ2D8Kr035ZlSmT31tZyfbrRRXBHMmtm8ujVwyS1q5r0/lr0/ZWc2+Xb8rzOu2fl+901idf3FdOCPAw/csF2+Sf7yx3xroXnjf39apTu8hlJyW7u53l6Yu2mzIzy5x134UJx3WQq83+GlCgrTr31O0TZwIjXvh6nXPvdS4N0rj5TJGXTP/u0nLtkmN6xkt0uP/HvjNXZDifkfPNZ7U6TYM+/vXuCp9dKj47r32/Ue43Pztv/rhRNPuLZoxxB08Ecx3uiTVA6J4pS51rcm/T5YdDU+VvE/tYmWfc28rNh9z+WdWfjUDBE4XF5fLYJ6nWrif3S/AKnphuPrOf/rrF2nacsXzs41UmYGS7+zBmOVP0d8YZQ9rKHef2sgIqfAaw2gAEvP8SNIAL4hIQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQOHwH9drfdRg5o4zcIwd7uftdvg98zoY88fuVg6+UbOJGZX1opcEIfPLvbzJVZ8vBHq9xdlZbf+yXdCZzQB8S+c7xvgh302/e+rax8n9zzxmKvwAndP8Y8ELdbRl6x3PbKQina/xBc+7skRkp78814d9P9tE9fraK9r8E9znf5pW/XVwqc0Lnc7RWT9eOO1xeLfoM/2PajeSD/55cXewVO6LlpwITd9IH6Ff+ZYzI6VATG2P3u95raajaRv0xZVClwwvfa7jIP49/8qSIrgfu4mmnAN3DCLgNjj3v+q7VWVgp73X7/cNZmr8CJFHO/Tugb7/W5eMccc/K7nsCMmt7TV8z9s4Nm9Ph6fRHNQqxyNuNMWRu7/bI/S4q97n63M5No3+iBbdybqlyevz67UuCEfnZtY72/fzaf3VyTJeVALdB12Pt9bzLDaBYZOxhE+/VY7p8V3aafuW/N2EPZHv10pVfghO/nYurcrfL2/kwXh/I8mLtuBPyHINXNuXBUBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBI0xgqyllYbejura0Fw/qvXjP3ooHu/szWmiGiitHpVilGDSoQbNd3PX6Euvhvz4M7ZDQXCYe39HvMTVrhAZMPHBZf+naNlIam6gNnf/Jz1JNOYSKb6v/57PVVjkELWNgt8c+XWXKSWRbq/qA/e7ze5tyFpHmG+uNZNPOXfLvj1bKonW5ss5kx7jnzSXy4KUDrOwPOk6bfhP+wQ9WWss3jOsWdEYOa4f9+7/0zXp7Ve65oJfJtJFglSTILiiVX9dkyX37My/8smKnzDHrgUqfOJOYBc1m8fL0DU7XxScmy8UnJVvzaqeWefjHu8tkwdocy3d2aqaMG+J50O/saBZqYqvHf+D9FTJ3dY41lT7cvv28nlYJllCT6UFLlOgD9hdNZgZtT09dLacNTnSykmj5iTteWWxt039uOKOrnDq4rbVdg1h+WJbhBFb84+0VktgyQvole8q7fODK4uGb2WK1KeEx6Yk51tzTTWaSa8Z2lTamlERN7+nmnUVWsMJdv+tlzqGlxJkyJFqqQ9toE2ikQRravluy3W/pDi31Ymfi0OCWXu2rLodjTWb+STfHvcMEKtjttKMSRe+zljTRIJs15jP73LQ1zufbHhfovarr0M/i5Pc82S1OMlkhJo3sLJ1bR1rTbTAlUV6evt5cY4a1/oAZqxbx0Z4gpEDHrUm/fq40QOTei/rI4JQ4q/SMBgB9s3i79VnSOZ8yn6nObZrLsK5xNTkE+9RjATJP1OObw6khgAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAg1dIKOgouyGXmd8VPBZFapy+WROulP6Yki3lnLXeb2twAndp0lII+lvHoY/MmmAM8UrriADp3P/gj5IfeIPg6ySGBo4oa1Z08Zyy/juTrYB/VZ8hgkasFvqlnz5eHZFYIV+e/7hywdW7G+CK3QKfQj9gAmW0Afa2jQDxqadniASe56avpeYzAx24IXOcYcJLhgzsK0T4BBrHsKfOihR7jy/l3MIzagQTNPAkV7to61gjt+PTjHlKVKceXX/+BZhcsc5nnkXrq8IcvA3d01sV5jAF3dJhcmX9jcPuWOtbAx6jA7xEebheyerpIt9TC27YrdnvlzjZDjQ87/guI5OYEW4uddjjYuWQLHbBzM9LhpUoBkXtA1IialUEqRb2yh58qpBcs6IdpbP1pwie5oavavPCzcMtUpRaOCENvsz2KNdtNfnJ7+orNIxZrkyUowb2q7S9kAd3y3d4Rjpdd5u7qd+ZrVpeZfuSVHyj4n9vTKNBJpL+6u6Di2fYmec0CCjv/6uj6S00SAjsV4aRPEXk2GmmzmmNh2r5UQOZfuHKfdyrCnfER5a8ShdAzUuMqVYtByL3bSEB63hCZB5ouHdU64IAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEDhsBLJcQQdR4U39nrdmC3hjRprfbXbnxBOSJdlkkND2rfnWv91uHtfDCpiw1+13ffh8xpC2opkn9IHs9pxiK0uAvd1+H2SyYegDed/WNKSxnGi+Jf/u/m//b83ZbbIUVAR//GQyOdjt6jEpkhATZq8671HNmsikUZ1EsxtoW7M13zl/Z1ANF+at9ZRCGdY9NmDmh9NNxoWy8r1SbK4/MoC97ynoA+U/nd3Tt9trPSku3Hpgrq4rNuV5bXOv1MR2xvJMZ4prT+tqlTlxOlwLN5/ZQzSYQVtKYsXnorCkXDTLhjZ9oH/5yZ2sZd9/zh7eTl77Ls0ExBTLkjTP+Tcz+9gtbcdu2WkyErTyyYCggRz6qo12dM9WVX4mxg9vb2VB0GNp6Q4N/HA3d8mOkf1auzdVubx8c66z/c6ze/n9+YkMCzFBFT3lmmfnOWMDLVR1HdMWegJb7jbBPGEmMMm3hZmMIrrtsscrsnp8bfa57KRk32G1sq6/EwJlYLnWZBLRwJ1ck9Fm1aZ8KwvL/niqWjk2k9S9AMETdX8POAMEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBA4IgViDOZCjStv7a83aXSMrJyAEXOrlL5Yp7nIas/rFNNaQYNntCyBst9Htinm1IO/ppmobDbuu0FfoMn+nbwlGywx9rvrc25263YPJi326p0zwP3sKaNJNDxQxp5HhSnbimUUzzJMOypavSuD/btpiUOAjV98HvWsOAzEgSap8Rko9DMB0UlZVJYvEd2mXc7m0CgfbS/JrZrt+U7U/bqEO0s+y5Ehzexskq4+zfuKHRWNVhkSxXZPpru/2xoAIVem86ngRJaJmRLdpH1AP3Ch36R847tYLIUtLIyI2hATW22gSmB750eZ5QJiNASEtp8S3e4S3YM6tLS72fb2tHPPwvWVGQL0QCTpFaVA4fsXbonBfa3x+h7oOvQEiBatsZunU3GiUCt0/4yHrpds3+Um33dZXIC7Vfd/j4dA5c20d8XfTpGW6VQ9PO9zWQWaWs+D7SGI0DwRMO5l1wJAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIHDYCSSbcgCL1lV8010fRtrZI9wX0iKiqVUio9RkSXA3/Qa4byso8gQx6LaJj8zyHeJ3ffXWQjnGpOr3bfEtKsol+PbrelhTTyYC93Z3CQ87s4R7u7/lFa5v+/vbXp2+na5SKCltKrIuVGf/YMauTM8XLYfx6+qdTvBLMPu5x9TEdkeupzyK+4G6e95AyxqEYzcNipjw8Ex7tcr3NSZgY3DnimwS913cT67/7zwrOEQfoL/23QbrpRMc3TNOxgxIlON6J/jNoFDlQfxstMtG+NlkdWmJFM0sMic12yr9Ygd56MbZqzwZOs44yjsjRaD5tD/TZNOwA1+6JlWUzwg0XrNEaOkZO/gp0LhA15G321NqJLl1c6kq+EQDJbSshx1skVO4p1LWj0DHr06/lgmpqnVLrAie0DHrTTAOwRNVaR1+2wieOPzuGWeMAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCDQYgfaub7ZvM9/o99f0geZHdx1badNf31hivnGfYfVHhlVkrNDsBzVp+UV7arKb330KXA+F/Q7w0+l+kOxnc7W6Svd4AkgiTHmQ2mwmsYd8MGuzPPZJam1OG/Rce0yWC7tpZoTqtJp+Ngp3eT4b3ZOi5JWbh8unv26RD2dudgIN9DxmrsyyXnpeD1zev9bKd1R1jacNamsFT+gYd+mO6Us8pWuO7x18yQ7NsGG37AJPsInd537Xz0KWCbaoaStxfU5j/GSc8Z03NqqpCZ6o6HXv6zvuYNYDlQ6y54x0+eS5Phf2dt4PbwHPp//wvg7OHgEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBA4DAUaB/vKQswffF2OWdE+6CuQstzzF6V5Yy1M1bERHpnivj4ruOcMVUtNAur3oP4qubSjACa2UDbC9cPkfjoZlUNt7bVZgmC2ChPOZGNpsSBnTXhgCcRxIBlm3K9AifOGp4kQ7vESpvYCIk0gRpRJktIc2N55r9+skpbBDFltYbERodZZTN0p02mHEsXk40g2Bbd3PPZ0CwRfz67V1C7RptrcrekuHC5ZmwX+cPoFEndki9LN+bKTysznQwqmrnhxucXyKsmyKI65+c+RrDLx5osF3azS3cUmhIyPy/faXWPNeVswqsRZKLZJLqZAJHVWwqsjBJF5loC7a+ZYuwsFfY5VOe9petndfXmggPuumbrLmeMe1+7U38nBGplPllrAo3bvHOXdHD9TvIdtynTcw727xzfMawfvgIETxy+944zRwABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQOe4GeSS2ca1i8IU/mr8sO6hv7G0xQgP3gVksH6ENfbc3Mu37z397W3DzQj6jFwAjnZKtYSIgJk+WbKgZoRote7T3XWMVutbYpwQQY2G3ttkJ7sVbe567Jdua54PgOcsPp3Zx1e0Ef3vsrqWJvP5j3RGO7dP8EG3YUVCs4oZUrqETLPmiQy8G0JiGNpHeHFtbrguM6ilo/8MEKWbk535r2l1U7q3V+NTkX/byfOTTJyoShmS+0dMevqRWBEzrfmEFtqj1tH3NNGjyhbfqi7TLOzO+vTVu43V930H36M2v/rOrPq2a6iI3yBLi4J9LMLO7PlP0z3bhRI2dYdoEnQ4jTuX9hR67/rDa+49ab3yv+yvfY41L3u+h65zbBB+7Y+/NevwUq/orU73Pk7BBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBqogD4s/b35Br/dnv1yrRS7SjPY/e73ErP96S9WO12DUmKdZV04rne8s/7TCk/5Aqdz/8JOU3JAswboK+sAJQp8961qfVi3OGfz9/vLijgdrgW9Dvv4mkUhUNuZXxJok9/+o7p4jv+NecC9PaciC4bvYL3+Cx76RU6/70e59r9zfTf7XV+yMcfpP21wW2fZvbBgnScjiLu/NpaH9/Bc2weztsieABkF5q7Nsq5Lr+2Fr9dZh+6U0FzszCQa4JC+M/ADdb0f9r3R+6RNHTVAQl/+PqOaZWLSqE7WWP1nzdaKIAqnw7VQ3Xvq2rXS4pjBngAJLd3x7dKKz7xe66DO3j8blXb209Ev2RPs88AHKy0H32Hfm2O8uN/Vd1t11o/r4/lZ/XLB/pocfib4cv4Wp3f0AE8ZEs3YkhQbbm1bZ+5LaZmnrIuzg1lYuCHXvRpw+fO5W0SzbfhrmmXEDozRgK1AGTn87Uvf4SFA8MThcZ84SwQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEECgwQrot/bdD7WvevpX2ZLl/8G2ZjW45X/zZU5qRQYE/eb6lad4gi8UaYwpVWC3f7y9wu/DX/0m+/XPzZU/PjPPem03JQhqqx3bM8H6Rr3ON3XuVnn7p42Vpi4r3ycPfrjCOf7PJkuBu0WFexLIz06tXjBCYmwzGZASY02n3+j/yxtLKj1U1hIHk99fZpVm0G/0D+3Wyn34gMtd2kQ729ZsrchO4HSYBc0I8uAHq9xdtbp8tMt2aVquaLCNb9OsEn97a7mVqUCv7aiuFQEEjc2D9rOGebIo3Pq/BaJjfZtmF7jw4ZnWvbn1xYViF4P4dskOuezx2dbr3reWiL8yEWk7PEEwCS28y7UczD31PUf3er+OMWIf64OZm+XHZZnWZs1IUZNyMCP7txF3gIL+jNz+2iLrc/zGjI1ywwvz5S9TlrpPocbLowd6Aj+e+WKNzF/vyWxiT7ooLUf+M3WNvSqjXPtoZ+8Ons/k5/O2OuPsBQ2EeeZzz/52v7/3zSag5l/vLRffCiCa0eOOV5c4uwT78+LswMJhIeD5rXtYnC4niQACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggg0NAEwkMby21ndXceyOo3yC83D6lP7t/aKnnRznzLOy1jlywzD8t/XZvjlb7/9nN7SpxPqv9hXePkqjEp8vy0iowD+vBXHwYP6hIr0aaMx/qM3fLmD2lOaY8h3VpapRdqy7VlZFN54PL+cuPzC6wp9cHvvLWmHInJCNHBXIsGhnw4a7MVuKADNABk3BDvLA6JLSu+Ta/bl2/Kk+uenycn9WktXdpGyoDkltpdZbttfE+5+NFZ1hj9tvzFj8ySk/q1lp7tomTt9l2iGQrs0gw6aPzQdlXOZ28c0i1W3vqxIhjkvneWW9c13GTaaGpKWCxPL5CPzMN7u2SKvU9tvkeZ+3fT+O5y/3srrGnf+WmTLNuYJyf0SZA2LZvJYpNh4Kflmc5npFtSlAzs5PGaNLKzaAaBWauyZEt2kVz82CwZaVz6d4qRcpPFYomZ66NZ6c4pXzayk1UKRjvGDkoUfcCv7eflO+XO1xfLCb0TpFvbaMndXSozlmaY++rZd5T5/Lrbwd5T91zuZS1dcaYJCtFMEHZmBN0+eoAnMME9/kDLOt8d5/eWbbklogEq2vR69eVumjFGP0fuY7q3B7M83ATtHG+yT9gBHzc+t8B8ThNkyP7sKfNMBpHvXNlbjunVSo7p4clWocfomxwjXy+qyLbx8EerzM/VbhnYOUb2mSQUK00gzGvfbQjmVJwxmi3miqw5cry5t21jw2TF5gKZvniH85lKbt1crhnbxRnPQsMRIHiiGveypKREli9fLvreu3dviY72RDFVYxqGIoAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAII+Aic1Le1PH9dMyuAIiOv2HoAr1kb9BWo/Z8JuBgV4AHxZSd3kh25xfLJnIp0/zKFmU8AAEAASURBVPpw1X7A6p5PH67fN7G/u6tWlgebUiL3XtBb/v72cms+fVivL9+mgRPPXjtENCjA3bq1jbIeCtsPrxetyxV9DeseKwOu8AQDuPdxL3cyD3gfuKyf8215DRSYYgJGfJseXwM9NOAjmDaoc0srEMW2/HL+NtGXu11yUrJ8Zu6bZn04FO10Uy5EA1Dsh+IaXKIv35ZiymhMvtj73jYxQR73TexnypTMs4JH9Bw1W4O+fNt4E5Bw0QkdnW4tMXPb2T1EH9Br8xdQYA++54JeVuCPva7vB3tP3XP5Lp9iskW4y2jo51o/AzVtYU0ay4OXDTCfmQ3ypsk24W5asuLasV1NeZwEK3jCva0my3ee11vyixZZn2/dX4MX/JW70SCJu0xQh28bP6ydLFif4+yjATX6crfLTRDMK98eOIji7t/1kn+9u8L6bLiDi+y59Ofl38aFkh22SMN69/4t3LCurVavZuXKlXLWWWfJhg0VP1SRkZHy1ltvyZgxY2r1OEyGAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCBypAr07tJDXbh0uT36WKj+YB6iBMhicbL6ZfuO4HhIfHVol1f+d1UPaxzeXd82DVA3IcDctc3Dpycly2lFtRR8Uu5t+895uoU1C7MVqv48emCjNwkJkyvcbKz3c14ew5xzdXiYc20H0obxv0xITky/uJ5+ZMgQfm2wGvuev43WM3Zr6XIP2H9crQV43nho0MW3Bdnuo9a5lUvTb+deN7SZa5iPY1jSksfz1gj6S3DpSPp69xeu8dM4/npoiGtzgezx7/tqw1dtz9ZgU6ZfcQqbMSHMeutvH0If7R/eMN2O6SFhT73urY/TB9yOTBlr7+j5k1+0920fLpFGd5Oju8eL6KOgmOXt4O3PcGHn6i9WydEOe12dU7+mgri0t0w7xEdZ49z9B3VPXAavz2dPsLHredhaIM3wymbjPI9jlFhFN5LrTuso1p3aRrIJS2WMyc8Q0D5UI85m2W2FR5bInuq069znalKh5/MpBVsaP93/ZbGUEsefXd/1ZnXBcezlnRHsJ9fM519Ik90zoIy2br5afV+ys9Jm87rQuMsLcy2CCJwZ2ipVXbx4mT5n7O3d1jvs0ZEQPzWjTRZLiPFlhvAawctgLNCotLd1X3avYZ4q85OVVjt7SeTSooEmT4GIyqponLCxMwsPrzwdv2LBhsnDhQi8qvda0tDQyUHipsIIAAggggAACCCCAAAIIIIAAAggggAACCCCAwKEXSE1Nle7dux/0gSY+NjeoOd64ZUhQ4xhUuwKZ+aWydlu+5O7aI1HmAWuHVs2tB5f6sLQ6ba95tpVdsMfMU2J2ayStTXkH30wP1ZmvJmPzi8okw2TC0HOJiwqTWBNo4HpOXuWUuk9hcbk1Xh/QV/f6dfKSPXsl0xx/V2m5CToxx/cTsFHlSQTYmG0eqmfml1gP1eNbhHo9NA+wS613FxRX2Bom8/mIMMERlQMmAh20rHyfZOaVmMwHe6SZ2a+NKZfiG0wTaF89nu6bs6tUWhlT3/IxgfbT/tq4p+759+7dJxc9MtMpBTP1rycEnU3EPY8uq2eh+bxqi2neNGCWhaLSvTLqr99Z47SUxRu3jrCWD+Yfdckp3GOCNfRnVczPiX5Wm1brc7XT/N7ILiwxwRShEmcCrNyBHP7O7cEPVsqnv1ZkqHn/9mOdYCK9vs07d1m7JMaG/+a/M/yd65HSV1d/m4OLcvC5C1999ZWMHz/ep7di9fXXX5cJEyb43ebbOW/ePDnmmGN8u631e++9V+6++26/237rzvz8/EqBE3oOhYWFVhmPESMO/hfBb31NHA8BBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQqO8CmlkiPrrVQZ+mPjxtZebSV101/XZ9dHhkjQ6v56/7H0zTDAzt/GRDOJg5dV8NwqitQIyanosGwkS1qZmtlvHQzBsmR0i1D6/BLwkxYdarujvXxj11H/OLBducwAnNOhFsGRb3HPbyvDVZVvkcXdegiBeuG+qVbcIe99TnqfaiaNaY2mjqokEo1QlE8T1ubf2saxCOllqhHTkCNfotO2RI4OhKDawINnjim2++CSh92mmnBdz2W2/QLBiBWvPmNa8VFGjO37J/9WqTcmZu5ajawYMHS48ePX7LU+FYCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCAQpIBmiCg22RHmrtkpT3ziCWS45MROQc7gf5iWe9FSGVoqJm3HLrnuuXlyUt/W0r1dlESGNZGt2bvlvV/SvUrRnGdK0NAQONwFahQ80apVKxkzZoxMmzat0vV/8sknUlZWFlTpjqlTp1baXzs6deokAwYM8LutLjo1eOLyyy+XV155xevwffv2lV69enn1HW4rP/30k1xzzTWVTvuJJ54geKKSCh0IIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAII1A+BRz9aKV8v2uF1Mucf017atQr36qvuimbj+PO5PeSeKUtltynzsnpLgfXyN4+WkXn4igFkaPCHQ99hJxB8wR+fSzv//PN9eipWtZTF/Pnz/W5zd27fvl20bIe/duGFF5qaTdWrVeVvntrse/zxx+Wmm26S+Ph463XeeefJZ599FlSQSG2eB3MhgAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACvgJXjUmRm8Z19+2u0fqI7q3kzT8dIyf3S/C7f0xkqJxktr126wjp36ml3zGHS2fjGj8xP1yukPMMVqBGmSd08qrKakyfPl2GDRtW5Tl89913AbePHz8+4La62hARESEPPfSQ9aqrc+C4CCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAgApcNrKzjBvWTmJNIENSXLg0DandKID46FC5b2I/+cdFIpl5JbI5e5cF3zkhSlpGNm0wN+HW8T3k+tO7WdcT1rR2DRsM0hFyITW++3bpDn9On376qb9urz5/JT90QH0r2eF10qwggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAAC9UAgOaG5DOrcUvS9tgMn3JenBQMSYsJkcOdY69WQAif0OkMaN5JwU35EX43rWXUE931g+dAL1DjzhJ6alu7wFwSxcOFC2bZtmyQmJvq9grKyMqvkhb+NgUp2bNiwQX799VdZtWqVLF26VBYsWCDp6enSrl07adOmjQwfPtzKhnHiiScGLKXx0UcfWfu5jxseHi633HKLhIWFydSpU2XKlCmyfPlyKSoqkqSkJHn33Xet63j22Wdl69at7l2t5fvuu69Sn92xc+dOmT17tqxYscJ6qcvKlSutsh96zn379pWxY8fKqaeeKi1atLB383pftGiRfPDBB159unLFFVdYgSZ5eXny5ptvyocffmgdIzMz05p3wIABVvYPHdekifdt1rIqH3/8sTWnOvprGgDjvt5x48bJ0KFDKw3NyMiwrlHNlixZYvnqvdLyJh07dpTBgwdb92XkyJESGhpaaX86EEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQqGuBRqWlpftqehIaHNC2bVu/u7/88ssyceJEv9tmzZolJ5xwgt9tGiChD/7tpoEWjz/+uNx11112V5XvGpDw1FNPyYgRIyqNu/baa+XFF1+s1K9BDW+//bY8+OCDlbZpsENKSooViKDjfFtJSYk08olA2rNnj1Xe429/+5vvcL/rkZGR1jVeeumllbbrefnr12s899xz5eijjxYNVgjUjjrqKNF70b27p77Ra6+9Jr///e8D7eK3X4NHrrzySq9tGoyifYWFhV79/la6du0q//nPf+Tkk0/2t5k+BBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQSqJZCamur1/31Xa2fX4ImPzXWtBV5845YhgTeyBQEEEEAAAQRqTaCu/jbXuGyHXnlVpTu+/PLLgDjffPON321asqN///7Oto0bN8qoUaOCDpzQHTUrhQZm/PDDD848B1rQTAz+AicOtJ+/7ZqxQjNyBBs4oXNo8IEGM9x///3+pvTbV1xcLBdccEGVgRO647x586xAktzcXL/z1KRTr/Hqq6+WCRMmBBU4ocdYs2aNlWHjnXfeqckh2QcBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIFDJnBQwRN6Vhoo4K998cUXohkY/LVPPvnEX7dcdNFFThaH8vJy0RIeM2fO9Dv2QJ3nnHOOBBswUN0sDFUd+x//+Ifotdek3XvvvfLTTz8Ftettt90mM2bMCGqsBmc89NBDQY0NZtATTzxhZbMIZqzvmEsuuUTWrVvn2806AggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACdSZw0METp59+ut+T1wf2WoLDt23ZssXKDuHbr+vjx493ujXAQrMmBGqnnHKKaEmKQE2P/+qrrwbafEj69doeeeSRgHMPGzZM9Lyrao899lhVm2u8TYMn8vPzrf1DQkJES4Xoq6pmj9H39u3bW0M148W///1vv7tpCZFnnnlGXnrpJavUSKD5D9U1+j0pOhFAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQKBBCyzdmCuvfZ9mvbZmFx3W1zp90Xa57eWF8s7Pm2TfPv+XklO4R35ckSEvfrNe7n9/hTz75Vpn4PJNeXLXlMXy1OdrpKC4zOk/HBb2lO+VV7/bIH96ZaH8sirzcDhlzhEBBBqYwEEHT8TFxcmYMWP8svgrz/Htt9/6HaslOwYMGOBs++6775xl94JmZ9i9e7d8/vnnVlaK9PR0mTRpknuIsxxsZgZ7B70ODTLQc9SyH//9738lNjbW3nzA959//tnvGA2YyMvLs7JK6Hnr8pNPPul37NSpU80fwwB/Df3s8fDDD8uyZcus8hlz5swRDdAI1NavX29tmjhxomRnZ1uvZ5991u9wzS5hj9H30aNHW+PS0tL8lurQa1Q3zeJx8cUXy4svviizZ8/2O/f333/vt59OBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQKC6AkvS8uS5r9Zar225h2/wxI7cErn3rWUya1WWPPnZalligkJ8W/rOIrn4sVly56tL5OXp62Xq3K0y5Yc0a5g+XrrvnWUyY2mmvPXjRvloVrrv7vV6/ecVmfL8tHUyc2WW/PnlxVJUurdeny8nhwACDU+gSW1ckpbumDZtWqWpPvvsM/nb3/7m1f/ll196rdsrWrLD3WJiYuSss85yd0lycrLceeed0rixJ+YjISHBCnh4+eWXvcbqSmpqaqW+QB1aBmPy5MlemzWTQnWb7zk3adJEnnrqKQkPD3em0uU//vGP8tprr/nNrpGRkSGtW7d2xgda0ACFSy+91Nk8cOBAUd8OHTr4DXDYsGGDV4CKs2M1FrZv3+53dP/+/UUzWrhbt27d5PXXXxffoBLfce59WEYAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEjkSBPWXewQLFe8orMdz6vwWSW1jq9KckRkrH+AhrfZ/sM9kmPPuU+Nnf2fE3XtAsGD8uy7CO2ia2mQzuXPnLy0WlnnPXgWV71cPzTNDamX8QQACBQyhQK8ETgUp3LF26VLSURVJSknUJpaWl8sEHH/i9HHfJDh3wz3/+0+84f53R0dESHx8vmZneKXyKioKLLtSME76BE/6Oc6C+CRMmiL6CbX369PEbPKGlMQ7U+vbt6xU4YY/XUhnXXnut39IamzZtsofV+L1r165+99UMGJo9RK9f74fdqmti78c7AggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIHAkCbRrFS7Xnt5Vpi3YJkd1iZUhKd4BBpn5pbJlf1mSmMhQee6aIaL72K1xo0byl9/1MhkpNkhCTJicNby9vanO37PyS2Tyeyus8xg9oLXf4ImT+7WRxRtyZWV6vvzu2A4S1axWHmPW+bVzAgggcPgI1MpvHbt0h7/sE9OnT5fLLrvMEtGyEv6ab8kOf2O0r6SkRFavXi1ZWVlW6Qstf1FQUCC5ubmVAicCzeGvf9SoUf66a6Vvr4mK03IZO3bssM45JyfHOedXXnmlxscYMWJEwH0144O/psErB9s0EEbvl2ax8G3XXXed6GvkyJGiWTsGDx4smg0jMTHRdyjrCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACPgITj+8o+vLX1m3Pd7pP6pvgFThhbxjRvZXo63BszZo2ljvP63U4njrnjAACDUSgVoIn1CJQ6Y4vvvjCCZ746quv/LL5luxwD9IyEVreYsaMGfLNN9+4N9Xa8tChQ2ttLp1IgzymTJki3377reg1FxYW1ur8Olnv3r0Dztmq1aH9ozhp0iS55557Ah5fr1tfdtNACr3Hml0kmHIk9n68I4AAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIVAgU7i5zKHq192QBdzpZQAABBBA4KIFaC54IVLrjo48+soIJwsLC5OOPP/Z7sr4lO+xBmsniwgsvPCTBB/Yx9N1dZsLdX5NlzYxxySWXyMKFC2uye9D7hISEBBzbyKRlOpTtjjvukPz8fNFSHcG0mTNnir6uv/56eemll+Tiiy8OZjfGIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAwBEmUFq2V35cliHLNuXJttwiadYkRHqaQIFuSdHSq30L0ewENWnpO4tkycYcWb99l2zMLJT46GbStW2UdEmMlN5m3saNAz9bKSwpN+UksmX1lkJZtSVPmoc2kRSzb0qb5jK0S1zAfcv37pPFablmv3xJNaUois21dUmMks4JzWWYyQ4REVb5Wc83i7ZJhinPERrSWM4/pqLsxsdz0mWXOYeF67KdS5+5aqfk7NpjrbeIaCpnHNXWWl5ijrfU2Gk7bVBbaRnZ1Fr2/WdT5m75bukOSd+5W3J3lUpyQqT0SIoyr2hpFx/hO9xrfbmZf5W5pvXbC2VHbrF0NNfTrW2kdE9qYeZp7jV2/vpsWZVeINkFJU7/uh275I0fNzrrdqaNPeV75YOZm6V8n0h7U47k+F4Jzhj3Qk7hHvl2yXbr+Bl5xRIeGiKJsREypGtLGWxKnWj5Et9WsmevfDS7Yu7OrZtb2Tnsz8QiUyokb3epdDIGPY3B8X1ai58pfKdkHQEEGqBArQVPVFW6Y/bs2ZKcnCxr1qypRBioZIc+mL/rrrsqja/PHZod45RTTqnPp1hr5zZ58mQr+8ULL7xgBUYEO/EVV1xhBV5ce+21we7COAQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEDgCBNZuK5SbXlwguYXeZcinL95hXX1SbLg8ePkA6WQefgfbNIDh7Z82yTNfVH5GZc9xcr8E+euEPhLapHJgxuqtBXL7K4tFH9J7tYXbrdVBXVrKPb/rI/Etwrw25+7eI397a4nMXZ3j1f/jskxrPaFFM/nnxX2ld4cWXttf/2GjrDMOESYgwA6eePXbtErH/35JhuhLW7LxsIMnflyeKW/tD0wY3i2uUvDEPhOY8Ognq+TDWelex521KstZv3xkJ7lyVOdKQSEFxWXymNl32oKKa7d3cO97wxld5YLjPGVHfk3Nlik/pNlDrXe9vmc+99wPO3iiqHSv/GdqRf9J5p74Bk/ouU+ZkSb//XKt13z2yhvmOGpx/yX9pYNPAEi2+UzZc58xpK3o50Lvq7v9vHyntTqoS7r87YK+EhcV6t7MMgIIHAEClf8KHMRFT5gwwe/emkFi+vTpfrf5K9mxbdu2gIET8fHxog/eH3vsMXnllVfkk08+kR9++MHv3L9l5z7zG/vWW28NeEjNRnH//ffLiy++KO+//75V1qJnz54Bxx8OGyZOnGjZr1y5Uu677z4ZM2aMREZGHvDUb775ZisbyQEHMgABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQSOCIHtOcWVAic0gMDdtmQXycWPzpIF670DEtxjfJefNkETvoET3Ux2AQ3EsNt3JgjhlpcWiD6cd7dVJlvEpCfmOIELGvBwbO9WJgtGlDNswdocufzJOaJZE+xWbLIcTHp8jhM4odcxrHusaKCF3TQY46qn58o6k73hQK1bu0grE4PbIyYy1OrTDA1tY5sdaApn+0vfrq8UOOGeVwe+8u0GueP1xbLXBBjYba/Bue6/87wCJ3Q/zQqi52I3DVB42exvt0RzbnqOvsfQPvtljz3Q+xOfpVYKnHDfR90/zWS1uNLcD82sEahpVhN34ITO4T4/vadPTU0NtDv9CCDQgAVqLfOEGo0dO9YvlQY4BAoU8Fey46uvvvI7z7nnnmsFTGgJEHcrKyuzHtoXFh74D4x7v9pc1qwaS5curTSlZtbQjBRt2rSptC0lJUU08OBwb3odt99+u/XSIJL169db16yBIvPmzfN7eYsWLZJhw4b53UYnAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIHDkCmtHg5hfnOxknju4ZJ38Y3cUqqaEBDRrE8PZPG0WDHLT9Z+pqefnGAz9jyCoolXdM1gm7aaaHY3rGOxkmdN7/e3mRddxF63Jlsylh4c5YMG2RJ8PCxScmy1VjUiRkf3kPzSxx4/PzrSwRmiljxtIMGTWg4lnQr6k7nYCLId1ayt8v7C8tIioeyZWY0h1PmiCAj2dvsU7rw1mb5U9nV/1l2wcvHWCNnW7O5963llnL15/eVcYOSrQvLaj3T3/dIi99s94Ze88FveTongkS1ayJKatRKr+uyZL73llubf9lxU6ZY9ZHmPIi2maZa9KMEdo0WOKxKwda90dLZGhghZ7b39+u2Pd9U3rj8pM7WaUvzhrWTvSVlrFLJj4yy9p/9IDWcu+Ffa3lYP+ZuzZL3vtlszP8D+ZejDVlSVrHhFmBKys258u/P1xpBU/sLi2Xye+vkGeuHlwpe4ZOoAEW2v450XweelV8HvRzpj46h7avF+2QiSd2sq7R6uAfBBA4IgRqNfOEXbrDV04DCz799FPfbglUskMfvvtrt9xyi/gGTui4OXPmSF0GTug5bNrk+eOr63a7+uqr/QZOFBUVydSpU+1h9e59wwZPVKD75DIyMkQDH9wvd9BII/NHUoMptDzHL7/8IkcffbR7d2dZ96chgAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAp/O2WICF4osCM1G8PcL+0m3tlGiD+Y1WEFLW/zFlMawswys3lIgKzbnHRAuxwQ1nDk0yXr9/cI+clLf1k7ghO7co1203GCCEOy2ZGOuvWi9f72/NIeuXHlKZydwQtdjIprK5In95KITOlrzF5aUabfVflpZUZpDVy4f2dkJnND1MFMa5MZx3eUKUxZDzy20qXd2DR1zKJoGbTz4QUVggM5/x3k9ZczAtlbghK7HmhIVp5pgjDvP76WrVtPADruVmmwatuWjVwx07o9u1/s0emCinG7KYWjTYBINRKnNZpci0TnPGp5kBWdo4IS2piGNpX9yjDxoynXYGSSWpuXKUp/7aQ3e/88/TODESf08nwdzCTJ+WJKMGeT5MvT67QXuXVhGAIEjQKBWM0+ol5bu0DIdwTQt++Cv7d3rSW3k3r569WoZOnSou0uysrLk7rvv9uqri5Xy8nK/h12xYkWlfs2Uceedd1bqr4uOpk2b+j2slhZ58MEHTVSg+WvhaloyxV8gzMsvvyy+91P31ewSM2fOdM1QsaiBNjQEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAYPpiT4aHu3/XWyLCKgcUhDVtLJMv7S/zTAYCbc1NtoQDtS6JkXL7uVVndeiS6CnBsXar98PyqGYhJhCg4igrTZYKfUDvbu3iI+S60zzBF/a28FDPuS3ZkCcDkj3lOnSMBlBoMMZv2Ww3PaaWEBk3JMnv4U8f3FbKTAmSYpO9ITLc8wxJA0/0VVXrYcqZfD63YsQGE3jgzuJR1X4H2qZZPuakZlvDNDjiJhN84q/p/fjjaV3k0Y8rSm7MWJ4p/Tt529v7ndQnwV70ej+xd4JTmmRLdrHXNlYQQKDhC3h+e9fStQYq3eFv+jPPPNNft3To0MFvv2YzSE1NldGjR0tUVJQsWLDAesAfKEuC30kOUWdSkv8/Mq+99pp1xHHjxknXrl1l+fLlVumRb7755hCdSfWm1ewf/lp6eroMHz5czjrrLOt+DBw4UHr16mUFQ/gLnpg0aZKEhITIcccdJ2qxZ88eeffdd+WFF17wN7107+7/D5vfwXQigAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAgxTYu3efaCYJu3VPirYXK71rMIS+atq0NEORCQooLCqTXSZTxG7zcmcnMKfi1Y7qGmcyKKRbfdc+O0/OMJkVTu7fWvp2iPEb4GHv3L9TjHxgSldoe+6rtbIkLcdkeWgjAzrHSXx0qD3sN31P2+HJBNHPJ5jDfSL6nVots3GgpvetsKRcdu23VM+Zq3Y6u/n/mrSzuVoLmzMrymzoTj06RHtlD/GdSDOW2G3NNs/nyu7Tdy2l0nh/+RV3vy7HxzRzunaZcjI0BBA4sgRqPXhCMwqcdtpp8sUXX1QpGahkh+40atSogPtqNgR91bfWo0cPadeunWjQgW/TAAo7iMJ3W12vd+4cOLJx4cKFoi9tzz77rBU8cdFFFwXM9HHppZdaYyMjI6sso3LCCSdI377Vq2VlTcw/CCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggg0KAE8nZ7HlAnt25e5YPxml74jKU7RLMQzFmTbZWUCHaeP4zuIss35TnBHVPnbhV9aevZPlpOGdBGRvZrI618AiI0q4GWsPh8/9hZq7JEX9q09IiWi9DyEJ1b1zwQxJqsGv/sLChxRqe0ae4sV2eh1JT++Hh2usw12T9mrqy4nursX9OxObtKnV27ujKFOJ2uhWSXaWau/8wRrVuEu/bwXgw1WUFoCCBw5Aockt8A55133gFFfUs8uHdISUmRq6++2t1V5bI+rK/r1qRJE7n//vvr+jSqffy2bdvKyJEjg95Ps0o89dRTVY4vLNyfw8rPqPj4eHn88cf9bKELAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEjjQBfSBvtxYRtfud3z2m/MTDH6+Su6YslWkLt1crcELPSc/nyasGy43juokGdrjbys358uRnq2X8v36UN2ZsdG+yshrccU5P+fuFfawsB+6NW7KLZMoPaXLJo7PlL28sEff1u8fV9nLpHk/5+YggSp74Hn9bTrFc+9958oS55t8ycELPo8RkC7FbdISnlIjd537Xsh52Kyj27Gf38Y4AAghUJVC7f4X2H0kzTxyoaTmIqtoTTzxhleZ4+OGHqxpmbfvyyy/lwgsv9Jv14YA71+KACRMmSGhoqOj7gdpjjz0my5Ytk//9738HGnpItzcy+Ze0tEa/fv2qzBbhPomrrrrKKtFxzTXXuLsPuHzuuefK008/LbGxsQccywAEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBo+AIxkZ6H4Wu2FIqW1tDSEbXR3v15s3w0qyJjuD5Uv+jEZOnRLkoSWjST5mFNJNI8iM/KL5aLHp4V8HBRJtBgwrEdrNdGUz5i6cY8mbs6S6Yv3uHs88wXayQqvImcOdRT4l3LQowymSn0lZlfKstM6Y5FabnyhclGsXt/MMD3SzKkaePlcu+Fhz5bd2xUmHO+G3fsksGdq/es5sEPl4sGjGhr3ypczjcmnUyWh9jIUGnerKl1/dMXb5f731vhHKe2FmLMMey2cUfgL/DqmG1ZRfZQSWzpKcHhdLKAAAIIVCFwSDJP6MPxqgIotGSHPqyvqjVu3FgmT54szz33nJx44ol+h/7+97+XDRs2yLBhw6xAC99BUVFRXl0a2FDTFmhfDT5wt7PPPlu+//570eAQfxkx9Fpmzpwp1113nd/tOld4uCddUNOmnv9ocB+nNpe13Mj69evlX//6l+i9CaZdeeWVlv31118vmk2iqjZw4EB56aWX5K233iJwoiootiGAAAIIIIAAAggggAACCCCAAAIIIIAAAgggcIQJhJkyCXa2AA0q2BGg1EJNWH5akensdu9FfWTSyE4yonsrSWkTKW3Mg/XIsBDZXo3jdYxvLmcc1Vb+flFf+eTu463SHPYBvjGBA4FavCnroaU6bjmzu0y95wS52bzb7etFO6TElX3D7q/t94RoT/DE2m1VByD4HruodK8JGMlxup/+4xA5d0R7GdS5pSQnNBe9vmZNG8sWV+CCM7gWFuJcgR8r0ysCOAJNm7Zzl7MpvoXnmp1OFhBAAIEqBA5J5gk93scff1zFYYPfNGnSJNFXWVmZrFy50kQc7pPmzZtLhw4dxB1YsHjx4gNOquUialoy4qeffjrg/PaAY445RvSlLS0tTXJzc61MDVqOJCIiwh4mDz30kPVyOvwsaLaG0lJPLSc/Qyp1jR07ttr7xMTEyJ/+9CfrVV5eLhkZGVJSUmK5axBKQkJCpeNoCY9HH31UHnnkEVmzZo1s2bJFsrIqalyFhIRY+3Tp0kVat25daV86EEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEVOLl/a5lqMjJo+2h2ulwztou17PvPq9+nybs/b7K67zq/pxzTI/CXO8v37pOlJtODNg3OONoETfhrc1Irnmv4bssvKpOM/YEVml0hNsr7C7qtTMDADWd0k8/3n/eqTRUP9bUMx6bM3dZ04ea4SXGeL8xqZ5gJMjj/mPbyxfytsnpLgTVusxnfJfHQlqg/qkucdSz95xtTwuTSkzpZASRO5/6FnSZLxvXPzRUtedExPlyeMYESa7Z6AhZO6pcgcT4W9hw/Ls+wF6t835ZbUuV2340aoKHZJ3ILS2XzziKT/SNX+naM8R0me80zxE9/3eL0a6AMDQEEEKiOwCELnqjOSQQztkmTJtK376FPWxTMuVRnTHJycnWG14uxGviQmJgY9Llo9o1u3bpZr6B3YiACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggYAROHZzoBE9M+SFNeneMluN7eX+pc/GGHHn+q7WOV7/kls6yv4UQUzYjxQQkrDNZFjSjxdbsYmlnyk242/dLdsg7P1UEY7j7dXljRqH88Zl5VreW+Xj55mESY8p8uNumDE+Wg4T9JSJMzIZc88xcpzTHf689qtKD/t0l5ZK+P8BC53NnVnDPX5vLibHNZEBKjCxal2ud21/eWGICI46SUJP5w24afDD5/WVWgIL2aZCHtg4meMFua7cWSMmevVYQiN2n+/33q3WSZsqBBGpa2sNuGtRSZO6JBpcE0xqb51BnDm0rr32XZg2/47Ul8upNw0UDWNztjRkb5ZcVO52uY3sGDq5xBrGAAAIIuAQOm+AJ1zmziAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggg0EAEBnZqKWMGtZFpCypKX9z56hI5tncrOdZklmhkgiDmr8mSn10PxSeemCxRzQ78iOsY8/Bcgye0Xf3sXDnVHGNQSkvJ27VHFq7PkS/mbQsoqJkN7OCLjLxiueXFBTJ2UKL06djCZEkXWbwxT56eutrZ/4whSdaylq8YP7ydvPXjRmv91hcXykXmfPslt5Co8KayYUeB/PfL9U5wxdE946RlpCewwJnwECzcNr6nXPzoLGvmlZvz5eJHZlnlRHq2i5K123fJLysznWwYOmj80HbWWA0a6dk+WnQfzfxwxX/myJiBidLd7KdZM35emeFV1sPayeefuCjva5z0xGwZO7itCWiJkJGmpMmB2iUndpKv5m8XvReageIys/+JfeLN/YiRXHM/Z67KlAVrPaVFbhzXrVK2kAMdg+0IIIDAgf+yYIQAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIDAIRS47ayekr97j8xaVVFG4+flO0Vfvm3MwDZy5ajOvt1+188xQQxaSkIzIugD97d/3GS93IOvM6U33EEQ7m23ndVD7nx9ibWvltiwy2y4x+jyRSd0lPOPrsjSoOsTjusoi0ymDA020KwXL369TrsrtWHdY+XOc3tX6j9UHZ1aN5cHLusnd5jgFG1bsotEM334Ni1z8sDl/b2COm44vavc9tIi63rU8zlXFhDdX/c579j2TnYI3zk1e8SlJ3cy2zdYmzQI4/lpFS7BBE9EhIXIQ5MGyE0miEXvpb4+nr3Fevke61xzL85z3Q/f7awjgAACgQQ8uXgCjaAfAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgUMooA/HH7xsgPzfWd0lKda7vIYeVjMf3Gq23XNBH6+SEbqtsclOYbfQEM+jr/gWYfLcdUOtrBb6cN/duiVFyVN/HCwn9fEuD+Ie0y85Rt78v6Pl9CFtJSbSu0SEjuvfqYX8e1J/ue60rtIkxHMO8aacxHPXDpGrT+3i91o0o8X1Jmjj4csHVsqOoOVGtIX6nK/22dt0OVBzj2nqsrDHH2fKobx+63DLxO6z3/UaT+qXIK/dMkIGp8Ta3dZ7f5Md5MUbh1qlP7w2mBXd55Wbh0snV3kP3zG6PmlkJ7nz/F7WvfS33cRXOM1dTsTu7GLcXjPH0WAV3/upY/qa+/Wvi/vKreO7V7IKcU0e1tT7s2DPzzsCCCDQqLS01CQXoiGAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACh49AamqqdO/e/aBPeOJjc4Oa441bhgQ1jkEHL6BlMbJNZoGcwhITlNBY2sVFeAUn1OQIOudWk2mhqLRMWrVoJlqKorotv6hMtucUSfOwJpIY20w0m0IwrWTPXpPlYbc0Mv9LigsXf4EBwcxT22P0vDJzi2WXyY4RHx1WKZAj0PHKyvdJetZu0fckc2/CQz0BK4H28e0vLCk35U/2WRZhTaq/vx47M79ECor2WPehdctmQZVy8T0P1hFAoH4K1NXfZsp21M/PA2eFAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCByRAhqTEBcVar1qC0Dn1MCFg2nR4U0kOjyq2lOENW0snVtHVnu/Q72Dnle7+IhqH0azbCQfIMvEgSaNNJlGDqbpOSSagAl90RBAAIHaEqh+KFdtHZl5EEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBeiBA8EQ9uAmcAgIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgjUnQDBE3Vnz5ERQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAoB4IEDxRD24Cp4AAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACdSdA8ETd2XNkBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEKgHAgRP1IObwCkggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAQN0JEDxRd/YcGQEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQTqgQDBE/XgJnAKCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIFB3AgRP1J09R0YAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBeiBA8EQ9uAmcAgIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgjUnQDBE3Vnz5ERQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAoB4IEDxRD24Cp4AAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACdSdA8ETd2XNkBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEKgHAgRP1IObwCkggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAQN0JEDxRd/YcGQEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQTqgQDBE/XgJnAKCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIFB3AgRP1J09R0YAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBeiBA8EQ9uAmcAgIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgjUnQDBE3Vnz5ERQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAoB4IEDxRD24Cp4AAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACdSdA8ETd2XNkBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEKgHAk3qwTlwCggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggccQLfLNom23JKrOueeEJHCWnc6Igz4IIRQACB+iJA8ER9uROcBwIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCBwBAqUlu2Vpz5fI+V790rbuAiZeHzHI0bhywXbZE5qtnW9FxzXgeCJI+bOc6EIIFAfBQieqI93hXNCAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBI4QgRITPPHBzM3W1fZNjjmigieOkFtcby6zoLhMflyWYZ1Pm9hmMrhzbL05N04EAQTqXoDgibq/B5wBAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggcYoGs/BKZ/N4K6yijB7QmeOIQezM9AoebQOPD7YQ5XwQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAoDYFCJ6oTU3mQgABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIHDToCyHYfdLeOEEUAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEfAX27RNZsCFbfk3Nlq3Zu6WotFwSWjST5ITmMqp/G4mNCvXdpdJ67u49Mn3Rdlm/vVAy8oqt/Xu0i5ZubaOkq3mFNG5UaR+7I31nkSzZmGP23SUbMwslPrqZtU+XxEjp3b6FNK5iX3uO6r6X790ns1fvlLQdu2Xd9gLZVVJmzjXaHDdSeraLMedQ+ZrTM3fLjJWZ1qFGdI+zfFZvKZAlabnm/HMlpFEj6dQmUoZ0iZXeHVpUeUpqvnBDjsxJzbLMS8v3So+kFtItyRzfvB/IvLRsr3y3ZIes2Jwv23J2S1jTEEmKjZBje7WSvh1jqjx2YUm5LDb3e/WWQlm1JU+ahzaRFHOPUto0l6Fd4ry856/PllXpBZJdUOLMuW7HLnnjx43O+sTjO1rLvj7t4iIsl8Xrc2Vlep71mbhxXHf5aHa67DUAsZGhMnZQojOP74Ke5ydz0q3umIimcvpRbX2HsI4AAvVEgOCJenIjOA0EEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIGaCWjgwl1TFsu6bYV+J3jis9XyhzEpculJydLYBAf4a9MWbpV/vL2i0qZP5myx+kb0iJN7L+wrUc28H69pAMPbP22SZ75YU2lfu+Pkfgny1wl9JLRJ7SWFT8vYJf98d7msNIEH7vbz8p3WakRoiDw4aYAM6tzSvVlWmACAZz6vONdWUU3ly/nb5M0ZniACa/DiHfLCtHVy3jHt5cYzuvkNGtGggFtfXCDLN+V5zW8fXzsnX9xXTujb2mu7vbLW3KubzP65haV2l/M+5Yc0ObpnnEy+pL80Dalstnprgdz+ymIrwMXZSRcWbrdWB3VpKff8ro/Etwiz1jWgRud0N/2s2A7abwdPuH3iTGDEC1+vkx+XVQSb6DgNyLn5TJGXTP9uE6Cj7Zie8RId7v25sDaYf2auyHCOc77xpCGAQP0VqPzbpv6eK2eGAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAgJeABk5MemJ2pcCJpNhwr3EaDPDYJ6leffbKnDVZlQInNPjA3WatypIrn5gjmfneD/ufNkETvoET3ZKiTAYFz/G/W5Iht7y0QDRTQ220zLwSmfjILK/AiRjzoF+Pa5+3Pti/4bn5MndtVsBDvvdLuhM4oftpYIC7vf/LZvl83lZ3l7WsGSP+MmVRpcAJ+9j2DndNWSpvmsAS36aGvoETvseeuTJLHv5ole+uJoNEvrnfc5zACd3v2N6trGu3By9YmyOXPzlH9phMGNoSY5tJ+1bhjo09Tvvsl93nfn/l2/VegRN6fRHNQqwgmHHDkpyhv+zP5OF0uBa+XbrDWRs9sI2zzAICCNQ/Af8hUPXvPDkjBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBLwEtGzC5PeXORkA9EH4nef1kl6m3IRmLMjILZGvFm6T575aa+334ax0OcaUhBjerZUzT6opWXHriwud9UtOSpbxQ9tZD9xL9uyVeeuyzP7rrOCMLdlF8v4vm+SasV2s8VkFpfKOKzjgnybTgmYhsDNM6IP+/3t5kZVdYdG6XNm8c7d0iI9wjlXThXfNOdjNN8uCnvNz09Y65/XlvG2mBEecPdzrXbNWaPDBA5f1t0p9aFaOYrP/k5+lmlITFRk3/mOydmipCbtkiQaAPPD+Cpm7OseaS4NEbj+vp1VmQ697kykL8q0pxfGiycyg7empq+W0wYmiJSu06fx/fmWhk3FizKA2cuWoFEmKC5ey8n2yfHOe3PX6Emv71LlbpYMpu2JnhdD9p5myKna7+MRkuWpMinNuWnblxufnW/dKM1rMWJohowa0kbOGtbNemq1Dg060jR7Q2sokYs/l732zCczRgIm7ftdL+iW3lDhT+kU/c9pGm3nte//dku1+S3cUFJeJnYlDP5u9TPkWGgII1F8BMk/U33vDmSGAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCFQhoCUjFm/wlI349+UDpX+nlk6ph4SYMKtUx7lHe8olvOFTouK5aZ5yG/og/4+ndrECJ/SwYU0byzE94uXvplyH3T6cuVk0QEFbjnlAf+bQJOv19wv7yEmmRIUdOKHbe7SLlhtO76qLVluyMddePKj35qZ0iB73nBHtrNIWdnkKnVTP+brTujqZL+asyQ54LA0MeOIPg6S7yVhhlzNpZva/ZXx3JwuFZrDIMJku7LbCBDdM218eQ/smX9pfBqfEOtetwSGTRnYStbSblgax2ydz0mW1CVjRNqRbS7nrvN5W4ISuNwlpJP2TY+QRU27Ebq98s95etN6/dh37ylM6O4ETulEDNCZP7CcXndDR8iksKfPat7or6vPCDUOt+6qBE9psJ723GhChTbNk5BdVPtYsV0aKcSYgh4YAAvVbgMwT9fv+cHYIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIBBH5cnulsuXFct4BZHW44o6t8acpPaCCAlnTINhkjYs3D8LzdZTIntSK4QB+U335OL2c+90Kn1s3l35P6y2aTVUGbnX2gS2Kk3H5uT/fQSstdEqOcvrVbK4IGnI4aLlx+cqcq99QsEd3aRYlmytAMDPb1+u40qGtLv2aatePEfgny7v6sGltzdktiy4qSHjNc5teaIA018NduPrOHdGtbce0pic2dId8u9pSxuHlcDytgwtm4f0EDE84Y0lY084Tes+05xdJm//GjTNmM3MKKgStNZg8NtnC3diZ4Q4NHaqMd3bOVJJvMF4Ha+OHt5SmTWUOblu4YOyjRa6i7ZMfIfq29trGCAAL1T4Dgifp3TzgjBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBIATWbfcEI/Qw2RMCNQ0G6NuphRMosXnnLit4YlPm/qfwZsdu7aOsrA2B5tAMFNIj0NaKfq3oUGQe9heaLAS7TNaD3ea11JVtYm9FxYeqJ6nB1j3le80xy2WXKROhx9XX90synJlMNQy/rW8H78AD96DWLcKc1eKScmd57bZ8Z7lXh2hn2XchOryJXHBcR69uDTrRbCHulr4/IMXdp8uahcJuep/t4ImjusaZ8ifp1qZrn51nBVmc3L+16LVEhIXYu9TK+8CUllXOM8oERNjBE76lO9wlO7S0in3+VU7IRgQQqFMBgifqlJ+DI4AAAggggAACCCCAAAIIIIAAAggggAACCCCAwP+zdx3gVRRd9EoJkBBCSAihJiFA6L33jqAgYAcUsYu9oqjYCxbsKKKiAmJDVIo0pf1I7zX0AKEnJCGEjv+ceZl98zb7+nuh3ft9L7s7OzM7c7bMZu+ZcxkBRsBXBA5m2MNJVCptrYCg6k6MDTfIE1BigB3NXWI9qZxzIgD2u7J56w4SFBkQIgNKD/lhh7NOE0JgLN2SloeQ4OnxS0fYQlFY5S9S2JqIoGOeUMY15uZ6jwmCh27931+kbzpd37Ivm1rVEOQVYfd0rSL7q0J/QJ0CP1iNiiWoS/1Y6lQ3lqJLOO+bzOzBn2IhBVzmQriUZkml5HWlQneANAJbvNmuinJtY0dFCpeV8k5GgBG4YAgweeKCQc8HZgQYAUaAEWAEGAFGgBFgBBgBRoARYAQYAUaAEWAEGAFGgBFgBBgBRoAR8AeBnJN2Z3x4rtPaWX0lQgsbu06dPS/XT+cusRFezL7fyOhmBYoPH03eQpMW2ZQQ3GQP2O6VO47SkDGrZUiLgFXqYUVnztiwQ3aEOvHGTghFDF8s68QZo1hEaCH6+N5GNE2EYflzaSrtOnjc2LdpTxbh97E4Jwgp0r+do/KFkTGAKz0aljNIOXrojtlr7eFJ2tbikB0BhJyrYgSChgCTJ4IGLVfMCDACjAAjwAgwAowAI8AIMAKMACPACDACjAAjwAgwAowAI8AIMAKMACMQTAQw8/9Q5kl5iL1pORQfE+b0cDsP2kN0RITZiBIlw+3qBHoIEKeVmHb8/L89BnECRIJ+7eOpeoVwiokoSmFFClFxQdhIyzpJ/d7zTGHBVL3lJggfD49aYeyD8kG3BrFUISqMIgQBJLSoOK4gkrw9cSPNWHnAyBeolVIlilBq+glZ3W4RcqNKWc/VJ0oWt+ONCn4f2sajZhU1heMIF328uXUl+Us5fFyERsmkZUKBY/YaO2Fh5LStghBTiHo1Le/RMXzN1LpWjFFUhe7IFmFO/rfhiEzv3qgsFfOSZGJUyCuMACOQrwgweSJf4eaDMQKMACPACDACjAAjwAgwAowAI8AIMAKMACPACDACjAAjwAgwAowAI8AIBAqBMiWLiBAOttpSBDnCFXli2347eaK0IADA1BLrG1KysPDKFmy0h2Z4qV9tap0bWkKvZEOGjdyhp/mzvi4lwyieKIgL7w9qSFddZSQZKyA2BMPKCszX5Va88+Axr8gTRQsXkGoVOadtiiFhggQRaiJGeNvmuNJhhN+1jcvRw9cm0Zczt9HU3DAes9YcCDp5An0CQQMqGCp0x9JkG3ECfenWMNbbLnF+RoARuEAIuA7Uc4EaxYdlBBgBRoARYAQYAUaAEWAEGAFGgBFgBBgBRoARYAQYAUaAEWAEGAFGgBFgBNwh0Dwp2sgyZcU+Ov/ff8a2vrJhdyZtzyVPQP2gchmbWkKl6DCpEoG8ULBYuNlOhtDLnzv/Hz397Sq65rX58nc0+wwhbd0uG5EBqhMttbboZZckp+mbfq9vFGEplPVpXsGSOIH2IXxFMKx59Sij2omLUgk2CvvSAABAAElEQVShS6xs2bY0A6/RM7cbWdrUKm2sL9hoV4owEnNXjmSdFooSGfKXduy0TM06cZZAgsEvPTdNLxddIkQQKKoZSZt3O8dgf8YpI5+/K90a2QkSCN3x9zpbv3CtNaxcyt/quTwjwAjkEwJMnsgnoPkwjAAjwAgwAowAI8AIMAKMACPACDACjAAjwAgwAowAI8AIMAKMACPACDACgUWgVU27Ix6z/r+fsyvPAeBkf+a7NUb6NUKhoEABm1QDFBuua24P6/Dy+PWUmmYLSWEUECs/zE+RqgIZ2acpvkwoRRYvTAVFHVB+gEFJYV96XoWJOWsP0k8LcqUxZE7//1QuYw9NsmlvXnLAsZNnadiEtf4fyEkNLWvESPUI7AZ55PO/tuXJCfLGyxM2EPDCr3FVO4GgmwhjoezVHzdKcoTaVsvMnLP00KhldP/I5fJ34KjtnKQcyqaBHy6Wv7s+WUoZOWdUEWO5+9BxYz0msqixjpWworZwLVhH20/kKmBg2x+rG1fSIOFM/HcPzV9vI+FAkQLXCRsjwAhcGghw2I5L4zxxKxkBRoARYAQYAUaAEWAEGAFGgBFgBBgBRoARYAQYAUaAEWAEGAFGgBG47BHYcySHRvyR7LafjRMjqW3tGCoZWpie6J1EI363lRk9Yzut2J5OLaqXplJhhWm9UJyYs+6QdOCjUigB3NYhHquG3domjqaJMA+p6SckCeIO4ZzvWK8MNalSio4cO0VLt6bRkuR0I3+/tnHGeisRpkMpWtz3+TK6WoRoaCjalnn8DK3acZSmLd9v5A3USj1NyQDhKY5knaQ2NWMoVhAFtqQeo7+EAseeI3kJIIE6frgItfHodUn01i8bZZUgh6xPyaR24nygDWt2ZtCCDYcNzKuVD6cGCZHG4ZtVjaJ7uyXSl+JcwUCQ6Fq/DDUUeJcQde84lEM/zN0lzwX2N6kWSbUqRWCV6giSAggrwBxKIY9/tZK6NyxLteMiCKIja0Q7PpuyRebFn2ub2Ikx2I4Kt5MnsD3oo8XUvVE5qhAdSp3qlkGST1ZAsHB6NStPXwmFDV3xo2t9uyKFTxVzIUaAEchXBJg8ka9wX9oH27dvH7311lt07NgxeuaZZ6hmzZpB6dC2bdto6dKltGrVKsrOzqbmzZvTwIEDg3Ksy71S4Pj+++9TfHw8PfvssxQZaX85udz7fin1Lycnhz7++GPZ5CZNmlCnTp0C3vzhw4eLF8f/qGLFitS/f/+A188VMgKXGwInz5yj80Jt0N94i1a4QM4x59RZCi/m+I+aVV53aZAtxD/hsM71YqlcqWLuiuTZj38yp6+0/RNfN74k1df+kc2TmRMYAT8Q2LJlC/3222+yhr59+1K1anYJTT+qNYqmpqbS2LFj5XarVq2oTZs2xj5eYQQYgeAjEMixc9bqA7Q/d1ZZ/3bxPs3SCsQYGXzU+AiMACPACDACjAAjwAgwAlYIQKUAM/fdWTERJgPkCVifZhWkWoRSeFi57SjhZzYQJz64qwHB+a9bkcIF6N0769PT36w2CBRTBCkBP7M9fG1VaiWIGcr6irAZ8zccol0Hj0uywI/zdxN+uj0owkjoDn19ny/rxYsUpMd6JdGHf9oIIyB26OQO1FkvIYJKhRehOWsP+XIIt2WuEYQDKHR8/89OmRdhUfAzG4gObw6oZ06mgR0T6GDGSfpjSarcN3P1QcLPbCBevNbfsfxTvavTc2PXSrxBFsHPyvq1i6MbW1Z02AWSw+3i2KrdIJkoEoc/5AkcpIv4PgfyhDK0PUFTCVHpvGQEGIGLFwHH0cHLdo4YMYJ27Njhcany5cvTc88953F+znhxIfD222/TqFGjZKP2799PM2bMCHgDp06dSn369HGoFx/CmTzhAIlHG3CUDxo0iLZu3SrzgzgBAgXbxYcAyBPDhg2TDbvhhhuCQp548cUXZf2tW7dm8sTFdwn41SLIyn02bStNWrRXsq+/eKCxITnoqmLIDKam5VhmKVigACE2YHSJIpQYW5ySypewzHehE+Gk+UJIAuoxFe/snCjY4yE+NS1d/GP+nfhnb976Q3Q485SsA/KLLapH06BOlX0iJqiGnD57Xp6jP5elyn+kkQ5iBpjyd3RKIJAWfLG1Qlpw1HTbP2S1K5X0qY3oq6rjri6VmTzhy4ngMh4hkJycbIx3UVFRASdP7N2716gf4yqTJzw6LZdMpm37j9GkxXvp98WpNLhHFYJD3Z3h2fvp1K0iBvF5y6xFCheUY11MRBE5hpaN9J6AZllxgBN3CbnZXxbaP7yGFilED/ao6tdRNgtZ3ynL90lyrT/1BWvs/GvFflqyxRYTGjMAfZG4DcQY6RfIXJgRYAQYAUaAEWAEGAFGwCsErhIObW8tpJA9Mj1CcDwiCAoNKpek8fN2y3AMen2hgmjRS4TmuKVNPJUW372sLK50GH35cFNBfEihiQv3GKoHyIvy1SuVoDuE071Roj38BPaVFv9TjHqwqVC+2EQLRKgGhO9QBuf5Iz2rUWzJYk7JE/r7rr6u6nC2vLFVRaHyUIRGz9xhKF+ovLd3jKfb2ifQJ5oCg9qHJQgEykIKFVSrXi1RxX3dEsV3rQgaN28Xrd6e4VC+YnQxailUOe7rVoVATrGyJwUJoqLA/WehXIEJPrrFRBQVJId46iFCrBTRzjXy4FvaD0+2FN9Ft9DCTUcMhQtVHsSR/u3jHUguah+Wg8T3uPJRxcT/mHsdVCJUHl/xqSD6XKNiCaPOa5uUU1XykhFgBC4RBPwiT4wfP57WrVvncVcbNGjA5AmP0br4MsLBq0xfV2n+LlNSUvIQJ9q1a0eYOciWF4HNmzfTkiVL5I5mzZpR9erVHTKBPJGZaWd5njzp+OLhkJk3LmkEJkyYQKdPn6aQkBC69dZbL+m+cOO9R2DhpsPSKY+SYHav2nk0zz9wVrVCaUDJCVrt19PiBTsa/4whPp/+j4Oe50Ksfz1rh3AmOc5CuLl1nE/kCThYHvh8eZ5uIDYjpBXxe31AHepQx3vpvjQRU/PBUctpz2H7OIoD5Zw6Jx1DcA7d0qYSPSz+wWe7MhGYueqAJAEVLliAujZgKUerq+Do0aP0559/yl1xcXHUvn17q2ycdhkjoIgT6OLIadvoOjGrrLhpppi5+6cEyc6T2WqqXBMRfxcf1yDLe7EY1Ipe/3mD8eEN7QL5zlfyxHlR3wTxUXKkIF4q87W+YI6dqm28vHQROHbijJh9aYvxDGISZKvZGAFGgBFgBBgBRoARcIUAlBQWDu/sKotH+xC6Ar9jJ8/SIaFqcPbcf1RChPUoLSYJFSpoJww4qwwhQO6/ugrd0zVROPNPUVbOGfm/B9Q+Nb5BnuJo/7Cba9N/NxHtE6E/Tpw+S9HC+Y/6lDnr37t3NFBZvF6q/p44fV5MlDpOIEKULVWU8I0BNuT6GvJnrrizCCWBnzvrI1Q18HNlLZKiCT+FuXBNCGJCKBULsSZM6HWBLHKr+C52c+uKlH7sDGUcx4Smq6iMCP1hVgfRy2E9IrQQDb3BppCedeIsHRDqdWGCbI7+u/uGCeLNtYKUgV+2+EYHf4pOxvEUH3Ob8D9XtngXVtaxjnuMVV5eMgKMwMWBgF/kCW+7gBlmbJcuAgjVcejQITpx4gS9+uqrAe/I8uV2p9XVV19N33zzDUVHRwf8OJdLhQsXLqQHHnhAdufzzz/PQ54oUKAAffXVV/TGG29QhQoV6L777rtcus79MCHw0EMPyXA64eHhTJ4wYXMlbJpjJoIUYWa/+4sDJAff/W0z/bv5CL14U62AhJvwt00givwwL8XfamR5zOh98ptVRl1Qm+jaoKz4J/Mqmic++ivSwwvj1tFn94d4pcwAZZCnxqwy6sBBQEKBqseaXUdpRa585I/CkRUpZCMHCKcd25WHwLuTNkkyDRyYTJ6wPv8HDx6ke+65R+685ZZbmDxhDdNlmwqlIShO6LZg42EZ01ZP83d92dZ0wg+KQHd2ruyT2oG/bTCXx/igx8o17/dm+0jWKXr1p/XG2ONNWXPeYI6d5mPx9qWJAMijb+bGv+4iiIFMnrg0zyO3mhFgBBgBRoARuJQRgOM9XCiq+mpw6pcVDnz8vDEQLKBokN8GokKVsuH5fViH4/mDOcgONiVca1UQhwNZbJQoVohKFPOt/yC+BMqmiW+zCAMCg+oEvjOyMQKMwKWFQMDIE1lZWVS0qHeDyKUFFbcWcanVjL9goLF69Wqj2ttuu42JEwYavq+AhIIfGyPACFyeCBwWThAlaa16CDLF472qy1mpKs3dcs4bHR2Y1XBSwcGyPiWTfhPhQFSswoUbj9DjX6+iUYObXFCHEmTYXxOzcJVVLB3qQE5Q6Z4uPxOS7lCBgLUUITpevrU2heXOZr67SyK99/tmI77l2xM30Q9PtPAoNArqg/SfirkICcdP72tEFQTzXtnkpamEOmGfixAkXQTjv0xJfp9S+PCSEWAEGAEg8K+QYDXbVBFyonvDsuZkp9t1hIzsFw80cdifLWYmQRZ2UfIRqWSkQjZ9+/dOwljjq7qDw0H82NgtFIuUQgQ+uJ06c94Yr7yt9n+CbPLKj+uN8qgP6kq+WjDHTl/bxOUYAUaAEWAEGAFGgBFgBBgBRoARuBAIQHHjpFD+WLb1CH30R7LRBIRNYWMEGIFLDwH3mjmXXp+4xZcoApBjVtawYUO1yktGgBFgBBgBJwjMXn3A2NOsml3dacHGQ0a6LytFRQx4OPivFk6pLx9sIuMyqnow+/X7OTvV5gVZjp2zyyBL3Cxk/Rr7Ia++ScR8h6IGDI6kF2+uZRAnkFZYSPg9JWIvJpa1zVSACsW8DZ7hC9WJb2bvQDXS3hhQ14E4gcSeQoWibwu79OH4AKlp2I7IfxkBRoARuDwQ+GvFfqMjCK0BW7X9qJTCNXb4sFJczEyqLGai9W8XTz8+3ZK6NbTLqULdaOUO+/8nPlTvV5HzQjL27YkbjTqGXF+TSob5NgML/Rjy3RqDONGqZjSNf6KlV0RLoyFiJZhjp34cXmcEGAFGgBFgBBgBRoARYAQYAUbgUkBghFAU7f3GfHrj542UI74HwhACuUJ0/iuQXAp4cRsZgYsdgYApT/jTUcQSmjdvHs2aNYt27txJ2dnZMsxAjRo16KabbqIyZazji3///fd0+PBhKlGihJTxRVnUg19aWhohzETr1q3dNs1cz/79+2nOnDn0zz//SCn8unXrEuSBExMTjbq2bdtGv/zyC23YsIHOnTtHTZo0oWbNmlGrVq2MPFYrCHkB9YYlS5ZQSopNbrxSpUqyfO/evSk01D4bVS9vbqMnfd24cSNNnDiRtm7dShkZGRJT9OXmm2+myEjv443u2bOHfv75Z9msjh07UoMG9jhc5vYdOXKEEFbif//7nzx+QkIC1apVS4YUCAsLM7qGdn399ddyG5grQ8iOUqVsH0br169PnTp1Urvk0hccc3Jy6Msvv5TnC22BIsPKlStp/vz5tGDBAjp//rzcX7p0acL5/eOPP+SxkC8pKUmeM7QR4UXi4+OpRYsWdMMNN1DBgjZJp7Nnz0q8cW5RHkodTZs2pXbt2jm9hnGA9PR0eb3hfK1du5aKFStG6HO9evXkNVW8uKO0mMJ68eLFsn34M336dHmOsY7r6cYbb8Qq/fvvv7Ro0SK5DjWPmJgYua7/8fX+AxbAD3bXXXdRSEiIxAjnHRjhvq1evTpdf/31sk36MQOxrnDw5v73557w9jyZ+whlFdyPuDZOnz4t7wdc17g+fLHt27fT77//LoseO3bMWL7//vtGdbfeeiuVK1fO2NZX8JzDdY97NDU1lRo3biyvt+bNmzt9DqnyCN8zYcIEAp4oi3umatWq8jlZuXJllc2nJZzNIARsTs0SMepOUpQIbVBFODXgxEdswuXb0ik51dZfxKOLCLPJntnkvPfSufMknCBhMsbe3rQcQizu1TszZGzCuJgwqlmhBLWtFeMyPiEaDinqf9YelE6ZdCE5DKc64vR1qBNDCWUc70nV0RXb02nzXlvbrhMO8QJC2m+VcFYgHQ532S6halA/wf78RSzoGasO0NZ9x0RMv9OUVCGcalaMkLLGIDC4sz+EagEMUv9Db6xJ172xQG5jNm43EXYiUHZz60pEIlbhx1O2yCq/mrmDbmhZ0aPwHfo5A36ID+nMMCs2RWAFa187xlLicPuBbIOQACUHxJ/8TIvb7qxuZ+lz1x00dt0k+onrzGwgUNzeIZ5e+mG93DV7zUFxLVi/m+hlV+88ajiq4OyrVSlC322sI1QHFD5gf63YR4/1rOaxsoVRibayQ2AEgseOA8fpjLgpgHkLce01Tizl9trXqsmzejT7NP0t7gvUf1DEDA3NjSHZpGqUCBUT6TaWpK/3d56GmBLM9x6coetSMmhxchrtOJgt21VByGXinFUXzwB35m8/t+3PFhL7mfI5dijjFMXFhErnbMPKpShWk/rEM2reelsseKV8gqVOoEEID8Rk9cbwHoLxGe+ou3fvlmMx3itATMW4bDar9yOMMeo9Du/UeCfHOHHdddeJa+gqcxXGNt6l8E6Cd2jUgXe+2rVry/elKlWqGPm8WZk7dy6tWLGCELZDGfqmj3dPPvmk2pVnibEK70MY79A+vL/hvR3vseodLk+h3AR/3huc1anSoRyEMEspYrzBNVchOlQ8/0tQ53qxUtkHz/GM42eoSOEC8nmryu05kkPzRTghWIukKIovEybVbTDerRXXfUFxfpDWVNyXzp45qi7EoMU4tWTLETHenRTPq7NS+SZejJeI7VpKhBKysmniOQXFgrCiBal3swpSqQj3IZ73uIarCLIZVHR0lR20G+Mqnh/nxIEx1tUWz8S68SWtDuGQBiUkRXKD0x+xdhFaAzZ7zQHxfE5wyO/rBsbdF2+qTdlixhCUlmBQffjqoaYeValwwS1yU6tKLmMpT1y0R85KQsU3ibi+KhaxfqDJS/fRGvEOA+tcr4yI2VyaPp5sG4f1fJ6sn8z9eIe8T/ROor7NK/o1HgRz7HTVn6Vb0uR71U5x3xQRcZwrCeUp3DMJ4pr3x3x579OPh3fTOeJ9IjXtBJ06e06+KzYRxE6QO/GOOvFf2xiP9uI8emrqmlL3GmInz11/iNaL0GV4twwX8Z1xv+I9OUbE0nZn/vQT9wWux2Txjr5FvLfi3TMxNlz8iovnTSmH95aVgtgEgk36McSqthnufX18698uTu3iJSPACDACjAAjwAgwAowAI3DZIXBvt8SA/a962YHDHWIELgEELjh5Ah9WQZBYt26dJVz4GPrSSy/Rc889J/4hdxTKQDocd+XLl5eOZjNRAoQHT0yvB3XAaa3bpEmT6JVXXqHx48dLp/Tbb79Nw4YN07NIpygShg4dSi+//LLDPrWBj8n9+/eXhAyVpi/Dw8Np7Nix1KNHDz1ZruttRPtc9RXO8EceeYRGjRqVpx4kYN9ff/2Vh5BgmVlLhGMf5wH2ySefOJAn9PbBIYyP0sqhq1VBb7zxBv3000+SVID0zMxMo04937vvvmtsor06ecJXHEHoAKEGNmjQIPlR//HHHzeOgxU4EGDLli0z2lW2bFn6+OOPacyYMXKf+jNy5EiJMUgWcCabr2O0EwbCApzUIJCYberUqXTffffJ8vq+H3/8UW7CWYE8FSrYZyV/9tlntGrVKj27JHooskfXrl0N8gTSPvjgA5m3W7duecgT/tx/INIo4guu2QceeEA6JxwaJjaGDBlCX331Fd1+++3mXX5t69dcsO8JX86T3rknnniCPv30Uz2JJk+eTHiWXHPNNcY5csjgZiM5Odm4RvWs6h5FWsuWLS3JE3BCwXmkG9oDg3MM1y5IKVY2btw4uvPOO612yWcfnpV6GywzOknctv8YPfD5csPZrGcbPXO7CKVQR34w/0nE/oa1rB5lkCcyhBPnkylbZTpiyZ0795+cYSkTcv8syHU2NaoSSS/dUoeiwvM6heDcRWxmOHis7OtZO6i9IAAMvaGmgzoB8s5efZD+zCUzNBcOLUhjbxdOVGVw/Iybm0JQSnjk2mpSInzY+HUO/VXOITja3x5Yj1wRKPDxGh/OYXCwRgsHa5tapQn9XLHtqHRuBzL8ww2tKtL0VfuNEBQLhYQ6Pta7M3yoV5LjcN7c1cWaYAOHAGbYKglxkGPMhjzDc0NcYN8LN9WiYiHuSSbmevTtpbkOOKR1rOucENGmZoxRDM4btAUEGVe2WpuxjHPkzHCe6iWUlE4JOB53HDwunY/O8jtLxyzlTwTB5cfce0TPh/sG19W7d9SXahr6PnfrcLCOnbuTRk3fbpl1vLiu4ax967Z60pFllcmf+9uqPj1Nv/fglBrx52aasfKAnkWu4/7D8+FZMXsbzk2z+dvPc+KaGDVjGwEP3f7dbN96Tjw70AaYLsdvz2Fz1qrtuiLMgKfkCSh4YbzB+6pu6n0Eae+88w499thj+m4yvx+BDNq3b1+HPGqM6NChA3333XcUG5v3ej5+/LgkpoK8oRveF/De/MILLzi8O+p5XK2DXK2/FyIv/m/Qxxpn5AmQZh966CGH6tU7Ft6/8H5nRQYJ1ru0aggcopiN4mCC7AP7fs4ueS/9MD+FdolnARyUIKspg/qPeqYiFuxfgoABhQSzSZKbeG5jvEGcXrOBvDN07FqHcUrP85Fw0t/dtTIN7JiQhxj15YzthPAWILDVi4+kASNsRF1Vfu66Q4Tjv9qvDnUSTn+oFZmfH3PW2hR87uiUIElwqqzVEqQtZV0FKQMOaeCC5yUIBpBBtbqnVRlvlqjnmT416LqNNjIi8N6XfsIl8U/VD1KLeteoVi7cqSoSxsURvyfLYtXKhwvVi7xOZBBGPp1qI0qgr4/2SlKH8XmJEFev96/r0/hiPmgwx07zsbCdJcimr/20wSDN6HkQYmVQ5wRCmC1vzZ/3PhwL48Y7v20y3v/U8UG+GSfu5ba1S8t7UN2zeM/whjyh32stkqLp2e/XGO9h6lhY4v56/qaa1KNR3ncn7Pe3nyBLPPPtannfoz672cZavFu/eHNtY7wCIQtjrm54Jx653/aujnSr617Pz+uMACPACDACjAAjwAgwAozApYTAwE6VqaeYXIBJCOXFBB4rgvyl1B9uKyNwpSPgyEbIZzTguMXMfDNxwuxkhjPO/KFXb2pWVlaej7zYrysc6PmdraMeqD8ow0xq3UB8eO211xyIE3Bu6/bmm28aDmU9/bfffqNevXo5EArgVNeVAEA2wPGhaOHMPOnrW2+9lYc4Yca0e/fucta4s+P4mo72oW5FnED/QG5RBrILlC+gHAGDqgIwNGONMkjDTylQIH+gcMTsQzNxAvVDPcFsH330kUGcAI4guShDPSB3wMmgrmPk0c8riBVQ6lB9VmWhQNKnTx8H4gT6q19TmzZtIigBQCVAWZ06dfLghTYpvJwpDajyahmo+w/1QXkCszph5nOOtLvvvlvOgMV6oC3Y94Sv50n1E44bM3FCvx9BzLjnnntUdo+XcFypc64XUmlYQsXEbDt37iQQbJThXtOvV6iG4Dl06tQplcVYQm3ETJzQ+4KMILX88MMPRhlPV+AkeOyrlQ5EAjgL4JiBwUGCj7YbxWxud4bZeJCmVoZZ96hLGYgFn+Q6JFQalmdEbPPBXyzPQ5yAs0E3OIUeEPkQd9yZvf7zBsMhZS4PJzbIIE99s9roLxzPumFG7dsaSUDfp9ahWKEMsy5hcCopw2zcQBqcb72EooYyzHz0xHSFBsyydmY4b4o4AYKKUhXR80NpY4PIB4MD2p9wHagDs0G35CqZYDu2ZN57BukwzP7Wr8c9wvHoztaImeDKXCluIA9mjiqDaoEv9u0/Ox2IE+Zj4rr64E+bw86b+j+anJzH8WmuG07euz5ZIgkB5roDeX+b6zZvj/jDkThhbueUZfsERo4OHVWHv/18acI6B+JEHUF8wCx5/fnz1q8b6Y8lqfKQIHDh+WB+Rqg0LIuImfCeGBQVOnfu7ECcwLsBCHH6Mx4k0tdff91plVC10okT5vcejAOKiKpXArIBxjIzcUIfI3BckBW8tfj4eDne6e9fqEMf76zqBOFDJ06Y+wKSsZkMreoJ5rs0ZmSbiRNQN1LXCe6lZ75bTZnHT6vmOF3+snCPQZzQx0xV4FexHwoWZgNxYtBHS4xxSu033y8gQHygxWpV+dTyuJiJjrFZmflaHvbDOgLpUCdOmMc7OL4V8VDVY17q+1vVKC0/QinyHogNnrwbmOt0tQ0yok6mU8RGV2WwT3dcuxoj52uhnxSZylw3yCt494E91ae6UxUQczln21D5+PbRZgEhTgR77LTqw0sT1jsQJ9R4rPKOmb2TZmmhzFS6q2Ug3vu+E8Qg/frE8fT7aL5QF8Jz31/DvaYTJ3C/47mhG54rUF0ym7/93CwUJPC8AGEKBuxB1gXxRxnerQd9tFiqXSGtrHj3xvNAPddUPn18U2m8ZAQYAUaAEWAEGAFGgBFgBC4HBPBdr2HlSPl9j4kTl8MZ5T5c6QhcMPIEPvLiI6tysuMDKCR+EbIDM6rh4Hv11VeN8/PFF1/QjBkzjG19BXXAQQ1yAz7aYuYbHH+QFvbGUA+OC0UBrEMSGM5+zN5WBvIEDDPp0dY1a9bIcAkITaBMzc5T25AZ1p2jyAs5ZYTBwA8qAgj/oOz+++93cJardCzd9RWz+3TlC8j6IzQGMEWYkEcffdSoDjPegVsgTWEIBQ70e+/evRLTv//+2/h4D0wxaxEWFRUlMQTW9957r9EU5EcafqgLFkgcEcoEBrILCAq4Xk6ePElQmTAbzg+knbds2SJxxAzNb7/91siGGZ6oA2FbduzYIfOg37NnzzbyoM/r19vk3pEIJwNUOJQ9/fTT8lygv7imdu3aRZjdCcM50meN4tpDvs8//1wVlzNJFV5w1ruzQN5/OBYc7ghvAkKGOucITwFMlLly1qg8viyDeU/4c57QF5BrdMcNnDTqGsF9CWIGnEEINeStQX5dnXPlUMJSpWEJmXaz4VoEZh9++KEMGYNnHs4ZQoooQ7sRZkS3zZs3OzynMHt537598nqHpDtC7Si74447DDKNSnO1PC1IC08L54tynONj7JcPNqHpL7en34e2oZ+faUW3tq0kq1i3y71TGY4n2OsD6tCcNzrSL0Na0cxXOtAzfe1kt1mCeABpfd0w21d3pL/Wvw7NEG348amWNOOV9vTGgLpGdsyeG/P3DmPbvIJ64BCZ/nI7WX7umx0Jyg3K4CyCXS9mE6Pu8U+0oAVvdZKzE1UetBEz2a0MoRgm56pc4ON5vVzZc4RmUDZZOIkDbS21+iHB7onBQQwHMgxOLjPuqg7d0dS9Ud5nMRzw703aLLPjY/yDPaqqoj4vs3LOGGXhDChU8Cpj22pFJzhA7cSdpWXZnZ/u5LT1cA7pQsLfF1slnLIwzD7966V28trHNfjizbWM6uC4n7TYJh9uJLpYWSZk+OGgVYaZ6JOeay3rxnX9+QONpeoE9sPR9+avG6Qqh8of6Ptb1etsCYIIro/hQrll9msdZDv/eL4NPXiN/Xr5dOpWgnqIbv72M02E3VEz6XEtff94c/rigSb0zsD68jmCc6JsgiBvQCUkqXwJ+XzAM0Y5mLDEtvph9ronBkUxReIEWWLp0qUytB2IjQjdod67UBfeqTG+WRneZ2BQZwA5Ee+PeO/Bu7Ey7FPHUmlQhvj111/VpiRxILQeymOMgWIZzJfxDu/QGNMQRkQZ1OX08U6l60u8v2FcBDZQFkNb8C4Jkp+y4cOH05kzjvdyMN+lQVoYIogRyno0Lks/PNWCprzYTl4n3zzSjJpVi5KqQmpMVHmtllBFwPWGchhLMGbiur+uWXkjO9Ro9LEE1x4UlpRjHs7Mkfc3JtzPGC8nDW1N912daJRHSCGEwLEy1IHnOsbXuWK8xXU7dVhbAnFI2TezbWMl7gEcA+Pd3693oA51Y1QWQ63BSNBWMONdjevdGsYaakOKNIisroh5WlVerbYVzmFlCMXgiUF1St3LMwRZUMddL6+THztahIACWUMpYEExqGv9vGOiXp8n6whJ5UrNypM6VJ5gj53qOPoS4xuu9Q/vaUj/vN5RXuu4Xge0jzOyvSwIFiq0m5HoYsXf9z6QaUcLFRZlUHn584W28j5CG9FWvKOBWOCv4V7Du2UNEdrni8FCJU68n+K5MU7cT1eL+0LZc0KZAiGBdPO3n/r1CrwnPtua3r69Ho0Rz51pw9pRogjTA8Mza14usRbhfPA8GP1QU6MpXYQClxrbsGRjBBgBRoARYAQYAUaAEWAEGAFGgBFgBC5WBAoEqmFQBIBigrPftGnTHA4FkgMcdMoQGgOhKNTMf8yGfvbZZ2nw4MEqC40YMcJYN69AehfOOzi5CxcubCnBay5jtQ3nJmbJFylim+1cunRpmjBhgkNWzEZDCALV1tDQUEOZABkRokH/KP39998bJBGoBiDUAeI/QyYYv1q1ask0tB0Gx6bunJeJ2h9nfT19+rQMnaCy4mMxwimgfTAQA/CRGOElYHCiwnkbaAP5AwSOyMhIo+o2bdo4kAVAEPDWAo0jwg889dRTlJiYKM+DOSyMah8+vCP8RXx8vEzCOevXr5/DtQlHBbDUw2u0bdvWYXanHmoDBB+ENoFiA645kHJKliypDilDLcC5oWz+/PlqNSDLQN9/uHZxn1SsaHcOV6pUyUGFBbNZg2XBuif8PU8qZAr6jVAxkCxX1wjuSxBO8OzLbwMxDc9WKL8o69mzp4NDSb9ekQfy6Hg2wXDNQg0oOtrmEMc9MmDAAMM5hjy6ow3brgwz2hRpAR+Z4fREnHYlMw6pswd7VCMrh7qzeiEVDsWDkEK2YU7cttKZpH9gRuxlZZhFqRw8SHulX20567R4sUIyS/GihWS4DhAqlI0VZAvIIFsZnB1wJoUXKyx3g3H8eK8khxnmICI81qsaoW4YQkAgpAfKKksR0t5WtnSLLa489vUQ4S1U+AiEsFB9REiPQM/G1cMHHMo4adU0y7QeDcsZ6fqMW5V4XpBEZoqQIDA4nuA8NBtm4Sobcn0NgiPIXzt24qxRRYVo21hpJFis6LNJjwkJcXeWoc0ch9PHlZWNtKte6I4pV2Ws9j3Zu7qc/azwwTWIGdpIV/b1LLuzR6U5W07QwgH0bl6eBgkZwhgRZgSG67quIO7AiaIchiA4rUuxk5yCcX87a6tKf1Xcp61F+A4V0gWzyPu1jZP3l8ozbt4utSqX/vYTEuXKejevIGPAq23cn5iR/qy4bqHe0iAhUsSB940go+o0L0EAxTsFfiDxgjyn3muwvPXWWwnENhhImYpEKhNMf0AKhfpE0aK284z3Hrwbg6SsTCeEgpCJ8U0Z3mFvvPFGioiwOdDxjoRxWidFq7zBXuLdDKHfChWyPWexfP7556ldu3bGoUEOVBbsd2k4xBVpoUFiJA3pW5PiSttUZ3CdJAnyIK5fszqDap95ifvu43sayXIFMNAJw3X/+HVJDko5asY49kO9Z83ODKxKA8EHYYPUzBgQvW7vkCDJfSrPD/N3qdU8S4RiAlmjcO54WzIsxIFsiAKDBdkN94A6Bpz4w4TEv7LVO4/K8AdqW1/qagI6YaJOXIQx8x7kCVdqUHp9nq7rhLbDWZ6Nd3jnwJgMw3lGv8yWcvi4QQbB7P1IIemqG95HEAZCGVQnck+tSrrgy2CPnc46iPfDJlVKSSUo5MGYfP/VVR1UQn79d7ez4g7pgXjv+22xnViIsCF4h1Mh4aBWhbZ+eHcjh+P6s4H7/U1B5K0TV9J4R04QymUIRQVSBQwEhmma2kwg+jlrte39DPXfJUKjqPdzbEMlDOTifiL0DMa3bKGQwcYIMAKMACPACDACjAAjwAgwAowAI8AIXOoIBIw8gQ+y+Kjq7AcZeMRQVqY77d977z2qVq2a2uWwxOxmOOZgkArGjDErgyMQH3f9Nf3DsKoLpAMoYyjTQ3uoNHxgVrPs4WBE3GllKrYytkePHm2QGdR+LCGvj33K9DIqTS2d9RWkDeXcxIw8fCw2Gz6g6woAUMAItJll/VX9COehDLP/vDUdE39xxDWlq324aguUQqxie4MQoqxbt24OZBGVrggx2IYqgzI4rRHKAeoRcDgoB4faj6UuL40ZpIG0QN9/IBNZhcnBfa3CkICsA+dOMCxY94S/50nJl+N6g9KDlYFkoyvCWOUJdJpyoJnrBYFCmf5syMzMJIQXgaEvcDxZGZxjKkyPPkPYKq+eBueqsge6VyWrGfp4vD8tYpB7ah1E2Acra1vbno4ZwMr0WYFQSdAdNCoPlpDxRvxqZZjlbmVwVusfl1WeplXtpADMulXOLrUfSxBHlO07aj3b9a+VdlWJTqJNunXWQnfMFOoVgTQ495STHI4hKGB4YlDEUOVmWshq6yE7eoqP78rBpuqGSoCahQtihbPzo/J7uoQMtrIybsgNyAcnvDJ3DgIQQpSTFKQgc59UPWoZpdV9TGuX2u/JEg7Qvi0qWGZFupoNDufKUQ/ULTKPn6EluQoNOH+P9UyyrLuiIJ7c372KsW+eJkkfjPvbOJDFChRfEBfeygaL5wvOBQwz9pX4QiD6qYgaqHuDII9Y3Ru4tkH8wU+/llDGX8O7Ct4p8NPfPfR6oVikbOPGjWo1z1IP26Hv1N9/9XcaKBgpA2kXBFMrQ7gPkIjzy/Du3qpVK8vD6X1cu3atkSfY79IbxXWnbIgg2Fmp3YBQh32eWCPhnK0klCPMhueNHjIJ6hDK5m84rFbpkZ7VLMsjw8PXVjWe2xgjnSniqPAZRqViJSq8iANZsJ02bqp8IBqo8Q7PSitC2tlz/9HvuUo5eAbBGa0M49E1GlFhcbKdwKTy+LOMCLWTGrwhO3UTs+uVQZnAbGpmPtL1MB8qH4iZiuyC52qFqLznV+W9UMtgjp3O+gSSDtR6zIb3QxDTlOn3mEqzWvr73ocxXtWBceXOzpWtDiPDpOhKLpaZPEwEkUaRF/UiIC49f6NdYQpqLcpUG7Ht6/tt8VwiMOrQx3Rsw/AOADUwjG1QnGBjBBgBRoARYAQYAUaAEWAEGAFGgBFgBC51BAJGnvAWCF3uV/+Ya64H6g4tWrQwkq1mysGZV726fUalkdnLFdSjx2bWi5cqZf9YB6UCK9Nn3SvliXPnzjlIG0NxwpnVrFnT2AXZZJ1sona46qsusw8yBsImWP0wq06Zcu6q7UAs9X7o9UHFQxmcsd5YoHEE2cGKsGDVpqZNm1olU4kS9g94zpwB5crZZp+hAnVNWFYmEiEpvX//fhkeZNmyZYTQJYoM46yMr+mBvP/QBlf3sH5PoY+Btvy+Jzw9T5jZq8LiAB/ck87M2TXmLL8/6SA3WJGBUKd+vUJuXZk+KxfXPZxmVs8WpClFHpBl0tOtiQWqXrXcqJEnMOvWmWEWn3L+OsuDdCg3wKliZToxI+eU3XG+86BdhaJWRTt5waoOfb9eTs9r9YEf+8NzlSywroeAwLYyB6fqfyrVvswUoSZUeADMujQfq7FwLimiAmLdI9Z1IE0RAlBnIUHI88Rw7rqLWccwKGKYQ3foITt0xxPyYzbxu7nhOrD9RG9rBz72eWtolzJPCAs6YUKpmqjy5qV+DYKsoBz15nxqW3dG+SqtXic3fIuq07zEbFVl2zXlFZVmXu4+Ylc+waxWNbPcnA/beniJbfvtjptA399Wx9bTaovZ6M4MjurauRjgOt6fS04KRD+VExjHhuT+HSI+/K//7iHMMnd37p211590vDfhGYyQbRjzQWjTVeCw38o6d+5MBQsWtNplkOOwU38/0VUoXI1neO/SQ+FZHiSAiVC0c2ZKBQr7EXpKWbDfpVeIMDgwPKNdOcURvsoT0687c/4yJe1kr5zT9vEOYaeUVbdwRqt9IGDozww8u82GfmAcsrISmsPVWV/L5KrYoLzFcEfLtqUZJLRugpRofgZ1qmcnKkxdYScVWrXH2zTM2FcWVsSmXKK2XS1rincIhEKBQRHDHLpDhUAAdi1EmA/ddgm1KRXWC3Xc0rqSvvuiWQ/m2Omsk0pZwWp/mCAcqdARCPGinzur/EjT39/09zqr/Pp+VW6PRsDF2GtFhlV14ZoIhNWo4LyeuBg7yQbqMspUe7Gt90Pt15f6fr0c3iuVPfD5cnrr140y9JX+3qL285IRYAQYAUaAEWAEGAFGgBFgBBgBRoARuBwQ8PxLkJveYqaWCnXhLKv+MXbPnj1GtqQk144QOKZnzpwp8ytnpFFYrMCZFwjVCd0Zrtfvz7ruPMQMfOVYtKoTUsLoq3Jsw3kJ1QvdXPVVV+UYM2aMQygRvQ59Hcc6ceKES8eunt/dOhyzzvqIcwRHt/7B3V19an+gcUQ7PDUV9sRVfk+JGOY6li9fTggfMmvWLJcS2uZy/m4H8v5DW3Snu7ltrkgD5ry+bOfHPeHLedKdSZBPd2VKncNVnkDt08ks5jqVRLs5XSdSgBThjCBlLofZvO3btzcn59nWZ7Ep+fI8mXITQBRAWABXpjtjzPmcObz1GbUJZYqbizls6/vTnEjvFw2xO+UdCmsbVsoU2m6nq/pMVoQVWZbrjNMLwLEB5zB+i4VyQBsRwiAQpn8oRxgKbwSfQIqYKJzJMITuqJIbI1sP2QFnkZkMMmFBCqlZ03d3rezS4ehtH4sXtakQoNxuC8eguT7VDqSrsBjmPPo2ZqOCOAE7KkJ4lDLJs+t5D2phUCJ8DElSJdb1tVtZ2w8Hqu4Q0dui1lXbsV2lrOtxUycDHcq0x1sP9P2t2uZsWdnN/YvrbkHuzHuE7oHjNxD9BDHruRtqSqcS2gYH3gd/2FS24CRtL9RwMEMfITt0Yo2zfviSDnUnKHOBfKkTJbypSycCm8s5GyN05QZXJGHU526/+Zj+bPvSl2C+Sx/JOmUQAaqWC3f5/ASBCs9DK8KCjkmMC8WcIqIOKzuYaVcB0x2uVnnhkFbqM+nZ9vta5YXTOpg2fcV+o/owcR9ZjXcqw8KNR6Q6hqvnrMrryTLtmL2/7sIumevrKRRwRk7bJs83QqQ0FCFaYBhn8GyAQTVDJ4OAZDXij81yH/5AfUTfb+y4CFaCPXZaddHdsx3kW0UMAsbVK9hJ7lb1+fvep46Fuqu6GR/190artniahjB2zgzkDRCM8Y4M5RIQbfEu4W8/cbx7uibKcD8qxN6UZfsIPxhILV2E4lnnemWk4oxM5D+MACPACDACjAAjwAgwAowAI8AIMAKMwCWOQMC+eNWrV8+IjewJJllZdtnakiXtMyGtyur74ei/lEwPU4CYz+6sTJkyBnlCL+uuHPZnZ9tnknmSX+XBuQi2g1sdy9eljkWwcfS1jd6UgwoFpLUfe+wxb4oFLO+Vcv/5e0/4c5700D36M8zqJOrKNlb7L3Ta8eP22efetCUjI8Oj7HB0KAcRPvY6KC+YavBGOttU1OXmydP2Gaa6OoRVIX2/J7MbrerwJ23yslSjOD5kPzZ6pbFttTJNzMYNFHlCn83obLaxVRuQhpmXKAMCAkJ3KInrDXsyDef1dSKsgW7IO3qGLeQRnFf92sbru/1e188lrkE4r1wRQnTyRLg2q9pZQ0oJ6XrlmD8sHJaunHr7NVl9vV3O6rZKB5nGlen1ZuTYVaiclTmlzbzWy1rlD9VmZmefsBFGkC+/729350Xfj+cNLBD9RD0IGYIQCn8s2StmnNtD5oDENG35fvmDQ/zjuxtaSq+jDl9t9+7dhJBtIPvlt+mKZpf6eOfve4Mr7PX7U3doWpXBsyhNkC2CYToJTneCWx1Lv++hApSfhjAes9ccNA45bm4K4efKEN7phpYVXWXxeN/aXfZ3GFfvJVYVdhGKGCBPwKCspMgTekijrlp4D+T7e+0BIwxEF7GvQWUb4QL7LjbTr4tgjJ1W/XVHWNRJh1m5z3arelSav+99JTUyZIYIceXKMgV50l8DCc8d6VbHCBgAE3/7iXajnk/uaURQd/lzaapBAMI+hMDC7+PJW2hwjyrUv108ktkYAUaAEWAEGAFGgBFgBBgBRoARYAQYgUsaAddf2YPYNcjlYgYzDBLwrsJu6JLxUVGO8qZBbGJAqtbbu3KlawcXDqjP3tPLetIYnVQwfPhwuvnmmz0pRtHR1rHBPSqcT5l0LIKNY350afHixQ7EiXvvvZcglR0XF0dwPEREREhFlfj4eCP0QyDbdaXcf/7eE/6cJ/2Zlpxsm33s7Bxu2bLF2a6LIl0ndyCe/ciRIz1qlzsnmqoEMvuYmQnDTHBXTop1KXZnhiofiGWk9hF8z5Ecl04L7Feml1NpwVxi1io+Untj89cfpgzx4b5kmD1+uzfl9bx/C8eUMoRH8cZASujVrDx98dc2SZZB2IhEoYSgK2l0FrMXdZu9xu6APnvuPD361Qp9t7GuzwB98ptVpM7Lx/c2JFchMOBo0NUhgJMqa1SurejHgZPcnekzYQ8IZQmzqoZefl9uCAmkJWgKEXoed+u4Plq4EPPS1TXczeLFsXTnUIqo25XpxJLYSPvs2Py+vxGCw9W52S3CaChTahmB6Keqs66Qb8fvyd41CMSgteLZBul+hQ8cjfeOXEY/Pd2KdOl7Vd7X5f33328QJ6pWrUoPPfSQVAkCKVe9U/zyyy+E941Am67wgPB6bdu2dXoId+Oh04L5tMPf9wZXzcSzCOE4QHrDdQBSDRyiVoaQMtgfDINKCmamw/aK0APqPrA6VooII6EsIsyu1KPSgrnUwzl5ehw4dgNBnoAi0uzV9vHOWyJDjAhHgjFy2dZ0+ks4nB/tWU06vmcJ4iAMJCpzKAe0XRkUe+7/fJnadFiqZwmuj3s/s+VJKBMmlW8cMgZxI9hjp1XT8ex2NYbuzFX0QNm4mDCrKhzS9LHel/e+qrnqWah0o3jWu7KtWigrV/lc7cP5BiFCJ0iY8+88YL9fFcHV336qY4D8dbMII4MfwlFB4WLZ1jQHghMIQyAo9jIRYVUdvGQEGAFGgBFgBBgBRoARYAQYAUaAEWAELhUELhh5Ah9alyxZInECOUJ3NJrB0wkFrsIDmMtdDNsI+aBCVSBcBeSA8SHbyhBzWQ9L4m0YET3EB8JcXGpYWWGi0vITR3XMYC5nz55tVA/1iXfeecfYViuZmZkO14NKD8TySrn//L0n/DlP1apVM07VihXWDl+VYePGjWr1olzqOOIZFehnix5zffqq/dS0mjVJbuX2o4bDJ9BA6YQNEDhcmb7flWS6qzp83accLyh/dcNYlzP8Pp6yRTpukHfOukPUp3kFrPpsycLhp2SaUUn72tZjmasDYDYuyBOweWI2boJwcMwQ5xzWXMR+L12iiFxXf4T/yjAoOBzNdu2gQGY4lpRzCbO33VmL6tFSEQD5Vu88Sh3qWPdLDz8BaexiIdZOT/14cLhBcQC2YttRalcrRt9trGNG93LhZFNWu5LzuOYqj9UShBRXtl1z4IC44s6iNFKR3n+rcrqTVZe4z+/7G/dn6xqlrZoo03AdK1NS6oHop6pTLeEUbyLixOM3qHOCiA+fTi+OXysd4nBcA896CSVVdr+WUEvQxyuE7YiNdSQi4QA7duzw6zjOCiPknDI9ZJVK05dr1qzRNy+6dX28C8a7NO5tJX3/tyCH9XTiZAThJliG0FZKRQj3rSvyxFYR3keZ+fms0oO1nLrcFhYA9Q+9sSbVcBGG4bYPFstmgOCmiHn+tGuSUI9R4wgIdiBEeWsIywHyBJzea4SKRbRQIlIEvJ5NHFWWULc+3oFcs+ew+yOq83jek8HOfXVe5Qjm2GnVEJAjXJEnklNtxFI8e0EQcmf+vveBJKDUtEBqdXbdnRMn9i8t/Iy7drnav0vcr86uRVxn6pqtJZ4zSqXC335atQch9vCD2tIjghg0SiiETV1mu19BemXyhBVqnMYIMAKMACPACDACjAAjwAgwAowAI3ApIeA+KHuQetOtWzej5m+//ZbOn7eWggXBYt26dTIvZoPVqlXLKHeprPTq1cto6tixY41184q+D9LL3lqHDh2MIn/++Sfl5DifJbp06VJatGgRLVtmm7FkFLyIV/ILx/yAANgru/3229Wqw3LevHkO26429u2zf2B2lU/tu1LuP3/vCX/OU+HChalx48YScszEXbhwoYLfYYn79Ouvv3ZI83UDBC1fQ2y4OmaNGjVIzcaFJDzUgpwZVDSAG36unkF6eT0u9Qwhdf/jghR9t1zHjPkh363Okx6ohMbCwakMH34znUgwQ+ZfV19olGgvp8oHa4mZsJMW7zGqv+/qKlRZOMCd/Qb3qGrk1We0GolerGAW9EsTbGMxijWqEkmY6eqtxUYWlWVRDqE79JAdPRqVy1MdnHUgKrj76bO3E8VsUOTHrN9CBYXchRtrWtVO1pm4aK/T3L8ttu9rkRTtNJ++o2Fl+/Ux8d89BBl6K5uz7qAxyxzYekLMsKxHKIMcEgoXVob0+Rvs3rhKwvHhzuLFOYbjEAZnnjPlFzju/tTCyej45Pf9PU04qeBEsjI415RyC2Z+q+smEP2EY29bruPW7MdELHqQg/q2sBOYnBFd0PYTWhghq36Y03SS8fXXX29JnECZP/74w1w0INs1a9Y06oG6hU4ENnaIlW3btgWsDQhTEgzz973BXZt0x+fbEzdZ3lMIPfH1rOAQXdA+XIvKQIhz5niHY145+/Ec8EStRtXr7xKKGJjZDoODGkQEZ2Md0h+/Lsk45MxcQp6R4OXK8m3pNOJ3u2LYTWKmvXJEe1NV65p2EhcUluZvOGQU71IvL0kP+Lob67BfN5W/foCIWHrd7taDOXZaHft3QWg5e86aEbko+YgRIgvEAVfht1TdgXjv0xW4oHoF9SqzfSTCWYBEEwhDSChn9tdK+/+C+rjrbz+hdoGxDT+rcENRghT08DX29001xlq184CmsGW1n9MYAUaAEWAEGAFGgBFgBBgBRoARYAQYgYsFgQtGnrjmmmsMDKZNm0ZvvfWWsa1WoNKAj8DK4GQuWND9TE+V/2JZ6kSIoUOH0ty5c/M0bcGCBfTMM88Y6XoZI9HNCma6N2vWTObatGkTDRw4kM6ePZun1OjRo6l169bUrl07eu211/Lsv1gTdEyCiWN+9F+fpWk1CxNKBIMHD3bZFD0kwsyZM13mNe+8WO4/OD/gbMcPjv9Am7/3hL/nqWPHjkaXEEZn//79xrZagfKIIoipNG+XeugdhBoJtOG5e/fddxvVInSHlXNs1apVVLt2bflsufbaa+k/swfRqMFxBY6Rp/tWNxI/mbJVylV/P2cn/Soczi+I2dp3fbLEqUPUKOjHSsXoUKpRsYSsAQoHIApgtqBuIC+8+uN6Q/0C8uuuZuzqZQOxvlrMXEXbYA0SI93OrKxWLlxKgyM/ZjrrktZI88TgxMXs39vFrF44z2FwOD9/Yy1PilvmgRMMhvo+z1WhwHarmnkJCcj7xQNN3P66aOE+Xu9fV+b/8O6GVLig7TUHH/+hxDH4i+UEx6Ru7evEkFJKWCXUTSZpJAmVD44ZNasSab2b2Z3guMx/mJ8i5dO/+2enw3UDsggUQpS989tmcV+oLdsSpIb3f99sJA5oF2+se7sCx/vQcWvpzFlHQiq2Xxi/zriHmgl1F0+IJXD6X6vNkH7u+zWUdswm96+3bdzcXbRw4xEjSXca5vf9jevqzV835MEZ18CQ7+yqB7rjLxD9/ERcXwM/XCzvlZ/+l5cABgc1nE/K9NnASNPD6qwXTmtvTFc6ApHCTFwDQRnvTXg3DIYhLIgiC2JsuO222/K8f0IdQ3+n96UdOI6yf//996J8b1Dtc7bsJJzmXRrYnwn3j1xOz4r7CqTB8fN20SOjVwiFknXOigckknr/2AAAQABJREFUXVdm+XfzEcJzy2xwkuqExR7iWVyggHsymrkeX7dnrjpgFL1GzG53Z+1q21V9MGaZx2935bH/cNYp+mrWdnp09EojO94L+rWNN7a9WQEJDjPzYQjdMSVXSQMOd4T1MNsTggDiyXinxiuMxSr/Q9dUM6qD+g7em3Bd6Uo7RgYvVoI5dnrRDJkVZJqRf23NUwzkzmHaPaOTBfJk1hIC8d73QPcqxnsWFIVuHL5QjD8b5XvEF9O30e1iTABxMlA2XRCMf7MgeYKIqhN+dDKNv/1EiA6Mbfjd+fESS3KxHhLMfG0XL1rI6D7OoTNy44YNG+jWW2+V4wT+n2BjBBgBRoARYAQYAUaAEWAEGAFGgBFgBC4kAvb/ZvO5FXD2ffTRR/Too4/KI7/yyis0f/58wox4hLWAA3DSpEmGgw6znnVyQT4316/DoU/XXXedMduua9eu8sNAp06dZL3//PMP/frrr8Yx4NiGc9IX+/nnn6lJkyYSN8wwBJmiZ8+e1KhRIzp8+DBBkQJkFWVDhgxRqxf9Mj9xDDYYnTt3pg8++EAeZtCgQYRrAP0LCQkhqIKMGjXKrVMgPj7eaCYUWrp06UJ9+vQhOPzbtGlj7LNauVjuPxB4UlNTZROhtNGiRQur5vqV5s894e95ev755+W5hVoDHEq4N3GOmjdvTiCOTJ482YhR708nMet3506b8+Omm26SxKl69epR3759Zdggf+pWZdGXlStX0vTp0+WxGjZsSDfccAO1atVKOsngyMJ1qwzPlrAw9zPbVX44o+H0/HGBbTYxPrCqWacqDxwOCDWg8qj0QC2f7lNDfhhGfZgliI/ebcTMURwTUsmIv75Li6n9TN8agTq0R/XM0GTcr25Q1qMyPRqVpVHTbUohUNS4p2uiZbmPJieLmbV2PuXxk2do/9GTtGZnhkN+OGteE+QEyL77am1qwsm1QRZX9V/XrDwVLVzQ1yrdloNqxE+51xaO2VCQT5SzGgQLOEBe/dHWpvcmbZbS192Eg/MqQR6Ac1GFGsGB7u5amSLCbGoM2Eaoj8+m2hw6mKldVZBWWopQIMoGdqxMcHjAQNzIOXWW7uiUQBGhIcKxlUXAXjkTQIpxFrZG1eduiVmf/d5fRB3rxohrN5y2H8yWIVIU+QUzyJ8TEvie2m3t40X790vSEMg7cKDAUVk7riRlCAcriCUISaIMEt6lioeoTbnM7/t7ztpDdGfaEnn/lo8qJuLRZ9Hf4vpX5CMoTdwvlFt087effVtWoCVb0mSVIIAdEPcPzmeFqFBxL52gn/+328AJ95HZwZcQG2ZIrg8VTk8Qh3AtIYwM8rsyjOkgL2CsgdIRxlI4ofDuh+0pU6Y4hPVwVZev+6Ce1rRpU/nuMmfOHHlsjHcgdqxevZqgSKHGe1+PYQ57h7G0f//+VLVqVbrxxht9rTZPOX/eG/JUZkoAUee562uK6+OEMcYtEIow+Ol2V5fK8tnjaha3nt+bdTy/nuidZDhbv5q5g1btOCoUKaLlvQvyzlyhhqPuFzwzbm+f4M0h/MorlWyW2t4NUVFHJ6GU9INApQiqPXgWod0rhHqE1bN075EcGvFHsl5UzKY/Je9XM9ZQp3m1Xx2PiGYOFWobVzcsK8Nd4RmfI95xYIpAqGUL6OqIP5MJREDYQUHOG/OIjVjvy0GCOXb60h6M4xsFUQDvZpFinMF7It5t1BiKa+CWNnEeV+3vex9Cd7w/qAHd8dFi2Qa0A0RLnWyJxrw+oA69MC4wpCiQLf+38TC1rBFNIYUK0Epx787SyEY9GpcV438ZBwz86WcdMdZD0QsqNCCIPPb1SuouruvacRGSpIiQNOodCAe9NpcgqxpQKtzxfeBOQYbGfVFRjI0gkykDmVypLu7du9cI76r285IRYAQYAUaAEWAEGAFGgBFgBBgBRoARyE8ELhh5Ap289957ZfxlkChg+NiKn9lAnMCHX32mvTnPxb4Np2JGRobxUWDixImEn9latmxJUIbw1RCrGSoEcJ5jJj9mtDub1T5mzBjp+PT1WBeiXH7hGOy+gTQAJY0ff/xRHgpOBz1sCxJBFkJIG6sZ/thfv359wvUCpzUMH5zwAznHHXkC+S/0/YeZsbojRc1aRdsCaf7cE/6ep2LFisn7XBGacC5xDeskA/R13LhxNGDAAJ+7DZWSqVOnyvK47z/99FO5DqdVoAgpCEMyfvx4AqEEM8LQl5EjR8qfueFQqXjqqafMyW63HxRhJsoKFQrMYscHWmVwHN7ZubKQvK9I3/wdPCnzJKEk8Uq/2vTSD+vloUGU0MkSqj1YDrullsv463reQKxDAQLy6sra1CqtVl0u4XhV5AnIPd8lcLSaPfz7YrujylmFUNqAIwmzGP0xnE983J+23K7Egg/pwbQ0MaNYt6ycswZ5AundBBkFs3XHzU2R2X6Yl0L4ma2z+NA/sIOjE/GoIBDoZlZmqCQccMPvqEdDvrWpHixOTiP8zAZH3RsD6pqTvdoecn0NggIC4p6rvpgreOv2egRHo6cWJmaNviecQ499tUI6JeGYxPVidc1c37Ii3SB+VpZf9/fzN9WkN37eKNVWoLhiNlx/7wysn4eQ4G8/EapEv65/WbiH8DMblDjgSDMTIm4Qzzel3gEHnCqL6wfOK3f2zjvvSKIuxgAoTAwbNsyhSHh4uFS0Gj58uEN6oDYSExMJpIPu3bvLKtEGs9IF3udBxFPEaW+PXUAQvJ599ll6++23ZVEQQ15++WW5HkjyhD/vDZ70qUjhAjRcXIMY68zPGTwHQOZqK0hmIG4Fy/oIwmJq2gmDVAbSgU6CUscFcWLEXQ2peLH8+5cRDnH1DoBxB/eAJ4bnuOrDdBG6w4o8geeXJ0oA3YRi0FO9a+S5Tz1ph56nnginAaUI1R/s05V59LyBWj8oiFvKDmeelA5uwdnxyYI5dnrboNf615GqLFbkWtQFnF/rV9crsksg3vtA0PvywSb0zeydeZStoPJ0v7ify4vnvr+G/mF8hWIXiHqKrKfXC6UUECXM5m8/n+pdnYaOXSPfATCuWo2tOGa/dnF0Y6tKDocHYez2jvH0/T+7ZDqInKNn2Ei9OnlCD8WE/w+hXgcCKxsjwAgwAowAI8AIMAKMACPACDACjAAjcCEQsE8z9eHoRYrYP777Ek4DZd59913pXIQT2Gz40ItZCMuWLZOOYvN+zNKHhYZ69lHNXF5te1MP2uTMdDwKFXL8yFiqVCnp3Hz//fcpIcHR8YL6ypcvT/jwPWPGDNIl+NWxvGkjZqH//fffTuWRIZu8YsUKOVtP1e/JUj/Hel9R1pv2OTuWGTOrfP7gqLcfTm1Xpuc199WqnLM8erq+DrxAjMBHf5x73eBcgHMdaixwWDsztPGnn36S+cx1qDI6puocqX0o78/9p2Nkrlsdw9VSKSUgD65JV321qkcd05P739d7IhDnCU6YWbNmSaeWuR947i1atEiqjpj3ebMN1RGoykBlRjc4msxWtKjvigF4/uE4zhxfIMD8/vvv9NlnnwkHfd5jm9ti3oZTHx+Gfx/ahqa91I5+GdKKJr/Ylma92oFubRtHcDidFCQCu9k/quqHK+KHgkHnerE05tFmDrLq9uOJGbBiNt83YhYnnDRm09ugwkWY8+jbhXJDSuhpWMdMQmUqD2bRKgNxIiLU+bNB5cPSLNe8aW+WsVs/jpGoreBDPRw/iPf+9cNN5exVf4kTqnqdLIHjYAajP2ZFCNHr69uiAsFpDevdvLylM+4+oUQANRGzU1vVA4fmCzfVykM+aVWjtFQYQD7EWreaJQ2Z/E/ubSRnb6r69GWvpuVp5P2NPT6veln9WksQigpjH2+RZ9Yp8sOp8tE9DS0d8bp/orB2/anjVBGzTr97rIV0jFjhUyc+QhI/IDtf0Im0vz/3t2qHJ8sGlSNFW5uRHotelWueFEWfCZzh7LIyf/qJfiOczZu31yU4fM2G66+PuA7xfEkqbwsRpOeBo/e9O+uTmRgFx5MnhnBsIFOC9Gc2jLF4l8ZYaGX6eO7u/ciqvEqDohrGgAYNGqgkY4nQe2iD1TuwkcmDFYQf+fLLL40wIeYi+tij3hPMeTzZ9vW9wZO6kQfPcBCKFrwlMHu+jRzvZr7Snn58qiW1qxUjnIZE2Sfzht5DWW/HGpQxG+7HR66tRm8PrEe4f82G+/yWNpXo20ebE0JAmU09d4qK0BTuzOqZocqEFLJf3+rZMX/DIbVbznA3NtysQI1A2Qyh9nP23H9y0xMHLEgreGbcd3UiTXy2NQ27ubbTsUAdw5Ml7l8835UhjAfCefhjCntndUBVB5jj90D3qvJacpbXXXowx053x8b+EPHepwyKR58/0NgIsabSscS72af3NXJQhVL79WdoYe16U/v9ee9TdSSUKS5UuerQ3Dc60s/PtKJJQ1vL9RF3NZD3z8kz9lBaToZIVZXL5YD28QQCpHqf0TNjfHnnjvoO75D6fn/6WTe+JI1/siUhhA4IVWbDu+K7g+rLZ5pVSLBBnSrTczfUtDx3qq7XX39dquXhf4033niDiRMKGF4yAowAI8AIMAKMACPACDACjAAjwAhcEASuOn36tO3L0gU5vONBjx49KmeinzlzhqKioghOR28dqo41XpxbiD2NWdsHDthkvCFDjJ/+wTdQLT9+/LjEFLGmgSmc7LpDPVDHuRD15CeOwe7fwYMHad++fVS6dGkqVw5xpe0fCz05NrCAsgk+EOOjky/nOL/vPzjhEfYB9sUXX9Cdd97pSVf9zuPPPeHvecrMzJThOnCeKlasSHr8dr87llsBFD1OnTpFcIaVKJHXQReo4+A5jWs2PT1dEtgqVapEvjrdTp89T+nHbLP3i4YUcFAEMLf33s+WEUIjwKYOa+syr7mst9snz5yTs0URZqFYSCERo7xIUENLeNs+zu8dApCCPyUcGO4cV1D52LrvGO1Ns0msx0YWo6qCPAB5blcGR6ce29sq7/nz/9HW/cdoj5COPyHUBaIFcaSycLr4EwbF6jhIQ19TRR/EISm6REjA7hU4JI8IJY+sE2cITqky4r5whU1+3N/DJ26iP3Nl/n99thWVFecMhnMJrGFlI4u6bKfMpP3xtp9aUbl6TgCPmf3oP44NZQtPDc+eM6Ic8PWmnKofz+ft27cTliArFC9eXO3KtyXGS7zrYiyqXLky+UPcc9ZojKl4/0Hdvo4/zurW0/15b9DrwXr2ibMGKaKEIFA4Ixbg2u384hxZHGFmxj/RwlxVQLePifv5kFB8wnUPYke0UKexcoIG9KBcWdAQwPMDZkWG8/agwR47vW0P8uN6PZhxShJD8Lx3dh95W7e3731p4t1VYe3qnlkmCLCPjV4pm3OzICWBuOSp9X5zgXwXBdEU5GJlGcdPyzEGqjB4h/Am9Jm3/VTHVMusnDN0QISECStSSCjGFZVjldrnbol3JahKhBQqKEnRen78/wLTJxzo+3mdEWAEGAFGgBFwhUBycjIlJSW5yuLRvv4fLPMo3/jHm3iUjzMxAowAI8AIMAKMgH8IXKix2fMvuf71z6PSkZGRhN/lbnCMx8bGyl+w+xoWFibjTQf7OBei/vzEMdj9UwQaX48DLKDK4Y/l9/23ZcsWo7kdOnQw1oO94s894e95AlmiTp06Qe0ilDg8UePwtxEgtsXFxcmfv3VliLAH17/9P6Oa7x5rTpgBbrZZqw8YxAl8RC4ZZlMfMucL1DY+RAdKaSFQbeJ6fEcAjmh3xAnUjjyYZYmfN+aOOIG6MNsbqgNWygPeHMuTvFBqqRyb9z7ypKyrPHCoxgoyAH6e2IW8v3EurWbNe9Jub/tprhOz6D0NN2Aui2ePN44wc3k8n6tXr25Oztdtf8dLTxobDAKi1XH9eW8w17d0a5oMPYB0kCK+HNzEkiDz6VT7OxIUbYJtIEC5IkEF+/hcf2ARCARpQrUo2GOnOo43y2Bdr96+93379w76bdFe2fTujcpKdSpzP0BUQDgtZb6OSaq8WuId2Nf3YG/7qY6pliB+4eeLuXpXYtKEL4hyGUaAEWAEGAFGgBFgBBgBRoARYAQYgWAgcFGRJ4LRQa6TEWAELk4EFHkCs2L9lfG+OHvIrfIUgRgxY+5qEV98upDZhj321Qq6pnE5qlEhQjpojxw7RbPXHKRZq2z7kWdgxwQs2BgBRuAiR4Dv74v8BHHz8hWBtiIkB8h/h4XKw66Dx+mhL1dQhzoxVF2QqqAysi/9BP2ycI9BFETjEM6KjRFgBC4+BG5sVckgT/y1Yr9UlWlcpZQk7UGxY/uBbBo7Z5e839F6hLzoUKfMxdcRbhEjwAgwAowAI8AIMAKMACPACDACjAAjwAg4IMDkCQc4eIMRYATyC4H169fLQ/Xs2TO/DsnHuYgRuLNzIm3Yk0V7DufQ0ewzNG5uitPWPtWnOvVpXsHpft7BCDACFxcCfH9fXOeDW3PhEICiyZDra9Cw8esoR4Tu2ZJ6TP6sWoRQBO8NauCzeopVnZzGCDACgUMA6kL3dkukL2dsl5Uu2HCY8LOyauXDafjAenlCVVjl5TRGgBFgBBgBRoARYAQYAUaAEWAEGAFGgBG4sAgUuLCH56MzAozAlYrA8uXLZdc7dux4pULA/dYQKB9VjL4X4Tru6JRgGbsaTqQmVUvRJ/c2YuKEhhuvMgKXAgLBvr9F5Co2RuCSQaBFUjRNeKoldaxrPQNdzk6vG0NjH29B9RK8Cx90yYDADWUELhMEoIT21cNNyVl4nYqCYHFzm0r0+QONKSbCs3BXOjSFC/IAp+PB64wAI8AIMAKMACPACJw+e54yc84SlL7Y8heBDbszaei4NfTp1K107OTZ/D04H40RYAQYgXxG4KrTp0/zSJPPoPPhGAFGgGj7dtssrUqVKhHis7MxAjoCWTlnaM+RHMo6cYbiY8IotmQxuuoqPQevMwKMwKWKQKDv73Pn/6NTZ85LOIqGFKAC/LC4VC+NK67d+N53OOsk7T1yQva9cmwYlQwLueJw4A4zApcDAhiLEHpnb1oORYQWpoQyxalYSEG/ugbnwNlz/8l3YH/r8qshXJgRYAQYAUaAEbjIEUhOTqakpCS/W9n/g2Ue1TH+8SYe5eNM/iNwXrxjLUo+QpMW76VNe49RRvZpo9KK0cWoS4Oy1KNROSob6T1R1aiIV9wigP9db31vofhWa/vf9b6rq9DtHeLdluMMjAAjwAj4i8CFGps5bIe/Z47LMwKMgE8IJCYm+lSOC10ZCJQQH52dzeK7MhDgXjICly8Cgb6/Cxa4ylKx5vJFkHt2uSAAng9mo/syI/1ywYD7wQhcLghgLKoYHSp/gepTSKECFMJfbAIFJ9fDCDACjAAjwAgwApcYAiCZPzVmpeGwNzcfjvxvZu2gH+el0Gu31aHm1aLNWS75bSg8zF9/SPYjtlRRalS51AXp03/0n1CbOGcc+9QZ+7qR6OfKih3pdCD9pKylbe0YCi/KL8J+QsrFGQFGwA8E+AnkB3hclBFgBBgBRoARYAQYAUaAEWAEGAFGgBFgBBgBRoARYAQYAUaAEWAEGAFGIDAIJKdm0UNfrKCc03YnfflSxSipQjgVKVyQ1qdkGKQK5Hny69U0uEdV6tc27rJSrk3LOkVv/rJRgtq1fpkLRp6AwucLN9WkMbN3UkzJItS7ecXAnGitlilLUmnm6oMyBRPqmDyhgcOrjAAjkO8IMHki3yHnAzICjAAjwAgwAowAI8AIMAKMACPACDACjAAjwAgwAowAI8AIMAKMACPACOgIICzni+PWGcSJUBEKDY77NrViqIBQ+1J2NPsMvfnrevp3U5pMGjltq1Sl7NO8gsrCywAi0CIpmvBjYwQYAUbgSkCgwJXQSe4jI8AIMAKMACPACDACjAAjwAgwAowAI8AIMAKMACPACDACjAAjwAgwAozAxYvA2Lm7KDX9hGxgyeIh9NUjTaldnTIOxAnsjCxemIYPrE8D2sfLvPgzcupWyj5lV6swdvAKI8AIMAKMACPgBQKsPOEFWJyVEWAEGAFGgBFgBBgBRoARYAQYAUaAEWAEGAFGgBFgBBgBRoARYAQYAUYgsAicOXeefpqfYlT6eM9qFFc6zNg2ryCcxJ1dKtOU5fsoI/u0VKtYseWIJFuY8/73H9HKnem0NDmd9qXn0AkR7iMmoijFx4RR53qxVCo8xFxEbk9bsY+OHj9DYUUKUu9mFSgj5wyt3XGUVu9C6JDjVK5UKFUuU5y6NSxLRQs7n6sMUscacfwtqdm0OTWTwkIKUWK5cEqMDaOmVaIcyCErdqTT5r3HKP3YKaNN2w8ep/EaNv1FiBLY3sM5NG/TYbneIimKKkSF0loR1mTNjgzatDdT9vGZvjXkfvUn68RZWrEtjXaIOrftP0ZFCxWgqhUiqGrZMKpdKZKKheTtx1rR33W7M2UVPRqWk+QVVZ+vGJ0+e55++XePrAb9UzZ5Wao4H0XkZv34koQwHmyMACPACOQnAkyeyE+0+ViMACPACDACjAAjwAgwAowAI8AIMAKMACPACDACjAAjwAgwAowAI8AIMAIOCKwRDvocQWqAVYwuRh3rlXHYb7VRRDj+H7qmKk3IJRakZtgJByr/3iMnaOi4NbR9f7ZKclh+NHkL3dMtkW7vEE8gZOg2esYOOpR5UpIQmgiSwx0fLjbaaMtnCxvy7d876fUBdSwd/Vv2HaMh366R9eh106oDcrNhlUgadlNtKh1hIwyA4DFOKHDohrZDWUOZIk9sFAQJlR4llDpGz9xO89fbyBTIC4KIbgs3H6Y3f9kkySZ6+szVB+VmfJkwGnFnQypT0tYWlWf+hsMGxs2rRTmQJ3zF6JQgT6i2q+Ng+eP83cbm4B5VLTE1MvAKI8AIMAJBQCAvhSwIB+EqGQFGgBFgBBgBRoARYAQYAUaAEWAEGAFGgBFgBBgBRoARYAQYAUaAEWAEGAErBJZuSTeS6wjFATORwdhpWukuVB++f6y5/PVrU8lhL4gTgz5anIc4Ub5UMYd8o2dspw/+SHZI0zeyT5yhx79aaRAnEFJEJyaAYPHCuHUEQoBum/dmieMvMYgTKNO6VjRVKx9uZFu57Sjd8fESgvIGrGypopI8EhpS0MiDFRBK1M9hR+7Gt3/vcCBOoHxoUXsd8zceomfGrHEgTqA+ECaU7RIKEHd+soQOZ51WSR4vvcUoRBBfEssWl33SDwKMVD+LF+X53zo2vM4IMAL5gwA/efIHZz4KI8AIMAKMACPACDACjAAjwAgwAowAI8AIMAKMACPACDACjAAjwAgwAoyABQL7RTgNZYmxxdWqz8vzIlbHm7+uNwgPcMg/d0NNqinCQBQuWIAOCZWK6av206jp2+Qxflu0l1rVjKbm1aLzHBOKGDnpJ+iOTgl0iwiZEZ7r1F+96yg9P3adJCSAQDFVhJzo26KiUX7Gapu6BBIGtI+ne4XCRcECNnULhAB55MsVktiBsCPz1h2izvVjZXgQhAjZdeg49X9/kayra/0y9NKtdYx6rVb2CKIICBNDb6pJdeMjKUqEIgEGMCzGzN5pFENbBnSIN/pxOPMUvfrzegKRA21ZnHyYejYpb+T3ZMVbjKAaAtIL7JUJ60ipX3xwdwMZTsWTY3IeRoARYASCgQArTwQDVa6TEWAEGAFGgBFgBBgBRoARYAQYAUaAEWAEGAFGgBFgBBgBRoARYAQYAUbAIwTSj9vVDhICQJ7YsDuT1uzMNI79zh0NqF5CpCROIDFGhKZAqI7rW9rJDuPnpRj5zSt9W1Sge7omGoQD7K8vSAqDu1cxsm7d5xgaZGZuaA5kuKtLZYM4ge2SoYXpzf51qV+7OOrVtDxlnzqLZJ8NxInRDzelDnXKSOIEKlLqHSfPnKeaFUvI49wt+nDf1Y79QMiQZ/vWNI69asdRY92bFV8w8qZ+zssIMAKMQH4gwMoT+YEyH4MRYAQYAUaAEWAEGAFGgBFgBBgBRoARYAQYAUaAEWAEGAFGgBFgBBgBRsASgTShfqCsQqlQterzcv6Gw0bZR3pWo0qlret8+Nqq9NfyfVKhAsoL6cdOUymh2mC2noLgYGUtq5c2klMOO5InwkXYjIzcpE0ihEc9EY5EtwqiTQ/2qKon+bzeska0U8WGYiEF6Ok+NVzWXT6qmFSugILERkE88cV8wciX43AZRoARYASCiQArTwQTXa6bEWAEGAFGgBFgBBgBRoARYAQYAUaAEWAEGAFGgBFgBBgBRoARYAQYAUbAJQLFixU29mfm2FUojEQvV7YfOGaUqF4+3Fg3ryCER52ECCN5z5Hjxrq+klAmTN801kuG2dudffKckY6VxlWjjO3Bny+nt37dSEu2plHOKcd8RiY/VhokRnpV+pRQozicdZp2H86hjXsyadk20S5BnPDHfMHIn+NxWUaAEWAEgoEAK08EA1WukxFgBBgBRoARYAQYAUaAEWAEGAFGgBFgBBgBRoARYAQYAUaAEWAEGAFGwCMEokrY1R52HTouwkzYCQ0eVWDKdDDDrmRRqXRx017HzcTYcFqSnC4ToTxhtpiIoka4D/O+q64iQ7HBvO+erlUI4UO2pNqIHFOW7SP8YDVEGI0u9WOpU91Yitb6bq7D022oS7gzqF/8tWI/Ld1yhPYcOeEuu1f7fcXIq4NwZkaAEWAE8gEBJk/kA8h8CEaAEWAEGAFGgBFgBBgBRoARYAQYAUaAEWAEGAFGgBFgBBgBRoARYAQYAWsEosOLGDu27XcMf2Hs8GIlR1OBCC/m2hVWItSuHnHq7HkvjuI6a0RoIfr43kY0TYQF+XNpKu06aFe12LQni/D7ePIWGixCd/RvF+e6Mj/2/vcf0cRFe+iDP5L9qIWLMgKMACNwZSDgesS4MjDgXjICjAAjwAgwAowAI8AIMAKMACPACDACjAAjwAgwAowAI8AIMAKMACPACFwgBGpViqDfF6fKo2/dbw+54WtzSkcUoUOZJ2XxvWk5FB9jHXYDGXYetJM1IrQwHL4eWy8XXrQQ3dy6kvylHD5O61JEiIwtaTR7zUEj28hpWwkEj15NyxtpgVxZvzvDgTjRu3l5alqlFMWWCqXion3hgjwSVqQg9XpjAWVk51XeCGRbuC5GgBFgBC52BJg8cbGfIW4fI8AIMAKMACPACDACjAAjwAgwAowAI8AIMAKMACPACDACjAAjwAgwApcxAs2rRRu9W7ntKIFoEFfaOeFBZR41Yzt9/89OuXl310Qa1ClBrpcpWUSEzLDlShHkCFfkCV3ponQJuwKGOkaglugPftc2LkcPX5tEX87cRlNzw3jMWnMgaOSJZVttIUnQj1vaVqKHr6mWp0vZp84xcSIPKpzACDACVyIC7oMgXYmocJ8ZAUaAEWAEGAFGgBFgBBgBRoARYAQYAUaAEWAEGAFGgBFgBBgBRoARYATyBYFS4SHUonqUcawP/txM586LeBMu7FDGKYM4gWwgJShrnmQnY0xZsY/OI3aFhW3YnUnbc8OElCweQpXLFLfI5X1S1omzBFIGfunH8qo5RJcIEQQKO4lh8+4spwfZL/rpj61NOWoU79HIjpGRKFZWbk/TNy/Yetox//p6wRrOB2YEGIHLBgEmT1w2p5I7wggwAowAI8AIMAKMACPACDACjAAjwAgwAowAI8AIMAKMACPACDACjMCliYBOJli25Si9+MNaOnnmvGVnklOz6PFvVhr7ejQuSwjVoaxVzdJqlf7dlEbfz9llbKsVkBqe+W6N2qRrBPmiQIGrjG1/VlIOZdPADxfL312fLKWMnDN5qtt96LiRFhNZ1FjHSljRwsb2ul0ZdOL0OWPb25UqsSWMIlv35Q2JsvPgcRo+cbORJ79Xihez93XVjoz8PjwfjxFgBBgBBwQ4bIcDHLzBCDACjAAjwAgwAowAI8AIMAKMACPACDACjAAjwAgwAowAI8AIMAKMACOQ3wggpMXga6rSyKlb5aHnrTtMPZPn0YAO8VStfDgVDSlIKYJwsGlPFk3JDXeBjKEivX+7eKwaVjK0MD3RO4lG/J4s00aL8B4rtqcLdYvSVCqsMK0XihNz1h0yQlVAdeK2DvFGeX9X6sSVpMSyxaWqxaHMk/T4Vyupe8OyVDsugiCCsSYlkz6bssU4zLVNyhvrWIkKtxMKsD3oo8XUXahGVIgOpU51yyDJY2tSrRRNmJ8i87/20wZavi2dmleLosIFr6INe4/RpH/3UI4f5AyPG+IkY/moYsaeMbN3iHOcTU2rRlGDhEiqUDrU2McrjAAjwAjkBwJMnsgPlPkYjAAjwAgwAowAI8AIMAKMACPACDACjAAjwAgwAowAI8AIMAKMACPACDACLhHo3zaOihQqQB/8YSM9wKn/pSA+OLNalSLolX51qKxJuQH5+zSrQKlpJ+inBbtl8ZXbjhJ+ZgNx4oO7GlB40cC6zJ7qXZ2eG7tWEjS2pB4j/KysX7s4urFlRYddBa66im7vmGCEJdlz5ISBg7fkiYaVI6lr/TI0c/VBeYy/Vuwn/HQDcWSyIKRkZOcNMaLnC8Z653pl6euZOwwCxz9rDxF+g3tUFaSYuGAckutkBBgBRsApAoEdCZwehncwAowAI8AIMAKMACPACDACjAAjwAgwAowAI8AIMAKMACPACDACjAAjwAgwAq4RuEEQCWpUKEHj5+8iqE9YWflSxahLg1i6o1OCUFCwjlCPEBz/Z+884KOo1jb+SkiDJEAgQKghQOgdBAQUFEWKhYsoChbsyodXFNu1XvVaUVAuir0i4hVFRRRFFKR3CL0GktACCYRAChC+85wws7Ozs8mmkcLz+tvMmdPmzH9mcc+cZ973gUEx0iG6qkyZt0cQ/sJq8Fhxdbe6MqxXlESEBViLdBqeGWCB/gUL5dE2qqp89fBFMmnWVlm46ZCHMKFdoyoyvHeU9FDeMJxspDo3eGWYsSRBe9uw14HAwrCAin5G0mMLPk8Pay1RtUJUX4kCTxiGQThy75WNZaDyajF71X4j223rZwllYmddWEY4UA3FfvKoLvLD0kSZrrxg0EiABEigJAlckJWVpRwE0UiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEig7BDYsmWLNGvWrNADHj5+uU99TBnTxad6rFR0BJJSsyT+0HE5cCRDoGWoVTVIoiNDC+Ql4ljGKTmo+jl1+oyEqbAeEWGBUvGsQKLoRuy9p9T0U7I/JV0qB1aUyPAgsYofvLfKKUnLPK3CfZyRAOWVA545CmPJx7IkKTVTqlYOkIgqAfkaR2GO60tbXJv0kzhX0dfYog/xpTnrkAAJlCMCJfX/ZnqeKEc3EU+FBEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABMoLAXiEcPIKUZDzQ1iO0NohBWlaJG3CgitKWHBogfoKCfTuWSK/HYaHBgg+pdEgZgn149Jlabw2HBMJnC8ECidPO18o8TxJgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgATKLQGKJ8rtpeWJkQAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJ+EKA4glfKLEOCZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZBAuSVA8US5vbQ8MRIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgAV8IUDzhCyXWIQESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESKLcEKJ4ot5eWJ0YCJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJOALAYonfKHEOiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAuWWAMUT5fbS8sRIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgAR8IUDxhC+UWIcESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESKDcEqB4otxeWp4YCZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZCALwQonvCFEuuQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmUWwIUT5TbS8sTIwESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAES8IUAxRO+UGIdEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiCBckuA4olye2l5YiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAr4QoHjCF0qsQwIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkUG4JUDxRbi8tT4wESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESMAXAhRP+EKJdUiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABMotgYqFObOUlBQ5ceJEgbuIiIiQgICAArdnQxIgARIgARIgARIgARIggbJLID09XebOnSs7duyQ+Ph4SUhIkMDAQImMjJQ6depI7969pU2bNmX3BDlyEiABEiABEiABEiABEiABEiABEiABEiABEiCBMkOgUOKJjh07SmJiYoFPdvHixdKpU6cCt2dDEiABEiABEiABEiABEiCBskcAIonJkyfLu+++K8eOHcv1BBo1aiSPPfaY3HrrreLn55drXRaSAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQQEEJMGxHQcmxHQmQAAmQAAmQAAmQAAmQQL4J/PHHH9KuXTt57bXX8hROoPNdu3bJvffeKxdddJFO5/uAbEACJEACJEACJEACJEACJEACJEACJEACJEACJEACPhCgeMIHSKxCAiRAAiRAAiRAAiRAAiRQeAIffvih9O/f3yfRhP1oq1evll69eukQH/Yy7pMACZAACZAACZAACZAACZAACZAACZAACZAACZBAYQlQPFFYgmxPAiRAAiRAAiRAAiRAAiSQJwGIH+6///486+VW4eDBg3L11VdLVlZWbtVYRgIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAL5JlAx3y3yaHDzzTfLoEGD8qiVU4z4xTQSIAESIAESIAESIAESIIHyTSAjI0Nuu+02x5MMDQ2VZ599Vm688UaJiIiQ06dPS1xcnMBLxRtvvOHRZtu2bTJp0iQZM2aMRxkzSIAESIAESIAESIAESIAESIAEyh+BtMzTEuxfQfwqXFD+Tu48PKMv/oqTM2dEalYJlCs7RpYbAnPW7JdfV++TLk2ry/U9GsgFvF3LzbXliZxfBIpcPNG+fXsZPHhwvijGx8fLjz/+6NGmY8eO0r17d4/8TZs2ydy5cz3yr7zySmncuLFbfmpqqnz33XeybNky2bNnj+zbt0/Cw8OlXr160qJFC7nhhhukYcOGbm2sO0uXLpUVK1ZYs6Rt27baZfDhw4fl008/lQULFui+69evr8uGDh0qbdq0cWsTGxsrM2bMkDVr1uiHwZ07d9Z9IHZzdHS0W12nnTPq/yQ4zk8//aRjPeNcAgIC9NibN28u119/vcTExDg19cjbuXOnrF27VjZs2KC32Efb1q1b63Fj7BS2eGBjBgmQAAmQAAmQAAmQQAEJTJ06VfAb3m5169bVv+utvz39/Pz0b/qXX35ZBgwYIJdddpm9mRZVPPjgg+pBhPOTiMzMTD2/mD9/vuzevVsSExP1HAC/+zHHwG/nGjVqePSLDLT97LPP5OTJk27lt99+uwQHBwvmB19++aVs3bpVDh06pH9Ht2rVSo8VfftimP9MmzZNM8Hv+uTkZImMjBTMJy688EI9n6patapjV7mNLygoSHDOX331lWzZskV76MBve/R5yy23iL+/v9knvHegHuY6mBtAxNKjRw/B/KRbt276XM3KXhI4f5wHvIqAM84D17RBgwbSp08fGThwoGBMedmJEydk1apVen6yfv16PWfCfYC5JeYoLVu2lA4dOvg0pryOxXISIAESIAESIAESIAESIIHST+DgkUz5fd1+2Rx/VNbvTpWDRzP0oNtEVZVWDcKkc5Nw6d7MeU5X+s+OI5z8y3YNoV2jKuVGPHFA3bPPTl2vz2vx5sPSvF6YtFP3K40ESKDsEbhAPTRT+q6CGR5y4kGk1fB22OjRo61Zeabx8NAuekCjmjVrCt4sw0NKq/Xu3VsWLVpkzdJ1IQaoUqWKzj916pS8+OKL8tJLL7nVc9q55ppr9NtrOJ7d8EYb3myzGvLwsLZLly4C18FOhoe9Dz/8sH7o+txzz8nrr7/uVE3nffvtt9r9sLcKy5cv12/qgUVuhofL7733ntSqVcuxGh6QvvDCC/Lqq686llszn3nmGXn88celYsUi19dYD8M0CZAACZAACZAACZDAeUCgX79+8ueff3qcKYQIWBTPzd5991355z//6VFl5cqVHoJlVPr888+1V4pjx455tLFm4Dc9fhtDkGy1/fv368V/ax7SyIdwGr+RvdlTTz2ly+19GvUhNsBcafr06UaW1+2jjz6qPXJYBQ+onNv4wOrf//63Y5/gDBELhNsQTNx66616ruVUuWfPnlq0XblyZadiLcrAuU6YMMGx3MiEIGP8+PFauGHk2bcQlw8fPtzrWIz6TZs2FcybIICnkQAJkAAJkAAJkAAJkIBBAKLhZs2aGbsF3g4fv9yntlPGdPGpHisVnMDauCMy9qPVciLrdK6dDLmovowe1FT8/Tyj08cdPC4b9hzV7Vs1qCJRNZ3nNrkeoBQVHss4JfPX56xF1Q4Pkk7R4aVodPkfSo/H5uhGEE+8c2/5+E4lHEqXG15faMJ4884O0lV5oCgttnJnsuxPzhEhXdy6poQGce2vtFwbjsM7gZL6f7Pn/1W8j7HYSvCG1bhx4zz6hzDhgw8+cMufNWuWh3ACFfCg0BBOHDlyRPr37++TcAJtf/jhB/0GGrxD+GJ42wtuhb0JJ9DHE088oR8Qv/baa7kKJ1D3uuuuk19//RVJD/vmm2/0G2B5CSfQEGw6deokeFvLbvC4AdGJL8IJtH3++ef1m2J4wEsjARIgARIgARIgARIggYISwO9QJ+EEFszzEk7gmPCYAC8G8Ihg/UCAbTV4ahs7dqzceeedkpdwAu2wqA/PdUeP5jxQs/bllIYHuNyEE2gD8fZbb73l1Fz/Rof42hfhBDrAPAKik5SUFMf+7JkzZ870KpxAXXiHAJsDBw7ofnObX8DjHbzppaen2w+jxwNueQkn0BDXAcfEdXGyyZMna68YuY3FaIc67dq1054ujDxuSYAESIAESIAESIAESIAEyheBX1btk/vfXeEmnID4YVCXOtKzVQ2pGuISv09fFC+j318lGSezPSCsUwKMl/63UX+QLut2ODXTPJ+ZS91faC7r51Zexl+vRrDcP7CpNI4MkRt6NZAujUuXwAX3jfGdwP1EIwES8E6gVIgnMLz777/f8c0xvDkFMQQM8Y8hSrAbwoRcddVVZja8QsybN8/c9yUBIQREDL48aH3nnXccBRz249x88825PsC01r/vvvusuzoNEcSIESM88nPLwHkgFAlc31rtX//6l0f4EWu5UxoPuZ988kmnIuaRAAmQAAmQAAmQAAmQgE8E4F3CyZzCcTjVg/eD2bNny19//eX2gdc1q33yySfy9ttvW7PyTEMk8NBDD+VZDxXuuusun+rh9zMEClZLS0uTIUOGeHjts9ZxSmN8o0aNciryyINIIS9DfwjJ4cucZ86cOTrsoL1PeAFBP/kxXBd4BLEawp488MAD1iyf0phj7dixw6e6rEQCJEACJEACJEACJEACJFB2CKSmK2/i0zaYA4ZYYubTl8j7o7rIE9e1lFdvaS8zn7pYHr/O5Y0uVgkjvlmwx2zDBAmUJIHhFzeUzx/sJg8MipEKFZzDjJbk+HhsEiAB3wgUuXgCD9J+//33PD8bN250GyHCQyDkhN3wYG/ixIk6G14Y7LGS4QrW+tYT3ghD7F4nQ8xdvGE2cuRIHdPXXmfXrl3aNa4939s+wpagL7i1dTKrZwrEGr7jjju81kX4E7jgNQxvzqG+k0Ec8uOPP+q31u6++26PKngrC2+qGYa36aZMmWLsmtvbbrtNcM6pqan6bUCIR+yGh9B2IYa9DvdJgARIgARIgARIgARIwBsBeJ5wsubNmztlFyhv7969cu+993q0RVg+iLExP/n444/liiuu8KjzxRdf6HKPAi8Z8JZxzz33OPZlNPn555+NpN5iDPjdbTfMZTCfwBzFKga31kOoihkzZlizck1DVHLTTTfpsIZOFY2wizg2whcOGzbMa91ly5a5dYHz+vrrr93ysNO5c2c9Z5s7d672KIgQG3aDuCMpKcnMtospUIDrhXOFeB68cM2czNt8z6ku80iABEiABEiABEiABEiABMoGgeXbDpsDjapVWYslqoX4m3lIXKDWo6/qUleeHdbKzJ+92nnOaVZgggRIgARIgATyQaDIg9p8//33gk9ehgeOhijCqIuHbnj7yP7GGGIRw10vvCfYDWEoIiMjzWx7mA+jAA/6Lr/8cmNXnnvuOWndurXHW1f//e9/tbvdSpUqmXWdEhAeQOxxAf5vreyjjz4SJ+8RKMPDUqvHDJz3ww8/jCI3Q9xmCDxgiEMM17p2wwNEqzcKPGStXbu2DrNhrfvhhx8K4hBDlOL0oBZ1J02aJEYM5R49eujQJXjwvH37dmtXun2rVq4fI26F3CEBEiABEiABEiABEiCBXAhYBcXWat7iEiNEHjzO5WWBgYHi5+enq02bNs2xOkLj4Te/YfDQBsEAvCpYDYJh61zBWmZNY55j/F5HPvbRp9127txpZiH0hZMIAOIFeJoz5jLwMPHHH3/o8INm47MJ/La/9tpr7dke+5hPQLQNO3z4sFx66aUe4nOU1a1bVxYuXCh16tTBrg5H2KtXL495w/z583W58cdprtWiRQsdgjAsLExXg7AcIT8QosR+7SGMMDx4IDa13eAFxPAogvkY5j24zmPGjHGrag/Z4lbIHRIgARIgARIgARIgARIggTJJIPGwK2zgZW1r5XoOfVT5d0sS5Vj6SfFTb/ifzj6jt7NW7pWU4ydl/W5XqI7FWw7JsYxTur/aVYPE6HvljmTZnHhM5199YV1R77PK6u2HZeXOI5Jw+Lj0allTBnerJ/tSMmRubI53wfZRVQVhRJzsUGqWzF6TI+TorEI2NKsb6lRN9iSd0P0lHDohR45nSVTNEGmu6javGyb1ItzXpVbuVGNMOCbJxzLNvnYcOC5T5u829+HtAFYU4zT4VQ70k2u71hNck9W7UmSVYpV64qTc3DtK2jWqZh4b3JdsPSRxB07Ijv3H5HjmKYmpEyZN64RIi3pVJSIswKxbmARCs3y/JEGy1UWqEeov/TrkzGWd+jyixvnzir26qLoK83JlR9f6ITI37Dmqrnuq7NyfJgeOZEjDmpXVmEPU9aqirkVljy4z9bHj5bS6P6KVqKd7sxqyRbVfvTNFs8F988SQVgKhz+/q+h9U90GAXwUZ2qO+R1/ISDiULut2p6jjH5fdSWmKUZDiFSpNVLiPVvWrOHqssF8XnOM6dfw1yvNK/KHjUie8khpbiPRT5xrk73pnPutUtvxPhbeB4b4x7KfliRIeGqh3ne7p7fvSZFN8DqeDRxWjiBCJrl1ZOkSHS2S1IKMbbkmg3BIocvFEYUk9/fTT+m0m+4M2LO7b8xDz+PbbbzcPCfe4eEBqN7iWtT8MxUPKTz/9VLvPtdfHm2l4qOrN8KATwgNDOIF68BKBGMfGm1xGWzxMtAonkD969Ggt3rC7y7XG+v3uu++MLswtPENYhRNGAVwD48FtbGyskaVZ4YHoJZdcIgEBzv+DgutjK5fg4GDtCtnshAkSIAESIAESIAESIAESKCQBiHPthsV7/KZ2MoS3+O2335yK3PIgRn755Zd13pdffulWhh2Ioq3CCeRBOPzZZ59p8QD2DYN3BwgDECLEmz366KNuwgnUQ/jAvn37eogxrL/rIdSw/+5HWwg2DOEE9mEIZYK5y1tvvZWTcfYveMBLHUTT3gxtDOEE6lSvXl0ef/xxufXWWz2aoK4hnEAhPD6MHTvWI0SIdX5x6NAhmTVrlkdf8AJhCCeMQpzXu+++6zHXmjp1qimeMETcRhtsMT+ByN56HSDEwIdGAiRAAiRAAiRAAiRAAiRQvgmEh7rWMQ5bxAJOZ+2vFqcn39fZo+h/C+Nl61lBhFE4f32S4APr2izcFE/MWXNAflyWqPM7N64mj3+2TrBQbBgWtWH7UtLlnZ+36fT9A5p6FU9sTjxq1hs7uLmHeAKL7G/+sFm+W5yg+zL+LN7s8rhx22WN5I6+0eYC+rItyfLlX3FGVb3doRa2jfEgwyWeKPw4P5i9UzOoWUUt6EeGyt2Tlrsd+/L2taSd5Ign4g4elxe/2aAW2VPd6izYcEjvVwrwk1dHtpeO0S6xhVvFfOwofYx8/NsOOZGV86JFr5a1pJISeDjZ/PUHTT7DldjDMAhoxiv+s1ftN7L01sp/9KCmMqxXQ7fy5LQsmTgz5/oP6lJHix8m/Oj+MkDGVRiXv3zx127B9cG528UTEJp8/fceeWdWTl9uBzm7c2nbmvL0Da0loKJLAIEi63Xp0qS63DZhickip2nOPfTpH7vkxRFtzHs0U4knrPfK2cPI1/P3GEmx3tMY43uzd8gU2z23aJPrHn1iaEsZ1Nm7eMXsmAkSKMME3L+BpeBEqlSpooUJ9qHYhRMonzx5svqfiOsU7CE9jD7gtcLJ4LXB6aGt9SGhU7vevXubHhus5d27d7fu6nSfPn088pABLxt2y87ONrOcYkPDfS3eRrN/4B43Li7ObGskjIe2cInsdJ54aw5vmL3++uv6QSX6p5EACZAACZAACZAACZBAURLIy6NbQY9l/HaFpwqn3+/efjuvW7fO8ZB79rgeHjhV8Pa73mkOYIwN/axdu9ajO/w2v/rqqz3ykeFt7rJ582bH+kam0zjatm1rFLtt4RXCbi1btrRnue1v2LDBbd/YgTjGPj/BPsQWdrOywDzEbhDCN2jQQHv0g9Bi69atYp0j2etznwRIgARIgARIgARIgARIoPwQaG3x6DBDeZX4e+PBfJ8c3t6vXyPYrR0WspGHT42zggi3Cmrn2a9i3YQTaFMpqGjfPf74j50ewgkcx2pY/H78i7VqHqSUFsoiw4P0uO31jPOxn6u1r8Kk05RHj0c/85zLBvvnMEk6minD31jsJpyoqrw8xCgPGsZYIXQY/d5KWa68eRTWICa4qmtdsxt4E/Fmv691iSOuaJ/zAgI8VoyavMJNOIFxtqgfJhi3YRBJfKKugTdbq7xw2IUTqOtvEzs4tZ+kRBN24QR41Q133a9z1x2UMR+v0l5QnPrAdRnz4SpTOIGxQ+hiGMQ/T30ZKxBNwMCtscN3Am2MeyjEcp8/OzXWTTjRRnla6dGyhnlN0efL/9soPyzNER1hn0YC5ZFA0f7rrwjhQSA8GORljRo18loFXh+wsG+PFWxt8Mwzz4g9TrKTwAJtoqOjrU3d0ng7a9GiRW55Tm/HWSs0btzYumumnR4M4y0uJ6tatapTtpln92CBAry1ZnfYef4AAEAASURBVHcxbDZwSODtNBgEJvBagbfb7AaRhlWogRjOcD38j3/8Q6KiouzVuU8CJEACJEACJEACJEAC+SIQExPjUR+/dbOylCvLANdDCo9KPmYkJeW8QWSvjhB2+TF4sYPXOG/mTVyQmzcI9GX8Jrf2660v1PE218D4crP69T1dggYFuR6iWNtGRERYd3Xa7j3CXsHb8a1hTOxt7PvwwJGRkSEYF7xsOBnqICQiPjBDaII5CgQsCONBIwESIAESIAESIAESIAESKH8EGqiQFVjQjVdhDWDwBHFx6wjBAng3FSoh2CY0cCLw5NBWOhseJV6dvkmnR18VIwjLkZvhmFjIfkDVRfgMHAsL7kVlGM/Hv7vCOz4zrKVc1KKmhKqF6+RjWbJs22F5YVqOYH3hxkOyVO0jPARCZ+ADLw8QK8CuUN4fnr2xTVENzbEfCB/w6dexttzQs6E0rh2iw6KcjWIv3yx0vXzQsUk1eeb61hJRJWeuhjAX783eLtP+zqnzy4p9Am8JhTXcB0aff6zbb3oQsfYLlqu2p+gsiAYgpoFBbAGPEDAIDsbf0UGXVVAnhOs8Z81++ffXOfy/VWEubru0kfI8r6u7/THuTXhruKRVTalbPVjOqP/QT252WI3LGDvqwTtEjxYRpoeJzQmp8vAna+SI8nKxZgdCcZwQfB/spq9LcrrAQ8kwFa4F9w9sTVyKPPlFrG4PAcXPKizHP7rXl0Alnvj8wW66zr+VMOI35W0FNv7ODh4hSjDGP5V4AwZxxbjb2+vrjn2IeX5dvU/+881G7MrU+XFy1YV18jxvXZl/SKAMEihy8cRzzz2nw1IUlgVcyXoTT+AB2iOPPOJxCKcHehAvWN2+2hs1adLEQzyxb98+ezW3fWu4DreCItzZtcu7us3XwyDOsWHgCT5OrnaNOtiuXr1af+Did9iwYdp9MR9QWgkxTQIkQAIkQAIkQAIkkB8C+L3tZBBQOAmqncI5OLU3BNvexBNObXLLS0nJecDirY6338RWT3hObZ3mFs2aNXOqqvMgyMYcxi4Md5rrWDsp7jlKXse3jiW3NLxyQHACUQ3me3mJLyCmmDJliv5gHohwhRdffHFuh2AZCZAACZAACZAACZAACZBAGSSABeiJd3fWHgIS1QIxzBpyA+KGDioERJem4WobLkH+FYrsLOGBYMJdnSTEEgoirwVxXw8OLwCGkANtHr+uhfTr4Ap7gHAlV3aMlFNqgRpv9cO+WxyvxRN6p4T+DO5eTx6+prmjiKCyWrSHIKWi3wVy95VNzEV8DDVQXZdRSlywYEOS4Dou3ZZcJGfQvF6YKa6ZF5sk6UrcYRfULNzkerniqi4uwUyWEnQYAppru9WTmDqh5phwna/oECkrdqQo0cFeLUDwJl5Ao3/f2Fr6nvVogf0L1H95WYoSRRjH76RCxPRpU8utCc5t9MCmpoBm3e4jjuIJNPqHui53XeH+gnf7qGpyf/8m8tLZ+2fb3hyhiNtB8thZutXlzePabnVN4QSaVVBxUwZ0qiOnT5+RjWfDtBw+dlIiwgr/Qkwew2IxCZQIgSIXTxTVWezc6VLh2fvEA7T58+fL5Zdf7lZkPEC1ZuKh4xmlHPP2MPHo0aPW6jqdm9jCo3IxZeDBIM6zqAxvd3399dfy/vvv67e4vIU4sR4P9ZOTk2X69Ol8w8sKhmkSIAESIAESIAESIAGfCXjzAvf33387iiewOG43hLhASAerGV4ivHlXsNYtybTTHMVpDmKMEXMXu3ACZU5e7ow252LrdB6FPS7mc4sXL5Z33nlHvvjiizy7w/yob9++8tNPP0m/fv3yrM8KJEACJEACJEACJEACJEACZYsAvBdMurezvP/bdpmlPBZYbWviMcHHeIN/RO8oub1vtF6st9YrSBoL7VbhREH68NZmhSVsRddm4WJd1Le2GagWp0+dzpYMJQoICfa3FpVI+rqL6jsKJzAYeGbIzfzUYntMvVAtnoA3BXiEgEiksHZNt/ry35lbdTdLlDcJuwjhj1hXyI5L27oECqhnr2sfS3Mlzvl5eU7urv3HHMULCPVxaTtXv/Y+vO3DA8ZjQ7x7ukS7JpEuQcf2vd7XBq/y4kXlouYuD5O7k/Ivngj29zOHv37PETmp7kV/P3eBEo7t7fhmYyZIoBwQKJXiiRMnTsg999yTK97/+7//0x4SrA8RvbnMhavcyMhIx/42bsxR8lkL69Rxqf6s+ecyHRUV5RG7+e2335Zrr73W52FY2aARHiw/8MAD+rNmzRqZO3euDtmxcOFCxwe0aPPbb7/pOny7CzRoJEACJEACJEACJEAC+SXQsGFDxyb/+c9/5KabbpKKFXOfkqSlpXkIJ9ChEcLPW5i8lStXilN4CsfBqMy8wup5a5dXvtPcYt26dV6bOYX5QGVvcx2vHRVxgdPxIfjesCHHtamvh7Nfr06dOmlx9/jx42X27NmybNkywfxkxYoVXrscN24cxRNe6bCABEiABEiABEiABEiABMo2AQgoEH5jzNXNZf6Gg4IQDQhlgJAFVvvyrzhZH39Ext3WwcMDgbWeL+m2UbmHWfelD2914g6cMIvaKg8B3gyRHxCiozQYRAINIyr7PBQstKeln5bjGafkeGbOxwgBgU6Uw4Iisb5KEGGIJ/5Yd8BNEAGBxvKtOR4le7SsIdVzEWsgDEVaphpvumu8iza7PC9kexltt+bViyRUBSLCwHNG2tnjn1DMYpW3CcPU8Lxao1rO16VqZZfgJi3D/bvitTNLQasGru/Aok2H5ba3lur78cKYcGlQo7JXIY2lCyZJoNwQyP1JZQmd5muvvSZ5ha1A+SuvvCLPP/+8OUpvAgk8nHQqg8vYbdu2me2NRN26Lnc+Rt653jZo0MBDPAGXxE4PLQsytvbt2ws+hi1fvlw+/PBD+eSTT4wsc7tgwQK6xjVpMEECJEACJEACJEACJJAfAhBHwFvAnDlz3Jrh9/xXX30lt9xyi1u+fcdbKD8j9EV4eLi9id7Hb+c2bYo3DqzjgW2ZTnMLnDvmIk6CDW/CCqf5jO1QxbrrdHx4gggLCysSrxjoZ+jQofqDE4F3jm+//Vac5obz5s2T9PR0KQ5vGMUKkZ2TAAmQAAmQAAmQAAmQAAn4TKCSCqGBcBb4ZKvV5j1JJ2TxlsMyc3mixB04rvuBqOLpKetk3MgOPvfrVDHI8ta9U3lh8g4dyzSbN67tvPBtViglCXi+gJgjN0tKzZIflibIsq2HZcMeTw/vubUtaBmENfDesXRLskCckT7UFbpj4eYks9uB6p6xW5YKnzJjSYIsV55AIA4oiFUKLNyS6rzYAzJPhTNBKBN45Miv1awS5OENwugD1wuiF7vIyCjPa1uzaqA8MbSlGToG37EJP27RzdBv77Y19XexQ6NqOoxHXv2xnATKMoHCfdOL4cxjY2PlpZde8uj5kUcekddff90tH+KJG264QVq1aqXz27VrJ07hLh566CGBOMDuiWHs2LFu/Rk7eLhb0jZgwAAdA9g6ji+//FLuv/9+qV69ujVbp3///Xd9jnDzaxjYIMY03roDV6uBVYcOrh8UXbp0EXzgiWPp0qXWqhIfH++2zx0SIAESIAESIAESIAESyA8B/G7v3LmzR5M777xTsrKyBFsnQ/i4m2++2aMIggTDgwHC81133XV6od1a8b333pPevXurSb27m0nU+eijj+TAgQM6vB/2IfAYPXq0x3wBZYU1e6hBoz/MRSBetho88GHuYjfMcfD7vSQNxwdze0gRiK9HjRrlMbTjx4/LxIkTVUxU1xsvEGDcfvvtkpmZKdOmTZPsbNf7PLhOVk8kVapUkTvuuEOilEe+/v37e/QPcQwE5zQSIAESIAESIAESIAESIIHyT6CCmvdF1aysP9f3qC+f/LFLPpmzU5/44s2H5YTyIgCxRWm0rJOuOVGloFK3JFcgZKt2pshjn6wp8EJ9gQ56ttGAjnW0eAK71tAd8FACw0J/txauEBbI25eSoUU2m+JTsXvODZ453vppq3y/OOGcHzs/BxzUuY7Ur1FJi2Jmr3KFQIEgA2F08KlfI1jeuquz1FJiCxoJlFcCRf4vNUJBnDp1yidew4YNc/MIgQdrEAfY7dFHH5XnnntOZs6cKZs2bXIrxoM6HBMP2/DQEw/j3nrrLbc68C5x7733yr/+9S/t3heucD///HP9cauodhA72RBj2MvO5T7iOtsfQuINtSFDhsh3330n1jfsvvnmGxkxYoTH8CDAgH399dceTPAAFq5wGzVqZLbD213JycnmvpGw1jHyuCUBEiABEiABEiABEiABXwm0bdtW7r77bnn//fc9muD3//z582XQoEGCEA6wVatW6TwIIJxs0qRJbtk33nijh3ji+++/l8cff1x7qkP4Ohi8FUCo/eqrr7q1x29jhLcrDmvZsqWeY9jnMZiPxMTEaM8b8C63efNmPTYnz3gjR47MM7xJcYzd2ifmWuBsn2uNGTNGe8cbPHiwKVTZt2+f3HfffTJr1ixrF3LVVVfp+RrmHU6CGQi+7YL5uLg4tz6MHadwKEYZtyRAAiRAAiRAAiRAAiRAAuWXgF+FC+SOvtFuHg82JhyVzo2dvRIWJQnry6v2fk8pzwZOFh7qWmTerd7m7xRdOsfpNHanPHhwGP3eSrMIniD6dagt9apXlirKYwUEIiHBFeWV6RvFugBvNihkolermmYPRuiOlLSTZsiO/koAEFjR/SWKV7/bIIZwAov/Q3s2kEa1QiQ8JEAqB/lLqBrvnLX7Ta8L5gGKKPHNgnhTOAFxx029o6R5vVCBJ4nKyptFSCV/OZyaITeNW1xERyx4N+1UCBt8HhncQtbvOSLr4o7K7JX7JDE5XXcafyhd7n1nuXz96EUenAt+VLYkgdJFoMjFE3Cr6821rv3UL774YjfxxAcffODh9QAPMvFWFh7Wvfnmmx5vHS1atEiHmsBbSbB//vOf8vHHHwtcyFoNAgJ88jInrxd5tSmO8lq1aomTtw2cLx6uwmsE3rSCW1+IKuzWs2dP07PEFVdc4fGQE3zw9t+ll14q0dHR4ufnp8Uk9jfJ0C/a00iABEiABEiABEiABEigMASeeeYZmTp1qsfvdPTp62911IV3AkMkjH0YPBN07drVYy4xYcIEwQee5QICAuTvv/92PD4EAMUZAuLll1+Wa6+9Nmewlr9PPfWU4JObYT6EOU5psAcffNBxrgVRBcbZW3n6SElJEYT9czJ494DBg4XT9YIwA8L4Pn366OsFIckPP/zg0RVEGJgf0kiABEiABEiABEiABEiABMoHAYTlwJv56eoN9xC1+P7AoJhcT0w5opDGtUPMcBFHj5/MtX5hCv3UsQxLOe491MK+I67wHEZ9bGuGucQT2/elWYuKNF3Ycfo6mNjdR8yqjSND5I2RHR1DfCDMSnFYoH8FuaZrXeUdIfFs6I5ssYbsgJDDaulZ2aawAvmT7u0i1UMDrFV0OvFwjjjAo6AIMv7e6Aop8uxNraWnzTMGDrHhSEYRHKnoughWIo8uTarrz8jLGsmybYfl6S9itbeRg0czZHP8UWmnQnjQSKA8EnCXX5XgGSYkJDi+7YUHjUYs4Msuu8zjQSmGDM8UeLsJVq9ePZk8ebJO5/cP3oYbOHBgfpsVW/2nn37aa5zm1atX6weJTsIJPIz89NNPzXHBVbDTeUFAgYeR48ePl3Hjxnm44EUHeMutffv2Zl9MkAAJkAAJkAAJkAAJkEBBCOA36ldffaUX2QvSHm3Qh90zAfKxkG79/Ys8q82ZM0d7QbALrFEHC/UQLRenQexxzz33FOgQ7777rtSvX79AbYu6EcKleJtrge1PP/3kVTgBL4AQVxiG+YeTwfvE22+/recnTsIJtHnhhRecmjKPBEiABEiABEiABEiABEigjBJAWI7565Pk5+V7Zdrfe2RNXEquZ5KdfUbmWxaka1fN8Tbo1OhQqrOowamuU14d5VHBsN0HjxtJj+3K7Yc98pDRWS1AG/b76v2yX4WQcLJDqVky7PWFMvCF+XL/5OVOVXSeN5FGYcfp9YC2go2W0BeDu9VzFE7AE4Th6cHWvEh2rQKJJZuTZO7ZkB11w4OlZf0qbsfYttcVqqNP25qOwgk0mL/hoFu7oto5re7V2LgcwQm8TlzUrIZj10u3ON8/jpULmXn4mOd3Ik7d2xD37NifpkKcuh8A389uMTXkHxe5nk2gHo0EyiuBUiOecHqbqmnTpnrx3gof8ZLthgd11geeQ4cO1TF07fVy23/sscf0W2m51TnXZXAvjAe99jfrchsHQmz88ssvHvF/EVP4ySefzK2pRxlEFXhYSyMBEiABEiABEiABEiCBoiDQr18/2bhxow7fkN/+4Glu7dq1EhHhHrvU6Kdx48YCgXF+Qs7Bwxp+JwcGut4EMvor6i1+W+f39zg8dVx//fVFPZRC9Ye5FsIG5scefvhhefbZZ92awPPEsmXLBHM+Xw1ttmzZIgiFQiMBEiABEiABEiABEiABEihfBLCwbdibM7bohVxj37rNVGEjJigvFUfScrxAYEG6SWSotYoOw2BkLCnkonREWIDgGLDFmw/rxWWjb2M7Z81+XWbsW7eR4UHSvnFVnXVCedZ4aso6QegLq8HzxkvfrheERMB5XagWqq2G0BKGYSEeHjrsVthx2vvzth9dyyUm2ZTgEiYY9Y9lnJJnpq4zdotl20aFlUDIC9i0hfGydEtOOPqrlUcKeCWxWoOarvFu33tMMk96sn/nl+0Sp0KqFIchzAw8dMBw/fcme4pn/lx3QIuGiuP4Rp8hKqSKYat3uryHGHlvz9wit05YIreMXyLTFuw2ss0t7tEd+10e/2tUKf7nKObBmSCBc0ygUOIJuL4tCoNbV7ylZDe8Vebv7/pCo7x58+YyatQoe1X9AA+xkQ1DzF3EDcaDOriQ9WbDhg3TrmHx9pKT61enPG99VapUyVuRR75TXae8atWqyfTp0+Wzzz4ThOLwZngL7J133pH169c7eqvAtcIDy3nz5ukwHHhrz8nQzzXXXCMrV67UnCtUKNQt4nQI5pEACZAACZAACZAACZzHBBCeDr9vEbIPvz3zMoSrw29YiHqrV3e9sePUrlWrVjp0BwTXuYkosAgPwfHMmTNNL3dGfwhnVxyGeQV+j//111+COYg3w9wF4TE2bdokQ4YM8aiWn/HlJxSJU11v8yiEIMFcC+P0VgcDx/gxP4E3wQvsT7BUOTzcLV++XHsSbNGihce5Ghm4Xpiv/fnnn7leV6M+tyRAAiRAAiRAAiRAAiRAAmWPwIhLokyRwg71BjwWcl/7bpP8uCxRVu5MloWbkuTzP+Pk9reXyvRF8eYJ3jugiSCUg9UiqwWbuxv2HJVR76+Qb1WbvDxamI1sia7NXXPReyctl6+Ud4zFWw7Jb6v3yfPT1suzU9fbWrjvjr3GNd+BR4YRbyyWd9WC/V+xB+TD33fKHROXmQIAtLzmwnpuHVQPdV8nG/nWEvls7i75Qy26W62w47T25S3dLjrcLIKnkIc+XiXfL0nQPDCmuyYulVXbc/ccYnZQwAQ8IVzTLed5guHVAV1d1q62R49VK/lLi/phOh/ilNvV+HAfLVVhKHBPYPxT/orzaFeUGT0sYTrueXe5TPx5qw41MmvlXvnP/zYoQU1sUR7Osa+61V3fiU/m7JSnlYjnJ/XdSjgbXmVId5dXiYkzt8mEH7cobzAHtVgI371/frjKFAhBTISQHjQSKK8ELsjKyrI5YCl/p6rOUeLi4mTv3r1y/PhxLZKoU6eONGzYUMLCcv7RLCtnjfAkiYmJcuDAAcGDUzxwjo6OlsqVXeo5X88lOTlZEEf40KFDUqNGDWnWrJnHw2Nf+2I9EiABEiABEiABEiABEigIAXgSWLFihf59e/r0aTl58qT+XRoTEyPwJuEkMPblONnZ2bJ7924d3u/IkSP6t3OTJk10CIyiEoH7Mg5vdVJTU/X4MEc5deqU/j1vzFHOhScMb+PKb35mZqY51zpx4oQWU+C6RUZGSn6F2OgL8xOEJoQXPsxzoqKi9LXL77hYnwRIgARIgARIgARI4PwggPkEnmsX1oaPX+5TF1PGdPGpHisVjMA+FdICi7q+hnx4dlgruaJDpMfBENbj/vdWmuESjApdm4XLm7d31LuvTs8RZmDn28d6CjxEeDOEobjv3WXaM4S3OiN6R8mXZxfhxw5uLghpYbW/Nx6Uxz/L3SMDFqVfua2ddGrsEigYfbw3e4d8rsQJdlv4al8zq7DjHPzSAjl4NEN7dfj+X95f5v2f8vaAxXVv1q5RFQkPDZQ/1+WEwpjx5MUCzxiG9Xhsjk6i3jv3Fuw7laCEEDeoMCeGdWxSTSbe1cnYdduu3ZUiYz9eoz0/uBWc3QH363rWV3zjdM6LI9pInza1dBr35HWvLNDpQV3qyBPXefeEeIsS/ED4g/5+f6GPboM/SUcz5cGPVuXq3WLUoBiZNHOrbjNEhcd46BrXv2u+XpfLn/5TnyM8XXz+YDfz+EggLMyNihe8X1jt/gFNZfglDQXhRV6ZvlFmrdhnLfZIIzTKC4pPs7pla23V40SYUSYIlNT/myuWCTqFHCQejuLhKz5l3fAQEp+isPDwcMFbXDQSIAESIAESIAESIAESKCkCeNBZFA877ePHwj28T+TmgcLe5lzuQ8Tdpk0bR69x53IchT0WhB5FdQ3RV+vWrfWnsONiexIgARIgARIgARIgARIggbJHILJakFpM76y9Mfy8Yq8ZmsN+Jgjb8OBVMdK8nvMCbgUVKuGlEW3lJ9XHjMUJWhBg78PqdLtiRXfPFfa61UL8ZfydnQShDVZsTXZbgI6pGypjrm4mqekn7c3c9nu1rClfPNRNCyxmr9rvVlY1JEA6RFeVUf1jvIo4Rl7WSOA9YIby8uBNXFLYcfr7XaDHFeifs3UbpGVnaI/6UrtaoHzw204tFrAUyS2XRsnNvRvJxLNCAGuZPR1g8xhiL89tv16NYMF9YHieGNTZ+7pZu0bV5MMHLpTXvt8ka3a4h6xAuJj7rmwqG/a45xvH9rvAxSLQP3dPlQjRAQtQ4gmrRagQF++NulDenLFJ/l6f5HH/PKDu5dpVg03xhLUt0r5eF3s7634NJV6ZPKqL/LA00c1zi1EHY39yaCvppbxkfKJEOlsTjxlFegvRxIXNqsu9/ZtKSKD7+blV5A4JlAMC54XniXJwnXgKJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACFgL0PGGBUQ6TR06clJ3709Sb++kSUNFPGtcO1QICY5Hal1POPnNG0jJOq1CCoj0C5KetU/+qO0k8dEIyTmVLzapBEhac/3eUM09mS9KRDDmuvABEhAUqLw0urwxOx7TnpWWeljNqIAFK9BHoRfhRFOO0H9dpPz0rWxIPH9fXB947/P1yF6I49XEu806dPiMJh08ItnWrV5LggHM7XlyXvcnpkp51SmpUCRKEFTnXhnNPP4l7SCQ0qKL+btjHAE8UiYfTJUvd53WUcKISBRN2RNw/BwToeeIcQOYhSIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESj8BLCx3jK6mBopPwayCUk0URODg7WgQYdSLqOSt2Kf8QOVxoTB9+PLmf1GM05eTgfigSWSoL1VLRZ2KyrtGVM3KJTYWXBd4EClJA4NQv9xFPxAZNSjkfV6S58hjk0BhCJxbSVVhRsq2JEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJFAMBCieKAao7JIESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESKDsEKB4ouxcK46UBEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEigGAhQPFEMUNklCZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZBA2SFA8UTZuVYcKQmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQQDEQoHiiGKCySxIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIggbJDgOKJsnOtOFISIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIIFiIEDxRDFAZZckQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAJlhwDFE2XnWnGkJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACxUCA4oligMouSYAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAEyg4BiifKzrXiSEmABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABIqBAMUTxQCVXZIACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZQdAhRPlJ1rxZGSAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAkUAwGKJ4oBKrskARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIoOwQonig714ojJQESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESKAYCFE8UA1R2SQIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkUHYIUDxRdq4VR0oCJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJFAMBCieKAao7JIESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESKDsEKB4ouxcK46UBEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEigGAhQPFEMUNklCZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZBA2SFA8UTZuVYcKQmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQQDEQqFgMfbJLEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEigSAlmnsiU9K1tCg/2kwgUXFEmf7KR0E4jdfURW7zyiB9m3XS2pEx5cugdchke3Yc9RmTI/TupUqyS3XtZIQoO4fFyGLyeHXkgCvPsLCZDNSYAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAEio5AdvYZWbzlkHy/JEE2JRyTI2lZZuf1awTL5R0iZUCnOhJZLcjMZ6J8EVgXd1Te+3W7PqlWDcMoniimy3vmjMgL09ZL/KF0fYSwSv5yS5+oYjoauyWB0k+A4onSf404QhIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARI4LwgkqEXcsZ+sMhdz7SeNRd6Pf98pX8/bLS/c3Ea6xdSwV+E+CZCAjwTOyBk5lnHarJ150pU2M0swEXfwuMAzBqxVgyoSVbNyCY6Ghz4fCFQ4H06S50gCJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJFC6CWxJTJWRby1xE07UVeEaLm1bU/p3ihR4nTDsRNZpefijNTJFiSjw9jyNBEgg/wQQBuep61tqYUIf9T27tlv9/HdSjC3WxR2Rl/63UX+QppFAcROg54niJsz+SYAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAEciWQeTJbnv4yViCKgFUK8NOLur1a1ZQKFS4w26aknZSXvl0vizYd1nnvzNomlQL9ZHC3emYdJkiABHwn0L1ZDcGHRgIkIELPE7wLSIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESpTAF3/FSWJyuh5D1ZAA+fCBC+WSNrXchBMorBbiL6/e2l5G9I7SdfHnnZ+3SVpm6Qo3YA6OCRIgARIggTJDgJ4nysyl4kBJgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIoPwROHk6W6bN322e2JirYqRhRGVz355AqIHbL4+WmSv2ypG0LO2tYuXWQ1psYa+LkB6rdiXLsi3Jsjf5hKQrzxY1qwRJVM3K0rddbQkPDbA30fuzVu6VlOMnpbLyanFt13qSnX1G5m04KLG7j6qwIsclNMhfomqFyJUdIqVm1UC3PlbsSJYticd03iUta0o9S7gRt4pqZ/GWQ7LzwPGcui0ipF5EJXsVj/2Vqv/NZ/u/+sK6EuBXQdbvOSLr4o7KxvgjEh4SqMfWu3VNiawW5NEe4Q9i9xzV+VcoBhFV3MdvNNiUkCqrdqbo3QEd62jhCnbgJeT7JfFyWrGNrlVZey3YeSBNVu1IEYytcmBFiakTKoO61NVeQYz+0NfybYfV+aZJWLC/tG5QVdpHV831WhttsUW7+RuSZMe+Y5Kl7pm64ZWke/Pq0rlxdVG3RK4GjyWzV++VXYp1UmqGVK0coI+Le6BudVc4GGsnds64l1ZvPywrdx6RhMPHpZe6trl5PMnQnBIkWzWsEeov/TrUsXbvlj5y4qT8rO5nWHUlHrqyY6Rb+QZ1vTarsDY796fJgSMZ0lDdvzF1QqRZ3Sr6XnarfHbHfg8nHk6X1btS1HVKllR1vJuVAKldo2rqvnHdD9brbO0zNf2UrFTnjnt1u+IfVLGCNK1XRZpGVlbXsZoEB3i+r2/nl5/71Bj7+t2uUB34rhzLOKWHVbtqkFzWtpZ1iIpLpsTGpciWvcck7mCa/p43rh2iQ5I0qxvmVpc7JOCNAMUT3sgwnwRIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIoNgJrFWLt0a4jvpKaHBpO/dFUacBBKrF2/8b2FSmnhVdJKqFU7slHEqXf325Vi22p9mL9P5bP22Vu/o1llv6RAkEGVb7YPZOOXg0Qy/AdoupIU98sVa2nhUsWOu99+t2efL6ljKgk2thfNf+49obBuqlKgHGff2bWJuYaSzGvzZ9sz4OMq9o775gbla0JeasOSA/LkvUuT2a15BXpm9Si8auRWaj+n9nbvUYG8pWKpHDh7/t0NXaNqziVTwxZ+1++Xr+Hl2ve7PqpngiWQlWJs7cpvMHdamjFuKz5PmvN+p9488vK/epa7NHxt3eXolHKsm/v46VebFJRrHezlqxT29fG9lOejSPcCuz7oDTxJ+3mmOxlk37e490iakmr93aQQLUPeFkv6zaJy9O2+BUJO/P3iF3X9lEbu0T5VFu5dy5cTV5/LN15rVC5YgwT2GKtRNEm/lYcTbu7V4ta7mJSax1568/aN4zw5WowTCIBcb/sFlmr9pvZOnt4s05YWuwM3pQUxnWq6FbOXas93DTyFC5e9JytzqXt68l7aSaFqQY36NuMa7rbFReuDlJXvrfJi1UMvKw/U3dh7AoJaB58/aOUssmIrLyy+99+r+F8R7ft/nrkwQfWNdm4W7iiTlr9suzU9frMqc/N/RqIPeo64x/N2gkkBsB3iG50WEZCZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZBAsRJYtjXZ7L9NVFUPIYNZaEv0V2/nf/5gN/25SS2OWg3CiZFvLfEQTtQNd/cy8IFaPB//wxZrU7d0WvpJN+FEpQA/QVgRq/3nm43KI4VLvHCp5Y3431bvFyz+O9lW9YY8BBqwi1pUV4vx7v06tbHnvfjNBlM4gXHBq4bVMDZ4bCguW688IhjCCfvxcW7PfBUrr07faAonwM9+DR79ZK3yZuB9jJ/8sdNNOGFvv3xrikz40fkawvuBXThhb/++EsDAK0Vu9qw6D+NaoR7Oo1JQ7u+oQ8xxVde6ZrfwnODNfldCFcOuaF9bJ+GxYtTkFW7CCRy3Rf0wt3sQQpZP/thlNPfY4h5+9LO1HvnB/rmPHw3mbzwouD7w8GIYBE4QTBgWp7xR3D5xqfLo4apjlBnb/N6nTSJDBMexGs4defjUsAhXvlsc7yacaKzaXtImwu27AJHNS+q7QiOBvAjk/a3IqweWkwAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkEABCexT4TQMg5v9whoWnV/6dr35xj8WW5+4rqW0bFBF/FWIi4PKS8Wvq/cJvEbAvlucID1a1hB4mLAbvAbA4wQWrP+pwom0rF9F/JRLgbiDx+XzP3eZC9uPf75OPn2gq/biUF2FAkF/Czce0gvumxKO6nb2vuerMCCGWT1XGHm+bDfFp+rQFWOvbSG1z4bo2JeSIVjsR6gH2MdzdsqLw9v60l2+62DhHIva8DBhCF8gChnz0Wq94I5yo86EuzpqDnDygWvwwAcrVAiUdH3M5duTBQvmTrZmR44wBR4+eqpQGWHBFXX4hoUbk+SFsx4lfliaKE1VqBBrGA1co8c/dYkG4KHhSuUhpGolfx2+5S/l7cEQVkAAElmtkrRV4h0nwzhj6obKA+oeaK5CQASrc8Z9lpdBCIGFe9gf6/a7eUsw2iYfy5JV23PCo2Dh3+AAsYXhNQXClPF3dNBl8JKCY8Pbwr+/zhEEfLsoXm67tJFj+BLcw/j061hbbujZUPAdwz1sc7ZiDMfc4vQ+meMSZYxQHjFG9IlSIWtylpeTjmbK89+s12OHuGLJliS5SoVqcbL83qdPDm2lu4GHlVeVZxXYaMUeYWrsNl19fw17aUQbt/A9uBdHvrVUF89Ze0B5gWlqfk+MNtySgJUAPU9YaTBNAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRwTgkkH3e9sd6oCMQTEA2s3ZUjHMCJvHZbB2nXqJoWTmC/pgovgFAdQy6qj11tU+btNpIeW4gD/jOinbRpWFUvOqNCVM3K8viQllpUgX0sHs9S4SEMG6C8Yhg272yoAWMfWyxM/668Uhh2US5hK4w6Tlss6L+oxmYIJ1AnUokonro+Z/EZ+xt2p2JTbPbqyPaarxH6JEaJGMZe08zteBBOtFLiFWPBHtfgScsYN+5xee5wa3h25+Frm+nQKBBOwLCAf6VijHzDPvx9p5HU23d+2WYKaO68orEObQHhBAziB3guGTu4ud7Hn+lKgODNIJ6ZeE9n6aDuI7SFGefrrQ3ym9cLMz0oIGxJuhIx2G3hppxQFMi3ig+yTmZrsQAEA2/e3kHA1Tgmtld0iJSBKmwKDPdf/CGXCElnWv4M7l5Pnr6+tTRT90tFv7yFE2iaoY7fUp03jg9+91zZ2BROoDyiSqA8/o+WSGpbvTNHAGLsW7fFdZ/CwwzEObD2jau6CSeQB2Zv391R/qHOH+exNyVHrIMyGgk4EaB4wokK80iABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABM4JgcPqDXbD6oVXMpIF3s7f4FqMhqeABhHOfcITAYQRMLz5Dw8ATjb2H82kllrstxvCMlhFClsSXYKN7i0izL6dQnfgjfjE5JyF3GtUaIdA/4It2cFjRZBDW5yzEVoB4SayTmXbh18k+/CI0DG6mkdfraNceagD4YTdmkSGmVm7k7wv/LdrVEUtfruELmYjlUA+PF7AICBISTup02mZp7XnD+zgGsMrg5PBU4UR6mRdnOv62etC1BASmHOv2Mvy2r+mm2vsSxxCd/wR6xLRWEO+9GlTSx4b0kJ/IHpwsuaW/F37jzlV0XnXKaGQIVzxWslWEBxQQR4ZnHP8kZc1MoUb1mp1qweb9/nGs55OrOVGurju06Cz318cJ+7ACTnkEDqkU+NwJbJprjk63avGGLklARAo2L/EZEcCJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACRUAgJDjHGwC6OnrCWcCQn8PssCwiWxeX7X0ghEcbtTBvWPyhnDfYjX1j26KecygHlFuFGZv2uBavA5Ww4spOOd4nIF5A6A6rWUN29LN4qbDW8SXdvJ7zojra1gkPMruAF4HisM6NXSIJa/+hZz1EIK9lfecxYnHeEK9Y29rTbS1CDHsZ9ts0dF3DHQdyrsHuA2lmVdxficorQ4ISaDh9/JUnBhiuU2r6KbOdNeEtnIe1jrd037a1zKI/1h0w00hAsLN8a47HBoR6QcgXb5adfUaPb19yhmzflyZr447Ios2HzOrerjAYN4yobNYrTCJT3UdJSqCwR7HcGH9Ulm8/bHr3yK3f4rpPa4QFSN3wYH1oiGdufH2hvDd7hw5Zc/K0NyK5jZRl5zuBHN825zsFnj8JkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkECJEKiuFkANizt4XC22uxbDjfz8bA8ccXmyaBARkmvTxrVDZemWZF3Hm+cJvF3vzRA+AZ4PYtVCNhbfj544JVUq5Sy/IazEd4sTdFOE7jDOyxqyA14PrIv/3o7jLb9GqEsgYa8T6F8wTwn2fnLbt775763eBfl1eWDrqHHt3Bf+oy2hXrYrjx6dlaeBFEsoGFyXG8YtsvXqvLttX6p0ig73KAwqBEuEt+jaLFzfZ3+uOyjpQ0+boT8WbnZ5SRnoIKKBx5AZSxK0SGHRpsMe4/IlA+KRwlyCTQmp8svKfbJs6yEVGqRgYS+K8z59YURb+b/JK7SI44QKi/L53F36AzYXtagu/dpHSq9WNQvs3cUXxqxTfgjQ80T5uZY8ExIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIocwRqhLpCYuCN+sLaiYzTZhdWDwhmpiURVsnl9SLTIbQF3tr3q5DjmcDSzC0ZdlYsgcxjlkV7iCWMt+KtoTu27XOF7LhaheyAAIPmnYDVM4lTrTCLlwuIV2Dpmc4eJJzaW/PSjueE/bDmFUV6QMc6ZjfW0B1/rMsJ2YH7rJsK9WK1fSkZcr8SBbz101YpqHDC2l9+0xD5fLsoXu6cuEymq21BhRP5PW5+6yOkyacPdpMRvaM8PJmA27NT18ug5+fJyh05Iqn89s/65xcBep44v643z5YESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAEShWBVg2qqLfrE/WYICworOFNf3gbgCUcPiFRNb17LthlCe9QpbJLSGGMAW+yI5SDdYHeKDO2cftd4T4iLV4qoIm4SokjJv+yXY8HoTsgqJi/weVt4PJ2tY1uSt321Gm1el4KDCEiujfzPpDdFm8I0bUq6YphlV3eTOB94NHBLb13YCmximks2YVOwvOBYQjd0adNLUlJO2mG7OjfuY4g1IvVXv1ug2yKT9VZ9WsEy9CeDaRRrRAJDwmQykH+AmHQnLX75eX/bbQ2K7L0+j1HZPwPW8z+ru1WVy5sEi61wytJSFBFCVXCo8qBfnL1f/4WhMwoSYN3mPv6N5G7rmgsWxJTJXb3Efl7U5Ks2XFEDwvf4wfeXyWfKZFFk8jcvdGU5Hnw2CVPgOKJkr8GHAEJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJnLcEusXUMM991fYU2Z10XBpGeBc8GJXfm73DdM9/p1o0HXlZI11Uq2qgbNiTU2u3EkfkJp6werqICHN5wDCOgW2c6qOtCs3hZOlqUTYxOSeUAUQgdi8VfdvW1uIJtDVCd/y2ap/uCuE+6qlF8XNtFSyeNI6e8O5pYW/yiXM9NMfj7difuzeS7XtzBAZo3DgyVPdh9WYCkQIENSVpgf4V5BolpPlhaaLkhO7IFmvIjn4d3EU06VnZprAC4550bxepHuoShBjnkni4YGE0jPa5bZdvc3lqGHZxAxk9MMajelrm6RIXTlgHVdHvAsH3EJ9hvRoKvt+vTN9oilAWbj5E8YQVGNMeBNwlTB7FzCABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiCB4iMQrhaFuzevbh5g/I+b5XR27l4PDh7JNIUTaDhIvblvWLdmLjHGzJV7JRvxBxxsw56jsuNsmJCq6m3+aPVWv5PNWJrglK3zZqn+DWteL8xImtvI8CBp3zhHeIHQHVsSXSE7BnaKNOudy0QDi2Bjt/Lq4GQn1KK48da+U/m5zPtz7QE5oK63kyH/7/UuTx4NauSIbhopbyO4pjB4b0iweKew9wPPFvBUgE/myWx7cZHtWwUSSzYnydyzITsQ2gUeSay2zSII6dO2pqNwAvXnbzhobVak6XW7U8z+BnRyfb/MTJVYteOwdbdY04dSPe+B/Sq0CQQS+GQ4XDt4mRjZN0dUhcFZuRbrYNl5mSVA8USZvXQcOAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmUDwKjB7neal++NUWe/mqd42IozhZu+cd8vMo88QGdI908C/RoGWGWLdp0WD7/M87cNxLJx7Lk0c/WGrsyUIkvrB4ZzAKVmL1qv3y3ON6apdMQX7w5wxXWoEO0s3eKqzrX1fURSuSNGZvNfnq3rWWmz2UiurZLJPLtgngPwUC2Eq5M/nW7INRBaTCM48kv10rWKXdhA/afnrLOHGfXZuECzwMwXMtrlacHwx76aJUOk2HsG1uIWW4ct0jufWeFPPThanGW2Ri1C7eFp5GaVYJ0J9MWxsvSLTmeHa5W40SIF6s1sISa2b73mOc1UoKgd1Q4mLgDrpAx1vZFkW5S2yUG2qbGYLdd6tivTnfdz/byothHaBLDlmzxFGogBMqtE5boz7NT1zkKpeIOuARCBn+jT25JwE7AdcfZS7hPAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAueAAMJ03D+wqbzz8zZ9tHmxSXLVlnkyok+UxNQNlaAAP9l98Lj2IjBzucvbQyWVP/ySKLcRVq3kLw9d28wUNnygwnus3JGsvFtESHhlf1mvRA9/xh40ww3AQ8HN6ji52RtKJLFgU5JcpPoIqFhBVqv+fltzwGwCAUefNs5iiItb1VT1Nui6EFzALlXeBEKDSmaZrl71SgJuECVA0HHrhMWKcyMtQDmg3uSftXKfxMYd0eMsLX/gPWLEG4uljxKcNK5dWXaqhfu/Yg9I/FmPEriGTwxp5TbckZdFa6HN4s2HdWiVEeMXy2WqfbtGVeX06WxZt/uofL/Y5VXkVhX2JUiF1yguq6AUEtd0qyu4H618L2vnHrIDx8c93KJ+mL7fcY63T1wq/TpESrN6oRKvPGUs2HTQLaxHcYy5S0y4TJ2/W3f9wrQNsmJ7snSLqS7+SqCyIeGYfL8o3hSuFMfx0WdkNVdYG3x3Rr2/Qvq0riVN6oRI+6hq0r9jpLwzK+ffjAUbDskTX6yVS9T3LaZOmBw5kSXz1Pf8O8s17tvO+TtaXONnv2WPQMn8q1z2OHHEJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACxUhg+MUNJVAJE8b/kOPNAYv776uFZm/WqkEV+fdNbdQCa87b/NZ6g7vWk8TD6TLt7z06e9X2FMHHblh0H39HB69CBrypfl2P+nqBFp4CDG8B1n6wyP3I4BbWLLd0pUA/6a9CdPyiRAmGXVlCITtwfD/llWHCXR3l7knL9XCwOP/y/zYaQ9NbnHenJtXcxuxW4RzuPDakhUz8aasWQHz5V5zjkV+5pa2b9xFUgheKF4a3lfsnr5CtysPEkbQsma4W/PGx2zXK+8NNlzS0Zxf5ft+2tbV4wui4o2LsdP+ifLQSE439eI0WKMDDxHvKG4jVIIC5rmd9Fb4mzppdZOmO0dXkiva1TJEQ7l/rPYwDQXT0kxIzgW1xWEydUIHHDkNsglAy+MDLSPvbqwlC/owd3FzGfZ/jAQMCCnyc7JlhLT3CozjVY975TeC8EE+cOJHjjqVSpUp5Xu29e/fKyy+/LMeOHZNHH31UWrZsmWcbVsg/gaysLBk3bpwsW7ZM7r77bhkwYIDZSWJionzxxRd6v0ePHtKrVy+zrLQmXn31VTmjXCTVr19fhg8fXqBhFkUfBTowG5EACZAACZAACZAACWgCnDeUzhvhm2++kS+//FL69u0ro0ePVq5Mc3yZnq/zhmnTpsmuXbv0xRo7dqxUrHheTOtL583JUZEACZAACZAACZAACRQLgesuqi8t6oXJlPlx6q3xJMdj1A0Plss71JbblKcAfz9nTwEI2/CACgWCUBpT5u0xF1+NDrHwfLXyAjCsV5REhAUY2Y7b4WpRvX5EsPz3p216Ad9aaXD3enK78nAAbxS5GcZrLDzj2F2b1siteq5lFSyHqpjHcb11BOHJhLs6yKdzd+nFaGs9eMW4f0CMfLsoR3hiLUPazxJjItDfz17ssZ8bmwDFAiIZex14NzCsUa3K8vlD3ZWAZavMXXfQyNZbCFfu7d9E2jR0DpkSrPp/Y2QH+XJenCmksXaA9iP7NpKLmkV4hM4oCs7WYyFdr0awmxhgkPJY4s3aNaomHz5wobz2/SaPa9RHXaP7rmwqG/Z49xBiMAz0d7F0OhbENIZZv09IPz2stUTVCpEZSxK1lxKjHkRH917ZWAZ2qqPD2hj51m1R8MP3+KURbeWnFXtlhvIgAU8pdhvcrZ60VQKLSer+iN111M0bBr5rHZtWk1H9Y6RBRN7rxPa+uX/+EbhALWKfKW+nnZ6eLlOmTJHly5fLihUrJDY2Vp9imzZt5MILL5SuXbvqBW5/f3+PU3/ggQdk8uTJOr9Pnz4ye/ZsjzplNePNN9+UnTt36uFPmDDBp4dsBw8elOeff163adu2rRY6FMX5T58+XW688Uazq+TkZAkJyYmxtXTpUlMw8cwzz8hTTz1l1vOWyMzMlCeffFIyMjz/0fTWxppfu3Ztn45jbWNNBwTk/LDq2bOnzJ0711rkc7oo+vD5YKxIAiRAAiRAAiRAAiQgnDc43wSlad6QkJAg0dHR5kD//PNPgcAadr7OGwYNGiS//fabZgDRf2BgoE7zDwmQAAmQAAmQAAmcjwS2bNkizZo1K/SpDx+f8/Z9Xh1NGdMlryosL2ICSalZKizDcTlwJEMt2IvUqhok0ZGhXr1E5Hb4Yxmn5KDq59TpMxKmQiJEhAVqzwTe2gx+aYFeqIUHhu//1dOslpJ2UvYmn5CQ4IpSu2qwBPoY5mHOmv3y7NT1up9hFzdQXgVizD5LOnFShbCAl47T2WcEIT18PaeSGHfmKYz1hGRni1QPDZRqIZ5rfd7GhWufdDRTUtNPqjAwFaS2CgkBTydlwTD2BHXe2NZV1yhYjf9cW/KxLElKzZSqlQOUl48AQRiSc2nZ6iXmtIzTWuQCUYRV9GGMQ1XR1zjleJbUUN/x6sozBa1sEiip/zeXu1dU8PbR0KFDtWjCfitARIHPRx99JJ9//rkWWERGuiu6jLfN0NaaNvqaOnWqwGsCFrqti/9GeWneQlBiCEng9cGXN5TwMO7999/XpzV48OAiE08cP37cDdXJkyfd9vO7k5qaKm+//XZ+m5n1W7RoUSjxhNkREyRAAiRAAiRAAiRAAmWCQHHPG/766y/ZvXu3ZnH11VdLtWrVygQXDLI0zRsgkraa0xzNWp5XmvOGvAixnARIgARIgAQGLs5kAABAAElEQVRIgARIgARKFwF4hMjLK4SvIw4NqiihtXNe4vS1jVM9LNZXC6niVOQ1L0st+FvDjwzuWt9r3ZIogIeBqJqVS+LQ+T4mxA7RyhNCQQxhPCLDgyRSPMO8FKS/c9kGYy/pa4QQGfiUlEGsEaZES7kZ9Bw1qwbqT271WEYC3gjkfod5a1VK89esWSOXXXaZDrlhDBGL4h06dNC78ESxbds2nV6wYIF06dJFfv/9d0EdwxCqA94W8Baa4XHBKMP2//7v/3T/oaGhZU48YT2Pkk4PGTJEFi5cqEUucL1b0g+Tq1evXtJIeHwSIAESIAESIAESIIFzROBczBs+/vhj+frrr/UZwfNdSf/ePUdoi/wwjRs31mEVv/rqK7n00kv1p8gPko8OOW/IByxWJQESIAESIAESIAESIIHznAC8OBzPPC27D6bJ9yrcQGJyuiYyQIVpQOgGGgmQAAmQQOkjUK7EEw8++KApnGjatKl+Y6p9+/Zu1BcvXiw33XST4E0ziCTQxhqaIyYmRn788Ue3NtwpegKVK1eW9957r8g6joiI0B5BnDpE6I9XXnlFF/3000/Sr18/p2rMIwESIAESIAESIAESOE8IcN5Qti70ww8/LPgUhXHeUBQU2QcJkAAJkAAJkAAJkAAJkIAvBBBi4aZxi92qItTArX1coQndCrlDAiRAAiRQ4gTOfUCcYjrlvXv3yqJFi8ze586dK3bhBAq7d+8uKDMMMXMhoqCRAAmQAAmQAAmQAAmQAAmUfwKcN5T/a8wzJAESIAESIAESIAESIAESIIGiIOCvwiQUpUXVqiyf/LMbvU4UJVT2RQIkQAJFTKDceJ7YtWuXieaiiy6SWrVqmfv2RKNGjWTUqFGmiCIhIUFq1qypq8XHx8s333yj03ALi5AfO3bskBkzZui8Y8eOmds33nhDp/HnxhtvlDp16pj7SJw5c0YfY86cObJ9+3Y5deqU4Ng9evQQxD329/d3q2/fiY2NFYQaWbVqlWCMzZo1k1atWknv3r2lQYMG9uolur906VI9zg0bNsiePXukefPmWrzSsWNHnbYPLisrS959913NBF5CwKO0WH7PxWncOD/cRytWrJCdO3fq+wvXbsSIEYK33QpqGRkZMn36dH1fxMXFSXBwsERHR8ugQYO0MKig/bIdCZAACZAACZAACZwvBIpz3oDfapMmTdIo8bvYMITwMOYnPXv2FITxsBrnDe3F27wBnKZNm6bnQ0FBQXoeZ2VXkunSPG8o7D1Vklx5bBIgARIgARIgARIgARIoLQS+fLi7IPSGSMFEFLWrBstbd3eUYH8/qRNeSaqF5L4mVFrOm+MgARIggfOZQLkRT1gXpPft25fnNR0/frxjnXXr1skTTzyhyyZOnKjFE1u2bDHzrI2MesiDYMMqnjh69Kj0799fL55b2yD93//+V+rWrSsLFizQW3s5RBYINTFu3Di3olmzZpn777//vtx2223mfkklUlJS5KGHHtIhUqxj+PXXX83d1157TYdHMTNUIi0tTR555BGdNWTIkFIhnijouVjPC2nE0L7hhhvE+mDeqPPYY49pIc6AAQOMLJ+3ENPgnnLylPL6668L+oRgIyAgwOc+WZEESIAESIAESIAEzjcCxTlvgHjCOkcw2E6YMMFIyn/+8x838QTnDbnPGwAO8wn8Fg4NDS0V4onSPm8ozD1l3qhMkAAJkAAJkAAJkAAJkAAJSEDFwjlvD/SvIJ0bh5MkCZAACZBAGSJQuH/5S9GJwnsBHqbBsGgN8QHetikKq127tqB/fKxm5GELDwCGnTx5UoYPH+4mnMDYDO8WqJeYmKgFA4YnC6MttjfffLObcALCjIEDB5rnhzp33323fPjhh0iWmGVnZ0vfvn3dhBM4z86dO7ud66OPPiovvvhiiY3TlwMX1bngusILhCGcAA/jvjTGce211woEOfkxCILswgkIcKwGcc3o0aOtWUyTAAmQAAmQAAmQAAnYCOC3u/H7rKjnDYGBgdKmTRuPeQN+txlzh2rVqpkj4ryB84ainjcU9p4yb04mSIAESIAESIAESIAESIAESIAESIAESOA8JHDOxBNPPfWUREVF6bfiscV+UdoFF1wgN910k9nlK6+8osNjTJ48WXzxRGE2dEjAhSzc7uJjPGjF1sjDtn379mbLMWPGyG+//ab38fAU7lzhLQAhQfDG1CWXXKLLkIZQ4vTp02bb/fv367AMyMBDVoTs+Ouvv+T777/XfVgFE/CegUX/krJffvlFnw+OD2HIsmXLJCkpSRYtWqRDd3z22Wfm0HAdikrMYnZahImiOhc8/MS1vuKKK2TJkiWaB5iAzZVXXmmOGGFK8MaaL3b8+HGB4MLwOAFhzubNm7VAA2V//vn/7F0HnBTF0y3J8chwZI4j3ZEzSE4CCiKCiqAIKmJWDKjgH8GAqJgwIhJEED9BFEERJAgKCCg555xzjvrV66Vne2dn8x7cHVW/397M9HT39Lzp3Zvqfv1qtkVWGTlyJJnhZIKpX/IIAoKAICAICAKCgCCQnBBIyX4DCNX//POP8hM6depkwYp3Te07PPjgg1a6+A3iN0TTb0DHiqRPWR1TdgQBQUAQEAQEAUFAEBAEBAFBQBAQBAQBQUAQuE4RuCphO5o0aULz5s2zIN6zZ4+SXkUaJn6jZZg0Bvlg0qRJqsq///5bqT88+eSTFBcXRw0aNFCT2lAGyJIlS7Qu61EPyA4IqQEDoeCnn37yCM1RtmxZFVoBsY43btxIUAvYsGEDJSQkqDKadIGDHj16UIUKFVQ6/qRNm5a6du1KCOuxePFilb5//34qWLCglSfYnerVq1O6dIEfP6SHfRnOPfDAA+o0lDBMAkmaNGno7rvvVs931KhRauIf91umTBlf1V3T9GjeC/ra119/TeaqQmAzevRoJdEMggU+kydPVs8z0I0PHz6cli5dqrJB6QP9K316V2w0bOvVq6f6fN26dVWegQMH0rPPPhuoWjkvCAgCgoAgIAgIAoJAskNA/Aa3spj4DeI3hOo3ROqLJrsfBGmQICAICAKCgCAgCAgCgoAgIAgIAoKAICAICAJXGYHAs+cRNggrx0zihFkd0nE+WiEdMmTIoEJIvPnmmzRs2DBrpT6uqQeeMIENw4ovhJOACkY0DRPi2gYMGOBBnNDpmFTv27cvdevWTSWtWLHCIk9ky5ZNZ1NqBRcuXFBqHVYi79x///3qY6aFug8iQ6TWoUMHwsefQbUD5AnYmjVrki15Ipr3MnToUA/ihLp5/pMzZ0769NNPVfgNpOG5B2Pjx4+3sr333nsWccJK5B2QYbp3705QnkAoGKicFC1a1Mwi+4KAICAICAKCgCAgCCRrBMRvcBMn9IMSv0EjkXy2ydlviNQXTT4oS0sEAUFAEBAEBAFBQBAQBAQBQUAQEAQEAUFAELg2CCQ5eWLMmDF+7wzno0WewIVAoHjllVcUOWHmzJlK5WHatGkeRArkQ/gLqEIgD1Z1Rcsg06sNsr2bNm3Shx5bU/UBK4Tuuusudb527dpWPqhS1KxZk6DqAMUBqDYgPEk0DMoXmTJlClgVJuIRdiQYQ/iR48ePq8n7EydOED64B21meBKdlly3kdwLCCO+zDwHZZRAhrAsdvx99SmtRoE6QcwQ8kQgdOW8ICAICAKCgCAgCCQnBMRvEL9B90fxG4hC9RuAXaS+qMZftoKAICAICAKCgCAgCAgCgoAgIAgIAoKAICAIXK8IJDl5AiE6/Fmg8/7K+jsHckLLli3VB/lwnRkzZigyhQ6NceDAAbrxxhtpy5YtlCNHDn/VBX1u9+7dVl6tLGEl+NjRIThwunDhwiosAwgTsLVr16q4tdjPnj07tW/fnrp06UINGzZUYTyQHo6B1BAMeWLz5s2WKobTdRDuAiofIKGYRAmnvMk9LRr3gucXExPj81axehDhXND35s+fTxgYRjgWX3b06FGPU5UqVfI49nWAMB+33HKLr9OSLggIAoKAICAICAKCQLJDIJBfEOh8uDckfoN/5MRv8MYnOfoNaGWkvqj3nUqKICAICAKCgCAgCAgCgoAgIAgIAoKAICAICALXFwJpkvp2CxUq5PcSgc77LRzCSVyna9euNGXKFJo4caJVEsoKixYtso4j3Tly5EjIVRw+fNijDEgXs2fPViQJ8wTairAjIIVgEn3Xrl3m6au+v2PHDmratCk9++yzKZ44Ea17KViwYMDnUKBAASvPmTNnrH2nnUDnncog7dixY75OSbogIAgIAoKAICAICALJEoFAfkGg89G6KfEbooWku55ovWu7a7x2e9G6l2j7DUAkGr7otUNWriwICAKCgCAgCAgCgoAgIAgIAoKAICAICAKCwLVHIMmVJ+655x56++23fd4pzl9ta9OmDb344os0aNAgdem//vqLWrRoEZVmFClSxFrxM2/ePKUkEahiJ+WBevXqET5DhgxR5A6oFEDKeOvWraq6jRs3UoMGDWjNmjWE8CDXwh5++GHSoSdKly5Njz/+OCUmJhLIAVDygALD+PHjVdiRa9G+UK4ZrXsBHgi1kSaNMy/p0qVLtHLlStU0qFRATcSf5c6d2+P0tm3bPI59HVyrPuGrPZIuCAgCgoAgIAgIAoJAIATEbygcCCJHxTLxGwLCFtUMydVvwE1GyxeNKmBSmSAgCAgCgoAgIAgIAoKAICAICAKCgCAgCAgCKQiBJCdPvP766wQSAT52w0AfzkfDPvvsM0KoAtirr75KsbGxfqtNSEiwziOEQrQMA1YLFy5U1WHlT82aNSOqGpPrzZo1U5++ffvSb7/9Rp07dyaoUECWFXFt69evH9E1wil86tQpFQZFl0XYDifMERIluVu072X79u0UFxfneNsm+aFu3bqOeczErFmzKoIFnjcsW7ZsfsOCmGVlXxAQBAQBQUAQEAQEgZSEgPgN4jck9/6anP0GYBdtXzS5Pw9pnyAgCAgCgoAgIAgIAoKAICAICAKCgCAgCAgC0UbAeXl8lK+CEBS9e/cmLbWLLY6RHi3Dav5Ro0apz4gRIwJWO23aNCtP8eLFrf1gdzCZffr0aa/sN910k5VmhgexEq/sIBzDggUL1GfDhg3W6bVr1yplglWrVtF///1npWMHagYI2YHVTtqQ71rYihUrrMt26NDBkTiBDJMmTbLyJdedaN/L8OHDfd7qyJEjrXNVqlSx9v3ttG3b1jqNsDO+bO/evVaf2rdvn69ski4ICAKCgCAgCAgCgkCyRSA1+g0AG+9pdhO/wRMR8Rs88QjHb4i0T3m2QI4EAUFAEBAEBAFBQBAQBAQBQUAQEAQEAUFAELj+ELgq5AnAipVkWHV/4cIFtY2W4oR+ZK1bt9a79O6779LkyZOtY/sOSBbffPONldykSRNrP9BO3rx5rSwI92G3W265xQrFgAGvDz/80J6FLl68SI899hg1atRIfcwJ8eeff56qV69O1apVcyyLkBA67AMq1oQUr4skcUKZMmWsK4B8ADKIaWhnnz59CGSQ5G7RvheEqXHqf3jO77zzjgUHwq4EY126dLGydevWTREkrIQrO4cPH6bmzZtbfQqxmMUEAUFAEBAEBAFBQBBIiQikFr8hZ86cFvxz58619vWO+A0uJMRv8PZbw/UbIu1Tum/KVhAQBAQBQUAQEAQEAUFAEBAEBAFBQBAQBASB6xWBJA/bcbWAbdOmjQpf8eeff6qQFlBDaNWqFbVo0YJKly5N6dOnp3Xr1hEUJ3799VerWe3atVNkBSshwE5iYiJt3bpV5brzzjvpvvvuo8qVK9Ptt9+uSBP58+enCRMmKIUIZAIZAiEtQNDAJD3CWHz++ee0ceNGVQfCcnTv3l3t488jjzxC06dPV8dQ58AkOEgW8fHxhHAQQ4YMsRQ7UDYU4od1kSjsgERSo0YN+vvvv9W9IATF3XffrbDEvWHAb8aMGVG4UtJXkRT3gv4HxQgohcAQbsVcTfe///2PggnbgbLow/3791cfHKM/dOrUST37XLlyEdRH3n//fdXvcR4kilq1amFXTBAQBAQBQUAQEAQEAUHAhsDV8hvw/q7tjTfeoPXr16v3tIYNG1KpUqVI/Ibqyo8QvyF6fkOkfUr3V9kKAoKAICAICAKCgCAgCAgCgoAgIAgIAoKAIHC9IpBqyBM33HCDmrDv1asXaYlTkCRMooT9IT/55JM0aNAge7Lf40cffZR+/vlnlQehOz7++GO1D2KEngwHoeGrr75SxAqc9NUOkB9+//13wgS4Nky2d+3alUaPHq2SUL++hs6DbVxcHI0bN85SuTDPXa19KCyAfAIcoDDRr18/j0vj/oDXW2+95ZGeHA+idS/169enmjVrKjID1CecFChAqujbt29IMEDFY9euXfTll1+qct9++y3hY7eqVavS2LFj7clyLAgIAoKAICAICAKCgCBwBYGr5TeAaP3qq69aBFcQrPEBkQIEa5j4Da6HIn5D9PyGSPqU62nIX0FAEBAEBAFBQBAQBAQBQUAQEAQEAUFAEBAErl8ErlrYjqsBcZYsWWjo0KFqghlqE74sISGBRowYQYMHD6Z06Tz5I2nTprWKZcyY0drXO1AB+Omnn5SqgE7DNk0aTyihwoDB0dq1a5vZ1D4GBzFgumbNGqpYsaLHebQHE+Tjx48nTITbDaSJnj170qJFi1RoD/t5f8fm/Zj36a9MhgwZrNNmeSSCKDB//nylhGBlurID5YXFixcTlDqczMQrU6ZMHlnMc+b1PTKFcADVkUAWyb2YdeNe3nzzTUXgwcovu+G5g9xj3qM9jx0PfR6qIyCiFC5cWCdZW6R99NFHXmQcK4PsCAKCgCAgCAgCgoAgIAhYCFwNv6FgwYI0Z84cRSa2Lsw7IG+YJn6Df78BWGmfLXPmzCZ0Hu/U15PfoPEAGE5+Xbh9ygNcORAEBAFBQBAQBAQBQUAQEAQEAUFAEBAEBAFB4DpE4IYLFy78l1rv+/Tp00oRAWE2Ll68SCBNlCtXjuyDbuHe/5kzZ+j8+fNqwComJsZnNUeOHKHdu3fT5cuXKTY2lgoUKOA1aOqr8KVLl1SoD1ynePHi5O86vuq4GunAd/PmzQpnEDyyZct2NS6bJNeI1r38999/tG/fPvXBcytSpAjZCSjh3ADiQu/fv58OHjyo+lHRokXJjKkdTp1SRhAQBAQBQUAQEAQEgesZgaT2G/B+eerUKcL7IVTn7AQKjb34DRqJlLFN7n4DUIykT6WMpyCtFAQEAUFAEBAEBIHrHQGExytbtmzEMHR5f3FQdYztVTOofJJJEBAEBAFBQBAQBCJD4Fr9b07V5InIHomUFgQEAUFAEBAEBAFBQBAQBAQBQUAQEAQEAUFAEBAEBAFBQBAQBASB5IqAkCeS65ORdgkCgoAgIAgIApEhcK3IE56xJiK7ByktCAgCgoAgIAgIAoKAICAICAKCgCAgCAgCgoAgIAgIAoKAICAICAKCgCAgCAgCgoAgIAgIAoJAikMgXYprsTRYEBAEBAFBQBAQBAQBQUAQEAQEAUFAEBAEBAFBQBAQBAQBQUAQEAQEAUFAEBAEoorAxcv/0jdzttOqHcfotjpFqF65fFGtXyoTBJIKgR0Hz9Dvqw6o6htXyE/F8mVJqktJvakcASFPpPIHLLcnCAgCgoAgIAgIAoKAICAICAKCgCAgCAgCgoAgIAgIAoKAICAICAKCQHJG4MKlf+njnzfS9/N3qmbeVqewV3NjsqSn2JyZ6cZyeSlfjoxe5yUhcgT+XHOQvpi2WVU0f+1hmvFaU8qcQUTsI0dWakhqBLYfPEVDf92kLhOTJZ2QJ5Ia8FRcv5AnUvHDlVsTBAQBQUAQEAQEAUFAEBAEBAFBQBAQBAQBQUAQEAQEAUFAEBAEBAFBILkjcJ7JE5o4gbb++Nduv02+p3EJerhVKbrhBr/Z5KQNgelL99LFy/9R+rQ30E1VC9rOEp29cNkj7dK///KxkCc8QJEDQUAQSNUICHkiVT9euTlBQBAQBAQBQUAQEAQEAUFAEBAEBAFBQBAQBAQBQUAQEAQEAUFAEBAEUhcCY37fxiSAf+mJW8oIgSKER/vOxHV0hgkSWTKkdSRPNK0US8u3HqO1u07QnfWLUfZMMo0YArySVRAQBFIBAvKrlwoeotyCICAICAKCgCAgCAgCgoAgIAgIAoKAICAICAKCgCAgCAgCgoAgIAgIAqkBgYolctLnj9TwuJXzF/+l3UfOKEUKrVDxf3/sIITy6NY0ziOvHISPQKb0aeiljonhVyAlBQFBQBBI4QiI1k4Kf4DSfEFAEBAEBAFBQBAQBAQBQUAQEAQEAUFAEBAEBAFBQBAQBAQBQUAQEARSMwIZeVK/ZIFs9Ey7svRihwTrVsfO3kYgVogJAoKAICAICALRQECUJ6KBotQhCAgCgoAgIAgIAoKAICAICAKCgCAgCAgCgoAgIAgIAoKAICAICAKCgCCQ5Ai0qVmYxs/fSZv3nlIhKNbvPkGVWK0C9s/mI7Ru90m1f2utwvTff0RLNx2mf7Yco12HT1ODxPzUvk4RdV7/OXrqIs1csY+27DtFB46fo8wc0qJg7ixUs3Quqh6fm9LccIPOam1B2Pjhr510mesvWSAr1S2bl85yOIyp/+yhTdwu1JMvJhOVLZKdWlYtxHX6X8uMdi7ZeoQWrT9Ce1hhA3Xlz5GJSuTPSs0rx1Lu7Bmsa5s7wdxvzVJ5aM6aA6oYQnbAsB07d7vax5+b+Br5cmRUoVCg7IH7Kpo3MzVkvJwsWpjtOnSWVmw/Sss4VMjxMxcoLn82SiicnRpWKBBROJYLl/6lWSv205qdJ2jv0TOUMX1aKszPtH5iXqpY3NVX9H0h/Iu+Z6S1qlqQ8jjgjTonLnBhg3xtuR/GZE5Huw6eoTlrDyKJ+0EeRfLZe+QczUCf2nuSTp2/pK5drVQuql8uH6VJ492f7HUUyZOFcTlGy7nfrt11XPWF3re7SUO4Vij3iPymnTp/mcOzHKENu0/x9+U4Zc2QjuILZaf42KxUi/uLUxtR/vK//9Hybce43Alaz6FdzjEmpQpmp5LcT2vzdyBLxrTmZbz2t+4/TbNW7mfMTtPJc5fUfZUqmI1aMOaBQsT8y1+SBesP0d+bjtLuw2coMz/TeL520wr5qUi+LF7XCidB98ct+07T9oOn1He4NOOCNpYvmsMnLvpaO7gvqPs7dIaOnb7A399sVI77c7nCMY5tDOe5n2fM567aT6t3cN8+dlZdOjZnZkosmp0aV4jlvu7/t2b/sfO0cttRWr/nJG07cEo9g/hYvr9iOagst9OXhdtnfNWXnNOFPJGcn460TRAQBAQBQUAQEAQEAUFAEBAEBAFBQBAQBAQBQUAQEAQEAUFAEBAEBAFBwEIAXIayPCEJ8gTs4Inz1rkZy/bTT4t2q+Ma8bnoxa9WKCKDzgBCgzYQFsbM2UafT92kkzy2Y3/fRiWYGPHmvZWpmG1y9sipC/TRlI0qf5uahShDujTU75tVdIzTPWwR0Sec77NHa6hJZo9zVw4wYdtnzHLrfux5Ppy8gXq0jKeuTUp4ETmCud/8OTPSpz+72mrWbaZVKp5DkSfOXvjXuq8mlfJ7kSeiiRkm4l8YtdxsEv25+pA6rlZqF/XvVNGRxOBRwOEA5JWnvlzi/Sw47xh+pjcm5KGB/EzTp3VNMmO7asdxmr3CRTBZu/M4vd6lklfN4zhMzBe/uvpKPSZhdG5QXOVZw+QGjWXe7Olp0YbDFobuSg7T+Hk7qQz324961qBsNpKBWUeebBlo2PTNPEHuImSgDhBpTAv1Hs2yG3jSHLiD4ONhS/epQ5A8+t1ZQfUH8/yxMxep/7gVtHjDUTPZaifa+Po9FdUkvEcGPkC/eXfSOvphwS77KXX87o/r6YMeVQlEHyc7x2SlJ7/4hwkDxz1Oz1i+n4byM7m/eUnGNpvHuVAO0Be/5ef76S/e3xNdT1P+Pvzvrgrqu67T9Bb39x7f30Tb/S1Yd1hnoW7N4ugBbqdJTAn1uYM80m/MSkV+sio2dgZnWE/9u1SgekzScbIZy/bRK+NWOZ1SaXc1KEY9W5WijPx7Zlq4fcasIyXte959Smq5tFUQEAQEAUFAEBAEBAFBQBAQBAQBQUAQEAQEAUFAEBAEBAFBQBAQBAQBQeC6Q0BPfOPG/+OJTyd75ZuVHhPEWVhRIksm95riDyev9yJOFM6d2aOqbbxS/oEhCwkryn0ZVtO/yJPRmjiRkye/cS1tUHl4fuRyglqD3UCc6P7hX17ECXs7hk3bTO9PWm8v7nHs637zZs+oVCSgJGEajvUHygzBWLQwA1nBJE7gfk3MlrC6wMdT/N+vU3sPnrjgRZywEw/mrz1Mg39Y51H8ufYJhOcGA4li3hUlCZ0Jz18TJ9DO3u0THZUxpi7Z60GcsD/HDayK8uq3K+lfH30W1xs1c4tFSMCxq9+6n0+494i61rFaRPcPF1rfC2BTv3xeRerAeRiw78Z9Hooc2kBe6P7BQos4gTbVLpubQLTQBjLGQ58sps2s4GK30bO3ehEn7Ng8PWwp4btkNxAT3vhulRdxwiw/YsYW+vbPHfaiQR9/wqQJO3ECRBfzGrO4X/QasUQRQewVj+BnZidOmP0Z+UfN3Eovfr3c57MP9Nxns5LKcyOWeRAn0Gd1v8U18FvTm39rZnJeu0E1xSROxLOaRqOK+TyIOf/HBJKB3632KBpun/GoJIUduP9LpLCGS3MFAUFAEBAEBAFBQBAQBAQBQUAQEAQEAUFAEBAEBAFBQBAQBAQBQUAQEASuPwS2GJOsCDfhZDuZmIAJ0CfbllGy+QjHAel/2OJNLiUAXQ7KDq2rFaICrNKASWOEe3h74loCeQITkgMnrKFPe1b3WDWuy+rV8DfXKEhdGpVQoTawkn0NKxi8x4QHTJhjYvnlb5bThw9Up3RpXWEb0JaBE1ZZk6EgMrzUMZESWT4f5JADLK//69K9amU9roXJWSge1CmTV1/aY+vrfhF25Nvn66m8Lf43W10PE7s6zaMSPwfRxAy4wl7vUpHvKZ9azY9HA9UQ4A6bzioiXRrHqZAJKiHAH0zw9x611CKxtKwWyyv946lwnsx0ieOQrObn0efrFer8lMV7qBiHmujSsLiqNWeW9PTynYlqchoJAyespf/rnVspRKBdb/2wxrp6X86XN8Y5jIpWZXiiTWkOt1JQ5UMIFmD32rjVCvt5aw7RSJ5If6BFSatOcwfPEc+nD1+nUolcSn1D99tI7hHXmMbKA9ruaVyCHuJ+n/ZKGBEoS0DdAYouIALNWXmAmleJVdkXseKBVqqoWSYXDbi7MuXI4ppiRhiJIUxE+vEvl+ILJumfZzKKNqgdfMHkH21vd69MNeLzqPASIIKMm7uNMGkPe2b4UhrxZG3KlS29zk5jWR0GxAVtr3KfQYgQqHeAkPQ7h7AAGWbZ5mM6S0jbwycvWNdHQahn1Etw9Ukcgzzw7MhlChNcYyeH5DCVaNBnR/y2BVmV9euUyOom+VUYkiNc96KN/Oz/z0VIwLNfyMcI82M3f88d9Qwc7+6DUIXp3qykChGDerZy+I2RTCDROA3ivOg7+Yx++r2hijGQ77FRxQJWE6AsAVINDGoej7QuTbG5XGon4fYZq/IUuCPKEynwoUmTBQFBQBAQBAQBQUAQEAQEAUFAEBAEBAFBQBAQBAQBQUAQEAQEAUFAELgeEfhjzQFauc09UVqmcIwjDAlFY1SIhKpxuQjECRiIBLBxc7erLf7cVqcwdWsap4gTOAZxoXKJnPQWh3bQq8dxvZXb3ddEPtMqcv4Xbk9UxAmkY0K6YvGc9MY9law6MPG6eoe7DpAulm91hyF4u1tVqsxt1aoaCLeBUB0dbixqXWrsHHe7rcQrO/7u1543nONoY4ZJ8CaVClhhEPBo2tUuTCA9aNuy76TeDbidtHCXIqogIyb4+3Qsr4gTOAZhBc/03e5VcKhslDHhjQRMaLevW0SdA3lAK01MXbLHmphH2xobk84qs+1P16YlqBOH9NAEC/S9hon5qd/d5a2cUEq4wKQDJ0OfG/ZELWrC18mT3UXS0P020nucfiU0B64L8oYmTuAYBJKBHK6kc6PidGutwnTq/CUkK/vDUOLoxpP2mjiBkwjx8GTbsip0BsplMFRMQER663sXGQZ5EZoDISUypndNT2Ny//FbQDRxTeSDoDF3tZsoAdLIZ0ZYHRATmnGf0WFPQLJoX6eICjWB+sOxo/ys0W58BtxdQeGOMDzayhWJoSe4jdpWGL8DII6Y9/dixwRqWbWQIk4gf25+fq2qFaSX7kjUxZkEtdPaN3f8PXcomoDEBYNixP84rEp8bDalfoLvTckC2ehlDikCshgMeX/5Z4/axx8o3GjCUpX4nB7ECZwvUyg7DXmoGt3O/R847Dl6FsnKwu0zunxK3F4XyhNnzrjklLJkyRLwGe3evZu+/vprla9evXrUoEGDgGUkQ+pAYNOmTbRo0SJaunQpnTp1iurUqUP33Xdfirg5/JPdyGzA9btPERhoWTOlVfGoSvGPZ4n8gft9irjJFNDIWbNmqT6UNm1aeuyxxyiY35wUcFvSxBAQkD4QAljJPCtezPccOUe7D5+ltOxcIUammCAgCKR+BMRvSP3POBp3ePDgQVqwYIHyG/bs2UN58+alN954IxpVJ3kd4jckOcRBXQC+54QJE1TeO+64g+Lj44MqJ5lSDwLSB1LPsxS/IfU8S7kTQUAQSBkInDl/mSbxKu+Pp2ywGnw3KwdoYoSVeGWnbc3C1iSreQ4r7BeuP6KSMGH5FE/8OlmRfFno4ZtL0Xs/usJHzFl9UJEbnPK+whOXWlHCPF+Iw1E83qaMpaawiUMagCABm8v1aYM6hrmaXadjCxWDqX/vUROiCKmAOQBMytrN1/3a84VznBSYNamQ37Epjcvnp2lLXAoJu3l8LlibySvmtT3dtpzj88BEeJuahQjKE5hg3nf0nLXCHmUfu7kMLVp/mHYfOUvfz99J1UvmpPevPH+ER+jVrpy+hOMWYR4ebOH8ft+ACRQgCWBlPwyhQErxRLjdbkzIa5Fw7OcivcfsPHd07EpUjbWsqABCiWno84/d7CYK6HOZM7ink1cw4acKqxqYBgKFk5LGsq1HrUn/m6oUoJql8pjF1D6IIT1blbJwWb/7BKcXVuf2HHY//xsT8ihiglcFnHBP4+Jcfp9X+BunvPY0PIMXOriVMuzncVyqoIuUgP1NrNKg7W9WFNGGMCb4DjrZLdULsfrJv3SO+1y2zG5VDTOvv+c+jRVotPVlIoYmn+g0bPEMcO4+Dq8Cm85l7mtSAruUiX/ntG3bf4YOseKHJvfo9OrxuQkfu4XbZ+z1pKRjd29PSa0O0NazZ8/S2LFjafHixfT333/TypUrVYmKFStSrVq1qHbt2tSlSxdKn967g+7atYv69eun8mN7vZAnvvvuO5o7d6667169egU1ePMfTyz17duXTpw4QbGxsfTyyy97PJn33nuPtmxxS9V4nOSDnDlzUo0aNdSnSBEXm8+eB8c///wzTZ06VZ164oknqGxZ5xcZp7LBpuEa7du398gOIk1yJ0+sZumwj3/ZTCfOuBmAHjfBBzEsndSyagG6rVYh+6lUczzst60szXRI3c8DzUtQU47TdC1s8ODBNGPGDHVp9NVw7eVvVnNsLxfpC3W81KEsVSjmzJ4O9xpSLmkQCLUPPDJ0qcf3F1JY73arGFTjdvGk/gujV3nk7dq4mPq+I/HUuUvU87Ol6nymDGlo+GPVPfLKgW8E/uS4h19M30qQV4SBvTvm6Zq+C8gZQUAQSLEIiN8Q+qNbsmQJjRgxQhVs06YNtWrVKqhKUAZlYYMGDaJs2dwDRCnJb9i8eTM1atSIDhxwr4TBPSV38oT4DXhKRMnFb5g4caI17tCwYcOg/G/XHXj+Fb/BE4+UdBRqH/hwCi/22HjUukW8n454vLq1StM64WOn20f/0EVjZWPF4jH04u3usZWen/MikrOucYUPH6jsNZDqo9rrPln8huu+CwgAgoAgkIQIQOWh+xDXBKC+zIHj55Vsvj7GFpOxj7QuZSZ57FeyTQzrkzsPukJG4Lgcj7uaq8x1Hr3FimxtG/e6J011GrYgYBTM7ZK4N9P1PibstSGEh7bNhqpCuSsrxvU5cwsliopxOSzCx85Dpx3JE77u16wr3P1oYwZliDRXwkXY25QvpxvL0zzGGYyB0KjDp+j8u5ic4GQmyQXPQIcnQN7MPI76CqsPPPTJYlW0zxjX/CIO+rNyRPZM/qdVKxTP4aHmoCox/pTnkCyaPLF53wlH8kRVH4u4onGPNUrn4bATu1SLHv3sb0UkacqEjorFclIWDoPhyyrH5VRkEpwf+usmWrHtKI9Dx1KVknk8QkPYy2/Yc4WpwSegSOHrmZgaHKtYkUWbqTxSgdvoy0DAQP9HyJFIjbsSIdQK3o9Ps/rGGf6YqjNXhozVZUBE0IYwGb4M7++31S7i67RK9/nc+YLmfZXkRdO+LI4VKLRBaQLj21AXAVECxB6QgqCqcvc786hj/WJUn4k6UKvQaje6rLkNt8+YdaS0ff/f8pR2N9xeTHhj5QZIE3YDiQKf4cOH0+jRoxXBomDBgvZs1+UxVk598cUX6t5BLAlm5cvly5cJE4WwhIQEL/IECCyauKIy+fkTFxdHkydPpjJlynjl+vPPP622dejQIerkie3bt3sRJzAgCuWR5Gr4Jzlq1naaucLNTPXVVhArxs/bTRv5n9Sz7UpbsmS+8qfEdNf0pqvlmDC+Fnb+/HmLONGkSRPKlMn9ghdKe07wP2STOIGyU5llK+SJUFC8Nnmj0QfAdD52+iLlzOpN7rPf1Qwjzps+Z34XdJpsQ0Pg4Inz9Nmvvol/0zjW4j+bXPKK7WoXpPIs/ygmCAgCKRMB8RvCe254d9Z+Q7FixYImT4wbN47mzJmjLtq/f38P8kRK8RvQ+JtvvtmDOAGCflKQu8N7Ot6lxG/wxMR8V7pWfgNapBcuYL9atWrYhGziN4QMWbIqEGofMPsubgQDuvPXHabGFQIvHFi5/bgHcUKXNwHB4hix0BAQvyE0vCS3ICAICALhIGCSDJzKgzgBmXoz7IA9XyYjfIB57ujpC9ZhaWNFuZVo7JQwJiMPHnOvgjeyUGVWJ/BnxfNntU5jtb+2/cfO611WnXBPelqJxk58bHaLPAHlCSfzdb9OeUNNizZmBXJk9tkEf2QWX4VOnnWFNNDnu7y7QO/63WJyv16C5zsVCA73Ny9JCK2hrWO9oo6qCfq83sYbZBudZm7jYt19AdduWdU869oHgcPJonGPPW4qpUgm+vsFBQ58YAj70qJKLIfFiPUi00Il5BZW7Pj5St4F/C6KDwyT8gi/gpAmCB9h2pGT7j5uXsvMY98HUQDhMKCksJGVWrSZ2Ok0c4swFpHYnJX7CeoyCzce8SJq+ar3kHF/8caz9ZXfX7qv537cWDxdokBWv0QH/B4irIcmWxw9ddF6lq9xCKHHP/9bKYFAdWX0rK3qgzYpVY8qBakBq77YVS3C7TP+7jW5n0tV5Illy5ZRs2bN6ORJN3MPk/pVq7p+faBEsXHjRvVMMCFfs2ZN+u2339TEf3J/UKm9fVu3bqW6devSzJkzqUqVKlf1dk2iDVbOYVUcpHeTs/Xm1eZ7DbkqsNYg6VWafxQLMcMVL0+b9p2mdbvc34VlLKX08jdr6LW7E/2+UCbn+07ObcPvjzaQb8K1aUbMMV3Hyu0nLIagTpNt8kMgWn1gJpMiOtR1lvcy73rBFWlBM833Pv9IiAWFAH4rteG3tXnl/FQ0jzv80eodJwird2HVOT6ckCc0WrIVBFIWAuI3pKznZbb2WvoNe/fuJVwflj9/fkUGCYZ0brb/au+L33C1EQ98vQsXLtD06dNVRvgN4ZKuxW8IjHVyzRGtPjBr5cGgyBO/LfdUygmESxrnsfpAxa678+I3XHePXG5YEBAErgECUCawW/ZM6alI3izUIDEfJRbNYT8d9PF5njjUFpPF/yImqEpoO3nOXU6nYRvjQ4Zf58EksLbDBvHhjFFf9sz+p+vMdmJi+WpbtDGLdvvPsjpAOHbi7EXHYnXK5vEgTziF13AqGBPoORp95SgrAIRi0bjHHKxUPuSh6vQLh4H5iUPgQJ1A21oe88RnyOQN9CiH7ujSqLg+pVRCXrw9gWqVyk1T/tlNize4VdGgZjDm923q06RSfurHpCZNgDnLoXbCsdO8yDQjh6ZBqAtt2Q3sdJq5Nb8jZnqg/Yt8jQ/5nn9YsCtQVq/zFy667y9LAFUSr8JBJpw3rpEzm//fK1SZO3t6Jk+4KjfLlmWFiVFP11HPfSKHpAGBQtt8VmLGB793g7pV9gjfEW6f0XWnxK3/X+MUdkdPP/20RZwoXbq0UpawT8RDYaFz585KoQJSqygzbdq0FHanKa+5CO1hHxQ6dOgQLVy4kHr37q1ILSC9gPyCUB85coT/4hMqOuaE57333pvsiRM//7PPgziRg1eo/++OclSQ5f7tdoJjt7394wZLyWD7gTMcR+0QNblGYS3s7UtNx/Pnz7dup379+tZ+qDsYALMbpJUgB9qofPIm9djbfb0dR6sP/LHmcEDyxI5DZyxZXV84I9YjQr7AglGy8FXP9ZZuOrCVSuSgbk3cTsL1hoXcryCQmhEQvyH5Pt3k7DesWLHCAg4h/5I7cUL8ButxJaud5cuXW+1p3LixtR/qjvgNoSKWfPJHqw9s4YHuczyQ6m+F6X9828u3ucnBvlDo3b6sir+MQe7cHMtbLDAC4jcExkhyCAKCgCAQCQIVWX7/gweqR1KF37I5jf932/e7V7Y7FdrLoXO1OY3B49wmY3W8zmtuEXJEW0IRdxiQfDky0oHjLjWLXYfPUAlDoULn19utRjsxJ3C1LdqYRbv9ZvtQ9499GgR1iUwOoSouMDll4IQ1HuWH/LSB6pTJS3hm/gxzMP5spxFKJD6A6om9nmjdI0KP3MUhG/DZziFsoFS2eMNhK5wIrvvpLxsJhJ5ba7kX+SHMSnNWpsDn4IkLtIpDdyzjEDu/sBqFnoifzQsD06dZzaFPXKGpcxnftcfblKHmrFARjOnx7Pw53PNewK5qnDepSte3w8BWpwWz/e7PnRZxAuSBzo1LUDn+nuLaWTOmo2xMsDp84hx1HrzAq7rc2d39YTu/n1cvmdsrT6QJJoYbdroXTPuqd+MeNyHGLIv8hfNkVqGOetwUT+t3n1DhSP5Ye5CWbXYpLeM5PvnFEvqKSRYmYSjcPuOrjck93U13S+4tDdC+PXv2kDlxNWvWLEcFA6gb4Jy22bNne8iu6nTZJj0CUHe45ZZbCCogWLkFA4Hi+++/T/qLG1c4etTNkAtXMtWoLkl3zzBL77t5bvZbSZbo+ejByo7ECTQETLsBnRKVGoVuGCTnxaKPgJahRs01atQI6wKbWS0EYVZgSl7JkHn6bbk8t7BAvYqFotEH0FzIvx4JwDr+bVng1WPoQwj3gk8RfikSCw4BU7JYBo6Dw0xyCQIpDQHxG1LaEyNFbk4OfsPx4+4JSKgYJmcTvyH5Pp158+ZZjQs3VKT4DRaEKXInGn0AN45IGyBe+7MVTJy4dBkUCv9Win1P+A1lCkUmdez/KqnrrPgNqet5yt0IAoLA9YdAHmPC0wyj4YTEtkPuiUhfE+eQyMfqdV+27aCboFG2sDsEbIGc5sSrO49TPZv4GtryxbjL6bSk3kYbs2i3N1P6NGrVvK43KxME8LwCfTApbLeRM7dYigy1y7omwzGp/NbENeodzJ7fPN60z6VYa6aZ+5sNpQdzctrM42s/mveor1E8X1ZqU6MQDehckSb1bahCc+hzvy3fp3e9tvliMqhQHb1uLUtT+jWip3mrbTrPQWl1lLxGXz1x5kLA56GfF4gaMBOjzQFIShv2+Mdet8++/WONe0HrK50rUPdmcVS3bF5CGJBYXrScjQk2+3yE7Mlv3J/5HbVfI5JjhNHQCjjoh77C9uAaCPFxzJhbyOJADkK+dGlvIISn6dSgOH3yUA1FlkDYFm3z1h3Su17bcPuMV0XJOMH7VyEZN9Zf07R8KvLceOONVKCAb/ZSXFwcPfbYYxaJYteuXdbkvdM11qxZo4gZmOT/999/VXgJDJYhHEjatG7JJqey69atowkTJih51/3791O+fPnUCqXbb7+dEhMTPYps2LCBJk+erNJat27tdR4nFi1aRH/88YfKgzpwL3bDBJ4ORdGpUycqXNjNDLPnTQ7HuXLlopdeeol69eqlmmOu6Eqq9h07doyGDx+uqgeBRhtCduTO7fpnCNUSKGGYdvbsWfrpp5+UYgbiPcMQ6xn94bbbbqMsWdzS7ma50aNH08GDBykmJoZ69Oih+gOeEz6HDx9W6hvBqBUMn7HNGviAnPxTbUoFDMGBCdT7m5Wg18evU03aeegsHTt90edKdPzAL9hwhGV9TtNOZtWC4VeCQ4JULB4TlCRopOW3MzvwH2a5IeTIv/SfipfVqmoBRRDZw6FKdnGbICNaI943w9DEXu9juOifzUdpLde7kWOJ4WUWcvtVOR5dOZYrAk7h2qVLl+iXX35RxfH746sfBKp/yt97rSxY8V6nTG767NctKm3rflYaOHeJsjm8zCHDH2sOMUvZxWBuX6cQXbj4L01atJfWcAy9Uyz/lpclrlCfqToCRulSDlGwbvdJjpN1AyUUiaEapXIRBs58GXDEtRZvPKquh5VOkKXLyy9L9RPyqjAG9rL7uV1/cplgLT+/1DZIzOuVHSt7fl91kDZyH93KDF60GeFqynC4mpurx1pSYGbBQ8yARZwyWOW4nOresEJryZZjtIZZmsAUscjQF4APXhrCsWj0gYIcckeH44G07l31ivhsCuKuacML3L6j3vEWEeMcSjMXebA0K78k3Vgujy7isUUIir84BAhwBXEjZ9YMFMuOG753FYt7qwChn57n/oUX2Yb8nPDiOH7ebtrOahjAsXvT4h71R/KbAOm6iX/tUb9Fh7htWZjpWzRvZvUcm7MEXHpD8tDjonxwkRniM1jJBfH78P05zdJ9IJGU5OfdimNiov2mIdTRVu4b+I3Qtot/L/Es0NdARsN59B9t+K1CH9JY6HTZCgKCQPJGIDX4DadPn6YvvvhC+SYVKlSgli1beoGOEBPffPONSse7asOGDb3yQPHthx9+UOl4hwHRPDnbtfAbgMewYcMIihgmUXLq1Knq/R7n8+TJQ926dcOuZZhUQ36EiUSfO3XqFBUpUkSFjLzzzjt9+qviNwTvdySV34CHiPcXrNZHDGKQWvG+WJXfJSvzO3omQ7bZeuAh7Jj9KFwSTiR+A9511vD7H6x+Qh7KnzMTzVpxkP7ilWZ438Y7TwL7R/AptNQufMhF/P65isOXneXBOgxgVuL3xFql/ftk8DNm8LsU3hdBEs+aKa1SNcA7ZjNWQ3R6l5u6dD+d4ferYOwGdopv53baLRy/AWp/U/7ep2SBsRoLvgHq0fe9j+OR4z0U2NThAfQcjFO4FmkfMP2G2ewfteAwc77MDNlhlrPnh3+E+4VB8VA/ezOf+A0uNMRvMHuF7AsCgoAgkHIRgMIDVvFjkhHvOiu3H+NxsJxeN4TxNYQ20IYJVV/265K91Lam91wMCI+TjTrMyeA6XN8sXqkPm/LPHmpQIT+lwcC/zVbvOM7j9S7yBNpdskDkhEdMwp7jMT5MyAdjSYFZMNcNJU+D8vlIh7f7Y81+alnV+10R9WHMeO9Rl0JEodxZKA+PnWtDXxg9a5s6hALKO92q0rMjl6gwFQvWHaYpi3dTW0ONQZfTW4SzgD9hPmd97iS/585c5iYklCzgViHReQJtI7nHExwK48AVEgAWjeU27hvXxRj/E6wO8fPiPaoZ6/j9HwYlDq3qALVjvC+bhsn9O+oVpV+4D2MsFgaVCGBQPd4134a0uTxO361pSUJ+J0M/x3cOczU6LE9crBujGbzAFOVzOYSu2MXXm8vvxqEa/ICVrJ4BA0HhRh/f8YXrnUnLNUq5x9x/45DsXZvEKcKFvR3oc48PXUwI/VM8X2b69OHQFmQ0qMB9e4mr70zl3xozpIp5ran/uH+vbuIxcG2YP8A4Ngyhj+zfezyr7s3jqPfI5SrPxitElHD7jKokBf9JNeQJkBK0YaAwkL3//vuBsqjzGJR8/PHHPfJ+++236rhnz540ZMgQgsNuNwyOPfTQQ4o4YT+H41dffZUg9YqBOEyow/bt26dIBNiHGsLrr7+OXQ9Du7Uyw8WLF+nFF1/0OI+Dd955x4qh2r17d6/zyTGhTJkyVrN273Z/ua3EKO9g1RgIG3YDdtqefPJJD/LEr7/+Sl26dLFCw+h8eps9e3b6+uuv6eabb9ZJ1vaVV15RoWJAZKlcuTLZiRIguQRjize5VTIwUY1/ZsEYpMAw+HOS/znCMCiiZY90eUyKf/37Dn658FQ42McvUfhh/YsJFT8t3kvP31bGUekiGuWH/7aNMPhj2lqe4MaAW7NK+VhG6JQiT+D82F7B/3PBBOxrTB7ZzwNepu04eJamLtmvBkAHdEoIe3X+ypUrrWqbNm1q7Yeyg3/SmIjVdguTAUrzP6zPp22x2KzA4bbazi98X8/ZQaevxMjDYOQbE9ZZRBvUiWeIwU7gO+DuRPpwyiZFgNDXw3YTE2Ym8zPu2TJOTYqb57AP8sr/xq1mOVdPFjX+8WNCeRETKsBkfL1zIhXgQVhteLHHBHiwBua0nTyxgCf3QSQBTqYdPXWcljMBZDJP6D/WOp6qMRnGNBBE9LXxkreQ+/EvHPrGtN1MyAHJAIPQb3QpHxaRJhp9AIPXICHAQFDxRZ7YxsQR/azxYg/5tH3unwbr1rDidBh/p2CZMqTxIk/gRfSL6Vu9Vqvtu3BO9RfE8C3GL3Kv3V3eg1Qy7o9dqk5cG86c2UfNQdZIfxOgsoPfHDiY2o6eukh4XiB74NzLHLKocG7Pl3XkBckK3/lTV37zdHlMgOCD37nb6xT2GGz/lV8+0c9MA6EEH/ybBzEE3yHTMICMD36LQSQREwQEgZSBQGrwG+B/vPDCCwpwKF45kSdA+NXvu02aNHEkT0ycOJH69Omj6tEkiuT+FK+23wA8Bg4cqN7lTWzgk2m/LCEhwYM8sXnzZgJBwnw/MMs+++yzBP8AzycNWMGGid8QnN+RVH4D3jU//mWzeq81Hot6D8YKf7wTPNqqpNd7lZnX3z4It3PnzlVZQFjKmjWrv+yO5yL1G/AujIlyGOSef5qw3po0Rxp8JpDNp/PA5EcPVqF5PEA8atZ2nLIMEwyzmaRal0kEj98cb6XrHSgdvDhmlUUM1umHeRwVPhjeM7+Zu5Pf30tSbfZTtYH8OoZ90lDMTp4I128AKUSrPIIkAVL1B5M3ebyLwqcCify7+bvorXsrBu2Pm/cTjT5QkVeIoS14T4YsNNqOQWy74TUa/pC2mrwA4acjzuNleKfXPgaIQuZYg/gN4jfoPiRbQUAQEARSEwIY07q1ViFrkvzF0Svoq6fqePwPxP2OnbOd5hmLwuonuOeh7HgMmrCWVZyyk6ksgTzfzdtBCGWgrVyRHHqX6iW665vPYZtHz97Gk8Nx1nnsYJV5769cE5o4vqVGIfYj+MU0TIOM/5kjZ1XplduPUk1j8tdflUmBmb/rhXOuZfWCFnni1W/XsCI3yNme48VYmY9JbLzTwr54rKZFnjjL496vfbvaunTv28upseLn2iXSXe/MU+mDvl9L1Uvl5rq9xyR1wT6jl9Pwp2qTqWqBd6rXv1tFu69gj3dOqDeEapHc4/YDp+jhT/9Wl0RIipFP16acNlLwjgOnrSblBm9A4QAAQABJREFUvxIqHkPyj3y62ArN8fmjNbxwxVg0CAzatFIJFj9C4QDEiG08h9D/25X0epdKXmPwPy7cRe9MXKeK1+VFgIO7V1X7UH2AIsJaHoMF2anfuBUc0qeaR3k8txe+dn9HdBuC2YKoEc/zMJjDAKEIcyBF+NmYNnvFfvq/P5z9FBCUq8TnVGEvUP7lsSuYGFHDg4yMZz9wwiqrz4FoEqrdVDXWIk8gpEq5otm9QoQs4zAqH03ZaFXdnMtom8n3gHKw+kyWfvPeyl5ErW28AFGbDpcSbp/R9aTUbaohT5QuXZoweY2wD1jZ069fPxowYIAjsSHYhwUViKVLl1rZofJw6NAha/J86NChlDNnTnrttdesPNg5f/68mnQ3yyIdbdy40d1xMUC5adMmFbYic+bMVLt2bWRTZoYW0WkgS0yfPl0fEibz7eSJCxcuWHlQn1ZRsAol050jR9wTVrGx7i90UjU3W7ZsatUXBi7MZwJyg1YNMLHDwLKd4KBDjRw44HrxQd+D+sTYsWPpjjvucGw6VqxBMcRuwQya4Z+POXHcrlZBezV+j5+4xXtQyyww4Nu1apLQTMPKIFxXT15iIO35r1bSEA4VYpezj7T8/75ZrVaHm9c392fyaqhwDJP6A/5vrQeRwF7POf6n1mfManrm1tJUJc798mrP5+t4wYIF1qlwpXfn86Ckfr5YzaZj3yWyGgQmZ2GIa+yLPGE1gHde/W6t9czMdOxD4vfBT5aoeLb2c/p46LStVIhfjEx2LNo28Pt1HsQJTMjjpRl9RBv2+4xdTV884vkCo8+Hs/1+wW6LAKHLAyMMrmrMQOh4d9JGQj8HUcjJsJLMNAx+676NdLwwv/3DBnqpQ1kzW1D70egDIMtkYNYtVENAEjjIih12dQQ0xgzhAsKFfUI/qAZzpr78nDB4bRquD1w1Ljg/5OdN6rth5sM+VmFqZRT7ORxH8psAhREop5iG3yOoaAAfGFYvvjB6FcuKVfFY+YfVlCAP6XtAXgx+46OJPziHfoVVkJgAgfmSMFMngziv88lWEBAEkj8CqcFvwPtqq1atlD8AxTkQg3Pk8HyHga+gDUpreFeFv2SansRFWoMGwcWDNctfi/2r7TfgHhHaD5iD7A4cYfAFNOamGiCIE7Vq1bLyqcz8B3lM1RP4qlAmBBnfycRv8O13JJXfAEW1Z0aupOOs0ufL8A7xydQtiqh5px+VMF/lV61aZfUNkJrCsWj6DSNnbvfZBLw3PfHlcr9+A4gKGDS2ExjwjqgV1XABvIfh/d0ktuI9fsjPm+kNJl2XyJ/FZztCOREtvwF+wfs/bfJ5aWDzwter2OdhNdIQJy6i0QfgxyAGMxYawH5nInhrVo2z21ImyeiQHcDYSenDXsbpWPwG8Ruc+oWkCQKCgCCQGhC4t3Ec/crE0gPHz6lJ2fs+/EspL1fgyXYoN89fd5CWGIsZn2xbxmulvh2Hxz//h+rzAptqvNoeYQtQx0Jjsc7Ld5X3WJiIietnbitL7/24XlU1bNpmXmB3hOqWy0e5mei6iiecZ688YMnwQ3Xi3iYl7JcN6bgEq6rpCfw+X61QYRpKM+mjaaUCjoRMs/KkwMysP9L92qXz0EMt4+kLxhEGogBW31djskMMKzpvYeLpN79vs0gANcvkUhP7+rqfTd1oYdO9eUlL4QOT6Q+3LkWfT3W9I74xYTV91KO61+Szrgf4dnpnPiuEFeCJ/+w8IX+en+N+Sz0E+QZ2rayzh7SN5B5BJNFEAfT7Xl8uodbVClIFXowJX2c5E28/mbLBak+bK0oqUCloV6cIjZvr8h+e+XIpdW5cgqCenZ1VqbfuP8nYbLFwvZHHrE11iDd4or4bf79AfoA6RPchC3nxZD71TnuMx8HnrjlAIA9pu5fVG0zr36kidefyICfgO9n1A3xX86uFf1goN4sXneJ+wrV6TIrSyi49P1tMrarF8nc4l/INl245Sr8YiuFO13iuXQLd855rjggkj3veXaBCmmCOB6pl89a61JF12Xa1iujdoLd1yuSlhqw+odU1nhy6hK+R3yI//b3psKVig0rr8e9QPf4d0YbnrMkTf7L/8BKTTRqVz8+Erxg6xuFU5vDvzMQFrkWTKNOc+y4s3D6jCqfgP6mGPIHVV507dyYQGmCDBg2iGTNmUNeuXaldu3ZUsGBoE82oA+QHDDB+99131KhRI0qXLh1hsv2tt95SxAzkwT6IGunTp8ehsrffftuDdDFu3DhFpgDRAgObIEbcddddKi9WI2ElEwgYGTNmpLZt26rQHRgExYCZVqVAZqTpwTocz58/XylUQL5W27Jly/SuowKCdTKZ7QBjbeZqMp0W7S2kdZcvdzHRoCwChRHYzJkzqWRJ10SaviYGNRFqQ1uHDh2ob9++VL58eZWEsC5vvPGGpTLy8MMPK2UJpz6H54cPFCygbAGZZfQrJ/USfT293Wow/pBmxkPTecLdQjEAq6u1ta5WQK16x+AKBrUgWYtVN9jHP1Hsv8rqBdoiLY/VTJDV14bJ76aV+J8nS6Jisv9T/seLcALh2JApm60BIwzYPXNrKbWCHPcC+az3+F4wiIfj9ydvpJFP+H7p8XV9M/RLuNK7kKfVhglxbc1ZglWTJ6AYspdXGBW8wvjUeexbPKOYLOnUKrBEZmWCnQwCiZZhBVkEhpi29zcvQbn4RRzKIiN5RZmemEZ7nuDJfG1YhYUJfRgmmft2LGcNcoIwATnbL2dsU/0Dg4l4adEEELxE9enom5AwbPo2j+d7Sw03ger4mYv0w0K3akXJAlnphdvLWOFLoDCAiXJMpMOGspIC1CdMBQR1wvhTnAcOn2WiDJQTEFLknR83WIO7ICJg4DxTeu+VW0YVXrvR6AP/ch9EOBoMiMOm80tfl4ZFva6F75s29I+V213kGp0WzBbXMIkTjSvkpY51C/NLbQb1XYBiBdQvYFBEcSJyoJ/BMHiLFYMgf+ADi/Q3YQITG7RBFvlB7qd6NR2UN976Yb165mjDuD920sMt3b/bGKzXbUNffeUut6oMHF+sqtOYzeOX8pbsQEGKG+GNuvMHqyC1OglIandcmRjh2+RAQkTvMUlHr9a8t3Exlv/zHqjWbZetICAIJE8EUoPfAGShNqEJEgjt16JFCwvwc+fO0c8//2wdYweh/0yFNBCzdXlM4pp+h0fBZHZwtf0G3L5WmMC177nnHoUI/E29ryFCiEf4DdpnA1EH/inIFBkyZFDqFVCqg/8I+/zzz+mWW25xVA4Rv8HZ70hKvwEqfJo4gfebexoVU+EQMDmOwc8v+f0I77gwkDxrlc5tvQ+rxCD+mIRbKE+EY9H0G3B93F/XJsWoEQ+uwSf6jInUf1+ZJNB+A96bH2WVCLzrIeTHqNk7lPIBys/gVZQmeWI9y/TCt4ABx543xVmqcqgfoTzgT2oC9h9rDzGOxVT+dOx/+vMb/uR3NyjGaTOJ70nhN4C826ttaeXXQOIWfQRtgAEbKGhU51VmoVg0+gBWrrXggVJNnpjDA9BO5ImZxgpXhG/Eu3CoJn6Dy9cSvyHUniP5BQFBQBBIGQhg3Oid7lXoKZ5AxqQuPj/+tVt97HfQ4cai1JE/vuzmGgX5f+0FNQE8fdl+wsdudzUopiaq7entaxdRSqt6ZTsmh03Shs4P4sT7D1T1UDPQ50LZ4l60mgYmo8fP26mKQyHArtJgrzeamNnrjtbxfU3jWE3tHE1a6Bpf9PU8yvDcw2td3ASGhRsP0/fzXVhA6fbexiU8mnRX/WIczmK3WoC3jMdLv2c1MicFgUdvKU3fsGIJ+pPG1qMiPnjzvkoWMcN+LpjjcO8RdT93WzmeOF+h2ocQGzrMhv26nRsVpzuMPn9Xg+L8/sth0dkfQL/5cvpmexF1XJvHcl/q4Jo70xmgsPHxQ9XpoY8XqbIgKmiygs6jt/9jglFlDpdiGsgrAxmzp4ctVclQsBi1f6uZRYXhuZ/DTmgiksfJAAe3MzFk7uoDShkDz+3buTvUxyz2WJsyHsQS81wcz1kM4va9yGQkGPzHMUzSsRvCggzqVtmDWGLP4+/4pY7l6cTZZUrlAvmgaGOq2uiyCDfT5w7PZ4AQLc+1L0eDf1insoFAgY+T9euUaIVNwflw+4xT3SklLU1KaWgw7Xz33XcVUULnBdkAE9TFixensmXL0oMPPqiIEGfOuCdpdV5fW8jdNmvWTE1wIw8mujFxDjKFtnXrXJ0Nx6jbVKIYM2YMYbIdxAkYVichXAcIFdpAwEDcYljr1q11Mi1cuNDaxw7IIDBzxZgZKxPn5s2bh40ytDu5GwZ2EZ4EKh/aOnbsqHeTxRZxh/UAaMWKFWn48OGK9ICBd3xAokBa1aouGSHkHTVqlM+2I9zLiBEjVH6QboIhTqAyHVMK+1gdjhX/TgaiA8IU+PsgdIE2TAaOnLVNH6rwGBgo1KtSMJiGyWhMWGsDoUHLf0ZaHgM/X83erqtWcYShHgCJfFy7TKFs9G73iixhldHKE+wOVq9r0gVWO334QCVVL8qj7rL8gvTOfRVVSAOkYVWOXbYf6f7s8uXLihCFPJDNDmfiAQN9kFvVdjOTV7TVKJXTYzWTntTV5522uNf3urvuFb0Eg512OV1MFkNhoUCOjIpogJADd95Y2KpOy5bpBAxyaru7QVGPgWK8NDdm1mONUm4il0nGycasXjxPpw8mwvUzQv0NWTLKjNk7/AohA+dimTQy4O4EiziBtCIcX+2teytYzxDkj7E8+e3LGiTmoYEcmgOYwHD/rxtEIKSZzwLHgSwafUBfo2WV/HpXSSRbB1d2oKSiB5rxnbArwNjzOx3jOzfK+M5h1VqPFnGKOIH8+G48zKFb8Fy1/b3ZTdjQadjid+KtrhXoCZZrbsUkAvSrSH8TEF5FE3VwjR7N3cQJHGPVHIgO2vB7pA3feU0SwvcA32/0EW0IV/TC7WUproB7deMnU90v+vi+8O1bhp9ZHOokta8PrqSb562CsiMICALJHoHU4DeYocJMHwDgm5Nz2nfQvoR+OCbp2insh86XXLYpwW+A//bnn39akEFpEOH6QJyAQeUOyoGPPvqolee9996z9u074je4VNO035GUfgPeR+cYA0d4T8a7Dd6LYBg87ceETBB5tSHcXahmqr2AVBOqRdtvwPVxr815Ih7vdSCbP9Um3rpvnIfvObhbRUVsBx4IEfii4RueYF/GtNVX1BCQVoXDP5jh+FAePgEIqNq2GO9yQNvJZ0AaiLSa3Iuy+fk9HsqB2qLtN6D+Tx+qahHC4dM8wopl5go600fS7Qi0jbQP6Prhe+n+Cd9Nxy/W5/F90YRhvNOaBH2dJ9BW/AbxGwL1ETkvCAgCgkC0ETDHyTNlcL2HhXMNMzIeyJn+DMq7o5+uQ5goxsSm3TAJ+cY9FemZdmWt/732PDjGWP0b91Smx3mC1V4Pjh9h1YLHbna/u5h1IATHk1wOk6+4nt1QvlPDYjSKw4ogLIjdQrlflIVyweD7qyjpfrMuPd9gTjs4LVCLBLO0RuUZQ1y8ZrY10P6zTBDAs9ChB8z8SMMk8ueP1rSIKCD5vvrtaivb8x3KUUZ+DzYNWJgT0h/85Bn+TufNmz296lO31XGPtetzJdifQH9qmOgeA9bnNP44zpDOuy/qfHob6j3qcpW4j33z7I1KcQSEHLtVZmXut7tXVv0V46vaQIAYypj1bFXKMYwyFC2A+eBuVR0VWkAw+OSRGkotQddpbqGi8BV/F1uxQoKTIbwM2gXSi91AXsL3w18oFXsZ8xjqz0Mfq0UtWXHC/v3F9T5+uDo1YaULf9aAn+nXz9RRddjzAWfc3+hedZl8ndvjdCjPPYbDdyNkyVNtyzg+A/TtJ9qUpiE9qnmFY8FF2zNJZHSvOgSCi/0+cYxwHuOeu5EXCxbyaGO4fcajkhR2kGqUJ4A7BqUQMuHNN9+kYcOGkQ6ngHOQSMUHE+EwECl69+5NJUqUUMdOf7BSyJcEP0IvaOLCihUrCJPqMHP1MVYRIdatk4FQAUWMSZMmqdNQPLj11lvJHASdz8oS5gqyqVOnqrwPPPCAGpQDOQSDoAgVoU23CYOkkJdNLvbcc89ZBBS0CauyduzYodQ0zOf08ssvh6USkpT3+e2331rVo1/psB5WIu8g7ArOYfIchjI6xrRKMP5gsNR8ETRO+d3dwQMi2vAj6csQj/YAr6b3Z4inpWPLYuJRr9rHuwsmxp0MA1aYrNUT3Vihj4GzSMtDcULHVsU/46fblvK6PAaFHmhenAZNdEtGeWVySJhshGm4g4kBGPCyG7CE0sXvq1wsu2msuFCPY2oFa2vXrrXINeFK7/66xM1ERmzZAixdqw3/PCsWj1GrmpA2f/0RxqKEPu24vZn/yetV+jpDHE84m9bVGLDU6SXyuweD7YNvN5bNoybq0R5fA288PmeZloe1Ehx2MBCOVf7aoAjxEK9MMw2rubRBhcF8mdDpMSxvV7dMHprNE+cwrHZzMvQvc9Jd58EgMZQ69Pcg1BVZ0egDui1wPtAerGTDyke70sj0ZQd0Vh6IDr6fWoV4Z4vxnUP6U228v3NIb8MvnTruM0hZrblf2Q3PBJMJpkX6m2DWhX2sZkRbTMNgMUhW6HOmEgvUOrTVYwUXkCXshlf+DqyyMfjHjepUoN9Le3k5FgQEgdSBQGrwG8qVK6dCR+BdGr5E//79rYeDYxh8FKhNgKwNJQpzot4kXDRv3twqe613UrLfAOK9tsGDB5MvRT0oFUKBAqRr+I9QuitQwE2e1XWI3+DyabTfkZR+w88s16zfZUEshe9jN7xDtK9TSIWKwzlf5FJ7OX0MH1iH4QTxXod90eeD2UbbbyiWL7NFDtDXx/t2NvaRtAoHVLrsg+bwC+E7AjN88O6vB1bLFs7GqhwuUnXbmp7vcPoaGmscY6A6kIE08tp4d1g2EDoGdErwmMCIpt+A9oAooe/JbB/UN7QSHNoVikWjD+jrwUdOZAloTZCAP9vGUPCDUprGFqSfUJX1cB3xG8Rv0P1NtoKAICAIXC0EsvFCnnlvRe6bPN8+gfAJ1rDICsSGni1LqbHvk2cvqjHIAryQK7vDeLKvevHOdDerS9xVvygrH5ynQyfO8QKujGqsV5MefZVFOiZf8TnJilcHWDkB71gY98S7l9N7ia4r1PtFubpl86rPeV6IduHyvwRSg15IhXsO9BzCxSx/zowB60b74mOzBZUPeZ0MeOtnceTkRVYFgW9xA/l6psj/8/8aOlXlkYZJ5EDYoADwwXN5+taySlXkzPlLTOTIrNLxHu1kzavEEj7BWqj3aNabg8fC+3RMVEknWJV739GzlDVjOiqYO5Pj+Lsui2t2bVJCfdB3dh85w6jeQIV58ZrdZ9BlzC3IP693qUTn7vxX9fGzFy5RTOYMhH6BugMZwlDgA6VthJRGGfPa+WLyBvV8nK6D359+d1Wg/3hKdw8rR6BteZmMgNA62gI9+5IFsqk6Xrg9kQ7yd/g0j/GrBZDcH3xZqM89fdo0dGf9YtSxXlG1APHwSZffnDsbL7Rk4o7T/Il5bXy33ru/mvLjoDZ9lBVz8vJvjF5sauY198PtM2YdKWk/XUpqbDBtxUDoK6+8otQhMGgIadVp06Z5EClQz5dffkkY3EIeqFI4GVYJ+bIiRYpYpw4fdsk2IgEhHLQFWkmC85o8sXr1akWeQMiIuDhXPFwMpOFeYBgUBVkChpVhULLA8Y8//kgfffSRmoxHSJFffvlF5QFxAyoZycV0WAx/7cEg4hNPPOEvy1U/hxXlCK2iDWE2fFliouufDc5jMhXPw/4MQGrBQHc4ZjLBzvE/pmjZzoNnrKpK8Q+nfdLdOsk7WK2tyRNamSDi8ofc18egjq9/siBq4J+hHgAy2+VrH/9AteEfs31VlD6H0BaaPIHJ6lDMXNnpi2wVqL7fV7sm/ZGvGTMQ7Ya4bHowEJPqCOPhNKCry5VmtQ67aSURnQ4ZNruZLyj/mSOanBGhCczwBFiFhEnnPUfOqZeJv1mqbOMVGWN7vU7HrnAZrslrnMcAbb87yvGrlttA4NDPG+2HAoovwyC3Jk8cPOF+7mZ+kFJ89S+cO3HGJcMc6vcrGn3AbCcGm7Uc8W9MBjCJLouNOItOfcWsx9f+LuM7B1x9kbEQsgIff9aI2ah2i/Q3Ac8oB5Me9ID9uD92ESY0QGqCPDb6N/oJSE92O2SE9wGJyJchJJA2dHUQZpyIFjqPbAUBQSB1IpDS/QaQcUGixns2FA9OnTpF2bK53gG0qpsmZ4M8ASL55s2bKT4+Xj1QTbrOnz+/UlVLLk85pfoNwM/0G/wR2dH36tata02kb9y40Ys8IX6Dg99hvMNE22/Qvg2eYylW0vLlN5iEZAxmIx8GtIMxKFZqRcNwCUvR9htMJQ3zHjLwgJy2Yky8D2SXmBiSLq1rdRz8FLuvcpT9st3sN0C+FqET569zKyEGqhv+QL9xa6zwghhsfuXOBA/co+034BpQQHQyEL41eQIDxqFYNPqAeT3E0NbkiTnsU5rkiRkGqbgJqwSGY+I3kFJc0diJ36CRkK0gIAgIAqkXARAUsEjHXKgTzt1i8jKSekBeyM7j9FfDoK5gV1gI5brRwiyUa4aSF88CixXxuRaGiW5zwWJStCHSe8TYcExm91hpsG1EvwFZIBzLxGWd5ieCrQshKPBJCoMvAEJGJAZsijjMv0RSp70snjsID4FID/Zy+hj3CdIKPqFauH0m1Otcy/zJZ3Y9yihg0hokAy1Bu2fPHqXSADKFXu0BQgLijG7ZssVx1UfRos4r8NHUTJncK8PNppsqCgjn4M/MyXasNtKGQc4PP/yQoDyBcB5Zs2a1VC6QB23GKpX+/fsrUgUm6lEXFDC0tWrVSu+miO327duTneIEgDtyxD2ok5CQYEnuOoGKPofVfXrQ9ODBg173hJAO4ahO4HqQqtd29vxlveu1xcp9pxUws1ceJKzastvOw25Fi0J5nPu1LoMwF3qgSJMMIi2/y7g+FDH8GWLOanUAf/lwDtL/COGgbcD/rdW7frcoF4rpiQeUqVOnTihFVV4MHpr3NGnRHjVR7K8irDizD0ia+QsxQ9Sf4R+jLxKBv3LABhPZ89cfplPMSA3Xzl28rAZANTECpI1XeeUYFBdM224Qe8Bs9GcJTJ7QBoIJyB14gTDNXx3+2NtmHU77kfYBe51Y3afJEwsYa02eQF/BvcEK8EtNuJP95ncWcmvhGjBz6kdm/eH8pqA9T7Maxuu8ulD3EXxHpnK/xwf9BQSK+kymgAy0+ex0SBPU4e97AJJYpgxpGE/X9x3hY8yY2SgvJggIAtcPAinZb7jpppsUeQJPa9GiRUrFDn4P/AMYJmhr1qyp9vFn1qxZijwBki+UKGAgXacxdV5VavL9k1z9BiC2c6dbUcsXQV8jC7/B9Et1ut6K3+DtdySV3wDMERNZ2xRWr8MnGDsWAnkC/r02+PShWlL4Db4mBszXaKxCCsegHvbTor1qRRgmncO1d37cwKs23eRoKEKYvjHqjbbfYCeem23HAHi4FmkfsF+3askc6l0YRB6Q2rFqEAOZeIdecyV8Cp4lFNnCMfO9XvwG8RvC6UNSRhAQBAQBQUAQEAQEAUFAEEiJCITv9aWwuy1UqBB17dqVpkyZQhMnTrRaj5UfGGiMloHsoA3qEP4sVy6XlCXynDnjXn3frFkzq5huG9QzYBjcRIgIyHzq+MValteU3g03fACugXjCwdiFC+4BjED5T5w4QcivPyCL6Paj7OLFiwNVcU3Om1hgVV4gM+V2zbKBygVzHjGhtGEwxJwk1OnYYhIZK7LtHzM2q5nfHCjM7RDjysxrTtbqAbBIyx9iiSVtWQPIoOmJVJ3f3xbSaOGYvq9gykKdQYfTwQB47tzeK+ED1WOGFkFeTOaCmGD/mPUghII/LGIyB7f6zawz0D6UL3p8uoSmL9vvSJzARLSWdgtUFybFTfLF87eV9ghVosvvO+p+hoHuKUcQK/7s5Ax9nUi20egD9utjMBhEIRhIA3qiwAxJ0ZBJA+Ga+d0oltdNygq1Pl9EsEh/E9AOrPQbeE95RRIyB+9xDn1/3a6T9OWMbdTjsyUqtAnSsfJTf39BsLCTZ5DHNFNl5z+KYETfrFT2BQFBIFUgkJL8hgYNGliYa18ABAkY3rWhdAeVg44dO6q0X3/9VW012RcHIGCEa6H4A8G+G6dUvwEYou3aAvmC5vmzZ91kZl0+kq34DcGFgjAxPhkmMfjCpeDfIebOnWtdMhzSdVL4DU5hDa1GhrkDlYlHhi6lkTO302H29fT7ma4O72m+fFOdR28RQk4rKyCtdbUCjiEWo+03pGeScFJYpH3A3ia871ZihUZts1YeULt/s1qd9hehLulEeNZl/G3Fb3ChI36Dv14i5wQBQUAQEAQEAUFAEBAEBIHUh8B1Q54wH12bNm3oxRdftJL++usvaz/SHXPyHPKr/sw8b07Mm+FCMAiKuJg//PCDqgoxi2FpWRKzffv2al8TK7QjjkncggX9S62rgsYfM97q0qVLjTO+d5cvX26dNIkgVqKfHeTv16+fleP5559XxAorIZns5MnjXqGxZMmSgK0y1T/MsgELBpHBvooak9ihmJ6AtZcxCRGQrvdnpiR+vhyuFeuRljcJGyd5otiXQUnAF2HEqYxdrggrlB5tHfjzGOcJ1vAd1tK7TZs2DbaYlQ8DWks5Fq02EBAwae7ro/Oh3IL1blUUnZ5UW8jgvj95o4qzh2tgMjue5Yw71S/CsdHK0tBHqtLwx6o7hlGwt+mL37YS4lVru7tBUUJIFiczB1XRBn926EpsL+RBDGSnifOkGAKNtA/4uiczJIX+rv+z+aiVvWnF8KR3UYE5SH6RYxpG2yL9TdDtKcLyaOhfIx+vTk+xEsWNrDRh9gnkg7oMZJxhJvkK35FAUxmnDQWfIrn9q96oC8gfQUAQuC4RSO5+A96p9Qp2hPyDaTUDKPClT+8iVGpVOoTzOH/+PJkhpxo1ahTSs9WhQVBIE70DVYBrIrSINrMOneZrm1L8BrTfDO2IECn+DPL92sRv0Ei4t05+R1L5DbiqSQJuUSV/UH4DfItCLOscjIFwq4lNUDQM9ZmnFL8BWLzx/XoPZb1Yxujm6rH0bLvS9MEDlWj0UzWoR4u4gLAt3HCEJrFyhTaE6bunUTF96LE13xGj4jfY2bseVwvvINI+4OuqzSu7F3lo9bpZrDqprWkl8RuAhfgNukfIVhAQBAQBQSCaCDiNP0azfqkr5SAgfSHlPCtpqSAQDAL+ddCDqSGZ5Pnss89IT/q/+uqrFBsb67dlGLDQZoba0Gnhbk3SwurVq/1WY54vXLiwlReDiZDYnTFjhhpgwaCtnqA1Y6O2bt2aRo8erQZIscpJD8ZAnSJUMwf6/vjjD3rmmWcCVmEOusbFBR78sFf40EMP0QcffEC7d+9WMZiHDx9OjzzyiD3bNT3OkiWLWrUH/PGBYoZJkDEbd/jwYRVGRadBajeahn/AMRy6QId4wMqjdrULUTATwgdPnCfI0jtZUWPlOaQ+/dm63aes04WuTDZGWr6wMWm5/7jv6+84eNZr1ZLVGIcdDIBCzh8SpjDE87UTUHQx5Dh9ZXI+Y7rgOWXmd8Bc+anrDbT9c+1ha0UQxueGPlzNIwSBvfzTw1cQniVs2tL9VD9M+VV7vYGOEapF44iVYm/eW57M56bLHzjuVorQaeYW0r1zVh2ykkAQMOPyWieu7BQ34oIdDUDs0bK0KJora/SVN+xt08eR9gFdj317E4fumLnCNej5Fw8c12PigA4xUZDDsgQbW9teL46L58tMf1w5Ya4ms+dFmJ9xf7jkxyH1e3M1//9XdflIfxPQ1xDaBYZVXpBNrlU6l/ogDQoT4+fvJj0oDFIV1C4K5MzkEYpj39FzPmNUgihmhvXJmyM8OWq0R0wQEARSHgKpyW8A+iBXQwr+zz//VMoHZjgO/XRatGihdwnEcU20qFGjBuXNG5qakek3QMkCIUAQ+sSfmaRrkMZ9hUD0VUdK8BvQdoR91CQRkCPKlSvn65Y8Qi5C7SSaJn5DaH4DsM/HoSm0nwWSBt69fBnePUDsTsfvxcEqm4FMo8cdwlF7SSl+A8JH7jV8ShDYnXyWPfye5s92HjpLH/3iJiCBHPFi+zI+i6QEvyHSPuDr5iuVyKHely9yiEW82yPEyVpWaYPBx7yxrO++7KtOnS5+A5H4Dbo3yFYQEAQEAUHACQGE1Z35elMes+bwwfxuKHb9ItCscizVS3SRViMJ83b9Iih3LggkLwSCnyVMXu32ag2kZ0eNGqU+I0aM8DpvT9BqDUgvXry4/XTYx+bq8++++44OHXJPFJqVYqJ9/PjxVpI9zIZeHYZBUKwQg5UuXZpMkkLjxo1VOv58+umnFsHCDPthZQiwU7t2bSsHBlxNBQXrhLFz9OhR+uqrr6wUveLNSghiB+FH3njjDSvnyy+/TKg3udmtt95qNenrr7+29u075rlOnTrZT0fl+F5jpc25C5dp4oLdQdU7+MeNPokHRfO6V1xv2HPSp7oDBghXcLgIbaULZlO7kZYvkse9Wms9kzNwX0722/L9Tsl+08wV8LNXuVff2At9zzj2/Gyp+gye5F8xxiyr1V6QZn6HzDz+9n9dus86XaFYjF/iBDLWT3QPfG3Zf9rns7IqjdLOhj1u0kwpfu5OxAlcasNedz77pdfvPqmke3U6iCyP3VxSHzpuoR6iF31hMPCfzW6VDnuBmUzM0GYOnuq0pNpG2gd8tQuqCyBLwU6fu0yjZm+3sjaKIGQHKimRP6tVFxRpQEZwshEztynSFYhXoai+RPqb8P1f7u/jmDk7vJoG4sgDzUtQYcZImyaHmStSf1rsXqmo8+mtVvPAMXAW91YjI1tB4PpAILX5DSa5+pNPPrF8AtMvAcEb6nQwKFNo0rVWtQvlycfHx3uE3zPfgZ3quXz5MoGwoq1hw4Z6N+htSvEboPahDb4pFASdDAQLHToFZJLy5cs7ZYsoTfyG0OAz3yvmMcHZl23ad1qFsoPv8NiwZb6yeaWD4KStXr16ejfobUrxGzYa/gAIsE7ECdy0qahmBwHKEf3/b63lv6Ke1+5OVAQBe159nBL8hkj7gL5X+xbvsVXj3Ep+7/60wSLolymUPaCPaa/PPBa/gf9nGoqf4jeYvUP2BQFBQBAQBDQCmVgBF4t/QlmQp8vKNvUggDFs9AN8sKBTTBAQBFI2AqmGPAEVBm3vvvuuRTjQaeYWA1nffPONlWQnLlgnwtgpVaoUYQUXDCtLunbtqlZjmVVhALF79+5KcQHpVatW9VqVZBIgXnvtNVW8Xbt2ZjVK6lOTFswQGOHET8Vgqjn5C0yWLXMeDDpy5AiB3LF27VqrPXfccYe1H8rOXXfdRVoFBMoO77zzTijFr0pekwjRp08f+v33372uC7WO3r17W+lmGSsxCjuQrS+eP4tV08S/9tDHvCIHxAYnwyqJ1yesI18hO1CmXOHs1oopVIOwCk42YsZ2axAGqg5YiQ6LtDwUIRBmAQY52qHTva+PlVa/G4oFKnMQfxqVd0uUYtDDKSwJYvL+ZMjBNghhYlqTsEBs8qVI4quZaAvUNLS1DmJVf/NKbklWlPttuZswoOtJim2OK5P4qPvsBe/wGeh9WBlmruQ323GEMX5z4gYrCf1nQKdEx9AaVqYrO+WLuhVcRs7a5kiugaSvnjxHMYQTuVoWSR8I1Ma6xioxs680iSBkB64JyWNNzMCx03du9c4TauUazsNCWbEW6W+CJmbhulDdcDL0Oaxs1KZ/F5sZ3xFMfDj99u1nhZRflrjJWLexgk+4djJAOJlw65VygoAgkLQIpDa/oXLlyhaZ4ZVXXlHgwb8wFfGQeNttt6lzeN/WqnamIoU6GcSfDBky0BNPPGHl7Nmzp1LDsxKMHfg9jz76KI0dO9ZKffDBB639UHZSgt9gKgD+8ssv9Oabb3rdIpTsOnToYKXDX0RIxmib+A2hIdrCCH2A94dlW92kcV0TfJVPp7rVECr5CD2n85tbk3Abqr+ekvyGmMzprdv+l/ECAdpuUFdbu/OkPVkdw6995du11js/BqH7dCjLodsyOOY3E5O73xBJHzDv02nfDN1h+g3NIgjZgeuI3yB+g1N/kzRBQBAQBAQBQUAQEAQEAUEgtSPgX181Bd09QlvUr19fydViMBADUpjgx4AgJjYR7xfSqZjogrysNhASqlevrg+jssWKL01EQOgN1A/1ggoVKijCwQ8//OBBPEB+uyUmJhJWIWlpT5x3GtzEAJ25gqFt27aUMWN48uNQr9BYAMNatWoR8MHKGKwwg4oGJOoxEGi264svvqCcOXPabyGoYwwUvvXWWwofFBg8eDD16NHDQ2HDrGjIkCE0adIkM8lxf+DAgYSQG9EwrCADDvq6kFlF/9IEF6zcmzBhgnUpPJNwVvFZFQTY6dWmFPUaucJaibNg/RFayfL6pWKzUnxsNhWaAuE3trIywdKtx6x8GHhy4lggDEP3psXps1+3qCsv5hANr363jtrXLkhxTGzApDRUG/7i62jrULewtVI70vJYSXQ/X//zaS7SBEJE9B69ihowOeMiy/cv2XKU78U55Ihuj69t+zqFmGCwX0nwIhTA0yNWEFbhVSiWnS7xYN7SLcfpu3m7LFJIDg73ULdsbl/VeaRv3brV+h44fTc9MjscTF3iVp0AeaQyy60GMihpQA5Oh1qYtfIAtatVMFCxiM8nFImhKRwmBobBOKhztK5WgLJnTsfP5xghtq5uk74YVEwwSZ0vJgP15wFQc+A0W6Z09MHkTTqr1xZ99SUeJIX1bBlHT365XPXdo6cuqr5/X5PilMAEABxj1doPC/dYdUDBA+EbroZF2gcCtfEmjreN8CymYVUk8IvEwH2+v1kJ6xlgcmAAr+5rVbWAwm7F9uM0gcNiaEOYEF8hb3Qecxvpb0Ji0eyEOjBBAfns575aSQ+3LEklOIwLwnks5T73C39/Tp11EXkyZUhDsVeeeUu+h0mL9qhyKN9nzGrq3LCo+n6B9b2c1XPG/bHL6o+Q2kaIlFAMz0CroOB7nJXJQOhz1UqG938wlGtLXkFAEIgOAqnNb8D7NHwNk6CAe7QbFCo0KRvnsmfPbr372/MGOkaIP6jobdzoUuwCIQLXhz8GFQWE8li8eLFSuTAJ1126dCFTESPQdczzKcFvQAiUDz/8kJ566inV9AEDBhAmTOFPgGiLkCnwBbUvBX/PJGCb9xuNffEbgkcRhG6ECYMvAnvnxw3UtmZBQpg5vPNCiW3079vVOwbO4301FMKuHoPA2ESgEKOo37SU5DfEs0+qDe9iL/K7WHsmqpYtlI1WbD/B+B4hhIYzDWEJ93IYD4Teg9oaQq9pg69ovpfqdHOLd70SvMAgOfsNaG8kfcC8X6d9EEfgU5pkdvRR9N9ITPwG8Rsi6T9SVhAQBAQBQUAQEAQEAUFAEEipCEQ2A5OM7voG9gynTJlCvXr1opEjR6qWwTnVDqpTU5988kkaNGiQ06mI0rDSa8yYMXTPPfeoejBgaA4ampVDBUMrVZjpuB8Mgn755ZdWct26da19vYNJ2759++pDRRixDkLcgfrEjz/+SPfee6+1Gg2EAU0acKoOihfdunVzOhV0GkgujRo1ojlz5qgyuB9TGcSsSMdwNtOc9vv37x818gTqHzp0KB07dsxq4/fff0/42A1KIMOGDbMnR/U4X46M9HTbUorscO6CayUPJhExAeq0QgoXx6DTq3cn8ATpOmsVj9koyKn+vtq9AgghFgZNdF4NVIUlQTGpa1qk5aH2sHjTUWtCcjev9vr2z13mJQhqBecv/msRHTxO+jjAYE+vtqXp9fHrVDlM4CMUgZNhsrbfneXUpK3TeXsaiETaGjRooHeD3v7OhANttUsHP6jVkLEaf2ViG/Fs9x87l+RkATxzTBjjucAweY2P3UAAweQ0bCUPjj7DZJXPHq5KUJ4w7QCTKvAJxhCG4Y4biyiSC/JjMv2jn90r/sw6INeLuMpXyyLtA4HaCUIA4juDJKKtcYXQ4tLrcvZtzVK5FFEI5CsYJgTM8Cw6P347Xu5YTh8GvY3kNyFT+rTUhQfBR/++Q10PcbNfGbfG57WfZkKZNnznn7ylFL35/Xr1nceg/ddcj1PAJZApnmtX2iKC6ToCbTEIrdVq8Bs8Zs5OysskISFPBEJOzgsCyQeB1OY3AFm8T5vkCZB97VazZk1FmNCqE5jQT5cuPHcwJiZG+QggGGsCxezZswkfXwaCsRNp3Fd+p/SU4Dc89NBDtGXLFkWiwD34wgXECfiv4ZLQnfCxp4nf8J8dEr/HPVrE0Tr2g/C+CZvMIcDwcbKHbooL+h18+/btFmFGE/Cd6vSVlpL8BvhUIOT+eoUADCKEJumb9wey7NpdJxVBWpFlR61UYdnspHmQAaCI5s8OnTyvyBPJ2W+ItA/4u399rkZ8Tpq/zr3gAWRzPI9ITfwGUtLb4jdE2pOkvCAgCAgCgoAgIAgIAoKAIJByEHBp5aec9vptKZQGMMkNwgFWdPgyhIkYMWKEUjmwDximSeOGBJK04dqdd95JixYtIl/hGzp27EiIddu5c2eflzAHPTEwmSmT92rqSpUqKYUKXUm4K7l0eSgmIFwHCBT+DCvXoLjw8ssv+8xmKmAEkqI1JW2h4rBmjXuiLFBZpwZAaSRYs/cBp3K5c+cmEDcQEiYuLs4rS+HChentt99WyiZYcWY33ZeipYZRIz4Xfd6zKjUKMJGK1SaY0Pu4R2UqljeLWvGDtjnF3cIEKVZPoYwvu7tBUXr+tjKO4RYiLf/MraUVKQTqD6ZhBQ1k/N/tVpEljV2Nsw8CpfHT6DK8ymnIg5XV5L9Zr7mPFVID7ylvrV43z/naR6gWbaFK70IKWK+aRx03Vw9+5XtTW8gGPZiKiaBAFihLBp4o92V9O5ZVg5JO57NmSquUInq3L8NKE97KN/6ej1N99jSoa0CJQod3sZ/HMfr5+/dXIqhzmJYmyAHDDGnd9+4PB7PuSPqAWY/ed7puPQ7VY1pjIxSNTje/z2YdJu7mvi73+M3x1I1VX3z1iwQe1H6nawUvTHX5QNtIfhOgIKEUbvx0a/Q7EMkq2iSzMVCMvpCfiWa+DP30A86DvHYDYUSbua/TirMCRqSr+HRdshUEBIFrh0Bq8xtARNbmS1EC77xQqdMGIkIkhnCFUJcA8RlEAF8G3wvk4okTJ/okN6cmvwG+C0KjgGitQyya2OD5PP300wq7KlWqmKfUvvgNLkj8+R1J5TeArP1xjyqEkCe+7P/buw74KortfaQHCJ0ASeglofcmgqKAgL2joIK994LlWZ797/M9e+9dHlhQUCmioiBIbyGBAAFCDyWEAKG8//nmZvbO3ey92VuS3CTn8Lvs7O7M7Mw3k905M9+cA7Iuxh8gNLsV01IkrLMEI0WhN7gZH5vjS3/ldRpfIu6YU5oRiLROgrHVxQMS6SHWPZ3GtcZ0jFPyQq+FpTf4GxTbnmqOtyvn66e2KAVOw+kDOrOKRvkqG7qLvj+0q69Oabqz03F8ym6MeXHf1CcrV/IdhIveIHqD7kNyFAQEAUFAEBAEBAFBQBAQBMoDAifk5eUFtx2jFKFy4MABZfEBptWPHDlCmLhLTk6mmJiYYq1Fbm4ubdnCZsSzs6lmzZqUmJjod+KwWAtWyMNycnJo4cKFBL+8KDsm8uA7Ge5H7D6UC8mqTN0+fvy42jm0bds2VS+Y4MXPJN4UZ4XhjmLDzlxaszVHuerAJBZ2QcfXrUbYJeK0+BeofLmHj1Equ1xIy8yh3Lxjyu0CyAtwCeJmEi3c9Cgbdotv2nWQ6vHkZC02k6uvXfnyArU7Cab237u5h7oezH+Zuw+qHU5rGStMHMXVrkZ929V1XPAvLN+kpCTCuwVkmtTU1MKil5n72I2HH6xewPxu15Z1rDZCJdEfsTts9/48imMXIx3YhKzv1FvoUCDv9G053D9z+PmHlfuKdvGxBIIMJruLW8pKH8AgIIPd86DdYN2laYMY/nuvQdi9FwkJ552AtHANg7KBcFSVyVTx9WKoWcMYRZjxN2mPcqNem/k9gv6KXY/woY13WVJCLGHhI1yB//H1Ow6odwkIFeG6Uwm3PJJeEBAEwkNA9Ibw8IObjsWLF9PmzZuVtTaMl+GaAK7/oH+VZ9mzZw9lZmYqfbR+/fpKjwqG6B1J7ERvcI8mvvOrePyBcWceW68D8RLu4TDuDFZuueUWgqtLCKySYD6gPAhcccAqHcZjCfWrUXcmO2tXa7r+6dsOUAbrsrWrV2ZCLLuesC3o63jBHqNNbygrfUD0hmB7oie+6A2h4SapBIFgEMC8HOZowpXR//nbVRaf3dnbVTyJJAiUBgRmLNnGVsO2Uu+29Znk2szvJqvSUBc3Zfx91Q7awC7CsXYypFtjN0lKfZxDPN874Y+Nqh79kuqzTlNwM1mpr6RUoMwiUFLf5jJNniizvUUqJgiUIQRAlICLjiPHjlNVnizDLjMngVlXuN+ANKlXjf51ZWenaMVyDRPg2gLJ1VdfTW+88UaxPFceEj0ISB+InraQkggCgoAgIAgIAoJA+UCgNOoNaBlNuIW1QpCvRcofAtIHyl+bS40FAUGgeBEQ8kTx4i1PKzsIbN97mM5/xmtd+fUbe1HXFnXKTgVtNYFr4Auf+0Ndve2sdnTJSc1sMcru6X0fLaE/V+2iFo1q0Md39IuIe7eyi5bULJoQKCnyRGhObqMJOSmLICAIlGoEYDb2Z/aJi8lQSCv+gPdtV8+nTth9/vKUtda1/rb71o1iCvz111/WkwYOHGiFJVB+EJA+UH7aWmoqCAgCgoAgIAgIAtGBQGnUG2CBUhMmTLec0YGolKI4EJA+UBwoyzMEAUFAEBAEyhICG9jK58qN+1SVOjarzW6Ea5Sl6kVVXY6whTVTDh05Zp5GJBxN7fnaj2mqTgls1fb8/mXHGpwbjG8b2U6RJzZsP0CT52fSef3KTv0j0lElE0HAhoCQJ2yAyKkgIAgULwJw6QDCBNyOQF7/aR1t3XuIujSvrUzkrtyYTTOX76Ts3KPqfrUqFWhoN19/rupGMf43e7aXkdu/f/9ifLI8KloQkD4QLS0h5RAEBAFBQBAQBASB8oJAadQb5s6dazXPoEGDrLAEyg8C0gfKT1tLTQUBQUAQEAQig8CyDXvpuUkpKrP7L2gv5InIwOqYSyK77r3pjLb086Kt1KtNPerd2ndDo2OiIC9GS3suTN9Ns5btUKW/7vTWVLlihSBrEr3R3WCcyC6Hz+mbQN/Ny6TXp6yhwV0aUR12nSciCAgCzggIecIZF7kqCAgCxYjALSNb070fL6c89r8F/7T//TNT/exFqFK5Aj17eSeqFVOyr6758+erosXFxVnuO+xllfOyjYD0gbLdvlI7QUAQEAQEAUFAEIhOBEqb3rB48WILSCFdW1CUq4D0gXLV3FJZQUAQEAQEAUGg1CEwelBzwq+syxs/eq1aD+gQV9ar61i/Id0aK/JEbt4x+mp2Bl1/ehvHeHJREBAEiMoOvUpaUxAQBEotAg1qVaFnxnSk9k1jHetQqeIJ1KxhjCJONKxV1TFOcV785ZdfKCsri9LSPKa+ivPZ8qzoQED6QHS0g5RCEBAEBAFBQBAQBMoXAqVNb3jssceU3gDdoVWrVuWrsaS2CgHpA9IRBAFBQBAQBAQBQUAQKFkEtu89TCmbslUhhrFF6xi2bF0epWuLOlSnZhVV9ZlLtpdHCKTOgoBrBEp2+7brYkpEQUAQKOsINK5TjR6+MJlyDh2ljJ25tGX3ITafdQJ1Yt92mCSNJqlWrRrhJ1J+EZA+UH7bXmouCAgCgoAgIAgIAiWLQGnSGypVqkSxsc4E8ZJFUZ5eXAhIHygupOU5goAgIAgIAqUdgakLt9CeA0doRcZeqypzU3fRfp4rhmAMeBq7GoBs5rnj31J2qnD/pPqUWL86LeN0S9ftpZTN+yiudjW67/z26r7+L/vgUVq4NovWbT9Aa7fup2qVKlDbxNrUtkkNnn+u67igDlcPqzP3qyzO7pNAVdjVw4qNe2nZhn20atNeqlezKrVoVJNO6RRHTer6nys+dvx/tJTdkaRlZlPq5mw6dPQ4tWkSS63ialDfpAZUvWpFXUzH40au7y/Lt9PmXbm090AeuzKpSckJsfyrRXDHYJdg8Jm+ZCvtyM5TdbtoQFMrK3serbieW3m+fsaybbSO8cs5fJQS6lWnHm3q0knJDalCBTjZ80ow7alT5Rw+RkvX72acchj3fVSjSiVqHR9LrRvXoD5t6hd4hk5X2HFe2i4ryuCuBd2Bh1tXK/P8wP/+R7QgPYvmp+2mzVm5hPaPrxtDXVvWoYFs9QIbRbUcOXacJs3ZRGyMW8nw7k2ofmzBtZA87jNfz/XGO6t3Av2xaofrvxlkXpHbaFj3xjRh9kbK3H2Q12AOUPOGNTwPlv8FAUHABwEhT/jAISeCgCBQ0gjUrFaJOjatpX4lXRZ5viAgCAgCgoAgIAgIAoKAICAIRCcCojdEZ7tIqQQBQUAQEAQEAUFAEAgFgf/+uYkXzT1EBZ3+9xU7CT9I36R6FnliFRMkXp+yRl2vzzvp35mWbsXDRZAnTPlz9U56+r8ptDcnz7xM0/J337doVIP+fVUPalTH1+LxDL4/eX6mSjMguQE9OymFljMJwi6v/pBGD13cgUb2jLffor25R+ixL5bR32l7fO7peqGsT47pTB15A6FdsAj/7+9W86L5Zp9bc1dnWedjT2tJVw9p5UMsCAafT37NoPStOVS9SkUyyRNmHg1iKzMRIIte+cGDufVwymLX25uoHRM5Xrm+F9U0SCDBtCfyS9uyn+7/cCnt2HfImz1Ci7epc5A0Hrm4EzWs7dtGvpGdz2YzyUBL+4SCOIdbV503jiCA3PHOQsvShXkPmKC937qpN8Xl97XKipCzj2Yt85QxZdM+enJ0FzOZCn/BhIe3f/K4HhnQoQFdNrC5wt7t34zOsGNiLR2kuat3CXnCQkMCgoAvAuXTPo0vBnImCAgCgoAgIAgIAoKAICAICAKCgCAgCAgCgoAgIAgIAoKAICAICAKCgCBQAgi0aVKTmjaI8XkyFvRxDb8GtXwJETrihzPX+RAnkKZ6Na8lh9954fy+D5b6ECeQHwgTWjawNYqrXplHO9kCgz95csJKizgB1wd2gsZTE1axVYscn+SHjhyncS/Os4gTKBtIICACaAFZ4LrX/qb0bb5pcf99rpudOIE8TPlw5noa/8lSOs7WDZykMHyc0tiv/bhoqw9xIqGebzthAf+fXy73KUMw7bmarXGMe2meRZwAtid1bKBIGbosi9buobEvzyNYaghGDnMbzEnxkE3QboWRL0Kpqy7PUTYf8chnS32IE2gv7SoD8dDe93y4mA7mHdPJ6J7z2ltxQKL4M9+qio4AyyOaOIH87juvA53AxiuCwVjn1Y6tlWiZbXuOvi5HQUAQIBLLE9ILBAFBQBAQBAQBQUAQEAQEAUFAEBAEBAFBQBAQBAQBQUAQEAQEAUFAEBAESgSBhy7qqJ4LSw/PsYUHyK1ntSO4ywgkm3YdVFYTHmTLD11a1FUuD47DZAMLDh/MWG8lH3NKCxozuAXFsuVjyM59h+mfE1YQFuZhleKv1J0EdwhOkrIpm/on16d7zm1PjfNddGzdc4ge/Xw5rdy4TyV5f8Y6H6sB89ntiLak0LtdXXr80q5Uu7rn2YfZDcPL36fSt395LFvAJcO9vIiuBTi8P32dPqVHRnWgE9vHqbLv3p9H89dk0RNfrVT3/1y1i9x1hd4AAEAASURBVObxeX92AWKXQPjY4/o711Yzbj2zLQ3p2kS52Mbi/9/sBuWJL1ZSLodRhg+YyHH10FYqm2Da8+clHusSSIg2uu701srFBM5hueO2txcq6xhoo9+W76Ah3RrjlitBG2vp1NxLHNDX7MdQ6qrz+M/k1TQvdbc6bc1kIGDQlo8nMNNh464D9H/fpNCS9L2qLo98voyeu6KbshhSp3plepj77z3vL1Fpn56YQl/dV09Z8kAffu6bVfoRysKJdnEeDMY6g8T6XuLLhu25+rIcBQFBwIaAWJ6wASKngoAgIAgIAoKAICAICAKCgCAgCAgCgoAgIAgIAoKAICAICAKCgCAgCAgC0Y0AduK/c2sfGty5kSJOoLQVsC2fBZYfOrB7aBAwrhnWmq4f3toiTuA+rBCMP78DgkoWr/N1raGv4wjXFE+O6WoRJ3CtCZMoHr7YQ/rA+cqMbBwsMXf2jz2tlUWcQISqlSrQbWcl0VXscgPlq1LZa1ECxApNIEHc8Re2p9O7x1tlrxdbhYb3aEIPXOQtO8gXThIIH6f4/q5dcWoLGsWuIvTCfQzjPqhDHD1yqbf+II/kcdmDlWn5rjmQDuSLihU87YdzEAueZjcWl53cXOGUc/goLruWfbleayKtGtV0lS6UuqZmZltEGFia+NfY7pTEfaYC1wXdsXnDGvQskyW0dRVYw9i4y0teAPHlvP6JqnwgiWhLEz8u2qIIF7hxeo/GdAr383AE5WnPfxMQPEcTjcLJU9IKAmURAbE8URZbVeokCAgCgoAgIAgIAoKAICAICAKCgCAgCAgCgoAgIAgIAoKAICAICAKCQBlG4MT2DahFnNcFh1nVmCoVfKw5mPd0OIF34oNgAOsJq/ItSOh75nFkz3iqVrngXuRmDasrFyBw/QErEyAPVGFiBCSminf5bdn6fdSNLWOYAgKFttRgXl/AFh20wM2HP2sYZ3CZjrIbi0Nc9poxlXUSn2MgfHwiBjiBm45rhrZ2jDGQCRRDujaiGUu3q/twMQF3EsFILLtZ2ZvvtSSFXXh0bVHHJ3kiY3zzyLY+19ye7D3gJU/UZiJGYRJqXWez5Q0t17PljLg6VfWpdYTFk3FDWrKLE48liTVbsn367s0j29H81CzK3H2QJs3ZRD1b1aH/fJuq0oOQcec5yVZe4QTq1vTicODwMYuUE06eklYQKGsIFHzbl7UaSn0EAUFAEBAEBAFBQBAQBAQBQUAQEAQEAUFAEBAEBAFBQBAQBAQBQUAQEATKFALdW/sSEgqr3GG2RrEzO4+wyL9q0z7legLEicIkOTHWb5T4etWse7B2oaVrSy8J4K2f1tI9Hyym6Uu2qufrOE5H050CXJH4E1g0OLdvorIIcWaveMdoweLjlEmn5rV9rEHY43RsVtu6lL7N1/qGdSNAoFfb+tbdm95YQM9MXKXckOTywn64sufAESuLWi7IE6HWdfVmj+sWPKxq5RNoM/cvp1/FE7xLsqmZ+YyR/BKC7PPopZ2s8j746XJF6sGFx9jCh3Y3Y0UIMRBrEG32sQsYEUFAECiIgJf6VvCeXBEEBAFBQBAQBAQBQUAQEAQEAUFAEBAEBAFBQBAQBAQBQUAQEAQEAUFAEBAEog4BLDgXJrBm8OPCrTQ/bRdt2nWwsOiO9xvEegkS9ghVDZcb5r3BneLojN7xNOXvLery3NVZhB8EFg4Gd2mkXDHY3Uns2n9YxcF/rRs7W9WwIhQScINPIVlQ63j/xBGkbWmUMW1LDrsYKSxH3/vXDmtDK9nqR1rmfnXjB8YLPwhcTAzt1phO69LYchmibrj8b59BnqgZU/hyaKh13bHP22baskRhRVy1aW+BKCCiwJULXKBouXBAU+rdxksw0ddDPdauUcVKuu/gEfI4C7EuSUAQEAQYgcLfFmUEpqNHj9LevXupdu3aVLmy1yxNGameVCMEBHbu3Elz586lxYsX05YtW6hBgwb01FNPhZBT8SeBL6qNOw9SCg8oMrMOUuWKFSiudhVKZDNjYEd6vYIVf9nK0xPXrl1LEydOVFW+6KKLqHVrZ/Nl5QmT8lZX6QNlq8WzmG2dwcxw7ELo1rI2m1esWLYqKLURBAQBVwiI3uAKpnIV6eDBgzRnzhylN6xZs4Zq1KhBd999NyUkJEQ9DqI3REcTHTp0iF588UVVmL59+9LgwYOjo2BSimJDQPpAsUFdLA8SvaFYYJaHCAKCgCAQNgI8hU6T5m6i/3zncX0QdoZBZlChwgk0/vz21KdNPfphYSb9nbbHygGuGT79dYP6De4SR49c0sly95F3xGtxoTq7eihpqVUI6aCWYclgT07wlgxqV69EL1/Xk6Yu2EKT52cSXKBoSdmUTfi9/H0a3cSuO0af3FzfcnXULlQQ+chR7hCFSKh13Z97tJCcC97e5ydNv6T6PuSJYN2gFHyS7xWzf1XOdzHjG0POBAFBoOTfvEXYBosWLaLXX3+dZs+eTevXr7eeFBcXR+eddx6NGTOGMHFRHgXYvP/++6rqZ555Jg0fPtwVDEiDtJBnn32Watb0+q+aMmUK/fjjj37zqVatGnXp0oV69+5N7dq1o4oVnRelUlNT6ZVXXlH5jBgxgs444wy/eYZ6Iz09nU4++WTasWOHTxbRTp6Agv78t2kBGbL44PVpW5euGdLCGnD5VLIMnCxat5de+G6Nqkl39v11zzltS6RWX3/9NT3yyCPq2YMGDQqZPDFxbiZ985eHTYvMhnVrRFcOblYidZKHBodAsH3gpR/W0vw1XkUJ5vXev6Wn67/Vsa8s5IH+cauQnZvXYiUsyTq//s3FlHPQM1h/6equITGyrczKUWDjrlx68r+r6cAhr3L6j4uTKTkhMLO+HEEkVRUEyjwCojf4b+J9+/bRQw89pCJgDH/bbbf5j2zcgQ721VdfqSvXXHMNdevWzbpbmvSG3NxcpTvOmjXLKj8Co0aNimryhOgNnuaKFr0BhH2tNzzxxBMhkydEb/D5MyxVJ8H2AfjNfvNn7zwWKjv+/HbUmTdLuJHHv0oh7PzUUo1Jwe/d3EOf0guT19CidM9uxzGnNKMR3RtZ9yTgHwHRG/xjI3cEAUFAEIhGBFZs3OtDnDi3X4IiMjSuV51qMikhlt041Khakc5+ajbtDWHR302dQaAYwpYT8IO7kBUb9tCSDXtpKltW0O5CZi3bQZUrrGSXDZ1VlvViq1pZZzCRoGeretZ5SQQyduQGfOwm3oikpXWT0ObS4JLikpOaqV/GzgO0PINdqqRl0Yyl23XW9PrUNRTLRI6z+7gnsdet4d1InZ17xMrLXyDUujasXZV27Duksn3nlt7UsJZ/SyX62RW5b9glj+d9n2a3Jaa8PDmN+rVrQHhGJGSfgUNdwwpFJPKWPASBsoJAmSRP5OTk0Lhx4+i7775zbCcsmL/11lvq9+STT9K9995LJ2AFqxxJRkYGvf3226rGzZo1c02e+OKLL+i3335T6R577DEf8sQff/xh5VkYlLGxsfTRRx8RiBt2wU5uXbZGjRoVCXli5MiRPsSJzp07U1KSdwHSXqZoOP+dJ0/enb6Bjh0PzJDEwuqfKVnssy2bnh7dkdz48oqG+oVahgOHgmd1hvose7rff//dutSjh3ciyrroMjCTB8im/JGyS8gTJiBRHA62D9j/esGAn8Pm+k7p1LDQWkJpMIkTSID0pvzPfsG8KWG/CDz+1Wo65Me/JSadJ87JVGm7tapNI3s09puP3BAEBIHSh4DoDYW3Gawu6LH5kCFDgiJP6HSnn366D3miNOkN9913H5nECRDxe/XqRU2aNCkcvBKKIXqDM/AlqTf8+eefVqFOOukkKxxsQPSGYBGLnvjB9gHbMF9VZNrSHa7IE9AZ1mz1Eic8KNhytJ1GD1LRXRLRG6K7faR0gkC4CFSqeAIdPVb4C/IYx6nIcUWiH4G/1+y2CjlqUDO69Yx21rkO5Bw+VmTECf0MfWxYq4py1QF3HTeNaKusLLw42WMVY9qS7TT+oo5UlTdGxtXyLpKvLfBN17kV33HttuyAD0s3LEVEwkpC84Y1CL8ze8XTrWcm0dvT1lquT6Yv3RYUeaJOrNdFxf78DWeBKhNqXePqVGXXI56cs9kVRoem7giv9rJ8MHOdZXmjb1I9mpe6W5Fsnvt6FT0/tjuvY9pTBH9ukidqG+SS4HOSFIJA0SKA760bwfc70lK4Q6hIP7GI89u1axcNGzbMhziBhXpYLwChwm5p4uGHH6bRo0cTJk5Fig+B/fv30/nnn0+ff/558T00/0lbt261LJFg8jMlJYUWLlxYImVxW/kPZ2XQW7zrxCROxDHT8MTkeoRdIuf1i1fWJsyXxJ6cI3TnB8tpp+Fvy+3zJF7hCOTl5dG0adNURFgxgWWVUGQdDy6zbSa6cnnQnprv4y2UPCVN8SAQqT7wy/Kdrgo8nSdLg5EKZe4LH0zt3cfdy74PTeJEz9Z16KITE6hVI49PyS1sRnElk9HwW7Zhn/uMJaYgIAhEPQKiN0R9E6kClqTegAKYxInJkyfTxo0b6dtvv6WmTZtGJYCiN0Rls1CwhFunWoje4IRK6bkWiT6Asaib6cM/mZwdDKda1AZ3/Uj0Bnc4SSxBoDQj4NZ1Z25eyW3kKs34hlL2XdmHQ0lmpVmW4bX+OrJnvHXdDCxKzzJPIxaGBQEQH/CD2227VK1cgS4a0JTaGVZPtQWHXm3qW9GnL95G2/Z4LBpYF/MDu9iSxajn/6Qznvidbnrzb/vtiJ3D3Yg/Esd+3tg4c8k261mtGvm3POHUntlMaNA47War23ZpwISTW8/0kl5WbwxM5LCnr1PdS55wer49fqh17dvO22awJOJP4Cp4ecZe9dtoWOxAfFz/+JcNKmnnFnUUWaJ3u7rqfC6P737427O5S13w85+bOm7f7elP1dkymenWxE+WclkQKDEE3H5v3X6/g6lImbM8cdddd9GCBQssDJ5++mm64YYbfCwkHD58mJ555hnCPcjEiRNZsfwfwaqCSGQQ+PnnnwuYIgVBZdWqVQRrHz/99JN60NixYwmWL8LZfRNsiZctW2YlgfuW1q1bW+fRGNi06yBNX+L94IIgcdsZbQgLfHYBO/qz3zcRmKoQLAh+/OtGuruE3FrYy1eWzpcuXWpV55RTTrHCwQamLPAOLs20UxdtpyRj8Gzek3B0IBCpPoCJ8EPsy7BaZWdXRqgtJkmXuli4v++8JPV3j4FvvZpe5SA6EIvOUphKRXU21XjX2W2js6BSKkFAEIg4AqI3RBzSkDKMZr0hOzub1qzxuIpr2bKla2t9IQERgUSiN0QAxCLI4siRI5b+C9J1TExMSE8RvSEk2KIiUaT6APT9xezCsge7rgwks1YUTs6+bFBTOj3fVUdSvNcda6B8y/s90RvKew+Q+pcHBGJ4TsDNzvQdvFEtNqZyeYCkROoItwxa/krNoquGtNKnQR/bNK7Frh88BIo1W/ZT68a+37z1PCf33KTVQefrJgGMR9/4+t+Wa443b+rFFqR8v+HYQLfZWECvn++uo0m9atSN5/6XsIstuPZ4+LNl9PoNvXwWuo/zetbTE1dY7r1BxChKefDjpfTe7X0J7jW0oAxPTlhBmbzxCNK0QQy7q/CdjyysPTN25NANr3vW8+JqV6MP7uhLddidiikbdxywTuPqBreBsbbhlmLVJnebokKp60nt46h6lTTVXj+wS5aWvClr1MDmVrkRwFgOFiR+XuRZD7iZSSGXNfS47j6Yd5ye+HKlFf++85MJbj3uOacDXcIEGcizk1KoZ5t6FF/PV58oDGMrUw6gz+n2qm9rKzOehAWBaEAA31s3Ur2a/3UVN+md4njfdE53S9m1mTNn0pdffmmVesKECXTuueda5zpQtWpVgsuJ3r17K/+1uD5p0iSaM2cOnXjiiTqaHCOMQM2aNalPnz7KKghIC1OnTlVPgDnf4iRPwG+zFvSBaJdXpqZbRYSf0hfGdqY6fswpgVhx5eBmhIHLjPxd6lhwhcUKJx9aVsYSCBoB0+zqgAEDgk6PBGiXBeleBjQmweCXGbJk/V7VjhUiYYtL5Sj/RRqBSPQBlIn/XGn2qiwa2jXObxGxy8yN6cg2jT3WEvxmJDcKIGB6QoK/SxFBQBAoHwiI3hDd7RwtegOsXmgpTn1FPzPYo+gNwSJWPPFNwi3IE6GI6A2hoBY9aSLRB3RtZvBOxkDkCexyTd/mXWDQ6ezHJrzwgJ+IewREb3CPlcQUBEorAo3Z7P6OvYUv1GATjH0RvrTWORrL3aSud2F45cZ9dPPbC2hwp0bUhsl+3Vp4duG7LXfvdvXoi98zVPQnvlpJC9bupn5sIaAyz6Gv3LyfvpmzySI3uM3TbbxqbFninH6J1vPvencxXXZKC+rSorYi36zfvp/e/HGd9fwT29enujW9pIF7zmlPY/49Vz0uha2hjnlhrnL50T4xltbyt/7PlJ2UZlguPqdPotuihRQPC+6jnp/D85eNqH3TWNqy+zDNWr6d0g23Ik9f0bVA3oW1JwglrZvUVPns2HeI7nx3EY3o0YQ6Na+t5kyXshvj135Is/I9s3eCFXYTAJkDpAzkDRyPHDvO7R/Y7lYodUXbPTu2K9329iJVrFd+WKP6W0+2ItKMSSWwPvL13E0W2QVWH87q7bWG8saPayxSwzgmDLVq5CH6JHLaG0a04b6yVuX71MSV9Mq1PclcMygMYxOnNVu9Om73VvXMWxIWBKIOAXxv3UjjOpHXa8rUKsGrr75q4Xjdddc5EiesCByAK48LLrhAESdwHRYonMgTsErx22+/0fTp05W7B1hQSExMpPbt29PFF19MjRo1MrO1wjDxumiR52V59dVXU506dWju3LmE3VUrV66kCmxTvU2bNsp9Rc+ePa10CKxdu9ZyPYJ7gXa2Iy9tyaF79+506qmn+uQVbScn8GIwyCuaPAGXGcUh77zzDmH3GNpSy48//kg7d3p2ZdSvX59gCcOUSLX98ePHlanWX3/9VbXtWWedRddff735KMfwHylZPma9QIzwR5wwMxjDu0hmsSsATLLhN3vVLjqlU0MzihWGWay5abt5gHKANvFHHPm3aFidmbC1/KaxEnMgi81p/co7W+BTdf2OXDX4bMbp2/GgZ2TPxj6MWDOdDu/JyaP5a/ewT7Bs5b4C/sEG8mCxMw+Qctjs16pNng96Bx6UBbuwibqBPJK2JYd283Na88Jy95Z1qCsPUkFECUfMfhQqCWcu+yzTC+I1mB137bCWdOObi1WxcH0eM6P7s28zJ0nhAf4qHvBBTmK84vgD8cuynfRXWpZqk1rM0G3Plivg0kWb38JuxPns628FY32QWcvwQdeFce7TNrDisZoH4iDjbNt7SLURygqrBmij0zo3pMps5cAuPy7eTrncfm4E74TzuZx2ga/eGdyPoQis355LBw4fpcT6MdSK23F4t0bUkF3X2AX9/Qe25nGUB8IJHLcfK0noo7re21gJBgsa2PRjbGvbmMz2/AKdh9sHwCLfmm8mDbvDApEnTJcdZjp7+UC+QX0hJ3dsYLW9GW8rm/r7beUuQruiT9Tk9gSWvVvXpWG8+8zuIWwevx8255sXvKB/grJs8dWfm1V6KBv/vLSDmX1Y7wS0+eS/t6q/2e35ExYJ9aspFxond2xIMNUXSFBWKFV4n+1iHBrx+6RlXHX+G2lAUC5NwTthITP4dd1wD2x+jXVzfo8t57xSDEV0C7fXpLmZ7F/Quc+a+UtYEBAEohsB0RuIRG/w30ehW0HHMknXK1asoBdeeMFKdOONN1L16tWt8/KgN4Q77g83fVHqDXB1uIDHUXCdh7FBEx5bd21Zm3oyublumNa8sElDS6ik63D0Bphz/m2lR+eFZbtOzWopd2Q/saU7jO8xlseE7oX9E62xFtwTYFy1nPUGxGneoDr7ba5FA9htZCA9aieb1sZYHCaI4UaycqUTlN7QgsdjI3o0dtRloUvq8avGKdARem19w3c14ka73hBuH4DLTr3rakVGdkCSPeYQQM6GBNIbNrDuDh0e0oV1/0YOE46iNyh41FyC6A0eLOR/QaCsIxDPpLJlGzxzbYHqupzfxVhAFikaBNrFxxJcFizfkL/BjOduYIGhL8/jdbsq8BymvUQ9WvFcF88haivNPy7cSviZcvngFvQ9WwrYy/NEkZZL2PLAkvV71KI95pzenebdJGk+C3V74IKO5iVlueDZK7vQ+I+WqetY0P/01w0+cXCCRXgs2pvEiwKRwrxw0xlt6fPfMhRG//1zk2Nuz3BZ9YK/GcFNe95zbjI98MkylT/mgU1SiJnXZSc3Z1e7wVvYGNwljr6avVFlBWsjKJM/CaeuPVvXo0dHdaTH8y1IwNUGfnZBm71xU2/Lise8NVk0iYk8kAS2KnE5k2xMueSkZjSFXXZgHhd/C5PmbFYuX3QcNxjruCa2Azo00JflKAhEJQL43roRfL8jLWWGPIFF8SlTplj4PPjgg1Y4UODhhx+mtLQ0FWXrVt8PJy6mp6crgsTy5csds7n77rvp0UcfpQceeECRIcxIsHzx3nvvqUtYLL/jjjvo888/N6Oo8PPPP0/jxo2jN998Uy3I4CIIGsgTgonNefPmqbDTf5j81c/BM0uDtG3b1iqmNoVrXSiiANy0ZGZm+uQOiyP4QUCGMckTkWr7wYMHK5KO+eyEBHcMyZ95AVoLJogGufygYQIMi5wgJEDMHRI6P8ynfMIuPcxn4N42HsjBj9pfPFmGRcx7z23nd0cKJvHe+GmdImjofHHck7OPlq7fR98v2Eo3j2jtd2fM70zqeHvaemtyB2kxgfMnT/g0axij3FZolyUoRzeewHQjWEB/lS12zF/jteqAdFj4xA5/GHO4aXgrOjG5vpvsCsQ5evSoIsPgBghXNWqEttv/x3wTXchnIC/u1mKzdFjw137w0Db+yBNTF26zrFTUZsLL5ImpPpOOWHhew6SRaUu30yvXdCP4vf3wlww8yhIMuECywTNuGdnauq4DIHCM/3SFtcCvr2cxn2XjTh6scRt/zm5ibh7RivoySUELJi8/5b4VjNjJE5i0fuK/qymH/d6ZAiIMfsDm/H4JBUgXIIVM4IV9CEgSsMby4vdrffoY+vff3Dcm8EDzucs7W5PE5nMKC0eiD3RuVlv9rWFyM4MnL1F2J/9c+FvFIr4WkBwm7y74vcL9N39eRwcOHVNRQRSykw1+4fZ+f+YGHzzg3geT6ilMVJrIxACQIcxdaJ/P3qTuI1MQTh7+fBXlsX8+iN2iTTjvBBA/Xp6Sria/Veb5/2ESHn3tu/l4n/j2NR0P2D33dZo1AayvA1f8fl2xi3qwucOb+e9eT/inZuYU+JtAf9N/JzBjbH8/YmL/67+2qOztfVY/U46CgCAQ/QiI3uDRT0Rv8N9Xv/nmG/rggw98IixevJjw03L55Zdb5ImyrjegzuF84yORvqj0BpRtCo+rv+Dxjl5wxjUQXDE2+WBmBp3KZOGrh7TA5ZAkXMItHhqO3oBxpB6/gFgMywUYC5uC8RL0pH9cnKx24v1zQopF8kY84OHRD7fQ81d2diTovsV63e9M0LULdDCQt0GqGNotjsYObu4TZcKcTNrHZA23AiK1SZ6Idr0B9Qq3D8AnejwTr4EldN0Fa/f6JcBDv9MCHVPrRvqaPoIQrK0ejjmlGY3o7jvhKHqD6A26r8hREChPCLRiM/tuBHMU2PAV7CYvN3lLHOI1lhPo6TFdeF55C307d7OyGGDHxdx1X6WS/w1y2PTzj1GdqAXv4v/2r0yfvOowQfaG4a3pjJ7xlhuFAs8x9otVctg8Zo9vP4fVg7d4kfwzJh78MD/Tsiyg48Hiwgh+/iXscgP1tsvADnH0yV39FGlCu3rQcVD+7kz0vXkEz93zOMEUt/ggjZ7bqxJgo2GD2Mr08R396P0Z6QpH81kt+O/m2qGteN3C2aKum/bswmSZz+8+kV6bmsbrArsKEFlAah7NhIIByc6bQ83yOIUH8JhIkycWpe8OSJ4Ip6549rDuTagauwD6dFYGr81453NxD6SJ85n8ATJEvXwyMMZ2/8wnWyDOvRckE8Z+pmBj5IMXdaQb3/C4N3lxciqd2qWRNSZ2g7HOb/4a73gdZA8RQSBaEcB3Ft9bN4LNk5GWMkOe+OOPPyxs4uLiKD4+3joPFOjYsSP5s3yASTC4mTDNtSIv+Ltdv369le3jjz9O27dvp5dfftm6Zg+AODFjxgzrsj0PTM4lJyfTnXfeqeJ069ZNLeanpKSoSbp169ZRq1atrPQ6kJeXR3riMzY2lk4//XR9K6qPu3fvtsoHLIpDevTooSY4t23bZrUp+krt2p4FebMckWx7TKyaxAm0E35uZAcvGmoJtCtdxzGP5/RpQvj5k8e/TCmw0AiLAvB7pScOsQB/70fL6eVruqodQ2ZemGzRk3D6OhYlsXCOjz7kEPvqeuG7NXTrGa2VBQAdD0dM4mAx1J9gcR6/YOXQkWN01wfLA07AoX6vsVk0TLRdPCAx2EcQdh7q9wLIMaHIvtwjhN0+WrATCzK4UwP69DcP0xREEn8L6jodjpjU9Sdog1vfXaqsBfiLg8lw+EqzLwaDGKMtIyAtiAhoY5PQgLbGgvdTvFMJO8oiIbCq8dTE1VY/1M/G81EfCNoQfRA74UCEcRKQQ/4zea3TLXUNed3/yQp6+8bulqLgN7LtRiT6AEg8yWwNAaQFyK882TyCF+ztAr/G2kIJMHay9GFP43SORQFMWpsCTIGl/pvF3z8my0G4wT27PPKFlzhhvxfOOwETwf+evManzatVqaBM0KFMEN3XbmfgTGspuG/v48AWRBSdFukXMTP7Hn6fvXJtN2VdozorMoHErqgEiiv3BAFBoHQhIHoDqbGo6A3++y2sA4LsDcsTO3bssCKaBPCKFT3fkfKgN4TzjQd44aYvKr0BZYOuoheQce4kWESG3vDQhcmO4yOnNPoaCLewPgjp27cvwSVNsBJJvQEEiEDyNBOy4QIS40MnAeH2SSY42y2PwdqBSZzAWAy+l0Hq1eNM5AdifAP25X1mL4/u4/SMYK6VBr0hEn0AGMLiBojrkJlMgDHHwxoz6MLr832CYyEEFhf9kSd0Gqej6A2iNzj1C7kmCJQHBNqzlSU3gvcyLLSe29fd+oObPCWOLwJYWL5ycAvegd+ciSrH1EY4LDxrGdKtMeHnRkAkuPLUluq3mzfFYJNOnRpV2AprFcv1wTcPnuSY1b3ntSf8CpMnR3chGu0cC9/kKwa3UL/DvBkpc3cuz0udoDbQaWvBzik9V2HN4ZFLOtH953egnTwPeoA3EDWsVdVafHdKGww+H9zW1ymLAtdAXgUWd5ydpDb+5bKF4LjaMWoBH2O/QFJYeyJt7eqV6MELO6hssnlz07Y9B6lG1UqKGGKSQQI9x989kDO0TGXLI6PYIkggCaeuyBdEEvxQjx3cZhhf1+cxMCw527FC/5jyj0GBiqPuoQ5/PjfEbzw3GMMy3Bwet0PgJsZpE5/fB8gNQaCYEcB31tQlAz3e7fc7UB72e2WGPGEuTvfq1ctez6DP4Wbh2muvtRZIMVH21ltvKTJFlSpV1GL4J598Qo888ojKG1Yj4AbE3yQkiBNYMP/oo4+UCw5MmsDSxRdffEHjx49Xedx///3UqVMnGjp0qDq/6qqr6N5771Xh7777ziJWqAv5/2EHg17EHT16NMXEeH2CmfGiLfztt99aRUKdi0O0hQmQTcaMGaMe+eyzz1phXYZItz0sa8B6CCyM4Ih+gGe4kQOG2wNYJIiUwCKDNtGJPEf0aMQM10S1KIsXElxdYLc+wpg4Q9icIMME3jfzPLuvkR7M7PvPb2cxrjG5iMXv7NyjuE3YhQS/rHpACJO7sGqhBRYCzukTTz15Zzgm5DBZU9gkpk5rP8Kaht65hMHImJObKXcIGIjAvNm70zcoywVIB/JGn7b1gl70h/sdLU6ufvS9QMefDKsicC2gLQRgUkyTJ5B+JrvicDO56BmIN6OT2ToJ2u2Nn9fzjiTPjjJYFoBg4HcT79xvy6xmuPz4cNZGZfkA97ADzSRPwGSxnlwFjtezS5GB+ZZPkD9cPqBf6MXp2cwKbhHXDFkRmNgPXpikwk7/2SdX7RZFQNrQE7ZY4H70kvbKXQfygglhWFfQJptgpeR0Nr8Hlyz+BKSgO89qq9w2gLGIPoIyQIANGIzoe8FIJPoABs5D2WycJk/8xiaLncgTmBzVMph3PgKDYAVpsKtSCyy73HB6K4JrCgh2qL07Y4MK4+92Olss0YQedTH/P01egW9DmHxuxiacIeG+E76Zl2m1OcwSP3xRssWeRpv969s11jvr0982+kwWf/xrhkUOQl+9la2o9OFdldDbMIE8deF2tWiDckJJ+JpJN7DMg8nkT+/srUwB/nPCatxW74InR3dUYaQHuepXAxvUefwF/vu2Sij/CQKCQNQjIHoDz+uJ3hCwn0IHww99RROsr7jiCnr33Xd90pUHvSHcb3y46YtSb4C+YeocA3gCcdypzdUkoh47wdobBJbPvpu/RY0hfDpBISerVq2y9PVQSdeR1htQ5NO6NFTjHEyYwoy11j8wzoeArHvVac0VAR5k5Ulzt1i6RTr72IYOoImoSANrglqQ91jGUU9yZ7ALj/d4nIl0EFgRMfWbe85pqwjjOr15hNsIkyheiyfVOxoLW6VBb4hEH0CzDDbIEyCNAHfogKaYLjvghjMU0X1fpxW9QfQG3RfkKAiUBwSwsAnXoZlZhwqtLsYI+ObFxlQuNK5ECB0BjCdgqTdSggVm/EpKsFHHybWFm/IgbWL+PJ6b+EUVB9Y8WsT5n4cN9Fy37Yk2rxXjbvNpoOfpeyjzJQObKesT6bxZMWPnAZ4TLbwO4dQVz/bUI3jytC53KMdAGM9e5Z1jPqtXQijZSxpBoFgQ2H/wCM/pe9cyAj0U3218vyMtvvZfIp17MeZn7gjq0oWZfmEK3GSYu9JguvWkk04iECcgcLsA0sNNN91kPenf//63FXYKfPbZZ3TmmWdau02aNGlCd911F91+++1W9H/9619W+OKLL7bCX375pRU2A19//bV1eumll1rhaA6ACAJ3J1pAEokmiXTbg8wzbdo0GjRokGVxokKFwv/0wILVC8jAp6kf8gQIAbAAEehn7jbHdNgHv2xAlkow0AfBQO9mxwQMiA4gQ2jBRJfpNgCTX7psjdmf0OOXtreIE0iTyGV97vJObKXAU0+Y+P8sf5cM7r9jpK/JgyEQM+A6AuQKmCO9myfQ9EI94rsVYPabYSr2AV7kHM47+fWkEnyGPcIL8aYZvu8NEofb5/z+++9WVFinCUXg21fLkK5es2aYwDQtOJgL5zq+0xF1HcIL8WhHWIe4/czWVr0RvwoPsP81tjMls59j4NG5eW0ab7RxNhNiTFmZbw0B17qx+wezPZAek5aXs3lXLevyJ0Nxjik83Hf6oX6zecJUCxbK7zq7rT5l9wpen8ewfACzwOhPWuqwi5L7z09iv3+eRXtcf+3HdH27wBH5v35dd0WcwE2YVLyRLVWYfgBBBAlWItEH8Mxebepa7QRLGSAKmAKChSaKgBhwEk/qhyLvTPe6x1GElIvbW8QJ5AdShkliWbzOv0ksWJJ5mHdensuEJ7wrIOG+E8z+BsKCaYoZbXbfee0sZvZuwwclyFYwMa0F7n3gQkZPI1erzObw+sX7WOEB8SuPLeRAEO8EAJsvCKpr+pyPxm0VNu/rdHIUBASB0oWA6A1EojdEps+Wdb0BKIX7jQ83fVHpDdCJMD7SMpzJ5LBmpndfYcw5elBT3lHqteQHsnGwMmfOHCvJgAEDrHAwgUjrDSDOX3VaCzUuxrgehFmQ2U35BxNZ4TIS+hnIsnee1cbS7RAPhAgt2pUEzkFaRt6aOIFrIOuO5/G7lh37DuugOkI3c9IbcN20mgDdAHqjJuSXFr0hEn0AQGEMDyIDBMQJu4tKXDdddpzGumEoInqD929e9IZQepCkEQRKPwJu510OMJHw4yBd1pZ+dKQGgkDpRWDckFbKbQZqMJldqJQ3Oc7jx2/+2qyq3YPnowd1Cm2sWN5wk/qWDAL4vuI760bcfrfd5GXG8axsmldKaTgry7t4kpTkVcxDrc7kyZOtpCA0tGvnXUi2bnDg//7v/6wF8VmzZin3HeZ9HR43bhwNHz5cn/ocn376aYL7CMiCBQt4URpTOUQgV4wcOVKF4V8XrjtMMV12tGzZkvr162feLtEwXJjAVYn5u+yyywhuUi666CKrbCCkjBgxwjqPhkCk2x7kEO0aJJj62V1WNOBFYCf5aZFnVzXM4fr7ffmHx7wn0oMIoS1CYFHw0oFNnbJVE1gwAaYFfmq1mL6GMKloTo7pOLWqV6b+7bwLvbBkoGVFhjev+3ixU0+A6fs4XsEL85r0YF4PFMbOek3qgDsETMLZBQuf5/FiqpYF6b7+fvV1f0fsMAQZBgJLIqG07VpbG5zKu4hMObWzd/CCyUWQQgIJJtHac31NQZuAmKIF1hnsOKN99cIwcNOuIZAmKaGm2t0Pc7CmRQqdH44aa4T1LjWE/Ql2Hj7BZn51OhA6Hh/V3qedp7E5Ji3Y/YeJa7ugDWE5QIt9AlZfxxFECSf3E7C+oQXlCkYi0Qf089DHO7AVBy2/rvASS3ANuyE1tphABhkgFNEEDKS9jP/mQbCxi/kuSN/u2RlojwNrDfCVbZdw3wkMgyUzl+9Q5uysCxzAZDEIQrewVQkQJLSY5CJYb0H5nMTsL+h/psscp/hyTRAQBMo2AqI3iN4QqR5e1vUG4BTuNz7c9EWlN6zI2GfpRBiTYnzkJLCOpwU61MZdufrU1RGWIrXAbUewEmm9AWPPUScVrKtp5RC6hZNVN3M3j2kJDe45MD6E3gBSvpOAEKxFz3foc6cjYj/+VYpy+6Hvg0xr6qelQW9A2cPtA7r+OMJKoRY7mQcW9fQYF/oPfKCHIqI3ePVM0RtC6UGSRhAo/QicmFTfmisrrDZzVu+mX3gOQ0QQEASiH4FY3px161meOcUvf9/I7sKDG9dHfw0Dl/CnxVuV9V3EuvPs8NdPAz9N7goCoSOA7yq+r24Ea1sDkhu4iRp0nDJDnqhRw2tmx9xNFjQi+QmWL19uJe3Ro4cVtgdgiaJ///7WZbhocJJAxIbKlSsr/6dIBxccGRkZVhaXX365FYbFBlNMlx0gZ5i7Z814JRGeMmUKvf766z6/iRMnkonPddddR3Cl4cYKQ3HWIdJtH6pbB20GVdf9oEumlY7v77jJGBi0aVzT2l3lFN/c3Y9d8RDsjNeLubByoHeeO6UHgUHLTt4hDoGJVzO908Qc4qH+ibYdULgeSHQZEacNu3GANQWnX8u46lY2IAzYrS5YNx0Cq1evtkzvDhkyxCFG4Zd+WLDVioRFfPtC9sAOvoraj0yQCSSmJQ0zXhU2SaalmQssjxruZEA8uf3MNuqn84fZZJBofmbTvrD2YJrn1c/xd0SbP/LFKoIVEgg+bI+y9QOQbEzZZRBFRvIuOH8CCxpaMKllTuDq63hGu3gvSUJfx7G50QfgbzAYiUQfMJ83tGsj6/S3lV6LJLgI315aYKo3FDH/ZpG+HRNjnAQWPj5jNxb4vXez83dvUMeCgxEz/1DeCSiL2Z5wY3LVq4vo1anptDB9r2UlAn0SFmpMggRcBGkJhA8WCmDmWYu5W1Jfk6MgIAiUHwREbxC9IVK9vazrDeF+48NNX5R6gzkWiGdLenCX6KQ3YEHatFi2ZoszwdSpT9kJt3XqBL+YHWm9AQQIJ2JxjEHQjWdrfU5iEtu1Pod4IDvDMhl0B1irgKDt4OoE1iE+YZdrt7yzVF13+x/ccZi63Rgm1tuJ8aVBb4hEHzAxg4tGLdicYJLffzOs+3VhK4OsCgUt5t8sEove4GtlJWhAJYEgIAiUSgQa8EYjp00j/irzwcyNlmsrf3HkuiBQGhFw2ixZGuthlvmMXvE8vvHMKb/xk3cdryzW1az3kWPH6bWpa9UluC8J1XWMmaeEBYGiQABu6PFddSv4XpsWrN2mcxPPu5LgJnYUx9GWG1DEFStWhF3STZu8O/ULs2TRuXNnaye6P+JGhw4dApapa9eu9P3336s4KH+LFi1UGFYZYmNj1WItXHfceeedVj5wJaLlkksu0cFSccQuLX+WOEq6ApFue3OCPpi6ma4bkG4L+3sFIcAuMDHbsVlBCwswZ//FbG8/1uk2GYuN8ewPKJAk8WBCmwOFv1mIOdFY21iMdMrHtIaAiUfsODJ3a9Wr6btwbs8DLhcydrhngW5nf7xa4KrEdFeirzsd9zLJwr6I7xQP10yzq6EQYzDRuIgXhLWsYT9r17+5WJ9aR2NzFv2RsktZ4rBu2gJNeMLXSUAe0ALlLxTBjqbJ87cSXCWYZQo2r+e/TSP0SS2wCGHv47iHiVYtcOHiT2BSGW5hDuV5iA/YZWW6nUA67YrGKQ/4rAtVwu0D9ud2b1VbTWJj8hNmj7MPHlU+8dBXVuW7T0FbwhJHKGJOPCMffxPibvI2Xajo+OG+E6CgXDG4Oa3clM2LFh63JUfYrcbc1N3qh+dgNyQGQ3AzVNsg3MAHt5Zmhfh9hMlpbUHHLLNOL0dBQBAoPwiI3iB6Q6R6e1nXG8zvZSjj/nDTF6XeYJYN48gb31riqlsEY7EsNTXVIl2feuqprvI3IxWF3lCfLXU5iqE3mBYmHOP6uZiyeb8iSmxm0r1JrvAT3e/lnxZvpz9Tsqz7JybXpxHsitEupUFvCLcP2OsM0j02OKzfnqt0s7mpWZZ7RX/uXex5BDoXvcGDjugNgXqJ3BMEygcC5/RpYs1HFFZjzHW+9EM6jTutGZmWZAtLJ/cFgWhH4LSujWlAB89GrnDmUaOpniADv3tLH7VRy9yIXBbrauKO9pt4/wB1yW6Z2ownYUGgJBGAxQkQJ0yrhYWVB9/ropLQV4+KqkQh5tuokVeZhuuLcCU72+tWoLAdIub9gwcPOj66bt26jtf1RTMP05Rw9erVLZ/EpuuOI0eO0FdffaWSw/UF3HaEKnD/4VYOHfIuVAVK8/PPPxPyNX+DBw+2ksycOdMKR1sg0m0fav2wOGzuCtqy27lvJfDOICwq2n+N6jgvlpsEg8ImxkyXCXrhfNserwuJWjGByQ/mIqfGwXSxYLe4oOPo4zFeTA5G9vOicyiSd9T9c37//XfrEYEsyliRbIE/eCLQnEwErjlcbvvPTHbg0DFayyQLf1KTzY5FWmBl4sa3FvMHK4Oy9hckTmCwae7CC/R8+Co2zb/Cz/IAngS1C3b76X6G/Atj/Wqf1Mjnf/zPLpXZXG1RSLh9wF4m1BO7w7Rok49gWuq+AisxoQ5uNfEJ+cOscjioOLVJuO8ElKsWl+uFsV0I1iPM9x7uQTKZ9AW3RDe/vYTJRN7JdNPiSGHvM9PyhEN38TxI/hcEBIFygYDoDaHrDW51AXQk6CtuRPQGNygFjlNUekO43/hw0xel3mDmHRhd37sgeLqVuXPnWlGhswcrRaE31GDrfoUJD8ODEozC4ZrvSf6B+K7HrzoTD3nXPylax8MRZNpPDP/xTdl63k0jWplRVLi06A3h9oECFecLp3X2unicudxjtQ5EEu32EwTyLn5c2TnlZ14TvcGDhugNZq+QsCBQPhFoypsvTnawvOkPDSz0vDcjQ1lp3X/Q3RjYX15yXRCIFgQwhoOeYdc1oqV8oZYDc86oUzV23aelrNZV1w9H3Zaov4ggEE0I4LsJK+f4jgZDnMB3Gt/ropLIr7gVVUkLybdnz55WjJSUFDp8+DBVreq8eGxFDBBITEykzMxMFSM9PZ2Sk5P9xoYJdy316xdcEMQ9uKto187rp13H18e0tDQdLPCsyy67jN5++211H647YH0Ci3dw8QEZO3asOgbzX82aXrPt8+fPd5UUmM6bN8+Ka+ZhXQwQePrppy0XJy+99BJdf/311KZNmwApSuZWpNs+nFrUrVGFdua7Mfhl2U7LDKqbPDfscDYpaxIizIVHpzxNU6gNa3t2KZkL5jDrGUh27fcSLeBLGAuvphmdXCYFBBJY2whG4OpD71wf2i2O4BLDjcBUrxuBf95ffvlFRW3fvj35+3sPlNdPi7dZt7FIXNUYqFk38gOYBNNkgikLtylTuPY4RXX+1KRUC0s8ozFjBBctsCaCSUz4G166YR/93zfed5dTWeal7abv2HKFFrhy8ecLuYZBAsGkKyZiAw3nDhhWKhIdzAubDGL9/HCPkegDTmUY0jWOFq3zWCT5feUuOpf9a/+SPxmK+KeyxYVQxZz8Y1gjLuG+E3SB8Pd7zdAW6reazRD/vWYPLWN/5LDGoQV/D2/+vE754YbFlRpVK1nWSgp7n+3O8U5gFGZ1Rz9PjoKAIFA2ERC9Ibh2hRU8LX/88YciRcDtYGHy999/W1FEbyByozNagIUQKAq9IdxvfLjpi1JvqMvuK4g8+hLcCJ7uYNnAqRm0Ozune/ZrJuG2b9++9tuFnpcWveHjWRtpNVud0IKxJ9ysdW1Rh2C1LIGtHUIPHP0f7ztBxzWP0HtN3aJGtYr06CXtHfWB0qA3oG7h9gETHx2GNbr3Zm5QeiII9nlM6DFddsAaXyAdSufjdBS9wYOK6A1OvUOuCQLlD4FLByYqdxzm3FNhKMBH+9L1+2hkz8aEeZ6i2OxUWBnkviAgCAgCgoAgUBoQwNoiXJZP5XWvYL61qBs2BeA7XZRSZsgTrVu3JixmgjgBgYuLK6+8slDspk+fTmeccYaKh90gemG0adOmFlEAE12ByBPLli2znhMfH2+FzQBccejnmNd1eNGiRTpIdhcf2N0OyxLr169X9QJ5wnTZcfbZZ1tp3QZAENDy008/0dGjR6lSpcDdYelSr59SmDuuVs3dgrN+DiaqL774YpowYYK69MADD9B///tffTtqjpFu+3Aq1oJNcmryBNw7wGpEozqF4w6G1qwVuxwfbbKxzEVJp8irM73WDrSp/+aGafw9B7yLkU7ptcsB3KvLvnAhTXkCTcu+QtjYO/d5yRc6TaAjFvQ1eQK70J2sG+j0ICYAp0rMtizMAoZOAyKVds0zbNgwfdn1EYu7ekcQEo0/P0mREfxl8M709ewn2NOOWFhHeZ12/vtLH+p1mCPeaixYw8XGSQ4uIwojt8Ds6ytT061iYAJ9/Hn+SWRgvpquOLYxecafSxJgmXfEu/OvAbt4KQ4Jtw/4KyN2h2GXGHYzbt97WLk4geljCNjPJyY5E/P85WdeN/9m4c/bHykFfxNPT1qtJmKB+y0jW5vZ+A2b+YfyTkB5UC4IrGvgl8wug/CDAJNfmVDy0awMVTYQKBay65szezXm92FV6x25aVdB1y0qg/z/cF+L+R7S1+QoCAgC5QcB0RuCa2u4oNNuBJESuo9JQHHKDVYnpk2bZt1KSEiwwm4Coje4Qck3TlHoDeF+48NNb36vI603IG8QNSEYgwbSGw4dOUZwr4ZxOMiebmXGjBkqKuYpGjRo4DaZilda9AYU9s/VXr0T1hBvPaPgGNJ03+cEBAgAj3yxSuGM+2iTx0d1UDvknOKXBr0B5Q6nDzjVG9cwVm7DmwTWbMlRY2O4OPnVIF0P5cW6UMX8mxW9wYOi+R4KFVdJJwgIAqUTgVi2tnvNkBb00hTvvJabmmAB6L9zMunrv7Yo97Kdm9cikC/hmrh6lUpUsYispLopm8QRBAQBQUAQEARKAgFYmM/NO0qwALlu+wFlpXwJkw3tVgvdlg3fZ3yni1ICr5YX5ZOLIO8rrriCsCAPueuuu+j000+nxo0b+33SsWPHaPz48db9W2+91Qoj7cSJE9X5hx9+SCAoVKjgNeWjI8ISw/Lly9UpCAUdO3bUt3yOH3/8Md10001q4tHnBp+AOKFdjbRt27ZAHDwXRJDHHnuM4LoDfjO/+OILlc2oUaPIdPlhz9vfOSaNzUnQTz75hMaNG+cvOgGrN954w7o/aNAgKxxM4PHHH7fIE7Cigd1roZgwDeaZwcaNdNsH+3wz/uUnN1MsZywWQt74aT09cklyoQvoX8zeTPv8EBtgNUBL2pb9ate20yQgFuqXsWUBLdqKA3aAYTEXZcKiJhYxe7auo6P5HGcu22Gd64mYWtUrW+mx+L1iYzZ1albLiqcDIAsE+/JM4EnQ9G2eHWSYRDq7dxOdnc9xLcd5lCfnIFisf+/mnj73/Z3MmTPHujVgwAAr7DYA/71aQNiAFYdAMrRrI4s8gQlbTPD25QnJohYQdbRgQd+JOIH7C9M9E846rnkEc/Cxr1JUP8F15PPEpR3U0YxnD4P0okk9k//eStcPa2mPos6nLfFiiR1S3CWLRcLtA/4KifJ3511i8/Mn8V+YnGb1/3bxsY6uLPzlZb8OUpH+m8XfLf42nNr0K3avAv/JEMR3K+G+E9bx3yMmyyGwcPLC2M4+j0bfwSTwNiaP/bTI0+7aTzn+5vEOgczg981Zfv7mMSiD+xstzeNq6KAcBQFBoJwiIHpDcA0/ZMgQi7z9+uuv0zvvvOOoG+lcoVtogY4EIniwInpDcIgVhd4Q7jc+3PRFqTe0MMYC0B+weI9Fabvg+g1vLlF6D+69dHVXalALVisCi0m4Pe200wJHdrhbWvQGqKnmGGvMyU0dakM0b81ux+v64lMTV1skeFy78+w2fknUOk206w3h9gFdT6fjaZ0bKvIE7k1ZtM0ivsPaY8emBXVrpzycroneQGoy1+zTojc49RS5JgiUHwT68BzcUN7YMp13xgYrmNPEnCl+IoKAICAICAKCgCAQGQSwToDvc1FLwdmBon5iEeYPcoKemINLC0xSZGRkOD5x27ZtygqCJj5gN9RZZ51lxTWtREydOpWeeeYZ654ObN++nS644AJ9SpiErVjReScK3HZcd911vJCYvwqen2r37t0+eQwdOtTKzwyAJKHlmmuusVx2XH755fpyUMcqVaqQSRaBCw0QPJwExAlg+9lnn1m3UYZQBKSNW265xUp633330fHj3t3j1o0SDES67cOpCiYczcVALGrf+9EK8ucuAwvsH7OPWJi68SfYza0tLaA7vs3WDZzkffYxpMkLIFfAPKgWc0Lmg1820KE876KkjgN3DRvY562WUSd5rZ1gp4yWt6etp4O29FgkffH7tTqK66O5y2Zz1kECe80uqNPr7ENJS5fmtXWw0KNpdhUWYYKVWSt2WkkGJBf+gm8RV51grlbLjwb5Ql8rimMtg7V3nPFy8u08k93IpGza7/h4EG8e/TLF6hdYiH/wgiTymEd2TGJdPK1LnBXGIj/a0S7bmaE4NX8RHffO7ets8ceeLhLn4faBQGWASUctpoWS08Jw2aHz69Wmrg7S57M3WW2jL2JH5Sxjx1qftoX3T50Wx3DeCZpYhXxgbQQ+rJ1kB1vk0NK8oYcENsToL9jR+BtbqLAL3ouv/bjOuoxdH7ViQuOOmhOpVoYSEAQEgVKJgOgNwTWbOfYHMeLGG29U5GqnXKBT3HDDDdYt6Blu3HxYCfIDojfYEQl8XhR6A54Yzjc+EumLSm/AeAALzRDoB5+wDuUkH7LlKz0WBmHXDXEC+cydO9fKbuDAgVbYbaC06A3g25qk26z9eQWqCBIrduD6k/dnbqC1W70uJy8akMCkYmdyvplHtOsN4fYBs672cH+2SqdxNy0G9nCBmz0v+7noDaI32PuEnAsC5R2By09pRl15s4uIICAICAKCgCAgCJQsAvge47tcHBLa6kFxlCyEZ8TExNB7771Hp556qkoNwgIsOWDyDtew62nDhg0EFxpvvfWWRUBA5GeffdbHbQXMar700kt0++23q7ztaAGMAAAQ5klEQVSw8wmLZrBK0KhRI/rrr7/U7ittwh95gwgQSCZNmkRYcAVJo1WrVgQ/wHBbofOAOc8nnnjCMQvEh4UGWGqAtQsInjl48GDH+G4uwjoHng+cIJgUBUECz4EFDbjyQBlhcle7Q0G80aNHWxjjPFi5//776dVXX1XJYHEDFj7gzsNJfvjhB8rKynK65XMNZe/UqZPPtVBPiqLtQy0L0l10YgJbH9hp7cTB4uIt7ywl+OaF2beWvMC+lxcbQVSAJYBDeYHJKDBxOu7U5mzFwjMpAGsG/5ywms7r24Racn7IB5N1f6V6dwdd0D/BZ2f/9ae3pNveXaqsCuzJOUJ3frCMrhzcXFlSwDnK8c28LVa1YVnCdDdyy4jWdMf7nvSYYENeWDjG7rKl6/cS3BVo4oaViYsA8OjTtq61e//5b9MU+QTmY2N5sTSNTZt+/GuGhSUmnExSR2GPgIsbCN4rgazaOOWDZ+cc9LgmwP0RPRo7RStwDWUHUQECn7YgqmjyS4HIEbqAvqUF7TD+05XcP+IpKb4mLcvIZnx3W7v9dTy4l9nKfRPuWTDJjH6qBZYDJgaYMEW8ywY1JZBF4G/6u/lbVBvh2Q/ys3EPfpMrsWnDpWwNBZZV9CQ2sBjWrZF+VJEfw+kDhRUOixOYxDfdkaCPog+EK1fx3/yCtXvU3yys0tz14XK6oF+Ceo9k7j5In/620fqbA86ndGoY1CPDeSfgebAgkZlPlMH75PphrZRFGuwAhWWJ2at2EazRaNGTuvH1qvn8zYOMtWHHAbas0YAasknMlE3ZylSm2R/HMhbBiOnqCJP/E+dmEnY6nso7/kQEAUGg9CIgekNwbQeC92WXXUaff/65SvjBBx8ofQhuzPr06aOsUKxatUrpKrNmzbIyx5jpjjvusM6DDYjeEBxikdYb8PRwvvGRSF9UegPGGBgfvfmzh0j+C5NId+fkKR/lCfViCO6+Js3dQqZFtssGNnXdIOEQbkuT3gBAYK0A5lchz3ydSuf2iVfjV4ybFrNu9wcTos09JCC24h4IP6tZ79O6jsqA/1u1cT//UvVpgSNI/Sd3bBD1ekM4faBApW0XMH5O4k0RwM8Uk4xtXg8mLHqDV48VvSGYniNxBYGyiwDmUW8/ow1/41az1R8v2a/s1lhqJggIAoKAICAIRB8CbeNrqO8xvsvFIWWKPAHAsPCPCTu42YD1Ccibb76pfurE9h8ICJgEdHJDAUsR69atUyQKJEO+5mSgzgp5YJE/kPuMd999V5ET4HYDP7vAhcY333xTwGWHGW/s2LFqQlJfgyuPSpVCb8JatWoRXGecc845FoHCXx31M2GV4bXXXtOnIR1BPnnsscfUDxlgUhSEEkxi28UfXvZ4mLiNFHkCeUey7e1lDfYcvnX/cVF7+td3abQ9f+c1Fo4xUWKfLDHzvnZoC/qLrT8s58Vuu8Bk/68rvZYDUjP307Nf+0686DTdmM01rJt3RzyuY+HwohMTaQKb+Ydk5x6lV/z4AMSk2I3DW6l4+j/s2BrNLkk+zd/hlcv+ACfP36pvqyMWjWtUq+RDOPCJ4Ofk2qEtaTXXB2WCfM+uH/BzkuvYJYRJ6nCKo6/Bio0mOoVieveHBd4yAJMm7J7AjYAYoCcUMen4CxNbRrokXrjJ3ykOPkDDmcSgzQVj4VmTbcz4HZrGKqILygW87+EF+auHtLBcP+i4IAOs5EXsQLJr/2FFnsCn7zYopZNS1WK+3gn4iUNiTBrec05bH2KPQ7SIXQq3D7gpSC92gTNntZe4BNcukRgQgJh01Wkt6L0ZG1QxQKDALj8nuevstkFbZgj3nXAb+8a+/+MVqjgggL30g3/LM+ibjet4/37Q58y/+WlLdhB+TnLpwESftE5x7NdAJkJfw0Q/5Bv2WwoR8oSCQf4TBEo1AqI3BNd8cNexb98+mjJlikoIcrVJsLbnBuIEdA3oOaGK6A3BIVcUekO43/hw0xel3jCwQwP6c3WWpS/Bap2T5Tq0AsisiO9Wpk+frqLCMmaTJk3cJlPxSpPegAJfdVpz1iXTVNkxjvvyj83qpy7k/1e3ZmU1ttc62j8+X0XdW9Vx1IkK0xvqsS4F8kQ06w2odjh9wMTOXxhWF835AJCwC3ML6S8v87roDR40RG8we4WEBQFBoCq/Yx84P5lemrKWN30VtHIrCAkCgoAgIAgIAoJA0SEAixMgMuJ7XFxSfE8qrhrxcwYMGKAICtpqhNOjMYkHVxgLFy50JE4gDVxwPP/88wSLESeeeGKBbJAHdlLBOkO3bt0K3DcvnHzyyQQrC/AXbJfhw4fTzJkzlTUK+z3zHCQHU0xXHub1YMJt2rRR5X/ooYeUJQt/aWEVA76Nv/76a6pevbpjNNNlSdWqVR3j6ItwGaInUjMzM+nTTz/Vt/y6PrEiOAQKe56ZxA3hJNy2N7GAi5RwBbur/z2uC10xuJlaxAuUX3Pevf/U6I5q53jP1h5T/ZhItcvDFyYrqwsOt6yol/LuqnvPbUdO6c/p04QeYFcM2tytlcgI9OAJsf9c1YXqsDUCu4zgBdDnruhEibzj3CwDFoobM7HgHxclq3s6XU3DzL5TeXQ8uBh59dpudGJyfX2pwBHkhTvOakODgpgAnTNnjpUPFluCFVhs0BLMrn7gAxPBWrBzC1LBBcMOC76FiT8sx7D5I5BsnASWJC4ekEgPcR86pWPB3fcVwvyyYNIP/SaOLQf4E+xwe5Hj2CcI/dXHno/p07qyC5yQPtw+gDwqGp29csWCQA3t6mtFwzRHjPQQn7JzW5hygpl/Jd/2x2L/46Pa+7VcgsWJBy9MUlY+zDzdYhrOOwH9HO+aQO8TvBvO6xdP6Jum1GSS1cvsf7wnE0/8Cfrsw/xOObNXwcULE89KDm2CPC9ht0Nu/p78PV+uCwKCQPQiIHqD+7aBDgBdADoBdAN/AmL5gw8+qHQM6BpOYo6VCxvHl6TeUMHFoKY86A3hfOPR/uGmLyq9AWUbf34SXcFjC2MIhcuWYGxyPo8/bmWip1vZuHEjQceF+HPLGSivktAbzPGQv7I5jV0RtzO7QcQOfSfCL3DtwWO0F6/qSmPZUqFdnNLY4wQ6j1a9Idw+gDqb2FRy0P16s1s+Mw5I2HYx29WMi3imPlnFNgYWvUH0BntfknNBQBAgtWBzN282MV0GCy6CgCAgCAgCgoAgULQI4LuL729xEidQoxPy8vI8WymLtn4llnt2drbaEQXl9fDhwwSXDF26dKH4+Pigy7Rnzx41CXLkyBGqX7++2kESyH8vfAHDjQgErjGaN/dMFuTk5NDatZ5dtbhWt67XF32gQm3atIng+xfSuXNnRfwIFD/Ye3DTAUsPmzdvpr1799Lx48eVawI8Mzk5OdjsylT8YNu+KCuPP9gtbGZ/DbuBSN92gA6yG4cGvJCMxeRebepQbd5hHozA6kPqlv2UlplDuZxXQ15AbdukJpvzr+lqsRC7sdO35XAeObSLXTdgIbNdfCz/ahKIDG4FLh8wJ2RagribLRloc/uvXNtVWbxwmx/i7eXd9avY4gHKlsfWOoARXIigbMHKLbfcQm+//bZKBos0iYmJwWZRKuOjXeAqY/Oug+xaoZraIWbu+kel0A8zduaqvqf8R9sW9EOtOPo6ngurAugHx9nEBfomTNSCAFPcUpb6wE42rYxdfTCxHM+mqZs3rE5NGxS0/hMKxuG8E2BpBG46sOsTprMhsNICcgWs4OD9EkjgBgj9BaagkRfSJfH7KJHr5kslCZSL8z28Q+BSCO8pELzwPhERBASBsoWA6A3Btefq1aspPT2dtm3bxgvPJyidJiEhgXr06BGWdbzgShF9scuy3hDONx4tFW563dpFoTfANR50BnzrMZ4AqbQFj4/6sMWJYMcQEyZMoDFjxqjiYpOAPxeVuj5l5Zhz6Ci7b9yrXKjBgmA3drvXmsfuJn7beewJawkgpcJlnRPJPhQ8ok1vKEt9QPSG4Huk6A3BYyYpBIFwEUhNTaWkpKRws3Gdfj5b+n2XLXse4DlVEUFAEBAEBAFBQBCIPAI1eG3xGrY4DZ28JKTMkydKAlT9TH/kCX0/2OO4cePos88+U8k+/PBD5Xc42DwkviAQDQj8vGQ7YdITAp+4TpNmWCi/4qUFyj8udix9dFsvn501xV0PKGHr168nLArgKFL+EJA+UP7aXGosCAgCgkBxISB6Q3EhLc8pbQiURr3BJNxi00SzZr5Ws0pbG0h5g0dA+kDwmEkKQUAQEATCQaC4yRMo6/6DR+iL2Zvpt5W7wim6pBUEBAFBQBAQBAQBGwJw0wg3erExwW0Ut2UT1mngLZxhZS2JI4FAVlYW7dq1S5nI1cQJ+E0tL7tXIoGh5BF9CECxyNiRqwp24NAxunlEqwKF/L9v0hRxAjdaNapRosSJLVu2WISJYcOGFSirXCj7CEgfKPttLDUUBAQBQaC0IyB6Q2lvQSm/EwKlTW9AHaZPn66qAtK1ECecWrXsX5M+UPbbWGooCAgCggAWdK4b1pJG9GhE383fSn+xNQreByYiCAgCgoAgIAgIAiEggA3U/djKBNx+Nm1QPYQcIptEyBORxTPiubVr147279/vk++zzz5brk3h+oAhJ6USgT7sn1WTJ+aszmJiBNEpnRpStcoVKYVN7v+VmkVrtx6w6nbxgJJ1kTF37lyrLIMGDbLCEig/CEgfKD9tLTUVBAQBQaC0IiB6Q2ltOSl3IARKm96wdetWi3Q9dOjQQFWTe2UUAekDZbRhpVqCgCAgCPhBAAs8t4xsTaNOSqQ5PJ/5R0oWZWZ5rO36SSKXBQFBQBAQBAQBQSAfAbiKP6l9fToxqT67z4weN9lCnijCLlqxYsWI5h4bG6vcdgwfPjyi+UpmgkBxI3BW7yasUOxmZeKgevTsVVmEn5PcdXZb6tSsltOtYru2ePFi61n9+/e3whIoPwhIHyg/bS01FQQEAUGgJBAQvaEkUJdnlgYESpvesHTpUgtWIV1bUJSrgPSBctXcUllBQBAQBCwEsOBzdu949dudk0cpm7Jp3fYDtIXdFm/be5gOHj5GB/OO0dFjYp7CAk0CgoAgIAgIAuUCgUoVT6CYKhUppmpFalynKsXXraaszbdvWovq1awSlRickJeXJ1/sImqao0eP0sGDnsXhGjVqUIUKvL0+SJkzZw6b/PofJSYmUtOmTUPKI8hHSnRBoFgQyDt6nN6fmUGwPHHsuO9rCCZ6GsRWpTGnNKVeresWS3kCPcT8WwaJSaT8ISB9oPy1udRYEBAEBIHiRMD8zojeUJzIy7NKAwKlSW+A7p6Tk6NgjYmJEYuRpaGDRbiM0gciDKhkJwgIAoKACwRSU1MpKSnJRUyJIggIAoKAICAICAKCQOEICHmicIwkhiAgCBQhAkeYRJGxM1cxscHCTkqIpeZx1Yn5EyKCgCAgCAgCgoAgIAgIAoKAICAIKAREb5COIAgIAoKAICAICAJOCAh5wgkVuSYICAKCgCAgCAgCoSIg5IlQkZN0goAgIAgIAoKAICAICAKCgCAgCAgCgoAgIAgIAoKAICAICAKCgCBQYggIeaLEoJcHCwKCgCAgCAgCZRKB4P1IlEkYpFKCgCAgCAgCgoAgIAgIAoKAICAICAKCgCAgCAgCgoAgIAgIAoKAICAICAKCgCAgCAgCgoAgUF4REPJEeW15qbcgIAgIAoKAICAICAKCgCAgCAgCgoAgIAgIAoKAICAICAKCgCAgCAgCgoAgIAgIAoKAICAIKAT+H51GlAuAzvT9AAAAAElFTkSuQmCC" + } + }, + "cell_type": "markdown", + "id": "f97431a4-78a0-473f-99a0-67eeefb8bbc6", + "metadata": {}, + "source": [ + "![image.png](attachment:2f957256-5d08-40e1-b77c-5faa4f771fb2.png)" + ] + }, + { + "cell_type": "markdown", + "id": "8e609a46", + "metadata": { + "tags": [], + "toc": true + }, + "source": [ + "

Table of Contents

\n", + "" + ] + }, + { + "cell_type": "markdown", + "id": "8e713032", + "metadata": {}, + "source": [ + "## Import modules" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "e69953f7", + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-06T20:08:40.044647Z", + "start_time": "2024-12-06T20:08:37.758061Z" + } + }, + "outputs": [ + { + "data": { + "text/html": [ + " \n", + "
\n", + " \n", + " Loading BokehJS ...\n", + "
\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/javascript": [ + "(function(root) {\n", + " function now() {\n", + " return new Date();\n", + " }\n", + "\n", + " const force = true;\n", + "\n", + " if (typeof root._bokeh_onload_callbacks === \"undefined\" || force === true) {\n", + " root._bokeh_onload_callbacks = [];\n", + " root._bokeh_is_loading = undefined;\n", + " }\n", + "\n", + "const JS_MIME_TYPE = 'application/javascript';\n", + " const HTML_MIME_TYPE = 'text/html';\n", + " const EXEC_MIME_TYPE = 'application/vnd.bokehjs_exec.v0+json';\n", + " const CLASS_NAME = 'output_bokeh rendered_html';\n", + "\n", + " /**\n", + " * Render data to the DOM node\n", + " */\n", + " function render(props, node) {\n", + " const script = document.createElement(\"script\");\n", + " node.appendChild(script);\n", + " }\n", + "\n", + " /**\n", + " * Handle when an output is cleared or removed\n", + " */\n", + " function handleClearOutput(event, handle) {\n", + " function drop(id) {\n", + " const view = Bokeh.index.get_by_id(id)\n", + " if (view != null) {\n", + " view.model.document.clear()\n", + " Bokeh.index.delete(view)\n", + " }\n", + " }\n", + "\n", + " const cell = handle.cell;\n", + "\n", + " const id = cell.output_area._bokeh_element_id;\n", + " const server_id = cell.output_area._bokeh_server_id;\n", + "\n", + " // Clean up Bokeh references\n", + " if (id != null) {\n", + " drop(id)\n", + " }\n", + "\n", + " if (server_id !== undefined) {\n", + " // Clean up Bokeh references\n", + " const cmd_clean = \"from bokeh.io.state import curstate; print(curstate().uuid_to_server['\" + server_id + \"'].get_sessions()[0].document.roots[0]._id)\";\n", + " cell.notebook.kernel.execute(cmd_clean, {\n", + " iopub: {\n", + " output: function(msg) {\n", + " const id = msg.content.text.trim()\n", + " drop(id)\n", + " }\n", + " }\n", + " });\n", + " // Destroy server and session\n", + " const cmd_destroy = \"import bokeh.io.notebook as ion; ion.destroy_server('\" + server_id + \"')\";\n", + " cell.notebook.kernel.execute(cmd_destroy);\n", + " }\n", + " }\n", + "\n", + " /**\n", + " * Handle when a new output is added\n", + " */\n", + " function handleAddOutput(event, handle) {\n", + " const output_area = handle.output_area;\n", + " const output = handle.output;\n", + "\n", + " // limit handleAddOutput to display_data with EXEC_MIME_TYPE content only\n", + " if ((output.output_type != \"display_data\") || (!Object.prototype.hasOwnProperty.call(output.data, EXEC_MIME_TYPE))) {\n", + " return\n", + " }\n", + "\n", + " const toinsert = output_area.element.find(\".\" + CLASS_NAME.split(' ')[0]);\n", + "\n", + " if (output.metadata[EXEC_MIME_TYPE][\"id\"] !== undefined) {\n", + " toinsert[toinsert.length - 1].firstChild.textContent = output.data[JS_MIME_TYPE];\n", + " // store reference to embed id on output_area\n", + " output_area._bokeh_element_id = output.metadata[EXEC_MIME_TYPE][\"id\"];\n", + " }\n", + " if (output.metadata[EXEC_MIME_TYPE][\"server_id\"] !== undefined) {\n", + " const bk_div = document.createElement(\"div\");\n", + " bk_div.innerHTML = output.data[HTML_MIME_TYPE];\n", + " const script_attrs = bk_div.children[0].attributes;\n", + " for (let i = 0; i < script_attrs.length; i++) {\n", + " toinsert[toinsert.length - 1].firstChild.setAttribute(script_attrs[i].name, script_attrs[i].value);\n", + " toinsert[toinsert.length - 1].firstChild.textContent = bk_div.children[0].textContent\n", + " }\n", + " // store reference to server id on output_area\n", + " output_area._bokeh_server_id = output.metadata[EXEC_MIME_TYPE][\"server_id\"];\n", + " }\n", + " }\n", + "\n", + " function register_renderer(events, OutputArea) {\n", + "\n", + " function append_mime(data, metadata, element) {\n", + " // create a DOM node to render to\n", + " const toinsert = this.create_output_subarea(\n", + " metadata,\n", + " CLASS_NAME,\n", + " EXEC_MIME_TYPE\n", + " );\n", + " this.keyboard_manager.register_events(toinsert);\n", + " // Render to node\n", + " const props = {data: data, metadata: metadata[EXEC_MIME_TYPE]};\n", + " render(props, toinsert[toinsert.length - 1]);\n", + " element.append(toinsert);\n", + " return toinsert\n", + " }\n", + "\n", + " /* Handle when an output is cleared or removed */\n", + " events.on('clear_output.CodeCell', handleClearOutput);\n", + " events.on('delete.Cell', handleClearOutput);\n", + "\n", + " /* Handle when a new output is added */\n", + " events.on('output_added.OutputArea', handleAddOutput);\n", + "\n", + " /**\n", + " * Register the mime type and append_mime function with output_area\n", + " */\n", + " OutputArea.prototype.register_mime_type(EXEC_MIME_TYPE, append_mime, {\n", + " /* Is output safe? */\n", + " safe: true,\n", + " /* Index of renderer in `output_area.display_order` */\n", + " index: 0\n", + " });\n", + " }\n", + "\n", + " // register the mime type if in Jupyter Notebook environment and previously unregistered\n", + " if (root.Jupyter !== undefined) {\n", + " const events = require('base/js/events');\n", + " const OutputArea = require('notebook/js/outputarea').OutputArea;\n", + "\n", + " if (OutputArea.prototype.mime_types().indexOf(EXEC_MIME_TYPE) == -1) {\n", + " register_renderer(events, OutputArea);\n", + " }\n", + " }\n", + " if (typeof (root._bokeh_timeout) === \"undefined\" || force === true) {\n", + " root._bokeh_timeout = Date.now() + 5000;\n", + " root._bokeh_failed_load = false;\n", + " }\n", + "\n", + " const NB_LOAD_WARNING = {'data': {'text/html':\n", + " \"
\\n\"+\n", + " \"

\\n\"+\n", + " \"BokehJS does not appear to have successfully loaded. If loading BokehJS from CDN, this \\n\"+\n", + " \"may be due to a slow or bad network connection. Possible fixes:\\n\"+\n", + " \"

\\n\"+\n", + " \"
    \\n\"+\n", + " \"
  • re-rerun `output_notebook()` to attempt to load from CDN again, or
  • \\n\"+\n", + " \"
  • use INLINE resources instead, as so:
  • \\n\"+\n", + " \"
\\n\"+\n", + " \"\\n\"+\n", + " \"from bokeh.resources import INLINE\\n\"+\n", + " \"output_notebook(resources=INLINE)\\n\"+\n", + " \"\\n\"+\n", + " \"
\"}};\n", + "\n", + " function display_loaded() {\n", + " const el = document.getElementById(\"ac1134fa-55fa-4b47-b5c7-344dfbc63734\");\n", + " if (el != null) {\n", + " el.textContent = \"BokehJS is loading...\";\n", + " }\n", + " if (root.Bokeh !== undefined) {\n", + " if (el != null) {\n", + " el.textContent = \"BokehJS \" + root.Bokeh.version + \" successfully loaded.\";\n", + " }\n", + " } else if (Date.now() < root._bokeh_timeout) {\n", + " setTimeout(display_loaded, 100)\n", + " }\n", + " }\n", + "\n", + " function run_callbacks() {\n", + " try {\n", + " root._bokeh_onload_callbacks.forEach(function(callback) {\n", + " if (callback != null)\n", + " callback();\n", + " });\n", + " } finally {\n", + " delete root._bokeh_onload_callbacks\n", + " }\n", + " console.debug(\"Bokeh: all callbacks have finished\");\n", + " }\n", + "\n", + " function load_libs(css_urls, js_urls, callback) {\n", + " if (css_urls == null) css_urls = [];\n", + " if (js_urls == null) js_urls = [];\n", + "\n", + " root._bokeh_onload_callbacks.push(callback);\n", + " if (root._bokeh_is_loading > 0) {\n", + " console.debug(\"Bokeh: BokehJS is being loaded, scheduling callback at\", now());\n", + " return null;\n", + " }\n", + " if (js_urls == null || js_urls.length === 0) {\n", + " run_callbacks();\n", + " return null;\n", + " }\n", + " console.debug(\"Bokeh: BokehJS not loaded, scheduling load and callback at\", now());\n", + " root._bokeh_is_loading = css_urls.length + js_urls.length;\n", + "\n", + " function on_load() {\n", + " root._bokeh_is_loading--;\n", + " if (root._bokeh_is_loading === 0) {\n", + " console.debug(\"Bokeh: all BokehJS libraries/stylesheets loaded\");\n", + " run_callbacks()\n", + " }\n", + " }\n", + "\n", + " function on_error(url) {\n", + " console.error(\"failed to load \" + url);\n", + " }\n", + "\n", + " for (let i = 0; i < css_urls.length; i++) {\n", + " const url = css_urls[i];\n", + " const element = document.createElement(\"link\");\n", + " element.onload = on_load;\n", + " element.onerror = on_error.bind(null, url);\n", + " element.rel = \"stylesheet\";\n", + " element.type = \"text/css\";\n", + " element.href = url;\n", + " console.debug(\"Bokeh: injecting link tag for BokehJS stylesheet: \", url);\n", + " document.body.appendChild(element);\n", + " }\n", + "\n", + " for (let i = 0; i < js_urls.length; i++) {\n", + " const url = js_urls[i];\n", + " const element = document.createElement('script');\n", + " element.onload = on_load;\n", + " element.onerror = on_error.bind(null, url);\n", + " element.async = false;\n", + " element.src = url;\n", + " console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n", + " document.head.appendChild(element);\n", + " }\n", + " };\n", + "\n", + " function inject_raw_css(css) {\n", + " const element = document.createElement(\"style\");\n", + " element.appendChild(document.createTextNode(css));\n", + " document.body.appendChild(element);\n", + " }\n", + "\n", + " const js_urls = [\"https://cdn.bokeh.org/bokeh/release/bokeh-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-gl-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-widgets-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-tables-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-mathjax-3.3.4.min.js\"];\n", + " const css_urls = [];\n", + "\n", + " const inline_js = [ function(Bokeh) {\n", + " Bokeh.set_log_level(\"info\");\n", + " },\n", + "function(Bokeh) {\n", + " }\n", + " ];\n", + "\n", + " function run_inline_js() {\n", + " if (root.Bokeh !== undefined || force === true) {\n", + " for (let i = 0; i < inline_js.length; i++) {\n", + " inline_js[i].call(root, root.Bokeh);\n", + " }\n", + "if (force === true) {\n", + " display_loaded();\n", + " }} else if (Date.now() < root._bokeh_timeout) {\n", + " setTimeout(run_inline_js, 100);\n", + " } else if (!root._bokeh_failed_load) {\n", + " console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n", + " root._bokeh_failed_load = true;\n", + " } else if (force !== true) {\n", + " const cell = $(document.getElementById(\"ac1134fa-55fa-4b47-b5c7-344dfbc63734\")).parents('.cell').data().cell;\n", + " cell.output_area.append_execute_result(NB_LOAD_WARNING)\n", + " }\n", + " }\n", + "\n", + " if (root._bokeh_is_loading === 0) {\n", + " console.debug(\"Bokeh: BokehJS loaded, going straight to plotting\");\n", + " run_inline_js();\n", + " } else {\n", + " load_libs(css_urls, js_urls, function() {\n", + " console.debug(\"Bokeh: BokehJS plotting callback run at\", now());\n", + " run_inline_js();\n", + " });\n", + " }\n", + "}(window));" + ], + "application/vnd.bokehjs_load.v0+json": "(function(root) {\n function now() {\n return new Date();\n }\n\n const force = true;\n\n if (typeof root._bokeh_onload_callbacks === \"undefined\" || force === true) {\n root._bokeh_onload_callbacks = [];\n root._bokeh_is_loading = undefined;\n }\n\n\n if (typeof (root._bokeh_timeout) === \"undefined\" || force === true) {\n root._bokeh_timeout = Date.now() + 5000;\n root._bokeh_failed_load = false;\n }\n\n const NB_LOAD_WARNING = {'data': {'text/html':\n \"
\\n\"+\n \"

\\n\"+\n \"BokehJS does not appear to have successfully loaded. If loading BokehJS from CDN, this \\n\"+\n \"may be due to a slow or bad network connection. Possible fixes:\\n\"+\n \"

\\n\"+\n \"
    \\n\"+\n \"
  • re-rerun `output_notebook()` to attempt to load from CDN again, or
  • \\n\"+\n \"
  • use INLINE resources instead, as so:
  • \\n\"+\n \"
\\n\"+\n \"\\n\"+\n \"from bokeh.resources import INLINE\\n\"+\n \"output_notebook(resources=INLINE)\\n\"+\n \"\\n\"+\n \"
\"}};\n\n function display_loaded() {\n const el = document.getElementById(\"ac1134fa-55fa-4b47-b5c7-344dfbc63734\");\n if (el != null) {\n el.textContent = \"BokehJS is loading...\";\n }\n if (root.Bokeh !== undefined) {\n if (el != null) {\n el.textContent = \"BokehJS \" + root.Bokeh.version + \" successfully loaded.\";\n }\n } else if (Date.now() < root._bokeh_timeout) {\n setTimeout(display_loaded, 100)\n }\n }\n\n function run_callbacks() {\n try {\n root._bokeh_onload_callbacks.forEach(function(callback) {\n if (callback != null)\n callback();\n });\n } finally {\n delete root._bokeh_onload_callbacks\n }\n console.debug(\"Bokeh: all callbacks have finished\");\n }\n\n function load_libs(css_urls, js_urls, callback) {\n if (css_urls == null) css_urls = [];\n if (js_urls == null) js_urls = [];\n\n root._bokeh_onload_callbacks.push(callback);\n if (root._bokeh_is_loading > 0) {\n console.debug(\"Bokeh: BokehJS is being loaded, scheduling callback at\", now());\n return null;\n }\n if (js_urls == null || js_urls.length === 0) {\n run_callbacks();\n return null;\n }\n console.debug(\"Bokeh: BokehJS not loaded, scheduling load and callback at\", now());\n root._bokeh_is_loading = css_urls.length + js_urls.length;\n\n function on_load() {\n root._bokeh_is_loading--;\n if (root._bokeh_is_loading === 0) {\n console.debug(\"Bokeh: all BokehJS libraries/stylesheets loaded\");\n run_callbacks()\n }\n }\n\n function on_error(url) {\n console.error(\"failed to load \" + url);\n }\n\n for (let i = 0; i < css_urls.length; i++) {\n const url = css_urls[i];\n const element = document.createElement(\"link\");\n element.onload = on_load;\n element.onerror = on_error.bind(null, url);\n element.rel = \"stylesheet\";\n element.type = \"text/css\";\n element.href = url;\n console.debug(\"Bokeh: injecting link tag for BokehJS stylesheet: \", url);\n document.body.appendChild(element);\n }\n\n for (let i = 0; i < js_urls.length; i++) {\n const url = js_urls[i];\n const element = document.createElement('script');\n element.onload = on_load;\n element.onerror = on_error.bind(null, url);\n element.async = false;\n element.src = url;\n console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n document.head.appendChild(element);\n }\n };\n\n function inject_raw_css(css) {\n const element = document.createElement(\"style\");\n element.appendChild(document.createTextNode(css));\n document.body.appendChild(element);\n }\n\n const js_urls = [\"https://cdn.bokeh.org/bokeh/release/bokeh-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-gl-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-widgets-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-tables-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-mathjax-3.3.4.min.js\"];\n const css_urls = [];\n\n const inline_js = [ function(Bokeh) {\n Bokeh.set_log_level(\"info\");\n },\nfunction(Bokeh) {\n }\n ];\n\n function run_inline_js() {\n if (root.Bokeh !== undefined || force === true) {\n for (let i = 0; i < inline_js.length; i++) {\n inline_js[i].call(root, root.Bokeh);\n }\nif (force === true) {\n display_loaded();\n }} else if (Date.now() < root._bokeh_timeout) {\n setTimeout(run_inline_js, 100);\n } else if (!root._bokeh_failed_load) {\n console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n root._bokeh_failed_load = true;\n } else if (force !== true) {\n const cell = $(document.getElementById(\"ac1134fa-55fa-4b47-b5c7-344dfbc63734\")).parents('.cell').data().cell;\n cell.output_area.append_execute_result(NB_LOAD_WARNING)\n }\n }\n\n if (root._bokeh_is_loading === 0) {\n console.debug(\"Bokeh: BokehJS loaded, going straight to plotting\");\n run_inline_js();\n } else {\n load_libs(css_urls, js_urls, function() {\n console.debug(\"Bokeh: BokehJS plotting callback run at\", now());\n run_inline_js();\n });\n }\n}(window));" + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import hail as hl\n", + "from gnomad_toolbox.load_data import get_gnomad_release" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "8649f215-0afc-4f66-920a-53b707f41c4a", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Welcome to\n", + " __ __ <>__\n", + " / /_/ /__ __/ /\n", + " / __ / _ `/ / /\n", + " /_/ /_/\\_,_/_/_/ version 0.2.132-678e1f52b999\n", + "LOGGING: writing to /Users/jgoodric/PycharmProjects/gnomad-toolbox/gnomad_toolbox/notebooks/hail-20241210-1438-0.2.132-678e1f52b999.log\n" + ] + } + ], + "source": [ + "hl.init(backend=\"local\")" + ] + }, + { + "cell_type": "markdown", + "id": "5335a135", + "metadata": { + "tags": [] + }, + "source": [ + "## Variant data\n", + "\n", + "Available versions for each data type and reference build are (as of 2024-10-29):\n", + "\n", + "| Data Type | GRCh38 Versions | GRCh37 Versions |\n", + "|-----------------|----------------------------------|----------------------|\n", + "| exomes | 4.0, 4.1 | 2.1, 2.1.1 |\n", + "| genomes | 3.0, 3.1, 3.1.1, 3.1.2, 4.0, 4.1 | 2.1, 2.1.1 |\n", + "| joint | 4.1 | N/A |\n", + "\n", + "For a description of all fields the the HT, see the [Help/FAQ](https://gnomad.broadinstitute.org/help/v4-hts) page." + ] + }, + { + "cell_type": "markdown", + "id": "d1a4ae8933ba6421", + "metadata": { + "tags": [] + }, + "source": [ + "### v4.1 exomes Hail Table" + ] + }, + { + "cell_type": "markdown", + "id": "318a034c-ac84-4147-9f25-e5e8783e9b91", + "metadata": {}, + "source": [ + "#### Load the Hail Table\n" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "100cf576", + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-06T20:08:59.197890Z", + "start_time": "2024-12-06T20:08:50.859108Z" + } + }, + "outputs": [], + "source": [ + "ht = get_gnomad_release(data_type='exomes', version='4.1')" + ] + }, + { + "cell_type": "markdown", + "id": "77d7a05e31c1f37a", + "metadata": {}, + "source": [ + "#### Print the schema of the Hail Table\n" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "95c14f2c8cc3e699", + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-06T20:09:00.032524Z", + "start_time": "2024-12-06T20:09:00.029271Z" + }, + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "----------------------------------------\n", + "Global fields:\n", + " 'freq_meta': array> \n", + " 'freq_index_dict': dict \n", + " 'freq_meta_sample_count': array \n", + " 'faf_meta': array> \n", + " 'faf_index_dict': dict \n", + " 'age_distribution': struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int32, \n", + " n_larger: int32\n", + " } \n", + " 'downsamplings': dict> \n", + " 'filtering_model': struct {\n", + " filter_name: str, \n", + " score_name: str, \n", + " snv_cutoff: struct {\n", + " bin: int32, \n", + " min_score: float64\n", + " }, \n", + " indel_cutoff: struct {\n", + " bin: int32, \n", + " min_score: float64\n", + " }, \n", + " snv_training_variables: array, \n", + " indel_training_variables: array\n", + " } \n", + " 'inbreeding_coeff_cutoff': float64 \n", + " 'interval_qc_parameters': struct {\n", + " per_platform: bool, \n", + " all_platforms: bool, \n", + " high_qual_cutoffs: dict>, \n", + " min_platform_size: int32\n", + " } \n", + " 'tool_versions': struct {\n", + " cadd_version: str, \n", + " revel_version: str, \n", + " spliceai_version: str, \n", + " pangolin_version: array, \n", + " phylop_version: str, \n", + " dbsnp_version: str, \n", + " sift_version: str, \n", + " polyphen_version: str\n", + " } \n", + " 'vrs_versions': struct {\n", + " vrs_schema_version: str, \n", + " vrs_python_version: str, \n", + " seqrepo_version: str\n", + " } \n", + " 'vep_globals': struct {\n", + " vep_version: str, \n", + " vep_help: str, \n", + " vep_config: str, \n", + " gencode_version: str, \n", + " mane_select_version: str\n", + " } \n", + " 'frequency_README': str \n", + " 'date': str \n", + " 'version': str \n", + "----------------------------------------\n", + "Row fields:\n", + " 'locus': locus \n", + " 'alleles': array \n", + " 'freq': array \n", + " 'grpmax': struct {\n", + " gnomad: struct {\n", + " AC: int32, \n", + " AF: float64, \n", + " AN: int32, \n", + " homozygote_count: int64, \n", + " gen_anc: str\n", + " }, \n", + " non_ukb: struct {\n", + " AC: int32, \n", + " AF: float64, \n", + " AN: int32, \n", + " homozygote_count: int64, \n", + " gen_anc: str\n", + " }\n", + " } \n", + " 'faf': array \n", + " 'fafmax': struct {\n", + " gnomad: struct {\n", + " faf95_max: float64, \n", + " faf95_max_gen_anc: str, \n", + " faf99_max: float64, \n", + " faf99_max_gen_anc: str\n", + " }, \n", + " non_ukb: struct {\n", + " faf95_max: float64, \n", + " faf95_max_gen_anc: str, \n", + " faf99_max: float64, \n", + " faf99_max_gen_anc: str\n", + " }\n", + " } \n", + " 'a_index': int32 \n", + " 'was_split': bool \n", + " 'rsid': set \n", + " 'filters': set \n", + " 'info': struct {\n", + " FS: float64, \n", + " MQ: float64, \n", + " MQRankSum: float64, \n", + " QUALapprox: int64, \n", + " QD: float64, \n", + " ReadPosRankSum: float64, \n", + " SB: array, \n", + " SOR: float64, \n", + " VarDP: int32, \n", + " AS_FS: float64, \n", + " AS_MQ: float64, \n", + " AS_MQRankSum: float64, \n", + " AS_pab_max: float64, \n", + " AS_QUALapprox: int64, \n", + " AS_QD: float64, \n", + " AS_ReadPosRankSum: float64, \n", + " AS_SB_TABLE: array, \n", + " AS_SOR: float64, \n", + " AS_VarDP: int32, \n", + " singleton: bool, \n", + " transmitted_singleton: bool, \n", + " sibling_singleton: bool, \n", + " omni: bool, \n", + " mills: bool, \n", + " monoallelic: bool, \n", + " only_het: bool, \n", + " AS_VQSLOD: float64, \n", + " inbreeding_coeff: float64, \n", + " vrs: struct {\n", + " VRS_Allele_IDs: array, \n", + " VRS_Starts: array, \n", + " VRS_Ends: array, \n", + " VRS_States: array\n", + " }\n", + " } \n", + " 'vep': struct {\n", + " allele_string: str, \n", + " end: int32, \n", + " id: str, \n", + " input: str, \n", + " intergenic_consequences: array, \n", + " impact: str, \n", + " variant_allele: str\n", + " }>, \n", + " most_severe_consequence: str, \n", + " motif_feature_consequences: array, \n", + " high_inf_pos: str, \n", + " impact: str, \n", + " motif_feature_id: str, \n", + " motif_name: str, \n", + " motif_pos: int32, \n", + " motif_score_change: float64, \n", + " transcription_factors: array, \n", + " strand: int32, \n", + " variant_allele: str\n", + " }>, \n", + " regulatory_feature_consequences: array, \n", + " impact: str, \n", + " regulatory_feature_id: str, \n", + " variant_allele: str\n", + " }>, \n", + " seq_region_name: str, \n", + " start: int32, \n", + " strand: int32, \n", + " transcript_consequences: array, \n", + " distance: int32, \n", + " domains: array, \n", + " exon: str, \n", + " flags: str, \n", + " gene_id: str, \n", + " gene_pheno: int32, \n", + " gene_symbol: str, \n", + " gene_symbol_source: str, \n", + " hgnc_id: str, \n", + " hgvsc: str, \n", + " hgvsp: str, \n", + " hgvs_offset: int32, \n", + " impact: str, \n", + " intron: str, \n", + " lof: str, \n", + " lof_flags: str, \n", + " lof_filter: str, \n", + " lof_info: str, \n", + " mane_select: str, \n", + " mane_plus_clinical: str, \n", + " mirna: array, \n", + " protein_end: int32, \n", + " protein_start: int32, \n", + " protein_id: str, \n", + " source: str, \n", + " strand: int32, \n", + " transcript_id: str, \n", + " tsl: int32, \n", + " uniprot_isoform: array, \n", + " variant_allele: str\n", + " }>, \n", + " variant_class: str\n", + " } \n", + " 'vqsr_results': struct {\n", + " AS_VQSLOD: float64, \n", + " AS_culprit: str, \n", + " positive_train_site: bool, \n", + " negative_train_site: bool\n", + " } \n", + " 'region_flags': struct {\n", + " non_par: bool, \n", + " lcr: bool, \n", + " segdup: bool, \n", + " fail_interval_qc: bool, \n", + " outside_ukb_capture_region: bool, \n", + " outside_broad_capture_region: bool\n", + " } \n", + " 'allele_info': struct {\n", + " variant_type: str, \n", + " n_alt_alleles: int32, \n", + " has_star: bool, \n", + " allele_type: str, \n", + " was_mixed: bool\n", + " } \n", + " 'histograms': struct {\n", + " qual_hists: struct {\n", + " gq_hist_all: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }, \n", + " dp_hist_all: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }, \n", + " gq_hist_alt: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }, \n", + " dp_hist_alt: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }, \n", + " ab_hist_alt: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }\n", + " }, \n", + " raw_qual_hists: struct {\n", + " gq_hist_all: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }, \n", + " dp_hist_all: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }, \n", + " gq_hist_alt: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }, \n", + " dp_hist_alt: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }, \n", + " ab_hist_alt: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }\n", + " }, \n", + " age_hists: struct {\n", + " age_hist_het: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }, \n", + " age_hist_hom: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }\n", + " }\n", + " } \n", + " 'in_silico_predictors': struct {\n", + " cadd: struct {\n", + " phred: float32, \n", + " raw_score: float32\n", + " }, \n", + " revel_max: float64, \n", + " spliceai_ds_max: float32, \n", + " pangolin_largest_ds: float64, \n", + " phylop: float64, \n", + " sift_max: float64, \n", + " polyphen_max: float64\n", + " } \n", + "----------------------------------------\n", + "Key: ['locus', 'alleles']\n", + "----------------------------------------\n" + ] + } + ], + "source": [ + "ht.describe()" + ] + }, + { + "cell_type": "markdown", + "id": "a071f738b2c888e", + "metadata": { + "tags": [] + }, + "source": [ + "#### Show the first 5 variants in the Hail Table\n" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "222de580c305d72a", + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-06T20:09:20.949958Z", + "start_time": "2024-12-06T20:09:05.622171Z" + } + }, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
histograms
grpmax
fafmax
info
qual_hists
raw_qual_hists
age_hists
in_silico_predictors
gnomad
non_ukb
gnomad
non_ukb
vrs
vep
vqsr_results
region_flags
allele_info
gq_hist_all
dp_hist_all
gq_hist_alt
dp_hist_alt
ab_hist_alt
gq_hist_all
dp_hist_all
gq_hist_alt
dp_hist_alt
ab_hist_alt
age_hist_het
age_hist_hom
cadd
locus
alleles
freq
AC
AF
AN
homozygote_count
gen_anc
AC
AF
AN
homozygote_count
gen_anc
faf
faf95_max
faf95_max_gen_anc
faf99_max
faf99_max_gen_anc
faf95_max
faf95_max_gen_anc
faf99_max
faf99_max_gen_anc
a_index
was_split
rsid
filters
FS
MQ
MQRankSum
QUALapprox
QD
ReadPosRankSum
SB
SOR
VarDP
AS_FS
AS_MQ
AS_MQRankSum
AS_pab_max
AS_QUALapprox
AS_QD
AS_ReadPosRankSum
AS_SB_TABLE
AS_SOR
AS_VarDP
singleton
transmitted_singleton
sibling_singleton
omni
mills
monoallelic
only_het
AS_VQSLOD
inbreeding_coeff
VRS_Allele_IDs
VRS_Starts
VRS_Ends
VRS_States
allele_string
end
id
input
intergenic_consequences
most_severe_consequence
motif_feature_consequences
regulatory_feature_consequences
seq_region_name
start
strand
transcript_consequences
variant_class
AS_VQSLOD
AS_culprit
positive_train_site
negative_train_site
non_par
lcr
segdup
fail_interval_qc
outside_ukb_capture_region
outside_broad_capture_region
variant_type
n_alt_alleles
has_star
allele_type
was_mixed
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
phred
raw_score
revel_max
spliceai_ds_max
pangolin_largest_ds
phylop
sift_max
polyphen_max
locus<GRCh38>array<str>array<struct{AC: int32, AF: float64, AN: int32, homozygote_count: int64}>int32float64int32int64strint32float64int32int64strarray<struct{faf95: float64, faf99: float64}>float64strfloat64strfloat64strfloat64strint32boolset<str>set<str>float64float64float64int64float64float64array<int32>float64int32float64float64float64float64int64float64float64array<int32>float64int32boolboolboolboolboolboolboolfloat64float64array<str>array<int32>array<int32>array<str>strint32strstrarray<struct{allele_num: int32, consequence_terms: array<str>, impact: str, variant_allele: str}>strarray<struct{allele_num: int32, consequence_terms: array<str>, high_inf_pos: str, impact: str, motif_feature_id: str, motif_name: str, motif_pos: int32, motif_score_change: float64, transcription_factors: array<str>, strand: int32, variant_allele: str}>array<struct{allele_num: int32, biotype: str, consequence_terms: array<str>, impact: str, regulatory_feature_id: str, variant_allele: str}>strint32int32array<struct{allele_num: int32, amino_acids: str, appris: str, biotype: str, canonical: int32, ccds: str, cdna_start: int32, cdna_end: int32, cds_end: int32, cds_start: int32, codons: str, consequence_terms: array<str>, distance: int32, domains: array<struct{db: str, name: str}>, exon: str, flags: str, gene_id: str, gene_pheno: int32, gene_symbol: str, gene_symbol_source: str, hgnc_id: str, hgvsc: str, hgvsp: str, hgvs_offset: int32, impact: str, intron: str, lof: str, lof_flags: str, lof_filter: str, lof_info: str, mane_select: str, mane_plus_clinical: str, mirna: array<str>, protein_end: int32, protein_start: int32, protein_id: str, source: str, strand: int32, transcript_id: str, tsl: int32, uniprot_isoform: array<str>, variant_allele: str}>strfloat64strboolboolboolboolboolboolboolboolstrint32boolstrboolarray<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64float32float32float64float32float64float64float64float64
chr1:11994["T","C"][(0,NA,0,0),(2,3.18e-06,628784,1),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(2,3.18e-06,628784,1),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0)]NANANANANANANANANANA[(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]NANANANANANANANA1FalseNA{"AC0","AS_VQSR"}NA2.50e+01NA603.00e+01NA[0,0,2,0]2.30e+002NA2.50e+01NANA603.00e+01NA[0,0,2,0]2.30e+002FalseNANAFalseFalseFalseFalse-5.25e+001.00e+00["ga4gh:VA.ps4-9woXy7o4rS39i8hDK_cUPBa-UcyP","ga4gh:VA.nHlWYJXgiuvXrLAxQsraJ6r-daZ8ELL-"][11993,11993][11994,11994]["T","C"]"T/C"11994".""chr1\t11994\t.\tT\tC\t.\t.\tGT"NA"non_coding_transcript_exon_variant"NANA"chr1"119941[(1,NA,NA,"transcribed_unprocessed_pseudogene",1,NA,NA,NA,NA,NA,NA,["upstream_gene_variant"],16,NA,NA,NA,"ENSG00000223972",NA,"DDX11L1","HGNC","HGNC:37102",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",1,"ENST00000450305",NA,NA,"C"),(1,NA,NA,"processed_transcript",NA,NA,126,126,NA,NA,NA,["non_coding_transcript_exon_variant"],NA,NA,"1/3",NA,"ENSG00000223972",NA,"DDX11L1","HGNC","HGNC:37102","ENST00000456328.2:n.126T>C",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",1,"ENST00000456328",1,NA,"C"),(1,NA,NA,"unprocessed_pseudogene",1,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],2410,NA,NA,NA,"ENSG00000227232",NA,"WASH7P","HGNC","HGNC:38034",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000488147",NA,NA,"C"),(1,NA,NA,"transcribed_pseudogene",1,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],2368,NA,NA,NA,"653635",NA,"WASH7P","EntrezGene","HGNC:38034",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"RefSeq",-1,"NR_024540.1",NA,NA,"C"),(1,NA,NA,"transcribed_pseudogene",1,NA,121,121,NA,NA,NA,["non_coding_transcript_exon_variant"],NA,NA,"1/3",NA,"100287102",NA,"DDX11L1","EntrezGene","HGNC:37102","NR_046018.2:n.121T>C",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"RefSeq",1,"NR_046018.2",NA,NA,"C")]"SNV"-5.25e+00"AS_MQ"FalseFalseFalseFalseTrueNATrueFalse"snv"1False"snv"False[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][314391,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][308845,5547,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]001.26e+011.08e+00NANA-1.10e-011.09e+00NANA
chr1:12016["G","A"][(0,NA,0,0),(6,9.54e-06,628784,2),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(6,9.54e-06,628784,2),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0)]NANANANANANANANANANA[(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]NANANANANANANANA1FalseNA{"AC0","AS_VQSR"}NA2.50e+010.00e+002622.18e+016.74e-01[2,0,10,0]2.67e+0012NA2.50e+010.00e+001.00e+002622.18e+016.74e-01[2,0,10,0]2.67e+0012FalseNANAFalseFalseFalseFalse-2.75e+006.67e-01["ga4gh:VA.VFxwcI4knOzk6SHzS2qowyDGnkG3mfEH","ga4gh:VA.ctgP7qNjQAGjI2eTDopAF-qoBBPmtsW5"][12015,12015][12016,12016]["G","A"]"G/A"12016".""chr1\t12016\t.\tG\tA\t.\t.\tGT"NA"non_coding_transcript_exon_variant"NANA"chr1"120161[(1,NA,NA,"transcribed_unprocessed_pseudogene",1,NA,7,7,NA,NA,NA,["non_coding_transcript_exon_variant"],NA,NA,"1/6",NA,"ENSG00000223972",NA,"DDX11L1","HGNC","HGNC:37102","ENST00000450305.2:n.7G>A",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",1,"ENST00000450305",NA,NA,"A"),(1,NA,NA,"processed_transcript",NA,NA,148,148,NA,NA,NA,["non_coding_transcript_exon_variant"],NA,NA,"1/3",NA,"ENSG00000223972",NA,"DDX11L1","HGNC","HGNC:37102","ENST00000456328.2:n.148G>A",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",1,"ENST00000456328",1,NA,"A"),(1,NA,NA,"unprocessed_pseudogene",1,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],2388,NA,NA,NA,"ENSG00000227232",NA,"WASH7P","HGNC","HGNC:38034",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000488147",NA,NA,"A"),(1,NA,NA,"transcribed_pseudogene",1,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],2346,NA,NA,NA,"653635",NA,"WASH7P","EntrezGene","HGNC:38034",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"RefSeq",-1,"NR_024540.1",NA,NA,"A"),(1,NA,NA,"transcribed_pseudogene",1,NA,143,143,NA,NA,NA,["non_coding_transcript_exon_variant"],NA,NA,"1/3",NA,"100287102",NA,"DDX11L1","EntrezGene","HGNC:37102","NR_046018.2:n.143G>A",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"RefSeq",1,"NR_046018.2",NA,NA,"A")]"SNV"-2.75e+00"AS_MQ"FalseFalseFalseFalseTrueNATrueFalse"snv"1False"snv"False[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][314388,2,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][308845,5547,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,2,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]001.60e+011.54e+00NANA-7.00e-026.55e+00NANA
chr1:12060["CTGGAG","C"][(0,0.00e+00,4,0),(1,1.59e-06,628784,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,0.00e+00,2,0),(0,0.00e+00,4,0),(1,1.59e-06,628784,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,NA,0,0),(0,NA,0,0)]NANANANANANANANANANA[(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]NANANANANANANANA1FalseNA{"AC0","AS_VQSR"}NA2.60e+016.74e-011233.08e+01-1.15e+00[1,0,3,0]1.61e+004NA2.60e+016.74e-016.25e-011233.08e+01-1.15e+00[1,0,3,0]1.61e+004TrueNANAFalseFalseFalseFalse-2.22e+00-1.59e-06["ga4gh:VA.P573ZtUtAaRcceE7NLanEyynSefvcAPL","ga4gh:VA.CHmk9uDiHW2LIHndZWqNHxD1fN_Ta1vn"][12059,12060][12065,12071]["CTGGAG","TGGAGT"]"TGGAG/-"12065".""chr1\t12060\t.\tCTGGAG\tC\t.\t.\tGT"NA"splice_donor_5th_base_variant"NANA"chr1"120611[(1,NA,NA,"transcribed_unprocessed_pseudogene",1,NA,NA,NA,NA,NA,NA,["splice_donor_5th_base_variant","intron_variant","non_coding_transcript_variant"],NA,NA,NA,NA,"ENSG00000223972",NA,"DDX11L1","HGNC","HGNC:37102","ENST00000450305.2:n.48+10_48+14del",NA,NA,"LOW","1/5",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",1,"ENST00000450305",NA,NA,"-"),(1,NA,NA,"processed_transcript",NA,NA,193,197,NA,NA,NA,["non_coding_transcript_exon_variant"],NA,NA,"1/3",NA,"ENSG00000223972",NA,"DDX11L1","HGNC","HGNC:37102","ENST00000456328.2:n.199_203del",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",1,"ENST00000456328",1,NA,"-"),(1,NA,NA,"unprocessed_pseudogene",1,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],2339,NA,NA,NA,"ENSG00000227232",NA,"WASH7P","HGNC","HGNC:38034",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000488147",NA,NA,"-"),(1,NA,NA,"transcribed_pseudogene",1,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],2297,NA,NA,NA,"653635",NA,"WASH7P","EntrezGene","HGNC:38034",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"RefSeq",-1,"NR_024540.1",NA,NA,"-"),(1,NA,NA,"transcribed_pseudogene",1,NA,188,192,NA,NA,NA,["non_coding_transcript_exon_variant"],NA,NA,"1/3",NA,"100287102",NA,"DDX11L1","EntrezGene","HGNC:37102","NR_046018.2:n.194_198del",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"RefSeq",1,"NR_046018.2",NA,NA,"-")]"deletion"-2.22e+00"AS_MQRankSum"FalseTrueFalseFalseTrueNATrueFalse"indel"1False"del"False[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][314380,0,0,0,11,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][308833,5557,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]008.52e+007.07e-01NANA-9.00e-02-4.41e+00NANA
chr1:12074["T","C"][(0,0.00e+00,4,0),(2,3.18e-06,628784,1),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,0.00e+00,4,0),(0,0.00e+00,2,0),(0,0.00e+00,4,0),(0,0.00e+00,4,0),(0,0.00e+00,4,0),(2,3.18e-06,628784,1),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,0.00e+00,4,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0)]NANANANANANANANANANA[(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]NANANANANANANANA1FalseNA{"AC0","AS_VQSR"}NA2.56e+014.31e-01991.24e+01-2.53e-01[4,0,4,0]6.93e-018NA2.56e+014.31e-016.87e-01991.24e+01-2.53e-01[4,0,4,0]6.93e-018FalseNANAFalseFalseFalseFalse-2.18e+001.00e+00["ga4gh:VA.neBeBT28ISe_1-yKPFsYxntP2jz1pj7E","ga4gh:VA.1RPHSwBHNUwoECJ9VVK3hf-KasFb1nfl"][12073,12073][12074,12074]["T","C"]"T/C"12074".""chr1\t12074\t.\tT\tC\t.\t.\tGT"NA"non_coding_transcript_exon_variant"NANA"chr1"120741[(1,NA,NA,"transcribed_unprocessed_pseudogene",1,NA,NA,NA,NA,NA,NA,["intron_variant","non_coding_transcript_variant"],NA,NA,NA,NA,"ENSG00000223972",NA,"DDX11L1","HGNC","HGNC:37102","ENST00000450305.2:n.48+17T>C",NA,NA,"MODIFIER","1/5",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",1,"ENST00000450305",NA,NA,"C"),(1,NA,NA,"processed_transcript",NA,NA,206,206,NA,NA,NA,["non_coding_transcript_exon_variant"],NA,NA,"1/3",NA,"ENSG00000223972",NA,"DDX11L1","HGNC","HGNC:37102","ENST00000456328.2:n.206T>C",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",1,"ENST00000456328",1,NA,"C"),(1,NA,NA,"unprocessed_pseudogene",1,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],2330,NA,NA,NA,"ENSG00000227232",NA,"WASH7P","HGNC","HGNC:38034",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000488147",NA,NA,"C"),(1,NA,NA,"transcribed_pseudogene",1,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],2288,NA,NA,NA,"653635",NA,"WASH7P","EntrezGene","HGNC:38034",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"RefSeq",-1,"NR_024540.1",NA,NA,"C"),(1,NA,NA,"transcribed_pseudogene",1,NA,201,201,NA,NA,NA,["non_coding_transcript_exon_variant"],NA,NA,"1/3",NA,"100287102",NA,"DDX11L1","EntrezGene","HGNC:37102","NR_046018.2:n.201T>C",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"RefSeq",1,"NR_046018.2",NA,NA,"C")]"SNV"-2.18e+00"AS_MQ"FalseFalseFalseFalseTrueNATrueFalse"snv"1False"snv"False[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][314369,1,0,0,20,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][308823,5567,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]001.52e+011.41e+00NANA-4.00e-026.01e+00NANA
chr1:12102["G","A"][(0,0.00e+00,32,0),(2,3.18e-06,628784,1),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,32,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,16,0),(0,0.00e+00,16,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,16,0),(0,0.00e+00,16,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,0.00e+00,6,0),(0,0.00e+00,4,0),(0,0.00e+00,14,0),(0,0.00e+00,8,0),(0,0.00e+00,30,0),(0,0.00e+00,22,0),(0,0.00e+00,32,0),(0,0.00e+00,26,0),(0,0.00e+00,32,0),(2,3.18e-06,628784,1),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,32,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,16,0),(0,0.00e+00,16,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,16,0),(0,0.00e+00,16,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,0.00e+00,6,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,0.00e+00,10,0),(0,0.00e+00,4,0),(0,0.00e+00,20,0),(0,0.00e+00,12,0),(0,0.00e+00,32,0),(0,0.00e+00,20,0),(0,0.00e+00,22,0)]NANANANANANANANANANA[(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]NANANANANANANANA1FalseNA{"AC0","AS_VQSR"}NA2.45e+01NA902.25e+01NA[0,0,4,0]3.26e+004NA2.45e+01NANA902.25e+01NA[0,0,4,0]3.26e+004FalseNANAFalseFalseFalseFalse-2.86e+001.00e+00["ga4gh:VA.ZXRhPWtip8HseOMWpCnaja0-ATo8hLE1","ga4gh:VA.Qi95g6E8nt6DaqTGpH5JX9x4n-pi-kBO"][12101,12101][12102,12102]["G","A"]"G/A"12102".""chr1\t12102\t.\tG\tA\t.\t.\tGT"NA"non_coding_transcript_exon_variant"NANA"chr1"121021[(1,NA,NA,"transcribed_unprocessed_pseudogene",1,NA,NA,NA,NA,NA,NA,["intron_variant","non_coding_transcript_variant"],NA,NA,NA,NA,"ENSG00000223972",NA,"DDX11L1","HGNC","HGNC:37102","ENST00000450305.2:n.48+45G>A",NA,NA,"MODIFIER","1/5",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",1,"ENST00000450305",NA,NA,"A"),(1,NA,NA,"processed_transcript",NA,NA,234,234,NA,NA,NA,["non_coding_transcript_exon_variant"],NA,NA,"1/3",NA,"ENSG00000223972",NA,"DDX11L1","HGNC","HGNC:37102","ENST00000456328.2:n.234G>A",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",1,"ENST00000456328",1,NA,"A"),(1,NA,NA,"unprocessed_pseudogene",1,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],2302,NA,NA,NA,"ENSG00000227232",NA,"WASH7P","HGNC","HGNC:38034",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000488147",NA,NA,"A"),(1,NA,NA,"transcribed_pseudogene",1,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],2260,NA,NA,NA,"653635",NA,"WASH7P","EntrezGene","HGNC:38034",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"RefSeq",-1,"NR_024540.1",NA,NA,"A"),(1,NA,NA,"transcribed_pseudogene",1,NA,229,229,NA,NA,NA,["non_coding_transcript_exon_variant"],NA,NA,"1/3",NA,"100287102",NA,"DDX11L1","EntrezGene","HGNC:37102","NR_046018.2:n.229G>A",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"RefSeq",1,"NR_046018.2",NA,NA,"A")]"SNV"-2.86e+00"AS_MQ"FalseFalseFalseFalseTrueNATrueFalse"snv"1False"snv"False[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,2,0,12,0,2,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,14,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][314323,1,0,0,54,0,12,0,2,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][308789,5585,16,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]004.42e+003.11e-01NANA-8.00e-021.38e+00NANA

showing top 5 rows

\n" + ], + "text/plain": [ + "+---------------+----------------+\n", + "| locus | alleles |\n", + "+---------------+----------------+\n", + "| locus | array |\n", + "+---------------+----------------+\n", + "| chr1:11994 | [\"T\",\"C\"] |\n", + "| chr1:12016 | [\"G\",\"A\"] |\n", + "| chr1:12060 | [\"CTGGAG\",\"C\"] |\n", + "| chr1:12074 | [\"T\",\"C\"] |\n", + "| chr1:12102 | [\"G\",\"A\"] |\n", + "+---------------+----------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| freq |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [(0,NA,0,0),(2,3.18e-06,628784,1),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,... |\n", + "| [(0,NA,0,0),(6,9.54e-06,628784,2),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,... |\n", + "| [(0,0.00e+00,4,0),(1,1.59e-06,628784,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),... |\n", + "| [(0,0.00e+00,4,0),(2,3.18e-06,628784,1),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),... |\n", + "| [(0,0.00e+00,32,0),(2,3.18e-06,628784,1),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0)... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+------------------+------------------+------------------+\n", + "| grpmax.gnomad.AC | grpmax.gnomad.AF | grpmax.gnomad.AN |\n", + "+------------------+------------------+------------------+\n", + "| int32 | float64 | int32 |\n", + "+------------------+------------------+------------------+\n", + "| NA | NA | NA |\n", + "| NA | NA | NA |\n", + "| NA | NA | NA |\n", + "| NA | NA | NA |\n", + "| NA | NA | NA |\n", + "+------------------+------------------+------------------+\n", + "\n", + "+--------------------------------+-----------------------+-------------------+\n", + "| grpmax.gnomad.homozygote_count | grpmax.gnomad.gen_anc | grpmax.non_ukb.AC |\n", + "+--------------------------------+-----------------------+-------------------+\n", + "| int64 | str | int32 |\n", + "+--------------------------------+-----------------------+-------------------+\n", + "| NA | NA | NA |\n", + "| NA | NA | NA |\n", + "| NA | NA | NA |\n", + "| NA | NA | NA |\n", + "| NA | NA | NA |\n", + "+--------------------------------+-----------------------+-------------------+\n", + "\n", + "+-------------------+-------------------+---------------------------------+\n", + "| grpmax.non_ukb.AF | grpmax.non_ukb.AN | grpmax.non_ukb.homozygote_count |\n", + "+-------------------+-------------------+---------------------------------+\n", + "| float64 | int32 | int64 |\n", + "+-------------------+-------------------+---------------------------------+\n", + "| NA | NA | NA |\n", + "| NA | NA | NA |\n", + "| NA | NA | NA |\n", + "| NA | NA | NA |\n", + "| NA | NA | NA |\n", + "+-------------------+-------------------+---------------------------------+\n", + "\n", + "+------------------------+\n", + "| grpmax.non_ukb.gen_anc |\n", + "+------------------------+\n", + "| str |\n", + "+------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| faf |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.... |\n", + "| [(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.... |\n", + "| [(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.... |\n", + "| [(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.... |\n", + "| [(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+-------------------------+---------------------------------+\n", + "| fafmax.gnomad.faf95_max | fafmax.gnomad.faf95_max_gen_anc |\n", + "+-------------------------+---------------------------------+\n", + "| float64 | str |\n", + "+-------------------------+---------------------------------+\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "+-------------------------+---------------------------------+\n", + "\n", + "+-------------------------+---------------------------------+\n", + "| fafmax.gnomad.faf99_max | fafmax.gnomad.faf99_max_gen_anc |\n", + "+-------------------------+---------------------------------+\n", + "| float64 | str |\n", + "+-------------------------+---------------------------------+\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "+-------------------------+---------------------------------+\n", + "\n", + "+--------------------------+----------------------------------+\n", + "| fafmax.non_ukb.faf95_max | fafmax.non_ukb.faf95_max_gen_anc |\n", + "+--------------------------+----------------------------------+\n", + "| float64 | str |\n", + "+--------------------------+----------------------------------+\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "+--------------------------+----------------------------------+\n", + "\n", + "+--------------------------+----------------------------------+---------+\n", + "| fafmax.non_ukb.faf99_max | fafmax.non_ukb.faf99_max_gen_anc | a_index |\n", + "+--------------------------+----------------------------------+---------+\n", + "| float64 | str | int32 |\n", + "+--------------------------+----------------------------------+---------+\n", + "| NA | NA | 1 |\n", + "| NA | NA | 1 |\n", + "| NA | NA | 1 |\n", + "| NA | NA | 1 |\n", + "| NA | NA | 1 |\n", + "+--------------------------+----------------------------------+---------+\n", + "\n", + "+-----------+----------+-------------------+---------+----------+\n", + "| was_split | rsid | filters | info.FS | info.MQ |\n", + "+-----------+----------+-------------------+---------+----------+\n", + "| bool | set | set | float64 | float64 |\n", + "+-----------+----------+-------------------+---------+----------+\n", + "| False | NA | {\"AC0\",\"AS_VQSR\"} | NA | 2.50e+01 |\n", + "| False | NA | {\"AC0\",\"AS_VQSR\"} | NA | 2.50e+01 |\n", + "| False | NA | {\"AC0\",\"AS_VQSR\"} | NA | 2.60e+01 |\n", + "| False | NA | {\"AC0\",\"AS_VQSR\"} | NA | 2.56e+01 |\n", + "| False | NA | {\"AC0\",\"AS_VQSR\"} | NA | 2.45e+01 |\n", + "+-----------+----------+-------------------+---------+----------+\n", + "\n", + "+----------------+-----------------+----------+---------------------+\n", + "| info.MQRankSum | info.QUALapprox | info.QD | info.ReadPosRankSum |\n", + "+----------------+-----------------+----------+---------------------+\n", + "| float64 | int64 | float64 | float64 |\n", + "+----------------+-----------------+----------+---------------------+\n", + "| NA | 60 | 3.00e+01 | NA |\n", + "| 0.00e+00 | 262 | 2.18e+01 | 6.74e-01 |\n", + "| 6.74e-01 | 123 | 3.08e+01 | -1.15e+00 |\n", + "| 4.31e-01 | 99 | 1.24e+01 | -2.53e-01 |\n", + "| NA | 90 | 2.25e+01 | NA |\n", + "+----------------+-----------------+----------+---------------------+\n", + "\n", + "+--------------+----------+------------+------------+------------+\n", + "| info.SB | info.SOR | info.VarDP | info.AS_FS | info.AS_MQ |\n", + "+--------------+----------+------------+------------+------------+\n", + "| array | float64 | int32 | float64 | float64 |\n", + "+--------------+----------+------------+------------+------------+\n", + "| [0,0,2,0] | 2.30e+00 | 2 | NA | 2.50e+01 |\n", + "| [2,0,10,0] | 2.67e+00 | 12 | NA | 2.50e+01 |\n", + "| [1,0,3,0] | 1.61e+00 | 4 | NA | 2.60e+01 |\n", + "| [4,0,4,0] | 6.93e-01 | 8 | NA | 2.56e+01 |\n", + "| [0,0,4,0] | 3.26e+00 | 4 | NA | 2.45e+01 |\n", + "+--------------+----------+------------+------------+------------+\n", + "\n", + "+-------------------+-----------------+--------------------+------------+\n", + "| info.AS_MQRankSum | info.AS_pab_max | info.AS_QUALapprox | info.AS_QD |\n", + "+-------------------+-----------------+--------------------+------------+\n", + "| float64 | float64 | int64 | float64 |\n", + "+-------------------+-----------------+--------------------+------------+\n", + "| NA | NA | 60 | 3.00e+01 |\n", + "| 0.00e+00 | 1.00e+00 | 262 | 2.18e+01 |\n", + "| 6.74e-01 | 6.25e-01 | 123 | 3.08e+01 |\n", + "| 4.31e-01 | 6.87e-01 | 99 | 1.24e+01 |\n", + "| NA | NA | 90 | 2.25e+01 |\n", + "+-------------------+-----------------+--------------------+------------+\n", + "\n", + "+------------------------+------------------+-------------+---------------+\n", + "| info.AS_ReadPosRankSum | info.AS_SB_TABLE | info.AS_SOR | info.AS_VarDP |\n", + "+------------------------+------------------+-------------+---------------+\n", + "| float64 | array | float64 | int32 |\n", + "+------------------------+------------------+-------------+---------------+\n", + "| NA | [0,0,2,0] | 2.30e+00 | 2 |\n", + "| 6.74e-01 | [2,0,10,0] | 2.67e+00 | 12 |\n", + "| -1.15e+00 | [1,0,3,0] | 1.61e+00 | 4 |\n", + "| -2.53e-01 | [4,0,4,0] | 6.93e-01 | 8 |\n", + "| NA | [0,0,4,0] | 3.26e+00 | 4 |\n", + "+------------------------+------------------+-------------+---------------+\n", + "\n", + "+----------------+----------------------------+------------------------+\n", + "| info.singleton | info.transmitted_singleton | info.sibling_singleton |\n", + "+----------------+----------------------------+------------------------+\n", + "| bool | bool | bool |\n", + "+----------------+----------------------------+------------------------+\n", + "| False | NA | NA |\n", + "| False | NA | NA |\n", + "| True | NA | NA |\n", + "| False | NA | NA |\n", + "| False | NA | NA |\n", + "+----------------+----------------------------+------------------------+\n", + "\n", + "+-----------+------------+------------------+---------------+----------------+\n", + "| info.omni | info.mills | info.monoallelic | info.only_het | info.AS_VQSLOD |\n", + "+-----------+------------+------------------+---------------+----------------+\n", + "| bool | bool | bool | bool | float64 |\n", + "+-----------+------------+------------------+---------------+----------------+\n", + "| False | False | False | False | -5.25e+00 |\n", + "| False | False | False | False | -2.75e+00 |\n", + "| False | False | False | False | -2.22e+00 |\n", + "| False | False | False | False | -2.18e+00 |\n", + "| False | False | False | False | -2.86e+00 |\n", + "+-----------+------------+------------------+---------------+----------------+\n", + "\n", + "+-----------------------+\n", + "| info.inbreeding_coeff |\n", + "+-----------------------+\n", + "| float64 |\n", + "+-----------------------+\n", + "| 1.00e+00 |\n", + "| 6.67e-01 |\n", + "| -1.59e-06 |\n", + "| 1.00e+00 |\n", + "| 1.00e+00 |\n", + "+-----------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| info.vrs.VRS_Allele_IDs |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [\"ga4gh:VA.ps4-9woXy7o4rS39i8hDK_cUPBa-UcyP\",\"ga4gh:VA.nHlWYJXgiuvXrLAxQs... |\n", + "| [\"ga4gh:VA.VFxwcI4knOzk6SHzS2qowyDGnkG3mfEH\",\"ga4gh:VA.ctgP7qNjQAGjI2eTDo... |\n", + "| [\"ga4gh:VA.P573ZtUtAaRcceE7NLanEyynSefvcAPL\",\"ga4gh:VA.CHmk9uDiHW2LIHndZW... |\n", + "| [\"ga4gh:VA.neBeBT28ISe_1-yKPFsYxntP2jz1pj7E\",\"ga4gh:VA.1RPHSwBHNUwoECJ9VV... |\n", + "| [\"ga4gh:VA.ZXRhPWtip8HseOMWpCnaja0-ATo8hLE1\",\"ga4gh:VA.Qi95g6E8nt6DaqTGpH... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+---------------------+-------------------+---------------------+\n", + "| info.vrs.VRS_Starts | info.vrs.VRS_Ends | info.vrs.VRS_States |\n", + "+---------------------+-------------------+---------------------+\n", + "| array | array | array |\n", + "+---------------------+-------------------+---------------------+\n", + "| [11993,11993] | [11994,11994] | [\"T\",\"C\"] |\n", + "| [12015,12015] | [12016,12016] | [\"G\",\"A\"] |\n", + "| [12059,12060] | [12065,12071] | [\"CTGGAG\",\"TGGAGT\"] |\n", + "| [12073,12073] | [12074,12074] | [\"T\",\"C\"] |\n", + "| [12101,12101] | [12102,12102] | [\"G\",\"A\"] |\n", + "+---------------------+-------------------+---------------------+\n", + "\n", + "+-------------------+---------+--------+--------------------------------+\n", + "| vep.allele_string | vep.end | vep.id | vep.input |\n", + "+-------------------+---------+--------+--------------------------------+\n", + "| str | int32 | str | str |\n", + "+-------------------+---------+--------+--------------------------------+\n", + "| \"T/C\" | 11994 | \".\" | \"chr1\t11994\t.\tT\tC\t.\t.\tGT\" |\n", + "| \"G/A\" | 12016 | \".\" | \"chr1\t12016\t.\tG\tA\t.\t.\tGT\" |\n", + "| \"TGGAG/-\" | 12065 | \".\" | \"chr1\t12060\t.\tCTGGAG\tC\t.\t.\tGT\" |\n", + "| \"T/C\" | 12074 | \".\" | \"chr1\t12074\t.\tT\tC\t.\t.\tGT\" |\n", + "| \"G/A\" | 12102 | \".\" | \"chr1\t12102\t.\tG\tA\t.\t.\tGT\" |\n", + "+-------------------+---------+--------+--------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| vep.intergenic_consequences |\n", + "+------------------------------------------------------------------------------+\n", + "| array, impact: st... |\n", + "+------------------------------------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+--------------------------------------+\n", + "| vep.most_severe_consequence |\n", + "+--------------------------------------+\n", + "| str |\n", + "+--------------------------------------+\n", + "| \"non_coding_transcript_exon_variant\" |\n", + "| \"non_coding_transcript_exon_variant\" |\n", + "| \"splice_donor_5th_base_variant\" |\n", + "| \"non_coding_transcript_exon_variant\" |\n", + "| \"non_coding_transcript_exon_variant\" |\n", + "+--------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| vep.motif_feature_consequences |\n", + "+------------------------------------------------------------------------------+\n", + "| array, high_inf_p... |\n", + "+------------------------------------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| vep.regulatory_feature_consequences |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.qual_hists.gq_hist_all.bin_freq |\n", + "+--------------------------------------------+\n", + "| array |\n", + "+--------------------------------------------+\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,2,0,12,0,2,0,0,0,0,0,0,0,0,0,0,0] |\n", + "+--------------------------------------------+\n", + "\n", + "+---------------------------------------------+\n", + "| histograms.qual_hists.gq_hist_all.n_smaller |\n", + "+---------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+---------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.qual_hists.gq_hist_all.n_larger |\n", + "+--------------------------------------------+\n", + "| int64 |\n", + "+--------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+--------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.qual_hists.dp_hist_all.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.qual_hists.dp_hist_all.bin_freq |\n", + "+--------------------------------------------+\n", + "| array |\n", + "+--------------------------------------------+\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,14,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "+--------------------------------------------+\n", + "\n", + "+---------------------------------------------+\n", + "| histograms.qual_hists.dp_hist_all.n_smaller |\n", + "+---------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+---------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.qual_hists.dp_hist_all.n_larger |\n", + "+--------------------------------------------+\n", + "| int64 |\n", + "+--------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+--------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.qual_hists.gq_hist_alt.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.qual_hists.gq_hist_alt.bin_freq |\n", + "+--------------------------------------------+\n", + "| array |\n", + "+--------------------------------------------+\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "+--------------------------------------------+\n", + "\n", + "+---------------------------------------------+\n", + "| histograms.qual_hists.gq_hist_alt.n_smaller |\n", + "+---------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+---------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.qual_hists.gq_hist_alt.n_larger |\n", + "+--------------------------------------------+\n", + "| int64 |\n", + "+--------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+--------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.qual_hists.dp_hist_alt.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.qual_hists.dp_hist_alt.bin_freq |\n", + "+--------------------------------------------+\n", + "| array |\n", + "+--------------------------------------------+\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "+--------------------------------------------+\n", + "\n", + "+---------------------------------------------+\n", + "| histograms.qual_hists.dp_hist_alt.n_smaller |\n", + "+---------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+---------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.qual_hists.dp_hist_alt.n_larger |\n", + "+--------------------------------------------+\n", + "| int64 |\n", + "+--------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+--------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.qual_hists.ab_hist_alt.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.qual_hists.ab_hist_alt.bin_freq |\n", + "+--------------------------------------------+\n", + "| array |\n", + "+--------------------------------------------+\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "+--------------------------------------------+\n", + "\n", + "+---------------------------------------------+\n", + "| histograms.qual_hists.ab_hist_alt.n_smaller |\n", + "+---------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+---------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.qual_hists.ab_hist_alt.n_larger |\n", + "+--------------------------------------------+\n", + "| int64 |\n", + "+--------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+--------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.raw_qual_hists.gq_hist_all.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+--------------------------------------------------+\n", + "| histograms.raw_qual_hists.gq_hist_all.bin_freq |\n", + "+--------------------------------------------------+\n", + "| array |\n", + "+--------------------------------------------------+\n", + "| [314391,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [314388,2,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [314380,0,0,0,11,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0] |\n", + "| [314369,1,0,0,20,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [314323,1,0,0,54,0,12,0,2,0,0,0,0,0,0,0,0,0,0,0] |\n", + "+--------------------------------------------------+\n", + "\n", + "+-------------------------------------------------+\n", + "| histograms.raw_qual_hists.gq_hist_all.n_smaller |\n", + "+-------------------------------------------------+\n", + "| int64 |\n", + "+-------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+-------------------------------------------------+\n", + "\n", + "+------------------------------------------------+\n", + "| histograms.raw_qual_hists.gq_hist_all.n_larger |\n", + "+------------------------------------------------+\n", + "| int64 |\n", + "+------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.raw_qual_hists.dp_hist_all.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+----------------------------------------------------+\n", + "| histograms.raw_qual_hists.dp_hist_all.bin_freq |\n", + "+----------------------------------------------------+\n", + "| array |\n", + "+----------------------------------------------------+\n", + "| [308845,5547,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [308845,5547,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [308833,5557,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [308823,5567,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [308789,5585,16,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "+----------------------------------------------------+\n", + "\n", + "+-------------------------------------------------+\n", + "| histograms.raw_qual_hists.dp_hist_all.n_smaller |\n", + "+-------------------------------------------------+\n", + "| int64 |\n", + "+-------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+-------------------------------------------------+\n", + "\n", + "+------------------------------------------------+\n", + "| histograms.raw_qual_hists.dp_hist_all.n_larger |\n", + "+------------------------------------------------+\n", + "| int64 |\n", + "+------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.raw_qual_hists.gq_hist_alt.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+------------------------------------------------+\n", + "| histograms.raw_qual_hists.gq_hist_alt.bin_freq |\n", + "+------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------+\n", + "| [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,2,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0] |\n", + "| [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "+------------------------------------------------+\n", + "\n", + "+-------------------------------------------------+\n", + "| histograms.raw_qual_hists.gq_hist_alt.n_smaller |\n", + "+-------------------------------------------------+\n", + "| int64 |\n", + "+-------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+-------------------------------------------------+\n", + "\n", + "+------------------------------------------------+\n", + "| histograms.raw_qual_hists.gq_hist_alt.n_larger |\n", + "+------------------------------------------------+\n", + "| int64 |\n", + "+------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.raw_qual_hists.dp_hist_alt.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+------------------------------------------------+\n", + "| histograms.raw_qual_hists.dp_hist_alt.bin_freq |\n", + "+------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------+\n", + "| [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "+------------------------------------------------+\n", + "\n", + "+-------------------------------------------------+\n", + "| histograms.raw_qual_hists.dp_hist_alt.n_smaller |\n", + "+-------------------------------------------------+\n", + "| int64 |\n", + "+-------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+-------------------------------------------------+\n", + "\n", + "+------------------------------------------------+\n", + "| histograms.raw_qual_hists.dp_hist_alt.n_larger |\n", + "+------------------------------------------------+\n", + "| int64 |\n", + "+------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.raw_qual_hists.ab_hist_alt.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+------------------------------------------------+\n", + "| histograms.raw_qual_hists.ab_hist_alt.bin_freq |\n", + "+------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------+\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "+------------------------------------------------+\n", + "\n", + "+-------------------------------------------------+\n", + "| histograms.raw_qual_hists.ab_hist_alt.n_smaller |\n", + "+-------------------------------------------------+\n", + "| int64 |\n", + "+-------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+-------------------------------------------------+\n", + "\n", + "+------------------------------------------------+\n", + "| histograms.raw_qual_hists.ab_hist_alt.n_larger |\n", + "+------------------------------------------------+\n", + "| int64 |\n", + "+------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.age_hists.age_hist_het.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.age_hists.age_hist_het.bin_freq |\n", + "+--------------------------------------------+\n", + "| array |\n", + "+--------------------------------------------+\n", + "| [0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0] |\n", + "+--------------------------------------------+\n", + "\n", + "+---------------------------------------------+\n", + "| histograms.age_hists.age_hist_het.n_smaller |\n", + "+---------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+---------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.age_hists.age_hist_het.n_larger |\n", + "+--------------------------------------------+\n", + "| int64 |\n", + "+--------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+--------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.age_hists.age_hist_hom.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.age_hists.age_hist_hom.bin_freq |\n", + "+--------------------------------------------+\n", + "| array |\n", + "+--------------------------------------------+\n", + "| [0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0] |\n", + "+--------------------------------------------+\n", + "\n", + "+---------------------------------------------+\n", + "| histograms.age_hists.age_hist_hom.n_smaller |\n", + "+---------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+---------------------------------------------+\n", + "\n", + "+--------------------------------------------+---------------------------------+\n", + "| histograms.age_hists.age_hist_hom.n_larger | in_silico_predictors.cadd.phred |\n", + "+--------------------------------------------+---------------------------------+\n", + "| int64 | float32 |\n", + "+--------------------------------------------+---------------------------------+\n", + "| 0 | 1.26e+01 |\n", + "| 0 | 1.60e+01 |\n", + "| 0 | 8.52e+00 |\n", + "| 0 | 1.52e+01 |\n", + "| 0 | 4.42e+00 |\n", + "+--------------------------------------------+---------------------------------+\n", + "\n", + "+-------------------------------------+--------------------------------+\n", + "| in_silico_predictors.cadd.raw_score | in_silico_predictors.revel_max |\n", + "+-------------------------------------+--------------------------------+\n", + "| float32 | float64 |\n", + "+-------------------------------------+--------------------------------+\n", + "| 1.08e+00 | NA |\n", + "| 1.54e+00 | NA |\n", + "| 7.07e-01 | NA |\n", + "| 1.41e+00 | NA |\n", + "| 3.11e-01 | NA |\n", + "+-------------------------------------+--------------------------------+\n", + "\n", + "+--------------------------------------+\n", + "| in_silico_predictors.spliceai_ds_max |\n", + "+--------------------------------------+\n", + "| float32 |\n", + "+--------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+--------------------------------------+\n", + "\n", + "+------------------------------------------+-----------------------------+\n", + "| in_silico_predictors.pangolin_largest_ds | in_silico_predictors.phylop |\n", + "+------------------------------------------+-----------------------------+\n", + "| float64 | float64 |\n", + "+------------------------------------------+-----------------------------+\n", + "| -1.10e-01 | 1.09e+00 |\n", + "| -7.00e-02 | 6.55e+00 |\n", + "| -9.00e-02 | -4.41e+00 |\n", + "| -4.00e-02 | 6.01e+00 |\n", + "| -8.00e-02 | 1.38e+00 |\n", + "+------------------------------------------+-----------------------------+\n", + "\n", + "+-------------------------------+-----------------------------------+\n", + "| in_silico_predictors.sift_max | in_silico_predictors.polyphen_max |\n", + "+-------------------------------+-----------------------------------+\n", + "| float64 | float64 |\n", + "+-------------------------------+-----------------------------------+\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "+-------------------------------+-----------------------------------+\n", + "showing top 5 rows" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "ht.show(5)" + ] + }, + { + "cell_type": "markdown", + "id": "b7a158a3-f21a-4f87-9596-1f918156d713", + "metadata": { + "tags": [] + }, + "source": [ + "### v4.1 genomes Hail Table" + ] + }, + { + "cell_type": "markdown", + "id": "30f86500-afc5-419e-ae2e-f944dc461fee", + "metadata": {}, + "source": [ + "#### Load the Hail Table\n" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "62ca9934-20dd-437e-898b-86a056e2606e", + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-06T20:08:59.197890Z", + "start_time": "2024-12-06T20:08:50.859108Z" + } + }, + "outputs": [], + "source": [ + "ht = get_gnomad_release(data_type='genomes', version='4.1')" + ] + }, + { + "cell_type": "markdown", + "id": "9cf4b782-f289-47b6-9123-d08ca761b074", + "metadata": {}, + "source": [ + "#### Print the schema of the Hail Table\n" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "09de90df-0b03-4a54-817c-c8a0606026f6", + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-06T20:09:00.032524Z", + "start_time": "2024-12-06T20:09:00.029271Z" + }, + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "----------------------------------------\n", + "Global fields:\n", + " 'freq_meta': array> \n", + " 'freq_index_dict': dict \n", + " 'freq_meta_sample_count': array \n", + " 'faf_meta': array> \n", + " 'faf_index_dict': dict \n", + " 'age_distribution': struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int32, \n", + " n_larger: int32\n", + " } \n", + " 'filtering_model': struct {\n", + " filter_name: str, \n", + " score_name: str, \n", + " snv_cutoff: struct {\n", + " bin: int32, \n", + " min_score: float64\n", + " }, \n", + " indel_cutoff: struct {\n", + " bin: int32, \n", + " min_score: float64\n", + " }, \n", + " snv_training_variables: array, \n", + " indel_training_variables: array\n", + " } \n", + " 'inbreeding_coeff_cutoff': float64 \n", + " 'tool_versions': struct {\n", + " cadd_version: str, \n", + " revel_version: str, \n", + " spliceai_version: str, \n", + " pangolin_version: array, \n", + " phylop_version: str, \n", + " dbsnp_version: str, \n", + " sift_version: str, \n", + " polyphen_version: str\n", + " } \n", + " 'vrs_versions': struct {\n", + " vrs_schema_version: str, \n", + " vrs_python_version: str, \n", + " seqrepo_version: str\n", + " } \n", + " 'vep_globals': struct {\n", + " vep_version: str, \n", + " vep_help: str, \n", + " vep_config: str, \n", + " gencode_version: str, \n", + " mane_select_version: str\n", + " } \n", + " 'frequency_README': str \n", + " 'date': str \n", + " 'version': str \n", + "----------------------------------------\n", + "Row fields:\n", + " 'locus': locus \n", + " 'alleles': array \n", + " 'freq': array \n", + " 'grpmax': struct {\n", + " AC: int32, \n", + " AF: float64, \n", + " AN: int32, \n", + " homozygote_count: int32, \n", + " gen_anc: str\n", + " } \n", + " 'faf': array \n", + " 'fafmax': struct {\n", + " faf95_max: float64, \n", + " faf95_max_gen_anc: str, \n", + " faf99_max: float64, \n", + " faf99_max_gen_anc: str\n", + " } \n", + " 'a_index': int32 \n", + " 'was_split': bool \n", + " 'rsid': set \n", + " 'filters': set \n", + " 'info': struct {\n", + " FS: float64, \n", + " MQ: float64, \n", + " MQRankSum: float64, \n", + " QUALapprox: int64, \n", + " QD: float32, \n", + " ReadPosRankSum: float64, \n", + " SB: array, \n", + " SOR: float64, \n", + " VarDP: int32, \n", + " AS_FS: float64, \n", + " AS_MQ: float64, \n", + " AS_MQRankSum: float64, \n", + " AS_pab_max: float64, \n", + " AS_QUALapprox: int64, \n", + " AS_QD: float32, \n", + " AS_ReadPosRankSum: float64, \n", + " AS_SB_TABLE: array, \n", + " AS_SOR: float64, \n", + " AS_VarDP: int32, \n", + " singleton: bool, \n", + " transmitted_singleton: bool, \n", + " omni: bool, \n", + " mills: bool, \n", + " monoallelic: bool, \n", + " only_het: bool, \n", + " AS_VQSLOD: float64, \n", + " inbreeding_coeff: float64, \n", + " vrs: struct {\n", + " VRS_Allele_IDs: array, \n", + " VRS_Starts: array, \n", + " VRS_Ends: array, \n", + " VRS_States: array\n", + " }\n", + " } \n", + " 'vep': struct {\n", + " allele_string: str, \n", + " end: int32, \n", + " id: str, \n", + " input: str, \n", + " intergenic_consequences: array, \n", + " impact: str, \n", + " variant_allele: str\n", + " }>, \n", + " most_severe_consequence: str, \n", + " motif_feature_consequences: array, \n", + " high_inf_pos: str, \n", + " impact: str, \n", + " motif_feature_id: str, \n", + " motif_name: str, \n", + " motif_pos: int32, \n", + " motif_score_change: float64, \n", + " transcription_factors: array, \n", + " strand: int32, \n", + " variant_allele: str\n", + " }>, \n", + " regulatory_feature_consequences: array, \n", + " impact: str, \n", + " regulatory_feature_id: str, \n", + " variant_allele: str\n", + " }>, \n", + " seq_region_name: str, \n", + " start: int32, \n", + " strand: int32, \n", + " transcript_consequences: array, \n", + " distance: int32, \n", + " domains: array, \n", + " exon: str, \n", + " flags: str, \n", + " gene_id: str, \n", + " gene_pheno: int32, \n", + " gene_symbol: str, \n", + " gene_symbol_source: str, \n", + " hgnc_id: str, \n", + " hgvsc: str, \n", + " hgvsp: str, \n", + " hgvs_offset: int32, \n", + " impact: str, \n", + " intron: str, \n", + " lof: str, \n", + " lof_flags: str, \n", + " lof_filter: str, \n", + " lof_info: str, \n", + " mane_select: str, \n", + " mane_plus_clinical: str, \n", + " mirna: array, \n", + " protein_end: int32, \n", + " protein_start: int32, \n", + " protein_id: str, \n", + " source: str, \n", + " strand: int32, \n", + " transcript_id: str, \n", + " tsl: int32, \n", + " uniprot_isoform: array, \n", + " variant_allele: str\n", + " }>, \n", + " variant_class: str\n", + " } \n", + " 'vqsr_results': struct {\n", + " AS_VQSLOD: float64, \n", + " AS_culprit: str, \n", + " positive_train_site: bool, \n", + " negative_train_site: bool\n", + " } \n", + " 'region_flags': struct {\n", + " non_par: bool, \n", + " lcr: bool, \n", + " segdup: bool\n", + " } \n", + " 'allele_info': struct {\n", + " allele_type: str, \n", + " n_alt_alleles: int32, \n", + " variant_type: str, \n", + " was_mixed: bool\n", + " } \n", + " 'histograms': struct {\n", + " qual_hists: struct {\n", + " gq_hist_all: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }, \n", + " dp_hist_all: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }, \n", + " gq_hist_alt: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }, \n", + " dp_hist_alt: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }, \n", + " ab_hist_alt: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }\n", + " }, \n", + " raw_qual_hists: struct {\n", + " gq_hist_all: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }, \n", + " dp_hist_all: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }, \n", + " gq_hist_alt: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }, \n", + " dp_hist_alt: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }, \n", + " ab_hist_alt: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }\n", + " }, \n", + " age_hists: struct {\n", + " age_hist_het: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }, \n", + " age_hist_hom: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }\n", + " }\n", + " } \n", + " 'in_silico_predictors': struct {\n", + " cadd: struct {\n", + " phred: float32, \n", + " raw_score: float32\n", + " }, \n", + " revel_max: float64, \n", + " spliceai_ds_max: float32, \n", + " pangolin_largest_ds: float64, \n", + " phylop: float64, \n", + " sift_max: float64, \n", + " polyphen_max: float64\n", + " } \n", + "----------------------------------------\n", + "Key: ['locus', 'alleles']\n", + "----------------------------------------\n" + ] + } + ], + "source": [ + "ht.describe()" + ] + }, + { + "cell_type": "markdown", + "id": "ed916197-3b0e-45dc-bacd-a13cb66d70ee", + "metadata": { + "tags": [] + }, + "source": [ + "#### Show the first 5 variants in the Hail Table" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "00b0ea2f-5685-4bae-886a-b9ea31866818", + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-06T20:09:20.949958Z", + "start_time": "2024-12-06T20:09:05.622171Z" + } + }, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
histograms
info
qual_hists
raw_qual_hists
age_hists
in_silico_predictors
grpmax
fafmax
vrs
vep
vqsr_results
region_flags
allele_info
gq_hist_all
dp_hist_all
gq_hist_alt
dp_hist_alt
ab_hist_alt
gq_hist_all
dp_hist_all
gq_hist_alt
dp_hist_alt
ab_hist_alt
age_hist_het
age_hist_hom
cadd
locus
alleles
freq
AC
AF
AN
homozygote_count
gen_anc
faf
faf95_max
faf95_max_gen_anc
faf99_max
faf99_max_gen_anc
a_index
was_split
rsid
filters
FS
MQ
MQRankSum
QUALapprox
QD
ReadPosRankSum
SB
SOR
VarDP
AS_FS
AS_MQ
AS_MQRankSum
AS_pab_max
AS_QUALapprox
AS_QD
AS_ReadPosRankSum
AS_SB_TABLE
AS_SOR
AS_VarDP
singleton
transmitted_singleton
omni
mills
monoallelic
only_het
AS_VQSLOD
inbreeding_coeff
VRS_Allele_IDs
VRS_Starts
VRS_Ends
VRS_States
allele_string
end
id
input
intergenic_consequences
most_severe_consequence
motif_feature_consequences
regulatory_feature_consequences
seq_region_name
start
strand
transcript_consequences
variant_class
AS_VQSLOD
AS_culprit
positive_train_site
negative_train_site
non_par
lcr
segdup
allele_type
n_alt_alleles
variant_type
was_mixed
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
phred
raw_score
revel_max
spliceai_ds_max
pangolin_largest_ds
phylop
sift_max
polyphen_max
locus<GRCh38>array<str>array<struct{AC: int32, AF: float64, AN: int32, homozygote_count: int32}>int32float64int32int32strarray<struct{faf95: float64, faf99: float64}>float64strfloat64strint32boolset<str>set<str>float64float64float64int64float32float64array<int32>float64int32float64float64float64float64int64float32float64array<int32>float64int32boolboolboolboolboolboolfloat64float64array<str>array<int32>array<int32>array<str>strint32strstrarray<struct{allele_num: int32, consequence_terms: array<str>, impact: str, variant_allele: str}>strarray<struct{allele_num: int32, consequence_terms: array<str>, high_inf_pos: str, impact: str, motif_feature_id: str, motif_name: str, motif_pos: int32, motif_score_change: float64, transcription_factors: array<str>, strand: int32, variant_allele: str}>array<struct{allele_num: int32, biotype: str, consequence_terms: array<str>, impact: str, regulatory_feature_id: str, variant_allele: str}>strint32int32array<struct{allele_num: int32, amino_acids: str, appris: str, biotype: str, canonical: int32, ccds: str, cdna_start: int32, cdna_end: int32, cds_end: int32, cds_start: int32, codons: str, consequence_terms: array<str>, distance: int32, domains: array<struct{db: str, name: str}>, exon: str, flags: str, gene_id: str, gene_pheno: int32, gene_symbol: str, gene_symbol_source: str, hgnc_id: str, hgvsc: str, hgvsp: str, hgvs_offset: int32, impact: str, intron: str, lof: str, lof_flags: str, lof_filter: str, lof_info: str, mane_select: str, mane_plus_clinical: str, mirna: array<str>, protein_end: int32, protein_start: int32, protein_id: str, source: str, strand: int32, transcript_id: str, tsl: int32, uniprot_isoform: array<str>, variant_allele: str}>strfloat64strboolboolboolboolboolstrint32strboolarray<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64float32float32float64float32float64float64float64float64
chr1:10031["T","C"][(0,0.00e+00,56642,0),(2,1.65e-05,121094,0),(0,0.00e+00,25546,0),(0,0.00e+00,4326,0),(0,0.00e+00,192,0),(0,0.00e+00,782,0),(0,0.00e+00,352,0),(0,0.00e+00,1550,0),(0,0.00e+00,14642,0),(0,0.00e+00,1712,0),(0,0.00e+00,1120,0),(0,0.00e+00,6420,0),(0,0.00e+00,29308,0),(0,0.00e+00,27334,0),(0,0.00e+00,14998,0),(0,0.00e+00,1060,0),(0,0.00e+00,102,0),(0,0.00e+00,402,0),(0,0.00e+00,154,0),(0,0.00e+00,814,0),(0,0.00e+00,7978,0),(0,0.00e+00,770,0),(0,0.00e+00,260,0),(0,0.00e+00,2770,0),(0,0.00e+00,10548,0),(0,0.00e+00,3266,0),(0,0.00e+00,90,0),(0,0.00e+00,380,0),(0,0.00e+00,198,0),(0,0.00e+00,736,0),(0,0.00e+00,6664,0),(0,0.00e+00,942,0),(0,0.00e+00,860,0),(0,0.00e+00,3650,0),(0,0.00e+00,1078,0),(0,0.00e+00,2476,0),(0,0.00e+00,38,0),(0,0.00e+00,36,0),(0,0.00e+00,40,0),(0,0.00e+00,26,0),(0,0.00e+00,46,0),(0,0.00e+00,62,0),(0,0.00e+00,36,0),(0,0.00e+00,34,0),(0,0.00e+00,30,0),(0,0.00e+00,46,0),(0,0.00e+00,64,0),(0,0.00e+00,40,0),(0,0.00e+00,42,0),(0,0.00e+00,50,0),(0,0.00e+00,42,0),(0,0.00e+00,28,0),(0,0.00e+00,18,0),(0,0.00e+00,42,0),(0,0.00e+00,52,0),(0,0.00e+00,44,0),(0,0.00e+00,36,0),(0,0.00e+00,40,0),(0,0.00e+00,48,0),(0,0.00e+00,42,0),(0,0.00e+00,34,0),(0,0.00e+00,62,0),(0,0.00e+00,536,0),(0,0.00e+00,542,0),(0,0.00e+00,18,0),(0,0.00e+00,10,0),(0,0.00e+00,18,0),(0,0.00e+00,14,0),(0,0.00e+00,30,0),(0,0.00e+00,30,0),(0,0.00e+00,16,0),(0,0.00e+00,16,0),(0,0.00e+00,22,0),(0,0.00e+00,16,0),(0,0.00e+00,38,0),(0,0.00e+00,18,0),(0,0.00e+00,20,0),(0,0.00e+00,26,0),(0,0.00e+00,22,0),(0,0.00e+00,14,0),(0,0.00e+00,10,0),(0,0.00e+00,16,0),(0,0.00e+00,24,0),(0,0.00e+00,24,0),(0,0.00e+00,20,0),(0,0.00e+00,18,0),(0,0.00e+00,28,0),(0,0.00e+00,22,0),(0,0.00e+00,24,0),(0,0.00e+00,22,0),(0,0.00e+00,20,0),(0,0.00e+00,26,0),(0,0.00e+00,22,0),(0,0.00e+00,12,0),(0,0.00e+00,16,0),(0,0.00e+00,32,0),(0,0.00e+00,20,0),(0,0.00e+00,18,0),(0,0.00e+00,8,0),(0,0.00e+00,30,0),(0,0.00e+00,26,0),(0,0.00e+00,22,0),(0,0.00e+00,22,0),(0,0.00e+00,24,0),(0,0.00e+00,20,0),(0,0.00e+00,14,0),(0,0.00e+00,8,0),(0,0.00e+00,26,0),(0,0.00e+00,28,0),(0,0.00e+00,20,0),(0,0.00e+00,16,0),(0,0.00e+00,22,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,10,0),(0,0.00e+00,40,0),(0,0.00e+00,812,0),(0,0.00e+00,812,0),(0,0.00e+00,12,0),(0,0.00e+00,32,0),(0,0.00e+00,54,0),(0,0.00e+00,6,0),(0,0.00e+00,18,0),(0,NA,0,0),(0,0.00e+00,20,0),(0,0.00e+00,8,0),(0,0.00e+00,2,0),(0,0.00e+00,22,0),(0,0.00e+00,8,0),(0,0.00e+00,8,0),(0,0.00e+00,36,0),(0,0.00e+00,26,0),(0,0.00e+00,2,0),(0,0.00e+00,8,0),(0,0.00e+00,60,0),(0,0.00e+00,6,0),(0,0.00e+00,18,0),(0,0.00e+00,6,0),(0,0.00e+00,4,0),(0,0.00e+00,10,0),(0,0.00e+00,8,0),(0,0.00e+00,10,0),(0,0.00e+00,32,0),(0,0.00e+00,22,0),(0,0.00e+00,26,0),(0,0.00e+00,30,0),(0,0.00e+00,22,0),(0,0.00e+00,6,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,0.00e+00,16,0),(0,0.00e+00,26,0),(0,0.00e+00,10,0),(0,0.00e+00,22,0),(0,0.00e+00,28,0),(0,0.00e+00,10,0),(0,0.00e+00,8,0),(0,0.00e+00,8,0),(0,0.00e+00,2,0),(0,0.00e+00,4,0),(0,0.00e+00,26,0),(0,0.00e+00,52,0),(0,0.00e+00,32,0),(0,0.00e+00,4,0),(0,0.00e+00,298,0),(0,0.00e+00,514,0),(0,0.00e+00,8,0),(0,0.00e+00,4,0),(0,0.00e+00,34,0),(0,NA,0,0),(0,0.00e+00,12,0),(0,NA,0,0),(0,0.00e+00,10,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,0.00e+00,4,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,0.00e+00,12,0),(0,0.00e+00,8,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,0.00e+00,24,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,0.00e+00,10,0),(0,NA,0,0),(0,0.00e+00,26,0),(0,0.00e+00,16,0),(0,0.00e+00,8,0),(0,0.00e+00,6,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,0.00e+00,6,0),(0,0.00e+00,4,0),(0,0.00e+00,6,0),(0,0.00e+00,4,0),(0,0.00e+00,4,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,0.00e+00,40,0),(0,0.00e+00,8,0),(0,0.00e+00,4,0),(0,0.00e+00,4,0),(0,0.00e+00,28,0),(0,0.00e+00,20,0),(0,0.00e+00,6,0),(0,0.00e+00,6,0),(0,NA,0,0),(0,0.00e+00,10,0),(0,0.00e+00,8,0),(0,NA,0,0),(0,0.00e+00,18,0),(0,0.00e+00,6,0),(0,0.00e+00,8,0),(0,0.00e+00,24,0),(0,0.00e+00,18,0),(0,NA,0,0),(0,0.00e+00,6,0),(0,0.00e+00,36,0),(0,0.00e+00,6,0),(0,0.00e+00,18,0),(0,0.00e+00,6,0),(0,0.00e+00,2,0),(0,0.00e+00,10,0),(0,0.00e+00,6,0),(0,0.00e+00,8,0),(0,0.00e+00,22,0),(0,0.00e+00,22,0),(0,NA,0,0),(0,0.00e+00,14,0),(0,0.00e+00,14,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,0.00e+00,14,0),(0,0.00e+00,26,0),(0,0.00e+00,4,0),(0,0.00e+00,18,0),(0,0.00e+00,22,0),(0,0.00e+00,6,0),(0,0.00e+00,4,0),(0,0.00e+00,6,0),(0,0.00e+00,2,0),(0,0.00e+00,4,0),(0,0.00e+00,22,0),(0,0.00e+00,12,0),(0,0.00e+00,24,0),(0,NA,0,0),(0,0.00e+00,32,0),(0,0.00e+00,6,0),(0,0.00e+00,16,0),(0,0.00e+00,16,0),(0,0.00e+00,2,0),(0,0.00e+00,4,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0)]NANANANANA[(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]NANANANA2True{"rs1639542312"}{"AC0","AS_VQSR"}7.30e+003.48e+016.70e-02962.74e+00-1.07e+00[21,6,4,4]9.60e-02355.10e+003.51e+01-5.72e-016.87e-01772.96e+00-1.38e+00[21,6,3,3]9.64e-0226FalseNANANAFalseFalse-4.57e+00-1.65e-05["ga4gh:VA.oTAtTrgYxm81O9fu6Mrhfo1t3eHsgg4L","ga4gh:VA.Y283OnlLjyi1T1IT_JzvW255rC6YJsW6"][10030,10030][10031,10031]["T","C"]"T/C"10031".""chr1\t10031\t.\tT\tC\t.\t.\tGT"NA"upstream_gene_variant"NANA"chr1"100311[(1,NA,NA,"transcribed_unprocessed_pseudogene",1,NA,NA,NA,NA,NA,NA,["upstream_gene_variant"],1979,NA,NA,NA,"ENSG00000223972",NA,"DDX11L1","HGNC","HGNC:37102",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",1,"ENST00000450305",NA,NA,"C"),(1,NA,NA,"processed_transcript",NA,NA,NA,NA,NA,NA,NA,["upstream_gene_variant"],1838,NA,NA,NA,"ENSG00000223972",NA,"DDX11L1","HGNC","HGNC:37102",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",1,"ENST00000456328",1,NA,"C"),(1,NA,NA,"unprocessed_pseudogene",1,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],4373,NA,NA,NA,"ENSG00000227232",NA,"WASH7P","HGNC","HGNC:38034",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000488147",NA,NA,"C"),(1,NA,NA,"transcribed_pseudogene",1,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],4331,NA,NA,NA,"653635",NA,"WASH7P","EntrezGene","HGNC:38034",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"RefSeq",-1,"NR_024540.1",NA,NA,"C"),(1,NA,NA,"transcribed_pseudogene",1,NA,NA,NA,NA,NA,NA,["upstream_gene_variant"],1843,NA,NA,NA,"100287102",NA,"DDX11L1","EntrezGene","HGNC:37102",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"RefSeq",1,"NR_046018.2",NA,NA,"C")]"SNV"-4.57e+00"AS_QD"FalseFalseFalseTrueTrue"snv"2"multi-snv"False[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,23215,2435,1647,594,176,118,49,29,19,9,11,6,5,2,4,2]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,16,121,475,973,1736,2409,2950,3134,2995,2803,2514,2194,1773,1335,911,665,439,351]0527[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][14149,7330,6840,3904,23217,2436,1647,594,176,118,49,29,19,9,11,6,5,2,4,2]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][10,66,471,1445,2990,5808,6940,7906,7262,6236,4943,3919,3129,2527,1993,1476,1023,741,500,418]0744[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]008.97e+007.57e-01NANANANANANA
chr1:10037["T","C"][(2,2.60e-05,76882,0),(4,3.15e-05,126902,0),(0,0.00e+00,34670,0),(1,1.80e-04,5568,0),(0,0.00e+00,234,0),(0,0.00e+00,998,0),(0,0.00e+00,494,0),(0,0.00e+00,2066,0),(0,0.00e+00,20394,0),(1,4.07e-04,2456,0),(0,0.00e+00,1706,0),(0,0.00e+00,8296,0),(1,2.49e-05,40172,0),(1,2.72e-05,36710,0),(0,0.00e+00,20498,0),(0,0.00e+00,1316,0),(0,0.00e+00,122,0),(0,0.00e+00,528,0),(0,0.00e+00,238,0),(0,0.00e+00,1106,0),(0,0.00e+00,11132,0),(1,8.98e-04,1114,0),(0,0.00e+00,420,0),(0,0.00e+00,3698,0),(0,0.00e+00,14172,0),(1,2.35e-04,4252,0),(0,0.00e+00,112,0),(0,0.00e+00,470,0),(0,0.00e+00,256,0),(0,0.00e+00,960,0),(0,0.00e+00,9262,0),(0,0.00e+00,1342,0),(0,0.00e+00,1286,0),(0,0.00e+00,4598,0),(0,0.00e+00,1628,0),(0,0.00e+00,2912,0),(0,0.00e+00,54,0),(0,0.00e+00,54,0),(0,0.00e+00,54,0),(0,0.00e+00,54,0),(0,0.00e+00,74,0),(0,0.00e+00,88,0),(0,0.00e+00,76,0),(0,0.00e+00,44,0),(0,0.00e+00,60,0),(0,0.00e+00,64,0),(0,0.00e+00,84,0),(0,0.00e+00,62,0),(0,0.00e+00,56,0),(0,0.00e+00,76,0),(0,0.00e+00,80,0),(0,0.00e+00,42,0),(0,0.00e+00,30,0),(0,0.00e+00,74,0),(0,0.00e+00,56,0),(0,0.00e+00,48,0),(0,0.00e+00,54,0),(0,0.00e+00,64,0),(0,0.00e+00,78,0),(0,0.00e+00,48,0),(0,0.00e+00,72,0),(0,0.00e+00,82,0),(0,0.00e+00,830,0),(0,0.00e+00,798,0),(0,0.00e+00,26,0),(0,0.00e+00,24,0),(0,0.00e+00,20,0),(0,0.00e+00,28,0),(0,0.00e+00,40,0),(0,0.00e+00,48,0),(0,0.00e+00,44,0),(0,0.00e+00,16,0),(0,0.00e+00,36,0),(0,0.00e+00,30,0),(0,0.00e+00,46,0),(0,0.00e+00,34,0),(0,0.00e+00,26,0),(0,0.00e+00,36,0),(0,0.00e+00,38,0),(0,0.00e+00,26,0),(0,0.00e+00,20,0),(0,0.00e+00,36,0),(0,0.00e+00,32,0),(0,0.00e+00,22,0),(0,0.00e+00,30,0),(0,0.00e+00,34,0),(0,0.00e+00,38,0),(0,0.00e+00,24,0),(0,0.00e+00,38,0),(0,0.00e+00,38,0),(0,0.00e+00,28,0),(0,0.00e+00,30,0),(0,0.00e+00,34,0),(0,0.00e+00,26,0),(0,0.00e+00,34,0),(0,0.00e+00,40,0),(0,0.00e+00,32,0),(0,0.00e+00,28,0),(0,0.00e+00,24,0),(0,0.00e+00,34,0),(0,0.00e+00,38,0),(0,0.00e+00,28,0),(0,0.00e+00,30,0),(0,0.00e+00,40,0),(0,0.00e+00,42,0),(0,0.00e+00,16,0),(0,0.00e+00,10,0),(0,0.00e+00,38,0),(0,0.00e+00,24,0),(0,0.00e+00,26,0),(0,0.00e+00,24,0),(0,0.00e+00,30,0),(0,0.00e+00,40,0),(0,0.00e+00,24,0),(0,0.00e+00,34,0),(0,0.00e+00,44,0),(0,0.00e+00,1028,0),(0,0.00e+00,1028,0),(0,0.00e+00,16,0),(0,0.00e+00,34,0),(0,0.00e+00,64,0),(0,0.00e+00,2,0),(0,0.00e+00,22,0),(0,NA,0,0),(0,0.00e+00,36,0),(0,0.00e+00,8,0),(0,0.00e+00,2,0),(0,0.00e+00,34,0),(0,0.00e+00,8,0),(0,0.00e+00,12,0),(0,0.00e+00,40,0),(0,0.00e+00,30,0),(0,0.00e+00,2,0),(0,0.00e+00,16,0),(0,0.00e+00,76,0),(0,0.00e+00,8,0),(0,0.00e+00,30,0),(0,0.00e+00,10,0),(0,0.00e+00,10,0),(0,0.00e+00,8,0),(0,0.00e+00,8,0),(0,0.00e+00,12,0),(0,0.00e+00,38,0),(0,0.00e+00,30,0),(0,0.00e+00,30,0),(0,0.00e+00,42,0),(0,0.00e+00,26,0),(0,0.00e+00,6,0),(0,NA,0,0),(0,0.00e+00,8,0),(0,0.00e+00,24,0),(0,0.00e+00,26,0),(0,0.00e+00,8,0),(0,0.00e+00,24,0),(0,0.00e+00,32,0),(0,0.00e+00,14,0),(0,0.00e+00,12,0),(0,0.00e+00,14,0),(0,0.00e+00,8,0),(0,0.00e+00,12,0),(0,0.00e+00,28,0),(0,0.00e+00,60,0),(0,0.00e+00,38,0),(0,0.00e+00,6,0),(0,0.00e+00,372,0),(0,0.00e+00,656,0),(0,0.00e+00,14,0),(0,0.00e+00,4,0),(0,0.00e+00,44,0),(0,0.00e+00,2,0),(0,0.00e+00,14,0),(0,NA,0,0),(0,0.00e+00,12,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,0.00e+00,6,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,0.00e+00,12,0),(0,0.00e+00,12,0),(0,0.00e+00,2,0),(0,0.00e+00,10,0),(0,0.00e+00,26,0),(0,0.00e+00,4,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,0.00e+00,12,0),(0,NA,0,0),(0,0.00e+00,30,0),(0,0.00e+00,18,0),(0,0.00e+00,12,0),(0,0.00e+00,4,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,0.00e+00,4,0),(0,0.00e+00,6,0),(0,0.00e+00,6,0),(0,0.00e+00,6,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,0.00e+00,6,0),(0,0.00e+00,46,0),(0,0.00e+00,8,0),(0,0.00e+00,4,0),(0,0.00e+00,2,0),(0,0.00e+00,30,0),(0,0.00e+00,20,0),(0,NA,0,0),(0,0.00e+00,8,0),(0,NA,0,0),(0,0.00e+00,24,0),(0,0.00e+00,6,0),(0,NA,0,0),(0,0.00e+00,28,0),(0,0.00e+00,6,0),(0,0.00e+00,12,0),(0,0.00e+00,28,0),(0,0.00e+00,18,0),(0,NA,0,0),(0,0.00e+00,6,0),(0,0.00e+00,50,0),(0,0.00e+00,4,0),(0,0.00e+00,30,0),(0,0.00e+00,10,0),(0,0.00e+00,8,0),(0,0.00e+00,8,0),(0,0.00e+00,6,0),(0,0.00e+00,10,0),(0,0.00e+00,26,0),(0,0.00e+00,30,0),(0,NA,0,0),(0,0.00e+00,24,0),(0,0.00e+00,14,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,0.00e+00,8,0),(0,0.00e+00,22,0),(0,0.00e+00,26,0),(0,0.00e+00,4,0),(0,0.00e+00,20,0),(0,0.00e+00,26,0),(0,0.00e+00,8,0),(0,0.00e+00,6,0),(0,0.00e+00,12,0),(0,0.00e+00,8,0),(0,0.00e+00,10,0),(0,0.00e+00,22,0),(0,0.00e+00,14,0),(0,0.00e+00,30,0),(0,0.00e+00,2,0),(0,0.00e+00,40,0),(0,0.00e+00,14,0),(0,0.00e+00,24,0),(0,0.00e+00,16,0),(0,0.00e+00,2,0),(0,0.00e+00,12,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0)]14.07e-0424560"eas"[(4.32e-06,1.62e-06),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]NANANANA1False{"rs1639542418"}{"AS_VQSR"}8.58e+003.83e+011.37e+001802.20e+00-4.80e-01[49,12,13,8]1.51e-01828.58e+003.83e+011.37e+001.00e+001802.20e+00-4.80e-01[49,12,13,8]1.51e-0182FalseNANANAFalseFalse-3.18e+00-3.15e-05["ga4gh:VA.6pIoPAYDsphCprRcyrititenuEWlZaxV","ga4gh:VA.iHyQ1mh_iQX6WcqXcx5vvZF9_jPYDePo"][10036,10036][10037,10037]["T","C"]"T/C"10037".""chr1\t10037\t.\tT\tC\t.\t.\tGT"NA"upstream_gene_variant"NANA"chr1"100371[(1,NA,NA,"transcribed_unprocessed_pseudogene",1,NA,NA,NA,NA,NA,NA,["upstream_gene_variant"],1973,NA,NA,NA,"ENSG00000223972",NA,"DDX11L1","HGNC","HGNC:37102",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",1,"ENST00000450305",NA,NA,"C"),(1,NA,NA,"processed_transcript",NA,NA,NA,NA,NA,NA,NA,["upstream_gene_variant"],1832,NA,NA,NA,"ENSG00000223972",NA,"DDX11L1","HGNC","HGNC:37102",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",1,"ENST00000456328",1,NA,"C"),(1,NA,NA,"unprocessed_pseudogene",1,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],4367,NA,NA,NA,"ENSG00000227232",NA,"WASH7P","HGNC","HGNC:38034",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000488147",NA,NA,"C"),(1,NA,NA,"transcribed_pseudogene",1,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],4325,NA,NA,NA,"653635",NA,"WASH7P","EntrezGene","HGNC:38034",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"RefSeq",-1,"NR_024540.1",NA,NA,"C"),(1,NA,NA,"transcribed_pseudogene",1,NA,NA,NA,NA,NA,NA,["upstream_gene_variant"],1837,NA,NA,NA,"100287102",NA,"DDX11L1","EntrezGene","HGNC:37102",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"RefSeq",1,"NR_046018.2",NA,NA,"C")]"SNV"-3.18e+00"AS_QD"FalseFalseFalseTrueTrue"snv"1"snv"False[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,29394,3741,2868,1281,401,358,163,63,69,31,18,20,10,4,5,15]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,9,69,387,913,1737,2859,3749,4216,4302,4223,3745,3280,2661,1954,1380,943,607,519]0888[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][10121,5441,5610,3838,29394,3741,2868,1281,401,358,163,63,69,31,18,20,10,4,5,15]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][7,37,269,903,1948,4127,5519,7075,7322,6972,6095,5249,4374,3624,2893,2106,1501,1031,679,590]01130[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,2,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,2,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,1,0,0,1,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]008.90e+007.49e-01NANANANANANA
chr1:10043["T","C"][(1,1.17e-05,85634,0),(1,8.24e-06,121430,0),(0,0.00e+00,39236,0),(0,0.00e+00,5820,0),(0,0.00e+00,254,0),(0,0.00e+00,1148,0),(0,0.00e+00,568,0),(0,0.00e+00,2276,0),(1,4.39e-05,22760,0),(0,0.00e+00,2912,0),(0,0.00e+00,2158,0),(0,0.00e+00,8502,0),(1,2.23e-05,44904,0),(0,0.00e+00,40730,0),(0,0.00e+00,23244,0),(0,0.00e+00,1280,0),(0,0.00e+00,136,0),(0,0.00e+00,594,0),(0,0.00e+00,284,0),(0,0.00e+00,1234,0),(1,8.03e-05,12446,0),(0,0.00e+00,1296,0),(0,0.00e+00,502,0),(0,0.00e+00,3888,0),(0,0.00e+00,15992,0),(0,0.00e+00,4540,0),(0,0.00e+00,118,0),(0,0.00e+00,554,0),(0,0.00e+00,284,0),(0,0.00e+00,1042,0),(0,0.00e+00,10314,0),(0,0.00e+00,1616,0),(0,0.00e+00,1656,0),(0,0.00e+00,4614,0),(0,0.00e+00,1788,0),(0,0.00e+00,2700,0),(0,0.00e+00,74,0),(0,0.00e+00,66,0),(0,0.00e+00,62,0),(0,0.00e+00,50,0),(0,0.00e+00,84,0),(0,0.00e+00,84,0),(0,0.00e+00,76,0),(0,0.00e+00,56,0),(0,0.00e+00,62,0),(0,0.00e+00,76,0),(0,0.00e+00,100,0),(0,0.00e+00,62,0),(0,0.00e+00,64,0),(0,0.00e+00,66,0),(0,0.00e+00,86,0),(0,0.00e+00,48,0),(0,0.00e+00,40,0),(0,0.00e+00,66,0),(0,0.00e+00,70,0),(0,0.00e+00,54,0),(0,0.00e+00,46,0),(0,0.00e+00,68,0),(0,0.00e+00,72,0),(0,0.00e+00,80,0),(0,0.00e+00,84,0),(0,0.00e+00,92,0),(0,0.00e+00,926,0),(0,0.00e+00,862,0),(0,0.00e+00,36,0),(0,0.00e+00,26,0),(0,0.00e+00,28,0),(0,0.00e+00,34,0),(0,0.00e+00,48,0),(0,0.00e+00,34,0),(0,0.00e+00,40,0),(0,0.00e+00,20,0),(0,0.00e+00,38,0),(0,0.00e+00,36,0),(0,0.00e+00,58,0),(0,0.00e+00,22,0),(0,0.00e+00,28,0),(0,0.00e+00,40,0),(0,0.00e+00,54,0),(0,0.00e+00,26,0),(0,0.00e+00,22,0),(0,0.00e+00,34,0),(0,0.00e+00,36,0),(0,0.00e+00,34,0),(0,0.00e+00,24,0),(0,0.00e+00,36,0),(0,0.00e+00,36,0),(0,0.00e+00,42,0),(0,0.00e+00,48,0),(0,0.00e+00,46,0),(0,0.00e+00,38,0),(0,0.00e+00,40,0),(0,0.00e+00,34,0),(0,0.00e+00,16,0),(0,0.00e+00,36,0),(0,0.00e+00,50,0),(0,0.00e+00,36,0),(0,0.00e+00,36,0),(0,0.00e+00,24,0),(0,0.00e+00,40,0),(0,0.00e+00,42,0),(0,0.00e+00,40,0),(0,0.00e+00,36,0),(0,0.00e+00,26,0),(0,0.00e+00,32,0),(0,0.00e+00,22,0),(0,0.00e+00,18,0),(0,0.00e+00,32,0),(0,0.00e+00,34,0),(0,0.00e+00,20,0),(0,0.00e+00,22,0),(0,0.00e+00,32,0),(0,0.00e+00,36,0),(0,0.00e+00,38,0),(0,0.00e+00,36,0),(0,0.00e+00,46,0),(0,0.00e+00,1154,0),(0,0.00e+00,1154,0),(0,0.00e+00,24,0),(0,0.00e+00,30,0),(0,0.00e+00,70,0),(0,0.00e+00,6,0),(0,0.00e+00,32,0),(0,0.00e+00,2,0),(0,0.00e+00,34,0),(0,0.00e+00,16,0),(0,0.00e+00,12,0),(0,0.00e+00,40,0),(0,0.00e+00,8,0),(0,0.00e+00,12,0),(0,0.00e+00,44,0),(0,0.00e+00,18,0),(0,NA,0,0),(0,0.00e+00,22,0),(0,0.00e+00,80,0),(0,0.00e+00,14,0),(0,0.00e+00,36,0),(0,0.00e+00,10,0),(0,0.00e+00,10,0),(0,0.00e+00,14,0),(0,0.00e+00,10,0),(0,0.00e+00,10,0),(0,0.00e+00,46,0),(0,0.00e+00,32,0),(0,0.00e+00,34,0),(0,0.00e+00,44,0),(0,0.00e+00,22,0),(0,0.00e+00,6,0),(0,NA,0,0),(0,0.00e+00,14,0),(0,0.00e+00,32,0),(0,0.00e+00,28,0),(0,0.00e+00,14,0),(0,0.00e+00,28,0),(0,0.00e+00,38,0),(0,0.00e+00,14,0),(0,0.00e+00,12,0),(0,0.00e+00,12,0),(0,0.00e+00,8,0),(0,0.00e+00,10,0),(0,0.00e+00,28,0),(0,0.00e+00,64,0),(0,0.00e+00,46,0),(0,0.00e+00,14,0),(0,0.00e+00,404,0),(0,0.00e+00,750,0),(0,0.00e+00,14,0),(0,0.00e+00,6,0),(0,0.00e+00,50,0),(0,NA,0,0),(0,0.00e+00,18,0),(0,NA,0,0),(0,0.00e+00,10,0),(0,0.00e+00,4,0),(0,0.00e+00,4,0),(0,0.00e+00,8,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,0.00e+00,14,0),(0,0.00e+00,6,0),(0,NA,0,0),(0,0.00e+00,12,0),(0,0.00e+00,30,0),(0,0.00e+00,6,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,0.00e+00,16,0),(0,NA,0,0),(0,0.00e+00,30,0),(0,0.00e+00,20,0),(0,0.00e+00,6,0),(0,0.00e+00,6,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,NA,0,0),(0,0.00e+00,6,0),(0,0.00e+00,4,0),(0,0.00e+00,10,0),(0,0.00e+00,6,0),(0,0.00e+00,6,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,8,0),(0,0.00e+00,50,0),(0,0.00e+00,12,0),(0,0.00e+00,6,0),(0,0.00e+00,10,0),(0,0.00e+00,24,0),(0,0.00e+00,20,0),(0,0.00e+00,6,0),(0,0.00e+00,14,0),(0,0.00e+00,2,0),(0,0.00e+00,24,0),(0,0.00e+00,12,0),(0,0.00e+00,8,0),(0,0.00e+00,32,0),(0,0.00e+00,6,0),(0,0.00e+00,12,0),(0,0.00e+00,30,0),(0,0.00e+00,12,0),(0,NA,0,0),(0,0.00e+00,10,0),(0,0.00e+00,50,0),(0,0.00e+00,8,0),(0,0.00e+00,36,0),(0,0.00e+00,10,0),(0,0.00e+00,6,0),(0,0.00e+00,14,0),(0,0.00e+00,8,0),(0,0.00e+00,8,0),(0,0.00e+00,30,0),(0,0.00e+00,32,0),(0,0.00e+00,4,0),(0,0.00e+00,24,0),(0,0.00e+00,16,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,14,0),(0,0.00e+00,28,0),(0,0.00e+00,28,0),(0,0.00e+00,8,0),(0,0.00e+00,24,0),(0,0.00e+00,28,0),(0,0.00e+00,8,0),(0,0.00e+00,6,0),(0,0.00e+00,10,0),(0,0.00e+00,8,0),(0,0.00e+00,10,0),(0,0.00e+00,20,0),(0,0.00e+00,14,0),(0,0.00e+00,34,0),(0,0.00e+00,8,0),(0,0.00e+00,40,0),(0,0.00e+00,14,0),(0,0.00e+00,18,0),(0,0.00e+00,22,0),(0,0.00e+00,2,0),(0,0.00e+00,12,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0)]14.39e-05227600"afr"[(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]NANANANA1FalseNA{"AS_VQSR"}3.11e+013.52e+011.23e+00972.77e+00-8.96e-01[25,0,5,5]1.00e-03353.11e+013.52e+011.23e+001.00e+00972.77e+00-8.96e-01[25,0,5,5]1.48e-0335TrueFalseNANAFalseFalse-5.79e+00-8.24e-06["ga4gh:VA.HdrkFJS16zwJPcGSKX9___fJcdqSATlQ","ga4gh:VA.LSHuFx03sqw8WJGN2-n782ME4o04Vl4U"][10042,10042][10043,10043]["T","C"]"T/C"10043".""chr1\t10043\t.\tT\tC\t.\t.\tGT"NA"upstream_gene_variant"NANA"chr1"100431[(1,NA,NA,"transcribed_unprocessed_pseudogene",1,NA,NA,NA,NA,NA,NA,["upstream_gene_variant"],1967,NA,NA,NA,"ENSG00000223972",NA,"DDX11L1","HGNC","HGNC:37102",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",1,"ENST00000450305",NA,NA,"C"),(1,NA,NA,"processed_transcript",NA,NA,NA,NA,NA,NA,NA,["upstream_gene_variant"],1826,NA,NA,NA,"ENSG00000223972",NA,"DDX11L1","HGNC","HGNC:37102",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",1,"ENST00000456328",1,NA,"C"),(1,NA,NA,"unprocessed_pseudogene",1,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],4361,NA,NA,NA,"ENSG00000227232",NA,"WASH7P","HGNC","HGNC:38034",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000488147",NA,NA,"C"),(1,NA,NA,"transcribed_pseudogene",1,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],4319,NA,NA,NA,"653635",NA,"WASH7P","EntrezGene","HGNC:38034",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"RefSeq",-1,"NR_024540.1",NA,NA,"C"),(1,NA,NA,"transcribed_pseudogene",1,NA,NA,NA,NA,NA,NA,["upstream_gene_variant"],1831,NA,NA,NA,"100287102",NA,"DDX11L1","EntrezGene","HGNC:37102",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"RefSeq",1,"NR_046018.2",NA,NA,"C")]"SNV"-5.79e+00"AS_FS"FalseFalseFalseTrueTrue"snv"1"snv"False[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,31093,4532,3696,1752,595,585,261,88,82,59,17,26,14,5,3,9]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,8,40,264,690,1525,2691,3754,4574,4813,4940,4490,3907,3242,2387,1704,1158,760,638]01232[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][6578,3782,4202,3336,31093,4532,3696,1752,595,585,261,88,82,59,17,26,14,5,3,9]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][2,24,149,466,1201,2614,4035,5568,6331,6725,6267,5855,5101,4268,3465,2554,1836,1244,831,692]01487[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,1,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]008.90e+007.48e-01NANANANANANA
chr1:10055["T","C"][(1,1.06e-05,94224,0),(5,4.64e-05,107704,0),(0,0.00e+00,44382,0),(1,1.80e-04,5570,0),(0,0.00e+00,216,0),(0,0.00e+00,1228,0),(0,0.00e+00,682,0),(0,0.00e+00,2370,0),(0,0.00e+00,26032,0),(0,0.00e+00,3020,0),(0,0.00e+00,2668,0),(0,0.00e+00,8056,0),(1,2.02e-05,49580,0),(0,0.00e+00,44644,0),(0,0.00e+00,26312,0),(1,9.67e-04,1034,0),(0,0.00e+00,110,0),(0,0.00e+00,624,0),(0,0.00e+00,344,0),(0,0.00e+00,1246,0),(0,0.00e+00,14152,0),(0,0.00e+00,1256,0),(0,0.00e+00,600,0),(0,0.00e+00,3902,0),(0,0.00e+00,18070,0),(0,0.00e+00,4536,0),(0,0.00e+00,106,0),(0,0.00e+00,604,0),(0,0.00e+00,338,0),(0,0.00e+00,1124,0),(0,0.00e+00,11880,0),(0,0.00e+00,1764,0),(0,0.00e+00,2068,0),(0,0.00e+00,4154,0),(0,0.00e+00,1478,0),(0,0.00e+00,1784,0),(0,0.00e+00,56,0),(0,0.00e+00,54,0),(0,0.00e+00,40,0),(0,0.00e+00,58,0),(0,0.00e+00,68,0),(0,0.00e+00,78,0),(0,0.00e+00,72,0),(0,0.00e+00,66,0),(0,0.00e+00,58,0),(0,0.00e+00,64,0),(0,0.00e+00,84,0),(0,0.00e+00,52,0),(0,0.00e+00,60,0),(0,0.00e+00,54,0),(0,0.00e+00,58,0),(0,0.00e+00,22,0),(0,0.00e+00,34,0),(0,0.00e+00,66,0),(0,0.00e+00,70,0),(0,0.00e+00,42,0),(0,0.00e+00,32,0),(0,0.00e+00,44,0),(0,0.00e+00,56,0),(0,0.00e+00,70,0),(0,0.00e+00,50,0),(0,0.00e+00,70,0),(0,0.00e+00,766,0),(0,0.00e+00,712,0),(0,0.00e+00,32,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,26,0),(0,0.00e+00,34,0),(0,0.00e+00,38,0),(0,0.00e+00,52,0),(0,0.00e+00,38,0),(0,0.00e+00,38,0),(0,0.00e+00,32,0),(0,0.00e+00,32,0),(0,0.00e+00,28,0),(0,0.00e+00,26,0),(0,0.00e+00,30,0),(0,0.00e+00,28,0),(0,0.00e+00,10,0),(0,0.00e+00,18,0),(0,0.00e+00,36,0),(0,0.00e+00,32,0),(0,0.00e+00,26,0),(0,0.00e+00,18,0),(0,0.00e+00,24,0),(0,0.00e+00,28,0),(0,0.00e+00,36,0),(0,0.00e+00,32,0),(0,0.00e+00,32,0),(0,0.00e+00,24,0),(0,0.00e+00,34,0),(0,0.00e+00,20,0),(0,0.00e+00,32,0),(0,0.00e+00,34,0),(0,0.00e+00,40,0),(0,0.00e+00,20,0),(0,0.00e+00,28,0),(0,0.00e+00,20,0),(0,0.00e+00,32,0),(0,0.00e+00,52,0),(0,0.00e+00,24,0),(0,0.00e+00,34,0),(0,0.00e+00,24,0),(0,0.00e+00,30,0),(0,0.00e+00,12,0),(0,0.00e+00,16,0),(0,0.00e+00,30,0),(0,0.00e+00,38,0),(0,0.00e+00,16,0),(0,0.00e+00,14,0),(0,0.00e+00,20,0),(0,0.00e+00,28,0),(0,0.00e+00,34,0),(0,0.00e+00,18,0),(0,0.00e+00,38,0),(0,0.00e+00,1312,0),(1,7.61e-04,1314,0),(0,0.00e+00,22,0),(0,0.00e+00,40,0),(0,0.00e+00,58,0),(0,0.00e+00,10,0),(0,0.00e+00,48,0),(0,0.00e+00,8,0),(0,0.00e+00,38,0),(0,0.00e+00,18,0),(0,0.00e+00,12,0),(0,0.00e+00,38,0),(0,0.00e+00,16,0),(0,0.00e+00,16,0),(0,0.00e+00,36,0),(0,0.00e+00,26,0),(0,0.00e+00,12,0),(0,0.00e+00,26,0),(0,0.00e+00,72,0),(0,0.00e+00,18,0),(0,0.00e+00,30,0),(0,0.00e+00,8,0),(0,0.00e+00,10,0),(0,0.00e+00,8,0),(0,0.00e+00,8,0),(0,0.00e+00,10,0),(0,0.00e+00,48,0),(0,0.00e+00,40,0),(0,0.00e+00,34,0),(0,0.00e+00,52,0),(0,0.00e+00,20,0),(0,0.00e+00,6,0),(0,0.00e+00,14,0),(0,0.00e+00,18,0),(0,0.00e+00,34,0),(0,0.00e+00,22,0),(0,0.00e+00,14,0),(0,0.00e+00,28,0),(0,0.00e+00,36,0),(0,0.00e+00,14,0),(0,0.00e+00,14,0),(0,0.00e+00,10,0),(0,0.00e+00,12,0),(0,0.00e+00,10,0),(0,0.00e+00,40,0),(0,0.00e+00,58,0),(0,0.00e+00,50,0),(0,0.00e+00,14,0),(0,0.00e+00,484,0),(0,0.00e+00,828,0),(0,0.00e+00,16,0),(0,0.00e+00,6,0),(0,0.00e+00,38,0),(0,0.00e+00,2,0),(0,0.00e+00,26,0),(0,NA,0,0),(0,0.00e+00,12,0),(0,0.00e+00,4,0),(0,0.00e+00,6,0),(0,0.00e+00,6,0),(0,0.00e+00,6,0),(0,0.00e+00,2,0),(0,0.00e+00,12,0),(0,0.00e+00,10,0),(0,0.00e+00,8,0),(0,0.00e+00,14,0),(0,0.00e+00,28,0),(0,0.00e+00,6,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,0.00e+00,18,0),(0,NA,0,0),(0,0.00e+00,30,0),(0,0.00e+00,24,0),(0,0.00e+00,10,0),(0,0.00e+00,4,0),(0,0.00e+00,12,0),(0,0.00e+00,2,0),(0,0.00e+00,4,0),(0,NA,0,0),(0,0.00e+00,8,0),(0,0.00e+00,6,0),(0,0.00e+00,14,0),(0,0.00e+00,8,0),(0,0.00e+00,4,0),(0,0.00e+00,4,0),(0,0.00e+00,4,0),(0,0.00e+00,4,0),(0,0.00e+00,8,0),(0,0.00e+00,42,0),(0,0.00e+00,12,0),(0,0.00e+00,6,0),(0,0.00e+00,6,0),(0,0.00e+00,34,0),(0,0.00e+00,20,0),(0,0.00e+00,8,0),(0,0.00e+00,22,0),(0,0.00e+00,8,0),(0,0.00e+00,26,0),(0,0.00e+00,14,0),(0,0.00e+00,6,0),(0,0.00e+00,32,0),(0,0.00e+00,10,0),(0,0.00e+00,14,0),(0,0.00e+00,24,0),(0,0.00e+00,16,0),(0,0.00e+00,4,0),(0,0.00e+00,12,0),(0,0.00e+00,44,0),(0,0.00e+00,12,0),(0,0.00e+00,30,0),(0,0.00e+00,6,0),(0,0.00e+00,8,0),(0,0.00e+00,8,0),(0,0.00e+00,6,0),(0,0.00e+00,10,0),(0,0.00e+00,30,0),(0,0.00e+00,40,0),(0,0.00e+00,4,0),(0,0.00e+00,28,0),(0,0.00e+00,10,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,0.00e+00,16,0),(0,0.00e+00,30,0),(0,0.00e+00,22,0),(0,0.00e+00,6,0),(0,0.00e+00,22,0),(0,0.00e+00,22,0),(0,0.00e+00,6,0),(0,0.00e+00,10,0),(0,0.00e+00,6,0),(0,0.00e+00,8,0),(0,0.00e+00,6,0),(0,0.00e+00,32,0),(0,0.00e+00,16,0),(0,0.00e+00,38,0),(0,0.00e+00,8,0),(0,0.00e+00,58,0),(0,0.00e+00,14,0),(0,0.00e+00,32,0),(0,0.00e+00,26,0),(0,0.00e+00,2,0),(0,0.00e+00,12,0),(0,0.00e+00,20,0),(0,0.00e+00,10,0),(0,0.00e+00,16,0),(0,0.00e+00,4,0),(0,0.00e+00,2,0),(0,0.00e+00,12,0),(0,NA,0,0),(0,0.00e+00,20,0),(0,0.00e+00,10,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,0.00e+00,12,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,12,0)]NANANANANA[(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]NANANANA2True{"rs892501864"}{"AS_VQSR"}0.00e+003.55e+011.07e-012202.12e+00-1.16e+00[51,29,15,9]6.16e-011045.94e+003.48e+017.15e-012.27e-01911.21e+00-1.16e+00[51,29,7,8]4.69e-0175FalseNANANAFalseFalse-3.72e+00-4.64e-05["ga4gh:VA.xis4Nhtveh7q75mtkipQAUqZfWUfboWB","ga4gh:VA.Ciou33oFTNEilAEegbFai_K0nu3F18A7"][10054,10054][10055,10055]["T","C"]"T/C"10055".""chr1\t10055\t.\tT\tC\t.\t.\tGT"NA"upstream_gene_variant"NANA"chr1"100551[(1,NA,NA,"transcribed_unprocessed_pseudogene",1,NA,NA,NA,NA,NA,NA,["upstream_gene_variant"],1955,NA,NA,NA,"ENSG00000223972",NA,"DDX11L1","HGNC","HGNC:37102",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",1,"ENST00000450305",NA,NA,"C"),(1,NA,NA,"processed_transcript",NA,NA,NA,NA,NA,NA,NA,["upstream_gene_variant"],1814,NA,NA,NA,"ENSG00000223972",NA,"DDX11L1","HGNC","HGNC:37102",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",1,"ENST00000456328",1,NA,"C"),(1,NA,NA,"unprocessed_pseudogene",1,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],4349,NA,NA,NA,"ENSG00000227232",NA,"WASH7P","HGNC","HGNC:38034",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000488147",NA,NA,"C"),(1,NA,NA,"transcribed_pseudogene",1,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],4307,NA,NA,NA,"653635",NA,"WASH7P","EntrezGene","HGNC:38034",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"RefSeq",-1,"NR_024540.1",NA,NA,"C"),(1,NA,NA,"transcribed_pseudogene",1,NA,NA,NA,NA,NA,NA,["upstream_gene_variant"],1819,NA,NA,NA,"100287102",NA,"DDX11L1","EntrezGene","HGNC:37102",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"RefSeq",1,"NR_046018.2",NA,NA,"C")]"SNV"-3.72e+00"AS_QD"FalseTrueFalseTrueTrue"snv"4"mixed"True[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,25677,6107,5433,3528,1753,1702,1130,485,518,282,119,125,77,35,29,76]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,4,22,120,354,999,1950,3037,4168,4734,5196,5380,4766,4238,3206,2398,1776,1236,1052]02440[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][1429,1382,1901,2026,25677,6108,5433,3528,1753,1702,1130,485,518,282,119,125,77,35,29,76]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][1,9,42,122,294,787,1537,2717,3751,4972,5404,5762,5875,5161,4526,3415,2525,1883,1294,1116]02622[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,1,2,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,3,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,3,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]008.88e+007.46e-01NANANANANANA
chr1:10057["A","C"][(3,2.64e-05,113536,0),(3,2.41e-05,124252,0),(2,3.78e-05,52912,0),(0,0.00e+00,6886,0),(0,0.00e+00,266,0),(0,0.00e+00,1504,0),(0,0.00e+00,742,0),(0,0.00e+00,2768,0),(1,3.25e-05,30736,0),(0,0.00e+00,3850,0),(0,0.00e+00,3424,0),(0,0.00e+00,10448,0),(2,3.37e-05,59380,0),(1,1.85e-05,54156,0),(2,6.43e-05,31106,0),(0,0.00e+00,1472,0),(0,0.00e+00,132,0),(0,0.00e+00,764,0),(0,0.00e+00,378,0),(0,0.00e+00,1532,0),(0,0.00e+00,16598,0),(0,0.00e+00,1670,0),(0,0.00e+00,784,0),(0,0.00e+00,4944,0),(0,0.00e+00,21806,0),(0,0.00e+00,5414,0),(0,0.00e+00,134,0),(0,0.00e+00,740,0),(0,0.00e+00,364,0),(0,0.00e+00,1236,0),(1,7.07e-05,14138,0),(0,0.00e+00,2180,0),(0,0.00e+00,2640,0),(0,0.00e+00,5504,0),(0,0.00e+00,2810,0),(0,0.00e+00,3122,0),(0,0.00e+00,100,0),(0,0.00e+00,102,0),(0,0.00e+00,92,0),(0,0.00e+00,90,0),(0,0.00e+00,122,0),(0,0.00e+00,130,0),(0,0.00e+00,132,0),(0,0.00e+00,110,0),(0,0.00e+00,124,0),(0,0.00e+00,112,0),(0,0.00e+00,140,0),(0,0.00e+00,90,0),(0,0.00e+00,126,0),(0,0.00e+00,106,0),(0,0.00e+00,118,0),(0,0.00e+00,76,0),(0,0.00e+00,72,0),(0,0.00e+00,98,0),(0,0.00e+00,120,0),(0,0.00e+00,68,0),(0,0.00e+00,84,0),(0,0.00e+00,124,0),(0,0.00e+00,134,0),(0,0.00e+00,108,0),(0,0.00e+00,118,0),(0,0.00e+00,114,0),(0,0.00e+00,1450,0),(0,0.00e+00,1360,0),(0,0.00e+00,56,0),(0,0.00e+00,50,0),(0,0.00e+00,46,0),(0,0.00e+00,42,0),(0,0.00e+00,66,0),(0,0.00e+00,64,0),(0,0.00e+00,64,0),(0,0.00e+00,50,0),(0,0.00e+00,82,0),(0,0.00e+00,44,0),(0,0.00e+00,72,0),(0,0.00e+00,48,0),(0,0.00e+00,68,0),(0,0.00e+00,52,0),(0,0.00e+00,60,0),(0,0.00e+00,42,0),(0,0.00e+00,36,0),(0,0.00e+00,56,0),(0,0.00e+00,58,0),(0,0.00e+00,44,0),(0,0.00e+00,42,0),(0,0.00e+00,72,0),(0,0.00e+00,66,0),(0,0.00e+00,56,0),(0,0.00e+00,64,0),(0,0.00e+00,50,0),(0,0.00e+00,44,0),(0,0.00e+00,52,0),(0,0.00e+00,46,0),(0,0.00e+00,48,0),(0,0.00e+00,56,0),(0,0.00e+00,66,0),(0,0.00e+00,68,0),(0,0.00e+00,60,0),(0,0.00e+00,42,0),(0,0.00e+00,68,0),(0,0.00e+00,68,0),(0,0.00e+00,42,0),(0,0.00e+00,58,0),(0,0.00e+00,54,0),(0,0.00e+00,58,0),(0,0.00e+00,34,0),(0,0.00e+00,36,0),(0,0.00e+00,42,0),(0,0.00e+00,62,0),(0,0.00e+00,24,0),(0,0.00e+00,42,0),(0,0.00e+00,52,0),(0,0.00e+00,68,0),(0,0.00e+00,52,0),(0,0.00e+00,54,0),(0,0.00e+00,64,0),(0,0.00e+00,1300,0),(0,0.00e+00,1300,0),(0,0.00e+00,28,0),(0,0.00e+00,44,0),(0,0.00e+00,66,0),(0,0.00e+00,8,0),(0,0.00e+00,44,0),(0,0.00e+00,2,0),(0,0.00e+00,40,0),(0,0.00e+00,14,0),(0,0.00e+00,14,0),(0,0.00e+00,38,0),(0,0.00e+00,12,0),(0,0.00e+00,12,0),(0,0.00e+00,44,0),(0,0.00e+00,32,0),(0,0.00e+00,2,0),(0,0.00e+00,24,0),(0,0.00e+00,78,0),(0,0.00e+00,16,0),(0,0.00e+00,40,0),(0,0.00e+00,10,0),(0,0.00e+00,14,0),(0,0.00e+00,12,0),(0,0.00e+00,16,0),(0,0.00e+00,14,0),(0,0.00e+00,50,0),(0,0.00e+00,38,0),(0,0.00e+00,38,0),(0,0.00e+00,46,0),(0,0.00e+00,22,0),(0,0.00e+00,10,0),(0,0.00e+00,2,0),(0,0.00e+00,14,0),(0,0.00e+00,36,0),(0,0.00e+00,34,0),(0,0.00e+00,12,0),(0,0.00e+00,32,0),(0,0.00e+00,36,0),(0,0.00e+00,20,0),(0,0.00e+00,12,0),(0,0.00e+00,14,0),(0,0.00e+00,12,0),(0,0.00e+00,14,0),(0,0.00e+00,32,0),(0,0.00e+00,66,0),(0,0.00e+00,52,0),(0,0.00e+00,14,0),(0,0.00e+00,472,0),(0,0.00e+00,828,0),(0,0.00e+00,18,0),(0,0.00e+00,8,0),(0,0.00e+00,42,0),(0,0.00e+00,2,0),(0,0.00e+00,22,0),(0,NA,0,0),(0,0.00e+00,14,0),(0,0.00e+00,4,0),(0,0.00e+00,6,0),(0,0.00e+00,6,0),(0,0.00e+00,4,0),(0,0.00e+00,2,0),(0,0.00e+00,16,0),(0,0.00e+00,12,0),(0,0.00e+00,2,0),(0,0.00e+00,12,0),(0,0.00e+00,32,0),(0,0.00e+00,6,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,NA,0,0),(0,0.00e+00,6,0),(0,0.00e+00,2,0),(0,0.00e+00,18,0),(0,NA,0,0),(0,0.00e+00,36,0),(0,0.00e+00,20,0),(0,0.00e+00,6,0),(0,0.00e+00,8,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,0.00e+00,10,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,0.00e+00,6,0),(0,0.00e+00,14,0),(0,0.00e+00,6,0),(0,0.00e+00,4,0),(0,0.00e+00,4,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,0.00e+00,8,0),(0,0.00e+00,50,0),(0,0.00e+00,14,0),(0,0.00e+00,4,0),(0,0.00e+00,10,0),(0,0.00e+00,36,0),(0,0.00e+00,24,0),(0,0.00e+00,6,0),(0,0.00e+00,22,0),(0,0.00e+00,2,0),(0,0.00e+00,26,0),(0,0.00e+00,10,0),(0,0.00e+00,8,0),(0,0.00e+00,32,0),(0,0.00e+00,8,0),(0,0.00e+00,10,0),(0,0.00e+00,28,0),(0,0.00e+00,20,0),(0,NA,0,0),(0,0.00e+00,12,0),(0,0.00e+00,46,0),(0,0.00e+00,10,0),(0,0.00e+00,40,0),(0,0.00e+00,10,0),(0,0.00e+00,10,0),(0,0.00e+00,12,0),(0,0.00e+00,10,0),(0,0.00e+00,12,0),(0,0.00e+00,32,0),(0,0.00e+00,38,0),(0,0.00e+00,2,0),(0,0.00e+00,26,0),(0,0.00e+00,16,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,0.00e+00,12,0),(0,0.00e+00,26,0),(0,0.00e+00,34,0),(0,0.00e+00,8,0),(0,0.00e+00,26,0),(0,0.00e+00,22,0),(0,0.00e+00,14,0),(0,0.00e+00,8,0),(0,0.00e+00,10,0),(0,0.00e+00,10,0),(0,0.00e+00,12,0),(0,0.00e+00,24,0),(0,0.00e+00,16,0),(0,0.00e+00,38,0),(0,0.00e+00,10,0),(0,0.00e+00,54,0),(0,0.00e+00,16,0),(0,0.00e+00,30,0),(0,0.00e+00,24,0),(0,0.00e+00,2,0),(0,0.00e+00,14,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0)]23.78e-05529120"nfe"[(7.02e-06,2.95e-06),(6.27e-06,2.35e-06),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]6.27e-06"nfe"2.35e-06"nfe"1True{"rs1570391741"}{"AS_VQSR"}3.30e+013.60e+017.88e-012921.79e+00-6.84e-01[97,29,17,20]3.75e-011633.79e+013.61e+017.88e-011.00e+002642.06e+00-6.84e-01[97,29,13,19]7.58e-01128FalseNANANAFalseFalse-3.31e+00-2.41e-05["ga4gh:VA.TV0UyS-jCvsVkEOMbipUnzTc4hYuVNTg","ga4gh:VA.33zGTKcHyj5wWpTfc3OfD8-UlPQ-YOfx"][10056,10056][10057,10057]["A","C"]"A/C"10057".""chr1\t10057\t.\tA\tC\t.\t.\tGT"NA"upstream_gene_variant"NANA"chr1"100571[(1,NA,NA,"transcribed_unprocessed_pseudogene",1,NA,NA,NA,NA,NA,NA,["upstream_gene_variant"],1953,NA,NA,NA,"ENSG00000223972",NA,"DDX11L1","HGNC","HGNC:37102",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",1,"ENST00000450305",NA,NA,"C"),(1,NA,NA,"processed_transcript",NA,NA,NA,NA,NA,NA,NA,["upstream_gene_variant"],1812,NA,NA,NA,"ENSG00000223972",NA,"DDX11L1","HGNC","HGNC:37102",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",1,"ENST00000456328",1,NA,"C"),(1,NA,NA,"unprocessed_pseudogene",1,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],4347,NA,NA,NA,"ENSG00000227232",NA,"WASH7P","HGNC","HGNC:38034",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000488147",NA,NA,"C"),(1,NA,NA,"transcribed_pseudogene",1,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],4305,NA,NA,NA,"653635",NA,"WASH7P","EntrezGene","HGNC:38034",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"RefSeq",-1,"NR_024540.1",NA,NA,"C"),(1,NA,NA,"transcribed_pseudogene",1,NA,NA,NA,NA,NA,NA,["upstream_gene_variant"],1817,NA,NA,NA,"100287102",NA,"DDX11L1","EntrezGene","HGNC:37102",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"RefSeq",1,"NR_046018.2",NA,NA,"C")]"SNV"-3.31e+00"AS_FS"FalseFalseFalseTrueTrue"snv"2"multi-snv"False[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,25460,7448,6933,4978,2881,2833,2048,1038,1129,685,321,364,212,90,117,231]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,2,23,108,320,888,1844,3110,4447,5361,6012,6379,5879,5289,4273,3400,2503,1787,1521]03622[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,1,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][995,1036,1539,1788,25460,7448,6933,4978,2881,2833,2048,1038,1129,685,321,364,212,90,117,231]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][2,6,39,104,247,638,1325,2417,3685,5047,5927,6484,6763,6192,5525,4439,3518,2603,1850,1572]03743[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,1,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,1,0,1,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]008.53e+007.09e-01NANANANANANA

showing top 5 rows

\n" + ], + "text/plain": [ + "+---------------+------------+\n", + "| locus | alleles |\n", + "+---------------+------------+\n", + "| locus | array |\n", + "+---------------+------------+\n", + "| chr1:10031 | [\"T\",\"C\"] |\n", + "| chr1:10037 | [\"T\",\"C\"] |\n", + "| chr1:10043 | [\"T\",\"C\"] |\n", + "| chr1:10055 | [\"T\",\"C\"] |\n", + "| chr1:10057 | [\"A\",\"C\"] |\n", + "+---------------+------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| freq |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [(0,0.00e+00,56642,0),(2,1.65e-05,121094,0),(0,0.00e+00,25546,0),(0,0.00e... |\n", + "| [(2,2.60e-05,76882,0),(4,3.15e-05,126902,0),(0,0.00e+00,34670,0),(1,1.80e... |\n", + "| [(1,1.17e-05,85634,0),(1,8.24e-06,121430,0),(0,0.00e+00,39236,0),(0,0.00e... |\n", + "| [(1,1.06e-05,94224,0),(5,4.64e-05,107704,0),(0,0.00e+00,44382,0),(1,1.80e... |\n", + "| [(3,2.64e-05,113536,0),(3,2.41e-05,124252,0),(2,3.78e-05,52912,0),(0,0.00... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+-----------+-----------+-----------+-------------------------+----------------+\n", + "| grpmax.AC | grpmax.AF | grpmax.AN | grpmax.homozygote_count | grpmax.gen_anc |\n", + "+-----------+-----------+-----------+-------------------------+----------------+\n", + "| int32 | float64 | int32 | int32 | str |\n", + "+-----------+-----------+-----------+-------------------------+----------------+\n", + "| NA | NA | NA | NA | NA |\n", + "| 1 | 4.07e-04 | 2456 | 0 | \"eas\" |\n", + "| 1 | 4.39e-05 | 22760 | 0 | \"afr\" |\n", + "| NA | NA | NA | NA | NA |\n", + "| 2 | 3.78e-05 | 52912 | 0 | \"nfe\" |\n", + "+-----------+-----------+-----------+-------------------------+----------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| faf |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.... |\n", + "| [(4.32e-06,1.62e-06),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.... |\n", + "| [(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.... |\n", + "| [(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.... |\n", + "| [(7.02e-06,2.95e-06),(6.27e-06,2.35e-06),(0.00e+00,0.00e+00),(0.00e+00,0.... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+------------------+--------------------------+------------------+\n", + "| fafmax.faf95_max | fafmax.faf95_max_gen_anc | fafmax.faf99_max |\n", + "+------------------+--------------------------+------------------+\n", + "| float64 | str | float64 |\n", + "+------------------+--------------------------+------------------+\n", + "| NA | NA | NA |\n", + "| NA | NA | NA |\n", + "| NA | NA | NA |\n", + "| NA | NA | NA |\n", + "| 6.27e-06 | \"nfe\" | 2.35e-06 |\n", + "+------------------+--------------------------+------------------+\n", + "\n", + "+--------------------------+---------+-----------+------------------+\n", + "| fafmax.faf99_max_gen_anc | a_index | was_split | rsid |\n", + "+--------------------------+---------+-----------+------------------+\n", + "| str | int32 | bool | set |\n", + "+--------------------------+---------+-----------+------------------+\n", + "| NA | 2 | True | {\"rs1639542312\"} |\n", + "| NA | 1 | False | {\"rs1639542418\"} |\n", + "| NA | 1 | False | NA |\n", + "| NA | 2 | True | {\"rs892501864\"} |\n", + "| \"nfe\" | 1 | True | {\"rs1570391741\"} |\n", + "+--------------------------+---------+-----------+------------------+\n", + "\n", + "+-------------------+----------+----------+----------------+-----------------+\n", + "| filters | info.FS | info.MQ | info.MQRankSum | info.QUALapprox |\n", + "+-------------------+----------+----------+----------------+-----------------+\n", + "| set | float64 | float64 | float64 | int64 |\n", + "+-------------------+----------+----------+----------------+-----------------+\n", + "| {\"AC0\",\"AS_VQSR\"} | 7.30e+00 | 3.48e+01 | 6.70e-02 | 96 |\n", + "| {\"AS_VQSR\"} | 8.58e+00 | 3.83e+01 | 1.37e+00 | 180 |\n", + "| {\"AS_VQSR\"} | 3.11e+01 | 3.52e+01 | 1.23e+00 | 97 |\n", + "| {\"AS_VQSR\"} | 0.00e+00 | 3.55e+01 | 1.07e-01 | 220 |\n", + "| {\"AS_VQSR\"} | 3.30e+01 | 3.60e+01 | 7.88e-01 | 292 |\n", + "+-------------------+----------+----------+----------------+-----------------+\n", + "\n", + "+----------+---------------------+---------------+----------+------------+\n", + "| info.QD | info.ReadPosRankSum | info.SB | info.SOR | info.VarDP |\n", + "+----------+---------------------+---------------+----------+------------+\n", + "| float32 | float64 | array | float64 | int32 |\n", + "+----------+---------------------+---------------+----------+------------+\n", + "| 2.74e+00 | -1.07e+00 | [21,6,4,4] | 9.60e-02 | 35 |\n", + "| 2.20e+00 | -4.80e-01 | [49,12,13,8] | 1.51e-01 | 82 |\n", + "| 2.77e+00 | -8.96e-01 | [25,0,5,5] | 1.00e-03 | 35 |\n", + "| 2.12e+00 | -1.16e+00 | [51,29,15,9] | 6.16e-01 | 104 |\n", + "| 1.79e+00 | -6.84e-01 | [97,29,17,20] | 3.75e-01 | 163 |\n", + "+----------+---------------------+---------------+----------+------------+\n", + "\n", + "+------------+------------+-------------------+-----------------+\n", + "| info.AS_FS | info.AS_MQ | info.AS_MQRankSum | info.AS_pab_max |\n", + "+------------+------------+-------------------+-----------------+\n", + "| float64 | float64 | float64 | float64 |\n", + "+------------+------------+-------------------+-----------------+\n", + "| 5.10e+00 | 3.51e+01 | -5.72e-01 | 6.87e-01 |\n", + "| 8.58e+00 | 3.83e+01 | 1.37e+00 | 1.00e+00 |\n", + "| 3.11e+01 | 3.52e+01 | 1.23e+00 | 1.00e+00 |\n", + "| 5.94e+00 | 3.48e+01 | 7.15e-01 | 2.27e-01 |\n", + "| 3.79e+01 | 3.61e+01 | 7.88e-01 | 1.00e+00 |\n", + "+------------+------------+-------------------+-----------------+\n", + "\n", + "+--------------------+------------+------------------------+------------------+\n", + "| info.AS_QUALapprox | info.AS_QD | info.AS_ReadPosRankSum | info.AS_SB_TABLE |\n", + "+--------------------+------------+------------------------+------------------+\n", + "| int64 | float32 | float64 | array |\n", + "+--------------------+------------+------------------------+------------------+\n", + "| 77 | 2.96e+00 | -1.38e+00 | [21,6,3,3] |\n", + "| 180 | 2.20e+00 | -4.80e-01 | [49,12,13,8] |\n", + "| 97 | 2.77e+00 | -8.96e-01 | [25,0,5,5] |\n", + "| 91 | 1.21e+00 | -1.16e+00 | [51,29,7,8] |\n", + "| 264 | 2.06e+00 | -6.84e-01 | [97,29,13,19] |\n", + "+--------------------+------------+------------------------+------------------+\n", + "\n", + "+-------------+---------------+----------------+----------------------------+\n", + "| info.AS_SOR | info.AS_VarDP | info.singleton | info.transmitted_singleton |\n", + "+-------------+---------------+----------------+----------------------------+\n", + "| float64 | int32 | bool | bool |\n", + "+-------------+---------------+----------------+----------------------------+\n", + "| 9.64e-02 | 26 | False | NA |\n", + "| 1.51e-01 | 82 | False | NA |\n", + "| 1.48e-03 | 35 | True | False |\n", + "| 4.69e-01 | 75 | False | NA |\n", + "| 7.58e-01 | 128 | False | NA |\n", + "+-------------+---------------+----------------+----------------------------+\n", + "\n", + "+-----------+------------+------------------+---------------+----------------+\n", + "| info.omni | info.mills | info.monoallelic | info.only_het | info.AS_VQSLOD |\n", + "+-----------+------------+------------------+---------------+----------------+\n", + "| bool | bool | bool | bool | float64 |\n", + "+-----------+------------+------------------+---------------+----------------+\n", + "| NA | NA | False | False | -4.57e+00 |\n", + "| NA | NA | False | False | -3.18e+00 |\n", + "| NA | NA | False | False | -5.79e+00 |\n", + "| NA | NA | False | False | -3.72e+00 |\n", + "| NA | NA | False | False | -3.31e+00 |\n", + "+-----------+------------+------------------+---------------+----------------+\n", + "\n", + "+-----------------------+\n", + "| info.inbreeding_coeff |\n", + "+-----------------------+\n", + "| float64 |\n", + "+-----------------------+\n", + "| -1.65e-05 |\n", + "| -3.15e-05 |\n", + "| -8.24e-06 |\n", + "| -4.64e-05 |\n", + "| -2.41e-05 |\n", + "+-----------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| info.vrs.VRS_Allele_IDs |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [\"ga4gh:VA.oTAtTrgYxm81O9fu6Mrhfo1t3eHsgg4L\",\"ga4gh:VA.Y283OnlLjyi1T1IT_J... |\n", + "| [\"ga4gh:VA.6pIoPAYDsphCprRcyrititenuEWlZaxV\",\"ga4gh:VA.iHyQ1mh_iQX6WcqXcx... |\n", + "| [\"ga4gh:VA.HdrkFJS16zwJPcGSKX9___fJcdqSATlQ\",\"ga4gh:VA.LSHuFx03sqw8WJGN2-... |\n", + "| [\"ga4gh:VA.xis4Nhtveh7q75mtkipQAUqZfWUfboWB\",\"ga4gh:VA.Ciou33oFTNEilAEegb... |\n", + "| [\"ga4gh:VA.TV0UyS-jCvsVkEOMbipUnzTc4hYuVNTg\",\"ga4gh:VA.33zGTKcHyj5wWpTfc3... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+---------------------+-------------------+---------------------+\n", + "| info.vrs.VRS_Starts | info.vrs.VRS_Ends | info.vrs.VRS_States |\n", + "+---------------------+-------------------+---------------------+\n", + "| array | array | array |\n", + "+---------------------+-------------------+---------------------+\n", + "| [10030,10030] | [10031,10031] | [\"T\",\"C\"] |\n", + "| [10036,10036] | [10037,10037] | [\"T\",\"C\"] |\n", + "| [10042,10042] | [10043,10043] | [\"T\",\"C\"] |\n", + "| [10054,10054] | [10055,10055] | [\"T\",\"C\"] |\n", + "| [10056,10056] | [10057,10057] | [\"A\",\"C\"] |\n", + "+---------------------+-------------------+---------------------+\n", + "\n", + "+-------------------+---------+--------+---------------------------+\n", + "| vep.allele_string | vep.end | vep.id | vep.input |\n", + "+-------------------+---------+--------+---------------------------+\n", + "| str | int32 | str | str |\n", + "+-------------------+---------+--------+---------------------------+\n", + "| \"T/C\" | 10031 | \".\" | \"chr1\t10031\t.\tT\tC\t.\t.\tGT\" |\n", + "| \"T/C\" | 10037 | \".\" | \"chr1\t10037\t.\tT\tC\t.\t.\tGT\" |\n", + "| \"T/C\" | 10043 | \".\" | \"chr1\t10043\t.\tT\tC\t.\t.\tGT\" |\n", + "| \"T/C\" | 10055 | \".\" | \"chr1\t10055\t.\tT\tC\t.\t.\tGT\" |\n", + "| \"A/C\" | 10057 | \".\" | \"chr1\t10057\t.\tA\tC\t.\t.\tGT\" |\n", + "+-------------------+---------+--------+---------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| vep.intergenic_consequences |\n", + "+------------------------------------------------------------------------------+\n", + "| array, impact: st... |\n", + "+------------------------------------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+-----------------------------+\n", + "| vep.most_severe_consequence |\n", + "+-----------------------------+\n", + "| str |\n", + "+-----------------------------+\n", + "| \"upstream_gene_variant\" |\n", + "| \"upstream_gene_variant\" |\n", + "| \"upstream_gene_variant\" |\n", + "| \"upstream_gene_variant\" |\n", + "| \"upstream_gene_variant\" |\n", + "+-----------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| vep.motif_feature_consequences |\n", + "+------------------------------------------------------------------------------+\n", + "| array, high_inf_p... |\n", + "+------------------------------------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| vep.regulatory_feature_consequences |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.qual_hists.gq_hist_all.bin_freq |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0,0,0,0,23215,2435,1647,594,176,118,49,29,19,9,11,6,5,2,4,2] |\n", + "| [0,0,0,0,29394,3741,2868,1281,401,358,163,63,69,31,18,20,10,4,5,15] |\n", + "| [0,0,0,0,31093,4532,3696,1752,595,585,261,88,82,59,17,26,14,5,3,9] |\n", + "| [0,0,0,0,25677,6107,5433,3528,1753,1702,1130,485,518,282,119,125,77,35,29... |\n", + "| [0,0,0,0,25460,7448,6933,4978,2881,2833,2048,1038,1129,685,321,364,212,90... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+---------------------------------------------+\n", + "| histograms.qual_hists.gq_hist_all.n_smaller |\n", + "+---------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+---------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.qual_hists.gq_hist_all.n_larger |\n", + "+--------------------------------------------+\n", + "| int64 |\n", + "+--------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+--------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.qual_hists.dp_hist_all.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.qual_hists.dp_hist_all.bin_freq |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0,0,16,121,475,973,1736,2409,2950,3134,2995,2803,2514,2194,1773,1335,911... |\n", + "| [0,0,9,69,387,913,1737,2859,3749,4216,4302,4223,3745,3280,2661,1954,1380,... |\n", + "| [0,0,8,40,264,690,1525,2691,3754,4574,4813,4940,4490,3907,3242,2387,1704,... |\n", + "| [0,0,4,22,120,354,999,1950,3037,4168,4734,5196,5380,4766,4238,3206,2398,1... |\n", + "| [0,0,2,23,108,320,888,1844,3110,4447,5361,6012,6379,5879,5289,4273,3400,2... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+---------------------------------------------+\n", + "| histograms.qual_hists.dp_hist_all.n_smaller |\n", + "+---------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+---------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.qual_hists.dp_hist_all.n_larger |\n", + "+--------------------------------------------+\n", + "| int64 |\n", + "+--------------------------------------------+\n", + "| 527 |\n", + "| 888 |\n", + "| 1232 |\n", + "| 2440 |\n", + "| 3622 |\n", + "+--------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.qual_hists.gq_hist_alt.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.qual_hists.gq_hist_alt.bin_freq |\n", + "+--------------------------------------------+\n", + "| array |\n", + "+--------------------------------------------+\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0] |\n", + "+--------------------------------------------+\n", + "\n", + "+---------------------------------------------+\n", + "| histograms.qual_hists.gq_hist_alt.n_smaller |\n", + "+---------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+---------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.qual_hists.gq_hist_alt.n_larger |\n", + "+--------------------------------------------+\n", + "| int64 |\n", + "+--------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+--------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.qual_hists.dp_hist_alt.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.qual_hists.dp_hist_alt.bin_freq |\n", + "+--------------------------------------------+\n", + "| array |\n", + "+--------------------------------------------+\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,1,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "+--------------------------------------------+\n", + "\n", + "+---------------------------------------------+\n", + "| histograms.qual_hists.dp_hist_alt.n_smaller |\n", + "+---------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+---------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.qual_hists.dp_hist_alt.n_larger |\n", + "+--------------------------------------------+\n", + "| int64 |\n", + "+--------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+--------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.qual_hists.ab_hist_alt.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.qual_hists.ab_hist_alt.bin_freq |\n", + "+--------------------------------------------+\n", + "| array |\n", + "+--------------------------------------------+\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "+--------------------------------------------+\n", + "\n", + "+---------------------------------------------+\n", + "| histograms.qual_hists.ab_hist_alt.n_smaller |\n", + "+---------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+---------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.qual_hists.ab_hist_alt.n_larger |\n", + "+--------------------------------------------+\n", + "| int64 |\n", + "+--------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+--------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.raw_qual_hists.gq_hist_all.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.raw_qual_hists.gq_hist_all.bin_freq |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [14149,7330,6840,3904,23217,2436,1647,594,176,118,49,29,19,9,11,6,5,2,4,2] |\n", + "| [10121,5441,5610,3838,29394,3741,2868,1281,401,358,163,63,69,31,18,20,10,... |\n", + "| [6578,3782,4202,3336,31093,4532,3696,1752,595,585,261,88,82,59,17,26,14,5... |\n", + "| [1429,1382,1901,2026,25677,6108,5433,3528,1753,1702,1130,485,518,282,119,... |\n", + "| [995,1036,1539,1788,25460,7448,6933,4978,2881,2833,2048,1038,1129,685,321... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+-------------------------------------------------+\n", + "| histograms.raw_qual_hists.gq_hist_all.n_smaller |\n", + "+-------------------------------------------------+\n", + "| int64 |\n", + "+-------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+-------------------------------------------------+\n", + "\n", + "+------------------------------------------------+\n", + "| histograms.raw_qual_hists.gq_hist_all.n_larger |\n", + "+------------------------------------------------+\n", + "| int64 |\n", + "+------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.raw_qual_hists.dp_hist_all.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.raw_qual_hists.dp_hist_all.bin_freq |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [10,66,471,1445,2990,5808,6940,7906,7262,6236,4943,3919,3129,2527,1993,14... |\n", + "| [7,37,269,903,1948,4127,5519,7075,7322,6972,6095,5249,4374,3624,2893,2106... |\n", + "| [2,24,149,466,1201,2614,4035,5568,6331,6725,6267,5855,5101,4268,3465,2554... |\n", + "| [1,9,42,122,294,787,1537,2717,3751,4972,5404,5762,5875,5161,4526,3415,252... |\n", + "| [2,6,39,104,247,638,1325,2417,3685,5047,5927,6484,6763,6192,5525,4439,351... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+-------------------------------------------------+\n", + "| histograms.raw_qual_hists.dp_hist_all.n_smaller |\n", + "+-------------------------------------------------+\n", + "| int64 |\n", + "+-------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+-------------------------------------------------+\n", + "\n", + "+------------------------------------------------+\n", + "| histograms.raw_qual_hists.dp_hist_all.n_larger |\n", + "+------------------------------------------------+\n", + "| int64 |\n", + "+------------------------------------------------+\n", + "| 744 |\n", + "| 1130 |\n", + "| 1487 |\n", + "| 2622 |\n", + "| 3743 |\n", + "+------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.raw_qual_hists.gq_hist_alt.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+------------------------------------------------+\n", + "| histograms.raw_qual_hists.gq_hist_alt.bin_freq |\n", + "+------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------+\n", + "| [0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,2,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,1,2,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0] |\n", + "+------------------------------------------------+\n", + "\n", + "+-------------------------------------------------+\n", + "| histograms.raw_qual_hists.gq_hist_alt.n_smaller |\n", + "+-------------------------------------------------+\n", + "| int64 |\n", + "+-------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+-------------------------------------------------+\n", + "\n", + "+------------------------------------------------+\n", + "| histograms.raw_qual_hists.gq_hist_alt.n_larger |\n", + "+------------------------------------------------+\n", + "| int64 |\n", + "+------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.raw_qual_hists.dp_hist_alt.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+------------------------------------------------+\n", + "| histograms.raw_qual_hists.dp_hist_alt.bin_freq |\n", + "+------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------+\n", + "| [0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,2,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,3,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,1,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "+------------------------------------------------+\n", + "\n", + "+-------------------------------------------------+\n", + "| histograms.raw_qual_hists.dp_hist_alt.n_smaller |\n", + "+-------------------------------------------------+\n", + "| int64 |\n", + "+-------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+-------------------------------------------------+\n", + "\n", + "+------------------------------------------------+\n", + "| histograms.raw_qual_hists.dp_hist_alt.n_larger |\n", + "+------------------------------------------------+\n", + "| int64 |\n", + "+------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.raw_qual_hists.ab_hist_alt.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+------------------------------------------------+\n", + "| histograms.raw_qual_hists.ab_hist_alt.bin_freq |\n", + "+------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------+\n", + "| [0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,3,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "+------------------------------------------------+\n", + "\n", + "+-------------------------------------------------+\n", + "| histograms.raw_qual_hists.ab_hist_alt.n_smaller |\n", + "+-------------------------------------------------+\n", + "| int64 |\n", + "+-------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+-------------------------------------------------+\n", + "\n", + "+------------------------------------------------+\n", + "| histograms.raw_qual_hists.ab_hist_alt.n_larger |\n", + "+------------------------------------------------+\n", + "| int64 |\n", + "+------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.age_hists.age_hist_het.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.age_hists.age_hist_het.bin_freq |\n", + "+--------------------------------------------+\n", + "| array |\n", + "+--------------------------------------------+\n", + "| [0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,1,0,0,1,0,0,0,0,0] |\n", + "| [0,0,1,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,1,0,1,0,0,0,0,0] |\n", + "+--------------------------------------------+\n", + "\n", + "+---------------------------------------------+\n", + "| histograms.age_hists.age_hist_het.n_smaller |\n", + "+---------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+---------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.age_hists.age_hist_het.n_larger |\n", + "+--------------------------------------------+\n", + "| int64 |\n", + "+--------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+--------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.age_hists.age_hist_hom.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.age_hists.age_hist_hom.bin_freq |\n", + "+--------------------------------------------+\n", + "| array |\n", + "+--------------------------------------------+\n", + "| [0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0] |\n", + "+--------------------------------------------+\n", + "\n", + "+---------------------------------------------+\n", + "| histograms.age_hists.age_hist_hom.n_smaller |\n", + "+---------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+---------------------------------------------+\n", + "\n", + "+--------------------------------------------+---------------------------------+\n", + "| histograms.age_hists.age_hist_hom.n_larger | in_silico_predictors.cadd.phred |\n", + "+--------------------------------------------+---------------------------------+\n", + "| int64 | float32 |\n", + "+--------------------------------------------+---------------------------------+\n", + "| 0 | 8.97e+00 |\n", + "| 0 | 8.90e+00 |\n", + "| 0 | 8.90e+00 |\n", + "| 0 | 8.88e+00 |\n", + "| 0 | 8.53e+00 |\n", + "+--------------------------------------------+---------------------------------+\n", + "\n", + "+-------------------------------------+--------------------------------+\n", + "| in_silico_predictors.cadd.raw_score | in_silico_predictors.revel_max |\n", + "+-------------------------------------+--------------------------------+\n", + "| float32 | float64 |\n", + "+-------------------------------------+--------------------------------+\n", + "| 7.57e-01 | NA |\n", + "| 7.49e-01 | NA |\n", + "| 7.48e-01 | NA |\n", + "| 7.46e-01 | NA |\n", + "| 7.09e-01 | NA |\n", + "+-------------------------------------+--------------------------------+\n", + "\n", + "+--------------------------------------+\n", + "| in_silico_predictors.spliceai_ds_max |\n", + "+--------------------------------------+\n", + "| float32 |\n", + "+--------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+--------------------------------------+\n", + "\n", + "+------------------------------------------+-----------------------------+\n", + "| in_silico_predictors.pangolin_largest_ds | in_silico_predictors.phylop |\n", + "+------------------------------------------+-----------------------------+\n", + "| float64 | float64 |\n", + "+------------------------------------------+-----------------------------+\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "+------------------------------------------+-----------------------------+\n", + "\n", + "+-------------------------------+-----------------------------------+\n", + "| in_silico_predictors.sift_max | in_silico_predictors.polyphen_max |\n", + "+-------------------------------+-----------------------------------+\n", + "| float64 | float64 |\n", + "+-------------------------------+-----------------------------------+\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "+-------------------------------+-----------------------------------+\n", + "showing top 5 rows" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "ht.show(5)" + ] + }, + { + "cell_type": "markdown", + "id": "22e6f759-a0ee-4e9c-8ca4-eb154cb08763", + "metadata": { + "tags": [] + }, + "source": [ + "### v4.1 Joint Frequency Hail Table" + ] + }, + { + "cell_type": "markdown", + "id": "0a569b77-d3d2-45a4-803a-1214c77e46f2", + "metadata": {}, + "source": [ + "The joint frequency Hail table includes frequency for the exomes, genomes, and the exomes+genomes. We have also added statistics for the combined exomes and genomes frequencies, more details on these stats can be found on our [Help](https://gnomad.broadinstitute.org/help/combined-freq-stats) page." + ] + }, + { + "cell_type": "markdown", + "id": "46d4fc43-609d-4a16-8a0a-ab1e870b5d3d", + "metadata": {}, + "source": [ + "#### Load the Hail Table\n" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "c1c1fbb0-4ef9-4892-bd91-aae9985317a7", + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-06T20:08:59.197890Z", + "start_time": "2024-12-06T20:08:50.859108Z" + } + }, + "outputs": [], + "source": [ + "ht = get_gnomad_release(data_type='joint', version='4.1')" + ] + }, + { + "cell_type": "markdown", + "id": "163df47b-70de-4e1e-91be-a65c90cf2db5", + "metadata": {}, + "source": [ + "#### Print the schema of the Hail Table\n" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "750c0111-4566-4b86-8c08-18c504ff1a79", + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-06T20:09:00.032524Z", + "start_time": "2024-12-06T20:09:00.029271Z" + }, + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "----------------------------------------\n", + "Global fields:\n", + " 'exomes_globals': struct {\n", + " freq_meta: array>, \n", + " freq_index_dict: dict, \n", + " freq_meta_sample_count: array, \n", + " faf_meta: array>, \n", + " faf_index_dict: dict, \n", + " age_distribution: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int32, \n", + " n_larger: int32\n", + " }\n", + " } \n", + " 'genomes_globals': struct {\n", + " freq_meta: array>, \n", + " freq_index_dict: dict, \n", + " freq_meta_sample_count: array, \n", + " faf_meta: array>, \n", + " faf_index_dict: dict, \n", + " age_distribution: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int32, \n", + " n_larger: int32\n", + " }\n", + " } \n", + " 'joint_globals': struct {\n", + " freq_meta: array>, \n", + " freq_index_dict: dict, \n", + " faf_meta: array>, \n", + " faf_index_dict: dict, \n", + " freq_meta_sample_count: array, \n", + " age_distribution: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int32, \n", + " n_larger: int32\n", + " }\n", + " } \n", + "----------------------------------------\n", + "Row fields:\n", + " 'locus': locus \n", + " 'alleles': array \n", + " 'region_flags': struct {\n", + " fail_interval_qc: bool, \n", + " outside_broad_capture_region: bool, \n", + " outside_ukb_capture_region: bool, \n", + " outside_broad_calling_region: bool, \n", + " outside_ukb_calling_region: bool, \n", + " not_called_in_exomes: bool, \n", + " not_called_in_genomes: bool\n", + " } \n", + " 'exomes': struct {\n", + " filters: set, \n", + " freq: array, \n", + " faf: array, \n", + " grpmax: struct {\n", + " AC: int32, \n", + " AF: float64, \n", + " AN: int32, \n", + " homozygote_count: int64, \n", + " gen_anc: str\n", + " }, \n", + " fafmax: struct {\n", + " faf95_max: float64, \n", + " faf95_max_gen_anc: str, \n", + " faf99_max: float64, \n", + " faf99_max_gen_anc: str\n", + " }, \n", + " histograms: struct {\n", + " qual_hists: struct {\n", + " gq_hist_all: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }, \n", + " dp_hist_all: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }, \n", + " gq_hist_alt: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }, \n", + " dp_hist_alt: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }, \n", + " ab_hist_alt: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }\n", + " }, \n", + " raw_qual_hists: struct {\n", + " gq_hist_all: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }, \n", + " dp_hist_all: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }, \n", + " gq_hist_alt: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }, \n", + " dp_hist_alt: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }, \n", + " ab_hist_alt: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }\n", + " }, \n", + " age_hists: struct {\n", + " age_hist_het: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }, \n", + " age_hist_hom: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }\n", + " }\n", + " }\n", + " } \n", + " 'genomes': struct {\n", + " filters: set, \n", + " freq: array, \n", + " faf: array, \n", + " grpmax: struct {\n", + " AC: int32, \n", + " AF: float64, \n", + " AN: int32, \n", + " homozygote_count: int32, \n", + " gen_anc: str\n", + " }, \n", + " fafmax: struct {\n", + " faf95_max: float64, \n", + " faf95_max_gen_anc: str, \n", + " faf99_max: float64, \n", + " faf99_max_gen_anc: str\n", + " }, \n", + " histograms: struct {\n", + " qual_hists: struct {\n", + " gq_hist_all: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }, \n", + " dp_hist_all: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }, \n", + " gq_hist_alt: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }, \n", + " dp_hist_alt: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }, \n", + " ab_hist_alt: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }\n", + " }, \n", + " raw_qual_hists: struct {\n", + " gq_hist_all: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }, \n", + " dp_hist_all: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }, \n", + " gq_hist_alt: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }, \n", + " dp_hist_alt: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }, \n", + " ab_hist_alt: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }\n", + " }, \n", + " age_hists: struct {\n", + " age_hist_het: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }, \n", + " age_hist_hom: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }\n", + " }\n", + " }\n", + " } \n", + " 'joint': struct {\n", + " freq: array, \n", + " faf: array, \n", + " fafmax: struct {\n", + " faf95_max: float64, \n", + " faf95_max_gen_anc: str, \n", + " faf99_max: float64, \n", + " faf99_max_gen_anc: str\n", + " }, \n", + " grpmax: struct {\n", + " AC: int32, \n", + " AF: float64, \n", + " AN: int32, \n", + " homozygote_count: int32, \n", + " gen_anc: str\n", + " }, \n", + " histograms: struct {\n", + " qual_hists: struct {\n", + " gq_hist_all: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }, \n", + " dp_hist_all: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }, \n", + " gq_hist_alt: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }, \n", + " dp_hist_alt: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }, \n", + " ab_hist_alt: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }\n", + " }, \n", + " raw_qual_hists: struct {\n", + " gq_hist_all: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }, \n", + " dp_hist_all: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }, \n", + " gq_hist_alt: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }, \n", + " dp_hist_alt: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }, \n", + " ab_hist_alt: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }\n", + " }, \n", + " age_hists: struct {\n", + " age_hist_het: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }, \n", + " age_hist_hom: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }\n", + " }\n", + " }\n", + " } \n", + " 'freq_comparison_stats': struct {\n", + " contingency_table_test: array, \n", + " cochran_mantel_haenszel_test: struct {\n", + " p_value: float64, \n", + " chisq: float64\n", + " }, \n", + " stat_union: struct {\n", + " p_value: float64, \n", + " stat_test_name: str, \n", + " gen_ancs: array\n", + " }\n", + " } \n", + "----------------------------------------\n", + "Key: ['locus', 'alleles']\n", + "----------------------------------------\n" + ] + } + ], + "source": [ + "ht.describe()" + ] + }, + { + "cell_type": "markdown", + "id": "d6843db4-9e8f-42f4-9178-fc945f61a827", + "metadata": { + "tags": [] + }, + "source": [ + "#### Show the first 5 variants in the Hail Table\n" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "477ed281-4ee9-4799-b5b6-e6a0c528fa9a", + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-06T20:09:20.949958Z", + "start_time": "2024-12-06T20:09:05.622171Z" + } + }, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
exomes
genomes
joint
histograms
histograms
histograms
qual_hists
raw_qual_hists
age_hists
qual_hists
raw_qual_hists
age_hists
qual_hists
raw_qual_hists
age_hists
freq_comparison_stats
region_flags
grpmax
fafmax
gq_hist_all
dp_hist_all
gq_hist_alt
dp_hist_alt
ab_hist_alt
gq_hist_all
dp_hist_all
gq_hist_alt
dp_hist_alt
ab_hist_alt
age_hist_het
age_hist_hom
grpmax
fafmax
gq_hist_all
dp_hist_all
gq_hist_alt
dp_hist_alt
ab_hist_alt
gq_hist_all
dp_hist_all
gq_hist_alt
dp_hist_alt
ab_hist_alt
age_hist_het
age_hist_hom
fafmax
grpmax
gq_hist_all
dp_hist_all
gq_hist_alt
dp_hist_alt
ab_hist_alt
gq_hist_all
dp_hist_all
gq_hist_alt
dp_hist_alt
ab_hist_alt
age_hist_het
age_hist_hom
cochran_mantel_haenszel_test
stat_union
locus
alleles
fail_interval_qc
outside_broad_capture_region
outside_ukb_capture_region
outside_broad_calling_region
outside_ukb_calling_region
not_called_in_exomes
not_called_in_genomes
filters
freq
faf
AC
AF
AN
homozygote_count
gen_anc
faf95_max
faf95_max_gen_anc
faf99_max
faf99_max_gen_anc
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
filters
freq
faf
AC
AF
AN
homozygote_count
gen_anc
faf95_max
faf95_max_gen_anc
faf99_max
faf99_max_gen_anc
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
freq
faf
faf95_max
faf95_max_gen_anc
faf99_max
faf99_max_gen_anc
AC
AF
AN
homozygote_count
gen_anc
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
contingency_table_test
p_value
chisq
p_value
stat_test_name
gen_ancs
locus<GRCh38>array<str>boolboolboolboolboolboolboolset<str>array<struct{AC: int32, AF: float64, AN: int32, homozygote_count: int32}>array<struct{faf95: float64, faf99: float64}>int32float64int32int64strfloat64strfloat64strarray<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64set<str>array<struct{AC: int32, AF: float64, AN: int32, homozygote_count: int32}>array<struct{faf95: float64, faf99: float64}>int32float64int32int32strfloat64strfloat64strarray<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<struct{AC: int32, AF: float64, AN: int32, homozygote_count: int32}>array<struct{faf95: float64, faf99: float64}>float64strfloat64strint32float64int32int32strarray<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<struct{p_value: float64, odds_ratio: float64}>float64float64float64strarray<str>
chr1:10031["T","C"]NATrueTrueTrueTrueTrueFalseNA[(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA)]NANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANA{"AC0","AS_VQSR"}[(0,0.00e+00,56642,0),(2,1.65e-05,121094,0),(0,0.00e+00,25546,0),(0,0.00e+00,4326,0),(0,0.00e+00,192,0),(0,0.00e+00,782,0),(0,0.00e+00,352,0),(0,0.00e+00,1550,0),(0,0.00e+00,14642,0),(0,0.00e+00,1712,0),(0,0.00e+00,1120,0),(0,0.00e+00,6420,0),(0,0.00e+00,29308,0),(0,0.00e+00,27334,0),(0,0.00e+00,14998,0),(0,0.00e+00,1060,0),(0,0.00e+00,102,0),(0,0.00e+00,402,0),(0,0.00e+00,154,0),(0,0.00e+00,814,0),(0,0.00e+00,7978,0),(0,0.00e+00,770,0),(0,0.00e+00,260,0),(0,0.00e+00,2770,0),(0,0.00e+00,10548,0),(0,0.00e+00,3266,0),(0,0.00e+00,90,0),(0,0.00e+00,380,0),(0,0.00e+00,198,0),(0,0.00e+00,736,0),(0,0.00e+00,6664,0),(0,0.00e+00,942,0),(0,0.00e+00,860,0),(0,0.00e+00,3650,0)][(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]NANANANANANANANANA[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,23215,2435,1647,594,176,118,49,29,19,9,11,6,5,2,4,2]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,16,121,475,973,1736,2409,2950,3134,2995,2803,2514,2194,1773,1335,911,665,439,351]0527[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][14149,7330,6840,3904,23217,2436,1647,594,176,118,49,29,19,9,11,6,5,2,4,2]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][10,66,471,1445,2990,5808,6940,7906,7262,6236,4943,3919,3129,2527,1993,1476,1023,741,500,418]0744[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]00[(0,0.00e+00,56642,0),(2,1.65e-05,121094,0),(0,0.00e+00,25546,0),(0,0.00e+00,4326,0),(0,0.00e+00,192,0),(0,0.00e+00,782,0),(0,0.00e+00,352,0),(0,0.00e+00,1550,0),(0,0.00e+00,14642,0),(0,0.00e+00,1712,0),(0,0.00e+00,1120,0),(0,0.00e+00,6420,0),(0,0.00e+00,29308,0),(0,0.00e+00,27334,0),(0,0.00e+00,14998,0),(0,0.00e+00,1060,0),(0,0.00e+00,102,0),(0,0.00e+00,402,0),(0,0.00e+00,154,0),(0,0.00e+00,814,0),(0,0.00e+00,7978,0),(0,0.00e+00,770,0),(0,0.00e+00,260,0),(0,0.00e+00,2770,0),(0,0.00e+00,10548,0),(0,0.00e+00,3266,0),(0,0.00e+00,90,0),(0,0.00e+00,380,0),(0,0.00e+00,198,0),(0,0.00e+00,736,0),(0,0.00e+00,6664,0),(0,0.00e+00,942,0),(0,0.00e+00,860,0),(0,0.00e+00,3650,0)][(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]NANANANANANANANANA[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,23215,2435,1647,594,176,118,49,29,19,9,11,6,5,2,4,2]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,16,121,475,973,1736,2409,2950,3134,2995,2803,2514,2194,1773,1335,911,665,439,351]0527[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][14149,7330,6840,3904,23217,2436,1647,594,176,118,49,29,19,9,11,6,5,2,4,2]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][10,66,471,1445,2990,5808,6940,7906,7262,6236,4943,3919,3129,2527,1993,1476,1023,741,500,418]0744[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]00[NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]NANANANANA
chr1:10037["T","C"]NATrueTrueTrueTrueTrueFalseNA[(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA)]NANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANA{"AS_VQSR"}[(2,2.60e-05,76882,0),(4,3.15e-05,126902,0),(0,0.00e+00,34670,0),(1,1.80e-04,5568,0),(0,0.00e+00,234,0),(0,0.00e+00,998,0),(0,0.00e+00,494,0),(0,0.00e+00,2066,0),(0,0.00e+00,20394,0),(1,4.07e-04,2456,0),(0,0.00e+00,1706,0),(0,0.00e+00,8296,0),(1,2.49e-05,40172,0),(1,2.72e-05,36710,0),(0,0.00e+00,20498,0),(0,0.00e+00,1316,0),(0,0.00e+00,122,0),(0,0.00e+00,528,0),(0,0.00e+00,238,0),(0,0.00e+00,1106,0),(0,0.00e+00,11132,0),(1,8.98e-04,1114,0),(0,0.00e+00,420,0),(0,0.00e+00,3698,0),(0,0.00e+00,14172,0),(1,2.35e-04,4252,0),(0,0.00e+00,112,0),(0,0.00e+00,470,0),(0,0.00e+00,256,0),(0,0.00e+00,960,0),(0,0.00e+00,9262,0),(0,0.00e+00,1342,0),(0,0.00e+00,1286,0),(0,0.00e+00,4598,0)][(4.32e-06,1.62e-06),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]14.07e-0424560"eas"NANANANA[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,29394,3741,2868,1281,401,358,163,63,69,31,18,20,10,4,5,15]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,9,69,387,913,1737,2859,3749,4216,4302,4223,3745,3280,2661,1954,1380,943,607,519]0888[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][10121,5441,5610,3838,29394,3741,2868,1281,401,358,163,63,69,31,18,20,10,4,5,15]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][7,37,269,903,1948,4127,5519,7075,7322,6972,6095,5249,4374,3624,2893,2106,1501,1031,679,590]01130[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,2,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,2,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,1,0,0,1,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]00[(2,2.60e-05,76882,0),(4,3.15e-05,126902,0),(0,0.00e+00,34670,0),(1,1.80e-04,5568,0),(0,0.00e+00,234,0),(0,0.00e+00,998,0),(0,0.00e+00,494,0),(0,0.00e+00,2066,0),(0,0.00e+00,20394,0),(1,4.07e-04,2456,0),(0,0.00e+00,1706,0),(0,0.00e+00,8296,0),(1,2.49e-05,40172,0),(1,2.72e-05,36710,0),(0,0.00e+00,20498,0),(0,0.00e+00,1316,0),(0,0.00e+00,122,0),(0,0.00e+00,528,0),(0,0.00e+00,238,0),(0,0.00e+00,1106,0),(0,0.00e+00,11132,0),(1,8.98e-04,1114,0),(0,0.00e+00,420,0),(0,0.00e+00,3698,0),(0,0.00e+00,14172,0),(1,2.35e-04,4252,0),(0,0.00e+00,112,0),(0,0.00e+00,470,0),(0,0.00e+00,256,0),(0,0.00e+00,960,0),(0,0.00e+00,9262,0),(0,0.00e+00,1342,0),(0,0.00e+00,1286,0),(0,0.00e+00,4598,0)][(4.32e-06,1.62e-06),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]NANANANA14.07e-0424560"eas"[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,29394,3741,2868,1281,401,358,163,63,69,31,18,20,10,4,5,15]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,9,69,387,913,1737,2859,3749,4216,4302,4223,3745,3280,2661,1954,1380,943,607,519]0888[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][10121,5441,5610,3838,29394,3741,2868,1281,401,358,163,63,69,31,18,20,10,4,5,15]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][7,37,269,903,1948,4127,5519,7075,7322,6972,6095,5249,4374,3624,2893,2106,1501,1031,679,590]01130[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,2,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,2,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,1,0,0,1,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]00[NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]NANANANANA
chr1:10043["T","C"]NATrueTrueTrueTrueTrueFalseNA[(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA)]NANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANA{"AS_VQSR"}[(1,1.17e-05,85634,0),(1,8.24e-06,121430,0),(0,0.00e+00,39236,0),(0,0.00e+00,5820,0),(0,0.00e+00,254,0),(0,0.00e+00,1148,0),(0,0.00e+00,568,0),(0,0.00e+00,2276,0),(1,4.39e-05,22760,0),(0,0.00e+00,2912,0),(0,0.00e+00,2158,0),(0,0.00e+00,8502,0),(1,2.23e-05,44904,0),(0,0.00e+00,40730,0),(0,0.00e+00,23244,0),(0,0.00e+00,1280,0),(0,0.00e+00,136,0),(0,0.00e+00,594,0),(0,0.00e+00,284,0),(0,0.00e+00,1234,0),(1,8.03e-05,12446,0),(0,0.00e+00,1296,0),(0,0.00e+00,502,0),(0,0.00e+00,3888,0),(0,0.00e+00,15992,0),(0,0.00e+00,4540,0),(0,0.00e+00,118,0),(0,0.00e+00,554,0),(0,0.00e+00,284,0),(0,0.00e+00,1042,0),(0,0.00e+00,10314,0),(0,0.00e+00,1616,0),(0,0.00e+00,1656,0),(0,0.00e+00,4614,0)][(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]14.39e-05227600"afr"NANANANA[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,31093,4532,3696,1752,595,585,261,88,82,59,17,26,14,5,3,9]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,8,40,264,690,1525,2691,3754,4574,4813,4940,4490,3907,3242,2387,1704,1158,760,638]01232[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][6578,3782,4202,3336,31093,4532,3696,1752,595,585,261,88,82,59,17,26,14,5,3,9]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][2,24,149,466,1201,2614,4035,5568,6331,6725,6267,5855,5101,4268,3465,2554,1836,1244,831,692]01487[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,1,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]00[(1,1.17e-05,85634,0),(1,8.24e-06,121430,0),(0,0.00e+00,39236,0),(0,0.00e+00,5820,0),(0,0.00e+00,254,0),(0,0.00e+00,1148,0),(0,0.00e+00,568,0),(0,0.00e+00,2276,0),(1,4.39e-05,22760,0),(0,0.00e+00,2912,0),(0,0.00e+00,2158,0),(0,0.00e+00,8502,0),(1,2.23e-05,44904,0),(0,0.00e+00,40730,0),(0,0.00e+00,23244,0),(0,0.00e+00,1280,0),(0,0.00e+00,136,0),(0,0.00e+00,594,0),(0,0.00e+00,284,0),(0,0.00e+00,1234,0),(1,8.03e-05,12446,0),(0,0.00e+00,1296,0),(0,0.00e+00,502,0),(0,0.00e+00,3888,0),(0,0.00e+00,15992,0),(0,0.00e+00,4540,0),(0,0.00e+00,118,0),(0,0.00e+00,554,0),(0,0.00e+00,284,0),(0,0.00e+00,1042,0),(0,0.00e+00,10314,0),(0,0.00e+00,1616,0),(0,0.00e+00,1656,0),(0,0.00e+00,4614,0)][(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]NANANANA14.39e-05227600"afr"[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,31093,4532,3696,1752,595,585,261,88,82,59,17,26,14,5,3,9]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,8,40,264,690,1525,2691,3754,4574,4813,4940,4490,3907,3242,2387,1704,1158,760,638]01232[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][6578,3782,4202,3336,31093,4532,3696,1752,595,585,261,88,82,59,17,26,14,5,3,9]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][2,24,149,466,1201,2614,4035,5568,6331,6725,6267,5855,5101,4268,3465,2554,1836,1244,831,692]01487[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,1,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]00[NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]NANANANANA
chr1:10055["T","C"]NATrueTrueTrueTrueTrueFalseNA[(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA)]NANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANA{"AS_VQSR"}[(1,1.06e-05,94224,0),(5,4.64e-05,107704,0),(0,0.00e+00,44382,0),(1,1.80e-04,5570,0),(0,0.00e+00,216,0),(0,0.00e+00,1228,0),(0,0.00e+00,682,0),(0,0.00e+00,2370,0),(0,0.00e+00,26032,0),(0,0.00e+00,3020,0),(0,0.00e+00,2668,0),(0,0.00e+00,8056,0),(1,2.02e-05,49580,0),(0,0.00e+00,44644,0),(0,0.00e+00,26312,0),(1,9.67e-04,1034,0),(0,0.00e+00,110,0),(0,0.00e+00,624,0),(0,0.00e+00,344,0),(0,0.00e+00,1246,0),(0,0.00e+00,14152,0),(0,0.00e+00,1256,0),(0,0.00e+00,600,0),(0,0.00e+00,3902,0),(0,0.00e+00,18070,0),(0,0.00e+00,4536,0),(0,0.00e+00,106,0),(0,0.00e+00,604,0),(0,0.00e+00,338,0),(0,0.00e+00,1124,0),(0,0.00e+00,11880,0),(0,0.00e+00,1764,0),(0,0.00e+00,2068,0),(0,0.00e+00,4154,0)][(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]NANANANANANANANANA[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,25677,6107,5433,3528,1753,1702,1130,485,518,282,119,125,77,35,29,76]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,4,22,120,354,999,1950,3037,4168,4734,5196,5380,4766,4238,3206,2398,1776,1236,1052]02440[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][1429,1382,1901,2026,25677,6108,5433,3528,1753,1702,1130,485,518,282,119,125,77,35,29,76]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][1,9,42,122,294,787,1537,2717,3751,4972,5404,5762,5875,5161,4526,3415,2525,1883,1294,1116]02622[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,1,2,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,3,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,3,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]00[(1,1.06e-05,94224,0),(5,4.64e-05,107704,0),(0,0.00e+00,44382,0),(1,1.80e-04,5570,0),(0,0.00e+00,216,0),(0,0.00e+00,1228,0),(0,0.00e+00,682,0),(0,0.00e+00,2370,0),(0,0.00e+00,26032,0),(0,0.00e+00,3020,0),(0,0.00e+00,2668,0),(0,0.00e+00,8056,0),(1,2.02e-05,49580,0),(0,0.00e+00,44644,0),(0,0.00e+00,26312,0),(1,9.67e-04,1034,0),(0,0.00e+00,110,0),(0,0.00e+00,624,0),(0,0.00e+00,344,0),(0,0.00e+00,1246,0),(0,0.00e+00,14152,0),(0,0.00e+00,1256,0),(0,0.00e+00,600,0),(0,0.00e+00,3902,0),(0,0.00e+00,18070,0),(0,0.00e+00,4536,0),(0,0.00e+00,106,0),(0,0.00e+00,604,0),(0,0.00e+00,338,0),(0,0.00e+00,1124,0),(0,0.00e+00,11880,0),(0,0.00e+00,1764,0),(0,0.00e+00,2068,0),(0,0.00e+00,4154,0)][(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]NANANANANANANANANA[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,25677,6107,5433,3528,1753,1702,1130,485,518,282,119,125,77,35,29,76]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,4,22,120,354,999,1950,3037,4168,4734,5196,5380,4766,4238,3206,2398,1776,1236,1052]02440[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][1429,1382,1901,2026,25677,6108,5433,3528,1753,1702,1130,485,518,282,119,125,77,35,29,76]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][1,9,42,122,294,787,1537,2717,3751,4972,5404,5762,5875,5161,4526,3415,2525,1883,1294,1116]02622[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,1,2,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,3,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,3,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]00[NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]NANANANANA
chr1:10057["A","C"]NATrueTrueTrueTrueTrueFalseNA[(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA)]NANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANA{"AS_VQSR"}[(3,2.64e-05,113536,0),(3,2.41e-05,124252,0),(2,3.78e-05,52912,0),(0,0.00e+00,6886,0),(0,0.00e+00,266,0),(0,0.00e+00,1504,0),(0,0.00e+00,742,0),(0,0.00e+00,2768,0),(1,3.25e-05,30736,0),(0,0.00e+00,3850,0),(0,0.00e+00,3424,0),(0,0.00e+00,10448,0),(2,3.37e-05,59380,0),(1,1.85e-05,54156,0),(2,6.43e-05,31106,0),(0,0.00e+00,1472,0),(0,0.00e+00,132,0),(0,0.00e+00,764,0),(0,0.00e+00,378,0),(0,0.00e+00,1532,0),(0,0.00e+00,16598,0),(0,0.00e+00,1670,0),(0,0.00e+00,784,0),(0,0.00e+00,4944,0),(0,0.00e+00,21806,0),(0,0.00e+00,5414,0),(0,0.00e+00,134,0),(0,0.00e+00,740,0),(0,0.00e+00,364,0),(0,0.00e+00,1236,0),(1,7.07e-05,14138,0),(0,0.00e+00,2180,0),(0,0.00e+00,2640,0),(0,0.00e+00,5504,0)][(7.02e-06,2.95e-06),(6.27e-06,2.35e-06),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]23.78e-05529120"nfe"6.27e-06"nfe"2.35e-06"nfe"[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,25460,7448,6933,4978,2881,2833,2048,1038,1129,685,321,364,212,90,117,231]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,2,23,108,320,888,1844,3110,4447,5361,6012,6379,5879,5289,4273,3400,2503,1787,1521]03622[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,1,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][995,1036,1539,1788,25460,7448,6933,4978,2881,2833,2048,1038,1129,685,321,364,212,90,117,231]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][2,6,39,104,247,638,1325,2417,3685,5047,5927,6484,6763,6192,5525,4439,3518,2603,1850,1572]03743[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,1,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,1,0,1,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]00[(3,2.64e-05,113536,0),(3,2.41e-05,124252,0),(2,3.78e-05,52912,0),(0,0.00e+00,6886,0),(0,0.00e+00,266,0),(0,0.00e+00,1504,0),(0,0.00e+00,742,0),(0,0.00e+00,2768,0),(1,3.25e-05,30736,0),(0,0.00e+00,3850,0),(0,0.00e+00,3424,0),(0,0.00e+00,10448,0),(2,3.37e-05,59380,0),(1,1.85e-05,54156,0),(2,6.43e-05,31106,0),(0,0.00e+00,1472,0),(0,0.00e+00,132,0),(0,0.00e+00,764,0),(0,0.00e+00,378,0),(0,0.00e+00,1532,0),(0,0.00e+00,16598,0),(0,0.00e+00,1670,0),(0,0.00e+00,784,0),(0,0.00e+00,4944,0),(0,0.00e+00,21806,0),(0,0.00e+00,5414,0),(0,0.00e+00,134,0),(0,0.00e+00,740,0),(0,0.00e+00,364,0),(0,0.00e+00,1236,0),(1,7.07e-05,14138,0),(0,0.00e+00,2180,0),(0,0.00e+00,2640,0),(0,0.00e+00,5504,0)][(7.02e-06,2.95e-06),(6.27e-06,2.35e-06),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]6.27e-06"nfe"2.35e-06"nfe"23.78e-05529120"nfe"[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,25460,7448,6933,4978,2881,2833,2048,1038,1129,685,321,364,212,90,117,231]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,2,23,108,320,888,1844,3110,4447,5361,6012,6379,5879,5289,4273,3400,2503,1787,1521]03622[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,1,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][995,1036,1539,1788,25460,7448,6933,4978,2881,2833,2048,1038,1129,685,321,364,212,90,117,231]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][2,6,39,104,247,638,1325,2417,3685,5047,5927,6484,6763,6192,5525,4439,3518,2603,1850,1572]03743[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,1,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,1,0,1,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]00[NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]NANANANANA

showing top 5 rows

\n" + ], + "text/plain": [ + "+---------------+------------+-------------------------------+\n", + "| locus | alleles | region_flags.fail_interval_qc |\n", + "+---------------+------------+-------------------------------+\n", + "| locus | array | bool |\n", + "+---------------+------------+-------------------------------+\n", + "| chr1:10031 | [\"T\",\"C\"] | NA |\n", + "| chr1:10037 | [\"T\",\"C\"] | NA |\n", + "| chr1:10043 | [\"T\",\"C\"] | NA |\n", + "| chr1:10055 | [\"T\",\"C\"] | NA |\n", + "| chr1:10057 | [\"A\",\"C\"] | NA |\n", + "+---------------+------------+-------------------------------+\n", + "\n", + "+-------------------------------------------+\n", + "| region_flags.outside_broad_capture_region |\n", + "+-------------------------------------------+\n", + "| bool |\n", + "+-------------------------------------------+\n", + "| True |\n", + "| True |\n", + "| True |\n", + "| True |\n", + "| True |\n", + "+-------------------------------------------+\n", + "\n", + "+-----------------------------------------+\n", + "| region_flags.outside_ukb_capture_region |\n", + "+-----------------------------------------+\n", + "| bool |\n", + "+-----------------------------------------+\n", + "| True |\n", + "| True |\n", + "| True |\n", + "| True |\n", + "| True |\n", + "+-----------------------------------------+\n", + "\n", + "+-------------------------------------------+\n", + "| region_flags.outside_broad_calling_region |\n", + "+-------------------------------------------+\n", + "| bool |\n", + "+-------------------------------------------+\n", + "| True |\n", + "| True |\n", + "| True |\n", + "| True |\n", + "| True |\n", + "+-------------------------------------------+\n", + "\n", + "+-----------------------------------------+-----------------------------------+\n", + "| region_flags.outside_ukb_calling_region | region_flags.not_called_in_exomes |\n", + "+-----------------------------------------+-----------------------------------+\n", + "| bool | bool |\n", + "+-----------------------------------------+-----------------------------------+\n", + "| True | True |\n", + "| True | True |\n", + "| True | True |\n", + "| True | True |\n", + "| True | True |\n", + "+-----------------------------------------+-----------------------------------+\n", + "\n", + "+------------------------------------+----------------+\n", + "| region_flags.not_called_in_genomes | exomes.filters |\n", + "+------------------------------------+----------------+\n", + "| bool | set |\n", + "+------------------------------------+----------------+\n", + "| False | NA |\n", + "| False | NA |\n", + "| False | NA |\n", + "| False | NA |\n", + "| False | NA |\n", + "+------------------------------------+----------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| exomes.freq |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(N... |\n", + "| [(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(N... |\n", + "| [(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(N... |\n", + "| [(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(N... |\n", + "| [(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(NA,NA,NA,NA),(N... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+-----------------------------------------------+------------------+\n", + "| exomes.faf | exomes.grpmax.AC |\n", + "+-----------------------------------------------+------------------+\n", + "| array | int32 |\n", + "+-----------------------------------------------+------------------+\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "+-----------------------------------------------+------------------+\n", + "\n", + "+------------------+------------------+--------------------------------+\n", + "| exomes.grpmax.AF | exomes.grpmax.AN | exomes.grpmax.homozygote_count |\n", + "+------------------+------------------+--------------------------------+\n", + "| float64 | int32 | int64 |\n", + "+------------------+------------------+--------------------------------+\n", + "| NA | NA | NA |\n", + "| NA | NA | NA |\n", + "| NA | NA | NA |\n", + "| NA | NA | NA |\n", + "| NA | NA | NA |\n", + "+------------------+------------------+--------------------------------+\n", + "\n", + "+-----------------------+-------------------------+\n", + "| exomes.grpmax.gen_anc | exomes.fafmax.faf95_max |\n", + "+-----------------------+-------------------------+\n", + "| str | float64 |\n", + "+-----------------------+-------------------------+\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "+-----------------------+-------------------------+\n", + "\n", + "+---------------------------------+-------------------------+\n", + "| exomes.fafmax.faf95_max_gen_anc | exomes.fafmax.faf99_max |\n", + "+---------------------------------+-------------------------+\n", + "| str | float64 |\n", + "+---------------------------------+-------------------------+\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "+---------------------------------+-------------------------+\n", + "\n", + "+---------------------------------+\n", + "| exomes.fafmax.faf99_max_gen_anc |\n", + "+---------------------------------+\n", + "| str |\n", + "+---------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+---------------------------------+\n", + "\n", + "+----------------------------------------------------+\n", + "| exomes.histograms.qual_hists.gq_hist_all.bin_edges |\n", + "+----------------------------------------------------+\n", + "| array |\n", + "+----------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+----------------------------------------------------+\n", + "\n", + "+---------------------------------------------------+\n", + "| exomes.histograms.qual_hists.gq_hist_all.bin_freq |\n", + "+---------------------------------------------------+\n", + "| array |\n", + "+---------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+---------------------------------------------------+\n", + "\n", + "+----------------------------------------------------+\n", + "| exomes.histograms.qual_hists.gq_hist_all.n_smaller |\n", + "+----------------------------------------------------+\n", + "| int64 |\n", + "+----------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+----------------------------------------------------+\n", + "\n", + "+---------------------------------------------------+\n", + "| exomes.histograms.qual_hists.gq_hist_all.n_larger |\n", + "+---------------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+---------------------------------------------------+\n", + "\n", + "+----------------------------------------------------+\n", + "| exomes.histograms.qual_hists.dp_hist_all.bin_edges |\n", + "+----------------------------------------------------+\n", + "| array |\n", + "+----------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+----------------------------------------------------+\n", + "\n", + "+---------------------------------------------------+\n", + "| exomes.histograms.qual_hists.dp_hist_all.bin_freq |\n", + "+---------------------------------------------------+\n", + "| array |\n", + "+---------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+---------------------------------------------------+\n", + "\n", + "+----------------------------------------------------+\n", + "| exomes.histograms.qual_hists.dp_hist_all.n_smaller |\n", + "+----------------------------------------------------+\n", + "| int64 |\n", + "+----------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+----------------------------------------------------+\n", + "\n", + "+---------------------------------------------------+\n", + "| exomes.histograms.qual_hists.dp_hist_all.n_larger |\n", + "+---------------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+---------------------------------------------------+\n", + "\n", + "+----------------------------------------------------+\n", + "| exomes.histograms.qual_hists.gq_hist_alt.bin_edges |\n", + "+----------------------------------------------------+\n", + "| array |\n", + "+----------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+----------------------------------------------------+\n", + "\n", + "+---------------------------------------------------+\n", + "| exomes.histograms.qual_hists.gq_hist_alt.bin_freq |\n", + "+---------------------------------------------------+\n", + "| array |\n", + "+---------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+---------------------------------------------------+\n", + "\n", + "+----------------------------------------------------+\n", + "| exomes.histograms.qual_hists.gq_hist_alt.n_smaller |\n", + "+----------------------------------------------------+\n", + "| int64 |\n", + "+----------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+----------------------------------------------------+\n", + "\n", + "+---------------------------------------------------+\n", + "| exomes.histograms.qual_hists.gq_hist_alt.n_larger |\n", + "+---------------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+---------------------------------------------------+\n", + "\n", + "+----------------------------------------------------+\n", + "| exomes.histograms.qual_hists.dp_hist_alt.bin_edges |\n", + "+----------------------------------------------------+\n", + "| array |\n", + "+----------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+----------------------------------------------------+\n", + "\n", + "+---------------------------------------------------+\n", + "| exomes.histograms.qual_hists.dp_hist_alt.bin_freq |\n", + "+---------------------------------------------------+\n", + "| array |\n", + "+---------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+---------------------------------------------------+\n", + "\n", + "+----------------------------------------------------+\n", + "| exomes.histograms.qual_hists.dp_hist_alt.n_smaller |\n", + "+----------------------------------------------------+\n", + "| int64 |\n", + "+----------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+----------------------------------------------------+\n", + "\n", + "+---------------------------------------------------+\n", + "| exomes.histograms.qual_hists.dp_hist_alt.n_larger |\n", + "+---------------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+---------------------------------------------------+\n", + "\n", + "+----------------------------------------------------+\n", + "| exomes.histograms.qual_hists.ab_hist_alt.bin_edges |\n", + "+----------------------------------------------------+\n", + "| array |\n", + "+----------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+----------------------------------------------------+\n", + "\n", + "+---------------------------------------------------+\n", + "| exomes.histograms.qual_hists.ab_hist_alt.bin_freq |\n", + "+---------------------------------------------------+\n", + "| array |\n", + "+---------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+---------------------------------------------------+\n", + "\n", + "+----------------------------------------------------+\n", + "| exomes.histograms.qual_hists.ab_hist_alt.n_smaller |\n", + "+----------------------------------------------------+\n", + "| int64 |\n", + "+----------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+----------------------------------------------------+\n", + "\n", + "+---------------------------------------------------+\n", + "| exomes.histograms.qual_hists.ab_hist_alt.n_larger |\n", + "+---------------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+---------------------------------------------------+\n", + "\n", + "+--------------------------------------------------------+\n", + "| exomes.histograms.raw_qual_hists.gq_hist_all.bin_edges |\n", + "+--------------------------------------------------------+\n", + "| array |\n", + "+--------------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+--------------------------------------------------------+\n", + "\n", + "+-------------------------------------------------------+\n", + "| exomes.histograms.raw_qual_hists.gq_hist_all.bin_freq |\n", + "+-------------------------------------------------------+\n", + "| array |\n", + "+-------------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+-------------------------------------------------------+\n", + "\n", + "+--------------------------------------------------------+\n", + "| exomes.histograms.raw_qual_hists.gq_hist_all.n_smaller |\n", + "+--------------------------------------------------------+\n", + "| int64 |\n", + "+--------------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+--------------------------------------------------------+\n", + "\n", + "+-------------------------------------------------------+\n", + "| exomes.histograms.raw_qual_hists.gq_hist_all.n_larger |\n", + "+-------------------------------------------------------+\n", + "| int64 |\n", + "+-------------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+-------------------------------------------------------+\n", + "\n", + "+--------------------------------------------------------+\n", + "| exomes.histograms.raw_qual_hists.dp_hist_all.bin_edges |\n", + "+--------------------------------------------------------+\n", + "| array |\n", + "+--------------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+--------------------------------------------------------+\n", + "\n", + "+-------------------------------------------------------+\n", + "| exomes.histograms.raw_qual_hists.dp_hist_all.bin_freq |\n", + "+-------------------------------------------------------+\n", + "| array |\n", + "+-------------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+-------------------------------------------------------+\n", + "\n", + "+--------------------------------------------------------+\n", + "| exomes.histograms.raw_qual_hists.dp_hist_all.n_smaller |\n", + "+--------------------------------------------------------+\n", + "| int64 |\n", + "+--------------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+--------------------------------------------------------+\n", + "\n", + "+-------------------------------------------------------+\n", + "| exomes.histograms.raw_qual_hists.dp_hist_all.n_larger |\n", + "+-------------------------------------------------------+\n", + "| int64 |\n", + "+-------------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+-------------------------------------------------------+\n", + "\n", + "+--------------------------------------------------------+\n", + "| exomes.histograms.raw_qual_hists.gq_hist_alt.bin_edges |\n", + "+--------------------------------------------------------+\n", + "| array |\n", + "+--------------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+--------------------------------------------------------+\n", + "\n", + "+-------------------------------------------------------+\n", + "| exomes.histograms.raw_qual_hists.gq_hist_alt.bin_freq |\n", + "+-------------------------------------------------------+\n", + "| array |\n", + "+-------------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+-------------------------------------------------------+\n", + "\n", + "+--------------------------------------------------------+\n", + "| exomes.histograms.raw_qual_hists.gq_hist_alt.n_smaller |\n", + "+--------------------------------------------------------+\n", + "| int64 |\n", + "+--------------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+--------------------------------------------------------+\n", + "\n", + "+-------------------------------------------------------+\n", + "| exomes.histograms.raw_qual_hists.gq_hist_alt.n_larger |\n", + "+-------------------------------------------------------+\n", + "| int64 |\n", + "+-------------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+-------------------------------------------------------+\n", + "\n", + "+--------------------------------------------------------+\n", + "| exomes.histograms.raw_qual_hists.dp_hist_alt.bin_edges |\n", + "+--------------------------------------------------------+\n", + "| array |\n", + "+--------------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+--------------------------------------------------------+\n", + "\n", + "+-------------------------------------------------------+\n", + "| exomes.histograms.raw_qual_hists.dp_hist_alt.bin_freq |\n", + "+-------------------------------------------------------+\n", + "| array |\n", + "+-------------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+-------------------------------------------------------+\n", + "\n", + "+--------------------------------------------------------+\n", + "| exomes.histograms.raw_qual_hists.dp_hist_alt.n_smaller |\n", + "+--------------------------------------------------------+\n", + "| int64 |\n", + "+--------------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+--------------------------------------------------------+\n", + "\n", + "+-------------------------------------------------------+\n", + "| exomes.histograms.raw_qual_hists.dp_hist_alt.n_larger |\n", + "+-------------------------------------------------------+\n", + "| int64 |\n", + "+-------------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+-------------------------------------------------------+\n", + "\n", + "+--------------------------------------------------------+\n", + "| exomes.histograms.raw_qual_hists.ab_hist_alt.bin_edges |\n", + "+--------------------------------------------------------+\n", + "| array |\n", + "+--------------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+--------------------------------------------------------+\n", + "\n", + "+-------------------------------------------------------+\n", + "| exomes.histograms.raw_qual_hists.ab_hist_alt.bin_freq |\n", + "+-------------------------------------------------------+\n", + "| array |\n", + "+-------------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+-------------------------------------------------------+\n", + "\n", + "+--------------------------------------------------------+\n", + "| exomes.histograms.raw_qual_hists.ab_hist_alt.n_smaller |\n", + "+--------------------------------------------------------+\n", + "| int64 |\n", + "+--------------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+--------------------------------------------------------+\n", + "\n", + "+-------------------------------------------------------+\n", + "| exomes.histograms.raw_qual_hists.ab_hist_alt.n_larger |\n", + "+-------------------------------------------------------+\n", + "| int64 |\n", + "+-------------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+-------------------------------------------------------+\n", + "\n", + "+----------------------------------------------------+\n", + "| exomes.histograms.age_hists.age_hist_het.bin_edges |\n", + "+----------------------------------------------------+\n", + "| array |\n", + "+----------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+----------------------------------------------------+\n", + "\n", + "+---------------------------------------------------+\n", + "| exomes.histograms.age_hists.age_hist_het.bin_freq |\n", + "+---------------------------------------------------+\n", + "| array |\n", + "+---------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+---------------------------------------------------+\n", + "\n", + "+----------------------------------------------------+\n", + "| exomes.histograms.age_hists.age_hist_het.n_smaller |\n", + "+----------------------------------------------------+\n", + "| int64 |\n", + "+----------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+----------------------------------------------------+\n", + "\n", + "+---------------------------------------------------+\n", + "| exomes.histograms.age_hists.age_hist_het.n_larger |\n", + "+---------------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+---------------------------------------------------+\n", + "\n", + "+----------------------------------------------------+\n", + "| exomes.histograms.age_hists.age_hist_hom.bin_edges |\n", + "+----------------------------------------------------+\n", + "| array |\n", + "+----------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+----------------------------------------------------+\n", + "\n", + "+---------------------------------------------------+\n", + "| exomes.histograms.age_hists.age_hist_hom.bin_freq |\n", + "+---------------------------------------------------+\n", + "| array |\n", + "+---------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+---------------------------------------------------+\n", + "\n", + "+----------------------------------------------------+\n", + "| exomes.histograms.age_hists.age_hist_hom.n_smaller |\n", + "+----------------------------------------------------+\n", + "| int64 |\n", + "+----------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+----------------------------------------------------+\n", + "\n", + "+---------------------------------------------------+-------------------+\n", + "| exomes.histograms.age_hists.age_hist_hom.n_larger | genomes.filters |\n", + "+---------------------------------------------------+-------------------+\n", + "| int64 | set |\n", + "+---------------------------------------------------+-------------------+\n", + "| NA | {\"AC0\",\"AS_VQSR\"} |\n", + "| NA | {\"AS_VQSR\"} |\n", + "| NA | {\"AS_VQSR\"} |\n", + "| NA | {\"AS_VQSR\"} |\n", + "| NA | {\"AS_VQSR\"} |\n", + "+---------------------------------------------------+-------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| genomes.freq |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [(0,0.00e+00,56642,0),(2,1.65e-05,121094,0),(0,0.00e+00,25546,0),(0,0.00e... |\n", + "| [(2,2.60e-05,76882,0),(4,3.15e-05,126902,0),(0,0.00e+00,34670,0),(1,1.80e... |\n", + "| [(1,1.17e-05,85634,0),(1,8.24e-06,121430,0),(0,0.00e+00,39236,0),(0,0.00e... |\n", + "| [(1,1.06e-05,94224,0),(5,4.64e-05,107704,0),(0,0.00e+00,44382,0),(1,1.80e... |\n", + "| [(3,2.64e-05,113536,0),(3,2.41e-05,124252,0),(2,3.78e-05,52912,0),(0,0.00... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| genomes.faf |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.... |\n", + "| [(4.32e-06,1.62e-06),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.... |\n", + "| [(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.... |\n", + "| [(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.... |\n", + "| [(7.02e-06,2.95e-06),(6.27e-06,2.35e-06),(0.00e+00,0.00e+00),(0.00e+00,0.... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+-------------------+-------------------+-------------------+\n", + "| genomes.grpmax.AC | genomes.grpmax.AF | genomes.grpmax.AN |\n", + "+-------------------+-------------------+-------------------+\n", + "| int32 | float64 | int32 |\n", + "+-------------------+-------------------+-------------------+\n", + "| NA | NA | NA |\n", + "| 1 | 4.07e-04 | 2456 |\n", + "| 1 | 4.39e-05 | 22760 |\n", + "| NA | NA | NA |\n", + "| 2 | 3.78e-05 | 52912 |\n", + "+-------------------+-------------------+-------------------+\n", + "\n", + "+---------------------------------+------------------------+\n", + "| genomes.grpmax.homozygote_count | genomes.grpmax.gen_anc |\n", + "+---------------------------------+------------------------+\n", + "| int32 | str |\n", + "+---------------------------------+------------------------+\n", + "| NA | NA |\n", + "| 0 | \"eas\" |\n", + "| 0 | \"afr\" |\n", + "| NA | NA |\n", + "| 0 | \"nfe\" |\n", + "+---------------------------------+------------------------+\n", + "\n", + "+--------------------------+----------------------------------+\n", + "| genomes.fafmax.faf95_max | genomes.fafmax.faf95_max_gen_anc |\n", + "+--------------------------+----------------------------------+\n", + "| float64 | str |\n", + "+--------------------------+----------------------------------+\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| 6.27e-06 | \"nfe\" |\n", + "+--------------------------+----------------------------------+\n", + "\n", + "+--------------------------+----------------------------------+\n", + "| genomes.fafmax.faf99_max | genomes.fafmax.faf99_max_gen_anc |\n", + "+--------------------------+----------------------------------+\n", + "| float64 | str |\n", + "+--------------------------+----------------------------------+\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| 2.35e-06 | \"nfe\" |\n", + "+--------------------------+----------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| genomes.histograms.qual_hists.gq_hist_all.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| genomes.histograms.qual_hists.gq_hist_all.bin_freq |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0,0,0,0,23215,2435,1647,594,176,118,49,29,19,9,11,6,5,2,4,2] |\n", + "| [0,0,0,0,29394,3741,2868,1281,401,358,163,63,69,31,18,20,10,4,5,15] |\n", + "| [0,0,0,0,31093,4532,3696,1752,595,585,261,88,82,59,17,26,14,5,3,9] |\n", + "| [0,0,0,0,25677,6107,5433,3528,1753,1702,1130,485,518,282,119,125,77,35,29... |\n", + "| [0,0,0,0,25460,7448,6933,4978,2881,2833,2048,1038,1129,685,321,364,212,90... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+-----------------------------------------------------+\n", + "| genomes.histograms.qual_hists.gq_hist_all.n_smaller |\n", + "+-----------------------------------------------------+\n", + "| int64 |\n", + "+-----------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+-----------------------------------------------------+\n", + "\n", + "+----------------------------------------------------+\n", + "| genomes.histograms.qual_hists.gq_hist_all.n_larger |\n", + "+----------------------------------------------------+\n", + "| int64 |\n", + "+----------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+----------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| genomes.histograms.qual_hists.dp_hist_all.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| genomes.histograms.qual_hists.dp_hist_all.bin_freq |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0,0,16,121,475,973,1736,2409,2950,3134,2995,2803,2514,2194,1773,1335,911... |\n", + "| [0,0,9,69,387,913,1737,2859,3749,4216,4302,4223,3745,3280,2661,1954,1380,... |\n", + "| [0,0,8,40,264,690,1525,2691,3754,4574,4813,4940,4490,3907,3242,2387,1704,... |\n", + "| [0,0,4,22,120,354,999,1950,3037,4168,4734,5196,5380,4766,4238,3206,2398,1... |\n", + "| [0,0,2,23,108,320,888,1844,3110,4447,5361,6012,6379,5879,5289,4273,3400,2... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+-----------------------------------------------------+\n", + "| genomes.histograms.qual_hists.dp_hist_all.n_smaller |\n", + "+-----------------------------------------------------+\n", + "| int64 |\n", + "+-----------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+-----------------------------------------------------+\n", + "\n", + "+----------------------------------------------------+\n", + "| genomes.histograms.qual_hists.dp_hist_all.n_larger |\n", + "+----------------------------------------------------+\n", + "| int64 |\n", + "+----------------------------------------------------+\n", + "| 527 |\n", + "| 888 |\n", + "| 1232 |\n", + "| 2440 |\n", + "| 3622 |\n", + "+----------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| genomes.histograms.qual_hists.gq_hist_alt.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+----------------------------------------------------+\n", + "| genomes.histograms.qual_hists.gq_hist_alt.bin_freq |\n", + "+----------------------------------------------------+\n", + "| array |\n", + "+----------------------------------------------------+\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0] |\n", + "+----------------------------------------------------+\n", + "\n", + "+-----------------------------------------------------+\n", + "| genomes.histograms.qual_hists.gq_hist_alt.n_smaller |\n", + "+-----------------------------------------------------+\n", + "| int64 |\n", + "+-----------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+-----------------------------------------------------+\n", + "\n", + "+----------------------------------------------------+\n", + "| genomes.histograms.qual_hists.gq_hist_alt.n_larger |\n", + "+----------------------------------------------------+\n", + "| int64 |\n", + "+----------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+----------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| genomes.histograms.qual_hists.dp_hist_alt.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+----------------------------------------------------+\n", + "| genomes.histograms.qual_hists.dp_hist_alt.bin_freq |\n", + "+----------------------------------------------------+\n", + "| array |\n", + "+----------------------------------------------------+\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,1,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "+----------------------------------------------------+\n", + "\n", + "+-----------------------------------------------------+\n", + "| genomes.histograms.qual_hists.dp_hist_alt.n_smaller |\n", + "+-----------------------------------------------------+\n", + "| int64 |\n", + "+-----------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+-----------------------------------------------------+\n", + "\n", + "+----------------------------------------------------+\n", + "| genomes.histograms.qual_hists.dp_hist_alt.n_larger |\n", + "+----------------------------------------------------+\n", + "| int64 |\n", + "+----------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+----------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| genomes.histograms.qual_hists.ab_hist_alt.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+----------------------------------------------------+\n", + "| genomes.histograms.qual_hists.ab_hist_alt.bin_freq |\n", + "+----------------------------------------------------+\n", + "| array |\n", + "+----------------------------------------------------+\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "+----------------------------------------------------+\n", + "\n", + "+-----------------------------------------------------+\n", + "| genomes.histograms.qual_hists.ab_hist_alt.n_smaller |\n", + "+-----------------------------------------------------+\n", + "| int64 |\n", + "+-----------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+-----------------------------------------------------+\n", + "\n", + "+----------------------------------------------------+\n", + "| genomes.histograms.qual_hists.ab_hist_alt.n_larger |\n", + "+----------------------------------------------------+\n", + "| int64 |\n", + "+----------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+----------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| genomes.histograms.raw_qual_hists.gq_hist_all.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| genomes.histograms.raw_qual_hists.gq_hist_all.bin_freq |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [14149,7330,6840,3904,23217,2436,1647,594,176,118,49,29,19,9,11,6,5,2,4,2] |\n", + "| [10121,5441,5610,3838,29394,3741,2868,1281,401,358,163,63,69,31,18,20,10,... |\n", + "| [6578,3782,4202,3336,31093,4532,3696,1752,595,585,261,88,82,59,17,26,14,5... |\n", + "| [1429,1382,1901,2026,25677,6108,5433,3528,1753,1702,1130,485,518,282,119,... |\n", + "| [995,1036,1539,1788,25460,7448,6933,4978,2881,2833,2048,1038,1129,685,321... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+---------------------------------------------------------+\n", + "| genomes.histograms.raw_qual_hists.gq_hist_all.n_smaller |\n", + "+---------------------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+---------------------------------------------------------+\n", + "\n", + "+--------------------------------------------------------+\n", + "| genomes.histograms.raw_qual_hists.gq_hist_all.n_larger |\n", + "+--------------------------------------------------------+\n", + "| int64 |\n", + "+--------------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+--------------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| genomes.histograms.raw_qual_hists.dp_hist_all.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| genomes.histograms.raw_qual_hists.dp_hist_all.bin_freq |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [10,66,471,1445,2990,5808,6940,7906,7262,6236,4943,3919,3129,2527,1993,14... |\n", + "| [7,37,269,903,1948,4127,5519,7075,7322,6972,6095,5249,4374,3624,2893,2106... |\n", + "| [2,24,149,466,1201,2614,4035,5568,6331,6725,6267,5855,5101,4268,3465,2554... |\n", + "| [1,9,42,122,294,787,1537,2717,3751,4972,5404,5762,5875,5161,4526,3415,252... |\n", + "| [2,6,39,104,247,638,1325,2417,3685,5047,5927,6484,6763,6192,5525,4439,351... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+---------------------------------------------------------+\n", + "| genomes.histograms.raw_qual_hists.dp_hist_all.n_smaller |\n", + "+---------------------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+---------------------------------------------------------+\n", + "\n", + "+--------------------------------------------------------+\n", + "| genomes.histograms.raw_qual_hists.dp_hist_all.n_larger |\n", + "+--------------------------------------------------------+\n", + "| int64 |\n", + "+--------------------------------------------------------+\n", + "| 744 |\n", + "| 1130 |\n", + "| 1487 |\n", + "| 2622 |\n", + "| 3743 |\n", + "+--------------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| genomes.histograms.raw_qual_hists.gq_hist_alt.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+--------------------------------------------------------+\n", + "| genomes.histograms.raw_qual_hists.gq_hist_alt.bin_freq |\n", + "+--------------------------------------------------------+\n", + "| array |\n", + "+--------------------------------------------------------+\n", + "| [0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,2,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,1,2,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0] |\n", + "+--------------------------------------------------------+\n", + "\n", + "+---------------------------------------------------------+\n", + "| genomes.histograms.raw_qual_hists.gq_hist_alt.n_smaller |\n", + "+---------------------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+---------------------------------------------------------+\n", + "\n", + "+--------------------------------------------------------+\n", + "| genomes.histograms.raw_qual_hists.gq_hist_alt.n_larger |\n", + "+--------------------------------------------------------+\n", + "| int64 |\n", + "+--------------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+--------------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| genomes.histograms.raw_qual_hists.dp_hist_alt.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+--------------------------------------------------------+\n", + "| genomes.histograms.raw_qual_hists.dp_hist_alt.bin_freq |\n", + "+--------------------------------------------------------+\n", + "| array |\n", + "+--------------------------------------------------------+\n", + "| [0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,2,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,3,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,1,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "+--------------------------------------------------------+\n", + "\n", + "+---------------------------------------------------------+\n", + "| genomes.histograms.raw_qual_hists.dp_hist_alt.n_smaller |\n", + "+---------------------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+---------------------------------------------------------+\n", + "\n", + "+--------------------------------------------------------+\n", + "| genomes.histograms.raw_qual_hists.dp_hist_alt.n_larger |\n", + "+--------------------------------------------------------+\n", + "| int64 |\n", + "+--------------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+--------------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| genomes.histograms.raw_qual_hists.ab_hist_alt.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+--------------------------------------------------------+\n", + "| genomes.histograms.raw_qual_hists.ab_hist_alt.bin_freq |\n", + "+--------------------------------------------------------+\n", + "| array |\n", + "+--------------------------------------------------------+\n", + "| [0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,3,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "+--------------------------------------------------------+\n", + "\n", + "+---------------------------------------------------------+\n", + "| genomes.histograms.raw_qual_hists.ab_hist_alt.n_smaller |\n", + "+---------------------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+---------------------------------------------------------+\n", + "\n", + "+--------------------------------------------------------+\n", + "| genomes.histograms.raw_qual_hists.ab_hist_alt.n_larger |\n", + "+--------------------------------------------------------+\n", + "| int64 |\n", + "+--------------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+--------------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| genomes.histograms.age_hists.age_hist_het.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+----------------------------------------------------+\n", + "| genomes.histograms.age_hists.age_hist_het.bin_freq |\n", + "+----------------------------------------------------+\n", + "| array |\n", + "+----------------------------------------------------+\n", + "| [0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,1,0,0,1,0,0,0,0,0] |\n", + "| [0,0,1,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,1,0,1,0,0,0,0,0] |\n", + "+----------------------------------------------------+\n", + "\n", + "+-----------------------------------------------------+\n", + "| genomes.histograms.age_hists.age_hist_het.n_smaller |\n", + "+-----------------------------------------------------+\n", + "| int64 |\n", + "+-----------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+-----------------------------------------------------+\n", + "\n", + "+----------------------------------------------------+\n", + "| genomes.histograms.age_hists.age_hist_het.n_larger |\n", + "+----------------------------------------------------+\n", + "| int64 |\n", + "+----------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+----------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| genomes.histograms.age_hists.age_hist_hom.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+----------------------------------------------------+\n", + "| genomes.histograms.age_hists.age_hist_hom.bin_freq |\n", + "+----------------------------------------------------+\n", + "| array |\n", + "+----------------------------------------------------+\n", + "| [0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0] |\n", + "+----------------------------------------------------+\n", + "\n", + "+-----------------------------------------------------+\n", + "| genomes.histograms.age_hists.age_hist_hom.n_smaller |\n", + "+-----------------------------------------------------+\n", + "| int64 |\n", + "+-----------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+-----------------------------------------------------+\n", + "\n", + "+----------------------------------------------------+\n", + "| genomes.histograms.age_hists.age_hist_hom.n_larger |\n", + "+----------------------------------------------------+\n", + "| int64 |\n", + "+----------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+----------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| joint.freq |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [(0,0.00e+00,56642,0),(2,1.65e-05,121094,0),(0,0.00e+00,25546,0),(0,0.00e... |\n", + "| [(2,2.60e-05,76882,0),(4,3.15e-05,126902,0),(0,0.00e+00,34670,0),(1,1.80e... |\n", + "| [(1,1.17e-05,85634,0),(1,8.24e-06,121430,0),(0,0.00e+00,39236,0),(0,0.00e... |\n", + "| [(1,1.06e-05,94224,0),(5,4.64e-05,107704,0),(0,0.00e+00,44382,0),(1,1.80e... |\n", + "| [(3,2.64e-05,113536,0),(3,2.41e-05,124252,0),(2,3.78e-05,52912,0),(0,0.00... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| joint.faf |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.... |\n", + "| [(4.32e-06,1.62e-06),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.... |\n", + "| [(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.... |\n", + "| [(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.... |\n", + "| [(7.02e-06,2.95e-06),(6.27e-06,2.35e-06),(0.00e+00,0.00e+00),(0.00e+00,0.... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+------------------------+--------------------------------+\n", + "| joint.fafmax.faf95_max | joint.fafmax.faf95_max_gen_anc |\n", + "+------------------------+--------------------------------+\n", + "| float64 | str |\n", + "+------------------------+--------------------------------+\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| 6.27e-06 | \"nfe\" |\n", + "+------------------------+--------------------------------+\n", + "\n", + "+------------------------+--------------------------------+-----------------+\n", + "| joint.fafmax.faf99_max | joint.fafmax.faf99_max_gen_anc | joint.grpmax.AC |\n", + "+------------------------+--------------------------------+-----------------+\n", + "| float64 | str | int32 |\n", + "+------------------------+--------------------------------+-----------------+\n", + "| NA | NA | NA |\n", + "| NA | NA | 1 |\n", + "| NA | NA | 1 |\n", + "| NA | NA | NA |\n", + "| 2.35e-06 | \"nfe\" | 2 |\n", + "+------------------------+--------------------------------+-----------------+\n", + "\n", + "+-----------------+-----------------+-------------------------------+\n", + "| joint.grpmax.AF | joint.grpmax.AN | joint.grpmax.homozygote_count |\n", + "+-----------------+-----------------+-------------------------------+\n", + "| float64 | int32 | int32 |\n", + "+-----------------+-----------------+-------------------------------+\n", + "| NA | NA | NA |\n", + "| 4.07e-04 | 2456 | 0 |\n", + "| 4.39e-05 | 22760 | 0 |\n", + "| NA | NA | NA |\n", + "| 3.78e-05 | 52912 | 0 |\n", + "+-----------------+-----------------+-------------------------------+\n", + "\n", + "+----------------------+\n", + "| joint.grpmax.gen_anc |\n", + "+----------------------+\n", + "| str |\n", + "+----------------------+\n", + "| NA |\n", + "| \"eas\" |\n", + "| \"afr\" |\n", + "| NA |\n", + "| \"nfe\" |\n", + "+----------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| joint.histograms.qual_hists.gq_hist_all.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| joint.histograms.qual_hists.gq_hist_all.bin_freq |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0,0,0,0,23215,2435,1647,594,176,118,49,29,19,9,11,6,5,2,4,2] |\n", + "| [0,0,0,0,29394,3741,2868,1281,401,358,163,63,69,31,18,20,10,4,5,15] |\n", + "| [0,0,0,0,31093,4532,3696,1752,595,585,261,88,82,59,17,26,14,5,3,9] |\n", + "| [0,0,0,0,25677,6107,5433,3528,1753,1702,1130,485,518,282,119,125,77,35,29... |\n", + "| [0,0,0,0,25460,7448,6933,4978,2881,2833,2048,1038,1129,685,321,364,212,90... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+---------------------------------------------------+\n", + "| joint.histograms.qual_hists.gq_hist_all.n_smaller |\n", + "+---------------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+---------------------------------------------------+\n", + "\n", + "+--------------------------------------------------+\n", + "| joint.histograms.qual_hists.gq_hist_all.n_larger |\n", + "+--------------------------------------------------+\n", + "| int64 |\n", + "+--------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+--------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| joint.histograms.qual_hists.dp_hist_all.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| joint.histograms.qual_hists.dp_hist_all.bin_freq |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0,0,16,121,475,973,1736,2409,2950,3134,2995,2803,2514,2194,1773,1335,911... |\n", + "| [0,0,9,69,387,913,1737,2859,3749,4216,4302,4223,3745,3280,2661,1954,1380,... |\n", + "| [0,0,8,40,264,690,1525,2691,3754,4574,4813,4940,4490,3907,3242,2387,1704,... |\n", + "| [0,0,4,22,120,354,999,1950,3037,4168,4734,5196,5380,4766,4238,3206,2398,1... |\n", + "| [0,0,2,23,108,320,888,1844,3110,4447,5361,6012,6379,5879,5289,4273,3400,2... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+---------------------------------------------------+\n", + "| joint.histograms.qual_hists.dp_hist_all.n_smaller |\n", + "+---------------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+---------------------------------------------------+\n", + "\n", + "+--------------------------------------------------+\n", + "| joint.histograms.qual_hists.dp_hist_all.n_larger |\n", + "+--------------------------------------------------+\n", + "| int64 |\n", + "+--------------------------------------------------+\n", + "| 527 |\n", + "| 888 |\n", + "| 1232 |\n", + "| 2440 |\n", + "| 3622 |\n", + "+--------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| joint.histograms.qual_hists.gq_hist_alt.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+--------------------------------------------------+\n", + "| joint.histograms.qual_hists.gq_hist_alt.bin_freq |\n", + "+--------------------------------------------------+\n", + "| array |\n", + "+--------------------------------------------------+\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0] |\n", + "+--------------------------------------------------+\n", + "\n", + "+---------------------------------------------------+\n", + "| joint.histograms.qual_hists.gq_hist_alt.n_smaller |\n", + "+---------------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+---------------------------------------------------+\n", + "\n", + "+--------------------------------------------------+\n", + "| joint.histograms.qual_hists.gq_hist_alt.n_larger |\n", + "+--------------------------------------------------+\n", + "| int64 |\n", + "+--------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+--------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| joint.histograms.qual_hists.dp_hist_alt.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+--------------------------------------------------+\n", + "| joint.histograms.qual_hists.dp_hist_alt.bin_freq |\n", + "+--------------------------------------------------+\n", + "| array |\n", + "+--------------------------------------------------+\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,1,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "+--------------------------------------------------+\n", + "\n", + "+---------------------------------------------------+\n", + "| joint.histograms.qual_hists.dp_hist_alt.n_smaller |\n", + "+---------------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+---------------------------------------------------+\n", + "\n", + "+--------------------------------------------------+\n", + "| joint.histograms.qual_hists.dp_hist_alt.n_larger |\n", + "+--------------------------------------------------+\n", + "| int64 |\n", + "+--------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+--------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| joint.histograms.qual_hists.ab_hist_alt.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+--------------------------------------------------+\n", + "| joint.histograms.qual_hists.ab_hist_alt.bin_freq |\n", + "+--------------------------------------------------+\n", + "| array |\n", + "+--------------------------------------------------+\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "+--------------------------------------------------+\n", + "\n", + "+---------------------------------------------------+\n", + "| joint.histograms.qual_hists.ab_hist_alt.n_smaller |\n", + "+---------------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+---------------------------------------------------+\n", + "\n", + "+--------------------------------------------------+\n", + "| joint.histograms.qual_hists.ab_hist_alt.n_larger |\n", + "+--------------------------------------------------+\n", + "| int64 |\n", + "+--------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+--------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| joint.histograms.raw_qual_hists.gq_hist_all.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| joint.histograms.raw_qual_hists.gq_hist_all.bin_freq |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [14149,7330,6840,3904,23217,2436,1647,594,176,118,49,29,19,9,11,6,5,2,4,2] |\n", + "| [10121,5441,5610,3838,29394,3741,2868,1281,401,358,163,63,69,31,18,20,10,... |\n", + "| [6578,3782,4202,3336,31093,4532,3696,1752,595,585,261,88,82,59,17,26,14,5... |\n", + "| [1429,1382,1901,2026,25677,6108,5433,3528,1753,1702,1130,485,518,282,119,... |\n", + "| [995,1036,1539,1788,25460,7448,6933,4978,2881,2833,2048,1038,1129,685,321... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+-------------------------------------------------------+\n", + "| joint.histograms.raw_qual_hists.gq_hist_all.n_smaller |\n", + "+-------------------------------------------------------+\n", + "| int64 |\n", + "+-------------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+-------------------------------------------------------+\n", + "\n", + "+------------------------------------------------------+\n", + "| joint.histograms.raw_qual_hists.gq_hist_all.n_larger |\n", + "+------------------------------------------------------+\n", + "| int64 |\n", + "+------------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+------------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| joint.histograms.raw_qual_hists.dp_hist_all.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| joint.histograms.raw_qual_hists.dp_hist_all.bin_freq |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [10,66,471,1445,2990,5808,6940,7906,7262,6236,4943,3919,3129,2527,1993,14... |\n", + "| [7,37,269,903,1948,4127,5519,7075,7322,6972,6095,5249,4374,3624,2893,2106... |\n", + "| [2,24,149,466,1201,2614,4035,5568,6331,6725,6267,5855,5101,4268,3465,2554... |\n", + "| [1,9,42,122,294,787,1537,2717,3751,4972,5404,5762,5875,5161,4526,3415,252... |\n", + "| [2,6,39,104,247,638,1325,2417,3685,5047,5927,6484,6763,6192,5525,4439,351... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+-------------------------------------------------------+\n", + "| joint.histograms.raw_qual_hists.dp_hist_all.n_smaller |\n", + "+-------------------------------------------------------+\n", + "| int64 |\n", + "+-------------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+-------------------------------------------------------+\n", + "\n", + "+------------------------------------------------------+\n", + "| joint.histograms.raw_qual_hists.dp_hist_all.n_larger |\n", + "+------------------------------------------------------+\n", + "| int64 |\n", + "+------------------------------------------------------+\n", + "| 744 |\n", + "| 1130 |\n", + "| 1487 |\n", + "| 2622 |\n", + "| 3743 |\n", + "+------------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| joint.histograms.raw_qual_hists.gq_hist_alt.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+------------------------------------------------------+\n", + "| joint.histograms.raw_qual_hists.gq_hist_alt.bin_freq |\n", + "+------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------+\n", + "| [0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,2,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,1,2,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0] |\n", + "+------------------------------------------------------+\n", + "\n", + "+-------------------------------------------------------+\n", + "| joint.histograms.raw_qual_hists.gq_hist_alt.n_smaller |\n", + "+-------------------------------------------------------+\n", + "| int64 |\n", + "+-------------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+-------------------------------------------------------+\n", + "\n", + "+------------------------------------------------------+\n", + "| joint.histograms.raw_qual_hists.gq_hist_alt.n_larger |\n", + "+------------------------------------------------------+\n", + "| int64 |\n", + "+------------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+------------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| joint.histograms.raw_qual_hists.dp_hist_alt.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+------------------------------------------------------+\n", + "| joint.histograms.raw_qual_hists.dp_hist_alt.bin_freq |\n", + "+------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------+\n", + "| [0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,2,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,3,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,1,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "+------------------------------------------------------+\n", + "\n", + "+-------------------------------------------------------+\n", + "| joint.histograms.raw_qual_hists.dp_hist_alt.n_smaller |\n", + "+-------------------------------------------------------+\n", + "| int64 |\n", + "+-------------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+-------------------------------------------------------+\n", + "\n", + "+------------------------------------------------------+\n", + "| joint.histograms.raw_qual_hists.dp_hist_alt.n_larger |\n", + "+------------------------------------------------------+\n", + "| int64 |\n", + "+------------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+------------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| joint.histograms.raw_qual_hists.ab_hist_alt.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+------------------------------------------------------+\n", + "| joint.histograms.raw_qual_hists.ab_hist_alt.bin_freq |\n", + "+------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------+\n", + "| [0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,3,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "+------------------------------------------------------+\n", + "\n", + "+-------------------------------------------------------+\n", + "| joint.histograms.raw_qual_hists.ab_hist_alt.n_smaller |\n", + "+-------------------------------------------------------+\n", + "| int64 |\n", + "+-------------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+-------------------------------------------------------+\n", + "\n", + "+------------------------------------------------------+\n", + "| joint.histograms.raw_qual_hists.ab_hist_alt.n_larger |\n", + "+------------------------------------------------------+\n", + "| int64 |\n", + "+------------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+------------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| joint.histograms.age_hists.age_hist_het.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+--------------------------------------------------+\n", + "| joint.histograms.age_hists.age_hist_het.bin_freq |\n", + "+--------------------------------------------------+\n", + "| array |\n", + "+--------------------------------------------------+\n", + "| [0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,1,0,0,1,0,0,0,0,0] |\n", + "| [0,0,1,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,1,0,1,0,0,0,0,0] |\n", + "+--------------------------------------------------+\n", + "\n", + "+---------------------------------------------------+\n", + "| joint.histograms.age_hists.age_hist_het.n_smaller |\n", + "+---------------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+---------------------------------------------------+\n", + "\n", + "+--------------------------------------------------+\n", + "| joint.histograms.age_hists.age_hist_het.n_larger |\n", + "+--------------------------------------------------+\n", + "| int64 |\n", + "+--------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+--------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| joint.histograms.age_hists.age_hist_hom.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+--------------------------------------------------+\n", + "| joint.histograms.age_hists.age_hist_hom.bin_freq |\n", + "+--------------------------------------------------+\n", + "| array |\n", + "+--------------------------------------------------+\n", + "| [0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0] |\n", + "+--------------------------------------------------+\n", + "\n", + "+---------------------------------------------------+\n", + "| joint.histograms.age_hists.age_hist_hom.n_smaller |\n", + "+---------------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+---------------------------------------------------+\n", + "\n", + "+--------------------------------------------------+\n", + "| joint.histograms.age_hists.age_hist_hom.n_larger |\n", + "+--------------------------------------------------+\n", + "| int64 |\n", + "+--------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+--------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| freq_comparison_stats.contingency_table_test |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,... |\n", + "| [NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,... |\n", + "| [NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,... |\n", + "| [NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,... |\n", + "| [NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------+\n", + "| freq_comparison_stats.cochran_mantel_haenszel_test.p_value |\n", + "+------------------------------------------------------------+\n", + "| float64 |\n", + "+------------------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+------------------------------------------------------------+\n", + "\n", + "+----------------------------------------------------------+\n", + "| freq_comparison_stats.cochran_mantel_haenszel_test.chisq |\n", + "+----------------------------------------------------------+\n", + "| float64 |\n", + "+----------------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+----------------------------------------------------------+\n", + "\n", + "+------------------------------------------+\n", + "| freq_comparison_stats.stat_union.p_value |\n", + "+------------------------------------------+\n", + "| float64 |\n", + "+------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+------------------------------------------+\n", + "\n", + "+-------------------------------------------------+\n", + "| freq_comparison_stats.stat_union.stat_test_name |\n", + "+-------------------------------------------------+\n", + "| str |\n", + "+-------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+-------------------------------------------------+\n", + "\n", + "+-------------------------------------------+\n", + "| freq_comparison_stats.stat_union.gen_ancs |\n", + "+-------------------------------------------+\n", + "| array |\n", + "+-------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+-------------------------------------------+\n", + "showing top 5 rows" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "ht.show(5)" + ] + }, + { + "cell_type": "markdown", + "id": "354d7a5e-07a2-4f33-a830-970877cd4d63", + "metadata": { + "tags": [] + }, + "source": [ + "## All sites allele numbers\n", + "\n", + "As part of gnomAD v4.1, we [released](https://gnomad.broadinstitute.org/data#v4-all-sites-allele-number) allele number across all callable sites in the gnomAD exomes and genomes. For more information, see our [v4.1 blog post](https://gnomad.broadinstitute.org/news/2024-04-gnomad-v4-1/#allele-numbers-across-all-possible-sites)." + ] + }, + { + "cell_type": "markdown", + "id": "81008401-eec4-4e95-9709-4781db066f7f", + "metadata": { + "tags": [] + }, + "source": [ + "### Exomes all sites allele number Hail Table" + ] + }, + { + "cell_type": "markdown", + "id": "f7f1c013-a013-4fde-a7e6-fcb18d8d8a5c", + "metadata": {}, + "source": [ + "#### Load the Hail Table\n" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "3b7c75d0-1eec-4b92-883e-410337b09c92", + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-06T20:08:59.197890Z", + "start_time": "2024-12-06T20:08:50.859108Z" + } + }, + "outputs": [], + "source": [ + "ht = get_gnomad_release(data_type='exomes', version='4.1', dataset=\"all_sites_an\")" + ] + }, + { + "cell_type": "markdown", + "id": "6868a2d1-6e62-492a-8086-822c910e8608", + "metadata": {}, + "source": [ + "#### Print the schema of the Hail Table\n" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "f9c6d73b-7683-47fe-bf7d-2f5bef1d23d3", + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-06T20:09:00.032524Z", + "start_time": "2024-12-06T20:09:00.029271Z" + }, + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "----------------------------------------\n", + "Global fields:\n", + " 'strata_meta': array> \n", + " 'strata_sample_count': array \n", + "----------------------------------------\n", + "Row fields:\n", + " 'locus': locus \n", + " 'AN': array \n", + " 'outside_broad_capture_region': bool \n", + " 'outside_ukb_capture_region': bool \n", + " 'outside_broad_calling_region': bool \n", + " 'outside_ukb_calling_region': bool \n", + "----------------------------------------\n", + "Key: ['locus']\n", + "----------------------------------------\n" + ] + } + ], + "source": [ + "ht.describe()" + ] + }, + { + "cell_type": "markdown", + "id": "626f20d9-43c1-4687-9b05-01d53115c168", + "metadata": { + "tags": [] + }, + "source": [ + "#### Show the first 5 variants in the Hail Table\n" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "ee361058-54ae-4793-951b-1e0a6df6f685", + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-06T20:09:20.949958Z", + "start_time": "2024-12-06T20:09:05.622171Z" + }, + "tags": [] + }, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
locus
AN
outside_broad_capture_region
outside_ukb_capture_region
outside_broad_calling_region
outside_ukb_calling_region
locus<GRCh38>array<int64>boolboolboolbool
chr1:11719[0,628784,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,628784,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]TrueTrueFalseTrue
chr1:11720[0,628784,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,628784,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]TrueTrueFalseTrue
chr1:11721[0,628784,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,628784,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]TrueTrueFalseTrue
chr1:11722[0,628784,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,628784,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]TrueTrueFalseTrue
chr1:11723[0,628784,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,628784,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]TrueTrueFalseTrue

showing top 5 rows

\n" + ], + "text/plain": [ + "+---------------+\n", + "| locus |\n", + "+---------------+\n", + "| locus |\n", + "+---------------+\n", + "| chr1:11719 |\n", + "| chr1:11720 |\n", + "| chr1:11721 |\n", + "| chr1:11722 |\n", + "| chr1:11723 |\n", + "+---------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| AN |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0,628784,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0... |\n", + "| [0,628784,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0... |\n", + "| [0,628784,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0... |\n", + "| [0,628784,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0... |\n", + "| [0,628784,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+------------------------------+----------------------------+\n", + "| outside_broad_capture_region | outside_ukb_capture_region |\n", + "+------------------------------+----------------------------+\n", + "| bool | bool |\n", + "+------------------------------+----------------------------+\n", + "| True | True |\n", + "| True | True |\n", + "| True | True |\n", + "| True | True |\n", + "| True | True |\n", + "+------------------------------+----------------------------+\n", + "\n", + "+------------------------------+----------------------------+\n", + "| outside_broad_calling_region | outside_ukb_calling_region |\n", + "+------------------------------+----------------------------+\n", + "| bool | bool |\n", + "+------------------------------+----------------------------+\n", + "| False | True |\n", + "| False | True |\n", + "| False | True |\n", + "| False | True |\n", + "| False | True |\n", + "+------------------------------+----------------------------+\n", + "showing top 5 rows" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "ht.show(5)" + ] + }, + { + "cell_type": "markdown", + "id": "dc4a4f23-d754-4e31-8e59-f62f9be65942", + "metadata": { + "tags": [] + }, + "source": [ + "### Genomes all sites allele number Hail Table" + ] + }, + { + "cell_type": "markdown", + "id": "65cb8d93-c5ef-409b-9c51-7c282a63bdc2", + "metadata": {}, + "source": [ + "#### Load the Hail Table\n" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "0bb38926-f803-4be5-852c-782023b387bb", + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-06T20:08:59.197890Z", + "start_time": "2024-12-06T20:08:50.859108Z" + }, + "tags": [] + }, + "outputs": [], + "source": [ + "ht = get_gnomad_release(data_type='genomes', version='4.1', dataset=\"all_sites_an\")" + ] + }, + { + "cell_type": "markdown", + "id": "7d5c2549-151c-4b99-bac3-23fd9024f114", + "metadata": {}, + "source": [ + "#### Print the schema of the Hail Table\n" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "64d2c64c-b533-433a-89e6-72d473bd6464", + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-06T20:09:00.032524Z", + "start_time": "2024-12-06T20:09:00.029271Z" + }, + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "----------------------------------------\n", + "Global fields:\n", + " 'strata_meta': array> \n", + " 'strata_sample_count': array \n", + "----------------------------------------\n", + "Row fields:\n", + " 'locus': locus \n", + " 'AN': array \n", + "----------------------------------------\n", + "Key: ['locus']\n", + "----------------------------------------\n" + ] + } + ], + "source": [ + "ht.describe()" + ] + }, + { + "cell_type": "markdown", + "id": "140f66aa-83d4-4752-abcf-c674bf208194", + "metadata": { + "tags": [] + }, + "source": [ + "#### Show the first 5 variants in the Hail Table\n" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "id": "e2271a6e-16f6-48ca-805f-735e17a8f711", + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-06T20:09:20.949958Z", + "start_time": "2024-12-06T20:09:05.622171Z" + }, + "tags": [] + }, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
locus
AN
locus<GRCh38>array<int64>
chr1:10001[16,18232,0,0,4,0,0,6,0,6,0,0,8,8,0,0,0,0,4,0,0,0,0,0,2,4,0,0,2,4,0,0,0,0]
chr1:10002[78,32090,12,0,22,2,0,26,0,14,2,0,30,48,8,4,0,0,4,18,2,0,0,0,12,14,0,0,2,12,2,0,0,0]
chr1:10003[200,38154,48,0,48,6,4,28,6,48,6,6,102,98,38,10,0,0,8,40,6,0,0,4,14,14,2,4,26,22,6,0,2,4]
chr1:10004[948,62380,202,0,248,18,12,172,10,258,18,10,400,548,112,90,0,0,66,182,14,4,2,10,70,102,4,6,118,140,10,8,4,6]
chr1:10005[1774,70720,356,6,444,30,18,288,18,552,32,30,782,992,206,150,2,4,134,310,18,12,6,12,116,172,6,12,268,284,16,16,10,20]

showing top 5 rows

\n" + ], + "text/plain": [ + "+---------------+\n", + "| locus |\n", + "+---------------+\n", + "| locus |\n", + "+---------------+\n", + "| chr1:10001 |\n", + "| chr1:10002 |\n", + "| chr1:10003 |\n", + "| chr1:10004 |\n", + "| chr1:10005 |\n", + "+---------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| AN |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [16,18232,0,0,4,0,0,6,0,6,0,0,8,8,0,0,0,0,4,0,0,0,0,0,2,4,0,0,2,4,0,0,0,0] |\n", + "| [78,32090,12,0,22,2,0,26,0,14,2,0,30,48,8,4,0,0,4,18,2,0,0,0,12,14,0,0,2,... |\n", + "| [200,38154,48,0,48,6,4,28,6,48,6,6,102,98,38,10,0,0,8,40,6,0,0,4,14,14,2,... |\n", + "| [948,62380,202,0,248,18,12,172,10,258,18,10,400,548,112,90,0,0,66,182,14,... |\n", + "| [1774,70720,356,6,444,30,18,288,18,552,32,30,782,992,206,150,2,4,134,310,... |\n", + "+------------------------------------------------------------------------------+\n", + "showing top 5 rows" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "ht.show(5)" + ] + }, + { + "cell_type": "markdown", + "id": "1bf9f31f-34ff-4385-a80e-985cbb0acfe8", + "metadata": { + "tags": [] + }, + "source": [ + "## Coverage\n" + ] + }, + { + "cell_type": "markdown", + "id": "de70c319-787b-4d6c-9058-255a1137d81f", + "metadata": { + "tags": [] + }, + "source": [ + "### Exomes coverage Hail Table" + ] + }, + { + "cell_type": "markdown", + "id": "3278430c-4279-4d89-85e7-276184ec42b8", + "metadata": {}, + "source": [ + "#### Load the Hail Table\n" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "id": "7f005af0-df6d-4a0a-a2e0-9cb4ff6782c2", + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-06T20:08:59.197890Z", + "start_time": "2024-12-06T20:08:50.859108Z" + } + }, + "outputs": [], + "source": [ + "ht = get_gnomad_release(data_type='exomes', version='4.0', dataset=\"coverage\")" + ] + }, + { + "cell_type": "markdown", + "id": "128e58ce-c219-472a-88be-6babc2ba5a15", + "metadata": {}, + "source": [ + "#### Print the schema of the Hail Table\n" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "id": "6058bf38-4ce9-4d37-89a7-d11af0e4d9f1", + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-06T20:09:00.032524Z", + "start_time": "2024-12-06T20:09:00.029271Z" + }, + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "----------------------------------------\n", + "Global fields:\n", + " None\n", + "----------------------------------------\n", + "Row fields:\n", + " 'locus': locus \n", + " 'mean': float64 \n", + " 'median_approx': int32 \n", + " 'total_DP': int64 \n", + " 'over_1': float64 \n", + " 'over_5': float64 \n", + " 'over_10': float64 \n", + " 'over_15': float64 \n", + " 'over_20': float64 \n", + " 'over_25': float64 \n", + " 'over_30': float64 \n", + " 'over_50': float64 \n", + " 'over_100': float64 \n", + "----------------------------------------\n", + "Key: ['locus']\n", + "----------------------------------------\n" + ] + } + ], + "source": [ + "ht.describe()" + ] + }, + { + "cell_type": "markdown", + "id": "5969ab0c-7cee-4061-8740-8b82366ae806", + "metadata": { + "tags": [] + }, + "source": [ + "#### Show the first 5 variants in the Hail Table\n" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "id": "49fcf64b-1a91-4052-bb98-b329a0e8031b", + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-06T20:09:20.949958Z", + "start_time": "2024-12-06T20:09:05.622171Z" + }, + "tags": [] + }, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
locus
mean
median_approx
total_DP
over_1
over_5
over_10
over_15
over_20
over_25
over_30
over_50
over_100
locus<GRCh38>float64int32int64float64float64float64float64float64float64float64float64float64
chr1:118191.12e-010816952.79e-027.59e-030.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+00
chr1:118201.12e-010816952.79e-027.59e-030.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+00
chr1:118211.12e-010816952.79e-027.59e-030.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+00
chr1:118221.12e-010816952.79e-027.59e-030.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+00
chr1:118231.12e-010816952.79e-027.59e-030.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+00

showing top 5 rows

\n" + ], + "text/plain": [ + "+---------------+----------+---------------+----------+----------+----------+\n", + "| locus | mean | median_approx | total_DP | over_1 | over_5 |\n", + "+---------------+----------+---------------+----------+----------+----------+\n", + "| locus | float64 | int32 | int64 | float64 | float64 |\n", + "+---------------+----------+---------------+----------+----------+----------+\n", + "| chr1:11819 | 1.12e-01 | 0 | 81695 | 2.79e-02 | 7.59e-03 |\n", + "| chr1:11820 | 1.12e-01 | 0 | 81695 | 2.79e-02 | 7.59e-03 |\n", + "| chr1:11821 | 1.12e-01 | 0 | 81695 | 2.79e-02 | 7.59e-03 |\n", + "| chr1:11822 | 1.12e-01 | 0 | 81695 | 2.79e-02 | 7.59e-03 |\n", + "| chr1:11823 | 1.12e-01 | 0 | 81695 | 2.79e-02 | 7.59e-03 |\n", + "+---------------+----------+---------------+----------+----------+----------+\n", + "\n", + "+----------+----------+----------+----------+----------+----------+----------+\n", + "| over_10 | over_15 | over_20 | over_25 | over_30 | over_50 | over_100 |\n", + "+----------+----------+----------+----------+----------+----------+----------+\n", + "| float64 | float64 | float64 | float64 | float64 | float64 | float64 |\n", + "+----------+----------+----------+----------+----------+----------+----------+\n", + "| 0.00e+00 | 0.00e+00 | 0.00e+00 | 0.00e+00 | 0.00e+00 | 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 | 0.00e+00 | 0.00e+00 | 0.00e+00 | 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 | 0.00e+00 | 0.00e+00 | 0.00e+00 | 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 | 0.00e+00 | 0.00e+00 | 0.00e+00 | 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 | 0.00e+00 | 0.00e+00 | 0.00e+00 | 0.00e+00 | 0.00e+00 |\n", + "+----------+----------+----------+----------+----------+----------+----------+\n", + "showing top 5 rows" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "ht.show(5)" + ] + }, + { + "cell_type": "markdown", + "id": "19b2e9be-48fd-4859-af3d-a0775656d24c", + "metadata": { + "tags": [] + }, + "source": [ + "### Genomes coverage Hail Table" + ] + }, + { + "cell_type": "markdown", + "id": "5918f8e0-a723-439a-a11f-558d5ed13be8", + "metadata": {}, + "source": [ + "#### Load the Hail Table\n" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "id": "a8d0be07-c35d-425a-b554-c86034e367fc", + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-06T20:08:59.197890Z", + "start_time": "2024-12-06T20:08:50.859108Z" + }, + "tags": [] + }, + "outputs": [], + "source": [ + "ht = get_gnomad_release(data_type='genomes', version='3.0', dataset=\"coverage\")" + ] + }, + { + "cell_type": "markdown", + "id": "d129b898-d642-44d1-8243-66a9cca8d1b1", + "metadata": {}, + "source": [ + "#### Print the schema of the Hail Table\n" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "id": "18afb20f-7429-4fe2-a6c5-73a22dcbdb76", + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-06T20:09:00.032524Z", + "start_time": "2024-12-06T20:09:00.029271Z" + }, + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "----------------------------------------\n", + "Global fields:\n", + " None\n", + "----------------------------------------\n", + "Row fields:\n", + " 'locus': locus \n", + " 'mean': float64 \n", + " 'median': int32 \n", + " 'count_array': array \n", + " 'over_1': float32 \n", + " 'over_5': float32 \n", + " 'over_10': float32 \n", + " 'over_15': float32 \n", + " 'over_20': float32 \n", + " 'over_25': float32 \n", + " 'over_30': float32 \n", + " 'over_50': float32 \n", + " 'over_100': float32 \n", + "----------------------------------------\n", + "Key: ['locus']\n", + "----------------------------------------\n" + ] + } + ], + "source": [ + "ht.describe()" + ] + }, + { + "cell_type": "markdown", + "id": "05d8e22c-93d6-4ecf-b9e7-711945268c82", + "metadata": { + "tags": [] + }, + "source": [ + "#### Show the first 5 variants in the Hail Table\n" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "id": "b27cb655-3abb-4501-bcc9-3f634db64591", + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-06T20:09:20.949958Z", + "start_time": "2024-12-06T20:09:05.622171Z" + }, + "tags": [] + }, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
locus
mean
median
count_array
over_1
over_5
over_10
over_15
over_20
over_25
over_30
over_50
over_100
locus<GRCh38>float64int32array<int32>float32float32float32float32float32float32float32float32float32
chr1:100011.93e+0116[0,20,65,141,226,328,386,442,415,385,292,198,362,367,337,273,289,266,241,226,191,169,168,151,227,194,179,190,177,166,143,131,150,130,125,121,136,94,93,83,67,60,68,68,59,33,39,39,39,38,20,18,21,25,10,9,16,8,7,6,2,3,2,4,1,2,2,2,0,0,2,1,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]1.25e-011.19e-019.12e-026.95e-025.15e-023.88e-022.62e-022.27e-030.00e+00
chr1:100022.10e+0118[0,10,41,108,209,339,482,570,581,575,483,390,702,689,639,556,587,534,516,435,417,366,346,320,437,415,405,359,333,308,283,266,272,248,218,231,241,184,176,162,138,119,127,137,118,63,82,87,66,66,46,33,39,43,22,25,26,19,19,11,7,6,7,5,3,5,2,4,2,6,2,3,2,0,1,1,1,0,0,0,1,0,0,2,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2]2.20e-012.15e-011.79e-011.39e-011.02e-017.60e-025.06e-024.83e-032.79e-05
chr1:100032.44e+0123[0,6,16,62,100,162,233,289,294,346,342,310,537,612,664,649,661,711,723,658,649,590,548,486,679,656,640,571,533,491,439,398,412,404,349,383,360,298,263,242,207,182,186,194,159,118,123,116,96,96,67,59,61,64,34,33,34,31,30,15,12,11,13,10,7,7,3,7,5,10,3,3,5,0,2,2,1,0,0,2,1,1,1,4,0,2,1,0,0,1,0,0,0,0,0,0,0,0,0,0,4]2.62e-012.59e-012.41e-012.07e-011.59e-011.18e-017.77e-027.61e-035.58e-05
chr1:100042.43e+0123[0,4,21,70,101,178,270,396,417,515,550,486,864,1003,1098,1138,1183,1270,1242,1181,1162,1083,966,845,1149,1088,1047,922,857,804,725,645,633,658,525,610,537,451,411,369,343,285,290,260,235,184,190,174,151,152,96,83,96,91,52,52,56,43,47,30,20,19,22,16,13,9,9,10,10,14,8,7,8,0,5,3,3,2,1,2,1,1,1,5,3,3,2,1,0,2,0,0,1,0,1,0,1,1,0,0,12]4.27e-014.24e-013.99e-013.43e-012.60e-011.87e-011.21e-011.20e-021.67e-04
chr1:100052.45e+0123[0,4,22,67,98,177,257,381,423,511,580,560,1013,1158,1257,1314,1338,1472,1401,1341,1300,1266,1105,966,1288,1243,1198,1068,976,905,842,725,728,740,600,678,613,515,464,414,396,338,324,300,268,213,210,198,175,165,113,100,108,102,61,58,61,50,53,35,22,22,27,22,15,11,12,10,13,14,10,8,9,1,6,4,6,5,3,3,4,2,2,5,3,7,3,1,0,2,0,1,2,2,2,0,1,1,0,0,17]4.83e-014.80e-014.56e-013.92e-012.96e-012.14e-011.38e-011.42e-022.37e-04

showing top 5 rows

\n" + ], + "text/plain": [ + "+---------------+----------+--------+\n", + "| locus | mean | median |\n", + "+---------------+----------+--------+\n", + "| locus | float64 | int32 |\n", + "+---------------+----------+--------+\n", + "| chr1:10001 | 1.93e+01 | 16 |\n", + "| chr1:10002 | 2.10e+01 | 18 |\n", + "| chr1:10003 | 2.44e+01 | 23 |\n", + "| chr1:10004 | 2.43e+01 | 23 |\n", + "| chr1:10005 | 2.45e+01 | 23 |\n", + "+---------------+----------+--------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| count_array |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0,20,65,141,226,328,386,442,415,385,292,198,362,367,337,273,289,266,241,... |\n", + "| [0,10,41,108,209,339,482,570,581,575,483,390,702,689,639,556,587,534,516,... |\n", + "| [0,6,16,62,100,162,233,289,294,346,342,310,537,612,664,649,661,711,723,65... |\n", + "| [0,4,21,70,101,178,270,396,417,515,550,486,864,1003,1098,1138,1183,1270,1... |\n", + "| [0,4,22,67,98,177,257,381,423,511,580,560,1013,1158,1257,1314,1338,1472,1... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+----------+----------+----------+----------+----------+----------+----------+\n", + "| over_1 | over_5 | over_10 | over_15 | over_20 | over_25 | over_30 |\n", + "+----------+----------+----------+----------+----------+----------+----------+\n", + "| float32 | float32 | float32 | float32 | float32 | float32 | float32 |\n", + "+----------+----------+----------+----------+----------+----------+----------+\n", + "| 1.25e-01 | 1.19e-01 | 9.12e-02 | 6.95e-02 | 5.15e-02 | 3.88e-02 | 2.62e-02 |\n", + "| 2.20e-01 | 2.15e-01 | 1.79e-01 | 1.39e-01 | 1.02e-01 | 7.60e-02 | 5.06e-02 |\n", + "| 2.62e-01 | 2.59e-01 | 2.41e-01 | 2.07e-01 | 1.59e-01 | 1.18e-01 | 7.77e-02 |\n", + "| 4.27e-01 | 4.24e-01 | 3.99e-01 | 3.43e-01 | 2.60e-01 | 1.87e-01 | 1.21e-01 |\n", + "| 4.83e-01 | 4.80e-01 | 4.56e-01 | 3.92e-01 | 2.96e-01 | 2.14e-01 | 1.38e-01 |\n", + "+----------+----------+----------+----------+----------+----------+----------+\n", + "\n", + "+----------+----------+\n", + "| over_50 | over_100 |\n", + "+----------+----------+\n", + "| float32 | float32 |\n", + "+----------+----------+\n", + "| 2.27e-03 | 0.00e+00 |\n", + "| 4.83e-03 | 2.79e-05 |\n", + "| 7.61e-03 | 5.58e-05 |\n", + "| 1.20e-02 | 1.67e-04 |\n", + "| 1.42e-02 | 2.37e-04 |\n", + "+----------+----------+\n", + "showing top 5 rows" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "ht.show(5)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.12.2" + }, + "toc": { + "base_numbering": 1, + "nav_menu": { + "height": "613.99px", + "width": "526.312px" + }, + "number_sections": false, + "sideBar": true, + "skip_h1_title": true, + "title_cell": "Table of Contents", + "title_sidebar": "Contents", + "toc_cell": true, + "toc_position": { + "height": "calc(100% - 180px)", + "left": "10px", + "top": "150px", + "width": "202.438px" + }, + "toc_section_display": true, + "toc_window_display": true + }, + "toc-autonumbering": false, + "toc-showcode": false, + "toc-showmarkdowntxt": true, + "toc-showtags": false, + "widgets": { + "application/vnd.jupyter.widget-state+json": { + "state": {}, + "version_major": 2, + "version_minor": 0 + } + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/gnomad_toolbox/notebooks/intro_to_filtering_variant_data.ipynb b/gnomad_toolbox/notebooks/intro_to_filtering_variant_data.ipynb new file mode 100644 index 0000000..e6dd8fd --- /dev/null +++ b/gnomad_toolbox/notebooks/intro_to_filtering_variant_data.ipynb @@ -0,0 +1,6288 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "4a01210b", + "metadata": {}, + "source": [ + "# Introduction to filtering the gnomAD variant data" + ] + }, + { + "cell_type": "markdown", + "id": "8e609a46", + "metadata": { + "toc": true + }, + "source": [ + "

Table of Contents

\n", + "" + ] + }, + { + "cell_type": "markdown", + "id": "8e713032", + "metadata": {}, + "source": [ + "## Import modules" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "e69953f7", + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-06T18:04:56.165634Z", + "start_time": "2024-12-06T18:04:55.603516Z" + } + }, + "outputs": [ + { + "data": { + "text/html": [ + " \n", + "
\n", + " \n", + " Loading BokehJS ...\n", + "
\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/javascript": [ + "(function(root) {\n", + " function now() {\n", + " return new Date();\n", + " }\n", + "\n", + " const force = true;\n", + "\n", + " if (typeof root._bokeh_onload_callbacks === \"undefined\" || force === true) {\n", + " root._bokeh_onload_callbacks = [];\n", + " root._bokeh_is_loading = undefined;\n", + " }\n", + "\n", + "const JS_MIME_TYPE = 'application/javascript';\n", + " const HTML_MIME_TYPE = 'text/html';\n", + " const EXEC_MIME_TYPE = 'application/vnd.bokehjs_exec.v0+json';\n", + " const CLASS_NAME = 'output_bokeh rendered_html';\n", + "\n", + " /**\n", + " * Render data to the DOM node\n", + " */\n", + " function render(props, node) {\n", + " const script = document.createElement(\"script\");\n", + " node.appendChild(script);\n", + " }\n", + "\n", + " /**\n", + " * Handle when an output is cleared or removed\n", + " */\n", + " function handleClearOutput(event, handle) {\n", + " function drop(id) {\n", + " const view = Bokeh.index.get_by_id(id)\n", + " if (view != null) {\n", + " view.model.document.clear()\n", + " Bokeh.index.delete(view)\n", + " }\n", + " }\n", + "\n", + " const cell = handle.cell;\n", + "\n", + " const id = cell.output_area._bokeh_element_id;\n", + " const server_id = cell.output_area._bokeh_server_id;\n", + "\n", + " // Clean up Bokeh references\n", + " if (id != null) {\n", + " drop(id)\n", + " }\n", + "\n", + " if (server_id !== undefined) {\n", + " // Clean up Bokeh references\n", + " const cmd_clean = \"from bokeh.io.state import curstate; print(curstate().uuid_to_server['\" + server_id + \"'].get_sessions()[0].document.roots[0]._id)\";\n", + " cell.notebook.kernel.execute(cmd_clean, {\n", + " iopub: {\n", + " output: function(msg) {\n", + " const id = msg.content.text.trim()\n", + " drop(id)\n", + " }\n", + " }\n", + " });\n", + " // Destroy server and session\n", + " const cmd_destroy = \"import bokeh.io.notebook as ion; ion.destroy_server('\" + server_id + \"')\";\n", + " cell.notebook.kernel.execute(cmd_destroy);\n", + " }\n", + " }\n", + "\n", + " /**\n", + " * Handle when a new output is added\n", + " */\n", + " function handleAddOutput(event, handle) {\n", + " const output_area = handle.output_area;\n", + " const output = handle.output;\n", + "\n", + " // limit handleAddOutput to display_data with EXEC_MIME_TYPE content only\n", + " if ((output.output_type != \"display_data\") || (!Object.prototype.hasOwnProperty.call(output.data, EXEC_MIME_TYPE))) {\n", + " return\n", + " }\n", + "\n", + " const toinsert = output_area.element.find(\".\" + CLASS_NAME.split(' ')[0]);\n", + "\n", + " if (output.metadata[EXEC_MIME_TYPE][\"id\"] !== undefined) {\n", + " toinsert[toinsert.length - 1].firstChild.textContent = output.data[JS_MIME_TYPE];\n", + " // store reference to embed id on output_area\n", + " output_area._bokeh_element_id = output.metadata[EXEC_MIME_TYPE][\"id\"];\n", + " }\n", + " if (output.metadata[EXEC_MIME_TYPE][\"server_id\"] !== undefined) {\n", + " const bk_div = document.createElement(\"div\");\n", + " bk_div.innerHTML = output.data[HTML_MIME_TYPE];\n", + " const script_attrs = bk_div.children[0].attributes;\n", + " for (let i = 0; i < script_attrs.length; i++) {\n", + " toinsert[toinsert.length - 1].firstChild.setAttribute(script_attrs[i].name, script_attrs[i].value);\n", + " toinsert[toinsert.length - 1].firstChild.textContent = bk_div.children[0].textContent\n", + " }\n", + " // store reference to server id on output_area\n", + " output_area._bokeh_server_id = output.metadata[EXEC_MIME_TYPE][\"server_id\"];\n", + " }\n", + " }\n", + "\n", + " function register_renderer(events, OutputArea) {\n", + "\n", + " function append_mime(data, metadata, element) {\n", + " // create a DOM node to render to\n", + " const toinsert = this.create_output_subarea(\n", + " metadata,\n", + " CLASS_NAME,\n", + " EXEC_MIME_TYPE\n", + " );\n", + " this.keyboard_manager.register_events(toinsert);\n", + " // Render to node\n", + " const props = {data: data, metadata: metadata[EXEC_MIME_TYPE]};\n", + " render(props, toinsert[toinsert.length - 1]);\n", + " element.append(toinsert);\n", + " return toinsert\n", + " }\n", + "\n", + " /* Handle when an output is cleared or removed */\n", + " events.on('clear_output.CodeCell', handleClearOutput);\n", + " events.on('delete.Cell', handleClearOutput);\n", + "\n", + " /* Handle when a new output is added */\n", + " events.on('output_added.OutputArea', handleAddOutput);\n", + "\n", + " /**\n", + " * Register the mime type and append_mime function with output_area\n", + " */\n", + " OutputArea.prototype.register_mime_type(EXEC_MIME_TYPE, append_mime, {\n", + " /* Is output safe? */\n", + " safe: true,\n", + " /* Index of renderer in `output_area.display_order` */\n", + " index: 0\n", + " });\n", + " }\n", + "\n", + " // register the mime type if in Jupyter Notebook environment and previously unregistered\n", + " if (root.Jupyter !== undefined) {\n", + " const events = require('base/js/events');\n", + " const OutputArea = require('notebook/js/outputarea').OutputArea;\n", + "\n", + " if (OutputArea.prototype.mime_types().indexOf(EXEC_MIME_TYPE) == -1) {\n", + " register_renderer(events, OutputArea);\n", + " }\n", + " }\n", + " if (typeof (root._bokeh_timeout) === \"undefined\" || force === true) {\n", + " root._bokeh_timeout = Date.now() + 5000;\n", + " root._bokeh_failed_load = false;\n", + " }\n", + "\n", + " const NB_LOAD_WARNING = {'data': {'text/html':\n", + " \"
\\n\"+\n", + " \"

\\n\"+\n", + " \"BokehJS does not appear to have successfully loaded. If loading BokehJS from CDN, this \\n\"+\n", + " \"may be due to a slow or bad network connection. Possible fixes:\\n\"+\n", + " \"

\\n\"+\n", + " \"
    \\n\"+\n", + " \"
  • re-rerun `output_notebook()` to attempt to load from CDN again, or
  • \\n\"+\n", + " \"
  • use INLINE resources instead, as so:
  • \\n\"+\n", + " \"
\\n\"+\n", + " \"\\n\"+\n", + " \"from bokeh.resources import INLINE\\n\"+\n", + " \"output_notebook(resources=INLINE)\\n\"+\n", + " \"\\n\"+\n", + " \"
\"}};\n", + "\n", + " function display_loaded() {\n", + " const el = document.getElementById(\"ab66414b-9a8d-4992-add5-5e50546bdda0\");\n", + " if (el != null) {\n", + " el.textContent = \"BokehJS is loading...\";\n", + " }\n", + " if (root.Bokeh !== undefined) {\n", + " if (el != null) {\n", + " el.textContent = \"BokehJS \" + root.Bokeh.version + \" successfully loaded.\";\n", + " }\n", + " } else if (Date.now() < root._bokeh_timeout) {\n", + " setTimeout(display_loaded, 100)\n", + " }\n", + " }\n", + "\n", + " function run_callbacks() {\n", + " try {\n", + " root._bokeh_onload_callbacks.forEach(function(callback) {\n", + " if (callback != null)\n", + " callback();\n", + " });\n", + " } finally {\n", + " delete root._bokeh_onload_callbacks\n", + " }\n", + " console.debug(\"Bokeh: all callbacks have finished\");\n", + " }\n", + "\n", + " function load_libs(css_urls, js_urls, callback) {\n", + " if (css_urls == null) css_urls = [];\n", + " if (js_urls == null) js_urls = [];\n", + "\n", + " root._bokeh_onload_callbacks.push(callback);\n", + " if (root._bokeh_is_loading > 0) {\n", + " console.debug(\"Bokeh: BokehJS is being loaded, scheduling callback at\", now());\n", + " return null;\n", + " }\n", + " if (js_urls == null || js_urls.length === 0) {\n", + " run_callbacks();\n", + " return null;\n", + " }\n", + " console.debug(\"Bokeh: BokehJS not loaded, scheduling load and callback at\", now());\n", + " root._bokeh_is_loading = css_urls.length + js_urls.length;\n", + "\n", + " function on_load() {\n", + " root._bokeh_is_loading--;\n", + " if (root._bokeh_is_loading === 0) {\n", + " console.debug(\"Bokeh: all BokehJS libraries/stylesheets loaded\");\n", + " run_callbacks()\n", + " }\n", + " }\n", + "\n", + " function on_error(url) {\n", + " console.error(\"failed to load \" + url);\n", + " }\n", + "\n", + " for (let i = 0; i < css_urls.length; i++) {\n", + " const url = css_urls[i];\n", + " const element = document.createElement(\"link\");\n", + " element.onload = on_load;\n", + " element.onerror = on_error.bind(null, url);\n", + " element.rel = \"stylesheet\";\n", + " element.type = \"text/css\";\n", + " element.href = url;\n", + " console.debug(\"Bokeh: injecting link tag for BokehJS stylesheet: \", url);\n", + " document.body.appendChild(element);\n", + " }\n", + "\n", + " for (let i = 0; i < js_urls.length; i++) {\n", + " const url = js_urls[i];\n", + " const element = document.createElement('script');\n", + " element.onload = on_load;\n", + " element.onerror = on_error.bind(null, url);\n", + " element.async = false;\n", + " element.src = url;\n", + " console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n", + " document.head.appendChild(element);\n", + " }\n", + " };\n", + "\n", + " function inject_raw_css(css) {\n", + " const element = document.createElement(\"style\");\n", + " element.appendChild(document.createTextNode(css));\n", + " document.body.appendChild(element);\n", + " }\n", + "\n", + " const js_urls = [\"https://cdn.bokeh.org/bokeh/release/bokeh-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-gl-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-widgets-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-tables-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-mathjax-3.3.4.min.js\"];\n", + " const css_urls = [];\n", + "\n", + " const inline_js = [ function(Bokeh) {\n", + " Bokeh.set_log_level(\"info\");\n", + " },\n", + "function(Bokeh) {\n", + " }\n", + " ];\n", + "\n", + " function run_inline_js() {\n", + " if (root.Bokeh !== undefined || force === true) {\n", + " for (let i = 0; i < inline_js.length; i++) {\n", + " inline_js[i].call(root, root.Bokeh);\n", + " }\n", + "if (force === true) {\n", + " display_loaded();\n", + " }} else if (Date.now() < root._bokeh_timeout) {\n", + " setTimeout(run_inline_js, 100);\n", + " } else if (!root._bokeh_failed_load) {\n", + " console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n", + " root._bokeh_failed_load = true;\n", + " } else if (force !== true) {\n", + " const cell = $(document.getElementById(\"ab66414b-9a8d-4992-add5-5e50546bdda0\")).parents('.cell').data().cell;\n", + " cell.output_area.append_execute_result(NB_LOAD_WARNING)\n", + " }\n", + " }\n", + "\n", + " if (root._bokeh_is_loading === 0) {\n", + " console.debug(\"Bokeh: BokehJS loaded, going straight to plotting\");\n", + " run_inline_js();\n", + " } else {\n", + " load_libs(css_urls, js_urls, function() {\n", + " console.debug(\"Bokeh: BokehJS plotting callback run at\", now());\n", + " run_inline_js();\n", + " });\n", + " }\n", + "}(window));" + ], + "application/vnd.bokehjs_load.v0+json": "(function(root) {\n function now() {\n return new Date();\n }\n\n const force = true;\n\n if (typeof root._bokeh_onload_callbacks === \"undefined\" || force === true) {\n root._bokeh_onload_callbacks = [];\n root._bokeh_is_loading = undefined;\n }\n\n\n if (typeof (root._bokeh_timeout) === \"undefined\" || force === true) {\n root._bokeh_timeout = Date.now() + 5000;\n root._bokeh_failed_load = false;\n }\n\n const NB_LOAD_WARNING = {'data': {'text/html':\n \"
\\n\"+\n \"

\\n\"+\n \"BokehJS does not appear to have successfully loaded. If loading BokehJS from CDN, this \\n\"+\n \"may be due to a slow or bad network connection. Possible fixes:\\n\"+\n \"

\\n\"+\n \"
    \\n\"+\n \"
  • re-rerun `output_notebook()` to attempt to load from CDN again, or
  • \\n\"+\n \"
  • use INLINE resources instead, as so:
  • \\n\"+\n \"
\\n\"+\n \"\\n\"+\n \"from bokeh.resources import INLINE\\n\"+\n \"output_notebook(resources=INLINE)\\n\"+\n \"\\n\"+\n \"
\"}};\n\n function display_loaded() {\n const el = document.getElementById(\"ab66414b-9a8d-4992-add5-5e50546bdda0\");\n if (el != null) {\n el.textContent = \"BokehJS is loading...\";\n }\n if (root.Bokeh !== undefined) {\n if (el != null) {\n el.textContent = \"BokehJS \" + root.Bokeh.version + \" successfully loaded.\";\n }\n } else if (Date.now() < root._bokeh_timeout) {\n setTimeout(display_loaded, 100)\n }\n }\n\n function run_callbacks() {\n try {\n root._bokeh_onload_callbacks.forEach(function(callback) {\n if (callback != null)\n callback();\n });\n } finally {\n delete root._bokeh_onload_callbacks\n }\n console.debug(\"Bokeh: all callbacks have finished\");\n }\n\n function load_libs(css_urls, js_urls, callback) {\n if (css_urls == null) css_urls = [];\n if (js_urls == null) js_urls = [];\n\n root._bokeh_onload_callbacks.push(callback);\n if (root._bokeh_is_loading > 0) {\n console.debug(\"Bokeh: BokehJS is being loaded, scheduling callback at\", now());\n return null;\n }\n if (js_urls == null || js_urls.length === 0) {\n run_callbacks();\n return null;\n }\n console.debug(\"Bokeh: BokehJS not loaded, scheduling load and callback at\", now());\n root._bokeh_is_loading = css_urls.length + js_urls.length;\n\n function on_load() {\n root._bokeh_is_loading--;\n if (root._bokeh_is_loading === 0) {\n console.debug(\"Bokeh: all BokehJS libraries/stylesheets loaded\");\n run_callbacks()\n }\n }\n\n function on_error(url) {\n console.error(\"failed to load \" + url);\n }\n\n for (let i = 0; i < css_urls.length; i++) {\n const url = css_urls[i];\n const element = document.createElement(\"link\");\n element.onload = on_load;\n element.onerror = on_error.bind(null, url);\n element.rel = \"stylesheet\";\n element.type = \"text/css\";\n element.href = url;\n console.debug(\"Bokeh: injecting link tag for BokehJS stylesheet: \", url);\n document.body.appendChild(element);\n }\n\n for (let i = 0; i < js_urls.length; i++) {\n const url = js_urls[i];\n const element = document.createElement('script');\n element.onload = on_load;\n element.onerror = on_error.bind(null, url);\n element.async = false;\n element.src = url;\n console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n document.head.appendChild(element);\n }\n };\n\n function inject_raw_css(css) {\n const element = document.createElement(\"style\");\n element.appendChild(document.createTextNode(css));\n document.body.appendChild(element);\n }\n\n const js_urls = [\"https://cdn.bokeh.org/bokeh/release/bokeh-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-gl-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-widgets-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-tables-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-mathjax-3.3.4.min.js\"];\n const css_urls = [];\n\n const inline_js = [ function(Bokeh) {\n Bokeh.set_log_level(\"info\");\n },\nfunction(Bokeh) {\n }\n ];\n\n function run_inline_js() {\n if (root.Bokeh !== undefined || force === true) {\n for (let i = 0; i < inline_js.length; i++) {\n inline_js[i].call(root, root.Bokeh);\n }\nif (force === true) {\n display_loaded();\n }} else if (Date.now() < root._bokeh_timeout) {\n setTimeout(run_inline_js, 100);\n } else if (!root._bokeh_failed_load) {\n console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n root._bokeh_failed_load = true;\n } else if (force !== true) {\n const cell = $(document.getElementById(\"ab66414b-9a8d-4992-add5-5e50546bdda0\")).parents('.cell').data().cell;\n cell.output_area.append_execute_result(NB_LOAD_WARNING)\n }\n }\n\n if (root._bokeh_is_loading === 0) {\n console.debug(\"Bokeh: BokehJS loaded, going straight to plotting\");\n run_inline_js();\n } else {\n load_libs(css_urls, js_urls, function() {\n console.debug(\"Bokeh: BokehJS plotting callback run at\", now());\n run_inline_js();\n });\n }\n}(window));" + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import hail as hl\n", + "\n", + "from gnomad_toolbox.load_data import get_gnomad_release\n", + "from gnomad_toolbox.filtering.variant import filter_by_intervals, filter_by_gene_symbol\n", + "from gnomad_toolbox.filtering.frequency import (\n", + " get_ancestry_callstats, \n", + " get_single_variant_ancestry_callstats,\n", + ")\n", + "from gnomad_toolbox.filtering.vep import filter_by_csqs" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "b3c44396-5ee1-4263-91f8-78bdb9417bab", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Welcome to\n", + " __ __ <>__\n", + " / /_/ /__ __/ /\n", + " / __ / _ `/ / /\n", + " /_/ /_/\\_,_/_/_/ version 0.2.132-678e1f52b999\n", + "LOGGING: writing to /Users/jgoodric/PycharmProjects/gnomad-toolbox/gnomad_toolbox/notebooks/hail-20241210-2227-0.2.132-678e1f52b999.log\n", + "2024-12-10 22:28:45.710 Hail: WARN: No variant found at chr22:15528692 with alleles ['C', 'A']\n" + ] + } + ], + "source": [ + "hl.init(backend=\"local\")" + ] + }, + { + "cell_type": "markdown", + "id": "725f9a57", + "metadata": {}, + "source": [ + "## Filter to variants in a specific gene\n", + "\n", + "Here we show two ways that you can load a variant table on the gnomAD browser:\n", + " - The [region view](https://gnomad.broadinstitute.org/region/11-113409605-113475691?dataset=gnomad_r4)\n", + " - The [gene page](https://gnomad.broadinstitute.org/gene/ENSG00000149295?dataset=gnomad_r4)\n", + " - Only includes variants located in or within 75 base pairs of a coding exon (CDS)\n", + "\n", + "We use the *DRD2* gene as an example. " + ] + }, + { + "attachments": { + "Screenshot%202024-11-01%20at%209.31.00%E2%80%AFPM.png": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABCAAAAESCAYAAAAsZqRkAAAKrGlDQ1BJQ0MgUHJvZmlsZQAASImVlwdUU+kSgP9700NCS6hSQm+CdAJICT303myEJEAoIQaCgqioLK7giiIiAsqCLIoouCpF7FiwLQpKUdEFWRTUdbEgKirvAofg7jvvvfPmnjnz3cn8M/Pf8//nTAAgU1kCQTIsDUAKP10Y7OlCi4yKpuFGAR4oADKgA0sWO03ACAz0BYjM27/Lh14Azdh7xjO5/v33/yoyHG4aGwAoEOFYTho7BeFTiI6zBcJ0AFA1iF9rTbpghq8jTBUiDSI8MMPxczw+w7GzjEbPxoQGuyKsCACexGIJ4wEgaSN+WgY7HslDckPYlM/h8RFG3oFjSkoqB2GkLtBHYgQIz+Snx36XJ/5vOWPFOVmseDHP7WVW8G68NEEyK/P//Bz/W1KSRfM1dBElJQi9ghGL9AX1J6X6iJkf6x8wzzzObPwsJ4i8wuaZneYaPc8clpuPeG2yv+88x/E8mOI86czQeeamuYfMszA1WFwrTujKmGeWcKGuKClM7E/gMsX5sxJCI+Y5gxfuP89pSSE+CzGuYr9QFCzun8v3dFmo6yHee0rad/vlMcVr0xNCvcR7Zy30z+UzFnKmRYp743Dd3BdiwsTxgnQXcS1BcqA4npvsKfanZYSI16YjB3JhbaD4GyayvAPnGbgBd+CLPDQQCMyBJaIWM7507tqZMwpcUwWZQl58QjqNgdwyLo3JZ5ssppmbmlsCMHNn547Eu/7ZuwjJ4xd8fB4AljcRaFnwcU4DcGYZABT1BZ9WEwBSDwG4EMEWCTPmfDPXCWAAEUgBKlACakAL6ANjpDdrYA+ckY69QQAIBVFgJWCDBJAChGANyAabQB4oADvBHlAGKsFBcBgcAydACzgLLoFr4Ba4C3rAIzAIRsBLMA4+gCkIgnAQGaJASpA6pAMZQeYQHXKE3CFfKBiKgmKgeIgPiaBsaAtUABVBZVAVVAf9Cp2GLkE3oC7oATQEjUFvoc8wCibBVFgV1oWXwHSYAfvAofAKOB5eDWfBufAOuBSuho/CzfAl+BbcAw/CL+EJFEBJoORRGihjFB3ligpARaPiUELUBlQ+qgRVjWpAtaE6UPdQg6hXqE9oLJqCpqGN0fZoL3QYmo1ejd6A3o4uQx9GN6OvoO+hh9Dj6G8YMkYFY4SxwzAxkZh4zBpMHqYEU4tpwlzF9GBGMB+wWKw8Vg9rg/XCRmETseuw27H7sY3Yi9gu7DB2AofDKeGMcA64ABwLl47Lw+3DHcVdwHXjRnAf8RJ4dbw53gMfjefjN+NL8Efw5/Hd+Of4KYI0QYdgRwggcAiZhEJCDaGNcIcwQpgiyhD1iA7EUGIicROxlNhAvEocIL6TkJDQlLCVCJLgSeRIlEocl7guMSTxiSRLMiS5kpaTRKQdpEOki6QHpHdkMlmX7EyOJqeTd5DryJfJT8gfJSmSJpJMSY7kRslyyWbJbsnXUgQpHSmG1EqpLKkSqZNSd6ReSROkdaVdpVnSG6TLpU9L90lPyFBkzGQCZFJktssckbkhMyqLk9WVdZflyObKHpS9LDtMQVG0KK4UNmULpYZylTJCxVL1qExqIrWAeozaSR2Xk5WzlAuXWytXLndOblAeJa8rz5RPli+UPyHfK/9ZQVWBocBV2KbQoNCtMKm4SNFZkauYr9io2KP4WYmm5K6UpLRLqUXpsTJa2VA5SHmN8gHlq8qvFlEX2S9iL8pfdGLRQxVYxVAlWGWdykGV2yoTqmqqnqoC1X2ql1VfqcmrOaslqhWrnVcbU6eoO6rz1IvVL6i/oMnRGLRkWintCm1cQ0XDS0OkUaXRqTGlqacZprlZs1HzsRZRi64Vp1Ws1a41rq2u7aedrV2v/VCHoEPXSdDZq9OhM6mrpxuhu1W3RXdUT1GPqZelV683oE/Wd9JfrV+tf98Aa0A3SDLYb3DXEDa0MkwwLDe8YwQbWRvxjPYbdS3GLLZdzF9cvbjPmGTMMM4wrjceMpE38TXZbNJi8nqJ9pLoJbuWdCz5ZmplmmxaY/rITNbM22yzWZvZW3NDc7Z5ufl9C7KFh8VGi1aLN5ZGllzLA5b9VhQrP6utVu1WX61trIXWDdZjNto2MTYVNn10Kj2Qvp1+3RZj62K70fas7Sc7a7t0uxN2f9kb2yfZH7EfXaq3lLu0Zumwg6YDy6HKYdCR5hjj+LPjoJOGE8up2umps5Yzx7nW+TnDgJHIOMp47WLqInRpcpl0tXNd73rRDeXm6Zbv1uku6x7mXub+xEPTI96j3mPc08pznedFL4yXj9curz6mKpPNrGOOe9t4r/e+4kPyCfEp83nqa+gr9G3zg/28/Xb7Dfjr+PP9WwJAADNgd8DjQL3A1YFngrBBgUHlQc+CzYKzgztCKCGrQo6EfAh1CS0MfRSmHyYKaw+XCl8eXhc+GeEWURQxGLkkcn3krSjlKF5UazQuOjy6NnpimfuyPctGllstz1veu0JvxdoVN1Yqr0xeeW6V1CrWqpMxmJiImCMxX1gBrGrWRCwztiJ2nO3K3st+yXHmFHPGuA7cIu7zOIe4orjReIf43fFjCU4JJQmveK68Mt6bRK/EysTJpICkQ0nTyRHJjSn4lJiU03xZfhL/Sqpa6trULoGRIE8wuNpu9Z7V40IfYW0alLYirTWdigxHt0X6oh9EQxmOGeUZH9eErzm5VmYtf+3tTMPMbZnPszyyflmHXsde156tkb0pe2g9Y33VBmhD7Ib2jVobczeO5HjmHN5E3JS06bfNppuLNr/fErGlLVc1Nyd3+AfPH+rzJPOEeX1b7bdW/oj+kfdj5zaLbfu2fcvn5N8sMC0oKfiynb395k9mP5X+NL0jbkdnoXXhgZ3Ynfydvbucdh0ukinKKhre7be7uZhWnF/8fs+qPTdKLEsq9xL3ivYOlvqWtu7T3rdz35eyhLKecpfyxgqVim0Vk/s5+7sPOB9oqFStLKj8/DPv5/4qz6rmat3qkoPYgxkHn9WE13T8Qv+lrla5tqD26yH+ocHDwYev1NnU1R1ROVJYD9eL6seOLj9695jbsdYG44aqRvnGguPguOj4i19jfu094XOi/ST9ZMMpnVMVTZSm/GaoObN5vCWhZbA1qrXrtPfp9jb7tqYzJmcOndU4W35O7lzheeL53PPTF7IuTFwUXHx1Kf7ScPuq9keXIy/fvxJ0pfOqz9Xr1zyuXe5gdFy47nD97A27G6dv0m+23LK+1Xzb6nbTb1a/NXVadzbfsbnTetf2blvX0q7z3U7dl+653bt2n3n/Vo9/T1dvWG9/3/K+wX5O/+iD5AdvHmY8nHqUM4AZyH8s/bjkicqT6t8Nfm8ctB48N+Q2dPtpyNNHw+zhl3+k/fFlJPcZ+VnJc/XndaPmo2fHPMbuvlj2YuSl4OXUq7w/Zf6seK3/+tRfzn/dHo8cH3kjfDP9dvs7pXeH3lu+b58InHjyIeXD1GT+R6WPhz/RP3V8jvj8fGrNF9yX0q8GX9u++XwbmE6ZnhawhKzZUQCFKBwXB8DbQwCQo5DZ4S4AxGVzM/WsQHP/A2YJ/Ceem7tnxRqA+hwAghGdGR/3XwRAG1EpZwACEQ11BrCFhVjn59/ZWX1GpI8C0MU0DbX2fWI1nAP+IXNz/Hd9/9MCcda/2X8BEaoHZfbhPqoAAABiZVhJZk1NACoAAAAIAAIBEgADAAAAAQABAACHaQAEAAAAAQAAACYAAAAAAAOShgAHAAAAEgAAAFCgAgAEAAAAAQAABCCgAwAEAAAAAQAAARIAAAAAQVNDSUkAAABTY3JlZW5zaG90xVc9TwAAAj5pVFh0WE1MOmNvbS5hZG9iZS54bXAAAAAAADx4OnhtcG1ldGEgeG1sbnM6eD0iYWRvYmU6bnM6bWV0YS8iIHg6eG1wdGs9IlhNUCBDb3JlIDYuMC4wIj4KICAgPHJkZjpSREYgeG1sbnM6cmRmPSJodHRwOi8vd3d3LnczLm9yZy8xOTk5LzAyLzIyLXJkZi1zeW50YXgtbnMjIj4KICAgICAgPHJkZjpEZXNjcmlwdGlvbiByZGY6YWJvdXQ9IiIKICAgICAgICAgICAgeG1sbnM6ZXhpZj0iaHR0cDovL25zLmFkb2JlLmNvbS9leGlmLzEuMC8iCiAgICAgICAgICAgIHhtbG5zOnRpZmY9Imh0dHA6Ly9ucy5hZG9iZS5jb20vdGlmZi8xLjAvIj4KICAgICAgICAgPGV4aWY6UGl4ZWxZRGltZW5zaW9uPjI3NDwvZXhpZjpQaXhlbFlEaW1lbnNpb24+CiAgICAgICAgIDxleGlmOlVzZXJDb21tZW50PlNjcmVlbnNob3Q8L2V4aWY6VXNlckNvbW1lbnQ+CiAgICAgICAgIDxleGlmOlBpeGVsWERpbWVuc2lvbj4xMDU2PC9leGlmOlBpeGVsWERpbWVuc2lvbj4KICAgICAgICAgPHRpZmY6T3JpZW50YXRpb24+MTwvdGlmZjpPcmllbnRhdGlvbj4KICAgICAgPC9yZGY6RGVzY3JpcHRpb24+CiAgIDwvcmRmOlJERj4KPC94OnhtcG1ldGE+CiJWpAsAAEAASURBVHgB7J0HYBzV1bbPqrjKDdvYBtxNxzTTq+kEQk0CJPQSCKT9kAL5CBB6gHQgBFIoAZJAqAFCMzj03ptp7gX3bku2pf88V77L7HpXXkkrq/g9MJ7ZKXfuPDO7mvPec89NVVVV1ZhMBERABERABERABERABERABERABERABJqQQEkTlq2iRUAEREAEREAEREAEREAEREAEREAERCAQkAChB0EEREAEREAEREAEREAEREAEREAERKDJCUiAaHLEOoEIiIAIiIAIiIAIiIAIiIAIiIAIiIAECD0DIiACIiACIiACIiACIiACIiACIiACTU5AAkSTI9YJREAEREAEREAEREAEREAEREAEREAEJEDoGRCBFkZgyZIl9sEHH7SwWqk6IiACIiACIiACIiACIiACItA4AhIgGsdPR4tAUQlUVlbahhtuaFtvvbX97Gc/K2rZKkwEREAEREAEREAEREAEREAEmpOABIjmpK9zN4rA1Vdfbe3atUtPn3766SrlzZ49O709ue8GG2xgJ5xwgt1www02fvz4VY5rrhXTp083Juy1115r0mq8+OKLNmrUKHv++eeb9DwqXAREQAREQAREQAREQAREQAQgkKqqqqoRChFojQS22mor+/DDD9NVv/TSS+3cc89Nf2Zh1qxZ1q9fv4x12R+6dOli9957r+25557Zm5rl87XXXhuEgfPPP9+23377JqvD4MGDbfLkybbuuuvapEmTmuw8KlgEREAEREAEREAEREAEREAEICABQs9BqyTw3nvv2bbbbptRd7ouvP/++xnrkgIEjvYZZ5xh5FgYPXp0RoQB2959913r0aNHxvFt+YMEiLZ8d3VtIiACIiACIiACIiACItDyCKgLRsu7J01ao3/961/2zW9+0+iCsPfee9ujjz5qv//9723kyJFhmjJlSjj/aaedFj4fccQRRteGb33rW9azZ0/Daf3xj39sCxcuzKjnW2+9ZT/5yU9sxIgRocvDoYceatdcc03GfoT6x/M89NBD9qtf/cqIYqBc6jR16tTQHYLleK5zzjnHli5dmnEuPtx3333pdV/72tfC8ieffBJEhPSGrIVNN93ULrjgArviiivshRdesFdeeSW9B90e7rrrrvTnuDBv3rx0nY8++ui4Oswfe+yx9LZbb701rCOi4Hvf+16aw+abb24nnXSSffbZZ+lj6fYRObz66qt2+umnh/vBcYsWLUpvu/jii9PHLF682C677LKwja4k3D+umzpEy+bLfd1xxx3D/dh9992D6MK+iC+cn7piXDufk9f3zjvv2HHHHWcbb7xxOH6XXXYJOSkWLFgQjtE/IiACIiACIiACIiACIiACIlBfAoqAqC+xVrz/TTfdFJzj7EsgcgDnHaNLw9ChQ4MwELs3IDqMHTs247CTTz7ZbrzxxrCOXAU4qLlsr732CmJBp06d7D//+U9wmtlv+PDhq4gFu+22m33xxRfpusTyjj32WLv55pvjR6upqbFNNtkk1Im6IarssMMOYfvPf/5zu/DCC9P7JiMg6GLxxBNPpLexQNeLY445JqwjJ8Rf/vKXjO18wDlHsMDgNHDgwLB85pln2l//+tew/NxzzwXRBJEjl9HNA4GAeiPUIA5gSfaHHXaY/fnPfw5dItiGwPCPf/zDli9fHgSNeD/YlrS///3vQTxI8qUeufZnHWIRIk+2xa4Yzz77rO2zzz7Zm8NneHN8x44dc27XShEQAREQAREQAREQAREQARHIR6Ak3watb1sE6ONPC3u073znO3b99dcH4SCKD3Fb9rxDhw5h3+OPPz69CUHA84eE7gwHHHBAej3OP9EJ++67b1j39NNPG6JAttHd4aKLLgpREHEbTvy0adOCc54UEe64447ghMf93njjjbQg8o1vfCOIJTjPGPVCoCjUknkfSMqYy4j+iMb1YJwDhx9bf/31Q66GKMiwjuiO//3vfwZnjMiBZNRGWOn/wJ4oE6IbmOcyolSimIDwQ7nkiYj2t7/9LS6m5+x/9tlnG4k6EQ2iIdYgFlEXRBGMOZ9jFMftt98ed7cnn3zSJkyYkM6tgRD1+OOPp7drQQREQAREQAREQAREQAREQAQKJVBW6I7ar3UToNU6GiH/f/jDH8JHwu4322yz9MgLcZ/k/J577rFhw4bZt7/97ZA3ITrDhPDPmDEjONfsf+qpp6bFBpxcjsHxTnYTiOWeddZZRpJFjHJ++9vfhuWrrrrK6P6BEVnxyCOPhGX2iZEH1CfawQcfbKlUKrToE1XAfq+//rptt912cZc653T1wAGnnogBiCp0cUgakQlRvOFa6FIBgzhaBaIAdUBoIbqhtLTU1llnnVAEbP/0pz+FZYSTbDvvvPPskksuSa+eO3duejkuEI3AdWGUS/k777yzITy8+eabFkWRuD9zokZgiQ0ZMsS+/vWvh+Vx48aFpJxw69q1a7huohn4HI0olGjsTzcZ6hiHBc3mE/fVXAREQAREQAREQAREQAREQATqIqAIiLrotKFtSQEiGbGAExqjFfJdLkJCtGTEwLJly4KzH7fR3SIayRyjCIBjP2fOnLgpzMmNEK1v375xMXT/iB/IcxCturo6LK5YscJuu+22uNpKSkpCHaLDz4akQJHeMc8CuSxiXgMiBXI513369LEDDzwwlEDrP9dNHoVoRx55ZFiEJZEdv/jFL0KUAfkTevfuHXezeA3pFb5ArozVGQIB/BCNqAfsYIP4kM9ilxS2J0fSQGBZnR111FHpXRCDuIatt97afvnLX4bRMsrKpFumAWlBBERABERABERABERABESgYALyJApG1bp37Ny5c/oCSGiYNBIf5rMYph+3ZzvoyWOztyXzBGQnkiRioCH20ksvpSMPOJ7kitlGTgS6NBApsDp7++2307uQsDGfkSeCrhCIFURmsIyRa2GLLbYIy1deeWXoVhI++D90C0nmeIjrk/PkfUmuTy6PGjXKvvKVr6RXcU8QbWIERnpDYqG8vDz9qRAO6Z19gS4ndLu57rrrjG4xGBEfTIgQrEsKHGEH/SMCIiACIiACIiACIiACIiACqyGgCIjVAGorm2nBjkZffxIbYoxw8cADD8RN9Z4z6kU0Rk6IRpQAjjqGI96vX7+4qVHzf//73xnH44zHKW7AMc+XzyHuw3zmzJl2yimnpFclryW9cuVCsosCuR+iABHzYhCZQd4HjJwQjHpB3g3yNTTWYqJLynnqqadCvRluNF/Cy/qej2FJs42oDs5FFxuu9ZBDDknvcuedd6aXtSACIiACIiACIiACIiACIiAChRKQAFEoqVa+37bbbpseXYHEgrT209JdV6t/IZecFDaIOsBZJV/Bueeem26hZxSJYhiiSbL7Bd0SGOUiTowYES1bqGA9Q4wy1CYCDDkd6JoQR/eg+0WukSFied26dUvnUYhCA9viEKCVlZXprhxEgjARLUF3jMYaiTmjUW7kEHNxxG31ncfEndSTRJ/cN7qJkL+D7iNEl3BdDNdKzo5o2VExcb3mIiACIiACIiACIiACIiACIlAXAXXBqItOG9qGA/3QQw+lQ+fJVcCEM0legdiiX99LJtcDyRBjJEF2TgOiAQjbL4YRTRDzNdAin919ITl0JN0wrrnmmozTkoviuOOOy1jHBxxxRJnokK+yw8oVCDZJYQPxJo4wwTCj5NKgHESN/v375yum3uu5P7ErBEOVFssYdjTmkSCRJtdP1AaCA6NncB3kmuAao1DDuaPoUqx6qBwREAEREAEREAEREAEREIG1g4AiINaO+xyukmiFqVOnGkMxEqFAH3+6YCASRCOpI5Yv0WCu3A049bfccktGNAXCBqNHkL8gJpNMHhvPw7nyrU/uw3JyGEvKzrbu3bvb/vvvH1YjVDz//PMZZSf3x9lGUIDByy+/XJBggMCQbP3n+KQRWRHPz3rOkSshZr7r5ZjkNj5j55xzTnoUjto1Zpdeeqklk36yPnlskl1yfXKZiI/YhYTjY96Iiy++OAgQ8Vqj+EBSUbq2JKNeOE4mAiIgAiIgAiIgAiIgAiIgAoUQSHlW/JpCdtQ+rZvAxIkT0xEB5A4488wzwwXNmzcvDNOIw47DPGHChDCyREOvlqSU5GBgyMykE9zQ8lrjcST5jDyTDn9jr4WuF+RkYFSKfAJRQ89Bzg7KzK4v95KhQbmf7du3b2jxOk4EREAEREAEREAEREAEREAETALEWvIQ0Ld/+PDhRjcEjGUiH5JdL37yk5/Y5ZdfvpYQ0WWKgAiIgAiIgAiIgAiIgAiIgAisSQKtS4Bg4IZKDzVfWjs3Plf7tMLX+RSWfWbei6CGERiZ6FFApgtvvK3pUDsPn31xbbOPP/7YTj/9dHvhhRdWufQrrrgihPqvrVELqwDRChEQAREQAREQAREQAREQAREQgaISaHkCRJWLCYv8Guf73KcwX+hzRgr0KYgPCBBLUxYEiKT4gAiBrRQe0iIEAkQH72niAkQQITr6Z59qKnze1ec+hXlnn7fzqQ0bkRAkGiT3A90Ehg4dahtuuKHC69vwPdeliYAIiIAIiIAIiIAIiIAIiEBLINC8AoRHLwSxYZbPmWY6ktk+n+fz+anaOcsIEIt9Wu6iQ2MzVngRVuaFdPI5AkQ3L9In61pTO1/HP/fyqaev86kGUUKpOh2CTAREQAREQAREQAREQAREQAREQAQaTmDNCxB0oXChITXFp2k+TffKz3SxYYbPmRa6QkC3iuYwhIYKFyd6u/Dgk/VyUWJdX+7r03o+uTBBVw6ZCIiACIiACIiACIiACIiACIiACIhA/QisGQGCrhOIDZN8muzTFBccfNm+8GkxIQkt2Dq5INHHxYcNECFckPARK8OyixJ045CJgAiIgAiIgAiIgAiIgAiIgAiIgAisnkDTCRCeIDJ0qxjnc6axLjpM8ArRzWJZA0UHcju0d0GAZJJM5GuIySZjwklfFRNTkpwyTJ5XwkLeCJ9X+rljrgj/WC8r93PTPWOAT4NdjBjkcya6a5BnQiYCIiACIiACIiACIiACIiACIiACIpCTQPEFCHf0iXIo+djnn7ro8Lmfd6pPOP6FGN0gOruj393n6QSR/tnzNYQEkggPJJCkK0RSgOA4Jqx65ZQQIFLe9SMksqR+iBHklSDPxMpElzbXPy/yOnJsIYYQ0s/rMcSnYTVWvZHPPToiCCOFHK99REAEREAEREAEREAEREAEREAERGAtIlA8AcKTRJaMd+f+I59/4I78p05xns/dT6/T2vkOPXwP8i6QY4G8CySCRIDo4nOfwjyOUOFFNsqoTxxpY4HX1ydj7gJEyhNghnwURGmQj2KOT1WrOSGbu3mhw1y72MzrvonPB/o6klzKREAEREAEREAEREAEREAEREAEREAEAoHGCxAeTRCEh3d8/p5740Q8kEgyn7GJRI9ED5DYsZ877X19nXdjoCtDEB6IcmgO82sJQoSPyGGMyjHNp6keJTHFPxPFwXUhYOQzrssjIqq38GvacqUQ0VzXkq+OWi8CIiACIiACIiACIiACIiACIiACzUCg4QIEOR7cMS9BeHjdHfNPvPZ0YchndKsgkeMgd877+zyIDz73aIfQlSLfcc25nkgJhgV18SGM2jHR5+P8Gkmgubpr3dAFiBHeNcOFCK5VOSKa80bq3CIgAiIgAiIgAiIgAiIgAiIgAs1NoEECRMq7JqTec+HhVY8O8LnNySM8lLnowDCW3j0hnbRxgC/TvSLma2huAoWe33NDhOiICYgQPpFUk24mDCO6PM/193CxZQsXIravndfQ1UQmAiIgAiIgAiIgAiIgAiIgAiIgAmshgfoJEEQ9uANe8hKTO92TfcqVtJEEjUQ7bOIRABv7fKhPnuPBytsI4WXOwXNEpD5zDmN8/pFzICoiV6JNhJb1ncNOTM7BBRhFQ7SR50CXIQIiIAIiIAIiIAIiIAIiIAIiUDCBggUIkjWm3neH+5mVUQ8LcrT6k1ByoDvZw93Z3nSl8EC0Q45dC65hS97RLzdERSBEfOjL7/qFjvcK50pc2WVlNMQePt/c2ZBcUyYCIiACIiACIiACIiACIiACIiACawmBgjpCpHxUiJJnzEr/7eLDK+5kZ4sPdLUY4I71ATW24hifDvPAiO3cyabLQVsVH3hA/Nq4Rq6Va15xdC0DWBhMkubMYAdDWMK0Jdr999+fUa1nnvHK5rB869n1vPPOy3FE4avqKrvwUurek3OsifPUXQttbYkE9Fy0xLuiOomACDQXgcb+TW+ueuu8IiACIiAC9SPw3e9+N6cfd/PNNxfVb6pbgKCFf7KLD4/79JB725/5tCLrQshzsKuvPsqFh8PdGd/GnfKuWfusBR+55uptnYMzgAVMzNlkGOycISxhCts6R9XIOLjpP/CS8dprr6UfMByxv/3tb8bDmLTf/OY3du2116b3S26jjLKyspzbkvvlW7700kvt0Iu+Zlvut1W+XYqynuv617/+lbcsrn2nnXZq8HXkLVgbWjQBnt/TTz/deA5lIiACIrC2E6BRYvPNNw9/D9d2Frp+ERABEWjLBHgHxvcZPXp0xmVG364uvynjgAI+5BcgSLo41qMeHnLx4UkXHqb5lLRyd6439K4Wh7jw8LWV+Q0Y0SJrt+QhbX7Zr51RPcj1EJg4GxgZrJLmLGFa+rDjGucbcuXRSO6/hpanTZtmG2+8cdoxf+SRR2yfffaxHj16pB1xHPMXX3zRDj30UJs924cIybLsMrI2r/bj7Y/dYeWH9bPxPcnuaenzrvbAeuzAFyleV3bERyyGa0d4KeaXLZatecsl8Nxzz9mJJ55ojz32WMutpGomAiIgAmuIQPwbOWLEiDV0Rp1GBERABESgGATw2fB5CjV8OGzffffN8L/wDbGkPxhWNOKf3AJEFB8e9m4Dz7pXnT3KBfkMdlwZ9bCfO939vQaljahFWzvUWcBkhbMJ0RDOypxZhjlT2JZ6NARCT3OIEPHFgnrR4rvBBp451O3ll18O83XX9SFM3HjwcMgx5ogP2BNPPBHm8Z9kGa+//npcHeacq5Cogso+tSE2K2pWhDqdc845q0RgZBSc9QHRgDChugx1D+O6sq8hHhe/hMX8ssWyNW+ZBHh+u3SpTc7Sp0+fjB/flllj1UoEREAEmo5A8m+6/hY2HWeVLAIiIAJNQYBo70Kj0vHRoiX9Ptb973//C5tYn6vxOR5Xn3lOASI10fWER711Hj90UVZIQ28XH/b2qIcjPerBu1tYRX1Ot5bt62xgBCuYmbPLsIUuPjjjwNqZr0lDEVuwYEHauV+0aFFwyKnDgQceGJyvd955J10l9sXinGWOSRqfO3XqZBMnTsxQz+K5br/99jqjCnjZmbN0XiiybHgPo6vHD3/4Q8sWM5LnTC7z5Zk+fbp99tlnlhRXkvuwXNc2tlNOFGP4XGxLfsmLXbbKazgBnt/+/VFTzfr169fwgnSkCIiACLQBAsn3gjZwOboEERABEVhrCOB74csgGqwumpt9v/e972X4PtHfw2dJ+nv5Gm7rC3YVASLl0RelTyE+uPCQLT70d9HhKy4+HOQt/IP9VIp6WD1voiGcFcxgZ84ww5wxrAPz2siXjM1N9SG28MdoBx7QpBHpkHzg4rbkOh7spDNN1wy2MyEERIvnevrpp8OqoUOHxk0Z8+mLplvZ0FpFq7yivQ3bfFjYnh0KlHFQ4kOMzuBaCv2CJK8nFkU5kQdzPhfL+JI//vjjq43SKNb5VE7hBJ599lkbPJgfNrNu3brZT3/608IP1p4iIAIi0MYILFmyJH1Fxf5bmC5YCyIgAiIgAk1CIPoyq2vIpcGXxuPKyspV6pH0ie69915btmzZKvs0ZEWGAJHyxueSF1x8eN7Fh+yRLnxkh+qDfNrbHerayPyGnG+tPQZmsINhGCUjSYIRMpx5YF8bAJDcWvTlZAt/jHaYM2dO+jw8sDfeeGPaCWdDLkc9fcDKhSlTplhFRUWYunfvHhz3GMLJQ3vUUUfZrFmzQvhOUriI5Xwy+zMrGVJhQ16Yb11Gz7JuHbqFTYW++EShg4Py1Td57eyXLaKwLtuiCpi9viGf6dbC9RClcdT3j7bNjtkyQ8RpSJk6pjgEPvjgg3RBPMft27dPf9aCCIiACKxNBOjKuHz58vBSGq+7mH8LY5mai4AIiIAIFJ9A0ieqqyEXv4iu6dtvv32oBH4alvSjopCxdOnSnCJFOKCe/3wpQLigkfKI+5JnXHyY5VPSoviws4sPtT5hcquWCyQAu2pnmFOEcOaw5x5YccSlvLVKqlnRuU92t+DAzTbbLEOAwFGPYkIsOB4bP5MpO9rcuXNDdw0e4Pjg4tR98cUX4XOuqILZ1fOC8HD4zv2tdHyN9dtwvVhcRteP9Mo6FvIJC8lrz3d4U75kJTm/NfU9G3TENnbd3dfnq4rWr0ECG220UcbZ3n777YzP+iACIiACawsB+vx+/vnnNm7cuLXlknWdIiACItDmCIwZM8beeuutvN0w8Is6d+5sNTWZEfrRj4p582hI3mOPPTK6aTQGVlqASI33HhXPufAwMUt86OdRD/v5JPGhMZzTx6ZFCGdqzjbDnD33gHvRlBYfpngOHO6xY8fGj3nnMQlJrh1Q0KqqqtKbevfubR999FFaOIghOytW1CaZzOXkT3h/rG3cuZNtseU6NmLzXlZesiJETKQLrWOB8yN2ROWujl0zNmWLKGxMqn7xM8w4R2MsKeC88v6rtnSTslDc6y9mJuxszDl0bMMIcG/XWceHsEnY8OHDE58yF1eX6DRzb30SAREQgdZDgK6CjBSF8bc8/l1dXRhv67lC1VQEREAE2i6B6BNxhe+//77tuuuuoWs865n4jY+GPxbzn5HHD98tabFLe/TjktsasxwEiNR8j3x4zYshAjk5JGQ3Fx52Wyk+dG3MaXRskkCNswyREM7WnHHaYO/3gHvBPWkqy07CyGeUrnfffTd9SkIvk4ajzstHjGaI26KQgDhBGdkWnfkoPGRv5/Oee+4Zvgwd1uuc3lxVVWJlNbUOOisphy/MdtttF16MWGbEi+SXiP1mzJgRriOXsMD2aCRkeeONN+LHvHP2e+WVV+pMnpn34KwNXEPkt2Tgl/2s+h4ypNHiRtap9LEIBOguww91tiE+kFWY508mAiIgAm2NAII7rWa8lMbIRa5xk002aWuXqusRAREQgTZJIPobdJvAGMmI3GaMjEHEenyHvfPOO0OkG37fzJkzw2ACEcgll1wSIuEQoevy4+L+9ZmXmPu/qU/c6X3dIx98VIa0lfvIDVu7o7ybd7vomV6rhSIRgGlg64zNWafN7wH3gnvCvSmW5XKkKPvBBx8MpyD8hm4T0UpK0sExcVXeOS37f/zjH23hwoX28ccfh4f71VdftQkTJqxyTHV1rcIVhQm+EDz05ESY8p/xtvu2vfxzlS2rKrfKquW2eNniUAbiBv2ZeCHiC8LL0YYbbpgeXoYQojiEYnl5eWixGT16dPr8iCyIFQgmXDPRGjiYV1xxRTpKI73zygXCjQg/3XTTTe3RRx9t9Pi3Uayh+NmfzvYvc63I022Tfnb3I3dnn76gz9zXXEJMQQdrpzSBZJcgooGeeuope+mll9Lbkwvsi1j3/PPP5xQokvtqWQREQARaGwG6XiSt2C+eybLrs5zdclefY7WvCIiACKwtBHhPRYCIQjLXTW6+0tLSdGNxHISA7sfxN75Dhw6hITdyIuqBZMQkaY/7IEoXw0pC4kkavrN9xYE4yC5CrNqoXYzzrhVlLF68ODjl+S4WtjA2Z51hfi9K/J5wb4plDK9y2mmnrRIxgPOPEjbYs/8nQy3pCxTDLmMdDj744LiYMUdM2GGHHYIggMN+9NFHhwR+8+Z9eQHz58+3Tz75JIgNfCGIPkAQGDlypH31q181hIle63Sw4Vv3tI/enxumubNm26MPPWoocA899JBtvfXWYT/2R9Ej6SVfsDhaAV8c6s01sW3EiBGhnpznjjvuCGIFoUVs32uvvTKuIX7gBSdGcnCOyZMnh1Yf2PTq1asoI2Jw/XNXzLdOHdvZnNkzw6nr6t4S65ZrjnBDa1Uy2Uyu/bRu9QRiCNqAAQNsl112CS1/F956sW2585eJQnmWCGVDgOA5/7//+7/VF6w9REAERKAVESBXEWG7vBckjb+N+Rozkvs1xTLnzW65a4rzqEwREAERaCsEsn/HabiNkRFxEAIanGP+h44dOxq+FL+1119/vSFOMKohDcrFHp6+JDXWHd0PPPKhKhH9UOHdLrZz8WFjvwUlzX8bGBakXbt29s1vfnOVyrA+TvyxxMkuJLR+lYJWrkDtwfmgzHx5EWjl33HHHdM3MbssbuRZZ50V1Cb6lZ988snB6c3eD7YwhrU587T5veCecG+KZQyvQhISnF+uLVoMzeG6UbVw3OtjiA84vxyPQsa1M/HQElHBC0tU4HDwiE6gK0ffvn2NKAn2IXJi2oJpNnynHnbPHZ/aRde/YakBJTZl0kwrLSm1Qw45xBBz7rvvvlC/0R7ZANcY6YDQQNcLoil4VhANEEKi8WVj4vr5Es2aU5vhle277757qE/cN86p86hRo4whQ1OpVBBUYJOMYoj7FjqPUR+U3XloZp+mTbbbtNBiMvaLLfdwzu5ak7GjPhREIEY/sHP3/j3shXdftM8rJtq+394/vHg/99xz9u9//9u22WabUB7PWnO9kBd0QdpJBERABOpBgN+z+LcqHhYjF+Pn5pjzty7mpWiO8+ucIiACItCaCfA7TiNsbFzGL2J0DNYNHDgwfWk00h5wwAGhgZhtffr0Cd0yaIgtppWkPvXiJmUVOdQd46186pK1vpk+4ghi99xzT2gBz64G4dI4wXfddVdwovfbbz9LjjaQvX9dnxkLNTroURFK7v/www/bFltsERzrZNLF5D4oR4T5jx8/3iZNmhRyCFx33XXJXdLLMIa1OfMM83sS7s2XqQIyNjfkA2oXCUbiw0cZn376aejSkO9a2AeH+fxrL7AvlkwPxxJ6nhyyEOcXxx4HndZhuKGica54fGSJODRo0KAw3AutyBxLf/plVcus/+AK61JWbhXtym1Qp4FWUlpiO++8cyiH8riniEwIAuuvv34om38QHkiSwlCiOIQIHIgasY633357eKGaUzXHFvl/qdKUzVtQG51BeZw/21ANic6I3TrYjlhSjCRc85bPt86Du9mMBXPtrY/fClEQH732YXYVVvs5tsazIz8kMVHMag/UDnkJIFzFyJlPzMOQD+5hVSP9S7prJ/veud8LzwPiGj/kRJ8cc8wxdsEFF+QtTxtEQAREoLUR4O9J0hiSOPnekNy2ppZpsKCRg7/r/M2X8LumyOs8IiACrY1AbCylcbgu23bbbdObYxQwDbw09OLz4COynigJum/QyFssK0mN98iHJYnoh44e/bCpTwNqT0Efkb333js45WeccYadeuqpwdFnKwrJ1VdfbVtttVVwgK699tp0vbh4ohF69uwZXuhvu+229LaLL744hC7j4LH9sssuC2XijDIl9+UghIWrrroqOJ25+mV369YttIgzhunvfvc7o6vAr371q/T54sKvf/1rO/vss+PH4EDwh5buARgOBc7EDTfckN4ne4FhJHHAv/Od72RvSn+mvj//+c9DuAp5Bs4//3z7xz/+kd6evQBrmJuzT5vfE+5Nanp6TaMW6L6AIRIQRsPLBCIJ9w4nmwgDWn+ffvrpEEHCg8a+v/vz7+2Pr//Vvug/35YsWBKiFog84CFEQODhRqDAiY/CDQIBggNs6baAuEHyKlqPcdw499133x2OHeRiBNajyzJ7ZtRUu/HfY2z5wFIb++nn3kWhUxAbKCvmk6A8zo9x7igy8NzwbPDF4ZkiwgK1DnWP+/vmm2/aws6LbcnMJbbdTtsHESIUsrKcuBz7TfE5RlFQX55nBBW6O5Bz4aSTTlqlO0ssI9eclyXqCLd58+fZxC+m2PJ1Sj2/SjsbN2WcrbNZYcoi5XB+EiHSL4vrhytROdmtVrnqoXW5CfBiixjF9xuODzz5gC3qU232rOdFcSHMepRZh54dw8Eowi+88EJYRvDiedTLcG6uWisCItC6CMSouny1nj17dr5NTbae31dEEH6jeREuVnfIJquwChYBERCBFkAg5m2gKkSKb7nlluE9N1YNnwwfP2k0FPMejK8bG5LZjl+I31EsK0llRz+s5y3ytMZ74zXqx0EHHRQEhNdeey386P/9739Ph6HjoN1666325z//OTjuP/rRj4LTSuXOPPPMkDnzscces3PPPTeIEbGfOw7djTfeGI7BkaKPP0kM6ef///7f/wv7EgKC4fiRofPwww+3Y489Ni1+hI15/jnssMMsJtdI7kK4PeJGbO2PzmbXrrXh8D/+8Y9DXbPV/2QZp5xySmi9T67LXqb1PFkGyzjAMQoge39YB+bOPmncm1T9ekQkD89YjsoWK4kmwNGCLX/QEQx4qBAUiDjgvvPQISrM7zDfOry5yC7YeUP7Yuy08BKA4MP2qVOnBuGC+8mzgOMfjWvlYcViVxaUtBgpgQjCuXn4yc/w1ruf2sLpy22DoZ7cZFB7W750RVDdqNfbb78dnHfCgKIhPiAsUBcEEL5YXM+HH34YvmCIIUSfELFAfyZswYJaoYm6raheYUurajPDxjKT8/XWWy/cL5JzItDQPYXzURcc/vfeey8s18fxRNChnjWuNSytrlUlaz5fZOXPLLY5b88sSNCgDOqE4ECXEq4TsYXEnNzX+tQneb1arn1OEbCYqv2RSU33ezSym6uDnp/k9fY2Y0xtBBDdcjAELtgPGTIk7/jK4ioCIiACrY0A7yy5Ws5Yn6sRqKmvjwYL3t8w/hYjvPP3XiYCIiACIlAYAXw2GkLx2aKREwKfL5cl/Vi24yvm+ruQ69hC1pXYjMzdarw1vqZ/7TqcZpwaog9QTYhUwGlMGq37JCA87rjjbPjw4TbawzYQD4gC+P3vfx+GTTzqqKNCTgS6L0Q7/vjjQ3++Qw89NCQvJGcCrfRETWA4ath///vf0N+a8yJCIIBEASHskOMfnG2c3qTyw25ESCA2oOpg5BQgkRxGNw9C/GJCw7CyAf/gUJOwI+mM49BgdAvIZzCHfYY5ghAB4Q2xjTUS60WjBeHJJ58MIk2y+wFOLKIBjjZO7hMvPGmzqufZ5nv1tE2H9wiH44xzjUxcFw4/TjHPSbbh+BNZQf4JnHY+03LBsJvUgRYN7sXihdNtn10G2jZb9bQFqeXW4fNU+EJQB3JU8GVBTKClmSyuLLMexggU1JuEl8kvFtuo22abbRbq+sI7L1jZ7hXWa/3eVpPySBNv1I6hRNmJVTgf9aVcniXOy0R9eLa5Jrrh8J0oNAkh4ls836QxkzzlylJbNmq6dbpvma23vI/NmT4njLRRl4DAaCMIaPxY0B0pihGwoG4k+WyO1qns+95aP8fM73SdGrd0QnhubLF/+f47y6ORqq1qcVX4XeJ5Rh3mN4pnhN8jRDSZCIiACLRFAjj9xXzxrC8julHKREAEREAECiMQI6Kz/WCOxo+Khj+TbTTS8n6Lv5P0HdkPX6hYVpLR/YKhN/v6VOsvBweHk+MsYqgfsfUvViDpvLEvDmEMl0/ui5JC6HK0pIOOY8ofOCy2Vsf9iKRACCGRI3kUUL3J+VCX0ZWCoRNjC3zcl/qf5KHzRD4gEuBk0l0DyOecc04YkjHZ5z9vxEIsMMccVuQnIMIgGuei3GTZcVucwxz2GUNy0g2DaMf8DfXx8HrN4UBLPoYDRV1pUSB3BkICDjjsiBjoPKfSzjhxY/vgnTlhfyIfCD9nYpn7HUWMZJQF54BfHAkDwYLnIylUoLxRj0037GfPfTjFqhYtt6r+ZVZe3S6cizLo68kzQW4JvjQvrzwv5fBCxDbKxilHgIjCAxE1CFqcn2tjeeYYH3GCR9l7HC1auCjkiwgn8n+Sjj9fSL68dJ9J1veZ0Y+GyAcSYfHcc904/sljY3nZc54BRAtEqHk+AoZ1KrWe07uG87Rv19522XWXILTVJYBRBs4u0T2LOiwJ3Vp43qgHyiYRIs3ROpV9ra31M1E8PKOIl0uXE2bm4sP0Kuvap7v1GdA38OWZiM82zxq/HXyv+e4U8hy0VjaqtwiIwNpNoDnFbfLuJI3os+T7ZHKblkVABERABGrz9w1a2c09H4/om+G38/6L8Y6LxciIpG/H+mKJ0T72BsWtNJJOEkW/UuBANKDrRQzXoDK5ujbEw+M8ihI4RdFotSZUuT6GAoPg8IMf/CB0DWB0CoxuH/kMh4B8C4xSkcuOPPLIsP3RRx+1I444Iji11JPWcqIvCGmPIggiRkNGFmBYy+jgUweWaYmv02AOe+5BNO7NPBchihxpSMs59xahBF6IDTjdOPu0olNfWuvHz5xoKyZX29/+/rH98TcTQsTCiy++GB5SBAGWiZbAKctlvCTQTYDsqjjOtDDHBxxx4p///Kfttttu1q9PbReY/73yha2Yt9zKp5QFcYP7gNDBiwbdLBA7xvtzxMsI0RPUnS8P14MzSJlxGjZsWPiScB18eSbOmmQLF8+3Xr7f+DHj7J3X3rFJEyaF+mXXn8gYnHrOHwWI8R8/ZVO/mBecUEQEEj5SN17KVtdnFja04PCc3XH/nbasssrsOc+pMXGR0V2oammVayKpkIOkrhFceGZxcj+c+KFVTpoX6sePBkIaXMlHQASSrP4EEKn4nXvllVdqswG38x/gSSvMupVZj3Gdbfb4WUH55dlDoCB3CjlUuCfcW34nZSIgAiLQ2gm0tK4N/M3L1YrHb7FE39b+tKn+IiACa4oAPlS2xS7y2euTjejZ24r1uTa0IZbmfmBy5AtajXEQ999//9D9gqSThRhO21577WUXXXRRGJkAp+pPf/qTjRw5spDD0/s88MADoVWYhJKnn356mHC2CD9PdmdgBAwEDrpRkKOBsH5GCMhldBMhb8Dll18eMtizD4IJAkSc6N+P4VzQskluBJJK4tzmM7qnRHHmhBNOsCuvvDI43IRrs0zkxeossK/1xb/cleiYVSNkvtxezyWuIUaooGLF5IUwQHjA0cfIY9GjstQOOnaAverOFw4/+6KMRTUsZk+l5RhnPa6PVaLFHkNIYhlnnX14maAcogdg1q6k0qbNXWQ91mtvVRPdOV9cmz+CyBeiGhBL6LrBKBjUnXojmPBl4mUJcQMxhdB5rgNHnPMxR6AgUmPWUg8l6Vpui2cvts8/+TxEIyAwUQeczmg4oXBAlImRHZ988D+7a9Tr1rtP7yBAsC/JLenSg+O/Oqc/viTRxWfKnClmHuDR+Y12QUihKwx9Wwe5SolohkgX9491inOiVfhOWq8Sq+i6TnCUaX2Pfbg4nuuRNYwAzxC/DR/NdDFhukc/YHNd5JqzPDwLPEcIahg/2giy/DYyPDDfj0KEqHCw/hEBERABESiIAL+rNGYkjYhZ/h7KREAEREAE6kcAvyhpyc/RP8RXzP7d5Rh8o9idPFlGQ5YzBQhy9dXm6wtl4YCR/AenHif/wgsvTCcCyneyGLpxyy23hJZpwsJx4kkuSQ6H+hjJJ7/xjW9kHLLddtuFFneSW0ajGwWOGxEM9E9BiKgr2uLEE08MDkQUVLhOuoskJ8rGKcShQ0BhZIxc6hH74VAjsMTwd3Je4JQw8gNlIrzQhWS1lsWf/VPuj6fqHkVltcXm2gHnifB9Wn55yBBfcPi5FiIhyCtQ1bXGbrv5Y5vf1xuC3TEjygCnHSEhhmPGxJDsn8vYj+N4WcDBQzwgwgBRIkaavP7uNBu0bheb40KCDW8XzgU3nD2+BCSv5PmjHMQIBAe+BDFig3tOVwv2Q4hCnOI5JPICAQhBrEMP9/o9JyZfLo6jiwX7IVggoESjbl/5ylfC9XGeJ158ws/niR9rvBV85uwgwnCO2PWBSAuiQFZnPEucp2Izz5XhUSVde3YNAgndMqg/YgnRN7SsR7bJMhHU4PXWp29Zr/ntwr6IN0Sh8DJGNAjHcd35BIxkeVr+kgC86N5DThOelfFjXSTqngrP4rZT+vr6nuGZI9KGe819Ys73m2eM54lkvY8//viXhWpJBERABNoQgVxRCG3o8nQpIiACItCmCNCQvDrDl6KhtzmsLOOk7qCFPvIrV+Kg0fLPsH9MtPqhRjNaBBZby1fuHhzLuIxjR64GWqpxnHDYov3hD3+Ii2HOSAXR2BfHD8uV64FycACjxX3j50Lm9LOvq689NyRZLoIFSTZZHw1RJYausJ7W9+R28lUQZYEDnUz4EY/POQfRl6eo3QWhKlOsynlofVbSyg9nHKnBgwcHJ53jcabpJoBDy8vGrA7LrGLzDtZzcUVwzBBqWB+3J7vY1HV+hBvYoJoRBYAIATtGmujer51t6s/+y5/Xtmb0+qQkiD50u6C1Pz43CBycF2edqAMEDJ4DolVikk+2EzaE0MH9o4sEAtL8OZNtaftltuHE9W1Rt9oQJLqaUA/2wYGMxr2iqwj1DaLKzGk2rjxlJVt4borx5SECgu4n0diPqBqc2D322COuzpjznUFhhHvFJBdC3GqqagJTroOuKJRJXdiPiJ9ssY5uR0Q7zPKkIEs8V0a3HqXh+onEINoD55gRGahPLgEjo0L6kEGA+8OzwDOxYr1qm1/iit+0Gtss1dEWz6q0GQvnhO8LzxTfAZ4LIm8QqqIhXPCbV9dzEPfVXAREQAREoHEEkq12jStJR4uACIhA2ySAj9cQK9hvbUjhK4/JFCC8y3PS2cWhw0kk1B6njlba73znO7bTTjsVfErCltuC4djVZbm2EzVQL0No4B4kDVHiS+0muaVeywghySgF7gsiBPVmPa25CE44sThjnTtU21QfgmPhzCobsLSrlbUvCw4wggB/+HH+Y7QLggCJP6MRdZA0WouJssABx4HjOJ4rBJDpPrTn0ull1ndIR+vcq9xKJ9dGMyAqcJ4YkYGIQZg7IgYONnXfZpttQpQEy9Ex5DyxKwaqHte9oP1s6/yxJzrdqKulKkpDmXR7oJ50CXn22WfTTjs8KA8+XOsG63sEzMTZtv5yH5azW+1oGFEo4HiGLSWKpC4j2gIHFUFl2uKPbVn58vAZcYRnhNwmlBXnuZJrwSOIMZ4PpP+APlZdUxq6pdAthvVcB2Vw/UTiZAsYddVvbd/G/eFZ5B59sugz69O7k/Vp196mvL/Iers4hbCAkIoRacN9iz/OPKPhvvi2en/fQ4n6RwREQARaFgH+VmO8E2AI5UTZ0ei0JnNEIOjyvkm0H+8l/P2nLg19qQ4Xo39EQAREYC0hkPzdJN9djNjmt5yI8qThZ+EPZkf740dRTlxfrPwQmQIEUfRZkfQXXHBBSAKJ+ICTU9dIDskL0XIDCOTgX+MN5jVFGPVkzpw5wVGOLxY42jhTCA4kyMSJwrHC0WKo0mVlldZ1frkdv9sge31M9/Dg8QASZs5+dIegWwSGGBFfVHDOeVgxzkXuBspDdBjk3RA4lueICAjEhQN3bW/j5yyyJe2qrdSd6j6du9tYjzQg0gGHnC4GOHsDO7lY4dupNy8gbOOaEAuoO+t5NvnyIIhQV0QzbJ3+U2xYux4230ES7cC+dNOhXiQPZD+ec5x8zoWYwfVR7rp9XTRZVGbdrbeXuTy8ANENBcGF8Hu6dDAniiFfBAQvbNSnQ48VXrcuNqR/X7MlfUO3FEQS6sJ1wIT7gdCSNIbfZB3XN7BfV+tVtYFVLquNqECMoT5cN4IhXV34YfnlL3+ZLELLdRDgpZaX6/BseN6TzuuUW9/OHW2jnhU2+Ys+4TvB88B3g2cEwYI5xrOIeMH9494RTZHvOaijCtokAiIgAi2CAAI4f8MR8vlbSvfM+Dedv1Gxj3BTV5a/e/xt5D2C94aYLJx3Cf7GkfNIv7dNfRdUvgiIQGskQC5E/Av8tPgbjh9Pt3m6ZuDf4ENFozENgYF32myjyz6iA37Gx97gusJ/g4thmW3r3pU914gLtOzhpEp8KAby/GUE9tnpBAggKUIQCQ4SUQcYzjB/xHHyCStnouUcB5ZtOMyzZ8+xqvkr7FVv/cc5w3Dco3OPiBCjHigrGg88okNsDeah5jw4+7QwcxxGmQgglUuq7ePP51uJaxbzfMjPCVMqwxeDFx7KZX/qxzIvIXxBWMecFyHKRsjAqB+fOTfl82Xhy7R+h442c9G84JzHL1dUAaM4Qr0xzsGXjeN54elsZdZ+aSoID1wL3TOIjqBOGPWKDmxYkeMfroU6dixZYjXLamzajKp0NAi7w4XoBcriPjFP2p577hmcXBzgJUtX2KIltfeMfbgfSYNJTA6aXK/l/AQQd+DIfayurLaKdmWerHS5TZi8ODwL3D++FzzXPBc8Z7wUx2ebknnW+CwTAREQgdZOABEeQ1xFoOe3L4quUdhv6mvk7x7CL0Z9eGHmbyWGOCITAREQARHITQChgXfXLu1Kg++Hj4cPz/suPgZ+VBwogBLYF/+pv/tC2Y2g0Ydj/br9vAG1SFbio/99aQz3SORdkZMeMopEHFniy5OtuSWcB5T0pOEs4GjWx3A+6Gufz9EgCiBGGMRyUZqSOSvi+lXmMId9cshN7k03H1qyyyp713sFf7gJJecPOg8T10JLLteCM08oP33gMYSI7uVdbWn5Cnvlwxm2ZPnC8AKAg0Y3AkY44RhGAODFAOcaxxnDkcNBRwTgXOwHEx5ukkT+5z//Cc42LfW8UDz9zjTbYcOeNmt6pZV2924uPkRlcLT9OEY84YvC8W9PmR7qyDacbBJmkrCRa6EO7Ie4wHlw5jkvih3zJ5+fYuOWzA/15JzUlyFYEWT22WefILiQ/4KWaxRC6o04wnyWD5G5aOkyK2+XCt00SI7Js8w5eQnivNSHHCH5DJEDmzWjk42Zt9Bmer04DvY8G0RzkAOCbiGsj+JGLI96IQrxvE6fttgRzQ37cD94GeS5gz9zPtMSLyucAC/Z3AdEhBoPPhk31b/HSypt+hTPF1K5NKjEPGe0DPI94RnDeJZ4KYc90RM8OySjlImACIhAayVAd0xGeCKyD0GeOb9zRAfyd4q/V2vC+LvHiGfMeXHmhRpxnVGfzjjjjNAAUp/uwGuizjqHCIiACLQEAvg0vKN2Xqe3DRo0KIy6FyPAGcIYX+3QQw9NV5WGNXy/pe5XxHfcuJH1+DG86/bp2y/8TYjbGjN3STkxtOSylKWm+eQjFhbTfvOb39j111/fqCIZnYBw+YYYCSEZUhPD8T7//PMDSPrD0PIdt7Ed55QkgDgld911F6uC/fa3vw2ONQkHUZKSggbOIX3u+SONkz9y5MjQes6BOI2MiEG5dRnMYW9+D9Lm96aGSO9a3z69uiELOLax9YDjo/OEE0sYDg8f6hZiDc73uAmeFNKrUjHAu0gsqk36ifOPk8vDiJMbIw2y64OyxoTxIPPg4qQjTCBg4HhzDkSIeUtW2McTFtg8d/I/edWjLrosDqIC9aBOiAksw5h7h+PPCxLlEmKEUf8oBuAEUjbXh9PI8vq9e9mCnotc25mfvlaORcSgjykCRxxtBScUkQkuCDIvvTXbengXjPfGjgnn5Ly8gCEWcF8ZppbnqC7jJY5rpm7zF1Ta/IXLwjmJwiDKgm4rGNcKpy233HKV4uhqQTnm3XGm+zEIKzyjvBTybHH93BMilWT1I3DYYYeFe8vzaLM9CaWLYR9WLbBeQzrYUv955PkgjI3vD6IUz1uyD1z8XnHveFmWiYAIiEBbIMDfeqbBnsiMKIjsPsNr4hpj5C1/z2NdOC+/xTEqY03UQ+cQAREQgdZEAB8t/m7y20njJnN8sly/5fiJiAz4XhyXbfhVvO8WKwquxLu2Z1hqgvudmTkEM7Y35MPf/vY3++Mf/9iQQ9PH3H777SEfQHpFgQs4aueee25QzDmEHAYMmUmfGJzMK664IqhAOJ44uAceeKDde++9AXBUgWjxpgwiOXBGGBmEkTHi9h/96Eeh5RrHFYeXP4zkFMBoMcBxT4ocYUPWPzCHfYb5vanBt83sKJOxS0M+UB8cWhzgmMeBBw5HFl44WDx8PZa2sy7Lyqxqg+VBAIAXDnMUA7Jb6nPVhRcEnG/EBx5sWlbgRvmcq2/XgTZoQEU4tMrzGnywtDZSge4dDMMZjWMQSPgC4OiRgBIhAKGDLwRfKLbRWkO9cOYRS7gX/YfsZCvm+TCVuy4L14gjP9JFIoZ0JQICUSMaLzs4opSBQjik73Crdv4p/4f6sp7zUx8mPvNiVpfjSas40RkIFe3pcuWjamDUj2O5DsriWmCV66XqyCOPrBW1plRbzz0rwv4M4UlfWFqEaBlCkEBQUf6HgLde/3Af+bHeaf0drWsHT7zio5S81nGBlbkIyHPHfWHObwTPGc9QFI44EfePZ08mAiIgAm2RAO8ILcl4T5GJgAiIgAjkJoBvQN6epPH+WojF7uqF7NvQfUpqaru+f3n8FHe2PvOPnvT917/+tZ199tnpbTiFqCY4rjiHtALj9JAMiOEVMVoGB7tafuWVVwbnjyRBOPlEQWBcFC3HOIaUdfPNN4f18TiG6CQqAQfxscceC9vOOuusELr/i1/8Ih3i/Morr4Tzcn6GxCS8P5cRxk99CEfB+KNFKzGh9Kg9dCfAonOJY/v000+HSIawwf/B6bjpppvSitEBBxwQ+s7gyOOU33LLLSFqAscRx5qEhL/73e/i4UYL68MPP5z+vMqCsw7MnX3SuDc1tWkbkqsbvRxDKHGoYpglDhUPK4aIwj2eM7fSerTzPBFveubpRbXJ9hBuuE4mwniigIG4kM8QdxAtyJ8AH6IGOBf8KW+rYb1t3HRvca72+PcNysO+KGxES1BXBALqSTncJxxFnHfuZXweWce9o1sFdcEhJJKA844ePdq6prqG6vXr3y/9heSFaty4ccGxjHWnfpSFw8l5OX95u8623969gnLIesQNngmWGXEi2Y8qlpM9J3yUZ66SiKM+qdD9BbEDcQvnl2eeMlnOFcZPBBHX27NDT/tkinfjcJGEa+UZ5DvAjwoRELnEi+y66HMmAcQj+PHMBCGyswsQG7goNd6jckbMDFxhzL3hmWAi8Sf3ABGC6BO+30OGDMksWJ9EQAREQAQaRYBuFtkv0Y0qUAeLgAiIwFpAgPfW1RkNz9lpAmh8xXIdz3tysaykZqAXhlMUbUnKSj70aYIFgeG2224LL95sRkzA4aO1GVGAF/fXX389DEV40kknhRJwygg1p7vEQw89FLbRDSHmW8AxJ/cATn6MTEB8iMchLHAcLeU/+MEPQplEE5CQ6Mwzz7QbbrghrDv++OONVmGEB+p04YUXhvXZ/7zxxhs2YsSI9GqcO5xryr7FhYNvfetbdtppp4U+3LTSX3311RkOKQfiCMfr4zP9EhFdcNpxPnAkH3jggeD4Usb3vve9jBtHt43YXYDjsw3WMDdnnza/J9ybEAGRXlm8BZx0hAac9igekFNhhx12CNdF5EanHp1t+vgltu9+61tZVVnog4mDHlt+meMEDxo0KDjCOOZJo+sE4T50WUFwwEFmH4QHDGcZkeC9z6qsb/fOVtGxzNqRCLVrbR4E6sY5YIpYgDDAsYgKLLOeiQgInrnoHLKOer399tvhuWPf8pQ7lJU1PnpEpW282cahXMQwolrYNxriEsY1xS/l4YefYO0qe1pZaW23B0QJntMnn3wyRDAgxNVlfE94TvhSd57iSbQ8rn/xNstC9wmOoyx+BBDLeF7zRVNwHiJwql/2XAX+I4ADTD0RcbiHRD8g7sjqTwAhh+5T/DZ8deiB3hVjRW0h3T1Sp9yThzpvfvcQirhXPFNEr/CMPPHEE+H7nks4qn9NdITCEeYbAABAAElEQVQIiIAIiEAkwHsC7xFJowGCfDz5/lYm99WyCIiACIhAYQTwU4jyxtfCr8o2fPViWUkNgQHZURAeAZF622yHTbYPL93ReSYPw9FHHx3OjWN4+eWXh8iCr3/966G/PC240Yhk2HnnnYNjH9cx55gHH3wwtCDGBBj8IYnGdhx+xAlUbxw3HANe/mlFjmHOOF+0hrOeHA933nlnLCJjjsOG0xCNVn8cbbphEKXB+NI43YXaU089ZQwPFSMccKhxiGGDGPPss8+Gbh6XXHJJukgcb+qRyxj5AtZG1EnSvMrh3nhQQDGNh4roAlpzcbb4jFBARAo8EQqYyC1QurTEZpVV2c5b97bf/214aB1G9MHIn0A5vAjg+OcK60E9I/KEexj7zEf1jC4gdDngxWLqF7VDfyxc4iMMzK22qhVV4RzUB2cfR49IE843wkUJjPMhSjCxjFNI2R/4EDEIF4gelI84xbn799zASqtqQ0gHbjzItt55G+u2TrcQjYNgkXyRoWsGzx4CE3XABm60tw0ZOMC6dukUvpzUC7GCqA72W51RD64B4a5DZx/WZPcuNnb+ONtimy2s/8D+NnHSxFAeybXyGa3zCGbhe9VvndCNhu8DdSGSQ/kf8pFb/XrY8ZuG8Bla277wH9kSP27BMlvYcYkN2G5gEBr53vC88H3mOeG7zfOGwJp8hlZ/Ru0hAiIgAi2PAO8xLcn4XeXvfNL4W8rvrkwEREAERKAwAtEPS/prNConP1MSAgT+Ntvwo7INP7oYVlIz2B3dzTwCol0iCmKhR0C85tPHKTvlxFNC5ANh5rTQHnzwweG8RCLg2NMSuPfee4d10bnkAw5tLsNBRwDAacMpw5LHcdEYTicWHcDwIfEPgsPdd98d+tXT8pjMF5DYLTjISQcR0QEHAwGD/vMvvviinX766UE8SB6Xa5ks+CQrvPXWW9NRFfE6SVxJpAOREXQ5QZCIRgt9zjB993FSH7mf46zNmafN7wX3hHvTFAZvcgYgPnD/EBAQjxAK4I3zjkBw0B5fsTJ/AP9060cWa4cTjAPMH38EAZwxHlYe1KRRNlO02F0HRxmDGy8R7DNjtjt11WW2zVY9rR2h8DuVhqgGuNHtgGeBOuP0DXVxhDwUOIK8lCBycA0Y5SGmsD/l0mUIgYPnbNb4Wda7Ww9bgXrn/5emSm3Y0NpuOeHgxD/UFRGMyBZEmvh8lrbvZRMmTgnPGg4n277yla+k830kilhlkcgajPpUpFywYGjPke1s+uzpQbwbN3ZcCOO/9tprVzk2ruDZ5YeCL/+G/YcF8QM1kmvGEY7fnbi/5vUjgJjDc0O0VefuFZbq4+FrFWU2c+NFNmPS9PD80eWIZ585zyPRVTzLMWStfmfU3iIgAiLQsgiMHDmyZVXIa5P9ftHiKqgKiYAIiEALJzBo0KBVahgjHuKcHRAd8LF4H6aRPRndTmNvsX6PS2rcd6se7mcckFWv8e4YP5eyb+52jP3jH/8ISRQZupCWcRzAH/7wh3bjjTeG0HtC3Qs1ujt87WtfCw4uIgBOXqEWHUH2p/WZIS5p8SZE79hjj81ZDNti9w92INydyAsiJzAcCISD1V0DyhHOJpEZ5LCIFh2PpCLEcjIaBEcVZz3bUpOc8fPupDvrDPN7wT3h3hTLEAmi8QCRv2Gw58ZgfXSgcKoQIHjoeMBYv+xzz/8wb6nd84+x4XAEgaiW0YUBh5ooB64xRsqwY7xXRK/wMMMJQQBnmZZm6kD0BCLW4spS69Gtg7359izrUlNmC8uXBoGI8hk2BiPBJ6IIIgP3M84JgY/dJngeqDMiCdfGaBlcE2FE1GGxr585eYZXzscVLy/1Lxhjn9bmLQkLK/+hDIQNWCCYwIN64+DTQo7AgYhF2fUJu49RMF27dLX2y8utdFgXmzBirs1eMsc6965I5yNJ1iW5TEsQItEg/xFBIIEP0TcIbDxvCDL1qU+ybC1b4M+zyfNdPtvDH/p7XhNPXmpDKmxWu7mhqwviHM82vytR8EGE47mQiYAIiEBbJMDf6vh71xzXR8LlEJm28uS8nyQblpqjTjqnCIiACLRUArGRPykexBH7khFlvL9mWzwGX6oprYSm7RrPPVg9wr2yikQUBENy+iAEG0/f0LbouXnoOnHMMceEusRK4YixTLLKQo38D4gO/AH561//GhyoQo4FHAn/+ENI7gKEA7pD4PzSIk8rfi7jj2byDxd95G/x3A9EP+BUks+BPAB1ORD0D99///1DtAUh8Di0TChEOCJ0QaFbBs4gQsVVV12V4Qji5Ce7gVDP1CwEHp8z0ENy6E2/B9wL7kk67IADGmnxgaIeOKtwwVnFmaJ+PIQ4ttwXrhcnjLwCQ3YaZu16dbB7Pp9iK7xbCMIB/OMLCS8GOMMk5ct+IWAfLF477Ilq4DyUE8+JeDRrfo1VrFtmPcq91Xmc52nwqIVYZ8QSIja4X9QNMQMBCfZR2BnsggP15ZlEoOALxjNCqzb7MW/3YY317t/bprqYUV1ZbV0rasUvIltyGcID+SF4xmGGIIGIQFIshBeSStYn7B5GCDXdyrt+GVI6pLPNOshs7JSxBY1ecdFFF4Xnne8R10d9EEJgjxhTn/rkuua1dR2/HzxDcEToGrntSCuZWNsVyL8MNn3TRdZ3cN/wO0HUCROiJd95RM3sZ39t5ajrFgERaN0EeC/g/Yh3gWxjfXMY7138zcP4m0eXufo0XjVHnXVOERABEWhJBPCLYm67ZL1i42hcRw5AfCZ+Z+luHw1/MdnYHtc3dO7NfC5AeDBA9Xa+sJlPYQ1r3eZ5NwyPgjh/5P/ZwvEL0i3NvKjTl51QdZy7XApKbQGr/nvNNdeEKAL+eIwaNSo49avu9eUanEAMJ5W+iXRxIOT+hBNOCENm0lJN9wfyQOQynF66fcTEGQyZiWBB1ANOA90v/vKXv4TPuY5n3X//+9/Q+smNINM918/0zjvvhEM4P10saDmnpR3n/rLLLksXR70Z7jFaylMelLyIAOHX5ozTBnu/B9wL7kkxLT5gOPA43NQVJ58knkQp4LwjJiAQkOcDp5aw/u8cebrtMmgn22b94Vb58eIw4gj3mymZc4CIhBj1QL25b0RLEOWCeIDIEZMoIhKMHDkyCEPxy1DRdV3r1M2jAqpStvTlJVZdsSK8aLgUE8oiEgEBgutAmEieizIoE0GALxj3if1IhDp69OiQN4HPX93+IJs7f665tGalJbkFq/jyxbXxBeRcMEGQQQTj/jLM5fe///2CBIN4DxEGqCflduvazQb33cA6VZZZ9YR5tnH/Da3/VgPjrnXOKefkk082RsVANKNLFMJG8l7UWYA25iTA84tQyT0mygGmnmHERQhPRlm5zCNmfOzjvuuHnDF818m7wXeH/YkKi8Pu5ixcK0VABESgFRPA+eedAWuOKDv+7jHSEL/RCCMIIc1Rj1Z8C1V1ERCBtZBAMtqBd9tsIzI9+tlxWwwywG+Kv/v4cEm/K+7bmHnaC6tx/2fFbjVW+oUXNz7hFE9N2d4DRtq0B7zV2CPWY4wESRjpk47hoJF0EsOZJTIgaYgO0ei+QB4FHOHYDSJuyz4u+RkhgT86sWsDXUBwAmmBjDkAYjnJOfkmcE6JnsBpwHFGcCAJJQ5yrhvC8YRiR6PLSLIucX2c00qOyEE3AVjEbgNsp77kqiDxJpaa58LDSz494YydbYb1rwn3gHtRbONBoosErbuIONFwoLg2hBws+bDymYfv+COPY9EeK60dFhWhImmPPvpouE5Y8pASocB5iBiIxmfW49gxZCuRCyzzQoFTv2n/TeyDCZPssGMG2FvXz7buG/SwMZ+MsUkTJ4VoA54rjmd/kv/hBHJfub90CeL6iMTgnjLnmtgP4wuGqMIIE+XV5TZ5/GTbcpMtwzbKi7lIwoqV/8CDLyXlRkNsi9fUmEiDHTbf3u4a+6B1W7ejDd3GE7Wu40N8dqp/qBMvYI8//ni6/ghGsoYRQBDjGUVYjM9w1+kdbOYG8630+UW2fPxSe3HMRDvuuONCNxgEKYSge++9Nz0EccPOrKNEQAREoGUTyBdhuiZrTSMU0YcYjVeN+Ru8Juutc4mACIhASyGAH8R7bDR8HRrgkoZvhY9FtAP+HhHr+Gk0AkdBIrl/Q5e/jHfwaLsa98mq93CJoWeUGVYWO8EjIR7xyVvtcaCj4Wwz1df4Y5YtPhRaRvIPIU5AXeIDZbIPEQoxCWA8D+XkEx/iPvWdI0QkxQeO/+c//xmSdIakj4gPRD44S3OmGebMYc89sFUjHzN2bcgHxBfUq4svvjjkRkiWASNaFegyEfkmla+4b+wSET/HOYIGjhsRDoSl47gTlp58NuiyQJm0Fp966qlBTKLbCudkP877xSdLbAtPRHn3TfvY7DGTbP8D9w5hlyQchS0iFJEsRDoQERFDMHG8R7oDiWpH+dSFbhvREB8Qr4h4GTZ4mHe9+DK8hGuiK0O2IUpEEQJufBERu+I5s/cv5HNdYfp9Oq9bSBEZ+/AChuCC8UJGZIascQR4dmJUzua9N7Nd+uxgPz3uR1Y1plYgojsRP8j8iGOIXTIREAERaCsE+LvCbyCjYSHQY435u1csLvwdpyGHv+US24tFVeWIgAi0RQLxNzu7Kx2NzEkRAd8m/s5HH49u9jQQ02WcYAH8LRrviWgvpn0pQHipISHlLj7f1QWILnlEiKdchJhezCo0fVmHHHJISJjZ9Gda9Qyc+6abbgrMSpxdTvHBWcO8GvZFTDyZrA3RIqO9O8Lhhx+e7jrCdhwowit5AFHBouNOa3+2xS4nyfU41bwYkByRkHSUMyIi4vG8yODM07pM1EP8UuDE8aJDme+9914YWWJh95S9/4471C5gDBzQ3jpUpGzoxkMtjgzx5JNPhkSgJB5F0EBw4IUkhmLyRYk5KhA04rk4D5EoOOucl2uOXzi6niSNfWPd6daAmMK+5JXg+uK5ksfUdxke5ePMFi+pCtEP9T0+uT9dMUi+ecoppyRXa7meBGhZiz++e/uoPuR44fm65MSL7OITLkiXxv3nx5vnhvwxxx9/fHqbFkRABESgLRDg73qMiuR64kssf8/5G9kcxnlpfODvuMT25rgDOqcIiEBrIRCjxTbffPO0v0NjM8ICIi5Gw+UTTzwRfLTY8BajvGm0prcCfiMBAwgVyb8JxeCQIUBQYI1Hca/Y2+c7ugDROUuEmOhREP/1/vOPuI841nf27tGtxZorg3O3im7WcWqHwAx25gwzzBnDOjBvwgj65EtDsiUeZxjnGhEivmRk1K+AD5RNFxwezv322y+MchKTesZzoaDlMrpKENpDdMPSL3wEDs/NUJKq7Rm0dMVyW2/d9cJhlEOUA+IGYgb5GYhgiYkgozCAiMK+UUiJ5+SFBWcd45rpLkOXlCOPPDItVMR9o9BCnhBaxB955JEQ+km5SY5x/0LnURBh/y4lPhTnSpv30VT7xkHfiB/rPefaGlOvep+wDR4QRad4aTxXWDZXPvMCzHMTRbR4jOYiIAIi0BYJEP3XEiz5d7wl1Ed1EAEREIGWSIB3WoQG/B1SBGBEPxA9RmMuFiPJaLDF1yFKnUZXurxHoys7PhGCRGykiwMMxH0aOk/ngEgWUNPftYUDvbLVLjS87CLEooTTPCNlKW/JL/Wu8dV7eqv9Jn5kRfJoLacJLPSIh498+p8ze9vXLkhwZKcgPtSyhnlzGY41UzKRIeGXSeNBPuecc9IPdNyWdKqTAgaCBjkbokWHLjp6nC9abM2454377P4XJ9oWW9ZGXyxbmKlwxf3icdlzWqaJwGBOfZPniPvG+hK1kc+Sx+Fo8qVDvMjuxpPv+HzrEUlizoYpn02xfvvWdhMpn7BiFUc3Xxla33QEGNa0EONZuPnmmxV1Uggs7SMCItDqCNCQQBJn/qYnu2a2ugtRhUVABERgLScQ/S8aU4koxxchqiFG8BI5jiE+4P/EJJSsu/DCC+1f//pXECuycwSyvTG2SgREKMzX1gx2x/hgb53f3QWIHlmREO5Ip152EeIuj4Z4wis90Y/K9BUbU6fWf6yzgAlsYASrVcQHZwrbwNhZZ4w+0sQEohMeT0NkQXaSzdhFIe6zujktwx9++GF6NxQ1un1knyu2pGSv58DBGw21T/uW2HvvzLaqch/qsF1Zuq9SUhRInySxwPkJIYp9mxAg9txzz8QetYt88dhWH6OlmySm2a3h9SmDfTk+CjAnHHG8zfuoti/TcM81IGteAtyb7B9XRoLJZySgbOzzkK9srRcBERCB5iQQ/059/vnnGV0zV/d3uDnrrHOLgAiIgAjUEuD9NHaroMGVKAYizVnPlMxfhg+I2MygBEnDV0q+58ZG5uyklclj6rOcW4CghChCfNUjHfZ1AaJvlgixzFvzP/EuGf9xEeIen7/kTvdsPy5rt/pUptXv69cOA1gEJs4GRgarpDlLmK5wtgg9a1J8oBpJJzxGCmS/WOCMJR11HuTsoQbjsfHSkmE5dHnBaY/n4mEn1wPCRPZx8fjZn82wkiEV9uf/fW7Pzp1mU8dNiZtWETLSGxILyWtgOfnFSeyWsUhdqGPSGDY1aclyk+sbssyIHBg8tyndxMbd92ajul80pA46JjeB5PPOHiQ+lYmACIjA2kaAv510NeM9IL50wiBXw8HaxkbXKwIiIAKtgUDSdyEPXuyGnl13fKCXX345REDEXHnsE4+Pv/vJfBLZZTTkc34BgtLcb65Z3wWI/X36qnvXQ30qzTrNHG/hf762pb/0fvel3/TD5mftsxZ85JpLPDE+DELUgzMxZ5NhsHOGsIQpbGG8po2XC3IpYLmEhbrqE49jHxy2pChBq0kUIRgFA0ueiySR5GbId879d9vPqj9faAtG9rR2+/W1CZMmhDLyCRZhY+KfpHCQK/qBXakP54/GMuuSdt555yU/FvWlK2bypu/VXdf+y/501nWrnD/j5PqwxggwpGs0nuOdd945ftRcBERABNYqArys0hc42TVzrQKgixUBERCBNkIgigm5LgcfiAgJBhNI+kdbbrll2D02JJNPgq7KSV8rV3mFrqtbgFhZSk0vFyDcR1vxde82sIOLENkjZCx3L9qHlUw95tEQ//TpAXfGX3Pf2gc0aNMREUQ8+DVyrVxz6b9qGYQhNmGSNEa6cHYwhCVMm9MYOhOLSUiiwsU6HP7LLrss40GMD288jv3iOpYx8j4wTizDVmIxsoBjeHBJHonlEweSiRiXLay0Puv0CfvnEyzCxsQ/5GiIrdhxnticXvzoI0/MUYchpMTj47yO3eu1iS8645nHfBbZ4ke9CtPORSVAV5vY9ahYIWZFraAKEwEREIE1SCB2aeSU/C2Mf9PXYBV0KhEQAREQgQYQoMEz+jDR18tXzLe//e3w/ksevWg9evSIi+k5efF++MMfpj83ZqEgAYIT1HRxEWK7WhGi+kB3MPv7lH10lTvd3uUg9fBKIeIe3+U5d9KJpF/WmGq2sGP9Wrgmrq3UrxHRhWsO3S1gkDQYOSuYBfHBGcKyuY3WDUSH6AhHhYt6xaiApMAQBYqk8pXcznEIAIyEwagWbIvOdTzXpZdeGrplxIQoHJM09m83emlYVbK4xpb7fwwTs7ovTiyD4wkfItQoXlfclpyPGDEi/TFX2ZQTIz1gUVdZ6YLqscBQqLKWR4Af62eeeSZUjCFXi33fW94Vq0YiIAIikJ9ArveC/HtriwiIgAiIQEshgC/DiBcPPvjgKg3G2XXET2PfZD7AKF4kfSKOo3t9MSznKBh5C/a9a4a4EOGiSI071SWvuiP+nu+d3dWg0p1w7+qeGu/O+Zu+7zCfBnsEwCCfD/Cpux+TLV7kPWkL2VDt1zPXpwk+jfNprIsOn3rdyCOYHe0Qq0yiyS2c1/a185pVxaS4Z7PMk44wDxijXBCpkFxPxXh4SSiJITLEkRyiKBE2+D+UwTYs27GPZbJPXTZoG09EafNs4T0T7MUxH9e1a85tfIlWZzHDN9eaz5KRHvn20fq2RYBnM6n+tq2r09WIgAiIQP0I8JvIaBhYDMetXwnaWwREQAREoLkI0KX8iSeeyOgun68u/N4z4gWW9Pv4HH2i7PVsa6jVT4BYeRYc6RrvHl0z0EWIjVxLeN03fOJTcrhO9sUx90gBogVS7LOBH4MQwdzzu9X4UKM1jLjYjp1boFV5vb3XQGrqymuY5HMXHsznq1xrsvo+vKb5KJbVIzzywbvQcK3WINLJQpt++bvf/W4I1yGCAMGAFmGGbKEvfBQOmP/0pz8NURK33HLLKpUiAgHVLDs6YpUd86y46tTL7ZA/Hm1nHPHtPHs0fjVdLIhsYMp1DZyBa+c6s/NBNP7sKqElEyAPxO23326HHHJIS66m6iYCIiACa4QAiZN79+5t06fT2iITAREQARFoLQTw5WIDcCF13m47D9N3S0ax8xmfiAbm7PVsa6ilPNyitsN+Q0vwiPkSj3RIve3z9905/9wLWujzfMamCj8l4kMQIVyQ6OvrevpnJqIE2uc7uInXV/p1eE6H1Cw/j08pH4UvNdUjHVxAMRchwnXVRYvrIkJkC78mFx6qB/oxHXxqRUYIehQbqPb999+f8+HN3i95iXVtS+6Xb/n7533frv3ltfk2F2U914UQkbzWohSsQlo9gcY+v60egC5ABERABBIEbr75ZmPoYZkIiIAIiEDbJsDvPQ3J2d2QaZClW16x/KbGCxDxPixyAYLuCZ7fr+QDVxnonjDP53U57BzbzndAdOjtu/Zi8s8eFRG6aXTxuU/W1eed2NcnBIzGGPUhssHrawt87lOY073Cox1spgsOM30+wycXIyw7p4OvyjDq080LHeaCw2YuPGyyUnigvjIREAEREAEREAEREAEREAEREAEREIFAoHgCRATqERGpyS5CfOzzT92ZJyKC6AHyQhRi5IagCwN5IhAefLKu/rnClzv6MhEFPtUQJYEgwdCWTBzHhHm+hjCt8DkTgoNHN5jXjSm1xOcLfZrv9WPIUCYXIEK3Co4txNp7nYjiGOLTMO9qsZHPGVazlUU8FHKp2kcEREAEREAEREAEREAEREAEREAEGkug+AJErNFyd/TpxjBu5UTSxgm+keiCZQWKEbGsOEdowPFfKUJkCBBRhGBfRIQoPqwUIKL4EIQQ1jXEyv3cRGkM8Ckm1Rzky951pDXkeGjIJesYERABERABERABERABERABERABESgGgaYTIJK184iDkE+BJI4eHZGa4mIEiRy/8GlxA8WIZPlNudzJRYc+LjKExJnexcKjHMJyXz8pERkyERABERABERABERABERABERABERCB1RJYMwJEshokevQoiDAyxjSfk1iZvAvkXGAigWWh3SCS5RZjmS4cJJIkH4VP5vkoatb1ZRcbQsJMj35otgSZxbg+lSECIiACIiACIiACIiACIiACIiACzURgzQsQyQt1oSEkg6SrBqKEz80TQabm+dwTWIb8DCyTr2GxTwzr6fpAo4yAizIvhCSRnlfCunmR5JnwRJI1vhwSYHqXChJihpE5Ovs85pbwRZkIiIAIiIAIiIAIiIAIiIAIiIAIiED9CTSvAJGrviSMRHBghIqVCSLDZxJH0pVjZSJJW+pKgueZINdDKuZ7iJETCAaeE6KGvBBMZT51cNGB5JXkj6DrhE81CBAx0aWPthE+k9hSJgIiIAIiIAIiIAIiIAIiIAIiIAIiUFQCLU+AqOvyEBzowoEIwagWKwWIIEIgPiQEiJqVIkRagPBRM4L4wOgZCBIyERABERABERABERABERABERABERCBNUagdQkQawyLTiQCIiACIiACIiACIiACIiACIiACIlBMAspuUEyaKksEREAEREAEREAEREAEREAEREAERCAnAQkQObFopQiIgAiIgAiIgAiIgAiIgAiIgAiIQDEJSIAoJk2VJQIiIAIiIAIiIAIiIAIiIAIiIAIikJOABIicWLRSBERABERABERABERABERABERABESgmAQkQBSTpsoSAREQAREQAREQAREQAREQAREQARHISUACRE4sWikCIiACIiACIiACIiACIiACIiACIlBMAhIgiklTZYmACIiACIiACIiACIiACIiACIiACOQkIAEiJxatFAEREAEREAEREAEREAEREAEREAERKCYBCRDFpKmyREAEREAEREAEREAEREAEREAEREAEchKQAJETi1aKgAiIgAiIgAiIgAiIgAiIgAiIgAgUk4AEiGLSVFkiIAIiIAIiIAIiIAIiIAIiIAIiIAI5CUiAyIlFK0VABERABERABERABERABERABERABIpJQAJEMWmqLBEQAREQAREQAREQAREQAREQAREQgZwEJEDkxNL2Vj7zzDNt76J0RSIgAiIgAiIgAiIgAiIgAiIgAq2GgASIVnOrGlfRa6+91r773e82rhAdLQIiIAIiIAIiIAIiIAIiIAIiIAINJCABooHgWtthhx56qE2fPr21VVv1FQEREAEREAEREAEREAEREAERaCMEJEC0kRtZyGUgQtx///2F7Kp9REAEREAEREAEREAEREAEREAERKCoBCRAFBVnyy/siSeeaPmVVA1FQAREQAREQAREQAREQAREQATaHAEJEG3ultZ9Qa+//nrdO2irCIiACIiACIiACIiACIiACIiACDQBAQkQTQC1JRe57777mkbEaMl3SHUTAREQAREQAREQAREQAREQgbZJQAJE27yvuioREAEREAEREAEREAEREAEREAERaFEEGiVAVFZW2oMPPmjLli0rykWRn6CYIzVMmzbNRo0aVZS65SvkxRdfNM6Tyz7++GP76KOPcm1q1nWzZ89u1vPr5CIgAiIgAiIgAiIgAiIgAiIgAmsfgToFiMsvv9wYOSHbTjvtNDv77LNt7Nix9vWvf90mTJiQvUu9P1dXV9vJJ59sTz75ZL2PzXfA448/btS1vvbaa6/ZfffdV9BhP/rRj+yVV17Jue/f//53++tf/5pzW3Ot3Hjjje2ll15qrtPrvCIgAiIgAiIgAiIgAiIgAiIgAmspgToFiCOPPNIeffRRmzlzZhrPkiVL7LbbbjO2bbLJJrZ06VIbOnRoentDF0pKSoKQ8a1vfauhRaxy3AknnGCfffbZKutXt4Kohttvv311u2m7CIiACIiACIiACIiACIiACIiACIhAgQTqFCA23XRTGz58uD388MPp4p566ilbd911bZdddjFC+REfFi1aFLbT3eDwww+3nj172hFHHGHjx48P66+88kq74oorwjKCBa3wo0ePDp9x9vfbb7+wTLRFTJB4wAEH2NVXX21bbbVV2P/aa68N+/AP3TS+8Y1vhPNw7KWXXmrnnHNOentcoEsH+2GPPPJIWD7rrLPCcQgddJHINsSVX/ziF/af//zHBg8eHMSXGTNm2De/+c1wHHW/+eabMw57++23bccddwzbzzjjjCDKZOyw8sMvf/nLcC2bb765XX/99bl2WSPrFixYsEbOo5OIgAiIgAiIgAiIgAiIgAiIgAiIQCRQpwDBTscff7zdfffdcX/797//bSeeeKKVlpbaihUrbPLkyUb3icWLF9thhx1mG264Yci70Lt3bzvqqKPCcTjcDz30UFhmGEi6bsSuFs8++6wNGzYsbJs4caIRYYGNGzfObr31Vvvzn/9sF1xwgdHVYcqUKWEb3Srmz59vdLE46aSTggCRjNIIO/k/lDV16tTwkeUHHnggiApEdcydO9eSokY85pBDDrEzzzzT9txzT3vsscesR48e9rvf/S6ILE8//bSde+65hsjwxRdfxEPC+X/+858H0eK5556ziy66KL0tLnAt1113nd10003261//2i688MIgisTtTT0fM2ZMU59C5YuACIiACIiACIiACIiACIiACIhAXgKrFSC+9rWvBUefKACc+DvuuCMdVZAs9d133w3CAmIBgsIll1xib775ZhAodt11VyOvAiIFkQ/HHnusEZ2AvfDCC7bXXnsli0ovn3/++bbDDjvYcccdFyIxOJYyEBAQD0aMGBHKOv3009PH1LWw/vrr209+8hPbfvvtjUiIKIokj0Fw6NOnj3Xt2tU22mijILSQC4Nkm0SExJwYyegJrhnhgqgQojbuv//+ZJFh+c477wwiCnXebbfdQr4LoizWlD3//PP2z3/+c02dTucRAREQAREQAREQAREQAREQAREQgQwCqxUg+vfvHxxmumHQ/YIIh6233jqjED58+umnYV2vXr1snXXWsQEDBoTPRDvQJWObbbYJggTCAwksiZwgioAIiN133z3sm/1Pv3790qsoDwEkRh6st956GdvSH+pYGDhwYHorZRNFUYhRR7qCdO7cOXSh4Jiampr0oXTLiIb4wjVXVVXFVWEeoydgw/SHP/whb/LKjAOL9IH6plKpIpWmYkRABERABERABERABERABERABESgfgRWK0BQHBEId911V+h+QZeMXEZ0AROOd3KitR/bf//9Q9QDQsUWW2xhBx10UOiO0LdvX0sKDbnKTq5DEMFefvnlMMexjnkjwooi/UO3kmh0+SAShJwXdPXo0qVL3BTmdB2JhrBCjox27drFVWEOB0bFSLKhO8qaMs5/9NFHr6nT6TwiIAIiIAIiIAIiIAIiIAIiIAIikEGgIAGCbgfkbMjX/YISiRAgouCGG24IkQqjRo0ycj/MmjUrnHDkyJEhESXJJRnxYt999w25Ew4++OCMCq3uQ1lZmZ133nkhD8XFF18c8kyQyLKYRhTHW2+9ZdOmTQvFkmQT0aG8vDwMq5mdxPG3v/2tffjhh2F/up4ceOCBq1SHZJkk4iQxJ/knEDWuuuqqVfZrqhXJKI1sAaWpzqlyRUAEREAEREAEREAEREAEREAERCASKEiAwCFHKNhuu+3yDrlJ7oR77703JFrs1q1bEAZI2Ej3C2ynnXYK83322SfM99hjjzBHmCjUYhcCEjiSa4G8FHvvvXdIDFloGXG/WFb8nJwjFnTq1Cl0I6HLxzXXXBPOgeOOsEKEQ9IYkpQIA7qJIFKwf7bF3BN0YeF4oiZOOeWU7N30WQREQAREQAREQAREQAREQAREQATaJIGUdwn4MplBkS5x3rx5IWKASIemMIbdpBsHQ30uXLgwdO8gCeTPfvazop6O7hKxK8Xy5ctDAkySU+YyRgQhR0VFRUWuzel1lElZCBxr0uj+Ee399983hgSViYAIiIAIiIAIiIAIiIAIiIAIiMCaItAkCgEREE0lPgBm2223DV0YNthgg5DQEZHg1FNPLTqzKD5QMF0/8okPbGdY0tWJD+xHmWtafOC8MhEQAREQAREQAREQAREQAREQARFoTgJlzXnyhp6b7iAkeySfAmIHiSxlhREYM2ZMSABa2N7aSwREQAREQAREQAREQAREQAREQASKQ6BVChBceocOHdJDYhYHxdpRyqRJkyzm31g7rlhXKQIiIAIiIAIiIAIiIAIiIAIi0BIINEkXjJZwYaqDCIiACIiACIiACIiACIiACIiACIhAyyEgAaLl3Is1UpM999xzjZxHJxEBERABERABERABERABERABERCBJAEJEEkaa8EyOSBkIiACIiACIiACIiACIiACIiACIrCmCbTaHBBrGlRbON+oUaPslltuaQuXomsQAREQAREQAREQAREQAREQARFoZQQUAdHKblhDq/vggw9qtJCGwtNxIiACIiACIiACIiACIiACIiACjSaQqqqqqml0KSqgxRN45plnNPpFi79LqqAIiIAIiIAIiIAIiIAIiIAItF0CEiDa7r3VlYmACIiACIiACIiACIiACIiACIhAiyGgLhgt5laoIiIgAiIgAiIgAiIgAiIgAiIgAiLQdglIgGi791ZXJgIiIAIiIAIiIAIiIAIiIAIiIAIthoAEiBZzK1QRERABERABERABERABERABERABEWi7BCRAtN17qysTAREQAREQAREQAREQAREQAREQgRZDQAJEi7kVqogIiIAIiIAIiIAIiIAIiIAIiIAItF0CEiDa7r3VlYmACIiACIiACIiACIiACIiACIhAiyEgAaLF3ApVRAREQAREQAREQAREQAREQAREQATaLgEJEG333urKREAEREAEREAEREAEREAEREAERKDFEJAA0WJuhSoiAiIgAiIgAiIgAiIgAiIgAiIgAm2XgASItntvdWUiIAIiIAIiIAIiIAIiIAIiIAIi0GIISIBoMbdCFREBERABERABERABERABERABERCBtktAAkTbvbe6MhEQAREQAREQAREQAREQAREQARFoMQQkQLSYW6GKiIAIiIAIiIAIiIAIiIAIiIAIiEDbJSABou3eW12ZCIiACIiACIiACIiACIiACIiACLQYAhIgWsytUEVEQAREQAREQAREQAREQAREQAREoO0SKL3gggt+0XYvT1eWTWDq1Km2YsUK69ChQ3rT2LFjrXPnzlZaWhrWLVq0yN555x2rqamxrl27pvfLXmD7559/Ho5Lljdx4sSwvm/fvpZKpdKHzZkzx1555ZWwf7du3dLrkwuLFy+2l156KRyXvQ91WrJkiXXv3j19COeaOXOmUTYT11FWVpbenr2Qfa2VlZVGGT169EjvOn36dHv//fetU6dO1rFjx/T67AXqOmHCBOvSpUuaXa7y6rqmWOaMGTPs1Vdftfbt24fy4vpc5RVav1hGc8znzp0b7gdsomU/e8uXLw+c2Rf+JSW59dBczxnH8jxw79Zdd900f87FM/nuu++GMuGZy3gOxo0bF/ZJPi/57kO+9bnKbo51xeRN/SdPnmw8txUVFenLyce1kO81heT6vtT1DOS6pnRlmnEhV72K+WxzabDO9Xzy2/3GG2/YrFmzwnOf/H2NSObNmxf26dOnT8b3Ih/r6urq8D387LPPLPuYWGZzzov5mw03fj+Tf0O4tly/MazP98yzLdqnn35qY8aMsd69e6/ytyfXM89x+X5/YpnNOc9+lmN9G/KOkO/6KTPXbwy/52+++abxtz/f395c94R3Fo6N7wH83eRvD+uS7wd8N5J/65uTM+cu5m8J5WUz5dq5n5ELvxdwzceLMpLG371870K5nvt850uW2ZzLud6nct2DfL+/2XXP5s12nvlc77Cs5x0P9r169couKv05+7co+15xL3lXiu/cdX3H0oU2w0KxWef67c739/D/t3cWcHYV1x+fKPqHIsUpCUFKobhrkAKB4g7FnRIo7u5QoLhTtAQrxRoktLgUaSkUKFKgWNDikkD2P9/ZPS+zN/fed5/lvbf7O599e21m7sxv5s7MOXPOmaJjWhpPAVRZ7T5rDM2Ct559abJdJL812oXN1xhf7Junfaf1eVnt9Ntvv3VPP/10iM98IKa0byV+Xul5+oy/0lQUvuUR4EPYaaed3AILLOCuv/76kF8a2RprrOHmnXde9/LLL4d7f/3rX93666/v/vznP7t9993XHXbYYZllO/nkk92SSy7pbrnllhCGj/43v/mN23///d11113nVl555fAh8/CGG25wG2ywgXvwwQdDmNNPP32CdG+++Wa31lprub/85S9u7733dr/97W9DGD6kVVZZxV111VXu8MMPd7vssoujI4BWW201d9FFF5V+fJRplFZW8rTiiiu6xRdfvBTljDPOcLvvvru7++67Q35vu+220rP4ZMyYMW7rrbcO5edjh9LSyypTnNYf//hHt+2227pHHnnEbbXVVgG7rPSK5i9Of2Ke03mdeOKJbpFFFgnth3entT0G7mHDhrkRI0a4Cy+8MNQ7A1YaJdsZHee6664b2vFNN93kfvGLX7gvv/wyRD3ggAPccccd5x544IHQ/p5//vluSdJuNtlkE3faaae5W2+9NcRlEIKy6iHrfreEm3TRCLzvv/9+t9RSS7lDDjmkVKosXIt81ySS9r1ktYG0MpUy0sSTtHzVu23TPrfYYgvHd06/Sr/HRB964YUX3AorrBDa6cUXX+y23HLLgGsMyR/+8Ae33nrruZEjR4awTz31VHichfXnn38evsNLL73U3XHHHW6dddYJQtU4zWad17vPpq5WX311t/zyy09QpGQfQ4CsNm+RmYzRD/3ud79zd955p1tzzTUDw2vP09p8Xv9j8Zp1TGvLaXVQdI6QVn4rW1ofs88++4S5w0MPPeQ23XRTd99991nw0jGrTmi7O++8c2kecNddd4U4N954Y+ne8ccfH76JUmJNPGlEX5KG6ZFHHumOOeaYEgYI5qEsvGJImKOBKXOhzTff3NG3QHntPut9cbrNOk/Oz9LqIK//TeY7De+s+d5LL70U5ji0aeZHe+65ZzK50nWyL2J+Gc9xmSPbvDTvGysl2ISTemOd1ndnjYdFxrQ8niKr3WeNoWnw1rsv5R3JdvHYY491axfzzTdfGH/efffdbnzRZZddNkEWs9op82XmHPQPF1xwgdtuu+0c30natzJBolXcyF4qriIxRWldBF588cXA3M4+++ylTDIYnX/++aGR2U0kszCF0003nWNFjM7uhBNOsMelI5NjtBn22muv0j2EGEwekPIioT322GPDoIUwgUGQTnPIkCEOQQXSWwa1WWedtRSfcKx+fPHFF+7ggw8uCRlgABdbbLHANBJ46NCh7tlnn3WLLrpoiHvUUUc5Op2ZZ565lFbyJK2sdOx/+tOfglDGwvMe8oE2yBxzzOHuueeeMMm053Y86KCD3EorrRRW0+xeWnpZZbI4HMHqiiuuCCuaSy+9tDvrrLMCE5KWXtH8xelPzHOk1KwE0nldeeWV4dVpbY82gODB2sNPfvKTsFIVtwcip7UzBg8GcNomBFPGYER7+OlPf+p23HHHcJ93UH8I3YxoW3TcrC6j+cCE49FHH3ULLrhgZj1k1Y+l2cxjvfF+88033a677urOPvtsd/vtt4eigVEWrkW+axJJ+16y2gDhk22Ie82memOd1rbR8Npvv/1KQlEmPWg8zDXXXA4GCrx/9rOfhZWOAQMGTLDiPnz48LAaTz9OP0nfzXuysGaljjEBJhqink466aTw/TYb73r22bThX/7yl0Gwg5A3prR6yGvzFhfmduGFF3YwzkzQvDZp6EPseVqbz+t/LF6zjmn9dFodFJ0jpJWfsqX1MUzYwfPtt98OxX/iiSdCvw6DZZRXJzbhZyxg1W7gwIEhGosoRgim4/mK3W/Gsd59SRqmlAtmBIaKvoLv3DSmsvCKsYBJgfH9+c9/7hDoMJ4j9Mxr91nvi9Nt1nlyPpVWB3n9b5zvLLyz5nvMT+lj6S9YQEEDizGWuUVMaX0R85dTTz01BGPuA/4sEkJZ31h42MR/9cQ6q+/OGg/vvffesmNaFk/B/Dqr3WeNock5K7DXuy9NaxcsFvCDEAojPGA+zaIDgvYDDzwwzA+S2n6Ez2qnLETstttubptttiGYW2ihhQLfttxyyzVkTiYBRIC55/9DqgWhgWCEdCtJDDYIHhBMIK0988wzk0GCGQQCArQkrrnmmtJz1NaIb50qEjl732yzzeaQAvOBoBYJYb5gHy+DAYPkhhtu6D755BM3evTosELNahX5YdJtxDt415xzzhmYVhhP1NQ40jmnqd2nlZXOm8EgJoQKfMx0Yki4r7766vhxOIfZhbH9xz/+Ed5nAZLp5ZXJ4nC0wQQVK5hy61SS6RG2SP4I1yyiPlk1iVev0toekyEml6wGIABA68TaguWdyUBaOyOchUVgxaQVAQICBRM+oGp7hRfqIMmNCVU0JqVovqD5g+q0rSZk1UPW/TjdZp3XE2/KABN19NFHBxVoK1MeruW+a9LI+l7y2kCyDVlemnmsJ9ZZbRu1cTSymOzzXbDaaP0BbfXyyy8P6r1MaNEGg/k1YnIKmXov/S/YQ1lYw6zBZDLJo55ZuULw2gpUzz4bPNHWW2KJJboVLase8tq8JfDKK6+EsYnxCIL5tfEiq83n9T+WbrOOaf10Wh0UmSNklZ+ypfUx4IJpDOM+ppu0dcjaJed5dfL++++7Sy65hGAhjWuvvTZopIQb/h9zCphpzAlagerZl1CeNEy5z1wLbRI0BBlvmdPwfZfDi7gIIlkkYg728MMPh/GU+3ntPut9xGs2JedTaXWQ1//G+U/DO2++R99jxLxk4403Ls2T7X5WX2TPOZ577rlBAxjT6LxvLI7TjPN6Yp3Vd2eNh0XGtCyeAgFEVrvPGkPT8K1nX1qkXSBcZcEX4tvmO0dogEY4Wum0V6O8dgp2pjWMRjKCFIRt9CGNmJN1F79ZDnXs1QiweoAGBD4QMAtIEkzyRhttFIQJ8bOxY8eGSYLdY8JgavV0SEjVkKCzco3dPgIHIybUrPYxoWaSwATi17/+dXjMwBmHJV3useqEWQdqoggz0Fow8xJLt5oj5Tb/EwgZknTooYcGbYw4T8kwXOeVKS08EnEEKdtvv33a49K9cvkrBWzxE1ZjWOlmwomgivqMKaudWRg6VyZIMGVmD8kz7AJ32GGHYHI0//zzW/BwZCJG24LJY2WBzhghRkxZ9ZB1P47byufl8EZzCXX/zTbbLLUYabiW+65JKO97KZen1Iy0wc1y5SrXtlm1oA9mpRJtHQhBAcTqEuesAGGrakT/G9vNIwimPzFKyxOmNnyDCOTQEGBim7ZiYmm06jGvT0TrAKxQD09SuXpIa/OWBsIhtIRgyKgT6gqhPJTV5ov0P5Z+Kx/LzRGyyp/Vx9B/o8m4zDLLBO0/6gWyxYwYi7Q6YeIM48DcAfMjzE1jOu+884KQ28b1+Fmrn6d9t3GeszAlDCvuzIlg1tCOglGByuFFGEwuBg8e7BhDp5122mCKwf28dp/1PuK1E6X1v5b/LLyLzPfQ7MH8M80EuVxfZEI0VqihrG/M8tkuxzys8/rurPGwyJiWxVOAWVa751m5b5EwlVK5vrRcu2DBFN7HTAvpSzHpRniAVjqCVxZsjfLaKfEoP3zVsssu6+aee+5uvJelUa+jBBD1QrKHpIMK3SyzzOL22GMPh309jT/pV4HJHIwbUrVRo0aFcHTKSNbjho7kDI0HCIkgkrVf/epXIQ4TgUGDBoVn/DPzCVSHoFVXXTV8QKyAoOlgk3CeMdljYKTjwi4KxytMVNZee+3SygnhKiUmNpSfDgzGCu0PVuhjQurMJJPVScpPXhhMYkbAwueVycLYERVH7LrRKEHAkkZF8pcWrxXv0X4YBJCqovaF1kqsNUGes9oZzxBsIZVFYIWvkZiO9iv4pBf7MLDntFfaE8IEVN2p43POOcceB1XTtHooUj+lRFrwpAjeYMFEE0YAu0FMrFgRN0rDtdx3nfe9FMmTvbudjkXKldW20cgiPn4c6HsQ9OL7BqLPw88ARB+NxhfMrxGCBFZLTOhrmkE8z8oTQlTUO5kUo20Ek86ko12oSJ+ISSECCrT6MGFhpd369ax6sPKntXl7htkYPogQ+oAjYxeTvrw2X67/sbRb+VhujpBX/rw+Bn9TaKwxCabNo8GTJoBIqxOEpmaSx2oz3wFacJAxbsxp2o2yvtu4HFmYolHJqijmWxA+l4xpy8OLsKyiMv/DRBWzFQRtpMV8LKvd572PNNuB8vpfy38W3uXmeyySsWCClq6FtTQ5luuLEKJhHom2UN43FqfZyudFsM7ru7PGwyJjWhZPkdfui3yLleJdri8lvXLtAqEiwigj5gV8s/SdLGIMHTq05OOPMNb20ngt5hW0LYRcaPPhX814OEu/nkcJIOqJZg9ICym5MR2m0svkjUkbHyCEc0gGeQQICBJQ+UV1bZ555gkNnUkYzCUqkSaVw2Yfpp1JAjbNCA2IZ+kitcO8gNULCBMHVD1hxlkVgSFiUoGAAz8TmGTw8aJmxKoSgx/OkpIr3iGxgv+w8aJcqGdBqIPaignCFDpM8ox/Azo/yk9nh2oWxyTllcnKTRw+eFZsmHzBAGZRXv6y4rTqfQYWHIpRb2g+IOSiTVCXZgec1c4oEx0kWgy2GmDlRHpL26G9xJNXqz+YNKTCSNYhNFzQwICy6iHrfojUJv+y8IaBMwe0aCgh+aZds0JG2wcvKAvXct913veSlac2gTQzm1nlKtK2qQsmBqa5wKo6uw9AMGbmVJJvhH4U3xzWl7A6w2TDzOLQDEKzAcrKE301fTKTFr4n7JQR/rYL5fWJ9s0jUMbsinYN8wRxDuX1MVlt3tJlvGLCyrjEeMfYhVZVXpvP639ChtrgX7k5Ql75s/oYGFvqiTETx9j032jkQNa+Oc+qE8yRUNWG0GhDk8fGbhg3HFfDuLUbZX23RfptxlYw5RuHEH6hoQBl4WVYM59jjLQFJQQXaK0yH8tq93nvCy9tg39Z/W8RvPPme2AJM4cJBf2sUZExgbBJIVreN2Zpt/oxC2vybX1sXt+dNR5mjWlxHWbxFHntPutbrAXncn0paeeNUWg/MAbGi3AICxG28j3Cw6HFzjzB2lpeO2XugMCDPpg+FCFk3F5rKWtqXD9wdujXezDwA0+HX/HtVuf+I+/wg3a453cE6PArDx1+FazDDzgdfhIb7vuJQ4eXiHWLR7vxkrcOv2Jcuu8bbIhHXO/opHTfm0l0eJu7kK5n3ju4Jn6crp9Ql8IQ3wssSvH96lwpXf+RlO57TYVwn7T9qmGH7+hLz9LadVxWnnt1wg7f6ZTieOl0SI/yk0+vMheekR8vmCiFs7RJz2t2lO4n08sqU1xuv6rZ4T/O0o93W/rJ9LLyZ+Fb5egn4x3ezrFUDvIVtz2vMdLhNVZCfYOtN7fp8AKeDq8N0eGFMd3iETduZ14AVcLKcKNtEt+u7ehXDEJaVn+eWejwWhOhzmkzvnPt8ANhCJNVD1n3WwVr8lEt3n6wDnWQLIv36t/hnfUFXPJwLfJdx2nH30tWG7DwaWWyZ808puWrXm3bay90WJ9G/+MnFh1e0BrqAbz85D/0S/RZfkU/3I/7EuqTeLRtr0IZ+jewysPaT1ZKfSvfYTOxTXt3PftsPyELZU17T9zH5LV560tIgzGOa37edK6D/iWZdtzm8/qfZLxmXcdt2fIQ10Glc4S4/JYex7iP4Zo+nHZN2/ULFx3UFfetfefVCWMw7Z65C3XhNdZCXC8gCtf2DcXvb4XzavuSIv025fPO9gKmNqfzAoWASxZehjVxqQ+wBFeO5NUwy2r3We+zeM0+JudT5Ceug6z+tyjeWfM9bx40wdyEeUeR+Q559JppHcyBs/DL+saywk+M+9ViTd5ob8n5drLvzhoPiZ82piXrMIunyGr3eWNoFp717kvjMYp30k/Sj8bv98KqDr+IUfpuvUAhPI/bWlY79QLIMG8w/u+KK67olnb8rcTvrPa8DxH9ZF0kBLohgPoi0kBbRcYeCO+wpr7TLXDiwrepsCpkKxD2GAkkEvY4jWS6FoYVWHu3xcd2CdX6pJNJJHvYP9drhQPJIeU3W2jS9x181Q6s0sqULLeVscgxmb8icVo1jJ9UBvs1q1NUwPG8i+p5vSit/lhxY+WSNt6bKIk3zlbZQtB2QagGC2vfed91XrrJPOWFbadnyXJV0rZpn2gG2b7ecbnRzKKvs28m2ZfQP6BRZNorcdxknuyZnyyG1c2091mYVj4m+8S0b74e+U9Ll1UmxqrkeJf3vp7Q/9QyR8jChjYPxqzwGiXbt91PHmkDfBueeQljSvJ5O18nv9tK+m3ammeeus27wCINryTWhKFvSJtbZbX7rPe1E/7J/rcSvG08TJvDJjGoZExIxu0p10ms0/rYvLImx0MLmxzT0uowi6fIa/fJb9HeV8uxEX0pcwC0J80vVLKt5bVTNPsw38gyB6+lrHHcdGPzOITOeyUCyckUTGHMYOSBglMVfknCUUoyjWS6aWEsHVSCnq+0+QAAQABJREFU0qjek2ZUmU34wPv4kG13hbT3l7uXVqZkuculET9P5i9+1m7nmPfEhCmLqY3H92s5T6s/OtbeJnwAwyTeCGFsl4VqMa61fSfzVG0+Wi1eslyVtG3aZ1a/ZiZDVt5kX2KOsux5fEzmyZ7F/Z3da6djsk9M++brUZ60dNOYs3Lv6gn9Ty1zhCx8UA/mF1OyfcfP4nPaQHJ+ET9v5/Pkd1tJv01bS8MlDa8k1oTJat9Z97Pe1074J/vfSvBOGw+zyl7JmJCVRrvfT2Kd1sfmlTE5HlrY5JiWVodZPEVeu09+i/a+Wo6N6EtjIS55S7a1vHaK8GxikDQgJgbKLfAOBAJoJogaj8DSSy8dHJ5hVy1qLALYyIM3NoOixiOAw1Cvvhfad+PfpjfgkwP/MDjYFTUeAY2TjcfY3oDmFf0JTlBFjUcAu3DmJMkdQhr/5t75BpyyP/7446nCn96JSONKzZyE9g3eosYjUK9xUk4oG19XeoMQEAJCQAgIASEgBISAEBACQkAICIFej4AEEL2+CQgAISAEhIAQEAJCQAgIASEgBISAEBACjUdAAojGY6w3CAEhIASEgBAQAkJACAgBISAEhIAQ6PUIyAdEL2kCaU4he0nRVUwhIASEgBAQAkJACAgBISAEhIAQqBGBevgU1C4YNVZCu0SvR2Npl7Iqn0JACAgBISAEhIAQEAJCQAgIASHQegjIBKP16kQ5EgJCQAgIASEgBISAEBACQkAICAEh0OMQkACix1WpCiQEhIAQEAJCQAgIASEgBISAEBACQqD1EJAAovXqRDkSAkJACAgBISAEhIAQEAJCQAgIASHQ4xCQAKLHVakKJASEgBAQAkJACAgBISAEhIAQEAJCoPUQkACi9epEORICQkAICAEhIASEgBAQAkJACAgBIdDjEJAAosdVqQokBISAEBACQkAICAEhIASEgBAQAkKg9RCQAKL16kQ5EgJCQAgIASEgBISAEBACQkAICAEh0OMQkACix1WpCiQEhIAQEAJCQAgIASEgBISAEBACQqD1EJAAovXqRDkSAkJACAgBISAEhIAQEAJCQAgIASHQ4xCQAKLHVakKJASEgBAQAkJACAgBISAEhIAQEAJCoPUQkACi9epEORICQkAICAEhIASEgBAQAkJACAgBIdDjEJAAosdVqQokBISAEBACQkAICAEhIASEgBAQAkKg9RCQAKL16kQ5EgJCQAgIASEgBISAEBACQkAICAEh0OMQ6N/jSqQClUfgkw9d3/vvdH2ef8q5999x7ofvy8dRiNZHoJ//nGec1XUssLgbN3Rt56b9ccV57hjzsRv78X3u+8+fdeO+G+1ch9pGxSAqghBoBQT69HN9J5nZ9Z9qITdgulVdn4HTVZyrtz5/x13w1BVu5Kuj3Msfv+bGjlN/UDGIitBQBAb07e/mmW6IGzbXam73xbdzs081a8Xv+/TTT90TTzzh/v3vf7uPPvrI/fDDDxWnoQjtg0C/fv3c9NNP7+add1631FJLuR/96Eftk3nlVAj0EAT6jBkzpqOHlEXFKIBAn4fvcX2vu8B1LLacZ1BndB39+7k+Pl6HbwV9/Ek9jx3rbFkgRwpSNwS8IKnP22+4Pk8/5Prcd5sbt8XurmP51QsnP/bjB9x371zl+k+9hOs7cHrfIPoVjltpwIEzbVBpFIUXAkKgEgS88HDct2+77z99wo358G43yazbekHESoVTuPwf17rhIw9xG8+3jptj6tldfy/gZKxoBB2x4v6NSFZp9gIExvww1j3/wYvuxhdudWf/7RJ3zrCT3A4Lb1W45E899ZS77bbb3AILLBAYUZjTRtGqq67aqKSVbgUIIGAaPXq0e+6559yjjz7q1l13Xbf44otXkEJ60HHjxrl3R7/vPvnfp+6bb7718+nGs1d9/MR9sskmddNO8yM3y0wzur59pdieXju622oISAOi1WqkgfkJwoe7bnAdq2/oXBhk+/gJJR2kP/ap/7HxXW8DwWrHpD2D0DHHXOHXZ7EVXN9LT3XjfDmKCCEQPoz94HY3cIa1ugseOpvFeDTqfT0+ZZ0JASFQTwT69Hd9JxvkBvpf/x8t5b5947yQehEhBMKHkx852+23zB5uQL8BvhPxUYOkuuto+Uzet+tKn1t4HYVAhQgM9O1z0ZkXDL9Nfrae2/KWXUMKRYQQCB/uv/9+t8IKK/gpUeMEDxUWScEbjAB1Peuss4bfz3/+czdixIjwxlqEEG+/+5575bU33NixYxuc+wmT/+zzL9zo9z8M7597yCA32ywzTxhId4RAiyEgUVmLVUjDsoPZBZoPi6/oOvr2C5oO/ENAi5Q2CGrrfd2wwijhcgggiBi304Ghzp2v+zzC7CJoPkyztOczfJfQ2SjC0beMzmPXPbu2MHYdJP20n67wZZ/nZUjPhIAQqCsCCCImHfRr/51f6fje8wizCzQfNp9/A4d6e9fg0P1ofYR978ljxc/zcqRnQqAYAggi/rDBRaH90o7zCLMLNB8WXHDBsGrcOQ/yIxjjWIN+efnRs+YggCBi8803D22BNlENvfLa6+6Fl15pivAhzi/CD/JBfkRCoNURkAZEq9dQnfKHz4dgdtEfNdrxS1mmAeFnl/5N4zUi6nFNij2Vvv76a/fll186b8IUJiuNLidqdgMHDnRTTjmlm3zyyQu9LmhDrLpu8PcxbsPtMuPg8wGzC+dXTPvAOES2OHadPAamxIdL3rfrss8zc6MHQqD9EGiH/iBoQ/x4jeDjZeDMm2aCjM8HzC46NR+69wf2Xdf9mJkbPWglBNqhnSOE2GvJnYPvkhNXOSwTPnw+YHbR38+JEDgwxjb6mJmZHvqgHdoL0COEWHbZZYMfkDXWWKOi2kDz4fU33yrFeW/0B+699z/wZhj/875E0EFtLPXr19ebX0zjZp5xBjfzTDOEl5EfzDKkCdFY7JV6bQhIAFEbfm0TG4eTHQsu1TVvRMIPn9nYY9uAU2FGkZJ/9913bqqppnKTTjppmLhUmETFwZkYffvtt+7zzz8PQo+iTpM6MMW48nfO5QggcDjZf6pFulY4fdZoHFCjj51v0X8h0NYItFN/EEwx/nuJyxNA4HBynbn9JLzR338y/bZuBT0/8+3UzjHF2PH2vV2eAAKHkz/96U99M+8c7ybWsee3lM4StlN7IceYYtx8882uEgEEPh8wuzB6+dXX3Td+nrb2Gqu6eeYa4gYMaDyLNXbs9+7lV19zd426333x5Vf+vYNDdsiXfEJYzejYigjIBKMVa6UReWK3C7QfghcxfD7wkkYfG1GQ5qaJRB/hwwwzzOAlzJNNFOFDqClfYbyP9/J+8lGEOmYb1LnTSU7gsNuFN8vpbBS+YdA47Ie2jJ1zrNd1Tn70SAi0CwLt1h/0nXQ2v7vNe7nwsttFf/w+xN+7ffcNO+ZmSQ+bjEC7tfMFZpgv7NqSBxu7XeALAM2H0s+379J5aP98BtG9Gp/n5acnPWu39gL2M800U9gBpZJ6wOGk+XxA8wHhw1677ejmn2/eiSJ8IK8IOXgf7+X95AMiX+RPJARaFYHGi+dateS9LV9stekl/cj6MbsIxy4NCP8goLHXJVe6qx941H3pvffm0ZRetetXKy3rzt1lm65Fss74pXS70s9Lo12fYXaB5gOTkmYQ7+X9X3zxRTFTDLbmLLfNKltthirsahed1RmKxyn+Sfc5/DJ33c0Pui+/KtM2ppjUbbHRiu7M43fsFt+wsvTsWkch0M4ItF1/4M2sXEf+FoNstRlM86wfSDmOPPs29897/+7GfPNdbvUNnGwSt+AvFnHD9lrXhpnsY25KethMBNqtneOYstyWsbbVpmk+lPC19u5vnHfeee6+++7zOxp8U3qcdsLiADtc/PrXvx7fvrsCTpB+WgI97F67tRfgRxhlbaJodbDbhRFmF2g+TAytB3tnfOS9a6421N15930lUwzyJzOMGCWdtxICEkC0Um00Oi9I8jtFD+OPXbtfDL/4Svf1mLHu1QtOc9N7BrdzFIXJDixjt+NHn3/pDrrqejf84qvdObts7Z+NDxenH43jPkzPIHw+YHZRL0JK/dJLL7khQ4YUEyj4F/P+jz/OdyRXef58HfKHOirCla5q53qfwy/3kvUx7vlHz3XTT/N/3Z4HCVQU/qOPP3OHn3htiHPmCTumphfSrzyDhWOAze9//3u34447umm8bWRPIdQ9KRcqorPNNltNxWJC/ec//9m9+eabbrfddivc9mp6aQWRmbSfe+65YVL/s5/9rIKY44M+9thj7n/eDnettfzOLmXo5Zdfdo8//rjbZpttyoTs/rje/QH5ffvtt4M6cPc3ZV81pj/w7wvftfUH448jz7nNjf1urBt+7QFu8qm8P5qMcNz/+tMv3ahL7nIILIbtvZ7vV8an0y1edvEyn9BG3njjjfB80KBBPjnfb4kagkC92zmZZNybdtppg1ZfkUw3qp3TbmhLySPCB7QNr7jiitKiQ1o44mFucPnllweBxZ577pmaXq3tE42Nzz77LMwViuBVbZ9WJO1yYXpye4nLzlabRvh8wOyiVornhAMGDKhofsj7rx5xUykLcf5KN3UiBFoEAZlgtEhFTJxsdPp8gLtkHhgf0Xw4ZZtN3XT/5xnMlOdx+OmnmtKdvPWmXlvikQnSicPVs0wM8DhhvOuuu6pKFmaL+MnfUkstVVF6NgGpKFJO4HfeeccttthiYT/qnGDdHtlEqdvNmi98g+isvK7j+Ovrbn7AHX/oVp3CB94Two1/Hl9PP+1UISxxstIr3S+YZ6v7DTbYIDUG6p5WrwTAudihhx7qnnnmmdTw7XrzxRdfdLvvvntJ5TMuB+34sMOyHa7FYTnfY4893C677OKefPLJ4FMk+bzZ15988onbb7/93E03jZ9MVZqnP/7xj0GIUSTe3/72N7fPPvsUCdotTL37g5EjR4b+oNtLylw0pj/wL+3WH4y//uc9f3er7bJmp/CBvGWE4/7kU0/hVtt5zaAtkReOZCqhq666yk0//fRu3nnnDT/Or7vuukqSUNgKEKh3O+fVw4YNc9RjUWpUO6dsUPKI5gNCbDQO057H4aeeemq3ww47BG2J+H5avJBYBf+uvPJKR/8+yyyzuPnmmy8In/fff//gEypOBiz/85//lG5V26eVEqjhBAxqFbgkX98q7SXOl9U193A4WQ/tB+aESyy+mHv+uedcfB6/N+uc98eOL+P8ZcXJuk9buvDCC92aa67pTjjhhHAet6+seLovBIoiIA2Iokj1iHDYMjLYTnjE7CLWfMgK9+C/XgzxV1pg3mCq0bnoNGF6wcFlC2LGKieTBaNJJpnETnv30VYPO5vHeCz8NWYX00/XhVnK86AA42M89Ni//CzOuRWWnb/TVIM0c8KPf0mxszvvvDOseA7yq50xGZM699xzh9useL///vs9SvuBgj366KNhtXDw4MFx8as6v/baa90555zjdt1116riNzrSdNNNF+xx2fVF1AQEkv2Bfcf+iNnF5D/qqpfofugH7Npn+c1nPTPkr+dYeM5OU4069QcPPPCA22mnndxFF13k1l9//QDO9ddf77bddtvAnK2wwgpNAEyvbEcE8phktMSKOHv+5z//GYrOdp7EyUuzUoxOO+20IFg++eSTHX32//kFoqeeeipoar3wwgtBQMuuWGjH8U1cffXVbs4556z0NQovBLohgNDhL3/5S+lefH7UUUdVtNhRSkQnQiCBgDQgEoD06EsvlUbYj1SUI//sOpQ7uk4+5/rYEbe4VY882R17/S2d8TuT8OcTphfiVwAm0nsYR1axWNVCxXz48OHB10HRZEhjlVVWcTAvG220kXvooYcmiIqpQ/yrVZXdXoD6JZoMvPsXv/hFWIW3Z6zcUy4mCDCPQ4cOdUyik4TKJxh8/733ydBFN9xwQygTPh8aSUFSTj3CMVB5Xb9w7V+c+9yHPeGMG9ywTY9xJ/7uxs64ZDZKb4L4VRYGddgkgRtkgqVXX33VLb300kGVnftoUIA9dW3tChvVcs94jhr/JptsEup13XXXdffee2+Ixz/a5xFHHBGOpEvdXnbZZaXnee8lUF7apUSiE9pzEQ/d9i3BoPEt0SZ/85vfhHaFWi73oOOOOy6cs7uKxWHCS1mOP/74EObuu+8O25ORBu2bcEaU//DDDw+aFDxnGzPUqn/729+WsOYdMV1zzTWlbxRzh9deey1+3O2c7+j2228P98phTaDf/e53pW9w3333DerTcYLvvfdeELhQPvJq7SYOU49z8DzooINCe+Bdv/rVr9y7774bkv7vf/8byg+uv/zlLwNOMNH23N6PKQZ9GYy1Ef0CcViVajhZH2D9QXzk5XnP/bMHrhzlrtr3EvfAVfd16w/8xfi4pGHXFRQIrR1o6623DkJGzKwwIxo1alTYTg/NJ9o4uxwYgef8888fNOhg3Hh+4403lto2dUD7MOIcDSHqb6GFFgoTbtTKobz4qOwT/g9/+IMlFY6MAfZN8Zxvk2+Z72azzTYL76aP4prnt912Wyk+Ktn0M9wnP4TDTMeI9kXbj4lv9Y477gi3yvVDcbxKz3vCuNc5f2EO0/0HFsl7yWsY/gMPPNDRr/GsXJwQoOA/hBlotR199NGO/myuueZyM844o1t77bVDW6e9//Wvfw1CeTQjIDTbaOcx0Ra5R9uhH6U9GeWNQYTl/dttt11olzETavErPfI+m6PZeGK48X2cdNJJYbWd/NLeL7jggglewThIGnyHRow73CP9diDyO3z4nm7InIPdiiuu4I703zd9RysQ2qRW1yuttJLjR//DETrmmGOCxmkr5FV5aG8EJIBo7/qrLPd+BYpFKCT0HPln1yGh6Dr5/Lgb/uSO9T/oyM026Izvzy1+Mny4DqGL/WOSxIDKYMuAfsghh4RJXNEVWiaTTMwY1GyCjlOoeJAqlpPKQ2GXzwQYFUEGTLQqWIUz5urBBx8Mq3PYbzJBeM6r1m244YalCYu9cZ555gkYsNJtZAwtKx+NJJpDaA9dx/AuX4nhPo+67tsxfn7imTe5k/wPOvQ3m3Q2Ci4sfsqRx5XSVlttFVbtYfCMWA36+9//7nhmxPPXX3+9ZFpAe2LScumll7ozzjgjtCtWlKC8Z6gbwvBBtCmYAyZ/1B8EE3DKKaeEVa/TTz89TPIwkTDhRi1phxdE/5ikoQGy4oorRnfTT+1bQuiFAABG7fzzz3cPP/xw8PQNBhCYcY6dqcUZMWKEY4WDcr/11ltunXXWCcwa2C2++OLhGzPTFsp/6qmnBv8RF198cbBPXm655QJjd9ZZZwXBDe9/5JFHwvtgqlBTXmaZZUJ+EBQh1MkSrvHcnpXDGsEIeDMJ5Rtkgmf9AC+nTSCUpL2QZ+oRk4s0gVbIbA3/6AvOPPPMIIQ48cQTg5kLwhQYWJgK6gFc2fZtiy22CL44UKmOCaYaRgHcjTAtuueee8LWgXavoUfrxJNHe2nyftc1QocHETx4WmmbVbr1B+FmRrzwrMA/hEcQ2CGMMMdxfBus/rISjb18zMQjOHzllVdC27P+gfpnfLHv1PpaTLoQSNBuqT/GFdoSDBmUF5++H+YpFkDQdvl2afcQplSkRdun/7jlllvcAgssENoHeZh11lndxhtvXFKxh/kkHN8O/RZlXm+99Ur9DOknfQLRR7FlM2TlS+v/QoAq//WEcY+im8ZC8miwJO/bNRoJ/CD6Urtf7mjpljvSTiD6iiQtssgiQRvuH//4h/vxj38chL6EoY3QvxnRf9IXH3nkkWEcQPCFbx2oyPiGQPqrr74KaZiQw9Ku9MhcDCaWcZTxgjkS35aZTiEcZ+xh0QU/Gghc9957b/evf3nNyojoN+lD+W6M/vSnP4V7fEetTpRrk403cg/7Ocmhhx4WxqVTTz3FXeuFWM0mTC2MEDrQb/Kzc45GaEmIhEAtCPSvJbLithsCSPgZcCc8dpakwx0z4k8OYcOoYw92Qxdgj2y/UnrDLV7roVP4wH3ML7qE/Znp2fNKEWJFYckllwzRcFCFWi2T+XKmEoSB0WLAhJjcLbroomFlgkmkERO3OK299torMCP2vJojnTLMja1wMWFgtQFGiNVgaPXVVw+MGefsPU74eMWN+2hGIGhg5YrJNJNoVjhgHicKWaUlj10vP9FrOSBsGHn9UW6FZbxjQB/uxDNvDPcIEt8PUZLpJK+70i16YKWPCd+tt94aVg2Jd8kllwRscVQYr3jGacK4MdmxARN7WpgIKO8ZbZGtuWAmYNIRGjGJ4pqVGohJGXlg0kmdzTHHHGH1gPZXa9rhBV3/YJ6YTBoTEz/LOmf1nBWzTTfdNEwiYIJoYzDfEN+ZnVsa+FhhQguxagwTxmS3f//+QSiBuQu2xXxbEEIJW32FEaSOYOrBBbzQMnj++ecdggm+TVaVbZKDsABmCwFdMh8h8cS/PKx5D0yAff9oEvGdGVEOhA8IBWefffZwGwYNMxRW+OpFpE/7OPvss4NQknRpmzDN+HewPNFXwBgaxcyy3dtyyy3DBPzDDz8MdUK/wDa8yy+/vAVp7DH5vdp111vRckDQsM3pO7k5Fpoz9Aex8CG+H6JY/KxjwdKAJUwUQmr6AvpMNAzYgcDaKrb7tNUDDjggpAqzAlNvWlLcpM0wHkD0xQix0eihrSDU5Ftn1RmCaaKdmOCSe1nxqTfaPn5MGMP47qg3W0EkLnUfdkzw5zCRMGEw9HjiHzRoUBBEI4CjP4FpRHhgDlKpf4TVfDe083KU1w+Vi5v3vJZxD38GRs0e92wFPnm0/DEOMO4gBEK4RTg0Hkz4EN8nTjKd5LWlW+5IvwmZaWEyPH0vbWeKKaYo9Z/cS/al5J/2gqYNGgIscCB8KzK+wewzjvTt2zf5+oqvEXbzrdLWGU+YA+EEGfz4ZiCe0675TtE8pJ3wHcZaHZjF8L3j48f8HvHtMs4Rv9WJcZxx4Mijji45G0YYQR+1g++3mkUIpNBuMDJhA9q61AnX/DjnHloSxJHJjyGmY6UI1N6rVPpGhW8iAl2aD349u3MRavyxM1N27dxq3tTigef/HYQRJny479hDglDCizC64tvill0nj5UXdYkllihFYmIC2UpAuEj5x0ohzAUaD0YIGWBwTF3X7sN8MoG1HxPDWohJ5gcffNBtcsmWXDCKrMIaxSvXxgAlV61gchGiMJgyaWG1E0pbAbF063akQYRG0XWMr3mJPfOnwzY7xj30+AtB8IBAAhp5gxdKeN8PtI3ujSMlvZBWiFbRP5yBITCyFRzb7YIV5zxicsMKOXUO88sKp5kh5D2DkYbxZzWGlVK0V2BMcGhqRHuyFa+ZZ545MBqsSEK1pm3v4MjEkbaaNRmNw3JOWIQPRrTHN954wy5TjwgDTPhAAFbhmdAh3GPFdvvttw9CEPAzWnjhhe205HMDpgkCl8GDBwfVUlZ9YIRY+QJLfjB70LPPPhuO5f5lYc33T72gZWCE7wi+fyMm6hCMv72fcrFSXE/VV/vmEbgYoUoMscJnFPspGDRoUOr+8+bfAHMN+gO0U1j1Z/LeeLLvOOUYXu7vd9FV+13q/T287roLH3b2vh+G+BAWn1Pi2HXy2JVYwQOCLL4zJu30mXzftA/aGATzQpvA5IX2evPNN5eYHHsFzKQRjJuNM7RHvgUTPhDGxiJjCrmXFX+11VYL3w31BsEo0RfE9QZjZ4SQgmuED5B9g2jMwHxB8fhBe+G7sjYdAuT8y+uHcqLlPuox454vJf1U6efbp50bAFxDmFU998/nguAhFj7wfcdx7NziJa8t3XJHhF4Q2mlpxLzD2krac7uH8MEIobPNO4qOb/UQPvB+vkcWYuLvgDGZ747xAeIbNiEhjmUhy2+46PqHMIW+GwYYbUfOEUC0AzGuXnzJpe4xLwja1wuC1vZCRDM1bGb+bb5pecAUgzGVX9KU0sIk49h9HYVAEQQkgCiCUk8J4yex/i+sVIWjt7/laBJ6Lo7YdH13pP9Bqx55UnfNh/m7NB98uM74IakQP1zbfTuGVIr/g9mxQZtYMOSQrVaHi5R/NnjFmg0E4zoZl90RUPOzXyzwSEm67C3MKiCYz5hiO0vuF3Wmx8QZz8dMLpk0M2DHjGT8jrqeU4HUm9lkx9e8yF8fus/G7hD/g4K/B6/9AAXNh6U7NSJK8XmQlR5pV0msbMJkgA+TQBht02zISpKJI9J6JjesJDJhNK2SvGeW3k9+8hNnP1ZBEUgYMUjHZG2We7WmHafLqgMMdfx9xM+T56yKxWTMTXwveZ4sCyvBMFmsJPNtxsIGi1t0cmrfAwIUw5IjeBb9BpP5M6zt+7dry1scHtMHKH43TCwraKbCb/FqORqzgOaMEQ7ioLjuEFIaxfftHkf6lJVXXjkw2TDF9Aus4k8c6uwP/EccvuNux5CBDm9esapb0f+gq/a7pGR20an5MDgRzwcK331KelX2B2DIai8aOKykQqbOjUABJh3tA7TIaL8IBmKK20fcjhFIxc+IY0yT+YHgXhwmjs92kQiKUAuHeeL99OsxZdV5HIZzE44lxzbeYd8U4UpjOBcJKtIPJaKUvewx454vKdiVfmFO1HltIKBZxQ868KBOfw+cx5oPFp/7ds4x7TrcLPDPVv1NqBlHoc9j0cWEm/Gz+Jx2H1Oyj+RZ3Ccmx7e4XcfpVHOOY2gEezFZ3233kuOW3U8ezRcS37ctCMQC6GT4VrpG826euefyY8+h7quvv3JrrLmGF3Cu3PQspgl60HRAc8t8X3HNz4g+TiQEqkVgYiylVJs3xas3Akj6mVAi5bdj164Y4VVdz4/c3G932Mc7newyu0DzAbOLbvFCfH/HhwuBLb3o2Dn8hpQL/UM1DbVTW3l6+umnQzwbiLMSYSLKChI7XKDWBzH4o2oI09lIsgGVd5s6L4Mqk05WzCslnCfCVKPGjVScVYqJQ74i+WPSRKV2NpPO65CBzueH7bNJaD2YXkBB+IDmQxy+s1GEdFLTs+chhcr+oYbPgIhaMkIFNCKMOchKCfVqmFxUl1HRR5UZ9WnqJ+8ZzB71amqepM8gXZRhrWfarKYiNJuYxOSC9g0GMEwI8xDgVUN8o9QdqrMxnjhfLCqcy3ovaSPYwDTEGD2+QbRGTBvDJuoIj2yFDdtmVnLxIl8vMu0m8mKq0GbDXI2qKowsghLiUhdmnlav/OamE/oB6w+io0XyzxFCQObzIQgf0Hwo9SNd8QiUlR73KyD8ZVB3sYM6hDW0LyPaK9852gdgB44w7UUIQRuqyGb6Qhzze8JYlHQYmpYmq7EIPBAaDh48OJgqpYUrd8/GPphN04SjzbJqbBoYfD/WxkiPlfGY8vqhOFwl5z1n3KNZ+tmQb6/Jo+HBfUzLOGJ6ASF8oE9JxuNZMp34mudFib4LAQJae4xd8ThnfnzweRWTCazie1nntY5vWelm3ef7ZF4UE/0kfXdctvh51jmCCoRC5gcC7TzGgXagm7yGK3Pdp5/5e8m05M93jteqbFYZ0py2k5dY+JAU8sSafM3Kt97bvghIA6J9666KnCPZJ9qEx87Ext8PmhCbrR98QYz3+TD+eWc6nfPMtPTseaWZZNLIai+dHqr1qOjhT8GIiRjP4h/MBvFwtoQTL1bHWfUhbKNXDFkFY7KJPSUqhkyMze8DqsGVEivV+L2gLFARG99K35Ee3jcMq7RwjK5DhPHXaELw6+7zYfzz7un4yMn07D3pGSl7F8EB9YzqJfWeR7QNhA8wpviIwEYfUwTs8vOekSZ23Ghb0JZQ8UQghDprzPhkvbueaVNOmAq+hYlJrOKz6o7vAsoPI1wLsbqGPxaEajBQ+EkYNGjQBGZS1byDb82+f5hFBFOYzxhhEoFgj0krdYpwgskU6un1JAQEMGc4JYXxw48LDASMRDlNnbR8GNNJ2cAPZmaikX2nyaNloOu+aUJU7PMhK11LP+MIxnz/xx57bGC8aUsItTjGE2S+eVbr8K1ggqmMJLvdxlyJOoTppJ0g/MO5LNposWZLt0iJC2tvmC7RNqutN3N8y/vxz0J+6PNoyzb5hxFmJRihNSYi5luCLJXrhxLZLnzZc8Y9hic/dnlKHg0Mu2+aELHmQ1o8C591tHTLHWkzaEHShmlDzHmY02BGhvka/k3Q9IHQVICRx4GjLdyUS7+W8a1c2mnPzWyCMmEWRXum3VY7rvBN44ySX7uYX4DLTDN3ase9+eYb7hO/oHHOOWe7++//q9+6/MuSKUoafo2+ZyZ/yfdgfsEv7lstjJkJ2bWOQqASBKQBUQlabR/Waz50aTwkj1NONqn76PMv3fRTTelL2RmO3S78sFy6tvscP/7ic0eczvlwerqdw3px0Ab7lSJ2kjBVWVa6se2NJ29MOpOEah/eklmdZpUYZo3B+MorrwzO7+LwcVrx/VrOWVVnAIy1LWAYkqsT9g5TayQvaflhYkCaTHiK7ENu6dZ0NMams7rHJ+Wvp5zCt43/feGmn3Yqaw7u0H277C1Twn/0P982fJzQOFKe++ZTE7FDAxNwVheNIYhxjM9ZWcF2HtMNs7tGrZ0VpLxnZBBGhBUvVkPxFwDhtRuBBGT1GC6if7y/1rSj5ALTAQMbr/DGz5PncfntWVZe7XlaHDyq33fffWFHAMLB1PNdWdisNO15Mm22AoUh32+//cIKEGXiO4l9t1ic5LHcu5iM4xMARg2C2Ydht9Vq7OwRpCC8MsaN/oVtBOtJrLLDCDI5Nu0LyomzxCxNiyRecX6MAWWizir+RKNkf2DfsT8OnGwS9/XnX7vJp/ZmPl33V9rGmzfwXVs4y6i//vrzr0KcevUHYEufTzuCGYPAGIeipnXCPYSFCBIQosWOO9Pwju/RVhA20pZoIxCCIIQeUBw23Ei5Z4Jk+vFKhB+WHkd7D+PYzjvvHBwrc59xBoekZiMPDphL0d4hc25K/HL9UIhQ5b9axj17pZWR62aMe/H7LU92ZEUddXnTmOJ+3qICZinEyUvT0i56xPcIYxACTWvbtGnqPDkXwikr8yDGrdhUKPkuM8erdnxLplf0moUVhCNxP4YwDZ88eRTjGZ8zbvDdg7l9p3nptMqz1VdfwzPzq7sNvTYghBDpGD+vPcrvVHLM0Ue7nfy3bhSX1+416oiANY3wP8OiYBplxUkLq3tCIIlAH99RMWUQ9XAE+u22jutYe4swP7Si2nyR6+GXXOW+GTPWnbz1pl4I0Wk3GD8njF1/9PkX7uCrb3CTDxzgzt55/Aq0PScs1LFO8dVFVkNRi2eVGlVvBlCcDlZKrDpgh42jn0YQTA4TgOTAgJ03dshMQpj4ZjEbRfKEszq2k4L5M2YpjkcZmVTHmiHx8+Q5df/Dhbcnb5euv3x2WzdgxvVL9Us9GtE57Hv4Ze6bb8e44w/dyk3nhRDJ51bvHD/85HN3xInXuskmHejOPH7HEj9COnG4gTN1Dr72nolxpG5YuUtT1cx7Rt7YEQJV5zQb2nJ5rzVtGCHUrvFG3gxCXZRJay1tOs437RdhIYxelmAhDl/JOf0G/Ude34GWElTU3jjv/Vn9AfngO6a9DBkypGIV4/idMJZ876yAplGl/QHf+5QLXZmWVLg38IRZ3BEr7Jv5fOTZt7mx3411q+2yZqcQIjOkFz589pUbdfFdbsAkA9ywvdbNDHnEivtnPst6YH0ufTF27Mm2hDo6ZgowPEf7iX01RFuhDmN/D0XTQS0ck8Is1eai6Vg4fD7QrrLaLcwyAoes77RcP2TvSTtmtXOrA9JutXGPdjzmsHfTihPuoTWDEDuLmI/QhhBex0KItPCUHwEVvjpiDZRk2CLC1mQcu6bPpC8eNGiQ3ZrgiHkgv0rbay3j2wSZ8Dey2gthER6yxfPgwYPD7jJp8YvcQ7sHLBAqp5kGVtov8k7ahO3SVCQPTzz1d/eZnw9Do+5/yB13+EG+v+hfJGrAgO/V/IehDTHQt59aTBLHjv3eHXH8KW61oSuEPEzt5/JLLb5IofwQCME9pq1GCHZs3EEDIvb/wGJfbE5pcXQUAkURKPalFE1N4VobgT5+xT3BEtr1ubts44ZffLWbe48D3JffdG5RmFUYNB+2XmlZd84u2/og3VlLS4/7PKmGWEUsaq+bTJ/JaKOED7yLgR0GJ8nEMvllQK2FmMzR2eMokdX6eNUuTpf3VzrBiOOnnffhJu0DdVR/DGYTXddnnrCT2+ewS90Cyw33aoJl2obXfNhio5W88GGHbulZunZMy0Oj7+VNIvOeka9a2lStaaOqaquajcYoLX1WmepJfKO2elvPdEmL76Lct5HFwFWTl6z+gPu17kmPMBaVejQq8GWQRY3oD8K7on7A+gOOw/Zez40861Z3zq9+68Z8811WtsJ9tCUWXH0RN2y4Fz5kpBfu56aS/jCvz8U2HO0aNG5MKyY9lfy71bQVTAAxw0MdHs2VehGCkDwBaJ7QjTyU64fy8pnVzvPqIC+9+Fkzxz3yQX8Es5o84i+GHZcQJJkT2zjf8TnzAYQLCB+S6cTXcZxKz9GGKqfyjqDYNBwqSb+W8S3tPVnthbA41a7VsTZmdMyV0HalftKoYf1i9LLJ/FzYBBDT+kWvl199zc0/H/7SypP5C7KQ03btemLX1Rx5P/kwIn+VEHMN6s4IgQPmF2hBxMIHnkv4YCjpWC0CEkBUi1xbxuv04YD5RSef2f14zi5be40G7FVL/Gc875zgfhAyBH61ezqWfiUQ0cGVG1wrSa9RYZFOs9KEgISJRT2JiRiqvqi1sZqSlj4TJd5fb6YwlINGAaUc0WbgVxGlpBPi2/2KEuudgVnlQfhgvgB6JwqtW+pG9ge33XZbYKKP9Kq5pn6dRKJZ/QHaDHkaDcl8hmv77rOOqZGquwljjP8chLm1MjuV5oB3s83vqFGjum2fWWk6rRS+ke282eMe3xCUdkSgkKfRkFZHaenE6afF6Wn3GtlewAqmGC0Kdr0xDYIYw4b2i9GLpp3mR270+x+GOzPPOIO7a9T9bp65hhTWgoiSqvkU7QfeTz6MyF+lhJYVWiCYnkJgHRNaQwgqREKgVgQkgKgVwXaJ34+q9ivcGT4gGnG/i50thBCex9O2+SsUeSIGQr2VDhrJOytO9RREoI5H2mnEgIpEH+EDap5ZarYTxP3B768d6n6CJ+Nv9PFtI8hSkDz527FcpdHX43OhsxQEaBO1rOCmJKlbdUSgkf0Bfi34pVHV/UGH7w/69EtLsnRvQN/+vhtgrPC37Ptv9LH09vqc2I5E9UmtslQw+7AdKiqL2bqhG9nOGzHujflhrKMd55FpCnQT9Fs774rId1bX53kZ6kHPGtlegAkfKGlUdb/oE8N0xdpEWtpp92aZaUb3ymtvhC1xZ55pBvfFl1+5sy+8zK252tCJJohA8IDmw11e+DCZXxgjHxDaUuSvGkK7AdO1e+65J5hLYkaGk0oWx6rZzamaPChOz0cgv4fu+eXvPSWc0e+/7FdTO7yKHmYSYZzt0oTonGXCd3bdt2ONz3squDiGxIsz9pjYZTLoNZqYBKEah+ZDYeGDz1Sft9/wOo/d995O5rXvJN4r87gfAmMS2kVUnEZfJ/OiayHQbgi0U38w7tu3Xd9JZs6FeJ7phrjvYeBMcGn9QaOPubnSw2Yj0E7t/PkPXnS04zzCDCyV6bR23hV5gvG91ud5mepBz9qpvQD76NGjKzYNRNtp7iGD3Asvde64NM9cg917oz9wd959n7t6xE2+fY1reI3269c3mF2g+WDCB15KvshftYSggZ3oREKgUQhIANEoZFss3Y4F/HZNn7zv+swwi8+ZX93qFEGUNCJsqat0vw7PE+N0iyFSW3YQAlQiCKjtbdXH7vP0Qy7UfU4S/adayI0b85HrO+lMkQ8IH8GvgJZ8NlCZ9bzOyY8eCYF2Q6Bd+oPvP33C8b3n0bC5VnNvfvaWm2u6Of2w4D/8ojZ5tYTLy5CetQwC7dLOb3zhVkc7ziPMZHBYjSDCNB0afczLT0981i7tBezZapo2USnNNsvM3kfIt+71N98KURECxIKAStOrR/jBc8zuyJdICLQyAtWLx1q5VMrbBAiMG7q26/P0I0ELAmFD56J9o48TZEM3JiICfd581fW57zZH3efRgOlWdd9/9qRvFl49GwqNwzMeptnRkOvOV+m/EBACEweBcd+84cZ8eLfje8+j3Rffzt304u1urNeCCNStH/B3GnWdlyk9EwIFEXjmvX+6s/92iaMd5xHbmeLkFS0IyDQdGn3My5OeNQcBdhl69NFHu22lXklO5h4y2P3sp3PnOomtJL1qw2J2QT7Ij0gItDoC0oBo9RqqV/6m/bEbt8Xuru9dN7iOJVbyZsD9fMqN9QnRkzUg6lUtjUoH4UPfS08Nde583edRn4HTuUlm3caN/eB213+aZXyzoG10UZfmg112KcaULmu+Hp+SzoSAEGgQAggfvn3jPP+db+v43vNo9qlmdecMO8md/MjZbvP5N/CmGAM8d+ZjxD4hLIHkfbuu9LmF11EI1IAAwoctb9k1tF/acR5hIrDuuuu6+++/3y200EIV2//npa1n7YMAwocRI0aEtkCbqJbQOMDnwruj33ef/O/ToBVhwqxq0ywSD/NcdrvA4STvr8Xsosj7FEYI1AsBCSDqhWQbpNOx/OoOi7S+113gOhZbzrlpZww+ITpnl8wvO31A1Ou6DSDpWVn0Difx+YDZRdB88AIn6rwIDZhupRDsu3eucv2nXsL1HTh9EEQEfsL/M77Cri1Nu672uaWjoxAQAnVGwGs04fMBsws0HxA+2Hde7k07LLxVCDJ85CFu4/nWcXNMPbvr731CIIMInUGcAB8/lDx23p3wvoVLPrdrHYVABQjgcBKfD5hdoPmA8Mzab7lkFl/cm6Z6YscZts2FAa3UEWG5d+h56yGA1gs+HzC7QPMBQZS1hVpyC/OPIELmD7WgqLi9BYE+3ut+cjrQW8ree8v5yYeu7/13uj7PP+Xc++94979dqve9F5GeUXKcxnmHk/h8CGYXZTQf0grdMeZjN/bj+9z3nz/rxn032jMPahtpOOmeEGh5BLwmEw4n8fmA2UU5zYe08rz1+TvugqeucCNfHeVe/vg1N3ac+oM0nHSveQiw2wUOJ/H5gNlFOc2HtJziC+KJJ55w//73v91HH31UMstIC6t77Y8AQiZ8f+DzAVOcWjQf2h8NlUAINAcBCSCag7veKgSEgBAQAkJACAgBISAEhIAQEAJCoFchICeUvaq6VVghIASEgBAQAkJACAgBISAEhIAQEALNQUACiObgrrcKASEgBISAEBACQkAICAEhIASEgBDoVQhIANGrqluFFQJCQAgIASEgBISAEBACQkAICAEh0BwEJIBoDu56qxAQAkJACAgBISAEhIAQEAJCQAgIgV6FgAQQvaq6VVghIASEgBAQAkJACAgBISAEhIAQEALNQUACiObgrrcKASEgBISAEBACQkAICAEhIASEgBDoVQhIANGrqluFFQJCQAgIASEgBISAEBACQkAICAEh0BwEJIBoDu56qxAQAkJACAgBISAEhIAQEAJCQAgIgV6FgAQQvaq6VVghIASEgBAQAkJACAgBISAEhIAQEALNQUACiObgrrcKASEgBISAEBACQkAICAEhIASEgBDoVQhIANGrqluFFQJCQAgIASEgBISAEBACQkAICAEh0BwEJIBoDu56qxAQAkJACAgBISAEhIAQEAJCQAgIgV6FgAQQvaq6VVghIASEgBAQAkJACAgBISAEhIAQEALNQUACiObgrrcKASEgBISAEBACQkAICAEhIASEgBDoVQhIANGrqluFFQJCQAgIASEgBISAEBACQkAICAEh0BwEJIBoDu56qxAQAkJACAgBISAEhIAQEAJCQAgIgV6FgAQQvaq6VVghIASEgBAQAkJACAgBISAEhIAQEALNQUACiObgrrcKASEgBISAEBACQkAICAEhIASEgBDoVQhIANGrqluFFQJCQAgIASEgBISAEBACQkAICAEh0BwEJIBoDu56qxAQAkJACAgBISAEhIAQEAJCQAgIgV6FQP9eVdpeXNj//e9/7v3333c//PBDWRT69evnZpxxRjfNNNOUDasAjUPg9qf7uLNGOve/L8u/Y5opndt7mHPrLNZRPrBCCAEhIASEgBAQAkJACAgBISAEmoBAnzFjxohjaQLwE/uVL730khs3blzh1/bt29f99Kc/LRxeAeuPwGrH9ykkfLA3I4QYdbg+Z8Mj7yjhTh46eiYEhIAQEAJCQAgIASEgBBqDgEwwGoNry6VaRPPhxz/+sZtkkklC3ouEb7lC9rAMFdF8uGyPfm6JIX1CyYuEN4jGjh3rXnzxRffBBx/YrV51LKpZAijgSnhRz0PgP//5j7vwwgvdmmuu6U444YRwzj2REBACQkAICAEhIASEQGMQkACiMbi2XapTTTVVED4ghChKSy21lBs4cOAEv4suuqhoEgpXAwJ7rNE3CB8QQhSl7777zh1wwAFuiimmcAsttJCbbbbZwvGZZ54pJUG98uybb74p3ePktddeC3X9j3/8wxGeun/ooYe6heHijjvuCM8I36pURFhTrXAnrcwff/yx++1vf+swhYKuu+4698ILL6QFnWj3qN9LL73UjR49uuHv7OjocOecc07TyxwXFKEDWl577bWX+8tf/uKOOeaYcM49hBEiISAEhIAQEAJCQAgIgfojIAFE/TFtuxQRPvCDPvzww4ryv/3224eVdFbT7bfZZptVlIYCV44AwofdVu/8fHc8v7xfD3vDaaed5i6//HJ37733Bmb49ddfd0svvbT7xS9+4T799FMLFurykEMOKV1zAhNptOiii7q5557bXX/99XardPzDH/7gEGIMGTKkdK/dTioV7oBdmjCOewgdnnjiCXfooYcGwQ1YIAQy4Q2+Wa666ir31VdfTVSYvvzyS7fHHns42kCj6ZNPPnH77befu+mmm+ryqueee8798Y9/rDot6gWhA7TSSiuF3xFHHBGO3EMYQRiREBACQkAICAEhIASEQH0RkACivni2RWpmZkFmOTfhw+eff+5YIa+Epp9++sBowmza70c/+pG77bbb3Lzzzuv++c9/huQw6Vh//fXdb37zm3CNCQATfluF32mnndzbb79dejX30aRYY4013HTTTecQarz33nuOcFzznHcYff/99+7oo492888/f3jv/vvv777++mt77PCBsdZaa4W4hDn77LO7MdSlgC16YmYWZI9zEz5ceM849+Rr4wUD5bL/+OOPuxVWWCEwWmhBzDrrrO7MM890I0aM6IbHIoss4s4///wgqMhKc4cddggr+XGbgRGHyUQwBbUj7tUKdyjvBRdcUBLEmUBu6qmnDm0PQcOqq65KsG6EpgjtGia9pxLf7EcffeQOP/zwuhTxz3/+cxBoVJNYrN1AH4Qwjp+dczRCS0IkBISAEBACQkAICAEhUD8EJICoH5ZtkRLCBvP1gPDBTC4QPvCrhlgZj3+ksfbaa7uZZ57Z/frXvw7OL1nhhWkwAcS+++7rTjnlFAcTe/LJJ7snn3zSrbfeeo5VWQjmbfjw4W7dddcN4W655Ra3wAILOO801V122WWBcd54443dt99+G8KzWo+K95577ukOPPBA9/vf/z68m4fkbdiwYWFF8+abb3bbbbedQ0Bx9913h7it/g+G2MwBED6YyQXCh/PvLu5YlHIifKAeENaYicTkk08eNCDiXU8Q/LBKjyABxjGNEAp98cUXbtSoUaXHd955ZzjfYIMN2gb3egl3KDgCHRPE2RGHrq+++mrQNImFbIRnFX/TTTfl1K244opu1113Def8u+aaa9wqq6wShGbbbLNNqb54hgDuvPPOC89ZqUfYVk4I9/LLL7stt9wypIeGymOPPUZSqXTxxRe7ZZddtpvjWph0hHeYk3z22Wfh+xw8eHAw46EtmD8RTEsQPl5xxRUhn5QBQsvm9ttvD+dF4t94440hDwgvEF4igIT41k899VT3zjvvhPeg0QORNuUiPHm/7777wv34H/4d0G4wMmHDAw884I477rhwm3toRUBoScgnRIBC/4SAEBACQkAICAEhUBcEJICoC4ztk4hpPyB4MM0HVrCrFT6g0k+a8e9f//qXYytP7MtRPT/99NMDw3/WWWe5QYMGBaYV7Qae77333u5Xv/qVu/XWWx1q1Q8++GAJTAQJCDBYHd5ll13CfQQLMCMnnnhiuIaxQ2hB2qw+77777m7HHXcMKu3XXnttUH+HYYJZQWAxdOjQwFg//fTTgTkqvayFTxbrcjKJ4GE3L4yA0HqoVPhAPNTgwRL85ptvPgcDeeyxx5aYO8IYwYjBzFEHaYT/iNVWW82BsxHn4Iwwox1wr6dwxzBIOyIow9QBAVpMiy++eGDkuQfeCOQgtHs4X2aZZYImCu0cYRwCHwgB3T777OOWWGKJwOgjhMgTwvGNIBR69tlng8YLQg/TUgkJJv4tt9xy7qmnnnJ8J0YIBNielzaBJgOmNkcddVRoP3/7299KwhMrK20NwclBBx0UkqAMlv8i8SkfAhn6AcxVEDxC5B0B5//93/+5M844IwgLEBJstNFGoT2igUPbRuhIG4zpnnvuiS+DUBLBCD8TQHQL4C+ScZLPdS0EhIAQEAJCQAgIASFQHIH+xYMqZE9AAB8PsQYEZarU70OMA1oLMPwx/eQnPwmXc801l0NAwUo6K5ImRDDne6z4GiGYgBnGwSGmEtDPf/5ze+ymnXbacI1gAzLNDRg6BB4QDIqteqLuDj3//PNh1R9GGYYODQhW92HGYKbagfDxEGtAkOdK/D7EZezfv78799xzA+PIijaaJccff3zQGIHhhLk0mnTSSQNzy6oyGizUYZK23XZbt/XWWwfhD6vwaEOYaQzmOa2OeyzcMVOWaoU7YAOzjUmLEW38sMMOs8sJjnwraKVAMMGzzz57OOe74XsxcwG0CNCuQEAH8w0hvEOLCDIhHFoTplEx00wzhXYOk462wyuvvBK+h3nmmSfEQfOFNNIITQe+PzRaEHJgMsW3gyNNiLwhGLD84tDyyCOP7JYUGhDrrLNOt3t2USQ+Gh70LxDaDwhAEFxgHkT+EEoYFqZZgbCSfgQBym677TaBH4ekQIK00X5A48HMQ7jmZ/SnP/0ppGXXOgoBISAEhIAQEAJCQAhUj4AEENVj17YxYyFELcIHAICZybOTxgwDgtlBFR0ynwGmjRFu+n8wvDA6Rn369LHT3KOZYbDqaYIJGCMEDCZkgNFmdwZ+eL3nBwMDc90OFAshqhU+xOUEJ9Tx+WGSgVbJ/fffH1aR43Awe6xyw9jBiCXJGEAYVfw/sCod+zloddxjXM0UoxZ8f/azn4WdFQwnY/btusgRUwo0h/jF3wNx0WAwzNGeMConhEMQhwAjzs/KK69s0VOPJljCXOeRRx4J2gtoYUDsFEHdIsyCqUdAlaSFF144eat0XST+ggsuWApPWfFJkkV8xzPMMIMjHMJFhIzgRL8Tkzn+jO9xjjAOQvCAICgmExDF93QuBISAEBACQkAICAEhUB0CEkBUh1vbx0LwgAmGCQMaUSDegUkEq6yYSFx99dVBJZvVS4gVd1shxQEfauUx01E0T5YeDIcxDzBx7777rmMVGC0JdiLYcMMNA4P9u9/9zsEcYS7QLgIIsIAxxmTAVuqL4mPhxo0bF1Z6Ub03VX+eLbnkkhYk9chKN1oNCCmSNOWUUwZVftTxqUNWtgcMGBCCtQvusRCiFuEDhUYjJE8gl8Qv7dqEDuwyYtpEhMN3CdoIRrGArpwQjrpI7upg9WTpJY+YNFD3aCwhuONbNQ2ZTTbZpKSBgFADQdXf/1DWrxgAAB1vSURBVP73bkmYwLHbza6LIvHj/OalRZIIHxDO3HDDDW7kyJFuq622CpoQjz76aCnPhKMN2+4XXBuZ+YUd7T5HK3N8T+dCQAgIASHQexBgPokPJ7Rw8XHE3KcZxFiOSTELCvEYObHyAg4sNPFrFcLP2xtvvBEWHJOLDuQRJ/hoUTJPaAZmrYJTq+VDAohWq5EG5YdOEwY0pjy/D2bqEIdPO8f22lYP7TmaCPgHwAYcM4yTTjrJsRMANt0ICNCKQFiAcAImiGeomtM5VLPaiKo/ZhswvxdeeGHomBEysCo7evTo4EQRB5aox2NTTp4pO/lsZZrGj2//6/TJWcpmnt8HwucRTBzOCzGJwRQDNXUEM/iAgLKwp47wvZG1oo0WhQl+4lVqBoR2wb1W4U4e7kWfMbGAJptsstA2WcmPzTcY+LMmPeWEcNQDPihwFMl3BiEAzCO0iDBNQPjELinsHAORBlozV3gTC+oeYlBPCiDCg5R/tca3JE1Qw7U5r6VP4cfuO2hDJLV6Vl99dYve7YipTOx/Jn6YFScOo3MhIASEgBDoeQjA3LLAYqbDzJ1Y4EIwjY8j5p8Tk9A4xH8ac9l4gWJi5QFfa4yXNuer5b34V4JHmHPOOSdIBn9RaCQuv/zyjp318gjeBkwwP2WOmyTmueQbc/G0dyXD63riINCpEz9x3qW3NBEBTBFgQOPdKrLOCWemC+WyjF04woT4hzo+DApMCztT0GGz6wUaFxyhK6+8MjDAqHTD5OAVn1XWSjtzWwUmPRgOVmkXXXTRsDpL54bvCFZoyQfMMZ0Pfgm22GKLsFpdrnzNfL73MOfKCRUsf4QjfDli9wBWtjGpQACDXwecf9LRG2NKGskVZ0wLzN9A8h0MEEjjSS8WUrQy7mm41iLcSWJSyTU+CyB8mCAkgNB2wFEoTD6aQTD/+Elht5g0ioVw7O6CyQU+EBjcYc4RNlG/mFXgD4JvdI899khLqts9NAnwR4HQwDQ7bDLA98qkjJ08stpGt8S6LmqNTzKsQJEnNB7QtMLxJIJN/ESw0oFTTAgtkpj4/m1XDrtP/8Mv3v3CnmF+pAmLoaGjEBACQqB3IYCgnnEO7TkWa9hFCa1e5qzMcXsbsdBXTmu2KCaYRGbtMsW8hbkKOIt6JgLSgOiZ9TpBqdiVIN5mcYIAVdzARj2PbEWXMKhFGXPFNcKI66+/Pti4E26KKabgdoniuNy0VXoLAMMbh0GLAuaDe1999dUEZUVazA/pMWERirQ6rbNYh1tnsfrmknpgi0UEMtQHbSIpbMqqVzRY+CUJbZm4buPnrYo7wpqzRk6oYRLn3c6LCncsfNrRBGXxM7sH44wwAAePrNzD2LNdLdufokXESgDqjpgxxf414rQ4RwiHYMnMmhBsmBCO5zDraAfAbJMeAg62us0jBIRMOFjpMdVGtB0wpyLPMP58iwg7EFRAVq6sdKuJn0wTISLCM3bQoRzs1MKOHQhMIMMrzaTrrrvu6qaGifAN0wtWdTiPKdZAie/rXAgIASEgBHo+AmjRQmyrbZrBCPMZZ//73/+WAEAQjl8kBOAI2VmYWWyx8RO4v/71r2F8x1R1jjnmCOMXvpAgxiQ0+vCLBtONliqOnZnTYm6BtgUr+0OHDg3h+ceuUjhfRhCPqTHaiMxtY2Lln0UMxjbLCwuPaAOwYIQfKBYreCfmJZQL59OEh9LyxQIHJpekRx65fumll4KZA3MONCPwMWa+obhGExF8mGuy+Me8E21lNBfwL4WJBH6bjMCIOQZ03XXXBazR8szDkLBvvfVWCMO7WZRhsQ1t7CSBAWkhXMIMnUUGBExJPiQZT9f1RaCPZ9g66pukUhMCQkAICIFKEWACAqMdC8cYKBlM0eRJaqVkpZ8lhLPwTEpg0OP32LNKjkwemCgwOUoKCIqkU2t83oHvCwQahg2qsayYFPHbgNkXq1lphJYEky+REBACQkAI9F4E0BBF0wHmnm2x0eyEUY/HPBYJ0C5lLEIwjtDCtCbw24TmIk68Ye5h0rlmXEfAzTgMsw0TDyHo2GyzzcKCBM8wjX3zzTfDcxYEMLvA+TOEEAGTzWeeeSbEi317hQD+H+McAhHbTv21115zl19+eVhUYF6BuTKLCGgOYzZLeQk7yyyzTJAvBP4mrEewgGkKGprgwqIiTD1pkQ8EMZZP0kbIgJ8mys9CCUIPFlsQxrAoglajETuqsaPd448/HjSbwRRhTxaG1IXtwoXpKHkwLchDDz00LEqyO5mZYPBe3k9d8n4WHsD64IMPLgmZLC86Ng6B1l8GblzZlbIQEAJCoGUQSHMKycBaqVkSkyB+WVQvTSiY/krzFuep1vikxc45MTGJKCJ8IA6TP1Zj0BJhMog6KKsg+HyQ2UWMqs6FgBAQAr0TAYQGbOsOk4pQmh/jDBoJaOIZ441AHdMMriG0DBhTEECgKWA7NPEMjQU0UWGq47Fmzz33DKaEOE9mIQGG2VbwERSwlbb5fUAwYWaRMPf//ve/SXoCQlOBfJAHhBVsdU/+MU9Ec5X0EBgw/yCv7KiFEAIBhJHly67tyBiOJoiZZKBNkHTyHOeTeJZPhBaYalP+WPhAGLQtwQsBBMILNCeIl4UhQgQIX1eM6RBmwwhaKG9siolwA+EDWhwbb7xxCIt56yWXXOJefvnlINQJN/Wv4QhIANFwiPUCISAEhIAQaEUEmPxgPiISAkJACAgBIZCGAIIGzB9R8cf0AXM/fpzvv//+4T7M+KhRo0rRMQU2/wWYNMDcYjKBKQIaDRAajkZoWNi29WgPkB4r+UaYZUI8g2LBBZoMCCzSyAQQCBY4x8wTpp700bbAsTVCA0w5MPdAkJKVr2T67GaF9gV+oDAZtXLF4WLmnwULhBvVUBEM0QgxQqgAsbgQ5wFhEkR+yTdEmSGexWmEm/rXMAQkgGgYtK2VMJ0L3uxRsSpHfLioeqFmJmoeArc/3adiPwX4jRCVR0DYlsdIIYSAEBACQkAI9GYEMCuAcUYTAm0Bfpjo4f+InZ9gWllVh6GPt7VHeGDaC5gTwOSTDvNr0iDdmMzHEvcQXqDFGJt5xGE5T2r/JZ/bNf4Y0HpE8IB2IGaKtp23mWPwbhxWo62QND2M82Vp2hE/DuzORXkoK9ofSQFDmmanxa/kWARDEySQLvXBL0nUFYSQJa4vtCfASjTxEJAAYuJh3dQ3IXxghwKc0JUj1JMIj52WqHkIFHWSSA7ZrpPw9XZa2bzSN/bNwrax+Cp1ISAEhIAQEALtjgCMO4wqAoiY8GWAAAKmF8aerd0333zzktCAeKy+w+hiUoGZAA6dIUwp8giNBkwOzAE1YTEnwJcDpguVEgIHTA3RdkDTwswrzPcBTi8ReKBFgVlEEUITA+ED2iE4s4SKxi2SfhymKIamHUJczqmbpFDBTDQx0cD3BET9gk+9zFNDovpXFoEJxUNloyhAOyKA5kPRjotwRTQlYhyQKqLihVM4UX0QQKhQji7bo59bYkifEKxI+HLpFXnO1qvY1RWh+733YyTXrUZFsGoEtkxI2O0CR5C1EhMe9r7GEWQrESsg2L8WpXJtpNzzou+JwzGhYScY29s9ftaK55Vi2oplUJ6EgBAQAu2GAGYLtuUmTC3jLnNdNAXQDsA/Ab4JYHZxksgYzyIeO1gwzqPFwO4WzI0RKOD3gd0yIPwypBHpQewAgVkEggK0FcxEIy1O3j38HUA4gbS0uUYYQb4pHyYJvA+CIWeMzCPbMQI8mP8zRlFuKKtcyfTQUECIwZabScJPBYRZB4KRIhgi6MEpJnMi6of0kzthUV8Ich5++OFQj+B71VVXBX8TVqZkXnTdGAQkgGgMrr0mVTzNrrXWWuGDppNDBWuDDTYInUqvAaFJBd1jjb5B+ACjXJRwvLfUUksVDZ4aji1RkRYXoWuuuSYwyUXCtlKYSrH99NNPwwqCOYDkyHdx/PHHh4HdysYWp3hlxm6yVmLCwFaYDOCtRHgMxxkXE5MiVK6NlHte5B3JMExQ2OIUNdp2oEoxzSsTKsNMuFDzFQkBISAEhEA2Asstt5xbeumlA4PNrg6nnHJK2BWDlXS0hGGUYXJZuGNbxzPOOCPs7oCwYO211w4J49gY3w8nn3yyu+iii4IDS5hdGH5j1mNzC5xU/vKXvwzM9/nnnx/MNxCEkI9qiHm5+ZMgHSNMLjDlwMElu0QgdGBnCOb1CFmgOF8WjyNpMpckLDttMJbiJwOm33a/iMNznkwLngFNDxPIxOExVwFjtvlE0yQPQ1v4xAyE+cLpp58eHGyyNSmON2MiD1tvvXXIC7t4gC9CIbbsRCAjmngIaBvOiYd1U990+OGHh46zaCYOOuigwDzlhX/wwQeD+tU222zj8JKLHRgrinRkMFpIItnuT1QdAosd3KnZkBYbBnm31Tvlhzue/4N78rVOafXTJ+dLrRFA4CiJ+qmW8P681VZbuQMPPLBsEgzQMDomWS8bYSIFqDe2CCDwmcLK/9ChQ0urJHwLSPdxPsXADrEqUg9Vv//85z+OfcQRZmC/2CrEigplZoJShMq1kXLPi7wjLQwCElRS0+xE08I3816lmObllVUi2igramxZJhICQkAICIF8BGBy8aUGweimjRtoAhCGsQ8zipjYqYLtOVmBR2hhmgd5cwH8NSAshxlPe1+cfi3naHagFWDMOvMZ5u79+pVf3KLMaHbY1qRoK6BBUXTuD668J8tXBPNH8kX5i2DI+9FCIT95+Qd/6orwCHxYNBJNXASkATFx8e5Rb2M/YOy/cESDfwk63OWXXz6sruFlF7UxI6SSOO5BoonAgsmvEQwtquQ4vuQ5UlVT5SLM2LFj3RFHHBGkxnT8MCRvv/22RXfDhw93CFiwryM+ewazpzKq7oTnR15jyssPcVm9Jq3555/fnX322WXV0eK0G3FuZhakzbkJHy68Z1xJ+FDNe8thz+CC92UwxObxiiuumOA1eVjGgenwTzrppIAp2LLlIUx0s6me2LLKgGdpJPvsmX3vvfeGyQZaIxBes1nFsPab19Zo1+xtjcYEeFFXtOksIm0wJSzbWiFEZAKDgIJr2/6K+AhBaNtJh1M8Y3Wc9s9KDfFIjzZAWkZ8n3jA5hnfLeU0QvWUfBghiGRrLMLybWMnSrqxGQ9t45BDDgntjHylmXCgTUI75DnfM3GMmEDx/fMcnBC0MbGAEIryPtouz+iHIPYxRzAEgTV9DEdr65dddll4Zv9YVWH1iHLg+Zw8mE2vheHI5Iv3XH/99fHtgBPtH2JVh36KtEgTzI3IA/nfbrvtwnOclyUxLRc/qyx4/d50003Dq/Aqvuuuu4bzvHZo+dJRCAgBIdBbEUBTgEU2flnCAEwycDKZFD6AGcww8wMzLSCNPOEDcQgLI531PsLUg9DWMOED6SGMyGPe43eaGYppN8DIFxU+kA64ZgkfeI6miJW/CIa8n/KUyz9pInigPiV8AOmJTxJATHzMe8QbkUQiYGAPYOtQrWB0GDixRIUM4px9hlFRQ90JRgmmBakpBIOCKjkT8tNOOy2snjIBN9p3332D9gZpoML25JNPuvXWW69kNwYzd+qppwZ7PPZWxp4NtTkm7WeddVZglGAWHnnkkZBkXn5QQRs2bFjokPB1ABMAs8GEv1mEtoP5I4BZNpMLhA/n3z2eCasmf+WwhxmiznBSdNRRRwUBAnGM8rC0MHZEC4I0YIyvvfbaIH2GSW8mNRJbysVEBEbd2h7Sfvbehjku19Zo19beqQO+J4QR7FedJJhxvgkk+ggEEdKhfUE81EMx16CujBAY4AgrzS8Mqx9oyVBffDeoK5IONpMQQiP7tnkXTDSqpub9mvhsOQZxjjCCawR5OOkiPTAw1VPCoYKJ3xnUV3EOhQkH37kR3yKCC75z0iBf9BUQQjLeAcYnnnhiKDv5ou1ChjkmFwg/aX8Q/ZD1QWCNai15QtCAkAOHvWabikAEAQn7rnNOeciDCZJCgl3/sFUlfqz1Q3kR9tDHsZUb/SZCEQSv2ORSX2aWQ5qUjZUf+i+2BYsxLRI/qyy8y3BBSEGfWq4dxmXTuRAQAkJACAgBISAEakWg08tHrakofq9DAGYBivfMZUXT7MZ4xrY+rHgymWalEDsxiBVIJMGYcJiN3F577eUOPvjg8Bw7LFZMYaaQyrISy0Qd5gFCywJ1duKzUgsxscaODUI4AmPLiif523DDDd15553nnn/++SCYyMsP+cUpDczF0KFDww+mAxW4ZtFiXU4mETyYqQXHWoUPVp4s7JEKX3311Q6hDoIYCM2W2IlRHpZWtyGi/0f7QIsCBpK0l1xyyW6aMBZuYh4bjS1lgRmlTSUdT6ImWK6tsfqBbSXfxGabbRbUMWnnO++8czeYEEDQ3vnmbFXl8ccfD5pE1O+OO+4Y0kGQBMHwb7zxxrk2j6zgoy7KijkCizvvvDN8D7QJVg6wn2Tlgu8LLQOubYXfMoeQEuY7VvdHKJPMP/0B6SLMRACIUAN7WtsuzPJMfiCECjiRRJiA4AEbUfJA+SHi02YR4BiBD4x/FtFXINxhJQftALyWo32AsBSBRtyHkQ5aX1mE7Sm4IDhgNQnhCXVJ34XpB3lGS4byIsyhjrGl5fuC8LgO/rbyE78Hs5Fy8fPKgt0vhAYIJhgIp8q1w/j9OhcCQkAICAEhIASEQC0ISABRC3q9OK7tDQwjYMS+xqweQggPdtttt6BejL8BfphSxIRHXmNSmYwb2TnO9VBnhmAIjFBxg5GFoTUBRMwMGAMGAwHBUBCetFAjL5cfzEpYGWTVdY011ghONY3xsTxMzCM+HmINCN7NvXqR4U16dg72tkKNIMaI1XRTryuCpcXjCCPHii4rv2gFUHdxvcZhJ9Z5o7GlHCZ4gHGMCaFWubaGhkLsGInwmAaw6h8TjCzfBVo/qNPzTswLTEAI3ggucLbEe2nbqONnEcxy3ObJhwkdYeRhWPH7YoQAgL4gKYBgKzK+vdjXQNyeLD6Mt2lS0b5gwBHQGMG4x/lBiInwC4eK9CMIMEz4QBx7B0JH82wd9xGWbnxE+GhqpKhwggHaCGCN1g/mMEYIRnkH2ghpRD1RDnaAwbkVeG+77bZBLZT+iWdoqFAf1BWaGHGdkpc04QPvKho/rSxpeS3SDtPi6Z4QEAJCQAgIASEgBKpBQCYY1aCmOCVmgAm+0T777BMm7Ezambyz/64JHeaee+6S/Rw2V6xOxqubsQ1YbLtlAgjUmmPCbszS5n7WZD2Ow7nFycsPq8OoT7NyyeoxzFMtThuTeajmOnY0WU/hA3kph33SPs5sBYtgGZeVlVdWqVmNZ2Ucr8as6jebGoktZXv66aeDJlCMs5W5XFtLxrG6iP0xkBbMOsIjfE3wDCEPZI4g0VpBEIAWA4JCGGCY5Cwypt2ex9+k3TN7WPueY4GEheH9rLDHlLY7hpXLwpkwwq753mOy8LRB+gi7tjAW3/xAcL9cH5FMw7C3vieZ7+S1vZsj+UWLC8EDjscwX0EIBKG9gCAPrQfqIU0wkpfXIvGzyhIykPKvXDtMiaJbQkAICAEhIASEgBCoCgFpQFQFmyIxQUaVnlVVbKVjhgXVaTQgWMWEWWUVlq05Y78OrLAnV4TTUEV9HSJNU5/GKzArkkziK6Vy+YFhYUUS9WlWLikfDAI+C1iVbCbBKOOzwMwwGp0XWz2HgZ5lllnC61jxpW6hcliGQNE/mGRWsXEYyg9bemz9cSDIinMzqVHYImj5/e9/X/I7EJexSFvD2SNMtjHDqOmz2p9k7GFKqRf8GiAQgDBRMkac1XBMmNB6mHPOOQNznGTq47zlnWO6gXlH/D1Tt5g+JQmhCKv77I9ujimztuhKxo2vEQCiIWCaV+AA8w4WfJ/HHHNM2OYMoSdk/hToP2rdphThy0orrRTMMxAqgBuCNIQLeUIcTFd4juANgacJGsCCfIMh9YLmCL49ilKt8e09Jpwp0g4tjo5CQAgIASEgBISAEKgVAWlA1Ipgm8RHPTveWSIv24QjfDlCJRmmB3VoVI1xzIYdOGYLCB/MUR3aDjiHQ3UbwQHO6Eg/djKX9S5zcIeQAydu5A1GCg0Ls2XOipt1Py8/qJnDwFE2NDlQ72al05jxrDQbcX+a7hr74RV5fh/SwteSL4QFK6+8chAwgT2ruDgQjCkPyzgc5zjzBEeYSZhCTGhgIo1pTIZv5HUaVvXAFkEZ/hJuuOGG4OwPQRbMa8ysW7mKtDVMHWj7CIHYKQHngttvv70lUTqaecKIESPCbhc4a8SRZEyswJtAxFbj4+dFzykTdYj/BRxP2hajaTtX8I3iDwFmnH4CgQCMd6WEEAPNGfoMsMUhpO3ljXkIDD1+X+gfcBgLZmjY4KuiHoRpGXWLmQemQwgTyvUJOMKln0LYZv5ryAt5ol5HjhwZ8EvbSSMvz7XGRxMGwpQH/xxF2mFefvRMCAgBISAEhIAQEAKVICANiErQauOw2N/jBZ/Vs3KEcIDw5YjJOIwRTCiO44zQVMBBnK2+soUfath4oYeRgOnEF8Cqq65qUbodzXbZ1JCvvPLK4LTO8oQmwh133FFyDGnhuiXiLywdu2/X5fJD3lmRhNmDYBCw357YtLeH9KyR3ofAl+XfDENN+FrJMDJMcQxI/Rr2MJ1oiFi4cliSHwuLY08EDyY4ghGiPVo7qTXvlcRvFLa23SZ5YfUbsyR2HTBtA8OC5zhSLdfW0DJCu8B2q6AukqvlpImJBdokpl2C0AOm33ZxsPfBqMP84lMhi+I8WhhrD1yTF7ZeResAPwYQuzjY7hJxfM5x4IjA49FHHw1bXCIYSDLvcZyQoP8X36NPwRQCph5CC8McTOLUEiEIQgfKDRHettGM0wkPU/7F5YsfW1y0rdB6wISFvuzoo48OZlrx1qZxPM7RnKDfwFdFLPDBvwwCW9MIwcwLDQl7V1pe7BnpVhOfeJYG2kbsOsSWrvjooC8t1w6JLxICQkAICAEhIASEQD0Q6OPVLzvqkZDS6N0IYBaBKj2OH7NMK9juDWYKhiFtkl0OQVTRUReOzT3Kxcl7Xi4/5BUHgM1gkPPy3YxnMLIwVOb/IZmHcljG4XFuST3GzhXj573xPK2tYbaEwACTBbaWRYhh/giyMMIfAqYK5og1DsczGGnMCGCg60EIo/jezUQkmSbCDvKPrw8zQTDTG4RRle4uQzvkezSBTvJ9bF1JXpI+EJLhKr1GCPrhhx8GISqMPG0YoQHaHWibVEMIY/mmzKyk0jRqjU9/Slni/i2tHVaaL4UXAkJACLQqAvUeG1q1nMpX70OAeXU7kQQQ7VRbyqsQEAK9BoFYAFFroXEyiNYRJhOs5JvJRq3plovP9qCYXvBedjxB6MCOGWhroBnQLoQJElpAmJbhQ4PtORHGYW6T1OZolzIpn0JACAgBISAEhIAQaAYCEkA0A3W9UwgIASFQBgHU/Vkdxw9HrXTrrbcG3xD4b4i3q6w13SLx2ZWD9yP4gGnHXIQtLNuNMLfArwa7WrDLCCY29fIx0W5YKL9CQAgIASEgBISAEKgWAQkgqkVO8YSAEBACQkAICAEhIASEgBAQAkJACAiBwghoF4zCUCmgEBACQkAICAEhIASEgBAQAkJACAgBIVAtAhJAVIuc4gkBISAEhIAQEAJCQAgIASEgBISAEBAChRGQAKIwVAooBISAEBACQkAICAEhIASEgBAQAkJACFSLgAQQ1SKneEJACAgBISAEhIAQEAJCQAgIASEgBIRAYQQkgCgMlQIKASEgBISAEBACQkAICAEhIASEgBAQAtUiIAFEtcgpnhAQAkJACAgBISAEhIAQEAJCQAgIASFQGAEJIApDpYBCQAgIASEgBISAEBACQkAICAEhIASEQLUISABRLXKKJwSEgBAQAkJACAgBISAEhIAQEAJCQAgURkACiMJQKaAQEAJCQAgIASEgBISAEBACQkAICAEhUC0CEkBUi5ziCQEhIASEgBAQAkJACAgBISAEhIAQEAKFEZAAojBUCigEhIAQEAJCQAgIASEgBISAEBACQkAIVIvA/wOkDhV15NIjKwAAAABJRU5ErkJggg==" + }, + "b885dfeb-6021-4749-8e15-7571ee6fbea1.png": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1QAAAIZCAYAAACh0H5bAAAMQWlDQ1BJQ0MgUHJvZmlsZQAASImVVwdYU8kWnluSkEBoAQSkhN4EESkBpITQQu8INkISIJQYA0HFjiwquBZURMCGroooWAGxI3YWxd4XCwrKuliwK29SQNd95XvzfXPnv/+c+c+Zc2fuvQOA2gmOSJSNqgOQI8wTxwT50ccnJdNJPUAZaAJ1QASjOdxcETMqKgzAMtT+vby7ARBpe9VeqvXP/v9aNHj8XC4ASBTEqbxcbg7EBwDAq7kicR4ARClvNj1PJMWwAi0xDBDixVKcLsfVUpwqx3tkNnExLIjbAFBS4XDE6QCoXoY8PZ+bDjVU+yF2FPIEQgDU6BB75+RM5UGcArE1tBFBLNVnpP6gk/43zdRhTQ4nfRjL5yIrSv6CXFE2Z+b/mY7/XXKyJUM+LGFVyRAHx0jnDPN2K2tqqBSrQNwnTI2IhFgT4g8CnsweYpSSIQmOl9ujBtxcFswZ0IHYkcfxD4XYAOJAYXZEmIJPTRMEsiGGKwSdIchjx0GsC/Fifm5ArMJmk3hqjMIX2pgmZjEV/DmOWOZX6uuBJCueqdB/ncFnK/Qx1YKMuESIKRCb5wsSIiBWhdghNys2VGEzriCDFTFkI5bESOM3hziGLwzyk+tj+WniwBiFfUlO7tB8sU0ZAnaEAu/Ly4gLlucHa+NyZPHDuWCX+UJm/JAOP3d82NBceHz/APncsR6+MD5WofNBlOcXIx+LU0TZUQp73JSfHSTlTSF2zs2PVYzFE/LggpTr42mivKg4eZx4QSYnJEoeD74ChAEW8Ad0IIE1FUwFmUDQ0dfUB+/kPYGAA8QgHfCBvYIZGpEo6xHCaywoAH9CxAe5w+P8ZL18kA/5r8Os/GoP0mS9+bIRWeApxDkgFGTDe4lslHDYWwJ4AhnBP7xzYOXCeLNhlfb/e36I/c4wIROmYCRDHulqQ5bEAKI/MZgYSLTB9XFv3BMPg1dfWJ1wBu4+NI/v9oSnhE7CI8J1Qhfh9hRBofinKMNBF9QPVOQi9cdc4JZQ0wX3w72gOlTGdXB9YI87Qz9M3Ad6doEsSxG3NCv0n7T/NoMfnobCjuxIRskjyL5k659HqtqqugyrSHP9Y37ksaYO55s13POzf9YP2efBNvRnS2wxth87i53EzmNHsCZAx45jzVg7dlSKh1fXE9nqGvIWI4snC+oI/uFv6MlKM5nrWOfY6/hF3pfHnyF9RwPWVNFMsSA9I4/OhF8EPp0t5DqMojs5OjkDIP2+yF9fb6Jl3w1Ep/07t/APALyODw4OHv7OhRwHYK8b3P6HvnPWDPjpUAbg3CGuRJwv53DphQDfEmpwp+kBI2AGrOF8nIAr8AS+IACEgEgQB5LAZBh9BlznYjAdzAYLQDEoBSvAGlAJNoItYAfYDfaBJnAEnARnwEVwGVwHd+Hq6QYvQD94Bz4jCEJCqAgN0UOMEQvEDnFCGIg3EoCEITFIEpKCpCNCRILMRhYipUgZUolsRmqRvcgh5CRyHulEbiMPkV7kNfIJxVAVVAs1RC3R0SgDZaKhaBw6CU1Hp6EFaBG6DK1Aa9BdaCN6Er2IXke70BfoAAYwZUwHM8HsMQbGwiKxZCwNE2NzsRKsHKvB6rEW+JyvYl1YH/YRJ+I0nI7bwxUcjMfjXHwaPhdfilfiO/BGvA2/ij/E+/FvBCrBgGBH8CCwCeMJ6YTphGJCOWEb4SDhNNxL3YR3RCJRh2hFdIN7MYmYSZxFXEpcT2wgniB2Eh8TB0gkkh7JjuRFiiRxSHmkYtI60i7ScdIVUjfpg5KykrGSk1KgUrKSUKlQqVxpp9IxpStKz5Q+k9XJFmQPciSZR55JXk7eSm4hXyJ3kz9TNChWFC9KHCWTsoBSQamnnKbco7xRVlY2VXZXjlYWKM9XrlDeo3xO+aHyRxVNFVsVlspEFYnKMpXtKidUbqu8oVKpllRfajI1j7qMWks9RX1A/aBKU3VQZavyVOepVqk2ql5RfalGVrNQY6pNVitQK1fbr3ZJrU+drG6pzlLnqM9Vr1I/pH5TfUCDpjFGI1IjR2Opxk6N8xo9miRNS80ATZ5mkeYWzVOaj2kYzYzGonFpC2lbaadp3VpELSsttlamVqnWbq0OrX5tTW1n7QTtGdpV2ke1u3QwHUsdtk62znKdfTo3dD6NMBzBHMEfsWRE/YgrI97rjtT11eXrlug26F7X/aRH1wvQy9Jbqdekd18f17fVj9afrr9B/7R+30itkZ4juSNLRu4beccANbA1iDGYZbDFoN1gwNDIMMhQZLjO8JRhn5GOka9RptFqo2NGvcY0Y29jgfFq4+PGz+nadCY9m15Bb6P3mxiYBJtITDabdJh8NrUyjTctNG0wvW9GMWOYpZmtNms16zc3Ng83n21eZ37HgmzBsMiwWGtx1uK9pZVlouUiyybLHitdK7ZVgVWd1T1rqrWP9TTrGutrNkQbhk2WzXqby7aorYtthm2V7SU71M7VTmC33q5zFGGU+yjhqJpRN+1V7Jn2+fZ19g8ddBzCHAodmhxejjYfnTx65eizo785ujhmO251vDtGc0zImMIxLWNeO9k6cZ2qnK6NpY4NHDtvbPPYV852znznDc63XGgu4S6LXFpdvrq6uYpd61173czdUtyq3W4ytBhRjKWMc+4Edz/3ee5H3D96uHrkeezz+MvT3jPLc6dnzzircfxxW8c99jL14nht9urypnuneG/y7vIx8eH41Pg88jXz5flu833GtGFmMncxX/o5+on9Dvq9Z3mw5rBO+GP+Qf4l/h0BmgHxAZUBDwJNA9MD6wL7g1yCZgWdCCYEhwavDL7JNmRz2bXs/hC3kDkhbaEqobGhlaGPwmzDxGEt4Wh4SPiq8HsRFhHCiKZIEMmOXBV5P8oqalrU4WhidFR0VfTTmDExs2POxtJip8TujH0X5xe3PO5uvHW8JL41QS1hYkJtwvtE/8SyxK7xo8fPGX8xST9JkNScTEpOSN6WPDAhYMKaCd0TXSYWT7wxyWrSjEnnJ+tPzp58dIraFM6U/SmElMSUnSlfOJGcGs5AKju1OrWfy+Ku5b7g+fJW83r5Xvwy/rM0r7SytJ50r/RV6b0ZPhnlGX0ClqBS8CozOHNj5vusyKztWYPZidkNOUo5KTmHhJrCLGHbVKOpM6Z2iuxExaKuaR7T1kzrF4eKt+UiuZNym/O04I98u8Ra8ovkYb53flX+h+kJ0/fP0JghnNE+03bmkpnPCgILfpuFz+LOap1tMnvB7IdzmHM2z0Xmps5tnWc2r2he9/yg+TsWUBZkLfi90LGwrPDtwsSFLUWGRfOLHv8S9EtdsWqxuPjmIs9FGxfjiwWLO5aMXbJuybcSXsmFUsfS8tIvS7lLL/w65teKXweXpS3rWO66fMMK4grhihsrfVbuKNMoKyh7vCp8VeNq+uqS1W/XTFlzvty5fONaylrJ2q6KsIrmdebrVqz7UplReb3Kr6qh2qB6SfX79bz1Vzb4bqjfaLixdOOnTYJNtzYHbW6ssawp30Lckr/l6daErWd/Y/xWu01/W+m2r9uF27t2xOxoq3Wrrd1psHN5HVonqevdNXHX5d3+u5vr7es3N+g0lO4BeyR7nu9N2XtjX+i+1v2M/fUHLA5UH6QdLGlEGmc29jdlNHU1JzV3Hgo51Nri2XLwsMPh7UdMjlQd1T66/BjlWNGxweMFxwdOiE70nUw/+bh1SuvdU+NPXWuLbus4HXr63JnAM6fOMs8eP+d17sh5j/OHLjAuNF10vdjY7tJ+8HeX3w92uHY0XnK71HzZ/XJL57jOY1d8rpy86n/1zDX2tYvXI6533oi/cevmxJtdt3i3em5n3351J//O57vz7xHuldxXv1/+wOBBzR82fzR0uXYdfej/sP1R7KO7j7mPXzzJffKlu+gp9Wn5M+NntT1OPUd6A3svP5/wvPuF6MXnvuI/Nf6sfmn98sBfvn+194/v734lfjX4eukbvTfb3zq/bR2IGnjwLufd5/clH/Q+7PjI+Hj2U+KnZ5+nfyF9qfhq87XlW+i3e4M5g4Mijpgj+xXAYEXT0gB4vR0AahIANHg+o0yQn/9kBZGfWWUI/CcsPyPKiisA9fD/PboP/t3cBGDPVnj8gvpqEwGIogIQ5w7QsWOH69BZTXaulBYiPAdsivyampMK/k2Rnzl/iPvnFkhVncHP7b8Ah9d8bcAadJgAAAA4ZVhJZk1NACoAAAAIAAGHaQAEAAAAAQAAABoAAAAAAAKgAgAEAAAAAQAAA1SgAwAEAAAAAQAAAhkAAAAAk40P6wAAQABJREFUeAHsnQXcJMXRh/tw94Pg7hISLLgF16CBoMEhEIK7uwd3dwjuzuEOh7u7O9wB7zfP5KtNbb8zs7P2yt6/7rc3szNt80zPvl1d1TUDhgwZ0hUkIiACIiACIiACIiACIiACIiACdRMYru4cyiACIiACIiACIiACIiACIiACIpASkEKljiACIiACIiACIiACIiACIiACDRKQQtUgOGUTAREQAREQAREQAREQAREQASlU6gMiIAIiIAIiIAIiIAIiIAIi0CABKVQNglM2ERABERABERABERABERABEZBCpT4gAiIgAiIgAiIgAiIgAiIgAg0SkELVIDhlEwEREAEREAEREAEREAEREAEpVOoDIiACIiACIiACIiACIiACItAgASlUDYJTNhEQAREQAREQAREQAREQARGQQqU+IAIiIAIiIAIiIAIiIAIiIAINEpBC1SA4ZRMBERABERABERABERABERABKVTqAyIgAiIgAiIgAiIgAiIgAiLQIAEpVA2CUzYREAEREAEREAEREAEREAERkEKlPiACIiACIiACIiACIiACIiACDRKQQtUgOGUTAREQAREQAREQAREQAREQASlU6gMiIAIiIAIiIAIiIAIiIAIi0CABKVQNglM2ERABERABERABERABERABEZBCpT4gAiIgAiIgAiIgAiIgAiIgAg0SkELVIDhlEwEREAEREAEREAEREAEREAEpVOoDIiACIiACIiACIiACIiACItAgASlUDYJTNhEQAREQAREQAREQAREQARGQQqU+IAIiIAIiIAIiIAIiIAIiIAINEhihkXy//fZb+PzzzxvJGkYfffQw2mijNZQ3L1Mz7aHMkUceOYw11lh5xZc63kwb2sGkVqN//vnnMGjQoPDmm2+Gjz76KLz//vvhq6++CuONN16YeOKJw4QTThhmmGGGsNBCC4WRRhqpVnE6LwIiIAIiIAIiIAIiIALDJIGGFKovv/wyTDrppA0DG3PMMcNkk00WppxyynS74IILhpVXXjlwvBFptj1W59RTT50qE4svvnjanjnnnDMMGDDAThdum21Dq5nkNfb+++8PF110Ubj88svDt99+m5escpx2rb766mGjjTYKCyywQOW4dkRABERABERABERABERABEIYMGTIkK56QWCdworRall//fXDuuuuGxZbbLEw/PDDly6+Xe1BaTzooIPC3/72t5ptaVcbGmUSN5j27bTTTqkyFZ8r+32DDTYIhx56aBg4cGDZLEonAiIgAiIgAiIgAiIgAh1NoE8pVEZ60UUXDeeff35ppa1dyoy1Z/nllw8nnXRSoVWu3W2ol4m1nS1WqVVWWaWURcrny9rHYnXvvfeG2WabLeu0jomACIiACIiACIiACIjAMEWgTwalsAH7nXfe2Sduxk033ZSuJfrss896rT2NMnn++edbpkxx8bgJLrvssuGtt97qNRaqWAREQAREQAREQAREQAT6CoE+qVABh4H7csstl1qG+gIsgjass846YejQob3WnHqZEGximWWWaYllyl/0J598kippv/76qz+sfREQAREQAREQAREQAREY5gj0WYXK7sS//vWv8NBDD9nXXt1iJTr55JN7tQ1UXpbJ0UcfHVB+ygiufPPNN1/pwCAvvvhiuP7668sUrTQiIAIiIAIiIAIiIAIi0LEE2raGavPNN6+ChjUDi8k777yTuouViTBnBRAc4umnnw5jjz22Hara1lq/hLJw8cUXV+XhS1dXV3jvvffCK6+8Eq699to0hHi3RNEBIgGiTAw3XLUuWqsNFNOXmNhlHXzwwam1afrpp08jGnKfXnrppbDDDjuEu+++25Jlbv/whz+ERx55JPOcDoqACIiACIiACIiACIjAsECgLQoVCgwKRp788ssv6WD97LPPDv/5z3/yklUdJ9LeOeecU3XMvtRSZmq1h3J4LxOBJ3bbbTcrNnd78803hyWXXLLqfLNtaDWTf//732HnnXeuamP8hdDpq666anw4/f7TTz8FIgyiaBYJ68qafYdXUfk6JwIiIAIiIAIiIAIiIAJ9mUCvKFQeCO58a665ZinXtOeeey592azPz36zyowv77jjjgu77LKLP9Rtf6+99gr77LNP1fFWtqEVTDbddNM0UmJVI92Xc889Nw1R7w512/3hhx/COOOM0+24P/DEE0+E2Wef3R9q+/4hhxwSbrvttrQeLIV33XVX2+tUBcUEvvvuu8B9ITrnIossEvbbb7/MZ7W4FJ0VgWGLABNpPDu1ZIwxxggjjNDQayNzi/7www/Tic1333039R4ZZZRRwiSTTBJmmWWWQFTZVteX2xCdEAEREIEOINDaX+gGgMw///yp29jSSy8dXn311cISsGbtvvvuhWmaPbntttuGSy65JDz11FO5ReG22E5pBZPXXnutsIkrrrhi4XlOjjbaaOHPf/5zuOOOO3LTvv322z2uUL3xxhvhwQcfzG2TTvQ8AVxqjzrqqLTiK6+8Mg3ecsUVV/R8Q1SjCPQjArwbsOy6XFzfp5xyyjDddNOlk5B4STSi9Dz77LNhzz33DLfccksuqQknnDDsv//+YZNNNslNoxMiIAIiIAL/I1C9EOh/x3t0jz8UuP/VkgsvvLBWkqbP80JhlIgiQYlotzTLpEih4vrKuunVsj6NOOKI7Uah8vsBgUGDBlW1sparaFVifRGBGgR+/PHH8Pjjj1c+WFU6QYYMGVL6Mog0y0QSVuCVVlopTDXVVOmL1uspA7f2ueaaq1CZokEEM9pqq61SSzNrjSUiIAIiIALFBHrdQmXNI8LcP//5z8DanzzBgkVwijnnnDMvSUuOTzPNNIXlfPDBB4XnW3WyGSa4JOJOkiUEkygrWIOKpJbCVZRX5zqHwBprrBFYk2cSB2Cx49qKQCMEUKAWWGCBStbtt98+HHHEEZXvw+IOSs++++4bbr311tSrYuKJJy7EgCJGhNgs4XecdwvGwaJw4+XvHYqYJs+yyOmYCIiACPyXQJ9RqGjOlltuWahQkYaX/bZboSIaYZFMNNFERadbeq5RJq0Y0DIrXBSynmAf+NxLRAAX0osuuihceumlYcEFFwwbb7yxoIhA2wgMGDCgbWX3ZsEoibj1eeF3GKUGCxVrR2PXeKxWs802W3jggQfCTDPN5LNW9vFYYF2tF5SoY489NrVYjT766OG3334LL7/8cmr14jk2Yb3tH//4x/Tvsx3TVgREQAREoJpAn1Kopp122jDzzDOnYcmrm/m/byykbbc8+eSThVXUsmAVZq7zZG8yOfLIIwuDhSy88MJ1Xo2SdyoB1nIQXIaPRAREoDECPD+4e+cJ7ndMch122GFVbntYloiEy7mRRhqpW3YsTF7wfrjuuuvCuOOOWzlMgB/+/uJ+j+s7EyQmhx9+ePraj/h1IXZeWxEQAREY1gn0iTVU/iasvvrq/mu3fWbp2im8vLfWC2t7UqHiWnuDyQsvvBAOOuigQtTLLbdc4XmdFAEREAERaB0BLHO4Pl599dVh7733riqYYBNZv9koYbFCFStTviAmR0455RR/KLWO9ZSre1XF+iICIiAC/YRAn7JQwayWstJOCxXrszbaaKOat47ZvZ6UnmZCCPhalgZmUcuwqpfTN998k7q04M/Pu8F44fAMM8yQ+1LnsuUPHTo04PbCi5zpQ4QhnmyyydKF3US0qiUs/Mb1BmH2lvwmhJfn5dB8EFx2sCxOMMEElqSu7RdffJFaaV9//fV0thrXnDJt5KXMPgQzgUfMNer5558PrIf78ssv07YRGtnPTvsGcq2k5QXP7OPuw/VYWT6t36du2oCMOuqo3WbKube2wB0XI4tQ9vXXXwcGgwzYWPdHFDPue177fJ3xPvcIbkTi/PTTT8PAgQPD5JNPnpZJm5qVvH7ANRAZ1CZ85plnntyw8dwD+NLG77//PrD2xdrYiAUg7tuwxS0Z969G+iD34c0330zbR3t4TniheRn33jw+cG/kOYEPfYK+44XfBpibsL6HqKR5EjOq9/nPe7ZoG6+OIFAR7+7jOcHltd3CbxAKFRz8WjIsV9tss016/60NH3/8se2mWxSyWs8WIdTjCK/0V/qCRAREQAREIINA8gewq95PMiAl7E/uJ1lbU3eZ1oZk5iy3XOpMBvLdyi7TnuSPSlf8SdZKdSVKVFcSjr1riy22KKzXrjdxiehK/og11Aa7xnq3jTCptw5LnyhTXYnCWJNF8nLjbgysjEa2yYCkK1kwnVvvX//6165koJzWucEGG1SlK6ovGeB27bfffl2JQlKVx+4n2yRiVlcSQrjwejyTJKhHmjZZFN6144475pZLOxNFobBcazt9M1njkNtO2v+Xv/ylK1FycsvbY489qtpCmfTvueeeu+q4XXvy4ub0mbA2JIPXriT0eWZanum11lqrKr3lYzt48OCqfCeccEJVO2+88caq89dcc01XMsDuSgLRVB23trFdaKGFuhJLaVU5vk6/z31OArF00U5fhu1zPBmAdpHO56t3P6sfJOtQutV7wAEHdKuHe5GsLctsH+1MlMiuxDLQlSim3fJmtTNRfLqS0Na5fYYyl19++a4kOl6p8rhHySA6t32cS6z3hWVl8Wn0OeF5t/tXa7vuuutmtqtVz3/Ws5UEg0j/Hvm2Lb744pntyLp/HOOZ9/kTRbau/IlSmfYbX0Zijaoqg/vvn4usvpnVvkQxq2pb4r1RVW5WHh2rfzwlZmKmPtAZfaDPufyNN954yd+GfEn+QOafzDmDfzkztvHnd7/7XRrgApe60047LSd39eFkAF1zpr46R/Pf2sEkq1XM+BKO95FHHsk6XTlGZCnegdIqwTrBjD4LpPOERdLM/hKUpKywFo6IholCVbgWDBfPZZddNn3HWV5kxOQHr6paLAwsBD/66KOrjvsvRNXCukQUriJh3QNWoDPPPDO3nUT0ws0HTo899lhmcXEbybPCCiukoaazMlxwwQVp+7BIYl1KFJjAe3GyhGeIKH6U5y0DlhYLQJHE57FUJZMYhUFo7r///vQlo7x/rkjoP9znZKDYLUqZ5aP9Bx54YJoOa12jEjPmXT5ETqP8IoEdwXTOOeec3GQEGyBUNc8gVqwiSRTYtDyeRe5zntx0000hUahDoizlJUmtijvvvHN6b4veOcc52sa7AM0SGRca82nmOfHW1rieMt/b+fxj6SayZSN/j8q0vWwarK78vnnhPYpe5phjjsAzzr3hs9tuu/nTuftx8Iu8gBe5BeiECIiACAxDBPqcQpU3oLV7ksy02W6PbxmYrL322j1eb08wYQDHmqhaL8xNrBSl/yCXAcWAa7HFFsscFGbda+pnfVct4Z01f/rTn0qXS3koR3EkrKx6vvrqq5BYi7qVndVe8jMIZW1eluAutOiii2YOzLLKY+COS9E999yTVVzVsdVWWy2zXJ+Iwfguu+wSeKF10cusLQ9cGUg2KzvssENAoSsjRKzEDTJLUCx4r06RUuHzkW6RRRZJ3QL98Ub2cSElEECWmDsj584777yw3nrrZSXLPHb33Xen7la4c2UJ94nfoqxrzuozlEF/Pf7447OKS4MNFL2uIs7Ec8LEUi1p5XNSq674fDuff+rifmYp0b0RWnyZZZapunwmImDfjOAuS0RBE1y8a7kJWlptRUAERGBYJNDnFCpm0ooEq1JvCGs6WMg78sgj93j17WbCmiKUGgYhRZK4D1UiQBWlq+cc75OJByasDcBfn+tmUMkA0gbxpK3VTtbRbLjhhlXNYKB56qmnpgNzymW9w6OPPpoONH3Ciy++OFx11VX+ULd91pe8+OKL6XGsOgyAqZNyP/vss5C4u4V4YItSQJ2xkNYLlhYUDcIXUx7rTm6//fbUsuLTxQvS/Tnbtxlm1lighMKSdmON8EJ9FtGLfo4lLHEXTOtG4UOJ9YJyyPlmBIZI4iIVsEAx08/sOet3ePeNF+75oYce6g+l+0w0bLbZZlXHGfgdd9xx6fvquCdYKVAW/Bo0ytt6660r67mqCqjjC+XwQbBSXXnllen6v+eeey61NHGc9yfFbaTPEIra3vtD/9lzzz1JXhGsblnWT+5hvHaRvoayRN+zPsMzgiLvBesjfL3wmxYrtomrakhcMtPyuM/0h8Tl1mcLJ598crjvvvuqjsVfmn1OsIhgpeJDP/TCOwvtHFusuybtfv6px55/fpeIisf94nk744wzrBk9tmWtJL/NXpp9Pvfaay9fXM3ASFWJ9UUEREAEhkUCySCmbr/oMmuWGimXPInrXZXfdnJPqr7jxx+XXas9cRn1fmfNTGJJ6Vavb0etNiSDnsL8vqx4vxEmcRl535NBQFey4LyKcRYfuCezng1fQ1b9rFuK62INT1baRBnpWmWVVbqlJ3+cPgnx2y1dnv8/63gSd7+q9Nwr1hP5cukDcVsTd75cJvGaIfImA/uqMpMBdVWZ1MsxX6/tJwOkbmtl4rTJgLmqPOq88MILM8tjvVF8PfQD1rJZnbaFBWtxfHrWQNl5tsmAt+p8vIaK9D4/+8ni+Fx+tNunp22+PvZPPPHEqjTwS5SZbulIm7hVVqWl7Pga4vKzvmf1A+51VlqOJQPuqnpZz5b3HMHMXzP7rAHyZWetcSta/7fddttVlZm4h1XKSxSRbn2KdTO+Ptvn+WMNnW8fLOy8bbP4NPucUDb31dfNekurM9624/nPerZ4huK66/3e7Boqqy9ei5i4ZzbcNtbHetbsx781Vq+29Y+fxEzM1Ac6sw/0OQtVrfUNtd4Gn/z4t1SY+cQNrjejG7WLCVHccB8za0EeOGY/sSIURdHKy1t0nJlvL8z24nqWJUQb415gQaklyWC8Kgmz6fPPP3/VMfuCaxbWAqKYmWB1qOVSlwzewxVXXJHLZKmlluq2tuGyyy6zKtItbjm429nnhhtuyI2khrsNL3n2gvWjSHi5bmxdsvSx1YTjrGHLer5wY4pfFB1bDKzcslv4cf/z+hR9gXfimNBHkz9C9jXdxpYVrC1EhMwS3AK5X15qWSJ92rx9+hb3Oku4v1itTLCeFV0za8oSBciSp9tkcFv1HfdBL1jullhiCX+oap+ob9RrQnvNhRhLo3cbZH0c757LEp4/rC+4GppgOSaiYpG04jkpKj/rXE88/zxXsRUnqy09dcxbYKmzUQsVf2vi3wxCqJeJ8NhT16p6REAERKAvEuhTChUL1WstQM8a8LULLIOBxCqShsluVx21ym0XE1yhUKb8gCqrLQTsYEF9K0JO+/J/++23dHDpjyUWh8KAH2OPPXbuOhArh3UtuN+YEBSi1roogn7ELmWxsmfl2ZYAB7XC2e+6665VrmYo5n6gQ+hy3htjnzylz+r0CgbHagUuKAocQoCWWDktqp+F7V5qKXM+bdY+L4UuWpPBAJ61Tl58nez74Cm4DtYKV82z7K+Ze2zKha+nnv0ixn4NCmWilMK9SOKgINdee20ledy3uRbWohUJEwZMRCTRANMPfdLEl80x1kX5tV+Wzrb8BqD8eyEoR5G04jkpKj8+FzNq1/Pf197BN84441ShyAocU5Ug4wuu36zHMjdWkjCx8fe//z0jtQ6JgAiIgAh4An1KoWLtQa2oSX5A5C+kaB/FCP/2+JOEwi3Klv5hyVvIXZixhSfbwYS1DwRs8H84s5qMhQMrwEgjjZR1uqljrPfwyhyz6LWiGVLh73//+8J6sbp58TPq/ni8T8Q+L14p88dtP3Ftst3cLe+KScJIV52nDzYiKKB5QQryypt33nnzTqXHPW8sdEUKjrdyFBZa8mTMJSsb7/Py4vsrwSi8lL3PKFUmlMfi+0YFq4C3bMblxEE+avVd8rNG1Pct35/9PmlRgGu9G4x0KH1E5uODBdiUJqJLepl11ln918x9Aqh4qdWf/bX4fH6/lc9JzKhsv6j3+ef3sy9JPLnin+0y7cSauuKKK1b9JsMOZbxMHytTh9KIgAiIQCcT6FMv9s1ahB3DjxffxufzvseDM9KxkJygAH6gFudnhhULR09axnwbWs2EMMqrrrqqryJzn5lswlC3648pCpWXsgMfXlTKQNYrY76c5N1i/muILStVJ92X2NpUyw2ybAhh6icsu0neAB5LCQNwlF0CChBcgEEO18lLTYv6qJUdb7HolRVe5Fkkre4H8QA2q+541t2n8ZY+juOqRkCRWhJP2NAPG322aymZcV08d7Xy0H6fzysscd8uo6AV8UjWxVSdJnR/vYJVo0ha/ZwU1cW5mFG7nv96FZZa7W72fPy7ErsAFpVP4Bv6pp9EYqKgyD21qDydEwEREIFhkUCfUaiIZFZrQMS7ggYOHNiy+8SAk+hatd7LkSxyTiOHtazikgW1mgmue2XCN6PE5a1lKtn0mslihQrXnLKC8oVimCXxQLvsgI5Ze9pggwoUGdwtsxQJBitF1hzfrthNLx74kJb7wvuHGlGafF39aR+rRDMSD5wpyysiZctGcW2XZCkbjbQRyyTRReNrxmW0UUGBj/tbI23L6s/WplY/J1Zu0bYnnv+i+nvrHFFBvZRVqOhbRHD0r8sgL397armn+vq0LwIiIALDOoE+4fJHCFrcy2pJvFi2Vvoy51kIjktgkbCQu9bi66L8jZxrNRMWlJdRpnDxa7cyBY9YUalnLQvub3kSl1uUNi6jnjbEefO+xy9A9e0jyAJrYPLeaZNXpo4nYccSZbcVMsYYY7SimLaVwW+T9Rlz1bPK4pcl2/Ey21bxq8cKWtSuouekKF98zljZ8d5+/q0d7dzi7hevZStjdeX3jr+7Pi/97a677gpTTDFFO5usskVABESg4wj0uoWqrAsa5IlC1WoZffTRA259vA+pSFjUff755xcladm5VjPBHSp+z01WY3FNi18SmZWuFcdw3fNiliF/LG+fgBp5Eg8kiFqVF4XNl4FyY++W4TiuWfHgzNJjvcKyMf7449uh3G38EmI/c4ySSyAOL6xRIRAIawWZIWbAyiCHDwMfXtAq+e9aI8+Bd03VO+FC4IuylkZfV9n9uC/iylnG5c+Xj2XK1jDG7+BjfSVW+0aEyI30KW+lyrKo1Sq7SCFt1XNSqw3+fMy8Hc+/r68v7HuFiPYsvfTSNScJUaiZOPNRKOkPgwYNyo2U2ReuVW0QAREQgb5KoFcUKv6IM3g//fTTq1wNiiAxYGrX4IdZOl4mygAgTy699NJ0zVWZRdZ5ZRQdbwcT/mjyAlhe7Fok/CElPHOtIAZFZdR7LlaoHnvssVJF4NJTdJ+8wkKBDDrLCNHBvGStufPnUZSIVFdLYkXRX3cc8CR531ihpTZ2Z6pVdyefj92R3nvvvVIKbk8yiRUgXqpbdk1PVjvjvh0H5sjKU3Rsqqmmqri4kg43zKJ1a0Vl5Z1rxXOSV3bW8ZhRu57/rLp741jyjrhur2coM7GAm/tZZ51VaTJ/A+68885QJjBJJZN2REAEREAEKgTaolChHMQz6QzumQFl4OpnRSstKdhJXiobcM1rlxAOeL/99gtbb711YRUoJ7wrqBHpaSa40CQve0yV1lrtXWmllcL999+ffmqljc8zAGskrG4cXAIliTUi8SA0rq/W+4/itVhEMqPv5VmbrPynn37adtNtLcX50UcfralQ4ZKFVcKLrelKXpRa9f4v6qvl9hq/k8iXO6ztx2vTYs59gUcceIOgI41alLieOAgFAUxw24pdAeNrx+KNVZfngPd+8btAHvqcV/hRPhZaaKE4e1Pfm31O8irnWrKkp57/rLp749i+++5b9TtCG4jWVyRMHvLOOS+33nprmHPOOf0h7YuACIiACNRBoC0KFfXfeOONdTQjPykzZ7hG4Z7TTll//fXDwQcfXLiwnffK3H333YF33jQiPcnkpJNOKqVMcR0EA6kVECTveokG1YhChYLDTKp3eePFtbyHLC9gAYEsttlmm7ympMfx/SdohQ2wiZJ21FFHhZ133jk3H4p+/H6d1VZbLTc9JwhBzeC4aEaXF396axrufOYmSGQtL7HFxZ9jn/fKxO8NitMMS9+nnXbaqiAiPJe4PtVSWHB9tdDaKPWnnnpqTWW7Ua5xRFKeyXXXXTcUWT+ZeGHyyELkL7bYYpU1jbgLLrDAAhWrPkEkGFDzu5UnrP30UT0pA4UKYdLLuzHj1oznQFHER6xipDPheSx6sXCzz4nVE2/z3rPUU89/3J6e/s5kDWxjKzd9oSgCIS/pZfLQCy94Lhtl1efTvgiIgAiIwP8ItFdL+V89De2hTOHjXe+6g0YqY62CHyjklcGALG92NC9PK4+XZUKo7b4urBXywkz6YYcd5g9V9pmJ32CDDQoVXku80UYb2W665Z4RtSpLWDu1zjrrVCk+9Leil9xaOShdhDbPEkIOx7PARNMyid1XH3jggeBfXGvp2GK5Y12EpJrAhhtuWHVg5ZVXDkUWTFycWE+I0sAHRbqW5bKqgjq/oLD5dZ8o1yhZX3zxRWZJ9HFe5cBvnrUxDjwRXzPXc9VVV+WWt8kmm1SdM+sUB1GE+D0xYWDNKyLyAjkQ/ICJJ2sb26I1VFZuM8+JlRE/L0yY5P0O99Tzb23ryS19hN9J1oXGyhTKNv0nTy666KKKMm1pcPMr81tn6bUVAREQARHIJtBnFSrcUXBTadQalH25xUeZPS56USe5+UN+zTXXFBfUprO9waRNl5IWu+CCC6YBGHwdKLU77bRTeOWVV1J3ph9//DGdkWeW/Y477vBJc/exmMUzrigzWKqY1WfAiIXonnvuCbg7+pDBFMravlpuVKTjXVUE8cDyiGWBclnLc+ihh4a1116bJBXBRQ2F0ISBvLdgkB/rClYWBk2UhSUFCwKWrfglsVbOsLzFkhO7/qF4okDjwoQVA6sm93fNNddMQ9N7Xmap8cdavU+f84LFlN80FKFHHnkk4PpJn6EP8bJjbzEiX+wGikITvxSZvn3QQQelCjn9hnU1uPDyzMR92ytkuDpjsfBCCH8UU7wCCNKCpYxnkRe8TjfddFWBWxjAl1l32cxzYm2LX5eBq+J2220XcOm158XS9tTzb/W1counwNlnn131IcosfZrfD9a9Zd1XJoHOOeec3N8tlN+4L/GS6zfeeCOcd955pT48UxIREAEREIFsAm1z+cuurtzRzTffPB1w8Ae/J4VBNBH/aoUXZ0EvfupEyuop6S0m7b4+Bpy4UqJQmDDzGs++2jkWneNmh4tXnnAfGQASNMLKZbvHHnukn7x8HP/HP/5RMyogSjdrx1By+MTrBbPKR0mL+wsvT2a22YTBNoPZPPGujHlphqXjWJUZfPoZdu4zygqfIuEZXnLJJYuStOQcrom4+nlXVRQVBsi1hImb2DJD38bSxjVb36YcXsLNp0hQnuLycLu97rrr0nehWV6eRz5FwnPIAL5IWvWcWB1MfqAYmBDEhQ+CcmXKa7uff6u/Hdsy/SKul4kY7oW5E8fnmTyKvQFIgwtxPW7ETFb0VBTY+Br0XQREQAT6OoE+Y6Fihm2/xLeb2VDW1fS0MmU3ij888ay3nbMtM668r6nd0leYtPM6uUYWrteyDNIG3JNwpZt88slrNomXnmIBIPx4WWH9AS81riUoU2VdUWkzyl9sVaAOBsVY3bzbVV7drC9DIZRUE5hrrrlSNz/6UVlh0FpL+ShbVpl0m222WcDdqqzQH1hL6C2YPu8MM8wQiIpZtm9THtaF2P3Pyjz33HMLXcUsnW15VnlXUa1ntlXPidVbpCTHLwpv5/Nv7entLfefiSd+E/OUKdqI1VIiAiIgAiLQXgINKVTMADYq/HFHYWFWDasLi6qZDWXxNANGXBrqlVrtmWyyyUoXSUCEMmupYtecWm0oakA7mBDNqyeknoFsXnuYxX/44YfTQS4ssoQIjCjb88wzT9W6jbz0lIGLEuWecMIJhYNPXGFQvghcUXZNDUod77jBopnXBlzKiB6Ia2OeLLLIIql7FmttssrhWcEdjIET70wrEiw27ZSs9ll99q4k+x6vrWln24jshnswA+6i/sh9xjrEb06jEl9n2XJwOaRu1rjkceQ4k0r8FmKNKZJpppkm7bNYv4oUKyxQKF9FrtP8dh1++OGpkrTGGmvkVks9KF/0e5S6MtKq54S6uGYswnmKZtyeVj7/7eq/Zculb+DyTb+gD+HSyX1goiUviI/xaFVAp7x+a/VoKwIiIALDMoEByaL8rmEZgK69bxFgEf4777wT3nrrrXQ9AC/qZCY8dpert9UsYCe4A+tV2KKcoGjzKaN8YmGydUwMbFDATJgBJqAElkssq2ONNVYaya1MuVYGW9pIGW+//XZgoMUANl474tNrvzsB7gX3l/vx3XffpS/FZSBOP2rVwLJ7rfUdIRAK/ZD1fOzTX+jj/h1l9ZTo+zbBaGBA1EgmKmop4Vn1wI32wZDnjnYx0RUryVl5e+I5oV64sf6H9WI8KyjSsTujb59n1Mjz78vSvgiIgAiIgAjEBKRQxUT0XQQyCBQNFDOS65AIDJME9JwMk7ddFy0CIiACwzyBhlz+hnlqAiACIiACIiACIiACIiACIiACCQEpVOoGIiACIiACIiACIiACIiACItAgASlUDYJTNhEQAREQAREQAREQAREQARGQQqU+IAIiIAIiIAIiIAIiIAIiIAINEmg8/nmDFSqbCPRHAoQnfu2119KmE0FNIgIi0J2AnpPuTHREBERABESg8wkoyl/n32NdoQiIgAiIgAiIgAiIgAiIQJsIyOWvTWBVrAiIgAiIgAiIgAiIgAiIQOcTkELV+fdYVygCIiACIiACIiACIiACItAmAlKo2gRWxYqACIiACIiACIiACIiACHQ+ASlUnX+PdYUiIAIiIAIiIAIiIAIiIAJtIiCFqk1gVawIiIAIiIAIiIAIiIAIiEDnE5BC1fn3WFcoAiIgAiIgAiIgAiIgAiLQJgJSqNoEVsWKgAiIgAiIgAiIgAiIgAh0PgEpVJ1/j3WFIiACIiACIiACIiACIiACbSIghapNYFWsCIiACIiACIiACIiACIhA5xOQQtX591hXKAIiIAIiIAIiIAIiIAIi0CYCUqjaBFbFioAIiIAIiIAIiIAIiIAIdD4BKVSdf491hSIgAiIgAiIgAiIgAiIgAm0iIIWqTWBVrAiIgAiIgAiIgAiIgAiIQOcTkELV+fdYVygCIiACIiACIiACIiACItAmAlKo2gRWxYqACIiACIiACIiACIiACHQ+ASlUnX+PdYUiIAIiIAIiIAIiIAIiIAJtIiCFqk1gVawIiIAIiIAIiIAIiIAIiEDnE5BC1fn3WFcoAiIgAiIgAiIgAiIgAiLQJgJSqNoEVsWKgAiIgAiIgAiIgAiIgAh0PgEpVJ1/j3WFIiACIiACIiACIiACIiACbSIghapNYFWsCIiACIiACIiACIiACIhA5xMYoZ5LHDx4cD3JlVYEREAEREAEREAEREAEREAEOprAgCFDhnR19BXq4kRABERABERABERABERABESgTQTk8tcmsCpWBERABERABERABERABESg8wlIoer8e6wrFAEREAEREAEREAEREAERaBMBKVRtAqtiRUAEREAEREAEREAEREAEOp+AFKrOv8e6QhEQAREQAREQAREQAREQgTYRkELVJrAqVgREQAREQAREQAREQAREoPMJSKHq/HusKxQBERABERABERABERABEWgTASlUbQKrYkVABERABERABERABERABDqfgBSqzr/HukIREAEREAEREAEREAEREIE2EZBC1SawKlYEREAEREAEREAEREAERKDzCUih6vx7rCsUAREQAREQAREQAREQARFoEwEpVG0Cq2JFQAREQAREQAREQAREQAQ6n4AUqs6/x7pCERABERABERABERABERCBNhGQQtUmsCpWBERABERABERABERABESg8wlIoer8e6wrFAEREAEREAEREAEREAERaBMBKVRtAqtiRUAEREAEREAEREAEREAEOp+AFKrOv8e6QhEQAREQAREQAREQAREQgTYRkELVJrAqVgREQAREQAREQAREQAREoPMJSKHq/HusKxQBERABERABERABERABEWgTASlUbQKrYkVABERABERABERABERABDqfgBSqzr/HukIREAEREAEREAEREAEREIE2EZBC1SawKlYEREAEREAEREAEREAERKDzCUih6vx7rCsUAREQAREQAREQAREQARFoEwEpVG0Cq2JFQAREQAREQAREQAREQAQ6n4AUqs6/x7pCERABERABERABERABERCBNhGQQtUmsCpWBERABERABERABERABESg8wlIoer8e6wrFAEREAEREAEREAEREAERaBMBKVRtAqtiRUAEREAEREAEREAEREAEOp+AFKrOv8e6QhEQAREQAREQAREQAREQgTYRkELVJrAqVgREQAREQAREQAREQAREoPMJSKHq/HusKxQBERABERABERABERABEWgTASlUbQKrYkVABERABERABERABERABDqfgBSqzr/HukIREAEREAEREAEREAEREIE2EZBC1SawKlYEREAEREAEREAEREAERKDzCUih6vx7rCsUAREQAREQAREQAREQARFoEwEpVG0Cq2JFQAREQAREQAREQAREQAQ6n4AUqs6/x7pCERABERABERABERABERCBNhGQQtUmsCpWBERABERABERABERABESg8wlIoer8e6wrFAEREAEREAEREAEREAERaBMBKVRtAqtiRUAEREAEREAEREAEREAEOp+AFKrOv8e6QhEQAREQAREQAREQAREQgTYRkELVJrAqVgREQAREQAREQAREQAREoPMJSKHq/HusKxQBERABERABERABERABEWgTASlUbQKrYkVABERABERABERABERABDqfgBSqzr/HukIREAEREAEREAEREAEREIE2EZBC1SawKlYEREAEREAEREAEREAERKDzCUih6vx7rCsUAREQAREQAREQAREQARFoEwEpVG0Cq2JFQAREQAREQAREQAREQAQ6n4AUqs6/x7pCERABERABERABERABERCBNhGQQtUmsCpWBERABERABERABERABESg8wlIoer8e6wrFAEREAEREAEREAEREAERaBMBKVRtAqtiRUAEREAEREAEREAEREAEOp+AFKrOv8e6QhEQAREQAREQAREQAREQgTYRkELVJrAqVgREQAREQAREQAREQAREoPMJSKHq/HusKxQBERABERABERABERABEWgTASlUbQKrYkVABERABERABERABERABDqfgBSqzr/HukIREAEREAEREAEREAEREIE2EZBC1SawKlYEREAEREAEREAEREAERKDzCUih6vx7rCsUAREQAREQAREQAREQARFoEwEpVG0C25eK/e2338Ivv/xS+fC9J+Xpp58Oq6++elh44YXDNddcU1X1r7/+WmkXbaxXevva6m2v0ouACIiACIiACIiACHQWgZYoVN9++2249957w8UXXxyOO+64cP3114e33347dHV1dRatfno1J5xwQhhttNEqnwsvvLBHr2TrrbdO+8QjjzwS1lprrfDll19W6l9jjTUq7aKNr7/+euVcmZ1jjz22Kv+ll15aJltumh9++CHQziuuuCKcccYZ4b777qtqb17GIUOGBPJmfYYOHZqXrfA4z9Dtt98ezjrrrPCf//wnvPHGGzWfqe222y7MN9984cADDywsu8zJDz/8MK3/ySefDD/++GOZLJU08Bg8eHC49dZbw/vvv1853uzOwQcfnF4ffaqWtJJFrbqKzvdFjkXt1TkREAEREAEREIH6CIxQX/Lq1AwUjjzyyHDiiSdWn/j/b2OOOWb4y1/+Eo4++ugw9thjZ6bRwc4mgNXp5ZdfrrpIFIVxxx236lhvf/nmm2/Cv//973RCgAmCWKaeeuqw5557hg022CA+lX7fYYcdwumnn555joNzzz13WHDBBcMqq6wSFlpoodx0nHjssccCisNNN93ULR3P1Nprr50+d6OPPnq3888991x46qmnwuyzz97tXJkD3K999903nHfeeeGTTz6pyvKHP/whHH/88alCU3XCfXniiSfCjjvuGB588EF3NATavc4664QjjjgiVYCrTtbxhUmbV199NSyzzDI1czXLomYFBQn6OseCpuuUCIiACIiACIhAnQQatlAxaz3PPPPkKlO0g4Hp+eefH+add97w7LPP1tk0Je8EAiOMMEJA2TBBmZhzzjnta5/YYkFZfPHFU6uOV6ZQAkzefPPNsOmmm4YtttgitULZ8bLbxx9/PFXYllhiiXDJJZfkZrv88stTxStLmSIT7TvzzDPDIossEmhTKwXL4corr5wqa7EyRT0oarhtotRkCcfnn3/+KmXKGNJuFE7yv/POO1nZax776KOPUmWKhAsssEDN9L2VoK9z7C0uqlcEREAEREAEOpVAQwrVe++9F5ZaaqluM9h5kBj4zTXXXKkLUF4aHe9cAlh2UKjvvvvucOedd/apC8WVbemll64o/Ch8tBHXvc8//zxVYG688cbKAP6cc84JG264Ye41TDjhhOHRRx+t+pB/7733ruQhP8diwaqz3nrrVQ7vsssu4a233gq4z2FBe/jhh1OLLwngidWLNrZKsDbfcccdaXGbb7556mJI3V999VW4+uqrUysTJzfaaKPw008/VVX76aefpsc5iBKFiyKKBe3j+TcXPdq91157VeUt+wVXTBPcGvuq9HWOfZWb2iUCIiACIiAC/ZVAQwrVlltumQ40/UUzc3/zzTeHL774Il13ss8++1QGYJYOd6FawkAWV8JGAhRY2eRlgFev0HbyNbP26+uvvy60YDDI5BrrkVYwKaovHhwXpW303IwzzphaXgYMGNBoEWm+n3/+uan8cebDDz+8YvXApe2GG25IrShY1pCRRx45nTxgLdBKK62UHrv22mvDiy++mO7H/+GGhwXOf5h8QKFC0TK56qqrbDfdorhstdVWlWM8PwcddFCYZJJJ0mOjjDJK+OMf/xhYI2bro7D6XHDBBZU8zezwzGBNRjbZZJPU8jzZZJOl31nbtsIKK6SWsfRA8l/s0nfbbbfZqXS9HKzMJXHSSSdNXSn/9re/pWm4hkb63P3335/m5z71NZdRu/j+wNHaqq0IiIAIiIAIiEBrCNStUBGxzQ+eaAaLvwl8sOSSS4YxxhgjXWPBLHS8tooBW5YrEccYQDKAG2ecccKUU06ZrrPAqnXaaadlKlesxfj9739f+TBYJTDGmmuuGSaaaKLAIG788cdPZ/xxFcoTrBGs8xpppJHC7373uzSfDaKZZc8S6vB1Mxg+5ZRT0oH4wIED02ug7ffcc0+anfOsI+P6aBvXuNhii6XrVLLK51gjTPLKyjqO0ooSTJvGGmuslNWqq66aBmSI0+PK5a/3uuuui5OE7bffvioNVkyTddddt3IOV616lSLu0fLLL5/eI6wfrGfCjbBZ6wyK6iGHHJI2k3IJRIHykCX0iVNPPbVyiuAr9QpK1l//+tc0Gwqal7vuuquipGEx23333f3pyj4K6U477RRmnnnm9BjrvoiUmCUM7nEdxEIIP+7RZZddlhlk47XXXgsjjjhi2v9xbcwSXHdNWJ/k5aGHHqp8/dOf/lTZ9zu0weSFF16w3dJbGCG4TdYr9bCwsnlucc+EB2u2WD938sknpxMiTLzwm8WHNYEm/YGjtVVbERABERABERCB1hD47zR8HWXFM+vMFrOAPktYhD5o0KBgAyHSoPisuOKKleRYbJjBz5rxxz1o2223DShxDGS8dQOFw+dhxhwXKS/M4LMmBcWGsuJZbRQF3JeyBOWMzwEHHBB22223qiSvvPJKVd3nnntu+Oc//1mVhvoYGFMGlrlYOaO9fHA5w+LnpVEmvoyifdawzDbbbFVWRlgx+OaDaxX31eSzzz6rul5cwGJhUOnvB4NREyL3xedQUMoIfWe55ZarSsqaJ5R13NBQ1hoVc28jPwr6FFNMUVgUyjIDbJSBCSaYoDBt3slpp502PUX/5T5bn8QyZkJ/GX744e1rty3nmMDg+pGPP/64YsnyiVG8eG5MuF6+E7CCfaub8zPNNFPNNVkvvfSSFVXVPzho1iz2UdaZ0IjFByeZeOKJ49OF31GeeaYQgnvUK/WwoGyeS/pdbInDuoZLHxMohx12WNqMZZddNp0E4ktf55g2WP+JgAiIgAiIgAi0lEDdCpUfhNISwmAXDY4ZeOQJFgKsQ36wnZWWsNFYdQ499NCs0+mxWJnyCRm8HnPMMRVXKc7htpWnTPm8zEBjwbE1IP6c7f/jH/+w3W5blEeUlTzBusfMt1lGWskkr06UxCJZbbXV0khzjSoNRWXXcw7FD2tgnqBYMbhtVFD2TXCnKyO8T4tPo+LDwtOnTVhfhpgFzo7nbQlKwSdPzH0PxRjFgP7FO8AIjoFisv7666fujXn54+NYeffYY4/0MMoSFlgvRB7kWUE222yzcNFFF1UpbFgZCXGP4D5Yr0LVzPqpelnwbjOst6ZMcb1Yb4lUilszwTkI3tGI9DbHRtqsPCIgAiIgAiIgAsUEhis+3f1sHKHLXI+6p6x9hAGWDVpIjTsY1h9cwgi/7Ge5cZljIFMkrP3AHZG0uIV58VHTsLjEA3XWd1AnrkyxtQlXqdjFyZfNPpHXsEaxmN+LKVPMZrMGhLbFggXOpNVMrNx4S/AE3N1wc4vbjKJig984X09+R/EzflYv9wZr33777ddtjZ6lKbvlOk1Y49Vuof/ae7KwaniLK6HAEVwr/fFm2kSfxhUPVkw4oECa2x3PSdE6JiyDWHDp10wYEACD9tNvmFSxCQBrH88bx2073XTTpYonigmR/VDquJe0iTLrlQceeCDNwu8NlsJ6pR4WuEXafUL5w42P5wGOKHZYM8tKX+NYtt1KJwIiIAIiIAIiUJ5AXRYqZm6x9niJFSrcmBi85Mmf//znShhtv+6C9LjnMWBDcEtiUMNgzITZde+KZsfZMvAxt0DWJ+HS5t9Vw6w8wSYYrGKd8kJdWNJY+I8QqACrmV8rxiCeMrMElz9zPWP9CNYGGyCTnpl9Cx3OOhSUM6LFmfDdwkC3komVn7Xl5cvGkncjYYU76qijKklrKa+VhG3c4X1MXrBQ8o4jhKAHsEYxaVRwTUPow7GCwHEmD/IUaayyrBmMBWXdrE12jmAnKOue76677mqnq16ai0LVKmHN13DD/W/OhEAb//rXvyrvt3r++ee7WZqsbtwO/SQExxdddNH0OTG3RUtrWyxmWIN4ZlGe6GNeePYpFytcvWJMs5iXKaseFqa88VvEsx27XzLBguvylVdeWbPqvsaxZoOVQAREQAREQAREoG4CdSlUWTPnfsBG7aydid0CfatsrQXKWaw8xAOUoUOH+qzp7DDuRFmCUuDbl7UwnvIIPhErC7j+mTJF2VyTWbusLgbEecI7jExoA3V7hcorhaSL38PEgnmk1UzSQjP+IzCCKVN2mnVifsDvXawsTU9usVLGrqAMZL0QnAD2Ntj258rsm6uqv/c+H/04Xt/mz7OuJ1YOUCS8Iu/T2z7vY/LrgHy/bSbCpJXPFgXdrs8f98rQu+++m6tQMXnAOiKeGazGTKRggZ1llllSa80222zji00nK3CLxT3XBAszz7v1JXhONdVUqSLinxlLn7clciaTKUitlyJnlVEvC/tdYmIm74XkKPTx71VW3X2JY1b7dEwEREAEREAERKB5AnUrVAzEvULCLD5R+cqKDR5xo4ndueIBc1ymDXTi43yP2zDqqKOG6aefvkqxsXze1YtjpIsFlyUvPpKXP86+X9zPdwu5zT5C5EMveQP4VjPxdfr9OeaYw39N97FQMQA2NtwbLDj1rnXpVnCDB7xCShG8dyi2FHAc5bRRhQo3P/L6/kyZJtwns5jaMZSMuN/auVpb+NKHiSbphXpQzCjXu3/6NPXux/3X8lsoc/uetyVkuxeUKgI73HLLLamVi2vwa8mw6poyhVshFl/rO0QhxPUNRZ5rXGONNVILj1fufF3xvg83z4uD65V6WOAGacEvsFznSdE5n6cvcfTt0r4IiIAIiIAIiEDrCPzPH6hkmcxQexk8eLD/GsYbb7z0PVT33Xdfut13332rzk8++eTp96L1G1UZ3BdmqlshcZhprFaxxMfylKA4XzPfe4pJluWCdsdub2Y5a+aaGs0b153HP+9aytTrFWlc9WLBjZPw7/7jg5OgtMfCGiKstP5j1hiUVdz/ssSULNYUYqnsazLDDDOkEQ5tbaIPbMK9soAUuPXhHmvKFNeBIkwkT3OlQ6nyLq+1rtUmUqjbl1srXyPn6U9mdcyKZmll5t1HO5+37U2OeW3ScREQAREQAREQgeYI1K1Q+UEoVbOuxb9XiHfZYE2wT/wOqFlnnTVtMeGFvWD5Ivxz0cdmjn2+RvbjQRmWoVjiY43MjMdl1vreU0yy1gVhefFWIQaV5p4Zt9usWP54lkLiz9e7z8DTy5NPPum/Vvab6RPeQsL6vTJCtDqEIA2xJTIvv49OaZHy4rQoHCZx37Pjfst7kFA0+DRqMfPlldnHuoVrLYI7pj333jWTYC9ZlkTy0L/NsoP7YFnBuoV4RmXz1psOC7o96+ZmmFVGnlUzK218rLc4xu3QdxEQAREQAREQgdYQqFuh8m4+NIG1FcxWZ82q475EpDAvFk0NC5AFYuA8g0hmh3Gf8x/WcGC54ROv1/Ll1rMfB9IgnHS8diUOXMEAut3SU0xY+8H6GS8svvfio83F60huv/12nzQwuLd1MlUnmviCtcwr7ygN8bu8eB/UjTfe2HAtBFkwlz4iHhKyvkhwgbRBdrwOrigfIdnthb4EejClzOdhTY4J65NiC52dsy1ru2g/n1ppLU/Rduedd07XF6JEF5VnVmIUbnsePbdvvvmmqJrw3XffpedrpbNCvv/++0ok0HgtoqVp9ZbJIASlL34BM8c/+OCD3HD9fZUj7ZaIgAiIgAiIgAi0h0DdChUKUbzWiXcB8RJfBiC4whA97IwzzghEtPOz57gDeWXGK1Sk23jjjatCOV944YWplYT1UXwswluzKHinjBcWyzOgpg1YalgLEisYcRAHn7+V+z3BhOtkHQvKCBYeoiPGoeL9e4bMqmjXSfh3wsCjlPGy1vXWW89OtXTr20DB9LGzzz477V+8YJp3mDUjWAq47wgTA/Q/31992ShT9F8Ti+po32ttvesrIcxjt1MUI2+9IUR3nnDtFkGPqH3xGr68fEXH7ZmAQ/zybsuH9dgCMaAAYo1G/Bol7g+RPrOE/vbmm2+mp8o+T6bAksksR1llt/IYz4YJ95lXCxCABMURZZhrh1OW9FWOWW3VMREQAREQAREQgdYQqFuhotrdd9+9ss7AmnH11VenLjmsBWGwFEcBI52FNbc82267bdW7piiD4AhE12K9xN///ndLmm632mqrqu+NfiHS2IEHHliVff/99w/jjz9+GtUrrod36cRrx6oyt/BLTzHBZQmFBKUlVpCxPvi1QlnXzpoZXOZQAhoNClELG7P9sWCZoX9h8bHBeZymnu8MmE2Rof8RofG6665L101hqUHhRMGmT5pLJO9lqjfaHKx4iTNCmbz41gvug6eddlrlEO864r4QDALlC0sNbo/0RbN2kTjrOasUUscOyoq99w0FmeeDumGAOyeWNdiYwumVWZ4be5cZ7n9Y5FCeUEKxMDPBcvDBB1cpwGXbbeuuaNsUU0xRxxU1npRJH/oAwvXyGgjchHkRM+/T4v55pcvX1Fc5+jZqXwREQAREQAREoLUEGlKomBEn8pa5xtRqEgN03LVQZLwwSGF9hLld2TkW5sfrdBhsxhYLS9/IlvcA+XcB5ZXBYOq4446rCpHquiQAAEAASURBVMmel7YVx3uCCSHhi4T3f1nwAdLhfocVMk8Y7HrLWl66eo+j6FxwwQWF2dZff/3C87VOosjg1sV7zBCUJgbL00wzTXrd9DkUbFPeSOcDMtQq35/HMmXCWiqUJC+4laLUmTABQdhtgl/wzKHQWDAHmBP4pVVKBu57RPAzN0sUKurm3k8yySQBy4s9kyeeeGJlLZW19ZhjjklfAMx30qFwYVXGCogCzIQFwm/BzTffHOaZZ570e63/bK1VT6yf8m3h/WZYyOPfJtqPshtPyFjevsrR2qetCIiACIiACIhA6wk0pFDRDGbcsUwwUIoHHb6ZuFHhFubXiPjzDNxxo/Ez3v780ksvHR5++OHUHcsft/UbdiyOysfxODJcnIeB8dFHH12Zmbey2HJNe++9d+q6GC+yj4MRxOez2uLLjvfNdcqON8rE8sfbuD28gBVFNna7ol4sJ1mDV1wCcVuL7zWWGhSSgQMHVlXrrynm4xPG98TnI93aa6+dWm7ielHgWLcVvwi3kah/E0wwQermltcXaAcKDO5uKDxxGHzO2+sA2M8TrsEUC1zGcIuNBYUNS9Raa60Vn0q/M6BHyee9aFkTGjG/uBB/L+K0uPMymYG1ib7ghXp5FlG6zBrlz9PHUKpQgHFfjAV+XBPXVvblvKybNOtnvRZB6o+vL25TEQvS0l4U6WeeeSa9bpjj5orlEMubSXzv+xpHa6e2IiACIiACIiAC7SEwIAnv3NWKoglMQJAA3tdE6HSitDEoqzWo8XWz4J0Q1SxYZ4DO7HusDPj0rdonoAaz6rgoMTiibhbnx4pTq+qrp5x2MyE0NIN7XC0nmmiiUooB95h1MqSPIybWc231pOUesYYHFyzqZIDfLuHacOuiPvoBfRm3tp4W7gvBWoiUiaKIxY7XDsQD+Ha1Cw7UT1AS1knFym9Rvbgpvv7662k/IW8j/IhgaMoZroQ+KmNR3c2e47eA3yGESYes36DLLrssmHWUflK0jq23OTbLQ/lFQAREQAREQASKCbRMoSquRmdFQAREoD4CRx11VMA1EsueKTj1ldBYaqJYmgsoFna/to0SURRR9FB4sZTec889jVWkXCIgAiIgAiIgAh1BYISOuApdhAiIQMcRGDRoUHpNPrpiT1wk9WENxErJmjUCbOAmy5owAnVYhEXaQpRFiQiIgAiIgAiIwLBNQBaqYfv+6+pFoE8SYI0SAS2QU045JdQKpNLqi8D9l6iM8fvorB5cTokEuOCCC9ohbUVABERABERABIZRAlKohtEbr8sWgb5MgLVyvP8JIVR5T63Vi5kQ+IS1oS+99FL4+eefAwEnsF7NMccc6brDOL2+i4AIiIAIiIAIDHsEpFANe/dcVywCIiACIiACIiACIiACItAiAg2HTW9R/SpGBERABERABERABERABERABPotASlU/fbWqeEiIAIiIAIiIAIiIAIiIAK9TUAKVW/fAdUvAiIgAiIgAiIgAiIgAiLQbwlIoeq3t04NFwEREAEREAEREAEREAER6G0CUqh6+w6ofhEQAREQAREQAREQAREQgX5LQApVv711argIiIAIiIAIiIAIiIAIiEBvE5BC1dt3QPWLgAiIgAiIgAiIgAiIgAj0WwJSqPrtrVPDRUAEREAEREAEREAEREAEepuAFKrevgOqXwREQAREQAREQAREQAREoN8SkELVb2+dGi4CIiACIiACIiACIiACItDbBKRQ9fYdUP0iIAIiIAIiIAIiIAIiIAL9loAUqn5769RwERABERABERABERABERCB3iYghaq374DqFwEREAEREAEREAEREAER6LcEpFD121unhouACIiACIiACIiACIiACPQ2ASlUvX0HVL8IiIAIiIAIiIAIiIAIiEC/JSCFqt/eOjVcBERABERABERABERABESgtwlIoertO6D6RUAEREAEREAEREAEREAE+i0BKVT99tap4SIgAiIgAiIgAiIgAiIgAr1NQApVb98B1S8CIiACIiACIiACIiACItBvCYzQb1veAQ3v6uoKv/76a+VKBgwYEIYffvjK91o7zeavVb7Oi4AIiIAIiIAIiIAIiIAIFBOoW6FCAfj555+LS3VnURJGHXVUd0S7RuDJJ58M888/v30NG2ywQTjzzDMr32vtNJu/VvnDyvkffvih6lJHG220yvda/X3kkUeuSwmuFJyxM2TIkPDLL79knOl+CMWbuk1+/PHHgII9wggjhJFGGskO527tmmu1/8svvwzPPvtsePnll8Pkk08efv/734eJJ544t9ysE2+88UZ49dVXw3vvvRfGGmustIxpp522Lm6fffZZeOqpp8Kbb74ZJphggjDLLLOEmWaaKau6bsfg8vTTT4dXXnklfPfdd4G655prrjDmmGN2S5t1ALZPPPFEeO2118KII44YpptuujD33HOXbj/X/9xzz4UPP/wwZfiHP/yhNMNm6+baKQOhX9A/yor1KdLH/S2rjN9++y3tJ48++mh6n+eYY44w9dRTh+GGK+cI8e233wZ+0+gr3N8555wz+Gcxq047xrND/xg8eHCYaqqpwmyzzVaT8dChQwOfWlIvNyuPZ5l2IaOMMkppDv6ekbfR+skrEQEREAER6BkC5f+6/n97Hn/88bDwwguXbh0DjwcffLB0eiUUgZ4mMM4441RVyUDSLIVl+vukk04aZp111rDWWmuFVVddNR1MVhVY8ssOO+wQTj/99FKp119//XDWWWdV0jL4RNmgLQwqaykLtPf9998Pu+22WzjggAMq5djOAw88EDbffPN0cGvHbDvhhBOGE044IfzlL3+xQ5nbe++9Nxx++OHhjjvuyDy/0korhRNPPLFw4Msg/Ygjjgj77LNPtzLIf/zxx6fX3O3k/x94/vnnwzbbbNPtNwg+xx57bDqJkZeX49dff33YbrvtUlY+3eyzz5623U+I+PPso4zuvPPO4fzzz49PhZ122insu+++VUpxnKiZuinr008/Te/hjTfemBZ98sknh0033TSuJvM7CqS/to022ii3b6I0cD0XXXRRQCnyMvPMM4cLL7wwwCtP3n333UB/zvo7se6664ZTTjkld1IOJXWLLbYIt9xyS7fiV1lllTQvCniW7LfffuHII4/MOlV1jPLp7/UICvzf/va3yvPzzDPPBFiUEe7Tv/71r0rSc845Jy2rckA7IiACIiACfY5AuanDPtdsNUgE+g4BFJPbbrstHawyI3/XXXe1vXFYfrOEtjC4LStZ1maUusUXX7wyGKQsr6B98sknYe211w577rlnlcuqr/Okk04KSy21VJUy5csgLQrDPPPME+677z6ftWofhc8rU9NPP32lLeRfeumlw+eff16Vx768/vrrYZFFFqkM1Kmf+4Mw8Ee5OO200yx5t+11110XVl999YoyhbKKMolgtVt00UUDCneWYAFE4fTKlB9QH3XUUWGTTTbJ5ddM3bTnzjvvDFjCTJnKamPeMfrE3//+97zTVcdJu84664RTTz21okwZIxK++OKLqTXw4osvrspnX7B8orh5ZYp7bEK+FVZYIVVO7ZhtsXgutthiVcoU98jk2muvTa1c3Kss+eijj7IOdztmFr5uJzIOMAGAkj/vvPNWPT8ZSTMP0We9MpWZSAdFQAREQAT6HAEpVH3ulqhB/ZkAA/Vll102MJhrVBiQYiEq+hx44IG5xTOjjbLRiOCe9o9//CPNigKCdeHjjz9OlRYsLgz0bdDK7P4999zTrRry+EHhQQcdlLr7ofhgzcCStvfee6f5UM6WXHLJ1F0rLuj2228Pxx13XHoYSzeDTSxODIRRtBDcw/IUSKwqZjFBwcNtkAE81hdTrLbddtvUFTAtzP1H2jXWWCM9Aoe77747bTeD+Msvv7yScs0118x0G8OqZkrCxhtvHL766quAleKDDz5I+wcFUA6sYmmmbhScPfbYIyy33HIBto0IbUcRQmIlOC6Pa7O+Rr9HeYHR119/Ha655ppKfjhjMYtltdVWq7TziiuuCCiido+xMCH3339/N+sY9xVPCfoSsuuuu4a33347/Y7V6uijj06Pw4C6caOLhXTIP//5z/Dwww/nfvbaa684a+Z3+iUW6rz+mJnJHUQZ22yzzdIjtbi7bNoVAREQARHoAwSaVqhw5WAWNO9jf9jKXOsXX3wRfvrppzJJK2kY5H3//feV72V3+MPNH9Sya1ayymXwQv15Qh1F5/Py2XEGn/yRbbdQR5m1BEXt4DoZMDXT3kbufyvuY9F1xed8fz/33HMrVqk4HTP8NmCLz9X6Pvroo6eWG6w3eZ9a65hQJsrOwPv2eNcprBy4MY477rhpEtrFoJnBp0msEFAnA1STSy65JOyyyy4Vyw7HUchQqLDqmWT9Thx88MF2Oh1Qs4YLYR0T7lpYYBBczVgf5YW2P/LII+khFCMGqmbV4x4ec8wxleS4JcaC25XJYYcdFhZccEH7mg6ad9xxx/Q7FkGu0Qv9+JBDDkkPoRyjFNpaINzPvFWM64ifvWbq5r5j/UIWWGCBXAtamiDjP9Z6mbKO0lrkqodyeuWVV6alYNG87LLLwowzzph+Z93s8ssvH2699db0OwrQoYceWlUjChAKMcKzhAJla7zGG2+89L6a4nvzzTdX5UX5gj2CAkmb7ZkYf/zxUyXK3PRQbLMmOCw//eiPf/xj7oc1WbWEvyO40drzg7ts3C9qlcFECMoj4t15a+XTeREQAREQgd4n0LRCxQAB1568j/fDZ6DBonb74HKDAsUMIIvEf/e736XrT/jD5GeBY0z8ocKdZrLJJgsTTTRROuDjDzn+9vYHKc7Dd2YrcR8iH+tmppxyynSgQ90McrKUK2Zrrb1sWXDNYI2ZSGYRqZ/ycHkxZYIZW9JSB+fZxz0qHjhltREFgYEHDMYYY4x0MTMDo3r/OGeV7Y8RbIE/2lw7C6YZLFMn7iq0kwGBv25mzWNh8MU9ZNE018lAmbJWXHHFysDC52nV/W/kPvp2NLPv+zv9jcEvA8stt9yyqlgGkFhFekuof6uttsqcmS9qkw0IUQRYl5Ul3GuUDAbMKDdeGBRSN8L6IVzm8gR3LSwLCM+7WRv4joLuLTwEGfBCoAOeTRMsSF78ui1TEPx53MgWWmih9BCWlFhsAM6AHiUlFq7NrAjxYP+hhx6qJKeNcVAeBv7mxsignv7jpZm6sSYilA+DKaaYwhdduM/vH889gtvd7rvvXpje/9ay/i++TjJjWTRLH+vlvvnmm0qZ3rq5zDLLVI7bDr8rWNoQ+gK/jSY+r7eG2nm2KNF2j7IUdixpCH93mhV+T+n31Edf5lqzeOTVg+WSiQeE4ES4skpEQAREQAT6D4ERerKp/ME2VxLqZeYb9yK/zoDjzFqut9564Z133qlyn8ASxSDx0ksvJVmVMBjjw4wpi+zNJcgSMUBD6fP12zncVHALYSExA2SbyeY8g3efhz/s9ofP8pOGhetEEOMPKmV5IT8fFl+fffbZlVlYn4Z9LFIoI36gwnHWaWy44YbpYIQF0q0QBpk2i27lmfsUrmZYm/x1x8ogrFgnkCVYHvjEi6mbvf/U1eh9zGpnK49h8cAiZYNhysZyQl8sG+WsFe2hH6LYM6DDakx/Y61OWWFyAKFPw9qsU3F+BtB8YrFnE4Vs//33j093+87zz8AZ8WtVcO8zyQukwBomFB6ee7N0WB7ruyh9RPXLEoJV8KwxEOZ6aTMCP1t3g6IcK42kwYJC0AEmUl544QUOVcS3hbVmWcI9sWAgXKspjM3WzcQS5ZqymFV33rEzzjijYtFiv5ZCYBYeyvMTZ3H5REU0wSplVi+sWihGBIDBqlQk/K769vC3AcG6NPbYY2dm5bkjqiT316yVlhDvAlP8W6FQURfWWyZRzJJqdZXZohSaQuYnCsrkVRoREAEREIHeJ9C0haqZS0A5iZUpXx6uHAx0TJhJtgGbHcN6YwMhO8bsLAN+E2Y2sWjZIMuOx1ssNtRZJLEy5dOSN1am/HnaPmjQIH+oap/zsTLlE1C2n/325+rZZwY1VqZ8/quvvrqwHQwAWfdSS/z6iqy09d7/Vt7HrPY0cwxXpbjvMOBkANnTwpolW9jPBIRXTmq1xbu2MUCMXemK8vOs2jM233zz5U4c+DKwduH+x4dQ2Sa+zUVWFgv08NJLL1nWdMt6JWSaaaZJt1n/+XJ9fV5RMJezrPx2jmv21m1jxj2waJFxfq7bxNLzvdm6iYjXiDJFveaqiRLJ72otmWSSSSpJstZH2UkfuOOtt96yw6n1jHroK1nC824TFKTxE12m+HteWWX4897K7gOZMGnA3yEms1BI2WLRYq1dWUHpZn1hI8rUDTfcEPjNRQgIg7IuEQEREAER6F8Emlao+GNJlKe8j8305mFBGcJ/ntl0ZnxjeeyxxyqHYtcc3O+Y4cR1I35/E/78JoRHZvBuwh9xBjHMUvJH0xbZc54/pLzPpEhw3yMyGeVmCYoE7UJxMZcTS+evx47FWxY1X3XVVanbTpx/++23j5PX9Z3F2QyyvTAwxOURFyFzRfLn430GXDa7yzlm+lk7gwXxP//5T1VyXL5wh8mTeu5/q+9jXpsaPW6De5/fTwj440X7WFwYYBV9CHKQJ6zX8WubCEntB/x5+ThOKHIb4PIcYDnhOy5+uNV5l624HH+ttr4pTlP2u1cy4gkTX4atb/ETKFi6bCDtlSafj30blLPvrUq8b8rEp7FjtsVl2MQrzmaxMqXW0vgtFg07713+mq3b11HPvv2uwNosZ7Xye+U7L7IlvzeeDUFPygqTPnYfcbH0sthii6Vf6XPG259nHwurF98O31f5PcQKilWdZ48t7o5Y3fJ+4325zezj1WDuwlhTi1xkm6lHeUVABERABNpLoGmXPwbW8SDaN5lF7ebi4Y/bPkoSfvYILnn8QfPKj5/RjP9w+heb4ndO1CeL5uTdQ2KrDoqODdJoG5Yh/24tlMS8ASHKEu+PQRhoMgDya2VQ1pglNjcvZln9GgybOU8LyPiPhdTm1sdMKe3w7/thkIv7XZYbUkZx3Q4xqPDKEAlY8zXDDDOkaQkzzTohXMeyhLp5v5AJDFgEbzPxDMhZA+bXXzBg9NYHy8u2nvvfyvvo29CqfdaP0Z/8JELRzH1RvXmuYpaHiYD4/Vl2ji39BksV6xPpzwReYCKgluAixYw5EyS2Dok+5ycZWBPD8/bnP/+5ygrlB6l5zzyR+2L3UWsTypspQKZkoHR4y4Slta2lp24Gp6w79L8Zdt7S+623EnlFxlur/GSLz8u+V7ZQFMy10O6/KXtxPvtOehQ5/7vWbN1Wdj3bm266qWIJ4venqF/5crHmMOHD7wmTKjzjXsnCfRG3UK+sesuQLyve5zfaXN/4G4J7oBdfD5EW6asWlIJ0TDisvPLKPktgDaeJfy65fv4G/fWvf01dD/mdYc0q18UaP/6WmNJj+Vu15bfSnhvWr0pEQAREQAT6J4GmFapmLhulxpQpKwc3I69Q+VlGXFn8H2eCJpCe2UqCKxARzaJpWXn8UY8H4haZytLEAzz87S18raWxbbx4Ola8llhiiYoyRZ54YBnXZeWyZXBiypQdZ/E8jLzbDIOumWaayZLUtSWQhBcCK5gyZceZrc1TqAhp7AVWPmoZ53xb+f7kk09mKlT13P9W30fa1Q6Jo1Ra1LJ66zKFPy9fmXIZzDJY5HliPRN9N37esspnTQr5cKPjPUAXXHBBxVJAep4fPsymn3feeZU1UH6CI0/hZ9AaK/TWBgavFkDCJiTsXN7WJlA4b4qXz+vPx2X4czYhQBqfP87jv/v8ZfP4/Lbfm3Uz4YMyhGAh8ZM31r68LdeMd4FZVVB6uL/8TqMk0If4LaAvm9JQZK22erD+s4YW4ffTRz20NFiDseQzmcPfBH77UfQJpMJvFP0T6xYKuf3N8HV7hYo+R1l2H/CUYE0Ta/RoN7+FTCDEf1usLY1uUbztxcJMeBQp/43WoXwiIAIiIAI9Q6BphQp3sbwoS1zCHHPMkXslfrGyJWLWM09wzeAPpR+QEZXMIpORjz98rAUwRYaZZ5+eNObewn6WxAqYTxMv0o8HtkTL8+IHmf541n7ewm4UR6+kMKPdKoUqy3LENcVKnLXXWyrsWC2etN0GSJaHbT33v9X30bejVfsMTm3wZmXWUowsnd/yTJmFxh+vd5/7SGAQe6YYKKLcxn00r1z6GO5ffAi4Qbh01okQbAPBMs0g00I8+/VK3r3Kl49VJ7ZS2GDbp7M2wxNlOk9hsXqwJNl1ecuQnfdl276v19zvOOf7JYFkvOXD8rK1KHHsm3WKfUJwY8Wt5d5m99g/g83WTf31CAqJudU14t6GRRoLP4oUwj4fEyaJULotWl+t9UG4bhJBFeGeYi3FapolhNVngurf//53qvjEihd/A1jXiLUV8b/dnCNwC30my9Wc++nbzXPTyNq0rHZzjD5t621RDu3db3npdVwEREAERKBvE2haoWLw0i53iBgds4+ELN9vv/3S2c/4PN9ZXMyHdLjxxRaDrDzxMV5K2RuSN6sfK2Vl18NkXUMcTSse3FqevHcoNcIzVmitjnq2jdTb0/cxDozA9bUiglg9nOK0KGesL8TqiDstbn/2stw4bdF3lAqsF3ywfGEV5r5ivcLFlUh9/lrzlInY5ZV7NHDgwLRq72rmraaEAs9Tasy9zyZQKIjnhevmei0aXNa1+XNeIfJKDUpTXjRLq5uyvfsfiigKlXffi+vHWkL7EH+tzdYd11P0nXVquIUi/KbCrBHh5bxYW1hHxWfw4MGpEo/VaOutt07d76xcu9f23W+ZNCHYDf0KRYx3WOXdd/JhkcQtkD4Jb9xJ6StMQGFd4l1w/nUTuDKb0F98n7HjfusnuIh82kqFCqXTPDFQ7PJ++317tC8CIiACItB3CTStUPX0paFUse6GAT+BH1hLwntgYssAvukoVLElBxc9b9Hq6fYX1ecX1vt0DFC8xNfkz9XaZ7DhBfea2ALAQNNmrX1a9uN3E+EqEy8Yj/NYWOz4eD3f42vua/eRmXIGpV6YefaR0Py5ntzHakvQF4JcMIuPm2wzwkAU64C5hTKYxuWWAS73BSsmA1ncDGu5SfmXBPMeNBOv4NAf8wbWZuUxi5blx+qDwuLXRtk523rrla+vjGJIGaYQcZ+9pdqsXfwmMfnhz1ndfsLCK1TN1m3ll9ky6WRC3816V5NNhuDaZ2tlcfP1ih9lwJ9PHPCGcygjJnkup7yHiTW0pkwRAMVzsfzxlj7HulU+ft2mpbP1bCho9SqM9F3y0aaiIDBWVz1bi15IHrPI5eVn3S7PGgqh9fe8tDouAiIgAiLQOwSajvLXU81m0E9UPvsw04krBy4rrAsiKp4XFimzxoHBPH9sTRhgMYON+4f/MCDGCsInz73IymjXFiWGdQdecDWJQ6mXGWj4Mvy+H7RyHHc8IrjZehAW9pv7js9n+7ELJ+6HniP7uOgYS7a2NsHKaGTbl+8j7HDZiRV1czVq5HpbnYfAKeZ+yGL9LIUZiwoWTD64OxVJ3j3lfWkI7nTmClhUDlYIE983vfsgFrAswSJhSk38TJgbHRHbsiyH3DMCMCAMmr31guff1kbCjd+cWLg+Qlwjvt1898oGFrwssbyc88pcs3Vn1VX2GIpD/PF57Ry/xQhhyHH/5OMVRJ8HhRLlG4EzymcsWMlxCbQ+SZ+If2fiPKyTol7W+OVZ7CkPd0CEtaj+dx2LLb8pPhhRXAfPA9eMeGtVnK7Z78Y13vpyOefDvvtz2hcBERABEeh9Ak0rVITLLgrvnBdOt95LZzaZP8j2YRbYFhYzS8m6BS/MhHIc8QoVf5iY8WOgb0KIaVx2CIPMZ8cdd7RTPb4lxDUuiygqV1xxRWXBtzWEAQnR5BoV1gzYInIrg9lp3p+CGxdrHPx6LUtjW/LbYJNjKIAMWmyQBVf4GUu2ROxqhfSF++j7O4NirD+wY62SF5SXnnKF9fXm7aMwxK8WiNMysJ8qceHlGcGVijD4WUJYcvqoiVd+GKiaJYB+5RUmS29boprh7oQQMdC7zeH+h9sWwqA5XruHy5x/eTf5vXgrXFZ0QywE9rLXrIiKq6yySlocg/IsbkxCmFha+04/5XcK4f1aMUfcCC0/rGJl0MprpG5rQ5ktSgzW/qKP3Ut+T0nHGjq73ygy/JbyyfvN5Lmwe8daS/tNtvYxgYOFxt5fhutenhXL8rDF3ZJ6iaDKy6uzxFvOfaRV0mINQ+gD5nqXHvj//1C4/Zoyr1Bx3fxdMwXQ5yu7z/sMi7j7137wTJGW9WQSERABERCBPkpgyJAhXfV8EhexruRSSn+SP46V8pOBRFW+ZOBROWdtSP6QVKVJ3otUSbP00ktXnUsGLV2JctCV/LHsYt+3KxkQVvIlylhXssC56jxpqT/reBKUopI3cbWoypcMECvnaHPiClN1PnE1rDqfWM+qzieDpcp56vFtLrOfuN3k5k8G95VzxjNrm4QP7krctnLrhmUykKo6D0MrK7EMVJ2j3eRJ1hh0uw+JYtFFfeRt9v43cx+t7VnbmHuiMFSutd7+bmUl1qpKGVl1Zh3bfPPNK1zpZ0WfxD20qny7X/TXrLLtWLKmpVIHbU0CylSlT6w2lfM8G8laj67ECtSVKMpdiRWii+vyfSerzyUKdKUM6kgUn67E7asrWS/Vlbh2dSWD8i5/raRJ3OOq2kF7EytzpRzqTAbdaRrKSQLPVM5tsskm3fKSP1HIKmmSaGpddl9pi3/uEzeqbvmTtTiVvkzfTtyK0zSJtarqmYd7EoykW/7k1QqVuhOLb1cy+ZOmoQ8n0fAq5xJLYLe8zdZt95ptYkmr1JW4e3ary6fN2uf3m/vDb2zWef/7mCg4XYl7ZpouUZS6EkW0iiHX5ctIFPcu/5ueKBmFfT6x0FTy0x+TyaXKtSXKT+V3hmumLNrNB96+Xvb5TbLzbJNJta4komyajn7mn5NEOa/Kn0QTrORN1gRWnfP1JEpQqXQ+j+379iVKaW4dll7b+sYx4iVe6gPqA63uAyMkf0z6jRDelnVGuNsgzKSbX7+/CML3YukxYf0FM4q4d1hezmXNTBICnPUgvSGELWbRft7MJxGriKrVrPCuHmY8mZmPrVFY/pjx5QW/5k4V14flgPze9597Ebsmko9ZVeprhfSH+5gM1NNIlM32oTg8f8yP/l3GpS7Ox8tScZWL1xxaOmbyWaeB5Yh+WOT+SZhqc6my/GzpF6yhSpSm9BnFGmMWGZ+O/URZSUNvY8mMhXei8R4tAiewFgbrLJY//wyzniuvbPhgLSI91go+1EdfNaGvmxXGjrHFdRXLGM8b6bHmkBex/Hwn6mjWGinWFg4aNCh9GbJFvovbjoUli2+zdaeN7KH/uE7WO3F/sEbxiRnTFN51x3V5gR0umSZYRfnkCX3KrOu475166qmBd/VxP4g0yyeum9+zLPdVfpNYe8s7rsifFYWUdvC3xAe24Ji3uhIRNsuNkXQSERABERCBYYdA3S5/eWsn8pD5gATeh530cfQ6jsXRjnx+XM34w81AxAY35DHhjyeDK9zQ4mh2DJpYhJ33npVkpjQNC03ZXuI2+/aQLm6vz5u179PHZaEwEGgjbiPXiusQg0sv8b3wZft0Wfu4qaFQskYL10IGDQwOUOh4WW/srx/XhfKH+w9ps4TBdDIbXxXEImZZ7/2nnkbvY1Yb8455t6T4uuM83BsGVAz0cG1kvU6jypSvN64n/h73HTtfqw+w0N6761k+23JPjjnmmLQ/ZCkapENpRDFjDYuFKrf8toUHyrp3vbNztsVdEl5FkwT0e1yv7Hn3yhThrnnWeW9WlvBeH54nnm0TU4ZQbujzeQNp0qPUMujmdwUhr+Wn3/N7gkKXJXDkuSLKnYlvOxMWrM/Ku+fN1G31sfXPXK2+4fPZvvUz29px2xJEg4kUnncTY8R3Jl8IPIJiG4ut24yPl/2OGx6/V9Rh4uvmt5y1tD7Qh6VjS0RBgvJkuRjSPxLLZ+rOHvdxJrYQ+gUKXZ7434562Td73/LapOMiIAIiIALtITAAk1d7im5/qQxQ8KVnTRELwWtFFLMWEaqZdQzffPNNGrKZgVfegMHy9PSWdSpEvuIPMZHismbBG2kT70pK3BQrWWHGwNb/AUfJ+tOf/lRJww5ro3waf5JQxbSVwB4MtlEM89L6fM3u94f72Ow19nZ+Bqis5yPSHgNTAjDUepdQ3GbWnLDAH8sX/YI1Q6zDqadP86wSfAarGcoVQSfqeREqIcL5JL936Zo3FKGyaxHp19TNBAEKEL811J+nDMXXT8AGGBJ8AYazzTZbaYbN1h23pZ3fCd7BWig+WKPg5AN0tLNufguYbKOf8htExME8RSqrHazlYq0XE0n0DdYTFt1ffkdHHXXUwjRZ9eiYCIiACIhAZxLo1wpVZ96S9l8Vs+u2UJzamMklIh1WPWZscXtkUGSCaxfuTxIREAEREAEREAEREAEREIFqAlKoqnkME99wRcJdqozg+sL6szgSWZm8SiMCIiACIiACIiACIiACnU6g7jVUnQ5kWLi+NddcM7BQ3tal5F0z724hCIiUqTxCOi4CIiACIiACIiACIjCsE5CFahjuAUlo3nTRNoEBWH+AoDyxToY1IrxcsyfWQg3Dt0CXLgIiIAIiIAIiIAIi0M8JSKHq5zdQzRcBERABERABERABERABEeg9AnL56z32qlkEREAEREAEREAEREAERKCfE5BC1c9voJovAiIgAiIgAiIgAiIgAiLQewSkUPUee9UsAiIgAiIgAiIgAiIgAiLQzwlIoernN1DNFwEREAEREAEREAEREAER6D0CUqh6j71qFgEREAEREAEREAEREAER6OcEpFD18xuo5ouACIiACIiACIiACIiACPQeASlUvcdeNYuACIiACIiACIiACIiACPRzAlKo+vkNVPNFQAREQAREQAREQAREQAR6j4AUqt5jr5pFQAREQAREQAREQAREQAT6OQEpVP38Bqr5IiACIiACIiACIiACIiACvUdAClXvsVfNIiACIiACIiACIiACIiAC/ZyAFKp+fgPVfBEQAREQAREQAREQAREQgd4jIIWq99irZhEQAREQAREQAREQAREQgX5OQApVP7+Bar4IiIAIiIAIiIAIiIAIiEDvEZBC1XvsVbMIiIAIiIAIiIAIiIAIiEA/JyCFqp/fQDVfBERABERABERABERABESg9wiM0HtVq2YREAER6H0CL7/8cvj222/DHXfcEYYOHRpGHHHEMM4444TFF188zDjjjL3fQLVABERABERABESgTxOQQtWnb48aJwIi0C4CxxxzTLj55pvDvffeW1jFYYcdFnbYYYfCNDopAiIgAiIgAiIw7BIYMGTIkK5h9/KHzSvv6uoKv/76a+XiBwwYEIYffvjKd+2IQB6B3377LRx55JHh/PPPD0sttVTYc889w8CBA/OS98njTz31VJhvvvnqbtspp5wSNtlkk7rzKYMIiIAIiIAIiEBnE6jbQsVA/Oeff66iMvLII5cakP/www9150sUvvDLL7+kH+qmrtFGG62qnPhL3MZRRhklDDdc/nKxn376KTBQNBl11FEDSgYSl2Vp8rbkI3+98umnn4Znn302vPjii2GCCSYIs846a5hhhhnCSCONVG9RNdM/+eSTYf7556+k22CDDcKZZ55Z+a4dEcgjcPvtt4e99947Pf3qq6+GcccdN+y77755yfvccaxN++yzT0Pt2mqrrQLP6W677dZQ/qxMQ3/9Lfz6W7k5reGT35YRR/jf79jPQ38LXcm/4YdLjg//v+NZ9XDsp6H/nUQZKUk7XJInTz75+qfw2offhU+//jlMNeHoYdqJxwhjjJL9p2LIL7+F35IJmnpllBG7T+BwPS+9901497MfwgjDDwiTTzBamHmysQrb6uv9+vuh4eX3vwnvf/FjGGf0EcPUE42Rtt+nydvnEl754Nvwzqffhx+H/BomG3+0MFNS92gjd29nVhnNtv39z38Mr3/0Xfj825/DROOMEmaYZMwwwVgjZ1WVeWxoch/e+Pj78PX3Q8JUE40eJhx7lMx0WQfpg3D/IOH2y69dYbqJx0zYjR5Gcn0tK58d+/zbIeHFd78OX/8wNMw46VhpXvpkLamHOc8I7SwrPA95bWi0vUV18wzAj747yXijhsmT/lP0jBWV5c/dcsst6e8rE55Y0nFHzhPGSYyXED+GqZU+HrMw4frjjz+m2Rg3MX4qK4yjGE8htJnxWivls88+C0yIvfnmm+k4aZZZZgkzzTRTqSq4rqeffjq88sor4bvvvgvTTjttmGuuucKYY45ZKj9MnnjiifDaa6+l92G66aYLc889d+bYNx7rFlUQ8/dp4YlL+qOPPhrGGmusMMccc4Spp566cDxbdsw6wggjND2+9H2Odpfpd/76Om0/+69kwVU+/vjjYeGFF65KceCBB4Zdd9216lj8hU5I5/fCwOSAAw7wh7rtL7300uHBBx+sOs4Pi1cIqk4mX+I2MoteNOhbY401wm233VYp5r333gsTTjhh+j0uq5IoZ4cHLG5vTtL08LXXXhu233778P7772cmW2GFFcLpp5/e76wAmRdT4yA/Ql5ZH2OMMQr/gMTF8cfk+++/rxwuo3xXEmunFAGeYy+DBw/2X5veb+c9LFKmFl100bDIIotU2j9o0KBMV0BTxlqlVB133cvhmoezn/1KY/5/Z7m5Jg57rTVr5fB6xzyUDuIGjj1yuHjHBWoO/v965IOpkrTBElOFLZaZrlKO7Vz98Hvh5JteDT/8/D/rtZ2bYdIxw95J3dP8bgw7lG53P/+Z8PDLn1cdK/Ploh3nr1J27nvh03D0NS+l7fP5UeZ2/stMYfYpx/GHq/YZzF54z1vhtFterzrOl4VnHRh2WGXGQgXjjUSROeLqF8Ozb31dlR9l6l9J3uXnmqTqePylmbZ/++PQcPwNr4SbHv8wLjb8bbEpw2ZLTVulRMeJXn7/25Tb8+90b/uK80watl5+ukJl+7anPgon3/xqN+7Us8lS04SNlmDwlq0cPf7aF+Hw/7yY9sG4XdusMH1Yd5Ep48OV7/Uyv/aR99PrrBRQY2f9xacKWy5b3cebaW9edV98NyQcc+1L4ZHkGYifmz/NOH7YcdWZUgUrL3+t4yhUKBCMK4qUKcq56qqrwnrrrZcWecIJJ4QtttiisPjLL788bLTRRmkaJorGHnvsdJ+xyDTTTJPuo2x88MEHpRWjc845JzDxhLRyohbF4ogjjsicDFtppZXC8ccfHyaddNK03qz/nn/++bDNNtt0G5txfccee2za1qx8duz6668P2223Xbdx2uyzzx5OPPHEbuPRySefPF2Xa/lrbT/55JN03a6l4+/gTjvtFC666KJu5cw888zhwgsvDNSdJbfeemtYddVVs05VHUMxQ1lrRtZZZ53AGNaE8ih3WJXa05olyJx99tkB7b9ILrnkkm6nbSaj24n/P/DOO+90ewA4dcUVV+RlyTx+8MEHBwZIfUmYRdh///3Dmmuu2e0h9e288cYbw7zzzpv+qPrjnbiP4jvRRBNVPnfeeWddlwkrn/+QQw6pK78S1yaw1lprVc3obb311rUz1ZGiXffwrLPOyvxjjCJFMAqzvGF948N3/qiZNc5fAkoVg5yelv83mnerFkvSv68v/4cRa4YXvh965QvhqKtfqhoUeuvMK8nAff1jHw53Df7YZ214H8uWyaDnE6vfec9UBvUoiOOO8d+Z+NcTS9mWJz8eXkwsKHly0o2vVilTkw8craJc3peUvd0ZT6bWk6z8733+Q9ji5McqyhTXjIUBYYB88OUvBBTNPGmm7VgMdz736SplCuuSyUX3vB0Ouvz5xHsi+28r9+Lvxz8SYmWK/LT98vvfCf8suPbLkvP7X/pchTvXbtwp46zb3wg7nP1UiPsL5+59/pO0bKwyCPl8Xu4JimKW9bJZ5mmFNf7z/YukzbQ3ryqU2Q2OfSjcPfiTynPjnxkmGjY87uHw5Otf5hVR8zi/Q8gSSyxRM61PsO2226aWGH+saJ/xSJYQrOeGG27IOpV57OSTT8483uxBJrBsMouypp9++srfIZQdJt4//zx7Yuf1119PJ8tsohslygb9XN+mm24aTjvttNwmXnfddWH11VevjNNQ3GzCHa8i/oYw8d6MYOkxYVIZReXUU0+tKFNWH2nwYsKydvHFF1uWqi1WvDLiJ5/LpI/ToJB7ZSo+Pyx+r9tClQUJ8yuddcEFF8w6nbrNFXXYzEzJQWZcsuS8885LZyswWZaVddddNzzzzDNh/PHHL5ulremYFUHRi4WH9Ztvvqk8SJxnxohZmLfeeivUc81x2fouAs0SYL0U/fGee+5Jf9T7y/opmzWNr98GLPFx+45ClWWtYg0WClerhMHoERvNWVhckRvXDY99EBaaZWBYOPnUK3ckA3PyIwzod11t5tR1a+QRh0tcyIaGO5PzWI+QvS96Nsw7/fhhjFH/+9u73UozJJaM/w0GSIN7FkoQssI8k4RV5+s+czxFovQglI+VC2EwevTf/xDmmOq/1qh7n/sk7HHBfy2gpLly14VSV8A08f//9+grn4dL73sn/Tbz5GOFg9ebI3WZw3XtrDteD+ff9VZ499MfwvGJwrn32rP5rOn+AZc+XxkM77zaTGGVeSdL3L1D6vJInSgMKJpzTTtesDZbIc22/YK736oocismnLCG4QpJuQdc9lxq+bvjmY/DvDOMH1aYu9pKRhruBULf2Se5tjmmHifN/8lXP4WTEksjeZ9586vk3r4f/rboVGla+w8l7PjrX0m/ooDuvfasYdbJ/2uhIP9RidXlgRc+C4+9+kW45akPw0qJtcvk029+Dnuc/9/7gvJ71MZ/SNwEx0hPv5Ow3jFRwuB2WXJfFpttwsr9tPyNMF/2jxOHWacYy4rI3L71yfeBshFTitlvtr2UkSUHX/F8+PK7oekpLIHco3FGHylgdbwrUbKOuOrFtG/tc/HgcN2ei+Ra+rLK5tjHH38ccKtGFlpooXRbz39Yn2q5CZYp76STTkoVilppH3rooXTZQq109Z7nN/q4445Ls2Gpu+yyywIWICKy4h2F5wGcsOhgIYsFDihOCNeCAoWbHcoQ3kmMX1FAierKMgsvKCekQVDEUK5snHvNNdcEJhgRJsZxJTQrIixwKywS/iYxMUe5fEw23njjgJKILLvssumaZaLN4nJ49913h/XXXz+9HtrMOub4b/BHH32U5l1ggQUCgZfyxNqad77oOBY1+5tK241vUZ5h4VxLLFSAYpF6njD44gbUKxdccEFmFm5erchccUbq33LLLWta0uJ88XfMrMyi532OPvroOEu371jzDj300KrjPESY3Xm4eYiZNfcmbNp/3333VeWJv/AD8+GHH4Z6/HfjMrK+Y26n/q+++irrdOExZl54wFs5+CyssMmT5jueV8zXXydrBZJPM/LFF19U/MzLlvPll19WuTOWzcf10Ce4h41KzASfen7o4x/yWuV7d85aaVt5Pu+PSpb1KcuSnad05ZXbSNtHHWmEMEsyoC361FpTc0BibWB9SL0yKLE2ICg0Z2/7f+ydB5wVRfLHGwFFJCii5IyioiCYM+Z4ZsWcAMOZc8566p35b/bMZ8455xzAhCgqApJVFBSRJP7720u9rdc788K+t7CLVfuZnZmeTvPrmXn966quXit0gCFTSHM/F2nnddq7/xxYSfZe80RHpNMySyTWWa4zByvpnmQO1YPvVJAh4mMmJmSK8418Z3yvjTpxGLQoL3wyIRzrf7e+/F3m9NRdVwpkigDmYA3aopvDVBF5bshEPz8qew7vh95kTbQ7m/Rq5YlfBZkiPgThmO17cBjkzldHymFmX0rdf/XzjW5/uSJPCNFxO6wQyBCZgzn3InLzCyPC3CY5Z//q0EpN4c1HrBlIl2C6rJ+DdfaeKwdyTFxMEmO58flvM0Hn7bVKhkwRSPqL9u2dSQ8p1fP8hoz4OZP2ukNXz5ApAiGdVw3qm7kOIdNSXcx5NpmflWuDXCPE1QS0lPrquutjCCPaU+SQrboFwgqZQpou3tDt4AcRTtutog0hXbk0rCFRwj/mzYhUx4kOWhPIRqny1ltvuWHDhuXNpqbmYeuBZ6Y/QKYQCME555zj+vTpE84xj4PUaMHK5f333w9BEKNBgwZl5sfTl9Pf8EsuuUQnDcda4waWQqa4iFnd8ccfH+IxyKitsCBmffv2Td2YziBWDmeccUbGpBKTuYceeijkCcGDPMrSHcxP2mabbRwmfQj94LgfSTj9SIR0ueqQZjIYEuf5B3mlfMgUygGTCgTKRqgYGUhj5GnEKFcj8GAxgiAC4dCCurFYQT158803F5ssKz4OIxgVSNtyze2SjCAYMaO/6qqrMjbMjJ4wnwOvYlqS1KuQKFTDvXv3dksssYTr1KlTsMVt3759+NgUqv7V5cjxM888E15gOtDkh9oZDR8jPLk+sHTAecmoEw5EOnbs6PiAMGLCfLHvvqvsBFEW8++IG5NyRkAIZ5OPhNRN7zEBJU7s2hr8JL10iiEzEsaee2EkkLR8gLAjj+2Peda23377gAEkgg2TAUalkswhksrAvJUPJ6r61q1bhwmmOB7J9Rzzgd5pp51CuZgy4gCCOqJt5UcuTfi4n3rqqSEd98MzQZ233HLLMKIXq/qT6puGCaRe44e5rwg/XvoazyXtRpuDFx9fnKxQD2kPSVtMG0qaQveFzHdipJO6bbbZZmEfEyvMOmLB5XptEsy8LnlkmB80KrxWdJTfGFrxA9xvlWWdEKk4h3V6tHRb9W3t1l2hZca5RRynOueYzCFoFLZbvVILInnt269zxnzvna9+kuCwRxMg857Q8HSL5nct4r+jR25XOeI8WBEBMpAOOMd0imNZb8WWrrfX+iBoy2Ippe6fj64clKGOMe6QZ+YwIZh0jvbOMrR84x1ooB3avE9r12apChNFfZ17X3Ve3QUjuQ4ZGPxthRnarut1CA4w5Jrscehw8X693b/27eWO8ERXO4QQ3JjfpjVBkpYwtF7Ih99WkBy5Jmk5rw7mkk+8H+kdckCaEXBbfNH6mShSZnXqm8kkOhg2prL91vbvRpKs5TWLIkOjOW4SnmsvA6h0fPn2V0f4rgmhqE56SaO/8xKm93znq9PP03kkHTOQKKZ69AFXXjlby4zTDOZWiaDB0cLAtAhYxMIcddH+oXGKRfpc/H7JfDMd58QTT8xol4r5PbjgggtCNvwmHnzwwZks9e86fZIkB2do6URrxvwtLJq08PuP0GerCaFfeN9994Ws6bfqgf+aKK8u5Vlht1GmGvPw7b333lm58UKk2XpmRYxOhKVL8EEHHRTUuvLAcR01cNIDJ2mS9kcccUQYZaAzW5uETm3bttlmHdgFjxkzJlNNXj4taB0gHTERIQ4aJeYQ8ZIzosFCpcUIZpWM5sQCEaS8Rx991KF5jEc5IHhMjBWVtU7PiBkbH16uQ7AQ7hG74Fj4MMjHQdsYx/F4xpLSU1cJFwJLPhJGPvxQMXmXj4SIaGTQRO2///5Z1ySO1I1nHtvu0047LeN5J6kMnru4nTBTACvmCjLiIwLhoV3loyXh7NFgsvH849AlJgtoo7C3J44W7p8fGzZIID8ebdq0CVGS6puGicaUxLocBlQ0tl999VWY/ydtKPWReqDlZWACKaYNJZ9C9rkm3eofWH1MvmjAtZMKjmOtOOfkLyOIhdSnJuLsvn7HoHl/8O0xwUzrSW/itf2aVclJUtl0nOmY02mnUwoZ833xKkJYkslclYhFBDC/Rkb50YKhVYqlWeOGnsi1cY+8OzbUT18f6z3jiaARSJK+XZcKnX5IRKyhGuXvF4Ek4tUvSXZdt0Mwm4Os/uIdECzVpEILUWrdx/xUSZA27906qejQhsxjQph3pAnjiTut6J11JCbLBOI1EOnTLbsz/snIyjk9e+dwHIGXRbZY9tyws9fAtHe0TT6JtaqlYJ6rrFtfqsAJ7RR101JKfXU++lib3+IZEq+MsejnbVn/jhUrMod40003LTZpsGYR52E4h8A7HYOaxcoOO+wQ5skwYI42KC0PtEMiaFZiYiPXit0z/0mEwc8kYbALwsNvkZhISjz5PUKzg1e/JMFZBf1KftvoN8l8JfpXMqiPdVOSiVyLFi1Cn5fBw1yDzLpcHGTIbzt9BwbCRfRvZa7BeTwMiowePTqrHyYmfwzcllvASAgg/VP6+6+88kq5i6mz+ZWsoRJ1KwjcfvvtVYCg4y0Sd74lPGmvO58QCVi51hzQsHr0ISmPtDBG+MttFpdWVlI4HdmY1eN4go8WHWIRRl+0k4XYXTxaCI2TpNN71Mo777xzUfcL2UkiUzpf8N96662d/uAxsZV0SWQqTtuvX79AJHR4ruNcbu9zpZNraekZ/dJkSuKzx5FB2jUdD2KDzXSaUEaudoKM8SEXgezIB1fCIJ/yoZcwPsa4gRVhUi6meJrkyDW955lAE5PmSCYXJjqffMeYS+gfiDj+HnvskbeuOk1aG+o48XG+H3aIVEym+IFO0kjFeXPOe1Ab5NCtu2e0AnheowNeqDBHB/lyzK+OeSHMz5kfAokTSdJ0xNfojGvTs7HeRbVI6wQtjVzD7BAZ7efYaPlmQkXbtVu6qoZH4rVeqpEcZmFaat2ls40mZxFPapOkRdMK8sY15oEVI098MC6jvYsJ2zDfzgjkYxnvXh0X+TglOdA7uNj8rFfdqXd9GggsJDRJMIfENFNwjePgwU/qGxONUjCPy5Fz6i/OUgZu0S1LO0WcUuorZcR7zFhFC3eNd8Ah5FXigd1lfh4agknnWssna7EkfrxngFU680KM4ji5ziEYolXi9yAeeMuVVl8TyyC+c/Egt8Tjd1+saSAnkIxyie5fYOmSJni+QxjE08K8eUS8Fuprcqzz1eXp3y7wTBO5BnnLNfAr6bV2KiaJelA9l1WOdoLB3HotUm8IFWQHBxcoEOhDYOYOUa/uFAx+K6WvgidJrKlMKhEomVAxgi/CiG1szqUnCcYPj6SL93T4dKeQiX+saUBnUYu2WdXh8TEfBU3mePDpxFZHeJB5QNM2+Qjmy5uRHy08pGgFMM9ixJs6Yw6W1mHDJEnbrkI6MRHAtIwRC0ZkRBh9gRwUIhBNPNpowTYatTLmg3reCXU+6aSTMlHRhMXaSNyZ0pZ0bFGva3n44YfDKfPOaJNYu4k6mXBGnSCWacLzQTyZuCrxyI9wtrhsiSN7nH6AJ5o5nml+JLR9NfG4P9oDO23IgBa0dbkEMsSAA1qZ+D5J9+GHH2aSx6YH2NKTP+78Yzt1bKxFBEc5p0wGNNCA8WOIZyQRMNUfZQnX+xgTfa3QY55LiB8OZjCP0AKW8jyVow113nJc7Lw/6oM5otZO8a7FpEvyr+6gjqSXPR2w1z7/Iec27Y85Er3Knvkz5+65Sib8nHuHZpGPzIWEgz036JQxq3t28AS3zXmvuxNv+8Q9/K7XHHvvetrcKyF5tYM06WPeTppoUjPhl8pOPmv+iCw1b/6KnOt9m3le+74eX2kaw7pRQop0/jodx6wJJaLLK7Xu302q0B6xXlGaYLYnnfbY5E+ngQA/7x1HsN3m55Qd898hwZ05cXC9Hmvv0LQhmMDRxniiwykJnhzRxGECihOS3S55OzPHLCQo4B+EFxf0SNAWeScfIqViLvnEe5yPIBXaqWRNZZxGznPVV+Ik7dGmXu4dqKyxXIvwHO3nPWAedfPg4IjiuFs+DtgxAACZunAfb/ruyWsxUur8KcrC+gGTcYS5R4UMDobI6h+/u2i4ECFN6nKaylycAABAAElEQVQ4pNMu/bVC+3hxHmnnek5UPKCo03Tu3Dmc6gFGLE2EXGjSpNNxrE3jtIZLLxGi48Tp6bOJ0PfKJdRP+j0s5aO1U6TTc7TSND8MhOpy4j63tAWO4OgzU5783jNPjIFw+iBYExUj1F36WJhZCpEsJo+FPW7JJn+wYDpeopWgQ81cEYTRAm2/S0f96KOPzotpPBKy3XbbhTRM9KNTKA898VC1suBZLkGzQ700qWL0HFU6dS9G6ATKC5GUjo6hLicpDmFMcORFYJ2JWHgh2ESNjlcXOveyTgTxNa6cE1cmrqIBQyPCAy+EDA0KXmHyiYzoSDwIk3xQmUtF29L5l3rT0ecFZ6SCBYO1MCqGqhxBIwdR1CMwaGGOPfbYjOlZbJZI/dPU9Loc0rGJCZtco8xC0tNZTlpHDXNJ+egwd04+yny8cfGutUi5NFTUB5KElhXBzI32FdtwwvQoU2w6oBdHpC0YsRTtkjZ5fe+998gqIwxmiEkdc8D4ePMxFYFsrbHGGnKatU/DJCtSASc8lzIQwnsMhvo5FCJZahumVUXaL+26DodMCcGT8FxkijjF5C95pu1P/99naZdC+B3HrO26L55uttPDO2BAU3XDs98GbROOFA7ctGIeTq6MWcT1xn+uEVxkC8lgvpLMWaIz+A9vQrhlnzbeKUDTXFkVdW3sT5XkKJdJlCZb472Zn5jnicYJ0uE/P6kihAnnACzay/warX3RpCnOREz8CM8iVCXWXUwdhezF5cp5O08G0fZgjpkm436envFup+PgNXDntSsJjVxjAV6EOnw+ang4xinH6t1bBByHfPeLe9GvT4VAzv7v4NXCIschIM8/1mSSOVtHbLt8cLAhSUrFXPLRexZyljmAg7bolnHsoePkOs5V31zpuIZWlXXhjrhpcGgj5qXJ3DSu895cd+gaVbxDci2fyNQG+ju5iES+fPBq9/bbbwetAv0IBheLzQ+rE/oTDHRD9LCm0QJZQ5iLVO6pFGKyDQ65tCHy28wgL6bnmCbq31S5rustx3qwVpMora2KLYokLXtNtujT5epzyMAcbZBEPukjMQhJvw1tH2u3apKFGSJzq6QPTPnaXbyeH83aqpTD0ib0pTA15DeftExVGDBgQNBiFuI5mgFmWSKF/i1TGEyqIlAyoSJLtClCqNCEYIqGRkkIAXEgGoWognlg0BJowTxMBPM17Y2FTm///v3lcuqeB5UXX+w/icgkw3IvTJpagegC5ATtAowfzYWMKkTRwilzjoYOHRrmvohnNT2CRSTuIx6pEDLF9XiSPWFJwkdTC/lqTzdc4wMtQhnUHZV6rPHAtFILpIQ6ykuf6wOp09X0cRrJ18SYjzQjNMyr4p7RFmnJZULKR03IlKSBZGhCxRwiEX6Y9AcTRw/E5z3AqQUkKDb/xNRAfoTJh4+ykCnJlwEEniMhY8RJkzRM0uInhUPwhUzJdbSwaIfl2eTZ4ThXXSRtdfZJdu9J+WDiF5MpfvzkBzApDWGF5p+WXoczmp1LmO+UT1hM9e0vfwyd2v++8J1jwvyK7XMPOJEnC/Y+cur6Yb7Qc0MmBBMqtBUIe1xgs+Emvf/66aY3IUGB//Tt+DGZdFHX6qlE+jg9sfPPe9WriyjbjKTrmRQqLRojEVWNxPwlnlPpC61vJq060GWr4HDYeLEGbrXuFfOkpnhtlZC1Kx4f7l2nTwwu1bVJ5azZc0M6ad9z91rZbabmcTH/bj0/rwwtJ3Fuen6Eu3xAn7jYKucsriyLVOMkJJ7HVyrmVQr0ATzjCO/O9inz6EKEhH/56puQJCvomcHjwzplEgiBQusH/uDGtuel7/jFlZfzXgA7SbSC9qKdiL/hBSVWkfjNpU/GwDHfWebm5hoQVkkzh3zH+S3E+gYLCU2omP8sjhsgAOWWQs285TeN8qVfodPq63Ed9TX6rSI6vYQl7XX6XGnoH0k/mT5y/BtO3qSnPyhWQsxHwxqGPgFkES0j+dCn4ByB7IhoM0GsoDD71L+t/PaitcRiiAFhSFUh5u3kI/07NJWFkDCp099pXxZCxeQ0Go0XFhUrnXdG0bW5H6MjhQij7PKgSHzMpEQ0GycMs79CCBVxIVCwdtGAUV/Ccr0EpNMC00erkia9evVKu1QlHO0CLxaaHB5WTMrYY7pH3bRAdCCSl156aQiWD67EEa2gnMd7MGV+VqzFiePFRA1NlGij4rhyDtGAUIlXIglHkxOLHs2Jry2Ic4gO5DZN0GzyAYk1gmnxk8L1BFK5DsFPE370eEb1MxC3A5oqSI+QPm0aQb6QsCSJ19lIipMPk6Q0SWGrrrpqUnDQpGpTOTTZaZqyxAyKCGSuGCaHxUohZIo8Y61qseVIfDq8D568npxWew/pYk0izLWQs/xaRXceu3aVeSVJBdBp7+OdOLCdvMuKDg3Sx2grfKf843mLk7J2UVO/BtU2q7VNyqKosPbK4cGkqTNc7MBAMpvk10USQWMj0mmeJzk0ODiJSCMdE+eZCeJ8Q7y/tVVzriaq/CVv2f88zzyOc70OVal17+FJLpiOyzPXTeZaoUVME+YyXT1otcxl1uDC/O9fDw4LxPoUv57WLd61esMGFSyyrZ8zJu7i+2/QMYtMSSabr9rafTZqSphL9b53R47ZZ8P6ioVKxHn7pz8a7673mlEEJx8n+bXMFP8M4aViHjJR/7gH0aIesGnXorRThdRXFVXlkPeCRZ8R3t0L/PpnzBeTe6bdzr7382BGeZ1fE6xti0Zu41VaVcknKQDzeum8Vmf+VJwnXlUhO2ir6NDTYaffU4xgVcBgNGmxrpHBcRn8poNfrLVPIeXL7yQDjAy2p/XVxAQOTZKY0en+h1xPKlP3N7VZvP7dhjim9Z304Gou7RRzrRGwkrlpSfUBR8iOTCvgWFvD0NcGd7E2kbYgLzRzeP5D6BdrMkUYJI6pJDIwz6BuPkIFPjIHjwFRTajJ06QSgfQvZGWcvEe4G4bpiqAepsMkDyoPUKGeanCfHAu2wLLFc0hg7MW4BuejotW3zPvKN3Fd14eXFDO2tC3XC6Xz0ceMqNChhBRhGobLajrQMtFS4ko9GRHRnW25nm+fS4siaUV7JOeF7NHe6FEaSaNHeySstu15dtOEHx22UshUWt65wiEiTBzV8+Di+LxjaKuExMaTYUvRnOTCJK5HrvO0OsT5l9NsLq5P/IMSX5dzvgOMBsuWTzMl6RhBrG1CB+/03VcK1cLMSjq6xdQTcgKBYP7NNd7kCy2GyEufTJLDkvaalLCYbJpM+KXymjbP69iykmTIvKCkPMTUTHvJg1yI1maiyj9Or8mcmBoSp9S6i0OHcb590mTu3L8ypokd/XpfhQrze1iH6ZRdVwxJ0Ji8M/ynTHI9b6v3vEWUMxfVASaAIsyvShPcx0PeEBZXPm/vVVySNrVUzOPyWZ8LQTuFRqxQKbS+ufK7/63vw2W0UrcetWYwhfWvTEZ4d64/bPXgQZPAu18fnbmW70DMoImXy9Nbvnz0ddZyErIAMYqtWXTcpGPcdMu3VCyPcGzAlAuEjnb8XU/Kp9gwPQBIvyhNxLxPBhiJh6k8A+AI84jTRF/T/TdNqDRpivORsglPGzBmSoAMTKMlStJO6XyxxEIjyDxyNE3cB9YeWFEweNq5c+dMdCFHBKCRpH3Z9BSRTGR/QLi4ipf+g74eH1Mm/U3aH0+PJukIlIVQkT2ER4QXDmcEIrg8L0RFSMeKjmKxImrUQtLhJls+CIXEr4k4aIowpZMtnjgPVri+jieB8oKxOCoEjJF3LYyg8MHJtemXUKfVx7GmQAhernwZCaFOModL8ss1KiRxauueeUzawQaDAmg6IDq0A1tNCqQK7MGQ0aijjjoq84Ooy5WF/VZYYQUdHOylswIWwEkaRjL6KlWSUUg5L+eevPONwMXlQa4KlZqse6F1SIqHBol1pZCH3xnj3lUd6qT4+cIwCdu4V0V+aCzo7JcqSysvdkJ6kvIc7+cIIZ29lkZ31Nu3rNRW5SJFouXpNM/bn5TRpXUFSdHeAuWa7LUTDE2oSq27uCNHu6Y9F0q57H/6tdILotaO6Ti5jjfsWdFexMHznggaKpEmXtuYJk2VW/Q0wjrEa9lO9RowhEWUr/CmgaIFTMq3FMx1fmjPZNHgAzcrXDtVbH11mXKMNnSwXxQa2aDnMmEhX7mm9ziKQdOH4EFTTCx1nKRjMQWnE63nHCfFLTSMDrxeJ4o+WTEDWWg+SIOgAUFbxGC2DJrn0rgUWsekeJrgaOITx5W5VvH3mDlIiJ4bFafV/RRdnnY7nouAYraOMACe1s8VIkI/gkHaQoR7wVoFJQP398QTTwRCxVqgzIcSiacTSHiuvTxXuUiqpBdLM0gVBJfy9SaaMuJTZ65BsP+OUjZChambHh3QJj3xXJo0oHFwEGteGBmJtzi97vjG15LOcR9ZHTOgpLyqEwYB5CWQLa0u8QgDIwTioCAeuYJQQRb1BsnB6x8bGoxCNEbxy8loiM6TY0zkJF/2oomI08ZehfC6gymavIz57MOL0TwmtYOsx5B0LV+Yfn6Ji/aQDRMMPhraVjlfXsVc54cK0iwbo094lMTUk/lPeMvTQj3RDjI6qPHnhy52EgJJFOzZF6qF0eUVcwwxieuA+a78CJMXPzDUJU1KaUPJU3/wJSzeMwqHdz82Rl4LIWGYvtRmOcmvVSTzsk649ZOMVztdZ0zDcJXNNipyK67jcVzP/4nwbSlV0ILRCUdYQ2v2nIq5PTpfOvIyL6drqyb6kmvXotJDHt7qkoRFXYWsxaSkyzyCBUFMunf/WrkH3qrIF01E8yUaZooote5CqMiQuThJ8uj7YzPB7RUJApP1Tn4pbKw5libTZ87JXFrCz7MS6ahMLb/yXhzT5FO1XhXu1WMh7ZHeIQMC2b1yQN9UciFpS8Fc8mB/k9ZOJSwIrePKcXXqK2n1nudCyNG0GZUY6zhy/Lu6PmtO5VwXuZ60F0uUQq16kvJICuvbt2/mmw9py7c0SpyHWCFBIOiryYAvGpQ0zUycR7Hn2t25lBfnwTdbSI3WaBFPCBVTPWKX6lzntxP33wj9KzQ8IpgXyrJAWDbxmxwLv2XilCPNIQdTYKRNcWaVSztFn4cBfza9hI4ul74cGkeEOmtLJhQS9AXYcL2fJrQfwsB9MUL/PN7i9FxPwiqOtzCel41QAU6S1xK0FvHoeRqQsbkfDw1kKd7iB4WO2/jxyT9KaWVhEyoLy6bFSQqng4enlLQtntuUlIdeT4vrqM3PPffcTCedFwYzs5iIahKFuZcW3GDqF5COLKMtuPRk48OQZJan8+BYPiASjpc/7eyAMuigSr7s5WPGB1sLi9Wi0eF+aDPchOJlSF5I7ZqadNpjHeeYd0ICIGKF1F3IJmkR2oi6Y+pYzGgcaSE2WtCqyORPMDj++OP15bIdM1rGR1I2zDSEvNGJjTGGREnndu21186qB/MWZeSONmLOlWDPXnsPykpYxhMm12KzzYgaH3vxGClFaBJIWDnbUMrAK1KxEjuoSEpfnXyT8qmpMAjA6d4LWS5Zy69BJRPo7359VJiLlBT/Bz/HSdb6wayrDHwqFLPRyhVaFLwLPu7XTorljlcqRn8J39BrA7SgXZFFa58fMtENj8zS5not2jV+/orImstlE/d1/FwfkRueq5j/I+fs3/jih8xcI9E06Oul1L1XpyUzrrRv9GXjfVALJpB3vjIqBGGaqE3+8DwoTiggojNmZ6eVfHCBL4JzEpGeHZu73l0qFnq/943RLkm7h2YOzSYCKe86T5sneeDGXcgUXhbxBKgJp8SL96ViTn6DR/ycmdN30Gbd3GIN83djqltfyuO5+nr8bxwGQUsqAwFvD/upyhpUEg8i/+InE8MpGC6Zw7W/pOG3Sn5vyzF/SvKVPb9b1en3kJ5+nJg4swSGkATx5CtllHPPHFUZ3KIfGDvN4jdZ5vdQbmy5o50iQWZiwaGGmPQnzcWX5W3wDRBPNyEvPagmceMyZMC8EO0UfSW0fWxpfQw0RoLDMccck/n9p9x+/fplir/55pszx/qA32MZ1Iz7YOTLnHgtDIJiLZO2yf2RBhNF4lV3WSJdbl08zv8lKuKuxDOJTlKoKpgPCRMetaSNLKN+jtcVovNcjKCapYNHx7UYgRDw4qVt+ZxDUBYvVjyBE/LI3C5G6xnB4GNKWVq0Mwy0OxoDOsyQGwgsZIvONZ1mEdyCS8dbwpL2aKBk9EOuM4qBVoaXlTLEJIHr3IeoyZn8Kh8/SUsbcj+oz2UNA7kWf8C0zTJxKAfTNzR1hWgqpB6SP/dP3fkoF2MWSvr4PnhWaDfwBQP5oElZ5dpj5oGTFxE+5PyQoaXCLlprgYmD90wRJg5TRxEm8hKfZ4r206ZsxIvvUdKVc0/9MQeGqDPgop9Jyond1ZezDfV9yI+mDtPHsRdMjZWOJ8dpo6Vyvdg9nS86irm2kfPWLiom73V8R3qXdTukJqGTJ6Z8z3w0wR1x42D3iddM4FqbkXg69mix9r7s3UweufLLRCrwYJd12mcRiw/nmVJRNuVCGBBIBa69Yxngzb1EWJRY1odizSPIlHi8w+OczJmS+Kt28Q44ulV4x3vTzwPCiyEkDBk2Zqq74okKl+Kc79OvM7ssKaXukMG9NuoU8sOd+yWPfOlE24Gp3wX+XkQGbdEty9SRcOZIIdzfgP/7wH3kcfvVtxnmgzwnV3nnIbe8WOEBD+1RrJ072ntrRCgbYoQp3CyvIWTjGTzs+o/CNeJAWrRDCuaVHX7DRxktzf6bdAllJj27PEu0pUipmJOPnjslOEj+SftS6vvoe2PdQX7B4wOvet9pbaD22scaVI95bSLPHvhDRnl2Wd9LNFn79uuSVLUqYYMHV2j8uKAHUKtErGYA/R5Z8Lc6WWCChog5N79XQrKqk18hafTgFr8h4s6cgVbIlNQFDRr10UI/Sn7n6APQ4ZeBUeaq6T5VvE4i+XC/0keEODBAjDDAC8ETBxCUm9T/Jb70l+gbxoPGITP1j34S5v0IjqkwnZO+D5YT9EOEQFKv2H057uHlfsENRxhCnthDCmV6Dn0AmUtFeWja6N/gdELM/Ainr8l87rSNNCIQWOLFmkK5vrDvK+0AynCnNBAuGTW5kYXl8mUfm1hBLlZeuXIidJyedXW09z9UpMW67eThg8WLN5W4jJo850XkgxDfd9zhlDrgYl2bAGBmxz0zKqI7f0kdfTQV8Ysn+Sbt+bDgHpzF20QgbGxaUDXrURs+Frhk5aWK58nodBzzUY9fOsgZHy35AMRp8p2jzWGEKsY0X7qk65iw8mHQZou0jeDLKJ98KJPSlxKGKR6jRIID5Sa5uuWHTHvP5KOOaQM/Ivo50sfUi/cUe+xCTEBLuQ9sxal3XL7kyTzLuNNQzjaUcthD6Phx0aNp+jrvELjzIwS5ymUOST5i/qLzKPX4qJuG5Mxi69XahHVvckZKuPjPbbq7D76ZHNbKSbjsjt2+h8PdNl7nPh05xXeWKzt1cfwjtl3ObeXXoyqXNF28oTt/717u+Fs/Dp3PY24ekiFY0hnF3O6i/XpXIRXUAY+EB27Wxd320shALvr/+52gUYEoiODK+nBf7yQ5Y7eebuA17wfycPVTXzs2ypOySXNG/55VyBjhpdZ9n406By+KrF3Euk9saDJ03XG2kKQdI2ycX5ML0sQCskd73JIEbeLFHrtYerRr5gZs3jWkh8yLtimOh8vvnT3p1XLLS99l1fGC+yvJn44nx4+fvkGWB8dSMH9v+OTMOlcDNi9MO1VKfSGJIoP9+/GPNdqFU+YUQj7F099/HvlKolXZ887svn7HKuFJAaKdov/TuXPnpCglh2FGx+92kkVRvswZxOX3Q36b6Pyned7Ll1eh19GiQEYuuOCCQJ7od+g6kA8Dh1pbpPPGbTy/19SZvg0bZET/LtEfickYeTDADHGib0J8BoiFYEl6ziE/8fwpSJeQQeq7//7762qlHmPZg/YPogixYYvrS2IIIvWLhT4t7cSAKpixxUJ9MPvT6UXjSFyOC1WGxHn/nc+L1lDFnbDYs4s26cFkTTdYLqDp4GnZbbfd9GmVY63K5SIdeEbDkXx1DJHm/cObStw5kjlBSXnptEnHMR5JcQjDBScvBA87D3ea0GnGeUUSMUXzQ4cVsiQvuc6HDw9EjI+n1k7F+Oj7lfR0KJm3oz0iyjXK4uOF55q4fVlkmbZMexkZEaHzKqMkkid75gvxkqPGjjEp5KNNHEgmdROPRpK/mJLF+Ui4xJM9GGGCiplcXBfCcNefJoWUEWOunxs6/3xMwTCpXbk37hGyF88/wmacUTHIYCzkxXPEyJw2HSykvpJXHFfCk/YdOnQIz0j8rlIPnq0kUxHyz9eGSWUVEsbInriuTYrPM087xGYjOi7pZYRQh1f3WL+X+fLQWgIdF69uuYTJ8efskT44tXTTxdxVA/sGYiJzruL80HJcdlAft6df56oYc79FG+T/iVm7x9LuykF9HaZjiJggcox52rWHru66e1KUJgO8BoVFbCFCiCYkW/X1mnF/b00aJY8dsujv9Yet4TB9FBEyBRbne491W/dNJ5Cl1B2vdxft2ztLg6jrDuFJcj9OPZnDdZDXzv37gFUz5ntSf/ZgiUv0aw5ZLYvM6Dikx1Qvqc0hoZStNTGSthDza4mbtC8FcxarRqhzIdop4pZS353WrtCg8mzt4LWcWnD8cutRa7n1VmqZefbkOvF5psC3mHdGvK7pwVPJM99ef0vi35c4Lf20NBM1/Y3Xv0vkQb6ipeI8npYgcdjHaQmrrkBMrrjiiszvoRA68mO6A7+F8ZxzKYuBc/oV2vJDyBC/7fyWJ/VHJD2WN6x3Kn0K0kp6tDP83saWI6RlYE4GlhnIy6edkvLQUkGssUgRkfI4RwPF8kJpppsQcdInacxIz+8xdYstgiiP32a2Ysi2fl7yPXeUvzBLPa9GVAr5hflWa/e9sb4WkyYhhTh9YIIjL0ZMftLuAucQuPYkH4gWoy2YRpYqqMepE95gqAsfJz1xM1f+aOBwlsGitRAvzLkKvR/ypWxsitNIT66yucYPKXOnGDnSL32+dEnXwQCVO5Nv5/dHgx8PXLPyXPARpH0LEXCn3kwQhcCLZ59C0lYnDvboeiCEH0EZocOkl3vgR48fjEKfg3K2odwTI5a6UyDh+faYDcZzDPOlqYvXWXsJr3CYkLXzzhDwjgcpq2lh/aQRvtywbpTniLj37uIdUXjuUJDgAID0zMdq3Ki+67JsE0fnvVDBG+D3fm4Qay7hnr17m6auEEJI/qXWHTO/kd4pyNTfZzkILi7emykve/nuAVPFsV5jNW3GbIc7+Vze++K88Fo34ecZwWyvvifnK3Vo7poXUXacXzHnpWBeTDmlxKVtkXwDF7Qh5oW0H89Poc+t1I3vNJ1ZhEFQPTgtcerinn4Av+PVEfowmiiyRhfOmfhdAysGEOmTFCo42WLjt5wBP4hQrnUodb70JSibec7Uid9iytf10/HLccwzwdQPNvpQlBkToVzlUGfmL2Mm2dn3J3EKFmvSdHqZaz6/+zi6DnX52AhVXW49q7shUIsQyEWoalE1M1W5/PLL82qbGA3EzKO2O6DI3JQdGAKGQJ1EgAEbcURBxz02ia+TN+UrzTwgPSenmPvAwUGStUUxeVhcQ2B+IZBsBzG/SrdyDAFDwBBYQAhAktjwhIjNOOvBMULH6Bxmf4yA4szDxBAwBAyBmkZA5k9hhibmZTVdZm3PXzQmtb2eVj9DAASMUNlzYAgYAn9rBCBNRpz+1o+A3bwhsMARkPlTeKatSTOy+X2jLJdS3YVekxxFzO/6W3mGQKEImMlfoUhZPEPAEMiJALbpTz31VCYODlX+DnOOMjdsB4aAIWAIVBMB1geaNm1acBjEciEmhoAhULcQMEJVt9rLamsIGAKGgCFgCBgChoAhYAgYArUIgfw+bWtRZa0qhoAhYAgYAoaAIWAIGAKGgCFgCNQmBIxQ1abWsLoYAoaAIWAIGAKGgCFgCBgChkCdQsAIVZ1qLqusIWAIGAKGgCFgCBgChoAhYAjUJgSMUNWm1rC6GAKGgCFgCBgChoAhYAgYAoZAnULACFWdai6rrCFgCBgChoAhYAgYAoaAIWAI1CYEjFDVptawuhgChoAhYAgYAoaAIWAIGAKGQJ1CwAhVnWouq6whYAgYAoaAIWAIGAKGgCFgCNQmBIxQ1abWsLoYAoaAIWAIGAKGgCFgCBgChkCdQsAIVZ1qLqusIWAIGAKGgCFgCBgChoAhYAjUJgSMUNWm1rC6GAKGgCFgCBgChoAhYAgYAoZAnULACFWdai6rrCFgCBgChoAhYAgYAoaAIWAI1CYEjFDVptawuhgChoAhYAgYAoaAIWAIGAKGQJ1CwAhVnWouq6whYAgYAoaAIWAIGAKGgCFgCNQmBIxQ1abWsLoYAoaAIWAIGAKGgCFgCBgChkCdQsAIVZ1qLqusIWAIGAKGgCFgCBgChoAhYAjUJgSMUNWm1rC6GAKGgCFgCBgChoAhYAgYAoZAnUKgQZ2qrVXWEDAEDAFDYL4hMHz4cPfbb7+5l156yc2ePds1bNjQLbnkkm7jjTd2PXr0mG/1sIIMAUPAEDAEDIHajIARqtrcOlY3Q8AQMAQWAAKXX365e/bZZ93rr7+es/SLL77YHXfccTnj2EVDwBAwBAwBQ2BhR8BM/hZgC//1119uzpw5me3PP/8sqjalpi+qsL9p5Llz57pLLrnE9ezZ0x1zzDHuxx9/XKBIWJsvUPjzFv7JJ5+4XXbZxW2wwQbuscceyxu/tkX4+OOP3aKLLupOOeWUvGSKuhOP+LfcckttuxWrjyFgCBgChoAhMN8QqDdr1qy/iimNTv/MmTMLTlKvXj23+OKLFxz/7xRx8ODBbp111snc8n777ef++9//Zs7zHZSaPl/+dt25559/3v3jH//IQHH66ae7s88+O3M+vw+szec34sWVt+6667qPPvook2jSpEluqaWWypzX5gO0TWeddVa1q3jeeecFglXtDKKEfrzJzZxT+CDTog0WcYv43xvkz7l/udl/zg3HizWo7+YFh/OkfxK/nqvnFmuYPs44c/ZcN3LSNDdi4jS3+KL13XJtm7p2Sy+eKVfnPedPP2DmB2SKFX0fOu24yX+Ecif/NtO1WrKRW96X3bLZYjpK6jFYfj3+N/f9j7+7P2b96dov3dit0L6Za7xY/dQ0+sLU32e74eN+deN+/sMtuURD16VVE9d52SV0lJzHpdQdzL8a+6sb89N016B+PdehZWO3oq/7IotUtHXOgv3Fuf7mx/70h6/7dNeuRWN/7769CkxL3t9OmObTT3dTps8K99y9dVPXZPHCjHt4BkZM/M19Pe4317L5Ym6lDs1d88YN81U5XC8G8xmzC39Pcj3jpdQ31039PmNOeHbn+PdyuTZNXNPFC8MgV552zRCobQgU9lVQtaazwOhrobL66qu7d955p9DoFs8QqFUIfPvtt1n1+eyzz7LO69LJr7/+6rQWlLkwDHiYlAcBtM3MOdIyevToshKqmmrDXGRqo402chtuuGHmtt54441E7ZWQMbRW5ZAfp85wO130VsFZ3X/SuoEokODVzye5s+8ZGtKesNMKbqe12+fM56VPJ7rz7vsixHn+3H6uSaPsn8YffF0ueOALN/jbX6rkAynpv0FHd+CmXV191VF/4O3v3bVPf1Mlfr6Ak3dZ0W2/ZrtMtN/+mO2ufupr98xHEzJhcrB3v05u0ObdXENPJtPkO0/+/v3ol+7zUVOzolDvY3fo4bZZrW1WuD6BjPzvtVHuxudG6OBwvEHPZdxxPv2yzRtVuSYBpdb9zWE/usse+8r9ODV7ELeb75Sf6Nt1lU5LSlFV9lN+n+X+8+hX7oOvJ7vpM7MJx3ortXQn7bRiTkI6bMzUgHuMGwX1W2VZd4pvpzRiMGvOXF/2l4lttmKHZu6CvXu51ksl41YdzP9x/htV7rEKICrg+XP8M65IYSn1VdlWOXxuyAR3+ysj3Zgfp2dda9ticbfreh3c7ut1zDvYkZXQTgyBWoxA+le4FlfaqmYIzC8Edt99d9e0adNMcf/85z8zx3XtAG1oq1atMhvOBkzKh0CDBg2y5hOtv/76btVVVy1fAT6nmmhDzPWEDOnKQqRwRvHiiy+6M888M7Nx7i0bwrmOzzH5YDZYm+RS36n+PurQ5arfXD+KruXz0VPcQVe/n0WmtGaHzvptL410J972ift1+mydtFrHdG5F0DycePsnWR3zzq0qNUN3vzY6EL24zpJ+7OTp7pDrPsyQKepNZxah3hc+MMw9+t5YiV5lDyHUZKrDMo0zWq03v/jRHXXzEDc15Z5LrfsbPv9T7vg0Q6aW8RqepZpUaDZGeK3Rodd95L70mqskQYN4wFXvu9c+/yFDNHSbvT3sJ3/9vaC1S0r/2agpbtA1lbgRh/JFyHffK95zaN5iAdcTbvs4q83ATeTLMb+6gde8HzQ2Eqb3pWCu88l1jEZWpNT6Sj56T/5XPfm1O//+L6qQKeKN95rOq7n+wFBXjHZNl2HHhkBtQyB7GK621c7qYwgsYASWWWYZN27cOPfaa6+51VZbzXFuYgikIYBJ6K677up++uknh/lfXZDDDjsssZoQp1wCyUrSVq211lqBcOVKW+y1gVt0dWstv3RqMkz9MOdKk/PuH+puOGyNYDKWFicpHFO5M+/+3P0yrYIoDdi8a9AeYWqHedR33vzvyieGu09HTnHve03I/W997wZt0S1ktcWqrd2qXapqUNCaYAIGMTp9t5WqFIs5n8hdr47KkKHt1mgbNEqNGtZ3mINxT+8Nn+xe+nSSW9Njs+3qVTVNaN3oMCMn7ryC22HN9kEjgBnbqXd+Gjq2EM7VurVwHVWnn/hodu5783sOHVqVC/fpFUwNue9bXhrh7nxlVOgsX/3kcHdm/5VDPP2vlLpzf9QPgQhddlAf16tzBZavD/3BnXZXhaUAcR46ef0q7Yo2UbRaaCg37dXKNfOmdhDeJz8c76575pvQpjc8+627fEAfXW2Hedrxt1YOCpyz58pu096tglkn5pJ3vjoy3Dv5g8NZ0b3f8Ny3GfJ90GZd3V4bdQrmoZguPui1ltf7Mnme/s9rHa8c2Der7OpifsuRa3lTzjlZecUnFz/8ZXjuwFOTy1LqG5ch5+9+9ZN7wL8LCNpEnvPubZp6g1rnRnuz00seqdCYPj9kon9HlsrSyIZE9s8QqIMIlKyhWmWVVdzTTz+dul122WUFw/Lzzz+7GTNmFByfiL/88ov7/fffi0pD5OnTp7sJEyYEhxBFJ56XgLlklJ8mlJHrelo6CWcUGKcI80MwJaITWKxgQjZx4sQsU7Ji86D9pk7NNkfJlwflMj+l2HRxvoWU3ahRI7fVVlsVRKYw+wIP2q5Y4V5KvZ9iyywmPu9mruexHM8C+BXr+EMwx2FHMUL8yZMnB7fgxaTTcXElTvlacCe+3nrrFWVOSR7aHFPnV5PHePNLEshSLJCnWNJIV1q+cfpCz5k3w/yTtI35QLmsV9EK0BEuVr6Z8FumY455HB1kmbfEfB7mMV1z8GqBcJD34++P9e9IxXNIvKT6Np1natXaE6ek60s3rdCE0Pm//eWKOqOZOW6HFRxkCmnu5zGdumslGbv5hRGB4IWL8/59+O3P7ovvK76rm3hCseNaFWSKy919J/eY7Xtkoidhc+vL32WuU5YQPe4b0rh8uwrN/XO+UxxrAEut+4PvVHTGqcDh2y6XIVOcb7TysoGkcAypeeGTCRxmhDluEFbk7D1WDuaekCmE/d6e4GBuhkCChXCGAP/vwXfGZMKO27GH29wTY5mbx7y5Q7bs7nZZtyI9hAAtoJY3vvghnEKAIeCkQZibt0+/zm5bH458+M3PmXJCgP9XXcwhwz3aNUvdFl+0QQYTnmFtIlpKfaXe8f4Nb6qJQNwYyKBumMMyd435d/83aLWMphSCbGIILAwIlEyoWrZs6TbffPPUTTtdgDD17t07sw0cODAQqDPOOCOM/rdu3do1a9YseFR74IEHUvG999573U477eTat28fzJeY9E0nZq+99nJvvZVuc//DDz8EkxTSMX+kU6dOrnHjxqHsG2+8sUrHiAr8+9//ztSXun/wwQfu5ZdfdjvuuGMwBcOEivxuuOGGTGfzySefDGkog+ukY+Sazlc+gYRddNFFAYMmTZo4OvOMdHPP5ZYPP/zQHXDAAcFLF+3Ytm3bcC+77bZb8NqV1kGFiB511FGOkWgcjnTs2DHsmVt34oknJpJI8tRtD+HA1Ihnh/ZD8wOO5557bqrTEzqct956a8CDcjt06BDS4WUMhx7cT5KUUvabb76ZVW/Kj+WPP/5wV1xxRYjH8wQetB3thmfA776r7JjEaXnOt99++3DvYMDWpUsXR52feuqpOHq1zvv16xfq9s0332Slp71oE94lkRgreR65F95Nnkfd8a/Os5D0TuGem7J5X9q1a+eWXnppt88++wRyKnXTe8i0PIOC+WKLLeY22WST8AxR7zR5+OGH3ZZbbumI36ZNm1AWXhwHDBjgXn311SrJkur74IMPhnZbYoklwjeE7wLCN0ieczATBz5J3z6uXXXVVeFd5x54pkl78803Z2FMvsW0IfELlULmO51//vnhG7HZZpuFfUysMA2MBZfrtU1uefG7DMEotG4feVIisk6PlnKYtaeTeLAnGOuu0NI7S2junRfk/85nZZBy8vnoykGmI7dbvoqzDAgbHXYEYsHIvxa0HSKHbFWhNZNz9uut2NL1nqdBizu1zH2SuUMQg26tm+ikgWBQJ5HBIypxIqzUumPuh2CeuN3q7cKx/revJyaiZXnHa0O0fOXJFOZ5mNlBvpJklU7NM8FjfsrG7bF5JpBoViChSTLIa0z/tW+vsDWsX9mNwnGGaMY2WCnZmmFtpWn9cmxlG5eKeVI9JUyIGpjtqOYTllJfyTtp//GIioHm1bq3yLSTjgehW6tHhcYZLauJIbAwIDBfTf4Yhf3yyy8zuNGRPuKII9ydd96ZCeOAjh+dqe+//96dcMIJmWtoEzBPue+++zJhcjBy5EjH9tBDD7kkb1Noiui86/Il7eeff+6OPPJIh8vj6667LmtkGRKm0+Bg46STTpKkYU8cOnfTpk0LJIu8tJCebcyYMYEQMNciSSAZ2223XRVSiCOQ/fff36FFOuSQQ5KSFh0GUdh0002rpONeHn/88bC9++677tprrw0dT4mIK2g6nknzb95//33H9swzz7hHH33ULb985Q/u119/nYXj7bffHtpe8mVP2RdeeKHDk90TTzyhLznI3dFHH+1uuummrHA54Zlgwysfi45qKaVs7lO3P8+YFkgyzyokOhbaje2uu+4K1+lgi6CJok3BKhZMDNloB+aknHbaaX5kr/JHO46f75znO6m95L60hiXGCqIIyU2S6j4LhbxT1Beyiakl9dee8nh299xzz/C8xPViQIXtkUceCVu3btkdSTTmp556apwsfHP47tBWV199tTv00EMzceL68oxBMrTIYMmIESOynhfeaYhb0reP54Y21kKbHH744W78+PFZ3iSLaUOdX67j2IGGjqvvTx8TB/KrnVRwHK9XxTn514bFf286fA138LUVgy3n3DvU3Xns2hmtgb7npONlPGkR+d53vPHolySY3LGVU3RHf/PerROzxnkFRBFBU6KJz6hJFUQBoodXvyTZ1WtaMFdES/PLtFl+jtKiIdpYNTdoh7WqEhoi9e26VCA8zIeJNVSl1B2nDMyRQnZep30Vcz7C0TRt1beNe+Tdsd7rYjYh2tqHs+WSUT9Upum8bCVZBEMhRPtt3DnLyYjOD2cUSWRtqSUWdTf8c3X/e+UyGjydLj5u3rgCb8JLxTzOW85xSvLixxPD6UDvwEQ0ZgSUUl/JP2nfpkWjYE4q7ZgUh3ohen5ZUjwLMwTqCgLV76WV4Q4hJzGZ0tnSkaQzI0IHLiZTdFKXXTZ7FIpOKORIhNFqRuGlAynh8R6NCWXmkphM6bikjcmUvk7d49Hd+HouDRt5Q3JKFQhLEpmK86Vt0DiJgGMamZI47OmY5sKBOBDpNHnuuecCMdLXGUlPI1M6HpoHSF0uKbbstLzQ1AwaNCiRTOk0kAM0DAwQiPCsJZEpuS57BgfK0eaSX7H7NDJVzmch1zvF+6/NxyDWaCP1dwGNFtpSLbzrsfYFzU8SmdLpOGZwBC1WmsQEIy1ernC+fTGZ0vEZWEgi6TpOqcdJ2jidJ/cZ3yvaqCSNlE4nx0kkXq7Nzz1ajjP69wxF0vm/5umvCy6+Z8dKTcZZfi4VWh86/PNDhKTQ4Uxz892iaWWHPPakhrkikkYCuaY9zWnTNdyEi7ReKplEcl1cp49WBIXwUuouhIZ8xIEGx7HINYijdrIQx4vPMYO8/82Kb/Fmfm6UdpM/fGwFZqSBaOEp8Ppnv3H/vOEjt/lZr7ojbhrs7nhlpPvCewBMEjzn4XmQ+V5inhnHe9U7tBDp5NtWpFTMJZ94r7VT20fkuJT6xuXoc/FSyfsGfmIGSxxen7tfHx2IPOc7pWgBuWZiCNQlBEomVIzAM1qctjGymksgQ2grmIe19957V4mqzbjihTIxs2EEe+zYsVXWb7r//vszeTHKTgdGBBLGSDwmN5ALOmQijGDn81KF+R6j5OSbJAceeGCoFyPs2kMccfX9JKUlDK0cI+wQwzg9JmSlSuypDm9kjCijfcF0Ucvdd9+dmdeGmZPuJNGxxS00mjPaTwudtVxmV8TFVTNexCBt8X3SriIQjxjrf/3rXw6X5rTDFltsIVHDnoVVtdYl6+K8k0LLTkorYWgq7rnnHjkNe7Qb4Mj9b7vttlnXpJMOEdMkgUjkBbY8l3vssUdWOo1F1oUCT3hHIRiYEmp57733Qvgrr7yig6sc9+nTx51zzjnuf//7XzBHRVtW7mcBov7CCy843r+4npp4fvrpp0F7J5WkrSHwPAfMvVpxxRXlUiAsMi8QDTWaHy1oe3GDT5564IA4aKpyCd8t0vDtwmwPc9XqCHVAq46ZbzwwhDmuSKltKPno/ZQpU/Rp3mPmVTFnSmunGCCKSZdkxLtdLmG+CZ7V0jY88eUSNBa4ukYee2+ci83E0tLSaZf5Mmhxjr3lY7ezd+V+rXdqgFnaT79mu/NOy6c64Ti8QDqkaJe4xtweGeHXJn84QBBiokkTabTIvCjCMP8S0cdoMdKkjccH+Xp8tre9Uuquid2yykFHXAd9XxN+qeptT+K/4LUzz388ITgMOfuez4O2krbE3PFU7yxBC2tNifz46wy32yVvu/+9VtH5Jw2mbDc9P8Id7D0APvzuGIla8P7d4T+5Vz6bFOJjrqnnMpWKeVIlWHvs1c8qCNxAb5aqtVNJ8eOwXPWN4+rzTXu1Dk5QCAO//v95JzhROd87UtnzsneCUxCuYU4q7xfnJoZAXUYg2fasiDuiEygdxaRkuJ3GcUWaQJJYqwrBJI/OqCY/o0aNCtf4N2zYsMwxB5jSiNC5Z06IzPvRiwnHI/wQHem8UDc0R3ptLTovdCKTBLIkC7syKk6nHrM4Ecja9ddfnzHRglTojhGdt1zyf//3fxmzPsz/qIee4wLZw7yoYcOKSba58kq6Rn00YYTIQJqYS4IcdNBBgaBecMEF4Zz2pcO9zTbbBHNEOuEiYCf1oO0gAlqDyL3qOXSSjj3zUoQc0kFjbo7umEEsRHSehGGOJaagzFeiU4t7atFasIcgpmnhiilb6pC0HzJkSFYwGhExFYOkY+7EvDQR7uPYY4919evXd8wxETMx5q9xH0jnzp3DfDt9z/HzK/kVuheCEpuadu/ePcyLypUPixrzfNA+Wng2y/UsQDzF1BZN3sorrxzmOEl5DMrwXrNmFiZ1WqiXrKXVvHnz0O7MVxIRoh6/d7ynkHTBhOf97bffznx7IHE4rGAuVyzgyTzK6pIoyQ/NnLxnhDH/S2vaePcw/eRZKqUNpbx4L89fHJ50Lm7T9bVcZIp4xeSv8006fsp7ZmNLE8hSrjWJSMe6Q5+O/CV4WKNj/cBJ62VM3NLyJfxY77xh0Qb13L1vVGg1ICr3+BF2768sJKNjTsew38qtEueLhEjV+CfmUkJa0rJo50kN2ilt+oZmQESTJgmTvZj4ca479KJxgqz51y5VhNTgtQ4PeNJhL6XuLMIrsqxyVS5hstdka7w3UUwzazz3vqGSJLPHlBDnErEWSbu9v9B7ChTixXyzZZo18nPDpjjWViL88seGuwZ+cCnNJDJT2LwDzAzRciLM8cL7n5ZSMdd5yfGtL1WYg+LUpNB6Stp89ZV4SXueGbRUaKPwIsnzqJ9J0uzj11A72LeBXrstKS8LMwTqCgIlE6pSbhRSI2RK8sGbmiZU2ksemhRGo0WYwE18OmG4tF5jjTXCBHG5zh6vZHGHlBFhLfEPPyZjmHIlCSZlWmLiRadIz3eJyWRcls6Lzl88R4rOJhhB8kToVK6wwgpyWtT+iy++yIpP/kKm5AIj7/3795fTDPmkcykdTDq4aKdwDoCGik2TABLLhPxMRuoAgqYF3DSh0u0em/BBarVASHBooIktJp9phKqYsnU58bFuE67hkEAL9cIhhXihlI4/cfRzwdw76su8KjrRaFy15NP06bjlPj7uuOOqkCnKKOezsMMOO2RIEXmvvfba7LKE9wbnI7znWiB7aPAYdICM8K7E86aIrwcRON93330zZIpz2gatsPYwiMOJJOH5K5VMkW9sfsi3hAEoBnxEGETSGnQJL8deBkPy5YWJX+z1j3dVv69JeRSaf1LaOIzJ9No0K77ezM9pySd4xjtj95WDS2w6xLhuvni/3vmSBUJxxLbL+w5w56BdePqj8RmPaSRmDhLbna+OCh7/xAtg3ozLHEE80ZGt7+dnhE5tqqhrOn29RXKwKJVZzrxVvHyHumxddM78Vd1z1XeN5VoEM03aHNLCnrlXLBp8pjcFxWW8CC7hRSCJaE+O2X75jJe/Lfq0Dl4DWduLfP7tn6FtVm/jtGMKSa/3k3+b6Y7575CQhmcZN/Axmct1DzqvnJioiKzRxVphyAGbdq1Snopa5bCQ+lZJpAKm/THHHXnz4Kz3hGUCIE9CttFcve7rh5fMBfXOqCrboSFQMgIlEypGThl1T5NevXqlXXKMkMeSaxIzDikgQ3Q6RZhvwyaCpgrnBdJhRYOk4xNPNCOSJt7HBExf15PjCZcRbokTd8K0Fk3ipO3TtDkQR915p5NVXUKl55ZRD+04QuqFdi+tHfDqRucKzEUjJOmK2YtGRtIkdYK5BnFDa6klKW5cX1yXp0mhZaell3DMzLR07txZn4bjXB1vzAXRZsaEsUomCzCAZy9NyvUs4G1TC8/fcsstlzV4ItfBmHdcz71Ei3PNNdeEjXi8+zj8wLRV3s/Y1Dbp29OiRQvHlk9iUpcvftJ1vpvxt4J41F0TqqFDhwbNfVIepYbhtQ+z4mKlEDJFnng5LZecvMuKbrMUxwzFlLG29yyGy+yH3h4TOptovdAuFSItvMMGnDiwTfNrFX3lO6yYDj75wbjQUUZLdNj1H7m7j1/Ha7QUoykk84Q4PbwreEzMxkVuueOoMl+pi1rwt62a9zRxyow4Seb8Z++IQkSvQyVze7gn5oxpwiPx2U+cZ2qHxkW0U4SXUvf23kW+yKSpM1I725PUfaGlS5N4rSc8El780JdBY3LUTUOCplLmmeHKXgTig3YSbYuWrt7jIW7kWZ8MwUW7nmun43KM9z5MRcUE898HrJrlPETil4q55CP7/3pX+gjaqUKfceIXWl/iJsncuX+5s7wGWFzXH7BpF7fvxp0zhI6Fq1lMmoV9eb5YuBrX6rkGTJLKsTBDoLYhUDKhooMjZk41fXOYdWFqw3wOPa9Cl0tHi414mPEVu64VeS2otYDSRnRjUpZvfpDGIz6O02J+VqjQ8Ue7ExPUQtOXK14STmgvtMTn+lo5jsW0VOdVDJaYgcbzr3ReteVYCElcnwX5LLDEQdeuXYOZYBKpx0QQk1BM+Jj3xfOiXb1zL8W0VXzvaZjE8XKdp+URP7fVWc8sV7n6mphD6rCkY8xnMekV4bwQib1tFpJmfsQ5bOvuYf0hOnMXPTTM9fHe6oqVJo0auNW9S2i2/Tfu4k6+85PgZhyzpuHjfs1rflhIeTh8CIRKme/F6ei8iilVx2UqNarMzWH+F9cm/pJOqDQp0SZzHVtW5oX3P1kbKy5fytbeBYlTSt01ofrBk6aefv2xJJmg7iuXWWOcFo0UpGafyyscPD3k1506+h/Lh2javBKTwphMSV6rqmfmE6+dTCNUM2b/GQiDaGXO33uV1OetVMylbuwxTRR35MVop4qpry5PH3/jPTSyvhfCgtwHeu2YFgYb+q/vl1rx63NdMm+x4SHf/ezSliXQae3YEKjNCJQ+jDaf7w5SxbwrzM3uuOOO4JGL0exYmOSNxJoczGowU8u15XOkEZdVrvNYeyT5MnFeS3xP+lq+41jjoOcq5UvL5HtNpphfQxugPSOf2BQvX36FXMcUKzZ5SlrXSZuCkm/fvn0Lyb7acaiXnu9CRjyThQgaRk2mMH1FU8AgAM/egnr+Cqm7xFkQz4KUDRnCoyZ44/yDdx2zwVhw3S+aqfh5iOdixWlr+pznNWmwJzbJZX2smhK0uoV67JM6FEqmiB9rjSWPBb3H1OrcPVfOVOP8B4ZWWRQ3c7GAA0wJT9ix0hnKsO9/LSBV/igsZoxA/NK82GmnGFrDRLourStIkfYeR7gW7cxBE6r2LSs1PrkImWjHOnnyp6WUui+tPBcKYdN5y/H4nyucaIgpmYQXskebxzpTiHhD5LiN0uxBltNkicUqx6J/9uZ8STL7z7nuzP/57/moqeHy6buv5FhgOU1KxVzny0LPSDHaqWLrq8vTx0O/r3QQg3OKNOm3coWTGK4PVWuupcW3cEOgtiNQZwgVc6GYkyMbC6DiWfDSSy91mMUw/0ELHqbQIjDiywR0EUwA0fhguqc35mjQwWHTc6Ak3fzYY7oUa95wfBC7Uk8y0yu0fmIKKfHx2hVr5HDyIHNk2BMHzRae6EQY3WbOFG2AWWdnr6nUDkQkXjn2MQmMF7xlYd143ap4bls56hHnEc//i9uOelF3wVJG+WPvZyxszYZGlU6onscTl1nOc/GAV2yeC/JZ4D2VbwD1WG+99dzxxx8fvA5igogZm5Y0QhV7DCXNwQcfnGkr2kzP49N5luv4tttuy8oKt/qQQC3aa6EOl+PqtqGk33rrreUwdS/e/fgOoDErhIThRbM2S492zZwsdkuH918PZjs8krrj5Q132Rc+mD33VK7LXq3tKkEl74WUkNEzg5Mdcjz6/thMOe2jNbK6zCM5aAv0ukuSgLk4D7xV4akO8zaIoUi7FpVmd2ne7HAhL4QnJnOl1B3zwuXbNQ1VedCbZs72JmKxoDXDWyPStVUFMZI4e3vN03onv+TwKJdLxAEF2kYRremCyKbJMOU2XaeR+GgO0X6KN8mTdl7RbbNabtPSUjGXsj/+7hc3+NtfwumBmxU2d6o69ZXy4v0M75xEZPrMOXJYZY8TExF9LGG2NwTqGgIlEyrmqtAJSNvyuWQuFDBGo+nEy4ZWSjqeaAviEWg6u4QjmlChYUGTokeHMQtirgtzOdjooC0oYbI8JotoMXBNjVtoLXSwYo9r+nq+Y/DTGj1MpnAnjcYO0oq2ifsHJ9nWXHPNkK3WTnGsR/lZIyrfujb56pZ2nYn6Wujg4aadDjUdSpxoaA0V9yhe0XS6ch/HzxxmZmiZqBee5vAGibty63FR+gAAQABJREFUwVHcTYOzFjAXkzRIQU09f02aZHc8cPFOedVxerGgngWeVfkGsNfu9CFB8WCDaHPjuZw8P7iux2EI3wKWWWAgQdqKgYd4vqRus3IcM9cTr55oJKkPjlU0rpTR2Q9UaClnG5IvTkeKldhBRVL66uSblE9Nhu3tnUys0jnZnEzKxXsgzgee+WiC027J5brsn1QeCDsuW0lG5Hp19r38ekYQHeTG574NXvR0PpjD3fnKqBCEeZ82+SNwHb+gr8gNPn0sb3zxg2NNJmTzVbM1CaxP1KdbhSnk80MmejPGynnLxKcDfo13HS+y5nJLy2HYl1p3WTSXeUeP+zlqsbAWlMiGPZeRw7Df0juOQJ7z9RbCFwLUvyGedMicJjz4iTSoX8/hzhyBiEIaY8ElvS6/r3JqIXGveuprB27IsTv0KMjDXqmYS9k3Pl/R1kE7tXrlkjByPWlfnfqSD8/gR9/+nKVB7aIILuaUSdpVyLwm6nr+X1L9LMwQqAsIlEyo6DDiES5tY+S9HEIHWa83hDaHzhIaEkaWY82L7oSzyKw2G4P8NWvWzPXr1y90vHEVrgXnFwtK6FANHDgwuAFnXS7uU4t2s6zDizn+z3/+kxWdSfAdOnRwaP0gn7pTh+c63FEz5wMTPy10UpmgDxnNtViuTlOd41133bXKmk54dWvcuHFwSx4v+IujByHT1Smv0DR4fIxH6xnxp16tW7d2V155ZVZW4jkxTgOBxuwPE0IIfeyRLiuTEk5iEyxclVMe3jGLkQX5LLBelZaTTz45PLM8f3iK5J5EIFy840irVq1cvIAwbu4hTXwLGMjQglOL+SGQZ94hnue43dHyxHO9ytWG+t7yOUWJFyPPZ/bH+1duGTbmV4czgVwb8z+KETyOnem9/uWSrfz6VSJ7Xfquu+/N0cG9ON7gKA+igXMCWSgW5wwxuZD0xe7pYItrbTzO4ZUQZxgIpn4XKK3ZoC26VXE/vWqXpTKkCG9v1BEihKBhueKJ4eGYf/v065w5loMBXrshgoZO1oeCUECmZF4Q7rFlkV2JX2rdd/FuzTWZ/NB32hE64qwpheYKodzYjE47L9n/yveCm/MfvHMLnGtgvviY1+odeePgkJ5/8dydPTfsFEzluIYzCcrDUQPpWdfpjP995lgXDdm417Ku+zzTwRDg/+GqHKcnCPcAWUh7bvUcNuKXgjnpwUlMDA/arFtBjh6qW99v/VypnfyabEffPCRLg7vW8ktn1kZ7dvAEd+Jtn7jPRk0Jzy6aKBZFPufez93d3ssfAvHTbRYC7Z8hUAcRqNR114HK412KeUYyEZ2Of9IaWEyG1h0k3IKjKcOkStJyu9o9u9w+E97L4cVL8itmj8MH1suJSZTkwbyRmNTItWL2lMPCpRoj0msixTnkijWbRI466ij35JNPymnY6/k+EIJ8nbOsxAWeYLaJe2w6nfm0YHTmNJkusIhqRcMbHc8frvu1F8akzG699daM9gQiShtoE0Gwlw41uCc9m0n5FhPGUgCxa/ti0uu4C+pZ4BljAEWTaLBPwh/Pf9qhC98PzFt5x3MJ3gHjdyNX/Opc4z7QNKeREzTTSd5Ty9mGUm/MY88777xUj3/UEezQTOVbe4p8YtIr5ZSyhwwIaUnL5/6T1k1diygtDd7dmNty4QPDEqPgbEFf/7+nvnFsScJcnv94ZwcQtXLJPl6LJiZcL3480bHRAYVgieDBLdYwybUzduvpBl7zfoh/tdeasNHJR+smcoZ3HR4TIq7hrOPAzbq4214aGchT/3+/U6Vs5iEdvu1yklXWvpS6N/Vu8M/fu1fGxf0xvtMuBEvqzvlF3u19jDf3cskBvd3Jt38a7vP8+5PNNUl/+YA+VbwI4izhNI8bRAA5776K9DFuG668jDu7fzYhRyN2y4vfZXCgrngSTBPWwzp+xxUyl0vBHLKJJhPhGdl29dwmhsQrpb56MW1xz06etMd1h64ePP3hVAVNnzip4LoWnh+WLtAeIvV1OzYE6hICixRb2XjENF967bUqnpukOzuST+zBTafnh58OPCZ7jD7Hgikbo7p0VDH/0YKGC3MsOuVJgvaLhUpjxwpxnXV9yCeub1LeOkzHj/OC+L02b00dnYZ7pTMTa/vittB56/RJx2hL6FzHmj3ighWu5ZkzJQsgE45mBVfh8dwhzBBZqDaXV6/Yq1m+usdmjWh9cJmPJiKp7akDDjKSOnOllB23PzhoQbvB/K34uZE4rJ1Gh3SfffaRoKB1wJwTky+NLxEIu/feezNx44N8uMXx9TkDCszfigmnNiPLh5XkV8qzEGMavweUEbe/TgNRQsuc9OzybEBWmVeJ9loLWku0hngJjXEnHvlByImjcdBlEy+pvoQjcftUhFb9Tzw0w0maXQgdhDFJy1pIG1YtLX8I2jrIUJpAqLjveI6ajk968imXFLouj5THIqsi9VwlqcGMK5cwt4XOcZpw/Y5j1k715EZHe1tPav57xJqJxCTOV1yQ44kvnxDnon17h/WQJK4mU5inMT9nnnW7RMnsWXj3eu+SGq2BiBASOt14ndtaaeEkjuwHeC0HJmvcI6LL3qqv18IP7Ov0HCRJx77UuuPi/spBfTPaDuotdcer3rW+0x5rh6T89Vdcxt17wrpuA28OKHWXa9w3Wi3aNG0x6HW9ueSDJ6/nWLRZRMpGC9l/g47uvL38wvZRG0JqSpXqYv6xX7T6S6/JRQZsXph2qpT6YmrJws8V5XUNe/nHEgNXDugbzCdlPpxcY8/gw54bdnQ3Hb5GQe+MTmvHhkBtRaCen2Rchk/Agrk9tE04QqDzxboydLoLEUapWTyVxWgxc2NdolydpELyLHccHBqMHz8+ELa2bdtmdfDKXRbzaNjoOGICVsjcEebdgKE4XCh3nXLlh1MCymb+FB1f8IkXJ86Vvqau0WZjxowJzgzAkPWyCulgo5Fksj+mk8WQ4lLvg7leOG4ptcwF+SyAG45meKd5j3kWkohIjBX3Du7MdaONGIxB41hTwrdKr0mGFpLBE4S68B2j3sRJGmgKERP+lasNJetbbrnFVcfkGc30/HAEI/VcUHs8oeHZDs95izZcxHXz80Vwrz0/BDO/kX5h2qm/V7gxR3vWrHHDgoum3t//+LvjHnCk0L1N04LXy/rdmxqOmDgtzDtq3MibsS3bxEHWCpVS6o55JWWHNa88N+6wdGNvRtcklUQm1elHjx3zfbjvYheRnfzbLPfdpGluusdgubZN5xsBKBXzJBzKHYYZJOtKxYsUx+UQRxyj4MAkX/w4vZ0bAnUBgTpNqOoCwFZHQ8AQMARyEaraiA4OO/Jpm9BSMmewLjigqI0YW50MAUPAEDAEFh4EjFAtPG1pd2IIGAK1FIG6RqgExuHDh4d5i1OmTHG4rEebidkfppWxgwxJY3tDwBAwBAwBQ+DvhkCdckrxd2scu19DwBAwBBYkApAmI04LsgWsbEPAEDAEDIG6gIARqrrQSlZHQ8AQqNMI4PhDL3ar14Kr0zdmlTcEDAFDwBAwBAwBZyZ/9hAYAoaAIWAIGAKGgCFgCBgChoAhUE0E8vttrWbGlswQMAQMAUPAEDAEDAFDwBAwBAyBhR0BI1QLewvb/RkChoAhYAgYAoaAIWAIGAKGQI0hYISqxqC1jA0BQ8AQMAQMAUPAEDAEDAFDYGFHwAjVwt7Cdn+GgCFgCBgChoAhYAgYAoaAIVBjCBihqjFoLWNDwBAwBAwBQ8AQMAQMAUPAEFjYETBCtbC3sN2fIWAIGAKGgCFgCBgChoAhYAjUGAJGqGoMWsvYEDAEDAFDwBAwBAwBQ8AQMAQWdgSMUC3sLWz3ZwgYAoaAIWAIGAKGgCFgCBgCNYaAEaoag9YyNgQMAUPAEDAEDAFDwBAwBAyBhR0BI1QLewvb/RkChoAhYAgYAoaAIWAIGAKGQI0hYISqxqC1jA0BQ8AQMAQMAUPAEDAEDAFDYGFHwAjVwt7Cdn+GgCFgCBgChoAhYAgYAoaAIVBjCBihqjFoLWNDwBAwBAwBQ8AQMAQMAUPAEFjYETBCtbC3sN2fIWAIGAKGgCFgCBgChoAhYAjUGAJGqGoMWsvYEDAEDAFDwBAwBAwBQ8AQMAQWdgSMUC3sLWz3ZwgYAoaAIWAIGAKGgCFgCBgCNYaAEaoag9YyNgQMAUPAEDAEDAFDwBAwBAyBhR0BI1QLewvb/RkChoAhYAgYAoaAIWAIGAKGQI0hUGcI1Z9//unmzJmT2WoMEcu4ziIwd+5cd8kll7iePXu6Y445xv3444919l6s4oaAIWAIGAKGgCFgCBgCdQOBBuWo5vTp092QIUPcuHHj3Pjx492SSy7p2rdv71ZeeWXXpk2bchThdt11V/f0009n8vryyy9dt27dMud2YAi8+OKL7swzzwxAfPPNN26ppZZyZ599tgFjCBgChoAhYAgYAoaAIWAI1BgCJRGqn376yV122WXupptucr/99ltiJXfYYQd30kknuTXWWCPxOoG//vqrQwMlAiGrV6+enC4U+1mzZrnff/89cy+LLbaYa9y4cebcDkpH4Ntvv83K5LPPPss6L/XE2rBUBC29IWAIGAKGgCFgCBgCCx8C1Tb5+/zzzwNJglClkSngevzxx916663nbr755lT01llnHdeqVavMliu/1Exq+QW0a/oe//Wvf9XyGte96u2+++6uadOmmYr/85//zByX48DasBwoWh6GgCFgCBgChoAhYAgsXAhUS0M1YcIE169fv5xEKobp8MMPd82aNXP9+/ePL9m5IVAWBJZZZplgdvraa6+51VZbzXFuYggYAoaAIWAIGAKGgCFgCNQkAtXSUB122GFVyNQee+zhHn300eAI4O23387MZdGVR2MAGSu3zJw5002dOrWobHFg8MMPP7gpU6YUlU5HxkyRsueX/PHHHzmLAoNicYgz/Pnnn92MGTPi4Jznv/zyS5Y5Y87I6iL3w/NAW1RXYkwaNWrkttpqq6LJVE22I3MMwdXEEDAEDAFDwBAwBAwBQ2DhQ6BoQoWp3zPPPJOFxF577eXuvPNOt+2227rmzZsHU0CcAzzwwANZ8TDlu/XWWzNhaLl69+7tcCCgZYMNNgjhO+20kw6ucvzYY4+57bffPph5oY1AK8F8LTqwaULdt9lmG0fHG8cZyy67rFt66aXdwIED3bBhw6oke/nll0NdqCfbDTfc4AYPHuwOOOCAkBYTsyuvvLJKOgl48MEHQ7rjjjtOgsL++uuvz+SLMwWETreUw546TZo0yZG2R48eAdsdd9wxxJV/YAwG3AsYsHXp0sXttttu7qmnnpJomX1SGRCoM844I+DXunXroEnEU17cfplM/MG9997raB/KxZQRBxDUkWfhrbfe0lGzjnFccuqpp4Z0PCudOnUKdd5yyy3d+eefX4WYJdU3DZM333wzCz/9rCW1I14A8QYIXrTjoosu6qiHtIdUvJg2lDQffvih22effYLHQeYEgitY0Va33367RLO9IWAIGAKGgCFgCBgChkAdR6Bok79HHnkk65aXW245d+2112aFyQmdfzqsmnDcc8897vTTTw9RIGdJ86Xw4IfgJj1NXnjhBXf00UdnXSY/thEjRrj777/fNWiQfXt33HGHGzRoUFYaTqgDhBANG+Ziq6yySibOtGnTnNSHQEjXBRdcELRbEimXRgftjU4vaShTwgUD7lfCiAdJOeSQQ7IIrGhk0ETtv//+Wdckb0gLG/PXzjrrLHfaaae5RRap4M5JZRxxxBHh/iU9e0guhOD77793J5xwQuYSjjXQUN53332ZMDkYOXKkY3vooYfceeed50455RS5FPZoozbZZJMQR1/g/l999dWwQQIhyuIdMqm+aZhoTMmfuojE7fjVV1+5NddcM+AkcdhLPZgvtfnmm4dLxbQhCS699NKAeUis/qERfe6558L2/PPPh3mFTZo0UTHs0BAwBAwBQ8AQMAQMAUOgriFQtIbqpZdeyrrHvffe2y2xxBJZYfpk33331aeho14Os7+YTOlCnnzySXf33XfrIEdYEpnSkeiQb7311oGQ6XB9jIaKjnE5RchOnOc777yTSJiId8stt6Re0/lAbN59910dlHVMGZDJNIGM6fuF7MRkat111w3aOp0HRO6TTz7JBE2ePDmY4mmSk7moDj7++GO32Wabub/++kuFVh7mwqQyVv6j6667rgqZ0qkwYc1XVx1f2pA0YKYFgr7iiivqIPfwww/nxD0rsp0YAoaAIWAIGAKGgCFgCNRaBIomVHEnU2tzku4SDVYsEydODEEfffRR0MhgcqXlvffeC+GvvPKKDq5yfPLJJzsI3jnnnFOlQ49ZnggmgLvssouchv1///vf4K4d1++ydhEXIA+YDeaTgw8+2N14441By4AXwzTB8xxaJ62lIy5ElHA2TCVzyT/+8Q93xRVXODRsaKWYu3X55ZdnJUHjASH8+uuvHWRAC1q3XILZI2ZoaGWoVyyYr4lAqLR88MEHQas3duxYB6Za0BKK4A1Sa98oE40gGjA0Wvo5QTvGs5FLYkxyxU27hpkfxA+t64knnpgVDSzluSimDZ999tmsfGg3nsVPP/007PVFSLGJIWAIGAKGgCFgCBgChkDdRiDbJi7PvYgjBx1tpZVW0qdVjpmrxOi87kwzBwYRIhWb5nXv3j3M46mSmQrATI05N8iGG27o2rVrl6WB0h1yOrNaIEz77bdfCKJ+zB+CNGCOhUBA0JCkrYXFHJuNNtooxM33j/kzbGLCJvGpbyELE3OPEMdY6LjPnj07BLds2dJ17NgxHHfu3DmYVGotUi4NFYkgSauvvnpIj5kbpBlNkMioUaPksMo8M9bTEgFT5r+JdmnxxReXSw6SrOW2227LmNQxrwgtJ9pBEchW2tplaZhI2kL3aDFxYIFst912AcMjjzwyk1yIZDFtCKHVwvMlwuDD6NGjnZhtpj1fEt/2hoAhYAgYAoaAIWAIGAK1H4GiCFXS7egFeZOuExbPhSpHRzLW6my88cZZxaP5EMGMTAsLvmLypQXPhCJoJyAVXbt2laDMnnIKJVOZRCUcpJk2as0g84Mwr2NeFXVHW6Qll5MONEVCpiQNJEMTKuYQiay//vpZTkRwnkF8HIzgFAQSFC9YTPtrRxVohmR+kuS76aabuqFDh2bIGHHSJA2TtPhJ4WuttVaGTMl15mZhrgeGCM8Ax7nqImllz7ws/Wwx34yFr3lewYfrSc+VpLe9IWAIGAKGgCFgCBgChkDdQqAoQsU8ETQrODwQQfO0/PLLy2mVPaPxsRc/vMKVKmhitIiGRofJMWZpWsQxgA6LjyEoSR1fOuLzSyA6WsMRl4uDD7wFvv/++/Glgs/RBsaCt740gSBgoiekg3gxnmiqID1C+mKtDSQsSXI9RxI/HyYSL99+1VVXTYxC++p5gjivSNOUJWWAlo37xjmKCIRek/otttjCHXrooUErJnFsbwgYAoaAIWAIGAKGgCFQNxEoeg4Vbq61oFXIJcOHD69yuRyEqkqmOQLwTFesoPVJkoYNGyYF10gYbrzTBLftbKWQqbS8c4VDRHBBjuv5NMHJBdoY3JgjsYayFAxzYZJWn6TwtDrE+YtZZVIeSWF4ZsQD5YABA5IuhzCu77zzzlXm1aUmsAuGgCFgCBgChoAhYAgYArUWgaIJFR7YtNB5zrWYbOyogPlU8XwinV9NHMcaBuYMMY8r19a/f/+aqEpZ8sR1O9opEcz2cK4A0RHX8XKtJvaQKjBkPhCOMo466qgspxJS5kUXXRQOV1hhBQkK+y+++CLrfEGcaA2SLl/PvSM8l7ZOp9PHrGuG5hBTSeaCsUwAnhBjYS5fLpf7cXw7NwQMAUPAEDAEDAFDwBCofQgUTajixXaZZ4L5kjgi0LdIp5/5I1qSvMjp6xzjea+cEs8RwgQNTYLeMK2jcytbmgajXPUST4fVyU+bpJEepxpsOISAALBgbU0ITklmzpyZ2VhEeM899wzrLqGpjNcoo548F2h9dBvgSXHIkCFZVYQkQkRkE4cjWZHKePL6669XqQNeDrWLeIgq9UmTpDbU+PAMMXfq7LPPDo5OuMd4PlZtIJdp92fhhoAhYAgYAoaAIWAIGAL5ESiaUPXs2dPtsMMOWTmzps6uu+7qHnjgAccaUyyOyug7Jmla6EzGYVyPFze9+uqrQz65nCnofPMd9+nTJysKddNOEqgzc18wZ5QNolhO0d7wyBfNBXXgHos1K4PYaEGrIs5BuJfjjz9eXy7bMRop2lA2XJ0LecPRSN++fbPKgkSJA5K111476xrrk4k5KFgz54p5WbLlckWflVEJJ7jS55mF1KBpFc+PkqUmgYQV0oZo4wQfnmvtYZF5fvHcv6R5elK+7Q0BQ8AQMAQMAUPAEDAEaj8CRRMqbumaa66pMtLOwrn77LNPICRbbrll4vwQXGUz6h9LbFaFlzSITWyqF6cr9BxN1IUXXpgVfZNNNgnaHLzTUZb2ascaR4W4NM/KMM9JnB/EgTrgkhvsipHYyyBkAFxxqMC9aAcIxeSbLy5u7nGoIIJzEggEWirW5RInFHKd9ZtEcEeu2x5HJcRHA0T7ozESIV58j3KtnHvqzzML4R44cGCWow3Kid3VF9KGhx9+eFYVuQ9csuPmn3K0qSHz0Hg2TQwBQ8AQMAQMAUPAEDAE6i4C1SJUOJWAgMg6UoXc/l133eVYbyhJBg0alBRc1jAWbkUzpQXNiCZSXGOOVzzvS6ep7jHanHj+WXXz6tWrVxWnEBA0IVJJ83WqW1acDlM8TYwoFw0lCwNzLIJ7ebRQIjwrOGNAe6NFpyGcvJ944glXv359Ha3sx2hK47roQtCSrrPOOjoozBPL14YHHXRQlflS3Demr9rbJd4yWZDaxBAwBAwBQ8AQMAQMAUOgbiNQLULFLaNVYLHWM888M6uDHcPBnCnmy+Ry8sDcH+bbaI0G+WhTQFy2a8k3x4mFYmOBDFx66aXB9Xt8jc71xRdfHEy0tNYg7tjnKzfOV86pPwvJUgbkSouYksX3KOE6LsfU6cEHHwxmcprccA3TuXvvvZfDRCmkjPgetec70bIceOCBiYSEe+Men3nmmSrzj1gEOs1DIPgzP4/FdLXpYCH1lRuN40p40r5Dhw6hrWVhX4lDPXhGmBcYC/nna8MWLVqEZxmNKKQpFtoLbR5u+dNct8dp7NwQMAQMAUPAEDAEDAFDoPYiUG/WrFl/lVo95gDhlAATqsmTJ4eFXelMYg5GB7NYwc02zgzijn2x+aTFZ74RdcXLH+SEuS0tW7ZMi14j4dwfuDVo0MAVQwSSKsO9+HZ07du3rzHMksolDCcOo0aNCutlsaZVvKhvWjo84FFvnDjg9bFt27ZpUcsS/vjjj7vddtstkxcDAWwI89i4h+bNm7vWrVsXrB0rpA3RwMk6XMyX0mQ9Uxk7MAQMAUPAEDAEDAFDwBCoswgUtbBv2l1CfNBcsJVDIBk1KUKici0GXJPlkzfOGrTmp5TykjQhpeRXTFo0LrGWrJD0EIvaQi4ggWjPipVC2hCNF2tymRgChoAhYAgYAoaAIWAILJwIZNvRLZz3aHdlCBgChoAhYAgYAoaAIWAIGAKGQI0gYISqRmC1TA0BQ8AQMAQMAUPAEDAEDAFD4O+AQM3a1v0dELR7rBMI4L0RZxkieCE0MQQMAUPAEDAEDAFDwBAwBEpFoCxOKUqthKU3BAwBQ8AQMAQMAUPAEDAEDAFDoC4iYCZ/dbHVrM6GgCFgCBgChoAhYAgYAoaAIVArEDBCVSuawSphCBgChoAhYAgYAoaAIWAIGAJ1EQEjVHWx1azOhoAhYAgYAoaAIWAIGAKGgCFQKxAwQlUrmsEqYQgYAoaAIWAIGAKGgCFgCBgCdREBI1R1sdWszoaAIWAIGAKGgCFgCBgChoAhUCsQMEJVK5rBKmEIGAKGgCFgCBgChoAhYAgYAnURASNUdbHVrM6GgCFgCBgChoAhYAgYAoaAIVArEDBCVSuawSphCBgChoAhYAgYAoaAIWAIGAJ1EQEjVHWx1azOhoAhYAgYAoaAIWAIGAKGgCFQKxAwQlUrmsEqYQgYAoaAIWAIGAKGgCFgCBgCdREBI1R1sdWszoaAIWAIGAKGgCFgCBgChoAhUCsQMEJVK5rBKmEIGAKGgCFgCBgChoAhYAgYAnURASNUdbHVrM6GgCFgCBgChoAhYAgYAoaAIVArEDBCVSuawSphCBgChoAhYAgYAoaAIWAIGAJ1EQEjVHWx1azOhoAhYAgYAoaAIWAIGAKGgCFQKxAwQlUrmsEqYQgYAoaAIWAIGAKGgCFgCBgCdREBI1R1sdWszoaAIWAIGAKGgCFgCBgChoAhUCsQMEJVK5rBKmEIGAKGgCFgCBgChoAhYAgYAnURASNUdbHVrM6GgCFgCBgChoAhYAgYAoaAIVArEGhQ7lr89ZdzM+f8WXC2izZYxC1Sr16I/+fcv9zsP+eG48Ua1HfzglPzkvj1XD23WMN0bki8sZOnu2/HTwt1696mqeuy7BKuoS87lrk+7qx5dYiv5TpvWH8RV3+RivvQ8ab+PtsNH/erG/fzH27JJRq6Lq2auM6+7EIELL8e/5v7/sff3R+z/nTtl27sVmjfzDVerH4hyd3M2XPdV2N/dWN+mu4a1K/nOrRs7Fb06RdJqGdShuMm/+FGTJzmJv8207VaspFbvm1T17LZYklRq4RVp+xCsQdn8M4l02bMcSMmTHN/+b9urZu4pos3zBU96xpph30/1U2cMiO0VVefvkmj6r0q4EAdkPr+gU565nThtDnP6rAxU12DRRZxK3Vs5tostbiOknpc6vOSljHvJO8Q0qhhYc9eWl4SrvOUsLR9jJtgWshzQJ4zZld8jxb1z0yuZ/+HqTPct/6Z+XHqzNDu3dqkt/usOXPdXAAvUpLwq867oov9u31jpD01BvFxvt+EOH78PCa1k05TyntKPhN/meG+mzTNTfLfmGK/raTPvAMFfFN++2N2+B0Z73+DGi/awC3nv+Ptl14857tAGfmkmDrky6u2Xn92yEQ3xf+Gr9ShmevduXltrabVyxAwBGoBAtXrJeao+I++U7LTRW/liJF96f6T1g1EgdBXP5/kzr5naIhwwk4ruJ3Wbp8dOTp76dOJ7rz7vgihz5/br0qnl07PVU8Od4+9Ny5KWXHab5Vl3Sm7rJjV2f7Sk5+Dr/kwMX6uwM37tHbn7LFyJgqdrf+9Nsrd+NyITJgcbNBzGXfcDj3css0bSVCV/XeeyPz70S/d56OmZl2DTB3r026zWtus8PjkzWE/usse+yp0DvU1OoknemxX6bSkDs465gf46qe+ds98NCErnJO9+3VygzbvlpMYVLfs976e7E687ZMqZcYBbVss7h48eb04OJw///EEd9vLI92YH6dnXSfNfht3dv9Ys11WuD75ZOQv7pqnv3FfjvlVB4fjAZt39em7BGJa5WJKAGR2wP99kLm67Rpt3Wm7rpQ5jw/ufWO0u/Wl79z0mdkDEks1aejO2XMVt3r3FnGSzHmpz0smo+jg5U8nuYsfHhbqxLP34nkbRzGqd3rlE+nvZZzj1qu1cWfs3jMTvM/l7zo6h8s0X8zdc/y6eQcY9vjPO+E92G+Tzu6QLbtn8pGDR98b66575psquHN9+XZN3Zm+bEi1llPv/NS9N3yyDiro+O7j18kaUKnuu0Jhf8dvzLQ/5rgtz3mtIKwfPW39nN9YyYQBlD3+87b7ZdrsEMT79tSZG8nlKvtS3tOffp3prn/2G/ec76jH0rnVEu6CvXv5Qbf0Abc5f/7lv2/fudv9Nw7ZrHcrd+5eq8RZhXNI4p2vjArflDgC7/JZ/vdqg5WWiS/lPS+mDnkzq+UR7n1zbBhM+tk/G/kIFQNwN70wqqg72mWdtq6nJ2smhoAhUPcRyD3MvwDv79JHv/KamexOca7qoN3Qwg/XP2/4KJVMEfe1z39w+17xXhiV1mmrczxz3ii4pL3Wd8w1meqwTONMx+/NL350R908xE2dXvEDLmlkj4bikOs+zJApfvwgBAid7QsfGOboBKbJGz7/U+74NEOm6HjSSUDQ2hx63UfuS9/ZTxJGf0+8/ZMsMsUPvcjdr412FzzwhYvxluullD3l91mSTc79H7PmVLlOfeioQLBjMkVkOuAXP/ylu8J35JPqPnjEz+7wGwZnkSnBjPS3vPidO/T6D93vvvNViMz2ZP58j1Mhwmg3dYfMCZmivWl3hI7e0f55YQAhSUp9XpLyDM/Zg1+4s+75PFOnpHjzIyxNU40miQGTQoU20cL5RQ8Nc3xrBHeuC+4cfz3ut/CNeOWzSZyWLAzyiJTyrpDH3/EbM2V6Yd8I8Jk9J/s3gbAk4d0TMpV0XcJKfU8n/zbLHXHT4CwyJd91yhg16XfHYME7X/0kRWbtec/5BgmZyroYnaBRPve+oVlkiu+ZPNs87/xG8F0rRoqpQzH5LgxxJ02Z6a1RfitqG//zjIXh1u0eDAFDwCNQdg2VRnXgFl3dWssvrYOyjjH1a9eicVaYPjnv/qHuhsPWKEorIOlvfP7bTOcYTRQj0+0wc/BlYmZx9+uj3CPvjg2k49+PfOluOnyNkLSrN8m7+YiKY8mL/dMfjc+Qs6TrTRpVmpR94DUt9735fUi+oh99unCfXsGsg5G9W14aEUYN6fRf7TuDZ/av1GpJeZAC6eCduPMKboc12wfzR8yRGBmHHNAJXK1bC9fREzUtmP8QB+HH87KD+rhenSu0Ua8P/cGddtdn4RpxHjp5/SrY3vXqqAyR285rVNCGYf5CvrQHo/Ivea3Fmr5dt109W0tWatl0OJBVvGnFsdv3CMdJ/+p7U7hY0G79z5M9hPQn7LhiZqR3pDetOfveoaHD8tDbY9wWq7Z2PTtWmm/wI3jUTUMyWZ7tR27X9yO34AfWjAijrUNzde+bo91Ar6HLJ3f9P3tXARjFsb9/dxECJGgI7u5OaalRo+/VaEuFllej+m/pq722r+7uLq/Gq/ur01KlWHF3dwsQIMTu8v++ucze3OXucpdLQhLmB5vdnZ2Znf12b3e++clAO8kOEoX16PsZqtxv87c4bR/cuaHcDo1Ig9RkRfymLtshN73p09pRe3tEt4xi5q3xPC+h2kPN2p3vzVPXHup4Waaxk/fYRX0iVhlJk/vNtI3qXpVmpH08SBLLUzhocMsZXaVz8zoKXz7LP+M4tbwU4jGoY0NJrel7ZV57SicZfXwguWYnloMVFGojhx9SXBuqf6/x/lYO1nfMzr1+QvXGmEERzcIzMJBUkkxfnum818v7d/ogBlj0YM9Fx7aVfwxto96tfG6oCX78i0XqPcHvETXwplkzNe/8nUcrH+I99evcrSr7kG7peB92Udo6kkKaE3Owh22hRvy4Po2ldSP/oFm4c8TahnD1VNd0mtWHMvsPvl5tPs30urX8/YbgfHbfImARqFoIFO+ZlmH76bPTrWXdsAv9gcKNPrMZ7MCO/XVVzC3iC4vaJ8qRPRopQsOODF92PF+T+ilyIz4wo2C+RlkAfxmtDauZnBCyvWanLtQ16Y4S63sTHXAt/x7RTZEp7vOFe9kJ7ZUZEfdp9qHPy33KNHzg2R7KMb0ao1PmI1Pc7wBzvesMohEKm08m+Ygc8199UkeHTHH/qB4Zct5Rvmvm6P6PswNN+rKgMdOjn+zo3nBaF8dnpi78v3gtWl7/cYWQIJoSz7lZj+4s8ePOjm24hTgEy/czfNdCTeALlw9QWPF+c6HP3HOX9XeKBJtqkSRpIQE9Aeab7FxROIL87zO7KdMa7r81fpVsBSGPJPQ70yO/NDOjmWUk0e1h2x++oLciU8xPf59DO6eDdPvN3eat2RVQVbzPS0Bl2KHPHs0USSQpNL2lmWd5SU34dIT6PZlpJfnt3YeReE3GY2nnHwt87wje6zfHHKJ+K9oXk8/7GYe2kMcv9pO93zAgoYXPqNlGva2P009Sp5lr7ZsT72/lYH3HaE0Ste78foR7RzC9JH9FauMfhdaawkGYEUNa6tsXch3P75TmxFMx6EPhAB+/A/pZ4DuK7xz9fuW7mQRLCwf+NJnie/nFK/s73xCdx1zTZNt8j98Lc2H9/eL3j4NJT4/u6xR573f/+89JDNqItQ1BxQ+KXZrujf3ngIjL/ef5v6EDOtTHIE39gwIbe5EWgYMBgXLVUJUFgOyYUstlahRKqncx/KC0RuDI7hlhs581pJWs3OzTItBE0CRFYQuVcIAfM+33RA0PAyKYQg3ZmJM7yZhXZ6hkmpqZ5+XIs5YrTiyuCRnSNV16t60nc1btEmqcTN8SlqMZEYVE4OQBxUfI/3F0G4zIrlf40LTE9MWat8ZH5FiebdSdS+5T2LGlLxHvCT/6a7btC7i+eM7N+lknRX/81U4Uf+hLQgdvdrLOxj0lcQ2WhmnJChMShSUbA80dJ8LfjEJtIjVEwUJic+ExbZVmjsf+99cG1SEKzsd9knmakVFIkC46pp3MWum71yox6A9HjCcu8p1/SJd0YZCWYDF9p+au3hXgSxXv8xJ8LvqoUKixuQ++GXx+aRJVmYW/9Uc/XyiPXtAn4gCNeQ28T3/M9+HODm7ws67zktCe2K+JZGUXOMEt9LF41vH8Vg7md0zmXt87goNi8Qq1M3rg4LYR3YsNMJn1x/s7/a5owId1jjmpk1m1sz20Z2N59EK3eoeY16dNoTk4yMGdOiVoNSYu2u58/6ip5yBhsDDQzSv/N0AyYRVQI4pAM7G2Ifh8sezTp+3rabAIWL9HMqGRZHCeeiCSvVrXlb/1a1zsemas2CVz8F5shO/TKQObYlBor0yCJcVilOfvvGOzVDm0UwP4DfutEsz28HyTl2TK/LVZalCP77wBHephQKRsfZvYlkc+95kokxhfe1Lx77vZLr2try8N2vGzDmuBIFP75Xd852et2o3B2hpyJDSQA9rXV989BtD4CWR8wdo9koW+SDu8xw/BtQ8EeQslHBT9SmHNwFm+gcKWsOTp266enNi3cbEi7CNMW75TadbOPLS5cP/zKRvVgBavxxzsZDv/xLPI+5GF70qbjFrSF30XYqsHE4qdwCZYBKowApWWUNEE7/IXpylo74G51tjrBxd7kYbDPT3Nb+qxequPMIXKS4JgjkCHyhNr2npExtNyWgiTHx7r166+07kP1lBpM7HD0LlmVL9QMuKwlopQsSNJrU59mIdRSCzoI0Xh6HooYsGP8Yn9mipzx1VFJmmqAP6s2+7H6vjeTXRywPpUBHXQ2hfa02vCGO+5eRJGE6Q0rOO7HrUTxR+S1PduODRiTmKlO0/UGGjhKLUm3/3xUQonph9ZpGfqy6nrHVNTBqAI11HX52EEQGql2GEz/Sn08eB1vdqB2MTzvATXzf2UZLecjmfnGmg3K/tH7+zDWwG3QvkEZpwTF25HJ2yD8PmMRqgVIAEniefvgPhz9D5YmBbKLDc4Xyz78f5WDtZ3DDEmAaA0qhMfoaImlv6gFA5cmYNaKjHoT7y/00lFgybDBzdXFhJB1atdPms0NQ4WaktN0+/g48H7HKSj8H3CwYJwEikwUXCZWNsQXD7a/ZX4Ld71wUL1ezTLbMOA5zJ0zL+culHuOrtLQMd9MsgTCRE1kvgZy0d/rjeL4r2fg8HH7TL6uDZyTM9AfHnszg8WSE6e37dxBQZZf5y9BdrPtIB64t15/adVamCG9/n2EV2iMg/kOfX1cZsE6Jvpfl9aRoucA2JFgnbTaZ3k3o8XSR4iy2qhXxexGXlECwywNtXJas3Iww98sli1yTxAc2SSyx9mboEZdCdEmfX/1mau3AVT6G3qXUnz57G/+i1idmPQSQtJWvB9YFunoC20CLhvZLeAenU5u7YIVGUEKi2h4sfgDpg6PfDRAtURfuHbpYhO1zUqrBmGli8Ymoe8++tqaQjCcRpM50rq3EZVeQmZ1iNEuZYmEcJd0ySIHfw1QYRv2aY9qjj9vcKJOXpJUqMJldbwsFykzrk+xs44R83YuaRockfNSrjw0g2g6dGi/QG4H++5zToaghAr3waQE/qNMWQ5tTT9sfTBCJfpW6DbEmnNj9Az8FfTcji0fFqoEdK+E5HMxhgiWEs4QsWw20996TsPCa32XdPlQq1JBkvq2PxZ1BljeXMEkPvxPC8sHyzaPC04vbLuX/m3DkL/OT6LNN/qB1IcbiAi+BroB/gtfKhoWvzgJwuU5oAdx/KWeH8rB+s7hveFGgsK/aP4vvp44lplIs1pJfiO4GDVwI4NAiK3qgLGH77ztBaZAyXnHdnGOBp6M57fKcmANlVktEhG3/sCZnzTlmVCC7NbGuB9RyuMvmg71/p9rFty5qGRTRF1Pr2ejU4vhREqKYwk+eOszWoKDZ6b5yBW1MZHO51ErG1QJ47xDwO2PPzZEodMdWhaWw3Y0ed5OUgOtefq3n2+VN64ul+x2hlkRnfiqa1qUr8GrCiyHcLwxvjVeD7qqelLWJjanFv/O1/Vyf1kTL3SGt++PTgPO//0rS0rmYNovRMW+qxPjuqeXmoyoclUy/SaGPxKUN9HDgbx+br9vQWquRxI5XUw6uC+HF/EWEYrPAbkWpuy8/dy27sLHLN94tWlRRoGFwtkMa6b5fjc3geC9uLlfZypbTQePOd/f/OTKT6zegD3vT/WyXczfKSP5JHfLH7DSZZJ1jiAecvY+ULzR7bTikWguiBQroSKHwyq68MJNRGROpN/gyblT3wM6A/F0OdDujYSam6iketP7aIilDHvs18vFfr8DIVPEj+4NO1qlV475Ih0NHVHysM5n7TUD9Im6HSum4IwUpYa5mfstOvOlkmaVEbjDwmjFp5PY0hypSXDyKPT9Nqse9PO/U4HlGZzlJZhNGM8xo4FCRc7sDT50xLvuVmP1iCxs6H9DXT97PQyYAbNXu4/r5fz8tbHzTVDiJNo8ONL8kMTGK3JeeTC3njB+0ceeT18phhoY8qS7aqzE4qw0QdCC+uiloFlTWEEQQrJfKjw3GbeaLdpispobhSaeup7zf14nxfWcaCF91z7O4ZrCzt/OhhEcB5q0egjcslzU9UharNf/b+BxTqlweW4P/KI1nDc36I+8PTB48JnYXCXhsr/iR2BUM9CqLpiSYv3t3KwvmOIsdZiM0rphxMmBcDOdxLfHRwwojkbB2ZCCbXIjN5Iue2sbhHfJaHKh0qL9DtlJ1JL7RqJctGzU533EdPZGaZlwfvwZWIYdIYzDyZVunw0a/0epdaNwVSCI1QyEAsXvsdfvnKAMyAXTd3lmWfioh2OtcBpg5rCfLtFwOke+HQxBj/2QJvkUWSI8zoGC1/J/ziqlQwzzNXu+XARvge+bxu1PX+DCS/l/QnrHDLVs3Ud+dfwTg7uJECPf7nUIXfB54lln0TxmW+WqyIkHf84ulUsxQPy8vruPKuLoz2jWSS1TFo4v9i9I7s61gX//X2t0jTxOIkSCSVlLMiQ9oEe0rWh/N+J7VQ6//C7SXJGkz2aOpOMnX9kcVJPUjUY5oTU/GmiRpLKubsotHagJqp5UV+HaSRhP8zaos7x0cT1cjMwt2IRqC4IlCuh0i/ucGDRHMHsIIbKdzO0UnPQmeVH526EcP745iFRfQCOxYeJZhocteaICBeORnOh8KNLkzxGfItEPkK1KVKa1jjxYxXU3w4opkkNr4ujRbRz1x9CZjRJU0BB7GiNFNPNztV6vAC1RIpwZV7vRpgo6hF9bS6oyZ6uK3jNFyQ7L6bJYLznJgZaSKZISkbAH6oZtHwrQPToL8Zz0u/lAWgTODdQuE4HyzMEuSl84TPaIrUSwdIP0RJJqHgv2CFnB12PtjEvg0zchY6JKewkmfeB/mjaJ4d+C+EIgFlHSdvEhCHstUkig4SYz1S8z0tJ56+o47e/64s8Ge5871w3WDrUDPRFNPPSNIeaqle+90X2ZLCWi4/1dxDMvOY25/sh+brhzVnOQAbvow5bzWeG85YN69vU6cCY5Uu7He9v5WB9xxDvHVk+DRV9SCnnHNFKTThOosXO8qwVO9V79Gr4qL5y1QBoI/wadeYn8dFaZAah6G6Y//J4aaSk3yl93rS88sNy9azx+8NvVEcM7nAgixEl+X7je4jvntvP6h7WSkDXFWqtO8k8xoimfHfwOR6GwclemHtwO3DiICXx4/kYxv2lKwZIRWhmQ7XXTKMvEzvhML4tZp7GfL3hA0VCRWHHPRShOhoDbiaZYt6TBjSBhYKP0Gzd7Xt+SMomLfZpjKiZMskUy3DOqRMQ/XAcOv/xCs0UtRneOYe3cMhOaeodhjaZpohdoVXiN4HkhsLrME216V9F0z0KTSZJqPiMTICJNIVaLpNMMY3fVRKhi5+fwV35A3lDESq2Y0yQHxgJk27LmL8jsrJBplgXyeRUDLTzWzsXpJVkM5TfMPNasQhUNQTKlVDxRR7JzK5OzeIjTMEA8kV/x9k95EZ0evhxeBQhZR+Bz0k0chz8gGiTPgkaCo4+644Sy7Iz+jI6YFxewigdR//LQlxF5nMl1aVfOmY+U5kX6riTt+jlyX1TS2KeOtry0bbXObexUZbn1hH+WD21UHfinvP50XLxsW3lZpCLGXCI/QnmK/SVobYxlDCoRX844WKgTbbAdIP3ms/O9W/MUiSaATdMR21G2GJIYHYyqC25ZPtUNeElSS2j6jGN5bXPDc9pRhCjHxZDHVOo4Yjkt6AyRfGHo4R3fzDPGUlnpL9gc794n5comlEhWUieI0k44myWOe/I1iq4BwPC/OfHlTBnSpeuiAJXktAE6/N/H67u/Q8zN6nRfN5rCtcfTVirFoZJP+fw0o8sm+2I93ca7W821Dsg3mcm3rabOESzbb5jmJ9mtRQSkmcv6xdg2nz+UW3kZRAWmnmTLDAy3SXHBRJrWitQ+MxxgvJ4JZrfaQFfREVCCwQGWHrqkr7OoMux0lhG4vm97j8zlfkpo78Ox6T2JQ026jrNdYHXb5rM55fv0FcwaKB9XZmXmtmn/rdY4UNtO30PRx3dxqzmgGwzoAQXU9jh3oR3OAMbfA5iUpL8vUj7ZObraERZ3QeTNsqqrdlOx/8YfG9CvWPOGNwsbkLF5+O7IkJTp1aiox0z2xfL9mHQngcL7zFN9EgM02H1YwpN7bTsLJrnkT6Y+t1A88NQQpLD9lJDFW7uRU5KHCw066NwUKBPW7+vspmPZPU3+LSxDfRXIym0YhGoDgj4f23lcDW3nNkVJgw+9Xo81dPWm6OJHHHjpLjUfDGCXjTC0RqGH+dC+3FqYf5atgM2vpvUR5d1cAJgBr0wPzrR1B0qj7YJ5gc9lFmYLrMZpnYUdtJ1557aGC20fw4n2o+Ax01n6hbpfnvkLeh4hAs3TZt0LeYIUmd0QDnCu8EwHdT5zLX2teIIv5Z4z01TGIbophwPraFJppjG+/jQP3rLsLt/4y4iKe4KS6g48stFC0eIx6KTRZOa/03doD6eDJuvhfg/cXFfaCpmqgiNfEa0tk7noSkOO9+vjVuhktheLe/+ttrRcHDerniFz80jny1UgRZYF7UvDCQSLPE+L8H1HYh9dow55068wg7RXZjT7axHJ6qqqFGMNpANO+30X+HCdxY1SLNWgrhjImX+HijPoSPOKFtmVEx1oBR/4v2tHKzvGELNKKMcYaevHJ+dYLnqxA7KooHE2jTTZT5OMaDN32gSHq8WOdrfabC1wGMX9S52bnZ8OVB42oMT1CUxmmdpCBXfk3x36kEBmg8Gf9eo0eB7injwOzUTz3hlIFS8cBIQanT+hPkfv3Omxk0BU8KfYELB7Oa3RBOJtYZpvvkNNavnPTG1P+axaLcZ3EJPKD78kGbQvcUnzRr4zf11TZoM1jYGIPWxUGvTqqV9E/83PDhvK/QnGJyCmNGfin5Wpuj3kJm2s8i8lfdt1DO+oGLmcW7re8Btsy/DfSsWgaqMgL9XWMmv4ip0KmnKxQ8AHYrZ+YlV6A/BuUu4cESQvimMEEaZDFOf4A9PrPUzP32ztFDrEs6OX5trmeek1oOdBB6jU2w4MQmRNtdjXrOjxrmSwpmzcMRPi2layEAZilDh/OHEiw+ebnsrzMWjJd5zUxN5OkZllUBBUIgmePNgtJmL7aJ1Yq5Lhqe2lNUbsyV7gleyEzxSCGsaLpKPvFwzr07DYGQhlQ1Yn1/QRgZmN5QdmQjD+7Fbtk7HuhCfN50HA7sPeHpLLkb68nK9UoD63DiehCF9PjdJW12Sl+OVYzxNlFZwxz9gOoIPTSHKneRBBCVpodLdV8GsSHzH1LXgFPcVIoofM6/Gsc9xjMIvq/l1paULFXJI2w+N15l5reR0VyupmYKRws+SZMeXKEf1APK5mI+/XCyPbO4jewsKJOOzFNk1HRdelK7zuKD84fxiZ2xrLXkur7RbkCb7dniE6S4OZnKNhWt3DczThm+mK9m3dnMdOOCJjJVX+Nu5/exu8uDHCx0N9A0xElySK3awuNAkeDxI1d3vz1cXPR6do7ImVKX5nR6s7xjehFMGNi/xAeQEzCRU1GZrkyJ2avUkzdRec4AtXuH3gxN+UzjgxykpQon5juXxYDNEXYYDYNo/lSSHGrfSCOe901N39G0b+jvJ53wwzJ/5PeV3lYON5eEvGEv7GXWOEf7MiHu6PMkvX3/UmESSaM3HtK8y6zK1OMF1J+LdrwlR8LFo9hlSnELSQ01YvKIHX0PVE6zNDZWHaVugJdXSIDX8C54DSI7g8xUsmsjpdGYxsTKJk84TvGZ/wopFoLogYPxiKvclceTt3pE94Hz+l2ro/R/Pj+rjGu6q+PGg6de30zeq0by5QROmhitXUnoLRN/RQlIUjlBpLU9rkBhT2mLEiITFjORlHuc2A0loMQkV51rSokmP3jfXGzN9wSsY4cp8KXIiZgo/shwpNI/p8vRB0KJH9kh66nmSJD23ltT0YHR0tkf2Z4PskBSBuxXux0szB5QC260X1JYbN3eThsnJsvvuApWHxxQHYdXkGyRBYeRiaes7AvP37AURMoYo305SxTEAWoq2keQESQ2wGi6hJJlshsJiBi9K0syoeHUqr68UegM8Hrk/wNqlJs7PReXHrSp0Yo34TmCepqsUmbWhX1ewyTyiqlJ/6kiyXCitfQlfgbBFAthfzNk6E8Tub4XNJd/tlR3X4MJTQLTwmKuFA6ZY3NxX2zzmEje21XE8Uu5aRWncxjGStvISEh4GIaGZ5meT1smhIUxkYjk3Neyc0PfXuVtVx5MdgHARMKOtN97f6cH4jokWW+Yz37n0lWEnm9He+F6jkGidcPevatv8o7U69O84/i7f8RugyWZwpGChn96HE9aqZFpL/BMmoeGE3y6aGLJeU1sSKj87uGwnNQKlFb7HNaGqoXySQtdkzmfFa69bq+j9Fjp7uac+/sUyh0xxfiWGOKdZN6P1kSx8i8hx7/+xrkzaYWpbdmPAKZTwbWoShFB5IqVNhI+WfqZo5maaiUcqV97H0o1+QqTItuaxdFjSlCT4wilTP2qn+JzTD6sk4X22YhGoLghUGUJFwDs3r6PmDHn1hxXqg6E/GsE34/EvFqkwsQ0x4vfu9YcGBBgw8/IFUNbSvIGPlLDezyavCzkhMSdj1YRHkxLdjrYgWJxTh6OGjFBHrZEpHPX5+E/fR4UvLdOZmB8dhsplBCtq3jjJbfBLnFozRkyktGtc5OgPLYt3X6G0daVKq/1pkupJlMn/3SF9m8IPaS+IEI55GSQJy7Y1+fLUjv5SuzBBMh6rIdtz0MFGecobMsC38bUIArL7toP+dgEB6MI0FlvCT5aVyo4ANXWpVH3hPhduZWuVvi1Ms6O4p+i3jUxoI3/zNJe8DV7JvDtf3OHWHKUAAEAASURBVHwUsXDtqg1ClgrixX08/tx2M43bWJckZiCbm96cHTI7feae+GKxOvb6NYOK/c7MQmiJs+vCbyxeKfXvtOjEVfIdU9R2PWjD3e9mbAw5KPYFovBpYdQyLTRVOvfxSWr3SfgghZqEmwfnr/UFrOCAkUkadD1c646umWZu6+MF0NwEC82G+Q2icNLnW87oqjr8wfnMfX67piBoButlJz34vcy89MXUwTZ00CKzjmi322Twx+QTfgvosxVKZsKsVUs0/sw6b3msiYsmkSSfT1zUsximnEKjrMT87i5ABNng+al4nmCz71jP/ceC7U4RRi2sLGJeOyc/PhxR/oKFb3H6mVEYuCLatx4jG/M+MgItyVIorRkjE84uCipz2qBmJQ4yqEbYPxaBKoBAlSJUxJNmEAwuEY5MMc9hXRop0pCNkT52nE4a0IzJxYSzeOsPZ1tNLorlii2Bpgl9Yd9P07lxcC4+5/DWAVF5OML9wnfLnEppnmLKoQhq8G7RhJOMCBUcgOOPBVvVvCssQ1+jYDmqR4asXJctedtc8vNXW+So1hlSmIW+8B6QIiwL5+6RWzd0lzreJGm3q7Zs/xnMpug7RQ3O89LXV+W3oTUZjaG/4aLE0ZwEt8LuWwQiIIA+aoo3QZpQC0divQjPZkD2CKQMX/bHXX1lFwomZSXIrkUYXYaSzg2/ZncaSBeW5DpuufewnnLnNwtlX2K+FLiLk3vOxaN/++/9vlr+PaJbyI8/gyBovxtOt1AGfEpdKX+n7OzS9Oh/f20QTtZtyju/rHJ2j+weaCpUGd4xpW07I81xIIjYv4r3GzWAphkTTSDH/rJaXTtNOAPMijGdgzaJ/mTiWhmE+aaCtYWMPErtJIX3WAsJSkmTuJPgURNJ0XmDzab5LOgANEN7ZSDsenTR+PjdIqGi/Pe31cWCZTCdvphaBndK15sxr6kxe/vnlQpjTsLOqSKCTeHYFu0fyOswn2veA/oY0aw+lJVCzA2KokCWEQmRJDi4I87nZe6a3VHUFF2WNhm+KLwcoJy2bKcis9QkmsL5lOKRpUUEkJELgwMKxVNvvGU5SMH7zWufgD7QRce0LjboPBnaNa2d64WQ8tFK28a1FKGihcuPs7fKiUb4etbB9Cf+R02kR52TUQ+tWASqCwLlSqgWYuTHDC0dCjSOngW/yELl02l8wTMC3NmPTdRJxdb8kGoTi4c+WSgL1+1W/jnN8UHmh4XzwPyM8LT82Gg5OQzp0sdjWY9GZKlrVsxQRThh6EP/6KVCk3PU5tVxy52RL0aqYwfBlD6wedeEjAE4GGXsLNjnu7wuWbwwSz7/YIP0y0qXBgXJMiqrjex+LV8KMSDrxbemcFehnLS7uZycV+Rn8GFxTVFnQc9Ti3+AUqfYtUWgciOATkBqYaJPY4b+acEOJDji326NHGNlkDpCE8fdbmjBvnbJrgX54kJAz4S6LhlTq7NM3LxDFvyxV25bP09GntxS2jRPFY7WbwORmoXpGrQWixWdGUR6nNOWYuNMTPz8HjrQmljQ9Hcg5ttiJ+fH2Zsc306+H0L5+5THO4bkhO9KPZ8aLytUsIJ42k4yeN5RrVUkRprAMWrrTTCrox8LzYk5JYKWy05oH9ChZyfw7wOaqrIkBLe8M0f+eWonhGauJbkF6HBj1Pu+j+Y7RPlokFYtrJ8ROCMJI3pS+O0IlZeWBZzXSQsH6oIDX+hjdWslB3SiGURjCEJY0/qA3x12LEl8miIQEa0VSKoZnZDCe87pPEordUFILgV2DKRCS4c73psrlyKiITv1nBx3IgYkH/jIj/MokD0t1AJd+MwUtTsM2jcGeimNnH766bJ7927p16+fPPHEEyVWQT8z3clfA80ItUbdMYBBnNiPeO7bFY45ICszp9kosfIQGUjiqZX6ee42dY6b3p4n98NEjf0VBht56+c1KrJgiKJRJdEfTIdKN6MMRlW4nDOxD3Q8giwxYAbN8/71Dq4dk+xqXzJi/9IP/r5RLPNmXTi0NYKd7FTvMZpn0oR1UEefHx99eR/9YqkiU7zEQztjQMRk8uV83bZ6i0B5I1CuhEqHHI50ER/dfJgzD1KkfOax5hhh0c7nZrreZsjOxy7qI7f9d64aAaaJmzZz03n0mqOlDyG6kmmKoo+Vds2RvYuPaytvjV+lyNM5j01yCJ6uk47DV5/UkdZT4skqFE9m0QIrgdsTu8uUbTskNTdJGryYLGte2C9p6EQ2grPKndJdVwGbGdh4K0cbf1K0qnl/CbtlEajeCCifNGjEJBMEDL8zLcdB18pFyRb8nYwsrnxZ7tonmQl5stNdIMMTW8mWxFwZMqSBDK2XIZ7d8C2sg19ZnD+0NJC2+8/v5UwHcd3rMx3TF60547vpYbybQmkJYnrH6As21ndAs3LpC1OVX89z3ywVLlpzpLPdcU73YgM+PBZv29mBZxRFPQUCp0HQA2D63CQboTTwDCbEeeGoSdJzhgW3m3U8Cq1MrzZgzmUoJGumhDMnZR6SouDolf88ubOsQphoEqi3f16lluC2s9xLmD+LxDMeOQMBfkgASTxJ4rgEn4v1P39FfxWkSZ9Lk0ruc0CvNEIi9e23MHGA9O/fP6oq+HPqD9I5HZ1xykOfLlFmkTS55CADhebtepLkhz9bgqktGiL0fVvfwVL8HYUJgCcvyVQEnOT+mtfnqNDj1MzwnJrglaJqEFn/aGXP1nVLU0W5lhl5RAtEUvRZ6GyFlvyKl2cpvAtx4WZkxVMGNlWkKNrGcG4wTsj80Z/rFVF9FhMa8/1FE1dqpbQwJPul6CNZsQhUJwTK3As12jlSNIiJxsQopq+CObGqzmuu6XzO+YrCSTdM2MgJQUON7uoyjPb01j8PUSPDOi3cOti0JFw+nT76uPYqNG29pGTJQLCG5pvS5NjMZnLe1rbyWG4feWJbP8m90Svbz0fH7bJ8yboF8z086pGcNzyS9INbjtjbSPrm15PW3lqKTOl67doiYBEoPwQ4cMHfHH97x+U2lnP2tZRrd3eQ/t81kKxbC9Rvlb/ZHVfnSeZd+bLrOfx238uXfT/itzvbq37rSSBvwSZWoVpMH6BnLuunIrvxOImUJlPU3L+I+fEimQrpdww7yhR2CrXQt+eZS/s5o846Xa9pAvfyVQMDzOL0uUlu7j+/Z8hgDLp8PG1n5+phTIFgavzMtjM0+s3wSwo1eE1rhvsw8fZFx7YtRkDZNuL2xCV91PyDuq3RrjVxrZkcH5kJdz4OBDKU//DBRRYEyKgx5z3k/HUvg0yZARPC1aXbGu47SYxptnjD8M5OFfpcTKAVBM8VPJcfzUsZaZDC+xBJwrVh5Uq/duPYY4+NVEXAsav/1k46Nkt10kxiMxTapBcv7+PMs0TN1aadvsAdsX6b9Qn4G312dG+YlfqtRKhVIpnitf37zM4IcOIP9KTLRbM2zRN7xUmoor0+fT/CtY8RC7Xw2p+/tDfItN9ihXhrMsXf3v/hfpwbZJJn+pCG+n2y/lNBwq47pYNjRsh7ZZIpah4f/UcP57huk11bBKo6Aq68PMSZruZCFT4j7nFGer4s6ZTJ6HglvYCigaUQUdsKtkK7tAUvo80wvdvmFS/M8L0Y3PNuw8mK/JOiqcvmsQhYBKoJAugXuhvBpwtjPm5YnrkbuSURVlwJjbHOwNCR0WdnJ4ZaFzU3HToyLfFuok9nuA5LMEKceJPl6Y9VKyVB2iIoQSxBDRhxdO22fSp0Nk2vOjRNi4oQsh3xtp1mfqu27oPmwTfFBKeRCBdIIvi6+S7fgIilK6H1qY3r5iCa6Y8VnL8y7ZPcrNjs86Hj94gBgqLtOMd6HQyJTjO6ddv3KZM2ThsSycye30uGm4+UJ1IbPv74Yxk1apTKsmPHDklL83faI5XTxzg5LAMX0ESe0fHaIfItfhZK+Lwtg1kiTf7awg+qJJcCXWdJa052O3sVfbQK1SAGzfTKon9Q0nkrw3G+NxbDn5NBKBphYuBOzdIQpCf+/hEJ2nL8Nn330qPm3BwAIk8tlhWLQHVE4KAgVPHeOIb7zt/kFc9mqMMRmtoDAuXdhFfvFkQ7gxmRFYuARcAiEAsCrgYwKWoMwoXgXwkgWIlNXZLQBKYxTd2+8POxVGbzWgQqEQIPPPCA3HfffTJ06FAZN25cJWqZbYpFwCJgESg/BIxx0vI7SZWo2evTNOVvBHECWfJg7UV0cS8IVKHfHLpKXIptpEXAIlC5EeBATCH8ubyL8N7BqLjPeMnXZhd8uN0gWG5YhiU0c0sCSFcS1tRs6anQKvfV2dYdzAgsXbpUXf6wYcMOZhjstVsELAIHGQIHH6GCX2Q+NU2Y/6ZgHbRN67GsReeGk6JGMenqQfZ8HJjLpX0HTNfVBLA1sI3FlYxEtcY2LQZo2o61i/m4z221hjkV8+LJdnOf7iXYdnHNPDQj5xr7rkTkU2ukMR128+q42i4qg21fmnEMWZUNCtvJhYK12tRpOh2PlYobgjU3fX/8ac4+CH0hFoSYKlpjnz68Ks1/TM0FxecUxwoLkJd54DqjynLN/aLjXuxzu5BWvfnIy33m4YJw5dxm2HJnH716lZe9e25zzXyq4VhbqRAEOIDj2Yn30kLeIt5QCtZ8jqnJaoXHtgW0Wi2xNHdLEjRb6jn3ZbR/LQIHFIEFC3wRBI855pgD2g57couARcAiUJEIVGtCVbC9UPLXgjitIWnCsgZ9QxIn3UepSKSr87n4FMGv1wVfZlctEA+1RhrXKeAp9PlNQToWbjPNvxSlMw1EiCTK9C+p8rBpgoUL0Rwr3DX5jkfKFelYuFrjT6efIMkVyZYX5q+FOSBnWNYuWy8z/5gp3Tp2l7Yt26s0Qbp3P/PgvNlYOwvKYFtwzA5clPKe8D5gEKhgHSHUWi28zDgoQKLVGputQLJaw3SwFTRa6QfmeSnl1dli1QSBK6+8UjIzM6VXr17V5IrsZVgELAIWgZIRqB4+VOhT5EPjlL8KnY3VIFArMbAPEsUOnZUoESChge+wqzZIDRzqnaU2t0GEkO7mNvK4QZq4uECO1JqaICsWgSgRoEbMmw2CBXLFtdreg+19XJC+Fwu2CxHQxVmYjjxComYlOgQwoOEGuUpsB+VWG2iy2oJoQaNltVnRwWdzWQQsAhYBi4BFIFoEqh6h0uRpBbRPy+HvpMkTzZys+BDAwDSJj9QD8cEUGC4sap2GfbUgrQ76VSRKRWnVSitkn4NqiwC1Zd49IGFYPCReWdz3pRUynRNcY+FaMNG1ImHWZNH/PECbTJKVAJKV1AEkq70lWX5w7JZFwCJgEbAIWARKh0ClJ1QFO0CclkH7BPJUsAQdJWihlF9H6a63apei5qg+SBAjhMFxPQHzVrrqw2mda5AmTjiaUBfHoU2yzutV+1bb1pcRAvBBo9aLE/JyAm2SLc8ukK6dGIxRaxxngAj4LB20UxzAD9EN7VVi5yKS1RHmgg2tuWAZPYG2GouARcAiYBE4CBCoXIQKnZ+8NV7JWwzTvaXo8CxCBwidnWovDJIAkuRGJ8bVEMQIizvdrYhTAgkUSFICtE1Wi1TtnwR7gQcQAWq/PNBqeUm+GBRiB4jWDryH1BrEC4M76n3EYB7VXPg+SugKktXJLcldXJLcGqaC+G/FImARsAhYBCwCFoHiCBxYQkUCtcorufOhfVqIDgyIlHJaL97OKp1C7ZGLk3w2JlFCRwWTfHLNUeCEBkiH2Z0Vi4BFoGogoMwNEfKc2nPvdpAwTuaNtXcLCBgm86YWrNoJ/CUTQKwSu7mkRg+QrLaWYFW7e2wvyCJgEbAIWARKjUCFE6p8hCnPnQcTvjk+DVS1IFAI1uDGHDFqkk6QpoQmPsKUAC1TIoiU1SyV+vm0BS0CVQ4BaroKQKw8231Ey7MZ7zqQLU4G7sWk4IKAG1VeSLCgwUrq7ZYaPeGLhTDuViwCFgGLgEXAInCwIlDuhIqRvHLmeSRvFrRQMzF6u7OKQs3ods1AmpqTMGGktjG0S1gSG4M8gVBZsQhYBCwC0SDAaIYFW0iyoOXC4sG8eGoS8Y0gW4xkWAWFPp2J/WAa2NctKT0TVATQKngZtskWAYuARcAiYBEoFQLlQqg4/1PONGihsNAPqsrM+8SJM0GaElqANDXF0gwaJuwnNgVpQghiKxYBi4BFoDwR8GKqh4JNGHwCufJsxPsTWi3PepgSkmxB81UlBPNiKe3VQJArLHY+rCpx12wjLQIWAYuARSAOBMqMUBVglHX/FI/kT8ZoKyPxVWZhVCtqm1riww9TlcSWWDA/SxI0TtbxujLfONs2i8BBigD8TfOp0cJ8ewWY3NcD02kvJvj1kmjlVW5MGEEw6VCX1BycIInQ7luxCFgELAIWAYtAdUMgLkLFSFj7JyIq3wT4ClRSEuViEIg20Dq1LprcEtGqEuHvZIlTdXuU7fVYBA5CBEC0CuCXlY/oqJzU3LMGGq3VMK1GkIzKKCRXyUe4peYQTPeACKZWLAIWAYuARcAiUB0QiJlQ0eE6Z5pHcn7Fx3sORkcrizIK32ZXcxCnDiBO7aBtaiMI9Wtt+avDQ2qvwSJgEYgNAfqu5q2BxcBqEK6VeFcvx6t6Q+V6Xyf0dknKUJoF4j0Nc2srFgGLgEXAImARqKoIRE2oOAqa/VOB5P2Mj/LeA3+5LgaH6ABTvfYI4dsOJiXQPLlqHPh22RZYBCwCFoHKiEBhLswGOc/fSpgOriDJgiZrQyVoKSYsTz7WJbWOT/RZD1SCJtkmWAQsAhYBi4BFIBYESiRUuYs8sv9rmJPMOICjm4iil9AJ5KkziBPWNdpbzVMsN9nmtQhYBCwCoRCgJit3BTRZS0GylsA3C+sDFtYdVgaJ/eFrdQpCsXdFZAsrFgGLgEXAImARqCIIhCVU+2eCSH0G36hl+MBWsLgagkBhAsmkrtA+YTLJJASMEGtuX8F3wZ7OImAROOgQwOs+H4Ev8jDJev4iaLEw4XrhjopHwd0RxOpM+Fr1s8Sq4tG3Z7QIWAQsAhaBWBEoRqhy5nok+30QKZiFVJRwDpOEnnBW7g4ChUUFjaiok9vzWAQsAhYBi0BYBGjunbcAJAuLZ17FziXohjl3rfPgZ9XLEquwN8gesAhYBCwCFoEDjoBDqPLXe2XvOx5foInybhbClid0h+apD0w7eiGABIJJWLEIWAQsAhaByo9APoJb5M7FPIOzQbAWYOCtAsK2M4BF6oUJktQC1gpWLAIWAYuARcAiUMkQcOXuySvc80m+5H2DDyNC8JaXuDJEkgZAC9XfZx9vozqVF9K2XouARcAiUDEIMOor/WzzZoBgTYf2ams5nhdcKvlkl6SdlWQDEJUjzLZqi4BFwCJgEYgdAdemK/YWFm6JvWA0JdSEjoMRGncgtFB2ZDEayGwei4BFwCJQZRGgpUPONJCrKeU3wbursUjamERJ7mS1VVX2QbENtwhYBCwC1QwB18bhe8vUWcqNSXQ5cWPKIdYXqpo9K/ZyLAIWAYtA1AjQ9ypnatHE75hsuEwFVuI1Rrol7TRMYGUtxssUWluZRcAiYBGwCMSOQJkQKkblSz4KmqgjEyWpWeX+us2ePVvuv/9+2bp1q9x4440yfPjw2FGzJSwCFgGLgEUgagTyN4Jc/YF5DH8v26iBibCAqHu1NQGM+kbYjBYBi4BFwCJQLgiUmlAVwtrC3dcriUO9ktQNbSuyvkhKShIulVUOO+wwmT59utO8LVu2SP36CDNYxSTfA4dwr2/UNyUpcgSsQmTLLfCoK0xKcEuCu/Skl+fkuSnJiW5xu8LXFet58wu8snLLPtm9L0/aNK4tGXVT1Hli/WO2kWVrJGLesvDNVNXv3pcvSzZkyYbM/VKvdpK0bZwqbTIwAVqUsi0rV+at3iV5uIZ2TVKlLcomAZ9oZfmmvbJ+e7bsysa1o2yHJmmSWhOj71FIadpe4MG8Q96SnSbjfV6Cm2/em6r6/HjxYPM+Ryv8vRFHLWWFPX+Hi9dnyUY8s6yzQ9M0PLe11e9SnyvSem9OgSxcu1s278pRzxyf29SU6J451hvLvXTaAdhy5nkkZzzmNpyGF1P0MDpVBG+4MT9h/dtAqmoGH7H7FgGLgEXAImARqBgEYiZUBTUK5I05L8sry56XLZ6NIVvZs2dPGTRokAwYMEDOP/98SUkpXcc4ZOVxJBYUFEjjxo1lz549Ti1//fWX9OnTx9mvChs/z9kij3y2ULJzPVKrRoL8dN/QsM3eBXLy0KcLZeLC7SrPzWd0ldMOaR42f6QDSzfukbvenyfrtmWrbO/ecKjqwIUqE8t5l2zYI09+uVgWoHNnCq/t5IHN5f/+3iGgQ2rmCbX97//OkT/mb3MOfXLLEGnWIHRvi53jd39bLa/+sMLJrzeO6N5Ibjitc0Ri9/nk9fLBH2tUp1aX45ptv+2sbjK0Jxw+IsjCdbvluW+WgowFXjuLHN0zQ249s6uk1Qw9QBFP21/+fhmue02ElvkOnX5oC7lpeJcS80WTobo8PyS/Fz4zJZpLVnm6tqwj/7lmkJO/LLD/cdZmeQn3cNvuXKdevTH6+HZy0TFtxR1m4GT2qp3ywrfLZNG6LF3EWbPsBUPbSmJC5BGIWO6lU3nQhmdnoWT/WCC540Cs9gYdjHGX81bVv8tqqmKEzWa3CFgELAIWgTJCwD9sWkKFNOtLGZ0ga69YIPcu/ndYMsVq5s2bJ2+88YZcddVVctppp8nu3cU7iyWcrlwOJyYmyg033ODUffjhh1cpMkUC9eAnCxSp4XZJMm15pox6arJDpkrKH+44O+4f/blWLn52qkOmwuVleizn/WXuFrnkuanFyBTr4TV+jPP+8/WZsjs7n0klyvg5mwPIVEkFXkTH0iRTLRvVUmSI5SYs2CbXRjg3iRiJIDUEWkikKGz7He/OkydwPJzMhUbrshemBZCpRnVrONl/m7dV/vH0FNmww1+/cxAb8bR9x57oYl3n5pf8nJltCrVdnZ+fUNcbnLY/LxDDeLHnb/HeD+c7ZIrPXP1UP+l+46eVcsObs4Qa32CZsSJTrn5lRgCZCi575cvTZB+0V6Ek1nsZqg6dllAfEfvOSZKGLyerbwu/MaUVTkC/+1m8I3xK+9JWY8tZBCwCFgGLgEWgVAiUaN/hqgciNSJBah0DsynkLoSTcSzy66+/yjHHHCN//vmn1KwZWksQS33x5r399ttlxIgRsn37dqH5X1URmvbc+d68gM57uLazI/X6TyvkvSg0EKyD5kvsvNMs7ugeGQGmauz8PQQSN2XJjnCnc9JjPS9N1XhNFHbq7jqnh/RqW09owrgVZkgvfrdMxkMbN2fVLvlm2gY5/6g2Km+4Pzv35smjny1Sh9nJLIl0/rV0h3w4Ya3KTy3Cg6N6SeN6Kcp86o3xK2TsL6sVgXzu6yVyJ9pmyhdT1svL3y9XSSRB953XU7q3qqv845dv3isPQyu4FJq3L6DBOgqYDuzQwCyuOqw3otOr5Z6RPeTY3o2VCSU74GN/XaXOTw0E20JsTImn7axnO0wUKecc0UqG9W2itkP9CacdC5U3VFp1fH7aNaktb157CC43fO+dv6krX/KZFrdMrxUATTzYU4v73NdLVX0k/3ee0126t6yr9vmbeeJ/i9UAyrRlmfLDrE1yCjS8WqgJvva1mXpX7j63hxzerZEaQOCgwFs/r5Tvpm9SZOuDCWvk0uPbO3m5Ecu9DChYwo4LYwipwxKk9rH4zf4Cc8BPPVK4q4RCIQ4XIGz73m88knpKZBPoEEVtkkXAImARsAhYBOJCILyGCuSpxgiXNHg+WWqf4CNToc50yCGHyOLFi9Uyf/58efnll4WaH1OosTL9lsxjejs7O1s2bdokNMuLRbzwA8nPj057oevt3LmzDBkyBAQislkL8+/du7dU7dLn4prXtG2b3wTNPBbNNs1rRj//l0Ombjq9i5x/dOuwRe/9aL5Dpnq2qSvvXMfOX3h57/fVasT7ng/my4cY/dZCH4lzH5/okKnhg5vL/ef31IeLrWM976/z/fH6X4dJ1KBODRWZYsUZIDZ3g2TQl4oyYWHJ+D0L0zmSKJKp62GqV5K8iQ6kln+P6KbIFPdp7nTZCe2lU/M0dfiHmZtlbZGZIxOIyxsgrBQSwZevGiC92tRTvmk0s+rULE2eGd1P2OGlPI92sYwpn0xa5xC+G4Z3luP7NHH80WomJ8gVwzrImYe1VEXG4fzrd/jMLHUdpW27Lk+fL0pnXGPn5nXCLuFMJXU9kdbV9fmh32BJuJnPywVD2wTAFA/2r47zkXhWqEh8EZniPn8zD/+jt/Ob4YCA+dyRJGl58pK+cgKItNao8j7/+8xuchxIPeWt8avUoIbOH+u91OViWXPAjt8afnP47ZESh/uK157zoUcKNgf+1ornsikWAYuARcAiYBEoWwRCEip3V5fUezpJ0s4u2Sa9Vq1a0q5dO7V06tRJRo8eLb/88ouccsopAS2dMGFCwD53GGnvrrvukhYtWki9evWkdevWwvr69+8vr776alhy5fF4lEkh89E/q3bt2tK9e3d57rnnFLm6/PLLpXfv3s5CbZSW8847z0mnhio319ex1Me5XrJkiVxzzTXSsGFDadCggdMu1vnMM88IyV+wPPbYY069zEffrN9//13OOuss5bfVvHlzVd+oUaNk8+bNwcUj7u/d7yOZJBdjrx8spw9uETFScGaRORf9IV68YoA0qRdZM8hgCFrWGdtekABNUB76Ry/51+ldJQWd/XAS63mXgShSu3M8OnZN6xdvIzuufaCxooTyMTLbMWnxdvkJfiWUG+Dz06iEgBZ79uc7dZ48sJm0h0O+KTz3mJM7OUk0ldJCjHbu9ZF4+niFantdBLY45/BWqsgK+NzMgPmlKV9Cw0Vp3zRVhh/SwjzkbF92Qjsh7lzMoAbxtF1XTm0GpWGa38RQHyurdXV+fiJhpDS1P/oI92Fd0qWbQXpYrrTYU4s0Y/lOdeoRQ1oq4h7cDgbAeOSC3uqZueakjk4AGeabWDQoQW3s4M7F7es4GHAhfK+0/O+vDXpTYr2XTsFSbFBjxW8Pv0H8FsUk+Fnu/dD3voypnM1sEbAIWAQsAhaBOBAIHAPEt0vN7XEqkkNSrejPdMYZZ8jXX3/tFJg0aZKzzY2dO3fK8ccfL4sW+Uy0zIPUaI0ZM0YY4vyll14qpkli2POHHnrILCLLli2Tm266SSZOnKi0QWa9pgZrxYoVAefMy8uTGjX8nUpq2Y466qiAwBX6RKzz5ptvlt9++00+/vhjSU5O1ocUOTTPyetlXlMYDIPlWJ7XGG10wZRktzA4ADtIJUX04/laN6qtNBy9i8iI2YZQ2yOPbKOi2/HYuUUkgNvU4LHjxUAWNIUrSWI9Lwnav06PXOsKmM9R+ravHzYjSR/NEimHQMt1Yt+mMt0gQKEKrjf8ksIF6ejXrr4KZsGOrKlx0BoG1hsJ427ouGpZBw3TIPF1Yqlt0sEELhjaJmzURZrb0VwwWOJpO+tih1+bQzZM8z/DweeJd786Pz+RsPl2xkbn/nJQw5R4sGcwCS3nHxleQ00Tw2Azwxz4wul73j/Cb0lrhHme1Vv36dPF/C5wCsaxkdgYFhJ3J8merxC44gOYmkepeCqYjAiWowolMT1GMhZHW21Ri4BFwCJgETi4EfATKvSrUm9KkJQ+4TUQsUA1Y8aMgOwmaaGG5/TTTw8gNgGZi3YY2IKaq4cfftg5TEISTKacg9j44osvzN2YtpcvXy4nnnhiSDJlVvTdd9/JRRddJGPHjhUGugglwWTKzEPN3FNPPaXmwzLTw21zhDt4lDtcXqbfgshwsUgHaEleuWpgsSI0faNpULQS63lLqvcrjJBrzdTxvcP7+dD8TmuMaA4JHliimFq5JiG0Y7oChjAnoVpjdC7TDa0O/bbCSVaRZpHHzcASS9bvcYq0yUgVRkRkpMB5a3YLtXadW9RRPlcDOjZw/GOcAtiIp+2sZ5cR4IOk7TsQgPGztwg1b+yI94e/FzvdXdCOeKQ6Pz/hcMnN98p/irRTQ7qlF8MwHuwXFkXlo5keNbCMNvjJxLVCk2A+E3xeBnZoqAZBgk01GaJe+xVGCorB9msxCVWs91LXEfcaA3tpwzG/YRuP7H0CwT3C/9z8pwLxypkEXyoODFqxCFgELAIWAYtABSDg++Lgo5V6K8hUj7IhU/SFeueddwKaT5M8LU8//bSYGiua3r399tvKtI4aolNPPVU2bPCZmzz55JNy9tlnS9++faUQ0eYYOdCUtm3byq233irt27eXP/74Q+677z7zcEzbDPFOsqOF56QpH00Zv//+e7nyyiv1Ifn000/l6KOPFpoXhhOaP55zzjlKG/XCCy/IqlWrnKwkZdS0WfEhwAAVU5b6TDNJYBiIgo71FPqLhdMisTOpA0uMOblj2PDovrP4/5qmjfVrh9fSNC0Kt750oz/EdOsMXyRAjvhPXrxD/t6/mb9iY2v6sh3OnukDxbmmtGzLypGrEFVNaw+YPmvFTrW8Nm4FzBc7y5mH+nypdJl42s46TBLIIB40l9RC7KciWAeFGtGRETQhukxlWFf08xPumr+ZvsEh96OPa1csWzzY67I0E/1s8jp5+n9LAurnVAF6uoDXrh6ogqToDDRhpfkhg7xMWbJdmQKaZqQ6n6kFW4054RjVj2UPtKiBvlthzvcASJWf84VtVv48sKpTwx62BywCFgGLgEXAIlCmCChCVeMMV6nJ1OrVq5W2ha2ibxP9hn788cdijaTvkJbJkyfrTbWm1ikjw2faxDmsPvzwQzniiCOcPAxoQXKzZs2aYtojmhWS8FCOPPJISU9Pl2uvvdYpG+0GA2vMmjUrIPv777+viBoTL7nkEhUZ8I477nDy/Pe//w1LqE466STHXJHEq0ePHjJs2DCnLE3+SBCjCYzhFKrGGxsys+W+D31me+ZlMrjEGfAZCyX063jsc5/JKDuZZw3x+SyFyhucpjVODBwRqb/YpL7P1JEaMEbfY8AIs3PKsO89EN2P0fJMYfh2c54nU0OVZWiIHvx4gSJTNB0c0jVdGtVJgaZql/wwc5NKf+rLJZLodgcQynjazjbuMrRqJFP0qWFQjLq1ktS5OccRCR7nKqqBiItnwNy0sktFPz+h8ODz8db4leoQ5zBjsI9giQd7PXUAffLmrfaRqWN6NZYB0CjyGZ65cqfjR3jdf2bK85f3D9CQ9WvfQBEqPssMQHPvyJ4B803RvPauoqibut0kqvVTww846HwVseaAX/4ZXsn9tGTbP+/akvNURJvtOSwCFgGLgEXg4EBAEapaw0pvGkGtCzVEkYRaJk16GJUvmFBR22OK6fPE9KlTp8pll10m1F6ZwgATul6dfumll5aKUM2dO1dXodYMqkGtlykXXHCBmISK7eL1uNHhDRbOv2WSpcGDBwdnUQE0TD+sYhkOooRaNRJhaubzk9qFThw7jRSOwpOcMGx4sBnTVwilricnpbkhHfKjFVeUecF5Q8qliALIQBXsnHJiXmp1aHLFNsxCx5ZzWFG0mRVNrrQUePyVsjyj+V13aidHE8Doaww8csVLPs0VSePfBzR1AlPE2/adMDHUcsWJ7WXUUW2cSWBP7NdUaaWuxLnZNs6zxXNr3z1OREytYDhJQM/+lEH+UN3h8pV1ekU/P6Ha/7+p6x3t1CUhtFMsEw/2eUXmeFqbee95PRCVz28KeypwHwItFMkS81DD+dRov8kun6txCKVO7S+nSbhk+1Q5AmHT6R9JEs80lmOgGO3jl2Q8t6GuuaLT+K3K/bTkqK6F4R/Rim6yPZ9FwCJgEbAIHAQIlJ5JRQFOWlqafPXVVypEuc5OPyUGZzDluuuuM3eLbWsCFkyounXrViwvfZoGDBhQYpj24II0UzSla9fifkhNmjQRXpPZ/szMTKUVM8tymxELTeEcXB07dlTBM8x0u+1DgL5Kz13W34GDpIOdv4c+Waj8qG4dO0feQGh13cGj+RMntqUwYIeei8epoISN1kUhzdchHHoks6bNO/ermtjJpHZKC32NXrxygFz6/F+qE0pCpU3ldB5q1yYt2q7SGxij/E2MAB8kXNef2rmYlqwdog4ylLuep4tzWnGeK0q8bW/fJE3oa8brIYEKlhYNayFkfU+57vWZ6hB9vnTwjZ9hMqZNLIPL6f0DQagq+vnR16rXJCKcUJdyZI9GISPw8Vg82DdrWNOZAJsaUZNMsW4KNY2cMPpzzH/G5zHf43WIOO/3Exf3xaS/M9VvioMWeuDCV1pU2HQ+eyRjlNoY6LBiEbAIWAQsAhYBi0BkBNTXMntcgQpTGzlr6KMMB659i2jGRvM9U4JJT05Ojnk4qu3du3erfAxjbsqOHX4fFTM9mByZx8Jt01zRFDOIhpkevJ2Q4O9kBx+z+6VHgE7wJw1opsjOI58uUh2/SfD9OKq7zzT0lR+WKyJDQsI5o2KVVum++a1YjuQsXPhw+hRRgsOqM41RDT+6eYhMh68XowrS94nEqyPmoRp+SHNp2zhV3i6a66qBEU1P+2WxDs4dFM7ksA+iDGqZDa2CJlTxtp1BSLhEkp6tfeSNeeas3ukQqgwEQzAjwQXXYWrigo9V5H55Pz/B10KfJq05uvjY4r5TOn882LcE0dXSG/OehROaAJJQUUwizn3+Xp65tJ/MxLM6E8/sX3h2qVXlM8tJveln9QDMUCmcYy3cs6kyHIA//FZFI660aHLZPBYBi4BFwCJgESgbBBShyv28UJK6eUrlR0WTu1tuuUW1hpPgMniD1uBwHRzNrkuXLgEtp2/UDz/8EJAWbofzO5nCua2CTe7Wrl3rBLQw85a0Te2TKWYIdJ3OUO/62phGjVO0oc91HZVxvWh9lprYl227F5PphvL9OFDtPhIEioSKshI+HppQfTNto0pjJ3bEI3+qbfOP7twy7axHJ6qOJP1NqPWhtEj3z3u1eWdOWEKlw6W3hgYtlFDzRFMqLsHC6H00m6NoMsRtc94qdn7DiakdyNzjny+trNoe7rxMp4mfNlfcY0QrpGYk2F8sUj0H+lh5PT/mdXGeuLG/rFJJkbRTZplI2+Gwp4ZKS2pN9erWuwHrNPjCadGBLPQ+16yfxIlLKOH7gNK3XfhnM1S58k7Lme8RfquiEXer6M1/o6nP5rEIWAQsAhYBi0AkBHyOHV5ET3rEIzmzA7U0kQqGOpaamip33313wKFHH31UTI0RfYYY1U8LTQCpDSIxMRf6UVGbxUX7KJmRAlmewSoeeeQRFdyB+yR05557LjdjlmBfrHHjxkmwBoyR+Uw59NBDzd0qu/0hQnbT9I3LJxPXVch1sKM35JbxavkavlDhJDvXPyJtEgwzP8lT8GIe5zaP0/xJS/MG/tF+ahdCyV8wmdIaqlZFJoLMx2AY9Oti4IhI/kT//XW1U22ftn5tkzmnFzEPJ/RX0mKWiaftrO9BzNlF7C9/cZquvtiaUQk1Ke3ZOrw2pFjBCko40M+PeZmfTFrrYBUqsp+ZNx7sW8HMVMviItKj9831HGO+KnOC62mYXJrP7JQloTX7rONPTP7L6H6UgfAJrCzCbxO/UdFE+GObk3paQlVZ7p1th0XAImAROBgQ8HvKw09978Me2fMlOrD+fmfMGDAohI7YpwsHzxtlEipqfC6++GJFnHT+d999V1q0aKH8kOiLdOONN6pDtWvXljPPPFNnU+t77rlHWrZsKUcffbQ0aNAgZt8pXVn//v2F5ota2C6GRCcZpBaMYd6DowcOGjRIZ6/S605GNLKOTSvGVoaRw3QQCpI4TjwaSr6f4fdtG9zZP6L+NJztH7+4T9jFnFCVoceZ96Jj/KZYHOHXkwWPm7lZlsBHyRSSphe+8/loMX1QR7+5KYONvPf7Grn/owVy89uzQ7adEdO0r1HPNnWFPj5aaI6m20c/FxK3YOF8QO8UaT14jBHatMTTdtahr2XB2t3K30bXq9cMxMF5sbT0Qvsrmxzo50fjwYiN//nR5zs1tFcGTCkj/37iwZ5aTu3LxvtDzWqwbILP32eTfAMENNlr18T/3E2FySyf2RvfnKXmsAouy9/gEwhCoiXUpNL6WIWt8S3iN4nfpqjmoGLDwKVSDkuosCbaE1kELAIWAYuARcBPqIgFOlK573sl8958KdgSnWlFMIS1atWS22+/PSD51VdflRUrVjhpY8aMCSAvnIy3Tp06ihRxXimGKDfFnHvq9ddfF4ZWN4VzR+l5rRg0gnXEKuwkv/XWWwHFGJKdhC4lJUW1zTT3Y+CL0mrDAk5SCXbOhRmXJicjhrSssBbRR4pCx/jRCO4wHSPo7KB6QGZWbdkrz3691HH0p9+OqSUa1KmhY7akzZfMNUOZazkURIzHzPI8ZmoTqDnQc0WRzJBMaYd9Rk8zIwzSr+SiY33PGKOhMUQ1CRSJCANcMIra7e/O1aeXq07s6GzrDc7vxA4v5fo3ZqkAHHv256vy1HrdgfJ6Hi5fRz3Q56m0bef5DkdkNy1XvTxdadsY8ptCDJ7+aol8OcWnNRzcuaHUizBPl67nQKwP9PPDa/7oz7XOpZuE3UkM2ogX+3+e4psigqakY16boXyh8gq8woVRJ3k/tZnpJce1dwJSsBnnHtHaac11/5khk0GwdMRJhvW/8915TnQ/Rn9kGP0DKfwG8VvEbxK/TdFK4qEuSUzHj9SKRcAiYBGwCFgEKgiBkIb43kWFsuv6fKkx3CWpp8ExuUZsrbnooovkwQcfDJgk995775WxY8eqipo2bSq//PKLmmvKnEhXkyLzbCRj1B5poVnhl19+qSbMpcmfKfRpevPNN+Wuu+4KmETXzBNpm1ou1j18+PBI2YQRAEm2SAKrg9ApPZw/RXleHyOSsSPH6Gg0M/pnUVS54HNynqRHLgj0nwvOU5r9vgj6cPFxbTF30CpFns55bJIiObpDyjo5v9XVmOA2WI7o2kiG9UMYami35q3eLRc8PSU4i9pnB1hrFcwMjLh221nd5V9vzVbJeg4u7bek89In526EjA+WeNrOcz9zWT+5DZETadZ39/uB0xHoc1GD+MCoXnq30q0P9PNDH7m3f16lcAlFekMBFi/29G+kdpO/GZqjklSFkv/7e8di84el16mhojs+8cViRbpuetP37AU/c7yW849qE6raCkkrhLvg3v+BSH0JFuW3+I3u3OCAqeeG/KxFV97msghYBCwCFgGLQCkQcIctgw8ZJ1DMHJMn+370SGHRhy04ql2oaHgMER7sS8XJepcuXeqcjlqkn3/+WU4//XQnzdw44YQTZMqUKcoc0EznNk38SL5mzpwpn3zyiXzwwQdqbqs5c+bIIYccoibgNcuYbTa3zTx6++9//7siS6wnlJAsMohGcMRB7eely4SaX4qaLlOCy5jHStrWc1zVSAp/C3UdZqQumpvFI5zUVktJdRlZAyYQ1eVZF+freeyiPiFJByfdZQCEF67oL+wMxiLmXE2JIIzhZDRG8RnenJ1KikmmTgRhYkS01JTiHTQ36uTcWAw/rsua56BG6/7ze8rZh7cykwO2SWI/uWVIwLVrvyVGC+S133deTydUfEBh7JS27axnIIJhvHb1QDWpb3C91JxRK8f7QgJQllKdnh8dSY/4RIrsF4xfvNjzN8NJe7WG06yfAwA3n9EVhMivjTKPc36zl68aoKJR6nT9zPE5vnxYe7n73B5RzekWy73U54q05jeG3xp+c9TkvbGSKVSecm6CJDYJ/3uPdH57zCJgEbAIWAQsAqVFwLVx+N6ojClccCGpMTxBah+dELPGqqTGMSz6+vXrJSsrSxo1aiStWrWSUIQkOztb3n77bac6mhdysl2TmJBkBU+iawa2cApHsUHt2caNG2X//v2KQNGvi+e0Uj4I0G9pPTRWe3PyhaHBI0UyK+sW7MspUGZ7NOGrlZIgbTNSpUn9QAIc7pw086OmbfmmPWpy3uaIxsaQ6dT8RSs79uTJSpg5ZqMdDGFtmhiWVEc8bWfdNPdbsiFLdsGMjB1yzkNlkuGSzl9Zjh/I56e0GMSDPZ+7TZk5yjw2AQMl3VrWjclMb3tWrizDM8vnh5En+cyGGhwo7bVFW44aqX2/IYLflxi4K+5OGG01kjjAJfX+BRVV9D+7qOu2GS0CFgGLgEXAIhAJgagJlVMJXDlqDHNJrRMSJaF+xX+5qDmaNWuW0xwGtBg5cqQiPAyjThNBM+T5iBEj5P3333fy2w2LgEXAImAROPAIeHYWSvaPBZI7DmN6e+Nrj7ujS+rfFbt5enxntaUtAhYBi4BFwCLgQyB2QqWRg6VZ4kCXpBznlpSeMAsq2fJMl4xrTRO/888/P6o6GG2QvlrBIdGjKmwzWQQsAhYBi0DZIoD4EjnzMEXHeK8UTAORwn684u4MMnUbyJR/mq54q7TlLQIWAYuARcAiEBMCpSdUxmloDph8FMjVkYmS1Kz8tVaff/65XHbZZQGT7BrNUZsnnXSSMCJgero/1HZwHrtvEbAIWAQsAuWPQP7GQsn5o0Dyfi+My6wvuKWJg11S92qrmQrGxe5bBCwCFgGLQMUiUCaEymyyu41Lko+A1uoQtyRmlB+5yszMlPHjx8vixYtl3rx5qgnURHHy327dukmvXr0CfKvMNtpti4BFwCJgEShfBAq2gkRNRUj3CV7xro7KVTf6BuHTUmOkW9JOQ8CY8vvMRN8em9MiYBGwCFgEDmoEXJuu2FtYuKV8MHC3dUkSRhBTBrolqUUF2QSWz6XYWi0CFgGLgEWgBATy13slZ5pX8qcUindVGZOoonO7GoukjUmU5E72m1LC7bCHLQIWAYuARaCCEHDl7skr3PNJvuR9Uzb27OHa7coQSYLPVXI/t9ToikiBxSNRhytq0y0CFgGLgEWgEiLAUOe5izySNxMkCj5RhVvLsZHgT8knuyTtLGviV44o26otAhYBi4BFoBQIuPLy8tQwIkcW977jEc+c8hlVDGhbskhCd2iv+oBc9YL2qrm12QjAx+5YBCwCFoFKikD+hkLJnQsCNdsrngX4XuSVf0MTemOS+QsTrKVD+UNtz2ARsAhYBCwCpUDAIVS6bM5cj2S/D5v3lRVArIpO6qoPgtUT2qsebknuVr6+V/o67doiYBGwCFgESkaAvlB5C+ELNR8Eah60UDtLLlNWOdztMEXHefDJ7VW2E0yXVftsPRYBi4BFwCJgESACxQiVhmX/TI/s/wzEalnFESt9bkYNTOgGDVZXEKwuRRosq8TS8Ni1RcAiYBEoHwTwus/fAPK0uFDyF4FALSzbqHzRNprzStU80y01+1kiFS1mNp9FwCJgEbAIHDgEwhIq3STax+//GnOGzMCXtuK5la8ZtUGwOrkkEfONJGFdoz18sOycI/oW2bVFwCJgESgVAoX74QO1wiP5SwulYEmheLCWfaWqKv5CGDRL7A8idYrPzzb+Cm0NFgGLgEXAImARqBgESiRUuhk0++Cs9nm/4IMb56z2us541q7mIFkYxUxsBy0WzEKSWrvFVSOeGm1Zi4BFwCJQfREozIX2aQ20TzDnLlgB7dNyaJ82VILrTUWwiWNg2ndCYrlOtVEJrtQ2wSJgEbAIWASqKQJREyp9/YzqlDMNM93/ig8yA1gcKK2VbpBeY3TT1cIlCe0xykmSxZDtrUCyrCZLI2TXFgGLwEGCADVP+WtBnhC6vGAl3tUr8KpeX7ne1ww0kTIU/lEDbdTXg+SxtJdpEbAIWASqLQIxEyoTCc/OQtk/ER9tTtxYTnOOmOcrzbarETRZrUG02oBoQYtFTZaacNhOYVIaOG0Zi4BFoDIh4BWh9QA1TwVYPKtFPGugedpWmRrpbwvnJuTE7zWHuCWhvnWM9SNjtywCFgGLgEWgKiMQF6EyL7xgM8jVFNjiTy6/CR3N88W1jbDt7mYucbcE2YJWK7EVtFnNLdGKC1Nb2CJgESg/BDRxQsCIgrXwdYK2ybtOxLsRWqcKCFsez4WpCd4PhW/U4ARJbGJJVDxY2rIWAYuARcAiUDkRKDNCZV5ewbZCyZnOiR4xYroIH3yPebQSb2OyYReIVkILEK2mWEiymoJwNXWLu1YlbrdtmkXAIlAtEPBmQ+O0CaRpE0gTyJNnE16f62GuR+IEc+sqIQjMl9AVg1QDac6Hd2i6JVFV4r7ZRloELAIWAYtAqREoF0Jltoa2/DnzPJI3C52EmRU7h4nZjni3XXVAtkCu3AyGgVHWxMYgXlxngGwhCqEVi4BFwCIQDQJeRNEr2AqyBK1+wRYQJ6y9CA5RCBJVmBVNDZUvD+cSTOwHc76+IFE9bRTWyneHbIssAhYBi4BFoDwRKHdCFdz4fJiq5M6D9mpOkfYKhKvKCwiVGwTL3QRkqzEJF0hWOjoYjeAngNFZFzRfViwCFoGDAwEG7vFsB1naBt/S7djejHfdFpjnbcYCAnXAwpKXJfwI9qO0UL0R4rwnfFNhOm3FImARsAhYBCwCBysCFU6oAoCGX0DeKq/kzof2ChNIejCZpFQHghVwkdBs1cWSAcKVAeIFopVArRYmL05sCC1XA6Sn2c5IEGR21yJQaRHw7sG7KhOEaQc0SztAmKBtInHyboWWCQEiCndX2qaXvmEkUF2gkceE6zV6MIoqovrYwD6lx9OWtAhYBCwCFoFqhcCBJVTBUJJgcZ4UEKuCJRjVxbowMzhTNdxPAuFqgP4JCJYLRCsBizsdpAtpjITlrgfihcUF3wQrFgGLQPkgUAhfT88ukCQsjGDqxbvHux3vIZCmQixeECj1Psovn/NXplr5PlIEqjPIE4hUMqKjWgJVme6QbYtFwCJgEbAIVCYEKhehCoEMR4Hzl8FEcDm0WEvQqWF49koe1SrEZZRNEibAdJFgobNDn4UELK56MCushzW0YAl1QLzq4nhtaLzs6HHZYG5rqdoIYJDGuw8EaTeWLJ/2yLMLBGkXiNJOrLGQOBWCQFWGCcsPCNiMeopw5omdRZI6wHyvIwJJYHDHikXAImARsAhYBCwC0SFQ6QlVscvAKHI+ol/lrwDRAsnyrESHCPOuVJkIWMUuqBwS0BdiEA0huaK5IQiXG/sumBbSvNCd5juewO1UX5r18yqH+2CrLHME6J9EkzvvXhAkrBnEwbvHl1bIdOwXgjB5aXYHEqWCPOD1YKUIAfhzujkvX7si8tTeN2WEWO23fUQsAhYBi4BFwCJQagSqHqEKdamaZEF7VbAamixNshCC2EqUCKSQcGGBdstFTZheEHDDRdLFRW2jQ1YL21hc8KugNsySsSgxttkUAooUQWvECKDebJAgLIV7sY3odyRKhVywzTRnYX4QJ8mxIEaNAKZ6IHlKBHlKbAPNE7RQnG/PkqeoEbQZLQIWAYuARcAiEBUC1YNQhbnUAkTayl8LggUNloeTYa5BBw2hiavMvFhhrqvSJTOKIciVCx04F4mWWiONHTqmg6xJCgkYiBiJW8CCNKS7aiA9uWhtoyJWqltMAlSYiyUPpAZr736sc7ggrWjxco10KUr3MrgMBjQKnQX5OcDB9Koyn1KlugsRGgPtEqd0SGgNroRJyhNBopJa2fmfIiBmD1kELAIWAYuARaBMEajWhCokUtRmcf4XmA0WrAPJQhh3z1p0/Ei0bEcvJGQVnkj3Dfh1kGRJ0UKyxW0X0xHEg8eFwTz0PreZngRSxrw0beI+TZmwrbRoXOt9dkITfflUGgbuJQFlueb5sdbpKs1ddIzHKUV59DZ3VZpeqwTs4LFSC9OxzV1nH/495nYh970gHmqNQ3hWpSiPSvOgNPZVOklOAfIyD7f1ms8wF+x7GTyBx0CEJB95uY+F60L6IXIfa2e/iDQJ1lxInpS/omo0tq0cWAT4/JI4tcKjijDliS2xQOPjtGk4AAA1e0lEQVSUhPnwrNbpwN4ae3aLgEXAImAROLgRiJlQeTweyc1lTys6cblcUrMm1BSVXdBRzcccMQWb4Je1Ef1RrDnZpncjOqLwybBiEbAIWAQqAgHl89gMmtvm4ElNEXSmGcYEsE7CXHdmsJmcfLJo5AHZT0rQTD98C3X+RDe0Vxg8CCeFINArNu+VTTv3y/asXGlSP0W6NK8j9VM5ihGdeDAwsH5HtizfuFdyCzzSoWmatM2oLUmJJbdTn2F3dr6sRDs278qRQjSqU7M0aZORGrHtumyoNduUmw//W49XaiQFtgPDJcXSQtVh0w5OBPIKvPLFlI0Y7yqUY3o2ksb1aHZhxSJgEbAI+BHAmGdsMn36dDniiCOiLjRgwACZNGlS1PkjZczOzg4gc6mpqZKURDVEGQi+r0kY/U1qCtVFP9ZHVYZPaNaUT6JFzRY0WR4QL07SWYj1QRHWXQNh1xYBi0DcCFDhpyJ1OpOBQ9NEzRM0TUkgTspENoqzjHjkT9m5N1/OPryV/POUThFLkEwce8evKs81J3WUkUe2Dpl//JzN8tbPq2T1FjixBUmjujXk3CNayTmHtxaMk4UUdjyf/XqJfDkFo1Eh5OieGXLrmV0lrWb49/Y2kLi3f14Zto5DOjWUm07vIs0axDZQ9+u8LXL3+/NDtMqXxOvr0bquDOrYUE4Z2DzsNYatwB6otgis37Ffvpq2SV1fu8a1LaGqtnfaXphFoPQIxEyoSn+q+Evefvvt8uKLLzoVffXVV3LiiSc6++W1wQ6OmsiybfEz0FyqYBtJFkwIQbK826DZ2so1F3Sd4FhvxSJgETjIEEBQF3cjaJkaYZ0hssGVI89MXiabk3PkpX/3leaNYyMD5Y2eF4Trhe+WyUcT1oY91bbdufL8N8tk0bosuXVEN6mZ7B90YiFqs24dO0cdD1fJb/O2yoK1u+WJi/tCawWQgmT5pr1y3X9mKKIYdMjZnbp0h1z4zBR56ILeMrAD5pAoI+H1/Tp3q1rmrNopt5zZTZJj0KiVUTNsNRYBi4BFwCJQBRGoUoSqMuJLv50kmOckNdOdC732tZbarQJODkrSBZLlIeHiJKHYLsyEhgvz4Fjfrcp4Z22bLAKhEciH41sC+vGJjTD5NgkTJ+PGdgK2E0CiEjEpd7CWafnKvTJ/Pia8olTCt+57f6xxyFStGglyNbRYJ/RpKtzeu79AFm3Ikme+WqI0V+PnbJEde/Pkhcv7+66n6O+r45Y7ZIqaqCuGdZDmDWuKG+qsLTDbe+/31fL55PVC4vLY54vktasHBpTfsz9frnp5mmTn+kwZj+zRSEYf107aNQHxwtgUtQTUoL3x00qV57rXZ8pzl/eT/u1jJ1WPX9xHMupipKxI1m3fJ5MWbxcSPp7/h5mbpXurenLGoS10Fru2CFgELAIWAYtAWATi/rT37NlTHnnkkbAnoFnegRaaCu7evVsaNWokiYmlu+ScnBxJTk4WN/wPSpLMzEypVauWpKSkqI5VUgv4Pzjf5UDCxY4CJxzN314gO1dmSWoBJowCyfKg76UmHcWEo4p07SvprPa4RcAiEDcCnBoAE2a7MYG2mjwbfXVXQ5AlkKZl+/fIDV/Olf2JefLxzUMkoyEjplR92QCi8sr3y50LefTCPtKvPUAoktSaiUoT9MaYQXLPB/NlwoJtMmvFTlm0Pku6tsD7CkKTQpIRConQg6N6qW39h35YNw7vogjau7+tUVqqtduypVUjhAItkld+WO6QqYEdG8gD5/dS/mHqMEwMmfcSEKzebevJta/NVMkf/rG2VISK2jGTUHF/aM/Gctnx7eX8pyardvy1bIclVPrm2LVFwCJgEbAIRESgdOzCqDI9PV2OP/54IyX0JknNsGHDJCsry8lw7bXXyujRo539JUuWyHnnnScFBQhNBiEhGT9+vDzwwAPyww8/yPr165283LjqqqukTh3fB535SJi0bN26VV544QV58803hdtaSAAvv/xydd5gcnXWWWfJ0qVLdVaZPHmyPPvss/L1118Lfcco+/fvV+Rs6NChTr6BAweqc7Gd33//vcybN08d69ixo9x9991y9tlnO3nNjU2bNsnDDz8sU6dOlVmzZjmHDjnkEBk8eLDcdttt0rC+r2ND00LPrkK57bLbZe2MddK4ZlPJSGksF4y6WNLwz4vAGYWcyJQTmjKCmxWLgEVAIVCIWAr7a2DAAmENs1MKJKmBW9p1rS3JDRMkAT+v9XnZ8vv6bbJkT5bUTkuUnvCjOaJbo4AONysqWFmoyJSGlUEevp2+UZGDrdC6NAVpGNwpXaidYaCIqiJfTfP7O11xYvsAMmVeQ0pSgtxwamdFqJj+xZT10hWmf5TF0GA5mqXusHEMI2cNaYVAE77RIZoIakJF7ZT2u6qfmiR3n9sjLIbUSI0Y0lI+nbhOaZVICKkJKwvJQLCBw7qkQxO2RWYszwyocgmu8bf5WxG8IkEuGNpG5q/ZLdOWZcq8NbvU+f91eteA/Ez/FSSTwTly8jzK76Z3m/pybO/GAeaSf8GEcRZMDGleePGx7QLq4M73MzfJ2m37pHmDWnLyQEQoCZKxv66S/aifzx7JphYGFZmyZIcsBvHldutGtZW275hejaVurdA+bAWIJPo7rpFkkmVq1UhEuVpyYr9m0ha+Q8ESKybB5Uva35iZI1/+tRHXny1Z0JRSY9oQwVEO79pQhmCh9tOUb6ZvEv4WSZCP7JYuk5dkysyVOxFkZZ+kpiQisEkqgkpkwP/Or500y2/amSNTl2bKApi1YoxAuresA586/+CCmbekbd2WjmjL4WgLn5c/Fu4QmrV2bp4mR3VPx4AEJn+ErITP4h8Lt8vCdXtwTeK0s02Gf8DBPN+OPXnC+pdv2idb8TuqiWeyVaOacmyvDOndpq6ZVW2Pm71F+Dvh7+045PkeGliej7/ZZ0f3Dsg/e9VumY4BEwamYYAatrVfu3rSC/UGoh1QzO5YBA56BOImVNEiSI3NueeeK9dff71T5Oabb5YRI0ZI3bq+F8A999zjkBFmIqFIS0uTdevWyaJFi5xyemPDhg3ChaJJGLd37typSF6oMiQ7Y8aMkdmzZ8tLL70Ex2P/K4Jkyizz9NNPy7333ssqA4TnMvPVB+m55pprZOzYsQH5li1bJqNGjZK1a9fKTTfdFHDsyy+/VKRuz549AencIcHi8t1338kXX3whnTp1UiHBE2FOtMy1SL7d8q1T5twzh0u9IJMXhrv2gFx5ofnietavs+XrN76R+jXqY2ko3Tv0lPzMAkl11ZZ6yQ2kTnIdvCj9ODiV2w2LQCVDAN932eMqkCxXnmS5PVIT2qOO3VLFjXEVTkCdUMclmRhRuPnzubIrMV+uH9lBnh23JNAnBwMOzdbVlNdPGyifTd0gr41bEXCVP81CYIbxK2GSNihs4IO1MBG74qW/AurlkMh36ORQu/LkJX3DEoKAk1WCnV9AHigMyjDq6DZqO9wfEg4GlViOzpbpX5Se5tfWrd4aXp2eXqeG0NwuWOgXpeXqkzqVGFHQbOfW3TllRqjYhv1F0RO7ojNtCju9Y39ZrZJaNqwld73vGzhjwrasQLLx5JeLlXmjymz84fPxn59WyH+uGSTEgpKDyIO63r/3bxYQ8IC+bU+hLnZ8SSb+1r9pwHPFjvWrP/ieX0ZB1DJh4Ta578P5Dsll+ozlO9XhN3D++6D969cukCiQlI15bYZjtunUhQ1qFW8/u5uwfabEgolZLpptEoYPJgQOou7ely+bQLLmr82S9yesk8cv7KmIkq7vu5lbhHnWgIBNAZmas3q3PiRbMBcEidVPc7bKfSO7KaLoHMTGFBCpF75boUiETl+8fo98NnkDftOBWOnjkda6LfPWZAkJzaotnIjPJyR9E0BoBndqIH3a1pVXxq3Sh9R63fb98su8bXLX2V0VuTIP/rVsp2ontcJaaJbLYC4zVuxS9Y05qb1wAETLj7O3ymaQxRYYeJi1cpeQNAVLPgLKPPftChDQwLDGbMt4YNa2MZ55tMf83QfXYfctAgczAhVGqAjyFVdcoUiH1saQTDz33HNy5513yrRp0+Szzz5z7kXbtm2FhCta0aZ41ISdfvrpAYQnVB1vvPGG1KtXT2mIQh1nWigyFSovoxhGimRIYnjBBRdIRoZv5JZtpGYuFJky6ychI/kbN26cmVziNudvSswAQeIC2QbN3pMrHvSXY88vSB6763G5evS1MuGHCfL0bc9IfRCtesn1pS5IWL2kuiBd9bCuL2kgX2lJdZBeRzLqNxF3LkwgOVeSFYtAlAh4YOdakAxtak1ofFxe2ZqbIzs8ebLHnS+HDWoo6c1qiKs2AjrAWnjCqm3y9l9rZC/IU4P0BBnQu764EfKb/i46Et3lndvLhce0dc6+E33zNT/4Biru+Wy+6oieOqi5NMWoNMvNQydrY+Z+ufrVGaoOakSO691EGqQlqxH9Oat2KaL0yGcL5bnL+jv1mhs3vTlb7bbH6DO1Wbv25amRfUbdo9biJQR4GHNy5Mh7Zn0HanvHnlyFBc9PAhE84h+qXacAy2BhGGniyOt/99fVSotw2iEtog5FPtfo+HJEvyRpBDJyPbRlZS3UZkxER5fCZyKcaDLVF6aRJDK1ocnR8vYvqxwyRUyO6pEhDUE4qfXhs0cfshvenCUvXTFAaE7ZF6P/WqjValzPf95lm/Y4pIikauG63dCg+vPPR34t/YoG1khob31njkrm+S8Y2lYR1PkIBvIdNKq8R7e8PVu+uuNIR1NG4nbfR/MdMtUT2oiBHRpC25MjExdtU2Ue/HihNKlXM6wGMxImuo3RrkmIPvzTR6Y45tkXmjcSfhK41VuzhZ3/rOwCRSxuPaP4c0DNjRYSgRQEUCGZygN5pRbuwU8Xy2tX9dNZZBrI5vMgE1rq1k5SGme+J3ieaSAxpRWSJwF/odaaEQLzELZ/Da6BQhLHhVI7JQH4pshaEBheH7VDT3+9TF6+oq86zj/UnD37jd88l9fGOjeAZFLzxWsjWXrp+5XQJnd0yukN+iFy0WJOn3DnBwuF5InC6Q26NE+VAjwXq4B5Tp5XEcJ/vjFHnoNGK5bpD/S57NoiUN0R8H8FSnmlNIUbOXJk2NIkEzSzo9DE7uWXX1bmbLrA/fffL5dddpnccccdOkmtX331VeWHxJ0nn3xSmI8mde+9956Tj+Z4J5xwgqq3cePGKp1aJZPc/H97ZwImRXH28eIQBFTkCBG5lkNBUEDwAhXFGzxjYkTUqGgiHgkeMX7qFzV+SLw1JjFG8AoqGo0JGmPirUA0KipIxAMimgfFIGpEI0fE7/3VbPXW9PbszrK7DKP/93lme7q7urrm1z2z9e/3rbeGDx/ubrnlFtejRw8bFD7PHXTQQYlXi3oJx9t226ofrKTyyjfsO/jgg12fPn28pywIt3Q5xNJll13mww7vuOOOvHZSFsG4//77+8PuvvvuPDGF2OLz4emaMWNGUo7Cjz/+uEOA4eFraCP0cejQoX5cWK9evdzqtp+5/U7cK+80U6ZM8YxWrVrlwx9pZ7ADDzzQi2A8YnOfm+eOHHWUibC2rq0Jr91HjHTjx5/kmqxs5lbYgPR7Jt/tVv17tWvdvI1rY68999rLNV/Twv13+X/dO28sdhs2a+VaNtvQLzdoWu/bMjRRy4YgwINOC5tDqH+0cpVbttJC55p87lpu3MT13XJj17S1iR+LoGliUVczrdP47Nsfus9MAI07qIfr3r21a2ri6PUPPnGnT3vJrWr2uZs0bhsL1+mYtKz98g0sa9vTvtO2rKK7+0GlEKFzedF9luba6iUM65JjBiVP50/ar48797a5PvwMD9N2lu1tQPe2SZ3xm2steUIY63PkbhXuf2+f656at9SLKTppN5y8vcPzgrGfzijCiyf6PAUuFL733X17u2MjIXeadfBPuX62DwG807Llkd57B3utz0bnOtgWNldUfez0g/olXpuf3f+6m/zQQjfSwsvwhCDWundsUzAVOcIuWDcr19j2p9nv+g4z56ETyvkRHEFM7W+hdYjwQoZQueaEodUyFT5vYYKTKz2ehN8hyEOnlfFff5r9jkOYLLTO7xXTX3UXjtnap5CnLEL+RRN0sZBDnMfGeiyoXrJjMO79EMb31N+rQtynnj4s8fbtPXgzCzPr5L1QiDPaysMA7A5LSsJ3AjtpVJ88T+WHloDkuGv/5oXg2bdatMOPR+R5P/xB9qcQk7C/Lst7/ro48RT9ZEx/13uzqnuC1Pyn3PCSF5qIpEK2YYum7qxDtjRhkLuv+czfnzLHh19+uuJz79FBmGO3Pv5WUs2YXbpa2vzOyfo95qFiDqr62Catm7ufHrW129SEGjb1ybct8UnOM8w6c1sdv1cFb7396DfzfIgeYi7+DbrhoSpP1vh9e9r1q/od/cCu05m3vOxFI56q+eZdCyGFoV6WCNQjdu3m9hnUKRFGiLogprp1bOUuOHyrRGzz/fjxtL9b2GVOXD7x9/fd3nasTAREIJ9AvXuueFliz1J+9c53xoOgYt+QIUPchAkTfOc8lD300EOTMUpsO+6449zuu+8edrvOnXM/bniUYsOL1bt373iTH/cUb/jtb3+beIZox5133pk3jxaCsJCgQjAg4BjLVZsRwsecWxhjyt588808Ybdo0SK/jz8HHHCAe+aZZ5J12hXm0+JYQiNpZ7A5c+a4YcOGhdUGWT788MNut912y6uLMWOx4SFE7GEwQPQiDBnPhj3xxBP2T+8L62g3cQvee829vvIVZ1EV3jq1aeda72ZjVJo1cxu5Nm7MqEMcyTqCte3S3LVsuYG78cbfuJOuOyls9uJ71oxZrqWlSVuzykIWP1vjJpwwwc2dNdfixNu4Via8Djvi247xbl9Y6NZZx5/lWjRtaUJsQ9e+bQc3fsKJjvFmvMieuGzJMjfzzzPdBk03sFcLt3mXzd1W/fu7LyyR2IfvfegWL1xsHZ7mrnmTZjZnalPXuUtnt2FL68HjdeNl5Xh6u/zD5a5ZZRnCRFtuaF6UL+w/E2ZPEtfYU0eeKLKF/SGE0jbZdtvnl1+Yd8XOYh4Wb+bcY/sKG5e3xsp8bo1qak8GN25rT+hNxCz911KbiHSlnf9zv69Lzy6uRWtLdILAsW/uitUrLHuC1dDc6rXOw4Yb2X3KN9peoQxZKHm5DeycvG/RxH2yerW7+oE33CrzDvlX09xypa2vNCG0qskXXvistvVdBnVwE4/OPRCxWtz1d7/hw9p4/7v/2cW1b2dKK7KBy9q6iZeZCDIb2aWD23JgrjPzz39/6v6zgV0wM0RMbB3MM3TvObv6jkPofLI/dCbpqP1k7DZ5wqapPe1lnM1BE5/yHSs6llmC6ogR3RMxRZ2II+YYCp3HsTYfUxBTYf8+227mBRXrYdwB72NDLDGOJjYm17346IHukItn+M2Mi1nfBRWetWC9vl67ZyiUzVoyNsj8ju7S383314QO7APPveNflGfeqIN37GLZAzfLY86+IKi62RiP9KS77G9oC6Inq14y+403wV6TIR6z0r4jiDDC8yYeNTARU6EuQuYoQ+jfLAvLCzbMHhggqJ6t9FaE7Qh7bPR2nf0xrCPMguH1woZHDyj++X7O+0EbGDcUG8lGHvm/kX5TS/utCTbTvFDYztZBj8Mp2caEziQZ+d4vcxkYEYNZ37VCTKijroaIQBDh+YzFFPUQctatY2v32uLlfqLmQnV/f3SfRExRBh7b99nUQu1yzPAcIagICwwPFhgvFIspjvvWsC5+XBXjudbWTh3dOxFT1LGdXYcgqGjXuEhMsX/HLdq5eys9SW+aN6uPCUra+f7Hue/rNj02yRNTHNPertMpo3q5q+/LebD+/OJ7mYLq8J27uv2HVnlBOTYISn4fz/1Wv0RMsY/f5Ass1O/4X77AqqNeCSqPQn9EII9A/q9t3q7GWzn//PPdtGnTkmQRIeEDZ2TMFIka1sbWrFlTTVDdc889eVWtts5kbIxVwkOWZWeccUZRYgrvVBBToR7mx4o9ZYzrCtahQwfHC0OQvPXWW+69997zCTtI2hGLKcqsXFmpUlhpACOhRlpMUW0IxQynmDt3rh9nFtZZzpo1K1lFTCMc8W7h6YoNIYrgIvySJBvwSYtfyqfPeeyxx7oNTTRgzVrZmJi2zdw+x+/pbnzoBr+NP00W/Nd9Z9gYvz757V8k27kOZx1xarLOmwWzF7sTLh6bbEMgTjl/il+fMf1pL8zCTrj8ZcpfwmqyRETuvPPOyTqCNz1ejmQljJULRlvwOCL8pk+fHjZ7L2s68+Vpp52W7Oe4kHzl3BMvcjfffHOyjzfcVzxsgDfJUNbGc/mfj1a7mbNyT0f5Z57uwCL3kDwmGd3G9mQ1yxA5ZG5LW7zto8j7EZ4SU/6MG1/wKbV3tqfjdAKwrLh85ivC+tvTd9oYjxlgO8f07bqJzzjHwPssi5/mh/1xdrf0OBnKbB4lOOBpeJaReCIrPI4OGmOoEIOv2RPi9d14Wh1sDU8E6ml4V3ax6/rX+e+7B80LFAQB1RI+9SvLJsjruvHb5SVQqOdp63w4932PTlVeD8bd0D6M1O688IgGD076BIOjML14H3N0YYN7tkvu7Xg/73ft38mLIwQn41r4zuxg98z1D+YYkayD8VWMi0FkYaSgR4RRP20lJI1lCHvlnguG2KEs9RPWivAfah7cMG9YWIbyfK8IRcSG9mpf7XvGdkJbg73+zvJMQVWISTiuLssffWPLasX5PISrEZ5HG2oyQtIYm5S23paCPwgq+GJxuOlhw7ukD/Hro4ds5qY8sihzX20bESkkt4gNL1AwEkVEX0O/uU0khPEQWkCge8OEbLC06Avb+9vvYbBwP4d1lnzfD4i8b2zje48nDCOEcBMLQ00bIZP8tjFOiykQZCIgAtUJVP/mVC9T45aePXvmJZpIFx44cGB6kxdN119/vcMzlTa2t29f9c8hvb+m9QULFuSF0lE27qxmHZv2ysRlBg0aFK8WfE84YNr69u2b3pS3ToY/xo7h7YmzEOYVaqQVBE6WPfvss3mbaVvwRuXtiFZI7oGgqqio8N6sWGiQMIRMi7wwPHHHHHOMO/nkk5P09SGpSKiSzIhpS/NFgDaGFeLCZ4yNJCFpa9Wqlcu65o899lhe0XRoa95OW+Fe4N7AK0sWSx4IxGPt0tcEgYjHN/YCp+usaf1sSzAQhxjVVDbe190yhmUZnYcsq+i0kRu7Ww93x5Nv+afBl5gXw9kLj8Qu9nR9n207+7Eo4Vj69nMX5TqThGGNOOfRsCtzSXhglm1cIJtZKItXKW1ZQildJivjWSiD5wJBVahNodz6sGzbOidoaUtNySTq0lYGw5NJjtdq89zi0cCTQpjdP21sDHby9c+735y+k3kfch31kKCB/WRPjAfU1+XcxZa9/cxh1bI4Mm7lZcvExlgixjkR+kmq+H5RJzXUv0nGfcU9G655r0iAhGPCsiIScoyRQlARbonIQzRw38MODyeGNxQ+QajPXviB3x/OxXH9ulR1pPe17xJZCkltz0OJs+1zYIyLQiAS+hc/VHgrSiJy7R9fd7xqskIPL7KY1FRPbfvI6nebhcZxTZbb+7ro/Vbm3cqytJikzOJKIc17MhpmWX2ySDI2Km3x72RH89AXY3jLgxUaZ8i9gGePMU+EAKaN/elf6Njzxtizo655Ln2YXw/8WfKgKeshWOaB2igCXxEC9RZUdKTHjx9fZ1xZnVIqIURsbY25oupqzE9VyNJp1QuVq+t2vGKjR4/O6yjXtY76lA/hhek6Pv20cDx6umxY/+STqqdmjHtDXJE9MUskkmGRbId4uW677TYf5vj55xZTFxlzfaUtva2YEMxQBx7AYq0QlziDJHUVe49y7lgMFdsOxsxhgwcPdo8++qgj+yUZH7MMAcuLcrvuumtWkfViG09GTxm9hX9y/8fnFychd3Sgpy1920176m0fbnSRhfbRmaYjTueyWPt0Re4Ja7Hl61suHUoV17dRqw38Ku2Pxz/EZRry/UoTILVZIU8b4VzBanvqH8rVZYlgRZDwOsLCK39poaZ3W7pz7GkLXwuCiqQNwUiRHWesC9sbe4lXg5A4Jhz+xqSZ/nSPv/xepqDKakt8z2Y95Q/HxB3sj/+Ti5gghHXEgK/5CYXnVAoq0qljhOFheP4Q6mRERHBRDsPTG3fQEQ1XWCZFslVOf3ZxkmgCLxSv6/60wB2/d68kdPAj83TVxT5d2fjfNTLg/drGC6V/vvkdIUT43+ZRQQAXspbNi+9HfBB50hEcWRZfs6z9NW2rrS1xpuGa6sE7hMGgJjFDWn8ElTkeq1l8n4SdPmlGWLFlmnm0K3nLuKoW9e49JtXpjQh8KQiU5CtBaF4hEcbcVHvssYfPwFdXwv369cs7hLFRtXlY8g5YRysk04g72ozVIn38gAED/LxahDymQ73WRdMIIYvD0xgXVtvYrTjkDKFBEpKzzz7bjxFjnBivuE4+B6ngCaMjYUgYHxc+H15Grn9sbIutUJsQcYTe4S0KFodahm11XaY9lfFcZTXVxT/KvSz5BnOkBWMKgLRADPvCMsytxjqiiuuA14oQytmzZ/u5zsgAGRv3zPosqEJbSUbBixTNTAxLp/oPNp8R4gNP1C+sw/3DQ/r5DkOFZa8ipOkwm3OIhA/rk9Hp71lgzFHw9BAmldWBaajP0d5ECGM/Qse6pnpft/EmwWJPAp1TvIQIWzLGFSMAmVeJMCQ8eVljacJ50kvEFZkPmbvLe2Iir+JgS8rAvFIYba1NUNGZZu4rbLN2rXw4kl9pgD94b8K9VwzbcEo6uVxzPHLhHgj74mUY48S2ICh5v1Pfjl5QhRTypD7HyLbnl5VhfWTdI0yLpBLYThmJT3goQTZGXngq8FQ98tIS77nimBsf/oefl4pxb7G3ddLRA31WQsqUyrg3YjG1dfdN/JxT29gyPACYaFn65v+z6p6uT1vbW/hy8P7gFcsSw0v/Xd3bU59zrs2xfHZSryN4avLiwg9rV5kAo7ZzdYrGtPbvtrEbt2dFjYcwpqqQ8KzxQO0UgS85gWy/eCN/aJ6oz5yZewLIqRg3EoxOMU/ki7H3338/rxgdVTrpweiIt2zZ0o9lYTxLeDGOCm8Wr0JZ+0IdDb3E2xGnQWfMGGOmyJRIeGSFefziBBYNff6a6kuPA0M4BGZhiXcosGMZvDowZawXLz4jY47OPPNMR0ZDxADCIjYEFbbVVlvFm714SHuV0oIsbmd871BROmzxqaeeyqt/bVbS4XQk9Eh7NskkGcbGsaQMlhZ/CKrAMiwRXoEp7BCmPHQIPFkyaTX3yBVXXOGzVd577715HwXRluaWV2A9W+EpOtnf8FpNP29EMt/TE+YRCLa1jQXByL62vlkhbw6dnb9biBIWMgs2VttDGBKiM04ukXW+OYty4WPsY6B/bHuatwNDnN30yD/iXdXeI4THX/ecvZ63NNNVoWGX/36+2/v8x92YK/7qs+ZVO7Bygz1cz7Ttt8iJBnb+7P7X/FiNzIKVG/G80AZeTHrb0EZ6bSwWn8WcI9yzr1SOpco6hvTWwXpVhjyyHtKeI25fsHA9wg5J4BImP2ZiXta5TiS2CCKZDJc1GeMUCfUjscttZ+yUFH3m9dz/TzrqIVFMEKlJoRK8YR6k4CUZ3q+DO+ebff0kvUFM0aQggBqieeF7RF1Mvptlr0YPJLL2r4tt3aKxnWTwyzLGmAXPXSyUssqGbUxIHozQStazXiQBecIyQTJZskwERKA6gXoLqiVLlniPA16HrFd6DAmdazrawegQEwKHsAhGyBjb0hZ7HthHSu9XXnnFeyVCZzIWVHiByBhIZzUYoWZdu3b1adRJpR63JZRp7GXsneL9woULk1PecMMNPlV6smEdvklnOyTLXyx8uXajRo1K2MGPpBTYKaec4q8h15EX6euDITDSIZ7Bm3jIIYeEYn6JMJg0aZL34OFtYr4wxEpscTtjcUWZCy64wHslySiIcL/00kvjQ9fqPZ8nHtuF6OfzkkgE4UNSFe4jrmV47bDDDv5c6WQdRx55pBeYoSEvvPCCT9YBS158Nu5lxokFluH8S5fmnlgjwMiWGRscig0diY9bV++nWVrmC22iUdJpp5NL8LQza0B7GLvCQPxH5iyp1lTqYQLVH936kpv6xKJq+xtzwy2PvunnfUmf484ZbyXJDfpG41rS5RpiPQgh6mIOIMROlpHYIEz+CutBFZvmFYvTg/O5nn4t/0FVKAxvUqGHjGhxNrjh/b7mvU6Igb+8+G44pNpypiWrCE/QYw8fIZTf3qW7L8/+H1tqe8KKsgzv4K//nPNa4xEaYokUGtJofxjQz/iluli4ZxG5v3s653GLjycJRWj7lpZRLg7dwlvINuy6B3MeaEL7Yhu5TW6dxB4Ynz+MP2MdIXL1fa/571rW+RnLSEKZtIXkLXgJs7xrTCB8ztQ5/rsWJxpJ19MQ6/HDgY6bVIWkhrqZiyokUQjb6rOME0b8/m/vVKuK+56JeUttcQp00spnWdz+nU2MFmN40UnrjpE6fUlG0gnGWU1+eJH74/NLbDykBFUxXFXmq0cg9y2qx+eeP3++O/zwwwvWQEcvznYXOp7hgEsuucR16dLFz+HEIPxgzJFERzV4QNieTk5AvYREYXRACR9jIlwyCIZkB0HkIbQoE7b7g+xPfM6wrTGXjMsixO/+++9PToNnCi8IHfSssUdJwUZ+g8fk4osvduedd15yJsLvSDwC2/g6UoDPETL3HW8TFcfCh7A/vFN0/BG9sTBDIJCpDsMjx9xWJOgIxoTKhSZVZnLo/pb2PBj1x+OLaCNzjTW0XX755S4Wf6Tj58VniQUy5x07dqxr2zbnXSENPvOPPfDAA75JCNAgnPBGMa4sNrghjGDOHGsPPfSQ3819iwhlG+dMT1XAfGprYzxJj5/8ZtVBWFd9kwS0sCx9jOnAVv33czd2RIXjyTDjTh62UCSykmH7Densl/zZ2zLG3fNX6+BZB+qCO+a5D6xThyeDCXqZGPPGRxYm8wbF4iKpoJHf/PDmF72HjQxqjIWZZWKBCX0xUoTvPTi/M1yoORMnTnQ8eOK37r777vNe9UJl4+0jbE6hMH8Rc2adbtkTx+zSw/W3jGKEAy5c8olPknD19NeSw04/uG8y90zYiMdqwoFberHLtvNvf9mPr9nHkhv48So2xoa6bnhoQZINjjDB4RaiFgzhQUcdsTXp7lf8BLTf2KmrXePWXjQQJvioJUog1CzYAdttHt765Qk2rufhl971dTDWB76M9SHhAt8J6qAzzzisYMeM7OnHlIT1YpfUv1m73JgUjllpHqmlH69wMy3s9LG5VZ3nEG5XbL0IIO5Zwv6u+sNrfk4gQvnwEuFVuunRfySCksx9aSMcFs9TyBa4Q+S5oyycfzvz7WQ/87PFZpgstfZK98TL//LfN8IyR1pGyk3btHCf2DjDW+z8QRAz4XCwo0dW+M+NmD1tygvu1P1z4x3JromHmAchiGXstAOLD7/lfy4PNbFx48a5o446yr+v6U8cgvjInH/5OZrIMLfCHhjMfHWZu+Wxt5LDCX1EdtvHXmsbYhkbv75pS8texyTXK9yV021S7v17+/sWHj+5a76/jmt9ggY6cJsebf1v37vWRiY3/vmfFrqT9+vlw4rhcP9zS2xi8pzYQSDFc1TV1oTj9qhIJgy+4M75Pk365vY7izHX16W/r/oNOcjmaJOJgAhUJ1BvQVW9ysJb6PjGacwREWFSYLK/XXvttQ6BhrFkPfYg0YEn5XpNooOOP50TxpPE5dJigHOQRCHtQWB7YxvjxGJBxfnijjXZ5rI8dI3dLuo/66yzfDgbkxQHQwQET1TYRqgeHsJgtBkRjIctGII4TokftpP1j1DMYIgIklvU5k3Cu3PNNdfkeWIYi0eK9nT7Qt2IGyZarq+RRGTq1Knu6KOPzqsqLaYQ7jE7Osm0j8mhn3zyyeTYdLp4dlD3qaeempRBaJJhMNzHnCstpChMuvd0u5JKanlz14y3Ha+a7K4fDXddrWNcH9t3cGefihpx9IdnFvsX3pLgraBuOumHDuuWnGYjS9979bht3bif/813AunUZdkB9g+ezGXr0g7ftbvnduG0eZmnvdySAmxcmZwis0C0kd8C7ge+U/H3IiqS+RbvxlXHb+vOmzrXOlLLvNh5edHczLJsZN4u5tjKssN27u4+/my1u/mRN/01YSwbryzb1hI3MCEtiRSCMa7ismMHu3OtLYSqhWsc9sdLrvuk7wzycwnF20kVfd347d2ZN73oPUQkYOBVyM49rL9jDNDaGB69mow2Xmn3Xgi3q6lsvA9P21V23Am/eNZzKMTxvG/3tzFT1T0ICCiuQbC05za9njXP2dG7V9h8Vsv8dbzi9686XunvGokuYrHGmLVrvjvEnTb5Bd9uHmBkGe3mYUGxxv/x8DCttoy7oU6mWEAQ4IXyAu/GuUnmulAm7Mcjd9zPZ7vv7l3hivXIhDri5cmjeptX7xXv4SPkkDpDtjzKxe/j49b1ewTU+dNy7UQ88eJhFWF+sMAQ1Sfu0yu3UuTfHbZoZ8lXNnavWigh6eTPuvVlXy91hhBCqtquTzu7b9oVWauKicBXi0CdQ/6KzXAWMIYB+GRzI0wqtquuuirJmIbnhvEhsZ1zzjneaxO2MY6Egfn8MKfHzsRjoXi6T9Yz5kDKMp7ykywhPDkLZdJZ/Qp91vhcHJvVCYo9a5QJHHjPHFAzZsyoNncVHaoHH3zQd5Apl2Xpc6fPk3VM+nPUdgwdea4FnsO04R3Bq0i6eTxasSGU8AimxxxRhuMQJfPmzUtEdHzsRRdd5K688srMc3Kt8WBNnjw5uV/CsexDqMehnmEfwib9Tzy+DnXlgieW8W5Zn497jnMxPi59b5K4AyGEWIJD2rjud911lxeocdge4X8Ibe7TrOMIQ+Ra8PnDvGbpurPWm0Qd4az96W3Nm1b9TBSTUpzOG9a8eVWHG3F00/d3tElDeyQhR0FMMX7jm8O7uZt/sGO1zhqT7v5y/HZuxNZfSzfLC7DzxwxwZx+6Vd6cUFFzqx3j22Wd//raN034XXjE1slnCfUxr9WvTtrOxamx2deMXk6GETIaxDUTftfV8BxeYuKEcLnAPV0HQhWxU0hMUZ7mnbB3b1+O9NpZxnU6wTpqPzthSF6YWSjbv1tbd+tpO/kMdGFbejnUOmQ3T9jREi1kh+khYCafur070u6TQp8HQTfVUq7vn/Jwpc+VXg+Tbae3h3WEAh6mE/fr7W4/Y5gbmAqNLPZrQwjez7831I0cWOUBCufgWiBsmeA3y+J50fA+pT3DrMdeqW0qxxnGdRF2OO2Hw/35A8PwXSPZBl7KS78zOC/ckOO5JleMG+ziNoR6SdnOfZ1ud21M4uQ5xSbNIQTtfw/r5+faCucnax1GJsbx+/Z0E8cOSCZNpsOP9xoL7WlWx+84E+defOQAE0653y7qCudEvF0aTW7OvmKs2LbEk5ln1RtP7dDLrt9l39kmjw3j/YKYIhvhT4/autocXKEt8f+X9Ll+bMwP2r4qQoB6g5jimuw1qJObcEDv9GFaFwERqCTQZNWqVZXPNcqPCSKNsKksQRM+DckDmCiVCXMRZN27d88TN6FcqZakyKZ9IaFBqdqRdV74EmpGKCLiA3YdO+aHmGQdxza7rxxJQeDPcZtvvnmeZ6nQcXQwOSfjtfjx55ox5i0tdrOOhyXj0RCdhCLWJb16Vn01baN9vDgXIXxpcVnoWMbzcb2XLVvmJ+VFiKUn+i10LJ4qEpbwuQh/jTMsFjpmfd2+3Lwh7zKpqQmmYgf+M0YI7wcpwBk0HU9+WarPSUdm2fKVPpMag8AJraqLca9zD2A8TNlzzz3rcnheWcLWFti8RoR8EUoJH0QCyQzqagz6f/fDz3yyi/YbtfRjddpmzL1UqF5CkBgv9I/3PvGdPYQSXk46ZsUa15s5kvxEonZY945tvMeoLnUUe67GKkc2tn9ZKBlhrggt5v0qoK0bpQncn+/b/ckkwF1tMtm0QCt0UkJYSaeNF5TvGkJmbYyHSEQt8MCLh6F1Me6huYs+tnvoUy+utyU0z75jwQhhJPSNe53xRcV+tnB81pLxUq+/84kfH4koG2hhdl2jZBBZx5RiG2zeXvqZI1HEEru/enzN5kE0zx7Xqr4GV5JwvGEcuO78Ru9oXqm1vQfq2x4dLwLlQqCsBVW5QFY7RUAERCCLAGGgjLPDPvroo7IWyVmfT9u+2gQYg0vIH2NiiTiRiYAIiMCXlcDaPXb6stLQ5xIBERCBdUggzLG23377SUytQ+461bohMGfOHH+i+nhe101LdRYREAERqB8BCar68dPRIiACIrDWBMIk0fvuu+9a16EDRWB9JMDUFSTSYfxnepqH9bG9apMIiIAI1IfAOs3yV5+G6lgREAER+LIRICRq00039Vkgv2yfTZ/nq02A5EckOGIMbTFjYL/atPTpRUAEyp2AxlCV+xVU+0VABERABERABERABERABEpGQCF/JUOvE4uACIiACIiACIiACIiACJQ7AQmqcr+Car8IiIAIiIAIiIAIiIAIiEDJCEhQlQy9TiwCIiACIiACIiACIiACIlDuBCSoyv0Kqv0iIAIiIAIiIAIiIAIiIAIlIyBBVTL0OrEIiIAIiIAIiIAIiIAIiEC5E5CgKvcrqPaLgAiIgAiIgAiIgAiIgAiUjIAEVcnQ68QiIAIiIAIiIAIiIAIiIALlTkCCqtyvoNovAiIgAiIgAiIgAiIgAiJQMgISVCVDrxOLgAiIgAiIgAiIgAiIgAiUOwEJqnK/gmq/CIiACIiACIiACIiACIhAyQhIUJUMvU4sAiIgAiIgAiIgAiIgAiJQ7gQkqMr9Cqr9IiACIiACIiACIiACIiACJSMgQVUy9DqxCIiACIiACIiACIiACIhAuROQoCr3K6j2i4AIiIAIiIAIiIAIiIAIlIyABFXJ0OvEIiACIiACIiACIiACIiAC5U5Agqrcr6DaLwIiIAIiIAIiIAIiIAIiUDICElQlQ68Ti4AIiIAIiIAIiIAIiIAIlDsBCapyv4JqvwiIgAiIgAiIgAiIgAiIQMkISFCVDL1OLAIiIAIiIAIiIAIiIAIiUO4EJKjK/Qqq/SIgAiIgAiIgAiIgAiIgAiUjIEFVMvQ6sQiIgAiIgAiIgAiIgAiIQLkTkKAq9yuo9ouACIiACIiACIiACIiACJSMgARVydDrxCIgAiIgAiIgAiIgAiIgAuVOQIKq3K+g2i8CIiACIiACIiACIiACIlAyAhJUJUOvE4uACIiACIiACIiACIiACJQ7AQmqcr+Car8IiIAIiIAIiIAIiIAIiEDJCEhQlQy9TiwCIiACIiACIiACIiACIlDuBCSoyv0Kqv0iIAIiIAIiIAIiIAIiIAIlIyBBVTL0OrEIiIAIiIAIiIAIiIAIiEC5E5CgKvcrqPaLgAiIgAiIgAiIgAiIgAiUjIAEVcnQ68QiIAIiIAIiIAIiIAIiIALlTkCCqtyvoNovAiIgAiIgAiIgAiIgAiJQMgISVCVDrxOLgAiIgAiIgAiIgAiIgAiUOwEJqnK/gmq/CIiACIiACIiACIiACIhAyQhIUJUMvU4sAiIgAiIgAiIgAiIgAiJQ7gQkqMr9Cqr9IiACIiACIiACIiACIiACJSMgQVUy9DqxCIiACIiACIiACIiACIhAuROQoCr3K6j2i4AIiIAIiIAIiIAIiIAIlIyABFXJ0OvEIiACIiACIiACIiACIiAC5U5Agqrcr6DaLwIiIAIiIAIiIAIiIAIiUDICElQlQ68Ti4AIiIAIiIAIiIAIiIAIlDsBCapyv4JqvwiIgAiIgAiIgAiIgAiIQMkISFCVDL1OLAIiIAIiIAIiIAIiIAIiUO4EJKjK/Qqq/SIgAiIgAiIgAiIgAiIgAiUjIEFVMvQ6sQiIgAiIgAiIgAiIgAiIQLkTkKAq9yuo9ouACIiACIiACIiACIiACJSMgARVydDrxCIgAiIgAiIgAiIgAiIgAuVOQIKq3K+g2i8CIiACIiACIiACIiACIlAyAhJUJUOvE4uACIiACIiACIiACIiACJQ7AQmqcr+Car8IiIAIiIAIiIAIiIAIiEDJCEhQlQy9TiwCIiACIiACIiACIiACIlDuBCSoyv0Kqv0iIAIiIAIiIAIiIAIiIAIlIyBBVTL0OrEIiIAIiIAIiIAIiIAIiEC5E/h/U79IB68W960AAAAASUVORK5CYII=" + } + }, + "cell_type": "markdown", + "id": "164a07b7", + "metadata": {}, + "source": [ + "### On region view (the interval of a gene)\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "9f8e1ba4", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The total number of variants in the DRD2 interval chr11:113409605-113475691 is: 8126\n" + ] + } + ], + "source": [ + "drd2_interval = \"chr11:113409605-113475691\"\n", + "drd2_interval_ht = filter_by_intervals(drd2_interval)\n", + "print(f\"The total number of variants in the DRD2 interval {drd2_interval} is: {drd2_interval_ht.count()}\")" + ] + }, + { + "attachments": { + "Screenshot%202024-11-01%20at%209.28.50%E2%80%AFPM.png": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABB4AAAEdCAYAAACrCqQ6AAAKrGlDQ1BJQ0MgUHJvZmlsZQAASImVlwdUU+kSgP9700NCS6hSQm+CdAJICT303myEJEAoIQaCgqioLK7giiIiAsqCLIoouCpF7FiwLQpKUdEFWRTUdbEgKirvAofg7jvvvfPmnjnz3cn8M/Pf8//nTAAgU1kCQTIsDUAKP10Y7OlCi4yKpuFGAR4oADKgA0sWO03ACAz0BYjM27/Lh14Azdh7xjO5/v33/yoyHG4aGwAoEOFYTho7BeFTiI6zBcJ0AFA1iF9rTbpghq8jTBUiDSI8MMPxczw+w7GzjEbPxoQGuyKsCACexGIJ4wEgaSN+WgY7HslDckPYlM/h8RFG3oFjSkoqB2GkLtBHYgQIz+Snx36XJ/5vOWPFOVmseDHP7WVW8G68NEEyK/P//Bz/W1KSRfM1dBElJQi9ghGL9AX1J6X6iJkf6x8wzzzObPwsJ4i8wuaZneYaPc8clpuPeG2yv+88x/E8mOI86czQeeamuYfMszA1WFwrTujKmGeWcKGuKClM7E/gMsX5sxJCI+Y5gxfuP89pSSE+CzGuYr9QFCzun8v3dFmo6yHee0rad/vlMcVr0xNCvcR7Zy30z+UzFnKmRYp743Dd3BdiwsTxgnQXcS1BcqA4npvsKfanZYSI16YjB3JhbaD4GyayvAPnGbgBd+CLPDQQCMyBJaIWM7507tqZMwpcUwWZQl58QjqNgdwyLo3JZ5ssppmbmlsCMHNn547Eu/7ZuwjJ4xd8fB4AljcRaFnwcU4DcGYZABT1BZ9WEwBSDwG4EMEWCTPmfDPXCWAAEUgBKlACakAL6ANjpDdrYA+ckY69QQAIBVFgJWCDBJAChGANyAabQB4oADvBHlAGKsFBcBgcAydACzgLLoFr4Ba4C3rAIzAIRsBLMA4+gCkIgnAQGaJASpA6pAMZQeYQHXKE3CFfKBiKgmKgeIgPiaBsaAtUABVBZVAVVAf9Cp2GLkE3oC7oATQEjUFvoc8wCibBVFgV1oWXwHSYAfvAofAKOB5eDWfBufAOuBSuho/CzfAl+BbcAw/CL+EJFEBJoORRGihjFB3ligpARaPiUELUBlQ+qgRVjWpAtaE6UPdQg6hXqE9oLJqCpqGN0fZoL3QYmo1ejd6A3o4uQx9GN6OvoO+hh9Dj6G8YMkYFY4SxwzAxkZh4zBpMHqYEU4tpwlzF9GBGMB+wWKw8Vg9rg/XCRmETseuw27H7sY3Yi9gu7DB2AofDKeGMcA64ABwLl47Lw+3DHcVdwHXjRnAf8RJ4dbw53gMfjefjN+NL8Efw5/Hd+Of4KYI0QYdgRwggcAiZhEJCDaGNcIcwQpgiyhD1iA7EUGIicROxlNhAvEocIL6TkJDQlLCVCJLgSeRIlEocl7guMSTxiSRLMiS5kpaTRKQdpEOki6QHpHdkMlmX7EyOJqeTd5DryJfJT8gfJSmSJpJMSY7kRslyyWbJbsnXUgQpHSmG1EqpLKkSqZNSd6ReSROkdaVdpVnSG6TLpU9L90lPyFBkzGQCZFJktssckbkhMyqLk9WVdZflyObKHpS9LDtMQVG0KK4UNmULpYZylTJCxVL1qExqIrWAeozaSR2Xk5WzlAuXWytXLndOblAeJa8rz5RPli+UPyHfK/9ZQVWBocBV2KbQoNCtMKm4SNFZkauYr9io2KP4WYmm5K6UpLRLqUXpsTJa2VA5SHmN8gHlq8qvFlEX2S9iL8pfdGLRQxVYxVAlWGWdykGV2yoTqmqqnqoC1X2ql1VfqcmrOaslqhWrnVcbU6eoO6rz1IvVL6i/oMnRGLRkWintCm1cQ0XDS0OkUaXRqTGlqacZprlZs1HzsRZRi64Vp1Ws1a41rq2u7aedrV2v/VCHoEPXSdDZq9OhM6mrpxuhu1W3RXdUT1GPqZelV683oE/Wd9JfrV+tf98Aa0A3SDLYb3DXEDa0MkwwLDe8YwQbWRvxjPYbdS3GLLZdzF9cvbjPmGTMMM4wrjceMpE38TXZbNJi8nqJ9pLoJbuWdCz5ZmplmmxaY/rITNbM22yzWZvZW3NDc7Z5ufl9C7KFh8VGi1aLN5ZGllzLA5b9VhQrP6utVu1WX61trIXWDdZjNto2MTYVNn10Kj2Qvp1+3RZj62K70fas7Sc7a7t0uxN2f9kb2yfZH7EfXaq3lLu0Zumwg6YDy6HKYdCR5hjj+LPjoJOGE8up2umps5Yzx7nW+TnDgJHIOMp47WLqInRpcpl0tXNd73rRDeXm6Zbv1uku6x7mXub+xEPTI96j3mPc08pznedFL4yXj9curz6mKpPNrGOOe9t4r/e+4kPyCfEp83nqa+gr9G3zg/28/Xb7Dfjr+PP9WwJAADNgd8DjQL3A1YFngrBBgUHlQc+CzYKzgztCKCGrQo6EfAh1CS0MfRSmHyYKaw+XCl8eXhc+GeEWURQxGLkkcn3krSjlKF5UazQuOjy6NnpimfuyPctGllstz1veu0JvxdoVN1Yqr0xeeW6V1CrWqpMxmJiImCMxX1gBrGrWRCwztiJ2nO3K3st+yXHmFHPGuA7cIu7zOIe4orjReIf43fFjCU4JJQmveK68Mt6bRK/EysTJpICkQ0nTyRHJjSn4lJiU03xZfhL/Sqpa6trULoGRIE8wuNpu9Z7V40IfYW0alLYirTWdigxHt0X6oh9EQxmOGeUZH9eErzm5VmYtf+3tTMPMbZnPszyyflmHXsde156tkb0pe2g9Y33VBmhD7Ib2jVobczeO5HjmHN5E3JS06bfNppuLNr/fErGlLVc1Nyd3+AfPH+rzJPOEeX1b7bdW/oj+kfdj5zaLbfu2fcvn5N8sMC0oKfiynb395k9mP5X+NL0jbkdnoXXhgZ3Ynfydvbucdh0ukinKKhre7be7uZhWnF/8fs+qPTdKLEsq9xL3ivYOlvqWtu7T3rdz35eyhLKecpfyxgqVim0Vk/s5+7sPOB9oqFStLKj8/DPv5/4qz6rmat3qkoPYgxkHn9WE13T8Qv+lrla5tqD26yH+ocHDwYev1NnU1R1ROVJYD9eL6seOLj9695jbsdYG44aqRvnGguPguOj4i19jfu094XOi/ST9ZMMpnVMVTZSm/GaoObN5vCWhZbA1qrXrtPfp9jb7tqYzJmcOndU4W35O7lzheeL53PPTF7IuTFwUXHx1Kf7ScPuq9keXIy/fvxJ0pfOqz9Xr1zyuXe5gdFy47nD97A27G6dv0m+23LK+1Xzb6nbTb1a/NXVadzbfsbnTetf2blvX0q7z3U7dl+653bt2n3n/Vo9/T1dvWG9/3/K+wX5O/+iD5AdvHmY8nHqUM4AZyH8s/bjkicqT6t8Nfm8ctB48N+Q2dPtpyNNHw+zhl3+k/fFlJPcZ+VnJc/XndaPmo2fHPMbuvlj2YuSl4OXUq7w/Zf6seK3/+tRfzn/dHo8cH3kjfDP9dvs7pXeH3lu+b58InHjyIeXD1GT+R6WPhz/RP3V8jvj8fGrNF9yX0q8GX9u++XwbmE6ZnhawhKzZUQCFKBwXB8DbQwCQo5DZ4S4AxGVzM/WsQHP/A2YJ/Ceem7tnxRqA+hwAghGdGR/3XwRAG1EpZwACEQ11BrCFhVjn59/ZWX1GpI8C0MU0DbX2fWI1nAP+IXNz/Hd9/9MCcda/2X8BEaoHZfbhPqoAAABiZVhJZk1NACoAAAAIAAIBEgADAAAAAQABAACHaQAEAAAAAQAAACYAAAAAAAOShgAHAAAAEgAAAFCgAgAEAAAAAQAABB6gAwAEAAAAAQAAAR0AAAAAQVNDSUkAAABTY3JlZW5zaG90ZcvxbAAAAj5pVFh0WE1MOmNvbS5hZG9iZS54bXAAAAAAADx4OnhtcG1ldGEgeG1sbnM6eD0iYWRvYmU6bnM6bWV0YS8iIHg6eG1wdGs9IlhNUCBDb3JlIDYuMC4wIj4KICAgPHJkZjpSREYgeG1sbnM6cmRmPSJodHRwOi8vd3d3LnczLm9yZy8xOTk5LzAyLzIyLXJkZi1zeW50YXgtbnMjIj4KICAgICAgPHJkZjpEZXNjcmlwdGlvbiByZGY6YWJvdXQ9IiIKICAgICAgICAgICAgeG1sbnM6ZXhpZj0iaHR0cDovL25zLmFkb2JlLmNvbS9leGlmLzEuMC8iCiAgICAgICAgICAgIHhtbG5zOnRpZmY9Imh0dHA6Ly9ucy5hZG9iZS5jb20vdGlmZi8xLjAvIj4KICAgICAgICAgPGV4aWY6UGl4ZWxZRGltZW5zaW9uPjI4NTwvZXhpZjpQaXhlbFlEaW1lbnNpb24+CiAgICAgICAgIDxleGlmOlVzZXJDb21tZW50PlNjcmVlbnNob3Q8L2V4aWY6VXNlckNvbW1lbnQ+CiAgICAgICAgIDxleGlmOlBpeGVsWERpbWVuc2lvbj4xMDU0PC9leGlmOlBpeGVsWERpbWVuc2lvbj4KICAgICAgICAgPHRpZmY6T3JpZW50YXRpb24+MTwvdGlmZjpPcmllbnRhdGlvbj4KICAgICAgPC9yZGY6RGVzY3JpcHRpb24+CiAgIDwvcmRmOlJERj4KPC94OnhtcG1ldGE+Cv9SrqcAAEAASURBVHgB7J0HgF9F8cfnd7235C699x6S0EKAhC5IEUFAARGQoqCCNJUihCr6BwREQWki0hFpUhISUoD03sulXq7f5Uqu338+79hf3v1yl1zKpcAMXH6v7Nvd993Z2ZnZ2X2BqqqqejEyBAwBQ8AQMAQMAUPAEDAEDAFDwBAwBAwBQ6AVEAhrhTwtS0PAEDAEDAFDwBAwBAwBQ8AQMAQMAUPAEDAEPATM8WCMYAgYAoaAIWAIGAKGgCFgCBgChoAhYAgYAq2GgDkeWg1ay9gQMAQMAUPAEDAEDAFDwBAwBAwBQ8AQMATM8WA8YAgYAoaAIWAIGAKGgCFgCBgChoAhYAgYAq2GgDkeWg1ay9gQMAQMAUPAEDAEDAFDwBAwBAwBQ8AQMATM8WA8YAgYAoaAIWAIGAKGgCFgCBgChoAhYAgYAq2GgDkeWg1ay9gQMAQMAUPAEDAEDAFDwBAwBAwBQ8AQMATM8WA8YAgYAoaAIWAIGAKGgCFgCBgChoAhYAgYAq2GgDkeWg1ay9gQMAQMAUPAEDAEDAFDwBAwBAwBQ8AQMATM8WA8YAgYAoaAIWAIGAKGgCFgCBgChoAhYAgYAq2GgDkeWg1ay9gQMAQMAUPAEDAEDAFDwBAwBAwBQ8AQMATM8WA8YAgYAoaAIWAIGAKGgCFgCBgChoAhYAgYAq2GgDkeWg1ay9gQMAQMAUPAEDAEDAFDwBAwBAwBQ8AQMATM8WA8YAgYAoaAIWAIGAKGgCFgCBgChoAhYAgYAq2GgDkeWg1ay9gQMAQMAUPAEDAEDAFDwBAwBAwBQ8AQMATM8WA8YAgYAoaAIWAIGAKGgCFgCBgChoAhYAgYAq2GgDkeWg1ay9gQMAQMAUPAEDAEDAFDwBAwBAwBQ8AQMATM8WA8YAgYAoaAIWAIGAKGgCFgCBgChoAhYAgYAq2GgDkeWg1ay9gQMAQMAUPAEDAEDAFDwBAwBAwBQ8AQMATM8WA8YAgcBAhs27ZNlixZchDUxKpgCBgChoAhYAgYAoaAIWAIGAKGwL5FwBwP+xZPy80Q2G0EKisrpU+fPjJ8+HD5zW9+s9vP2wOGgCFgCBgChoAhYAgYAoaAIWAIHMwImOPhYG4dq9sOCPzhD3+QqKio4N+qVat2SFNQUBC870/buXNnufTSS+Wpp56SdevW7fDcgbqQk5Mj/EGzZs1q1Wp88cUXMmHCBJk2bVqrlmOZGwKGgCFgCBgChoAhYAgYAoaAIeAQCFRVVdW7E/s1BA52BIYNGyZLly4NVnP8+PFy6623Bs85yM/Plw4dOjS6FnqSmJgob731lhx//PGhtw7I+eOPP+45BH73u9/J4Ycf3mp16NGjh2zatEkyMjJk48aNrVaOZWwIGAKGgCFgCBgChoAhYAgYAoaAQ8AcDw4J+z3oEVi0aJGMGDGiUT1ZorB48eJG1/yOBwzsq6++WthDYdKkSY0iCri3cOFCSU1NbfT8N/nEHA/f5Na1dzMEDAFDwBAwBAwBQ8AQMAQOTgRsqcXB2S77tFavvvqqXHTRRcJSgxNOOEH+97//yWOPPSZjx471/jZv3uyVd+WVV3rn3/ve94QlDD/84Q+lTZs2grF60003SWlpaaN6zZs3T26++WYZOXKkt7ThrLPOkocffrhROkL6XTnvvfee/PGPfxSiFsiXOmVlZXnLHjh2Zd14441SUVHRqCxO3n777eC173//+97xypUrPedB8EbIwYABA+SOO+6Q+++/X6ZPny4zZswIpmB5w2uvvRY8dwfFxcXBOl9wwQXusvf70UcfBe+98MIL3jUiCK677rogDoMGDZLLLrtMVq9eHXyW5R0Oh5kzZ8pVV13ltQfPlZWVBe/dfffdwWfKy8vl3nvv9e6xZIT2472pg6NQfGnXI4880muPY4891nO2kBanC+VTV4h359z/fgsWLJCLL75Y+vXr5z0/evRob8+JkpIS7xn7xxAwBAwBQ8AQMAQMAUPAEDAEDIE9QcAiHvYEtUPomaefftozikOrTKQARjvE0oVevXp5DgG3jAFnw9q1axs99pOf/ET+9re/edfYiwDDtCkaN26c5ySIi4uTd9991zOWSTdkyJAdnARjxoyR7OzsYF1cfj/60Y/kueeec6dSX18v/fv39+pE3XCmHHHEEd7922+/Xe68885gWn/EA0spPvnkk+A9DlhiceGFF3rX2PPh73//e6P7nGCU46iAwKlbt27e8bXXXiv/+Mc/vOOpU6d6zhKcG00RyzlwDFBvHDQ4BSA/9meffbY888wz3tIH7uFY+Pe//y01NTWeI8O1B/f89M9//tNzGvjxpR5NpecaTiKcO6HkllxMmTJFTjzxxNDb3jl483xsbGyT9+2iIWAIGAKGgCFgCBgChoAhYAgYAjtDIGxnN+3eoY0Aa/iZUXd0zTXXyJNPPuk5DJzTwd0L/Y2JifHSXnLJJcFbOAJ0TxBv2cKpp54avI7RTzTCSSed5F377LPPBGdAKLGs4a677vKiHtw9jPctW7Z4RrnfefCvf/3LM75dujlz5gQdIeeff77nJMFohqgXjomWkn9fBzZbbIqI9nDE+0CUgaEPderUyduLwTliuEY0x+TJkwWcISIF/FEa3kX9B+yJKiGagd+miKgU50TA4UO+7APh6Nlnn3WHwV/S33DDDcIGnDgLHOGkwUlEXXCGQPxy7qI2XnrpJZdcPv30U1m/fn1w7wwcUB9//HHwvh0YAoaAIWAIGAKGgCFgCBgChoAhsDsIROxOYkt7aCHALLUjQvv//Oc/e6eE1w8cODD4JQWXxv/75ptvSu/eveWnP/2pty+CM4IJ1c/NzfWMatJfccUVQScDxi3PYHD7lwO4fH/2s58JmydC5PPII494xw899JCwzAMikuKDDz7wjknjIg2oj6MzzjhDAoGAN4NPFAHpZs+eLaNGjXJJdvrLkg4Mb+qJEwBnCksZ/EQkgnPa8C4snQAD9/UJnAHUAQcL0Qzh4eGSlpbmZQG2f/3rX71jHCahdNttt8k999wTvFxUVBQ8dgdEH/BeEPmS/9FHHy04HObOnSvOGeLS80uUCFhCPXv2lPPOO887zszM9DbbBLekpCTvvYle4NwRUSeOSM9yGOroPu8Zio9La7+GgCFgCBgChoAhYAgYAoaAIWAI7AoBi3jYFUKH8H2/48EfoYDx6aITmns9HAiO/BEC1dXVnpHv7rGswhGbNDrjH4O+sLDQ3fJ+2fvAUfv27d2ht8zDnbCPgaO6ujrvsLa2Vl588UV3WcLCwrw6OEOfG37HRDBhMwfsVeH2LSAyoCmjul27dnLaaad5OTDbz3uzT4Kjc8891zsESyI5fv/733tRBeyPkJ6e7pKJe4fgBT1gL4xdEY4B8MNZRD3ADmxwOjRHbukJ9/1fxsCxsiv6wQ9+EEyCE4h3GD58uDz44IPe1y8iIsxHGQTIDgwBQ8AQMAQMAUPAEDAEDAFDYLcQMGtit+A6tBLHx8cHK8xGhX5iQ8PmyIXju/uhhrn/2dB7/n0AQjeIJEJgT+jLL78MRhrwPJsmhhJ7HrB0gciAXdH8+fODSdiIsTliHwiWPOCkIBKDY4i9FAYPHuwdP/DAA97yEe9E/2H5h38PB3fd/+tvF/91//GECRPkO9/5TvASbYKzxkVcBG/4DiIjI4NnLcEhmFgPWFrC8ponnnhCWP4CEeHBH84HrvkdG14C+8cQMAQMAUPAEDAEDAFDwBAwBAyBFiBgEQ8tAOlQTcKMtSPW8rNhIcQXK9555x13a7d/+YqFI76E4IioAAx0CAO8Q4cO7tZe/b7xxhuNnscId3/uBgZ5c/s1uDT85uXlyeWXXx685H+X4MWvD/xLEdjbwTke3L4XRGKwrwPEng98xYJ9NdiPYW/JbWBJPhMnTvTqzWdDm9vIcnfL4/OioUQUB2WxlIZ3PfPMM4NJXn755eCxHRgChoAhYAgYAoaAIWAIGAKGgCGwOwiY42F30DrE0o4YMSL4tQQ2DGR2n5ntnc3yt+QV/Q4NogwwUtmP4NZbbw3OyPNViH1BOEv8yyxYfsBXK9wfX4BwFOqg4DqfCuWTmThe2LOBJQjuax0ss2jqSw8uv+Tk5OA+Cc7BwD33Kc/Kysrgkg0iP/gjOoJlF3tLbLjpiHwdDm6vDXdvd3/dhpzUkw08aTeWg7A/B8tEiCbhvfjsKntyOAqNgnHX7dcQMAQMAUPAEDAEDAFDwBAwBAyBXSFgSy12hdAhfB/D+b333guGyLMXAX8Ykewb4Gbwd/cV2cuBTQ5d5EDongXM/hOevy+I6AG3HwMz8KHLFPyfgGS5xcMPP9yoWPaauPjiixtd4wQDHGeMM8R3SPD1BRw1focGThv3xQg+F8peGeSDM6NLly7NZbPb12kft+SBT47uK+LzoW6fCDbI5P2J0sDRwNcweA/2kuAdnYOGsp2zZV/Vw/IxBAwBQ8AQMAQMAUPAEDAEDIFvDwIW8fANb2uiE7KysoRPKhKRwBp+llrgHHDEZo1QcxsINrU3A8b8888/3yh6AocGX4NgfwK3SaT/WVcOZTV33Z+GY//nKMk7lFJSUuSUU07xLuOgmDZtWqO8/ekxsnEkgMFXX33VIkcBjgX/bD/P+4lIClc+1ymjqY0um3tfnvHf4xy68cYbg1/VaLgiMn78ePFv5sl1/7N+7PzX/cdEeLilIjzv9oW4++67PceDe1fndGCzUJaw+KNceM7IEDAEDAFDwBAwBAwBQ8AQMAQMgZYiENAd7+tbmtjSHVoIbNiwIRgBwN4A1157rfcCxcXF3ucWMdQxlNevX+99KWJP347NJtljgU9f+o3fPc3vUHyOzTsdnn5Df2/fhSUW7LnAVyaacwztaRnsyUGeofWlLfnEJ+0ZHR29p9nbc4aAIWAIGAKGgCFgCBgChoAhYAh4CJjj4RvMCKzdHzJkiLDcAOKYSAf/Eoubb75Z7rvvvm8wCvZqhoAhYAgYAoaAIWAIGAKGgCFgCBgCBxIBczwcSPT3Q9krVqyQq666SqZPn75Daffff78X0v9tjVLYARC7YAgYAoaAIWAIGAKGgCFgCBgChoAhsM8RMMfDPof04MuQyAc2EGRvB5YD9OrVS/r06WNh9AdfU1mNDAFDwBAwBAwBQ8AQMAQMAUPAEPjGIXBoOB7KdRO94oBIYX3Db6W2Q/XXf1X6yx8U9fVfpP7yp8vT65N1C4vUQMNvnF4zMgQMAUPAEDAEDAFDwBAwBAwBQ8AQMAQMgf2GwEHzOc1AnjoWNqpjYVNAApvV0bBRz7foeZH+OseC6PFuk3tGf9UxUZ+ijoj26ojoXC/1HfW8k5531vO2tsfmbkNrDxgChoAhYAgYAoaAIWAIGAKGgCFgCBgCu0DgwEQ8EMGg+x0GlgckbKU6GpZrLUt2UdPWvp2oToh+InV91CHRT//6aIEWIdHaqFv+hoAhYAgYAoaAIWAIGAKGgCFgCBgC33AE9o/jQYMJAmv0b7Y6Guaoo2GFonqwBxhogER9X3VEjFAnxEj966l1dsET33CmsNczBAwBQ8AQMAQMAUPAEDAEDAFDwBAwBPYVAq3neMDZsEgk7HN1NsxSi71oX1X5AOWTok6IUfVSd5w6IQZrHcwJcYAawoo1BAwBQ8AQMAQMAUPAEDAEDAFDwBA4lBDY544H9mYIm6R2OX/5+8g6j9HogyT1ZLBJJL/xCjGbR7KZpPvVQ28vCDadZE8Ifsu0Dlu1DmxKyW+FXtsHVN9GnQ9j1RGhf+wVYWQIGAKGgCFgCBgChoAhYAgYAoaAIWAIGAJNI7BvHA9EN8wWCf9vmAQWNl3QLq+y8WMP/dPNHtn0UTrpcUc9ztBjdTzsE1LHQyBH/zarE2ITv/rHZpZrNXecFXtA9UNEas+q0+UY+rBma2QIGAKGgCFgCBgChoAhYAgYAoaAIWAIGALbEdg7x0ONLqX4TCMc3mkw4Ldnu+uj+vbqVBikzgXdxLGeDR276TPhu36uVVLUav3X6R8bXbLp5WL927J7XgQcJnVnaxTEOPXCHDTfCmkVtCxTQ8AQMAQMAUPAEDAEDAFDwBAwBAwBQ6DFCOyZ40Ft67Cp6nB4SQ30nBYa6Bq1UDdYHQyHqaNhhP6p4+FgJhwPgTn6fnP1XRfpO7ZwmUZ9hjogLtZ3HaPv10JoDmYcrG6GgCFgCBgChoAhYAgYAoaAIWAIGAKGwN4gsNuOB5ZShL+gSypWt6BYnfmvG67OhuP193A1xKNb8MzBmKRSnQ8z1RExWX/nqTdBIz12RfW9dAnGj3UJhi7FMDIEDAFDwBAwBAwBQ8AQMAQMAUPAEDAEvq0ItNzxoBs1hv9Doxx0acWuyFt2cLo6G/QLEJKwq9SH2P1SdT7wpY4PNKBB94fYFdWdUC+1lysObIhpZAgYAoaAIWAIGAKGgCFgCBgChoAhYAh8yxAIa8n78jnMiOt34XRQG5wNFmvurJOax3W5wenfQKcDYKkjhXfjHXnXXW0qGTaxAbvAzJYgvf/S3HbbbfuvMCvJEPgWIfD8f174Fr2tvaohYAgYAoaAIWAIGAKGgCGwawR27njQJQXhfw1I+H26zKCw+dl99myo+aM6HG5XQ1z3cPhW7G2Ao0XflXfm3cGgOQK7iPvDPCxbskyjuXz21fV58+ZJRESEfP755/sqS8vHEPhWIfCD6y9osv9c8uhP5Q+v/KnJe98qgOxlDQFDwBAwBAwBQ8AQMAQMAR8CzTseivTjDHeGSdhHO3E49FPD+341vO9Qw7unL9dv2SHvDgZgUa+YNEdgCaai2B5Iuu+++6Rfv35yyy23HMhqWNmGwCGJwPW3XS+lY2LkidefbFR/HHmzv/xKun/vMFlTsLbRPTsxBAwBQ8AQMAQMAUPAEDAEvs0INOl4YOPIiF9rlMPSZqDR/Qpqr9GlBg+ooT2gmTTfwstgASZg09yeDmDqYduSzTlbAUOWWJx11lleziNH6toYI0PAENgtBBbmLvHSb2pb2Ciy4fUPXvecDtz8YIJuAmNkCBgChoAhYAgYAoaAIWAIGAIeAjs4HgKL1TC+Q79aUdB0pEPdkfVS/Xid1J2qxnXTSb7d0ComYONhpFg1RWDrYaxYH0hKTU09kMVb2YbAIYcAUQ05ZblevZP7d2hU/+yynOB5Tnle8NgODAFDwBAwBHYfAVsOuvuY2ROGgCFgCBzMCDRyPHiz8eP10rYmqqyfxqy9Qr/QcJsa02avNgFQyCXFCKzATBS7HUgxjlCsm40q2eGBfXNhy5YtjTKygb0RHHZiCOwUAaIaUge0D6a57tbrgsd+Z0N11/BG0RDBRHZgCBgChoAhsEsEnnvuOXn88cdNjipStmHxLtnFEhgChsAhgkDQ8RBYp4bwvXpauWPN69vosor7NMrhu03P4O/4hF1xCIAZ2IHhDqRYgznYHwhin4eCgoIDUbSVaQgcsgj4Ix36j2p+rVl0mPWtQ7aRreKGgCFwwBBgQuSDDz7wloW++uqrB6weB0PBd704Xp6Z/y9zwBwMjWF1MAQMgb1GoMHxoJsdho/XNQLlO+ZX31Fn7R/ULzj03fGeXWkZAmDnYahY7kCKefi9iv1+2HCSwbysrKxRFR58UBvXyBAwBFqEgH85BQ8sm9WwEQ59iygHR7UrsiVQ8q7c/bur3CX7NQQMAUPAEGgBAs7pQNJQnaUFj3+jkkyePElwdoduZvyNekl7GUPAEPjWIBAmrAR4RGfd89X4DaH67rpZ4n31Ut+2CYM5JK2d7hwBMPSwVExDKZCnez5oG9AWrU1EOfjJNpj0o2HHhsDuIZA2MN17YPLkyY0e7BodkKrqShk9JNpmqhohYyeGwMGDAJstX3bZZdZHD54m8WpSUlISrFHnzp2/te3DF5TiTunsYRG6mXEQIDswBAwBQ+AQQiAs7D/69YoFO9a4vrMayvfUiaTseM+u7CECiiWYgm0o0Qa0RWtSqHHUmmVZ3gcOAdbGolAb7TkCze194t/HgdzdXg45urGkW4KR+fZcSfo6+GHMkT3l7jtv2vOK2JOtjoD1l1aHeJ8W0Fzf3JNC2PPoxBNPlG97OP+eYNeaz/ijHGxJaGsibXkbAoaAIbB/EQgLf6UJYzdJlwbcqRVJ3L+V+VaUpph62CrGoURbBLY00R6hCffwnME8NOJh9uzZe5ibPXYwIoDDISIiQlavXv2tnSXa23a5566b5fe/vWqPl0kkhQfkx5cNCVbjuGOGB4/t4OBCwPUX+sy+NGgPrrf85tSG9vr444/l5z//+V6/FHnhdIDsC097DWerZvDJJ5+0av4Ha+bu083UD8e2fzPjg7XOVq9DEwHkIX9GhkBrIxAmVSFFqN1b82udlU/fcVY+JKWdNoFAeXm5lJaWNnFn+yWwBeMdPkeqbRH23PZ0++Oof//++6MYK2M/IeC+WnLWWWfZLN4eYl67bb28/8+rd1gmgWHqPqUZmnXawIzgpU6D2gWPOairLm50vrcn1IMQ3KaouetNpT1Q11BuRo0adVAoOa6/4JC95ZZbDhQkVm4LEaC9aKujjjpqr50P/nB+ijfHUwsboZWT0Q4srzDaEYGdbWa8Y2q7Ygi0DAH6HJNVgwYN8mRry5469FP94PoLZOCFQ/eL7LfxZTu/BL9q4S7Vnal7Ogx1Zwfut7KyUqKiouSiiy7aoRJcd389evSQK6+8UubMmbNDupZeqK6ultGjR3t5rl27tsnHVqxYIUceeeQOEQMucX19vfzsZz+TlJQUSUtLk5/85CdSU1Pjbu/wC8ZgHUphMzTqYUXoVTs3BHaNwPjx401h2zVMO00BhlLbsL6YZRKfffSSl54B6pq/XCcVaeow9BGzUHxic+nMRcGrg2IbDqtqq+X+x96WOnVk7KtBB8cC9ZgTu3yHPNn9fPVhW4W6HsyE8fjLX/5SJk2atMM77M96H8wGDss/+DtYCL6Dvw4k0V7+EPy9rYs/L3M87S2a++55NpYMjczcd7kfOjnB7/4Niw+dmltNDzUE/Ju5fpMmI+lD6ENNTchwrXRMjHT/3mGtvnGr0x+bqsehxiv7or6NHA988rH2oh2N4X1R0O7mMWHCBO+RN998U+rqGiv73Jg4caKgwL722muSkJAgJ598sixY0MRmFS0o+P/+7/88pwNJcSCE0vvvvy+DBw/2jLqqqtAQkYbUzz77rPz3v/+VdevWycaNG2XGjBnyxBNPhGbV6Bysm/rMZthbrbPcInSGh8rsr42bEAD8tRbtTMC0VpkHW76hS2lycnIOtio2W59JH7/R7L39eaO+Zqvcdt3JjYpksFiUu1RSB7SXnPxdY7psYUOadz5eK7/56XC56sKB8pfHbm+U556eHHXxOG+gDN3lHIcJDhBof21Ctif92R/e3qVLF0Fu7s/N/fzhpKEGzkknndSqMqqlbU4dWfrBHzP7B5rgfxxdM6NXHVCnll85BpNevXrtFTR+xwMZ2UbLewVnqz4c2latWthBkjl7cq3dnClfzv9CFi9v0G1D9xg6SKpq1dhLBPZkLN3LIhs97iL/uLi/bIJGFWilkztfuNtzLjQ1UeNfxtSaOpPfwWH77DU0dCPHQ92FejFG5KuvvpITTjjBM8avvvpqueKKKzwDn0dOPfVU+cMf/iDDhg3zvNKPP/54Q076L4Yt0Qdt2rTxBvEXX3wxeO/uu++W3/72tzJ27Fjv/r333uvlCZPz50/LQzgUHnroIenUqZN8+eWXwXzcQXJyshdZcPjhh8ujjz4qZ5xxhvzxj390t4O/f/rTn+SGG24InhNOhDd969at3jXO77jjDnnqqaeCaUIPsrOzZdq0aXLNNdeE3gqeU9/bb79dOnToIBkZGfK73/1O/v3vfwfvN3mgWHuYh9wMm6mOh4KQi4fwKR3vN5/dKwiBvRGwPOvNSDeBRaiAOVgM2Saq2mqXQh1L8Lkfb/9xq1ViDzLmk5NH9tmwx3sq7EGRzT5SX9N4WQRfpRh51CjP2Oeh6HYJsjF7ww7PN6UQ1pY2fJ+4TUq8nDOufaO22CGDFl545pEngyn9gyWbW+K5h0KdEsEH9uEBs/F7stber+AgJ/nbX5v7OYOecFL2CDgYjPqmmsSPkbu/M9nn0rTWL8uI4CkouldSaxWz2/kWFBTssk/Bpzi2aHs/gWforPq30bj1Y3IwHw8dqiGi3zJamrdMqgfESHhGjBTm5Xtv7zYzPpigQJbOmzdvl33xYKrzwVQXN5YeyAg3v+xDLn4Tlh1iK7ilsYxfO9sfpTV1Jr+DI/G0faMHtjb/tra+EXQ81KfWS924eikqKpLTTz/dcxzMmjVL2rZtK//85z89pwIvm5mZKS+88II888wznsH+61//WjZv3uzhcO2118qaNWvko48+kltvvdVzQjgPT35+vvztb3/znqGD3XPPPfKXv/xF3nvvPfnVr37lpXVLEzCgXn75ZTnnnHPkRz/6UdDpsTOwzz77bM9hEprm2GOP9ZwaLlLBzXIlJTUoUDfddJNX11AlxJ/P5ZdfLjg4dkaLFy9upMiQ39y5c5uMoPDnA+Zg34g0wCNsautEPTQqZz+d0PHo2HwWak+/RY3zghDzfy9+fYewKe65T05Rzi+uPe+gMWT3E8ReMf7BgwvwIPwOoXhjKO7J7DJCCOUiVHn3Mt7Lf9jI8ZYrB3i58Mv5gaSm9mN4/t0GB+qWReslrGeC5OZmN6pithr9joqXZcmxI9upIpYjI4e0lUWrt3i3BvRJlrqK7elc+t35hc/9obfw+pqCtV4W/sGNC7O/aL1NYxnQnRzFeG+OL+Cb5u4tX75cVq5cGXx9NvcjfWsSBr2T85THUg8/+fuL//r+PAZbfz8mCoM/+i4Rfc3h2Zp1nDx5UjD7NcXr5Pn/vBA8358HOKn8RHsx7jfHg2DFxAKOrdDNQx3/+vOz45Yj0Jp9NdSBTq1a4mRqee0PjZRv/LMhgo3ahmXESmFBXqtUfG/akj5G/1u4cKHtKbUHreMfS5FVe9MWe1C89whtyJ5gfvomRH/5J2P878YxOPt1qdD7rXWOzrYzB0hrlbs7+cIPTt9oLX7c7nggujhcPGM5NjbWizbAy0xkAvso+InZ/COOOEIuvvhiGTJkiKfA4TRg1v+xxx7zNg77wQ9+4O15wDIFR5dccomnBMDkffr08e4PHz7cczqQJjc310v64YcfymGHHeaVi/MBx4dzHLi8Qn8J22V/htra2ka3cBjgZCBiAXr77bflggsa1kCznGPmzJl77d1jKQhh7UR6OGKfB2hXG02CeX3jyG7vubDZe+94gGkQbPuC9jQvv1OAeuzJjBllfzD7I0k+vos3q+s39MiTGWlHBf+dJ395/AzvFEOW2fSDnXi/1jLs3bs7oyt0drklZRMOj3IRqry7vPflb2jEwb7M25/X7kTE5JRk+R+VsuLt35hvdMN3snh+jqR3iZXypBr562tz5NlX5sjkyR/7UuzZIQOXnz6Y0OBY8l/juP2ZPVtNicEw9isqTRkKDF5Ew7nNquCz4447zotuo344apHZhYWFglMaIxLjorUo1KCnPMab0OgC3oW6HigKxZZ6tmvXzsMHzEOdJa1dTye/5y6aJZu0H9RlREpzPNfadQldSsnSRvQPZGdTsgns+IP43dUnM79JIcat2RbgvadO7Nas177OGznQ3PrwfV1WaH6heltkQrRkbs4MTbbX587I2JMJCQr3y8+dOY/BkrKMGiPgl/c7k1Fg15yDtXGO++aMeh3q7YXN4JYogYo/2oBlqaG61LJZS/cKvKbkBf041MFxsG8Q62wF9I1djZl7CljQ8VA3umHWneiFrl27SlhYw61AILDDWkqWEzgi7bZt22T9+vXeJf+6SzrSsmXLXNJGhnlMTIy3NwM3OfYTkRNEC7BBI/skoAyyp8POCG/hgAEDJDxcLXkfUX+EKjMcOAemTp3qLcvAUXLjjTfK/fffL4mJicEnmtrjIXizmQOwYkkISzIcURb5+vN290J/Hfb+6wFga35vSn/SZo+d1wpFAUKY+Amm4nOablbcf89/TOdh1u2dd96RY445xn8reEwajPyJ/7mnkeIe6iRgxowOStq7brmg0Qw311F0/cT59288XzbKFpm9aq6gALMhjH/Wzc1I89wpo9rJtupyKVBjBvp82jzv1/3jf85dO9C/GPb0uw0bNniOOSfwwYO/nRH3Sc9vXl6eLFmypFFy+g73cTg48isIu3Iq+J/d2cDo8t7dX74g4SeWNuzqnf3pd/eYvJtb2sG9MSMaz6q++fl8qRny9W6RXxe2s9mn2hXZMnx4hrTvFycx7SLl3y+tkC7t4+TXV/ST+uq9M6xdXyKqwk/UO3Rw89/f18d+ZZO8/fzkyiKNc04wXuCEwDHrHMjI2fbt23tLLVzE3IMPPuge36e/46+5Qj5//RXp372b5+RwmS9dutSL8GO2zhEhw8jNMWPGtCofuvJCf1Eu/fTWW295Y4u71pr7UDTX71DeatqEy+bSLbJ46XasXJ0O1O/xxx/vKeOU35RsctGWB6p++7tcosXcuNpcW+5tnRgP4FHwDnViN5U39aCdrr++8bjeVNpdXeOTmpTfWoSTYewVJwZ1EP/yzVBHwL6oQ3NtRBu++skzOknTWC8O5FTLinfnB6Pc9kUdnJHRkrYMLc+vG3APnnC6JHihd6J7kw49Ayc05829N+n3ZftSTqg+GfoO3A9t99A0TZ039w5Npf3Pf/7T1GXvmhtL0cWJ8maCNDRvsMS+AR+3TLC5DHl2dzEMHXNw6FKPXbVXc3XY3euh79vU837ZBh4tcQjWJtXrxE+tt0eKixba2ZiQNjC9qaJbfO2yuy+WeW0XyUfx0736Ucc3J7y5g4OjqWW5LS5kHyZsCvfQPt2UbrcvqtDgXUjWWfduDdkhPFhiwSwUxNIL9nzYFTlnRFbWdqWYTRZ79uy5q0cb3WcWCmPpF7/4hRx99NHe1yZIwPKO5ggnAvsp8NWJpujcc8/17v/vf/+T733ve96XJ6gniid7UvCFDOf8wHmxM0HRVP5co5POnz8/eJvjgQMHBs93duBhr23QiHQPy8CGRld2+4S2RPlvinlQaHEiMAu5qzBGOjp7c3z/+9/33rMpwVZTssgLmT96WGLwSwBUOLST4WW88Aff9dLedu1RcvSACs/5QBkM9OzK7z5vQ8f429tPS/GaQqk/PkEktlZKqku9kMPmZt3Y2C8qIUo25Tbw4W3XHOkJcvIn39cqJ3pCoalOt9sA74MHXEevqKjwNjAlxI1BxoVXY7A5xxHFwZucu0GafsLmqEQTYdjhBHR911UvdGBxCoIrm0GPGeim1vWFhjc3xUuunN399drg6y9ItOTZ0DbjHCWtKuv1Fkf21Jboe369tAMnB8/vkuqrGyWpKa2Q/LyGJRQ4AVZM/EzWr1kmq1Y0fNmiqrRKJnzQ4FCJCw+TL4ry5WdPfCkfTp+xg1JBxrwH/LkzIs2spTNl+atTZObiL+XTp96QBa9M8fqX21TS/zz9rKnrLo3DrrmlLdxvqp/zPA4yjHVknHN0sYcP6eFPnvU7OeFtFzUXGRnpfa0hOjra++qPc0TAg9xrrkxX79Bf+sHOPs157y03yV1DusnIzu2lb1KM5G/aKCzzYNkfMpuZcurA+6BwEQGHM5Y9g4js4132J7FUcWdE3wWr5mhP64uSxFI2fv00efbnkl++3WEW3TNFvlw8w59kvxw7noLn+KO9/NGUVIJ2c0R/IoLBT/5JEXSM1iTqi2xprn+1Rtk4cZFtjKvuazzUoyVKenP1CX3eGUouvR9Td83/y1IYeLZjx46ePkd/dcaoP53/uKk8cQjiWGdsxCnIuHTXXXfts/6JATovfals7l7kbaQ6fOzwRss3F+Zs/2qRv667c+x44rP3n/LahP72r0VvNXoH7vU4sVbK02qlWpfgFuc2TGZVfbJF8pZsFLm4ndz0ZMNEw87KpiynIzSXDlkLjk6GM1nGMzh4djUeNZen61f0PfQOHBpMBhLZDFEeX6pzct7V0zkRnYHdVP7w8dCjh+7SmUCe/cb0l3P/+WP5b9xUz5nEtaaIJYpMZLFUd0Lm5EZt0VR6rtGvKze/7k2c7QwnyoTXweT8889vNm+/Lk4keSgR1eVmn++77z7PQeFP4zDkWSLOncNgZ3XzP097+4m2I2IdPXJPHFL+vDimfrSd36nn0nCd/d+4t7P6+mXbc5Oe8TbQ3tkXvOjP+enlXjHskUK0UHn1Nnku61WvrI+/avzOJGTypjk+cfUN/SU9/HDCd0bKwEu6SN9uKdI2sVZmzJ8pGwaWSkl6hTdZ6n9uT8rxPx96TB2Qibvj3KWfNxW11pStgF1AGXtiF4fW1Z1HcFDfy52KJyB4iVNOOcUz0t99993tN3dyxPKMcePGeYMBxhLLHv7617/KP/7xj508teMtZtVZZuHfKBKhRZ1YtsAXLCAGQIwglEicEnjoUBqbIjoum1HSad2sGo4SHA+OWKLBlytwTuDAQLFBwaMzEDXRFLEMha9pkP7SSy8VIjVwcqBAP/DAA95mk00919Q12iAwp/GdwJaA1PcI2f+hcZKdnoE9Sj/vSkizI95t06ZNnlMJQxWD1SmzOCL8xPsjfNx1DAiW1CBMMS6YtYyLrvWUHZ6b+tUa8c9as7lLd2msAB57TM9gEXyy8MG//lsuf+I2+WLxKu86m+Td/9pDkhaeojvlhYl0UzYN0zaICReJjPZm3cpm6T0lOoSb7cUI/I6ur3/0mdmSnbNVwlKmS9XGKvnDvefroDIpuPkeAw17Tbh38jLaB/+AFQrKpuVLpEu3ntK9zYAgv7m6hpYJH8PDXKfP8AePYwyhsPHHfd4Tby0DM+0Bsc8KbZuenu4p2TjgWOLDDLJ/2Q8Cwz3jPaj/0H5EI7HcCB6Gx/msLOX460h4c+izfGmGmQ36Eumvu/taOf32iyV+ao23h4srY1e/kya8G/yCBHwDwQ8PP/+uVwfypp3axWdIm7osqa3KkfG/XSt33P8vT7HOXDlD7r1xrORu0qiEkpW7Ks6r66SJ78pRAxvWNlHW9IXbZQD1ufmy7bxJhiNHdpHJWUWyavlcKS7Mk20bo6RHWqy00y8ArVo2Sy4Y0EdOfeAU+e0rs2V1sS4VK6yRPz29Vdp0jJLXXl4t1bV1sihvq6QcHyuJdbFy3e+vlAUTt38vlwGSHZcLl26RmhdVqbn0jkbvAQZ/vO8mueiM9rJxwyaRBO0Pp6eKdK2VnNV5Ej0/TIacNHAHr3qjTEJO4FMchRgoEAPnXfc9HUyFUohB7hQY9riBcFAiO1iCh+yFkMnwAtfgv5tvvlm6desm3/3udz3FBZ6Fn5wzjGVpRIih5LLcDuId2cyYvCiTQfHJJ5/07u3sH+rJQOkGyyaf25ip8mOoZHTuIm9NmiZrcvOksqpa+Fyzc4bEx8dLZmamd46D1fVFflH4evfu7clznCX+vrGzuu3pvdD+hsHW1FedmsqfdkT23nXLkxKROLjFfdEzutpnSu8xh0mpZowy+NrjDc6NZeuXSfjx7aVyW4nysi5jDKijJqNiBznRVH1aeo32Z/whOpC2YLPnpiguLi4o1z777DPp3r27N4a5tC4ahDZibIKX/OQc7P42RLbidGXcRtbCy/777nkniwYcPlgKluTI4w8+7t3iemh6+lf26vfkpxcNlb59Owb7F2nvvvMmCYurk9GDdcBXCo/tKmNPPFOQPXfe/bC4JWCfT/vKO/cShfzTVJk4OFx/JjkOiKNPHCXF6VXeuFcqDZ/Zde0akmWzp0wGYJS55+MktlFaMOV9GcecPuB0LPonS10Zi5joQT7QvoxPTGahr9HfaG/eyY0poX3AGWZsCE45yI/rrrvOk0dsWE4Ua0vIlcEeZqFttiBrhvQdl+hls2L9Fono76nGwWzdRr6hzwUTtODg7tuvk9TeUfLUPW9IwWCRK0aOks8eu0dK1K83acLJXnufeskvpaduRFxZVyPhYeFSFx0upds0UvX4JLWMYqRa9YLkY9vvVH+hPdCj0c3QyZlgckuN/dVElxgxYoR3CbmO/GVPNzDmXlN85p7n3hdffLFDH8P5R/nIV/oTxKfu0cEZC9BVrrrqKm9CEnkNzxQXF8tpp53mjS3IWxzAoYSMQm/rrDJqzrLlnvPB9cHQtBvS8qQwrVQCg9KkuLRcKkd1bBIv8qwcFSObdWyXQKT0Vr1zV3oh/cxNXKA/fPfHzzUpr8AH3mSPOQgsiGhAzuFYY/yDDzHy/ZHSpGUMffjhhzn00oMfYw8b+9OW6IjodCxDh4gmQUfDac2nMGk/xmfS4fiAD1yf9B4I+Yc28BN6oeMLrofe96f1HzNuuInGE7s39Gvu0x6ec0ftgLdfeV9WXrVa+qQ1yD++FtZd21T6i7z+6OtNYumXbTc8/LZUxlfKgs2LJHb2EqnfvKPOCv/97f/+JoGLE6Vya4GEb6qR+uklUpS6QWJHpkhEp3jZumSrN4GZmtbW/wq7ffzkY7+Q63+sduPyXKkrSZKExGTZMilXNpcVSMnyOqkt0nFTkvZJWVQutE/yrshLJkog7OSm5CHPIV/hOX6dzgRfwpNOrmG7wzOh5Hgs9Pqenjc4HtptN25ROF9//XV55ZVXPMP8zjvv9AycnRXgDPPnn3/e2wySNakoEWwa6TrHzp7336Nz4h30EzNaeErZtJJZd8gBzRIHlFYMqJ1FV/z4xz/2HAF0Xoj39HvW3d4QKDMMjnR2vnSB8EDhCSXS41jhPXE84CGkcd03cNkUk6UiLaV6bYOA/teIGoJOGl3anRO8yKwJZmYInBBALIlhGQsz5RBCZdWqVbJo0SJPEcAhwdc7eBal4tNPP/UGeoxSHCpQeXm5hxF7Z+DNXrFogtzwcKyUdKqX2XPWyeDkDClc85Xcdc8fvU8Qeg99/U/m23PlyiFt/JeEqISLb7heep47XIonb5A8nWErb1srVdN0RB4Tr5JLZ5xrlUfDA1JVXiptklNl2AUN0S3eWq3DGpb+EOY+aW21zCnMl06ntdW9PVJk1bsbvOiBw383tlGZTkA2urgXJyzhePTjxyVmTaScdTahqF3ljVc/DXr2wRH+ZAaIJT5O2XJCHUUaxYyBimVFGEUoXLQfBhqfZ4XnnFDgHlE6RAUxoNOutC+OJtoJQw+Fj/wZgJjVgOf79u3rvSUKAkq344MpU6Z4s1J8wYY+hmOCfkc0EDOMEIoigiolJcVTOEafOEwKUgqlt3p635r0nGS+ss7jGyfEvIda8M/9j/5Xlzi0kamzNkl9LaZPW0+xYAYCJ9SKe16V9/9+mqQmDZf88/vIj264UMYdM1ievAsnWZ2sXL/JU7qdAU0/dDThvQYDNiwyWW2m5KCjw913TrLm6vzRtOVS2V6jcPp2kiW6zjY2MkySUqKlurJaUhfrErO16vA49zD5cvYaScmOl9LFNRJxcqyUra2SqnYRsjp8m7Q9OlHbTjeR1UIzK7M8OXHP72+X+roKWRi+Tnqdp1/N6H+YfLpsiiz1GX3UEUNl9JBwOfvE7iKsRPiuKsexKidiw/UvQTbM2iCzZs+S1MMa2pVnHLE0AyzY1HLsKee5y3LMkHo5etj2kP5QDFA6UQAhFBo83sg1jnE6wXOO4AnkAAYyshA5iNLLxpHwITIE2cHgiLKFEY9S6l8ShyGBA9QRPEu9XZuwGTF1IoIOueTkKgqW37h00TiUyQBKnaPXrRY5Zqi8PGmqhKe2UcVtjMzXutBXMOjpL4xfKMQovPA2/Q+FkD7G7Bw8T1mMMa5Orq7Uk4Gcfkq0Eg4Tf91dOn6bu+5PE3qMMul/R+47meFPi3I2Wo2ZTFV4skuzZOWXS5tU4vzPcMwM6/z1n4r0qfWca737HSbrC5bJiccNlTFHDRCJCkh8TIPcj4oMl7KKKolM3B4CvifvxDO0Ec5wZBDYwlsQGIfmiQFLmxCN6J98wEhyETMYThC6C22E/Aol2pG2cm2IwsXzOJ2YUQdX2ju0fPJxBvhMWaXp53rO2uzSbG/d8JYb18hz//dsMN+6wk/k1p9qY6hsWrF0jvTrVCtnnTFO/vfFNOnWI0GO69VBRg4vkfapHeTd/82SzYs2qcPzcLngrGHyvdMGydnfOVwdq4u9aAmcEX5CuccIjnyhVoakD/QcINS3TeImWbisQDqld5A0lftQtuRI/++NCz7ujGfGTGZ6M+Layvy586VDv07e7u/nn36+nNj9+OB7XHfz5UIEgKhSPSSivcyculhOOPy04NhCxmCKjnjmmWd6egL93jkAiSrCyGRcw7mDnkY70k+ZqKH96dfIF8YZ+NyNb8FK6wF9lPGRT5XTZ3ES4YRA7jA28v4Q42BzTit4iLLgH3Q76kOULLzAeyaOi5DcD7Jk2+oyGTY4VT6et0aSh3UQZ5gQQbYro9SrRMg/jpfon0ed20XmpxRJbXaYdMmPkJKFG+Tqq0cJEXK5qzd5PHL5hbpRY1K+rPmXRjp0DlMWipPapaoILq6U3ud1kNKicklJjg5+Mtnxsr9YjIrp06d7Rir8Da6uHrQNei/6vV+vRScES5bAMd4z2ec3SFz+4IjTCHmP3CQtstJNdCD/kfNOZiFDqSP6CO2IXkMbcI4DCnmOXg8xXtDOpGH2FhnuCH6N+3oCi7aY/Ohkd6vRL4bY+EfGS/Kdaskqub0xevca7WHAZswszYX3c9evk/zoAunbI91Lu0IdEDGzvMNm/2lYGtoxeP+2n6mOrZ8C94+vjtcYD+HRv//9714/waDHAcMv7867giNGPrzJRCg6IvYE0TzwOvog+TBm0l/ACHyYmMW2oixkJ2OX4wU27KdfukkpIoVc+wcr3sQBsphn2QOPNnKEXLzujusloGp4c84e5xhybTTh40ly/OfHe32SDeHR44jQrNTI5QVLV0l2RIlkTVkjI352kivGk6XkE1oGmE+bnikxidG6V9aXknBbZ6mpqpX6AclCJBCbNS74YoGXD+8JD0iXgET3j5faiUVS3SVSUgbESpsRSZIaGy15BYU6/uRLwewvJCGjrUSHR8phg0cF64Eu7yKqd+aoveS6c+W6G4fISy8skoB21UBAbRbtbwmxETLqJ111aW1ANmp/youukzazVkm/6C2qB+VIgPF0u1gOlrurA//EAvosk0XwEn3NjYv0Jyd/XX6cp2StlWERdfLe7RNlRk14sH+SxulN9HfkMLYA/dlF7MOP2AL7khrcumrbOeIF+CwkleUPo4XBmq8/QDCnn9is0RGMzsCCYYpRhELp6M9//rM79H79YZGkdQoEz4cS+aB0OnJp3XlLfhnc+GuOUIT9+eKoYPNMv4LMzDB4QFxnIPTfZz8KoioQ3iiwu0W+Ngg+VxE82qMDGAiv9OjRoz3GYXBB+LuwNzKFwRBaDDps9sa9f/3rXx5D044rVqwQsED48K54Ws877zzPmECoIgxf03WHPc9sL72P6CK9O3URqp2bmdtknZPUeXDEiE6N7j38/iQpPSpSVlVukK25mQquRuH0TRPR2WWZWiaBjpEeL9VW1+lAXC+VtdXi9opolJGerC0rlU7f0YGkql4Kl2+VnGWqOGlTbAzkSrJ0CCZ34U5OWAdv7MGBG+x6HdtZuiW1k559OkhNbY2ce84x8uifn1Vls5/nOAP7yy67zHP8YEzRl+j0OA1QxOngLDWCf1Dg8HJjAML/OIYgfjlnwELo0DcZ+OkfOJdwTrhZJdqWvLhPW9G3UdAZ/FA+SA/BJ/AIacmTc3AhbwY8ooUQSAyWvXp2k63F+bJi+WLZmlEoXce18/LwBu8LRa4bf70s+KTBUcENBgJHhP/y1YhxJ50vU75qiDR48M8fqrOhTKbMKNNk9fL59MWyalO9zCwrloxz+wibhZ5yXCepD6vTmeoqWbKqWPr30C9E1G/vHGlJYd6eHuzngXDOKlsu06auEd1aQf74u9PU2dKw5Omhp6ZpGduVBurFrMVXK3M4bJrqq6RrhwTvXkJkuCS2j5G6SnUufFEm/dISJUar8Zt7J8rA3m2kRAN76uOqpVCdEoN0UHz2zRVy4oN9vGeL15SrfKmTvmd1lXf++5S8+4/vyUsTZ6n/IFJWzlwrSaWbpGRxrqzYVu0NnCjQKKsnj24rv/iRzrj/daZEdo2U6jYNRqAEtJPo0iNpt13Ghr7A5iUa0aKOl2VLFslTT9wjAwYOkxNO/6lMVoyd44EZhLyKctm0drJ88VnDVxOc08Gfn5MZRDMQVeMckczWEN2AcQHhIINIA5+SHtkBr8NHeOOR9xiNKJ8oscxU+2f14VfeH3mE05T7OCycccq4hDJGOj+hbFF3BuLi7C2yfuF8efnkkfLLv78kq3PzpUdCkhdeuFWNUvod/QRnHH0GZRn+xzGHYgdlqkFKXak7y0tIx2ekicgjCoQ+gsJIHrwPs4oM/OSDAulmmugDOBuZ1UOZxonekogO927IAedIdNf8v/DJpE//I89PKpL0wxOkILVOwtvWyNHjhkpcfYxXp7pKnSmObu89xgw7ffFv/3hFktpFSf7AcEmtT5BATalM/NPrcvGwvnLVb0bJkP6D5fnlk6VY5W2E8ikUHxMlpbVbPR7FuKeNmA1x7+olauIf2gyZgwMKWYJSg3yiDRl3kTkQOgQKEH+MNaSlTRiLwB8+oz1oL8YesCayD95ivyn4krIgnK1MglAOhBGEnEVZx0HBMlIUe2Qu/Eqd4EfGTMfHPIcy7L6aRFRd6oD2snDiYknr1kZy/7NIxo3KkEceulomvdNJJs/MkV4dqiW/oL20SYlS2VYp732s42O7RDnq5E7SLjpSLtb+PGt2rjz2+EI5++Suug/RArn0V2/IVRf0l3bJlRTpOUgffOKTRgYDTgdmDr1xTO0qZn7hLZwiGfX5GoY+RBZkLpY2uTrTWxwnpRkNfZL83L4wXl86t79nCGzSd9kYvkUqusXKIHU44VRZ+voij6/hqQWbvpC+Omtc/fFWqSlYJUWZ5RJxRED7xRpvHMFZh07xwx/+0OsD9Cl4gihZ+AE+p/9AtDNGE+3JLDxEn2e2m3T0XYh0tD0RtET+0bdwRjGTR/QE4xz5oIvQJ9HHLrxQHdGaJ2kZ05xDAWzIizYlP57hWYj0TALgJJ01Y7oUqXwek5oklz4yQp1QubI4uUxnkJdKj7pealREBR0Q3sMt+OekE46TMcoXGUlbVQanygN/f1vGPjhMVv1ns9SPS5G+c+tUHifLay8ukiG6J9Da5VVy7BE95Kl5H8rRyWkSPbq9LCotkQo1YmJzw6SNOh0SEiPU6RCjSy4KZensFfKLz34hf77nz0GDk2rxzhj/6LpggwwDZ3RZ5BpLiyEcN2COTgD/gzXtR39CtjLWhxJ6DhHBGKbkzbP0J37hBfop5zijkcH0U4hoF+QXsgKiLMYN9CEMXfo1/ZbnkAXoohjL1IdlpE++8BfJuLZhDPcy0H/cRoGh+htfMuhyYk+N79lO26JrZObaOTL//RnS+cqGJTSlejv7xQ3SvdN2faAtesQRDeH25AuWjtx56B5Q6A9/+PvHnuMBfBivqDeYIO9wLvB+6HPoXfQXeBmeR+bRX+gD8C1jCXoduIEjEdikQf6TF/nQPrQN/cpfP+Qi8gz9jV9wpO3JB92OCVTwhuhj6KHIPO5TLmnhD/KnbRm7uUc5S7Ytl9kRa6X/4EHeMoXLzrxULjvnxw4a79fvGMLBsE2b+gd3XCTD+w3zZA0TjiVVpVKnsqRYIS/JK9PJm2JvGYIz+nEoZU9t0MV4N7dcbNmqBXLUiTqJkBAj8UfGS82aMkmfrmNST5Vv2p/j+zasU7/rxfHywG33SpuTk0RjxaVEzYXaOp3u6aH7CX5VrXynY70qYymtAABAAElEQVQ6g2vmlEhYZ7UpesRL+eoC6VEcK/NefVvbpaeccdmpMvTHx0rymA6e7jl8UIacrU5jItP8TmDaurJ8jcqKdrJmRaFUHhYmETW1UltTIrWq/4WFqcNQy6pYVSY/KEmXuy7VKFHtu0VbK+U/EzbI+HtvkU8+/rIRhjs7QR77I22IED5x7BGytaze042QffRp5Bz2m9MvqOd///mi3DdulAzPSJc6tUvKAvEyd/o0OWz0MV6RyAGi9+Ex+injILzy5Zdfeg5axtnWcTz43hih4LxwdAY3A+5CM3xJmz30e1KbTXQI3PA7FZqqblP3UYAOFkIRQ+jwhwccIQdz4hRhhhGPNcwF0yLU+EPxQzng3RBgMCD3GbwYwFHkIBflQpqzzu8tW49v7DmpUsXo1vG3SuqVfT2lJ+/DJdJbPwmVWFAh1eUlsmLlCunbp6+gXM1ZtEHq+quCo0alqCusvk4Nqol5Kp1qpXP/ZClQIVqra+Ujdba5Wp0PlTrrlq8ey53Ruo9ypbR7hIT/JEMiP8yT4rByWblxhfTp3DAzjJDzPkWoYwszwoS2Qn7hsrP83T283eOfvlfiRibIls8L5Se3f8e7xfz28lVqTJZVe7gxWIMZAw8KEwMKfW3s2LGesw6DCecA/Q3Bz54NtA19kLZjUKBf0QYo1ODODCuDEu3McxDtxH0GEhxKKAMMhDiQSOMUd2YZKZ/0CBsGGQiDCSOPtOThlMRZMz6XcWPHSFpqijpVlBemT5TIuBopL90qVbr8ZduUUhkWGyVFdYXeLOrn0zV8UYnZ9Ae0jY85LFWu+dGRktZugJx+8a1y5JA0ef3DVbKtslb+fu9oVdI6eoPd1NlZ8tiHE6V6dLxs2bxEBmVWynWPjJMv5ubIe1Nn6frTzfLPJ46T9z9WbHVwT9R3aJMS70U9jFHF7fUp/5Pul3eRjjkx8rtrhsnm7M0y791C6ZieJh98NFW+d2KqYrJdiUGAP/Dyv+TyP9wiqVWRcsLIw+Xlt1R5T9HIAqXps9dJ72ENBts2VbzTx8VLj/xIaTsySSb8a4O89dQJ0mvcm9LvBFW6NX28jnOblpfql1YaHI+bF5TItqmq1I5Ml2Q12p6/f6VceWvDBpb/nDBHkk5Jk6GldXL5D3toewyRGVM2yp8efVjqa7Z6e+3066TrBEvbSW11lQRS1NngaK1GCPSIVaeaKghSJNmTZ0v42iLpXqvOuvJqHeCqZP6yQjm6p8ijvxuhK5XUsVobLqf/5Fz57XWj5cvpn8sVj34uEd/ReuKu7x7rKRXhmQ371eCgQllixh3eQzHkGgYZAxX8i7yA+MUggLdRKDHO4TP+4EUcaxzDq8gWZA8KjpND8B6GJDyNIYDiS3k44hgE4WF4kZkxFwpMPihmRGvB3+RF/ZgVTw0PSH99Nm/DOnlzdZacPriDvLKlQcHD2RCjg7MbYCkHJYs6QrwvZdFXqQd9lVk9BmX6Bf2FwZ2oIGQl13E4kJay6a9gwIwqhjMKNDiyFIVrEIojDgquQSihOFpQElAKIerHs05Z5xoKKXkgH0jrnnnztRdkU125HHGTLj1YWS4JyhqlWZVy+rExsjGrQjYue0/OO7On5BYWyYo1lXL3b9+RIf1SPUN3lS4DWjG0RsJy66RDbIwua0qVs8Z19JbMvf/xBqmpVuWuLlJqMsukLqCyWfmubvk2qelW4xn41Clz4TyZNldDrBVb6gRh3CNjcJQyfqBsgzPvRLgwfMF7YxjCD86JTTuCLzoI4fQYkcg5+I4wUfgGRZk2R3FGNuKUAHt4jPYCb54HX4wZ2oR2hpdoP8Y2zqkH58hecCZv6kKd/aHMRe0bFPbaD+bLzDeXqFctIOFHxcuQjYVy7c1D1Zm1UR674zApKVLlX8fXUQPSpVuHGIlUHkXZ3JS9TZZmFUvBybqWfEWVfqVrhaRGKaZadq6Oh/f/eqQk675Ev7l2uKzZsFXe+XCmLF2Zp87ZVfLvt/ST4j88T8JiusiCMOV1dWhAbib+ln/fLkUJZdJblzP//BefqDKuY7f25+J16sA4Rp35uhwsZ2qWVHTRgVXbL/o4Had6Vkjd9EWS9cVa/YR6kuTlqrLfz8s2OJNeW7pYlufkyvCPq6VDWKzMXacz8EoZ6Q2yK6BlwPfgyC/9hbYlyggnJaHdOApoE9odvnVyAJ6hDfgDb56jjzG20Y/gBQwe+Ib+Tf9n/Tpt3b17d6+dOOYZxlXukRflEC3LxAjyxIUH099wfqLLoMeSDvrlL3/pLaEqC1RJt+hojcLoL1XK75/PVmdM54DEbi5X53WuzJi4Tuo7t5OEtsO85/gHw4jlMZM/+8iLDBp7/FiZOifP438MgtHDY+SWH2PUdpQLfvFf6aEh3rVqeNVUVUrN6lqZ8HqBDIxLkJsu031mdFyQ4fVyyU2TpUIjLq7+1ZFy0R2TpaR7QJ3ctZKao7OmxZWyvlD73YwSqT9JdcxTUiW7rlp+cuPlcu33z5fyihqN6Evy3tPp6sgJZDMyBUMUrFnXTX+CkLfoFPA7Dhn6AmloA86ZgUdOIdtxJNEv6Z8Y1dxzMpy8aF/kOHmQHicf7Uq7oFMgU5nZd04I6kPdKI/+iawgX3jGRbcgM55++mkpKMuXVVMnqaNmcJDv0d+I3Al1PBDlV7I+TyL7YFSqcatNHZ1fJ9XJupS0YUimuoIhHBmhxqnqL4nqkGY8SUOPYOJLyUUWcbxl+QaJ+G29Lv1NlV9e0EOv9PTk40efr5ScglrZsKVcctTZidGPYw/e433BBznOmIPeDd6Uw7vSNtyDx3lnHPLgg5zDEYQjByzBENwx/JBt8C5/yDcmhnCSsicfvE1+6IL0M8rDgUMk1xtvvOHpeshIxizyY18HnqcPMOaxtB5ZSZmMsRB9d0b+bCkdXstcoEc4YMffO17Wz22YCIPn4JH10dlSu7xAtmVtldou+uz0PCnJqZSJBTqRnJImSQWqGKnPr6q2SvWWFKlbXyN1w+Mlv6ZINmZvkM7t9CElIpHZxyMpvtTT315/e7UcfXy6xGuE57RpayRRRdVQjQK65Oe9VJ6pQFP6YmWJHP6dobKyerOED1YdY4s6stprw2eqnOserU4K7XMNSb30NbmVEpuq8leTHF+ZpF9X1HFBJyrXr6mRSes2SMGM5bL2qS/l8fGjZaAuWduyuUTS2hYFl8yRCQ6uqR+s8f5qY+pl2A++Hrc/KdYICq8Y759KHW/bd43WCbMi2aC8Pm9BgbRVfbmqaEtw/59QmwObwtkjTBLA46GRNji8Vt7yjqd/0E4QfEWfYmxk/IWwIW459ViJ1GiMPy9aK1/lFElXlad9wwKeTYBsfeihhzw5js6PTgXfEhiA3EQ+wJc4HOGtfUWB+jNq6uu+Uy+1Vylj+AgvHBVhQEYQGbUuAuFPByTsQ1/v0OJqr6iXuu82bpfdqQVKMYIG4c+gwICA4wAHBDOR/CLkcJYgHBnwGRAQPgg3Bh+iOmBGlD2EIecIS48vIrdIlHaid1cvk67HtJG0koDEqIhKqA+X4oIqKdXevumoMIl6sUjO+U5X+WpZnqRr+lwd6Ht0SZAp87KlUFQQJep7n5IibWaqwbRBZ7ba6nlurfRLSZKSpDopKtSw9a6qWOSoD3Gren11h3VFS1IyNYRJvXgbR1ZIbHS07ryYJ1Udw6SXBuUVFlSqIVgtMXERsqlMI3C0zm0763IQvV6teQ8YrvsGFKmRuLlM+nZNkWW5RZKqyuL0WVt0pApISkKipHaMk0GdO8nKKSulswrL6rR6ySzcKgXrKiRZDc86lb0d2sbI2qpiKVPlcnCbHtIxQw2bqHr58JOVnrAHW3AkPN2FFNIGDNwM5ggLFHCEBwMwRh6dnnMGefohAwiKOgMGhFJGWyIUaCtC7jD6KIsBB8WOMrhP/sz4MSghlGh3PJj80ebUjbQMPiiPlIlnngGQNCiSDGQo99f+9BJ1FNTJ3K/eUfSrpeBwXXbQM1ZqJ6nim5ggUcozs+bm6Wx6Z1mhRnCXrjGyJbtCo7Xr5KYrhsglv/tcUlKjZPTADA1Dq5V3PtkoN1w5SDq2i5NnXl0hHXQToC9W5ku5BmKEq/FYvlpD8tUfMnxoqizeqnuKHB0t8XN1RvO7fSRHDawZc3PluCMaBP4nU9dLfHsNQS0o0+bTwVmnNLp3TlDFpka2qVJWofU+/fhOkpVbIasy1TOsfLFidbGWGStZOis5aECKbF1fKV06x0t2WaXEJ0fKpDlZ0lnbObC1XsKyamWherbH3tdbsh7JkUoViWN6tpW2qdHypc6QlauOuaZim6QWhUuKGviByIAOdvWSHoiSqHid+W+bKLMW6SxOcpSccFQHySuskDdXbJbImIB02RYtSXGRyktx8vK7azT0UyOJKqskLixCcvIrpF/3RCkqrZay5DqdMY2WutJ62VC/TVKSoiWmNkzmrc2Xi37TXxY9vUXDdmtl9Ih2kl+0TXGNlyxVSLI2qWHWKVEydaZga0SNnHhSJ/njkwuk++Ha1vGJUpYbrnyikUIdu8rMpWsUg86yWvmBAQznFHyE/MDhgJHhDGaUSHjXyRcURwYteAWeIloGZYvxgzxQMpEh8CQzzcgSeIz7pMUwhO8wZhjkUJQwRigPQxDDE75HGaN/oCyRlj6A3KJ/Ibd6aZ89RcO6Z02bIh98OVN+e1o/eXOtLuBRhQpehu/pEzhkKZ/neD/qiAxEEcR4xYHCffLH4EFp5x3BBdnKe5AfERDkiUx86aWXPCUQJwv5OYPIyV7X33hf7rn8SU//RmkFI65DHEOUC968A+XXZW+UzM05EtkhXEYNS5f1teWSpTyzdYpGpiWGyaBeKdKjV4Ikq6Kbk6fyUXGBsnNYihWQQX1SZFNOubw8ca2MHKbRJxsrJGNovMSqfdlD+W1beY2s21gqX67Kk66jU2R9kS5xS4qVtBxdelEbpzlFSqCsSvrHJ8ji8lpp176drMsv9Nqe+jFewAfUlzEIYwcDh3egPeEL3hnlBpmTqYo6z9GOYEB6MIO/wII2R86hSGPYoqjTfu4LJJSHUo9BCsbkiUMBOYuST/vBm7QTBgK/8I7jTfiG9owuKZQ+PXvIrNWrpLaTztDHR0h+xVbtt9Fyyoj28v5ElYU61MTHRMij14yUKROzZNPGcvnpxf3k7b+tlLyaagnEhklmcbl07a7RJ6WVsuwrVfZGJUi+ts+xqboEMF4jl6rr5e1P18uct78rU2blyH1/XSDPPTBGCnVG7N2JG+S2qw+TR55bLPOn5kufuGh5OUejAXWHdsmIkGh1LKUVR0jWCvU29NAxV6NW2lRGSvqFDQbDpmdzPLkWdkaCLvmqkHXLi3XuTf1HmdpXVBbHjU6U8nq9kl8tXbZESX+dMYwpDUhRTpV06hIny1eoXEyPla/Sy6RdXrgMTmwjcTFxXr0Yx2gr+gl4MW7ghKOtGFtwFOB48/cxDCaMScYtCNlAm8D//JEX5PoIbY7TEf0TByftCpGWfosTgfZCd+Ea7U3bki91oxzkFn2GdnfpuU4fpRz6bbTK6+Q2SbJOsuSoIemydUOldOgZJ/NXFUqY6hhLJuTLcI2eXLtOnZYbKyW6qzp1dLldsk6ldomIkTuvH6kGUby885Xuh7A0W1aUlklMVo30TE2We28YLm98lClvvZMp3z9Vl10u26j7FEVJYZTqOLE1cs/Rg6V7uwT53+cbpUDbfGCvVJk4M0vaqY4ysm8beVvTM57U674TFc/mSrRa0H010i9bZ+QjZ22TBA3XTimPkFOP1BlyNWoStW/mLNoqE1eXeLIR3cLh5WQMmIABegB9jKUvkyZN8vAFD6IUwBy9ECw55z7pMXTpK7QteNNXaRecPiyPpg2RybQLRPnoHBD9nDzgCfQT2gq9hnPkIM/gHIF3yMc5RJC7XJ+3aZZk9EqUOl3P37FNrOJVJUnquOvXK0lyVU5NmLlRorS9qrJrpG1YjLQZHit5W7ZJSd8ICejnfztvCkjZqgqpOjVO9Ubtz3/eIl06xEvy0BjJVkO4Xsf2zr3jZeN8nTrQUIm26tBf075ShhTFy9rqMqnsqBNv+l/nNWHyyK+OkDsfnCNt0jtL+/RIWbFBJwZUXyhX3yTjF3wNNoxt4IGujCyCGP+Qhcg82gFZh8yH13HcIOvhadoG2QSvkwbs0M04xsHAPZ7njzEGeUjkyGWXXSZEoNNGOGVpA7CED8CadmCc45y6kS99DQcev9QfOcrYW6cTH2nqwX5t4QLpofxYrhFB7XWJHfpGO9V5Nym+y9agmybLvPXazt3DJS4vTMo3VkvnU5Ila7Q6XtW4rZqo4+dxqiwtKpMOpdFSpJNVgQVVUq5Os4izUyV9oupauh9WpJoBeUW65KioXCd91NhNTpL22tafr86VY1TPKiislk1V2yRraZm89ddxqvvlab/TZdmqzyUrxr2OS5U3l26SimJ1lFZGSXV6mIdZycAoaTuvWmoi9StaZepcUt7Ni9eln5/n6fLWJOnUOU7rUivZ5ZWyeV6JhI+OlWNK1IGnX5DpPzxZZszLU9shXLor/81S3TSsqF514lRZVaD6qC6nHdI3Vd+/QPrfoAqgUmDaNtmYrO+oy2yzX8+XbvWxslw3UO+SliCdeupk2qJSnQToIWsXb5US9Xxk5qhDmndWXa4iPiDdJVoiK9WJG65juUYa5mn0RExahIzomCobVpTIcG2LlLgomTYrVzZk13v9EvkGT9Bv4T36J9fgGXhkcHiNfLIxV7qpfRGl/BaueJGW8Zn78CgyGp7BGY+M/Mtf/uJFaNIn0YPos9Du7tnoPdTEP56UCGQHdriFEQMjImyMWh+BptpAGiJE97hwmBEmQkFA+CHEYUoGDIQ9Ag5hhKBygz+DNcKRNAwcTmghjFDGOUf5IN2MBbpWCgVZHW6p6onsk6GecmV2KF2N9i1btkq4DgZJqryx9IGOtECNt+RIDQvKVsWbKeJtXztW9Ln8tWotjmowrnGxVqpyFBapDpD+umxni24QowNAuCaBwtRwzIhU4a2KHmuQIxrGO29WJ1xnhjOX6UyzBmEc3lGXbOTVSc/2iRouHCYdVKnmt0u6GkI1MWqkJGhsgnq+62s0lF8VOzV4U+NjJdBHZ1S76MyCUtdOCbJ+myr2CZqmRkO12gdUwOlA1FeV14pqL02V7i2xTHedHjm4YUaIQYQ+ROdG0WFAoXMzmEIM5Aw6ziBDYCAsmPGFGDS4z6BCG5IfgzTCgTy4D9GODEa0Me3IgILAoZ0ok+eIdkC4UAaEEOE5+IPr1I82xbBkcCN/BBI8gDMEvmmrywpoqQgFuk3bNjJP1xM7YbRyabFEfN3uIzU0N15D4uYs1g26NH2+Oo2ycjVENyLgDeijj2rAp1iXTiSoQEfxitR7hw3U91cl4rBh2l5KbTUkuSaugTdQAqt14AjTMpgphA4fnu4Z2N6J/oOivGxpoaSqUE5S54b609UJFKd1VF2irEaOGZkhE7/M0g271M+lIXdbSyrVcCuVOA1lzcwpkUhd6aEuLVm8ulAH3Cgp3qQOE3WkFS9SA1/5NSU+Wjrp+myoc/d4KaqolA1ZZXKUGvk4NSo6Nri54+vDJF6dCHE6QJfrwJ6jA1qCOkT+/voKGTg0RVaq0yMlKUpGDGro3CVr9WsmOpBl68zntLk50k358bjD20maLunorbx65NC2kp6mirTWc12ubpil3aun8mP3QGwQf+q04D1VJI/pIEcMV+M6S7/8ogPwwnXqYKqpks7K6xtVKU1JipQNa8ukkGgJxSVN32uuKtnJyldJaenqKGxodwrB+YTyiaIIj0DwI4SSCu/AT/AA58gPeAelijGDc7zpPAuv0Q94HsUWmeMnjFMUJPoH8olfeB6iDyFr4EH4Eh4nH8qH4HWe4Xn6CmWXqaMRytR8xp+oYYPqfEpSxYt6OmXYS6D/oAxClEe9XLkoYq7P8k70se7du3tpnVOAekL0L45J4wZ+6oUSivIIBvRX6kkZYOCIPg/R18CINDzLu4KnM8aoA9dJB9W1aS/HDNNdtNslS+fkhnZJ7hPr8U9lP/2Syhf6dR+Ncpn81RYZOixVXvqPLj1qEyNztd9+MHmTZKhSB3XrmCCR6doHKspkSIcUiYoLkxidskmIjZSrLxogMTqDXqeyVxeG6jY79TKiZ5psUWUvPKatDGuTIEvyizXyKU6yChocJdQPnsBoAUv4gHfhOu/K+zHuIKdwCtCenJPOKcTIIbADM7ACQ7B1BE4ozeQFgb1TuhinnKLPPcrheeqA8s1SD4cr92h/cKXO1HGdGhGLN26WuvQoqVRHX5TKm/pttRKjY9jHb6+XzolxEqZjWu16jUBSRbG8Qtf1agRYjUbiVSUEZPPWCunUPl4S1Sgp3LRNnQQBOUcNzxVrdcPZ6Cidua5S2ci42jBO6qPaPwLSp2uiGkU6jibq2NxwS/r3zpBS3cxzdNcMSVO5pqE86pDXMUgjK6p1TBt0dKpERIZLRbW2j/4fxiBYp8uFBiR7ssnLRs8DGmqMJK2L1SijHqpoL1OlVDddlmXqOOqgRr/WISolQqbMztaIjWo586Te6lDVsGDFAsorqpSZC7M9DOFD+h6GFbiDN/0bDPmjjcEXPgdTrkFgy1jCeMd1xhfaD/zpM6SnvRnHHNFfaTfaHl5ybUT+GK6UhXzgHv2VdG7cwsAiP8qjH9OPSOf6LLzQOUUdc2qERCuGWlFPDudH1UhpQYNskdSAbFhX5vE9e2pWK37l6oxLLY2Q5MRI7ScNjpRCjS4ppztp20pevTovVH/Q/xbppsQQxzFqZAzolyy5a8t1trdaJk7ZLF/My5FUXY6TquNB2zTdN0hxyVVH80w1djZlNcgwno8OC5deagTVqhgOy9ENpBXLDVqPKK3z0vXFOtGhyzEUP1QjZE1XfU8cfMhVDAfwpR3oX7QdONJfIPQJMEe+gil40aakByuwpi+Dteu/5MNz4Akhe+mTODZoT/KAP1zepOE+z0GUTT3hCSZVKBuivqSjzSEizJDXtE+qpk/X8XemOtmT20RJoo6H2XnbZMKcjTowqRtUJxvatE9Th0yELP+qULqooYjOyPKUpDqWSOqYvlIdQ5FhktAnRo48PUPa9lfHh8qR/p2TpL68XjLidcwdmKhRL+pIbaP9XPXIGAU9UdtapzIkrA4ls15G90qXhSs1iq9eZ9T1eZwOvBM4ggG/yBbeC75244XjZd6bMQ2s3D14FP0O+cS4S36MvfA07YCzlLzhd3gcGUc7ghdRD/A6xC/9zPE5eZIXshaiTWgv1y/pJ/RDrsMz4M34mhBTq/qY9t126hhU4ZGuy7F6d9VJGL2ELMF5/ftfjJIs/VJEwkB16Kj86D4wSeKOjpHcFaUS+bV888pBBKjTKGqjymDVrao76P4LnaIloNGsdRnhkq28vlUjezzS6J4jFd/TxnVVEyAg65Yon2qBndvr2BYZ69kSKTp5k6S6TJru+dBBx7GtpTUya6FGSK/Qfluk0Q6KC1TApKZShZajWUmcOm25p/u2SqyOa30ykjSSVCcTM0ulMq9G4tqqA0R1tyXzi2S2yuh8Nfp7DVIbQJfghEepvrypViNXM6QqrFYKN25TPBLUZtDMlCK/NkDy1rJnlCdSpY1iBnXVSZ8BX9sSXXTZbs56jU4coREtKnq3xejkaa94KYtS55Iuxc0trJQMtWfiysOke5Lqm2oDkd+WlaqHKnbZOolQpstxq+piPN5wfZIxDt0Hhz28BI+hf7kxsle7dIlSXizSPk6bwJe0OWOv62/wCQRfQoy9OPyRATzjdC7v5l7+E/77vnf+PqAyru6chsbay/yCjxP2CgAMCAeCAGmSemsJ89ob4h0A3TXgrvKi82aq1x3hsTsU/pxyV8M4H3ys7vvaJg22YvDa7hzgBcWTSvghAy8MBkMivAhjQ8HjGswF4zLgICwJuWJWCgxRAFmbjKHs2hKjpHv37jJ27FgJi9JNegpXSacfdZMaVZ4i+6hw6psoK/LKpWNtN+l5wRGSemI/yVfPZZUO4t11R9nbfzpUrjj/BLnt52fq7GqKrotdI3Uq8BN0HWylCgHppkqWyqGicA2D1gGjeot6pU9KkbAOalAOUY99RJ2M6DNS/nTdE1Kpg0TUiA6S0aGbROnsUmwfHSyOTFTBXyuVat+sPz5W6tQIKzlOlU9VlPsdO0Y6jR0gVd06Sr/wAfL88x/J0hUb1JM4Qq644Er58QXXyhMPPSU3X/Br3ezrZ3LB2VfKjy77lfz8J7+Wn591g9x46a3ym8t+Izf98CZ9h+slZ1OpfDThU4nTGa2uGqY84ohR0l4F/4hRvXRQKdI+oGFaXw/S4M4fs7jwFIMTay6ZCSSygNkD0jKr5zZlZYBGeWBAgZdRDhiAcAIhPOBLrjOYEJLlIlkQFtyjDWlrBniO+eN5Bi3alHXzPMt9N0hiwKHYI3jwgDKQVVeph3QbQjVCOupylchAha6bVyOwW4x0OKadFOqgntg3QVbNK1DFZ4AccdSJctrJp+i68ULp0a29LFmZKzdfrJuwnnGqfDVnvTz17Hx95wxJ1GiAUYPayo/O7ivnnNxTliwsks0522RBXKlu0thJehcH5Lnbj9HPV9XIsA46k7Bwq1x4fHcNdcyX3157hIw7qpsce3hnGTq4q6SndpGZmZul/SW61lvb/MZrh6gjKE0u+O5IWb9Jl+jojONN14yR73/3aLnq0pPkN9efLJ06ZEhBVkBWqdNjw+Zceeruk2WjRga0T1WjXyM3ZmqofvKZqZJ4pH4ZZlaBJA1XxVkjZo7ooUqOtk2vbkkyd4lGk+gAUVqjSp3ONpfozOHJh3eQjz7fJB3P0WUAOjM1algbyVTHWm+NZhjSr5OMHXOEfLJ4nSQfrY6Womr55S+GyjnnDVKnXLiueyzTgV/30iiLkJG6JOX31x0mU2Zmy5oUnb0cFyWLO1XLxhhdbjRSI0qm6ICrfSVCvejlOiv3/ltrVHGI8JawHDGwrXROiJW7f3aYfqGon5x0fE+ZNq9SfnrhSOmVESavfqUzl+e0lZx+qgj1UwUtMlXGDDrGC1Wm7VHOcUKiSBJOiZICXzGTjJxDpsDHrJXmGD6Br/iF55AppEfxZTBDWSJPzuFr+AyjnegBFCxkEXKT+8y8IGcwPnCAw6MMjMgv6kZ+9BmUM66hBBNWyEAcrppFvl7PSFKZUlYh0SpXv8hvGFSdkUSZ5Ee/6tGjh5c/dfh/9s4DUKriasDnFXrvXXpvSlfpTcUWG7GLscWWRI1Ro8YaNRorGlv87Ynd2LCiiFhQFKygoqIgIgLSO2//881jlvsud/fte+y+xhnYd3dvmTvzTTtz5swM53knAhsCHsIvgiTxom4kvsyhRtjj3ZRnhDyEZsozYcIfhHX8IVzEBXNF4gUDlIGEk/hT7qgDWCwMIYDfLIDM85RreOAH1h3U14QLwZBRsn89+KTs0r6v/POGu3ThLVVuDKur+bSGrNOOUM8eqkRYkyXDNB9OmfKTTLxkoMzUMjp0QGeZ9sE8+d3h/eRj3Z1h+ToVznQx1OZta6lJqaaRru4+4Sgtv7t2lPd0Luzn63+RlfvUkModVMmrSsQ5G9fIqgabpH/jvjL26BOlbkvteG5YK2u1Xhq9737OMuWUU05xC/gx9/7BBx90HQ64skYSgvJIHWklb7AAM20NDD1z6ibShTzGSAsj6kz3QkEBE/INnRoUFfiJf6Q/9/IsaeKFctIL1qQjbdw+++zj0oe0oF2j/iNv8T7yK4Ia7d56VcCNHbq3vPzAy3KG7jIw84uPpca4ztKvfR01T56tHX/tbPTOkZha6B18uFq+qCB50MhdpH+vJvLUy9/LIWPbyEXH7SpH7dtJxo9tL7fc/7lU13K9YPdKcmj3ZtJBR9o2qLC8QYXtX9QC76gD2stX2u4dMLqtWjxs1O1ydQHBeo1VufuzTP/0e/mmamM5YP+jZUHtJdJu717SfEA7qd+tuVRqq1vE1m0nDfu0kpP2bCHfvq2dtIW6sY4KzPVa19PO0WLtZDWTpVN/UqFTlfM9VQmkytQ6g1tK97bdZeW3y+TrQbnybZWN0nzkMF3cuaf8qtPlTtj7Mvnfsy9Lo76q9NO6uFOTujpiV0k++2q5Lr45XrpoPmyn7CtVqhwvt5Qr8j/sybOUCdKCdCGtabcoO6QJ+Zg8TftE2sEc2QNZizTEH35TLvlN2iOD0Elro3IHUwnwm7YMP5BDyAukH51b2jHWUiEM5COeo6yR18iD+Is11cYq1aV6/VbKS+VUNb2eMEHzvU6Tad+6jry5eqm0HFNfKi3NkpqqdG61awOp9H0tWaKLw/3+9HPVmq+vtpE1ZfJb87QcLZFxfQ/URbIvk0MPO1Je+t9Unb++We74y3Bt1zq66TOfLlgmuXtr2Vyj6u2D6knOTLVIq19d/nRyD1UYt5SeHRvJP+/6RH5dulGuv3mQvD1nsSxRxc96nYte/Xsd+eyrirAOOlqv+WVhdx3db5crG9o3ka+naJtUubW06bC7HHnc8dKkeVuZqfID1mF0YqlD4E4ZgCX1GXU58jnssGalTqFeplxSf1E+SE/KHvUedTT+UGfRHlAOqf/5UL7gTzrynfTGSgXe1OfIjKQXz1LWSCfSEPmCtKJ9ID3IF4SJ9YIo4+QXHG3PsuUrZYmORHfeb4S0G9tDdyZoLzn920rHrN7y7qR35OI/XqyLS/9V/nzqn+Wtbz6SRetVUTyijuQ21ZHf91bJ4vU6zUStBxu1bS5dB+0uLYd1lTlqLbnu5xXSfKzWD93rSR1V8NcepAMqPy+Xhy58XGrVaSQffvetdDx+qPz46LdSf2M9GTXiAGmkZvWnnbmfnPm7ITL53YXSRDuvG3WQoW+/QU6ZAFvaAvIy+ZE8SPzJw1jGURbI36QF7QR5FWa0b8h/5GnaNsoQ98CNssI6KjCGEzIezyGb8R6egRf1GNdpH2lHqPNIR8okz/KhTaVs8YE/dTXyJmFA6UD4XFvVcBdV8LRSK6hfZeXu1TUfqgw0tI9U3qO9zNM8t9/eB8mGrJZyzumXyuEjjpBn57wkm3s1kqxfY7JJLUk2z1otm2aqdYtOX8jZRRWxy3U6rk5H1tUnJK8fymi1stc2a03bytK8d3vpvNce0nT3ztK0cj1ZrwsnrlKFxvi920pTlSk7dKgtY/dtIzk62Djt659locpRTGEeM7ilDlg1kB+1s96rx4Eye+3XsqmWKjXVeitL5bDNrbTM6KBD425qhaz1l+ymAxZdKsm8GaoQVCXudy10WsKGXLn+ggEydvdm0r+jTmdbvExq1K4uzXJy5fh9O8oErcNHdGkkowb0kHH7HytnX/iAHHfkWTJ/8SJZumiufKlWs7HqWdJs99o6oKl1qw56Lfley/ZuqiBSC6lvZq2QCQPayMHDdpFlSzbqVOUq2jdoKHfdM0f2GnG4/OGYU2S/kRPkhiv/JWee9BdXt3z640ppSx25S3c574zL5eZL/iUL5r4vt185Xn67/0DZZ2RfOfGIgfLkS3M0n7RwMjzlinqU/h7petVVV7l8Nk/7ovW07N89YleZ/csyVXyvks6dOkrrNm1lqJZbpqWRX0h78g/+kF8on7StyBp8J1/RN2EqUTqcUzzQ4Y3trp3cfIugdPjr5phg/k1FUlyH2RAFDwGhqI7FLHk/AhuO+UwIMFSmVMrXX3+9qzCZKxv8cI33UQnSaLG1DfMVqWTxi0QNOq4TRypmEp5KhYqYuYepWotkfa+a7Geygt7qEIH2J47XNMkueLoov6ZMmeIYECbMh2mA+U5mIoNxpAJCCEP4QzCmcqLCojLjHBmShgaHsAcHMiEVmr+3U90N8mNMBeKG2tPf6la9ulJuvPQ2eWHGJKmqZubZHZtKrWEdddG3FbLv0A46atvB3dlLG4MHnlSzfl0MLVdNzUVNfkVHdGIjG+hQtZpIfa3zs3K0MtNKZLOOLsU2x6RmFRXec+vK6LZDtUP7hfzaLF9js+5LtexYqaNRurYDIzs5KoTlfr9Rlr+3Qnrt3187wPnv5MUstvWHsae6SnzYiLHCp037bu731iikdKChGdZvmNxzw78lVyf4N6rdUFcV19GrWJZqRFvKR7O+cY0IghINEo0u+QJB1zfMXHvnnXdcQ0VDS4NEZUDepxKgwPObBpnnyWsIDQgMpA0VBh8acNKXBp7GifyLSTKNGMIeggF5GyGOxo10RwDD0eDwbioZ8j6NII0R33kuL5arHbsZ0q1LGx2N0UXdsqrIl6qFbzqooU5bqCE5qrX9cMkyGdRkX7n2H//neLbt1F8X5Wkl7boM1nmQ62WOmvpeffPz0rZjb7fjyYwPpmsnvIHOQ18tb+toW5aaAf+g2u91v2olvq6W1Omumv93f5Fuqmk/ZK82smfbJtJDhe11KpA9O/lHOfag/LAvXb5G1m2qJJ98rdYDbXVBvL9PkubV68h7asp8yNjdpFvn7rqIZEed2vGlHH/kSA0vpuL5bhdtUOf9Ulceufd/skbD/9u9u8roob10Vf+eMkRX9Z/x9XeyvoXmdR3d+vkDHQ3ooaNcbXRBIx1FWazz3leq0mDRL2p2uFQtA7QhZbpJSzXjpHNSv6qWh7Y64q/zfRdsWCdrG+soeKXN8uvnOXL0wQPklXfmSKW+NWT2kg2yYE11+WDyd/LZ7FXy14vvlPP/eom0bddZXnrucVXWdJEGKqQ+/u5c2dJpaxnTBs7p1X/RjuP3W2TQhNFSSRUadB4oZ3zmvaGjyYs2yC8rKsmDT8+RZRtayFEnXCBb1syVww8ZKhccPVrmqql4v5bN5edXdK75H692DRflm/xC3uDDfFDM2hGcyKdcI69xjoYOYZVnuBcBig40Ag55lIaPuoe6yAs+XnmGsIujDiJfcqRh436E3RdffNEJc+RfOtrU31xD+GUBZOoihDoEM/Io0zdcnu7VW9aqYMDc9bO7t5FZOgVg2oLFTvimnFCHoxwhPNR51GWURYQ5wsZ7KGfsREM8iCv1IEIeZZe68ayzzpKbbrrJKQ2pA3g/7RV+EV4EbhYaZsV/wk7HmjLJebiwOwhtDR/44fDngQcecOWbskh9wdQW4gsr4gljRp39Ys34+euvS2Th7K9lynPzJKYjOQ061lSzUZ1PvqaJdOg0XC0/lkqlOgNUkG0gw0ePl+N+d6pUq9VWHn7kSTlgeHeZrCvq1+9cW5ap0FZFzWkb6Jz+lrrQ3iH77in/+N+but12FclVq5tcNUPnw4hg40X5bQNpMG/hItlt0O5y4403unjwh12nyC+s+QAr0hIhnI4P87ZRAhBHnif+1FnkK5SntE3UdcSReop08uxJNxiTr2BO+iHUkyZ8p86kTqRuhDuKJQRp8gnpiYKMdo82jnoVZRphoG3ET/I3eYh7vUM+qD2omayoU0sa7NJAmup2uj99pkrXts3kBzVtZ7Trof9+KZ/O3Sj9dusoDVWOytF2m2kTy3RufjWduvfS6wt1jRe1zNH5xUeoouEjneubtz6mz6rZqy4Qxno3LBzYuFFdOeLQMdK6VRO1gFohT70wQ47VDiV5Y+qk1yVH06latequTV301lypubCartBfX35QZcx5OvVjzzZN5JBB3WRw667y/DdzpcfgPaXdHt2ldZ8uEpulbZDWrU3aN3Pb79bSdnm1dqSr697zzRrny1gN51RyHbjvdQHJj6Z+KO2OUQWomvIv0fUORKdQNmmqW2uqRRGKffInPOlg0dGkDFP+UaSz8wzyF2lKfif/01EiH9DBhT1lifaGfMA10ou0JM3xm3JK+cMffz/llHQmH5C/qGsom7yD/EV7h5kw+YhnuJ8BGMq1Dy+KK5SB7G5B+brj9ttkrVo+NFbLgRY6OrlI5+x/smalrK5cQ5U6avXTuZk07K4LcsYaCzt/4Ch3tG8jxhwmxx1/qmvvOMfnuAknyVtT35f/PP2evDjlK1m1voZMff07LWN1pZLW22t1JL2h4hzQp7E8P3mRWj78oqPnNaSNyiffrVsi0z7+SWpWypVleTqa2r6qrHl/pbQeqGbpuptS0+Y1JDZF5QKVgap8sEUeuPZ+11Z4+QUlA9NafH0Nd85R71F3Uv5o6+FEWKmr4M/gBmmFox6EPfxQIlCGTzrpJCeDkLbU08gHjKLDlLLGGgTkATorpCm7lnAfClqOlGc+1GGkH/UgHV7Cg1KE85wjXcgf1L+kE53vanWqS5eD+7uw+T/Ib802N5Rxo8f5U+74+ItPyNyvvpUtAzXt1YIht0sd2VxXO4a6g0yNz9SSjI6p5vu6XZvJnPtnSutR+e0ADy9TOeK71xfIsXsfIxMOOFZ6NtZpoJt0LZxDTpJ/6u4yNSvrdNLN3wkyA25vbWP5LFxeX268+V/OKoG62a8JBFfKBLIb9TdtJOUDZQ91HlYPyHrEm+te7oIp7SrphWLGK42Qx73CAuasA0Y95ncSwU/KD2WSASXqRNIEOY7ywsL9nKOew98LL7zQ1XeUH+o/6lnCR/5AJqVMNaymAyaffqMZngWhG8taXc9mv/77yt8uubJAnn/wunulw367SrOeKoMu03WAVEldp15dWaMLvI869UCpqSyWrFsmWWoRsGXuKqk+sIls+l6twBo2ku5dejme/Kn3U2V54Y7npGH1zvLOe0ukvbZDH37wpVqi1JMVOg1m0rR5MrvqOvl29Tp59bWF8r/qa2XNN7ky6T+TZMYHM2T2S59JVbU6zVZLio29Vc6bpRaeNdXy6hNdJL1nDVGVhGzQXfJWqsJ9Uw+dnqSWq7PUaujbd1fIlz9vlFXzsqXdCYOd/PTWlO8Ea6ZX3tNBnjWNZMLvL4+Hk7zw2Q9TnJVUTPscWEpVUeXGTz/qoNF6tdJWKzMWRVqpHLCYbV2vhpw2vqv0U3n3s890Eeh2feSqq++M7HO4PsXWPgllFDd1iq6T1qdR/P2sTfbRF7q4668rnExAm0jaUhczVZs6EFkKeeGNZ59y614d3qGltNH2XVdAkYa7aF3Vtp3zj/xInuB+8gHtI+WRvgflGb8p74SFvJQOF+/WZr+TlQ7/4n6wsA+R3xH30EMPuYqrqH7QcJ133nlOm8ezl112mSukJAoNEY6Vrymk/uPn3yNkApvRGraIogBSAdJgshBW0CGkEE+0i2iGcVSqVAQIpam6KPYxZNHcVH2Ivo8KH2UIjStzpKnkaKxpAGiQcFQ6ZDwaYToYCG5sV8VK0jRECG5eWENQoEJ77LHHnMCGPwjpy9ZUkZ4r6snKV3SLNK1oqk7dIIcNOyQyUDmdmsh7U+cVuHaE7uPbv45qYmu3kFad2krtqrUl++VlOi9svWzWSmOLVhTak9fFDTS7auVYVTWSlX7Y4oQLBAG/Yjee/mawjmTq/H9ch/1bSWVtQIfupgtK6ZytoPPPB88V9ztCDprjWt1ayuvTPnRKh/Vr82TqtC/d/FeEXgotay/QKPGbVWfplNDA05iQZ8i3CNP8puHliADMyAWOtECgQEjH+U4MCiHSinSiseBD2uAwvSLdycdUJAhy3iGM+Q4Rggj5eYp2EAkTyg38o9HjOYQRGtFPv5jn8lSnzt1kz/a7yk9a+eFotNlOM7wVEmz4sIAO2/9MnvqJO3Ku3wBdbflPB8iQ3btKVnaOLs6lDVNODek3aJicffrZboGiDuePkXue1K0Zc9RSp1ZtGaKLUN7+ny9kz/75FTLvbtCohVuolJWHecdGXV/kmov+IUP3OlmWbe7j9tq+7r6F8vvTzuP2Ao7FTVnAJ5Gb881ynbaQb+adpeaBv+paCxuzsuQHXbxolY4IttutgVx9sY7gasNSv7Vu36RzfFlckoXjdutaX3Ln5ZsQ1lLz23odqkudXyrpvN/puhL2bN1yNlvmzlCLmB5tZZ12Blbv1Vu69RnteBEeGC1ZXUPngC908d6g5t2yTusvV9foUc0Da67ROcH9+kYGf7f+QzU/6taIB+kuRX9RK55L8rf8e+fTbaZVN557kOTOj8m44Qe696EwZVHSoGO0BSERR6eQBs4rDciDCPzkGRx5k/yCAEZd4pVn5G8EGwQm7kdgQjBDmGJdB/KZd9Q9bI1HI4jQRr2DIoLyg1UDimDYkD+Dzj9HfXz4KadKvzH7yHwdwb9hwpG6sG1DJxAfofU64SMOCMgcKSvEg7KAgEY5QOAmfCiq6fhTJyKks80bZZf34+BFOBHkKFuEmwW7gvdwL79RXPPhe1EczBAGEznK1rARo+W7p8+VEUtby4n1Vcma11TefWuGK3eTp7wfL39s+0Z4OM76XKfnjNUR7Kz6Wu5UkZWrI0NqsXXfo/PkhTdWy7s653n1z5g+x8UEt51mzewaru667777HA/SpLA4cZ37iT9pisUWz9H2UD+hNOJDOpO+fOCKUgCBnfoLAYg0QbFAWnCevHHCCSe4vEV+wD/ehRBOfRnkRhoiOHGdTi4dMuo9hCzyAp1Y2n8/3c3zZqu2mtPy6wAWtVu5JSZ9m/bRPNtQfmzdWB64/wsZonXNvY99KKMOPF+enfKrlodK0qldc+Va1a0B073nQPn2zSXyyWfLdMtpXa9CF/u84KwRai24RUaPHCivP/UXeeb1n6Vh4/x6DcGS+izozjjsdBcOFsZroAI6W1/SZrPl2+alVaTKysrSuVVHtxsJi48Nr9Mj+Lj7zi4IfdZ1dv7QBrZf0UqGLO/hOhTE0W8fR57K3lRXvvphlXzYVOdAN68rdfrrdD/lNHjwEKcooC1i4IXOJewoK3QksbCks0r6kbbeUda8tQnnaKco/xwp2zh+k3YoIpBVSD/KM3mG9KWDHCy71Cl0rti1gXJHOHzZ5IjlIIvvEVb8IO9QV5H2bBuOO3TvAyVXFecPT5svE+/5zE05QRnepEkbt5ihX8izSY3G7v5U/lxy1e0uP5x67j3yf/99Ry48d4K0VqVPHVUabdHpFl833qLTQ3PlqON66BaqnXTkVBcgVavQLh2ayJJmlVRJv0KWawduvW61KXvUlHkzf5Xvflgtq1dp+9NNy+kyHcW87K54XH2YiDP1md/xAPmMckOngsE2yh31JFxhRz1Onqc8cY16jHSjbFF+go4ySbogw8AS+QTlBJ0bX85II+p8HOeQockD1KG0CTg63ISRdzM4Qj1AHiAcKDBoDyiPWIER1hsuv94tBuke3vqHvBuWNbhEGWnao4XkfZsvl3CucrYqbFbXlVlTZkmLJbpukeZzPs07tZF5P+ZbViC/xHJq66Kge8SZwpLdG4L56Zo7puNlpIPPfVrHYQHoLVKpj4gn8UOx4Ns72lgsX1Eu0NmHJfkaFvRReA7FDvmWvEqakI6kGWUMmZBw0f5QdigDcGbK7PDhw10fBtmfOpXrtG/4ce2117pwwJXnCTPcsbrjXb6PRHpRt5J/jhz0W2kyrZKMrzJSLj/uEle2wwC69Osal8Pb9+0u3Rp1lvlPfiuvPfOaO0+9WW2+ivBjm0tNtcLrvk4HGxbUK7CNJX76MkbYqIOO/+O/pVUb3VJ0Yy3pqAqo9WrpkN22mqwYqgvk/66FbP5mtYwdPMYFh7qL9+Vq+75a12vR2Tf509a067Bq7Ua3Fg9TvluOaS5b1PIzW5O+fqeWsqSmKigO2kNWt2vsylT7mbrO04YO8vvDzpb9Dr1KHnlyqpMrg3EmfHWqt1AlY0/57bE9tC3I0R0t8qSRTqFdNF8XgdU0RGal//Fit5jcp3X++DNfl70mvCIvLNwgBx5watC7Qr8j1773RVW3GD9tQ26tbvLa61PdYDDKOvIICgMU6ay54x3hbDt4pNww7SO5dtbXGs5q8tBrU6RTt/zBZH8f/VfyF/1h8hjyPmlP24rS0pdvf/+OHuNd26xX1avxoiuqX+8qeD96QaQYlcFMjYYFwYsCQ6PA9pEUHAJLZ4o9m6ksMK9ES40wec4557jRij/84Q9uISi0eay4iUbcP8eICAWCAnXBBRc4U9PTTjvNbcs0RTtCdPqxWKBC4v34jVbo9ttvd8+EISBMUJjwDwdUNLXcj8CLI2xBYZdRGBpRKlIqbZQPhJNnqYBZ3I/E9Y4KGi0wnNgTOegQrijIrBZaqNN+iWMfujGvr5aWHXQIcYT5T3/6k8tUmAxTuXAkM5FJqVz4UDlSaQYdlRIs2AqOBts7uCEMsKiQa0Cq5skDNx3mLlMoEHro6EU5KqCZT80ueCmnljYI2iB10c6Hrm7bTjekX/L8V1qRrpE5c1Ug6axCcY6yz2POqGoTN25Lh6BHKDVwHZZWle+/XSVV61WTc8YNkZ9+aC6fLflBtjVF4vZADz67o99pBBkZm1xjilpwvCjN6raQC8+7It5o4T8sqQi84zvbXnFEYcVIBfmOtOCDZYLvCNLhoxxiQkpjTUNDw4TiCCsH8ihHKg/OBTWTCAl+6oZ/N/7jH5p1GhnCQBmnfCE04iijEyZMcII5wjmNGKtVM4JEmb3yyivdVnMfz58tq6eultfuphJJ3dHhnzb9cRmyhyrHPvpZBvdvH887NPgfqoWFzFT/dh0nU95fqtYAs1UYb+EUCnnr58vVd38hh+7VSho2qi13PfaeXHbtNsUgHavhY/PDMmLf/Eoe/tOmv+neEQ+l5r1gmsTPb/3CPOu3fl0q67Ys16kPqinX+b2rNY3aNNGFrTTfv/LxChnYoZW01LVEvtSVmHN0nt4p+3eW/76oJuK7N5fXJv0sG77KljqqeNiimviqK2s6n2lIcKyevXiG7rqyy09OKJo48X533v+55PJ/yifT7pRpM2dJJe0Abp6jC461rqKTFFV4/mCNrJ6ro6wn95NvWBUrgQvHb8ReR8s1t9+m5qmD3Orc2VXzt6/kce5FwYpgRD5DQCHvUTdQH9JxQAlBPY6jXkAQpQ6hrmE7Mepd/CEfMm2AEWSUYwhGCLjc6x3KUeprBFrvwgKv79SGyw95GKHKj9TxGxfMv2MG9pfxe4gMatdKflTd42ytx7nPW13QWOMQlgk3ShFG4ymLKBKoK4kvz/gtNN0DW/8QzzDf8G9/f6Lz/nrU0St0gtcQKMOO/MRWsk1qqoD/bQ1VROwVviXyN2Xj9pemyPwqOg2oc36atu+9a7wstb35P7pw5TrZpB0BbamkSuXqsnnu0rhfRY2Tv9+nKR5Rb5In6ETDOOy4l3qQha0QiHAoaBHufT4kr5JnEfpxwTzmTugf8gp1nnf4ST3qlUacpz70YfT3cUSoZVtNVs2/47Rb4/e4PHnJK/Fb85+9Xu7+v3PlgtN20fUW+kiXXtWc4Mq97IQw/6cF8oXulvP9T4tUjhkn9zy3QYbu2UpO//NE/f6c+16leV/52+Hb2gpegN98wuWAaytWxJzCge/eLftqvY7GznTb2XGuR6OucT/8Pf4Y5eet/7jVbdXZQa3GcHTWmKIRdDD1223T9qAg8mnLVBqUZnR4kMdQyiHMMl+dThh1iS9T1C2kGb8ZzAk6ZA3KJ8Iv8ijpjtxJB5b0YoHRwhyyDB8GYA466KB4+vEcHZx7D3lCuu/fXNbp76++Xy5VX6oa30GBexjcaFwjX57kd6rO5yXK5yi1pGsmVeSDV7X8jKkhr32yUqfVfCq/frVUhow6XE7/4/4y+Rm1rq28QVY30fVQNuq6ElW0nteOVtbbqoionaMcdNeBWrpw6injC8QhGB5kaRQNfNgVhs48ccf5tOE7yhrvkBd83Y3ymHo/LA9yr3+e9CJdgnKG94v3kya+XuY89T75w7cFPIf8SUeb9gVHPqHORdmIksQ7GOYGxgxIiz6N8gdf/D3+yL09HtedCF5Xi6V2uubEohXSQC2Cem693yvWuJ88f/KTZ+kCK4HB4gAAQABJREFUketV7m+kOxc0l/YqSyRzQ/fUhW23yrjcd43ufhCUOzhH+0P/hCOMjjjiCE7Ht1KmzWHKD30N5DlkPwZ1+MAH+erhhx925YV2hwEplBN+0Ii+jO9cEl/aa/pftFOUMzdApOUL+ZD+Dnx9m+jzowvQ1j++3fTphfIO5zubKJPeffXdrXdHH3z9+OkrultR9YYyfv9j3Y28r8Xjur2o/up1uCpBnpguuboI5ejjh8ioKy+SC9640llfcTPWFBPvmeyeC/5hm/S/nJjP8IAx8+WTar/KgskaRp3qte7d5TLxhYnx23nff295WEYfqhag3+hCnANrSo5ufb5Fp18s0QHJKlXr6/SYFlK/y2LpMyhfYRF/eOuXKIVW+B5+HzP+PLn8vKNk/CG7yur3dZriUbrtfJUa0nhoE/lILdwad6yvfV+VyxbnyNedamr9MlKoQYIDpVH+JjpHW80nWFfTdvr+GfUhZZj6Megos+dvlbkaaft3VJ1WBeQmyjp+4hiQZ7Ay6JDruIdB53S5bYqHX3WfgDfEdS4QvOg0o/mgw0+GRHBEGUDDgSUDQgCdEip+NHR0btAsU2jQWAdXMWb0n4aDc9zD6DACgH8OhYIvbCgoaMwoKABkZIIOPg7TIhom9uCmcmPEmM5v2DF6H4R36aWXhm8p8JsCiukrlg04FCxUjCgP8B9tIRYUdMq8u+OOO1zFQeUdVjwgjMODQu8FI/9c+Jj9RpbOiwp1pFVTlzd4xxUPXshCIAsKq4z8UFlRQeEIP2ke5SjIKBeoEKnUUBYNHz7cZXYyPI5M6zsyKB0YzfUdq0r3q8DapaDPa9YXjC8jO2fst7/8/l9nOCGJCmj/TuNk2EnDZPRRY3RHAV1TWJUOskEXp9lSSbr37iXje410nhK+dh+1lqU6dwylxlsvfyx/Okm3mdTRH/ahZ0R71IGnyHC9m/3ON+nuGGi9wx28giEs3i/yLP+CFUPQJ8IaduRTGhTSg7JFZ418g4acdKPskY4oAXCURyoBGgum+JAGNOrkXbTdOJ71jvuCZcGfR8hDqUdFgzIBbTv++AbK3+cbJf+bvI1izccl1UraP5/oeP4Z+Y0AjfrwUflKrLDfzTSf+ffiD5Vu1127uO06R+13eiKv4+d59rILH1LFQ/xUgVFFrwghD3vXsGp1ademutRr3Fa+/Gy6rNQV5FfqdKFfVuv8/y4q/GjePv/mWaLj+9JuSC+J6W4DVWvrnEZdNIy5fyO7NZU1Ou3i3bt03/KcPDl+vxO81+7oBaFkeYZwc/3LLbfJO/Ony6rPV8q6WroNWa+2skvHfPPfYANe4AURP/CPD3tDD91zmJbVQwvc5RqqQEeAe3FeeEWRSQeQDgTWAygNECBR0vpVj73gSV5mpAtLAtoFlFwIY3Q8yHM46hMUu9yLEgK/opwPh7/mw+nLgxeK/XWOCIBvfpNfrx88fE/5Shf/i+m0GbYYY1QP5/M+9eFz2vGDNWWRdoSwhcuEeyhDf8LlLeo1XjAMX/N1bvh8Yb/Jg04BtlZ3kVCh0edJnquSqyPpurpXpZr5HX7OrVi4skA55NyOOM83rBwN+4lSlvqRvIeyAFZ0Zrzjt88j1Jk+D/rrCND+uj/nhW3/O9kxXB9xb9g/f27K5KHy1S9tZeozM+NtIfdG3R98Z2HXvf/BZ/iOgvLafz8U3+udDhEjYihL3rzpTWFEMpiu4eej3su5KUMnxxUujCbTTqH08Q6mUR1UrqPYQTndpk0bp9SjbFEHUM5QVgTT29ctPMc7gg4FBedonxiRxRoJ5QRKSzrWRXHBdwaf6998gMyaP1dHqXREdVlVnRZTOz5Sy32MsF98T75CPvhcUb4P12kZ552o7VWzV2Xzbq3lyScelTqqDHp12rb4vvHyQ9Lsp8XyUzai+Qb9v0Vq69TNvI66JtQUtRLbt4389KDuypK1WWRE9NtJN+QCOpy07152CN/N6DuKIqwLqAsZZUcW51yUAjD4POlFZzecb3wZ9GlI+WIrPtIOOQdZA4tZlFK+vkaJwSAmA3/I/mHFM+/F6sgr/vr3HyKXHZs4Lcjne588Tt575gNpd1BPqf9xlnZot3VOfTwIe6/HO8jqTlXdKeTOw3REP5mjjn3jhdv1lvVOtsypWVAR55/Fb+QT8inxQZbD+sPXddxHO4PMxhQIZGvcvHnz3AAuz3u2KNtg7eU0+lIoJryjnPEeFBrI8n/+85+d8oa+U/B9/v5kR9ILBQaWZb6cR6VHlB9R9SP3UW9M2vK23P+niTJk6BB57PFt+R2lxGdqwdW4hk5l2KqsCPtN3eb7Fw9efJQMOH6iDNfpG7iaujVw2MGtS/su8l2WLkRar4HIuIbSvKbusvLCXFk57Repqqco3zvqeM+r0+Y7OWrxd69Luyr5CrS11fPUWlvXnfjtMF1MX7cdr15NunfeNljw6+xFMvSS7fsCqYbH5wvu5zsKRmQsBuS9/BX2K1i/8sy9997r8iTltbCyjgzE85TTdLm44gEPsx/R1eIn9ndKBszzEb6Yt4q5BQ4TVBwaOBalQAHBKKt3zMlEwAw75rriEPBodDBxYzTeWyRwHVN0Kr+bb77ZdaL4jbKDCovvOART3s15KqpEDuHEC5WJ7gmex0qDMCEU4zC5pYOHBQcCMQIoCgYEZkahEfyYvoFgExR8vJ8oKnBodJMqHrTMZEe0m3n9tZNd3/tW/KPvuHqNJ4oi76isqMjoPDCnLpgx/T3+iJKHkSQqIDqxTIEJOjIyIzkIO9m6MAwjqt4hyKLt9A5t3/nnXKcWEc+5vWm53wvMXwzNb1yo/H3hOuWok+XOh++SnC90WyEd6a2l21fhGA1nVBz38aPTpeWf8kdlVqieY6OaJ7ZrlJ9ndG+5uF8IUYk6eM6jNP3xYU/FO9KBRppGAxNfhCmmOfj0CIfXn/d++1E8RpMYraWx8Jpqfw/adSxcvCNfoETDLwQTFFH4EyzL/l6OXPMCepTwHry3KN/hdMlfbitggTDtIy1boZE+72eYq29UL/l7vqLC35fs6Ef7B/dpLEw58Hkv0TN9+7aSKTM/VcXDtjuydX2LtroeiHfNu3WRXN1/unp9Xe+iu67erNvDtm5TR5V9agWh8/kaqiLo9TvGyROvrZYzL7rOP1bgGI5bgYv6g+u3Pn6b9DpimLtEOULRhrAU5bh+2LiCSo7wfYz0JXLhfBa8j3qcfOYFEzr+wTnx3BsUPFFOo4il/kSZzOg0+RHLKYRc6njaGu5L9t5gGPz3wu6/6Np/ylt33iLfTp0h9VTp0KlX/hxF2i9GPykrKNj9aBLKccKDJVvQ+se/r6SP3rIpamQxnWFJ1Ckd1neoPLHhdZ3ylv+2Lbod529PPTadr07JL/I/wjUcaN/pwJLHUHx5FxaQGVEsivN1aVGeSXSvL1sj9k10R3rPwyfYBvtpGok6A0V5e9AP2plgexBmHvSXMCEjUY4o24kUZsFnEn2nHDClg8EmlBnpduT/Sx64QkeZp6iycrhcdvPFThmH7EJdmmiEvSjhCLdXYxoPicsm3h/ap7znV+hicjqqq/m8+sj86Q7ZOnpfQ3djqv32Rjl8zImFdigLqxd5H7IH6eOnbjLnH86puijLBm9p5DvDyOF0YpFNUBqh7GD0PugIKx86NigMyTdRLpgPo64Hz7101ySnqKhft7GMOi6/zQxe99/pFPsBKdI40bv9/RwZdUZpz7SqZPdzjQ/xogyE7+U3Fq/BwR8Gg0iToPPphJyGoywFnX8PsiL9Fm85FH5f8Jlk38kDlHNkfdr2RIrFZH4Er7nwyVAZN3HP7RgkanfCzwfrNqZx/zJzvbM+S/Q81lrjLz5CtujAEG1W9SqVpOauHWTv7CGu7KBoD/ZLeF9xp19T1/Op3Er7J4c00/W4asspB5/srHVfe3OBjD4831rDxwklSzpdKmU9/D6UkfQLw3kk3Fegrkc5gSvOe8Lv9b8LKB6ydAXf3EeynSUDGZjRTUag6KDimKqAkiDYgDDK5V24w+PPo6E+44wznOmPr5iCzyHo4XwnHeVClMP6AE0uK3ai5eEYVVFicuL9jPIneA5tIlNDAOydDweWGoz2oyBBIKVCQPHAezHXC44k+7Uj8MMrIxihSeZy/qvWDsuytrsl7+BtTLe7WIQTWDkw4uczl89A3gvf4WQEO5njeczgwp3g4DNe0Aqe4/ucGbOlpa7h4J0v3D5M/rw/hhsXfvOhopi/i25lpZ27sEkWozm+EmGe1kfv/CR7TBjkvPQCmPc/0Xv99ZI+Eh4qecoFjRMuGMbg96iw+cqA+1Ashcsg/jLKQ+OG1hyHYsz760eNEzX4XOc5FA+UkWSCZlT4CjuH4qkkHfHmQ16+JKTg4HxYEdKmRtE6L4vyB/F1QSHd7ujnTXLE0Z3k4bu/lmmz1krPAUfuUFSDZQmlA86bkLark2/141+AVj3RiJi/J5NHLyyRbxA26QQiVFFv41C0UacghNLYZdINOeUPMkX3y8bs2zvCRSeW0dhgmWE6kS9T/t6SPPr20b+TcAYF0XQIgt7vVI6sofPRG1/KgpW6K9GmjdJB1xAY1WxwKo9m7B6fXrT9XhYJc6Eso5jwyjECE6y7wpwzFtgS9DhRG5zOINB5pi3BYZnkR62TvQNz8nQ4lA6ka6acG0UPjKTTqWGUHQVuJt4b5Sfn+OTqaPlHN1yh1uSV49FtqQt71qqSK4eNSF3RHn844gvvCVpQMtoeJU9HPOpO8bxXMHOCAQ1vWevjQTvrFUV0wJONrqa73g3LklHxIJzFGZAqSllLFi/fh/BKBd/3CIY1nE6JypxnHnw2le/hupA2BysVzidLr1T8Dt5D+IrrisKbdzgWvQbL9JVfSXNts+g3zHtTp+iflq+EYi2J1UmmpxYnnBeffJG06rmLTJo8yU2hwQ/az7A1aque7YrjfdqfiUqPcF8hmUXbjgRom53iVl+yn8uS43Y91pmwkfnoYDOqwLwrFu+588473Tx05vWm6piywJwkLACwWghn9GT+BBUUzBdG24cVAoIs5lpRjmthrWrUfZxjZAt/vKkT57yFhVcgcA7zTj8izMg0q48zUsaH0T7i6KceeBPi4GgMfgRd1ieqoFDWYZc3ICaxTuGzxfuNkBCVuYrnW8EOcap+oHlkxMA731Hyv1M9opmuMmO98yvsB9f8O+iQLVqTb3XDlI+iVliphied95FONE6ustyByhnrlUSOModggIAeLn/+3YmeZYV6nqGjmKwRTfR8svOM8DC9wruwosifT/cxUbmY9t7s7V616b18BWLtzvmaat/x2e7GwInuvRvL16xevKWK/O20AdKpbT2Z+vb0wB1F/xouS94H4rLhm5X+pzuiVU8UxwI3FuMHSoWgojbYofPe8W7qSzonCC/kG77TkOFQarPmg7cOI1+mO2/5sHCkjJF/veN91M+ppKV/piSOKACDbPmOkoaymwnFX6pxwlR0tx79nADn1l5J9cE03hdWnCMgw8TnsfCrgvk0lfyVTmuucFgq0m86PrQHiTpAFSmudF4zVY8m40R91bb7tg7KJt0qfMXybfVXsmeLco06lxFt0pJ37ojDYiLsR5Ad7wr+3pF3pfvZ0gpXsI4iTlFtKeeD6cTvdLpwm4PfTNOgE1paXNIVP9otvzhsUCYKL0rP+7DO3hFH3scKO5EVhve77qL8qT3+d1k8Zlre0GVSQ9HWwfaOT7WXbg27OesGdnfAISTi0MjxPbj4i7uQ5A9zkmiomHvOHJSg2XeSx5xQilCBBQOLgaEdZD4UFgjMjcIaIcph7cCaBIU5BA2/qGTwXqYeIBBfd911TnhmXQqsIjAHxjFCzboQ/sPiPViCsDAmDrMyXJT2kvNZv6hlyfWq8wkbNmha5B3PHRXHUXGNbjvERQhLhcZFWBk6SAF/ptwzWa4ecdF2qxlzbdVLOsKrjhW/69bpJtO/blWoGX3Q/4rw3WvPfVwQymlUcDRcjEb4TqC/J5UjFSqNUCYETdLOrxTNVJ3SVhQNHZJvFeK5MPWj7+593c/qlaq51bI3rsmvC/09aM99o+UtEXbdtbE8NmmetG2qU1/q1tD5oFN07Yr9/SNpOZLXaUCjXKL5klH3FvUcaYaZHg7lAnkrynGePMP93vnOI51G5iX69UjIX5l2QSEvSsCjvPjwZTosifyHVVBBQhtFe0PZxTItEetE/u3oecLDmjjeOWsz7YyVBUd6MY86nMd82Ag7+ZPpm+H0jhK2/XN2LJxAJstrWDFOaHZGpRCr9aNwwGWvjbl54m5+eKA+dRdL8Q9lzyuYmTZnrmgEqKNoS70CtaTr90ShjSqDie4tq+eDA5KEMThgCXesr4PO76gRPLej38PtJwOkxe0D7WhYUn2eMp1peSN7y+Hh3q8GT+uPx7s9IisWrHCrkhNgLAJYXBJTVCwKmLeVqqMDz+KMZGZGHvwoV6Ln/e4RWCKwJynaN8x12RuYqQ5YGbAuQ6J1HgYPHuwWIApOf4h6FwIJaxf4OW7+HkaYMCHDRJB4shMEccf6A8c8fCoL/yFerA/hzTqxBiHMbJGzndOp9jmX69mIOpq0iDWNSI/tPEnfCSq8TDtMGNmiJtFWPEV5PwU5ytEBQyhm5W46yuxqsLO7sLAGl0T8SpMV2/2xC0oqC0SWRjiDDdiGn1cXWCgoKjxvffizO91XlQ+4pbpV1xUX/36H2YcbsaAGPxhGGrdMj0ozR5B6L9HCZS7iEX+oz73DrJd1g2gTaFMy7eCHkOyVJWHhivJCGSltF2TkO8ylWXaDeSsovJU0p/CUnHD9FhUeBPkbbrghJYVNaSudosJv53ZeAsg01XWrY+aoN6yRr/xL9/zwdNClDUik/EuH/xXdD/gxeAnD0nC0i8E1msqCAj4dHILyUtQgjR8s4l1R19MRBu+Ht8h2i9SWARnDhyvRMdPyRtbGDRtjuZdmC6b/YRdroyNal+SJbFu/yS3uyH10zoviEPZY84CFIYvqeNZbN6BMwGICRUQixz3sLczKnSgNiut4L9YLKBWCW28W5h8KEioSdugo4HRNndzLlPW8Amfdj5guerr5UmW9/eyL7W8u5pngPH/vBUI/pnbmyj8B5lMyH5zRZJylbdHTFIYbFj4eX/AShQhWGCw89vikx2V9/TzpMizfAsL7jlKNbfZWD843odsy6WO56OSe8vG7i+XnBfnr1VRuMCYtnVrCx+4v9bo2lT7rOhew/nELJmkY2PauMHM/H/aSPgbzKPnTzyFFSChpFwwL7y5L5YW2C0u70hJGw2nhV5QvzXyV7vSijWb6qHfFWdzUP2vH9BEIpzM+l6Wymb6YJvcJDswPz2tcKW4uzuAKlp/mjEA6CQT7BhWprFGGkNuwMggPKvjy5RfpzmS56rV7L6m19/YyWzrTsDz5pb1g7fCelSexhtuPtNNBzr1QF0Bcsq03jMKhqEoHgKA4KI7SwT/LEce6C8mUDv4eLCJYdXdHHGHG0qMoSgd265g+fXp8C1D/fhg6lvP8mW1H2JMGmVQ68LbwCN+2ENi3ikAgrLn2o6UVIW4lFQcYstsFjq1Y/fQIrHaO6H6YNGuSvwWtD4/XZPvfwWO39nXlr388SN75aPl2jV7wvqJ8J3yj2gyTk3ofVUDpgB90ClGClGbnsLC4EH4Uut78nd98SsPx3uBIT1kqL34UsTS4RL2Tue6lna9Ir+A0lB1NL6wSzZUPAjujNQr5nRFSP0edlAqO0paPlLNQlgcChU1DLA9xiAojZYi2K6x04F6uMY0Qa4dMW/KxHWzUNPGoMO8M5/IXSVCLhi0XxST3r6pgCG3EkLUwS3LOV3Ovv+iSBJ3KDxL2zB0wYECJB7hVq1bywQcfFFDOZH2l0ytUB8KuIds5nbEC+6BVyXb32AkjUEQCFUlrXcSo7/DtfsvN4SP3L9AppvGafMIokS4FX4FJLFp1v0ryis35StzKOZXcjeF1Iwo+XfRfyVbrTnat6G/KzBNlZR5rMHYspuR3lQmet+9liwDTLbAEYZrFjlrqeb+wELP6smylczg0O+ugCYoGv2MXTDIxDz3M2n7vfATohLPDCWvqlRUru5JIBZTpWD4Q/0y7knhHpuOQLv/ju1rEWqvlw0U66l5le6/dNpsXZkv28xEd5+1vLzNnUt1SM50BxhokaNkBs1xlF6l0UNYwh31JuKgFtXbGkYSSYF1a76DhwGQ4k4t/lVbcSuq9NBCXXfuo26+7sHe6bStDN+V0aiKzZi2On83KTTwtLH6TfSkVAr68sF6PCQalkgRFein1GhYzfopOkR4O3RysI9l22lzZIEA5DFoilY1QWSiMQMUmwIDAzqR08Klp7b4nUXLHuOKBV8a6akf4YlU+RC3fsFlH7e9R64drVPmQ/l19Si7GJfUmZQQrmImy284pY1jD3JwRSCcBGpCgUJ1Ov3d2v8Kmrn6BR6we/LQL5gxO/PenUrlSlQLTNXZ2dmU1/pSXsmiFUVZ5lXa4SKt0CYsoMVA+oXgyV3YIBHdoYrE7vztT2QlhyYRk3Khx8XalLO0oUzKxt7cYASNQEQlstx9lrLt2iK/Ik5yrdG2HZdtbOGRPz5Lsz7JkyzExyRurJsXb31IROaUeJ0WS/YoqHB5UMGuiH4vV16krf9UdLMqArLOzmjBGp4ydNQLpIdC2V/6OFpJTK22dpPSEzHwxAkbAEzCFkydRto5BuSSV3UvKVujTF5p29dvGPWvVs138u30xAkbACJRXAgUsHnwk6BBvvl47xolG47VDnXOHTiG4QKcQzPZP2REWMIFNQqWDMnVsS0HpwCgRjbg5I2AEikcgPMfWW0BQttrV2TZnanW7xnLlrd+6KRvFe5M9ZQSMgBHYOQkEp4Xu6CKi5Zkg7crotkPcAnh1F+XvmlSe42NhNwJGwAhEKh4cFl1wcvPleZK3lw7hJ3BZX2pH+6/ZknuFKiC+TXDTTnCauMMAFjBJ5GAJ09JcSDK4psPObMKYKI3svBFIRiA4pYL7goqIdx56I/4oaz/8+bzL4r/tixEwAkbACKRGgA43O5iw6GtQZknt6Yp1Fzsq3XHardvtYlSxYmmxMQJGYGchsN1UiwIR16tbfq+WD/10+sC/dFbFrzqSH+GyPtKO98xsifXR+/fVdQt21Zuib414upyeUn1M1iy1/HhBlQ0af0msn5FYPZ2WcppIXr8kN5UChp3ZhLEUcNsrKziBvrv3ja9A7td+qOBRtugZASNgBDJCgIXuSmrF+YxEII2eoogxZwSMgBGoCASSKx62xpAOc95E7WTfowqINxJoFOiIf6gKiA9VAdFC7x+nHe2herJmRcAUiIPubZQ9Vde5mKTx/TEBi8DteSN0PYcTlEONwMlS/MoWYqtWrSrFENirjUD5JYAA2OLxek7BwP7Pkx75JB6Z+Z/8IPUG5+85PGzY8Ph5+2IEjIARMAJFJ2Ad7qIzsyeMgBEwAmWZQOKpFuFQa8d5yx/ypwoUtigiHfKcu7Ok0vG63sHftZM+TTvoG8IelqPfGnbiQFxcnDRuhSkd3DoZOq0CZmVF6QDx+vXrC1MscDvz3EkHwP4YgWIQmDMjf2GbvoMGFnj6H1f8I74C+bIvtm2nWeAm+2EEjIARMAJGwAgYASNgBHZCAlkbN27UnnERnT5BRzz7IR31X1z4qL/zXdfFyeuh0zZ201kJOiUj1rTory1iKHfo9qxFqlzQKRRZMzWuuouHrE/Nu1hjtfY4WuM6WOOXIprUfE7fXaeffrosXrxYevXqJRdffHH6PDafjMBOQmD8mb8Vtjqb8JvjCsS41+69pH63RjLlnskFztsPI2AEjIARMAJGwAgYASOwMxMonuLBE9usnXKdepH9TGrTDvxjHFE8sHVnrCMf/d5aT+YE7yjB71s0/N/r52tVNnytx8/1o4qHojg3veRAVTjo1ApJaQJLUXxP/702dzL9TM1HIwABK1uWD4yAETACRsAIGAEjYASMQEECO6Z48H4xuK/rO+Q8qwstfupPFvFYWRUQbfWj60PEmuuzLfR7c/3eWL+naxchtVrIUgvorIWqVPiRo350WkjWd/qOjUUM79bbYz11CsoBuqBmXz1RNF1F8V5oTxkBI2AEjIARMAJGwAgYASNgBIyAEShHBNKjeAhEOGu+WkC8qX3wKfpZmqaeuCoeYnVUu1E3K/9YXV9YST+qrIgf9atTHmwKHNdqGFZoGJbH8o8pTpfAq2Qu1kAVIsPVumGYhquVhsucETACRsAIGAEjYASMgBEwAkbACBgBIxBJIO2Kh/hbtD+e9ZlOxXhTFREf0vmPXymfX+qqoqGvrt8wTJUOPTQKadKplE8YFmojYASMgBEwAkbACBgBI2AEjIARMAKpEcic4iH4fpQQ3+jnI1VC6CfrK71Y1g0FVLEQ053x8vqoooFPew2zKRuCqWrfjYARMAJGwAgYASNgBIyAETACRsAIFEqgZBQP4WAwBYJFHL9URQQLOrK746rwTSX8u5YqGjqrooGFLjvrRxe9FKZ0mDMCRsAIGAEjYASMgBEwAkbACBgBI2AEik2gdBQPEcHN+kXNCX7UtRgWqCJi66KPskh/L9fzxVz4cbvX6JoQsbpqatFU14rYuohlrKX+bqG/G5V1E4ztYmMnjIARMAJGwAgYASNgBIyAETACRsAIlHkCZUbxkJQUFhIoIPwikRv0bhaR9AtJesUEi03yYeFJPlVU0eAXpUThYBYMCsWcETACRsAIGAEjYASMgBEwAkbACBiBkiNQPhQPJcfD3mQEjIARMAJGwAgYASNgBIyAETACRsAIpJFAdhr9Mq+MgBEwAkbACBgBI2AEjIARMAJGwAgYASNQgIApHgrgsB9GwAgYASNgBIyAETACRsAIGAEjYASMQDoJmOIhnTTNLyNgBIyAETACRsAIGAEjYASMgBEwAkagAAFTPBTAYT+MgBEwAkbACBgBI2AEjIARMAJGwAgYgXQSMMVDOmmaX0bACBgBI2AEjIARMAJGwAgYASNgBIxAAQKmeCiAw34YASNgBIyAETACRsAIGAEjYASMgBEwAukkYIqHdNI0v4yAETACRsAIGAEjYASMgBEwAkbACBiBAgRM8VAAh/0wAkbACBgBI2AEjIARMAJGwAgYASNgBNJJwBQP6aRpfhkBI2AEjIARMAJGwAgYASNgBIyAETACBQiY4qEADvthBIyAETACRsAIGAEjYASMgBEwAkbACKSTgCke0knT/DICRsAIGAEjYASMgBEwAkbACBgBI2AEChAwxUMBHPbDCBgBI2AEjIARMAJGwAgYASNgBIyAEUgnAVM8pJOm+WUEjIARMAJGwAgYASNgBIyAETACRsAIFCBgiocCOOyHETACRsAIGAEjYASMgBEwAkbACBgBI5BOAqZ4SCdN88sIGAEjYASMgBEwAkbACBgBI2AEjIARKEDAFA8FcNgPI2AEjIARMAJGwAgYASNgBIyAETACRiCdBEzxkE6a5pcRMAJGwAgYASNgBIyAETACRsAIGAEjUICAKR4K4LAfRsAIGAEjYASMgBEwAkbACBgBI2AEjEA6CZjiIZ00zS8jYASMgBEwAkbACBgBI2AEjIARMAJGoAABUzwUwGE/jIARMAJGwAgYASNgBIyAETACRsAIGIF0EjDFQzppljG/pk6dKldccUUZC5UFxwgYASNgBIyAETACRsAIGAEjYAR2JgKmeKjAqf3KK6/IJ598IqeffnoFjqVFzQgYASNgBIyAETACRsAIGAEjYATKMoEiKx42bNggzz77rGzatCkt8Xr11Vdl8eLFafELTxYtWiSTJ09Om39RHr377rvuPVHXvvrqK5kzZ07UpRI/17lzZznggAOkXr16gvWDOSNgBIyAETACRsAIGAEjYASMgBEwAiVNYDvFw9///nfXWQ0H5MQTT5SzzjpLvvvuOzn00EPlhx9+CN9S5N95eXly/PHHy2uvvVbkZxM9wCg/YS2qmzFjhjz99NMpPXbOOefI+++/H3nvgw8+KPfcc0/ktZI+SThuu+02+fzzz+XRRx8t6dfb+4yAETACRsAIGAEjYASMgBEwAkbACMh2ioeDDz5YXnrpJVmyZEkcz7p16+SBBx4QrnXp0kXWr18v7du3j18v7pfs7GynwDjyyCOL68V2zx177LHyzTffbHe+sBNYMTz00EOF3Vaurg8bNkyqVKkiL7zwgkyaNEmOPvpoW/OhXKWgBdYIGAEjYASMgBEwAkbACBgBI1D+CWyneOjatav07NnTdVZ99F5//XVp3Lix7LHHHrJs2TKndFizZo27zLSC3/zmN9KgQQM56KCD5Pvvv3fnr776arnqqqvcdxQVmP1PmTLF/aaTP2bMGPedqQB+GsBee+0l1157rfTu3dvdP3HiRHcPf5iOcdhhh7n38CyLJp599tnx6/4LUze4D0dnm++nnXaaew4FB1Mhwg6lyqWXXirPPfectG3b1ildfvnlFzniiCPcc4T93nvvLfDYxx9/LAMHDnTXTznlFKeMKXDD1h/XXHONi0v37t2d9UHUPZk699ZbbwmsSbdDDjlEOnXqJPD53//+l6lXmr9GwAgYASNgBIyAETACRsAIGAEjYAQKENhO8cDVY445Rh5//PH4jU888YQcd9xxkpOTI1u2bJEff/xRmCaxdu1aOfDAA6Vjx45uXYVGjRrJ+PHj3XN0tJ9//nn3/cMPP3RTNPyUCjrEHTp0cNfmz58vWFTg5s2bJ/fff7/cfffdcvHFFwtTGhYuXOiuMX1i5cqVwlSKCRMmOMVD0CrD3aR/8Ounn35yP/n+zDPPOGUCVhzLly+XoDLDP7P//vvLqaeeKlgIvPzyy25NhJtuuklQrrzxxhty3nnnCcqFn3/+2T/i3n/RRRc5ZcW0adPkkksuiV/zX4jLrbfeKnfddZdcf/318re//c0pQ/z1TB932WUXp3RA8cBUkjfffFMqVaok5557ri04mWn45r8RMAJGwAgYASNgBIyAETACRsAIOAKRigdGx+ngM+pP5/3hhx+OWxEEuX366adOoYCSAEXC5ZdfLjNnznSKiT333NN1dlFOYOlw1FFHudF2nn/nnXdkxIgRQa/i3y+88EIZMGCAmxaA5QXP4geKA5QGffv2dX6dfPLJ8WeSfWnRooXraPfv399ZPnhlSPAZFl9s0qSJ1K5d21kFoGBhrQsW0cQCBKsMXNBagjijsKBTj5VGlBXBf/7zH6c8IcyDBw9261lgVVFSDgXP5s2b5e2335alS5c6xQ4WK9WqVXMKkEGDBhVrPYySCr+9xwgYASNgBIyAETACRsAIGAEjYATKP4FIxUOrVq1cR5m1AZhmgUXDrrvuul1s586d6841bNhQ6tevL4yw41iAkqkXu+22m1NEYN7PwpRYSmA1QId4yJAh7t7wn2bNmsVP4R+KD29p0Lx58wLX4j+SfGndunX8Kn5jNZGKI4xM+ahRo4abKsEzsVgs/ijTL7xD6UKcN27c6E+5o7eWgA2fW265JeGilAUeTNMPdh4hLdnpo27duu4DTxzWKayxUadOnTS9zbwxAkbACBgBI2AEjIARMAJGwAgYASOwPYFIxQO3sRDhY489JkyzYOpFlMOagA8d7uCH0X3c2LFjnZUDCooePXrIuHHj3LSDpk2bSlDBEOV38BydZ9z06dPdEQWAXxfCnUjTH6aPeMfUDiw/sBBgSketWrX8JXdkioh3KFRYA6Ny5cr+lDvCgV0ugmyYdlJSDoURu28QD5QMKD8IJ4qIkSNHOssTpoCYMwJGwAgYASNgBIyAETACRsAIGAEjkCkCCRUPTC9gTYZE0ywIEBYBWBDcfvvtzjJh8uTJwtoOmPXjhg8f7haYZNFIOr6jR492ayPsu+++7nqqf3Jzc+X8889360xcdtllbh0JFk1Mp8NqY9asWa5Tjr+s74CygTUR2JZy1apVBV534403yuzZs939TDHZe++9C1znB4tgssAmC26yvgTKjH/84x/b3ZepE1iMoDiBFdNXUDagtDnzzDOFRS/NGQEjYASMgBEwAkbACBgBI2AEjIARyDSBhIoHOuIoCPr165dw60zWRnjqqafcAoqY7LOwJAsxMs0CxxoCuFGjRrnj0KFD3RGFRKouKyvL3crCjKylwLoTdKB5T1Gd9yvqOZQE1atXd9NFmNpx3XXXuXegfEChgqVA0LG1KBYNdO5RTnB/2LGII2tLYHnA81hJ/O53vwvflrHfhK1Xr15ujQfWoGCbUdauYH0Kc0bACBgBI2AEjIARMAJGwAgYASNgBEqCQJZOA9i2cMEOvHHFihXOQgDLhkw4ts9kugZbdq5evdpN42BxxwsuuCCtr2NahJ8ywcKMLGzJopNRjh0+WDOhZs2aUZfj5/ATv1BslKRjO1B2+MDagXQxK4eSpG/vMgJGwAgYASNgBIyAETACRsAIGAEIpE1LgMVDppQOBLRPnz5uqkLLli3dWgUoB0444QQupdV5pQOeMsUjkdKB6+x+UZjSgfvws6SVDryXNTVgxMKXLJJpzggYASNgBIyAETACRsAIGAEjYASMQEkTSJvFQ0kEfP369W69BJQcLFBpLjmBww47zO3IgbWFWTskZ2VXjYARMAJGwAgYASNgBIyAETACRiAzBHIz421mfK1atWp8a8vMvKFi+cr6DsOGDRO/tkbFip3FxggYASNgBIyAETACRsAIGAEjYATKA4FyZfFQHoBaGI2AETACRsAIGAEjYASMgBEwAkbACBiBbQTStsbDNi/tmxEwAkbACBgBI2AEjIARMAJGwAgYASNgBPIJmOLBcoIRMAJGwAgYASNgBIyAETACRsAIGAEjkDECpnjIGFrz2AgYASNgBIyAETACRsAIGAEjYASMgBEwxYPlASNgBIyAETACRsAIGAEjYASMgBEwAkYgYwRM8ZAxtOaxETACRsAIGAEjYASMgBEwAkbACBgBI2CKB8sDRsAIGAEjYASMgBEwAkbACBgBI2AEjEDGCJjiIWNozWMjYASMgBEwAkbACBgBI2AEjIARMAJGwBQPlgeMgBEwAkbACBgBI2AEjIARMAJGwAgYgYwRMMVDxtCax0bACBgBI2AEjIARMAJGwAgYASNgBIyAKR4sDxgBI2AEjIARMAJGwAgYASNgBIyAETACGSNgioeMoTWPjYARMAJGwAgYASNgBIyAETACRsAIGAFTPFgeMAJGwAgYASNgBIyAETACRsAIGAEjYAQyRsAUDxlDax4bASNgBIyAETACRsAIGAEjYASMgBEwAqZ4sDxgBIyAETACRsAIGAEjYASMgBEwAkbACGSMgCkeMobWPDYCRsAIGAEjYASMgBEwAkbACBgBI2AETPFgecAIGAEjYASMgBEwAkbACBgBI2AEjIARyBgBUzxkDK15bASMgBEwAkbACBgBI2AEjIARMAJGwAiY4sHygBEwAkbACBgBI2AEjIARMAJGwAgYASOQMQKmeMgYWvPYCBgBI2AEjIARMAJGwAgYASNgBIyAETDFg+UBI2AEjIARMAJGwAgYASNgBIyAETACRiBjBEzxkDG05rERMAJGwAgYASNgBIyAETACRsAIGAEjkHPxxRdfahgqNoGffvpJtmzZIlWrVo1H9LvvvpMaNWpITk6OO7dmzRr55JNPJBaLSe3ateP3hb9w/dtvv3XPJfNv06ZN8v7770vNmjWlWrVqYW/c77Vr18p7770nWVlZUqdOHXeOcBK2X3/91X2WL18u9erVc9fmz58vS5YsiV8j/Lm5uZF++5PpjDvh/eGHH6RWrVpxbrwnzDKVuBOXmTNnuniH+ZAO69atk7p16/pouCPvmTdvnuNRWLwLPFiCP0qD9y+//CIffPCBVKlSxaVNVHSj8lrwvh9//FG4h/xKWSB9fB7kmJ2dXaD8BJ8tze+UD8JHnvQunAabN2+Wzz//XHxZIi5RLlHZDvsHJ3jDqWHDhlFeuTBR/qlffNn2N8KWOqRp06au7PvzUXHx18rCMcyBMIXLfqr1aKp1Ce9IlC5cwxX2zmDezn9CJJU6yt9bWscw2w0bNrhy6dsDwrV48WKXt6tXr56wneG+pUuXunuDdWrYP9oW0tiXe9qlcN2MX7go/5IxJb+X9bo7nbxTyd/hepb0CNZj+aRFqN9nzJhRoK1M9GxYRlixYkVcfvD+laVjppkH83iYWaJ2LZH8Ea6faVe4F+aNGzcuIBOVJcaEJcjBhy0cH86nWk6jyn+Uf6RvYeU+ql0hLFH1dqr1Hc+XlouKTzifF9Zm+bBHtX2F5buotPH++WPwnnCfg3IRrIuKwjwcz6h8l6p/wTD6cBcme0XlmcLil0h+5rmPPvrItXWUb9rDdLloCTRdvps/pUqACuDEE0+UHj16yKOPPurC8uGHH8pee+0lnTt3lq+++sqde+ONN+Q3v/mNTJo0Sc4++2y58MILE4b7mmuukQEDBsjTTz+d0L9PP/1UBg8eLC+88IIccsghcs8992zn35NPPinjxo2T119/Xf74xz/KP//5T3fPwoULZfTo0XLnnXe6T/DZ4HmuIygmcumO+8aNG+WYY45xcadywUWxTCXuZ511lvz5z3+Wt956S8aPHy+TJ092/lHhjRw5Uh544AG56KKL5OSTTxYqWT6HHXaYXHfddfLMM8/ImDFjXIPvHiojf0qL91NPPSXHHXecvP3223LUUUfJf//73+2IJMpr/sYpU6bIwIED5YILLnCnSF+f/ziST5999ll/e5k4rl+/Xq666irZbbfdXJklUFFpQEO0zz77yCOPPCJ33HGHiwuNYZQLl+0o/+bMmeP8IM/y/jPOOGM7rx577DE56KCDZOrUqfKnP/1Jrr/+endPXl6e+03eJ51GjBjhOhVRcdnO01I8EcUhquynWo+mWpf4KIfTxZ/nWNg7w3mbZ1Kpo7ivtFwUW/LU0KFDpV+/fvFg3XDDDXLqqafKyy+/7PJbojJK+o0dO9a1Sf7hKP/+9re/yWWXXRYv+3CKclH+JWJK3X3EEUcIYaXNpH6fO3dulLeldi7dvFPN388//7ycdNJJcd4vvfRSAQbUF3/961/l97//vatLqFOQF3CJnn388cfj/l155ZUyZMiQAn6WlR8lwTycxwtr1xLJH1H1Mx2gAw44wMmVTzzxhJNJVq9eXVbwFghHmENUfIpSTsPlP5F/hclsUe2KD3hUvZ1qfef9KOljVHyi8nlhbVYw3OG2r7B8F06boF/+e/ge5KGgvHfaaaeJDsi721NlHhXPcL7Dw1T9C4eRZwuTvaLyDM8li18i+fmLL75wdSfX77rrLjnyyCOFej1dLvlwcbreYv6UCoHZs2e7zlirVq3i70dA+te//iUTJkyIn2PUko5JgwYN5JtvvnEdi7///e/x6/4LghOjmH/4wx/8KSfEhv2jg0zHef/995eVK1dK27Zt5fjjj3ejxv5BlA2M+K9atUrOP/9817nm2s8//+yExL/85S/OmsGPUKH5xF1yySXOz2bNmrnfif6kO+7nnXeeDBs2zI2a+XdGsSws7lQoCEcLFixw3kyfPt0VcAo1hbxv375OwcDF4cOHy8cffyzt2rWTd99912nOsXSgkXznnXekV69ePiilfiwt3oze33fffW7EZdCgQXLzzTc7QT8IJFFe457vv/9eTjnlFLnlllvkueeec4+hqLv22mvdd4Qx0gvFXFlyaMMbNWokt99+u9x///0uaFFpgPCOwqF9+/bC91122cUp7Fq0aFEgOlFlO8o/yvNNN90ku+66q7MQoXzCLmhFQeeNTqB/J5ZRhx9+uCvrKNuwluD+yy+/XP7zn//IoYceul1cCgSulH9EcYgq+6nWo6nWJUQ7Kl2COJK9Mypv82xhdVTQ/9L4HsWWTtP//vc/p0T3YaKupGxjVdO6dWt55ZVXXGfIX+dIXbnffvs5gQ/FpHdR/qH0RklWqVIloc2MGuFJ5F8ipliunXPOOXGFCYpARpE6dOjgg1Lqx3TyJjKp5m/aQgZGUA40adJEKleuXIAFgjb1BYol5IKgnJDoWQZOvLviiisKyCr+fFk4lgTzcB4vrF1LJH9gmRZua2gXUTqjlMeRhnRWGJQqay7MIartTLWcRpX/KP+QawuT2aLaFdglqrdTqe9Kk31UfKLyebI2Kxj+qLYvWb6LSpugf3yPugdrOS/vcQ/K4RNOOIGvTh4vrI3hvqh4hvNdqv5FhZFnk8leifIMzyWLXyL5GaUtcly3bt2cFTBtYjqtrE3xQMpUUEcBwjHy6F1Q4eDP9ezZ0ykcUCAwknnjjTf6S/EjFTMNP1YRDz30UPx8lH9ffvmls6jgJqZtUNEsWrRImjdv7p6joiYjH3zwwbJs2TJ3jZF8rCQQMNDc7bnnnq6DxIgp2kfM2LBw6NOnjzMt5kiHEPP6KJfOuNOgItTOmjXLvdO/rzhxx0wYUyt40KDDCkdlg9KHgu4d6YLpHw0OAhUjfliq8Eyi0T3/bEkfS4u3VwigmKKDjbIr6JLlNe4jb1166aXbTQfwftx6663O8iTZ9CN/b0keURwwWuitZXh3VBrQgUKphXUCyipGiMNKh0RlO8q/oGCJwgelQVDpQDhatmzptPMoHjDDxTFFCaGBPO3v79q1q6ubouLiHiojf6I4RJX9VOrRotQlidIliCXZOxPl7cLq56D/pfE9ii2dWUa7gg5FMKNnr776qmszHnzwweBl9x2lHHm2f//+Ba5F+UdexQKNkVvKDO0QCo2gS+RfMqZYafAc5Y92LFxHBf0vje/p5F2U/E1bf/fdd7so0x4+/PDDsvfee8cR0PYhJ3Tv3t0pJRB8qe+Y/lLYs8gVjGIyxawsupJgHpXHPYuodi2Z/BFua6izfTvCABIDKWVpIMTHk2OYQ1R7wxSfVMppVPmP8g85rzCZLapdIbyJ6u1U6jueLy0XFZ+ofJ6szfJhT9T2Jct3UWnj/fPHwu6hPaHO2X333d0jqTKPimc43+FhKv4lCmMy2StRnvHx9sdw/BLJz7Rn//d//+emwqPwYCAZS+10OZtqkS6S5dwfRhuweEA7htl62NGpY9oEnYnCHKZnQe0Y34Pm3WRkRn7IyAgGCBynn36685bRUUzn0Z4yFQThAQEEPzG1xKSJTgyjXH76SGHhKex6YXHH3JMRLSqkwlxhcSd+WG1QsWGCC1ccnTGE3eA74MY5BGEY0TAyakFnmsa+vLp08vYMGHVn3iCWNUGXLK8x8o7Z829/+9vgI/HvXnjF1Lc8O0ZuGbFC0YUSkjwadEUp2/45LHUoE34ahT/PkQb32GOPdeZ5jIgxP5B8zRz4ZPVC0I/y+j2deTvVdIl6Z7K8XVgdVZ7Y0175NURQDAcdo46M3DCFIhWHFQ9tCkLXmWeeKYyYB10y/wpjimUQ7Ssj9fN0nZ7y6pLxJk5FaSuxcrj66qudDPDiiy8664cgF9ZnmDZtmlMukSYIyb6+KezZ2267zSlZfd4I+lvevqeTOXFP1K4lkj+S8WIwCGs2OinBNb+SPVOWryUrp8nKfzhOxZXZktXbvKOwvBAOR1n9HdVmBcNaWNsXzneppE0q91Dnh6eap5t5Mv9SCWNY9ioszwS5RsWP62H5GQsOHFYbfKcdZS2IdDlTPKSLZDn2BxNTrBGY28R8PQp9eP0EMh4dXjRrr732mruPDB/lOnXqFB/pZIGSr7/+2pmu+nv9NAnm3eJGjRrlFA2M+mPJwFQOOuIIasOHD3cKCBoE5nux+B/X9t1337i1gPe3OMfC4s4IDlYejFYRdwoiwk+iQlhY3AkjFRtzVFGwsJ4DI7/EiSkVQaGUdzFNBd5co3LAbBeLlIkTJxYnuqX+TLp5EyHmBjMPDUucYMeWa8nyGhzr16/vFEGsJcI0IubleYfwyjSM4GJ2/lp5OVJmESgZsfr3v//tLISCVhLEoyhlm/tR/CFsYnHk+XLeO0Y+PvvsMzn66KNd3kX4b9OmjRs9RonoHeaBqSgy/f1l/ZjuvJ1KuiR6Z7K8nUodVdZZ064Qd9ZmQdFFfLHqCTqmDyLkYcmH2SiWZuF7/P1YTDH1x0+BYF0UL3z5e5L5l4gpVhqUwQMPPNC9G+U9dX55c6nwLmpbicLXm+ozmscoJ8oG7/yIOnUHDmsIb8GQ7FnfsUaeKc8uE8zhkahdSyR/JGLIYBIWQgwgsV5PeXaplNNk5T8c9+LKbInq7VTyQjgMZfV3ojYrGN5kbV9UvkslbQq7B2sAHJbFuHQzT8W/wsIYJXslyjMuEoE/4fj5S1HyM/0Ob31G35B+Gf24dDlTPKSLZDn2h9Ed3+HCHBqHwIaghtCEY/FHhAOEADoSTJ+IWoGae1EW0JFDmEORQaNEhxAtMCZ5aMYxOWKUA8c0BsyvuId59ggMPEtYsL7o0qWLEzKZfoEfXGPeJyaYO+oKizvxZB49BZG4M3KL+XrQMiEYhkRx9yxRriAsw4BFPuHEHGQcVhD8RgCjg8b8VqZeMFqN9QfaUBwje4xel0eXbt4Iu8wTRpGDEsE7zztZXmNUHisa0pURNPI1rHEVRXilITv33HNdmWFUFoUiyjtfFolrUco2eZDFTTHVDS70F/SPub8o6uhUMJ+d91GO6JyRj7FmQhmCmTXTqyqKS3feTpQuQdaJ3pksbyeqo8pTOrBeCe0R5uE4TPX96DYKLToS1LOYO1O+WdsEx/coR5vC/eRNHB0HLCBwqfiXiCn5HQU71lg4LB7Yjam8uWS8fV1b1LYS813MinFY8DGdjTT0vOGPtZRPY+r43r17u/sTPctFOtYszFyeFcbEIxlzz6iozMPtGp0h8igukfzhLkb8wRKQNqC8WwQStUTlNMinKPVJMpnNp10EUmcpGCWTJMsLUf6U5XOJ2qxgu5ao7SNeUfkuWdp43snuwd+wNUC6mSfzL5UwJpK9ErX1QZ5R8eNcIvmZQVF2EsLRZ0OOox+WNqcCYMw+FZuBNtIxHSEvkM5aCGPa2LtzuiVSTEfdYx07doxpQx9Tszl3XjN0TOfNFniOvKLmlDEdYS5wPuifZviY7kAR0xEL99EFEt29OuIa006i+64Z2V3z79SOijuvDWNMBbWYdvRdWFTzGX+Pjmy5c/irI0gxLYjxa4nycLrjTjx1NLfAe1OJe5AlTFVp4+KvHa+YKlji/uk6Gi6OpIOO4LvzqoiI6ahC/Blt7GPaUMafSRT30jhf0rxVK8uqo/EP+Yl4B3knymtBProDS0wXn4szVfPsGGkRvKcsflflXUzXWSgQzmAaqGVOTK2DXF4jT+mUpph2ymLBshiMV1TZDvqnptFx1p47eTHon06HipdtyjG//TtUERnP37poU/w816Pi4p8rC8cgBx+eYNkvaj1aWF3i38ExmC5B1oneGXw2nLcT1c/BZ8rC9yBbwqPrI7g60IdNLW5cXqLMk8/UBNXlJ/K5dlYL5C3qWM77Z6P808X1nP++LVTlb8r+JWKqo3Mx324RRlXCx3TEr0A4gmEqze/F5R2sa4PhLyx/047CBN6kjY68bcdbpxi6NOE+2j1V3Lh7Ej2raz84v8oq4yAfvheXeVQe9/4F5ZNwmQm3a6poc3W1D1eU/OGvBetnHRTZrh2IkhX9s6V9DHMgPMH4JCqnYT4+HlH1SdC/ZDJbOO2i2hXeE663E9V3Pkxl5RgVn2A+T9RmBdu1YFyCbV8q+S6cNmHe+B2+R9cJcmUx+F6+F5V5MJ48H853ifxLJYyJZK9gmIN5JsgzUfwSyc/IjTo47Opn+ipqNZjWNiuLQKdNi2EelWsCmDlixYDZP26PPfYQtiKMMqdOJaKMrjJdwq8OzlxbRiwwN8WhTWa0hNFm/07vL88yMhTeRx0tHnPF0wEQgzYAAEAASURBVD2akem4h1ky+kxcGLEIO9YlYNHM8MKZWEtgDZHI0iTsT1n+nW7e4biGeSfLa+FnK+JvRoBZF8XnqXBZ3NE4h/3zvKPqDm1zXD72I9Q7+u6y9nym83aYNfEPvzMVJuH6OZVnyto9WCoQd6bi4ahTVfiLm+QXNbzUsUyj8/m2qP4lYoq/1PlY/5RnF+ZNXMJ1bVHih39Yq6jg7eqnKN60ebSJyAlBF342eK0ifQ8zj2JU3PiyMKt2VtxORd6PRPKHv16Rj+FyGsWnKPEPy2w7mnbhvFCUsJS1e8NtVlS7tqNh3lHevD/dzMP+pSOMUZzSwZO6mb6Wlxuj3lOcc7arRXGoVdBnwh0BlAReACtOlMOdaqYn+PlT+EdHKJH/4Wf9+zMluGU67mGWTAHgE+US7aDAVJSKoHQgzunmHeYY5p0sr4WfrYi/mToVdOGyGLxWnO9h/5LxZmEpPhXVZTpvh1nDMfzOVNgmqmNTebas3INS2ysdCBMdf78VWnHCSB0bbJOK6l8ipvibqbarOPEs7jNh3vgTrmuL4jf+FcabwYfwAATvCD9blPeWp3vDzIuaJ5PFFaVOeJeVRPJHMn8qyrVwOY3iU5S4hmW2HU27cF4oSljK2r3hNiuqXdvRMO8ob96fbuZh/9IRxihO6eCZqSndZvEQlWIV5BzCPaOL5jJPYNCgQW4RMxZhMZdZAsyThjfz4sxlnoCa7Lk5fizSZy7zBJjjy7olLKBrLvMErJ3MPGP/BkbXqU+efvppf8qOGSTAelnIJNQn5jJPgO1333vvvQLKtMy/ded8A+sOkL/hbS7zBNLZTtrikplPL3uDETACRsAIGAEjYASMgBEwAkbACBiBnZaAKR522qS3iBsBI2AEjIARMAJGwAgYASNgBIyAEcg8AVM8ZJ6xvcEIGAEjYASMgBEwAkbACBgBI2AEjMBOS8DWeKjASV+RF3CrwMlmUTMCRsAIGAEjYASMgBEwAkbACJQJAulaM9B2tSgTyZmZQKQrk2QmdOarETACRsAIGAEjYASMgBEwAkbACOwMBGyqxc6QyhZHI2AEjIARMAJGwAgYASNgBIyAETACpUTAFA+lBN5eawSMgBEwAkbACBgBI2AEjIARMAJGYGcgYIqHnSGVLY5GwAgYASNgBIyAETACRsAIGAEjYARKiYApHkoJvL3WCBgBI2AEjIARMAJGwAgYASNgBIzAzkDAFA87QypbHI2AETACRsAIGAEjYASMgBEwAkbACJQSAVM8lBJ4e60RMAJGwAgYASNgBIyAETACRsAIGIGdgYApHnaGVLY4GgEjYASMgBEwAkbACBgBI2AEjIARKCUCpngoJfD2WiNgBIyAETACRsAIGAEjYASMgBEwAjsDAVM87AypbHE0AkbACBgBI2AEjIARMAJGwAgYASNQSgRM8VBK4O21RsAIGAEjYASMgBEwAkbACBgBI2AEdgYCpnjYGVLZ4mgEjIARMAJGwAgYASNgBIyAETACRqCUCJjioZTA22uNgBEwAkbACBgBI2AEjIARMAJGwAjsDARM8bAzpLLF0QgYASNgBIyAETACRsAIGAEjYASMQCkRyC2l99prS5rAsl8ke8oLkvXZDJGffxTZsrmkQ2DvywSBHC3CTVpIrEc/yRu+r0j9RkV+S2zjUtm0dLJsXvmx5G1YJBKzvFFkiPaAESgLBLJyJbtKU8mt3VsqNRglWZUbFDlU81f+KLfPuE9enPuafLX0G9mUZ/VBkSHaAxklUCk7Vzo1aC/7dBgtp/abIK1qtyjy+5YvXy7Tp0+XL7/8UpYsWSJbtmwpsh/2QPkhkJOTIw0bNpTOnTvLwIEDpW7duuUn8BZSI1CBCGRt3LgxVoHiY1GJIJA17RXJ/u/tEuu7p0iDJiJaAYtk6YekT+8xb78jI0JgpzJGQBVIWQvmSdaHb0nW5Gcl74hTJTZ4bMqv27T0Tdnw4wOSW6e/dlgaSVZWjsR8tvC+pOl35Sa/8T7a0QgYgUwQUKVh3voFsunX6bJpyStSpcWxqoAYlvKb/m/Ww3LmixfIoV33l9Z1W0luTiXJ8uU/zceLh5yTcrjsRiMQJLBxyyb5bPFsefyLZ+SW9++WiftcLb/b9ajgLUm/z5gxQ5599lnp0aOH1KtXT0UiZKJ8F9MGMCsLuWir8/ne/yzi9ZEjR3qf7FiKBFAsLVq0SD799FN555135IADDpB+/fqVYojs1UZg5yRgFg8VPN2d0uHFxyQ25mCJaeNKe+o6lk7pgNohtlX9sPWoUuaOXK/gOMte9NTiIda6g/tk9R0i2f++VvI0lKkoH1A6bFr8nFRutI9mhHzBC6HLyVn82erS/dv7a0cjYATSTACLh2ptpIp+KtUbKOvn3eZekIryAaXDNW/fIucMOk0qYUmFy28M8nXU7rc7m77fW72zgxEoCoHKqhDr06yX+xzW7UA58ulT3OOpKB9QOkyZMkUGDx4cVzjQ7gVd+LdrFAM3FPl64Fn7WjoEUC61aNHCfXr27CmPPPKIC4gpH0onPeytOy8BW+OhIqc90yuwdOg/TCQ31ykdUDWgfECj75T64eMOX6/IQMt23FBA5J34F5fmommfzDG9wlk61Ns9X+mQnxnIGM4GZmvmSPPvZCGya0bACKSTAAqIqm1Od+Wc8p7MMb0CS4fDux+Ur3Rw9YE+keljskDZNSOQAgEUEP856E6Xf8nHyRzTK7B06N27t1M6eMuGTB+ThcmulTwBFBCHH364ywvkCXNGwAiUHAGbalFyrEv8TdlP3SeyfInEGjV38iNKfeTITB5j+1fcqRZr166V1atXi05PUoYFR0gykbgIQ5UrV5aaNWtK9erVU35F9lP36r1ZknfwhITPbPzpMcnbuEynV+jUmxJylZseVEJvstcYgcwTKC/1wYaFj2q9r3VJs/EJofz19b/LjysXSof6bRPek+4LFw/9c7q9NP8yQKC85PMLJl+h+Txbrhp5YUIKL7/8sqxYsUIaNCj62icJPS3kwqhRowq5o2JdLi/5BeovvfSSqxv32muvHUqEjz7+TN59/0P5YcGPsnlz5tcKyc3NkV1atpDdB/SVPr177FDY7WEjUNIEbKpFSRMvwfexkGSs90CnbKAjmrV1sm4mj5nvjpcgwMCr0Ipv2LBBateuLVWrVnWNVeByRr6i3Fi/fr2sXLnSKTtSXQwpxpSL+28SSaJ4YCHJ3Dp9tmqiNPiqkIo7EjGTv+Mvsi9GoHwSKE/1gZty8cPdSRUPLCS5fycVvp1mWtOE8u/rAX/0SeV/h49Fve7vt2OZJVCe8jlTLk547o9JFQ8sJNm1a9cSab/LbKJmMGDlKb+AgSkXTz75pOyI4uHZF1+Vb779XkaPGCKdOrSXSpUy363atGmzfDX3G3ntjbdkwcKf5IB9xmQwVc1rI5BeApkvIekNr/lWFAK6ewXrOuTPT0RKRJ7Mn8PvJ+mm+3dRglde7kWDj9KhcePGJSqwMEpZrVo1p+hYvHixEI5ULB9iLdvk71ySBLDbvUJ0ppUqN1z/IT97uCf8b3fUM/63987/Lu51748djUB5JFDe6oPsqi3zd6tJApvdK3J1p4BC13TwflD4ceFj/tntz/v7wtf9bzuWOQLlLZ/3aNzV7cKSDCS7V2RnZ5eIxWKycFTEa+Utv5AGTZs2dTuaFDc9sHRA6XDaSRNKROHgw4lyo3vXzk7R8a+77xPCYZYPno4dyzoBUzyU9RTakfCx4wFDV6FlyVE2+CGtM+96UB58821ZvW590jfVrFZVjhm2h0w8+TinvPDPcwz6F5Yvk3paTi4yvQJLBz8PtKSDzXt5/6pVq1JSPAgLwxW2XarfMlP9zgrNvfG/z77w3/LfJ6fK6jWF5I0aVeWIQ4bJjVf+TrPDNv+8P/5Y0tzsfUYgEwTKXX2gC04WtkUuW2Y6Iyctv075EHF88eZn5JNXZ8rGdRuSYq1crYr0Grub7HPmAa4+SORfUk/sYqkTKG/5nAUnC9v61W+ZSZuKRWHU8dZbb5XJkyfLunXrkqYBgwJMozj99NMj/fH+J/WkAl0sb/kF9Cw46fNEcZKC6RVYOpSElUNU+Hgv75/69numeIgCZOfKJAFTPJTJZElnoPJ3qWB6RX7/ctvxjLsekHUbN8nX/7pOGtWplVA+5Lml2uk974HH5My77pdbTjpWG9pt/gT9TWfIy4pfrOnA9Ip0uU2bNsmcOXOkffv2qSkS9MW8f+nS5AvEFSt8JB4udDxLlQ7r1m+Uz96eKA3r186/J8HfJctWykVXPSxnXXSPKh9OyL8r5F/c/wR+7Ohp2Nx77/+3dx6AVhRXHx8UNLFGxc/YImCN+tmwN1ARxV4QYsNeP7FXLIgFRWPDiL2AGsESuySKsWPFkmCJkURj7yV2FL79zX3nMm/f3t297b13H/8D922bmZ397+zunP+cc+Zat88++/jp0aotr73knzZtmr8uTEEXW2yxqqpFR/q+++5zb731ljvwwANzt72qTlpGZjrqdPrpzC+//PJl5JyR9Mknn3Sff/6522KLLWbsLLH2+uuvu6eeesoNGjSoRIrk3bV+H1Dfd955x5v9Jp+x5d7Wfh9AOkz9YaobfMPRbo5552xZoWDPt19+4yZc8Wc3fuRdrt+hEfmA1Oh9QBt58803fZHdunXzCp/f0J+aI1Drdk4F+e7NP//83nowT4Xr1c5pR0h8yfsH60a+JfPOO29qFYkVcfXVV7tLLrnEkw9J5Vn5qQWlHMRCg/PQV8gjlb7T8pSdlaYjt5dS105MB9wrqpWwT9ilS5ey+oec/4Zxt1VbBeUXAq2GgGa1aDWo2+pE0Qh0YSirxfKGRya6EYMGetLBWy6USEf+rtGI+4hBAyLriIktymlefu2uE39BgisSAKgSQckif/y31lprlVUcnYdaWju8++67rmfPnn4+6bwVsZGZvOlzpePG+ZvXtAy2sXQ448TdXNcF6Hy1PO7zNaXvOv+8Pi15SpVX2J+rVj6R3fvtt08OSIlZp91XMjz99NNuyJAh7vnnn89/kgZI+eqrr7qDDjrI0TGJC+34xBNLB1KLpz/44IPd/vvv75599lkfMyR+vK23P/vsM3fUUUe5W2+9teKq/OlPf/LkRZ4CnnnmGXfEEUfkSdosTa3fB+PHj/fvg2Ynydioy/vAnvOEJZYOffbv5+b41VxRzWLvjdj2HPPO5foc0M9bRzR7H8TSZVxii8NjxoxxXbt2dcsuu6z/sX7TTTe1SKcdtUGg1u2cWvXr189xH/NKfdo5nyn6RU2/qF3aOpYOkNfEU7J90dEZ63zzIuEYafbdd19vHVFMGxy3fXmvNUw3evRox/t9kUUW8TEpIJ2PPvpoH/MpTAeW//rXv4q7Kn2nFQuoYqUjt5dSsBBIshbWDvQJ11i9p5v897+7cL3UecP9nL9WAS1pS5dddpnbfPPN3ZlnnunXw/YVnlfrQqBSBGTxUClyjZIvUprh9i2Wg1kqRFy/d6/oOvdcfjAq6TiXyP6HX34tWjq34QrL+TyFwYLCiEExX5SuaeycbO1KGNUMRy9mn332dlW/NquMjfpEFfDeOE0V4T7iXtF1vrn9SKVvP8HNDbcfe/IVf983XGf5gkuGtbcS6cu91nvvvdePcHbr1q1ZVlNOl156ab+fEe4PP/ywQ1k7cGETJ070o4Pdu3dvdv2VbNx4443u4osvdgcccEAl2eueh0jzjPAxi4ukLRCIHlp7bmNL3CvmmDeaWafpnVEq3VsvFpSgJVbuUXDJyEif9yofeeQRr+RdfvnlbrvttvPZxo0b5/bYYw9vCbTBBhvkLUrphEDR0qEIRVN7xyqMvgJKdDOJbb700kv+8EorreRdMuLp49vNysrYOPfccz2hfPbZZzve2XPPPbd77rnnvGXWK6+84olZYj1hDQfxcf3117sePXpklKrDQiAdAciGv/71r8VE4frQoUPLGuQoFqIVIZCAgCweEkDpULsiBt6T8LaMKAS2YeO92H5bBsdJctrNd7g+p5ztl0EWn99vWz5blgEebD0KI6NWjGLB6g8ePNjHMshbDGVsvPHGfnqsHXfc0T322GMtsmKmGP6qNVm3E1xzzTV+pBKFadNNN/Wj7naMkXqui44BSmPv3r0dnee4YKYJBj/99FPx0M033+yviZgO9RXfEKI7HknhZvql3/YnTjkepR9+wa2u38Bh7qwLb2nKXygnsTxfvi+07D/XXXddizzghhih9MYbb7i1117bm6yzH4sJsOdeW7vCBzXrGMcx199pp518m9pmm23cAw884PPxh/Z58skn+yXlcm8xtzVJOy9p0sq2MsIl7TlPxG17llDMeJZok4cffrhvV5jfsg85/fTT/TqzpVgeOrpcyxlnnOHTMOXcuuuu68vAMod0Jlz/SSed5C0nOAfpMJ/+/e9/X8Sac4Ryww03FJ9R3BqmTJkSHm62znN09913+31ZWJPowgsvLD6DRx55pDeTDgt8//33PdHC9VFXazdhmlqsg+dxxx3n2wPn2m233dx7773ni/7Pf/7jrx9ct9pqK48TyrMdt/PjcsG7DIXahPcCeRiFahWx5zS+tJPH9wfbj4x50I056ir3yJio8xrs91lLbVu5GUusdJDdd9/dk4vzzTefdxeaMGGCW3TRRb2lE22cWQtMwHOFFVbwFnMobBy/5ZZbim2be0D7MGEdiyDu38orr+w72piPI2n5Mc0n/R//+Ecryi/5BtgzxXGeTZ5lnpuBAwf6c/OOYpvjd911VzE/Fk68Z9hPfUiHO44J7Yu2HwrP6j333ON3Zb2Hwnzlrjf+d4/mWfjKxZeGRXx/uM37jGcdUiDcT95S21Zu1hLiAyu2U0891fE+W2qppdxCCy3kttxyS0db5/fQQw95Mp7ZORAs2WjnodAW2Ufb4T0aWsylfYNIy/n33HNP3y5D5TMsv5x1zmd9NPueGDHD83HWWWf50XXqS3u/9NJLWxTPd5AyeA5N+O6wj/IbQajv4MGHuCV7dHcbbriBOyV6vnl3tAfBetTuda9evRw/3j8skWHDhnkL0/ZQV9Wh8REQ8dD49zDjCgqxGBjKKpD4M5aFjDO248eHjb3DnTbuDp/slAHbzRjs8ux/qXwZ1QkO0zniQ8pH9thjj3UnnHCC77zlHZGlE0mHjI+ZdczxDw8/TsHparqKDyh+8piO8qHEioJRN1OqHn30UT8ah38mHYO/RyZ0O+ywQ4uRlGWWWcZjwMi2iSmyjHTUV6IbaSM7fhls+xMH27Hjw8+/OSIeIsIhkiGH7xQrJ9oZS188j8+R/8+uu+7qR+lR7EwY/XnhhRccx0w4/u9//7voQkB7orNy1VVXufPPP9+3K0aQkLRjmBWi6CG0KZQCOn3cP4TO/4gRI/wo13nnnec7d7hCGKlRTdn+BMEfOmdYfGy44YbB3uRVe5Ygu1D8UdBGjRrlHn/8cR+5GwwQMGMdP1LLM3bsWMeIBtf99ttvu6233toraWC3+uqr+2fMXFi4/nPOOcfHh7jiiiu8//F6663nFbqLLrrIEzac/4knnvDnQ5nae++93TrrrOPrA0EEmVOKVOO4HcvCGkIEvOl88gzSsbP3ACenTUBG0l6oM/cR14okIstXtoo/vAsuuOACr5AMHz7cu7NAoqC4okxwH8CV6dt23nlnH2sD0+lQUKZREMDdBBei+++/3y233HK2q75L/9xGp4gv7azx/U3bj4ye4B6NiAek16CNW+Yvkc+KzVpCGiFgBwlhAeF4NhjtZeQZa5lQeYcw/Oc//+nbnr0fuP98X+w5tXctrlsQEbRb7h/fFdoSihiSlp93P0pTSDzQdnl2afcILlOURdvn/XH77be7FVdc0bcP6gB50r9//6IpPUon6Xh2eG9xzdtuu23xPUP58Zg/vKOYehmx60t6//kEFf7pGN89mqfvxLRYGiyljmNdAOGA8C4tlS6+38rNWtJOEN4VcVl11VW99duLL77oFlxwQU/2koY2wvvNhPcn7+JTTjnFfwcgvIhdgeT5vkFEf/PNN74MIzes7HKX9MVQXvmO8r2gj8SzZS5SkOJ8exhsOeSQQzxRfthhh7mXX3652al4b/IO5bkxueOOO/w+nqP2LhDIO/Xf0T0e9UmGDDnRf5fOOWeEuzEisdpacKkwgWzgvcnP1lmaYBUhEQLVItC52gKUv70jgIUDH9mWy0LNO7nTb77dEwwPnna867Uic1xP99unR9YOiO2PPtd+uzBY0LI878bhU5T3h4/5mmuu6TMReArzWTrxWS4RpEHB4kOJ0KlbbbXVHCMSdB5N6LCFZR166KFeCbHjlSx5GaPU2IgWHQVGF1CAGP1F+vbt6xUy1lEcSB+OsLEfSwgIBkaq6ETTeWZEA6Wx7mKjkIXmMeN0hdvsRy2Hn3+LJxjG3zzUbbBOYVSlsO9Wn97vXzvab2YSlJlUnh2fcZZca4zs0dG78847/Sghma688kqPLQEIwxHOsEAUNjo59qHEXxblAUk7Rltkii2UCJRzyCI6T2wzMoPQGaMOjG5xz5ZYYgk/WkD7q7Zsf4KmPyhNdCJNeQmPlVpntJwRsgEDBvjOA8oPbQylG+E5s3UrgxgqdGQRRolRvujkdu7c2ZMRuLXgO8yzhUBG2GgrCiD3CGUeXMALq4LJkyc7CAmeTUaRrXMDSYCSBTEXr4cvPPYnDWvOQ+ffnn8sh0IFneuAdIAMXHzxxX3JKGa4mzCiVyuhfNrHyJEjPRlJubRNlGXiN1ideFegEJqESrLt22WXXRwd748//tjfE94LTOO7/vrrW5L6LePvA3uOg/eBEQyDzt/PLbFSD//c2z4qFu73Fa3R+wAsUZ4gp3kX8M7EooAZBayt4ptPWz3mmGP8qVFSUObNKoqdtBm+BwjvYshrLHhoK5CZPOuMMiMoS7QTIyzZVyo/9422T5wSvmE8d9w3GzEkL/ee+iIojyhfKPJE1u/WrZsnoCHeeJ+gLEIaWOBT7j8kNc8N7TxL0t5DWXnTjlfz3SNegUlbfvfMKsHqEl9ynD4EPxR6SC2EbSMdwv0cyyqTNHmE9yZiLoTxPLx7aTtzzjln8f3Jvvi7lO8Y7QXLGiwCGNiAdMvzfUPJ5zvCtKPVCiQ3zyptne8JfSCCG0Oq8cwgHKdd85xiaUg74TkMrTiIp8HzTgwfi2vEs8t3jvztXfiO8x04ZeipxSDCkBC8o/aO3lttJRBRWDOYGMmAdS73hG1+rLMPqwjyyLXHENOyEgSqf7NUclblaT0EImYfch8G3pP8wbavhO2PNjaJXCoemfyqCy0dIB2I7VDMH6WjnOJ2UB77K5E11lijmI0OCWLMv99I+MPIIEoFFg4mkAsoNmaWa/tROum42o8OYTVC5/Kjjz5q1qlkai0UREZdTcKRalN84qNUKLeQJ3xEwZTRTSRpxMPKrdWS83Ez+dd0U2dsRyfxx5vIpn4DhrnHJr7sQkuH+8ZFZMTay8/IT8WC8lqUX0HFmUYUoshGbGz2CkaY04RODSPi3HOUXkY0zd0g7RgKNAo/oy+MjGKtgkJCoFIT2pN1NBdeeGGvYDACiVRbtp2DJR1G2mqpTmiYlnXSQjqY0B7ffPNN20xcQgIY6UACRt3pyEHqMUK71157efID/ExWWWUVWy3G1EBZQsCle+R+ggkpozwoQIx0gSU/lDzEfKT9RsqfUljz/HNfsCowITYEz78JHXQEhd/Oz3UxMlxLE1d75iFaTDAZRhjRMwnjEKBoQjLGxeIX4JbB84M1CqP8dNrrLk3vg+gh9s9xsyUn53iTjDnySvfWS1NcM9LhvH0jMqI7CWek9XmatluUb6XlW0Jg8ZzRWeedyfNN+6CNISgttAlcW2ivt912W1G5sTOYEsk2Cpt9Z2iPPAtGOnDcvkWmDLKvVP4+ffr454b7hqAg8S4I7xsKnQnkBNuQDog9g1jIoHQh4feD9sJzZW3aJ0j5k/YeSsmWeqgjffd4tpJ+AGD7WYcsom2gsEM8ICjN3Lswna0nLX2mnH8guxCs0ZKEfoe1laTjtg/SwQSy2fodeb9vtSAdOD/PIwMw4XPAN5nnztxLeYaNHCRgLGL19RtNfyBReHej+GLdyDrEQyMI39UrrrzKPRkRQEdGBNCWEXloLoVtWX/rb1odcLngm8ov7jJpaeJ5bL+WQiAvAiIe8iLVqOkiRSD67xUClmzYtr+kaGPo77Zzpwzczm9CPsQtHSw9S6TZdrTRbLuQJPdflBxT4siEIo7Y6LTfSPhjH63QkoFkbMfzMtsB5nz2C4mOhKIzd+E+gaB0hhL6UbI/b5A8OsxEMqZTSWeZD3WoQIbnqOW6v53cPwrlJjYtm9b8/iFHDnBDjujvDxHPgbgOCJYOBJQkX2L+YH+z4z53eX8YyUS5AB9GnFCwzZKhVEn44MLO06lh5BBF0KxI0o5Zeb/5zW+c/Rj1hIgw4eMcirVZ9lVbdlguowwo0uHzER6PrzMKFoopNeG++Hr8Whj5Rbli5JhnMyQZLG/eTqk9DxAnhiVL8Mz7DMbrZ1jb82/bVrcwPS4OSHhulFdGzMxU3/JVszQlAUsZEwK/IeG9g5w0CffbPpa8UzbaaCOvXKPw8F5g1L7VJHgP+HPadlMFeu3Rx204qED2Es/B3Cu8pUMUUDJ8jzTLb+XEl2VeGBgyuovFDSOniJltQyR0j5RzrA2wGqP9QgiEEraPsB1DRIXHyGPKksV5YF+YJszPtI8QRJh/ozRxft7roZS652Ea1o0Ui3/bOIc9U6RDyS0led5DpfKW2t9Rvntcn92L+NKuHWILayoELOOWDvF8WdtWbtbSRvmNzAzT885jsMVIzfBYuE67DyX+juRY+E6Mf9/Cdh2WU8k6AZ8h9EKxd7fti3+3bH98abGOeL5tICAknuPp29M2lnbLLL1U9O0Z4r759hu32eabRcTmRm1exSSCB8sGLLUsthXb/Ex4x0mEQDUItMIwSjXVU97qEShYOthsFuGyUHbhOMQD/ZiQdMDSgdEr9ls+8oTbtt+WhTLz/8UEDfNSG2maNGmSz2wf4FIl0QFl1IEZKzDfQ+iIYVKIsllPsQ8p5zazXT6mdDYZIS9XCIqIMo25Niw4oxKtJtxMJL4s7PX7hxxR6EAXSYcmS4fEfPFy4ttWbhlLzO35EGJ+DJmABYQpBaWKwYwa5RYTZUzxMVnGTJr7k3YMJY/7auaclM/HOa+iWsuyGT2FLGtNoVNB+wYDOtOQeBB3lQjPKPcOE9kQT4Iq5iXlSp2XsiE0cAExBY9nECsRs76wDjqkkY2o4bvMyC1R4WslZs1EXczk2XyUKzFJRYGFICEv98Lc0GpV39Ry4s+rbVumaLtXE/FQJB2Klg5RIkufd2nlZiyJh8G9CwPPQdLQvkxorzznWBuAHTiirOcRCDZMjs3FhTwW14RvUTwQaFKZjL5CdEAWQoBAhFQi9u1DyTTLN9oso8RmccHzY22MczASHkraeyhMV856R/ruGWkTXxoe7MeFDDHSwSwd2BfPl7VNnjzCuwviACs9vl3hd87i9BDTKhQjqsJ9pdar/b6VKrfUfp5P+kWh8J7k3R1eW3i81DoEBWSQxXnAGo/vQCPIrZFFK33dSc+/UHQhue/eGVaUbXUNScHYqUtIOsTJndByr63qrfM2NgKyeGjs+5ej9tGIdGHIucWykHnGcbN8sJgOyfkgIcg5I1/z7RxViiWhs8joLi87TOgxxSNeggkdMI6FP5QM8hFEieBcjIYzMkHaeo8QMupFJxPzS0wJ6RBbXAdGSsoVRqaJa8G1IHl8eMs9R2J6bpy/eU3LcJsMwXbB8mEnb+ngYz3YsTC/5cEGotTxxIpk74Qw4D5jYsl9TxPaBqQDCikxIPDBx+UAv/u0Y5SJnzbWFbQlTDkhgjBbDRWeUueuZdlcJ8oEz0JrCqP2jLITm4DrRwGuRhhNI94KZBqKE3EQunXr1sIdqpJz8KzZ84+SCCGFm4wJrg8QenRWuaeQEnSiMEOvpUAMoJQRbBSFDxcKFAcUiCzLnKR6mLLJtYGfjaYmpa3tvtj7wJ5jll5mHDfLh4Klw5LN3yPFfFGmZu+HGfkL+5uKzbEAY57/0047zSvctCXILJZhx5hnntE5YicYIZWjeO8mxz1E2aSdQPoRNBbrs9CSJa0sa2+4KNE2K71vFtCW8xN/hfrwzqMtW6cfUo2RX8hqXEEsdgT1y3oPpV1D2rEO892LLpJ7U/xF7dXW7fptm/u42667+VgPYM5+xI7n3bZys5aUh9UjbZhz0+ehT4O7GG5qxC8xQgvLBBR4AjPagE1W+dV837LKTjpu7hFcE+5PtGfabaXfFZ5pgkzyaxQ3C3D59cIFa7i33nrTfRYNZFx88Uj38MMPRVOQf110OUnCr977zLUvfh7cLPiF71ZLY+5Atq2lECgXAVk8lItYo6WPmHvGtDthucAyChxZGIya7ub65S/cJ19+5RaYJ3J3aDpulg/G4Nt+lh9/9V+fx/IDRXic8suV7t27+5khzCSWkW18d+2DTnl0NuOCCR9B2BiNZlQYJY2P8OjRo31QuzB9WFa4v5p1RtH58IXWFSgK8dEIO4eZL1KXpPrQIaBMlCQCKbWKFG5koV0EN4/VueaM2sanX7qu889TPG4uF7QkH6+0qZKk//TTr3weGhfb8ePhdlO2shbMuEDHm9FEUwRCHMN1RlLwjcdFw/yqMV9nxCjtGBUiLgK+vIx+Eg8AIQo3RARi99FvBH84f7VlB8V5ZQPFNRzRDY/H18Prt2Ol6mrHk/IQIf3BBx/0Ef5JhzLPc2VpS5Vpx+NlM6UnivhRRx3lR3y4Jp6TMDaL5Ykvs85FJxyffxQ0BCUfRd1Gp/Gjh0CBtDKFjfcL0wHWUhhVRwGkU2zWFlwnQRBLWVbE8QrrY4onHXRG7VtPoieXhxeJLWf75ezu2y+/dnPM2+TOEx03ywefOJb+2y++ceSZYQFRKDZebtPezAXY8s6nHaGEIWBMoFCzMmEfJCEEAuRZGJAzCe9wH20FkpG2RBtBIIAgO5Awrd+RsM8IZN7j5ZAeVh5LOw/fsf32288HTGY/3xkCjZoPPDjgFkV7RyxoKfmz3kM+Q4V/qvnu2SntGtluk+9edF7r31idrF0ygo5LiVlIcXzX3QouF2EeWycteWzbyotv2/48S2KL8A2CyLS2TZvmnsf7QgRbpR/Edyt0CYqfx9zuKv2+xcvLu82ACqRI+B6DRCPmTpqEbSRc57vBcw/m9pymldNejvXtu1mkxPd1O0TWfwjk0bCoXzs0mnlk2Kmnun2jZ90kvF7bV68lxGqSEF+GwcAkKZUnKa32CYEkBDpFLyvrMiQd174GRmDWA7d207didI9bDFPffDn4itHu2x+nuhGDBriuURC/+PFw+5OvvnbHjRnn5ohG+y/en1H9luWRfpo/X3Q4hzD6ifk7o9KYdPPhJJhgucJHHj9rAvjUQ1Bu+PDHPwj4ceNnTOeDDm8pJSNPnQhCx7RQKH2mJIX5uEY606ElSHg8vs69//myu+O7i9tfv7SHm22h6CPob2PULqIO64zmMd0dcdI17rvvf3BnnLib6zpf5DMaOx5uQ1CcNPxG98tfzO4uOHOfqJyW5ZF+toUKcUSKlWiFFe4NI3VJJplpx6gaMzxg0pzkI5tV9WrLRgHCvJro4m0hmIXSWa2mTYf1pv1CEqLglSIUwvTlrPPe4P2R9u7AKgnJ60+cdv5S7wPqwXNMe1lyySXLNiUOz4lCyfPOiGeSlPs+4Hmfa+XRSUX5fbOduYg7eYMjm55ze35nLMdffJeb+v1U1+eAfm6OeSI3Ff8+mHE83P72i6/dhCv/7LrM1sX1OyyaQaL4Pmie/uQNjipZn1IH7J3Luxg/9XhbwuwcdwQUnVOjDn0lQlvhHobxHPKWg/k3roOlTJjzlmPpiOlAuyrVbvEdh2go9ZxmvYfsPEnLUu3c7gFlt7fvHu34xxPfS7ocvw8rGYubwzNEOwqX9EdoQ5DNvE/ix8Nt+hyQmLQT3LnCcsJ0nK9S4Z3Ju7hbt24li8ANkF+57bWa71tSZUq1F9JCGjJVc/dooKmaEXOsecACMjnJBbDc9yJ1o03YrEtslyPHDR3uTjvx2Oh9kW8MFwx4Xi0+GNYPs0VxyapxPZw69Sd3ypnnuBHDKnOJhLDHhdUEQse+O1g8hPEdGOQL3SYtj5ZCoBwE8j0t5ZSotO0MgYKFg1k6hMuR+w1yh145xi110DHu6+8KUw2WqjzWEbv1WteTDoV+ZHK5pfJn7WfUMK8/brwsPvL1Ih04Fx90FJu48kqnlw9pNUInjpc8ARAZnQ9H6cJyOX+5HYswf/J6pAhE/71wU5GmxQVn7B2RD1e7Fdc9JDIHzGgbkXXEzjtu6MjjlQxfTvPyivv9SVrvTzhyFT9r2jHSVtOmqi0bk1QbxYzXuzW2GVWqpfCM2mhtLculLJ6LrGejlOJWSV1KvQ/YX+2c8pCwmM5jQUGsglJSn/dBdLbie8Ce38Ky3+Bt3PiRd7mLdz3X/fjdD6Wq5fdj6bDSpqu6foduU7K84nlSS2p5MO2di+831jRY2JgVTMsSsvdU0lZw9cPdDrN3LFVqJRAgacRnGtlGHbLeQ2n1LNXO0+5BWnnhsbb97tEsC+06vsRlBfIB4s+C04b1DtfpDzACT554OfHtMF856yjpWYo6BLFZNJRTdjXft6TzlGovpCVYdrUBs3GXo6+EdSsEX5LU7b2YdLJo328WW9S9/sYUt8Jvly2Rovluiwdke+dvmsXEtitZcn7qUanQ1+DemUA04GaB1UNIOnBcpIOhpGU1CIh4qAa9hsiLaT8f2eTlxfvvEZEJ+Mx3in6FdFnLtPIKn/N8wPBiy/qo5iupvqlgoxlZghhBgaql0AHDpBfzNcx6k8qnE8P5a60MRicrXIrddruwpu0Lztw3smDYd0ZziB23zWKzsR0lyrPDWqYjwKgOpIP5+qen1tHWRqCe74O77rrLK8+nRCa4ZmYdv75Wex/Yc9y0xHqhYMEQ1Sjpc2EVjeXLfD9YviqXKMTEx4HErVbJKbcqnJvpeidMmNBsGsxyy2lP6evZztvyu5f0jQ1xx3ohnMUoPKb10gjUs71wVpRhLAaYxcYsBsLa1O29GJ4ktr7Omj3dhIcec8sstWRuq4dYEVVtYu3A+Xutv3ZV5WBVhdUHLqYIWIeC1Q4EhUQI1AIBEQ+1QLG9ljFr56jPF/UC6QgW/kT9xYIPfr22y4GCSOJJ0/WVU0ZrpMWMlRczTDsjTLUkIDC7o+wk4UMKgw/pwNRqpcxpW+T9+SfnonufKp2i4zbqEyUMYzB4vaGp2RT1C9+GCiVWezy1XjroTTGrGbEVhPVFoJ7vA+JW8EuSit8H06P3Ac97inSZJfpWRO+DJirSPg8tl1aGvQ/iy3KPW/oaLG2GoRoUVXYRuHfYjBNlZ26nGerZzuvx3fvx56mOdpwmWAbQziW1R6Ce7YXaEuMkSSp+L0aF4aJSibWI1WO1lVd077z3vht15XWuz0YbtBoBAeGApQOkw5I9lnDUo1rBmgEXtfvvv9+7ReIuRvBJBsUqmZ2p2voof8dFIP0t3XGve+a4soWiuATRizV6s0bXW1QhPflQr+2O+kkn4CNRmfG3xO+yNTovjMxgAoelQ27SgTv9zpuRbWO66d0ss/86Shm1jUgh6URHDOuHpqVtx5dVH4/OKBECHQGBRnofTPv+HVd43ksjv8wCS7qfpv3kuszapfgesOe9bsvS1dGRdoJAI7XzyR+96mjHaYK7F9YWRkDwjfWEWx2XafXpaMcaqb2A/QcffFC1C+A2/TZ1z7802T36xFPuhnG3RbNURP2qOkvnzrN69wosHWpBOlh1IRiYWU4iBOqJgIiHeqLbxmVPXzGaR/zTD930BReJ9MrkmAy13t/Gl1zX06P8l0MA1LUyKYV3mvSY8/c+JU3neVZ20374JFJIFiqkslGgei9T6qRDQqCREGiU98HUz592PO9p0m+pPu6tL952S83fvZCs3u8BKz+tUjrWLhBolHZ+yyt3OtpxmuAOQ1BFc/G0AYR6L9Pq1NGONUp7AXemjKZNVCso/7UkAKqtj/ILgfaMwCztuXKqW3UITOu9pes06QnXaRoMLDEeKK/ey+rqrNzVIdDprTdcpwfvctz7NOmywCbupy+fjZJMi35Rw6Bx2K9e22kV0jEhIARqjsC07950Uz+53/G8p8lBq+/pbn31bjc1snoovg/sPVC3ZVqNdEwI5Efg+ff/5kY+c6WjHacJ05ISvBWrB6wd/C9q38X1Qiep2XZ0tNk25Yfps46n1UfH2g4BZg2aOHFisynR2642OrMQmHkQEPHQke/1/Au6aTsf5Do984iL7L+8xSxOuww2wfD7Qaf4surjHRnQ9n1tkA6zXHWOv+cuuvdp0mm2Bdzsiw5yP33+ZNQYImWj0Cj80kcBqcd2WoV0TAgIgZoiAOnw/ZuX+Oec5z1NFp9nUXdxv7Pc2Jdvd1MjX/mmj0Odl2k10jEhkA8BSIddbj/At1/acZrgCrDNNtu4l156KeoS0Sfia0dfaMaP/OF2tcfT6qNjbYMApMPYsWN9W6BNSISAEGg9BORq0XpYt8mZpq/f149pz3LTpc71XM+5BRZynUrEfCDwJKNdNmtF9PktbMeXTbNkJB0nh6QVEYgCSRLTAfcKb+kQEU3c8zzSZYFePtkP745xneddI3K7iMiKTrMGMR+iwxhCQEIwElRoDpVv56mU0ggBIVA5AhGJSEwH3CuwdIBctOc8q9C9V9nVJxk8/gTX/7dbuyV+tbjrPEuX6BVgz3+Nl1kV0nEhUAIBAkkS0wH3CiwdIM2s/ZbIUty9+uqRC2okzCDD9LdMK1nPmA/FE2ulTREgkCQxHXCvwNIBAsraQptWTCcXAjMZAp2iiPqoE5KOjsBnH7tZHr7XdZr8nHMfvhvFFcSkVtLwCDB7RRRIkpgO3r0iw9Ih6Xqn//ipm/rpg+6nr16K4j58EBEMahtJOGmfEGj3CETBYgkkSUwH3CuyLB2Sruftr951lz53nRv/xgT3+qdTmtwvklJqnxBoGwSYvYJAksR0wL0iy9IhqZZffPGFe/rpp90//vEP98knn/gZDpLSaV/HQAByieCixHTA5UaWDh3jvuoqGg8BEQ+Nd89UYyEgBISAEBACQkAICAEhIASEgBAQAg2DgGI8NMytUkWFgBAQAkJACAgBISAEhIAQEAJCQAg0HgIiHhrvnqnGQkAICAEhIASEgBAQAkJACAgBISAEGgYBEQ8Nc6tUUSEgBISAEBACQkAICAEhIASEgBAQAo2HgIiHxrtnqrEQEAJCQAgIASEgBISAEBACQkAICIGGQUDEQ8PcKlVUCAgBISAEhIAQEAJCQAgIASEgBIRA4yEg4qHx7plqLASEgBAQAkJACAgBISAEhIAQEAJCoGEQEPHQMLdKFRUCQkAICAEhIASEgBAQAkJACAgBIdB4CIh4aLx7phoLASEgBISAEBACQkAICAEhIASEgBBoGAREPDTMrVJFhYAQEAJCQAgIASEgBISAEBACQkAINB4CIh4a756pxkJACAgBISAEhIAQEAJCQAgIASEgBBoGAREPDXOrVFEhIASEgBAQAkJACAgBISAEhIAQEAKNh4CIh8a7Z6qxEBACQkAICAEhIASEgBAQAkJACAiBhkFAxEPD3CpVVAgIASEgBISAEBACQkAICAEhIASEQOMhIOKh8e6ZaiwEhIAQEAJCQAgIASEgBISAEBACQqBhEBDx0DC3ShUVAkJACAgBISAEhIAQEAJCQAgIASHQeAiIeGi8e6YaCwEhIASEgBAQAkJACAgBISAEhIAQaBgERDw0zK1SRYWAEBACQkAICAEhIASEgBAQAkJACDQeAiIeGu+eqcZCQAgIASEgBISAEBACQkAICAEhIAQaBgERDw1zq1RRISAEhIAQEAJCQAgIASEgBISAEBACjYeAiIfGu2eqsRAQAkJACAgBISAEhIAQEAJCQAgIgYZBoHPD1FQVLRuBzz//3H344Yfu559/zsw766yzuoUWWsjNN998mWmVoH4I3D2pk7tovHOff519jvnmcu6wfs5t3XN6dmKlEAJCQAgIASEgBISAEBACQkAItBECnX788UdpLW0Efr1P+9prr7lp06blPs0ss8zilltuudzplbD2CPQ5o1Mu0sHODPkw4SQ9woZH2lKkTho6M8+xf/3rX+7+++93d9xxh9tggw3cAgss4Pr27et69Ogx84CgKxUCQkAICAEhIASEQCsjIIuHVga8NU+HpUOnTp1ST7ngggu6r776yv3www+5LCNSC9PBqhHIY+lw9cGzusv+Ms09O2V6WSTF1KlT3RtvvOEVrf/5n/+puq6NVkBeSxKui/tA+q17NtpVqr5pCGy++ebur3/9azFJuD506FB34oknFo9pRQgIASEgBISAEBACQqB2CCjGQ+2wbLiS5plnHjf77LM7yIe8stZaa7nZZputxe/yyy/PW4TSVYHAwZvN4tZYspODfMgrkErHHHOMm3POOd3KK6/sFltsMb98/vnni0VwXzn23XffFfexMmXKFH+vX3zxRUd67v1jjz3WLA0b99xzjz9G+vYqeUkd8EXypE+71k8//dT9/ve/d7g8ITfddJN75ZVX0rLU/Rj396qrrnIffPBB3c81ffp0d/HFF7f5NduF0naNaOjVq5fjd/LJJ/slaYYNG+bbsKXXUggIASEgBISAEBACQqB2CIh4qB2WDVUSpAM/5OOPPy6r7nvttZd79dVXm/0GDhxYVhlKXD4CkA4H9i08svuMyo7bYWc499xz3TXXXOMeeOABrwT/+9//dmuvvbbbdNNN3RdffGHJ/P084YQTitusoDyarLbaam7ppZd248aNs13F5R//+EcHebHkkksW9zXaSrmkDtglkXDsg2x4+umn3ZAhQzxhAxaQP0baEHtlzJgx7ptvvmlVmL7++mt38MEHO9pAveWzzz5zRx11lLv11ltrcqq///3v7k9/+lNFZZ155pnFfJANPAv8bJ2lCVYREiEgBISAEBACQkAICIHaIiDiobZ4ttvSsGwwYd1IB3OzsGN5ll27dvUKJkqm/X71q1+5u+66yy277LLub3/7my8GV4/tttvOHX744X4bU386+Dbqvu+++7p33nmneEr2Yzmx2WabeXcAyIz333/fkQ4/bI5zDpOffvrJnXrqqW6FFVbw5z366KPdt99+a4cdMS622GILn5c0I0eObKZIFxO20xUbead6rBvpcNn9BTeLvNV+6qmnvC87I7xYPSy66KLuggsucGPHjm2Gx6qrrupGjRrlFbJSZe+9995+5B4rChMUcJRLCCmkEXGvlNThei+99NJmJByk3LzzzuvbHgTDJptsQrJmgmUI7RrlvKMKz+wnn3ziTjrppJpc4n333eeJjHILI6YD1gwmRjI88sgj7vTTT/e72cfzgWAVQR6JEBACQkAICAEhIASEQO0QEPFQOyzbbUmQDLhTQDiErhWQDvwqEUbCwx9lbLnllm7hhRd2//d//+eDWjKii7JgxMORRx7pRowY4VBezz77bPfss8+6bbfd1jEKi6CwDR482G2zzTY+3e233+5WXHFFFwVAdVdffbVXmPv37+++//57n57ReUy5DznkEHfssce6a6+91p+bg9StX79+fkT6tttuc3vuuaeDmPjLX/7i87b3PyjCuFNAOPAz1wpIh1FRfIdyhAB63AdIGnOFmGOOObzFQziLCYQPo/IQCCiMSQIZ9N///tdNmDChePjee+/169tvv33D4F4rUocLh8gxAs6WBGolngaWJSG5RnpG7QcMGMCq23DDDd0BBxzg1/lzww03uI033tiTZYMGDSreL45BvF1yySX+OFYVkGxZ5Nvrr7/udtllF18eFilPPvkkRSXKFVdc4dZdd91mAWmxCoC0w23kyy+/9M9n9+7dvbsObeGjjz7yZeFCAul43XXX+XpyDQhWNXfffbdfz5P/lltu8XWAtIC0hHhEeNbPOecc9+677/rzYMGDUDbXRXrq/uCDD/r94R8CSYYCdtSLnxEP4XHW43nix7UtBISAEBACQkAICAEhUB4CIh7Kw6shU5u1A+SDWTowYl0p6YDpvpEYtnz55ZcdU3LiP46J+XnnnecV/Ysuush169bNK6tYM3D8sMMOc7vttpu78847HebTjz76aBFXCASIC0aD999/f78fQgElZPjw4X4bhQ6ygrIZbT7ooIPcPvvs403Xb7zxRm/mjqKEkgJR0bt3b69QT5o0yStFxZO145WeTXEGIBwOjEgIhGCS5ZIO5MPcHSzB77e//a1DcTzttNOKSh1pTBj5RYnjHiQJ8SH69OnjwNmEdXCGxGgE3GtJ6hgGSUsIMlwaIM5CWX311b0Czz7whohDsOZhfZ111vGWJ7RzSDiIHgRi7ogjjnBrrLGGV/BRoNPIN54RyKCXXnrJW7hAdphVii8w9me99dZzzz33nOM5MYEIYJpd2gSWC7jUEISR9vPMM88USRO7VtoahMlxxx3ni+AarP558nN9EDG8B3BLgXBEqDvE5txzz+3OP/98b52AVcKOO+7o2yMWN7RtyEbaYCjxbY5h7YCFA8SKbbPPhBkvJEJACAgBISAEhIAQEAK1Q0CzWtQOy3ZbEjEcQosHKlpuXIfw4rBSQNEP5Te/+Y3fXGqppRzEBCPnjEAaeWBB9RjhNYGQQAkmcCEuEcj//u//2mE3//zz+20IDcSCYKLIQXQgKCY2yolZOzJ58mTvWoCCjCKHxQOj+ShhKFGNIMRwCC0eqHM5cR3Ca+zcubP7wx/+4BVGFC0sSc444wxvIYKiiVJp8otf/MIrtYwiY7HCPYzLHnvs4XbffXdP+jDqjvWDucDghtPecQ9JHcgcpFJSh7wo2biumNDG02ZH4FnBCgVh1H3xxRf36zw3PC8WjwCrAawpIOZQuhFIO6yGECPfsJIwC4pf//rXvp2jnGPd8M9//tM/D8sss4zPg6ULZSQJlg08f1iwQG7gGsWzQ4BMhLpBCFh9CVR5yimnNCsKi4ett9662T7byJMfiw7eLwjWDhAfEBa4AVE/yAjDwiwpICl5j0CcHHjggS0CRFpcDauHLUPSgfsQit2fcJ/WhYAQEAJCQAgIASEgBCpHQMRD5dg1VM6QfKiGdOCiUWLSArDhboGg5GByjlhMALO+8DujPyi6KDgmWdN/Wjpzt2CU0wgJFCKIBSMXULCZbYHfoYce6n8oISjVjSAh+VAp6RBeJzhhds8P1wusSB5++GE/ahymQ8ljVBuFLmnk1xQ/FFTiOzAKHcYxaO+4h7iay0U1+C6//PJuueWWK0JoSn5xR44VXCawFOIXPg9kxWLBMMdawiSLfIOAg7gI67PRRhtZ9sSlEUq45TzxxBPeWgGrC4Rr5N5CYmFFADEVl1VWWSW+q7idJ/9KK61UTM+1EnOklPAcMy0s6SAVIRfBifdOKLRzm80i3G9uFrYMj4VkXLhf60JACAgBISAEhIAQEAKVIVDQCivLq1wNhgCEQyXBJMu5TM6B6wOjqoyEX3/99T47o5UII+wmBNbDfDxUNuxY1tLKQ9FgdJnf8ccf75dYUmAVwcwCO+ywgx/Zp14oYaGLQNY52sNxFOJyg0mG9Z42bZofXTefeDu25ppr2mrikpFtCAiUtrjMNddc3mQfs3tG2xnJ7tKli0/WKLiDq1k7VEM6cNFYgEDU2G+nnXaKQ5a5bWQDs4ZgEWE/YpNgfWASEnMh+WbpUcJxp4B8417gjhGK3adwX7iO6wLuIVgoQdhhvWBKONf16dEyAAAc60lEQVTFs40lAs8Y7SMuRjTG97OdJ39Y37SyKA/SAVIG6x1iTey6666+TnHXir59+5K8hYTWV/GDpfLE02lbCAgBISAEOiYC7733nncpxP3QYpG1xZXyLU9y22ytuoCDuUy21jmzzkMcNzAJA8qHeQhuT3wtsJO0LwRk8dC+7kdNa4OLAopnKGlxHcylIUyftI5vtZkp23EsD/D/x8cbd4uzzjrLR/bHZxszZqwgIAlQXFB+iPqPSTnKQyVmzZj0456B0nvZZZd5UuHCCy/0o7AffPCBD45IYErM4PEZp85cO/VszzLfXM59Xoi1WaxmWlwH0qcJyhtBCXF9weUCc3QIGXz0kVLYc4+IrVFqBBurCTNPD0el33zzTR8QtBFwh3Ag3oMREGk41uuYfRR/+ctf+rbJyH3opsEHH6InSULyze4FlhPkweWC9s+HGaWc5wwJib+kMrEaIvYBrjPMesJMMAhlYCVzXeRKwb1HIAleeOEFv571p9r8Vr4RNGxbR5B3Cj9m04F4iVvx9OjRwwfkDK0euEb74coSxneAQCKPRAgIASEgBGY+BFBqGVgxF2H6TnxbIeGJYUT/szUFMp34aPRlGWRobSGWGkS99TOqOT+Bm9ERkr6xkBt8i9dff33HTHlpgm4DJriZ0seNC/1c6o1beNK54um13XoIyOKh9bBu9TMx6oniGc4+UWqddOaikFVR/L4hEcIfZvcoJigrzDTBi5pZLAhmyRIZPXq0V3wx3abTT5R7RlXLfYnbqC/loWgwKrvaaqt5/29easSGwLyceqAU89Ih7sDOO+/sR6ezrq8tjx/Wz7ksMsHqRzrSZwmzATCSjesExAtxGwjqyQveFFLKoA2EgguBxRMI97POhwELEsoLyYn2jHsSrtWQOnFMytkmJgFCjBLIAQTrBgKAotxjCYTSj2UBs78kSUi+MVsLrhXEOOCjjlIOycT9xX2CeA88owcffHBSUc32YTlAvAnIAnOpsk4AzyudMWbmKNU2mhXWtFFtfoph1gzqdPPNN/sYNQSUhNAkDgRWGAS7RLAaicuf//znZrto+7hYsOQXSkj8hPu1LgSEgBAQAh0fAQh6vnNYfDJIw3TMWPHSZ6WPO7MJA3xZVrJ5McHdudR01fRb6KuAs6TjIiCLh457b/0sA+F0ibW4VHzQ08RGcEmDr7UpVWxDQowbN877sJNuzjnnZHdRwrzstFF5S4CiG6bBagKlg33ffPONv15LyxJ2mB9sMWkhQ9q7bN1zutu6Z21ryX1gqkSIGO4HbSJOMpW6r1is8IsL1jHhvQ2Pt1fcIWkuGt/SoiSsu63nJXUsfdLSCLLwmO1DYYYEIHAjI/Uo9Ew7yzSmWA3B/BM7g5lbwvgZYVmsQ75BKFlARwgNI984jpKONQBEH+VBbDBlbZpADNLRYGTH4iVg3YDbFHVG4edZhOSAoEDsukqVW0n+eJmQh5BmzIjDdTDzCiawECWI4VXKdYv3BFZWdCKReGwHgnnGCQqfUH+EgBAQAkJgpkEAq1mE6bHNEhgSn+/sf/7znyIOuPAS9wjiG3KdAZmePWd04B566CH/fceteIkllvDfL4sHxbcGCz7inqFsY5VKwGb6tMzIhnUFI/m9e/cuno9ZogiqDAGPVSPWh/RtQ2Gkn8ELLBSsLgw4MvrPQBFxnhik4Jy4InBdBJU218OkejGwgWsl5VFHtl977TWHOwN9DiwhiCFmsZ/YxvIQfOhrMuhHvxPrZCwViB9FXuIymYCRuWbfdNNNHmusOtMwJO/bb7/t03BuBmMYZMP6Oi5gQFmQSsScY0ASYimuh8Tzabv2CHSKOmOFsO61L1slCgEhIASEQAoCdDxQsENSjA8kH1Esd+JWKKWKKkW+WXo6Iyjm4XnsWDlLOg10EOgUxYmBPOVUm59zENsCIsOwwQSWERKLRZFVD0ZbIGfAmNEXOh/EdJA5ZhZyOi4EhIAQ6PgIYBGKZQNKPdNbY8mJgh5+8xgcwJqUbxGEOGSFWUkQlwlLRYJzo9SjnLPNNweLOr7DKNko7wgEx8CBA/1ABMdwgX3rrbf8cQYCcK8gqDMCeYBr5vPPP+/z2XTc/mDTHwh2iBCbFn3KlCmOOF8MJtCvwC2ZwQMshXGP5XpJu8gii7SoF0Q/JL25WuCCgkUmuDCYiDJPWdQDAsbqSdmQC8Rh4voZIIHsYJAFEobBEKwYTYjVwAx1Tz31lLdkBlNInlIYci9sVi1cRKmDWT0OGTLED0Yy25i5WnBezs+95PxYOoI1seGMXLK6aFlfBNr/EHB9r1+lCwEhIATaDIGkYI98UMt1P6Lzw6+U1MryCWW/3LqFdao2P2UxE04odB7ykg7kg2DAWkMiBISAEBACQiCOAGQB07OjnGIBwI/vDBYIWN6Zwg2RjgsG2whWBZDZEA9YBtiMSxzDQgHLU5TpkOQ+5JBDvMvgxIkTvfUuirKN2EMQMCW2xXWAkDD3R5T6f/zjHxTdQrBMoB7UAZKCKeupP26IWKpSHkQB/Q/qygxZkA8QDyZWL9u2Jd9wLD/M9QLrgTB+EunCerJt9YSswCWb6w9JB9JgXQleEA+QFlhKkK8UhpAHCLGssKhAcA+GYOF6Q5dLSA1IB6w2+vfv79PixnrllVe6119/3ZM5fqf+tAoCIh5aBWadRAgIASEgBISAEBACQkAICIH2jgAEA26OmPLj4oBbHz/Wjz76aL8fJZzZ20xw+bX4BFgIoNTiGoHLARYMCBaNJlhU2PTzWAtQHiP3JrhfIhxDQsICywUsHZPEiAcIBdZx50SZp3ysKwhYDVmAywZuHRAopeoVL5/ZqbC2IM4TrqF2XWG6UOlnoAJSoxLJgyEWICaQCQiWJWEdIJEQ6ku9Ea4Z4VhYht+pP3VFQMRDXeFt28J5qRCdHlOqLOGBxaQLczJJ2yFw96ROZcchIC6EJBsBYZuNkVIIASEgBISAEJiZEcB9AIUZywesA/gRA4j4RszkhLLKKDqKPCP+JpAGZq2A2wDKPeXQv6YMyg3FYiixD9ICq8XQnSNMy3rc2i9+3LaJt4CVI4QD1oC4I9q03OZ2wbkJRI11AhYdoYT1CvezTpwGZs7ierhWrD3ixEKSJWe8nDzbeTA0AoHyuB/84mJTbkKuhPcLawmwkrQuAiIeWhfvVj0bpAMzDhBcLkswQyI9fliStkMgb/BDasi0m6SvdTDKtrv6+p5Z2NYXX5UuBISAEBACQqDREUBhR0GFeAiFWAUQDyi7KPRM0f673/2uSBaQj9F2FFxcJ3AHIFAzgstEmmDBgGuBBZYmLW4DxGrARaFcgWgglhHWDVhWmBuFxTYgmCVEB1YTuD/kESwvIB2wBiFIJZI3b57ywzR5MTRrEPKyzr2JkwnmiokrBrElEO4v+NTKDdUXqj+5EGhJDeXKpkSNgACWDnlfWKTLYxkRXjcsIqZcBHuT1AYByIQsufrgWd0aS3byyfKkzyovz3GmUMVvLo88HEUzhqlub5IHq3pgS0eE2SsI8Fit0NFh7moCPLYnYcQD/9a8ktVGso7nPU+Yjo4MM7vY3Ozhsfa4Xi6m7fEaVCchIASEQKMhgHuCTZ2JMst3l74ulgFYAxB/gNgDKLkEP+Qbz+AdM1Lwncdqgdkq6BtDJBDXgdkvEOIuJAnlIczogPsDBAHWCeaKkZQnbR/xDBCCO1rZbENCUG+uD9cDzoegiPONTBObAQI86P/zjeK6kVLXFS8PiwTIC6bOjAtxKBDcNyBE8mAIwUOwS/pE3B/Kj89sxf2CwHn88cf9fQTfMWPG+HgSdk3xumi7fgiIeKgfth22ZCLHbrHFFv5B5uWGqdX222/vXyYd9qLbyYUdvNksnnRAQc4rRFFea6218iZPTMfUprDDeeSGG27wynGetO0pTbnYfvHFF37EwAI7suS5OOOMM/wH3a6NqUqJsoxfZLVCR4EpLflwtychAjhBtuiQ5JGsNpJ1PM854mnomDBVKeayjSDlYpp2TZgG09HCnFciBISAEBACpRFYb7313Nprr+0Va2ZpGDFihJ/lgpFzrIJRkFFuGbBjesbzzz/fz9YASbDlllv6gpkpidgOZ599trv88st9YEqUXBR9U9JDtwqCT2611VZe6R41apR304AAoR6VCP1yixdBOSa4VuCyQeBKZn2AbGCmB/r1kCtIWC/Lx5Iy6UuSlpkz+JYSBwNl32azCNOzHi8LnQHLDiNiwvS4pYAx03ViWZKGoQ144u5Bf+G8887zgTOZYpSAmqFQh913393XhVk5wBcyiKk3IWIkrYuAptNsXbxb9WwnnXSSf2HmPelxxx3nlaa09I8++qg3s2JaHqLe4ufFCCIvMBQsmEem7ZNUhkDP4wuWDEm5UYwP7FvgCvcZ9bN7dkqBnZ50djpLDfFAACTuT6VCNOddd93VHXvssZlF8GFGwTEmPTNDKyWoNbYQD8REYaS/d+/exVERngXYfIJK8UFHGAWphUkfU0EyDzgkBv6J7UUYQeGa6Zjkkaw2knU8zzmS0kCMYHqa5AealL4t95WLaVpdGRWijTKCxtRjEiEgBISAEEhHAOWWWGkICm7Sd4ORf9Lw7cNdIhRmnmCaTUbcISvM0iCtL0A8BkhylPCk84XlV7OOJQdWAKak05+h755nakmuGUsOm2IU6wQsJvL2/cGV85SKBUH/kXpx/Xkw5PxYnVCftPqDP/eK9BA9DBZJWh8BWTy0PuYNfUbm88W/iwAzxI/gRbv++uv70TSi5mIeZgILSUAeGEyICjq9JiiymIwT0JLjsKhmskWaqVOnupNPPtmzxLzwUUTeeecdy+4GDx7sIFbwnyM/c/4yJzIm7aTnR11DSasPeRmtpqwVVljBjRw5MtPsLCy7HuvmTkHZrBvpcNn904qkQyXnzcKejwrRlMEQn8brrruuxWnSsAwT86I/66yzPKZgu9122zmU57aWWmLLqAKRomHymfP6gQce8J0MrEQQomAzamHtN62t0a6ZmxoLCfDiXtGmSwllgylpmZ4K8pCOC8QE2zaNFfkhP2jb8UBSHGM0nPbPyAz5KI82QFkmPJ9EtOYYzy3XaYKJKfUwgYBkiivS8mzjB0q5obsObeOEE07w7Yx6JblqYD1CO+Q4zzN5TOg48fxzHJwg2OhQIJChnI+2yzHeQ8imm27qCSHWwZp3DEtr61dffTWHisIoCqNFXAeRzKmD+ewWE0UrdLo4z7hx48LdHifaP8IoDu8pyqJMMDehDtR/zz339McJShbHNCt/qWshiveAAQP8qYgSfsABB/j1tHZo9dJSCAgBITCzIoBlAINr/EqRALheEDwyTjqAGUow/QNzIaCMNNKBPKRFgS51PtLUQrDOMNKB8iAh0pT28JzmbmLWDCjweUkHygHXUqQDx7EMsevPgyHn53qy6k+ZEA7cT5EOIN02IuKhbXBvyLPCPEIsMIevvUjtQnhREJwSUzGEdeYJxhQNsyYUJJQVWFIExQSTcTri5557rh8tpeNtcuSRR3prDcrAVO3ZZ5912267bdEvDCXunHPO8f52zI2MvxrmcXTWL7roIq8goSQ88cQTvsi0+mBq1q9fP/8iIpYBnX+UDDr6bSVYN1i8AZRkc62AdBj1lxnKVyX1y8IeJYh7RvChoUOHeuKAPCZpWFoaW2L1QBkoxDfeeKNnm1HO21LqiS3XRQcEBd3aHuw+c2ejFGe1Ndq1tXfuAc8TJATzTccFJZxnAgYfIhByDmsL8mEGilsG98oEooAAV0lxXxjtwCqG+8Vzg1ki5eATiUAW2bPNuVCeMSm1aNbkZ+owhHVICLYh8Ai+RXlgYCampMPUkrgymKkS9AlXDZ5zE55FCAuec8qgXrwrEMgxzgHGw4cP99dOvWi7iGGOawWkJ+0P4T1k7yCwxoSWOkEwQG4QiNd8TyFCIEaYN511roc6GIHkC2z6gy8q+UMrH64Xkod3HFOy8d6EDIFwxeeW+2XuN5TJtTHSw/uL6b1CTPPkL3UtnMtwgZzgnZrVDsNr07oQEAJCQAgIASEgBGqBQCGSRy1KUhkdHgGUBCSc85YRTPML4xjT8zDCSSeakUH8wBBGHGF+cdUwH7hDDz3UHX/88f44flaMkKJEwcIy8koHHaUBwaoCs3XyMzKL0KHGTw2BFEGhZYST+u2www7ukksucZMnT/aERFp9qC/BZlAqevfu7X8oG5i6tZX0bAoeCeFgLhUsqyUd7HpKYQ8LfP311zvIHAgYBEuWMDhRGpZ2b33G6A/tA6sJFEfKXnPNNZtZvli61lzWG1uuBSWUNhUPKIk5YFZbY7QD30meiYEDB3qzS9r5fvvt1wwmiAfaO8+cjaI89dRT3nKI+7vPPvv4ciCQEBT9/v37p/o0MmKPWSgj5BAV9957r38eaBOMFOAfyUgFzxdWBWzbiL5VDnISpTs064eMidef9wHlQmJC/EFm4C9r035ZnakPAplAcEhIBAgHfECpA9ePkJ82C3FjAj4o/KWEdwWkDiM3WAMQhRxrA0hSiIzwHUY5WHmVEnxLwQXCgNEjSBPuJe8uXDyoM1YxXC8kDvcYX1meL4QI6uBvIz3heXAPycqfdi349SJYfOBqASmV1Q7D82tdCAgBISAEhIAQEALVIiDioVoEZ6L8NrcvCoAJ8xIzWohAGhx44IHejJh4AvxwmQiFCLumnNIJN7F1guZhtoygCJhgyoYCiyJrxEOoBJjiheKAoEiQnrIwF8+qD+4jjAQyyrrZZpv5YJmm8FgdWnNJDIfQ4oFzs69WYnhTnq2DvY1IQ8CYMHpuZnR5sLR8LFHgGMFlpBcrAO5deF/DtK21Xm9suQ4jHFAYQ4HMymprWCSEAY9IjwsAo/yhoMDyXGDlg9k85ySuhBGD4A1hQRAlzkvbxuy+lKAkh22eehjZiAKPokpcFxMUf94FceKBKcV49sJYAmF7svwo3GY5RftC8YaYMUFhD+sDeQnpRaBE3iMQF0Y6kMfOAdlokarDd4SVGy4hHc1cFFNNMMD6AKyx8sHtxQRClHNgfZAk3CeugxldCFoF3nvssYc3/+T9xDEsUrgf3CssL8J7Sl2SSAfOlTd/0rUk1TVPO0zKp31CQAgIASEgBISAEKgUAblaVIrcTJjPlAA69iZHHHGE76jTWafTzvy5RjYsvfTSRf84fKoYjQxHM0Mfr9A3y4gHzJdDwS/MymZ/qU56mId1y5NWH0aDMZNmpJLRYpSmaoIxxutQyXYYQLKWpAN1ycI+7v9mvoB5sAyvlZFWRqUZfWcknCjFjOK3tdQTW65t0qRJ3vInxNmuOautxfPYvQjjLVAWSjqkEbEkOAa5g1iAR6xUIACwWoAgRPFFOS4lpqzb8fCZtH3m72rPc0hEWBrOz4h6KEmzXdh1WTojIWyb5z0US08b5B1h25bG8lucB/ZnvSPiZRj29u6J1zu+bedmSX2x2oJwIKAYbiqQPwjWChB4WDlwH5IIkbS65slf6lp8BRL+ZLXDhCzaJQSEgBAQAkJACAiBihGQxUPF0M18GekYYzLPKCq+0KGigok0Fg+MWqKkMurKFJth3AZG1OMjwEkoYqaOUKaZSRPllxFIOu/lSlZ9UFQYgcRMmpFKrg/FgJgEjEK2paAgE5PA3C3qXRcbLUdxXmSRRfzpGOHl3iJZWPpEwR+UYwgrAoHyw1ceX34CAzLC3JZSL2whWK699tpiXIHwGvO0NYI4olybEow5PqP7cYUeZZT7QtwCiAAEVyRTwBn9xlUJK4cePXp4pTiuzId1S1vHRQM3jvB55t7i4hQXyBBG85nf3AJOlppqK5433Ib4wyLALK3AAaUdLHg+hw0b5qcrg+xELF4C749qpxuFdOnVq5d3w4BMADcINEiFNPIGFxWOQ7hBdBrBABbUGwy5L1iKELsjr1Sb385jpEyedmh5tBQCQkAICAEhIASEQC0QkMVDLVBsp2Vghh3OFJFWTdKRPkswPUbZwewZk2ICruHnjXsCpIMFoMO6gaBvmGhDGBBkjvLD4HGlzmWB6yA3CM5G3VCgsKgwX+VSeUvtT6sP5uQoblwblhuYcTOyaUp4qTLrsX++5pb5/hRpcR2S0ldTL0iCjTbayBNLYM+oLYEBQ0nDMkzHOkE6wRElEmUQVxmUR1MW4+nruZ2EVS2whSAjHsLNN9/sg/hBYKG0hkq6XVeetoZLA20f8oeZDwgauNdee1kRxaVZII0dO9bPXkEQRgJEhsKIuxEhNvoeHs+7zjVxD4mvQEBJmyo0aSYKnlHiHaCE856ACEDhLlcgL7CU4Z0BtgR6tLm4cQNBkSeuC+8HAsGCGRY1xKKoheBCxr3FnQMXIUiErHcCAW55T0GyWXwa6kKduK/jx4/3+CXNjJFW52rzY/mC4LJD/I087TCtPjomBISAEBACQkAICIFyEZDFQ7mINVB6/OuJas9oWZZACpA+S+iEoxChfBIQzgTLBAK/2WgrU/Fhbk1UeRQIlE18/TfZZBPL0mxpvslmbjx69GgfjM7qhOXBPffcUwz4aOmaFRJtWDm237az6kPdGYFEyUNQDPDPbm05LIL0ovFRjICvs8+MIk36asUwMkwJ+Mf9NexRNrEIsXRZWFIfS0vATggHI4xQgGiP1k6qrXs5+euFrU2bSV0Y7cb9iFkEzLrAsOA4AVKz2hpWRVgT2OwT3Iv46Dhl4kqB9YhZk0B2oOzbrAx2PhR0lF5iJpSSsI6WxtoD29SFKVSxMiBOAcKsDDZbRJifdQIzQnRMnDjRT1UJIRBX2sM8vsDoT7iPdwouDyjzCFYXFjiSYJWQH5ANXDdCepsOMyzHH0z4E15feNjyYl2FlQOuKrzLTj31VO+OFU5RGuZjHUsJ3hvEogiJHuLHQNSaBQjuXFhE2LmS6mLHKLeS/OSzMrAuYhYhpmYlBgfv0qx2SH6JEBACQkAICAEhIARqhUCnyORyeq0KUzkzFwK4P2AyT0DHUi4UTNuGEoWikNS5zkIMk3PMgkO3jqw8acez6kNdCezXFopxWr3b4hgKLIqUxXeI1yELyzA9QSu5j2HQxPD4zLie1NZwT4IowDWBKWIhLyzeQCmMiHeAS4IFWA3TcQwFGncBFOdaCCQUz7u5gsTLhOSg/sTyMFcDc7GBhCp3thjaIc+jETnx8zEFJXWJxziIpyt3G/Lz448/9uQpCjxtGLIAaw6sSyoRSFieKXMfKbeMavPzPuVawvdbUjsst15KLwSEgBBorwjU+tvQXq9T9Zr5EKBf3Wgi4qHR7pjqKwSEQIdFICQeqr1IggdiZYRrBCP35ppRbblZ+ZnmExcLzssMJpANzICBdQaWAI0iuBph9YMLGTEymGYTEg63mrj1RqNck+opBISAEBACQkAICIG2QkDEQ1shr/MKASEgBGIIYNbPaDhxNqqVO++808d+ID5DOO1kteXmyc8sG5wfwgNlHbcQpqJsNMGtgrgZzFLBrCG40tQqhkSjYaH6CgEhIASEgBAQAkKgGgREPFSDnvIKASEgBISAEBACQkAICAEhIASEgBAQAqkIaFaLVHh0UAgIASEgBISAEBACQkAICAEhIASEgBCoBgERD9Wgp7xCQAgIASEgBISAEBACQkAICAEhIASEQCoCIh5S4dFBISAEhIAQEAJCQAgIASEgBISAEBACQqAaBEQ8VIOe8goBISAEhIAQEAJCQAgIASEgBISAEBACqQiIeEiFRweFgBAQAkJACAgBISAEhIAQEAJCQAgIgWoQEPFQDXrKKwSEgBAQAkJACAgBISAEhIAQEAJCQAikIiDiIRUeHRQCQkAICAEhIASEgBAQAkJACAgBISAEqkFAxEM16CmvEBACQkAICAEhIASEgBAQAkJACAgBIZCKwP8DIqC8hHMGKEEAAAAASUVORK5CYII=" + } + }, + "cell_type": "markdown", + "id": "ac393319", + "metadata": {}, + "source": [ + "### On gene page\n", + "\n", + "To get the number of variants shown on the gene page, if you click 'all' and check 'exomes', 'SNVs', 'Indels', and 'Filtered variants' as this: \n", + "\n", + "![Screenshot%202024-11-01%20at%209.28.50%E2%80%AFPM.png](attachment:Screenshot%202024-11-01%20at%209.28.50%E2%80%AFPM.png)" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "e6bf7236", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The total number of variants in DRD2 is: 1764\n" + ] + } + ], + "source": [ + "drd2_ht = filter_by_gene_symbol('drd2')\n", + "print(\"The total number of variants in DRD2 is: \", drd2_ht.count())" + ] + }, + { + "cell_type": "markdown", + "id": "7bff63bb", + "metadata": {}, + "source": [ + "## Filter to variants by Ensembl Variant Effect Predictor (VEP)\n", + "\n", + "The examples below show the VEP based filtering using the Table filtered to DRD2." + ] + }, + { + "cell_type": "markdown", + "id": "756a996c-bad2-4d24-a304-6eb5e3efca65", + "metadata": {}, + "source": [ + "### Filter to `lof`, `missense`, and `synonymous` variants passing filters" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "700582e4", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
histograms
grpmax
fafmax
info
qual_hists
raw_qual_hists
age_hists
in_silico_predictors
gnomad
non_ukb
gnomad
non_ukb
vrs
vep
vqsr_results
region_flags
allele_info
gq_hist_all
dp_hist_all
gq_hist_alt
dp_hist_alt
ab_hist_alt
gq_hist_all
dp_hist_all
gq_hist_alt
dp_hist_alt
ab_hist_alt
age_hist_het
age_hist_hom
cadd
locus
alleles
freq
AC
AF
AN
homozygote_count
gen_anc
AC
AF
AN
homozygote_count
gen_anc
faf
faf95_max
faf95_max_gen_anc
faf99_max
faf99_max_gen_anc
faf95_max
faf95_max_gen_anc
faf99_max
faf99_max_gen_anc
a_index
was_split
rsid
filters
FS
MQ
MQRankSum
QUALapprox
QD
ReadPosRankSum
SB
SOR
VarDP
AS_FS
AS_MQ
AS_MQRankSum
AS_pab_max
AS_QUALapprox
AS_QD
AS_ReadPosRankSum
AS_SB_TABLE
AS_SOR
AS_VarDP
singleton
transmitted_singleton
sibling_singleton
omni
mills
monoallelic
only_het
AS_VQSLOD
inbreeding_coeff
VRS_Allele_IDs
VRS_Starts
VRS_Ends
VRS_States
allele_string
end
id
input
intergenic_consequences
most_severe_consequence
motif_feature_consequences
regulatory_feature_consequences
seq_region_name
start
strand
transcript_consequences
variant_class
AS_VQSLOD
AS_culprit
positive_train_site
negative_train_site
non_par
lcr
segdup
fail_interval_qc
outside_ukb_capture_region
outside_broad_capture_region
variant_type
n_alt_alleles
has_star
allele_type
was_mixed
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
phred
raw_score
revel_max
spliceai_ds_max
pangolin_largest_ds
phylop
sift_max
polyphen_max
locus<GRCh38>array<str>array<struct{AC: int32, AF: float64, AN: int32, homozygote_count: int64}>int32float64int32int64strint32float64int32int64strarray<struct{faf95: float64, faf99: float64}>float64strfloat64strfloat64strfloat64strint32boolset<str>set<str>float64float64float64int64float64float64array<int32>float64int32float64float64float64float64int64float64float64array<int32>float64int32boolboolboolboolboolboolboolfloat64float64array<str>array<int32>array<int32>array<str>strint32strstrarray<struct{allele_num: int32, consequence_terms: array<str>, impact: str, variant_allele: str}>strarray<struct{allele_num: int32, consequence_terms: array<str>, high_inf_pos: str, impact: str, motif_feature_id: str, motif_name: str, motif_pos: int32, motif_score_change: float64, transcription_factors: array<str>, strand: int32, variant_allele: str}>array<struct{allele_num: int32, biotype: str, consequence_terms: array<str>, impact: str, regulatory_feature_id: str, variant_allele: str}>strint32int32array<struct{allele_num: int32, amino_acids: str, appris: str, biotype: str, canonical: int32, ccds: str, cdna_start: int32, cdna_end: int32, cds_end: int32, cds_start: int32, codons: str, consequence_terms: array<str>, distance: int32, domains: array<struct{db: str, name: str}>, exon: str, flags: str, gene_id: str, gene_pheno: int32, gene_symbol: str, gene_symbol_source: str, hgnc_id: str, hgvsc: str, hgvsp: str, hgvs_offset: int32, impact: str, intron: str, lof: str, lof_flags: str, lof_filter: str, lof_info: str, mane_select: str, mane_plus_clinical: str, mirna: array<str>, protein_end: int32, protein_start: int32, protein_id: str, source: str, strand: int32, transcript_id: str, tsl: int32, uniprot_isoform: array<str>, variant_allele: str}>strfloat64strboolboolboolboolboolboolboolboolstrint32boolstrboolarray<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64float32float32float64float32float64float64float64float64
chr11:113410731["C","A"][(2,1.37e-06,1461866,0),(2,1.37e-06,1461894,0),(0,0.00e+00,33480,0),(2,4.47e-05,44724,0),(0,0.00e+00,26136,0),(0,0.00e+00,39698,0),(0,0.00e+00,53416,0),(0,0.00e+00,5752,0),(0,0.00e+00,1112010,0),(0,0.00e+00,60394,0),(0,0.00e+00,86256,0),(1,1.36e-06,734628,0),(1,1.38e-06,727238,0),(0,0.00e+00,19326,0),(0,0.00e+00,14154,0),(1,3.89e-05,25690,0),(1,5.25e-05,19034,0),(0,0.00e+00,12636,0),(0,0.00e+00,13500,0),(0,0.00e+00,20710,0),(0,0.00e+00,18988,0),(0,0.00e+00,27646,0),(0,0.00e+00,25770,0),(0,0.00e+00,2494,0),(0,0.00e+00,3258,0),(0,0.00e+00,572288,0),(0,0.00e+00,539722,0),(0,0.00e+00,31800,0),(0,0.00e+00,28594,0),(0,0.00e+00,22038,0),(0,0.00e+00,64218,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,996,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,1994,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,3990,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5752,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,19998,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,26136,0),(1,3.83e-05,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26134,0),(0,0.00e+00,26134,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26134,0),(0,0.00e+00,26136,0),(0,0.00e+00,33480,0),(2,5.97e-05,33480,0),(0,0.00e+00,33478,0),(0,0.00e+00,33476,0),(0,0.00e+00,33480,0),(0,0.00e+00,33478,0),(0,0.00e+00,33478,0),(0,0.00e+00,33480,0),(2,5.04e-05,39700,0),(0,0.00e+00,39698,0),(0,0.00e+00,39696,0),(0,0.00e+00,39700,0),(0,0.00e+00,39698,0),(0,0.00e+00,39698,0),(0,0.00e+00,39700,0),(2,5.00e-05,40000,0),(0,0.00e+00,39996,0),(0,0.00e+00,40000,0),(0,0.00e+00,39998,0),(0,0.00e+00,39998,0),(0,0.00e+00,40000,0),(2,4.47e-05,44724,0),(0,0.00e+00,44720,0),(0,0.00e+00,44724,0),(0,0.00e+00,44722,0),(0,0.00e+00,44722,0),(0,0.00e+00,44724,0),(0,0.00e+00,53416,0),(0,0.00e+00,53420,0),(0,0.00e+00,53418,0),(0,0.00e+00,53418,0),(0,0.00e+00,53420,0),(0,0.00e+00,60396,0),(0,0.00e+00,60394,0),(0,0.00e+00,60394,0),(0,0.00e+00,60396,0),(0,0.00e+00,86258,0),(0,0.00e+00,86256,0),(0,0.00e+00,86256,0),(0,0.00e+00,100000,0),(0,0.00e+00,99998,0),(0,0.00e+00,200000,0),(0,0.00e+00,199998,0),(0,0.00e+00,400000,0),(0,0.00e+00,399996,0),(0,0.00e+00,999998,0),(1,1.00e-06,999978,0),(0,0.00e+00,1112010,0),(2,1.80e-06,1111990,0),(2,3.18e-06,628756,0),(2,3.18e-06,628784,0),(0,0.00e+00,17694,0),(2,4.57e-05,43740,0),(0,0.00e+00,20984,0),(0,0.00e+00,36068,0),(0,0.00e+00,53140,0),(0,0.00e+00,4132,0),(0,0.00e+00,350106,0),(0,0.00e+00,33096,0),(0,0.00e+00,69796,0),(1,3.49e-06,286232,0),(1,2.92e-06,342524,0),(0,0.00e+00,10286,0),(0,0.00e+00,7408,0),(1,3.99e-05,25040,0),(1,5.35e-05,18700,0),(0,0.00e+00,9838,0),(0,0.00e+00,11146,0),(0,0.00e+00,18296,0),(0,0.00e+00,17772,0),(0,0.00e+00,27396,0),(0,0.00e+00,25744,0),(0,0.00e+00,1904,0),(0,0.00e+00,2228,0),(0,0.00e+00,162220,0),(0,0.00e+00,187886,0),(0,0.00e+00,16752,0),(0,0.00e+00,16344,0),(0,0.00e+00,14500,0),(0,0.00e+00,55296,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,198,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,996,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,1990,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,3984,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4132,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17692,0),(0,0.00e+00,17694,0),(0,0.00e+00,17692,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(1,5.00e-05,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,19998,0),(0,0.00e+00,20000,0),(0,0.00e+00,19998,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(1,4.77e-05,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20982,0),(0,0.00e+00,20984,0),(0,0.00e+00,20982,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(2,6.04e-05,33098,0),(0,0.00e+00,33096,0),(0,0.00e+00,33094,0),(0,0.00e+00,33098,0),(0,0.00e+00,33096,0),(0,0.00e+00,33096,0),(0,0.00e+00,33096,0),(2,5.54e-05,36070,0),(0,0.00e+00,36068,0),(0,0.00e+00,36066,0),(0,0.00e+00,36070,0),(0,0.00e+00,36068,0),(0,0.00e+00,36068,0),(2,5.00e-05,40000,0),(0,0.00e+00,39996,0),(0,0.00e+00,40000,0),(0,0.00e+00,39998,0),(0,0.00e+00,39998,0),(2,4.57e-05,43740,0),(0,0.00e+00,43736,0),(0,0.00e+00,43740,0),(0,0.00e+00,43738,0),(0,0.00e+00,43738,0),(0,0.00e+00,53140,0),(0,0.00e+00,53144,0),(0,0.00e+00,53142,0),(0,0.00e+00,53142,0),(0,0.00e+00,69798,0),(0,0.00e+00,69796,0),(0,0.00e+00,69796,0),(0,0.00e+00,100000,0),(0,0.00e+00,99996,0),(0,0.00e+00,199998,0),(0,0.00e+00,199990,0),(0,0.00e+00,350106,0),(1,2.86e-06,350088,0),(1,2.50e-06,399978,0)]24.47e-05447240"amr"24.57e-05437400"amr"[(2.30e-07,9.00e-08),(0.00e+00,0.00e+00),(7.41e-06,2.77e-06),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,(5.30e-07,2.00e-07),(0.00e+00,0.00e+00),(7.58e-06,2.84e-06),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]7.41e-06"amr"2.77e-06"amr"7.58e-06"amr"2.84e-06"amr"1True{"rs140938110"}{}5.56e+006.00e+010.00e+0038621.02e+01-1.98e-01[134,83,109,52]9.81e-013781.31e+016.00e+010.00e+002.94e-0118951.06e+012.52e-01[134,83,56,19]1.42e+00179FalseNANAFalseFalseFalseFalse5.27e+00-1.37e-06["ga4gh:VA.RY2FNHeS0QpJNM9lQpQ_pzX7Q27-MXmI","ga4gh:VA.ZonDIhdwyghm7SuWkXynZVYg2s9ceaeP"][113410730,113410730][113410731,113410731]["C","A"]"C/A"113410731".""chr11\t113410731\t.\tC\tA\t.\t.\tGT"NA"missense_variant"NANA"chr11"1134107311[(1,"C/F",NA,"protein_coding",NA,"CCDS8362.1",1317,1317,1241,1241,"tGc/tTc",["missense_variant"],NA,[("Gene3D","1"),("Superfamily","SSF81321")],"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000346454.7:c.1241G>T","ENSP00000278597.5:p.Cys414Phe",NA,"MODERATE",NA,NA,NA,NA,NA,NA,NA,NA,414,414,"ENSP00000278597","Ensembl",-1,"ENST00000346454",1,["P14416-2"],"A"),(1,"C/F","P2","protein_coding",1,"CCDS8361.1",1682,1682,1328,1328,"tGc/tTc",["missense_variant"],NA,[("Gene3D","1"),("ENSP_mappings","5aer"),("ENSP_mappings","5aer"),("ENSP_mappings","6cm4"),("ENSP_mappings","6luq"),("ENSP_mappings","6vms"),("ENSP_mappings","7dfp"),("ENSP_mappings","7jvr"),("Superfamily","SSF81321")],"8/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000362072.8:c.1328G>T","ENSP00000354859.3:p.Cys443Phe",NA,"MODERATE",NA,NA,NA,NA,NA,"NM_000795.4",NA,NA,443,443,"ENSP00000354859","Ensembl",-1,"ENST00000362072",1,["P14416-1"],"A"),(1,NA,NA,"processed_transcript",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],3644,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000535984",3,NA,"A"),(1,"C/F","A1","protein_coding",NA,NA,1334,1334,1334,1334,"tGc/tTc",["missense_variant"],NA,[("Gene3D","1"),("Superfamily","SSF81321")],"8/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000538967.5:c.1334G>T","ENSP00000438215.1:p.Cys445Phe",NA,"MODERATE",NA,NA,NA,NA,NA,NA,NA,NA,445,445,"ENSP00000438215","Ensembl",-1,"ENST00000538967",5,["P14416-3"],"A"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],4563,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000539420",3,NA,"A"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],3133,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000540600",1,NA,"A"),(1,"C/F","P2","protein_coding",NA,"CCDS8361.1",1649,1649,1328,1328,"tGc/tTc",["missense_variant"],NA,[("Gene3D","1"),("ENSP_mappings","5aer"),("ENSP_mappings","5aer"),("ENSP_mappings","6cm4"),("ENSP_mappings","6luq"),("ENSP_mappings","6vms"),("ENSP_mappings","7dfp"),("ENSP_mappings","7jvr"),("Superfamily","SSF81321")],"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000542968.5:c.1328G>T","ENSP00000442172.1:p.Cys443Phe",NA,"MODERATE",NA,NA,NA,NA,NA,NA,NA,NA,443,443,"ENSP00000442172","Ensembl",-1,"ENST00000542968",1,["P14416-1"],"A"),(1,"C/F","A1","protein_coding",NA,NA,1358,1358,1325,1325,"tGc/tTc",["missense_variant"],NA,[("Gene3D","1"),("Superfamily","SSF81321")],"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000544518.5:c.1325G>T","ENSP00000441068.1:p.Cys442Phe",NA,"MODERATE",NA,NA,NA,NA,NA,NA,NA,NA,442,442,"ENSP00000441068","Ensembl",-1,"ENST00000544518",1,NA,"A"),(1,NA,NA,"lncRNA",1,NA,NA,NA,NA,NA,NA,["intron_variant","non_coding_transcript_variant"],NA,NA,NA,NA,"ENSG00000256757",NA,NA,NA,NA,"ENST00000546284.1:n.245-816C>A",NA,NA,"MODIFIER","2/3",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",1,"ENST00000546284",3,NA,"A"),(1,"C/F",NA,"protein_coding",1,NA,1682,1682,1328,1328,"tGc/tTc",["missense_variant"],NA,NA,"8/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_000795.4:c.1328G>T","NP_000786.1:p.Cys443Phe",NA,"MODERATE",NA,NA,NA,NA,NA,"ENST00000362072.8",NA,NA,443,443,"NP_000786.1","RefSeq",-1,"NM_000795.4",NA,NA,"A"),(1,"C/F",NA,"protein_coding",NA,NA,1595,1595,1241,1241,"tGc/tTc",["missense_variant"],NA,NA,"7/7",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_016574.4:c.1241G>T","NP_057658.2:p.Cys414Phe",NA,"MODERATE",NA,NA,NA,NA,NA,NA,NA,NA,414,414,"NP_057658.2","RefSeq",-1,"NM_016574.4",NA,NA,"A"),(1,"C/F",NA,"protein_coding",NA,NA,1410,1410,1328,1328,"tGc/tTc",["missense_variant"],NA,NA,"8/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","XM_017017296.2:c.1328G>T","XP_016872785.1:p.Cys443Phe",NA,"MODERATE",NA,NA,NA,NA,NA,NA,NA,NA,443,443,"XP_016872785.1","RefSeq",-1,"XM_017017296.2",NA,NA,"A")]"SNV"5.27e+00"AS_MQ"FalseFalseFalseFalseFalseTrueFalseFalse"multi-snv"2False"snv"False[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,21,0,124,0,314262,0,99,0,416424,0,0,0,0,0,0,3]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,98,374,11344,107362,344923,189028,36319,5607,2388,2759,3074,2931,2955,2915,2973,2922,2564,2682]07715[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0]01[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][7,0,0,0,28,0,124,0,314262,0,99,0,416424,0,0,0,0,0,0,3]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,7,98,380,11345,107362,344923,189028,36319,5607,2388,2759,3074,2931,2955,2915,2973,2922,2564,2682]07715[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0]01[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]10[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]002.77e+014.10e+006.02e-010.00e+000.00e+008.78e+000.00e+009.89e-01
chr11:113410731["C","T"][(1,6.84e-07,1461866,0),(1,6.84e-07,1461894,0),(0,0.00e+00,33480,0),(0,0.00e+00,44724,0),(0,0.00e+00,26136,0),(0,0.00e+00,39698,0),(0,0.00e+00,53416,0),(0,0.00e+00,5752,0),(1,8.99e-07,1112010,0),(0,0.00e+00,60394,0),(0,0.00e+00,86256,0),(1,1.36e-06,734628,0),(0,0.00e+00,727238,0),(0,0.00e+00,19326,0),(0,0.00e+00,14154,0),(0,0.00e+00,25690,0),(0,0.00e+00,19034,0),(0,0.00e+00,12636,0),(0,0.00e+00,13500,0),(0,0.00e+00,20710,0),(0,0.00e+00,18988,0),(0,0.00e+00,27646,0),(0,0.00e+00,25770,0),(0,0.00e+00,2494,0),(0,0.00e+00,3258,0),(1,1.75e-06,572288,0),(0,0.00e+00,539722,0),(0,0.00e+00,31800,0),(0,0.00e+00,28594,0),(0,0.00e+00,22038,0),(0,0.00e+00,64218,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,996,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,1994,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,3990,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5752,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,19998,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26134,0),(0,0.00e+00,26134,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26134,0),(0,0.00e+00,26136,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33478,0),(0,0.00e+00,33476,0),(0,0.00e+00,33480,0),(0,0.00e+00,33478,0),(0,0.00e+00,33478,0),(0,0.00e+00,33480,0),(0,0.00e+00,39700,0),(0,0.00e+00,39698,0),(0,0.00e+00,39696,0),(0,0.00e+00,39700,0),(0,0.00e+00,39698,0),(0,0.00e+00,39698,0),(0,0.00e+00,39700,0),(0,0.00e+00,40000,0),(0,0.00e+00,39996,0),(0,0.00e+00,40000,0),(0,0.00e+00,39998,0),(0,0.00e+00,39998,0),(0,0.00e+00,40000,0),(0,0.00e+00,44724,0),(0,0.00e+00,44720,0),(0,0.00e+00,44724,0),(0,0.00e+00,44722,0),(0,0.00e+00,44722,0),(0,0.00e+00,44724,0),(0,0.00e+00,53416,0),(0,0.00e+00,53420,0),(0,0.00e+00,53418,0),(0,0.00e+00,53418,0),(0,0.00e+00,53420,0),(0,0.00e+00,60396,0),(0,0.00e+00,60394,0),(0,0.00e+00,60394,0),(0,0.00e+00,60396,0),(0,0.00e+00,86258,0),(0,0.00e+00,86256,0),(0,0.00e+00,86256,0),(0,0.00e+00,100000,0),(0,0.00e+00,99998,0),(0,0.00e+00,200000,0),(0,0.00e+00,199998,0),(0,0.00e+00,400000,0),(0,0.00e+00,399996,0),(1,1.00e-06,999998,0),(0,0.00e+00,999978,0),(1,8.99e-07,1112010,0),(1,8.99e-07,1111990,0),(0,0.00e+00,628756,0),(0,0.00e+00,628784,0),(0,0.00e+00,17694,0),(0,0.00e+00,43740,0),(0,0.00e+00,20984,0),(0,0.00e+00,36068,0),(0,0.00e+00,53140,0),(0,0.00e+00,4132,0),(0,0.00e+00,350106,0),(0,0.00e+00,33096,0),(0,0.00e+00,69796,0),(0,0.00e+00,286232,0),(0,0.00e+00,342524,0),(0,0.00e+00,10286,0),(0,0.00e+00,7408,0),(0,0.00e+00,25040,0),(0,0.00e+00,18700,0),(0,0.00e+00,9838,0),(0,0.00e+00,11146,0),(0,0.00e+00,18296,0),(0,0.00e+00,17772,0),(0,0.00e+00,27396,0),(0,0.00e+00,25744,0),(0,0.00e+00,1904,0),(0,0.00e+00,2228,0),(0,0.00e+00,162220,0),(0,0.00e+00,187886,0),(0,0.00e+00,16752,0),(0,0.00e+00,16344,0),(0,0.00e+00,14500,0),(0,0.00e+00,55296,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,198,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,996,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,1990,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,3984,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4132,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17692,0),(0,0.00e+00,17694,0),(0,0.00e+00,17692,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,19998,0),(0,0.00e+00,20000,0),(0,0.00e+00,19998,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20982,0),(0,0.00e+00,20984,0),(0,0.00e+00,20982,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,33098,0),(0,0.00e+00,33096,0),(0,0.00e+00,33094,0),(0,0.00e+00,33098,0),(0,0.00e+00,33096,0),(0,0.00e+00,33096,0),(0,0.00e+00,33096,0),(0,0.00e+00,36070,0),(0,0.00e+00,36068,0),(0,0.00e+00,36066,0),(0,0.00e+00,36070,0),(0,0.00e+00,36068,0),(0,0.00e+00,36068,0),(0,0.00e+00,40000,0),(0,0.00e+00,39996,0),(0,0.00e+00,40000,0),(0,0.00e+00,39998,0),(0,0.00e+00,39998,0),(0,0.00e+00,43740,0),(0,0.00e+00,43736,0),(0,0.00e+00,43740,0),(0,0.00e+00,43738,0),(0,0.00e+00,43738,0),(0,0.00e+00,53140,0),(0,0.00e+00,53144,0),(0,0.00e+00,53142,0),(0,0.00e+00,53142,0),(0,0.00e+00,69798,0),(0,0.00e+00,69796,0),(0,0.00e+00,69796,0),(0,0.00e+00,100000,0),(0,0.00e+00,99996,0),(0,0.00e+00,199998,0),(0,0.00e+00,199990,0),(0,0.00e+00,350106,0),(0,0.00e+00,350088,0),(0,0.00e+00,399978,0)]18.99e-0711120100"nfe"NANANANANA[(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]NANANANANANANANA2TrueNA{}5.56e+006.00e+010.00e+0038621.02e+01-1.98e-01[134,83,109,52]9.81e-013780.00e+006.00e+010.00e+009.04e-0119679.88e+00-5.01e-01[134,83,53,33]6.81e-01199TrueFalseFalseFalseFalseFalseFalse5.40e+00-6.84e-07["ga4gh:VA.RY2FNHeS0QpJNM9lQpQ_pzX7Q27-MXmI","ga4gh:VA.Hp20SlFHUdM7jlWmVV27L6utrtRpDmAq"][113410730,113410730][113410731,113410731]["C","T"]"C/T"113410731".""chr11\t113410731\t.\tC\tT\t.\t.\tGT"NA"missense_variant"NANA"chr11"1134107311[(1,"C/Y",NA,"protein_coding",NA,"CCDS8362.1",1317,1317,1241,1241,"tGc/tAc",["missense_variant"],NA,[("Gene3D","1"),("Superfamily","SSF81321")],"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000346454.7:c.1241G>A","ENSP00000278597.5:p.Cys414Tyr",NA,"MODERATE",NA,NA,NA,NA,NA,NA,NA,NA,414,414,"ENSP00000278597","Ensembl",-1,"ENST00000346454",1,["P14416-2"],"T"),(1,"C/Y","P2","protein_coding",1,"CCDS8361.1",1682,1682,1328,1328,"tGc/tAc",["missense_variant"],NA,[("Gene3D","1"),("ENSP_mappings","5aer"),("ENSP_mappings","5aer"),("ENSP_mappings","6cm4"),("ENSP_mappings","6luq"),("ENSP_mappings","6vms"),("ENSP_mappings","7dfp"),("ENSP_mappings","7jvr"),("Superfamily","SSF81321")],"8/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000362072.8:c.1328G>A","ENSP00000354859.3:p.Cys443Tyr",NA,"MODERATE",NA,NA,NA,NA,NA,"NM_000795.4",NA,NA,443,443,"ENSP00000354859","Ensembl",-1,"ENST00000362072",1,["P14416-1"],"T"),(1,NA,NA,"processed_transcript",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],3644,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000535984",3,NA,"T"),(1,"C/Y","A1","protein_coding",NA,NA,1334,1334,1334,1334,"tGc/tAc",["missense_variant"],NA,[("Gene3D","1"),("Superfamily","SSF81321")],"8/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000538967.5:c.1334G>A","ENSP00000438215.1:p.Cys445Tyr",NA,"MODERATE",NA,NA,NA,NA,NA,NA,NA,NA,445,445,"ENSP00000438215","Ensembl",-1,"ENST00000538967",5,["P14416-3"],"T"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],4563,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000539420",3,NA,"T"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],3133,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000540600",1,NA,"T"),(1,"C/Y","P2","protein_coding",NA,"CCDS8361.1",1649,1649,1328,1328,"tGc/tAc",["missense_variant"],NA,[("Gene3D","1"),("ENSP_mappings","5aer"),("ENSP_mappings","5aer"),("ENSP_mappings","6cm4"),("ENSP_mappings","6luq"),("ENSP_mappings","6vms"),("ENSP_mappings","7dfp"),("ENSP_mappings","7jvr"),("Superfamily","SSF81321")],"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000542968.5:c.1328G>A","ENSP00000442172.1:p.Cys443Tyr",NA,"MODERATE",NA,NA,NA,NA,NA,NA,NA,NA,443,443,"ENSP00000442172","Ensembl",-1,"ENST00000542968",1,["P14416-1"],"T"),(1,"C/Y","A1","protein_coding",NA,NA,1358,1358,1325,1325,"tGc/tAc",["missense_variant"],NA,[("Gene3D","1"),("Superfamily","SSF81321")],"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000544518.5:c.1325G>A","ENSP00000441068.1:p.Cys442Tyr",NA,"MODERATE",NA,NA,NA,NA,NA,NA,NA,NA,442,442,"ENSP00000441068","Ensembl",-1,"ENST00000544518",1,NA,"T"),(1,NA,NA,"lncRNA",1,NA,NA,NA,NA,NA,NA,["intron_variant","non_coding_transcript_variant"],NA,NA,NA,NA,"ENSG00000256757",NA,NA,NA,NA,"ENST00000546284.1:n.245-816C>T",NA,NA,"MODIFIER","2/3",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",1,"ENST00000546284",3,NA,"T"),(1,"C/Y",NA,"protein_coding",1,NA,1682,1682,1328,1328,"tGc/tAc",["missense_variant"],NA,NA,"8/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_000795.4:c.1328G>A","NP_000786.1:p.Cys443Tyr",NA,"MODERATE",NA,NA,NA,NA,NA,"ENST00000362072.8",NA,NA,443,443,"NP_000786.1","RefSeq",-1,"NM_000795.4",NA,NA,"T"),(1,"C/Y",NA,"protein_coding",NA,NA,1595,1595,1241,1241,"tGc/tAc",["missense_variant"],NA,NA,"7/7",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_016574.4:c.1241G>A","NP_057658.2:p.Cys414Tyr",NA,"MODERATE",NA,NA,NA,NA,NA,NA,NA,NA,414,414,"NP_057658.2","RefSeq",-1,"NM_016574.4",NA,NA,"T"),(1,"C/Y",NA,"protein_coding",NA,NA,1410,1410,1328,1328,"tGc/tAc",["missense_variant"],NA,NA,"8/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","XM_017017296.2:c.1328G>A","XP_016872785.1:p.Cys443Tyr",NA,"MODERATE",NA,NA,NA,NA,NA,NA,NA,NA,443,443,"XP_016872785.1","RefSeq",-1,"XM_017017296.2",NA,NA,"T")]"SNV"5.40e+00"AS_MQ"FalseFalseFalseFalseFalseTrueFalseFalse"multi-snv"2False"snv"False[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,21,0,124,0,314262,0,99,0,416424,0,0,0,0,0,0,3]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,98,374,11344,107362,344923,189028,36319,5607,2388,2759,3074,2931,2955,2915,2973,2922,2564,2682]07715[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][7,0,0,0,28,0,124,0,314262,0,99,0,416424,0,0,0,0,0,0,3]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,7,98,380,11345,107362,344923,189028,36319,5607,2388,2759,3074,2931,2955,2915,2973,2922,2564,2682]07715[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,1,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]002.75e+014.07e+007.19e-010.00e+002.00e-028.78e+000.00e+009.89e-01
chr11:113410735["G","A"][(75,5.13e-05,1461876,0),(75,5.13e-05,1461894,0),(0,0.00e+00,33480,0),(0,0.00e+00,44724,0),(58,2.22e-03,26136,0),(0,0.00e+00,39700,0),(0,0.00e+00,53418,0),(0,0.00e+00,5762,0),(8,7.19e-06,1112004,0),(9,1.49e-04,60396,0),(0,0.00e+00,86256,0),(39,5.31e-05,734640,0),(36,4.95e-05,727236,0),(0,0.00e+00,19326,0),(0,0.00e+00,14154,0),(0,0.00e+00,25690,0),(0,0.00e+00,19034,0),(29,2.30e-03,12636,0),(29,2.15e-03,13500,0),(0,0.00e+00,20712,0),(0,0.00e+00,18988,0),(0,0.00e+00,27648,0),(0,0.00e+00,25770,0),(0,0.00e+00,2504,0),(0,0.00e+00,3258,0),(5,8.74e-06,572286,0),(3,5.56e-06,539718,0),(5,1.57e-04,31800,0),(4,1.40e-04,28596,0),(0,0.00e+00,22038,0),(0,0.00e+00,64218,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,18,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,198,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(1,1.00e-03,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,998,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(4,2.00e-03,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,1998,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(7,1.75e-03,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,3996,0),(0,0.00e+00,4000,0),(1,2.50e-04,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,3998,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(11,1.91e-03,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5762,0),(0,0.00e+00,5768,0),(1,1.73e-04,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5766,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(22,2.20e-03,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(2,2.00e-04,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,9998,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(46,2.30e-03,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(3,1.50e-04,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,19998,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(58,2.22e-03,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(3,1.15e-04,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26134,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(6,1.79e-04,33480,0),(0,0.00e+00,33480,0),(1,2.99e-05,33478,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(7,1.76e-04,39700,0),(0,0.00e+00,39700,0),(1,2.52e-05,39698,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(7,1.75e-04,40000,0),(0,0.00e+00,39998,0),(1,2.50e-05,39998,0),(0,0.00e+00,44724,0),(0,0.00e+00,44722,0),(0,0.00e+00,44724,0),(7,1.57e-04,44724,0),(0,0.00e+00,44722,0),(1,2.24e-05,44722,0),(0,0.00e+00,53418,0),(0,0.00e+00,53420,0),(9,1.68e-04,53420,0),(0,0.00e+00,53418,0),(1,1.87e-05,53418,0),(0,0.00e+00,60396,0),(9,1.49e-04,60396,0),(0,0.00e+00,60394,0),(2,3.31e-05,60394,0),(0,0.00e+00,86258,0),(0,0.00e+00,86256,0),(4,4.64e-05,86256,0),(0,0.00e+00,100000,0),(5,5.00e-05,99998,0),(0,0.00e+00,200000,0),(9,4.50e-05,199998,0),(3,7.50e-06,399998,0),(21,5.25e-05,399998,0),(6,6.00e-06,999994,0),(50,5.00e-05,999992,0),(8,7.19e-06,1112004,0),(58,5.22e-05,1112000,0),(60,9.54e-05,628768,0),(60,9.54e-05,628784,0),(0,0.00e+00,17694,0),(0,0.00e+00,43740,0),(50,2.38e-03,20984,0),(0,0.00e+00,36070,0),(0,0.00e+00,53142,0),(0,0.00e+00,4142,0),(2,5.71e-06,350102,0),(8,2.42e-04,33098,0),(0,0.00e+00,69796,0),(30,1.05e-04,286244,0),(30,8.76e-05,342524,0),(0,0.00e+00,10286,0),(0,0.00e+00,7408,0),(0,0.00e+00,25040,0),(0,0.00e+00,18700,0),(24,2.44e-03,9838,0),(26,2.33e-03,11146,0),(0,0.00e+00,18298,0),(0,0.00e+00,17772,0),(0,0.00e+00,27398,0),(0,0.00e+00,25744,0),(0,0.00e+00,1914,0),(0,0.00e+00,2228,0),(2,1.23e-05,162218,0),(0,0.00e+00,187884,0),(4,2.39e-04,16752,0),(4,2.45e-04,16346,0),(0,0.00e+00,14500,0),(0,0.00e+00,55296,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,18,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,198,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(1,1.00e-03,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,998,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(4,2.00e-03,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,1998,0),(0,0.00e+00,2000,0),(1,5.00e-04,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,1998,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(6,1.50e-03,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,3994,0),(0,0.00e+00,4000,0),(2,5.00e-04,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,3998,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(7,1.69e-03,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4142,0),(0,0.00e+00,4148,0),(2,4.82e-04,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4146,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(19,1.90e-03,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(3,3.00e-04,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,9998,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(42,2.37e-03,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(6,3.39e-04,17694,0),(0,0.00e+00,17694,0),(1,5.65e-05,17692,0),(0,0.00e+00,20000,0),(49,2.45e-03,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(6,3.00e-04,20000,0),(0,0.00e+00,20000,0),(1,5.00e-05,19998,0),(0,0.00e+00,20984,0),(50,2.38e-03,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(6,2.86e-04,20984,0),(0,0.00e+00,20984,0),(1,4.77e-05,20982,0),(0,0.00e+00,33098,0),(0,0.00e+00,33098,0),(0,0.00e+00,33098,0),(0,0.00e+00,33098,0),(8,2.42e-04,33098,0),(0,0.00e+00,33096,0),(3,9.06e-05,33096,0),(0,0.00e+00,36070,0),(0,0.00e+00,36070,0),(0,0.00e+00,36070,0),(0,0.00e+00,36070,0),(0,0.00e+00,36068,0),(4,1.11e-04,36068,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,39998,0),(5,1.25e-04,39998,0),(0,0.00e+00,43740,0),(0,0.00e+00,43738,0),(0,0.00e+00,43740,0),(0,0.00e+00,43738,0),(5,1.14e-04,43738,0),(0,0.00e+00,53142,0),(0,0.00e+00,53144,0),(0,0.00e+00,53142,0),(5,9.41e-05,53142,0),(0,0.00e+00,69798,0),(0,0.00e+00,69796,0),(6,8.60e-05,69796,0),(1,1.00e-05,100000,0),(8,8.00e-05,99998,0),(1,5.00e-06,199998,0),(21,1.05e-04,199998,0),(2,5.71e-06,350102,0),(31,8.85e-05,350102,0),(37,9.25e-05,399992,0)]87.19e-0611120040"nfe"25.71e-063501020"nfe"[(4.19e-05,3.82e-05),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(3.09e-06,2.24e-06),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,(7.54e-05,6.91e-05),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(9.50e-07,3.60e-07),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]3.09e-06"nfe"2.24e-06"nfe"9.50e-07"nfe"3.60e-07"nfe"1True{"rs201801648"}{}0.00e+006.00e+010.00e+001275011.23e+013.70e-02[3240,2211,2993,1962]7.34e-01104040.00e+006.00e+010.00e+001.00e+001274801.23e+011.60e-02[3240,2211,2991,1961]7.34e-0110383FalseNANAFalseFalseFalseFalse8.85e+00-5.13e-05["ga4gh:VA.SBSoboxxiC0V-mhjjHg2geRlf3I0Ib2d","ga4gh:VA.GzUD_86k_EDbtk-R58BTRVazmjZW2O1U"][113410734,113410734][113410735,113410735]["G","A"]"G/A"113410735".""chr11\t113410735\t.\tG\tA\t.\t.\tGT"NA"missense_variant"NANA"chr11"1134107351[(1,"H/Y",NA,"protein_coding",NA,"CCDS8362.1",1313,1313,1237,1237,"Cac/Tac",["missense_variant"],NA,[("Gene3D","1"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("Superfamily","SSF81321")],"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000346454.7:c.1237C>T","ENSP00000278597.5:p.His413Tyr",NA,"MODERATE",NA,NA,NA,NA,NA,NA,NA,NA,413,413,"ENSP00000278597","Ensembl",-1,"ENST00000346454",1,["P14416-2"],"A"),(1,"H/Y","P2","protein_coding",1,"CCDS8361.1",1678,1678,1324,1324,"Cac/Tac",["missense_variant"],NA,[("Gene3D","1"),("ENSP_mappings","5aer"),("ENSP_mappings","5aer"),("ENSP_mappings","6cm4"),("ENSP_mappings","6luq"),("ENSP_mappings","6vms"),("ENSP_mappings","7dfp"),("ENSP_mappings","7jvr"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("Superfamily","SSF81321")],"8/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000362072.8:c.1324C>T","ENSP00000354859.3:p.His442Tyr",NA,"MODERATE",NA,NA,NA,NA,NA,"NM_000795.4",NA,NA,442,442,"ENSP00000354859","Ensembl",-1,"ENST00000362072",1,["P14416-1"],"A"),(1,NA,NA,"processed_transcript",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],3640,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000535984",3,NA,"A"),(1,"H/Y","A1","protein_coding",NA,NA,1330,1330,1330,1330,"Cac/Tac",["missense_variant"],NA,[("Gene3D","1"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("Superfamily","SSF81321")],"8/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000538967.5:c.1330C>T","ENSP00000438215.1:p.His444Tyr",NA,"MODERATE",NA,NA,NA,NA,NA,NA,NA,NA,444,444,"ENSP00000438215","Ensembl",-1,"ENST00000538967",5,["P14416-3"],"A"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],4559,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000539420",3,NA,"A"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],3129,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000540600",1,NA,"A"),(1,"H/Y","P2","protein_coding",NA,"CCDS8361.1",1645,1645,1324,1324,"Cac/Tac",["missense_variant"],NA,[("Gene3D","1"),("ENSP_mappings","5aer"),("ENSP_mappings","5aer"),("ENSP_mappings","6cm4"),("ENSP_mappings","6luq"),("ENSP_mappings","6vms"),("ENSP_mappings","7dfp"),("ENSP_mappings","7jvr"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("Superfamily","SSF81321")],"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000542968.5:c.1324C>T","ENSP00000442172.1:p.His442Tyr",NA,"MODERATE",NA,NA,NA,NA,NA,NA,NA,NA,442,442,"ENSP00000442172","Ensembl",-1,"ENST00000542968",1,["P14416-1"],"A"),(1,"H/Y","A1","protein_coding",NA,NA,1354,1354,1321,1321,"Cac/Tac",["missense_variant"],NA,[("Gene3D","1"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("Superfamily","SSF81321")],"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000544518.5:c.1321C>T","ENSP00000441068.1:p.His441Tyr",NA,"MODERATE",NA,NA,NA,NA,NA,NA,NA,NA,441,441,"ENSP00000441068","Ensembl",-1,"ENST00000544518",1,NA,"A"),(1,NA,NA,"lncRNA",1,NA,NA,NA,NA,NA,NA,["intron_variant","non_coding_transcript_variant"],NA,NA,NA,NA,"ENSG00000256757",NA,NA,NA,NA,"ENST00000546284.1:n.245-812G>A",NA,NA,"MODIFIER","2/3",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",1,"ENST00000546284",3,NA,"A"),(1,"H/Y",NA,"protein_coding",1,NA,1678,1678,1324,1324,"Cac/Tac",["missense_variant"],NA,NA,"8/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_000795.4:c.1324C>T","NP_000786.1:p.His442Tyr",NA,"MODERATE",NA,NA,NA,NA,NA,"ENST00000362072.8",NA,NA,442,442,"NP_000786.1","RefSeq",-1,"NM_000795.4",NA,NA,"A"),(1,"H/Y",NA,"protein_coding",NA,NA,1591,1591,1237,1237,"Cac/Tac",["missense_variant"],NA,NA,"7/7",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_016574.4:c.1237C>T","NP_057658.2:p.His413Tyr",NA,"MODERATE",NA,NA,NA,NA,NA,NA,NA,NA,413,413,"NP_057658.2","RefSeq",-1,"NM_016574.4",NA,NA,"A"),(1,"H/Y",NA,"protein_coding",NA,NA,1406,1406,1324,1324,"Cac/Tac",["missense_variant"],NA,NA,"8/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","XM_017017296.2:c.1324C>T","XP_016872785.1:p.His442Tyr",NA,"MODERATE",NA,NA,NA,NA,NA,NA,NA,NA,442,442,"XP_016872785.1","RefSeq",-1,"XM_017017296.2",NA,NA,"A")]"SNV"8.85e+00"AS_MQ"FalseFalseFalseFalseFalseTrueFalseFalse"multi-snv"2False"snv"False[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,12,0,76,0,314251,0,32,0,416492,0,0,0,0,0,0,75]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,65,332,11308,107353,344982,189073,36327,5607,2387,2756,3080,2935,2956,2918,2972,2924,2564,2682]07717[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,75]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,1,2,3,4,7,3,7,5,1,4,1,3,0,2]032[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,1,1,6,12,25,24,5,1,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][6,0,1,0,14,0,76,0,314251,0,32,0,416492,0,0,0,0,0,0,75]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,2,67,335,11310,107353,344982,189073,36327,5607,2387,2756,3080,2935,2956,2918,2972,2924,2564,2682]07717[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,75]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,1,2,3,4,7,3,7,5,1,4,1,3,0,2]032[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,1,1,6,12,25,24,5,1,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][1,0,0,2,3,3,8,4,0,0]31[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]002.28e+012.69e+002.67e-010.00e+001.00e-028.67e+001.30e-011.18e-01
chr11:113410736["G","A"][(15,1.03e-05,1461882,0),(15,1.03e-05,1461894,0),(0,0.00e+00,33480,0),(0,0.00e+00,44724,0),(0,0.00e+00,26136,0),(0,0.00e+00,39700,0),(0,0.00e+00,53420,0),(0,0.00e+00,5762,0),(15,1.35e-05,1112010,0),(0,0.00e+00,60396,0),(0,0.00e+00,86254,0),(10,1.36e-05,734642,0),(5,6.88e-06,727240,0),(0,0.00e+00,19326,0),(0,0.00e+00,14154,0),(0,0.00e+00,25690,0),(0,0.00e+00,19034,0),(0,0.00e+00,12636,0),(0,0.00e+00,13500,0),(0,0.00e+00,20712,0),(0,0.00e+00,18988,0),(0,0.00e+00,27648,0),(0,0.00e+00,25772,0),(0,0.00e+00,2506,0),(0,0.00e+00,3256,0),(10,1.75e-05,572288,0),(5,9.26e-06,539722,0),(0,0.00e+00,31800,0),(0,0.00e+00,28596,0),(0,0.00e+00,22036,0),(0,0.00e+00,64218,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,1998,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,3996,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5762,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26134,0),(0,0.00e+00,26136,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33478,0),(0,0.00e+00,33480,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,39698,0),(0,0.00e+00,39700,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,39998,0),(0,0.00e+00,40000,0),(0,0.00e+00,44724,0),(0,0.00e+00,44724,0),(0,0.00e+00,44724,0),(0,0.00e+00,44724,0),(0,0.00e+00,44722,0),(0,0.00e+00,44724,0),(0,0.00e+00,53420,0),(0,0.00e+00,53420,0),(0,0.00e+00,53420,0),(0,0.00e+00,53418,0),(0,0.00e+00,53420,0),(0,0.00e+00,60396,0),(0,0.00e+00,60396,0),(0,0.00e+00,60394,0),(0,0.00e+00,60396,0),(1,1.16e-05,86258,0),(0,0.00e+00,86254,0),(0,0.00e+00,86258,0),(2,2.00e-05,100000,0),(1,1.00e-05,100000,0),(2,1.00e-05,200000,0),(2,1.00e-05,200000,0),(7,1.75e-05,400000,0),(4,1.00e-05,400000,0),(14,1.40e-05,1000000,0),(10,1.00e-05,999994,0),(15,1.35e-05,1112010,0),(12,1.08e-05,1112006,0),(1,1.59e-06,628772,0),(1,1.59e-06,628784,0),(0,0.00e+00,17694,0),(0,0.00e+00,43740,0),(0,0.00e+00,20984,0),(0,0.00e+00,36070,0),(0,0.00e+00,53144,0),(0,0.00e+00,4142,0),(1,2.86e-06,350106,0),(0,0.00e+00,33098,0),(0,0.00e+00,69794,0),(1,3.49e-06,286246,0),(0,0.00e+00,342526,0),(0,0.00e+00,10286,0),(0,0.00e+00,7408,0),(0,0.00e+00,25040,0),(0,0.00e+00,18700,0),(0,0.00e+00,9838,0),(0,0.00e+00,11146,0),(0,0.00e+00,18298,0),(0,0.00e+00,17772,0),(0,0.00e+00,27398,0),(0,0.00e+00,25746,0),(0,0.00e+00,1916,0),(0,0.00e+00,2226,0),(1,6.16e-06,162220,0),(0,0.00e+00,187886,0),(0,0.00e+00,16752,0),(0,0.00e+00,16346,0),(0,0.00e+00,14498,0),(0,0.00e+00,55296,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,1998,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,3994,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4142,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20982,0),(0,0.00e+00,20984,0),(0,0.00e+00,33098,0),(0,0.00e+00,33098,0),(0,0.00e+00,33098,0),(1,3.02e-05,33098,0),(0,0.00e+00,33098,0),(0,0.00e+00,33096,0),(0,0.00e+00,33098,0),(0,0.00e+00,36070,0),(0,0.00e+00,36070,0),(0,0.00e+00,36070,0),(1,2.77e-05,36070,0),(0,0.00e+00,36068,0),(0,0.00e+00,36070,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(1,2.50e-05,40000,0),(0,0.00e+00,39998,0),(0,0.00e+00,40000,0),(0,0.00e+00,43740,0),(0,0.00e+00,43740,0),(1,2.29e-05,43740,0),(0,0.00e+00,43738,0),(1,2.29e-05,43740,0),(0,0.00e+00,53144,0),(1,1.88e-05,53144,0),(0,0.00e+00,53142,0),(1,1.88e-05,53144,0),(1,1.43e-05,69798,0),(0,0.00e+00,69794,0),(1,1.43e-05,69798,0),(1,1.00e-05,100000,0),(1,1.00e-05,100000,0),(1,5.00e-06,200000,0),(1,5.00e-06,199998,0),(1,2.86e-06,350106,0),(1,2.86e-06,350104,0),(1,2.50e-06,399994,0)]151.35e-0511120100"nfe"12.86e-063501060"nfe"[(6.16e-06,4.89e-06),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(8.10e-06,6.42e-06),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]8.10e-06"nfe"6.42e-06"nfe"NANANANA1True{"rs1159504221"}{}5.49e-016.00e+010.00e+00123071.16e+017.40e-02[386,195,316,166]6.55e-0110639.64e-166.00e+010.00e+009.11e-01118991.17e+019.70e-02[386,195,304,161]6.47e-011013FalseNANAFalseFalseFalseFalse7.50e+00-1.03e-05["ga4gh:VA.QVbOetW6APM1_3jfGLLwArt4GfwgT6jE","ga4gh:VA.OXPDvbuulFZ9CSk4XtIFat1UOKdMachQ"][113410735,113410735][113410736,113410736]["G","A"]"G/A"113410736".""chr11\t113410736\t.\tG\tA\t.\t.\tGT"NA"synonymous_variant"NANA"chr11"1134107361[(1,"L",NA,"protein_coding",NA,"CCDS8362.1",1312,1312,1236,1236,"ctC/ctT",["synonymous_variant"],NA,[("Gene3D","1"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321")],"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000346454.7:c.1236C>T","ENSP00000278597.5:p.Leu412=",NA,"LOW",NA,NA,NA,NA,NA,NA,NA,NA,412,412,"ENSP00000278597","Ensembl",-1,"ENST00000346454",1,["P14416-2"],"A"),(1,"L","P2","protein_coding",1,"CCDS8361.1",1677,1677,1323,1323,"ctC/ctT",["synonymous_variant"],NA,[("Gene3D","1"),("ENSP_mappings","5aer"),("ENSP_mappings","5aer"),("ENSP_mappings","6cm4"),("ENSP_mappings","6luq"),("ENSP_mappings","6vms"),("ENSP_mappings","7dfp"),("ENSP_mappings","7jvr"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321")],"8/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000362072.8:c.1323C>T","ENSP00000354859.3:p.Leu441=",NA,"LOW",NA,NA,NA,NA,NA,"NM_000795.4",NA,NA,441,441,"ENSP00000354859","Ensembl",-1,"ENST00000362072",1,["P14416-1"],"A"),(1,NA,NA,"processed_transcript",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],3639,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000535984",3,NA,"A"),(1,"L","A1","protein_coding",NA,NA,1329,1329,1329,1329,"ctC/ctT",["synonymous_variant"],NA,[("Gene3D","1"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321")],"8/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000538967.5:c.1329C>T","ENSP00000438215.1:p.Leu443=",NA,"LOW",NA,NA,NA,NA,NA,NA,NA,NA,443,443,"ENSP00000438215","Ensembl",-1,"ENST00000538967",5,["P14416-3"],"A"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],4558,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000539420",3,NA,"A"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],3128,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000540600",1,NA,"A"),(1,"L","P2","protein_coding",NA,"CCDS8361.1",1644,1644,1323,1323,"ctC/ctT",["synonymous_variant"],NA,[("Gene3D","1"),("ENSP_mappings","5aer"),("ENSP_mappings","5aer"),("ENSP_mappings","6cm4"),("ENSP_mappings","6luq"),("ENSP_mappings","6vms"),("ENSP_mappings","7dfp"),("ENSP_mappings","7jvr"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321")],"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000542968.5:c.1323C>T","ENSP00000442172.1:p.Leu441=",NA,"LOW",NA,NA,NA,NA,NA,NA,NA,NA,441,441,"ENSP00000442172","Ensembl",-1,"ENST00000542968",1,["P14416-1"],"A"),(1,"L","A1","protein_coding",NA,NA,1353,1353,1320,1320,"ctC/ctT",["synonymous_variant"],NA,[("Gene3D","1"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321")],"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000544518.5:c.1320C>T","ENSP00000441068.1:p.Leu440=",NA,"LOW",NA,NA,NA,NA,NA,NA,NA,NA,440,440,"ENSP00000441068","Ensembl",-1,"ENST00000544518",1,NA,"A"),(1,NA,NA,"lncRNA",1,NA,NA,NA,NA,NA,NA,["intron_variant","non_coding_transcript_variant"],NA,NA,NA,NA,"ENSG00000256757",NA,NA,NA,NA,"ENST00000546284.1:n.245-811G>A",NA,NA,"MODIFIER","2/3",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",1,"ENST00000546284",3,NA,"A"),(1,"L",NA,"protein_coding",1,NA,1677,1677,1323,1323,"ctC/ctT",["synonymous_variant"],NA,NA,"8/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_000795.4:c.1323C>T","NP_000786.1:p.Leu441=",NA,"LOW",NA,NA,NA,NA,NA,"ENST00000362072.8",NA,NA,441,441,"NP_000786.1","RefSeq",-1,"NM_000795.4",NA,NA,"A"),(1,"L",NA,"protein_coding",NA,NA,1590,1590,1236,1236,"ctC/ctT",["synonymous_variant"],NA,NA,"7/7",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_016574.4:c.1236C>T","NP_057658.2:p.Leu412=",NA,"LOW",NA,NA,NA,NA,NA,NA,NA,NA,412,412,"NP_057658.2","RefSeq",-1,"NM_016574.4",NA,NA,"A"),(1,"L",NA,"protein_coding",NA,NA,1405,1405,1323,1323,"ctC/ctT",["synonymous_variant"],NA,NA,"8/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","XM_017017296.2:c.1323C>T","XP_016872785.1:p.Leu441=",NA,"LOW",NA,NA,NA,NA,NA,NA,NA,NA,441,441,"XP_016872785.1","RefSeq",-1,"XM_017017296.2",NA,NA,"A")]"SNV"7.50e+00"AS_MQ"FalseFalseFalseFalseFalseTrueFalseFalse"multi-snv"2False"snv"False[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,8,0,71,0,314313,0,37,0,416496,0,0,0,0,0,0,16]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,61,328,11304,107355,345020,189098,36329,5607,2382,2757,3074,2931,2955,2914,2974,2923,2564,2680]07685[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,15]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,1,3,1,2,3,1,0,1,0,1,1,0,0]01[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,1,0,0,1,1,11,1,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][5,0,0,0,9,0,71,0,314313,0,37,0,416496,0,0,0,0,0,0,16]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,1,62,330,11305,107356,345020,189098,36329,5607,2382,2757,3074,2931,2955,2914,2974,2923,2564,2680]07685[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,15]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,1,3,1,2,3,1,0,1,0,1,1,0,0]01[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,1,0,0,1,1,11,1,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,1,2,4,2,4,1,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]003.44e+002.28e-01NA0.00e+001.00e-02-2.55e-01NANA
chr11:113410736["G","T"][(1,6.84e-07,1461882,0),(1,6.84e-07,1461894,0),(0,0.00e+00,33480,0),(0,0.00e+00,44724,0),(0,0.00e+00,26136,0),(0,0.00e+00,39700,0),(0,0.00e+00,53420,0),(0,0.00e+00,5762,0),(1,8.99e-07,1112010,0),(0,0.00e+00,60396,0),(0,0.00e+00,86254,0),(0,0.00e+00,734642,0),(1,1.38e-06,727240,0),(0,0.00e+00,19326,0),(0,0.00e+00,14154,0),(0,0.00e+00,25690,0),(0,0.00e+00,19034,0),(0,0.00e+00,12636,0),(0,0.00e+00,13500,0),(0,0.00e+00,20712,0),(0,0.00e+00,18988,0),(0,0.00e+00,27648,0),(0,0.00e+00,25772,0),(0,0.00e+00,2506,0),(0,0.00e+00,3256,0),(0,0.00e+00,572288,0),(1,1.85e-06,539722,0),(0,0.00e+00,31800,0),(0,0.00e+00,28596,0),(0,0.00e+00,22036,0),(0,0.00e+00,64218,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,1998,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,3996,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5762,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26134,0),(0,0.00e+00,26136,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33478,0),(0,0.00e+00,33480,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,39698,0),(0,0.00e+00,39700,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,39998,0),(0,0.00e+00,40000,0),(0,0.00e+00,44724,0),(0,0.00e+00,44724,0),(0,0.00e+00,44724,0),(0,0.00e+00,44724,0),(0,0.00e+00,44722,0),(0,0.00e+00,44724,0),(0,0.00e+00,53420,0),(0,0.00e+00,53420,0),(0,0.00e+00,53420,0),(0,0.00e+00,53418,0),(0,0.00e+00,53420,0),(0,0.00e+00,60396,0),(0,0.00e+00,60396,0),(0,0.00e+00,60394,0),(0,0.00e+00,60396,0),(0,0.00e+00,86258,0),(0,0.00e+00,86254,0),(0,0.00e+00,86258,0),(0,0.00e+00,100000,0),(0,0.00e+00,100000,0),(0,0.00e+00,200000,0),(0,0.00e+00,200000,0),(1,2.50e-06,400000,0),(1,2.50e-06,400000,0),(1,1.00e-06,1000000,0),(1,1.00e-06,999994,0),(1,8.99e-07,1112010,0),(1,8.99e-07,1112006,0),(0,0.00e+00,628772,0),(0,0.00e+00,628784,0),(0,0.00e+00,17694,0),(0,0.00e+00,43740,0),(0,0.00e+00,20984,0),(0,0.00e+00,36070,0),(0,0.00e+00,53144,0),(0,0.00e+00,4142,0),(0,0.00e+00,350106,0),(0,0.00e+00,33098,0),(0,0.00e+00,69794,0),(0,0.00e+00,286246,0),(0,0.00e+00,342526,0),(0,0.00e+00,10286,0),(0,0.00e+00,7408,0),(0,0.00e+00,25040,0),(0,0.00e+00,18700,0),(0,0.00e+00,9838,0),(0,0.00e+00,11146,0),(0,0.00e+00,18298,0),(0,0.00e+00,17772,0),(0,0.00e+00,27398,0),(0,0.00e+00,25746,0),(0,0.00e+00,1916,0),(0,0.00e+00,2226,0),(0,0.00e+00,162220,0),(0,0.00e+00,187886,0),(0,0.00e+00,16752,0),(0,0.00e+00,16346,0),(0,0.00e+00,14498,0),(0,0.00e+00,55296,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,1998,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,3994,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4142,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20982,0),(0,0.00e+00,20984,0),(0,0.00e+00,33098,0),(0,0.00e+00,33098,0),(0,0.00e+00,33098,0),(0,0.00e+00,33098,0),(0,0.00e+00,33098,0),(0,0.00e+00,33096,0),(0,0.00e+00,33098,0),(0,0.00e+00,36070,0),(0,0.00e+00,36070,0),(0,0.00e+00,36070,0),(0,0.00e+00,36070,0),(0,0.00e+00,36068,0),(0,0.00e+00,36070,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,39998,0),(0,0.00e+00,40000,0),(0,0.00e+00,43740,0),(0,0.00e+00,43740,0),(0,0.00e+00,43740,0),(0,0.00e+00,43738,0),(0,0.00e+00,43740,0),(0,0.00e+00,53144,0),(0,0.00e+00,53144,0),(0,0.00e+00,53142,0),(0,0.00e+00,53144,0),(0,0.00e+00,69798,0),(0,0.00e+00,69794,0),(0,0.00e+00,69798,0),(0,0.00e+00,100000,0),(0,0.00e+00,100000,0),(0,0.00e+00,200000,0),(0,0.00e+00,199998,0),(0,0.00e+00,350106,0),(0,0.00e+00,350104,0),(0,0.00e+00,399994,0)]18.99e-0711120100"nfe"NANANANANA[(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]NANANANANANANANA2TrueNA{}5.49e-016.00e+010.00e+00123071.16e+017.40e-02[386,195,316,166]6.55e-0110639.64e-166.00e+010.00e+003.28e-024088.16e+00-9.23e-01[386,195,12,5]7.90e-0150TrueFalseFalseFalseFalseFalseFalse5.00e+00-6.84e-07["ga4gh:VA.QVbOetW6APM1_3jfGLLwArt4GfwgT6jE","ga4gh:VA.4qhkDG1qrfqiD2TeOA6LYLsi4UGWF19l"][113410735,113410735][113410736,113410736]["G","T"]"G/T"113410736".""chr11\t113410736\t.\tG\tT\t.\t.\tGT"NA"synonymous_variant"NANA"chr11"1134107361[(1,"L",NA,"protein_coding",NA,"CCDS8362.1",1312,1312,1236,1236,"ctC/ctA",["synonymous_variant"],NA,[("Gene3D","1"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321")],"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000346454.7:c.1236C>A","ENSP00000278597.5:p.Leu412=",NA,"LOW",NA,NA,NA,NA,NA,NA,NA,NA,412,412,"ENSP00000278597","Ensembl",-1,"ENST00000346454",1,["P14416-2"],"T"),(1,"L","P2","protein_coding",1,"CCDS8361.1",1677,1677,1323,1323,"ctC/ctA",["synonymous_variant"],NA,[("Gene3D","1"),("ENSP_mappings","5aer"),("ENSP_mappings","5aer"),("ENSP_mappings","6cm4"),("ENSP_mappings","6luq"),("ENSP_mappings","6vms"),("ENSP_mappings","7dfp"),("ENSP_mappings","7jvr"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321")],"8/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000362072.8:c.1323C>A","ENSP00000354859.3:p.Leu441=",NA,"LOW",NA,NA,NA,NA,NA,"NM_000795.4",NA,NA,441,441,"ENSP00000354859","Ensembl",-1,"ENST00000362072",1,["P14416-1"],"T"),(1,NA,NA,"processed_transcript",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],3639,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000535984",3,NA,"T"),(1,"L","A1","protein_coding",NA,NA,1329,1329,1329,1329,"ctC/ctA",["synonymous_variant"],NA,[("Gene3D","1"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321")],"8/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000538967.5:c.1329C>A","ENSP00000438215.1:p.Leu443=",NA,"LOW",NA,NA,NA,NA,NA,NA,NA,NA,443,443,"ENSP00000438215","Ensembl",-1,"ENST00000538967",5,["P14416-3"],"T"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],4558,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000539420",3,NA,"T"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],3128,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000540600",1,NA,"T"),(1,"L","P2","protein_coding",NA,"CCDS8361.1",1644,1644,1323,1323,"ctC/ctA",["synonymous_variant"],NA,[("Gene3D","1"),("ENSP_mappings","5aer"),("ENSP_mappings","5aer"),("ENSP_mappings","6cm4"),("ENSP_mappings","6luq"),("ENSP_mappings","6vms"),("ENSP_mappings","7dfp"),("ENSP_mappings","7jvr"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321")],"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000542968.5:c.1323C>A","ENSP00000442172.1:p.Leu441=",NA,"LOW",NA,NA,NA,NA,NA,NA,NA,NA,441,441,"ENSP00000442172","Ensembl",-1,"ENST00000542968",1,["P14416-1"],"T"),(1,"L","A1","protein_coding",NA,NA,1353,1353,1320,1320,"ctC/ctA",["synonymous_variant"],NA,[("Gene3D","1"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321")],"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000544518.5:c.1320C>A","ENSP00000441068.1:p.Leu440=",NA,"LOW",NA,NA,NA,NA,NA,NA,NA,NA,440,440,"ENSP00000441068","Ensembl",-1,"ENST00000544518",1,NA,"T"),(1,NA,NA,"lncRNA",1,NA,NA,NA,NA,NA,NA,["intron_variant","non_coding_transcript_variant"],NA,NA,NA,NA,"ENSG00000256757",NA,NA,NA,NA,"ENST00000546284.1:n.245-811G>T",NA,NA,"MODIFIER","2/3",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",1,"ENST00000546284",3,NA,"T"),(1,"L",NA,"protein_coding",1,NA,1677,1677,1323,1323,"ctC/ctA",["synonymous_variant"],NA,NA,"8/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_000795.4:c.1323C>A","NP_000786.1:p.Leu441=",NA,"LOW",NA,NA,NA,NA,NA,"ENST00000362072.8",NA,NA,441,441,"NP_000786.1","RefSeq",-1,"NM_000795.4",NA,NA,"T"),(1,"L",NA,"protein_coding",NA,NA,1590,1590,1236,1236,"ctC/ctA",["synonymous_variant"],NA,NA,"7/7",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_016574.4:c.1236C>A","NP_057658.2:p.Leu412=",NA,"LOW",NA,NA,NA,NA,NA,NA,NA,NA,412,412,"NP_057658.2","RefSeq",-1,"NM_016574.4",NA,NA,"T"),(1,"L",NA,"protein_coding",NA,NA,1405,1405,1323,1323,"ctC/ctA",["synonymous_variant"],NA,NA,"8/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","XM_017017296.2:c.1323C>A","XP_016872785.1:p.Leu441=",NA,"LOW",NA,NA,NA,NA,NA,NA,NA,NA,441,441,"XP_016872785.1","RefSeq",-1,"XM_017017296.2",NA,NA,"T")]"SNV"5.00e+00"AS_MQ"FalseFalseFalseFalseFalseTrueFalseFalse"multi-snv"2False"snv"False[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,8,0,71,0,314313,0,37,0,416496,0,0,0,0,0,0,16]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,61,328,11304,107355,345020,189098,36329,5607,2382,2757,3074,2931,2955,2914,2974,2923,2564,2680]07685[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][5,0,0,0,9,0,71,0,314313,0,37,0,416496,0,0,0,0,0,0,16]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,1,62,330,11305,107356,345020,189098,36329,5607,2382,2757,3074,2931,2955,2914,2974,2923,2564,2680]07685[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,1,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]002.96e+001.86e-01NA0.00e+003.00e-02-2.55e-01NANA

showing top 5 rows

\n" + ], + "text/plain": [ + "+-----------------+------------+\n", + "| locus | alleles |\n", + "+-----------------+------------+\n", + "| locus | array |\n", + "+-----------------+------------+\n", + "| chr11:113410731 | [\"C\",\"A\"] |\n", + "| chr11:113410731 | [\"C\",\"T\"] |\n", + "| chr11:113410735 | [\"G\",\"A\"] |\n", + "| chr11:113410736 | [\"G\",\"A\"] |\n", + "| chr11:113410736 | [\"G\",\"T\"] |\n", + "+-----------------+------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| freq |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [(2,1.37e-06,1461866,0),(2,1.37e-06,1461894,0),(0,0.00e+00,33480,0),(2,4.... |\n", + "| [(1,6.84e-07,1461866,0),(1,6.84e-07,1461894,0),(0,0.00e+00,33480,0),(0,0.... |\n", + "| [(75,5.13e-05,1461876,0),(75,5.13e-05,1461894,0),(0,0.00e+00,33480,0),(0,... |\n", + "| [(15,1.03e-05,1461882,0),(15,1.03e-05,1461894,0),(0,0.00e+00,33480,0),(0,... |\n", + "| [(1,6.84e-07,1461882,0),(1,6.84e-07,1461894,0),(0,0.00e+00,33480,0),(0,0.... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+------------------+------------------+------------------+\n", + "| grpmax.gnomad.AC | grpmax.gnomad.AF | grpmax.gnomad.AN |\n", + "+------------------+------------------+------------------+\n", + "| int32 | float64 | int32 |\n", + "+------------------+------------------+------------------+\n", + "| 2 | 4.47e-05 | 44724 |\n", + "| 1 | 8.99e-07 | 1112010 |\n", + "| 8 | 7.19e-06 | 1112004 |\n", + "| 15 | 1.35e-05 | 1112010 |\n", + "| 1 | 8.99e-07 | 1112010 |\n", + "+------------------+------------------+------------------+\n", + "\n", + "+--------------------------------+-----------------------+-------------------+\n", + "| grpmax.gnomad.homozygote_count | grpmax.gnomad.gen_anc | grpmax.non_ukb.AC |\n", + "+--------------------------------+-----------------------+-------------------+\n", + "| int64 | str | int32 |\n", + "+--------------------------------+-----------------------+-------------------+\n", + "| 0 | \"amr\" | 2 |\n", + "| 0 | \"nfe\" | NA |\n", + "| 0 | \"nfe\" | 2 |\n", + "| 0 | \"nfe\" | 1 |\n", + "| 0 | \"nfe\" | NA |\n", + "+--------------------------------+-----------------------+-------------------+\n", + "\n", + "+-------------------+-------------------+---------------------------------+\n", + "| grpmax.non_ukb.AF | grpmax.non_ukb.AN | grpmax.non_ukb.homozygote_count |\n", + "+-------------------+-------------------+---------------------------------+\n", + "| float64 | int32 | int64 |\n", + "+-------------------+-------------------+---------------------------------+\n", + "| 4.57e-05 | 43740 | 0 |\n", + "| NA | NA | NA |\n", + "| 5.71e-06 | 350102 | 0 |\n", + "| 2.86e-06 | 350106 | 0 |\n", + "| NA | NA | NA |\n", + "+-------------------+-------------------+---------------------------------+\n", + "\n", + "+------------------------+\n", + "| grpmax.non_ukb.gen_anc |\n", + "+------------------------+\n", + "| str |\n", + "+------------------------+\n", + "| \"amr\" |\n", + "| NA |\n", + "| \"nfe\" |\n", + "| \"nfe\" |\n", + "| NA |\n", + "+------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| faf |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [(2.30e-07,9.00e-08),(0.00e+00,0.00e+00),(7.41e-06,2.77e-06),(0.00e+00,0.... |\n", + "| [(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.... |\n", + "| [(4.19e-05,3.82e-05),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.... |\n", + "| [(6.16e-06,4.89e-06),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.... |\n", + "| [(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+-------------------------+---------------------------------+\n", + "| fafmax.gnomad.faf95_max | fafmax.gnomad.faf95_max_gen_anc |\n", + "+-------------------------+---------------------------------+\n", + "| float64 | str |\n", + "+-------------------------+---------------------------------+\n", + "| 7.41e-06 | \"amr\" |\n", + "| NA | NA |\n", + "| 3.09e-06 | \"nfe\" |\n", + "| 8.10e-06 | \"nfe\" |\n", + "| NA | NA |\n", + "+-------------------------+---------------------------------+\n", + "\n", + "+-------------------------+---------------------------------+\n", + "| fafmax.gnomad.faf99_max | fafmax.gnomad.faf99_max_gen_anc |\n", + "+-------------------------+---------------------------------+\n", + "| float64 | str |\n", + "+-------------------------+---------------------------------+\n", + "| 2.77e-06 | \"amr\" |\n", + "| NA | NA |\n", + "| 2.24e-06 | \"nfe\" |\n", + "| 6.42e-06 | \"nfe\" |\n", + "| NA | NA |\n", + "+-------------------------+---------------------------------+\n", + "\n", + "+--------------------------+----------------------------------+\n", + "| fafmax.non_ukb.faf95_max | fafmax.non_ukb.faf95_max_gen_anc |\n", + "+--------------------------+----------------------------------+\n", + "| float64 | str |\n", + "+--------------------------+----------------------------------+\n", + "| 7.58e-06 | \"amr\" |\n", + "| NA | NA |\n", + "| 9.50e-07 | \"nfe\" |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "+--------------------------+----------------------------------+\n", + "\n", + "+--------------------------+----------------------------------+---------+\n", + "| fafmax.non_ukb.faf99_max | fafmax.non_ukb.faf99_max_gen_anc | a_index |\n", + "+--------------------------+----------------------------------+---------+\n", + "| float64 | str | int32 |\n", + "+--------------------------+----------------------------------+---------+\n", + "| 2.84e-06 | \"amr\" | 1 |\n", + "| NA | NA | 2 |\n", + "| 3.60e-07 | \"nfe\" | 1 |\n", + "| NA | NA | 1 |\n", + "| NA | NA | 2 |\n", + "+--------------------------+----------------------------------+---------+\n", + "\n", + "+-----------+------------------+----------+----------+----------+\n", + "| was_split | rsid | filters | info.FS | info.MQ |\n", + "+-----------+------------------+----------+----------+----------+\n", + "| bool | set | set | float64 | float64 |\n", + "+-----------+------------------+----------+----------+----------+\n", + "| True | {\"rs140938110\"} | {} | 5.56e+00 | 6.00e+01 |\n", + "| True | NA | {} | 5.56e+00 | 6.00e+01 |\n", + "| True | {\"rs201801648\"} | {} | 0.00e+00 | 6.00e+01 |\n", + "| True | {\"rs1159504221\"} | {} | 5.49e-01 | 6.00e+01 |\n", + "| True | NA | {} | 5.49e-01 | 6.00e+01 |\n", + "+-----------+------------------+----------+----------+----------+\n", + "\n", + "+----------------+-----------------+----------+---------------------+\n", + "| info.MQRankSum | info.QUALapprox | info.QD | info.ReadPosRankSum |\n", + "+----------------+-----------------+----------+---------------------+\n", + "| float64 | int64 | float64 | float64 |\n", + "+----------------+-----------------+----------+---------------------+\n", + "| 0.00e+00 | 3862 | 1.02e+01 | -1.98e-01 |\n", + "| 0.00e+00 | 3862 | 1.02e+01 | -1.98e-01 |\n", + "| 0.00e+00 | 127501 | 1.23e+01 | 3.70e-02 |\n", + "| 0.00e+00 | 12307 | 1.16e+01 | 7.40e-02 |\n", + "| 0.00e+00 | 12307 | 1.16e+01 | 7.40e-02 |\n", + "+----------------+-----------------+----------+---------------------+\n", + "\n", + "+-----------------------+----------+------------+------------+------------+\n", + "| info.SB | info.SOR | info.VarDP | info.AS_FS | info.AS_MQ |\n", + "+-----------------------+----------+------------+------------+------------+\n", + "| array | float64 | int32 | float64 | float64 |\n", + "+-----------------------+----------+------------+------------+------------+\n", + "| [134,83,109,52] | 9.81e-01 | 378 | 1.31e+01 | 6.00e+01 |\n", + "| [134,83,109,52] | 9.81e-01 | 378 | 0.00e+00 | 6.00e+01 |\n", + "| [3240,2211,2993,1962] | 7.34e-01 | 10404 | 0.00e+00 | 6.00e+01 |\n", + "| [386,195,316,166] | 6.55e-01 | 1063 | 9.64e-16 | 6.00e+01 |\n", + "| [386,195,316,166] | 6.55e-01 | 1063 | 9.64e-16 | 6.00e+01 |\n", + "+-----------------------+----------+------------+------------+------------+\n", + "\n", + "+-------------------+-----------------+--------------------+------------+\n", + "| info.AS_MQRankSum | info.AS_pab_max | info.AS_QUALapprox | info.AS_QD |\n", + "+-------------------+-----------------+--------------------+------------+\n", + "| float64 | float64 | int64 | float64 |\n", + "+-------------------+-----------------+--------------------+------------+\n", + "| 0.00e+00 | 2.94e-01 | 1895 | 1.06e+01 |\n", + "| 0.00e+00 | 9.04e-01 | 1967 | 9.88e+00 |\n", + "| 0.00e+00 | 1.00e+00 | 127480 | 1.23e+01 |\n", + "| 0.00e+00 | 9.11e-01 | 11899 | 1.17e+01 |\n", + "| 0.00e+00 | 3.28e-02 | 408 | 8.16e+00 |\n", + "+-------------------+-----------------+--------------------+------------+\n", + "\n", + "+------------------------+-----------------------+-------------+---------------+\n", + "| info.AS_ReadPosRankSum | info.AS_SB_TABLE | info.AS_SOR | info.AS_VarDP |\n", + "+------------------------+-----------------------+-------------+---------------+\n", + "| float64 | array | float64 | int32 |\n", + "+------------------------+-----------------------+-------------+---------------+\n", + "| 2.52e-01 | [134,83,56,19] | 1.42e+00 | 179 |\n", + "| -5.01e-01 | [134,83,53,33] | 6.81e-01 | 199 |\n", + "| 1.60e-02 | [3240,2211,2991,1961] | 7.34e-01 | 10383 |\n", + "| 9.70e-02 | [386,195,304,161] | 6.47e-01 | 1013 |\n", + "| -9.23e-01 | [386,195,12,5] | 7.90e-01 | 50 |\n", + "+------------------------+-----------------------+-------------+---------------+\n", + "\n", + "+----------------+----------------------------+------------------------+\n", + "| info.singleton | info.transmitted_singleton | info.sibling_singleton |\n", + "+----------------+----------------------------+------------------------+\n", + "| bool | bool | bool |\n", + "+----------------+----------------------------+------------------------+\n", + "| False | NA | NA |\n", + "| True | False | False |\n", + "| False | NA | NA |\n", + "| False | NA | NA |\n", + "| True | False | False |\n", + "+----------------+----------------------------+------------------------+\n", + "\n", + "+-----------+------------+------------------+---------------+----------------+\n", + "| info.omni | info.mills | info.monoallelic | info.only_het | info.AS_VQSLOD |\n", + "+-----------+------------+------------------+---------------+----------------+\n", + "| bool | bool | bool | bool | float64 |\n", + "+-----------+------------+------------------+---------------+----------------+\n", + "| False | False | False | False | 5.27e+00 |\n", + "| False | False | False | False | 5.40e+00 |\n", + "| False | False | False | False | 8.85e+00 |\n", + "| False | False | False | False | 7.50e+00 |\n", + "| False | False | False | False | 5.00e+00 |\n", + "+-----------+------------+------------------+---------------+----------------+\n", + "\n", + "+-----------------------+\n", + "| info.inbreeding_coeff |\n", + "+-----------------------+\n", + "| float64 |\n", + "+-----------------------+\n", + "| -1.37e-06 |\n", + "| -6.84e-07 |\n", + "| -5.13e-05 |\n", + "| -1.03e-05 |\n", + "| -6.84e-07 |\n", + "+-----------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| info.vrs.VRS_Allele_IDs |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [\"ga4gh:VA.RY2FNHeS0QpJNM9lQpQ_pzX7Q27-MXmI\",\"ga4gh:VA.ZonDIhdwyghm7SuWkX... |\n", + "| [\"ga4gh:VA.RY2FNHeS0QpJNM9lQpQ_pzX7Q27-MXmI\",\"ga4gh:VA.Hp20SlFHUdM7jlWmVV... |\n", + "| [\"ga4gh:VA.SBSoboxxiC0V-mhjjHg2geRlf3I0Ib2d\",\"ga4gh:VA.GzUD_86k_EDbtk-R58... |\n", + "| [\"ga4gh:VA.QVbOetW6APM1_3jfGLLwArt4GfwgT6jE\",\"ga4gh:VA.OXPDvbuulFZ9CSk4Xt... |\n", + "| [\"ga4gh:VA.QVbOetW6APM1_3jfGLLwArt4GfwgT6jE\",\"ga4gh:VA.4qhkDG1qrfqiD2TeOA... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+-----------------------+-----------------------+---------------------+\n", + "| info.vrs.VRS_Starts | info.vrs.VRS_Ends | info.vrs.VRS_States |\n", + "+-----------------------+-----------------------+---------------------+\n", + "| array | array | array |\n", + "+-----------------------+-----------------------+---------------------+\n", + "| [113410730,113410730] | [113410731,113410731] | [\"C\",\"A\"] |\n", + "| [113410730,113410730] | [113410731,113410731] | [\"C\",\"T\"] |\n", + "| [113410734,113410734] | [113410735,113410735] | [\"G\",\"A\"] |\n", + "| [113410735,113410735] | [113410736,113410736] | [\"G\",\"A\"] |\n", + "| [113410735,113410735] | [113410736,113410736] | [\"G\",\"T\"] |\n", + "+-----------------------+-----------------------+---------------------+\n", + "\n", + "+-------------------+-----------+--------+--------------------------------+\n", + "| vep.allele_string | vep.end | vep.id | vep.input |\n", + "+-------------------+-----------+--------+--------------------------------+\n", + "| str | int32 | str | str |\n", + "+-------------------+-----------+--------+--------------------------------+\n", + "| \"C/A\" | 113410731 | \".\" | \"chr11\t113410731\t.\tC\tA\t.\t.\tGT\" |\n", + "| \"C/T\" | 113410731 | \".\" | \"chr11\t113410731\t.\tC\tT\t.\t.\tGT\" |\n", + "| \"G/A\" | 113410735 | \".\" | \"chr11\t113410735\t.\tG\tA\t.\t.\tGT\" |\n", + "| \"G/A\" | 113410736 | \".\" | \"chr11\t113410736\t.\tG\tA\t.\t.\tGT\" |\n", + "| \"G/T\" | 113410736 | \".\" | \"chr11\t113410736\t.\tG\tT\t.\t.\tGT\" |\n", + "+-------------------+-----------+--------+--------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| vep.intergenic_consequences |\n", + "+------------------------------------------------------------------------------+\n", + "| array, impact: st... |\n", + "+------------------------------------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+-----------------------------+\n", + "| vep.most_severe_consequence |\n", + "+-----------------------------+\n", + "| str |\n", + "+-----------------------------+\n", + "| \"missense_variant\" |\n", + "| \"missense_variant\" |\n", + "| \"missense_variant\" |\n", + "| \"synonymous_variant\" |\n", + "| \"synonymous_variant\" |\n", + "+-----------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| vep.motif_feature_consequences |\n", + "+------------------------------------------------------------------------------+\n", + "| array, high_inf_p... |\n", + "+------------------------------------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| vep.regulatory_feature_consequences |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+---------------------------------------------------------+\n", + "| histograms.qual_hists.gq_hist_all.bin_freq |\n", + "+---------------------------------------------------------+\n", + "| array |\n", + "+---------------------------------------------------------+\n", + "| [0,0,0,0,21,0,124,0,314262,0,99,0,416424,0,0,0,0,0,0,3] |\n", + "| [0,0,0,0,21,0,124,0,314262,0,99,0,416424,0,0,0,0,0,0,3] |\n", + "| [0,0,0,0,12,0,76,0,314251,0,32,0,416492,0,0,0,0,0,0,75] |\n", + "| [0,0,0,0,8,0,71,0,314313,0,37,0,416496,0,0,0,0,0,0,16] |\n", + "| [0,0,0,0,8,0,71,0,314313,0,37,0,416496,0,0,0,0,0,0,16] |\n", + "+---------------------------------------------------------+\n", + "\n", + "+---------------------------------------------+\n", + "| histograms.qual_hists.gq_hist_all.n_smaller |\n", + "+---------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+---------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.qual_hists.gq_hist_all.n_larger |\n", + "+--------------------------------------------+\n", + "| int64 |\n", + "+--------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+--------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.qual_hists.dp_hist_all.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.qual_hists.dp_hist_all.bin_freq |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0,0,98,374,11344,107362,344923,189028,36319,5607,2388,2759,3074,2931,295... |\n", + "| [0,0,98,374,11344,107362,344923,189028,36319,5607,2388,2759,3074,2931,295... |\n", + "| [0,0,65,332,11308,107353,344982,189073,36327,5607,2387,2756,3080,2935,295... |\n", + "| [0,0,61,328,11304,107355,345020,189098,36329,5607,2382,2757,3074,2931,295... |\n", + "| [0,0,61,328,11304,107355,345020,189098,36329,5607,2382,2757,3074,2931,295... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+---------------------------------------------+\n", + "| histograms.qual_hists.dp_hist_all.n_smaller |\n", + "+---------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+---------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.qual_hists.dp_hist_all.n_larger |\n", + "+--------------------------------------------+\n", + "| int64 |\n", + "+--------------------------------------------+\n", + "| 7715 |\n", + "| 7715 |\n", + "| 7717 |\n", + "| 7685 |\n", + "| 7685 |\n", + "+--------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.qual_hists.gq_hist_alt.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.qual_hists.gq_hist_alt.bin_freq |\n", + "+--------------------------------------------+\n", + "| array |\n", + "+--------------------------------------------+\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,75] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,15] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1] |\n", + "+--------------------------------------------+\n", + "\n", + "+---------------------------------------------+\n", + "| histograms.qual_hists.gq_hist_alt.n_smaller |\n", + "+---------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+---------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.qual_hists.gq_hist_alt.n_larger |\n", + "+--------------------------------------------+\n", + "| int64 |\n", + "+--------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+--------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.qual_hists.dp_hist_alt.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.qual_hists.dp_hist_alt.bin_freq |\n", + "+--------------------------------------------+\n", + "| array |\n", + "+--------------------------------------------+\n", + "| [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,1,2,3,4,7,3,7,5,1,4,1,3,0,2] |\n", + "| [0,0,0,0,0,0,0,1,3,1,2,3,1,0,1,0,1,1,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0] |\n", + "+--------------------------------------------+\n", + "\n", + "+---------------------------------------------+\n", + "| histograms.qual_hists.dp_hist_alt.n_smaller |\n", + "+---------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+---------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.qual_hists.dp_hist_alt.n_larger |\n", + "+--------------------------------------------+\n", + "| int64 |\n", + "+--------------------------------------------+\n", + "| 1 |\n", + "| 0 |\n", + "| 32 |\n", + "| 1 |\n", + "| 0 |\n", + "+--------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.qual_hists.ab_hist_alt.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+----------------------------------------------+\n", + "| histograms.qual_hists.ab_hist_alt.bin_freq |\n", + "+----------------------------------------------+\n", + "| array |\n", + "+----------------------------------------------+\n", + "| [0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,1,1,6,12,25,24,5,1,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,1,0,0,1,1,11,1,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "+----------------------------------------------+\n", + "\n", + "+---------------------------------------------+\n", + "| histograms.qual_hists.ab_hist_alt.n_smaller |\n", + "+---------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+---------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.qual_hists.ab_hist_alt.n_larger |\n", + "+--------------------------------------------+\n", + "| int64 |\n", + "+--------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+--------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.raw_qual_hists.gq_hist_all.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+---------------------------------------------------------+\n", + "| histograms.raw_qual_hists.gq_hist_all.bin_freq |\n", + "+---------------------------------------------------------+\n", + "| array |\n", + "+---------------------------------------------------------+\n", + "| [7,0,0,0,28,0,124,0,314262,0,99,0,416424,0,0,0,0,0,0,3] |\n", + "| [7,0,0,0,28,0,124,0,314262,0,99,0,416424,0,0,0,0,0,0,3] |\n", + "| [6,0,1,0,14,0,76,0,314251,0,32,0,416492,0,0,0,0,0,0,75] |\n", + "| [5,0,0,0,9,0,71,0,314313,0,37,0,416496,0,0,0,0,0,0,16] |\n", + "| [5,0,0,0,9,0,71,0,314313,0,37,0,416496,0,0,0,0,0,0,16] |\n", + "+---------------------------------------------------------+\n", + "\n", + "+-------------------------------------------------+\n", + "| histograms.raw_qual_hists.gq_hist_all.n_smaller |\n", + "+-------------------------------------------------+\n", + "| int64 |\n", + "+-------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+-------------------------------------------------+\n", + "\n", + "+------------------------------------------------+\n", + "| histograms.raw_qual_hists.gq_hist_all.n_larger |\n", + "+------------------------------------------------+\n", + "| int64 |\n", + "+------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.raw_qual_hists.dp_hist_all.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.raw_qual_hists.dp_hist_all.bin_freq |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0,7,98,380,11345,107362,344923,189028,36319,5607,2388,2759,3074,2931,295... |\n", + "| [0,7,98,380,11345,107362,344923,189028,36319,5607,2388,2759,3074,2931,295... |\n", + "| [0,2,67,335,11310,107353,344982,189073,36327,5607,2387,2756,3080,2935,295... |\n", + "| [0,1,62,330,11305,107356,345020,189098,36329,5607,2382,2757,3074,2931,295... |\n", + "| [0,1,62,330,11305,107356,345020,189098,36329,5607,2382,2757,3074,2931,295... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+-------------------------------------------------+\n", + "| histograms.raw_qual_hists.dp_hist_all.n_smaller |\n", + "+-------------------------------------------------+\n", + "| int64 |\n", + "+-------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+-------------------------------------------------+\n", + "\n", + "+------------------------------------------------+\n", + "| histograms.raw_qual_hists.dp_hist_all.n_larger |\n", + "+------------------------------------------------+\n", + "| int64 |\n", + "+------------------------------------------------+\n", + "| 7715 |\n", + "| 7715 |\n", + "| 7717 |\n", + "| 7685 |\n", + "| 7685 |\n", + "+------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.raw_qual_hists.gq_hist_alt.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+------------------------------------------------+\n", + "| histograms.raw_qual_hists.gq_hist_alt.bin_freq |\n", + "+------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------+\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,75] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,15] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1] |\n", + "+------------------------------------------------+\n", + "\n", + "+-------------------------------------------------+\n", + "| histograms.raw_qual_hists.gq_hist_alt.n_smaller |\n", + "+-------------------------------------------------+\n", + "| int64 |\n", + "+-------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+-------------------------------------------------+\n", + "\n", + "+------------------------------------------------+\n", + "| histograms.raw_qual_hists.gq_hist_alt.n_larger |\n", + "+------------------------------------------------+\n", + "| int64 |\n", + "+------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.raw_qual_hists.dp_hist_alt.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+------------------------------------------------+\n", + "| histograms.raw_qual_hists.dp_hist_alt.bin_freq |\n", + "+------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------+\n", + "| [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,1,2,3,4,7,3,7,5,1,4,1,3,0,2] |\n", + "| [0,0,0,0,0,0,0,1,3,1,2,3,1,0,1,0,1,1,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0] |\n", + "+------------------------------------------------+\n", + "\n", + "+-------------------------------------------------+\n", + "| histograms.raw_qual_hists.dp_hist_alt.n_smaller |\n", + "+-------------------------------------------------+\n", + "| int64 |\n", + "+-------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+-------------------------------------------------+\n", + "\n", + "+------------------------------------------------+\n", + "| histograms.raw_qual_hists.dp_hist_alt.n_larger |\n", + "+------------------------------------------------+\n", + "| int64 |\n", + "+------------------------------------------------+\n", + "| 1 |\n", + "| 0 |\n", + "| 32 |\n", + "| 1 |\n", + "| 0 |\n", + "+------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.raw_qual_hists.ab_hist_alt.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+------------------------------------------------+\n", + "| histograms.raw_qual_hists.ab_hist_alt.bin_freq |\n", + "+------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------+\n", + "| [0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,1,1,6,12,25,24,5,1,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,1,0,0,1,1,11,1,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "+------------------------------------------------+\n", + "\n", + "+-------------------------------------------------+\n", + "| histograms.raw_qual_hists.ab_hist_alt.n_smaller |\n", + "+-------------------------------------------------+\n", + "| int64 |\n", + "+-------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+-------------------------------------------------+\n", + "\n", + "+------------------------------------------------+\n", + "| histograms.raw_qual_hists.ab_hist_alt.n_larger |\n", + "+------------------------------------------------+\n", + "| int64 |\n", + "+------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.age_hists.age_hist_het.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.age_hists.age_hist_het.bin_freq |\n", + "+--------------------------------------------+\n", + "| array |\n", + "+--------------------------------------------+\n", + "| [0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,1,0,0,0,0,0] |\n", + "| [1,0,0,2,3,3,8,4,0,0] |\n", + "| [0,0,1,2,4,2,4,1,0,0] |\n", + "| [0,0,0,0,0,1,0,0,0,0] |\n", + "+--------------------------------------------+\n", + "\n", + "+---------------------------------------------+\n", + "| histograms.age_hists.age_hist_het.n_smaller |\n", + "+---------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------+\n", + "| 1 |\n", + "| 0 |\n", + "| 3 |\n", + "| 0 |\n", + "| 0 |\n", + "+---------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.age_hists.age_hist_het.n_larger |\n", + "+--------------------------------------------+\n", + "| int64 |\n", + "+--------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 1 |\n", + "| 0 |\n", + "| 0 |\n", + "+--------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.age_hists.age_hist_hom.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.age_hists.age_hist_hom.bin_freq |\n", + "+--------------------------------------------+\n", + "| array |\n", + "+--------------------------------------------+\n", + "| [0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0] |\n", + "+--------------------------------------------+\n", + "\n", + "+---------------------------------------------+\n", + "| histograms.age_hists.age_hist_hom.n_smaller |\n", + "+---------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+---------------------------------------------+\n", + "\n", + "+--------------------------------------------+---------------------------------+\n", + "| histograms.age_hists.age_hist_hom.n_larger | in_silico_predictors.cadd.phred |\n", + "+--------------------------------------------+---------------------------------+\n", + "| int64 | float32 |\n", + "+--------------------------------------------+---------------------------------+\n", + "| 0 | 2.77e+01 |\n", + "| 0 | 2.75e+01 |\n", + "| 0 | 2.28e+01 |\n", + "| 0 | 3.44e+00 |\n", + "| 0 | 2.96e+00 |\n", + "+--------------------------------------------+---------------------------------+\n", + "\n", + "+-------------------------------------+--------------------------------+\n", + "| in_silico_predictors.cadd.raw_score | in_silico_predictors.revel_max |\n", + "+-------------------------------------+--------------------------------+\n", + "| float32 | float64 |\n", + "+-------------------------------------+--------------------------------+\n", + "| 4.10e+00 | 6.02e-01 |\n", + "| 4.07e+00 | 7.19e-01 |\n", + "| 2.69e+00 | 2.67e-01 |\n", + "| 2.28e-01 | NA |\n", + "| 1.86e-01 | NA |\n", + "+-------------------------------------+--------------------------------+\n", + "\n", + "+--------------------------------------+\n", + "| in_silico_predictors.spliceai_ds_max |\n", + "+--------------------------------------+\n", + "| float32 |\n", + "+--------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+--------------------------------------+\n", + "\n", + "+------------------------------------------+-----------------------------+\n", + "| in_silico_predictors.pangolin_largest_ds | in_silico_predictors.phylop |\n", + "+------------------------------------------+-----------------------------+\n", + "| float64 | float64 |\n", + "+------------------------------------------+-----------------------------+\n", + "| 0.00e+00 | 8.78e+00 |\n", + "| 2.00e-02 | 8.78e+00 |\n", + "| 1.00e-02 | 8.67e+00 |\n", + "| 1.00e-02 | -2.55e-01 |\n", + "| 3.00e-02 | -2.55e-01 |\n", + "+------------------------------------------+-----------------------------+\n", + "\n", + "+-------------------------------+-----------------------------------+\n", + "| in_silico_predictors.sift_max | in_silico_predictors.polyphen_max |\n", + "+-------------------------------+-----------------------------------+\n", + "| float64 | float64 |\n", + "+-------------------------------+-----------------------------------+\n", + "| 0.00e+00 | 9.89e-01 |\n", + "| 0.00e+00 | 9.89e-01 |\n", + "| 1.30e-01 | 1.18e-01 |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "+-------------------------------+-----------------------------------+\n", + "showing top 5 rows" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The total number of lof, missense, and synonymous variants passing filters in DRD2 is: 664\n" + ] + } + ], + "source": [ + "var_ht = filter_by_csqs(['lof','missense','synonymous'], ht=drd2_interval_ht)\n", + "var_ht.show(5)\n", + "print(\"The total number of lof, missense, and synonymous variants passing filters in DRD2 is: \", var_ht.count())" + ] + }, + { + "cell_type": "markdown", + "id": "35bc2c92-d90e-4a26-a04b-5bd7dc4e7d23", + "metadata": {}, + "source": [ + "### Filter to `lof` variants passing filters" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "9887fdb0", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
histograms
grpmax
fafmax
info
qual_hists
raw_qual_hists
age_hists
in_silico_predictors
gnomad
non_ukb
gnomad
non_ukb
vrs
vep
vqsr_results
region_flags
allele_info
gq_hist_all
dp_hist_all
gq_hist_alt
dp_hist_alt
ab_hist_alt
gq_hist_all
dp_hist_all
gq_hist_alt
dp_hist_alt
ab_hist_alt
age_hist_het
age_hist_hom
cadd
locus
alleles
freq
AC
AF
AN
homozygote_count
gen_anc
AC
AF
AN
homozygote_count
gen_anc
faf
faf95_max
faf95_max_gen_anc
faf99_max
faf99_max_gen_anc
faf95_max
faf95_max_gen_anc
faf99_max
faf99_max_gen_anc
a_index
was_split
rsid
filters
FS
MQ
MQRankSum
QUALapprox
QD
ReadPosRankSum
SB
SOR
VarDP
AS_FS
AS_MQ
AS_MQRankSum
AS_pab_max
AS_QUALapprox
AS_QD
AS_ReadPosRankSum
AS_SB_TABLE
AS_SOR
AS_VarDP
singleton
transmitted_singleton
sibling_singleton
omni
mills
monoallelic
only_het
AS_VQSLOD
inbreeding_coeff
VRS_Allele_IDs
VRS_Starts
VRS_Ends
VRS_States
allele_string
end
id
input
intergenic_consequences
most_severe_consequence
motif_feature_consequences
regulatory_feature_consequences
seq_region_name
start
strand
transcript_consequences
variant_class
AS_VQSLOD
AS_culprit
positive_train_site
negative_train_site
non_par
lcr
segdup
fail_interval_qc
outside_ukb_capture_region
outside_broad_capture_region
variant_type
n_alt_alleles
has_star
allele_type
was_mixed
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
phred
raw_score
revel_max
spliceai_ds_max
pangolin_largest_ds
phylop
sift_max
polyphen_max
locus<GRCh38>array<str>array<struct{AC: int32, AF: float64, AN: int32, homozygote_count: int64}>int32float64int32int64strint32float64int32int64strarray<struct{faf95: float64, faf99: float64}>float64strfloat64strfloat64strfloat64strint32boolset<str>set<str>float64float64float64int64float64float64array<int32>float64int32float64float64float64float64int64float64float64array<int32>float64int32boolboolboolboolboolboolboolfloat64float64array<str>array<int32>array<int32>array<str>strint32strstrarray<struct{allele_num: int32, consequence_terms: array<str>, impact: str, variant_allele: str}>strarray<struct{allele_num: int32, consequence_terms: array<str>, high_inf_pos: str, impact: str, motif_feature_id: str, motif_name: str, motif_pos: int32, motif_score_change: float64, transcription_factors: array<str>, strand: int32, variant_allele: str}>array<struct{allele_num: int32, biotype: str, consequence_terms: array<str>, impact: str, regulatory_feature_id: str, variant_allele: str}>strint32int32array<struct{allele_num: int32, amino_acids: str, appris: str, biotype: str, canonical: int32, ccds: str, cdna_start: int32, cdna_end: int32, cds_end: int32, cds_start: int32, codons: str, consequence_terms: array<str>, distance: int32, domains: array<struct{db: str, name: str}>, exon: str, flags: str, gene_id: str, gene_pheno: int32, gene_symbol: str, gene_symbol_source: str, hgnc_id: str, hgvsc: str, hgvsp: str, hgvs_offset: int32, impact: str, intron: str, lof: str, lof_flags: str, lof_filter: str, lof_info: str, mane_select: str, mane_plus_clinical: str, mirna: array<str>, protein_end: int32, protein_start: int32, protein_id: str, source: str, strand: int32, transcript_id: str, tsl: int32, uniprot_isoform: array<str>, variant_allele: str}>strfloat64strboolboolboolboolboolboolboolboolstrint32boolstrboolarray<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64float32float32float64float32float64float64float64float64
chr11:113412554["A","G"][(1,6.85e-07,1459578,0),(1,6.84e-07,1461894,0),(0,0.00e+00,33480,0),(0,0.00e+00,44724,0),(0,0.00e+00,26134,0),(0,0.00e+00,39700,0),(0,0.00e+00,51134,0),(0,0.00e+00,5768,0),(1,8.99e-07,1111998,0),(0,0.00e+00,60388,0),(0,0.00e+00,86252,0),(0,0.00e+00,733478,0),(1,1.38e-06,726100,0),(0,0.00e+00,19326,0),(0,0.00e+00,14154,0),(0,0.00e+00,25690,0),(0,0.00e+00,19034,0),(0,0.00e+00,12634,0),(0,0.00e+00,13500,0),(0,0.00e+00,20712,0),(0,0.00e+00,18988,0),(0,0.00e+00,26490,0),(0,0.00e+00,24644,0),(0,0.00e+00,2506,0),(0,0.00e+00,3262,0),(0,0.00e+00,572284,0),(1,1.85e-06,539714,0),(0,0.00e+00,31796,0),(0,0.00e+00,28592,0),(0,0.00e+00,22040,0),(0,0.00e+00,64212,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,190,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,960,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,1922,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,1998,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,3834,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,3996,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5538,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5760,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,9998,0),(0,0.00e+00,10000,0),(0,0.00e+00,9574,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,9982,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,19998,0),(0,0.00e+00,20000,0),(0,0.00e+00,19154,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,19966,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26134,0),(0,0.00e+00,26136,0),(0,0.00e+00,25036,0),(0,0.00e+00,26136,0),(0,0.00e+00,26132,0),(0,0.00e+00,26136,0),(0,0.00e+00,26098,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,32040,0),(0,0.00e+00,33480,0),(0,0.00e+00,33474,0),(0,0.00e+00,33478,0),(0,0.00e+00,33428,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,37978,0),(0,0.00e+00,39700,0),(0,0.00e+00,39694,0),(0,0.00e+00,39698,0),(0,0.00e+00,39640,0),(0,0.00e+00,40000,0),(0,0.00e+00,38262,0),(0,0.00e+00,40000,0),(0,0.00e+00,39994,0),(0,0.00e+00,39998,0),(0,0.00e+00,39938,0),(0,0.00e+00,44724,0),(0,0.00e+00,42798,0),(0,0.00e+00,44724,0),(0,0.00e+00,44718,0),(0,0.00e+00,44722,0),(0,0.00e+00,44658,0),(0,0.00e+00,51134,0),(0,0.00e+00,53420,0),(0,0.00e+00,53414,0),(0,0.00e+00,53418,0),(0,0.00e+00,53342,0),(0,0.00e+00,60396,0),(0,0.00e+00,60388,0),(0,0.00e+00,60394,0),(0,0.00e+00,60304,0),(0,0.00e+00,86256,0),(0,0.00e+00,86252,0),(0,0.00e+00,86122,0),(0,0.00e+00,99998,0),(0,0.00e+00,99850,0),(0,0.00e+00,199996,0),(0,0.00e+00,199686,0),(1,2.50e-06,399992,0),(1,2.50e-06,399366,0),(1,1.00e-06,999986,0),(1,1.00e-06,998406,0),(1,8.99e-07,1111998,0),(1,9.01e-07,1110224,0),(0,0.00e+00,626468,0),(0,0.00e+00,628784,0),(0,0.00e+00,17694,0),(0,0.00e+00,43740,0),(0,0.00e+00,20982,0),(0,0.00e+00,36070,0),(0,0.00e+00,50858,0),(0,0.00e+00,4148,0),(0,0.00e+00,350094,0),(0,0.00e+00,33090,0),(0,0.00e+00,69792,0),(0,0.00e+00,285082,0),(0,0.00e+00,341386,0),(0,0.00e+00,10286,0),(0,0.00e+00,7408,0),(0,0.00e+00,25040,0),(0,0.00e+00,18700,0),(0,0.00e+00,9836,0),(0,0.00e+00,11146,0),(0,0.00e+00,18298,0),(0,0.00e+00,17772,0),(0,0.00e+00,26240,0),(0,0.00e+00,24618,0),(0,0.00e+00,1916,0),(0,0.00e+00,2232,0),(0,0.00e+00,162216,0),(0,0.00e+00,187878,0),(0,0.00e+00,16748,0),(0,0.00e+00,16342,0),(0,0.00e+00,14502,0),(0,0.00e+00,55290,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,190,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,960,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,998,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,1922,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,1996,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,3834,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,3982,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,3980,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4130,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,9998,0),(0,0.00e+00,10000,0),(0,0.00e+00,9572,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,9964,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17692,0),(0,0.00e+00,17694,0),(0,0.00e+00,16946,0),(0,0.00e+00,17694,0),(0,0.00e+00,17690,0),(0,0.00e+00,17694,0),(0,0.00e+00,17632,0),(0,0.00e+00,20000,0),(0,0.00e+00,19998,0),(0,0.00e+00,20000,0),(0,0.00e+00,19150,0),(0,0.00e+00,20000,0),(0,0.00e+00,19994,0),(0,0.00e+00,20000,0),(0,0.00e+00,19932,0),(0,0.00e+00,20984,0),(0,0.00e+00,20982,0),(0,0.00e+00,20984,0),(0,0.00e+00,20096,0),(0,0.00e+00,20984,0),(0,0.00e+00,20978,0),(0,0.00e+00,20984,0),(0,0.00e+00,20912,0),(0,0.00e+00,33098,0),(0,0.00e+00,33098,0),(0,0.00e+00,31670,0),(0,0.00e+00,33096,0),(0,0.00e+00,33090,0),(0,0.00e+00,33096,0),(0,0.00e+00,32976,0),(0,0.00e+00,36070,0),(0,0.00e+00,36070,0),(0,0.00e+00,34514,0),(0,0.00e+00,36068,0),(0,0.00e+00,36068,0),(0,0.00e+00,35934,0),(0,0.00e+00,40000,0),(0,0.00e+00,38256,0),(0,0.00e+00,39998,0),(0,0.00e+00,39998,0),(0,0.00e+00,39856,0),(0,0.00e+00,43740,0),(0,0.00e+00,41848,0),(0,0.00e+00,43738,0),(0,0.00e+00,43738,0),(0,0.00e+00,43588,0),(0,0.00e+00,50858,0),(0,0.00e+00,53140,0),(0,0.00e+00,53140,0),(0,0.00e+00,52962,0),(0,0.00e+00,69794,0),(0,0.00e+00,69792,0),(0,0.00e+00,69552,0),(0,0.00e+00,99992,0),(0,0.00e+00,99626,0),(0,0.00e+00,199992,0),(0,0.00e+00,199284,0),(0,0.00e+00,350094,0),(0,0.00e+00,348812,0),(0,0.00e+00,398508,0)]18.99e-0711119980"nfe"NANANANANA[(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]NANANANANANANANA2TrueNA{}2.83e+006.00e+010.00e+0014981.05e+01-5.05e-01[63,17,52,10]1.04e+001421.10e+006.00e+010.00e+001.00e+006611.35e+01-1.83e+00[63,17,21,4]9.29e-0149TrueFalseFalseFalseFalseFalseFalse5.30e+00-6.84e-07["ga4gh:VA.mqU9WPvGr3hduyybbeN-AKJ1zN-kclsI","ga4gh:VA.uvlicmv1vZnrBBqm0UQRPcFaAOXA34EK"][113412553,113412553][113412554,113412554]["A","G"]"A/G"113412554".""chr11\t113412554\t.\tA\tG\t.\t.\tGT"NA"splice_donor_variant"NANA"chr11"1134125541[(1,NA,NA,"protein_coding",NA,"CCDS8362.1",NA,NA,NA,NA,NA,["splice_donor_variant"],NA,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000346454.7:c.1051+2T>C",NA,NA,"HIGH","6/6","HC",NA,NA,"INTRON_SIZE:1635",NA,NA,NA,NA,NA,"ENSP00000278597","Ensembl",-1,"ENST00000346454",1,["P14416-2"],"G"),(1,NA,"P2","protein_coding",1,"CCDS8361.1",NA,NA,NA,NA,NA,["splice_donor_variant"],NA,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000362072.8:c.1138+2T>C",NA,NA,"HIGH","7/7","HC",NA,NA,"INTRON_SIZE:1635","NM_000795.4",NA,NA,NA,NA,"ENSP00000354859","Ensembl",-1,"ENST00000362072",1,["P14416-1"],"G"),(1,NA,NA,"processed_transcript",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],1821,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000535984",3,NA,"G"),(1,NA,"A1","protein_coding",NA,NA,NA,NA,NA,NA,NA,["splice_donor_variant"],NA,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000538967.5:c.1144+2T>C",NA,NA,"HIGH","7/7","HC",NA,NA,"INTRON_SIZE:1635",NA,NA,NA,NA,NA,"ENSP00000438215","Ensembl",-1,"ENST00000538967",5,["P14416-3"],"G"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],2740,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000539420",3,NA,"G"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],1310,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000540600",1,NA,"G"),(1,NA,"P2","protein_coding",NA,"CCDS8361.1",NA,NA,NA,NA,NA,["splice_donor_variant"],NA,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000542968.5:c.1138+2T>C",NA,NA,"HIGH","6/6","HC",NA,NA,"INTRON_SIZE:1635",NA,NA,NA,NA,NA,"ENSP00000442172","Ensembl",-1,"ENST00000542968",1,["P14416-1"],"G"),(1,NA,NA,"protein_coding",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],4309,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"ENSP00000438419","Ensembl",-1,"ENST00000543292",5,NA,"G"),(1,NA,"A1","protein_coding",NA,NA,NA,NA,NA,NA,NA,["splice_donor_variant"],NA,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000544518.5:c.1135+2T>C",NA,NA,"HIGH","6/6","HC",NA,NA,"INTRON_SIZE:1635",NA,NA,NA,NA,NA,"ENSP00000441068","Ensembl",-1,"ENST00000544518",1,NA,"G"),(1,NA,NA,"lncRNA",1,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],437,NA,NA,NA,"ENSG00000256757",NA,NA,NA,NA,NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",1,"ENST00000546284",3,NA,"G"),(1,NA,NA,"protein_coding",1,NA,NA,NA,NA,NA,NA,["splice_donor_variant"],NA,NA,NA,NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_000795.4:c.1138+2T>C",NA,NA,"HIGH","7/7","HC",NA,NA,"INTRON_SIZE:1635","ENST00000362072.8",NA,NA,NA,NA,"NP_000786.1","RefSeq",-1,"NM_000795.4",NA,NA,"G"),(1,NA,NA,"protein_coding",NA,NA,NA,NA,NA,NA,NA,["splice_donor_variant"],NA,NA,NA,NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_016574.4:c.1051+2T>C",NA,NA,"HIGH","6/6","HC",NA,NA,"INTRON_SIZE:1635",NA,NA,NA,NA,NA,"NP_057658.2","RefSeq",-1,"NM_016574.4",NA,NA,"G"),(1,NA,NA,"protein_coding",NA,NA,NA,NA,NA,NA,NA,["splice_donor_variant"],NA,NA,NA,NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","XM_017017296.2:c.1138+2T>C",NA,NA,"HIGH","7/7","HC",NA,NA,"INTRON_SIZE:1635",NA,NA,NA,NA,NA,"XP_016872785.1","RefSeq",-1,"XM_017017296.2",NA,NA,"G")]"SNV"5.30e+00"AS_MQ"FalseFalseFalseFalseFalseTrueTrueFalse"multi-snv"3False"snv"False[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,134,0,1469,0,311660,0,82,0,416443,0,0,0,0,0,0,1]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,1555,817,16216,229270,272936,45138,9370,3566,3616,4059,4521,5017,5495,5830,5759,5296,4555,4636]0102137[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][441,0,0,0,850,1,1469,0,311660,0,82,0,416443,0,0,0,0,0,0,1]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][244,858,1593,833,16218,229270,272936,45138,9370,3566,3616,4059,4521,5017,5495,5830,5759,5296,4555,4636]0102137[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,1,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]003.40e+015.66e+00NA9.60e-01-8.30e-016.33e+00NANA
chr11:113412612["CT","C"][(2,1.37e-06,1461892,0),(2,1.37e-06,1461894,0),(0,0.00e+00,33480,0),(0,0.00e+00,44724,0),(0,0.00e+00,26136,0),(0,0.00e+00,39700,0),(0,0.00e+00,53420,0),(0,0.00e+00,5768,0),(2,1.80e-06,1112010,0),(0,0.00e+00,60396,0),(0,0.00e+00,86258,0),(0,0.00e+00,734646,0),(2,2.75e-06,727246,0),(0,0.00e+00,19326,0),(0,0.00e+00,14154,0),(0,0.00e+00,25690,0),(0,0.00e+00,19034,0),(0,0.00e+00,12636,0),(0,0.00e+00,13500,0),(0,0.00e+00,20712,0),(0,0.00e+00,18988,0),(0,0.00e+00,27648,0),(0,0.00e+00,25772,0),(0,0.00e+00,2506,0),(0,0.00e+00,3262,0),(0,0.00e+00,572288,0),(2,3.71e-06,539722,0),(0,0.00e+00,31800,0),(0,0.00e+00,28596,0),(0,0.00e+00,22040,0),(0,0.00e+00,64218,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,44724,0),(0,0.00e+00,44724,0),(0,0.00e+00,44724,0),(0,0.00e+00,44724,0),(0,0.00e+00,44724,0),(0,0.00e+00,44724,0),(0,0.00e+00,53420,0),(0,0.00e+00,53420,0),(0,0.00e+00,53420,0),(0,0.00e+00,53420,0),(0,0.00e+00,53420,0),(0,0.00e+00,60396,0),(0,0.00e+00,60396,0),(0,0.00e+00,60396,0),(0,0.00e+00,60396,0),(0,0.00e+00,86258,0),(0,0.00e+00,86258,0),(0,0.00e+00,86258,0),(0,0.00e+00,100000,0),(0,0.00e+00,100000,0),(0,0.00e+00,200000,0),(0,0.00e+00,200000,0),(1,2.50e-06,400000,0),(1,2.50e-06,400000,0),(2,2.00e-06,999998,0),(2,2.00e-06,1000000,0),(2,1.80e-06,1112010,0),(2,1.80e-06,1112010,0),(2,3.18e-06,628782,0),(2,3.18e-06,628784,0),(0,0.00e+00,17694,0),(0,0.00e+00,43740,0),(0,0.00e+00,20984,0),(0,0.00e+00,36070,0),(0,0.00e+00,53144,0),(0,0.00e+00,4148,0),(2,5.71e-06,350106,0),(0,0.00e+00,33098,0),(0,0.00e+00,69798,0),(0,0.00e+00,286250,0),(2,5.84e-06,342532,0),(0,0.00e+00,10286,0),(0,0.00e+00,7408,0),(0,0.00e+00,25040,0),(0,0.00e+00,18700,0),(0,0.00e+00,9838,0),(0,0.00e+00,11146,0),(0,0.00e+00,18298,0),(0,0.00e+00,17772,0),(0,0.00e+00,27398,0),(0,0.00e+00,25746,0),(0,0.00e+00,1916,0),(0,0.00e+00,2232,0),(0,0.00e+00,162220,0),(2,1.06e-05,187886,0),(0,0.00e+00,16752,0),(0,0.00e+00,16346,0),(0,0.00e+00,14502,0),(0,0.00e+00,55296,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,33098,0),(0,0.00e+00,33098,0),(0,0.00e+00,33098,0),(0,0.00e+00,33098,0),(0,0.00e+00,33098,0),(0,0.00e+00,33098,0),(0,0.00e+00,33098,0),(0,0.00e+00,36070,0),(0,0.00e+00,36070,0),(0,0.00e+00,36070,0),(0,0.00e+00,36070,0),(0,0.00e+00,36070,0),(0,0.00e+00,36070,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,43740,0),(0,0.00e+00,43740,0),(0,0.00e+00,43740,0),(0,0.00e+00,43740,0),(0,0.00e+00,43740,0),(0,0.00e+00,53144,0),(0,0.00e+00,53144,0),(0,0.00e+00,53144,0),(0,0.00e+00,53144,0),(0,0.00e+00,69798,0),(0,0.00e+00,69798,0),(0,0.00e+00,69798,0),(1,1.00e-05,100000,0),(0,0.00e+00,100000,0),(2,1.00e-05,200000,0),(1,5.00e-06,200000,0),(2,5.71e-06,350106,0),(2,5.71e-06,350108,0),(2,5.00e-06,400000,0)]21.80e-0611120100"nfe"25.71e-063501060"nfe"[(2.30e-07,9.00e-08),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(3.00e-07,1.10e-07),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,(5.30e-07,2.00e-07),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(9.50e-07,3.60e-07),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]3.00e-07"nfe"1.10e-07"nfe"9.50e-07"nfe"3.60e-07"nfe"1FalseNA{}5.48e-016.00e+010.00e+0034581.79e+014.32e-01[65,38,58,32]7.50e-011935.48e-016.00e+010.00e+005.90e-0134581.79e+014.32e-01[65,38,58,32]7.50e-01193FalseNANAFalseFalseFalseFalse4.25e+00-1.37e-06["ga4gh:VA.NztLKtEJA7H0h_Tz31YRmTUR4hT2PNxO","ga4gh:VA.5xtydtW8O1beQhV-1c1hQnrSyzR36wKG"][113412611,113412612][113412613,113412613]["CT",""]"T/-"113412613".""chr11\t113412612\t.\tCT\tC\t.\t.\tGT"NA"frameshift_variant"NANA"chr11"1134126131[(1,"R/X",NA,"protein_coding",NA,"CCDS8362.1",1070,1070,994,994,"Agg/gg",["frameshift_variant"],NA,[("Gene3D","1"),("Pfam","PF00001"),("PROSITE_profiles","PS50262"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321"),("CDD","cd15309")],"6/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000346454.7:c.994del","ENSP00000278597.5:p.Arg332GlyfsTer35",NA,"HIGH",NA,"HC",NA,NA,"PERCENTILE:0.798393574297189,GERP_DIST:524.888328552246,BP_DIST:250,DIST_FROM_LAST_EXON:57,50_BP_RULE:PASS,ANN_ORF:1830.61,MAX_ORF:1830.61",NA,NA,NA,332,332,"ENSP00000278597","Ensembl",-1,"ENST00000346454",1,["P14416-2"],"-"),(1,"R/X","P2","protein_coding",1,"CCDS8361.1",1435,1435,1081,1081,"Agg/gg",["frameshift_variant"],NA,[("Gene3D","1"),("ENSP_mappings","6vms"),("ENSP_mappings","7jvr"),("Pfam","PF00001"),("PROSITE_profiles","PS50262"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321"),("CDD","cd15309")],"7/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000362072.8:c.1081del","ENSP00000354859.3:p.Arg361GlyfsTer35",NA,"HIGH",NA,"HC",NA,NA,"PERCENTILE:0.811561561561562,GERP_DIST:524.888328552246,BP_DIST:250,DIST_FROM_LAST_EXON:57,50_BP_RULE:PASS,ANN_ORF:1830.61,MAX_ORF:1830.61","NM_000795.4",NA,NA,361,361,"ENSP00000354859","Ensembl",-1,"ENST00000362072",1,["P14416-1"],"-"),(1,NA,NA,"processed_transcript",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],1762,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000535984",3,NA,"-"),(1,"R/X","A1","protein_coding",NA,NA,1087,1087,1087,1087,"Agg/gg",["frameshift_variant"],NA,[("Gene3D","1"),("Pfam","PF00001"),("PROSITE_profiles","PS50262"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321"),("CDD","cd15309")],"7/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000538967.5:c.1087del","ENSP00000438215.1:p.Arg363GlyfsTer35",NA,"HIGH",NA,"HC",NA,NA,"PERCENTILE:0.812406576980568,GERP_DIST:524.888328552246,BP_DIST:250,DIST_FROM_LAST_EXON:57,50_BP_RULE:PASS,ANN_ORF:1830.61,MAX_ORF:1830.61",NA,NA,NA,363,363,"ENSP00000438215","Ensembl",-1,"ENST00000538967",5,["P14416-3"],"-"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],2681,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000539420",3,NA,"-"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],1251,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000540600",1,NA,"-"),(1,"R/X","P2","protein_coding",NA,"CCDS8361.1",1402,1402,1081,1081,"Agg/gg",["frameshift_variant"],NA,[("Gene3D","1"),("ENSP_mappings","6vms"),("ENSP_mappings","7jvr"),("Pfam","PF00001"),("PROSITE_profiles","PS50262"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321"),("CDD","cd15309")],"6/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000542968.5:c.1081del","ENSP00000442172.1:p.Arg361GlyfsTer35",NA,"HIGH",NA,"HC",NA,NA,"PERCENTILE:0.811561561561562,GERP_DIST:524.888328552246,BP_DIST:250,DIST_FROM_LAST_EXON:57,50_BP_RULE:PASS,ANN_ORF:1830.61,MAX_ORF:1830.61",NA,NA,NA,361,361,"ENSP00000442172","Ensembl",-1,"ENST00000542968",1,["P14416-1"],"-"),(1,NA,NA,"protein_coding",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],4250,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"ENSP00000438419","Ensembl",-1,"ENST00000543292",5,NA,"-"),(1,"R/X","A1","protein_coding",NA,NA,1111,1111,1078,1078,"Agg/gg",["frameshift_variant"],NA,[("Gene3D","1"),("Pfam","PF00001"),("PROSITE_profiles","PS50262"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321"),("CDD","cd15309")],"6/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000544518.5:c.1078del","ENSP00000441068.1:p.Arg360GlyfsTer35",NA,"HIGH",NA,"HC",NA,NA,"PERCENTILE:0.811136192626035,GERP_DIST:524.888328552246,BP_DIST:250,DIST_FROM_LAST_EXON:57,50_BP_RULE:PASS,ANN_ORF:1830.61,MAX_ORF:1830.61",NA,NA,NA,360,360,"ENSP00000441068","Ensembl",-1,"ENST00000544518",1,NA,"-"),(1,NA,NA,"lncRNA",1,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],496,NA,NA,NA,"ENSG00000256757",NA,NA,NA,NA,NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",1,"ENST00000546284",3,NA,"-"),(1,"R/X",NA,"protein_coding",1,NA,1435,1435,1081,1081,"Agg/gg",["frameshift_variant"],NA,NA,"7/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_000795.4:c.1081del","NP_000786.1:p.Arg361GlyfsTer35",NA,"HIGH",NA,"HC",NA,NA,"PERCENTILE:0.811561561561562,GERP_DIST:524.888328552246,BP_DIST:250,DIST_FROM_LAST_EXON:57,50_BP_RULE:PASS,PHYLOCSF_TOO_SHORT","ENST00000362072.8",NA,NA,361,361,"NP_000786.1","RefSeq",-1,"NM_000795.4",NA,NA,"-"),(1,"R/X",NA,"protein_coding",NA,NA,1348,1348,994,994,"Agg/gg",["frameshift_variant"],NA,NA,"6/7",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_016574.4:c.994del","NP_057658.2:p.Arg332GlyfsTer35",NA,"HIGH",NA,"HC",NA,NA,"PERCENTILE:0.798393574297189,GERP_DIST:524.888328552246,BP_DIST:250,DIST_FROM_LAST_EXON:57,50_BP_RULE:PASS,PHYLOCSF_TOO_SHORT",NA,NA,NA,332,332,"NP_057658.2","RefSeq",-1,"NM_016574.4",NA,NA,"-"),(1,"R/X",NA,"protein_coding",NA,NA,1163,1163,1081,1081,"Agg/gg",["frameshift_variant"],NA,NA,"7/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","XM_017017296.2:c.1081del","XP_016872785.1:p.Arg361GlyfsTer35",NA,"HIGH",NA,"HC",NA,NA,"PERCENTILE:0.811561561561562,GERP_DIST:524.888328552246,BP_DIST:250,DIST_FROM_LAST_EXON:57,50_BP_RULE:PASS,PHYLOCSF_TOO_SHORT",NA,NA,NA,361,361,"XP_016872785.1","RefSeq",-1,"XM_017017296.2",NA,NA,"-")]"deletion"4.25e+00"AS_ReadPosRankSum"FalseFalseFalseFalseFalseTrueFalseFalse"indel"1False"del"False[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,1,0,2,0,314386,0,0,0,416555,0,0,0,0,0,0,2]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,1,279,16685,230939,273577,45298,9412,3597,3653,4094,4550,5033,5504,5845,5771,5311,4561,4649]0102187[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0]01[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][1,0,0,0,1,0,2,0,314386,0,0,0,416555,0,0,0,0,0,0,2]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,1,279,16685,230939,273577,45298,9412,3597,3653,4094,4550,5034,5504,5845,5771,5311,4561,4649]0102187[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0]01[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]10[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]003.20e+014.56e+00NA0.00e+00-4.00e-028.89e+00NANA
chr11:113412614["ACG","A"][(2,1.37e-06,1461894,0),(2,1.37e-06,1461894,0),(0,0.00e+00,33480,0),(0,0.00e+00,44724,0),(0,0.00e+00,26136,0),(0,0.00e+00,39700,0),(0,0.00e+00,53420,0),(0,0.00e+00,5768,0),(2,1.80e-06,1112012,0),(0,0.00e+00,60396,0),(0,0.00e+00,86258,0),(0,0.00e+00,734646,0),(2,2.75e-06,727248,0),(0,0.00e+00,19326,0),(0,0.00e+00,14154,0),(0,0.00e+00,25690,0),(0,0.00e+00,19034,0),(0,0.00e+00,12636,0),(0,0.00e+00,13500,0),(0,0.00e+00,20712,0),(0,0.00e+00,18988,0),(0,0.00e+00,27648,0),(0,0.00e+00,25772,0),(0,0.00e+00,2506,0),(0,0.00e+00,3262,0),(0,0.00e+00,572288,0),(2,3.71e-06,539724,0),(0,0.00e+00,31800,0),(0,0.00e+00,28596,0),(0,0.00e+00,22040,0),(0,0.00e+00,64218,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,44724,0),(0,0.00e+00,44724,0),(0,0.00e+00,44724,0),(0,0.00e+00,44724,0),(0,0.00e+00,44724,0),(0,0.00e+00,44724,0),(0,0.00e+00,53420,0),(0,0.00e+00,53420,0),(0,0.00e+00,53420,0),(0,0.00e+00,53420,0),(0,0.00e+00,53420,0),(0,0.00e+00,60396,0),(0,0.00e+00,60396,0),(0,0.00e+00,60396,0),(0,0.00e+00,60396,0),(0,0.00e+00,86258,0),(0,0.00e+00,86258,0),(0,0.00e+00,86258,0),(0,0.00e+00,100000,0),(0,0.00e+00,100000,0),(0,0.00e+00,200000,0),(0,0.00e+00,200000,0),(1,2.50e-06,400000,0),(1,2.50e-06,400000,0),(2,2.00e-06,1000000,0),(2,2.00e-06,1000000,0),(2,1.80e-06,1112012,0),(2,1.80e-06,1112012,0),(2,3.18e-06,628784,0),(2,3.18e-06,628784,0),(0,0.00e+00,17694,0),(0,0.00e+00,43740,0),(0,0.00e+00,20984,0),(0,0.00e+00,36070,0),(0,0.00e+00,53144,0),(0,0.00e+00,4148,0),(2,5.71e-06,350108,0),(0,0.00e+00,33098,0),(0,0.00e+00,69798,0),(0,0.00e+00,286250,0),(2,5.84e-06,342534,0),(0,0.00e+00,10286,0),(0,0.00e+00,7408,0),(0,0.00e+00,25040,0),(0,0.00e+00,18700,0),(0,0.00e+00,9838,0),(0,0.00e+00,11146,0),(0,0.00e+00,18298,0),(0,0.00e+00,17772,0),(0,0.00e+00,27398,0),(0,0.00e+00,25746,0),(0,0.00e+00,1916,0),(0,0.00e+00,2232,0),(0,0.00e+00,162220,0),(2,1.06e-05,187888,0),(0,0.00e+00,16752,0),(0,0.00e+00,16346,0),(0,0.00e+00,14502,0),(0,0.00e+00,55296,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,33098,0),(0,0.00e+00,33098,0),(0,0.00e+00,33098,0),(0,0.00e+00,33098,0),(0,0.00e+00,33098,0),(0,0.00e+00,33098,0),(0,0.00e+00,33098,0),(0,0.00e+00,36070,0),(0,0.00e+00,36070,0),(0,0.00e+00,36070,0),(0,0.00e+00,36070,0),(0,0.00e+00,36070,0),(0,0.00e+00,36070,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,43740,0),(0,0.00e+00,43740,0),(0,0.00e+00,43740,0),(0,0.00e+00,43740,0),(0,0.00e+00,43740,0),(0,0.00e+00,53144,0),(0,0.00e+00,53144,0),(0,0.00e+00,53144,0),(0,0.00e+00,53144,0),(0,0.00e+00,69798,0),(0,0.00e+00,69798,0),(0,0.00e+00,69798,0),(1,1.00e-05,100000,0),(0,0.00e+00,100000,0),(2,1.00e-05,200000,0),(1,5.00e-06,200000,0),(2,5.71e-06,350108,0),(2,5.71e-06,350108,0),(2,5.00e-06,400000,0)]21.80e-0611120120"nfe"25.71e-063501080"nfe"[(2.30e-07,9.00e-08),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(3.00e-07,1.10e-07),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,(5.30e-07,2.00e-07),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(9.50e-07,3.60e-07),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]3.00e-07"nfe"1.10e-07"nfe"9.50e-07"nfe"3.60e-07"nfe"1TrueNA{}2.32e+006.00e+010.00e+0053361.56e+014.62e-01[99,81,94,68]8.22e-013428.20e+006.00e+010.00e+006.65e-0134551.80e+014.62e-01[99,81,58,32]1.15e+00192FalseNANAFalseFalseFalseFalse3.61e+00-1.37e-06["ga4gh:VA.Lx5RcGLe0vnqmstRd134JgqaJUNZIzCF","ga4gh:VA.N3JXRaksYTV6CSLvZ_pZrKhYEcHiky2g"][113412613,113412614][113412616,113412616]["ACG",""]"CG/-"113412616".""chr11\t113412614\t.\tACG\tA\t.\t.\tGT"NA"frameshift_variant"NANA"chr11"1134126151[(1,"R/X",NA,"protein_coding",NA,"CCDS8362.1",1067,1068,992,991,"CGt/t",["frameshift_variant"],NA,[("Gene3D","1"),("Pfam","PF00001"),("PROSITE_profiles","PS50262"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321"),("CDD","cd15309")],"6/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000346454.7:c.991_992del","ENSP00000278597.5:p.Arg331Ter",NA,"HIGH",NA,"HC",NA,NA,"PERCENTILE:0.796787148594377,GERP_DIST:522.578328609467,BP_DIST:252,DIST_FROM_LAST_EXON:59,50_BP_RULE:PASS,ANN_ORF:1830.61,MAX_ORF:1830.61",NA,NA,NA,331,331,"ENSP00000278597","Ensembl",-1,"ENST00000346454",1,["P14416-2"],"-"),(1,"R/X","P2","protein_coding",1,"CCDS8361.1",1432,1433,1079,1078,"CGt/t",["frameshift_variant"],NA,[("Gene3D","1"),("ENSP_mappings","6vms"),("ENSP_mappings","7jvr"),("Pfam","PF00001"),("PROSITE_profiles","PS50262"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321"),("CDD","cd15309")],"7/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000362072.8:c.1078_1079del","ENSP00000354859.3:p.Arg360Ter",NA,"HIGH",NA,"HC",NA,NA,"PERCENTILE:0.81006006006006,GERP_DIST:522.578328609467,BP_DIST:252,DIST_FROM_LAST_EXON:59,50_BP_RULE:PASS,ANN_ORF:1830.61,MAX_ORF:1830.61","NM_000795.4",NA,NA,360,360,"ENSP00000354859","Ensembl",-1,"ENST00000362072",1,["P14416-1"],"-"),(1,NA,NA,"processed_transcript",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],1759,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000535984",3,NA,"-"),(1,"R/X","A1","protein_coding",NA,NA,1084,1085,1085,1084,"CGt/t",["frameshift_variant"],NA,[("Gene3D","1"),("Pfam","PF00001"),("PROSITE_profiles","PS50262"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321"),("CDD","cd15309")],"7/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000538967.5:c.1084_1085del","ENSP00000438215.1:p.Arg362Ter",NA,"HIGH",NA,"HC",NA,NA,"PERCENTILE:0.810911808669656,GERP_DIST:522.578328609467,BP_DIST:252,DIST_FROM_LAST_EXON:59,50_BP_RULE:PASS,ANN_ORF:1830.61,MAX_ORF:1830.61",NA,NA,NA,362,362,"ENSP00000438215","Ensembl",-1,"ENST00000538967",5,["P14416-3"],"-"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],2678,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000539420",3,NA,"-"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],1248,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000540600",1,NA,"-"),(1,"R/X","P2","protein_coding",NA,"CCDS8361.1",1399,1400,1079,1078,"CGt/t",["frameshift_variant"],NA,[("Gene3D","1"),("ENSP_mappings","6vms"),("ENSP_mappings","7jvr"),("Pfam","PF00001"),("PROSITE_profiles","PS50262"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321"),("CDD","cd15309")],"6/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000542968.5:c.1078_1079del","ENSP00000442172.1:p.Arg360Ter",NA,"HIGH",NA,"HC",NA,NA,"PERCENTILE:0.81006006006006,GERP_DIST:522.578328609467,BP_DIST:252,DIST_FROM_LAST_EXON:59,50_BP_RULE:PASS,ANN_ORF:1830.61,MAX_ORF:1830.61",NA,NA,NA,360,360,"ENSP00000442172","Ensembl",-1,"ENST00000542968",1,["P14416-1"],"-"),(1,NA,NA,"protein_coding",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],4247,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"ENSP00000438419","Ensembl",-1,"ENST00000543292",5,NA,"-"),(1,"R/X","A1","protein_coding",NA,NA,1108,1109,1076,1075,"CGt/t",["frameshift_variant"],NA,[("Gene3D","1"),("Pfam","PF00001"),("PROSITE_profiles","PS50262"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321"),("CDD","cd15309")],"6/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000544518.5:c.1075_1076del","ENSP00000441068.1:p.Arg359Ter",NA,"HIGH",NA,"HC",NA,NA,"PERCENTILE:0.809631301730624,GERP_DIST:522.578328609467,BP_DIST:252,DIST_FROM_LAST_EXON:59,50_BP_RULE:PASS,ANN_ORF:1830.61,MAX_ORF:1830.61",NA,NA,NA,359,359,"ENSP00000441068","Ensembl",-1,"ENST00000544518",1,NA,"-"),(1,NA,NA,"lncRNA",1,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],498,NA,NA,NA,"ENSG00000256757",NA,NA,NA,NA,NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",1,"ENST00000546284",3,NA,"-"),(1,"R/X",NA,"protein_coding",1,NA,1432,1433,1079,1078,"CGt/t",["frameshift_variant"],NA,NA,"7/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_000795.4:c.1078_1079del","NP_000786.1:p.Arg360Ter",NA,"HIGH",NA,"HC",NA,NA,"PERCENTILE:0.81006006006006,GERP_DIST:522.578328609467,BP_DIST:252,DIST_FROM_LAST_EXON:59,50_BP_RULE:PASS,PHYLOCSF_TOO_SHORT","ENST00000362072.8",NA,NA,360,360,"NP_000786.1","RefSeq",-1,"NM_000795.4",NA,NA,"-"),(1,"R/X",NA,"protein_coding",NA,NA,1345,1346,992,991,"CGt/t",["frameshift_variant"],NA,NA,"6/7",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_016574.4:c.991_992del","NP_057658.2:p.Arg331Ter",NA,"HIGH",NA,"HC",NA,NA,"PERCENTILE:0.796787148594377,GERP_DIST:522.578328609467,BP_DIST:252,DIST_FROM_LAST_EXON:59,50_BP_RULE:PASS,PHYLOCSF_TOO_SHORT",NA,NA,NA,331,331,"NP_057658.2","RefSeq",-1,"NM_016574.4",NA,NA,"-"),(1,"R/X",NA,"protein_coding",NA,NA,1160,1161,1079,1078,"CGt/t",["frameshift_variant"],NA,NA,"7/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","XM_017017296.2:c.1078_1079del","XP_016872785.1:p.Arg360Ter",NA,"HIGH",NA,"HC",NA,NA,"PERCENTILE:0.81006006006006,GERP_DIST:522.578328609467,BP_DIST:252,DIST_FROM_LAST_EXON:59,50_BP_RULE:PASS,PHYLOCSF_TOO_SHORT",NA,NA,NA,360,360,"XP_016872785.1","RefSeq",-1,"XM_017017296.2",NA,NA,"-")]"deletion"3.61e+00"AS_FS"FalseTrueFalseFalseFalseTrueFalseFalse"mixed"3False"del"True[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,1,0,1,0,314388,0,0,0,416555,0,0,0,0,0,0,2]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,278,16685,230938,273578,45300,9412,3597,3653,4094,4550,5033,5504,5845,5771,5311,4561,4649]0102188[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0]01[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,1,0,1,0,314388,0,0,0,416555,0,0,0,0,0,0,2]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,278,16685,230938,273578,45300,9412,3597,3653,4094,4550,5033,5504,5845,5771,5311,4561,4649]0102188[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0]01[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]10[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]003.30e+014.99e+00NA0.00e+00-1.20e-013.00e-01NANA
chr11:113412865["G","A"][(1,6.85e-07,1459642,0),(1,6.84e-07,1461894,0),(0,0.00e+00,33422,0),(0,0.00e+00,44708,0),(0,0.00e+00,26126,0),(0,0.00e+00,39698,0),(0,0.00e+00,52916,0),(0,0.00e+00,4548,0),(1,8.99e-07,1111812,0),(0,0.00e+00,60232,0),(0,0.00e+00,86180,0),(1,1.36e-06,733504,0),(0,0.00e+00,726138,0),(0,0.00e+00,19298,0),(0,0.00e+00,14124,0),(0,0.00e+00,25682,0),(0,0.00e+00,19026,0),(0,0.00e+00,12626,0),(0,0.00e+00,13500,0),(0,0.00e+00,20710,0),(0,0.00e+00,18988,0),(0,0.00e+00,27382,0),(0,0.00e+00,25534,0),(0,0.00e+00,1860,0),(0,0.00e+00,2688,0),(1,1.75e-06,572194,0),(0,0.00e+00,539618,0),(0,0.00e+00,31732,0),(0,0.00e+00,28500,0),(0,0.00e+00,22020,0),(0,0.00e+00,64160,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,16,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,154,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,998,0),(0,0.00e+00,1000,0),(0,0.00e+00,990,0),(0,0.00e+00,802,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1998,0),(0,0.00e+00,1998,0),(0,0.00e+00,1998,0),(0,0.00e+00,2000,0),(0,0.00e+00,1984,0),(0,0.00e+00,1574,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,1998,0),(0,0.00e+00,2000,0),(0,0.00e+00,3996,0),(0,0.00e+00,3996,0),(0,0.00e+00,3998,0),(0,0.00e+00,4000,0),(0,0.00e+00,3954,0),(0,0.00e+00,3138,0),(0,0.00e+00,4000,0),(0,0.00e+00,3998,0),(0,0.00e+00,3994,0),(0,0.00e+00,3998,0),(0,0.00e+00,5760,0),(0,0.00e+00,5762,0),(0,0.00e+00,5766,0),(0,0.00e+00,5766,0),(0,0.00e+00,5706,0),(0,0.00e+00,4548,0),(0,0.00e+00,5768,0),(0,0.00e+00,5760,0),(0,0.00e+00,5762,0),(0,0.00e+00,5766,0),(0,0.00e+00,9978,0),(0,0.00e+00,9994,0),(0,0.00e+00,9996,0),(0,0.00e+00,9998,0),(0,0.00e+00,9908,0),(0,0.00e+00,10000,0),(0,0.00e+00,9978,0),(0,0.00e+00,9992,0),(0,0.00e+00,9992,0),(0,0.00e+00,19966,0),(0,0.00e+00,19992,0),(0,0.00e+00,19990,0),(0,0.00e+00,19998,0),(0,0.00e+00,19810,0),(0,0.00e+00,20000,0),(0,0.00e+00,19960,0),(0,0.00e+00,19978,0),(0,0.00e+00,19978,0),(0,0.00e+00,26092,0),(0,0.00e+00,26126,0),(0,0.00e+00,26126,0),(0,0.00e+00,26134,0),(0,0.00e+00,25894,0),(0,0.00e+00,26136,0),(0,0.00e+00,26088,0),(0,0.00e+00,26110,0),(0,0.00e+00,26104,0),(0,0.00e+00,33422,0),(0,0.00e+00,33470,0),(0,0.00e+00,33478,0),(0,0.00e+00,33164,0),(0,0.00e+00,33480,0),(0,0.00e+00,33404,0),(0,0.00e+00,33446,0),(0,0.00e+00,33442,0),(0,0.00e+00,39688,0),(0,0.00e+00,39698,0),(0,0.00e+00,39316,0),(0,0.00e+00,39700,0),(0,0.00e+00,39608,0),(0,0.00e+00,39664,0),(0,0.00e+00,39656,0),(0,0.00e+00,39988,0),(0,0.00e+00,39612,0),(0,0.00e+00,40000,0),(0,0.00e+00,39908,0),(0,0.00e+00,39962,0),(0,0.00e+00,39954,0),(0,0.00e+00,44708,0),(0,0.00e+00,44292,0),(0,0.00e+00,44724,0),(0,0.00e+00,44618,0),(0,0.00e+00,44682,0),(0,0.00e+00,44670,0),(0,0.00e+00,52916,0),(0,0.00e+00,53420,0),(0,0.00e+00,53282,0),(0,0.00e+00,53368,0),(0,0.00e+00,53350,0),(0,0.00e+00,60394,0),(0,0.00e+00,60232,0),(0,0.00e+00,60336,0),(0,0.00e+00,60320,0),(1,1.16e-05,86254,0),(0,0.00e+00,86180,0),(1,1.16e-05,86144,0),(1,1.00e-05,99994,0),(1,1.00e-05,99866,0),(1,5.00e-06,199974,0),(1,5.01e-06,199730,0),(1,2.50e-06,399940,0),(1,2.50e-06,399434,0),(1,1.00e-06,999826,0),(1,1.00e-06,998478,0),(1,8.99e-07,1111812,0),(1,9.01e-07,1110292,0),(0,0.00e+00,626532,0),(0,0.00e+00,628784,0),(0,0.00e+00,17636,0),(0,0.00e+00,43724,0),(0,0.00e+00,20974,0),(0,0.00e+00,36068,0),(0,0.00e+00,52640,0),(0,0.00e+00,2928,0),(0,0.00e+00,349908,0),(0,0.00e+00,32934,0),(0,0.00e+00,69720,0),(0,0.00e+00,285108,0),(0,0.00e+00,341424,0),(0,0.00e+00,10258,0),(0,0.00e+00,7378,0),(0,0.00e+00,25032,0),(0,0.00e+00,18692,0),(0,0.00e+00,9828,0),(0,0.00e+00,11146,0),(0,0.00e+00,18296,0),(0,0.00e+00,17772,0),(0,0.00e+00,27132,0),(0,0.00e+00,25508,0),(0,0.00e+00,1270,0),(0,0.00e+00,1658,0),(0,0.00e+00,162126,0),(0,0.00e+00,187782,0),(0,0.00e+00,16684,0),(0,0.00e+00,16250,0),(0,0.00e+00,14482,0),(0,0.00e+00,55238,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,14,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,198,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,142,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,998,0),(0,0.00e+00,1000,0),(0,0.00e+00,998,0),(0,0.00e+00,1000,0),(0,0.00e+00,990,0),(0,0.00e+00,716,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1998,0),(0,0.00e+00,1998,0),(0,0.00e+00,1998,0),(0,0.00e+00,2000,0),(0,0.00e+00,1984,0),(0,0.00e+00,1402,0),(0,0.00e+00,2000,0),(0,0.00e+00,1998,0),(0,0.00e+00,1998,0),(0,0.00e+00,1998,0),(0,0.00e+00,3986,0),(0,0.00e+00,3996,0),(0,0.00e+00,3998,0),(0,0.00e+00,3998,0),(0,0.00e+00,3954,0),(0,0.00e+00,2810,0),(0,0.00e+00,4000,0),(0,0.00e+00,3988,0),(0,0.00e+00,3994,0),(0,0.00e+00,3992,0),(0,0.00e+00,4134,0),(0,0.00e+00,4144,0),(0,0.00e+00,4146,0),(0,0.00e+00,4146,0),(0,0.00e+00,4100,0),(0,0.00e+00,2928,0),(0,0.00e+00,4148,0),(0,0.00e+00,4134,0),(0,0.00e+00,4142,0),(0,0.00e+00,4140,0),(0,0.00e+00,9966,0),(0,0.00e+00,9994,0),(0,0.00e+00,9994,0),(0,0.00e+00,9998,0),(0,0.00e+00,9908,0),(0,0.00e+00,10000,0),(0,0.00e+00,9962,0),(0,0.00e+00,9986,0),(0,0.00e+00,9972,0),(0,0.00e+00,17636,0),(0,0.00e+00,17686,0),(0,0.00e+00,17684,0),(0,0.00e+00,17692,0),(0,0.00e+00,17542,0),(0,0.00e+00,17692,0),(0,0.00e+00,17622,0),(0,0.00e+00,17672,0),(0,0.00e+00,17644,0),(0,0.00e+00,19992,0),(0,0.00e+00,19990,0),(0,0.00e+00,19998,0),(0,0.00e+00,19808,0),(0,0.00e+00,19998,0),(0,0.00e+00,19916,0),(0,0.00e+00,19976,0),(0,0.00e+00,19944,0),(0,0.00e+00,20976,0),(0,0.00e+00,20974,0),(0,0.00e+00,20982,0),(0,0.00e+00,20782,0),(0,0.00e+00,20982,0),(0,0.00e+00,20896,0),(0,0.00e+00,20958,0),(0,0.00e+00,20922,0),(0,0.00e+00,33088,0),(0,0.00e+00,33096,0),(0,0.00e+00,32786,0),(0,0.00e+00,33092,0),(0,0.00e+00,32934,0),(0,0.00e+00,33060,0),(0,0.00e+00,33004,0),(0,0.00e+00,36060,0),(0,0.00e+00,36068,0),(0,0.00e+00,35726,0),(0,0.00e+00,36064,0),(0,0.00e+00,36028,0),(0,0.00e+00,35960,0),(0,0.00e+00,39986,0),(0,0.00e+00,39610,0),(0,0.00e+00,39988,0),(0,0.00e+00,39956,0),(0,0.00e+00,39876,0),(0,0.00e+00,43724,0),(0,0.00e+00,43316,0),(0,0.00e+00,43726,0),(0,0.00e+00,43688,0),(0,0.00e+00,43604,0),(0,0.00e+00,52640,0),(0,0.00e+00,53122,0),(0,0.00e+00,53082,0),(0,0.00e+00,52968,0),(0,0.00e+00,69768,0),(0,0.00e+00,69720,0),(0,0.00e+00,69578,0),(0,0.00e+00,99956,0),(0,0.00e+00,99674,0),(0,0.00e+00,199884,0),(0,0.00e+00,199332,0),(0,0.00e+00,349908,0),(0,0.00e+00,348866,0),(0,0.00e+00,398590,0)]18.99e-0711118120"nfe"NANANANANA[(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]NANANANANANANANA1TrueNA{}1.02e+006.00e+010.00e+005537.79e+002.96e-01[14,32,9,16]4.68e-01711.04e+006.00e+010.00e+003.92e-015318.56e+002.96e-01[14,32,8,15]5.03e-0162TrueFalseFalseFalseFalseFalseFalse5.39e+00-6.84e-07["ga4gh:VA.uAq5BRYMw_lO7PZcOF5TpbGC5hA8JCCE","ga4gh:VA.rN4HBsKxAnhIfQxMXe9zdR_JZUOk90h2"][113412864,113412864][113412865,113412865]["G","A"]"G/A"113412865".""chr11\t113412865\t.\tG\tA\t.\t.\tGT"NA"stop_gained"NANA"chr11"1134128651[(1,"Q/*",NA,"protein_coding",NA,"CCDS8362.1",818,818,742,742,"Cag/Tag",["stop_gained"],NA,[("Gene3D","1"),("Pfam","PF00001"),("PROSITE_profiles","PS50262"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321"),("CDD","cd15309")],"6/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000346454.7:c.742C>T","ENSP00000278597.5:p.Gln248Ter",NA,"HIGH",NA,"HC",NA,NA,"PERCENTILE:0.595983935742972,GERP_DIST:1028.46165180206,BP_DIST:502,DIST_FROM_LAST_EXON:309,50_BP_RULE:PASS,ANN_ORF:1830.61,MAX_ORF:1830.61",NA,NA,NA,248,248,"ENSP00000278597","Ensembl",-1,"ENST00000346454",1,["P14416-2"],"A"),(1,"Q/*","P2","protein_coding",1,"CCDS8361.1",1183,1183,829,829,"Cag/Tag",["stop_gained"],NA,[("ENSP_mappings","6vms"),("ENSP_mappings","7jvr"),("Pfam","PF00001"),("PROSITE_profiles","PS50262"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321"),("CDD","cd15309")],"7/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000362072.8:c.829C>T","ENSP00000354859.3:p.Gln277Ter",NA,"HIGH",NA,"HC",NA,NA,"PERCENTILE:0.622372372372372,GERP_DIST:1028.46165180206,BP_DIST:502,DIST_FROM_LAST_EXON:309,50_BP_RULE:PASS,ANN_ORF:1830.61,MAX_ORF:1830.61","NM_000795.4",NA,NA,277,277,"ENSP00000354859","Ensembl",-1,"ENST00000362072",1,["P14416-1"],"A"),(1,NA,NA,"processed_transcript",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],1510,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000535984",3,NA,"A"),(1,"Q/*","A1","protein_coding",NA,NA,835,835,835,835,"Cag/Tag",["stop_gained"],NA,[("Pfam","PF00001"),("PROSITE_profiles","PS50262"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321"),("CDD","cd15309"),("CDD","cd15309")],"7/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000538967.5:c.835C>T","ENSP00000438215.1:p.Gln279Ter",NA,"HIGH",NA,"HC",NA,NA,"PERCENTILE:0.62406576980568,GERP_DIST:1028.46165180206,BP_DIST:502,DIST_FROM_LAST_EXON:309,50_BP_RULE:PASS,ANN_ORF:1830.61,MAX_ORF:1830.61",NA,NA,NA,279,279,"ENSP00000438215","Ensembl",-1,"ENST00000538967",5,["P14416-3"],"A"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],2429,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000539420",3,NA,"A"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],999,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000540600",1,NA,"A"),(1,"Q/*","P2","protein_coding",NA,"CCDS8361.1",1150,1150,829,829,"Cag/Tag",["stop_gained"],NA,[("ENSP_mappings","6vms"),("ENSP_mappings","7jvr"),("Pfam","PF00001"),("PROSITE_profiles","PS50262"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321"),("CDD","cd15309")],"6/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000542968.5:c.829C>T","ENSP00000442172.1:p.Gln277Ter",NA,"HIGH",NA,"HC",NA,NA,"PERCENTILE:0.622372372372372,GERP_DIST:1028.46165180206,BP_DIST:502,DIST_FROM_LAST_EXON:309,50_BP_RULE:PASS,ANN_ORF:1830.61,MAX_ORF:1830.61",NA,NA,NA,277,277,"ENSP00000442172","Ensembl",-1,"ENST00000542968",1,["P14416-1"],"A"),(1,NA,NA,"protein_coding",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],3998,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"ENSP00000438419","Ensembl",-1,"ENST00000543292",5,NA,"A"),(1,"Q/*","A1","protein_coding",NA,NA,859,859,826,826,"Cag/Tag",["stop_gained"],NA,[("Pfam","PF00001"),("PROSITE_profiles","PS50262"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321"),("CDD","cd15309")],"6/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000544518.5:c.826C>T","ENSP00000441068.1:p.Gln276Ter",NA,"HIGH",NA,"HC",NA,NA,"PERCENTILE:0.621519939804364,GERP_DIST:1028.46165180206,BP_DIST:502,DIST_FROM_LAST_EXON:309,50_BP_RULE:PASS,ANN_ORF:1830.61,MAX_ORF:1830.61",NA,NA,NA,276,276,"ENSP00000441068","Ensembl",-1,"ENST00000544518",1,NA,"A"),(1,NA,NA,"lncRNA",1,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],748,NA,NA,NA,"ENSG00000256757",NA,NA,NA,NA,NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",1,"ENST00000546284",3,NA,"A"),(1,"Q/*",NA,"protein_coding",1,NA,1183,1183,829,829,"Cag/Tag",["stop_gained"],NA,NA,"7/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_000795.4:c.829C>T","NP_000786.1:p.Gln277Ter",NA,"HIGH",NA,"HC",NA,NA,"PERCENTILE:0.622372372372372,GERP_DIST:1028.46165180206,BP_DIST:502,DIST_FROM_LAST_EXON:309,50_BP_RULE:PASS,PHYLOCSF_TOO_SHORT","ENST00000362072.8",NA,NA,277,277,"NP_000786.1","RefSeq",-1,"NM_000795.4",NA,NA,"A"),(1,"Q/*",NA,"protein_coding",NA,NA,1096,1096,742,742,"Cag/Tag",["stop_gained"],NA,NA,"6/7",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_016574.4:c.742C>T","NP_057658.2:p.Gln248Ter",NA,"HIGH",NA,"HC",NA,NA,"PERCENTILE:0.595983935742972,GERP_DIST:1028.46165180206,BP_DIST:502,DIST_FROM_LAST_EXON:309,50_BP_RULE:PASS,PHYLOCSF_TOO_SHORT",NA,NA,NA,248,248,"NP_057658.2","RefSeq",-1,"NM_016574.4",NA,NA,"A"),(1,"Q/*",NA,"protein_coding",NA,NA,911,911,829,829,"Cag/Tag",["stop_gained"],NA,NA,"7/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","XM_017017296.2:c.829C>T","XP_016872785.1:p.Gln277Ter",NA,"HIGH",NA,"HC",NA,NA,"PERCENTILE:0.622372372372372,GERP_DIST:1028.46165180206,BP_DIST:502,DIST_FROM_LAST_EXON:309,50_BP_RULE:PASS,PHYLOCSF_TOO_SHORT",NA,NA,NA,277,277,"XP_016872785.1","RefSeq",-1,"XM_017017296.2",NA,NA,"A")]"SNV"5.39e+00"AS_MQ"FalseFalseFalseFalseFalseTrueFalseFalse"multi-snv"2False"snv"False[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,547,0,1910,0,310815,0,33,0,416515,0,0,0,0,0,0,1]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,1141,1461,3821,36585,211757,225880,49280,7441,3163,3441,5118,7834,11512,15298,17617,18581,18765,20944]070182[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][890,0,0,0,783,0,1910,0,310815,0,33,0,416515,0,0,0,0,0,0,1]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][431,622,1175,1493,3823,36589,211757,225880,49281,7441,3163,3441,5118,7834,11512,15298,17617,18581,18765,20944]070182[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,1,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]004.50e+018.76e+00NA0.00e+00-1.10e-018.79e+00NANA
chr11:113412885["T","C"][(1,6.86e-07,1458160,0),(2,1.37e-06,1461894,0),(0,0.00e+00,33408,0),(0,0.00e+00,44630,0),(0,0.00e+00,26106,0),(0,0.00e+00,39690,0),(0,0.00e+00,52116,0),(0,0.00e+00,4312,0),(1,9.00e-07,1111636,0),(0,0.00e+00,60164,0),(0,0.00e+00,86098,0),(1,1.36e-06,732774,0),(0,0.00e+00,725386,0),(0,0.00e+00,19292,0),(0,0.00e+00,14116,0),(0,0.00e+00,25634,0),(0,0.00e+00,18996,0),(0,0.00e+00,12610,0),(0,0.00e+00,13496,0),(0,0.00e+00,20702,0),(0,0.00e+00,18988,0),(0,0.00e+00,26976,0),(0,0.00e+00,25140,0),(0,0.00e+00,1734,0),(0,0.00e+00,2578,0),(1,1.75e-06,572122,0),(0,0.00e+00,539514,0),(0,0.00e+00,31706,0),(0,0.00e+00,28458,0),(0,0.00e+00,21998,0),(0,0.00e+00,64100,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,12,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,194,0),(0,0.00e+00,148,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,998,0),(0,0.00e+00,998,0),(0,0.00e+00,996,0),(0,0.00e+00,1000,0),(0,0.00e+00,970,0),(0,0.00e+00,756,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1994,0),(0,0.00e+00,1996,0),(0,0.00e+00,1996,0),(0,0.00e+00,2000,0),(0,0.00e+00,1950,0),(0,0.00e+00,1490,0),(0,0.00e+00,1998,0),(0,0.00e+00,2000,0),(0,0.00e+00,1996,0),(0,0.00e+00,2000,0),(0,0.00e+00,3992,0),(0,0.00e+00,3994,0),(0,0.00e+00,3996,0),(0,0.00e+00,4000,0),(0,0.00e+00,3888,0),(0,0.00e+00,2982,0),(0,0.00e+00,3998,0),(0,0.00e+00,3996,0),(0,0.00e+00,3988,0),(0,0.00e+00,3990,0),(0,0.00e+00,5754,0),(0,0.00e+00,5758,0),(0,0.00e+00,5762,0),(0,0.00e+00,5768,0),(0,0.00e+00,5602,0),(0,0.00e+00,4312,0),(0,0.00e+00,5766,0),(0,0.00e+00,5756,0),(0,0.00e+00,5754,0),(0,0.00e+00,5754,0),(0,0.00e+00,9972,0),(0,0.00e+00,9982,0),(0,0.00e+00,9986,0),(0,0.00e+00,10000,0),(0,0.00e+00,9736,0),(0,0.00e+00,9998,0),(0,0.00e+00,9968,0),(0,0.00e+00,9984,0),(0,0.00e+00,9976,0),(0,0.00e+00,19956,0),(0,0.00e+00,19974,0),(0,0.00e+00,19976,0),(0,0.00e+00,19996,0),(0,0.00e+00,19458,0),(0,0.00e+00,19998,0),(0,0.00e+00,19942,0),(0,0.00e+00,19960,0),(0,0.00e+00,19950,0),(0,0.00e+00,26080,0),(0,0.00e+00,26096,0),(0,0.00e+00,26106,0),(0,0.00e+00,26130,0),(0,0.00e+00,25472,0),(0,0.00e+00,26134,0),(0,0.00e+00,26068,0),(0,0.00e+00,26090,0),(0,0.00e+00,26074,0),(0,0.00e+00,33408,0),(0,0.00e+00,33414,0),(0,0.00e+00,33472,0),(0,0.00e+00,32646,0),(0,0.00e+00,33478,0),(0,0.00e+00,33382,0),(0,0.00e+00,33422,0),(0,0.00e+00,33404,0),(0,0.00e+00,39618,0),(0,0.00e+00,39690,0),(0,0.00e+00,38704,0),(0,0.00e+00,39698,0),(0,0.00e+00,39574,0),(0,0.00e+00,39636,0),(0,0.00e+00,39610,0),(0,0.00e+00,39916,0),(0,0.00e+00,38996,0),(0,0.00e+00,39998,0),(0,0.00e+00,39872,0),(0,0.00e+00,39934,0),(0,0.00e+00,39908,0),(0,0.00e+00,44630,0),(0,0.00e+00,43606,0),(0,0.00e+00,44722,0),(0,0.00e+00,44570,0),(0,0.00e+00,44654,0),(0,0.00e+00,44624,0),(0,0.00e+00,52116,0),(0,0.00e+00,53418,0),(0,0.00e+00,53230,0),(0,0.00e+00,53336,0),(0,0.00e+00,53296,0),(0,0.00e+00,60390,0),(0,0.00e+00,60164,0),(0,0.00e+00,60294,0),(0,0.00e+00,60258,0),(0,0.00e+00,86248,0),(0,0.00e+00,86098,0),(0,0.00e+00,86056,0),(0,0.00e+00,99986,0),(0,0.00e+00,99772,0),(0,0.00e+00,199950,0),(0,0.00e+00,199518,0),(0,0.00e+00,399882,0),(0,0.00e+00,399012,0),(1,1.00e-06,999674,0),(1,1.00e-06,997490,0),(1,9.00e-07,1111636,0),(1,9.02e-07,1109188,0),(0,0.00e+00,625052,0),(1,1.59e-06,628784,0),(0,0.00e+00,17622,0),(0,0.00e+00,43646,0),(0,0.00e+00,20954,0),(0,0.00e+00,36060,0),(0,0.00e+00,51840,0),(0,0.00e+00,2692,0),(0,0.00e+00,349734,0),(0,0.00e+00,32866,0),(0,0.00e+00,69638,0),(0,0.00e+00,284380,0),(0,0.00e+00,340672,0),(0,0.00e+00,10252,0),(0,0.00e+00,7370,0),(0,0.00e+00,24984,0),(0,0.00e+00,18662,0),(0,0.00e+00,9812,0),(0,0.00e+00,11142,0),(0,0.00e+00,18288,0),(0,0.00e+00,17772,0),(0,0.00e+00,26726,0),(0,0.00e+00,25114,0),(0,0.00e+00,1144,0),(0,0.00e+00,1548,0),(0,0.00e+00,162056,0),(0,0.00e+00,187678,0),(0,0.00e+00,16658,0),(0,0.00e+00,16208,0),(0,0.00e+00,14460,0),(0,0.00e+00,55178,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,10,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,198,0),(0,0.00e+00,200,0),(0,0.00e+00,194,0),(0,0.00e+00,136,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,994,0),(0,0.00e+00,998,0),(0,0.00e+00,996,0),(0,0.00e+00,1000,0),(0,0.00e+00,970,0),(0,0.00e+00,654,0),(0,0.00e+00,998,0),(0,0.00e+00,1000,0),(0,0.00e+00,998,0),(0,0.00e+00,996,0),(0,0.00e+00,1994,0),(0,0.00e+00,1996,0),(0,0.00e+00,1996,0),(0,0.00e+00,2000,0),(0,0.00e+00,1948,0),(0,0.00e+00,1302,0),(0,0.00e+00,1998,0),(0,0.00e+00,1996,0),(0,0.00e+00,1996,0),(0,0.00e+00,1986,0),(0,0.00e+00,3980,0),(0,0.00e+00,3994,0),(0,0.00e+00,3996,0),(0,0.00e+00,4000,0),(0,0.00e+00,3888,0),(0,0.00e+00,2588,0),(0,0.00e+00,3998,0),(0,0.00e+00,3984,0),(0,0.00e+00,3986,0),(0,0.00e+00,3976,0),(0,0.00e+00,4128,0),(0,0.00e+00,4142,0),(0,0.00e+00,4144,0),(0,0.00e+00,4148,0),(0,0.00e+00,4032,0),(0,0.00e+00,2692,0),(0,0.00e+00,4146,0),(0,0.00e+00,4130,0),(0,0.00e+00,4134,0),(0,0.00e+00,4124,0),(0,0.00e+00,9956,0),(0,0.00e+00,9982,0),(0,0.00e+00,9982,0),(0,0.00e+00,9998,0),(0,0.00e+00,9736,0),(0,0.00e+00,9998,0),(0,0.00e+00,9946,0),(0,0.00e+00,9970,0),(0,0.00e+00,9946,0),(0,0.00e+00,17622,0),(0,0.00e+00,17668,0),(0,0.00e+00,17666,0),(0,0.00e+00,17690,0),(0,0.00e+00,17240,0),(0,0.00e+00,17690,0),(0,0.00e+00,17600,0),(0,0.00e+00,17652,0),(0,0.00e+00,17598,0),(0,0.00e+00,19974,0),(0,0.00e+00,19970,0),(0,0.00e+00,19996,0),(0,0.00e+00,19456,0),(0,0.00e+00,19994,0),(0,0.00e+00,19886,0),(0,0.00e+00,19956,0),(0,0.00e+00,19896,0),(0,0.00e+00,20952,0),(0,0.00e+00,20954,0),(0,0.00e+00,20980,0),(0,0.00e+00,20420,0),(0,0.00e+00,20978,0),(0,0.00e+00,20864,0),(0,0.00e+00,20938,0),(0,0.00e+00,20870,0),(0,0.00e+00,33028,0),(0,0.00e+00,33088,0),(0,0.00e+00,32270,0),(0,0.00e+00,33082,0),(0,0.00e+00,32866,0),(0,0.00e+00,33032,0),(0,0.00e+00,32930,0),(0,0.00e+00,35996,0),(0,0.00e+00,36060,0),(0,0.00e+00,35158,0),(0,0.00e+00,36052,0),(0,0.00e+00,36000,0),(0,0.00e+00,35874,0),(0,0.00e+00,39912,0),(0,0.00e+00,38990,0),(0,0.00e+00,39972,0),(0,0.00e+00,39926,0),(0,0.00e+00,39784,0),(0,0.00e+00,43646,0),(0,0.00e+00,42640,0),(0,0.00e+00,43710,0),(0,0.00e+00,43654,0),(0,0.00e+00,43508,0),(0,0.00e+00,51840,0),(0,0.00e+00,53106,0),(0,0.00e+00,53036,0),(0,0.00e+00,52850,0),(0,0.00e+00,69740,0),(0,0.00e+00,69638,0),(0,0.00e+00,69416,0),(0,0.00e+00,99914,0),(0,0.00e+00,99438,0),(0,0.00e+00,199798,0),(0,0.00e+00,198850,0),(0,0.00e+00,349734,0),(0,0.00e+00,348096,0),(0,0.00e+00,397690,0)]19.00e-0711116360"nfe"NANANANANA[(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]NANANANANANANANA1FalseNA{}2.45e+006.00e+010.00e+008901.11e+011.80e-01[7,37,8,28]3.79e-01802.45e+006.00e+010.00e+004.53e-018901.11e+011.80e-01[7,37,8,28]3.79e-0180FalseFalseFalseFalseFalseFalseFalse5.84e+00-1.37e-06["ga4gh:VA.Hj6Aa_k4TOMxqWIs6lE_cgxiRrPFWp8C","ga4gh:VA.NDTpZX0YUzM19pYVv6I2tV0ypoJhtyrN"][113412884,113412884][113412885,113412885]["T","C"]"T/C"113412885".""chr11\t113412885\t.\tT\tC\t.\t.\tGT"NA"splice_acceptor_variant"NANA"chr11"1134128851[(1,NA,NA,"protein_coding",NA,"CCDS8362.1",NA,NA,NA,NA,NA,["splice_acceptor_variant"],NA,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000346454.7:c.724-2A>G",NA,NA,"HIGH","5/6","HC","NAGNAG_SITE",NA,"INTRON_SIZE:2537",NA,NA,NA,NA,NA,"ENSP00000278597","Ensembl",-1,"ENST00000346454",1,["P14416-2"],"C"),(1,NA,"P2","protein_coding",1,"CCDS8361.1",NA,NA,NA,NA,NA,["splice_acceptor_variant"],NA,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000362072.8:c.811-2A>G",NA,NA,"HIGH","6/7","HC","NAGNAG_SITE",NA,"INTRON_SIZE:1491","NM_000795.4",NA,NA,NA,NA,"ENSP00000354859","Ensembl",-1,"ENST00000362072",1,["P14416-1"],"C"),(1,NA,NA,"processed_transcript",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],1490,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000535984",3,NA,"C"),(1,NA,"A1","protein_coding",NA,NA,NA,NA,NA,NA,NA,["splice_acceptor_variant"],NA,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000538967.5:c.817-2A>G",NA,NA,"HIGH","6/7","HC","NAGNAG_SITE",NA,"INTRON_SIZE:451",NA,NA,NA,NA,NA,"ENSP00000438215","Ensembl",-1,"ENST00000538967",5,["P14416-3"],"C"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],2409,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000539420",3,NA,"C"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],979,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000540600",1,NA,"C"),(1,NA,"P2","protein_coding",NA,"CCDS8361.1",NA,NA,NA,NA,NA,["splice_acceptor_variant"],NA,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000542968.5:c.811-2A>G",NA,NA,"HIGH","5/6","HC","NAGNAG_SITE",NA,"INTRON_SIZE:1491",NA,NA,NA,NA,NA,"ENSP00000442172","Ensembl",-1,"ENST00000542968",1,["P14416-1"],"C"),(1,NA,NA,"protein_coding",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],3978,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"ENSP00000438419","Ensembl",-1,"ENST00000543292",5,NA,"C"),(1,NA,"A1","protein_coding",NA,NA,NA,NA,NA,NA,NA,["splice_acceptor_variant"],NA,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000544518.5:c.808-2A>G",NA,NA,"HIGH","5/6","HC","NAGNAG_SITE",NA,"INTRON_SIZE:1491",NA,NA,NA,NA,NA,"ENSP00000441068","Ensembl",-1,"ENST00000544518",1,NA,"C"),(1,NA,NA,"lncRNA",1,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],768,NA,NA,NA,"ENSG00000256757",NA,NA,NA,NA,NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",1,"ENST00000546284",3,NA,"C"),(1,NA,NA,"protein_coding",1,NA,NA,NA,NA,NA,NA,["splice_acceptor_variant"],NA,NA,NA,NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_000795.4:c.811-2A>G",NA,NA,"HIGH","6/7","HC","NAGNAG_SITE",NA,"INTRON_SIZE:1491","ENST00000362072.8",NA,NA,NA,NA,"NP_000786.1","RefSeq",-1,"NM_000795.4",NA,NA,"C"),(1,NA,NA,"protein_coding",NA,NA,NA,NA,NA,NA,NA,["splice_acceptor_variant"],NA,NA,NA,NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_016574.4:c.724-2A>G",NA,NA,"HIGH","5/6","HC","NAGNAG_SITE",NA,"INTRON_SIZE:2537",NA,NA,NA,NA,NA,"NP_057658.2","RefSeq",-1,"NM_016574.4",NA,NA,"C"),(1,NA,NA,"protein_coding",NA,NA,NA,NA,NA,NA,NA,["splice_acceptor_variant"],NA,NA,NA,NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","XM_017017296.2:c.811-2A>G",NA,NA,"HIGH","6/7","HC","NAGNAG_SITE",NA,"INTRON_SIZE:1491",NA,NA,NA,NA,NA,"XP_016872785.1","RefSeq",-1,"XM_017017296.2",NA,NA,"C")]"SNV"5.84e+00"AS_MQ"FalseFalseFalseFalseFalseTrueTrueFalse"snv"1False"snv"False[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,929,0,3800,0,308036,0,642,0,415672,0,0,0,0,0,0,1]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,2699,3244,4728,36120,209411,224276,48878,7369,3147,3425,5116,7827,11506,15293,17615,18578,18759,20940]070149[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][1313,0,2,0,1481,0,3800,0,308036,0,642,0,415672,0,0,0,0,0,0,1]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][618,1142,2737,3303,4730,36128,209411,224276,48878,7369,3147,3425,5116,7827,11506,15293,17615,18578,18759,20940]070149[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,1,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]003.50e+015.83e+00NA9.80e-01-7.90e-016.35e+00NANA

showing top 5 rows

\n" + ], + "text/plain": [ + "+-----------------+-------------+\n", + "| locus | alleles |\n", + "+-----------------+-------------+\n", + "| locus | array |\n", + "+-----------------+-------------+\n", + "| chr11:113412554 | [\"A\",\"G\"] |\n", + "| chr11:113412612 | [\"CT\",\"C\"] |\n", + "| chr11:113412614 | [\"ACG\",\"A\"] |\n", + "| chr11:113412865 | [\"G\",\"A\"] |\n", + "| chr11:113412885 | [\"T\",\"C\"] |\n", + "+-----------------+-------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| freq |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [(1,6.85e-07,1459578,0),(1,6.84e-07,1461894,0),(0,0.00e+00,33480,0),(0,0.... |\n", + "| [(2,1.37e-06,1461892,0),(2,1.37e-06,1461894,0),(0,0.00e+00,33480,0),(0,0.... |\n", + "| [(2,1.37e-06,1461894,0),(2,1.37e-06,1461894,0),(0,0.00e+00,33480,0),(0,0.... |\n", + "| [(1,6.85e-07,1459642,0),(1,6.84e-07,1461894,0),(0,0.00e+00,33422,0),(0,0.... |\n", + "| [(1,6.86e-07,1458160,0),(2,1.37e-06,1461894,0),(0,0.00e+00,33408,0),(0,0.... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+------------------+------------------+------------------+\n", + "| grpmax.gnomad.AC | grpmax.gnomad.AF | grpmax.gnomad.AN |\n", + "+------------------+------------------+------------------+\n", + "| int32 | float64 | int32 |\n", + "+------------------+------------------+------------------+\n", + "| 1 | 8.99e-07 | 1111998 |\n", + "| 2 | 1.80e-06 | 1112010 |\n", + "| 2 | 1.80e-06 | 1112012 |\n", + "| 1 | 8.99e-07 | 1111812 |\n", + "| 1 | 9.00e-07 | 1111636 |\n", + "+------------------+------------------+------------------+\n", + "\n", + "+--------------------------------+-----------------------+-------------------+\n", + "| grpmax.gnomad.homozygote_count | grpmax.gnomad.gen_anc | grpmax.non_ukb.AC |\n", + "+--------------------------------+-----------------------+-------------------+\n", + "| int64 | str | int32 |\n", + "+--------------------------------+-----------------------+-------------------+\n", + "| 0 | \"nfe\" | NA |\n", + "| 0 | \"nfe\" | 2 |\n", + "| 0 | \"nfe\" | 2 |\n", + "| 0 | \"nfe\" | NA |\n", + "| 0 | \"nfe\" | NA |\n", + "+--------------------------------+-----------------------+-------------------+\n", + "\n", + "+-------------------+-------------------+---------------------------------+\n", + "| grpmax.non_ukb.AF | grpmax.non_ukb.AN | grpmax.non_ukb.homozygote_count |\n", + "+-------------------+-------------------+---------------------------------+\n", + "| float64 | int32 | int64 |\n", + "+-------------------+-------------------+---------------------------------+\n", + "| NA | NA | NA |\n", + "| 5.71e-06 | 350106 | 0 |\n", + "| 5.71e-06 | 350108 | 0 |\n", + "| NA | NA | NA |\n", + "| NA | NA | NA |\n", + "+-------------------+-------------------+---------------------------------+\n", + "\n", + "+------------------------+\n", + "| grpmax.non_ukb.gen_anc |\n", + "+------------------------+\n", + "| str |\n", + "+------------------------+\n", + "| NA |\n", + "| \"nfe\" |\n", + "| \"nfe\" |\n", + "| NA |\n", + "| NA |\n", + "+------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| faf |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.... |\n", + "| [(2.30e-07,9.00e-08),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.... |\n", + "| [(2.30e-07,9.00e-08),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.... |\n", + "| [(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.... |\n", + "| [(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+-------------------------+---------------------------------+\n", + "| fafmax.gnomad.faf95_max | fafmax.gnomad.faf95_max_gen_anc |\n", + "+-------------------------+---------------------------------+\n", + "| float64 | str |\n", + "+-------------------------+---------------------------------+\n", + "| NA | NA |\n", + "| 3.00e-07 | \"nfe\" |\n", + "| 3.00e-07 | \"nfe\" |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "+-------------------------+---------------------------------+\n", + "\n", + "+-------------------------+---------------------------------+\n", + "| fafmax.gnomad.faf99_max | fafmax.gnomad.faf99_max_gen_anc |\n", + "+-------------------------+---------------------------------+\n", + "| float64 | str |\n", + "+-------------------------+---------------------------------+\n", + "| NA | NA |\n", + "| 1.10e-07 | \"nfe\" |\n", + "| 1.10e-07 | \"nfe\" |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "+-------------------------+---------------------------------+\n", + "\n", + "+--------------------------+----------------------------------+\n", + "| fafmax.non_ukb.faf95_max | fafmax.non_ukb.faf95_max_gen_anc |\n", + "+--------------------------+----------------------------------+\n", + "| float64 | str |\n", + "+--------------------------+----------------------------------+\n", + "| NA | NA |\n", + "| 9.50e-07 | \"nfe\" |\n", + "| 9.50e-07 | \"nfe\" |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "+--------------------------+----------------------------------+\n", + "\n", + "+--------------------------+----------------------------------+---------+\n", + "| fafmax.non_ukb.faf99_max | fafmax.non_ukb.faf99_max_gen_anc | a_index |\n", + "+--------------------------+----------------------------------+---------+\n", + "| float64 | str | int32 |\n", + "+--------------------------+----------------------------------+---------+\n", + "| NA | NA | 2 |\n", + "| 3.60e-07 | \"nfe\" | 1 |\n", + "| 3.60e-07 | \"nfe\" | 1 |\n", + "| NA | NA | 1 |\n", + "| NA | NA | 1 |\n", + "+--------------------------+----------------------------------+---------+\n", + "\n", + "+-----------+----------+----------+----------+----------+----------------+\n", + "| was_split | rsid | filters | info.FS | info.MQ | info.MQRankSum |\n", + "+-----------+----------+----------+----------+----------+----------------+\n", + "| bool | set | set | float64 | float64 | float64 |\n", + "+-----------+----------+----------+----------+----------+----------------+\n", + "| True | NA | {} | 2.83e+00 | 6.00e+01 | 0.00e+00 |\n", + "| False | NA | {} | 5.48e-01 | 6.00e+01 | 0.00e+00 |\n", + "| True | NA | {} | 2.32e+00 | 6.00e+01 | 0.00e+00 |\n", + "| True | NA | {} | 1.02e+00 | 6.00e+01 | 0.00e+00 |\n", + "| False | NA | {} | 2.45e+00 | 6.00e+01 | 0.00e+00 |\n", + "+-----------+----------+----------+----------+----------+----------------+\n", + "\n", + "+-----------------+----------+---------------------+---------------+----------+\n", + "| info.QUALapprox | info.QD | info.ReadPosRankSum | info.SB | info.SOR |\n", + "+-----------------+----------+---------------------+---------------+----------+\n", + "| int64 | float64 | float64 | array | float64 |\n", + "+-----------------+----------+---------------------+---------------+----------+\n", + "| 1498 | 1.05e+01 | -5.05e-01 | [63,17,52,10] | 1.04e+00 |\n", + "| 3458 | 1.79e+01 | 4.32e-01 | [65,38,58,32] | 7.50e-01 |\n", + "| 5336 | 1.56e+01 | 4.62e-01 | [99,81,94,68] | 8.22e-01 |\n", + "| 553 | 7.79e+00 | 2.96e-01 | [14,32,9,16] | 4.68e-01 |\n", + "| 890 | 1.11e+01 | 1.80e-01 | [7,37,8,28] | 3.79e-01 |\n", + "+-----------------+----------+---------------------+---------------+----------+\n", + "\n", + "+------------+------------+------------+-------------------+-----------------+\n", + "| info.VarDP | info.AS_FS | info.AS_MQ | info.AS_MQRankSum | info.AS_pab_max |\n", + "+------------+------------+------------+-------------------+-----------------+\n", + "| int32 | float64 | float64 | float64 | float64 |\n", + "+------------+------------+------------+-------------------+-----------------+\n", + "| 142 | 1.10e+00 | 6.00e+01 | 0.00e+00 | 1.00e+00 |\n", + "| 193 | 5.48e-01 | 6.00e+01 | 0.00e+00 | 5.90e-01 |\n", + "| 342 | 8.20e+00 | 6.00e+01 | 0.00e+00 | 6.65e-01 |\n", + "| 71 | 1.04e+00 | 6.00e+01 | 0.00e+00 | 3.92e-01 |\n", + "| 80 | 2.45e+00 | 6.00e+01 | 0.00e+00 | 4.53e-01 |\n", + "+------------+------------+------------+-------------------+-----------------+\n", + "\n", + "+--------------------+------------+------------------------+------------------+\n", + "| info.AS_QUALapprox | info.AS_QD | info.AS_ReadPosRankSum | info.AS_SB_TABLE |\n", + "+--------------------+------------+------------------------+------------------+\n", + "| int64 | float64 | float64 | array |\n", + "+--------------------+------------+------------------------+------------------+\n", + "| 661 | 1.35e+01 | -1.83e+00 | [63,17,21,4] |\n", + "| 3458 | 1.79e+01 | 4.32e-01 | [65,38,58,32] |\n", + "| 3455 | 1.80e+01 | 4.62e-01 | [99,81,58,32] |\n", + "| 531 | 8.56e+00 | 2.96e-01 | [14,32,8,15] |\n", + "| 890 | 1.11e+01 | 1.80e-01 | [7,37,8,28] |\n", + "+--------------------+------------+------------------------+------------------+\n", + "\n", + "+-------------+---------------+----------------+----------------------------+\n", + "| info.AS_SOR | info.AS_VarDP | info.singleton | info.transmitted_singleton |\n", + "+-------------+---------------+----------------+----------------------------+\n", + "| float64 | int32 | bool | bool |\n", + "+-------------+---------------+----------------+----------------------------+\n", + "| 9.29e-01 | 49 | True | False |\n", + "| 7.50e-01 | 193 | False | NA |\n", + "| 1.15e+00 | 192 | False | NA |\n", + "| 5.03e-01 | 62 | True | False |\n", + "| 3.79e-01 | 80 | False | False |\n", + "+-------------+---------------+----------------+----------------------------+\n", + "\n", + "+------------------------+-----------+------------+------------------+\n", + "| info.sibling_singleton | info.omni | info.mills | info.monoallelic |\n", + "+------------------------+-----------+------------+------------------+\n", + "| bool | bool | bool | bool |\n", + "+------------------------+-----------+------------+------------------+\n", + "| False | False | False | False |\n", + "| NA | False | False | False |\n", + "| NA | False | False | False |\n", + "| False | False | False | False |\n", + "| False | False | False | False |\n", + "+------------------------+-----------+------------+------------------+\n", + "\n", + "+---------------+----------------+-----------------------+\n", + "| info.only_het | info.AS_VQSLOD | info.inbreeding_coeff |\n", + "+---------------+----------------+-----------------------+\n", + "| bool | float64 | float64 |\n", + "+---------------+----------------+-----------------------+\n", + "| False | 5.30e+00 | -6.84e-07 |\n", + "| False | 4.25e+00 | -1.37e-06 |\n", + "| False | 3.61e+00 | -1.37e-06 |\n", + "| False | 5.39e+00 | -6.84e-07 |\n", + "| False | 5.84e+00 | -1.37e-06 |\n", + "+---------------+----------------+-----------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| info.vrs.VRS_Allele_IDs |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [\"ga4gh:VA.mqU9WPvGr3hduyybbeN-AKJ1zN-kclsI\",\"ga4gh:VA.uvlicmv1vZnrBBqm0U... |\n", + "| [\"ga4gh:VA.NztLKtEJA7H0h_Tz31YRmTUR4hT2PNxO\",\"ga4gh:VA.5xtydtW8O1beQhV-1c... |\n", + "| [\"ga4gh:VA.Lx5RcGLe0vnqmstRd134JgqaJUNZIzCF\",\"ga4gh:VA.N3JXRaksYTV6CSLvZ_... |\n", + "| [\"ga4gh:VA.uAq5BRYMw_lO7PZcOF5TpbGC5hA8JCCE\",\"ga4gh:VA.rN4HBsKxAnhIfQxMXe... |\n", + "| [\"ga4gh:VA.Hj6Aa_k4TOMxqWIs6lE_cgxiRrPFWp8C\",\"ga4gh:VA.NDTpZX0YUzM19pYVv6... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+-----------------------+-----------------------+---------------------+\n", + "| info.vrs.VRS_Starts | info.vrs.VRS_Ends | info.vrs.VRS_States |\n", + "+-----------------------+-----------------------+---------------------+\n", + "| array | array | array |\n", + "+-----------------------+-----------------------+---------------------+\n", + "| [113412553,113412553] | [113412554,113412554] | [\"A\",\"G\"] |\n", + "| [113412611,113412612] | [113412613,113412613] | [\"CT\",\"\"] |\n", + "| [113412613,113412614] | [113412616,113412616] | [\"ACG\",\"\"] |\n", + "| [113412864,113412864] | [113412865,113412865] | [\"G\",\"A\"] |\n", + "| [113412884,113412884] | [113412885,113412885] | [\"T\",\"C\"] |\n", + "+-----------------------+-----------------------+---------------------+\n", + "\n", + "+-------------------+-----------+--------+----------------------------------+\n", + "| vep.allele_string | vep.end | vep.id | vep.input |\n", + "+-------------------+-----------+--------+----------------------------------+\n", + "| str | int32 | str | str |\n", + "+-------------------+-----------+--------+----------------------------------+\n", + "| \"A/G\" | 113412554 | \".\" | \"chr11\t113412554\t.\tA\tG\t.\t.\tGT\" |\n", + "| \"T/-\" | 113412613 | \".\" | \"chr11\t113412612\t.\tCT\tC\t.\t.\tGT\" |\n", + "| \"CG/-\" | 113412616 | \".\" | \"chr11\t113412614\t.\tACG\tA\t.\t.\tGT\" |\n", + "| \"G/A\" | 113412865 | \".\" | \"chr11\t113412865\t.\tG\tA\t.\t.\tGT\" |\n", + "| \"T/C\" | 113412885 | \".\" | \"chr11\t113412885\t.\tT\tC\t.\t.\tGT\" |\n", + "+-------------------+-----------+--------+----------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| vep.intergenic_consequences |\n", + "+------------------------------------------------------------------------------+\n", + "| array, impact: st... |\n", + "+------------------------------------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+-----------------------------+\n", + "| vep.most_severe_consequence |\n", + "+-----------------------------+\n", + "| str |\n", + "+-----------------------------+\n", + "| \"splice_donor_variant\" |\n", + "| \"frameshift_variant\" |\n", + "| \"frameshift_variant\" |\n", + "| \"stop_gained\" |\n", + "| \"splice_acceptor_variant\" |\n", + "+-----------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| vep.motif_feature_consequences |\n", + "+------------------------------------------------------------------------------+\n", + "| array, high_inf_p... |\n", + "+------------------------------------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| vep.regulatory_feature_consequences |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------+\n", + "| histograms.qual_hists.gq_hist_all.bin_freq |\n", + "+------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------+\n", + "| [0,0,0,0,134,0,1469,0,311660,0,82,0,416443,0,0,0,0,0,0,1] |\n", + "| [0,0,0,0,1,0,2,0,314386,0,0,0,416555,0,0,0,0,0,0,2] |\n", + "| [0,0,0,0,1,0,1,0,314388,0,0,0,416555,0,0,0,0,0,0,2] |\n", + "| [0,0,0,0,547,0,1910,0,310815,0,33,0,416515,0,0,0,0,0,0,1] |\n", + "| [0,0,0,0,929,0,3800,0,308036,0,642,0,415672,0,0,0,0,0,0,1] |\n", + "+------------------------------------------------------------+\n", + "\n", + "+---------------------------------------------+\n", + "| histograms.qual_hists.gq_hist_all.n_smaller |\n", + "+---------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+---------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.qual_hists.gq_hist_all.n_larger |\n", + "+--------------------------------------------+\n", + "| int64 |\n", + "+--------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+--------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.qual_hists.dp_hist_all.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.qual_hists.dp_hist_all.bin_freq |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0,0,1555,817,16216,229270,272936,45138,9370,3566,3616,4059,4521,5017,549... |\n", + "| [0,0,1,279,16685,230939,273577,45298,9412,3597,3653,4094,4550,5033,5504,5... |\n", + "| [0,0,0,278,16685,230938,273578,45300,9412,3597,3653,4094,4550,5033,5504,5... |\n", + "| [0,0,1141,1461,3821,36585,211757,225880,49280,7441,3163,3441,5118,7834,11... |\n", + "| [0,0,2699,3244,4728,36120,209411,224276,48878,7369,3147,3425,5116,7827,11... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+---------------------------------------------+\n", + "| histograms.qual_hists.dp_hist_all.n_smaller |\n", + "+---------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+---------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.qual_hists.dp_hist_all.n_larger |\n", + "+--------------------------------------------+\n", + "| int64 |\n", + "+--------------------------------------------+\n", + "| 102137 |\n", + "| 102187 |\n", + "| 102188 |\n", + "| 70182 |\n", + "| 70149 |\n", + "+--------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.qual_hists.gq_hist_alt.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.qual_hists.gq_hist_alt.bin_freq |\n", + "+--------------------------------------------+\n", + "| array |\n", + "+--------------------------------------------+\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1] |\n", + "+--------------------------------------------+\n", + "\n", + "+---------------------------------------------+\n", + "| histograms.qual_hists.gq_hist_alt.n_smaller |\n", + "+---------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+---------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.qual_hists.gq_hist_alt.n_larger |\n", + "+--------------------------------------------+\n", + "| int64 |\n", + "+--------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+--------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.qual_hists.dp_hist_alt.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.qual_hists.dp_hist_alt.bin_freq |\n", + "+--------------------------------------------+\n", + "| array |\n", + "+--------------------------------------------+\n", + "| [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0] |\n", + "+--------------------------------------------+\n", + "\n", + "+---------------------------------------------+\n", + "| histograms.qual_hists.dp_hist_alt.n_smaller |\n", + "+---------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+---------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.qual_hists.dp_hist_alt.n_larger |\n", + "+--------------------------------------------+\n", + "| int64 |\n", + "+--------------------------------------------+\n", + "| 0 |\n", + "| 1 |\n", + "| 1 |\n", + "| 0 |\n", + "| 0 |\n", + "+--------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.qual_hists.ab_hist_alt.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.qual_hists.ab_hist_alt.bin_freq |\n", + "+--------------------------------------------+\n", + "| array |\n", + "+--------------------------------------------+\n", + "| [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0] |\n", + "+--------------------------------------------+\n", + "\n", + "+---------------------------------------------+\n", + "| histograms.qual_hists.ab_hist_alt.n_smaller |\n", + "+---------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+---------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.qual_hists.ab_hist_alt.n_larger |\n", + "+--------------------------------------------+\n", + "| int64 |\n", + "+--------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+--------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.raw_qual_hists.gq_hist_all.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+----------------------------------------------------------------+\n", + "| histograms.raw_qual_hists.gq_hist_all.bin_freq |\n", + "+----------------------------------------------------------------+\n", + "| array |\n", + "+----------------------------------------------------------------+\n", + "| [441,0,0,0,850,1,1469,0,311660,0,82,0,416443,0,0,0,0,0,0,1] |\n", + "| [1,0,0,0,1,0,2,0,314386,0,0,0,416555,0,0,0,0,0,0,2] |\n", + "| [0,0,0,0,1,0,1,0,314388,0,0,0,416555,0,0,0,0,0,0,2] |\n", + "| [890,0,0,0,783,0,1910,0,310815,0,33,0,416515,0,0,0,0,0,0,1] |\n", + "| [1313,0,2,0,1481,0,3800,0,308036,0,642,0,415672,0,0,0,0,0,0,1] |\n", + "+----------------------------------------------------------------+\n", + "\n", + "+-------------------------------------------------+\n", + "| histograms.raw_qual_hists.gq_hist_all.n_smaller |\n", + "+-------------------------------------------------+\n", + "| int64 |\n", + "+-------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+-------------------------------------------------+\n", + "\n", + "+------------------------------------------------+\n", + "| histograms.raw_qual_hists.gq_hist_all.n_larger |\n", + "+------------------------------------------------+\n", + "| int64 |\n", + "+------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.raw_qual_hists.dp_hist_all.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.raw_qual_hists.dp_hist_all.bin_freq |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [244,858,1593,833,16218,229270,272936,45138,9370,3566,3616,4059,4521,5017... |\n", + "| [0,0,1,279,16685,230939,273577,45298,9412,3597,3653,4094,4550,5034,5504,5... |\n", + "| [0,0,0,278,16685,230938,273578,45300,9412,3597,3653,4094,4550,5033,5504,5... |\n", + "| [431,622,1175,1493,3823,36589,211757,225880,49281,7441,3163,3441,5118,783... |\n", + "| [618,1142,2737,3303,4730,36128,209411,224276,48878,7369,3147,3425,5116,78... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+-------------------------------------------------+\n", + "| histograms.raw_qual_hists.dp_hist_all.n_smaller |\n", + "+-------------------------------------------------+\n", + "| int64 |\n", + "+-------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+-------------------------------------------------+\n", + "\n", + "+------------------------------------------------+\n", + "| histograms.raw_qual_hists.dp_hist_all.n_larger |\n", + "+------------------------------------------------+\n", + "| int64 |\n", + "+------------------------------------------------+\n", + "| 102137 |\n", + "| 102187 |\n", + "| 102188 |\n", + "| 70182 |\n", + "| 70149 |\n", + "+------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.raw_qual_hists.gq_hist_alt.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+------------------------------------------------+\n", + "| histograms.raw_qual_hists.gq_hist_alt.bin_freq |\n", + "+------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------+\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1] |\n", + "| [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1] |\n", + "+------------------------------------------------+\n", + "\n", + "+-------------------------------------------------+\n", + "| histograms.raw_qual_hists.gq_hist_alt.n_smaller |\n", + "+-------------------------------------------------+\n", + "| int64 |\n", + "+-------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+-------------------------------------------------+\n", + "\n", + "+------------------------------------------------+\n", + "| histograms.raw_qual_hists.gq_hist_alt.n_larger |\n", + "+------------------------------------------------+\n", + "| int64 |\n", + "+------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.raw_qual_hists.dp_hist_alt.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+------------------------------------------------+\n", + "| histograms.raw_qual_hists.dp_hist_alt.bin_freq |\n", + "+------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------+\n", + "| [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0] |\n", + "+------------------------------------------------+\n", + "\n", + "+-------------------------------------------------+\n", + "| histograms.raw_qual_hists.dp_hist_alt.n_smaller |\n", + "+-------------------------------------------------+\n", + "| int64 |\n", + "+-------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+-------------------------------------------------+\n", + "\n", + "+------------------------------------------------+\n", + "| histograms.raw_qual_hists.dp_hist_alt.n_larger |\n", + "+------------------------------------------------+\n", + "| int64 |\n", + "+------------------------------------------------+\n", + "| 0 |\n", + "| 1 |\n", + "| 1 |\n", + "| 0 |\n", + "| 0 |\n", + "+------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.raw_qual_hists.ab_hist_alt.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+------------------------------------------------+\n", + "| histograms.raw_qual_hists.ab_hist_alt.bin_freq |\n", + "+------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------+\n", + "| [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0] |\n", + "+------------------------------------------------+\n", + "\n", + "+-------------------------------------------------+\n", + "| histograms.raw_qual_hists.ab_hist_alt.n_smaller |\n", + "+-------------------------------------------------+\n", + "| int64 |\n", + "+-------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+-------------------------------------------------+\n", + "\n", + "+------------------------------------------------+\n", + "| histograms.raw_qual_hists.ab_hist_alt.n_larger |\n", + "+------------------------------------------------+\n", + "| int64 |\n", + "+------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.age_hists.age_hist_het.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.age_hists.age_hist_het.bin_freq |\n", + "+--------------------------------------------+\n", + "| array |\n", + "+--------------------------------------------+\n", + "| [0,0,0,0,1,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,1,0,0,0,0,0,0] |\n", + "| [0,0,0,0,1,0,0,0,0,0] |\n", + "+--------------------------------------------+\n", + "\n", + "+---------------------------------------------+\n", + "| histograms.age_hists.age_hist_het.n_smaller |\n", + "+---------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------+\n", + "| 0 |\n", + "| 1 |\n", + "| 1 |\n", + "| 0 |\n", + "| 0 |\n", + "+---------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.age_hists.age_hist_het.n_larger |\n", + "+--------------------------------------------+\n", + "| int64 |\n", + "+--------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+--------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.age_hists.age_hist_hom.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.age_hists.age_hist_hom.bin_freq |\n", + "+--------------------------------------------+\n", + "| array |\n", + "+--------------------------------------------+\n", + "| [0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0] |\n", + "+--------------------------------------------+\n", + "\n", + "+---------------------------------------------+\n", + "| histograms.age_hists.age_hist_hom.n_smaller |\n", + "+---------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+---------------------------------------------+\n", + "\n", + "+--------------------------------------------+---------------------------------+\n", + "| histograms.age_hists.age_hist_hom.n_larger | in_silico_predictors.cadd.phred |\n", + "+--------------------------------------------+---------------------------------+\n", + "| int64 | float32 |\n", + "+--------------------------------------------+---------------------------------+\n", + "| 0 | 3.40e+01 |\n", + "| 0 | 3.20e+01 |\n", + "| 0 | 3.30e+01 |\n", + "| 0 | 4.50e+01 |\n", + "| 0 | 3.50e+01 |\n", + "+--------------------------------------------+---------------------------------+\n", + "\n", + "+-------------------------------------+--------------------------------+\n", + "| in_silico_predictors.cadd.raw_score | in_silico_predictors.revel_max |\n", + "+-------------------------------------+--------------------------------+\n", + "| float32 | float64 |\n", + "+-------------------------------------+--------------------------------+\n", + "| 5.66e+00 | NA |\n", + "| 4.56e+00 | NA |\n", + "| 4.99e+00 | NA |\n", + "| 8.76e+00 | NA |\n", + "| 5.83e+00 | NA |\n", + "+-------------------------------------+--------------------------------+\n", + "\n", + "+--------------------------------------+\n", + "| in_silico_predictors.spliceai_ds_max |\n", + "+--------------------------------------+\n", + "| float32 |\n", + "+--------------------------------------+\n", + "| 9.60e-01 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 9.80e-01 |\n", + "+--------------------------------------+\n", + "\n", + "+------------------------------------------+-----------------------------+\n", + "| in_silico_predictors.pangolin_largest_ds | in_silico_predictors.phylop |\n", + "+------------------------------------------+-----------------------------+\n", + "| float64 | float64 |\n", + "+------------------------------------------+-----------------------------+\n", + "| -8.30e-01 | 6.33e+00 |\n", + "| -4.00e-02 | 8.89e+00 |\n", + "| -1.20e-01 | 3.00e-01 |\n", + "| -1.10e-01 | 8.79e+00 |\n", + "| -7.90e-01 | 6.35e+00 |\n", + "+------------------------------------------+-----------------------------+\n", + "\n", + "+-------------------------------+-----------------------------------+\n", + "| in_silico_predictors.sift_max | in_silico_predictors.polyphen_max |\n", + "+-------------------------------+-----------------------------------+\n", + "| float64 | float64 |\n", + "+-------------------------------+-----------------------------------+\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "+-------------------------------+-----------------------------------+\n", + "showing top 5 rows" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The total number of lof variants passing filters in DRD2 is: 17\n" + ] + } + ], + "source": [ + "var_ht = filter_by_csqs(['lof'], ht=drd2_interval_ht)\n", + "var_ht.show(5)\n", + "print(\"The total number of lof variants passing filters in DRD2 is: \", var_ht.count())" + ] + }, + { + "cell_type": "markdown", + "id": "871c539b-a1c2-41a3-a33d-37649b603de2", + "metadata": {}, + "source": [ + "### Filter to `missense` variants passing filters" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "86596aaf", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
histograms
grpmax
fafmax
info
qual_hists
raw_qual_hists
age_hists
in_silico_predictors
gnomad
non_ukb
gnomad
non_ukb
vrs
vep
vqsr_results
region_flags
allele_info
gq_hist_all
dp_hist_all
gq_hist_alt
dp_hist_alt
ab_hist_alt
gq_hist_all
dp_hist_all
gq_hist_alt
dp_hist_alt
ab_hist_alt
age_hist_het
age_hist_hom
cadd
locus
alleles
freq
AC
AF
AN
homozygote_count
gen_anc
AC
AF
AN
homozygote_count
gen_anc
faf
faf95_max
faf95_max_gen_anc
faf99_max
faf99_max_gen_anc
faf95_max
faf95_max_gen_anc
faf99_max
faf99_max_gen_anc
a_index
was_split
rsid
filters
FS
MQ
MQRankSum
QUALapprox
QD
ReadPosRankSum
SB
SOR
VarDP
AS_FS
AS_MQ
AS_MQRankSum
AS_pab_max
AS_QUALapprox
AS_QD
AS_ReadPosRankSum
AS_SB_TABLE
AS_SOR
AS_VarDP
singleton
transmitted_singleton
sibling_singleton
omni
mills
monoallelic
only_het
AS_VQSLOD
inbreeding_coeff
VRS_Allele_IDs
VRS_Starts
VRS_Ends
VRS_States
allele_string
end
id
input
intergenic_consequences
most_severe_consequence
motif_feature_consequences
regulatory_feature_consequences
seq_region_name
start
strand
transcript_consequences
variant_class
AS_VQSLOD
AS_culprit
positive_train_site
negative_train_site
non_par
lcr
segdup
fail_interval_qc
outside_ukb_capture_region
outside_broad_capture_region
variant_type
n_alt_alleles
has_star
allele_type
was_mixed
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
phred
raw_score
revel_max
spliceai_ds_max
pangolin_largest_ds
phylop
sift_max
polyphen_max
locus<GRCh38>array<str>array<struct{AC: int32, AF: float64, AN: int32, homozygote_count: int64}>int32float64int32int64strint32float64int32int64strarray<struct{faf95: float64, faf99: float64}>float64strfloat64strfloat64strfloat64strint32boolset<str>set<str>float64float64float64int64float64float64array<int32>float64int32float64float64float64float64int64float64float64array<int32>float64int32boolboolboolboolboolboolboolfloat64float64array<str>array<int32>array<int32>array<str>strint32strstrarray<struct{allele_num: int32, consequence_terms: array<str>, impact: str, variant_allele: str}>strarray<struct{allele_num: int32, consequence_terms: array<str>, high_inf_pos: str, impact: str, motif_feature_id: str, motif_name: str, motif_pos: int32, motif_score_change: float64, transcription_factors: array<str>, strand: int32, variant_allele: str}>array<struct{allele_num: int32, biotype: str, consequence_terms: array<str>, impact: str, regulatory_feature_id: str, variant_allele: str}>strint32int32array<struct{allele_num: int32, amino_acids: str, appris: str, biotype: str, canonical: int32, ccds: str, cdna_start: int32, cdna_end: int32, cds_end: int32, cds_start: int32, codons: str, consequence_terms: array<str>, distance: int32, domains: array<struct{db: str, name: str}>, exon: str, flags: str, gene_id: str, gene_pheno: int32, gene_symbol: str, gene_symbol_source: str, hgnc_id: str, hgvsc: str, hgvsp: str, hgvs_offset: int32, impact: str, intron: str, lof: str, lof_flags: str, lof_filter: str, lof_info: str, mane_select: str, mane_plus_clinical: str, mirna: array<str>, protein_end: int32, protein_start: int32, protein_id: str, source: str, strand: int32, transcript_id: str, tsl: int32, uniprot_isoform: array<str>, variant_allele: str}>strfloat64strboolboolboolboolboolboolboolboolstrint32boolstrboolarray<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64float32float32float64float32float64float64float64float64
chr11:113410731["C","A"][(2,1.37e-06,1461866,0),(2,1.37e-06,1461894,0),(0,0.00e+00,33480,0),(2,4.47e-05,44724,0),(0,0.00e+00,26136,0),(0,0.00e+00,39698,0),(0,0.00e+00,53416,0),(0,0.00e+00,5752,0),(0,0.00e+00,1112010,0),(0,0.00e+00,60394,0),(0,0.00e+00,86256,0),(1,1.36e-06,734628,0),(1,1.38e-06,727238,0),(0,0.00e+00,19326,0),(0,0.00e+00,14154,0),(1,3.89e-05,25690,0),(1,5.25e-05,19034,0),(0,0.00e+00,12636,0),(0,0.00e+00,13500,0),(0,0.00e+00,20710,0),(0,0.00e+00,18988,0),(0,0.00e+00,27646,0),(0,0.00e+00,25770,0),(0,0.00e+00,2494,0),(0,0.00e+00,3258,0),(0,0.00e+00,572288,0),(0,0.00e+00,539722,0),(0,0.00e+00,31800,0),(0,0.00e+00,28594,0),(0,0.00e+00,22038,0),(0,0.00e+00,64218,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,996,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,1994,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,3990,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5752,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,19998,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,26136,0),(1,3.83e-05,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26134,0),(0,0.00e+00,26134,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26134,0),(0,0.00e+00,26136,0),(0,0.00e+00,33480,0),(2,5.97e-05,33480,0),(0,0.00e+00,33478,0),(0,0.00e+00,33476,0),(0,0.00e+00,33480,0),(0,0.00e+00,33478,0),(0,0.00e+00,33478,0),(0,0.00e+00,33480,0),(2,5.04e-05,39700,0),(0,0.00e+00,39698,0),(0,0.00e+00,39696,0),(0,0.00e+00,39700,0),(0,0.00e+00,39698,0),(0,0.00e+00,39698,0),(0,0.00e+00,39700,0),(2,5.00e-05,40000,0),(0,0.00e+00,39996,0),(0,0.00e+00,40000,0),(0,0.00e+00,39998,0),(0,0.00e+00,39998,0),(0,0.00e+00,40000,0),(2,4.47e-05,44724,0),(0,0.00e+00,44720,0),(0,0.00e+00,44724,0),(0,0.00e+00,44722,0),(0,0.00e+00,44722,0),(0,0.00e+00,44724,0),(0,0.00e+00,53416,0),(0,0.00e+00,53420,0),(0,0.00e+00,53418,0),(0,0.00e+00,53418,0),(0,0.00e+00,53420,0),(0,0.00e+00,60396,0),(0,0.00e+00,60394,0),(0,0.00e+00,60394,0),(0,0.00e+00,60396,0),(0,0.00e+00,86258,0),(0,0.00e+00,86256,0),(0,0.00e+00,86256,0),(0,0.00e+00,100000,0),(0,0.00e+00,99998,0),(0,0.00e+00,200000,0),(0,0.00e+00,199998,0),(0,0.00e+00,400000,0),(0,0.00e+00,399996,0),(0,0.00e+00,999998,0),(1,1.00e-06,999978,0),(0,0.00e+00,1112010,0),(2,1.80e-06,1111990,0),(2,3.18e-06,628756,0),(2,3.18e-06,628784,0),(0,0.00e+00,17694,0),(2,4.57e-05,43740,0),(0,0.00e+00,20984,0),(0,0.00e+00,36068,0),(0,0.00e+00,53140,0),(0,0.00e+00,4132,0),(0,0.00e+00,350106,0),(0,0.00e+00,33096,0),(0,0.00e+00,69796,0),(1,3.49e-06,286232,0),(1,2.92e-06,342524,0),(0,0.00e+00,10286,0),(0,0.00e+00,7408,0),(1,3.99e-05,25040,0),(1,5.35e-05,18700,0),(0,0.00e+00,9838,0),(0,0.00e+00,11146,0),(0,0.00e+00,18296,0),(0,0.00e+00,17772,0),(0,0.00e+00,27396,0),(0,0.00e+00,25744,0),(0,0.00e+00,1904,0),(0,0.00e+00,2228,0),(0,0.00e+00,162220,0),(0,0.00e+00,187886,0),(0,0.00e+00,16752,0),(0,0.00e+00,16344,0),(0,0.00e+00,14500,0),(0,0.00e+00,55296,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,198,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,996,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,1990,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,3984,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4132,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17692,0),(0,0.00e+00,17694,0),(0,0.00e+00,17692,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(1,5.00e-05,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,19998,0),(0,0.00e+00,20000,0),(0,0.00e+00,19998,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(1,4.77e-05,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20982,0),(0,0.00e+00,20984,0),(0,0.00e+00,20982,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(2,6.04e-05,33098,0),(0,0.00e+00,33096,0),(0,0.00e+00,33094,0),(0,0.00e+00,33098,0),(0,0.00e+00,33096,0),(0,0.00e+00,33096,0),(0,0.00e+00,33096,0),(2,5.54e-05,36070,0),(0,0.00e+00,36068,0),(0,0.00e+00,36066,0),(0,0.00e+00,36070,0),(0,0.00e+00,36068,0),(0,0.00e+00,36068,0),(2,5.00e-05,40000,0),(0,0.00e+00,39996,0),(0,0.00e+00,40000,0),(0,0.00e+00,39998,0),(0,0.00e+00,39998,0),(2,4.57e-05,43740,0),(0,0.00e+00,43736,0),(0,0.00e+00,43740,0),(0,0.00e+00,43738,0),(0,0.00e+00,43738,0),(0,0.00e+00,53140,0),(0,0.00e+00,53144,0),(0,0.00e+00,53142,0),(0,0.00e+00,53142,0),(0,0.00e+00,69798,0),(0,0.00e+00,69796,0),(0,0.00e+00,69796,0),(0,0.00e+00,100000,0),(0,0.00e+00,99996,0),(0,0.00e+00,199998,0),(0,0.00e+00,199990,0),(0,0.00e+00,350106,0),(1,2.86e-06,350088,0),(1,2.50e-06,399978,0)]24.47e-05447240"amr"24.57e-05437400"amr"[(2.30e-07,9.00e-08),(0.00e+00,0.00e+00),(7.41e-06,2.77e-06),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,(5.30e-07,2.00e-07),(0.00e+00,0.00e+00),(7.58e-06,2.84e-06),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]7.41e-06"amr"2.77e-06"amr"7.58e-06"amr"2.84e-06"amr"1True{"rs140938110"}{}5.56e+006.00e+010.00e+0038621.02e+01-1.98e-01[134,83,109,52]9.81e-013781.31e+016.00e+010.00e+002.94e-0118951.06e+012.52e-01[134,83,56,19]1.42e+00179FalseNANAFalseFalseFalseFalse5.27e+00-1.37e-06["ga4gh:VA.RY2FNHeS0QpJNM9lQpQ_pzX7Q27-MXmI","ga4gh:VA.ZonDIhdwyghm7SuWkXynZVYg2s9ceaeP"][113410730,113410730][113410731,113410731]["C","A"]"C/A"113410731".""chr11\t113410731\t.\tC\tA\t.\t.\tGT"NA"missense_variant"NANA"chr11"1134107311[(1,"C/F",NA,"protein_coding",NA,"CCDS8362.1",1317,1317,1241,1241,"tGc/tTc",["missense_variant"],NA,[("Gene3D","1"),("Superfamily","SSF81321")],"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000346454.7:c.1241G>T","ENSP00000278597.5:p.Cys414Phe",NA,"MODERATE",NA,NA,NA,NA,NA,NA,NA,NA,414,414,"ENSP00000278597","Ensembl",-1,"ENST00000346454",1,["P14416-2"],"A"),(1,"C/F","P2","protein_coding",1,"CCDS8361.1",1682,1682,1328,1328,"tGc/tTc",["missense_variant"],NA,[("Gene3D","1"),("ENSP_mappings","5aer"),("ENSP_mappings","5aer"),("ENSP_mappings","6cm4"),("ENSP_mappings","6luq"),("ENSP_mappings","6vms"),("ENSP_mappings","7dfp"),("ENSP_mappings","7jvr"),("Superfamily","SSF81321")],"8/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000362072.8:c.1328G>T","ENSP00000354859.3:p.Cys443Phe",NA,"MODERATE",NA,NA,NA,NA,NA,"NM_000795.4",NA,NA,443,443,"ENSP00000354859","Ensembl",-1,"ENST00000362072",1,["P14416-1"],"A"),(1,NA,NA,"processed_transcript",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],3644,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000535984",3,NA,"A"),(1,"C/F","A1","protein_coding",NA,NA,1334,1334,1334,1334,"tGc/tTc",["missense_variant"],NA,[("Gene3D","1"),("Superfamily","SSF81321")],"8/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000538967.5:c.1334G>T","ENSP00000438215.1:p.Cys445Phe",NA,"MODERATE",NA,NA,NA,NA,NA,NA,NA,NA,445,445,"ENSP00000438215","Ensembl",-1,"ENST00000538967",5,["P14416-3"],"A"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],4563,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000539420",3,NA,"A"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],3133,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000540600",1,NA,"A"),(1,"C/F","P2","protein_coding",NA,"CCDS8361.1",1649,1649,1328,1328,"tGc/tTc",["missense_variant"],NA,[("Gene3D","1"),("ENSP_mappings","5aer"),("ENSP_mappings","5aer"),("ENSP_mappings","6cm4"),("ENSP_mappings","6luq"),("ENSP_mappings","6vms"),("ENSP_mappings","7dfp"),("ENSP_mappings","7jvr"),("Superfamily","SSF81321")],"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000542968.5:c.1328G>T","ENSP00000442172.1:p.Cys443Phe",NA,"MODERATE",NA,NA,NA,NA,NA,NA,NA,NA,443,443,"ENSP00000442172","Ensembl",-1,"ENST00000542968",1,["P14416-1"],"A"),(1,"C/F","A1","protein_coding",NA,NA,1358,1358,1325,1325,"tGc/tTc",["missense_variant"],NA,[("Gene3D","1"),("Superfamily","SSF81321")],"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000544518.5:c.1325G>T","ENSP00000441068.1:p.Cys442Phe",NA,"MODERATE",NA,NA,NA,NA,NA,NA,NA,NA,442,442,"ENSP00000441068","Ensembl",-1,"ENST00000544518",1,NA,"A"),(1,NA,NA,"lncRNA",1,NA,NA,NA,NA,NA,NA,["intron_variant","non_coding_transcript_variant"],NA,NA,NA,NA,"ENSG00000256757",NA,NA,NA,NA,"ENST00000546284.1:n.245-816C>A",NA,NA,"MODIFIER","2/3",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",1,"ENST00000546284",3,NA,"A"),(1,"C/F",NA,"protein_coding",1,NA,1682,1682,1328,1328,"tGc/tTc",["missense_variant"],NA,NA,"8/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_000795.4:c.1328G>T","NP_000786.1:p.Cys443Phe",NA,"MODERATE",NA,NA,NA,NA,NA,"ENST00000362072.8",NA,NA,443,443,"NP_000786.1","RefSeq",-1,"NM_000795.4",NA,NA,"A"),(1,"C/F",NA,"protein_coding",NA,NA,1595,1595,1241,1241,"tGc/tTc",["missense_variant"],NA,NA,"7/7",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_016574.4:c.1241G>T","NP_057658.2:p.Cys414Phe",NA,"MODERATE",NA,NA,NA,NA,NA,NA,NA,NA,414,414,"NP_057658.2","RefSeq",-1,"NM_016574.4",NA,NA,"A"),(1,"C/F",NA,"protein_coding",NA,NA,1410,1410,1328,1328,"tGc/tTc",["missense_variant"],NA,NA,"8/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","XM_017017296.2:c.1328G>T","XP_016872785.1:p.Cys443Phe",NA,"MODERATE",NA,NA,NA,NA,NA,NA,NA,NA,443,443,"XP_016872785.1","RefSeq",-1,"XM_017017296.2",NA,NA,"A")]"SNV"5.27e+00"AS_MQ"FalseFalseFalseFalseFalseTrueFalseFalse"multi-snv"2False"snv"False[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,21,0,124,0,314262,0,99,0,416424,0,0,0,0,0,0,3]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,98,374,11344,107362,344923,189028,36319,5607,2388,2759,3074,2931,2955,2915,2973,2922,2564,2682]07715[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0]01[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][7,0,0,0,28,0,124,0,314262,0,99,0,416424,0,0,0,0,0,0,3]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,7,98,380,11345,107362,344923,189028,36319,5607,2388,2759,3074,2931,2955,2915,2973,2922,2564,2682]07715[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0]01[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]10[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]002.77e+014.10e+006.02e-010.00e+000.00e+008.78e+000.00e+009.89e-01
chr11:113410731["C","T"][(1,6.84e-07,1461866,0),(1,6.84e-07,1461894,0),(0,0.00e+00,33480,0),(0,0.00e+00,44724,0),(0,0.00e+00,26136,0),(0,0.00e+00,39698,0),(0,0.00e+00,53416,0),(0,0.00e+00,5752,0),(1,8.99e-07,1112010,0),(0,0.00e+00,60394,0),(0,0.00e+00,86256,0),(1,1.36e-06,734628,0),(0,0.00e+00,727238,0),(0,0.00e+00,19326,0),(0,0.00e+00,14154,0),(0,0.00e+00,25690,0),(0,0.00e+00,19034,0),(0,0.00e+00,12636,0),(0,0.00e+00,13500,0),(0,0.00e+00,20710,0),(0,0.00e+00,18988,0),(0,0.00e+00,27646,0),(0,0.00e+00,25770,0),(0,0.00e+00,2494,0),(0,0.00e+00,3258,0),(1,1.75e-06,572288,0),(0,0.00e+00,539722,0),(0,0.00e+00,31800,0),(0,0.00e+00,28594,0),(0,0.00e+00,22038,0),(0,0.00e+00,64218,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,996,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,1994,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,3990,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5752,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,19998,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26134,0),(0,0.00e+00,26134,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26134,0),(0,0.00e+00,26136,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33478,0),(0,0.00e+00,33476,0),(0,0.00e+00,33480,0),(0,0.00e+00,33478,0),(0,0.00e+00,33478,0),(0,0.00e+00,33480,0),(0,0.00e+00,39700,0),(0,0.00e+00,39698,0),(0,0.00e+00,39696,0),(0,0.00e+00,39700,0),(0,0.00e+00,39698,0),(0,0.00e+00,39698,0),(0,0.00e+00,39700,0),(0,0.00e+00,40000,0),(0,0.00e+00,39996,0),(0,0.00e+00,40000,0),(0,0.00e+00,39998,0),(0,0.00e+00,39998,0),(0,0.00e+00,40000,0),(0,0.00e+00,44724,0),(0,0.00e+00,44720,0),(0,0.00e+00,44724,0),(0,0.00e+00,44722,0),(0,0.00e+00,44722,0),(0,0.00e+00,44724,0),(0,0.00e+00,53416,0),(0,0.00e+00,53420,0),(0,0.00e+00,53418,0),(0,0.00e+00,53418,0),(0,0.00e+00,53420,0),(0,0.00e+00,60396,0),(0,0.00e+00,60394,0),(0,0.00e+00,60394,0),(0,0.00e+00,60396,0),(0,0.00e+00,86258,0),(0,0.00e+00,86256,0),(0,0.00e+00,86256,0),(0,0.00e+00,100000,0),(0,0.00e+00,99998,0),(0,0.00e+00,200000,0),(0,0.00e+00,199998,0),(0,0.00e+00,400000,0),(0,0.00e+00,399996,0),(1,1.00e-06,999998,0),(0,0.00e+00,999978,0),(1,8.99e-07,1112010,0),(1,8.99e-07,1111990,0),(0,0.00e+00,628756,0),(0,0.00e+00,628784,0),(0,0.00e+00,17694,0),(0,0.00e+00,43740,0),(0,0.00e+00,20984,0),(0,0.00e+00,36068,0),(0,0.00e+00,53140,0),(0,0.00e+00,4132,0),(0,0.00e+00,350106,0),(0,0.00e+00,33096,0),(0,0.00e+00,69796,0),(0,0.00e+00,286232,0),(0,0.00e+00,342524,0),(0,0.00e+00,10286,0),(0,0.00e+00,7408,0),(0,0.00e+00,25040,0),(0,0.00e+00,18700,0),(0,0.00e+00,9838,0),(0,0.00e+00,11146,0),(0,0.00e+00,18296,0),(0,0.00e+00,17772,0),(0,0.00e+00,27396,0),(0,0.00e+00,25744,0),(0,0.00e+00,1904,0),(0,0.00e+00,2228,0),(0,0.00e+00,162220,0),(0,0.00e+00,187886,0),(0,0.00e+00,16752,0),(0,0.00e+00,16344,0),(0,0.00e+00,14500,0),(0,0.00e+00,55296,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,198,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,996,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,1990,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,3984,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4132,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17692,0),(0,0.00e+00,17694,0),(0,0.00e+00,17692,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,19998,0),(0,0.00e+00,20000,0),(0,0.00e+00,19998,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20982,0),(0,0.00e+00,20984,0),(0,0.00e+00,20982,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,33098,0),(0,0.00e+00,33096,0),(0,0.00e+00,33094,0),(0,0.00e+00,33098,0),(0,0.00e+00,33096,0),(0,0.00e+00,33096,0),(0,0.00e+00,33096,0),(0,0.00e+00,36070,0),(0,0.00e+00,36068,0),(0,0.00e+00,36066,0),(0,0.00e+00,36070,0),(0,0.00e+00,36068,0),(0,0.00e+00,36068,0),(0,0.00e+00,40000,0),(0,0.00e+00,39996,0),(0,0.00e+00,40000,0),(0,0.00e+00,39998,0),(0,0.00e+00,39998,0),(0,0.00e+00,43740,0),(0,0.00e+00,43736,0),(0,0.00e+00,43740,0),(0,0.00e+00,43738,0),(0,0.00e+00,43738,0),(0,0.00e+00,53140,0),(0,0.00e+00,53144,0),(0,0.00e+00,53142,0),(0,0.00e+00,53142,0),(0,0.00e+00,69798,0),(0,0.00e+00,69796,0),(0,0.00e+00,69796,0),(0,0.00e+00,100000,0),(0,0.00e+00,99996,0),(0,0.00e+00,199998,0),(0,0.00e+00,199990,0),(0,0.00e+00,350106,0),(0,0.00e+00,350088,0),(0,0.00e+00,399978,0)]18.99e-0711120100"nfe"NANANANANA[(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]NANANANANANANANA2TrueNA{}5.56e+006.00e+010.00e+0038621.02e+01-1.98e-01[134,83,109,52]9.81e-013780.00e+006.00e+010.00e+009.04e-0119679.88e+00-5.01e-01[134,83,53,33]6.81e-01199TrueFalseFalseFalseFalseFalseFalse5.40e+00-6.84e-07["ga4gh:VA.RY2FNHeS0QpJNM9lQpQ_pzX7Q27-MXmI","ga4gh:VA.Hp20SlFHUdM7jlWmVV27L6utrtRpDmAq"][113410730,113410730][113410731,113410731]["C","T"]"C/T"113410731".""chr11\t113410731\t.\tC\tT\t.\t.\tGT"NA"missense_variant"NANA"chr11"1134107311[(1,"C/Y",NA,"protein_coding",NA,"CCDS8362.1",1317,1317,1241,1241,"tGc/tAc",["missense_variant"],NA,[("Gene3D","1"),("Superfamily","SSF81321")],"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000346454.7:c.1241G>A","ENSP00000278597.5:p.Cys414Tyr",NA,"MODERATE",NA,NA,NA,NA,NA,NA,NA,NA,414,414,"ENSP00000278597","Ensembl",-1,"ENST00000346454",1,["P14416-2"],"T"),(1,"C/Y","P2","protein_coding",1,"CCDS8361.1",1682,1682,1328,1328,"tGc/tAc",["missense_variant"],NA,[("Gene3D","1"),("ENSP_mappings","5aer"),("ENSP_mappings","5aer"),("ENSP_mappings","6cm4"),("ENSP_mappings","6luq"),("ENSP_mappings","6vms"),("ENSP_mappings","7dfp"),("ENSP_mappings","7jvr"),("Superfamily","SSF81321")],"8/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000362072.8:c.1328G>A","ENSP00000354859.3:p.Cys443Tyr",NA,"MODERATE",NA,NA,NA,NA,NA,"NM_000795.4",NA,NA,443,443,"ENSP00000354859","Ensembl",-1,"ENST00000362072",1,["P14416-1"],"T"),(1,NA,NA,"processed_transcript",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],3644,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000535984",3,NA,"T"),(1,"C/Y","A1","protein_coding",NA,NA,1334,1334,1334,1334,"tGc/tAc",["missense_variant"],NA,[("Gene3D","1"),("Superfamily","SSF81321")],"8/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000538967.5:c.1334G>A","ENSP00000438215.1:p.Cys445Tyr",NA,"MODERATE",NA,NA,NA,NA,NA,NA,NA,NA,445,445,"ENSP00000438215","Ensembl",-1,"ENST00000538967",5,["P14416-3"],"T"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],4563,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000539420",3,NA,"T"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],3133,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000540600",1,NA,"T"),(1,"C/Y","P2","protein_coding",NA,"CCDS8361.1",1649,1649,1328,1328,"tGc/tAc",["missense_variant"],NA,[("Gene3D","1"),("ENSP_mappings","5aer"),("ENSP_mappings","5aer"),("ENSP_mappings","6cm4"),("ENSP_mappings","6luq"),("ENSP_mappings","6vms"),("ENSP_mappings","7dfp"),("ENSP_mappings","7jvr"),("Superfamily","SSF81321")],"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000542968.5:c.1328G>A","ENSP00000442172.1:p.Cys443Tyr",NA,"MODERATE",NA,NA,NA,NA,NA,NA,NA,NA,443,443,"ENSP00000442172","Ensembl",-1,"ENST00000542968",1,["P14416-1"],"T"),(1,"C/Y","A1","protein_coding",NA,NA,1358,1358,1325,1325,"tGc/tAc",["missense_variant"],NA,[("Gene3D","1"),("Superfamily","SSF81321")],"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000544518.5:c.1325G>A","ENSP00000441068.1:p.Cys442Tyr",NA,"MODERATE",NA,NA,NA,NA,NA,NA,NA,NA,442,442,"ENSP00000441068","Ensembl",-1,"ENST00000544518",1,NA,"T"),(1,NA,NA,"lncRNA",1,NA,NA,NA,NA,NA,NA,["intron_variant","non_coding_transcript_variant"],NA,NA,NA,NA,"ENSG00000256757",NA,NA,NA,NA,"ENST00000546284.1:n.245-816C>T",NA,NA,"MODIFIER","2/3",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",1,"ENST00000546284",3,NA,"T"),(1,"C/Y",NA,"protein_coding",1,NA,1682,1682,1328,1328,"tGc/tAc",["missense_variant"],NA,NA,"8/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_000795.4:c.1328G>A","NP_000786.1:p.Cys443Tyr",NA,"MODERATE",NA,NA,NA,NA,NA,"ENST00000362072.8",NA,NA,443,443,"NP_000786.1","RefSeq",-1,"NM_000795.4",NA,NA,"T"),(1,"C/Y",NA,"protein_coding",NA,NA,1595,1595,1241,1241,"tGc/tAc",["missense_variant"],NA,NA,"7/7",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_016574.4:c.1241G>A","NP_057658.2:p.Cys414Tyr",NA,"MODERATE",NA,NA,NA,NA,NA,NA,NA,NA,414,414,"NP_057658.2","RefSeq",-1,"NM_016574.4",NA,NA,"T"),(1,"C/Y",NA,"protein_coding",NA,NA,1410,1410,1328,1328,"tGc/tAc",["missense_variant"],NA,NA,"8/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","XM_017017296.2:c.1328G>A","XP_016872785.1:p.Cys443Tyr",NA,"MODERATE",NA,NA,NA,NA,NA,NA,NA,NA,443,443,"XP_016872785.1","RefSeq",-1,"XM_017017296.2",NA,NA,"T")]"SNV"5.40e+00"AS_MQ"FalseFalseFalseFalseFalseTrueFalseFalse"multi-snv"2False"snv"False[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,21,0,124,0,314262,0,99,0,416424,0,0,0,0,0,0,3]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,98,374,11344,107362,344923,189028,36319,5607,2388,2759,3074,2931,2955,2915,2973,2922,2564,2682]07715[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][7,0,0,0,28,0,124,0,314262,0,99,0,416424,0,0,0,0,0,0,3]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,7,98,380,11345,107362,344923,189028,36319,5607,2388,2759,3074,2931,2955,2915,2973,2922,2564,2682]07715[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,1,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]002.75e+014.07e+007.19e-010.00e+002.00e-028.78e+000.00e+009.89e-01
chr11:113410735["G","A"][(75,5.13e-05,1461876,0),(75,5.13e-05,1461894,0),(0,0.00e+00,33480,0),(0,0.00e+00,44724,0),(58,2.22e-03,26136,0),(0,0.00e+00,39700,0),(0,0.00e+00,53418,0),(0,0.00e+00,5762,0),(8,7.19e-06,1112004,0),(9,1.49e-04,60396,0),(0,0.00e+00,86256,0),(39,5.31e-05,734640,0),(36,4.95e-05,727236,0),(0,0.00e+00,19326,0),(0,0.00e+00,14154,0),(0,0.00e+00,25690,0),(0,0.00e+00,19034,0),(29,2.30e-03,12636,0),(29,2.15e-03,13500,0),(0,0.00e+00,20712,0),(0,0.00e+00,18988,0),(0,0.00e+00,27648,0),(0,0.00e+00,25770,0),(0,0.00e+00,2504,0),(0,0.00e+00,3258,0),(5,8.74e-06,572286,0),(3,5.56e-06,539718,0),(5,1.57e-04,31800,0),(4,1.40e-04,28596,0),(0,0.00e+00,22038,0),(0,0.00e+00,64218,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,18,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,198,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(1,1.00e-03,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,998,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(4,2.00e-03,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,1998,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(7,1.75e-03,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,3996,0),(0,0.00e+00,4000,0),(1,2.50e-04,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,3998,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(11,1.91e-03,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5762,0),(0,0.00e+00,5768,0),(1,1.73e-04,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5766,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(22,2.20e-03,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(2,2.00e-04,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,9998,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(46,2.30e-03,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(3,1.50e-04,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,19998,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(58,2.22e-03,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(3,1.15e-04,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26134,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(6,1.79e-04,33480,0),(0,0.00e+00,33480,0),(1,2.99e-05,33478,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(7,1.76e-04,39700,0),(0,0.00e+00,39700,0),(1,2.52e-05,39698,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(7,1.75e-04,40000,0),(0,0.00e+00,39998,0),(1,2.50e-05,39998,0),(0,0.00e+00,44724,0),(0,0.00e+00,44722,0),(0,0.00e+00,44724,0),(7,1.57e-04,44724,0),(0,0.00e+00,44722,0),(1,2.24e-05,44722,0),(0,0.00e+00,53418,0),(0,0.00e+00,53420,0),(9,1.68e-04,53420,0),(0,0.00e+00,53418,0),(1,1.87e-05,53418,0),(0,0.00e+00,60396,0),(9,1.49e-04,60396,0),(0,0.00e+00,60394,0),(2,3.31e-05,60394,0),(0,0.00e+00,86258,0),(0,0.00e+00,86256,0),(4,4.64e-05,86256,0),(0,0.00e+00,100000,0),(5,5.00e-05,99998,0),(0,0.00e+00,200000,0),(9,4.50e-05,199998,0),(3,7.50e-06,399998,0),(21,5.25e-05,399998,0),(6,6.00e-06,999994,0),(50,5.00e-05,999992,0),(8,7.19e-06,1112004,0),(58,5.22e-05,1112000,0),(60,9.54e-05,628768,0),(60,9.54e-05,628784,0),(0,0.00e+00,17694,0),(0,0.00e+00,43740,0),(50,2.38e-03,20984,0),(0,0.00e+00,36070,0),(0,0.00e+00,53142,0),(0,0.00e+00,4142,0),(2,5.71e-06,350102,0),(8,2.42e-04,33098,0),(0,0.00e+00,69796,0),(30,1.05e-04,286244,0),(30,8.76e-05,342524,0),(0,0.00e+00,10286,0),(0,0.00e+00,7408,0),(0,0.00e+00,25040,0),(0,0.00e+00,18700,0),(24,2.44e-03,9838,0),(26,2.33e-03,11146,0),(0,0.00e+00,18298,0),(0,0.00e+00,17772,0),(0,0.00e+00,27398,0),(0,0.00e+00,25744,0),(0,0.00e+00,1914,0),(0,0.00e+00,2228,0),(2,1.23e-05,162218,0),(0,0.00e+00,187884,0),(4,2.39e-04,16752,0),(4,2.45e-04,16346,0),(0,0.00e+00,14500,0),(0,0.00e+00,55296,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,18,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,198,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(1,1.00e-03,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,998,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(4,2.00e-03,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,1998,0),(0,0.00e+00,2000,0),(1,5.00e-04,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,1998,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(6,1.50e-03,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,3994,0),(0,0.00e+00,4000,0),(2,5.00e-04,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,3998,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(7,1.69e-03,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4142,0),(0,0.00e+00,4148,0),(2,4.82e-04,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4146,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(19,1.90e-03,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(3,3.00e-04,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,9998,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(42,2.37e-03,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(6,3.39e-04,17694,0),(0,0.00e+00,17694,0),(1,5.65e-05,17692,0),(0,0.00e+00,20000,0),(49,2.45e-03,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(6,3.00e-04,20000,0),(0,0.00e+00,20000,0),(1,5.00e-05,19998,0),(0,0.00e+00,20984,0),(50,2.38e-03,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(6,2.86e-04,20984,0),(0,0.00e+00,20984,0),(1,4.77e-05,20982,0),(0,0.00e+00,33098,0),(0,0.00e+00,33098,0),(0,0.00e+00,33098,0),(0,0.00e+00,33098,0),(8,2.42e-04,33098,0),(0,0.00e+00,33096,0),(3,9.06e-05,33096,0),(0,0.00e+00,36070,0),(0,0.00e+00,36070,0),(0,0.00e+00,36070,0),(0,0.00e+00,36070,0),(0,0.00e+00,36068,0),(4,1.11e-04,36068,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,39998,0),(5,1.25e-04,39998,0),(0,0.00e+00,43740,0),(0,0.00e+00,43738,0),(0,0.00e+00,43740,0),(0,0.00e+00,43738,0),(5,1.14e-04,43738,0),(0,0.00e+00,53142,0),(0,0.00e+00,53144,0),(0,0.00e+00,53142,0),(5,9.41e-05,53142,0),(0,0.00e+00,69798,0),(0,0.00e+00,69796,0),(6,8.60e-05,69796,0),(1,1.00e-05,100000,0),(8,8.00e-05,99998,0),(1,5.00e-06,199998,0),(21,1.05e-04,199998,0),(2,5.71e-06,350102,0),(31,8.85e-05,350102,0),(37,9.25e-05,399992,0)]87.19e-0611120040"nfe"25.71e-063501020"nfe"[(4.19e-05,3.82e-05),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(3.09e-06,2.24e-06),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,(7.54e-05,6.91e-05),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(9.50e-07,3.60e-07),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]3.09e-06"nfe"2.24e-06"nfe"9.50e-07"nfe"3.60e-07"nfe"1True{"rs201801648"}{}0.00e+006.00e+010.00e+001275011.23e+013.70e-02[3240,2211,2993,1962]7.34e-01104040.00e+006.00e+010.00e+001.00e+001274801.23e+011.60e-02[3240,2211,2991,1961]7.34e-0110383FalseNANAFalseFalseFalseFalse8.85e+00-5.13e-05["ga4gh:VA.SBSoboxxiC0V-mhjjHg2geRlf3I0Ib2d","ga4gh:VA.GzUD_86k_EDbtk-R58BTRVazmjZW2O1U"][113410734,113410734][113410735,113410735]["G","A"]"G/A"113410735".""chr11\t113410735\t.\tG\tA\t.\t.\tGT"NA"missense_variant"NANA"chr11"1134107351[(1,"H/Y",NA,"protein_coding",NA,"CCDS8362.1",1313,1313,1237,1237,"Cac/Tac",["missense_variant"],NA,[("Gene3D","1"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("Superfamily","SSF81321")],"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000346454.7:c.1237C>T","ENSP00000278597.5:p.His413Tyr",NA,"MODERATE",NA,NA,NA,NA,NA,NA,NA,NA,413,413,"ENSP00000278597","Ensembl",-1,"ENST00000346454",1,["P14416-2"],"A"),(1,"H/Y","P2","protein_coding",1,"CCDS8361.1",1678,1678,1324,1324,"Cac/Tac",["missense_variant"],NA,[("Gene3D","1"),("ENSP_mappings","5aer"),("ENSP_mappings","5aer"),("ENSP_mappings","6cm4"),("ENSP_mappings","6luq"),("ENSP_mappings","6vms"),("ENSP_mappings","7dfp"),("ENSP_mappings","7jvr"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("Superfamily","SSF81321")],"8/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000362072.8:c.1324C>T","ENSP00000354859.3:p.His442Tyr",NA,"MODERATE",NA,NA,NA,NA,NA,"NM_000795.4",NA,NA,442,442,"ENSP00000354859","Ensembl",-1,"ENST00000362072",1,["P14416-1"],"A"),(1,NA,NA,"processed_transcript",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],3640,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000535984",3,NA,"A"),(1,"H/Y","A1","protein_coding",NA,NA,1330,1330,1330,1330,"Cac/Tac",["missense_variant"],NA,[("Gene3D","1"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("Superfamily","SSF81321")],"8/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000538967.5:c.1330C>T","ENSP00000438215.1:p.His444Tyr",NA,"MODERATE",NA,NA,NA,NA,NA,NA,NA,NA,444,444,"ENSP00000438215","Ensembl",-1,"ENST00000538967",5,["P14416-3"],"A"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],4559,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000539420",3,NA,"A"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],3129,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000540600",1,NA,"A"),(1,"H/Y","P2","protein_coding",NA,"CCDS8361.1",1645,1645,1324,1324,"Cac/Tac",["missense_variant"],NA,[("Gene3D","1"),("ENSP_mappings","5aer"),("ENSP_mappings","5aer"),("ENSP_mappings","6cm4"),("ENSP_mappings","6luq"),("ENSP_mappings","6vms"),("ENSP_mappings","7dfp"),("ENSP_mappings","7jvr"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("Superfamily","SSF81321")],"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000542968.5:c.1324C>T","ENSP00000442172.1:p.His442Tyr",NA,"MODERATE",NA,NA,NA,NA,NA,NA,NA,NA,442,442,"ENSP00000442172","Ensembl",-1,"ENST00000542968",1,["P14416-1"],"A"),(1,"H/Y","A1","protein_coding",NA,NA,1354,1354,1321,1321,"Cac/Tac",["missense_variant"],NA,[("Gene3D","1"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("Superfamily","SSF81321")],"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000544518.5:c.1321C>T","ENSP00000441068.1:p.His441Tyr",NA,"MODERATE",NA,NA,NA,NA,NA,NA,NA,NA,441,441,"ENSP00000441068","Ensembl",-1,"ENST00000544518",1,NA,"A"),(1,NA,NA,"lncRNA",1,NA,NA,NA,NA,NA,NA,["intron_variant","non_coding_transcript_variant"],NA,NA,NA,NA,"ENSG00000256757",NA,NA,NA,NA,"ENST00000546284.1:n.245-812G>A",NA,NA,"MODIFIER","2/3",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",1,"ENST00000546284",3,NA,"A"),(1,"H/Y",NA,"protein_coding",1,NA,1678,1678,1324,1324,"Cac/Tac",["missense_variant"],NA,NA,"8/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_000795.4:c.1324C>T","NP_000786.1:p.His442Tyr",NA,"MODERATE",NA,NA,NA,NA,NA,"ENST00000362072.8",NA,NA,442,442,"NP_000786.1","RefSeq",-1,"NM_000795.4",NA,NA,"A"),(1,"H/Y",NA,"protein_coding",NA,NA,1591,1591,1237,1237,"Cac/Tac",["missense_variant"],NA,NA,"7/7",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_016574.4:c.1237C>T","NP_057658.2:p.His413Tyr",NA,"MODERATE",NA,NA,NA,NA,NA,NA,NA,NA,413,413,"NP_057658.2","RefSeq",-1,"NM_016574.4",NA,NA,"A"),(1,"H/Y",NA,"protein_coding",NA,NA,1406,1406,1324,1324,"Cac/Tac",["missense_variant"],NA,NA,"8/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","XM_017017296.2:c.1324C>T","XP_016872785.1:p.His442Tyr",NA,"MODERATE",NA,NA,NA,NA,NA,NA,NA,NA,442,442,"XP_016872785.1","RefSeq",-1,"XM_017017296.2",NA,NA,"A")]"SNV"8.85e+00"AS_MQ"FalseFalseFalseFalseFalseTrueFalseFalse"multi-snv"2False"snv"False[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,12,0,76,0,314251,0,32,0,416492,0,0,0,0,0,0,75]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,65,332,11308,107353,344982,189073,36327,5607,2387,2756,3080,2935,2956,2918,2972,2924,2564,2682]07717[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,75]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,1,2,3,4,7,3,7,5,1,4,1,3,0,2]032[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,1,1,6,12,25,24,5,1,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][6,0,1,0,14,0,76,0,314251,0,32,0,416492,0,0,0,0,0,0,75]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,2,67,335,11310,107353,344982,189073,36327,5607,2387,2756,3080,2935,2956,2918,2972,2924,2564,2682]07717[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,75]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,1,2,3,4,7,3,7,5,1,4,1,3,0,2]032[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,1,1,6,12,25,24,5,1,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][1,0,0,2,3,3,8,4,0,0]31[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]002.28e+012.69e+002.67e-010.00e+001.00e-028.67e+001.30e-011.18e-01
chr11:113410738["G","T"][(2,1.37e-06,1461886,0),(2,1.37e-06,1461894,0),(0,0.00e+00,33480,0),(0,0.00e+00,44724,0),(0,0.00e+00,26136,0),(2,5.04e-05,39700,0),(0,0.00e+00,53420,0),(0,0.00e+00,5764,0),(0,0.00e+00,1112008,0),(0,0.00e+00,60396,0),(0,0.00e+00,86258,0),(0,0.00e+00,734644,0),(2,2.75e-06,727242,0),(0,0.00e+00,19326,0),(0,0.00e+00,14154,0),(0,0.00e+00,25690,0),(0,0.00e+00,19034,0),(0,0.00e+00,12636,0),(0,0.00e+00,13500,0),(0,0.00e+00,20712,0),(2,1.05e-04,18988,0),(0,0.00e+00,27648,0),(0,0.00e+00,25772,0),(0,0.00e+00,2506,0),(0,0.00e+00,3258,0),(0,0.00e+00,572286,0),(0,0.00e+00,539722,0),(0,0.00e+00,31800,0),(0,0.00e+00,28596,0),(0,0.00e+00,22040,0),(0,0.00e+00,64218,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,3998,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5764,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(1,5.00e-05,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(1,3.83e-05,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(2,5.97e-05,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,39700,0),(2,5.04e-05,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,44724,0),(0,0.00e+00,44724,0),(0,0.00e+00,44724,0),(0,0.00e+00,44724,0),(0,0.00e+00,44724,0),(0,0.00e+00,44724,0),(0,0.00e+00,53420,0),(0,0.00e+00,53420,0),(0,0.00e+00,53420,0),(0,0.00e+00,53420,0),(0,0.00e+00,53420,0),(0,0.00e+00,60396,0),(0,0.00e+00,60396,0),(0,0.00e+00,60396,0),(0,0.00e+00,60396,0),(0,0.00e+00,86258,0),(0,0.00e+00,86258,0),(0,0.00e+00,86258,0),(0,0.00e+00,100000,0),(0,0.00e+00,100000,0),(0,0.00e+00,200000,0),(0,0.00e+00,200000,0),(0,0.00e+00,400000,0),(0,0.00e+00,400000,0),(0,0.00e+00,999998,0),(1,1.00e-06,999998,0),(0,0.00e+00,1112008,0),(2,1.80e-06,1112008,0),(1,1.59e-06,628776,0),(1,1.59e-06,628784,0),(0,0.00e+00,17694,0),(0,0.00e+00,43740,0),(0,0.00e+00,20984,0),(1,2.77e-05,36070,0),(0,0.00e+00,53144,0),(0,0.00e+00,4144,0),(0,0.00e+00,350104,0),(0,0.00e+00,33098,0),(0,0.00e+00,69798,0),(0,0.00e+00,286248,0),(1,2.92e-06,342528,0),(0,0.00e+00,10286,0),(0,0.00e+00,7408,0),(0,0.00e+00,25040,0),(0,0.00e+00,18700,0),(0,0.00e+00,9838,0),(0,0.00e+00,11146,0),(0,0.00e+00,18298,0),(1,5.63e-05,17772,0),(0,0.00e+00,27398,0),(0,0.00e+00,25746,0),(0,0.00e+00,1916,0),(0,0.00e+00,2228,0),(0,0.00e+00,162218,0),(0,0.00e+00,187886,0),(0,0.00e+00,16752,0),(0,0.00e+00,16346,0),(0,0.00e+00,14502,0),(0,0.00e+00,55296,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,3996,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4144,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,33098,0),(1,3.02e-05,33098,0),(0,0.00e+00,33098,0),(0,0.00e+00,33098,0),(0,0.00e+00,33098,0),(0,0.00e+00,33098,0),(0,0.00e+00,33098,0),(0,0.00e+00,36070,0),(1,2.77e-05,36070,0),(0,0.00e+00,36070,0),(0,0.00e+00,36070,0),(0,0.00e+00,36070,0),(0,0.00e+00,36070,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,43740,0),(0,0.00e+00,43740,0),(0,0.00e+00,43740,0),(0,0.00e+00,43740,0),(0,0.00e+00,43740,0),(0,0.00e+00,53144,0),(0,0.00e+00,53144,0),(0,0.00e+00,53144,0),(0,0.00e+00,53144,0),(0,0.00e+00,69798,0),(0,0.00e+00,69798,0),(0,0.00e+00,69798,0),(0,0.00e+00,100000,0),(0,0.00e+00,100000,0),(0,0.00e+00,199998,0),(0,0.00e+00,200000,0),(0,0.00e+00,350104,0),(0,0.00e+00,350106,0),(0,0.00e+00,399998,0)]25.04e-05397000"eas"12.77e-05360700"eas"[(2.30e-07,9.00e-08),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(8.35e-06,3.12e-06),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]8.35e-06"eas"3.12e-06"eas"NANANANA1False{"rs1223741945"}{}1.38e+016.00e+010.00e+0032531.30e+01-1.33e+00[63,66,76,46]1.28e+002511.38e+016.00e+010.00e+001.00e+0032531.30e+01-1.33e+00[63,66,76,46]1.28e+00251FalseNANAFalseFalseFalseFalse3.73e+00-1.37e-06["ga4gh:VA.cROnHWMnTSTuzMfVIhSezHexCPbFdF3z","ga4gh:VA.WAkJ8ZSeVrsh6ThoH7lWSpSgVueGvuwh"][113410737,113410737][113410738,113410738]["G","T"]"G/T"113410738".""chr11\t113410738\t.\tG\tT\t.\t.\tGT"NA"missense_variant"NANA"chr11"1134107381[(1,"L/I",NA,"protein_coding",NA,"CCDS8362.1",1310,1310,1234,1234,"Ctc/Atc",["missense_variant"],NA,[("Gene3D","1"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321")],"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000346454.7:c.1234C>A","ENSP00000278597.5:p.Leu412Ile",NA,"MODERATE",NA,NA,NA,NA,NA,NA,NA,NA,412,412,"ENSP00000278597","Ensembl",-1,"ENST00000346454",1,["P14416-2"],"T"),(1,"L/I","P2","protein_coding",1,"CCDS8361.1",1675,1675,1321,1321,"Ctc/Atc",["missense_variant"],NA,[("Gene3D","1"),("ENSP_mappings","5aer"),("ENSP_mappings","5aer"),("ENSP_mappings","6cm4"),("ENSP_mappings","6luq"),("ENSP_mappings","6vms"),("ENSP_mappings","7dfp"),("ENSP_mappings","7jvr"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321")],"8/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000362072.8:c.1321C>A","ENSP00000354859.3:p.Leu441Ile",NA,"MODERATE",NA,NA,NA,NA,NA,"NM_000795.4",NA,NA,441,441,"ENSP00000354859","Ensembl",-1,"ENST00000362072",1,["P14416-1"],"T"),(1,NA,NA,"processed_transcript",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],3637,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000535984",3,NA,"T"),(1,"L/I","A1","protein_coding",NA,NA,1327,1327,1327,1327,"Ctc/Atc",["missense_variant"],NA,[("Gene3D","1"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321")],"8/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000538967.5:c.1327C>A","ENSP00000438215.1:p.Leu443Ile",NA,"MODERATE",NA,NA,NA,NA,NA,NA,NA,NA,443,443,"ENSP00000438215","Ensembl",-1,"ENST00000538967",5,["P14416-3"],"T"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],4556,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000539420",3,NA,"T"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],3126,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000540600",1,NA,"T"),(1,"L/I","P2","protein_coding",NA,"CCDS8361.1",1642,1642,1321,1321,"Ctc/Atc",["missense_variant"],NA,[("Gene3D","1"),("ENSP_mappings","5aer"),("ENSP_mappings","5aer"),("ENSP_mappings","6cm4"),("ENSP_mappings","6luq"),("ENSP_mappings","6vms"),("ENSP_mappings","7dfp"),("ENSP_mappings","7jvr"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321")],"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000542968.5:c.1321C>A","ENSP00000442172.1:p.Leu441Ile",NA,"MODERATE",NA,NA,NA,NA,NA,NA,NA,NA,441,441,"ENSP00000442172","Ensembl",-1,"ENST00000542968",1,["P14416-1"],"T"),(1,"L/I","A1","protein_coding",NA,NA,1351,1351,1318,1318,"Ctc/Atc",["missense_variant"],NA,[("Gene3D","1"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321")],"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000544518.5:c.1318C>A","ENSP00000441068.1:p.Leu440Ile",NA,"MODERATE",NA,NA,NA,NA,NA,NA,NA,NA,440,440,"ENSP00000441068","Ensembl",-1,"ENST00000544518",1,NA,"T"),(1,NA,NA,"lncRNA",1,NA,NA,NA,NA,NA,NA,["intron_variant","non_coding_transcript_variant"],NA,NA,NA,NA,"ENSG00000256757",NA,NA,NA,NA,"ENST00000546284.1:n.245-809G>T",NA,NA,"MODIFIER","2/3",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",1,"ENST00000546284",3,NA,"T"),(1,"L/I",NA,"protein_coding",1,NA,1675,1675,1321,1321,"Ctc/Atc",["missense_variant"],NA,NA,"8/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_000795.4:c.1321C>A","NP_000786.1:p.Leu441Ile",NA,"MODERATE",NA,NA,NA,NA,NA,"ENST00000362072.8",NA,NA,441,441,"NP_000786.1","RefSeq",-1,"NM_000795.4",NA,NA,"T"),(1,"L/I",NA,"protein_coding",NA,NA,1588,1588,1234,1234,"Ctc/Atc",["missense_variant"],NA,NA,"7/7",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_016574.4:c.1234C>A","NP_057658.2:p.Leu412Ile",NA,"MODERATE",NA,NA,NA,NA,NA,NA,NA,NA,412,412,"NP_057658.2","RefSeq",-1,"NM_016574.4",NA,NA,"T"),(1,"L/I",NA,"protein_coding",NA,NA,1403,1403,1321,1321,"Ctc/Atc",["missense_variant"],NA,NA,"8/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","XM_017017296.2:c.1321C>A","XP_016872785.1:p.Leu441Ile",NA,"MODERATE",NA,NA,NA,NA,NA,NA,NA,NA,441,441,"XP_016872785.1","RefSeq",-1,"XM_017017296.2",NA,NA,"T")]"SNV"3.73e+00"AS_MQ"FalseFalseFalseFalseFalseTrueFalseFalse"snv"1False"snv"False[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,12,0,66,0,314321,0,31,0,416511,0,0,0,0,0,0,2]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,57,319,11282,107355,345042,189122,36330,5605,2379,2756,3073,2932,2954,2914,2973,2922,2564,2680]07684[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0]01[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][3,0,0,0,13,0,66,0,314321,0,31,0,416511,0,0,0,0,0,0,2]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,1,58,321,11282,107355,345042,189122,36330,5605,2379,2756,3073,2932,2954,2914,2973,2922,2564,2680]07684[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0]01[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,1,0,0,0,1,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]002.53e+013.67e+002.65e-010.00e+001.00e-024.85e+003.00e-029.36e-01
chr11:113410740["A","G"][(1,6.84e-07,1461884,0),(1,6.84e-07,1461894,0),(0,0.00e+00,33480,0),(1,2.24e-05,44724,0),(0,0.00e+00,26136,0),(0,0.00e+00,39700,0),(0,0.00e+00,53420,0),(0,0.00e+00,5764,0),(0,0.00e+00,1112008,0),(0,0.00e+00,60394,0),(0,0.00e+00,86258,0),(0,0.00e+00,734644,0),(1,1.38e-06,727240,0),(0,0.00e+00,19326,0),(0,0.00e+00,14154,0),(0,0.00e+00,25690,0),(1,5.25e-05,19034,0),(0,0.00e+00,12636,0),(0,0.00e+00,13500,0),(0,0.00e+00,20712,0),(0,0.00e+00,18988,0),(0,0.00e+00,27648,0),(0,0.00e+00,25772,0),(0,0.00e+00,2504,0),(0,0.00e+00,3260,0),(0,0.00e+00,572288,0),(0,0.00e+00,539720,0),(0,0.00e+00,31800,0),(0,0.00e+00,28594,0),(0,0.00e+00,22040,0),(0,0.00e+00,64218,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5764,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,20000,0),(1,5.00e-05,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,26136,0),(1,3.83e-05,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,33480,0),(1,2.99e-05,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(1,2.52e-05,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(1,2.50e-05,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(1,2.24e-05,44724,0),(0,0.00e+00,44724,0),(0,0.00e+00,44724,0),(0,0.00e+00,44724,0),(0,0.00e+00,44724,0),(0,0.00e+00,44724,0),(0,0.00e+00,53420,0),(0,0.00e+00,53420,0),(0,0.00e+00,53420,0),(0,0.00e+00,53420,0),(0,0.00e+00,53420,0),(0,0.00e+00,60396,0),(0,0.00e+00,60394,0),(0,0.00e+00,60396,0),(0,0.00e+00,60396,0),(0,0.00e+00,86258,0),(0,0.00e+00,86258,0),(0,0.00e+00,86258,0),(0,0.00e+00,100000,0),(0,0.00e+00,100000,0),(0,0.00e+00,200000,0),(0,0.00e+00,200000,0),(0,0.00e+00,399996,0),(1,2.50e-06,399998,0),(0,0.00e+00,999996,0),(1,1.00e-06,999996,0),(0,0.00e+00,1112008,0),(1,8.99e-07,1112008,0),(1,1.59e-06,628774,0),(1,1.59e-06,628784,0),(0,0.00e+00,17694,0),(1,2.29e-05,43740,0),(0,0.00e+00,20984,0),(0,0.00e+00,36070,0),(0,0.00e+00,53144,0),(0,0.00e+00,4144,0),(0,0.00e+00,350104,0),(0,0.00e+00,33096,0),(0,0.00e+00,69798,0),(0,0.00e+00,286248,0),(1,2.92e-06,342526,0),(0,0.00e+00,10286,0),(0,0.00e+00,7408,0),(0,0.00e+00,25040,0),(1,5.35e-05,18700,0),(0,0.00e+00,9838,0),(0,0.00e+00,11146,0),(0,0.00e+00,18298,0),(0,0.00e+00,17772,0),(0,0.00e+00,27398,0),(0,0.00e+00,25746,0),(0,0.00e+00,1914,0),(0,0.00e+00,2230,0),(0,0.00e+00,162220,0),(0,0.00e+00,187884,0),(0,0.00e+00,16752,0),(0,0.00e+00,16344,0),(0,0.00e+00,14502,0),(0,0.00e+00,55296,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,3996,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4144,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,17694,0),(1,5.65e-05,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(1,5.00e-05,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(1,4.77e-05,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(1,3.02e-05,33098,0),(0,0.00e+00,33098,0),(0,0.00e+00,33098,0),(0,0.00e+00,33098,0),(0,0.00e+00,33096,0),(0,0.00e+00,33098,0),(0,0.00e+00,33098,0),(1,2.77e-05,36070,0),(0,0.00e+00,36070,0),(0,0.00e+00,36070,0),(0,0.00e+00,36070,0),(0,0.00e+00,36070,0),(0,0.00e+00,36070,0),(1,2.50e-05,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(1,2.29e-05,43740,0),(0,0.00e+00,43740,0),(0,0.00e+00,43740,0),(0,0.00e+00,43740,0),(0,0.00e+00,43740,0),(0,0.00e+00,53144,0),(0,0.00e+00,53144,0),(0,0.00e+00,53144,0),(0,0.00e+00,53144,0),(0,0.00e+00,69798,0),(0,0.00e+00,69798,0),(0,0.00e+00,69798,0),(0,0.00e+00,99998,0),(0,0.00e+00,100000,0),(0,0.00e+00,199996,0),(1,5.00e-06,199998,0),(0,0.00e+00,350104,0),(1,2.86e-06,350104,0),(1,2.50e-06,399996,0)]12.24e-05447240"amr"12.29e-05437400"amr"[(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]NANANANANANANANA1FalseNA{}3.13e+006.00e+010.00e+004021.01e+017.13e-01[17,8,12,3]1.29e+00403.13e+006.00e+010.00e+001.54e-014021.01e+017.13e-01[17,8,12,3]1.29e+0040TrueFalseFalseFalseFalseFalseFalse4.72e+00-6.84e-07["ga4gh:VA.gXv9EmAG-Lbw5gSNFxiBHWB_WT8twCnG","ga4gh:VA.S-YUvVERFiE1cgkxu2ZRfZV7mggBv176"][113410739,113410739][113410740,113410740]["A","G"]"A/G"113410740".""chr11\t113410740\t.\tA\tG\t.\t.\tGT"NA"missense_variant"NANA"chr11"1134107401[(1,"I/T",NA,"protein_coding",NA,"CCDS8362.1",1308,1308,1232,1232,"aTc/aCc",["missense_variant"],NA,[("Gene3D","1"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321")],"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000346454.7:c.1232T>C","ENSP00000278597.5:p.Ile411Thr",NA,"MODERATE",NA,NA,NA,NA,NA,NA,NA,NA,411,411,"ENSP00000278597","Ensembl",-1,"ENST00000346454",1,["P14416-2"],"G"),(1,"I/T","P2","protein_coding",1,"CCDS8361.1",1673,1673,1319,1319,"aTc/aCc",["missense_variant"],NA,[("Gene3D","1"),("ENSP_mappings","5aer"),("ENSP_mappings","5aer"),("ENSP_mappings","6cm4"),("ENSP_mappings","6luq"),("ENSP_mappings","6vms"),("ENSP_mappings","7dfp"),("ENSP_mappings","7jvr"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321")],"8/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000362072.8:c.1319T>C","ENSP00000354859.3:p.Ile440Thr",NA,"MODERATE",NA,NA,NA,NA,NA,"NM_000795.4",NA,NA,440,440,"ENSP00000354859","Ensembl",-1,"ENST00000362072",1,["P14416-1"],"G"),(1,NA,NA,"processed_transcript",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],3635,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000535984",3,NA,"G"),(1,"I/T","A1","protein_coding",NA,NA,1325,1325,1325,1325,"aTc/aCc",["missense_variant"],NA,[("Gene3D","1"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321")],"8/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000538967.5:c.1325T>C","ENSP00000438215.1:p.Ile442Thr",NA,"MODERATE",NA,NA,NA,NA,NA,NA,NA,NA,442,442,"ENSP00000438215","Ensembl",-1,"ENST00000538967",5,["P14416-3"],"G"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],4554,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000539420",3,NA,"G"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],3124,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000540600",1,NA,"G"),(1,"I/T","P2","protein_coding",NA,"CCDS8361.1",1640,1640,1319,1319,"aTc/aCc",["missense_variant"],NA,[("Gene3D","1"),("ENSP_mappings","5aer"),("ENSP_mappings","5aer"),("ENSP_mappings","6cm4"),("ENSP_mappings","6luq"),("ENSP_mappings","6vms"),("ENSP_mappings","7dfp"),("ENSP_mappings","7jvr"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321")],"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000542968.5:c.1319T>C","ENSP00000442172.1:p.Ile440Thr",NA,"MODERATE",NA,NA,NA,NA,NA,NA,NA,NA,440,440,"ENSP00000442172","Ensembl",-1,"ENST00000542968",1,["P14416-1"],"G"),(1,"I/T","A1","protein_coding",NA,NA,1349,1349,1316,1316,"aTc/aCc",["missense_variant"],NA,[("Gene3D","1"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321")],"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000544518.5:c.1316T>C","ENSP00000441068.1:p.Ile439Thr",NA,"MODERATE",NA,NA,NA,NA,NA,NA,NA,NA,439,439,"ENSP00000441068","Ensembl",-1,"ENST00000544518",1,NA,"G"),(1,NA,NA,"lncRNA",1,NA,NA,NA,NA,NA,NA,["intron_variant","non_coding_transcript_variant"],NA,NA,NA,NA,"ENSG00000256757",NA,NA,NA,NA,"ENST00000546284.1:n.245-807A>G",NA,NA,"MODIFIER","2/3",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",1,"ENST00000546284",3,NA,"G"),(1,"I/T",NA,"protein_coding",1,NA,1673,1673,1319,1319,"aTc/aCc",["missense_variant"],NA,NA,"8/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_000795.4:c.1319T>C","NP_000786.1:p.Ile440Thr",NA,"MODERATE",NA,NA,NA,NA,NA,"ENST00000362072.8",NA,NA,440,440,"NP_000786.1","RefSeq",-1,"NM_000795.4",NA,NA,"G"),(1,"I/T",NA,"protein_coding",NA,NA,1586,1586,1232,1232,"aTc/aCc",["missense_variant"],NA,NA,"7/7",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_016574.4:c.1232T>C","NP_057658.2:p.Ile411Thr",NA,"MODERATE",NA,NA,NA,NA,NA,NA,NA,NA,411,411,"NP_057658.2","RefSeq",-1,"NM_016574.4",NA,NA,"G"),(1,"I/T",NA,"protein_coding",NA,NA,1401,1401,1319,1319,"aTc/aCc",["missense_variant"],NA,NA,"8/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","XM_017017296.2:c.1319T>C","XP_016872785.1:p.Ile440Thr",NA,"MODERATE",NA,NA,NA,NA,NA,NA,NA,NA,440,440,"XP_016872785.1","RefSeq",-1,"XM_017017296.2",NA,NA,"G")]"SNV"4.72e+00"AS_MQ"FalseFalseFalseFalseFalseTrueFalseFalse"snv"1False"snv"False[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,12,0,49,0,314328,0,18,0,416534,0,0,0,0,0,0,1]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,49,301,11269,107358,345061,189138,36333,5605,2378,2755,3073,2932,2954,2914,2973,2922,2564,2680]07683[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][4,0,0,0,13,0,49,0,314328,0,18,0,416534,0,0,0,0,0,0,1]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,1,50,304,11269,107358,345061,189138,36333,5605,2378,2755,3073,2932,2954,2914,2973,2922,2564,2680]07683[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]002.72e+014.02e+006.41e-010.00e+003.00e-026.25e+000.00e+005.08e-01

showing top 5 rows

\n" + ], + "text/plain": [ + "+-----------------+------------+\n", + "| locus | alleles |\n", + "+-----------------+------------+\n", + "| locus | array |\n", + "+-----------------+------------+\n", + "| chr11:113410731 | [\"C\",\"A\"] |\n", + "| chr11:113410731 | [\"C\",\"T\"] |\n", + "| chr11:113410735 | [\"G\",\"A\"] |\n", + "| chr11:113410738 | [\"G\",\"T\"] |\n", + "| chr11:113410740 | [\"A\",\"G\"] |\n", + "+-----------------+------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| freq |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [(2,1.37e-06,1461866,0),(2,1.37e-06,1461894,0),(0,0.00e+00,33480,0),(2,4.... |\n", + "| [(1,6.84e-07,1461866,0),(1,6.84e-07,1461894,0),(0,0.00e+00,33480,0),(0,0.... |\n", + "| [(75,5.13e-05,1461876,0),(75,5.13e-05,1461894,0),(0,0.00e+00,33480,0),(0,... |\n", + "| [(2,1.37e-06,1461886,0),(2,1.37e-06,1461894,0),(0,0.00e+00,33480,0),(0,0.... |\n", + "| [(1,6.84e-07,1461884,0),(1,6.84e-07,1461894,0),(0,0.00e+00,33480,0),(1,2.... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+------------------+------------------+------------------+\n", + "| grpmax.gnomad.AC | grpmax.gnomad.AF | grpmax.gnomad.AN |\n", + "+------------------+------------------+------------------+\n", + "| int32 | float64 | int32 |\n", + "+------------------+------------------+------------------+\n", + "| 2 | 4.47e-05 | 44724 |\n", + "| 1 | 8.99e-07 | 1112010 |\n", + "| 8 | 7.19e-06 | 1112004 |\n", + "| 2 | 5.04e-05 | 39700 |\n", + "| 1 | 2.24e-05 | 44724 |\n", + "+------------------+------------------+------------------+\n", + "\n", + "+--------------------------------+-----------------------+-------------------+\n", + "| grpmax.gnomad.homozygote_count | grpmax.gnomad.gen_anc | grpmax.non_ukb.AC |\n", + "+--------------------------------+-----------------------+-------------------+\n", + "| int64 | str | int32 |\n", + "+--------------------------------+-----------------------+-------------------+\n", + "| 0 | \"amr\" | 2 |\n", + "| 0 | \"nfe\" | NA |\n", + "| 0 | \"nfe\" | 2 |\n", + "| 0 | \"eas\" | 1 |\n", + "| 0 | \"amr\" | 1 |\n", + "+--------------------------------+-----------------------+-------------------+\n", + "\n", + "+-------------------+-------------------+---------------------------------+\n", + "| grpmax.non_ukb.AF | grpmax.non_ukb.AN | grpmax.non_ukb.homozygote_count |\n", + "+-------------------+-------------------+---------------------------------+\n", + "| float64 | int32 | int64 |\n", + "+-------------------+-------------------+---------------------------------+\n", + "| 4.57e-05 | 43740 | 0 |\n", + "| NA | NA | NA |\n", + "| 5.71e-06 | 350102 | 0 |\n", + "| 2.77e-05 | 36070 | 0 |\n", + "| 2.29e-05 | 43740 | 0 |\n", + "+-------------------+-------------------+---------------------------------+\n", + "\n", + "+------------------------+\n", + "| grpmax.non_ukb.gen_anc |\n", + "+------------------------+\n", + "| str |\n", + "+------------------------+\n", + "| \"amr\" |\n", + "| NA |\n", + "| \"nfe\" |\n", + "| \"eas\" |\n", + "| \"amr\" |\n", + "+------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| faf |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [(2.30e-07,9.00e-08),(0.00e+00,0.00e+00),(7.41e-06,2.77e-06),(0.00e+00,0.... |\n", + "| [(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.... |\n", + "| [(4.19e-05,3.82e-05),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.... |\n", + "| [(2.30e-07,9.00e-08),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(8.35e-06,3.... |\n", + "| [(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+-------------------------+---------------------------------+\n", + "| fafmax.gnomad.faf95_max | fafmax.gnomad.faf95_max_gen_anc |\n", + "+-------------------------+---------------------------------+\n", + "| float64 | str |\n", + "+-------------------------+---------------------------------+\n", + "| 7.41e-06 | \"amr\" |\n", + "| NA | NA |\n", + "| 3.09e-06 | \"nfe\" |\n", + "| 8.35e-06 | \"eas\" |\n", + "| NA | NA |\n", + "+-------------------------+---------------------------------+\n", + "\n", + "+-------------------------+---------------------------------+\n", + "| fafmax.gnomad.faf99_max | fafmax.gnomad.faf99_max_gen_anc |\n", + "+-------------------------+---------------------------------+\n", + "| float64 | str |\n", + "+-------------------------+---------------------------------+\n", + "| 2.77e-06 | \"amr\" |\n", + "| NA | NA |\n", + "| 2.24e-06 | \"nfe\" |\n", + "| 3.12e-06 | \"eas\" |\n", + "| NA | NA |\n", + "+-------------------------+---------------------------------+\n", + "\n", + "+--------------------------+----------------------------------+\n", + "| fafmax.non_ukb.faf95_max | fafmax.non_ukb.faf95_max_gen_anc |\n", + "+--------------------------+----------------------------------+\n", + "| float64 | str |\n", + "+--------------------------+----------------------------------+\n", + "| 7.58e-06 | \"amr\" |\n", + "| NA | NA |\n", + "| 9.50e-07 | \"nfe\" |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "+--------------------------+----------------------------------+\n", + "\n", + "+--------------------------+----------------------------------+---------+\n", + "| fafmax.non_ukb.faf99_max | fafmax.non_ukb.faf99_max_gen_anc | a_index |\n", + "+--------------------------+----------------------------------+---------+\n", + "| float64 | str | int32 |\n", + "+--------------------------+----------------------------------+---------+\n", + "| 2.84e-06 | \"amr\" | 1 |\n", + "| NA | NA | 2 |\n", + "| 3.60e-07 | \"nfe\" | 1 |\n", + "| NA | NA | 1 |\n", + "| NA | NA | 1 |\n", + "+--------------------------+----------------------------------+---------+\n", + "\n", + "+-----------+------------------+----------+----------+----------+\n", + "| was_split | rsid | filters | info.FS | info.MQ |\n", + "+-----------+------------------+----------+----------+----------+\n", + "| bool | set | set | float64 | float64 |\n", + "+-----------+------------------+----------+----------+----------+\n", + "| True | {\"rs140938110\"} | {} | 5.56e+00 | 6.00e+01 |\n", + "| True | NA | {} | 5.56e+00 | 6.00e+01 |\n", + "| True | {\"rs201801648\"} | {} | 0.00e+00 | 6.00e+01 |\n", + "| False | {\"rs1223741945\"} | {} | 1.38e+01 | 6.00e+01 |\n", + "| False | NA | {} | 3.13e+00 | 6.00e+01 |\n", + "+-----------+------------------+----------+----------+----------+\n", + "\n", + "+----------------+-----------------+----------+---------------------+\n", + "| info.MQRankSum | info.QUALapprox | info.QD | info.ReadPosRankSum |\n", + "+----------------+-----------------+----------+---------------------+\n", + "| float64 | int64 | float64 | float64 |\n", + "+----------------+-----------------+----------+---------------------+\n", + "| 0.00e+00 | 3862 | 1.02e+01 | -1.98e-01 |\n", + "| 0.00e+00 | 3862 | 1.02e+01 | -1.98e-01 |\n", + "| 0.00e+00 | 127501 | 1.23e+01 | 3.70e-02 |\n", + "| 0.00e+00 | 3253 | 1.30e+01 | -1.33e+00 |\n", + "| 0.00e+00 | 402 | 1.01e+01 | 7.13e-01 |\n", + "+----------------+-----------------+----------+---------------------+\n", + "\n", + "+-----------------------+----------+------------+------------+------------+\n", + "| info.SB | info.SOR | info.VarDP | info.AS_FS | info.AS_MQ |\n", + "+-----------------------+----------+------------+------------+------------+\n", + "| array | float64 | int32 | float64 | float64 |\n", + "+-----------------------+----------+------------+------------+------------+\n", + "| [134,83,109,52] | 9.81e-01 | 378 | 1.31e+01 | 6.00e+01 |\n", + "| [134,83,109,52] | 9.81e-01 | 378 | 0.00e+00 | 6.00e+01 |\n", + "| [3240,2211,2993,1962] | 7.34e-01 | 10404 | 0.00e+00 | 6.00e+01 |\n", + "| [63,66,76,46] | 1.28e+00 | 251 | 1.38e+01 | 6.00e+01 |\n", + "| [17,8,12,3] | 1.29e+00 | 40 | 3.13e+00 | 6.00e+01 |\n", + "+-----------------------+----------+------------+------------+------------+\n", + "\n", + "+-------------------+-----------------+--------------------+------------+\n", + "| info.AS_MQRankSum | info.AS_pab_max | info.AS_QUALapprox | info.AS_QD |\n", + "+-------------------+-----------------+--------------------+------------+\n", + "| float64 | float64 | int64 | float64 |\n", + "+-------------------+-----------------+--------------------+------------+\n", + "| 0.00e+00 | 2.94e-01 | 1895 | 1.06e+01 |\n", + "| 0.00e+00 | 9.04e-01 | 1967 | 9.88e+00 |\n", + "| 0.00e+00 | 1.00e+00 | 127480 | 1.23e+01 |\n", + "| 0.00e+00 | 1.00e+00 | 3253 | 1.30e+01 |\n", + "| 0.00e+00 | 1.54e-01 | 402 | 1.01e+01 |\n", + "+-------------------+-----------------+--------------------+------------+\n", + "\n", + "+------------------------+-----------------------+-------------+---------------+\n", + "| info.AS_ReadPosRankSum | info.AS_SB_TABLE | info.AS_SOR | info.AS_VarDP |\n", + "+------------------------+-----------------------+-------------+---------------+\n", + "| float64 | array | float64 | int32 |\n", + "+------------------------+-----------------------+-------------+---------------+\n", + "| 2.52e-01 | [134,83,56,19] | 1.42e+00 | 179 |\n", + "| -5.01e-01 | [134,83,53,33] | 6.81e-01 | 199 |\n", + "| 1.60e-02 | [3240,2211,2991,1961] | 7.34e-01 | 10383 |\n", + "| -1.33e+00 | [63,66,76,46] | 1.28e+00 | 251 |\n", + "| 7.13e-01 | [17,8,12,3] | 1.29e+00 | 40 |\n", + "+------------------------+-----------------------+-------------+---------------+\n", + "\n", + "+----------------+----------------------------+------------------------+\n", + "| info.singleton | info.transmitted_singleton | info.sibling_singleton |\n", + "+----------------+----------------------------+------------------------+\n", + "| bool | bool | bool |\n", + "+----------------+----------------------------+------------------------+\n", + "| False | NA | NA |\n", + "| True | False | False |\n", + "| False | NA | NA |\n", + "| False | NA | NA |\n", + "| True | False | False |\n", + "+----------------+----------------------------+------------------------+\n", + "\n", + "+-----------+------------+------------------+---------------+----------------+\n", + "| info.omni | info.mills | info.monoallelic | info.only_het | info.AS_VQSLOD |\n", + "+-----------+------------+------------------+---------------+----------------+\n", + "| bool | bool | bool | bool | float64 |\n", + "+-----------+------------+------------------+---------------+----------------+\n", + "| False | False | False | False | 5.27e+00 |\n", + "| False | False | False | False | 5.40e+00 |\n", + "| False | False | False | False | 8.85e+00 |\n", + "| False | False | False | False | 3.73e+00 |\n", + "| False | False | False | False | 4.72e+00 |\n", + "+-----------+------------+------------------+---------------+----------------+\n", + "\n", + "+-----------------------+\n", + "| info.inbreeding_coeff |\n", + "+-----------------------+\n", + "| float64 |\n", + "+-----------------------+\n", + "| -1.37e-06 |\n", + "| -6.84e-07 |\n", + "| -5.13e-05 |\n", + "| -1.37e-06 |\n", + "| -6.84e-07 |\n", + "+-----------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| info.vrs.VRS_Allele_IDs |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [\"ga4gh:VA.RY2FNHeS0QpJNM9lQpQ_pzX7Q27-MXmI\",\"ga4gh:VA.ZonDIhdwyghm7SuWkX... |\n", + "| [\"ga4gh:VA.RY2FNHeS0QpJNM9lQpQ_pzX7Q27-MXmI\",\"ga4gh:VA.Hp20SlFHUdM7jlWmVV... |\n", + "| [\"ga4gh:VA.SBSoboxxiC0V-mhjjHg2geRlf3I0Ib2d\",\"ga4gh:VA.GzUD_86k_EDbtk-R58... |\n", + "| [\"ga4gh:VA.cROnHWMnTSTuzMfVIhSezHexCPbFdF3z\",\"ga4gh:VA.WAkJ8ZSeVrsh6ThoH7... |\n", + "| [\"ga4gh:VA.gXv9EmAG-Lbw5gSNFxiBHWB_WT8twCnG\",\"ga4gh:VA.S-YUvVERFiE1cgkxu2... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+-----------------------+-----------------------+---------------------+\n", + "| info.vrs.VRS_Starts | info.vrs.VRS_Ends | info.vrs.VRS_States |\n", + "+-----------------------+-----------------------+---------------------+\n", + "| array | array | array |\n", + "+-----------------------+-----------------------+---------------------+\n", + "| [113410730,113410730] | [113410731,113410731] | [\"C\",\"A\"] |\n", + "| [113410730,113410730] | [113410731,113410731] | [\"C\",\"T\"] |\n", + "| [113410734,113410734] | [113410735,113410735] | [\"G\",\"A\"] |\n", + "| [113410737,113410737] | [113410738,113410738] | [\"G\",\"T\"] |\n", + "| [113410739,113410739] | [113410740,113410740] | [\"A\",\"G\"] |\n", + "+-----------------------+-----------------------+---------------------+\n", + "\n", + "+-------------------+-----------+--------+--------------------------------+\n", + "| vep.allele_string | vep.end | vep.id | vep.input |\n", + "+-------------------+-----------+--------+--------------------------------+\n", + "| str | int32 | str | str |\n", + "+-------------------+-----------+--------+--------------------------------+\n", + "| \"C/A\" | 113410731 | \".\" | \"chr11\t113410731\t.\tC\tA\t.\t.\tGT\" |\n", + "| \"C/T\" | 113410731 | \".\" | \"chr11\t113410731\t.\tC\tT\t.\t.\tGT\" |\n", + "| \"G/A\" | 113410735 | \".\" | \"chr11\t113410735\t.\tG\tA\t.\t.\tGT\" |\n", + "| \"G/T\" | 113410738 | \".\" | \"chr11\t113410738\t.\tG\tT\t.\t.\tGT\" |\n", + "| \"A/G\" | 113410740 | \".\" | \"chr11\t113410740\t.\tA\tG\t.\t.\tGT\" |\n", + "+-------------------+-----------+--------+--------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| vep.intergenic_consequences |\n", + "+------------------------------------------------------------------------------+\n", + "| array, impact: st... |\n", + "+------------------------------------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+-----------------------------+\n", + "| vep.most_severe_consequence |\n", + "+-----------------------------+\n", + "| str |\n", + "+-----------------------------+\n", + "| \"missense_variant\" |\n", + "| \"missense_variant\" |\n", + "| \"missense_variant\" |\n", + "| \"missense_variant\" |\n", + "| \"missense_variant\" |\n", + "+-----------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| vep.motif_feature_consequences |\n", + "+------------------------------------------------------------------------------+\n", + "| array, high_inf_p... |\n", + "+------------------------------------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| vep.regulatory_feature_consequences |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+---------------------------------------------------------+\n", + "| histograms.qual_hists.gq_hist_all.bin_freq |\n", + "+---------------------------------------------------------+\n", + "| array |\n", + "+---------------------------------------------------------+\n", + "| [0,0,0,0,21,0,124,0,314262,0,99,0,416424,0,0,0,0,0,0,3] |\n", + "| [0,0,0,0,21,0,124,0,314262,0,99,0,416424,0,0,0,0,0,0,3] |\n", + "| [0,0,0,0,12,0,76,0,314251,0,32,0,416492,0,0,0,0,0,0,75] |\n", + "| [0,0,0,0,12,0,66,0,314321,0,31,0,416511,0,0,0,0,0,0,2] |\n", + "| [0,0,0,0,12,0,49,0,314328,0,18,0,416534,0,0,0,0,0,0,1] |\n", + "+---------------------------------------------------------+\n", + "\n", + "+---------------------------------------------+\n", + "| histograms.qual_hists.gq_hist_all.n_smaller |\n", + "+---------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+---------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.qual_hists.gq_hist_all.n_larger |\n", + "+--------------------------------------------+\n", + "| int64 |\n", + "+--------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+--------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.qual_hists.dp_hist_all.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.qual_hists.dp_hist_all.bin_freq |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0,0,98,374,11344,107362,344923,189028,36319,5607,2388,2759,3074,2931,295... |\n", + "| [0,0,98,374,11344,107362,344923,189028,36319,5607,2388,2759,3074,2931,295... |\n", + "| [0,0,65,332,11308,107353,344982,189073,36327,5607,2387,2756,3080,2935,295... |\n", + "| [0,0,57,319,11282,107355,345042,189122,36330,5605,2379,2756,3073,2932,295... |\n", + "| [0,0,49,301,11269,107358,345061,189138,36333,5605,2378,2755,3073,2932,295... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+---------------------------------------------+\n", + "| histograms.qual_hists.dp_hist_all.n_smaller |\n", + "+---------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+---------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.qual_hists.dp_hist_all.n_larger |\n", + "+--------------------------------------------+\n", + "| int64 |\n", + "+--------------------------------------------+\n", + "| 7715 |\n", + "| 7715 |\n", + "| 7717 |\n", + "| 7684 |\n", + "| 7683 |\n", + "+--------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.qual_hists.gq_hist_alt.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.qual_hists.gq_hist_alt.bin_freq |\n", + "+--------------------------------------------+\n", + "| array |\n", + "+--------------------------------------------+\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,75] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1] |\n", + "+--------------------------------------------+\n", + "\n", + "+---------------------------------------------+\n", + "| histograms.qual_hists.gq_hist_alt.n_smaller |\n", + "+---------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+---------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.qual_hists.gq_hist_alt.n_larger |\n", + "+--------------------------------------------+\n", + "| int64 |\n", + "+--------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+--------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.qual_hists.dp_hist_alt.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.qual_hists.dp_hist_alt.bin_freq |\n", + "+--------------------------------------------+\n", + "| array |\n", + "+--------------------------------------------+\n", + "| [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,1,2,3,4,7,3,7,5,1,4,1,3,0,2] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0] |\n", + "+--------------------------------------------+\n", + "\n", + "+---------------------------------------------+\n", + "| histograms.qual_hists.dp_hist_alt.n_smaller |\n", + "+---------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+---------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.qual_hists.dp_hist_alt.n_larger |\n", + "+--------------------------------------------+\n", + "| int64 |\n", + "+--------------------------------------------+\n", + "| 1 |\n", + "| 0 |\n", + "| 32 |\n", + "| 1 |\n", + "| 0 |\n", + "+--------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.qual_hists.ab_hist_alt.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+----------------------------------------------+\n", + "| histograms.qual_hists.ab_hist_alt.bin_freq |\n", + "+----------------------------------------------+\n", + "| array |\n", + "+----------------------------------------------+\n", + "| [0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,1,1,6,12,25,24,5,1,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "+----------------------------------------------+\n", + "\n", + "+---------------------------------------------+\n", + "| histograms.qual_hists.ab_hist_alt.n_smaller |\n", + "+---------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+---------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.qual_hists.ab_hist_alt.n_larger |\n", + "+--------------------------------------------+\n", + "| int64 |\n", + "+--------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+--------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.raw_qual_hists.gq_hist_all.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+---------------------------------------------------------+\n", + "| histograms.raw_qual_hists.gq_hist_all.bin_freq |\n", + "+---------------------------------------------------------+\n", + "| array |\n", + "+---------------------------------------------------------+\n", + "| [7,0,0,0,28,0,124,0,314262,0,99,0,416424,0,0,0,0,0,0,3] |\n", + "| [7,0,0,0,28,0,124,0,314262,0,99,0,416424,0,0,0,0,0,0,3] |\n", + "| [6,0,1,0,14,0,76,0,314251,0,32,0,416492,0,0,0,0,0,0,75] |\n", + "| [3,0,0,0,13,0,66,0,314321,0,31,0,416511,0,0,0,0,0,0,2] |\n", + "| [4,0,0,0,13,0,49,0,314328,0,18,0,416534,0,0,0,0,0,0,1] |\n", + "+---------------------------------------------------------+\n", + "\n", + "+-------------------------------------------------+\n", + "| histograms.raw_qual_hists.gq_hist_all.n_smaller |\n", + "+-------------------------------------------------+\n", + "| int64 |\n", + "+-------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+-------------------------------------------------+\n", + "\n", + "+------------------------------------------------+\n", + "| histograms.raw_qual_hists.gq_hist_all.n_larger |\n", + "+------------------------------------------------+\n", + "| int64 |\n", + "+------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.raw_qual_hists.dp_hist_all.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.raw_qual_hists.dp_hist_all.bin_freq |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0,7,98,380,11345,107362,344923,189028,36319,5607,2388,2759,3074,2931,295... |\n", + "| [0,7,98,380,11345,107362,344923,189028,36319,5607,2388,2759,3074,2931,295... |\n", + "| [0,2,67,335,11310,107353,344982,189073,36327,5607,2387,2756,3080,2935,295... |\n", + "| [0,1,58,321,11282,107355,345042,189122,36330,5605,2379,2756,3073,2932,295... |\n", + "| [0,1,50,304,11269,107358,345061,189138,36333,5605,2378,2755,3073,2932,295... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+-------------------------------------------------+\n", + "| histograms.raw_qual_hists.dp_hist_all.n_smaller |\n", + "+-------------------------------------------------+\n", + "| int64 |\n", + "+-------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+-------------------------------------------------+\n", + "\n", + "+------------------------------------------------+\n", + "| histograms.raw_qual_hists.dp_hist_all.n_larger |\n", + "+------------------------------------------------+\n", + "| int64 |\n", + "+------------------------------------------------+\n", + "| 7715 |\n", + "| 7715 |\n", + "| 7717 |\n", + "| 7684 |\n", + "| 7683 |\n", + "+------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.raw_qual_hists.gq_hist_alt.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+------------------------------------------------+\n", + "| histograms.raw_qual_hists.gq_hist_alt.bin_freq |\n", + "+------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------+\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,75] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1] |\n", + "+------------------------------------------------+\n", + "\n", + "+-------------------------------------------------+\n", + "| histograms.raw_qual_hists.gq_hist_alt.n_smaller |\n", + "+-------------------------------------------------+\n", + "| int64 |\n", + "+-------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+-------------------------------------------------+\n", + "\n", + "+------------------------------------------------+\n", + "| histograms.raw_qual_hists.gq_hist_alt.n_larger |\n", + "+------------------------------------------------+\n", + "| int64 |\n", + "+------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.raw_qual_hists.dp_hist_alt.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+------------------------------------------------+\n", + "| histograms.raw_qual_hists.dp_hist_alt.bin_freq |\n", + "+------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------+\n", + "| [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,1,2,3,4,7,3,7,5,1,4,1,3,0,2] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0] |\n", + "+------------------------------------------------+\n", + "\n", + "+-------------------------------------------------+\n", + "| histograms.raw_qual_hists.dp_hist_alt.n_smaller |\n", + "+-------------------------------------------------+\n", + "| int64 |\n", + "+-------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+-------------------------------------------------+\n", + "\n", + "+------------------------------------------------+\n", + "| histograms.raw_qual_hists.dp_hist_alt.n_larger |\n", + "+------------------------------------------------+\n", + "| int64 |\n", + "+------------------------------------------------+\n", + "| 1 |\n", + "| 0 |\n", + "| 32 |\n", + "| 1 |\n", + "| 0 |\n", + "+------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.raw_qual_hists.ab_hist_alt.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+------------------------------------------------+\n", + "| histograms.raw_qual_hists.ab_hist_alt.bin_freq |\n", + "+------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------+\n", + "| [0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,1,1,6,12,25,24,5,1,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "+------------------------------------------------+\n", + "\n", + "+-------------------------------------------------+\n", + "| histograms.raw_qual_hists.ab_hist_alt.n_smaller |\n", + "+-------------------------------------------------+\n", + "| int64 |\n", + "+-------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+-------------------------------------------------+\n", + "\n", + "+------------------------------------------------+\n", + "| histograms.raw_qual_hists.ab_hist_alt.n_larger |\n", + "+------------------------------------------------+\n", + "| int64 |\n", + "+------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.age_hists.age_hist_het.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.age_hists.age_hist_het.bin_freq |\n", + "+--------------------------------------------+\n", + "| array |\n", + "+--------------------------------------------+\n", + "| [0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,1,0,0,0,0,0] |\n", + "| [1,0,0,2,3,3,8,4,0,0] |\n", + "| [0,0,0,1,0,0,0,1,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0] |\n", + "+--------------------------------------------+\n", + "\n", + "+---------------------------------------------+\n", + "| histograms.age_hists.age_hist_het.n_smaller |\n", + "+---------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------+\n", + "| 1 |\n", + "| 0 |\n", + "| 3 |\n", + "| 0 |\n", + "| 0 |\n", + "+---------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.age_hists.age_hist_het.n_larger |\n", + "+--------------------------------------------+\n", + "| int64 |\n", + "+--------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 1 |\n", + "| 0 |\n", + "| 0 |\n", + "+--------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.age_hists.age_hist_hom.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.age_hists.age_hist_hom.bin_freq |\n", + "+--------------------------------------------+\n", + "| array |\n", + "+--------------------------------------------+\n", + "| [0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0] |\n", + "+--------------------------------------------+\n", + "\n", + "+---------------------------------------------+\n", + "| histograms.age_hists.age_hist_hom.n_smaller |\n", + "+---------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+---------------------------------------------+\n", + "\n", + "+--------------------------------------------+---------------------------------+\n", + "| histograms.age_hists.age_hist_hom.n_larger | in_silico_predictors.cadd.phred |\n", + "+--------------------------------------------+---------------------------------+\n", + "| int64 | float32 |\n", + "+--------------------------------------------+---------------------------------+\n", + "| 0 | 2.77e+01 |\n", + "| 0 | 2.75e+01 |\n", + "| 0 | 2.28e+01 |\n", + "| 0 | 2.53e+01 |\n", + "| 0 | 2.72e+01 |\n", + "+--------------------------------------------+---------------------------------+\n", + "\n", + "+-------------------------------------+--------------------------------+\n", + "| in_silico_predictors.cadd.raw_score | in_silico_predictors.revel_max |\n", + "+-------------------------------------+--------------------------------+\n", + "| float32 | float64 |\n", + "+-------------------------------------+--------------------------------+\n", + "| 4.10e+00 | 6.02e-01 |\n", + "| 4.07e+00 | 7.19e-01 |\n", + "| 2.69e+00 | 2.67e-01 |\n", + "| 3.67e+00 | 2.65e-01 |\n", + "| 4.02e+00 | 6.41e-01 |\n", + "+-------------------------------------+--------------------------------+\n", + "\n", + "+--------------------------------------+\n", + "| in_silico_predictors.spliceai_ds_max |\n", + "+--------------------------------------+\n", + "| float32 |\n", + "+--------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+--------------------------------------+\n", + "\n", + "+------------------------------------------+-----------------------------+\n", + "| in_silico_predictors.pangolin_largest_ds | in_silico_predictors.phylop |\n", + "+------------------------------------------+-----------------------------+\n", + "| float64 | float64 |\n", + "+------------------------------------------+-----------------------------+\n", + "| 0.00e+00 | 8.78e+00 |\n", + "| 2.00e-02 | 8.78e+00 |\n", + "| 1.00e-02 | 8.67e+00 |\n", + "| 1.00e-02 | 4.85e+00 |\n", + "| 3.00e-02 | 6.25e+00 |\n", + "+------------------------------------------+-----------------------------+\n", + "\n", + "+-------------------------------+-----------------------------------+\n", + "| in_silico_predictors.sift_max | in_silico_predictors.polyphen_max |\n", + "+-------------------------------+-----------------------------------+\n", + "| float64 | float64 |\n", + "+-------------------------------+-----------------------------------+\n", + "| 0.00e+00 | 9.89e-01 |\n", + "| 0.00e+00 | 9.89e-01 |\n", + "| 1.30e-01 | 1.18e-01 |\n", + "| 3.00e-02 | 9.36e-01 |\n", + "| 0.00e+00 | 5.08e-01 |\n", + "+-------------------------------+-----------------------------------+\n", + "showing top 5 rows" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The total number of missense variants passing filters in DRD2 is: 409\n" + ] + } + ], + "source": [ + "var_ht = filter_by_csqs(['missense'], ht=drd2_interval_ht)\n", + "var_ht.show(5)\n", + "print(\"The total number of missense variants passing filters in DRD2 is: \", var_ht.count())" + ] + }, + { + "cell_type": "markdown", + "id": "5b980b4f-13bd-4bb4-bdbc-5584a6a59ca5", + "metadata": {}, + "source": [ + "### Filter to `synonymous` variants passing filters" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "b7e4368b", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
histograms
grpmax
fafmax
info
qual_hists
raw_qual_hists
age_hists
in_silico_predictors
gnomad
non_ukb
gnomad
non_ukb
vrs
vep
vqsr_results
region_flags
allele_info
gq_hist_all
dp_hist_all
gq_hist_alt
dp_hist_alt
ab_hist_alt
gq_hist_all
dp_hist_all
gq_hist_alt
dp_hist_alt
ab_hist_alt
age_hist_het
age_hist_hom
cadd
locus
alleles
freq
AC
AF
AN
homozygote_count
gen_anc
AC
AF
AN
homozygote_count
gen_anc
faf
faf95_max
faf95_max_gen_anc
faf99_max
faf99_max_gen_anc
faf95_max
faf95_max_gen_anc
faf99_max
faf99_max_gen_anc
a_index
was_split
rsid
filters
FS
MQ
MQRankSum
QUALapprox
QD
ReadPosRankSum
SB
SOR
VarDP
AS_FS
AS_MQ
AS_MQRankSum
AS_pab_max
AS_QUALapprox
AS_QD
AS_ReadPosRankSum
AS_SB_TABLE
AS_SOR
AS_VarDP
singleton
transmitted_singleton
sibling_singleton
omni
mills
monoallelic
only_het
AS_VQSLOD
inbreeding_coeff
VRS_Allele_IDs
VRS_Starts
VRS_Ends
VRS_States
allele_string
end
id
input
intergenic_consequences
most_severe_consequence
motif_feature_consequences
regulatory_feature_consequences
seq_region_name
start
strand
transcript_consequences
variant_class
AS_VQSLOD
AS_culprit
positive_train_site
negative_train_site
non_par
lcr
segdup
fail_interval_qc
outside_ukb_capture_region
outside_broad_capture_region
variant_type
n_alt_alleles
has_star
allele_type
was_mixed
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
phred
raw_score
revel_max
spliceai_ds_max
pangolin_largest_ds
phylop
sift_max
polyphen_max
locus<GRCh38>array<str>array<struct{AC: int32, AF: float64, AN: int32, homozygote_count: int64}>int32float64int32int64strint32float64int32int64strarray<struct{faf95: float64, faf99: float64}>float64strfloat64strfloat64strfloat64strint32boolset<str>set<str>float64float64float64int64float64float64array<int32>float64int32float64float64float64float64int64float64float64array<int32>float64int32boolboolboolboolboolboolboolfloat64float64array<str>array<int32>array<int32>array<str>strint32strstrarray<struct{allele_num: int32, consequence_terms: array<str>, impact: str, variant_allele: str}>strarray<struct{allele_num: int32, consequence_terms: array<str>, high_inf_pos: str, impact: str, motif_feature_id: str, motif_name: str, motif_pos: int32, motif_score_change: float64, transcription_factors: array<str>, strand: int32, variant_allele: str}>array<struct{allele_num: int32, biotype: str, consequence_terms: array<str>, impact: str, regulatory_feature_id: str, variant_allele: str}>strint32int32array<struct{allele_num: int32, amino_acids: str, appris: str, biotype: str, canonical: int32, ccds: str, cdna_start: int32, cdna_end: int32, cds_end: int32, cds_start: int32, codons: str, consequence_terms: array<str>, distance: int32, domains: array<struct{db: str, name: str}>, exon: str, flags: str, gene_id: str, gene_pheno: int32, gene_symbol: str, gene_symbol_source: str, hgnc_id: str, hgvsc: str, hgvsp: str, hgvs_offset: int32, impact: str, intron: str, lof: str, lof_flags: str, lof_filter: str, lof_info: str, mane_select: str, mane_plus_clinical: str, mirna: array<str>, protein_end: int32, protein_start: int32, protein_id: str, source: str, strand: int32, transcript_id: str, tsl: int32, uniprot_isoform: array<str>, variant_allele: str}>strfloat64strboolboolboolboolboolboolboolboolstrint32boolstrboolarray<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64float32float32float64float32float64float64float64float64
chr11:113410736["G","A"][(15,1.03e-05,1461882,0),(15,1.03e-05,1461894,0),(0,0.00e+00,33480,0),(0,0.00e+00,44724,0),(0,0.00e+00,26136,0),(0,0.00e+00,39700,0),(0,0.00e+00,53420,0),(0,0.00e+00,5762,0),(15,1.35e-05,1112010,0),(0,0.00e+00,60396,0),(0,0.00e+00,86254,0),(10,1.36e-05,734642,0),(5,6.88e-06,727240,0),(0,0.00e+00,19326,0),(0,0.00e+00,14154,0),(0,0.00e+00,25690,0),(0,0.00e+00,19034,0),(0,0.00e+00,12636,0),(0,0.00e+00,13500,0),(0,0.00e+00,20712,0),(0,0.00e+00,18988,0),(0,0.00e+00,27648,0),(0,0.00e+00,25772,0),(0,0.00e+00,2506,0),(0,0.00e+00,3256,0),(10,1.75e-05,572288,0),(5,9.26e-06,539722,0),(0,0.00e+00,31800,0),(0,0.00e+00,28596,0),(0,0.00e+00,22036,0),(0,0.00e+00,64218,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,1998,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,3996,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5762,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26134,0),(0,0.00e+00,26136,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33478,0),(0,0.00e+00,33480,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,39698,0),(0,0.00e+00,39700,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,39998,0),(0,0.00e+00,40000,0),(0,0.00e+00,44724,0),(0,0.00e+00,44724,0),(0,0.00e+00,44724,0),(0,0.00e+00,44724,0),(0,0.00e+00,44722,0),(0,0.00e+00,44724,0),(0,0.00e+00,53420,0),(0,0.00e+00,53420,0),(0,0.00e+00,53420,0),(0,0.00e+00,53418,0),(0,0.00e+00,53420,0),(0,0.00e+00,60396,0),(0,0.00e+00,60396,0),(0,0.00e+00,60394,0),(0,0.00e+00,60396,0),(1,1.16e-05,86258,0),(0,0.00e+00,86254,0),(0,0.00e+00,86258,0),(2,2.00e-05,100000,0),(1,1.00e-05,100000,0),(2,1.00e-05,200000,0),(2,1.00e-05,200000,0),(7,1.75e-05,400000,0),(4,1.00e-05,400000,0),(14,1.40e-05,1000000,0),(10,1.00e-05,999994,0),(15,1.35e-05,1112010,0),(12,1.08e-05,1112006,0),(1,1.59e-06,628772,0),(1,1.59e-06,628784,0),(0,0.00e+00,17694,0),(0,0.00e+00,43740,0),(0,0.00e+00,20984,0),(0,0.00e+00,36070,0),(0,0.00e+00,53144,0),(0,0.00e+00,4142,0),(1,2.86e-06,350106,0),(0,0.00e+00,33098,0),(0,0.00e+00,69794,0),(1,3.49e-06,286246,0),(0,0.00e+00,342526,0),(0,0.00e+00,10286,0),(0,0.00e+00,7408,0),(0,0.00e+00,25040,0),(0,0.00e+00,18700,0),(0,0.00e+00,9838,0),(0,0.00e+00,11146,0),(0,0.00e+00,18298,0),(0,0.00e+00,17772,0),(0,0.00e+00,27398,0),(0,0.00e+00,25746,0),(0,0.00e+00,1916,0),(0,0.00e+00,2226,0),(1,6.16e-06,162220,0),(0,0.00e+00,187886,0),(0,0.00e+00,16752,0),(0,0.00e+00,16346,0),(0,0.00e+00,14498,0),(0,0.00e+00,55296,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,1998,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,3994,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4142,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20982,0),(0,0.00e+00,20984,0),(0,0.00e+00,33098,0),(0,0.00e+00,33098,0),(0,0.00e+00,33098,0),(1,3.02e-05,33098,0),(0,0.00e+00,33098,0),(0,0.00e+00,33096,0),(0,0.00e+00,33098,0),(0,0.00e+00,36070,0),(0,0.00e+00,36070,0),(0,0.00e+00,36070,0),(1,2.77e-05,36070,0),(0,0.00e+00,36068,0),(0,0.00e+00,36070,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(1,2.50e-05,40000,0),(0,0.00e+00,39998,0),(0,0.00e+00,40000,0),(0,0.00e+00,43740,0),(0,0.00e+00,43740,0),(1,2.29e-05,43740,0),(0,0.00e+00,43738,0),(1,2.29e-05,43740,0),(0,0.00e+00,53144,0),(1,1.88e-05,53144,0),(0,0.00e+00,53142,0),(1,1.88e-05,53144,0),(1,1.43e-05,69798,0),(0,0.00e+00,69794,0),(1,1.43e-05,69798,0),(1,1.00e-05,100000,0),(1,1.00e-05,100000,0),(1,5.00e-06,200000,0),(1,5.00e-06,199998,0),(1,2.86e-06,350106,0),(1,2.86e-06,350104,0),(1,2.50e-06,399994,0)]151.35e-0511120100"nfe"12.86e-063501060"nfe"[(6.16e-06,4.89e-06),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(8.10e-06,6.42e-06),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]8.10e-06"nfe"6.42e-06"nfe"NANANANA1True{"rs1159504221"}{}5.49e-016.00e+010.00e+00123071.16e+017.40e-02[386,195,316,166]6.55e-0110639.64e-166.00e+010.00e+009.11e-01118991.17e+019.70e-02[386,195,304,161]6.47e-011013FalseNANAFalseFalseFalseFalse7.50e+00-1.03e-05["ga4gh:VA.QVbOetW6APM1_3jfGLLwArt4GfwgT6jE","ga4gh:VA.OXPDvbuulFZ9CSk4XtIFat1UOKdMachQ"][113410735,113410735][113410736,113410736]["G","A"]"G/A"113410736".""chr11\t113410736\t.\tG\tA\t.\t.\tGT"NA"synonymous_variant"NANA"chr11"1134107361[(1,"L",NA,"protein_coding",NA,"CCDS8362.1",1312,1312,1236,1236,"ctC/ctT",["synonymous_variant"],NA,[("Gene3D","1"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321")],"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000346454.7:c.1236C>T","ENSP00000278597.5:p.Leu412=",NA,"LOW",NA,NA,NA,NA,NA,NA,NA,NA,412,412,"ENSP00000278597","Ensembl",-1,"ENST00000346454",1,["P14416-2"],"A"),(1,"L","P2","protein_coding",1,"CCDS8361.1",1677,1677,1323,1323,"ctC/ctT",["synonymous_variant"],NA,[("Gene3D","1"),("ENSP_mappings","5aer"),("ENSP_mappings","5aer"),("ENSP_mappings","6cm4"),("ENSP_mappings","6luq"),("ENSP_mappings","6vms"),("ENSP_mappings","7dfp"),("ENSP_mappings","7jvr"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321")],"8/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000362072.8:c.1323C>T","ENSP00000354859.3:p.Leu441=",NA,"LOW",NA,NA,NA,NA,NA,"NM_000795.4",NA,NA,441,441,"ENSP00000354859","Ensembl",-1,"ENST00000362072",1,["P14416-1"],"A"),(1,NA,NA,"processed_transcript",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],3639,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000535984",3,NA,"A"),(1,"L","A1","protein_coding",NA,NA,1329,1329,1329,1329,"ctC/ctT",["synonymous_variant"],NA,[("Gene3D","1"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321")],"8/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000538967.5:c.1329C>T","ENSP00000438215.1:p.Leu443=",NA,"LOW",NA,NA,NA,NA,NA,NA,NA,NA,443,443,"ENSP00000438215","Ensembl",-1,"ENST00000538967",5,["P14416-3"],"A"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],4558,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000539420",3,NA,"A"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],3128,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000540600",1,NA,"A"),(1,"L","P2","protein_coding",NA,"CCDS8361.1",1644,1644,1323,1323,"ctC/ctT",["synonymous_variant"],NA,[("Gene3D","1"),("ENSP_mappings","5aer"),("ENSP_mappings","5aer"),("ENSP_mappings","6cm4"),("ENSP_mappings","6luq"),("ENSP_mappings","6vms"),("ENSP_mappings","7dfp"),("ENSP_mappings","7jvr"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321")],"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000542968.5:c.1323C>T","ENSP00000442172.1:p.Leu441=",NA,"LOW",NA,NA,NA,NA,NA,NA,NA,NA,441,441,"ENSP00000442172","Ensembl",-1,"ENST00000542968",1,["P14416-1"],"A"),(1,"L","A1","protein_coding",NA,NA,1353,1353,1320,1320,"ctC/ctT",["synonymous_variant"],NA,[("Gene3D","1"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321")],"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000544518.5:c.1320C>T","ENSP00000441068.1:p.Leu440=",NA,"LOW",NA,NA,NA,NA,NA,NA,NA,NA,440,440,"ENSP00000441068","Ensembl",-1,"ENST00000544518",1,NA,"A"),(1,NA,NA,"lncRNA",1,NA,NA,NA,NA,NA,NA,["intron_variant","non_coding_transcript_variant"],NA,NA,NA,NA,"ENSG00000256757",NA,NA,NA,NA,"ENST00000546284.1:n.245-811G>A",NA,NA,"MODIFIER","2/3",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",1,"ENST00000546284",3,NA,"A"),(1,"L",NA,"protein_coding",1,NA,1677,1677,1323,1323,"ctC/ctT",["synonymous_variant"],NA,NA,"8/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_000795.4:c.1323C>T","NP_000786.1:p.Leu441=",NA,"LOW",NA,NA,NA,NA,NA,"ENST00000362072.8",NA,NA,441,441,"NP_000786.1","RefSeq",-1,"NM_000795.4",NA,NA,"A"),(1,"L",NA,"protein_coding",NA,NA,1590,1590,1236,1236,"ctC/ctT",["synonymous_variant"],NA,NA,"7/7",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_016574.4:c.1236C>T","NP_057658.2:p.Leu412=",NA,"LOW",NA,NA,NA,NA,NA,NA,NA,NA,412,412,"NP_057658.2","RefSeq",-1,"NM_016574.4",NA,NA,"A"),(1,"L",NA,"protein_coding",NA,NA,1405,1405,1323,1323,"ctC/ctT",["synonymous_variant"],NA,NA,"8/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","XM_017017296.2:c.1323C>T","XP_016872785.1:p.Leu441=",NA,"LOW",NA,NA,NA,NA,NA,NA,NA,NA,441,441,"XP_016872785.1","RefSeq",-1,"XM_017017296.2",NA,NA,"A")]"SNV"7.50e+00"AS_MQ"FalseFalseFalseFalseFalseTrueFalseFalse"multi-snv"2False"snv"False[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,8,0,71,0,314313,0,37,0,416496,0,0,0,0,0,0,16]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,61,328,11304,107355,345020,189098,36329,5607,2382,2757,3074,2931,2955,2914,2974,2923,2564,2680]07685[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,15]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,1,3,1,2,3,1,0,1,0,1,1,0,0]01[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,1,0,0,1,1,11,1,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][5,0,0,0,9,0,71,0,314313,0,37,0,416496,0,0,0,0,0,0,16]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,1,62,330,11305,107356,345020,189098,36329,5607,2382,2757,3074,2931,2955,2914,2974,2923,2564,2680]07685[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,15]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,1,3,1,2,3,1,0,1,0,1,1,0,0]01[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,1,0,0,1,1,11,1,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,1,2,4,2,4,1,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]003.44e+002.28e-01NA0.00e+001.00e-02-2.55e-01NANA
chr11:113410736["G","T"][(1,6.84e-07,1461882,0),(1,6.84e-07,1461894,0),(0,0.00e+00,33480,0),(0,0.00e+00,44724,0),(0,0.00e+00,26136,0),(0,0.00e+00,39700,0),(0,0.00e+00,53420,0),(0,0.00e+00,5762,0),(1,8.99e-07,1112010,0),(0,0.00e+00,60396,0),(0,0.00e+00,86254,0),(0,0.00e+00,734642,0),(1,1.38e-06,727240,0),(0,0.00e+00,19326,0),(0,0.00e+00,14154,0),(0,0.00e+00,25690,0),(0,0.00e+00,19034,0),(0,0.00e+00,12636,0),(0,0.00e+00,13500,0),(0,0.00e+00,20712,0),(0,0.00e+00,18988,0),(0,0.00e+00,27648,0),(0,0.00e+00,25772,0),(0,0.00e+00,2506,0),(0,0.00e+00,3256,0),(0,0.00e+00,572288,0),(1,1.85e-06,539722,0),(0,0.00e+00,31800,0),(0,0.00e+00,28596,0),(0,0.00e+00,22036,0),(0,0.00e+00,64218,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,1998,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,3996,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5762,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26134,0),(0,0.00e+00,26136,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33478,0),(0,0.00e+00,33480,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,39698,0),(0,0.00e+00,39700,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,39998,0),(0,0.00e+00,40000,0),(0,0.00e+00,44724,0),(0,0.00e+00,44724,0),(0,0.00e+00,44724,0),(0,0.00e+00,44724,0),(0,0.00e+00,44722,0),(0,0.00e+00,44724,0),(0,0.00e+00,53420,0),(0,0.00e+00,53420,0),(0,0.00e+00,53420,0),(0,0.00e+00,53418,0),(0,0.00e+00,53420,0),(0,0.00e+00,60396,0),(0,0.00e+00,60396,0),(0,0.00e+00,60394,0),(0,0.00e+00,60396,0),(0,0.00e+00,86258,0),(0,0.00e+00,86254,0),(0,0.00e+00,86258,0),(0,0.00e+00,100000,0),(0,0.00e+00,100000,0),(0,0.00e+00,200000,0),(0,0.00e+00,200000,0),(1,2.50e-06,400000,0),(1,2.50e-06,400000,0),(1,1.00e-06,1000000,0),(1,1.00e-06,999994,0),(1,8.99e-07,1112010,0),(1,8.99e-07,1112006,0),(0,0.00e+00,628772,0),(0,0.00e+00,628784,0),(0,0.00e+00,17694,0),(0,0.00e+00,43740,0),(0,0.00e+00,20984,0),(0,0.00e+00,36070,0),(0,0.00e+00,53144,0),(0,0.00e+00,4142,0),(0,0.00e+00,350106,0),(0,0.00e+00,33098,0),(0,0.00e+00,69794,0),(0,0.00e+00,286246,0),(0,0.00e+00,342526,0),(0,0.00e+00,10286,0),(0,0.00e+00,7408,0),(0,0.00e+00,25040,0),(0,0.00e+00,18700,0),(0,0.00e+00,9838,0),(0,0.00e+00,11146,0),(0,0.00e+00,18298,0),(0,0.00e+00,17772,0),(0,0.00e+00,27398,0),(0,0.00e+00,25746,0),(0,0.00e+00,1916,0),(0,0.00e+00,2226,0),(0,0.00e+00,162220,0),(0,0.00e+00,187886,0),(0,0.00e+00,16752,0),(0,0.00e+00,16346,0),(0,0.00e+00,14498,0),(0,0.00e+00,55296,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,1998,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,3994,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4142,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20982,0),(0,0.00e+00,20984,0),(0,0.00e+00,33098,0),(0,0.00e+00,33098,0),(0,0.00e+00,33098,0),(0,0.00e+00,33098,0),(0,0.00e+00,33098,0),(0,0.00e+00,33096,0),(0,0.00e+00,33098,0),(0,0.00e+00,36070,0),(0,0.00e+00,36070,0),(0,0.00e+00,36070,0),(0,0.00e+00,36070,0),(0,0.00e+00,36068,0),(0,0.00e+00,36070,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,39998,0),(0,0.00e+00,40000,0),(0,0.00e+00,43740,0),(0,0.00e+00,43740,0),(0,0.00e+00,43740,0),(0,0.00e+00,43738,0),(0,0.00e+00,43740,0),(0,0.00e+00,53144,0),(0,0.00e+00,53144,0),(0,0.00e+00,53142,0),(0,0.00e+00,53144,0),(0,0.00e+00,69798,0),(0,0.00e+00,69794,0),(0,0.00e+00,69798,0),(0,0.00e+00,100000,0),(0,0.00e+00,100000,0),(0,0.00e+00,200000,0),(0,0.00e+00,199998,0),(0,0.00e+00,350106,0),(0,0.00e+00,350104,0),(0,0.00e+00,399994,0)]18.99e-0711120100"nfe"NANANANANA[(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]NANANANANANANANA2TrueNA{}5.49e-016.00e+010.00e+00123071.16e+017.40e-02[386,195,316,166]6.55e-0110639.64e-166.00e+010.00e+003.28e-024088.16e+00-9.23e-01[386,195,12,5]7.90e-0150TrueFalseFalseFalseFalseFalseFalse5.00e+00-6.84e-07["ga4gh:VA.QVbOetW6APM1_3jfGLLwArt4GfwgT6jE","ga4gh:VA.4qhkDG1qrfqiD2TeOA6LYLsi4UGWF19l"][113410735,113410735][113410736,113410736]["G","T"]"G/T"113410736".""chr11\t113410736\t.\tG\tT\t.\t.\tGT"NA"synonymous_variant"NANA"chr11"1134107361[(1,"L",NA,"protein_coding",NA,"CCDS8362.1",1312,1312,1236,1236,"ctC/ctA",["synonymous_variant"],NA,[("Gene3D","1"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321")],"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000346454.7:c.1236C>A","ENSP00000278597.5:p.Leu412=",NA,"LOW",NA,NA,NA,NA,NA,NA,NA,NA,412,412,"ENSP00000278597","Ensembl",-1,"ENST00000346454",1,["P14416-2"],"T"),(1,"L","P2","protein_coding",1,"CCDS8361.1",1677,1677,1323,1323,"ctC/ctA",["synonymous_variant"],NA,[("Gene3D","1"),("ENSP_mappings","5aer"),("ENSP_mappings","5aer"),("ENSP_mappings","6cm4"),("ENSP_mappings","6luq"),("ENSP_mappings","6vms"),("ENSP_mappings","7dfp"),("ENSP_mappings","7jvr"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321")],"8/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000362072.8:c.1323C>A","ENSP00000354859.3:p.Leu441=",NA,"LOW",NA,NA,NA,NA,NA,"NM_000795.4",NA,NA,441,441,"ENSP00000354859","Ensembl",-1,"ENST00000362072",1,["P14416-1"],"T"),(1,NA,NA,"processed_transcript",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],3639,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000535984",3,NA,"T"),(1,"L","A1","protein_coding",NA,NA,1329,1329,1329,1329,"ctC/ctA",["synonymous_variant"],NA,[("Gene3D","1"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321")],"8/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000538967.5:c.1329C>A","ENSP00000438215.1:p.Leu443=",NA,"LOW",NA,NA,NA,NA,NA,NA,NA,NA,443,443,"ENSP00000438215","Ensembl",-1,"ENST00000538967",5,["P14416-3"],"T"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],4558,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000539420",3,NA,"T"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],3128,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000540600",1,NA,"T"),(1,"L","P2","protein_coding",NA,"CCDS8361.1",1644,1644,1323,1323,"ctC/ctA",["synonymous_variant"],NA,[("Gene3D","1"),("ENSP_mappings","5aer"),("ENSP_mappings","5aer"),("ENSP_mappings","6cm4"),("ENSP_mappings","6luq"),("ENSP_mappings","6vms"),("ENSP_mappings","7dfp"),("ENSP_mappings","7jvr"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321")],"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000542968.5:c.1323C>A","ENSP00000442172.1:p.Leu441=",NA,"LOW",NA,NA,NA,NA,NA,NA,NA,NA,441,441,"ENSP00000442172","Ensembl",-1,"ENST00000542968",1,["P14416-1"],"T"),(1,"L","A1","protein_coding",NA,NA,1353,1353,1320,1320,"ctC/ctA",["synonymous_variant"],NA,[("Gene3D","1"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321")],"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000544518.5:c.1320C>A","ENSP00000441068.1:p.Leu440=",NA,"LOW",NA,NA,NA,NA,NA,NA,NA,NA,440,440,"ENSP00000441068","Ensembl",-1,"ENST00000544518",1,NA,"T"),(1,NA,NA,"lncRNA",1,NA,NA,NA,NA,NA,NA,["intron_variant","non_coding_transcript_variant"],NA,NA,NA,NA,"ENSG00000256757",NA,NA,NA,NA,"ENST00000546284.1:n.245-811G>T",NA,NA,"MODIFIER","2/3",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",1,"ENST00000546284",3,NA,"T"),(1,"L",NA,"protein_coding",1,NA,1677,1677,1323,1323,"ctC/ctA",["synonymous_variant"],NA,NA,"8/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_000795.4:c.1323C>A","NP_000786.1:p.Leu441=",NA,"LOW",NA,NA,NA,NA,NA,"ENST00000362072.8",NA,NA,441,441,"NP_000786.1","RefSeq",-1,"NM_000795.4",NA,NA,"T"),(1,"L",NA,"protein_coding",NA,NA,1590,1590,1236,1236,"ctC/ctA",["synonymous_variant"],NA,NA,"7/7",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_016574.4:c.1236C>A","NP_057658.2:p.Leu412=",NA,"LOW",NA,NA,NA,NA,NA,NA,NA,NA,412,412,"NP_057658.2","RefSeq",-1,"NM_016574.4",NA,NA,"T"),(1,"L",NA,"protein_coding",NA,NA,1405,1405,1323,1323,"ctC/ctA",["synonymous_variant"],NA,NA,"8/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","XM_017017296.2:c.1323C>A","XP_016872785.1:p.Leu441=",NA,"LOW",NA,NA,NA,NA,NA,NA,NA,NA,441,441,"XP_016872785.1","RefSeq",-1,"XM_017017296.2",NA,NA,"T")]"SNV"5.00e+00"AS_MQ"FalseFalseFalseFalseFalseTrueFalseFalse"multi-snv"2False"snv"False[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,8,0,71,0,314313,0,37,0,416496,0,0,0,0,0,0,16]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,61,328,11304,107355,345020,189098,36329,5607,2382,2757,3074,2931,2955,2914,2974,2923,2564,2680]07685[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][5,0,0,0,9,0,71,0,314313,0,37,0,416496,0,0,0,0,0,0,16]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,1,62,330,11305,107356,345020,189098,36329,5607,2382,2757,3074,2931,2955,2914,2974,2923,2564,2680]07685[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,1,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]002.96e+001.86e-01NA0.00e+003.00e-02-2.55e-01NANA
chr11:113410739["G","A"][(1,6.84e-07,1461882,0),(1,6.84e-07,1461894,0),(0,0.00e+00,33478,0),(0,0.00e+00,44724,0),(0,0.00e+00,26136,0),(0,0.00e+00,39700,0),(0,0.00e+00,53418,0),(0,0.00e+00,5764,0),(0,0.00e+00,1112010,0),(1,1.66e-05,60396,0),(0,0.00e+00,86256,0),(1,1.36e-06,734642,0),(0,0.00e+00,727240,0),(0,0.00e+00,19326,0),(0,0.00e+00,14152,0),(0,0.00e+00,25690,0),(0,0.00e+00,19034,0),(0,0.00e+00,12636,0),(0,0.00e+00,13500,0),(0,0.00e+00,20712,0),(0,0.00e+00,18988,0),(0,0.00e+00,27646,0),(0,0.00e+00,25772,0),(0,0.00e+00,2504,0),(0,0.00e+00,3260,0),(0,0.00e+00,572288,0),(0,0.00e+00,539722,0),(1,3.14e-05,31800,0),(0,0.00e+00,28596,0),(0,0.00e+00,22040,0),(0,0.00e+00,64216,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,3998,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5764,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,19998,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,26134,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,33478,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33478,0),(0,0.00e+00,33480,0),(1,2.99e-05,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,39698,0),(0,0.00e+00,39700,0),(1,2.52e-05,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,40000,0),(0,0.00e+00,39998,0),(0,0.00e+00,40000,0),(1,2.50e-05,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,44724,0),(0,0.00e+00,44722,0),(0,0.00e+00,44724,0),(1,2.24e-05,44724,0),(0,0.00e+00,44724,0),(0,0.00e+00,44724,0),(0,0.00e+00,53418,0),(0,0.00e+00,53420,0),(1,1.87e-05,53420,0),(0,0.00e+00,53420,0),(0,0.00e+00,53420,0),(0,0.00e+00,60396,0),(1,1.66e-05,60396,0),(0,0.00e+00,60396,0),(0,0.00e+00,60396,0),(0,0.00e+00,86258,0),(0,0.00e+00,86256,0),(0,0.00e+00,86258,0),(0,0.00e+00,100000,0),(0,0.00e+00,100000,0),(0,0.00e+00,200000,0),(0,0.00e+00,200000,0),(0,0.00e+00,400000,0),(0,0.00e+00,400000,0),(0,0.00e+00,1000000,0),(1,1.00e-06,999994,0),(0,0.00e+00,1112010,0),(1,8.99e-07,1112006,0),(1,1.59e-06,628772,0),(1,1.59e-06,628784,0),(0,0.00e+00,17692,0),(0,0.00e+00,43740,0),(0,0.00e+00,20984,0),(0,0.00e+00,36070,0),(0,0.00e+00,53142,0),(0,0.00e+00,4144,0),(0,0.00e+00,350106,0),(1,3.02e-05,33098,0),(0,0.00e+00,69796,0),(1,3.49e-06,286246,0),(0,0.00e+00,342526,0),(0,0.00e+00,10286,0),(0,0.00e+00,7406,0),(0,0.00e+00,25040,0),(0,0.00e+00,18700,0),(0,0.00e+00,9838,0),(0,0.00e+00,11146,0),(0,0.00e+00,18298,0),(0,0.00e+00,17772,0),(0,0.00e+00,27396,0),(0,0.00e+00,25746,0),(0,0.00e+00,1914,0),(0,0.00e+00,2230,0),(0,0.00e+00,162220,0),(0,0.00e+00,187886,0),(1,5.97e-05,16752,0),(0,0.00e+00,16346,0),(0,0.00e+00,14502,0),(0,0.00e+00,55294,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,1998,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,3996,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4144,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,9998,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,17692,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(1,5.00e-05,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(1,4.77e-05,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,33098,0),(0,0.00e+00,33098,0),(0,0.00e+00,33096,0),(0,0.00e+00,33098,0),(1,3.02e-05,33098,0),(0,0.00e+00,33098,0),(0,0.00e+00,33098,0),(0,0.00e+00,36070,0),(0,0.00e+00,36070,0),(0,0.00e+00,36068,0),(0,0.00e+00,36070,0),(0,0.00e+00,36070,0),(0,0.00e+00,36070,0),(0,0.00e+00,40000,0),(0,0.00e+00,39998,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,43740,0),(0,0.00e+00,43738,0),(0,0.00e+00,43740,0),(0,0.00e+00,43740,0),(0,0.00e+00,43740,0),(0,0.00e+00,53142,0),(0,0.00e+00,53144,0),(0,0.00e+00,53144,0),(0,0.00e+00,53144,0),(0,0.00e+00,69798,0),(0,0.00e+00,69796,0),(0,0.00e+00,69798,0),(0,0.00e+00,100000,0),(0,0.00e+00,100000,0),(0,0.00e+00,200000,0),(0,0.00e+00,200000,0),(0,0.00e+00,350106,0),(0,0.00e+00,350102,0),(1,2.50e-06,399994,0)]NANANANANANANANANANA[(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]NANANANANANANANA1FalseNA{}4.26e+006.00e+010.00e+005741.10e+015.32e-01[23,8,13,8]2.93e-01524.26e+006.00e+010.00e+002.12e-015741.10e+015.32e-01[23,8,13,8]2.93e-0152TrueFalseFalseFalseFalseFalseFalse5.73e+00-6.84e-07["ga4gh:VA.uv4czuJ2nBK7lcR9wkK2XxHxMSui2-ME","ga4gh:VA.bA0gzyCzudiyDon8QV-8d84fdAMj_fHU"][113410738,113410738][113410739,113410739]["G","A"]"G/A"113410739".""chr11\t113410739\t.\tG\tA\t.\t.\tGT"NA"synonymous_variant"NANA"chr11"1134107391[(1,"I",NA,"protein_coding",NA,"CCDS8362.1",1309,1309,1233,1233,"atC/atT",["synonymous_variant"],NA,[("Gene3D","1"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321")],"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000346454.7:c.1233C>T","ENSP00000278597.5:p.Ile411=",NA,"LOW",NA,NA,NA,NA,NA,NA,NA,NA,411,411,"ENSP00000278597","Ensembl",-1,"ENST00000346454",1,["P14416-2"],"A"),(1,"I","P2","protein_coding",1,"CCDS8361.1",1674,1674,1320,1320,"atC/atT",["synonymous_variant"],NA,[("Gene3D","1"),("ENSP_mappings","5aer"),("ENSP_mappings","5aer"),("ENSP_mappings","6cm4"),("ENSP_mappings","6luq"),("ENSP_mappings","6vms"),("ENSP_mappings","7dfp"),("ENSP_mappings","7jvr"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321")],"8/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000362072.8:c.1320C>T","ENSP00000354859.3:p.Ile440=",NA,"LOW",NA,NA,NA,NA,NA,"NM_000795.4",NA,NA,440,440,"ENSP00000354859","Ensembl",-1,"ENST00000362072",1,["P14416-1"],"A"),(1,NA,NA,"processed_transcript",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],3636,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000535984",3,NA,"A"),(1,"I","A1","protein_coding",NA,NA,1326,1326,1326,1326,"atC/atT",["synonymous_variant"],NA,[("Gene3D","1"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321")],"8/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000538967.5:c.1326C>T","ENSP00000438215.1:p.Ile442=",NA,"LOW",NA,NA,NA,NA,NA,NA,NA,NA,442,442,"ENSP00000438215","Ensembl",-1,"ENST00000538967",5,["P14416-3"],"A"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],4555,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000539420",3,NA,"A"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],3125,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000540600",1,NA,"A"),(1,"I","P2","protein_coding",NA,"CCDS8361.1",1641,1641,1320,1320,"atC/atT",["synonymous_variant"],NA,[("Gene3D","1"),("ENSP_mappings","5aer"),("ENSP_mappings","5aer"),("ENSP_mappings","6cm4"),("ENSP_mappings","6luq"),("ENSP_mappings","6vms"),("ENSP_mappings","7dfp"),("ENSP_mappings","7jvr"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321")],"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000542968.5:c.1320C>T","ENSP00000442172.1:p.Ile440=",NA,"LOW",NA,NA,NA,NA,NA,NA,NA,NA,440,440,"ENSP00000442172","Ensembl",-1,"ENST00000542968",1,["P14416-1"],"A"),(1,"I","A1","protein_coding",NA,NA,1350,1350,1317,1317,"atC/atT",["synonymous_variant"],NA,[("Gene3D","1"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321")],"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000544518.5:c.1317C>T","ENSP00000441068.1:p.Ile439=",NA,"LOW",NA,NA,NA,NA,NA,NA,NA,NA,439,439,"ENSP00000441068","Ensembl",-1,"ENST00000544518",1,NA,"A"),(1,NA,NA,"lncRNA",1,NA,NA,NA,NA,NA,NA,["intron_variant","non_coding_transcript_variant"],NA,NA,NA,NA,"ENSG00000256757",NA,NA,NA,NA,"ENST00000546284.1:n.245-808G>A",NA,NA,"MODIFIER","2/3",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",1,"ENST00000546284",3,NA,"A"),(1,"I",NA,"protein_coding",1,NA,1674,1674,1320,1320,"atC/atT",["synonymous_variant"],NA,NA,"8/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_000795.4:c.1320C>T","NP_000786.1:p.Ile440=",NA,"LOW",NA,NA,NA,NA,NA,"ENST00000362072.8",NA,NA,440,440,"NP_000786.1","RefSeq",-1,"NM_000795.4",NA,NA,"A"),(1,"I",NA,"protein_coding",NA,NA,1587,1587,1233,1233,"atC/atT",["synonymous_variant"],NA,NA,"7/7",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_016574.4:c.1233C>T","NP_057658.2:p.Ile411=",NA,"LOW",NA,NA,NA,NA,NA,NA,NA,NA,411,411,"NP_057658.2","RefSeq",-1,"NM_016574.4",NA,NA,"A"),(1,"I",NA,"protein_coding",NA,NA,1402,1402,1320,1320,"atC/atT",["synonymous_variant"],NA,NA,"8/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","XM_017017296.2:c.1320C>T","XP_016872785.1:p.Ile440=",NA,"LOW",NA,NA,NA,NA,NA,NA,NA,NA,440,440,"XP_016872785.1","RefSeq",-1,"XM_017017296.2",NA,NA,"A")]"SNV"5.73e+00"AS_MQ"FalseFalseFalseFalseFalseTrueFalseFalse"snv"1False"snv"False[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,9,0,68,0,314320,0,24,0,416519,0,0,0,0,0,0,1]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,55,309,11275,107353,345050,189133,36332,5605,2379,2755,3073,2932,2954,2914,2973,2922,2564,2680]07683[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][5,0,0,0,10,0,68,0,314320,0,24,0,416519,0,0,0,0,0,0,1]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,1,56,312,11275,107353,345051,189133,36332,5605,2379,2755,3073,2932,2954,2914,2973,2922,2564,2680]07683[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]001.03e+018.89e-01NA0.00e+000.00e+003.26e+00NANA
chr11:113410751["G","A"][(1,6.84e-07,1461894,0),(1,6.84e-07,1461894,0),(0,0.00e+00,33480,0),(0,0.00e+00,44724,0),(0,0.00e+00,26136,0),(0,0.00e+00,39700,0),(0,0.00e+00,53420,0),(0,0.00e+00,5768,0),(1,8.99e-07,1112012,0),(0,0.00e+00,60396,0),(0,0.00e+00,86258,0),(1,1.36e-06,734646,0),(0,0.00e+00,727248,0),(0,0.00e+00,19326,0),(0,0.00e+00,14154,0),(0,0.00e+00,25690,0),(0,0.00e+00,19034,0),(0,0.00e+00,12636,0),(0,0.00e+00,13500,0),(0,0.00e+00,20712,0),(0,0.00e+00,18988,0),(0,0.00e+00,27648,0),(0,0.00e+00,25772,0),(0,0.00e+00,2506,0),(0,0.00e+00,3262,0),(1,1.75e-06,572288,0),(0,0.00e+00,539724,0),(0,0.00e+00,31800,0),(0,0.00e+00,28596,0),(0,0.00e+00,22040,0),(0,0.00e+00,64218,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,44724,0),(0,0.00e+00,44724,0),(0,0.00e+00,44724,0),(0,0.00e+00,44724,0),(0,0.00e+00,44724,0),(0,0.00e+00,44724,0),(0,0.00e+00,53420,0),(0,0.00e+00,53420,0),(0,0.00e+00,53420,0),(0,0.00e+00,53420,0),(0,0.00e+00,53420,0),(0,0.00e+00,60396,0),(0,0.00e+00,60396,0),(0,0.00e+00,60396,0),(0,0.00e+00,60396,0),(0,0.00e+00,86258,0),(0,0.00e+00,86258,0),(0,0.00e+00,86258,0),(0,0.00e+00,100000,0),(0,0.00e+00,100000,0),(1,5.00e-06,200000,0),(1,5.00e-06,200000,0),(1,2.50e-06,400000,0),(1,2.50e-06,400000,0),(1,1.00e-06,1000000,0),(1,1.00e-06,1000000,0),(1,8.99e-07,1112012,0),(1,8.99e-07,1112012,0),(1,1.59e-06,628784,0),(1,1.59e-06,628784,0),(0,0.00e+00,17694,0),(0,0.00e+00,43740,0),(0,0.00e+00,20984,0),(0,0.00e+00,36070,0),(0,0.00e+00,53144,0),(0,0.00e+00,4148,0),(1,2.86e-06,350108,0),(0,0.00e+00,33098,0),(0,0.00e+00,69798,0),(1,3.49e-06,286250,0),(0,0.00e+00,342534,0),(0,0.00e+00,10286,0),(0,0.00e+00,7408,0),(0,0.00e+00,25040,0),(0,0.00e+00,18700,0),(0,0.00e+00,9838,0),(0,0.00e+00,11146,0),(0,0.00e+00,18298,0),(0,0.00e+00,17772,0),(0,0.00e+00,27398,0),(0,0.00e+00,25746,0),(0,0.00e+00,1916,0),(0,0.00e+00,2232,0),(1,6.16e-06,162220,0),(0,0.00e+00,187888,0),(0,0.00e+00,16752,0),(0,0.00e+00,16346,0),(0,0.00e+00,14502,0),(0,0.00e+00,55296,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,33098,0),(0,0.00e+00,33098,0),(0,0.00e+00,33098,0),(1,3.02e-05,33098,0),(0,0.00e+00,33098,0),(0,0.00e+00,33098,0),(0,0.00e+00,33098,0),(0,0.00e+00,36070,0),(0,0.00e+00,36070,0),(0,0.00e+00,36070,0),(1,2.77e-05,36070,0),(0,0.00e+00,36070,0),(0,0.00e+00,36070,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(1,2.50e-05,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,43740,0),(0,0.00e+00,43740,0),(1,2.29e-05,43740,0),(0,0.00e+00,43740,0),(0,0.00e+00,43740,0),(0,0.00e+00,53144,0),(1,1.88e-05,53144,0),(0,0.00e+00,53144,0),(0,0.00e+00,53144,0),(1,1.43e-05,69798,0),(0,0.00e+00,69798,0),(1,1.43e-05,69798,0),(1,1.00e-05,100000,0),(1,1.00e-05,100000,0),(1,5.00e-06,200000,0),(1,5.00e-06,200000,0),(1,2.86e-06,350108,0),(1,2.86e-06,350108,0),(1,2.50e-06,400000,0)]18.99e-0711120120"nfe"12.86e-063501080"nfe"[(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]NANANANANANANANA1FalseNA{}8.26e+006.00e+010.00e+0010982.03e+01-7.69e-01[5,11,21,18]4.64e-01548.26e+006.00e+010.00e+003.84e-0310982.03e+01-7.69e-01[5,11,21,18]4.64e-0154TrueFalseFalseFalseFalseFalseFalse2.35e+00-6.84e-07["ga4gh:VA.euCgAx3O0dYWO86rUZqEKUoRwnhnhr-k","ga4gh:VA.XQ_C7TKjlSKQw_ABwxZ_ZFkA_UwtEjVw"][113410750,113410750][113410751,113410751]["G","A"]"G/A"113410751".""chr11\t113410751\t.\tG\tA\t.\t.\tGT"NA"synonymous_variant"NANA"chr11"1134107511[(1,"A",NA,"protein_coding",NA,"CCDS8362.1",1297,1297,1221,1221,"gcC/gcT",["synonymous_variant"],NA,[("Gene3D","1"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321"),("CDD","cd15309")],"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000346454.7:c.1221C>T","ENSP00000278597.5:p.Ala407=",NA,"LOW",NA,NA,NA,NA,NA,NA,NA,NA,407,407,"ENSP00000278597","Ensembl",-1,"ENST00000346454",1,["P14416-2"],"A"),(1,"A","P2","protein_coding",1,"CCDS8361.1",1662,1662,1308,1308,"gcC/gcT",["synonymous_variant"],NA,[("Gene3D","1"),("ENSP_mappings","5aer"),("ENSP_mappings","5aer"),("ENSP_mappings","6cm4"),("ENSP_mappings","6luq"),("ENSP_mappings","6vms"),("ENSP_mappings","7dfp"),("ENSP_mappings","7jvr"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321"),("CDD","cd15309")],"8/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000362072.8:c.1308C>T","ENSP00000354859.3:p.Ala436=",NA,"LOW",NA,NA,NA,NA,NA,"NM_000795.4",NA,NA,436,436,"ENSP00000354859","Ensembl",-1,"ENST00000362072",1,["P14416-1"],"A"),(1,NA,NA,"processed_transcript",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],3624,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000535984",3,NA,"A"),(1,"A","A1","protein_coding",NA,NA,1314,1314,1314,1314,"gcC/gcT",["synonymous_variant"],NA,[("Gene3D","1"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321"),("CDD","cd15309")],"8/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000538967.5:c.1314C>T","ENSP00000438215.1:p.Ala438=",NA,"LOW",NA,NA,NA,NA,NA,NA,NA,NA,438,438,"ENSP00000438215","Ensembl",-1,"ENST00000538967",5,["P14416-3"],"A"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],4543,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000539420",3,NA,"A"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],3113,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000540600",1,NA,"A"),(1,"A","P2","protein_coding",NA,"CCDS8361.1",1629,1629,1308,1308,"gcC/gcT",["synonymous_variant"],NA,[("Gene3D","1"),("ENSP_mappings","5aer"),("ENSP_mappings","5aer"),("ENSP_mappings","6cm4"),("ENSP_mappings","6luq"),("ENSP_mappings","6vms"),("ENSP_mappings","7dfp"),("ENSP_mappings","7jvr"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321"),("CDD","cd15309")],"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000542968.5:c.1308C>T","ENSP00000442172.1:p.Ala436=",NA,"LOW",NA,NA,NA,NA,NA,NA,NA,NA,436,436,"ENSP00000442172","Ensembl",-1,"ENST00000542968",1,["P14416-1"],"A"),(1,"A","A1","protein_coding",NA,NA,1338,1338,1305,1305,"gcC/gcT",["synonymous_variant"],NA,[("Gene3D","1"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321"),("CDD","cd15309")],"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000544518.5:c.1305C>T","ENSP00000441068.1:p.Ala435=",NA,"LOW",NA,NA,NA,NA,NA,NA,NA,NA,435,435,"ENSP00000441068","Ensembl",-1,"ENST00000544518",1,NA,"A"),(1,NA,NA,"lncRNA",1,NA,NA,NA,NA,NA,NA,["intron_variant","non_coding_transcript_variant"],NA,NA,NA,NA,"ENSG00000256757",NA,NA,NA,NA,"ENST00000546284.1:n.245-796G>A",NA,NA,"MODIFIER","2/3",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",1,"ENST00000546284",3,NA,"A"),(1,"A",NA,"protein_coding",1,NA,1662,1662,1308,1308,"gcC/gcT",["synonymous_variant"],NA,NA,"8/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_000795.4:c.1308C>T","NP_000786.1:p.Ala436=",NA,"LOW",NA,NA,NA,NA,NA,"ENST00000362072.8",NA,NA,436,436,"NP_000786.1","RefSeq",-1,"NM_000795.4",NA,NA,"A"),(1,"A",NA,"protein_coding",NA,NA,1575,1575,1221,1221,"gcC/gcT",["synonymous_variant"],NA,NA,"7/7",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_016574.4:c.1221C>T","NP_057658.2:p.Ala407=",NA,"LOW",NA,NA,NA,NA,NA,NA,NA,NA,407,407,"NP_057658.2","RefSeq",-1,"NM_016574.4",NA,NA,"A"),(1,"A",NA,"protein_coding",NA,NA,1390,1390,1308,1308,"gcC/gcT",["synonymous_variant"],NA,NA,"8/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","XM_017017296.2:c.1308C>T","XP_016872785.1:p.Ala436=",NA,"LOW",NA,NA,NA,NA,NA,NA,NA,NA,436,436,"XP_016872785.1","RefSeq",-1,"XM_017017296.2",NA,NA,"A")]"SNV"2.35e+00"AS_MQ"FalseFalseFalseFalseFalseTrueFalseFalse"snv"1False"snv"False[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,1,0,28,0,314363,0,2,0,416552,0,0,0,0,0,0,1]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,18,272,11233,107401,345096,189157,36337,5604,2379,2755,3073,2932,2954,2914,2973,2922,2564,2680]07683[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,1,0,28,0,314363,0,2,0,416552,0,0,0,0,0,0,1]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,18,272,11233,107401,345096,189157,36337,5604,2379,2755,3073,2932,2954,2914,2973,2922,2564,2680]07683[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]001.20e+011.03e+00NA0.00e+000.00e+008.67e+00NANA
chr11:113410754["C","T"][(576,3.94e-04,1461892,2),(576,3.94e-04,1461894,2),(12,3.58e-04,33480,1),(43,9.61e-04,44724,0),(144,5.51e-03,26136,0),(0,0.00e+00,39700,0),(0,0.00e+00,53418,0),(8,1.39e-03,5768,0),(328,2.95e-04,1112012,0),(41,6.79e-04,60396,1),(0,0.00e+00,86258,0),(291,3.96e-04,734646,0),(285,3.92e-04,727246,2),(3,1.55e-04,19326,0),(9,6.36e-04,14154,1),(25,9.73e-04,25690,0),(18,9.46e-04,19034,0),(73,5.78e-03,12636,0),(71,5.26e-03,13500,0),(0,0.00e+00,20712,0),(0,0.00e+00,18988,0),(0,0.00e+00,27648,0),(0,0.00e+00,25770,0),(1,3.99e-04,2506,0),(7,2.15e-03,3262,0),(169,2.95e-04,572288,0),(159,2.95e-04,539724,0),(20,6.29e-04,31800,0),(21,7.34e-04,28596,1),(0,0.00e+00,22040,0),(0,0.00e+00,64218,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(3,1.50e-02,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(5,5.00e-03,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(11,5.50e-03,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(2,1.00e-03,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(2,5.00e-04,4000,0),(6,1.50e-03,4000,0),(22,5.50e-03,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(3,7.50e-04,4000,0),(1,2.50e-04,4000,0),(2,5.00e-04,4000,0),(0,0.00e+00,4000,0),(1,2.50e-04,4000,0),(4,6.93e-04,5768,0),(7,1.21e-03,5768,0),(30,5.20e-03,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(8,1.39e-03,5768,0),(1,1.73e-04,5768,0),(2,3.47e-04,5768,0),(0,0.00e+00,5768,0),(2,3.47e-04,5768,0),(6,6.00e-04,10000,0),(11,1.10e-03,10000,0),(54,5.40e-03,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(1,1.00e-04,10000,0),(6,6.00e-04,10000,0),(0,0.00e+00,10000,0),(2,2.00e-04,10000,0),(8,4.00e-04,20000,0),(20,1.00e-03,20000,0),(115,5.75e-03,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(5,2.50e-04,20000,0),(11,5.50e-04,20000,1),(0,0.00e+00,20000,0),(6,3.00e-04,20000,0),(9,3.44e-04,26136,0),(23,8.80e-04,26136,0),(144,5.51e-03,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(8,3.06e-04,26136,0),(13,4.97e-04,26136,1),(0,0.00e+00,26136,0),(8,3.06e-04,26136,0),(12,3.58e-04,33480,1),(28,8.36e-04,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(11,3.29e-04,33480,0),(16,4.78e-04,33480,1),(0,0.00e+00,33480,0),(12,3.58e-04,33480,0),(37,9.32e-04,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(13,3.27e-04,39700,0),(23,5.79e-04,39700,1),(0,0.00e+00,39700,0),(13,3.27e-04,39700,0),(38,9.50e-04,40000,0),(0,0.00e+00,40000,0),(13,3.25e-04,40000,0),(23,5.75e-04,40000,1),(0,0.00e+00,40000,0),(13,3.25e-04,40000,0),(43,9.61e-04,44724,0),(0,0.00e+00,44724,0),(16,3.58e-04,44724,0),(29,6.48e-04,44724,1),(0,0.00e+00,44724,0),(17,3.80e-04,44724,0),(0,0.00e+00,53418,0),(18,3.37e-04,53420,0),(35,6.55e-04,53420,1),(0,0.00e+00,53420,0),(19,3.56e-04,53420,0),(18,2.98e-04,60396,0),(41,6.79e-04,60396,1),(0,0.00e+00,60396,0),(23,3.81e-04,60396,0),(31,3.59e-04,86258,0),(0,0.00e+00,86258,0),(32,3.71e-04,86258,0),(34,3.40e-04,100000,0),(42,4.20e-04,100000,0),(57,2.85e-04,200000,0),(82,4.10e-04,200000,0),(116,2.90e-04,400000,0),(156,3.90e-04,400000,1),(293,2.93e-04,1000000,0),(378,3.78e-04,1000000,1),(328,2.95e-04,1112012,0),(435,3.91e-04,1112012,1),(283,4.50e-04,628782,0),(283,4.50e-04,628784,0),(8,4.52e-04,17694,0),(40,9.14e-04,43740,0),(116,5.53e-03,20984,0),(0,0.00e+00,36070,0),(0,0.00e+00,53142,0),(4,9.64e-04,4148,0),(90,2.57e-04,350108,0),(25,7.55e-04,33098,0),(0,0.00e+00,69798,0),(140,4.89e-04,286250,0),(143,4.17e-04,342532,0),(1,9.72e-05,10286,0),(7,9.45e-04,7408,0),(23,9.19e-04,25040,0),(17,9.09e-04,18700,0),(60,6.10e-03,9838,0),(56,5.02e-03,11146,0),(0,0.00e+00,18298,0),(0,0.00e+00,17772,0),(0,0.00e+00,27398,0),(0,0.00e+00,25744,0),(1,5.22e-04,1916,0),(3,1.34e-03,2232,0),(43,2.65e-04,162220,0),(47,2.50e-04,187888,0),(12,7.16e-04,16752,0),(13,7.95e-04,16346,0),(0,0.00e+00,14502,0),(0,0.00e+00,55296,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(3,1.50e-02,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(6,6.00e-03,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(1,1.00e-03,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(2,1.00e-03,2000,0),(0,0.00e+00,2000,0),(13,6.50e-03,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(2,1.00e-03,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(3,7.50e-04,4000,0),(4,1.00e-03,4000,0),(21,5.25e-03,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(4,1.00e-03,4000,0),(1,2.50e-04,4000,0),(3,7.50e-04,4000,0),(0,0.00e+00,4000,0),(1,2.50e-04,4000,0),(3,7.23e-04,4148,0),(4,9.64e-04,4148,0),(24,5.79e-03,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(4,9.64e-04,4148,0),(1,2.41e-04,4148,0),(3,7.23e-04,4148,0),(0,0.00e+00,4148,0),(1,2.41e-04,4148,0),(6,6.00e-04,10000,0),(9,9.00e-04,10000,0),(54,5.40e-03,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(2,2.00e-04,10000,0),(6,6.00e-04,10000,0),(0,0.00e+00,10000,0),(5,5.00e-04,10000,0),(8,4.52e-04,17694,0),(15,8.48e-04,17694,0),(99,5.60e-03,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(4,2.26e-04,17694,0),(10,5.65e-04,17694,0),(0,0.00e+00,17694,0),(6,3.39e-04,17694,0),(18,9.00e-04,20000,0),(111,5.55e-03,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(4,2.00e-04,20000,0),(13,6.50e-04,20000,0),(0,0.00e+00,20000,0),(8,4.00e-04,20000,0),(19,9.05e-04,20984,0),(116,5.53e-03,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(4,1.91e-04,20984,0),(13,6.20e-04,20984,0),(0,0.00e+00,20984,0),(9,4.29e-04,20984,0),(26,7.86e-04,33098,0),(0,0.00e+00,33098,0),(0,0.00e+00,33098,0),(7,2.11e-04,33098,0),(25,7.55e-04,33098,0),(0,0.00e+00,33098,0),(15,4.53e-04,33098,0),(31,8.59e-04,36070,0),(0,0.00e+00,36070,0),(0,0.00e+00,36070,0),(7,1.94e-04,36070,0),(0,0.00e+00,36070,0),(15,4.16e-04,36070,0),(37,9.25e-04,40000,0),(0,0.00e+00,40000,0),(7,1.75e-04,40000,0),(0,0.00e+00,40000,0),(16,4.00e-04,40000,0),(40,9.14e-04,43740,0),(0,0.00e+00,43740,0),(7,1.60e-04,43740,0),(0,0.00e+00,43740,0),(21,4.80e-04,43740,0),(0,0.00e+00,53142,0),(7,1.32e-04,53144,0),(0,0.00e+00,53144,0),(22,4.14e-04,53144,0),(13,1.86e-04,69798,0),(0,0.00e+00,69798,0),(30,4.30e-04,69798,0),(24,2.40e-04,100000,0),(40,4.00e-04,100000,0),(50,2.50e-04,200000,0),(90,4.50e-04,200000,0),(90,2.57e-04,350108,0),(147,4.20e-04,350108,0),(176,4.40e-04,400000,0)]81.39e-0357680"mid"49.64e-0441480"mid"[(3.67e-04,3.57e-04),(2.06e-04,1.62e-04),(7.33e-04,6.53e-04),(0.00e+00,0.00e+00),(6.90e-04,5.04e-04),(2.68e-04,2.58e-04),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,(4.07e-04,3.90e-04),(2.24e-04,1.64e-04),(6.90e-04,6.12e-04),(0.00e+00,0.00e+00),(3.29e-04,1.98e-04),(2.13e-04,1.98e-04),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]7.33e-04"amr"6.53e-04"amr"6.90e-04"amr"6.12e-04"amr"1False{"rs77930100"}{}1.45e-156.00e+010.00e+009476781.23e+01-7.00e-03[20804,19237,19605,17401]7.35e-01770271.45e-156.00e+010.00e+001.00e+009476781.23e+017.00e-03[20804,19237,19605,17401]7.35e-0177027FalseNANAFalseFalseFalseFalse8.87e+006.55e-03["ga4gh:VA.8tDWBt70tPv5g5-MDqwnSl1-pElrIl1E","ga4gh:VA.f3fUPUzazutlUq0GulwJsX0XJSbepMoo"][113410753,113410753][113410754,113410754]["C","T"]"C/T"113410754".""chr11\t113410754\t.\tC\tT\t.\t.\tGT"NA"synonymous_variant"NANA"chr11"1134107541[(1,"K",NA,"protein_coding",NA,"CCDS8362.1",1294,1294,1218,1218,"aaG/aaA",["synonymous_variant"],NA,[("Gene3D","1"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321"),("CDD","cd15309")],"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000346454.7:c.1218G>A","ENSP00000278597.5:p.Lys406=",NA,"LOW",NA,NA,NA,NA,NA,NA,NA,NA,406,406,"ENSP00000278597","Ensembl",-1,"ENST00000346454",1,["P14416-2"],"T"),(1,"K","P2","protein_coding",1,"CCDS8361.1",1659,1659,1305,1305,"aaG/aaA",["synonymous_variant"],NA,[("Gene3D","1"),("ENSP_mappings","5aer"),("ENSP_mappings","5aer"),("ENSP_mappings","6cm4"),("ENSP_mappings","6luq"),("ENSP_mappings","6vms"),("ENSP_mappings","7dfp"),("ENSP_mappings","7jvr"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321"),("CDD","cd15309")],"8/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000362072.8:c.1305G>A","ENSP00000354859.3:p.Lys435=",NA,"LOW",NA,NA,NA,NA,NA,"NM_000795.4",NA,NA,435,435,"ENSP00000354859","Ensembl",-1,"ENST00000362072",1,["P14416-1"],"T"),(1,NA,NA,"processed_transcript",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],3621,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000535984",3,NA,"T"),(1,"K","A1","protein_coding",NA,NA,1311,1311,1311,1311,"aaG/aaA",["synonymous_variant"],NA,[("Gene3D","1"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321"),("CDD","cd15309")],"8/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000538967.5:c.1311G>A","ENSP00000438215.1:p.Lys437=",NA,"LOW",NA,NA,NA,NA,NA,NA,NA,NA,437,437,"ENSP00000438215","Ensembl",-1,"ENST00000538967",5,["P14416-3"],"T"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],4540,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000539420",3,NA,"T"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],3110,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000540600",1,NA,"T"),(1,"K","P2","protein_coding",NA,"CCDS8361.1",1626,1626,1305,1305,"aaG/aaA",["synonymous_variant"],NA,[("Gene3D","1"),("ENSP_mappings","5aer"),("ENSP_mappings","5aer"),("ENSP_mappings","6cm4"),("ENSP_mappings","6luq"),("ENSP_mappings","6vms"),("ENSP_mappings","7dfp"),("ENSP_mappings","7jvr"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321"),("CDD","cd15309")],"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000542968.5:c.1305G>A","ENSP00000442172.1:p.Lys435=",NA,"LOW",NA,NA,NA,NA,NA,NA,NA,NA,435,435,"ENSP00000442172","Ensembl",-1,"ENST00000542968",1,["P14416-1"],"T"),(1,"K","A1","protein_coding",NA,NA,1335,1335,1302,1302,"aaG/aaA",["synonymous_variant"],NA,[("Gene3D","1"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321"),("CDD","cd15309")],"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000544518.5:c.1302G>A","ENSP00000441068.1:p.Lys434=",NA,"LOW",NA,NA,NA,NA,NA,NA,NA,NA,434,434,"ENSP00000441068","Ensembl",-1,"ENST00000544518",1,NA,"T"),(1,NA,NA,"lncRNA",1,NA,NA,NA,NA,NA,NA,["intron_variant","non_coding_transcript_variant"],NA,NA,NA,NA,"ENSG00000256757",NA,NA,NA,NA,"ENST00000546284.1:n.245-793C>T",NA,NA,"MODIFIER","2/3",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",1,"ENST00000546284",3,NA,"T"),(1,"K",NA,"protein_coding",1,NA,1659,1659,1305,1305,"aaG/aaA",["synonymous_variant"],NA,NA,"8/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_000795.4:c.1305G>A","NP_000786.1:p.Lys435=",NA,"LOW",NA,NA,NA,NA,NA,"ENST00000362072.8",NA,NA,435,435,"NP_000786.1","RefSeq",-1,"NM_000795.4",NA,NA,"T"),(1,"K",NA,"protein_coding",NA,NA,1572,1572,1218,1218,"aaG/aaA",["synonymous_variant"],NA,NA,"7/7",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_016574.4:c.1218G>A","NP_057658.2:p.Lys406=",NA,"LOW",NA,NA,NA,NA,NA,NA,NA,NA,406,406,"NP_057658.2","RefSeq",-1,"NM_016574.4",NA,NA,"T"),(1,"K",NA,"protein_coding",NA,NA,1387,1387,1305,1305,"aaG/aaA",["synonymous_variant"],NA,NA,"8/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","XM_017017296.2:c.1305G>A","XP_016872785.1:p.Lys435=",NA,"LOW",NA,NA,NA,NA,NA,NA,NA,NA,435,435,"XP_016872785.1","RefSeq",-1,"XM_017017296.2",NA,NA,"T")]"SNV"8.87e+00"AS_MQ"FalseFalseFalseFalseFalseTrueFalseFalse"snv"1False"snv"False[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,3,0,24,0,314081,0,0,0,416264,0,0,0,0,0,0,574]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,16,266,11219,107342,344994,189134,36335,5603,2386,2754,3071,2938,2971,2945,3008,2939,2587,2701]07737[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,574]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,1,1,4,13,22,21,26,25,30,25,35,40,41,25,31,27]0207[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,3,1,13,43,101,196,147,52,11,5,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][1,0,0,0,3,0,24,0,314081,0,0,0,416264,0,0,0,0,0,0,574]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,16,267,11219,107342,344994,189134,36335,5603,2386,2754,3071,2938,2971,2945,3008,2939,2587,2701]07737[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,574]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,1,1,4,13,22,21,26,25,30,25,35,40,41,25,31,27]0207[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,3,1,13,43,101,196,147,52,11,5,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][3,2,30,42,65,52,79,55,7,3]153[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,1,0,0,0,1,0]009.48e+008.09e-01NA0.00e+001.00e-025.82e+00NANA

showing top 5 rows

\n" + ], + "text/plain": [ + "+-----------------+------------+\n", + "| locus | alleles |\n", + "+-----------------+------------+\n", + "| locus | array |\n", + "+-----------------+------------+\n", + "| chr11:113410736 | [\"G\",\"A\"] |\n", + "| chr11:113410736 | [\"G\",\"T\"] |\n", + "| chr11:113410739 | [\"G\",\"A\"] |\n", + "| chr11:113410751 | [\"G\",\"A\"] |\n", + "| chr11:113410754 | [\"C\",\"T\"] |\n", + "+-----------------+------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| freq |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [(15,1.03e-05,1461882,0),(15,1.03e-05,1461894,0),(0,0.00e+00,33480,0),(0,... |\n", + "| [(1,6.84e-07,1461882,0),(1,6.84e-07,1461894,0),(0,0.00e+00,33480,0),(0,0.... |\n", + "| [(1,6.84e-07,1461882,0),(1,6.84e-07,1461894,0),(0,0.00e+00,33478,0),(0,0.... |\n", + "| [(1,6.84e-07,1461894,0),(1,6.84e-07,1461894,0),(0,0.00e+00,33480,0),(0,0.... |\n", + "| [(576,3.94e-04,1461892,2),(576,3.94e-04,1461894,2),(12,3.58e-04,33480,1),... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+------------------+------------------+------------------+\n", + "| grpmax.gnomad.AC | grpmax.gnomad.AF | grpmax.gnomad.AN |\n", + "+------------------+------------------+------------------+\n", + "| int32 | float64 | int32 |\n", + "+------------------+------------------+------------------+\n", + "| 15 | 1.35e-05 | 1112010 |\n", + "| 1 | 8.99e-07 | 1112010 |\n", + "| NA | NA | NA |\n", + "| 1 | 8.99e-07 | 1112012 |\n", + "| 8 | 1.39e-03 | 5768 |\n", + "+------------------+------------------+------------------+\n", + "\n", + "+--------------------------------+-----------------------+-------------------+\n", + "| grpmax.gnomad.homozygote_count | grpmax.gnomad.gen_anc | grpmax.non_ukb.AC |\n", + "+--------------------------------+-----------------------+-------------------+\n", + "| int64 | str | int32 |\n", + "+--------------------------------+-----------------------+-------------------+\n", + "| 0 | \"nfe\" | 1 |\n", + "| 0 | \"nfe\" | NA |\n", + "| NA | NA | NA |\n", + "| 0 | \"nfe\" | 1 |\n", + "| 0 | \"mid\" | 4 |\n", + "+--------------------------------+-----------------------+-------------------+\n", + "\n", + "+-------------------+-------------------+---------------------------------+\n", + "| grpmax.non_ukb.AF | grpmax.non_ukb.AN | grpmax.non_ukb.homozygote_count |\n", + "+-------------------+-------------------+---------------------------------+\n", + "| float64 | int32 | int64 |\n", + "+-------------------+-------------------+---------------------------------+\n", + "| 2.86e-06 | 350106 | 0 |\n", + "| NA | NA | NA |\n", + "| NA | NA | NA |\n", + "| 2.86e-06 | 350108 | 0 |\n", + "| 9.64e-04 | 4148 | 0 |\n", + "+-------------------+-------------------+---------------------------------+\n", + "\n", + "+------------------------+\n", + "| grpmax.non_ukb.gen_anc |\n", + "+------------------------+\n", + "| str |\n", + "+------------------------+\n", + "| \"nfe\" |\n", + "| NA |\n", + "| NA |\n", + "| \"nfe\" |\n", + "| \"mid\" |\n", + "+------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| faf |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [(6.16e-06,4.89e-06),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.... |\n", + "| [(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.... |\n", + "| [(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.... |\n", + "| [(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.... |\n", + "| [(3.67e-04,3.57e-04),(2.06e-04,1.62e-04),(7.33e-04,6.53e-04),(0.00e+00,0.... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+-------------------------+---------------------------------+\n", + "| fafmax.gnomad.faf95_max | fafmax.gnomad.faf95_max_gen_anc |\n", + "+-------------------------+---------------------------------+\n", + "| float64 | str |\n", + "+-------------------------+---------------------------------+\n", + "| 8.10e-06 | \"nfe\" |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| 7.33e-04 | \"amr\" |\n", + "+-------------------------+---------------------------------+\n", + "\n", + "+-------------------------+---------------------------------+\n", + "| fafmax.gnomad.faf99_max | fafmax.gnomad.faf99_max_gen_anc |\n", + "+-------------------------+---------------------------------+\n", + "| float64 | str |\n", + "+-------------------------+---------------------------------+\n", + "| 6.42e-06 | \"nfe\" |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| 6.53e-04 | \"amr\" |\n", + "+-------------------------+---------------------------------+\n", + "\n", + "+--------------------------+----------------------------------+\n", + "| fafmax.non_ukb.faf95_max | fafmax.non_ukb.faf95_max_gen_anc |\n", + "+--------------------------+----------------------------------+\n", + "| float64 | str |\n", + "+--------------------------+----------------------------------+\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| 6.90e-04 | \"amr\" |\n", + "+--------------------------+----------------------------------+\n", + "\n", + "+--------------------------+----------------------------------+---------+\n", + "| fafmax.non_ukb.faf99_max | fafmax.non_ukb.faf99_max_gen_anc | a_index |\n", + "+--------------------------+----------------------------------+---------+\n", + "| float64 | str | int32 |\n", + "+--------------------------+----------------------------------+---------+\n", + "| NA | NA | 1 |\n", + "| NA | NA | 2 |\n", + "| NA | NA | 1 |\n", + "| NA | NA | 1 |\n", + "| 6.12e-04 | \"amr\" | 1 |\n", + "+--------------------------+----------------------------------+---------+\n", + "\n", + "+-----------+------------------+----------+----------+----------+\n", + "| was_split | rsid | filters | info.FS | info.MQ |\n", + "+-----------+------------------+----------+----------+----------+\n", + "| bool | set | set | float64 | float64 |\n", + "+-----------+------------------+----------+----------+----------+\n", + "| True | {\"rs1159504221\"} | {} | 5.49e-01 | 6.00e+01 |\n", + "| True | NA | {} | 5.49e-01 | 6.00e+01 |\n", + "| False | NA | {} | 4.26e+00 | 6.00e+01 |\n", + "| False | NA | {} | 8.26e+00 | 6.00e+01 |\n", + "| False | {\"rs77930100\"} | {} | 1.45e-15 | 6.00e+01 |\n", + "+-----------+------------------+----------+----------+----------+\n", + "\n", + "+----------------+-----------------+----------+---------------------+\n", + "| info.MQRankSum | info.QUALapprox | info.QD | info.ReadPosRankSum |\n", + "+----------------+-----------------+----------+---------------------+\n", + "| float64 | int64 | float64 | float64 |\n", + "+----------------+-----------------+----------+---------------------+\n", + "| 0.00e+00 | 12307 | 1.16e+01 | 7.40e-02 |\n", + "| 0.00e+00 | 12307 | 1.16e+01 | 7.40e-02 |\n", + "| 0.00e+00 | 574 | 1.10e+01 | 5.32e-01 |\n", + "| 0.00e+00 | 1098 | 2.03e+01 | -7.69e-01 |\n", + "| 0.00e+00 | 947678 | 1.23e+01 | -7.00e-03 |\n", + "+----------------+-----------------+----------+---------------------+\n", + "\n", + "+---------------------------+----------+------------+------------+------------+\n", + "| info.SB | info.SOR | info.VarDP | info.AS_FS | info.AS_MQ |\n", + "+---------------------------+----------+------------+------------+------------+\n", + "| array | float64 | int32 | float64 | float64 |\n", + "+---------------------------+----------+------------+------------+------------+\n", + "| [386,195,316,166] | 6.55e-01 | 1063 | 9.64e-16 | 6.00e+01 |\n", + "| [386,195,316,166] | 6.55e-01 | 1063 | 9.64e-16 | 6.00e+01 |\n", + "| [23,8,13,8] | 2.93e-01 | 52 | 4.26e+00 | 6.00e+01 |\n", + "| [5,11,21,18] | 4.64e-01 | 54 | 8.26e+00 | 6.00e+01 |\n", + "| [20804,19237,19605,17401] | 7.35e-01 | 77027 | 1.45e-15 | 6.00e+01 |\n", + "+---------------------------+----------+------------+------------+------------+\n", + "\n", + "+-------------------+-----------------+--------------------+------------+\n", + "| info.AS_MQRankSum | info.AS_pab_max | info.AS_QUALapprox | info.AS_QD |\n", + "+-------------------+-----------------+--------------------+------------+\n", + "| float64 | float64 | int64 | float64 |\n", + "+-------------------+-----------------+--------------------+------------+\n", + "| 0.00e+00 | 9.11e-01 | 11899 | 1.17e+01 |\n", + "| 0.00e+00 | 3.28e-02 | 408 | 8.16e+00 |\n", + "| 0.00e+00 | 2.12e-01 | 574 | 1.10e+01 |\n", + "| 0.00e+00 | 3.84e-03 | 1098 | 2.03e+01 |\n", + "| 0.00e+00 | 1.00e+00 | 947678 | 1.23e+01 |\n", + "+-------------------+-----------------+--------------------+------------+\n", + "\n", + "+------------------------+---------------------------+-------------+\n", + "| info.AS_ReadPosRankSum | info.AS_SB_TABLE | info.AS_SOR |\n", + "+------------------------+---------------------------+-------------+\n", + "| float64 | array | float64 |\n", + "+------------------------+---------------------------+-------------+\n", + "| 9.70e-02 | [386,195,304,161] | 6.47e-01 |\n", + "| -9.23e-01 | [386,195,12,5] | 7.90e-01 |\n", + "| 5.32e-01 | [23,8,13,8] | 2.93e-01 |\n", + "| -7.69e-01 | [5,11,21,18] | 4.64e-01 |\n", + "| 7.00e-03 | [20804,19237,19605,17401] | 7.35e-01 |\n", + "+------------------------+---------------------------+-------------+\n", + "\n", + "+---------------+----------------+----------------------------+\n", + "| info.AS_VarDP | info.singleton | info.transmitted_singleton |\n", + "+---------------+----------------+----------------------------+\n", + "| int32 | bool | bool |\n", + "+---------------+----------------+----------------------------+\n", + "| 1013 | False | NA |\n", + "| 50 | True | False |\n", + "| 52 | True | False |\n", + "| 54 | True | False |\n", + "| 77027 | False | NA |\n", + "+---------------+----------------+----------------------------+\n", + "\n", + "+------------------------+-----------+------------+------------------+\n", + "| info.sibling_singleton | info.omni | info.mills | info.monoallelic |\n", + "+------------------------+-----------+------------+------------------+\n", + "| bool | bool | bool | bool |\n", + "+------------------------+-----------+------------+------------------+\n", + "| NA | False | False | False |\n", + "| False | False | False | False |\n", + "| False | False | False | False |\n", + "| False | False | False | False |\n", + "| NA | False | False | False |\n", + "+------------------------+-----------+------------+------------------+\n", + "\n", + "+---------------+----------------+-----------------------+\n", + "| info.only_het | info.AS_VQSLOD | info.inbreeding_coeff |\n", + "+---------------+----------------+-----------------------+\n", + "| bool | float64 | float64 |\n", + "+---------------+----------------+-----------------------+\n", + "| False | 7.50e+00 | -1.03e-05 |\n", + "| False | 5.00e+00 | -6.84e-07 |\n", + "| False | 5.73e+00 | -6.84e-07 |\n", + "| False | 2.35e+00 | -6.84e-07 |\n", + "| False | 8.87e+00 | 6.55e-03 |\n", + "+---------------+----------------+-----------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| info.vrs.VRS_Allele_IDs |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [\"ga4gh:VA.QVbOetW6APM1_3jfGLLwArt4GfwgT6jE\",\"ga4gh:VA.OXPDvbuulFZ9CSk4Xt... |\n", + "| [\"ga4gh:VA.QVbOetW6APM1_3jfGLLwArt4GfwgT6jE\",\"ga4gh:VA.4qhkDG1qrfqiD2TeOA... |\n", + "| [\"ga4gh:VA.uv4czuJ2nBK7lcR9wkK2XxHxMSui2-ME\",\"ga4gh:VA.bA0gzyCzudiyDon8QV... |\n", + "| [\"ga4gh:VA.euCgAx3O0dYWO86rUZqEKUoRwnhnhr-k\",\"ga4gh:VA.XQ_C7TKjlSKQw_ABwx... |\n", + "| [\"ga4gh:VA.8tDWBt70tPv5g5-MDqwnSl1-pElrIl1E\",\"ga4gh:VA.f3fUPUzazutlUq0Gul... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+-----------------------+-----------------------+---------------------+\n", + "| info.vrs.VRS_Starts | info.vrs.VRS_Ends | info.vrs.VRS_States |\n", + "+-----------------------+-----------------------+---------------------+\n", + "| array | array | array |\n", + "+-----------------------+-----------------------+---------------------+\n", + "| [113410735,113410735] | [113410736,113410736] | [\"G\",\"A\"] |\n", + "| [113410735,113410735] | [113410736,113410736] | [\"G\",\"T\"] |\n", + "| [113410738,113410738] | [113410739,113410739] | [\"G\",\"A\"] |\n", + "| [113410750,113410750] | [113410751,113410751] | [\"G\",\"A\"] |\n", + "| [113410753,113410753] | [113410754,113410754] | [\"C\",\"T\"] |\n", + "+-----------------------+-----------------------+---------------------+\n", + "\n", + "+-------------------+-----------+--------+--------------------------------+\n", + "| vep.allele_string | vep.end | vep.id | vep.input |\n", + "+-------------------+-----------+--------+--------------------------------+\n", + "| str | int32 | str | str |\n", + "+-------------------+-----------+--------+--------------------------------+\n", + "| \"G/A\" | 113410736 | \".\" | \"chr11\t113410736\t.\tG\tA\t.\t.\tGT\" |\n", + "| \"G/T\" | 113410736 | \".\" | \"chr11\t113410736\t.\tG\tT\t.\t.\tGT\" |\n", + "| \"G/A\" | 113410739 | \".\" | \"chr11\t113410739\t.\tG\tA\t.\t.\tGT\" |\n", + "| \"G/A\" | 113410751 | \".\" | \"chr11\t113410751\t.\tG\tA\t.\t.\tGT\" |\n", + "| \"C/T\" | 113410754 | \".\" | \"chr11\t113410754\t.\tC\tT\t.\t.\tGT\" |\n", + "+-------------------+-----------+--------+--------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| vep.intergenic_consequences |\n", + "+------------------------------------------------------------------------------+\n", + "| array, impact: st... |\n", + "+------------------------------------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+-----------------------------+\n", + "| vep.most_severe_consequence |\n", + "+-----------------------------+\n", + "| str |\n", + "+-----------------------------+\n", + "| \"synonymous_variant\" |\n", + "| \"synonymous_variant\" |\n", + "| \"synonymous_variant\" |\n", + "| \"synonymous_variant\" |\n", + "| \"synonymous_variant\" |\n", + "+-----------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| vep.motif_feature_consequences |\n", + "+------------------------------------------------------------------------------+\n", + "| array, high_inf_p... |\n", + "+------------------------------------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| vep.regulatory_feature_consequences |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+--------------------------------------------------------+\n", + "| histograms.qual_hists.gq_hist_all.bin_freq |\n", + "+--------------------------------------------------------+\n", + "| array |\n", + "+--------------------------------------------------------+\n", + "| [0,0,0,0,8,0,71,0,314313,0,37,0,416496,0,0,0,0,0,0,16] |\n", + "| [0,0,0,0,8,0,71,0,314313,0,37,0,416496,0,0,0,0,0,0,16] |\n", + "| [0,0,0,0,9,0,68,0,314320,0,24,0,416519,0,0,0,0,0,0,1] |\n", + "| [0,0,0,0,1,0,28,0,314363,0,2,0,416552,0,0,0,0,0,0,1] |\n", + "| [0,0,0,0,3,0,24,0,314081,0,0,0,416264,0,0,0,0,0,0,574] |\n", + "+--------------------------------------------------------+\n", + "\n", + "+---------------------------------------------+\n", + "| histograms.qual_hists.gq_hist_all.n_smaller |\n", + "+---------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+---------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.qual_hists.gq_hist_all.n_larger |\n", + "+--------------------------------------------+\n", + "| int64 |\n", + "+--------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+--------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.qual_hists.dp_hist_all.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.qual_hists.dp_hist_all.bin_freq |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0,0,61,328,11304,107355,345020,189098,36329,5607,2382,2757,3074,2931,295... |\n", + "| [0,0,61,328,11304,107355,345020,189098,36329,5607,2382,2757,3074,2931,295... |\n", + "| [0,0,55,309,11275,107353,345050,189133,36332,5605,2379,2755,3073,2932,295... |\n", + "| [0,0,18,272,11233,107401,345096,189157,36337,5604,2379,2755,3073,2932,295... |\n", + "| [0,0,16,266,11219,107342,344994,189134,36335,5603,2386,2754,3071,2938,297... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+---------------------------------------------+\n", + "| histograms.qual_hists.dp_hist_all.n_smaller |\n", + "+---------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+---------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.qual_hists.dp_hist_all.n_larger |\n", + "+--------------------------------------------+\n", + "| int64 |\n", + "+--------------------------------------------+\n", + "| 7685 |\n", + "| 7685 |\n", + "| 7683 |\n", + "| 7683 |\n", + "| 7737 |\n", + "+--------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.qual_hists.gq_hist_alt.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+---------------------------------------------+\n", + "| histograms.qual_hists.gq_hist_alt.bin_freq |\n", + "+---------------------------------------------+\n", + "| array |\n", + "+---------------------------------------------+\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,15] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,574] |\n", + "+---------------------------------------------+\n", + "\n", + "+---------------------------------------------+\n", + "| histograms.qual_hists.gq_hist_alt.n_smaller |\n", + "+---------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+---------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.qual_hists.gq_hist_alt.n_larger |\n", + "+--------------------------------------------+\n", + "| int64 |\n", + "+--------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+--------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.qual_hists.dp_hist_alt.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+--------------------------------------------------------+\n", + "| histograms.qual_hists.dp_hist_alt.bin_freq |\n", + "+--------------------------------------------------------+\n", + "| array |\n", + "+--------------------------------------------------------+\n", + "| [0,0,0,0,0,0,0,1,3,1,2,3,1,0,1,0,1,1,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,1,1,4,13,22,21,26,25,30,25,35,40,41,25,31,27] |\n", + "+--------------------------------------------------------+\n", + "\n", + "+---------------------------------------------+\n", + "| histograms.qual_hists.dp_hist_alt.n_smaller |\n", + "+---------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+---------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.qual_hists.dp_hist_alt.n_larger |\n", + "+--------------------------------------------+\n", + "| int64 |\n", + "+--------------------------------------------+\n", + "| 1 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 207 |\n", + "+--------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.qual_hists.ab_hist_alt.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+-----------------------------------------------------+\n", + "| histograms.qual_hists.ab_hist_alt.bin_freq |\n", + "+-----------------------------------------------------+\n", + "| array |\n", + "+-----------------------------------------------------+\n", + "| [0,0,0,0,1,0,0,1,1,11,1,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0] |\n", + "| [0,0,0,0,3,1,13,43,101,196,147,52,11,5,0,0,0,0,0,0] |\n", + "+-----------------------------------------------------+\n", + "\n", + "+---------------------------------------------+\n", + "| histograms.qual_hists.ab_hist_alt.n_smaller |\n", + "+---------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+---------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.qual_hists.ab_hist_alt.n_larger |\n", + "+--------------------------------------------+\n", + "| int64 |\n", + "+--------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+--------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.raw_qual_hists.gq_hist_all.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+--------------------------------------------------------+\n", + "| histograms.raw_qual_hists.gq_hist_all.bin_freq |\n", + "+--------------------------------------------------------+\n", + "| array |\n", + "+--------------------------------------------------------+\n", + "| [5,0,0,0,9,0,71,0,314313,0,37,0,416496,0,0,0,0,0,0,16] |\n", + "| [5,0,0,0,9,0,71,0,314313,0,37,0,416496,0,0,0,0,0,0,16] |\n", + "| [5,0,0,0,10,0,68,0,314320,0,24,0,416519,0,0,0,0,0,0,1] |\n", + "| [0,0,0,0,1,0,28,0,314363,0,2,0,416552,0,0,0,0,0,0,1] |\n", + "| [1,0,0,0,3,0,24,0,314081,0,0,0,416264,0,0,0,0,0,0,574] |\n", + "+--------------------------------------------------------+\n", + "\n", + "+-------------------------------------------------+\n", + "| histograms.raw_qual_hists.gq_hist_all.n_smaller |\n", + "+-------------------------------------------------+\n", + "| int64 |\n", + "+-------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+-------------------------------------------------+\n", + "\n", + "+------------------------------------------------+\n", + "| histograms.raw_qual_hists.gq_hist_all.n_larger |\n", + "+------------------------------------------------+\n", + "| int64 |\n", + "+------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.raw_qual_hists.dp_hist_all.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.raw_qual_hists.dp_hist_all.bin_freq |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0,1,62,330,11305,107356,345020,189098,36329,5607,2382,2757,3074,2931,295... |\n", + "| [0,1,62,330,11305,107356,345020,189098,36329,5607,2382,2757,3074,2931,295... |\n", + "| [0,1,56,312,11275,107353,345051,189133,36332,5605,2379,2755,3073,2932,295... |\n", + "| [0,0,18,272,11233,107401,345096,189157,36337,5604,2379,2755,3073,2932,295... |\n", + "| [0,0,16,267,11219,107342,344994,189134,36335,5603,2386,2754,3071,2938,297... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+-------------------------------------------------+\n", + "| histograms.raw_qual_hists.dp_hist_all.n_smaller |\n", + "+-------------------------------------------------+\n", + "| int64 |\n", + "+-------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+-------------------------------------------------+\n", + "\n", + "+------------------------------------------------+\n", + "| histograms.raw_qual_hists.dp_hist_all.n_larger |\n", + "+------------------------------------------------+\n", + "| int64 |\n", + "+------------------------------------------------+\n", + "| 7685 |\n", + "| 7685 |\n", + "| 7683 |\n", + "| 7683 |\n", + "| 7737 |\n", + "+------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.raw_qual_hists.gq_hist_alt.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+------------------------------------------------+\n", + "| histograms.raw_qual_hists.gq_hist_alt.bin_freq |\n", + "+------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------+\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,15] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,574] |\n", + "+------------------------------------------------+\n", + "\n", + "+-------------------------------------------------+\n", + "| histograms.raw_qual_hists.gq_hist_alt.n_smaller |\n", + "+-------------------------------------------------+\n", + "| int64 |\n", + "+-------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+-------------------------------------------------+\n", + "\n", + "+------------------------------------------------+\n", + "| histograms.raw_qual_hists.gq_hist_alt.n_larger |\n", + "+------------------------------------------------+\n", + "| int64 |\n", + "+------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.raw_qual_hists.dp_hist_alt.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+--------------------------------------------------------+\n", + "| histograms.raw_qual_hists.dp_hist_alt.bin_freq |\n", + "+--------------------------------------------------------+\n", + "| array |\n", + "+--------------------------------------------------------+\n", + "| [0,0,0,0,0,0,0,1,3,1,2,3,1,0,1,0,1,1,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,1,1,4,13,22,21,26,25,30,25,35,40,41,25,31,27] |\n", + "+--------------------------------------------------------+\n", + "\n", + "+-------------------------------------------------+\n", + "| histograms.raw_qual_hists.dp_hist_alt.n_smaller |\n", + "+-------------------------------------------------+\n", + "| int64 |\n", + "+-------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+-------------------------------------------------+\n", + "\n", + "+------------------------------------------------+\n", + "| histograms.raw_qual_hists.dp_hist_alt.n_larger |\n", + "+------------------------------------------------+\n", + "| int64 |\n", + "+------------------------------------------------+\n", + "| 1 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 207 |\n", + "+------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.raw_qual_hists.ab_hist_alt.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+-----------------------------------------------------+\n", + "| histograms.raw_qual_hists.ab_hist_alt.bin_freq |\n", + "+-----------------------------------------------------+\n", + "| array |\n", + "+-----------------------------------------------------+\n", + "| [0,0,0,0,1,0,0,1,1,11,1,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0] |\n", + "| [0,0,0,0,3,1,13,43,101,196,147,52,11,5,0,0,0,0,0,0] |\n", + "+-----------------------------------------------------+\n", + "\n", + "+-------------------------------------------------+\n", + "| histograms.raw_qual_hists.ab_hist_alt.n_smaller |\n", + "+-------------------------------------------------+\n", + "| int64 |\n", + "+-------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+-------------------------------------------------+\n", + "\n", + "+------------------------------------------------+\n", + "| histograms.raw_qual_hists.ab_hist_alt.n_larger |\n", + "+------------------------------------------------+\n", + "| int64 |\n", + "+------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.age_hists.age_hist_het.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.age_hists.age_hist_het.bin_freq |\n", + "+--------------------------------------------+\n", + "| array |\n", + "+--------------------------------------------+\n", + "| [0,0,1,2,4,2,4,1,0,0] |\n", + "| [0,0,0,0,0,1,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0] |\n", + "| [3,2,30,42,65,52,79,55,7,3] |\n", + "+--------------------------------------------+\n", + "\n", + "+---------------------------------------------+\n", + "| histograms.age_hists.age_hist_het.n_smaller |\n", + "+---------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 15 |\n", + "+---------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.age_hists.age_hist_het.n_larger |\n", + "+--------------------------------------------+\n", + "| int64 |\n", + "+--------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 3 |\n", + "+--------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.age_hists.age_hist_hom.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.age_hists.age_hist_hom.bin_freq |\n", + "+--------------------------------------------+\n", + "| array |\n", + "+--------------------------------------------+\n", + "| [0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,1,0,0,0,1,0] |\n", + "+--------------------------------------------+\n", + "\n", + "+---------------------------------------------+\n", + "| histograms.age_hists.age_hist_hom.n_smaller |\n", + "+---------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+---------------------------------------------+\n", + "\n", + "+--------------------------------------------+---------------------------------+\n", + "| histograms.age_hists.age_hist_hom.n_larger | in_silico_predictors.cadd.phred |\n", + "+--------------------------------------------+---------------------------------+\n", + "| int64 | float32 |\n", + "+--------------------------------------------+---------------------------------+\n", + "| 0 | 3.44e+00 |\n", + "| 0 | 2.96e+00 |\n", + "| 0 | 1.03e+01 |\n", + "| 0 | 1.20e+01 |\n", + "| 0 | 9.48e+00 |\n", + "+--------------------------------------------+---------------------------------+\n", + "\n", + "+-------------------------------------+--------------------------------+\n", + "| in_silico_predictors.cadd.raw_score | in_silico_predictors.revel_max |\n", + "+-------------------------------------+--------------------------------+\n", + "| float32 | float64 |\n", + "+-------------------------------------+--------------------------------+\n", + "| 2.28e-01 | NA |\n", + "| 1.86e-01 | NA |\n", + "| 8.89e-01 | NA |\n", + "| 1.03e+00 | NA |\n", + "| 8.09e-01 | NA |\n", + "+-------------------------------------+--------------------------------+\n", + "\n", + "+--------------------------------------+\n", + "| in_silico_predictors.spliceai_ds_max |\n", + "+--------------------------------------+\n", + "| float32 |\n", + "+--------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+--------------------------------------+\n", + "\n", + "+------------------------------------------+-----------------------------+\n", + "| in_silico_predictors.pangolin_largest_ds | in_silico_predictors.phylop |\n", + "+------------------------------------------+-----------------------------+\n", + "| float64 | float64 |\n", + "+------------------------------------------+-----------------------------+\n", + "| 1.00e-02 | -2.55e-01 |\n", + "| 3.00e-02 | -2.55e-01 |\n", + "| 0.00e+00 | 3.26e+00 |\n", + "| 0.00e+00 | 8.67e+00 |\n", + "| 1.00e-02 | 5.82e+00 |\n", + "+------------------------------------------+-----------------------------+\n", + "\n", + "+-------------------------------+-----------------------------------+\n", + "| in_silico_predictors.sift_max | in_silico_predictors.polyphen_max |\n", + "+-------------------------------+-----------------------------------+\n", + "| float64 | float64 |\n", + "+-------------------------------+-----------------------------------+\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "+-------------------------------+-----------------------------------+\n", + "showing top 5 rows" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The total number of synonymous variants passing filters in DRD2 is: 238\n" + ] + } + ], + "source": [ + "var_ht = filter_by_csqs(['synonymous'], ht=drd2_interval_ht)\n", + "var_ht.show(5)\n", + "print(\"The total number of synonymous variants passing filters in DRD2 is: \", var_ht.count())" + ] + }, + { + "cell_type": "markdown", + "id": "cbcd2fa0-5108-4d94-a681-493882c295bf", + "metadata": {}, + "source": [ + "### Filter to 'Other' variants passing filters" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "4141ccb3", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
histograms
grpmax
fafmax
info
qual_hists
raw_qual_hists
age_hists
in_silico_predictors
gnomad
non_ukb
gnomad
non_ukb
vrs
vep
vqsr_results
region_flags
allele_info
gq_hist_all
dp_hist_all
gq_hist_alt
dp_hist_alt
ab_hist_alt
gq_hist_all
dp_hist_all
gq_hist_alt
dp_hist_alt
ab_hist_alt
age_hist_het
age_hist_hom
cadd
locus
alleles
freq
AC
AF
AN
homozygote_count
gen_anc
AC
AF
AN
homozygote_count
gen_anc
faf
faf95_max
faf95_max_gen_anc
faf99_max
faf99_max_gen_anc
faf95_max
faf95_max_gen_anc
faf99_max
faf99_max_gen_anc
a_index
was_split
rsid
filters
FS
MQ
MQRankSum
QUALapprox
QD
ReadPosRankSum
SB
SOR
VarDP
AS_FS
AS_MQ
AS_MQRankSum
AS_pab_max
AS_QUALapprox
AS_QD
AS_ReadPosRankSum
AS_SB_TABLE
AS_SOR
AS_VarDP
singleton
transmitted_singleton
sibling_singleton
omni
mills
monoallelic
only_het
AS_VQSLOD
inbreeding_coeff
VRS_Allele_IDs
VRS_Starts
VRS_Ends
VRS_States
allele_string
end
id
input
intergenic_consequences
most_severe_consequence
motif_feature_consequences
regulatory_feature_consequences
seq_region_name
start
strand
transcript_consequences
variant_class
AS_VQSLOD
AS_culprit
positive_train_site
negative_train_site
non_par
lcr
segdup
fail_interval_qc
outside_ukb_capture_region
outside_broad_capture_region
variant_type
n_alt_alleles
has_star
allele_type
was_mixed
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
phred
raw_score
revel_max
spliceai_ds_max
pangolin_largest_ds
phylop
sift_max
polyphen_max
locus<GRCh38>array<str>array<struct{AC: int32, AF: float64, AN: int32, homozygote_count: int64}>int32float64int32int64strint32float64int32int64strarray<struct{faf95: float64, faf99: float64}>float64strfloat64strfloat64strfloat64strint32boolset<str>set<str>float64float64float64int64float64float64array<int32>float64int32float64float64float64float64int64float64float64array<int32>float64int32boolboolboolboolboolboolboolfloat64float64array<str>array<int32>array<int32>array<str>strint32strstrarray<struct{allele_num: int32, consequence_terms: array<str>, impact: str, variant_allele: str}>strarray<struct{allele_num: int32, consequence_terms: array<str>, high_inf_pos: str, impact: str, motif_feature_id: str, motif_name: str, motif_pos: int32, motif_score_change: float64, transcription_factors: array<str>, strand: int32, variant_allele: str}>array<struct{allele_num: int32, biotype: str, consequence_terms: array<str>, impact: str, regulatory_feature_id: str, variant_allele: str}>strint32int32array<struct{allele_num: int32, amino_acids: str, appris: str, biotype: str, canonical: int32, ccds: str, cdna_start: int32, cdna_end: int32, cds_end: int32, cds_start: int32, codons: str, consequence_terms: array<str>, distance: int32, domains: array<struct{db: str, name: str}>, exon: str, flags: str, gene_id: str, gene_pheno: int32, gene_symbol: str, gene_symbol_source: str, hgnc_id: str, hgvsc: str, hgvsp: str, hgvs_offset: int32, impact: str, intron: str, lof: str, lof_flags: str, lof_filter: str, lof_info: str, mane_select: str, mane_plus_clinical: str, mirna: array<str>, protein_end: int32, protein_start: int32, protein_id: str, source: str, strand: int32, transcript_id: str, tsl: int32, uniprot_isoform: array<str>, variant_allele: str}>strfloat64strboolboolboolboolboolboolboolboolstrint32boolstrboolarray<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64float32float32float64float32float64float64float64float64
chr11:113409636["G","C"][(1,1.87e-03,534,0),(5,7.95e-06,628788,2),(0,0.00e+00,8,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,4,0),(1,2.56e-03,390,0),(0,NA,0,0),(0,0.00e+00,126,0),(0,0.00e+00,6,0),(0,NA,0,0),(0,0.00e+00,192,0),(1,2.92e-03,342,0),(0,NA,0,0),(0,0.00e+00,8,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,0.00e+00,152,0),(1,4.20e-03,238,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,36,0),(0,0.00e+00,90,0),(0,0.00e+00,2,0),(0,0.00e+00,4,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,6,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,0.00e+00,8,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,0.00e+00,26,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,0.00e+00,38,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,0.00e+00,74,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,0.00e+00,144,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,0.00e+00,180,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,NA,0,0),(0,0.00e+00,6,0),(0,0.00e+00,8,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,0.00e+00,222,0),(0,NA,0,0),(0,0.00e+00,6,0),(0,NA,0,0),(0,0.00e+00,6,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,0.00e+00,276,0),(0,0.00e+00,2,0),(0,0.00e+00,6,0),(0,NA,0,0),(0,0.00e+00,6,0),(0,NA,0,0),(0,0.00e+00,280,0),(0,0.00e+00,2,0),(0,0.00e+00,6,0),(0,NA,0,0),(0,0.00e+00,6,0),(0,NA,0,0),(0,0.00e+00,316,0),(0,0.00e+00,2,0),(0,0.00e+00,6,0),(0,NA,0,0),(0,0.00e+00,10,0),(1,2.56e-03,390,0),(0,0.00e+00,2,0),(0,0.00e+00,6,0),(0,NA,0,0),(0,0.00e+00,12,0),(0,0.00e+00,2,0),(0,0.00e+00,6,0),(0,NA,0,0),(0,0.00e+00,14,0),(0,0.00e+00,6,0),(0,NA,0,0),(0,0.00e+00,20,0),(0,0.00e+00,8,0),(0,0.00e+00,28,0),(0,0.00e+00,14,0),(0,0.00e+00,68,0),(0,0.00e+00,38,0),(0,0.00e+00,142,0),(0,0.00e+00,108,0),(0,0.00e+00,342,0),(0,0.00e+00,126,0),(0,0.00e+00,386,0),(1,1.87e-03,534,0),(5,7.95e-06,628784,2),(0,0.00e+00,8,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,4,0),(1,2.56e-03,390,0),(0,NA,0,0),(0,0.00e+00,126,0),(0,0.00e+00,6,0),(0,NA,0,0),(0,0.00e+00,192,0),(1,2.92e-03,342,0),(0,NA,0,0),(0,0.00e+00,8,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,0.00e+00,152,0),(1,4.20e-03,238,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,36,0),(0,0.00e+00,90,0),(0,0.00e+00,2,0),(0,0.00e+00,4,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,6,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,0.00e+00,8,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,0.00e+00,26,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,0.00e+00,26,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,0.00e+00,74,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,NA,0,0),(0,0.00e+00,6,0),(0,0.00e+00,8,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,0.00e+00,130,0),(0,0.00e+00,2,0),(0,0.00e+00,6,0),(0,NA,0,0),(0,0.00e+00,8,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,0.00e+00,144,0),(0,0.00e+00,2,0),(0,0.00e+00,6,0),(0,NA,0,0),(0,0.00e+00,10,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,0.00e+00,148,0),(0,0.00e+00,4,0),(0,0.00e+00,6,0),(0,NA,0,0),(0,0.00e+00,10,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,0.00e+00,222,0),(0,0.00e+00,8,0),(0,0.00e+00,6,0),(0,NA,0,0),(0,0.00e+00,20,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,0.00e+00,254,0),(0,0.00e+00,10,0),(0,NA,0,0),(0,0.00e+00,20,0),(0,NA,0,0),(0,0.00e+00,284,0),(0,0.00e+00,10,0),(0,NA,0,0),(0,0.00e+00,22,0),(0,NA,0,0),(0,0.00e+00,310,0),(0,0.00e+00,10,0),(0,NA,0,0),(0,0.00e+00,34,0),(1,2.56e-03,390,0),(0,0.00e+00,14,0),(0,NA,0,0),(0,0.00e+00,40,0),(0,0.00e+00,18,0),(0,NA,0,0),(0,0.00e+00,54,0),(0,0.00e+00,28,0),(0,0.00e+00,76,0),(0,0.00e+00,58,0),(0,0.00e+00,162,0),(0,0.00e+00,126,0),(0,0.00e+00,264,0),(0,0.00e+00,302,0)]NANANANANANANANANANA[(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]NANANANANANANANA1True{"rs200733424"}{}0.00e+006.00e+010.00e+005821.94e+01-2.11e+00[8,2,15,5]5.82e-01300.00e+006.00e+010.00e+005.41e-015821.94e+01-2.11e+00[8,2,15,5]5.82e-0130FalseFalseFalseFalseFalseFalseFalse4.51e+008.00e-01["ga4gh:VA.BlCz08hG7ZEQzvW20V8Kp4xJMx-pMKes","ga4gh:VA.U4eD7PXtXRCClN6FQteuMLA75Fi7VfV0"][113409635,113409635][113409636,113409636]["G","C"]"G/C"113409636".""chr11\t113409636\t.\tG\tC\t.\t.\tGT"NA"3_prime_UTR_variant"NANA"chr11"1134096361[(1,NA,NA,"protein_coding",NA,"CCDS8362.1",2412,2412,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000346454.7:c.*1091C>G",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"ENSP00000278597","Ensembl",-1,"ENST00000346454",1,["P14416-2"],"C"),(1,NA,"P2","protein_coding",1,"CCDS8361.1",2777,2777,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"8/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000362072.8:c.*1091C>G",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,"NM_000795.4",NA,NA,NA,NA,"ENSP00000354859","Ensembl",-1,"ENST00000362072",1,["P14416-1"],"C"),(1,NA,NA,"processed_transcript",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],4739,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000535984",3,NA,"C"),(1,NA,"A1","protein_coding",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],936,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"ENSP00000438215","Ensembl",-1,"ENST00000538967",5,["P14416-3"],"C"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],4228,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000540600",1,NA,"C"),(1,NA,"P2","protein_coding",NA,"CCDS8361.1",NA,NA,NA,NA,NA,["downstream_gene_variant"],277,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"ENSP00000442172","Ensembl",-1,"ENST00000542968",1,["P14416-1"],"C"),(1,NA,"A1","protein_coding",NA,NA,2453,2453,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000544518.5:c.*1091C>G",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"ENSP00000441068","Ensembl",-1,"ENST00000544518",1,NA,"C"),(1,NA,NA,"lncRNA",1,NA,NA,NA,NA,NA,NA,["intron_variant","non_coding_transcript_variant"],NA,NA,NA,NA,"ENSG00000256757",NA,NA,NA,NA,"ENST00000546284.1:n.245-1911G>C",NA,NA,"MODIFIER","2/3",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",1,"ENST00000546284",3,NA,"C"),(1,NA,NA,"protein_coding",1,NA,2777,2777,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"8/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_000795.4:c.*1091C>G",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,"ENST00000362072.8",NA,NA,NA,NA,"NP_000786.1","RefSeq",-1,"NM_000795.4",NA,NA,"C"),(1,NA,NA,"protein_coding",NA,NA,2690,2690,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"7/7",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_016574.4:c.*1091C>G",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"NP_057658.2","RefSeq",-1,"NM_016574.4",NA,NA,"C"),(1,NA,NA,"protein_coding",NA,NA,2505,2505,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"8/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","XM_017017296.2:c.*1091C>G",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"XP_016872785.1","RefSeq",-1,"XM_017017296.2",NA,NA,"C")]"SNV"4.51e+00"AS_MQ"FalseFalseFalseFalseFalseNATrueFalse"multi-snv"2False"snv"False[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,28,0,76,0,162,0,0,0,0,0,0,0,0,0,0,1]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,101,28,30,82,26,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][313709,2,2,0,442,0,76,0,162,0,0,0,0,0,0,0,0,0,0,1]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][240827,73298,103,28,30,82,26,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][2,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]008.46e+007.01e-01NA0.00e+002.00e-021.94e+00NANA
chr11:113409693["G","A"][(1,1.20e-03,834,0),(16,2.54e-05,628790,3),(0,0.00e+00,6,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,0.00e+00,444,0),(0,0.00e+00,6,0),(1,2.87e-03,348,0),(0,0.00e+00,20,0),(0,0.00e+00,4,0),(0,0.00e+00,270,0),(1,1.77e-03,564,0),(0,0.00e+00,4,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,0.00e+00,172,0),(0,0.00e+00,272,0),(0,0.00e+00,2,0),(0,0.00e+00,4,0),(0,0.00e+00,88,0),(1,3.85e-03,260,0),(0,0.00e+00,4,0),(0,0.00e+00,16,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,6,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,8,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,26,0),(0,0.00e+00,6,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,40,0),(0,0.00e+00,6,0),(0,0.00e+00,2,0),(0,0.00e+00,6,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,0.00e+00,78,0),(0,0.00e+00,2,0),(0,0.00e+00,6,0),(0,NA,0,0),(0,0.00e+00,6,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,0.00e+00,156,0),(0,0.00e+00,6,0),(0,0.00e+00,10,0),(0,NA,0,0),(0,0.00e+00,8,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,0.00e+00,208,0),(0,0.00e+00,8,0),(0,0.00e+00,10,0),(0,NA,0,0),(0,0.00e+00,12,0),(0,0.00e+00,6,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,0.00e+00,256,0),(0,0.00e+00,8,0),(0,0.00e+00,12,0),(0,NA,0,0),(0,0.00e+00,14,0),(0,0.00e+00,2,0),(0,0.00e+00,4,0),(0,0.00e+00,322,0),(0,0.00e+00,10,0),(0,0.00e+00,12,0),(0,NA,0,0),(0,0.00e+00,14,0),(0,0.00e+00,2,0),(0,0.00e+00,324,0),(0,0.00e+00,10,0),(0,0.00e+00,12,0),(0,NA,0,0),(0,0.00e+00,14,0),(0,0.00e+00,2,0),(0,0.00e+00,362,0),(0,0.00e+00,12,0),(0,0.00e+00,16,0),(0,NA,0,0),(0,0.00e+00,16,0),(0,0.00e+00,444,0),(0,0.00e+00,12,0),(0,0.00e+00,18,0),(0,NA,0,0),(0,0.00e+00,18,0),(0,0.00e+00,14,0),(0,0.00e+00,20,0),(0,NA,0,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,4,0),(0,0.00e+00,28,0),(0,0.00e+00,24,0),(0,0.00e+00,38,0),(0,0.00e+00,62,0),(0,0.00e+00,102,0),(0,0.00e+00,134,0),(0,0.00e+00,230,0),(1,3.21e-03,312,0),(1,1.81e-03,552,0),(1,2.87e-03,348,0),(1,1.62e-03,616,0),(1,1.20e-03,834,0),(16,2.54e-05,628784,3),(0,0.00e+00,6,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,0.00e+00,444,0),(0,0.00e+00,6,0),(1,2.87e-03,348,0),(0,0.00e+00,20,0),(0,0.00e+00,4,0),(0,0.00e+00,270,0),(1,1.77e-03,564,0),(0,0.00e+00,4,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,0.00e+00,172,0),(0,0.00e+00,272,0),(0,0.00e+00,2,0),(0,0.00e+00,4,0),(0,0.00e+00,88,0),(1,3.85e-03,260,0),(0,0.00e+00,4,0),(0,0.00e+00,16,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,6,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,8,0),(0,0.00e+00,4,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,26,0),(0,0.00e+00,6,0),(0,0.00e+00,4,0),(0,0.00e+00,6,0),(0,NA,0,0),(0,0.00e+00,6,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,26,0),(0,0.00e+00,6,0),(0,0.00e+00,4,0),(0,0.00e+00,6,0),(0,NA,0,0),(0,0.00e+00,6,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,0.00e+00,78,0),(0,0.00e+00,8,0),(0,0.00e+00,10,0),(0,NA,0,0),(0,0.00e+00,12,0),(0,0.00e+00,6,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,0.00e+00,140,0),(0,0.00e+00,14,0),(0,0.00e+00,12,0),(0,NA,0,0),(0,0.00e+00,14,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,0.00e+00,156,0),(0,0.00e+00,14,0),(0,0.00e+00,12,0),(0,NA,0,0),(0,0.00e+00,16,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,0.00e+00,162,0),(0,0.00e+00,14,0),(0,0.00e+00,12,0),(0,NA,0,0),(0,0.00e+00,16,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,0.00e+00,256,0),(0,0.00e+00,24,0),(0,0.00e+00,20,0),(0,NA,0,0),(0,0.00e+00,28,0),(0,0.00e+00,2,0),(0,0.00e+00,4,0),(0,0.00e+00,294,0),(0,0.00e+00,28,0),(0,NA,0,0),(0,0.00e+00,28,0),(0,0.00e+00,2,0),(0,0.00e+00,328,0),(0,0.00e+00,30,0),(0,NA,0,0),(0,0.00e+00,30,0),(0,0.00e+00,2,0),(0,0.00e+00,356,0),(0,0.00e+00,36,0),(0,NA,0,0),(0,0.00e+00,44,0),(0,0.00e+00,444,0),(0,0.00e+00,44,0),(0,NA,0,0),(0,0.00e+00,58,0),(0,0.00e+00,68,0),(0,0.00e+00,4,0),(0,0.00e+00,76,0),(0,0.00e+00,104,0),(0,0.00e+00,116,0),(1,5.15e-03,194,0),(0,0.00e+00,266,0),(1,2.87e-03,348,0),(1,2.31e-03,432,0),(1,2.02e-03,494,0)]12.87e-033480"nfe"12.87e-033480"nfe"[(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]NANANANANANANANA1TrueNA{}5.32e+006.00e+010.00e+008989.76e+000.00e+00[31,19,21,21]3.30e-01924.52e+006.00e+010.00e+001.00e+005538.01e+000.00e+00[31,19,15,15]3.30e-0169FalseFalseFalseFalseFalseFalseFalse5.16e+003.75e-01["ga4gh:VA.aXxME51cngsJBnH_3WX01B0Ms-SLay9X","ga4gh:VA.ynryFZCH9dBU67nwPrySbnukGdg_Y7dS"][113409692,113409692][113409693,113409693]["G","A"]"G/A"113409693".""chr11\t113409693\t.\tG\tA\t.\t.\tGT"NA"3_prime_UTR_variant"NANA"chr11"1134096931[(1,NA,NA,"protein_coding",NA,"CCDS8362.1",2355,2355,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000346454.7:c.*1034C>T",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"ENSP00000278597","Ensembl",-1,"ENST00000346454",1,["P14416-2"],"A"),(1,NA,"P2","protein_coding",1,"CCDS8361.1",2720,2720,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"8/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000362072.8:c.*1034C>T",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,"NM_000795.4",NA,NA,NA,NA,"ENSP00000354859","Ensembl",-1,"ENST00000362072",1,["P14416-1"],"A"),(1,NA,NA,"processed_transcript",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],4682,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000535984",3,NA,"A"),(1,NA,"A1","protein_coding",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],879,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"ENSP00000438215","Ensembl",-1,"ENST00000538967",5,["P14416-3"],"A"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],4171,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000540600",1,NA,"A"),(1,NA,"P2","protein_coding",NA,"CCDS8361.1",NA,NA,NA,NA,NA,["downstream_gene_variant"],220,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"ENSP00000442172","Ensembl",-1,"ENST00000542968",1,["P14416-1"],"A"),(1,NA,"A1","protein_coding",NA,NA,2396,2396,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000544518.5:c.*1034C>T",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"ENSP00000441068","Ensembl",-1,"ENST00000544518",1,NA,"A"),(1,NA,NA,"lncRNA",1,NA,NA,NA,NA,NA,NA,["intron_variant","non_coding_transcript_variant"],NA,NA,NA,NA,"ENSG00000256757",NA,NA,NA,NA,"ENST00000546284.1:n.245-1854G>A",NA,NA,"MODIFIER","2/3",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",1,"ENST00000546284",3,NA,"A"),(1,NA,NA,"protein_coding",1,NA,2720,2720,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"8/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_000795.4:c.*1034C>T",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,"ENST00000362072.8",NA,NA,NA,NA,"NP_000786.1","RefSeq",-1,"NM_000795.4",NA,NA,"A"),(1,NA,NA,"protein_coding",NA,NA,2633,2633,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"7/7",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_016574.4:c.*1034C>T",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"NP_057658.2","RefSeq",-1,"NM_016574.4",NA,NA,"A"),(1,NA,NA,"protein_coding",NA,NA,2448,2448,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"8/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","XM_017017296.2:c.*1034C>T",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"XP_016872785.1","RefSeq",-1,"XM_017017296.2",NA,NA,"A")]"SNV"5.16e+00"AS_MQ"FalseFalseFalseFalseFalseNATrueFalse"mixed"3False"snv"True[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,25,0,186,0,206,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,211,29,38,105,34,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][313080,4,2,0,906,6,189,2,206,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][240299,73676,214,29,38,105,34,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,3,0,0,1,5,3,1,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][8,4,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,1,1,2,0,1,0,1,0,0,4,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]009.08e+007.68e-01NA0.00e+000.00e+005.70e-01NANA
chr11:113409717["C","T"][(1,1.01e-03,990,0),(5,7.95e-06,628794,2),(0,0.00e+00,10,0),(0,0.00e+00,4,0),(0,0.00e+00,2,0),(0,0.00e+00,18,0),(0,0.00e+00,440,0),(0,0.00e+00,8,0),(1,2.17e-03,460,0),(0,0.00e+00,34,0),(0,0.00e+00,14,0),(0,0.00e+00,312,0),(1,1.47e-03,678,0),(0,0.00e+00,4,0),(0,0.00e+00,6,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,0.00e+00,6,0),(0,0.00e+00,12,0),(0,0.00e+00,170,0),(0,0.00e+00,270,0),(0,NA,0,0),(0,0.00e+00,8,0),(0,0.00e+00,122,0),(1,2.96e-03,338,0),(0,0.00e+00,8,0),(0,0.00e+00,26,0),(0,0.00e+00,2,0),(0,0.00e+00,12,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,6,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,8,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,0.00e+00,26,0),(0,0.00e+00,6,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,0.00e+00,4,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,0.00e+00,40,0),(0,0.00e+00,8,0),(0,0.00e+00,2,0),(0,0.00e+00,8,0),(0,0.00e+00,2,0),(0,0.00e+00,4,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,6,0),(0,0.00e+00,80,0),(0,0.00e+00,4,0),(0,0.00e+00,8,0),(0,0.00e+00,4,0),(0,0.00e+00,8,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,0.00e+00,12,0),(0,0.00e+00,156,0),(0,0.00e+00,10,0),(0,0.00e+00,12,0),(0,0.00e+00,4,0),(0,0.00e+00,10,0),(0,0.00e+00,4,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,0.00e+00,14,0),(0,0.00e+00,206,0),(0,0.00e+00,14,0),(0,0.00e+00,14,0),(0,0.00e+00,4,0),(0,0.00e+00,16,0),(0,0.00e+00,10,0),(0,0.00e+00,2,0),(0,0.00e+00,14,0),(0,0.00e+00,252,0),(0,0.00e+00,16,0),(0,0.00e+00,20,0),(0,0.00e+00,4,0),(0,0.00e+00,20,0),(0,0.00e+00,4,0),(0,0.00e+00,18,0),(0,0.00e+00,318,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,4,0),(0,0.00e+00,22,0),(0,0.00e+00,4,0),(0,0.00e+00,320,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,4,0),(0,0.00e+00,24,0),(0,0.00e+00,4,0),(0,0.00e+00,358,0),(0,0.00e+00,22,0),(0,0.00e+00,24,0),(0,0.00e+00,4,0),(0,0.00e+00,26,0),(0,0.00e+00,440,0),(0,0.00e+00,22,0),(0,0.00e+00,26,0),(0,0.00e+00,8,0),(0,0.00e+00,30,0),(0,0.00e+00,26,0),(0,0.00e+00,34,0),(0,0.00e+00,10,0),(0,0.00e+00,32,0),(0,0.00e+00,38,0),(0,0.00e+00,14,0),(0,0.00e+00,44,0),(0,0.00e+00,42,0),(0,0.00e+00,54,0),(0,0.00e+00,90,0),(0,0.00e+00,136,0),(0,0.00e+00,176,0),(0,0.00e+00,270,0),(0,0.00e+00,414,0),(0,0.00e+00,656,0),(1,2.17e-03,460,0),(0,0.00e+00,732,0),(1,1.01e-03,990,0),(3,4.77e-06,628784,1),(0,0.00e+00,10,0),(0,0.00e+00,4,0),(0,0.00e+00,2,0),(0,0.00e+00,18,0),(0,0.00e+00,440,0),(0,0.00e+00,8,0),(1,2.17e-03,460,0),(0,0.00e+00,34,0),(0,0.00e+00,14,0),(0,0.00e+00,312,0),(1,1.47e-03,678,0),(0,0.00e+00,4,0),(0,0.00e+00,6,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,0.00e+00,6,0),(0,0.00e+00,12,0),(0,0.00e+00,170,0),(0,0.00e+00,270,0),(0,NA,0,0),(0,0.00e+00,8,0),(0,0.00e+00,122,0),(1,2.96e-03,338,0),(0,0.00e+00,8,0),(0,0.00e+00,26,0),(0,0.00e+00,2,0),(0,0.00e+00,12,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,6,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,8,0),(0,0.00e+00,4,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,0.00e+00,4,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,0.00e+00,26,0),(0,0.00e+00,8,0),(0,0.00e+00,6,0),(0,0.00e+00,8,0),(0,0.00e+00,2,0),(0,0.00e+00,8,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,0.00e+00,26,0),(0,0.00e+00,8,0),(0,0.00e+00,6,0),(0,0.00e+00,8,0),(0,0.00e+00,2,0),(0,0.00e+00,8,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,6,0),(0,0.00e+00,80,0),(0,0.00e+00,16,0),(0,0.00e+00,12,0),(0,0.00e+00,4,0),(0,0.00e+00,14,0),(0,0.00e+00,10,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,0.00e+00,12,0),(0,0.00e+00,140,0),(0,0.00e+00,26,0),(0,0.00e+00,20,0),(0,0.00e+00,4,0),(0,0.00e+00,24,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,0.00e+00,14,0),(0,0.00e+00,156,0),(0,0.00e+00,28,0),(0,0.00e+00,20,0),(0,0.00e+00,4,0),(0,0.00e+00,28,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,0.00e+00,14,0),(0,0.00e+00,160,0),(0,0.00e+00,28,0),(0,0.00e+00,20,0),(0,0.00e+00,4,0),(0,0.00e+00,28,0),(0,0.00e+00,2,0),(0,0.00e+00,18,0),(0,0.00e+00,252,0),(0,0.00e+00,48,0),(0,0.00e+00,34,0),(0,0.00e+00,4,0),(0,0.00e+00,42,0),(0,0.00e+00,4,0),(0,0.00e+00,18,0),(0,0.00e+00,290,0),(0,0.00e+00,54,0),(0,0.00e+00,4,0),(0,0.00e+00,44,0),(0,0.00e+00,4,0),(0,0.00e+00,324,0),(0,0.00e+00,56,0),(0,0.00e+00,8,0),(0,0.00e+00,46,0),(0,0.00e+00,4,0),(0,0.00e+00,352,0),(0,0.00e+00,64,0),(0,0.00e+00,8,0),(0,0.00e+00,60,0),(0,0.00e+00,440,0),(0,0.00e+00,72,0),(0,0.00e+00,10,0),(0,0.00e+00,82,0),(0,0.00e+00,96,0),(0,0.00e+00,14,0),(0,0.00e+00,110,0),(0,0.00e+00,140,0),(0,0.00e+00,152,0),(0,0.00e+00,254,0),(0,0.00e+00,316,0),(1,2.17e-03,460,0),(0,0.00e+00,516,0),(0,0.00e+00,592,0)]12.17e-034600"nfe"12.17e-034600"nfe"[(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]NANANANANANANANA2TrueNA{}4.82e-166.00e+010.00e+002099.09e+008.42e-01[6,7,4,6]9.17e-01230.00e+006.00e+010.00e+002.67e-011781.05e+017.20e-02[6,7,3,5]1.00e+0017FalseFalseFalseFalseFalseFalseFalse6.19e+008.00e-01["ga4gh:VA.Q6p6okAv6qHSPSV8MOvy8Hhl0kZ6tQ4U","ga4gh:VA.WIfYWxgEc5ICUUByiDkxaU0AvS4kOB2-"][113409716,113409716][113409717,113409717]["C","T"]"C/T"113409717".""chr11\t113409717\t.\tC\tT\t.\t.\tGT"NA"3_prime_UTR_variant"NANA"chr11"1134097171[(1,NA,NA,"protein_coding",NA,"CCDS8362.1",2331,2331,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000346454.7:c.*1010G>A",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"ENSP00000278597","Ensembl",-1,"ENST00000346454",1,["P14416-2"],"T"),(1,NA,"P2","protein_coding",1,"CCDS8361.1",2696,2696,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"8/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000362072.8:c.*1010G>A",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,"NM_000795.4",NA,NA,NA,NA,"ENSP00000354859","Ensembl",-1,"ENST00000362072",1,["P14416-1"],"T"),(1,NA,NA,"processed_transcript",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],4658,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000535984",3,NA,"T"),(1,NA,"A1","protein_coding",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],855,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"ENSP00000438215","Ensembl",-1,"ENST00000538967",5,["P14416-3"],"T"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],4147,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000540600",1,NA,"T"),(1,NA,"P2","protein_coding",NA,"CCDS8361.1",NA,NA,NA,NA,NA,["downstream_gene_variant"],196,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"ENSP00000442172","Ensembl",-1,"ENST00000542968",1,["P14416-1"],"T"),(1,NA,"A1","protein_coding",NA,NA,2372,2372,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000544518.5:c.*1010G>A",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"ENSP00000441068","Ensembl",-1,"ENST00000544518",1,NA,"T"),(1,NA,NA,"lncRNA",1,NA,NA,NA,NA,NA,NA,["intron_variant","non_coding_transcript_variant"],NA,NA,NA,NA,"ENSG00000256757",NA,NA,NA,NA,"ENST00000546284.1:n.245-1830C>T",NA,NA,"MODIFIER","2/3",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",1,"ENST00000546284",3,NA,"T"),(1,NA,NA,"protein_coding",1,NA,2696,2696,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"8/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_000795.4:c.*1010G>A",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,"ENST00000362072.8",NA,NA,NA,NA,"NP_000786.1","RefSeq",-1,"NM_000795.4",NA,NA,"T"),(1,NA,NA,"protein_coding",NA,NA,2609,2609,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"7/7",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_016574.4:c.*1010G>A",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"NP_057658.2","RefSeq",-1,"NM_016574.4",NA,NA,"T"),(1,NA,NA,"protein_coding",NA,NA,2424,2424,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"8/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","XM_017017296.2:c.*1010G>A",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"XP_016872785.1","RefSeq",-1,"XM_017017296.2",NA,NA,"T")]"SNV"6.19e+00"AS_MQ"FalseFalseFalseFalseFalseNATrueFalse"multi-snv"2False"snv"False[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,95,0,197,0,202,0,0,0,0,0,0,0,1,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,286,30,40,105,34,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][313071,2,3,0,920,0,198,0,202,0,0,0,0,0,0,0,1,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][240226,73668,294,30,40,105,34,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][2,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]001.51e+011.40e+00NA0.00e+000.00e+001.05e+00NANA
chr11:113409758["C","T"][(1,1.23e-03,810,0),(4,6.36e-06,628786,1),(0,0.00e+00,12,0),(0,0.00e+00,4,0),(0,NA,0,0),(0,0.00e+00,14,0),(0,0.00e+00,424,0),(0,0.00e+00,2,0),(0,0.00e+00,320,0),(1,3.57e-02,28,0),(0,0.00e+00,6,0),(0,0.00e+00,280,0),(1,1.89e-03,530,0),(0,0.00e+00,6,0),(0,0.00e+00,6,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,0.00e+00,12,0),(0,0.00e+00,170,0),(0,0.00e+00,254,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,0.00e+00,92,0),(0,0.00e+00,228,0),(0,0.00e+00,6,0),(1,4.55e-02,22,0),(0,NA,0,0),(0,0.00e+00,6,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,8,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,10,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,26,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,0.00e+00,6,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,38,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,0.00e+00,8,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,0.00e+00,74,0),(0,0.00e+00,2,0),(1,1.00e-01,10,0),(0,NA,0,0),(0,0.00e+00,8,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,6,0),(0,0.00e+00,150,0),(0,0.00e+00,6,0),(1,8.33e-02,12,0),(0,NA,0,0),(0,0.00e+00,12,0),(0,0.00e+00,4,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,6,0),(0,0.00e+00,198,0),(0,0.00e+00,8,0),(1,7.14e-02,14,0),(0,NA,0,0),(0,0.00e+00,16,0),(0,0.00e+00,12,0),(0,0.00e+00,4,0),(0,0.00e+00,6,0),(0,0.00e+00,244,0),(0,0.00e+00,10,0),(1,5.56e-02,18,0),(0,0.00e+00,2,0),(0,0.00e+00,18,0),(0,0.00e+00,4,0),(0,0.00e+00,14,0),(0,0.00e+00,306,0),(0,0.00e+00,12,0),(1,5.56e-02,18,0),(0,0.00e+00,2,0),(0,0.00e+00,18,0),(0,0.00e+00,4,0),(0,0.00e+00,308,0),(0,0.00e+00,12,0),(1,5.56e-02,18,0),(0,0.00e+00,2,0),(0,0.00e+00,18,0),(0,0.00e+00,4,0),(0,0.00e+00,348,0),(0,0.00e+00,12,0),(1,5.00e-02,20,0),(0,0.00e+00,2,0),(0,0.00e+00,22,0),(0,0.00e+00,424,0),(0,0.00e+00,14,0),(1,4.55e-02,22,0),(0,0.00e+00,2,0),(0,0.00e+00,24,0),(0,0.00e+00,16,0),(1,3.57e-02,28,0),(0,0.00e+00,2,0),(0,0.00e+00,24,0),(0,0.00e+00,22,0),(0,0.00e+00,6,0),(0,0.00e+00,36,0),(0,0.00e+00,28,0),(0,0.00e+00,44,0),(0,0.00e+00,84,0),(1,8.33e-03,120,0),(0,0.00e+00,130,0),(1,4.27e-03,234,0),(0,0.00e+00,290,0),(1,1.92e-03,522,0),(0,0.00e+00,320,0),(1,1.70e-03,588,0),(1,1.23e-03,810,0),(4,6.36e-06,628784,1),(0,0.00e+00,12,0),(0,0.00e+00,4,0),(0,NA,0,0),(0,0.00e+00,14,0),(0,0.00e+00,424,0),(0,0.00e+00,2,0),(0,0.00e+00,320,0),(1,3.57e-02,28,0),(0,0.00e+00,6,0),(0,0.00e+00,280,0),(1,1.89e-03,530,0),(0,0.00e+00,6,0),(0,0.00e+00,6,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,0.00e+00,12,0),(0,0.00e+00,170,0),(0,0.00e+00,254,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,0.00e+00,92,0),(0,0.00e+00,228,0),(0,0.00e+00,6,0),(1,4.55e-02,22,0),(0,NA,0,0),(0,0.00e+00,6,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,8,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,10,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,0.00e+00,4,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,26,0),(0,0.00e+00,2,0),(0,0.00e+00,4,0),(0,0.00e+00,8,0),(0,NA,0,0),(0,0.00e+00,8,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,26,0),(0,0.00e+00,2,0),(0,0.00e+00,4,0),(0,0.00e+00,8,0),(0,NA,0,0),(0,0.00e+00,8,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,0.00e+00,74,0),(0,0.00e+00,8,0),(1,8.33e-02,12,0),(0,NA,0,0),(0,0.00e+00,14,0),(0,0.00e+00,12,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,6,0),(0,0.00e+00,134,0),(0,0.00e+00,16,0),(1,5.56e-02,18,0),(0,NA,0,0),(0,0.00e+00,18,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,6,0),(0,0.00e+00,150,0),(0,0.00e+00,16,0),(1,5.56e-02,18,0),(0,NA,0,0),(0,0.00e+00,22,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,6,0),(0,0.00e+00,156,0),(0,0.00e+00,16,0),(1,5.56e-02,18,0),(0,NA,0,0),(0,0.00e+00,22,0),(0,0.00e+00,4,0),(0,0.00e+00,14,0),(0,0.00e+00,244,0),(0,0.00e+00,32,0),(1,3.57e-02,28,0),(0,0.00e+00,2,0),(0,0.00e+00,36,0),(0,0.00e+00,4,0),(0,0.00e+00,14,0),(0,0.00e+00,280,0),(0,0.00e+00,38,0),(0,0.00e+00,2,0),(0,0.00e+00,36,0),(0,0.00e+00,4,0),(0,0.00e+00,312,0),(0,0.00e+00,46,0),(0,0.00e+00,2,0),(0,0.00e+00,38,0),(0,0.00e+00,4,0),(0,0.00e+00,342,0),(0,0.00e+00,48,0),(0,0.00e+00,2,0),(0,0.00e+00,50,0),(0,0.00e+00,424,0),(0,0.00e+00,60,0),(0,0.00e+00,2,0),(0,0.00e+00,62,0),(0,0.00e+00,86,0),(0,0.00e+00,6,0),(0,0.00e+00,92,0),(0,0.00e+00,106,0),(1,7.58e-03,132,0),(0,0.00e+00,178,0),(1,3.85e-03,260,0),(0,0.00e+00,320,0),(1,2.37e-03,422,0),(1,2.08e-03,480,0)]NANANANANANANANANANA[(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]NANANANANANANANA2True{"rs200557458"}{}0.00e+006.00e+010.00e+009471.26e+01-6.74e-01[16,19,18,22]7.22e-01750.00e+006.00e+010.00e+001.00e+007031.12e+01-1.13e+00[16,19,14,17]7.13e-0163FalseFalseFalseFalseFalseFalseFalse6.36e+005.00e-01["ga4gh:VA.k_gesWx8TbLs23MHIkc3NaVscBWVDrSE","ga4gh:VA.NJz3hsVBrqbTn17g5TCHVwOZKQSr_-gG"][113409757,113409757][113409758,113409758]["C","T"]"C/T"113409758".""chr11\t113409758\t.\tC\tT\t.\t.\tGT"NA"3_prime_UTR_variant"NANA"chr11"1134097581[(1,NA,NA,"protein_coding",NA,"CCDS8362.1",2290,2290,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000346454.7:c.*969G>A",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"ENSP00000278597","Ensembl",-1,"ENST00000346454",1,["P14416-2"],"T"),(1,NA,"P2","protein_coding",1,"CCDS8361.1",2655,2655,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"8/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000362072.8:c.*969G>A",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,"NM_000795.4",NA,NA,NA,NA,"ENSP00000354859","Ensembl",-1,"ENST00000362072",1,["P14416-1"],"T"),(1,NA,NA,"processed_transcript",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],4617,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000535984",3,NA,"T"),(1,NA,"A1","protein_coding",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],814,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"ENSP00000438215","Ensembl",-1,"ENST00000538967",5,["P14416-3"],"T"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],4106,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000540600",1,NA,"T"),(1,NA,"P2","protein_coding",NA,"CCDS8361.1",NA,NA,NA,NA,NA,["downstream_gene_variant"],155,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"ENSP00000442172","Ensembl",-1,"ENST00000542968",1,["P14416-1"],"T"),(1,NA,"A1","protein_coding",NA,NA,2331,2331,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000544518.5:c.*969G>A",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"ENSP00000441068","Ensembl",-1,"ENST00000544518",1,NA,"T"),(1,NA,NA,"lncRNA",1,NA,NA,NA,NA,NA,NA,["intron_variant","non_coding_transcript_variant"],NA,NA,NA,NA,"ENSG00000256757",NA,NA,NA,NA,"ENST00000546284.1:n.245-1789C>T",NA,NA,"MODIFIER","2/3",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",1,"ENST00000546284",3,NA,"T"),(1,NA,NA,"protein_coding",1,NA,2655,2655,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"8/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_000795.4:c.*969G>A",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,"ENST00000362072.8",NA,NA,NA,NA,"NP_000786.1","RefSeq",-1,"NM_000795.4",NA,NA,"T"),(1,NA,NA,"protein_coding",NA,NA,2568,2568,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"7/7",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_016574.4:c.*969G>A",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"NP_057658.2","RefSeq",-1,"NM_016574.4",NA,NA,"T"),(1,NA,NA,"protein_coding",NA,NA,2383,2383,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"8/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","XM_017017296.2:c.*969G>A",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"XP_016872785.1","RefSeq",-1,"XM_017017296.2",NA,NA,"T")]"SNV"6.36e+00"AS_MQ"FalseFalseFalseFalseFalseNATrueFalse"multi-snv"2False"snv"False[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,100,0,111,0,193,0,0,0,0,0,1,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,200,35,36,102,32,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][313441,3,2,1,640,0,111,1,193,0,0,0,0,0,1,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][240307,73671,209,36,36,102,32,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,1,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][1,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]009.13e+007.73e-01NA1.00e-023.00e-022.58e+00NANA
chr11:113410002["C","A"][(128,1.34e-01,952,15),(18463,2.94e-02,628994,6837),(0,0.00e+00,6,0),(17,1.93e-01,88,4),(0,0.00e+00,8,0),(2,5.00e-01,4,0),(3,1.88e-01,16,0),(0,NA,0,0),(101,1.30e-01,774,10),(5,1.39e-01,36,1),(0,0.00e+00,20,0),(58,1.39e-01,416,5),(70,1.31e-01,536,10),(0,NA,0,0),(0,0.00e+00,6,0),(8,1.60e-01,50,1),(9,2.37e-01,38,3),(0,0.00e+00,6,0),(0,0.00e+00,2,0),(0,NA,0,0),(2,5.00e-01,4,0),(2,3.33e-01,6,0),(1,1.00e-01,10,0),(0,NA,0,0),(0,NA,0,0),(47,1.37e-01,342,4),(54,1.25e-01,432,6),(1,1.67e-01,6,0),(4,1.33e-01,30,1),(0,0.00e+00,6,0),(0,0.00e+00,14,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,NA,0,0),(1,5.00e-01,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,NA,0,0),(1,5.00e-01,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(1,1.67e-01,6,0),(0,NA,0,0),(1,5.00e-01,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(1,1.25e-01,8,0),(0,NA,0,0),(1,5.00e-01,2,0),(0,NA,0,0),(0,NA,0,0),(1,5.00e-01,2,0),(1,5.00e-01,2,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,0.00e+00,2,0),(2,1.25e-01,16,0),(0,0.00e+00,2,0),(1,5.00e-01,2,0),(0,NA,0,0),(1,5.00e-01,2,0),(2,2.50e-01,8,0),(0,0.00e+00,4,0),(1,5.00e-01,2,0),(0,0.00e+00,2,0),(7,1.84e-01,38,1),(0,0.00e+00,6,0),(1,5.00e-01,2,0),(1,1.67e-01,6,0),(3,3.00e-01,10,0),(4,2.50e-01,16,1),(0,0.00e+00,6,0),(2,5.00e-01,4,0),(0,0.00e+00,2,0),(13,2.50e-01,52,3),(0,0.00e+00,8,0),(1,5.00e-01,2,0),(1,1.25e-01,8,0),(5,4.17e-01,12,1),(4,2.50e-01,16,1),(0,0.00e+00,12,0),(3,3.00e-01,10,0),(0,0.00e+00,6,0),(16,2.35e-01,68,4),(2,5.00e-01,4,0),(2,2.00e-01,10,0),(5,2.50e-01,20,1),(4,2.00e-01,20,1),(0,0.00e+00,14,0),(5,3.57e-01,14,1),(16,2.05e-01,78,4),(2,5.00e-01,4,0),(3,2.14e-01,14,0),(5,2.27e-01,22,1),(4,1.54e-01,26,1),(0,0.00e+00,14,0),(6,2.73e-01,22,1),(16,2.05e-01,78,4),(3,2.14e-01,14,0),(5,2.27e-01,22,1),(4,1.54e-01,26,1),(0,0.00e+00,14,0),(6,2.73e-01,22,1),(17,1.93e-01,88,4),(3,1.88e-01,16,0),(5,1.79e-01,28,1),(5,1.79e-01,28,1),(0,0.00e+00,16,0),(6,2.31e-01,26,1),(3,1.88e-01,16,0),(5,1.56e-01,32,1),(5,1.56e-01,32,1),(0,0.00e+00,20,0),(6,2.00e-01,30,1),(5,1.39e-01,36,1),(5,1.39e-01,36,1),(0,0.00e+00,20,0),(6,1.58e-01,38,1),(10,2.08e-01,48,2),(0,0.00e+00,20,0),(6,1.36e-01,44,1),(10,1.79e-01,56,2),(11,2.12e-01,52,2),(19,1.51e-01,126,4),(16,1.57e-01,102,2),(34,1.42e-01,240,4),(34,1.37e-01,248,4),(91,1.35e-01,674,9),(90,1.47e-01,614,11),(101,1.30e-01,774,10),(100,1.46e-01,684,12),(128,1.34e-01,952,15),(18256,2.90e-02,628782,6734),(0,0.00e+00,6,0),(17,1.93e-01,88,4),(0,0.00e+00,8,0),(2,5.00e-01,4,0),(3,1.88e-01,16,0),(0,NA,0,0),(101,1.30e-01,774,10),(5,1.39e-01,36,1),(0,0.00e+00,20,0),(58,1.39e-01,416,5),(70,1.31e-01,536,10),(0,NA,0,0),(0,0.00e+00,6,0),(8,1.60e-01,50,1),(9,2.37e-01,38,3),(0,0.00e+00,6,0),(0,0.00e+00,2,0),(0,NA,0,0),(2,5.00e-01,4,0),(2,3.33e-01,6,0),(1,1.00e-01,10,0),(0,NA,0,0),(0,NA,0,0),(47,1.37e-01,342,4),(54,1.25e-01,432,6),(1,1.67e-01,6,0),(4,1.33e-01,30,1),(0,0.00e+00,6,0),(0,0.00e+00,14,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,NA,0,0),(1,5.00e-01,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,NA,0,0),(1,5.00e-01,2,0),(0,NA,0,0),(0,NA,0,0),(1,5.00e-01,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(1,1.67e-01,6,0),(0,NA,0,0),(1,5.00e-01,2,0),(0,NA,0,0),(0,NA,0,0),(1,5.00e-01,2,0),(1,5.00e-01,2,0),(0,0.00e+00,2,0),(1,5.00e-01,2,0),(0,NA,0,0),(1,1.67e-01,6,0),(0,NA,0,0),(1,5.00e-01,2,0),(0,NA,0,0),(0,NA,0,0),(1,5.00e-01,2,0),(1,2.50e-01,4,0),(0,0.00e+00,2,0),(1,5.00e-01,2,0),(0,0.00e+00,2,0),(2,1.11e-01,18,0),(0,0.00e+00,4,0),(1,5.00e-01,2,0),(0,NA,0,0),(5,2.50e-01,20,1),(4,2.50e-01,16,1),(0,0.00e+00,6,0),(3,3.75e-01,8,0),(0,0.00e+00,6,0),(4,1.25e-01,32,1),(0,0.00e+00,6,0),(1,5.00e-01,2,0),(1,2.50e-01,4,0),(5,1.39e-01,36,1),(4,2.22e-01,18,1),(0,0.00e+00,10,0),(6,2.50e-01,24,1),(7,1.84e-01,38,1),(0,0.00e+00,8,0),(1,5.00e-01,2,0),(1,1.67e-01,6,0),(5,1.39e-01,36,1),(4,1.67e-01,24,1),(0,0.00e+00,12,0),(6,2.31e-01,26,1),(7,1.84e-01,38,1),(0,0.00e+00,8,0),(1,5.00e-01,2,0),(1,1.67e-01,6,0),(5,1.39e-01,36,1),(4,1.54e-01,26,1),(0,0.00e+00,12,0),(6,2.14e-01,28,1),(16,2.35e-01,68,4),(2,5.00e-01,4,0),(2,2.00e-01,10,0),(10,1.72e-01,58,2),(5,1.39e-01,36,1),(0,0.00e+00,14,0),(6,1.36e-01,44,1),(16,2.22e-01,72,4),(2,5.00e-01,4,0),(3,2.14e-01,14,0),(11,1.83e-01,60,2),(0,0.00e+00,16,0),(6,1.36e-01,44,1),(16,1.95e-01,82,4),(3,2.14e-01,14,0),(12,1.67e-01,72,2),(0,0.00e+00,18,0),(9,1.88e-01,48,2),(17,1.93e-01,88,4),(3,1.88e-01,16,0),(13,1.63e-01,80,2),(0,0.00e+00,20,0),(11,2.12e-01,52,2),(3,1.88e-01,16,0),(15,1.67e-01,90,3),(0,0.00e+00,20,0),(12,1.94e-01,62,2),(21,1.50e-01,140,4),(0,0.00e+00,20,0),(15,1.79e-01,84,2),(29,1.42e-01,204,4),(19,1.48e-01,128,3),(54,1.34e-01,402,6),(42,1.49e-01,282,6),(101,1.30e-01,774,10),(71,1.43e-01,498,10),(83,1.47e-01,564,11)]25.00e-0140"eas"25.00e-0140"eas"[(1.16e-01,1.08e-01),(0.00e+00,0.00e+00),(1.23e-01,1.01e-01),(8.88e-02,3.71e-02),(0.00e+00,0.00e+00),(1.10e-01,1.02e-01),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,(1.16e-01,1.08e-01),(0.00e+00,0.00e+00),(1.23e-01,1.01e-01),(8.88e-02,3.71e-02),(0.00e+00,0.00e+00),(1.10e-01,1.02e-01),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]1.23e-01"amr"1.02e-01"nfe"1.23e-01"amr"1.02e-01"nfe"1True{"rs6278"}{}2.80e+006.00e+010.00e+0019982391.99e+010.00e+00[19752,12842,45058,22649]9.83e-011002922.80e+006.00e+010.00e+001.00e+0019980921.99e+010.00e+00[19752,12842,45055,22646]9.83e-01100286FalseNANATrueFalseFalseFalse5.57e+007.33e-01["ga4gh:VA.HjAJ4gj43VVFJQmV-h5WuPZZPBmNwSFZ","ga4gh:VA.sT14AsCSWlf2AqH0whCJCrPrWiW09OFx"][113410001,113410001][113410002,113410002]["C","A"]"C/A"113410002".""chr11\t113410002\t.\tC\tA\t.\t.\tGT"NA"3_prime_UTR_variant"NANA"chr11"1134100021[(1,NA,NA,"protein_coding",NA,"CCDS8362.1",2046,2046,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000346454.7:c.*725G>T",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"ENSP00000278597","Ensembl",-1,"ENST00000346454",1,["P14416-2"],"A"),(1,NA,"P2","protein_coding",1,"CCDS8361.1",2411,2411,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"8/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000362072.8:c.*725G>T",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,"NM_000795.4",NA,NA,NA,NA,"ENSP00000354859","Ensembl",-1,"ENST00000362072",1,["P14416-1"],"A"),(1,NA,NA,"processed_transcript",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],4373,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000535984",3,NA,"A"),(1,NA,"A1","protein_coding",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],570,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"ENSP00000438215","Ensembl",-1,"ENST00000538967",5,["P14416-3"],"A"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],3862,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000540600",1,NA,"A"),(1,NA,"P2","protein_coding",NA,"CCDS8361.1",2378,2378,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000542968.5:c.*725G>T",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"ENSP00000442172","Ensembl",-1,"ENST00000542968",1,["P14416-1"],"A"),(1,NA,"A1","protein_coding",NA,NA,2087,2087,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000544518.5:c.*725G>T",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"ENSP00000441068","Ensembl",-1,"ENST00000544518",1,NA,"A"),(1,NA,NA,"lncRNA",1,NA,NA,NA,NA,NA,NA,["intron_variant","non_coding_transcript_variant"],NA,NA,NA,NA,"ENSG00000256757",NA,NA,NA,NA,"ENST00000546284.1:n.245-1545C>A",NA,NA,"MODIFIER","2/3",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",1,"ENST00000546284",3,NA,"A"),(1,NA,NA,"protein_coding",1,NA,2411,2411,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"8/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_000795.4:c.*725G>T",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,"ENST00000362072.8",NA,NA,NA,NA,"NP_000786.1","RefSeq",-1,"NM_000795.4",NA,NA,"A"),(1,NA,NA,"protein_coding",NA,NA,2324,2324,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"7/7",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_016574.4:c.*725G>T",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"NP_057658.2","RefSeq",-1,"NM_016574.4",NA,NA,"A"),(1,NA,NA,"protein_coding",NA,NA,2139,2139,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"8/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","XM_017017296.2:c.*725G>T",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"XP_016872785.1","RefSeq",-1,"XM_017017296.2",NA,NA,"A")]"SNV"5.57e+00"AS_MQ"TrueTrueFalseFalseFalseNATrueFalse"multi-snv"3False"snv"False[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,120,1,223,5,34,1,5,0,2,5,7,1,3,2,1,66]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,438,30,5,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,1,1,11,5,2,1,5,0,2,5,7,1,3,2,1,66]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,108,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,3,8,0,4,8,6,30,15,8,9,3,1,3,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][301848,5644,543,415,1889,1584,436,212,123,210,485,568,76,48,44,53,135,57,19,108]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][238198,75776,482,33,5,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][398,5642,541,415,716,1584,224,212,91,210,485,568,76,48,44,53,135,57,19,108]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][9330,2176,115,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,4,4,27,107,217,41,416,6,1084,414,43,1634,53,495,208,34,2,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,1,1,5,4,3,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,1,2,2,0,0,0]002.02e+009.23e-02NA0.00e+000.00e+001.61e+00NANA

showing top 5 rows

\n" + ], + "text/plain": [ + "+-----------------+------------+\n", + "| locus | alleles |\n", + "+-----------------+------------+\n", + "| locus | array |\n", + "+-----------------+------------+\n", + "| chr11:113409636 | [\"G\",\"C\"] |\n", + "| chr11:113409693 | [\"G\",\"A\"] |\n", + "| chr11:113409717 | [\"C\",\"T\"] |\n", + "| chr11:113409758 | [\"C\",\"T\"] |\n", + "| chr11:113410002 | [\"C\",\"A\"] |\n", + "+-----------------+------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| freq |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [(1,1.87e-03,534,0),(5,7.95e-06,628788,2),(0,0.00e+00,8,0),(0,NA,0,0),(0,... |\n", + "| [(1,1.20e-03,834,0),(16,2.54e-05,628790,3),(0,0.00e+00,6,0),(0,0.00e+00,2... |\n", + "| [(1,1.01e-03,990,0),(5,7.95e-06,628794,2),(0,0.00e+00,10,0),(0,0.00e+00,4... |\n", + "| [(1,1.23e-03,810,0),(4,6.36e-06,628786,1),(0,0.00e+00,12,0),(0,0.00e+00,4... |\n", + "| [(128,1.34e-01,952,15),(18463,2.94e-02,628994,6837),(0,0.00e+00,6,0),(17,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+------------------+------------------+------------------+\n", + "| grpmax.gnomad.AC | grpmax.gnomad.AF | grpmax.gnomad.AN |\n", + "+------------------+------------------+------------------+\n", + "| int32 | float64 | int32 |\n", + "+------------------+------------------+------------------+\n", + "| NA | NA | NA |\n", + "| 1 | 2.87e-03 | 348 |\n", + "| 1 | 2.17e-03 | 460 |\n", + "| NA | NA | NA |\n", + "| 2 | 5.00e-01 | 4 |\n", + "+------------------+------------------+------------------+\n", + "\n", + "+--------------------------------+-----------------------+-------------------+\n", + "| grpmax.gnomad.homozygote_count | grpmax.gnomad.gen_anc | grpmax.non_ukb.AC |\n", + "+--------------------------------+-----------------------+-------------------+\n", + "| int64 | str | int32 |\n", + "+--------------------------------+-----------------------+-------------------+\n", + "| NA | NA | NA |\n", + "| 0 | \"nfe\" | 1 |\n", + "| 0 | \"nfe\" | 1 |\n", + "| NA | NA | NA |\n", + "| 0 | \"eas\" | 2 |\n", + "+--------------------------------+-----------------------+-------------------+\n", + "\n", + "+-------------------+-------------------+---------------------------------+\n", + "| grpmax.non_ukb.AF | grpmax.non_ukb.AN | grpmax.non_ukb.homozygote_count |\n", + "+-------------------+-------------------+---------------------------------+\n", + "| float64 | int32 | int64 |\n", + "+-------------------+-------------------+---------------------------------+\n", + "| NA | NA | NA |\n", + "| 2.87e-03 | 348 | 0 |\n", + "| 2.17e-03 | 460 | 0 |\n", + "| NA | NA | NA |\n", + "| 5.00e-01 | 4 | 0 |\n", + "+-------------------+-------------------+---------------------------------+\n", + "\n", + "+------------------------+\n", + "| grpmax.non_ukb.gen_anc |\n", + "+------------------------+\n", + "| str |\n", + "+------------------------+\n", + "| NA |\n", + "| \"nfe\" |\n", + "| \"nfe\" |\n", + "| NA |\n", + "| \"eas\" |\n", + "+------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| faf |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.... |\n", + "| [(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.... |\n", + "| [(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.... |\n", + "| [(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.... |\n", + "| [(1.16e-01,1.08e-01),(0.00e+00,0.00e+00),(1.23e-01,1.01e-01),(8.88e-02,3.... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+-------------------------+---------------------------------+\n", + "| fafmax.gnomad.faf95_max | fafmax.gnomad.faf95_max_gen_anc |\n", + "+-------------------------+---------------------------------+\n", + "| float64 | str |\n", + "+-------------------------+---------------------------------+\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| 1.23e-01 | \"amr\" |\n", + "+-------------------------+---------------------------------+\n", + "\n", + "+-------------------------+---------------------------------+\n", + "| fafmax.gnomad.faf99_max | fafmax.gnomad.faf99_max_gen_anc |\n", + "+-------------------------+---------------------------------+\n", + "| float64 | str |\n", + "+-------------------------+---------------------------------+\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| 1.02e-01 | \"nfe\" |\n", + "+-------------------------+---------------------------------+\n", + "\n", + "+--------------------------+----------------------------------+\n", + "| fafmax.non_ukb.faf95_max | fafmax.non_ukb.faf95_max_gen_anc |\n", + "+--------------------------+----------------------------------+\n", + "| float64 | str |\n", + "+--------------------------+----------------------------------+\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| 1.23e-01 | \"amr\" |\n", + "+--------------------------+----------------------------------+\n", + "\n", + "+--------------------------+----------------------------------+---------+\n", + "| fafmax.non_ukb.faf99_max | fafmax.non_ukb.faf99_max_gen_anc | a_index |\n", + "+--------------------------+----------------------------------+---------+\n", + "| float64 | str | int32 |\n", + "+--------------------------+----------------------------------+---------+\n", + "| NA | NA | 1 |\n", + "| NA | NA | 1 |\n", + "| NA | NA | 2 |\n", + "| NA | NA | 2 |\n", + "| 1.02e-01 | \"nfe\" | 1 |\n", + "+--------------------------+----------------------------------+---------+\n", + "\n", + "+-----------+-----------------+----------+----------+----------+\n", + "| was_split | rsid | filters | info.FS | info.MQ |\n", + "+-----------+-----------------+----------+----------+----------+\n", + "| bool | set | set | float64 | float64 |\n", + "+-----------+-----------------+----------+----------+----------+\n", + "| True | {\"rs200733424\"} | {} | 0.00e+00 | 6.00e+01 |\n", + "| True | NA | {} | 5.32e+00 | 6.00e+01 |\n", + "| True | NA | {} | 4.82e-16 | 6.00e+01 |\n", + "| True | {\"rs200557458\"} | {} | 0.00e+00 | 6.00e+01 |\n", + "| True | {\"rs6278\"} | {} | 2.80e+00 | 6.00e+01 |\n", + "+-----------+-----------------+----------+----------+----------+\n", + "\n", + "+----------------+-----------------+----------+---------------------+\n", + "| info.MQRankSum | info.QUALapprox | info.QD | info.ReadPosRankSum |\n", + "+----------------+-----------------+----------+---------------------+\n", + "| float64 | int64 | float64 | float64 |\n", + "+----------------+-----------------+----------+---------------------+\n", + "| 0.00e+00 | 582 | 1.94e+01 | -2.11e+00 |\n", + "| 0.00e+00 | 898 | 9.76e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 209 | 9.09e+00 | 8.42e-01 |\n", + "| 0.00e+00 | 947 | 1.26e+01 | -6.74e-01 |\n", + "| 0.00e+00 | 1998239 | 1.99e+01 | 0.00e+00 |\n", + "+----------------+-----------------+----------+---------------------+\n", + "\n", + "+---------------------------+----------+------------+------------+------------+\n", + "| info.SB | info.SOR | info.VarDP | info.AS_FS | info.AS_MQ |\n", + "+---------------------------+----------+------------+------------+------------+\n", + "| array | float64 | int32 | float64 | float64 |\n", + "+---------------------------+----------+------------+------------+------------+\n", + "| [8,2,15,5] | 5.82e-01 | 30 | 0.00e+00 | 6.00e+01 |\n", + "| [31,19,21,21] | 3.30e-01 | 92 | 4.52e+00 | 6.00e+01 |\n", + "| [6,7,4,6] | 9.17e-01 | 23 | 0.00e+00 | 6.00e+01 |\n", + "| [16,19,18,22] | 7.22e-01 | 75 | 0.00e+00 | 6.00e+01 |\n", + "| [19752,12842,45058,22649] | 9.83e-01 | 100292 | 2.80e+00 | 6.00e+01 |\n", + "+---------------------------+----------+------------+------------+------------+\n", + "\n", + "+-------------------+-----------------+--------------------+------------+\n", + "| info.AS_MQRankSum | info.AS_pab_max | info.AS_QUALapprox | info.AS_QD |\n", + "+-------------------+-----------------+--------------------+------------+\n", + "| float64 | float64 | int64 | float64 |\n", + "+-------------------+-----------------+--------------------+------------+\n", + "| 0.00e+00 | 5.41e-01 | 582 | 1.94e+01 |\n", + "| 0.00e+00 | 1.00e+00 | 553 | 8.01e+00 |\n", + "| 0.00e+00 | 2.67e-01 | 178 | 1.05e+01 |\n", + "| 0.00e+00 | 1.00e+00 | 703 | 1.12e+01 |\n", + "| 0.00e+00 | 1.00e+00 | 1998092 | 1.99e+01 |\n", + "+-------------------+-----------------+--------------------+------------+\n", + "\n", + "+------------------------+---------------------------+-------------+\n", + "| info.AS_ReadPosRankSum | info.AS_SB_TABLE | info.AS_SOR |\n", + "+------------------------+---------------------------+-------------+\n", + "| float64 | array | float64 |\n", + "+------------------------+---------------------------+-------------+\n", + "| -2.11e+00 | [8,2,15,5] | 5.82e-01 |\n", + "| 0.00e+00 | [31,19,15,15] | 3.30e-01 |\n", + "| 7.20e-02 | [6,7,3,5] | 1.00e+00 |\n", + "| -1.13e+00 | [16,19,14,17] | 7.13e-01 |\n", + "| 0.00e+00 | [19752,12842,45055,22646] | 9.83e-01 |\n", + "+------------------------+---------------------------+-------------+\n", + "\n", + "+---------------+----------------+----------------------------+\n", + "| info.AS_VarDP | info.singleton | info.transmitted_singleton |\n", + "+---------------+----------------+----------------------------+\n", + "| int32 | bool | bool |\n", + "+---------------+----------------+----------------------------+\n", + "| 30 | False | False |\n", + "| 69 | False | False |\n", + "| 17 | False | False |\n", + "| 63 | False | False |\n", + "| 100286 | False | NA |\n", + "+---------------+----------------+----------------------------+\n", + "\n", + "+------------------------+-----------+------------+------------------+\n", + "| info.sibling_singleton | info.omni | info.mills | info.monoallelic |\n", + "+------------------------+-----------+------------+------------------+\n", + "| bool | bool | bool | bool |\n", + "+------------------------+-----------+------------+------------------+\n", + "| False | False | False | False |\n", + "| False | False | False | False |\n", + "| False | False | False | False |\n", + "| False | False | False | False |\n", + "| NA | True | False | False |\n", + "+------------------------+-----------+------------+------------------+\n", + "\n", + "+---------------+----------------+-----------------------+\n", + "| info.only_het | info.AS_VQSLOD | info.inbreeding_coeff |\n", + "+---------------+----------------+-----------------------+\n", + "| bool | float64 | float64 |\n", + "+---------------+----------------+-----------------------+\n", + "| False | 4.51e+00 | 8.00e-01 |\n", + "| False | 5.16e+00 | 3.75e-01 |\n", + "| False | 6.19e+00 | 8.00e-01 |\n", + "| False | 6.36e+00 | 5.00e-01 |\n", + "| False | 5.57e+00 | 7.33e-01 |\n", + "+---------------+----------------+-----------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| info.vrs.VRS_Allele_IDs |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [\"ga4gh:VA.BlCz08hG7ZEQzvW20V8Kp4xJMx-pMKes\",\"ga4gh:VA.U4eD7PXtXRCClN6FQt... |\n", + "| [\"ga4gh:VA.aXxME51cngsJBnH_3WX01B0Ms-SLay9X\",\"ga4gh:VA.ynryFZCH9dBU67nwPr... |\n", + "| [\"ga4gh:VA.Q6p6okAv6qHSPSV8MOvy8Hhl0kZ6tQ4U\",\"ga4gh:VA.WIfYWxgEc5ICUUByiD... |\n", + "| [\"ga4gh:VA.k_gesWx8TbLs23MHIkc3NaVscBWVDrSE\",\"ga4gh:VA.NJz3hsVBrqbTn17g5T... |\n", + "| [\"ga4gh:VA.HjAJ4gj43VVFJQmV-h5WuPZZPBmNwSFZ\",\"ga4gh:VA.sT14AsCSWlf2AqH0wh... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+-----------------------+-----------------------+---------------------+\n", + "| info.vrs.VRS_Starts | info.vrs.VRS_Ends | info.vrs.VRS_States |\n", + "+-----------------------+-----------------------+---------------------+\n", + "| array | array | array |\n", + "+-----------------------+-----------------------+---------------------+\n", + "| [113409635,113409635] | [113409636,113409636] | [\"G\",\"C\"] |\n", + "| [113409692,113409692] | [113409693,113409693] | [\"G\",\"A\"] |\n", + "| [113409716,113409716] | [113409717,113409717] | [\"C\",\"T\"] |\n", + "| [113409757,113409757] | [113409758,113409758] | [\"C\",\"T\"] |\n", + "| [113410001,113410001] | [113410002,113410002] | [\"C\",\"A\"] |\n", + "+-----------------------+-----------------------+---------------------+\n", + "\n", + "+-------------------+-----------+--------+--------------------------------+\n", + "| vep.allele_string | vep.end | vep.id | vep.input |\n", + "+-------------------+-----------+--------+--------------------------------+\n", + "| str | int32 | str | str |\n", + "+-------------------+-----------+--------+--------------------------------+\n", + "| \"G/C\" | 113409636 | \".\" | \"chr11\t113409636\t.\tG\tC\t.\t.\tGT\" |\n", + "| \"G/A\" | 113409693 | \".\" | \"chr11\t113409693\t.\tG\tA\t.\t.\tGT\" |\n", + "| \"C/T\" | 113409717 | \".\" | \"chr11\t113409717\t.\tC\tT\t.\t.\tGT\" |\n", + "| \"C/T\" | 113409758 | \".\" | \"chr11\t113409758\t.\tC\tT\t.\t.\tGT\" |\n", + "| \"C/A\" | 113410002 | \".\" | \"chr11\t113410002\t.\tC\tA\t.\t.\tGT\" |\n", + "+-------------------+-----------+--------+--------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| vep.intergenic_consequences |\n", + "+------------------------------------------------------------------------------+\n", + "| array, impact: st... |\n", + "+------------------------------------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+-----------------------------+\n", + "| vep.most_severe_consequence |\n", + "+-----------------------------+\n", + "| str |\n", + "+-----------------------------+\n", + "| \"3_prime_UTR_variant\" |\n", + "| \"3_prime_UTR_variant\" |\n", + "| \"3_prime_UTR_variant\" |\n", + "| \"3_prime_UTR_variant\" |\n", + "| \"3_prime_UTR_variant\" |\n", + "+-----------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| vep.motif_feature_consequences |\n", + "+------------------------------------------------------------------------------+\n", + "| array, high_inf_p... |\n", + "+------------------------------------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| vep.regulatory_feature_consequences |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+-------------------------------------------------+\n", + "| histograms.qual_hists.gq_hist_all.bin_freq |\n", + "+-------------------------------------------------+\n", + "| array |\n", + "+-------------------------------------------------+\n", + "| [0,0,0,0,28,0,76,0,162,0,0,0,0,0,0,0,0,0,0,1] |\n", + "| [0,0,0,0,25,0,186,0,206,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,95,0,197,0,202,0,0,0,0,0,0,0,1,0,0,0] |\n", + "| [0,0,0,0,100,0,111,0,193,0,0,0,0,0,1,0,0,0,0,0] |\n", + "| [0,0,0,0,120,1,223,5,34,1,5,0,2,5,7,1,3,2,1,66] |\n", + "+-------------------------------------------------+\n", + "\n", + "+---------------------------------------------+\n", + "| histograms.qual_hists.gq_hist_all.n_smaller |\n", + "+---------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+---------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.qual_hists.gq_hist_all.n_larger |\n", + "+--------------------------------------------+\n", + "| int64 |\n", + "+--------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+--------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.qual_hists.dp_hist_all.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+--------------------------------------------------+\n", + "| histograms.qual_hists.dp_hist_all.bin_freq |\n", + "+--------------------------------------------------+\n", + "| array |\n", + "+--------------------------------------------------+\n", + "| [0,0,101,28,30,82,26,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,211,29,38,105,34,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,286,30,40,105,34,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,200,35,36,102,32,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,438,30,5,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "+--------------------------------------------------+\n", + "\n", + "+---------------------------------------------+\n", + "| histograms.qual_hists.dp_hist_all.n_smaller |\n", + "+---------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+---------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.qual_hists.dp_hist_all.n_larger |\n", + "+--------------------------------------------+\n", + "| int64 |\n", + "+--------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+--------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.qual_hists.gq_hist_alt.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+---------------------------------------------+\n", + "| histograms.qual_hists.gq_hist_alt.bin_freq |\n", + "+---------------------------------------------+\n", + "| array |\n", + "+---------------------------------------------+\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1] |\n", + "| [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0] |\n", + "| [0,0,0,0,1,1,11,5,2,1,5,0,2,5,7,1,3,2,1,66] |\n", + "+---------------------------------------------+\n", + "\n", + "+---------------------------------------------+\n", + "| histograms.qual_hists.gq_hist_alt.n_smaller |\n", + "+---------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+---------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.qual_hists.gq_hist_alt.n_larger |\n", + "+--------------------------------------------+\n", + "| int64 |\n", + "+--------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+--------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.qual_hists.dp_hist_alt.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+---------------------------------------------+\n", + "| histograms.qual_hists.dp_hist_alt.bin_freq |\n", + "+---------------------------------------------+\n", + "| array |\n", + "+---------------------------------------------+\n", + "| [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,108,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "+---------------------------------------------+\n", + "\n", + "+---------------------------------------------+\n", + "| histograms.qual_hists.dp_hist_alt.n_smaller |\n", + "+---------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+---------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.qual_hists.dp_hist_alt.n_larger |\n", + "+--------------------------------------------+\n", + "| int64 |\n", + "+--------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+--------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.qual_hists.ab_hist_alt.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+---------------------------------------------+\n", + "| histograms.qual_hists.ab_hist_alt.bin_freq |\n", + "+---------------------------------------------+\n", + "| array |\n", + "+---------------------------------------------+\n", + "| [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0] |\n", + "| [0,0,0,0,3,8,0,4,8,6,30,15,8,9,3,1,3,0,0,0] |\n", + "+---------------------------------------------+\n", + "\n", + "+---------------------------------------------+\n", + "| histograms.qual_hists.ab_hist_alt.n_smaller |\n", + "+---------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+---------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.qual_hists.ab_hist_alt.n_larger |\n", + "+--------------------------------------------+\n", + "| int64 |\n", + "+--------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+--------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.raw_qual_hists.gq_hist_all.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.raw_qual_hists.gq_hist_all.bin_freq |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [313709,2,2,0,442,0,76,0,162,0,0,0,0,0,0,0,0,0,0,1] |\n", + "| [313080,4,2,0,906,6,189,2,206,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [313071,2,3,0,920,0,198,0,202,0,0,0,0,0,0,0,1,0,0,0] |\n", + "| [313441,3,2,1,640,0,111,1,193,0,0,0,0,0,1,0,0,0,0,0] |\n", + "| [301848,5644,543,415,1889,1584,436,212,123,210,485,568,76,48,44,53,135,57... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+-------------------------------------------------+\n", + "| histograms.raw_qual_hists.gq_hist_all.n_smaller |\n", + "+-------------------------------------------------+\n", + "| int64 |\n", + "+-------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+-------------------------------------------------+\n", + "\n", + "+------------------------------------------------+\n", + "| histograms.raw_qual_hists.gq_hist_all.n_larger |\n", + "+------------------------------------------------+\n", + "| int64 |\n", + "+------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.raw_qual_hists.dp_hist_all.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+-----------------------------------------------------------+\n", + "| histograms.raw_qual_hists.dp_hist_all.bin_freq |\n", + "+-----------------------------------------------------------+\n", + "| array |\n", + "+-----------------------------------------------------------+\n", + "| [240827,73298,103,28,30,82,26,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [240299,73676,214,29,38,105,34,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [240226,73668,294,30,40,105,34,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [240307,73671,209,36,36,102,32,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [238198,75776,482,33,5,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "+-----------------------------------------------------------+\n", + "\n", + "+-------------------------------------------------+\n", + "| histograms.raw_qual_hists.dp_hist_all.n_smaller |\n", + "+-------------------------------------------------+\n", + "| int64 |\n", + "+-------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+-------------------------------------------------+\n", + "\n", + "+------------------------------------------------+\n", + "| histograms.raw_qual_hists.dp_hist_all.n_larger |\n", + "+------------------------------------------------+\n", + "| int64 |\n", + "+------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.raw_qual_hists.gq_hist_alt.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.raw_qual_hists.gq_hist_alt.bin_freq |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1] |\n", + "| [0,3,0,0,1,5,3,1,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0] |\n", + "| [0,1,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0] |\n", + "| [398,5642,541,415,716,1584,224,212,91,210,485,568,76,48,44,53,135,57,19,108] |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+-------------------------------------------------+\n", + "| histograms.raw_qual_hists.gq_hist_alt.n_smaller |\n", + "+-------------------------------------------------+\n", + "| int64 |\n", + "+-------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+-------------------------------------------------+\n", + "\n", + "+------------------------------------------------+\n", + "| histograms.raw_qual_hists.gq_hist_alt.n_larger |\n", + "+------------------------------------------------+\n", + "| int64 |\n", + "+------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.raw_qual_hists.dp_hist_alt.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+---------------------------------------------------+\n", + "| histograms.raw_qual_hists.dp_hist_alt.bin_freq |\n", + "+---------------------------------------------------+\n", + "| array |\n", + "+---------------------------------------------------+\n", + "| [2,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [8,4,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [2,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [1,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [9330,2176,115,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "+---------------------------------------------------+\n", + "\n", + "+-------------------------------------------------+\n", + "| histograms.raw_qual_hists.dp_hist_alt.n_smaller |\n", + "+-------------------------------------------------+\n", + "| int64 |\n", + "+-------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+-------------------------------------------------+\n", + "\n", + "+------------------------------------------------+\n", + "| histograms.raw_qual_hists.dp_hist_alt.n_larger |\n", + "+------------------------------------------------+\n", + "| int64 |\n", + "+------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.raw_qual_hists.ab_hist_alt.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------+\n", + "| histograms.raw_qual_hists.ab_hist_alt.bin_freq |\n", + "+------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------+\n", + "| [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,1,1,2,0,1,0,1,0,0,4,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0] |\n", + "| [0,0,4,4,27,107,217,41,416,6,1084,414,43,1634,53,495,208,34,2,0] |\n", + "+------------------------------------------------------------------+\n", + "\n", + "+-------------------------------------------------+\n", + "| histograms.raw_qual_hists.ab_hist_alt.n_smaller |\n", + "+-------------------------------------------------+\n", + "| int64 |\n", + "+-------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+-------------------------------------------------+\n", + "\n", + "+------------------------------------------------+\n", + "| histograms.raw_qual_hists.ab_hist_alt.n_larger |\n", + "+------------------------------------------------+\n", + "| int64 |\n", + "+------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.age_hists.age_hist_het.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.age_hists.age_hist_het.bin_freq |\n", + "+--------------------------------------------+\n", + "| array |\n", + "+--------------------------------------------+\n", + "| [0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,1,1,5,4,3,0,0] |\n", + "+--------------------------------------------+\n", + "\n", + "+---------------------------------------------+\n", + "| histograms.age_hists.age_hist_het.n_smaller |\n", + "+---------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+---------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.age_hists.age_hist_het.n_larger |\n", + "+--------------------------------------------+\n", + "| int64 |\n", + "+--------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+--------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.age_hists.age_hist_hom.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.age_hists.age_hist_hom.bin_freq |\n", + "+--------------------------------------------+\n", + "| array |\n", + "+--------------------------------------------+\n", + "| [0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,1,2,2,0,0,0] |\n", + "+--------------------------------------------+\n", + "\n", + "+---------------------------------------------+\n", + "| histograms.age_hists.age_hist_hom.n_smaller |\n", + "+---------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+---------------------------------------------+\n", + "\n", + "+--------------------------------------------+---------------------------------+\n", + "| histograms.age_hists.age_hist_hom.n_larger | in_silico_predictors.cadd.phred |\n", + "+--------------------------------------------+---------------------------------+\n", + "| int64 | float32 |\n", + "+--------------------------------------------+---------------------------------+\n", + "| 0 | 8.46e+00 |\n", + "| 0 | 9.08e+00 |\n", + "| 0 | 1.51e+01 |\n", + "| 0 | 9.13e+00 |\n", + "| 0 | 2.02e+00 |\n", + "+--------------------------------------------+---------------------------------+\n", + "\n", + "+-------------------------------------+--------------------------------+\n", + "| in_silico_predictors.cadd.raw_score | in_silico_predictors.revel_max |\n", + "+-------------------------------------+--------------------------------+\n", + "| float32 | float64 |\n", + "+-------------------------------------+--------------------------------+\n", + "| 7.01e-01 | NA |\n", + "| 7.68e-01 | NA |\n", + "| 1.40e+00 | NA |\n", + "| 7.73e-01 | NA |\n", + "| 9.23e-02 | NA |\n", + "+-------------------------------------+--------------------------------+\n", + "\n", + "+--------------------------------------+\n", + "| in_silico_predictors.spliceai_ds_max |\n", + "+--------------------------------------+\n", + "| float32 |\n", + "+--------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 1.00e-02 |\n", + "| 0.00e+00 |\n", + "+--------------------------------------+\n", + "\n", + "+------------------------------------------+-----------------------------+\n", + "| in_silico_predictors.pangolin_largest_ds | in_silico_predictors.phylop |\n", + "+------------------------------------------+-----------------------------+\n", + "| float64 | float64 |\n", + "+------------------------------------------+-----------------------------+\n", + "| 2.00e-02 | 1.94e+00 |\n", + "| 0.00e+00 | 5.70e-01 |\n", + "| 0.00e+00 | 1.05e+00 |\n", + "| 3.00e-02 | 2.58e+00 |\n", + "| 0.00e+00 | 1.61e+00 |\n", + "+------------------------------------------+-----------------------------+\n", + "\n", + "+-------------------------------+-----------------------------------+\n", + "| in_silico_predictors.sift_max | in_silico_predictors.polyphen_max |\n", + "+-------------------------------+-----------------------------------+\n", + "| float64 | float64 |\n", + "+-------------------------------+-----------------------------------+\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "+-------------------------------+-----------------------------------+\n", + "showing top 5 rows" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The total number of other variants passing filters in DRD2 is: 2075\n" + ] + } + ], + "source": [ + "var_ht = filter_by_csqs(['other'], ht=drd2_interval_ht)\n", + "var_ht.show(5)\n", + "print(\"The total number of other variants passing filters in DRD2 is: \", var_ht.count())" + ] + }, + { + "cell_type": "markdown", + "id": "b104a39b", + "metadata": {}, + "source": [ + "## Get frequency information for specific genetic ancestry groups\n", + "\n", + "The examples below show frequency filtering using the Table filtered to DRD2 `synonymous` variants." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "a25ddd1b", + "metadata": {}, + "outputs": [], + "source": [ + "drd2_synonymous_ht = filter_by_csqs(['synonymous'], ht=drd2_interval_ht)" + ] + }, + { + "cell_type": "markdown", + "id": "69814beb", + "metadata": {}, + "source": [ + "### Single genetic ancestry group" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "4f78166f", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
afr
locus
alleles
filters
AC
AF
AN
homozygote_count
locus<GRCh38>array<str>set<str>int32float64int32int64
chr11:113410736["G","A"]{}00.00e+00334800
chr11:113410736["G","T"]{}00.00e+00334800
chr11:113410739["G","A"]{}00.00e+00334780
chr11:113410751["G","A"]{}00.00e+00334800
chr11:113410754["C","T"]{}123.58e-04334801

showing top 5 rows

\n" + ], + "text/plain": [ + "+-----------------+------------+----------+--------+----------+--------+\n", + "| locus | alleles | filters | afr.AC | afr.AF | afr.AN |\n", + "+-----------------+------------+----------+--------+----------+--------+\n", + "| locus | array | set | int32 | float64 | int32 |\n", + "+-----------------+------------+----------+--------+----------+--------+\n", + "| chr11:113410736 | [\"G\",\"A\"] | {} | 0 | 0.00e+00 | 33480 |\n", + "| chr11:113410736 | [\"G\",\"T\"] | {} | 0 | 0.00e+00 | 33480 |\n", + "| chr11:113410739 | [\"G\",\"A\"] | {} | 0 | 0.00e+00 | 33478 |\n", + "| chr11:113410751 | [\"G\",\"A\"] | {} | 0 | 0.00e+00 | 33480 |\n", + "| chr11:113410754 | [\"C\",\"T\"] | {} | 12 | 3.58e-04 | 33480 |\n", + "+-----------------+------------+----------+--------+----------+--------+\n", + "\n", + "+----------------------+\n", + "| afr.homozygote_count |\n", + "+----------------------+\n", + "| int64 |\n", + "+----------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 1 |\n", + "+----------------------+\n", + "showing top 5 rows" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "var_ht = get_ancestry_callstats(gen_ancs='afr', ht=drd2_synonymous_ht)\n", + "var_ht.show(5)" + ] + }, + { + "cell_type": "markdown", + "id": "e741e138", + "metadata": {}, + "source": [ + "### Multiple genetic ancestry groups" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "e3a07848", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
afr
amr
eas
mid
nfe
sas
locus
alleles
filters
AC
AF
AN
homozygote_count
AC
AF
AN
homozygote_count
AC
AF
AN
homozygote_count
AC
AF
AN
homozygote_count
AC
AF
AN
homozygote_count
AC
AF
AN
homozygote_count
locus<GRCh38>array<str>set<str>int32float64int32int64int32float64int32int64int32float64int32int64int32float64int32int64int32float64int32int64int32float64int32int64
chr11:113410736["G","A"]{}00.00e+0033480000.00e+0044724000.00e+0039700000.00e+0057620151.35e-051112010000.00e+00862540
chr11:113410736["G","T"]{}00.00e+0033480000.00e+0044724000.00e+0039700000.00e+005762018.99e-071112010000.00e+00862540
chr11:113410739["G","A"]{}00.00e+0033478000.00e+0044724000.00e+0039700000.00e+005764000.00e+001112010000.00e+00862560
chr11:113410751["G","A"]{}00.00e+0033480000.00e+0044724000.00e+0039700000.00e+005768018.99e-071112012000.00e+00862580
chr11:113410754["C","T"]{}123.58e-04334801439.61e-0444724000.00e+0039700081.39e-03576803282.95e-041112012000.00e+00862580
chr11:113410757["G","A"]{}00.00e+0033480000.00e+0044724012.52e-0539700000.00e+005766000.00e+001112012000.00e+00862580
chr11:113410757["G","T"]{}00.00e+0033480000.00e+0044724000.00e+0039700000.00e+005766000.00e+001112012033.48e-05862580
chr11:113410763["C","T"]{}00.00e+0033480000.00e+0044724000.00e+0039700000.00e+005768000.00e+001112010011.16e-05862580
chr11:113410769["G","A"]{}00.00e+0033480000.00e+0044724000.00e+0039700000.00e+005768021.80e-061112012000.00e+00862580
chr11:113410775["G","A"]{}00.00e+0033480000.00e+0044724012.52e-0539700000.00e+005768018.99e-071112010000.00e+00862580

showing top 10 rows

\n" + ], + "text/plain": [ + "+-----------------+------------+----------+--------+----------+--------+\n", + "| locus | alleles | filters | afr.AC | afr.AF | afr.AN |\n", + "+-----------------+------------+----------+--------+----------+--------+\n", + "| locus | array | set | int32 | float64 | int32 |\n", + "+-----------------+------------+----------+--------+----------+--------+\n", + "| chr11:113410736 | [\"G\",\"A\"] | {} | 0 | 0.00e+00 | 33480 |\n", + "| chr11:113410736 | [\"G\",\"T\"] | {} | 0 | 0.00e+00 | 33480 |\n", + "| chr11:113410739 | [\"G\",\"A\"] | {} | 0 | 0.00e+00 | 33478 |\n", + "| chr11:113410751 | [\"G\",\"A\"] | {} | 0 | 0.00e+00 | 33480 |\n", + "| chr11:113410754 | [\"C\",\"T\"] | {} | 12 | 3.58e-04 | 33480 |\n", + "| chr11:113410757 | [\"G\",\"A\"] | {} | 0 | 0.00e+00 | 33480 |\n", + "| chr11:113410757 | [\"G\",\"T\"] | {} | 0 | 0.00e+00 | 33480 |\n", + "| chr11:113410763 | [\"C\",\"T\"] | {} | 0 | 0.00e+00 | 33480 |\n", + "| chr11:113410769 | [\"G\",\"A\"] | {} | 0 | 0.00e+00 | 33480 |\n", + "| chr11:113410775 | [\"G\",\"A\"] | {} | 0 | 0.00e+00 | 33480 |\n", + "+-----------------+------------+----------+--------+----------+--------+\n", + "\n", + "+----------------------+--------+----------+--------+----------------------+\n", + "| afr.homozygote_count | amr.AC | amr.AF | amr.AN | amr.homozygote_count |\n", + "+----------------------+--------+----------+--------+----------------------+\n", + "| int64 | int32 | float64 | int32 | int64 |\n", + "+----------------------+--------+----------+--------+----------------------+\n", + "| 0 | 0 | 0.00e+00 | 44724 | 0 |\n", + "| 0 | 0 | 0.00e+00 | 44724 | 0 |\n", + "| 0 | 0 | 0.00e+00 | 44724 | 0 |\n", + "| 0 | 0 | 0.00e+00 | 44724 | 0 |\n", + "| 1 | 43 | 9.61e-04 | 44724 | 0 |\n", + "| 0 | 0 | 0.00e+00 | 44724 | 0 |\n", + "| 0 | 0 | 0.00e+00 | 44724 | 0 |\n", + "| 0 | 0 | 0.00e+00 | 44724 | 0 |\n", + "| 0 | 0 | 0.00e+00 | 44724 | 0 |\n", + "| 0 | 0 | 0.00e+00 | 44724 | 0 |\n", + "+----------------------+--------+----------+--------+----------------------+\n", + "\n", + "+--------+----------+--------+----------------------+--------+----------+\n", + "| eas.AC | eas.AF | eas.AN | eas.homozygote_count | mid.AC | mid.AF |\n", + "+--------+----------+--------+----------------------+--------+----------+\n", + "| int32 | float64 | int32 | int64 | int32 | float64 |\n", + "+--------+----------+--------+----------------------+--------+----------+\n", + "| 0 | 0.00e+00 | 39700 | 0 | 0 | 0.00e+00 |\n", + "| 0 | 0.00e+00 | 39700 | 0 | 0 | 0.00e+00 |\n", + "| 0 | 0.00e+00 | 39700 | 0 | 0 | 0.00e+00 |\n", + "| 0 | 0.00e+00 | 39700 | 0 | 0 | 0.00e+00 |\n", + "| 0 | 0.00e+00 | 39700 | 0 | 8 | 1.39e-03 |\n", + "| 1 | 2.52e-05 | 39700 | 0 | 0 | 0.00e+00 |\n", + "| 0 | 0.00e+00 | 39700 | 0 | 0 | 0.00e+00 |\n", + "| 0 | 0.00e+00 | 39700 | 0 | 0 | 0.00e+00 |\n", + "| 0 | 0.00e+00 | 39700 | 0 | 0 | 0.00e+00 |\n", + "| 1 | 2.52e-05 | 39700 | 0 | 0 | 0.00e+00 |\n", + "+--------+----------+--------+----------------------+--------+----------+\n", + "\n", + "+--------+----------------------+--------+----------+---------+\n", + "| mid.AN | mid.homozygote_count | nfe.AC | nfe.AF | nfe.AN |\n", + "+--------+----------------------+--------+----------+---------+\n", + "| int32 | int64 | int32 | float64 | int32 |\n", + "+--------+----------------------+--------+----------+---------+\n", + "| 5762 | 0 | 15 | 1.35e-05 | 1112010 |\n", + "| 5762 | 0 | 1 | 8.99e-07 | 1112010 |\n", + "| 5764 | 0 | 0 | 0.00e+00 | 1112010 |\n", + "| 5768 | 0 | 1 | 8.99e-07 | 1112012 |\n", + "| 5768 | 0 | 328 | 2.95e-04 | 1112012 |\n", + "| 5766 | 0 | 0 | 0.00e+00 | 1112012 |\n", + "| 5766 | 0 | 0 | 0.00e+00 | 1112012 |\n", + "| 5768 | 0 | 0 | 0.00e+00 | 1112010 |\n", + "| 5768 | 0 | 2 | 1.80e-06 | 1112012 |\n", + "| 5768 | 0 | 1 | 8.99e-07 | 1112010 |\n", + "+--------+----------------------+--------+----------+---------+\n", + "\n", + "+----------------------+--------+----------+--------+----------------------+\n", + "| nfe.homozygote_count | sas.AC | sas.AF | sas.AN | sas.homozygote_count |\n", + "+----------------------+--------+----------+--------+----------------------+\n", + "| int64 | int32 | float64 | int32 | int64 |\n", + "+----------------------+--------+----------+--------+----------------------+\n", + "| 0 | 0 | 0.00e+00 | 86254 | 0 |\n", + "| 0 | 0 | 0.00e+00 | 86254 | 0 |\n", + "| 0 | 0 | 0.00e+00 | 86256 | 0 |\n", + "| 0 | 0 | 0.00e+00 | 86258 | 0 |\n", + "| 0 | 0 | 0.00e+00 | 86258 | 0 |\n", + "| 0 | 0 | 0.00e+00 | 86258 | 0 |\n", + "| 0 | 3 | 3.48e-05 | 86258 | 0 |\n", + "| 0 | 1 | 1.16e-05 | 86258 | 0 |\n", + "| 0 | 0 | 0.00e+00 | 86258 | 0 |\n", + "| 0 | 0 | 0.00e+00 | 86258 | 0 |\n", + "+----------------------+--------+----------+--------+----------------------+\n", + "showing top 10 rows" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "var_ht = get_ancestry_callstats(gen_ancs=['afr', 'amr', 'eas', 'mid', 'nfe', 'sas'], ht=drd2_synonymous_ht)\n", + "var_ht.show()" + ] + }, + { + "cell_type": "markdown", + "id": "fe2e98b8", + "metadata": {}, + "source": [ + "## Get frequency information for a specific genetic ancestry group at a specific variant" + ] + }, + { + "cell_type": "markdown", + "id": "a253b3db-0a50-4c71-ae3d-dd7d5e0bfde0", + "metadata": {}, + "source": [ + "### Example when the variant exists" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "4845be1d-d4c0-4b83-9e92-bd72379b8a99", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "
afr
locus
alleles
filters
AC
AF
AN
homozygote_count
locus<GRCh38>array<str>set<str>int32float64int32int64
chr22:15528692["C","G"]{}6351.90e-02333806
" + ], + "text/plain": [ + "+----------------+------------+----------+--------+----------+--------+\n", + "| locus | alleles | filters | afr.AC | afr.AF | afr.AN |\n", + "+----------------+------------+----------+--------+----------+--------+\n", + "| locus | array | set | int32 | float64 | int32 |\n", + "+----------------+------------+----------+--------+----------+--------+\n", + "| chr22:15528692 | [\"C\",\"G\"] | {} | 635 | 1.90e-02 | 33380 |\n", + "+----------------+------------+----------+--------+----------+--------+\n", + "\n", + "+----------------------+\n", + "| afr.homozygote_count |\n", + "+----------------------+\n", + "| int64 |\n", + "+----------------------+\n", + "| 6 |\n", + "+----------------------+" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "var_ht = get_single_variant_ancestry_callstats(gen_ancs='AFR', contig='chr22', position=15528692, ref='C', alt='G')\n", + "var_ht.show(5)" + ] + }, + { + "cell_type": "markdown", + "id": "c60cef2a-ae30-459b-a96a-82e754710bb2", + "metadata": {}, + "source": [ + "### Example when the variant *doesn't* exist" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "bee28829", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "
afr
locus
alleles
filters
AC
AF
AN
homozygote_count
locus<GRCh38>array<str>set<str>int32float64int32int64
" + ], + "text/plain": [ + "+---------------+------------+----------+--------+---------+--------+\n", + "| locus | alleles | filters | afr.AC | afr.AF | afr.AN |\n", + "+---------------+------------+----------+--------+---------+--------+\n", + "| locus | array | set | int32 | float64 | int32 |\n", + "+---------------+------------+----------+--------+---------+--------+\n", + "+---------------+------------+----------+--------+---------+--------+\n", + "\n", + "+----------------------+\n", + "| afr.homozygote_count |\n", + "+----------------------+\n", + "| int64 |\n", + "+----------------------+\n", + "+----------------------+" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "var_ht = get_single_variant_ancestry_callstats(gen_ancs='AFR', contig='chr22', position=15528692, ref='C', alt='A')\n", + "var_ht.show(5)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.12.2" + }, + "toc": { + "base_numbering": 1, + "nav_menu": { + "height": "613.99px", + "width": "526.312px" + }, + "number_sections": false, + "sideBar": true, + "skip_h1_title": true, + "title_cell": "Table of Contents", + "title_sidebar": "Contents", + "toc_cell": true, + "toc_position": { + "height": "calc(100% - 180px)", + "left": "10px", + "top": "150px", + "width": "241.438px" + }, + "toc_section_display": true, + "toc_window_display": true + }, + "widgets": { + "application/vnd.jupyter.widget-state+json": { + "state": {}, + "version_major": 2, + "version_minor": 0 + } + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/gnomad_toolbox/notebooks/needs_a_name.ipynb b/gnomad_toolbox/notebooks/needs_a_name.ipynb new file mode 100644 index 0000000..c4b688a --- /dev/null +++ b/gnomad_toolbox/notebooks/needs_a_name.ipynb @@ -0,0 +1,602 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "8e609a46", + "metadata": { + "toc": true + }, + "source": [ + "

Table of Contents

\n", + "" + ] + }, + { + "cell_type": "markdown", + "id": "8e713032", + "metadata": {}, + "source": [ + "## Import modules" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "e69953f7", + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-06T18:04:56.165634Z", + "start_time": "2024-12-06T18:04:55.603516Z" + } + }, + "outputs": [ + { + "data": { + "text/html": [ + " \n", + "
\n", + " \n", + " Loading BokehJS ...\n", + "
\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/javascript": [ + "(function(root) {\n", + " function now() {\n", + " return new Date();\n", + " }\n", + "\n", + " const force = true;\n", + "\n", + " if (typeof root._bokeh_onload_callbacks === \"undefined\" || force === true) {\n", + " root._bokeh_onload_callbacks = [];\n", + " root._bokeh_is_loading = undefined;\n", + " }\n", + "\n", + "const JS_MIME_TYPE = 'application/javascript';\n", + " const HTML_MIME_TYPE = 'text/html';\n", + " const EXEC_MIME_TYPE = 'application/vnd.bokehjs_exec.v0+json';\n", + " const CLASS_NAME = 'output_bokeh rendered_html';\n", + "\n", + " /**\n", + " * Render data to the DOM node\n", + " */\n", + " function render(props, node) {\n", + " const script = document.createElement(\"script\");\n", + " node.appendChild(script);\n", + " }\n", + "\n", + " /**\n", + " * Handle when an output is cleared or removed\n", + " */\n", + " function handleClearOutput(event, handle) {\n", + " function drop(id) {\n", + " const view = Bokeh.index.get_by_id(id)\n", + " if (view != null) {\n", + " view.model.document.clear()\n", + " Bokeh.index.delete(view)\n", + " }\n", + " }\n", + "\n", + " const cell = handle.cell;\n", + "\n", + " const id = cell.output_area._bokeh_element_id;\n", + " const server_id = cell.output_area._bokeh_server_id;\n", + "\n", + " // Clean up Bokeh references\n", + " if (id != null) {\n", + " drop(id)\n", + " }\n", + "\n", + " if (server_id !== undefined) {\n", + " // Clean up Bokeh references\n", + " const cmd_clean = \"from bokeh.io.state import curstate; print(curstate().uuid_to_server['\" + server_id + \"'].get_sessions()[0].document.roots[0]._id)\";\n", + " cell.notebook.kernel.execute(cmd_clean, {\n", + " iopub: {\n", + " output: function(msg) {\n", + " const id = msg.content.text.trim()\n", + " drop(id)\n", + " }\n", + " }\n", + " });\n", + " // Destroy server and session\n", + " const cmd_destroy = \"import bokeh.io.notebook as ion; ion.destroy_server('\" + server_id + \"')\";\n", + " cell.notebook.kernel.execute(cmd_destroy);\n", + " }\n", + " }\n", + "\n", + " /**\n", + " * Handle when a new output is added\n", + " */\n", + " function handleAddOutput(event, handle) {\n", + " const output_area = handle.output_area;\n", + " const output = handle.output;\n", + "\n", + " // limit handleAddOutput to display_data with EXEC_MIME_TYPE content only\n", + " if ((output.output_type != \"display_data\") || (!Object.prototype.hasOwnProperty.call(output.data, EXEC_MIME_TYPE))) {\n", + " return\n", + " }\n", + "\n", + " const toinsert = output_area.element.find(\".\" + CLASS_NAME.split(' ')[0]);\n", + "\n", + " if (output.metadata[EXEC_MIME_TYPE][\"id\"] !== undefined) {\n", + " toinsert[toinsert.length - 1].firstChild.textContent = output.data[JS_MIME_TYPE];\n", + " // store reference to embed id on output_area\n", + " output_area._bokeh_element_id = output.metadata[EXEC_MIME_TYPE][\"id\"];\n", + " }\n", + " if (output.metadata[EXEC_MIME_TYPE][\"server_id\"] !== undefined) {\n", + " const bk_div = document.createElement(\"div\");\n", + " bk_div.innerHTML = output.data[HTML_MIME_TYPE];\n", + " const script_attrs = bk_div.children[0].attributes;\n", + " for (let i = 0; i < script_attrs.length; i++) {\n", + " toinsert[toinsert.length - 1].firstChild.setAttribute(script_attrs[i].name, script_attrs[i].value);\n", + " toinsert[toinsert.length - 1].firstChild.textContent = bk_div.children[0].textContent\n", + " }\n", + " // store reference to server id on output_area\n", + " output_area._bokeh_server_id = output.metadata[EXEC_MIME_TYPE][\"server_id\"];\n", + " }\n", + " }\n", + "\n", + " function register_renderer(events, OutputArea) {\n", + "\n", + " function append_mime(data, metadata, element) {\n", + " // create a DOM node to render to\n", + " const toinsert = this.create_output_subarea(\n", + " metadata,\n", + " CLASS_NAME,\n", + " EXEC_MIME_TYPE\n", + " );\n", + " this.keyboard_manager.register_events(toinsert);\n", + " // Render to node\n", + " const props = {data: data, metadata: metadata[EXEC_MIME_TYPE]};\n", + " render(props, toinsert[toinsert.length - 1]);\n", + " element.append(toinsert);\n", + " return toinsert\n", + " }\n", + "\n", + " /* Handle when an output is cleared or removed */\n", + " events.on('clear_output.CodeCell', handleClearOutput);\n", + " events.on('delete.Cell', handleClearOutput);\n", + "\n", + " /* Handle when a new output is added */\n", + " events.on('output_added.OutputArea', handleAddOutput);\n", + "\n", + " /**\n", + " * Register the mime type and append_mime function with output_area\n", + " */\n", + " OutputArea.prototype.register_mime_type(EXEC_MIME_TYPE, append_mime, {\n", + " /* Is output safe? */\n", + " safe: true,\n", + " /* Index of renderer in `output_area.display_order` */\n", + " index: 0\n", + " });\n", + " }\n", + "\n", + " // register the mime type if in Jupyter Notebook environment and previously unregistered\n", + " if (root.Jupyter !== undefined) {\n", + " const events = require('base/js/events');\n", + " const OutputArea = require('notebook/js/outputarea').OutputArea;\n", + "\n", + " if (OutputArea.prototype.mime_types().indexOf(EXEC_MIME_TYPE) == -1) {\n", + " register_renderer(events, OutputArea);\n", + " }\n", + " }\n", + " if (typeof (root._bokeh_timeout) === \"undefined\" || force === true) {\n", + " root._bokeh_timeout = Date.now() + 5000;\n", + " root._bokeh_failed_load = false;\n", + " }\n", + "\n", + " const NB_LOAD_WARNING = {'data': {'text/html':\n", + " \"
\\n\"+\n", + " \"

\\n\"+\n", + " \"BokehJS does not appear to have successfully loaded. If loading BokehJS from CDN, this \\n\"+\n", + " \"may be due to a slow or bad network connection. Possible fixes:\\n\"+\n", + " \"

\\n\"+\n", + " \"
    \\n\"+\n", + " \"
  • re-rerun `output_notebook()` to attempt to load from CDN again, or
  • \\n\"+\n", + " \"
  • use INLINE resources instead, as so:
  • \\n\"+\n", + " \"
\\n\"+\n", + " \"\\n\"+\n", + " \"from bokeh.resources import INLINE\\n\"+\n", + " \"output_notebook(resources=INLINE)\\n\"+\n", + " \"\\n\"+\n", + " \"
\"}};\n", + "\n", + " function display_loaded() {\n", + " const el = document.getElementById(\"eb2ddde4-530e-4ce3-9772-cc3703c8cf6d\");\n", + " if (el != null) {\n", + " el.textContent = \"BokehJS is loading...\";\n", + " }\n", + " if (root.Bokeh !== undefined) {\n", + " if (el != null) {\n", + " el.textContent = \"BokehJS \" + root.Bokeh.version + \" successfully loaded.\";\n", + " }\n", + " } else if (Date.now() < root._bokeh_timeout) {\n", + " setTimeout(display_loaded, 100)\n", + " }\n", + " }\n", + "\n", + " function run_callbacks() {\n", + " try {\n", + " root._bokeh_onload_callbacks.forEach(function(callback) {\n", + " if (callback != null)\n", + " callback();\n", + " });\n", + " } finally {\n", + " delete root._bokeh_onload_callbacks\n", + " }\n", + " console.debug(\"Bokeh: all callbacks have finished\");\n", + " }\n", + "\n", + " function load_libs(css_urls, js_urls, callback) {\n", + " if (css_urls == null) css_urls = [];\n", + " if (js_urls == null) js_urls = [];\n", + "\n", + " root._bokeh_onload_callbacks.push(callback);\n", + " if (root._bokeh_is_loading > 0) {\n", + " console.debug(\"Bokeh: BokehJS is being loaded, scheduling callback at\", now());\n", + " return null;\n", + " }\n", + " if (js_urls == null || js_urls.length === 0) {\n", + " run_callbacks();\n", + " return null;\n", + " }\n", + " console.debug(\"Bokeh: BokehJS not loaded, scheduling load and callback at\", now());\n", + " root._bokeh_is_loading = css_urls.length + js_urls.length;\n", + "\n", + " function on_load() {\n", + " root._bokeh_is_loading--;\n", + " if (root._bokeh_is_loading === 0) {\n", + " console.debug(\"Bokeh: all BokehJS libraries/stylesheets loaded\");\n", + " run_callbacks()\n", + " }\n", + " }\n", + "\n", + " function on_error(url) {\n", + " console.error(\"failed to load \" + url);\n", + " }\n", + "\n", + " for (let i = 0; i < css_urls.length; i++) {\n", + " const url = css_urls[i];\n", + " const element = document.createElement(\"link\");\n", + " element.onload = on_load;\n", + " element.onerror = on_error.bind(null, url);\n", + " element.rel = \"stylesheet\";\n", + " element.type = \"text/css\";\n", + " element.href = url;\n", + " console.debug(\"Bokeh: injecting link tag for BokehJS stylesheet: \", url);\n", + " document.body.appendChild(element);\n", + " }\n", + "\n", + " for (let i = 0; i < js_urls.length; i++) {\n", + " const url = js_urls[i];\n", + " const element = document.createElement('script');\n", + " element.onload = on_load;\n", + " element.onerror = on_error.bind(null, url);\n", + " element.async = false;\n", + " element.src = url;\n", + " console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n", + " document.head.appendChild(element);\n", + " }\n", + " };\n", + "\n", + " function inject_raw_css(css) {\n", + " const element = document.createElement(\"style\");\n", + " element.appendChild(document.createTextNode(css));\n", + " document.body.appendChild(element);\n", + " }\n", + "\n", + " const js_urls = [\"https://cdn.bokeh.org/bokeh/release/bokeh-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-gl-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-widgets-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-tables-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-mathjax-3.3.4.min.js\"];\n", + " const css_urls = [];\n", + "\n", + " const inline_js = [ function(Bokeh) {\n", + " Bokeh.set_log_level(\"info\");\n", + " },\n", + "function(Bokeh) {\n", + " }\n", + " ];\n", + "\n", + " function run_inline_js() {\n", + " if (root.Bokeh !== undefined || force === true) {\n", + " for (let i = 0; i < inline_js.length; i++) {\n", + " inline_js[i].call(root, root.Bokeh);\n", + " }\n", + "if (force === true) {\n", + " display_loaded();\n", + " }} else if (Date.now() < root._bokeh_timeout) {\n", + " setTimeout(run_inline_js, 100);\n", + " } else if (!root._bokeh_failed_load) {\n", + " console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n", + " root._bokeh_failed_load = true;\n", + " } else if (force !== true) {\n", + " const cell = $(document.getElementById(\"eb2ddde4-530e-4ce3-9772-cc3703c8cf6d\")).parents('.cell').data().cell;\n", + " cell.output_area.append_execute_result(NB_LOAD_WARNING)\n", + " }\n", + " }\n", + "\n", + " if (root._bokeh_is_loading === 0) {\n", + " console.debug(\"Bokeh: BokehJS loaded, going straight to plotting\");\n", + " run_inline_js();\n", + " } else {\n", + " load_libs(css_urls, js_urls, function() {\n", + " console.debug(\"Bokeh: BokehJS plotting callback run at\", now());\n", + " run_inline_js();\n", + " });\n", + " }\n", + "}(window));" + ], + "application/vnd.bokehjs_load.v0+json": "(function(root) {\n function now() {\n return new Date();\n }\n\n const force = true;\n\n if (typeof root._bokeh_onload_callbacks === \"undefined\" || force === true) {\n root._bokeh_onload_callbacks = [];\n root._bokeh_is_loading = undefined;\n }\n\n\n if (typeof (root._bokeh_timeout) === \"undefined\" || force === true) {\n root._bokeh_timeout = Date.now() + 5000;\n root._bokeh_failed_load = false;\n }\n\n const NB_LOAD_WARNING = {'data': {'text/html':\n \"
\\n\"+\n \"

\\n\"+\n \"BokehJS does not appear to have successfully loaded. If loading BokehJS from CDN, this \\n\"+\n \"may be due to a slow or bad network connection. Possible fixes:\\n\"+\n \"

\\n\"+\n \"
    \\n\"+\n \"
  • re-rerun `output_notebook()` to attempt to load from CDN again, or
  • \\n\"+\n \"
  • use INLINE resources instead, as so:
  • \\n\"+\n \"
\\n\"+\n \"\\n\"+\n \"from bokeh.resources import INLINE\\n\"+\n \"output_notebook(resources=INLINE)\\n\"+\n \"\\n\"+\n \"
\"}};\n\n function display_loaded() {\n const el = document.getElementById(\"eb2ddde4-530e-4ce3-9772-cc3703c8cf6d\");\n if (el != null) {\n el.textContent = \"BokehJS is loading...\";\n }\n if (root.Bokeh !== undefined) {\n if (el != null) {\n el.textContent = \"BokehJS \" + root.Bokeh.version + \" successfully loaded.\";\n }\n } else if (Date.now() < root._bokeh_timeout) {\n setTimeout(display_loaded, 100)\n }\n }\n\n function run_callbacks() {\n try {\n root._bokeh_onload_callbacks.forEach(function(callback) {\n if (callback != null)\n callback();\n });\n } finally {\n delete root._bokeh_onload_callbacks\n }\n console.debug(\"Bokeh: all callbacks have finished\");\n }\n\n function load_libs(css_urls, js_urls, callback) {\n if (css_urls == null) css_urls = [];\n if (js_urls == null) js_urls = [];\n\n root._bokeh_onload_callbacks.push(callback);\n if (root._bokeh_is_loading > 0) {\n console.debug(\"Bokeh: BokehJS is being loaded, scheduling callback at\", now());\n return null;\n }\n if (js_urls == null || js_urls.length === 0) {\n run_callbacks();\n return null;\n }\n console.debug(\"Bokeh: BokehJS not loaded, scheduling load and callback at\", now());\n root._bokeh_is_loading = css_urls.length + js_urls.length;\n\n function on_load() {\n root._bokeh_is_loading--;\n if (root._bokeh_is_loading === 0) {\n console.debug(\"Bokeh: all BokehJS libraries/stylesheets loaded\");\n run_callbacks()\n }\n }\n\n function on_error(url) {\n console.error(\"failed to load \" + url);\n }\n\n for (let i = 0; i < css_urls.length; i++) {\n const url = css_urls[i];\n const element = document.createElement(\"link\");\n element.onload = on_load;\n element.onerror = on_error.bind(null, url);\n element.rel = \"stylesheet\";\n element.type = \"text/css\";\n element.href = url;\n console.debug(\"Bokeh: injecting link tag for BokehJS stylesheet: \", url);\n document.body.appendChild(element);\n }\n\n for (let i = 0; i < js_urls.length; i++) {\n const url = js_urls[i];\n const element = document.createElement('script');\n element.onload = on_load;\n element.onerror = on_error.bind(null, url);\n element.async = false;\n element.src = url;\n console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n document.head.appendChild(element);\n }\n };\n\n function inject_raw_css(css) {\n const element = document.createElement(\"style\");\n element.appendChild(document.createTextNode(css));\n document.body.appendChild(element);\n }\n\n const js_urls = [\"https://cdn.bokeh.org/bokeh/release/bokeh-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-gl-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-widgets-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-tables-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-mathjax-3.3.4.min.js\"];\n const css_urls = [];\n\n const inline_js = [ function(Bokeh) {\n Bokeh.set_log_level(\"info\");\n },\nfunction(Bokeh) {\n }\n ];\n\n function run_inline_js() {\n if (root.Bokeh !== undefined || force === true) {\n for (let i = 0; i < inline_js.length; i++) {\n inline_js[i].call(root, root.Bokeh);\n }\nif (force === true) {\n display_loaded();\n }} else if (Date.now() < root._bokeh_timeout) {\n setTimeout(run_inline_js, 100);\n } else if (!root._bokeh_failed_load) {\n console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n root._bokeh_failed_load = true;\n } else if (force !== true) {\n const cell = $(document.getElementById(\"eb2ddde4-530e-4ce3-9772-cc3703c8cf6d\")).parents('.cell').data().cell;\n cell.output_area.append_execute_result(NB_LOAD_WARNING)\n }\n }\n\n if (root._bokeh_is_loading === 0) {\n console.debug(\"Bokeh: BokehJS loaded, going straight to plotting\");\n run_inline_js();\n } else {\n load_libs(css_urls, js_urls, function() {\n console.debug(\"Bokeh: BokehJS plotting callback run at\", now());\n run_inline_js();\n });\n }\n}(window));" + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import hail as hl\n", + "\n", + "from gnomad_toolbox.analysis.general import get_variant_count_by_freq_bin\n", + "from gnomad_toolbox.filtering.variant import filter_by_intervals\n", + "from gnomad_toolbox.filtering.vep import filter_by_csqs\n", + "from gnomad_toolbox.load_data import get_gnomad_release" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "b3c44396-5ee1-4263-91f8-78bdb9417bab", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Welcome to\n", + " __ __ <>__\n", + " / /_/ /__ __/ /\n", + " / __ / _ `/ / /\n", + " /_/ /_/\\_,_/_/_/ version 0.2.132-678e1f52b999\n", + "LOGGING: writing to /Users/jgoodric/PycharmProjects/gnomad-toolbox/gnomad_toolbox/notebooks/hail-20241210-2229-0.2.132-678e1f52b999.log\n" + ] + } + ], + "source": [ + "hl.init(backend=\"local\")" + ] + }, + { + "cell_type": "markdown", + "id": "d36c12aa-d395-4f6c-891c-77caa4779e47", + "metadata": {}, + "source": [ + "## Get variant count by allele frequency bin\n", + "\n", + "The examples below show variant counts using the Table filtered to DRD2." + ] + }, + { + "cell_type": "markdown", + "id": "dec1dc9c-f145-46cb-8d33-ca43d24dd06a", + "metadata": {}, + "source": [ + "### Counts for AF bins: *0.1% - 1%* and *>1.0%*" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "261a3380-8dba-41cb-b51b-033b23c963d0", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{'0.1% - 1.0%': 49, '>1.0%': 28, 'AC0 - 0.1%': 2662}\n" + ] + } + ], + "source": [ + "drd_interval_ht = filter_by_intervals(\"chr11:113409605-113475691\")\n", + "af_bin_ht = get_variant_count_by_freq_bin(ht=drd_interval_ht)\n", + "print(af_bin_ht)" + ] + }, + { + "cell_type": "markdown", + "id": "d05fb1c6-91a9-42cf-87bf-eccb50f6e9b4", + "metadata": {}, + "source": [ + "### Counts for *singletons*, *doubletons*, and AF bins: *doubletons - 0.05%*, *0.05% - 0.1%*, *0.1% - 1%*, and *>1%*" + ] + }, + { + "cell_type": "markdown", + "id": "a0a07a84-584e-4b08-b356-9d38767a9c50", + "metadata": {}, + "source": [ + "#### All DRD2 variants" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "aaa8dfac-f7b3-4ce2-b13d-b86a1648b7b7", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{'0.05% - 0.1%': 11, '0.1% - 1.0%': 34, '>1.0%': 26, 'doubletons': 384, 'doubletons - 0.05%': 894, 'singletons': 1390}\n" + ] + } + ], + "source": [ + "af_bin_ht = get_variant_count_by_freq_bin(\n", + " af_cutoffs=[0.0005, 0.001, 0.01], \n", + " singletons=True, \n", + " doubletons=True, \n", + " ht=drd_interval_ht,\n", + ")\n", + "print(af_bin_ht)" + ] + }, + { + "cell_type": "markdown", + "id": "5fcabb6e-12b5-4a51-aa06-da280ec8a654", + "metadata": {}, + "source": [ + "#### All DRD2 coding variants" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "a0fd192a-b1f3-4726-96cd-e88c0d8baf08", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{'0.05% - 0.1%': 4, '0.1% - 1.0%': 8, '>1.0%': 4, 'doubletons': 111, 'doubletons - 0.05%': 291, 'singletons': 365}\n" + ] + } + ], + "source": [ + "af_bin_ht = get_variant_count_by_freq_bin(\n", + " af_cutoffs=[0.0005, 0.001, 0.01], \n", + " singletons=True, \n", + " doubletons=True, \n", + " ht=filter_by_csqs(['coding'], ht=drd_interval_ht),\n", + ")\n", + "print(af_bin_ht)" + ] + }, + { + "attachments": { + "Screenshot%202024-10-01%20at%2010.20.53%E2%80%AFAM.png": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABokAAAFWCAYAAAC1jnTEAAAKrGlDQ1BJQ0MgUHJvZmlsZQAASImVlwdUU+kSgP9700NCS6hSQm+CdAJICT303myEJEAoIQaCgqioLK7giiIiAsqCLIoouCpF7FiwLQpKUdEFWRTUdbEgKirvAofg7jvvvfPmnjnz3cn8M/Pf8//nTAAgU1kCQTIsDUAKP10Y7OlCi4yKpuFGAR4oADKgA0sWO03ACAz0BYjM27/Lh14Azdh7xjO5/v33/yoyHG4aGwAoEOFYTho7BeFTiI6zBcJ0AFA1iF9rTbpghq8jTBUiDSI8MMPxczw+w7GzjEbPxoQGuyKsCACexGIJ4wEgaSN+WgY7HslDckPYlM/h8RFG3oFjSkoqB2GkLtBHYgQIz+Snx36XJ/5vOWPFOVmseDHP7WVW8G68NEEyK/P//Bz/W1KSRfM1dBElJQi9ghGL9AX1J6X6iJkf6x8wzzzObPwsJ4i8wuaZneYaPc8clpuPeG2yv+88x/E8mOI86czQeeamuYfMszA1WFwrTujKmGeWcKGuKClM7E/gMsX5sxJCI+Y5gxfuP89pSSE+CzGuYr9QFCzun8v3dFmo6yHee0rad/vlMcVr0xNCvcR7Zy30z+UzFnKmRYp743Dd3BdiwsTxgnQXcS1BcqA4npvsKfanZYSI16YjB3JhbaD4GyayvAPnGbgBd+CLPDQQCMyBJaIWM7507tqZMwpcUwWZQl58QjqNgdwyLo3JZ5ssppmbmlsCMHNn547Eu/7ZuwjJ4xd8fB4AljcRaFnwcU4DcGYZABT1BZ9WEwBSDwG4EMEWCTPmfDPXCWAAEUgBKlACakAL6ANjpDdrYA+ckY69QQAIBVFgJWCDBJAChGANyAabQB4oADvBHlAGKsFBcBgcAydACzgLLoFr4Ba4C3rAIzAIRsBLMA4+gCkIgnAQGaJASpA6pAMZQeYQHXKE3CFfKBiKgmKgeIgPiaBsaAtUABVBZVAVVAf9Cp2GLkE3oC7oATQEjUFvoc8wCibBVFgV1oWXwHSYAfvAofAKOB5eDWfBufAOuBSuho/CzfAl+BbcAw/CL+EJFEBJoORRGihjFB3ligpARaPiUELUBlQ+qgRVjWpAtaE6UPdQg6hXqE9oLJqCpqGN0fZoL3QYmo1ejd6A3o4uQx9GN6OvoO+hh9Dj6G8YMkYFY4SxwzAxkZh4zBpMHqYEU4tpwlzF9GBGMB+wWKw8Vg9rg/XCRmETseuw27H7sY3Yi9gu7DB2AofDKeGMcA64ABwLl47Lw+3DHcVdwHXjRnAf8RJ4dbw53gMfjefjN+NL8Efw5/Hd+Of4KYI0QYdgRwggcAiZhEJCDaGNcIcwQpgiyhD1iA7EUGIicROxlNhAvEocIL6TkJDQlLCVCJLgSeRIlEocl7guMSTxiSRLMiS5kpaTRKQdpEOki6QHpHdkMlmX7EyOJqeTd5DryJfJT8gfJSmSJpJMSY7kRslyyWbJbsnXUgQpHSmG1EqpLKkSqZNSd6ReSROkdaVdpVnSG6TLpU9L90lPyFBkzGQCZFJktssckbkhMyqLk9WVdZflyObKHpS9LDtMQVG0KK4UNmULpYZylTJCxVL1qExqIrWAeozaSR2Xk5WzlAuXWytXLndOblAeJa8rz5RPli+UPyHfK/9ZQVWBocBV2KbQoNCtMKm4SNFZkauYr9io2KP4WYmm5K6UpLRLqUXpsTJa2VA5SHmN8gHlq8qvFlEX2S9iL8pfdGLRQxVYxVAlWGWdykGV2yoTqmqqnqoC1X2ql1VfqcmrOaslqhWrnVcbU6eoO6rz1IvVL6i/oMnRGLRkWintCm1cQ0XDS0OkUaXRqTGlqacZprlZs1HzsRZRi64Vp1Ws1a41rq2u7aedrV2v/VCHoEPXSdDZq9OhM6mrpxuhu1W3RXdUT1GPqZelV683oE/Wd9JfrV+tf98Aa0A3SDLYb3DXEDa0MkwwLDe8YwQbWRvxjPYbdS3GLLZdzF9cvbjPmGTMMM4wrjceMpE38TXZbNJi8nqJ9pLoJbuWdCz5ZmplmmxaY/rITNbM22yzWZvZW3NDc7Z5ufl9C7KFh8VGi1aLN5ZGllzLA5b9VhQrP6utVu1WX61trIXWDdZjNto2MTYVNn10Kj2Qvp1+3RZj62K70fas7Sc7a7t0uxN2f9kb2yfZH7EfXaq3lLu0Zumwg6YDy6HKYdCR5hjj+LPjoJOGE8up2umps5Yzx7nW+TnDgJHIOMp47WLqInRpcpl0tXNd73rRDeXm6Zbv1uku6x7mXub+xEPTI96j3mPc08pznedFL4yXj9curz6mKpPNrGOOe9t4r/e+4kPyCfEp83nqa+gr9G3zg/28/Xb7Dfjr+PP9WwJAADNgd8DjQL3A1YFngrBBgUHlQc+CzYKzgztCKCGrQo6EfAh1CS0MfRSmHyYKaw+XCl8eXhc+GeEWURQxGLkkcn3krSjlKF5UazQuOjy6NnpimfuyPctGllstz1veu0JvxdoVN1Yqr0xeeW6V1CrWqpMxmJiImCMxX1gBrGrWRCwztiJ2nO3K3st+yXHmFHPGuA7cIu7zOIe4orjReIf43fFjCU4JJQmveK68Mt6bRK/EysTJpICkQ0nTyRHJjSn4lJiU03xZfhL/Sqpa6trULoGRIE8wuNpu9Z7V40IfYW0alLYirTWdigxHt0X6oh9EQxmOGeUZH9eErzm5VmYtf+3tTMPMbZnPszyyflmHXsde156tkb0pe2g9Y33VBmhD7Ib2jVobczeO5HjmHN5E3JS06bfNppuLNr/fErGlLVc1Nyd3+AfPH+rzJPOEeX1b7bdW/oj+kfdj5zaLbfu2fcvn5N8sMC0oKfiynb395k9mP5X+NL0jbkdnoXXhgZ3Ynfydvbucdh0ukinKKhre7be7uZhWnF/8fs+qPTdKLEsq9xL3ivYOlvqWtu7T3rdz35eyhLKecpfyxgqVim0Vk/s5+7sPOB9oqFStLKj8/DPv5/4qz6rmat3qkoPYgxkHn9WE13T8Qv+lrla5tqD26yH+ocHDwYev1NnU1R1ROVJYD9eL6seOLj9695jbsdYG44aqRvnGguPguOj4i19jfu094XOi/ST9ZMMpnVMVTZSm/GaoObN5vCWhZbA1qrXrtPfp9jb7tqYzJmcOndU4W35O7lzheeL53PPTF7IuTFwUXHx1Kf7ScPuq9keXIy/fvxJ0pfOqz9Xr1zyuXe5gdFy47nD97A27G6dv0m+23LK+1Xzb6nbTb1a/NXVadzbfsbnTetf2blvX0q7z3U7dl+653bt2n3n/Vo9/T1dvWG9/3/K+wX5O/+iD5AdvHmY8nHqUM4AZyH8s/bjkicqT6t8Nfm8ctB48N+Q2dPtpyNNHw+zhl3+k/fFlJPcZ+VnJc/XndaPmo2fHPMbuvlj2YuSl4OXUq7w/Zf6seK3/+tRfzn/dHo8cH3kjfDP9dvs7pXeH3lu+b58InHjyIeXD1GT+R6WPhz/RP3V8jvj8fGrNF9yX0q8GX9u++XwbmE6ZnhawhKzZUQCFKBwXB8DbQwCQo5DZ4S4AxGVzM/WsQHP/A2YJ/Ceem7tnxRqA+hwAghGdGR/3XwRAG1EpZwACEQ11BrCFhVjn59/ZWX1GpI8C0MU0DbX2fWI1nAP+IXNz/Hd9/9MCcda/2X8BEaoHZfbhPqoAAABiZVhJZk1NACoAAAAIAAIBEgADAAAAAQABAACHaQAEAAAAAQAAACYAAAAAAAOShgAHAAAAEgAAAFCgAgAEAAAAAQAABomgAwAEAAAAAQAAAVYAAAAAQVNDSUkAAABTY3JlZW5zaG90uT88RwAAAj5pVFh0WE1MOmNvbS5hZG9iZS54bXAAAAAAADx4OnhtcG1ldGEgeG1sbnM6eD0iYWRvYmU6bnM6bWV0YS8iIHg6eG1wdGs9IlhNUCBDb3JlIDYuMC4wIj4KICAgPHJkZjpSREYgeG1sbnM6cmRmPSJodHRwOi8vd3d3LnczLm9yZy8xOTk5LzAyLzIyLXJkZi1zeW50YXgtbnMjIj4KICAgICAgPHJkZjpEZXNjcmlwdGlvbiByZGY6YWJvdXQ9IiIKICAgICAgICAgICAgeG1sbnM6ZXhpZj0iaHR0cDovL25zLmFkb2JlLmNvbS9leGlmLzEuMC8iCiAgICAgICAgICAgIHhtbG5zOnRpZmY9Imh0dHA6Ly9ucy5hZG9iZS5jb20vdGlmZi8xLjAvIj4KICAgICAgICAgPGV4aWY6UGl4ZWxZRGltZW5zaW9uPjM0MjwvZXhpZjpQaXhlbFlEaW1lbnNpb24+CiAgICAgICAgIDxleGlmOlVzZXJDb21tZW50PlNjcmVlbnNob3Q8L2V4aWY6VXNlckNvbW1lbnQ+CiAgICAgICAgIDxleGlmOlBpeGVsWERpbWVuc2lvbj4xNjczPC9leGlmOlBpeGVsWERpbWVuc2lvbj4KICAgICAgICAgPHRpZmY6T3JpZW50YXRpb24+MTwvdGlmZjpPcmllbnRhdGlvbj4KICAgICAgPC9yZGY6RGVzY3JpcHRpb24+CiAgIDwvcmRmOlJERj4KPC94OnhtcG1ldGE+ChwqqdIAAEAASURBVHgB7J0JvE5V98e3ookG0kBJg1ApRcO/gUqakUoypFGJQrMGQpKhwRsNmlSiSC+lQWiek1QSDRo1qaRB8/S/3+VdT+eee57p3su9+K3P57nnPOfsvc8+373PUfv3rLUq/P777/8EmQiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIwCpFYLVV6m51syIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAkZAIpEmggiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAisggQkEq2Cg65bFgEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAGJRJoDIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIrAKEpBItAoOum5ZBERABERABERABERABERABERABERABERABERABERABERABCQSaQ6IgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIwCpIQCLRKjjoumUREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAERkEikOSACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACqyABiUSr4KDrlkVABERABERABERABERABERABERABERABERABERABERABERAIpHmgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAisggQkEq2Cg65bFgEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAGJRJoDIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIrAKEpBItAoOum5ZBERABERABERABERABERABERABERABERABERABERABERABCouKwS//vpr+Ouvv8I///wTlixZEtZZZ52w1lprhTXWWCPvSy5evDi89dZbYeHChWGbbbYJ9erVC2uvvXbGdn7++We7thdac801Q8WKmW833zp//vln+O233/wSoUKFCnafqQMFO9w/7UatcuXK0a/aFwEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREIHlTmCZeRLtscceoWrVqqFatWphiy22CNWrVw/HHntszjf4xRdfhJNOOskEoU022SQ0a9YstG/fPuy+++5h/fXXDw0bNgyXXHJJQIyKG+LNBhtsYNenD3xGjx4dL1boO2JOvM6oUaMKlYl+ef7558O2225b6BrU//7776PFAuW8D7595513CpXRFxEQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQARFY3gQyu9YUszdz584N8+bNK1L74YcfDosWLQobbrhhkXPRAy+88EJo27Zt+Oqrr6KHC+3TPp8nn3wyjBs3zoSoQgViXxCB8rWkOngODRgwIAwdOjSxuXid+HcqJR1LbEwHRUAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAERGAZEVgmnkT//e9/03Z38uTJac9xgvP77bdfRoEo2sDMmTPDLrvsEhYsWBA9vEz258yZE/baa6+0AtEyuagaFQEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREIFlQKDURSK8ZMaMGZO2q3fffXfac3/88Ufo2bNnkfOHHHJIGD58eLjnnnvMi2ezzTYrVObHH38MV155ZaFjpf1l+vTpoVGjRuHNN98s7abVngiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAgsdwKlLhLh2fPhhx+mvZGnn346fPbZZ4nnydUTP3feeeeZd9Hpp58ejj766NCrVy8Tavbdd99CbTz44IOFvpf2l/fff79QkxtvvHHo1KlToWNl+QWBDbGMfEy5GGHzZs+eHR599NHwySefpA2BR7lffvkla5PZytEv2snWP87feuut4Y477khd87vvvgs33nhjeP3111PHHnrooXDLLbfk7HGWqpjnDp5tXOebb77JWvOvv/4KiKDLei5m7chyLJAPn+J265lnngm33XZbTvOwuNdYUerxfmQ+Tp06tVS7vKzaLdVO5tkYgj7vDXLXPfvss3nWVnEREAEREAEREAEREAEREAEREAEREAEREAERWDUIlLpINGHChELkTjvttIAnUNQmTpwY/Zra//jjj1P7vnPkkUf6bmpbpUqVcNFFF4V111039fnhhx/C77//niqzLHfatGljgkVS35bldTO1jWhGrqeTTz45U7GwcOHC0Lp1a+O26667hlatWoU6deqE6tWrm7dWPF/SNttsE9Zff/2AgJfJatasaeU++uijIsUef/zxsOWWW9r5Cy+8sMj56AHEpm7dugXmjdt1111nHmYtWrTwQ+Gaa64JZ5xxRkZBMlW4BDt4qHEdhLRsxkL0iSeeaGLmBx98kK14kfMIZNlEtCKVyvhAPnyK01WEz+bNm4euXbuGTGEsi9N2ea7Dc8hc+Pvvvwt1k3xvzMeRI0cWOl7SL+napQ+InyuaPfLII6Fx48b23mCOPvfccyvaLai/IiACIiACIiACIiACIiACIiACIiACIiACIrBcCJSqSMSCYjycHAv7RxxxRKGbSReOLh5Gjkpjx45NXKRs1qxZWLRoUaHPGmusUeg6pf0FUYqQd9wjokp5sXnz5gU8uLBx48aZR1FS3xB6WDhlAZV7Oeigg0LHjh3DjjvuaHXw2konMsXFo6T2ORYth+CDmHfooYeWyOOHnFMYY16eDbENrltttVXYdNNN8+oqC/HrrLOOffCcki0lULlyZcsDBtfttttulcEydOhQmwt9+vQps3t+4YUXrA/kYVvR7Nprr7Uut2vXLrz44osBT1SZCIiACIiACIiACIiACIiACIiACIiACIiACIhAUQIVix4q/hF+rf3VV18VaqBp06Zh8eLFhY699tpr4d133w1169YtdByxgsVgvAfcbrjhBlvk69ChQzjggANC/fr1Q8WK+XcbLyNEi3QW/8V+vByeOnPmzAk1atSInyrz7+PHjy/UB8KdwStuhHFjfFj0ReyK3sukSZPCsccea6LcueeeGxo0aBCvntd3vMLatm0bGGvGdM899wzTpk3Lqw0vfPjhh4effvopVKpUyQ+Vy+3mm2+emv+rr756sfsYFdqK3chKUnG11VYLTz75pAnFxXnuV1QMPgd8Wxb3UZbXLun9umjet2/fgDekTAREQAREQAREQAREQAREQAREQAREQAREQAREIJlAqXoS3XvvvYWuQg4hvCPwECK0WdSSQkexsJ4kbiA0nH/++aFRo0bWHh4liEfx/EXR9uP7PXv2NLECwSLpQ0i1TIYXQ1RUyVR2eZ7DewvxByMsG3bnnXfaNv7nvvvus0Pk6IjfC6HzPMcSglFJjdBrjBveSohrhx12WLGbJJfRp59+Gr7++uusbSAEkhOLD3maoobn2fTp062t6PF89gk7Rz6YpLnHovqCBQvC559/XqRJ+kVOJeoioEUX4LmvaJg+9un/zz//XKQdONDGF198UeQcBxDTqPvtt9/aeQRX8oA9//zzqWOJFQsOEiKP0IDF9WRinLh20v1zTe/bl19+WagL33//vfWPfiaNMeXhylyPtlOceyzOHGCsuS+EZDy+Zs2aFZ544gnzYvQbYTzx1CPHFwJ4dHy9jG9pg2cDT524cM09ci36ibHle7rxhjntvPzyy0Xa8nmUFC6OY7SbFOKT6zLPfI4vWbLEytIe9+V1fZwZP54rPBqjxo8D6BusCHMZN58P+Y5jpvnC/OG+/IcG/j7gHqIGN+Yb76akHwjE+waLhx9+uMh9wIBnBv7xa0Svl+n5j5ZjP9P8iJfVdxEQAREQAREQAREQAREQAREQAREQAREQAREoKYFSE4l+/fXXEPdoId+NWzx/T7qQc8OGDUuJFV43vsVj6ayzzrKwXghGxcn/Em9zRf3+zDPPpLyDCBWHAIbnRaYcOiyQJtlNN91kAgEh4kpqhAm76qqrwuTJk4sIUvm2zSJzvXr1LL9IprrcF8IkZU866aTUojnhpvCeQhjDK2nrrbcOO+ywQ0iXGyvpGggVDRs2tPxNLVu2tLlH6L7o4jeL4njH7bzzzqkmWFQfPny4jcvuu+8eqLvtttuap9abb75p5c4+++xCodT22GMPu4fHHnss1c6oUaPsGH2njdq1a9s9xHOAIfBx/5deemm44IILLE/VgQceGPbff38LgYe4GrfbbrvN6uClR2jAjTfeOOy3335FFv3j9eLfeQ65NvmnWGSPG3mkOI93B4YIdsopp4SNNtrI+kc/EZR5V7hIQjlCVlLP82IV5x5LMgd8PKZMmWJs/u///s/yrDGfCD3J3CDvGp6QvPPwwoMlQkvUEIAYa/jSJox5Xtu3b58SGN577z27Vw+Xdvvtt9v3eF432h0xYoTl+aKdJk2aWFvXX3+9XZJrMT/hhlATNwQSzlE3SdBirh933HFWzfvE3P7mm29MWKIuc4r5xPjxXDFHMZ4DxP5NNtnE2qfvtWrVsmcwKnblO465zBe8IOmbG88i3wnDifG8Mr/4UQDzjR8ebLHFFqF///5exbbRvnEvhJCk3owZM+w8ghh8mes8M/CvVq1a6Ny5c+q9Q8Fcnn9rsOBPLvPDy2orAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAqVFIP+4bWmuzK+p/dfbXgQvEjc8SfBgcWPhEc+K6II65wgpdfPNN9sCHIvXvpDu9eJbBCNC2uFdwcL/qmbkbMLILQQ7hCIWmFkURSSIGuH6Ro8ebQIKi88s3kbzOFG/tEJ6xUXBpIXoaN9Kuo9ISbg8QtqxeI2nWpUqVcL7779vIgNzE2+2ffbZx7wHEGDIV4Kgtvfee2e9PF5Wa6+9dujSpYstkuMxwtxEFECAICxakrFwTq4nrFevXmGDDTYwbxMW6VlkZtEd0YdF9KuvvtrKdevWLSCykeMIw0PPc6rQ/9122808F1j8Z9zXW2+9cPDBB1tZ/8MzhHnbd911lz2fiKvkeCL8H3b//feHrl272j7PKAIWDGmb7y+99JIt9luBLH94/mgbLxk8S1q3bl2ohgvD7i3IPTFPEYa4Z0Q+hGY8Nhgb2shkud5jac0B5jT317x5cxtz3j0nnnhi6p7ZZ87hyYc3C+EWowLNhRdeGBBxEIYYN+YTIipzlfmL4Lfhhhua1yTiL94pfj2EpahxHk68Yxkz6hJKEhEKARFhjbmKUIvggYgRNY5hiHQVKlSInrJ92pk7d27A+5D++vxjXvp7nntkPuFliXCG4IIh1MKGPjP/8NShHULAIdYyHtHnJddxzGW+cN88S1deeaX1pUePHmHNNdcMO+20k4mSbdq0Ma7MOXLlwYy+DRw40MYOkSlq3jf6zX1SD087RDQMYdB/qECYT96veMQiuGO5PP88v1gu86O03s92Qf0RAREQAREQAREQAREQAREQAREQAREQAREQgQICpSYSxb2IoEsoHg9JlESbxbm4SEQ5FtlYNObDL7ZZyGbBlBBmvkAZbY+FPhYHWbRMZyzmRX9hHi+HiJEUAi9erjx9/+GHHwKL/xgLnhiLoIhECGyE6IsuAF922WXGEE6UY/GXRWYWkF1MsEYS/vTp08d+KZ9wyg4ljUu6sqV9nAV2RAWEG+4HUYUwhxiCBH0788wzA54sbnisIdogLBHKLMrJy0S31atXN3a+WI8QgjcI2/nz5xfJr+V1PQQjAgmiAcYCPN4HCFT0mT4wHi4S4WlTtWpVK4vnhXt03HjjjbaobycK/rAQjvDK2OG9wQJ+1Mg7xYI9Rlk8JxAteFYRifCq8D5xzIW9QYMGWZ9Y9GbhGkExV0MogQnPdlQkQlBj3rHIjtCFV4h7dyAocBxDCEBsQERjXFjwz2TZ7pG6pTUHEM24LxbqET5gi1DD/XIPeIpheJPwXkMUITQaXiuPPPJIyqOMd5kLgP369bN5RDvMEfghWAwePNjeeQi7fI8bcxoBCBEEY3wRMnmH8eF9iIcSZZiDnPc8WXis4AGFUSbJevfubSEAuV/6mtQH6iGAXnHFFakm8PZygYj79HFlTm266aYWwu6tt94ycSVVqWAn2zjmOl+Yz3y4XwwPIX8ueFboE2IxIrG/I3g34FGFByXPUjxXHh6H8HS74447bJc8dYyr50pD1MSjCmZ4WME7l+ef/uYzP7wf2oqACIiACIiACIiACIiACIiACIiACIiACIhAaRBIdn/Is2UWLH3BN1oVT4noJ3qOfRbbkvJBRMvx620W7xCK8LogHwgLmHEjZ0S6/BqURXBiYTTTJ95mef/OIj7G4rWLFyxUszDLgryHRvL7qFmzpi2+42FEecaNBWW8AUjuzi/i8e5KsgceeMDEAgSDpE9SneVxjFwfLHSzyAoHPCp88Zdf/LOAjxg2dOjQQt1BqIETAmOm0HxeCUbOmGN4eODBgb3xxhu2TfrjeZE8VBpl8KLA8+33339PiTRJdTlG/zG8o/D6iBoL9Iif2OzZs6OnzOvBBSJOsJDtog2iFvbqq6/aloVxF4g4gAiCiIY99dRTts31j1+TxXEW9t14fjE83Vys8HNRNjAmTBtssglEvBv8erSVdI+lOQe6d++e8rRjDJ0ZXiYuENGP7bff3sKTse/CNTmhMIRaF4j4zv26yIJHWq7GnEbccGPMEBox915ibvBhjkfbdrGdfvPcl8QQEaOGEM/YMYYuEHGeUGw+VuQBilou4xgtX9z54uEbEXD8HUG7cPBnC2EvaghKUYGIcwh53COikAtEHOf9ybjwXvV8Trk+/6U9P+iPTAREQAREQAREQAREQAREQAREQAREQAREQARyIVAqnkTk6iiOsXhJOCsW6XIxvD3I98GHX+fjKRM1fiVOqKVVxfwX7SzyRxfkjznmmPCf//zHfp2Pt0vU+DX/5ZdfHvoVeDAgIvEhvBgLqHgA4LlA6MC4hxdhk8jLkc4QMcrCCP3lhjcMoaXcXDhh0TY+VyjjC7mUyzZvPLyUt80WzxzCJn777bfRw4X28QKC64ABA0xIRajBcwte0b4WqhT5giiKxceRYzwPeAThpYO45yHkOEdIuri5kOFzxQUoxEZEs6h5eEAYIc7iSZWLIXowH2mTRXT3cPNQc3hNYSzS4/2FuEzYQ7yL2OKdQT+zeXbRRi73WJpzIO6JSGg5LOm5IGwcApFzdBGA/FQu0lnlgj+8tzDehbka8yEaso16/h5lvNwQ5RhbRDoYYx5q7oQTTvBixdoiAnmotHgD5Kdi3iPc4/GIp5t7ajoTr5PLOJZ0vhDK0Oc7oeDWWmstv7xt8bzEKOPhEPkefw9yDPvrr79MmGXM8MhDjMRrjHcN5j9+yPX5L+35YZ3QHxEQAREQAREQAREQAREQAREQAREQAREQARHIgUCpiESECiqu4XHgi5uIG3isuJ100kmp3A5+zLeE64ov/BN2bFWxjz76yLyCuF9yynhemej984t5wlbFF0Qpg+cB3PngJfPuu+/aL+ER7m699dZw3XXXRZuyEE3169cvdCz6xX9BHz22vPcRugj35OZeHHwnF0w6I6xZNktiSE6ZbMYiPXUJJYeYQxgsPvAi/NU555yTsQnyt2Cbb755Yjn31mBRPmpJ/Y178ETFikx88ArJVSSiD4gPiESIAohEHmoOr4xoKC/mGd5YLNojKPDBEF2Yf4hwmSyXeyzNOZCLcJWuvzDA6E861oTWzNWSBMYkHnjvIBIhxg0ZMsREK89j5p5luV4zXi6az8zP4Tlz8cUXW8hLP5Ztm9Tv+FyljZLMFxeEaccFIfbjxns1anEhjnOIQscff7yFi4yWTdrP9fkv7fmR1BcdEwEREAEREAEREAEREAEREAEREAEREAEREIEkAiUON8ev1smnETU8AtxLJb71EF1enpw6HpInuoDMecKaxdvmODk1PKE439223HJL313pt9EcUHilxD8OgJw3GN4jiALpckTB3pO2E45qRTHmE55RGOG/ELvcfK4RGo5f+qf7nHbaaV5lmWzxTCC0GyIAcxpvGTwOCNUVHceki++www522MWieBk/ToizfM1FP8LWpWPD8SQvqkzXIi8UIhjCBPPOhV9E36ghMpDrioV53hOIZwhECCmIfXHhK1o31/3yMgfcEwyPnnSs8UQpbcNzEJbutYkQx9wjNJ3nvSrNa5KPh5xojD8hHpn3X375pc2D+Pjne92SzJctttgidTnyfKUbAxfQUoUTdvDCJJ8YYfIQrt5+++3w9ddfB36k4KJttFouz39ZzY9oP7UvAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiKwahIosSfR5MmTi5Aj70a6MD0sHHouDyqyYEneE7wGDj744FTCcW+UsohOe++9d6hRo4bljyH/TDx3BGGuPJyW1y2v29NPPz3jAi2Lj56nJOkeCNdE+DeMRWdy8cSNnDK9evUKd955p+WiIQ8I4aZYvMVzJpqTw+v6L/q33nprP1Tut3Bg3Am3xgI184X8K4TB8nw9hJCCmSew95vCQ+ann36y3Dd4VpW2IWYSbguvCARM8r/w6dixY+jRo0cYOXJkeOKJJ4KHYPPrE8rKDYEL4xnheNTDgnxMLuh5Oa+Xy7ZRo0ZWjIX8pPmA4Aa3eJi1bG0zj/C0wGOGkHPuaXjUUUelqi5ZssQ8MhgThAzeF3zIs7PTTjtZGD/GsaRzsazngN8wXlR4uhH+Lv68EgqNvFiMQTwPkwvo3k5xtowFYjvvCm+PMGi5Wj4emoSqxMgBh4di1JjDxbWSzhcEJsaAfzcQdfj3JGqEjEToIUxgNq85zwXHv2X8m+WGAB/1WMrn+S/u/PBraysCIiACIiACIiACIiACIiACIiACIiACIiACxSVQYk8iXwD2DiDWZPI82G+//bxoauveFE2bNk0lX0+dLNjBGwaPg86dO1vi97hARFlEFRc5onXL4z6J5Vm0TffJtphKHgy8LRB8yCGUZJ4knmsQHom8H3hVIMohUi1atKhQNfKiDBw40I7FF7ELFSyHXwgDhmcZ4ho5gkhCT04Q+HgoQxbFSTbv9sorr5gAgYiAZ8GyMBb/6RNeWoyDG31DnMJcBImKP9H5jZDDfSB04cHguU4QjPAAYh7wzHGdfM3bxisCL56oIWCR+wuBlsXufM3zuhBCkjFBvGMB3g1Rjz7jKRUN94cg4ddLyvXj9XPdlvUc8H76e+/SSy8NzzzzjB827xMEFeZh//79U8fpN+a5alInirHDGNIeHj6EoGQ/Wyg/LuOiKh5w5BTKxTbZZBMr5vl/vM6gQYNsrvr3fLelMV8IUYrxLog+83g64YnJGPADhGzm3kIeIo7yeMx17969UNV8nv9850ehC+mLCIiACIiACIiACIiACIiACIiACIiACIiACJSAQIlEIjwxnn766UKXb9++fcak8yw8ktg+aqNHj7ZFNo4Rfs7FimiZdPsseLIAz6/lVxW7++677VZZiE/KTcJJwit5onpywyCk8Mt3jDBgeGU1adIkMF6IeuwTkgpRxQUmK7yC/KlSpUqYOHGiLYAT3szvFRGTRV3mCGXIw9KsWbOUJwHeDnj3LAtjbnoIP0QSvA64HuPCPOc8Yb/cfLxatWplosqsWbPM4+yhhx6yIuSUYVxbtGhhwhC5fLApU6aknQdWIM0fRBuYYeRHIu8Rog7zAU8nDGGhOF5WLkpaIwV/OnXq5Lu2xZMD7ydESzyImId4ESFMIXwhIHkIrkIVi/GlLOeAd5c5N2DAAPvavHlzYwzrOnXqBEKcMRcuuugiL24c+IJgiJDWu3fv1Ll8d8idFeWPiFqpUqWszbiASUEEFN43ePRkMuYmNm3aNAsdSB080fr27WtzNlPdTOdKY74Q3hEBHG+f2rVr23uA9wHPFEIY861t27aZumHnGDeM3EvU4TseYHFxP5/nP9/5YR3QHxEQAREQAREQAREQAREQAREQAREQAREQAREoBQIlEommTp1apAu5eKGwYB43D5uFR8X5559vv6BHTPJfbcfLE56nS5cugTBqufwqPuqpEW8r3fdsdZKSmsePZWsj6dpJCeG9HF4WLhJlW9AkrBk2ZswY25KbhF+/uxiB9xACEgukLGgiDDCm1apVs/LRP/H7ip6L7qcr58cRqzJZ0nk/5m1Q37lGjyH2OBv32EAMwxMNFnjc4ClAXhb2hw8fHgYPHpypO4nX8Qrxfvl3P88WwfOqq66y6+GxgycHC/8IBXgzRQWqESNGpELkIWohwmJ77rmnCUGeW4YFeIznCJGWBXw35+FbP8426Rj5kQgZyXOLSIjAxnxAwEF8QrDKZEnj4OVPOOEE22VuxZ9RWBF+De9AjHmIN9gPP/xgx/Cg8bZdpPL+x7fWwP/++LnosZLOARdU4m37d+9n9Jp+LDonCP/IXEBYgDGsYc44ElovOhcYF+YO8xRPLA9x5tf0bfSamfajIQ0R5OLm7fmW84RsxMuTPtBPwjniHRMtE2+HuTpp0iR7byPGUIe8dXfccYfdZ7S8t+PbpHN+LJ/54nXYRvkzjrwLe/bsaV6VvAfccwgxF8bujep98m20TcryfmFe4zHFOG5ZEE6Sd6d7v/l183n+85kf0f5oXwREQAREQAREQAREQAREQAREQAREQAREQARKQqBCQQiuf0rSwPKoi7cB+VFI7M6vvlmQ84Xj5XH9lfEaiE0sPpOLA48BFtJXdiO/DqHNWAhm4Xt5GyH+mMt47GSav3hrEL4KsS5ejpwyLL5na6M490Y4PvjAhgXwkhrh8BDiWJSPh7OLts24EP6LhfVlPQ/Leg74fSOGMR9q1qyZ0QuMsILkysFjsGrVql497y1CBh4veGi98cYbedf/7rvvLJ8R+XpcAMnWCGHceM8wpi6aZauTy/nSmi8IX8z54vaPfiDkIup7mL1M/c/1+aeNXOdHpuvpnAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAjkQmCFEIlyuRGVEQERKB8EELKmT59uof3o0fz5803cLR+9W7V6gZAxd+5cC1GIuEhoOw+XtmqR0N2KgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAgkEaiYdFDHREAERKA4BAjhRX4Vtz59+kggchjLeYtYRw44N0LYHXXUUf5VWxEQAREQAREQAREQAREQAREQAREQAREQAREQAREIEok0CURABEqNwPrrrx8OOeQQC+FF3iV5rZQa2rwbIiwcuaaqVKkSGjduHLp161aqYd/y7pAqiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIlDsCCjdX7oZEHRIBERABERABERABERABERABERABERABERABERABERABERCBZU9gtWV/CV1BBERABERABERABERABERABERABERABERABERABERABERABESgvBGQSFTeRkT9EQEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREIHlQEAi0XKArEuIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIQHkjIJGovI2I+iMCIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACy4GARKLlAFmXEAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREIHyRkAiUXkbEfVHBERABERABERABERABERABERABERABERABERABERABERABJYDAYlEywGyLiECIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiAC5Y2ARKLyNiLqjwiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAgsBwISiZYDZF1CBERABERABERABERABERABERABERABERABERABERABERABMobAYlE5W1E1B8REAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAERWA4EJBItB8i6hAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiUNwIVS9Kh2bNnl6S66oqACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACJQRgQq///77P2V0bV1WBERABERABERABERABERABERABERABERABERABERABERABESgjAgo3FwZgddlRUAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAERKAsCUgkKkv6urYIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIlBEBiURlBF6XFQEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREIGyJCCRqCzp69oiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiUEYEJBKVEXhdVgREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQATKkoBEorKkr2uLgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIQBkRkEhURuB1WREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREoSwISicqSvq4tAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAmVEQCJRGYHXZUVABERABERABERABERABERABERABERABERABERABERABESgLAlULMuL69oiIAIiIAIiIAIiIAIiIAIiIAIiIAIikI7AggULwg033hgefujhMH/+/PDnn3+kK6rjJSBQsWKlUKdOnXB4i8NDt65dQ61atfJujbG6sWCspkyZEt59993wxx8aq7whqsIyIVCpUqVQt27dcOihh4auxZzfy6RjalQEREAEygkBiUTlZCDUDREQAREQAREQAREQAREQAREQAREQgX8JjBo1Kpx5ZvfQ4fgTwiX9B4Y629YLLPbKSp8Ags78994J06c+EurVqx+uu25EOPnkk3O+EGPVvXv30KNHj3DbbbeFBg0ahDXWWCPn+iooAsuSwO+//x7mzJkTJkyYEOrXrx9GjMhvfi/LvqltERABESgPBCQSlYdRUB9EQAREQAREQAREQAREQAREQAREQARSBBAdrhg0KNw+dnzYbvsGqePaWTYEEN/gzOfAgw8Ll1xwtl0oF6GIsRo6dGh49tlnQ6NGjZZNB9WqCJSAAIIlc5PPMcccEzp06GCt5TK/S3BZVRUBERCBFYZAhQI1/Z8VprfqqAiIgAiIgAiIgAiIgAiIgAiIgAiIwEpNgLBleLNIICq7YZ43d044qeOx4Z133s4Yeo6xwjNDAlHZjZWunD+BWbNmhSZNmoS33848v/NvWTVEQAREYMUksHqfPn36rZhdV69FQAREQAREQAREQAREQAREQAREQARWNgKDhwwJ29StH1q0OnJlu7UV5n422mjj8PMvP4W5b80JzQ84IG2/hxSM1R577BE6deqUtoxOiEB5I1CjRo2wZMmSMHPmzHBAhvld3vqt/oiACIjAsiKw2rJqWO2KgAiIgAiIgAiIgAiIgAiIgAiIgAiIQL4EHn7oYQt5lm89lS9dAoSdYywy2ZQpUyx8V6YyOicC5ZEAYeeYvzIREAEREIEQFG5Os0AEREAEREAEREAEREAEREAEREAERKDcEFhnncrh2RmvB/LkyIpP4LNPF4QXnnsmPPn49NCo8W5h/Q02CHvt0zRstnmtnBr9448/QpPddw4///xT2vKVK1cOixcvDuR8kYnA8iTwwQcfhGnTpoX777/fQsdtuOGG4aCDDgpbb711Tt0oSL8RqlatGn76Kf38zqkhFRIBERCBlYCARKKVYBB1CyIgAiIgAiIgAiIgAiIgAiIgAiKwshBAcJj55rtpbwfx4pOPPzSxY6211k5brjye+Oeff8K4saPDHv+3V9i6zrbLrIvdTj0xzHjphcT2Tz+jZ+h8+hmJ5+IHd92xbmAxPZ0xVpnOp6uX7/E333wzPPfcc6Fr1675VlX5lZDAIYccEp544onEO+vbt2+45JJLEs/FDy6v+Ru/rr6LgAiIQHkjoHBz5W1E1B8REAEREAEREAEREAEREAEREAEREIEiBD7//LNwbo9uYc9GO4Rjj2wR9tmtYTjrjNPCV18tLFJ2WRz4dtE34cEHJoZffvml2M3/8P334eohA8P0qbmFuSrONRF2XCBqvNsegc9pXbvblo6PvP7aQJllYcOHDzevIvK9xO2CCy4Im2++eUAoy9fGjRsXevbsGX744Yd8qxYpv3DhwjB69Gh5kBQhs2IcQNhxgWjfffcNfAryrduWO+jfv78821aMoVQvRUAEyhEBiUTlaDDUFREQAREQAREQAREQAREQAREQAREQgaIEPv/s09D5+Pbhh++/C6PuGheeevHVcPd9k8Pff/8d2rQ6JPy8HEJGLfjkk9C/94Xh++8WF+1gjkcI+fb0i7PCqV3PzKlGvte8deT1qXYRhm4adZd9Tuu2dJ9jbngblba1adPGmnzkkUcKNf3nn3+G2267LZx66qmhQoUKhc7l8mXAgAHhm2++Ceutt14uxTOWef/990Pnzp3Dt99+m7GcTpY/AgMHDkx1CmFo+vTp9vF9tm54G8lEQAREQARyIyCRKDdOKiUCIiACIiACIiACIiACIiACIiACIlBGBB68f2L4syDM3NXDbww77dwoVKmybqhbr364fMjVYdu69cLL/wuthhhx/bVXh7atDwsH7buniToLv/wi1evBl/ez82w5f1jzpmHSffemzv/44w9Wh3N8KPfzzz+Hx6c9Gs4/a2mItpM7tQsD+i4NZ8X5EcOuCpdedH5o+n+7hBkvv1ggXP0Vxo6+PRzV4iA7duoJHcJbb85OXaPLyZ3C008+bt8z9SfdNVMNxXbIQYSXkBvCEPbqKy+Hm28YYfscw7MIw9uIOqVpNWvWDCzO33PPPYWaffrpp8OPP/4Y2rVrZ8enTp0a9tprr0AemcaNG5tnj1fo3r27hQs78cQT7TxeIxMmTAitW7f2IiFbfcQC2sFzaauttjKBisoTJ04Mbdu2tXaaNm0aunTpkmozusM86tevX2jYsKG10b59+/DFF//OI/ZPO+00O0cZwpvlGnYPL6ZmzZrZvR199NHh2WefjV46vPjii+GYY46x83vssUe49dZbU+cz9Yt69erVs/nqFe6+++5w4IEH2te5c+fa+TvuuMPuiz5g9P/666+3PuGlw3z36+ywww5W57zzzivULnXoV6tWrVL95PpuXj8TP9gzPswDrp/NyEGEl5CbC0LMLUREjGN4FmHMG+rIREAEREAEshOQSJSdkUqIgAiIgAiIgAiIgAiIgAiIgAiIgAiUIYF5c+eERrvuHtZbf/1CvVhvvfXDbaPHhf0PWLoQftXgy8Ptt94UWh91TOh5bq/w1pzZFpKOhW/sq4Vf2vnffv01nNvrkrBNQV6ggf17pxbAh105OMx69ZXQb+CQcN6FvcMjDz0QRt18Y9i+wY6hfacTrQ28cVoffYzt096do24uCEH3c+h1cd8CQWKb8Ni0qWHYlYPC4S1bh959Lw+rrb566HrqCbbwTqVPPvko5fmUqT/prmkXTvjzwnPPFDpKSDkEKT4337hUJCpUoOBLvE78fHG+H3fcceHhhx8OX3/9dar6+PHjw6677mqCw4IFC0LLli1tH6GB43j2zJo1y8p/+umn4corr7RwcNdee23YbrvtwnfffRfefXdpnqpc6g8ZMsTCAl599dUBoYNcRoTA41qIRxiCwsknn2z78T+IIldccUVAqEKAQGDZb7/9wl9//WVzBcHq+eeftzL0feTIkal2421FvyN2UR5hjDrYAQccYO2zP3/+/NCiRYvw22+/hRtvvDEgZHXr1i3ce+9SITNTvwiD+OGHH1ofaQv7viC8IW1ivxbMec6fe+654fjjjw+9evWy4/PmzQtnn3122G233QICEkLRRRddFEaMGBHOPPPMQJjA22+/PZxxxr95rKhDvxB4GCvYRvMAZeon/UAcmzlzZhg6dGg4/PDD7fpcO5NNmzat0Gn6iQDGx0WiQgUKvsTrxM/ruwiIgAiIwFICFQVCBERABERABERABERABERABERABERABMozgblz3gxtju2QsYuEnLtv/N2h7+WDQ8sjjrKyuzTeNbQ6pFmYNXNG2KfpfnZs623qhEsHDLKwZwhPhx6wj3nV7NeseZgz+/XQqPFuYa99mlrZBg13Dr8XLNjXqLmZHefg/+21d9i0Rk07zx88mYZcMyKsttrS3+HuuFPDMG7iQ6HOtkvz/tTecqvQsW3r8OEH71vZVMX/7WTqD33B4tf8X9VCm+8LhJS44UW0NCfRmXaK73zcnnx8ejimXUf/WipbRA7s/vvvt/ByCHQIAO4tUqVKFRNYdtlll1CxYkUTRe67774wY8aM0KhRI6u74447BoQlZ2oH//cnl/oIS7fccouNMUJL7dq1zbMEz5cmTZpYS4gLtWrVijZt+3g83XDDDSbiuIiEGDJ48ODw2WefhXfeeSe89tprJuzUqVPH6uARhaBEmapVqxZp0w8MGzYsdOrUyYQVjtEf7nnMmDEmOOFlREg9cjCts8465vVUvXr18OWXX5onVqZ++TWybRkLRLqoke8JYQ1D8EGco0/udbXpppuGI488MlxzzTWp++vRo0e48MILrc76BeIt3lZfffVVWHvttTPye++990wgIuyf8yfXFKIUDNPZokWLipzCiwjPod69e9s5vvNxYw6efvrp/lVbERABERCBNAQkEqUBo8MiIAIiIAIiIAIiIAIiIAIiIAIiIALlg8AGBQvv3xfkI8pk77//np1uXCD8uNXcbPOw2ea1wjvz5qZEogY77ZzKi7PRxhuHatU2NA8j6hza4ggLR0dbTfdrFpo1Pzgg4mSyHQvai4oZCEozZ7wURl53bVi06OvwztvzrDreS0mWqT9J5dMdwwMqychLhCEO4VUUNRehosdKuo+4gbfM2LFjTSQiNBx21FFLhTtElHXXXTcgmHxSkOdp8eLFJoC4txdlCbMWZcoxt1zre+6jGjVqhI0LxhkPpVxszpw5VszDsfGFMG5402B49Wy22WbBBSKO4WWEUZdQay4u2cGCPwgwiCx4z+Cd47bmmmtamLdXXlk6dnhTHXTQQSYQeRn3+PFwbun65R5DXi/ddueddy5yCg8rt7feest2ySH1+ONLwyIuXLjQjnF/LrIh8rn5/ueff24eXBxP10+8qbDLL7/ctvxxtnhQwSTJ4mH5vAx5iTDEIQ+t5+e8r/5dWxEQAREQgWQCEomSueioCIiACIiACIiACIiACIiACIiACIhAOSGwQ4Odwvz3loYbi3eJRfnVVqsQ/vj9dztVqdIahYqw6PxHQT4jt0qVKvmubStGvp/UuUvYuVHj8NjUKWHihPEm9Fxw8aWhbfvjCtWJfqnwPw8iPzbmzlHhP1cNDnvu3STQ750bVQ54QqWzTP1JVyfpOCH3yDMUN89HlBRybv0NNogXL5XvHTp0MJHgo48+CuTFIbwY3jYYYdr233//gLBAqDW8fDycml88nUCUa31CkUUtzjh6Lr7PfMLS1UHIiLePRxRGXiLEI/ewsYMFfxo0aJAKNxgXQfhOCDaMttNdN1u/rIGCP//884/vFuTH+ju17ztJbF1Qo4z3BW+sjTbayKrh8bPJJpvYx9uJ9nP11Vf3w6n7jJ5PnSzYISwetsUWW9iWP+R34lqE80tnhPgjz1DcPNScb6Pnfc5Fj2lfBERABESgKAGJREWZ6IgIiIAIiIAIiIAIiIAIiIAIiIAIiEA5IkB+ngcfmBhemzUz7NLoX6+HTxd8Elof1jxcNujKsPc+SxPWz31rdth34+bW+x8KcrJ88P78cPoZPXO6m28K8ugg7HCNcy64OPTudW4YN3Z0IZEoKjglNTp50n3hiIKcSH36D7TTs1+fFe4evdQLJal8LseyXZM2PERevL3Gu+1e4EU0I37Yvqerk1g4j4OEZ8Pbhrw6DzzwQJg0aVKqNiHAOPfSSy+ZRxeixMUXX5w6n22npPW9fQSdJEPQwegf4hZGfqV77rknHHvssQFPnP79+9sxF1E8nxL5jwjN1qVLF6sX/0MYvWi7CDovvPCCeU5RlrxA5HNCEHLhie+IPfvss481F60f7VflypXtPB5FHraPHET5GveAkSvIPXPoD15C3Fs2y8avYcOG1gQeVYSpw34qCBX57bffFvKgshORP3hYJRnhBJ955pmkU+aVlXhCB0VABERABAoRWBowt9AhfREBERABERABERABERABERABERABERCB8kOg9dFtTbjpdXb3gAjz8UcfhueeeSqccdpJFi6u+YGHBLxiCBE3sF+f8MJzzwTEmUt6nWPnyT2UzfBi6NCmVTivZ7fw0YcfhAWffFyQg2ZB2KbOtlaVsHXYpP/eGz77dIHtJ/0hX9FrBaHf8B5647VZ4fJ+S/OlJJXNdizXa9IOZXf/v70KNUk+IstJ1K27baMnEc68/ejx0tjHW+WUU06xkHKElnOxgbYRGsjtM2XKlPDmm2+aF0k+1yxp/a222souRzi1JBGFcHZHHHGE9QuB5uWXX7Z7GTp0aNigYI7tueeeJnIdd9xxgRBwhNPr2rWrCRLZRJTjjz/e8v1w7ddffz0QSo4QdG3atLE+EZJv3rx54ayzzrLz5CgiTB28svWrbt261sagQYPCq6++Gv773/+G4cOH54PWypID6bDDDrP7594IMUdeHzykyFeUzbL1c++997bwfx07djS2MGR+4H2WybbeeutCIewoSz4iPn369LFttH7fvn0DdWQiIAIiIALZCUgkys5IJURABERABERABERABERABERABERABMqQAKGrhlwzPDTcpVG47NKLw9EtDw5nnXFaqFngkTLm3klhjYKQXdiAQVeFnRvvGnp07RxO7tQuLPnxxzBi5G2BnEZYhQrplkEqBEJmDRk2wgSoNq0OCXzwzji31yVWt3pBOCzCzo0edUsYfHk/O5bUXvezz7ewWce3Pzqccny7cHir1v8rW8G20T9J9ZeeX1o26ZrR+vH9G265o9Ah8hARbo4tn6h1Pv2M6NdS32/fvr21SX6eaHg2vjdv3jwQPqxx48YmGGy77bapPFHZwqEVpz4d8ZBq5Cjq1q1buOqqq0L37t0T75scOXiuINCQ1+b9998PkydPtnw51apVCw8++GAghxICRcuWLc1zZ8yYMYltRQ/27NnTQtEhYOy+++7mNXTnnXcGhBOM3EDjx48PTz75pJ0ntxN1ENywTP1CnLnpppssJBtCFt5Z1Hfz+/fvmbb0ib74vZEPaNq0aQWCa7XEat62j12mftIGAuH3BV5+sIUhzxlhCbPZo48+WqgIeYgIM8eWT9QuuWTpcxs9pn0REAEREIFkAhUK3Gv/DVaaXEZHRUAEREAEREAEREAEREAEREAEREAERGC5EEBQmPnmu2mvReg1vHzw2FlnnXUSyxEei3Jrr7124vlsB5cs+dFyw6y55lpFitI2i+LRPCxFChUcINTdOgWL3x42LKlMrsdyvaa3d+vI68PI66/1r4W2eBvFxaRCBSJfdt2xruXZiRwqtMtYpQvbVqhgwpcfCwQ8GKYbw4QqhQ6VtD7zg3HMND6UIYfOeuutV+ja/oUwaQiYURHMz2XaEmbuu+++M++gdOUWL15s102aZ5n6hUccdcnH4+JNumtkO87Yco8IUMWxTP2kPdrGPFSefcnhz8CBAy3kX1LRZs2ahbiYlFSOYyWZv+na1HEREAERWBEJSCRaEUdNfRYBERABERABERABERABERABERCBlZTAOutUDs/OeN0W31fSW1wut0VIPMLufV8gRsx69ZWw/wEHWt6iXEPMscDfZPedCzxmli7kJ3WaxX0EiXxFkqS2dEwE8iHwwQcfmHfTokWLAp5OeKbh/ZVriDkEMMQvF6ryubbKioAIiMDKRqDiynZDuh8REAEREAEREAEREAEREAEREAEREIEVlwC5T+a/907YbvsGK+5NlIOeIwYd065jsXvCGDAWmYw8OOSsadSoUaZiOicCpU4AMYhcScU15q3ncSpuG6onAiIgAisLgXTBeFeW+9N9iIAIiIAIiIAIiIAIiIAIiIAIiIAIrEAEDm9xeJg+9ZEVqMcrZ1cZA8Yikx166KFhwoQJmYronAiUSwLMW+avTAREQAREoCBvn3ISlc00IP4sVtL4sGXTe11VBERABERABERABERABERABERABJYNgQULFoR69eqH28eOlzfRskGctdV5c+eEkzoeG9555+1Qq1attOUZq/r161u4L3kTpcWkE+WMwKxZs0KTJk3C229nnt/lrNvqjgiIgAgsMwKl6klEHM/XX389/PDDD8usw2Xd8NNPPx0uu+yy8MADDxS7K7/99lvYeeedQ4MGDSwBIoLRgAEDrF1i+SYZiQe5Lp/vC5JfZjOSWs6dO9cSIWYrm+08/Xv33XfDt99+W6Qox0ePHl3keNIB4sSSmDGTffHFF+HXX3/NVCR1jrK33nqrJSNNHSzYYf5xPKm/0XK57HPvn3/+ecY+/fzzz4G+yERABERABERABERABERABERABEpOAFHiuutGhEsuODsgVsiWLwGYw54xyCQQ0SvOjxgxInTo0CGw8C4TgfJOgHnKfGXeZpvf5f1e1D8REAERKC0CpSISkSCuWbNmlvBt9913D9WrVw977LFHmD17dmn1s9y08+KLL4bLL788PPJI8V3flyxZEubNmxfee+89E3z+/vtvE4loN53ARhnOZyoDpIULF4bjjz8+bLLJJiZEbbzxxqFx48bh5ZdfTjGk7ySVjH74BcXtt9+eKsPOL7/8Es466yz7RxNBa9NNNw0NGzYMMHCbMWNGOPvss/1r4hZhrV69eqFGjRqB/tDGa6+9liqLEMM/zhtuuGGoXbt2WG+99UKrVq1MnEkVSth58MEHw8CBA4skM/3mm29Ct27dstZPaDJ1iD7dcMMNNpe33HJL69ORRx4Zvvrqq1SZDz/8MBx88MFhgw02sH5vvvnmYdSoUanz2hEBERABERABERABERABERABESgegZNPPjlcfNFF5s0yfNhQE4v++OOP4jWmWlkJwBZxCNZ4EMGeMcjFKHfBBReYZ8ZFBfVYhC+IWpNLVZURgeVCgPnIvGR+sv7FfM11fi+XDuoiIiACIlDGBCqW9PrPPPNMaN68uTWz4447hl133TW89NJLJgKwj4iA14zsXwKIIQgMCBEIL3gJlYbh8XLggQeGKlWqhPvvv988lT7++OMwceJE+0fwueeeC4h4bozN+uuvb949U6ZMCV26dDHhqGPHjiYQHXPMMSYI3XXXXSb6IW6NHDky7LvvvuZKjhCYzT777DPr0xVXXBFOOeUU8/rp1atXaNmyZfjoo49CxYoVw6RJk8K5554b/vvf/4b999/fhBj6cuyxx9p10l3jqaeeCgcccEC60yU6DjMEssmTJ4d99tnHBKf27dvbsbvvvtvGrkWLFmHbbbcN8+fPN4EU8a1Tp04mqjEOMhEQAREQAREQAREQAREQAREQgeITYBGX/7e64cYbw8C+l9j/e/35p4Si4hNNX7NixUqhTp06loMoW4i5pFZ8rG4sGCv+35+oIxL1kkjpWFkQqFSpUqhbt67lIFKIubIYAV1TBESgvBMosUjUvXt3u0e8LMaNG2c5dvB6YQH9scceC9dee23KQwUPlOHDh4dp06aZZ8lhhx0WLrzwQhMKEJvwSNluu+1M0LjmmmtM7Dj11FND586drQwXYoGeD20hSh1++OEmMKy22moh2sbee+8dhg4dav9RgvfNTjvtFM4888yCeLrvBM7bLUbVAABAAElEQVTddNNN5tlCm4QKI9wbQgneNfxH6KWXXmpeL5xPMg//hvcNHjIIK2eccYYVpS1EGticeOKJdox7wHuGPiGu4CmDPf7442Hddde1/eifL7/80kLL0Sfap81sRl+oh5cSHjtY1apVTaRD4IF7VCTaaqutTCSi3C677BLGjx8fHn74YbuXF154wcrjJeZiEOLWoEGD7Br0y49TnzHBq4dQeMwFxo9/hAmth8jUtm3bVP4l5sbYsWMDfcILB7GI/iIcYYhc7Pfv3z8wlxjbuCGwTZ06NQwbNix+KvX91VdftTF/8803i4w5jAjdBxP+Q7hv3742/2CAqFmzZk2bDy5C8R8T/NoEYQ3jVyh4gvHrky222MKOtWnTxkSiTz75xL7rjwiIgAiIgAiIgAiIgAiIgAiIQMkIEA5qUMGPDvnIyjcBxoofiPKRiYAIiIAIiIAIrDgESiQS/fjjjyZIcLuIKhUqVLA7Z1H/vvvuC+SgQSjAWKjHAwXDw4iFdBbpCY9GqDHaogyfe++918rxp0ePHhaebM8997TcN4gtGAIHQgYfQoBdeeWVads47bTTTIQgfBrXefTRR8M555wT7rnnHhM1DjnkELsPvEKwm2++ObzyyivhiSeeCJUrV7Zj8T/RPDx4y8ycOdPEHkK9kbiR+4iGJsPbhGPk5EFgYh9L8iIinxAeKYRpw2j/0EMPtf1Mf3CdxavLBaJoWUSbTEYeoE8//TQcffTRVoz+IV5FhSCvHw9LB1PEQOYAOamuvvrqsPXWW5vowpYPYg/CCiId/8GIaIRAhLVu3doEpt69ewe8deCHmMa4JQlE1OFXSVx3r7324muiMcZDhgwxMQqRrWvXribeMQZcEzEK0ZJxgjftMUcw5hvGWCB0MRaIXbSHrbnmmiYKci+EmSO832233WbnED9lIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIlDeCRR10cijx3Pm/JtAEm8MDA8NvE0QDcaMGWNCDMevu+46NuY5hLCDlwciBB49ixcvtnP+h3Ms5BPmC8O7BcPbA8N7BLEBsQfjWniwRA33UXLTuJcOuWMQrRCAMDxkMNqmz4gNb7zxhn24Ll4/hDPLZLRBDiG8iDBCsZWG0XcXiAjF9vPPP4fzzjsva9PkHcK7yg0PKTx2/EPotKgR3g1BDndwvKcQSVzgQCSKthWtl7SPgEJ4OMYeloxx1MjVw1ggECKo+DhQBhGJMUUYwqMJL6vNNtssEJYundE+Ytg222yTroiJVYiKhI3r2bOnjTkeSLAl3B/eXowdHmzpRDQ8wfDGQlSinIuUXLRPnz4mNCHgNWrUKFx//fXhzjvvTHmope2YToiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIhAOSBQIk+iqJcHi+8YgouLOXxHGGBxnTxF2ODBgy0sHPuIEhjeJ25487g4gbBDHh28jvD2wKMGI6wX1qxZM2ufdhB43AhZh/CAsXiPKOBhwzw/knuM4H2DITp4biUXODhHOLskw/vIvWwIM4cQgzcRniclNQQwjPvw6xO67qqrrsrYNPmF/L4o+MEHH6SEFvjhfeVh7jh//vnns0mNA6HXEHGwatWqpcbMDmT5Qzg2N0LawSJqXJeQfzBFlCJ0G95azCGEKsQX8hLBlZB5hCFEmJk+fXrKGy3aHqEFGX/3Xoue830fa74zD5gnxESePXu2scAV3m2//fbz3UJbQt6dfvrpJhgiZCEKImYh3CGs4YGFRxqh+BCdTjjhBAvh52Jbocb0RQREQAREQAREQAREQAREQAREQAREQAREQAREQAREQATKEYESiUSIDm543hCiC6GFRXgW91n0JxQXxuI6Rh33OsLTBbGAsF8sumPsu6299tq+ayG//At5g9wow+J/VBxZa621/HRqu/rqq9t+VNjiwE8//ZQq4/36+uuvQ+PGja2vqZOxHcKNuUX3CavmFhWMCLWWqxHeDIveh4fty9QGQk1ULCP3EiHkMEK3EaItaohICEsTJkwwj5qKFf+dDg0bNjQPLUSQaD+o7/fl5d1by9tO6iteP3wQkPAWYtyff/552xKeDo8evJDcGAvmE0JSUkg55hcCTibz/lEmOu7rrbeeeZlF6/r8jB5jH08lPniXMdcuuugiC6uHeIm3Fd50LpAhNH388cfmNSeRKE5S30VABERABERABERABERABERABERABERABERABERABMobgRKFm2PR3z1PWDwnRBwL8LVr1w5Tp061e8WDA0MUwAj9deutt9qHHC5HHXVUxpBhVqngD14fLkZ4GDi8ljzvD6JGccz7f8QRR6T6RT6ldu3apfLSJLVLviJELoyQcBiePwhYnsdoxowZdhwu7h1kB7L8qV+/vpVAeOMeMbxUslnLli0D3kBRzyzqcP1HHnnEvGmS2mAM6Dtj6B5hzpNQflFDINphhx0sH0/0eLr9G264IeARFjUX4/AYwpYsWZJi5uVcIIyKf37u/ffft3H3vEF+PNctIhXCYpSph0P0Nsgt1a9fP/9q23r16tkWQQnxDPOxti8Ff1y09O/aioAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiEB5JfCv60gxe4gXyL777mvh2vC4IAQbnkQu3iA8YHiKjBs3znLDvPXWW5YfiJw4CD/z58/P6eqEdSNcHblvjj766FReIbw2Nt1005zaiBdCwKAPDzzwgLWJGIWwgT3++ONpBSxEhgYNGpinlAs57du3t3qEVcMQZvBI+vbbb1Mh3exElj/bb799IOzee++9FxBrCL+H10o269Spk+XhIbQeId0Q6GB72WWX2Xgg0CUZXlZXXHFFOPLIIy1HU4sWLeyaF1xwgeXdQTgi7B3eXnj7kM8H76NcDA8crktOpZNPPjngUeUeQPvvv781gSA3YMCAgAhDCLeFCxeGc845x8YlyYuI0IWMmYtpufQjWgbBskOHDqFt27bmIcT1ol5HlEWAIo9RzZo1LVQhIQ/xjENU5BhzHqPvQ4YMsbxFDz74YEBgJBydTAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQATKO4ESeRJxcyymk/MHUQPh5LHHHjNBAs+UJ598MhWKCzHmjjvusHI333xzQCBC/MDjqGrVqjlxwrMDsQEPJurjZcIi/d133521vueu8a1XIBweYhDiFov8CES0T1/d+8nLRrfkReK8C0SEc/McPwgQnksIcQdGnr8ofv1om75PeDfuz+vQRtSjJ10bhHnzXD3HHXdcQGwiFxAh9Z599tmwxRZb+CVsG20HoQ0BpFevXilvIngjlOBlg9jl94snlwthhRqMfPHwfpTD04r7IUcQ4eYIc4fQU716dauBkEgOIq5HeYQiRKAXX3zRPHMizdou93jQQQcVCiEXL8P36P1Fw81xfOTIkdYvxubMM88MEydOLNREly5drD/0jbnM/GWLmIgxZ1999VUTvQgzh5iHWIQA1qNHj0Jt6YsIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIlEcCFQo8O/4prY4tWrQoLFiwINSoUSNssskmaZv95ptvzHNjgw02SFsm2wlCvSHmuBiRrXwu5wl7hrcM7eZq1CEnUVIenu+//97y92y44Ya5NlekHMIbIczini5FCsYOcB94/HAvG220Uexsfl/xJCLEG6EE82ETvwoeVYwXeZCSjOsQgo554eHmksqR1wovp65duyadznrss88+M+ELjzSEKwzPKwSxzz//PCVecdz7VK1aNRtnjsUN1oSgK643W7w9fRcBERABERABERABERABERABERABERABERCBVYHAX3/9Varru+WF2cp6X+WFr/pRugRKVSQq3a6pNREoSgARkrCGM2fOzOrNVLT20iN///13aNasmYXwa9q0qQlD5H9CJLryyivTVdNxERABERABERABERABERABERCBMiDAj0TJtUsEk3x/QFkG3dUlVxACRJAhtDyh94l0k874wevHH38cttxyy5wj4aRrqyyOf/TRR/YDWH5wGzciA/EhOgq5uld0I/IN0WfIRU3e7nTGj33fffdd+yE0KQVWNOOHykTpqVu3blhnnXVWtO4X6i/RoU488cRA1Cm2K4uRaoU1R9KlcG8yESjvBEocbq6836D6t/IRIPTeDjvsUOwbI/QcYRF5SZO36ZhjjgnTpk2TQFRsoqooAiIgAiIgAiIgAiIgAiIgAqVPYPjw4fb/frVr17ZFbBZDu3fvbqHnc73ajBkzLHIEYeZl6Qnce++9YY011kj8kCagvBi/zCcSCB8WyktiY8eODZdffnmYO3duYjMcJ/Q+UUNIB0DEHLaIC27kVoYbIfajdtVVV9nxbt26pSLMUI58zFG75ZZbUswXL14cPVWi/T/++MPSCSAMISTQT9ItkCaBXNFuhPmHATm1VwZ7/vnn7X6mTJmSeDswJp84EWxIh4DwB5fo/ZOSgLGK5/V++eWX7biLbSz+U44UBFFj3nCcz6OPPho9VeJ93mNcj/QN9J/7IH3Ep59+WuK282mgNN+r/vwhquRqpXn9XK9JOSIT8e4ZPXp01mr8yJ3oUMwbmQisCAQqrgidVB9FwAnUqlWr2GHmvA22/PqMf9D5yERABERABERABERABERABERABMoXgSuuuMLyxNIrctLya38W4m+66SaLCkEO5Gge2nS95weBl112WTjppJPCAQcckK7YKn+cUOtuLDpHzfMJR4+V1f6ff/5pUUC4/qGHHmph8ZdFX/A08fD0zD/Eoeeee85yb5PbmFD1pB5wwYU81QhKiA6Y82TL+gN5rW+//fbw0EMPhT59+lgZ/rg4ccghh5SalxJ9OuGEE1LClXsIkWOZH93iWYRAhoixqlmnTp3sR8LknD7qqKNSLFq3bh0QHhhzos9g5Czff//9Ux5WftyZsZ5EbvMXXngh4G1GmgJs+vTpXqSIgJQ6UYwdBCLmPIanFPMNLzB+BI0n2Jw5cyz9RzGazrtKab5X+xXkJ+f5yOfH4KV5/Xxu/r333rP3z2abbRaOP/74jFV5pl9//fVAWZkIrAgE5Em0IoyS+igCIiACIiACIiACIiACIiACIiACqwgBwsuxcIjhTcTCOpEgCBOOsSjLgi5GuDAW6/h1P/mADz744IB3BHbJJZeEYcOG2f59991ni6rz58+375TBo4A6e+21l3kfIEC48etv8tjiZUA4MjxtWJSN/tCQfuJ1wOIm5RCi3nzzTW8idOjQweogDiC8cK3JkyfbMUSH3377zcriEUPbfN55551U/bLYYfH8/vvvL/ShX+5Vw76PA7+o5zscycnMPh+8J2AKky5dutiv7/1e8HDp37+/iS7wgBHh5KN266232jhyHk6MIWILuZLxnnA7/PDDw0UXXWRfs7XL2OLFw2I6XjWIjZns2WeftdPrrruuCQEIO9wXYhCiEX2JGh4DCBD0I8kQJDDYMW8whKiHH37Y9lkkxxAd8BTh3plXeLOQCzsfw/PLPZsQUydMmGAfBAUMsciv6+3ioYWYynPE2F1//fV+yjyhhg4damOLsMSYjBgxIiWEURDPCp/jbMePH5+q/5///MfqDhkyxJ4R5gXnfb6QTxujD02aNLHj7n2RqV3q3HPPPZZOgDZh9euvv3I40ZijiAvYXXfdFfr27WvCHf3juY6PKeVOPvlky73OftxcsOE4nN14X2G8l9Zaay17dniH0Ec+RLMhVFy+1qNHD6tCX+GDiMWzs+uuu5rHCmHbMJ/rjCPzCAGMMXcjHB/sjzvuOHsOeB74PnLkSKtLOTyu8ILjHG2QssG9MdO9V6PtksqBucQzx7M7atQom1fMH+Z1r169Uu8/3iOnnHKKzSmu7fMFbzzuGWatWrVKeWWluz51o+bvX+ZaixYt7D7Y8vzx3uC+4u+CTO8Rnine8RgeRTDj2Yq++/zfiQMPPDDg1cY74fTTT091i7CVvEO4rs+F6Lwrjec/dTHtiECeBORJlCcwFRcBERABERABERABERABERABERABEVh2BGbPnm2Ns0CPyOC2xRZbmMjy5ZdfWh4OftnPYhyLzCxI4vHCYi0fFvHcy4P6LOKzgEwdhJx9993XmmWBFaGJBfKFCxfaQiVhgljopg7GgrovqvsiNDmSWHCkLfq59tprm3cGIhACFrl0EXw4H72HBg0apISkV155Jeyzzz7moUK5jTfe2PIu2UXL6A8LzD/99FOhq1euXDlsv/32AQGJRVAEExbZe/fubYyuvvpqW+DnHjAWdN0QyBCYWGBmgbhr164mKMCMNhHvEDVYUK1fv74tfHuYL8YUUYUPi7csjjt/2kdkcaEtW7uDBg0qFOqNsIWZjNByGHOAhWoW1Hfaaadw3XXXpa3Gwj0CGOHb4obwwz3THixoz4UoyiJ4cZ8uQrZt2zYwPxACWISGY6726quvWlE8iPbee+9UNTygaJ/F7lmzZpn46Sej4bN4dhAf6C9CB4IaY838bNeunT0L5557rp0nhwx1O3fubE0hTODZwgdPP+6DRXnmhs8PCnoeHY7xvDLWb7zxRio0F6yztQtHPKbcYJXJqlSpkhoDwu6dffbZJnghhvBJMsaLhX7uJ25Vq1a1cePdQHg72PJecDEOYZB5i/BFO4iLCH4INojUeHTlmmMNIRkvFoyxcOO9g7jDeLrHCqKEjydc8Vbjw7PGs0lffDx4nt2Y54iozBPGE8GCXF28s9hHFMNbKd17Nald+s01XCjhfcvcQvjl3gcOHBh4n9MftljSfEGg5cOzkO76fh++9fcv4+fPHiLhbrvtFr766is7xr8dvAuYt9xrpvcIImZUBOZdxPuS4z63ea4x2nIe3p9vvvnG5gDXpD8Yc+GJJ54wgZLjpfH8+/W0FYF8CciTKF9iKi8CIiACIiACIiACIiACIiACIiACIrDMCBCiB2PBMh5SjhA+LEyzCMeCIZ48LNyTz+Ltt9+2xWbqItTwa3YWgjF+AU4Z8rP4Qv+FF15oXkksqrNox2I4v6CfNGmSLfCx6IpgxEJn8+bNrR0WBTEWhVkYpAy/BGfBF+GJhcH4gj6eFywAImpsvfXWqYVA9z7wbceOHQM5dMvSWIhm8Tv64Z4weGIstNJXjiMiIIBEjQV3FsPdawPxhDHlV/QsXsOaxWZEEhea7rzzTmuCMIMY3gUs8npuGb4jvLmASBm4XXPNNTm1i3cCxpgzDngAZDLmly/YMi9Y6F9//fXN88nnZ7S+eybhceMeF9HzhKZzbyEXHD0sGXMar4aXXnrJqhDi7I477jDhjPtGCM3H3MuO5ydu3BfmZaLnGQ/mOmOLIT5gTz31lG1dfOA7/SJXGIZHDsZ9cc7HDM+hqDHuiIG//PKLCQ54emDOwa/DnEL8yNYuHmcYzx3h3hAjffHdTsT+rL766iYGc5i5g2CCGIiXDN5zcWNuIoziuejzMl4GryCMdwZigQtE9IN2582bZ88JZcaMGWOCAF41iIn5eIjxvLjxHEQNQY13IvMEwdsFIoQoniEPbzh48OBoNdvn3YewhViN+dxEFMIQgBEVOc6Y4xWU7r1qFf73h/nL/cGNvEm0A0c+cMAQfTIZAtfXX39tz7eXg28u1/fybPHcWbRoUfD7RyCCJ3mcuAaGyJbt/YTg6X3nvc+/J3hRRo13H2KQP8vRcwh1/DvANbkW/YA771GEcq9T0uc/ek3ti0A+BMr2vz7y6anKioAIiIAIiIAIiIAIiIAIiIAIiIAIrPQE3Msg6jWSdNMIGSy8s+jMAjb7LMJhcW+YaH1fjGPREIGDsHIuhCAAuBDBIjaLyISMOvXUU6NNBPfWIIwUi6D8Kt4XDD1Ulldg4ZBFRfcaYLER88V0z0vjIcm8Xllt8aKKfrzfNWrUsJw29AvPChbC8dCJG/eL1xBsEcgwFvBdXIE1rDjvXjcsaONBwMIpBleMPFLMg2hIJjsR+ZNLuz6+iIrcD142vkAcaSq1i6DAYjveF4hFLj7wnZB38f7gBcUiOoZ3CzmL4ubjy6I7HlBsMZ8PeDhgCBjMuzPOOCNUqlTJwoXZiRz/ILBgSc+PH/NnzJtEqGKsmOtcF8PjA1EUgQzD244wWYiszGfGj/HC88jPc6xfv372HREVQc6N++QeYcsYOA/ERK7j3jo8x7m0y8I+xpjiJVSnTp2UwOXXjG+5N8Qw3hc+/uSaom8+Hl4Hji4KME+TxD8POcf8oj8ufDB/YYmg43MHTyy8D/FY5PnivZGr+ZhSPurNEq+PNxq27bbbWjg09n1+MZ68K90og2jIXCBMJ4bIhOHZhuH9hJcNAh5jx/hnM+YG707eAcxf2uZaeM1w3L1tsolkMEKY5b2DcIL5XMvWh+h5vze8mDD6x48FYIrAhsEl23vECmb5c84551ieNO47bj5fCf/HfOU5YE7xTPqzQZ2SPv/x6+q7CORKoGKuBVVOBERABERABERABERABERABERABERABJY1AZLHYyxqsoDGYqvb2LFjbSET8YDFQ8qyQMsiJOHLcjG8JTAWiVlYxhAoWAxn8c6vF13g9sV1F0z8nJelDRZFsbhAxUJn1HzRkvtjURfvHRaQXSSIll3e+56TKN11fWGd8yyy4iETt+gx54Mo4swo79wpSwhAhBf30uJ8dJE1m3dVtnY9JB3t+hix731jP8noA94mfPASYaHcRQEEjbhHB/lrEPzwwojm9PG2WehGMGC+4k3iC94shmMsYuNVgwcPwgneKXwI7efeNt5Wpi0s6UNcrKSOH4vPteiYRfcZG8JxMYcRTPDkQIjFWw5PH0J5ubHw7p5/iDw8T1H2iLpRYy55+DGEGxce4YSQ4pauXQ87Fp0r0b57/fgWMczFS7xB8FxC0HJBMFoeEQUvGMLrIZLFjXtCUMHTBoHIPXBcACNUI15b5HBCJOEe+eBhg3DqYQ3j7ca/81y64QVDSDg32CF0wcmfId5jblE+UYEpWiYqQlEPzz7EQPL58J7igwcPHi8u2Hj78S3vsqiRQ8i9EPHI9GcgWiZpP9qnuKiZVD7dMcSYXCzbeySXNlwQTCqbNF95XvyZKa3nP+naOiYCuRBYLZdCKiMCIiACIiACIiACIiACIiACIiACIiACy4MAOTDcCPlEiCOMhUrCxrE4zWI/i60suPNLdxZ7SWLPr8STjBBAbu4ZQe4bQlbxue2228yzgYX/XXbZxYqy0I8wwAKye7z4IixJyzEWTf2Yh1fzBWgrkPCHBU8P6UX4M4zF9mxiSEJTy/UQi6g9e/a0ayLKIQQ4l2hH3CMDMcHDb+Fp41xZRB4+fLhxZzGakIAIMSRy90VWr8dCOmG78PaKG6EBsWztksvKjYV6jIV2QoGlM7yCCAGHRwgCEQvNTZs2TeWM8n5G67PYi8ATXyT3MsxZ9+rwvDIIRNWqVbMihEukDbyzCLPFfMZg4fdqB7L8cQGIeh56jCqIPHgpYPE5Sl4UhFIMYQpDmKDPeN4h6JBbhhCPHsKR/FuwdRbMDZ4l2F177bXm2ZfNW8afg0svvdSuCR+EnlzadTHZQwfyLqBP6QxBljHlXghPh+2www4mULK/3nrrsSlieB/hUZPOfEwJacgzAQ/mLAZTxMATC8LB8Tzgpch5+ureiOnajR5H0HRPGAQr9wjienhF8U4kp4+HGOReCaeG+ZjzzKa7x+i1eM7xquE96e14Dre4WBl9r0bbiO572ELelYiozI3Sslyun+u1sr1Hou3wQwN/70ePZ9r39mHodS+++GKbKwiMpfX8Z+qDzolAJgISiTLR0TkREAEREAEREAEREAEREAEREAEREIHlSoBf53teH8SEWrVq2UIaYhDGgiULxHgSYeS5IOQUv1J37ww7UfCnUaNGtssv/PHgIZySL0yzqE09Qp+xqItQwyJ9u3btLAwTFVkcRhBicTxqtMViLwIS4gGL/ePGjbMivmgcLR/f91wmvoBLCKLyYAgnLKJHP88884x1DW8AFrpbtmyZyunDwriHafL+I3zBzENTIdwxDixSM4YsbOON0KtXL/OI4N4RKWDfuXNna4aQbYSmgj9eEi70ICD4YiveGnh5ZGsX8Q1xESNsIH3zeWEHE/5wXRby8RCh7CmnnGJzDq8vLJ03xUYbbZSauwnNpkKs0TbmeYrYZy4wh8lTglDkghb3F/fCoXw6Yy4T8g+DJ0IIHzydMM7hiRc1+oM4i8jgwp+HT2SM6Rch6RBO8VzB9t57b9viaYTxDJx//vn2LCH6DRs2LOUlYQUS/hD2D3MPpyiPbO36M4R3Ife35ZZbpsJNJlzK7g2RhHdENI8PAjFGKLgkY/7ccsstKTEsXgYumI+ph5rjGCIG7PDuuuCCCwJ99XLZ5iD1o3bzzTdbHxDL8eziHYSQ556IhEX0Z4F6iDww6tq1qzUTD5kZbTu6jyDKPTBHEGcRcl1Q5T4w73v0vRptI7rv7wHeCz169EjNw2iZfPfzuX6ubTu7dO8n2vEfMDCGzH8PL5jLNXin8G8Gwhv/ZvCMXHXVVfZ+47krrec/l76ojAgkEZBIlERFx0RABERABERABERABERABERABERABMqMAEIOAhELdyzaIRRgLPa7twCLryQlx1hAxWsh7iFBMndfiGYRjsU9FlfvKEisTtvUw/OFsFL80p3FeEJEsfh3ww03mDjAYreHD/Nwc3i90B7XY9EWryYWbCdOnFgoFJR1LuEPC7AsGGLlIdQcAo0bi+jRD14L7777bhg4cKAVIVQWof26dOli330x3+sTWuujjz6yrwg68OVeWXzGSwWRiYVSuHIdhAU+GG0j3GGE/2LsCQfWv39/O8YfvE4QnqiLN0Yu7V5zzTWpPEcIe8wjxBgseu92oOAPHmX84p/rsEBOyDcW45kziJIuUEbD13ld5px7XMXbRuD0cae8h5pjnz7hpcM9c7+IjswvOORrHiKN/tNvPuzTPgvTcUOcQVRwMYDnyscEkYh+MmZ4PjDfEVL79OljzTAe5513nu3jJYLgwxi7F5N7yMVZUIHnyMVfuLB47patXUREPLKox/1F56Rf09tiyzG8qxh3GN999932nfp4QNFnL2c7kT+MN++MJOOd4XU5HxW6eK/QNteA45AhQ2wceE9suummSc2lPYZAwfPjvPx9xv3g7UV70WeB5wOhkfcLnkZ4TuZiCLF4/PA+oz7h4ngHMCddSEt6r6ZrmznB3GP+IJL5s5GuvI9d0nzxY/lc36/jdaPPbPRaUXbp3k/Vq1e3nFuMJ2UWLFhQ6P3h1/BrRre1a9e2f1d4J/IM8W8MXPBAZX6V5vMfva72RSBXAhUKYiIu9dvOtYbKiYAIiIAIiIAIiIAIiIAIiIAIiIAIiMByIkDIJjx5yGPjIk300uQLInxPNMdG9Dz7hKzj44uCfp5f+tNmNCwWnjMebszzkCBcsFhP2CiEpaiRg4h8E7l6exC+DO8bzysyePDgQMLzFdkI3+WL3uSTwWMDQS7KNXp/5EaBPZ43SWPKWBE+K9152vIwcPm0y1whz04+OU4QFD7//PPAIm+uYxztU7779A+GeIvk08901/n4449t7uNpk82WLFli4d6ieWy8DvmFCIPHOGcaM8Y8mk/G6xd363MhXbvMA/odz/2V6XqU/+CDDwKL/jVr1sxUtNTOMY/gWhpziGcLIRYxM90c4Z3IM+bPZXFuhPcu4edoI0kASfdeTboWIRN5LyDGlJblc/18rpnt/URbSe+fXK/B+HENDzUZrVfaz3+0be2LQCYCEoky0dE5ERABERABERABERABERABERABERCBVYoAC6OEVSK0WtT4Rf5DDz1kYceix/PdJwSYe1nwa/3nn38+o8CVb/tlUT4uEpXGQnhZ3IeuKQIiIAIiIAKrIoGKq+JNozQTY5UtbtFJ//GSS5lVkV1J7hmm/NIB4xcsSb9C4By/dsCVnV9zpPvVEeX4JQ+/TkkaP85jtMOvfXCXTTKSzfE/AMS4TmelcZ10bWc6Tr/45RS/DEn6lU6mun6OX3zQjrvC+3HfMib8eoZfnqQr42W1FQEREAEREAEREAEREAEREIFVgQAeCYQSmjBhQpgzZ479+p9QVoSpw7OlpEYuC/5ft27duuG4445L6wlQ0uvkUz8aggmvqHy/R70V+P/LfOur/Bqp4UrHn+O5mFhmZ+kc07Fenuf9WtqKgAiIQFkSKHFOIhKQ8Q9Q/OMxMsvy5tJdG9e9AQMGmFCESJBkuZRJqlfWx3w8+HUThkt8fGyIIUqc33T37vdA7Nt4Xb7fdNNNVoS4pHxHiIkbcWWJ3+zGr6Rw46V/fNi/5557/LRtcacm1vAmm2xiv8ziV1oklPQEhl74nXfeCfvtt58JTZQlEd93333np21L8jyuQ8xWxCb6iiDiRjgA/mOcfiDCMF/jyTZL6zrOiW3UiGNMckUYRvv/6aefWgI7/ueD+LXcIzGc3XAVTxqXfv36eRFLxsr/wPA/HohkjAfxdqM2fvx4E8f45RplSG5J2+ksXX+9PO7afj/xsfUy2oqACIiACIiACIiACIiACIjAikAAoeOEE04IV155pf3/M///WBoCEfdO7gnywpD3JV2oqOXNiMVy/3Bt32eb73d+pFmS+vleb1UpbwORwx+xL725vDzmVg5DqiIiIAIisMwJlFgk8v9gYDGbRHb+4ZcxsuVPwMfDBRHELoxkaIwNSRZJioagcMghh4RFixZl7CT/8Uriwujn2GOPLVQHMYJYmumMxIC40/MfwQhBfEh4yX9wP/vss1YNbx1ECoSZ+++/38rMmDEjHH744ZY8kX0Mr5ijjjrK/uMcQYOEk4hUxIX2e0XsOfroo619rkXcaP7DnsSNbiTYxKV/1qxZlmgOQQnxjBixWGlch34gUpHAFMHLx4T2SRaJ0LXVVlvxNXWOuKQkVSVG6+zZs008GjRoUGjfvn145ZVXrCz3hM2dO7fQuPTo0cOOw+HQQw8NG264oXkJEYMWgQpGb731lpV54oknQqdOnew4c4AwCpRnjuB9FLd0/Y2WwysvnxjA0braFwEREAEREAEREAEREAEREAEREAEREAEREAEREAERWP4ESiwSeZcRHVjc9w+L8th//vMf8wZBIGARG4+GVq1ahUcffdSr2mL3kUceaec4j2cIIbDcECD69+8f8GxhIbtDhw5h5syZftq+43GCZwQL/ZRhS3LLiy66yL4jArgHTKpiwc4bb7wRDjzwQLs2gkiSV0y0fHQfzwyve9ZZZ4Vhw4bZvQ4ZMiRVDA8aFt59AZ4+uuXChrKZ2vC2sm3btGljY4NI4IILDBmXTOaeNnjb+CcaAg7xCY8kPJPSmYsbiBKEhuNz+umnm3hCfez222+30Gp4ADVp0sTK7LzzzoEkoXhDIWxhzz33XHjvvffCiBEjLDwa4wrHRx55JOUFgxcLouWFF15o7ey///6hT58+Vo42iJV877332ndEHDx1GDsEounTp1OkVK7D3EKMos9+n9Z4wR/EsFdffdXuzY+xffLJJ034IhFq/fr17Vdl/LoMYYh7wkgUSXskbfUxYesJ73755RcTf6699lqb1yQGbN26tdVdsGCBbeG8yy67hK5du4Z1113X2hs6dKixnTp1qpWJ/knXXy8zZsyYMHbs2CLeYX5eWxEQAREQAREQAREQAREQAREQAREQAREQAREQAREQgfJHoNRyErEwTQgvN8JhVapUyYQavD34uCEQ8cFbg1wriAJ4UBx00EGBkFUPPPBAePHFF8NHBflrOM9CNkIJi9nEAcYzhIVsPEFYSGcBm/YRIShDW4gKu+22my38cwxPCTwdCCtGG26IJ24sciOg8FlrrbX8cOIWUQLPDLdoaDXuB6PPeNBgXBePEj7k4mnbtm1WNuTbydaGNZ7nH8QXRD0+8VBuSU1FPWA4H80lRB6bG2+80YQ/BLOkMIN+DG+YCy64IDRq1Mg8ZZo2bZq6HB49zZs3N4+b1MH/7VxzzTWpQwhEeOVE4x03bNjQziMs4pnDfEA0XG21fzVQrokIxBx1AXKnnXZKtYvwhQgzf/58O1Ya18FTKp0xf7DPPvusUBFEyl133dXmNp5P9PmAAw4wsdNzLyEYwb13795h0qRJds+w7dixo7VVuXJlE075gsCKWHrppZdaOffw47niWYuae4PFk7NSJl1/Obd48eLQs2fPMHjwYAtbxzGZCIiACIiACIiACIiACIiACIiACIiACIiACIiACIhA+Sfw7yp6CftKfF73EmGLB0jUWLzHAyKa84QwZIQxQ9TB8EYgDNaoUaPMc4hFbMq7QETCSMKTsThOnTvvvDN6CYvnS+gsFqsxFtipQ44XD+uFGBG1du3amScM+VYwxAEPgRYtF9+/5ZZb7FDLli1tsR3hAfEC87Bnffv2te8PP/xweOqpp8KUKVPse9TTiAPp2HAu1zYom48hFGF4uXh/k+rjEUY84ejHQ5Z5ecLWnXLKKSZSIPzFDZHouuuus7FFpIAT4hmJQN0Qq9xThmMIG4h2/pk8ebIVff/9982DxuuxdQ8azmHMqVq1atm+/yEvEYbw6CIIQkvUtvx/9s4DTIri6cMlOeecBckIgggGFEE/MYCoGFAURQUDqIiCiooJUYyYUYLCXxEREUHMIEkFJOecJecc9Zu3j1pm53bv9u5WglQ9z96knu6ed3bndvvXVVWmjBOY2BePdvx1x7qOSISHFzwRTfEi4n0DY8QYbN26da4M4egQPrl+vOD43PgNDghGeBzxWUPoQTDF6tev797reHAhAhJiTnMmwT4lRuhARDs8vsyMgBEwAkbACBgBI2AEjIARMAJGwAgYASNgBIyAETACRuDkIRA3TyJCV/kH3cl94zdCrpGvhBfhvwirhRcFXjfq/YN4gDcJnhOElMO7g8FtDFEIbwlMBR28jfxGbhwMTwyMkFwVKlRw63iNIA7g8eQ3BrbxGuIc+shAOrle8IpJyjSEGoP5eE1pmLz33nvPnYZApV4iCGYMpB8+fNgdw+vJn/clGptY6khtkkvlAHO/x03wmsmPwzX6rVSpUv5Nt47whXdYhw4dpE+fPomOI3bg6YUISEg3PK8Q/xDkCCPI+0L7xMmIbo899pirBw4IaYQppJyKitqIesBwDCO0X7CMerkRek2FEvb5PcYQJQk9h8WjHVdRCv+ol9bAgQND70FCxVWuXNlxwwONEHuEXySUIkboPrzO8Dy68847Qy0ievFZ4X2P2FanTh2Xg6l06dIu1xPnEQ7v0Ucfdbz4DNCOMghVlMQKguHbb78tCKF8DsyMgBEwAkbACBgBI2AEjIARMAJGwAgYASNgBIyAETACRuDkIRA3kQjvHrxqohmD2Gp+YQNPB8K7kWOGMHMako0cN4g1fjEFjwgMrxa8Xxj09lv69On9mzGt+0UC6sX279+f7Ln0O1h23759bh+ii66zA6FKB/8RPBDG/G1EYxNLHX6WrvEY/6jARki+pIy+48WSnCG+fPLJJ07YQPSKZFznVVdd5V4IQIgV5A9CJKIdcvio4XGEBxiGwKS5ongP4A3kN/V8KVu2rNuNiOL3WGOn5uLBo0jFqDVr1jhBSeuiDb3WeLSj9aZkibCDIaSqkW8I0XX69OkuTGGzZs30UGgJV7yCEMdUBIM3wg8vjuNdhVjUuXNn934kZ1Hr1q1dyEG4IM5yblDgDTUSYaVr167OM2zlypVh4iCf4xw5ciT5TIhQne0yAkbACBgBI2AEjIARMAJGwAgYASNgBIyAETACRsAIGIFjSCBuIlFq+8wAPx435Pfp0aOHzJ8/XxAIGOyeMmWK4KGE4fGCxwKiCOG2CBuHx0habciQIYKXEf1gYBurVq1astUibOChQWg7RAlECPWgQcDC20Y9pMjXQht4vIwcOdLVjZdUchaPOoJtILqR0wmWWL169YJFUr1NCDOuVT2+tCI8VfDaIXeRGl5neK2oITDi2YIQoqHwOLZt2zbn3YUHDYaYxHuD8H0XX3yx24e4iCGmYOSpeuWVV1x4Ns3jwzXzXkJIRJzCOE9D3BH6jvch9xKLRzuuohT+0f6QG4nrwGBHGEQVSdu3b+/283lR03CHvOcI3deyZUvHSL37+NwgQKmghoce4uwjjzwSYqAc/fdF64+2RPwk9xhikd+GDh3qBN6khGN/eVs3AkbACBgBI2AEjIARMAJGwAgoAYtSoCRsaQSMgBEwAkbACJzIBA4cOHAidy/mvsVNJELkwZtErVatWvLVV1/pZtTlpk2bXIg5CjD4jTePhgqjjoIFCwo5bQibhXcFwsCgQYPcgD4htxBr0mJ4LH399dfOa0W9MM4777xkqyR/CyG2EBdU1EDIwlNIjXwx1I9nDcLJhAkT3AA+16EeK1o22jIedVA3XiMIJRoCj314lzz44IOsRjXEB8LD+Q0RgfB6kYx7Qv4gzftDGTy+yFmFYIEXDJ5W5J8iZw58MELRES4NbxbEJO49Qgmh+mCqwgj3hlw9iBuErCNPz7PPPisdO3YM5SbCOwaRCMEKrxlCGw4fPtz1i7Z4jyFq4P1Wo0YNF5aQsryXNGRhPNqhrZTaFVdc4cSzFi1aCHmv8HTTXEENGzZ01cGTz1vVqlXdPUQw7dSpk9x///3uOGIYnyvKvPDCCy5sIx5bhDlU3uQxol74Ic6RBwmmhJ9DIEPQJOQi713qjmYDBgxIdIgfdOSgCoqFiQraDiNgBIyAETACRsAIGAEjYASMQAQC/5UBlwiXZruMgBEwAkbACBgBI3DCEUizSKQzfBBYVNzhKtWDQfPdaLg1PwH24TnRu3dvefjhh50nEcfJJUT4uSJFirjiiDh33323G+hHlMEQBXhFMm1L+0aZaP1ATGAgnb7TFzxsChQoEMofFKl+9uFxgnCF9wWhthB+8IIhN4+GvevSpYvw5ZbcO4g0GJ4ViBtYtD5xTK8huToo6ze9Zj1f26CMCkSILHgQIRDhBZKUIfQFxT7uDWICpteqdeCxwvUSUk/thhtukPXr1zsRQj1O8HihHoQqjH6MHTvWCRYISmoIUuQt0jxIXBcCBAKItkHeJBVSOA8BBPGC68ODi7YQhPzCHO+32bNnO9GKcwjJhieYXk+82qFujHr1niTsCf+rxygHb0Sic8891xVCfCSXU5kjoegQX5YsWSJt27Z1LwqRw4v3MsZ7gHCCMFJPMero27dvSATjvc42OYxee+01d961114rL730kltHJEKk05B/bqfvj/bXt8tWjYARMAJGwAgYASNgBIyAETACRsAIGAEjYASMgBEwAkbgJCNwmidi/HOi9BmPEcQCDREW7BcD13hI4F2UIUOa9a1Q9YcPH3YiUSwh4PSknj17CiG78HjB24cQeHih4EFDbhgG+dX++ecfd5z6/fmH9Hgsy3jUEUs7/2YZwvCRKwiBAdHHL2D52yUkHhwRNrjX0YzQaXjaRHu/cB5iCrl4VDwL1rVjxw537xEmo1k82olWd1L7CWHIfVeBLFiWvFZ4ehE+L1puKlgigBYuXDh4uts+dOiQY4RnmObZ0oJ8LlQ00322NAJGwAgYASNgBIyAETACRsAIGAEjYASMgBEwAkbACBiB/w6BE0okOpmw/vnnny53UrDPhCwj3FpSwkXwHNs2AkbACBgBI2AEjIARMAJGwAgYASNgBIyAETACRsAIGAEjYASMwLEmYCJRGogTvm3o0KGyaNEiyZ8/v1SrVk0aN26cbAi3NDRppxoBI2AEjIARMAJGwAgYASNgBIyAETACRsAIGAEjYASMgBEwAkYgLgRMJIoLRqvECBgBI2AEjIARMAJGwAgYASNgBIyAETACRsAIGAEjYASMgBEwAicXgXQnV3ett0bACBgBI2AEjIARMAJGwAgYASNgBIyAETACRsAIGAEjYASMgBEwAvEgYCJRPChaHUbACBgBI2AEjIARMAJGwAgYASNgBIyAETACRsAIGAEjYASMgBE4yQiYSHSS3TDrrhEwAkbACBgBI2AEjIARMAJGwAgYASNgBIyAETACRsAIGAEjYATiQcBEonhQtDqMgBEwAkbACBgBI2AEjIARMAJGwAgYASNgBIyAETACJzmBffv2yZw5c2TPnj1pupJ41ZOmTtjJRsAIxETARKKYMFkhI2AEjIARMAJGwAgYASNgBIyAETACRsAIGAEjYASMwLEnUKJECcmUKVPE16RJk+LSoUOHDsmjjz4quXLlkpo1a0qePHnkscceE/ZHsr///lv69+8v+fPnl7p164aKpLSe0Im2YgSMwHEjkOG4tWwNGwEjYASMgBEwAkbACBgBI2AEjIARMAJGwAgYASNgBIxAkgTGjx8vhw8fDpVBiLnuuuskS5YsUr169dD+tKy8/fbbMnDgQEF0qlatmowbN04aNWokVapUkdtvvz2s6q1bt0qzZs1kxowZUrFixbC+paSesEptwwgYgeNGwDyJjht6a9gIGAEjYASMgBEwAkbACBgBI2AEjIARMAJGwAgYASOQNIEyZcpIuXLlQq/hw4fLokWL5NNPP3VCUdJnx3Y0a9as8uqrr8pZZ50lGTJkkAYNGsiZZ54p06ZNS1TB+vXrBe+mBQsWuHL+Aimpx3+erRsBI3D8CJgn0fFjby0bASNgBIyAETACRsAIGAEjYASMgBEwAkbACBgBI2AEYiYwdepU6dy5s7z77rtSuXLliOd99dVX8sorr0Q8ds4557hzgwfvu+++sF0rVqyQWbNmycMPPxy2n41KlSq5UHOJDng7UlJPpPNtnxEwAseegIlEx565tXiEAG6y6dOnPyY8li5dKj/99JMMHTpULrzwQhcv9bLLLpOyZcsek/atESNgBIyAETACRsAIGAEjYASMgBEwAkbACBgBI5AWArt27ZKbb75ZmjRpIq1bt45a1emnn+7C0UUqUKpUqUi7w/bt37/fhZhDhLrpppvCjqVkI171pKRNK2sEjEDKCZzSIhHxO5csWSKnnXaac9dMiWCBmt6vXz+XzK19+/YpJ3+Kn9GuXTv5/PPPZeTIkc6N9d/Ecfnll8uoUaNCTfjXn3nmGXnyySdDx47Hyp4Dh2XV5r1SMn9WyZYpdaLZocP/yKote6VMgWze+znyVezad0h2eq+iebJELuDtXbZxjxTPm0UyZYgciTIe7fzzj8iGHfslT/aMkjlKO7v3H5Z12/ZJCY9JtDIc9y7b9TfqBSVzIDkmsfTV38Thv/+Rjd61FcyVWdKni3IjfCcw+2fVqlXStGlT394TY3XhwoVSunRpyZw5c4o7tHbtWsmbN2+aXN737Nkj27dvl6JFi0Ztn3Yoh9t9LM/vzZs3u3Ik3zQzAkbACBgBI2AEjIARMAJGwAgYASNwshHo2LGj7N69W3r27OnGM6P1v1atWsIrNfaPNxhy7733Oi+iP//8UzJmzJiaaiRe9aSqcTvJCBiBFBGIPBKcgipITpYpUyY5++yzE52FkMIxXpEG4jlHj69bty7s/EGDBoXq3bdvX9gxPYfBVQzBQfcFlzt37gw7lw3EoRdeeEGyZcvmYmuSjI14mS+99FJYorVEJ/p2rF69Wrp27SpvvfWWb2/aVv/66y/54IMPorprUnssZdLWi2NzNoPj3Bu9h7G0SuI8+CAsxWq8H1QUql+/vvB6+umn3ZI6nnvuOffeibW+MfM3S5XHRiV6ndNljKti595D7tgzX81PVOXXk9e6Y3oAoaRNn+lS++kxcm2PSW7Z9pOZsnnXAVfk0QFzErXjbxshBXv/l2Vy3nNj5arXJkjDl36TEdPXu/36Z68nQlFXnWfGyiUv/S43vjNZ5q0J/1yMmrtJGnX/w9VxwfPj5I3vl3j/zLWGhGVa26G+z35f7fVjjDTo9pvUfHK0cL1bjlwvrWzfc1Du+3iGwLPJGxNdmc//+CusI3P+2un62tC7lv97+Xe3vmDtrrAyuvH4F3Mj3o/kmMTSV22DJfU9O2S+nPnEr949+N0tuw1bKPsO/u0vlmj9tddekxEjRiTa/91337n3JUJq0O666y654YYb3O5t27a5ctdee22wmNtGQNFnYsQCEXYS15jnOs/FYsWKuWc3X+zU+DLK85x6/c91yrzzzjvOSw9xKVeuXHL11VfLmjVr9NSw5SeffOLqYHaT35YtW+YSYyLkUA8xjvv27esvIjNnzpQaNWq448xqOuOMM2Ts2LFhZfwbY8aMcdeE4FSoUCF3bqSYyv5zbN0IGAEjYASMgBEwAkbACBgBI2AEjMCJRIDoOH369HGT1gsWLPivdY2xss8++0wYm0hLBJ541fOvXahVbASMQIhAmkWiAwcSBrSJUTl9+vRQxazwQFHzDzKyb+7cuU6R1uPffPONrrqllqfep556KuyYbmiZv/9OGIgtXry4XHnllWGvSLPLe/To4USinDlzyiOPPCIPPfSQsI5XyUcffaTVH/MlCefoC/2IZrGUiXbuibT/hx9+cInvcI+N1QgXBx8ExFjsxRdfDBVDGPr555/dS9dZquFtlBL78sFz5IdO54VeQx6qE3b6l5PWyMg5G8P2BTce8YQbvIiGd6grU7vWl6/b15GNOw/II5/NcUUfa1I+VP/tF5aUfDkyhbZpO2umdDJo4hp59+dl8tot1WTicxfJnReVko6fz5Gpy7eFmnt68HyZ4m0PfbiOjHu6npQtlE1a95kREmcQjNr1mynX1i4qE569SN69vbr0Hr1C+o5dEaojHu38NGuDvPjNQnmjRTWZ/EJ9GfHoubLG8wbq6u1Ta+v1Y/OugzLsCBP68sLQBYLAhiG63PHhVLnszEKuDvpbuXgOuav3dMGLx29D/lzr7gHeVUFLjkksffXXiaiGgMj7gnv5edva8t2MDfLRr8v9xcLWeW79+OOPctFFF4Xt92/cfvvtgtjuN33e+fchNC1fvty/y60PHjzYLcuXL5/oWKQdPMObNWvmXMpJQsn5JK18/fXXXXGOIx798ssvTmzRZzAHv/76a/c8RfzZsmWLzJ8/X/bu3RvRLZ3neps2beT8888P6wb1NW7c2In2ixcvFjx/aJsZTHx+MequXbu21K1bV1auXCkbNmyQe+65Ry699FKZN29eWH1sIKz/3//9n3PD55oQ+JlNxbOHCQNmRsAIGAEjYASMgBEwAkbACBgBI2AETnQC/LZl0ij5gS655JJku8tkS500Glxec801Uc/v3bu3dOvWTZhAyu/u1Fq86klt+3aeETACKSOQZpHI3xzh19QYyHz22Wd1M9GSBGrYVVdd5ZaRZsy7A96ft99+O+Jsez2uy+uvv97lnEFZ1xfeQkEbMmSI24UnEN5DDIIyGMrg6KZNm0LF//jjDxfnM3/+/G4wk/JJDSoS+uj+++8XZsYzEx8PJwYw1fCIYuY9D1nqZOASsQSDR6tWrdw6D368rL788ku3rX+ilWEGPeVvvfVWdy20j6cUNn78eCea0R4z8olbSj8x/3kffvih6zP14LKq18mSRHfq9UXf8RbwDw7z4G/UqJG7Jo6/+eaboeO33HKLO/fjjz8O9WPr1q2OTcuWLYUZ/oSUon5e8GDgmL4y8AsLDG7Ui3GvKMsgcjQjBxEzFtRUEKI9ZcM+PIswvI04J1Yr5YVB878IFee3KsVzCl4seAtFMgSNKcu2ySVVC0q5wtklS8b0UrFoDnmn5ZnSukFp58VTMGemUBt5s2eSjOlPC23Tdjovrtznf6yWlvVKSv1K+SVnlgxym7d+9ul5ZMgRUQXPnO9mrJcnr64gFYrkkPye0MQ63jvjF25xXft22nrXdpuGnvdH1gxSt1xeaft/p8vHYxM89SgUj3YK5c4sfe4+Sy6smN+F1Tu9YDap7fV19ZYET8FNnkA2dfl27oC8FAAAQABJREFU1/YZR5g0rFJAePX6NUEo2bhzv1zjiVl3X1zK1UF/m9Yq6q5ny+6DIdRLvbB5Tw2eJy/eUNmJYqED3kosTJLrq78+1ld64QLhVtW779zLGqVySY2SuWS1tz+aEc4Nb7rzzjsvWhEnhvBc0M9j1ILeAcSZoL333ntuV+7cuYOHIm7zHD7zzDPl8ccfd+HiGjRo4DzvENaxGTNmuM8lzxVEeb8hUuGlg/iSI0cON9uIdSYE+IUtnoM8q3lW8sz1G5MOEMLxjCJGMuI9ZTEEIYzPMNa9e3cpUqSI4HFEf7FIIj/xj//3v/85AYsQePQRIYpnM7GczYyAETACRsAIGAEjYASMgBEwAkbACJzIBMjpfeedd7oukmdbJ0HrkgmRQWNCKpP3I72ipc3Ac4jf6owFpEuXLtTOxIkTXfWMSxLVQ8cVg23qdnL1aDlbGgEjcOIQiGtOIgYkEV2yZMmSZOgfBIZPP/3UUXj++eeF+Ja///67mwlPbolIhqBAiKHgwKS/7MGDB11cTt3HA40wckHTHBeIHwye8uDkAchLjZnuKiAwa50BSvrKgxeRJGgIHXijMJNdZ+0zYMm1IUDQD7wCmG2PcR0MdvL69ddfXZg7+q/GQGpwYJh/CpHKMNBMf3mpl82OHTucB0LDhg1dlTVr1nSiCg90xBAe8JHOo/CDDz7oHvoMXiMe4cnFwGrz5s2dWIf3FYO3d9xxh7z//vui/1wQpwjhxIt+durUSRYsWOD6heCjxnXofvrANn3HCE+lhrDEADPh5dRjjWOcAx//wLOeo0u8jvzGrAnupw4wq2jkL8M5eCzEZJ7Tii8CV6I8QA9cVlZ6jlwmeKx80Kq6E3T89ZKv5vzy+VyouNxZM0rDqgUkT7aMUtgTUnjFYn97HSDMWivPe8hv1T1xQj2JyFOEVSyWI1QkpyesIEit2LTH7Vu6YbdULZEzrI+IXAhJhFHLnDFdXNqpWTpBqEAgO3Dob5m01PNumrJWOl6V4OWiOXw45jdC4WFcb8l8WZ3I5T8+bsFmx6yAJ4CpdfO8kxCj8DgaNjU8lGUsTJLrq7ajy2bnFJX2n852QhEC0WRPAPx13iZ5/47qWiTRkmcen6ty5colOqY7+AwgmiKQEnc4mrVo0cI9lxBLeP5ikydPdp9FjvF5i8UohwDLs1MNrxsEFcLM8QyLZsxEwnuP5wViNKEkecbiMeSvjxCd1MUkAsQbv5H/qG3btm7WEkJx4cKFnSs9ZfASxTJkSPi35X8mqGhNjrmg4RrPi+cF53CNzIq68cYbncAULG/bRsAIGAEjYASMgBEwAkbACBgBI2AETiQCRNRg7BC77rrrEnXtiy++cJMt/QcIy84rJdarVy9XnLa0PXYwLsoYBmOijHsS2t5v5Hr3W3L1+MvauhEwAicGgaMjgWnsz6OPPupq+P77791SB/8QFII2ZcoUIe8EQgmz1tXNEQEjaJdddplzp0QYQJQICif+8ggWzBTXVzT3S+0rXirUyQAinj/kB9H63333XVc1g648COkzwgiiCZ4wQSPcEw9KBnSZbc+rXr16bpB29OjR7npVICIfD9ev+TxQ9RmwVOEMLnPmzHEDrf52YimDNwGz4xkEZUmoJjySEIUQ2TBEHP7B+I3rI78JfcY0Twp9xxBP+vfvL2yTF4hcIRjtYOxj8FXvP9t+w8OIa+YfSYECBfyHwtaZsUC/VeSh34S4wtsLl1oMzwr4VKhQIexc/wZhqoKGQIRQpGGrVKTTcnifxWp1nx0rVR8fFXp1+Gx22KkZPBGo241VBAFj4IQEb6iwAt7GyzdV8TxPcjmPl/OfG+fyEpGzZ39AJAmep9sbdxxwq4VyhYtKRTyRafH63e7YqiOeLMEyxfNmkWWetw22dMMeKZo7QVhwO7w/hY/UiZdPvNrRuh8bOFfO9vIwkXsIgevGusXcobzZMzrxitxH6hU0ccnRz9o2n6eQ1jXaE2Lg+3jj8iGh7pfZG+X3RVvkyaaR3x+xMNH6o/VVj+sSj7Bm53j5e76cJ41fn+jlJ1ogN51b3AlVWia4xJMPb8KkjGcBzyKeFTw3ohlehDwj/WE7+VLG87NKlSrRTku0n2dYyZIlw/aTlwjDUygp4zmKmIUwhCiN4Ev/H3vssdBphHpDoOXzjAdQJOM4nkhXXHGFCwvH5AO8VFXcr1MnIbQj5RB9EJk1HF4wNJ+/flzteYbz5RbxKZLXkb+8rRsBI2AEjIARMAJGwAicGASYsMT3VP+EyROjZ6deLxgLIay0jptEIoCHAZM6zf7bBOw+H9v7S/4hfv9Ge0XLU5zSXjJuGakNxkUxxuwY1wtOdiXyknobUS65eihjZgSMwIlFIG4iEQIGxsx3xAZEIgbkIw3kqxjEMUIuqeCACBHJGFDES4VBfUIMRTMGJP05iS644IKIRfGQQdDo0qWLG8ykEAJG586dRQWkCRMmuHNffvllufjii11eDQZhsWDuJfbpAC4PTnJj8CIkkx5DNMIQxcjpgZF7iC9PKki5nWn4w/UT3g2vmYwZM0rVqlUFN1TEIcQwZuirkStEDc8n+kVoPsLGYRraifMxvKgQ0ugr7cCELwUaTk//ISHMcU3BGf38I+E89QJwlUb4Qzn6T/0ISxjeRCm1cePGRTwFgUg9ioID9HqtEU8M7HzTy6vz4Z01Qi9CxAWNcGpPXVNBug5dGBJt/GUKeOHkPrmnpsvN8/Q1FQVPGnL2PBIQnPzn+NezZU7vNvH28Rt5jnJ4oecwXQbL7N5/2IWWo0xuz4OJbb9p+RxZ0ku82tH6H2xUVv53by1p50LarZRXvj0aNvC1m6t64ef2Sr3nx0m9F8ZLq4+mydW1irhT6affyKV0/yczndDUqHohd4icRS8OWyj3XlLGhebzl9f1WJho2aT6qmVYklfpqz/XuPvNtT3miVZfeOLVWz9GD2FIXp9Y3nN45fD5uu222xLN1tE+5MqVy3kA6rMEkZRnccyecUcqIiylPue0brx+MNpIyvBivPvuu11YNz5n/A/g+cAkAP1BzzMWIR2vxEjGl00+lzxDCH2HWMwzAQ8m3NUxBB4EdQRxxCS8sfBgJXRpUODyt4FoxTOZ8KVMEIB9Ut6I/nNt3QgYASNgBIyAETACRuDYE5g0aZL7TYuHOeGNsmfP7iZPMYBp9u8QIBoAvz34Ta7fv2lp48aNbqyF7+LVq1d338nxXFDDs5+IK/yeYHyH3w58/16zZo0rwqQv6oz08v92Z0JopDLsS0qY0n7Y8iiBaPeS30CMvXGvdMzl6FkJa7Nnzw7dBx0b4khy9zlYj23/NwkkN67337xqu6qThQBjWpqChsheZrETSBhJjr181JJ8WeDLBGqx5q/gHzz5IPzGP3adwY3rogomlGF2EIJAcOY7A4F42zC46M8z46+XdXJXICjFYohOhEXihdjBkkFNXsyGJ1wbRjl1z6QcA4v0J/jFVAdSOUfL80WK0E3UoYOkhFPymz8Mk39/atYZLPUb3kAq3vDP3z+AquGZKM/1qAXD8z3wwAMuJB+Dsoh0iGkMPiNwEQJQDVFKLdI1xZoTxc9Hw2YF30PaTlJLBqYjPQw0H5Eu/XXwJSlWO79CPpcDKLnyzT1vkp9nbZSOn8/xPGbCc7jouYhJvG4+r7i88f0S6T16hctlFPT+0fK6JAdRPi/E2trt4bO01mzdJ5W8cHJYCS88G7Z++34Xzs5teH+We6HmLvLyGGFlC2WTNduOiobsW7stoU76gHgVj3aoF9NcTuROIn/Pa98tlnaXne5yDJGfadQTF7hwbVs9z6GzT88t4xdskTl/7XT9SKhBhGts3WeGIA51uKKc7nbh67hW2Hw5KeEHyQrPm2qzFzpv0MQ1nrdP0ZiYaIVJ9VXL7Nx7yAlCXa+vLNd59WNcG9b920VODMuUIZ3b1j+IqAgoPNNiMX5wVa5cOZR7J9I5JLBEAEHExkuJ54GGwIxUPtI+hOCgNw4/LjD1KIp0Hvvw5iG0HYKNGs9CRHnCbvJDceDAgU5IwqsHQ1TnWYvXEyIPgjahJ/lRohMMEIzpEwKYhpxjUgLseCbx7EGcJqxdpUqVtOlES3jwwhMJTyee5b/99ltMQl2iymyHETACRsAIGAEjYASMwL9KgO+IRLngOx6Tq/AIZ5Y63wMRi5h8ZBZfAgMGDHCTS/U7t792fmvgwc/3ciK34O3PJDbGO/jOzzgQUWSYEEwYf37rEHL+pptuEkQgxiU0aonWO3z4cBeinogEakzSZWzGb0QQYNJt+vQJkyT9x2w9MoFo9xJPMPLCwpPfftzToDHAyn3j95Z6j2iZ5O6zlrPlyUkAMVaNMc9/e1vbsqURMAInBoHwkcs09knzVWgIMn9+Ga2aQTmdqd6uXTuXZ8Ofa0O9jLS8LgkRFGlgX4/HukSsYSYSggADqRhhjPD8wRjIJJamzvAn307v3r3dq0+fPi72Z9CtkvPoH9a0adNQ+cGDB7sZ8wyS4qmDkScEsQlj5j05g4LeUXwhTm6WTCxlCDOH8aWKL2a4f6oF44Xq/uASjypELvpK3iUN+TZs2DDHkS/rGIO1GCIf18SXitSY3n/EKK0zOPC7aVNCjpqk6ifMViQj/1Q0i3ZOtPKx7E/nvZe63lDZ5fR5YejRvDCEemvyxkTBG8Zv5LNJiSEGfT9jQ+iUfQcPy0gvh88ZhRNEIsLKYSPnbAyVmesJLggpZQtld/tY/rZwi+zwxA61H2ZuEPISaZ6geLTTyRPK3v5pqTbhlohjGEILuYoINbfUY9OgSgEnuCByDfY8dKoUS3ifUZZ+3t17uhPCCNmnfeTY4cP/uPxE/cevcnVR3xIv9N6MlTvkg5HLXBuxMEmur7SlpuEBs2QKf5xmPbJ90OtT0HgO8tnhi3kshriBONuzZ08nmEc6BxEJLzlCYvKjjdxiKZ3hw2eNH+H+kJo8xxBVkvtRRphIfrD7TUVnPBcR0vEmJCQlzyJeeArx/4D/Gfzg1LAUkerR/xuEveNc+oMoxUAB9fMjE+/JoBGGVD0k9ZgK+evWrdNdtjQCRsAIGAEjYASMgBE4gQgwgRRjjIHf60xsZGIQvxH53cZEQryLGAz3G2KE/u7lOL/lGZdQr4k//vgjVJyxAX4rU44xArziCY+sltT5lNXcvFqesMuNGzd2m0y2ROxA5KJtBtwJ00aIe9riFRzfwLuD39KUZyDf72HD93siDPiN9snzieEdwmQtvg9zPpMmyUWcEmNiF2MIeP34DSGB3y1w5V4wmfOOO+5wRTSkPd/R+c3SpEkTd68QflhnfIC+Mc7COIq+GGNggi6RD/iNoMbkYy3Dkt8T/B4hskmsYxha16m8jHYvySfDe4/IOv6c3H5WjPlwj4PjVJRJ7j7767H1k4+AP8wcvf+3t08+QtZjI/DfJhA+qpnGayVMkIoGeBH5PVS0ahUu8Pp54403XKJzkp1rDhs8VvxeLnoeS2amBGef+I+TEJ0vG/6X38OHssw6Z2YMA44IQ4gZvFTgol8Yg4/YQw89JIhZfCHjCxuzZSJ9OWEQkmsnJwhf6PjCxpdKvpzhYs2seBWS+IJIfeQRIfwRg7uYelXRN0Ll/fDDD26//08sZbQ8//wxBo35R+/P0RSNsZ6rS7zC4IRHAl9M9Ysq/YMDX44x+BHqji/sXFOpUqW0ihQtyQHFbCQdPOcLY61atVwdumQwGN5+t+dgI3wp5X75jQF0XvwQYOk3PKP8M5j8xyKtT1i81QkriCu8/LlzguURJV70hCK/lSmQTQ54odE6efl5OJ8Qa+O9/EWEXqvoCT/JeRFpXfdferpMWbZNeo1e4XIMvfjNItnvCUW31Uu493iwPOx52rz78zIZ5YlHeOQgViFG1fO8obCbjuQE6urtX7phtwz4Y7Ur+5AXFk4tHu2cVSa39By53HndrPS8e2D28vBFUq1ELifsIPYs8gSd9p/OctdEXiXC7y1Yu0vaeqHpMASZtv1mOk8ochlNXrotdB/wPGpxQQn5tfMFYa8GlQvIDXWKuX3wiIVJcn1FyLry1Qnyh5f7iLCBtbxr6zZskRPjEAC/n7FeXh2xWOp73lrZj4QFVJYs+YzwHo70LPGX86/z41afS/79/nVCsyFmI7L6Pf38ZZJab926tTvMc48fsTyX+bwl5cGp9RFCDi9RvJ44lx/wPC95LvLM07xk9E1ffO74jLONmK6fS+pi1hqDA/zY5ochz1WsSJEiTixjNiM/bmDJ/xuEeJ5B/NjH+4jzMP5n4LVKKFF+pOJppc+taD+M3In2xwgYASNgBIyAETACRuC4EdDJP3xvI+yZhkvn9zC/q4lAQRm/SITAQzQNvldifJfk+zHfRYk4wqQmzQvM8Q4dOriB8DvvvFPwYGFgnUmflMOSOh/vdCYjab8oz/dwzZ9JX/g+Skh3viMz4ZLf0IyHMG5xww03OJGIyWMY+7lWfgszMQzj9zvfXzFyCgc9/gmhrBNQCdXMd2vygRKFBU8exhtSYkRU4fqDxuQs+J1zzjmhQxq1gzEPjHEPWCCMkT+YsQyuH5EsUqQRxk2IIKDh/kMVB1Zol/D41G8WO4Fo95JJgYiR0fJE8xuM47y3/V4k2nJK77OeZ0sjYASMwLEigFMFKRAYR9JUMseq7ZO9nQxpvQD/Pw4EGGaC8I88OEDJYCjeMXx5wXSGjbavM70ZLJw2bVrEwVNmxTObHrEAIUUHWP1fOvii5LdIOScQPqiLWUW4y6oxMIpghdGfTz75xG1reDwGIRFccK8OGoLMyJEjhRlDDKpizKThi5F6JeF9o19y8Zhh8JS8SOpxxT9qZgIRtgkGGubJ31akMtHCQNEX/skziIrAwxc2nVWl7Px1R1qHFbO0+GJOnzAGcBFaMDwAGJRlthEfQIx7H8ugsisc+MMAs4YOwHuBQWoVHhEh+dLKF0oGfdWzIFBFaJMvpv73J4PWzNbCm0i9lLSw/8eC7ktq+dD/ZoUdRgj48/lw4clf4Jqzi8pPszbImPmb3W7v4yB929SUxwbO8cKmTQ8VJUzZ67ck9oagfKb0iTVdxIlHriznxJc3vVB1hXNnlm43VgkTmVpdWEoWeUJLO09cwRBlXrqxcsgDh1w/5Fh6wcud1Pj1iU7UQBS6sGL+UL/i0Q6h93bsOeTCy2kOJESUF73+qj3VtII8OmCO3NZzqttV0vMkom+EfcMWrdvtBCTW2386m0XIyBHl73PoQISV5Jgk19fd+w45oWrrnoOu9vdury7PDJkvD/Q/+r5ofFZh6XJtxQiti/uHhSCanAU/pwjr/LOLZjxXee4gkCKmYME6op3L/nz58rkf2nghEWuczx7PDUTioPFj0V/3E0884Z4FPMMQ9DF+kDNbUz2KgnUEt3m2TpkyxT0nEXow+sDzhD5hzGrjGYCgrx6atMMziMEC8hotXrw4NAuU6+A5j9hPOD4MYZ4vC9F+HLlC9scIGAEjYASMgBEwAkbguBFgwuno0aPdZCAVCJiQiOigv5+ZIHTdddc5AYXvsQhEfBfWiUd0nu+Q+r2bEOhM1kRA4fspv+0ZE9CxCyYXMbmTiCMaci3a+fSJ75f8LqUs4ZIZy9CJTbSNmKWh+PHGQbRhjIHvovSb3+ich3jEoD4TrBhLwbhGxj2YRKuRWtyBKH+YCMVkWX6r8xsYsSqYJzjKqSnejTcJ4z688PbBmHDJNTDeoZO1+D2PaBU0WPCbgXB0SU0uZTwERoheyUU1CLZh2yknwHgdY0hMxmOCn47/+GtKyX32n2frRsAIGIFjQYCJF0zCYBye/y+Mw/MsU4eVY9GHk7mN0zz3wcSxkE7mK0pB33Gd5IscA538s4sWmonwZhzLkychz0hyTTDziIFKvqBGMkQV6mQQ1z/I6i/LF6fkvgjFUoY6EVMQ8DTHj7+dWNcRisixRJ8jccIzidBNBQsWjHg8qXaYFaUD2rg/44pOn6Pxpi1efnEwqfoR/qKJVgymR/LYSqq+eB/b5QkOa7ftl2Kex1Ekr5NY2iNU219enh5EFQSlSEY7iDMISdEMD5+ieTJLxgiCFOfEox3v1snGnQk5kvDqiWRbPK8ghJiSR8ShSGXisS85Jkn1FRb+UHf0h32bdh5w3kXBY9pfPOAId4YYoiKHHvs3l4SbUAE7Ujs8i1SI4Tg/Kslj5hdaI50X3KfPAj6/sYpDwTrY5hnKDBB9NgTL0A4sea4RlsJv0Z6NPGt4rsaaI81fp60bASNgBIyAETACRsAIHHsCTPokFxGeK0wgROBhUiWD2YQqxiud3JWIP0z0xLNFRQq+xzLJVL3x+T6MJ8WkSZPcREgGkRYuXChlypQJXRgRLYiSwcTFpM4/66yznHcL4dfoF55IDELxHR8j7B3H8MjAmOhFDs5t27Y57yL20Vbbtm3lvvvuc2GbEZAQvtS4Rjz0OZfJjoRtZhKoGgNhiGOIXUT8wPMIHuxHuGJyZKy/mbVOlng98buexN8qlulxwlIzmYvJXfRHv+8Tnh4RjMliTDBjbABxrnTp0q7/jEeoMWGW+7Vo0SJ3XPcHl/w2YSIuIe2SGxsJnmvbCQSSupdMlCXUOJ8vDE+4Tp06OQ86xrIYWEUsYgKeinkpuc8JPbC/RsAI/FcJbN682Y2tRBojPl7XzOQMJivo5BL6wf8SvHQjTVo4Xv08UdtNsyfRiXphsfSLL30a1iyp8imdbc6sp0ih9rQNviDxhTEpi+VLUCxlaEM9cZJqL7ljzNDX8HWRyjLAnNw1RTov0j6uK5pARHnaiiauRaqPLz98CSX/CQ8xvkDzwGAmWkpCzEWqOx77cmTJIOWLpO2jiCCh3jbR+kQ7vJKy5OqIRzve7QvzdIrUn3zZMwqvf9uSY5JUXyOJQOxLSoTjevCs4TNZpcpRD6p/+zqpnx9qfs/JSG36RSKdFRipXFL74vUsIDQHr2hGO/zojGTRno38iDYzAkbACBgBI2AEjIAROHkIIHIQPo4XockQggjHhoDCZCF+5yFm8NsOrx6NnKFX6Bcn/N8RmQSJ8TvXb9TJpE61aOdzHEEHgYdoGAhEwfBusQo0mo842Be2NWen9se/9EdNQfAiNN3AgQPdxDA8mIjCEc/Z0zDDU4k+Ua8KRPQJ4Q4xjrxIakyM474Rxg/Pf4xrJZoKHmHRvstTjtB63Gc8qfz3jWNm8SfAfUEgQmTViYV4jGHcAz5fDL7Gep/difbHCBiB/yQBxlWZjEDUKsa2eKYTmet4G+kIcNrwC0T0if9N5AOMRSQiihb/n6iDCSinmiU9Ynyq0bDrPS4EGAjWL5NJDQqnpXOIQbjDmxmB402AWVi9evU65j92+GE22gvZYWYEjIARMAJGwAgYASNgBE50Al988YXL3YMniYoRiCbkxWEQR+3GG290OXSJEEG4NQayYzHNeTR58mRp0qSJOwWvc/IQEa44FrviiitcBAwG0cmvo/mNYznXX4brI8IA4ZA1XB1e83gN4cmBUYa+Mpivs7bx8NAJrQza4V1PqGheeDcxaEfOonhM5kSQIjwc+YboF55GfmNgLnv27P5dofvmz9uEFxEeRP57GHbSkY3u3bu7XESE5TP79wnwfiOiC5F2VGhVsRRvOO4tn61Y7/O/32NrwQgYgeNFgJz3+fPnd56x/M/UiRyak+949Sut7RKBihQFiOX+SRhprfdkOt9EopPpbv1H+8psLc1h8h+9RLssIxAiwD9QMyNgBIyAETACRsAIGAEjYASiE+A7Mzl6yBeEhwMDUuSVfeutt8J+O5LPh9BYeBYxmznWiBPUR/g3PIHwFiIcMWHKqUtzCkfvXcIRZlDjTcSsY/IZEao5tcZ1duzY0YXDIyzOgAEDnCikOYqqVavmqiY/EUIS3lMMzp177rluP15WhKVDhKEf5Ciif0ExJ7X9gy19QrxhtjYvDGEOjyE8jAiJR6QWcgkTRr5Dhw6uD8l5EdHn559/3oWBR9AiLCC5ohDfVBBLbb/tvNgI8BlAIPLb1KlT3fsLUVDDzcVyn/112LoRMAL/LQKIx3isElqVSf78v2rVqpXLG328RSL+/xDVi/+Pfm8i8tqRvzs5QywnTyCTLEgRcyqaiUSn4l23azYCRsAIGAEjYASMgBEwAkbACBgBI3CCEmBQmnDhhHBDCFIj18Czzz6rm847nxxCiCmEv0nKVEDSMHD9+vWT1q1by9VXX+1Ow2vn22+/DXnnBOsKns9xPJkQT2INNad1aN26jdcP3kDPPPOMy7tUvnx5oX967YT74trx8uB16aWXuhBgei0INGvWrAkJXIg3DJSlRmTRPmkfWWqep2C4HgQ8+vPEE0+4MH3cG50AijhEqG31BEMMQohA0PIbghKCFzlJMcICcf3mReSnlLr1SPdSa0rqmJYJLmO5z8FzbNsIGIH/DgHyQmM8o9VIpTB27FjdPK5LJpLwXYDws3yPIN0IEyeC/7siddL/3SLS8VNh32kHDhzw0sibGQEjYASMgBEwAkbACBgBI2AEjIARMAJG4MQiQG7Nbdu2uXyy5BUOGrOYCb3GYFBqjJnR3rhIonBpsdSlQhN9jEf+S2Yyc6158+aN2Dz5gHhFy+FLaDeuBc+o42H0Hxb0T8WhWPrhD6MXS3krc3wJpPY+H99eW+tGwAiklQDCf/369d3/Ga0LT5333nvPhSLVfcdz+ddffwlet9u3b3e5wDt37pyi7uA5iycRoTZPNUt3ql2wXa8RMAJGwAgYASNgBIyAETACRsAIGAEjcHIQKFKkiAvDFhSICKmGBw8DVAzqpNYItRXMp5NcXQw+tWvXzoVUYwAqHgIRbeLdEU0g4jih2qMJRBxHmDleAhHt039CxqVEIOK81Hg8cZ7Z8SGQ2vt8fHp7arVKLpU+ffrI6tWrj+mFL1y4UPbv3x9Tm3gNki8tKeP4kiVL5PDhw0kVCx2j7Jdffhna1hU8LLdu3aqbSS4Rq+EWa5tJVpaKgynp686dO50HJpMGUmojRoxwefRSeh7lixcv7k7bvXt36HQmBpQuXTq0fbxXyK9G2FPyBGpI1uPdp5OlfROJTpY7Zf00AkbACBgBI2AEjIARMAJGwAgYASNgBBwBQq2Rg+CXX35xA0LHGgvC0LvvvpsmgepY9zmp9hDh9EU5XVdx7kTYTqr/dswIGAFxwgG51vCQPBY2fPhw9xwmb1qxYsXkySefFDzNIhnhJhs1auSEbkSFEiVKSN++fcOKzpw5U2rUqOFEh8qVK7ucZ8mFMkPcIYcdYoUaedMuvvhiKVOmjBQuXNiFIMNLM5IheNx///0ux07ZsmWdyE1ONTwz1e65556wZ6I+D/1iiZZN6TIlfd2yZYvLt0NePTghiPTs2TNqk3ja0lfeE2qIdAgoGuJT98ey5B5j5O5RIz8R/4vNTn4ClpPo5L+HdgVGwAgYASNgBIyAETACRsAIGAEjYAROKQLVq1cXXsfD8NZ5/vnnj0fT/1qbhKnz24m+7e+rrRsBI5BA4Pfff5dChQoJecn+bcObs1mzZi5PHCIE24hAeEMGc48hHDVu3NjlsiE8KGW+++47J+6QMwbPDwSQ2rVryx133CE//vij85xEACEH24wZMwTRKJLhQYTQQt42DE9PcpqRK2fFihWyY8cOlz+OeocMGSKay03rQtj6/vvvZcKECc5rddasWe66EGA0Tw2eTR07dpQ777xTT3PLbNmyhW2ndCOlfeW6eDbDGgFs5MiRrq/0o2XLlmHNf/LJJzJs2LCw/EEU0Hv20UcfSfv27cPOSW4Dr882bdrIc88957x4uS+DBw+WadOmRT0Vz7ZjaenTpw953OJFpu3fddddx7IbJ2Vb5kl0Ut4267QRMAJGwAgYASNgBIyAETACRsAIGAEjYASMgBEwAqcCAbyDnn76aedBghcOokgwrBy52RBqMDxsEDmqVq3qPD0QblLjPRKN7eeffy5nnnmmPP744070adCggetfjx49Ep2CsLFo0SK59tprpVSpUpIzZ07nzULBlStXuvJjxoxxy+7duwthRgmtSd0YgkY0GzRokNxyyy2hMJfjx493bb3zzjsu/CVeLvQJUQrRKGhLly51Xke1atVy3kR169aVc845R9ivRp4bOJYrVy7sRejFtFhK+oqnFCLgU0895QQwhKEmTZq4F8z8hmiGmNOrVy8nfPmPIZLBi/uXGnvhhRfc+wgPLQSnN99807GJVhcC4bF88b4npxAvRCJtO1r/bP9RAuZJdJSFrRkBI2AEjIARMAJGwAgYASNgBIyAETACRsAIGAEjYAROKAKEQPvwww/l1VdfFcKNsWzatKkgruTIkcMNhpNv5o033nD9fuKJJ1w4t65du7qQY506dZLNmzfLxx9/nOi6vvrqK3nllVcS7WcHggmhNYOGEHH22WeHeeYgtGzYsEEIw+bP9ZY5c2Zp27atdOvWzYWZQ2BQD48rr7zSVa25yfxejAzwY+QcimQc55rhooYYhTcVQpMaodkwhJ+glxUeRs2bNxdErjp16ghCG3V+/fXXerosX75cNFwewhyeT3gWaY6eUMEUrqSkr5H40Bwh/zDyUamX1MMPPyyXX36586gib1/QzjrrLOcNhIiSVB684HlsU3706NEurxRhV7m3SZl6eCVV5kQ69l/zEk4JWxOJUkLLyhoBI2AEjIARMAJGwAgYASNgBIyAETACRsAIGAEjYASOEYGdO3c6IaR3796hsGL16tWTChUqCDl7EFoQHCh33nnnya5du+Stt96STz/91IVao5uIJnjyICIFhQGEE0KZRTI8fyLZvHnznEjkP6Y5axBV8LzxG15Q9PWKK64I7e7Xr5/z9mEHAg1GOUQpwobhpYJF8gBiv+YZ8vcRQemMM87gcMgQMzCOXXLJJaH9rFx99dVC7h6/mIEXDiILhgcXXAmx9swzz0jGjBnlgw8+kJ9//ll+++23UGgzVziFf1LS1wIFCjjPLTx5LrjgAilYsKD8+uuvoRbxnEEc++abb1yuPu5PNCMnFLZx48ZE74Vo5wT3Fy1aNLjLtk9yAiYSneQ30Lr/3yDAbIaffvpJhg4dKhdeeKGbFXLZZZcJSfPMjIARMAJGwAgYASNgBIyAETACRsAIGAEjYAROTQJz5851F37RRReFAJCTBnGH/DSIRH/88YcTCcqXLy+TJk1y5fDWIW8Ntn79erecPXu2G3dyG0f+4AHEKyWGNxPiid/wIMLI5+M3wtzhfbNv3z4X5oxzGf+6/fbbhRxv9B/vIkStW2+9VcinQ0g67KqrrnJCjb8+XccTBiM0nRr1BfuF0INxLGjk5cG7ClGN8HlTpkxxXkKUffHFF2X//v0udNs999zjjnP+9ddf78K4jRo1KqK4hhjHfVFDvJk4caJuhpYp7St8EAfxYKJOvLZatGjh8gMhhO3du9flGercubMLixdqKLCivJRf4LBtnqIETCQ6BW784cOHnQJ/Clxq3C5RXVrTGl80lg4xO4F/LGr+dWYpkETPzAgYASNgBIyAETACRsAIGAEjYASMgBEwAkbg1COAUIEFQ3tlyZIlJKDgpdOwYUNhHAsxBqtcubLzOGG9ZMmSTohBjImHkesn6OGzatUqV7V6FGk79G3WrFmCQIX3E3bxxRe78/Ea0pBzN954o5x//vkuhB4eO3j94NVTqVIlrSpsmSlTJrdNHho1vIjwZPLb2rVr3WZwIjaeSOQ74kXYOQwRBiOcXJcuXVwov2C4PeqB7bRp0yKKRAhd6olEXVmzZmWRyFLSV06mTbyPyGWE5xB9/fHHH2Xq1KlCODpEQfInIdJpOL/Fixc7MQkvNDym8NBS0QzGZkZACZySIhECADE5WT7wwAMRXetiKaMQT+TlgAED3IPO/8BLS3+JdcqLeJ7EPv0vGv98cXPln8zkyZOjPszjce36D4266tev76pkZgj/QOGMOysvf0zWeLQbax2Ef129da8rXiJvVu/LRqxnhpfbte+Q7PReRfNkCT/g21q2cY8Uz5tFMmVI59t7dPXQ4X9k1Za9UqZAtqj9iEc7h//+Rzbu2C8Fc2WW9OkiX/DGnQdk74HDrr+RyvztgVu+aa/ky55R8mRL/T/d5JjE0tejBEX2HTwsO/YekkLetZkZASNgBIyAETACRsAIGAEjYASMgBEwAic+AQ3dxhhVkyZNXIe3bNkihBSrXr2620YsYKIxpuXxwsGDB2OMa82aNWG5etwB70/fvn3l3nvv1c2wJQIOXj9BQ7ghj5E/r83gwYOlZs2aiSaqq2jlz1NEfYgniB0Ywg6eMnfddZfzjmEf+X/IuePPOcR+NQ0jR64lNUQoPInIm4MQhRGCDStXrpxb6h/tV7Zs2XSXW+o2Y3H0i5B0w4YNE4QxjP2wJ/dPJGvWrFmk3Yn2paSv3L+XX37Z3c/GjRu7utjHvYM5xjZeRu+8847b5g+iEQbL2267zd0b9SDCo8vMCCiBNItEfEBI3hW02rVry++//x7cfUJsk8yLGI4Yro3BWJzsj6UM5U50U5fUOXPmxKWruK8isKE+RxKJcGnFNZMHXTDOZ1w6cAwqIXarxu7cvn17zCIRSe3WrVvnZm7oP46kuovbqhoxV3n5jfeovk+ZgfDDDz/4D0dcf+P7JdJ79IpExxpVLyRvtqgmenzEo+fK6QXD/wnWe2G83HdJGWlxfgl3/teT10q3YQtl9/7Dbjt75vTyzLUVpXHNIrJk/W5p8kZiV1ltuE2D0tL+8nJOSHl68Hz5bkaCW3O1ErnkuWYVpXKxBLdhyo+au0m6D1/kBCDauPm8EvKwd65fkHr/l2Xy8diVri+Fc2eWR688Q6466+jsFwSbtLaDgNL928XyxYSEf6D07a76peWhRmUlQ/oEsWjB2l3y6Odz3PVznL680ryqnFP2qGvzN1PWSddvFoS41auQT165uWoisWiP1+fr3/rTE5P2eHVUcVypE0uOSSx9Tagp4S/iWhfvPkxckuCKnS9HJmnvXdf1dYr5i9m6ETACRsAIGAEjYASMgBEwAkbACBgBI3CCEWAwH8HnvvvuczlxNBQaIcdIWcC4LKHH8MLByF+DuIMXTs+ePZ1w0KNHD+nfv78bt1JxRS+TycqfffaZboYtyX0TyVq3bu1EooceekgIb0Z+HAQdxBTsq6++kueff96NZemk6ObNm0v37t3dOCxlEZUQmjByJtFXxpLJRUS+HCZNEwLulltucWWCfxBzCEu3YMGCkDcSOZlI3/DII4/I+++/70SsZ5991nkGcd2UJf/S22+/7cYtYdahQwfBKwvha8aMGfL444+7+qib8U1EIcLNIb7gzcW4KKYiVLBfsW6ntK+M7eIh9L///U+4FnIj4aE1aNAg12Tbtm2Fl98IfQdbyqrNnz/frfL+MTMCSiDNIpF6OPChxXVRjRiYZsefAA9CYmXqLIJ/u0fk1eGfACLSySoS8c+Xf7B4k/EgjdX4Z4HLJ7FTkxOJyEHEPzs1FYjwHsKLSEUj9SgiBB3nBF1j9Xz/Ek+bnnfW8O+SrJnSh23f2Wua/PzY+SHxI+ygtzFp6VZ58st58sL1leT/qiX80xgxfb10GjhXinjeQDVK5ZIfOp3nTsOb5arXJkjHq86QS6omfHnIlTXh0YJwM2X5Nhn6cB3J7wkTr45YLK37zJBh3jZCxbw1O6Vdv5ny4GVl5RZPnGK71UfTJHe2DE6goYFBE9fIuz8vkw9a1ZBaZXLLUE+86ugJNUXzZPa2E8SZeLTz+ndLZPKybfJ1+zpSKn9WmfPXTmnZc6qUyJdFbjq3uGzfc1Cu7TFJrjunqHzcuqZk9jyePv9jtdz+4VQZ3qGulCucXWau3CFPDJorPW49UxpUyS9rtu6T+z6eKS97ItjLN1VxvPTP818vkBxZEj+CY2GSXF+1DZZ4g93jMS9dIKv88vj5HtuMMnrepiMMs8gFnohlZgSMgBEwAkbACBgBI2AEjIARMAJGwAicuAT69esnCDN4tWB169aVb7/91glCjMUhaBCOTI3yd999d8jziPxFlAsKRJQn7BmvlBj1EL3owQcfdN5MtP/UU0+FwqyRA4kJ2OQjKlq0qJtQTn9UWKE842KcjyHS4PHDGCZjzBgCDtcRDLPnDh75g9eO5mBiF+H2CA9H+DgENIxJ7prKYceOHbJo0SJR76MhQ4Y48Y121RCzNMQc9f38889CO2effbYrgrjCvjJlyugpqVqmtK8IfS1btnST02mQe/r5558n8pBKrjN4pCGkRQuDl9z5dvy/SSByXKdUXCtiBO6H+nr11VddLbyB+RC99tpr7oNfokQJ90Dze0Xg7YKyyTFeN9xwgxsQ124QK5EHBw9ABvBRkHlDq7FNG1988YXgckcZlsScfOKJJ9w2g/aR3BNRiHG9pF2EjYULF2q1yS5xXbzppptC9fNgwwsFQ2DA5Y8HGiHFEGkee+wxl/CM4wz+02fiVNIv+sc2qjnugWo8cPWaeJDCFS8nLJY6UIpx1fS7GhKHslGjRq7fMEWhp79Ycv12haL84YFLXRizAbgeYl/qe4DZAjCGNQ9TEtpxDqHrYAQrmKnpeWl57+A6Shv63uFe63sPLyH6yAvVnSXHuYf80+WfCPFJ/ZxR7LmXvIhNqnE8ifuKQIR16tQp9E9PryW45B+z37h+2ual3kP+46wHzwke1+1snjcOIof/VTBnQpxWyuD9Qli2D0Ym9gDUOmat2uFWrzm7qCD48Lr5vOLS755aUtgLVZYxfbpQ/YgPGCHMtE1CrCGq4EH05NUVpEKRHE4kYn3LrgMyfuEWd86309ZLxaI5pE3D0q6NuuXyStv/O93zGlrljvMHIaZlvZJSv1J+yemJKrd562efnkeGeGIRFq92aPuNW6q5/iCq1fbaQHBD6MEmLtnmlp2uKi8FPJ45PSZtGpZx+wZOTPA+IqRe20tPl8vOLOgYlfbOv7hyASceuYJH/uBtNGzqOnnz1mr+3W49FibJ9dVf6cHDfztvpcvOLCTFvHB+eGtd7nmWYWu2JVybv7ytGwEjYASMgBEwAkbACBgBI2AEjIARMAInFgHyzDDuyVga4cLGjRsnZ511lusk65deeqmkS3d0mBdvoy+//NKNcSHY4EHDuGI8jbFF6kUMYgyWcTK1+++/3wlEGuIN4WfixIlunG3lypVOpGHM1t9nxuWYII2IQ36j0d64a7VqicdNtA2WjN3htaTjsexDvOFcciZx7XDQEHLnnHOO6xf5jzDELrgiZhFabu/evc7jCt5qCGiMH1MffSN0m3pHaZnULlPSV/JJEVaQEHJ4A8E+udB2RD3yexGRt54xUMbhzYyAn0Diaez+oylY50PEg0qNQW8SYPGQwPWNlxqD9LwYpCexFsou8SJRMflQoxwT1owPJ8dxp8QlEpW5SpUqToDgQ/Hbb785V0A+FNRPbEXKUBcD6nzwcbdkH54h5B9CiKAONb9SjGsl6jMvFOykjAcb/cWI90j9CDyIIt999537wGk8T0LvIWohoHA9hBmjj8pF3QKpC6EJ0QSXQ64ZlR1DHcblkhfXhFgUSx2EP6Mdlhiulu3bt3fr1EmSNV6IHYgb9CWpfrsTo/xRrzIO0zcEGgStSO8BjpEEDsGK+0P8TBjxwnsHt9hI56XkvcM/GsIJ8kDEuE+aUwk3WGZY6PsSsQ7jnxYPTN3PejTOxAKF20svvRRKCkgdfBZ4JWU6Y8Ffhr7xT4aZF5j2VcsgwOq90X3Rlkc0v9Dh0xKipbntgjkzy/PNKsk9fWd4XiT5nXdOqOCRlZqlEzx0Hv5strS+uLRUKZ7T5efxh1ULnhPcJsQZVrFYjtAhhBVEoRVeiDVs6YbdUrVETknn6yBtISQRQi5zxnRCiLdWF5UK1cFK9ZK5ZKrnoYTFox1EoUurJXhB4RmF2DN0ylonrlxeI0FQ0ZBziC5qynmll38IwyvH75lDXeMWbpaangeUGjmBCEeH5xU5mIKWHJNY+uqvM5Pn8dTighLSc+RyKeIJhPk9gevLSWtcEQQsMyNgBIyAETACRsAIGAEjYASMgBEwAkbg5CDAWCsvvzFWxpheJGN8lte/aSoEBdtgDDRoiDUq2ASPsY13TenSpSMdiriP8UPGehlDRZjyGx5MkSxSv9hXrFixSMVD+6LVFyqQhpVodUfqKyEAo4UBTK4LjC0iIDKGbmYE/ASOSsz+valYZ5Cd3D76IuSY3xAkiCeJ6qrGIDhqM4PwGAnKCKuFNwmeQwhGlFeBaPbs2U4pZxCdc3A59BuxNhl8Z/AeQ0zhHBRe2semTp3qlvoHF0JcDTV/EoowCnxy1qtXL1eE8xGIaAOx45dffhEU8Tx58sjrr78eEna4NowHd9DI4YPHSr169dyhESNGuKUmnENcQgjTc9966y0nsPnriVaHvwzr3bp1c7tQkanz+++/D22zkpJ+uxN9fxCuNGkbHkPEyiR2pxp8EPYQUK644gpBPIMR9wjRjfuHBfmn9r3DfVGBiPvOtrqXBmOt8o+EZHkTJkzQ7kZc8p5jdoHGH6X/eH7x/tH7h9cW15OUBa9Ry+JhhVDEZwOvIr+pm6x/X6T1uV6YtKqPjwp7+fPscM6FFfPLDV4+mkcGzHaCSLAewrqRf+iPRVvkpncny7nPjnXh56g7Vlu1OUE4wcPIbwgjyzaqSOS5HecOF0rwVMJWb9knG3cccOvBOhA7Fnt5kbB4tOMqOvKHaz3/uXHyipefiBB3mj+JEHvYmz8sEYQiBKC+YxOeZ9E8cnr8sNTlL7r3kjLuXP6QXwmh7lZPuIlkSzckzcR/TrS++suw3s7zbsLD7K7e0+WaNyfJZ7+tdnmQ/B5mwXNs2wgYASNgBIyAETACRsAIGAEjYASMgBE4sQkwJoVA1KRJk2PWURWeVHw6FtvRLg5RiQnojGcei35oG/RHrz9a35Lar/VoHcdqG9GJMVFtN6k+2rFTi0BiSTeV148niF/1DOYkQtlFqeTVoEEDl9AM9zgGvhEPEH2I6Yh7JLlsCCHHB5zBcozjN998s1tXQQdvI7/h5oghPmB4jqhIUb16dScSBD082rVr57yGOIc+4gVE+LvgAL2r0PdH2ybcHEbfEcEwPFhKlSrlQrfhFfXGG2847yeO+d0f2YaTxtqk/4QsQ2RC4IIPpt5OhDRTVrg5qkWrQ4/rEs8c6sXUrRDWePWo0QdCziXXby2fkiWunHh3qXE/cfnEswpxD/dQTEVDLZfa9w6CIwZfdU9FeNP8PwhzaiSp87uS6n7/knus70ESwanHD66w+j7zl09q/ZprrnGCaLCMhprTpf84YRRjsZL5sspT1xwV5zinXKHsiU7Fk2Xsgs3y0rBF0u3Go3FrtSB5eJp64eYmLN4iv3nh4T77fbV87YV4+7xtbZeTSMtFW2q+HecR5HmzqO3ef9iFa2Ob/Dhs+43yWI4s6Z2wwbruYx3b45XR+nWZlnYSak342//eWrJ55wEZM3+zl09ohrx125leXqaCLlzea7dUlUcHzJEhf651Yds4o4HnjeP3LtK6vvpzjfQZs0Leu726cE+wRet2S//xq6TXXWe5cHRa1r9Mjom/bLS++svsO3hY7vDyPO0/+Le82aKa5MmeUX6ZvdHll8qZNaML4+cvb+tGwAgYASNgBIyAETACRsAIGAEjYASMwMlBgEF/IjAdS/NHEqLdY70dvFbNqcRYst+Od7/8fQmuH+u+BdsL9se2jUDcRCIGzJNSrf3JsPxuhdmzZ3fh3fC+QJjAE4cXHi+INXhtqGkSNRKWEcasTp06esgt06dPH7Ydy4Y/rJwmQtu/f3+yp2q//G3642jisaJ5mRC+VNwJVpwjx9FQXH5G/j741V3KIKL4xa5odQTb8uc68rumpqbfwbpj2cbLTA0hiliohLqDzUUXXaSHEi39XFLy3tF8QXpftWL/9eo++pCc+Zn53T1T86DVUIXBNuFADqRIFu2cYFlCuuEplJwhrnRvXkXu+HBaVKEgixfujZBkvMi/U7/rePl22rqYRKISR4SR9dv3CzmK1JZ7oeYu8vILYWULeTl/tiV4HOnxtUfy5OA9lD7daZIvRyZZu/2okEk58gRV8sLWYfFox1V05I96DtXzGK70vKHwukEkwq6sUVhqlc4tk5ZuE8LPnV8+nzz15TzvOsJFuHGe+Pb04PkuH1ODKkdDur3v5YHievA80pBv1Pv7oq2eIJZBGnplk2NCebWk+qpl/vT6Ssi+EY+eK6cXzOZ2k9MIhv/zBCtyPZkZASNgBIyAETACRsAIGAEjYASMgBEwAkbACBgBI3BqEjg6vf84XT/eLXjM3HHHHc7TZ+bMmSFBhRBqeChheHG8/fbbzoWQkF+ENbv66qvT3OshQ4a4OugH4hSmXiduI8ofcgZh6q2CaIN3CN4+1EV+IozcSXgnESIuJVayZEnHgXNGjx7tTiU0n3oCkbcopVaiRIlQneqhhRBHn9UjKq391j4Rui0pI6wfAhGG5xRh4Vq2bJnUKYmOJffeUQ8t8hxRFiPnEtfbvXv3RPUlt4P3KfmqsG+//TZUXMVL3REp35Ae02XZsmVdP3SbJWHmeOHpxNJveEBxTrytTtm8cvuFJYXcQ+QBUnt5+CJ55qv5uumWhCYrVzhcDAkrENjQfDsj5yR42HGYcHWIRiqqsMRLiTw9aj/M3BDKgcQ+xKDvZyR4wLGNZ8zIuZvkjMIJIlE82tnnedlc+eoEGT0v/H2LB5aKVqu9HEuEikufPp1cXcvLm+UJRvs8j6ZRXl/KFznKhWsk39P9Xog3cgH57TRvI6MnLlGPvjj+8+wNMtwT37DkmMTSV1fRkT+Ux7J5eZf8Rr6n3fuPcvcfs3UjYASMgBEwAkbACBgBI2AEjIARMAJGwAgYASNgBE4NAnHzJELk8YfrqlWrVih8WFIoERPwtMHat28veH1ouDHqIBEXCcgIMUeYOrxPGOhnwJ68RXXr1k2q+mSP4bGEQEFOIdrFo0QFoKROxoVx8ODB0qNHD1myZIksX75cZs2aJZUrV3Zh9ypWrCiIE48//rjro4ovSdUZPEZIM/IrIeA0a9YslKuH8GtFihQJFk92mzidd999t5Dj6PbbbxdCy+G1gvD00EMPufPT2m/uGTZ8+HBXv+Zucjt9fxD91Hjv4KUDz5RYcu+dAgUKuNCD3AfeQ+eee27oPcl7LTVG3iHEJ+41Rtg+9UajfsIFPvvss0I4wgEDBiTZBDmm/F5iCHeEmcObSEU8rUBzKel2UsudnuCC8OK3Ap7AU/GI541/P+sPNSoro+ZsklWeCKJW3cu/Q1i1gp43T6MzC4nn0CPfTF3n8us8ckU5LZbkMpMXYu5hr+yb3y+RSsVySmEvj1DXoQucF1K9CvncuTfVLSa9fl3u9pO3Z8KSrU50+fDOoyIoYsutH0yRXqNXyKVVC0rfMSu90GmH5bZ6CQJMPNrBY6pC0ezy3NcLXJLEsp7HzfSV2+WTcSulTYOEhImwGPDHXzJ1+Xbp3LSCbPVEtXd+Wua4NqmZ8HlESLr9w6nu2mp6Hkf++3DuGXnlDS/cW9CqPDbK5X9qfKSO5JjE0tcfPaHtXU+I6tu6puA1hLX/dJZ0vKq85PY8zUZ5YhhiXKfGZwS7Y9tGwAgYASNgBIyAETACRsAIGAEjYASMgBEwAkbACJxCBNIsEukgNwKLijvw0/xEGtoLgSJo7GPAnQRjeAYhuGDkEiL8nAohiDiIGwgP6n3SsWNH4RXJtC3tG2Wi9eOVV15xA/P0nb7grYS4cPhweJ6UYDuNGzeWjz76SF566SXXL44jRPTv398VxXOIHDz0d/HixU6ESak3EWIDIeKok3w9CFjNmzcPeSkF+xTLNqIYYdjwxlJRBg8eBDcs1n4rz2Cb5Fpj8msAAEAASURBVHJq2rSpCx3466+/uveEltX7wjnkm/rggw9ccj3CDJJXqUWLFi55mtYZ6Tw9Fut7Z9iwYe69gzeXMuzSpYvzQtu6datW54SB0EaUFbza8EJ6/fXXXQnEOr/4d9dddzmvL0QpPMhiMULVkZNJ+QdzEdEeYlJKDLGndZ/pYac0ql7I5aNhp+cIE2ZZMqaXV26uKje/Nzm0/4rqhV1enpc8jyI8XrDsmdNLl2srutBzoYK+lQgfcWl1YSlZ5IU6a9dvpitZrUQuecnLf0QYOYz8O+TJeWHoQmn8+kTXBqKQP1xerTK55ZEry0nPkcud4ITY1O3GKkI4OrV4tNP1+sry7JAFLg8R9XK9eFk9cFlZ10xmT/Tq2aqGPNB/pjR+bYLbR98I2YdQhY30xDbNsRS8B5OeuyiUR8kVjvInFibJ9XWTJ2AtWb/b5XLCA+zr9nXkSS8sHmIbxrUhDrasVzJKL2y3ETACRsAIGAEjYASMgBEwAkbACBgBI2AEjIARMAKnAoHTvEHqf06UC8WjBY8Sf+4af98QN/AewbvInxPGXyY16whCiEQIF6kx+kSuHH++HK0HIQIPK3/uIj2WkiXh0vC+SWs92iY5gdatWxeVZVr7Tf28VOjRdoNL2O/YsSPqPQ+Wj7Yd63sH4dEvVkWrz79/xIgRzmMIkWjixImyb98+lxMr0v3mPK4bS0k7S5culZ9++kkIVTdu3DgXupAcRP9GiDnXuRj//O1dy19e7hoknWJ5s3geRYnF3liq2rXvkBNPEHiiGfl/iubJ7IVjC6hYR044/HdCX0p6uY6idSNe7WzaecDzosoU8Xq5veQUwqMnv5df6N+0WJhE6yu8VIzTPhKqb9e+w4JnmZkRMAJGwAgYASNgBIyAETACRsAIGAEjYASMgBEwAkbghBKJ7HYYgRORQFAkOhH7aH0yAkbACBgBI2AEjIARMAJGwAgYASNgBIyAETACRsAIGAEjkFICaQ43l9IGrbwRONkIVKpUyYUVLFy48MnWdeuvETACRsAIGAEjYASMgBEwAkbgpCMwc2ZCuOqTruPWYSNgBIyAETACRuCUIlC9evX/xPWaJ9F/4jbaRRgBI2AEjIARMAJGwAgYASNgBIyAETACRsAIGAEjYASMgBEwAkYgZQQiJ/9IWR1W2ggYASNgBIyAETACRsAIGAEjYASMgBEwAkbACBgBI2AEjIARMAJG4CQjYCLRSXbDrLtGwAgYASNgBIyAETACRsAIGAEjYASMgBEwAkbACBgBI2AEjIARiAcBE4niQdHqMAJGwAgYASNgBIyAETACRsAIGAEjYASMgBEwAkbACBgBI2AEjMBJRsBEopPshll3jYARMAJGwAgYASNgBIyAETACRsAIGAEjYASMgBEwAkbACBgBIxAPAiYSxYOi1WEEjIARMAJGwAgYASNgBIyAETACRsAIGAEjYASMgBEwAkbACBiBk4yAiUQn2Q2z7hoBI2AEjIARMAJGwAgYASNgBIyAETACRsAIGAEjYASMgBEwAkYgHgRMJIoHRavDCBgBI2AEjIARMAJGwAgYASNgBIyAETACRsAIGAEjcJISWLlypdzV8mYpVCCPZMqU6Zi8aIs2advMCBiB40fgtAMHDvxz/Jq3lo2AETACRsAIGAEjYASMgBEwAkbACBgBI2AEjIARMAJG4HgRQKRpeOG5ctc5p0mbC/NIoZwZjklXNuw8JB+N2yZ9/vxHRo2bIKVKlTom7VojRsAIhBMwkSicx0mxdfjwYUmfPv1J0VfrpBEwAkbACBgBI2AEjIARMAJGwAgYASNgBIyAETACJy4BvHnO2DNWnrqywHHpZNfvNsnibBdJn/6fH5f2rVEjcKoTiGu4uT179sj06dOFZaw2ZswYef755+Wbb76J9ZRTutycOXOkUKFC0qZNm/8Ehy27DsiS9bvl0OHUO7Tt2ndI1m7blySP9dv3y469h6KWof1lG/fIP0l0Ix7tRO2A78Du/Ycdk/2H/vbtDV9d513vX1ujX3Msdew7eFg27NgfXnEqt5LrTyqrTfFpew4clgVrdwnL1Nqxei/Eq53UXqf/vHi8F/js8Bnavuegv+qw9YOH/5ZF63bLvoPR39thJxzHDT5/k5ZsT9N76Th235o2AkbACBgBI2AEjIARMAJGwAgYASMQM4Hh333vPIhiPiHOBfFeog9mRsAIHB8CcfEd/OOPP6RLly6C4KNWv359eeaZZ6RevXq6S77++mtZt26dNGzYUCpWrOj2c27Xrl2lVatW0rRp01DZf2MlUvv/Rjv/Zp2rVq2SnTt3ysSJE2NuBs+jjz76yJVv0aKF5MqVK+Zz/QXf+H6J9B69wr/LrTeqXkjebFFNxszfLPd9PENeaV5FGtcsElau86B5smv/IXn7tjPd/pkrd8jjX8yV5ZuOCop3X1xaHrjsdMmYPp2c02WMIHREsmolcsmgB2rLXk8IeHrwfPluxnpXjP3PNasolYvlDJ221Bu07jJ4nkxdvt3tu7RaQXnx+sqSM+vRt/77vyyTj8eudO0Vzp1ZHr3yDLnqrMKhOuLVjlY45M+18pTXJ9r6tfMFutsNrsMEjmpPX1NRbj6vuG7KnL92SodPZ8uqLXvdvpL5ssrbLc+UikVzuG0G6JOrg3O7eNwmLtnqzsmXI5O0b1RWrq9TzG3Xe2G8IN4FrU7ZvPLJPTXDdifXn7DCgQ19vwR2S/bM6eXP5+vLTk/Uq/vsWLnB69dzzSqFFft68lp58st5Mrd7Q7cfsespb3v8wi2hcg0qF5Dnr68k+b3re3TAnND7JFTAt0J7tHus3gvxaKdBt98E8dNvNUrlks/b1vbvcuvR3nPJvRc4OZZ2Pvt9tXs2aH9g3/WGypI3e0bXPuJQt2GL5Ntp60Kf6zYNy8gD/3e6pE93mivj/8Nn7oORy12dPBc6XFHOf/iYrK/dtt/r8xLvPVReqpc8+kwJNv7+Lytl9qqd8n6rqsFDbvuAJzbd1Wu25MmeQd5pWSViGdtpBIyAETACRsAIGAEjYASMgBEwAkbgeBLYtmPPMQsxF+k6CW9HH8yMgBE4PgSOjpSnsv3x48c70YfTy5cv70ShCRMmOMEIMejnn38WBCPsnXfeEcp/8sknIZHIHThGf453+/G4zMsvv9x5axUvflQ4SK7eQ4cOyUMPPeSKXXHFFakWiaigTIFs0vPOGmFNZs0UHvqu08C5UrNMHimeN0uo3N8+Fx08cpq/N1luOre4Ex1yZMkgM1Zslwf/N0uyeXXde0kZGdK+Tsir57GBc6RInizy8OUJA8WZ0icMKiMQTVm+TYY+XMcJAa+OWCyt+8yQYd42wsdOr512n8yUM4pkl9FPXuCJVIflIa+NTl59791RXdKddpoMmrhG3v15mXzQqobUKpNbhnriQ8fP50jRPJm97Tyu//FoR0Hg5YJARFtBT6C2/WbKgUP/yLAOdaVEvizy+6Kt0s7blyVjOrm2dlHnfXHHh1Ol+bkl5L5Lyzjvqy5fzZO7ek+XMd71MdieXB3chns8RqULZJVfHj9fcmfLKKPnbTpyzVnkggr55It2teXw30ddqv7xTrrjo2lSvmh2vQy3xBskuf6EnRBl48sHz5Gc3ntALSgZfDlpjVxUKb9cUrWgFkm0fMQTgejncI9dcY/dik17nYD4yGdz3HvssSbl5UFPCMM+/2O1DJ+2Xgbcf3aonqyZ0h2z90I83nPcRwQZxNnKxY8KGJkzJHYOjfaei+W9EEs7w6aukxe/Wej6wvtnsycwdvx8rnQeNNd9roD83NcL5DdPwPvorrOciDt79Q4nKOfJlkHuuDA83vC8NTvlfu9zi7jH55g+nIj23YyNMvevXTJ+wVbJ5ROdg319efhS9yzKmSX8ORksZ9tGwAgYASNgBIyAETACRsAIGAEjYASMgBEwAkbgeBBIPKKYwl60bdvWnYF4MXPmTPnwww9l2rRpctVVV7n9999/v1siGCEQYZ06dZKLL77YresfBng7d+4sJUqUkKpVq0rfvn31kBw8eFCee+45qVu3ruTPn19uueUWmTx5cuh4jx495Oyzz5bu3bs7jyTqQJzyW7T2o527e/duefLJJ6VGjRqSKVMmOf/888P6RB9oc9CgQXLNNde4ft1zzz1CODi1uXPnyrXXXuuuiT7dcMMNsnTpUj0sK1ascGHj8KrS40uWLHHHx44d6+q/9dZb5dVXX5XTTz9dXnjhBfntt9/ktttuk3vvvdeV0/6/8sor0qFDB1cPbPv37++OU1+dOnVCbXJfnnjiCbedXP9CJ/lWsnneFqXyZw17FcyZyVdCBI8evFn8QoO/wJINCTMDrvOEj0K5Mjth6Lzy+eQzb9C+XsV8rigeMtpO9swZJLc3CKvbCEZ4zOBB9OTVFaRCkRxuQJl1PGDUm2Tysm3OU6mL541DO2ULZpOnmlZwnjoq0CAYtKxXUup7IgRCxW3e+tmn55EhnliExasd6iJ81YP9Z0mL80tIozMLsStkm3YecN5ObT3PijMKZ/eEofTSsEoB9+r1a4L31sad++Uaj9ndF5dyzBiYblqrqLvmLbsPSix14NGB99ZlXvvFPBEP75nLPU8wbM2RkH2Ie8qaJeHBECTuvCh8MD+5/oQuLpkVf1usl/RefqviiSC8n6KFxuN9NsW714hI5Y6ww7PqHc/DqnWD0k5k4D2q7eTNnsnzVjsttM1+BMNj9V6IRzs79h50iKqWyBl2HXin+S2p91ws74VY2unleRe28TjjUYjgW9oTkj+9r5Z0b57gWcN7E0+mFzxvsJqlczvRs7b3GRvzVD25sW5isXv+ml1ysycgD/Q8oooErsd/bZHWe/26Su7sNUuavTXNE4TnyZh5Rz3LXh2xTF7/bpm85r1ueme6NH93ulBeDe+lLoMXuWN3954tv8w+6tGnZfzLLyaslZkrd4r31olqP3hC0gyvTFIiEiff03eO9B2z2hPXFsj1b0+Thz+dJzwnHxuYsN2y50zvPZ7gDUn51Vv2eQKy9/+lx1RX/sVvljjPSo7Rb+r73mv7lvdnhK6D/a0+SmDT9pO5rl+UNzMCRsAIGAEjYASMgBEwAkbACBgBI2AEjIAROLUJHJ2+nwoOu3btknnz5rkzCRmXPn3CTOl06dI5QWPEiBGyaNEi2bFjh+zbdzR/yt69e4WX3/AuUtuwYYMTQWrXri3Vq1eX++67z4keOXPmlCpVqsjgwYPlxx9/dIJJpUqVZO3atTJr1iz30jr87bHPv+1vP9q5HTt2lN69ewtt1qxZ04lSCFNFihSRK6+8UhYsWODaQ8RR+/jjj4VwcN99950Tti688EIXGu6yyy4TWJF3ifB6y5cvl23btgn7ly1b5tqgDo6PGjVKEHYIKafXhBCFwVH3ux3en0j9h9/vv//uhCv4+K+dfFH79+9Ptn8ZMkR/awRn9gcHSV/2ws3d9M6fLoQboaKCVt7z7ME6e+HBCO1Wt1xeN3CM2BOrabi1isWOnkMIOcSBFUdC2LHEE6GAT8SqdCQs2+rNe52nE14WrQLiR/WSuTzBZpvrSjzaQfDC+o1bJbu9gegHLysrQ6ckiFDugPdHQ24Rmspvo+Zucpt4YlEPQpjfxi3Y7MLWFfCuc9uRXDBJ1ZHJ8zRpcUEJ6emF8mIAPr/HBk8d7GIvRFjQEGDe+mmp571U3POuOuoZRrnk+hOsK+q25ynif08F308PeLx6jlzmPIM+aJXgAeavC3bneyIjIdxyZ80oDasWkDyehxSCSVA08Z/nX4fvsXgvIMDFo53NnvCC4W02aOJsJ3JdXDm/E8UI16iW1HsulvdCcu3w/iCnWGvvc/7MV/NlrPd+LJ0/mzQ9u4jzfqMfq7zPGobATDjK+d5n7ixPLLrVE0sRZIOG11xqbPCkdTJi+kapWjyHJ8IWkJ89UeSdn1fIueXzCB5WCCt4mOGZd2m1/E48ofz55fNK1RI5PA/DBV5f98npBT3R0HtPfTttQ5Ld6HdPdXf8gf5zPTE5cb4z2vvQE6HuaVDS81zb6DzdolWIADps6gb3fiW03dTlO+SRz+Y7ZvUq5PXu8zZB5BrY7iznUdjeE5EyeH1sfm5R2egJzAhAXb5aLK/eXNGJxYi6H45a5YnnGZ1X5Ki5mz2PyRXe8zCjF0qzoCekb/Xu1yJXXp/H0fpm+42AETACRsAIGAEjYASMgBEwAkbACKSWwJ4Df8u2vX9LsdzRxxlTW7edZwSMQPwIHB1NTEWdiBhqFSqED14Tek6NcogWmp+IsG/BnDqFChWSv/76S9asWRMSTRBl8LbBKwaxZvbs2TJu3Dh56qmnnFjSr18/bcItKYOnDSIQYdX8llz7wXMRqF5//XXXJn1t06aNq472/da8eXMnwpDvCPvll19k69atTjxD0ME+/fRTJ/7gHYVHFIIRQhICER5CXCPCDnw4BwHMbwhonNOtWzf/7rB1+o8HF+KTenHh1VWuXDnn4aWFf/31V3njjTeS7Z+WDy7nejlxqj4+Kuz1xYS/woohPjxzbUUhhxE5a4JGSLlP7ztbDnjhyhg0rvXUaGnTZ7qMnLMxWDTqtg484yHkNwbhl3l5iLCV3oBwGS+smt8Ir4at9AauN+5IyLsTrIP+L/YGvrF4tEM96zwvnR4/LJHHG58Rlg+JYxi5WxC4EDrwvMA0ZxDr247sY12NMHEDPfaPNy7vvBliraPdpae7wWfC1F3z5iT57LfVLo9U0COMdn6ZvdGJAJHEPu2HLoP90f3JLck75H9PdfhsdtgpDIZ3u7GKIIhxvZHs5ZuqeOJALhfK7//ZOw/4KKouit8EQq+hQ+gQQu+9Swfp0pEiHREQBT5FAaWooIAUqdJFqoWOdAHpvXcINZQkEFoSkv3euctbJsu2kKXfy293ZmfevPfmP5MAc/bcW+abLcphoc5L1cmBk8aVeFn3grvG0TWjZqpaWg2LpqNSOZJz2sQBqvaXDmf3HNo5uxecjaPdZ0P+OsnpEztXzqJSQ8blelH6WmnRtsv0gyyCwN11U4kiH07aR0cuP/v7Qc8/ukuklyyWLSkNa+qrUlmmo+5VM3FKxgMX71q6ggA5+aN8SkzLSOPbmesDHVfOpTMBD1ggqpzHm0a3zk0/tfRT4nVSy3HRXYF49rVyJfkqQbxmQftpEo39pkoSR80tLw1smIOFHez7Uc2jd80sLHohvSPcTn/sDuDz+rJ+dj7PHtUyU7V8Kdnxd+PJ7zQc27BYGvq1U34WwGb+e4WQFnS6+vxRRR+a0DYP/85AXxJCQAgIASEgBISAEBACQkAICAEh8PoTQAYiZDqy9dq1a9dLPYG2M65SrK7HqcvcqF+ANk7i3K1wqjranxL3PEkZ+5+mdH1P069bzV/INraTdSEgBF4PAjGScePHf/oAPiwsjOLFe+o0wGcdxnZ6m/US6eBSpTI/TKtRowa7hW7fvs31d9AW4kmLFi34MAg+CLhyjNG0aVMqXry4cZPL69bHYqxFixbRsGHDCPNYsmQJ96WFH90x0snBOQVXkI6AgAAWZyDcoD0EsKpVq1KVKlU4VV6yZMlo37593Byp6hIlMrth1q9fz98291BPMiEiIVB7CKntnEW9evU4TR/a9ejRg+Di0mPYOhbikaP52ToG2+Ae+aqBb5Td2VObnUHGje8XTkvrlOjTV9WK+aP3s9cENXlW9SulUh7dpR1ngviB/icqFdsXqnYMUr45C6S1QuChqbEOy31Vd0g7h5A+Dp+N8TjCXOAEx8PZgEAfxnigPuv+9TIm46BvCGY45zqF0hqHirL+Y4u8XKup3Ldb2AGFB/T1iqRVDoPrXDvI2FjXbYELCmm+dDjr41F4BNcXClUPnFHPJpkSpyAEoY5UYuXCQdo9HewiWnOOa0chNZ2jsDcfR8fofZiHvhbYpq+f3o9lVqQKVPfd0L9OUYlsyY27eB3HzOxSmAVC3E9Ldl/lOjnbTwfS+LZmx8czBxk26PFf9L3grnGQJhBpC3upOkv6HoUjpL+6jn2VaAjBz9k958q94GwcnWkNP2eTVa0yuLpalM5AsVU6vxmb/dmBpp1hqEEG5yCiUbH01EgJebhO+XxyGa7E86+2r+CjhMQg+mH5OboWFEqXlJMHofQaS3ir+z2pqoOE0KJosHIBabGq/JN0l9gPh9HOs09TvGGbqzFq1QWuQzS2TW5XDyE/Q80vpKfDvNIrwQ2RIrFZ3MY3sE6p9I9gmk+5n3QUyZpEOaducYo6va1B0TS8ip/juw8fs0g05C9zOlPsQIpFzUgfI0shIASEgBAQAkJACAgBISAEhIAQeD0JoIRHRMTT51eoP96oUSN+FossTC8rZvwXTH8fDCHfNHHsDolsMXXG+VOO1HHo3PAc5J0gFq04fI9a/XqFMnl7UbU8zz5HtNuZ7BACQuClEIiRSJQ799MHYAcPHiSkV9OB+kQ6kCLOWRiFpAQJEliaIz2ajhw5zA8Y48aNS5GRkVFq7aBN8uTPPjzWxzpbGo9FfSTU9YEzB0JKhQoV7B6OuSC8vMwP8XTDhAkTEpR8uKaQRg4OI7zgBkItIC2iGY+DOISXMSAwuRL4JoEOvW6d0k/vx9LZ/NKkMT9gNB6DdaR0K5/rqZBgvd/4GbWAaozYrtIknTFutqzjISVqlODVoWImVUtkv6oLc8UlkcjnSQo3pFVCajEdqLdT4YnQgdool1XNIWPoujaoQwMRCenort15mgoRba8GPVIPbM0PYN0xzqnr92j5gQBVfyU9LVYPxRH7Lt6he8r5sHDnFSXMpGSHBerpbPiiLKGWUpByDhXNmpS2ngxkN5ZOR4djMb9Ovx5kcahPrezYZAlnfSBtFdKdrfi8FAsvOBDp/tDnnK2XoohEaw7f4PpFUzsWsvRva8XRfGy1t95Wxtebr4X1duvPSHm39rASHn8/arOWDdpDTMILQgVEkmmqXg6uubVbzLrvl3UvuGuc3OkT04D6iaOcRllf88/lyashFKTccM7uOdyXzu4FZ+OUymGuIYa0ccZ7tLyaC+oQQZxI/yRNYYGMT505SPlWVl33/ernwF0xcb0/rTl0i0UgCGa+SnT557A5XaMewygo621Yhjw0/0PbWANJi0nGdq6ub1Pp3MCjt6qLhNDuwA6qXtLQJr4Wp5CxP9wbxogTO+rfBXoffm/gPPD7U0fEE/FbDWkJPX8tfKK5XkejXIoPUutJCAEhIASEgBAQAkJACAgBISAEhMDrTyBLlixRJvnjjz9yiQ88jzV+aT9KIzd/OHE9jDrOvkYLO2eguTufZu2wHiZM/R/1VEAY9a+RgjIrUQjRpGgSFokuBpqz51gfI5+FgBB4tQRilG4OAkmZMmX4DOBeQc0cBJbdu3fn9ZIlSz7zywrOHFcD9YAQEEvGjh3LdYKQZu7TTz8luGeeJ5yNjzpKEIgQ/v7+hFRybdq0idZQqBWE9Hnt2rXjtHIQzbRzZ+/evVznCB2uXbuWoP4jvvzyS4KjavXq1fw5Om9wDgUGBvIh2vVUsGDBZ7pAKjyEs/k9c+BzbIAAgzRgEH7ghtGxAoLJuD1cW0NvQ32U/KoWkKuBtHIIY4o6pMKDaJTtibMpixIL4HAwpm3T7SESISAGrTp4g9fxBnfFelUHKEcas0jkjnEeqm//ozbO5hO3OZ0cUsptVanTMLeJ6y8QUnbh2/7Yfk6lyqucJyU1Kp6OIFBBVMqjBAEdeOjeUaWJw7zB1vhg3pU+kLIKgZR/xoirHtrfD31aVwV9jf/nPLuINANje73uaD66jbuWeCg+tEluFjaQ3kwH0gvWHbWT4GYyRsFMrt9POO5l3AvuGmfZ/uv8M4TrpONq0ENezaDuG1fuOVfuBWfjwDGENInp1P1tDNzHcCFB+MDPIeLOw6j/EDytHDHZnuwzHvs866Cw8Vgg1xlDraCvVCq2gpme/tw46zODt3n+e88/Fa12n3u67ux46/0V/LxVCsBk5KdqpuEVR9WJQq0orEMgi0kgnR+u3e17T3keumS+9/XvNWP/cJpBIEJ9ouEqFZ9+QSDK6O3YIWjsR9aFgBAQAkJACAgBISAEhIAQEAJC4PUggMxBeIY4fvx4Mn6B3zg7PBvEM1lbLzzDfZ7oteA61cyXiBoXcfy8Ja760mOPyt40bOUtWn/8Ph2+Ekp9FgXwkHXym5+3Pc/4cowQEAIvjkDUry4/xzhTpkyh0qVLc42blClTsmik08FBFJk6daql11KlShHskYMHD+ZUcfPmzbPss7eC2kYQotBn5cqV2eGzcOFCFmBQ3we/7FwNV8c3uncg8sDts3jxYleH4Xa3bt3iFHP40Lt3b4KgplPVFSlShFPDgQ/EKDiVwE6LQ7/99pvDVHG2JoKaRmCVNm1a/iYB2jRp0oSbYmyIbRgLVlT8ZYD0eEiBh7A1P95h4y1EiRTbTpnFKL0bqb7woNhWVMmbypIyTe+HcwhukH7zj3LBeziBdp0LollbLql6GZl0M4dLiEqfKhfNaOUW8VMiCkSYoUo4gDBQTjkUEBgH698vO02DG/kpV0M4jf3nHKG+jq5N1F3V52k9cS9NVY6Tqmqu01WKrFAlFH1Yzof7cMc4BTN50cYvy3J/+m22cu3M+Nc/yvbTqg7Sol1XCSnjML95qqYOnB4/f5ifD0N9nY9nHWJ3T++a2WjPuae5XPNkSMx1jZz1AdcQovfcw9S3Tk5KqpxhG1Rto9WHblA/VS9Jx8qDATzOlA5RhcYRy8+olG73aWL7glzvx9l8BgwYwA7DmjVr6q6fWSI9nFG0gvCg52ndGILVMCUUDVhkdmhgfxblGEN9K6TMQ32mzKoO1QUlUmCuuC+duYj0GC/jXsBY7hinkLq3kVpu2N+n+GcGqcm+UPWIwAIviALO7jkIfAhH94KzcXB8typZuY88Pomper7UdMD/Do1TP2etyvo8ESfi8PqI5ac5xVsO5Zj7c881/pkf09p8bxvvK/RpL+zdT+p0OcUdRN6bIWF0RaWam7DOn7vB7yxnUVoJOhPW+qufv+tUMHMSrkm29shtZ4fZ3d+nVpYo+3opR1G4+vntWydrlO3P86GWqnG0VaXVG/fPRfqsdhblAgylTccD+Xdguifp6az7LazOad+FuzR321XlBE2uHIzX1e/xIOryXkbrpvJZCAgBISAEhIAQEAJCQAgIASEgBF5jAqhZjhIZdevWpU6dOtmdKWqg4xmgrciUybVnb8Zj/zoQQuuU4HNySNSMNsY2xvVB76ekf0/dp+o/m/9vjn1zPkqvvmQa40fRxmFkXQgIATcRiPFPpq+vL61atYrw8G7z5s0s5mBuFStWpKFDh5Kfn59lqh06dKBNmzbRnj17aM2aNZbtWEFdH+tA6rVYsWKxk6djx460bNkyi8Onb9++hBdCH2udqs26P1vj2zoWNYMmTpxI/fr141RxEF9atWpFEG9cCcwjf/787HqC42nMmDF8GOoLIf0chBwERCEINuCBwP4ZM2ZQunTp+HN03tq3b0+XLl3ilHYQnz766CPq2rWrpYuBAwfyWHA3wcn02WefOZ2f5WDDyqXAhyrV2QHDFuK0Z6growMPbI3xZT1f2moQllDfZkbnwvSZqlfUbLz53NEe6dh6Vs9mPNSybuvati+fiU4rEaWHEk4Q+XyS0HdNc1vcNXhQPrBhLvrfgmPUYoJ5nKr5UqmH9Fm4Pd5QJ+iz2tlpknL0QHCC2DS8aZ4owoI7xrEM6GDlq/q+9Lli8uGkfdwK9Z/AVbsD4LzYq1LRIXrPPcJL/YZ6MEgD6KwP1Dr5s3cJFlkgjiHg+EBtmzblzA+MI1W6RbiIcD10uj09zmXlVrl466Gq82IiZ/Px846kkSNHEsRZR9FrzuEouzGf3d9WjLLN+KFB0XQqjdgNdmZhO67zdHU/9YfoaLg3kQLtp5Z5jYfyOtrD2WEdL+tecMc4uDd+aVeAxdb5O67wqeD+H9chP/OwPjdbn125F1wZp2q+lFxrCEIPXghco/5KhNTRS/1c31VCVveZ5p9VXOMB6vdC9fypuInxvjKmUcM6rhfi5s2bDu+nFqXTKZH3MnWaZv7ZeC9vCvpPCSG/KLEIrh57ge7jK2cdhJ0fV56nnrOPcdN8SvRCrSJjCjdbfeB4PUdb+/U2W7/D9D5bSyMHRYGbYC55MySi+kVT0997b9CHE808E8WLRV83ePIPdXPTKF32rpmF/jf/JC1WIhheiBLZkxIEJwkhIASEgBAQAkJACAgBISAEhIAQeHMI4Fno/fv3adKkSer/ojb+A/jkVPAFdbzcEQ/DTdRrQQANqJ2ScqR6Wu7CXt+op1tl1EV69NhECzploJSJYtMf++/Sh9OvUrL4sai2uInsoZPtQuCVEfBQtXGe5iuK4TRQP+js2bOUPXt2MtYVsu4WNX8Qjn6ZWR+Dz+Hh4QSHTqpUqSh27OfXt1wdHwXhkDrPWK/I1rycbYPLB24ke/3AYYRz8/b2dtbVM/v79+9Po0ePps8//5zrHd25c4frDdnjg3OC8GYMZ/MztnX3+i31rX84fDKq9G9Ix/Q8gRodSN0GgcdeoC5NPK9YhAfjtgJpu66oujx4KG7v71h3jGNrbOttqF9yX50TmDxvuNIHXBf3HkUQnGCuBn50TeqP8QG2vWN37tzJLqKAgAC79769Y593O67RteBQghAJIeJ54mXdC+4YB2LdZeWaQUox74Rez3O6fIyze8GVcdAH5uKjUpjhZ81WBD8I5/o8mdW9bUyV6Mp95cr9FKbcOqeUmOqrahLBBQjGuB8wJ1cCadxOXL3HP3tIz/Y6R4i6109du0+pksRV8433REZyPGNcn+sqJSfqdr3u5+f4TGSvEBACQkAICAEhIASEgBAQAkLg3SPw119/UdOmTfnL+lWqVHErANQ3j5iU22afkzYH0ce/X6cRjVOrjDTm/+//vD6QksTzpHZlktFHZVGn+Omhq4/cozrjL9Gxb7JTrjRPnznV/+WSSp9uojW9bDuZYnU9bqnh/rQ3WRMCQuBlELD9xPw5R4YwBAeNs4iuOKT7g9DyPC4bfbxeujo+xBR7wo7uy5WlMX2drfZw/rgrkiZN6rAra4EIjZ3Nz2GHMdwJgSI6IoWt4fCAHC9H4SzlGB5Ya8eOvX7cMY69vo3b8bA/Jg/80ZcrfeBBvr2H+cb5GNchoGlXg3G7rXUIxkgV6Y6fIVv929qGa5QzreN7wdZxxm0v615wxzgQ65zdt8Zzs7fu7F5wZRz0gVRyjgKpJfGyDlfuK1fuJwhDcADpAGNXBSIcg3pBhVRqtjchUO+paFbHv++tzwMsosPD+nj5LASEgBAQAkJACAgBISAEhIAQEAKvhgAyAyFDEjIWuSIQTZ8+PUqGIeOsa9euTRCcXI3H6guYPsm9aOwGc51zHHc5yFwn93LwY2pTOmmUL4LCeYRIGCeq0ym++j/3rZCn9XW5kbwJASHwWhCI2dPU1+IU3u1JoNYLRJ6iRYu+2yDk7F87AllV/tuvv/76tZuXTOjNJCD305t53WTWQkAICAEhIASEgBAQAkJACAgBIRAzAsgKhLISiPLly9PatWujdFigQAFKkyZNlG2of26vbAYyNEUnelT2JryMAVdQ2iSxaXJrc8mMxXvv0jfLb9E/vTNRpVwJuGmzKVdoxAdpKHkCT1p28B4tUm1+VJ8lhIAQeP0IuDXd3Ot3ejIjISAEhIAQEAJCQAgIASEgBISAEBACQkAICAEhIASEwJtJADV6UcfcXixYsIAaNmxob7dL2x2lm7PVgbVINGFTEPWcf51ODsnOdYsOXQmlDrOu0j7/R3x4YpWarl+NFPS/mint1v6VdHO2SMs2IfByCIhI9HI4yyhCQAgIASEgBISAEBACQkAICAEhIASEwAsgcPv2bZoxYwanYnqZ6a5fwKm8Fl2CJ1LVJ0uWzO58kPoK9Z59fHxstgkKCiLUp82RI4fdmtLXrl3j9OTx4jmvIfro0SOugY0MA45qYNuczDu6MTIykk6fPk0pU6akFClS2KTw+PFjun79Opd2sFWeAAeh/jjqXzsq/+DsfrA5uGx8rQhEVySyNXmkpYut0r4b40FYJN19FMmuI+N2W+siEtmiItuEwMshYCgr9nIGlFGEgBAQAkJACAgBISAEhIAQEAJCQAgIASFgj0BwcDDhgaW9b8bjoTX244XYuXMnffnll7Rv3z57Xcp2Fwhs3ryZcuXKxWIA0toXLFiQ9u/fH+XIjRs3UsmSJQliTbZs2Shv3rx0+PBhSxs4HlDvBKmvdAosuBx0QFgaN24cixaZM2emJEmSUL169ejq1au6SZQlRIzPP/+c2xUuXJiFq/79+xO2S9gnMHfuXEJKMdQNh7jz/vvvE8Q/Hffv36fu3buz4IbrGD9+fOrTpw89fPhQNyF/f3+qUaMGM8e1giA4b948y36sOLsfojSWD289AWuBCCecII6nSwLRWw9HTvCFEcDfO6ixdeHChRc2xrvQsYhE78JVlnMUAkJACAgBISAEhIAQEAJCQAgIASHwhhFYsWKFzYc+ixcv5jPJmTMnLyFKwLXiSjH3NwzBS5sunCDVqlWjTp06McvLly9TkSJFqG7duhZB5siRIywa1KpViy5evEhwApUrV47w+e7duzzXDh06EOqnYD+2Qbz78MMP6cyZM7z/zz//pM8++4xmzpxJgYGBdOLECRYmmjVrZvNcx44dS/Pnz6ddu3axo2XNmjU0evRou7VWbHbyjm0EK9SvmTZtGt27d4+OHTtG58+fZ7FNoxgwYACtWrWKduzYQRBlt2zZQgsXLqQffviBm8CFhOsKB9K5c+fo1q1bhGPatWtHR48e5Tau3A96PFkKASEgBITA601ARKLX+/rI7ISAEBACQkAICAEhIASEgBAQAkJACLyzBCAmWMeECRN4U9KkSXkJAaJUqVIEYQMB4QHCER5ww+kCoQEOFmf7sB8OjPfee4+PbdOmDac44wPV2yeffEJff/01L+GqgJvm119/1bv5YXvHjh3ZcYH9aI+H9Doc9a3bvKplaGgozZkzhwUcpOyDkwjukxs3bljOYdasWewiGjhwILtTwPeXX35hJ1HChAlZHIITaejQobwfaeQgKiAOHTrES3zTG31DfEqUKBG7kbAOIQPChHXA4TJy5EgqVKgQp62rXLkyu2OsHU7Wx73Ln5EaDvcpnHhw2yHlX506dVho01wg/FSqVImFQKTvgzusePHiLAihDRxFEIV+/vlnvp/h+GrQoAEffunSJV46ux+4kby9MQSSJUlAN0JenUMPY2MOEkJACLwaAiISvRruMqoQEAJCQAgIASEgBISAEBACQkAICAEh4IBAq1atODUZ6tHo2LNnD6dAwz4d2A+nRFhYGItBcEDg4fiSJUtYpEC6MjhQIBTZ24e+li5dyg6M0qVLs/gB8Qmp0EJCQngoiFBwWuAB+k8//cQCVLdu3SwiSr9+/diRAQfHqFGjODXX999/z8c665sbvcI3pByDmweMIBhB1Bk+fDg1bdrUUpvo+PHj7BwaMWIEp6IrWrQoC0IQGVDPBi8IOhAbdGzYsIFXkboOAaEB/L766it2pKxevZrQX+fOncnT89lHVODbokULPhZvcCghvV2xYsUs22QlKgE4wiAS6UBqPtz/uK91QLz77bffaPbs2SyqTp06leDc044uiH4tW7bklHXh4eGceu6LL75gYbRs2bLcjbP7QY8lyzeDQN3atWjKluBXNlmMjTlICIHoEsDfr4sWLeK/82192SC6/b2r7T3UP6LMX6d5VwnIeQsBISAEhIAQEAJCQAgIASEgBISAEBACrw0BpL+C2wTpsCDqwOGiH1536dKFkBqtYsWKhNRl//33HyHtFVKjwUEEx0P69Olp+vTp1Lp1az4niAopU6YkLy8vu/tQt6V8+fIsfowfP56PQ52DDBky8DhwYsCZAQfGgQMHyMPDg9OtoVYL0t9BTIIQAoEEIhECggYELLhrnPXNB7wGb5g7atUgqlatyucGEQgBdxScRUjzB1EHKcggmjVu3Jh+//13bmN8g2sIQhIEPbi5dECYgONKB2oNQcRIliyZ3mRzCfEKNXKCgoIIYiGup4RzAkj59+OPP9LJkydZ5MEREI4+/vhjmjFjhqUDXFM4hyD26YAQpAU+/CysW7eOsmfPzrujez/oPmX5ehJADar3ypeiDsU9qHP5ZJQ6ceyXMlE4iCAQ/brbRBu27KBMmTK9lHFlkDefAL5wAMcrvmCAfwOcPn2af8/h3wa+vr5v/gm+5DN4OT/xL/mkZDghIASEgBAQAkJACAgBISAEhIAQEAJC4M0mAMGnZ8+eBNEGItHt27f5ofYff/xBeHhtKyAGQdxATRY4iSAqQNxJkyYNN7e3Dw/Nd+7cyS84J4xx8OBBTteFbUjLBYEIAWEJYpZOcwfnBRwcSJ0GUalRo0aUO3dufiDvSt/c6St+g9hVoEAB2rdvH02cOJHFrd27d/NDOC3KwB2keUIAA2sIdxARdEDIqV+/PqeG03VusA91byAQoS5RzZo16fr16/S///2PHUZr1661K/zA4dS1a1d2EWE+ei56PFnaJgARCAIRfmaQHlFH7969+WcJolD+/Plp79691LdvX0IKx2HDhulmlCVLFhZi4dSD86hEiRJ8b0Ac1dfAlfvB0qGsvLYEIM5ApPnmq/6Ue8gqCr774KXMFSnm4CDasOUHEYheCnH3DIK/j/H7InbsVyct4O8OiEGDBg2ynBRSwPbp04eWL19u2SYrrhF41svr2nHSSggIASEgBISAEBACQkAICAEhIASEgBAQAi+UQIcOHVi4gXsHD6khykBccBT4FjGcLXCmQGTKmDEj94Fj7O3TwhBcMnhYql9Iy2VMn4Y0dsbQD8qxrX///oQH5hCS4MiBAwM1e1zt29jvq1oHXwgBEGSmTJnCosy2bdt4Ovqb2VogwsYqVarwPghpOuD4ad68ObuokAIIdYV0IE0fnEXfffcdu8Eg/sGJBUcYxB978c033/D1X7lyJdcxstdOtj8lgFR+cN6NHj2av22v98Cph2uLF9L5lStXjnr16sWpApEuENdPB64dUvs1adKE0ydiO34OEa7eD9xY3t4IAvi99+vs3+nGrWBO34kUni/6hbEwJsaWeP0JQBxC3T58SQJ/F0BoflWxbNkywt/RxsC/Gf79919LGljjPmfr+PsFDskePXo4a/pW7n91ct9biVNOSggIASEgBISAEBACQkAICAEhIASEgBBwFwE4cZBabvLkySzAQPRx9M1lPNCEiwUuHqRBGzNmDBUqVIgfbCOtmb19EHYwFlxHAwYMsEz/6tWrlChRIstnRyvXrl1jQQkP3fGwvU2bNjRhwgRO3xbTvh2N6459ELP+/vtvTvum+8uRIwevwu2DgOh19OhRdkbpa4D0Pgidggz1ICBMoB2En1SpUvF+/Xbv3j1CvRtjaBEJqYNsBQQ31EfCA0FcJwnnBPbv388pEFH7CWnljKFrfOk0gnqf/oyfIYiyuH83bdrED4PRBvvhLMJ9jnDlfuCG8iYEhMBbQ+DTTz+lFClSEMRmOHpR6wwvfLngZYd29bpjXHwRAWlR8XvtXa1r9EY5iSIiItxx3aUPISAEhIAQEAJCQAgIASEgBISAEBACQuANIYAaOUghg5RXeHDtKFAHB99IHzhwIKeBg8Pl7t27LAA52oc+8Y1kiBEzZ87kh194YISH4o4cLnouSFcHxxEcF6j9cvbsWcJ4efLk4SYx6VuP8SKXELY2btxIn3/+OafLg0ig6wZVrlyZh4ZAh5pEnTp1olOnTtH27dt5HQKYdpWA+7x58zidHDgghRxeZ86c4T7gMIKDZdy4cVxDavPmzfThhx9S4sSJqUyZMswub968tH79em6Pb3bj+mMOqDuh+0P6PgnbBHDfIa0iAg9vNTMscZ+mTZuWWSMlEwq+41rC8YXUTbVr1+ZrAUEVNadw3+7atYvb4CEq6nuhBgjClfuBG8qbEBACbwUBuGLnz5/Pf79CNEbNufbt2/MXDF7FCeJ3Ef6+Ngb+rVChQgWXv9yhj0VKU9Q3xN+F72q8MU4i/CMDfznhHxNYvisR/CCcYnl4UOL4ti+Vuofpxt1QSpbQi+LGfj7NL/RxJPnfekgZU8SjeF6xbKINefSYboaEUeYU8SmWp4fNNnfUXKHiJrEzV5sHvSYbnZ1fTDkH3Akl/MJJmyyezTO++/Ax3QoJpcwpE9jla/NA2SgEhIAQEAJCQAgIASEgBISAEHjLCeBBENKgIcUNHnAjjN8gNq5DrIAA8eWXX5KuhdO5c2dq27YtOyHs7UOfqNOCB+OolxMSEsIPy5FKR6dUg0hhKzA+nDV4eIZUN6jxgoCwMWrUKF531jc3eoVvqEOEVHxIswNxDAHxZ8eOHYQ6Twik4YGogHRxOuUYnD2oM6SvwYgRI7gtUu8Zo1+/fjR06FD64osvOP3e4MGDmTPaQByC4ARHEQQ9uJOQ0ggxdepUXkLAwksHUqDBqSTxLAE4wnD/IlAbyxi4v1HrCzWKkGrugw8+sOyGgIf6XwikVcQ1wfM3/dAUP4PTp0/nOl9o48r9gHYSQkAIvB0E/P39+USQllUHvgiB9G6vIr7//nsWrfFFgyJFivDfHfhyAn6/RTfwd9K7Hh7KRqpkhucPFCnEt3mMgb9A8O0ed4o5sMjiHxs6T6pxPHeuPwyLoInrL9C0TRepY6XM1KdWdrvd77twh75adJwu3HpAOwdXsAg5lYdvI4gCxiiYKQn9/nEx3rRs/3XqP/+YcTevT+1QiMr6evP6rnNB9PWiE3Qp0Gy3zp4mIf3QLA/lyZCY90O0mLf9Mo1ZfZbuh5odVpVzp6QhH/iRdyJzjuSvF5+gJbuvPjPO3iEVKX6cWBQRaaKRK87Q7K2XLG3aV8jE56yFoOvBj2jQHydpy0nzP9ASxo1FQz/ITTUKpLYcs+NMEA1aEnWu3zb2o8KZk1ra2Fuxx9sVRu7g7Oz8XOFs7xxwzjvPBjHjY1fM/0DLokSg0a3zUa505nQFgffDqd/vyoZ/OpARge/gRn5Up1Aae8hkuxAQAkJACAgBISAEhIAQEAJCQAi4QMBRYW1H+/AFP+z39vZm94oLQ0VpcufOHX7IrtOoGXfGtG9jXy9qPTAwkGLFisVFyW2NATfKuXPnmI8WkGy1c7QNHJDGDnWjrDmhf53OzlEfsi/mBMAa7jDUFsE1txUPHjxg0clYi8rYzh33g7E/WRcCQuD1JADhGOlfkZJSB74wgLSqr1K0h3sI9QAhFCEdnr0vdOg5O1rCDQsxHSlY37WwbU+JBgV9Y0AYypo1K1uztm7dSnghnyy+meCOgKKHbzjAdvyi4vjVEOo+8xClUCILhBYIBDq2nQqkpfuUuFM3J3kr186wpafot22XqZwSdSAS6aY4BgLR6Fb5KPcTQQd9GF0+t5Qjp2jWZDSsSW7dPS9TJzGLOzi+3eT99Fnt7NSkRAZ6HBFJI5SY03n6Qdo8oCw7Tf45fIOG/X2KJn9UkPvCMX1+O0JD1bZRamwEHEYQuj4okZ4/6zftFoI4tPxAAC3pVZx80yaiPeeDqf2U/ZRDCVINi6Vj8amb4pFeuV+Wf1aS0iePR3/vvU6fqnEWJC9G+TMm4TE+mrqfulfNSh+W9aEIdf5TN16gVr/spR1KOHPkKnLE2xkjd3CGuObs/JxxdnQOp67fY55dq2ShX9oVoDjK6fXTyrPUYdoBWt23FCWKF5u+WHCMxbpN6romTeDF91RfJRrl80nMriJ9zWQpBISAEBACQkAICAEhIASEgBAQAtEjgLoJ9sLRPrhinlf8wHhJk9r/wmRM+7Z3Pu7cDnHMUUDA0enlHLVztA8cUPjcVohAZIvKi9kG1unTR31mZD0S0krpekXW+/DZHfeDrX5lmxAQAq8XgQwZMvCE7t+/b6ktB7E/c+bMr3Si9erV4zpJqD8YE4HolZ7EazC4ba/0c0wMSh2UO+SFhZUbsWDBAktPs2fP5tym+IcYcpwa96ER0slVq1aN7aqwYY8ePZpzG2p7+MSJE9m2DWu4DhwD2zn6rFSpEheG1MWlYHVDbsTWrVtzgUs4nvB50qRJnINV92Fcnrh6j1qUykDzleMnbdK4xl0s/GxTbo/QcLNr5/yNB/Rn7xL0YbmMUdrdfRjOn/Oqh/yZVGo2/Upj6A8CCBwlep9eavEmTKV/G9kiL31UITOLLBCs4BIKvBdGD564hlKr/n7tWIjK50pBCZQrKGuqBFRMCU+XAx9Z5gORKGfahM+Mo/4txhHXy5P+934Oyp0+MQtPJbMnZ4eLdr3sOBNIJ6/doyFKzMqWOiGnomum+ED88X3ihLkebHZM1S2chkUOCGjvFzbb/5E+zVE44u2MkTs4u3J+zjg7Ooc/91wjOMh6VMtKqZPEpWRKBBrcKBet/LyUxcmVLXUCdm5hP4TERsXN/0gGdwkhIASEgBAQAkJACAgBISAEhIAQEAIvgwDSi+kXxtPrWL7On3ly8iYEhIAQEAIvnIAWlFG7R8fevXsJz9wl3nwCMXYS2UKgLahwEiEgEOmCh8g1u27dOn7hmyNNmzYlFCJsp/Kc6jBausqXL8+boUyiQB6WCGOfcDDB1oYXbLIjR45kKyza44X8uDpQWK9gwYJcvE9v00u4Z+wFHt7rB/hoM00JNAgIMca4rdKHIf47HUQLdx4hT3WOlXKnoE6VM5NXLLMmd1MdE0cJNEgzdtD/LgsJLcr4WNKzZVTiEl6Ryi4T/thE528+oEkbLlDtgmksKe10KjekjIOotOtcMP219xr1rfM0L+RllaoOohHcQXAaIZUdnEVasGpZ2sc4dboS9IhFoXblM/F2OKTy+SShvcphNH3zRSVShVPpnMmpy3tZlHhlrq2TL2NiQiq84UtP0yfVs3HdHbiekBYPwpKjcMTbGSN3cHbl/JxxdnQOZwPus8tr2saLtEw5tmKrWk7v5UnJ/HQ6v/7vP71eYLX9Sdo5PyXcSQgBISAEhIAQEAJCQAgIASEgBISAEHgZBHSWGD3Wm/ZZz1uWQkAICAEh8GIIwDUIY8g333zDdekOHjxIixcvpv3799sdEIaSFx1eXl5ca23btm20fv16m8OhXqCEYwJucxJt2bKFlixZQt9++y2NGTOGR61VqxYvBw0axMsVK1bQpk2baNWqVfxZu4R0IcK6devSvXv3OLctCuIhtDOIPxjedJ9wHKEo1erVq3kvikoi/68xoGoGBwdbiu1hHi8q4PZBzPzXnxoWTUelciSn8WvP04CFxy1D3rgbRn/svsaCTxvlRLqq6v4gPRtSlxlj8a5rVGjAJmo4ZhenwBvaxM+4m9dR26jo15up24yDhHpCTUuabcKPVd43pFMb9885KqEcQg2VyLXu6E0WjEIePn6mHwhN/ecfZcFH18OBOHXk8l36cuExKqccS3ARbT5xmzpMPUB3n/QBEexH5XpCzaKm43ZTs/F76IQ6j+FNo6bSe2ZAJxucMXIHZ1fOT0/THme939bymHKmTd/sr8S76/RB8fRU0S8F17vqr1LM2QqIegNVbacWpTOw+8tWG9kmBISAEBACQkAICAEhIASEgBAQAkJACAgBISAEhIAQeNkEhgwZQqhTBoNI48aNOROYo9IwqD/3ol/4UgPqCMGsYm+sl83pTRzPbU4iLQxpCHXq1CGkjYOz58qVK7wZAtKwYcMoIiKCP8Plgxtr9+7d/BmqHqzMPj4+1KRJEy58pfszLo19ok4R4r333qPEiROzgwhKpo6cOXNS/vz5+WONGjW4VpK/v7/e7fZlwrixqJVyBfWqkY1rzmAApHyDyNBXuUZSJY5DJZVw1LJMBqqemBquAABAAElEQVSe3yyENVY1gxopIQjC0YD6Tx0kVfOmJL90xejolRCat/0ytZiwl+sHQZjR0VONA1Fh59kgmqGEqXuPIqifSiEXpuoYQdRprl65nqSGq6nGqzFiO21XaeT02OgH9X0gTiDF2R+9SlDsWOb+Pci8HNM6P7uQ0LZqvlRUU/Wx9dRtdjZBaIGIhXR4zdU8lLGJBTKIXkv7lKR0qp7Rx6qu0TGDAIaaT4t7Fkd3dsMZI3dwduX89ATtcdb7bS29nnCc060Ii3xokzVVQvpCiW4B74daHF3YDtEN9ZFwrYxuMOyTEAJCQAgIASEgBISAEBACQkAICAEhIASEgBAQAo4I4Iv2M2bMIDz/xLPVlxWnTp3iujRx40Yt3fE84wcGBhIyTyVPntylw2FaQB2asmXLRmnvzjnBjIDMVtmzZ+caXFEGiuGH6Mzz8ePHPA/Uc4sVK5bTkfH8fdasWQRTRqpUqZy2d6UBrgsMINeuXSPUr3N2zXVmMVf6fh3aQLt4V8NtTqJ+/frRokWLLByrVq1KyZIlo0ePntbIQWHDHDlycK5CpIhr06YNhYaGWopdYV2HPs5WwSljO50fF8fFjx+fD9dp7vAhUaJEvA1ver9lQzRWkFZuhUoZhvRujgL1fQbU97UIRGhb1tdcLPPkE6GkW5UsUUSaeCr1XEWVkg6p54yBWkQFVE0biEBDP8jNIs6+C1FdUqhnVFTVIupeNSt1q5KVZm7xpwdhEVynaFDDXBaBCP0ihR1Sw+maQ3qscWvP0dJ911UKvcLcRm/38TanlIMbSgfGQz2l41fMNXNQdwfzHNsmP9dHgltm8kcFufmy/QG8rFckLadYQ5o6vCCiOQtnjNzB2ZXz0/O0x1nvt7UEJwREMR1I14c4Yag5BBdXrzmHKSw8UnEsoGo/ue3HUg8rSyEgBISAEBACQkAICAEhIASEgBAQAkJACAiBt5jA8ePHqVu3bhQebi6F8aJPddmyZfyMN1++fIR6NQMGDGAnh/W47du3j1LnDM9y9QvCB2LDhg3cV9q0admlglIh27dvt+4qyuerV69SgwYNojzvdXVOEE/0HKyXEJ4Qly9fpnr16rHAAgMC3DPIouWOcHWeGOv+/fvUvXt3SpAgAWXLlo3Pt0+fPuyc0XNBG/DHuWCJgJCEVHB9+/bVzdy2hFDlTCBy22DS0Ush4Lan0SVLlqT69etbbsSBAweyqydTpkzs8MHZ9OrVi6ZNm0YTJ04kpIWDCwhCEo5FfP/993Ts2DFas2YN6ZyFttLNZcyY0dIn1EsEfhHCYYTALxJ3x9xtl6mvqiF0XKUQcxTL9l9Xadf2RBGTrgaZazNl8I7Prp0Pxu4mtDPGBeXIyZbaLCr89t9lTgtn3J85pVkAQ60eBOoZjVWp5IyRNZX5eKSTO6f6q/HDdl7qNuHKXYQ6OZlSmNth+8KdV2nS+gs0RQk7BZUgZQzftGaB7aKqTaTjoRKgUMtHz+dReAQljBOLdI0dtNProWofokaB1OxogqsJL0d1fNAeziZnjNzB2ZXzc8YZ87UXELIgoBmFxYu3zPcCBDsE6k59vfgEnVbXZUbnwuSd0Mted7JdCAgBISAEhIAQEAJCQAgIASEgBISAEBACQkAI2CSAWu0o34Ev5r/oOHDgAKcba9u2LQUEBHBtGtSI/+mnn54ZGs978dzW+MIzYWR/gpABV0rNmjWpVatW7JRBRqrq1atTxYoVKSgo6Jn+9AakPqtUqRIVKVKEN0VnTg0bNowyH8xtxIgR3A+EmJCQEH7OjfkdOnSIy5h899131KJFC0tGLD2P6C6jM0/0DdEHpVt27NjB84CItXDhQtJlXNAfhLp169bx9UfKNR0wdcybN4/27NmjN8lSCNgk4DaRSPfeo0cPXsUP0y+//MLrn3zyCS9r167N6iVSw0GJRT0hWAhxsyNVHNTNQoUKsQ1O1yTS/VovP/74Y97UrFkz/gGtVq2aZQyozu6OJiolHBxCudIldNh1ocxJuY7PsL9PEWrMHLkcotKLHWf3DZwlyBQH8eCH5Wdo26lAuq7qEaFuDWr9vJcnJfddTDmDkD7u+2Wn6YwSD1CrSNc0KpXDm9sUypKUxZ0FO66Q/+2Hlvb5fJJwGrOsaiyknBu4+Dg7kJAWTvdRInsy7gNjDv7jBJVUNYtwHTAfvLSjqYJyBcF59Nm8o5zyDnP5XK0jtLvovTyp6JI6T/SDecKl9KU6X9RDqqRS0D1PuMLIHZxdOT9nnB2dX5tyPoTaSQMWHSfw33/xDn2l1sEU1wfx8+pzLBh2qJiJ2+hrYBTmHI0h+4SAEBACQkAICAEhIASEgBAQAkJACAgBISAE3m4CcAd9/fXX/MV4pJJDGi84XYwB8QCp5hBw6AwePJhQLyZXrlz0+eefc8kPY/uYrP/+++9c3uN///sfp4arXLkyz8+6HAnGgAMHqdr0C5meFi9ezHXt8Tzy0qVLPJWWLVtyCjOkRoMYg4AAZStQhwZCSfPmzS27ozOnJEmSWOaDeUFYmzNnDnXt2pUyZMhAGzduJJRJmTJlCvn5+bGLp3PnzjwfXdbEMnA0V6IzT3R97tw5ixgGNxHMFsWLF+ft2I+yK126dOESK5i7MWC0gNj2559/GjfLuhB4hkCMaxLBxobADzUiRYoULPqg9hAUWPxwwVWEH97Zs2ezgwjtkA9Ri0j4ZQW1+++//ybUC8IvFqigUETt5VjELzr8wkOfsPpBZMIvhkmTJqH7GAfq/jw5Je4Lzg9HadLMZ69Suim30C/tCrDraL4ScBAQbsZ1yG/p7391c9Kdh+HU6dcDvB9vqCOk6wShLg36+ObPkzR7q/kXJYSFRaqOT/InThM4cu4+eEw/rjzDggz6QKq3YU3zYJXHmqmcKT1mH+aaQdgGV8vMLoXJR80RsfDJ/CBI4aUD8134STF2BI1XaeQgEjVR7icE+pjTtYilD4hFo1vlo++Xn2ZXEtqAwcT2BSl/xqjOJOyzF9a8nTFyB2c4npydnzPOxvOxPoe0qh4TUu/1+e0Ip/NDW7i1fv7w6b0wddNF7mLkijPGrqhTpcz0aa3sUbbJByEgBISAEBACQkAICAEhIASEgBAQAkJACAiBd48A0otNnjyZ4NbBs1cskdFp8+bNXGoD7pEVK1bQqFGjGM4XX3xB06dPp6FDh3IKMjhKbt++zTWLrOnhuap20Vjvgxgxfvx468108uRJKlq0KNcD0jvh6EGWJ6Q+S5jQ/pfsMXe4iJAqDlGsWDHKnTs34RwHDRpEyCrVv39/Kly4MAs0un/jEsIIDArGbFIxmROeSUMU0mIKagVhXtu2bWN3FM6rSpUqBK6u1ksyzte4Ht15tmvXjp9543l5iRIlCGIgrrWeK9xcjgLnsXr1asKzegkhYI+AhxJvnnrQ7LVy03b8wkKhL6SYM9YHgrCDX2r4ZQLXEdpA+T5//jz/8oLd0FHAlgjnkT1BydGxL2of0ohdDnzEtYnspRALefSYboaEUWYlQOkUbdbzufMgXP3C9aDE8WzreXAQ3gwJpWQJvChObNvGMNRTCo8wUYbk5hpD1mO48vmacjxhrPQO+rir0twhksS3PVdXxrFu44yRuzg7Oz9XOFvPXX9Gujm4vXCNtMin98lSCAgBISAEhIAQEAJCQAgIASEgBISAEBACQkAI2CMAMQTCEEp4oL474sKFC4Ta73/99RchcxNEDaQcO3LkCNcH8vb2prlz51LTpk25PUQFpFiDM8da5Ni3bx+tXbuW21m/oYyIdvUY9+EL/61bt2b3kN6ODFFwuWAJB5OtgGsIzp3ffvuNmjRpYmmClG4QM3TADIBnxTgnW7Fy5UoWmYKDg9nlgzbPO6eIiAh+Jl2hQgUaN24cDwfX0MyZM9mU0Lt3bx4DYhmcPFu3bn2Goa052tsW3XnCJIGMWjNmzLB0ifmhlIv1s3Dwh5g1fPhwS1uIi0jNZ+08szSQFSGgCLjvab4LOOE2QmEr64Dy3LNnT3YE6eJaaIMbG7/onIWtPp0d86L3w1WS6UndGXtjQfixJ/7oY5IqYcFRwO2UOklcR02c7nd48JOd6ZQrxlm4UxzSYzlj5C7Ozs7PFc56ztZLCIC6XpT1PvksBISAEBACQkAICAEhIASEgBAQAkJACAgBISAE7BFA/XYERAwdWbJk4RRpyMSEZ6fbt2/nL9DDobNr1y5uhnrv69ev53Wdtg0iUvny5XU3vMSX9nVdnyg7HHyAaAXxyhhwECGQys1eaBdRo0aNLE20a6dOnTqcNg1OIgggSJOG80PKNOsIDAzkTRBtdDzvnCC0oSbR0qVLdVcqQ5M5Z9T8+fNJlziB8wmOJwhqWnzTB9y9ezeKqwnbGzduTD/++KNuYllGd54QqSAQgQlS3e3du5fLuSRNmtQldxBEQTihwNXT07bBwDI5WXlnCbxUkcgeZVgX4RrCD+Xp06dZHYdS/P7775OXl2ORxF6fsl0ICAEhIASEgBAQAkJACAgBISAEhIAQEAJCQAgIASHwJhMIDQ3l6ceNG/VL4vHixSPUKkL8+++/hBrwEDcePXrE2yBooL4PAkILagPh5Y6AG+biRXMJBd2fri2UPn16vSnKEu2RTQoOJ6MDZtasWSxwoU6R3g43DPqZN28ep56L0pH6oMufIGuVFnSeZ05w6aBMCpw5mTNntgwDEQ6BFG864ICCCAfhylokwrVAfSZj5MiRw/jRsh6decIphbpIeCHtHKJcuXK87Nu3L8/d+r7gnYY3fY+IQGSAIqvPEHgtRCLMCoW1YJ2TEAJCQAgIASEgBISAEBACQkAICAEhIASEgBAQAkJACAgBsqRu27NnD9d4BxM4aeB+KVCgACNas2YN1/PBB53qDc4c7YKBGHL16lVKmzYttze+oXYRasrbCriU8KV+6/Dz8+M6RkFBQZbUaxB5UEdICz3Wx6D2PEQWo4sIbR4+fMg1jIzHxY5tfmStBS/rvuDGQdy5c4fLmmD9eeaEekwwLCB9nTHg2EGcOXPGUhcJTim0tSX+QLTq0qWLsQu769GZpz5/o2MKHevPqowMOROJUIsKz90lhIAjAuIxc0RH9gkBISAEhIAQEAJCQAgIASEgBISAEBACQkAICAEhIAReEQEIIhB8unXrRqtXr+bUcqhNhPrsSB2H7ExIJ1amTBmeYcqUKTkFHdwxEI+QYg4iEMSNe/fuPXMWSGOHGkG2Xkh1Zis6derEm3v16kUnTpygiRMn0rJly+ibb77h7RBfChYsSKgjjzh37hzXVBo0aBBpAYh3qDdkksI5dO/enV06qGnUoUMHTmdnrwyJj48PHw7RRoezOZ08eZIFNJ2Cz56LCP3VqlWLU8u1atWKULMJKf9QgwkBx1ZMIjrzhKiH69qnTx9Oh4fUfIsWLWLXEtigdpOzOHr0qE1hy9lxsv/dIvDaOIneLexytkJACAgBISAEhIAQEAJCQAgIASEgBISAEBACQkAICAHnBJCSDeJCvXr1uDHquC9fvpwgCP3zzz8sFiC9nA6079ixo8V5lDVrVm7n7e2tm1iWEI9suWMsDWysoB+kgkONebiZIFZ89dVXVLNmTW6NGkhwOj148IA/ozaPLRcRdkJ0+f333+nzzz9nIQnbMF84mFCixFb4+vqyOwYCjm7jbE6oGwRRCc4aBIQsiFMY1zrgasJ+iESlSpXi3RDlNmzYQDoVnfUxrn6O7jz/+OMPFgg/+OADyxDNmzen8ePHWz7rFcxbp9/T27Zu3Urt27fXH2UpBGwS8FC2NJPNPbJRCAgBISAEhIAQEAJCQAgIASEgBISAEBACQkAICAEhIAReCwKoL4MUYwkTJrTMBw4jpJ9bsGCBZZteQVukSUuePLne5Pbl2bNnueaRrhOkB4BTx9o1pPfZWyJ9HcKV+X7xxReEFHxr1659pjt3zgm1llD7KFOmTM+ME9MN0ZkneMIxhrpSxtR8juYA9xRS5x06dMiSNs9Re9n37hIQkejdvfZy5kJACAgBISAEhIAQEAJCQAgIASEgBISAEBACQkAIvMEE4Lrp168fu03e4NOI9tQhmMA9hfRxhQoVivbx78IBcHqFhobS5MmT34XTlXOMAQFJNxcDeHKoEBACQkAICAEhIASEgBAQAkJACAgBISAEhIAQEAJC4FUQgLsEAlHdunVf2vBGxxCcSi/6s70TQ/o3pIS7c+fOC5+D9Tnam5Oz7db9vMjPDx8+pDx58lCjRo2cTUv2CwESJ5HcBEJACAgBISAEhIAQEAJCQAgIASEgBISAEBACQkAICAEhIASEgBB4Bwl4voPnLKcsBISAEBACQkAICAEhIASEgBAQAkJACAgBISAEhIAQEAJCQAgIgXeegIhE7/wtIACEgBAQAkJACAgBISAEhIAQEAJCQAgIASEgBISAEBACQkAICIF3kYCIRO/iVZdzFgJCQAgIASEgBISAEBACQkAICAEhIASEgBAQAkJACAgBISAE3nkCIhJZ3QImk4mGDBlC3377LQUFBVntlY9vI4Hl+6/TmYD7dk/t/M0H9Oeea3b3u2NHwJ1Quhr0yGFXgffC6Kya5+MIk9126vYlzPfOg3C7bWRHzAmEPo6kXWfv0IOwiJh3Jj0IASEgBISAEBACQkAICAEhIASEgBAQAkJACAgBISAEXhEBj7CwMPtPnF2YVK5cuej8+fPPtCxWrBj9999/z2y33hAREUFTpkzhza1ataIkSZJYN3mpnzGf+PHj85inT5+mzJkzv9Tx34bBQh4+ppKD/7V5Kn99WoJ80yayue9VbSw3ZCv1qJaVmpfKYHMKf++9TkP/Pkm7v61oc79xI8SZ0t9soakdClFZX2/jLpq5xZ+mbfKnrV+Xs2z/7b/L9Nu2y3Th1gPe5p0oDn1aMxs1Lp7e0uaQ/13634JjljbY0bFSZvqkelbyimXWeR+FR9JPK8/QqkM3CGISInuahPRtYz8qnDkpf7Z+G7XqrJrPxSibi2ZNRr1rZCMsJewTuHDrIfWec5y+/SAnFciY2H5D2SMEhIAQEAJCQAgIASEgBISAEBACQkAICAEhIASEgBB4jQnEjunclMjEXeTPn58yZsxo6S5nzpyWdUcrjx8/pl69enGTWrVqvXKRyNFcZV/0CHyjBIqS2ZNHOShdsrhRPr9tH6KjuE5Ye54mrDtPAxvmoop+KShubE/adPw2fbX4OIU8ekztymeie2rZfMIeaqYErJldClOieLHp4MU71HPOYUoQJxZ1rZKFIBD1nH2I9qvtP7bMRwUzJaH7oRH0+/bL1OqXvfT7x8V4mz3W//QvzbuuBYfSLCVkfThpH20bWJ6SJ/Syd4hsFwJCQAgIASEgBISAEBACQkAICAEhIASEgBAQAkJACAiBt4BAjEUizWDw4MFUt25d/ZGXjx49otq1a9OdO3eoe/fu1KFDB9q5cyevx40bl8aOHcvb9EF16tShevXq0XfffUfh4eE0fPhwWrlyJZ05c4Zq1KhBffr0ITiUEC1btqSTJ09Sjx49aNGiRdwv2n388ce8vX///jRv3jzasmULffDBB9SzZ0/KmzcvH+vv709fffUV77t79y73ifmXLm1+WM6N7LyNGTOG5syZQ02bNqUTJ07Q2rVracaMGVStWjWaPXs2zZ8/n+dSsmRJatu2LTVr1ox7ghg2atQoWrBgAR0+fJgKFy5MrVu35vl7eHhwG8wXr+3btxNEN/D47LPPyNPTk1asWEEDBw7kOY4fP57bT5o0iaZOncpzwfk6mtu0adOY0549eyhHjhzUvHlz6t27N+mxYzp3W7jSJo1LmVKYXVnW++uO2kkfls1I64/epH0XgilzygQ0oL6vxfVy7sZ9Gr70NB30v0OpEsel5qUzcPsnqAjunsW7r9KJqyFUOXdK6lE9m2Us9N2qjA+tUa6aI5fvsqPny3q+9POac/TP4RuUNlk8dstUyZvKMq3g++HU7/ejtPH4LcqVLhG1VMfXLpjGst/dKw9VmjIIRJ/Vzh7FwdSoeDrCvn9P3qY25TLS2Rtmh1GjYukodRKzwFY6pzf91r0ohamUZ4j9it/WU4FRxKBkCbzo89o56FZIGG0+ccuuSJQnQ2Ly8TZfIywjVb66Dcdu0bXgRywSffvnSRamkA5vw7GbNK5NASqVIzmn3/tDpeADfwiB7SpkomLKfQRn1H9qLhPaFeC57TgTRIOWnKCpHQvx9YmINFGDMbt4buVzedPUjRf5Wt4MCeXjcZ0yPrlnbtwNpXH/nOdrkl5ds/pF0lKrsj7cL9L/rTgQwHOZueUStVT3R/eqWXmfvbd/Dt+ipftuqHMLJe9EXlQmZ3JqX8HsHhu54jx5qh9DiHy7VRo53GdV8qagTpXNwjeuyXdLz9HJa/cpcfzYalz7TquLymU0cMlpqls4Na09cpuC1L2VX7mNmpdKSxjn9r1wSpMkDg1p4ksp1DwQ208H06QN/nRXufDiecWi9wunUvdgesJvhp/XXKBQJQRCFNx0IpCmdcxHsdVkf1h+nk6p+Xiq9WJZk1DvmlkoFk5CQggIASEgBISAEBACQkAIvOEEDh069IafgUxfCAgBISAEhIAQeBcIFChgfgb6pp+r20Sihw8f0v37T+u6xIkTh+LFi8diDgSifv36UZMmTVicgUgCwSN58uQEIUnHgwcPKDQ0lD9269aNRZfEiRNTnjx5aPHixbRmzRratm0b+fn5sRCEfrp06aIPJ6SKg3CE7RBgdEDEuXTpEgtOkZGRLOggRV7WrFkpZcqUtHHjRn5duXKFvL2jpgjTfejltWvXuH+MoQPnAJGlY8eOvKlMmTK0bt06fkGEgaA0efJkPvfUqVOzQAPRBwIQzq9du3ZRjse8kKoPrxs3btDIkSMpODiYx02T5qlwgX2YR/ny5Xlce3P75ZdfWBBCI/S9f/9+fkGIw3WJ6dx5cBtvSg8g1MjRoQUefEZtncF/nGCxplq+VDR9sz8h/dmcrkX4mA7TDpCfEmvGty1Ahy/dpe+XnaasqRJQ+VwpWFj6YuExQso1pIibpUSCrtMP0qKexSlh3FjcN8SNAUpwqKWEHoyzTQkXEJOGN81DC3ZcoU9mH6b9wyqxewfzGfvPOXq/UBpOz7ZRiSSfzzvKogyEjxcRZ5UIhsD5WAeEEC2G5EybkHd/ueg4CysQZOJ5eUZJ2Xfy+j0+bziIrOP7ZnmsN0X5jNo6qHH0WF2sU9fu8XWASKZTAkIcmq94VVXX6Kv6uShb6gS06mAADVDzaVs+I4szEGvaKPfR0j4lKZu6RsP+PsUOKLietiix61LgQ4JYBMEQtZ9w7XOqVHjL9wewcDesSW5KmTgOC0KfKe4LPylGmFePWYcpPCKS+r+fgy4HPqJhS09RfCWUQEiD0+q/04FKcAmjnirtXv6Mz5678UTPKbHtl3X+6prGoSYl09Jh/xAlTimRKXtSyp0hEfcPcQdsq+ZLQeuUuLPiwE0WkvL6JKJ+80/SpduP1D0Yn0WZ5ftvGLuPsv4wLFLVhHpMc7ddpdzpE1Gc2B609/wdfqVXTrrSOZPR1pNB9PPqC5yu7uiVe0rwOUfY16BoGtpz7g4t2nmdBZ/mpdKpuYXS6evm+yVzyvjkpRxn3WccZUGpZPZkqn9P+leJR7dCwum7Zr5R5iIfhIAQEAJCQAgIASEgBITAm0jgbXng8iaylzkLASEgBISAEBAC7x4Bt4lERlEGGOFsGTJkCLVv356mT59OcLDAvbJ582YWKiCQoPYPviEEoQQBsSZLlix08eJFi0B05MgRSpcuHX377bc0dOhQmjVrFjuN+AD1BscO3DsQT2LHfno6GGvmzJm0atUqatiwIQs2QUFBfBjcR3AyffTRRxQrViwWnSAa7dq1i2rWrKm7drjEnFevXk1FikDUMJFOrwfxB66i9evXE9Ln/fDDDywSbdq0ifvr2rWrRSjDeLrm0aBBg3j/6NGj2Q21YcMGnsvPP//M7R1Oxmqn9dzAFDFx4kR2bum54TNEIj32886dO7fx1m3GwShbIeAY6/rAKdP5vSzcJrESFD797QjX04GwBnGid43s7FKBMAIxRac/Qx0dpF/rUys7HwtnTblvt9Duc0FUSQlBiE5KQNJCy3Hldlm+/7p6gJ6HH7z7eMej/34OpIuqDpAWQ4pkSWrZXz1/ahY2Fu28yu4W7tDNb/qhf6YUCRz2DPfI3G5F6QtVk0jzLKdqHeH8tRMKbhIIO88TEGwKfLnRciiu0dgP81PsWE8dKeh7TOt8ymlj3jbj30tKzEinxBtzSknMo8HoXewI+rhaFu7ryOUQdvlAcIN4tf1MIDUtmZ4OqJR4GZVjKX3yeHR8Wwivv184DddWKqCEHv/bD/n4feeD2QW2/osylE65iBBIvTdn2yUWiXiDevu1U2HydiEtXsCdMBZhRrXOzULQB8XTUpNx+9npA5EIgdOb/FE+SpogNjUoloY6TTtCx6/eo7hKOIJAVDmPN/WqkYXbfrf0LO1UjiNH8Z5yIvWsnpndSQ1H72NB8pf2ZjfjhZsP6eKTc52++TKPPbZNHubeUI3dZfpR+mtPgBJB01mGgAAE0WnD0dssQnWs5KMcR6l5P8QtOKUgTmH+EkJACAgBISAEhIAQEAJCQAgIASHw7hGIpEgKV38eqz8RT/7wmilC7YlU/z999o/63/AzfzzJk2J5qJf6E5vfsYxNXuoPtkkIASEgBITA20XAbU8TkT4NYo4OLZpAhIGTpUSJEizUYD/SpEEgshcHDhzgXSEhIdSiRQteh6sGgVRsxoBLKUMGc8oo43YIQ0jTVr16dcvmgIAAFoSQfm7hwoUEwQbCEQQihNEJZTnIzgrcQcWLF+e9cPTAhYSAmDVs2DB2NeEznD5wSMHt8/fff/N+pKurVKkSi1dYGo/H3BDvvfcei2dgcPBgVLGFGzh4M84N7iL0jwATRJUqVSwOLuPYzzN37tDO28fVshIe/OtAiixjINWZDr0eoFKM5U6fWDk4vAluIaSHK6cEour5U6nUXHEI6coO+t/lFxwwxjihHuhrkcjXIJokVanXIHToVFzeCePwYeGG4zGe3o9lWd8UtFI5ZF5UYE4ICB/xvMzzsTcWBKxV/UrxOcORg5RucEJ9UTcnfaiENogCgRfD7R3udDtS1yGQcm+TSrcHF9d0Jb4grRwCIo8WiMAcKfw+LGdO+4b9cLKgLRxfSJUGlqiPBNfRBSXEwR3WVQmGuHZ7lfhTOY9ZyIO4BBdY9R+2U60Caahi7hRUPJvZuQVxBvHLugu8xNsSlV4QodPspVHpDF0RiHAM3DspE3vRlA2XlAD4iJ1DcLnhn8c60JcWWFIpZxMiWIkuELwQSI+nA6nqnIlERTKb733c9RDd4EjSgXSASDuHuBoUShmUaGYU5vJkSEgbjwUyM7RJoMQ7CESIY8p5hMD4+y+a5wZRFQHXVtIET3+ueKO8CQEhIASEgBAQAkJACAgBISAEhMBbRQDCTxiF0iP1CjOFqXVIQ+F0l0LoGl2nANNNCqRgCqI7anmHbpuC1ad79JCPeqyOwytcvSKU7ONJ8ZUAFFe94qlPcdUrCSWgFB5JyJuSqlcy9ScppfZIQekpHX+Oy628KI5HHLVm/uOljofcJCEEhIAQEAJvHgG3iUSo8WNdk0jjSJs2rV7lZZIkT4WDKDuefICoogP1cxBw/iBVHMQmYyRNmtT40bKO9ggvL/PDeL0DaecKFSpEEF8gZCGV3fMEUuXpMKbM8/X1Va4A81+KEGAgDiGF3ieffEKY69y5c9lNBWEKafDg4mnTpo3uipCmTweENMwTqfx0IEWcDtQ5shXGuRnbGFlAQEPEdO4DBgywNQXeBoHIVjo1fYDxoTjqqhjjF1XTBi4U1Aga8tdJfv3+cTGLYyaLqmEEN4oOpCAzphx7cgn0bqdLpPAyBgQtiBrRDQgmiDsPn14n3QfqzSRUziAE0q0hzt98wKnW+MOTN9QFwthesZ7OCSJN4cxJ+dWhYib6aOp++n37FRaJ/NIlZrEFKdriWp2HPgctgBnHwTrEOfSrAwLOKZW+7g8lyGiRSN/PaIO0dIg4hrnxZzVu6OMI3ldWOZ2Q3g/p5eACK6xELsSxKyH0nxK5hnzgx5+Rym9V31JcWwh1kGZu8ee0dnAyPQo392W8xnBPQcgBH4T1HHijnbftZ4Lph2XnmI9vuoSq3lQq+mPP9SitrdnpnSEPzXNBjS0dWkzSn20tE8WL+u0qpMqzFRC9rMUuawEUjjIdd5WwiECbiEjz3JKoOkl5lCMqYVy3/UrXw8lSCAgBISAEhIAQEAJCQAgIASEgBF4hAXy5UUlBSuBRf0wPWRi6QTfotOk8naAzdEItTyth6ISSg0iJPm4L60cils8elJYSU25KTb4emdQyB+Wi7OTjkUFJS/Epvod68Z94Sn56+lzDbfOSjoSAEBACQsDtBF7KE0WkNENAlDl9+jTB/YPaQsb0cNgPV0+WLFkIriQE6veMHTuWEiRIQNevX6d9+/ZRihTP1nDhxi6+oVYQhBfUDUIKOIgomJd2ArnYTZRmmTJlsrh+evXqRcifDDEHad0QyZIlox07dnCaPTiYUKtp8ODBhNRyS5cuJQgtSBGHeWFOcPwcP37c4gAqWLCgxUEFBmFhYSx+7dy5M8o8bH3w8fGx9I1Uf++//z4dO3aMkHIvVapUtGDBAsv+5527rXFjsg11aCCoIO1bjQKpaUB9X6o3aict3XeNvm6g/umhBBbUMepWJYtlGDgpkCrteQPpzUilqNMBJ0wen+g7MvAwH/NDvZzaqh6SDog1W08GWgSTDCrlHeY7deMFKpq1oMWpg/aDlpykXWeD2D206uANFoBmKzcOUoohIERBENt8/DZ/9nviMIErp3Plp+eAMWuP3EEllFCjhRk+wMEbjrmuWGZIbtvphznAlXXA/w5fG3QFzWbfhTtU8IlzBuONXHGGhY8Kfin43HAtF6r0fYGqhlCxLGa3UPCDcCWQxaXuVbPya972yzT0r1N0Q7nJ/JSbDNFa1WdCKkLEw7AI5ewJZ7cSb4jG2/zt19gpNrNLfq5rhL6W7I4qEtnrLoO3WRxCXaH0yc3p3XarukHuCgg8pwOeCuPo99T1Byxo2RL3kC5xl3IRtS6XnvI+SZV39PI9Jbbd4JpL7pqX9CMEhIAQEAJCQAgIASEgBISAEBACr4YAEsbdV38emB4ob9A9OqXEoN2mA7TDdIQ2kb+aVNirmRiPqp4bKM8SXhtNZ9SWDea5mNSzCkpFpT3yUAkqRAXU0puSU0KPhKS+0khx1B9xGr3CyyZDCwEhIAQcEHCbpN+uXTsWQbJmzcrLxo0b87AQSlAzCIIPBBCkhtu/fz9NnTqV98Pxo0WhRo0a0U8//cSiDUQcOHEqV67M9Y1Kly5NDRo0INTqiUnolHj/qfR1EEqqVq0aI4FIzwVOIUTt2rWpb9++nC6uXr16LATBiTFmzBgeCzWPJkyYQFu2bOH2ZcuW5eXHH3/My2bNmnGKPdQ1QqA/OLHy5jXXMoGQlC1bNipVqhTXcOJGDt4wdseOHblF27ZtqWXLlpyCb+vWrQRxCxHTuXMnNt6QfgyOEuPrgXo47ywuq3RgFYZupZ/XnKXrwY8IaeSQlg3iC6JRsXQ0af0F5Xa5RqipM3vrJao8fBunO3PWt739m0/cVqnNzqsaNCG83HLytkqBZhYErI+BqId6VPYC88Pcxqw5Ryev3eM0cQMWHec0bbWeCEdwBo1qlY+2Kj5fLz6hRJZgbjtq1VlOq9ZeuYW0ewjp3frNP8rnd0nVsUHaNQhC7+U1p22DaIMaTGNWn1Xp1C5Yxuwx6xCnH4PQYi/g7tmlajnhtUzVbfps3hGuB4XUb/YC9Ygw/qJdV5kXBCHMUfPyU/OBALZcpevTbiS4izBvpM5LrEQRxPfLTlONEduZD0S+4yqNGo5DWsGiqp23Wn6m6lQhvSBEu7aT91Mf9dleOLouKRKZHUjXgkNVCryH9NXi09zNg1CVl/mJM8lev6VzJGOBadGu66pm0iPacOw21zKy1z662yv4JWcB7I/dAYSfD9QWAo+KuZ+mtzP2WTWf+bqPXXORU+GhRtHQv88q4S4kRkKpcQxZFwJCQAgIASEgBISAEBACQkAICIGXSwAp44JUUrhLpsu007SbJkZOp48i+1L+yLbUOHIwfW/6SwlEEGVepUDkiEkkHaYAmmLaSB1No6lEZCeqH9mdhkWMpn8iN9AZ0zm6SbeUH+pRlNTvjnqUfUJACAgBIfByCJif1sZgLJ0eDeIFXjogxsDxAtcQAnV64FwZMWIEtWrViuBagSiUJk0aGjhwIAs2cPPs3buXUMfozz//ZHFj2bJlLCqhD4gveD1vQDCBKNS5c2eaMmUKvyDClCxZklxx5WBcnaYNfRkD54DznT17Nv3888+8C+n3UI8JAZEIaedWrlxpOZ/mzZvT119/zfvhLIKrCccvWbKE3T3Yj/pNCKSxQ2q6b775hsUzOKogzM2cOZP3483e3IYPH87OplmzZtHixYu5PVLcoS9ETOfOndh4G7/2/DNb//q0BPmmfVqbRTfQNCGMZE2VgAY2zEU/rTxDUzZe5CZINQbxBdGufCYKUvVzvlt2iu6rh/wQFr5q4Kvqzth+qM4H2XjTY2JXRyWyIOUZ5oz+elbPxk4m68Nu3rxJI0eOZJHOep/+3L5CJq6bM23TRRZtsB2Cx48t81JF5azRgVR8cPj8usmf/txzjTdj7EHq3HG+CKRbm9G5sBJvjlKz8Xt4G96alkzPc9QbetbIRmHKgTV722UWp7A9o3d8mtutqCVFn25rvWynxBcdqD/0bWM/qlvYnCLS6jbnZm3LZ6Qg5ej5WYlgcAYh9d+I5nmUAGR2CMH9UtEvJW0+ccsydols5vSMqFeko7eaM8SQFhPM54X5TmxfkAUZ1Gz6tWMhGvzHCct+9PFds9x8uPHaYYOz69KyTHqC26bPbyf4+Kyp4ivRMQHX9Vl3xOzI4h1WbxgHaeL61MpCP648Tz1nH+MW+ZTLDLWKrLIkWh0d9aORpXG9lZrb8SsQO6/wC0dhbh9VfCruGdunTxaXOlXOSNM2XaKvFpnFLqTKG9w4R9QB5ZMQEAJCQAgIASEgBISAEBACQkAIvNYEIikSfiG6Y7rLbqHNpv/ob9M2OqbSyb0NcVSdx1H6h8ab/qEEpgTUjIpSNY/yVNAjr6p5lELVPkqsKhnF+NHk24BKzkEICAEh8EoJeChhQyWLej0iIiKCBSLjbJC27datWywwWaenM7aL7jpq8UCUSZToWcEiun0Z25uUKwGp8ZBiDjWFrANCER5owx1k73yuXbvGziuIZdaB4wMDA/l4a6HKuq31Zz03iHW2xtb7YzJ36zFj+hnpxZBuzFbaLRhAsB/1YSAuuSO4bpASamyNh/4hJqLOVEBAABlrP9kaG/O7HPSQa+ekMdSzsdUWKdbCVY2Z9MniqZpWtloQ3QoJU2n4wimjqvVjrFdkbI0x/W8/YGYQpl5kYKwQ5fBCurSYxKPwSHXukZa0ctZ9ITUcwl5NH+xz9bocV640MNY1ha4GhXKKNmN9LPRnKzBPuNrAH84kd0fAnTB2fkEkdaV/cDl57T6npcuVPqHbfgbcfV7SnxAQAkJACAgBISAEhIAQEAJCQAhEJRCuXEN3VLq2G6abtMm0leaZVtMuuhS1UbQ/4WECXkgaFEtVBcLLk+Kql5d6JVDviVTKt7hqGdfDi+KYYqu12KqKUQSFeTxWdY/CKdT0WElWYUq4UuvYrkQsLEPU0lzvCEu81AOBGEQqJQ6186hEdTyqUWbKRN4eySmempmko4sBVDlUCAgBIRADAq+VSBSD85BDhcBLITBv3jx2oCF1osTrQ0Cuy+tzLWQmQkAICAEhIASEgBAQAkJACAgBIWCbAFLKBas/p1QtnwWRS2kybVENw203drjVLATFUyKPtxJ+MlJSykZpKaNHOvJRy/QeaSm1qg+UTG2HWyepRxIlEiVwWYQJVdLQXVOIkrHusph1iwLpmuk6XVGViC6p5XmPq3TBdJtuq3Z3eP74cqfz8gK2Tqkm5aa2Ho2oqEchSu2RSglb6suzLHbZai3bhIAQEAJC4EUQEJHoRVCVPt9aAtu3b6cHDx5QlSpV3tpzfBNPTK7Lm3jVZM5CQAgIASEgBISAEBACQkAICIF3g8BjekyBpiCVeu0EzYlcQnNppzpxOHJcDYhCXkr+iUt+Sv4p6uGnljkop5KGcnhkU6nbvJVvKJarnbmlXYgSkc7TRa41dIrO0T7TMTpCl5Uf6oGSjiB8PY7WOGUpC3X2aEKlPIpROiVyxRVnUbT4SWMhIASEQEwIiEgUE3pyrBAQAkJACAgBISAEhIAQEAJCQAgIASEgBISAELBBwKTSsiGt3EnTaZocOeeJOORqqrbYlFwJJQWUNFTeo7Cq5lOACnnkp7QeaV66IGTj1GxuCjYFsxC233SYtpj20H4lIl1QyevMbinXzrukSj/3mUdbKuFRlJ1FUrPIJupnNg4YMIDWrVtnt+Y66rGjTjtqxrsjIiMjae7cufTpp59Sjhw57I7rjrGkDyEgBF48gZgVE3nx85MRhIAQEAJCQAgIASEgBISAEBACQkAICAEhIASEwBtF4JHy01w2XaH5pj/pW9Nfau5hLsw/lkofF58qKpdQZY9SShwqRTk9cqiEcu6vi+vCZKLdJJlHMipLpaismncP6kRXTFdphxKLNpr+o010mE4pwcwZh53kT01NQ6ilqSR18WxNeZRrKrGqpuSp/ki8HgSCgoKocePGdPDgQcqVKxehxryEEBACbzYB+Q37Zl8/mb0QEAJCQAgIASEgBISAEBACQkAICAEhIASEwGtCAO6hIFV3aH3kJvogspcSiBaqmTkSiDyU/BGPylFW+sGjNW32nERzY02grp7tKa9H7jdGILKFP4NHemrsWY/Gx/qe1nvOoNkevamxckWlU5WSyInoM0+l5KsY2YdmR85XdZCuqOR10UtfZ2s+b/K2ggUL0syZM6lJkyaUIkUKqlatGq1YseKVnFJAQAD5+PjQyZMnqXLlyq9kDjKoEBAC7iUgTiL38pTehIAQEAJCQAgIASEgBISAEBACQkAICAEhIATeQQIRFEFXTddphmkeDVUOIlKf7YencsjEp/oeBaglNaCyniXVp/j2m7/he9J4pKbmHo2pGTWio6bjtMi0lP4wbaWTSlKzX78onD4z/arkooPUmzoq0cxPyWnxyEP9edfi+PHj1LlzZ+rQoQNNmjSJ5s+fTw0bNqRdu3ZRoUKFYoRDp6qz1UnXrl2pffv2UXb5+fnR7Nmzo2yTD0JACLzZBEQkerOvn8xeCAgBISAEhIAQEAJCQAgIASEgBISAEBACQuAVEwhTbqHjppP0ZeRIWqukD/vhQckoAbVR3qFWnh+88W4h++dpew8EnnweefjVSTmE/jAtp9mmlXSIbqoDbItqC1XKun9Np2icx6dUybOs8iEleSeFotq1a9PEiRMZbP369alw4cIs1sRUJCpevDglSQJ317OBdHISQkAIvP0ERCR6+6+xnKEQEAJCQAgIASEgBISAEBACQkAICAEhIASEwAsiEKrqD+0w7aZPIr+nEyx22B7IQ7lg2ngUpW4ebZRIkveNTiVn+wyjt9XHIwP19OhCjU11aZZpPs01raMzFKg6MT3T0XVVz6iJaShNjOxG9T1rq9pN3iph3bvlKKpevbqFS5w4cTjl3L59+yzbnnelQYMGz3uoHCcEhMBbQkBEorfkQsppCAEhIASEgBAQAkJACAgBISAEhIAQEAJCQAi8XAKhykG02bSNOkV+R9eUkGE7YinfUCb6n0dnquBZhlOm2W73bm5F7aIvPfpQQ1MdGmWaTHNMeymSHtmAEUHdTBPoYeQjau7ZiFIooehdSj0HYcgYXl5eFBbmqN6VsbWsCwEhIATsE/C0v0v2CAEhIASEgBAQAkJACAgBISAEhIAQEAJCQAgIASFgi8Bjekz/mXZSRwcCUSwlCX3l0ZDmxRpL1Twri0BkC+STbbk9ctEEz+/pV88eVIDS2mlpoj6mabQkcikF0x3lOXrWdWTnwDd+87Zt2yznYDKZCJ9jmmoOHaLmEAQoW6+ffvrJMqasCAEh8PYSECfR23tt5cyEgBAQAkJACAgBISAEhIAQEAJCQAgIASEgBF4AAYgTR0zHOMUcUqHZilyUkkZ49KbKnuVFHLIFyMY2JVVQK48mVNgzPw2KHEV/02HVKvKZlp+YppB3ZDKq7VmDEqoaT+9C/Pbbb1SwYEGqVKkSLViwgPbs2UNDhgyxnHpwcDCtXbvW8hkrmTNnJl9f3yjbrD906tSJUO/IVuTNm9fWZtkmBITAW0ZARKK37ILK6QgBISAEhIAQEAJCQAgIASEgBISAEBACQkAIvFgCAXTj/+2dB3gUVReGz24IkNBbAOm9o9Kb0hUFRLCigoiK7VdAaQoizYYFRBTBgiCIqAhIExCVJggKUqT3EjqBUAKk7H+/G+4yW7IbAgm7yXf22d2ZuXdueWdm4blfzjnyasJ7sk2Oe+2ouZSTd+z9pIqtomRSL9rVEaisuI2xvy3FHCNltON3dXKsWwMJ8qTjI5nvKCK1bLdKqHqld3vttddk/Pjx0qdPH4mIiJARI0ZI8+bNndPevXu3tG7d2rmPjV69eslbb73lcsx9p0GDBu6Hkr1vs2WsvFDJBsOKJBBkBGwqdmXG8csMsovD4ZIACZAACZAACZAACZAACZAACZAACZAACQQWgYtyUYbGfyDDZZYamKeXSyupJCPsb0gpWwmxqxct5QRiJEaGJLwvHzjmq0bchSKR1lJFsR4kJWzF0nV+IoSCmzRpkjz44INy/PhxyZs3r9jtvLdSfmfxTBIgASsB/ppYaXCbBEiABEiABEiABEiABEiABEiABEiABEiABHwQWOX4R0bJAlXDUyBqKRXkQ/tACkQ++F1NUZiEyev2XtJTWqrTQjxOnSP/yQLlaXROvTKK5c+fnwJRRrnYnCcJpBEBikRpBJrdkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJBDeBGLkgoxMmqM8Yj4lUlALyrgoxRw8iDzTXdCBcCUX97S9LR1tN1Y5neLO3HZPlgCNSSXaeot01dRxAJ3/88cdyyy23BMSI4NVk3hiQdTsgBshBkAAJXDUBhpu7amQ8gQRIgARIgARIgARIgARIgARIgARIgARIICMS+C1hibR2vC7xSiZytRCZocKeNbc1lizqRbv+BLY7dkjHhFdkvRz2aHyE7WnpbH9Yckh2jzIeIAESIAES8E2AnkS++bCUBEiABEiABEiABEiABEiABEiABEiABEiABLSnyo8yWwlEFz1ovCQtpK6tFgUiDzLX70A5W1l53vaAajDUo9FvHHMlyhHlcZwHSIAESIAE/BOgSOSfEWuQAAmQAAmQAAmQAAmQAAmQAAmQAAmQQLonkJCQIFu3bpUTJ06k2Vzj4uLkwIEDEh8fn2Z9prSjkxIlixzr1ekOtyYyyWP2+yW35HI7Hpi7wcTcneADtnbSQG5yPyxr5KAckEiJUy8aCZAACZDA1RGgSHR1vFibBEiABEiABEiABEiABEiABEiABEjgBhOoW7eu9O/fP0WjOHXqlDOHhsmlYb6jojKuJ8KkSZOkQIECUq1aNSlcuLC0adPGRSz69ttvvXJbuHCh8zqUKlXKo85tt93mLLdunDt3Tp5//nkJDw+X0qVLS1hYmLz88ssSE+OZ68d63o3cXutYJ3u85CJ6QupLESVchKhXINj+/fulffv2+lrMnTvXOaRgZO4c/OWNHLYccp+thdrL5F4kfzv+lfNero9HRR4gARJIMwL4PZoxY4b8999/adYnO7p6AhSJrp4ZzyABEiABEiABEiABEiABEiABEiABEghyAmPGjJHNmze7vHPlCg5PkOuNftWqVdK1a1f54osv5OzZs7Jp0ybZvXu39OrVy9nV4cOHpVGjRi68wK9hw4a6jsPhkIMHD8qUKVNc6nz33XfONqwbEPnmzZsnK1euFAh3S5cule+//17effdda7WA2v7PsU35EHl6qrSwNZLstmwBMVaIeWXKlBFcD3cLRubuc8B+E1tD5bXlmfdpvWxRmaLcc0V5a4HHSIAESIAErAQoEllpcJsESIAESIAESIAESIAESIAESIAESOCGEoBAUaFCBZkzZ440aNBA8uXLJx07dtTCQ3IH9ueff8p9992nz23WrJl89dVXHqcWKVJEL6ZjQd287faMuUxy+vRpef31153eJ2XLlpXWrVsLxCNjR44ckXLlyjlZGWbwBIIZL6yaNWu61AFnb7Zr1y5p0qSJ1KhRQ3sTwTusdu3aguOBavtUSDNRGYncrZKtvGRVr0Cw1atXyw8//CATJkzwGE4wMveYhDpQ3lZOCkqYR9FOR6TEOmI9jvMACZAACZCAbwIZ838/vpmwlARIgARIgARIgARIgARIgARIgARI4AYRuHDhgvZi6dy5s9x7773y0UcfybZt2/R2dHS031Ghbtu2bXWOm88++0wgPjz77LMCDwuadwItW7bUIpEpRc6a+fPnS/369c0hOXTokPZOwXWBiIfvFStWOMuPHTumt3/99VfNHALfsGHD5NKlS8461o0uXbrI5MmTZeLEibJlyxb5/PPPtTD40EMPWasF1PYJxykv48ks4eplU69AsBEjRki7du28DiUYmXubSBbJLEVseTyKjsgZJeF5ingeFXmABEggTQjAMxUeoj9+P1V+Vf+m0AKXgGcAz8AdK0dGAiRAAiRAAiRAAiRAAiRAAiRAAiSQQQggNBZy1MAQ5qx8+fLy22+/abHIFwLk1smfP78gzFnWrFnlgQcekJMnT2qx6ZFHHnGe2rdvX8GCurHbb789xXmOTBvp5XvgwIHacwt5JIxBJFq8eLEW3F566SXtrdK4cWPtbXTLLbfI0aNHdVUwRa6hyMhIGTJkiBb4IAS52z333CNPPPGEPPXUU86ibt26SatWrZz7gbYRq0PNuYZxC1e5cewBIhD54xWMzJOaU1ZHZo+iC+r6uF4djyo8QAIBQWDfvn0yuF8fmTXvFzl17nyqjSl3tnBpe1creeOd4VK8ePFU68dbw+vWrZMOre6U+jkyS9mQBJm3arnMnTpFfvrtD8mWLTDCc3obd0Y9RpEoo155zpsESIAESIAESIAESIAESIAESIAEApgAwsQZK1mypA51tmHDBr8i0Zo1a3QYMwhExlq0aCHjx48XeCkZq1y5slSsWNHsahHKuZOBN8Dp/fffl59++klKlSrlJIHQcM8995x06NBBH0MOo1q1asnXX38tI0eOlBw5cmhxCMJQzpw5dZ0qVaoIvFeQZ6hw4cLOtrDRo0cPfU3gKVatWjX5559/pHfv3oK8UG+++aZL3UDZCdch5eAxdEWKOC+XlDQRHN4rwcjc27V3KP6n5ZxHUU6VpyhYBDuPwfNAhiEAgahZ/XryZHisbK6aRyJC86fa3I/Gxsu41Yt0f7+tWHndhKITJ07o3+pMmZKWFno987T0zWuX5wpeEXT/t2evDOn5krw77stUmzMbThmBpK9kytrjWSRAAiRAAiRAAiRAAiRAAiRAAiRAAiRwzQSyZHFNTI/FqIsXL/ptF3Xcz82cOXGRKj7+ymL+448/HtBeK34nmgoVfvnlF3nmmWe0h1WbNm1ceoBnl9XCwsLk7rvvluXLl+vD8CaCWGQ1hLGDrV+/3kUkOnXqlIwbN06/ISLB4C0Gg1AETyb3a6gLb/BHQVs+pQ+5ikSiJKKTEqXDnIVIyA0eYdLdBytzbzOKlmjZL56h/4pKi0OCMAAAP0hJREFUXuXXxaVOb8x4LHAIwIMIAtGAYrlSfVARoSGJ/ew/rT2Xvvz2u2vqE+IQvHOXLVum/zAAv9Xdu3f3aPPw4cOydccOea56XpeynoXCpeXcefKuy9HA2Jk7d67AmxVhbkePHh0Yg0rDUTAnURrCZlckQAIkQAIkQAIkQAIkQAIkQAIkQALJI7Bq1SpnxaioKB3+DB4n/qxGjRpauEhISHBWRVvlypVjiBsnEc+NtWvXCsKRDRgwQF544QWXCg6HQ+cZcs/rtH37dp2fCJVRhjxEyGdkbO/evXrT6pGEA8ajKzw83FTV32Y/qTxGLpVvwE5pKaF69RSC/nGsk/MScwNGlPwug5W5txmuTdggkeIpGJe3FZfMtiteC97O5TESuNEEEGKuW6HsaToM9Id+r9V69uwp+fLlE4jOCxYs0KK+9d/qa23/Rp0/ePBg6dSpk/Yotv7f4UaN50b0S3n9RlBnnyRAAiRAAiRAAiRAAiRAAiRAAiRAAj4JIB9Rnjx5pGDBgjr8GMKZIW+QsV27dsnChQvNrv6GNwvCoSEvTp8+feTRRx8V5EV47733AjaEmcsEbtDOnj17BCH5YPXr13fh2rRpU4EXF9iCaYECBaRSpUoydepUwV9eI/eTOQ9eQVhEfOWVVwR/cf7kk09qcQ4C3datW/W1GTVqlDRv3lwLSrjGCAuIsH+4Tv369dPeSbjWgWjVbZUlhyNUzkisy/BmO/6Qto47Jbstm8pOBE+jwLNChQoFJXN3kvHKZ2uB43flv+UpEt0qVVRAwCthJt3P5T4JBAIB5CBKzRBz3uYIj6JrzX0UGxurf+8RGhSCfs2aNXVeuZkzZ0qdOnVcusXvTYWyZWXMkQMq3NyVPwYYcfi8dLi7rUvdQNjBH0Js3LhRxowZI8ePHw+EIaX5GCgSpTlydkgCJEACJEACJEACJEACJEACJEACJOCPwKBBg/QC1JkzZ7QoMW3aNJeQZdjH22ozZszQIsOUKVN0yDIIEhAcevXqpd/Wuty+QgCLfOAMa9269ZUCtYUFM+QYQp6ikydPupQPHz7cmaMI3kLTp0+Xzp07y9ixY3UbyFn0448/is1mk+joaIHnEcQjGHIeIcfR/fffr/fx8fDDDwd0mJ8qSiSqIHnkb+U3ZLWFslU2ObZKhK2AZFavQDAwd7dgZO4+h/2OAzJNEOLwiqdgYh273GKrJmEUidyRcZ8ErgsB5FKCQfQ3htx+S5YsMbsu3++P/Vw6tLpTlsRekrIhCbIy1i6OAsXlpxGjXOoFwg7+v5HRzaZceK9k28voNDh/EiABEiABEiABEiABEiABEiABEiCBG0pgzZo1Uq9ePdm9e7fgr5ER1gbhbVJiCFOXO3duLVKk5Hye40ng9OnTgnwTZcqU0R5G7jUQqgfXDsISvI6shlB07onOcezo0aPaYywkxDOUm/X8QNh+M+EDGeyAOHklvxXGdbfyYhlpf0OKq5Bn9gD1JjL8go25GfdF5T00NP4DGS6z1CFXkaiD3CojQ4ZIIYkw1flNAgFJADny4hsVT/OxhSzbJ9cSynPFihXSuHFjlzYmT54sn3zyifz5559e53P27Fn9RwP4d7127drSo0cPr/UC5SByLOEPIz799NNAGVKajYM5idIMNTsiARIgARIgARIgARIgARIgARIgARK4GgIQDVIqEKEfhKvz5lFxNWNgXVcCuXLl0nmI3MUeU8tut2sByV0gQrm3c3DspptukmAQiDCHe213q8xEObHpYnPlP5njWCjR6uVQr0C2YGMOlggzt8yxQkbKArXnKhCh/CFba8nl5bqgLKMYBNovv/xSDhw4kKZT3rZtm1y86Bn+z9sg4FG4f/9+b0UpOvb999/Lzp07Xc5FWDSMCSHEkmORkZGCPygINDt4KV6i4jzv9WsZ56FDh2TixImSkrw7RYoU0V2fO3fOOQT8wUCJEsjV5t2yZ88uDz74oDzwwAPSsmVL75V4NCAIUCQKiMvAQZAACZAACZAACZAACZAACZAACZAACYBA0aJF5aOPPhKIEbS0IYC/bDdv9Gi28X2j9nXHAfhRxVZJOkh9NTLPJbWejvGyPGGlxMiFABx58A4pQYlC2x075bWEj+SSoutuTaWs1LXVyvCh5jZv3qxDOEIkSQubNWuWFoyrVq2qhd7+/fsnKcxAWHjsscckf/78WkRu0KCB/Pvvv3qYO3bscPnNsf7+vPXWW0lOZc6cOYK8ZhERV7zHhg0bpj1QMabSpUvr3GlJNYA8aU2aNJGSJUtqT0YIGfBcNbZ3716v40rt0GRbYmLl9vVHpPiqg5J/5QG5b/NxOeVDLFoefVEq/RMp8BTyVQ/zAv8PPvhAJkyYYKaZ7G+I+TDk7jGG/EQVKlQwu/wOYgLMSRTEF49DJwESIAESIAESIAESIAESIAESIIH0RgALfshVQ0s7Au4hiAJtP+1IJK+np+2d5NeENbJBDrudECfdHO/JREcWaWCrl+FFCzc4KdqFQLTbsUd6J7wpayXSSxt26Wl/QvLZ8nopy1iHEPILv5/ID5baBoHnvvvuEwgm+L3G/p133qm9N5EDzt2eeeYZWb58uSDsGLwM+/XrJ23atNH78ESBwGW1gwcPSosWLXQ+Outxsw0vIQhEffv21XnncPyLL76QIUOGCHLTNWzYUHvMdOrUSf/hAfathrCZHTp0EOTUgRgEDyd4vHTp0kXnS4NH5JEjR/QpmzZtcvFIhYdqatlpJQa133RMKodnlv11ikh0fII8oESiTttOyMzKBTyk6e67omR05Bm5I09W2RYT59eHMTQ0VAYMGCDPPvuszgEXFhaW7KnAA7Fbt24yePBgQZi5devW6Zxza9euTbINeLZlyZJF4FG0fv16WblyZZJ1kypIrkdYUufj+FNPPeWrmGWKgOefPRALCZAACZAACZAACZAACZAACZAACZAACZAACZCAVwJlbaXlRdtDalEtq0f5MTkjTyhB40/HSjmnXoEees5jAgF0IE7iZJcSiHomDJH5ssXryHpKK6ltqyFZ1Cs9G7yDXn/9dbn55pu16IFFb/ewckuXLtVCDTgg7xQEnCpVqmhPDwg358+fv26IpkyZItWqVdNiD0STpk2b6vGNHDnSo4+TJ08KwsKhDB4+BQsWlBEjRuhcZAsXLhQIF8hxZn3//PPPUq5cObnnnns82sMBiE3IfQahytiYMWPkpZdekrvvvlt7or744ovSqFEjr14zy5Ytk+3bt8vHH38shQsX1owwvrlz52rRCG0eO3ZMEGKtbNmyLmPLmzf1BMmlyisIYs8nZfLITZlDpGJYqIwqnUfmnoyRPRfizFSd31vOx8raWwtL95tyOI/524A4d+bMGfn999/9VfUoHzp0qL6PcA3BHtcR91hSBoHnwoULOs8PvMmwfzVvtIuQsdf6Tmp8PH6FAD2JrrDgFgmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAn4JfCo/QH5N+E/+dTxm6rrmjfksMpL9JASNj6zdZdm9tslt8qWY+ffaftlaq1wQYXs2+jYLK8mvCeLxTXnjKnXSErJs/YukldSz7PD9HWjv+E1M3bsWHnvvfd0njZ8t2vXThYvXqy9NLDwjvBrH374oR7qq6++Kl999ZUg/BrCt/Xp00dOnDgh48eP95jKtGnTZPjw4R7HcaB27doyevRojzKEaqtZs6bA48ZYjRo1tPADMSBbtmzmsOzatUtvV69e3Xksd+7cWmRCqDl3gxfRqFGjtLdKUrnKlixZoj2ITAg05NjZsGGD9i6ytofxw8PK3SAQweuqUKFCziIIcDCMF95Y8CSCgATPm+nTp+tjHTt2lEcffdR5zvXe2K4EoojQECmkBCJjN2dPDPu5W4lEpbO6LuXPr5oYai/ykqeAZM53/4b3EAQ+iIoQ1K7GIAj+8ccfgtxGEMvgJeTLgs2DB55oGdVc76yMSoHzJgESIAESIAESIAESIAESIAESIAESIAESIIFkEgiVUOlv6ymHHMdluqxTZzlczoxWXkSPON6RdxMOSntbayliK6LO4DKcCyQvO/C8ipJTsixhhfR0fCT71bY3K6mEoeH2PlJMcVV+Bt6qpJtj8PqAQIRwap07d9bzgodM+fLlBWIJFvoheqBe/fr15ezZszqv26RJk3QINZwAMaR9+/ZaRHIPlwZBBKHXvFnx4sW9Hdbh4SASWc0INnv27HHxLoHHDwyCi9WQCwhik7tBAIMXUVJjQn14+UDoMHb4cGLoR/c+kOMO4eLcbefOndpDyHrceAihrHnz5oI2//77b53HB15JEJueeOIJuXjxonTt2tV66nXb3nEhVsqFuf5O5M2UKMTtUCJR8+vUE+4dwywlTbpzTkkbPCewCLjedYE1No6GBEiABEiABEiABEiABEiABEiABEiABEiABAKSQAFbfnnb3k/OJwxS4dCw2O0qFMHDqK9jgqyQf6WHPClVbJUkh2SnV1ESVxPeQwcdh2S841sZ7pijasV7rRmhKH5mf1Wq2aoq2S39L20akeP222938oDAAnEHuYAgEq1YsUJ7xkBcWbVqla6HfDCLFi3S2ya/zsaNG+W2225ztoMNeADhfTWWL18+LUpZz4EHESxnzpzWw86cQSjPmvVKiEaIWQhbZrV9+/bJp59+KhC4kvIiQv2jR4/q/EfmXOO55B5SD324jwfn5MqVy2P8COlnyvBdoUIFnX8HXlkw5PGBF84HH3zgVSSCNxZC3lkN/EuXLm095HM7V4hdzqg8RFaLVV5iMJRdL8P1g5hHIwFDIP3/kpqZ8psESIAESIAESIAESIAESIAESIAESIAESIAEriOB0rZS8qH9deml8hDNk82qZXehSGSGY51695L3bY/JXbYWyquosISpV3r3gEku5ksSq7yHomRlwt8y1DFW1kuiV4i384uq0H2fKWGuoa2eykKUGIbLW730dAyeKzD30F4QXIywAY+iZs2a6dwtyAEDq1SpkhQoUEBvFytWTAsy7qKMLkzBBwSUvXv3upy5f/9+vW88ikyhEUkiIyN1qDxzfNu2bdKqVSuzq78htPjzIkJF69yxD9EH4ePMGHAMBtHJhJFLPJL4iTxD7iIJQqjBzHit+Y4SzxJp3bq1DtkHr60cOVzzAEF8wzis5u61ZS3ztg0vok8PuYqjkZcS991DzXk7P7nHLl26pHNBJbc+66V/AhSJ0v815gxJgARIgARIgARIgARIgARIgARIgARIgARSiUA5W1kZZR8sAxzDZapjjerFdZE3sdtL0svxlXzjmCc9bY9KA1sdibBFKKkoa4YViyAOnVav/1TuobGOyTLN8a9C5SmymctWXQrJCHtfqWurpeShjCEQYe5VqlTRCBD6rG3btnr75MmTOuSbyfMzf/58eeONN3SZqQ9Bo2XLlvpYXFycQKSx5uDRBeoDuYvgJePN4KU0Y8YMj6KKFSvqPEZRUVFOj54ff/xRbr31Vg8PoBIlSujzZ86c6QwRt3btWkHuIYhNxhCWbty4cdqLKFMm30vWEIRWr15tTtXfYPHDDz/Ic889p/fhVTRr1ixniD5rZYRbg9CD/DpNmjTRRRgfrEyZMvq7R48e+nvkyJH6Gx/IV4S+3QUilCHUH97XYuXDQrUn0R+nL0iTXIleVzNPxOgmy7qFobuWfhCuD/OgkYAh4PuJM7X4TQIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIk4JVACVtxGSXDpKjjYxkrv8lZOe+13jo5JF0c70tjRxnpausgdWw1lViUX7Kpl129MoLFqLByp9Rri2ObTEmYKV/Ln2rariG2XDmESBupJMPsvaWCrZyEqFdGMoQGg+AD8SM0NFR7q7z55pt6kR/eKxBXEH6tQYMGGkv+/Pl1CLpu3brJZ599JkWKFBEIHRMnTtR5aEzuHcMQYewmT55sdl2+jSeSy0G18/TTT2uRqHv37vLaa6/J77//rgWZn3/+WVedNm2aDBkyRH755Redi2jYsGEyYMAA7dWD8eC8unXryp133uls+p133kmWFxFOQK4hCE0Qv4yghPYh+MAb6d5779Vh4WJiYgT5hGB9+vQReC9B9IKYc8cdd8grr7yiw9tB7Bo0aJD07t1bDJ86depIly5dtEgH/mvWrNFtPP/887q91PhokDOL3JEnq/TcFSVjyuaVU3EJMnDvaelTNKcgN9GWmFhpv+mYjC6TV5rnThSRUjIOhCl86qmnUnIqz0mnBCgSpdMLy2mRAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmkHYE8ttwyLOQ1qZFQVd5TuYj+1WHTvHvGLJadstjxnlR2RMiTtrbS1NZIiUUFJKd6IYxaegtFFytxSjg7K6cd0fKPY63yqJopc2WTujje+ZirFqp8rQbY2snT9s6ST/KmOy5mnv6+J0yYoIWZe+65R1eFwDJ79myBILRgwQLt2YLwcsZQHyKA8TxC/iLUMwKIqYdvhF7D+2oM7Xz77bfy0ksvCTx44FkDkcaEj0MOpM2bN4vJEdSzZ09BPiQTwq1WrVqCnEkm7xBCv40fP16++eYbp+jjazxNmzbVxVu2bJGqVavqbYhkb731lrz99tt6LBCj0EfhwoV1OcS07du3S0JCgtjtdhk9erQWgUyOpnbt2kn//v2d3Xbs2FF27twpL7zwgn6j4JFHHtEilLPSdd6wqfY+VQLQ49tOSMN1R3Tr9+YLl9eLJ4axi45zyLaYODke611Uxfn+DNcGXlwtWrTwV5XlGYiATcUg9P1rnIFgcKokQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkcK0E4CUz3PGJfKfyEcVJYrgo322GymMqjFo7uUOq2CpKblsu7V2UVUlGwSoYIZzcefU66zgre2SfLHD8IRMdv0ukCjHn30KknhSV123PyW32+iooX8q9Jvz3FTw1kIMI+WSyZcvmHDQ8jBB+burUqc5jZgN1z5075wwJZ45fz28IKch5lDmzawhAq5eP6S86OlqHeYOAc61Ws2ZN6dChg4uwgzbRL/IlIbeQzXZFNnE4HII3BCKrIRcRchwllT8IOaEQZg5h88LDw62npmgbnOIbFfd7LnIRhdltkkd5EFlN6USS6cq0rEU+t0OW7dP3DsILDhw4UOdkMl5YPk9kYYYgQJEoQ1xmTpIESIAESIAESIAESIAESIAESIAESIAESCAtCVySSzIr4Rf5xPGtLJP9quu4ZHVfWHkT3SO1pImtfqJgJLkkzBamfGrCJFQyBaxoFK9yMSGUXIwjRotDO5U09KdjlcxzrJDVciBZcxc1u6Jq/s/b7pHO9oekgOQP2Pkmc0KpXg1eQgilZnLxpHqHAdLBokWL5PHHHxd4E2XPnj1ARuV/GMkVify3dHU1IBLBswviWt++fbVX1NW1wNrpmQBFovR8dTk3EiABEiABEiABEiABEiABEiABEiABEiCBG0rguOOE8qD5ToVYmy//yQk1luSJRYmDDlWCUSWpZ7tZakg1KWYrqjyMwiWrDT5GmdU7i87Rk9beRhCEIIJdxNtxUUlDF+SIHJMNjk3yt2O9zNHB9qKvgrtNSWHh8rCtrjxne1zK28oqOYxZMvwBhNfM559/rsPKIU9PWpjVYwieSqm972tOCHmH0HvWUHtpMSbMGf2kxG6kSAQPqzlz5kjXrl09PKpSMheek34IUCRKP9eSMyEBEiABEiABEiABEiABEiABEiABEiABEghQAgccB+UHlYtnshKL1stxNcqrEYvMpDJLCymp5KKyUsFWRspJaSloi1DB2LIoLyP1suET8komLR6FXP60i2vIKtOat28VlEtJQFdecWo7Vr3iHHH6G2HkotRrl2OvbFO5lTY5VH4ltXVUznhrzs8xu8o1FC4P2erJ47YHledUZSV9hfo5h8UkELwEIvLkls1V80hEaEiaTeJobLxU2hglR6NOpVmf7Ci4CFAkCq7rxdGSAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAkEMYHDjiMy0zFXCUYL5C85pLxxLqjZXEvKcLuUkdxKMCooxW2FpJgUlggVpi2POpZbhW7LZcupZJhwp8cRvI4SX4kQIQqZV4LagleQyhyjMgdFyynHaeUfdEIOymHZ5zgsu5W/0FotcKXMi+LKZcssFdTY2kkD6WjvoD2HIG/RSCC9E3jykYel7OpFMqBYrjSb6rD9p2VH7eby5bffpVmf7Ci4CFAkCq7rxdGSAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmkAwIQY5CzZ3rCPFkk62SH9sSJVTO7FsHIFxhku4f3gl3JMSEqbJ1dBYtzqPxB8eoY3gmX3+orVSyTEq2yyO1K0mpvbyl32JopL6K8ahTJ93JKlWGxURJIQwL79u2TZvXryZPhsdKtUPZU9SiCB9G4w2fly/Oh8tuKlVK8ePE0nCm7CiYCFImC6WpxrCRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAumOAELRLXf8JQsdS+VP2aoEo7NqjhCMINwEq0GUyqSEoCxSR4pLC1t9aWprpLyGyjGkXLBeUo77uhCAUDS4Xx+ZNe8XOXXu/HVp01sjubOFS9u7Wskb7wynQOQNEI85CVAkcqLgBgmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAncWAJHHEdlpWO1LJe/ZYVjo+xS+X+OqaB0iTmMAlk0SvRUClcSUHHlp1RbiUENpIbcpsShUraSynsp040Fy95JgARIgAS8EqBI5BULD5IACZAACZAACZAACZAACZAACZAACZAACZDAjSUQp8LA7XTskrWO9bJGNsg6x3aVF+iEFo3OaU8jhIlDeLrUClGX1PwRIs6ugtZlkgJKFCqq8gtVtZWUW6WK1LTdLFVsFXUeJOQ+opEACZAACQQ2AYpEgX19ODoSIAESIAESIAESIAESIAESIAESIAESIAEScBI46YiSnUoq2ubYocLS7ZE9KlTdbjmsXtHqFasC1cWrbEdGPILnkRGRrEKSddsq5JhtiEDYtisZyC45dA6jECUIZZOSEiElbIWltJSQCrYyUk7lGCpkK6TqId8RjQRIgARIINgIUCQKtivG8ZIACZAACZAACZAACZAACZAACZAACZAACZCAG4Gzck4Qqu6o8jOKklNyynFafZ9WW6fV66wKWHdJLjnUW+LUO1a94pSsY9f5gTKrYHCZbeqtvnMoISi38gzKI7kkt0291Xd+lVmosBKCsG1XLxoJkAAJkED6IUCRKP1cS86EBEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABJJNgNJ/slGxIgmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmkHwIUidLPteRMSIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESCDZBDIluyYrkgAJkAAJkAAJkAAJkAAJkAAJkAAJkEAqE1i/fn0q98DmSYAESIAESIAESODaCVSvXv3aGwmAFpiTKAAuAodAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAmlNgOHm0po4+yMBEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiCBACBAkSgALgKHQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAJpTYAiUVoTZ38kQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkEAAEKBIFwEXgEEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEggrQlQJEpr4uyPBEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABAKAAEWiALgIHAIJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJpDUBikRpTZz9kQAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkEAAEKBIFAAXgUMgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIggbQmQJEorYmzPxIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIIAAIUiQLgInAIJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJJDWBCgSpTVx9kcCJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACAUCAIlEAXAQOgQRIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgATSmgBForQmzv5IgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIIAAIUCQKgIvAIZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZBAWhOgSJTWxNkfCZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACQQAAYpEAXAROAQSIAESIAESIAESIAESIAESIAESIAHvBA4ePCj79u3zXhjgRzds2CBjxowJ8FH6H15qzWPbtm0yceJE/wNIoxp79uyRL7/8Mo16C85uYmNjZfPmzXL06NGrnsCUKVNk06ZNV31eRjohtZ41MFy6dKksX748VXA6HCL7T8boN7ZTakdOX5TomDifp+8+dl4uxSUkWScu3iGo42sc16Of+ASHHD51QfDtzdD/vhMxcjT6ordifeyimsf2w+fkQmx8knWSU+CPib+xuveB8Xgb95w5cwT3KC39EbBdunTJ+52c/ubKGZEACZAACZAACZAACZAACZAACZAACQQJgU8//VQ++eQT2b59ux5xRESEDB06VJ544ok0mcH8+fMlR44c0qBBgxT3179/f3nvvffk+PHjkjNnTr/tXI8+/XbiVgEiTaNGjaR06dJuJVd2r3YeV870vTVp0iTp3r27nDhxwnfFNCr9+eef5f7775eLFy+KzWZL1V5PnToluKdbt24t06dP9+jr/Pnzkjt3bn1crd25lOOaPfXUUzJt2jRp27atS1ndunXlwoULsnLlSgkLC3OW7dy5UypVqiSrVq2SW265Rcw1dVa4vHHfffcJxBx3A5MBAwbIRx995CxCe+PHj5caNWo4j/naKFq0qLz++uvyzDPP+KqWrDIsVOO3oUOHDknWvxHPU5KDSWaBuS7J/c04cuSIYJ64btmyZUuyl8jISKlWrZosXLhQX6/7R62WTQfPeNQf2L6CPFyviHw4b6d88cdemdOrnpQqEO5Sr9HQZfJc85LyaIOi+vj0vw/JWz9vk3MXE4WObFlC5A3VTptbC8nOI+ek7Yd/uZxv3enWtIT0aFVGdilRZ+CPm2XNntO6uEXVAvLm/ZUkR1gmZ/XfNh2Xd2dt10IU+uhYv6j0VOdaH9VPf90t45fs02MpmCuL9Lq7rLS+paCzjevRDwSUd2fvkKkrDzrbfbJxCel+Z2nJFJL4uzHn3yPythrrybOJz27NUrnlnYcqS5E8WfU5EG3em7NDJi7b72zjiduLy8t3lZEQu+tvz/lL8XL/R6tlz/HzMvzhypqrOckfk+SM1bSFbwh9A3/cIn/tjNKH82bPLD3UvO6vc5Pe/+GHH/TvwNq1ayU83PW+0BX4EbQE7EE7cg6cBEiABEiABEiABEiABEiABEiABEggXRKAGNSjRw956aWXBIvbBw4ckGHDhunF5ZEjR6bJnLEYDhHjWgzzSO5iL/q5Hn1ezXgTEhK02LB69Wqfp13tPHw2xkIXAvjLfHgwuduPP/6oD5UrV869SL7++mt9LCkvLHj6vPrqqy7nOby4VaBt1LW+P/zwQ5fzzA7Ezq+++kqLDFFRUbJ7926pV6+etGzZUiB4pbXNnTtXXnnlFZ/dpvXz5HMwySy82mcNv48QDE+ePOmzB7TbpEkTF0Hvvto3yS996ru8W998RVBBg10/XyvwzEnKVu2Kkv4/bJZ+bcvJykG36/fLd5WVPt9tkr93n5Li+cOc7UNwgvVuXdZ5rIsSRs5ciJP/fb1eIEj80b+hzFb14BnT57v/JOHyfbs58oz8b8J6aV+rsO5j9OPVtYj11ZK9zqF9/1ekjF64W95/pKr8Nfh26ara7j3lPyU8Jd6f16ufD+bu1HOb3qOO/DO0sUx8toZ8uXivTFsdqceyckeU7vf5FiVl9ZDG8vtrDSVPtlB5+ot/nR5DEIdmKyFpWvfasuHtpjK+261a3Pp5zWHnfMzGkOlbJXvWK2KZOZ4cJv7GatrCN1A/8+U6yRpql1/7NdBjf1Vd14HTtsjybYn3F8TITJkyybhx46yncjsdEKBIlA4uIqdAAiRAAiRAAiRAAiRAAiRAAiRAAumFwLlz57TH0FtvvaVFoWLFimmPiy5dusiIESPkt99+E4gbsD///FP/BX2+fPmkWbNmehHbcEBYqwoVKgj+8hneQKhz7733yqFDh0wVmTVrlsDzAmWos2jRIl2GxdRff/1VvvjiC93Gv//+q8NkoT0s0N988826P1TesWOHbhdtoLxv374SF5cYLgl9o0+Yv/F461OfaPmAKHD33XfLxx9/LKVKldJveL/Ak6BKlSp6Ho888oiAobEVK1bIAw88oMvuuecevciPMggT8ASBPf/88/p8bL/44ovaywS8MSfwts4DdcAQ3iDwDMGc+/Tpo71vUIZr8/bbbzvHg/nv2rULRUka5oDxo71u3bppYc1U9sXXX1/WceL6wjPNar/88ovceeedep7t27fXYqS13H0b7WF8GCfuAXh9WL18cAz3DDiDHe4t8PdnRvSx1jNjzZUrl/WwFmeWLVum78OZM2fKsWPHXMqxc+uttwo88eA14suyZ88uZcqUcXkXLlzY6ynwTLrtttukcePG2mOlSJEi+nn87rvv1OJyooiA+37QoEH6WuK+6NWrl8AjKimDCIvnFqw6d+6sBWFrXZRDhEI5vvG8wyCADR8+XBCKEv1AvHI3b8+TeQbdn2E8P+Y3ombNmi4hEM0zN3bsWN0XxgIB2zzj/u5B6/OH+wH3hzF/z5oZL4REM76OHTtqUQ9t/PTTT/Lggw/q5m6//fYkPbRwj37//ffy8MMPm671N4SL4vnCXN5Wzx144pxVAs6YRbtdzrPubNgfrXfvrVlYciqvH7w71i8iE56pIQVzZpHQELuz/RJKMIJFqOOm39zhoVpwgZfMwHsr6LLSynNpQLvysnjLCTkYdUGfM3vtEalQOLt0a1ZC91G3TB55oWUpJaxc8cSZsuKAdG5UTBpXzCc5lKjSSW3Dg+cn5ekEg2h1PfpB3x8qIQrjCcscIrVUHyXzh0vk5bEu2nRMKhfJIY8oTyd4PIEjhDH0vWRLotiSRQkx/dqUlUo35dCeQ2gT7bl7d83857BAOBrxWFU9B+tHcpj4G6u1vdj4BD3GO6pFyE3K4wljb1U9QleJVGH1YHa7XfBvjDdvQ12BH0FLgCJR0F46DpwESIAESIAESIAESIAESIAESIAE0h8BeDXAWrVq5TG5F154QSAoYKEK+WwQais+Pl4+++wzvSD/7LPPyrfffqvPQ8gteDv07NlTL55CyEBODpNzBsIF/iq6RYsWAq8NCCZ33XWXDn2GxX/sowyeFSVKlNAhvNAevBewoA0xCAvE7dq10/lZMAb8RT+ELCzQw+BhgXHC/I3HW5/6RMsH2oN4NW/ePPnggw902DCER3vyySf1eOBthblARIJhjm3atNHbGB8WuBHeDKG6ChQoIO+//74u69q1q150xw68tuA1AqEJnhjgYJ0HFv0h/ECoePPNN7VoAqbGqwOLh2+88YYez+TJkzWbxx57TPfj7ePMmTNapILXGEKRwUMEAhXY+uPrqy/wxvX9+++/9dwwb9wLRpD577//tJiDkGzIGwXhB4v/SZmZN3K6QMDEtQZTLPQbw70LwQ0L+mB49uxZLSSZcm/fjz76qL5eGK8xjBnhnFDmbhBlIAJBLIBQg5Bz7gbhq3fv3jo0IzzZfBkEHus7qboQiHBtIALBewWGcFMQb/LkyaP3Id7g3vvf//6nhUOEosMz683wHOO+q1+/vn5eIAZCXMP9AMO8UI4Qabg+CKUG4QfPIIQRXE+Eg8TzCeHK3bw9T+YZtD7D+/fv178jEJsg4NSqVUtf2zVr1ugmzTOHew3eOJ06ddLjxf0P83UPYk54/hCqD3OAkIP7A4INzN+zZsaL3xs8c3ge8XuC7ejoaD1Wc//h2QEvb7Zu3TrNFSKmu0Hfs76t5QVyZJEPH62qRKI9zjBw1nJs31oitz7Uc/JGgWBk8vPULp1biikBKjm2V4kn8CLKnyOzs3pFJZjADqicPrBdR89JlaI5xG6JLQchBuHcYlQ4NngcbT10Vosz+oTLH9WL5dQh77B7PfpBOwiFV65QNj3XU+dj5eul+7S40urmREElkwoXd/5y6D3UhxlvrINRifOBgIRwfMYghmH8VYvmNId0bqZhM7dqgcmEqXMWqg1/TFDX31it7WXOZJdHGxaVz9T1XrH9pGw7fFbemZ0Y7rVJpfzOqghXid8neBTS0g8BT1+19DM3zoQESIAESIAESIAESIAESIAESIAESCDICOCv52HwcPBl8DLInz+/YNE8a9as2lsGIZewkIq/dDYGjwwIOTB4gpicChAJYFjsh1dOw4YNBSJT5syZ9cI3FuBLliypF6NRD4vTMIgMJg8MvAmwX7ZsWedCOTwu4D0A0cObJTUeLLa79+ntfByDEIZ8NXXq1BF4GWDhHgvJMHj+YFEY9s0330ihQoV0/dDQUJ2/BXxxPrx9sNAOw8K42cY+FuanTp2qxTjsWw0iCRYI169fLxUrVtRFCFsG4QoGryvwhNcCWGKMRlTQFbx8QGSCsAGDIAexAAvsyJPki6+vvjBOiC3oG95oMCysQ8SACAUGGCcW+SEUQXg4fPiwwDvHm5l5gx+uNwyiG9p65513nNcf171fv366HF5AEHOOHj2qveH0QbcPCGgQ09DvQw89pEs///xzueOOO6Ry5cqydetW5xkQc8ADQgNyJiE/F4QY3LfuBtFg9uzZWqTBtfRmuI5ZsmRxKRo9erQW/lwOqh0IKxBUIJDhjXsV/T/99NMC7yMIYia8m/Fuwb0HDy0IOUZIMu1CRINXFoRGGDyK0OaSJUv0vQgRFPeQCX+HZ+7ll1/W9wWeFXieQfS13rembXx7e568PcNY6Ma1hfCGMFoQdSC0IneTNdcSGBYsWFDfJ/DQwnMH0crXPQgvJOQiw28UBDVwwW8W7jNjvp41UweCF+YOQ/6w8uXL6+ccYhHEOxjma+5zfcDyYbzNIIRaDTmH8LbazJ51tQBijt1WIZ88oPLRvPLtRvn55braQ8eU4btGyVw6/9D7c3fIrxuPae8TeKI82qCoh2BjPc+6ve94jPLEcRWUcikPI9g+JRLVLwdB5LyLgIIyeCrBDpy8oL2LsA0vJasVUl48O1ReJNj16AfikLF6g5Y48zCNeeJm7RWEsjql88iEpft1+LkOtW6Si3HxMuKXRGH1aPRFc7rz+1JcgvRVofXKFMzmkj8J+ZUg1D2mhBtv5o9Jcsbq3u7/WpSSv3edkidVaDxjyINUwCLg4TcahvvK/bk25/A7+AhQJAq+a8YRkwAJkAAJkAAJkAAJkAAJkAAJkEC6JWAWnU6fPq0X75OaKP7SH4u0EIiMwfMHi+ZWr4zq1aubYi2GGC8fhH6KiIjQx7CQDZECC87+knHjr6iNYVEZQhKEpy1btui/rEYIOxPGzdSzfic1HmsdX9tYSIdABDPfEDuMYSEbYbhgEBSwDc8OYxAGwAciUVIGNvDW8mZYFMcYjECEOhB18DbbEAvgmYEwdwiPBw8KX2b1BDF1IcZgMdwXX/SZVF8YJwzeVcZwb8Dg2QEOuH8gEBmD91pSIhGEN8zbCEQ4B+fDNm7c6Fysh9hgzGxHRkYmKRJBRICwBHEGItGJEyf0PYxQYsarzrQHARJCBwRU9IlvzAOsIChZDc8Frj+uJcQKeDe5G+4b8LOaezumDPc6xggvMYgk06dP12zBFGIcRD0YBD8TtvHIkSP6mJUPDkBc/euvv/Q7NjZW1zEf4AyBDG1a71vj8WXqXcu39RnG7w08kuABuG/fPv0Mw5vJGiYPvxN4rozB+wnhGmG+7kH8RmEu1t8UeCBazdezZupBQDOG5wGiLLwBIRIlx0y+Ius4cB68TCAAWQ1hxtwNodKWbD0hb/+8Xd56sJJ7sTxUr4i0U+HmVu44qXPXTP7zgExXId6mvFBLbi5+xTPG48TLBxAa7lwSnjcmFw9EI/c68CCCZc8aIuEqNBrMHNM76uO8qmPauB79mHbxjVxEJ85c0mHxnhu/Tj7qVE1aKqbwukHIvdd/3CLvzNquxw0PIYhAVm8ptAEvLuT8gRfRT93rSKYQGw7L9sPnBHmLPn/yFh2yTx90+/DHxFo9qbFa61yIjZcu49bKxdgEGaE8yHKrcIQQ/pBfKkdYqA7jh/rm3x16ElnpBf82RaLgv4acAQmQAAmQAAmQAAmQAAmQAAmQAAmkGwLwEIAhrBI8EayG8GNYYIaHChb63b0gcByGEHTGzDHsW4UPLPxiQRqhn+AFg9BeWDRH3hN4iCRl1jawoG+EgA4dOmhhBOdh4T8pS2o8SdV3P249370sqf3ixYs7i+D5Urt2bee+tw3rHN3LsajvawzwbIBoAe8JCGYjR47UnlwQ0pIyCBDGQkISF3uRR8UfX199xcTE6Catc4fnCsLs4f6AUOY+D3hbJWW439zrm3Fb8xJZ2zBzSapNcxzhAkeNGqW9UuBJg3sTgpW7SGS8anCvWQ1h73C+u+HehKgDb7kZM2a4F+vFXm9hHT0qWg6AHzz18Eb4OQgVf/zxh/aQQTUIpKgDg2cLxBWrwILjRhiC2GG9PubeNM+v4YtzrqdZ7294ETVt2lQ/x82bN9eebCYcnOkToe6sZr2uvu5B3DPW+8Hahtm2jsUcc/92/50DF7SdXDP3LTzR4IFmDHl04CnkzyCyvKu8SbqMXesUCtzPyapy7EAcwbtbs5LSeNgymb32cLJEohJqHAdUPiGrGY8b5C6ClY5QOX9OJT7Tpt6hy3ly4D0UokK8IWTdodNXwjaiHvIEmdB116Mf0ze+kU8I1kgxhMfT5OUHtEgExAPaVZAH6xaRdfuidU6i+mXzyC39/5AS+cL1Oebj44W7dM4hCGrW8HyfLtqt54NcQD+sijTV5c/tUUoQyyTNKuf3y8R5ktpIaqzWOquVBxHEqjm96kkplRcKhpxGYPiNEqyQ6wlmnl9/97auzI+gIXDlX+GgGTIHSgIkQAIkQAIkQAIkQAIkQAIkQAIkkF4J4C/l8Zf9SEyP0ErWRdTnnntOL0hj8RyhoJCfB8KRqYMQUVh4dl/U9cYK4bFgaBNvhE9D2DUseCOXDczfQiwWmBFKDF4UZrEbi/zXsrjtr089sGR+IF8RvE8QrsoYhBezCG+OXU2f8MIYNGiQDt2HMGMweO0gxB44on2IAgMGDNBv5GLp3r27S33Tr/nG+WAPMx5AEBv88fXVl8m/Am8UhH2DIc8SvCrgUYF5LF682OX+AaukDPUHDx6sQywZEcTkrTHCZlLn+juOucKbauzYsTqMGDyL3O8heLbAywnsrXl+EK4NofMgILmfg36Riwv5f5LrdeJtrHjGMD6El7PmvUEoQWOGAbzxEPoMBkEXXlTuYi+8gjBnePBZ703UzZ49u/YOhMAFwdaErsMY4KVUs2ZNZxg4s1htxuDt29+9DfEMHmK49hBQIB6+9tpr3pryeszXPQgxFmHpwMFcG+xjLiZkpddG3Q7idw28YPDewO+f+xitQqXb6U7RG96ZxgvEvY6/fYRQe/y2YoLcQ1aDpwy8dwbfV9F5GKHJ4DWTXCupBAl4Cf21M0qLEjhv0X/H9OlXRKJs8vnve3SenpxhicvZv6w/qkPaQSCCQQyat+6oIN8PDJ4xizYdl/bKywl2Pfq5oLxsOoxcJX3alNWCmG5YfZSJyOYc86pdUbJeiUNdGxeXCpdzK8EjB2bl8v1fkTr/z7iuN3uIaZhRqPIqQsg5qy3ceFRi1LwSRSLfTJIzVmvbqA8Lz5wo1JuyLEoAPHnuktl15iLy9ccUzsrcCBoC3n2Hg2b4HCgJkAAJkAAJkAAJkAAJkAAJkAAJkEB6IgDBBzlaFixYoHOWQChAaCUsJiO0FXJzoA68KXAci+AIuYXQWshzAm+E5BjyjkDkgIcLchVhIRYGkQmGcGrz58/XQoI19JQuvPxhPCTgNYPcMRC2IFyl1JLT59W0DUYI64UQV2AFzx6EcINwAwNHzBeeE//880+ymkbYMiyqw/MKwhBCj2GxH+IYrFevXnpBG/1i0R+iD0Q/I6x46wSeNL///rt+w9sHeVrAwh9fX30hxxQ8cjBOjAVjhXhh8lVhzGCCNnD/gMkXX3zhbXj6GEKMYd7IIYS2cG9AFEM4MXcRJMlGfBQgzxBEEISTM/mlrNVNzicINRC9zBvsIFRC8PJm+Gt/E2bPvfzUqVP6+uEamjfEUnfDfQLRrXfv3jp0HfI8IRycEYzgTYNcOwgtiOsHNggxh1xJCM9nBFlru3hOkdsIzy1ED3hCQSBevXq1roZyhIbEdcGY8PxDHDPeCwhniHnj3jU5d6ztYzs5zxOuHUIygi/uB4z/aszXPYjnD3Pr0aOHfg4Q9g/3nQkHmdx+8JsHoQ/38eOPP66fJxOW0YSaNPeOtzZNLqLt27e7FO8/GaPDwy3flhgmDt+HL3vnuFS8vNP9ztJSLG+iZ48pr67CycHTZfTC3TpE2k6V/+fDeTsF3w3L5zXVfH7fWiKXNFJ1ITjB82apCm03asEueapJCTG5iR6qmxgWb9iMrSo/0Tn5Vnke/aYEIIzJ2PMqn84/u0/J5yrP0u5j5+XNmdtV6LR46dQoUTS6Hv3AY6p84WwyePpWHWZuv/IgmqU8pr5euk/uujlCDyWXCs0GBiPm7dJeOAs2HJU3f94mD6uwfMZDZ/GWEzLopy1aFIM4aa4B5g/7UIV7+/21hi5vHH+jfQUdCg7b/pgkZ6zDZ+8QhMqDwWsI1mPSBlmz57S+hmAJMe7O6olzQzlCq8Lw+wrDv30QiU2YSX2QH0FHgJ5EQXfJOGASIAESIAESIAESIAESIAESIAESSN8EEAILXhXvv/++XpTGbCE0ICeKWcRFLo8pU6bIwIED9QIzyrFgizfMGlZJH3A7hvwvEEYgIsBwPvKzmJxBnTp10l4AEBaWLl3qEWoM58D7BV4yxmsG3hbwfDCL4tYxWLdxLsz9mHufmKPV3OubMvfjWNSHQdiYNGmS9oBBzhUYQo9Z86K8+uqreg6oC28Ec66ufPnD2j48ERBmDAKJySWE62Vy2wwdOlSLQxAOYFjEhreG8aS43KTzC9whdCAnFAxzhnAAMcAfX1995c2bVy/8Q3wxY8F4v/rqK90Pjn3yySeaDe4riGW4l4YMGaLL3T/QHkQ267zhDYLF+aTMcPPG1P2cNm3a6EVX5J8xopM5H3VxHREWzXhvmfMhlkBUw7OAcGkw9/6QZ+jdd991ue6oB0EKnj9Wgxcd2nI3CKC4P3D/GINoBnHKLBZPmDBBlxsvGVx7iL1gZ8zMCcLJ8ePH5ZVXXhHkADLPn5kDOEP8gacUxCCU49phrjDkH4NgCdEOYpN57k0/+HZ/nkzYNWsdCF1Y3DaeVvDiwr1gxmm+redY+fq6B3H/Tp06Vf8+jBs3TjeB3wvc7zBrO/qA+vDWH7zHIA6CEzyKpk2b5rwPcD/gHsdvJcS02bNnm6ac3xCGca3g+WYNNTlfLf7jbbWBSoSAmAELSfwZcRZnDQ2R4R2rSMdP/nYeu6t6QZ2X520l8Bivl2wqPxDaQeg5b6Y0ERfDPur3m7rJ2TbyJT3foqSzHsQi5MkZOmObtPngL0EfEIWs4fJqlMwlr9xdRnvnjFAiTcFcWVQOpcqCcHSw69XPsPsrKYFnq1NcwVjgZfXiHYmCFbyH3lb9vvr9Jvly8V7d9x3VCkgvldvJ2PcrD+pNeE/hbQy5i75/sZbZ9fmdHCb+xnogKkb2Ho+RBBWKEB5a03vUkf4/bJbHxiT+0QDmBiGuc6NizrFAIIY4bvK5RUdHCwRIeNXRgpeATf3AqxRZNBIgARIgARIgARIgARIgARIgARIgARIIPALw8sHiNMK5eVtAxYgRggniRVLlvmaFUFAIw+QtdA5yeCBcVdasnsncrW2iDryN8uRJ/Etsa9nVbie3z6ttF4wQyst4YljPR/g5vL0tolvruW8jfBvys3jjg5xAuG4m1Jv7ue77qItQX97yOfnj668vjBPmLQwheIONVchwH5v7PtoDx6vl5d5OMO7jWkBcwr1uPL3c54FrCUbJeR7AH4vL4O9NNPF3fUxuKW/nYlzJfZ4gwOBeRijClJi/exD3GO5taz4jf/1A1KlXr57mDeEQnl/efqfQDkLv4fcvKTEWYjAW9+ExlhoGkeGgyl0D/eemPFnF7q4EJbNT5CKCGGVCynk7Dfl/CufOosKxualYlyvHJySOBV5PSQ3jevVz/MwlKZAzs9f5Yhx7MVYlVoW5hXDzNq9rOZYcJt7Gqi6bONTL/XohVN/ZC/GSX4UOtBr+nShRooQW143YiXJrSEVrfW4HDwGKRMFzrThSEiABEiABEiABEiABEiABEiABEiABEiABEiCBDEDAKhLBE+haDN5Y8EKC1xTya9FIICUE4MUGj0uE6MyIInlKmAXLOd4l12AZPcdJAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAumMAHIJIYxjcr3xfE0fIQGxwA+vSRoJpJQAPNWQM5ACUUoJBu559CQK3GvDkZEACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZBAqhGgJ1GqoWXDJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJBC4BCgSBe614chIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIINUIUCRKNbRsmARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgAQClwBFosC9NhwZCZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACaQaAYpEqYaWDZMACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZBA4BKgSBS414YjIwESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIIFUI0CRKNXQsmESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESCFwCFIkC99pwZCRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiSQagQoEqUaWjZMAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAoFLgCJR4F4bjowESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAEUo0ARaJUQ8uGSYAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESCBwCVAkCtxrw5GRAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQQKoR+D8RE209v9CoYAAAAABJRU5ErkJggg==" + } + }, + "cell_type": "markdown", + "id": "f9b2d921", + "metadata": { + "tags": [] + }, + "source": [ + "## Filter to pLOF variants that we used to compute constraint metrics\n", + "pLOF variants meets the following requirements:\n", + "* High-confidence LOFTEE variants (without any flags),\n", + "* Only variants in the MANE Select transcript,\n", + "* PASS variants that are SNVs with MAF ≤ 0.1%, and\n", + "* Exome median depth ≥ 30 (**This is changing in v4 constraint?**)\n", + "\n", + "**Note: this number should match the number of observed pLOF SNVs on the gene page of gnomAD Browser.**\n", + "\n", + "![Screenshot%202024-10-01%20at%2010.20.53%E2%80%AFAM.png](attachment:Screenshot%202024-10-01%20at%2010.20.53%E2%80%AFAM.png)" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "6ce87a77", + "metadata": {}, + "outputs": [ + { + "ename": "NameError", + "evalue": "name 'coverage' is not defined", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", + "Cell \u001b[0;32mIn[7], line 3\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[38;5;66;03m# TODO: add function for this\u001b[39;00m\n\u001b[0;32m----> 3\u001b[0m coverage_ht \u001b[38;5;241m=\u001b[39m coverage(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mexomes\u001b[39m\u001b[38;5;124m\"\u001b[39m)\u001b[38;5;241m.\u001b[39mht()\n\u001b[1;32m 5\u001b[0m \u001b[38;5;66;03m#Filter to PASS SNVs with AF <= 0.1% and median exome depth ≥ 30.\u001b[39;00m\n\u001b[1;32m 6\u001b[0m ht \u001b[38;5;241m=\u001b[39m ht\u001b[38;5;241m.\u001b[39mfilter(\n\u001b[1;32m 7\u001b[0m (hl\u001b[38;5;241m.\u001b[39mlen(ht\u001b[38;5;241m.\u001b[39mfilters) \u001b[38;5;241m==\u001b[39m \u001b[38;5;241m0\u001b[39m) \n\u001b[1;32m 8\u001b[0m \u001b[38;5;241m&\u001b[39m (ht\u001b[38;5;241m.\u001b[39mallele_info\u001b[38;5;241m.\u001b[39mallele_type \u001b[38;5;241m==\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124msnv\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m 9\u001b[0m \u001b[38;5;241m&\u001b[39m (ht\u001b[38;5;241m.\u001b[39mfreq[\u001b[38;5;241m0\u001b[39m]\u001b[38;5;241m.\u001b[39mAF \u001b[38;5;241m<\u001b[39m\u001b[38;5;241m=\u001b[39m \u001b[38;5;241m0.001\u001b[39m)\n\u001b[1;32m 10\u001b[0m \u001b[38;5;241m&\u001b[39m (coverage_ht[ht\u001b[38;5;241m.\u001b[39mlocus]\u001b[38;5;241m.\u001b[39mmedian_approx \u001b[38;5;241m>\u001b[39m\u001b[38;5;241m=\u001b[39m \u001b[38;5;241m30\u001b[39m)\n\u001b[1;32m 11\u001b[0m )\n", + "\u001b[0;31mNameError\u001b[0m: name 'coverage' is not defined" + ] + } + ], + "source": [ + "# TODO: add function for this\n", + "\n", + "coverage_ht = coverage(\"exomes\").ht()\n", + "\n", + "#Filter to PASS SNVs with AF <= 0.1% and median exome depth ≥ 30.\n", + "ht = ht.filter(\n", + " (hl.len(ht.filters) == 0) \n", + " & (ht.allele_info.allele_type == \"snv\")\n", + " & (ht.freq[0].AF <= 0.001)\n", + " & (coverage_ht[ht.locus].median_approx >= 30)\n", + ")\n", + "\n", + "\n", + "print(f\"Number of variants: {ht.count()}\")\n", + "ht.select(\n", + " freq=ht.freq[0],\n", + " csq=ht.vep.transcript_consequences[0].consequence_terms,\n", + " coverage=coverage_ht[ht.locus],\n", + ").show(-1)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.12.2" + }, + "toc": { + "base_numbering": 1, + "nav_menu": { + "height": "613.99px", + "width": "526.312px" + }, + "number_sections": false, + "sideBar": true, + "skip_h1_title": false, + "title_cell": "Table of Contents", + "title_sidebar": "Contents", + "toc_cell": true, + "toc_position": { + "height": "calc(100% - 180px)", + "left": "10px", + "top": "150px", + "width": "219.438px" + }, + "toc_section_display": true, + "toc_window_display": true + }, + "widgets": { + "application/vnd.jupyter.widget-state+json": { + "state": {}, + "version_major": 2, + "version_minor": 0 + } + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} From 710bdcf5919f196d2a63ae671ffb98b9ca6fc952 Mon Sep 17 00:00:00 2001 From: Qin He <44242118+KoalaQin@users.noreply.github.com> Date: Fri, 13 Dec 2024 13:07:59 -0500 Subject: [PATCH 029/121] Fix unterminated string error --- gnomad_toolbox/load_data.py | 3 +-- 1 file changed, 1 insertion(+), 2 deletions(-) diff --git a/gnomad_toolbox/load_data.py b/gnomad_toolbox/load_data.py index d591bed..f0b9d95 100644 --- a/gnomad_toolbox/load_data.py +++ b/gnomad_toolbox/load_data.py @@ -165,8 +165,7 @@ def _get_gnomad_release( ) else: raise ValueError( - f"Version {version} is not available for { - data_type} in the {dataset} dataset. " + f"Version {version} is not available for {data_type} in the {dataset} dataset. " f"Available versions: GRCh38 - {data_type_releases['GRCh38']}, " f"GRCh37 - {data_type_releases['GRCh37']}." ) From 4bfc305cdbddf5f4492a8550028e15e3bd20e107 Mon Sep 17 00:00:00 2001 From: jkgoodrich <33063077+jkgoodrich@users.noreply.github.com> Date: Wed, 18 Dec 2024 09:01:14 -0700 Subject: [PATCH 030/121] Apply suggestions from code review Co-authored-by: Qin He <44242118+KoalaQin@users.noreply.github.com> --- gnomad_toolbox/analysis/general.py | 6 ++++-- gnomad_toolbox/load_data.py | 11 ++++------- 2 files changed, 8 insertions(+), 9 deletions(-) diff --git a/gnomad_toolbox/analysis/general.py b/gnomad_toolbox/analysis/general.py index bcdde4a..391f9e4 100644 --- a/gnomad_toolbox/analysis/general.py +++ b/gnomad_toolbox/analysis/general.py @@ -36,7 +36,9 @@ def freq_bin_expr( :param freq_expr: Array of structs containing frequency information. :param index: Which index of freq_expr to use for annotation. Default is 0. - :param ac_cutoffs: + :param ac_cutoffs: List of AC cutoffs to use for binning. + :param af_cutoffs: List of AF cutoffs to use for binning. + :param upper_af: Upper AF cutoff to use for binning. :return: StringExpression containing bin name based on input AC or AF. """ if isinstance(freq_expr, hl.expr.ArrayExpression): @@ -46,7 +48,7 @@ def freq_bin_expr( ac_cutoffs = [(c, f"AC{c}") for c in ac_cutoffs] if af_cutoffs and isinstance(af_cutoffs[0], float): - af_cutoffs = [(c, f"{c*100}%") for c in af_cutoffs] + af_cutoffs = [(f, f"{f*100}%") for f in af_cutoffs] if isinstance(upper_af, float): upper_af = (upper_af, f"{upper_af*100}%") diff --git a/gnomad_toolbox/load_data.py b/gnomad_toolbox/load_data.py index f0b9d95..bc5a57d 100644 --- a/gnomad_toolbox/load_data.py +++ b/gnomad_toolbox/load_data.py @@ -83,8 +83,7 @@ def set_default_data( # Validate data type. if data_type and data_type not in DATA_TYPES: raise ValueError( - f"Data type {data_type} is invalid. Choose from 'exomes', 'genomes', " - f"or 'joint'." + f"Data type {data_type} is invalid. Choose from {DATA_TYPES}" ) # Get all possible versions. @@ -101,8 +100,7 @@ def set_default_data( # Check version availability. if version not in possible_versions: raise ValueError( - f"Version {version} is not available" - f"{'' if data_type else f' for {data_type}'}. " + f"Version {version} for {data_type} is not available." ) self.data_type = data_type @@ -142,7 +140,7 @@ def _get_gnomad_release( # Validate dataset. if releases is None: - raise ValueError(f"{dataset} is invalid. Choose from {RELEASES.keys()}") + raise ValueError(f"{dataset} is invalid. Choose from {list(RELEASES.keys())}") # Get all releases for the given dataset and data_type. data_type_releases = releases.get(data_type) @@ -150,8 +148,7 @@ def _get_gnomad_release( # Validate data type. if data_type_releases is None: raise ValueError( - f"Data type {data_type} is invalid. Choose from 'exomes', 'genomes', or " - "'joint'." + f"Invalid data_type '{data_type}' for dataset '{dataset}'." ) # Check version availability for GRCh38 and GRCh37. From ecb664ba88f1902948eff17d685731bbe0fa0953 Mon Sep 17 00:00:00 2001 From: jkgoodrich <33063077+jkgoodrich@users.noreply.github.com> Date: Wed, 18 Dec 2024 09:08:23 -0700 Subject: [PATCH 031/121] format --- gnomad_toolbox/analysis/general.py | 2 +- gnomad_toolbox/load_data.py | 8 ++------ 2 files changed, 3 insertions(+), 7 deletions(-) diff --git a/gnomad_toolbox/analysis/general.py b/gnomad_toolbox/analysis/general.py index 391f9e4..704173f 100644 --- a/gnomad_toolbox/analysis/general.py +++ b/gnomad_toolbox/analysis/general.py @@ -36,7 +36,7 @@ def freq_bin_expr( :param freq_expr: Array of structs containing frequency information. :param index: Which index of freq_expr to use for annotation. Default is 0. - :param ac_cutoffs: List of AC cutoffs to use for binning. + :param ac_cutoffs: List of AC cutoffs to use for binning. :param af_cutoffs: List of AF cutoffs to use for binning. :param upper_af: Upper AF cutoff to use for binning. :return: StringExpression containing bin name based on input AC or AF. diff --git a/gnomad_toolbox/load_data.py b/gnomad_toolbox/load_data.py index bc5a57d..de29e85 100644 --- a/gnomad_toolbox/load_data.py +++ b/gnomad_toolbox/load_data.py @@ -99,9 +99,7 @@ def set_default_data( # Check version availability. if version not in possible_versions: - raise ValueError( - f"Version {version} for {data_type} is not available." - ) + raise ValueError(f"Version {version} for {data_type} is not available.") self.data_type = data_type self.version = version @@ -147,9 +145,7 @@ def _get_gnomad_release( # Validate data type. if data_type_releases is None: - raise ValueError( - f"Invalid data_type '{data_type}' for dataset '{dataset}'." - ) + raise ValueError(f"Invalid data_type '{data_type}' for dataset '{dataset}'.") # Check version availability for GRCh38 and GRCh37. if data_type_releases["GRCh38"] and version in data_type_releases["GRCh38"]: From 06de9807d30e3afafa155b573c5342e1cac72e63 Mon Sep 17 00:00:00 2001 From: Qin He <44242118+KoalaQin@users.noreply.github.com> Date: Wed, 18 Dec 2024 11:22:31 -0500 Subject: [PATCH 032/121] Put back setup.py --- gnomad_toolbox/setup.py | 40 ++++++++++++++++++++++++++++++++++++++++ 1 file changed, 40 insertions(+) create mode 100644 gnomad_toolbox/setup.py diff --git a/gnomad_toolbox/setup.py b/gnomad_toolbox/setup.py new file mode 100644 index 0000000..8bc0d5d --- /dev/null +++ b/gnomad_toolbox/setup.py @@ -0,0 +1,40 @@ +"""Setup script.""" + +import setuptools + +with open("README.md", "r") as readme_file: + long_description = readme_file.read() + +install_requires = [] +with open("requirements.txt", "r") as requirements_file: + for req in (line.strip() for line in requirements_file): + if req != "hail": + install_requires.append(req) + + +setuptools.setup( + name="gnomad_toolbox", + version="0.0.1", + author="The Genome Aggregation Database", + author_email="gnomad@broadinstitute.org", + description="Toolbox to help users process gnomAD release files", + long_description=long_description, + long_description_content_type="text/markdown", + url="https://github.com/broadinstitute/gnomad-toolbox", + packages=setuptools.find_namespace_packages(include=["gnomad_toolbox.*"]), + project_urls={ + "Documentation": "https://broadinstitute.github.io/gnomad-toolbox/", + "Source Code": "https://github.com/broadinstitute/gnomad-toolbox", + "Issues": "https://github.com/broadinstitute/gnomad-toolbox/issues", + "Change Log": "https://github.com/broadinstitute/gnomad-toolbox/releases", + }, + classifiers=[ + "Topic :: Scientific/Engineering :: Bio-Informatics", + "Intended Audience :: Science/Research", + "License :: OSI Approved :: BSD 3-Clause License", + "Programming Language :: Python :: 3", + "Development Status :: 4 - Beta", + ], + python_requires=">=3.9", + install_requires=install_requires, +) From c37ad6cc016b2841384c95eedf05d48cc9e4b360 Mon Sep 17 00:00:00 2001 From: jkgoodrich <33063077+jkgoodrich@users.noreply.github.com> Date: Wed, 18 Dec 2024 11:52:30 -0700 Subject: [PATCH 033/121] move setup to the correct location --- gnomad_toolbox/setup.py => setup.py | 0 1 file changed, 0 insertions(+), 0 deletions(-) rename gnomad_toolbox/setup.py => setup.py (100%) diff --git a/gnomad_toolbox/setup.py b/setup.py similarity index 100% rename from gnomad_toolbox/setup.py rename to setup.py From 24b78ab3e6a32faa18d669646275878d05f08259 Mon Sep 17 00:00:00 2001 From: Qin He <44242118+KoalaQin@users.noreply.github.com> Date: Wed, 18 Dec 2024 17:25:12 -0500 Subject: [PATCH 034/121] Add instructions to set up the toolbox and use notebooks --- README.md | 79 +++ .../intro_to_filtering_variant_data.ipynb | 621 +++++++++++++++++- gnomad_toolbox/notebooks/needs_a_name.ipynb | 2 +- 3 files changed, 693 insertions(+), 9 deletions(-) diff --git a/README.md b/README.md index 08eecb8..fe98f7b 100644 --- a/README.md +++ b/README.md @@ -31,3 +31,82 @@ pip install -r requirements.txt ### Opening the notebooks jupyter lab + +# Setting Up Your Environment for Hail and gnomAD Toolbox + +This guide provides step-by-step instructions to set up a working environment for using Hail and the gnomad_toolbox. The steps include installing Miniconda, creating a Conda environment, installing the necessary dependencies, and configuring the service account. + +Prerequisites + +Before starting, ensure you have the following: + • Administrator access to your system to install software. + • Internet connection for downloading dependencies. + +## Step 1: Install Miniconda +Miniconda is a lightweight distribution of Conda that includes just Conda and its dependencies. +1. Download Miniconda for your system from the [official website](https://docs.anaconda.com/miniconda/install/). +2. Follow the installation instructions for your operating system: + • Linux/macOS: Run the installer script in your terminal: +``` +bash Miniconda3-latest-Linux-x86_64.sh +``` + • Windows: Run the installer executable and follow the installation wizard. +3. Confirm the insstallation by running: +``` +conda --version +``` + +## Step 2: Install Google Cloud SDK (gcloud) + +The Google Cloud SDK is required to interact with Google Cloud services, including setting up authentication for Hail. +1. Follow the official Google Cloud SDK installation guide for your operating system. +2. After installation, initialize gcloud: +``` +gcloud init +``` +3. Authenticate with your Google account: +``` +gcloud auth login +``` +4. Set the default project: +``` +gcloud config set project broad-mpg-gnomad +``` + +## Step 43: Configure the Service Account +```commandline +gcloud iam service-accounts keys create hail-local-sa-key.json --iam-account hail-local-sa@broad-mpg-gnomad.iam.gserviceaccount.com +export GOOGLE_APPLICATION_CREDENTIALS=path-to-your-key/hail-local-sa-key.json +``` + +## Step 4: Create a Conda Environment +1. Create a new Conda environment with a specific version of Hail (here we use Hail + 0.2.132 and Python 3.11): +```commandline +conda create -n gnomad-toolbox hail=0.2.132,python=3.11 +``` +2. Activate the Conda environment: +```commandline +conda activate gnomad-toolbox +``` +3. Clone the gnomad-toolbox repository: +```commandline +cd /path/to/your/directory +git clone https://github.com/broadinstitute/gnomad-toolbox.git +cd gnomad-toolbox +pip install -r requirements.txt +pip install git+https://github.com/broadinstitute/gnomad-toolbox.git +``` + +## Step 5: Verify the Setup +1. Start a Python shell and test if Hail and gnomad_toolbox are working: +```commandline +import hail as hl +from gnomad_toolbox.analysis.general import get_variant_count_by_freq_bin +hl.init() +print("Hail and gnomad_toolbox setup is complete!") +``` +Or open the notebooks: +```commandline +jupyter lab +``` diff --git a/gnomad_toolbox/notebooks/intro_to_filtering_variant_data.ipynb b/gnomad_toolbox/notebooks/intro_to_filtering_variant_data.ipynb index e6dd8fd..6ee51f0 100644 --- a/gnomad_toolbox/notebooks/intro_to_filtering_variant_data.ipynb +++ b/gnomad_toolbox/notebooks/intro_to_filtering_variant_data.ipynb @@ -51,7 +51,7 @@ " \n", "
\n", " \n", - " Loading BokehJS ...\n", + " Loading BokehJS ...\n", "
\n" ] }, @@ -223,7 +223,7 @@ " \"\"}};\n", "\n", " function display_loaded() {\n", - " const el = document.getElementById(\"ab66414b-9a8d-4992-add5-5e50546bdda0\");\n", + " const el = document.getElementById(\"ac20726a-f588-48d8-a740-bc1df9e390c1\");\n", " if (el != null) {\n", " el.textContent = \"BokehJS is loading...\";\n", " }\n", @@ -329,7 +329,7 @@ " console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n", " root._bokeh_failed_load = true;\n", " } else if (force !== true) {\n", - " const cell = $(document.getElementById(\"ab66414b-9a8d-4992-add5-5e50546bdda0\")).parents('.cell').data().cell;\n", + " const cell = $(document.getElementById(\"ac20726a-f588-48d8-a740-bc1df9e390c1\")).parents('.cell').data().cell;\n", " cell.output_area.append_execute_result(NB_LOAD_WARNING)\n", " }\n", " }\n", @@ -345,7 +345,7 @@ " }\n", "}(window));" ], - "application/vnd.bokehjs_load.v0+json": "(function(root) {\n function now() {\n return new Date();\n }\n\n const force = true;\n\n if (typeof root._bokeh_onload_callbacks === \"undefined\" || force === true) {\n root._bokeh_onload_callbacks = [];\n root._bokeh_is_loading = undefined;\n }\n\n\n if (typeof (root._bokeh_timeout) === \"undefined\" || force === true) {\n root._bokeh_timeout = Date.now() + 5000;\n root._bokeh_failed_load = false;\n }\n\n const NB_LOAD_WARNING = {'data': {'text/html':\n \"
\\n\"+\n \"

\\n\"+\n \"BokehJS does not appear to have successfully loaded. If loading BokehJS from CDN, this \\n\"+\n \"may be due to a slow or bad network connection. Possible fixes:\\n\"+\n \"

\\n\"+\n \"
    \\n\"+\n \"
  • re-rerun `output_notebook()` to attempt to load from CDN again, or
  • \\n\"+\n \"
  • use INLINE resources instead, as so:
  • \\n\"+\n \"
\\n\"+\n \"\\n\"+\n \"from bokeh.resources import INLINE\\n\"+\n \"output_notebook(resources=INLINE)\\n\"+\n \"\\n\"+\n \"
\"}};\n\n function display_loaded() {\n const el = document.getElementById(\"ab66414b-9a8d-4992-add5-5e50546bdda0\");\n if (el != null) {\n el.textContent = \"BokehJS is loading...\";\n }\n if (root.Bokeh !== undefined) {\n if (el != null) {\n el.textContent = \"BokehJS \" + root.Bokeh.version + \" successfully loaded.\";\n }\n } else if (Date.now() < root._bokeh_timeout) {\n setTimeout(display_loaded, 100)\n }\n }\n\n function run_callbacks() {\n try {\n root._bokeh_onload_callbacks.forEach(function(callback) {\n if (callback != null)\n callback();\n });\n } finally {\n delete root._bokeh_onload_callbacks\n }\n console.debug(\"Bokeh: all callbacks have finished\");\n }\n\n function load_libs(css_urls, js_urls, callback) {\n if (css_urls == null) css_urls = [];\n if (js_urls == null) js_urls = [];\n\n root._bokeh_onload_callbacks.push(callback);\n if (root._bokeh_is_loading > 0) {\n console.debug(\"Bokeh: BokehJS is being loaded, scheduling callback at\", now());\n return null;\n }\n if (js_urls == null || js_urls.length === 0) {\n run_callbacks();\n return null;\n }\n console.debug(\"Bokeh: BokehJS not loaded, scheduling load and callback at\", now());\n root._bokeh_is_loading = css_urls.length + js_urls.length;\n\n function on_load() {\n root._bokeh_is_loading--;\n if (root._bokeh_is_loading === 0) {\n console.debug(\"Bokeh: all BokehJS libraries/stylesheets loaded\");\n run_callbacks()\n }\n }\n\n function on_error(url) {\n console.error(\"failed to load \" + url);\n }\n\n for (let i = 0; i < css_urls.length; i++) {\n const url = css_urls[i];\n const element = document.createElement(\"link\");\n element.onload = on_load;\n element.onerror = on_error.bind(null, url);\n element.rel = \"stylesheet\";\n element.type = \"text/css\";\n element.href = url;\n console.debug(\"Bokeh: injecting link tag for BokehJS stylesheet: \", url);\n document.body.appendChild(element);\n }\n\n for (let i = 0; i < js_urls.length; i++) {\n const url = js_urls[i];\n const element = document.createElement('script');\n element.onload = on_load;\n element.onerror = on_error.bind(null, url);\n element.async = false;\n element.src = url;\n console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n document.head.appendChild(element);\n }\n };\n\n function inject_raw_css(css) {\n const element = document.createElement(\"style\");\n element.appendChild(document.createTextNode(css));\n document.body.appendChild(element);\n }\n\n const js_urls = [\"https://cdn.bokeh.org/bokeh/release/bokeh-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-gl-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-widgets-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-tables-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-mathjax-3.3.4.min.js\"];\n const css_urls = [];\n\n const inline_js = [ function(Bokeh) {\n Bokeh.set_log_level(\"info\");\n },\nfunction(Bokeh) {\n }\n ];\n\n function run_inline_js() {\n if (root.Bokeh !== undefined || force === true) {\n for (let i = 0; i < inline_js.length; i++) {\n inline_js[i].call(root, root.Bokeh);\n }\nif (force === true) {\n display_loaded();\n }} else if (Date.now() < root._bokeh_timeout) {\n setTimeout(run_inline_js, 100);\n } else if (!root._bokeh_failed_load) {\n console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n root._bokeh_failed_load = true;\n } else if (force !== true) {\n const cell = $(document.getElementById(\"ab66414b-9a8d-4992-add5-5e50546bdda0\")).parents('.cell').data().cell;\n cell.output_area.append_execute_result(NB_LOAD_WARNING)\n }\n }\n\n if (root._bokeh_is_loading === 0) {\n console.debug(\"Bokeh: BokehJS loaded, going straight to plotting\");\n run_inline_js();\n } else {\n load_libs(css_urls, js_urls, function() {\n console.debug(\"Bokeh: BokehJS plotting callback run at\", now());\n run_inline_js();\n });\n }\n}(window));" + "application/vnd.bokehjs_load.v0+json": "(function(root) {\n function now() {\n return new Date();\n }\n\n const force = true;\n\n if (typeof root._bokeh_onload_callbacks === \"undefined\" || force === true) {\n root._bokeh_onload_callbacks = [];\n root._bokeh_is_loading = undefined;\n }\n\n\n if (typeof (root._bokeh_timeout) === \"undefined\" || force === true) {\n root._bokeh_timeout = Date.now() + 5000;\n root._bokeh_failed_load = false;\n }\n\n const NB_LOAD_WARNING = {'data': {'text/html':\n \"
\\n\"+\n \"

\\n\"+\n \"BokehJS does not appear to have successfully loaded. If loading BokehJS from CDN, this \\n\"+\n \"may be due to a slow or bad network connection. Possible fixes:\\n\"+\n \"

\\n\"+\n \"
    \\n\"+\n \"
  • re-rerun `output_notebook()` to attempt to load from CDN again, or
  • \\n\"+\n \"
  • use INLINE resources instead, as so:
  • \\n\"+\n \"
\\n\"+\n \"\\n\"+\n \"from bokeh.resources import INLINE\\n\"+\n \"output_notebook(resources=INLINE)\\n\"+\n \"\\n\"+\n \"
\"}};\n\n function display_loaded() {\n const el = document.getElementById(\"ac20726a-f588-48d8-a740-bc1df9e390c1\");\n if (el != null) {\n el.textContent = \"BokehJS is loading...\";\n }\n if (root.Bokeh !== undefined) {\n if (el != null) {\n el.textContent = \"BokehJS \" + root.Bokeh.version + \" successfully loaded.\";\n }\n } else if (Date.now() < root._bokeh_timeout) {\n setTimeout(display_loaded, 100)\n }\n }\n\n function run_callbacks() {\n try {\n root._bokeh_onload_callbacks.forEach(function(callback) {\n if (callback != null)\n callback();\n });\n } finally {\n delete root._bokeh_onload_callbacks\n }\n console.debug(\"Bokeh: all callbacks have finished\");\n }\n\n function load_libs(css_urls, js_urls, callback) {\n if (css_urls == null) css_urls = [];\n if (js_urls == null) js_urls = [];\n\n root._bokeh_onload_callbacks.push(callback);\n if (root._bokeh_is_loading > 0) {\n console.debug(\"Bokeh: BokehJS is being loaded, scheduling callback at\", now());\n return null;\n }\n if (js_urls == null || js_urls.length === 0) {\n run_callbacks();\n return null;\n }\n console.debug(\"Bokeh: BokehJS not loaded, scheduling load and callback at\", now());\n root._bokeh_is_loading = css_urls.length + js_urls.length;\n\n function on_load() {\n root._bokeh_is_loading--;\n if (root._bokeh_is_loading === 0) {\n console.debug(\"Bokeh: all BokehJS libraries/stylesheets loaded\");\n run_callbacks()\n }\n }\n\n function on_error(url) {\n console.error(\"failed to load \" + url);\n }\n\n for (let i = 0; i < css_urls.length; i++) {\n const url = css_urls[i];\n const element = document.createElement(\"link\");\n element.onload = on_load;\n element.onerror = on_error.bind(null, url);\n element.rel = \"stylesheet\";\n element.type = \"text/css\";\n element.href = url;\n console.debug(\"Bokeh: injecting link tag for BokehJS stylesheet: \", url);\n document.body.appendChild(element);\n }\n\n for (let i = 0; i < js_urls.length; i++) {\n const url = js_urls[i];\n const element = document.createElement('script');\n element.onload = on_load;\n element.onerror = on_error.bind(null, url);\n element.async = false;\n element.src = url;\n console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n document.head.appendChild(element);\n }\n };\n\n function inject_raw_css(css) {\n const element = document.createElement(\"style\");\n element.appendChild(document.createTextNode(css));\n document.body.appendChild(element);\n }\n\n const js_urls = [\"https://cdn.bokeh.org/bokeh/release/bokeh-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-gl-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-widgets-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-tables-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-mathjax-3.3.4.min.js\"];\n const css_urls = [];\n\n const inline_js = [ function(Bokeh) {\n Bokeh.set_log_level(\"info\");\n },\nfunction(Bokeh) {\n }\n ];\n\n function run_inline_js() {\n if (root.Bokeh !== undefined || force === true) {\n for (let i = 0; i < inline_js.length; i++) {\n inline_js[i].call(root, root.Bokeh);\n }\nif (force === true) {\n display_loaded();\n }} else if (Date.now() < root._bokeh_timeout) {\n setTimeout(run_inline_js, 100);\n } else if (!root._bokeh_failed_load) {\n console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n root._bokeh_failed_load = true;\n } else if (force !== true) {\n const cell = $(document.getElementById(\"ac20726a-f588-48d8-a740-bc1df9e390c1\")).parents('.cell').data().cell;\n cell.output_area.append_execute_result(NB_LOAD_WARNING)\n }\n }\n\n if (root._bokeh_is_loading === 0) {\n console.debug(\"Bokeh: BokehJS loaded, going straight to plotting\");\n run_inline_js();\n } else {\n load_libs(css_urls, js_urls, function() {\n console.debug(\"Bokeh: BokehJS plotting callback run at\", now());\n run_inline_js();\n });\n }\n}(window));" }, "metadata": {}, "output_type": "display_data" @@ -355,7 +355,7 @@ "import hail as hl\n", "\n", "from gnomad_toolbox.load_data import get_gnomad_release\n", - "from gnomad_toolbox.filtering.variant import filter_by_intervals, filter_by_gene_symbol\n", + "from gnomad_toolbox.filtering.variant import get_single_variant,filter_by_intervals, filter_by_gene_symbol\n", "from gnomad_toolbox.filtering.frequency import (\n", " get_ancestry_callstats, \n", " get_single_variant_ancestry_callstats,\n", @@ -378,8 +378,9 @@ " / /_/ /__ __/ /\n", " / __ / _ `/ / /\n", " /_/ /_/\\_,_/_/_/ version 0.2.132-678e1f52b999\n", - "LOGGING: writing to /Users/jgoodric/PycharmProjects/gnomad-toolbox/gnomad_toolbox/notebooks/hail-20241210-2227-0.2.132-678e1f52b999.log\n", - "2024-12-10 22:28:45.710 Hail: WARN: No variant found at chr22:15528692 with alleles ['C', 'A']\n" + "LOGGING: writing to /Users/heqin/PycharmProjects/gnomad-toolbox/gnomad_toolbox/notebooks/hail-20241218-1316-0.2.132-678e1f52b999.log\n", + "2024-12-18 13:16:59.591 Hail: WARN: No variant found at chr22:15528692 with alleles ['C', 'A']\n", + "2024-12-18 13:18:09.999 Hail: WARN: No variant found at chr22:15528692 with alleles ['C', 'A']\n" ] } ], @@ -387,6 +388,610 @@ "hl.init(backend=\"local\")" ] }, + { + "cell_type": "code", + "execution_count": 4, + "id": "fad2569e-601e-4ce6-8267-219963c7e6ae", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "
histograms
grpmax
fafmax
info
qual_hists
raw_qual_hists
age_hists
in_silico_predictors
gnomad
non_ukb
gnomad
non_ukb
vrs
vep
vqsr_results
region_flags
allele_info
gq_hist_all
dp_hist_all
gq_hist_alt
dp_hist_alt
ab_hist_alt
gq_hist_all
dp_hist_all
gq_hist_alt
dp_hist_alt
ab_hist_alt
age_hist_het
age_hist_hom
cadd
locus
alleles
freq
AC
AF
AN
homozygote_count
gen_anc
AC
AF
AN
homozygote_count
gen_anc
faf
faf95_max
faf95_max_gen_anc
faf99_max
faf99_max_gen_anc
faf95_max
faf95_max_gen_anc
faf99_max
faf99_max_gen_anc
a_index
was_split
rsid
filters
FS
MQ
MQRankSum
QUALapprox
QD
ReadPosRankSum
SB
SOR
VarDP
AS_FS
AS_MQ
AS_MQRankSum
AS_pab_max
AS_QUALapprox
AS_QD
AS_ReadPosRankSum
AS_SB_TABLE
AS_SOR
AS_VarDP
singleton
transmitted_singleton
sibling_singleton
omni
mills
monoallelic
only_het
AS_VQSLOD
inbreeding_coeff
VRS_Allele_IDs
VRS_Starts
VRS_Ends
VRS_States
allele_string
end
id
input
intergenic_consequences
most_severe_consequence
motif_feature_consequences
regulatory_feature_consequences
seq_region_name
start
strand
transcript_consequences
variant_class
AS_VQSLOD
AS_culprit
positive_train_site
negative_train_site
non_par
lcr
segdup
fail_interval_qc
outside_ukb_capture_region
outside_broad_capture_region
variant_type
n_alt_alleles
has_star
allele_type
was_mixed
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
phred
raw_score
revel_max
spliceai_ds_max
pangolin_largest_ds
phylop
sift_max
polyphen_max
locus<GRCh38>array<str>array<struct{AC: int32, AF: float64, AN: int32, homozygote_count: int64}>int32float64int32int64strint32float64int32int64strarray<struct{faf95: float64, faf99: float64}>float64strfloat64strfloat64strfloat64strint32boolset<str>set<str>float64float64float64int64float64float64array<int32>float64int32float64float64float64float64int64float64float64array<int32>float64int32boolboolboolboolboolboolboolfloat64float64array<str>array<int32>array<int32>array<str>strint32strstrarray<struct{allele_num: int32, consequence_terms: array<str>, impact: str, variant_allele: str}>strarray<struct{allele_num: int32, consequence_terms: array<str>, high_inf_pos: str, impact: str, motif_feature_id: str, motif_name: str, motif_pos: int32, motif_score_change: float64, transcription_factors: array<str>, strand: int32, variant_allele: str}>array<struct{allele_num: int32, biotype: str, consequence_terms: array<str>, impact: str, regulatory_feature_id: str, variant_allele: str}>strint32int32array<struct{allele_num: int32, amino_acids: str, appris: str, biotype: str, canonical: int32, ccds: str, cdna_start: int32, cdna_end: int32, cds_end: int32, cds_start: int32, codons: str, consequence_terms: array<str>, distance: int32, domains: array<struct{db: str, name: str}>, exon: str, flags: str, gene_id: str, gene_pheno: int32, gene_symbol: str, gene_symbol_source: str, hgnc_id: str, hgvsc: str, hgvsp: str, hgvs_offset: int32, impact: str, intron: str, lof: str, lof_flags: str, lof_filter: str, lof_info: str, mane_select: str, mane_plus_clinical: str, mirna: array<str>, protein_end: int32, protein_start: int32, protein_id: str, source: str, strand: int32, transcript_id: str, tsl: int32, uniprot_isoform: array<str>, variant_allele: str}>strfloat64strboolboolboolboolboolboolboolboolstrint32boolstrboolarray<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64float32float32float64float32float64float64float64float64
" + ], + "text/plain": [ + "+---------------+------------+\n", + "| locus | alleles |\n", + "+---------------+------------+\n", + "| locus | array |\n", + "+---------------+------------+\n", + "+---------------+------------+\n", + "\n", + "+---------------------------------------------------------------------------+\n", + "| freq |\n", + "+---------------------------------------------------------------------------+\n", + "| array |\n", + "+---------------------------------------------------------------------------+\n", + "+---------------------------------------------------------------------------+\n", + "\n", + "+------------------+------------------+------------------+\n", + "| grpmax.gnomad.AC | grpmax.gnomad.AF | grpmax.gnomad.AN |\n", + "+------------------+------------------+------------------+\n", + "| int32 | float64 | int32 |\n", + "+------------------+------------------+------------------+\n", + "+------------------+------------------+------------------+\n", + "\n", + "+--------------------------------+-----------------------+-------------------+\n", + "| grpmax.gnomad.homozygote_count | grpmax.gnomad.gen_anc | grpmax.non_ukb.AC |\n", + "+--------------------------------+-----------------------+-------------------+\n", + "| int64 | str | int32 |\n", + "+--------------------------------+-----------------------+-------------------+\n", + "+--------------------------------+-----------------------+-------------------+\n", + "\n", + "+-------------------+-------------------+---------------------------------+\n", + "| grpmax.non_ukb.AF | grpmax.non_ukb.AN | grpmax.non_ukb.homozygote_count |\n", + "+-------------------+-------------------+---------------------------------+\n", + "| float64 | int32 | int64 |\n", + "+-------------------+-------------------+---------------------------------+\n", + "+-------------------+-------------------+---------------------------------+\n", + "\n", + "+------------------------+-----------------------------------------------+\n", + "| grpmax.non_ukb.gen_anc | faf |\n", + "+------------------------+-----------------------------------------------+\n", + "| str | array |\n", + "+------------------------+-----------------------------------------------+\n", + "+------------------------+-----------------------------------------------+\n", + "\n", + "+-------------------------+---------------------------------+\n", + "| fafmax.gnomad.faf95_max | fafmax.gnomad.faf95_max_gen_anc |\n", + "+-------------------------+---------------------------------+\n", + "| float64 | str |\n", + "+-------------------------+---------------------------------+\n", + "+-------------------------+---------------------------------+\n", + "\n", + "+-------------------------+---------------------------------+\n", + "| fafmax.gnomad.faf99_max | fafmax.gnomad.faf99_max_gen_anc |\n", + "+-------------------------+---------------------------------+\n", + "| float64 | str |\n", + "+-------------------------+---------------------------------+\n", + "+-------------------------+---------------------------------+\n", + "\n", + "+--------------------------+----------------------------------+\n", + "| fafmax.non_ukb.faf95_max | fafmax.non_ukb.faf95_max_gen_anc |\n", + "+--------------------------+----------------------------------+\n", + "| float64 | str |\n", + "+--------------------------+----------------------------------+\n", + "+--------------------------+----------------------------------+\n", + "\n", + "+--------------------------+----------------------------------+---------+\n", + "| fafmax.non_ukb.faf99_max | fafmax.non_ukb.faf99_max_gen_anc | a_index |\n", + "+--------------------------+----------------------------------+---------+\n", + "| float64 | str | int32 |\n", + "+--------------------------+----------------------------------+---------+\n", + "+--------------------------+----------------------------------+---------+\n", + "\n", + "+-----------+----------+----------+---------+---------+----------------+\n", + "| was_split | rsid | filters | info.FS | info.MQ | info.MQRankSum |\n", + "+-----------+----------+----------+---------+---------+----------------+\n", + "| bool | set | set | float64 | float64 | float64 |\n", + "+-----------+----------+----------+---------+---------+----------------+\n", + "+-----------+----------+----------+---------+---------+----------------+\n", + "\n", + "+-----------------+---------+---------------------+--------------+----------+\n", + "| info.QUALapprox | info.QD | info.ReadPosRankSum | info.SB | info.SOR |\n", + "+-----------------+---------+---------------------+--------------+----------+\n", + "| int64 | float64 | float64 | array | float64 |\n", + "+-----------------+---------+---------------------+--------------+----------+\n", + "+-----------------+---------+---------------------+--------------+----------+\n", + "\n", + "+------------+------------+------------+-------------------+-----------------+\n", + "| info.VarDP | info.AS_FS | info.AS_MQ | info.AS_MQRankSum | info.AS_pab_max |\n", + "+------------+------------+------------+-------------------+-----------------+\n", + "| int32 | float64 | float64 | float64 | float64 |\n", + "+------------+------------+------------+-------------------+-----------------+\n", + "+------------+------------+------------+-------------------+-----------------+\n", + "\n", + "+--------------------+------------+------------------------+------------------+\n", + "| info.AS_QUALapprox | info.AS_QD | info.AS_ReadPosRankSum | info.AS_SB_TABLE |\n", + "+--------------------+------------+------------------------+------------------+\n", + "| int64 | float64 | float64 | array |\n", + "+--------------------+------------+------------------------+------------------+\n", + "+--------------------+------------+------------------------+------------------+\n", + "\n", + "+-------------+---------------+----------------+----------------------------+\n", + "| info.AS_SOR | info.AS_VarDP | info.singleton | info.transmitted_singleton |\n", + "+-------------+---------------+----------------+----------------------------+\n", + "| float64 | int32 | bool | bool |\n", + "+-------------+---------------+----------------+----------------------------+\n", + "+-------------+---------------+----------------+----------------------------+\n", + "\n", + "+------------------------+-----------+------------+------------------+\n", + "| info.sibling_singleton | info.omni | info.mills | info.monoallelic |\n", + "+------------------------+-----------+------------+------------------+\n", + "| bool | bool | bool | bool |\n", + "+------------------------+-----------+------------+------------------+\n", + "+------------------------+-----------+------------+------------------+\n", + "\n", + "+---------------+----------------+-----------------------+\n", + "| info.only_het | info.AS_VQSLOD | info.inbreeding_coeff |\n", + "+---------------+----------------+-----------------------+\n", + "| bool | float64 | float64 |\n", + "+---------------+----------------+-----------------------+\n", + "+---------------+----------------+-----------------------+\n", + "\n", + "+-------------------------+---------------------+-------------------+\n", + "| info.vrs.VRS_Allele_IDs | info.vrs.VRS_Starts | info.vrs.VRS_Ends |\n", + "+-------------------------+---------------------+-------------------+\n", + "| array | array | array |\n", + "+-------------------------+---------------------+-------------------+\n", + "+-------------------------+---------------------+-------------------+\n", + "\n", + "+---------------------+-------------------+---------+--------+-----------+\n", + "| info.vrs.VRS_States | vep.allele_string | vep.end | vep.id | vep.input |\n", + "+---------------------+-------------------+---------+--------+-----------+\n", + "| array | str | int32 | str | str |\n", + "+---------------------+-------------------+---------+--------+-----------+\n", + "+---------------------+-------------------+---------+--------+-----------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| vep.intergenic_consequences |\n", + "+------------------------------------------------------------------------------+\n", + "| array, impact: st... |\n", + "+------------------------------------------------------------------------------+\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+-----------------------------+\n", + "| vep.most_severe_consequence |\n", + "+-----------------------------+\n", + "| str |\n", + "+-----------------------------+\n", + "+-----------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| vep.motif_feature_consequences |\n", + "+------------------------------------------------------------------------------+\n", + "| array, high_inf_p... |\n", + "+------------------------------------------------------------------------------+\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| vep.regulatory_feature_consequences |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+-----------------------+---------------------------------------------+\n", + "+-----------------------+---------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.qual_hists.gq_hist_all.bin_freq |\n", + "+--------------------------------------------+\n", + "| array |\n", + "+--------------------------------------------+\n", + "+--------------------------------------------+\n", + "\n", + "+---------------------------------------------+\n", + "| histograms.qual_hists.gq_hist_all.n_smaller |\n", + "+---------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------+\n", + "+---------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.qual_hists.gq_hist_all.n_larger |\n", + "+--------------------------------------------+\n", + "| int64 |\n", + "+--------------------------------------------+\n", + "+--------------------------------------------+\n", + "\n", + "+---------------------------------------------+\n", + "| histograms.qual_hists.dp_hist_all.bin_edges |\n", + "+---------------------------------------------+\n", + "| array |\n", + "+---------------------------------------------+\n", + "+---------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.qual_hists.dp_hist_all.bin_freq |\n", + "+--------------------------------------------+\n", + "| array |\n", + "+--------------------------------------------+\n", + "+--------------------------------------------+\n", + "\n", + "+---------------------------------------------+\n", + "| histograms.qual_hists.dp_hist_all.n_smaller |\n", + "+---------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------+\n", + "+---------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.qual_hists.dp_hist_all.n_larger |\n", + "+--------------------------------------------+\n", + "| int64 |\n", + "+--------------------------------------------+\n", + "+--------------------------------------------+\n", + "\n", + "+---------------------------------------------+\n", + "| histograms.qual_hists.gq_hist_alt.bin_edges |\n", + "+---------------------------------------------+\n", + "| array |\n", + "+---------------------------------------------+\n", + "+---------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.qual_hists.gq_hist_alt.bin_freq |\n", + "+--------------------------------------------+\n", + "| array |\n", + "+--------------------------------------------+\n", + "+--------------------------------------------+\n", + "\n", + "+---------------------------------------------+\n", + "| histograms.qual_hists.gq_hist_alt.n_smaller |\n", + "+---------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------+\n", + "+---------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.qual_hists.gq_hist_alt.n_larger |\n", + "+--------------------------------------------+\n", + "| int64 |\n", + "+--------------------------------------------+\n", + "+--------------------------------------------+\n", + "\n", + "+---------------------------------------------+\n", + "| histograms.qual_hists.dp_hist_alt.bin_edges |\n", + "+---------------------------------------------+\n", + "| array |\n", + "+---------------------------------------------+\n", + "+---------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.qual_hists.dp_hist_alt.bin_freq |\n", + "+--------------------------------------------+\n", + "| array |\n", + "+--------------------------------------------+\n", + "+--------------------------------------------+\n", + "\n", + "+---------------------------------------------+\n", + "| histograms.qual_hists.dp_hist_alt.n_smaller |\n", + "+---------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------+\n", + "+---------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.qual_hists.dp_hist_alt.n_larger |\n", + "+--------------------------------------------+\n", + "| int64 |\n", + "+--------------------------------------------+\n", + "+--------------------------------------------+\n", + "\n", + "+---------------------------------------------+\n", + "| histograms.qual_hists.ab_hist_alt.bin_edges |\n", + "+---------------------------------------------+\n", + "| array |\n", + "+---------------------------------------------+\n", + "+---------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.qual_hists.ab_hist_alt.bin_freq |\n", + "+--------------------------------------------+\n", + "| array |\n", + "+--------------------------------------------+\n", + "+--------------------------------------------+\n", + "\n", + "+---------------------------------------------+\n", + "| histograms.qual_hists.ab_hist_alt.n_smaller |\n", + "+---------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------+\n", + "+---------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.qual_hists.ab_hist_alt.n_larger |\n", + "+--------------------------------------------+\n", + "| int64 |\n", + "+--------------------------------------------+\n", + "+--------------------------------------------+\n", + "\n", + "+-------------------------------------------------+\n", + "| histograms.raw_qual_hists.gq_hist_all.bin_edges |\n", + "+-------------------------------------------------+\n", + "| array |\n", + "+-------------------------------------------------+\n", + "+-------------------------------------------------+\n", + "\n", + "+------------------------------------------------+\n", + "| histograms.raw_qual_hists.gq_hist_all.bin_freq |\n", + "+------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------+\n", + "+------------------------------------------------+\n", + "\n", + "+-------------------------------------------------+\n", + "| histograms.raw_qual_hists.gq_hist_all.n_smaller |\n", + "+-------------------------------------------------+\n", + "| int64 |\n", + "+-------------------------------------------------+\n", + "+-------------------------------------------------+\n", + "\n", + "+------------------------------------------------+\n", + "| histograms.raw_qual_hists.gq_hist_all.n_larger |\n", + "+------------------------------------------------+\n", + "| int64 |\n", + "+------------------------------------------------+\n", + "+------------------------------------------------+\n", + "\n", + "+-------------------------------------------------+\n", + "| histograms.raw_qual_hists.dp_hist_all.bin_edges |\n", + "+-------------------------------------------------+\n", + "| array |\n", + "+-------------------------------------------------+\n", + "+-------------------------------------------------+\n", + "\n", + "+------------------------------------------------+\n", + "| histograms.raw_qual_hists.dp_hist_all.bin_freq |\n", + "+------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------+\n", + "+------------------------------------------------+\n", + "\n", + "+-------------------------------------------------+\n", + "| histograms.raw_qual_hists.dp_hist_all.n_smaller |\n", + "+-------------------------------------------------+\n", + "| int64 |\n", + "+-------------------------------------------------+\n", + "+-------------------------------------------------+\n", + "\n", + "+------------------------------------------------+\n", + "| histograms.raw_qual_hists.dp_hist_all.n_larger |\n", + "+------------------------------------------------+\n", + "| int64 |\n", + "+------------------------------------------------+\n", + "+------------------------------------------------+\n", + "\n", + "+-------------------------------------------------+\n", + "| histograms.raw_qual_hists.gq_hist_alt.bin_edges |\n", + "+-------------------------------------------------+\n", + "| array |\n", + "+-------------------------------------------------+\n", + "+-------------------------------------------------+\n", + "\n", + "+------------------------------------------------+\n", + "| histograms.raw_qual_hists.gq_hist_alt.bin_freq |\n", + "+------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------+\n", + "+------------------------------------------------+\n", + "\n", + "+-------------------------------------------------+\n", + "| histograms.raw_qual_hists.gq_hist_alt.n_smaller |\n", + "+-------------------------------------------------+\n", + "| int64 |\n", + "+-------------------------------------------------+\n", + "+-------------------------------------------------+\n", + "\n", + "+------------------------------------------------+\n", + "| histograms.raw_qual_hists.gq_hist_alt.n_larger |\n", + "+------------------------------------------------+\n", + "| int64 |\n", + "+------------------------------------------------+\n", + "+------------------------------------------------+\n", + "\n", + "+-------------------------------------------------+\n", + "| histograms.raw_qual_hists.dp_hist_alt.bin_edges |\n", + "+-------------------------------------------------+\n", + "| array |\n", + "+-------------------------------------------------+\n", + "+-------------------------------------------------+\n", + "\n", + "+------------------------------------------------+\n", + "| histograms.raw_qual_hists.dp_hist_alt.bin_freq |\n", + "+------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------+\n", + "+------------------------------------------------+\n", + "\n", + "+-------------------------------------------------+\n", + "| histograms.raw_qual_hists.dp_hist_alt.n_smaller |\n", + "+-------------------------------------------------+\n", + "| int64 |\n", + "+-------------------------------------------------+\n", + "+-------------------------------------------------+\n", + "\n", + "+------------------------------------------------+\n", + "| histograms.raw_qual_hists.dp_hist_alt.n_larger |\n", + "+------------------------------------------------+\n", + "| int64 |\n", + "+------------------------------------------------+\n", + "+------------------------------------------------+\n", + "\n", + "+-------------------------------------------------+\n", + "| histograms.raw_qual_hists.ab_hist_alt.bin_edges |\n", + "+-------------------------------------------------+\n", + "| array |\n", + "+-------------------------------------------------+\n", + "+-------------------------------------------------+\n", + "\n", + "+------------------------------------------------+\n", + "| histograms.raw_qual_hists.ab_hist_alt.bin_freq |\n", + "+------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------+\n", + "+------------------------------------------------+\n", + "\n", + "+-------------------------------------------------+\n", + "| histograms.raw_qual_hists.ab_hist_alt.n_smaller |\n", + "+-------------------------------------------------+\n", + "| int64 |\n", + "+-------------------------------------------------+\n", + "+-------------------------------------------------+\n", + "\n", + "+------------------------------------------------+\n", + "| histograms.raw_qual_hists.ab_hist_alt.n_larger |\n", + "+------------------------------------------------+\n", + "| int64 |\n", + "+------------------------------------------------+\n", + "+------------------------------------------------+\n", + "\n", + "+---------------------------------------------+\n", + "| histograms.age_hists.age_hist_het.bin_edges |\n", + "+---------------------------------------------+\n", + "| array |\n", + "+---------------------------------------------+\n", + "+---------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.age_hists.age_hist_het.bin_freq |\n", + "+--------------------------------------------+\n", + "| array |\n", + "+--------------------------------------------+\n", + "+--------------------------------------------+\n", + "\n", + "+---------------------------------------------+\n", + "| histograms.age_hists.age_hist_het.n_smaller |\n", + "+---------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------+\n", + "+---------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.age_hists.age_hist_het.n_larger |\n", + "+--------------------------------------------+\n", + "| int64 |\n", + "+--------------------------------------------+\n", + "+--------------------------------------------+\n", + "\n", + "+---------------------------------------------+\n", + "| histograms.age_hists.age_hist_hom.bin_edges |\n", + "+---------------------------------------------+\n", + "| array |\n", + "+---------------------------------------------+\n", + "+---------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.age_hists.age_hist_hom.bin_freq |\n", + "+--------------------------------------------+\n", + "| array |\n", + "+--------------------------------------------+\n", + "+--------------------------------------------+\n", + "\n", + "+---------------------------------------------+\n", + "| histograms.age_hists.age_hist_hom.n_smaller |\n", + "+---------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------+\n", + "+---------------------------------------------+\n", + "\n", + "+--------------------------------------------+---------------------------------+\n", + "| histograms.age_hists.age_hist_hom.n_larger | in_silico_predictors.cadd.phred |\n", + "+--------------------------------------------+---------------------------------+\n", + "| int64 | float32 |\n", + "+--------------------------------------------+---------------------------------+\n", + "+--------------------------------------------+---------------------------------+\n", + "\n", + "+-------------------------------------+--------------------------------+\n", + "| in_silico_predictors.cadd.raw_score | in_silico_predictors.revel_max |\n", + "+-------------------------------------+--------------------------------+\n", + "| float32 | float64 |\n", + "+-------------------------------------+--------------------------------+\n", + "+-------------------------------------+--------------------------------+\n", + "\n", + "+--------------------------------------+\n", + "| in_silico_predictors.spliceai_ds_max |\n", + "+--------------------------------------+\n", + "| float32 |\n", + "+--------------------------------------+\n", + "+--------------------------------------+\n", + "\n", + "+------------------------------------------+-----------------------------+\n", + "| in_silico_predictors.pangolin_largest_ds | in_silico_predictors.phylop |\n", + "+------------------------------------------+-----------------------------+\n", + "| float64 | float64 |\n", + "+------------------------------------------+-----------------------------+\n", + "+------------------------------------------+-----------------------------+\n", + "\n", + "+-------------------------------+-----------------------------------+\n", + "| in_silico_predictors.sift_max | in_silico_predictors.polyphen_max |\n", + "+-------------------------------+-----------------------------------+\n", + "| float64 | float64 |\n", + "+-------------------------------+-----------------------------------+\n", + "+-------------------------------+-----------------------------------+" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "ht = get_single_variant(contig='chr22', position=15528692, ref='C', alt='A')\n", + "ht.show()" + ] + }, { "cell_type": "markdown", "id": "725f9a57", @@ -6252,7 +6857,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.12.2" + "version": "3.11.9" }, "toc": { "base_numbering": 1, diff --git a/gnomad_toolbox/notebooks/needs_a_name.ipynb b/gnomad_toolbox/notebooks/needs_a_name.ipynb index c4b688a..cc43a46 100644 --- a/gnomad_toolbox/notebooks/needs_a_name.ipynb +++ b/gnomad_toolbox/notebooks/needs_a_name.ipynb @@ -566,7 +566,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.12.2" + "version": "3.11.9" }, "toc": { "base_numbering": 1, From 1b9f98dd9446cd69b4d2048a013122e343cc959c Mon Sep 17 00:00:00 2001 From: Qin He <44242118+KoalaQin@users.noreply.github.com> Date: Wed, 18 Dec 2024 17:27:30 -0500 Subject: [PATCH 035/121] small edit --- README.md | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/README.md b/README.md index fe98f7b..e0e9e0c 100644 --- a/README.md +++ b/README.md @@ -83,7 +83,7 @@ export GOOGLE_APPLICATION_CREDENTIALS=path-to-your-key/hail-local-sa-key.json 1. Create a new Conda environment with a specific version of Hail (here we use Hail 0.2.132 and Python 3.11): ```commandline -conda create -n gnomad-toolbox hail=0.2.132,python=3.11 +conda create -n gnomad-toolbox hail=0.2.132 python=3.11 ``` 2. Activate the Conda environment: ```commandline From 62b7fd89cff9c1817eae646cc1b706f20bbe9562 Mon Sep 17 00:00:00 2001 From: jkgoodrich <33063077+jkgoodrich@users.noreply.github.com> Date: Thu, 19 Dec 2024 08:35:41 -0700 Subject: [PATCH 036/121] use updated freq_bin_expr in gnomad_methods --- gnomad_toolbox/analysis/general.py | 70 +----------------------------- 1 file changed, 1 insertion(+), 69 deletions(-) diff --git a/gnomad_toolbox/analysis/general.py b/gnomad_toolbox/analysis/general.py index 704173f..be9fb7e 100644 --- a/gnomad_toolbox/analysis/general.py +++ b/gnomad_toolbox/analysis/general.py @@ -3,79 +3,11 @@ from typing import Dict, List, Optional, Tuple, Union import hail as hl +from gnomad.assessment.summary_stats import freq_bin_expr from gnomad_toolbox.load_data import _get_gnomad_release -# TODO: Modify this function in gnomad_methods. -def freq_bin_expr( - freq_expr: Union[hl.expr.StructExpression, hl.expr.ArrayExpression], - index: int = 0, - ac_cutoffs: Optional[List[Union[int, Tuple[int, str]]]] = [ - (0, "AC0"), - (1, "singleton"), - (2, "doubleton"), - ], - af_cutoffs: Optional[List[Union[float, Tuple[float, str]]]] = [ - (1e-4, "0.01%"), - (1e-3, "0.1%"), - (1e-2, "1%"), - (1e-1, "10%"), - ], - upper_af: Optional[Union[float, Tuple[float, str]]] = (0.95, "95%"), -) -> hl.expr.StringExpression: - """ - Return frequency string annotations based on input AC or AF. - - .. note:: - - - Default index is 0 because function assumes freq_expr was calculated with - `annotate_freq`. - - Frequency index 0 from `annotate_freq` is frequency for all pops calculated - on adj genotypes only. - - :param freq_expr: Array of structs containing frequency information. - :param index: Which index of freq_expr to use for annotation. Default is 0. - :param ac_cutoffs: List of AC cutoffs to use for binning. - :param af_cutoffs: List of AF cutoffs to use for binning. - :param upper_af: Upper AF cutoff to use for binning. - :return: StringExpression containing bin name based on input AC or AF. - """ - if isinstance(freq_expr, hl.expr.ArrayExpression): - freq_expr = freq_expr[index] - - if ac_cutoffs and isinstance(ac_cutoffs[0], int): - ac_cutoffs = [(c, f"AC{c}") for c in ac_cutoffs] - - if af_cutoffs and isinstance(af_cutoffs[0], float): - af_cutoffs = [(f, f"{f*100}%") for f in af_cutoffs] - - if isinstance(upper_af, float): - upper_af = (upper_af, f"{upper_af*100}%") - - freq_bin_expr = hl.case().when(hl.is_missing(freq_expr.AC), "Missing") - prev_af = None - for ac, name in sorted(ac_cutoffs): - freq_bin_expr = freq_bin_expr.when(freq_expr.AC == ac, name) - prev_af = name - - for af, name in sorted(af_cutoffs): - prev_af = "<" if prev_af is None else f"{prev_af} - " - freq_bin_expr = freq_bin_expr.when(freq_expr.AF < af, f"{prev_af}{name}") - prev_af = name - - if upper_af: - freq_bin_expr = freq_bin_expr.when( - freq_expr.AF > upper_af[0], f">{upper_af[1]}" - ) - default_af = "<" if prev_af is None else f"{prev_af} - " - default_af = f"{default_af}{upper_af[1]}" - else: - default_af = f">{prev_af}" - - return freq_bin_expr.default(default_af) - - def get_variant_count_by_freq_bin( af_cutoffs: List[float] = [0.001, 0.01], singletons: bool = False, From 8f49b091cc96cf735869ddb667c2e9e156b88708 Mon Sep 17 00:00:00 2001 From: Qin He <44242118+KoalaQin@users.noreply.github.com> Date: Thu, 19 Dec 2024 11:48:18 -0500 Subject: [PATCH 037/121] Reorganize steps --- README.md | 140 ++++++++++++++++++++++++++++++------------------------ 1 file changed, 79 insertions(+), 61 deletions(-) diff --git a/README.md b/README.md index e0e9e0c..2a6a811 100644 --- a/README.md +++ b/README.md @@ -24,81 +24,64 @@ ggnomad_toolbox/ │ ├── intro_to_release_data.ipynb # Jupyter notebook introducing the loading of gnomAD release data. ``` -# TODO: Add fully detailed info about how to install and open the notebooks. -## Getting started -### Install -pip install -r requirements.txt +## Setting Up Your Environment for Hail and gnomAD Toolbox -### Opening the notebooks -jupyter lab - -# Setting Up Your Environment for Hail and gnomAD Toolbox - -This guide provides step-by-step instructions to set up a working environment for using Hail and the gnomad_toolbox. The steps include installing Miniconda, creating a Conda environment, installing the necessary dependencies, and configuring the service account. +This guide provides step-by-step instructions to set up a working environment for +using Hail and the gnomad_toolbox. Prerequisites Before starting, ensure you have the following: - • Administrator access to your system to install software. - • Internet connection for downloading dependencies. +* Administrator access to your system to install software. +* Internet connection for downloading dependencies. + -## Step 1: Install Miniconda +## Part 1: Setting Up Your Environment + +### Install Miniconda Miniconda is a lightweight distribution of Conda that includes just Conda and its dependencies. 1. Download Miniconda for your system from the [official website](https://docs.anaconda.com/miniconda/install/). 2. Follow the installation instructions for your operating system: + • Linux/macOS: Run the installer script in your terminal: -``` -bash Miniconda3-latest-Linux-x86_64.sh -``` + ``` + bash Miniconda3-latest-Linux-x86_64.sh + ``` • Windows: Run the installer executable and follow the installation wizard. -3. Confirm the insstallation by running: -``` -conda --version -``` - -## Step 2: Install Google Cloud SDK (gcloud) - -The Google Cloud SDK is required to interact with Google Cloud services, including setting up authentication for Hail. -1. Follow the official Google Cloud SDK installation guide for your operating system. -2. After installation, initialize gcloud: -``` -gcloud init -``` -3. Authenticate with your Google account: -``` -gcloud auth login -``` -4. Set the default project: -``` -gcloud config set project broad-mpg-gnomad -``` - -## Step 43: Configure the Service Account -```commandline -gcloud iam service-accounts keys create hail-local-sa-key.json --iam-account hail-local-sa@broad-mpg-gnomad.iam.gserviceaccount.com -export GOOGLE_APPLICATION_CREDENTIALS=path-to-your-key/hail-local-sa-key.json -``` +# TODO: Will we encourage users to use Windows? +3. Confirm the installation by running: + ``` + conda --version + ``` -## Step 4: Create a Conda Environment -1. Create a new Conda environment with a specific version of Hail (here we use Hail - 0.2.132 and Python 3.11): -```commandline -conda create -n gnomad-toolbox hail=0.2.132 python=3.11 -``` +### Create a Conda Environment +1. Create a new Conda environment with a specific version of Python: + ```commandline + conda create -n gnomad-toolbox python=3.11 + ``` 2. Activate the Conda environment: -```commandline -conda activate gnomad-toolbox -``` -3. Clone the gnomad-toolbox repository: -```commandline -cd /path/to/your/directory -git clone https://github.com/broadinstitute/gnomad-toolbox.git -cd gnomad-toolbox -pip install -r requirements.txt -pip install git+https://github.com/broadinstitute/gnomad-toolbox.git -``` + ```commandline + conda activate gnomad-toolbox + ``` +3. Clone the gnomad-toolbox repository and install the dependencies: + ```commandline + cd /path/to/your/directory + git clone https://github.com/broadinstitute/gnomad-toolbox.git + cd gnomad-toolbox + pip install -r requirements.txt + ``` + You might encounter errors when installing the dependencies, such as `pg_config + executable not found`. If so, you may need to install additional system packages. + For example, on Ubuntu, you can install the `libpq-dev` package: + ```commandline + sudo apt-get install libpq-dev + ``` + or on macOS, you can install the `postgresql` package: + ```commandline + brew install postgresql + ``` -## Step 5: Verify the Setup +### Verify the Setup 1. Start a Python shell and test if Hail and gnomad_toolbox are working: ```commandline import hail as hl @@ -110,3 +93,38 @@ Or open the notebooks: ```commandline jupyter lab ``` + +## Part2: Accessing gnomAD Data Locally with example notebooks +If you already have experience with gcloud and have no problem running these notebooks, +you can skip this section. + +### Install Google Cloud SDK (gcloud) + +The Google Cloud SDK is required to interact with Google Cloud services and access gnomAD public data locally. +1. Follow the official Google Cloud SDK installation [guide](https://cloud.google. + com/sdk/docs/install) for your operating system. +2. After installation, initialize gcloud to log in and set up your default project: + ``` + gcloud init + ``` +3. You can check your gcloud config by: + ``` + gcloud config list + ``` + or set the default project: + ``` + gcloud config set project {YOUR_PROJECT_ID} + ``` + +## Configure a Service Account +You will need to create a service account in gcloud console IAM & Admin or using +gcloud CLI. Then you can create a key for service account and set the GOOGLE_APPLICATION_CREDENTIALS +variable to the path of the key file. + ```commandline + gcloud iam service-accounts keys create hail-local-sa-key.json --iam-account {YOUR_SERVICE_ACCOUNT} + + export GOOGLE_APPLICATION_CREDENTIALS=./hail-local-sa-key.json + ``` +Now, you can access gnomAD data locally using the gnomad_toolbox functions, however, +avoid running queries on the full dataset as it may take a long time and consume a +lot of resources, and most importantly, it may incur costs. From 1d811e6a5a137c6b42a4963832259fa84075c6b9 Mon Sep 17 00:00:00 2001 From: Qin He <44242118+KoalaQin@users.noreply.github.com> Date: Thu, 19 Dec 2024 12:36:44 -0500 Subject: [PATCH 038/121] small edit --- README.md | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/README.md b/README.md index 2a6a811..46a6004 100644 --- a/README.md +++ b/README.md @@ -48,7 +48,7 @@ Miniconda is a lightweight distribution of Conda that includes just Conda and it bash Miniconda3-latest-Linux-x86_64.sh ``` • Windows: Run the installer executable and follow the installation wizard. -# TODO: Will we encourage users to use Windows? + (# TODO: Will we encourage users to use Windows?) 3. Confirm the installation by running: ``` conda --version From 18d0a85e88f50ff2c7f8899de7026278a988fe00 Mon Sep 17 00:00:00 2001 From: Qin He <44242118+KoalaQin@users.noreply.github.com> Date: Thu, 19 Dec 2024 12:37:40 -0500 Subject: [PATCH 039/121] small edit 2 --- README.md | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/README.md b/README.md index 46a6004..caff74f 100644 --- a/README.md +++ b/README.md @@ -116,7 +116,7 @@ The Google Cloud SDK is required to interact with Google Cloud services and acce gcloud config set project {YOUR_PROJECT_ID} ``` -## Configure a Service Account +### Configure a Service Account You will need to create a service account in gcloud console IAM & Admin or using gcloud CLI. Then you can create a key for service account and set the GOOGLE_APPLICATION_CREDENTIALS variable to the path of the key file. From 4ddde29ee36747f32223df2c1bd67767e8d42df1 Mon Sep 17 00:00:00 2001 From: jkgoodrich <33063077+jkgoodrich@users.noreply.github.com> Date: Thu, 19 Dec 2024 10:59:29 -0700 Subject: [PATCH 040/121] Use `parse_variant` in gnomad_methods --- gnomad_toolbox/filtering/variant.py | 19 ++++--------------- requirements.txt | 3 ++- setup.py | 2 +- 3 files changed, 7 insertions(+), 17 deletions(-) diff --git a/gnomad_toolbox/filtering/variant.py b/gnomad_toolbox/filtering/variant.py index ec00bc7..0de3172 100644 --- a/gnomad_toolbox/filtering/variant.py +++ b/gnomad_toolbox/filtering/variant.py @@ -3,6 +3,7 @@ from typing import Optional, Union import hail as hl +from gnomad.utils.parse import parse_variant from gnomad.utils.reference_genome import get_reference_genome from gnomad_toolbox.load_data import _get_gnomad_release @@ -47,21 +48,8 @@ def get_single_variant( # Determine the reference genome build for the ht. build = get_reference_genome(ht.locus).name - # TODO: Move this to gnomad_methods. - # Parse the variant string if provided. - try: - if variant and ":" not in variant: - contig, position, ref, alt = variant.split("-") - if all([contig, position, ref, alt]): - variant = f"{contig}:{position}:{ref}:{alt}" - variant = hl.eval(hl.parse_variant(variant, reference_genome=build)) - except ValueError: - raise ValueError( - f"Invalid variant format: {variant}. Expected format: chr12-235245-A-C " - f"or chr12:235245:A:C" - ) - # Filter to the Locus of the variant of interest. + variant = parse_variant(variant, contig, position, ref, alt, build) ht = hl.filter_intervals( ht, [hl.interval(variant.locus, variant.locus, includes_end=True)] ) @@ -72,7 +60,8 @@ def get_single_variant( # Check if the variant exists. if ht.count() == 0: hl.utils.warning( - f"No variant found at {variant.locus} with alleles {variant.alleles}" + f"No variant found at {hl.eval(variant.locus)} with alleles " + f"{hl.eval(variant.alleles)}" ) return ht diff --git a/requirements.txt b/requirements.txt index 32706b5..3410cd0 100644 --- a/requirements.txt +++ b/requirements.txt @@ -1,5 +1,6 @@ # We're using the main branch of gnomad_method on github rather than the pip version -git+https://github.com/broadinstitute/gnomad_methods@main +# TODO: Decide on how to handle this. We might just need to have more releases of gnomad_methods. +#git+https://github.com/broadinstitute/gnomad_methods@main hail jupyter jupyter_contrib_nbextensions diff --git a/setup.py b/setup.py index 8bc0d5d..78ab1cb 100644 --- a/setup.py +++ b/setup.py @@ -21,7 +21,7 @@ long_description=long_description, long_description_content_type="text/markdown", url="https://github.com/broadinstitute/gnomad-toolbox", - packages=setuptools.find_namespace_packages(include=["gnomad_toolbox.*"]), + packages=setuptools.find_namespace_packages(include=["gnomad_toolbox*"]), project_urls={ "Documentation": "https://broadinstitute.github.io/gnomad-toolbox/", "Source Code": "https://github.com/broadinstitute/gnomad-toolbox", From a68b7fdd0a690f6df1535875a607f56d4d09bb5c Mon Sep 17 00:00:00 2001 From: Qin He <44242118+KoalaQin@users.noreply.github.com> Date: Thu, 19 Dec 2024 13:16:23 -0500 Subject: [PATCH 041/121] Specify Java version --- README.md | 12 ++++++++++++ 1 file changed, 12 insertions(+) diff --git a/README.md b/README.md index caff74f..6c97519 100644 --- a/README.md +++ b/README.md @@ -70,6 +70,18 @@ Miniconda is a lightweight distribution of Conda that includes just Conda and it cd gnomad-toolbox pip install -r requirements.txt ``` + **Note:** Hail 0.2.127+ requires Java 8 or Java 11 and jupyter labs requires Java + 11+, and if you have an Apple M1 or M2, you must have arm64 Java installed, you + can first check your Java version by running: + ```commandline + java -version + ``` + and check if you have the arm64 Java by running: + ```commandline + file $JAVA_HOME/bin/java + ``` + If you don't have the arm64 Java, you can find it [here](https://www.azul.com/downloads/?os=macos&architecture=arm-64-bit&package=jre#zulu) + You might encounter errors when installing the dependencies, such as `pg_config executable not found`. If so, you may need to install additional system packages. For example, on Ubuntu, you can install the `libpq-dev` package: From 7248a81c1bc3b1197470d2e3fa428b14fd1b13b8 Mon Sep 17 00:00:00 2001 From: Qin He <44242118+KoalaQin@users.noreply.github.com> Date: Thu, 19 Dec 2024 13:22:17 -0500 Subject: [PATCH 042/121] Undo weird changes to notebooks --- .../intro_to_filtering_variant_data.ipynb | 621 +----------------- gnomad_toolbox/notebooks/needs_a_name.ipynb | 2 +- 2 files changed, 9 insertions(+), 614 deletions(-) diff --git a/gnomad_toolbox/notebooks/intro_to_filtering_variant_data.ipynb b/gnomad_toolbox/notebooks/intro_to_filtering_variant_data.ipynb index 6ee51f0..e6dd8fd 100644 --- a/gnomad_toolbox/notebooks/intro_to_filtering_variant_data.ipynb +++ b/gnomad_toolbox/notebooks/intro_to_filtering_variant_data.ipynb @@ -51,7 +51,7 @@ " \n", "
\n", " \n", - " Loading BokehJS ...\n", + " Loading BokehJS ...\n", "
\n" ] }, @@ -223,7 +223,7 @@ " \"\"}};\n", "\n", " function display_loaded() {\n", - " const el = document.getElementById(\"ac20726a-f588-48d8-a740-bc1df9e390c1\");\n", + " const el = document.getElementById(\"ab66414b-9a8d-4992-add5-5e50546bdda0\");\n", " if (el != null) {\n", " el.textContent = \"BokehJS is loading...\";\n", " }\n", @@ -329,7 +329,7 @@ " console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n", " root._bokeh_failed_load = true;\n", " } else if (force !== true) {\n", - " const cell = $(document.getElementById(\"ac20726a-f588-48d8-a740-bc1df9e390c1\")).parents('.cell').data().cell;\n", + " const cell = $(document.getElementById(\"ab66414b-9a8d-4992-add5-5e50546bdda0\")).parents('.cell').data().cell;\n", " cell.output_area.append_execute_result(NB_LOAD_WARNING)\n", " }\n", " }\n", @@ -345,7 +345,7 @@ " }\n", "}(window));" ], - "application/vnd.bokehjs_load.v0+json": "(function(root) {\n function now() {\n return new Date();\n }\n\n const force = true;\n\n if (typeof root._bokeh_onload_callbacks === \"undefined\" || force === true) {\n root._bokeh_onload_callbacks = [];\n root._bokeh_is_loading = undefined;\n }\n\n\n if (typeof (root._bokeh_timeout) === \"undefined\" || force === true) {\n root._bokeh_timeout = Date.now() + 5000;\n root._bokeh_failed_load = false;\n }\n\n const NB_LOAD_WARNING = {'data': {'text/html':\n \"
\\n\"+\n \"

\\n\"+\n \"BokehJS does not appear to have successfully loaded. If loading BokehJS from CDN, this \\n\"+\n \"may be due to a slow or bad network connection. Possible fixes:\\n\"+\n \"

\\n\"+\n \"
    \\n\"+\n \"
  • re-rerun `output_notebook()` to attempt to load from CDN again, or
  • \\n\"+\n \"
  • use INLINE resources instead, as so:
  • \\n\"+\n \"
\\n\"+\n \"\\n\"+\n \"from bokeh.resources import INLINE\\n\"+\n \"output_notebook(resources=INLINE)\\n\"+\n \"\\n\"+\n \"
\"}};\n\n function display_loaded() {\n const el = document.getElementById(\"ac20726a-f588-48d8-a740-bc1df9e390c1\");\n if (el != null) {\n el.textContent = \"BokehJS is loading...\";\n }\n if (root.Bokeh !== undefined) {\n if (el != null) {\n el.textContent = \"BokehJS \" + root.Bokeh.version + \" successfully loaded.\";\n }\n } else if (Date.now() < root._bokeh_timeout) {\n setTimeout(display_loaded, 100)\n }\n }\n\n function run_callbacks() {\n try {\n root._bokeh_onload_callbacks.forEach(function(callback) {\n if (callback != null)\n callback();\n });\n } finally {\n delete root._bokeh_onload_callbacks\n }\n console.debug(\"Bokeh: all callbacks have finished\");\n }\n\n function load_libs(css_urls, js_urls, callback) {\n if (css_urls == null) css_urls = [];\n if (js_urls == null) js_urls = [];\n\n root._bokeh_onload_callbacks.push(callback);\n if (root._bokeh_is_loading > 0) {\n console.debug(\"Bokeh: BokehJS is being loaded, scheduling callback at\", now());\n return null;\n }\n if (js_urls == null || js_urls.length === 0) {\n run_callbacks();\n return null;\n }\n console.debug(\"Bokeh: BokehJS not loaded, scheduling load and callback at\", now());\n root._bokeh_is_loading = css_urls.length + js_urls.length;\n\n function on_load() {\n root._bokeh_is_loading--;\n if (root._bokeh_is_loading === 0) {\n console.debug(\"Bokeh: all BokehJS libraries/stylesheets loaded\");\n run_callbacks()\n }\n }\n\n function on_error(url) {\n console.error(\"failed to load \" + url);\n }\n\n for (let i = 0; i < css_urls.length; i++) {\n const url = css_urls[i];\n const element = document.createElement(\"link\");\n element.onload = on_load;\n element.onerror = on_error.bind(null, url);\n element.rel = \"stylesheet\";\n element.type = \"text/css\";\n element.href = url;\n console.debug(\"Bokeh: injecting link tag for BokehJS stylesheet: \", url);\n document.body.appendChild(element);\n }\n\n for (let i = 0; i < js_urls.length; i++) {\n const url = js_urls[i];\n const element = document.createElement('script');\n element.onload = on_load;\n element.onerror = on_error.bind(null, url);\n element.async = false;\n element.src = url;\n console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n document.head.appendChild(element);\n }\n };\n\n function inject_raw_css(css) {\n const element = document.createElement(\"style\");\n element.appendChild(document.createTextNode(css));\n document.body.appendChild(element);\n }\n\n const js_urls = [\"https://cdn.bokeh.org/bokeh/release/bokeh-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-gl-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-widgets-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-tables-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-mathjax-3.3.4.min.js\"];\n const css_urls = [];\n\n const inline_js = [ function(Bokeh) {\n Bokeh.set_log_level(\"info\");\n },\nfunction(Bokeh) {\n }\n ];\n\n function run_inline_js() {\n if (root.Bokeh !== undefined || force === true) {\n for (let i = 0; i < inline_js.length; i++) {\n inline_js[i].call(root, root.Bokeh);\n }\nif (force === true) {\n display_loaded();\n }} else if (Date.now() < root._bokeh_timeout) {\n setTimeout(run_inline_js, 100);\n } else if (!root._bokeh_failed_load) {\n console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n root._bokeh_failed_load = true;\n } else if (force !== true) {\n const cell = $(document.getElementById(\"ac20726a-f588-48d8-a740-bc1df9e390c1\")).parents('.cell').data().cell;\n cell.output_area.append_execute_result(NB_LOAD_WARNING)\n }\n }\n\n if (root._bokeh_is_loading === 0) {\n console.debug(\"Bokeh: BokehJS loaded, going straight to plotting\");\n run_inline_js();\n } else {\n load_libs(css_urls, js_urls, function() {\n console.debug(\"Bokeh: BokehJS plotting callback run at\", now());\n run_inline_js();\n });\n }\n}(window));" + "application/vnd.bokehjs_load.v0+json": "(function(root) {\n function now() {\n return new Date();\n }\n\n const force = true;\n\n if (typeof root._bokeh_onload_callbacks === \"undefined\" || force === true) {\n root._bokeh_onload_callbacks = [];\n root._bokeh_is_loading = undefined;\n }\n\n\n if (typeof (root._bokeh_timeout) === \"undefined\" || force === true) {\n root._bokeh_timeout = Date.now() + 5000;\n root._bokeh_failed_load = false;\n }\n\n const NB_LOAD_WARNING = {'data': {'text/html':\n \"
\\n\"+\n \"

\\n\"+\n \"BokehJS does not appear to have successfully loaded. If loading BokehJS from CDN, this \\n\"+\n \"may be due to a slow or bad network connection. Possible fixes:\\n\"+\n \"

\\n\"+\n \"
    \\n\"+\n \"
  • re-rerun `output_notebook()` to attempt to load from CDN again, or
  • \\n\"+\n \"
  • use INLINE resources instead, as so:
  • \\n\"+\n \"
\\n\"+\n \"\\n\"+\n \"from bokeh.resources import INLINE\\n\"+\n \"output_notebook(resources=INLINE)\\n\"+\n \"\\n\"+\n \"
\"}};\n\n function display_loaded() {\n const el = document.getElementById(\"ab66414b-9a8d-4992-add5-5e50546bdda0\");\n if (el != null) {\n el.textContent = \"BokehJS is loading...\";\n }\n if (root.Bokeh !== undefined) {\n if (el != null) {\n el.textContent = \"BokehJS \" + root.Bokeh.version + \" successfully loaded.\";\n }\n } else if (Date.now() < root._bokeh_timeout) {\n setTimeout(display_loaded, 100)\n }\n }\n\n function run_callbacks() {\n try {\n root._bokeh_onload_callbacks.forEach(function(callback) {\n if (callback != null)\n callback();\n });\n } finally {\n delete root._bokeh_onload_callbacks\n }\n console.debug(\"Bokeh: all callbacks have finished\");\n }\n\n function load_libs(css_urls, js_urls, callback) {\n if (css_urls == null) css_urls = [];\n if (js_urls == null) js_urls = [];\n\n root._bokeh_onload_callbacks.push(callback);\n if (root._bokeh_is_loading > 0) {\n console.debug(\"Bokeh: BokehJS is being loaded, scheduling callback at\", now());\n return null;\n }\n if (js_urls == null || js_urls.length === 0) {\n run_callbacks();\n return null;\n }\n console.debug(\"Bokeh: BokehJS not loaded, scheduling load and callback at\", now());\n root._bokeh_is_loading = css_urls.length + js_urls.length;\n\n function on_load() {\n root._bokeh_is_loading--;\n if (root._bokeh_is_loading === 0) {\n console.debug(\"Bokeh: all BokehJS libraries/stylesheets loaded\");\n run_callbacks()\n }\n }\n\n function on_error(url) {\n console.error(\"failed to load \" + url);\n }\n\n for (let i = 0; i < css_urls.length; i++) {\n const url = css_urls[i];\n const element = document.createElement(\"link\");\n element.onload = on_load;\n element.onerror = on_error.bind(null, url);\n element.rel = \"stylesheet\";\n element.type = \"text/css\";\n element.href = url;\n console.debug(\"Bokeh: injecting link tag for BokehJS stylesheet: \", url);\n document.body.appendChild(element);\n }\n\n for (let i = 0; i < js_urls.length; i++) {\n const url = js_urls[i];\n const element = document.createElement('script');\n element.onload = on_load;\n element.onerror = on_error.bind(null, url);\n element.async = false;\n element.src = url;\n console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n document.head.appendChild(element);\n }\n };\n\n function inject_raw_css(css) {\n const element = document.createElement(\"style\");\n element.appendChild(document.createTextNode(css));\n document.body.appendChild(element);\n }\n\n const js_urls = [\"https://cdn.bokeh.org/bokeh/release/bokeh-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-gl-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-widgets-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-tables-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-mathjax-3.3.4.min.js\"];\n const css_urls = [];\n\n const inline_js = [ function(Bokeh) {\n Bokeh.set_log_level(\"info\");\n },\nfunction(Bokeh) {\n }\n ];\n\n function run_inline_js() {\n if (root.Bokeh !== undefined || force === true) {\n for (let i = 0; i < inline_js.length; i++) {\n inline_js[i].call(root, root.Bokeh);\n }\nif (force === true) {\n display_loaded();\n }} else if (Date.now() < root._bokeh_timeout) {\n setTimeout(run_inline_js, 100);\n } else if (!root._bokeh_failed_load) {\n console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n root._bokeh_failed_load = true;\n } else if (force !== true) {\n const cell = $(document.getElementById(\"ab66414b-9a8d-4992-add5-5e50546bdda0\")).parents('.cell').data().cell;\n cell.output_area.append_execute_result(NB_LOAD_WARNING)\n }\n }\n\n if (root._bokeh_is_loading === 0) {\n console.debug(\"Bokeh: BokehJS loaded, going straight to plotting\");\n run_inline_js();\n } else {\n load_libs(css_urls, js_urls, function() {\n console.debug(\"Bokeh: BokehJS plotting callback run at\", now());\n run_inline_js();\n });\n }\n}(window));" }, "metadata": {}, "output_type": "display_data" @@ -355,7 +355,7 @@ "import hail as hl\n", "\n", "from gnomad_toolbox.load_data import get_gnomad_release\n", - "from gnomad_toolbox.filtering.variant import get_single_variant,filter_by_intervals, filter_by_gene_symbol\n", + "from gnomad_toolbox.filtering.variant import filter_by_intervals, filter_by_gene_symbol\n", "from gnomad_toolbox.filtering.frequency import (\n", " get_ancestry_callstats, \n", " get_single_variant_ancestry_callstats,\n", @@ -378,9 +378,8 @@ " / /_/ /__ __/ /\n", " / __ / _ `/ / /\n", " /_/ /_/\\_,_/_/_/ version 0.2.132-678e1f52b999\n", - "LOGGING: writing to /Users/heqin/PycharmProjects/gnomad-toolbox/gnomad_toolbox/notebooks/hail-20241218-1316-0.2.132-678e1f52b999.log\n", - "2024-12-18 13:16:59.591 Hail: WARN: No variant found at chr22:15528692 with alleles ['C', 'A']\n", - "2024-12-18 13:18:09.999 Hail: WARN: No variant found at chr22:15528692 with alleles ['C', 'A']\n" + "LOGGING: writing to /Users/jgoodric/PycharmProjects/gnomad-toolbox/gnomad_toolbox/notebooks/hail-20241210-2227-0.2.132-678e1f52b999.log\n", + "2024-12-10 22:28:45.710 Hail: WARN: No variant found at chr22:15528692 with alleles ['C', 'A']\n" ] } ], @@ -388,610 +387,6 @@ "hl.init(backend=\"local\")" ] }, - { - "cell_type": "code", - "execution_count": 4, - "id": "fad2569e-601e-4ce6-8267-219963c7e6ae", - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "\n", - "
histograms
grpmax
fafmax
info
qual_hists
raw_qual_hists
age_hists
in_silico_predictors
gnomad
non_ukb
gnomad
non_ukb
vrs
vep
vqsr_results
region_flags
allele_info
gq_hist_all
dp_hist_all
gq_hist_alt
dp_hist_alt
ab_hist_alt
gq_hist_all
dp_hist_all
gq_hist_alt
dp_hist_alt
ab_hist_alt
age_hist_het
age_hist_hom
cadd
locus
alleles
freq
AC
AF
AN
homozygote_count
gen_anc
AC
AF
AN
homozygote_count
gen_anc
faf
faf95_max
faf95_max_gen_anc
faf99_max
faf99_max_gen_anc
faf95_max
faf95_max_gen_anc
faf99_max
faf99_max_gen_anc
a_index
was_split
rsid
filters
FS
MQ
MQRankSum
QUALapprox
QD
ReadPosRankSum
SB
SOR
VarDP
AS_FS
AS_MQ
AS_MQRankSum
AS_pab_max
AS_QUALapprox
AS_QD
AS_ReadPosRankSum
AS_SB_TABLE
AS_SOR
AS_VarDP
singleton
transmitted_singleton
sibling_singleton
omni
mills
monoallelic
only_het
AS_VQSLOD
inbreeding_coeff
VRS_Allele_IDs
VRS_Starts
VRS_Ends
VRS_States
allele_string
end
id
input
intergenic_consequences
most_severe_consequence
motif_feature_consequences
regulatory_feature_consequences
seq_region_name
start
strand
transcript_consequences
variant_class
AS_VQSLOD
AS_culprit
positive_train_site
negative_train_site
non_par
lcr
segdup
fail_interval_qc
outside_ukb_capture_region
outside_broad_capture_region
variant_type
n_alt_alleles
has_star
allele_type
was_mixed
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
phred
raw_score
revel_max
spliceai_ds_max
pangolin_largest_ds
phylop
sift_max
polyphen_max
locus<GRCh38>array<str>array<struct{AC: int32, AF: float64, AN: int32, homozygote_count: int64}>int32float64int32int64strint32float64int32int64strarray<struct{faf95: float64, faf99: float64}>float64strfloat64strfloat64strfloat64strint32boolset<str>set<str>float64float64float64int64float64float64array<int32>float64int32float64float64float64float64int64float64float64array<int32>float64int32boolboolboolboolboolboolboolfloat64float64array<str>array<int32>array<int32>array<str>strint32strstrarray<struct{allele_num: int32, consequence_terms: array<str>, impact: str, variant_allele: str}>strarray<struct{allele_num: int32, consequence_terms: array<str>, high_inf_pos: str, impact: str, motif_feature_id: str, motif_name: str, motif_pos: int32, motif_score_change: float64, transcription_factors: array<str>, strand: int32, variant_allele: str}>array<struct{allele_num: int32, biotype: str, consequence_terms: array<str>, impact: str, regulatory_feature_id: str, variant_allele: str}>strint32int32array<struct{allele_num: int32, amino_acids: str, appris: str, biotype: str, canonical: int32, ccds: str, cdna_start: int32, cdna_end: int32, cds_end: int32, cds_start: int32, codons: str, consequence_terms: array<str>, distance: int32, domains: array<struct{db: str, name: str}>, exon: str, flags: str, gene_id: str, gene_pheno: int32, gene_symbol: str, gene_symbol_source: str, hgnc_id: str, hgvsc: str, hgvsp: str, hgvs_offset: int32, impact: str, intron: str, lof: str, lof_flags: str, lof_filter: str, lof_info: str, mane_select: str, mane_plus_clinical: str, mirna: array<str>, protein_end: int32, protein_start: int32, protein_id: str, source: str, strand: int32, transcript_id: str, tsl: int32, uniprot_isoform: array<str>, variant_allele: str}>strfloat64strboolboolboolboolboolboolboolboolstrint32boolstrboolarray<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64float32float32float64float32float64float64float64float64
" - ], - "text/plain": [ - "+---------------+------------+\n", - "| locus | alleles |\n", - "+---------------+------------+\n", - "| locus | array |\n", - "+---------------+------------+\n", - "+---------------+------------+\n", - "\n", - "+---------------------------------------------------------------------------+\n", - "| freq |\n", - "+---------------------------------------------------------------------------+\n", - "| array |\n", - "+---------------------------------------------------------------------------+\n", - "+---------------------------------------------------------------------------+\n", - "\n", - "+------------------+------------------+------------------+\n", - "| grpmax.gnomad.AC | grpmax.gnomad.AF | grpmax.gnomad.AN |\n", - "+------------------+------------------+------------------+\n", - "| int32 | float64 | int32 |\n", - "+------------------+------------------+------------------+\n", - "+------------------+------------------+------------------+\n", - "\n", - "+--------------------------------+-----------------------+-------------------+\n", - "| grpmax.gnomad.homozygote_count | grpmax.gnomad.gen_anc | grpmax.non_ukb.AC |\n", - "+--------------------------------+-----------------------+-------------------+\n", - "| int64 | str | int32 |\n", - "+--------------------------------+-----------------------+-------------------+\n", - "+--------------------------------+-----------------------+-------------------+\n", - "\n", - "+-------------------+-------------------+---------------------------------+\n", - "| grpmax.non_ukb.AF | grpmax.non_ukb.AN | grpmax.non_ukb.homozygote_count |\n", - "+-------------------+-------------------+---------------------------------+\n", - "| float64 | int32 | int64 |\n", - "+-------------------+-------------------+---------------------------------+\n", - "+-------------------+-------------------+---------------------------------+\n", - "\n", - "+------------------------+-----------------------------------------------+\n", - "| grpmax.non_ukb.gen_anc | faf |\n", - "+------------------------+-----------------------------------------------+\n", - "| str | array |\n", - "+------------------------+-----------------------------------------------+\n", - "+------------------------+-----------------------------------------------+\n", - "\n", - "+-------------------------+---------------------------------+\n", - "| fafmax.gnomad.faf95_max | fafmax.gnomad.faf95_max_gen_anc |\n", - "+-------------------------+---------------------------------+\n", - "| float64 | str |\n", - "+-------------------------+---------------------------------+\n", - "+-------------------------+---------------------------------+\n", - "\n", - "+-------------------------+---------------------------------+\n", - "| fafmax.gnomad.faf99_max | fafmax.gnomad.faf99_max_gen_anc |\n", - "+-------------------------+---------------------------------+\n", - "| float64 | str |\n", - "+-------------------------+---------------------------------+\n", - "+-------------------------+---------------------------------+\n", - "\n", - "+--------------------------+----------------------------------+\n", - "| fafmax.non_ukb.faf95_max | fafmax.non_ukb.faf95_max_gen_anc |\n", - "+--------------------------+----------------------------------+\n", - "| float64 | str |\n", - "+--------------------------+----------------------------------+\n", - "+--------------------------+----------------------------------+\n", - "\n", - "+--------------------------+----------------------------------+---------+\n", - "| fafmax.non_ukb.faf99_max | fafmax.non_ukb.faf99_max_gen_anc | a_index |\n", - "+--------------------------+----------------------------------+---------+\n", - "| float64 | str | int32 |\n", - "+--------------------------+----------------------------------+---------+\n", - "+--------------------------+----------------------------------+---------+\n", - "\n", - "+-----------+----------+----------+---------+---------+----------------+\n", - "| was_split | rsid | filters | info.FS | info.MQ | info.MQRankSum |\n", - "+-----------+----------+----------+---------+---------+----------------+\n", - "| bool | set | set | float64 | float64 | float64 |\n", - "+-----------+----------+----------+---------+---------+----------------+\n", - "+-----------+----------+----------+---------+---------+----------------+\n", - "\n", - "+-----------------+---------+---------------------+--------------+----------+\n", - "| info.QUALapprox | info.QD | info.ReadPosRankSum | info.SB | info.SOR |\n", - "+-----------------+---------+---------------------+--------------+----------+\n", - "| int64 | float64 | float64 | array | float64 |\n", - "+-----------------+---------+---------------------+--------------+----------+\n", - "+-----------------+---------+---------------------+--------------+----------+\n", - "\n", - "+------------+------------+------------+-------------------+-----------------+\n", - "| info.VarDP | info.AS_FS | info.AS_MQ | info.AS_MQRankSum | info.AS_pab_max |\n", - "+------------+------------+------------+-------------------+-----------------+\n", - "| int32 | float64 | float64 | float64 | float64 |\n", - "+------------+------------+------------+-------------------+-----------------+\n", - "+------------+------------+------------+-------------------+-----------------+\n", - "\n", - "+--------------------+------------+------------------------+------------------+\n", - "| info.AS_QUALapprox | info.AS_QD | info.AS_ReadPosRankSum | info.AS_SB_TABLE |\n", - "+--------------------+------------+------------------------+------------------+\n", - "| int64 | float64 | float64 | array |\n", - "+--------------------+------------+------------------------+------------------+\n", - "+--------------------+------------+------------------------+------------------+\n", - "\n", - "+-------------+---------------+----------------+----------------------------+\n", - "| info.AS_SOR | info.AS_VarDP | info.singleton | info.transmitted_singleton |\n", - "+-------------+---------------+----------------+----------------------------+\n", - "| float64 | int32 | bool | bool |\n", - "+-------------+---------------+----------------+----------------------------+\n", - "+-------------+---------------+----------------+----------------------------+\n", - "\n", - "+------------------------+-----------+------------+------------------+\n", - "| info.sibling_singleton | info.omni | info.mills | info.monoallelic |\n", - "+------------------------+-----------+------------+------------------+\n", - "| bool | bool | bool | bool |\n", - "+------------------------+-----------+------------+------------------+\n", - "+------------------------+-----------+------------+------------------+\n", - "\n", - "+---------------+----------------+-----------------------+\n", - "| info.only_het | info.AS_VQSLOD | info.inbreeding_coeff |\n", - "+---------------+----------------+-----------------------+\n", - "| bool | float64 | float64 |\n", - "+---------------+----------------+-----------------------+\n", - "+---------------+----------------+-----------------------+\n", - "\n", - "+-------------------------+---------------------+-------------------+\n", - "| info.vrs.VRS_Allele_IDs | info.vrs.VRS_Starts | info.vrs.VRS_Ends |\n", - "+-------------------------+---------------------+-------------------+\n", - "| array | array | array |\n", - "+-------------------------+---------------------+-------------------+\n", - "+-------------------------+---------------------+-------------------+\n", - "\n", - "+---------------------+-------------------+---------+--------+-----------+\n", - "| info.vrs.VRS_States | vep.allele_string | vep.end | vep.id | vep.input |\n", - "+---------------------+-------------------+---------+--------+-----------+\n", - "| array | str | int32 | str | str |\n", - "+---------------------+-------------------+---------+--------+-----------+\n", - "+---------------------+-------------------+---------+--------+-----------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| vep.intergenic_consequences |\n", - "+------------------------------------------------------------------------------+\n", - "| array, impact: st... |\n", - "+------------------------------------------------------------------------------+\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+-----------------------------+\n", - "| vep.most_severe_consequence |\n", - "+-----------------------------+\n", - "| str |\n", - "+-----------------------------+\n", - "+-----------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| vep.motif_feature_consequences |\n", - "+------------------------------------------------------------------------------+\n", - "| array, high_inf_p... |\n", - "+------------------------------------------------------------------------------+\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| vep.regulatory_feature_consequences |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+-----------------------+---------------------------------------------+\n", - "+-----------------------+---------------------------------------------+\n", - "\n", - "+--------------------------------------------+\n", - "| histograms.qual_hists.gq_hist_all.bin_freq |\n", - "+--------------------------------------------+\n", - "| array |\n", - "+--------------------------------------------+\n", - "+--------------------------------------------+\n", - "\n", - "+---------------------------------------------+\n", - "| histograms.qual_hists.gq_hist_all.n_smaller |\n", - "+---------------------------------------------+\n", - "| int64 |\n", - "+---------------------------------------------+\n", - "+---------------------------------------------+\n", - "\n", - "+--------------------------------------------+\n", - "| histograms.qual_hists.gq_hist_all.n_larger |\n", - "+--------------------------------------------+\n", - "| int64 |\n", - "+--------------------------------------------+\n", - "+--------------------------------------------+\n", - "\n", - "+---------------------------------------------+\n", - "| histograms.qual_hists.dp_hist_all.bin_edges |\n", - "+---------------------------------------------+\n", - "| array |\n", - "+---------------------------------------------+\n", - "+---------------------------------------------+\n", - "\n", - "+--------------------------------------------+\n", - "| histograms.qual_hists.dp_hist_all.bin_freq |\n", - "+--------------------------------------------+\n", - "| array |\n", - "+--------------------------------------------+\n", - "+--------------------------------------------+\n", - "\n", - "+---------------------------------------------+\n", - "| histograms.qual_hists.dp_hist_all.n_smaller |\n", - "+---------------------------------------------+\n", - "| int64 |\n", - "+---------------------------------------------+\n", - "+---------------------------------------------+\n", - "\n", - "+--------------------------------------------+\n", - "| histograms.qual_hists.dp_hist_all.n_larger |\n", - "+--------------------------------------------+\n", - "| int64 |\n", - "+--------------------------------------------+\n", - "+--------------------------------------------+\n", - "\n", - "+---------------------------------------------+\n", - "| histograms.qual_hists.gq_hist_alt.bin_edges |\n", - "+---------------------------------------------+\n", - "| array |\n", - "+---------------------------------------------+\n", - "+---------------------------------------------+\n", - "\n", - "+--------------------------------------------+\n", - "| histograms.qual_hists.gq_hist_alt.bin_freq |\n", - "+--------------------------------------------+\n", - "| array |\n", - "+--------------------------------------------+\n", - "+--------------------------------------------+\n", - "\n", - "+---------------------------------------------+\n", - "| histograms.qual_hists.gq_hist_alt.n_smaller |\n", - "+---------------------------------------------+\n", - "| int64 |\n", - "+---------------------------------------------+\n", - "+---------------------------------------------+\n", - "\n", - "+--------------------------------------------+\n", - "| histograms.qual_hists.gq_hist_alt.n_larger |\n", - "+--------------------------------------------+\n", - "| int64 |\n", - "+--------------------------------------------+\n", - "+--------------------------------------------+\n", - "\n", - "+---------------------------------------------+\n", - "| histograms.qual_hists.dp_hist_alt.bin_edges |\n", - "+---------------------------------------------+\n", - "| array |\n", - "+---------------------------------------------+\n", - "+---------------------------------------------+\n", - "\n", - "+--------------------------------------------+\n", - "| histograms.qual_hists.dp_hist_alt.bin_freq |\n", - "+--------------------------------------------+\n", - "| array |\n", - "+--------------------------------------------+\n", - "+--------------------------------------------+\n", - "\n", - "+---------------------------------------------+\n", - "| histograms.qual_hists.dp_hist_alt.n_smaller |\n", - "+---------------------------------------------+\n", - "| int64 |\n", - "+---------------------------------------------+\n", - "+---------------------------------------------+\n", - "\n", - "+--------------------------------------------+\n", - "| histograms.qual_hists.dp_hist_alt.n_larger |\n", - "+--------------------------------------------+\n", - "| int64 |\n", - "+--------------------------------------------+\n", - "+--------------------------------------------+\n", - "\n", - "+---------------------------------------------+\n", - "| histograms.qual_hists.ab_hist_alt.bin_edges |\n", - "+---------------------------------------------+\n", - "| array |\n", - "+---------------------------------------------+\n", - "+---------------------------------------------+\n", - "\n", - "+--------------------------------------------+\n", - "| histograms.qual_hists.ab_hist_alt.bin_freq |\n", - "+--------------------------------------------+\n", - "| array |\n", - "+--------------------------------------------+\n", - "+--------------------------------------------+\n", - "\n", - "+---------------------------------------------+\n", - "| histograms.qual_hists.ab_hist_alt.n_smaller |\n", - "+---------------------------------------------+\n", - "| int64 |\n", - "+---------------------------------------------+\n", - "+---------------------------------------------+\n", - "\n", - "+--------------------------------------------+\n", - "| histograms.qual_hists.ab_hist_alt.n_larger |\n", - "+--------------------------------------------+\n", - "| int64 |\n", - "+--------------------------------------------+\n", - "+--------------------------------------------+\n", - "\n", - "+-------------------------------------------------+\n", - "| histograms.raw_qual_hists.gq_hist_all.bin_edges |\n", - "+-------------------------------------------------+\n", - "| array |\n", - "+-------------------------------------------------+\n", - "+-------------------------------------------------+\n", - "\n", - "+------------------------------------------------+\n", - "| histograms.raw_qual_hists.gq_hist_all.bin_freq |\n", - "+------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------+\n", - "+------------------------------------------------+\n", - "\n", - "+-------------------------------------------------+\n", - "| histograms.raw_qual_hists.gq_hist_all.n_smaller |\n", - "+-------------------------------------------------+\n", - "| int64 |\n", - "+-------------------------------------------------+\n", - "+-------------------------------------------------+\n", - "\n", - "+------------------------------------------------+\n", - "| histograms.raw_qual_hists.gq_hist_all.n_larger |\n", - "+------------------------------------------------+\n", - "| int64 |\n", - "+------------------------------------------------+\n", - "+------------------------------------------------+\n", - "\n", - "+-------------------------------------------------+\n", - "| histograms.raw_qual_hists.dp_hist_all.bin_edges |\n", - "+-------------------------------------------------+\n", - "| array |\n", - "+-------------------------------------------------+\n", - "+-------------------------------------------------+\n", - "\n", - "+------------------------------------------------+\n", - "| histograms.raw_qual_hists.dp_hist_all.bin_freq |\n", - "+------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------+\n", - "+------------------------------------------------+\n", - "\n", - "+-------------------------------------------------+\n", - "| histograms.raw_qual_hists.dp_hist_all.n_smaller |\n", - "+-------------------------------------------------+\n", - "| int64 |\n", - "+-------------------------------------------------+\n", - "+-------------------------------------------------+\n", - "\n", - "+------------------------------------------------+\n", - "| histograms.raw_qual_hists.dp_hist_all.n_larger |\n", - "+------------------------------------------------+\n", - "| int64 |\n", - "+------------------------------------------------+\n", - "+------------------------------------------------+\n", - "\n", - "+-------------------------------------------------+\n", - "| histograms.raw_qual_hists.gq_hist_alt.bin_edges |\n", - "+-------------------------------------------------+\n", - "| array |\n", - "+-------------------------------------------------+\n", - "+-------------------------------------------------+\n", - "\n", - "+------------------------------------------------+\n", - "| histograms.raw_qual_hists.gq_hist_alt.bin_freq |\n", - "+------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------+\n", - "+------------------------------------------------+\n", - "\n", - "+-------------------------------------------------+\n", - "| histograms.raw_qual_hists.gq_hist_alt.n_smaller |\n", - "+-------------------------------------------------+\n", - "| int64 |\n", - "+-------------------------------------------------+\n", - "+-------------------------------------------------+\n", - "\n", - "+------------------------------------------------+\n", - "| histograms.raw_qual_hists.gq_hist_alt.n_larger |\n", - "+------------------------------------------------+\n", - "| int64 |\n", - "+------------------------------------------------+\n", - "+------------------------------------------------+\n", - "\n", - "+-------------------------------------------------+\n", - "| histograms.raw_qual_hists.dp_hist_alt.bin_edges |\n", - "+-------------------------------------------------+\n", - "| array |\n", - "+-------------------------------------------------+\n", - "+-------------------------------------------------+\n", - "\n", - "+------------------------------------------------+\n", - "| histograms.raw_qual_hists.dp_hist_alt.bin_freq |\n", - "+------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------+\n", - "+------------------------------------------------+\n", - "\n", - "+-------------------------------------------------+\n", - "| histograms.raw_qual_hists.dp_hist_alt.n_smaller |\n", - "+-------------------------------------------------+\n", - "| int64 |\n", - "+-------------------------------------------------+\n", - "+-------------------------------------------------+\n", - "\n", - "+------------------------------------------------+\n", - "| histograms.raw_qual_hists.dp_hist_alt.n_larger |\n", - "+------------------------------------------------+\n", - "| int64 |\n", - "+------------------------------------------------+\n", - "+------------------------------------------------+\n", - "\n", - "+-------------------------------------------------+\n", - "| histograms.raw_qual_hists.ab_hist_alt.bin_edges |\n", - "+-------------------------------------------------+\n", - "| array |\n", - "+-------------------------------------------------+\n", - "+-------------------------------------------------+\n", - "\n", - "+------------------------------------------------+\n", - "| histograms.raw_qual_hists.ab_hist_alt.bin_freq |\n", - "+------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------+\n", - "+------------------------------------------------+\n", - "\n", - "+-------------------------------------------------+\n", - "| histograms.raw_qual_hists.ab_hist_alt.n_smaller |\n", - "+-------------------------------------------------+\n", - "| int64 |\n", - "+-------------------------------------------------+\n", - "+-------------------------------------------------+\n", - "\n", - "+------------------------------------------------+\n", - "| histograms.raw_qual_hists.ab_hist_alt.n_larger |\n", - "+------------------------------------------------+\n", - "| int64 |\n", - "+------------------------------------------------+\n", - "+------------------------------------------------+\n", - "\n", - "+---------------------------------------------+\n", - "| histograms.age_hists.age_hist_het.bin_edges |\n", - "+---------------------------------------------+\n", - "| array |\n", - "+---------------------------------------------+\n", - "+---------------------------------------------+\n", - "\n", - "+--------------------------------------------+\n", - "| histograms.age_hists.age_hist_het.bin_freq |\n", - "+--------------------------------------------+\n", - "| array |\n", - "+--------------------------------------------+\n", - "+--------------------------------------------+\n", - "\n", - "+---------------------------------------------+\n", - "| histograms.age_hists.age_hist_het.n_smaller |\n", - "+---------------------------------------------+\n", - "| int64 |\n", - "+---------------------------------------------+\n", - "+---------------------------------------------+\n", - "\n", - "+--------------------------------------------+\n", - "| histograms.age_hists.age_hist_het.n_larger |\n", - "+--------------------------------------------+\n", - "| int64 |\n", - "+--------------------------------------------+\n", - "+--------------------------------------------+\n", - "\n", - "+---------------------------------------------+\n", - "| histograms.age_hists.age_hist_hom.bin_edges |\n", - "+---------------------------------------------+\n", - "| array |\n", - "+---------------------------------------------+\n", - "+---------------------------------------------+\n", - "\n", - "+--------------------------------------------+\n", - "| histograms.age_hists.age_hist_hom.bin_freq |\n", - "+--------------------------------------------+\n", - "| array |\n", - "+--------------------------------------------+\n", - "+--------------------------------------------+\n", - "\n", - "+---------------------------------------------+\n", - "| histograms.age_hists.age_hist_hom.n_smaller |\n", - "+---------------------------------------------+\n", - "| int64 |\n", - "+---------------------------------------------+\n", - "+---------------------------------------------+\n", - "\n", - "+--------------------------------------------+---------------------------------+\n", - "| histograms.age_hists.age_hist_hom.n_larger | in_silico_predictors.cadd.phred |\n", - "+--------------------------------------------+---------------------------------+\n", - "| int64 | float32 |\n", - "+--------------------------------------------+---------------------------------+\n", - "+--------------------------------------------+---------------------------------+\n", - "\n", - "+-------------------------------------+--------------------------------+\n", - "| in_silico_predictors.cadd.raw_score | in_silico_predictors.revel_max |\n", - "+-------------------------------------+--------------------------------+\n", - "| float32 | float64 |\n", - "+-------------------------------------+--------------------------------+\n", - "+-------------------------------------+--------------------------------+\n", - "\n", - "+--------------------------------------+\n", - "| in_silico_predictors.spliceai_ds_max |\n", - "+--------------------------------------+\n", - "| float32 |\n", - "+--------------------------------------+\n", - "+--------------------------------------+\n", - "\n", - "+------------------------------------------+-----------------------------+\n", - "| in_silico_predictors.pangolin_largest_ds | in_silico_predictors.phylop |\n", - "+------------------------------------------+-----------------------------+\n", - "| float64 | float64 |\n", - "+------------------------------------------+-----------------------------+\n", - "+------------------------------------------+-----------------------------+\n", - "\n", - "+-------------------------------+-----------------------------------+\n", - "| in_silico_predictors.sift_max | in_silico_predictors.polyphen_max |\n", - "+-------------------------------+-----------------------------------+\n", - "| float64 | float64 |\n", - "+-------------------------------+-----------------------------------+\n", - "+-------------------------------+-----------------------------------+" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "ht = get_single_variant(contig='chr22', position=15528692, ref='C', alt='A')\n", - "ht.show()" - ] - }, { "cell_type": "markdown", "id": "725f9a57", @@ -6857,7 +6252,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.9" + "version": "3.12.2" }, "toc": { "base_numbering": 1, diff --git a/gnomad_toolbox/notebooks/needs_a_name.ipynb b/gnomad_toolbox/notebooks/needs_a_name.ipynb index cc43a46..c4b688a 100644 --- a/gnomad_toolbox/notebooks/needs_a_name.ipynb +++ b/gnomad_toolbox/notebooks/needs_a_name.ipynb @@ -566,7 +566,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.9" + "version": "3.12.2" }, "toc": { "base_numbering": 1, From e542c1b70fd1e1718f7159a1d3f8d8f482407de5 Mon Sep 17 00:00:00 2001 From: jkgoodrich <33063077+jkgoodrich@users.noreply.github.com> Date: Thu, 19 Dec 2024 11:56:37 -0700 Subject: [PATCH 043/121] Uncomment --- requirements.txt | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/requirements.txt b/requirements.txt index 3410cd0..702bdab 100644 --- a/requirements.txt +++ b/requirements.txt @@ -1,6 +1,6 @@ # We're using the main branch of gnomad_method on github rather than the pip version # TODO: Decide on how to handle this. We might just need to have more releases of gnomad_methods. -#git+https://github.com/broadinstitute/gnomad_methods@main +git+https://github.com/broadinstitute/gnomad_methods@main hail jupyter jupyter_contrib_nbextensions From 056ab1c2d1f7957989cc39880dc612558ffbd48b Mon Sep 17 00:00:00 2001 From: Qin He <44242118+KoalaQin@users.noreply.github.com> Date: Thu, 19 Dec 2024 16:27:55 -0500 Subject: [PATCH 044/121] Use the filter CDS function from gnomad_methods --- gnomad_toolbox/filtering/variant.py | 62 ++++------------------------- 1 file changed, 7 insertions(+), 55 deletions(-) diff --git a/gnomad_toolbox/filtering/variant.py b/gnomad_toolbox/filtering/variant.py index ec00bc7..ba1f403 100644 --- a/gnomad_toolbox/filtering/variant.py +++ b/gnomad_toolbox/filtering/variant.py @@ -3,6 +3,7 @@ from typing import Optional, Union import hail as hl +from gnomad.utils.filtering import filter_to_gencode_cds from gnomad.utils.reference_genome import get_reference_genome from gnomad_toolbox.load_data import _get_gnomad_release @@ -120,6 +121,11 @@ def filter_by_gene_symbol(gene: str, exon_padding_bp: int = 75, **kwargs) -> hl. gnomAD browser, which only focus on variants in "CDS" regions plus 75bp (default of `exon_padding_bp`) up- and downstream. + However, gnomAD browser used a preprocessed Gencode file which excluded + 46 genes on chrY that share the same gene id as chrX. For example, + if you use this function to filter "ASMT" gene, you will get more variants + than shown in the gnomAD browser. + :param gene: Gene symbol. :param exon_padding_bp: Number of base pairs to pad the CDS intervals. Default is 75bp. @@ -129,60 +135,6 @@ def filter_by_gene_symbol(gene: str, exon_padding_bp: int = 75, **kwargs) -> hl. # Load the Hail Table if not provided ht = _get_gnomad_release(dataset="variant", **kwargs) - # Determine the reference genome build for the ht. - build = get_reference_genome(ht.locus).name - - # Make gene symbol uppercase - gene = gene.upper() - - # TODO: Create a resource for this in gnomad_methods (is it different from our - # current gencode resources? - # gene_ht = hl.read_table( - # f"gs://gcp-public-data--gnomad/resources/{build.lower()}/browser/gnomad" - # f".genes.{build}.GENCODEv{'19' if build == 'GRCh37' else '39'}.ht" - # ) - - # TODO: This actually takes a while to run locally for a single gene. Is there a - # way to speed this up? - - # Filter to the gene of interest. - # gene_ht = gene_ht.filter(gene_ht.gencode_symbol == gene) - - # Get the CDS intervals for the gene. - # chrom_expr = hl.if_else(build == "GRCh38", "chr" + gene_ht.chrom, gene_ht.chrom) - # intervals = gene_ht.aggregate( - # hl.agg.explode( - # lambda exon: hl.agg.collect( - # hl.locus_interval( - # chrom_expr, - # exon.start - 75, - # exon.stop + 75, - # reference_genome=build, - # includes_end=True, - # ) - # ), - # gene_ht.exons.filter(lambda exon: exon.feature_type == "CDS"), - # ) - # ) - - # TODO: Consider this alternative approach to get the intervals from gencode. That - # is not too bad time wise - - from gnomad.resources.grch38.reference_data import gencode - - gencode_ht = gencode.ht() - gencode_ht = gencode_ht.filter( - (gencode_ht.gene_name == gene) & ((gencode_ht.feature == "CDS")) - ) - intervals = hl.locus_interval( - gencode_ht.interval.start.contig, - gencode_ht.interval.start.position - exon_padding_bp, - gencode_ht.interval.end.position + exon_padding_bp, - includes_start=gencode_ht.interval.includes_start, - includes_end=gencode_ht.interval.includes_end, - reference_genome=build, - ).collect() - - ht = hl.filter_intervals(ht, intervals) + ht = filter_to_gencode_cds(ht, genes=gene, padding=exon_padding_bp) return ht From 752c123691642e66ad95a7595df040704f9023f8 Mon Sep 17 00:00:00 2001 From: Qin He <44242118+KoalaQin@users.noreply.github.com> Date: Thu, 19 Dec 2024 17:21:08 -0500 Subject: [PATCH 045/121] small edits --- gnomad_toolbox/filtering/variant.py | 1 - 1 file changed, 1 deletion(-) diff --git a/gnomad_toolbox/filtering/variant.py b/gnomad_toolbox/filtering/variant.py index ba1f403..386e83c 100644 --- a/gnomad_toolbox/filtering/variant.py +++ b/gnomad_toolbox/filtering/variant.py @@ -134,7 +134,6 @@ def filter_by_gene_symbol(gene: str, exon_padding_bp: int = 75, **kwargs) -> hl. """ # Load the Hail Table if not provided ht = _get_gnomad_release(dataset="variant", **kwargs) - ht = filter_to_gencode_cds(ht, genes=gene, padding=exon_padding_bp) return ht From 7776c23abf5aa086fdde037cc9162f3beb147744 Mon Sep 17 00:00:00 2001 From: Qin He <44242118+KoalaQin@users.noreply.github.com> Date: Thu, 19 Dec 2024 17:34:37 -0500 Subject: [PATCH 046/121] Formatting --- README.md | 48 +++++++++++++++++++++++------------------------- 1 file changed, 23 insertions(+), 25 deletions(-) diff --git a/README.md b/README.md index 6c97519..ae3d9fb 100644 --- a/README.md +++ b/README.md @@ -69,17 +69,17 @@ Miniconda is a lightweight distribution of Conda that includes just Conda and it git clone https://github.com/broadinstitute/gnomad-toolbox.git cd gnomad-toolbox pip install -r requirements.txt - ``` + ``` **Note:** Hail 0.2.127+ requires Java 8 or Java 11 and jupyter labs requires Java 11+, and if you have an Apple M1 or M2, you must have arm64 Java installed, you can first check your Java version by running: ```commandline java -version - ``` + ``` and check if you have the arm64 Java by running: ```commandline file $JAVA_HOME/bin/java - ``` + ``` If you don't have the arm64 Java, you can find it [here](https://www.azul.com/downloads/?os=macos&architecture=arm-64-bit&package=jre#zulu) You might encounter errors when installing the dependencies, such as `pg_config @@ -87,24 +87,24 @@ Miniconda is a lightweight distribution of Conda that includes just Conda and it For example, on Ubuntu, you can install the `libpq-dev` package: ```commandline sudo apt-get install libpq-dev - ``` + ``` or on macOS, you can install the `postgresql` package: ```commandline brew install postgresql - ``` + ``` ### Verify the Setup -1. Start a Python shell and test if Hail and gnomad_toolbox are working: -```commandline -import hail as hl -from gnomad_toolbox.analysis.general import get_variant_count_by_freq_bin -hl.init() -print("Hail and gnomad_toolbox setup is complete!") -``` -Or open the notebooks: -```commandline -jupyter lab -``` + Start a Python shell and test if Hail and gnomad_toolbox are working: + ```commandline + import hail as hl + from gnomad_toolbox.analysis.general import get_variant_count_by_freq_bin + hl.init() + print("Hail and gnomad_toolbox setup is complete!") + ``` + Or open the notebooks: + ```commandline + jupyter lab + ``` ## Part2: Accessing gnomAD Data Locally with example notebooks If you already have experience with gcloud and have no problem running these notebooks, @@ -113,8 +113,7 @@ you can skip this section. ### Install Google Cloud SDK (gcloud) The Google Cloud SDK is required to interact with Google Cloud services and access gnomAD public data locally. -1. Follow the official Google Cloud SDK installation [guide](https://cloud.google. - com/sdk/docs/install) for your operating system. +1. Follow the official Google Cloud SDK installation [guide](https://cloud.google.com/sdk/docs/install) for your operating system. 2. After installation, initialize gcloud to log in and set up your default project: ``` gcloud init @@ -130,13 +129,12 @@ The Google Cloud SDK is required to interact with Google Cloud services and acce ### Configure a Service Account You will need to create a service account in gcloud console IAM & Admin or using -gcloud CLI. Then you can create a key for service account and set the GOOGLE_APPLICATION_CREDENTIALS -variable to the path of the key file. - ```commandline - gcloud iam service-accounts keys create hail-local-sa-key.json --iam-account {YOUR_SERVICE_ACCOUNT} +cloud CLI. Then you can create a key for service account and set the key. - export GOOGLE_APPLICATION_CREDENTIALS=./hail-local-sa-key.json + ```commandline + gcloud iam service-accounts keys create hail-local-sa-key.json --iam-account {YOUR_SERVICE_ACCOUNT} + export GOOGLE_APPLICATION_CREDENTIALS=./hail-local-sa-key.json ``` Now, you can access gnomAD data locally using the gnomad_toolbox functions, however, -avoid running queries on the full dataset as it may take a long time and consume a -lot of resources, and most importantly, it may incur costs. +you should avoid running queries on the full dataset as it may take a long time and +consume a lot of resources, and most importantly, it may generate costs. From 7a29ba58e3ffb02719faae2016b1fb05417023cc Mon Sep 17 00:00:00 2001 From: jkgoodrich <33063077+jkgoodrich@users.noreply.github.com> Date: Thu, 19 Dec 2024 17:40:26 -0700 Subject: [PATCH 047/121] Change `filter_by_csqs` to `filter_by_consequence_category` and clean it up and use gnomad_methods function --- gnomad_toolbox/filtering/vep.py | 137 +++++++++++------- .../intro_to_filtering_variant_data.ipynb | 78 +++++----- 2 files changed, 130 insertions(+), 85 deletions(-) diff --git a/gnomad_toolbox/filtering/vep.py b/gnomad_toolbox/filtering/vep.py index a8b8793..b54098f 100644 --- a/gnomad_toolbox/filtering/vep.py +++ b/gnomad_toolbox/filtering/vep.py @@ -1,78 +1,117 @@ """Functions to filter gnomAD sites HT by VEP annotations.""" -from functools import reduce - import hail as hl -from gnomad.utils.vep import CSQ_CODING, LOF_CSQ_SET +from gnomad.utils.vep import LOF_CSQ_SET, filter_vep_transcript_csqs_expr from gnomad_toolbox.load_data import _get_gnomad_release -# TODO: I haven't looked over this function yet. Is there anything in gnomad_methods -# that could be used here? If not, is there anything here that should be moved to -# gnomad_methods? - -def filter_by_csqs( - csqs: list[str], +# TODO: Check these csq sets, the ones in the code don't match what is listed on the +# browser. We should make sure they are consistent. +def filter_by_consequence_category( + plof: bool = False, + missense: bool = False, + synonymous: bool = False, + other: bool = False, pass_filters: bool = True, **kwargs, ) -> hl.Table: """ - Filter variants by VEP transcript consequences. - - :param csqs: List of consequences to filter by. It can be specified as the - categories on the browser: pLoF, Missense / Inframe indel, Synonymous, Other. + Filter gnomAD variants based on VEP consequence. + + https://gnomad.broadinstitute.org/help/consequence-category-filter + + The [VEP](https://useast.ensembl.org/info/docs/tools/vep/index.html) consequences included in each category are: + + pLoF + + - transcript_ablation + - splice_acceptor_variant + - splice_donor_variant + - stop_gained + - frameshift_variant + + Missense / Inframe indel + + - stop_lost + - start_lost + - inframe_insertion + - inframe_deletion + - missense_variant + + Synonymous + + - synonymous_variant + + `Other + + - protein_altering_variant + - incomplete_terminal_codon_variant + - stop_retained_variant + - coding_sequence_variant + - mature_miRNA_variant + - 5_prime_UTR_variant + - 3_prime_UTR_variant + - non_coding_transcript_exon_variant + - non_coding_exon_variant + - NMD_transcript_variant + - non_coding_transcript_variant + - nc_transcript_variant + - downstream_gene_variant + - TFBS_ablation + - TFBS_amplification + - TF_binding_site_variant + - regulatory_region_ablation + - regulatory_region_amplification + - feature_elongation + - regulatory_region_variant + - feature_truncation + - intergenic_variant + - intron_variant + - splice_region_variant + - upstream_gene_variant + + :param plof: Whether to include pLoF variants. + :param missense: Whether to include missense variants. + :param synonymous: Whether to include synonymous variants. + :param other: Whether to include other variants. :param pass_filters: Boolean if the variants pass the filters. :param kwargs: Arguments to pass to _get_gnomad_release. :return: Table with variants with the specified consequences. """ + if not any([plof, missense, synonymous, other]): + raise ValueError( + "At least one of plof, missense, synonymous, or other must be True." + ) + # Load the Hail Table if not provided ht = _get_gnomad_release(dataset="variant", **kwargs) - missense_inframe = ["missense_variant", "inframe_insertion", "inframe_deletion"] + lof_csqs = list(LOF_CSQ_SET) + missense_csqs = ["missense_variant", "inframe_insertion", "inframe_deletion"] + synonymous_csqs = ["synonymous_variant"] + other_csqs = lof_csqs + missense_csqs + synonymous_csqs - filter_expr = [] - if "lof" in csqs: - filter_expr.append( - hl.literal(LOF_CSQ_SET).contains(ht.vep.most_severe_consequence) - ) + csqs = ( + (lof_csqs if plof else []) + + (missense_csqs if missense else []) + + (synonymous_csqs if synonymous else []) + ) - if "synonymous" in csqs: - filter_expr.append(ht.vep.most_severe_consequence == "synonymous_variant") + filter_expr = hl.bool(True) - if "missense" in csqs: - filter_expr.append( - hl.literal(missense_inframe).contains(ht.vep.most_severe_consequence) - ) + if csqs: + filter_expr &= filter_vep_transcript_csqs_expr(ht.vep, csqs=csqs) - if "other" in csqs: - excluded_csqs = hl.literal( - list(LOF_CSQ_SET) + missense_inframe + ["synonymous_variant"] + if other: + filter_expr |= filter_vep_transcript_csqs_expr( + ht.vep, csqs=other_csqs, keep_csqs=False ) - filter_expr.append(~excluded_csqs.contains(ht.vep.most_severe_consequence)) - - if "coding" in csqs: - filter_expr.append( - hl.literal(CSQ_CODING).contains(ht.vep.most_severe_consequence) - ) - - if len(filter_expr) == 0: - raise ValueError( - "No valid consequence specified. Choose from 'lof', 'synonymous', 'missense', 'other'." - ) - - # Combine filter expressions with logical OR - if len(filter_expr) == 1: - combined_filter = filter_expr[0] - else: - combined_filter = reduce(lambda acc, expr: acc | expr, filter_expr) - - ht = ht.filter(combined_filter) if pass_filters: - ht = ht.filter(hl.len(ht.filters) == 0) + filter_expr &= hl.len(ht.filters) == 0 - return ht + return ht.filter(filter_expr) # TODO: The following was in one of the notebooks, and I think we should add a wrapper diff --git a/gnomad_toolbox/notebooks/intro_to_filtering_variant_data.ipynb b/gnomad_toolbox/notebooks/intro_to_filtering_variant_data.ipynb index e6dd8fd..4f75e9e 100644 --- a/gnomad_toolbox/notebooks/intro_to_filtering_variant_data.ipynb +++ b/gnomad_toolbox/notebooks/intro_to_filtering_variant_data.ipynb @@ -41,7 +41,7 @@ { "data": { "text/html": [ - " \n", "
\n", " \n", - " Loading BokehJS ...\n", + " Loading BokehJS ...\n", "
\n" ] }, @@ -90,22 +90,14 @@ " * Handle when an output is cleared or removed\n", " */\n", " function handleClearOutput(event, handle) {\n", - " function drop(id) {\n", - " const view = Bokeh.index.get_by_id(id)\n", - " if (view != null) {\n", - " view.model.document.clear()\n", - " Bokeh.index.delete(view)\n", - " }\n", - " }\n", - "\n", " const cell = handle.cell;\n", "\n", " const id = cell.output_area._bokeh_element_id;\n", " const server_id = cell.output_area._bokeh_server_id;\n", - "\n", " // Clean up Bokeh references\n", - " if (id != null) {\n", - " drop(id)\n", + " if (id != null && id in Bokeh.index) {\n", + " Bokeh.index[id].model.document.clear();\n", + " delete Bokeh.index[id];\n", " }\n", "\n", " if (server_id !== undefined) {\n", @@ -114,8 +106,11 @@ " cell.notebook.kernel.execute(cmd_clean, {\n", " iopub: {\n", " output: function(msg) {\n", - " const id = msg.content.text.trim()\n", - " drop(id)\n", + " const id = msg.content.text.trim();\n", + " if (id in Bokeh.index) {\n", + " Bokeh.index[id].model.document.clear();\n", + " delete Bokeh.index[id];\n", + " }\n", " }\n", " }\n", " });\n", @@ -223,7 +218,7 @@ " \"\"}};\n", "\n", " function display_loaded() {\n", - " const el = document.getElementById(\"ab66414b-9a8d-4992-add5-5e50546bdda0\");\n", + " const el = document.getElementById(\"e2e202d6-58aa-44df-bd42-63e8ab96953f\");\n", " if (el != null) {\n", " el.textContent = \"BokehJS is loading...\";\n", " }\n", @@ -306,7 +301,7 @@ " document.body.appendChild(element);\n", " }\n", "\n", - " const js_urls = [\"https://cdn.bokeh.org/bokeh/release/bokeh-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-gl-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-widgets-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-tables-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-mathjax-3.3.4.min.js\"];\n", + " const js_urls = [\"https://cdn.bokeh.org/bokeh/release/bokeh-3.2.2.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-gl-3.2.2.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-widgets-3.2.2.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-tables-3.2.2.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-mathjax-3.2.2.min.js\"];\n", " const css_urls = [];\n", "\n", " const inline_js = [ function(Bokeh) {\n", @@ -329,7 +324,7 @@ " console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n", " root._bokeh_failed_load = true;\n", " } else if (force !== true) {\n", - " const cell = $(document.getElementById(\"ab66414b-9a8d-4992-add5-5e50546bdda0\")).parents('.cell').data().cell;\n", + " const cell = $(document.getElementById(\"e2e202d6-58aa-44df-bd42-63e8ab96953f\")).parents('.cell').data().cell;\n", " cell.output_area.append_execute_result(NB_LOAD_WARNING)\n", " }\n", " }\n", @@ -345,7 +340,7 @@ " }\n", "}(window));" ], - "application/vnd.bokehjs_load.v0+json": "(function(root) {\n function now() {\n return new Date();\n }\n\n const force = true;\n\n if (typeof root._bokeh_onload_callbacks === \"undefined\" || force === true) {\n root._bokeh_onload_callbacks = [];\n root._bokeh_is_loading = undefined;\n }\n\n\n if (typeof (root._bokeh_timeout) === \"undefined\" || force === true) {\n root._bokeh_timeout = Date.now() + 5000;\n root._bokeh_failed_load = false;\n }\n\n const NB_LOAD_WARNING = {'data': {'text/html':\n \"
\\n\"+\n \"

\\n\"+\n \"BokehJS does not appear to have successfully loaded. If loading BokehJS from CDN, this \\n\"+\n \"may be due to a slow or bad network connection. Possible fixes:\\n\"+\n \"

\\n\"+\n \"
    \\n\"+\n \"
  • re-rerun `output_notebook()` to attempt to load from CDN again, or
  • \\n\"+\n \"
  • use INLINE resources instead, as so:
  • \\n\"+\n \"
\\n\"+\n \"\\n\"+\n \"from bokeh.resources import INLINE\\n\"+\n \"output_notebook(resources=INLINE)\\n\"+\n \"\\n\"+\n \"
\"}};\n\n function display_loaded() {\n const el = document.getElementById(\"ab66414b-9a8d-4992-add5-5e50546bdda0\");\n if (el != null) {\n el.textContent = \"BokehJS is loading...\";\n }\n if (root.Bokeh !== undefined) {\n if (el != null) {\n el.textContent = \"BokehJS \" + root.Bokeh.version + \" successfully loaded.\";\n }\n } else if (Date.now() < root._bokeh_timeout) {\n setTimeout(display_loaded, 100)\n }\n }\n\n function run_callbacks() {\n try {\n root._bokeh_onload_callbacks.forEach(function(callback) {\n if (callback != null)\n callback();\n });\n } finally {\n delete root._bokeh_onload_callbacks\n }\n console.debug(\"Bokeh: all callbacks have finished\");\n }\n\n function load_libs(css_urls, js_urls, callback) {\n if (css_urls == null) css_urls = [];\n if (js_urls == null) js_urls = [];\n\n root._bokeh_onload_callbacks.push(callback);\n if (root._bokeh_is_loading > 0) {\n console.debug(\"Bokeh: BokehJS is being loaded, scheduling callback at\", now());\n return null;\n }\n if (js_urls == null || js_urls.length === 0) {\n run_callbacks();\n return null;\n }\n console.debug(\"Bokeh: BokehJS not loaded, scheduling load and callback at\", now());\n root._bokeh_is_loading = css_urls.length + js_urls.length;\n\n function on_load() {\n root._bokeh_is_loading--;\n if (root._bokeh_is_loading === 0) {\n console.debug(\"Bokeh: all BokehJS libraries/stylesheets loaded\");\n run_callbacks()\n }\n }\n\n function on_error(url) {\n console.error(\"failed to load \" + url);\n }\n\n for (let i = 0; i < css_urls.length; i++) {\n const url = css_urls[i];\n const element = document.createElement(\"link\");\n element.onload = on_load;\n element.onerror = on_error.bind(null, url);\n element.rel = \"stylesheet\";\n element.type = \"text/css\";\n element.href = url;\n console.debug(\"Bokeh: injecting link tag for BokehJS stylesheet: \", url);\n document.body.appendChild(element);\n }\n\n for (let i = 0; i < js_urls.length; i++) {\n const url = js_urls[i];\n const element = document.createElement('script');\n element.onload = on_load;\n element.onerror = on_error.bind(null, url);\n element.async = false;\n element.src = url;\n console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n document.head.appendChild(element);\n }\n };\n\n function inject_raw_css(css) {\n const element = document.createElement(\"style\");\n element.appendChild(document.createTextNode(css));\n document.body.appendChild(element);\n }\n\n const js_urls = [\"https://cdn.bokeh.org/bokeh/release/bokeh-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-gl-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-widgets-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-tables-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-mathjax-3.3.4.min.js\"];\n const css_urls = [];\n\n const inline_js = [ function(Bokeh) {\n Bokeh.set_log_level(\"info\");\n },\nfunction(Bokeh) {\n }\n ];\n\n function run_inline_js() {\n if (root.Bokeh !== undefined || force === true) {\n for (let i = 0; i < inline_js.length; i++) {\n inline_js[i].call(root, root.Bokeh);\n }\nif (force === true) {\n display_loaded();\n }} else if (Date.now() < root._bokeh_timeout) {\n setTimeout(run_inline_js, 100);\n } else if (!root._bokeh_failed_load) {\n console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n root._bokeh_failed_load = true;\n } else if (force !== true) {\n const cell = $(document.getElementById(\"ab66414b-9a8d-4992-add5-5e50546bdda0\")).parents('.cell').data().cell;\n cell.output_area.append_execute_result(NB_LOAD_WARNING)\n }\n }\n\n if (root._bokeh_is_loading === 0) {\n console.debug(\"Bokeh: BokehJS loaded, going straight to plotting\");\n run_inline_js();\n } else {\n load_libs(css_urls, js_urls, function() {\n console.debug(\"Bokeh: BokehJS plotting callback run at\", now());\n run_inline_js();\n });\n }\n}(window));" + "application/vnd.bokehjs_load.v0+json": "(function(root) {\n function now() {\n return new Date();\n }\n\n const force = true;\n\n if (typeof root._bokeh_onload_callbacks === \"undefined\" || force === true) {\n root._bokeh_onload_callbacks = [];\n root._bokeh_is_loading = undefined;\n }\n\n\n if (typeof (root._bokeh_timeout) === \"undefined\" || force === true) {\n root._bokeh_timeout = Date.now() + 5000;\n root._bokeh_failed_load = false;\n }\n\n const NB_LOAD_WARNING = {'data': {'text/html':\n \"
\\n\"+\n \"

\\n\"+\n \"BokehJS does not appear to have successfully loaded. If loading BokehJS from CDN, this \\n\"+\n \"may be due to a slow or bad network connection. Possible fixes:\\n\"+\n \"

\\n\"+\n \"
    \\n\"+\n \"
  • re-rerun `output_notebook()` to attempt to load from CDN again, or
  • \\n\"+\n \"
  • use INLINE resources instead, as so:
  • \\n\"+\n \"
\\n\"+\n \"\\n\"+\n \"from bokeh.resources import INLINE\\n\"+\n \"output_notebook(resources=INLINE)\\n\"+\n \"\\n\"+\n \"
\"}};\n\n function display_loaded() {\n const el = document.getElementById(\"e2e202d6-58aa-44df-bd42-63e8ab96953f\");\n if (el != null) {\n el.textContent = \"BokehJS is loading...\";\n }\n if (root.Bokeh !== undefined) {\n if (el != null) {\n el.textContent = \"BokehJS \" + root.Bokeh.version + \" successfully loaded.\";\n }\n } else if (Date.now() < root._bokeh_timeout) {\n setTimeout(display_loaded, 100)\n }\n }\n\n function run_callbacks() {\n try {\n root._bokeh_onload_callbacks.forEach(function(callback) {\n if (callback != null)\n callback();\n });\n } finally {\n delete root._bokeh_onload_callbacks\n }\n console.debug(\"Bokeh: all callbacks have finished\");\n }\n\n function load_libs(css_urls, js_urls, callback) {\n if (css_urls == null) css_urls = [];\n if (js_urls == null) js_urls = [];\n\n root._bokeh_onload_callbacks.push(callback);\n if (root._bokeh_is_loading > 0) {\n console.debug(\"Bokeh: BokehJS is being loaded, scheduling callback at\", now());\n return null;\n }\n if (js_urls == null || js_urls.length === 0) {\n run_callbacks();\n return null;\n }\n console.debug(\"Bokeh: BokehJS not loaded, scheduling load and callback at\", now());\n root._bokeh_is_loading = css_urls.length + js_urls.length;\n\n function on_load() {\n root._bokeh_is_loading--;\n if (root._bokeh_is_loading === 0) {\n console.debug(\"Bokeh: all BokehJS libraries/stylesheets loaded\");\n run_callbacks()\n }\n }\n\n function on_error(url) {\n console.error(\"failed to load \" + url);\n }\n\n for (let i = 0; i < css_urls.length; i++) {\n const url = css_urls[i];\n const element = document.createElement(\"link\");\n element.onload = on_load;\n element.onerror = on_error.bind(null, url);\n element.rel = \"stylesheet\";\n element.type = \"text/css\";\n element.href = url;\n console.debug(\"Bokeh: injecting link tag for BokehJS stylesheet: \", url);\n document.body.appendChild(element);\n }\n\n for (let i = 0; i < js_urls.length; i++) {\n const url = js_urls[i];\n const element = document.createElement('script');\n element.onload = on_load;\n element.onerror = on_error.bind(null, url);\n element.async = false;\n element.src = url;\n console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n document.head.appendChild(element);\n }\n };\n\n function inject_raw_css(css) {\n const element = document.createElement(\"style\");\n element.appendChild(document.createTextNode(css));\n document.body.appendChild(element);\n }\n\n const js_urls = [\"https://cdn.bokeh.org/bokeh/release/bokeh-3.2.2.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-gl-3.2.2.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-widgets-3.2.2.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-tables-3.2.2.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-mathjax-3.2.2.min.js\"];\n const css_urls = [];\n\n const inline_js = [ function(Bokeh) {\n Bokeh.set_log_level(\"info\");\n },\nfunction(Bokeh) {\n }\n ];\n\n function run_inline_js() {\n if (root.Bokeh !== undefined || force === true) {\n for (let i = 0; i < inline_js.length; i++) {\n inline_js[i].call(root, root.Bokeh);\n }\nif (force === true) {\n display_loaded();\n }} else if (Date.now() < root._bokeh_timeout) {\n setTimeout(run_inline_js, 100);\n } else if (!root._bokeh_failed_load) {\n console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n root._bokeh_failed_load = true;\n } else if (force !== true) {\n const cell = $(document.getElementById(\"e2e202d6-58aa-44df-bd42-63e8ab96953f\")).parents('.cell').data().cell;\n cell.output_area.append_execute_result(NB_LOAD_WARNING)\n }\n }\n\n if (root._bokeh_is_loading === 0) {\n console.debug(\"Bokeh: BokehJS loaded, going straight to plotting\");\n run_inline_js();\n } else {\n load_libs(css_urls, js_urls, function() {\n console.debug(\"Bokeh: BokehJS plotting callback run at\", now());\n run_inline_js();\n });\n }\n}(window));" }, "metadata": {}, "output_type": "display_data" @@ -360,7 +355,7 @@ " get_ancestry_callstats, \n", " get_single_variant_ancestry_callstats,\n", ")\n", - "from gnomad_toolbox.filtering.vep import filter_by_csqs" + "from gnomad_toolbox.filtering.vep import filter_by_consequence_category" ] }, { @@ -377,9 +372,8 @@ " __ __ <>__\n", " / /_/ /__ __/ /\n", " / __ / _ `/ / /\n", - " /_/ /_/\\_,_/_/_/ version 0.2.132-678e1f52b999\n", - "LOGGING: writing to /Users/jgoodric/PycharmProjects/gnomad-toolbox/gnomad_toolbox/notebooks/hail-20241210-2227-0.2.132-678e1f52b999.log\n", - "2024-12-10 22:28:45.710 Hail: WARN: No variant found at chr22:15528692 with alleles ['C', 'A']\n" + " /_/ /_/\\_,_/_/_/ version 0.2.133-4c60fddb171a\n", + "LOGGING: writing to /Users/jgoodric/PycharmProjects/gnomad-toolbox/gnomad_toolbox/notebooks/hail-20241219-1733-0.2.133-4c60fddb171a.log\n" ] } ], @@ -1577,7 +1571,12 @@ } ], "source": [ - "var_ht = filter_by_csqs(['lof','missense','synonymous'], ht=drd2_interval_ht)\n", + "var_ht = filter_by_consequence_category(\n", + " plof=True, \n", + " missense=True,\n", + " synonymous=True, \n", + " ht=drd2_interval_ht\n", + ")\n", "var_ht.show(5)\n", "print(\"The total number of lof, missense, and synonymous variants passing filters in DRD2 is: \", var_ht.count())" ] @@ -2654,7 +2653,7 @@ } ], "source": [ - "var_ht = filter_by_csqs(['lof'], ht=drd2_interval_ht)\n", + "var_ht = filter_by_consequence_category(plof=True, ht=drd2_interval_ht)\n", "var_ht.show(5)\n", "print(\"The total number of lof variants passing filters in DRD2 is: \", var_ht.count())" ] @@ -3743,7 +3742,7 @@ } ], "source": [ - "var_ht = filter_by_csqs(['missense'], ht=drd2_interval_ht)\n", + "var_ht = filter_by_consequence_category(missense=True, ht=drd2_interval_ht)\n", "var_ht.show(5)\n", "print(\"The total number of missense variants passing filters in DRD2 is: \", var_ht.count())" ] @@ -4832,7 +4831,7 @@ } ], "source": [ - "var_ht = filter_by_csqs(['synonymous'], ht=drd2_interval_ht)\n", + "var_ht = filter_by_consequence_category(synonymous=True, ht=drd2_interval_ht)\n", "var_ht.show(5)\n", "print(\"The total number of synonymous variants passing filters in DRD2 is: \", var_ht.count())" ] @@ -5916,12 +5915,12 @@ "name": "stdout", "output_type": "stream", "text": [ - "The total number of other variants passing filters in DRD2 is: 2075\n" + "The total number of other variants passing filters in DRD2 is: 2739\n" ] } ], "source": [ - "var_ht = filter_by_csqs(['other'], ht=drd2_interval_ht)\n", + "var_ht = filter_by_consequence_category(other=True, ht=drd2_interval_ht)\n", "var_ht.show(5)\n", "print(\"The total number of other variants passing filters in DRD2 is: \", var_ht.count())" ] @@ -5938,12 +5937,12 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 11, "id": "a25ddd1b", "metadata": {}, "outputs": [], "source": [ - "drd2_synonymous_ht = filter_by_csqs(['synonymous'], ht=drd2_interval_ht)" + "drd2_synonymous_ht = filter_by_consequence_category(synonymous=True, ht=drd2_interval_ht)" ] }, { @@ -5956,7 +5955,7 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 12, "id": "4f78166f", "metadata": {}, "outputs": [ @@ -6017,7 +6016,7 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 13, "id": "e3a07848", "metadata": {}, "outputs": [ @@ -6152,7 +6151,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 14, "id": "4845be1d-d4c0-4b83-9e92-bd72379b8a99", "metadata": {}, "outputs": [ @@ -6200,10 +6199,17 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 15, "id": "bee28829", "metadata": {}, "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2024-12-19 17:34:53.716 Hail: WARN: No variant found at chr22:15528692 with alleles ['C', 'A']\n" + ] + }, { "data": { "text/html": [ @@ -6252,7 +6258,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.12.2" + "version": "3.11.5" }, "toc": { "base_numbering": 1, From bc2120ac16bac46fcd58c06e2f7726078a3dbb9f Mon Sep 17 00:00:00 2001 From: jkgoodrich <33063077+jkgoodrich@users.noreply.github.com> Date: Fri, 20 Dec 2024 12:32:00 -0700 Subject: [PATCH 048/121] Fix other filter in `filter_by_consequence_category` --- gnomad_toolbox/filtering/vep.py | 10 +- .../intro_to_filtering_variant_data.ipynb | 695 +++++++++--------- 2 files changed, 371 insertions(+), 334 deletions(-) diff --git a/gnomad_toolbox/filtering/vep.py b/gnomad_toolbox/filtering/vep.py index b54098f..adbd6d3 100644 --- a/gnomad_toolbox/filtering/vep.py +++ b/gnomad_toolbox/filtering/vep.py @@ -98,18 +98,20 @@ def filter_by_consequence_category( + (synonymous_csqs if synonymous else []) ) - filter_expr = hl.bool(True) + filter_expr = None if csqs: - filter_expr &= filter_vep_transcript_csqs_expr(ht.vep, csqs=csqs) + filter_expr = filter_vep_transcript_csqs_expr(ht.vep, csqs=csqs) if other: - filter_expr |= filter_vep_transcript_csqs_expr( + other_expr = filter_vep_transcript_csqs_expr( ht.vep, csqs=other_csqs, keep_csqs=False ) + filter_expr = other_expr if filter_expr is None else (filter_expr | other_expr) if pass_filters: - filter_expr &= hl.len(ht.filters) == 0 + pass_expr = hl.len(ht.filters) == 0 + filter_expr = pass_expr if filter_expr is None else (filter_expr & pass_expr) return ht.filter(filter_expr) diff --git a/gnomad_toolbox/notebooks/intro_to_filtering_variant_data.ipynb b/gnomad_toolbox/notebooks/intro_to_filtering_variant_data.ipynb index 4f75e9e..ae240c0 100644 --- a/gnomad_toolbox/notebooks/intro_to_filtering_variant_data.ipynb +++ b/gnomad_toolbox/notebooks/intro_to_filtering_variant_data.ipynb @@ -51,7 +51,7 @@ " \n", "
\n", " \n", - " Loading BokehJS ...\n", + " Loading BokehJS ...\n", "
\n" ] }, @@ -218,7 +218,7 @@ " \"\"}};\n", "\n", " function display_loaded() {\n", - " const el = document.getElementById(\"e2e202d6-58aa-44df-bd42-63e8ab96953f\");\n", + " const el = document.getElementById(\"d5c4232b-0e66-4b61-983c-ba8423f8e445\");\n", " if (el != null) {\n", " el.textContent = \"BokehJS is loading...\";\n", " }\n", @@ -324,7 +324,7 @@ " console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n", " root._bokeh_failed_load = true;\n", " } else if (force !== true) {\n", - " const cell = $(document.getElementById(\"e2e202d6-58aa-44df-bd42-63e8ab96953f\")).parents('.cell').data().cell;\n", + " const cell = $(document.getElementById(\"d5c4232b-0e66-4b61-983c-ba8423f8e445\")).parents('.cell').data().cell;\n", " cell.output_area.append_execute_result(NB_LOAD_WARNING)\n", " }\n", " }\n", @@ -340,7 +340,7 @@ " }\n", "}(window));" ], - "application/vnd.bokehjs_load.v0+json": "(function(root) {\n function now() {\n return new Date();\n }\n\n const force = true;\n\n if (typeof root._bokeh_onload_callbacks === \"undefined\" || force === true) {\n root._bokeh_onload_callbacks = [];\n root._bokeh_is_loading = undefined;\n }\n\n\n if (typeof (root._bokeh_timeout) === \"undefined\" || force === true) {\n root._bokeh_timeout = Date.now() + 5000;\n root._bokeh_failed_load = false;\n }\n\n const NB_LOAD_WARNING = {'data': {'text/html':\n \"
\\n\"+\n \"

\\n\"+\n \"BokehJS does not appear to have successfully loaded. If loading BokehJS from CDN, this \\n\"+\n \"may be due to a slow or bad network connection. Possible fixes:\\n\"+\n \"

\\n\"+\n \"
    \\n\"+\n \"
  • re-rerun `output_notebook()` to attempt to load from CDN again, or
  • \\n\"+\n \"
  • use INLINE resources instead, as so:
  • \\n\"+\n \"
\\n\"+\n \"\\n\"+\n \"from bokeh.resources import INLINE\\n\"+\n \"output_notebook(resources=INLINE)\\n\"+\n \"\\n\"+\n \"
\"}};\n\n function display_loaded() {\n const el = document.getElementById(\"e2e202d6-58aa-44df-bd42-63e8ab96953f\");\n if (el != null) {\n el.textContent = \"BokehJS is loading...\";\n }\n if (root.Bokeh !== undefined) {\n if (el != null) {\n el.textContent = \"BokehJS \" + root.Bokeh.version + \" successfully loaded.\";\n }\n } else if (Date.now() < root._bokeh_timeout) {\n setTimeout(display_loaded, 100)\n }\n }\n\n function run_callbacks() {\n try {\n root._bokeh_onload_callbacks.forEach(function(callback) {\n if (callback != null)\n callback();\n });\n } finally {\n delete root._bokeh_onload_callbacks\n }\n console.debug(\"Bokeh: all callbacks have finished\");\n }\n\n function load_libs(css_urls, js_urls, callback) {\n if (css_urls == null) css_urls = [];\n if (js_urls == null) js_urls = [];\n\n root._bokeh_onload_callbacks.push(callback);\n if (root._bokeh_is_loading > 0) {\n console.debug(\"Bokeh: BokehJS is being loaded, scheduling callback at\", now());\n return null;\n }\n if (js_urls == null || js_urls.length === 0) {\n run_callbacks();\n return null;\n }\n console.debug(\"Bokeh: BokehJS not loaded, scheduling load and callback at\", now());\n root._bokeh_is_loading = css_urls.length + js_urls.length;\n\n function on_load() {\n root._bokeh_is_loading--;\n if (root._bokeh_is_loading === 0) {\n console.debug(\"Bokeh: all BokehJS libraries/stylesheets loaded\");\n run_callbacks()\n }\n }\n\n function on_error(url) {\n console.error(\"failed to load \" + url);\n }\n\n for (let i = 0; i < css_urls.length; i++) {\n const url = css_urls[i];\n const element = document.createElement(\"link\");\n element.onload = on_load;\n element.onerror = on_error.bind(null, url);\n element.rel = \"stylesheet\";\n element.type = \"text/css\";\n element.href = url;\n console.debug(\"Bokeh: injecting link tag for BokehJS stylesheet: \", url);\n document.body.appendChild(element);\n }\n\n for (let i = 0; i < js_urls.length; i++) {\n const url = js_urls[i];\n const element = document.createElement('script');\n element.onload = on_load;\n element.onerror = on_error.bind(null, url);\n element.async = false;\n element.src = url;\n console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n document.head.appendChild(element);\n }\n };\n\n function inject_raw_css(css) {\n const element = document.createElement(\"style\");\n element.appendChild(document.createTextNode(css));\n document.body.appendChild(element);\n }\n\n const js_urls = [\"https://cdn.bokeh.org/bokeh/release/bokeh-3.2.2.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-gl-3.2.2.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-widgets-3.2.2.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-tables-3.2.2.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-mathjax-3.2.2.min.js\"];\n const css_urls = [];\n\n const inline_js = [ function(Bokeh) {\n Bokeh.set_log_level(\"info\");\n },\nfunction(Bokeh) {\n }\n ];\n\n function run_inline_js() {\n if (root.Bokeh !== undefined || force === true) {\n for (let i = 0; i < inline_js.length; i++) {\n inline_js[i].call(root, root.Bokeh);\n }\nif (force === true) {\n display_loaded();\n }} else if (Date.now() < root._bokeh_timeout) {\n setTimeout(run_inline_js, 100);\n } else if (!root._bokeh_failed_load) {\n console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n root._bokeh_failed_load = true;\n } else if (force !== true) {\n const cell = $(document.getElementById(\"e2e202d6-58aa-44df-bd42-63e8ab96953f\")).parents('.cell').data().cell;\n cell.output_area.append_execute_result(NB_LOAD_WARNING)\n }\n }\n\n if (root._bokeh_is_loading === 0) {\n console.debug(\"Bokeh: BokehJS loaded, going straight to plotting\");\n run_inline_js();\n } else {\n load_libs(css_urls, js_urls, function() {\n console.debug(\"Bokeh: BokehJS plotting callback run at\", now());\n run_inline_js();\n });\n }\n}(window));" + "application/vnd.bokehjs_load.v0+json": "(function(root) {\n function now() {\n return new Date();\n }\n\n const force = true;\n\n if (typeof root._bokeh_onload_callbacks === \"undefined\" || force === true) {\n root._bokeh_onload_callbacks = [];\n root._bokeh_is_loading = undefined;\n }\n\n\n if (typeof (root._bokeh_timeout) === \"undefined\" || force === true) {\n root._bokeh_timeout = Date.now() + 5000;\n root._bokeh_failed_load = false;\n }\n\n const NB_LOAD_WARNING = {'data': {'text/html':\n \"
\\n\"+\n \"

\\n\"+\n \"BokehJS does not appear to have successfully loaded. If loading BokehJS from CDN, this \\n\"+\n \"may be due to a slow or bad network connection. Possible fixes:\\n\"+\n \"

\\n\"+\n \"
    \\n\"+\n \"
  • re-rerun `output_notebook()` to attempt to load from CDN again, or
  • \\n\"+\n \"
  • use INLINE resources instead, as so:
  • \\n\"+\n \"
\\n\"+\n \"\\n\"+\n \"from bokeh.resources import INLINE\\n\"+\n \"output_notebook(resources=INLINE)\\n\"+\n \"\\n\"+\n \"
\"}};\n\n function display_loaded() {\n const el = document.getElementById(\"d5c4232b-0e66-4b61-983c-ba8423f8e445\");\n if (el != null) {\n el.textContent = \"BokehJS is loading...\";\n }\n if (root.Bokeh !== undefined) {\n if (el != null) {\n el.textContent = \"BokehJS \" + root.Bokeh.version + \" successfully loaded.\";\n }\n } else if (Date.now() < root._bokeh_timeout) {\n setTimeout(display_loaded, 100)\n }\n }\n\n function run_callbacks() {\n try {\n root._bokeh_onload_callbacks.forEach(function(callback) {\n if (callback != null)\n callback();\n });\n } finally {\n delete root._bokeh_onload_callbacks\n }\n console.debug(\"Bokeh: all callbacks have finished\");\n }\n\n function load_libs(css_urls, js_urls, callback) {\n if (css_urls == null) css_urls = [];\n if (js_urls == null) js_urls = [];\n\n root._bokeh_onload_callbacks.push(callback);\n if (root._bokeh_is_loading > 0) {\n console.debug(\"Bokeh: BokehJS is being loaded, scheduling callback at\", now());\n return null;\n }\n if (js_urls == null || js_urls.length === 0) {\n run_callbacks();\n return null;\n }\n console.debug(\"Bokeh: BokehJS not loaded, scheduling load and callback at\", now());\n root._bokeh_is_loading = css_urls.length + js_urls.length;\n\n function on_load() {\n root._bokeh_is_loading--;\n if (root._bokeh_is_loading === 0) {\n console.debug(\"Bokeh: all BokehJS libraries/stylesheets loaded\");\n run_callbacks()\n }\n }\n\n function on_error(url) {\n console.error(\"failed to load \" + url);\n }\n\n for (let i = 0; i < css_urls.length; i++) {\n const url = css_urls[i];\n const element = document.createElement(\"link\");\n element.onload = on_load;\n element.onerror = on_error.bind(null, url);\n element.rel = \"stylesheet\";\n element.type = \"text/css\";\n element.href = url;\n console.debug(\"Bokeh: injecting link tag for BokehJS stylesheet: \", url);\n document.body.appendChild(element);\n }\n\n for (let i = 0; i < js_urls.length; i++) {\n const url = js_urls[i];\n const element = document.createElement('script');\n element.onload = on_load;\n element.onerror = on_error.bind(null, url);\n element.async = false;\n element.src = url;\n console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n document.head.appendChild(element);\n }\n };\n\n function inject_raw_css(css) {\n const element = document.createElement(\"style\");\n element.appendChild(document.createTextNode(css));\n document.body.appendChild(element);\n }\n\n const js_urls = [\"https://cdn.bokeh.org/bokeh/release/bokeh-3.2.2.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-gl-3.2.2.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-widgets-3.2.2.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-tables-3.2.2.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-mathjax-3.2.2.min.js\"];\n const css_urls = [];\n\n const inline_js = [ function(Bokeh) {\n Bokeh.set_log_level(\"info\");\n },\nfunction(Bokeh) {\n }\n ];\n\n function run_inline_js() {\n if (root.Bokeh !== undefined || force === true) {\n for (let i = 0; i < inline_js.length; i++) {\n inline_js[i].call(root, root.Bokeh);\n }\nif (force === true) {\n display_loaded();\n }} else if (Date.now() < root._bokeh_timeout) {\n setTimeout(run_inline_js, 100);\n } else if (!root._bokeh_failed_load) {\n console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n root._bokeh_failed_load = true;\n } else if (force !== true) {\n const cell = $(document.getElementById(\"d5c4232b-0e66-4b61-983c-ba8423f8e445\")).parents('.cell').data().cell;\n cell.output_area.append_execute_result(NB_LOAD_WARNING)\n }\n }\n\n if (root._bokeh_is_loading === 0) {\n console.debug(\"Bokeh: BokehJS loaded, going straight to plotting\");\n run_inline_js();\n } else {\n load_libs(css_urls, js_urls, function() {\n console.debug(\"Bokeh: BokehJS plotting callback run at\", now());\n run_inline_js();\n });\n }\n}(window));" }, "metadata": {}, "output_type": "display_data" @@ -373,7 +373,7 @@ " / /_/ /__ __/ /\n", " / __ / _ `/ / /\n", " /_/ /_/\\_,_/_/_/ version 0.2.133-4c60fddb171a\n", - "LOGGING: writing to /Users/jgoodric/PycharmProjects/gnomad-toolbox/gnomad_toolbox/notebooks/hail-20241219-1733-0.2.133-4c60fddb171a.log\n" + "LOGGING: writing to /Users/jgoodric/PycharmProjects/gnomad-toolbox/gnomad_toolbox/notebooks/hail-20241220-1230-0.2.133-4c60fddb171a.log\n" ] } ], @@ -488,11 +488,18 @@ ] }, { + "attachments": { + "78f1b020-4f45-4800-82fa-0bdffb877962.png": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAACuoAAAGaCAYAAADjboe/AAAMQWlDQ1BJQ0MgUHJvZmlsZQAASImVVwdYU8kWnluSkEBoAQSkhN4EESkBpITQQu8INkISIJQYA0HFjiwquBZURMCGroooWAGxI3YWxd4XCwrKuliwK29SQNd95XvzfXPnv/+c+c+Zc2fuvQOA2gmOSJSNqgOQI8wTxwT50ccnJdNJPUAZaAJ1QASjOdxcETMqKgzAMtT+vby7ARBpe9VeqvXP/v9aNHj8XC4ASBTEqbxcbg7EBwDAq7kicR4ARClvNj1PJMWwAi0xDBDixVKcLsfVUpwqx3tkNnExLIjbAFBS4XDE6QCoXoY8PZ+bDjVU+yF2FPIEQgDU6BB75+RM5UGcArE1tBFBLNVnpP6gk/43zdRhTQ4nfRjL5yIrSv6CXFE2Z+b/mY7/XXKyJUM+LGFVyRAHx0jnDPN2K2tqqBSrQNwnTI2IhFgT4g8CnsweYpSSIQmOl9ujBtxcFswZ0IHYkcfxD4XYAOJAYXZEmIJPTRMEsiGGKwSdIchjx0GsC/Fifm5ArMJmk3hqjMIX2pgmZjEV/DmOWOZX6uuBJCueqdB/ncFnK/Qx1YKMuESIKRCb5wsSIiBWhdghNys2VGEzriCDFTFkI5bESOM3hziGLwzyk+tj+WniwBiFfUlO7tB8sU0ZAnaEAu/Ly4gLlucHa+NyZPHDuWCX+UJm/JAOP3d82NBceHz/APncsR6+MD5WofNBlOcXIx+LU0TZUQp73JSfHSTlTSF2zs2PVYzFE/LggpTr42mivKg4eZx4QSYnJEoeD74ChAEW8Ad0IIE1FUwFmUDQ0dfUB+/kPYGAA8QgHfCBvYIZGpEo6xHCaywoAH9CxAe5w+P8ZL18kA/5r8Os/GoP0mS9+bIRWeApxDkgFGTDe4lslHDYWwJ4AhnBP7xzYOXCeLNhlfb/e36I/c4wIROmYCRDHulqQ5bEAKI/MZgYSLTB9XFv3BMPg1dfWJ1wBu4+NI/v9oSnhE7CI8J1Qhfh9hRBofinKMNBF9QPVOQi9cdc4JZQ0wX3w72gOlTGdXB9YI87Qz9M3Ad6doEsSxG3NCv0n7T/NoMfnobCjuxIRskjyL5k659HqtqqugyrSHP9Y37ksaYO55s13POzf9YP2efBNvRnS2wxth87i53EzmNHsCZAx45jzVg7dlSKh1fXE9nqGvIWI4snC+oI/uFv6MlKM5nrWOfY6/hF3pfHnyF9RwPWVNFMsSA9I4/OhF8EPp0t5DqMojs5OjkDIP2+yF9fb6Jl3w1Ep/07t/APALyODw4OHv7OhRwHYK8b3P6HvnPWDPjpUAbg3CGuRJwv53DphQDfEmpwp+kBI2AGrOF8nIAr8AS+IACEgEgQB5LAZBh9BlznYjAdzAYLQDEoBSvAGlAJNoItYAfYDfaBJnAEnARnwEVwGVwHd+Hq6QYvQD94Bz4jCEJCqAgN0UOMEQvEDnFCGIg3EoCEITFIEpKCpCNCRILMRhYipUgZUolsRmqRvcgh5CRyHulEbiMPkV7kNfIJxVAVVAs1RC3R0SgDZaKhaBw6CU1Hp6EFaBG6DK1Aa9BdaCN6Er2IXke70BfoAAYwZUwHM8HsMQbGwiKxZCwNE2NzsRKsHKvB6rEW+JyvYl1YH/YRJ+I0nI7bwxUcjMfjXHwaPhdfilfiO/BGvA2/ij/E+/FvBCrBgGBH8CCwCeMJ6YTphGJCOWEb4SDhNNxL3YR3RCJRh2hFdIN7MYmYSZxFXEpcT2wgniB2Eh8TB0gkkh7JjuRFiiRxSHmkYtI60i7ScdIVUjfpg5KykrGSk1KgUrKSUKlQqVxpp9IxpStKz5Q+k9XJFmQPciSZR55JXk7eSm4hXyJ3kz9TNChWFC9KHCWTsoBSQamnnKbco7xRVlY2VXZXjlYWKM9XrlDeo3xO+aHyRxVNFVsVlspEFYnKMpXtKidUbqu8oVKpllRfajI1j7qMWks9RX1A/aBKU3VQZavyVOepVqk2ql5RfalGVrNQY6pNVitQK1fbr3ZJrU+drG6pzlLnqM9Vr1I/pH5TfUCDpjFGI1IjR2Opxk6N8xo9miRNS80ATZ5mkeYWzVOaj2kYzYzGonFpC2lbaadp3VpELSsttlamVqnWbq0OrX5tTW1n7QTtGdpV2ke1u3QwHUsdtk62znKdfTo3dD6NMBzBHMEfsWRE/YgrI97rjtT11eXrlug26F7X/aRH1wvQy9Jbqdekd18f17fVj9afrr9B/7R+30itkZ4juSNLRu4beccANbA1iDGYZbDFoN1gwNDIMMhQZLjO8JRhn5GOka9RptFqo2NGvcY0Y29jgfFq4+PGz+nadCY9m15Bb6P3mxiYBJtITDabdJh8NrUyjTctNG0wvW9GMWOYpZmtNms16zc3Ng83n21eZ37HgmzBsMiwWGtx1uK9pZVlouUiyybLHitdK7ZVgVWd1T1rqrWP9TTrGutrNkQbhk2WzXqby7aorYtthm2V7SU71M7VTmC33q5zFGGU+yjhqJpRN+1V7Jn2+fZ19g8ddBzCHAodmhxejjYfnTx65eizo785ujhmO251vDtGc0zImMIxLWNeO9k6cZ2qnK6NpY4NHDtvbPPYV852znznDc63XGgu4S6LXFpdvrq6uYpd61173czdUtyq3W4ytBhRjKWMc+4Edz/3ee5H3D96uHrkeezz+MvT3jPLc6dnzzircfxxW8c99jL14nht9urypnuneG/y7vIx8eH41Pg88jXz5flu833GtGFmMncxX/o5+on9Dvq9Z3mw5rBO+GP+Qf4l/h0BmgHxAZUBDwJNA9MD6wL7g1yCZgWdCCYEhwavDL7JNmRz2bXs/hC3kDkhbaEqobGhlaGPwmzDxGEt4Wh4SPiq8HsRFhHCiKZIEMmOXBV5P8oqalrU4WhidFR0VfTTmDExs2POxtJip8TujH0X5xe3PO5uvHW8JL41QS1hYkJtwvtE/8SyxK7xo8fPGX8xST9JkNScTEpOSN6WPDAhYMKaCd0TXSYWT7wxyWrSjEnnJ+tPzp58dIraFM6U/SmElMSUnSlfOJGcGs5AKju1OrWfy+Ku5b7g+fJW83r5Xvwy/rM0r7SytJ50r/RV6b0ZPhnlGX0ClqBS8CozOHNj5vusyKztWYPZidkNOUo5KTmHhJrCLGHbVKOpM6Z2iuxExaKuaR7T1kzrF4eKt+UiuZNym/O04I98u8Ra8ovkYb53flX+h+kJ0/fP0JghnNE+03bmkpnPCgILfpuFz+LOap1tMnvB7IdzmHM2z0Xmps5tnWc2r2he9/yg+TsWUBZkLfi90LGwrPDtwsSFLUWGRfOLHv8S9EtdsWqxuPjmIs9FGxfjiwWLO5aMXbJuybcSXsmFUsfS8tIvS7lLL/w65teKXweXpS3rWO66fMMK4grhihsrfVbuKNMoKyh7vCp8VeNq+uqS1W/XTFlzvty5fONaylrJ2q6KsIrmdebrVqz7UplReb3Kr6qh2qB6SfX79bz1Vzb4bqjfaLixdOOnTYJNtzYHbW6ssawp30Lckr/l6daErWd/Y/xWu01/W+m2r9uF27t2xOxoq3Wrrd1psHN5HVonqevdNXHX5d3+u5vr7es3N+g0lO4BeyR7nu9N2XtjX+i+1v2M/fUHLA5UH6QdLGlEGmc29jdlNHU1JzV3Hgo51Nri2XLwsMPh7UdMjlQd1T66/BjlWNGxweMFxwdOiE70nUw/+bh1SuvdU+NPXWuLbus4HXr63JnAM6fOMs8eP+d17sh5j/OHLjAuNF10vdjY7tJ+8HeX3w92uHY0XnK71HzZ/XJL57jOY1d8rpy86n/1zDX2tYvXI6533oi/cevmxJtdt3i3em5n3351J//O57vz7xHuldxXv1/+wOBBzR82fzR0uXYdfej/sP1R7KO7j7mPXzzJffKlu+gp9Wn5M+NntT1OPUd6A3svP5/wvPuF6MXnvuI/Nf6sfmn98sBfvn+194/v734lfjX4eukbvTfb3zq/bR2IGnjwLufd5/clH/Q+7PjI+Hj2U+KnZ5+nfyF9qfhq87XlW+i3e4M5g4Mijpgj+xXAYEXT0gB4vR0AahIANHg+o0yQn/9kBZGfWWUI/CcsPyPKiisA9fD/PboP/t3cBGDPVnj8gvpqEwGIogIQ5w7QsWOH69BZTXaulBYiPAdsivyampMK/k2Rnzl/iPvnFkhVncHP7b8Ah9d8bcAadJgAAACWZVhJZk1NACoAAAAIAAUBEgADAAAAAQABAAABGgAFAAAAAQAAAEoBGwAFAAAAAQAAAFIBKAADAAAAAQACAACHaQAEAAAAAQAAAFoAAAAAAAAAkAAAAAEAAACQAAAAAQADkoYABwAAABIAAACEoAIABAAAAAEAAArqoAMABAAAAAEAAAGaAAAAAEFTQ0lJAAAAU2NyZWVuc2hvdGugYMcAAAAJcEhZcwAAFiUAABYlAUlSJPAAAALYaVRYdFhNTDpjb20uYWRvYmUueG1wAAAAAAA8eDp4bXBtZXRhIHhtbG5zOng9ImFkb2JlOm5zOm1ldGEvIiB4OnhtcHRrPSJYTVAgQ29yZSA2LjAuMCI+CiAgIDxyZGY6UkRGIHhtbG5zOnJkZj0iaHR0cDovL3d3dy53My5vcmcvMTk5OS8wMi8yMi1yZGYtc3ludGF4LW5zIyI+CiAgICAgIDxyZGY6RGVzY3JpcHRpb24gcmRmOmFib3V0PSIiCiAgICAgICAgICAgIHhtbG5zOmV4aWY9Imh0dHA6Ly9ucy5hZG9iZS5jb20vZXhpZi8xLjAvIgogICAgICAgICAgICB4bWxuczp0aWZmPSJodHRwOi8vbnMuYWRvYmUuY29tL3RpZmYvMS4wLyI+CiAgICAgICAgIDxleGlmOlBpeGVsWERpbWVuc2lvbj4yNzk0PC9leGlmOlBpeGVsWERpbWVuc2lvbj4KICAgICAgICAgPGV4aWY6VXNlckNvbW1lbnQ+U2NyZWVuc2hvdDwvZXhpZjpVc2VyQ29tbWVudD4KICAgICAgICAgPGV4aWY6UGl4ZWxZRGltZW5zaW9uPjQxMDwvZXhpZjpQaXhlbFlEaW1lbnNpb24+CiAgICAgICAgIDx0aWZmOlJlc29sdXRpb25Vbml0PjI8L3RpZmY6UmVzb2x1dGlvblVuaXQ+CiAgICAgICAgIDx0aWZmOllSZXNvbHV0aW9uPjE0NDwvdGlmZjpZUmVzb2x1dGlvbj4KICAgICAgICAgPHRpZmY6WFJlc29sdXRpb24+MTQ0PC90aWZmOlhSZXNvbHV0aW9uPgogICAgICAgICA8dGlmZjpPcmllbnRhdGlvbj4xPC90aWZmOk9yaWVudGF0aW9uPgogICAgICA8L3JkZjpEZXNjcmlwdGlvbj4KICAgPC9yZGY6UkRGPgo8L3g6eG1wbWV0YT4KEgzzqQAAQABJREFUeAHs3QecFPX9//HP7vVGO7iDo/cDqYoNURRJQuzYYmJJLNGfmlhi7CQxmvyNGqNANBIVC4qoYEFBFIOigKIgHYQDjt7hOMpxdff//QzssrM7u7fX4Mrr+3Cdme/058zdLrvv/ZyruLjYKzQEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQqFYBd7VujY0hgAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAgCVAUJcbAQEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgRoQIKhbA6hsEgEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAYK63AMIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgjUgABB3RpAZZMIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggQ1OUeQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAoAYECOrWACqbRAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAgKAu9wACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAI1IEBQtwZQ2SQCCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIEdbkHEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQqAEBgro1gMomEUAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQIKjLPYAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggEANCBDUrQFUNokAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggABBXe4BBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEakCAoG4NoLJJBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEECOpyDyCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIFADAgR1awCVTSKAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIEBQl3sAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBGhAgqFsDqGwSAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBWAgQQAABBBA43gJ5eXkyceJEad68uZx//vkSHx9/vA+J/SOAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACVRYgqFtlQjaAAAIIIFAVgW+++UYGDx7s30RGRoasWLFC0tLS/H2MIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAJ1UYCgbl28ahwzAghUq8CGDRtk37591jbXrVsnpaWl0qVLF2nTpo00adIkqn0tX75cPB5PxGXj4uJEQ6i6TZfLFXHZhjTzX//6l+10d+zYIW+//bbcdNNNtn4mEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIG6JkBQt65dMY4XAQSqVUDDtVrNdfPmzSHbveeee+Txxx8P6Xfq6Nevn1N32L4ePXrINddcI1dddZW0bds27HINYcbatWtDTnPVqlUhfXQggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAnVNwF3XDpjjRQABBKpT4Pvvv3cM6eo+xo0bJ2VlZdW5O/+2VqxYIQ8//LB07txZfv/730thYaF/XkMbueWWW0JO+dprrw3pq40dkyZNkvT0dNvjj3/8Y208VI4JAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEjoMAQd3jgM4uEUCg9ghMnDgx7MHs2LFDZs+eHXZ+dc0YM2ZM2Kq+1bWP2rwdrSz89NNPS9euXWXQoEEyYcIE6d27d20+ZP+xFRUVyf79+0Me/gUYQQABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgQYtQFC3QV9+Th6Bhi1QWloqY8eOjYjw7rvvRpxfXTMXLFggV199tegxNbSWnJxsVRVetmyZzJgxQy699NKGRsD5IoAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAQD0VIKhbTy8sp1V/BDS4WVPhTY/HI9u2bZO9e/dWGky3sX37duuh49XV8vPzrWMrb3tlZWWydetW0WFF21dffWVVQo203vjx46W4uDjSImHnffrpp7J+/XrrsWrVKpk5c6Y8++yzVuVYp5XmzJljVZZ1mne8+rRirPpW57XVbXq93mo5pZo4vry8POt+rpYDjHIjO3fulH379kW5NIshgAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAXRFwmQBa9aSl6soZc5wI1AGBpUuXyujRo+XLL7+U3Nxc64h79+4tQ4cOlfvvv1+aNWsmDz74oPzwww+2sxk5cqRkZ2dbfZs3b5YbbrjBNr9z587y/PPPy5IlS+TRRx+VDz/80D8/IyNDTj/9dPn73/8u3bp18/c7jaxbt07eeOMNeeuttyQnJ8e2SMeOHeWaa66xqsN26tTJNs838cQTT1iVU33TOnzkkUdkwIAB8s9//lOee+452bFjhzU7LS1Nzj77bHnyySdFj9/XPvroI6tv7ty5/uXOOussGTJkiNx6660SGxvrWzTsUJd7+eWXbfNvvvlm+e9//2vrmzx5sgwbNszWFzwRHx8f3CVaJfeEE04I6dfg9S9/+Uubf+BCGhRNSUkJ7AoZV59rr702pF/99F5xatdff71s2bLFNkvd9br72oEDB2TMmDEyf/58WbRoke36Dhw4UPr162ddj0suucS3im2o57Vnzx5b38SJE639anXiqVOnyrx586z5ev9cdtll8swzz8i0adNs6zz11FPSp08fW59O1NTxFRYWit6Xr7zyij+8rfde37595b777rNd/4KCAhk+fLh1bJs2bbIZaaf+LAVed/1ZDv6Z0p/BCRMmWMbffPONf5+tW7e2fg50vzfeeKO0atXK2g//QwABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgbopQFC3bl43jroeC2ggdcSIEWHPUMODH3/8sTz22GPy+eef25abNWuWnHLKKVbf6tWrpWfPnrb5GuDU0KQGYvfv32+bFzjx2muvWUHSwD4d1yqoGvS9++67g2c5TmvY8o477hCXy2Wbr4HRN99809b3/vvvyxdffCGjRo2y9QdOTJ8+Xc4880z5zW9+Y4UcA+cFjl933XVW2DQmJiaw2zauwUwNRQY69OjRQzRM2qtXL9uyGogNDvTaFjATFQnq6roa9jzvvPNEq+gGt7ffftsfBA2eFzitYc4VK1YEdlkB7AceeMDWpxNaFbd9+/Yh/StXrhQNV2tTfw13a8i7vHb77bdbQem4uDjbom3atPGHrH0zNHiuAWpf+NrXr4FgvRd+97vfhYSjNcR66aWX+ha1hjV1fFr1WAPGTtfCdwC33XabVQ1Zp/WeSU9P980qd6hh8v79+1vLaWXiF154Qe66665y19Ofdb0f1Y6GAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACdVPAXTcPm6NGoH4K/Otf/4oY0tWz1pDgFVdcEVWYMlhJK51qJdTAcGrwMjr961//WrZv3x4ySyuLRhvS1ZXvvfdeueeee0K249Tx0ksvRQzp6joaltTqpBrijNRef/11+fOf/xxpEfnf//4X4qDVXbXyadeuXW3rjhs3zgrW2jqrOJGcnCwaTtYwZnDTcGY07eqrrw5ZLLgyrW+Br776yjfqH2pg2xfS1QrFP/vZz6K+r7Tq8cUXXyxaHbi8pqHe4JBueesEz6/J49PKypFCunosGlD/9NNPgw+rwtMaSo4mpKsb1p9TreT8zjvvVHg/rIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAK1Q4Cgbu24DhwFApKbmytOlVCdaDT0GFxJ1Wm54D6tlBrtehoaDmwaAB05cmRgV1Tj//73v2XKlCnlLhvNMjk5OVb4t9yNmQW0KnCkplVrg5uGIrUFV3LVvuoIaep2AlvTpk3ljDPOCOyyxpctWxbS59ShweLgpoHTvXv3BneLViMOblop2Neefvpp36htqEFipzCxLqQVnaO5bjNnzrRtszITNXl8U6dOjeqQHnrooaiWC14oKSnJ6lq+fLloID24aaVrrTx94YUXBs+ypp999lnHfjoRQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEECg9gsQ1K3914gjbCACWrHTqWnV0//+978yb948GTt2rAwaNMhpsQr1aYXTL774QpYsWSLhApDBFUbvvPNOx328+uqrsm3bNuuh407tD3/4g3i9XqdZtr6BAwfK5MmT5YcffpAnn3zSNi94Qo9bl9Ow6NChQ4NnWxVc161bF9KvHVqpNLgqb0ZGhpx00knW8uedd17IesHLhyxQyQ69vsFt06ZNwV2O0507dxan9WfNmmVb3uPxiFOlXa2urE0dg6+3eixYsEB27dolO3fulO+++0569Ohh265OOG03ZKEjHRos/sc//mHZ6/VzCik7rXssju+nP/2pVeFYg+xa0VjPP7jpz8vBgwclNTVVtm7daj20wnNwGz58uH++VqbOzs62Fpk9e3bwoqImc+fOlX/+858yadIky9tX5di3sP7sRxuw963DEAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBGqHQGztOAyOAoGGLaAh1okTJ4YgaGBPq302adLEmtenTx+r2us555xjhShDVoiiQwO3Tz31lH/J7t27i9vtlrvvvtvfpyNa/dPXNCipFX+Dm1YH/dWvfuXv1vHS0lK56aab/H06ouvqNnxBWNvMIxN6ru+//75olVltvXr1kkOHDslf/vKXI0scHeh+r7vuOn/HiSeeaIUhtdJwYNOgaYcOHQK7rHGncKmGVmNiYqz5J598slVFVgO9vqbHppVqfdfC11/VYd++fUM2ofvVc/dVYg1ZIKDjmmuusULcAV1WePmCCy7wd2mF3mAbvYdatWplLdOiRQsrKOpfwYxocNUXMHW5XNKvXz+55557Qq7t+vXrA1cLO/7BBx+IUwA67AoBM2r6+E499VR55513JDk52dqrBqDbt28vp5xySsBRHB7V8+3Zs6ekp6dbHU7VhvUe8c0P3IAG2oOb3ruxsUefihs1amT9zGswOrBlZWUFTjKOAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACdUTgaDqojhwwh4lAfRTQ6pybN28OOTWtpBscDNUw4SuvvGIFJ0NWiKIjOJCrq1x55ZUhQV0NixYUFFjhxU8//TRky1rJNTAs61tA+1544YWQ8Ohnn30WMairIV9fSNe3La2U6xTU1SqkgU0rnJ5++uny4YcfBnZblXNtHUcmnKrjBoZINTh5+eWXW86B60+ZMkWuvvrqwK4qj7ds2dJxG4WFhVEFdbV661133WXbhjo8++yz/j6tnhzcrrrqKn9X27Zt5Y477vBPhxs566yzQmbpPVJee+SRRyod0tVt1/Tx6bn7Qrq+c9FgslYQDq5kqz+rGtStTHNa7+GHH5bi4mKrsq6G5jUUrUFhfdAQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEECg7gsQ1K3715AzqAcCwdVOfacUrgKtBgi1kmdgxVffOpGGGRkZ4lSZUyuWOrWysjKr2ylErEHdcE3nzZs3zzbbaRuBC2i14ODmdKxaeTclJSV4UdH+aNru3bvlo48+Cln07LPPtvVdeOGFIUHdt956q9qDujk5Obb9+iYaN27sG4041Kq4Wh03MIyr1mvWrPGHPTUkHdz0/JyaVnfWY/rmm2+sSsh79uyxKglrNeHZs2c7rVJun1PAt9yVwixQE8fnVNVYd9+pU6eQoK5WjK5s0zC5U/vrX/8q+tCfab0PTzvtNNGKyPpzTkMAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIG6LUBQt25fP46+nghoGDK4tW7dWrRSrFPTqpu9e/eWOXPmOM0O25eZmRl2XqTgr1PINjs7O+y2nAKGTtsI3EB8fHzgZNhxrXbr1NQkmvbxxx87LjZmzBhb/4EDB2zTOqGB1+3bt0skx5CVyulYvHhxyBIaqHa73SH94Tp++ctf2oK6utyMGTOsoK5WvA0O6mr14ObNm9s2pwFYNdAKrxUNgNs25DDhdD84LBaxqyaPL1xQ3SkQHvEgy5mpwfMnnnhC7r//fscl1V1D5PrQ66BuWu33xhtvdFyeTgQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEKj9As6Jt9p/3BwhAvVKICkpKeR8NNiqFW1jYmJC5mnH1q1bHftrotNXWTdw24mJiYGTtvGEhATbtE44bSNkoWPQMX78eMe9hAtPBi/84Ycfys033xzcXenpBQsWhKzbrl27kL5IHU7VcTWc+9vf/la+/fbbkFU12BvY8vPz5Te/+Y1MmTIlsLvaxisSOnbaaU0fn9M+a6rv7rvvtipCP/rooxKukrZv3ytWrJBbb71VVq5cKf/4xz8qFN72bYMhAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIHF+B6Es2Ht/jZO8I1GsBraDq1NatW+fULRpczM3NdZxXE50tW7YM2ezq1atD+nwdOTk5vlH/0Gkb/pnHaETDzV988UWV9hYu6FuZjerxzJw5M2TVc845J6QvUkd6erqcf/75tkU0UFxcXGxV1rXNMBM///nPbV1vvvmmY0hXqyxfddVV8sADD8jjjz8u9957r229YzVR24+vog4a9Naf7cmTJ8t1110nHTt2jLiJZ599NqQqcsQVmIkAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAK1RoCKurXmUnAgDVkgKyvL8fRHjx4tGtILbtp/LJvT8S1fvjzsISxbtixkntM2Qhaq4Y4PPvigynuYM2eObNiwQSpa9TZ4xx6PR+64447gbmv64osvduyP1KlVcoMr4n7//ffyySef2Fa77LLLpFGjRra+qVOn2qZ14plnnpFbbrlFYmOPPk0sXLhQnnrqqZBla7qjth9fZc5fXYcNG2Y9dP2dO3eK3luvvPKKOJ3vrFmz/MtWZn+sgwACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAsdH4GgC6/jsn70igIARSEpKEg1QTpo0yebx/PPPS/fu3eWGG26QhIQEKSkpkXfeeUceffRR23I1PXHaaaeF7ELDhHPnzpVTTz3VNk/7pk2bZuvTCadthCxUwx3jxo1z3INTGNq34F133eUb9Q/1Ot19993+6YqO5OXliVZV1aq3wa1169YyYMCA4O5yp4Or5OoKr732mixZssS2rlbIDWwFBQWO1VpvuukmW0hX1/n8888DVz0m47X9+JwQ5s2b59RtVdHdv3+/f57b7ZYTTjjBmm7RooVoQFsfDz/8cEggevHixf71GEEAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIG6I0BQt+5cK460ngtoGDc4qKunfOedd1qP/v37y+rVqyUw6HesSIYMGSJpaWkh+77uuuusiq2dOnWyDmXt2rWifcFN19VtHM+2Zs0acQpQLlq0SHr06BH20A4cOCAjRoywzX/jjTeiCupOnz5dNm7caK1bXFwsW7ZskR9++EFeffVV2/YCJ1544QXRAGdFmxprCHfChAn+VZ3285Of/MQ/X0fi4+Mdr62Gcs8//3z/snouDz30kH/6WI3U9uPTkH1w03D0Rx99JD/72c8sX9989czJyfFNWsNRo0bJ//3f/9n69FoGtzZt2gR3MY0AAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAJ1QICgbh24SBxiwxDQAOXll18uEydOdDzhBQsW2PqdgrO2BapxQsOSDz74YEhQMzc3V7Kzs/1B1xUrVjju9f7777cFFh0XquHO9957L2QPHTt29B97yMwjHVqpNjioq0HMH3/80Tr3cOtp/3333Rdpdsg8rWKr4c7Ktl/84he2oG7wdjREnZycbOuOjY2VoUOHyvvvv2/rHz58uAwePFj69esn8+fPl1mzZtnmH6uJ2n58Xbp0caTQCtn6M9qoUSOZPHmy9O7dW2677baQgPcdd9whc+bMkTPPPNNadubMmfLSSy+FbFPn0xBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQKDuCVS8bGPdO0eOGIE6IzBmzBgZNmxYucf72GOPyRlnnFHuctW5wF133SUDBw503KQGdMOFdHWdP/zhD47rHctOrYIb3DQYXV7r1auXtG7dOmSxcIHqkAWj7LjlllvkmWeeiXJp58XOPfdcKxzqPFesILjTvHD3nIZGR44cedxCur5jrc3H17lz57DmWv168+bNUlpaap3Kr371K98p2YZaBfn222+Xa6+91jGkqyHfK664wrYOEwgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIFA3BAjq1o3rxFE2EAGtwDlp0iT597//LVrtNbhpYO+DDz4QrVB7rJtWNtV9X3jhhVHv+vzzz7cqteq6x7MtXbrUMUis1XLLay6XyzEkOW7cuPJWjWp+RkaGjB07VkaPHi0JCQlRrRNuocTERLnyyisdZ+u9NWTIEMd5v/71r0MqvTotqEHy49Fq8/FpheLXX389KpamTZvKwoULreq6Ua1gFtIqyF9++aUc75+haI+X5RBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQMAuQFDX7sEUAsddIC4uTm6++Wb58ccfZePGjaIh0/nz58vOnTut4XnnnWcd4759+0KOVdf1Nadgn4Y1K9KCt9GkSRN59913RUOqgwYNCrspnffaa69ZoWMNJwa3+Pj44C7RkGk0LTU1NZrFbMtMnz7dNq0TanHaaaeF9Dt1+MwD5+Xm5sqaNWv8XdHaagB78ODBcuONN8onn3wi69evl2uuuca/naqOhKu8qtVcndx1f263W5544gkZNWqU9O/fP+QQtKLt3LlzHYO+GlQNbIH3oK/fqc83T4fB91ngPB0/3scXeDxJSUmBk9a4BtK1ovRDDz3kWH058Px79uwpc+bMkT/96U/So0ePkG1ph95Leo+89dZbVoXdaO8tx43RiQACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAsdVwFVcXOw9rkfAzhFAwBKYN2+e7Nq1y6ahocnMzExbn04cOHBAmjVrFtK/efNmadGiRUh/TXVs375dNm3aZIWIdR+679atW0vLli1rapds9xgIFBQUWCFkrSasweKUlJRjsNfod1Hbj8/j8Vg/oxpA1mCvOoZrRUVFkpOTY3lr6FmDvFlZWRHXCbct+hFAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQKD2CRDUrX3XhCNqoAIjRoyQJ5980nb2vXv3lhkzZkjjxo39/fn5+XLrrbfKxIkT/X06ogFZrfJKQwABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACB2iFAULd2XAeOAgHRarhavdSpnXrqqaKh3by8PPnss89k//79IYu98MILcsMNN4T004EAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAsdHgKDu8XFnrwg4Cvz+97+XMWPGOM6L1HnVVVfJ2LFjJTY2NtJizEMAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgWMo4D6G+2JXCCBQjsCoUaPkxRdflLS0tHKWPDr7oYcekpdffpmQ7lESxhBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBCoFQJU1K0Vl4GDQMAusHXrVnnppZdk8eLF1iM3N9e2wMCBA+X888+XK664Qjp06GCbxwQCCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCNQOAYK6teM6cBQIRBQoKCiQoqIiSUxMlKSkpIjLMhMBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBGqHAEHd2nEdOAoEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgXom4K5n58PpIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggUCsECOrWisvAQSCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAII1DcBgrr17YpyPggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACtUKAoG6tuAwcBAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAfRMgqFvfrijngwACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCBQKwRia8VR1OWD8Ih4i/XhFW+JGZaaR5lXxBqaEysz02ZS9GGWPTzhEjH/icakdVTHY8zQPMRcEVeMS1w6jDOPeDMef2RZM6AhgAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCNQNAYK64a6TCdZqANdT4LUe3gIzXmjCuIdMvz50XAO6RYeXk6Ij0yagqyFdK6irQw3nWgHdgKEZDQzqWoFdE9rVcK4Gda2wroZ0zUMSTFA3QQO75qHDRDOdaIZJJuer48lmmOISd7IZ1+U19EtDAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEDjuAgR1TcVbzyETxt3vlbJ9ZtwMvfvN8IDpO2hCuGboPWCGOm6W08CuHHJZQV0xIV0rlFujl1FL8ZqmV+pIUFdMONeV5DUPE85NMeOpJqybenjcGqaZ6TSXxDQ6PHSb5bRiLw0BBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBA4NgJuIqLi48kQY/dTo/XnrwayjXB27K9JoSrjzwzrcN8M8w3IVwz9OrQBHY1mCslx+tIK7lfrcJrQrsuE9B1NTLB3cYmqNvYVNttYoZNdGjCuzre1AxNFV7Cu5V0ZjUEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAgCoF6HdT1FosVyi3bbcK55uHxDfeYIK71MKFcUz23zgVyo7iwtkU0wKvhXRPQdTczQd1mZphuhs1NYDfdPMx0jAnxuuJtazGBAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIFAFgXoV1PWWmmCuqYhbtsM8dprHdhPONUPPTlMx1wy9e42UCe/SjIAJ5bqaHg7ruluYYYYJ6x55xLYwQV5TidcVixQCCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAQGUF6nxQ13PocCi3dJsZbjUPM/RsM8FcM/TmGxYT3qVFIWBCua4mJrDb0oR0W4rEmKE+YluZhwnuuhJdUWyERRBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEfAJ1MqjrOegVDeaWbjbB3C3moUPz8JrKuVLkOzWGVRJINMFdU2k3prUJ7OojywR2zTA20wR5UwjtVsmWlRFAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAoEEI1JmgrlbOtcK5m8xwownmrjeVc83Qm2euU1mDuFbH7yRjTGi3mam229YEdtubsG4b8zDjVmg3idDu8bsw7BkBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBGqzQK0O6npLTQZ3l1dKNnikdJ0J6JqHxwR0vXsMKeHc43NfxR4J7bYzQd2O5tHBJXHt3BKT7hKXmUdDAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEDgsUCuDup4DJpxrKueWrDUB3bWmeq55eHeYAy7mstUqgXgT2s00VXY7icR2MoHdTm6JM9V23SlU2a1V14mDQQABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACB4yJQe4K6HpHSPSacm+uRktUmnJtjHqaCrhw4Li4V22mMWTzOPDS4GmdCqrHmuLW6rOl36Ty3eWh21Tc0o2IWEXPOvqFXKwTrw1QRllKXeEvMAhpMLjnSbwa1uqWZ0zXVdWO7mkcXE9rt4JbYZuak9ZxpCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAQAMUOO5BXa8JppbuMOFcE8wtWWkq6K401XO3mSuhAdXj3TRcq+HbZDNM0aHLGnclmvEk8zBDSTB9CWZclzMPMUFdl4Z2NaRrwrrRBHW9Gtg1IV210KCuNTRBXa8J6nqLzEMDu0VmutCMHzIPHRaYx0ET5j14eNzy0vDv8W7GwN3KVNntZii6uyW+mxlv7rYsjvehsX8EEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEDgWAoct6Cu1wRxS7d5pNiEc0tWmOq5GtDdZU5dQ6vHumkgV4O3jfRhgrZm6NbxNJe4NaCbaqZTTH+qmdblzMOdZKZNUNdtgroayq3JptV2vRrUNSFdT+GRYYEZmpCux4R1vabqsMc8vPu94tmnQ/PYZ/rzzVGZUK9VtbcmD9Bp26aSrquFoeluquv2MIFdM4xtSWDXiYo+BBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBConwLHPKhrVdDVgK4J55Ys9RwO6OYZ3GNVDVZDuVoRt6kJ2TYzYVsdNjUB3CZm2MQMG5uhCejGmMCu2wRzrSq5deDaa9VdzwETeDYBXY/1MNN5ZnyvGe41oV1j7NlzeHhMw7vG29XMBHazTWC3lwnsmmFsJoHdOnBLcYgIIIAAAggggECDE/j222/ltNNOa3DnzQkjgAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCNScwLEL6ppKuaU7vFK0wlTQXWwCuiaoq+HRGg/oajDXVMV1tzDBW1Ph1d3cPNLNuHnE6MOEdGMam0BuQs0hH88te01F3bJ8E+A1od0yE9T17DKP3To0wd2d5mGmxVTmPRbXwQrs9jCB3T5uSejpltjm5uKYyrs0BBBAAAEEEEAAAQSqIjB37lw59dRTq7IJGTlypLz6/suyb+NBGT9+fJW3V6WDYWUEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgXojcEyCuhoSLV5pqugu9EjpEhPQNSHRGg2GasXcdJMBbWVCuJlmaEK6MZmmkqsONaSbrGVe6801rNiJmFyup8CEdk1YV4PTZebh0eF207/tyLUpqtgmK7S00pvAdGxvl8T3NxV2u7klxlQypiGAAAIIIIAAAgggUBmBUaNGWQHbxMREeeaRUZUO2GZkZMiVfxsmG1ZslviNTWXixImVORzWQQABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAwCZQo0Fdb6EJ6K41VXR/MAHdBR7xbDH7LrPtv3omNOepVXNNMNedJRJjhrEa0tWhVtJtyMHc8oSPBHc1tFu61QR2jzz0Wmlwt8aq7caY69XGBHb7meq6J5nAbgdT1TiRwG55l4v5CCCAAAIIIIAAAnaBzMxMufzRn8qWNdslNrexvPvuu/YFopgaPXq0vPrZGBl6zSApLSmTD/41Xd564R055ZRTolibRRBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEAgvEBt+VhXmeERKt3mkcJFHSr4z4c81JvBZWIXthVs11YQ9s0wgt60J57YxoVx9tD5codVVM2cW7kjqbr/JxrpTTHXbjvowhY5LTZbaVEAu3WzC1ZvMtbMeJrS7xVzDA9V4miaw7VkvUrzdI2UmzF16sksS+rolNtNtDqga98OmEEAAAQQQQAABBOqtwHPPPSetT24uqU1SpFPvdvLB5/+T7777rsIB2+nTp0unPu0sp9i4GOlzbjf56quvKrydegvNiSGAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIVFqg2ivqeg6aKrorPVL0rQl6LvaKd0+lj815xUST42xpquS2N9VY25tgbnu3xJmAbkxjTZw6r0JvJQVMmLYs3yslJqxbut5cz/VeK1xrVdotquQ2w6zmSjfXs68J655mqut2cx+ughxmWboRQAABBBBAAAEEEFCBiy66SBJ6l5iQrfnHgWkrv18jiZvSZcKECdZ0tP9r0qSJ3Dj6comNP/xtvw0/bpaD810yefLkaDfBcggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCDgKVF/dWVNFt8RU0S2a75HibzziWWf2Z6qzVkszAVxXU5PD7WCCuZ3Mw1R/jTMB3ZhmLnHFVMse2IiTgLFVY314e7qlbI8J7WpgN9cEd00V3LJ1psruXrOiufZVbd7d5v75ymxzY5mUDvRK4kkxEptB+LqqrqyPAAIIIIAAAgjUZwGtenvjFZf7TzEpLVF27TYvLCvQvv/+e0lumeAP6eqqWZ0y5eVnJlZgKyyKAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIICAs0C1BHW9RaaKbo5HCmd5pGSBCW/mOe+swr3xJqDb0lRa7WrCuV1MOLeTqZ7byoRzE02Ak3ZMBVzmTtHgbGxGjHh7m8DuFvNYa0K7q01oN8dUTt5mDqekiodkgt2eHJGi3R4p22zCuoNMdd3ObnElcL2rKMvqCCCAAAIIIIBAvROYN2+eJAUFbFt1zJTvJ8+o0Llq2LdNj0zbOlpZV7et+xgwYIBtHhMIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAghURKDKQd2yvV4pWmQq6X5pwpUmsCnFFdl9mGWTTPXcdiYU2t2Ec7uZhwlrxjalumoYrWPerUHpeFPZOL6DW0r7mcDuahPQNte+9EeveDaae6Cwaofk3XO4uq5nu7mnzhZJ6GOqJzcmrFs1VdZGAAEEEEAAAQTql4AGbNtm2wO2cQmxUlxaVKGAbUFBgbTLzgrB0W0fPHgwpJ8OBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEKiJQ+aCuyWOWbDVVdL/xSLGppOvdYnZr+qrUUkRi2rskpocJgfY0j45ucacS0KySaU2u7DZVdpubQHXzGEk4wVRVzjWP5abK7goT2F1vboaCKuzcBL7Llnrl0F4T1t3llaTTTFi7pdkht0MVUFkVAQQQQAABBBCoPwIaom3XIzRg229ItmiIN9pKuD/88IN0vKR1CIxu+6WXXpLBgweHzKMDAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBaAVM8rESrcwUzl3rkYIpZVL0qQnpbjbbqEpIVyvomnBuwnluSb4yRlIvjJHE3jGEdCtxaY7XKu40lySayrd67VLMNdRr6TYVkSWxCkdk7imvqdBbNM0jB6eaQHiux6R3q7A9VkUAAQQQQAABBBCoNwIasG2bHRqwTWmSLF9//XXU5zlz5kyJS4wLWV77tm3bFtJPBwIIIIAAAggggAACCCCAAAIIIIBA5QT0/ZzTTjvN+nJ05bbAWggggAACCCCAAAIIIIBA3RSocFDXayqdFpqqqQUflknJbJOk3FuFE483Ad3OIvHD3Fa4M+V8E/DsaQKeyZRNrYLqcV3VnWIC1yeY62mupYau439mrmdHc0ih2YfojzPPVG/+2txzk00w/EcTDDf3IA0BBBBAAAEEEECgYQto1dx4h4Ctqhw4cCBqnPgWzn9kpGWHDP829EOk3/3ud/Lyyy/7+xhBAAEEEEAAAQQQQAABBBBAAAEEEKiYwK9//WvpdnGWzN483XqvpWJrszQCCCCAAAIIIIAAAgggUHcFKhTU9RZ6pXBxmRz6oExK55uQbkElT9zs1dXSZDfPdknyFaaC7gUmoGvCnQR0K+lZC1fTwG5ib1Nh96IYSTLXOG6wS1yZ5kArdMcFnJi510rnea2AeNHSMvEWVaWEc8B2GUUAAQQQQAABBBCokwJx6TGOx92yfQtZsGCB47zgTl2ubba+SA1tGgJen5drzbj++uvlpO6lsn7l53LHHXeELkwPAggggAACCCCAAAIIIIAAAggggEBEgbFjx4qrVbG06pQhTdqnyGffTov6PZyIG2YmAggggAACCCCAAAIIIFAHBKKOTXoKTEh3gUcOmaqmZctNSLKkkmeXJhJzkglxXhojKZfESmL/GHGnUUG3kpq1fjW9tkknmWs93Fzr4TESc6K51qmVPGxTSbdsqdfcgx4pXOgRzyHCupWUZDUEEEAAAQQQQKBOC2jAtk24gG1SvMQ2c0f1QU+kqrwKVFhySO6880456YRGMmxwN7n6kt6ydOFXUW27TgNz8AgggAACCCCAAAIIIIAAAggggEA1C/ztb3+TQcNPtrYab96/6TawrYwaNaqa98LmEEAAAQQQQAABBBBAAIHaKRBVUFcDkYU/mJDuR2XiWWVOpKwSJ2P+oqy7g0jCMLekmAqryYNiJLa5CW2S0a0EZh1bxVzj2BamevJZJrB7uame/DNTPbm9OQfnImiRT67U3H4/mrCuuReLCOtGtmIuAggggAACCCBQTwU0YJuQFBf27OLNvH379oWd75sRzTLjx4+X+24fJmmpidK6ZRO5enh/GT16tG8TDBFAAAEEEEAAAQQQQAABBBBAAAEEyhFYuHChpHSKk7RmR6v5dDmxo3z88cflrMlsBBBAAAEEEEAAAQQQQKB+CJQb1NWQbpGppFs41YR015iT9lTixE0V3diTTWXVy0xQc1iMxHdwi8sEd2kNS0CveXwntyT/PMa6F2IHVLK6rrkHPTkih6Z6pGixR7yFVNZtWHcSZ4sAAggggAACDV2gvIBtRvumURNldmgRdlndTrusVGnT6uj2hg3pJR999FHYdZiBAAIIIIAAAggggAACCCCAAAIIIGAX0C9dN0pPsXUmmKq67iYiixYtsvUzgQACCCCAAAIIIIAAAgjUR4GIQV1vsUjRElNJ9xMT0l1rTr+ieUgtmNvaVNH9iamie6kJZw6IEXcaJXTr441UkXOKaWRC2yebqsrmnogfakLbrczaFb0tzL3oyTGVdU2AvHCZCeuae5WGAAIIIIAAAggg0HAEMtuHD9jqBz3RfMizePFiSUiOD4um2znjlM62+Y3TkqRtq9Sotm9bkQkEEEAAAQQQQAABBBBAAAEEEECggQp8/fXX4vReTtvsTNm7d28DVeG0EUAAAQQQQAABBBBAoCEJhA/qlpmQ7o+mku40j3hWG5KKVtI1f4nWne2SxItMINNU0Y1rb3YV05BoOdeIAuZeiO9oAtymum7iRW5xdzdLh//rxc6b0sq6q8S6R4tzzIS5Z2kIIIAAAggggAACtVdAg7FvvPFGlQ/QCtimhA/YZrRvLvn5+eXuRz8IymjbPOJy7bOSQubfct1ZfIgUokIHAggggAACCCCAAAIIIIAAAggg4CygFXXbZmeFzGzbI0vefPPNkH46EEAAAQQQQAABBBBAAIH6JuAc1DXVSotzTUj3szIpW2kmKhqANH+5JHaAS5Ivc0vy6W6JaVLRcqn1jZnzCScQ09TcJ2ccrq4be6K5T5LDLRmm39ybZStMZV1zrxavN2HdilZ9DrNZuhFAAAEEEEAAAQSqV+CBBx6QUf/6q+QsmVblD2DKC9gmpiTIkiVLyj0BDfzqsuHaitm50qVdasjsDm3TZfz48SH9dCCAAAIIIIAAAggggAACCCCAAAII2AX0/RdJ8zi+B9Muu7Xk5ubaV2AKAQQQQAABBBBAAAEEEKiHAo5B3dJtHjn0RZmULjGpx5IKnnVTUxh1kAlfXmIqpfaKEVciId0KCja4xfUeSextwrrmnok7w9wvjStIUCxSusgrhV96pHQHSd0K6rE4AggggAACCCBQ4wIaaj24Z4lcN7yLXP7zbvL+u2OjCtKGOzAN4UYK2Op6eXl54Vb395e3TEZqvKQkh/7Zh57dsmTt2rX+7TCCAAIIIIAAAggggAACCCCAAAIIIOAsoNV022RnOM7U93c27l3vOI9OBBBAAAEEEEAAgaMC+tnYgw8+SCGZoySMIVDnBEKCumX7THXSb03gcZ4JPB6q2Pm4WojEn2Oq6J4XI/EdzKZDtl6x7bF0AxKIMfdOpyP3jrmHXJH/AnEoTIHJlH9nqkDPLRPPfsK6oUD0IIAAAggggAACx0/g73//u9z0y1PkxN7tpWO75jLk9Cx5/vnnK31AnpTSiOtmtEmPON83s0nbRr7RkOHyOaukb99M2b9vf8i8po2Tpax4d0h/fewYMWKEvPXWW1U6taVLl0p1bKdKB8HKCCCAAAIIIIAAAggggAACCCBwXAT0i9KRvnBdUHxQ9L0DGgIIIIAAAggggICzgH5O89DjD8jKgoXy9oxx1mcuzks27F5eUzbs618Xzt4WpfWa6rlFSzxSPNsj3vILUNnOz9XSBC2HmqDlUFMVtZXZLIV0bT5MRCFg7pm41uYe+okJep9rwrrOX64NuyHvHpHiWR4pWmbu34pWgg67VWYggAACCCCAAAIIVEVgwoQJ0qd7mnRub77Vd6Rd8JM+smr53HI/hNF/UP/pT3+S4cOHi27H1xJTE3yjjsPE1MSoth1pO3u27ZVGjRKkpMT8+YagNmnKfNm3d2fIcQUtVqcn1V7dl++fLxP+N87mX5ET0+v28OMP+rej15OGAAIIIIDAsRLQ57PA1xDHar/sBwEEEEAAAQQQQMAu0KJt+C9VN2/TRHbvbhhfiLarMIUAAggggAAC9VmgOt+XWr16tWzOXydt+mRKRu/GMumzd8v9HKw+2zqdm37+pJ9H6VDtaQjURoHYwIMq2WBCjibo6N0U2Fv+uIZ0E0xIN2lQjMQ0a5gJ3RkzZsiLL74oV1xxhVx66aVh0bQU+ddffx0yPzU1VVq1aiV9+vSRzMzMkPnHomPu3Lkyf/58a1fZ2dkyZMiQCu128+bN8uGHH1rr/OIXv5D09PD/6A7csMfjkYkTJ8rHH38subm50rZtW7nozEvk5+dcIqVfini3By4dedyzQaTQ3MMxmS6J72jLoUdekbkIIIAAAggggAACNSKQk5MjXToeDenqTpo1SZHhw3pG/BDm7bfflukLpoi7WZm4uhXIc6+Nlt69e0d9jGVJkb+5pR8A6QdBkVrHjk0lNinOtsh7U3+QnNW5cuuveosrPkXee+dl67hOOOEE23J1fUL/LOWK3YvlpxecKYf2H/L7V/Q8P/jgA9m4f60MGnKytZ2J49+Rq666Siq6nbruyfEjgAACCBx7gT//+c+yeO1CkaRScblcou9V0RBAAAEEEEAAAQSOvcCyZcuk6Wnh/6pRux5ZossMHjz42B8ce0QAAQQQQAABBGpAQN+X2lK8Tnbt3lXl96X087L5G76Rk37SS5JMoRp9tDsxQ/7zn//Ic889VwNHX/c2qUZfLPtM2vdvKUt3zpM9/9mDTd27jA3iiP1B3bK9Ximc65GyH70inujP3WU+c48fYkK6Z5qQbtOGGdLVoOmNN94oGlSdNGmSFBQUSGysn9aGqWHYu+66y9YXPHHxxRdbfwq4RQt7oCF4ueqc3rVrl5x33nmyf//hP+178803VyioO3nyZLn++uv96+s/pqMJ6hYVFVnh5mnTpvlPR400uHvB6RfLi//3mri+jhPvLnNfRtPMvVu23CtF7UxY14TGYxo3zHsyGiqWQaA8AX1jTH8We/bsaf2clrc88xFAAAEEEHASePfdd+XVfw0PmdW1U4b1PBPuQ5i///3v0umnmdK9fWdp2j5NDuxdKi+88IJcfvnlJmDbOGR7wR2JaZGr7urySREq8+7avFf6XtdbSnYdfn3s2/6Tz02TV58aJo1SY6XE20gOHPJaxzV69GjfInV+qNdMQ9KDhg/wv+mT1G5zhc9Tt7OpKFdOHHr0zaO2/VtUeDt1HpQTQAABBBA45gL6HDRjyafSrn+mJKelyYTPXxe3282/bY/5lWCHCCCAAAIIIICAiH4ZuEfHVrJhy3rJysqSrFZZNpaktESryNFtt91m62cCAQQQQAABBBCoiwK+96Wyz+ogzTPTrEIovXr1qnQBk1WrVsnOfduke6t2fo7uAzrL5//9n/Vlp4ZeGEW9tdhP9k86SHpWUznUqlB+mDJPtF+LbdIQqE0Ch0uOlokULfdIyTyTcjxYgcNrakK6Zx2ppNtAQ7qq9c0331ghXZ/c//73P99o2GHXrl3l8VrEBH8AAEAASURBVMcftx6PPfaYXHbZZZJmPjjQplVpL7jgAsnLywu7fnXP+MMf/uAP2VZk2xpK/t3vfmcFJnwh34qsP2LECPGFdO+9916ZOXOmVYZcLT7+5kN59KMREjfIhG0jFzuz7/KASMn3Xin+0dzP5j8aAtEIaCD1//54s1XhTccbelODPz85Qhbu+kbGT39NHn300YZOwvkjgEAdFNDfZY+MuEsmvPYPKxBaB0+hfhxy6V7p1in0L0Zkd2kpyxfPdjxHvXZFjQ9I2+yjH9x0P7mz/G/udFm+fLkVHnVcMahTlw3XIs3Tdbas2ClNmiRaqx84cDis+8G0BdKjU2Pp1jFd4uJiZfeePXLxz/pa51He9sIdR23s//HHH2XHvq3WGxq+4wv09/WVN9TtpHdqVOXtlLcf5iOAAAIIIBAs8Le//U2yz2wvbbtnWc9D6T1SRPtoCCCAAAIIIIAAAsdWQN/j0WJBMSlmv8llsn5jruw/8j5L4JHoMjQEEEAAAQQQQKCuC+hrH81X6PtSGhrVR2IbkTFjxlT61HSbPU7tYltfv+jUpl9z6wtRthkNcEI/i9ove/yfRamN+vNeYAO8GerAKVtB3dIdHime7xHv1goccbJI3KkuSTJB3djmDbtq6VtvvWWDe/PNN23TThNaofKee+6xHvfff7/oNnbu3Cmff/65tfiCBQtk+PDhcuCASZ3WcJs6dapMmDDBCgrfd999FdrbySefLP/973+tdfXbCBVpWoF45MiR1io61Kppp59+uhXU1W1q+8/Ef8vGVmskboC5x8w9F23zbDJB3R88Urojykq80W6Y5eqlgFbCHv/Za5KfulUKsnbJv18ZJStWrKiX5xrtSemLlviOpdKmT6Y0654sn5mqeuoU3Bq6U7AH0wggUHsE9HfWknkfyWknuKRLq4PWuNPvsdpzxPXzSNT8jFM6O55cetNU8ZYVOj7n6vNL86wmpgJekn9dHW/dN71Cb2bo6+twrbwPgIr2F/lXLS4utsYnf7pILhra1dav53HhT7rXqzdD9Lpln2J/08fnr1Vwom26nXYBYWtdz7edSNcm2u2zHAIIIIAAAk4C+vxTmLZf0ls388/W8S37Nju+7vAvxAgCCCCAAAIIIIBAtQvoZw2JmXHWl65TmySL23wnev36dbb9NM86+rrNNoMJBBBAAAEEEECgjgno51s78rfY3peyCqF8O71S70vp9oLf5/KRpLduav1VAt90Qx3qe4EnntvLdvq8F2jjYKIWCbi9Jaaa7hKPlC03gUZTWTeqFisS28eEdM+OkdiWh4vyBq+3Zs0a60N0rRR70UUXWSHMvXv3ypdffil33XWXfPDBB/5Vdu/ebfVpddXS0lJ5/fXX5aabbpIhQ4bIrbfeGvFDby3x/dJLL8mvfvUraz9PPfWUzJ07Vzye0FKqf/3rX639bN++XSZPniy33HKLtQ+tJrtp0ybrePQY/9//+3/WtvS49R+QGzdu9B9r8IhWlPWFSnW/2jT0qtupaNM/wXfWWWf5K8zOmTNHovkTunrOavr999877vLVV1+15mul3uC2b98+ufnmm61u/VPCmZmh1c6C1wmczsnJkUGDBsmiRYvk4osv9s9yucoPb+u9oK1jx45y4403WuO+/1166aUyYMAAa3LaDx9L0hBzr5mgjZh7L6pm7uXSpV4pWmYC6OYepyEQTkBf2OjPeZPuidKuR2vrm0hxWWUVCgGF2/ax7H/vvffk9w/cLjrUR1Warl+Qkm95JDdKMn9evJl0G9TO9o0jddPflf8Z/Xi17LMqx8u6CCCAgJOA/m6/4Jx2MujUrpLdpZU1/u5bL1bqH8FO26cvOgGtMts8PTXswt26ZFp/USF4AX0u6u4Q8NXnpGgr16ZnNQ7ebNTTu7fkSfv2oevP/m61DBzQ1tpOanKCf3s9uraK+G8W/4J1YMT3OkCtg5v2RRvU9W1HX0sEN93O+++/H9zNNAIIIIAAAtUioG/OnzH8pJBt9Rvavc79Wz/kJOhAAAEEEEAAAQTqkIC+N7A5f6PEpRz9cC+1SYrsyttlK1Sk7x3oZw40BBBAAAEEEECgrgs4fb6lr3Wy+jar1PtS+lfJm7d2/hPk+mWnRWsW1HWyKh2/77Mop8+0eC+wSrSsXEMC7tKtppruYq9490S/B3dHkcSz3RLf3oR0HfKYX3/9tfTo0UN+//vfy0cffWQFTzUk26tXLyug+/zzz9tCpXl5eaJ9Gii94447rJCuhnVnzZolL7/8sgwdOlRefPHFkAP8+OOPrW3edttt1p8znjZtmjz88MNy5plnilapDW66Dd3Ps88+K5dffrm88sor1j7+/e9/S9++fWXevHnSv39/eeSRR6xj1u3pn3vX8KxWf3Vqn3zyidU9ePBga93zzz/fmnYKxTqt79SnAeU//vGP1qw33njDaRFbn1aj0vNyKpWuwWet3KvzGzVqZFtPJx577DHZsWOH6HFfccUVIfPL63jmmWfks88+kzZtTK32CjYN+Wq78sorJT4+3ra2Bn2vvvpqq0/D2PEd3ZJg7jl3e9tiESe85q/klJgQeun20NB2xBWZ2aAENGxyMGmvtGiT7j9vrSA3/ZtPRUvk14WmQZc3P31VdsSvt4ajXxlZpWPXcNug4YeD8r7zV59NeRv821W3jatnyc/OaCrtmqwXDb/VFS/fOTFEAIH6K6C/Fzu1jhENT/qajp/Sp4n/C1a+foY1K6DPDd07twy7k0HmOVf/7RDY9PoFPzf75uubDo2z0nyTEYfJjUyJlnJa84BKe4GLHtxXYP59cPi4YxMOf5j00fRFcmq/TCkrK5FtO/MlIT7W/6FSt06Zsn3zynrxXLhs2TLzuqhpIId/vCJv+pS3HX2tRUMAAQQQQKAmBPQDisB/4/v24fu3vm+aIQIIIIAAAggggEDNCuhnDX3P7S5pGUe/7BwTFyOJjeJl3fp1tp0XxR6yTTOBAAIIIIAAAgjUNYFIn2/p+1ITJ06s8CnpZ2jhPsvSAPD+wn314rOpCsMcWSHSZ1FqrvNpCNQmAXfRCo94Vptquua/aJrLZNnizzAh3WwT0o0JXUMr6V5yySXWjGHDhlmVa5csWeIPRWhgNFzTwKhWx33uuedk8eLFoiHVgQMHWos/8MADkp+f71/1m2++Ea26qk0rws6YMUPmz58vTzzxhNU3cuRIK5BrTQT97+mnnxYNDi9dutQK5LZu3Vr2799v7UsrzL711luycuVK65dkWlqaFdLV4LBTGzdunNWtFX21/fKXv7SGGgKuSjv55JOt1TXMeuDAgYib8u1bf+kXFR39E726koad9dwyMjKswHHghjSYrE7aoqncG7iub/z222+X2Nij34T19Xu95d9Qvm/Htm/f3reabdiuXTtr2qqaZu61hJ7mvhvoFldocS/bev4JcwhlK71SbB7eUn8vIwjYBDTAH1xpR1/QtOzV1P97y7ZCLZvQLwW8Oe1VadQlXjqc0MYaujNKKn3sur39CXnSou3R4LLvlPuYN9S0grgus2Xdt/LrK/rL4NO7S3aHBBnQq1Gl9+nbPkMEEECgugT0Nd4lP+8fsjntq8w/gkM2REfUAvrFjoEndwm7fIv0NOtLY4EL6PVr0dY5KKrP0a17ZNj+ZFDgusHj5X2JJLlxaLVX3YZW1G3a9HDQ1x17+C+ILF+1xfz1iWTZfnC/bN6zVxav2CTFR15763l4yw6J/uWOut7ULPBPhQeeT0Xe9NHtdBvQKXB1/3hFtuNfiREEEEAAAQSiENB/r8YFvG8U+J4azz9RALIIAggggAACCCBQTQK+zxrcMaYQT5q9WI9W1d26dYttT0mNExt0yMSGwQQCCCCAAAII1EmB8j7fKjRfTCrvc6vgE9fP2dpmZwV3+6ebZTWqN59N+U+qAiPlfRa1dZ9zUc4K7IJFEahWAXfpjybEmBflNuNEYvu5JPHEGHEnO5TSNZsZP368FQzVyrQTJkwQDet2795dfvOb30T159jHjh0rv/3tbyU7O9uqtKrBXW0aNg38hfXPf/7T6r/qqquskOmgQYOkd+/ecvfdd8t//vMfa959991nKl6VWeOB/7vzzjvlwQcflG7duolWr9Xgma9p8Payyy6Tjh07ykUXXSQjRoywZn333Xe+RfzDrVu3ytSpU61pXVbbeeedZw3nzJkja9eutcYr878+ffr4V9OKuZFav379rArGavTFF1/YFv3ggw+saTWNiTmarNZKuxqy1aZh3cpUxLVWrsL/9ElKW7h9t217+M8K+/68sTvF3HsD3BLbx9x7odlgxyPRStElP3qkbFf5wWHHDdBZrwUmT54s+XG7JKNd85Dz7HFq5b7RFLKhGu7Qb6SndY7zn4Oeix77Z7OnWV84qOju9UsSGe2cw1G+7eo+h52ZJb26t/ZvfrgJvy2a/1Wl9unfCCMIIIBANQno7/czTu4csrUME6ZslOLld1WIjL1Dv7BWXU2Dq+oernXtmOF4PdKznJ+LdDspJqy7/1B+uE3a+vWLgOFapPM8uLfAtpqGfKZ+vkROHthSPCa/6012S35ZobXMgiVr5dkXP7fGI23TtsFaPKHfzm4X6U2fVo1E3xgqr+l2nF5j+dZrZrZTH4LNvvNhiAACCCBQOwT037T6WkHb6jWrJSd3laxev0q2bd9m9XU9qV1Uz2PWwvwPAQQQQAABBOq9gP47/qmnnrKKDun7SbTqE/B91hD8HovuIdZU1fW4PXLgoL1QEe8TVJ8/W0IAAQQQQACBYy+gry1LYor870MFH0Gb7IwKfy6ir49SGicHb8o/rZ/n6F+6r6vN93r8sX/9VW666SbrdXlFzqW8z6L2FeY7fg5ZkX2wLALVKeAuW2MCjFFmGN2mwGnCySYomeEc0tUD+/77763ju+222yQ52f7L4pRTTvEHWcOdhC/o6pvfpUsXKzSr05s3H026z50711rk3nvvFZfLfjw33nijaCVcbatXr7aGgf+78MILAyelV69e/umzzz7bP64jvnlO/zh89913rWXPP/98SU8/XH0yNTVVfBVuNahc2aYVcH2toMAeFPD1Bw5vuOEGa/K9997zd2sY11fxVwPNgU2riC5YsEA0UK0h3uPRtm07/CFJo0aNHHfvu4YaQC4uLraWic00VXXNPeg+nOF1XM/Wae7tshyvlOR6bN1M1A8BfdLW0H5lX3gsWrTIBEgCSu0EsOiLnQLXwYhP2oH71/Gabr79/fEv91iVxPXc1xz4UbbmbzIv6A7/POkx6LFnnNDYqlBe0WNSy64ndXRcTberL2RaNy+T3tlHQ7q6cEbzRjLs7E6V2qfjzuhEAAEEKimgv8f095T+XnJqv/nFQH5XOcEc6dPnljHPPyXvvz3Ken6tyvObrqtB3EhNr1Nakv11ml7Ddj3szzOB29izLV/27d8X2FWpcafX9+E29P4n82XJii3StXsz0Qq7cUkxkto8URbl7JY3J86ReFeBdGmfat1bVTELt/9j2a+vfyK+6dMjq9yAkxrodiK1dmY7H3/8caRFmIdAvRHQnwn9/frUiAer/Lu13qBwIgjUkID1+sP8m3bN2tWyI2+beONL5WCpqYa/Y6PVl9G+ebnPYzV0aGwWAQQasIDvtYD+ZUD9945O0xBAoGYEfD9v+rOmj0hN52sgYFbu5zJu6ljrUd46kbbXkOfpv3eefHyE9bmFGup10Ifvi9ipLUL/olFSamLIXwltyIacOwJ1ScD3u1Y/r/T9zNel4+dYEUCgfgno7yF9LaKPcK/l9PdWTTfdtxY5ScyKsd6HWrR4YciXkir6uYged7sTw1fT1XNKaZIsmnupq00zf5O+fVM2lK2UzQk5MurlZ6O+jupT3mdRXfjSfl29Nertcbu9u6I8N/NvqLj+JiTZzS1i/gvXZs+ebc064YQTHBc58cQTHfu1U4OZzZqFhuZ8YVmv93CieMuWLf4/kdu1a1fH7fn24/QLKSvL/ossMOgbHC5OSEhw3L52jhkzxpqnYeKFCxf6H507H67g9vzzz4vHYw8ehN1Y0AxfFVnt9oWAgxaxTV555ZXW9KRJk/z/sNVroSHXAQMGWFWNfStoJWCtKqxNqw/HxkZZnta3gWoaagVkbYEB7MBN+/q1unF8/JE/i2PuvYRsExbva0YSA5cOP+41hdRKcr3iORBlIj38pphTiwQ02PHiC0+L9+BSmTfnfXn6iT/LqlWrKnSEunzXE51DqbqhPkO6hv0AL3j/eizR7l+Xe+aZZ6xwSkUCKvfff798vWa6/LBhtrz66qvyypT/SqOsJCky4aDNO0xYd8d2//n3OLWrvPPOO/7paEf0d1lm+xZhF29qqt/17ukcnrr0vBMrtE910POviEHYA2MGAgggcERAf4+F+z2li+jvKl2GFiqgz005y2bIoL4JkpGyVfZunS0vv/xy6IJR9uiXss44JbSycfDqmS0a2Z5D125fHTEoenBvoQT+Gevg7fmmm0WoyutbJtKwbdvG/tmvvbtA2raxVwae+/1WWbBspwzs31Qu+WlnuXZ4T8lqmlclM/8Oj9OIPje37mEPV+/ZtldWL1jnP6K25ss65YWc9c2o4O34N3BkRN884mcxWIXp+ihg/bvh6Sely45c6bJ3i7RYvUj0dX20/3aojyacEwI1KaBVNMR8CWj7nm2S0jRJkk113YTkeIk11fC1r8RdJNYyNXkQbBsBBBAIENDnfH3u1/cw+3U+ZL2PyWuBACBGEahGAX3t/fdnH7PeQ5+y4D0ZN2Vs2Pee9Wdz1MsjpbDZHmnTN1NSOsZYD+1rSK/Vq+Ncfe8nrV7+tfW5xegX/yl/GfWQ9Zqr2ZH3VhLTjnzGF3C9k1ISbQVI9LOHKVOm8JlBgBGjCFREQH+e9efx/kfvrdGfo8DfteuKl4n+vj3er2303PW4quN3WkXMWRYBBMILHKufR/3Z16xI54wd1kPHtc/XdFx/N+prRP39qOM10XQ/+joyr2y3pGUmW+9D7S/Olw0b1tt25/S5SCQr/awls31ohi5wo81aNq2zv//0eny/5itpkh0raW3jRJoWS2z7EtG/8BzoEngdb731Vv81juazqEy+tB94uzBeCwRipTS6o3B3dEl8L1PJNNVevTZ47ebNm1vh0Px85z9Hu2fPnuBV/NNJSaHfqNSZbrc9Gbx3717/OuGCtL4qrXl5ef5lq3NEP1TOycmxNjly5EjRR3DTP7X77bffysCBA4NnlTsdGDBW0/Jaq1atrGrFU6dOlS+++EKGDRsm77//vrXa9ddfb1t9xIgR1vTll18u7du3l927d/vn+0IPhw4dssLQek18lW39C1XTSM+ePWXOnDnmyWmD4xY3btxo9etygc2dZu7F3m4pXWHCtyujCN+ae7zMBHVLtnoloWvk+zdwP4zXXgF9s+b72e/Lab0SpF+vjrJtxz7z2GX9Q/DJJ5+UcAH+4DPSJ+6rLvh5cLd/OrNDC+vNpOCq0877z49q/7fffrvEZYrkm29JfDPFfIBomn5ZQCtzR2q6z29zZkn/7t1l/Q9bJX1AomxYvUk6/byFJJugS2lxmazbsFZSU1IlJSVFUk3fQe9+6/dUtB76O61t/1aRDkN25O6RbufZq6X7VtCgVUpCaVT7fPbZZ2XBqh8kKTNGtDLiJ598InfddVfU1863T4YIIIBAsID+Ljv3ZHvQMHAZ/V3lKa6Z14eB+4lmXI9Vf7/7fk+X91wQzTYru4wex4pF0+W6y/pKvxMO/+mCzBb58vWcr61jrMyx6fllZjhXNg4+Tv0iWbdu3aznkOQmzv8mCFynqKgwcNJxXJ8LA1ugt+98mrVsEriIbTw9/fD6C5fvlD0lxXLWAPsXVV4ft0wu+UlHGTSgpezee0hmz9skLVsky94dS0Wf5/R5ra41fW2U2viwv4ZzN6/fIqWuEjmQd9CEddfLKef1FTULfIPE6Rw1pO3bjtN87dPtzFn1VbjZ1dqv1973c1atG2ZjCEQhoG8q3ndSN/lpx07+pTse2mOF+p944gl/HyMINGQB/T2tzy061If+tS3fc3VFXHRd/XfwqpyVktYyxQro+tbXsK6+g7Rl2yZrGV8/QwQQiE7A93OqS1fm5zO6vdTPpTS40jGzQIYPO9X8e6GxLFy2Ufbt2RTVawGfu/5bqa68nvUdM/dJ/byfa/NZ6fsaWn3L3aZQUjOSJSajVJLiXVaf0/vv+sXkHYc2yYn9zrZOy/cewvoVm6P6+azNFoHHpj+TvveeAn8uff36Hv0J/bvLCVn9rPdlKvq7xvd+0hkntZLnXvlCTr+6i8Q02Sfzf1wpOw7kye59u8z7//ukWUZoUaSktETJ33L4s+RpY2fKweL9kivLJHZLifUehNN1Czw3xhGobQK+50A9rsCft5o8Tt8+dThrwVdSknRQYpu4JHfKGtlrfva6m88UK/pzXd7x6vscrc9uIm3MX1JLbZIiB/YelM3eNcfld6fvd9nmDSsk2Xw+uXltK/NvytOPmX95VsxHoC4JBP4+0fGqvDejrw+q+hojGjvdj2ZGfjIw0/+5VoumMfLCG2P8hQz1d1aPn7eXg43zZXXBLpnzw9dWNqO6P7/R/SRlm889OqVIbFyM9YiJa2w+L8qTtblrpdOR94YDPxfR41frSFa+v1IeycOXC4m0TG2Yp+ca+Jyk5z9xxmty0sVdpHnbNCkqLpWdJveT1KyxeFoW+J9XdDl9nd+6X7p1HbfnrZfXp2y3rmO0n0WtmrWtNhBwDAhYAtGVUk001XRPcElch/JDjhpKzc3Nle+++07OPfdcG7NWl62OqhWBP7ybNm2Stm0PhwkCd7Z06VJrsk+fPoHd1Tb+9ttv+7cVHITVGa+88oo1f/z48RUO6paUlMi7775rrX/ZZZdFXfH22muvFQ3qakB36NChMm7cOGsbl156qTX0/W/GjBnW6MSJE0UfTk3X1cfgwYNl+vTpTotUuU/fYNTmu1bBG1y2bJnV1aNHj+BZEt/JJcU9zWOd+ZilKGR2SIdnk1fKNptlnQswhyxPR+0W0Bc6Tz042IR021kHqm9yiwkVfT03x3rC/sc//lHuCegLgVgTmI3U9IXSlFdCAySV3b/+fE77/mMZdOlJ0tL8A3Zbwg5r96Neejbim2C63lNjH5c2pzaTrRu3yd6Du6XreVmy+PUNktIyXg4dKrAC9Yf2H5ING9dLj+ye1nZ7n9M1ag9dYebMmdKyQ7q1rtP/8kxFvaSSMmnVwv6m2pr1O6XzkSq81115urWdwN/TwdvS85n05dvSonsjSW2ZIUlmc3PnfGWONU2iuXbB26tP03pfaovkV5/Ol3NBoCYENGj459tuibhpb1mB9Y/f6vhZ8/3c6lDfuIi26e/CL/83WdLTDsl3s5ZYq61Zs0buuOOOaDdRrcv5n9uOhHR14/r8et2lfaw3NSrz5rKGb6Npnc0XY3xN/3JG05b2yrW+eYHD1ObJ5ktl282fDTooBw8esGZlZmRKhnkENt/1CfbOWTHfugdObNI5cHFrXJ/v1i7cLIX9msuBHQfkiy/XSXxqjKQ3Oxxg1YW+/XaLtM5IkQuGdpQv5m6Uz+Zvkby4UinML5T40jL5rBqCunrs+kUW/esdFbm3Qk4oTIfPxrcPXcx3zeZ89p3k78oXT0qxuMzztDQtld0bt8uiL5fLOVcNlAMmBFXVZr2RXw3biXQcet31/JLiSySrVZZ06znAeo6tjp/9SPtlHgI+Ab0HWxTul2G9uvu6rOHvzxkov530mfk9dBOv+2wyTNSkgP7e10dNPKdU9bg1KJObv8p8kTNOtpRsltc/3iqVeV2kryNizT9pS7zFkpjcVErNc3JsbIz/8BJNWHd74U7xxnuq7bWgf+OMIFCPBUaNGiWb1i+XXt2aypp1O2TatGnWv1uq+ppKfydVdRu1nV1fC5QczJXbr/+F9e8rPV79YmRL8wXSWx54L+zvIrXR17ELVs6XAs9+0b8QWLrDJaNHj661pxx8zHMWzpIz+p9ZK593ai0iB1YlAX1fY1ez9dKtWXspKMuX3E0HzJeHMyW1W4xVkSvwfQ29X6fOnCInXnL4ffTAHf9/9r4DMK6rSvvTSBppVEa9d1m25N5bnNjpxSQhISSUUAKh/izw87MLLLtLXUIL7AIJIT2kN1Kdaidx73K3LKv3Ls1IUzWa8n/njt94JI2KHYeY3bm25rX77rvvvFvOPec758xZPROvP/wavvQ/gFcPJQvR1sU/+MEP4M6wIpKqleP9VlQeqERJ0izcfvvtihzTHZ81edJv73kbriwvFq3NV/c7XSOw9DmpyxhAT3sfUheMNn6WTAJicXlcqD/UpOQRmfONiMrwwpPkgKEImEpvoh4U/glT4DyggIwpwi9ZvUOIzdQp5zTnil+a7PWkjz/32jPqmW8QKB+7ZASZxgwsmDUflh4beu2WM9IRTvYs7Zo8s9fbiXWLF2mnFFh3xfpFH8rYKWPZivkJWDEnDjmZImN2Y+P2FxR463xc+waIFt4JU+ADoICMRdOdv0M9XvpT5gIjHD77WctmpA6heAxZy0hk8HOdND5Ecz4j5cv+vDI/ZkTq4860IZoGDGnJyRyfzShdlatwCuIs8lzp42RsPNZ1GItmzkZ0/Gk5lPA6cSmxaGioDwB1Nb2I3CO8Ts7CVFgSzaP4sbF4idSciR3OaDSNY1Sp99sGtLLO9VbeNZSeRr6fO4fr3Zl+PZ0+Jhox+ii0NA+gaFkOnnnwGYijC8mXs9aIzIoUZCJFVa+rsUfRLysxB1PRR2gutAmnMAXOFwpMC6iryyNIdya96cZNDdRdtWoVnnjiCfz4xz9WXl0XL14ceFfpQEeP+oEIgZNnsRMdHa3Ar+KN9e233w4sHLWiqqurFVhYjufPn6+dPmdbAdLed999qryXXnoppLDp1ltvVWDZp556CuLhMy4ublrPFzDzV77yFQV0kxtuu+22ad0nma655hoF1hPwrXjLtVgsEKBvWhq1FEFJgK+ax+Gg02pXvOuKJ2BJki8/37+oVifO8c/cuXNVidJe/vVf/1UBFbVHiOXDnXfeqQ61fNo12eripU1GcOCOgFfAulMkn5msOT3qeh0+6AxTt+Mpigtf/hApIIvb1AR7AKQbXJV/+uKl+BqF3HV1dQrUEnxt7L4AubJLRveNsXlk0rZwYR2czvb5ct+jGx7EmhuXKJCulClgXUnNVe146KGH8Mtf/lIdj/2prKzE8cZDWHJTBZp2diExz4AINntjsR66SB2ti4ZhcMchMSUBPW09KLQVKa+62aWZqNxeOba4CY8FnCPg5IlSS3UHFjIMmI2gKEkNBOhu3FqFw03tSIAeV6ybg8XzC/Hk69vwpS99KWQxGh1KVmYjp9QPphI6y9+ON7YoZY94BP/fmO666y6lgEnOSkRcZCKEsRRaCEArnMIU+LApIOOq9F9ZyAi/Ie3yfG2bsdEuZGdSyzBJKi1OhwA5piu0kPeXv+DxSaOJGDmUFibDMtiNt956S9EnOJ9WDS2/d8RM5XYvR02O1xkuXH35MnR2k1FheuyFN0jnWaOeo93/QW4nm9vEKCY2cucHOj5nZxkVfcVATOikrH851/T09gRAuALAzcw47Sk51qint7waJKfHQxfjVeTpHuiEzW5HSXFJgFwyt8n77dn2ApaWR2HJggpF787uDkhb0eY0uUGeJ17ptz9zEFaLlWJdD8Njj+DIUZ4vE7SqP7mHPag61kugQhpqGsx4obIRDgp6smYkoa8zAr7hCFiO9k+LH9HKHLvV5oReVwd2Vidg1+EdSskdqm2NvXeqY60tStu9am0hmk5UobU+meuVeDTRa43NbkPN1maUXpaBeHq8iYzVwWUfQbQISA63Yf/bR1QocSlnonFArk3GU2h1lJDkk5Wj5TubrfbdZ1AQl5MlY0KHagfbtmVMyHOdzXPC94QpMBkFRAbym6vXjcuSnZSIy4uyJ10DjLspfCJMgbOkgIyHIgyPjR5Rc99k/MpZPuJ93Sb123FiC0pWZSOrNAVZs1PQ2dCN5955SsmJzmTukznFE+GCPj4advIEbo8b0dFR8JFViIyMhETlMqYlwBPdc0a84Pt6wfDNYQqcAwpI25Yk/UVbi03Eh52Dx40qQp55tPINXL6miLy0EcXZXjz3auW05zCt7lKoVmfhdWVtKeOScyR6wjWU3DMVrxiqfLnvfEnCC/zq+1eNW6PKmvWyNYUT0vGHP/whhlOHCKDzUd4Xj360Y/vuSpTfVY5/+qd/Ol9eb1Q9xta5ylSJ+g01KlrimYzlowoNH4QpME0KyFjVaK7Cso/MhJ7Ld71ez3U9nVq0N6OwoBhb2veNGk9ENxBhdAfk88GPETl12qz4CftncN7zeV9oIrKQ5FgTPZPZsH1vHeUhg8grmKkc9DS5TmLVosVI4BgjafvBvdjzxgHYBjsxf24R7rprcNLxWe6RZ4iupnfAiiPdrVjzmdNOd0QXp08k/5UYDY/PjdgUvdwyLpnaLHB461FxRSG8UR44T0VQEt2J6E1kbNEcG427OXwiTIHzhAKi33tt98tYeEkFcrOyCDLyMaLse0h4KOEDlUEJn5F1YQIcXU7YjWaULy2DhVGxTlRzPFy6PKB3E97rXPEP8kzRc4pMVWSImrz2wxg7ZQxyDtXhY1d/kiDd0/oAr8+H++lNUxyGafznedJUwtUIU+ADoYD0BVkXiZHf3CUV0NviVds/Ex5cyjjYsg/XXLEOWSnjZTPSlySP1qcmKlvGQ60cjcfo9HVj3/795C3O3VgkhJT6TIQZuenapQoz0mjrxqxlxdj3ziFkldMhWm0vIkf0MCTE4IEn7zsnQF15L3HemD4rAc31LYgkLExwWsKPRkZG0ZA8Bg6LU+lVpN4p1FV4qGPSxvCEQj2y4v06LaHVjt2j8RLybRPopXc66Uz0ntMp71zkke/03luPQWdvREFWHuIjbeRRW+j4chCCgfnID07jCeV5AtbNzDZSZ9WucDpC3wYa9xekLkNdYw0iI6L9OJhTvOLWrbVY/YWpMYFjMT/n4t3CZYQpcLYUmBqoS0xjJAHs0YXcmUb64he/iJdffhmbNm3CypUrcd1116G0tBSy8D148CC9XGUGgKDTKG7CLNdffz2Z3J34+te/jjlz5mD16tUqrwA8BZwq6corr0RCQoLaP5c/77zzjhpcExOpXKPn2lBpzZo1gXcVhYhWp1B55Zx4Ctm9ezdeeOEFvPrqqyqbeMi96qqrJrpl3HkBA3/qU59SIGKN4f7MZz4zLp9YLEyUJEzv9773PQUWlkFPSwIgFosS8X4reRYtWqRdmtZWgM3iIeW73/0ubrnlFnXPJZdcogAyIpiVZ/71r39FUlKSUqb827/9m8ojNL7xxhtDPkNfQtBAqRfeZl6eCqvrAbwE6nr6CNQtmF5bDvnQ8MkPnQI///nPcce/nAZyNrT0YRPBoqWnPLpedoFfyH3HHXdMWldhVKaTxgJIxj4/uAxZCE70/H379sEabcLcUr8n6eD75lwwC689sgH5d+czHFQXhrqsqu8Ls6sxvpnlKYiNj4Gl147cFSkwNVkRY4xWQF1RPjqdDjXe6eMJomltoVfd2WT0krG7bnvwoybdn4rRs1DgVkAPhiJY27TtBDZWVaOuk8B+gpMaTMPo2mzBjHgBv7knfI4YL0SXewMgXS2jMOvFBO/+4f7/+rsD1LQ6fJjbu+++G89sfIJMfCJ2bWpAhGUYKYYUNXfKvDrRgufDrHP42f87KCDjgoA5tjMUzLG2A7C7LTjacRClOWX4wbd+GFiUny/UkPrmcuwLTto8Iee0uWLN8jLFewkwdLIkC0h5fws9sVjdQ2pfeDMZm0VR0N9N4PJFGcjN9CCO7sHf3bkdrzzfpIoM7rdSL8m/uCIWxTS2+Od7HsZTd92IrPQkRBFMsmR+kbqHMkQ88OhfVPmawGOy+k11TZ4raaqyZGz+3jdOz61jyxV6SZ7gdxqbZ6Lj0sLT3nIny9N2al6W+VmEvCdOnuC8p+Mi5BQIt78DvQTSFgeBcH2RbqTTq20MF+6Shobs6OnqBpoADawrNHiCNP3SLeVYusBPZyW45br93ke3qufIvdl5qbANm3FkczUGzP2IpFFYbmkiuoccGI72IC0pGjm58bD3OxHBaW7f/i5cfVEhHtnAei6OQ15hPAUvMUiN9sFgSICtf1h982effVaKP6Mk7U6bE/LnZkHm32MD+7D//v2qnLP5DloFpOyWul343e8exXq23ZlZMchJSEJNYy+WLCnEz/77XXQO9EJH/VlsahRB0BGIIlA3IorGQVE6JBQP4xD5Lo/Fh/b29gnblhIIrR7vLUerR/B2snKC853Jvrzn6e++JHBr9pFmPP7iISXEez90DBQY3glTYBIKSDtMtpmxpCh0X7h56Xx89cW3KUi/fcK+NEnx4UthCkyLAtp4KDyIGC3kZqWhkmPhri3Pq/s/rLFQ5mf5E1mYRFuJK9WNWiOKUafwRbI+FD4mmJfR+BvZjq1/YJ0fRVkRDW4i6MREtiwKLqdLKUjEwDXaoJsWLzgtIoczhSnwAVNA2vqv/ngHShbmY8/RPdhelYj8vDxcvvSacX1Aq4rWT2QtM2PGjHH9SMs31VbGkFeevwcXLjZiblkcTH2MbMfISN+6/VL85i/bILKMb3zjGyGLkTrI81ubqtR1MfYurCggH+lFd+sBLFuQo8alzu4BNSbJeBBclpTtHRlUPOewW6/kZMF9Prj80qJ09Yy764dUGcFjRsjKTeOkRkNtO3YsmkYRiudMjrMG1ntj77lZlMf/+uI4XkDovr9xD665bJ0C6Wr3rblxqVonSF2CaaFdD7WV+k9GD7mu5ZksX6iyg8+FqnMOM3TUd6uxXPJOt87B5Yb3wxSYLgVEZp9Zmoxcru0DyemDk7KcA1sOo3R5jgLeajoDAZEs/MhpUGngnlM7Iq9/+tdPf6AAu7HPPJfHGg94KSP0bdjYDGvqCKJmR6NgdjpOvHcU/Vt6sPqmBQGQbsPhZmRw7b/qpgLoXTXIT02ENa1PraulXhP1X01Xsmkb9TMrspXHOO097GbKT6iK8+m8iKQ3OV1saL2cg/KTEUYoys2gzoNe7mw6v+G2gP/kOzzzi9cC45RWdngbpsD5RAHpb9urNhO8uhS5M045p6G+K4Hrju1vbJ6UX3o/7yHP7XS14aKl6/HYT15CxTV0tkAdYlR0FHpa+9DY1Kjko6J3+93vfndOgLryzHrzSeTrEtHf0g1fhBcW6yCcjmEls9V0nbf/neQc2hgUDNIVmoqsffaeulHj/vuhdfjeMAXOZwpIvxTZSebcJAzFmnGw0wydMxqvvefHG000hwe/k5TxyCsPqHFMA9fKdU02I31t9tJy9AzTeJDrUUlj129yTsrRxsOx5cgYeR8B9FKf97PukOdoSRsDtOPgrYwLoos7ccClvPbrM3TwJriQVGrAQMsQhjos6GsafN96Anln0eXs30+Q9Gdz0Vc9hLh0A0a8w/A4qUjyRSBiOAqdBxm9sKwVqblJcDKKo4e6rSPtB3CxYRkaW+phiDVAFxGF+MTTeAmhk/yJrMuQ5VF6MzGS0Awkgt/3fN0X+tz/l9/hqkvjMaOwHFE6ApdjY2Gkodcvf/cysisSkFFy2tBCew+j0QCny6F4eJnD8i5Mof7OhBjyqx7Sqbt/UBmMyLxz9L1axCT4dYTa/bI10UBNeEtJpQvp5O4DdBqjHnKOfjQZxPuV55yj6kxYjFZPbau11wlvCF8YRYGpgboca6MI0o0kEGs6SbzdiodUAZmKt1sNdCr3fvvb30YWLckEqPB+03e+8x0cP34cjz32mLL+LCkpQTLdlQsYWJJ4g5VrH0R6/PHHVbGf/vSnlSVEqGeIp47Pf/7z+O1vf6vqMRaoK2BmsaKYKIk3yt///vcTXZ7wvHjyFVBsY2Oj8q57xRVXTJj3TC4IXTUvwvfeey/uueeead/udrsDC4Dvf//7AaBuVFQU/vznP0PqKODhjIwMNTnv2LFDAaHlAQLuncgbcWQK2yXb5kgCVS6Wqavj7QU8/cR7FEydN5zj/KVAX3cjgTa3kmnpo6XTNgx5nOhwDSGBIQMkzUhIp8XYvmm9QMok3mODC9AAJMJ0as8Pvh68v5QT/Z0PjH++jIfzP+0HCAXnl/2+tn6Y6VnxsU0P0INQOlpOtpOh2688WudR+XK4rRIrr6pA90kTfJFeJOXHo6+WIXRohS7Crggd+wE9fUsSqyzzgEnti8eNITc9N7LeopiZKilQzSq/ICFUXlOPBXmzC3G8wYRDnR3wEPSeviiJjE2syt5Dr4Lb99Whu57I+AnStm3bcPP6K0NeFSHGlmdenXZ9QxbyD3RSvou0C9m+VbkB0bkexJp1yEvU45IrS9WbtPLaq3/7izJ+EcOU6XzHfyAShKt6nlNA2uZ//Md/oNVSjcgcF3KW0HN3aiYajrRiR00LrzmUxef51C7FMKzklJJWmyeuXlsM21A/SgqSsf/gCTS1DiI3J52GEVshQPiJkvTPv77yILodbXzvBBiz4nG4bje6XmnjCi8KElXhod9+BNdfftoAY87MNLz+bg0euPf3yhhJo43QMT2+DzddczmqaztxKY1KLlqWBzOBpbV1tbT+jFPeTAVIum1PLR555BFF24nqNtV5bWxpbTqusro8scqATYzYQiUZm+/+8T+HuqTOrVlRRnDjixNen+iCtKEV1wQpySbImMv5eMtB/zwuWSyc11Mj9QThpp8G4Q4ShNsziFYao0iKjolEVnZS4LqcMxppqky2sLWpleEt/d53ZQ7XRxQEQLqST0sNLb2In8HnELgUpU+Es9eJob5BlF2WjZo3O5HCefadjS1Io7Wyw+RCYkwUojjdWmwuKpDiCfbRoXPYgeXFmfB6fAQUeSlMiYDH41YKqr/958uTzmnB84DUSb6PnNt69F0Ur8hCblm2qqrM55Kq6WFGQiGJJ2itbakL0/yRdvHkY/eiKNuN8qJIfPO2ZQRsJcJM2hpifCBuHPUNTRgcsqHwihTojVEEMvmXi1FRBOzG6JFcTN6izQE4J19GynssSZma9xAv8h9Eevrppwmkzhz33aWP+Yj8eoh0OFs6fhD1DZf5P5MCYqh3y7L5E75cbrIRJbFRk4LeJ7w5fCFMgWlS4Be/+AW+9unZ+OhVfmNr4Y/KijNgTDR8aGOhzBHCG129rhgvPLcJ7VE0/KAH/6oTx1FcVKx4Ink9WR+2nDgwii8SWZTwNyU0BGpvb0NDzSGUVSxRc6hGkthkhsmL03NuJ0o3KHGmhtVmQWJ8IuLTDKrvBV0O74YpcF5SQOsvHVH1BE65kL8oQxlxdaNZrVUkVOdYHl94vudffxbF8/Ox+/AuxB83ooAR0y5fds24vFO9tIwhn10fh4UVmdDr7PR0OAITDehiDMm49Yb5+PkfHlGy3LG8qVbvRPbvusY+OBJGoEuLROWmLUgdicRnCQ67bGURior8crL9h5vw+EsbcA/fR2Qf0tcP7t2AS1YVIJXikY6uXuze+reAbETqLePIvBnRmF8ai7xs8qdMhyoPq/PimWhsnVSGaf4E07CtvZXKvSEk6pPw8fW3TJuGQgPhBUROOFHKoZHpJasLlJF2sLJaeP4L6alOWwdo9yvwD3lZ+S6TKdzl2fIOvdZutHGsNEYlq3oHtxW5vvvwTnXd4hpUbcQ7EKnof6a0k7L+/PQfMevCAoIi7eAoq1VZjeWHN2+G4s//l0bQChAjvPOBUUDaoPS39d/38zvyoBOb26Cz+p1JJLu89Ng6otqhBtStbqnChTMm5tXPVK7+gb3cWRYs9NBHDOD1d9pR6+rB/EXFKDolw2852AN9mQsmWz8YuwiNR1vQvK8BX7p5DubOzYSl24IMGjWt/cxavPzWITXmhFo/y1ij6UruuP91ZF+WAofDhZ7mQdi7htF+fAD64khYB21w9o9Qf+Hi2xjGvZG5yYGsJQQGm+iYJC4Kw24HejjXSHQE4Q3nXVw2ih8cV0D4RJgCHzIFZF4uvppyvFMgXa06Mo6IfO/ex/8Skl/S8p3tVuMXpA+PRDqRUuiXsck6SKJciUdxcWQg9ZqOnlDT+0vfFl5A/oJ5B6mnGluSdQospY/T0XMw+6zLBvuIDdXVJ5QDIRhH/i5yDhn7jbGWcbI/jZ4fv24pvk6DqPr6298XX6iVF96GKXC2FJA+JX9j+9PZljf2PhmDUlfEIntuKrJxWhdjtpmmrUuQvt3a34AL160YWzy6GntQ1XsY1o5urLlslVqPSqan335cRc6Q9ZuWhOdPKjaMGw/lupLxzGw/p3O68CGzy25Ac3Mz+QZ/NOB04o3i6dxQogeKLs4ZYYOxJAOpRUZVTUNSjBov24/0oauu/32tU2QcuvOhX9Hrq0lFQc4uTUL/4SEYkvX0ChsF94gXtl4HWreZCN6NRgLXrwJKdQwO0yjVh9J16bC5BpCcYqSJuY2Y3ii0ttHANb8E9jiTotUXvvAF1X5yK7jGYjREp9OJQYsZyYkpClul0V6209G1SFuUemvj/Jmu/YKfN9W+PEva5yUX6lBxylmRe8TNN7WhrbtP3Z6Ub1D6NPE8PDZl5shcNgBLVC8WzZ9P/Z8hoA8cEn0hHXgmxDNq1ognwNdKGWbqESs3HgMxvYwsQZ0edYnvHGvDULf17zI/jX2PMzmWb7P5nVdw6YWzYe7cg93th+hZOB8NDas/sDHkTOqn5VX1fPUlXFYxA93UwTb2DmBrbBwuvu6G86qeWn3Px+34Fj+mlrpcKmVz2Yr5f7ophe7QN2zYgMHBQQjoUryxLliwAIWFhfjVr341rpgIQZpNkgTQKUnAr1qSe4RpLC4uVs/SALoC2BXg5w9+8AMq11O07KO2weXIBa38UZlOHYy9JlYKmmcszTNsqPvknIBzBagrINSBgQGkpqaqCStUfvEcm0+h6UUXXQQB22oegkPlnezcqlWrIDQQoK6ATyYDA4cqRwS8ksa+99y5cxX4+cSJE7j22mtD3arOyXuIK/fg+2X/K1/5igL63nbbbaPuFU92Aub+2te+pgZGsaqQJJ6X//CHP+CGG24YlX/UAasalaeDLtsHL716TZV8/cxnmjrfVOWEr394FNi4cSPWrJhBkFUffv5fG3DC3oXsWSnInJMEm8mpKrZtfz2Bon4h3GQ1FeagcGXuZFnUteTMhEAeAYDJ8ydLxQXpyuNHcB4Btx9s3ocMczRau90BxikjPUMJwmqO1yFvaRrgdjH0AT3j5sSi1VZDL34Eae4YgLEwFm56se1rpKUQvei6XR44BlxIn5uogEECSnJ7/ODYaDJ+Qx4/Myp1iE+NQ1tb27QWokKTJakTv1/HiR4s/NZK/PjfN6Ho+jxa0rHOQUm8Fkhdao6eIMPQoLypB12GfD9vih9QHHw+eL94fq5iPMUK7n9yEvqIUsma0I83H3kPS79cRssuC4wDPbju8iIsXpxLZjMGw8tysW9LI47XbCNdDPifTpf/yd/8fHs3aYOSJOrBREna6M4Tm7D42hJkzjjtFTVqaR46G83YtnMT22XZB9oup1PP4PoLKDOX4E1JMk+kJHhRnDMTPk8GahsHaLEzDD0tVfcdrENU3MRzhYxXD798PyJzR7B85sLAIwQ4uf2Fvdj34jGsXZE3CqQrmbIzkrBudTH2H90dGMukLFP3MfzkPz+lvP1+4f8+gp99ezVi6QVW8vczHFlraxvKy8vVc26+bhmu+cwDkwJ1hS5SrozbkjTDLNnK+Z2bn8PMogTMKRpW19s7u9U54Z+1vOoCf6SsWQRfTpbES7HPbQs5tk92n3wPBAmHps7rt8ROTItBQeFpkK7cZ0yKo7Us59GmAbWgnp+eTs+1/jWCAGMlyWI+Ql6ZApCdG/YjOoLxLpk+c9NKxTvI/rvbqwnu8Xvc6ugaxIL4vIBX3uqNrSi8MhNJ9I4bqeuigMCDPnqyNxDw019nRWFaPL9ZHA5V9WLp/Axs2d2OGVekE5xLb338E89/OoJ3PR4vvWbEIXteYqAdyLODk3ynze+8irgoExVgfh5GvtujT7+DmdfnYFHZeIVhBXmQN468N2GZweWH2pfwS1euScc9f92i2qCAdCUlk7ZlBBv/7c2DBEEMQp+tQ3p5YgCkK3kE3CrtJ8aoh7EgDn2tTtUeJvJKLbzHdFIi6SRtcGw5ck7at2zFk5oAy7S2q20nKl/uEc9tH/3RbSGzLFtYHADEh+fVkCQKnzxLCkjbk6SNzdLPH7xmVaC0xj7OQ0za9tKKMqwpK1Kgo7F9IHBTeCdMgbOkgLRHaYN2cy1mFS7CQ09tV2Npp3UI3fxblJ2Ptua2s55TzqRaWt/Q+E7hMZNiurBqwXz85I5mLPxcMWKSqIxo6lEKh4ry2QGD7bn0jPHkb59UfJGsqyt3vYKLV+UTlGdFGQX27V315HHqlQzsq1/9qup/CZyro6kwHpvknHvECQej0RiSYwJ9dWy+8HGYAucTBaS/VJsPY/X1BG3SeFCStm33dQW8Tmv9S/q9eFOKKqDnRJcT+YszCHhvR1VXH3b/Z6Xi50QRp+XX+qfcJ+eCr8m5OF0nQfXXMLISoe6U7wuvC/cwPRK1MtpEgeqPY2VOct/DDz8Mo64WiQR6WQ0OJM+NRy6NGpsqu/GZry1FYR5lVb3kF8lDFxUWQfgz4Tf/848PK9m59PVbb5iH5YtK1DuLHLC334JnXtmvxi2Za2Uc+fj6KzgeUBZ1Kgnw9b/u2/i+xjZVf64F7TEmRUNwKRypG0H3QJNaI4ZaU2nPl63cL3Q9UL1fyeM+ujIGIk/PyEhHOuWAY9NygueeeuO0Eanc3zbYiPlll4zNqo5lTfp60xb1DO07BmeU+wWo3WlrQUQCZYX8ZLV9VEi+3Kx4DpHBC/20diLXE3MT0OGl7Ol4DTr+owOiDJ6K59aeKWOzOG0ZNLahbE4+PRsxPKltEImM2mHtdFDu2YpYflsLve9JRL3gNha8r5UX3oYpcDYUEHB+YkaM8qgr91dvaUNMr0uNUXKckWFAXQOVx93tkDYrfSePBghTpTORq09V1rm6PnbclnJD9VcZC9YtT8Km4ydw4WdnBxxtSH6X14OMWUZ09XYirS8d7bVdWDYzRYF05bqB6/R2hhouL69Qxl6aQfnY9bOmK3lvRzU9wrVgqV2PzgMmuAnSnVeYhlZ6NM6bnUK9hRcjg264TjkakWdoqafGBK/Pg6wyIxISoxFriITXFcFtFHq7OmWaQDA/qN0X3oYpcL5QQPpaq70JF5TNDVklmbe32PdNW0cXspAQJ4P5BZFVFyzxyzq1rOJZt99jUoB3cYY1d50f8D62H0t+GVekvCfffJRROo10oDCInthmbD32bmCdpZUr+fIJBgyOcCbXBDzV2tzHaJ+UrVbk/F3kHHv27IHI0SdKmjx7LK86Uf7w+TAFzjUFhOfoEcO5tlYMucyqX8icfS554MAYtOIj46ofrEsQDJK2dpiIbyi5snBcGWIIUH+yERVXFMJFDIOsRT1uj+Lxu0wdCgelGRxKucIbXP0vF4wrRzvxfud0jQ+Sd5F3Lycwtq6pHg4a+Yz4/PgDe5cD0bpoAjypBzzUjDmfz0VS3nj9V94CgmT7HKrOWv2m2mrjpaynIhMjsGPjLvTl1WPY5kUadWwJxHCM2DwwpNHRGjFXgj21dgxjmIZMM64qUM7YhH6WbjuSsqJRuCANBsqqkqifEd2WJK/Xzbo3IZkyLxnn5JkyjmUZSjDEiJDCHA06R2C104sh9wVrIknAqRPpWuS60Gv3kV2qPcpaMf6YGPQWKKdEv/nNbySLSsE01s6d7VbaQ2trFS678kZEnjKkitfFAABAAElEQVSm17ZH6jpUsQnpMTT0cqqo0WOfk0kHO1sqq8hPGsnPG0ddFn0h1XGKVvYBB0wmk7oubfbIlpOYmxCJJfMyeV88Bul4py7Sh8j8REXP81UOL9/oiUfvwRUXpKMgjca06yuor5P3smILdYdTySJGEegDPJB67nz+ScyFC4VD3ShMjEKROxbtZrM6f77U8wMkwTkperzkekyxkdkURmXKcmh6qbq6mlZT1RxQknDJJZdg/fr1o26UAUXSvHnzAudlQnLRK8BESULthkoCQhWBpfxJ5xMLgpwcCaoUOskgFiqlU9E/0fMvuOCCUdfi4+NHHYcqTzu3ZMmScXkFPDuZ9zbt3rPdSsM/efLk2d6Ob33rW+pvbAHigvzQoUPqfQQ8NlHq7+8Peemuu+7CnXfeqVyZj80gIaSlzYjQUjx6itdl8Yg8kSfd4PujsiKgowNQb23w2dD7PivzmTlkU0aJyNB5wmfPbwrs3r0beWRMtu+tw54mWnZ9bg6BqH5vrtpW3qC+sVoxvJdffvmELyTgoclAqdqNianxgUlbxhDxKjhZEgWBz21V9wijKJ6ohcFJLU0g4zSAEZcb3gE3tyNK0LTjRYaQJ8gntdiIhp3t6OaEm7ckDbMuKUB0XCTDL1gQT0Gjjw3X2u9AfDbBm0MuWJqGYbhWT0WJHzgjYCL5ixLlo2cksABPCgIaT1ZvuTbRGKndJ4xOS4sZvV47lhT7wT3aNW2bOSMZWbOS8KMf/Qhr164NMP5CCwEIzVszOf3mrSnHK4++/IEC/7S6fphboU+V6SBykjNhnElPAhyacnTxuPbqInr4S1bhGmSsjaFAZeGSXFoERuMPf32L7eoLAZp+mPUPP/sflwIyJslCKyrCgWIKze9rtqs2JX00eMzctGkTnn/+eSy8toAg3dOKT3lzWTSihIvBASte2fSyUuLJ/WeTJlr0Tbee8sxQZWzeeRJm0wAuWTELG7fVo51A+DiaTxblJVIB7EVjGxe0kySZb6pbjuLCZeMtiJuOdao7v37reCClXBAh4BUXFuEvz7yoaCMKox9/62qlQBYFc3yMF8sXnjYUKS3KwNHqLo7bBYr3kXlEvo+8Vyi6yrcRgGdnew3aCPAVAKPGX7/zzju0Eh3A2qXJWLGYHyko7T3YiK3v+Rdzwd96y5YtWL64OChn6N2LOT5L3lB1Cn3H2Z0V774zrk8OWMYGlxJDcLOLhioyH8XFc5/rB7GU9lLJJMZm3TUWDLc5kZ4agwh6+6o+2YOl8zLQ1NKO1zd2Y0ZRKkz0Oi9A7aZTbSA9U4QgbBOHOjGscyuQrjzTMSBlRqCr06rm3pa9JsyrSKf342h09djQ3mFF24gd5SX5zO1Teb1sW5G8x9ztgM+hQ/7CDDz9ylPj+oh8wx38FhX5XqxYMjsALvj13W/AkzgEjyElMI9LXZqO0YsXBS0xkToI17PprReVJ335jsHfUvJOlOSZkd5uJBtnjWuDco+Addu7/CEqkopiFUhX1hWBxHlKwBNReh0SaVDURuHiVHxD4N4pdkKVI/Pk5WsK0Evey0u+6qW/7Q60c6mXtMOJ2qK006Lc0OsV6YOSbHYXnnvtyQBAeLLypqh++HKYAooCMm+1HD+KkvQURDmsBOOa0HD4IGKuWIImAnTfPUmham8fLinKQbdpEE1mK5roHVAfGwOZc8IpTIFzSQGNV3jq2Q341T+vwZMv7MZ7dd0w+WxIy41HNL14vN54BIbIGLVGE0BW8JgqPIj2J/XSrsk21PlQc5Hkk3rIdizf2d95FD/+xadQ29ANG41VPAYf+vto8E2hvcVh4vx9Amlp6UrZIEogs8uk1tV7d7yEWz86bxSPs5z1Ex7niZdfUsou4SPiL4yakJwxBj0jLTgRl0gBcqsYFIVTmALnLwWkD+2s3ob1X14XAOcG1zZvZjYOb/Ebcf3sZz9Tl2TtkbQkChUrZ6rjg+8eIzjKjqU0tmyksm/Dy/dhRvEMdJAlkj7d0ngcl5DP723Zhc7mSjTX5as1ojhckLIuWpBD0KUA3F2IJ2hKZFlkCVU0BlFOzivPgqxBNEWX1Fnui/G14zO3r8Ddrx1AxpIEeiyKQ+uxHhQmx2PRwmwVWUQXrUNzaxOO1fSjhwpSCtPQ0NiEd15/GOtWMAIK59KHn6byjufbRVaWnQKz2c713ZMoY3kyjgSDdOWF5fg7X7kC/+eHL3H8GT22KYJM40fqX8DoEhUzT8uvAuBogtn++77/mlC5Lu//8Ev3IyrZx8hZA9ixfT/+7+evR/9wP6yU74kmVfQQwUkM/rdtezlwSp6/4IrZgeNQO3PX+sE24hBDG6O1fHK/tIH8xTmj2o0A8d7e8So6ftQBb5KLSkpXoJ1o9xrTElC1q1Z9w1AKfC2fthX+R8Zm4WXWf28RFdORSi7pGrbgxH4CAEdisIre/dxuGlJua8Shgyfx+U+upWI6BT1c1zXTWHUTlU/S3sIpTIGzpYDwGtIGy9b4gbftVf3Q97jw8WtnEnh6ur9l59K7G8PIbN74JJ7sJUA9+zRgQzy3Shqrjyqel6t4GW2MO9s6vt/7NL5Kyqk+vg+ZjAzQ2V7LcZvgCiYZh4PlAzIWGSJN2LyjSxnfB+tNhD7R9IapQBKUT4nX7ZEBG6745BxVVkfHECP9dcDcakZzT6wydL7xmsUcV58cJ6+XtbzoavYeakR0fCS6agYQP+jD5ReWUL+Xhhp6qsudQdDfkN+I3OfzKv1FsCOlgeYhZFBvkp6TQGNsvQL/ROnpcS6BskemHoJ1o30xSv4gY44kGfe0P3Ui/BOmwIdIARl/ptJ5yVgSzC+di+qKrm3BOj+/ILLquTfnjSs2jlFUWhiZrIKge9G7PXnn+H4sN4kMbtDQg6LlWRBeIDHVL1MW3uHx1x9RwCCZq2Vskff91KfXjJPbisy2gFHu6qq7UVZUjt1vnpmcQ8Y5SWP5GnVygh+pz32/vGqCq/7TIs8+17Sf9IHhi2EKnKKAzFnSf1JK/fOZMScRe2u2oO2lJpSlVUBbv71fggnvf+GNS0MWIzoFx7BT6ScqVpSisLuQDmWGQvINLdZGrJ7p5wWCCwvGMDRXtUHWlxJBwzRgRlJpDAYTrLj/lbsQ5Y1RwH5v8sioNUhwWbKvyXikz0/V37VxQe6T/u5zDxH02RrQa3Z3dyMlnTIe/tPTS26s3o8XGbYNK73Rpm0nkFQWQ+doMfBQfyTe/Xtq/WBOKVP4o9SiROx7s1bxe1PVR75pw8BJvPEyHeg01dGZSSydrw1jBte3bbu6MPtiRl0kr2PrdyE2SS+PgERE7jpoRtHl6YgmcJQ2r6ou1RvbkDsrAXEJ0XQyRF1UEFA1I9PI4z4aOg6i3+rC4RY/ti6WBk2ih5JE14QsZwRH91QhxZCm9EZW6msdnYPKaLWgoGCU3kjoJ+vYyHw/TyZrxaF+Kzo8DTh29CR0P9Cp76HRWJ7h9hlG8Zdy7kySPPORRx7BwoVZSt4n92p8puwfPNwtG2TPNAaiRqsTQT999UNw9zHSdKZ43fWMcuop2URXPUgZgT6NsgqPS+nRpM1+7epSGuzlUVfrN3YeJC+6clE25QhJeP3VZ5T8YqrvHVSNv9uu9Ocv3TwTN1y9OPBMTebh8zXir3+9Z0JZROCGv8OO1POnKyuwosQvd5JH5iUnqSfvbWzBw3+5+7yo59+BFO/rERNLr6VYHf+nRyAyOUhJO8XjxJuq5mn2T3/6E26++WYkJycrkKcAPl577TVVwsUXXzxFSWd2eSLvuWdWSjj3ZBQQpfhkIN3J7pVrAvadKEm5ixYtUn8T5Ql1PjKFQN00tk8dJyZvqBxB5+hszUuZqJeWvLr46bfpoBLCux8yBcRT9Ii1H9X0Orro2tIASDe4WgIoK1mTpYTKoRSGWl5h8JYgtPdYc++QymbuGYK510KB+TbImCXPv/n204J6rayx26ICWoyTWXzvvffw2GuPwDQ8ADmXcCp0tZtgXUT4cHRvFeweK0G6peglcyjPy1+QpUC7Wpm+ER0SKEiM5kJ3qMlJEG8yEhP1cA966SWIFuYE6qrEjdVqVRZHUfSqK16CRLhoJNBY6n2uBIrHjpHxpadBYYjGJgvDN5zc3k6pJvD64RcRUejE4a5kvpcFSbGpyirtyu+uHnvbqGNh0k32flXnkhK/QGBUhn/wA/kW7777Lt7a9zouvnU5dj17hJaIBCLVmrEyMxWz5/kFyC4uJIaHXRxz9TDQK7KLDPnaFblkwv6Kn/70p//gVAhX/8OiwIMPPog9215EKUOJ5OWkID8jGt0tDYiltenjBILLPH/ZZZep6gmjLZaMuRSsh0qyAIpL1aNHZ1LtUoD5WpIFzmT9V+sHMg7rfAxjR8Dwg60OtRAsLi5GU1PTlPWUZ0hfGltGZ2cnFpfF4Td3v4m1y3Kws7KV4VLzCaZMUgsxqWMhvQXNKDTizR0mJZTQ3lmuaXXbfnwzPAnDaOls4oo0AnEGf6icKJ+e/bUfa5bnYCFpI55cIyNPs9Ma+NM8RIMJSy9+8pOfwO1oJaDkE1I8duyrw4qFOWpf+zFwfDfE6Ghw5h+35fyt9AAr1qZjF4siWNz+7rNUcm5HbEo0cpelwpcXgaGRTnSeGMCu3+/Cvb+6gc9bpBUf2Apw1+trGDc/imKlOP+08ipww5idlUtK8Mxb2xTodMwldSi0kxQsQJHjovzRbai5zW/UpQEmJU9bp19AIu8n8+eq/NMeKOV6cBru8xv3iXf5qEjh59wEyYIgXRMiO0dw8ews5S3H7nDTsMULvduHPfuOo2IG2zz1dj4KjTbv6kU3hVKSkijEEdFGF79rUgEX/G6WxygeI4N+oG5fnx3RmbFwmj1q/vVy3m3psKCLVs9FS1MpEKFYhH89BAlbqWxOiIpW28FoGzoJru3qH1TvFPwtpX/9+z8tw6olpaoOwT+ZM5IYisfHEEctKJ9VgabjBGPvqUd5URJmEmiO7AIMdQ4h0nGIbWFAhXW69NJLJ+1zUv6uXbuQmxGFPQcbcPNHxiv+t+xpxp5DfivmOBoIjU0KtEteQ8KGi0V4dBKJfoYpmL8KvlXajnx7SVrftvUfJO+QgLdP1GLtykJ8+vo5ClDd3DaIt199AF5dEq659pbAmBVcnvBtN1w9H339flCu8EPSh6Xt3fGH15FVkYzjAx3w5A3iiU0PwWX1KD7lpms+HrK84LLD+2EKjKWAtF+Zj/a89BzW5aYhX8+w5ClJ8HTZUGCMx8ETNXimsQvl8XpUxMeiMIq9iIB3H8Nuba+pQ4ODISHp8EHKmWzuHPvc8HGYAhNRQOMV2ptOoJR2QeLB/73aDmQsTURBejLiE+jVg/9G5qRgqM1Ory69o9YYwi+eOLYXWamci0QBwnXs21VbCcBow7LF5Zg7KxVdcp7z+/Z396tqSIjB22+/PVAlac/CA5Xle9FPzzH5uSkE/zWgsrIRzz3nwP/7wmykUGkhc1IMhenD9Pqpi+SczNCAMTFx6OX6sbPHif6BflRwLpy7bgZ+/etf495f3zgKpKs90M/j+MjP3qPqPE8vRjShkz+KlA/R7IPhFKbA+U4B4d/yZmaMU3QKfyjecmKiImAiXyjeTEVGI3xUVddRfHHVLerVDr13HJ72flxExeG8/Dgsvb4crQ39ykvsC8/tx+xZ+fSWW4a8lEx6pq04xZMPYc+OfezDHYp//Py1V8A8aEUaw6UnM7ICoIdzmDIt0DCOXl1auvqx8c3tStGsjT/6iH6sIMC3uX0Q3S4HyvOTyIMDVRs78L2vLiPv7FVjkzfCiyMNfegm37uAntdEQ1lGUGeG0am8X+/ee4w8fDqjxUWSFzbwmU7M5VrvwJEhXLpmzjiQrnpp/ogiq5DKWJGfnMk6Ve6Xd2hidKtVM6/Vihu1FXB084n9o8ZNLYPc+wcqP43zo5AzKweG3mgkse5x9Ewpqf54N0O5H6fcjl5RTiUB6cp6KRJ+kKCcPlp/BAtuu04Z7mngQTmveFrytfJde9tMePrYk+izMywqlbAWGhLKmkCS1P+Tq8bXX+ouMrdn7ngNs9eU4MKPrVD5g3/k+sqPLMbTv9owbq0cnE/25X1FvvCpj87Fi5u2Bwx8BajTwbVpgkW8mWYzgmA66XWI6+d0LJ+XhcsuzIGJytRdB7uQGZ+El+mFSkB7wfPI2GeFj8MUmIwCIjuRlE2PsJIObWjkenvFKJCunBeeaBYj88V47PjvB/dzfC2gQ4pmegx3Kzm6RPAZcXoD8h8B1efNylZ6ATFqOpskPJGkYDmJjNVnwvcLb9ZUfww7d+6gQWo85pZGwkAhyJwVNPAdYcQ91nNPZQ35oNqAXE/mDzGwaLEPYPaMYlUH7aen3oyUkgRl7BwTF422ox2YGZfICJfxjFx6Ev0cT4yxkdTlRdGhCJ2K9PQgnzJE4QvHrlnkeM189vFndyKvLAUt+/rx799YQSdNp2VMkZTbJJD/lCS6DIeD0QQTEtSx6EN6a4cwc3Uaomm84eL84nF7CSry0DCEwZLokW6gdhAdlkNImhOLZ7Y86td3HEnh2FeIy5ddHV7DK0qGfz5MCsh8OPuWidcfUre5BIs+8bsnzhkwT8qUse/jV18huxik7DHKUEhZtFMdy49EExEnRO31bQqoK3O89OOxSeq/jXLw9V++WIF0g68L7yBG+39++C7luVvTF8hcHyrJ+cTkWAza2bet/ohCofIFn5MxTsZI0aFKCuZrgmX2wffIvow/nW015Pv8Mvex17XjW65fhm/+ZLN2GN6GKfB3oYC0a8EGFC7LRD7XBVqSPtVW04n39m/Cgw8WvW/+V/rvRGsXWTMe3HIMxhI9+jvNSC2Px4CtG0M6K556a6cC3WvOMLR1p1ZPbStlDFN/J47GJBHOgLq2BuQuSaWKIhVxjFSU5UpBQ00VCjKK1VhRsuT0+2rljN1KVINQui/Jp96J+sFeeiIWD91W8iVioDTYW03vucmMrJQe0Gs+t/UwPvaxLOgTYxjpm0KlU0kcYIH2WO3EXCTRwNNl8VDH0okh6iDNTQ4U5J5yRJbsQr+dBqNME9XnVJH8Xto3ZcSapmaUX5kHK41N9Sk0OO+0w9kxgvQZ5K+oYxU9khad0NRgAyh+SiauQtbBXESj62Q/bM30ILs6VRUfFR0Jl3OYa3pDAIiaRU+yh0+2wB5px8L1xdhydzV1RpFcMlNBw+SiAa2lZRi2WjpimhWLuTOog8tOxXBBPCNr+ZQOUZPVyXgp61RdnhOzV81S98uPtAuRKwzbR/D8M/fjqksWwGhwKcP5eK47BwaHA/qns1mrSbuSvz/+cT0BuhbFZ84sMmLbZj9/fPw4LeeYFICZXoZdLkZD1Y/WSwnfKimDtA0F1JVrQquoBB1sgw7sePcAKlJi8PXPLJBLgZTENjJIUPVSrklPnqwPuZ4PZP6QdqTtiyzlxvWh5zWRfUqUiw8bJyL1jOnvIkj3ypCUWlFSiK21TR96PUNW7jw7OblkmjIwXTLHDP86alpVX758OT772c/isccewze/+U31N/bGP//5z5N6vh2bP3wcpsBEFIjgeC1tVLkXOy3TnCg7fDaCKZiPjivD6R+QArKQzE/XoWmwG4vXzpjwDUQw99ZLu8YJj4JvCLUoHSRAVxhPOxmT9FQDjFSip1DZIR5/Hn7gT4pR++O/LwsuJuR+fm4yHnroITQwzGjh0gw0k2lLJwOpJfF6K39HjtUjY46/MfY3DSkLqOgEhnWq8zMetgEnnAMjiE2OYshtWg0RnJvJUOYJZCgkiSWWeO7zHxCqNDyihF1R0VFKoJ+W6gdHhXpX/02jfxPo/n+ylEPL9k56FsyclagYouC8IoRvq+6jJ6QhpM81IouWM8mz4uBWTK4TLf0nlSDABbEC8gvjgu8fu9/S0jKp0FIYS/mTJKA+AfdpSVNOaMfnw1YAHALcjvDa8OQzr2De1QWw+4YI7OpH+Scz0fvGEBZcWRGoqoCtbTYrFdWpqq2M0DLuEx9dgW/8m3hZ+WkgX3gnTIHpUkDGpLa69/BJgt1WLz09fmpAQc+IRYEbZHEufaq2+iA9gRsIzDeoBZKAUYM9Xli4CHW0jdBTkg9vv/ECirNH6A3JD8Bsri3EQ+1OFVlhbH+UvrD5nQ307NmDWPYHAW7kp+nQ0Uhva04rQaSPY/7M2CnrWUCBfFvLCSpVWuCVxenKGdizvwG+iHjoRyIRGTGMrXtb8fmPVeCmq8tGkSk/2z8Geb3VuO+e3ylFhryzpO2VW7F9xw44k0woW5cPB+votA/DSYFE/1A/vbX6F8LLaFQh3kc0S1dRQm/d24JDjT2IT4tB+yDHbA77z254Bp9Zv0CNf3FxhgAgVT0s6Cc1OQ59ff1IPTVur1paSlDsVtx2222BXDLmCQDF4+yEM96NiDwCW7J8SKcH3+K0WHhGPMgxxCI72x9doZzeiYKTgBRzMpPQ3lKtolFI5AtJ8k1+8LXTFprB94zdl/lEG3tlK3ST8Ve2Qrvsokx6jxfDE4u6VfIY9BfB7rAzVC3DCO2qQWtHLz0bJ1Fo4WFYmkGVr7ldQLNGBTKQE8HeXlSGED/R0RHQc76LoacVa5+TYS29WL+2FGm0hK480IUT9AA/SI+7RYlxuGJtIRZxEd7ZM4ynX23BWgKtt+71oandooC2Uryd821MYTS90tMyV9yEMSlwKqUndpMfHKxO8qeDADwXFUcJ9EzhdntRt7MXIxTGrKOVbkIkAfAUoHTTq67dQcBvvEHxBMEGLlG+3pAg3ebWASSmG5Rwoe5kN7z7deg63IH1F+RjAdtc1ikLYFPLABbMXICTjWY89crzij/5/Oc/H/geWj2D+598ixvWFeDR53bhY5ctUfyCCl18KvOeg+0E6naqo2SGaRKh0dgk9BBP/pFUoMUknRZ+ST4pX/4kSXsQnkIDyo5Y3ehpHICjn55y6MHYYXbiyOEuCsWMSKSH4oSoTtW2mziGFBZSscCwuHMIrN6y8zjlWEPITKLF8/xiekROZx8aQm1TP94lgGQbsb1SJ+095fky1olg7V8+dx2c1j7YqZx0GAx482gvNu5vxGZGXchPykAareVT4xPQG9FGi2wqFMmnPPTi/aPKUy8T/glTYAoKiHBMV38cn55TgtUzigK5BaxbTlDkm/SkG03h6XUVs9HpdOORI7VoHSLQn+N+flIsWm0WZDIE7J9//UvEZmSFnDsDhYZ3whSYggIyDgqvcNEiHSwmRmJxGPC7J/bSmyVBurP961FRFrjJO7kZli8qUgdDUrSaf8WwU8bv1155gB6QqCBl+Ls8jtn59KL+6z9sp1GDDSPmIaTGzMPMlRmIoSH2oKmLHhHt+OUvf6nu1XgL6Rcd9MyZT09MGVSoZNP4S+b9Zs4NdouZALoo1NTUkC+o5bwXq8LQxXL9I/M5o6ZBZ/Wih3OihwbZ9u5hiPFqdqp33NypGf/IVvjQlsYTikKxyaMVx46BYXXewflc9nWUdQ61OpGoK5iCov7LY+c44X20pM1B2nF4G6bAuaSA8OnFjLakJU1mpbfZkUF51ZbXamFl+FFvih2PvPRnGIbTkL4gnl6pq+GzUFF1oh3XrS3CvAWZiCDv7CXwatasZJysHsSy+Rn0WpuC5YuyFABLniFALG274JKfqv3yEiMBEPSIazztfMHA/ipJ+q3LRX6LBorST3bu3Eml6QjPuZWh1X/+aQeGS7xoJ/8mHrP7Gx2Yyec7xCsvdZSHaADQ1eHAxUuyya/PVGU+/NxhGAgO6+Ha4YoL88jDZ3IdSsNG8nNaevi5I5hVqFdrLPEUNDZt3V2DhuZeVNe/gIiRLmU4L2PEZOtUrQwBoEzkkUrLIx7pnvj9E+OMqJ8gYNqX46Ay3q/8HOq3BPj3ysoObN3XDBdDburiapCaY1RjnqyH9UM6FRZeaChJxqim1ga1L+HgYw3RcNKwx0Mdr7mBIT3tfdAlRdBvlAUtIyfR0nASQ/RK3vRiPToIBl5y1WnZkhQi7cbviMBvqKinjDHC6FW8ejq9l4dKQgN5n8kAMkKrH/6fJWqNmc3IWk7huxnSdZhhWA9taMC/fJnuEcqS8Myz1Ugnz/+N2xYhIyGGoEIj8rON5Lv5bnF6tfaXNU1JSUmArw9Vp/C5MAUmooAm906gLEDk0wXGOAJFM8ZljyaAwzHixKwSyqE43omcZ9Dug56G0/YhBzzDUWir71d9TU9gafnMcrRUtyPedBr4Nq7QCU5IfxY5sABsxegpglENNJnZlnfjcfFl16o2L+1+siTr2x2bn0dhth4FmV58cn0uQe+Z7G/+0M79Q24YCLa9gR5v77znLWWYLaAMmT86uwc5h4yng/BbifMMiica7LIrL7jrL83DAw/sRwrH6nkEUKxcmkMZEw2fI/UEafifJXIw4fHEGEtLQnvPnFzspjHW6tnFyKehogbS7eyk8TJlJ5mDLo5hYuDBRD2GREWVMV1kjKIPsdIxifFmAwZ67Zw/GKUoinIHHw3S6cSieWMPIlMpnKC9Q94yhobOYOSiggyOeTQUGa7hGr5VGS9/kVFMw/yan8Th378/BY7UHsZKesecLImXWhOjbZ7LpJXXTH1mZFwE138Wzq00qRL+jKB3Sze9R1roPZLj2mFdFZJPhQyX8SF4DaPxPlLHUCmRzocG6FhH+r7weiUr05SuQPKOBVTJOQFMHT/Uynv84Dc5FypJn5Ux7lDnHgwyqoox3Q+c0/iaI/cdVv1bu3fsGkx0AmtWnNZxaPnGbmW813issdfCx2EKfBAUkPb2yCsPKmxAMEhXe5Y65wP+9MAfVV8UXkBro7IVuczY9q7dG7yVvNInUwsSlOfs4KgA0V69AukmFOsZZSOTNpZeVO2rgdtJ/pvykoy58Tiwew9+/9ivaLRZpLAHydQbjU1tJzuQVuLvm4JXsPU7kTY3CWnFp/MK1sFAr7byJ2OFzkG5D3VB4jRjolQ4Ozek4YCMCS++9QKSS2O55hlQ65iWHQ34HEGX8y8wopDOrkqLihSQVNacrb/bgPnzZitdukR6H5v6qYOIKYlCy7ZeDDYyKntiPL75ifnICYqqILxKXboJb2x4VuklgsdHobH2Te586NcoWJbOKAHUexk9iq6Vz5yEsSgGAw1EMDMZRBYlAzGTyN4kdR00IWuBH+gsxzoaMLVW9sgu0sv8tBWsh4/O3YKBqP2NFrTt7VFjbl6FH9CrDM9P+U6xNVphqbJQ31OKOeXpKJuRo3grJ8GoqRHJ6BuKVHoj0Z3IfU0DdVh/0yXqufJzeHMVRK7g7qeeq9nEqDRcuxHAnJ3JqNEEBtppvFaQPxs1TYOBcoTfOpMktJPkosOdTW/Vwkve7tgRRr3MT2Qk01zsp+GmpCjyfhF8fyeNuQSArKe+T5tfOqv9Dn7iGEFzoiTGdkI7B53oCObi3ns/orK2MEpEC6NiSmqh/rEwz0iDUSdyadi7fcsb/La3qWtaPafb99RNE/xobUYun2l5an39jasmKNl/+hMfXf6h40Sknv9+9brJ67l8IT7y0HiZyaQ3/S+86JesTfDiEeTLIs7C86hYFaxfv16F0Dtw4AAkxPzixYshIN5bb70Vq1evnuCJ4dNhCpw5BXQJHMDZVilbmTJJHp9DJkf/RDnlDeEMHzoFZCKTpE1uybGJtAAzkPGSCdtLBaNbCaei3H7uxEpGUYTDsjh99NFHlfcMYXSLi4tVOVp5ctBPT2uadwqxarJRgJUW4eafD2leFzIT4uFUHkMsOLj3DQUI27H7kGICexl2W5KmHNQ8BvqVhAN4+qW3sOazi8icRsPSa0OMMWoUkyX3WlqHkTYvHoMEv/YSiBuVQC99+7vIkLBNkzFzmIepDPULsvob/AJ1Eb55vfQAxBBV4k3QS6GZJDdp4aG3aLuL+ajIbOlrh3fI387lnUU4KEn2NVrIsdBGY0IEwC400ZLhlAc67VgAQocJrFmytlgJ3n30/ii0dtMTXf0eAseiXQQeJyHSQAv4HjdaqtoDypQEghH0qVTI1tbQGt7/Ti4CdyZKUs8iMtxa0uoox3JNQDgieBS6y6JcgD3at5CQ1xdffLF266ht8PvKvqTgskdlPnUQfE+o68HnJG8wfeWa0H7rpmcQ5Sboit9uwE4azlhI0CRDsdHaboSKtTh7BCpm+5ntHi4MJLU2mOiR3i8MNreaGAKjj+/erMrTlOAqY/gnTIEpKCB95olH78VPv3MBgXHJ7Od+QK12W1paGhdgSexXr3ER7UAfQ3PLQjKeHnOHGRpHkgjQo6L0aiv7B1+hV/KyNERx3DB3jWDE3k6lhl/g2EivbTv31WMHAa/iKSS4Tzz2yD1YWhGpQuPFxvoVBgJ0XLaoWPXh4aE6LJ61ELOKT9dTG28F6KrVU5TFBXkp9BwwCx30jOr1cIHFMaq13YRd+wdhpEEDsSe4/vJSuAhg1VJ7lxVt3RTo04Kzo9vCkIGNqNzxtBpHKtu60ItOKjyHKUiIRQzDzrgJFHFbfbBY7XBYneg8ZKaxWYJSVtO6Ao3sm2Z6CHjy5eM46TTTCy9BplExasyPLI5GrCkSWfRe1UHvnbo+Kn8opBTPqFoSgK+kAbMDh6s7GA7dP263dgxQWNGhrsn3k3FKxr2tW7chfWYCkqhUSeb7WqjIkNRZPQCZ/65fXQCXZxi79x1FUwfDOnMc18bGmrp2BZYRz7JPP3E/2pqr1TX5Tq0fSUd/Kb2xUIhic0RAo7ncq81v2/fUqXrcc9dv1DN72U627TyIkjlF6BnuYPjcNmS3Z/C7FGCQiuJBUZxwfK6trWWYXQdO1JnQJiBdeoCpoRfxmSVpVFQx/C3Bmk4JE9/o96YuhbsIsFWLawJqxLutAGskyTt2nvQvzsWzFqdrZYncRQ8riQyv6Kbl7eMvVqPRbKFnGTfMLXasZtjYJfMyFcB018E2elluozfoYrYB/7zqIVgpgm3FRuVb5lo/iEkET5I8dg966DlXT4GTJOkXuw90EixqRRaBR0Z6nu2ts0Df6WW7zcRqeks+cLCbwCg3kqmMTqeQJJNj+k72LU15KOV8+ZPLAv2QkYRVam5jaNy9dSj6eCa/AwEX9OpTc6geRr7XPNa/ncIE+etiGxZDInM/gRlkRSzmLva3HfR86EXlwZoJ50NpP1+/6QrVN13Dc1DfbEdHj10B3dtY5rZ9rf6K8DeOgCqnorlYgPtp7zT5lXMxVOzL9xBZk7RNpXwMmpcFoFtVeYLzm3/Ot3U7EW3ToYAW9hkGL7z0EG/pYn8lSZflxZGP8GCIQK/qehNBuwxj9VYlfvadlcrDlpEeSD/3sdmQXmE2W7G503JqLIpEMj0he9juRDAgfJPURTxAOk1HVbvzkB/S0T1jb+8g9h+txjMbqtCf5ELO/BToYn3oo2fefo4BrAycqbR45zjYVF0TKC9AjFM7oeb3sXnCx/87KfD444/jtS/eiIIU//ihUaG534R8Ggo8ebwBL193AY73mnDP8SYqnn24qChDgXQL6J3+wtJUDNkZ+rn1AFqOOPDiiSOqTYd5PY2S4e1kFJCxT3gE2dqGulF56CTnM84F2fOwbTeBq21mtOkIgqsoCygJ6nf3YZi8kYmAOa4mObcOY5Cea2U8NRptWLmCkRcotHZFEEjH9vrKO1VwuZ342LVlKClOhMtrwpvvtsFCjxv55Ilc5B0jPGY8dP8fFO8n9R3oPo65FQXwugZpVKPjHEjjLILSWtt7GQq5EKkEqb+95Sh5tgZc9NVS8lpu1B0YYDg7/1xjp9cON+edfk6SrVRo632x+PJH56i5U/hB4afe2FwL4W0KafwzzHWp8IA+zp2S9Ay9bqNR2fAgZQWcsyw9DhWO2cV1qK3XiUgCcoaahhmavhE//vGPA2tHoaMk4V1lX9ue2Lcbjh6C/dJo2EHeZkDWnuzjaQS4aWvPcJ9VpAv/TEEBrY1NJYPQihE+/XM3Xx+Q09QdaIavdRC5jBDSTX40pojrjQgqpSgXcjOKREttC2Zflk2Qah16Kx34Bo2BZ1QkcnUzTEPGSOjIP/cRoPXO7iZ84soZWDArg/xlG9tymvZItU1LNtCwzqh4UrfHy7XQCI5R4RUq9ZtokEf5mPCawhf+7NsL0dHZRzkHedMmhv9clesH5hKgmpVlIC9rU3xkD9cxzz57Et/+3GIV7aS6vlcV30n+bPchD773laVYPj+LITA9lP/ZFA8oGYRvpW4TmZQv1dXVqvVOcL2q6gawc+9xXLwyi2PDMBaX6zCrLB55aQLY5xqroZ7ymR4lTxrrIVO+z+GaQyi/6Rp0tnTRQGFimZWMBfK+wTyi0OCmX1weqM4gPThl0AnAvt2teH1vPYZiOMZxvRhNo8uoFD0cHGfrfP2oO9YJs8umZJhyc3wK5X1clUqKIWg5OiZCefys/FuN8jaUR8+TAmZpO+JFPr1ySdQKkbkd3n4AjXUtuOLS1arNiKFcb5OJY74T+uRItUYbJuBOl+CGlePzyaoaNKNd8cHqYWN+5H20NiuXgtutnG9rPsF1+6V48c2jFEO60dzYiygCwm1WGkRwHS2g7BG2zZNVvfivH63jWj6O8kD/OC/lzSA/dJTtavXKVWpdKsDgYMW45AmnMAUmooC0Qa1Nau3URResPZSvL6E3V+WxjDf3kAfo5LghqaPdymh0BGy4Y1Sbyyw3wphsRPdRypS47pUeX6iPg21kGK2M2LPj2AHySXakxVlUf1eFBP3Ic4VXCE6aDFnAHo6hRhQQYGtgPy8vy0dqnF930W8yKTnxlsgEXHzptYHbtffQypTjt1/7K774iWUE70v4424sIEhX5AWSrJRXWC02PPHiYQIq4hipyQtTT5W6Z8eOXaRDLvUj/gh8bv+QotbyIj8ZiXMrWYCbUaJGaLw1zDLr2Fd/8d3VSt4lRr3tlJ25aSyQmRan9sVwQtY+Iq+XOkr95BucrKdwgKmrZhA3XzaDTj5sOHS4Bx1tVkV/J/u9yP0keTmnCBBFogIKWNd+SvZiIyhDwD8RBGqIF91oAg3tvcMcy6woWZhOQ2HqQ4Z9sNkps+KcoBlCHztxAHve3K/WTyIPcFjpZTw/lXNdH1rq6DyFchaRawm/JnWWPy0Fj9/aufA2TIEzpYD0g4T0OCVPdbB9ynpDUigeQmSKwjuci6Q998T+GgK5WhhVkyHfyS9I/3EShGQmCN9MnmuYjn107Fe1jOaT1J8IQ4Eev/zvXwTWMFKO8D4zbr4swG9q9RM+Qsrr7uihrNmFv731HPkaysuT6GCGRpySXHr2b+6KrkA8S2qpl6AvS69n0vcV3e3ujvcgBlBZ6UUB2vU2muhR241dh3egxVwfAPsVcQ1m7rWS9zOo+gvwLJXeex2UZcv6UJLIWKXfj00a3zb2vHYcHg80SoS3Z0oBbS6U+2Rf5hnhoa0+E7EBuapfybggRnOipxlkBN+kDD84c4DGd9IPRLct96hEl7Wib7nogsVq/pJzmsxB9rVnyFbuER25NZZOLepqYEzi+o3zqjzPS6PNAcp5ii6fhea9XRik/sxDWY7I/L3RXEMSVFu8Nh2tqEZt81FENBuRsdg/lgUDbEW/E5cbK49GHz2bCr8Qy3WYeO+WyME+P0uixryW3naFhUihHkX0jw6Df0wUDEYUgcOS5P3VlgaNTfbTuAWRp8j4+PBLD8AXP4y8vHKM9NKja5dZRUm8aGU+PMRDNHX1cj1pQXJagYqoKWVlUxdhoZJkyES9Az3W9lDfIQ52RIfSSV1CfGEsBihvXUz+8Mb1M3DNJSWqDsN0piBrLXEuU5pvxLOvVgUMnuQ7Co013mI/ZW2+DK6/M9JQ9c4JpNE7cT9lUBY6asldlYzWPX59lehLCLlV5Ws/TvMIci9IgcvO+YGXPMRyOE3+uUIzMrdRLif0tDJqip7fR3RgXYw6MCQYkk/GK12ZYAnk+womRKIDdh8xYbYhGTMZZdpNXZSsOfUGPZ0bDaIsk8a4+fk0vo9SemEfwR/z15VrVUJzVRscdV246ooSHD1OvdZVM7B4boYqp4O884C5D4erumgwWoc1qxaqcu644w619hW6aGksXxXMm2t9QfIeYhRHp8mBZYz0s3NvO1bQULeMOlKJfNo/7DesF0cCI9TnKd6UukH9KWBuTx15xtRIzmeMujBiYwSG0+tJwQdJMjf75yQzZY+Schgl4qlXT2JXZSdMEqKBSfR5IsO0Mlqni3iiPtJS+p/XPUSZppX8IyNlc40PZyHlqbXqnuC+p06M+dH4fu10cJsRflRktNK/9x9un1Z5sr5eNOcjBBX7ZS+h5jMpqKnJjxPRnqtt/x5zmbxjW/VxrL7ltNxDe37wtoAOTCJsfv1r8Pnw/mgK+LXOo88Fjri+Q8Rpg/XA+ens3HTTTZC/cApT4IOmgGqjfj5hykf5OH7LXzj9Y1BAJsHXKdiKi9WT+RhQSjG7JRaz5uWjek87htpp7cPFYiLBGtEeHYX+8UjnAo1ib6Quz+fk/wYZwuP02EPvbCNGCGMgZWaf8qbY1t1C5tRFkM0gmreYsJReb5Py/aGfkowxqCNopNnkF+bFM8yzpN/c/RZSqcQQtaaN1jkut5+JWLE0XykcjjV1q3zy40mk5XdHI5WEXCxywagsl4gGEmbR1ulSIFxrGz3utXXCKtZcFydS6K5TQjNhtCRFJkdgkEAjc7OD1ljiJZIAqloqJmhEMczQ6hKGSkBCdhM9Dbl8BPsSuAQdrLRO76LAWwC/Nv1uDD7fjWiC7Hp6ezGbHr1ayWQlRumwcuVchkpk+AiuZSMofDNZehTwWZ4dR4GZm2UW0JuSi3QWBriXYDUzGSpntwsGK8E6YsFP7wMijMtamYgOKlg9fD8HFasj9FonKfEU7QQ83UqPLq5GP2M0RKFBPJmtOIIBhYF1nwLTxST66EnyCRxgOMFYCvAqZubD5/Yz8E++sFctPmQBIsm3rFBtmwh6bWkfwADDptZ200DEdVyd76m3YoT1EdpT/knPncUqlI4ID2YvnglzPcF3zl4qJmIJ8vNbtYlXSvEY8NaWejKKtOxaNRdPvrBblaenwkQ8HMeIZdypJN48Rxg6Q1JeXj6Wl67B5z73uVNXgV/84hdUCjlQwdCPokCOz9MzxAKB4QzDkEDvjbJwmjMvTQkZ33unBWYqzgSEGElQr9VtVXUXxdu2XUcoDImGAB0F8BX8jMDDwjthCgRRQJjmzRtewbaDh6lYcCCNixh77+kxykEPfpK276vD8eo2hpYvZ1jTDhg4lm7bKUC6FI4bEadKFOUvjQdc9GrR7oKdix9jeSZG2HmLqcQVlyMFWTGn8gKrl+QRdFiPe+7+LdZfewvES5uMvyeO78OCGYu42DlBj9F+j5wCfCzMScSO/c248sJchjuNg3WwnUpYG8Ng1sPOkKiSUpin+mg3cjP1BODmqzAyafQEtGN/H720DqGVC29J4sWnj+PUrR8tDwjv5dqz9DgVSa3ubgIpJVzO4rnp+OS1MzG/aFApX2yR/ShbnoHG7f18LwI0D/ehp0HGVxcSOE5ZOebb6NUtk8CrlrYh/PGhg/TQ6kAXBZFHe3pQdmWWEoxKHTzsv/HZsWpsSxEBCAGKLqsLJwkouWzVYoJExRLVP05J/gyGY2lotdArnX9OkXPy/e6567e0LK1Gv7UTxw/UcnwmEKVtGAn5mTi0r4EGHf5vKCAbSW3pSdjB8aLyUDdSU3qo+IjjuEOPMlz0DtCzAuWyKq1anE0l7kF1TU7E623Y+F6lGkdFqCnKdpqMqGMBRMu+fJ8WjmGPP/6EKkMEo3Jsi+dzMmOUgMBjtsHk6CYQOwGz6X2rZhtQeaSJQOYaVaaAcn1eWjvze7UTzNtKwHQqwa7DnhE1x6uC+eMcpkdazivDbTS84SJd3rO7mwttut7qqeWWSUC68iNeproYKrGBXli6mKdbT4Ay6SkAUTuFHqLgV1IQ/u4/2qNCG22taWd78c/vOs6TYskseQ1UmJtojdx10MzcwOHd3Qy/7UCs61RbrezCXQ8dRjvbpoQxSmG9qjZ24+LZuTAPu/DYE1UUGBBYOztNKaUsNLiJZv1zaaW9fft2FJAu8tw7//k2AuJbcfB4D736ktYsy0OjjdYOE0oNGcp6OJr9o4/eZejQGe++XafmYAnLJJbG6RSMd/fUYw293DjsQ6pcAXGLdzNtPpTn1NVWBkBTIpSG28y+4cTf3qRnY/YJZU3Ntize+XezzUjSkb8wN5KOBKVnEVTVTBB4HrdgyCZJ3iQf2k746VN9ch/nuGa2y17OzU3Kc05MTDxmzvRh50kq0CjoOLm1C1/91AIlohrsG8bBo3201I9T85zQ4+WNjQSTDOJLn5jL8JZuHK8ZUO3tcFUfvv/1paijcGnH8U72ZT6X9RLLZ0lmvt/CGVFoPnYUj97/3xzHqvCpq9IwqzxbKQ52UQBygMpBed8kztnVFCaWXZ2OiH4aZJEfMtLwqb/XDDuBVic7GW65tJBgYoZbb6vG0b89rL6JPKeVYXnFW9GSJUsZHqooPPcKUcIpQAGZ1wr1EeNAupKhdWAQ29t66NWb3tTJaP/pUC0FplH4lwsrcEFheqAM2XG6GW6X8wat3fD8rmo8ds9dyrPuqEzhgzAFgiig8XiyJpLxt7mzESc4ycuY992vLqHxTycOHO2goUkkvXwkca5k++L/nloLjr7RiZQMtsuTFmX8GcM1plyTeWrdujxGfTFwvSRGUF7Ojzq8xXF67ZpcrsGT6RFTh4OHelBVw7Ul93t6emVqJt+XjXQaZPSaurGLXu2L8hIofK/HykU5BGKlcs4Z5CM4jzDzBZy7Urh+b6FXe0m9TVa0c87p5ppWKVrp4T6SQK9szp3Cgxl0MeQBGMqvKE6BD/8/e+cBHudZ5fsjaaQZadR716hbzbbcuxOnd0JCAimUAAkBdtkNLG1zucty94EFFnbpsElISCUJ6dWJu+UqF9myLduyeu+9l/s77+iTxzXJBXbh7hw9U/T1753vfd9T/ud/dN7cu7+BYEqfuAgYOQkCpcXhI0iLA0gIWztzi7KlaFLJWN+kBIbAxEHyyAi6kgZiVHTe0/lf58YnHv2pmSvNfrSn6kxb/UkG5btPQJREAWYrAlyXgU8icWhQtOJjwGCzOIZ6xGe0B932oGxpbTBzquq7XvG2wIVaQOcMtc3SIsMJnPbI9soa6aTk1yD6pIIotVqBKfmo1R3wVwxSrUH1svqWGgNY6kDfrSxplq/cNU+efeGElB/rkKU3JMkp2CNjKQPZUodux/ZBIZpcSVJX/4AUYtv44iPSTq76ppaW3LShXtrpU6no6j1q3wGwqGmrZgv+APuq4K5g3GAvXuu3YgOgd6nerqK+scHOMfpokMRjN0ZG2aWYSlKHDsFIc/KA9PYkSFREoPzg17vEBijNht+pg/FmmMoWqr8/C+tQSnyIHAAQ1kFgs4BS6c+8doLkSgBy6LpREQ76EwldRbHGllNmHRu3MD4+TOLVSWkB4KtBRCdzqvpiBvuazb0Z3xTXt3XHSVlSGCGXrcqWPQer0Q0TqVoSwdjgZgtesShTSrB/v//LX5m51oWf0BKtDqggmtJNB6ULXVmTNnWM1EQ1Rzg+QW0QRPV9e4qf/PixH0hcaKKsXrTGkASMOd0gEd3m8LZjUr6tUtbmR8prO2CvSiJZdabSlvqcfP2nJRTGzqaDvRJLcLm5oof7ewo/4ZSE5QZSNtrD50SFpT4AhmOMYVnXJZAU6i/Vu5sMiO1IEMmXe1vFTuBWn5EIV6C0dTRLVxtJkCTU+2EvBwBwi8JODIfBvKUMHyT+PN3Hz69DIh0OysmPSRJtr6LVM5TxqIOAdaRzUL7zne8Y20MDmTrn6G+kot/1t/rXn70p+8ubpGd6QIJ77BIBWGmQ33Xe3Ggzzh5Fp08n8J0QG+i2zXEvWExRgYyrPHTmeCsXZ8nTL79qvnvfvC1wsRbQsbT6cJnxc03PsFPW1rl9xA7maAXWxuXHExNokbJD+HQAawwQ9FcZwO/Q1zZCCWX1GY1IfnKcdFT1SEtpp2G4DsTnOhgQgH5kI34E0UIrIDX65Eh4vfHt+sFkreJAr/AP8jMg1fTUdPxkMHhBWDFFJUcFsWr/8JuE/e22udivkWafKekx1Y8UZJIaHyZHj5fLS4Dcdx05ZMZ8R4S/tJNEqpIUn2T88McPVsrSrEBTmUjHrRtIxKgn+U99XjoH7NzntuE7iV2of0tBrVpBanLUHdxXP3lyR4QcBHQcG+Luu1GB+EoYw4O6bRKSEihOktzbDw3KseNd8sW7ixifg/ENtFBtp8WUkFa/hybA6jK1i6fHh+SJ3/5EVi0vkO07jxhdqmSPu31Vl5taPS2/e/wIPm0fmZcTZe4nFBIU1btU/JgTbESkJ/BHNh8fkO4qd/J5O7qnrd9Hursor008ol7LMHdPSsracHESo/FHp23DPzIJEFfHLwf/q0wAHmzv75ZXXvk17GxTkhhDpYbwUXyKw1J5vB7fDcnxjDM1R7pkqCORe8/lt3eP1TX8VvUQD6h/3XMuMAf2vnlb4H22gOoO/kFT0tLWIBU7aiXYhzLwGqMMITHx7Sr8yQCusG9UNEb40EM/MusPMT4lJThNn01keyWZeH1DLXEydA6AsF3EChWUpfGs8LgQGcdfpqJArp7jIwCWOnEfEMsrr5NIBdyTDNWDv9TG492GbzQc2yk8IcgkK/pDIIQrFhnnf6qwVeyT3pYTEuBTJxthVLTHwrRYXw0TLyQd9K0pdAH1Ax8kNhaZ6ZSqQy0w4jthtA6SUcZPX1XoZnz1x7c3MF5BnNCvCaAa6wsw8b5QCDAC0sfM2BkXpzpjEMmadtm0rVGSuN9GrnFnxXZZdnc+Y3OXVOD3DIbBsZUEAbI9waXQn4uc4oilDLrd18Q460aOSTe2WU/FGAD9LYAeY+WKFZH49ppIGCBptbyFarp++BDrYSCn4ZD6NrfvV229zW8+bKqwofKaCjO6vpekrC78fkEhsbPxC13uFW8LvFcLGH2k8rCZ86cn+818r/P/9HCabN20QYaDIf8qOUQxaIhgiK0H+k1LpCtGDu6slohY95ycD6vopndfNDH/mhk9e9mCVFlWFCCxzibZfPKoseuerCqT48f2ySA2QUVZldE1mnrdjPJ6nZk3xUgXZDCjzZCY4QdRYq1m4hsJi0KkHuKthm0wVkMok7Y21rDpWvcWSH9lkjS2zeHDgDynIqWhoV5yqChgSV/HoOSuijcg3fp97YaJdxqilFaq67af6hUH9oyKvyYjjfSbcS4wPBabDVulZRR2U+xAgLr+U/huGA8Vj2HJkaC98qtn2oz9sWP/dtn05hYZCAKo3zYp218sZfm4NEHY8tV7itBtRkgCajfxszFYWRMSOyEjqTKHmuwnnkAcr4FKLbUQc7S3D4sLEGgpuovGk8KrJySWMfJjN+SYajJD/fiZwFWo7Vuyq1HWbyNmwriggN3ugX3y8MOd4C6oxhc8JLmp4COoMvWHl2pl7mWpjJEj0oU+osmXIxxnlHiSD3rN+EzcRC9I7WpLNM40yjq1z7V6lPrU1Nad6HNvo9qR4jvGiIFpIq7aZqp3KSC3hf9VgrG/W9DT9LBN+zpJPseG55lSPSlqqV2ee4ZkzhA/Yn+jxHWJGQFQTohpJS5Yyd6Qlfh2y7HtzXLdupUmsUETOXe8eEA+d2MWv3U48azDcscN2fKThw9QcQu8Cc9QLERB9VQMrd1eJSWAXVXGRtvltdd+jV9NE2x9IHVrB+gcY9bpGBuL/rrvwHEz3u/ec0xWLMuXhs56E6cpK2uW3JQweeGNk1KUE2lIlEaoVqnmtT4XOu+orojaaSp/KWB3kKSuwuO7IAAAQABJREFUHiphqfjxfCkxzpTqkPjQVVpP9ElHBQB4MCa9dSQD4xsIHfWXXhmRHz1EIhfVKod5NtKpLhaLDzQnwu0PUHt/AH+IxuG6m7ZJGMQxy5eqzh4ky+fOke0Q6ew/usec48lnXub7LuNvUByLyhAx4qEu9zUsWZJHRe0a6Zug2jXLclKnJMjWJxm0x6HDVTIJBkYTcLdvP2T2tWJ1gcz1Ku57Jx43oyfn50bKQ09uMbgkZQdWQib1uWgCnIrG0NVnuWJBlFQe/L25Lk2sbsbeUTkBPiUwPO/PGr/ScW6lR0VBc+ILvClYV/3XXj37Ag3EYveTcKH1+IR0gPGKtwX+klsA8ghKuJk56r0vk7ETPIdX/kpaQDPC3nrtecnNBHgB856KOtLiAAI1HOmU3nK3UjcXB3AcCkgc9Pb5+e7tFNjYSuZoc0u5HC3bI0cBmlxz/UdEjef58+PNsUYo9R4Cm0/XqT6jQApO8207m0xWTSyBhW17m2Q0eMoAtMZUQ0C27VWlpJkJlMxRJt55ZHUrK8TACGwUla1SR2ZaEM41lRHfAUqmo0TgyBsjG19FA5mTKLIdp9xAo34UDXXwqYTiIAtLdUrtFsCyBGsUEOofRtlSgpGj9ZMSTbkHBep2odxpYMAXp5eW7RpqRuE9SjYXAYTwdDIseMinFbh0rM8Y9KGJMAbAVBhA+yQnp0jndLMcIOM8HuM7wK9OnChrUybz3p9MM5RGAkPKlKvBz3Yy1pQpaBDwqDKf+GO4K5Nv47FuSRgPNIpuGsArvbFBnJ1d5acDEy3NbkaUftpKgzm63yDBmTEflGUUh0kYhP2CAUaPBdBmgLHJJNOAgH/UtOyt2CE7t+yRVJxxAdcuQUmKMsZOzSmY8gCGWTKNYq9gJFUEVVRpjaNcREXzflPGtfxQs/Sh0IS5UHBpmk1vbDNBgejsEDk1VC7VlNAq5PmZA9OH0xEtkQS12ADQMw4KypNNDgbCrEyJwq0HzPFD0gMkgja295N1SLBD1WkNYo/jjFDWwa2lW6QiGmcsTj4VVVr0mpOisuSXT28yy8btsAf2AzLnPBo0V7anUAGszN+Gd8jCJmMunHLuCShgqnQpkGoSR0g7mV4LCuIAG5XL4yiR1jnMQb1v3hY4Twvo86fsaHRQ+fRt+TI9OixBPFuWDCkrNkbEwQOnDBDj63+zVt7aVC6Hq2G/pF87Cbr6e2yvBtIYwHd1vKmBsJ7ndfE8wKmUnpuG0Vb3saSOsU1BmTqGB4fGG6CuXo8TJsufPrJVlgLo0ACCMiIpoLeOPqx9OTkh24A3AnxHGF/a5aGnSzEMYQYhMOpoo0xNabd89sOF8qErM0wwYxeG4u9fPWZOG0eAoZXSLiqa4W/GBfqYGr96nv94tMws0/N88eNzDduuOve5JfnPp1vIKLZJMGCO0T7AoYzLrVu7jLHYz9gWwBTQX+U2DFtg79gDWHLPIbeBpOfLuT7GgDwNEEYXsL0CLbWstIJrp3BgaiZv/UxWf0lpA8Hr3QAtE2euMwTQCI5b2lFFQZTu3+87AFxHzNg2QDBF70tBuSfebaV9To+3Zifeyo92wk6njK8ApxP6DXBGgzPLiyNp+xBYbQnU0NbJcQE4YUdn20NLP/7m6cNynCCVrleQjbafftffR79bY6/Ow0ZmPuOyw6STEjLDOD2i+J2SIJVMJoFqMWDgDetPSTVA0GMkvkQTyN0PMFVfKpN+U8zdzJ8wPB0oPw0g13UK5tXyPnYWR7JNLaBdvd/Y7EBdbUTBBjo1a5byIADnNtbrNkUfTTAsOt0V7mdhcVGse3ueA2VU9uOBUNC1JQreVmN4BKeJJrf0wjTbSQBbpRxQqYquU9mtv/tB9/XrcxR6krG5ElBx5JBUwIrTdhKA+Edz5YrLU+XxJ44ZnUUd7/U4DVS0PXW/KZIw9MqVQbe6vg8nNSzNrFPRZ1Cvxwmj8wBO/D4c3m+/XWn2zU0JZS4eEPBLALBa5PZrXTDROGUAhpod+5sw0uPNvFHXaA5lnP9WRr46wmMJnKvsKWtl+xaz/V6eY91Pfx87z2inbYQ2GJSushHJ8g2ToZoJgvOU2cxwPxcTtMUkLL8q+oy2tVaI6mFz58YYoG4Mjg+ZjpKthxvFwb1MjUzL2nUp8uzTgAiO98mR8k6Zd1Mkz18/iQGjtKf7t7/p8nT52eNup8W20ibjtA+GUffVjZQMPdpAQA2GHfQuNBbzO6baA2Uq2A0Y3rptq9TjeLtx3SL52VOHuZdA2byrTp57tdJc5//5x2VkXlPiF91J2icZv+wSCyj3JAGUbvr3eBsgjKABycYZlpUWLWGtlWbuHUUnCUTnrG/pkzerKqUrMsE795oW9b5ZLaB9IBXA1YWkvm9QVibggETv29vWIx8tSjkHpKv7agB8egoHa5RT8iJD5FcA773ibYGLtYBbR6A8e1YaYD/ApSlOM+foPpogtP9Qq5l7VW8ojAxj7NRgK45sAgA6ljr9cYwgCj5RG1KBJSoa0NiyBXaL4jhAIk4zRqsNmEQpRbsTHZKDHIfVIyONxBt2eemtKjOHJAPYS8FhfOlyGB7RQSpOwYLr7ycvMH+pDqHzjNqoymbvQD/SVx8JTCqNJ3qkfyaR08G1dFr6BefXueXQIbdN6cvk14fN/c6W4/L8a6fkntvy5IbLMzgW16UXgyhwRQPduze75xZdFrEySBLmh0tNSTu23TS2N3YcADgNloxjv+ncrHOlmUP5nhjlD/v+ft1Vduw6Il9YliW3FGWYwAFmn2GH9PENkGhHFCXzBmXVkkL5AwyWegwvUNc0m/ftAi2gz8iW11+h37okNYpnsvyQHOhoMkDdEEqSKqBCga3TdsDg/gGUwwSAAZhiaLRPsMqkBQBCAODzObnhBqBlTtMwIR2VgF1vSEQnhD0ae8EOeF1Z3KKcDrEBzHAL8wz95DDBtE3vwrpLhY0BQFK+/gCmYKDuHUenon8rMG2KlwLANLFOpWQf1VLQGy2JywkiKDYk8+dFm6TsYHwZV17hAhB31IwbjS1tpi/uR79X/5EPDIjNB2BvRN9SaWtrNP2t/HCnuQ4bc+Cbm2uNDdjRhd6FHbRmSdJsv1ZbTnVUakiZZDMF2seQdOnPtSfgi/Pxgb2VjaZJSj0BA1t1bYt87vZsc65Au9s3Z/7xeFNQaPILuz2WuL/qb6Qgmvr6Buk+6LZ5wucpQx0J1vYAALIEdBluJvF/Rc8hYFa9RzpJDq85RrUnAF+h0UT5ZkRBul2t3dKCHl09PiDz16RYq0yS4OQ0bEEkxh8vaZDF2QkGONcSTBJ9LQG+nGiC2G5Qj+6kfsQ+rkt9hAFcgw0bveVQrwF3Nzc2S0tFp0TOp/IYviWny8nvOiVd9Z0yBFCt4Ppk93m5bg2Ammeqxjr2hFx2TZIkYbuZF2OgAepS8aIR11jEWDSAu8flyrWZsKCfMsex7NepMew/2OvUXlcJKwyQYAA4aseMAw6IwYeljOo9JC6q3a92lp7fGq/NTvpGO6ikJEYa28L8433ztsBFWkD76WM//6nUdfVIKuC1FXOTCJC7DWD1DwzhG4hlbChDf3jiyQpzJPXhx+EHVt90+xESJGZYzILw+1Tvaaf/4X8iQTcK3EwNtnswYBbLV68HCMA3r+d1pPrh92FdH37sGPzc/pNyBEDpMEl5Lbuw82f0Kd3n7+4vRiezST9juEovCT4aq1DA/TTjoor6WFp9tgPCc1JpzYHfP8wsrxo6JkME9mtr2yXBAYvt8+Vm+cdvdwFKdYM2SqgUZNm7991ZINeuc8ljzx0j0WJcwvGlq6i+NdJH1YJNXRJV7O8GBTI3mHXoQvHFlDbWfologrIG/202X9mHz+YXT5SbsVr9F6rLWfOA6kuJ0bC+DZ6EEc4NCNbkMBUFLajeuJ555guAflVP+96v9osTu94SPb6Oo/6MCT21AFNmfguNKcQPBcmpw/ghSDKrZDxX0XLeWl0wKMgmDVReCKEiXQNgnKjMQEP8oSWmFRgYHjYkl11Gsj5trIDG4xsapRE/VRoOKheA7BWLUozeNjIBSBCGYGUq27KhHDDGSaO/uVwucz7vm7cFPmgL6Nig1el6qbZWVdooBQlR+G4B6wbwoHdDZoBe1XnqtP/2+PF9EFdEM6ZUyFJsrhgnFQCCgvGnOuTo4T3iE+UjYSlBUrm1k6qi+MITbBIzHm0At/psjwBQqwYsNzc7jmT3IbHbHDIvL1reaWoyumMKoPwhqhhkXBVrkjb1flQHHGVunwSUNgxouJjtXa5oaW8qN/7h0mZij25aXJkGIKZJUoNsN9wLcJ4KX1WoTFkkzbcRaz3a3SexPqEGPK/Hbi4jeZExsv2AGySUvpRxhbk9FJ0gLi1Y9jxVImsWJzEe4Y+ctHOPx/GxhkozsUabk6qc+EenqfqgbbduXrLsK23FdguWzBVxhuBDwcOamOUD+dEwlXJtwWFSt7tGsmPCpa0Zm28KBlHavo4k6Yef3ivrUuOk5GCtLOe6FaxbsqdKLxP/aRbgxZMy7u8wgOFJ5gv1K49CBzoA8+fWLVtn4xdmB++btwXeowW07z/2yM9l5ZJMw+Q+CXHWigVx7DWCekvCn++Y1EF0YW/3g6QJDAH+jWj0hiAAuy0VrbJkPj4X5v8XD1UZ/Xn5ggRT0SQJn/XioiyjN5fsdZrYnPp1tnG+ScgzumohB8MXqbpKWDoAxepRccY6pAMsQNiwTdJ57o+CBVCdREmyWmHR17k2/NIIfOOn52O9PbqBmZMNSJ95ORA9yWKn1vWWBBEzqKNvamwsa120BDCXD0Ki1rl/SELSJ4zO5GsjBmBqE2hCAWRB05DqYKO0s41b+pm70XWysDd0AW8D0iFHGqh6TKzr3Xc3yUDjuKQsipN6zqUSQxxI7ZtEyNUUCHwMsq7q6l6jz4yP9c+C/mV0irGlU5pJ6NSYlkooSZ2qk6gMc/9JMWFUZCFxkDHZH/C/E6Cuvg5h976xsdZsp2+abKjJ8K2tx0w89abLianOrA2HPEjFxPsaJ2ViBAZf2lnxHp46oOo5ligZivrdfKcVy8F50Yl0TLa219+gAz+dg1uux76bTuBasZ3aaRNNrFJREpg2MCxj+LC6Od7ArC1nVstWEiC0ArPBhzgYawPRZxkXpZ8XMopuqFIPCFuxHnXHGnkG22XOPyyWCWJwavs3LkmgSsopE4c1hEVUp3LCwD5cPmFig7q/tk1vz1GJi3Wa53n37nZRQK6KJoytf4fK0cQxNaG3hfkiPpKYJiDc6IBAOUyMLQQbVuNA2YCotfKmJoCqnhlH7FfbxghxOiW6U5tygBhsM7EkFY3RmLmAZFfMciPdJCo34mdQnXAI4rhpXB9TxGJVnn290vgicuMiJCMpxNim0dinKqr7agXNI+VdgOLtprrMMvwDlqiO2D0CpobfQEX7egx2RNCIW7+u24Odjc6r0kN7KBi8D9+KAnU/+p21kulKN4kvjz57TCIm/STHz/LJiGk7PZ5es+qvgUPgYngeNFFbbZgMCHCeeXGPdODj0Jjj/Hkx2Nixs7/BNHp4cmwCY02CxIcoVonnEUflFHZ5HX6UDev3SPdo6l9M/EpjJjpeuVwuc63et3Nb4PTTce46IkYM1DN943yrvcu8LfAX0QL6jL7f51THaPc4/Rdx6d6LuHgLrFq1SiJgiqgjY8wPyn4gMjhvI8Tu6y8J2ZESFkp2GGWepoMZygBNtpLZPUXGlEp7Q78khyczyaZJSlqsfOjDqVIwd6mh+6+sPGjYdh3+OItJwQnHsJvOJYOcjKkFhTEwyeL8RkkLJuM7DuU0iCwiSxu7iVIA7T2qPiGZlFVAwU7gZf5N9YURI1w6KOFNYQeZptRzSCTAGzYP8GcSn1HQfOyAgrLs0ry/V8KzUA4mUNLCxwkWkhE77S4DaCcDSo3F8d4pCVkeJB2hML+iHOmkG4Hj3e9otykHNUTJ0aB4u4STTWvDcLWR0a/sQQGUXs8oSoUpBaNeYiQjNh1A+7REB0VLEKDc+XMWGEbd0FCHKRnhhBlxePQw32FxQSmY5OVwhnB9gM/IZLcRsNRs4PZBMkxRJmMpp+ALUGdqGIBLiC8gMrv4OGAXLHDIKOyyyo7r8A80+2rbhLK+u7dZgmBdDLBDeQ8rZzhta4epgKoCMhVAmXq280PhGqdM3sLc5ZKAca5GiB+luxrBSvkBoFm9eo1oFpMlGiRVpL71OQh7QCsqvpYTSInPkoCCNKOIK8BWQcrHfN3BhXnr8swhyoaPSZwaSTCLjE0SfJnkeFzIGMr16tWRkpqSYByPq1a5f+MASiwEEhxRURYT/U31Z/XBlxqbn4AyNS4r56826/VNle60NAJxyZFyX+Elhr3yZUC/Wr7Czmu8T9l+UbRRDPX3vvSyNOnFQTwEiPckJS0ncFTo8gkcuYG0ZwcA7rSMAllz6bWz5/B+8bbAhVpAg4V33ne/1B09LA3tNSQPAFTz8zcBtUD6vA/++UBbiFy+hpJRe2rl3x7aJcE4v+sbCXYybunzqwzZCkbXoJqCE/wJGsfnBMiOtxsxcAIlk0BxOyVF6mGa9fVzM4LqON3QMgzIoUEWLFoqOpar6PVoiZ8br8oEFOEAiDFsSoAXFyaYUiMrFmcYAF6PYQtnXAkOkk/dvtAEU6Zg21GQSVlvg+wFZKhehGXFSdLKuP2R6+aY409gdL64+ZQBHGp5E2U9NTEHDOF4DLG/AZzb1EbpZYxdzZr9JdmixflaEpHDMY4M4UCdhJ1d2VAcwbC8ZtlgQAiR4ePTJD0QeEzHgQCjgQIaFwFQXshrL5m5akjVUtKP+LmEk2yh7HUqNgAqKg5HIMY4WZ+DMwBXliUTAHngM0tMOytL6gilyI6eGIDNBIAxQcq61hozjt15552ybds2cxx9q606gl9zWiIyQ2WSwL0y3VnSBtt6AUyuE4xfwWQf69gdGxMKKzpjKKxJJ6raDeuRglVHyVjVcVMDpionaygjlBXHmBcvnV0wtLKPGssakNl5oJPlOJqomWhlKlvn1N96kGxdZVYJLYC1fQr2UnuI1HKrEzDkMXzBuBwiKxclkNVL2zGmR1DqXSUcUK8rJRxAT5+kw9qrgWoLBOzDsxqTycAagyOZY00BIIgNDTZzjYJhjXBsNWR9GUOV6eHyy1II/OMch6neLxDGqmWh0nl80P2bk/SgkoizqplnwHJ06DJ9tvWlrBX6zIcBklAWmKZtfYbt/AUYMAJhsRgmS3nRvFi56ap0efntavMcKHvZ4GLYJGCevoESj3sdsFYRkN4AO7oGiEKczE/8gb8zACZte5UG+ksKzDrFRWlSVGCD9arXjPXanlqNR53iYySvaCD9kqVplG2k3CbP9BDO6Qie5TAc+NpvOvtwVPNbBnMeFf1Nff3QNzSDDWklKUbnQ31NjXVRBsrt4LnpCsqMcywFMy3hOdb+MUhWsvbJCVjyw9Kcpg26cDIEplGuyk6mOWyCHWSN66SnAUrVTxz2GPp3KteqTEUdsnFjnQmKOgEbqoz2j0sY+s7RIx2SRyJVEuxpAzjrRggQFM6JknEGlUWAsBS0uxMQdKo6TnCaKdOiPnt6PfPnUHaJ26kBrD2dNM1zif7B3BiNXjgKOF8Zb3WMScsW2QVLwIK5aXLkZBdMagkSbLdLRVW3VOmzyPXoczENbrsGYFU1r+EAWE8myOon2aAn1FcqHczHFW2McfPM7zFCECQ4WmDTJYAxPCpXL15m7sv75m0BqwXWrFkjj37vO9a/Z3ymAI5cCft5fU+frEyMlkSC4jvqYL6ibO3yFB6ss4ShWw7XtMn6KvpCfuFZa73/elvgzBawdDwXAYa6d7dIWnyolMAkrjqKjv1F2dGyK6GV8RSmeBzkcQRDdFKOYd6KzaIMMQ5fT9HkUB3XVW6+OZOARQD2Sxgs+eMSBdNja/OQjFKmj2mSaicRUltJEg4M6HEwJCobki5vRPeLjuhlXqcKC875JXNjjb6jALpUzeIxKgdlV6t7zPwYFU70AEmCwaPLbyaJlf08RUHsVmKSsuoqK92lywvYPxyd0h/2yRPocgSpSTJNhv1d7Sqda5PWwBRKRRq1o4Q5umV/j9FVfDD1dK4fbKdcoCLfEN1e50lXVr7RfZRl1y8gUlJY1tBxVEKyC+U/S8slB5oNPV4KzJwTKCc+sBocYA46Nt4gDeO+cveMvut5/d7v3hbwbAHVVyZ7CJYN9EkDK9IKikQ6U8wmypimIEwTpAmkGhD2RULhsGyD6TowgGebPhaXESvd3T0m6Wku/etEHV4n57QJ8lTv7XSXgkSPU2bZIcCRA5QTm8Rf5oN+o11BO2FBEToN+nJ705A4Caaqf3QA2ysyItLdRzFf7OhXPtnYEAnHzLE0aKx93BInZVIznMqoC7CMY/TSn5phe+3pD0Lvrke/xIdEkriC99t9KXPq5F7mh0r3iUGx92qgOoqqWTYpKIw0GM0JDn7NJfht0A+7esfc44mOK5xQ7U8F5o6RMGrjXLdcnQNbWhvjCExCjEndY6Om4pUPSexq5wYC+GiC6e0ALK7rVsKYY+7buvLTnztKT0l6ZqG4XK7TC/mmv1EpFWCSMgG34NdTCcNuNUKczj5OsrZpCwW89MmNa2+S4aJxWbVwtbF1lXHKkoKVWXLqSC2XwO854EMAdkCiM93sWTr8OBx2mSZQn7MiWYKCCdThH4sLh/2XlUMAEP3we84KD0BibpQ0UPVDkw7V35Y4H7sBP1GwPVTicvGvJQBeBijUb/YlwZyA/Vg8iaLbOwCBExDnuh3MCQEB/mIjkBsQxbiPP2pA5xGG3joqySRZQzC2EcVC5DDBdbVHFwGEHJrcYS4nDX1d7UQ/Z790le4y9vpx9O0jww3Gpurvo6IIv3kzSRvj2EORgKoPwMKuovPBBPenz/eseDLE+Lltttl13i/eFjhPC2g/VSYty0+SnptkqrmARiCgPmZ8WLpbEf79O+/wARjQbo4SC8hDpRlfQyAAXfU9aFWdGPzbPXV0cB7TEPy0ftiLKalh0kPJXT/8960yZHQk1RUy5roMGEV1iQASmLQvNjY2SnZygWQU46/F56WiAWmtOnAYsPDyxZlmmR3bVHHp6mMLBCjWAyu/2v8Z84okGBZYFWeQXWrra0VhAOlJcyS2oJ9jj5AEXSDPvlwKyHdagqkOo6L2bnRYiBw82krf8pMnXqgwIAb1Dai/R4/twzygCQaZayPFh0TgCeInNfildLxRnamFigYK/texMhqdTsESShqxID+GqjgFxrcVSwKCJoAsnwm+jTA42OzRjO2qO8UZXUkBScpKpqxgsfgW1DejjGevbaw219oD6NhOzELF+BYZG1QiSPxqDx8GwILPGzDRdLK/BEOM0eMAHJKGjx7ddBifgg/JWuMAL2z45KepiBc3Em2S2RWApEOyn22cZJVg2bgJZlF8CcqolpOeKOn4MhoA7+3cD2i3dUBiADbExMUZkIofv0daTo6sufwjs7+buSjvm7cFPmAL6Jh04MlS4mmBkg4Zgx8J4S3EvVqokBmfFyf96Co2m9tHpozfDohiwmG7W7Uqmn5KMmQIvi9MMzuMtavXrNYRx5DDxK8aNgQ8thDihsTPnFQvGR8jNuickOTVI7BkB8uRLW9LHWx7yfQxrfyZAsOeMuo62yekCiKg0GS3/9VObFMBTn7oUgqO7QD4Fs7xHJHx6EP4kUv24VcMdd853VN9nD7TIxIZT5URKpUoi2AfulgXIGEVHfvUd66SshDSJGiyfQbcwP1ggPAqvZD1DBOm1XExN3ee0UMmGTtXr4klJuYn2Xl+suNwOeclqZSObNouIRydBh01KEDqdnZSvQ29ZSbeqRXj1H8/AuBNJSgohmOlovuhe/niS0+KkY/cuEjmhIdKPcdPgRDBJHMsNptzTwGAfLMEVVP8JhyMgXqPPrTHlCxcvlRiUnuNHuje2vvubYH3bgFLH/EZbzEbW/HrevwJGr9tHtglKXPCZTACUDqZQB3jVErBX+0bESw92GKT4U452jSIrgFBFTpGU+spE8PQgy0hLl7fxLbE+Buae5jfmSeDYyW3MEOGkyYMm31WkUv2lu80INCBFqoLkrA9gp4wSNyoewp9HF+3xsXCkp0kLBM/IH7TU0OFTMjCrHiQnkvHhikCF1odchg9au6iZF18hmg136j0MGlP7zMJQP4QczhhH41b6u6PIXGBhuFVibadkIQMkxAdSfUAtV+DnehbVB0Yxk4Jjwuj/2uMzy22ITsxp1SJmZPIhXB+gKgb9q+XhTcVSANgZq3UO9SNLkYyTwL+noK8GKoWhkpvLyylE/Rz/EPqj/IBE1EAGDqNyrWDE+5riiSOojazgih9XD6ARUmAIN6e7goj/ZN2wo5SKZoTLXd9OFcqILfRWIzGc7KzF/JCL4yMgUCkxvjZ1J7uwucVTGwrBKyDPQnCMaojj6NPqk6l9tXEzPhkDjzzFg6WozW8n4EHXYZrGxzS2Az2YSjVFWHV1baIxk9nS/CRSJKxRrD7FG8xhv2o+prGsDR+EuUCrBxG4lUumBYYWlWUWCaG5LSbb8w01+9grHbMJGv5ToFjICapUkUl0HZml7iIBBMvTKG9j0ZXUU2hkzaKN7gPJZG5nySrYySRBYOV8JsAVDwBcUt4MBVI481xxplvwsLyiGNy7lEqKubQFuBWVDSR1hkxLLnmP5I7sjQRM1jK696VjsFhcw7VMRWEPEzbzycmq7q4+jD12VP9UNtC5wMeUKPrO51sP8dfyt9sNPPGJO0wPKwxTbdOGZ4aDGga4C7J+36+o+BPhqQF9maVW6/JlBe2VfE8wLYMaUxQZL/RUXWdAnV1zlR5e2utrF5KHAz/gD5PKhqbLcpIkXdOHDX/x4QkQaA2h3bnIUCi893tr/PbKCzDoTNtoOs27migerX72SouJJkasG/DjN6r6x2B0fT3IJlDX1agrt6v3rnGN6NJ3t237R257aZFMOoOyomIFnwuwfhnnaJxcxW1w33QKXYd7JS0VOJn9B89gi3YRzLyIsQW1i+ZOQvNtn/ON02YfD+i/cayj97P9v8Tt8Fkuogwns34ri+ykXeVtwX+m1tAB2733PveF/JBQL3vfTTvFn/mFrj00ktNKbqNGzeaMz35fAnloTDQ1Om/NNYs0zIOytZgSQdfensHoZVvlFtWrpbbb71L0tPTzUu30WPq8Z577k0yrtLMbuFr4wzjyIktFWbC1/JzvbAyFkDBHwuop5xS2Qp4UvnSZ9ZK37Db4DQLPN9Wuv955qW9KKwwuPbbJX1ephywVQP+Pb2POqWxCzGG/U2ZKQdUr704BXVSnsAJ5Y/R7A8wtqdumEDOtGFWiS6CtaQE0BmniKbsgLIBKeBXJSInGECtk3bQrHFKheJAiwyOkiIcedteKJWlrpVy1113mW1n31bNfpv98shrr0l4iLtdhfiBAupmr5vbTyDQIs0A+wiKZi6IJQsVBYwMXJXJk7BPdnVLEsa5Oh2VBTAjNYtyMm6GY93m1KEmSUUJTE/MpF3cyoouP1v6G0/IR6+6c5aRqLq6enYT15zLJTmN8gMErFRcKVHiG1Bnvq9ZMx/WSqcxbPQ3d7lcIleaVeZNl1WvdR9Lv6tUrzh9bLPA402byOzD+ddd47HiAl+tY1qfuplew50fv0/qKnfL1ECbLMp1ybOv7JUwAIh+GEsy3WaCJU3tvSZYccXVGTBBU3KcgPE4Cl1Q6Iwjp5XyKRhsv3zioPz6oX+XdevWXeAqvIu9LXC6BfT5+/a3v23GvH/8+pdkNezbyxcmQXMBsy5AXR2VAunnyS76sF+ofPGbT8vShXMA6cdLbeMema7wkdSFsPlgsBuDE8dbAM7BQMBu0cURkhBMNi2OfP8pwIh+DrLunVLT1Axot4VyfL6yYs118olPfGK2fLc+w9EJBRiJGAyuVMnPdQcjhjCgNFEijf782Qd+K2uWZsjcwnTJw0e4cMF8c0MDwz7ms3Zup3zok78ggDAqrR3u4MMlK3IobdONPe8ryYBGXNABhTGO7wD49+XPulXd9ORw+fr9SwyzbgPXrPLqhkp5+tWTgGNjJJfkhZPb90gVGZEOgCO+jNN5V6aRjED5WMC3Kv1dA1I10Co+pN2nwWx681VZsru0BQMrEKapRtnX2GpK90XCoKrGZUCI+9wdgFt8szC2QmMkOxPHA7J6cap51VKWSKUL0KACLLPxAqQlR2FwwoBFmVrr99NtFDjyu4e+L62DNkmkhGoyBq0GZCyp3NFEuRmb3EYAu+JoHwYxEw1y+SUw0sKolJDQKX19PfIWbEgjk2E8A2FmXKlvI7mFBJSrL1tknou9ZQ1y+aWn56xkSqbob6Nt3NA6IR/72MfOGINLDpXJgjlzpby5VNQObRyekniCOXspXaisevk58ZKbnS5PvlSO8ToCS4QdsDQAaEAE2alR0tU+KukpDqmk7I4+I3qfDnugpBRoedQp6ayCgSp1xmHM/bSeUDZADeIzaeJUVUM2NitUkmOC5eor0+WJF2GfcVBmJh3GfNi+Xn63Sr7wiXlqs8IAHSuHCNwH47w6TulDfRY0gKyiQSUtKaMOFAWqKlC3eFk8gHSHEjQYoO6KRTAgE5xWsHiY026OU3BVvPTvG5B8V4TkupQ5AiBu3YApFxcZHSgnYBMmJs18kEZfK4KWrEQGx0gQiUmRm65JMX2wlDZX2X2gVSZ55oIJPvX14mzPBeREqdhrr7XcHOQIKSCpe0gigiJEf5uunj0E0Ttk5cqVZk7U9luDc//s+fC73/0updEnJZmA3YoFiQCaKIXOfK0Bc3U0/OSxA/QP1aJIrkkOhKHfSRnKAXHluuf5ZhkV1yXRpt3VodFS1itr5q0x+kVNTQ0MjFvMb6f+kMauLnOcIL8QyV8OUwiggljYRPILoqSADOujB9rJ2J6CBY0gICwXyob4NiWYwgAmm/OTEDQXIO+zr52ULwCwn48jTkH5AST16BikUl7RKO19Aea+H3zwQbPshd//nKoAbQbgu3pxCn0sRU4BAi47CkM0jqV+EmEicOK0A0BW8UsNkJy0FKOrqM7TUEegMilXCm/5lFlvvVnzuvVpLfd+eltA51mfkDCp7+4VLefkKWlRgBnR4+p7qYTB8/43xTnyclWz/GD7cVmT1inLPMC6A4AMT3TCFOBDoG7xWnnwto96Hsr73dsC57SApeOpnZS2bLVZn5xZJCcoh1hWdlS+/eXLZDuVYJRJbW9lm+SvIeGGsT4xN1RsjPtNsMW1M8brqGuHGa6lx21rqH44tzAcoF24sU0ysqNgKhqUx39XJlkAd+fnExxKjRBfyslNT5JYgVN9F4wldZQ09CcZc8SHeSudhJ2mEpzG8YYRpqmlCz3Sra+sIOijVQ5czG1ZBEhUkvPCJZkAlkoLbBltgIDVUa8JSeUw82qAKWDagZ0aIWkJGbKgKEquvAT2C4JcW3eekGM1JLTCpDsEoKaTIHUDttSKz2ZJZP2wmeM4ORV0YChhblGZHFVbdUycMXaJSk0084gy4WqbquicpqL/r1lXYz43bdokR44eMsv77eHMd/WwmmbIZDSVIFJTZFVoxKy+azbyvnlb4DwtoL4ofa48/Rvn2eyMRdVH7wXw6jLLkhNEjg2fkje3NUpxcYJhhq5u6YbdJVRaYWsa0MT1gWkZojqIJhB2EhArL4UpB7vBj2RM1UcL0eu0qsDPf4beBwPN3JwYrVAq6XHps+dV+zAzWUGVb9B9sBHWutAdsSEvID19w/LD/9wvN99+PwzYgEIj4kxffOCzS+WrP9lIwHhC4uYCrgdQ1bm+T26n+kQbbEdLfRJk86Z6OYqu/LEbc2VoxJf9xghu1ZnEyv1H2knMTERXhz0HO88/wCF33lwkWemtct833jCBzuEJOyXRaZgZKaYSx8duHpd96H5lFbvFiR+rcyBMcrDFNNit9oxKbas/4KzbZ/Y6/aFVi/7jN/8uhcX5MpaNYXMRWb+pRL780NfNFpaOGBkULX2d/SSqh8jctXk67IrvqRa59bp82XuySU7WthLkpqYVLswA2PIGYM3xh623nHulqeUf7v+60ad/8rsfSAdjWehMgqMDH6iCX30CfKQWwIwz0SEZS2ERPdhE8gRRZEwMlXpHkxws6ZII7NsoF0lyAANqqEwxBEDNCMHWEcZgG0HluKJQiQ6OE78oQD0z/spW91bud7u2XZB861vfMv/nzTvXB7X+nc3yzb+9Rt7Gvvzfj7dwu1wjWytI53AJdg1jeTTfqwiKN1P5JJnA4sQMg64eVFnJAwPxMyI7953ChlljvnvfvC1wsRY4O1ag29b3+MsTTzwBCI3Ecog9yqnCdxcsswsXJkDUgcNjRtS/kBUVJrZRm7z0TpUBkmVQdc8Z5MSXgw1LedwQzN9gfBYtR7R0PI4Axkw7cYBvfvObZgy3jmV9qt7gcrnMv9ZYoOP8r3/xQ0qu41sikSKFxOQgkjDUFtdxqBO9qxl/lgLhL7nseutQ5tNTD5EbRB766VflwzcADmCQqAREcuXyTLNdyhUw45G8+s7WUyQ5jEpzJ/3Pt8cww+XkLWQM328SylOj4yR7RZKMwcg+0svggyjAJDDCbhjglOlNgw0JAAFeWl+lbhNZBthw+aIkxs1+wIf+0jmz3679DbJhd4+svuKTs/fc2PpdWVxglx/+Yr0BzyYmYuMXU/KaRDGdZ1R6AfAriEJlEpCKgvzsdgcJsiFSF9nlBuqSSOAXZZOkpSRx4FRJSoH5vQlWYdja4orCxEnShBKVREXESBYgbEvqjzdRmtoh11z7GRnsazGlwXVdXk4KYMQOQHghkkzMJBlfk/4+rpnfyjWHuY//rd/MOp7309sCH7QFVHd4+IXfkACfJPFXJRGfoxodL5WM9DOPtuPlA3LPPX9nnsPrz+z6ZkO67vsW9f29vWerZKzOxs/ZJN3Ms7nXJwJqG6MkfIA0HEbvAZykEgj5hC8ENbH4m429N/eqM5ikv/erRyE2SD3j3HHgleJD3XqEM2CAcWYCkgEcfsgg55hGN9MYZ87KZIBSxAgB4HlK5Ykm6YPp85++9OBsv/Ncr999GLd37dqE7zNBll61wLTdylg3IEz1l9rj9QzBUZKV50Iv6jCAvjHfKSm8aQVJUmuMrbfl7YdILE00rxXLF5j4Qup81+ypVq6eZ75/6cFn5BOf/9Hscs8v1jhgfXqu8373tsCFWuB8+ojZ1lEjaXN8ZddTe6X48rlm0SBAWhXbMGBJ9O7orHixQa5SX3/C6L8au1efgxXzbh2Ikt3lLbJ6RbGk57rjUp85y2eh85nu8/TTT8sEQNqkLCp09JMoNxog86/KhQyqX/qo/pu5JkliUyeIe9WLDQZprZzrgDxFRT+VxXOEPj1C0oxjymmSWczKmbcQyDiGuoYlJiuc8WVE2mogBiMJMA6Aq76GSLa2gUfow94IIulurL2DuM2IzC2eJ0GZ7viS3v8Q9z6LNeDYOn/nJs6Xuz7mxm9Y5+z4OsDHAj9Jy3Pbn+GxjQBKu2XhklRsYPQZEgZqakYZc+Olu+8I/qh68SMGV1QcA1stFQshHvOUJ54ok/4oEg1qhuXdknpjjyj5jiWrlieJvl5HByrZ04wukyv3ff4r1mo5cmiXVOBnU93q5M7DkrkqiSQvzhEHgVooTK4t9SYRK4DqUBZQV3U2SyKoUKhMtyMQrmllp3H8wwqOtkEYMolupkag2vM24q65gKxV71LSn2jI11qpZlX2OhVXiFfF52oSah34C5I9kt32UzeJlt20x+135JqK0oHE05RkaRJgt3Ma3Ye4keqdP9j5tvF7hTqCzW+Qlh8kS2+aK1shg3Pit77yyizirMPywL0LZfvOesiTQkiUnaQS4pAUX5lg4pVqq+3Y1yrXXX+fdWuycNHs1wt+Kdl1lGSUDvkw56gkuezma7LkBPpsKiztlyxPkU07G839KYOuJi2jkgLS1cROiPSoxhyMvqaAVk1AVnI9O7EhB4RuKunzqOzFb6H4IH3m9r5TOduuX7l3gSGoKa/vNmDnIBL1NBaoosQ1o8xpqpcn594sdZ1tvKjC0Gk3trhus7hwKSDieWdiTXSFh+iccbZvR/tkZfNRs1XB3GzZf/C4NBDT0ridxj2tKlzaf88WPd6VL74in737UjOX1Ta453Dd7sqVZ26tc9raa/9WPI+j+6tYn2fu8af7T+9D4yDvR7QCnOc1vp99/qdt47aQLnTXxDA9/CcX2uovanlzM+V+GygbtXjxX9R1/akvRkEt3ZTYjY6OxrDFe/ZXIk1NTUaBjo93K9x/issmOfj9P6c88TMxoj/Fqb3H+C9qAQuUqBNMfASZJHXtklo4o0yhn5wtY9Vklw5NGYeXta/nNtayaGj+jcxgSdUZdbK8XpJgvx00TBgwxqHkRsblkfk5R45WvUIJupwzFErP41rfVWmxBefKyc4KGaFUcwgsRKM4+4Jw9HmKMtwOt4+Law1lM2v6cZgNi2txkkzASKsSGj0ild0tJmFCFbDO8mGCkDBmhASYTDn7DIOebqvORh8/SmcA7nKGTktMCIzDKPvhAJe03ax71m0vJApSmW2T82zUirKtYF1lMQ4mSBBB+SlLQgAjjW2bNCU2ovJDDFBpzsJsmQCwpdKAca5Bo5zsXDNuWfud7/PIjpNnOMvOViz0XjZs2DC7q6cTMyMj46KKyNnHOvv/2YN6fHk/23hsfs7Xe+65h+tNM2BJHwB9c3MWUaoCR2JqpDGANIjRDcC6q2MUBgMyEWGmiSFrbRp2ychIdxZXC4Gmgrw0SUqd875+y3Muwrvgf3QLaJ/5zH1/J+9sft70v2ULMs5oj4bmbpxtlBhdvUpWX3KtUZ6ffOYVwIDjGIlknDN3qnHkyXyz8ENZcmxXvRzaTOnSwrlk/yYQPIyixH221MDutOryQvOsevYf/X7XJ+6Xxx57THpGIqTpxHFK1bgHcQ0wdJCY4HBGwwhHyUGMXc/r1GHaus4VK1YYR8WOHSXSgiHVTPk7BaIqmNQGw+yKRZny1EsHZSWg5Fc3VMO8lEWw2g0QyUgJE32p9PQNwZKSJFdde6u559zCS+SpFzW40y1NVbU4GzgrdrWDxAljJAPwcMCuXfZipZQeajNA3dU4CdRovHR5umzZXSsvbz8pPYBFBodGpbGmj5J6yRj0nfLxG1eZtr/ikgGY27rN+fUtLcl9LTa/KVmzLBvDN8es27WvanYss8ZvNfw2b3hVkkabmVsmZSxRZy2CSGTyquTgKNj4dKV89KYCufGaOcaBaVbo2zL3ty07j8u726vN86BL1FBqaP6eYZtPSUkxG11NCaMzZGbfkr2Vxnn0ne9854wxeNVMYOrxP/xOeke6cPoGSXhsiIQC5Gkp7TWAYdVXAwIjpYbfqaGpXQTHaiDskn4wha9ckislpTXmt9dAlQJKFZBpSTKAXU+JzwmTU7vaDVtMACVzFKycuSxG9q1vkWLKRt3xoTnS0AijCwzwDRjhuwBsL4MJTEu7LcehU3aUQBCOEC0R8+zrJ3mu+ZERB8z8I4AD7HwqU5WKH3NdLGNyL2yy5ApzLsDrhmk4RKrr+iSOcTsSYG93kp+8XVovOak4rWBWLySLu7KKgDSB8CYyt7OyiuWOu+82feLRRx+VytoyQLqn23nNMvfvrsEtf0riKHg2mIDSkqtwuL9bgSE/TBlHd0BOr6u3udcw5Te0wcY/FSZFC68yoHhdp3Oi/q5nz4farmPToYCjougzYzhD0nEMAdSlz9hwrpeWd9BWzXoI9BGcTYCZ1Znko51gRkxuM4+dBs4UxKt92no+1UFZVVVlttRr+MI/fN7M+fo8tFV3SQX61SCOtEFYq9sBV7dT5nINmfVtx9vIvo6lLCisvz5OueLqQKlsKJdF+fHSsadNHocZ6MNXZ6N72bnmLABYfQT1yZBuJ3AaP0cefPD22WvQ69JkLB//Jp4xd78onBMqmS7KAiXHy/YjzbKp/JgkzYeBB3DZ8ARg6Kh0+maM0VNcMdlyz733zh7Pum/vp7cFLtYCd9x7vzy7+S1ZGR8pyzLODG419A/JPCJc/7bvuHx5WZHkxkXLlroWqQB8Mz7hdrjpNidI2Fpx9Q0yb8ly8/x5zp0XO7d3nbcF9Fmxnhcdj9VGMsCQ1kkY3HLk3a3HJBQgWwPA3NR8BcP6SBygiJisEACxMIuwpA0Qq7SGyje+8Q3ToAdK32AucusqrrQYyUxyAtjIkD+8WimBJmjglIVF2bJqSRBg2U5pQyepI4HqjrvvM/OPHkR1vea6/QSnE7AfQQwy76ukkZhzrLJRFhXFShb9ZdnCVmlhPshYGkO1HIckUKmhuQLGGBjNxyhJ2EJm6DzmyF7YcRuoDmDpKhrgWYMtr/On6jaW1Da6bUQFo0RlU8XFxz2HRcJi2QUA2BIn4GM/GwwsEenyT//0T7NtaK0/+9NqW2t5xMxce8172J7W9t5PbwtYLeDZZ61lF/vU7bFAAH66fS9FawKkBp2qlcTLCRK1fUi26yRAp8xn461Tpo9MEMhLzk2U8FVx8tb2JmPHFFGGdRKGRZXoIABNa+YAiG01FS0WFeedE5BVu6u20d1n1L4qwi6KoI+eLcP01YpTHSZxURM0VRfbUFIGQNMX+yhN4v6TalBjvm6ASBLMrdJF3/OhhGOs6Z8TsBbtLScYC4vkFavnmMMrmEsrXe062I4d6kc551iCroEmKKcbrMH+0m16BmBOKsg+59rv/shyMy5s2XFC9lPGc4DARufQAPZiP+xJbttLgXHar88Wbe8IR6Q4se8SCEBfSBpONFNyet45Y8cCArjlJYdkxY3uqGV4bKic2lst112XK/H7gmXfvmaSP4dgIPJFt/WXRP9QGYSxbiGB6OdP7QO8c48J9v3syf+QEAeMlejMyj7l5wNTHSDY9AWpMtnrI8PoETWtlJ+FpGAwzg2aCQ+KFNVl26MoexsYbnx70ZizaQXJUnOkYfZWwhwR0tdcLhHhEbJgOQF0dPXzid6jAme1TVSsT89ts+cUAz7uM3a42jAJsA9ZUhfSIScptZsNa3pWbqT86vFD8oVPFksMCbWWVFJJICklkwB7lTzzylG585NfsVZ5P70t8J4t4NmHS0pKzPYBgBPmrE6R9T8vl4/DCqZSXHwajKGVjLJIsI30jYDttUZGKKPeBzBlEkbFlOUxJDK5A/jtJPVEFcVJAiXU1a+dMJxp+qc54Pt40/6i46HK5g2vSUUdKDbKQXcSq5jySaT/dsJGe67PzOxw1tuGDVfRP/bjv4iXf/3pbrlyDYntVJ1RUQBFRlqELIxKMP6fv/nHp4kF5Mm9939Z1G+TENcMsAGfEWOa6JDmzhuXQ29Um3E5IiNEWvCPDOm8gY9aqw89D1DFn+QAZdubnxsl7fgOMlJDSCpukt0kB1x5zV1ntIX6GTLRF1WU4fYIIGn1yyRQIacYwO5Tz1VIKBWBFHzhFh8TM1BwtPoYo9JJqK0aFgeOx0AYv0NIuB4lwUOTg0Mj8MUcH5K+U+is+G0mR6mEBINfBGV0VTTWoOPeuiuvnL2ms+MFqy4/1zfivg7vu7cF/jQtoP1dmXJnY2rqwL6ArH+kZPZZvcAm73ux+oiDfhwk8y7JlxpigKeewFc8Cu7en/LncbAghsVKV7WSCNgA8fZCoJCDrzZMKjc3n2P/LJu73MQwk3MSzji/px7RAKgu0ccFsLAen2En44r24ZlYAW5bjQ1a0svYFDMWJUdKGy56vzpOJmxMkJreSqncWT2r7+pxsnOyJMY3ST501YeNjWn5OnWd5e9UwoDf1cMwacV4WZcGi7ASYJwt6m/0nDfOXu/939sC/68tcL7nSvvnv/86dLZfaV/ylDT+UV07kuwgjYXoMfTlOYetWltjnn193lXOp4vrPhpDeHbXYyQzZsvQ0CC6PVVP0O972vtk92sHpA9272Tm4z6AiGojDMHwOdo8Yo7ZQnxrYd4SiUtOkuqCWgmLc8fPzMqZt9S8BKmuqYL1FfsiI1waSTAc0ngI7J0qQVSHVKHGrsEk9FQPkQwOmZZh+jSrGB/dn57vCtTVezq7/f7u3r+XR178jfiH4meqr5MIksg3vlIGtiJQ1i6iim5stBReTlUB+r0maitpWguxlyhIY4JIcly48EzbRoG6Ku1UhDlCAoPv81R5qu0xyxbOjSNuM0BC4aCcIo7jjMwxOpTnNVm/y83scf8D98lIGwQ+BalSuu2gLLotiXEQ3AN6oyXqgrL8ULrM+j4JC3kAifGqDun3cCo6tlIVWqsjB5E8paLMukGwp1qkcTquHt1DVQAIUGKui3RjQrCl7DP2lLKl74I9PWEv1SyXJ1JRK9LYz4MQQcTYaZ9+m7R0TcptH/u0Ads+/M7PIFJLMucycwc24kYA4baBEdlCTCiRpK2V6HABAH7hYOcVL5EkfFVi7zXBiqw+P8+2MQd6jzf9jbuOdVKtMEGamvqoqgprOtf/+qYaCFYSqcY1bI4whd6n1R+VLMoP/0Ng4GnfQwgxqhaIexQX4ww83T5mR/djKP3tVNTaSMXnFKe0NPQRNxqCtGmxbNvbOHuFdcQLVUI5zgF8EK6sdKMve/a7qYAas43L5ZJPvA9/n96fp1jPi7UsMrHGfNXjWXOXte58nzpXdVEdSeex881luo/azooTUd/Bf4foPU8FhUgDYN3ks0hLPK9nVxXA8tx8z0Xe7+dpAaAXF5Zp+gf+or8a6enpmaVQ1sCAMn79/yqf/vSn5Q9/+IPs2LFDFi1yOwCte9XyP88995ysX7/eOPiSk5MNcPnWW2+VpCT3IGxt6/nZ29srDz/8sOzevRs6+FbJz883+91+++0XdNx57q/fdd99+/aZxXPmnAso+9znPidvvfWW2aaoyO0wOfsYH/R/fU7FPZa/565aCXimGvB7buvd4C+zBVYuzpKDzzSYDBnnDDjp7CsdwYm0KGMpoJbLzl41+78V5JtdwBcXDmx99bT1iX9br1lVXgK766UrjMK8a2859PkoTh7suJ77e35fvXq1LBtfJo+//ltjrA+RNWMBdSfIaBoh0ym5IFbqYOWTNVDWL4qX0meOy3j+hMSS/a+ibq4GSo6PD05KCABOf8ontNUOyAROKRV1WqkoSFdLMviQyarOt56h/tmyBrpex4D3I+pUuJg0wzy4bl2GlO5vlvCrQs7YNCQmUPJXJ0vF1kbpOtInQT6R0ls5LN20oyrlSb7ZBI0o3zUDnDlj57P+aaTs9Pl+H8/NLvbbem73l/Jdr1dfCmJKy1omN91zvVz7mXSJjKX82KifJC6IkM2UDL/1o+7g1AQBr9DgUHP5ozwroSg+CpL7a7vvv5T2916HiOoNk5OTsn1/qew9uBGWIrdjW9umFnDFydpBufuTn5fLL7/cNNfy5culvHI/GYnTGKmnDSPPtpwIpFwLduilMGBbToOzPz231+/6DKsyr33heO00GYbuCVz7vI8tVL72tQKzi3WdS4vTpZFAsYpe58hUJMC8B835Ulx55jg2n2FJclGWhGNUNb0qC+fnGPbWFQtTZOPOegPoW4zhraLlVbTEsYInf/v8UXnw/zwye8+6Xktx6LX94Offl7GuKQmNDDbGsb8fhiCgeluy3QB1dwP+nCSzVEv9WLJ2aZoB3tY09MoRnA0vvVsnX/zCV+WH//q/Z50TLhgUn/nDYbn9+jONlKaWXsnMPj1W1zR0SEC42xFjHV/bTYHO2zc+S4CiWd4F+JVEWbB2WECbKIOkYrNFYvROykoYe88ngZSyTkjOMc+DtV6ZZy4UoLW20U8N2Kenu6/pfGOR9bta++izUPruQcC4oWbeXLs8Vw3RztUAAEAASURBVNYuB0hK2XcF7FqizOgKqmzpaTZgUw30aBbshZ67OIK9CtTlcZYJygFNTY6RkWyT8IJgeWVrtSyjtJwrLUyiBgOld+6odAHGWb+5lnYZkExXjKzEqfPkS0fIFHbPeTYbpaCYTyNwkHTXD0kkTIB+BIlOC0xQOEoaSk8DfHSdln3tpGRULGCn5ALKP50ckF0N7Yalr5PEmR6yoDsc49KBs+NRnlmrbymI4dvf+orsOVAtS3i+PWXJgnTZXHVCHNOAZGHCSkyLl7Gl4/LatkohpkcG8BAg4FipOUb5Rp9eaaIZl66+2Rzb6nuex/P8rn36cMVh0XOUAVpYt+I08Fe3uwOA9+9fO0b/6JchWI6DYNmxnEnWcdSZ5MM/+jlEIpKn6O+vL0vuv//+2cQcV0HQrH7lh16wMivFbBZCkKDsSKssSSo0epZ1Dwpm3rb3BVm3uoBnpQcABwAUgnjlJ0qlpqEHkDfMcCELZNW6286YF/W51NeePXsA4QbS393emijKbyanpMuqZTAXPAPT40i3hFCWcFPpEYnOcYkvABjVU2790EfOOJ51L95PbwtcrAV0fv0NA9JTLz0nTT19OKlCJSk8THZX18vxjh75p3VL5B0CYy/Xthkw79UZsOzAoLC9vlUaAelOkrBQ2lwjT3ztm7Nz6cXO513nbYGLtYCOgRrwVF0hJT6WMX2PfPETi+SRDYcMK2U0YAid81QfCIaRUdmQ2gH5/ePXvjerG7yLLvTisz83p2ls7oNlLsgwFBXMz6RkHg5/khu6D+sc6p5Hk1wLZPmlBbP76446HygLY1N7p9hklBJzIehzPeZVXdsOi0a+rFs7X9p6fOXrDz8vIa4g0XLpoZTps0WTOEPiqt3HIYWrc2CuzZP9b5XLi28elqsunXfO3Kn6hYrOqzrX7dy5E1YnyuFphMRDIrPctpUussfaZKCBeYyp3XPu8tj8nK/n033O2ci7wNsCf+IW0Gd6c8mbsvzGhebI4QAx5tPfFKw7BXNu8YI02fZimczLKZblNy0388iDP/q6XA77YtD8IDmwsVzegfU6mMCl+qFiSeQeGxgnISxA9hwE6DkEWDR5QnoGq2cTKPcQ+Nm+p3K2Pw0AZNOS4WK0QFjZYOpW6aHPdvVQsnzSjp+MChn0e0vPVZvnudePyUeuzZNN7Q0Sm+8EEEfwNsMJ2yE2BQl9E/ixNGBXPtUp2/e1USIS/RuqWU1kVBbH/JxEWb+9EWBYK9tHm3OaNx8/k5y5bV+nrF3jsfz0FtgcuWaca4e9R/VFlZRsN7BDv1s6p34/WzRY7tnmZ6/X/0te3C8Pff+356y644475Me/bpHGky2SlB2PLXnab7aQJNK8jAhpqxoSG2BZBakZO4ijaHu99NZBczxtx6ToFEmKSRE/h68JuOsKDbonsEztNv39t7+wX3Jc82d8bSkS44w195UZmSubD7wp8Slu+1f3VT+nJf3Yj3tfK5fxdirHcKwLyYXu0XN7tcuf/t2/GQBhmN0JeO40uHn+9eny+vZauYrf+brr5sjvfndIfvm7g3LzZVnibMTWgBGpnsozJxtr0fW7jU3jHWc9W9f7/YO0gOX3HoDpTRnHJoJ8AIx2mGounsfRRNWJ8Qkpr2k1Pom1IWkS4BsKtMTPMO7HpceReEBCMcEj1Xe0jxwpOf6+dQXPc1nPs/ZpK6FV11vjj/Xpuc/5vv/Lv/yL/OY3v5H6mlJJSMmXZ95okPLjsHMDfg0PD8FfFSJVhztkH68pvxj8ZZ83Nq2ybW575xHZVVUtuavOPHIsYBtLtKJQN8y3vQNjcu+9i+SVVypk014SX5Fqqh51dk9JelosII1hktPr5dePfcLadfZzfGLS+KYcgAP3VXZIMVWMCvLd43MCic8hsOUqO5pbYJGzwH0s0HhI4z7KLKMDxsAQp34eZZ1T8qhgSh5nAhA6/G6N9DZQdRDVcyR8Whqwq6xYg9rwlq9Fj2+1u/tc3ndvC/zXtECEPdJUYQvxmAfPd2bd7k8lOrZEwDar1d90np9EX3OQ2KTVNlXsgTZJLaZENiaRX6Cv0R91+QD2nO7rKTqff+arn5JrP7uWUu+n53Jrmyh0h92vlaH7fF+2bt0qj77w8zMIFqztrM9urkkJGwbajluLzvup/VVf7777rnmFUHpdgcDq3zd6DXFIz/599kHeK35obd/Y0jM79lrLvJ/eFvhztoD2sc9/6osGG6B+CbULPEX7rera3/zc/zpj3vp/mcPU/vrpwz+R6Ht03j1tGwUR5yheWyj7t5TLyb4GBoUpSYTIwpYWIOXbT5jLmRNYLA/c/XXTPxT4/tt3fyGywPNKmacBdm57Ya/kXpZKbMwhcQB0G0o7TKwnEGIyfan0Q6gxSaBCwcdDw25sxZlHOvc/S3/zXKNtoD4t1Z2qpqqobDAuEauTqKKMDbYLNt+gPrl0VbBs210n+w/VmV3r0WNS007bPp7HU1CsMp2nr0PHQx8pO9ojZW/0yBiMqisrO6VlcEQ6qETTUdYvv/711874PazjWL/LV4jzKd5jkphoiA3QMomlkS7wGPWDEpJkl6GacRnugfwEFnMVyycVlhYofcScIvDHaekCH8DVScXRVFCmaiTAaQXqTimLLHauVUlQ95+iOmE2mIv2wz3S0Tigi0x1RP2cRPfypVpDcB7xsM01MszQ7zPaYuJG9VSmGu6th0wI5txVN6Pf3Wva87nXn4V46aTkQRakonNHDW1dfbhehoMC5Nk32vAPBMqpU4fkklUFMjpOokdfq1SScKbxJ/V/f1BRf4Y+Wyr33LPA6JmxVLU8UdcrDz13dPZwCtLVSjyhoSFmfvEkjFK9VYG6wxDshFKB9HyibaX7aIXIyQ5/+fHDB+TfHlwNGDjp9OaLIb+hknY11V62QA6TWTTfrLN+39Mb/nHf/pjjqS/i2VdK5YH7rrjgRShZwR9zjgse+AOs0Ov8feke+fIVqy+417++tUUe/PHPLrjeu8LdAp5R6HPaZBpw+TQAjb8WUYCqJZpx/l8pGgx48803JS8v788OEN68ebMB6WpHOBukqyy7V199tRw4cOCM23/22Wfln//5n+Wpp56Sq6666ox1+s/BgwdNx+7vd2cU6DIFAT/00EPys5/9THT/zMwzA/q6jadoOZlrr71WrGPo4K/ZA57yfZR5Beo+8MADBkhsTVSe23zQ71P98HsNvr+9fPBB+jB5eeWvswWWLVsG5Xu5XLuiUN4gWDf3atc5QJ62Uz1Su6NdHvrBf1z0JtUhpgrx+YxPZb3Ql4pmtqno9nr+EgIWt82wY5gV53nbe6BGPvWFtWYfVSqf7H5Smiuh3Q/xNVsrG4bDFigLVmdK+6ES6SIjKZJyWqEAwIYbJqXL1ieBYXbxD6JslbLudgJCQom0U8JhZHAc1oxR8aM0gpaK4vBGOZuEiSQ8PNQoIwoCjqLshCXv1/mnhvrFJCgyUK65Jlu2f6fWZDWdvW0IQJjFt2TLO788KEvzV8ryVBBZYMX0/Dp+qIG9peQtWX6DO8h09v76v/4mhRlFZp/zrf9rX6Ztoa+FriVkCteLq5BMsrIOSVscL1tfqZfCudGSheKpoECLLX0IYFagLUqee2W7fPkbd/y1N4H3+v8bW0Dn5XfeSef1DuAEdyaWGsQxqWGy9JIznV/qpLvuuuvk1O4WmXuN65yr1uz4FljUls5fZoy9cza4yAKrH6izzQpY6DJPsa6zqtUp1Q0kNsxc5xVXXDE7Puj9qHgeo42kiO7eajNOHzzaJgrWPQGb5+bd7kCDPcBXoiOd8h+PlMq4hJ7j8LMcgOoYfPPICwS/s84JYMZkRUodJVrayR6OAczoKa7kcEozB0hX9wBlZotN2ygQVp2CSYCj9VWDYa1gyKR4d+BWWVCA/M6CGvV4Oo98+Rt/63lo812vT+eVkk3PSk60TVprKwm6T8pQk83MUWs/slZqaxWMXS2L55/peNVlT71cboDOngdWpqQ9B14B3Jvlufic7wqwzShcc85ya4H1u1r/W5+6n963JRqI1penaPuINJvfVn9rzYK9EFA3KN4hvgTeNMyjpdamybSdmlKGQEDLvoOyEyDnFODPSEozTfr7k/E7KJ/75FrABGOyswxgAKW7czJiKA+sc3IjgSDN1sVpBitN/e8rxW8djFX87x/GsWlrnWcVtOoI80PHHSNY5C/FRZRTgsnr8c0n0EUS9UoICIbyYm7meIOwCya6QmWywU/8+kLOeM60nRRwvZXf0MenmmzliNn2uXRlrvznA1ulODOHcuJuB76rMMVcx/4mmGRb+6WipkfCbCmSkV0kS1Zmvu/+98lPflI+e89H5av3r5K//ebj8vefXsp1nxZ9dm+AtfdXTx6kRDhOdZhoPUXbwtKgxwFaDDWetrs8t7vYd0/9ytouHPCWtonV93S5XuuvRkYot9stC+YnyoYtpTDF2WXj9uPmOV+4aK14jgXWsaxP1dc27iiXv7/X7XiylrsItH77H26STSUVgFOqJXU6X65fdIs5v+opZ49D1n7eT28LvFcL6HykfeTYkUNSSRnndBtJecnYzidqJS8zQ1bD+v3w9r1ychS29e4+SQ8PJmEmTsYdA5KRECu1Dtjez5oH3+uc3vXeFrhQC3jqChRwliKYDK9pTZVNla1ymNLrjqgACSAAMIwnvweHe2b43DPmEmt/Pb6lY+n3z/zNFTjsT+nXM5afbzzW51n9T6pz6j5pgECm/DslOtkhUQkN8sbmU7CskXCxJEtGvktSalgwoIwx6cHx3knSbBAl+ZKT4iUmJtboYY2V7XLbLXejxxxm7qQM3UV0nPvuu88ksZoLPc+bJlr5kKLhg+5wsUT28+zqXeRtgf/yFlCd6OU7XzzHd6X6ob5Udrx62Oj32hdV1PaoO9wkc5ZmSfG6QjmwoVxKqgkCdg1KwFAjZUITSO5LkQ/dMs/4aVr6W6ThWIP4+7aY/YcmIiQsfok8ePcVov1JgbIfpkLJ4DBl00fGYW2iEoXdH/AuyV0wTY5MoQMnuXUu7fuq5z7x2C/or9vlu1+7RN741SkZyB7B30Vi1PwIqajolmuv8ZVR+rw/fMELChKkOzHQXU5ZkVmMT3uOjErxXAKLiwtl9/466R0KMPaUuUD8aZoYufdw96yNZZZ7vKlt8f2fv4U99aMzdEyPTS74Vdt839f2zoJtz96wYnelpAann/e41vj5yEu/kT2VBym9Gi9t2CINgN3iAe36jfjJymVzTTUHz+Pq9VptqMtvvPwmqWw7aALj5wPT6m+vvsp1hZedkeym++pvoNe/582Dkscz4OnzVH/bTpg5r15zjfSO034zgGLdzxLdRpdf6B6t7fRT71fH+J0lLxHspkpUc7+x4fQ5CSDporPdH9Bwt2REjaDDp8iLzx+h8gllRUkICcGmWrZ8lZw83olNs/aMecjzHN7v3hZ4Py2gZWTVj9ByoluyliWIAsWff+2k0RnyZwCjepxxQBCnqvpk2/Y+UUKbhu6TkrYqzZxCq1eqnN3nlInSMGmYtR/8Tfukvv4YsXx5Ky9162ADvc2y+1iZFODD6K6CEZdxW+//rk8Uz45N2ibf+5dvSgAVg85OhE7Mi6TiTQMVdChtDCg2HiDuVhjbtPTxjTfOkb17AfQgRwHmFhYWShxVQXxJrFc7++x70WUB/o3GB/fMwd0SlhAkT715Qu5E24qB1EMTxAaJa/g43N6Ecdjdw0JP+4cU9JNYHC6tJ/okPFVZ0qjqBXuujRlCyUjU9xhJVaWkMZfseq5MPvQpNzGTXofXhv9jnirvvn/KFtBEnfeKeencqsQ+f0qx9AWd623T/jCAU20T1klP6WNej4qKMov0GrTPni06n6+Ys9roCAUrc2ZBhaoTKAtnX92wWa/bad/7+cM/pgLKOLEr/7MPZZZPjAHItwWc91zn7MACPa6+VNT+PHucMSvO86bb+diUkMPtcz/PJmaRxnO9dt+FWse7/M/VApafcPOhd2ftAu1TKtNUBtE+Z8W2/phr0H4QHhBxjr2ox7RiCiUk+IWQ3BOTl4wu3kB1THd859Zrb5vte7r9V771wGyCqP6vor78MAgJLAyDVp7MygNbAenPVL+PNB6iciLiN+iQuflLJRYw8GOvPGKWXexNfTyqq5xPrPFA1xmf1G3urSz/khUvVJv11lsT5cSxI7JsCXYkwSJbgJ/ZWONl4+Ak8jJIiKTSSuQc4g8rkiUqyY2BGCSGCA2POMFl2AYcBqh7oetxn13M76W+X/1Nc+YEyMZXt0MAEky1wD7JvDJGusJGDPBWqzYGQipj4Z8SIOk6+gJ2+DxsJCX9IdYUHhfKue3SBQlMDEnlCrwNIPbhCVCtr2kHQzJPXi7ZKIferjGXMTWhpDWQtuHTsmGYR7ns0jfhkBN9bvb0Tpu/lEFkE+VMx0780Owzps+JshX/+29+ZOxEtVO1ak9UYoQhlbNPO+Wuaz9pzjEgp2SSJMx6KkCMTzk+UPzJHMDjTW1r9U8cOdIm8+fPk899bonRMzPzqGRBcu4775xiHZUzqUjtH0S7nYckL3sFyb1bGmQAYpnENI3nnSuaIKJt58+8tPLmAtFn/qePlsnHP5wniXFUvIYYbXzaR3oHx2R9SYPEJOa/7znq3LP9+ZZoe337W18+b2xXz6rxXT97/H/7tZvr/EqZ7IGkZEm62y/l2SovHjgiwxGxZ4wvnuu930+3wEWBuspSOkXcfHoMP5k7AeD0nn+B3zRLS9lctQzCNddc8196hWVlZfK9731Pbrnllj8rUFfZ8L70pS+Ze7M+rRvVCULPryDd2NhYcz3z58+X5uZm+eEPfyibNm2SG264wbDseiqmbW1tsyBdBf4q84ka98eOHZOvfvWr8n/ZOw8AKYvz/39393ovHNcoB3f03kUEbCAqNtSIWKJR1NhbzN+W/BITE2NMNLHGQoyxRMWGYgERBKT3drTrvfeye7v7f55Z3mV3b3dvrwB3xzOw977vvPPOzPt533feeWe+88yePXuwYMECFS+b0ffkWHyriXQ9hWEru5yHZcuW4bPPPsMVV1zhKahP/nxvWqi9xGeLuqH0+vJsMMCnNCXQqSPAFbTfPb4UL/xhITL+Voo9VDkZPC0BoTR9MbtSmp6g9kgDCvdXKwFHWzlla6+OjdaewmvPC6f/n3892aZQ9xBVrrQPSu7YGDRoEK6962fUUZKqkmBLGH3jeGR+KGYsmIhDe0loRY3kA8YmIil8gNrOrSpBQJgf+oT3pUa3MvRJi0Q8WdptqGykyl8kAmOoc5Uawlm8q6cGLKuBprUJtBXUVpomVGtYrK2kqS3oefbFtRUugka1+tP08akkuCqgUVypNN2pqyvJqEIDWVbhBoq5NPWUo2N+b9/7llehbk56gU/XzjHenrjOIsglS5YA0S1knfMgNUaSdSsa9PfRZwdx5YVpZM18kDottqZbRQ2aH/24nab5GH1asOmJ17Mn5Zk7cPmnCS08DcLhMFyn+O7HL0l8GIW+NLUNO26Ia6aOt8LMKpTurcOVv726U6evlZWukTjmk/oivA4WcoyDy+vMfZtx/ZVn4Pd/W4bd6STsIAs+NWQdhN16mnZLp6Mpflp0OPvcWcrP3R/+2OAOzioSR4akOZd1KWNoWhYS6n79Yy5GDmtdvrLl2Q3UoZ027FIVNcf1wuv/pY/h85VAVUfWWTJJTKoJdXnKz/79jnfcbN2VhXpTlMfnndlwne9Mip1nTxhMFqZ0/pGqzOXr+d13g7Bm9UfYums1iUBt101PDZcHqYN+0vRLW8XLQt3Fbz5LokZb5747Huy3dWc2brrTMzNPx/nqr71r+RxKS2lqIxqRHBjo3OjL919VfR1CqcOnjoS3cX2CVOeN2UyNMeQGTbCJS7evIkEADWCxBATQlNyNZEl1DH2U01RJ6w6ocGPH+OO8s0bgM+rALiluQF9qHImnKSOj+xSpEc6R3EEU40cNH1YMHxGLzCqalocaonbTtDhjaSres6YmYzlNCRlJ8TeQqCiYGmD4mhjofWyhhqCQGLJUGBaCoh8O46wJrb9JtGvI12nQAD+UfLtTvaszssswcvB4GEj0wBZ8NDdozABtFW88/D+8/+bzrd6x9gAeVvg5mX7WXPqg308joul67i7A5LFJ9tAsGD9negq++D4TRTRFuulcko8HG+z7SbKsGph4YFAFWQ+2tDGYs606hT1iWtGuvebHeeXBfXx/c1k1+Yx4dY9PovE/XLfwVG5px/Mzd9stC3HNZVXqumv+2vKcGcOV1TJ+F7vWVbQwshQC7SXAdX6+X7X361lUlm0+cAhGf9uAjlvOmoLMsgpklFaoqAfHxYC76bZk5bUql9ubtoQXAq4EtPdMiz6exHJf436yjjT2UDVNkZaDXUX5iA8LR9KgKHy6bTvmXN76/c/Hu3OOdS53+x39OCw/F+z4udDqc7zO5e8Lr69U39UJNItIkN4Psf3DcJi+BWOi+pCVtIEk7rC9BwuOFKF/SIp6L7zyyitYs3U7zYxAArhjdRzumP1hY669jsPviMJ62/veMT/aelNjMw26CUdZTS1SJ6Rq3rIUAt2SAD9Hl5x3Gb5a9gm1o0xs1X7Fz8fIFOd2An6+uANuS+UuEorGI21CiprpKJMGskU2xpFBhSuc6lPau0t7fy10qGv96le/wvN//S1uunI0WbYxkHVXIxroW7CRfqSMoDrZAPztjQ1OAwG18sdoDsLn3+7DdOoQ3rOdhGRNRvQfFYeduzKwa3cxBiSFw586y/rF9aMZL2xCOf4O2nrApOqs6zZ+gesvT8FTv7aZdcrMKaNnvwqfk+VZ/k7lZ53LEf7G4nq+5jgM+3e0/YSZ37f4ASz57HWkVx4lq7hkDfKYdbl8GvBgyvGj831ES67VUjt/rsfq9WTpSL8bZblNGJ00iAb/hbQS6XIEPHuSY7nLbWc/vvGtfWrSVomQRwF1bk+jgXeu5bI9/9TelLeDZvswHbXn31qrx3mjLgLPfMHXm89xy1HbfcJp1JCYO+dAPqYMPRN3PXGsR9xd4g5+XM5baKaAgzS99t41GUidkUxC7hCyTxqIkZOTUVfUiPW7czE01Y8sb5GV0v5nYPJZtm/KKbPmYgqttlW3d0hOVoWAWwJ833M79CtLXlD7k0fG4kBJI1l1zkFZGbWj9wmBxWpRFmLXry/G9df/WpWD5yyYZW+j1trRXRPgdvVp06a5ep/0bccyghPnMoYdP8uO5bbypD/MxGQJxhSyEszijjHzyNjJsf4TttxWQ9a9a4c1wGLSYfSEUdhfdZQsWh4ljmOpTbofuD16ZFw0zpzOLU/A1YtfpbLvr2rd8Y/WV3L/4vPx5tdrkTYrGcUHK/HV+lwSBwaihKcizqxBUFwADYa2iVa0/gstnoFTE7DupX2IHRWBGKr+GagZwkLvh9LGGlTTlMhxMYkIMAWp951Wt9SOlaUQ6A4EuA3q7QXe+7zWf7oNr/3pzS7NrmN9YfiMQcjdUYKh5zgLZuro3T5muM0wQ+aeHMyb474//qmnngJ/a+UXZKOouRy5eXkIoxnShqeMxIwJQ+1tZ1y2RAbGITOdZjwYHu/UbstttrlUXwsPiSHDQyanuo2vJ87xt8dxO+dHy7bS965N6OvuWN7/wK9bl1/uwoqfEOhKAvzOGkT9NPzO5mcrPiCFBiST0ZywePsz1RXpcR1o7U/f4Yz5LuZwKXLuU9jy9R7cd8ODqs7N9QatLdyxDq6ebX/3gl/WMGz9cacyHBZkCMKMS6aRFdYclfWsDSUIbArBr351vz3ez1d+5lY4rJ2r1sbjy/PuGEarA/A5aO1LbK31kftvVAMi/SxkZKXKNtswz1gb4heKXyyahQ9pBsHC3RVIpJkL+w7VxG7RWnbw0xv7VL+MY1r2nS4r2jXlPAyNGKP2brJsQn7pQZpFJgKV2Q2IS42gGW0C0ESzM7MBtqCoAET1D0H22lKkzIwnNbFVaTmGnd8fmT/kod+0WGqjCiLtha0fjMvSmppG6GkAhqnKrOo/3M+yqWKTErTSuFb61tKpGSENZj+MmUpG0o61n1WR5sW6kzQW59oG3Tpm3/E7le9HWAKRR2V9ArW3zZs3yd5+x8c4MnaMo73rzJTvz3fffYXeCWmkXQtV9UwtHh0N6GKhbhXNtNJ/NLFx43jQWR8SWtfQrCyGaa1ljTXUp+VP92UzWUmOjYlV9zxH8+PqdFQu2YHzzxoAIw3WK6pshl+gHz76+giefPL2Dr2j3GSvS72Y13U3/tLetztlfIq9f3fLziwczqU+4bOvPuV5V/m84y6s/ug9FFbvQxLNLJhMhgTZbcnKxbeldU5tRF0KqZdF1vqOdjxBCz2nZVaYq2gEVF+d455uuz5mzBjwr7e6rVu3KgHtkCFDaPTBeKfTXL58OdatW6f8vvjiC5pCzPZS5pGvbAabrduyldwXXnhBdXJoBz/33HNKYMvi3m+//Rbh4TYLb3wcizdGjhyp0uT458+frx3mtOR9H3zwgTqWG/y4c92T40KZhbosUuusUNdcSaNH6B5VZtU8Jaj508tLR5bl9cdG8Gresuw5BFjIoaPKVRC9TJ988BL86501KMitgX8zUEjThif60aiw0BDop/Rt86SSkpJghK2j3FtgbpDTKqycPo/A9Oa27c5uNTqWK77Jsf1p+tEUhEeHOh3OFWUrVUY2rdqGURNGopymBA23xqI624TxU6Zg9oWz8cifHkJQQDAi6LRyqaGdK3OBEX6ozWtAyNgoGm1lodHrtgqmsqZLlRHN5dP02Fr+NT9PSw5XW0nTNLjkUQsfFh1Mo5xqyEJlItaR9ZLSuGrEDYrUdqM0sxrFW6pIWNxor5Tbd9IK84sKpqmAvKSxb/0R3P0Hz50ejvH15HW+J7gyc4QsLScE9sOKnV/TNJBkYZKmnlyzs5IGWJhUQ3J9eT0a6sJpLMJAPE0NJuKEQFcR8KVc4EY682Nm5O84TPWEImrUD4SZzJiZ6mlKlI0luGjapaqe0FV5chePL/l0PI7Dr/++Wk2Pqr0nVm0qxMhU28d3ZEQIjZy0Kuux3uLmfffeej/+/cUb2JqxG0mp8aijsotd/9jBSL48Df/7cjWG0XM7/7wh9iwUl9ZgCwkgy+qicAWV4ey4LsWzCfzjje9x9SWTMWncQGzfW4TJYxJQTR/dLRYSp8TG2ON45+ONbstQewBa0RpUtKXrPu4s5TpdUHQc8vPz0T8lFWfMSlWzLjiG5XU+V363FlKndqJDJ7druHSaGtsbM9fw7dkuIJGNFje/n3c1ZCIvpxxxJKCNoGvGjhsp2C84MJymiq1DPVm3jY6ijxVyBpo6UXM1NSS8TYtDfGwSmqhhePuy/fh42Ta6nlQXJnEuu3OPBU6Kj0RFSR11oNOIWxLTDZ4ajwObyaIYTaNjpncz7cDEyYnY8skudUQ2fWTGlYQgjDqZM/Nqcf74ftiwpQzDz0ugDmqowSygiTPZcX6LDlRj4f0L1bbrH752fJ3Y7TzYhBBjKqISU/H444vwx1d+h4K+xeq+czzu0NYMDB8w0n79Hff5ss6dB7/7zcMk7o7Du5+n04c+CbX6hqOJ8sqC8SFDUtS+gs3VqKE6RkS/YPiRWFfH/+jZ53/NtSaU7K1Bn9SYVgJbxzzw9fT2vtfCOtazND9t6e7+1vZ5W3La086cY7/urmG5rma0xnSYo2t8si0ENAJ87/FPc1PoPfDhth24/7yzlNegPjHgn6P7+8p1OHPGBY5esi4EuoQAl6H8vfG73+zF7sP1uGTuJPVbufYABg8kC2xk/bmsiAQcx+orXZKoh0gcnwte5zrmSy+9hB82VyB1cAr2rcnByHNT1Tt++PARakp4LaoMms5w3twr1Ca3NXGd6nD6dhzanKHeQxlkyWXC1PlKeMaBuB5xuGA7TEayyBFwvH7A+9iPLY/wzCXVRbZ6HfuLEwLdmQDX3w4dOoSNX+3AqDOHqvoh17EKjxYjsD6C6o6PO2Vfq2Pyt0Bhfi5NH04dg2QOcurwOLDVJJ6FzdG5vrsc9/EzxxZwvv3xMM6enkaWPLhTkQReNAgyIbE/yqrhtk6llT+PPfYYmmrSEVwfiEPfF6GpDKhoasR/392Hqy8ehgtnpSnrqpwm18/e/WwPFt1wn8rjS1RP/mHzDmynTuBEqrOzy8qnaUnr++Dpp59S2489dsj+jcUeLNJ1DaMCtvOPxvDj5R+iLr+GvkFIFDt1GoymAFx168/arEPy8fzj9h6/OmpHK9xuP093Wcmk+AeNstUVeD+3nVUebkQBXWP+DnV1yj9ogMd8aPz5HuA81JqqVZx9ByfgrrvuUtHxdde+Gfk+YRfHs3YMG63CpKXR9fbR8X3CBgrueuRO+oYwYtD0YfZynPuMud1zH1myMgQOUOV/e+L2MQsSTAioDmvuj2qopG9rEqSOOJusxu0tw7rMMgQctKK6uZG+8cOoXVtnrzNwG3VbjtvV+Znqbs6XPC1cuJBmYVqHIQF9ydhJNlLJ2Am340f0DUEUDUIo2F2GsWeNVuKOsbMDsIUsbo+nmalGjuxLZXcTEvskqNNetmIXaprC3XLQ+kpeeGohEiKjkBgbhegzQtFQ2IwsGtRhptmQeICHocWfZnUgO+rH+i8ceYbGBlObjp4GQZPVdr8mqr8ZoCdrcQF+NLghOgEpA1Ow7pPN9vqg47GyLgS6AwF+p3J50tH3dkfPQasvcL1w7OwRWPryciehLvcTBhgC7QKugqNlmHKzra3aNU0+Bzb2xd9aLNCKqTsCfl/z7Lyu720uW95c+U+yfuin2m05LiOJ4pqbyMqjORD9+w/Ajn37kDwu2TWZLt/mevJtN13qVajL7dm+lJldnjmJUAgQAb73+MfPFj9Lrs9TV0Di54ANznC/wdDJzmJ39kui7waur7fl+Nn+acNKTLt4olNQrstXUN/Noa1HyEhKf1XW9ekXq75HBw8ZRAOGrneKf/45l7iNR4vUsY1H82vPkssrzXE5GBbZFwPiByiv0pYSmqGJNBhk200zlsb9P3U0M2BlTi2iB9j0T9rxBXvKUH2oARdde5nm1ebStTzha3vf7+9GZEoQMjZnIWmyTZ/BMyWzoTWeXaDP6Ajk/EiDIDaUIWYICZXoGykiIYSMntEMyzSbqDGGwtCgptqaGlWWgvoLhwwZim1f7Mf9Nz+i+hf5GjbWFZHwNwh+pNZlzUhURLS9jOeMR/WNRDT19TAXd87xfuT9R2OPui3nHRm7i6c9flp7xnc048LVV42CHxmDY2ekQcCTaFAvsAmVNPtr6gRNRK122/9UUdtlfFosslYXIHVmDcIjgqlNwt9mUIr6tEqKacaW5MGkfz6AUNIHseN7llls+243VhytpQFoRtRTN1woaV8qaaZI7q/tro6vEX+nv/XWW2SIqILabw3qeu7J8MfZ513Sbd5nWj7XLPsMBysaEFhUganUvrzbrxqLbr+x2+Szu15nLV/Ordaar8PSTDNfmUt9E+ru3bsXb7zxBmJiYpRVVodo1Cpbdn3mmWfU+tNPP223+MiWWz/66COwVdoaKoQmTJigzDazFVdHV15erhp0eNqTX//613jnnXfw/fffg/15REoAWbXieNlC7MMPP+xkRbKlpYUU+++SSe0t2L9/v2q853R4mhuecsnRvffee9i8eTOuueYaJTz99NNPlQCW02WLs/fcc4+y3sXHZGZmKuHrzp07VRQbN27E/fffr9Y5j4mJiWqd/3A8a9euBYdNSEjA2LFjcfPNN9P0Ma0b3ewHuaxwgc+OX5iu7uOPP1ZePKJDE+lqYdgSLp8/XyMW5Do69mf397//3S7S1fZz3lavXk2NGAUYNmyY5u205Gummeh/9dVXUVREN40Xxw8vOz4XtsCrCYO9HOJxV0sxCXVLPO522qGj968+igTntneA0z7Z6BkEuBI7dfr5ZG3iKK6aPwl/fvxKrPhxv8p8Rmgp5swaiX+8+T2NhnmszRPiF/Fnu233vrfAVTSdn1ap4fRj4lJQSKOSEukl787x9Hr3PGQr5xz3X3zOfGz4aRVVcic4eqv1vmQNkexV4uJRV+Hw4cMYMoFEX3OgOic4zb+9+hwqSZAcHB5MQhk9NZaROGlQKKqy69B3DAl1TRaEhVPNk1w9ib7iyAqv5sINtlEs2ra3JXdqVhZXeBTqDhhBViRLGzCWBG9jho+lKb83oYJGt9cam6ghtBktJS2YMZgsGKUb3SbD5+KNQ2FGMRID+rXqOHIbWS/wZB78446yF19Mxbr9P6A5thYlZFHxzf/uxughA3HxvIuRkJKMOykMhxUnBE4mAb7nuF7F7+ulq/8HPyOVO3XlZPkoEGcMmK32dbf7ksvrTHqG2LGlWe09kZFdqvyCw2Jw6UUj8dGXW9W2tz9aJ/bXX3+NYhpdGmNIVvXHGefNVM/jjTfeiDeXZqCorB6jhlDjBH0U7thfAJM+CYvvuNNelmkcH330UazaVK5Ekcu+3YvoiABMmzSIPrqHKAvrnJfte1hAGN1p0QznXcs/d862dZ36DRxpf7e6Y8L56sgHLL9XfHEZ1DkdEDVIBeW85uSkk961BTVVLairraABOkE0RTe9W6hzZwQJeA5/U0gfrEBJUQ1paf1JzBusjmVxbElRLX2cp1JjTF/klOera3Ygq0WxnTjGuc4fFOSPKOpMCguMUmmFUAOJv8EfGWsKadRzC6or6X0bGYh6mloniBpWQmhaxhZ/HQl1A9BCQoWZ05Kx8+NylNPU4TH9bA0BnBED1bsztxVjbPJE+3VQGXT5o10jbant5mv2vxXv0jvf5hMeTR2K9I5sPAqq4zypBWv3ktled+MdePc/ryCL6vYv/nsr5sxMwcB+USipNKO0rkYJHPxi9cpqbghZwLGSVWE9NaBYqK7B0ytVZtQhMiySpr2KdBIkustMJYklPA3+0cI71rM0v65Y/uIXv1BTBfG963jdefu/n+4mDvd1RTIShxDwSoDvw9suvdAu1HUXOJOmm/1/3biB0F2exa/nEHAs94tLajBx7ADVmL2KxLqVDaHqneD6DjoZZ8f54vYnrmPGJY/H/5Z9gPpCM0aMcRbp8vdh/9hBTvUizi//+FiOhwff8FJzXF9Z/tJSNFOjv5UqCwY/gxoYS8O26Z1GDfOhoWpqPxOJRnytp2hxy1IInAoCfH/zN9k///lP9U1iIEFT3o5MxAUk4+pLr3Fb13R8TrQ8czyOz4rm39aS656v/uMJBAZHYuJoqtuTJd0ImlY5MDgaf3n6A7ftXxynY75npMThg4+WI7EpGVMvnAdzLVm2zM3EynW5SDxco7Kwcn02xk252H4+LCjl51x9i9WYqF0uCeF9o/D0jcfbRjQuB/MCVRxHsww0QHGqUxi1owN/mCGfA9fL+Tdv9jxgtnN501a0fDzXBeZf+G88et+lHoNvpwEJP//l8c5CPu62629X3wMRZM03zGEwPZeLWZuK6Jvgtx7j4x0cB//YefoedL1PHI9RB7bjD8f1wJEHVZ6tZEwBxz+NwHkOM0Xj7icX2/PUjqglqBDwiQC3BV122WU4unk3xlxg++7vN5oMIpDb/1MumgP8kRDeB4PDjrfLx4cnqAHZjs+YY2J87w7rP9zRq0et276J99FArSFk4XwndDkWHCArV/EkWGmmb5CyXGrHmGcTk0ST34Cpg8kKcS4OHiyj2fQicbQpF4fzDVi+hssc9+0QXG400SAG7iuZN42mGt6cqfjHxNqEMHVkIa26uZ7KsRDqvzAjKMjWf+EKMnpoCJpKWxDTP0jV00L0wRhEfQxcb2NXSLMNehIYusYl20LgVBDw9N5mow9sTfflp/7V5dni54/72r77ahnOoD5Hbs9sJAuOwWTBkad9Z2Hd6GFjVbpcnvnS78bv87Ycly1/e+05BM0Lh7HRJjFhkW4o1RUH9eurBuvwM9uRduS20nbdzwySBwxx2+bLYTvanu2ajmwLgc4S8OXZ6mga/BzwjCA8q8q2yj000K+vMp4RGRzVrr4Efra/vP4LFI6g8mKws26JBw/6VdCMuw16mPL0yMsuUd+j582ZZB8IqOVfi6fuTH7/297j2j4ui1zbeLR9HVnyuXO/Vm5Rg2r/1yzLOsY1Y2oa1h7JQTUZGGNtBVu5ZWu37CoPNqrltddeq5Yd+cPX9p4j96vvoLpKMjRzsAJmPwvMNOiIBzHoSVQbGhOMkfNScHBVDhpyWlBKYsY6mvWBLeLmb6vEoKlkWI5mWNbKUu7XqqG+xqSwAaos5fNkFxMch1gytBNKszVrdSTXPHsziqKFPZH3o5aGtuS883f7Iw/dgV2bczF1cir1jzYhmOp6eqvtHZK3vQrTrrCta8dpy9Liahgs/gj3i0U6zZY6gsTo5cZaauejQfgBNKgrKl71AxpooJeBrBBrjuu2598wkzQv1ep9yDOPst+Gr/d3+29Svj7Mjb/j2aXQ+q0jjreDaOd4qpeO+eS8DqR830LVCO1+PdX56wnpu7/rHXJuKbSipYBGzI8gT73DDjerLAB9+eWX1Z7rr7++1fRLn3/+udp/5pln2kW6rAi/4447nGJjU+XsWPz5/PPPw8/Pls3Kykp1PAs7eVTX0qVL7ceZzdTiTu7tt99W4ll+EWhTrrJw9/LLLwdbo3V0H374oSocVq5cqcTB2r4VK1YoUStvsxiYxaSaY0uw//73v1VcnA+OWztnDsNWy7RtFsyyULepqUmdC1ucdXQsrH322WfB1mh9nULnk08+UVG4CnHZkwXI7BYvXqyWRqNRPcRRUVGqA4IbLDTBoQpAf6qqqtQ58DaLltnx+TJfHg0fGRmpLBR7s1LM1lCYw8UXX4yrr75aNR6riDz8YW4c3549e5QI+JJLLvEQsg1vEmi05JNooMjaRkDbbl0MmYKP9imoBOrGBPjZfuCuq5VQl7PJ4lzN7dybgyZzlL1hX/N3t+QXRc6HBRhJFkm8ufrKRqeXCqe/9MtvcPcvNHt8x4/m9CvqQtymz8dtf2QrijJLkDDouJCWj960fCcuOns+7r777uOROaxdffHPsOSHlzHs3AGIGRCGYrJmG5EUgoKdlTQttwV+ZEmQrZqw01l0SnTE65xWez6Imcnm8h/4ULcumhrpdu/KxIR+w3Aecedpvo9mlaIEtajVNdLI/L6Io4a4kjrn83OMzBOHOhoVtf7T7fjn/73iGPy0WedrP3j5YKzfsRYpo2sxtM8YTBg2Cffee+9pw0BOtHsS4HJB3Z9kkY2d9nFw4YUXOpWN3SX3nF/uIHB0ju8JR3/HwVSO/o7r/LHBP66rsaCWf5rjaWWZBw+wKNhciEZTJPShA6kj9sJW7wHOF3+QcljubJ5z4Qis3LIfqWl+aGppgtlajR30Dtl71IhrqVOW0+wqx2m35Xhw2qfvPWN/t7qG/8tL3+LO+5929W5zW12P4qw2wzkG4Oti3GvChOmjUF9fh+KSYujIkkoIfXjztGpaI0RznYn8aNobEtPW1TZRh0+gEvOGBUWqj3MtTn4P8gC379cupYYRm/I1gQbbMO8MEnVPHzKNBrHFU122GHX19RgxYxiytxeiTpePnIPUqD2iD033FqimaqyoaELo+Hi0NJsxKC0Ku9LLcNP8Efho41FUkgDIz2CCNcCKhpIm7P8mF/957a9aNtq15GeOR85mVh9Sg+WG9BmIhno9Ft/qXozRnsj53uK4tXv3mw1ZGJxsRm2jDtSujmhKK3hMOHIP5aM2pwnRg0NhqmtR01uZas0o2lGLedfOxubl1PDnRYjN19FEVNpyrvWstsL7up/vPX6W+Lrv3JdLwpIBqmxYsS4bYya1fkZ9jVfCCYH2EOD7UBcajqLqWrIwZeusdjx+R04+kkeM7pbvU8d8ynrPJqCV+1z/qNxYhkYjdeAa+4Drcl1Z3+gIJS19tvz7p389hdr4eoTSgFR2/H2YSWK0R2970m0+tWNd0+XnztRInSKN1E4UoCdxro7ee2R8wEAWR4IDqX3RgPKKKhWGw4oTAj2BAN+rPDsaf5OwS2gepJ5hx28Td+fh6TlxF9aTH8fBFn0//PItDKZ2Ynb8vZWRV4KgCNvAY0/Havnm/WnDJjp9T/G5cLlUQBYUkxKTqH42slWbGKfNPzWg3eE7TEtPi5/3szuHfm0xUQF9/MPx868zjo/n+jW3F46n+qir09oRXdPh7wGeinTl8q/IkvIQ1cldmFGC0oM1uPq8a92Wi65xa9uucWv+2rIr7hOOyzXP7MdW/jjPnspyDiNOCHQFAb7Puc3lyuvmI5esRkbF2eoTRrKmH5EcoWbc+fEdbnd+2J7cpEmTsGnDD5h60XHxrn0nrRzdmU1l7RWOXj1qnZnwN/Em+ia+7ILxOEqimt3781GRUUOzu6XR7EFJyN6dh3gS1rFLpdmfdlbU4x//2Ih771hAA3ajYI0YSHGc57XM4faWpV9uww1XT8c3D+9Dw7RmhETZ+il4mb27BEmjLTCRWMXaTG0ytl1OLCMG0JTFNJ2vkQZMg7qCud1Ha/s5vD0T8X7JXvPgFJlsCIFTQMD1HcjiNH5v5xwowIQBU07Y/ct9bYf+3yHVvxgdF4UjP+ZixAUp9P6tQzgJZ1nsxa4r+924bEkIT0QKWTDUHddE2Z9Z7pPkZ7at+kdXXSYu5/774YtIIvEat/dqjutY39P3L7d5ixMCvZ0A1+e5vZ+/rwb2TcK+vHTqx5+EtFu9f685cuFn9tZFt+GjVe+T8RCdXcfAz7TWNqOF534FblNy9+3F8bDewbWO5agB6KrvD84PP+PvUL+Wo6EOLZ+8rK5tRCQNMk1IiFF9TdVkYVVn1iMsKhTxySGIm9T5OobWl0MGfZFxcB8CwgJgpH4UP12A0rgFBFBbVJQB/abFIlZHfV+1LfQtHY6qhCZM6XcGKmrykETWitlx/cexPUwrS1VfS2ilvVxXgd38YaMo3vps3Bxywr3UvXX7g1i29BVUlB3FkEGxNFG6FT/tKAPXx7dt20YzKxyvP2oZqiXDdKR6RvmRWjz44EN47G+/xrSZU1BM/EJDwxBPfXrMi+/R2qI6+FtaVzJZnMs/zXG4nuCYmXbtu3N+e0o+uytD+uxpw9HA9pYcK8zVVhI52jq3PR3BQl0WXbKYlUW5DzzwgFNQFsayu4nMsLMrLS21i3RZjLRo0SJVYLF1XJ4e61//+pcSfs6ePVuF1/6wkJRFujy9F+8LDg5W1nS1/a5LtjrAIl3O32uvvYbhw4djH029wCLgdevW4aGHHsKqVatcD1OC27lk/fVXv/qVEqyysJan0GEruhwn53HcuHFIT09Xwl4WrHJ+OA12mlCYz4dFupz+f/7zH2UtmIWw//d//6dYKQtrbtJ3zVBDQwPY+jC78ePHO+3mF/COHTuUX2xsrGocY36a45clv6yYmYE6KDTH+WDH4mlueOWXiSaUZn8WELOfp8osc+XGYnbMxFfH8bJQl/PcUaGuuYruS7o3SSPok9OTKXlDrPd72KeIJNApJcD3cllNEL75YS/mnTPaKS/PkDXby652L3Z1CkgbXFGpJKt73hxXhoYkOQt5+Rn/3crPlehj/ChbxUmLg9O/5Rb36XO+eRr1P7/+lArOYl2OvyizFH4lobjluVu0aFotb7nlFnz41QcoPlxBgpkwHFqRj7AEsh5Itz9btwsODFDHNJHVoCASM7HgiN2RHVmYN9r3BkWu6OWsI/HydOdzVpHRH664bt5VhNjrpyuvubNHKYsi2n5ePvPS11Q5n+ro5bSucXj7yzdRRBJfdnVVDWih55ktD1500UVO4U+nDT53/mmdTMxKnBDoLgR60rPZ0OyHotJqJMQd/wBz5bhzby5uvMO5fukaxnHb3fk7+n311VcYOnSo28YJLR5+pvmnHcfHZB/dQNMNFiI0sBCl9G47+7wF9v3acSdjyXl6j6yssqDR9d3Gfvze1fLdnvzwe+Xogc0+HcJh2TGjuo8a1Ec2f2hr7zTXSCppGtoZZ55F4loS8xYfE/P6h6gPdMewGnMeXLKPedMMH2kpwO6DFjWgLiQgTAXndGzN18DwsUPxfsEyGtWsp+kWA3DGuH5YSw28u6mD6bxzB8Iv0ICLL0rFP1/YivlzBmEBCXc3F1ajmKwrB8focXRDFdKSR3WImZZ3/jbi9wHXz/newtldJzxwvJZ8H3I6MZQwD7oLj/qABu2sRmhUCAoPlqKGBuJYg6xgYbQfTZ0cH98XqeNTsPrdzW3e7xxPW+5ENo7wefJ1ZyFIII1KP5Jlwcjxc2UQTFsXRfZ3KYHJ587Bx9v34O5zznSKl8W7z3yzBrf/4S9O/rIhBE4EAS4P+edLfeVEpN9WnJw3ft/9dPBH7Mzcp77VA8kc45nDZnXoXWogy25NtUbE948jA/22Qf0s0NVcc0MzOEx367zQ8idLIeCJAD8rp8JxvfTgwYPYl+Wn6tL8vZU8YAL+/OeLfc6Oa955m39cD+X6ujfX2f3e4j4Z+3iA5zP/eBx///01Tt+o/J31n092g/e7c9wWWPt8LUqzCxFMzMNr4zHr7Au7dV3WMc9J/H1HfTicZ9fr7+58xU8IdJYAlxUXnnM5PvjxLYw6d7DNeqs1CH1jo2Cp1yFOn+h0L/L9+tUNy6AsvlGbt6NTbfZZ5Zh440RH7x63zs8efxPnUVuInroPrrp8FLWFVFLb06WqneGuR36JknQyBBJoUu3zQQhW7QLnXHBDm21cGgzmeMet1+KsaUMwd8pIrFpxEFOvtvUtBEUFoKGsBeYGq7oedTRTXxDNLuXqSMeC8WeNws6NuxFOU0fH0RhHrd+k7pDZYznpGo9sC4FTScDxHai9t6f1T7PPwHsi8sbl3p///GeldSi1FJJgdxtKBlTBaDJi5rkT7M+Ra/nX2bywXmAVtbVNvWi86jPU4uPndh1ZEP7Hb17WvE74kss51jS8tOQHXEmzsCb0jaABUrn4bm0W9RXf5VTun/DMSAJC4BQS4GdBq3MfntX2N5a7rPJ3H+uNHNtmGotIQ9TOthkuD9lwmWMd40RpAPicPfVrsY5E9WuRrmNVuq3MYk1GTGIUWQQ3ImNjAR7z8C3mjo83P2aXmpqKq25cgGHTE1GZTwbXzoiwH8L6DX+q8IybMcrut/v7g6oM5/rY4U1ZJI6OQ2FVqdJLuDLn8t6XvpYGMj7X1vezPQMncYWvk9ZP06iLpn6aUtVPc9nVQ8D6uowtRRg9Z6A9R7UksOaZMyP8qB6vD1ffwO+99x5q8hsxZsJYezgW6TZmo9VM8/YALitaH6SLt2wKgVNCoG2hLgnBzEetMNHUKIbo4w3bnnLL0wCzUJeFqY5C3ULqFGdRLDu2bsuuoqJCCV/ZaiuLd3mEBruxY8di/fr1qhNh7dq1Svyqdjj8eeONN8Bp+eK4YGSB7QUXXIARI9g0MI0QJT+2Ljt9+nSVLxbBhoSEOEXHBRmLizV/Fseyxdx3330XGzduVGF5uha2/qGZU+/Th6bQOWZ1TouMLfSyu+GGG3DuuTYrnGxRlq0JL1myRMXPLz49TZPrzZWXl9t3u1rG5XyxYzEwj2LdtGkT2HLt5MmTlSiZGz7/8Ic/qPy/8sor9rQ0y3h8jizWZRE0xzFq1Cj88MMPKh6Oq7m5uRXvFpqSmKciY8diXU2YrDza+DNs2DAVgi3xdtSZMslKSgYdTfdom45uXX0iWdTtI0LdNln1gADciP3+f19D4rFRMCzG2kUN3CVVgT5bkOXnm6d+8OZy0gtU45RjGD5uIY3SfGfpy2pK6nEj+6O4tMan9FkAwx2QG6gDclf2fhpAHoxIxFFj091eK06c5j2/uA+vfPhPmEks0yc5CqXpVWQZUA/DYABzAABAAElEQVRLE+Af5q+m9rRQo1dyUj97douoQXHCDRPs222tsNXB3//ztx6DxdDUAGXU4Wky+3sMs2tfHm67+3aP+3kHc+AK2Ypty8HvhlBdH2U99uIHfe/k8ZpAD9/J11ucEBACHSfAoka29u1NqLubOiK68lnjcq29zvZOGKLeC1xPW7zoYpsgs70RdVF47d2WSNYH4uNsjQi79ufinU92dbhThBlvXmObztZbNnk67vMvtZV9/LHc1kAaLS4W8vKPR8+6czwQRClQaacjbw67+Jyh2LknQ019wwNRXF0oTekb1jeMptgNx9xzB9E3wT7k+QfZg/XrF66s6n65MgM3XzESE2tTcCS7EgcOF2B3XQWeeM59h7s9Ah9WmF9X3qfuknS9dxMSEpCzvgDzbp6NI32zcHh7FoyGBgRaw9A3vg/SzhukognVtbYO6hi/Fs/I6d7faSe6cYTPz3btDykra0r07JhRWRcCJ5gAN07/7qH78e2+Q7hglK3DuqimFi+tps7ygUNafWuc4OxI9Kc5AdcyvzvhuP/++5H2ZZpNTBxhG/zUkTKb3ys6kx4hgSHqGzkwxFkM0sydIwhQYU70O7Y78ZW8CIHOEnjppZfUd4s2iKwjz6e7PJwOzyGXva+//jo++Wo7eOpVrR3xLzTYf/jYOR7rAsyGuX/55ZcKHTPvKu7urkVX+DnmWcurtuyK+CUOIdAWASUMObgNlpom6C1BZCktHsVZJdBXBrdq1+D79cJZF2Prxh8xZZ6zUZwDGw+jDxI8Pp9t5aM77bd9D9vanjhf3BaiPZf33nK/GjCRVXMY1uoae/u8tt+X82CO8y+/jtqOVuDMif1xiKa1PrQuH+FkZCT3YBnMdRbExyQim6zAuXMtJjMiIyKRNiEFFYWVOHowE7qafFjiA1S/yc23LOwV18HduYtf7yLg+A7kM+PnqD3PUkdpOKY7fehMLF/zFfzD9Sg6XAoTGcfR+h87Gr+747isPfjIQXBZqZWf3Aa75etdGJM44aQ/s5yfv//971jxUzHSBlmx60ALRozzXMdyd07iJwR6EwEuFzrqWrXNTBrS7rKM0/dUx+hovrwdp/VrscxM+9ZiQz6frshV9T8ui7nM4jKK+yoqi6pQfKAKC2Zf06XlFde5Lph5IfYU7kBddbM9y1zXqSyqxMghY+x+vML9KxorHlhfnlV0XC/h0t/IfS0Ve93XpRwjrenGFmOZj61e6txPw3qRR3//IKrG1cMQrIeJZsQoLKhETEQc9q/KwQtPvqROkbVBL7zxPHZV76dBIjZNH9fxb5x/CwonFuKL/R84omi1zu+p9sxC3SoC8RACXUygbaEuJWjJI6HuYSsChlihD/EudGQxLAtE2VIqW54ddGxarC+++EJlnUWkUVE2cRyLNTXBput5sSVbLpRyc3Ndd6ntBQsWuPV356lZ8HXdx+a0NcfWfQcOPK7UZ/9LL73ULtLVwrEpdxbqapZoNX9vSy3ed955R4mOzz//fGU5mAXK/MLz1ZWVlamgriJd9uTpsNix8JV/Tz75JNhSr5+fnxLEsSXfxYsXK2Ewi5M1JtnZ2eq4lStXquVnn31mH3FjNBpx33334c0338Stt96qrOs6Xi9uZOTrPGHCBBW3isDHP2z1lx1bQOuIs9TTVDh0T1oKfVHpAjoyqmdI0rV5/3YkL3LMyScwf/58dV9/t/5TlXh4cCEKyv3sFS5fc5QQnoT6arLaF+ks0teOr6CKQMLIBG3TvuT02ZL2d+v3k1W9OKzdkO5z+jyAIW1ZmhrQwJVDtijt+FzZE3FZ4eMKCgqQVXsY+4P3oCXdD2ZzOaoONVCZG6YsBqXSCF1NrMTnFWuNB+fVV8f5iQiylc+ejkkaEYc1m7IxZdLoVkF2H8hDUYW/T2lyvrgCqnXy+MKgVYLiIQSEgBBwQ4AHVu3en40ZU9Lc7CVLqlRWzZw50+2+k+3J5S7/uoPjcpktEGzYVYXByTUooUEo36zJwJBR5/pUrns6hyM0Srktx2G4sYGdL+8iDhcYeFw0y9vuHL/HNaEu728P75iE4yOe+5DFl6jwAJoqm0bHODi2qvvOkr2YMb4G4WHh1NjSBx98sZum9p3UKWYOSZz0VWZUWWgTV3NHGf94qsnYxGg12pwzxHWMtp4hx3g8nYQv8Xg6tr3+nB9xQuBUEOB7b+Ftv8QHr72M0tp6xEeE4UhdEw4HROLZZ545FVmSNIVAtyXAdZH2fL+6OxF+5kJocElS334oriyAwd8AP/qxY5FuS4NF7cuz9ozp7tydo/gJgVNFgJ8vqVN1jP4z9M7/3W8eRL2pGHsP5KO2kYx1BPSnWbluaTPCzpaLbSZwAgL0xDyfAAwS5SkgwGXUvbfch/989SZA43bzyooRbo7FNfOvdVvH4GeQLb5l7MpWs8rwIN5iGvitrwihfoYHTsEZnJgkPZXf2rPKVtPZdbR9nvstfvWrAmQUlGN4WgI+/HI/YoeaMSx+EupCdiAhNpH4ssWd1q6xtolm7rENvp560QQUZZWhf8twzEyd5XO/SetYxUcInDoC2nN1snOgpatNlb1m62okpCaekOeIyxSu27AVyNJDVVSvqYaxyoIESwqeefbkt3NwfthAGRuRY7d49tAOl2cn+7pJekKgOxLg8kQrUzqaP+34ztYxfEmf09I0G9q3VmhkEhZed5v9PLjMeu655xDUaEBLRTUuO+t8J4OTvqTjSxhOhw03ltSWqTYoPqa2sh6hAeF2/Qb7FWeX2vtXNN5chnF55q4+xv71Sxv5UK9O62PzGugU7+RzcXTa9Xvj678hfmwsQsJDEU6G9gItoU46Fw7Hol7m1FBRR/2JiZh98dnqGnO/Zu5SmjH6DM8i9dz0fEwZerZj0rIuBE4pAZ+EuqA+adM+EuuOtiJwuHehLluYZUu3POL7888/twtR//e//6kTve6665xOmC3Z8j5+gFiwxVZjWZDKll09Obb4GhZmm6bWUxhXfxaUfvPNN9i8eTNycnKUQLQta66uBQXHqfmxNVlfHZ8zi1pZuMziXxYys2VdHjXA1oU14XJb8WlC3ZiYmFZBmYnmLrvsMiXU1bbZUvHPf/5z9ZLil9B3331nF+o6FtgvvviiXaTLxwYEBID9du3aha1bt+LHH3+0vxzYCiaLeNlxBZgFwe1x0dHRKjgLpDvijFlWtOwnka6zXsJjVPp+OviRUFdc7yHAAld+IbPjit7td15qvz99Pctx48Zhx8b1mHzBOLeHlORUeBxd8/DDD4MHIBRTvcgabG5X+px3/rXXsWCez5XTHTZnmFpfs+MHmNN0NI1XAjVq2UROHG8ONfx3JI3ECO/i5RajGR99uQsP39naeuTXq/a0K02ubLqrcLaXi4QXAkJACDgS4A+23z3+S/zy52c7etvXuawaNmyqfVtWjhPQ3jNFtRlYu70YqSPPAb/vOuoc65ne4iguq3F6H7T1LgqJDEJMbGsruN7S6Mi+iorjjR9Xzx+N19/fTjOCNCEmxiYSTugTiomjaUoimvRi3fYc+OktyC2PxH//+2xHkusWx/A1a6h2rmAPmTjIKW9cx5gy7GwnP9cNd/G4hvElHtdjZFsI9EQC2ncL1+EjGlqQOHISnqV2AakH98SrKXnuCQT42fK3BCIyJJpmoDGhucUIM1kwaaLZYQbT4NbKTJqKnWaTEScEhIAQOFkEuFxaeJ1t9inVpkfbzz4rdYGTxV/SOb0IaHVvPmtuR+f+OE/1bvZni29sncuaFIAqfQlCW6LJ79p2tXH3dMKe+LTnvLT2JC7j7rnnPHUos+fpjMsLySpaQiTVxVr3+RqbTQgMPz4QOzA4AA899JDbWVbbkx8JKwROVwJan6C2PFEctPKTy9kiYwFN2Z6ES+/zXN6eqHw4xnuiz9kxLVkXAkLANwJdUcfwJSVNs6F9a507z7k84nz861//UnVDju9E5YvjZcuvd999N6oL6xDTNxphARFIS3U2KnR4Wybmjb7C6dS8lWHc11JxzLiK00EOGyXZZT22rYuv3+rVq+FH9cJmayOSYpNQk9+oWDqcoqqfMyd+9zheQ+aTl+59FvdyMuoTP8I2OMwxTlkXAqeKgB9YX+mD5tSSSRZM91jgT4JHfZh3weOiRYuUUPfDDz9UQl0Wda5btw4sJj3vPNtHGp8wW8tloeqePXvs588WePnBYmFoV7lXX30V9957rz06zgdbdB0xYoQSCNt3uKzo9TS6vQscT733008/Uaf9f8GWbfl8WcTMv9tuuw2ffvqpT6bVAwMDVW7ciYT79etnz6kmJrZ7HFthS74s1P3222+VwJEFvCkpKfZgbMXY1RkMBsybN09dj7Vr19ot5/JLht1VV12lLBGzwFpzdXU2yySNjY3Kum9wcLASJ2v7eWkymdSmv7+/o7dP65Y6uhd3W2DJ9s2aLt/jhkE6+ItQ1ye+PSkQN/Z0xnED0lnzlrgV6pbklCHS1MfpRe+aVmfTd42vrW0uG/nnmO6DDz6IXVUbkUbT52mO8x7QEIaxZ4/VvHxejhkzBrs2bcTkua2PZct3zAQ0TmLV+nScO2O4Pd69B/OhD+iDsWNbH2cPJCtCQAgIgZNAgC1x6AzBKCmvpUEM4a1S3JtegJtuk7KqFRjy0N4zvG/k+HQMH368nHcXvi0/jo+vRVuupt7524Lr6tyR48nifWxiJEJDj3fktBV/R/aH0vQ5OTlV9kNvXXQGPl9xGEcOlGPCJNvAGGOVCVNGxeOM6VOxZkMGPlm+w2snoD2ybrzC1yzYHOJ1xgFu1Og7/PggQXen01XxuItb/IRATyTA9Xf+sYWHzpatPfH8Jc9C4GQS4G/aI9W7MXDUQHD7VG1TNeqa69GXBown0ODWI+tzMGX02SczS5KWEBACQsDelufYpidYhIAQODEE2vOccVjNGAjX1dkIjtTX239dtPYkV/Y8G8+Hm99WEdaVHh8MraVgbDQiNiZW22xThGIPKCtCQAiccgKuz/spz5BkQAgIgdOaAJdJbZVLXF850Y7z8M9//hMtLVVISRrs1vhkfU2j0s35mhfOd0RQpNfgh7ZltBL/ej2gm+3861//qgS4q7esQkJAEoZfONzj9XS9jrzdVp8WM5dB+93sop/m2dHrjn8DeUdBU8WYdlhgPGwB6L83N3nyZDWlOYtts7Ky7NMNsFVXR8urb731lhKt8vTnK1asUFZ0WQHPolZ+GLvC1dTU2EW6Tz75JI4cOYK8vDxlJZYt7J4sx8JgtkC7bds2sHD57bffxoQJE1TyV1xxBerr69vMSp8+JJAj5yiK1Q5iEW9ycrLaHDx4sObttGRhLjsWzmrOUahrNps1b6eldpyjcHnVqlUqzMcffwwWIjv+fvvb36p977zzDlhAvGDBAqf4eKOiokL5adPatArgyYPuveaDFrTsopXW3/Vuj9LFAf4k1G1LYO72YPHs1QS40S2oJRgN9HJ2dYe2ZqiGOVf/7rbNYv+ivZUozbWJ5flc1n+6DXMmXtSh/HN8u7+3TXfleq65JG7jxsrHH3+cLA2sx/5DBSpIKYnhnn3pW4yfemmH0nRNR7aFgBAQAp0hwGX72Imz8NnXO1pFw+VWdqFVyqpWZFp7dFXHlD4gBvye8OR4n+sHMm9r7zV3x9XXNEEbwOZuv69+jjNSuB4TmxSNysrjlmUDqK59+YXjcfRAJXT1FgSa9DSFfTgCaDrtsNAwXHz+WERHhmD06NGuUfW4bb72LJT25Jj/7NmzPe22+7cVT2lupU/x2COUFSHQCwh0VdnaC1DIKQiBE0aAv1lzDhSozhC2qjEkZRiGDB5KFkxsU+Dx+6c3vK9PGECJWAgIASEgBITAaUaA6w78+/Wvfy0i3S6+9tx2wH0X7gZiN5NIV2+hNhWH2VMbaYafdvcZdnGeJTohIASEgBAQAkJACHSGALc5GUz+TnUcx/jyD5S0u18kMSLZrZ7FMV5v/V2O4brjOreZc3387394QdXJeb09rq2+KGYu7fLtISphTzQBvSGVxJvORqw8pmnJJpHkVhJJlnm3ZMrCzptvvlnFw1ZjP/roI7W+cOFCp7h/+OEHtX3HHXeowsixw13b53RABza2bNmijgoPD8ejjz6KAQMG2GPZtWuXfb2rVqqrq1tFVVBQgMzMTBiNRrWPRbvXXnutsmyrBd67d6+26nHJx7ErKSmhURitzSBrFnFXrlzpNg4WQ7ObM2cONPFtUlIS2IoxO22/2jj2x2Kx4Msvv1RbZ599tn0XWyP29HN8CXAYR2u/WgR8DuxY4Nse11JC1nQ3kzXdXB+PonvbMEQHPxLqihMC7giwVej0zUecdpXmlUNvDMCoUaOc/LvjBlcqrrvsBlQfasL+DYeRu6sYg8KHthI9+Zp3ji/Qg3j5wKajigkPLjjvgivx1eo8LP1qG1kYPIg6UyzYX5wQEAJCoDsQ4EEHS95fj9IKZ4HoWx+sl7LqJF+guLg4HMoo9pjq+i1HWn0gs1B3l4dBIxxRfnqx6szxGKnDDk7fk2vrwzwn53i9Ppw6jm5eeBYOHK1GckwUBsXHInVgHOrqm+3RH86q6RX3F9d/yvJsg+rsJ+ewYqqwtrpmDrvtq23F05Bj8ikee4SyIgSEgBAQAkLABwLcJsXvKscBuZoAhP1CG6N6xfvaBxQSRAgIASEgBISAEBACp5QAt7skRfRDcHgQmuts/aNahuqqGpCY4Nw/WF1QK+0EGiBZCgEhIASEgBAQAj2SAPdPeurfYg1Kv+gB7a7vcD9XWYHnPpvSvMoOa0N6JGSXTHvri9KYuxwim0LglBLQ+w0nAWOUj3kwAS07rWjeboal0btYVxPlvvzyy1izZg146jn+Obq0NNtU7V9//bWT8JSP+eqrrxyDdnhdE6HW1tYqS71aRCyeXbx4sbbZ6WVkpM3cOItki4udxQgsXmOT2/fcc49TOgcOHLBvtyUU4ICaUJfXDx06xAsn98QTT6jtpUuX4i9/+YvTvvfffx/PPfec8jv//PPt+9jC8Z///Ge1fe+992L16tX2fSzSZSvAO3bYLNI5Wjtbvny5skrMYmfX38MPP6ziUC8h2r9kyRJ7nNqKJpJuz+hYS4MVTdvMaNlN9x7di744XTRZ06V73C9O70twCXMaErj99tthKjDYBSmaRdqJA6a5tQbdHRE99thjWHTBTYgoTcCUxJl4/vnnlZC+o3m98sorW4mXWbATUh9pZ8Jpjp1yCb7b2IR6a6pKs6PpyXFCQAgIga4mwAOFEvuPwOff7LRHnX6kEFV1gRg5cqTdT1ZOPAGuPx44XOgxoYNHi+AqpuXrF2AMchLYaBHw+4j3eROSamEbapvafB86ini043gZGn58BgprC83kQG5YajwNcDTAz0CjoUOClF9AQIBa8v0Vn3zip05SiZ3gP1w32rnSvXV95j4udYJPOWgrHsdvC58ilEBCQAgIASEgBHwgwPWI88+Y67YDIyc93/5N60NUEkQICAEhIASEgBAQAkKgkwS4HS59UwZqi48PdDY2mqCz6BAeHuEUu2v7kNNO2RACQkAICAEhIASEQA8g4K1/6+Dmox1ql+K+FG99YvVZxjb7wnoAug5n0VtfVEeZdzgzcqAQ8IGAPmC4HoY0Euv6aHDUWkpWddeTVdOD1GFt9pwCW1FlQShbkmV36623tgrMlizZsbiVBZuXXnqpsr56//33Y8gQ25R0rQ5qp8fgwYMxefJkdRTn58wzzwRbhk1JSUFFhedRB+1MBhMnTrQf0r9/f0ybNg35+fnKTxOusmCVhcM33XSTOldtytg777wTmtDXHombFRbVzps3T+3ZufO48EQLyuk+/fTTapNFu5zW1VdfrSxg/vznP1f+LJ5la76O7vLLL7fHy1Z5Oe8s1GPrw6+99poK+u9//xvMsqvc2rVrVVQ+d9DTvWY8YIFxvQXWch9zQfe0YagOAUP10Pn5eIwEO+0IcGXp7pvvRcXBBhzcchR5u4vRL3AQ+IXekxw/s++++y4ef/zxTlfE+Nyb8/Uoz7eVkbw8uC4b2mAAjUtXpqnFKUshIASEQFcR4EELG3ZU4Itvd+Instq65MNtuGrhraqO01VpSDxtE+D37Bff7PIY8OCRYrcjffkdw+9lV8dW8H2tP5bnH7eI6xoPb/fp08dj40ZscgyqqprUYabm4zNZDEvrhy9WHlb+RlMLwmjWDnZvkQXnmTNnqvWe/sfWkBSIhtrGVqey/fu9Pp9nV8XTKhPiIQSEgBAQAkKgDQILFiyg79nKVqHSN2d0+nu5VaTiIQSEgBAQAkJACAgBIeCRAPc1BNXa2k60QNVlNQgPinSyqMttEDK4XiMkSyEgBISAEBACQqAnE/DUv1VWUNWhdinuE9vpYRZK1nH42mfWk5l6y7u3vqiOMveWnuwTAp0loPdP0sN/jA5sedRXZzlKlk1XW2DKJbEuGTf15G644Qb7Lm4kd3UsOv3444+RnJwMtnj7zTffoLGxEc8++6yy5Mrh/f397YfpdD6qie1H2FbYYi8Xhuy2bt2qLOuySHbFihU0YtP2gcgiWM0ZDAa16uin7dP8tKXmzxZz33nnHbvVYLZCW1NTo3azWJbzwAUEi3ffe+89da4spH3ppZfaZYly/vz5Ks5169ZpSTstWRT86aefqvPitD7//HMcPnwYPPUfC/j+8Y9/QK93ti7LXD/55BM89dRTKi7O+7Jly1BSUqLyzNZ4Fy1a5JSOtw0tfldG2jE5OTkqbmY/adIkzdvzku4xY7ZF3XOWLM/BXPfoYun+GUvWdBOdz9c1nGwLAR40sGjOzxGQE43xfaar5+R0bhTic7+HxMvlB+pxaGuGWk7oNxXa4Aq5Y4SAEBACPYEAl2UszP3shyp8tqoIfftPk3LsFFw4FsPqDEEor6xrlTr7rduS57Yjhjty8naWoZGs4mquvKASfSMSVaNDY91xf22/uyWn78m19a4vLD8uVPU/Zjn31uvOwlsf2YTHFVX1CPAPwKGMYpRV+/WqxhD+dnMVSvO1yE8vadd5dlU8nq6h+AsBISAEhIAQcEeA3/9NeQDXHTTH64HVYVIf1IDIUggIASEgBISAEBACJ4EAt72wARBTvRl1VQ0wNrTAAH+kDExxSr2MRCbe2nCcAsuGEBACQkAICAEhIAS6MQFP/VsdbZfi+pR/U4BTf5l2+gc2+W7cRjumNy7d9UVJW2BvvNK945x0RqPRasq3oH6pGS0bSBFJlkt9cqFAwGw9Qi6k6V/jOyagdUynuLgYzc3NSEpKgieBp2P4jqybTCbk5uYiOjpa/ToShy/H1NfXg8WvISEhrYKzELmgoEAJZzWRcKtAXjxY5JqWlqaEuBxPYGCg29BmsxlHjx5VFo05fGpqqttwrp6cv/T0dJSVlWHcuHEqn65hOrvNFu4eeeQR3HLLLXjllVfajM5UaEHDcjNMa+n+bGgzuC0Aaa39Z+oQegXdnyLU9RGaBBMCzgT+97//4cMPP8TPfvYzjB49Wlnndg4hW0JACAiBnkFg3759Uoadwks1Z84cPHzrGMyYkuaUiy++24UvVlfjgw8+cPLXNu666y4cMe/G+HNGgYW53729Fr+762kkJCTghnsX4drHLtGCul0uefRjlGSUud3HnmvWrMEDf7kTc250bwn3/aeX4dU/nY+mwmrMPWeuPZ4LF72A39wzBbGRftD5R+GZVzfgioUP4pprrrGH6ekr/MxcdfMCzLl9OoLDgtTpsHD3yDeF2Lt3r8+n11Xx+JygBBQCQkAICAEhcIwAf8++v/JtxI0KJyvxTcjeUYR7ruld72u52EJACAgBISAEhIAQ6CkEEhMTMeKGJESQAZ/wsHDqC052yjq3OUyKnIUnn3zSyV82hIAQEAJCQAgIASHQEwlw/9buqs0YPmWwapeqzzHh2vN/3uF+JMf+Mkcen7+0Aktf+eK07wPV+qLOWjQeMYnRTn2KvanvzvHay3rPJaBMjfon6BEwUQ9dQjtOpB4wbbSgca0Z5nIvZnV9jDI+Ph4DBgw4YSJdzgZb5x08ePAJFelyOqGhoW5FurwvODhYiWY7ItLl45nRddddpywQr1y5kr3cOrYKPHToUFxwwQU+i3Q5Is7fhAkTwIIKtsLb1c5qtSrLwxzvfffd12b0LWVWNP5I1ps3t0OkS7HqkkhITve0X1+xptsmZAkgBDwQ4ErL0qVLVYVx1KhRHkKJtxAQAkKg+xOQMuzUXqMhQ4bgSGZJq0ys33wEM2e6F8ly4F/+8peozzLjyI4s5O0uRl8kq3dSbCxNm+CDq8qzzW7hLWhZXpXH3UFhATTorRItjSanMM/97md49b09WLc1H2s3Z6GgPLDDjStOEXejDX5mzpl8Hnb+sA8VRVXIP1IEa5W/soLTnmy6xsNxdSSe9qQpYYWAEBACQkAIMAH+nl143o0o2VuLunQLzhk1t9e9r+VKCwEhIASEgBAQAkKgpxBgQyCjh43BsKHDW4l0+RxKc8t7yqlIPoWAEBACQkAICAEh0CYB7t/q09DP3i7FbVSdEYxyfDnbS5QAVUuc+1sM5UGnvUiXeXBf1FUX/Ezx5v4sxz5FjZcshUB3IWBTMZL10cBRevhPos3WRmA95tVaARjXkJDyJxLrVnVerOsxIdnhROCPf/yj2v7Nb36DlpYWp33dfePTTz/Fnj178MADD2D48OFes2uupHtrHVnSJaEujs9W6PUYtZOtPU8h8flwup/p3hYnBISAEBACQkAICAEhcOoI3HnnnVj69X5UVtNIv2PuaHYpSip1mD17tubVasmdOHf9/B60HAjEyPBJePnll1UY9u8K15bgd8CIROS5EfuOHJKISy6YjD++vAXfb7Xa89UVeepOcfB1i65NQsmealTvM5HY6QYsXLiw3Vl0jMec79fheNqdsBwgBISAEBACpz0Bfm/x++uPj/4JTz311GnPQwAIASEgBISAEBACQuBUEYiJiUFpnmcxbmN9MziMOCEgBISAEBACQkAI9AYC3I/F2iitXaojfSuOHDi+syedi0NbM5R3JYl0ue/miSeecAx2Wq9z2x/z9iuMcOpTPK2hyMl3SwI6o9FoV9gaD1tQ/zGJbneRF2kjfXW6JB0C5+gQfKYBhmidr4dJuE4QeO211/D+++/jmWeewbRp0zoR08k99Oabb0ZBQQF4CsKoqCiPiZsrbCLd5pUWWIs8Bmu9g7W5E3UIvdKAgFSbDr11IPERAkJACAgBISAEhIAQOJkE7rjjDowb3IAbrjpDJfvMS18jIGpqh6c0jE+Nw01PX+n1FN6+7zMUFXmvSA4Yl4xrH7vEbTw56fk4+tUuPHrLRJptYm6rMDMvewY79mS38u9tHu+99x7GjBmjfp05t66KpzN5kGOFgBAQAkJACAgBISAEhIAQEAJCQAgIgZNP4MUXX8SX+z/EuNkj3Sb+78eWYuVnqzrd9uA2cvEUAkJACAgBISAEhEAvIMAGEW9/eDFmXzMV+346hIXn3ohFixb1gjOTUxACpxcBP8fT9U/RI/AsEkiWmmHNc9zjfd1aYEXzdxTGbEbwDBLrxopY1zuxzu+9/fbbwb+e5pYsWdJmllvKbCJd46p2inQpZl0/sg59FlmHHiAi3TZBSwAhIASEgBAQAkJACJwkAmxV9XdP3o+Z08rIsm4D9H6RGDx4cMdTr/Ne12siSywsLm3LNdcbPQYJDg1CbW0zwiMiWoWpqmlAQUlTK//e6NFVDT1dFU9vZCznJASEgBAQAkJACAgBISAEhIAQEAJCoDcT4Daav7z+J49C3crcap/acXozIzk3ISAEhIAQEAJCQAh4I8D1qbtuvEcFGX3ONBHpeoMl+4RANybgJNTV+ZPIcawe5hIrjN+SSLLK95xbC0msuwKwNpNYd5YBfvEi1vWdnoRUBMiQs6nIgqYfLTDSz1raPi66aJtIN3C0HnwvixMCQkAICAEhIASEgBDoHgTGjh2LK67+BT5a/jXyixpx9pwFuO666zqcOY6PxbhBoYFu42BruN5mb7AfVOtZ8BvXPxa5RXUwmuyh7SvrNx/BrFmz7NuyIgSEgBAQAkJACAgBISAEhIAQEAJCQAgIASHgnkB0dDQ8DZbm9p1Bgwa5P1B8hYAQEAJCQAgIASEgBOwEOtOvZo9EVoSAEDilBJyEupwTQ6QOQdP1sJBVU9N6Uk62w1CUtZgEvt9bYa23IvgcA/z7U8e3577vU3rikng3I2ABjNkWNP5ghmkT3XeV7cxfMOA3he7daXoYIkQk3k56ElwICAEhIASEgBAQAiecwPXXX4///MeCBYvGYdy4cZ1OryS3DAOGJ7uNpyS7DPPGznS7z9GTBb/NDc0IDHEv+E0cHocCmm3E1a3fcgQzZ17q6i3bQkAICAEhIASEgBAQAkJACAgBISAEhIAQEAIuBLj9xVqjc9sGk5teAG4zEicEhIAQEAJCQAgIASEgBISAEOjtBNzKaP0T9Qgioa1hNAke22mZ1FpBgssfraj/wozm/WaysEuiS3FCwAsBvkea9prR8DmJdNd2QKRL96jfWB2CzyZLzglub2kvqcsuISAEhIAQEAJCQAgIgZNF4MYbb+wSkW5kZGSXZbk4p8xjXH0HxGBPekmr/es3H8Xs2bNb+YuHEBACQkAICAEhIASEgBAQAkJACAgBISAEhEBrAjwzkbs2GJ4VqSvbeVqnLD5CQAgIASEgBISAEBACQkAICIHuQcC9qpH0uQGpegTP1UM/hDbch/J8BnVAC1lFbfiELKRussBcLWJdz7BO7z3mKisaN1joXjGjZQvdJ/Xt5GEgK9DDyZLuXAMCBtGNKsZ02wlQggsBISAEhIAQEAJCoOcRmDlzJllhMXrNeEREhNf9vNOXMOs3H0FNXaM9rrzCSlTV6btEcGyPVFaEgBAQAkJACAgBISAEhIAQEAJCQAgIASHQiwlwW05NOXUgu7i8AyVgEa84ISAEhIAQEAJCQAgIASEgBIRAbyfgUYKrIwFk4AgDgueRWDeVMHgM6QER9Zub95EI83MSYX5HllJzLOThIax4n34E6F4wZdO98a2Z7hEzLAcIgamdGOie1KcBQXSPBg6jDbpnxQkBISAEhIAQEAJCQAj0fgLjx49HzoECjyfa3GjyqZOHO4KMXgS/HE9FrQ7frNpnT+svL32DJ554wr4tK0JACAgBISAEhIAQEAJCQAgIASEgBISAEBAC3glwG8y2b463r3Do2oo6hJjDwO084oSAEBACQkAICAEhIASEgBAQAr2dgFf5rS6QxLrj9Ai60AB9CqFor7VSMpBqzbWi+VsL6j8jQeYOEmTWiXXd3n5TtXV+lloScG83o/5TM5q/s8CaT0e097ZgQ88kIA++yICgMXroAtpKVfYLASEgBISAEBACQkAI9CYCJdkVHk8nL70YEyZM8Lhf26EEv+meBb8cD4ty//vJNhQUV6nfDxvycPPNN2tRyFIICAEhIASEgBAQAkJACAgBISAEhIAQEAJCoA0C3E4TbApV4lwt6K7V+6WNRYMhSyEgBISAEBACQkAICAEhIAR6PQG/ts5QH6xD0ETS85JB3KblJLTNoiNovV2uBmjZaIWl0IyWqVYETdLDL4nElW2m3q5UJHA3J2BtIaO5eRY0b7PAtNkCSy5lmPza7diS7mCypEsC8sDxdB8FtVdB3u4U5QAhIASEgBAQAkJACAiBbkQgPDwcxibP0zGYyn2fyqM4y7PgtyKrCr/4xS+wfft2/PfT3YqAWNPtRjeCZEUICAEhIASEgBAQAkJACAgBISAEhIAQ6DEEuE3l1S+ex7mLZqCush4RwVFISkrqMfmXjAoBISAEhIAQEAJCQAgIASEgBDpDwKtFXS1ifQiJdSeTZd35ZFk3jXwN2p52LEmQaTkKNH9F1nWXknXdDWaYy9nkbjvikKA9kwBd45YysqL7kxkNdO2bl5NIN5NOpSMiXbr39EPJki7diywgZyG5OCEgBISAEBACQkAICIHTi8DEiRNhLG1xK9ZlAS9Pp+iLY8GvyYPgl+MJCwtT0bz44osYMPR89bvlllt8iVrCCAEhIASEgBAQAkJACAgBISAEhIAQEAJCQAg4EOA2FXO1HkVZpdi1Mh1zx10CaWdxACSrQkAICAEhIASEgBAQAkJACPRqAj7btNXEujp/sqz7jQXmQ6S+9GzEyjM0tq67yQpztgUtR60ImKBDQCoJLsNEcOkZWs/dY6m1wniErOjusKJllwXWYjqX9lpk1k6f7j3DcBKNX0ii8dFiSVfDIkshIASEgBAQAkJACJyOBCZNmkQdOyUYMDzZ6fRz0/MxceIMJz9PGyz4bSbBL4t1/YOosungOJ7Zs2fbfW699Vb7uqwIASEgBISAEBACQkAICAEhIASEgBAQAkJACLSfwC+vuxuvv/46Jk2a7PNA6/anIkcIASEgBISAEBACQkAICAEhIAS6HwGfhbqcdX0QiSTHG6ALJLHuChLa7iWxbmMHToqEmtYCEnCSldWWwzqYxpNgd4we/gN1YiG1Azi74yGWBitMWXSN91hgIoGuJYdyaexETkMAvzF0/80xIHA4iXQDOhGXHCoEhIAQEAJCQAgIASHQ4wn07dsXzU3lrc6jMKME40a38vbowYLfQjeCX45n3sQrPB4nO4SAEBACQkAICAEhIASEgBAQAkJACAgBISAE2kdg8eLF4J84ISAEhIAQEAJCQAgIASEgBITA6UagXUJdhsMi3cAxBrCF3cZwM0zbSKxb3UFsJNy0HLaiOY8Eu/ut8B+rg/9IEuz2J8EuxS+u5xFQAt0cEujuJyH3brKcnNlBMbfjqUcB/pN1CD7XgIBBejKr67hT1oWAEBACQkAICAEhIARORwK33XYbfvX8PUgdn+J0+g01TYiLi3Py87bBYY3Nla2CmIwtCAmh0WLihIAQEAJCQAgIASEgBISAEBACQkAICAEhIASEgBAQAkJACAgBISAEhIAQEAJCQAh0gkC7hbqclo6EkgFDyKop9Vs3RVtg/MkCaxHtIE1mhxxZ5TXvI1EnWWA1kZVev1E6BJDVVP8BJNgNE8Fuh5ie5IMsdSTO5euXTgJdEl0rgW59JzNBl16XRPfamXoEzaD7IZFEunI7dBKqHC4EhIAQEAJCQAgIgd5BgEW0eQeKW51M5oYC3PH1Ha38PXncfvvtNsHvuIFOQTjuWY/NcvKTDSEgBISAEBACQkAICAEhIASEgBAQAkJACAgBISAEhIAQEAJCQAgIASEgBISAEBAC7SXQIaGuSoQEk/799NDPJTFtH6B5jQWWo7TH1N4sOIQnYad5D4k8j5LgcxdZ2B2hg98QEu2SFVVDFCVIOk1x3YiAha5XJQl0My0wkWXklgNWWLK7wIIun2IAGc5NI+vNZxsQOP7Y9e9Gpy5ZEQJCQAgIASEgBISAEDi1BKZMmYKGoma0kOVbvwDbZ01jXRNmzWqfuFYJftNLnE6G4+S4OQ1xQkAICAEhIASEgBAQAkJACAgBISAEhIAQEAJCQAgIASEgBISAEBACQkAICAEhIAQ6Q6DjQt1jqRqidQiZYYChjw5N68iaKglsUdWZLNGxDYCFRJ/NLNgli6rGYRb4p5FF1UEk3I3XQRcoZlU7SbhTh1ub6LoU0y+TxLlH6JoftMJaSFEaOxXt8YOjSQQ+TofAmXoEDiXLzXK9j7ORNSEgBISAEBACQkAICAE7gQsuuAAZu3MwdPJg5bftu924YtYi+35fVliMW1/Q6CT4zUkvaLfg15e0JIwQEAJCQAgIASEgBISAEBACQkAICAEhIASEgBAQAkJACAgBISAEhIAQEAJCQAicfgQ6LdRlZLogHYLGHBPrJpN11Q1kXTeXdrR0EigJPy1Z9MshQeh2M4wk1DWk6uCfQoLd/nr4kUgYhk6mIYf7RMBqJuu5FSTOzSVhbhZdDxJRWzJIoFtJh5Nl3S5xdDfqacZh/zP0CJpCwuwEMqEsVpS7BK1EIgSEgBAQAkJACAiB3kjgoYcewuU3XaqEui0mM3QWfYcEtnPnzkXGHhL8TrIJfln8e9Pc23sjMjknISAEhIAQEAJCQAgIASEgBISAEBACQkAICAEhIASEgBAQAkJACAgBISAEhIAQOMkEukSoq/JMgkr/ZD0MkTo0J9OPxLrmfceEnJ09KRKCWktJ91tKAtE9JBZNJMHuIAv8Bh4T7FJ6hggS7Yqos7OknY8n7uZqYl5AvxwS6GZbYc4kXW4hWU1ucg7a2S1dDOA3WoeA6WRFd7ge+lCxmtxZpnK8EBACQkAICAEhIAR6O4GpU6eipcyC+uoGFBwtRoI1BezXXvfwww9jwc2XKaFuc0MzcjeV4J5l97Q3GgkvBISAEBACQkAICAEhIASEgBAQAkJACAgBISAEhIAQEAJCQAgIASEgBISAEBACQqAVga4T6h6LWh+mQ/AkA/xITNtMYlrjFrK8mknCzuZWaXfMo5GEomTJ1ZIBmMKtMPSzQj+ARJ79SLRLQmFOV09iYV2Xn1nHstvTjrKSFWRzFQlzSYxrLiBxbi4tc4h5Hl3DuhNwNkGkrx5MAt0pOgROECu6J4CwRCkEhIAQEAJCQAgIgV5N4PHHH8e/33tTneOrz/y+Q+c6bdo0GEvNaKhpxIZl28HCXXFCQAgIASEgBISAEBACQkAICAEhIASEgBAQAkJACAgBISAEhIAQEAJCQAgIASEgBLqCgM5oNJIC88Q4S6MVxqP020qCz10WWIooHfMJSIuNr4aR4DOJLOv2Awy8TCDhbjwt+5BwN5gCiIFW9+Dp6vN1MrO14mJaFrFAl355xyznsjj3RNwhBr5eJLAeRxZ0J+kRkEri6iC5SO4vkvgKASEgBISAEBACQkAIeCOwceNGtfuMM87wFszrvueffx5LPnkD1Tl1+OCDD9CZuLwmJDuFgBAQAkJACAgBISAEhIAQEAJCQAgIASEgBISAEBACQkAICAEhIASEgBAQAkLgtCJwQoW6GklzBYl1D5B13R0k2N1vhbWc9pwI8aeWIFlp1cXZBLt6Euwa+tKPt0m0a4g5zYW7LMxtICEuXRNzGf1IoGsuIb9jAl1rGUFs0kCegCVrpvuQQHcUWdEdTwLdEXoYokWgewJIS5RCQAgIASEgBISAEBAC7SSwYcMGTJ8+vZ1HSXAhIASEgBAQAkJACAgBISAEhIAQEAJCQAgIASEgBISAEBACQkAICAEhIASEgBAQAp4JnBShrkreArLYakHzXgtMu0kceogEu1W050QKdjlh1oCytV0S6+r70jKOlrEk2o0l0S4JRPVRtIwga66BHLj3OWszGTGuscJSRcxZnEs/CwmlLSTQtRTbljhRVnMdcbJAN5q4D9PBf6wOgaMM8KNrAr1jIFkXAkJACAgBISAEhIAQEAJCQAgIASEgBISAEBACQkAICAEhIASEgBAQAkJACAgBISAEhIAQEAJCQAgIASEgBIRA7yFw8oS6x5hZW0iwW0CC3X0k2N1HwtHDpNQ9GYJd7ZqxcDeYRKMxpBElsa6elyTYVSLSSNom0a4+nPzCaEk/nb92YPdeWo0kuq0n8W0t//4/e/cBIEdZ/3/8mwZppPcKIfRQJEKAQOhI70WadIIoCoqgQlAQ+YmCCghK70QgoJRIEQQSEEJACDWhhpYA6b3f/Z/PE579z83t3s7s7d3ubd4PXHZ2dsozr91n6ne+801w7jzX7Wyr57jX2e7zWd9kM1bG3IYOkA5cIUB3AxegO8Rl0d2subXs1dyatQwD8IoAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAghUpkCjB+oGxuoVZitcwO7yd6ts5burA3arXTCpucy7jV5C8G4nF8CrYN2O7rWDC9ZdxwXqKmi3rXtt982rgnzdX/PWrp/7a76Wq22LBq7xKsfiMuNWL3MBt0tcsK0LtK1e4votdt2L3KsL0K12WXGrXObc6vl6dZ+7IF2fsdgN12hBuVEGlym3mTIXuwDdlpu4DLqbuADd3i5At4kEPkcXhW4EEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEECgEIGSBeqGyvoMu1+5gN3JLsPuFBew+4ELMP3KfeoCeUteFMDrAnEVpGvur5ky7LZdHairYN1mbRSs614VrKvhWrn3LhDVZ4tVxlj310xBvJqOMsu64FXf7V588KwLSq5WZlu9umBc05/LOCyT6hXOwWXJlUO1D9J1rwrSdYG3/m+xe3XBuaYgXResaxq2sbLkulnlLFr+Xm7RB7sA3Y1dBt2NXIBuDzLo5vTiAwQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQqFiBkgfqZmRdsOrKmdW24kMXsOuCdVe6v6rPXOSpglHLvSgYNxOs67qVNbaFC9pt6eqvgN0QoOuDdd0/rne1InTd/yFgd3WArvtspeu5spkP1PXBtwrAVQBvuZf2bpEHNLMWg93iD25urdZ3Abpd3fJo2SkIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIDAGihQPoG6EfyqBS5g99PVQbsrP3JZdqe6rLEz3ADlkGU3Us81vlNZhLu7AN11XfbcQc18cG4rF6zb3GUepiCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAJrukBZBuqGL6XaBeaunOECdqdW2cqPXcDuJ6uz7FbPdUM0hSyzYUEq6dVlD27W2SXK7e+y5w50wbnruSDddV323O7KIFxJC8qyIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAvUTKOtA3eiiVS2utpXTlGm3ylZ95oJ2PzOr+sJl2iVoN8rUMN0hOLevC87t7zLo9m9urVyQbsveLntuG7LnNgw6U0UAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgaYu0GQCdaPQVQtdwO50F7irgF0XrLvKdVe5IN7qWW6oZdEh6S5YYG2XObebC8rt44JxXUBui75mrVyArg/ObUdwbsGujIgAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAmuMQJMM1I1+O8q0u+prF7jrAnVX6e8rF7T7lVm161c93w25Mjo03TkFWrrA3I7ur4cLzO3hAnR7uYy5LkhXfy3Uj8y5Oen4AAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEMgm0OQDdaMLVb3CbNXc1YG7K7+scgG8ZlUzXODuTBe4O8sF7s51Q7thKE5grW8Cc7u5INyuLjDXB+i6wNyeLjBXf52aWTMXvEtBAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEChMoKICdeME1ctc4O4cF7g78///VbmA3ao5LnBXfy6ot3qBG6vSs+62ckG57d1fZxd829msuf66uGDc7u7PBer6P33mgncpCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAALFEajoQN04UbULyK1a6IJ2Fbw7WwG7q4N2q+a5gN35LnDX/60O3q1e7MZuatl3FZDb7pug3A4u8Laj6+7ggnI7uqy5nVzWXBec29wF5PrX9u7zFnEh3iOAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIFEtgjQrUzYq2ygXvLnaBu/Nd0O48161X/S10gbuL3J8L7PWvLnC3eonrXuKmstR1uz9b7v4aKxtvSzcvl/G2WetmZm2qrVkb193GBdu2da8Kzm3nut1r83X05wJyFZzrgnRb6NUNZwTlOkAKAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggg0HgCBOrmsq52wbguELdqkQva1d83gbqrXxWo64J2l7lX96eA3erl7n0I3HXBu9UuANgH8epV03J/VqVudbjS3AXP6n/3p1cfSOuCcX2WWwXlqluBuWu5AFz3amu7bv25QF0F6TZXgK4LwNVrcxekqz8/nKZFQQABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBAouQCBuvX9CpSRd4WLv13mAnXdq610r8qyq2Bd/Sk41wfoulcfrFszUNcH6TZ3Qbf6CwG6LV207TeBus1DoK77nIIAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggg0HQEFBpKqY9AC5fR1v2Zy3S7uoTX+kyUcRFAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEmroAeVqb+jdI/RFAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEylKAQN2y/FqoFAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAUxcgULepf4PUHwEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEECgLAUI1C3Lr4VKIYAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgg0dQECdZv6N0j9EUAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQTKUoBA3bL8WqgUAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggEBTFyBQt6l/g9QfAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQKAsBQjULcuvhUohgAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCDR1AQJ1m/o3SP0RQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBMpSgEDdsvxaqBQCCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAQFMXIFC3qX+D1B8BBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAoCwFCNQty6+FSiGAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIINHUBAnWb+jdI/RFAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEylKAQN2y/FqoFAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAUxcgULepf4PUHwEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEECgLAUI1C3Lr4VKIYAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgg0GNwIigAAQABJREFUdQECdZv6N0j9EUAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQTKUoBA3bL8WqgUAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggEBTFyBQt6l/g9QfAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQKAsBQjULcuvhUohgAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCDR1AQJ1m/o3SP0RQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBMpSgEDdsvxaqBQCCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAQFMXIFC3qX+D1B8BBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAoCwFCNQty6+FSiGAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIINHUBAnWb+jdI/RFAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEylKAQN2y/FqoFAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAUxcgULepf4PUHwEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEECgLAUI1C3Lr4VKIYAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgg0dYGWTX0BqD8CCCBQDIExY8bYUy89aXM/n2+HH364/yvGdJkGAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIDAmitARt0197tnyRFA4BuBBx54wO558nab1366Le4z0/5y69X27rvv4oMAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAvQQI1K0XHyMjgEBTF1BA7qWXXmqdNmptAzbpa5sMG2yt+qyy66+/vqkvGvVHAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBAosQCBuiX+Apg9AgiUVmDcuHG2qM1c696va6YiG2872P794hM2efLkTD86EEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEgrQKBuWjGGRwCBihK48cYbbfghQ2ssU9sObazXkM52ww031OjPGwQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQTSCBCom0aLYRFAoKIEHn74YZvXaqb1GNCt1nJtMmywjRkzplZ/eiCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCQVIBA3aRSDIcAAmUnMGXKFLviiivskUceKahukyZNckG6XbKO265jW1vcbJFpHrlKdP51DZdrfPojgAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAghUtkCLUaNG/bqyF5GlQwCBShR49NFH7cH7b7N2Labb1I+n2P9efdW69ehrXbt2Tby4N910k3Xbsr2179Qu6zirVq2wDlVdbejQobU+j8//pZcm2LqDNko1/1oTpQcCCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggEBFCZBRt6K+ThYGgTVDYOzYsTbxhX/YdkNa2iF7b2R77tDTBnabaeeff769//77iRHGjRtnPdftnnN4fTZ+/Phan2ebv+qSdv61JkwPBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBihIoq0Dd6dOn28SJE0sOvGrVKnv++edtzpw5Ja9LqEA51inULdvr3Llz7YsvvrAlS5Zk+zhrPw2rcb7++uusn9MTgSBw6aWX2p7bd7e9dx1ivbp3tK026++7B3RfaDfffHMYrM5XBfS27FnnINalVydTMG+8FGP+8WnyHgEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAoPIEihqoO2XKFLvuuuvslltuySv13nvv+WHvueceP6wCOwcOHGjDhw+30aNH5x2/IQe47LLLbLfddrPtttvOqqqqGnJWiaddjnWqq/JXXnmlrbfeenbVVVfVNViNzxQQqXGOPfbYGv15g0BU4PHHH7cu7RfbVkMGRHv77h+evJtNfOlp++CDD2p9Fu+h31uv9brGe9d4375TO1tQNb9Gv2LNv8ZEeYMAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIFCRAkUN1G3Tpo2dffbZdsYZZ9jkyZPrBPvzn//sh1XQm8rKlSszw6fJwpoZqYgdS5cu9VNbtGhR2QTqNkadFCB90UUX2YQJE4qmWS6BzkVbICZUcoHf/OY3dt4P9s7U46NPZ9oNd42zp8a/a29PmWa77zAg0c0C06ZNy0yjro52ndvUCPyNzz86bu8eHRPPPzoe3QgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAApUp0LKYizVgwADbdddd7ZlnnrExY8bYhRdemHXyCjq99957/WfHHHOMf+3WrZu9+uqrNnXqVNtnn32yjtdYPS+44ALbaqut7Nvf/ra1bFlUooIXoTHq9PDDD9sDDzxgffv2tWHDhhVcV0ZEoCEFZn71sQ3d4lj72AXo3nTPeJu/aqlNWz7f2n/0oZ/t+u272WtTJiaqQudenRIN98UXX9jgwYPtww8/tDD/XCMO3XKgXXFTsvnnmgb9EUAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEKkOgqBl1RXLCCSd4mTvvvNOqq6uzKj399NO2YMECW2eddWyPPfbIDLP55pvbAQccUPLg2LZt29oRRxxh6623XqZupe4oxzqV2oT5r3kC//73v234tuvb1M9m2m/+9Kj95+Mp9nnr+dZtq462ql8z/zf+gw99QG0+HQXdDti4T77BrFOP9plhxo0b5+ef6ZGlY93+3axqxbwsn9ALAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEBgTRMoerpYBdqqfPzxxz5DrrLSxsvo0aN9r5EjR9YIyr3sssvs66+/tnPPPdf69etXY7RZs2bZs88+a08++aR99tlntssuu/jsvZp+s2bN/LCLFi0yZZ5t3ry5/eEPf7AWLVpkpqEsvw899JBtscUWdvLJJ2f6q+Pqq6+2jz76yE488USfSff111+32267zYYMGWKnnnqqH1bz1yPv27dvb7/+9a/tnnvuMQXtabyNNtrIjj76aBsxYkSN6eqNgpUnTpxoCk5W/bt06WJ77bWXHX/88X4eb731lp1yyimmIOW6SrY6afiLL77Y5syZY7/4xS9MwyiQ8ZVXXjFlN1YQ9HHHHec96pq2xhk7dqy99NJLfjB9P++++64pOFjfSbRoWP2p3muttZYNHTrUL09dGXjnzZtnf/3rX/309V3tvffefpw0gdBVVVX22muvZRz79+/vl08ZnJWNmbJmCOg32rd3J3v+5Q9swtSPbMfvbWrturT2Cx9e9ebDjyfbU089VeNGgLiQsuRu3WX9eO9a79fp0s6385133tk+//xzF6g7uNYw0R59XZbe6pUL/TiDBg2KfkQ3AggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIDAGibQbPny5dnT3tYDQoGnyqh7zjnn2OWXX15jSvPnu+yX3wRWKqBUgbOhKOBVAb7x/p988oltvfXWPgtvGDa8XnTRRXbhhRf6twqKVQCngn1fffXVGsGvxxxzjI0ZM8Z69OjhA31DcO/KlSutZ8+eftrKsKnx77vvPh/getBBB9n999/vp/3BBx/Ypptu6sc/8MAD7aabbgpVyLxee+21dtppp2Xeq+P3v/99pn7RDxSsumTJEnvuuefsn//8p+27777Rj2t1Z6uTBlJAs5b3/PPPr2Wtz4888ki766671JmzXHnllT7QNz6AMh4rQFlFtmeccYbdeuut8cH8e3l873vfy3w2atQoX5/TTz/dL5/qGC/jx4+3aIDvE0884TMqKyBSwcDRogBsBV/Hi77Pl19+2fr0yZ8ZNT4u75uegILsVyycbEvbrbLlfaqt5+BOWRdi0viPrc1HfX1wfNYBXM/111/fDr9sz6wfz50x3/ef+/V8e+v5KTZs3Z1Mv2kF6593yvrWr3fnrOOFnmddMNpOPONS02+ZggACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggsOYKNG+IRT/22GP9ZO+++25TIGy0KHOrijLIRoN0o8NEu+fOnWsKjF2wYIHPxPrYY4/5zKpXXHGFH+ySSy7xgbV6o+BbDavy3//+17/qH9VBQaAqChhVNthQ1K1pb7DBBj5IN/TP9arxFZSqoNw33njDB8HusMMOfvCf//znpuyxoSgANwQR//jHPzYFpk6YMMFn5H388cd9kG4Ytr6vCojWPBS0qmkrMFlFAb6ab11FwY+TJ0/2WW41nIJ+9f5///tfZjRlMg5Bulr2N99802csPemkk/wwyjy8ePHizPCh44YbbvABycHrH//4h8+ErM8PO+wwmz59ehg056vmG4J0r7rqKp85WL8jBUHq+zjkkENM2ZQplS+gbNotWzS3qfNm5gzSlUKvDTrbS2+86AP/c6loWvEyzwXoTnr2HXv3mbdtxqSPrM2s2dZ51SqbNf1Nu/Wma3wW7XxBuppmvz6d6px3fL68RwABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQqEyBlg2xWCNGjPCZZxVE+fzzz9suu+ySmc29997ru0888cRMv7o6Ro8ebe+++65961vfsr///e/Wtm1bP/hmm23mu88880z77W9/6zPH6oM999zTB9IqU+3IkSP9sBMnTvTBuH379jU97v7pp5/OZNsNAb3Knpu03HLLLT7jrobfeOONfbZfZdtVwK8CXEOW2D//+c9+kqpHCDRVDy1Lx44dfcZhP0AR/lE22+g8dt11Vx9Iq+9Awbs77bRTzrl07tzZ9KcMuirK0jto0KAaw7ds2dJnB5a7jFWUAXmbbbbxmYq17HLOlkH0nnvuse985zt+HHntuOOOtu222/pAxjvuuMMHBvsPs/xTVVVl5557rv9EvwUF96rIW/MePny4D9zWdxqCtP0A/FMxAlOnTvXLomzb+uvUeh3rsF4bF5y9xJYvr7KVi1ba0qUrrOXK1fcdLJy11L1fbi3aNjP9vrQ+Wm+99Wzdddf10wnT05tZs2ZmAsznfLTIFn01z7o2W+n+qq1r1XLr0b6dLe2wlhtygb328mP26aef2gsvvW5du3azGbOX+Ol98vnqrNMD+3X178M/2QKBw2e8IoAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIrBkCDRKoq6BOZWn93e9+5zO6hkBdBY3+61//8rKHH354IuFXXnnFD3f66adngnTDiEcffbQpUFeBvMqo2q5du0ygqDLoVldX+yy7CuJUUTZWzVfZYc8++2zf75lnnvGvu+++u39N8s++++5bY7DBgwf7QEAFESoQWEVZfEMQsDLdxouCd88555x474LfK6tstCi78MEHH2zKaFuMgEH5ZDNq06aN7bbbbvbQQw9llj1aDwUthyDd0F9Byj/96U/thz/8oc+OG/pne5WpgoAVRByCdMNwnTp1sqOOOsouvfRSPx0CdYNM5bwq4P5fj95nbVuvZVUrZvtA2cULWtuGQ/rZ5Alf2PwvFrtA3VW2Tse1rdWq5tazZzvr1lwBu62syzb93O/iMReM+7YN6D3AFq/o4IN1Nc1evdp7pM+/+tRWuYDcGR/Ms0+em2NDB3Wyjv3aW3M3jY4d1rYPPpxjn8xZ6Idt11UBu2a/v/YJ23LIQJs5e6n179PeqlctN6s2W7p4lu+nYWbPW2rvTXrOjj/++EyAsPpTEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEE1iyBBgnUFaGCaBWoqwy6f/zjH61169Y+mFOfKdC1d+/e6sxb/vOf//hhvv/97/uMrrlGeOutt3wm2y5dutgOO+zgg2SV3XaTTTbJBAfvs88+PpvrU089ZQsXLjQFmYbpb7/99rkmXaO/AkY1j3gZMmSIz/ap4GCV9957LzOIsnnGi4KZQz3jnxXyfoMNNqg1mpZdRVlpi1EUhKyA3JdeesmmTJliCryeP3++D6TNNf2tttoq60fKiKuiadVVXn/9df+xgnWVwTdeFMirEgK645/zvmkLjBs3zh5/dIxttH5X23C91RlrZ85Zaj3nLrLP355l895yQbKubLFFNxek29p6tm7lsi2vHm7Viir76svFNv3Lt+ydSS/bO5Nn2z77H2F33nmnbbVVLz/e0hUuCLxja5v94XxbNHOxmQvUHf/iNOvXu7316NzGxk+cZsvaV1n7LmvZchf8rjJ+4nRbuara+rthqlY2s+2/1cvfFLB8ebVVr6yyz6cvdMHxc+ydt762Tz75hEBdr8Y/CCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggMCaKdBggboKEv3Wt75lr732mimj7X777Wd33323V1aWyaRFgaChKNg3W9G8li9fHbCnz5XBVdls9detWzcfxKlMuq1atbL999/fnn/+ef/Xt29fH2SqwOG2bdtmm3StfgruzVaUgTNalO01lKVLl/psv+F9eJ0xY0borPdrfP6aoLLqFqvI8oADDsgE5SpguVevXjZw4MBM5uBs81L23GylffvVGU1DBuJsw6jfrFmzMh/l+v41QJheZmA6KkJgxx13tM4dWtmnH02yFm2U0XaCy2Lb2dZu3sp6b9DFZb1dbisXr7Lq9m5V1rGVfbV0hVV9Ps8v+4zPF1i/Tv2sW9eB1n9gDzv40AG22RbDrF+/fvbBB6/7bLutW7W3ZlUtrVP3Tla90do2Y9YS23pId2vbpqWt1bqlte+wlvV0mXTbdnTTXx2DbwftuZ61btvBB+qqjU2bufqD5ub+a9nOrEWVLVw6x3YasZNvHxXxRbAQCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACBQk0WKCuanPyySfbWWedZaNHjzZlnFWwpwI8ldk2aRk2bJgpA+6YMWPswAMPTDTaHnvsYb/61a9Mj7gPAbMKxlXZc8897ec//7mfZshCq8DeYpc+ffpYjx49fNZZBSsr4DBalI32/fffj/Yq6+7zzz/fB+kedNBBNmrUKP99huDgQw45xMaOHZu1/sp0nK2EjMM777xzto8z/TbffHPfrWDsSZMmZfrTsWYI7Lrrrqa/kPn67jEv2IBea7kg2lbWf1gPj7By4Spb4f5Cmek65s1bZG+8+YUdNnwnO+rw40xZrUNm6zC9++9/zPr2HOhH67RzT1u+cKW999xkW7tVC+vQfi2bt2CZbbZhF9eO29tbb37tM3Br4B+furPNX5I7sF/JrWfMWWkbbL4d2XS9Lv8ggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAmuuQIMG6h566KE+UPe+++6zwYMHe+Wjjz46cfZajbDtttv6oFoF6mUL1J08ebKtWrXK1l9/fQsZV5XJVwHBGmettZSF02z33Xf3rwoYVgDtI488YkOHDq3xmX9TxH922mkne+CBB2zkyJE+g2/nzp391JX9N01W4SJWKdGk5s1bnZE0DLxo0SKbMGGCf/vLX/7Stthii/CRrVixwsaNG5d5H+8YP368D1aWebQ8+uij/u3WW28d7V2rW9+XyrvvvmvTpk0zBUBHizLufvnll6bMvcqUSqlMgd12280vmIJte3VeZO99OsMGDOm5emFXN6saC77845Uu026VHXvssRbGjQ4Q+nXr2m11766rX5Qb9/23PrO+rda2RTMXuXctbMWcZdal5ya20UYb2zsfPWwbbrihy7ibO1BXU3rx1Q/1QkEAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEFjDBZo35PJ3797dlIFV5bLLLvOvxxxzjH9N+k/IdnvdddfZLbfcYlVVVX5UBef+6U9/8kGjI0aM8MG6YZotW7a0Aw44wAeI3nHHHaasrL179/Yf61H1ygD78ccf+yy9ffv29YF3Ydxivl5xxRU+KFiZc1WHU0891c4880wX8LeRPfPMMz6YuJjzq++0Qvbhxx9/3JYsWZKZXLt27fxyqMe//vWvTP9ly5bZaaed5jPtZnrGOhYsWOCDkkPwr76366+/3v7+97/7IcP3Gxst81YB13vttZd/H77T8OHUqVNN370Cs++9997Qm9cKFxi+zWBb/NEyWzR7ac4lXTpzuX170LBMgH62Afv371+r97qb9bNdjtreum8xyDptNsD/vfP1Ytt8qx3spFPPskGDBtmcectrjZetB4Hj2VTohwACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgisWQINGqgryu9973sZUQXFbr/99pn3STo0vIJ0Vc444wxT8O++++5rAwcOtPPPP9/3v+aaa0zBpNESgjvV7+CDD45+ZHvvvXfmfQgkzvQoYoeWV5l7N9lkk0zQ8E033WTz58+32267zYYPH17EudV/UsOGDfMTef75532G2qjbSSed5D+7+OKLTVlN999/f5/d9p577vHvc83929/+tg9K1vemDMPKrHvWWWf5wUeNGpU122l8WnfeeadtsMEG9uabb/qsuaqnpqXMpiEIWgHDlMoX2G677WzGrAW27w5D7I3Hp2YN1v36w7n2yX9n2IUXXlgniIJuF8xemHWYTj062LpD+vu/Tt3X8cNoeM3/hZc/yDpOtOfE16bazjvvHO1FNwIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAwBoo0OCBugqYVVZUFQVTKqNt2qJMtDfccIPtsccePnvrU0895QNflUlVgbDZsvTuuuuumdlovGhRkGcoe+65Z+jMvLZo0cJ3t2rVKtMvX72VxVcljBtGVB0nTZrkM/iOHj3aHnvsMfvggw98nZWRNmkJ043WKTpu+Dxbv1C36GfZuo877jhT8KyCaVXGjx+fGUwBuvpM3+UXX3xhTz75pHXr1s3Gjh1rQ4cO9cNlm48CeseMGWMKWp4wYYL//pRd+JJLLrELLrggM311NG+++ucYX8bOnTt7t9NPP91P57XXXvPT0jjnnHOO6ffQoUMHvaVUuIDa8jPPT7HjDtvONm7T0958Yqp9/dFcWzRnqf+b+upX9tUrc2z6O/MsW9uO88z5el68V9b3+v2qaP4vTMwfqPve1EU++27WidETAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEBgjRFotnz58uqmtLRLliyxadOmWa9evWpl0S235VBm2pkzZ9rgwYNtyJAhNaqn5ejXr58PXFXg7oABA2p8Xso3q1atssWLF5sCZlu3bl2jKtXV1T5QV4HB+g7yBTCHkTXel19+6QOZQyBw+Czt6/Tp003T0/xDcG/aaTB80xRQWxl56tH2t/87xJYsW2k33PmcTVs13zr0aGPTv5xnvVquYyvnrbKpXza3F154oc6FPOGEE2z5oNk2YOPVQbi5Bn7s5mftmguu9xlyNf/99xlhrzyRO1vvq298Yrf840u7/fbbc02S/ggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAmuIQINn1C22Y5s2bWz99dcv+yBdLffEiRPtyCOP9AF+zzzzjA9+VYDu008/7TPqLliwwDbYYIOyCtJVvRWEq8y58SBdfabAXAUY9+7dO3GQbhhP49Q3SFfT0nT69OlDkK4w1rCioPdtt1dW2w9t0IBu9rsLDrPjdxlmB226he21/sb20+P3tDZtWvnsz/loRowYYQtnL8o3mM39aoHP5KwBNf8u3de16XVk4v39tY/b0UcfnXe6DIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIFD5Ak0uULcpfSUnnXSSbbLJJj5r7ne+8x3r1KmTdezY0fbZZx8bO3asD1q95ZZbmtIiUVcESi5w8skn25hHX83UY88Rm5r+Rh6/s81fsMSWrupke++9d+bzXB0Kuv108rRcH2f6L5qzxAfohh6a/wOR+Yf+en39rU9t9sK2ieYfHY9uBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACByhQgULcBv1cF5r788st26aWX2q677uqz1CpT7c4772w//elPbcKECTZs2LAGrAGTRqDyBJSFeub81vb4M2/VWrjLXTbbXXY/sFb/bD2UlXnOlwuyfZTpt3DuItugz4aZ9+pQ+33rg2X2+tuf1eivN5r/KaecUqs/PRBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBNZMgZZr5mI33lKvvfbadt555/m/xpsrc0KgsgUuvPBCG33X9da7Z0e/oL26d7RJLnD267lr24gRIxItvAJ+O7bpVOewyri733771RhG4333uJF25wPXWbNmZltu2t++mjE/9fxrTJQ3CCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACFSlAoG5Ffq0sFAKVLbD//vtbdXW1PfnCP/yCrtNmuk2b1dIUwLvhhjUz4NYl0WudPrZo3mJr17Ft1sFmT5tjvTbtVeszzX/y5Mlu/u9Yy7W72/gXJxc0/1oTpgcCCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggEBFCRCoW1FfJwuDwJojcMABB/hgXS3xlClTbOSZB9pGG22UCmDLLbe01156wb79nS2zjvf1p7NzZug999xz7eGHH7avlphVt1lV0PyzzpSeCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACFSPQbPny5dUVszQsCAIIIJBCQFlxd9x7uJ1y+RG1xvr605n25r1T7ZVXXqn1GT0QQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQSCLQPMlADIMAAghUosDGG29srVe2scXzXVrcWHnvlY/soIMOivXlLQIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAALJBQjUTW7FkAggUIEChx9+uE1++YMaSzbj81nWfPlattlmm9XozxsEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEE0ggQqJtGi2ERQKDiBEaOHGkrprWwmZ/P9sum7Lov/ONV23rAMDv00EMrbnlZIAQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgcYTaLZ8+fLqxpsdc0IAAQTKT2DMmDF295O3WXWHZdZsWQub/84Ku+aaa2zTTTctv8pSIwQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgSYjQKBuk/mqqCgCCDSkwP3332/622yzzezwww/3rw05P6aNAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCBQ+QIE6lb+d8wSIoAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgiUQKB5CebJLBFAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEKh4AQJ1K/4rZgERQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBEohQKBuKdSZJwIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAxQsQqFvxXzELiAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCBQCgECdUuhzjwRQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBCpegEDdiv+KWUAEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgVIIEKhbCnXmiQACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCBQ8QIE6lb8V8wCIoAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgiUQoBA3VKoM08EEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgYoXIFC34r9iFhABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAoBQCBOqWQp15IoAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAghUvACBuhX/FbOACCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAKlECBQtxTqzBMBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAoOIFCNSt+K+YBUQAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQKIUAgbqlUGeeCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIVL0CgbsV/xSwgAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggEApBAjULYU680QAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQqHgBAnUr/itmARFAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEESiFAoG4p1JknAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggEDFCxCoW/FfMQuIAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIFAKAQJ1S6HOPBFAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEKl6AQN2K/4pZQAQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBUggQqFsKdeaJAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIFDxAgTqVvxXzAIigAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCJRCgEDdUqgzTwQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBihcgULfiv2IWEAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEECgFAIE6pZCnXkigAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCFS8AIG6Ff8Vs4AIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAqUQIFC3FOrMEwEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEECg4gUI1K34r5gFRAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBAohQCBuqVQZ54IIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAhUvQKBuxX/FLCACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAQCkECNQthTrzRAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBCoeIEWo0aN+nXFLyULiMAaKvD555/bokWLbJ111im5wNy5c+2NN96wGTNmWIcOHaxVq1ap6jRnzhx7++23bebMmdapUydr2bJlqvEZGIFsAkuWLLGPP/7Y2rVrV/LfVHV1tX344Yf27rvvWrNmzaxjx47Zqpyzn8Z/7733TO0+SRtL2yaXLl1qH330UVlY5UTgAwQSCJRTu1d1P/nkE992O3funHrbWFVV5dul1hvarpbD9j7BV8AgCJREoJz2ixcvXmyvvfaarVy50u/XpgWZP3++vf766340tXvtN+Qq9d2/yDVd+iNQrgLltp0vhlNDrb+WLVvmjz2mTp1qbdu2tTZt2hSjukwDgUYX0PmiadOm+WPo5s3XrJwUaY/rK3Ed2eg/OGZYFgKV9FvmuL4sflJUogkJVMJ2f/r06fbmm2+azg3ofGB9919mzZplkyZN8vv02q+nIFApAg11LFyoj445FixYUDbn4Ctpf6jQ74TxKkOgMbft9T0vXy7i5bZ+LBeXSq1HY67vy7WNpLmWHva1ly9f7q+/1XX9rFS/mTXr7GWplJkvAikEHnnkEevatauttdZa9tZbb9UaUxf0L7vsMv+5houXVatW2cUXX+ynMWjQIBs4cKDv1jg68Ze2HHLIIX5eqs9XX31Va/R89dEIV199tfXo0cN23HFH23bbba1///726KOP1ppWth4KLrjgggusZ8+etsMOO9i3v/1tfxCkZdS8o+WDDz7I1FX1jf99+umn0cGtX79+tYYJ44wePbrGsLwpH4HZs2fb0Ucf7b87vWYr77zzjg0dOtQPc/3119caREHf+j0pGHbIkCE+sHWnnXbywXK1Bs7TY+LEiZnf0U9+8pOsQ+erj3aohw8fbptuuqntuuuutv7669thhx3mT9ZlnWCs529/+1vr1q2bbb755r6NKZj90ksvtRUrVsSGXP02TZvUSUPZKPg3aqX+FAQaS6Dc2v1VV12Vaff//Oc/szLka/caT9uhDTbYwG8f1W5POeUUU1B8kqKbX771rW/ZJpts4tcb2t5vueWWWfcdotPTxfyw/dPw0TJhwoTMcoXtYfz14Ycfjo5CNwINKlBO+8V1tZ2AkG+/WAG22r6rvWu/WO1f7fG5554Lk6jzVTf0aJusbb5eta+/1VZb+Qt82UZMu3+Rb72VbR70Q6AYAvnajuaR7/fZ2Pv3SfZNgk2S9UcYNrzW57g+yfHJM8884485dMyk9UmvXr3sN7/5TZg9rwg0uECSNpRvP+DBBx+0jTbayJ8v0j6xgs2/973vmba3aUuS/fu66nP77bfn3I9eb7310lbH8p2L0wTTHNcXcx2ZemEYAYFvBJK0+3Lb3tdVn7TnobP9ENIc14fj+Pgxut5Hz2MfeOCBOddHGjZ+HiBbveiHQLEF6mpLmleS44FibveTbGdzbffr08Z0rv6kk07y1+x22WUXfy5/6623znlNIt96c/Lkyf4aSO/evW3nnXc2veqah84FUBAolUCuthPqk+93XZ9j4TCP8JrkWDzf+kef//rXv/bX2dddd13Tn67Nq58+S1LyrQOj00hSZ/bto2J0l0ogX1tWvfKtD4q5bc93TF/oefkkbTLfd5BrvyPt9bhirh/z1ZnP6y9QjDZSzPV9Q7URSeX6jWdTzHY8G+33s5/9rMZoaa6lK+hfddH1cu1r61xh9+7dTeuaciukpCy3b4T6rLECCxcutPPOO89uuummjIGCVKNFmW5OPPFE++9//+t76869eBk5cqTdcccd/oBcgQDaaN95553+oEF3QCh4L2m55557bOzYsZnBC6nPuHHj7Nxzz7W+ffvaGWec4S+Y/O1vf7NDDz3U3n//fb+izMwgS8eNN95of/jDH0wXNo4//nh/suGGG24wBSbOmzfP/vjHP2bG+vrrr333vvvu6w+WMh9809G+fftMLx1AaXgFNurCZLwMHjw43ov3ZSDw7LPP2nHHHee/O1UnHnyu36h+Xz/+8Y8ztY0Po50aBbep6Lep71pBp9dee61tv/32PshNJ7WSFN3BpDYZSryNJKmP6nf66afbK6+84oN3FKh7//33+wOYiy66yK644oow+ayvv/jFL+zKK6/0wT4XXnihv3P+rrvusksuucS++OIL++tf/1pjvDRtUhcMFByvcvbZZ/sdGp1U0M6cLuq/+uqrvg3VmAFvECiyQLm1e2Wujh4oFNLuH3roITvyyCP9tk3tSYHw2nZre639gXvvvbdORZ1UOOKII3xGcB10aLs3ZcoUv77QCX4F8+mmmGzl/PPPz6xD4ycTdVPNmWeemW00+/e//+2322S0z8pDzyILlON+cV1tR4ufbz9d7W3PPff0mXQVlL/bbrv5NqUT++r/0ksvmdpvrqJAAJ1c0P6rxlegr27q0z6AtsnKrK0bfUJJs3+RZH8lTJdXBIotkK/tJPl9Nub+vZY/375J3Cjf+iM+vN4Xelyf7/hE09ZTbg4//HCfCehHP/qRP1bXMZQCdbfYYgs76KCDNBgFgQYTyNeGkuwH6Jj35JNP9r9fHft26dLFHnvsMfv73/9u2maG82ZJFiLf/n2S+nz55Zd+VtpGr7322jVmm+0m+xoDxN7kOxenwdMc1xdzHRmrKm8RSCyQr92X2/Y+SX3SnIfOBpXmuD7Neex99tnH39AXn6fWZTrv0Lp16/hHvEegwQSStKV8xwOqXDG3+/m2s/m2+/VpY7rOdffdd/vz7bq5SAE6eq/rXs8//3yNJ23lW2/qyXdK/KFrhL/61a9sww03tP/85z92880323bbbefPE+opghQEGksgX9tRPfL9rjVMocfCGjde8h2LJ1n/nHrqqab1hq6Tffe73/Wz0DGHkmMpu9+tt94an23mfZJ1YGbgbzry1Zl9+7gY70shkK8tJ1kfFHPbnu+Yvj7n5fO1yXz+de13pL0eV8z1Y75683n9BIrRRoq5vm/INlLXbzyb4g9+8APT9jFeVMennnrK33QaPkt7LV3TVmybblw76qijfGIsxcZp+33ffffZwQcfHCZd+leX7reaPwz4DZT+N+Ai+rVGqnYH6NXurlrf7YLgMu3TXWjw/TSMO6CvDsNHvzuXMdYPs8cee1S7oNzMuO6OjWr3WNxqt8Gvdpn6Mv2j48a73QGGH8dl+qp2Ky8/XU0/DJekPu4uo2oXoOvHdcEDmXFdNj7fzwUkZvqF6UZfXZCgH84F6Va7Ew6ZYd0OXmb5Vc8wjgtu9MOPHz8+0y98Fn91dxX7Yf/v//4v77DxcXlfmvYyZswY/53pd+yC2Xy3C1Cr8f25AF3f3x00V+u7VXtxQXBZh3n66adr9HcH1n54Fwheo39d3/cvf/lLP86oUaP8q9sBqDFukvpcd911fly1+zAv9xjaai2D6h+vZxhGry51vx9G7dQ9diczvjvZX632pfFffvnlTP+0bdIFI/ppuBMPmWlovi5Th+/vbi6o0T9aN7pL004qzb3c2r0Lfql2O/iZ37/amAuqrdEOkrT7vffe20/DnQzMjKvtnNqypuky2Gf6Z/tOta+g4W655ZYaw7mTG76/6pBtPHeA4j/X+No+a37Zhov307pD6179RbfH8eF4T7sv1m8g7OeWy35xvraTZL9Y+6dqty4orka7cxn4fP9829RzzjnHDxffrwl1c4F1NaabZv8iyXqrWN8t02E9Ef0NJGk7SX6fYZj4fnND7N8n2TeJLmNoo2m2vfU5rs93fKK6uZuF/Prktttuy6w3PvvsM99P5w10jBFdBrppt8X8DSRpQ/n2A1QfDaPfqwuQzfxedRwd9rPdzSyZ/nXVP8n+fZL6aPuu7XzSc2656pTvXJzGS3tcX8x1ZK5605/1RF2/gSTtPvxOm9L5vDTnobP5pDmuL8Z5bB1HaD3lbuhPtH7MVmf60dbT/gbyte0kxwOaZ7G2+0m2s0m2+9kc8rUxXetTG9S1rkWLFmXaoc4FqL97gmSmX5L1Zrj2oXVRtD7upiE/PV2Di/anm/bb0L+BfG0nye+6PsfC8eXLdyyeZP2jYw21T5fwqcY5cZ0fVz99Vtd5/HzrwLR11vBhmsU4/xGfP+9ZTyT5DSRpy/nWB5pPsbbtSY7pCz0vn289ks8ryX5Htmlkux5XzPVjtnnSr3jtv1htpFjr+4ZsI4X+xrP93nR9S9vV119/PbMPG87xJbmWruvlGl/H2dHpuydQ+P5a50T7l7q7uassBQEEykBg1qxZ/s5gZdTt2LFjrRope6yyyuouW7ditmwZ7dwBvr+LT9lmo58rk6wex6E7/ePZ82rN6JseP/nJT/zduKpPtjtvk9RHWb6U0VPZ+aIZvtxK1T+KR4/bVAryXCU8Xtud5KiRkUTpz1944QVzFxN9uvIwvjsg8p09e/YMvXK+KouQStLMqTknxAeNJqDfkrJG/u9//zMXjJ51vnqskzJT604lPQIzW1EW5T/96U+1Mim7DbQfPGTEyDZutJ+yzequWf2e3UY/+lGmO0l9wu9cd76H0qxZM3Mn2/xbZQXKVUKWoBNOOME/BjsMp+wY3//+9/1b3ckUSto2KXMVZeqLlvA+fB79jG4EiilQbu1e20S1O7X9zTbbLOui5mv3ynLZvHlzn2W+T58+mWko85YeU6eijLi5irbjyoKju/iPOeaYGoMpy662jRdccEGN/nqjfQRl73bBtj5Tfa0B6ujhAnn8PoQyf8YzhNUxGh8hULBAOe0XJ2k7SfaLtT5T1nzdyRstyoyrom10XeXxxx/3H+sxmdGibLwu6N50d7HcQkmzf5FvvRWmySsCxRZI0naS/D4bc/8+yb5JcEqy/gjDRl8LPa5PcnyiJ+4og4COfaLrIx1D62ke7oKjP+cQrQ/dCBRTIEkbyrcf4AJyfeY57aMqk24oOo4O++jRbWL4PNtrkv37fPXRdN2Nsz67r/bz61PynYvTtNMe1xdrHVmf5WLcNVsgSbsvt+19kvqkOQ8d/wWkPa6v73lsPWVP1wt0PkBPKqMg0FgC+dpSkuOBYm73k2xnk2z3435J2pieVKWic/6tWrXKTOKnP/2p79ZjfUNJst5UtkJdI9E5gWjRk3hU9NQdCgKNKZCv7ST5XRd6LBxfziTH4knWPzNnzvST1nn46DlxdaufSthG+zexf/KtA6ODJ6mzhmffPqpGdykEkrTlfOuDYm7bkxzTq85pz8snbZN1fQdJ9juyjZ/telyx1o/Z5ke/4goUo42oRsVa3zdUG1EdC/2Na9xoccG5/vqWnkS76aab+o/SXksP8TA67o2WQYMGmZ6CFfbFo5+VsrtlKWfOvBFA4P8L6BHydQWYKtBVwyjoNlfRMOeee26tj1988UV78803fZCjglzzFQUCPPDAAz7Advvtt/cBQfFxktTH3ZHoR1N68XjZaaed7LnnnjM9oicE/cWHUYpzFZ1cUJ3cHU/m7vrwgUwKZop7hQBLHSRdf/31/vE+ugCpYfXon2gJB0+6qPPggw/6xw13797dD6v6tGjRIjo43WUgoMeznnHGGaaLb9rJz1b+/Oc/1/pdxIfLFlTr7poxd6eNH1Q76/mKLnCrLipXX321r1O2cZLUR21TQfjRgD1Na5tttvGTrOukmsuW7Yfp1KmTf43+o2VSef/99zO907bJww47zD/W59prr7Xf/e53PrhQO0Z6r3LooYdmpk0HAg0hUE7t3mWXs7POOssfHOmGGXdXZNZFztfudfE+evI9TESP+tB2XiV6c0v4PLy6OxR9p25c0LbMZfQ1d0eg385pe7nVVluFQWu8KrhYB4guI7Z17ty5xmd1vdHFBo3LBb26lPis2ALltF+cpO0k2S/WNjPbdlP7ASrhBEQuS+37uMyBNS4MhGHDtl7rh/B47TT7F/nWW2E+vCJQbIEkbSfJ77Mx9++T7JsEpyTrjzBs9FUuaY/rkx6f6EKhio7H48e8OvZXCesU/4Z/ECiyQJI2lG8/QOd8srUR7a/rMbTaXubaJ44uTtL9+3z10TR10n/gwIE2depUXwdtt7fddlt/jkn70UlKknNxmk7a4/pirCOT1J9hEMglkKTdl9v2Pkl90pyHjtukPa6v73nsm2++2d98q/N50UCjeL14j0CxBfK1pSTHA8Xa7ifdzibZ7sedkrSxKVOm+NG0fxAtOken62dKDBACEpKsN6NJP6LT0817KrmSmESHpRuBYgrkaztJfteFHAtnW4Ykx+JJ1j+6rqxrzLoOoKD6cJ1Z7Vn99Fnol60e+daB0XGS1FnDs28fVaO7FAJJ2nK+9UGxtu1Jj+kLOS+ftE3m+g6S7nfEx891Pa5Y68f4/HhffIFitBHVqhjr+4ZsI4X+xrOJ/+Y3v/G9f/GLX2Q+TnstXfvASoqjmBklu3rttdd8t+LEtK+dJEYuM/NG6CBQtxGQmQUCSQTiQafxcdq2bRvvVed7BR3qIpwu0ivD1rBhw+zGG2+scxx9qB0AZeLUhQRlzstVktQnZATs169frcn079/f99MwuQJ133nnHR/A+IMf/MDuvPPOzDT+8pe/+P7KyBsNbgyZDHQncfzi4g033GAnnnhiZhrhBKcOruLDasOn4eubCSUzMzqKIqBA6nwlXzuKjq/fnu6uUVbnJ554wv8O/va3v2UCZKPDxrt1N9srr7zig1eVrdo9ciI+iH+frz5qbwqcy5YhWG1MFxjVDnKV7bbbzn/06KOP2qmnnlrjNztx4kT/WQh415u0bXKfffYx7RyNGjXKr0eGDBnis/d8/PHHvr8+pyDQkALl1O7PP/98v6jucVB+PRkAAEAASURBVPI1Ml/Elz9fu48PH97ffvvt/sDBPaKuzkDasM3SXf8K7FPmu2i59NJLfWbxaL+3337bZ9FVBnAF4KcputtSFyB1QU/ZuikINIZAvnaUZD80Ws9C94uTtp209Ql1U/v92c9+5t+q7ddVdtttNx/489JLL1kIptPwOtkSii74b7311n5/Ps3+RT7vMH1eESi2QJK2k+b32Rj790n2TeSUdP2RzzTp+ivp8Uk4HgjH49H5h35hXyP6Gd0IFEsgSRtK0+7dI199YIu2gf/4xz+sTZs2pqfS6DVfKeb+vba7ynATv1CvY3rVMV/gcNJzcVqm0I7TnmurzzoynyWfI1CXQLHbfX1+y0m3l0nWQ2nOQ8d9wrY26XF9fc5ja92kc/w613/88cfHq8J7BBpUIF9bSnI8EK1godv9NNvZfHWO1kfdSdtYCNTt1atXfBKm6wsK1NXxfd++fWs8RbLWwHX0CMcgeupOtusNdYzKRwjUWyBf20myPxCtRNJj4eg46g7tIN958KTrH11DPPnkk03XxkKSH12bVjvT9cS6Sj6TMG7SOofh9Vqf/aHodOhGIK1Akrac9LeveRe6bde4SY/pNWy81HVevpA2GZ1+mv2O6HjqTnI9rtD1Y3xevG8YgWK3kfqs7xuqjdTnNx5XV2D/I488YgpwDk/Jig8TfZ/tWvr8+fP9dewRI0b4m+ajSfCUYXe//fbzSa/KKViXQN3ot0o3AhUkoA25AglDUfBpkgCbK6+80gcO3nXXXf4ugzB+Ia8hW0/I7BWdRthI6fGAuYpOXmhHSUGBChDSClor/quuusp0J6KCBCdNmpQZPUxriy22MD3uVzuCzz//vB177LH+cd86cBo+fLgfPmQ9kIky+2655ZY+I+EPf/hDf5eFhg0br8wM6KgoAWWhCXfoaMEOOuigvBfPNJxOjp933nn+blll16xPCb/Dbt26ZZ2MTtKFTHvZBtBFQD36QHctKaBdf9rJUIZNtRMVnfQPpZA2qexcKmqH+gsl9A/veUWgKQgU2u518k3ZuU4//XR/40uxl/WFF17w09bJ+EsuuaTOyStLl4rauO4CvOaaa2zw4MGm4PxjjjnGLrzwQp81Q+s0FWXqDeuqsF7wHyT4RxcbLr74Yi7oJbBikPIWKGS/uD5tJ4mGHner/XNdpNejL3VXfF1Fj/3Remj//fc3BRjoEXu6medHP/pRZrQQuF/f/YvMBOlAoIkJFLqdL+b+vciKuf5Isv5KU39l/VTJluEzHLeHYwY/IP8gUOYCzz77rF1++eWZWurG8+gN3ZkPYh3F3r8Px8rKbqdjBq0H9KQqPYlj991391lw63qqRZpzcaGNhjYbXbS6zrUVuo6MTp9uBMpBoNDfcprtZZLlTHMeOj69tMf1Yf++kPPYStyh4wQdcyS5NhCvK+8RKCeBQrf7abazaZc3aRvTTUW6gadly9qX5cO+eQjUTVsHDa+bB3S+QEV1KqdABF8p/kEgpUCSY+H4JIt5LB6mvXTp0sxNgDqGCEXXn4uRpb7QOhe6PxTqzysC5SJQ6La9Psf0dZ2XL7RNRj0L3e9Iej2ukPVjtH50Ny2BQtf3DdVGpFfobzybfIjV+eUvf5nt4xr9cl1LD0+sUbZ77W/rBn4lu9Fx9znnnGNjx441Tf+KK66oMb1SvmleypkzbwQQaDgBBZ8qQE+vytSlAD5d0NdGPlfRHRlaGequwCOOOCLXYIn7h4w84WRidMRwgTAME/0sdHfo0MF3qk6nnXaazzCoIKbf//73prshdTeE6hyKHl2gk44KMlawQ/v27f1w9913nx/kX//6VxjUB+bqAooykWpFrbsnlYFM71UefPDBzLB0VKbAnnvuabrDRhtv3X2mrLjKUKsd3LqKfjc6wa3Mzq1atapr0LyfhTvoo9nwoiNpB0JB47lKs2bN/M6GhtEjtvQb1p29ajMXXHCBvwAfvfsotLekbVKPGFDWjX333ddefvllmzlzpn/Ve/VPstOUq+70R6AUAoW0++XLl5tu4tDOfb4g2kKWSduyAw880E9f26lwcT3XtKIX+HVTioL1lTFMdwoqGEBF/UPRNlA3rajNrrfeeqF3oldll9f6Tlm1uaCXiIyBylSgkP3i+rSdfAw64RdOECiYR094yFd0wU3B9mqTyoytx2vrpjXdxBYe/x2Cfeu7f5GvLnyOQLkKFLKd17IUc/9e0yvm+iPJ+itN/XU8rZLt+CMcI+hmQQoCTUVAv38d1+sG1z/84Q/217/+1QYNGlTnDa/F3r/XY6q1r3333Xf743DtzyvgRkHDOi7XtnvChAk5SdOei0t7XB9mXOg6MozPKwLlIlDobznN9jLJsqY5Dx2fXtrjeiWYUP3TnsdeuHChP0eodVK2R6fG68V7BMpdoJDtftrtbBqDNG1M5+S0T7BixYpaswiB/2FfvdYAeXpoujq3qAz/ejKlbuynINDUBZIcC8eXsZjH4pq2bsbba6+9fMZrXUPUtcRwPVHn27VPEm7Yi9cl6ftC61zo/lDSejEcAo0lUMi2vT7H9PnOyxfaJoNXffY7kl6PK2T9GOrHa9MTKGR935BtpD6/8bi+ElDpuriudym+pa5S17X0Tp06ZUZVdl7dMK/YLz2VVtfNdX1fSXDKqbQsp8pQFwQQKJ6AAgj1pyBU/b322mv21FNP2ZNPPmmHHHJI1hkpC5/Kd77zHfvPf/6TGeazzz7z3brzQicLFAyUpIRH/oVsH9FxFBSpEgIKop+FbgUY6uTCtttuG3plXlVHZRFV8GCYhjLnZis77rij7627LEJRv9A/9NNrly5dfKCyllVBze3atYt+THcFCTRv3twHnvXu3duOO+44/zvaeeed7U9/+pOdeuqpWZdUF/8UyLvJJpuYdnL0SA6VcKFbB+VPPPGED5xLksVHgW86Sae7oeJFJ/p0km2XXXaJf1TjvU62K3u22sL48eP9zsZOO+3kp6t0/tGg+zRtMmSvVv20E9OiRQs/Xz2yU++VwVOZrZVtM8ljRWtUmjcIlEigkHZ/6623+oyXylarbWkob7zxhu/UYzm0w692l/SRWWEa2r7qIEttXesTrVvylQEDBmQGCTe0hB7bbLON7wzbcK2nQgCgAnrDOksDKaBBFwe0ztK2PX4QpDpdeumlPsjghBNOCLPgFYEmKZB2v7g+bScJkNrW9ddfbwcccIDfliYZR8Mo4EfBuePGjbOPPvrIZ8/WxThNTyXsExdj/8JPkH8QaGIChWzni71/X+z1R771V9r6h/VEOMaPfsXhuL2uGwWjw9ONQDkIKCud/jbaaCP/t2zZMv+ECV1I17F9tlLs/Xute3LdxKqLAzou1/G6bjjPVtKei0tzXB+dXyHryOj4dCNQLgKF/JbTbi+TLGua89Dx6aU5rte4hZ7H1jGHju0vu+wybr6Nfwm8b5IChWz3025n08CkaWMKFFBgn64jRNcBmp+O71XCTbf+TcJ/tO9z1FFH+XOWSmKjbgoClSCQ71g4vozFPhbX9O+55x6/HdWTrXRtIBRdT1QSnZNOOslGjx6d81ggDJ/rtT51LmR/KFc96I9AKQUK2bbX55i+rvPy9WmTwbDQ/Y401+PSrh9D3XhtmgKFrO8bqo1IsNDfeDb9pNl0811LV6xPKMOGDQud/lWJHRVrowBexafF98NrDNyIbwjUbURsZoVAQws89NBDpgBTZdXq169fjdkpEECBunrMV64STgj8/Oc/zzqIAnUUFBgu4GUdKNJTWUxU9NiCo48+OvOJ7lZSXVTCMJkPIx0KBFRgsQIG4yVk5I2ueM8//3zT40Z+8pOf1BhcOzcq0WEVbDl58mSfVSAeZKhp686KeP8aE+VNkxRYsmSJKUusAtLiwbjKpqvvPfy2si1guKCtu3YUKBMvuutHf/p9Jc1UocA8jaMg32i2yxBYXlfgntqG7uDt1q2bKchYf6HoBIFKuIin7tDekrTJ0M51EjEE6WoaKnqvbB4KpNef2ioFgXIVqG+7VxtT0Yk5/cWLsrzrT+uFEPwSHybb+1mzZvmL9cpepwMEBfomKSHLnQJv40XBtyphXaIbTkJ2PN2RGC/aPmr/4Pjjj/dZuaOfh4sNCiwgm25Uhu6mIlCf/eL6tJ18PmpbOgGxxx57+Mx7OhmZpOgkguq18cYb19jHUMC9smhrHyZ6Ua8++xdJ6sMwCJSLQH2388Xevy/G+iPN+itt/cPNhLqpR4/6i66DdBOASpr9mXL5HVCPNUvg7bff9o90Pvjgg/3J9ujS6zhdFw30+Odcpdj792qHCgrebbfdMo+cDvOeM2eO79S5tFwl7bm4NMf19V1H5qoz/RFobIH6/pbTbi+TLF+a89Dx6aU5rte4hZzH1vkBBeiSTTeuz/umJlDf7X7a7WxSn7RtLJw/V7BuNOBP1+uUhENPw1TgX5qyatUq/yRKXWvT/k+4WT/NNBgWgXISSHMsHK93MY7F49MMCXZ0U2C8hH7KLFhoSVvn+u4PFVpPxkOg2AL13bYXekyf77x82jaZzaXQ/Y581+Pqs37MVk/6lbdAfdf3DdVGpFbobzwuridPKSmjrl1nu94dhk9yLV3nt5V44v333/dPnFdixmgJCfcUT1MuJdlVwXKpLfVAAIE6BXQHzXXXXWe6s+LKK6/MHNjrDiAFAalEA4EUMBs9+NdjAufNm1drHldffbUpjb5S7qd5/I6CIbVS1F0bCp4NBy5jx471Jx/23Xdfi2YDjNdHgY5aHmXt1AWPEDirAEJNUyWabfe9997zF0eUnTC6QtfOjUo0iFE7W1ou1W/kyJH+c/2j5VSwlTYKcqRUloB+Qy+++KL/XSlAJpwY11IqeFVBa0ceeWSNhY7+LrfeeuvMo+WjA2kD/8Mf/tA/Bke/J2WdTVqU8VaBupdccknmd61HZ4aMPMqUFy3R+syePdsHzCoYRxl61l57bT+oluNnP/uZD9pREF4oadqk2oZO5qu9KqhdgUGh6L3qrM+5kB9UeC1Xgfq2e90hr8z08aIAl2uvvdY/vl7ZbaI3g8SHjb/XNkiBBTpo0KN0lCW+rhJt95qP2rW26zqIiWbmuuaaa/xktM1UUeCeMmBnKyeeeKLfrurxwPGbe3SxQVk41MbJpptNj35NQaA++8WFtp18Lg8++KCdddZZ/jGU999/f51B8NF2r+n+8Y9/9Psvd911V419FbVhrUviF+TS7l/kqzufI1CuAvXdzhd7/76Q9Ue8vadZf6Wtv45xtQ+gjEBan6hbRcczl19+ud/26wZGCgLlLKAbU3SuSMfACkyJPtXin//8p6962B8OyxFtZ8Xev9c+8+233+6PnXXOrWPHjn62OhcXzkcNHz48VMWidVHPtOfi0hzXF7KOzFSUDgTKSKCQ33K0raXdXiZZ9DTnoTW9aH3SHNdr3ELOY0cv9suPgkBTFUi73Y+2NS1z2u1sUqd8bSxeD10LO++88+yCCy7w157CeXzVTyV+TSJJPXT+X4/x/fGPf2wXXXRRklEYBoGyFkhzLKwFibazQo7F82Hsuuuu/ib7m2++2V/zCwltFCSvJ3ioRK87R+uTb9r6PG2dC9kfSlIPhkGgsQXSbttVv2j7KuSYPsl5+bRtMl4vvS9kvyPJ9bi060fVhdJ0BQpZ3zdGG5Fo2t94tF7RbyRJNt0019LPOOMMf41M19HCEyg1Pz1pVjfF6Tp+9PxhtC6l6CZQtxTqzBOBBhJQ4KECVP/yl7/4wDoFrCrLli5UaAWkkwEhO6cCg7Qjo+y5ChBUGTFiRNaaPfrooz6AVcFA0UxdWQeO9FQGPt3xrwMVPe5PK0jtbCjwVjs7CnAKRcG3ygqiO4f/+9//+t46iarHiN19990+AFJ3GiuQWCdBlCHw4osvrrFCPfPMM/2FkV122cUHTil1uTIMa3wFHR566KFhdv7Eh5ZbwRJ6/JkuRipAN5wYOfvsszPD0lFZAjohpgzPQ4cOtdNPP90H6+q714U+Ff1OQ1FwuTLdzpw50weV6/cfDXwNw02dOtV36neW7fMwXLZX/a7vvfde/zudO3euz7CnE2z6XSo7djQYXcHACphX8Kzat4LrtAzqp/Z78sknm7KE6MK72oguvkcD8NK0SQXx68ShTvRtscUW9oMf/MC3Ud0pFdquPo8G+2dbPvohUA4C9Wn3yiqtv3gJ2dq1/Ujb7nUjiu4WVHnsscf8X3T6hx9+uG/j6hdfD6mfstwqUFeB/Gqjm222mSlwWOsO3VATgm50F2GuuulGGR2UZPtcgX9aPh3McEFP4pSmKFCf/eJC205dTgom+u53v+sH6dq1a60nQOhkm/bhVbLtp6uta19F+++vvvqqz2avO+n19Ant3//qV7/y44Z/0uxfhHF4RaCpCqTZzsf3p4u9f592/ZGtvadZfxVS/9/97nf+pjsdR/zvf//z+w5/+9vf/Nev44pOnTo11Z8C9V5DBLQd1fGpjku32WYbf3zfuXNnf/Otto16ukR0Hze+P13s/XsF2mg7rX3nHXbYwZ9T0HZd7VtZ83QjuPbXVbKd+0p7Li7Ncb3mmWYdqeEpCJSrQJrfcrzdF7K9zOeQ5jx0vD6adtLjeg2rAL4057F1/lzbe26+lR6lqQuk2e4XYzubxCtfG8u2j6+n3inLtZJzaH9BN8a/9NJLNmbMGH9NTMcpaYpu1g/nEJTBP5qMRtMJ5/PTTJNhESi1QJpj4Xg7S3ssnmRZ99tvP39tWde533nnnUzCDCXP0HVsHXdoGJVs65988yikzmn2h/LNn88RKJVAmm276hjfl057TJ/0vHzaNpmt3ac9vtfyJbkel2b9qGlSmr5AmvV9Y7URqab5jWdrI5qGtqG6rnXIIYfUSL6oz6IlzbX00047ze8b6wm4imVRHI0Sz+kJWCp6+kQ5FQJ1y+nboC4IfCMQ7srLFwCnYNdoWWuttUyPq1Rwnw5SlFlERSfldHetAltD0V3/KtG7/cJnuV7T1kfTURZCZfdVlq8QEKx6K9tINDtveIRIPKuggnIVaKjsPiGoSePrZKOy9EaLVrgKYDzppJMy89LnuutRgYtyCEWZCxS8rEBgXYzUn4oCLW+88UYbNmxYGJTXMhQI2Y7Da7Yqht9rfBhdJFNgnH4/+m2Gou9cJ7hCNtylS5f6IF31j2Z+DsNHX8O8wmv0s9AdPovXR/0VeKOT7vr96k9FFxbjOw06GaAS/X0q8F0ZexRkrsDzUEaNGpX1TvykbVLT+f73v+/bn+oRgnPVXwFBuggZvfip/hQEGlIgtJ3wmm1eudpZQ7T7MP8wz/A++ho+i9dZGbxDCRniw3u96kK+tmm51kPKcK1togL2rrrqqsyoOtF/55131gjQz3yYsGPx4sWmAxltM0PAb8JRGQyBBhEo1/3ifAsb309/4403MqOEJ11kenzTES6yZdtP18l/nVTUvms4uaDRdJOebsxR0E60pNm/iI+n9/H1VnQYuhFoSIF424nOK9d2Nel2XtPKtj8dnUfoDvMKr6F/9DW0k/Aa/Sxpd7b2nua4Ptd8Qr3Da3Q4Pf5L6w3tR4QAXX2uLFy6uZeCQGMJhLYTXrPNN9d+gDJkDBw40O8Lh3NNGl8n+XXsGh5nl2t/Otu8Qr9s7SZ8lqs+aj+6wU03s0az3CsgXtvtsIy5zn2F6Wd7zVafNMf1adaR2eZPPwSKKRDaQnjNNu3wm48Pk/S3nKbdh3mF1zT1SXoeOld90hzXpz2PrYAibr7N9m3Sr5QCoZ3F23a8TtmOB5Ju94u1nQ11yrXdz9fGsu3ja5pKDqPHfSuxjK7hqeg8u65dKTgoWwle4TUME66V6f0dd9wRemdeFTyoG5soCJRCIFfbCXUJv+fwGvqnORbO1c7CtAp5ja9/FEz4wgsv+MRQDz/8cCbJlIYL5+fCja751j9J14H56p10fyjfdPgcgWIIhDYcXrNNM9f6IOm2Pde+dLZ5hX6hvYX3ac7Lh3GSvOZr99mmEa9b0utxadaP2eZLv9IIhLYRXrPVIlcbSbq+L7c2Ev2N52ojivNS0Tm0ukrSa+mahq6PKU5OCfl0I5z+VBT7paesx5+85T8s4T/N3GO4qks4f2aNAAINJKA04tOmTfMXA3QyL150UU7BvMrg2RhpvnVXr1bG2tjoRGR8njq5oUwECi7OdieGUpvrrgcdAGmFGl3Jx5dN7z/99FP/+E49ErBdu3bZBsn0mz17tk2ZMsVnC+3Zs2emPx2VL6AdYN3No+zL8QAXZdndcsstfYa6fDsKxZCqqqrybWTGjBnWv39/X6f4dHViQJmm//3vf8c/8gF9CjzQY3fURsIJgloDftMjX5uMjxesFDgfb7/xYXmPQDkLhN9yObT7fE751kPa1n/yySf21Vdf+ay/8ZOJ+abP5wisKQLltl+czz3ffvoXX3zh7wrWPr6eSFHXiZ4k+xf56sPnCDQlgbq281qOuvanS7Gc+dp7vvVXfeqsE7k6xl62bJnP0i0bCgJNUWDWrFn+6U3avw8XOMJy5NufDsMV61XH42pXelWWn3jQTb5zX2nrUehxfbZjobTzZngESilQ1/a+sdu9HOo6D52vPmmP6zmPXcpfHvMuB4G6tvvF3s4Wurz59vF13U5P6NMTAXQeP76/UOh8GQ+BShLIdyycr501hIXOx6lEk1CF+ZRi/VPX/lCoF68INAWBurbt+falS7l8pWj3Wt5868dSmjDvhhGoa31PG6ltrlgbxaWtu+66li1OrvYYjd8n+y16jV8P5ogAAkUWUCBrtoOFMButtPfaa69GC7jTSQc9kjBXCXc/RjOFRodVsO3QoUOjvers1kUH/SUpyiikbCSUNU9AAad67FS28uGHH/rejXWHjYJsVJdc9dGBirJhqN1mKwo0VhBv0pKvTcanU5dVfFjeI1DOAnX9lhu73edzylcfbevXdQca+qMggEBugXLbL85d09Wf5NtP1z5+Xfv50enn27+IDks3ApUgUNd2Pt/+dCmWP197z7f+qk+ddfwQniZSn+kwLgKlFlCQea5A83z708WuuwKF9XSMXCXfua9c4+Xqz3F9Lhn6V7pAXdv7xm73sq7rPHS++qQ9ruc8dqX/ulm+fAJ1bfeLvZ3NV5dcn+fbx+/Tp4/pj4IAArkF8h0L52tnuadc+Cd1nYsrxfqnrv2hwpeSMRFofIG6tu359qUbv7b/j70vAZCrqNOv7p4zB0kgJJBw5IRwBozc9ykiuIAgrID34uL590ZXVGRXRddrPRBWvHVFUBEB5TbcIvcVQgKEJJBAEkKAJJOZ6e7/9/3eqzevOz0z3T3dPd3TXyU1dder9/U76lV99VXfEYfjvufRB3s+9rVQvpGCwEDPe90jm//KW2+9taOtZ5Os58apbUJACFQHASp7PProo/0S/qpz1IFrpeIIt+Npb28fOKNShUCNEGAHm+qUAxHMa9QUO4zvaB111FG1PKyOJQSaCoF6u+/rrT1NdTHoZJsGgXrrF9dbe5rmQtCJNgUC9daf1v3eFJedTnKYEai3/rTGvob5gtDhmwKBervv6609TXER6CSbFoF6eM+qj9+0l59OvIYI1ON9Vg/Pnxr+BDqUEKgZAvXcl9Z9X7PLQAcaAAHdIwOAU8dJie7u7mwdt09NEwJCoAoIUBL/wQcfdDNnznTjxo2rwhFKr5IvEarmDrQisfRaVUIIlI/AihUr3Lp169ycOXPKr6SCJammu2jRIjd37tzNtvOs4GFUlRBoagTq7b6vt/Y09cWhkx+xCNRbv7je2jNif3idWFMiUG/9ad3vTXkZ6qRrjEC99ac19lXjC0CHa0oE6u2+r7f2NOVFoZNuGgTq4T2rPn7TXG460WFEoB7vs3p4/gzjT6JDC4GqIVDPfWnd91X72VVxCQjoHikBrDrKKqJuHf0YakrzItDW1uYOO+wwd+ONNzYvCDpzIdAkCFx44YWO9qabbnKHHnpok5y1TlMINDcCes839++vs28+BPSub77fXGfc3Ajcdttt7uijj9Y3fXNfBjr7JkPgmGOOcfPnz3cQwGiyM9fpCoHmRMC/688//3xHKyMEhMDIR0Dv+pH/G+sMhUAcAT+Wp3d9HBX5hcDIRkDzdiP799XZCYE4Av49Xy/jeMl44+QXAkJACAgBISAEhIAQEAJCQAgIASEgBISAEBACQkAICAEhIASEgBAQAkJACAgBISAEhIAQEAJCQAgIASEgBISAEBACQqAyCIioWxkcVYsQEAJCQAgIASEgBISAEBACQkAICAEhIASEgBAQAkJACAgBISAEhIAQEAJCQAgIASEgBISAEBACQkAICAEhIASEgBDIQUBE3Rw4FBACQkAICAEhIASEgBAQAkJACAgBISAEhIAQEAJCQAgIASEgBISAEBACQkAICAEhIASEgBAQAkJACAgBISAEhIAQEAKVQUBE3crgqFqEgBAQAkJACAgBISAEhIAQEAJCQAgIASEgBISAEBACQkAICAEhIASEgBAQAkJACAgBISAEhIAQEAJCQAgIASEgBIRADgIi6ubAoYAQEAJCQAgIASEgBISAEBACQkAICAEhIASEgBAQAkJACAgBISAEhIAQEAJCQAgIASEgBISAEBACQkAICAEhIASEgBCoDAIi6lYGR9UiBISAEBACQkAICAEhIASEgBAQAkJACAgBISAEhIAQEAJCQAgIASEgBISAEBACQkAICAEhIASEgBAQAkJACAgBISAEchBIdHd3Z3NiFBACQqDmCLS1tdkxDzvssJofWwcUAkKg9gjMnz/f6X6vPe46ohAYLgR4z9Povh+uX0DHFQK1R0Dv+tpjriMKgeFEQO/64URfxxYCtUdA93ztMdcRhcBwI6D7frh/AR1fCNQWAd3ztcVbRxMC9YCA7vt6+BXUBiFQOwR0z9cOax1JCNQDArznwY+th6Y4EXXr4mdQI5odAU/UbXYcdP5CQAgIASEgBISAEBACQkAICAEhIASEgBAQAkJACAgBITA0BFpcq+tMdLrO5CjXnmh3rYk215qETbTCbXUtsKlE0iVc0iUTCZeAnyGajMu6bDbjMlm4CKWzadeb6XU9mR7Xk+2O3E3ZLrchs9F1ZTc6pA6twSotBISAEBACQkAICAEhIASEgBAQAkJACAiBKiFQL0Tdliqdn6oVAkKgBATq5YFQQpOVVQgIASEgBISAEBACQkAICAEhIASEgBAQAkJACAgBISAEaoFABgTaTc5lN4I6CwturMsy3IUwXbPYPBECMVlwZsGnDf2I60UY1qVh6adLizrBxM21CBpfl5xdb5PwpxCEdZxRop8ubKINmVrpwsJ1dNtB/G13LtnR5wdn2CU7EQ+bRBpYwTJCQAgIASEgBISAEBACQkAICAEhIASEgBBoKgRE1G2qn1snKwSEgBAQAkJACAgBISAEhIAQEAJCQAgIASEgBISAEBACQkAI1BsCJNNm1oN4C5tdD//r8L8exBkxdwM4tRuCNAuDrAs5W5B16SINZF0SdY2EC6c2hkzf0JDIS6IuCLrOSLp0Sc5F3ChvEYYfQr8uMRqk3dHwj0Fc6CZHwa9ZqxBQOUJACAgBISAEhIAQEAJCQAgIASEgBITASEIgASXP2EjKSDo1nYsQEAJCQAgIASEgBIRAXB0Hu1YGSjmEJfRHcVEaPP2lxeNjdfj8jKIf04RBHT6Pd1ne+wu41pYC8fH6fRUWZ5Xl/YkyFBMfa6dlhxKQbwS2/uw7CXgZDLcBpS8yFh+F+jyDxEfJ9PhAnmtNYI158TnhnDQEEtkg2RdmetwyGA/H/DnxLNRvWlBnTn7mlRECQkAICAEhIASEgBAQAkJACAiBwRGAmm0GhNv0OhBxX4X/Vbp9/uxr+BoFQddc+kHcJRHXFHAHr73+c1BNl0TeMaEdC3LuWPhhk1uAvLtF6CKe/tQ4uCDwUslXRggIASEgBISAEBACQkAICAEhIASEgBAQAo2KgIi6jfrLqd1CQAgIASEgBIRA5RAguRNbPma57aN3LQ5/GA7TjX/KPD6cASU1Hka8ryM3b1BPv3X5+uiyjrxwVC5MdziutSEMR22I0gvU4dNiLr3RuVggFqaXDeH50fhysbC108d71+f1LuO937sDxFmdA+WzyvDH1+HD3i0UXyiO+fPjo4OHlXmyq6+7PzJqofhCcawnHu/9cTf0R4dmOJ7u6yglLqxjM2JtvG5MlCb8QTlpGq8/DPvkOIE3x291oKwvzzp8nD9WGGdsYfitzoHyx9IS9Idh8/u6kqwI/31euHF/1AbmK1A+akO8Hl+HrxOHlhECQkAICAEhIASEgBAQAkJACJSMAL6hqZDb+zKIuK/QIkx3LS39+DQFYTcLwq6DYm70DV7ygUZIAX6DUW13HC0IunCTE+BOgDseLmwK/hTjoMhr33gj5NR1GkJACAgBISAEhIAQEAJCQAgIASEgBITAyEZARN2R/fvq7ISAEBACQkAI1B8CmKQyYikUZAJSKyak4LfJKKaF/izJqHnxEQmWaTl5+8pbPNJ8WX8MX3+UzjysI3R9en6YpFiLI6kzXiYW9vFWX6F4xNn5WHlMJJEQynNjvM8fdzfzJ2L5WChsC11vWXchP6JlhEBNEMClbcRdT25lOO7PCSOAtIAkiws3v2y8XJSPZcK8TAexNk7etWNZvK83PH4Y59sSlWE8qkx4Am8sX04exMfDcX9wzL52JKjwFKuHfp+/L60vPxWhLD0s59vSlxfpqRAr1uvz0y8jBISAEBACQkAICAEhIASEQN0hkO3B5z6IuOk1sCTnws2swXDCargv47MdBF0j5SKfTAkItOLbCOq6iS1B0N0Sn10TYbeCHzaFuBRdEHsTyCcjBISAEBACQkAICAEhIASEgBAQAkJACAiBekRARN16/FXUJiEgBISAEBACtUAAfDcjxYIwGpBjQ8KsD5uLTD4MIqjP79IhedWnwTWSKl0fR+Io8kXxvrzFx+ryYU/MZfkwzgiwvk7G+XjLw7pBYAuPQX828gftsHSUyYn39cRdZJcRAkJACBREAI+ZiICcR8INiLMBkdZIxEaqxbOJBN2Y34V+I+KSlBsRc0N/GI6IuGGezfLHy0Z5+uoz8rKPp+vJvTlxaC/CngxsroVj8T4d7fZEYstHLGSEgBAQAkJACAgBISAEhIAQiBDI9mJYgsRcEHHTq2BfAiEXbuYlDFkgLgvVXLcpyi5PJRHowHcNlXVJ2t0adhLIulsHtgVuksTdlkoeUHUJASEgBIYRAQw32Th7OD4eiE2E4/k2/h2k29h8KHJhY+kox6KRwAMDFgHH+8NwkIcBDABxDMiPA4X+Qrtt5cSF42bBWBIK2fgY6onc2DhTmDc6BrLJCAEhIASEgBAQAkJACAiBkY6AiLoj/RfW+QkBISAEhEBjIuAH10hI7Y0RaDEBFBBhMWAGP4mzRp41P+J8GG5OOgmssTROJDEcjzM/jpUTHx2vL39Qpi9fEMbAm9XHeBJmmR/+cOAwx0W0jBAQAkJACAwBAU6QcEKDBNwcFxMejEvhQWtukMeTcUkY7vPnpWECO0ozPw4S1hHFI2wT3XQtLawvXjZMs/SWoA76g7B3+9phabF8dj5omowQEAJCQAgIASEgBISAEKhLBDjUsSHreknKXQkXNvMi7ErEg6SbfQWtllru8Px0VN0dj0+kySDpTsbnzDYg7dIibMTdUfg+4beUjBAQAkKgVghwjB/vhGwP3g/m9vlt7J5xHPvne4Pj8BzjD60JZYRxNv7ux9k5xu/9rD8c98/PY+PxzOfH4uHmEHMZn28RFeXn89I/M70/zzWSbjyPJ9/amFE4BhSOW/kdo+KLx/24VjRmxPGhcIzJxp/gtzCf70gz1XSmM9wahON+jSnxB5QRAkJACAgBISAEhIAQqGcERNSt519HbRMCQkAICIH6R4CDYXmDZ0aCZRwGySI/B9XCsMWRyBqW80Tb/tItHwfcWIfVG7ib+Y1ki8EsO07gWhkjzobljUDLtsByoE5GCAgBISAEhECxCHhScDjhEkye4H1DYjAnT0jIDV3HCRTm85MqcX+UB/mpNoxwNAET1pFfT+F0HMPXb3WwLUFdQfkg3fxsu4wQEAJCQAgIASEgBISAECgHAYyfpF8FKXcF7Asg6MJNw82swNgPVHOlmFsOqDUo045vg4kg7U7BZ8IUEHa3BWEXbgvc1Fh8O+gboQY/gg4hBEYQApwHILF2E57/UEqnm6XbTRv3B2HHeOaHa37moZ9xJOaGliTeKK4Xz6ZwzsBxrJ/zAX48f6SO5cfHmmyMh2M5HGcKx4ta4Q+JuXQDP9w2POMZD9e1oUwYtngf5nuA8Qx7fzveC1RkZxzr07sAIMgIASEgBISAEBACQkAI1AoBEXVrhbSOIwSEgBAQAvWBAAfUMLhlg2ThYFdAtA0HxGIDYUE8mh3FhYNoXOXOQbIw3vwcWGO9rJODbbF0G3SzvEiLx9vAG+viABzSOOjGdLojdeANpyYjBISAEBACQqBfBPwETUjANRXgaIImGxFzA3Iv3p+cVDGSbszlRI2f0PH1hHlsEsb84YRPmE4yb0D6DSZqAn9QT+SnWgvzkXSsiZx+f0IlCAEhIASEgBAQAkJgRCCAcZn0KwExt/f5jOtdjqGa5SDoPo/xm1dxhhq3aayfGf33xDh046eCpLsdLT4jpiaNuJsah28D9e8b6/dUa4VAJRHA89yIt10g4G7EWH0XxvbNMhz6ScplHIi5LkyLwjHSLhduWJ6QnGvj/JVsq+oaGAGO8XCciORcEHMdyblm8Zz3fpJ0OxA2N0xHOIGwEXhDf6KTYZB6O5FGMrDeEwBBRggIASEgBISAEBACQmCoCIioO1QEVV4ICAEhIARqgwAGzDxx1laZk/hKQqzfNsoTYBmmPyTL2up0EmtJpPUE2siN5c1P50p2v4Ld/CyfQN0h2Zb5RagFCDJCQAgIASEgBBoAAU6ocMImtEbkNZIvyL8h2dcIvyDjmjpLOLljaZ74ay7qiLtWNkbuDdO4BWNQHyZ9UJeFY2msV4TfBrhu1EQhIASEgBAQAkKguRDgGurXQnLuMpBznwMx9zkQuKCe614HFHBkRgAC6Kq7seBcUWV3Ryjs0m6fcK0IJ8cgkekyQkAIjBgEbE4BBNzMejzPN8DdgMc5CblwjZhrYcQhLUtibmgd83g/yLkmxqFFGiPmurAT4VgRx3VI2gUxN0FSLlxnfoRHhXHm4r0xKkhnviTikqMD18pxHElGCAgBISAEhIAQEAJCQAgMgoCIuoMApGQhIASEgBCoDAJUsTWirCfWkixLP7eAMmIt/BaHMONIhDUyLmZBfDzjzN8X57eQ8nkcSbVh/qA8RtfDOMZL8QQYyAgBISAEhIAQEAJDQ4CquhGZF30N24oREzZU/6XyLid6Qmt+vwVjmObT425E7g3zBmlBXfQzPXD7/I7tkBECQkAICAEhIASEgBAYEgLcvrz3xazrWQIXNk27DP06KufCaUjjyUfsk2K3iQT7q+w7hjZaNEZSatzyZHnOccvF8xzX85bjdVzczvG2cLF8w4634TRMaRdE3dQ0EHZhW+lOTgYKisRDRggIgfpGAI8izidk1oOE+3pIyIWbJTEXcXQjPxZdkKCbRbzbAFEOkHOpgtuwz7D6/mVGTuv4TqUiL4m6o+EncRcubXIM3SDeiLwIG4HXu0yjIi/ftTJCQAgIASEgBISAEBACTY+AiLpNfwkIACEgBIRAkQhwwMuIs3C7PakWLkm1sAE5Noz3RFtPxPUEW+aztKCclfFlUacp1oZ5fH10zXIyQEYICAEhIASEgBAQAiMJARIlIkIvZm3a0B8iKbcNfnODdJvUCcOF0iLFXp+HLlV9PenXXBI0grpZn5EzNFE0kq4mnYsQEAJCQAgIASFQCgLodqVfATl3KeyzGZd+GuTcZzBe9TIqqdcxKE8UgpKf68TOEF79D+QhUwP023uzrxf2A33fkrs8RCTd0J9gfewPxi2COSRdjgdSQRKY2EL7kKwbLLbnWF4wLmgL7jnmV2h7eChSulCxkuOCdUuIQ988sRVgmgGi7kzY6UnXugMIvOMAEDGSEQJCYFgRsLkJEGvTJOO+hkcJFNCzdBkmATcMZ82PcEjWtecOHlcyQqBqCPAdwfcuybsk7o7F+AuU272fZN4k40I3BX+S6ST+clxIRggIASEgBISAEBACQqBpEBBRt2l+ap2oEBACQiBEgCoYJNySbMsBdBtQD/0Wjvk5eO5JueZnuaCsEW7NzzxBfJ/LgXqsSDfyLdJJttW2UABBRggIASEgBISAEBACFUTAK6UZEQMzQxHRF8cA2dcIvp6oAdfH5cSDvBuPN1IHy3rSb1hPRPIlsYPHlRECQkAICAEhIASEQAMiwDGx3lUZ1wNibs8iEHQXYcjqeYxjkUxaD4b9LBJwtyDBJyD15Cj2UcUPxB5uue2Juklu2d2OvKGbZL+vxsQfKu7amGEXxhVJ1oVCZQZbxXN7+WCbefi5rXyewmVAqEM8yHb2G9TL+CF+g+R2IOvODmzbzKRLTQTG7AvLCAEhUF0E8BzI8NmxDqRcKJtnXoU/dLPrgnAW4SzizQUx1+Yfqtsq1S4EykeA4ysk8PLdvgXeJePwjqGLMN1kGE7RzzguyNG4S/l4q6QQEAJCQAgIASEgBOoYARF16/jHUdOEgBAQAoMiQNItibYYAM+EBNqASBvE0e/JszZIHifUYsDcyLrc2snHW1xQ1nVjMCCsk64Ndmnl+aA/iTIIgbpGgKv7vWVDvb+Qu1k6Mlk+PAgSGEhEejYJBR/6ongWCo3FFfAzKj8tFsckPmpwiCCfT4u7+X6G44Zl802hOObJj/fh/OddftjXXyi+UFyh/D5fzM3CzyZYFP/E0qyKeBwj4uHN8qKmeDrfGYzI+nj6Y3XQT5MfFw/np1sB/RECQqAhEeDDxki6eO5QwRck3wTV2DzBl4psJHmELskfphBD4q+P83kZZ/F4K3g/0pKWD3E8jiaZAIKMEBACQkAICAEhMFwIcFys5wXYp0DSfQrkL9jsarRmuNRz2RcjsZaknfHoL5GkA0sCD1X2jLhDxT2q74Gwm+T22iTu1JiAW/HfC3gbAc+2qIffK2OGRDwS70jIy74CC5IeSXm2Lb3/Xq14gwapkCq7WwP2nRKu1SxUdqckg37yIEWVLASEwOAIcPFEBs8DKpxncN+TnJvxfrj+WcA0KnMP2zN78FNRDiFQOgJ8p/P9zve/7wvATY5HnLlQdacfyu7sC0h9t3SIVUIICAEhIASEgBAQAvWGgIi69faLqD1CQAg0NQKB0i0Goqk8QZJsqEBBFQpPqo3iLZ15AFk8nyfeIo4D2ZYO0i3rEuG2qS8vnXwxCHCijESiuI3HkT2KtGB7SNxTPl9OnqC85WG6TyO51ef3LtPC9IiY6stE5YI8hdORaZA6graGx4ET5fflWEXMXyidcQlm6ieflY/X7f35LsvDlJU/LBvUwEoiX66nlPhCeeNx+ROB+WEeuVBcKfEoT3KuGbpxPyPj4dBfVn5fd56bZWV5cflhO15/edhEplH1yOcJ/ZvHI0OhPHlxlqdQHf4YdGFt+1UeJBZvcbFwPK2vDH5kyxOWzc/PsI+DV0YICIE8BPic9ARfI++GBF+Schn2JN542PxI92TeKA/ejRYXlA0IwGGc1MrygFdQCAgBISAEhIAQKAcBkkJ7l2dd95Mg6C4AGWwRvgNI/qy1Yf8HZJvEBJBttsJwAl2Sb0I3RUIOiTjcBrtJ+0GesGcqmjGiXmYtiHtr8Zn2Mr4DX46Rd2v5G7IPDCJVCgq7rbsmXNvOIOxCcTfRwQQZISAEikIAYy0ZKGuncU+neU/TxT2doUU4axb3OMj6No9RVKXKJARGIAIcJ+FCHvYRJsDdEv2FLUHaZdhcvI/Yb0CfweYnRiAEOiUhIASEgBAQAkJACIxUBETUHam/rM5LCAiB+kAAg08k1mYiIi0GmkLyLImztgWcJ9p64i23hfMkW/otjNPxpFtzManAclhxboSm+jhbtUIIFI8A5zE8WZUrx+kP3UQSiSlc47E4pkUkV58f+WwVua8ndPPjCpUz4ml+uWLCZJj64/j8sXMxAmo/6XZe8bzMF4ajcgz7PHAjcizyWp5YWnQOVgZ/wvrideWUQdUyQqAqCISk1jgxN+4nkzcg1eLouLU9CTY3D5IYEUv3/ni+iIjrj5lBgdBPN54elesnPWoX00MbL18ori89PG6hctzyNVan1RPFheV8GK4/jqnCsFwai2usPPL6dO8yHtEyQqDhEOC7ioSTiLzryb14lzOOanKwPj3YthlxSDOFX6SZOi+3dLY6mBb4k3QxiWXvQTgyQkAICAEhIASEgBAgAtkuqOcuA0H3cRB0HwcZ7Bl0pF+rETbs+3Siv0JC7kQQaaDImtwKBBtvSbgh2YaLnJhXpn8E+AmF35IKm+k1+ERaExL7ViMOisiZVfjeBIHXbYSt1bcSFI9Ts0DY3Q2E3d1Cwi5/SxkhIARyEDDyPVSy7b7lvQtr9y1d3M9GvCcpFzsGyggBITAIAlgwbeRd9CVswU/optDPSJG8yzBU+Zt1sc8g6ClZCAgBISAEhIAQEAJ1g4CIunXzU6ghQkAINAwCIMlE5NuQVBsQbjEwHJJqORlghNxY2NEfs6aC2wUyDvIa6ZbEWxJxZIRALRHgPAIJniS/RhYDOubHtRnFYSDI+y2/zxOWI5HUp8ONyLIWh7z+GKEbhZnXxzGvkXTp9tURr8vntfR4Xl8H3dAGecNj58eT5LtZHMrKCAEhIATiCPCdb6RZREb+kHicH5/OjbdyeK9H5c3PWWbU5eP53me9eW5A0EV9jI/nLZAvOA7qjaf5cqEbHdPCsTb49MhFv8TnieKCNtZs0huHkxEChgD7BSTqGpEX7+0OXLtQLMsh9jJMkq/loRuGfRzCSfMH8Unmpxow+wAyQkAICAEhIASEwIhEgGN2Pc9nAoLuwyCGLUYfYn0NTpX9ERJzJ6P/MQnDKZNAmqHdGpYkGmxZrT5IhX4HfEOlX8NvC7JuGkRdsy+B+PciPq9exHcUibscZ622GYPfmQq7e4aE3SnJYAFZtY+r+oVAnSLgibm9/r6ESzJ9ZhXuTbh2b2J+RGaICPgxbRtLR13ejUQt8N6L4pDO8f+YpTcejvzxePpRTWTzw0yDsUXy8Xx+rIxjSplwjMkvsrc4xHuXeWWGhgAXBXHxD/oatijI9znQ/2jhQiERd4eGr0oLASEgBISAEBACQqAKCIioWwVQVaUQEAINigAGCEz5FoNFVGroI9ViMCki2MbisXVeRL6FaoORcznQ5Mm39HM1eDho0aCoqNnDiQAH3Tio5i2U6BIpDKVRbZaqdIy3uMB1SDNSa5gWEWd9HqsHeXxZhH2e3HI8Rl+a+eN1ol1BO/ry+HqCcjhGrO2WFg0UhmVsRBDtlhECQkAICIHSECCxN5z48KRaTwr2pN4sSMM28YG+TUT25USIhZHGOhiGMr9PD9LCPL1B+UJpfWXCPFT3j+oO/VG9yBOmc8LO8kVpCPu4sC3qMwETmfIQYL+CBFyScrn9MEi9RuDtRJ/E4pAW8wdxQZoReT3hF3mNzEuXqmjsO8kIASEgBISAEBACjYEA+ri9L2bcpsdA0n0I5M2F6ItSqbFahuMeUFY1Yu4UdBu2ARkXtgVE3RYQZJIk5rKPIlN9BPDbp1/Hbw6ybi+IuumVgc2swKcP/KakDKdqZhx+/51B1t0r6dp3T9rvL1J21dBWxfWEAO6rzHrcd7j30rj3eP9l4qT5tWis1HLxogAO/F7FTjCJVrwYWgEc1VEZxzF3xHm/jdszDtb7Ey3htynH6/2YO9yc8XiLRz4fH+az/HwXxS2CDEc7sRVIY5b+SLoROTeeh89Y2Gh8yo87cbwHRF0bX0JcNPbk/aEbjDWhAo4ZcawotObHNRS4YTqvKbMgAncjzodZV7MbXlcTcBmgP5KcjHcTFwyhX0LbQjLvaP7wzQ6Szl8ICAEhIASEgBAQAsOLgIi6w4u/ji4EhEAtEMAHuingglhrhFu4RsKNwkj3xFwSbpluLhrnCbjmBmEHZQ4RSWrxwzXQMTjwFQ6gGaEDg2eJFgwS+UE1kjzMz3jvx5gI/WFanz/Mw4E3Xz7MF+Tpq8OTa/tcjLIgL8M+LiLO+jp4PBJ6w3yaOAAeMkJACAgBITA4AuxPYYIlINyGkyxh2BODg7QgX84kS0jEjdKNoIs6zA3r9JMw/hieLBzG22SO98O1sszj/dEx8C4My/qJHVMUHvwMlaNZEOCkFCZIbTtqknipQAMSb344iEdaSOI1Qi/JvsxPIi/8RuplXewLyggBISAEhIAQEALDhkB6bdZ1LwRB94GM630U/UxsqV4Vw/EWkDKTU9EPmIohGLgpqKi2bAt3fDheU5UDq9JSEOC3Aq+J3hW4Hl4AgRA2sxxxz+P7YR1qqgaZC91JKiq37AHC7huSrm3npF0TpbRbeYVAIyBg99cruK9W4B4jKR6u3WNw7dnLuZORbPjtR4ItvyWhpG47wNBtwzuAyurmD9wE4oyQS4IuvxvpkpRrLsIhWZdEXCPqMswxexJzzQ3CI3osP3+syY/xYFyH15qN/YCImzUbjiP5MK41T9Tl/B8t5+4YF/mprg5rcd5PgR36UU9V3geotm4Mr0mq/bOfMgUWbgsXFvl+C+eKZISAEBACQkAICAEhIARqioCIujWFWwcTAkKg4giAlGEquCDSZkKCrXdJto37jYC7AR/liHfm4oOdBFyGpX5b8Z+mrisMV5TboJof/OJKdvhtEIyDbUa2jYdDP/PE0nPItOEAWlSWg2sc7AjjbZDND7hF8bGBN4sLJnasnEgfAE9GCAgBISAEmgYBTtBwIsZIt+inRaRdxveRcm2ixiZswkkaP3kTuj5vROKN4oFkT189RuTlBA/S+/Ii3cdx0qYXCi3hsW0Sh22rxsQ+qpWpMwTQRbM+n5F50T/rhErvKESSqDsK1lzEh2RfEnc9udf7I1fqvHX246o5QkAICAEhMFIQyIJo070EKrr3ZVwPSLrZF3Bm7K9V0nBshoqp24HYsj3c7UFy2T7pWkFykWpuJYGuUl3o3qdfI2kXdhmIu8tC0i5cI+3CqajB2J6RuOdBXRe2bVoyIOhV9CCqTAjUFgF+M6dfxj0E0nvv8xmXXg5y7nJ8GuO+qrpida1Olc96khptEWffDi1GyA0Xa9oiTubhN6ARdcPvQcbhm8+IuiTh0h+6Sc4jcMxfpuoI2BhSjKib3YQxIyPpYtzH+zEPGIn2MI02JuJjO2iG84yBH81GnhExDsQxji1C0u7UsD8zFYuNSOCdgGuW814yQkAICAEhIASEgBAQAlVHQETdqkOsAwgBIVA2AiRr4MOaZNvMhoBUa8TbkGzr47IMM91c78dXZ1jGFHBFqCj7Z6irghww44CBEWUx6EU3tMH2UBhQyE8jSdbyhIMN8NugQ+jGy8XL5pBqeUyrJ6yD/nCluwi1wEZGCAgBISAEhEA9I+AJwEbYxUSiJ+7GSLtUZwni0ackUdeHzS0U5/MEaRHpN14O9RsJmHGwVmeYbqTfSpMC6vk3GMltiyZ0cZKexAtCr5F5Sej1fqQl6Q/zGIkX6XQtnv1V1iUjBISAEBACQkAIDI4Au3Srsm7TI1DRvQeksUWI4EL8SprReDVTMXdHDAlNAzl3R5BzQWbRttGVBLnGdeEyybyedT0kGz4H0u4SkA2fQxzCbn2F24I+X2pnqOvuD8LuniBCbYWxapKkZIRAoyCA7+j0q7hXQMrt4f2yFHM0S3G/kJyLeZiGMxzft+8z3Ip4vkffabYIM/Y+JBSDAABAAElEQVT9Fi7ATPK7jd9qdLnLClzbUYXfbbqXG+7nL9hgXMo2/0gSrwn64BonkZfzkaHATyT+Y3OSyBefg8R7I8t3B/sfXADeaIb9HCrr7oD31Q4J14p+ju0UsAUucI1NNNqvqfYKASEgBISAEBACDYSAiLoN9GOpqUJgxCEAhQuq4Wbs47Y/lx+74QcwP3xDQi4HT/lRbCRcfFDLNAgCHBDjYBZJstjmyVHF1vyI4/ZQUZrP413mZZnAer/jVlGM89tFefKsz+fJtQx7P9ugVewAQUYICAEhIASEgBAoCwH0YUnAzYZE3IDYiz4NybgWzzTUzPSQoJsfjhN3WU9umGVRB7dtDOtg2PVA3TfMa+FGnAjCaTSl4UQuVZYwCdw3ORxOBscmiZM2cUziLvKODieFQe5lmJPCmixryqtHJy0EhIAQEAJ5CJiK7jMZ13V32vU+gP7WKmSo1Nggx44mYthoOoi5M2Cng5wLBd3UOL2H836Gxg+ShLgOBMSlICA+CzLiMyDtws2uxqlVSpUZl01iEoY0qa57ANR1cT1xDFNGCNQzAlQe7QEZt4f3xbNYCPEs5nBA1q04mb3SIPCbi3MEY/gtRRffW/RbGH6SEhnP7yzv8jvLFlMiDt9r+t6q9I8yQurD+yIDVV0TDsL8ZDSfyTlKLP7IhHOVNo/5OuOCeHOR1hBzmLhPktg5oAX9H/aB2tgP2gb3DXcHkhECQkAICAEhIASEgBCoKAIi6lYUTlUmBIRADgIYv+HgOT9gMyDb2gcsXftwDV36ScQ11/tBQkAct5ap2MBoTsMUKBsBfpeT6MpBZZJk2/A7eZKsJ9pGYQx8gSAbpCOv9/t0Kx/kCdKCPJ50SyKvkXCNdIsD0xXBFoDKCAEhIASEgBAQAiMBAW7LGBB044Re+LlVY0jwdd2xtBhx10i8UT70x0L/5m5QX0D8RX8K9UUkX3hl6ggB9nOp1sSJYps4hj9yg7j4hLKfYObEsk0uc2JZc2h19IOqKUJACAgBIVANBNJroaL7cMZtuh3ksafQmeF21JUwVEokQWUWhr1mgZxLku4kkCo5liUz4hFg37v3xYzrAVm3dzGIu4tDYiLHpithOgJ13fZDAnXd1Hh12ioBq+qoLAKZ17Ku+zkQdHkPLMLcDe6H7FocAyTFujL+u2kLfP6MxXfSWDy/YemPXJIOQdRl2FyQc+15rluvrn7KEdMYdEdMmZdznyTugqhrLu4pknUzryEdfnNfDfxZxJkydb3dX1DSTWyJdxb7QbOhsss+EdR2k7i/ZISAEBACQkAICAEhIAQqg4CIupXBUbUIgeZFgKq43AoGRFsj44bEWyPjhh+l0UpSpiEuWknKwc56+xBtll+SW9dwsoHkV5JuQxv4MXBFMm1/cWGZBIm5Yb6ccj7dE3GZh34SfLVlDkCQEQJCQAgIASEgBIRABRBAP9oUfD2Z18i6ATE3IPsGfiPvMs1sXhyVelkeafF88TjXjUV0JPgyD1V81X8HCMNg2I8mkTdUf+pTh0IcJ6FDpaiIzIt83Jqb8abGqwVvw/Cj6ZBCQAgIASFQMQTQ/+hZDhXduzKu+56My65AzZVYdASil6nn7gQyCi0UT1Mko4iPUrGfrqEqwjWVfpVKoiDtLgRpF2RFquw6EqqGanhZTYFK4QEJ13EgiE9T0LnTOOlQUVX5CiBgytJQKe9egGseNrMM1zx3Mhxuw+cwSO6JcbSYW8DzOkn/FvjGgZukaxbPcZJ0qaDL+QwZIVBnCBiJF/OifL+QEJ8BWTdD/zp0ZaDsznA29NO1RUiV6OMMFQcqTu8Iwu4cvLt2pcpu0u65oVar8kJACAgBISAEhIAQaHYERNRt9itA5y8EikGAZNwufDD6laAk4IakW8Zx9adt8WJu4CcZ1wZ0tCVvMQgPLQ8HdT2plkpaJMaai8EpuBHh1qd5gq0PY/uaOOHWCLhhuVwyLvKRbKvJiqH9XiotBISAEBACQkAICIHhRgCTPoFqryf2hi5U6eKEXvNbHAqQ6BtL5+RRRPD1fmyTGo8zci8JviL3Vv8XZz8dE2lG4MVENV0j78b9IaE3IPCKxFv9H0VHEAJCQAgIgUogwL5F96KM23hr2vU+iD5JJUiT40HsmgliLoknc5KuBWq6yU4NeFXi9xopdVCYogeExZ4nQdp9AgSrp3HtkUA1VAOyYesbQNY9IuXaZkK1WcTCoSKq8mUiQMXP7qdB0H0UBN3HMyDooiJ+uw2H4eOX3zJ4Nicn4FuGbuhPQoGaNuXJuSTk8ttHRgg0OAJceM37kGR5knYzdLFzQOYVWoy3rEUc/KZsvREni9fQsBjMFSa3B2F3d/SZaPHu4piCjBAQAkJACAgBISAEhEB5CIioWx5uKiUERh4C+MjjwLd9GJKIGyPfMs7IuOFqT1PFZToHxvmBqIn3yl4PHGgiUTYi0jKMASgf510j5CI+JOYG6X35cgi3LEOCrndFuK3sb6bahIAQEAJCQAgIASHQDAjwmwGTSdmQkEul3Yi8GxJ6LUw/85gLP74zGI7Ivog3oq+5Qb6I+Ms4Lfar7NXk1XhJ2rVtYTHRFm4P67eKNQUqU6KKKVJxBw7Nv1X2t1BtQkAICAEhUBIC3L2r65GM23RTxqUXBn2JkirIzwyiV4pbOZNosgtUTacm3Wtdr7pVq1a5ri5u/VWe4etywpZbuokTJ7rWVr5AZUYKAuzP9jwPMuMTIOw+DkIVVHYd1A+HZDA+m9oFZN2jkq599/ojPF3/UNb9cn7GPb0S51qmSeCmOHX/pDvr0KSbDMKlTP0gwG+znqV4rj6Ea/pBEHSfQ9tqTdDlHAWui8SWIOFuiW8TsyDjMgyibooWz+sE5kT0PVI/145aUgME8Ng10SSQdtMg66ZJ3H0Zdg0sibsvY2wF/izSan7fYh4yOQ19KCw2ad8LfajttNikBleEDiEEhIAQEAJCQAiMQARE1B2BP6pOSQgMiID/0APJ1rZZIfmWfmy1QuKtbbnCrVbMBnGmjAtVXZkyEeA2s1RH4AAUrLkdAWk28AfxNvAU5klwW6cYOTcR5k/6dK+CS5f1c0ZARggIASEgBISAEBACQkAI1BsC+P4wcm8OqRffICA9ZLFrR0TmzQsHRF6kgzPDPBY2Pypk3jCOfi0cHMKPzm8Jqldh21gj8XJLWbMI0yV5F6TewA39+DbR98cQMFdRISAEhIAQKAoBKsx1/TNtJN3MEhQZilAAlOZTs0Au2QME3T0Cgm4CfNpXX33VLVu2zCXIKqyAGTVqlJs2bVoFalIV9YaAkRtJ2H0U5MZHQoVd7DhXtsFCquQMkJ2OTrqONyZdCn2xejAk6X7p8spNBOyFrdJ/9G8gI9fH6dUDxMPahjQIf1z80H1PuPhhKNdwKWfSic+HrXDNb43vCboTQcT1FuTcFEm7/MaQEQJCoCACRt4FaTcNom4aRN30aoypmEX3CG52DYpRVKkWhn2qOXh/YTFGO/pUJNbLCAEhIASEgBAQAkJACBSPgIi6xWOlnEKgsRDghDhWQqdBwA3It3RjRNxwO5UsCbrYVsXUcTnJLVMcAlSlopItCLWOpFq6JM16P12SakmwjfyM83ngIj1paT4PBqpI6OVkuYwQEAJCQAgIASEgBISAEGhWBMANyIQqvJ7MmwkJuxYOCbtG4qU/FnZRPoAXEoEtDvGmODMUkk8z/R6ca+P3DJV3QdglkTdJVatxgZtkOCT00p+iWi+/ZTRH10xXic5VCAgBIVA1BHpBOum6CyTdWzMu+/wQDoN3U3JH51r3BpmE6m/YutkWyodVPv30027TpsoNiGazWbfddtu5cePw0pQZkQhwl4ju52AfDtVIl+I0y1UjRb8pMRVdLijrdu6fcqmthr8jdeb30kNS0i30o//H21LuxDcO/7kValvTxOH7qhsqul134bq9F8/VlThzzB9VzXDOg4TcSfhm2BrTHXDNgqhrBN0xuB7CORA+g++66y53zz33uPXrS2cOc6HFzJkz3cEHH+xmzZpVtVNSxUKgrhDAPZ2GCJORdlfBfREWbuYljKW8FBJ3K9e92fzU+f6aggVQ+yZc5wHsX2HCVPOam+OkGCEgBISAEBACQkAIFECAm5/LCAEh0OgI8KMMW8FluB0KSLdGzCURF9ufZF9hfOBGhNxyBw8bHadi2s+nYkiwdZ3ZkHiLr04OLnnbGRJrfZhkXK4Kh2uKtxYPf+gmWKfGIotBX3mEgBAQAkJACAgBISAEhIBN8CTRv3bodw/akeYCxR5YkCaMzEtyLki5cX9E7oXCTEDuDfLQH5B4Eab6TFcC6aiQ8fjGamrDiXvgYHitIhL41jRAkMAFiyTveuIuFLCS4/FNhHDSiLyYgEd6CnHJUfgNNWFnyOmPEBACQkAIFIdAL4gmG29Lu+5bQCazd1Bx5XJy4fWT2Ma5lrlQfJuXdG2zoOg5evPBua6urrLVdLfYAi87GKryekPC2MaNG0XU9YCMQJdE7/adQE4CQakbKs2b7s+43ofRlwQ5qmTiI/uxy7FZxN9QvjvtOg9NuZZhJus+vZKdwPLMB46FTDXMJTegcx4zS4iNzLAhQDGXTQtB0r0p7XqhBu1K58IO3naKmnAR3zb4DsCzN3ATrgXhFqro8vnLPHlmw4YN7nf/93/umWefdWPHjnVTp4K5XqJJp9Nu8eLFZk8++WQ3b968EmtQdiHQgAjgG5vf27RuJtqPBcnp1wOybi+e4+nQZlYiic/114I8FTtTvr+ez7rXru4CMbjDdR6NYYLZyWDxbsUOooqEgBAQAkJACAgBITAyESB9TEYICIEGQoDbxma4UpIE3JCEa+5axGPrE0/OJSnXJpjLH1trIFSKaCoHguIEXBJrSbglAYCE2pBoG7hBGskBPt78oTpukq7UoooAXVmEgBAQAkJACAgBISAEhECVESARh8TRNkwAQ/0Vvv4PyMkkTFRz20gjoG6MkXtB1M2QyIu4IA1+5jMCL+PDNIY3hoReKtQ0o0IvMMyuDiz+BgTeBMDldxWIugkj7mIuHtvYJkMSr3eNvAsFLVvM2P8vpRQhIASEgBBoUgSMpDsfJF0q6ZZL0h0N8srOCde2X9J17IktmfE+Gqh7UA7U7e3tzhN1WT5O1i2nvngZqvKS7Fus6ejocMlkAQZcsRUoX1kIJNGf6dgLxFqoCG6akXHd92Rc+in0hzaUXl0WSojdN7OjinVqJOtOHKA/W3r1NSkxb2bSnXNs33RjnKyL06qoWbt2rXv00UfdwoUL3fbbb+/mzp3rtt12236P0dvb67q7A+WSzs7OQcn5Pj+J98xP09PTY5b+YupgPh6TdfH+5H06HIaLGbseAUn3r7g+F+KXyOVQD61JIAomtkSfH6T1JPi1LXBbpuCZuy3Ig/wm6Lsc+j3O7bffbiTdQw45xJ1wwgn95hss4cknn3S//vWv3VVXXeXmzJnjRo/Gi0BGCDQTAugGpLjTDWwbiLucR+YcspF2X8CCEpBqM9ihIPMCxjgwl1yphcnt6Xb3+m0b3UO3PuVe3G2Ze/sXT8rZuaCZfgKdqxAQAkJACAgBISAEikWgiE+lYqtSPiEgBCqOAJVysQqy++6HXfqJpS69fD3UcZNQjBrrshmMgmTGw50AdwwOHaxYr3gbGqJCAJWA3FNiIwbaMJBtlooYGBmN/IhPwvYgTy/iX98Qy9uXL5voxZhoMHzY7CJaDfHTV6mRmXP6H9yt0iFVrRAQAkJACAiBukXgxGturdu2qWFCoGoIZKC8h0mnlvQo154e7TrTY9wo2NFurBvVNtaNTsHfAYtvsVGZ0W400+AfTT9tNojvzI5yLfjXeHSLEpHlJxQ+t4zoTNUeK45vWfx7JbnWrW5Z5VanVrmXWl90q2BXw66BXdv2knu9bZXLtPA7LvgOK/HIVc9+6Ma3Vf0YOoAQEAIDI9DW1uYmTJhghKyddtrJ7bbbbgMXUGpDIpB+GQTV20MlXSwIKdmQjzsFI6T7gBQHkm7rDlB2q9JwaZykSz+3bqethHn++efdjBkziq5qwYIFtu170QWUsXII4JojqTZ1SArbfidc1z8yruefIJmjLxQOLxd9LCryUkU6AfIjybqpCY3Ve/RqujxhEnbvezrt7n+6siva7rzzTnfOOee4RYsWbYbrpEmT3Pe//31HRdV888c//tGdddZZFs08H/jAB/Kz5IR///vfu3e/+90Wt2rVKlPI/tnPfuY+/OEPW9ytt97qDjrooJwyhQLHHXecu+OOO0wl9lkoxtbacIFi16MZt/GatMssxNEr8XOADGiL8nC9p2BbdoDdDhbKuaaaW+JlS6Lu1ltvPSSSLnElOffwww93N954oyNpd7hUdfke4EIOmZGBQCP/niTK8/1kCz92S7oM5pl7oKzbuxyk/aVYbLsMc8/L8P1NwachPhs6Uh1uTmJXt+Gu9e7k6W93X/7zf7i99tlrZFwEOgshIASEgBAQAkJACFQBARF1qwCqqhQCZSGAbyIqO6WpiosVjRyc7r13gUs/+SJGPyZhbO+NUHQaAwUoyEVh0rhpDE+VClmj4FLhFlun0t9nEe7EwHtnK+K2wNaqQZ6k5QU3F6q5tKaA20SwNc31UYUTffWDJ1mtHdu8BRcTRhehZNLIbsdknIeMEBACQkAICIEyEXjloXOt5HsO/bARDfFWbGiX5yEjBCqGACa0TKGXyrxU4sX6vwwsyarmbggUeRmfzfEHYSO2Is2R18ObawSaNnzMTcpMdpO6JwdnBz4ueMsuAfXjBLbApQpXCls8J7cKFHipepiiMhe28OROJsPNcD7kP+dYu4866ih8FmTxWQA15QZ2eR4yQqAREaAq4erVq93SpUvdvffe66699lp38MEHuwMPPLART0dtLoBA+lWQdO8JlXTLIelCrDK1U8K1H5J07XOh6MitoKtkSMyNE7Goplspkm6Vmqxqq4wACeHc8jsFUlTX1ITrvh1EqMXo3EFXohRDsu4mkHW5K9yog1LYLaJ613Ep7RosL0m6VNT15tIbeitO0r300ksjoqw/ztixY91rr3E/d+deeukld/rpp7tPf/rT7itf+YpLpcB4LmA+8pGPuCOOOMJx0UcxJp0OpDxOOumk6PhXXHHFoETdZcuWGUmXxzjzzDOLOVRl8+Dy614MJd3rMy7zFKoeIhHPYc4liWs7NR1d+Wkg/+2IxRBU0kV/vlzjf7uJEyeWW0VOualTIesL8+o6Mg/LN14JuZga4ormF110kTv//PPd8ccf70gO90rnH/3oR90//vEPIyMzvRnM17/+dfenP/3J7bPPPu4HP/hBw51yJpNxp5xyirvuuuvseXLeeec13DnkNBi3Kd8n7bR4VxlpF8q6vc9BaXcJ5qSfxSMCirscnyjXtCRb3N5bvdG9c9b73cff/Bl33KeOcp8977PlVqdyQkAICAEhIASEgBAY0QiIqDuif16dXF0jgMGRzHp8DK3BJC5smhYD0ZnVCK/Y5LLLN2DSdwYmbIsbNKrrcx2ocRzDw2B6ArsRGRmXRNzQz3AyFjY/wkmmg4jLsMWByDvcE7gDnaLSGhMBDE1A1CvQV25ktzHRV6uFgBAQAkKg7hDgO5FzcHhBNrRbd8CqQQ2NAL5lEiQGgVDar+oZ7xmoWWVA1KUNyLwxdz3SQyKvkXvDsMO3YnYDSKEoYySPoU6u1xPQ2IaT221msUjVPc1dN+FyceY4WBBckpirT4K8m4JLwgv9LSDwGhGgjwNS0zMiOZem0d2agqaDCYEKIkBF3SlTppjdf//93fLlyx0VDR9//HFTT6wUyaeCTVZVJSDAxS6bHsi4TTdDifTFEgr6rNhsrHVewnVAhbRtBhbzc5ywSoYk3biaLg9Dom61zJe+9CV37LHH9ls9iWClqO/2W5ESKoIA+4Mk2LZMBmF3ftr1PIj+wyulVZ1dAYIl7gX2ezqhDp3gwqU6NiTpUkE3bi65oSceHLL/mWeeiUiyJOdefPHF7phjjjGl9fXr1zuqsp577rmOatTf/OY33ZFHHukGWpxEtdz58+e71tbiJbep2HviiSe6v/zlL+5Xv/qV+8Y3vuH4burP/OEPf4iSzjjjjMhfK0/vi1nXBYXy9JO4BsvdNhCXnqnnzkBffHbCtc6EBUE3NY4JtTqT2h/nE5/4hCMxvBjzk5/8xL3zne+0rLwmaEjufOKJJ9zuu+9u4ccee8w9+OCDbo899rBwM/yhqjHPeautsBqzAQ1/P/6ONHymNDxRN+83SI4BYZeLm2YlXXodlHZB2O15GnPVi7Lu1Uded509nS6ZKP3DuzXZ6t44cT/3tmlnuO9f+E185WdHHHZ5UCooBISAEBACQkAICIGyEMj9gi6rChUSAkKgKARIzMX2Ir0g4qZXkZSLiVq6qzDZBzdDtQhMynKO0mYpOVM5EgwHbaACYGpJo3FynngLsq0RbqmiZP7QDdM5GEl1XFNRKrwAfiSgo3OoYwT8eGPg4voMbs5wHLJxwnUMsZomBISAEBACjYQAXoj29rOt6RlgpzXXbYT0RoJcbR0hCPA2wfdQqn0AMi8mz7m7Sgbfg0bmpWtE3dAleRdhpmdDa0Te9SGRdyQo8oLMnPXfxvzp+YwZQ8IuvFsDu0kBgTdFPyy38KwlcTdS0kXT7OnXn7JunacTWhkhMBIQ2G677dzZZ5/tuA36JZdcYlua77jjjiPh1JrvHPAO7H4Sqo83Y9nG8hJPn+/YKRhFPTjpOg6EuuM2XEFTYh0lZC9E0l21Ci+vKprZs2ebImEVD6GqK4wAieLtuyRdEguQurbKuO47QUBfiYOwA1GkySyFsu5NIOtuAX2L3TEwXqdj44VIuudczI5pZc3f/va3qMKbb77Z7bVX35bqo0ePdscdd5y755573Pbbb2/5fv3rXw9I1L3vvvscFT9LVTd917veZURdKsHecsstdtyoYXkeknlp9t5774iwmZelasEseNKbHk673odw0ZXzc/DZij54amcQc+fA7ozn67YgjeObRiYXgbia+nvf+173ve99zwi5c+bMyc3YT4g7A/B6fM973mP9mX6yKbrGCPD3471LsjF/m+E0XAzkF6T9/Oc/d+94xzsq1xx0m7jAJDUhhfeWc3/44VXujvvudvtM3N/tueUb3OTOySUTdke1jHKHbXOke+KVR92Xv3iBe9Ob3mRYVq7RqkkICAEhIASEgBAQAo2PgIi6jf8b6gzqGAFOslIplyuY0y9hYhU2DWWIDMJZEnNL3P6qbk+Vk6itPVCsgJ08OiDlYlLVlHGxOtMIuaHL1ZqemMt4I+KWvjizbqFQw0YOAhw/75vf4frfRg6PnN9FZyIEhIAQEALDhABehFn2+eyFWNhtiPRhgk+HFQIDIgDyhS1UxPdRvMcZleGiT0/kJYH39YDAa8RdLAbNIEwiL+MDIm/oR9i2r2xENV4+a7CTcQbWLcF3NB8+2FXFFHcnY0IRSnXJSXBB4G2BNeXdzr7ee4RdhTyRkm5YXxTOV9qt8/QKwaFqhEDdIHDQQQe5MWPGOJKyPvCBD0REhrppoBoyKALdUHHrugVbsz+NrHz2F2swlpicDkLk0SDpzku51PjKvQPa29tdnHzFJjGukJJufr5im1+NfL/5zW/cwoULrepzzjnHkdAeN+l02lRAN27caGnMEzd33323bde+ePFit2HDBiM9Hnzwwe7UU0+1+yyel34qhj788MOOhCYqhpJM+fe//93idt55Z3faaae5Qw45xIrxmCQYcfv3l156yUg7vH+5RXx/Zu3atXZv//Of/3QrVqxwW2+9tXvDG95g6pVUNy1kuF35X//6V3f//fe7Bx54wBRT586d63isI444olCR6sThcmydCrLuMeivjAdXEgq5medwqGL7ZLgX0ouhiHprxtRLW6cN7+D5vJlJd//TuY1nXL6S7qU39G6WrxIAe6Iuf/c4STde9+TJk418e9tttxWllHvhhReaWvV+++0Xr2ZAP9WtqehLou7ll1/eL1F3wYIF7tFHH7W6qN6bb3hNs528Tl9//XUj8vK8TjnlFNfSMvQp294VIIg/iu+BNflHLiKM67WF5Nw9oba5K9RzJ4OgW6dE8SLOZkhZeL396U9/GrCOHXbYIUqn8upnPvMZU5Gl2nkphteUTP0gwPuQ78Q1a9bYu6deWkYF8WoZEvHfcd7bbYH+LSt2dYeCbHvw5MPdXlvOc1t1TIzNkw3egm06t3UHTT7M3fXS7XZP3HjjjYMXUg4hIASEgBAQAkJACDQRAkP/6msisHSqQmBQBKACwa1CeleG5NwVmDSFPw2X6kAOW5o2rDEybi/IuN1YPR1a+J35QdAN41oP2S+YZCZRl+RcKuTqSdOwP3szN9ymeKCUhf1tcTHjOg7dhgs384+ocxcCQkAICIHKIcB3IWojGZe+LAKNGK4cIKpJCNQQAZKR8F3FHUcc1GTzTbYXvA8sEuUOLhGJlyRXhr1LEm9kg3hbOJrLucivur7CG3EOy/B9vYw7+KKPzh1YwNNJbgNstgVZF24LLUi8tiVvBUkFkaJuf0q6DRJfXz+oWiMEKoMASXgkOpFM82//9m+VqVS11ASB9MsgIt6Vcb2P4ZmOd1nRBuOMKWzZ3PGmpGufCzIk3pGVMl41lwp2tN4UIunG032+4XSpvuuV/0gSzCeYXXbZZe5LX/qSNfEXv/hFTlM/+tGPuh//+Mc5cQz88pe/dBdccIG766673LbbbpuTTkIs00nmfeaZZ9xXvvKVKP3WW2+1+khce9vb3maE3eeffz5Kv+mmm2w78S984Qvui1/8YhTvPU899ZQ74IADjBDp4+heeeWV7vOf/7wRHPO3kX/llVfc+973PlM8jZf585//bEGmfetb33KjRrFDVRtDpcLOg1ImatF1fdplFuO4xV7rUEXtfSTrNk6Gsu44Kh5W7jov5ey9ai5JuJfcgEaFhvFxk58eTxuq35POSfImgXvChAkFq/zEJz7haAcyt99+e0Qgf+c732nXEhd8FGM6OjpMzf1HP/qRIzH+Bz/4gaOib74hid0bkm+9IVn+a1/7Ws69wjRPRKa6Ku/NoSrEdy/m4gc8V0sxUIJOzoBC+T54ru6VdC1U0G3yOR3+tvvss08pKNYVqbOkhivzZgiQbM0FIs1ivv3tb9upYqTAPbnpcbfwuQXu7pfucF8++7/cpPGHuswSJGM6uBjDb+c9Jsx1b9hqH/fr+Zc51j3Ys7mYepVHCAgBISAEhIAQEAIjBYEm/9QaKT+jzmM4EeBWQhxY5krl3hcwabgc9gVMioKc69ahZY008UkgU+mAjNtBMi72RiIBl+RcC4cuwkmG27oQD5JuC0YYUzhfEBnb9z5wOH8OHVsIVAwBDmeSnNvobsUAUUVCQAgIASHQ3Ajwnci5YXb5QmXdhgw396+osx+hCHASPbUFCBywmxksJs1sDEi8VKcledfc1wI3C5dkXiPx0g9OEv2uj4exWZV1E4GFsJwwzCzBgwnfowlsD03CbnIqlMC2Ax7wt0yBEhiILYlcLknJp9Cvgi4X88E0SnrJJ64CQqBBEKBaJomCJBOS6CRT/whkQfboejjjev6JgdNSBOL4ztsF5Me3gEy2G7diL/DuK/P0PUmXxT0xl2Rc+qmo600+idfHD7e77777uvPPP99RKfTaa681xVuSZGleeOEF9+EPf9j8jPvXf/1X8/PPV7/61YikSwXJk046yVGd9Oabb7Z7igTbE044wcLjx0NuM8/ccccdjvaNb3yj5Vu1apX74Q9/aLk+/elPu0svvdSxjuOOO85IvVTHJcGXCpL/+Z//6Y466ihTvPXVsvyJJ54YkXTf8pa3GFmOW5B70u2b3/xmR1XSOHmYZOO//OUvVg0JmKz3xRdfNCzmz5/vSFSeNWuW++QnP+kPVROXuyZ0vhHXKoiQXddlXHoh+g7FknXRJ+u5N+s2bZdxnfuD8DvE/kypJ+xJuizn1XNJ1mU8FXW9qSZJl8fgM/4nP/mJHY7X0a9+9Su30047+cOX5E6fPt399Kc/de9973vds88+68477zwj3BZbCbedJ1GXhgRbf4/58uwTsn00vI55L3lDVWlPaOe76l3vepcl8fr87W9/a/fbRz7yEXf11Vf7IiW77Penn0effm0JRcdBAXpvKOgeknRts7D4oYq7VJTQqobLes0117h7773XzZgxwxVSUo6f0De+8Q1bZLR06VKLpsKyX7RAlWc+9+KmVIVxLpLgM5bPSiqcs21cQLF8+XJ77saVpEut27fr6aefNqX0xx57zPX09Lhdd93V1NWpfF6q+d///V+3bNkyu18+9KEPFSzO57l/t1CxPb5Yg2rud955p2NbeN5cxEXL54V/n/tKX375Zffd737Xgueee66jSu11113neB9y4dcVV1xhZf7nf/7HrV692t4lhx12mC8euaUckwrvV111lSPZn8+cJ5980nHBChcO9Pb2ut12282dfvrpOedENd/vfe97rqurb1tWLhAgTjTMz3LesG/C35nvykceecSU83fffXe7Bqh8P5jh4pu4wWiBe3Tjg+4nC3/gjvnvI1zX7Zj/fgjvL4wXFGMmdUx2s7bYyXW80GlK9yLqFoOa8ggBISAEhIAQEALNgoCIus3yS+s8K4pAlpOda7OuZzk+TqDo07sUny3LEUdybqOo5oJcayq4HZtiLvwk4DIuJOoaIdfIupipTQ7COsZKSZn6QoBby3G7uu7ubvvor6/WFd8abjfU1tZmqhedndjztgbGX82Ba9qBdtRGC9cAKh1CCAgBIdAwCOi9OISfCi/AQEkX/V1q6UbKuo0VHgICKioEGhMBqMomudMJ7MZxed8G+K51G0GyWI97en3gJl4HkYT+0KXfLMJJxvfwSVCHBudCQkIa3+npJ9DM0dmAtAtiS8sOIOxujy18sQW1qdGVobQrRd06/M2bpEnquxT/Q3NbexKdKknUfXzBQvfwY0+4Z5csc2uh1tmoZgLIldOnbe/m7r6r222XneviNHqWYmv2ezIuu7KE5uD5ncKW7J0nkKQL0iKIj9U0nqAbJ+nyeLVU0iVZtrW1f3bmNttsY8qzHgcSgDxR55xzznG8L7bcckv38Y9/3LKQiPv973/fZ3e33HKL+/KXv2xhKuNef/310fFI+iWh9v3vf7+jQi+JsAwXMm9/+9stzW/3TjIjyZU0ixYtMiXf//iP/4iKMr8nPpHY5vMyA1WBSaCk4fkfcsgh5ucfbkXOclRWpYI2z5WGY5+/+93vzE8iLlVLvSFBmaQ3ktTY/loTddkOEso75uICRieqKxuSddkPK8JkIQyy6W70Z6YmXNsM9MWG0ZCsS4JunKTL5sSVdqvRPBJeSSz8xz/+YSQ0ks/23ntvd/LJJ1v8vHnzNiPjDdSOs846y0jdVJ0mkfz44483O1AZn0aF1enTp9s1yndOPlH3vvvui67fs88+2xcz1yvtktROkh7Hu2l4zZNEThIvyb8kq5er5Jl5BfNUa1DpINM4dmD8SWwFku7BSdd5eNK1YoFbfXb0fWvr2+XzlCrLJJAORtQlCZTPMW/o//rXv27Bj33sYzlE3XIUxknwZJ2ZTMZ95jOfsXsnfizvL6dulr3xxhtz2si4G264wQiwVD0v1cTP/9RTT80huPu6SGD3GPnFJuvWrTOlVk+O93nZFhr+FnxPxBd1UH3d10P1auJDcq83nEejueSSS+z9RRKyf18xvpxjPvHEE9Ex999/fyMQsy5vuLiG5G1eP3x308Tb6fNxQRotDZ8jnqhL4i+fRXzf5pvPfvazRvglKXkgQ6JyIfPX+de5LfbpdN/51P+48Ssnub0S+7jJnX0LEAqVYVxLssVN6ZziprZsZyTohQsXGmm8v/yKFwJCQAgIASEgBIRAMyEgom4z/do61yEjQPWhHijm9i4BQReqPennMOaBwTKHLTjr1lAhl0RbI9+SgEtiLmxn6Ieb9GEq57ZylBDnhIFDOiW7dQtEczWMAwr8mKfhlm7jxo2LBv8aEQmuLObqYQ6a0FLBg8Tdahp/+QfHgBIBPLwtAtNoYd9uuUJACAiB5kRA78XK/O729rMXIv7wf6isS9IuTUOkVwYK1SIEGgqBkp+BuKUzXYHibuZVuLBp7BaTXUc/0hDOMuxdzmtiXWddGagzZhajvYshWjcKpN0pUNjdESSXaSDtTgMRAWQXkpeLNY2imDtYO4s9X+UbfgRKvm+Hv8kDtqAW3/TcGp3EpscffzwiLgzYqAESl7+wwl197Q0uDYLLvL32dMcccZjbaqstByhR30lr1rzsFj39rLvltrvc/DvucW99y7FuuynbDlujOb666QGQFZ8K+pRFNQSP7OQs5zqOrx5J1xNw4+p7+SRdEuhqaX72s5852v4MiYoHHHBAlExS7y9+8Qu355572vjZ5z73OVP1JCGRhqTEiRMnRvmp5kczduxY93//938RSddnoDItlR5JcCWRqD9D0pkn6TIPyYwkUlLZj3WTKBQ3bPPUqVNNaffhhx+Okki49QQrKkLGSbrMxHIk4fK8mI/PFpIdV67sY3zzWRA3TGfbOa4Yb2M8Ty38JJZ37AmyLobeN/akrY9ig42DHRy3SfpJ3DMPoR8zGf0XKPTWyngCrlfT5XHzSbrnXLyp6s3hPUmyHcl5JLjS8Nqi9YbkPl6vRx99dFFj4FTmpAInCYIk1C5YsMCRyD6Y4eItktdJPKeCM9U5SYb35sorrzQvr3uqecYNVS5pSBr0JF2fzvr+3//7fxYcM2aMjy7ZzaAPnIUtyowCSXe/hBt1TMq1TKrddVVU20Z4Jv7enOPwhN1ddtnFnXnmmXbWXDThTbkK4748yZ80fN4efvjh9vyfMmWKxZVb9+LFi0051yrBHy4IIZGVara8/qnSzuu/FHPGGWe4Cy64wIrwXn/f+963WfHf//73FkeCKvGi4bE8SZfxRx55pD3n+cznAhNaqsST5F/IePIqCb1cMMJvqfz3fn65oR6TzwXiw2cWVYjZb/051LZpuLDk2GOPddOmTbPnClXnN23aZEr5TOeiE//O98rF6XTannt8ltHw2mK9fKZdfvnlRt4l+Zv540rKljn88+Mf/zgeLOj/+H9/1M1one0+vMsn3Qnbn+TGtA7+nNqibbwb34bnI8YK4mToggdQpBAQAkJACAgBISAEmggBEXWb6MfWqZaJAAbPeteAoPsMtmN7BhOUmOxLP4cRsr5FlmVWXOFiJEi0QiW3owskXAw8gpDrSMIlMZdhWCPpkqAL4m4Sirq2XXHYDA7FoIbIWJh/aOCWFA5K6e8wIUDFHW7LM2HCBDeUgb1han7Bw3LwkudCyy2IuNURJxaqqa5rlz9VormdLdxE6DZcuCCiihQCQkAINA8Cei9W6rcOVDTZf/T9whwXh8kJ5+erk/RKoaF6hECjIFDWMxD3L7e8TXIji/ikPbrFGXxm9pF3QYSlahfWB2ZA4iV5l34SerNcM8gFrfGPzOECDbveeNJuzxZZEHZhZ0FhdwZt0rVsiRMGb2YgI0XdgdBRWqURKOu+rXQjKlxfrb7pubUv1eG8wlg5p0EV3Z/9+nJ3ylvf4vbfd145VdRdGZKMaXk+99x7v/vuD//XvecsbJk8TOq63Ysxxsrtk4slkwHRxA4gOR6bch27Q+m9iuu2C5F1/Q/KNBJmamlI5hlo7CtOEPTt4n3Abb1J+iPJ1xMHSS6kcmjc/POf/7QgCbGTJxdWyHvrW99qRF2SbLhN+w474MeImdmzZ+cQFX0SiUYkUpIYlE9KZB4So55//vkcTEn08oZkNRJx882+++4bRVGhj/f79OnTjfjENlI9mFu5U7V3p512srz+GRQVHCYPr932PZMuiz7Sxq60yy4rsiGvg+f0YNZ1z866jj3Qb6mhKUTW9Ye/9IZed//TRUq3+kJluhSh4Pb0VI6kki3Jebx+vOF1TktVSZLVBxN44LjyZZddZkR2Xjck7HnFW19nfy63nCcZjoZk3Xe9613m5/XKrelpSP7lNvdxc+ihh1obWYYqulTOJKmd1yf7mpUYx8/yltn8tok3I/InRkP1EgrJIulGkNTM4wmiV111lZHF+Ryjsmu+KUdhPL8Okj+58CGVyv3gKbduEoo96ZIqt3FC+re+9S27pj1pNL8t/YVnzpxpOyJQLZaE3Hyi7ooVK0yVleW9WjFFar7zne9Ylf/yL/9iqur+HKlOTRV4ElD5HuJcUn/vuF//+tf2vuivbfH4ShyTCwK4SIBqvt4cc8wxEVGbz7FPfepTNrfHa4J9jwsvvNCy8h1ONfm4IQnZ481FOSTzesNnDAnMTGe9/RF1veCPL9ef+0zPIvfoyw+6Y3Y8zmGmrr9sUXxrstW1JdstzEUWbIuMEBACQkAICAEhIASEAOZeBIIQEAKFEeCgRs/yjNtwW9qt/0Ov23B52nVfC7WHxzCQPNwkXZJySbYdv86ltn3Rtcx4zrXuusi17bHAtc1d4NrnPuHa917gOvZ63LXvsdC1zX4WW32udKmJL2PV/QaXaOkJSLokHuI/iYd0jIA41HBhOBVbIwSoukOSLlVkKjG4V6Nml3QYnhfPj+fJ862W8fdEo7vVwkf1CgEhIAQaAQG9Fyv4K1l/EW/FRncrCImqEgL1jkDFn4Ek8IJvwMn8tlnYIndeyo0+qsWNPRn29BY3+nSEYTtPA5Hq1KRrOxET/4dCyXZPkH63B1qcyxvuUahXoUr3KIgu1+Bb//KMW/9HfOvfnnY9L2D79QFIDYMp1TZKer1fs2qfs29cfdOXfyWQ9LB8+fKyK6CSLkm673/3mSOGpJsPBsm6PD+eJ8+31iaNxRzdj2CRx1IbbSnq8Nyavf2wJMY5QdLtqD5JkaQYT9j1DSwU59Oq6V588cV2TfO6LmSZXsj8+7//uynsMY2EKqopXnTRRTlZ+e66++67LW733XfPSYsHSPz1Jq5+6+P6Iz/59P7UCQup2z700EO+mKkGcpewfHvUUUdFeXx7SHKMKw+TpMVzorouCV/XX399QdJvVFENPVwM1T4P/aRDcD33CbEO2oLMEtw7j2JuAjsa1NqQrEtSbtww7Em88fhq+3k98vd99tln3XPPPWeKkV6JlMcm2daTIAdry5ve9Cb3oQ99yLKRPOtVLQcrR7I6VURpSBr2hgrVnjBH9d988+UvfzlS7SWhlyqkvL6p+EmyYP5zJ798MeEEpZmKlGfKYjFb77PYPXJV7a+pYs5luPPwGttqq636tYV+40q2uViFcR7TK4znH5+LGL797W9vRtItt24ugvBK1lRKj5N0eWyqRfNaLseQOExz6623GrE2Xkdc0f2UU06xJCptU9GalorwnqTry/n6GL7vvvt8dI77gQ98oGiSLgtW4pgkTcdJuqyX6rp8T9MsWrTI3GL/PPPMM1FWX4eP2GabbRwVkInRf/3Xf/nozdyeHkjeFmGmtc5wZxx9lttqbJ8y/0DFejI9rjsTzN8Ve4yB6lOaEBACQkAICAEhIARGCgLDPUUyUnDUeYwkBKiguwKTdvNJ0E27jVdg0m4+iKxcoF3c90rl0WjtcYlxr7nUNi+BlLs0IOXuCVLuXoElKbcd/vbdF7u2Gctdy7ZrXBL5E+0YQEtioAWDlWbo0lvNcOXPXjWWgABXv1JJN3/FfglVNERWnh/Ps9jVvuWcVHjX2C3DG6dRw+Wcu8oIASEgBEYKAnovVvCXtG6k/UGlhV17W9oLs47TKwiJqhIC9Y5AzZ6BGFniNsytU7Ad+a5JN+qglBtzAsi7p2FXDBJ43w7yLmzHaTHy7u54YnDXVar22nOjxmji2z67HDvn3Jq1b/71V6aNsNu7Et/PGBPINyQA0fimRmEf792wYL2mh82TU8cI1Oy+HWYMqvVNT4VEkhHKNVdfe4Mp6e40a2a5VTREOZ4fFYN5vrU2Pc9mXO+TeNYWu+4a74mWfRKuY5+US471T+HqtzpOzI37q3/kyhyBJFiSAL2ZPn36Zgv6qQ7sVRHHjx/vs27mxrcwH8r9tVnFBSI8ybFAUsGodesg5x8aKv/ee++97oMf/GC07Trro/LqiSeeaMq7S5Ys8dmH1U3hWu7cHwua5uGazhVd7b9dEHPufQJ9F+70NwwmTtYdLpJu/mmTFHjyyScbSfv++++Pfnf+5sWKO5C8RlVoGqpPxklv+ceLh72KLkmFL7zwgiVRCZSG91tc+dki8YcKz1SxJmE3TqijUvB73/te2z2OpPKhmOQo9FehlFuUgap5zz2YB7spWLRWFzthFNXw2mXiM7I/yx0QqmkKKYxTtTlu49cZFcbzzZvf/Ob8KAuXW3e8HJ+5hQzfPfH3RqE8heKoiutNnJjLuCuuuMKSeL+zr0fD9xwFXWjjqu3Eh4Ti+CKR9esLS/h7wr1VWMSfShyTKtr5ht+Ou+yyi0WX+h58wxveEFV3wgknuJ/+9Kc5RGf2uYnRQCrjra2tUR39eea07+beP/uDbueeXZ0Dyb8Y82rPOvdKT9AvL+YYxdSpPEJACAgBISAEhIAQGAkIFLm2ciScqs5BCAyOQHotVqYvyLjuBzFo/DjIuWtQptZjX8kM1CE2ucSojWaTowu47Uhvxewh24bxvPsXPeN+dM317ob7H3avrC/yK6kAHONHj3LHzpvrPnjCm9y82TOi+v1xinIL1Kuo2iDgB4f44d0MhufJ1d8874G2ASwXi/D2CosHqtN9U0IDh+9/eJH70WXXuBtvvd+9sq7wQFAx7Ro/brQ79oh57tz3neDeMHdWRAzgzVla+4o5mvIIASEgBEYWAnovVvj3xIsny10d7AVU2C2U/tyTy9zNf7zNPXbvArfh9fInskaN6XS777uLO+qUQ92OcyDNWaAdhY4fz2fpFYZF1QmBekWgHp6BCexy2bI1etC0ocmCZEIluPTLsGugqOgt5u8y+P7OIpyF6m2xW/b6est2sVtzdhUOtxrtWZh2vbtnXNveIBTPSbrU+Fi7oTpIE/yF68P5btgQn84Jc25pS1LG669j3+ohGH7/cGKXqmt+K29/nMjNO34UH7ZzCIdX0RogUA/3bQ1OMzpENb7pSUIolpwVNST0PL5goUtnMiNWSTf/fKmse/9Djzie92677JyfXJVwZiNIhgvx7MdCiWJNajZIugemhmVrdq9u6d1i21wP+Z566il3/vnnR02544473GWXXebe//73R3Ek7+yxxx7u0UcfdU8++WQUn++hGp83Aynv+jxDcdkeb5YtW9bvVuU+T7671157ue9+97vuv//7v+28SKL8/ve/755//nlTYKWCaiEyW349tQi3TIZK9EHo/7yQdmnMQxRjMstwDy1CX2UWdiuAMm+tjVfQ9W6tjz/Q8XjtkHTL7e5peF3PmzdvoCKWRkVbEnv3339/C5MwG1fi7K8Ckr+94XbzVG72RF3W4Rdt+TzeJbn485//vNmnn37a3XnnnUasu+uuuywL66WiZr7ipi8/mJtE/zVJpWZKNKGfO5jJrsa6iVuxswT65x0HZ13bzNoolw/WrnpInzRpkj03+2uLJ4z2lz7U+HyF8cHqo8L4brvtlpOtvzaWW3ecqLvzzoX7Drz2SR6dP39+TlsGC3DByBlnnOF+97vfuSuvvNLI6yyzcuVKU9ml/53vfCedHHPLLbe4q6++2t14440lq9FSMbkcM5Rjbr89xrMKmHLIzayGBN9PfvKT7lvf+pYpelNRn4YLEEjcpfIz340DmaOPPtp98YtfLJilPdHhDh5/uHvbtDPcwZMPd23r8ZFfhOnNpN3KDS+4F3qWW+6BFgQVUZ2yCAEhIASEgBAQAkJgRCEgou6I+jl1MuUikIWaTs9zGdd1b8b13IeBCS6CLmIgo9zj5ZRrQ6j3JZfE5GVy9AaXGLPR3OQY+EHWTY7qAikXDcwbe2Mwiz+/uvk297mf/dZ9/vST3UXvO8tN3GKsVW/pOQfKDRRKX/3qa+738+9y/3LBN9zX3vMOd/ZRhwaFmJkm5lr5WDgn3QL6U2sESFrl4GIzGZ4vz7saRF27vKmMxUltuInQHSz8q9/d5D5/4c/d5z5+urvoy+9zE7fEPRmrx5cvxl39Mu7JP813J515gfvq+e92Z59xdMntaabrQecqBISAEIgjoPdiHI0K+PkuRDUku9LHfuhg4bv+9g93xY+vdie+803utA+e5LYYPwYkt7A86rLyRYZffeV1989bHnDfPe8Sd9q/v9UdeNx+gx6/UPsqgISqEAINgUC9PgM9edcIvEQSXW0StwLiLki8qzMuA8JAGsTZDAi0WbjZtciHT+KqGrSDhN2e27D972Is3N0n69r3AcMhQ5YDu/N47uF7oBSXimiXXnqpO+ussxwnTLlVainl849HpVUSjkjuoOLbscceW3J9VcVQlQ8ZgXq9b4d8YgNUUM1v+gEOWzDp4ceecPP22rNg2kiN5PnyvGtF1O19Ac/Yp/HA7SoO0QRE89r2S7i26WHHs7hiJeVif3EgUw5JN3/77YHqr0Ya1QTf/e53W9X77befI5nql7/8pSnNHnnkkW7GDIgzhIbpJDRyQUl/hune5JPAfHyl3Llz50ZVPfLII+6YY46JwqV4qK649957myVxk9ubk4zJreypmBrHoJR6K5oXF1/bzITr2TfhMlD0N8GQwQ6AdY+9i3EfIb/dF4PlLyPdD2H2V7Qckm774GKN/R3OkczqVUO//e1vO69kW6hAufceSYUXXnihkdtJmKUdzJBUd/bZZ9t1xfuLxFqvUE2yYTFm5syZjpbkQ6pgeoLd7bffXj5Rd1TCpabii308rqlAyHLwpryCPvAd6HuvxNzYvugD7wm1521A2E0NXnQk5xg9erQjuX+4TKnKqnGF8cHaXG7da9asiaoeaB6qXFIm7ykSdW+66SYjnZIs7dV1ec/F3wl813FBCgmqhQzz+3uyUHo5cZU4Jr8HK2lY39e+9jV38MEHu5///Ofuz3/+s1VPwv93vvMds295y1vcb37zm37nDguRhDnut0vHHu7oKce5Y6a82e06YXfXmeJ2OMWZVV0vusWvPeU2ZgNhKf98K660cgmBkY0A+9bsj/JZzHEe3oNcWMG+BPsk5fZn6h215cuXuyXoi2Mgy55Z9d7eUttH9fYFCxZYMS6u5xhgsxvudtKNXVx2wLW9ww47FA0Hv9nY52BfzCvOF11YGYVAgyAgom6D/FBqZvUQyKzPuk2PgaT794xLL8BgcfmCtMU1EgNTCewmlpwEYu7WgZu+7krXuvduIOWSnNvtEkmo5fJ7LSIGhlXHwiRHUEmXJN3rvvI5t+eMHYP8zIrTYHpO+bxwofSJY8e4D574JnfwbnPc8V/8mtt1h+3ylHVRsY3WDVB/2FQ5tUeAqjHjxo2r/YEHOSI7YlTB4ADNUUcdNUju0pKp/lHpARffAlztRs4txX3goUVG0r328q+4PXabHhKQSq+HpGAelyRfqukevP9u7i2nf9HtOgcfalTWDdOLcf35yBUCQkAINBsC9fhe5CDDAw88YD8Ft/WLb89Xid+nmu9F9iuD/iP7gXhL8b/1LwuHqaRLku4nvnmu23721CC/FSqcf7D6xkJl/shTDnGz95jhvv3pi93UadtGyrrFtCeqvxJAqw4h0AAI1OMzkIqyfjvfAw880FFRjB3mJAgFtK3bEdik40La9Csg71Ll9qXQrgJ54CU8PxDOgkxQNcVdfIpnoVa3CYq/vXBnrT0Q26Z2GEmXrctXqO0vTLU+knQvuugiI2CwLE1/+YuJ57ce1XSpGPfZz37WTZs2rX9lXY4dFDieRepP3SJQj/ctwSJBoqury663uNplJYCsat+lxAY+u2SZO+aIvZ2YmAAAQABJREFUw0osVfnshfCuVh9y9szp7tbb7qz8SRSqEY+lniVYjIFna1EG6yRadk+49j1SLtHOTmd1zIQtt7QtsitVO5/nnFAcTkM12fvuu8+acPHFF9v7loqfHD+joi5VBz0BgIqjP/nJT2xSmXnPPffcnKYvXbo0UuYl8ZX3bDUNCQqeXPWFL3zBHXDAAbZld/yYt912mxGPGEf1XJb529/+5n7729/aeVFVdcqUKVERfnNxK3YSdWn8OzfKMIweXtsdc5MB+fZO3BtFCIdklqCPshRE3WloeBVujVP3T7or7i6iISXgNq+PG15CqSAriazs85DU8o1vfMOdeuqpBe8xqtKTMOtNqWRsKlL+9a9/LYqk649x5pln2nX14IMPui996UsWzWuN12S+4XPc56Fi7xFHHJGTJR7OQN19KKYVqrjdM4OFcEXXw10voOyc4YKKRbi+9oTFDhO2uK5KhN1kEg96mKGerz9HkihpkqkqNdgfqEZuvM9VjsL4QM0st+64qvpzzz2X850TPx4XWpRjeB+QnEvyGvtDvFfiStXcOcEbEuo9SZeKsOedd54tTKFKLp/7fOeVq5jrj5HvDscx89vQX5hkXFoSxdgH4HuR36PEgVjy+5EK84UMF/Tw2UUVZBJ0Z7ft7A6Ceu4hsPMm7usmdkwq6XXD9+xjax92D6wO+iKFjqk4IdCMCLz44ou2GCF/sQTJunzOsz9x3XXXueOPP952UxppGFH53S+G4uKCkWa4gwe/uWi4sGy4iLrsD61dS8UD5yZMmFD0/FO55exA/fz5y1/+Yv28Qw45pCSi7g033OD4Hcr3uIi6/YCr6IZHIPgSavjT0AkIgfIQ4OTfxrvSbuOfsMXUQxgMqwZJlwNmENRMYoV8y0EYYD4x6TpPS7lRb0+5Mae3uDEntbhkx99dy+Q1Ljl2I1YqhyRdnlIiHG0Lnfzwj6653pR0jaRbRP788v2FWR8Velm/mX6O31/5oJD+1hoBdqIqTfipxDl885vftC12qExQacPz9YNwla47uuytYg5RBCZwC4cvvuwaU9Ldc7cZReVnjQPV59NZHxV6WX8x+Vmrb2/Q6sb5uwmr62SEgBAYHIGenp66mmAcvMW1z1GP70UOlHPbOVqScSptqvle5IvF3i72grHAgOGb/3ibKekaSTcoPGD+IEtQr70d+zke6zsBCr2sv5T2RPVXGnTVJwTqFIF6fAZSMcQ/A5944ol+kUtgcStJAe27JN2ow/DdfDK+m9/e4kbjG7rjtKRrfytIAweC3ItvbDcG1cCpuFkPssIDWffuVee6nV7d3bVsDCaFvQLSYO5VV11lSrqzZs2ypg2Wv5R0Elao0stjlFKu4hipwoojUI/3LU/y5JNPtnvXTzpV8sSr2ncpsaFrMUG61VbcL3x4zdtOOdmd+Y5/dVeFk3xszfXX/83iGF/JPiTPl+ddC0OhhDRIurbYoogDJiY517oHnvcQOqimoXoVVQErQd5kHVtvvXW/inXlnAeVbqmmPpClGrc33M7cb19NBXaSqjjB6ck5d9xxh/vhD3/osxvp0RO2PvaxjxkBlkpQq1evtolm3v9+gfxXvvKVqFy1PHyveeIVyQpve9vbbJEPCQwrVqywbejZJpKO2JeYOhULAmHoUoWRioEkchIHPlNJALzzzjsdybs0PFe+R+vJtExO2rWe2Lq4VnGngd7lIFTinqqGOevQpNtreuWmDc8+POneyD7bEAx3EqChQiSv6T/+8Y+OZAj+vlTb4jb0JHz84x//sHxUqCUxoRTD9xFVbUsxhx56qJEKWcYrT/en+EvyOK9bXqe8Rm+++WbbJY5llyxZ4j70oQ/Ra4YEnaGY1im4prDQIVHGK82uL5DGN16Zduv/0OvW/z3tepZiB8rKD18Y4Zq/0+LFi93LLxcr/9s/Mv432GabbfrPVKcphd5B+QrjlWx6uXX79wXb0h8Zl+QgEtPLMbwPvSL8FVdc4Uhq4/uPht+RcUPVXW8uueQSx/tx8uTJ0fxYf+3zZcpxh+OY8Xam05g7HsRwsRBJt1TZ5bNl+vTpVmKwfvyJx77Vze2c596/wwfdp/b4gvvQLh93x0493m1dIkmXB3uxa6W786Xb3IKuQJH/61//+iCtVrIQGPkIcEERyfOepMvn3fbbb+/mzJljfQm/eIXfehzreeyxx0Y+KDrDqiDAbyQuZqRduXJl0ccot1zRB1BGISAEchCQom4OHAo0EwKepLvpBgw0vFDhM8eiXVPNnYLJw22dS8FtocWWQaktMUjSt/Az98AcX+O4VZHuDfc/7C5631lF5y+2XuZ7+2EHuq9dHqz8KaVc7gkNf4idWj/ZFV9xW62W+eMVUz9VKHznu5j8ylNbBPxtGBw1ULjtG1YuHL7h1vvd17/0XhQpnD5Y+YHSTzvpUPf1714eglBq/ZXFjveUnxxsbW11tMWaeFnek/wgpeHg+imnnGIrRjn5w1XwMrVHgCRCKnxQXYer6Af6bf1vyYm0zs7it74q5qw4ycLtuu6//37Hrds+/elPO04aygQIUAGJWyly8oGrS/3kZLXx4cAqB3b32Wcf94Mf/GDIh/vFL37hfvSjH9lA+tVXXz3k+lRB9RGwt4+9IPGH/0NlXUi928Hj6Y/du8Cd9sF/Cfupm6cPVn6g9H2P3Ntd+8vrg7ctqy5w/H7LVxkmDrxyYIsDqmPGjHGcAKOak/p8VQZe1Y9oBBLoLrZMxPc0bPuuUNzFuq5eKN6msT0vt1FPw2ZWgFgLlwSwxNBEyPqwxDzoruk93DavbOs2LF7n1s1a5dKdkPuF8ZPp/bkkVnGb7f7ShxpPtSmSkUqtp+/kqudjv/7xxx93VNkiiYYqItttt53jdulbQrlyKIb9T07Cc5KaRDSqRskIASHQGAj0UiEdz2o3OMeE3Ti3cMPj7qGb73UpKDxWc7tkfvNOmzbNvjvZjyvX8Bua5JiBtgIvp+7vfe97jnYgQ2ItyadUvvYkwekg5nzmM5+JipHgxO8vEp4+9alPuWOPPdaIAVRrv+aaaxyV7vnMpuIebb6h6m6ttoAnSYuqYlzw7wnK+e2h6u7ll18ejSmRPEZ1U74bqSS477775hcxpd6vfvWrm8UPewTmEdp2TrqeWejXvBh8Nw3YJtxD7PP0YueBtjF9I4kDlikhcTJ2AvzRvyXdtfcn3BLuZlBC2XjWdgwV7of1SntNH3obeU1wtwKOQ/A65XhIf4Yk2MHumf7K8ruN1zqVp4sxHNNk3vh19da3vrVg0fb2dkcxCz7PSH5/85vfbPm8grQvdMEFF9j21z5cjsu5Jyo1p5dkXQ+Vmksl2aJIFr99D3a06H0MRN1Z6IfPzrjWGVg8sX3CpbbAbzr0n9VOjYRCEpJ+9rOfuSOPPDIiPpdy3hyjZt+bSn3sb1IdtFGMVze/5557NmtyuQrjm1VUIKLcuvm+9OYTn/iEO/zww3NI8fw2iZPOfd5SXN7fVM8mKZb3I83s2bNtO/h4PV4tkHH549L8HimVeB+vuz//cBzTXyNsExew5JvvfOc7Fk8lYo7b+rkW5uPzhSqG/5+984CTq6z+/jOzu9k0ktAJENiFGKoEE0CKYAhNKdIkQV4BAQEF9E/XgAhKCR0UkaYiVUIRUBCpKogICNJECGmEUIQE0stmd+Y932f2zD775N6ZOzN3dmc393z27m1Pu8889ZzfOScUOC19vW2ejBOiSHX0iO+aTceMMutlNhBw7pomnSpPYWNJ6xLzzEd/MU9++Kgs+XKLPtpKQkkNrOw1gLIOa3Vo1KhRZr/99jMuZgFeB/IR5GHQ7373Oyunc8PYF8m/mq0BvIbpfokxOaGkBpIaSGqgUA3k0DGFQiTvkhrohTWQWZI1S1/OmGWPxwjSBZwritrp9YVZYQ8RJq4nzIuhcg/TrMi+Bt6GdR9MfctNlPu5ixabNQaJud5clJLjk9/e50w0O2+5qbWg6+a/pqRL+pp4lPLk4+di1cR/NoFoqWEaH2ZNtUnzi5IPjAY0/BOqzRqgzVur0cJg4pxqP4s0PPR+7rxFZo3VB4W+j5rePuN/bL60/RZmwqnCeG7Pb01Jl/QtRSyPzS8XI9b/WK7AiheE63Y03KPS0Ucfba1HEN7tA4CacOsCwbhOgLq2Krr8H0BdmH7bbLNNQZAuBXPbQZwu2ACh+qALlxHa5ZVSgxnCbEaww4FQFSBQV9Bbb71l20dcruPUpVPCuOiKXy+OPGQulGRY7wWe5Z37fPHCJWbQkFWsYNc+996vkE7I+ytO/6XZZOTGZh+xoqvpky7pU6J8OiHx/fcSrCqEwJg5Tq29uJkgHEHZAKtmrtDEDZNcJzWQ1ED0Gkg1ipVF2Wc3DJVN+EgRLi4QEMGHcryfMXPfXGD6zx9oMmJpzlptjAAIK5Qz485qrWJt8c3+JtPQZhYMn2Pa6ltlmS3jj6zTw84LFy40gJ/C3lf6fMiQIYY8Sk2n0LdW+k4F4giLsXgXRMccc4wFjjU3Nwe9LvqMPNSde7I+LFpdSYCkBmqqBtoEqJsR0FcU+mzZHHPP03eZ62b8TNaSGfP973/fWocD2FYtsAdjNkctUKkKXqpgy/gLaBdCIdIFDTNfYEl38803t+9POOEEa4WUG4TK7MPPOeccc99999n3+g9w1I9+9KMVLBny3gUPaXj3DDCxXCJPfg/AWmp5TNPCFfqECRNMU1OTPrJngH4oslxyySWd5iHW4ih5XHnllabc+adTRlW4wZNAvVidbX1N+siC4hlkBdDbRn9qKh62nBBpWQDtt438qxGiLfH77bTTTnZPFQQ6Q4EZgOBpp51m10du0Wn/Stpf9N4/w6vHTe+DDz7ovwq8Hz9+fB6oC1i8kJtj9osASQHLq/VftVj9xS9+0Zx33nlmt912C8yn1If1Q9Om785iGGG2QOXelLZSzppYomXniILcHAC7WdOyfta207omWYcLYLd+HTFSM6CjbkstI+HhP86fP9+OR1gbroQA6CoAupJ0ujIuYxJtAX4C/HCMWKDYhqVh2i0WxrEorRbGmQNpKyiWwEdHIYM2RDqlKPGXmzbjPnPNKaecYss8btw4e42yB2D62267zdx7770VVSFWs7/whS/Ybwa4Dh177LErpElfwZIuhIEH6oY2gIyB8aLS9rRChvKgO/JECUgB/dQtgHYsiNNGmOcxBqTfCgiQekDpAAA7z2+99Vb7KYxPSlhkb/1IALozZS6ZIUoiU2WskP3zqMZtNUhZ5+WZ5eblOS+a+2ZMMlNbJts0rrvuurLSSiIlNdDbaoAxEmJ9y1jvrk14Dr+Y55988omZOXMmj6w3CRQrEuoZNaB7jp5R2qSUSQ0kNdDdNZAAdbv7F0jy7/oaEAZDy2QB6f6lzWTfrzB7+BCCyQOYm5a1Uv2GwqTYQMC5ZTAppFg5QJ4hUREqwkACoFfo3sbJ/YsU3ktv73MuMs+88ZYcOSbuhHEHdM6vrPSJVHukmmq1VLJly8QUVEI1WwO290mfKeXMx5QSHvCvH35vAen+/bk3zDNyQD88ZbwFCRMO8sMXu8/Fqt5/GNcwE6MwA3GzoYwjv0S4eFEmHEKXhLqnBhDOQTD9SiE0fuMiBIpKl19+udVCrdT6mqbXW85YiEGAyuZ/99137y2flXxHrdcAc1ZumRrtLN9jZzmZqEqK54QHpDv51alyTLHz375H7GknQpteuelXoZ6fe+45c8ghh3QCEagghewQnF1wwQXmhRdesEKSZEyrwo+QJLny1oAoxNYNFuVYORo3TZtP119k+tcNNq3iorf1XRE8vpsTOlrQCwvnMoihr+/c/ma1t9c2ywcuM4vWm5sb3+R5mEVbzSbsfXc913LFfcbtOiBcH+DljoXk+etf/9rcfffd1lIMYBufUBpTS3QIsmoVUOWXO7lPaiCpgSI1IONvm1j/zEb0bD5twVTz5tzXZaztMJGOxxcOlHoBNcE/6K207rrr5r0YlfKNgFc5wmj48OGh6fIOy12M57NmzbIWvwDwrrHGGisACTR9AFIKktJn7hlwkAKE3Od6jRXNMAK8AED7pJNOsq7PcX+Owih1UwggDMiSg++YNm2aQbEFq+61TtZ7wIZpk15XWv3bxRcsmdnSpwQ8aTdJLFRWEjr44IMNB/srwHgAWfA0VMxqP3s1jqhUikECjIOo17Eo6QOyfOaZZ6wHQLwP4CUAUF3sCp3SLvqMSJvMXlmzpKXNZNCh6hhSoxS1cxixHUHbbHlHFNXEQULLBrL+FlkYFnatJ8m12kG7ZbRHeJAoEUyZMsUqonXOuPgddUc/h7fc02jffffN88rPPvtsw4GSL6BdqBwL41HroNy0AcRjEAdPaDo3u3mi4IGVd9b15RJlc63HAoj3CcUM+h8KKlhT53CJscLfm7jvy7nujjwpJ1bxMUbE2Hf44YfbogPaZd/Eu+uvv97WA2E4/D3YiM+NMN854gTTMjXnkaZVLOi2yV45I0Dd7GeSXCVjgy2NAPozbea1T/9tbp3yK/PsvL/Zp3hNZI+YUFIDK3sNgAVgbQqxlvVBum79oMCiQF3krkFA3RkzZtg5U8M1NTXZcXeDDTYITZsyvCh86ekS99NPP7VGegANswdgX+Vb7iVtFLBRFth+++1tmf7+97/buMimWH8pEZZ5gTOKJKRLubHo7Vs81zicP/jgA6vkMXnyZOuJjvKzpou6dn/ttdcssJm0KCNl9Qm5JXMVRN0zbyih/I1F+w8//NAqDaH8wN4BTx2sKfzfiW+cPXu2tf5PmJdfftm88sor9puZG/EMincpiDr1v73U/FBSJ00tN/XEWol65lupr6222ipv2Z7fmN+IelXifs0117QeMsOUyUqJV+o3aDk4L1q0yCreo3BHOuw1abt4QilVUZV29vrrr9t9K0qd7FlZe7AGwcNhQkkN9IQaSIC6PeFXSsoYaw3gInPZixmTmVZBsg0Cn11LBIKi6V6/kYBzm9OmAbAulnPlr2wSJmSO2s/F7glsg0YM76SHJV1AukoX3XW/mTD+wPZbLUe56WuqK+8Z64C4By9ELKK6k1hQwniE6QFDA4b31ltvbTf4uN7wCcYGCzwYZ2gPw1RkkcdikUUQGwisYLJoLEQIXHHVDu2www42XlB4mPksQgGzuBq/QWGr8Ux7Qe5sbfbZbKp5jyVdQLpKE6+aZCYIUJeOLja7yspf06rmGaslWDspRmjVhxFMVYBOc+bMsRuHsHDJ8+rVAIIvtX6GZn530dNPP22zpt8jmEtoxRqA2cwYjiUYf8O/YujkSZQagGkDcIg5jU0+xJyI5SVcUfkEOADQJXMevwdz25NPPmmZO8uXL7fMD4RNpFGIesqcaL9BJkA7G6WYj7hZ8dzpfT5SR7hO74vEv/L0ay1IV+vvoVsfNfuJVd2sxiszfU0vrjNgu8MOOywP0sUVO4IImE20BRh0WDRhzcT655prrrGuy+LKP0knqYG4aoAxDOY1jGYstWKNiPU9gkCs9LiEsADL+qzfaO+s2R955BE7LvIOhjSM1q985StutMBrXfOTFq6AfUY4kWBGP/roozY+VrIQJIRS/6xpHJY2jRsLMEEs7S4Xy0DLp2MlSISR00QQKW58TRn6RewBBnyyihk0YzWzbMgS07ZKS7BFXQmXW7XnSsj3ME7kz+3v8/cVvCeHFdIpkj5xqkFY+lJBOAp8uCs/4IADLIMcAApjIVYRmWsRMCPkVlftYeWpxAV9WJq97Tl1iNU/9vSAfZqamuzag37LPOQS1oixpgnh8h5QEO43cRXN2oc+Dx8AjymuFU43Db2Ovd9qwr30zO9zn4Ap3nlnsgik5sr6cagIkYabg0XAqdZNe+mn5z8ru1wwIHPlNiefzj8PumAMnS5A3bcX5IwKBIUB6Ab4I/HEE1Q7lT2j/48YMaKyRGKMjdCW8cwf04plwXdglbEnUcO6AnyUoTvzdoRSL5H1xjw5pG+l+kQI38uCAEJjHODoqcTaF0BBNYm20Xcr0WoTEN6SP4s8TEC2RtpMRSRpZQGKi/JFm1iAXi6g3byHyfVyVnbr1xY52SDZ/ZcgfQbw44J+KipjhZFZX5dDYUoEhaw4AyAHuALQ0gWmuvmXY2G8UJ6Vpk38n//85xbMdPXVV7vJ2b0jSsqqNOIDvzoFLnADnw3AMsSeMmgOAAgGD/l73/teHuysScKXwXK87k/ob0phv5O+17MbR5+Vm2cUAJJaoQ/K98ILL7T9g3aiVua1nQIqA2hGvd9yyy32Pfst6YVm2+YvmoN3PcQc+bWjTP3LjWbRLAHt43kGxalyrGxrRXjnZW3LzCufvmxueedG8+fZD0nSrck6zauj5HblrgF3TAakCK8jTKYzcuRIK6unxnwvhPBW2P+zh3dp6tSpVi7BGh6Zmj+OMG7Aj4Yn4BL8O/V0+t3vfrfTPEyaTz31lAVQUlZ4OUoKOobXBS/R9y4HCBMwMRgCPEEGAW8xGPTXv/5Vk7Rn4jCuw8+IonxD+eG3Q4yhQTJNvo/vgJDVKFAXGVAQhgO+CoBc8BKAb3VsJj5jLSBZeCnIUV966SUe5wn5KjwWCMyEu6cqJz++DQvLlJnvgF/rEt4vqUPKSX4YrNNv1XAq51LFNn3unqPGK+cbNB+MeGHt3jWqh3yT8lGvKOgwn0UhvHSiLOSmpZ47mW9R2gSwm1BSA7VeAx2r01ovaVK+pAZiqoHl74iQDnc/5TAlGoXxAMNBlHPrRSO5jwj/6tYQpkNdTIWDGw0fIOpZs40avj1cDqTbmeF91qEC0vXTKSd9jbOSn9Fm2nbbbWu2FoIsv1FYXCZddNFF1l0QLu9coTyMAIT3COOfeOIJ63rJ/UDAmsRlUY6AMIxY2OKGDNp7771NkAUNNNi+/e1v2zAHHnhgtwB1tTvYQkjniHKfC8v/aOE72H5Zo5Z0O9Iw7SDdjvQ63pWafkfMalzRNn7wgx9Y0GBY+oDgXEupQeFYRKPdl1D31ACgQ6XuEnbQTmAmQkEbay1fchaD/oMGJdUQUw3A1IEBpIwdTZY572c/+5mdq3DV5goGYEKdd955prm52TK5fIUSFQb84Q9/KAhU6ylzoq0TmQgtSNZOiNzIU0CzzrnT+3ykjnCd3jvxNB1974N0SWpfQLpkpvHKTd/Gi+8fzDvaEIQLSJhjSjBiAWvDfMSKAAytm266ySq3RBUOaVrJOamBatUAAgLWcaznXPrHP/5hWN8jfOUM8FYJC3W6nsdKBu1e+wFhlDGNUBkhaSF69tlnbfqEYf8EONgn1pC6jhwzZoz/OvheFtoABBo3T1lrYoAJrAUh8a7TKvqqmQ9kMFkWHDXsabotbQZ+MMQsXG+eWTBQ/AALrWAZ14sc9n6F5yLgsOm1x6/We694sdzye7tCG0DbrlCF8Q4rHyjtsd5XDxsAs1FgUCFzLIVZiRLBOjHCNJeYZ7Cuhdt31jDf/OY3868Rymm/5R0Kca5ATa2eAeJFoTdMcEiCVeu3+dL2novTRFnn2mt/EfhBF154gfwO/2cubbeaFxiolzzMLJRVnChPRKFWQR4O2259c9x+x5pMqs0Ka9UKkhtf55cErOvWSnLdk2sgLd4B0mvKAqZB+koxuYUEQSEJ9+V1fTq4iz35+5OyV6cGUn1Tpu8X6kxK9O6WPiHr4Dek8URQmohUGlF+Qwmu7WMB7b4i6Q4WwzYCOE8L4LxuqADPBbBbJ5Z260V+lu7P4jxSqt0eCDATR6mEFVy1hOvGVYVD95lesw7GsxzH/PnzrYVln99HmFItjAMEi0LlpE26yIxQwkNpBivsWOMDuKTrRwA0HOUS4LQolqoBzqJAxn4VcBV7KIzjKCguKA32r0HP/bLC6wmicvJEuZujEPEdHEFEnuytzzrrLKsky56KZ0rU+4XnX2jO/+EF5rNp88zHb84xq4ulqcb5fWXfK330AdkLzxeAXmeMnkav6Dy/Zb55/pNnze1TbzZ/+fRxs9OXd7Rtozd7PqiowpLIK2UN0GfXXntt6yUCcCH84y9/+ctWaXPVVVftVCeAbMPk64DxAdBCjMMAOJGnwaND6QMld+Yv5gzlO/Oe8VhBusQBOItVXeIBqtUwQfsq4sFjUKJ8mjb8BOUp8I0oIK2zztqS7nTLIyQu4zM8R19xQ0G6fCsyYXiKagkW3hFjns4pmrd/hoeo8hws2wbJE11wq2I2AIjiKRai3KNHj7YgUcpAnfAbYVAKUDTWg30ijEv+t7nvuK40PxS0lQD/Ik+iHQCYZj6jjs844ww796EIzG8KxgJizgOvUggEy5xZLF6l36AGomi3KIlDGLChrgEjM/9FMdrEmsPlXyObY83A9wKips3R3rHEDx8yoaQGarkGEqBuLf86Sdlir4HssqxpnSHM4f+VmHQDAF0B535ewLlbiAVdALrCPIudNEk5c6lufe0NmXnv8/k7z+2zAvHDQLod1nRz+WiSmp5/5n1o+Wzg+P7B4AC4hfUkLLACjmGBxOKExQUAiKOPPtoudOPLNZcSgFasReFOgEXPsGHD7GKPxVlPNZ+PhhKbACW0i9DSY2HH4pTFKHXO4gwQkk8IBJWIixUDBKwstIgL0wHBfhix8GbBzAIaYDCLRn8zwu+r5AoX9VlXnG0fSMl/hOZyTrWfC95rwaKGb0/ft6RLMljSnXDqoZ3zLyd9jVPFMxqZ/JZYXwoj2gjtoxChjc+CH4vNbhslDgtshP5oKbK5on3SbnGZi0WuIIJBBzOUODNEG5MNABZV0MpHIzKMaL8Ip+kT5MtiH4tgY0Xj0gcSsKFV6wEqKOdb0RZlYwlIge/B2nQQlfNdpEO/uf322632LJsQNrNYwKJP+pq2QfkGPaPMEG5b/D4ZFD7sWTl1Ql2xwaI+lBiP+A2hcePG5a3huHMCv+lDDz1kGQJs0rAe4IKM2ewBOmDcQ6sSRgTtht8kyKq5mzZudgCeMOeg8Um8Y4891jQ1NdkyUe+Mh1i8oNzku9deexV0wVpK27KZhPx74403LCAGJoALkqdvoPzAhhfGClq1KFbw28Jw4ZvYpPIbhxHtns0seWANlE36oYceattXWBx9Xo12qWlX68zczpyk4xMKJNxjTZK+DOCF8Q1XcqpF7pYF4YeCdIkLs4Q4yiTCDR3a1GF9ivbUE+ZE+80yZ6XkAjAtV6wDC90TJxcuWnhN74rTO1vSJR0s6e4jh5tfuekTL05yNdVZqwYRDMyf/OQneUuGzHUwaAHtMjbhPeDkk08OimrHexi40EEHHWTXvXH0dforYDmUNBg/WVPTfrHoE2QJupyxnfFTgTWnn356qILB5ZdfboWSCHJQ0IKqPR4z1t15553WIoH+HjDwWHcGeYdgvGdOwpUafd0nwK4TJ060j905S8MhdGW+Ys7ANRtMcdYktBkX0Kjhu/KMEp4y3ZkfWM/BDGfOYh5kjU85sYgaZOWKNRJEXNZKMEbVKgXzMvu3PfbYI/STGF9hKkPMYT5Ql/lLvTIwjxeaw8Iyse6k18HCV51p2yJtAbvL/yO8gdfEspgILkuxsNt3fj/Td/YAs2iDuSZT12bXhgiEWSO6Zy2L/zzOe/IoNT0tV5znK664Ip8cv31Ym6asrPdYn9EXGB8YzxCKsF5n7afMexK8+OKLTVNTk133Bwl2CMNYpmtvhCW0H12T+VZkCA+xvqGtsUZij8C+njLT/2ljPvljLtY+GN/gFQBI+MUvgkGYfjpx3jN/qGIIa3/WaghgKCtKQvBPlEcS1P/UQhlx4W2wHkLJiHjUJ+MZwIsw6op+G5Z3T3pOm1aQLhZdvimKYVj5fEnWioyv1PfPf/4zs4vwZ3B93ZsJMGF2UbQv7LN6gxl7yBiz75jd8hGw0s3hE2DdYnswP05yn9RArdYA65W0GJJKidfe7NzipcwuFF7ZYgHqrsouKaGkBsJrINUogJ7P11lvkEvXzJjl/8rkvEwIyzs2gp33mQACPxPQ7n9kvdVX1sdrSJuWNTiA3TTeKQWIXrd6+zFA2m1cxm9i+4juTcgH6PqlAUxUjoVxP52g+3LThv9Y0NtJUGZVeAbPhXV5V1J35MnvlOcvikXcNlGEahMPstbC9SeivPGJ9Ln/DTBrfTRALF+LxeulcXbyzrWbyWbMe4tmmr98+Ji5b8YkM2SbgebJnz5h9/+dQyZ3SQ0kNUANICNgHw8BqkXewMH+sLm52Y5hjGNhsj1AuPAyIQCx8C8UIIqlXQXxwuOEf6cgReRDeMGCkFHuuOOO9lr/wRtGdsbeFL4A5fEJ2Zfy9tTCLGFdkC4gS9cIE8rcKDwAxKTcPq+F8QzPTGAulOBJwNOA+F7kcYUIK7LkCdATWR3yHBe3AYhVeUzko/MschuVQ5500kmdsCXwILH8Sp35gFy3LJQffig8dAUuu+/d6zjyA2z7rW99K8+zRkEGeQG/29y5cy1fne9DTgXfedKkSbYI8LCDLBq75eM3LxYvjm+AJwJ+RNstvHSM4wCKRn6GPLKYRxQ1jkP5qQ/Xci6/F/xlfltkwtoH3G9NrpMaqKUaSIC6tfRrJGWpeg20CZMLDd+iWulOSVLivqd+pFjhGS0g3U2qBNDV/PJAQEAQ8tC5zyETpOwi3LLGxFwenDze+8cTzTNv/NdgGXfCuAMD4+99zkUSRswHOaTh7SMnvzwIlxfs57zyhJbPJhTvP6y9AAQEmIeQ3NcsRRh47rnnGjSm4nQbyMLS1czRryJ/wBYIr13revq+1s9nn312vogsVhCoK2FFFzffLF6xjovQLmhhxKL6d7/7Xb6+2VgQjwU9ACV+r7ANBXm5lgsBX/oaxYAkIUDAQYJF+7LK/2yzlz5RypkiueH3HXeOeea5Nyzo9ocCvAXs677nPsySLuEZA9zwfvpB6bnhLbi4yvXEQp8N5Q033FAQqHvjjTfakgDAZbPFBsIn0qDtITx3gbpsNACRuABu4iL4hHgHQMDdRBKWhbqbj24cETrfcccdnfKwCck/gFJqsU2fcaZsgGDZTAMyUKJsgAggQJCAIxXwxzMAAAjvaeNsEvy4pX4XabJJZWPsfhvPAdmgWQ/QoRwQC4ADCBBrJVROnbAR03rUvBmfOCCABzoW6ZzAhuvMM880zz//vEbJu//iHRtVdbWmAbQNMLYAmKIeXdK02WgjCOb3UwK0AHCMNGBE+OBrhO0IisMsqJbatjTfoDPKI1pfgDSUSYsLHH0OmMx3OU4ZsXhBm4QR4hNWP/3v4rsBo9O2ClG12mWhPON4BzNA+yy/OUAgJeZErJrAsGLOpw/TZ32iPcEMcwEWuNj71a9+ZYPisqmQIkNPmBPthzAn2fWgTE/tlnQL3kskO4vJxET4K0/7pZn86lRrGXffI/bk5QrpXXF6Loxbx1jS3ceG9/L30g9KL7B8buIxXOPiXYl+ECYcYj3jr2lYL2mfBSDrpqVp0m81jGrxV9rXYdKi6OLPI+TJOMc61x8/yxnbWbtr2ZmX+EafYKLp+MIYrFTN8RhmcZAiGM+x2ICSj68ExDgAqJC1QBBQF8azfiuAY52z+B7qGyUhZQ7rN3JmzOFbVdnHfdcV18yhCtJl/Gd9j7BVScGAtBXmXH8fpuFYWwHGVmAkDGHGNoj69Nu+xuOMsgL7BvoD6zPGYne9xPirbZUxuVKqG5Iy/UbXiXccsSq0Scq0CFChVdz2ZgVYEIWwqttnQV9Tt6jBZAa1WXAu8QDpumd7E/DcD9fV91quuM4IQ1Q5BbCov47w82G9zjqEMQhizQ5QF0GS9iGNQ79TwvquK/ThOe2C/Nh/Kunajb7K/oM1nUvsW2mPbhzeUw7GP+Zu4rrkjrkIAVRBhzC+sMmNV61rgP9q6QaBHmt4V/DCt6nwjfUedevuk7RcjEvXXnutVRbhGdZ2dQ/BPqsQULer+62WuaedL7v0Eltk2s3zL7zY6XdASWb4xjlAyXMyzrnryJ72nVHKmxUL5tmWKCElzEBhQQpQ0SXW5fAIdt99d/exvWZ+Yh+TUFIDvaEG0gNlwyV9wEQB6pbSr3pD5STfUFkN1BnTZ3japAXYvUw8RrY8nzFt78j6NS7run7plsq4P0tkcbMERMhmXXA/FrgrFnYB7KYB8QLaXU0OKVMdIPXGDn6rn1xyn9TAyl4DWQHdtgnWzoLh5wgoV4622aKwYQG6sp+V66r1Z6/yl6aXmv/1/dC8O2yqGXvGzub0XU/yQiS3SQ0kNeDXAErIKNNiGAweqxJyJvbsHBCGFMaMGWONwSiPjefwhyGeoTirYEeeARSFzwk/F0KpWEGK8CsBecIbgffiE8oWyPUh+CVBvAN4nP5+FS87CnaFL+Pza9i3qWVyZFk+7wRcggvSJX/KrEBdlLKjEIrayPkgvsOV9wH8VHKfA2ymTjDUgCENl6hfygVQl/oII2Q9QfUZFD6O/JAvu4YlAEwDElbjS/CJFIgcVIZKn1X6DdQrBoTcdouRCIxdIJ+DwPi4/HS/zCj9wzuG4Nu7IF2eIZOBFwaPkt8P4yh+GyNcQkkN1EoNJEDdWvklknJ0SQ3gEgpt80gkfIHUBsY0filt+m6XNvVri4Cns4wnUjIlBVLwl/Ikit23Jz7x7vstSJfbi+663z61FnKd+DlLugEg3fEHtqciJyd8x0Oet9/578PuO0WO70atZwCIQajEBAvIU4VsWODCuo0ClirJGZCqgnQRHKMZxYINIRjCYkA9LEy5L+QyoJIyVCMui1wFvgEac0G65IeV0d/85jfWPTP3aCcFLYwI44KiWdQimNUFPaC7QkBdFrHHH388Wdg8XKAuwl61vsZzFyxgI3TRv3yzt/lZm4DtV5yK31981V0WpEvoiVfltNewkptLNxc/1JLuKYdKrJyw3w1PWqXeE6eahPAXoC5CcQBKWOPzCYuThIEAr33729/2gxS8BzSvIF0E5wBJaWNsTmkrAPjZUKorVwXEkCjtEBAMZ8YHACYs5rFKiMU32q4SFn0VpNvc3Gy1XNlAUHYseBMXbVUfvKTxFZDCWMQGEU1AxhFABFjtY8PqgpRK/S7yQTt0v/32ywNWSBOXLVglU+AyVu9efPHFkhQJsJSo/Rf37HFR1DrBQh9W99jwoXgBsZmHKQFhLdgnAKcQwDbCoUGrm1XmBv2deM+YQx6AbDn4TRD0slnzN+OkyRwAEQ9X3zAV1KUzG0q0PSGAGoyRvFcwCdrRbARd1zyVti2bWYn/AOkyXwLsY7yG2YOlXAhNYdwaNzU12Xv+wTBhHFdis0sdwdAAxEWdkF4QVatdBuUV5zM0pPW3BpjignTJByYXIDX9bam/IKAuAG2fWUXbV6Cuum0KK3tPmBNt2WUCsrMXIF1mo7xl3ZB7GwrLu1nz0K2PWZAu6Tx066OcBLC7Z6f0rjw9zJKugHqD8rNPc+kHvg8pH3nHSYwRSowJtBfmKR8cpmHcM31OmaiA/IPAmgqihKGpTFY3jVL7Ou2ReUKBj9rXAcyi/MZzxmHGTh+spvlGHdsBcpEO62bGUHcO1LR07uKeudkn7aNxjcfMAQrSZUxjLMRCA4BVZXpjma9cpRe//MxrzGfKSERhjjGZdQVgVsC7WLZknmPt0NXkAiNZs/jrbizJ8xuhtEHbJozPtGctoqBBLT+/pbYT5tpCxFoL5SrmddoKjFnXTaZa5yWNoDZUKO1C7yxgd9s6Uz8sZZaumzEtfxfLYgImaF+CF4pq6pc2mPplDaL/u9SCil1LuoCMFXxLInpfjXM56Rf8sDJeugpTvjXksOTc/aW6O0TAwFoQxrtaUGatrHtKd82u6apVWMDzAH9ZnwHOpb+xbsdKLgByJfojbU35BzDwGa8BTNL/icc+Ba8LugbVuHpWkC5rJMpcTUGI5umfWY/oGI6yogvSJSy/A2MnShD0KYR0viIe9coax7U2g6cKxkT6u+ta0c+f++7qt0FlqeVnDeL9gvn7eAGa+2Mnv1tzc7Nhr/zxJzlhUy1/S6Vly4p79FlTZpmhpkPBKSxNLD/+5603zDbbdraghHI4fAcfrAtPAKtHp556aliSyfOkBnpMDdD+U30iLUesRwD6VkJJDZRSA/WAY3eWNfAGAtb9t1jXlSPDGjiqMkUpmblhBRCcnSkgw5ntwF3a+qoibltDQLvi9CxlQbtyb0G78ky8WdYNpj9YRoSbUnKd1EDvrgFhseEZtm2+gHDnylmODJaqP5XnYj03M0eei7Vcq2gqChtdSjI/pUVmPnjr/matUZ8zozbYxM5ZXVqGJLOkBnpwDSBbPOOMM6z3RvbcyFPhRyjglU8DxIsHIPgWyNDhL8NjwlIuBDjRlTvZh/IPAKTyYElTCf6Az6tBJkI+8IhRri9GQfJC5PhKQZbV8R5H+THKxLVPQZ6YXDmdyt/8eP49fBkF6iIjdQG58HYh6hAjS0rgS3zCQi0yUvi0KGsXojDQc1icSvODV+vK8TQflYVyH7W+NG6p50q/Ab5IULuFLwJ/Hh6XtvGwsrn8ZZdv7IanXakxAWQdCVDXrZ3kutZqoL7WCpSUJ6mBataAZV4tj5iDgHLrmlM5kO5QuekKasc5WOGg8CCKntvL5FvJzYN1xbIuuIYcSPe/nb6gsyVdeRWUn8YopVwap0pnJnOAsiqow6oGAmOEeAg4ENaFWXqKWiRcGJ933nk2OAADFqpYBIPIj/QR4AFqI99K87MJd9E/V+CmwnM/a7Wiw3MAjz41izApSFPMXeiq4NCPq/cszAEzIngHgMmmQAHPuqgmLIC47iJt9rn8hfkhF3STHAXf61s67zP/zGlA6jMXrMv7MEu6gHl5H5SfphX2Prx8HTHjvkKYqxtArE2q22c3HyxNQgiEfTCbGy7oGo1SBckBxHXTB2wIOATQDf1Qgbou6Adwugr4aU8AfSgzbZS+DugVQoCtgnyE/QCjEEBDgAbQ7KOtAl4aK9qeYWAa35oqYwVCb4h6UIBJOd9FGliSY6yDUBRwN8l8A6ABQAYAa9y+ZCMU+Ifrc6Wwb9P3pZ6j1AnWybGEBJNAgbr8XkceeWTB7GgDWD/z3cvwDGK8YmOmGr0AiVBAQOsYos7UZbd94Py75ppr8goFPAYQDSNFwVaAgV3QA2OnWiwH3Ep4KK62ZRMr4R/tHs1mrBErYUFOASa0cW3zvOe5jt3+bwYIhO/Rb9f09FytdqnpV+vM5l6/mT4TRGgnA+Rh7RHGpNF+7cZ3mU1oNBeinjAnavnt7GQnKPnHH6BdvZdAnd4795NfnaJJ2LML1iV+EEi3w5KuRCEfobD0A99TtKDy2ZTi+8c4gxIKih60J+Yl5kVAuDAH6TthHhhg0Gr7ArTpA3VhEKqiSxBInK8ota+jBAVwCwKY5lo6xRI51rhhSjJ/wch1FbNspPZ//jgRNN/BuMRaBMp2zM1B2v06x1NvLkPWzSuu8Zj6BIQLwQTEFRi/lRJjtyqGAGaeMWNGfi2gYUo9A2LUsZN1L9+phLITdcx7xuS451/Np9AZxR4IhmtY/VMugHsQTE4XZMkzV+GOe4i9E0xTmOQ6zubeBP9nzlcFHNqWMlxZF6inDUDl7u8VnFKJT2Wb37Cu/BOMNNa+Wj+QgaOteBqpNll1cwgpKNc/ayr+8+6+13LFdf7oo4/ySbn7yPzDgAuY8+zr2Zu+++67NgSKCBwolSpQl/EjbAzSZOEFEE6JtSHp0K/Yx7trHYB8uk+48MIL7bpO4xGets74SH9gjeADKwnLmMsaMOq3avpxntUqDOOY7z1B83H36yhjuWtWwrAXd0G6Go+60/6OsJBxPIy6rd+GFagGn//lL39doVTMRQhO7xEFFt3XrRCoNz4Ql+jzP51vhvbpmHfDPvPt/7xlfvKrH5mnjnnU7m9da7mAdYOIfpkAdYNqJnnW42pArJ4ajijEmkX6VkJJDZRaAwDCG0ekTcNQAet+To7XxMPEfwUAyDax2oBdLawADLOyjGz7COCuEHv3AXICvCtWdtNyTgloNy2WdtPiEaNOgLvpQXK9ipwHiApxItnWmkzOPbgGkFdnFknfm98OzJ0n1xxiSDILQFfAuYB0s3K21nJzrLGu/2IAuuuLst7m4nl2K/Ewg3VuLMAnlNRAUgNl1QAGZTjgc8Ejgh8BfwRZJsZ/IPaM7M3Z87vWZQkHTiGIFPDLGX6ayje5R/4Hj468WlpKm+wxkOOTC6rEAFgQoQQdRkFxkMMoKe9M78PO8JcAL8PLhp+D3BVeDsBV+LoQBhq0LuwD+cd7FMfBQLBH17rT94XOKGy7nsAKhdV3leSneBhNS8+udVp9Vs1zJd8Q1Ia0rLQFeMduO9d37hnjXUp4AC1GUfjRxdJI3ic1UM0aCOe4VjPXJO2kBrqpBuwGPuomXhhdGZEZLX1ZFjT/kx1QlRlfdlujexs5R7pvr8c/nT/B7LzlZp1qFbAulnbDQLpnYUm3WH6aYtTyaHoarwpn3EL4ixLcYKo2j1rCqiRrdRWA4Av3rwrS1TSxLqYWxsLyQ+DC4iLsUJCYptlVZ4TrSkGWT3nHIhbBKRQESgoDm7iCzCiLaAWLkY8KA7lWy3EI4gGvdBfl+mB7oxbLWJHutbAS/k+Tfmp23mFLfWLPgHU5Qi3pntpuzTIsP00t7L08t+S/13hVOLPBOfHEE23KWLBiI+QSrlUA2ED0Vb8/uWGDrl3hv28tirzpg2ykAEMqsSmD6MODB4v5BYfGjBljF/zEcV1Xq5tchO+AA9yNGyBQgMCkB6lGnpOsvQRE5QvLmwXApeOFuq8hcDnfRd1qXwGI6oJ0SRNAmAKZCcdmPCrpN7GppQ7iolLqpNQ8qVsAFz5Il3S0XaBQoSBdTR+QlP6WbrvR95wBX6jVb32uvyP3ALx9wINrjVYBFISNo22RTqlEG3FBusTHuq6CnLSf8JxNMIwaCKuyfjtm3L/99tvte/9fNduln1fc9y44Que9oDwUdM3mHmaWT0GMpd42J+a+mblQ5hk7xwSc7VvnuUTS8KddcaIZMXJ4p6oDrPuwWNq98vTr8tZ2NcB+R+wlFnf3ysfPzcJe/k76ge/9cmr5NJMYzwBcTznllHyKMAYBuNPn6IdjRcGDeSSIQQTQHVKPDflE5ALQiVIQIJx3pfT1hQsX2nyI96Mf/agTSJdnjI2u9VLKFESljO0AuZR8Kw30QR173DFWw3OOczzWvEgXC786HnIPAUBVS9j0dXeczIUo/b+79vbzgykPgI41CaDBribGbx3TXIU7vxxYp1CaOnWqXubPYcxW3bNhxbQY8TvrOIwXAiW8IWgZ3b2Dvq/4LHv8VgEHLHtJLImJda+oe/5snYTlEFLmvH/WsvnPu/teyxXXGav6SoXakYbRs86tqjigz0s5Y1XTBekSF+UX9hwQVjbd9qd7d9aCKF+5xPpXFQcYq9XThBuGa8b77gTpUgas7kBBwib7Qv65ZQway8LW+6WsX7qt3+pH9pAzwsHTxNLrDtt/0fRt7GPWHbqO2W7bbWT+znkH6SGfUXkxRQKB15EotGThUlPfjsCiHz/99NOdoqGc6hPhsMidUFIDPb4GkD9ElUEA6JXtV0JJDZRbA4Be+46qMwMOqDf9DqkzffYUEKwAd02/clOsIB5La/GEmX1PwLuvZs3yv2ZNywMZs/SujFkix6JJbWbRPW1m4X1yPNhqFj3RZpY832aWvSlWgd/LmDbAjKXhjioobBI1qYHSaoC2SRtdPjNjlv1H2rS03UWP59rywvukPUvbXny3tOlJuTbf8qC0a+kDba9Ju5Y+YfC+ntt+lpZxpaH7C0B3hIBz90qZ/uNkrNi/3vTdui4B6VZar0n8la4G4L8hf8FglU/wiFCcR26J4qEaFiKcyuf9fRSg0qDDTVuBp+SLNy2MEAH+dUG6eCcOkmu46XAdpMCrZcIAl/K5/HiF7uMEmbre7pSXo2fKgFEKlwA744UImSiAY60rvhMrtb63MTcu10HySD+Me19pfsXK4+ZVretKvyGoDWlZo2IG3P4T1P71maYbBaeiYZNzUgPdUQNRIYvdUbYkz6QGYq8BtPxSOZxV8bRl45OZLkK7BbIhej9rGkeLpuDnRFNwUHU4YHafJZpTOQ6bbMBkcSaqVIXv+YpcRANYd+9zLjKudV21rEswJQC6E8Yd0B4tevqRymPLqznFf8biFJbHggiLMFhJRKiGuwbX5H9Q+ELP1LIUILgwy1K4NlfAxcyZM617TD/NIDCGhkHzqDtILRYBxHC10/yyILhj4RUE9FPLt36cUu+x4EY5qCcsZWGxFPAi1lEh3JIWWryVml+p4W3vkDZdypk83PAPC1jXt5yrlnXd8mBF94dY0i2Sn59+qkh43ncFYZ0Z16r8lgB8XCAFG0DtC74gPUrZmpub8+0EEBQbS9qKAs0B1PrWoLCGpf0TAT7AQ7RTFTCiZzd/7feABtDC9Ns+/QUrewgA1WWKG59rf8On77WsLhChnO9ywZ9Y+/bLSH7uphRBZVTABNaFIdeyon1Q4b9S6qTUrLB2GEZBvzEbtUWLFtn2qG2S+yAKEv7CuFAKsnroAslxlaMUR9vStEo5KwDGjQPTBCAUbVGBT7x32xbzWxBRJzpmu+/duHG3Szefaly7LpoKMaXc3z5og19oPo1a7lqfE+13MOewDJapJdLZBiVwLvypl39XQLm/7ATK/aOAdX3qsKRbJD8vfc2n6NnPMIZ7+tYll1xiGaqsR7Gg7oJCYfxxEAbwvqv0hKV3teiMJVHXqq5aEgU878Zxi1xKX3eZlGFjKHMW4wTrQOY7LOX6VMrYTnqMmViWBRzrAo7VsiVji68goHnGOR5jmUIJBngQufXyyiuv5MGjQWGjPFMLvYTFq8BPf/pTa1VX9xjdyWx1lYZ8pRb329y1f9AY6K/D3LilXLP2Z80GgBtrx1j2xN2fUtj8pO9LPbeJpaKWdzKm5V+imCtggGzOaEmkZFr7LjetjTlXPVon/lkT8p93972WqxpnFW5ESdsF0EYJHxTGdWnovte1N88QutDfWDer8gH9P2gd7YJbX3311UAr16x1upsA+EM6jgSVx+23Qb9LT+23Qd9ay8+uuupKM0E8evi05pprmd332N38zlFM8MP0tvsHHnzA9M0MivRZfev6mX71ggwRwlqUb0WXPXkQ6R4v6F2UZyjto8hZzBtGWFooZzEu+Zbnw8Inz5MaCKqBLFZGO9gJQUE6nolkr1pWRR99JWtu/VvGTBWFpnIJ0cbXt0+bb+6SNmsPKTeVJF5X1ECdWKztt40AdUX2tXyGAATfEU8TU8Sa53RZI6NjERU8HndhaX4iQskukXJ8qMWQssnjhdK+PpNjblqOOrmX/rDBRmkzaqRYC5bvSWOdV2SBnJEJpvuLXLBBIkqchJIaiL0G4HvJ9tBax8VCrrCbswtz54ycswvknVjNzYrDrYwc2fZrayW3uF5r7MUtmKD0qZSM2enmlKkfnjINMi70aZI+VCW5eMGyJC+TGuglNQC/V3my8L2wyBpG8FzZlwBKxLouPCTXGBG8MvUWFpYGcnUFwmKMTGVgw4YNs569wFkowBbeLwbSSiV4CpRx+fIcb6zU+HGGx7MhcmL4PPDj4UOrDBeesy+3w0CA8klQgIYXhPVflSmixK2/V6XlRE7YlflVWt6g+HF8gyuL9PNQ0Lcrg/PDcE+bBf8DAWovBph2FdFtpORfUgM1VgMJULfGfpCkONWtgTrB2KTXlN14veycIhoazM42ZvnfBKw7rc20jMyaPpvLAkc2KVXZmMDBstR+LnZPWBs0F/5P558VaEE3l6YxZx0qIF0s6SqVmD4W1HJUrHyaQbxnV9Dtp+y6mEawWy5Ql0WvWlgsxFx380OI57twAOj661//2i9m/j7M8lQ+QJUutF4QYGDpNFWTOeYAAEAASURBVAwcAPgYcr8z7iIBhsSyMFZYAWpQJrVyRF4ukCPuvKOk17m1Y6svx5zOPY9+j2VdLOg+89wbgdkC0p1wCpZ0y0u/WHkCM435IUJiwLl33HGHufbaazsBda+77jqbG1avtf2Vkj3gp5tvvtlaJSQeABcO+hgbUkC7WDZ1LeDSrgADIcADGHTQQQfZLLHQDEiG965VO/r9s88+a8PQBost4HWMsBGcf771Un3FZtCncr4LwJBSGDBB33NmbIoC1EUQ+a9//ctG9a30uumVc11KnZSafrFxFKAyjIgnn3zSah+XIrjFGlshCgJm8pv6FFfb8tONcg/jJYiC2qMLtt1kk02ColnNaAWruwGq1S7dPKp17VqTc901+fm5gF43jh+ukvtanxPtt0kTt7MfLilZgAacO73PR+oIj2XdK067thNY1603LOnuc8SeZaffKf+Q8rn5xX3NfHjCCSfYAyYTTEGs4v7mN7+x6xysGgIQY3zWNRhMJixywwScNGlSHqiLYsqf/vQnW8QjjzwytKil9HXyVQrr67z/whe+YIG6CmrTOHoudWzHajDzMes95hxlSDNXQ6wh6ANBFNd4TNoK1EX5L4yZB2CVcZI5g/CVesEA9HzaaadZC8swJdXSJxbsdU3iWqwNqoNqPXPHM9cqqp+fC+gN++39OOXcY4EagQVEW2ENoxZOeecCD8tJX+MA0F0+XQC6b4qQ/1WxQjJL3pQgV8ikJe4qS02mfy4S8z/zff4syeVW9bkc8881XPv7FZ6X8Z4cVkinSPrEiZNcsCjWXrAUHYVwuwi5a/Io8dwwzc3N7m3+WoUr+Qdy4VraxJqub1HXDcu1CnX854UUe/yw1bqH98B44rr98/NyhSBh9eTHKee+q/ptOWXr7jgvShtXkC7zypkyvo0du5vlsWgb/deLL8Zivb27vzVK/nMXfWaGtPWJEtQM7jPYjP78aPO9CcevANI9//zzQ9NAGYo5vhyCl4GSEryAcsYl5gEU4zlQPqoFUH859ZDE6f4aANBlLSdGKEqqUdYBcsRNgHTPFeullZJ0C3PPcxnzzkfG/PJYMX6yIsuk0iyS+DHXQN3glKkbWWcaN5H18gdyTBWFtukiF3tXwIViyMaCCmPOs5zkEGoPkeJwWBAxcj4BuGdez5jFb8pZZICpgXKIxWCM9nBtDfgA3hXArgXxYikU8K5sQzmn+8k105SAFBNKamCFGhCwekas4mYXC/gW4LgAyDNcA8gV54L2eTs4F1BuFuvQYgBKrw3WnmmvtUyA2teTMWBDEZ83C0B347RpWFf6RWMyeNfyz5aUrWfUAHwSBX6y5wgyAuN+CXsLCMAtPB+XHwbo1r134+HR8zPx2tXYt6/BsAMASzUeBO8GD5Kk55ICH91nUa7hnwLUpTxBWAOMlWHJF/AsezSMrVWLqCd42RjMee+99ww8TqwHQ76xCYwDKEh3p5126uR1VctXbp1ofPfc1fm5ecd1Hcc3uLxlt1xYeFa5XDF+G3xstTJNvCCjJngTfKXdc+gIkXO6vG833+Q6qYFaqIEEqFsLv0JShi6rATYVDU0ps3xt2Re9X0K2aENOM6blA2FOvCGWdzaTdMTlR0NT2tSvLosa0dqNhVh7sUaKetZMnfA5y7oTxbLuf/WtPVuQ7rj2hZATvmB+mkLU8ISrIrlaY3427juADeUSC1cFc4UtdknbBTrhrtYnBC/FtNr8OF1xP3z48Hw2ALOChBgsZFl4QWEWjPOJVHiBO2SAutBjjz1mwZVco8G2+eabc9ltpM0+VwBhrMhFxxYm+L6jsJ3fB1nWJWwOpDterjqHD7sPSz8sfEd5O2JW6+q4446zQF0An2gtsjGijWFBEOJ9uYQFNYT5v/3tb81tt91m+yjCZ645mpubDe60m5qabBZocwLwANyBC2sFoQI44sD6749//GPr9psIbr+3CRT5F2Zhx9/kFknGlPpdrsC9WNq8V03EYmHV4ivhogCAi6Xnvi+1Tty4lVwD/vrmN78ZmASbs1LrMjChCA/jalsRslohSCl1j3a2UiGgetC8WGpdRm2XWp5qnjfaaKN88gCOAVD6BGOM+QlibiqlXv20it3X8pxoyy4TYRbwq50Qg8+d3ucjyUV7PN6fevkJK1jWJWiHJd2O8BpPz1HSL1o+MusCYm06duxYewA+BMzEHMQai3nSHW+xTM+cxXsYqABEAPgquVZe9ZmeS2mTyvgiroKENB33rH3dHRvc96XkSTyYsQpQZb5GGQtX4Do/VwqGdctW6FpBbcXAvzDQ2Q+49VUo3ULvqKuJEydawA7rGNYnEKDtq666yh777LOPXUMVGn8L5VHuO9ZLOifqbxGUlnq74J2vnBgUvtxngM6xoIyiFf2B/qNzjOutoZz0s4I1aZstYAMshE0WgK6AdDOzZByLarHOyXTpoCVm6eqLTFt9DsCiApT82QnLZf55u6CFIRRa4XkXvc/lHt9/F5jL2p/frRjh9pE+AFUT/O2WoxAY3Q2n12HrfX3fnWcUAOizKF8g/ApSdMACjxJ7pWpRNftttcrcVek++tij+awefPAPZkcRArqEAEn7gfu8t14vEsRKennfSJ+3ev81zEnf+L4ZuFNnsQUg3UJA3XKtOdFfEJiPHj3aKgJHKmRAIEC6t99+u/nzn/9sLfIXEzQGJJE8WslrgPVKZq6sEQTgFYVSgKoEYBg3YUk3TnpFFKQefill9tsm/rLGWc4krY4aSPUVV/cbySGyL6vkNlNkYjNkDT2TNbS0UywtL+kIXytXYGwbpR9heIdD/jtFk+sGuRWALn0nNUAAiPYs1zwDtGvBu3INaFemLA4L4LXXAublLPLFxDKvU609/VKaBZZws8ukbS+V81KR0UjbznDmnut2YK4CcrMKzhXLufZa7i2IXdLpcUSbX0fa9voCzt1ALOhKn28YJmBdAe0bOlRCSQ0kNRBLDbgGjDAYhIwhjAcISFTlJ+r9CiAqewv4tFOnTrUAWeXdagHBRWC5FcLLEEBd17MvRhN8fi6yKwUQazpRz83CZ9D9LMYZfI9oTz/9dN6TUbVxBpSZ71U5J3syJfZ4LrEPV3JxJfoMPmQYP1zDlHLu6vxKKVvUsHF8Azy5adOmGVceR/78Zgqcxlp0IXKNlbCHx4iXTxg9UUMlAHUTSmqglmsgWWrV8q+TlK0qNYCrjnoB2tqNeak5yOYsI65/Wh4R7VzRLF90X6tZ9GSrWTZZLPGg8e7u/UtNm/DKr5KzvXTubXLOvV76z7kHrLvzlpvZV/zLW9LVSHK2l869Dezc66X/XO8LxreB4v+HNlgYTZ48Of8qigXJfGDvAutmLJKht956y3vbcavuJnlSyPJuR4zauHIXOmrp1C/Zrbfemn8U5oY4H6DCCyycqkbT1VdfbRQIcMwxx1SYcuXRc228vScIyCLSvWYbEB7LujvvsKWGyIF0Tz00dx8QPjA/jR01vITrKgJwpH1HrUljQRDCalwQAK6UsmFtjjYCyIaNH9qYaukG0JMPjGeje/TRR1vQE+BzXJG7C3es8qpLcfo9Am/opJNOMmjjFTri3KiV8l1av5STbypURt657tOJE0YAwyA21y7TICx8rT8H/KEgXdoIFioZswFdUS9o0wYpKVTju7qzbZXyPe48hoA5jLBY71O12qWfTzXu2dyr4s3PfvazPPPIzYtNvyqvHHDAAe6r2K9reU60H2vnHplX7B//mBsL3EuksPdY1h0xcni+DrGkC1A3LHzuOf+d/AqkHxhey5vPtesusAB+zTXX5DNUS5L6YNddd82vh3CHBukc9e1vfzuUeavxo55dy60AZcNI19wwOeMgXFcBVIbUiq4CVpl7fOsGceQZlIaO/a4lcD8cTGplNLv1peHa2nLgTL3XM9YjChFgXH5TGOePP/64tbKr4w/W/NWSbKE0qvFOAeMwMt39jeZFeZlHIcaoaoOOAK1D/AZnn322vaae9thjD3td0j/Zm2fEitGyt2Xv/oTs22Xvzh6+5c+yd58qL8sA6WbqMmbhuvPMkrUW5gUcKujwz1pW/3l332u54jq7/fef//xnpGRRVlDafffd9bKqZ1cJlHGo2Doarwy1SipoYm2rc4VbVoQcug/jOX23mhRrv61mQbs47TmzOxTh1g/wdPHH9vm+i4vVbdll+rWaeS1z80oKhQpSn603bZ+IBUdxCw0h5GUeKATSJVxDAwis0gmPOfAPXH5B6ankFA90vnJ5lOWklcRZOWsgI1b/M9L2o1r6x1poWsCGcdNUQJhl0vF7NhgOn2Z87D9J7ntEDYj0uG7VlOkrVnYH7F1vBo6rN/3GpU3jgSJf20Xa33Bpf2Kxlm16jyCAlPNEhPdBTsbXJtajW58VZb7HRd73YMYsm5QxS36XOxbf1WYW3y3yP4575Li31Sy8r80s/H2rWfCAXD8i+4unJMyzbWbJS21m6ettVkbYgmIgxn5ESTAj89jSebLpCN5C9ogq63GFBKiNDFfqnt+A36JFlAXYE/IbLflX7jeb9+hSs/BPud9ygfymC+/N/cb2t5bfm30jbWDJXRJPDtoGbYS20voPWaNI28m8k2tLtKmo43a31yd9dZBgcD8noNwvp2xfpk/Tt+njfbdK2z6vIF2US8tVhOr2b+3mAsBbSiipAa0B5KPrry+IeCFki1dccYXFHyDHguhr8N+Qj+OxVMmVqe6///762BonIrwSMlMMFimpdw+AqIB8IfhsamUWngFedZGHYBFXCT5JVMIabZ8+fWxwjJwgN1KFdMDEasCJ/At5dYuaX7FwyAEVeKuGF5qamvKyH43vKpsDmlYlbb4d0LLLv6ee9Js0fqnnrs6P8qkXP64BrWLVOAqFxYvrG2655RbDPpnywF/Hk516E8SgiItfCSovHqDVii7fBZ9Afx9+K/jtCtIlnGJPgtJKniU1UAs1UF8LhUjKkNRAV9YAFnAbtxVt4Hfb7GaqrLxlU599T/ZfYoWn9d9Zk94ga+qaZHOzoRzry7G2MCrK0WjHio6ACAD8Ztk0OfeW4eHc2/daePhnXnjAuhPvut98SQC7O2+xaS6kH9+59+MXSz+0fFqmKpyxGsME7rq412x08uW+0kUfbidYkKn2lebhnl0ts0qAwW6aXXEN4ACrZvfff7+1RIr20g9/+EPr/peFzL333mt+8pOf2KIg0Bs7dmxVi4XbYQAoF110kQVfamYHH3ywXnbb2XYr6SOlnClsofBY1p141SQL2N1p+y1sHy8UPuXlXyx9Pzz3XUknnniitZiHlWTa1S9+8QubPeBXBSVUWh76P9Z6Ob7//e9bdy1Y1QVIF6SRR364ddlvv/3sgTVdBd6oVT/CADLAik5UgAFx4qQo3zVy5Mh8lmx8VQiYf1jmhQLkd9tttzJTqK1obLCVLr300hXc6sAAKWQ5UOPGde7uthXlO1ywLW0rSMsZ5o8CVt00q9Uu3TyqdQ0z6YILLjD/93//Z62YYuUTZRUFzzHXu26ZTjjhhGoVxaZby3OiLSBzkl1vsk6V+YW/QvcSyc6iNtyK4U+9/LvmodseMyO22tiM2HpjCRxv+qHli/lXZN0JA5C24jJF/Wz4fcOIOeDII480l112mQVFHnrooQbwJnTYYYeFRSv5udtfsXwZ1NdZa8MogxTYWnJGARGOOOIIu84EoAsTVMGf3/rWt2JbIwRk2+mRgtuwjsARxLBjLaDEWkNJLRCHuT8rBHzWNDiTDlYmOFiTUMeMrazNXWawG6ea1+ecc07eyi9gYtqdeuDAa8hBBx2U9zZC2GoT6zUlVSRC8UqZ//qu4HlJyrRME+E4e/V3RYg6Qw6x/mXmSyw5lUtEXbTGAjO/aY5pHSBCt/a0lCnsnzUf/3l332u54jrTj9QSMntJQPm0mzDCNaLraQMPE2EUBowPC1/oOeVEcIPVcsa4aivfFCpLpe8YN9k/M46xl0YZZO+997bJIhD+0Y9+lFeA5bqYFfFKyxNLv620EDUYf5NNO6y3XHbZpeaSSy61YFDG1jvvvMOcftpp+VIvdoSj+Ye97GLMHl8299z2R7OodZEZ2CA+yItQ5n1jWgUsCEAsKqDftypVJIv8a9YlqgScf1jmhaajVrDKTCYwGvtY9icI1RlLEVSicIlCVEK9owaWfyBrlg8jfgtWEIeIOGBFTGzEBOIPNlrcpB+3Z4e48YbHQEXmqIIlmE2APQoACniLQZbkNZ+4zwj8mUsh+IWV8jbhtxx77LE2vd///vexjT02wSr/o60h86pfu85khT3Z9pmstd+XNfeHtFsBLUrbzfxP9vSfSkGi43yqXOoSk8eYtGCmsotzLdb9n0upvSWDeQKb1G5pN9VXnjdKfxRruzxPybVpzJrHH33cTJs+1Wz9pa3NTnuI4hTvpB5TfUS1mK7CNYe9zj2zfVruU/VyDwvBXst9naQt9/ZZDnMlL6MR/HOMXuy7776mK/Z00UrlhJJ6x6I4gOZsm7Qh8ERycObeXiOP5fny3Hus4AKOtdZweSZtzj7jTPtrkWds2doPlDRtGLGU+/H0j02qJWUG9x8iP4H8AAWNiLf/5pJkjyXa3WoyZ2A5d6g0o6HSj4cK2H49sZw7pL0tBnwc+6Y999zT4K4cjzdxySECsupVj5Cxsh8GfIahGGRkCSU1wPoBT1EAdFnToOyPTBOCJ8wzn5DNu8BFeLjIcNgPIKe5/PLL7f6SNucaD9huu+3y/F7yhe+oBiMw3gUYkzUV8SCs9qoHIuS6gHyj9HfKjRxflZzh86JIDDDX/R7kLY2NTIzVJwxOPPHEE/mMXMVyfYihIrVOzJ7tkksusbxaF7Cs76kjZEcodJaLO+nq/PjOpqYm/VxryAr+Knz5Yt8QFg+gudZJJXVGuwCsG0TwEqOsswkHmJ3fBvk+a3Vkee7+mzaohpyC8kqeJTVQKzVQ4pK+VoqdlCOpgQpqgP3ypqL5OyZtUrIxqYhkn5YVl1Rtr4nW7cOibYuVXdGyXfiAaFw+LdZ6poi1HixAFNzsOSWQRZOl9pPMSoXvNWpI+AmHHiiWdQWkG/K+0vRD42u5Yj4jiGJR5BPaWbiUhVioVrroUyE+gvogq7MwxZWpgQDf1TLyy1aL9wj1FIQEKBcGJ2BjFuS6eOE9m4auIBbqLqEZCLCyuynfbWxBhGnRXqDcufz7CaeMN1/afsvY0itWnq6sR/e3dDU8ARyVS7iNZBNx1FFHGR8cw2bQdakC8IHjlFNOsXGC+i+Wc4OAOdrvAXCqtT+3zGwiYGwCxAL8WSmV+l3kh2tg7bsIClyXI1oetAgpI0chy6gaHmGfarfuvPPO+rhHnxFaKml96T1nBYe5z6p53dVtq5xvcTfhp556qmX2uOnQrwDiB1E12mVQPtV6hgV3BeMBUIPpANOiubnZur/FWh10ww03VN2SJPm44yj3tTInUhYmLjv72YnH3hS+t1Fy4dojrxAeS7oWpJtLfIX3BfOLkH5gfL4lRlIgIyDvt99+OzTlm2++Of8uiDGmcyXMM52/AHvEaQnRtSJ95plnrtDXKeC5556bB2Zq38gXvIILlEF0TIahpgoT+t0VJB05qgtU/t73vpfXutcEYFSffPLJetuJIa51gXKLa7VCAzNGBNFVV11l1ySnn356J0Y1YamP7p57YfqjrAABGMbqKOMfbRSLCbRHCIuZXaHQ41pfthnLP4QZBUn22lhdXPaOWM79W5tJP9nf7snZm7f8KWPaXpf9OFaO5FQuEXXp4MXm003+Z5auI27yGNra9+phZ80r7H13PddyxXlmPFGiT6tVbn2mZ4C3rOnVajXgUlfwRDhXqcFVjtU0KjmrBWnGoCDvOQihmYdZR6tVj0ryq1ZcLH+6wH5Ax1jnYU/PuIJVHAjeCAqT1aay+m21C1UD6e+//wH5ee8mEXiutuoQ8/kttzDrDl3HgnT5rVRZDu8v224zOnB+qYFPiaUIqwxaxcxaNNP8b+lHkdL79PW55trTrjdf3eOrkcIT6Dvf+U7ksD0pIEBirAmzjmPdwLzI3ox5Gd4Zc7brGasnfVtS1o4aAIDW+q7IEQSsG4VSq8ucKcZIWJPUCrmWdAHsAtyNiwC1AsbHUhpW47qKsDyHJwAOVbaqJG/2EZpeT7a2CLC0fk2xtLt1nRn4lXqzyiFijXN8nel3SJ1pPEAAgGMEELi57MbXkNoSHGSvI2R9OFQR9mNWlEoyM0T8J6wAZIRt/xIAs1jpbX3KmF0b9jDHjPiOGfXx9tYq61Ks9Yp1Vqz2WoutWG0VS63IE631Xiz3th8L78HKqxziFQRLvtbqK9Z8Oe6XZw/K8ZAcYhV20Z/leDxn4XfRX3NySWvp9zmxCPtCm1nl7dXNsFkbmQGTVzVLXhbrv/+W4xU5Xm0/XpOzWJu1VoHfEMvA/5HjzfaDa561v19KWOIRn0PSIk2sCmOt1h6S5xLJmzIgI10sZcL6sC2jlJUy27LLN/At7rdZq8V8d/uh9cFZLRx31J3kQ32q1Vup12X35CzftjwilmCfyv0W/CbsCTNvi9zgXQGlpdcya/Rd0zRkioF0e2jLBfy9pswRW6RMg/RF+mS/cWIVW45Vvi6WsfcSy7kjpZ+uIX1U+nIYPfTQQ3bfBl/U9dYRFj55nquBN998M7+XRBk/oaQGtAYGDRpkJkyYYADSuuSCWnmObAKeRBAPDn6LKukSFtmegnSRlRLHV4ZGKd/1MER4QI6AGfHwBk9QvWxSFrVGqzwr8nGvuVdCafD444/PYyRIV78HvsX48eM78XzIs5qkcjjyoD7c79Z8KQN8KfAQSgrSBesBRgKlKjUYQH2pfEjLr2eNr+egeoojP5dPpnkVOlP2XXbZpVMQ/V06PfRuwuJV8g2axVe/+tVAoDB54hl2xIgRGtSetY71rC/hVSO/VBk/bc4F6W6wwQZ2r1yuEq/mk5yTGuiKGiiwDOuK7JM8khronhpI9xNGwjai/Ssb6mWPi+n6aHziwoVF4/Nj2ZB/LBs/cX2yHC1FtBLXk02RaCnWoaW4lpzFGkRKtBgDCV4cDLaoZ00kavhSw5WTvsap0hmQKYsShFEsHv/2t79ZC7C6UEJLMYgQPKvVyKD3PEN4j7UZNHJ++ctfWs00FqksxL7yla/YhRsusAELF8svLI9aeI7mHUJPLLdRf5AKS7lGww4tWRY0LqkbQT277wpdsyCGwuIhUFRNQMKxSK4F0u6SK4swcuSC7pmj4Ht9SyeOEr5Yev778tPviFnNK4SNCIOxpKuCdSxmVWLhBZAS7RECAEXfZAPIAh0XlRdeeKF9RxtSy4AAerFMRzzGCza2bLxYsKv1KSLxXAmtSIT2APTZjMH4x3IPIETyZWxR64Y+kE7TKOVcznex0QNAT53C2EdjlU0JVsCXLFlimUAAJRifmpubI1nmeOmll/LFVvBC/kEPvXBBTwDOYApQRwhYsPSmihZd9Xld3bbK+S76CWAyQO5YTKDMXAMQpP2j4U3dBVE12mVQPtV6BjPgr3/9q2WUMb5AruVgxjWEgq5SAGFKZZAQB3IZNj6jgfe1OidSNsjObnaCk3/8tVvWNZz998Xui8Uv9r7c9ClojKQWEUiSuQhlDizVMH/gIpA+BHNe+xDjf5BlOOLqeui8886zJTxGgORB7cS+LPMffR0LjLRz7euM/yh3/EHccKsgAWZtEFO4zGztOpD5i3mMsRnCSgPzVVcRQJZviSXK3/72t3adAMgFACr9jvkQyxEKTEUhxmXquWBC1qpXXnmlXSu/9957dvy88847Az8DJq+uY9hTMG/j0QJQMM8VWFMUjBqYejwP+c1RZFKAE/OAS7QZX1nDHQPD1vhuGnrtjoFh8agL7S8ApNUTgqbBGWtIbZ+K4JW990cCxsUCnRQ7837W9Pl0oGnL5MYkN06516T0Wf0cs3izeWbhhp+ZtoacpRMFa4SdNb+w9931XMsV5xlrK/QltQiz1157mR//+Md2zw7znHUqa1fGRxcA64JNtTwA0ZTYUwBCY2xUJry+K+fMOpm2xVoZIQGWU1g30k+xMnaaWDjVfTF9vJaJfQx7eayu02dRauZQQtHx5z//uV0H6zP3XKpyM+sh6s3t+256UfqtG35luMbV4oMP/kH6xjftb8Q3a/vaZZcvmxtvusl8IL/d2LG72upg/8w8AeXrux5TejkSTqJexr42yCdcxQvm4MGbDTIfLn7fbLzK8KI5DaobZLZbdwdz/e+uKRq2NwegfyNsV/6Kfqu2Ee5Z07G2w7MMczb734R6Xg20iYv21qmy6sADQARKi2XTOgFZ1QoB0nWBuTc+1mpemgqaMX6KAjSIP9ckxdAakGaYXiVl+nDI8A7ovG2urM1Zp+sh7Ts7W9bqc+SMp+7cdBeaZG97YXuqyA6xGMu356QGua/suC60f/HekSAHywQwT5zbr63lXftM4rQ/+3r/w8ziLRebVVoGiaEh6Zfwb2wa/NNrudRn8l73bXbPQvb2kACiyG+vCazXnd7LY/ZidH/7zRJOrq1lXO71uXuWx+UTma/k1Fd+OjGun5Y5IS3geM51AqSvwwK2yKPTg2UVmRPPlVRR8K10vYG8NKFoNYDHA/gY7H+7W86JshfeVyD4YHF67IpWG0kovwbgPWCUg/6F/BFLtnhcYf0ONgG+RzEjVjvttJOV4bNPYD9ZJ/J35K9YPQ3aryOfZ78OvwAeJusojLaQl4718ANRXIZXqbyXMWPGGI5iBI4AeRvfgfwNPjayWA6fpw0fhiOM4FOovDcsTKHngKGjxKe+wH7AC+e7+V2am5utQpimjzVs6gyFc3j5kHpF0DD+md8gKP9y88NwVCFivAnKjzjw5eC7oyTG9wEAj0Jh8cr9BhROlSgPspIpU6ZYkDmyEx2jNIyeC9U1ZaFu5syZY9s0cn9+e9piWHqabnJOaqCWaqCM5VktFT8pS1ID5dcAgNl+X5LdaoOAdZ8SsO5MSYsNYhwkm87sJ7IX/UQYEq9KgqtkxbWIHENlfywuRtgk1ckmCa3F9CDZrArx37oPbr+Jcj9kQH8ze/4Cs4ZYpogSvpT050i6pG9JEi8p/Vys2P+jLQZQjondndw1I4B0aIeFEQuMQgRIj8kf7Xw0RgEosdj9wQ9+YA8/Lu6Ni6Xpx6mVe0DOuAVgIYrFIxbouLkFAIlAKYhcoWrQexbtLOR9UtcX/nP3HsACggc2AbjUqQWizctORTqmMHzknGo/F7ofMniAmT2HDfDgSOFLSX/O7HmG9C1FLI9NPxejy/4jIEKorsR9JYRgno3kHXfcYa3v+RqnpA3TCACuEkJ4XJwgTAY4zKGMJQ3DWOECkADjML7gDoUNGIL6IILBEof1v3K+i/IAMKK/MgaifBCkgMC3YjVWQfJB36HP1Joum82mpiZ93KPPaFUCTgD8BFPMB8QBRoIhoYLyan9sV7etcr8HENarr75qGXcAP1SRQ9OD0QAYHmvQPsXdLv30q32PZfmrr77agnWZEydPnmznQsB7zcKkCWJyha0NtKwwloLmRBhfCobTsP65FufEXBllLpQL1pOBZ3nnPu8/sJ9ZOFfcGw8ZmHvuvV8hnRLeL5y70JA+JcqnEzG+BIuVWDuxJtT5jjmII4gYfx544IHQ8Zk01Lop8b/xjW8EJVPRM8ZHFFoA0QX1dRJnjsK6fKlArmIF43tcjw2MHV1JMKBZ78OEZSzjd+PwiXL5Sh0wkplPWF+wJvbXxSj1BY2PfPP1119vFYEAAnP4axLG12Ljgl/GuO+PPvpoa0kU6y+MgzBxsTwBsCrIvTD7pKAxzi3XU0895d7aa9pWsXjKACcCljmgrAj88VTTyv4agb+41W3DetWH8lzOZiGBbFA73uSuYvgv7IK30m+aDwe9a9YZsbpp7ZdzuYzAmvZU6Dxw4ECrJMY6oFC4YumEvUfoRh5h78Oex1ArgUnQt7BkwZqdtbSuwYMCs+f74x//aK1D+u9Za9AnWKdheVuFOPRbBFeVEKDvRx55xKbJPl+9yfhpMi4w/9c6oWSBMgjrFvotex/6LXMNgguf2BsU638oKXD4hACkEAX120LhV5Z3O4oQ9fU3/mNeFmWQadOmmQ2bNjSjRo228wB1wP7rXfHYNGvW+3bOVaHsJ7NXrO/jZQ3J0ZNpi7Gbmnfvnm62X/NLpj4tA2wBYo232YAtzKSr7zXbnzhKhvjCQJyLL764QGo98xVKDvDHdN+KYBOvWPR9+jPWOPGog3AWRSO8NyAgx+VsQj2sBkQe0fK2KB5NKdzO818l3aduXZErCBCrFgiQLhZ0XbrhMfFJn9BKWQPW2q7IvJB7mc1liS5NAe8XVk4mgN2MHG0C2M18asxykZ/NeTdrBkvT77NS1laZH81QwREgywyaL4c1bGjM4FyczHQiKrnX/rNC7whb7L2fnt4n54pqQGTZqVXkWE1WSoBzZXuE0oYF58qZ67oygbl+udiXAboDVAUAKqFoNcAaDeMy7J9ci53RYlcvlFoMrV4OScql1MCAAQOsEj8ygHIIfi1xS4kPH0ZBuH6eyD7cPb3/Pso9/JpKeTZR8okrDDwz9uMcQUQdu4rkQWFKedbV+VE22hlHqRQWL45vwGgDPKtKibIAyk2AuZXWZBK/O2sg3Z2ZJ3knNdDdNQBYt7+AdfsdUGfqthLmQb8qlIg9q2jDZyaLYPFv4pLz97hjyblqwXXNoodbTWaZaJF8vJrJLBT1x1bpliL4s1tdgIFchNzvOXqkuftv/wh9T7xC8Qu9nyTpkn7J8atQhZokpu+xEIEg3CWE3YDWAM34xGRdDgFWffzxx63FSj8+gsNbbrnFAsH8d+Xm56fTFfdosyGAxOobrgWwhBQG0q1meT788EOxNPOgzQI3xFHAhdUsj6atfbCU8567jjZ3P/B0pz5ZSny3r/vxSJf0/efF7vV74jwXaucIh9XyJFZMg6ygaVl8AFDYb4/ACYE5fc8l+j6AW4T4LmgeFydvvPGG7b+EgRBcQ2wCsDKDhUxAKC7hMvbJJ5+0Wq3uc67J+7eieYzFTVcTNAjA58fFYmcQlfpdmgbC88svvzxwYw2QGKuAhepd0+GMlXDIBS3bBxH+hbWDSurETTPM0l7Yc7fIAKEAofnMB0DfAKmUaeC3uWJpa3ty84pyXU7bKpRuWB27bTMsvvY7/9sJj+U11+27poGVPMBpWm9Bbbqcdhn2HZpvV58BR4wdO9YC5tBuR4Glq8tYq3Oi/S3selRmnYjnLbfbzDz/1EuRw0dNl3CkS/p2xRyxPPn0q9CwAL8y9jLvBRFjB+BP1rGFwF8HHXRQPjpASLUUn3/YflFpX8cqAK7Rg5iwfAsKayiuuRSlLwSNDW4aWKV153LfHZsbtlrjMeli/RZAtD+mcw9AF8ChOx9RLtYMWMDFCrEfj3HzhhtuyBffrQdAmv/85z/NGWeckZ+TdE1C/Z9wwgnWkmehdpFPuMoXfBdtGNAullZYSwSBdKtcDAv0TIv5p/XqNzAHjRpvXaZa16ji/hR3p+yll90v7vSeFgH/OzImscSzC+KYSyY6q3UjU+aWta43bw1+3Szvt8xmAOgWKnbedtttrUJVsXDlvgcITR6lxreFr8I/+gguUVkvA8gOI/rLiy++aK0MBYWhj7I3xAK3S4CAIb9vumH02l3j+GMJa16sh+NFxifA+FjZZxx0KcqY64bvymvGGxRGcCmJsgdzRxBIt9plAqCtxDiZUEcNYB3pS2K5+QjxaPTlL49ZYQ5Ze+11DPtX9RrTEbP3XZ145ndNy9rLzJxlgsyKQHgt26hthBk/5rCiobFY39sIq98K0sUyG+szrIDrGMe+Dj4eSvj77bef/XzGT7wEJdSzagAPAS2vixERafNRKDVE3PkOE2DWgPJ43lHyiBomCKR73HW5NVPUNJJwvbsGUg3SXldPmcZN01YON/Br9WaVcfVmwDjxdrl/nfn1kJS5baAxfxC53LPCPv2vANE/lqZNK6rGEr9313bydb2qBqQ/pMQAYnpjAd+OTpmG3aQfHZA2fQ+RvjQubQaOrzOrjK83A/erN/13qjONm4hHV+lr5VjPDas3+AEJSDesdsKfs3+sJZBueEmTN0kNJDWQ1EBSA0kNJDXQXTWQEmsKyX6nu2o/ybdmagDXmS3TM2bZ8xmz/GVhjH0kRQvQSK1KgWXDJeaATBo3JAMXC5NtiUkNaD/3X2LS/ZfK5kpMCAXw3l6aMs3sf564jzx/gtmqecPYivfa9HfN3udMNA+ed6YZPbw0ja7GfQ6NrRyaEAAnrPIAulLrLgsXLrTu3RAo814Z1RonzvPixYut9ihuCAGyoqETRUAYZxmipAW4hw1gNesiSjmihFE3ZYA+cK+u7saxFKpWZKKmg3uQOAHG8084wGSOG2r6rrOPUwQ6oDtdBt+/9OoUc8D/+4l5eNL5ZqstmkqO3xGhc/qv/WeG2Wf8OeaBO841o0cOl2Cd3xe677vOvh3J9oIr+iPWiAC+0PeLEeAF+gZazACeorqBRMsYS1tYqcEFR7WZUqV+F98NYAEXORy4LsFSdhQgldYZ36ZgI4DQPihBw/X0M9r/1C/tJervX81v7uq2Vc63MN9Rb7QRNLNLAWpV2i7LKW9YnJ4yL8Y1J1IPpBX3vDj3le+a/R76izlqlxNl9hELknY+1Hmo89l9/+7bM83VP7jBnHr5d82w4YzXYoGyhPi5eXfF9GdOmWWuPP06c/Ilx5sNN9nApqvzYJT0j9rlJKqqaoS1Qqwb4sYJ4BrAmyjzFQXCMqIC3AB+VttNnttfmQ8AjvpKLHFWFHXDmMK6HiAogL7uJCzDME5gfY41NGvQKOto1hZ4paC/YV1BFSCifAsux4iLOy5VfogSr5wwPWUMZEhZMnepqV/SaGa9/r658DsXmfUGDDNjtt3NbL3RF0xGwCvWRe6KjjvKqZbicURvNjVUHO+MFiHoF9Nmt99taXZZdqBVauK3z49KohBq7/2z5MCuAXDVhAkTzKWXXmrbPfvHUuLnw2s8PUvaU6ZOtUqqeJTA6nGncrTnHxa/HOUsSbJkmiplnCmWQpmTWEcwDqJ4W4o1D/oo+376WDXWcPR91vukz3q/lL5ccoVEjNBj+q18D+tF5gx+a7WIcvrpp3fydBLls6uxdjn77LNDXUAWKtOFl/3cHHfUN2VvtVqhYL3q3Zw5n5obb77dnH1GYbeacX306w+9ZaZdNsvstPYukZJMrWnMjx/9gbl55o2m1QRb6LzuuuvMMcccEym9oEDwGVkDFXMtGhTXf8aYgvIj1m99IwN+2EL37F/heUCs0fAUw9ohjBhrVQGL9aOrQKRxWIPcfvvtVllCx5pRo0ZZPoCv4Eqc++67z3pcwaUq6za8+eCR5/nnn7dlw/sICgKFgCiMDyhIYbF/9uzZdq2F4hYWzeFf+OTmiScjlGxRoMDzC/PdIYccYsHKxMPiMGtJysPaEjAzroD33ntvP9n8fal1QETWy1hjRynv5ZdfNiiAjBw50ua166675tMu9yK7LGsW/7XNLH1Q5BGzo6UCYGvAIXWmz0ayaKkCbT9B5BAejd44bV6a2llYwrMbv9vYKeSNj7WaIGu6h+1cZ76/N6uo8ghvH2oJf/r06fn2zlyOdxwIIxTQY489ZpXS8SJC+2XtU8gDH+0CgxwvvPCC5R2iWAgIHqVC2ph6eGDeC1LewaI1lqxp77SX5uZmc8ABB1glYF9+gEcT0obeeuutFSzh4TEBUD59/rXXXrPrJ/aTeBjgW3obzZ5vzL4Tpb3J4rmPnAYvz5rV5LyTWAud/UHGrC5eK1eTY4gc6zWkzNpiuDm7WALLfUJJDfSWGlieaTULly8w9avVmcEbDjIfzf/QvPvJDDPrs5mmpf8ys9Zma5rdvr6rGTxsFZEfC9erswFzWw2lzrfMZ3h7Yi2PIjfKxRgvwRIsPBu8JbIPYy8Lsc5ivwTFMe6SBuMuCpysYRh3UZo88MADrUEWvK9AeBLwx1H7ov0f+wi8rEIoHYeN9YzvjK2M4cgiXcV01hko1WP0BaVq5ngO1nG+PMj/dnj8eFtibKe+mAuIw1qQdQ/zjxq0aS+yPZWSp/9bMXdgTAPjK3w/6zGUNpWXSAbIwVDOZ97SORKFzl12ya2/CU88JXhUKH6x1pkxY4ZdczH3HHzwwVbmpOGSc1IDSQ0kNZDUQFIDSQ3EVwMJUDe+ukxS6gU10PapWLz9T8a0/FvcTf1XBILigsdK2bry29IZk+or4FxAuwLUBbSbErAuAN50P+6XmVSjHPXCkRC+xG1PPW0m3HynOWv8gWbcLjuaNQaL9Uh53iFBbP+GvEQx/H72vAXm7qf/YS6adL+ZeNRh5vCxsnCPEM/Nr3HfrgHqduVP0lPyYgOGcBEXqLVOuOaEiY7AQa2KYdnssssuK6nobIABkgFSjIsUqNsoQF2XhazdSvMJu79t0pPmrPN/ayacMt6MO2AXs8bqOddAYeELpTdnznxroXfiVZPMhed8yxwxfjcNnu92+iAs/d4G1NXvTc6V1wACLSzyQDCjAE8klNRAb6qBnjIvxjUn8ttVY17MA3V3PrHkdeE/Hn3B3HP9H8y+R+xpths7yqwyRNYoOmGVeF4wd6F54amXzUO3PmYO+c7XzI57bVdyeZjYj97lezXbzBFKPPzww3Z9hPJSNYBp3fnxCCsAcUEIggCHJFS9GqjVMRAlWdzfZj4Tt7cc4vr2T795xGTnpMxqYjJoaL91zWp9Vzd90n2qVzlBKcv4gMWius1Sps+otGncXOz6igeenS/Y1Oyy5GALtgiKVugZQBGs/AMsAczjCgQLxQt7N2/ePAuUAmiFxVlcopdKXQXULbVcSfhcDdRqvw36fQDuPf300xYgp+8R7AaB7/R90Lkaa5dygbp33nO/aRIw5PbbjQ4qaq989s8XRCAvoPrDDjmwS74vIwCrJ8941mzy4Zamf33/onmiIPaP/z1jrnzjYvPcgqdXCA84A4BJJVSLQF0sf3/961+3nxUViAzIFUAsxgUUsKj1ghLZDjvskOe/6XM9A8xwAR48B4R76623WtAxFnuDvJjB0wOgEuRVwgVWaj7uGUCID3R188TTiYJv3HjwDQGOwMsAGO0TvyeGHnwqpw7mzp1rwUkKGPLTBLh0xRVXlL9ml/3QsrczZvE9babtdTZHEUgcQzV+LW0G7FMncgKXaxkhbsQgPlBXreb6IFxAuoB1lfz3+pxztYC6KPIrgPW2226z40FQu2DOwquVD/giLO0XsLdPgMbwQqdeh4KAurxT4xN+fJThb7rppk55FgLqAr6ibaslbT89QFd+3/bD9LT7PFDXKbi2t5sebTW/emS5GdiaNYMFvHvb4Q2mba7sIebJIXuJqW9nzSezMmawdJ3BGVFqkHODpFOdXuEUMLlMaqCMGmCEX55pMQ1DGkzdYAHbriKHiIyyAzLi0ecXZvbST8zuh401Tz33hHniH4+b91tmmQXZefmcUKgB1BpkrKac+Zb9JJ50IDxj4IFOCQU8FGQwDKJu3++///48CLbScZf4eIZRmaDmy5n9LWBb5IRQ0LhrXzj/UH5gbNVyO6/yl8wB9957r/VyxH4FBW321nhkYO4IItZFgHvdOne/nfXZmWee2ek7UBBhHQYIlrH8tNNOMxMnTswnX06e7m+FAlOYIhjgavVK4ypS5jN3LqgL9XDFGgcPYEG/B+2O9hEENnaSSy6TGkhqIKmBpAaSGkhqoIwaCNC9KiOVJEpSA72kBupEW7f/jnWmYaOUaXlDrOv+RwSH4k6zSwG7mbRoBve3h/AYctRnuYB1sa6bA+3mrgXMKwDew0bub7aasLm5/rE/momTzjBzFy3WWCWfhwzob/YcPdJa0t1GLOnmWYTK4XDOXGade5uZ3peccxIhjhoAzMGGqicAdfV7dQPIZu+ss87Sx5HPWBlBMFANss1ZLFeJiSrh8gnzpP1c7P5wAdNuvlmTue5XfzQXXz3JzJ23qOziDRk8wOy562jzwJ3nmdFbbWzLUSz/Fd6XnXsSsbfXANZwIJgurivy3v7dyfetPDXQ0+bFSudEftlqzot2LpQ8sql2y7gyRTJXFrrf6StfNOs1DzVP3ve0eVgAtosXLqGYZVH/gf3MltttZi3pNoklXdapxfIPel9W5lWMhBVdgAow3LGKAZ1zzjnlC/yrWNZyksYqFJbUAOZyhrB0loB0y6nN0uLUwhiYFZ+1bQtEmC5CdStYF2Bu5jOxTicKshlRis3Mzu21d03taVJr0GO7gQRfkhLjmXWfE3eiW4o70S3FZeha8rCuc1nCLNQWeo6gsbm52SDYRMAFILESYp+HUDPQkq5a3C1yriT/JG71a6AW+m0pX+kCmxAilwrSJa+qrl1K+RgJO3LLzc1Tory+MgF1X3rlNTNWlP67itL9RQHi2zuY6Vd9YPovLQ7UFU6MGbnaKHPghoeY9996z8xsnZ4vahwg3XxiNXYBCF4p6poJgB+HT1iqA2irew0AMMwlWOx88MEHbXCsdYYBgOAbcMAzANSBBV3WrBykCSgEoK/rlQDru2r9FJ4d8yHW6VAWRikN2muvvWw8HyDMO81zm222sUBJvuHaa6/llTnjjDOsEgwAS8AqWC/GQjCgYspzwQUXWAt2WNdVKrcOsLKsIF1Alyi7AFziGwAF/frXvzbDhw+3QBzNq5Rzq3gNWPqsgHSn5DnwRaOnh8l6ZUS6aiBdvwAKmuT5cXvmRIlYzOV5VJCun2a17g8//HCbNMqPgG9Rfrn++uttu2AfQtvHKrMS889BBx2UB+nSFtmnAKT6/e9/b9s4bTaMUEJUkC7rPfoH/QDw+n//+1/bJvHshYeFYtTW1matSeq8isLJ5ptvbtOZNGmSBXwBXGM8CALGF0u/p7x329uxe9Vb2RPt7VIBhQ9oB4VnBbT724eXm9vfWG4GrZ4yQ+Qei7scg0SYNqgta0aumTLDBgivYqH0LVl+ZxGXYZQ9elfrKVWWlLOGaiAjsqNlbUvNwtYFZml6qakblDbLG5abGR9OM+9+NMPMbfnMrLbRqub4Y48z6UHiXVVEWm19s+b8750tTTNjfnnRlfZr4NMf/vX/Z2V8zEGMJ4wN48aNM48//ngnL0iVzrdkqCBd5HNbb731ClZkC1VxqeMuFszdNQnzPOsBnrMmQdGVoxSiDMzJ1BMKD6q8oWlg9RZgKgQgVdcr7KkVpEs5UBDC4i5z/Ouvv24PrKOHzQOqOMHcwZoDLzfFPLRUmifrHtZVKHMxR2D4Acvv0EknnWTXW01NTdZ7E+shDBydf/759j1zIEpbkK4tVUGEZ7Q7lLI4w79jXUW7Y57EU04pnnFIL6GkBpIaSGogqYGkBpIaKFwDCVC3cP0kb1fGGhCBXMN6OeFc6+ZiXfctAeyKhq4F7H4iFSKb/y6nlgaTlaNtbs4ypyAGxR9QS87iroB1R/RrNleN2cVc/RXAvGJtt+8yYdhheVfAvH2ESwEXwiIVOMsFTIki9wRRwF9QeAvSzQMXnfSIl1C31AAuRWFKIwCudbAuDEwYjbhnganNhlY3yVErTwXdpbhkj5o24Ww3kTZezhlQ7U0/PznXzSQt293iOJdRHr4loaQGgmoAF0kQjCjfqkhQ+ORZUgM9rQZ6yrwYx5zIb1PteZF1YW79J3Mka1H+2ie4Qvcbjhhmjj5LrHPYCVUKGsPZzs4R88+Vk8Dt5a2xhgzIQa3MUjSEL+petcaKWlZxsDjiupLGysk111xTVlpJpNJqoEvHQBGKZ5aKeFEsXLWJ4R9r6QqLV3Pluh2cm20H5xp02PIaqblvAojV5SQmt3CpbgG6m4gV3U2FB7BOOtCVKGVD8FbOGWATlnbipnLLE3c5kvTirYEu7bcVFp12jaVBQHu4RnWtTUVNuhprl5aWFtOnT3kWubfYbBPzt7//02BldmUA6/KddQJI4Lu7khqa02a93YaapWItMd0qihFFaGDDQDN23T3NrMUzzc3TbzSjdtnaumLGS1NvJdci6CabVPb7HHXUUWb69Om2qnBrrV51eICLa4A5ADGOPfZYazkuqE6xfAuABhfZEBboWN8BggQYA1BXwYO4hQZ0AwEmee2118x6661n7/mHNx8FiAAQVst2+QDtF6yJAYkAmoGwhqfgW6zUnXvuuQYwoxLh1eIbLq41LO/LqQNAnHfddZdN3reIBxgGwAsAKcrI+1IpI4pMS59vM63/kvVFVF1GGdrqNxeg7obdsG5q/0DAugB0XZAurwBT1gJhjdq1NoiVZu1DuFl3gbqAmACsQ4CTFMzE/ZVXXmlon4C/goi+o3s4wL2AwJSvTbq0RwB2tFN4bto/gtLiGUAwBem6lit5BxgeEBnvyadYWsTpLRTU3l5+N2N+8YwI6PqmjGw1zEznY8VRpWlsTZnvbJs2m2wp63cB6mbkyApYNyN7kKxYdc9yttdyXiL9b3EqdxYFQ3+P4iSdXCY1YNqybWZJ6xKzqHWhaROZ6/qbri/eT2VPKXpHjz3xqJn23lQzf/k807x1kznspMMsUDctTqW27LeROfL4I8zv/3SfMZON+c7dR5nG9vk02yLt0Gl4KLY88MADncYTjNtcfvnldpwA6KnW5uOabwFmPvLIIytY1o/6k5cy7vItajX84osvtusJzQcL9Tp26rMo5/333996ASAsded7WgDcrPSNb3zDXmIx/6qrrrLXxGe+r6sTYIAQ9atrHOYIFHTWXntt+87/h6IiZY5CceTJb/Xss8+aDTfcMJ8lFoUVbM0cwdy06qqrWh4EivM6tzFXsdZzSRW2ePbyyy9bkC7X48ePN9QL7RF581NPPWUB1rxLKKmBpAaSGkhqIKmBpAbiqYEEqBtPPSap9MIaSIngrmFY2jSsmzatn8+alikZ0zpVjmmyZ39PNvGVGcOprMZARSxrNBk5jFgksgRgQjQ0U/0EnCtHWgC8AHbtvQJ3ue/bIgBeOeqFoQFoF1L+Xlz3uVRj+49bsyVLlljrC7El2ksTGjJkiN08whxUBnotfiqWgrBwUC7h9gZN27BNcrnpuvHy3cI+BD4gfUwo97zn3NtCJ/+SGgioAQRdWPxQIVlAkORRUgM9vgZ6wrxY6ZzIj9QV8yIToJ39WHPaG7Ws27Pua61R4xIP8MAG4mobS2MI/XuT8gRu/3ALvNpqq1mLH8w71fKGUGu/bS2UJ/YxULo7wkRrJVdczuJ2NqPAXM4Czs3K/hRwbhbJOdarckvoWqiOXBnEchHW6Oo3ErDL8LTpI2CTeqz55uRyoeUsZDkX0GxPeR/6gcmLmqmB2Pttlb4Mi1sc5VK11i6zZ8+2wulyy/W1ffY0V197k8xbQ8yI4RuXm0zNx5s8Zar5/R8eNief2Flg3xUFrxsiyhGfT5nWt+pMZmq0SWJo//XMNzY7whxx5uHm84dtIrxN5dh0RYm7Pg8sxEIoOLFX8AnLZgBegwhrblh+hQCbqmU6eKsuSJf3WFbDJTMWPwmHMr2CDXmvdNNNN63AYzz55JMtUJcwuFhW8KACH3mOO24XpMszgP2/+tWvLKgG4CGAHb7TJ6yVKkiXd1gBBpxN+qwlAVa6xLeQFyBnXHYrlVsHH330kSZh1l9//fw1F9QRFveiuOTuFLH9JivKTUv/nTHLnsmY7JygEMHP0gLQ7fP5tHWbHhwi/qcKwFVruuTgg3SPuw6EY/cTew4XpEuJmpubDdaQAVRjedAlvJpAO+64owXUuu/4jQFgYbEQkJJP6gkF0BQWGd1+A9iL/NjfERcL0do//HT0HuVGJb/PrLPOOmbKlCm2f5ariKJp1/r5/7d3JnByVWXaf6uql2yEhCSQhCSSxLAFAiFNmSZKAABAAElEQVRsKoIgovOhfCMgzDDgNqMiMgoijjqDy89dZ9BREUVQlFFwQUFHZIcPkUV2AmEJICQEAtkI2brTXVXf87z3ntu3q6s71dXV3VWd58DJ2c+996nb95577v++Z6DnGxaqtC0A2jfAou4orJSRdkWw5AWAucVNeH4BqBvA3QKeVxzgZQhonvDuQ7c/bOueX2cTx+1k++y9T5Tfht54quNZqO6eb9IHqnj/FcB5U2wq2toNawHibrYxk8fY5FmT8V4VM1/4PsXD0RlbtWGN/fCCC21Dx6s2fa/pdu7J5+AdLCzjAta94g+X2jWP/S+Q24JteGADLKum0Yusffjs0yNQF3vHa9GiRYt67CevJ7SOmr6esBLB0VtvvdXuvfdet/QdQN1a3W8JrJazbt9jB8tk9Pe6S+CTjvNeZ599drceee3kBxXcl/QHS90qlUnsuOOODqpyBZvLL7+8B6gbrOlyDMH5N7rx48cbQWc6vkMNkK5n4B/O0fFjJDrqzv0tdfzAvlJIl21rsU2O5dKQLvuldV1+QEnNAgTN/EpcqM9xFXVMuze96U3+/pVzHYNlKCm9PcWlgBSQAlJACmxvCqRHi9vbset4pUBlCuCFXdNUvMibignk/bBcybKidTxTsPxzsBa0HA/1KzGpXOmX75VtsbpahHe3tuDFKfz68V3fYebyAHNjYJdWdh3WZRoe+VmmCe4mAG/aAi92hXManDevNKxu7/tsFb507LOSCl0BTtgRiOCybvxyst4t61bzs9HqDiFdHudgTlCG0z7aR0zkIdI1xddo6WqUVpuRrkB/JpNGuhY6vpGrgO6Ltf1t/e7nN0T8w/9jy7q+2gM21RDltZVkwL1x8pt+pDqCDRdeeOFIPby6P66qr4H8+27H8y6tT8HiW+FVhAHMRbwIy7kEdIsEcwHkFpHny8nWqyJ4yZqdlrHcTPC4gFya5+CD3Fl4qTqua3S/rV2v1oJtvbXb1nGqfPgVqPrvdvh3veI9GMxnegKMM2fij71KN2P6NHvfqSfbxZf+3I4/7tgRaVmXlnQJ6fI4ebzD4VrmYX51PywR/SJuOPyoYxuOV+vXtMy23HPgpJYUrHWfHFYQ20ajBi4OSyf39gE+IcHTTz+91yNcs2aNw6xpmPewww5z0K+00cEHH5xkPfHEEwnEEjIJDhE4LHXpPM5BBkeLbMH1NsalpdLgHnzwwR6gLq3R8yOvUsflnAkmEXosBZlYN8A9XOo5uGo1mA3Ak+AKQUvCRJyH5BzK7rvv7l1z+9XMufKDp7bFBWu7IW/FZWEvKwgBgjUvBKg7p/KxSwW9VlSlHDwZGl50fafdB8Mm9eAOPfTQsrsRfrM0+MVzhEub09FqYLnzicYhjj76aKOF21J3zz33eBYBcgJMhNzTjn/D/CieFnlpcXpbLv0BPa3VE8QjGBYMVPR2LdhWv41Yvq3zrdpjolGeXDP+fsb38jeE07iASweh3Vse/JPdsPhG2332HnbB57+fALxFwLruWQ/PSowT3n364WdszfNrbFTTKNtzj70sV8ihHLe3dZutGRtuyjan3ilUewRqV7ECeJ9r+L07Mh328pqXrT2/xXadN8NGTxiN96Bmt9/2Z1vz6mqbtecsO/DIAx3GfeLpJ+xnP/4prOVusE/916dszO45vDfFuyA+RwLSzcCPb51mvz7/Mgcij97jaBu14JPJLr1SXOuQLsH/cA9PChGZO3dukly+fHlZUJfWt/m+q9Tx+sTrFIFR+vBRTS3ut9wWxwfVuv5cdzk2CRb+e/tAnfdVfnBxySWX9GuXTj31VCOoSyv/HMsES+qbNm3yj4bY2Xvf+96kT34IVO4eTm1530//huyjnONqA/1xtdgm7zmljh8M84Mn3uOCZfbSOr2lOZ7ihyU8Zt7v+BEUj2vsWAw64ELYW3vlSwEpIAWkgBSQAtUrIFC3eu3UcjtUILtDxlrnY1Jsj6zlsXRnx3JY2HVgFy8qX8DD/EuVTTAPqXR5TAxsHuO+23ZhUTeBdgO8m1jcBcALeNfgswR4WxC2dFqR6wfRYT6DUxpkg92VpuNsBcOjACcIOZHH5VRoOYLWNzihV27ScXj2sP9b5UMyLVXweOh4fIMJ6XIbfnrTyjSXuUWYicOGS/Ng5KSAFJAC27ECui/W6senPd1o/Fc2RFnZfGR6fp2U10oN9SMFGkWBvq6BRTAFtBrFJWELMBaWhIRykS7GFnMJ4kZALsbFeOncEA4GCLO7AMbdFS/lYUGXy0Q3YcWc3E64lvHlbT9do1jM3dZ+9vOwVX2YFOjr73aYdmnAmx2qZ3q+oE+Dh9Xs+Py99nBLs7//4/V234MP26L9F9i8ubNt0qSe4GA1/Q9HmzVr1trSp//mx5MDnEBLusMF6fL4Ob/acgBWMHsGH4U8hHsL/t+mQ538k7CV8CfMTeYwP7tXdsTCugRMbrnlFodSy+nCOT4CtGnHlcgIWqQdIdjgaHF2W46WaIO1uVA3QI4hHcLe5hgDOHTggQf2sFAX2k6ZMiWBYFm/1EBDgBND/dIwDdCky9IWeEN+tRrwfvqTn/zELdWxL4KT9NT9rW99q0O7tFzcmw5h++mQkG77o3lrwzlceAollZz37AAPU7k9cc4vzPbrI6P0tgcaLwdPEtIN+QPtvxbtS60Mhj7LreZBkCu4chadQ9mCBQt6gLr8CItLj9PRsnI5q9ehPcM777wznSwb5z6cc845xqXfCVoFEJ/QOsFd/o0MxIp92Y3WcWY4r9KWnAf9fMsSyIQotJzavNL+uvEOW7XxRRt9UMmDA25Bbp0XlrEJ49JC9mW3/Mgef+RxG9M01i773M8t04F1+QDyXvLln9rmtZvt4EMPsTcefjgM7OCPHpZ9Vzz9gi2+a7G1ZFusGb4l12JjWsfYjuMm2ITxE2zMKDzI5NFHJ+qTAYddna2bO6wJDzGZDO59dfzbVbNrvBQWiwXLNOPYSCxQ8iY8szEOS7e0cP7Kq69Y67gWmzN/LuqZPb9iuS155FFrL2y1rfk2a8u3A8htQ7odcYSAc7d0wiPc3LnJ3v3md9ub/u4IHzf8+MoL7dEnFttph51mR558qPd37Vd+Zz947tvYoNkPj/suru04Ico4gqlXXnllmZIo67WvfW3ZskqAR1qc782ly5588km39l2L+y23N2nSpN42u838/lx30x/O0Fp5b66aa90RRxzh92deP6+66qrE6n6wfs5tnXDCCT02SQu/v//97+2GG27otzXaanUbyDZ7+xix3H2ux8GWyeC9hasf8KOSu+++244//nivReA83HtKrbyX6UZZUkAKSAEpIAWkQBUKCNStQjQ1kQJ8SGzaGS/6dgYEuwDPymsA7a6Ald3nMcG8Ah4rlDm0ixeaXaZt60y3ziYrbqSPvo5L9i5Y4HULu7C2G4fmwC4B3o7IQu8ohM2AeJlu7gDEix4IMsrVhQKEWDl5zIl6wq2crOeLsUZ1nPjmMfGhky8th8LxbCac2+jhUGilbUgBKSAF6l0B3Rdr8AvxnhgTtw0d1kAKdSEFGkoBvNht6mi2nWyKbVmDD9+ebLdX1693S7m2CS9AN+GFaPAbAYAwvhkPd3jB3FAvgfk8Oh4v2LEaTm4a3u/uiud1+hkxnIsXugNx9WYZt9r9GYgGaju0Cmjs0n+9n3/+eQecSkHD/vdkDrGe8YH32KOPPWEPPbLEbrntL7YOH0M3qps4YYLN3m2mHXX4640gcj24lt0A6h5atLaVsCy6ssI9wj0t/2gRC5shgrFp694j07Iu4bzgVq9e3cPC3imnnGL0aXfeeefZ17/+dc8K82b9tay2HuODgbqXXnrJuyhnETfd99SpU32uksc3mG4gGhx33HH217/+1Zciv+yyy3x/2R/j9LNnz7brrrvOdtttt20eAqG99kcLtuWPeH/wOGYacQpX6jJTYUvjUKwGgA+OhtOl4clBhyarOFDC1ZU6WkgOri9rteXOY1rjLYXiQ1/lwldf5Quivh33/atf/apbtrz00kvt6quv9gZclpzL0tPTAiUtRm4LDO57S41TWrfnG/4MaZU11xqdb3wddtldP/FzgkDb2Dd0vXL/2ccvcvjv3Lefa//n5KMc1CWwv3vHLMs/vNmu+d2f7Pbrb7eOjVutFeZbW3P0rTZt2nQ78+Nn2qQJkxNY95KvXGztm9pt0aEH2RuPfGN0DSE0zGtJIbqmbFy/0a7/7fX4liVnCw8+wGbOmunvJu/987224ZVXbZfpU22vBQAk+bID7qUXXranHl0K+JfPffgvDokCN+M9TEcHqGIc4KRdJtvsPebQjol/OLAWH/8seWgJuinaQW882EaNbrUXV7xojy9+zPOO+Ls3WVMLaFtesgjdUjOGcZwf24A39vzHHl1iN15zo+XxBelHP/sxa2pFJUiYAagbhWZ/+s5V9tdH/2p7H7iXffrkT3v+Xy69xX748A9sS4Ew7ibbXIQvbAYHDYHLuMPGHmxvnX+klzzZvsSe7XjGNjdt9N+SmWlLtvz75kqV5dxg3rN62yb3Y/x4POjGjsZ56Orhftuf6276epq+BseHlQTVaMx3h+9///vta1/7mv3iF79IQN0AVdMicfoDJ74n5biJH0eUc8GifrmyavNqsc3+6F3JftKqMO83V1xxhV188cVusZnt7rjjDvef+cxn7LOf/az9x3/8RyXdqY4UkAJSQApIASnQDwW6nhr60UhVpYAU6FKAX3A24WVg01Q8RO6PZ2Qs/9nxAmFdTLytRIjJZkK7Rc47bulqV7ex3izwcmljALkZWNl1T+u7Ic4QVncJ7RYfzlt2LCwXucdDNZeG0ZVm2H5uTs6HCfph24kG3XA03ebzTzgCTldFs1hRfuOkG1R+7bYUkAJSYFAU0H1xALLiBuh3P44JEcPXLD3CRigfgAJqKgXqVgG3jItlWvFu0gqbENJvxHtVWsrFSo1FWsfdgPiGJmuCzyHOPH8+jRdNqduD62vH8P1eZgre+dJyLgFdgCxN07LwiE/AdYovg2vk+FKMcCyfBfzqF9KlYZ2X10gOdTOECmjsUrnYtED6xjcCXqmhI9RaL2BrDQ+rLrrKtAA+3A8rlsHowdabcTOKFlDa9r7hG3SHdQsFQE/oY198ZIK5x4G48PHDQPpg23yexBTYI1gtHohLL5FNS2dnnHHGNru76aabvA4t2QYrr/vuu2/Sjkttb8tSbVJ5ABFu//bbb7e0JdvS7gg6EkCkq8ZyXml/faUHqgH379vf/rb953/+py1evNgtHX/3u9/1Jaa5hDet66ats5bblwLGaO0PF6ztWrwreBKjiP7YUYB9jeZDsn6e829muF2AJ0M43PtT7fb33HPPpOmyZcuSeGnk0UcfLc3yVetoAZcW3M8880w7//zze9SpNoMwLj2XWucS99dee61ddNFFDoHSei+XJef5t724cJ6FsB6P+4EHHkjAbcKA5VwhA2uxgHszMdzLOvtO3cv2PQaWlDs/2uPaYjACdPV5v+p2bfnuGd/0j5GOnXssoN8je4C6BHYfuHWxffnh82CMttmu/PKVNnYeHoZwe/3VdZf5Nt42+2124Mm4L+Ay1LalzT70pvc4nLvLtF3sA7C0v/se8wCo7mQtzXjhieeec878hC1dstSOmXuM7XPymdGh4XbbWtjJzj3hB7b65VV2xls/Ysef9E675JwL7I7Ff7FjT3y7HXfKMQmk60AuwVw+lwVgN9uVfuqKR+wL53/K+/7U/z0Lhlp6vki854K/2FUv/w7fkR6L1U6j++u0Qyfbo//1kLerxf1t4cKF0fHhX17rD4cF5FJH0JKWRwfL8ZrSm6MV3eDC9ave7rdh/3oLw36znGMEXuvKOV77qnG0DktQlzpSrxkzZjiAyr5OO+20bl0SRA2Q7tFHH22f+tSnjKsZ0Eoux1CEtau1mNttQ6nEcGwztfleo/z4g5AzPeFvfqD0y1/+0i3tshFXE6A273rXu3rtQwVSQApIASkgBaRA/xXoOertfx9qIQWkQFAAD5y5SXgpCG+YKOZEXH5V0Tod2EX8ZbwcXYXnY4TFtWjUFho2QEjTaVtbMAkOz5e6aYfJBmvudHB3KwDlzDhMPOyAZ+9xeOhmHJOKCbhLgBer92TGEOZFPicoBjZ/nd4TxaVAzRSI8aO4P34jjvM26b3R0smOKyIFpIAUkAJSoDoFcCMsEs71G2L5sCHKqzt6tZICw6sAHrcKWFaVIG6RQC7gWz5rwnCQQ7lFh3IRB5gb4gRzGXcYN+KGhvcYarH1URiPY+X5LFa3yWLF7xxCQrr8cDY3hc+ZXaP1Wmwu3UeAuHgJpEvSNKOVTnuqfsvj3VMgBUacAlyGvK2tzbhUq1zjKNCE+dNRb8D8KQwcdD6A62mlAGOAddsA6+Le2LoQ1tN3rO4ewGWbn3vuOfe9LeFcqaIEtuimT59eaZOy9dJLOH/lK1+x9773vX1a0XzxxRcTK2hp8HW//fZL+n/44YftLW95S5IerMiiRYu8a1qepU9bsAvbTMNIaTgqlNcyrJUGBHe4r/Qf/ehH7UMf+pBb1SWs+8wzz9icOXPK7jYNerTdV7D2m/JWeAZVMKar2OHNXdO++Bt5XbQ6QMXtBliRVjPj4U3ZnqqBJlvB/dWTI7TOc5PnKP9u3/3ud5fdvXvuuads/qGHHuow2F133VW2fKCZY8eONV4H6GnRkEAez7Xf/e53IwrUreS8qOp8a+L4vLp7Qn9+uxUrVhgtbwd3wgknhGjFYX+vLffce49bn22KgdboKKN/733qr7as81nf9mvfMNuaW6OXbk8VHrf7Nt1t85v3sJa5Ud7/u+EvdueG27zuzy/8uR39riO67TNXaLzojgs8b17rbta6V9QuqpS1vY5/rX3zm7+z7HUFe+vpR9l3r/mWF33zPV+z5tek63brtkeimO3PRbGrea2u7aHHffbZJ0Tti1/8ohGM5+oWaUcIdDBdb9cbbjOML2i1OVimrbf77ba0aQYAznE6gdULL7zQ3vOe9zhMm2538803u/bpvErj/ICC10qCvldddZUFMJjWcflRTdrdeOONSfKHP/yhzZw5M0kzwjFTrd1wbDN9DOFjsnReaZz3xne84x3uee8JY0quHiBQt1QtpaWAFJACUkAKDEyBykfMA9uOWkuB7VIBvijkg+noQ3I27h1NNu7kJht7Us5Gw7cejyWr3oIXigvxQpHPAYBWh2D+YHB+hyIuJQ7wjrPCUgDJmFzvvA0WMa7BROSvYTHgciztdUXeNv+yYJt/lbdNv4b/TadtvDJvG67utE3Xd9rm2/PWdn/e2h8vWMeygnWu5otoTKqMlJfKg6O8eh1EBXyKi7PTdAgbOh0dhf6VAlJACkgBKVC9An4vxN3Q/+c/vDc2YLp6BdRSCgyeAnjmoRVcPgPxWYjPRHw24jMSn5X4zLTxt9EzFJ+l+EzF56stV0TPWu2/KdjWP+EZ6s/RsxifyXwZcYK6jfo8hcuL4aPP7CwAuQfgufoYgCp4hh6DZ+mxJ+P5+iQ8X7+9yZ+1+cw9mJAuf/iwzGSjhzwWOSkw0hR46KGH7NZbb7V3vvOdI+3Qtovjad4ta6OOwnV8Ng6X1/5KHdiewlNF2/IH3BdvybuRBP+grNL2cb3Xve51Hvuf//kftyJG8Kq/nhY5uXQw4RMun50Gfvq5O16dkB4BXTqChO973/sSi42emfqHkC6twQV3yimnhKgRPCagQsdlizdu5MCgu7vtttv8b4d/PwSWB+rS8NS//uu/Jh+2hH63bt1qZ511VkjaggULkvhgRKrVgJZMCW9S+xdeeKHbrhGsI0AZXPh4J6Q9xJR2B4xZbL4Z893/C0j3aeT2h0fD30J2rtmoI7PWMmtoX+GdeGjtt7doTjd16iJxyCGH+H5ccMEFVg6QI7wV4LjSHQ6AHIEwWr0udbS8SaCbf1ff+MY3Sot7pL/1rW/5+faJT3zC2Dbt+Ddca2vx6f6HM74DVsdYOLs/F/7K9nbRnNr3Wbrl1atX2zHHHOPXaJYRbqvkdxrotYX3hC996Uulu2NPP/20ffWrX/V8WhJvbYUJ3z7cK6+8kpSG+0SSgQgtavbl/uEf/sGLA3TJBCHSofpgqtpre2/HxPsur/d0tJr7L//yL/73T7iR2n796193y6K9ta9F/t13320/+clPenR15513umVtFvAjgeDq7X4b9quv8IMf/KAX8zymBWqCuVu2bLFVq1b5tXSgMCjhXzqev7/5zW88zrzSv4d169Z5Gf8pXY20gBUbfvzjHyfltYoMxzZzOZqyjlzp/Yxjl7PPPtvvPQSnSx3B53IfW5XWU1oKSAEpIAWkgBSoTgFZ1K1ON7WSAv1XAHNcufEAc+FbXovmmJzLw+JRHi9jaXWXYYH+uQ2WX/oyzQRZsR2zFYWuwXT/N1oHLTAxScvBRXocX3eHNA+PlpEAKkceyEc6Tuu7SHMZuwzjCN0iL6Thy1jP51f5gz//0n3XlRrxCvBszeCBtdHDEf9D6QClgBSQAlJgaBTgPZHjLdwYg+XchkwPjVraihToUoB/M1vxWLcFz3rwxS2Ix5ZxozjymIZ1XFrL9ZBxgLsh7iuxlAVuOVIdIQ7PdJkd4XfCM94kPOvByiJDWsrNTYbVXHiu2DJcq7EECKfRwxFytugwpECiAC3pEtI99dRTHZBMChRpGAW4HHbL3lnLr8f04ea8FVf0Y9d5j10O2wHXFqywpmij3pizFoC/mZbK+yBU+7a3vc2XmL/yyisrb1imJiHdk046qUxJ/7MI3P73f/+3L8FNK5qPPPKIQ1gHHHCATZ061a15cnliQoC0tEl35pln2mGHHZZsjB+XcGlngjEENGjt8eMf/7gRUCQYc80119gnP/lJh4Bnz57tkFXSuMoIl0emBeBLL73UrX9+5CMf8SWn58+fb/fdd5/DRgS76AgPT5gwocotVdasWg0InF1xxRW+kSeeeMK+//3vO4CdzWaN0NSXv/xlLyMQN3fu3G47w3Hf1mfwMdWf89ZxL07SLh6oW72+EpkZmC4/Gufznnyh0FfN2pedenjWlq7E0uR/6w9Z3Pt+nPamrB04t/4m7rnU+R/+8Aff8QDUHnnkkf73EP42ejsq/p0T8KV1aN5/uFw4gXnCgzxfuFQ4LXLSVQKejRo1KjnfaB2ef6e00kywnefhz372M+/rn/7pnzwcSf987O1Z+9glBVtPgy01cB84Omt7z6zN+UYY95Zbbkn2ir/HypUrHey+6KKLknxeL3iNqMQN5NoS+ueHHATw/v7v/94tuBMs/cIXvpB80MHzb1suDRV/7nOfc6vtvDc8//zzDjied955fXbBax/94sWL7fOf/7zX/ed//mfjNXIoXLXX9r727Tvf+Y4tXbrUbr/9dv+7C/eA0IbQIuFF6j1Yjtba+VENLcASoOb5x/t0cOl4vd1vwz72FXJsw+smwWeeOxx/lTqOVaodj7EtPxJi3/R06Q+Ywrbe/OY3Gz/GoDv33HP9mks9lyxZYueff35yPQ71axEOxzYJoPM82rBhg/9dH3XUUT5OnDhxov/N80MkjjF5rvOawnvhlClTbP369f7BGIFqOubLSQEpIAWkgBSQArVVQKBubfVUb1KgcgU4zxaDuzYHzTAXwRe3+XUTrPOpTuv40y1W2IrJytZdAbmOwUvbUXipCw/LtVYYmgfeyg9mADX5wtlfRLsEkRBJdxCFh4oPgAnpmkO7MbBLmBegbgTxIg5w19MEeAn1hhAQcALzjiDZEokUGTQFwpReFOKcik2zNFp60ARSx1JACkgBKbB9KYAboN8NM3yBxkSxIdPb14+mox10BcAvOITbRgCXIC6f6ZAXA7khTMBch3FR7iH+lmJA1wB09MvK2qAf2CBvAMBJBtZyMxPhCebuhGe2GNDNTcLyzgR0mR7lF55B3pnKuufLYEK6jR5WdrSqJQXqXwGCJIQXCDQRaiAgKde4CnDebtSirH+k0o5ltIsRF1DxARXXwnopVvYqvJy3/BuL1rov7iU7RrM3lXRCuHX33Xd3q3mEE/rrCCZNnz59wJZ009ul1VYuNfyBD3zAgT/CQyeeeGK6Srf4scceW9baH6HZ5cuX+1Le/JtJQ2ehA0IctD7HbQ7U8T5JgJEwGy1HXnzxxe5L++V+bQsEK21TbboaDQigEYr8+c9/7stoH3zwwT02T92C5eNQmH+laO0PY3WEPxcs/wTGejBc0V+X2QVT4W/OWutCWJrG38ZQu13wOuL7H8jaH+/L2LP4W+TTXzWuFR9hHQJjJfsPgsXUavantM1BBx3kVhPf//73u1VUnieljpB7GsgM5QTMCeLSuiVBpnPOOScUdQtpoTNYHu1WUJL4x3/8R/vBD37gABu3Rx/gqlB13rx5dvrpp4fkiAn3nJ6xX38iZzc8XLQVa6o/rDF4f8Tzbd/X1O5vhnAbgcm+HK3q8sOESsch1V5bwj7wfOK598UvftF9yA8hIV3eD7bl+MEHrYYTAueHHGnL7GxLIJXWnXnv6c3R6uzHPvaxpJjn8VC6aq7tfe0fra7++te/9o9eSkFR6kOAk36wQF2OZwmP8npS7ppy2WWX2cKFC5NDqMf7bbJzfUQIldMR1k272bNn+wdKa9asqRrU5d8hoVLCp3S8bh544IHpzXicH2XwHCc0zPs8fdoNBBZO95OOD8c2uX3+XfKewuvZaaed5rtEa8PHHXecQ+A33nijl/FjL/rSew+vJ4SM5aSAFJACUkAKSIHaKjDw2Zfa7o96kwLbrwKYQ3ALsYBPm3fd2UYfcYJtvemP1n79j8wmzrbMjDlWKOwUQbsEdgO424Z4+wiDd9NnAT/e95fdCDFZg1fgqdI4nkNWCtR1oJdQb/AxuJvAu6wbAF6EGbwAzjKvFfgJr4q1m89J7auijaYAz66uUyE68xo33Wjqa3+lgBSQAlKgHhXwu6HfIPEP/ye0G9LY4YYor0dhtU/1pwBPbaw6WwSAW/DVQXB2I3SLuEw7kIu8+DnFgVxCt7E3WsYNcQIaZa3h1t9hD8oe4fkqg1W3M4A+MhPw3AU4NzsxDgHjEsjNwXpujtZy+VxXp67RLemG/a9TebVbUmCbCtCKHS3bLVu2zF+qc4lcwpVDtcTyNndQFQasAMHaUa/PYY4T1khvAqzbX2AL9+T8g0XbshqA5AuAdQ/KWvMMWNcFLFiJo6W8elvil8DJb3/7W/ve977ncNCKFSt6HAqtM9LyLoGL3hwt1+64445ufTdYRwt1CRJ++tOftt122y1keZheLrlbQSoRYI6Wlu4mjJubm+0Xv/iFW3jk8tGEQ4Jjm7POOstozZSQUdpta5ulS1en224rXo0GXIKcYA1hojSsxmM4/PDD/TeZDbCIrtgBWHwZAN17Crb1bpy/LzDTi/r1TwbfHLQcmbXRh+bcwEe/GtewchY/zTsO7P771LD7fndVeq6EDrZ1zrBe6fkZ2jKkNdz29najRdH03wbvLQTyHnrooaR66T7MmDHDbrrpJrcMffXVVyf1GCEc9u///u928sknd7Mw2tv+Evy966677Etf+pL99Kc/9X0Jfzf8G+cS8SwbNw5fuo1ANx7vZU44pP7PN0rP+8SsWbMc/uP5Uw7iDz9Rbx8/9OfaEvoKIT8q+cxnPuOAHT+GCI7XJVpbTVtcDWW8JpdzhPd47Scknj7/+ZECP0IIFuJ7O47jjz8+AXX5N1NqXbzcNkvzKrHAG6795fajmmt7uX7Cfk2aNMkuv/xy14PW6jn+5HHxYxw6fiBWzvWmcaib/tvvrS4tGhOepkXtu+++OzT1c45gNq8npa7a+20luvdWJ30spfsT0n1dd9kvj+ff/u3f7KmnnrK1a9e6NXJaJOdvc8kll4RueowTkoI+ItQwgLr8EKOc45jotttuc+u7pZaTP/vZz9oZZ5yRwMLp86WSY+f20m3C9qvdZm+/Q+iXYV9/I1wBgGB++u883M8WLVrkKzbwnLv++ut9vBbuPQSZ+bEKtQj109tUXApIASkgBaSAFBiYAhkMNKuYMhjYRtVaCkiB/inQ8cCdll9yv+WfXQrrEGus4GDuRCsS3C3gTWdhAsLIW2FHxMdjMpAenxKnUMP+bXWk1cbb8Qxm+zNb8GCB2fvYd4tn+aDNsra4DtJen2GXz3gcM7DVzLiONFlH6PEUPjhthB6ZDksKSAEpIAWkQP8VeMf/3tL/RmohBepVgULOsvkWa8qPtpb8GBtVgM+PtdH0hXE2BuGYAjzCsXGa4VjkRSHj8MWxNqo42prqmS4dwt8ASIptyWy2ddl1ti63xtbAr21eZWuaVtnq5pfhX7J1LS/bBvjOJpgUztZmOeWhOMTDt5wwFJvRNqSAFOhDAb7w5zKtM2fOdMun8+fP76O2ihpZgc6XcT+5JW9bb60C1g0HDpYtt1fGWg+FVdL5sK6LD0RGwvTounXrfCnnl156yQgJEtgiVFSpKxQKxrb0bEfwqFLopNJtlNbr6OiwF1980UEcLqe8yy67lAVYStsNVrpaDTZv3mzPPPOMEaik9onDm7X8WljRfQSQ7l2AxB9HBoY51bjMlBjSPSJnTVPqB1qs5lgarU0+nzcuAU5LjoTFeL/pj9u0aZMRpCf0y/bjx+O9zAAc/9afe+45B0J32glLT8iNWAV6vbaUHDGvO4RpCRESTqXbuHGjESYlpMvycnBgSTe9JrlSAfeF/YwZA+s3FbgnnnjCaCGYjpZg+eHHcLlqr+3p/Q1wLO9Vc+bMSRd5nNsgvEjNzz33XCMAOVguXAP4wc60adMqulfX2/22nDZLlixxGJRg6f7771+uioOhtMZP68HhNylbsUaZvP7zessPWwnh9wZS12hz3s1wbJPnL1eNIPhLaLjU8fg5XuN9kHB6pdeB0n5GQrov0HwkHJ+OQQpIASkwGArw4ya5/ikgULd/eqm2FKhPBcCg5jcWjctrFV4Bt8twfRxHWHwVSGkIN+IQdK3s/XekRV1a2eXSYqOwtCkt7QaLvHE+87wOrfLCGm8GPDQt9NIyr8c9DStRDGWlt3etVSIFpIAUkAJSQApIASkgBQaqAHgIt37bHlu/RUhrfLSAW2ScIXyhLc7Hd3m0lBtW7fDyLShDPkjTqAz1DRZ15XpRAIbzMoCgMni/kxmPZyCEWVhCzDKk1VxYz2WYox+L56o6tpTbyxEqWwpIASkgBYZRAYd1b41h3dVV7ghuPxl8g918QNZaDshYy5ysr2RWZW9qJgV6KFDYVLStT8OC7v1F63gAYPlKVMEQsxrnkO5RsKR7uCDdavRTGykw0hUoB+oO9zG/853vtD/+8Y8OCi9fvrzhwT5aBb733ntd1gcffND23nvvROLOzk63ak1Lw3TXXXedW1xPKihSkQIEzb/2ta953UsvvdROOeWUbu14PvG8ojvvvPPcd6ughBSQAlJACkgBKSAFRogCAnVHyA+pw5ACPRTgC2u8oM6/GkG7eYK77pHPPMK77vFSGiuQFQnwor5chQpkUS8GdCOwFy8AAOoawV7mMyS46wBvXJfQLsqyzIvjEdgbAF+81OZqcexbTgpIASkgBaSAFJACUkAKbK8K4EPEAj4uLGIBIIduA3zrAC6eZRi6j8othnGLBG7jeJSHNAHckMfnncYx5Dr8vz6fa3YIHs8sMA5GGJdwrkO5CLlUOSHdHIFd1B8JFguHX3jtgRSQAlJACnSugmXd22NY98UB6MF5uNkRsNu6IGvNu/J+hfk7OSlQpQL8EKxjOazoPlywjvsLVngWHQ3AKEZmOqaYAemOej0g3ck6N6v8WdRMCoxoBeoF1KUVXUKq1157rd14442u+Te+8Q0766yzGl7/3//+93biiScmx3HIIYfYQQcdZLQQd8MNN7glXRYeeOCBdvPNN9uoUXjJJ9cvBWixlVbHg5s3b54ddthhDnsTkr7jjju8iFai77zzTl85INRVKAWkgBSQAlJACkiBkaSAQN2R9GvqWKRAJQoA4KU1qcJ6hAB2HeRFSGi3AGCXeQ7uEt7dgDgBXr7cxstyuSoVoAUpWp3is7tDugzxYoDx2EfQb5zHF+Ksn4Z5W6IX3w72hjjrMM7+NY8LEeSkgBSQAlJACkgBKSAF6k4BfkCIZ4kEuu0G4BK4xTMHoVvmh7hDuEjTsm2whBtgW6YZJ3TLcoIRelaBCFU6PkvwI0MHcvFsEYO52R0A4ALMdSgXIUHcrHt+eIiHDz1/VCm4mkkBKSAFpEClCnDlsLa789Z2I6yVLkergXxsg/tbbveMNS/IWOv8rDVNy1qmudI9UT0pgLFnh1nHC7Cg+ygA3Ycwp74Ug1zOm1frYKghC16p9WhAugfn/OOnartSOykgBUa2AvUC6l5wwQV29tlnJ2KfdNJJ9qMf/chGj+YSlI3vfvWrX9mHP/xh27ABL0fLuNNOO82+973vjZjjLXOIg551//332/ve9z577LHHym5r4cKFduWVVxrPeTkpIAWkgBSQAlJACoxUBQTqjtRfVsclBfqrAF+g4yV3HnBuwX0E7TJOcDeEBHeLGyOA1yFevhwfyER5f/dzpNfnC+8meMK6tPDRWowsUxHsZV4AfeNyt1qVBnsd8EW9APF6yHTcnulmxLkNvVwf6WeTjk8KSAEpIAWkgBSQArVVgM8MnXxuwPOAA7e9xFPgLVftiCBchABxPc28BLZFX+0YmHoeygneAoSQq6ECXLGDMO5Y+HHwgHAZZkMc8FIE5gLGjeM51sGzg54Zavg7qCspIAWkgBTotwIFzEG2PViwtptguZRgJMcJA3CZCQB29wSwu0/GWvaIgV3e7+SkQC8KcBzrgO7jAHQfAaD7BM5DGMAYkMM5l9sD0PibAenul7XsWE3SDkhPNZYCI1yByy+/3LZs2WL77befLVq0aNiO9tZbbzXuy6xZs3xfjj32WMtkRtb1a9WqVW7N9fHHH7dly5bZ5MmTbcGCBbbPPvvIwmuNzrz29na77bbbbOnSpe6bmpps3333dT9//nxradHArEZSqxspIAWkgBSQAlKgThUQqFunP4x2SwrUlQJcehbLyDrAC1A3HRLW5aS5W+HdhBfu9EwjdEu8eJEvN8gKxBZ73WovoN0I8sU7dQd9EeK5NgF6aaWXz7kB7iXAy3LmxaGDvD3iqAdLIwJ8B/m3VPdSQApIASkgBaSAFBgKBcAXOHALIDaBbjt6wreEYWg9LKkDmNbzmJ+GbgnNELSNLeIGGJehAzX6sG/wf1V+iDcG43XCuIA9EijXgVykGdJKbmk4Gi9W+TwhJwWkgBSQAlKgThWgFf32J2FZ9+aCdcKS6YCsmIZjnIjv5GFht2lvALu7Z615V9wraTFeTgrECnAuvHNF0bY+CUD30diC7is1kAcfRTXtn7HRR+WsZR4sO3NOVk4KSAEpIAWkgBSQAlJACkgBKSAFpIAU2C4UEKi7XfzMOkgpMIgKEOLdDIgXcG4BcK6HsdXdAkPmbYrAXYd3PZ5BPibW+eJeL+0H8cfpo2ta1eISfw7s4kWEg7n4TUI6AXm76iQwL4FdTiIT8o3jURil2S/LHfhl3D3KCA9wu3JSQApIASkgBaSAFJACA1cA4+gItsVYmzCt+xi2RZxWaR2w9ZBx5qXKCdsG4DaJo47Ho7G6t4G1W/bjwC371fgdIgyD4ziaq2vEMK4FGBdgLq2wJRZyEXcYd1wqFIw7DD+YNikFpIAUkAI1VQDjj63LYFn3L4Am7y5Y8SX0juHJgN2O+F5lLoBdWDdtBjTZMovW5TFPJmZ3wNI2ZAc4p7jaXMdz8EsBhsN6bv5pZL5ag6PhaTUN06mHwIruGwCHz8DgTvOkNRBWXUgBKSAFpIAUkAJSQApIASkgBaSAFGgcBQTqNs5vpT2VAo2nACbRC4BxCeoGWNfjDvAGeBdlmzG3Tk8rvIB+kzhBXoDAcnWkAF9UALyNYFwkHNgtRmAuLfiyzKFfTD57GcLmqF4E78b5yIsA3rivAPOGvkMacG830FfWviCYnBSQAlJACkgBKTAiFMA4twdo24mxMGFYwrIEbAnWcoWKJI0487wM5ciPyiKQ1sHbOM/zAdgmdbZiTBaAW/ZZC7gF3cjVSAGOcwOICxjXQVxCufBZWskdg/EzoVwAuB4GOJdgLj0+tBNUVKPfQt1IASkgBaRA3SqQX1u0tgcK1n57wQpPYTDDucNauNG4xwLSdWB3DqDd2VnLTY7mrmrRvfqobwU4tu5cBQj8b7CiCzC380nMVy/H+bWlRvuNcVoOFpxbDgOkuz/OrYkYl8tJASkgBaSAFJACUkAKSAEpIAWkgBSQAtudAgJ1t7ufXAcsBepIAVrjbYtAXQd5AeumgV4Hdh3iBWAQYF6CvJwkZZohQQRBBnX0o/axK5yDplXdAOPCIq81A/JlOrbAG4G/MZxL0DcGdqMwpKNyI+wbg7yhPNPEPlHOfC9DOq7DsqS+LFZATDkpIAWkgBSQAlKgKgUCYAvYtRjAWsZjqNZB21TaLdsSrCUcm4JsQ37IS2Bcjm9RvxuA62lYtkX7UOYftGkcXNVPOOSNOA7meBcQkMXwbQZWbt06rqe74m4dN1jJZQhAl6Bulh/F6aO1If/ptEEpIAWkgBSoPwWKgHO3wtpp2x1563wQ84RrsI+1GhNxDmkKbrmvBbQLS7vNr8la064Zy43HfVhzSfV3Mgxkj2BgIv8qoNznaUEX1nMB6OYBfxdXo1OO22vhcNrwfGraP2OjXp+zlrlZy/DjKjkpIAWkgBSQAlJACkgBKSAFpIAUkAJSYLtUQKDudvmz66ClQIMogAlTWgArAM6NPNK0zpuCdxm3LchLwbtFpAn20upBsQ0hYQf0JTcCFOBLEbw0IYwb4FwD8JsB8BvlMZ4qiyHdqC5mxx38jfpwS73siwBvDPc61Bv379Av28c+KkPdJB3HCUzoZQ1EkJMCUkAKSAEpUKcKcEwZw7VGsJYQrXuMH5I49j3OC6CtpwNgG7dzuJb1CM6yzEP0mU6jPCpD/6wTg7ehDvP85b/GpxBiBDiOAwOECxCXMG6AcI3W+QjiBiiXZbR+G8O5DB3EpbVcfqSmMeUIOCF0CFJACkgBKTAkCnAY93LR2h/MW/vdmBcEYGmcA6ylG4db8wwAu7MB6u4GaHcm4lMjS/ayYl9LoYewL5wmNBLR8SIAXVjM7XwWcC6s6BYA6xpXequlw7iPwHfLIRlr3T9nTVNI7dZyA+pLCkgBKSAFpIAUkAJSQApIASkgBaSAFGg0BQTqNtovpv2VAlKguwLBKi+hXAd6ERLcDTAv8xMPiAKT9iFNwNfjnMinJ1SBeVm57UCBNPDr4C0hXvz4AdiltV4CvyjrysN8epKOoV+mvX06jABezyfEG5d72xzadUuzT9QP9TyM0p4nWAMCykkBKSAFpMB2o0AaqM1jnIZxXgTPYoiGtMcT4BZlrONwbVc9WpmlldvQrlsYA7JeToA2SaN9iMcWa4uduGd7HFZs2V9czv70ARg02B4cTgGO22wUxmsEbBEagVvGgx+VSsdAbgLhsg6t4SLMop6s4W4PJ42OUQpIASkgBYZaAbeu+3TB2u8pWMeDBSuuxB5wDFlLh7mZzATcz2cB2H0NYF3Cu7CyK2i3liIPYl8Yyhc2AspdCUB3BcBcQLn55zB3vAzPEuux3Vp/PIe5vcw0TCcuzFrrQVlrmS0ruoP466prKSAFpIAUkAJSQApIASkgBaSAFJACDaWAQN2G+rm0s1JAClSlACZcC1gWzwHeGM4tBEjXIV5MzjIkrEvI18Mo7XltmLhFXhRHHVpFwySvnBRIFCBgSx/DvZE1XpwkhDtiMDcKI1DX4wEE5gR+Ui8qD2n2yXgAeQ2gbwT8duV5WeiD5dyP0Ib5hIM9jPaR6aQN6woGhghyUkAKSAEpsE0FYojWQVjCsARnPUTLkCY0yxfdDAlIxCBtUi/kh7AUvmUblsFHIbaRSveMp8oDSJsHWEvANu7Dw1q/fMfuyTWwAhga0QKuA7iEcAngErhlnHBtyCOUG+dlE0A3Am9ZL8pDmssXazwFEeSkgBSQAlJACgyfAvm1sK67pGBb7y9Yfgnm8dYO0r5wfmUibv2AdXOwsJubDmB3Wgzt7hjPtwzSptVt5QrweSK/HkAu4NxOWM/NvwAPC7q0nFt8Bf3wuWMQXGYSpuDmw4ruAYB098pabiIHnnJSQApIASkgBaSAFJACUkAKSAEpIAWkgBSIFBCoqzNBCkgBKRAr4BbZ2iNQl1Avre0WAqTrIG+UF6DdYigj2EuQF20jmBeACOKy0qtTa8AKEPogTEuQ18P4pY+DvcUE2o3A3AjyDXUD0JuGdq3Uei/75EumbmEp2BtvO13P9yuuh3ho731lU+1DWciLjyfDENXkpIAUkAJSoAoFMMRwGJZwLAFUvmQuYAziIfIYsowQbFzOvFDu8Gwq39uH8lTo9ZCO+oq3E8oJz8aQrZcTimVdz++KGyzROnRLeJZWaeM6Rmu17CudxzIBtRBBrioFOK7gR1CAZh28jcMMLdkmcZbF8G0C5SLtcC6A25AHKNfjrMsxkpwUkAJSQApIASnQGApgPNmxEtZ1H6Z1XYCZT2H8uWEQd51zHuMB7QLUze6K6RWEuZ0j3zQFeWMxDuEYRW7wFeCjD63mrsbv/hL8y/AEdFcgH6GfB4P5rIHzIDcPgO5+GWtdkIW1ZZwcnPuSkwJSQApIASkgBaSAFJACUkAKSAEpIAWkQEoBgbopMRSVAlJAClSkACZ2i7Cq6xAvYd4Y0E2DuwHwjQBe1CfUC6u+SdrjUZ7nM01LvYRU5KTAUCrAl0Z8eUAQJQDBidVdvMwIEC8gX8ul0rGl3jTom9SN20RlaBf6R74DL3HagV3mhfI00Iu8pG66frf8qO9Qz/thXdZhXyHO/UEyymcYtwvlcagXaNBGTgpIge4K4LJHeNSB2FToYCxf9Ma+qxwNyuUHCBVArfcXp7tA23gb3fLjvpAX6oUw6YP1Y19k3yGeyncgNpUOIC9BXC9zyBbXRU8DqPW6cV8BwOUxIUtOCgypArx/0/ItQdsEwAU8m8SRT7i2tSsvsoaLNPPdR/FsDOh6yD5575eTAlJACkgBKSAFRqQCnGfreB7A7uKCdS4GrPkMBrKbhuBQOfaYjGHGVMC68NmdMY0yGXH4pkkxuKsxSG1+CDyf5AHm5tfEfhUMLxDOXYnHLVjRLa7GZjjXOthuLH7juRlr3heQ7r5Za56RtQzHmnJSQApIASkgBaSAFJACUkAKSAEpIAWkgBQoo4BA3TKiKEsKSAEpUDMFMHFcwMSwW9tlCGDX08Eab5zHlwhuqRehEfxlOvacWGbctsawbzsgGsQd7CVAI3CmZj+XOhpCBWJwNsC9DswQyAFEG4G3OLHjNAHhBObtVof14T0PL8RS8bJ5KHeAN67fBe7G/Xh5V9zLw34S7o3jvp2Qz2xuN/hQJ5SzzyTOylHdrrxUOcti7/vZLd1VltSJ+/INJO2610v2leVyUmCwFOB9CN4h0jjeM40C3BOLqXKvw3SAQOMyB05DvbjM2zEe+ghtAvga+ulRHrdJ6qf21fPQkCHbpep4PM7vVh7yALP6fnZLR/04LMt8r9M9rwu0xXZjeDbKwx9pAG0LMSwb0qwX9+chj1VOCjSaArwP8YMggAsEbZMwhmwTGDeGci3At3E6sYTLfEAw2RjWJaQr+LbRTgbtrxSQAlJACkiBoVGAc3Bbn4MnsLsEEOezGEhvHJpt+3P7GIx7CO7Syu4UhAB2szshTj8RfkeOizBI0vN63z8KfjbOq+ZfwSPUOoRrMbdKT+u5q/CoBEDXwVwYU+Az5pC4cZiKmg0Aez4s6O4DQHcWx6j6IYdEe21ECkgBKSAFpIAUkAJSQApIASkgBaRAAysgULeBfzztuhSQAiNPAS4PHaBet9SbAnZDfgTwBmiX9eEDxAurvBHUG/dDK730gntH3smiIxocBQJwG0K+ZwnxYInX8/D2J+Sn6kSWfFGW5CGSjeom8G1ohzABaZnHNqFdOkQ8qZfKz5D2De1CmK6bykv6ZnvWiUPPR1Yo75afruMFXfV69MG6dHGbkAzppCxVp0deKEMYNuftQ37oNITeQdc/nt1LWdJPV/WuWG9tumpEsb5e+PVWhvzeipICVgiV4tChVG61JL9bulxZaB/apuswDl8KyrKqZ8blvo1UPKnv9fAPgVG4JD9VN4FIuR3WY1kIPY57V6ifyk/qpuunyr0PpL0t84MPfYa0h/hBUdH7DGkCr14XZQ72AoQN2/J0aj+79YV8OSkgBXoqwOtmAt0i0YI/KAK4tB5GkLYExs20II9wboBuWSeJox1h27g8m5ShDrchJwWkgBSQAlJACkiBASpQ2FK0jmUAdpcA2H0McOczGLu8OsBOq2lOi7sT8BgP67qZSVGYZXoCoV2MhwDuZscjHINyfmC8HTrOixY2A8J9FX49wNz1DOHXIR9wbnENQljRLSI9JBZzS38D/EZuQXcvWNHdC4DuTPxeozk4lpMCUkAKSAEpIAWkgBSQAlJACkgBKSAFpMC2FRCou22NVEMKSAEpUL8KACgqAsQtxKBuAvM6sIuJaw+jOqGM4K7DvR14McF4nA5xt9yLPE93YLJZ1nvr9/fXnkmB/irA90flPPsh2EtXrtzz8LIQYRE+AnpxDWEkwzBqmqRDPx7GdViJdUMZk/iviDyG3fuJK5XUZ7VoY3E/TNL5DoU8VkptJ6oQ5Xk9ZoS6UW9szxzvnsVwoUa0C1Eq+jeu5aRnVDf51yuEXkIPqc68Yro94uwnVA3tve+uMs/GP65Xaf2kLftFIkkzmcpj3NtGkCqPyzcT+mO7Us/9Jbjarc+SeqwjJwWkQGMqwEtEDNwaYdo0cMt0M647BGgDhOsh68V5DttGaQdvHdBFmvmpeNb7Rptwn0FUTgpIASkgBaSAFJACQ60A58U6ngew+ziA3ScB7D4dgZ++0sVQ7wy3x7FYDO9mAOtmJyKL4XgMm3agx7hqHNKw3kp4NzsWIa22NjrEixVDClxxbBPCTXG4Ab8FfGED8gDpFmE9twBfhAXdIoBda4MPz6WIDqmD3rSMTEC3afeMtewJQHdXjnn5A8pJASkgBaSAFJACUkAKSAEpIAWkgBSQAlKgcgUE6laulWpKASkgBUaGAoR7O+AJ9wLIJeQbIN0I2o3yPe4Qb5Q2b8N2kAGQr4cs93QIU3UD5It2BosYDnuNDAV1FFJACkgBKSAFpIAUqA8FCL8StgVU67BtM8Z1hGSZbo4g2iTNfPiQnwC3nh/VjQBb1kulu5Ujn30LuoUIclJACkgBKSAFpEAjKsA5sc6XC9axFODu0gKAXUxZvYAxFGHQenAEcUdjPAbruhlAuxmCuvCEdhnPjEEaVlwzrAPv8fABFcLkI6mhBnoJ4KbmEd1gADQllFvcgnlDeFo3LgLQdb8RYO5GxOkJ59LK8WZ4fixaD47aToe147kYPs8DnDsPoO7OWa36UA+/jfZBCkgBKSAFpIAUkAJSQApIASkgBaRAgyogULdBfzjtthSQAlJgyBXAOwsuQRcBvJhAT8G+UR7K0lZ64/LIMm/UzmFfQr6EdwPgy3pMh7YeD3nIJ+TLPEz4y0kBKSAFpIAUkAJSYEQpQICC4KvDtoRgMeBCOgJqWcY8pFnHIdsonkF+qBfqJnBtXNfbdQNu475CHrcpQ2AQQU4KSAEpIAWkgBTYLhXAsCsPi60dzwLahXXdzr8BHH0Wc1ZroUa9wKKlPww/liKUCwu7Ngar0wDazRDapWVeeIOVV4+zDseEPo6Mx40Y+2U49oy9x9kfin3xGY4L6emgDX20CgvifgtOXgAAB7NJREFU/Oif83Kx9zjnCMMcH+f24o/5iwSeCee2Iw/xIuBbeiOsuxmdIr9u9YU2mZ0g0W4AdGdnrBlWdJt3y1oOlo4TbbD7clJACkgBKSAFpIAUkAJSQApIASkgBaSAFKhGAYG61aimNlJACkgBKdA/BTi5j8n8BO7lBD7B3DCRH6fT1nm9bqiD8gjyjfpwi77MiyHeCPRFmadjEDgpw2R6Z7QtWfbt38+m2lJACkgBKSAFpEAvCqQt2TYRgMVYgzAEAQiHIpDn8G1Io8xBCdZh/a78NEThFm3ZnlZsvU5cN0C6hGzT+QQtAlCBqJwUkAJSQApIASkgBaRA/xWg9dfOF4u29ZmCdQLWzT8HlnQFxncb0BeChnQcrybjSgwYm3AgHDtyLJqL4w7qoiyDNIMs/kG0SEIX/1sxSjtYm8d8G0HdTuQhzpCrdfnH9Zyjq1e4GbvWp8Ph2A6wnjsDcO5rIA/A3JY5sJ47FToBfJaTAlJACkgBKSAFpIAUkAJSQApIASkgBaRArRQQqFsrJdWPFJACUkAKDK4CtN7h1joQxhY7EtiXoG9cFiDeCPTFLrGMwG8oD30gdCu+THu8K/S6hHtTZQ758iVEnB+l0QeqyUkBKSAFpIAUkAJ1rgAhBAcTEBKmBaDgsALhBU+HEPnpPEKxBG4dusXLetYN5Qy9HPkBpA3lzKc13NJ0yPd2aM/9kpMCUkAKSAEpIAWkgBSoDwUwx5N/FdDu87C0+1zB8ssA7S4HgwqI1zZhFzUHVB+/00D3gvztOAzFpwHOnYnHhFmwnPuarDUR1t0BhSyXkwJSQApIASkgBaSAFJACUkAKSAEpIAWkQI0VEKhbY0HVnRSQAlJACtS5AmngF9BtF6TbZYnXId8A6sYQsEO7tBDCNuk8Qr4B6A1t4ryu/BgCZjktC6fKLR/Dv26VBH2FUC9/6vxE0u5JASkgBaTAoCgQgNoA1eYi2NVo9YuwLMHXOIysgZXmlZR3q094Ni6PIVrvL+Sxbmk+0mGbocy3L8B2UH5+dSoFpIAUkAJSQApIgbpRAPNH+XUAdp+HlV2Au3n6FTG0S0u7jWpBtm4EHuId4fh9fAzn7go4d1dYzZ0JQHdG1nITMObX+H6IfxBtTgpIASkgBaSAFJACUkAKSAEpIAWkwPangEDd7e831xFLASkgBaRALRUI4K/DuoCIYmg3WN51S78xmFs+DzsT2pZAvFxS0KFeX1IQ8QDxxqGnQx1ug/VCmnVi361dKl+WYGp5IqgvKSAFpMB2oABfXtMTlGVYunRuDNdmGCZlcX2kPZ9t0/U8HWDcGKIlMMt8hgB1AygbwqTMreJGddN5pXFP68U7BJWTAlJACkgBKSAFpIAUqEoBQrvrYWl3BT3A3ReKVlgJVnclPuZegx63VtWrGg22Aq14VpiER5epGXg8VkwHnLsrLOcC0s2NF5w72PKrfykgBaSAFJACUkAKSAEpIAWkgBSQAlKguwICdbvroZQUkAJSQApIgfpQIADADtZGln8DtBuFAeJNh6jH+gR/A6TrAC/z4jLkh/YO9YZ6Hkagbzq/NN6VjqFgWpCJ+/CwgBcd3AbzCnF/oQ5DemTLSQEpIAWkwAAUwKXWQdkAyyYhgFeHZHGhDXkBkGW+54U6SHtdwrDl40ZrtuXqOFwbtyMsizoOwzJkfQdsmVdSFtoFwDZpF4G63pb7KCcFpIAUkAJSQApIASkgBepVAQy1C5sA7L4M/yKs7NK/BHD3ZUx3IK+4HjvOuRi5oVeAK2XsCD8FYO7OeEzZBUDuNMC59Ihnx+D5hM9SclJACkgBKSAFpIAUkAJSQApIASkgBaSAFBgGBQTqDoPo2qQUkAJSQApIgbpQAC+XEqA3BnUT0BdArVsADtBtKoxAXDRmXgzhhn4SSNfr8+0VjjS0jeM92jE/BfVGkG/Uju2TtNcL+xz3HfLikH37NkMa4HC0j93rOyyc1EEbOSkgBaRAXwoQHg2eL3ZDnCEtvmaLlknneX5Ur1s+IdZsDL+G+oRVU/XZdwKsxvWTPE/H5YyXtHXrs8yLy7w81Ashtp8GdLvVBUAb0lFYktZLbYguJwWkgBSQAlJACkgBKSAFuhQodmDa4xXAugR34QvwjBdWY/5iTQzutnfVV6yGCtBi7gQ8Yk3Cc8tkPOYA0M3tDE9Al+EE5PNjQTkpIAWkgBSQAlJACkgBKSAFpIAUkAJSQArUgQICdevgR9AuSAEpIAWkgBTYrhQAINsN8AWkm8C4CfyLvBikTSDgdLs02JsCbpN+WDcN7ea7+nP4N9UmgL1hez3Ki90hXyZDmzTwWy4/6TPdR6p90oZ5Ib9bHFQc0t3rIYP7H+qlw3L529XJpYMdVgUIcaY94dN0mvEkD4k4nQl1vAwndLd03Afh1bh+0gfru8fL117KKsr37aKDuL80WJuOs7xs2kHdaF8cbg39EIwN8TiMwFpsC2VpODe0i/JwPKwft4/KkJeAtnG/COSkgBSQAlJACkgBKSAFpIAUqC8FiltjcHc1gF16wLoFhIW1eIxfR4/5iQ3YZ1nd7d8PR2u5O8ATvp2IR61J9IBx6SfDE9JlGerJSQEpIAWkgBSQAlJACkgBKSAFpIAUkAJSoB4V+P+9mEkX8cOW3AAAAABJRU5ErkJggg==" + } + }, "cell_type": "markdown", "id": "756a996c-bad2-4d24-a304-6eb5e3efca65", "metadata": {}, "source": [ - "### Filter to `lof`, `missense`, and `synonymous` variants passing filters" + "### Filter to `lof`, `missense`, and `synonymous` variants passing filters\n", + "\n", + "![Screenshot 2024-12-20 at 11.12.17 AM.png](attachment:78f1b020-4f45-4800-82fa-0bdffb877962.png)" ] }, { @@ -1575,18 +1582,25 @@ " plof=True, \n", " missense=True,\n", " synonymous=True, \n", - " ht=drd2_interval_ht\n", + " ht=drd2_ht,\n", ")\n", "var_ht.show(5)\n", "print(\"The total number of lof, missense, and synonymous variants passing filters in DRD2 is: \", var_ht.count())" ] }, { + "attachments": { + "7348e149-4f8f-4eca-aa55-6234293c1f3d.png": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAACuwAAAGOCAYAAAB2N7d1AAAMQWlDQ1BJQ0MgUHJvZmlsZQAASImVVwdYU8kWnluSkEBoAQSkhN4EESkBpITQQu8INkISIJQYA0HFjiwquBZURMCGroooWAGxI3YWxd4XCwrKuliwK29SQNd95XvzfXPnv/+c+c+Zc2fuvQOA2gmOSJSNqgOQI8wTxwT50ccnJdNJPUAZaAJ1QASjOdxcETMqKgzAMtT+vby7ARBpe9VeqvXP/v9aNHj8XC4ASBTEqbxcbg7EBwDAq7kicR4ARClvNj1PJMWwAi0xDBDixVKcLsfVUpwqx3tkNnExLIjbAFBS4XDE6QCoXoY8PZ+bDjVU+yF2FPIEQgDU6BB75+RM5UGcArE1tBFBLNVnpP6gk/43zdRhTQ4nfRjL5yIrSv6CXFE2Z+b/mY7/XXKyJUM+LGFVyRAHx0jnDPN2K2tqqBSrQNwnTI2IhFgT4g8CnsweYpSSIQmOl9ujBtxcFswZ0IHYkcfxD4XYAOJAYXZEmIJPTRMEsiGGKwSdIchjx0GsC/Fifm5ArMJmk3hqjMIX2pgmZjEV/DmOWOZX6uuBJCueqdB/ncFnK/Qx1YKMuESIKRCb5wsSIiBWhdghNys2VGEzriCDFTFkI5bESOM3hziGLwzyk+tj+WniwBiFfUlO7tB8sU0ZAnaEAu/Ly4gLlucHa+NyZPHDuWCX+UJm/JAOP3d82NBceHz/APncsR6+MD5WofNBlOcXIx+LU0TZUQp73JSfHSTlTSF2zs2PVYzFE/LggpTr42mivKg4eZx4QSYnJEoeD74ChAEW8Ad0IIE1FUwFmUDQ0dfUB+/kPYGAA8QgHfCBvYIZGpEo6xHCaywoAH9CxAe5w+P8ZL18kA/5r8Os/GoP0mS9+bIRWeApxDkgFGTDe4lslHDYWwJ4AhnBP7xzYOXCeLNhlfb/e36I/c4wIROmYCRDHulqQ5bEAKI/MZgYSLTB9XFv3BMPg1dfWJ1wBu4+NI/v9oSnhE7CI8J1Qhfh9hRBofinKMNBF9QPVOQi9cdc4JZQ0wX3w72gOlTGdXB9YI87Qz9M3Ad6doEsSxG3NCv0n7T/NoMfnobCjuxIRskjyL5k659HqtqqugyrSHP9Y37ksaYO55s13POzf9YP2efBNvRnS2wxth87i53EzmNHsCZAx45jzVg7dlSKh1fXE9nqGvIWI4snC+oI/uFv6MlKM5nrWOfY6/hF3pfHnyF9RwPWVNFMsSA9I4/OhF8EPp0t5DqMojs5OjkDIP2+yF9fb6Jl3w1Ep/07t/APALyODw4OHv7OhRwHYK8b3P6HvnPWDPjpUAbg3CGuRJwv53DphQDfEmpwp+kBI2AGrOF8nIAr8AS+IACEgEgQB5LAZBh9BlznYjAdzAYLQDEoBSvAGlAJNoItYAfYDfaBJnAEnARnwEVwGVwHd+Hq6QYvQD94Bz4jCEJCqAgN0UOMEQvEDnFCGIg3EoCEITFIEpKCpCNCRILMRhYipUgZUolsRmqRvcgh5CRyHulEbiMPkV7kNfIJxVAVVAs1RC3R0SgDZaKhaBw6CU1Hp6EFaBG6DK1Aa9BdaCN6Er2IXke70BfoAAYwZUwHM8HsMQbGwiKxZCwNE2NzsRKsHKvB6rEW+JyvYl1YH/YRJ+I0nI7bwxUcjMfjXHwaPhdfilfiO/BGvA2/ij/E+/FvBCrBgGBH8CCwCeMJ6YTphGJCOWEb4SDhNNxL3YR3RCJRh2hFdIN7MYmYSZxFXEpcT2wgniB2Eh8TB0gkkh7JjuRFiiRxSHmkYtI60i7ScdIVUjfpg5KykrGSk1KgUrKSUKlQqVxpp9IxpStKz5Q+k9XJFmQPciSZR55JXk7eSm4hXyJ3kz9TNChWFC9KHCWTsoBSQamnnKbco7xRVlY2VXZXjlYWKM9XrlDeo3xO+aHyRxVNFVsVlspEFYnKMpXtKidUbqu8oVKpllRfajI1j7qMWks9RX1A/aBKU3VQZavyVOepVqk2ql5RfalGVrNQY6pNVitQK1fbr3ZJrU+drG6pzlLnqM9Vr1I/pH5TfUCDpjFGI1IjR2Opxk6N8xo9miRNS80ATZ5mkeYWzVOaj2kYzYzGonFpC2lbaadp3VpELSsttlamVqnWbq0OrX5tTW1n7QTtGdpV2ke1u3QwHUsdtk62znKdfTo3dD6NMBzBHMEfsWRE/YgrI97rjtT11eXrlug26F7X/aRH1wvQy9Jbqdekd18f17fVj9afrr9B/7R+30itkZ4juSNLRu4beccANbA1iDGYZbDFoN1gwNDIMMhQZLjO8JRhn5GOka9RptFqo2NGvcY0Y29jgfFq4+PGz+nadCY9m15Bb6P3mxiYBJtITDabdJh8NrUyjTctNG0wvW9GMWOYpZmtNms16zc3Ng83n21eZ37HgmzBsMiwWGtx1uK9pZVlouUiyybLHitdK7ZVgVWd1T1rqrWP9TTrGutrNkQbhk2WzXqby7aorYtthm2V7SU71M7VTmC33q5zFGGU+yjhqJpRN+1V7Jn2+fZ19g8ddBzCHAodmhxejjYfnTx65eizo785ujhmO251vDtGc0zImMIxLWNeO9k6cZ2qnK6NpY4NHDtvbPPYV852znznDc63XGgu4S6LXFpdvrq6uYpd61173czdUtyq3W4ytBhRjKWMc+4Edz/3ee5H3D96uHrkeezz+MvT3jPLc6dnzzircfxxW8c99jL14nht9urypnuneG/y7vIx8eH41Pg88jXz5flu833GtGFmMncxX/o5+on9Dvq9Z3mw5rBO+GP+Qf4l/h0BmgHxAZUBDwJNA9MD6wL7g1yCZgWdCCYEhwavDL7JNmRz2bXs/hC3kDkhbaEqobGhlaGPwmzDxGEt4Wh4SPiq8HsRFhHCiKZIEMmOXBV5P8oqalrU4WhidFR0VfTTmDExs2POxtJip8TujH0X5xe3PO5uvHW8JL41QS1hYkJtwvtE/8SyxK7xo8fPGX8xST9JkNScTEpOSN6WPDAhYMKaCd0TXSYWT7wxyWrSjEnnJ+tPzp58dIraFM6U/SmElMSUnSlfOJGcGs5AKju1OrWfy+Ku5b7g+fJW83r5Xvwy/rM0r7SytJ50r/RV6b0ZPhnlGX0ClqBS8CozOHNj5vusyKztWYPZidkNOUo5KTmHhJrCLGHbVKOpM6Z2iuxExaKuaR7T1kzrF4eKt+UiuZNym/O04I98u8Ra8ovkYb53flX+h+kJ0/fP0JghnNE+03bmkpnPCgILfpuFz+LOap1tMnvB7IdzmHM2z0Xmps5tnWc2r2he9/yg+TsWUBZkLfi90LGwrPDtwsSFLUWGRfOLHv8S9EtdsWqxuPjmIs9FGxfjiwWLO5aMXbJuybcSXsmFUsfS8tIvS7lLL/w65teKXweXpS3rWO66fMMK4grhihsrfVbuKNMoKyh7vCp8VeNq+uqS1W/XTFlzvty5fONaylrJ2q6KsIrmdebrVqz7UplReb3Kr6qh2qB6SfX79bz1Vzb4bqjfaLixdOOnTYJNtzYHbW6ssawp30Lckr/l6daErWd/Y/xWu01/W+m2r9uF27t2xOxoq3Wrrd1psHN5HVonqevdNXHX5d3+u5vr7es3N+g0lO4BeyR7nu9N2XtjX+i+1v2M/fUHLA5UH6QdLGlEGmc29jdlNHU1JzV3Hgo51Nri2XLwsMPh7UdMjlQd1T66/BjlWNGxweMFxwdOiE70nUw/+bh1SuvdU+NPXWuLbus4HXr63JnAM6fOMs8eP+d17sh5j/OHLjAuNF10vdjY7tJ+8HeX3w92uHY0XnK71HzZ/XJL57jOY1d8rpy86n/1zDX2tYvXI6533oi/cevmxJtdt3i3em5n3351J//O57vz7xHuldxXv1/+wOBBzR82fzR0uXYdfej/sP1R7KO7j7mPXzzJffKlu+gp9Wn5M+NntT1OPUd6A3svP5/wvPuF6MXnvuI/Nf6sfmn98sBfvn+194/v734lfjX4eukbvTfb3zq/bR2IGnjwLufd5/clH/Q+7PjI+Hj2U+KnZ5+nfyF9qfhq87XlW+i3e4M5g4Mijpgj+xXAYEXT0gB4vR0AahIANHg+o0yQn/9kBZGfWWUI/CcsPyPKiisA9fD/PboP/t3cBGDPVnj8gvpqEwGIogIQ5w7QsWOH69BZTXaulBYiPAdsivyampMK/k2Rnzl/iPvnFkhVncHP7b8Ah9d8bcAadJgAAACWZVhJZk1NACoAAAAIAAUBEgADAAAAAQABAAABGgAFAAAAAQAAAEoBGwAFAAAAAQAAAFIBKAADAAAAAQACAACHaQAEAAAAAQAAAFoAAAAAAAAAkAAAAAEAAACQAAAAAQADkoYABwAAABIAAACEoAIABAAAAAEAAArsoAMABAAAAAEAAAGOAAAAAEFTQ0lJAAAAU2NyZWVuc2hvdKZZPWsAAAAJcEhZcwAAFiUAABYlAUlSJPAAAALYaVRYdFhNTDpjb20uYWRvYmUueG1wAAAAAAA8eDp4bXBtZXRhIHhtbG5zOng9ImFkb2JlOm5zOm1ldGEvIiB4OnhtcHRrPSJYTVAgQ29yZSA2LjAuMCI+CiAgIDxyZGY6UkRGIHhtbG5zOnJkZj0iaHR0cDovL3d3dy53My5vcmcvMTk5OS8wMi8yMi1yZGYtc3ludGF4LW5zIyI+CiAgICAgIDxyZGY6RGVzY3JpcHRpb24gcmRmOmFib3V0PSIiCiAgICAgICAgICAgIHhtbG5zOmV4aWY9Imh0dHA6Ly9ucy5hZG9iZS5jb20vZXhpZi8xLjAvIgogICAgICAgICAgICB4bWxuczp0aWZmPSJodHRwOi8vbnMuYWRvYmUuY29tL3RpZmYvMS4wLyI+CiAgICAgICAgIDxleGlmOlBpeGVsWERpbWVuc2lvbj4yNzk2PC9leGlmOlBpeGVsWERpbWVuc2lvbj4KICAgICAgICAgPGV4aWY6VXNlckNvbW1lbnQ+U2NyZWVuc2hvdDwvZXhpZjpVc2VyQ29tbWVudD4KICAgICAgICAgPGV4aWY6UGl4ZWxZRGltZW5zaW9uPjM5ODwvZXhpZjpQaXhlbFlEaW1lbnNpb24+CiAgICAgICAgIDx0aWZmOlJlc29sdXRpb25Vbml0PjI8L3RpZmY6UmVzb2x1dGlvblVuaXQ+CiAgICAgICAgIDx0aWZmOllSZXNvbHV0aW9uPjE0NDwvdGlmZjpZUmVzb2x1dGlvbj4KICAgICAgICAgPHRpZmY6WFJlc29sdXRpb24+MTQ0PC90aWZmOlhSZXNvbHV0aW9uPgogICAgICAgICA8dGlmZjpPcmllbnRhdGlvbj4xPC90aWZmOk9yaWVudGF0aW9uPgogICAgICA8L3JkZjpEZXNjcmlwdGlvbj4KICAgPC9yZGY6UkRGPgo8L3g6eG1wbWV0YT4KUGDUYwAAQABJREFUeAHs3Qd8FHX6x/Fnd1NI6L2XgEhH8FAQUBB7r3gq2MA/nt6pWDmVK5a707OiHicqeIoCCiigghVFEaQJiAhKCb33mrr7f56BXbcl2YQkpHx+L4aZ+c1v2nsmEJIvT1wZGRk+oSGAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAkQi4i+SoHBQBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEHAECu7wICCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIFKEAgd0ixOXQCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIENjlHUAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQKAIBQjsFiEuh0YAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQIDALu8AAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACRShAYLcIcTk0AggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACBHZ5BxBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEChCAQK7RYjLoRFAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEECCwyzuAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAEQoQ2C1CXA6NAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAHAQIIIAAAggUl8Du3btlwoQJUqtWLbnoooskISGhuE7NeRBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACB4yZAYPe40XNiBBBAoHwJzJ49W3r16hW46Tp16siyZcukcuXKgT4WEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIGyKEBgtyw+Ve4JAQSiCqxbt0727dvnbFuzZo1kZWXJCSecII0aNZJq1apF3Se88+effxav1xveHbIeHx8vFka1Y7pcrpBt5XnlueeeC7n9bdu2ybvvviu33nprSD8rCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggEBZEyCwW9aeKPeDAAJRBSxka9VdN27cGLH9vvvuk3/9618R/dE6OnXqFK07x742bdpI//795dprr5XGjRvnOK48bFi9enXEbf76668RfXQggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAmVNwF3Wboj7QQABBKIJzJs3L2pY18aOHj1asrOzo+12zH3Lli2TRx55RFq0aCF33nmnpKWlHfMxS+sBbrvttohLv+GGGyL6SmLHxIkTpWbNmiHT/fffXxIvlWtCAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBEihAYLcEPhQuCQEECl9gwoQJOR5027Zt8t133+W4vbA2jBgxIscqv4V1jpJ8HKs0/Oyzz0rLli2lZ8+eMm7cOOnQoUNJvuTAtaWnp8v+/fsjpsAAFhBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBXAQI7OaCwyYEECgbAllZWTJq1Khcb2b8+PG5bi+sjQsXLpR+/fqJXVN5a8nJyU6V4aVLl8r06dPlyiuvLG8E3C8CCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgiUUwECu+X0wXPbJU/AApxFFeL0er2yZcsW2bNnT4Fv3I6xdetWZ7Llwmp79+51ri2v42VnZ8vmzZvF5vlt33zzjVMZNbf9xowZIxkZGbkNyXHbp59+KmvXrnWmX3/9VWbMmCEvvPCCU0k22k6zZs1yKs1G23a8+qyCrPkW5rO1Y/p8vkK5paK4vt27dzvvc6FcYIwH2b59u+zbty/G0QxDAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBsiLg0oBa4aSpyooI94FAMQr89NNP8tJLL8nXX38tqampzpk7dOggZ599tgwZMkRq1KghDz30kPzwww8hVzVs2DBp3bq107dx40YZMGBAyPYWLVrI8OHDZcmSJfLYY4/J5MmTA9vr1Kkjp512mvzjH/+QE088MdAfbWHNmjXy9ttvy9ixY2XFihUhQ1JSUqR///5OtdjmzZuHbPOvPPXUU04lVf+6zf/+979Lly5d5JlnnpH//Oc/sm3bNmdz5cqVpXfv3vLvf/9b7Pr97cMPP3T65syZExh3xhlnSJ8+feT222+XuLg4/9Ac5zZu5MiRIdsHDRokr776akjflClT5Pzzzw/pC19JSEgI7xKrmtuuXbuIfgtgX3fddSH+wYMsMFqxYsXgrohl87nhhhsi+s3P3pVo7ZZbbpFNmzaFbDJ3e+7+duDAARkxYoQsWLBAFi9eHPJ8u3fvLp06dXKex+WXX+7fJWRu97Vr166QvgkTJjjntWrFU6dOlfnz5zvb7f256qqr5Pnnn5dPPvkkZJ+nn35aOnbsGNJnK0V1fWlpaWLv5RtvvBEIcdu7d9JJJ8mDDz4Y8vwPHTokV1xxhXNtGzZsCDGyTvtYCn7u9rEc/jFlH4Pjxo1zjGfPnh04Z8OGDZ2PAzvvwIEDpX79+s55+A0BBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQTKpgCB3bL5XLmrUiBgwdShQ4fmeKUWIvzoo4/k8ccfly+++CJk3MyZM+XUU091+lauXClt27YN2W5BTgtPWjB2//79IduCV958800nUBrcZ8tWFdUCv/fcc0/4pqjrFrq86667xOVyhWy34Og777wT0vfBBx/IV199JS+++GJIf/DK559/LqeffrrcfPPNTtgxeFvw8o033uiETj0eT3B3yLIFNC0cGezQpk0bsVBp+/btQ8ZaMDY82BsyQFfyE9i1fS30eeGFF4pV1Q1v7777biAQGr4teN1CncuWLQvucoLYf/7zn0P6bMWq5DZt2jSi/5dffhELWVszfwt5W9g7r/bHP/7RCUzHx8eHDG3UqFEgbO3fYAF0C1L7Q9j+fgsG27vwpz/9KSIkbWHWK6+80j/UmRfV9VkVZAsaR3sW/gu44447nOrItm7vTM2aNf2b8pxbqLxz587OOKtU/Morr8jgwYPz3M8+1u19NDsaAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIlE0Bd9m8Le4KgZIt8Nxzz+Ua1rWrt7Bg3759YwpVht+tVT61yqjBIdXwMbZ+0003ydatWyM2WaXRWMO6tvMDDzwg9913X8RxonW8/vrruYZ1bR8LTVq1Ugtz5tbeeust+etf/5rbEPnyyy8jHKzaq1VCbdmyZci+o0ePdgK2IZ3HuJKcnCwWUrZQZnizkGYsrV+/fhHDwivV+gd88803/sXA3ILb/rCuVSw+77zzYn6vrAryZZddJlYtOK9m4d7wsG5e+4RvL8rrs0rLuYV17VosqP7pp5+GX1a+1y2cHEtY1w5sH6dW2fm9997L93nYAQEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBEqHAIHd0vGcuMoyJJCamirRKqNGu0ULP4ZXVo02LrzPKqfGup+Fh4ObBUGHDRsW3BXT8ssvvywff/xxnmNjGbNixQonBJznwXSAVQnOrVkV2/Bm4Uhr4ZVdra8wwpp2nOBWvXp16dGjR3CXs7x06dKIvmgdFjAObxY83bNnT3i3WHXi8GaVg/3t2Wef9S+GzC1QHC1UbIOswnMsz23GjBkhxyzISlFe39SpU2O6pIcffjimceGDkpKSnK6ff/5ZLJge3qzytVWivuSSS8I3OesvvPBC1H46EUAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAoPQLENgt/c+QOyhlAlbBM1qzKqivvvqqzJ8/X0aNGiU9e/aMNixffVbx9KuvvpIlS5ZITkHI8Iqjd999d9Rz/O9//5MtW7Y4ky1Ha/fee6/4fL5om0L6unfvLlOmTJEffvhB/v3vf4dsC1+x67ZxFho9++yzwzc7FV3XrFkT0W8dVrk0vEpvnTp15He/+50z/sILL4zYL3x8xIACdtjzDW8bNmwI74q63qJFC4m2/8yZM0PGe71eiVZ516otWzPH8OdtHgsXLpQdO3bI9u3bZe7cudKmTZuQ49pKtONGDDraYQHjJ5980rG35xctrBxt3+K4vnPPPdepeGyBdqtwbPcf3uzj5eDBg1KpUiXZvHmzM1nF5/B2xRVXBLZbperWrVs7Q7777rvwoWImc+bMkWeeeUYmTpzoePurHvsH28d+rEF7/z7MEUAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAoHQIxJWOy+QqESgbAhZmnTBhQsTNWHDPqn9Wq1bN2daxY0en+uuZZ57phCkjdoihw4K3Tz/9dGBkq1atxO12yz333BPoswWrBupvFpi0CsDhzaqFXn/99YFuW87KypJbb7010GcLtq8dwx+IDdl4dMXu9YMPPhCrOmutffv2cvjwYfnb3/52dMRvMzvvjTfeGOg4+eSTnVCkVR4ObhY4bdasWXCXsxwtZGrhVY/H42w/5ZRTnKqyFuz1N7s2q1zrfxb+/mOdn3TSSRGHsPPavfsrs0YMCOro37+/E+YO6nJCzBdffHGgyyr2htvYO1S/fn1nTO3atZ3AaGAHXbAAqz9o6nK5pFOnTnLfffdFPNu1a9cG75bj8qRJkyRaEDrHHYI2FPX1de3aVd577z1JTk52zmpB6KZNm8qpp54adBVHFu1+27ZtKzVr1nQ6olUftnfEvz34ABZsD2/27sbF/fZXbpUqVZyPeQtIB7cGDRoEr7KMAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACZUTgt/RQGbkhbgOBkixg1To3btwYcYlWWTc8IGqhwjfeeMMJUEbsEENHeDDXdrnmmmsiArsWGj106JATYvz0008jjmyVXYNDs/4B1vfKK69EhEg/++yzXAO7Fvb1h3X9x7LKudECu1aVNLhZxdPTTjtNJk+eHNztVNIN6Ti6Eq1abnCY1AKUV199teMcvP/HH38s/fr1C+465uV69epFPUZaWlpMgV2r5jp48OCQY5jDCy+8EOizasrh7dprrw10NW7cWO66667Aek4LZ5xxRsQme0fyan//+98LHNa1Yxf19dm9+8O6/nuxgLJVFA6vbGsfqxbYLUiLtt8jjzwiGRkZTqVdC89bONoCwzbREEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAoOwLENgt+8+YOyxBAuHVT/2XllNFWgsSWmXP4Aqw/n1ym9epU0eiVeq0CqbRWnZ2ttMdLUxsgd2cmm2bP39+yOZoxwgeYNWDw1u0a7VKvBUrVgwfKtYfS9u5c6d8+OGHEUN79+4d0nfJJZdEBHbHjh1b6IHdFStWhJzXv1K1alX/Yq5zq5Jr1XKDQ7lmvWrVqkDo08LS4c3uL1qzas92TbNnz3YqI+/atcupLGzVhb/77rtou+TZFy3om+dOOQwoiuuLVuXYTt+8efOIwK5VkC5os1B5tPboo4+KTfYxbe9ht27dxCok28c5DQEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBMq2AIHdsv18ubsSJmChyPDWsGFDscqx0ZpV4ezQoYPMmjUr2uYc++rWrZvjttwCwNHCtq1bt87xWNGChtGOEXyAhISE4NUcl636bbRmJrG0jz76KOqwESNGhPQfOHAgZN1WLPi6detWyc0xYqc8On788ceIERasdrvdEf05dVx33XUhgV0bN336dCewaxVwwwO7Vk24Vq1aIYezIKwZWMXX/AbBQw4UZSXa+xBlWK5dRXl9OQXWowXDc73IPDZaAP2pp56SIUOGRB1p7hYmt8meg7lZ9d+BAwdGHU8nAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIlH6B6Im40n9f3AECJVIgKSkp4ros4GoVbj0eT8Q269i8eXPU/qLo9FfaDT52hQoVgldDlhMTE0PWbSXaMSIGFUPHmDFjop4lpxBl+ODJkyfLoEGDwrsLvL5w4cKIfZs0aRLRl1tHtGq5FtL9v//7P/n+++8jdrWAb3Dbu3ev3HzzzfLxxx8Hdxfacn7Cx9FOWtTXF+2cRdV3zz33OBWiH3vsMcmpsrb/3MuWLZPbb79dfvnlF3nyySfzFeL2H4M5AggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIlGyB2Es7luz74OoQKBUCVlE1WluzZk20brEAY2pqatRtRdFZr169iMOuXLkyos/fsWLFCv9iYB7tGIGNxbRgIeevvvrqmM6WU+C3IAe165kxY0bErmeeeWZEX24dNWvWlIsuuihkiAWLMzIynEq7IRt05YILLgjpeuedd6KGda3q8rXXXit//vOf5V//+pc88MADIfsV10pJv778Oljg2z62p0yZIjfeeKOkpKTkeogXXnghokpyrjuwEQEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBEqNABV2S82j4kLLgkCDBg2i3sZLL70kFtYLb9ZfnC3a9f388885XsLSpUsjtkU7RsSgIu6YNGnSMZ9h1qxZsm7dOslvFdzwE3u9XrnrrrvCu531yy67LGp/bp1WNTe8Qu68efNk2rRpIbtdddVVUqVKlZC+qVOnhqzbyvPPPy+33XabxMX99tfBokWL5Omnn44YW9QdJf36CnL/5nr++ec7k+2/fft2sXfrjTfekGj3O3PmzMDYgpyPfRBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQKBkCvyW0CqZ18dVIVCmBJKSksSClBMnTgy5r+HDh0urVq1kwIABkpiYKJmZmfLee+/JY489FjKuqFe6desWcQoLFc6ZM0e6du0ass36Pvnkk5A+W4l2jIhBRdwxevToqGeIFor2Dxw8eLB/MTC353TPPfcE1vO7sHv3brEqq1YFN7w1bNhQunTpEt6d53p41Vzb4c0335QlS5aE7GsVc4PboUOHolZvvfXWW0PCurbPF198EbxrsSyX9OuLhjB//vxo3U5V3f379we2ud1uadeunbNeu3ZtsaC2TY888khEMPrHH38M7McCAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIlB0BArtl51lyJ6VEwEK54YFdu/S7777bmTp37iwrV66U4MBfcd1anz59pHLlyhHnvvHGG50Krs2bN3cuZfXq1WJ94c32tWMcz7Zq1SqJFqRcvHixtGnTJsdLO3DggAwdOjRk+9tvvx1TYPfzzz+X9evXO/tmZGTIpk2b5IcffpD//e9/IccLXnnllVfEgpz5bWZsYdxx48YFdo12nnPOOSew3RYSEhKiPlsL51500UWBsXYvDz/8cGC9uBZK+vVZ2D68WUj6ww8/lPPOO8/x9W83zxUrVvhXnfmLL74of/jDH0L67FmGt0aNGoV3sY4AAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAJlQIDAbhl4iNxC6RKwIOXVV18tEyZMiHrhCxcuDOmPFqANGVCIKxaafOihhyICm6mpqdK6detA4HXZsmVRzzpkyJCQ4GLUQUXc+f7770ecISUlJXDtERuPdljl2vDArgUyly9f7tx7TvtZ/4MPPpjb5ohtVtXWQp4Fbb///e9DArvhx7EwdXJyckh3XFycnH322fLBBx+E9F9xxRXSq1cv6dSpkyxYsEBmzpwZsr24Vkr69Z1wwglRKaxitn2MVqlSRaZMmSIdOnSQO+64IyLofdddd8msWbPk9NNPd8bOmDFDXn/99Yhj2nYaAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIlD2B/Jd3LHsG3BECxS4wYsQIOf/88/M87+OPPy49evTIc1xhDhg8eLB079496iEtqJtTWNf2uffee6PuV5ydVhU3vFlAOq/Wvn17adiwYcSwnILVEQNj7Ljtttvk+eefj3F09GFnnXWWExKNvlWcQHi0bTm9cxYeHTZs2HEL6/qvtSRfX4sWLXI0t2rYGzdulKysLOdWrr/+ev8thcytKvIf//hHueGGG6KGdS3s27dv35B9WEEAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIGyIUBgt2w8R+6ilAlYRc6JEyfKyy+/LFb9NbxZcG/SpEliFWuLu1mlUzv3JZdcEvOpL7roIqdyq+17PNtPP/0UNVBs1XPzai6XK2pYcvTo0XntGtP2OnXqyKhRo+Sll16SxMTEmPbJaVCFChXkmmuuibrZ3q0+ffpE3XbTTTdFVH6NNtAC5cejleTrs4rFb731Vkws1atXl0WLFjnVdmPaQQdZVeSvv/5ajvfHUKzXyzgEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBDInwCB3fx5MRqBQhOIj4+XQYMGyfLly2X9+vViYdMFCxbI9u3bnfmFF17onGvfvn0R57R9/S1awM9Cm/lp4ceoVq2ajB8/Xiys2rNnzxwPZdvefPNNJ3xsIcXwlpCQEN4lFjaNpVWqVCmWYSFjPv/885B1WzGLbt26RfRH6/CbB29LTU2VVatWBbpitbUgdq9evWTgwIEybdo0Wbt2rfTv3z9wnGNdyKkSq1V3jeZu53O73fLUU0/Jiy++KJ07d464BKtwO2fOnKiBXwusBrfgd9DfH63Pv83m4e9Z8DZbPt7XF3w9SUlJwavOsgXTrcL0ww8/HLUac/D9t23bVmbNmiV/+ctfpE2bNhHHsg57l+wdGTt2rFNxN9Z3K+rB6EQAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIESLeDKyMjwlegr5OIQKGMC8+fPlx07doTclYUn69atG9JnKwcOHJAaNWpE9G/cuFFq164d0V9UHVu3bpUNGzY4YWI7h527YcOGUq9evaI6JcctBoFDhw45YWSrLmwB44oVKxbDWWM/RUm/Pq/X63yMWhDZAr7mmFNLT0+XFStWON4WfrZAb4MGDXLdJ6dj0Y8AAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAKlT4DAbul7ZlxxKRcYOnSo/Pvf/w65iw4dOsj06dOlatWqgf69e/fK7bffLhMmTAj02YIFZa3qKw0BBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBEqHAIHd0vGcuMoyJGDVca2aabTWtWtXsfDu7t275bPPPpP9+/dHDHvllVdkwIABEf10IIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAyRQgsFsynwtXVcYF7rzzThkxYkS+7/Laa6+VUaNGSVxcXL73ZQcEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEDg+Au7jc1rOikD5FnjxxRfltddek8qVK8cM8fDDD8vIkSMJ68YsxkAEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEESoYAFXZLxnPgKsqpwObNm+X111+XH3/80ZlSU1NDJLp37y4XXXSR9O3bV5o1axayjRUEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEECgdAgR2S8dz4irLicChQ4ckPT1dKlSoIElJSeXkrrlNBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBMq2AIHdsv18uTsEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgeMs4D7O5+f0CCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIlGmBuDJ9d8Vxc14RX4ZNPvFl6jxLp2yfiDPXC8jWdV0Vm3TskRWXiP4Si0vboi17dK6T6BNxeVzisnm8Tgm6nHB0rM5oCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAKlS4DAbk7PSwO2FsT1HvI5k++QLqdpKPew9ttkyxbUTT8yTtKPrmtQ18K6TmDX5hbSdYK6QXNdDA7sOsFdDe9aSNcCu05o18K6OkmiBnYTLbirk80r6HoFnSdp3teWk3Ve0SXuZF228Rb+pSGAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIlBgBArtaAdd7WEO5+32SvU+Xde7br/MD2ndQw7g69x3QuS3rOAvuymGXE9gVDes64dwifZxWmlebPamjgV3RkK4ryaeThnQr6nIlDe1WOrLszCvremWXeKocmbt1nFXwpSGAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIFL+AKyMj42gitPhPXtxn9Fk4VwO42Xs0jGvTbl23+V6d79Uwrs59NtfgrgV0JbO4r/AYz2dVeTW869KgrquKBniramC3qlbfrabzajbXEK8tV9e5VuUlxHuM3uyOAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIxCBQpgO7vgxxwrnZOzWkq5PXP9+lgVxn0nCuVtMtdcHcGB5syBAL8lqIV4O67hoa2K2h85o6r6XB3Zo66bpHw7yuhJC9WEEAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQKASBMhXY9WVpQFcr5GZv02m7Tls1pKtz73atoKtz3x4V0xAvTQU0nOuqfiS0666t8zoa2j06xdXWQK9W5nXFIYUAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggcKwCpT6w6z18JJybtUXnm3XSuXeLBnR17turPBripcUgoOFcVzUN7tbTsG49EY/ObYqrr5MGeF0VXDEchCEIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAuECpTKw6z3oEwvoZm3UgO4mnWyuk08r6Up6+C2yXiCBChrg1cq7noYa3LWpgQZ3dR5XVwO9FQnvFsiUnRBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAoFwKlJrArlXSdUK6G3S+XgO6a7WSrs59u/W5ZZfLZ1d8N+3R8G4Nrb7bWIO7TTW020gnXXbCu0mEd4vvQXAmBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBAojQIlOrDry9Is7g6fZK7zStYaDerq5NWgrm+XUhPSPT7vW9zR8G4TDeym6NTMJfFN3OKp6RKXbqMhgAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCIQKlMjArveAhnS1km7mag3qrtZqujr5tumFZ4RePGvHWSBBw7t1tepuc5G45hrcbe6WeK2+665I1d3j/GQ4PQIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIlCCBkhPY9Ypk7dKQbqpXMldqSHeFTlpRVw6UIK2cLsWjG+J1sgBrvIZV4/S6rdqs9rtsm1sny7D657ooOkT0nv1zn1UMtkmrCkuWS3yZOsACyplH+3VWoltlvV2tthvXUqcTNLzbzC1xNfSm7Z5pCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAQDkWOO6BXZ8GVLO2aUhXA7qZv2hF3V+0mu4WfSIWVD3ezUK2FsJN1nlFm7ucZVcFXU7SSeeSqH2JumzjdBIN7LosvGthXQ3txhLY9VlwV8O6ZmGBXWeugV2fBnZ96TpZcDdd19N0+bBONj+k00EN9R48sux4WQj4eDc1cNfXqrsnKkUrtyScqMu13I7F8b40zo8AAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggcD4HjFtj1aSA3a4tXMjSkm7lMq+laUHeHElh4tbibBXMtgFvFJg3c6txty5Vd4ragbiVdr6j9lXTdxunkTtJ1Dey6NbBr4dyibFZ912eBXQ3retOOzg/pXMO6Xg3t+rQKsVcn336fePfZXKd92r9Xr0rDvU4V36K8wGjH1sq6rtpK00qr7bbR4K7O4+oR3I1GRR8CCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCJRtgWIP7DoVdS2oqyHdzJ+8R4K6uxW5uKrDWjjXKuRW17BtDQ3d2ry6BnGr6byazqvqXIO6Hg3uujWg61TNLQXvgFXh9R7Q4LMGdb3OpOu7dXmPzvdoeFeNvbuOzIs1xKverhoa3G2twd32GtzVeVxdgrul4JXiEhFAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAoJAEii+wq5Vzs7b5JH2ZVtT9UYO6Gti1EGmRB3UtoKtVct21NYCrFV/dtXSqqcs6eWzSsK6nqgZzEwtJtIQdxqcVdrP3apBXw7vZGtj17tBpp801wLtdJ10XrdRbHM/BCe620eBuR7cktnVLXC19OFqJl4YAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgiUZYFiCexaWDTjF62qu8grWUs0qKth0SINiFoF3ZqaBa2vYdy6OtewrqeuVna1uYV1k63sa1l+rLncm+ZzvYc0vKuhXQtQZ+vktflW7d9y9Nmk57L/sW4yeg1Ox3VwSUJnrbh7ols8WtmYhgACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCJRVgSIN7PrSNKi7Wqvq/qBB3YVe8W5SxuwioLS8p1XR1YCuu4GIR+dxFta1uVXWLc8B3by4jwZ4LbybtVmDu0cne1YW4C2y6rsefV6NNLjbSavt/k6Du820ynEFgrt5PS62I4AAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBA6RMomsCuVyRri1fSFnslc66GQFdp8DOtCHAqaeizgQZzG2tIt5GGc21qeKRiqyuuCM5XDg7py9JMtVZEztqoIesN+uycScO7m/QZHigCAK2G7Gmp1XZPcUniSW6Jq+vWh1oE5+GQCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAwHESKPTArvegVtX9xSvp32vg80ef+HYV8p1pwNNdT6vmNtXqrE01oNvULfEa1PVU1eqsBD0LF1urIWfv9Ummhnaz1urzXOsT79qjlXfTC/dUrpr6PE/S0G43rbZ7ovtIVeTCPQVHQwABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBI6LQOEFdrWqbqZW1U1f4JWM2V7xrtH70WqthdI0iOuqrnncZhrQba5TikviNajrqeESl6dQzsBB8hBwKu/u0vCuBXdTNcC7WqvvrtGqu3t0R332hdK0KrI7RSShu1sq/M4jcXUIYReKKwdBAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIHjKlAogV1fulbVXeGVtJleyVyoIc7dhXRPCRrUraeVV1tqSPcEDek212q69TWkW0GDnLTjJuBL0+DuJp1Wa3h3pYZ3V2gl5S16OZmFc0muGvrMT3ZJhZ5abbeFW1yJPO/CkeUoCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCBwPASOObCbvccn6Yu1su7XXsnW4KZkFMJtJGml1SYa0m2lId0TddLQZlx1qq0WgmzhHkIr62ZZ1d2VGtTWZ5+13Cfe9foOpBXCaTSs7dHnn9jbLYkdtZpyVUK7haDKIRBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBA4DgIFDywq7nMzM1aVXe2VzK0sq5vk1699h1Tq6ghzaYu8bRxSUJbnVLc4q5EUPOYTItpZ+9+rbKcqtPPWnV3mQZ31+rLcOgYT66P3tVI34OeLknqpqHtem7tOMZjsjsCCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCBQzAIFC+xmayHdNV45PD1bMudpMHPPMV61VdRtppV022s4s51b4nXZnUwy8xhVj8vu3oNacXeNBneXatXdJUeDu8dacbe6SPypbkk60y0JTTW06zkut8ZJEUAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgQIJ5Duw68sQSf9FK+t+ni1ZPx5jFdUEDeo2Fonr6JZEneJTCOoW6CmWwJ0suJuxWqcfteKuTt4NepGZx3ChyfqedNJKu+d4JKGlW1z67tAQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACB0iCQr8CuL80naT9pWHeaV7KXa1i3oAFMLZLqqmNBXZcknqxVUzWA6a5MRd3S8MLk9xq9+31OwDvjBw3uasVd33Y9gje/Rzk6XkO6nrYa2j1fA95aidmVyDtTQEl2QwABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBYhSIObDrPaTBy8VeOTwtW7wr9AqzC3iVlTV02dolCado6LK9W+JqauiS3GUBMUvJbprtztqh788Sr2TMPxr2PlDAa4/T9+dEl1S44EhVZncSL08BJdkNAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQSKSSCmwK73sFbWXaCVdadqWHe1XllBKqRq0NLdSCTegro6xTfSCqnaRys/Ar4sLcq8zivp87ySqcFd7wa994IEv7VCs/sEkaSLPJLYSaszE9otPy8Rd4oAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAKRTIM7BrYd30hVpZ9yMN667SO9RqqfluWlU3rr1LErtrWLetBiwrUxU134ZlaIfsfT7J+FmDu995JWupvlAFqbarr5BbK+0mXeyWCidp+LsC71QZekW4FQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQTKlECugV1fhkjaomw5/KGGdVfofee3sq5mKF0NRBK6aqjytCNVdcVTpvy4mYIKaGXdDK22mzZbq+3O8Ypvix4ov2Fwq7TbSivtXuqRCh084koo6MWwHwIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIFB0AnE5HloDlenLNVD5iVe8K3VUfsO68RqmPEGr6vbWsG5nt3iqUQE1R+vyuEGD2wkpR96LtLr6rs3Q98wqOGfmA0PfSe+vGirXd9StFXYTW2uCl0B4PgAZigACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACxSEQPbCrlU4zUjWs+1m2ZP+iKxrezVerKBLX0SUVznJL4olucWmYkoZANAFPdZck9/CIp6ZL0r70StYSfd8ORRuZQ5++m9nLfHI4OVtcSUdCwMLrlgMW3QgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggcDwEogZ2s7Z45fBX2UfCk/mpeGp3UF0k/lSXJPXxSEJTrXiqv2gI5CZgge4KHTziruySw1WyJXOuhnb35rZH2LYMkazFPkmrqpV2K7okri6J3TAhVhFAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBA4DgKRAR2s/dptdLvtdLpfA1NHs7flblqa1j3dLck9XJLfD1N6pKbzB9geR7t0eq4za0as752Fb2SOdMrvh35ANGqvJlztSp0LZHkM4+Ef/OxN0MRQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBIhMIqX/r02q66Uu8kvGdhiV35++crnoauDzbLclneyS+PmHd/Okx2hHQgHd8Q32HztHqzGdpeLdO/lx8u0QyNOibvlTf3/xWhs7fqRiNAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIxCwQEtjNXKdhR6tsuiHm/Z2BFtZNtLBuL4/E1aKsbv70GB0uEFfbJUm9j4Z264ZvzX3du04kTd/hzA3e3AeyFQEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEECgmgUBgN3uPT9LmeCV7uU8kH1lHV22trNvHLUmne8RTg7BuMT23Mn+auJouJwCe0Fsr7eYnBK7vbvbPPkmfp+/yXn2XaQgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggMBxFjgS2M0WSf9Zq5LO17TjwXxcUXUN656hYd2eGtatTlg3H3IMjUHAAuBJZ3gkvqe+W9Vi2ME/5IBI5jyfZCzX9zkf4XP/7swRQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBwhRwArtZ27ySscArvs35OHSySHxXC1S6JS4/FVDzcQqGIhBXW98xrbIb30VDu/rOxdq8GzSw+4NXsrZRZTdWM8YhgAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggEDRCMT5MrW67hKvZP+swUattBtTixOJ62hBSo/E1TtSpDem/crAoOnTp8trr70mffv2lSuvvDLHO1qyZIl8++23EdsrVaok9evXl44dO0rdunUjthdHx5w5c2TBggXOqVq3bi19+vTJ12k3btwokydPdvb5/e9/LzVr1oxpf6/XKxMmTJCPPvpIUlNTpXHjxnLuuedK//79JS5OX6ocWnx9reKsl+jbmy1ZC/U9zcphYHC3vstZP/kk/USveGp6xBUfvJFlBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAoPgEXAdXpvkOvJct2fM0CBljMVJ3Sy12epVHKpzkEdFf5aVZ4LRFixZigVVrhw4dyjFo+vrrr8sdd9yRK81ll10mw4cPl9q1a+c6rjA37tixQ1q1aiX79+93Djto0CB5+eWXYz7FlClT5JZbbgnsv3DhQmnXrl2e+6enpzsh508++SRibNeuXWXatGliYeYcmwZwD/+QLYffzxbvqhxHhW7Qorxxp7mk4tUeiW9UvoLloRCsIYAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIDA8RRwpy/zindl7GFdlxZTTejhloTWGoAsR2Fde0izZ88OhHVt/csvv7RZrq1ly5byr3/9y5kef/xxueqqq6Ry5crOPlal9uKLL5bdu3fneozC3HjvvfcGwrb5Oa6Fk//0pz/J1VdfXaD9hw4dKv6w7gMPPCAzZsyQv/zlL46FVfz9wx/+kPvl6LuW2Fbfu+5ucdXIfWhgq77W2b/4JEMnXyxVeQM7soAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggUnoA7a7mGGWPNi8ZrxdJOLqlwskfcyVq+tJy1sWPHhtzxO++8E7IebaVt27Zy3333OdOQIUPEjrF9+3b54osvnOFWofaKK66QAwcORNu9UPumTp0q48aNc0KyDz74YL6Ofcopp8irr77q7Dt+/Ph87WsViYcNG+bsY/N//OMfctpppzmBXTumtffee0+WLFniLOf0m7uivntd3BLX0Urn5jQqtN+3SyRzuVeyd8RYPjp0d9YQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBYxZwZ6+Kvbquu4lWOT1FA5N1fgvrrlq1SkaMGOFUjr300kudMOaePXvk66+/lsGDB8ukSZMCF7lz506nz6qtZmVlyVtvvSW33nqr9OnTR26//Xb55ptvAmPDF3799Vd5/fXX5frrrxc7z9NPPy1WmdXr9YYPlUcffdQ5z9atW2XKlCly2223Oeew6rIbNmxwxts1/vOf/3SOZcd74oknZP369RHH8ndYhVl/uNTOa83Cr3ac/Da32y1nnHFGoOLsrFmz5KWXXsrzMHbPZjpv3ryoY//3v/85261yb3jbt2+fDBo0yOl+5ZVXpG7duuFDcl1fsWKF9OzZUxYvXiyXXXZZYKzL9du7EOgMW7B3wVpKSooMHDjQWfb/duWVV0qXLl2c1c8++8zfneM8rq5W2dV30N04xyGhG6zK7gqfZKZGviehA1lDAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEikYgzrcjxgMnicR31rDkiW4R/WXt22+/lbPOOuvIytHfP/nkE/nvf/8rV199tQwfPlwqVqwol19+ubN19+7dTl+dOnVk165dTgDXv/PMmTNl5MiR8p///Ef+7//+z9/tzD/66COxYGdws/NYu/vuu53wbvC21157TbZt2yZJSUny7LPPBjbZOd5880359NNPpW/fvmKVX/3NjmfntzENGzb0dwfm06ZNc5Z79eolnTt3losuukg+/vhjsXDsTTfdFBiXnwULKt9///3yzDPPyNtvvy0PPfRQrrtbZV4ztWq8VvE2uFkA2ir57t+/PyRQ6x/z+OOPOyZ23XbvsQSE/fva/Pnnn3eCz3FxMZa2DdrZwr7WrrnmGklISAjaImKB3379+sn8+fPFQtl5Nn33Elu7JfMkn2Rs1hBuWp57iG+bVtlN9UliB5+4K+UdMM77iIxAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEYhdwS1Zsg90pLklor5VNjwYerbKuP4h7/vnnO5VslyxZEqhCa8HSnJqFaa1aroVzf/zxRyes2r17d2f4n//8Z9m7d29g19mzZwfCulYhdvr06bJgwQJ56qmnnDHDhg2TF154ITA+eMHCulZt96effnKq2VoQ1wKtdi6rODt27Fj55ZdfZMKECVK5cmUnwGtVf6O10aNHO91W4dfadddd58zfeOMNZ17Q3/zBWwu1WhA3t+Y/9wcffCDp6ekhQy1obPdmYWir3hvcLAxrTtbyG9T1H+ePf/yjRAvr+nxawjaPtmzZMmdE06ZNo45s0qSJ0//zzz9H3R7e6a6s72IHfRebxhi+1Xc8WwO7mZvzvtbwc7GOAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIHKtAbOVSK2h13XYuiW/2W0ByzJgxTkDUqs2OGzdOkpOTnWtp1aqVtG3bVnr27JnrtY0aNUr69+/vjGndurWcfPLJzn4WOl2+fLl07drV2WbVZ61de+21TtjUKrJa69Chg1SpUkVuv/12efDBB+XOO+8Uj8fjbPP/ZtV3/VVrTzzxRCdMbBVmrVkA98ILL3SWU1JSZOjQoTJkyBCZO3eu0xf82+bNm2Xq1KlO16WXXurM/fvOmjVLVq9eLc2bNw/eJebljh07BsZaBd1KlSoF1sMXOnXqJG3atBELwH711VdiQWl/mzRpkrNo1YmDHazyroVtrVlot1GjRs5ycf5mgWlrOZ27cePGzvZYA7s2OKG5SzLa6rRGQ7ih2WXnWOG/eTf4JHujjm0ZvoV1BBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAoGgF3LEc3t1Qw7ottaJp8m+B3Xnz5jm73nHHHYGwrv9Yp556aiAM6+8Ln/sDr/7+E044QSw4a23jxo3+bpkzZ46z/MADD4g/rOvfOHDgQKcyrq2vXLnS3x2YX3LJJYFlW2jfvn1gvXfv3oFlW/Bv27p1a0i/rYwfP97ps7BvzZo1nWUL1vor3lpguaDNKuL626FDh/yLOc4HDBjgbHv//fcDYyyU668AbMHm4Pbaa6/JwoULxYLVFuY9Hm3Lli3OaS1gHa1ZdWNrFtbOyMiINiSiz13R3kmXuOv/9k5GDArq8O0RydIKu97DVNkNYmERAQQQQAABBBBAAAEEEECgkATsJ/jYfzp+euhD8uGHHzo/0aeQDs1hEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEyoBA3oFdzUN6WmiF3SahwcjvvvvOuf127dpFZbCKuTk1C2jWqFEjYrM/NOvzHQlVbtq0SbZt2+aMa9kyemlU/3kWL14ccbwGDRqE9AUHfv0Vgf0DEhMT/YsR8xEjRjh9FipetGhRYGrRQmG0DR8+XLxer7Oc39+Cq8r6w8C5HeOaa65xNk+cOFHS04+UlrVnYWHXLl26iFU49jerDGxVhq3997//lbi42Aoq+/cvrLlVQ7YWHMQOPra/33f55bkAAEAASURBVALbCQkJwZtyXU5IcYunuQ4JfTWj75Mt4tXAbvYOArvRgehFAAEEEEAAAQQQQAABBBAoqMBHH30krz37bzlhW6qcsGeT1F652PkpPr/++mtBD8l+CCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACZUwg78CuFj+N07Cup1poKrJWrVoOxd69e6OS7Nq1K2q/dSYlJUXd5naHXs6ePVoW9WjLKVDrr9q6e/du/9BCnVtAd8WKFc4xhw0bJlY92D89/vjjTr+Fir///vsCnTc4aOw3ze1A9evXd6oXW0D3q6++coZ+8MEHzvyWW24J2XXo0KHO+tVXXy1NmzaVnTt3BqYDBw442w4fPuyEou14RdXatm3rHHrdunVRT7F+/Xqn3z8u6qAonZ7q+l5akLxSlI1RurzbRbJ3RtlAFwIIIIAAAggggAACCCCAAALHIPDEE09I9/hMOTelgZzX7kTpWMElKYd3yciRI4/hqOyKAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCBQlgRCE7JR7szdwCVxDXRY2Mju3bs7o+fOnRuxl1Wb/fbbbyP689sRXFV3w4YNUXf/6aefnP6OHTtG3X6sne+++27gEBaIDZ/8G8eMGeNfjHmemZkp48ePd8ZfddVVMVfAveGGG5x9LKiblZUlo0ePdtavvPLKkHNPnz7dWZ8wYYJY0Dd4+tvf/uZss30bNWok4fuGHOgYV0488UTnCP5nFX64pUuXOl1t2rQJ35T7ur6TcQ3d4q4XGibPaSffTp94d1NhNycf+hFAAAEEEEAAAQQQQAABBPIvMHXqVKmdtl/Ob//bT7yxo9x5ZneZP/3zwH8Czv+R2QMBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQKAsCYTFcCNvzVNPxFMnMhDZrVs3Z7AFPxcuXBiyo1WWWbJkSUhfQVbi4+PFHwz+7LPPIg6xfPlySU1Ndfo7dOgQsf1YOyxQ++qrrzqHmTRpkowYMSJi+uKLL5ztY8eOlUOHDsV8Sgs1Dxo0SGbMmOHsc/PNN8e87wUXXCCVK1cWC+JalV2rjmuB35o1a4YcwwKwOU116tQJjLUxFtotqtauXTvn0O+8846E/zjQLVu2yDPPPONs94/Lz3XE1XWJu25se/i0qLB3jwZ2s2MbzygEEEAAAQQQQAABBBBAAAEE8hKwr4EMOb9XxLB6VSvL2U3ryahRoyK20YEAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIFD+BHIP7OpWdy2XeKpFBnYHDBggZ599tiPWtWtXJzD6wAMPiC3bN6uCA6HHwnrppZc6u99+++0ye/bswKEs6GkhVWvnnnuuVKpUKbCtsBa+/PJLJwxr4Vj/vYYfu0ePHs69Wmh22rRp4Zsj1letWiUWXO3bt68ztwFWMfe8886LGJtTR3Jyslx33XXOtf3pT39yhvXv3z9iuFX5Wbx4cdTp/vvvd8ZbaNjGvPHGG866BYntmL1795ZFixZFHDOvDgs42zvw3nvvBYaeeeaZ4q+W/OCDD8revXudbRZwfuSRR5xlM77iiisC+8S64Kmugd2a+n7m/iYfOVyWBnb365SmoV0aAggggAACCCCAAAIIIIAAAsco8Mknn0i1g3vk5KYNox6p7+86yNwvP5OVK1dG3U4nAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIFCSBOx7GjbZ90Bs4nschft0co85JmkOspqIKyHypFb91oKnFpa19uGHH8qwYcOcart33323DB48OHKnAvTcc889TqDVdu3Vq5e0atXKCYQ2adLE+bGSVh129OjRBThy3ru8/fbbzqDrr79eEhKiIOhWj8cjN910kzMu2nVMnjzZ2df2t8mu95ZbbnG8bKdbb71V/vOf/zj75+e3fv36OcOtwrCFXc8555z87J7jWKuWbKHbWbNmOdWEcxwYZUNWVpYT9rVjDBkyJDAiLi5Ohg8f7qw7Pyq0dm2xIHbjxo0Dz27kyJFiQeT8NlfikXdUKsS2p++gT7yxF0KO7aCMQgABBBBAAAEEEEAAAQQQKJcC8+bNk2u65PwTfxpUqyIpFeJk48aN5dKHm0YAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIHSI/DZZ5/JqGHPydpPJ8vWbz6T7yeOc9atn1Y4ArkGdl1atNZVMbK6rv/U1atXl48++ki2b98ukyZNkvfff99JVD/99NNi4c3w5nLlfCwba8FOaxaC9Tfb57///a/85S9/kc6dO4sFVC0QmpKSIlYd9uOPPxa7jmgt+Di23X/8aGPDtx08eDBQJfaaa66Jtkugz1/p18Kou3btcvrd7ui0Fq610K5d+4wZM5wga4UKMaZNA2cU6datm2NgXVbtOKdAcdAuIYv+6wu/73bt2jnXZ4MvvvjikH2CV+w+rAXvb8t2X9ZuvvlmZ+7/zcLWFupu2PBI1SFL31tVYqvEPHbsWLn88sv9Q/M9d1dyib2rsTSfhnV9h6mwG4sVYxBAAAEEEEAAAQQQQAABBEIFVq9eLTZ9/vnnganHCU0Dg1J37BKbpi9f6Uy2wbZ/8cUXgTEsIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIlTcC+9zFrwhhpl75HmuzbKt0rx0nv6hWcdeu37bRjF3BtuvxAjulFd4pI0u89knTybwFa/ymXL18uNlWtWlXOPPNMf3dgfsUVVzhh2jfffFOuu+66QP+xLuzevVvS0tKkfv36x3oo9s9BwOfzSUZGhiQmavnaAjR7PjmFkNPT02XZsmWyadMmqVu3rhMOLkhl3eDLOjw3Ww69ly2+dcG90Zc9J7ukYl+PJLSIHqiOvhe9CCCAAAIIIIAAAggggAAC5V3AfhrNuqVLJKVWdYk7fECDubvl9XcnyKz7B8oB8cj0X1bLhu075Mym9WXD7r2yZs8BqVujuiRUSJTxm/bxhazy/gJx/wgggAACCCCAAAIIIIAAAggggAACCCCAAAIIlGABK8j5aNfWcmpKk4irnJu6Tt5YtVX+9vRz0rx584jtdMQucKSkbU7j47XCbg4jrDqqv/LsSy+9JH379pVq1arJokWLZMKECU5Y1w7bu3fvnI5eoP6cqukW6GDsFFXAqhoXNKxrB8wprGvb7LidOnVyJlsvjOay91SnHJPnwSfRws++7OAOlhFAAAEEEEAAAQQQQAABBBDIWcB+0s/06dNlzqTx0qtBTWmUkCGNqleV7C0HpXGVirJw2a/ybuoWaVUxQVpXrCBN4nzSpHYV8el/Zt2wdYtM37JbNmaK8xOD7KcF0RBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBkiTw5ZdfSuLOLRrWPTfqZVmI95sVa8SKtz766KNRx9AZm0DuFXZbi1S8xiOJ7SMr7NrhBw4cKKNHj87xTMOHD5dbb701x+1sQKAwBNIWH6mw612R99E87V2SbO90ayrs5q3FCAQQQAABBBBAAAEEEEAAgb///e/iXrVUetStLqe1aBoAmblyjYyZ/q0k6T8vD2Vkyt1d2kjLurXkm7Vb5Jv1W8T+1dm0crKMX75GvPqTbLqcf4lUqF3X+SlFffr0CRyHBQQQOP4CFsy3ydqaNWukWbNmzrL9xsdrgIIFBBBAAAEEEEAAAQQQQAABBBBAAAEEECijAmeeeaYM/V3LkO+DhN/qev3pgheNel9WrlwZvon1fAjkUD/36BG8Wo1Up5zayJEj5cILL5QxY8bIDz/8IBs3bpTOnTvLKaecIv369ZPTTjstp13pR6DwBKy0bi7vaciJ7DumNtEQQAABBBAoYwIWLPCHDKLdmn2CXRaa3ae/Rbtff+XC4JCFfzxzBBAoXQL+j/doH+t2J/bxnp+P9cI+XunS5GqPReDtt9+WjwdcIY2rVws5zNqdu6WRBnLHLF0tky/pLtUSPPLtuq0yW8O6SfqPVNvWuFIFebBLa9l9OE0W/zRX4mvVlW+2bRL7yTZl5e/mEBRWCl2gvHyOV+hw+TjgG2+8IWt/+lHkwD5pWrOarF+3TlxNmsjanXuco8yYMcP5CWJ8zOYDtRwPLY+fb/jv2R67//M2/l1Wjj8IuHUECkkg+HMgWw7/tx9/LxcSNIdBAAEESpFA8N8N0S47v18rjHYM+hBAAAEEEIhFwP+1EP/XQcL3KY1/J9k9bVi+VE675uzw2wlZb6w/fdB1cF9IHyv5F8g9sKs/stGXlftBr7rqKrGJhsDxEvDF8J4Grk3feFf0gtGBISwggAACCCBQmgTsk+evP5oia9euFd/+PdKkRmiYaN2uI0GDtUuXSEqHk6RXr16l6fYC12r3+dZbbzn3aZ1N9EeQ2z3bjyL3t8OZmVK3fkPZnpYuyXXqO/daWu/Xf0/MESivAhaOsj/bmuqfaV79sy24Bf5ca9pM1mX65MYbb4z45m3weFsOPt6atWtC/qwMPp67YVPneOH7s15+BezdaZLgigjrmsj6XXtl5oZtWkU3SZrp30efamXdRTv3S4961aVng1ohaNsOHJKalSpKj15nyHdamXf0f18msBsixEq4QHn5HC/8vot73T7Gv31vjH7cVnP+bmhc0S2ntWnmXEaj9CP/43vmolkyY+sGcbvdpfZz6eJ2La/nC/58ozA+fynpjna/qUsWO/8us8/ZrNnnWdbW6udpTqtcVdxVqvH51RENfkcAgRgEgv9s8X+da53+Zxqf/mcaa4F/v5Xyr3PFQMEQBBBAAIGjAvbv42+++cb53NP/d0Mwjv/vhm8qV5PeF1/Kv9uCcVhGAAEEECh0Aft+tX09JK/vX5W27zfZ9917BP2EwdzgLLRrfz+H/8fK3PZhW6hAroFd32EN7KaF7sAaAiVNwN5TsSmG5orXwK5ONAQQQAABBMqKgH3y/MQTT0jPE5o6IQNv+r6QINqaTeucb2bYF7TOvO7GUvvFKv99NqlRVe9nr/RoVMcJ62YHBXYPHjos83+YJz/v3i/Ldu13qhcS2C0rbzr3Ud4E7M+sGR9P0T/bmkkTrXYY/J8RvGn7nD/XvtZqiGPmLnb+XMvriwLBxzPLRhrI8rfg421MIlDid2F+RMD+/gl+/8Jd1u87KD3q13C6N2kod93e/TLk5JbhwyTe45bsjHSnv4e+17e/MzliDB0IBAv4P/cp65/jBd/z8Vi2vx8a6deJrju1U8Tp/R/79jH75LSvnW8Q87llBBMdQQLBn28UxucvQYcukYt2v1+Nfcv5ezI77D+Orj7671ALT3gaNiOwWyKfIBeFQMkUsD9b3vzPSyFf5+peV/9TgH69y1pZ+TpXydTnqhBAAIGSKeD/93H3OlWdzz3Dvwfi/9rezJXfOP9ZjH+3lcznyFUhgAACZUVg9OjRkr1xTZ7fvyrL32+yr5va3895fW+urDzzoriP3AO7+zWwe8BXFOflmAgUmoB3v098B2M7nCtZA7tJrtgGMwoBBBBAAIFSINC0aVPpd9vt0izRrZ8Yr5MNes2exCpi1UeaaPURd/0m0qxle2mm/T179iwFdxT9Eu0+H3roIefHFH+78Eenwq7s2RkyuG2DBnIoI1MaH06Xy2vXK9X3G3JjrCBQDgXsz6vsPbucH0/u/3PNz+BpUEXc+uec/dn20FkXiv35kFcLPp6N3aj7+5sdL+XE9uLWH33eq31HfzdzBByBM844Q/735ONRNRrrfyKx/0Cyfs+R8MApdWvIB6u3yKzNO6V7/ZoR+3gSEmX97j0ya6WGgNu2j9hOBwLBAuXlc7zgez4ey/b3w4wNa+SZT7+R7vof4KzZx7a/2certQ36051uKMWfS/vvh3nRCgR/vhHt8xf/5xuxfv5StFd77Ee3+21YtZK4Dhz5e9D+PWqtadMjVTDtc6szdNmllc5oCCCAQKwC9mdLVlaWuLbYn6T6d7BOZfHrXM7N8RsCCCCAQEwC9u/j6667LuJ7IP6dA1/b068V2t8jNAQQQAABBIpS4Prrr5e1WlBG9Osh/n+v+M8X+DuplH6/yV+13n8/Oc1dGruL5XtzOe1Pv2YXN12eSyJXiw4lXumWSpfHiSsBLgRKnoAvQ2T/hCzJmOIV0V95tYSL9X2+yiPuioR287JiOwIIIIBA6RJITU0Vm/wt+MdQpKSkON3+uX9MaZ3779M/999H8P0FL/u3M0cAgdIlEP7nWvjV28d5fj7Wczue/zj+efi5WC/fAmd17SLDL+sj9mOegtvMlfojGectkO/Wb5UXzugotZKTZPK6bbJp7wFJEJ90Cwrt7tQq8Ev2pUmFZidIdu2G0kt/RGOfPn2CD8cyAlEFwv/sKsuf40UFKIbO6dOny1dffSWebRudszWtWV3Wr18njRs3kTVp2fqf4BqLq0p1GTBgQDFcDaco7QLhH7PB9+P/PMM/D95Wmpftnq3558H3F7xcmu+Ra0cAgeIXsL+fgxufAwVrsIwAAgiUT4Hy+Ll2+XzS3DUCCCBQ8gXK4t9Jdk/ndu8qi/96d54P4KTHhsmKzdvyHMeAnAVyD+zqfvG9XVLx6jiJq1OyAo6bN2+WDRs2yCmnnJLz3ZWBLYcOHZLdu3dLrVq1JDExscjuKCMjQ7Zv3y7JyclSvXr1IjtPYR84a6tPDrybJVkzfXkf2qMB9L5uqXxZnP6X7LyHMwIBBBBAAAEEEEAAAQQQQACBkSNHyqavP5Ee9WpIt+ZHqgaaigV2x0z/VqolxsuuAwflvm4dpHmt6jJj7RaZsW6LtKiSLBv2HZIN+w/Kcv0f9T0vvkzanHqaE9QlwMR7hUDJE/jyyy8DF+UPBTVv3jxf/zkkcAAWEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBUiTQokULmTbwKmkUVrwk+Ba+X71OHpv3i3z99dfB3SznU0CTi7m37C0i2dt9JSqwu2fPnkBp5TfffNP5EQi530Xp3Tpw4ECZOHGizJo1S7p06RJxI3PnzpX58+dLlSpVpH///oHtM2bMkKVLlwbWc1po1aqVnHXWWXL48GHp2LGjcxzbz4K7paFZYNcbY2jfVVnEXU2D54R1S8Oj5RoRQAABBBBAAAEEEEAAgRIhYP8ufzU7W8ZMGi+b9uzTL1ZVkYbVqsqc1PXyy4498vc+p8rnW/fK5LXbpEd6liTFeWTgSSfKTK28u/FQmmRXSJYftq+VMUMeFgv/0RBAoGQK2NfHaAgggAACCCCAAAIIIIAAAggggAACCCCAQHkU6Nevn7w7f67cd87pOd7+U5/MkKHPv5zjdjbEJpBnYNe72SdZm3yS2EYP6I7toEU9KisrK3AKC5oWZ5s9e7ZMmzZN2rRpU+RBYUujW1jXPiDCw7pm8NRTT8mjjz7q3H7lypVDAruTJ0+Wl1/O+wPkkksucQK7VatWlWeffVYGDRokzz33nAwdOrQ4WQt2Lq9I1kaveLfEUF1Xz+Cq4RJP6SkeXDAT9kIAAQQQQAABBBBAAAEEECh0Afu3ss/nk2VLf5SVew5KSlyWpDVqIfLrWmnTormc3q22jJw5T1akp8vG3fskJU1/EkxSstSpXVua168jaytUJaxb6E+FAyKAAAIIIIAAAggggAACCCCAAAIIIIAAAggggEBhCNx8883y6P2LZa4WKzk1pXHEIT9YuFQOV68jZ599dsQ2OvInkGdgV/ZpKHKdT7L3+jTsqNVJS0CrVauWLFiwQOzH011wwQXFekWLFy+WJ598Uq666qoiDexma/Weu+++27k3/9x/o+vWrZMbb7zRqbrr7wufX3zxxdK4ceQHj3/cuHHjZOHChVKtWjV/l1x//fVy3333yWOPPSY33XRTrvsHdjqOC9l79L3Ud1P2x3YR7tpaXLdmyXiHY7tiRiGAAAIIIIAAAggggAACCJQUgdtuu01WrVrlTHZNPfXHQ81d9qtkxCc6lziw5ymSumOXrN6+y1lvXruG2P9Dn7dmg5xzzjlOH78hgAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAiVNwH5CYL8//FG+Hj9GNu9dKg30Jw02rFbFucx5a9bLp9sPlI4CoCUNNsr15B3Y1Txk9iqfZK7zamDXE+UQx6erQ4cOYlNZbfPnz5dly5ZJy5YtpVOnToHbtG8OnnrqqbJ//36nyu+DDz4ot9xyS2C7f6FPnz5iU7S2a9cueeKJJ5xNf/jDHwJDEhISnGq+r7zyiowfP17uvffewLaSuJCZ6pXs1XplsRTY1VfXXV8r7NYisFsSnyXXhAACCCCAAAIIIIAAAgiUBoEWGtK1yd9OOeUUeW/BQhl8Vk+nK6VWDbEpuD3/xUzp3uO84C6WEUAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIESJXDuueeK1+uVGR9Okl92HZLELbvkVP0+yI9xe+X6224U2047doG8A7t6Du8GDeyu8ElCS5+4k13y008/yeuvvy41atSQv/71rxFXsXnzZnnqqaec/n/+85+SnJzsLFsA1YKgVqV237590rlzZ+nWrZtceeWVIcfYuXOnPP7441KpUiUZMmSIjB49Wr788kux/s8++0wsWGrH3bZtm9x///3SqFGjwP5ZWVnyzjvvyLx58+Tnn3+WBg0aOOe5+uqrpWnTpoFxtjBmzBiZO3eu/P73v5fKlSvLBx98IDNnznTO26VLF7nzzjudZRubmpoqw4YNk0WLFtmqfP/99zJ48GBn2a6xfv36zrL9Zsf59ttvnbH16tWTjh07OqHaunXrBsbktfDJJ584Q6699tqQoTt27HDCuha0tUq/FuDNb3vppZecY1x44YVi31wMbpdddplYYHfKlCklOrDrPeiTDH0nvZtjSeuKuKpqdd0GLuf9Db5flhFAAAEEEEAAAQQQQAABBBAoqMCAAQNk0KUXBAK70Y6TeihT/nzGGdE20YcAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIlBiB888/X0444QRZuXKlMzXV9YHni9NXYi6ylF+Ia9PlB2JKPLrbuaTi7z2S2NrtBGX9Idnly5eLlUQObhb4vOuuu6R79+7y9ddfO5tGjRolwdVcg8cPGjRIXnjhBYmLO5Iftgfetm1bJ0RryeyJEycGhu/du1eSkpKkVatWTojWKtFaINaaBXgvv/xysb7wZoHcL774wgnv+rdZZVoL995xxx1OKNiq1ga3lJQU51i275w5c+T00+2HWUY2CyC3adNG0tLSxO5l3LhxEYPsGFOnTpWuXf+fvTuBk6Mu88f/zExuCCEc4QgkHAnhCiKnHMohKB7giSueKArqf13wpyuygtd6rKL+dHd1V5cVgRUE8aeAKIorh4ggICBguHNzhCsk5M7M/L9PhR4nk05mJukkk8n7+0qnqqurvlX1ru7p6u5PP33wCrfVm/CSl7ykqrCb4d/Xve51HbNMmzatCjwff/zx1bR77rkn9t9//8oqA83dtaeeeipGjx5dzfbHP/6xWrbzMll9N0PG2WbMmBGjRo3qfHOfGV94X1vMv7Q12u7v0d03WvZpimFvK/ff3Zr7zD7YEAIECBAgQIAAAQIECBDY8AVeeeB+8V9veVVsO2L4Cjtz57SZ8b2ZL8SFF164wm0mECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIbFwCzdGjGrulyu7kUtH0nrZoK/neDHHWAqNXXHHFCmKXXXZZNe3kk0+uhhkSrYV1M8ib1WkzVJtVcrN9//vfjz/84Q/VeOf/MkCbYd1Pf/rTVWXdrFqb1XVX1rJybPab25dB16zoe/nll8fhhx9eVZT9+Mc/XnfR7373u3HIIYfEtddeW1Xc/eQnP1nNl1V1s89sGaDNcPI555xTXT/iiCOq6zmt9nOYWf03w7q5/qyQO3v27Ljjjjsqq9yXs846q1q2u//mz59fbXvOt++++y43+5gxYzrsl7uhh1cyGJ0tQ8AZ9O3asmpyLdCbYeC+2PI+uPgv5b44tWdh3byPt+zcFANLhV2NAAECBAgQIECAAAECBAg0UuCAo4+Ny/+84uvnJ56fG1+95obqV30auT59ESBAgAABAgQIECBAgAABAgQIECBAgAABAgQIbJgCA5q2jGh/sgcbPz9iyZ1tsXhcUwx5SUu85z3viauuuqoKqH7sYx/r6ODxxx+Pm266qbqe1W6zZdXWr33tazFixIjIEG9T07LgZFbGzaDu1VdfHRnGzRBs13beeedV6+o6vd71DM7mel796ldXFW9znpyWAdQM5OZ2ZRh22LBhyy0+fvz4yJBxbXqGZGfOnFlV381wcbYhQ4ZUlYS33nrr6vpWW221QmXhDPxme/e73x1HH310NT5x4sTI6sLnn39+1X9bW1s0N6+6ymvnSrm18GzV2Rr+l8fm3HPPrXqpBY/rdVnb/87bUW++9TKtLWLRA22x9O4ysqBnW9BUDtnAEtht3lRgt2di5iJAgAABAgQIECBAgACBngqccsop8fmPnxG/vu/BePVeu1WLPTFnbnzn+j9G89jxy/1qTk/7NB8BAgQIECBAgAABAgQIECBAgAABAgQIECBAgED/ExjQsmtTLJ1VKpX2oFhp29QSlry9LQaMbq5CscOHD48777wzshLtzjvvXOlceeWV1fDtb397bL755tX4hAkTIi/12qte9aoqsDt9+vR6N8eb3/zmutPrTaxV9O16W+dKslntd+zYscvNcsIJJ3SEdWs3vOY1r6kCu4888khtUrfDWr8XXXRRFT4+5phjYsCAAVVQ+Ywzzuh2+doMTz/9dDXayLBudvjNb36z6jerI++3337VeL3/ttyypLhLq21HvXnW17S8ry7+U6muW//usuJmlYxuy/imGFACuxoBAgQIECBAgAABAgQIEGi0wG677RZvP/XD8ePvfTeemjsvttls03j4hYXx0KARce5Xv9ro1emPAAECBAgQIECAAAECBAgQIECAAAECBAgQIEBgAxVoHrB7CTIuy9V2vwtLIpbe1R6L/twag9oHd1S+veKKKzqWvfTSS6vxd77znR3TciQr22aV2QzVHnrooVWAN4Ohp59++nLzdb4yatSo2HTTTTtP6nY8A8Rf+cpX4k1velNkUHeHHXaIQYMGrXK5/HCta6tNW7p0adebVno99zmDy7NmzYoMAW+zzTZx4oknxg9/+MOYPXv2SpfrekMtKLvFFlt0vWm1r2fF4G9/+9vV8mefffYq++mrgd22+e2x8I7WWPqXki4v98WetKaRpbpuuY8P2HrVVY170pd5CBAgQIAAAQIECBAgQIBAPYH8YuzfldDunwZuHjeUXyhq23P/6hduVvbl5Xp9mEaAAAECBAgQIECAAAECBAgQIECAAAECBAgQINC/BZoH7d4cLeNKaLeHBUjbnypVdv9Qqpw+0BbvePuyUO5ll11WKT3++ONx0003RQZtX/nKV3bIZfXcl7/85XHaaafFxRdfHLfffnt1W6M/uPrP//zPOPjgg+Ozn/1sVbX3ySefjAyfHnHEER3bUm+kubkxYc7tttsubr755upDuYkTJ8bcuXMjw8ynnnpqZXL11VfXW/0K0wYPHlxN601YeIVOukw499xzqyn5IeJLX/rSLrcuf3XJkmVp2KwO3Gdaa8TiSW2x+A9t0f5MD7eq3KdbdmuKQbs1R1Mf2pUebr3ZCBAgQIAAAQIECBAgQGADEsgv7p533nlx6j9+Kv7xH/9xpb80tAHtkk0lQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBBooEDzwO2bY+DEpshKpD1tbY+USqfXt8VLRr00dhu/WxXAnTJlSlx11VVVF+9973ujc9jzBz/4Qdxzzz0xfvz4uPbaa6sg6wMPPFCFW7/+9a/3dLWrnG/OnDnxD//wD9U855xzTjz88MMxY8aMuPvuu+Oaa65Z5bKNvLFWNfiOO+6IDDBfcMEFHQHZrPo7b968ble31VZbVfM880xPk6mr7nLq1Knx3e9+t5opbbprtQq/GbzuE60U1F08ta26z7VN6fkWNW1ZquvuU6rrbteYQHbP12xOAgQIECBAgAABAgQIENhYBXbfffeNddftNwECBAgQIECAAAECBAgQIECAAAECBAgQIECAwCoEmpsGRQyeWKrs7pnlSFcxZ+eblkYsvbuEdm9oj4+edEZ1S1aS/clPflKNv/3tb+88d1x33XXV9Q996ENVtdtaBdmcWLttuQVW48ptt91WLTV8+PA466yzYsyYMR29ZGi30e35559focvHHnssJk+eHIsXL65uy/DuSSedFL/+9a875r333ns7xlc2kstlmzVrVjSiyu5Xv/rVqr83vOENse+++1bjq/ovKxNn6yuB3SVPtMWC61pj6T0luVvuez1q5b48YO+mGLxXqa47sEdLmIkAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgsFYEqtKjA7dtjkH7lWDjtr1YRykUu+SWtnj9dm+O7Vt2qCq43nDDDTFx4sTq0rmncePGVVd/9atfLRdAzaqvV199dedZV3t85513rpadO3duVbm31lGGaD/4wQ/Wrq7xcMSIEVUfv/3tb6MWbK11mhV0J0yYEB/96Edrk6rhpEmTOq73pNJOLbCbCz344IMdy67OyCOPPFL9JGcu25Pquu3t7VXF5Jx/m222ycF6bUufbo8FN7bFkj+VsO78nm9K0/ZR3acHjFJdt+dq5iRAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgTWhsCyNGOpRpqVSAfuX64O6/lq2p+NGHLX8DjzmHPihanL0pQf+MAHVujgrW99azUtQ64ZAj3hhBNihx12iDPOOCPGjx+/wvyrM2GXXXaJAw44oFr0mGOOiUMPPTSOPPLI2GmnneLZZ8uGNqjtt99+HT3tuOOOcfDBB8fMmTOraZ/4xCeq4fnnnx8ZID755JOrfT3iiCOq6R/5yEeiFvjt6KTOyIABA+K4446rbrnrrrvqzNHzSV/5yleqmTNMvM8++3S74JQpUyJDz9l6Uo232w7XYIbW50pY96bWWFICu/FcLzrapIR1Dywh9N3L/bmnVaN70b1ZCRAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQK9EVgW2C1LtIxsiiEHN0fLhKaIjqndd9X+ZHu8ZqsT4qSd3hujWraNN7/5zSsslOHTyy+/PEaPHl2FQa+55ppYsGBBnHvuuXH66adX8w8cOLBjuaamsg2r0bKC71ve8pZqydtvv72qtJth2WuvvTaGDx9eTc8wbK21tCxLc3aeVrutNq02rE3PCroXXXRRRxXhO++8M+bMmVPdfOKJJ0Zuwx577FGFeC+++OLIfc3w7ne+85341re+Veum2+HrX//6ap6bbrpplfOuymrq1Klx4YUXVsufffbZq+ynduMtt9xSjWbIevDgwbXJ63zY+mwJ6/6+NRb/ri3an+rF6jOju0dTDC6B3ZbNV+9+1Iu1mZUAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAg0K1A0+LFi9trc7UviVhwS2ss+FlrtM+oTe3ZsGm7EpJ8ZVMMPawlWrZceVDyySefjEWLFsX2228fXcOwPVtT93MtWbIkpk+fHiNHjqwu3S+xenPMmzcvMjA7bNiKZYkzkPzYY4/FqFGjOsLCvVnLtGnTYty4cdWy2c+6Cs++8Y1vjF/+8pdxwQUXxEknndSbTW7YvEufXlZZtwrrPtG7bpvGRAx9c0sMPbAlmv6WAe9dJ+YmQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECDRQYLnAbvbb+nx7zP9tqWz661LZdHbv1tS0TVMMekUJ7b6iJQaUcW3NBN73vvfFj370o/jZz34Wr3vd69assx4snWHqHXfcsaoIfPfdd8eQIUN6sFQDZynR8SVPtMXCG9ticbn0qrJu2YymkRGDX9McQ48uofHN3P8aeGR0RYAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECKyBQHPXZVtGNMWQQ5pjwP4l8NjLvGb7k+2x+H/bYv6vlsaSqW0R5Z+2+gJf+tKXqoU/85nPxNKlS1e/ox4u+ZWvfKWa85vf/Oa6D+uW+8riKXnfaY1Fv+t9WDeGRgw4sNx3D24W1u3h8TYbAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgsG4EVgjs5moHbtccQ44qVUr3LqHdgb3bkPZnS/DyxvaYd2UJXv61NdoXlbKp2moJbL/99vFv//ZvMXz48LjjjjtWq4+eLvTcc8/FXXfdFaeccso6qebbebvyPrLw3taYf0VrLPl9ub881/nWHoyX++iAfUpl5yNLZedt696le9CJWQgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECa0egafHixXUTte2tEYvuKSHKn7dF2/1llt5Wyx0U0bJbUww+sjkGv6RUPS2VezUCXQVaZ7fHorvaYuH1rdH2ULl1Sdc5urneUu5ne5aw7htbYsieJaxbrmsECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgb4kMGBlG9NUgo+D92iJ9oURC5aUMOUjZc7ehHYXR7Te1x4Lnm+L1ifbY8jBzTFwtEDlyrw3uuklEL5kRgnq3tIWi8ul/bEiUDc6vgqZcndqHhcx5LgSCp/gvrUKKTcRIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAEC61FgpYHd3KamwSW0W6rjti+NWPiLEtqdXCb2JlRZ5m2fXiqoPt8erY+3x+BDy2X35mjeVLXd9XjM1/uq2+aW+8T9bbHoD22x9J5yJ5m7GptU7kLNu0YMfW2prDuxOZpKRWeNAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQINAXBZoWL17cbQS3bX57LLy9VEP9ZQntTim70ZtKu7W9LtHg5rERAw9qjiH7N8eA7UvIcpVx4dqChv1FIIPfWVV30R1tseRPbdE2vexZmdbrlpV1dymVdTOsW+5LzUMFwHttaAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIEBgnQn0KLCbW1OFdv9cQrvXlNDuI2VC62pu42YRA/ZqikEHNMfgPZujZYsStpS3XE3MDWSxEglf+kx7LP5rWyy+rVTV/etqVtXN3W0pYd3xpbLucS0xeN8S1h3mzrOB3AtsJgECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQ2GgFehzYTaG2he2x6O4M7bZF64MldLlkNd1KhdSmbZti4L4luPvSctm1BC83FbxcTc0+vVjb3BLUfbhU1b2zPZaW+077k3lHWs1NHljyurs3xZDXlCrNe5cKzUPcZ1ZT0mIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIDAOhToVWA3t6t9UcSiSa2x8NpSKfXeEtpdsAZbO6hUSx37YnB3YnMMLOPNQ4Uw10C0zyyaFZmXTClh3XvaYkkJ6rZNK5u2eA02b1ipzDyxhHWPLZV1dy9h3XLf0QgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECG4JArwO7uVPtraW47iNtseB3rbHkjhLafX4Nd3VoqZy6Swnu7lMue5bg7o4luDtMcHcNVdfL4lVQd1oJ6v61BLr/0h6tk9cw1J17sXnEwAOaYujRLTFo51KeuWW97JqVEiBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgRWS2C1ArvVmkoOc8nMtlj4h7ZYfHNbtD9RppZpa9Q2WRbcHbBXUwwqVVQHjinB3U0Fd9fIdB0t3PZCCemWirpL7i9B3b++GNSdt4YrL4e+afuIQYc2x5DDyv1huxLWdXdYQ1SLEyBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAutaYPUDuy9uaetz7bHwz62x6Ia2aHukTFzSgF0YFtE8tlTb3aMpBowv4d1SVbVl85LULHlNrQ8JtEXk8V88uS2WPNQeSye1R9vUBlTUzV0cVMLb4yIGH9kSg/d98fj3oV23KQQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgACBngqscWA3V9S+sD0WPVCq7d5UqqveXQKbs3u6+m7mK6HN5lJhtWVCCe+OKxVWdy4B3m2aommwMqvdyK3Vm/N4L3myXCaXkO7D5Zg/0B7tj5dVLm7QakdGDHxJUwx+eXMM3q3Z8W4Qq24IECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgACB9SPQkMButeml2uqSx0to97ZSbfWPpdru9DJ1aYN2qlTWbdqyBHdLYLdl1xLe3akEd3dsjgEjS3C3pUHr0M0qBdpbSzXdZ0tId3oJ6E4pQd1HSjXdR0tQ97myWDn2DWkDsrJyCeu+rDmGHFgC2tuWA6+qckNodUKAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAisP4HGBXZf3Ie2F0q13UltsaiEdlvvezHQ2cj9G1oynNuV4O7OEQPGvhjcHV2ub1bCu8KdjZSugritz5dw7mPlMq0Edae2R+vkMvnxUkV5YWNX1bRFOZ57N8WgQ0pV3d2bo3kTVZQbK6w3AgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAYH0JNDywW+1IVtt9rIR272yLxbeVSqyTS8Bz0VrYxeGlwO4OTdE8poQ9y3DA6FJ1t4R5m0c0RVOp1qr1XqC9VEVunV0CuiWU21qO4dLpZTithHRnlGP4Qu/763aJISVnvUsJ6h7YFINfqqput15mIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBDY4gbUT2H2RoW1Beyx+pFxuL8HPu9ui7YlyQ+taMMpirJuW4Of2pdLuDiXEm8NtS4B3mzLcqgR4h5YZFGytD19yuHmcWp8qId0ny/CJDOqWy4wXK+lmSLfM0/DWkserBK1fUirq7t8cg3YtIeshDlLDnXVIgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIrHeBtRrYre1d67MltDupVNstFXeX/rU92p8pt6yNEGhthaVqa9PWy4K7zSW42zKqXPJ6Ce+2bLGRB3gzoDu/BHLLMWl9ulxKULd1Vpn2YlC3/emCuLAGuRaGmZ3eqgR19ypVdfctQd09mqNlpKDuWpDWJQECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQINBHBNZJYLfa17YoFVzbYtG9bbHkLyUk+mAJ7s4ut6zN4G6uOLOgWX23hHabR5Xh1mW4ZQnvblnCuyUo2rx5GW5WqrsOzpn7X2tfVIoaz2mPttnFPEO65dJWAtNtJajb9uSyYaytKrqdOTOoO7K4T2iKgfs0xeC9WmJAOSbR3Hkm4wQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgACB/iew7gK7L9q1Ly3B3cdKcPe+Ety9rwRIHyqJ3XUR3K0duwzwDi3h0S1KVrSEdptzWIK7VZh0RLlewrvNw8u0TcuwXJoG1hbs28P2xSV8O6+EcOfm5cWQ7vNlvNi2P1eGz5bbn3mxunFW0F3bQekaVy2oO74EdfcuVXX3ao4B2zZH04DaDIYECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgf4tsM4DuzXO9iURS0pwd/Gktlg6aVlwt72ESqNU4l3nrRbi3bwEeTO0O6IMNyuh3eElsJvh3WFluMmLwwz7lkvzkDKtXJoHla1tWctb3FpYSqXc9kUleLughG5L4LZ9QZk2v4zPK8MS1G0vVXLbSiXd9jk5LLeXsG5VwbjMt87CuZ0ZSuXcpqxkXIK6A/YoFXX3KEHd7UpQdwMJQHfeFeMECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgTURWG+B3dpGVxV3nyzB3ftLxd0HSnD34RI0fbLcWgK9671lkLcEcjOsG+XSlBV3hy0L7GZot2lohnbLMEO7Od/Acr0EUqvqsVlBtlyaMsyb/WSl2RJircbLoArRlnBye1a6zWEJ5UZeSgXiNGlfUhxK1dx0aK/CumWYYd0SwK0u88uwhHQjw7oltBs577qqmltWtdKW+79t2fVxJai7e6moO6EEdUepqLtSLzcQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAEC/V5gvQd2O4RLaHXp0+2x5JES3C2h3aXl0ja9JFAzlNrXW4ZyO0K7ZTyryLaU8O6Asv0Z3K0FdavQbvmvTG7PpG75VwvuLgvqltuWlolLm6rAbhXCzSBuBnn7etu07PKYpmgZV3Z/XHMM3LUEdbcs+5P7rhEgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIENmKBvhPY7XQQ2uaW4O60ZeHdpY+WqrtTShXZp8oMfaHqbqft3OhHs6rw1iWou1OpprtLUxXSHVhCu82lErFGgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECCwTKBPBnZrB6e9BHSXPlWCu1PaYunkEtyduqzqbvvsMseGUHW2tiP9aViqCTeNLIVzdyzVdMeWkO7OJay7U6mmu3VWFO5PO2pfCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQKNEejTgd3Ou9g2vz2WPpaVd9uidXoJ706PaJtZKu8K73ZmWjvjtZDu6BLS3bFU1N2xOQaWsO6A7Uo13aGq6a4ddL0SIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAEC/UVggwnsdgZve6EEdx8vAd4M7pbQbmsZbyth3vZnylyLOs9pfLUFBpdKuluVcO72JZRbgrktoyMGlqBuFdLdREh3tV0tSIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECGx0AhtkYLfzUcrKu62zSoC3BHZb8/JkCe8+GdFeprXPKXMu7Ty38ZUKDCgB3RHlMqoEdEeVoO62pYJuCevmpSWnqaS7Ujo3ECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgRWJbDBB3Y771z7kojW2csCvEufaCtB3oi2p0qA9+kS4H2mBHhnl7nLPFoRGPRiQHerEsbdsgR0q6BuCehuUwK6edm8KZpKiFcjQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBBYM4F+FdjtStG+qAR4nysB3qf/dmkrwd2250qANy8l3Ns+tyzV36vwDizh3E3LZWQJ4Y6MaM7LFiWUu3W5lMBudcnbSohXI0CAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQaKxAvw7sdqVqL8HcthdKeDdDvM9mcHdZeLft+RLcnVMCvNVlWYi3fX5ZekOrxpvB3E1eDOduVgK4I8r4ZiWcO6JU0d28VNEtId3mEsythpuW21u6CrlOgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECDQaIGNKrBbF6+1hHjnlwDvnBLefb6M5zAvL5QA77xyKQHfalgCvO0LyviC0svCMl4usbhc1lV13gFlXaUCbtOQpoih7dE0tIwPLaHbYWWYId1NyngZNg/PSwnmZki3hHVbcljmC+HcAqgRIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBNa9gMDuyszbSyi3BHLb5pXwbl5eDOwuG2Zgt4R3F5VhuWRwt31xuV4L8JYQb3sJAldh3hxmX+USbTmeI6U1lxBt/iuXHFaB2hLKrareZjg3xzOgO6gEccswBpfxvJTAboZ1mzOoW4K4OWwuYd28VPNlXxoBAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgECfERDYXdNDkRV6l5Qc7qIS2C3DWFqGWXU3Q7t5yZBuFdQtwyq0u3xgtwrrNpfwbV5qQd0BJXX7YmC3uRbYLbdrBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECG55ARkS1NRFoKRVuyyVK5dtlrTZck04tS4AAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAg0F8E1G3tL0fSfhAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECPRJAYHdPnlYbBQBAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgEB/ERDY7S9H0n4QIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAj0SQGB3T55WGwUAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIBAfxEQ2O0vR9J+ECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQI9EkBgd0+eVhsFAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAQH8RENjtL0fSfhAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECPRJAYHdPnlYbBQBAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgEB/ERDY7S9H0n4QIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAj0SQGB3T55WGwUAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIBAfxEQ2O0vR9J+ECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQI9EkBgd0+eVhsFAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAQH8RENjtL0fSfhAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECPRJAYHdPnlYbBQBAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgEB/ERDY7S9H0n4QIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAj0SQGB3T55WGw1ycnaAABAAElEQVQUAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIBAfxEQ2O0vR9J+ECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQI9EkBgd0+eVhsFAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAQH8RENjtL0fSfhAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECPRJAYHdPnlYbBQBAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgEB/ERDY7S9H0n4QIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAj0SQGB3T55WGwUAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIBAfxEQ2O0vR9J+ECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQI9EkBgd0+eVhsFAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAQH8RENjtL0fSfhAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECPRJAYHdPnlYbBQBAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgEB/ERDY7S9H0n4QIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAj0SQGB3T55WGwUAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIBAfxEQ2O0vR9J+ECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQI9EkBgd0+eVhsFAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAQH8RENjtL0fSfhAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECPRJAYHdPnlYbBQBAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgEB/ERDY7S9H0n4QIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAj0SQGB3T55WGwUAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIBAfxEQ2O0vR9J+ECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQI9EkBgd0+eVhsFAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAQH8RENjtL0fSfhAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECPRJAYHdPnlYbBQBAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgEB/ERjQX3bEfhAgQIAAAQIECBAgQIAAAQIE1pfAAw88EFdddVW0z34mdj/40Nhtt91iwoQJ62tzrJcAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQKCPCaiw28cOiM0hQIAAAQIECBAgQIAAAQIENiyBX/ziF/Ff3/hajJs1OcbNfiy2fvjuOPPMM+PBBx/csHbE1hIgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECKw1AYHdtUarYwIECBAgQIAAAQIECBAgQGBjEPjiF78Yhw5cEq/aeft49V67xT5DmmLnBc/Gf//3f28Mu28fCRAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIEeiCwXgK7jz/+eNx222092Ly1O0tra2vcdNNN8dxzz63dFfWi9764Tava/NmzZ8fMmTNjwYIFq5ptudty3lxm1qxZy013hQABAgQIECBAgAABAgQIbGgCv/zlL2PrhXPjuL0nLLfpHz3q0Lj9d9fGQw89tNx0VwgQIECAAAECBAgQIECAAAECBAgQIECAAAECBDZOgdUK7D7wwAPx3e9+N37wgx90q5Y//5jzXnzxxdW8GfAcO3ZsHHbYYXHJJZd0u/zanOHLX/5yHH300fGyl70s2tra1uaqetx3X9ymVW38N77xjdh5553j29/+9qpmW+62G2+8sVrmne9853LTXSFAgAABAgRWT+Dhhx+OvFxzzTXVpV4vebtGgAABAgQINF4gq+ueedwRK3S87YjhcczYbXv03skKC5tAgAABAgQIECBAgAABAgQIECBAgAABAgQIECDQ7wQGrM4eDR06NM4444xq0UMPPTR23333lXbzrW99K84777x4+9vfHu94xzti6dKlHfP2piprx0INHFm4cGHV27x586rAbnPzauWXG7hFEetimzIoPWnSpHjd614XBx98cEO2v68EnhuyMzohQIAAAQIbiEAGdH/9619Xletzk7OC/bhx4+K4445bYQ/yi1Z57pW377rrrtUwxzUCBAgQIEBg9QXyuXjzebNjv7Gj63Zy4v4T47Sf/aZ8seaU6rm37kwmEiBAgAABAgQIECBAgAABAgQIECBAgAABAgT6iECtGFhtmLkC2YLGHZzVCuyOGTMmjjrqqLjuuuvi8ssvj7PPPrvuFmX49NJLL61uy7Butq222iruuOOOmDJlSrzmNa+ppq2v/z796U/HvvvuGwcccEAMGLBaFA3f9HWxTVdeeWX89Kc/jdGjRzcssNtwCB0SIECAAAEC3Qr8+Mc/jltvvbWaL0O4eU6Tz+/12jPPPBNZ5X7RokXVPDvssEO8733vi1e96lX1ZjeNAAECBAgQ6IHAbbfdFm87YOJK59x+881i5yEDOr5Us9IZ3UCAAAECBAgQIECAAAECBAgQIECAAAECBAgQWM8Cv/nNb+L6q34er9x913iyFAyb/NSzceOQYXHk8W+ULWjQsVntlOp73/veKrB70UUXRYZMm5qaVtik//3f/425c+fG8OHlZyCPOabj9okTJ0Ze1ncbNmxYnHjiiet7M5Zbf1/cpuU20BUCBAgQIECgzwi8/vWvj7xkywBuXlbWMpx77LHHxowZM+Laa6+NOXPmxGabbbay2U0nQIAAAQIE6gg8+uij1dRHHnmkGuZz6n+/5mUdc05++tlqvDY8evdxcdi4sfHb3/42jjjiiI75jBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIE+pJAfuZx8+UXx16xOMbMeTLGDB8QY5cOiZmzZ1fTMx+amQNtzQRWO7B7/PHHV2uePHlyVTE3K7p1bZdcckk16bTTTluugu2Xv/zlmDVrVnziE59YIViS1d+uv/76yLT29OnT48gjj6yq+Wb/tVDwvHnzqpBwc3NznHvuudHS0tKx6qz6e8UVV8Q+++wT73//+zum58i//uu/Rn64dvLJJ1eVde+666744Q9/GHvvvXd84AMfqObN9f/zP/9zbLrppvG5z30uLr744qoaXS43YcKEOOmkk+IVr3jFcv3mlfb29sjKOhlSzu3fYostqlT5u9/97mod9957b5xyyindBpXrbVP2//nPfz6ee+65OOussyLnyQfI7bffHlntOMPQ73rXuyI9VtVymauvvjpuueWWarY8PpMmTYoMCecx6dxy3rzkdg8aNCj233//an8OPvjgzrMtN/7888/Hf/zHf1T957HKn+POqn0777zzcvOt6kpbW1vceeedHY477rhjtX9Z0TmrM2sECBAgQGBjFMiQT7bOX4DK629961tz0KP2spf9LUxUez7vPK1HnZiJAAECBAhsxALf//73Y9p998TOW42MAQteiMlPPxeP3n1nDD52v5hSgrq/e+DRmPHU03HU2O3iyeeejymzX4gpTzwVg4YM7ngdvhHz2XUCBAgQIECAAAECBAgQIECAAAECBAgQIECgDwt88YtfjM8fvHsctPP4jq0cvfmIavxPk6fF+f/5nchf/t1ll106bjfSe4GmxYsXt/d+sWVLZAA1K+x+7GMfi69+9avLdZNV22oBywyWZoC21jL4mkHfrtOnTp0a++23X1WVtzZvbfiZz3wmzj777OpqhmMzyJmh3zvuuGO5EOw73vGOuPzyy2PUqFFV4LcW8l26dGlss802Vd9ZCSeXv+yyy6qg6xve8Ib4yU9+UvX98MMPx5577lktf8IJJ8R5551X24SO4Xe+85344Ac/2HE9R772ta91bF/nGzK0umDBgrjhhhvi5z//ebz2ta/tfPMK4/W2KWfKinm5v2eeeeYK1nn72972tvif//mfHF1p+8Y3vlEFfrvOkBWQM6icLW0/9KEPxfnnn991tup6erznPe/puO2cc86ptufUU0+t9i+3sWv7/e9/H7VgUN7261//OjLwndWFMhTcuWW15gxhd215PP/0pz/F9ttv3/Um1wkQIECAQL8WyC8D5ZeJXvnKV0Y+72oECBAgQIDAuhXI9y9+97vfxc0//XEcsf2WscPIEdXlpoenxH9de2N86uX7xaWTn4gJmwyKsZsMiYNHb11t4B+mz4oZc+fF7554LmYuiarKbm++0Lpu99LaCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgY1VIHMJXz39I/Hz/+9vucCuFl//zY3Rus/LqsKjXW9zvecCqy7J2k0/73znO6s5fvSjH0UGYju3rOSabeLEicuFdTvP03l8dimdnAHZuXPnVpVZf/WrX1WVVr/+9a9Xs33hC1+oArZ5JUO4OW+2m2++uRrmf7kNGQbNlsHRrA5bazmefY8fP74K69amr2yYy2c4NcO5f/nLX6ow7KGHHlrN/qlPfSqymmytZRC3FiY+/fTTIwOqt956a1Wh95prrqnCurV513SYwehcR4ZXs+8MKGfLoG+ud1UtKw7ff//9VdXbnC/Dv3n9z3/+c8diWdm4FtbNfb/nnnuqDxXzZ7SzZSXi+fPnd8xfG8lKQxlMrnn97Gc/qyoj5+1vectb4vHHH6/NutJhrrcW1v32t79dVRLO+1EGe/N4vOlNb4qsrqwRIECAAIGNRSDDQfkttnwezWrza7v94Ac/iLxoBAgQIECAwN8ELrjggph5fXn9vefO8db9J8bLdhnTEdqdsNXmcU2prDvwhefj+B23irfssVM8+tzc+OFfHopHSpXdbYcOioGLFsSY1vnx3a9+pfryTT6/awQI9C2BWjA/H595PpzD2qVvbamtIUCAAAECBAgQIECAAAECBAgQIECAQOMFMpdw5nFHrLLjvzvwJZE5UW3NBAasyeKveMUrqkq0Gaa86aab4sgjj+zo7tJLL63GTz755I5pqxq55JJLYtKkSfHSl740fvzjH8ewYcOq2ffaa69q/CMf+Uh86UtfqirJ5g3HHntsFajNyrWnnXZaNe9tt91WhXJHjx4dM2fOjEx+Z2A4Wy3Ym9V0e9ryDfp3vetd1ey77757Vf03q+9m8DeDrrWqsd/61reqeXI7aoHTnJD7MmLEiKoCcTVDA/7L6rad15HhnfyZ7DwGGeJ9+ctfvtK1jBw5MvKSFXWzZdXeriWqBwwYUFULTvc0zpYVkQ888MCqcnHuezpniLZru/jii+PVr351NTm9Dj/88DjooIOqasoXXnhhFRDuukzteltbW3ziE5+oruZ9IUO+2dI7133YYYdVAe48prWwdjWD/wgQIECAQD8W+MMf/hB5+exnP1s9r65qV6dMmVI9565snp4EfvM5OMMKRx99dOy0004r62q9Ts/9rLXc1q6tVrmwr25/1+11nQCBlQvUHu/1Huu5VD7ee/NYb3R/K99yt/Q3gfw1m6vf/6bYceTmy+3a1Geeix2GD4uL73s0rjj+0Nh8UEv8ftqT8cfpT8TQaKtu23HTIfHJA3aP5xYsjLvv/VMM3GqbuHHWY9UXkXvy3LzcCl3ZKAUacY63UcL1YqfzC+RT7/1LxAtzYuyWm8f0adOiacyYmPrM7KqXfO8x3/P0mO0F6kY868Z4vlHb5zzstfM2r8s24geBXSfQIIHO50A53vW1n+flBkHrhgABAhuQQOfnhnqb3dv3Cuv1YRoBAgQIEOiJQO29kNr7IF2X2RCfk3KfZtx/XxzytmO67s5y13csv0DYNG/OctNc6b3AGgV2M9yZVVv/5V/+parwWgvsZnj0l7/8ZbU1b33rW3u0Vbfffns136mnntoR1q0teNJJJ0UGdjPQmxVWN9lkk47AaFbUbW9vrz7syjBntqzOmuvNarFnnHFGNe26666rhvlz0j1tr33ta5ebddy4cdWHwvmAy0BwtqzqWwsDZ+Xbri1DvB/72Me6Tl7t61lltnPLasNvfOMbIyvcTp8+vfNNqzWePvWMhg4dWoV3rrjiio5977yCDC/Xwrq16RlW/vjHPx5///d/X1XLrU2vN0zTDANnmLgW1q3Nt/nmm8ff/d3fVRUG77rrLoHdGowhAQIECPR7gQwHZKt9gajeDufJ8/W/uDKmTp0a7XNnx5gtlg8TTXt2WdBg6n33xM4TX9JxDlWvr/xCTq7zxhtvXOGDkHrzr8tpuZ/5BaDcz2xjNtukGt+xDGttwZIlsc12o+OphYti2Kjtqn2t9yWj2vyGBAj0XYH8W5R/28aWv2lt5W9b59bxd23sTjFtSXvklxq7fnjbef4c79zflKlTlvtb2bm/5tFjq/66Lu/6xiuQ950xg5pWCOumyPRnn4+bZsyKscOHxk7l+ejXU5+Iu56ZG4dtOzIO336r5dBmvTA/ttx0kzjsiFfEHx6eEhf9x78L/y0n5EpXgUae43Xt2/W/CeRj/PeXXVwet5tXzw07btIch5RK2dl2WLTsh8luuuvmuOHJGdHc3LzKc+lqIf9t1AKdzzcacf7S1zFzfyffc3f1uizP2bLleVa2qeU8rWrDR0TzZps7v1qm4X8CBHog0PlvS+19rmnlyzTt5cs02Tpev/Xgfa4erM4sBAgQILABCOTr4/zMIs89a88NnTe79txw4/DN48jXn+B1W2cc4wQIECDQcIH8vDqfk7r7/GpD+7wpP4M/bNexPfLK0G4+P3f32VyPOttIZ1qjwG6aZZg2A7tZUfeb3/xmDBkyJDLUmS0Dr9ttt1013t1/tZ+E/PCHP1xVeF3Z/Pfee29V2XaLLbaIQw89tArLZrXbPfbYoyMk/JrXvKaqQpeVZ1944YXIsGmt/0MOOWRlXS83PYOjuY6ube+9964qBWRIONuDDz7YMUutckDHhDKSoebadnaevrrj48ePX2HR3PdsWaW2ES3DyHkMb7nllnjggQeq6r1z5sypArUr63/fffete1NWyM2Wfa2qZRA3W4Z2s6Jv11b7VkIt2N31dtcJECBAgEB/FBg7dmy8+93vjhyurOXJc/48xeHjxlYhg7ZFc5YLok15bFr1YUa+oXXUSe9Z5ZtVY1788KMWil3ZOtfH9Np+jtliRNmf5+OwHUZFhnVbOwV2581fELf/+bb4a/kp8knPzq2+0CWwuz6OlnUSWHOB/Jt1w9VXlr9tO8WYUu2w85cR2hbOqf6uXV+qIV78p7urv2vdvSnQub/cuh1KIKvWOvc3c6hASc3FcJlAPv90vv91dZk+Z14ctt2y9w4eK6Hcac/PjTP3W/F1+8CW5mhdvKha/LByv/7wj5a9b9K1P9cJ1ARq5z6NOMer9Wm4okA+P+wwsLy/edCK72vVHvv5mP2XX11ffUDs3HJFQ1P+JtD5fKMR5y9/67lvjuX+XnfJhdXzZGuXL44++uLr0AxPtIzeSWC3bx5CW0WgTwrk35YLvvNvy73Pdeg25UsB5f2ubL15n6tP7qCNIkCAAIFeC9ReHx86akR17tn1M5Dae3s3PXxj9WUxr9t6TWwBAgQIEOiFwEUXXRStM6d0+/lVf/68Kd83zefn7j6b6wXrRjfrGgd2Myz60pe+NO68887ICreve93r4kc/+lEFmQGTnrYMhNZahn7rtVzX4sWLO27Kiq5Z3TYvW221VWSYMyvrDhw4MF7/+tfHTTfdVF1Gjx5dBUEzQDxs2LCO5Vc1kiHfei2raXRuWf211hYuXFhV/61drw2feuqp2ugaD7uuPzvMKruNaml5/PHHd4RzM7i87bbbVkGhWiXheuvKarr12qabblpNrlUkrjdPTnvmmWc6blrZ8c8Zav11zGyEAAECBAj0Y4FddtklsopIXmph2q67m2Hed5724dhpcHM5MZ4WM8oMLYM361imebsxsdP4vWOnMv3www/vuvhy1/PEOlt38y230Dq6kvt51llnVT9T/Ps7/1JV2I3Zfzt/yM3Yc/vtY/7iJbHjgkXxxq237ZP7sY64rIbABi+Qf4daZz9b/Tx57e9abadatt8smsvfufzbdtYrX7vKLzXUluncX06bWZavtexv5932juby0+dH7L1PbbIhgUrgFa94RfzwX/65rsaO5Usk+QWS6bOXvZ9x4DZbxM8efSJufvyZOHS7LVdYpmXQ4Jj+3Oy4+eESAt5z7xVuN4FAZ4FGnuN17tf48gL5/HDDjCnx9V/fGIeWL8Bly8d2reXjNduMJRHv7uZcuraM4cYr0Pl8o975S+18o6fnL31dMvd39IhNo+mFZc+D+Xo029ixy6pg5rnVK8p4U6l0phEgQKCnAvm3JX/ZsumJ/EtanoPLZXXf56o68B8BAgQIbPAC+fo4i8h1/QyktmMd7+2V9wrzeUQjQIAAAQJrU+Ad73hHTC0FZaK8H1J7vVJbX8dz0gb6eVOtan1tf1Y2zJhiPj9rqy8wYPUX/duS73//++OjH/1oXHLJJZEVaDPYmUHPrHTb03bwwQdHVsS9/PLL44QTTujRYsccc0x89rOfrX7etBaczVButmOPPTY+9alPVX3WqtJmwLfRbfsSDBk1alRVhTZDy11PAmfNmhUPPfRQo1e71vo788wzq7DuG97whjjnnHOq41kLCb/pTW+Kq6++uu66s/JxvVarQNzdN9kmTpxYLZ6h7LvvvrteV6YRIECAAIGNTmDJkiVx/vnnVye8//RP/1R3//Oba5///OerXwCoVaTPGdvLz1CMLbflqXLtVwBqw7odlYmHHXZYdTnqqKNWNst6m17bz9yAoyZPrraj8/7mhM7713m8mtl/BAhsUAL5dygf910f57WdqP1t6+ljvbv+av3UhrX1GBLI+2FT+Tnv6c89H/kzT53b2C1HxtRS6X368y/Eo+UyZsTwOHHPneP3jz8bt5bQ7ss6hXafKVXg75mzMIYMnBKtW4+Os8/+UOeujBNYQSDve406x1uhcxM6BPL5IX9F67rrroubZs2spo8d1BbTp0+LHXccE1M23758cW7H8n7fyOiL58gdO2KkTwhsbOcbub95qZ2v1Yadz6c6j/eJg2QjCBDo8wK1vy21X82sbfDqvM9VW9aQAAECBDZsgZW9Pu68V7Xzztqw823GCRAgQIBAIwXe9773rfC5fOf+a89FtWHn2/ryeBYPy89BetJuKkUO8vlZW32BhgR23/zmN1eB3csuuyzGjRtXbU1+y6mn1WxzgYMOOqgK1+aL8HqB3fvvvz9aW1tj1113jVoF1qzsm8HgXGbQoEHVel/5yldWwwwOZ5D2qquuiv3333+526orDfzv5S9/efz0pz+N0047raroO3LkyKr3rAbcmyrDDdykHnX1/PPLP9DmzZsXt956a7VshoL22edv1aUyMJQ/RbSy9vvf/74KLad55/aLX/yiurrffvt1nrzCeB6vbJMmTYrHHnssMgjduWUF3ieeeCKyku8OO+zQ+SbjBAgQIECg3wq8973vjfxZjQsuuCCy2u7b3/72le5rnvSv6Yn/0UcfXQUWVrqSPnJDbT9rwz6yWTaDAIEGCzTi71rnTWp0f537Nt6/Bd5x6ofjsuuvicO23SJetsuyqoG1PZ4xd368pFTW/cYdD8THXzYx3j1xXNww9Ym4YdoT8egLC2PGnPkxY+68uL98o/7w178hdj3okMjnW89hNUHD7gT87epOaM1vz8dkXvKXw2qtrXz5bUx50/nIcg7u8VpTMeyJwMb4mK09RmrDnjiZhwABAt0J5HOzRoAAAQIEOgtsjOfanfffOAECBAj0HYH++JyU+9Q2bHjMKKHdHboUL+ksf8uj02L0hD07TzK+GgLNq7HMCotsvfXWkRVZs335y1+uhlkCujetVv32u9/9bvzgBz+Itra2avEM6f7f//t/q/Bo/hRlXq+1AQMGxPHHH18FRS+88MLIKq3bbbdddXNTU1NkRdj8Zn9W7R09enTstttutUUbOvz6179ehYOzkm5uwwc+8IH4yEc+EhMmTKgqdGSouC+1WjXia665JhYsWNCxaZtsskm1Hznhl7/8Zcf0RYsWxQc/+MGq8m7HxC4jc+fOrcLJtRBwHqfvfe978eMf/7ias3Z8uyzWcTWNXvWqV1XXa8e0duOU8iFJHvsMaF966aW1yYYECBAgQKDfC+SJcVa/33bbbeNzn/tc/PGPf1zr+1z78tNaX5EVECBAgACBDUTglFNOiW1efmxcfN+j8f/+fG/8afK0mFnetLp18vR44OnZ8ZoJO8eoHXaMK6bOij/NfCqGDmiJU16yWwwYMDBmzl8YrUOGxZ+fej4+cuY/RfaVz+8aAQJ9TyDPg2uXfKzmuMdr3ztOtogAAQIECBAgQIAAAQIECBAgQIAAgcYLvPOd74xLb//LKjv+6jU3lF8QPHuV87ixe4GGBHZzNe95z3s61pbh2EMOOaTjek9Gcv4M62b70Ic+FBkCfu1rX1v9BHQGVbL927/9W2SotHOrhTxz2hvf+MbON8Vxxx3Xcb0WKO6Y0MCR3N+s5LvHHnt0hIfPO++8mDNnTvzwhz+sflq6gatb464OPvjgqo+bbrqpqljb2S1Ld2fLn13MDyVe//rXV9VuL7744lV+SHHAAQdU4eQ8bllxOCvtfvSjH636Ouecc6pKJdWVVfyXFQTHjx8f99xzT1VFN7cz+8qgdS0MncFhjQABAgQIbEwCp556anXSm9XqX3jhhYbs+owZM6ovNOWXmjQCBAgQIECge4F8Pj7wDW+NSUO3iOtnL4qbX1gaC3fYNWLEyNhj113iC294VYwctU08tKgtrn9idtxcArpLhw6LUeU18uF7jIuXvexlVbX87tdkDgIECBAgQIAAAQIECBAgQIAAAQIECBAgQIDAuhU4+eST4+EYXIqWTK+74p/deV8sGDkqjjnmmLq3m9hzgQE9n3XVc2ZwNqukZqXVDFVmhdvetqxMm1VzL7vssvjtb39bXbKPrKz6hS98IepVaT3qqKM6VtP1DpFhz1o79thja6Mdw5aWlmp84MCBHdO62+7cvmy1ZWsL5jbefffdMXPmzLjlllsiq9hmsGbkyJHVz1jX5utuWOu38zZ1XqZ2e71ptW3rfFu98Xe9610xffr0qgLurFmz4ve//33HbBnUHTRoUHzrW9+q9iX3J4O7WSn3/PPPryoW11tPBns/9alPxemnnx633npr1V9WGz7xxBPjk5/8ZEf/OdLcvCwn3nUf0+pXv/pVfO1rX4urr7467rzzzo7lPvaxj1X9b7bZZh3TjBAgQIAAgY1FIM9jdik/x7vrrruusMu1593aDflFoh122KF2dbnhT3/60+r5/ZFHHonf/OY31XwZIFrZ/Mst7AoBAgQIENjIBU477bTI59C8ZDu8PC//adKDsXjg4Or6KYcfGJOffjYeferZ6vouW28R+a7EbVNmRL33JKqZ/EeAAAECBAgQIECAAAECBAgQIECAAAECBAgQWM8CmUd454f+v7j+JxfH48/fF9tvPiJGb74sp3fblOnx66deUF23QceoafHixe0N6quh3SxYsCAee+yx6iegu1bVbeiKGtBZVqp9+umnY9y4cbH33nsv12PuR4ZgMsj88MMPx5gxY5a7fX1eaW1tjfnz50cGZ4cMGbLcprS3t1eBngwI589wdxdkri2cyz3xxBNVoDmr7K5Je/zxxyP7y/XXQr5r0p9lCRAgQIBAfxQ4/vjjl9utPB856aST4qCDDlpuen4JJ8NCeW5y4IEHVrcdccQR1ReichmNAAECBAgQ6L3AP/3TP8WmD94ZZ7zy8JUu/A8/vjIOfe9p8f73v3+l87iBAAECBAgQIECAAAECBAgQIECAAAECBAgQILC+Ba655pq44aqfx+DFC8plYRxUsgW/nfRwHHH8G+O4445b35vXL9bfsAq7jdYYOnRo3SpyjV5PI/q77bbb4swzz6wqDOdPSx988MFVwPXmm2+Of//3f6/CuuPHj+9TYd3c7wzjZlXkei0DuqtTbS+X22677ep12etpjeqn1yu2AAECBAgQ2IAE8ptu+SWnbBnKfeaZZ6ovEHUN7GZQd6+99ooM6dZOpAV1N6ADbVMJECBAoE8KZAj31BNes8rA7uT5S+JTr3hFn9x+G0WAAAECBAgQIECAAAECBAgQIECAAAECBAgQqAlkliBzBFmYNC9jy/VTSk5XtqAmtObDPlthd813bd31MHv27Cr8MmnSpLorzUqz+RPUGeTVCBAgQIAAAQKNFnjooYeqLmvD/KJQXrq2vL3e9K7zuU6AAAECBAj0XOCVB+4X//WWV8W2I1b8Quyd02bG92a+EBdeeGHPOzQnAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIBAvxQQ2G3QYV20aFF8+9vfjv/93/+N22+/vep1v/32iwMOOCD+/u//PkaPHt2gNemGAAECBAgQIECAAAECBAgQ6CsC+Ys7W06+N/7+qEOX26Qnnp8bZ1x6VZz2xa/F6173uuVuc4UAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQGDjExDY3fiOuT0mQIAAAQIECBAgQIAAAQIEGiTw4IMPxuc/fka8dezW8eq9dqt6fWLO3PjOdX+MR4aMjJ///OcNWpNuCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIENmSBARvyxtt2AgQIECBAgAABAgQIECBAgMD6FNhtt93i7ad+OH78ve/GU3PnxTabbRoPv7AwHho0Is796lfX56ZZNwECBAgQIECAAAECBAgQIECAAAECBAgQIECAQB8SUGG3Dx0Mm0KAAAECBAgQIECAAAECBAhsmAJXXnll5GWz9qWx3e57xQknnBATJkzYMHfGVhMgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECDRcQGC34aQ6JECAAAECBAgQIECAAAECBDZWgfvvvz923333jXX37TcBAgQIECBAgAABAgQIECBAgAABAgQIECBAgMBKBAR2VwJjMgECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAIFGCDQ3ohN9ECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBQX0Bgt76LqQQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQaIiCw2xBGnRAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBCoLyCwW9/FVAIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQINERDYbQijTggQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAjUFxDYre9iKgECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAIGGCAjsNoRRJwQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgTqCwjs1ncxlQABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgEBDBAR2G8KoEwIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQL1BQR267uYSoAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQKAhAgK7DWHUCQECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAIH6AgK79V1MJUCAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQINAQAYHdhjDqhAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgEB9AYHd+i6mEiBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIEGiIgMBuQxh1QoAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQKC+gMBufRdTCRAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECDREQGC3IYw6IUCAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIFBfQGC3voupBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBBoiILDbEEadECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIEKgvILBb38VUAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAg0RENhtCKNOCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECNQXENit72IqAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgYYICOw2hFEnBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBOoLCOzWdzGVAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAQEMEBHYbwqgTAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAvUFBHbru5hKgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAoCECArsNYdQJAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgfoCArv1XUwlQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAg0BABgd2GMOqEAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAQH0Bgd36LqYSIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQaIiAwG5DGHVCgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAoL6AwG59F1MJECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQINERAYLchjDohQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgUF9AYLe+i6kECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIEGiIgsNsQRp0QIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQqC8gsFvfxVQCBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECDREQ2G0Io04IECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQI1BcQ2K3vYioBAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgACBhgi0nHPOOZ9rSE86IUBgvQnMmDEj5s2bF8OHD19v21Bb8ezZs+Mvf/lLPPXUU7HZZpvFwIEDazf1aPjcc8/FfffdF08//XRsvvnmMWDAgB4tZyYCqxJYsGBBTJ48OTbZZJP1fp9qb2+PRx55JCZNmhRNTU0xYsSIVW36Crfl8g8++GDk474nj7HePiYXLlwYjz76aJ+wWmHnTSDQC4G+9LjPzZ46dWr12B05cmSvnxvb2tqqx2X+3cjn1b7wfN+LQ2FWAutUoC+dF8+fPz/uvPPOWLp0aXVe21uIOXPmxF133VUtlo/7PG9YWVvT84uV9Ws6gb4q0Nee5xvhtLb+fi1atKh67TFlypQYNmxYDB06tBGbqw8C61wg3y967LHHqtfQzc0bVw2K3r6u749/I9f5Hc4K+4RAf7ove13fJ+5SNmIDEugPz/uPP/543HPPPZHvDeT7gWt6/vLMM8/E3XffXZ3T53m9RqC/CKyt18Kr65OvOebOndtn3oPvT+dDq3tMLNc/BNblc/uavi/fV8T72t/HvuLSX7djXf6976uPkd58ll471168eHH1+duqPj/rq/eZjevdzb56FGzXRilw1VVXxZZbbhmDBg2Ke++9dwWD/GD/y1/+cnV7zte1tba2xuc///mqj1122SXGjh1bjecy+QZgb9ub3vSmal25PU8++eQKi3e3PbnAv/7rv8aoUaPi8MMPj4MOOih23HHH+MUvfrFCX/UmZMjg05/+dGyzzTZx6KGHxgEHHFC9GMp9zHV3bg8//HDHtub2dr1Mmzat8+yxww47rDBPbZlLLrlkuXld6TsCzz77bJx00knVscthvfbXv/419t9//2qe733veyvMkuHvvD9lKHbvvfeuAq4vf/nLq9DcCjN3M+G2227ruB/9n//zf+rO3d325In1YYcdFnvuuWccddRRseuuu8Zb3vKW6k27uh12mfilL30pttpqq5g4cWL1GMtQ+xe/+MVYsmRJlzmXXe3NYzLfPEybDAF3tsrpGoF1JdDXHvff/va3Ox73P//5z+sydPe4z+XyeWj8+PHV82M+bk855ZTIcHxPWn4J5qUvfWnsscce1d+NfL5/yUteUvfcoXN/+aF+7fkv5+/cbr311o79qj0fdh1eeeWVnRcxTmCtCvSl8+JVPXZqCN2dF2fQNp/f8/Ge58X5+M/H4w033FDrYpXD/GJPPifnc34O81x/3333rT7oq7dgb88vuvu7VW8dphFohEB3j51cR3f3z3V9ft+Tc5OaTU/+ftTmrQ3X5HV9T16fXHfdddVrjnzNlH9Ptt122/jnf/7n2uoNCax1gZ48hro7D/h//+//xYQJE6r3i/KcOEPn73nPeyKfb3vbenJ+v6rtueCCC1Z6Hr3zzjv3dnOiu/fissPevK5v5N/IXu+MBQi8KNCTx31fe75f1fb09n3oeneE3ryur72O7/oaPa93fh/7hBNOWOnfo5y36/sA9bbLNAKNFljVYynX1ZPXA4183u/J8+zKnvfX5DGW79W/733vqz6zO/LII6v38vfbb7+VfibR3d/N+++/v/oMZLvttosjjjgicpifeeR7ARqB9SWwssdObXu6u1+vyWvh2jpqw568Fu/u70/e/rnPfa76nH2nnXaKvORn8zktb+tJ6+5vYOc+erLNzu07ixlfXwLdPZZzu7r7e9DI5/buXtOv7vvyPXlMdncMVnbe0dvP4xr597G7bXb7mgs04jHSyL/3a+sxklIru4/XU6z3erbztH/8x39cbrHefJae4f/clvy8PM+1873CrbfeOvJvzYbWlK7c0I6Y7d3gBV544YX45Cc/Geedd17HvmRYtXPLyjcnn3xy3HzzzdXk/CZf13baaafFhRdeWL0wz0BAPnlfdNFF1YuH/EZEhvh62i6++OK4+uqrO2Zfne258cYb4xOf+ESMHj06PvShD1UfnPznf/5nvPnNb46HHnqo+oPZsYI6I//1X/8V5557buQHHO9+97urNx2+//3vRwYUn3/++fjmN7/ZsdSsWbOq8de+9rXVi6aOG14c2XTTTTsm5QupnD8DjvkBZdc2bty4rpNc7wMC119/fbzrXe+qjl1uTtcQet5H8/51+umnd2xt13ny5CZDbtnyvpnHOsOn3/nOd+KQQw6pwm755lZPWn6jKR+Ttdb1MdKT7cntO/XUU+P222+vQjwZ2P3JT35SvZD5zGc+E1//+tdr3dcdnnXWWfGNb3yjCv2cffbZ1Tfp/+d//ie+8IUvxMyZM+M//uM/lluuN4/J/OAgQ/LZzjjjjOrEJt9cyJO6/HD/jjvuqB5Dy63AFQINFuhrj/usZN35BcPqPO6vuOKKeNvb3lY9t+XjKQPx+dydz9d5PnDppZeuUjHfXDjxxBOrCuH54iOf9x544IHq70W+0Z+hvvxyTL125plndvwN7fqmYn655iMf+Ui9xeLaa6+tnrdVuK/LY2KDBfriefGqHju5+92dp+fj7dhjj60q62Y4/+ijj64eU/kGf06/5ZZbIh+/K2sZCMg3GfL8NZfPwG9+uS/PAfI5OStt5xd+aq035xc9OV+p9WtIoNEC3T12enL/XJfn97n/3Z2bdDXq7u9H1/nz+uq+ru/u9Un2nb9689a3vrWqDPQP//AP1Wv1fA2Vgd199tkn3vCGN+RsGoG1JtDdY6gn5wH5mvf9739/df/N177/P3vnAS9HVbf/s7u3pZFOQgoQaiD0SBMIHZGigAVFeCki6gtYULAg8oJ8FPXFRnkpf0QEVBARFVS69FBDJyEJAUII6YWUW7b8n+fcPcvczZaZ3dm7s/c+J5k77czMme/OmTnnd57zOyNGjDD/+te/zJ/+9CfDb6azm/m5iXLlez/pef/99+2l+I1ubW3tcdlCne17RMhbKWeLY/Qg9fow35F5SdWqCPgmUC7fR+177yc9QezQhUAFqdcHsWN//OMftx378q/JdxntDm1tbfm7tC4CNSPgJy+Vqw8wcWF+98t9Z8t996vJY2znuuWWW6y9nZ2MKNThOtu9HnvssR4jb5V7b3IkPDoAYRvhhRdeaLbZZhvz4IMPmuuvv97stdde1k7IUQUVRKC3CJTLO0xHueeacSqtC/PY/FCuLu7n/XP66acbvjfYTva5z33OXoJ1DjrJore/G264If+yuXU/78Bc5OxCuTSrbJ9PTOv1IFAuL/t5H4T5bS9Xp6/GLl8uT5bjX6rcEbQ9Lsz3Y7l0a391BMLII2G+72uZR0o944UonnnmmYbfx/zANN5///2286nbF7Qtneemto0d2I4//njrIIvaOH6/b7vtNnPMMce4U0d/DvfAGU1ioGeg954BKPz5Zsqgop5BL1u7DDFcLh+iwcFuYxxU7DMuvvc3ggdZG+eQQw7JQJybOxY9ODIYLjeDD38Gnvty273H5i+jomGPgeevDF5i9rw8v4vnJz3odZSBUNceCxFB7lh457PbIEzMbXPn9c4hFrTxINbNwPCQi4uCXu7+mU53DESONv6jjz6a2+b25c/Ry9jG/clPflI2bv6xWu+9fOFlffvtt9vfjM8xRG12GUK1Hr8fhLp2OyrPGf62zC8QwxWM88ADD/TYjgq2jQ9BeI/t3jTkL3//+9+3x1xwwQV2joJAj2P9pOeqq66yxzLfu/NjeNoM74Hpz0+ni8M5XPrbOMynGI4ndzyM/hnmLx7/9NNP57YHzZMQJdpzwACROwevC88ddjs6GfTY7k2bluuTT/oa96jle4hgMijo555/5jGIa3vkAz/5/vDDD7fngFEwdyy/c8zLPCc82ue2F/pNWVZgvN/+9rc94sHIYbczDYWOQ0XF7ufx/D7zeoXi5W/ju4PvXk7e73F+PK0r34f1DLhyblTKxeXyjp9yMcunzLcQx/XId/DIZ7eX+6Z+85vftPHyyzUubRDY9ThvkPKFn/dWWL+tzqP3hPcZ8JN3/DyfLk5+ubkW5Xs/ZRPvPbo8GuTbW029vlz9hGlDpyH7Pvnd736Xe2/Mnz/fbqPdgHUM7z1oWfk2zGfATx4qVw5gehiHzyuEsrnnlfVoV85Gp5bc9lLp91O+95Meft/5nfdrcyuWpnK2OB4XtF4f5juyWLq1Xe+JUs+An3zvntNGsucFsUMX4hOkXh+GHZv1CL6n0LHf1/uxUJq1TXk96DNQLm/7qQ/wmmF99/18Z/189wtxKJfH2NbHPMi2rrVr1+byIW0B3I4RJXPb/Lw3XdsH30Xe9KDzkD0f2+C827Ws/FvrZ6Bc3vHzXFdTF86/v3J1cT/vH9Y1mD/h+KmHTZz2cW7jvlJ2/HLvwKBpZnx3zjDsH/nX17reE36eAT95udz7gNcJ69vup05fqV2+3HukHC8/5Y5C5yjUHhfm+7HQNbUtvPwfVh4J631fyzxS6TNe6Hlj+xa/qy+88EKuDOtsfH7a0tlezuNZz/aeHyNS2O1853i3R305jptREAER6EUCy5Ytsz2F6WF36NChG1yZ3mTpZZa9bvGCNoU83KGib3v10fusdz89y3KYDvb8z/emt8GFshvOOecc2zuX6SnUE9dPeuj1ix4+6a3P6/ELL1c7RA+H4aRr8mLBDbsNY0cPDyV0i/74448bNCpaN+bueFSM7OKYMWPcpqJzehVi8OtJteiJtKPXCPBZohfJ559/3kCUXvC6HO6JnqrZc4lDYxYK9Kr8y1/+cgPPyvhQ2+jOQ0ahY73b6H2WvWj5POPj792VW/aTHvecsye8C7FYzMDoZlfpJahYcF6DTj75ZDs8totHbxlf/epX7Sp7NrkQNE+SOQM993mDW3f7vfu0LAJhEohavuc3kfmOeX/KlCkFb7VcvqfXy3g8br3Ojxs3LncOeuLi8HUM9JBbLPA7Tq847NV/wgkn9IhGr7v8Np5//vk9tnOFZQR684bo1nqu3yBCiQ0Q9NgyBD2B5nsMK3GYdolAxQSiVC72k3f8lIv5PqMXffbs9QZ6ymXgN7pU+Pe//213c/hMb6B3XojvDXsbk5sLQcoX5d5b7pyai0DYBPzkHT/PZ2+W7/2UTRwnP+8PF9c7r7Re76d+whF46FGAdR/v+4h1aI7ugYZHa3PwpkfLIhAmAT95qFw5AMJc64mOZVR61nWB9WhXRvd+E93+QnM/5fty6eF50YHWevtlOb+aUM4Wx3MHrdeH9Y6s5r50bP8m4CffR+177yc9QezQ+U9A0Hp9tXZsjrrH9gLaAzhymYII9BaBcnnJT30gzO++n++sn+9+Pj8/eYwjVzHQ5t/c3Jw7xbe+9S27zOF+XfDz3qT3QraR0CbgDRyZh4Gj8CiIQG8SKJd3/DzXldaF8+/TT13cz/tn6dKl9tS0w3tt4lzmNgb3jbYreX/KvQO90f2kmfFVtvdS03I9CPjJy+XeB2F+2/3U6ZnmoHZ5v3my1G/gp9xR6PhC7XFhvR8LXU/bwiUQRh5hisJ639cqjzCNlT7jPNYbINK17VscmXb77be3u4K2pTs9DOu93rDFFlsYjorlyuLefVFebopy4pQ2EeiLBDi0fCmhKQWvjEPxbbHAON/+9rc32P3kk0+al19+2YodKXYtFygI+Mtf/mKFr9N9tgAAQABJREFUtnvvvbcVBuUf4yc96KFoD6Pb8fyw3377mYcffthw6B4n/suPQ9fnDDQyME3oAWXQC8QKmihqyuflhJasLF1zzTV22B82RDIuhwTyBleJYuPOHXfcYYchHj16tI3L9CQSCW90LUeAAIdt/cpXvmLYCMfCfqHwq1/9aoPnIj9eIXEtetEY9LyxUVloLxfY0M20MPzmN7+xaSp0jJ/0MG9SjO8V7vFcu+++uz1lKeMavGfbOMOGDbNz7x/eE8Ps2bNzm4PmyU996lN2uJ8rr7zSXHrppVZkyAIS1xmOO+643Lm1IAK1IBClfA9vc+bss8+2lSR2nEEvyYK3XC7fsxHfa4R3J+EQIPzOM3g7ubj9bo4ei3aRHRj4LYOHX4MegvY7x+/lLrvs4qL2mFNkzIoiPGSb4cOH99hXaoWNDjxWDXulKGlf2ASiVC72k3f8lIv5zSz03WQ5gMEZIoqxZNkHngR7NBC4uO5bz/eDG3Y7SPmi3HvLXUdzEQibgJ+84+f57M3yvZ+yiePk5/3h4nrn5BK0Xu+3fsIGQwbWx/PrvKz7M7h3il3RHxEImYCfPFSuHECbT6E8wvI6h6fl97JYmdh7O37L9+XSw3PS+L/ZZpuZt956y6aB3+099tjD2phYjvYT/NjieJ6g9fow3pF+0q84IlCMgJ98H7XvvZ/0BLFD57MJWq+v1o59/fXX2064tOd5BUf56dK6CIRNoFxe8lMfCOu77/c76+e7n8/JTx6bNWuWPYzlA2+gjY7tZ3QQ4IQJft6bXucf3vOxEx9DMWcm3rhaFoEwCZTLO36e60rqwoXuwU9d3M/7h+3KbGNmOwDF9a6dmfmZ27jPbSuUjnLvQO8xftLM+Crbe6lpuR4E/OTlcu+DsL7tfuv0ldjl/ebJYr+B33JH/vHF2uPCej/mX0/r4RMII48wVWG872uZRyp9xgsR/9GPfmQ3f+9738vtDtqWzjIwneNQM0OnVzNmzLDL1ImxrO1HI5e7eAQWJNiNwI+gJPQvAvni0/y7HzhwYP6mkusUH7Ixjo319Li15557muuuu67kMdzJggA9c7JBgZ70igU/6XEeAidMmLDBaSZOnGi3MU4xwe5rr71mhYxnnnmmuemmm3LnuOKKK+x2euj1ihydZwP2LM5vZLz22mvNKaeckjuHM3SykpUflx9Axq/WM0ruYloIhQAF1eVCuXzkPZ7PHnvb0MvzPffcY5+Dq6++OieU9cbNX2bvtmeffdaKWOm9GkNR5Eex6+XSw/xGAV0hj8HMY2xoZD4oFvbaay+766677jKnn356j2f2mWeesfuc8J0rQfPkxz/+ccNC0gUXXGDfIzvssIP15jNv3jy7nfsVRKCWBKKU77/zne/YW8Uw8z08YeTff7l8nx/frd944422AoGh60oKat03i14AKPCjJzxvuOSSS6ynce+2V1991XrVpUdwCvGDBPa+ZEMkG/bovVtBBHqDQLl85Kcc6k1npeViv3knaHpc2ph/zz33XLvKvF8qHHTQQVYANH36dONEdYxPo4sLbPjfbbfdbHk+SPmiHG93fs1FIGwCfvJOkOezN8r3fsom5OT3/VGOqd/3l9/6iasPuPq49/pumytrePdpWQTCIuAnDwXJ9xgK1gpc+A3861//agYMGGA4Sg3n5UKY5Xt+d+nxJr/BnnV6prGcgNivLY735PJxUFtbNe/Iciy1XwRKEQg731fzLPv9Xvp5DwWxQ+fzcd9av/X6auzYfDfRxk9b/0knnZSfFK2LQE0JlMtLfuoD3gRW+t0P8p0tl2ZverjsN485we7YsWPzT2HYvkDBLuv348eP7zGq5AaRS2xwdRCOwlOovaHEodolAlUTKJd3/JQHvInwWxf2HsNllw/K2cH9vn/YhnjaaacZto05Zz9sm2Y+Y3tiqVCOiTvWb5pdfM6rKQ95z6NlEQhKwE9e9vvs89qVftt5rN86PePmh1J2+UrypPf8Qcod3uO47Kc9rtL3Y/61tF4bAmHnkWre97XKI9U84/nUKfD/xz/+YSh0dqNm5cfxrhdqS1+9erVtx542bZrtPO91hkePu0ceeaR1ftVIol0Jdr2/upZFoAEJ8INOQaELFKH6EdpcdtllVkB48803214H7vhK5s57j/P05T2H+1hx2MBigUYMFpgoDqRQiC9qfgB+/etfG/ZMpFjwxRdfzB3uzrXTTjsZDgPMAuFjjz1mvvCFL9hhwFmB2meffWx85wWBTOjpd+edd7YeCs866yzb64Jx3UcsdwEt9CkC9Erjeuzwxj75yU+WbURjPBrJzzvvPNt7lt42qwnuORw1alTB09BY5zzvFYrAxkAOicBeTBS2c2Jhgx43mU8YaPx3oZI8SW9dDMyHnFxw29265iLQCAQqzfc0wtFb1xlnnGE7wIR9r48//rg9N43yF198ccnT02sXA/M4ewVefvnlZquttjIU6Z9wwgnmBz/4gfWiwXcaAz33uneVey/YHT7+sNHhoosuUsOeD1aKEm0ClZSLq8k7fmhwGFyWz9lYzyEx2Uu+VOBwQHwPHXXUUYZCAw69x049X/va13KHOQF/teWL3Am1IAINRqDS73yY5XsiC/P94ef9FST99ALKUMjjp6u3uzqDjag/IhBxAv/5z3/MT3/601wq2QHd27E7tyNvIezyvasr09sd6wx8D3DkKo7McfDBB1uvuKVGuQhii3N51OVZ762VsrVV+o70nl/LIhAFApU+y0G+l37uM4gdOv98Qev1rnxfiR2bDjxYT2Cdw0/bQH5atS4CUSJQ6Xc/yHc26P36zWPsXMSOPE1NGza/u7K5E+wGTQPjsxMB7QUMTFMjCRJsovVHBPII+KkL5x0Sal3cnbu9vT3XGZB1CBfY/hyG1/pK7QeVlodc+jUXgagQqPTbXk2dvpRdvtI86eVZabnDb3tcJe9Hb/q03FgEKn3f1yqPkF6lz3gh8k6r8/3vf7/Q7h7birWluxFs6P2e5W125KfTG9a7v/nNb5q7777b8Pz/+7//2+N8UV6JRzlxSpsIiEB5AhShUqjHOT13UcjHhn1+7IsF9tDgS5G9BD/zmc8Ui+Z7u/PQ44yK3gNdQ6GL493nljfaaCO7yDR96Utfsh4HKWb62c9+Ztg7kr0jmGYXOKQBjY8UG1P0MHjwYBvvtttus1H++c9/uqhWoMuGFHom5QubvSnpkYzrDHfccUcurhb6JoFDDz3UsMcNP+LsjUYvufRYy4JuqcDnhoZuenpubm4uFbXsPtej3usdz3sQCxIUjxcLsVjMFjoYh0Nv8RlmT1/mmfPPP982xHt7I7n85jdPcugBeuE44ogjzNNPP22WLl1q51zndj+Fp2Jp13YRqAeBSvJ9Z2enYWcOFvLLiWkruSd+yz7xiU/Y8/M75RrZi53L29DPzikU7dODGHsOUhTAwO0u8BvIzivMs5MmTXKbfc3pbZ7vO3rZVsOeL2SKFFEClZSLq8k75TDQ8OcMBRT1cMSHcoENbxTdM0/SUzaH3WbnNXZmc8OCO9FvteWLcmnRfhGIKoFKvvO8lzDL9zxfmO8PP++vIOlnfZqhUP3D1RHYaVBBBBqFAJ9/1uvZ0fXnP/+5+b//+z+zxRZblOz4Gnb5nsNXs6x9yy232Ho4y/MU3lA8zHo5v91PPfVUUaRBbXFB6/XuwpW+I93xmotAVAhU+iwH+V76udcgduj88wWt19PRBNMf1I69Zs0aayPkO6nQkKr56dK6CESdQCXf/aDf2SAMguQx2uRYJujq6trgEq4DgCurbxChzAael7ZFevznSJXs4K8gAo1OwE9dOP8ew6yL89zslHfYYYdZD9hsQ2RbomtPpL2dZRLXcS8/LX7XK01zpeUhv+lSPBHoLQKVfNurqdOXs8tXmicdr2rKHX7b4yp5P7r0ad54BCp539cyj1TzjOfTpyMqtouzvYv6llKhVFv6sGHDcofSWy87zlP7xVFq2W7O9n06w2mk0NRIiVVaRUAENiRAISEnilE5zZgxw9x///3m3nvvNccee+yGB2ALvfIxfOxjHzMPPvigXeaf+fPn22X2xKDRgKIgP8ENBei8f3iPoTiSwQkLvPvcMoWGNDLsscceblNuzjTSqyhFhO4c9KRbKOy77752M3tduMBtbrvbxvmIESOsYJn3SnHzoEGDvLu13IcIxONxK0DbZJNNzIknnmifo/3339/88pe/NKeffnrBO2UjIAW92223nWFhh0N1MLgGb1bO77nnHiug8+PVhwI4GuvYOyo/0OBHY9sBBxyQv6vHOo3u9KbNvPDoo4/aQsd+++1nz0s3/17xfZA86bxZM30szCQSCXtdDuXJdXr0pKdret/0M9xoj0RrRQTqRKCSfH/DDTdYD5j0XstvqQsvvfSSXeRwHSz4M9/5HUrLnYPfV1a2mNf5PuG7pVzYdNNNc1Fcxxa3Yffdd7eL7hvO95QTAlLY695ZjERhAxsJ+M7itz2/MsQ0XXLJJVZscPLJJ7tLaC4CDUkgaLm4mrzjBxDz1jXXXGOOPvpo+y31cwzjUPhDke4jjzxi3nzzTetNm41yPB+DKxOHUb6wJ9QfEWgwApV858Mu34f9/ij3/gqafveecHV870/s6u2lOgx642tZBKJAgF7qOG277bZ26ujosLYtNqizbl8ohF2+57unWGdWNhKwXs76OjueFwpBbXFB6vXe61XyjvQer2URiAqBSp7loN9LP/caxA6df74g9XoeW6kdm3UO1u1//OMfqxNu/o+g9YYkUMl3P+h3NgiYIHmMggEK/NiO4H0H8Hqs3zO4zrd2xecfln2OP/54a7OkMxsuK4hAXyBQri6cf49h18V5/j/84Q/2O8qRrtg24ALbE+lM59RTTzV//OMfi9YFXPxi82rSXEl5qFg6tF0E6kmgkm97NXX6Unb5avKkY1hpuSNIe1zQ96NLm+aNSaCS932t8ggJVvqMF6Lv17tuubZ0an1c2HPPPd2indPBI7U2FPJSn5ZfDu8ROUIrEuxG6MdQUkTAL4G//e1vhkJTetmaMGFCj8MoCKBgl8N/FQvOMPDd7363YBQKdigOdA15BSN5NtKrCQOHM/j85z+f28PeS0wLg4uT2+lZoCCQAmMKB/OD89DrfQF/5zvfMRyG5JxzzukRnYUcBm9cii5nzpxpvQzkiw15bva0yN/e46RaaUgC69evN/QaS2FaviiX3nX5u7tnq9ANuoZt9uKhYCY/sBcQJz5ffj1XUKDHYyj29Xq/dALzUgI+5g326B01apSh2JiTCzQUMLjGPC67/OYnT7p8TmOiE+vyHAxcp3cPCuo5Ma8qiEBUCVSb75nHGGig45Qf6PWdE98LTgSTH6fQ+rJly2yjPb3ZsaJAwa+f4LzeUYCbHyjCZXDvEnY8cd7y2EMxP/D7yPLBSSedZL10e/e7RgcKDORd10tGy41CoJpycTV5pxwf5i0aIg455BDriY9GST+BxgSma/LkyT3KGBTe06s2yzDexr1qyhd+0qM4IhAVAtV+58Mu34fx/gjy/gqaftepkJ17OASg9x3EzgAMQcozUXkOlI7+ReDVV1+1Qz0fc8wx1ujuvXvW09l4wGGhi4Wwy/fMhxQHH3TQQbmhqN21V6xYYRdpSysWgtrigtTrq31HFkuztotAbxOo9lkO+r30c39B7ND55wtSr+exldixaR+gUFfedfPpa73RCFT73Q/6nfXLJ2gec/Zzina9wj+219EZB0fHpAAwSEilUnZkSra1sfzjOu0HOYfiikCUCASpC+enO4y6eP45naMddg7MD24bPQ1WGoKmudryUKXp1HEiEDaBar/tldbpy9nlg+bJQlwqLXeUa4+r5v1YKJ3aFm0C1b7va5VHSK3SZzyfOEeionNGtl0Xau928f20pdO+TQcUs2fPtiPQ00GjNzjHe9TTNErw12rYKHejdIpAPyHAHjVXXXWVYU+Lyy67LFfBZ48gioEYvIIgCme9RgAOH7hq1aoNaP3mN78xdK9PV/xBhuWhKJIvR/bioIjWVWDuvvtua4Q44ogjjNc7YH56KHjk/dCLJxs+nICWQkKek8HrffeNN96wjST0Vuh9sbOQw+AVM7LQxfti+r785S/b/fzD+6Toih8HclToWwT4DD355JP2uaJQxhnIeZcUsVK89tnPfrbHTXufy9122y035Lw3Ej/0Z511lh0eh88TvdD6DfSAS8HuxRdfnHuuOaSm89BDz3ne4E3P8uXLrXCWohx67GltbbVReR/nnnuuFe9QjOdCkDzJvEGjPvMrxe0UCLnAdaaZ+9Wg76hoHlUC1eZ79pinp/r8QKHLlVdeaYe1p7cbb6eQ/Lj56/wGUWDAygOH2KHX+FLBm+95HeZrftdZmfF66rr88svtafjNZKCAjx6xC4VTTjnFflc5bHB+Jx82OtArB/O4vOsWoqdtjUCgmnJxpXmnHJc77rjDnH322XZ4yj//+c8lxfDefM/z/uIXv7Dll5tvvrlHWYV5mO+S/Ia5oOWLcmnXfhGIKoFqv/Nhl+8reX/k5/cg76+g6Wcdl2UAegji+4TLDKzP/PSnP7XffnZkVBCBKBNgBxXailgHpkDFO8rFnXfeaZPuysPuPrz5LOzyPcvMN954o6070+Y2dOhQe1na4pw9ap999nFJMd60cGNQW1yQen0l78hcQrUgAhEiUMmz7M1rQb+Xfm49iB2a5/OmJ0i9nsdWYsf2NvqTn4IINCqBoN99b17jPQf9zvrlVC6P5aeDbWHnnXeeOf/8823bk7PjM30M+W0SftJB+z+H9/36179ufvjDH/o5RHFEINIEgtSFeSPefFZJXbwcjAMPPNB2tr/++uttm59zbEOxPEf0YPC2O3vTU+7c3B80zZWUh/ykQ3FEoLcJBP22M33e/FVJnd6PXT5onsxPF9crKXf4aY8L+n5kWhQal0Al7/veyCMkGvQZ96bL+4v48a4bpC39K1/5im0jYzuaG5GS1+PIs+wcx3Z8r/3Qm5YoLkuwG8VfRWkSgTIEKECkUPWKK66wAjsKV+l1iw0WfBHRKOC8dVIgxAINvelSKMgwbdq0gle46667rJCVoiCv566CkT0b6ZGPHgBYYeEwgHxRstBBAS4LPRQ6uUARLr2EsCfxE088YTfTmMrhxW655RYrhGTPYwqKaQyhx8CLLrqox4v1v//7v20DyQEHHGAFVHRpTo/DPJ7iw+OOO85dzhpAeN8UTXBYNDZKUqjrDCTf+MY3cnG10LcI0DBGj89Tp041Z5xxhhXt8rdngx8Dn1MXKDKn59ulS5dacTmff68A1sV766237CKfs0L7XbxCcz7Xt956q31OV65caT3u0dDG55Lesr2idIqCKZyniJb5myI73gO3Mf+edtpphl5D2ADPPMJGeK8QL0iepJifBkQa/HbaaSdz5pln2jzKnlMu73K/V/Rf6P60TQSiQKCafE8v05zyg/Pezu9H0HzPDinsPcjwr3/9y07e83/605+2eZzb8t9D3EavtxTsUtDPPDplyhRDATHfHexY48Q37FVYLG3sMMPKSaH9FADy/lipUcMeiSs0IoFqysWV5p1SnCgq+tznPmejjBw5coMRIWh0YxmeoVA5nXmdZRWW35977jnr3Z496zkaBcv3F154oT3W/QlSvnDHaC4CjUogyHc+vzwddvk+6PujUH4P8v6qJP2XXnqp7XzHesTzzz9vyw5XX321/flZrxg2bFijPgpKdz8hwO8o66esl+6+++62fj98+HDbCZffRo424S3j5penwy7fU3DD7zTLzh/96EetTYHfdeZvetFjh3CW1xkK2b6C2uKC1Ot5zSDvSMZXEIGoEgjyLOfn+0q+l+U4BLFD56eH5/Zbr2dcCvmC2LFpP+f3Xp1wSU+h0QkE+e6H8Z31w6tcHitUxucoePR6TScdLC+wg/z06dPN7bffbtvEWE8JEthp39kQ6NHf65SG53H2/CDnVFwRqDeBIHXh/HwWtC7u516PPPJI27bMdu7XXnst5ziDTjTYjs16B+MwFHr/lLtGJWkOUh4qd33tF4F6EQjybWca88vSQev0fu3yQfNkoXwftH7P+/PTHhfk/chzKjQ+gSDv+97KI6Qa5BkvlEd4Dn5D2a517LHH9nDCyH3eEKQt/Utf+pItG3NEXGpZqKOhAzqOiMXA0SgaKUiw20i/ltLa5wi4XnrlhHAUvXpDS0uL4TCWFPmxskJPIww0zrG3LQWuLtALAIO395/bV2weND08D70S0tsvvX45YTDTTe8jXm+9bmiRfC+DFOdScEhvP07cxONpdKTXXm/gi5dCxlNPPTV3Le5nL0gKGMnBBXoyoIiZgmA2SnJioODyuuuuM3vuuaeLqnkECTjvx25eKInuec2Pw8YyCuT4/PDZdIG/OQ1dzjtue3u7Fetyu9cTtIvvnbtrubl3n1t2+/LTw+0U4ND4zueXEwMbGPMLDzQKMHifTwrg6cGHYnMK0F244IILCvbM95sneZ6vfvWrNv8xHU6ky+0UBrEx0tsIyu0KIlBLAi7vuHmhaxXLZ7XI9+767ppu3Tt3+/LTTI/eLjiP8W6dczbo85tW7D1Ej9f8JlK49+tf/zp3KA3+N910Uw+hfm6nz4V169YZVmj4zXTCX5+HKpoI1IRAVMvF5W42v5z+0ksv5Q5xI1/kNmQXXGNboXI6GwFoXGTZ1RkZeBg767GDDsU73hCkfJF/HNfz31veOFoWgVoSyM873msV+676/c7zXIXK095ruGV3LTd3271zl0/c3LvP73Kh/B6kXl/sOi7dbu6Nx2HB+N5gOcIJdbmfXrnYyVdBBHqLgMs7bl7ousXKAfSYsdlmm9mysLM18Xga+1l3dcPcFStPF7qW21Yo37h9xdLD/MOObuzU6vV6T2E8v9vuHovZvtz5C80LpSdIvT7IO7LQ9bVNBMIk4PKCmxc6t3vm8+P4fZaD5Ht3LTcPkh6/duhi6QlSrw9qx6awSJ1wC/2a2lZPAi6f5eft/DQVqg/4/e6H9Z11aSr23S+XxwqV8XlOOonhMOB0MMM2PAba2dl2RZFQoeB4ubmL49rKuP773//ebc7NKSJkBycFEagHgWJ5x6XFPc9u7rYHqQsXy2fuXJXM898/FBU+/vjj1kHU3//+95yzKcZz9jnX4bXc+8fvO7Bcuv2Wh8qdR/tFIAwCLg+7eaFzFnsf+P22FytLF7qW2+bym1sPYpd3x/iZl8v3hc6Rnza/7XFB3o+Frqtt9SHg8oabF0pFsTzi930ftTzifcaL5RHqvBhoQysV/Lal8xxsH6NOjo752CGOEwO1Xxx1PX8kLrszwn9iGLYrE+H0KWkiIAJlCNC9+HvvvWcbBWjUyw9snKOolx49e8P9N3v58qXMjw4NkvnXpJGDngkoMi7UM4Muz9kLghUhvli9L/v8e+P6O++8Y4f15FCBgwYNKhQlt2358uVm1qxZ1nvomDFjctu10PcJsCDM3j30xpwvdKHX3Z133tl6rCtXYAiDVDqdtnlkyZIlZuLEiTZN+eelgYCep++77778XVbYRwECh+NhHnGGgg0iZjeUy5P5xzlWFNDn59/8uFoXgSgTcM9yFPJ9OU7l3kP81r/99ttm0aJF1gtwvlGx3Pm1XwT6C4GolYvLcS9XTl+wYIHtJcwyPkeoKGXw8VO+KJce7ReBRiJQ6jvP+yhVnq7HfZbL7+XeX9WkmQZd1rE7Ojqs126yURCBRiSwbNkyO5oTy/euocPdR7nytIsX1pz1ceYrzun1J198U872FTQdldbrC9WFgl5b8UWgngRKfe97O9+TQyk7dLn0BK3Xy45dzydP144CgVLf/bC/s5Xeb7kyPtvtOGIfRwigHT+/vFDpdXWcCPQlAuXqwuXyWS1Y0B7H4HVG5a5Tj/dPqfKQS5fmItAIBEp928uVpet5f/XI97zfcu/HejLRtWtDoNT7XnlkQ+bU2lCXtvnmm5tCOrkNj4jelsJd+aKXTqVIBESgCAEKWgtVGlx0vrwPO+ywXhPe0fjAoQqLBdcb0us51BuXotupU6d6N5VcZuMDJz+BHobonUSh/xGg8JTDURUKc+fOtZt7q8cNxTZMS7H0sMJC7xjMt4UCBccU8/oN5fJk/nlKscqPq3URiDKBUs9yb+f7cpzKpYff+s1R4eCkIAIiUJxA1MrFxVPavadcOZ1l/FLlfO/5y5UvvHG1LAJ9gUCp73y58nQ97r9cfi/3/qomzaw/uNFFqjmPjhWBehOg2LyY4LxceTrstFMwzNEyioVytq9ixxXbrnp9MTLa3tcJlPre93a+J+tSduhy6Qlar5cdu68/3bq/cgRKfffD/s6WS0ux/eXK+OPGjTOcFERABIoTKFcXLpfPip+58j2lbHH1eP+UKg9Vfpc6UgR6n0Cpb3u5snTvp/bDK9Yj3/Pq5d6PH6ZQS32FQKn3vfLIhr/y6NGjDadGDvFGTrzSLgIiUJoAPX28/PLLRYV/pY+uzV56IOEwPa2trbW5gM4qAgEJsKBNb5WlhOYBT1lVdFfgOvjgg6s6jw4WAREoTiBq+T5q6SlOTntEoHEJRK1cHLX0NO4vq5SLwIYEolaeVn7f8DfSFhEIm0DUytOyfYX9C+t8IrAhgajl+6ilZ0Ni2iICfYdAFL6zKuP3nedJdxJdAlHMZ1F4/0T3F1PKRKByAlEuSyvfV/676sjwCCiPhMcySmeKdXZ2ZqKUIKVFBEQgPAJ0lT9jxgyz5ZZbmqFDh4Z34irOxI8JveiW6qFYxel1qAgEJrBw4UKzatUqM3ny5MDH1uIAetedPXu22XnnnTcY5rMW19M5RaA/Eohavo9aevrjM6F77vsEolYujlp6+v4ToDvsTwSiVp5Wfu9PT5/utV4Eolaelu2rXk+CrtufCEQt30ctPf3pWdC99j8CUfjOqozf/5473XHvE4hiPovC+6f3fwldUQRqTyDKZWnl+9r//rpCeQLKI+UZNWIMCXYb8VdTmhuWQEtLi9l///3Nfffd17D3oISLgAj4I/CjH/3IcLr//vvNtGnT/B2kWCIgAg1NQN/5hv75lHgRCExA3/rAyHSACDQ0gUceecQccsghqtM39K+oxItAMAKHHnqoefjhhw0cXgQ7ULFFQAQakoD71l9wwQWGk4IIiEDfJ6Bvfd//jXWHIuAl4Gx5+tZ7qWhZBPo2AbXb9e3fV3cnAl4C7jvfKHa8uDfxWhYBERABERABERABERABERABERABERABERABERABERABERABERABERABERABERABERABERABERABERABERABEQiXgAS74fLU2URABERABERABERABERABERABERABERABERABERABERABERABERABERABERABERABERABERABERABERABESgBwEJdnvg0IoIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIhEugKdzT6WwiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAJ1IZA2JtPFKdM9TyIVKaynMtk51hkHk8GmDyeuxOx/ztwUo9sXTLEE5phiCexEy1LMTc0xE2vujoO/CiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiUISLBbAo52iYAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiEBdCUBcm+6AtnZ9xqQxZdZjmevtWOfcThDcdmKZYl3Mu5exDYLdTFa0a5ch3qWAl6LdD8W62WXMnFA3N6dg1wp1MWeLEpc5p2C3BeJdiHVjLZgo2uW8FQLeVmh82z5cjg3A+gBsxxTHPgqAFURABERABERABERABERABERABERABESgPxKQYLc//uq6ZxEQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQgcgQoKg2vRYCXEyZtVheg+U13dusQHcd9LXruvfZdYh2DQS7mXbOsQ+iXYp0rRgXs94J9MqbDfTAS8EuhLrGinU5p0gX2wa6CetYjnN9EMS7g7A8GNuy8/hALKvVKgtUMxEQAREQAREQAREQAREQAREQAREQgb5IINbZ2emxqPTFW9Q9iUB0CLS0wGKJsP/++0cnUQFSkoD7hGZYXTm1wG1CE5YS+NuE8dA459+4neJwwOD955w1wICc/ZeGC4c0rMfd/5ImmeFS0nTBqtwFFxD4i7VOuz9AEhVVBCJF4OGHH27Y/B4pkEqMCDQIAeZ5hkb9zjcIZiVTBCJFQN/6SP0cSowI1JyAvvU1R6wLiECkCCjPR+rn6FOJoR11UGywGRYbYYbGhpmNYkPNEEx2Ht8Iy0PMoPgQMxhxBtnlQaYVKthErG+4pU3BDtwOlfG69FqzJrPGrM18YNZAmbwm/YFZnVllPsC0OrMa00o7rcyssHFoPa51UL6vNWGdXwSiRUB5Plq/h1IjAr1BQPm+NyjrGiIQHQLK89H5LZQSEegNAszz0MH2xqWqvoYEu1Uj1AlEwD8BJ9j1f0TvxITk1gyNDzfDm4abjZo5bWQGNQ3CNNgMbBqIaZAZkBhoWhOtmNpMGyYut2D8sqZ4s2mOU7SLCcsJzOMxinXj9l/MLmcFuxmKdCnZxTyTMSm4jUimIcxNQ6iLsdq43JnqNO3pdtOR6sDUbtoxrU+tN+uTa81aTOswrUmuMR90rTarulaalckVZmV6hRX79g4tXUUEREAEREAEREAEREAEREAEREAEREAEREAEREAEyhOglZR214mtm5lxA8ebMQPGmo3buqfRAzY2I1tHYRpphmMa3DQE9lW6qe2/IZlOwfb7gVnescxOy9qXmCXti83i9vfNovWLMC00761bYOZ3vmVWpVcBlPzR9N+nRXcuAiIgAiIgAiIgAiIgAiIgAiIgAj0JSLDbk4fWREAE6kkAdksOiZayw6h1D6WW4fBqGFLNzr3DqWHZcJ3DqGFItdxwahxSrfZODDakRBt1a8+h1GIDYsZwKDUMlRbjMGluGDUMn8Zh1GLZeWII1jmkGh0b4xAFERABERABERABERABERABERABERABERABERABEagVAfgkMKmVcFSwDNNy2F8xTy8zJr0U8+Wwt66AM4PVuDriKQQg0Azz7kaYRsDeO8KY+ChMI7GMKYFtCc6Hwg6MeAoiIAIiIAIiIAIiIAIiIAIiIAIiIAIiEGUC8rAb5V9HaROBCgjAaS2EuDAIwzCcXoUJBuD06u55husfwDBsJ4hxrWAXF8ExDR9otIVw1wzBnCJdzDGCHAy5MNwOxTLFuzDacpnGWyvkbWr4u9YNiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAI1IkAbbFWoAtBbmoJpsWwv2KeXtwt0s2sQMLoCEEhfAJtsP0Oh52X4t3RmDaGaHd099SEOW3BGAxOQQREQAT6BgE6FE+jfQ8TnevYeRqdQOhoh9uz8+59iMx4nLDIQ+0fLriJi27ZRnD7uAIPOHSC4xzhZJcxoGZ3cPsw77Etjt2YYpwnsJPLdMqTm+O9bPdl43DZnROLCiIgAiIgAiIgAiIgAiLQXwhIsNtffmndZ98kgMo2xblJeGZIw2NDCgbgNJfthMo21jMYGSwDwW6/NQyzsk8PvRTyDoMxYBhsA/TCQGMu1hPDYTegFwZ6ZxjUbUDomw+L7koEREAEREAEREAEREAEREAEREAEREAEREAERKAqAjCzptfBHktx7vuYY0ovwvQ+tkOsm1mJs8t7blWIKz6YDh1o+x0DO+8Y2HzHwubLCetWwIuR2iQMq5iuDhQBEaiEAIW0+CZkuvB9sPMPl+lIx25Ldu+zjnW4LTuZFLZj2W53Al2Kcr3LPD/i2dExvdsZj2JdTtTfMmDeQ6DL7flTNh5nhQS7uW1sd+MrNTvPxacANyvINRDqOrFu9zIiO7FuVsTL7TkxLzpYxJoQh3Meyw4X2Yne07nPelHnfq43d697l+35bWL0RwREQAREQAREQAREQASiTUCC3Wj/PkqdCPQgYL3nQnybpMcGDqOWHVKN3hsyWM5geLUMvObaynmPI7WyAQFW+CnihXg3NgqGW0xuKDUuN3Ed3nmtQWGDg7VBBERABERABERABERABERABERABERABERABESgXxCA4ClFm+xCTO/BLot5CvP0QthiYaPtt44Sov7j04kDbbzjIN4dB/vvJrD5Yt6EeQKjsUnYFfUfUOkTgYgRoDiWotsOvP/hOZ3zDOednLzL3euG2xkfc7vMOFzOCndt5w67jO+I25bEu8kJdiHkdWJd2+ZH8W1fDB6Bb7dAF+1yTbh3J95txnJWoMt59zLmLXjHczvmpgXHZNftdrfO7wC3c90tt+K7QA/t3Mbz8foKIiACIiACIiACIiACItDLBCTY7WXgupwIBCJAYzA86HIoNTekmh1WbVHWY4OGVAuEs2xkO4wa6ucYPi2+MQy58L5gh1HDehO3yQNvWYSKIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAINT4B22ZXdAt3kgrRJvgt77Luw0S6AcGg17q6vCqca/ocrcgMQZMWGwu47HvbeCZygBRsftwLexFCJd4tQ02YR6B8E8D63Atx2CHHXQ1TbDpGtnbieXaY4l9sg0DXZfbl1j3iXHThsnKxIV851evkRokdeinAp0oVA146+SaEuRLq5ZbYDtmHdzrvjcT2GdSvkzS7HBnAd7YIDusXAEvb28m+py4mACIiACIiACIhAHycgwW4f/4F1e41HgD1sUytgDH4/bYdVSy3EOrw2pDG8Gj3osieuQi8RYEUeHnjj9LrAaSyHUoMhl0Opjcj2vu2lpOgyIiACIiACIiACIiACIiACIiACIiACIiACIiACNSQALW7qg6xIdz5Eum9DoPs2hFzwpms4qhlmCn2AAHRaBiOvxel1dzM4auA0MWaasR4fjJ3cryACItBnCHDkygyEuOm1eJ+vw3xd93oGcyvQtevYhn0ZCnSzk6F41y1DpGs94qqzRp95LuyN0LsuBb4U70KgG6M4F3Njl7E+MLvNzvHdGNi9n/Hi2EYnP5zb4ygWVhABERABERABERABERABnwQk2PUJStFEoJYEOHROEsOncUi1JLw0pOCtIf0ejAUQ6RoYEWQMriV9n+emoXYwKuDwuhsfTw8MMOhi4rxpJCrp7KGrIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIi0FAErG12UcZ0vQXbLKYUp/mwy9KTbqOKdJ0IiUIkDCse45DiCSxnpxjnjEOTpnfCqr1n3rebIFDLpLDuJjtcOw7qQgQsN7SIDbdhPe9CsJvYHHZeTM2cj4nbYdRxdwoiIAJRJ4BXER3hpNeiXQ0jVlphLuYZCnSxjfPcMjpfUKibwXazLmZFuvSKK6/pUf+R65w+fi/p4IeC3UFYpkgXc05xtBvGINy1y9zPdkQKed2c++Dx135r63wburwIiIAIiIAIiIAIiEB0CEiwG53fQinpZwQyXbBxQqTbRW8NMADTCJyaD0PBYhgKaCBQiDYBDo+zMSrdE2HnhkHXemGYGDcJindpCFcQAREQAREQAREQAREQAREQAREQAREQAREQARGIJgGYYFMrYZt9B9M8jHQ2F7bZNyHsWo7kUpgaxeAEQ/DsZwZkPvQGCBGR9Q5IMRGdCnAocE60UWKKtcBeSc9/TqybXY75FOxm6FESTOil0ol2advOULDLOYRyXOfIcBQ/54aJd8PGw0OlyXqwtKPHRdVDJfjERgLTFrD1bolpUtw0bwoh71CqenEPCiIgAnUlYD3lwgtuiqLcD6CxhUf0DOdcpxA3u56xy1jPinbtewevKwURqBkBfiP43aWIlwLeIfjuwpO7W7biXW6jiBfzBKY491Pgy2+zggiIgAiIgAiIgAiIQL8jIMFuv/vJdcN1JQBjpDMEJ9+BUJfeGjC0WmYRUgWDpkKDEqAxfAyMuRw+jR4YNvUYc2n4VhABERABERABERABERABERABERABERABERABEag7AQq+kkvSpgsC3a7ZEOrOhtgLI54ZikqjEGhL5FDcG1Ho0y3u6eHBj179IPDpHoIbyxyWm0N5Q6gby87j9OTXywIgeuC1wt122Lop2oVDijQFuxyG3jvcfJ7Hy25hXbfozv4GURHz4jeIT4Cdd+vuqWVLOGoYBcYa8jwKuURp6OsE8B5I892xCu1n8HSeXo3l7Dyzqns9g/UMtts5BLrW03df56L7a1wC7DxDIS+/7RvhWzIU3xjOsc55PLue4DK3sWOO2hYb9/dWykVABERABERABETABwEJdn1AUhQRqJYAjQvJhTACQ6CbfBOG4DdhVIiSITjIDdLYS8Ok9dBAIyUM2lxn5RFz65mBy5zYq9TrfYC9mGl0zc57DKVmvTQgctYzQ8MOpQajeXw8esjSEwMmDqHWvAk4tXlBgIGCCIiACIiACIiACIiACIiACIiACIiACIiACIhArxCgiLTrPUxvQKz7BkRgmDJLcel6edOlqZACW4p3hmXFOxDsUMhDr3tWwEMPfPTGB+FunMNuU8DTy0Lc0H8c8LZCPDt0PZadp8ysII8CPArzMisxQaxHcZ4djY725HoE8I6NBvZtYOO1Exw1jIt3D29ej/TomiLQxwiwE0Ua7wM6ukkj31Okm3bLmLt3AffRU3fd3tl9jLtuJyIE+E3n953ff1cWwDw+DNvsHG2NXIand5YF5I03Ir+bkiECIiACIiACIiACIRCQYDcEiDqFCBQkACNiCsaFrrdhBJ4DoS6m9LxuA4MVrRY8qI4bOVwLPAcYemngHAZgzmN2KDXMKThlHE4U69o54nCZhktWLD3znFjXq1OlYdWJdSncpUGcQl03t0OoIQLndhn74Y3BeWWww6nBM4PBsEcZer3AZOdR9E4MwXJsOCrSkyDc3QoG3a1gzIUHXvaQ7SFixm0oiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIhE/AOlJ4N2M6Z8JG+zpEYbNhe6QItLcDbawQ3cSGQ3QzEjZDzinCyc4TFOZQkMPhsfupF1cn3LNeNT2CvfQK2NVXQMi3HLbg5R4Rb2/+hrRxQ1CVgMfd5u1jpmVb2HrhgVdOGnrzR9C1Gp4APeeibSeFPJ1inuYceTrNCesZOyGPQ7SvESkb/tfWDVRDgO2v7NDDMgLaGWMjUF4YgfZFrts5vkcsN6DMIE+81YDWsSIgAiIgAiIgAiJQPwIS7NaPva7cVwnA6JBcCqHu3G5vDclZMDbAKGwoNK13cMOuwEtDDB4aYpyj92ZsECp2HI6lx5Bq2M+hvyDU7RbtIg4My73pxcEOpeYEu+CX5nBqEOnSqMN5BvM0hlHL2AnbMPRRbhg1emLA9kgMhUSOEyHcdZ4YMIRa00hVpOudHXR9ERABERABERABERABERABERABERABERCBvkkg0w777HwIdV+FjfZViMLehH32g166V4o76QiBwtxRsKnCQ2sctsCEmyi8oeimFREZV6E4AfxsafyW9LiZWgbfD8uyAj/Y39PwkJxeApswhLx07GAdRRQ/U3h7YFNP0EHDFAh3p2SFu/wtFURABHoQsCJ8eM22+ZZ5F5PNt5wjP1sBPsW5cN6iIAIiUIYA23cp4kVZwnb8yc4TKGckKOLlOhwG9ddOP2XoabcIiIAIiIAIiIAIRI6ABLuR+0mUoEYlQHFpanHadMJLQ9draZOcCWPhYtwNhvTp9QDvrtZTLnr9c9gUem+wQ6pwSDVU6OyQalx2Q6rRcwN6bDZqyMDDLodNshMM7+kPsOyGT+MQSvCawaGT6J2Bc2vApYff3g7wjhEbA+HudsY0bxc3LVtDuDsaxlx6J1YQAREQAREQAREQAREQAREQAREQAREQAREQARGoigDthF0LYKOlUPdFCMQw6plhp/5aB3rQpUAXtr/4xjD3bQzxDCfY/qyYBkNZywteSD8C7Lop2H9TEO2mINi102LYgBfB/rsoK+CFE4iaB9jWrcfdnbLC3XHxhrax15yXLtDnCTiBbtLlS8wpqk8vQd7E3Irro+DYptF/Cbb/cWK7knceRzuf3YbvntvH/exP4Jm46F3PLXu3cxmnyU3569yHkPHG4TLb3ThxVM10rHt0zTR25La5fdl4mClUQYCdg9gJCGUN2znIlTlQ/mhihyEJeKuAq0NFQAREQAREQAREoLYEJNitLV+dvT8QQMUzSaEuBLpWqIuh1TLo3W8roL11/zQI22FRUAFj5cxOMAbbIdUwt4Jd7BuAqritjfdWwup8HRgBrAcGCHU5xFKKQ6nZIdQwh+eFXC9uinh7w4jrcMBIEoNnjabtOIQahLuTJdx1aDQXAREQAREQAREQAREQAREQAREQAREQAREQgcAEYAdMLkqbjldgp30BtkCMemboubFWgSIoeFq1At1x0EaNhQ0WUxM760MoE6dAtz/ZYWvF2c958dun1uA3h2g3CcFu6v3uKb0Q9l8sW8/KFJLVKsBpRmJbiHZ3iZvWHWDnxe8vcXatYOu8kSJAHSYcqSSR91LIe8x/aa94Hm0y8p4LBvxewDuqgdOcWDPeD80AR2+p3AYnLwbb3LL1jsptdP6Sm+MYCnAxxXiurBjXinN7bO9+93SLdj3xsTknyuUyA+ax/O2efTYO35vu3emWMc+JdBnJs53LGY8wl06OuoW7aDO1At7u9R7LLj4cH2VSOAHndIKUnewyPDB3z7P76ZHZThAEd2KbW+e5+nvgc4W24jjKI/ExeFTYcQjlEk50HhTHaKsqm/T3h0T3LwIiIAIiIAIiEBUCEuxG5ZdQOhqPACp/SQzd0zkT3hpegkfd17JCXdQPax7aUKeiKJfG31GYc8gT9py0w6qhEkavuhqGq+jPwCHxKN5NQbRrh2NyPb3dMGoYjqlXBLysG1O4i+HTmnfMCncxdI0MukV/Ou0QAREQAREQAREQAREQAREQAREQAREQAREQgR4EUuig3zkLQt3nYaN9GTZa2vZqESiW4ohm42GTHQ+bHuYJeFVt2gRz2mMprlKoOwEKu/hMJBfieXgPNmBM6XexbQEM9xiJrSaONmjnhYflph0h3N0Ndt5t4/aZqDsMJUAEQiZg8xfbVhYij1Ecj7nNY5jbdy+8nPfp4MS3bKODIx1DZzqct7BNzi13z2PYZoW5FOpyhMusYJfLVqCbFe3GmrKCXa5boS6Os/PudZPo/r7khLh9CTDaWSngtYJcCHY5t8tJzzIEuRk7dW+jQNeu41lzgl161+dksttyy3TUg4nxMm6ZXp65jPPU5HuA00Ym8Jmk93+WU8ZhwryJHYxcuYWCbwUREAEREAEREAEREIG6EJBgty7YddFGJ5CCx9bON+itIWsEXow7qmXvTRqD4SU3xooUekXScwO9NdjekRTrDkEFXhWryh8rGATsMGoQ7rre4Bw+LYVh1DKYZ+iBlz2AaxVg5OFv27QDbDbwxNCyDQy6GKpGQQREQAREQAREQAREQAREQAREQAREQAREQAREoDABim8634JX3WfhUAFi3cx7iBe2DY/iLHpQnQAb7ETMJ8KGNzFumiF2kRfdwr9LpLZCo0u7b5Liwvmw5c/Pincxt+LdsJ1vwEZvxdxT4W0XU8vm8W6hXqSgKDEiEIyAFekuRx6C+D25IG1S76LtBCL4NPJVzT1YB0tq5bH5rqe4kaNUDsiYGAW5XLZzLHPelhXl2mWsw2mO3W6Futl9FONye3Yepxddtd1V/rsEONIKfz2C3UxHt0jXinndMsS6dOiT4ZxCXk5ufT0uxu3rsT+3jG0U99ay/TfAPVYVlU2OG2XFu+Oz5Znx6HREIS9Ga1Wno6ro6mAREAEREAEREAERCExAgt3AyHRAfybAilvn2xnTQW8NM9K2Z74dmqUWUFjJh/dc9nqMj8OcPR83QeWJQt2hqFmpkl8L6vacrNinIcrmEE70xJCCsT/XSxxeeGvmfRe9puMw+jfvBk8Mu8KguxmNPKxFK4iACIiACIiACIiACIiACIiACIiACIiACIiACFgC0Igl0fG+A6OedU6H7W42NlBcE2YYROEl7LCbwdHh5rDLbgaRLu20Gk46TMq9ey48Juk1GdNF0eHbsO+/BdHh29iGdbM25KQMgPl+W9h494JwdyfY9DEynoYhD5mxTldbAhAoplYjr0Cc28X88g7E7u8gv1Cku662l67J2dH2YgYiG3LC+z02EG0vbh3C3B7LyL9xTBTs2jmFutzGOQW4arKpyU/U6yfFo0wxb5piXpQhKNRNZwW7abueFe/iec9wopDXLa/DMr4bnGz5A56BGy6wnENPu5vie7Up2iVRzrEjB9CZEAXsCiIgAiIgAiIgAiIgAjUlIMFuTfHq5H2GACpuFG92vJgynU/DkDcHG8I2AhMWRbobo4I0ARUkeG1o4kTD8GgaBmQFqNfzlEZFPLUYhikMm9bde5xzVMbRMFAT8S4MRYmtYNDdM2Zad06YJvz+MgLV69fXdUVABERABERABERABERABERABERABERABKJCwHrVfTNt2p9MmeTzEMwsQcpgogslQNBlHShMgk12C0yTINJF53rrPEHilVAQR+YkFCPCYUPXOxAizoMo8U3YezHP0FlDWF6aadLd2JhmetvdG84Z8DzR66aCCESZAL2SdkGU28V8MQ8dIuZB0AjRbuii9rAhsPmMXm0HY6IgdzDEtVy261imOJHb0ekiN0c7TJzCXQpz0TYnkWLYP0ofOR++F2l42U1TpIspbUW7mFOwi04gds5ta7F/Dbd1b7dzCnohCg6tnFIrpMgncbZHo/yTwNTCchBGBZVDoVoB13lFQAREQAREQAREAHWTzs7OsMxZ4ikCfZIAK2GdszG02lP0qosK17KQb5OG4JEQaMKbKqcm9GTksGpNo1AZkgEvZNjVn46NAsmlMFZxCDX0Kk/C43IaU2Y5zh1yL9rYaHjw2BWi3T1h0N0qLtF29T+fziACIiACIiACIiACIiACIiACIiACIiACItCgBFIr6FABdtpHISJ7A80aHKY6jEDPiRSqbAVbHGxwzRTrbgxxJT0pKvR5ApkuOutImy6IdpNzYPOdkxUowtNiKKENtn94223dr9vbbmKYHHOEwlUnCZVA+oPu0SW7mAfgtTyN/JBZgUtArBipwJEn6f12I0xD0IY2BO9vTFzOzSk+hGCX63YOka4840bqV+xbiUFxxHrqhWCXXtzTEOzaOfIURbvpD7Afy3a+uns5g23WU3XU8hc6J8VG4JvFctDW8LrLMhHarOPIXwoiIAIiIAIiIAIiIALhEpBgN1yeOltfIoBKVhJeVdufh1fdx9MmPQ83B+NdaAHGAg4zwt6KHFatGVPTGPVYDI1vL5yIvc2T76O3OYZPS74FQxaekTREvAaV8NACRNusHLd8FEbdqfC2CyG3vO2GRlcnEgEREAEREAEREAEREAEREAEREAEREAERiDoBCFq63oVX3SfSpnN62mQWIsEwwVUdIPiyttltYJvlBA+oCYpSpEupGm1DngDPVGo1PYtCvDsL9l6IFul111BYVW3gYzUONt69Y6btoxBAjYMqSl6bq6Wq40MgYD1Nw2t55+t45jGl5+OZh7fQuge+hyF2jw3lhHYzvK/jXN4I4kHM45zbCe9xinXpUVcOcOr+sykBGxKwYl4Iefl9oTA+DdFumsurUJSBp3euZ7LLnNvOSGGUcTZMSrAt9EBNJ1OT8e3anl534VQIeU5BBERABERABERABEQgHAIS7IbDUWfpYwRYgeqEYa79MQyt9hx6QS4N6QbR+5deUxNbopKDqXnL7mHVaExQaGwCrGh3wZjVNaQ8mtgAAEAASURBVBfC3bmofGMKcwg1PjfNH4EXhn2yw6fJw0djPzBKvQiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIQFkC1k6L0c/WPwQ7LUY/C0U8OazbPttMAcpkjHQG77pxDImuIAKOQHp91tY7E+Ld17ptvYZCqmoDRIfNu0G0e2DCtKBtQALDaoHq+EoJ0ANoJ9oyOl+GUPdVOKyZjzOhXawuga9fiANjeDfHh0N4y3l2OQ6P1JwSTqRLYS5GrVQQgUYnkMGIncyHFM1TvJvmHCMJpFdygoh3BbZh2Xq6Xo+7rZeItxX5cSLatHdAmYkTvl1xeK1WEAEREAEREAEREAERqI6ABLvV8dPRfZAAK0jtL2NotYcwtNpM1IDCGPqKFRr0oG/aBsOqbQORLoYRaRotw0IffHyMHUJtCQy6aEjglHoDler38ByFYezi8GloSGg7EMLdHVQp7ovPj+5JBERABERABERABERABERABERABERABESgm0Aaw0u3vwQ77f2wscHjadX2NQi+EhzimYKT7WCjHS/BpJ610gQyHfDuvACixtdg630Vwip43TXwhlhVQFtBYjvYeA+Wjbcqjjq4IgLsBNH1Dt6rL+CZngGh7ts4TRhtF0FSgzxAUW5sBMS4I9B2ZieIcrkOwW6CE97XsVaIAqULDEJWcRudAD4x6XYKePG9gWg3RQHvckzLMFHAuxy6XSxnsK/X8y08WMcxUiw7nbTugjLUBJWhGv1xU/pFQAREQAREQATqS0CC3fry19UjRiAJoWX7MynT+R8YKt5B4jDcWlUBAkvb8xAGuGZMLVtgWDX0BpaRoSqqjXEwKtasTHdiOKkuN5zUu9hYrQCco6WhUtxyQMwM2D1hEiNlsWqMB0KpFAEREAEREAEREAEREAEREAEREAEREAER8EuAHudop6VYN/0WjqrGTjsYAsmtYJ/dETa1HbNCXY1e5fenUDwQsCJHCnfh6KPrpazH3bVVoKGNdwuIng6JmzaMqpbQMONVwNShfgmkIPxjJ4jO6dlOENU8w34vyngD0CQ2Es88nNjEOR8FQa6bINJNULzbpnaOIEgVt38RsCJetDemINhNQbCbWgoBr51QPMI8sww86IW3NwLLVJPx/doLnU5QpqLAXkEEREAEREAEREAERCA4AQl2gzPTEX2RAHSUXe9haLWHYXB7PG0yS6q8SQp1N4VH3SkwAk+Jm5ZJMEQMUaWlSqoNe3hqNTzuQrjbieHTkq+gIj0fDxy8M1QTYhvj2doXnhimoZFhE1h49XhVg1PHioAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIRIRAEuKT9icg1sUIaJkFVSSK3uA2M6Z5V4hK6A0OQzpbj41VnFKH9m8CmQ44aHgb04tZ76R0+lGpd1LYc2PjjWmFp90Be8kxQ/9+smp89yk8pvCq2/4Entun8V59H9dDE0XNAtrHrEAXbRjx0RD3YW4nCHatUHcwHv5Eza6uE4tA3yeAPJ36AMJdinfhiCq1qHueXgwB7+KsgLfKNsiSEPn9wqiyzXvAsdDeLF+hjVJ5uiQy7RQBERABERABERCBfAIS7OYT0Xr/IwDvDJ1vQaz7QArGClgpVlWBAJ4Z4hOMaUKvwpadMKGXfJzGBwURAIH0Ghhz50C4Cy8MSXhjSL+HjV1VoMGwUM3oxToQRt3mTemWoYpz6VAREAEREAEREAEREAEREAEREAEREAEREAERqDMBjoC2/hGMgPZgFU4VKCQZCxvtzvAANxU22q3iJj5INto6/7R96vLWzjs7bTqeS5vkixBHQSRVqQAyNgaOGQ6C6GlawjRpNLU+9ZxE4WboHbpjFsS696dMEu0SphZeddkusRGaJ8ZCkIt3b/ccDm2w3kSvunz/qu0iCo+D0tBXCaCdO4X2R4p3k+9jnp3SEOensWw+wI1XM1JBMW6DUNbaBd+vQxKmZeu4iaGjlIIIiIAIiIAIiIAIiIA/AhLs+uOkWH2VAMW6c9Nm3b9hrHi+CmMFjcAbo2KyE4xr8NjQso2Gseqrj0wY98Uh/TphJOucAYPuyzDo0qMzHr+KAirEzR9BhfhwVIgnSbRbEUMdJAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiUHcCVqz7MMS69Kxb6QhosJUltoWNds+4aYNDhQSGW+fIVKtXrzZLliwx7e3tFd8nTmOGjxhhRo0aZZqb4blBoX8TgD03Ce+GHS/Bzjs9bVJvYMO6ypCwbaHlIHjapWh3FJ+02od7XsiY32PEwbkUc1UYYkjqp+FQ4kSMAjdmWIUn0WE1I0CP0O14Ptv/hedzFn7napyH5KcS3jRjI6DDhZfNODxFN2HeNA7v3E0g2h0Kb+ZN+QdoXQREoLcIZJIQ8K7MincxumxyAUb+xIgF6ffQHrkCqYCH3tACRLqJ7TAa6OEod+0A0W5r73zDQku/TiQCIiACIiACIiACdSIgwW6dwOuyESDgxLp3Z8W6ldpqh2SNwLtjaDVURqxBTfWRCPzAEU8CDbro7doBT7udz2YNZmsqTPMAGMQg2h14hES7FRLUYSIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAnUkkFqeMev+A7Hu/RDrLq0gIbDHxsahYztstG0Q63I0qlhWU0ux7vz5802M6sIQwsCBA83mm28ewpl0ir5AIAMRZBdG8Gt/Km26nsHzC4+GlThnoGi39dBu0W5ieDjPajG+FOteeGt4iq1d4Ejiqi/Bk3Vtk13sdrS9AAF61m1/KWXW/yNl0rMQIQzvmvAXEoMwOz4RolxMTZtimoAJnnStF139/gV+CW0SgToTQFskvcJ3oXNG8l20Rb4DD7zzodmdjx0ccTaMdwME/InJcCz0CbaTJ3LlrzrfuS4vAiIgAiIgAiIgApEmoD6Okf55lLiaEUA9pPNNeNb9ZxViXVRA4hPp3RQVEBiCmyfCCKwcVbOfrM+dGMarpo1h2ILXhObNY6YDol0adNnLNXDv1vUQ/z6LRo0YjKxHwBsDPe3KONbnHhndkAiIgAiIgAiIgAiIgAiIgAiIgAiIgAj0RQKp1RmzfnrWs24lYt02CEW2iZnW/WCn3RkeHof1NIzRs25YYl3yX7t2rVm1apUZOnRoX/w5dE8BCVAYzqHAE/CM2z4+ZjofhSBqDhogAjoIySw2puNBKKdajRm4T8LEh/R8jgMmq2R0etYNM7wwL23ufi5mjoZTCYUIEGD71xyIyO9Be8MbSE+1P/dAtIXh2U5MQpsG2jKaNkN7GD3rDvL/e3d0dJgnnnjCTJ8+3b5Dg1LiO3zLLbc0++67r9lqq62CHq74ItB/CSCb8nvSygnfKivehafd5NvwvPsWxLvz8IqAB16DdsaKA5omUzNRlmtNm9hAXAej0KqNsmKaOlAEREAEREAERKCfEJC8sJ/80LrNngS65qfN+nurEOsOhmFiCiod+8IIvD16jtfQeNYz5VrrawSsQXdLGHRHw5iLHukdj6OS/Boqx0G97WZFu+ubUyZ2JITkE1AhVhABERABERABERABERABERABERABERABERCBCBNIr8cIVM+nTccD8Ey6qIKEDocdbCqGYkan+JYt4FABQzPnh/b29ooFuxtttJE9Hb30ukDh2Pr16yXYdUA0twToFZdC26YxEO4+nDJdM2DjXRkMTmYhhJbICxRCDoCTkFibf0FkkCvNhafFSsOXD+t2XX3NvXAt7AlvQXCsEA0CyUUZ0/5oygroAjsHcbeAR896090CAt2tY6Z5S0wQ6iaGcoeL5G++bt0686c//tG8OW+eGTJkiBk/fry/Az2xUqmUmTNnjp2OPfZYM3XqVM9eLYqACPglEB9MQS2mreImtQqedyHc7ZoLAe9sinczJoPvVqySTwRFu6/i3TM6ZTtO8VuoIAIiIAIiIAIiIAIiUJyABLvF2WhPHyWQhDFq/YMwmD2HGkfQHoO0RYxFj/m9INTdO25a4FXXwNOugghUSyCxERoW9kiYBA26m6CCjCHUbCNFkIrxOgy/9gye74HoxfoxGNLgwVdBBERABERABERABERABERABERABERABERABCJJAOKOzpnwAvlAymTeDZhC2mnHwU4LhwptH4W3x7Hhe3NrbW01TrDL1HlFuwFTu0H0TAY2PIh+/Ya2tjYTj6uDvl9e9YpHwXjrdnDwAefL7SPTphPOGTLvIzUBbLzpd+Bp936IdqEVb8PQ4lFqf5gKxxNnHPZhs6JXtBvgFn39PCtWrDAvv/yymTVrlpk4caLZeeedzSabbFL02GQyaTo7O+3+AQMGlBXpu/gU4DM+Q1dXl5247OccjMdr8lzMn8yn9Q4Z6Kg7XoSzmhfwi3RUkBq+W0fisdsWAl0Mcd+8Ld6vm0A8Ds/PlYZHH33UinX3228/c9RRR1V6GjNz5kxz8803mzvvvNNMnjzZDBo0qOJz6UAR6PcE2LyNjiaJ4QnzwuqnzI3X3mxa5w00u4/ay+w0YjczZsAYE48FLHfgnZNE23vHZhDtjmgydFikIAIiIAIiIAIiIAIiUJjAhzXrwvu1VQT6FAEOr9b+JMS602Gs+CDgrSG3xLeAwe0AGF6mQliJikzYoWvGkyb12vMm9dZsk17yvsl0Bhw3K+wE6Xx1IZBJjzDxzj1MOjHNZJKbIw0BXtVw9tF59xKTeuDfJt72oInFgz7odbnlul00fUZxI2/dEqULi4AIiIAIiECdCBx910N1urIuKwIiIAL1JzBt/afqnwilQAT6OYGWlhYzfPhwK8zaZpttzJQpU/o5kb5/+53w6tb+IIZsn4t7DaL2g34kPgl22kOydtph4dtpSd8r1uUyh3TnFEZYsGCB2WILGJt9htdff90OB+8zuqLVkwAex+bxEO0eGjPxYdBMwmNu+m0kKO0zUcgLqTlox3gobb2ZNm8eUDDl8zKVRHPedXkshbvPzk2Z5+b6vTF/V3z88cfNGWecYWbPnr3BARtvvLG5/PLLDT2s5oc77rjDnHjiiXYz43z5y1/Oj9Jj/bbbbjOnnHKK3bZkyRLrMfuGG24wZ511lt320EMPmX322afHMYVWDj/8cPPYY49Zr7Hz4EG23iG5EELxl+Elc1kFKcHz2kSR7k7wvomRJRNjINQNwWENBbujR4+uSqzLu6FI94ADDjD33XefFe/Wy8suvwPs0KHQNwj0599zxowZ5rzzzjMPP/yw/TFjcJ/94MLtzbSxB5l9xxxgdhkx1YxsGxXIqXZmKTo/4B2UnJzWSKB9I4voLkRABERABERABGpEIIAKrEYp0GlFoJcIZNC5uuNFDK/2GHq1Lw94UXSMTkxBT+tD4VWXPeQHhGsE7nzoLtN5/50mPmJjEx+3qWnacXdYRpA94WmBV/Laq6Oy3nrk5wJCVPQgBOxwgK+i0eK+NETceAKCtAWkR5rM6BNN87H/ZQZ8JFFwKMAgaemrcVf/9zH21trGHgm3AchZyG+NPG8bg/tQEAEREAEREIEKCax84av2yFOnnZUrf7pyZyPOeR8KIiACIuCXwH6XTLZRDz74YFQLUA9H/aCR57wPBRFoRAL0Urh06VLzzjvvmKefftrcfffdZt999zUf/ehHG/F2lOYyBFLLIUh8Im2Sr8AekywT2bsbJtMEhnJu+xhGQNsZdtqBLK2GHyjQ9Qqy6F03LLFu+KnVGaNIgA4/BuwD2+wgjKh2T8qk5yCVfp91eElNvgQvzGPgaXcoPSDW5jkPwo1iXXrYdeHae5Ohi3WvvfbanGDWXWfIkCHmgw+6nVIsXrzYHH/88ebcc881F198sUkkCqtJzz77bHPggQcadv7wE1IpuPtGOOaYY3LX//Of/1xWsDt//nwr1uWxX/jCFzire+icw04Q3hYlH0mCZ2g6q2nZHe/VXeKmiR51Q2o9dr/dqFGjfCSkfJTx48fbSKtXrSofuUQM5xm5RJTcLq+H85/+9KfmggsuMEcccYShSNx5Pv/a175mnnrqKStK5v7+EC699FLz17/+1ey+++7miiuuaLhbTqfT5rjjjjP//Oc/7fvku9/9bsPdQzUJ5u/3wx/+sMcpIPU3MzteNbPeft08ufgxc9j4I8zB4z5mJg/d3rQl/HsQT83OmK43MxDs9ji9VkRABERABERABERABDwEPqxdezZqUQT6IoHONyHWfQRi3QUB724wtLN7xMzAYxKmdadEqGLd9KIFZt0vzzddLz5lmvc4AMMM7WhiG6EbM4c3S8OogoZCa1qhkJALUVoPiFHRgxGgKLxtl4R97po+AoNswNGd0vMx7MzDadMFTyUKpQm4PNbo89J3qb0iIAIiIAIi4JOALW+y7MlyaAPPfd6uoomACIiAlwBFugyNPvfek5ZFoJEI0MPuuHHjzF577WVOPfVUc8IJJ5i5c+ea6667zgp5G+lelNbSBOhYoR2OFbqegd1qbem4PfZSrLsdRJCfgGfd3Wor1vV612UaKNitVbjwwgsNvYoWm5588slA3nhrlU6dNziBOMS6Az4SNwOOxoh928LGG0QEuQZeCp+GjfcVtGlAwFvPQLEuPep6wzX3hpuoN998MyeWpUj35ptvNosWLTLLli0zK1asMH//+9+tF1um4ec//7n5z3/+403OBsv0ntvVFSyN9OB79NFH23PddNNNhqLOUuEvf/lLbvfnPld/Byd0ApJagJr8ilyyyi8MhUfoj6L96zNoizgkYZonhifWLX/x+sU455xzzLBhw3xNfBZd+NnPfmYXKfJ87bXX3GbzyiuvGHorffvtt3Pb+vrCzJkz7T0z7zZi4O/H35GB75T+FAqJdb33P23//cwx3z7KDPvsAPPuLnPNjK5nzPIO/267+Q5K4l3Ed5KCCIiACIiACIiACIhAYQIS7Bbmoq19jEByGQxb0+GpdBYqB0H0i0NgrNgrZgYdBbHu1uEaKlJvzjRrL/ueiY+dYJq2ntLtUZdePhk452KU121C9aeWBNiLvXXbuBkIg24zROMG4nHfAc95aiY8lTyF5x4eSxSKE8jmuuywPhz0pzt0zxtnvfgdao8IiIAIiIAIBCCAD6D9+tkPoV3BwT3nDbE/wC0rqgiIgAg4AvSsy9D9l1Xy7Hr+PHtAVPdnk6eZCDQ8gQkTJpiTTjrJbL/99uaaa67pVyKYhv/xytxA1zsYsh222sz7ZSJ6d8ORZgJDtQ84Ch4gd4DX0lb3tvZGqn6ZQt18se6SJUuqP3GJM2y99dbWQyG9FBaaOOy7++aUOI12RZQAn9W2nROm7ci49Q5tCjuFLZj6zHto13gS4vb5QRo1Cp6q4o2FxLpn/F+Q4eD8Xfrf//53LuIDDzxgPvvZz5rhw4fbbYMGDTKHH364mT59ei6OV0SZ2+hZePbZZw1FaUHDySefbA+hZ9gHH3yw5OEU9TLsuuuuZocddigZtzd2pldCIEdNnc/HJTYSXnUPQPvDJ/F84r0a9siSvXHPvXENr3f10047zV5yxx13NJMnT/Z1eY4UwE5JX/7yl33FV6TeIcDfj3mXgR3F6hnYKYjPCKc//OEPNU3K9ddfv4FnXXdBeodmR4X77rvPepL+zv+cZ075+RfM4VceaOaPnWcWrV/kopaew2l5Gu3y6eocYZe+hvaKgAiIgAiIgAiIQIMT6NkltsFvRskXgUIE2Pu84yUYtZ6HlaK9UIwi27Ji3YEf6+5VnGuxKxI9yGbrWffqH5vm3fc3sYFwnUo9JW3MjTQPcsOKWzkBdKtomQSx+BHGrIunTNdTeEjgXcFXWA8vDM/Cs/SmaMzYGw0Zzb6O6neRXLbrvvFur9YfNvk02nq/+/l0wyIgAiIgAmETwIcxE+MfnLjIvCH2h81F5xMBEegXBHKedbN3m1vP97wb8f394sfSTfYrAvvss48ZPHiw9bZIsUtYw2r3K4gRutn0GggQYadNvZEtc/pJGww18a2MaTsCYt0psHFh+PZqQ2trq/GKsHg+bssX61JEkx+v2mtXc/wtt9xiZs2aZU9xxhlnGArbvSGVShl6gFy/fr3dxzjeQG+9HMZ9zpw5Zt26dWbixIlm3333NZ/+9KdtPvPG5TI9iL744otWmEYPohRV/geeTblt2223NZ/5zGfMfvvtZw/jNX/3u9/ZYeEXL15shVDMvxw6vlig51QKL5955hmzcOFCM3r0aLPbbruZ//qv/zL0dloocBjzf/3rX+a5554zzz//vGlubjY777yz4bUOPPDAQofUfRuf2TaM3mcgYlrflTLpOUgS61zlAuLQKUPHC2nTNCZm6LG3VmHqlnHz3NyeSk9uy/ese+29yQ3ihZEmJ9jl777LLrsUPOWYMWOsCPeRRx6xv3vBSJ6NP/rRj8xhhx1m9txzT8/W0ouMTw+/FOzeeuutVihc6IjXX3/dvPzyy3YXvfnmBz7TTCef0zVr1lhBL+/ruOOOM01NtWmaTcNjecav1/KBcFazJzzrHpowTRvX7rnK5xK1dT5vf/3rX0sma9NNN83tpyfW8847z4wcORIDZQbzicVnSiE6BJgP+U2kF29+e6IS1q71m4krS/FXv/rVggdSrMtpg4DXAz1v73/RXmbONe+aNS+sMYOby3sX4rsovc4aFzc4pTaIgAiIgAiIgAiIgAgEG4BHvESgIQl0LYDHhufgscFnxz97kwNQAfkIjBU1EOvy/O1/uMo077q3FevSFJJx9pAC80jvt7D0p+YE8BA0b4qh0z6GZyWZMkkMhWYgxvUTMguNff6bN4/Zc/g5pr/FsdmOHrPYCI95LDtvuPX+9sPpfkVABERABGpDgN9CnJmiXC6xnNqI67WBo7OKgAj0dQL0XkiRbqPP+/rvpPvrnwQoxqPgiaKaL33pS/0TQh+56845cKzwAmwwAfQoMWil2g6jB0h0ag9BrOu86FKMy8mFQmJd734Xr55zeuN1ngApFswXmtFz3oUXXmiTeOONN/ZI6te+9jVz9dVX99jGld///vfmoosuMk888YTZZJNNeuynMJb7KerlsOcXX3xxbv9DDz1kz0cB26c+9Skr3F2wYEFu//3332+HGf/BD35Q0JvfG2+8Yfbee28rjMwdhIXbb7/dfP/737dCR3qx9IaVK1eaL37xi+Yf//iHd7P529/+Zte577LLLjMDB0KNGLHAZ7d1p7jJwK67vj1lMvN9JhDOG7pmZEzn1hnTtiNrZ+EH50WXYtxr7oUHlGzgdm/I3+/dV+2yE59T7E0ht/Oum3/ec845x3AqFR599NGckJzib4pm2fHDT2hra7Pe3a+66ipzCwTyV1xxhaGH3/xAMbsLFOG6QNH8T37ykx55hfucIJneVpk3N9tsM3dIaPNMEqfi5CPEcEtNEGT3Z7EuMfG3pWfzICFK4s4g6VbcDQlQdN2ffs9f/OIXG0LAlkJiXXY4mDZtWi5+09i42XTaeLPy7XX+nArhU2LfSbkzaEEEREAEREAEREAERMBLoDbdOL1X0LII1JFAph2GLHjXTc2CERj/fQXYoJp2gkdS9Cxmr0GrUPB1oL9InQ/dBeEDjMsbYTgnJssqILBgBYM4R956ZPf7u13FCosAnouWzWDQPRSedtelTIoNGx/aTotfBdFSr8MLwyvdXhhqNVxg8QREfw8QWZFuo8+jT1opFAEREAERaAgCEKp1lz9ZTsXXkf9t+bTB1hsCthIpAiIQNQJFPeqyUx9Co+yPGlelRwTCIkDvmRQMUlRIwZNC4xFIraKtFkMkv9P9XvVzBxyyvXX/uGnbBfbUNhZMqwtOrMuzOIEuRblcpoddF/LFvG57ved77LGHFdbQc+jdd99tPeBSLMvw3nvvmbPOOssuc9vnP/95u8w/P/7xj3NiXXqUPOaYYwy9lT7wwAM2T1Foe9RRR9n1YcOG5Y5zC4899pjh9JGPfMTGW7Jkibnyyivt7nPPPddce+21huc4/PDDrbiX3nIp9KVHyUsuucQcfPDB1gOuOx+PP/roo3Ni3SOPPNKK5mbMmJET33784x+3nne9ImKKjp1Yl0JMnnfRokWWxcMPP2woWN5qq63Mt771LXepSM3jA2KmdWrcpFYiL/wbTkaW+0te+i3EfzltmjeLmcRG1ecD71WdWJfbnDddina5nR52XailWJfX4Dv+//2//2cvx+fopptuMttss427fKD5pEmTzG9/+1tz2mmnmXnz5pnvfve7Vnjr9yQnnHCCoWCXgUJbl8fc8SwTMn0MfI6Zl1ygl2knbOe36uSTT7a7+HxyqHt+w84++2zz97//3R0S2jzGFl+frb4ZaO6S8zImOTljmkaH+0yFdkMRPNFdd91lnn76abPFFluYQp6VvUmmt3N2NnrnnXfsZgogf/jDH9plen3me88bgnocZ2cJvmP5rqTHc6aNHSneffdd+971epYOem6Xrrlz51rP6a+88orp6uoy22+/vaG3dXpCDxquu+46M3/+fJtfzjzzzIKH833uvi304O7ttEHv7o8//rhhWnjf7MzFie8L9z13J12+fLn51a9+ZVfpUZZea//5z38a5kP+Jn/+85/tMb/5zW/M0qVL7bdk//33d4fn5kGuSY/vd955p6Hon++cmTNnGnZcYQeCZDJppkyZYo4//vge90Tvvr/+9a9Ne/uHw8OyowA5MTA+j3OBZRP+zvxWvvTSS9aT/g477GCfgcmTJ7toRefshFMo8Nn0hkMPPdSy4jZyue+++0xyMd4Xb6VNS/rDspL3mA2W8S6y76QNdmiDCIiACIiACIiACIgACfisugmWCDQmga53M6brFRiAV/lMP+wSdni1Q+KmZVL4Yl2movP+OzHU0AHdCXJ2EIp1GRptvTvV+ttbBPB8tMJImjkkY9atxtBpb+DCPto3MiuN+eDpdWbFcLgumeCzi31v3VPedTgMUUtLi/WCMWAAXF33QshlO3st60swu8RZ46zbROuPCIiACIiAJcChWDm8a2dnpzWKNyqWenwXWR7t9qzLQgZXnKfdxlpv1N9c6RaBMAjoHVg5xUb3rOvSXzkBHVkvAsq3/slzuHsKnsIU7L76+izz4iuvmXlvzTcr4L2zUcNwiCwnbT7R7LzD9mbKdttG8ja65qVNcibKlZ0+kwfTUNPuMdO2e8LEhzgLjs9jfUZzQl2vWJeH9qZnXYpmm5t7ejL1Jn/s2LHWE63bRiGQE+ycccYZhvlixIgR5pvf/KaNQkHu5Zdf7qKbBx980PzP//yPXaen3HvuuSd3PXrVo7D29NNPN/TYS0Es1wuFz372s3afGwaeokaKLBlmz55tPfuef/75uUMZ3wmgKHBzcRmBXoIppGTg/e+33352mX84RDmPo6dVetTmvTKwjvenP/3JLlOQSy+mLlCoTPEbxWpMf1QFu0xvAs/ygL3iJr0EbRePIj98qNNyt7PhvAPiytcQf8eMSdTIy667KEW7FOp6xbrc5/W86+KGOafwlQLDp556yorRKELbddddzbHHHmu3T506dQNRXqnrn3jiiVbcTS/UFJQfccQRdip1jNtHj6uTJk2yzyi/OfmC3WeffTb3/J500knuMDt3nncpbqdYj/V6Bj7zFJNTzEsRMEXrYXv2jMOxND3n+gpoKuianjbr8OoZgE4RzZvUpj3MV1oaKBLfp/S6TCFpOcEuxaB8j7nA5UsvvdSufv3rX+8h2K3E4ziFnjxnOp025513ns073mu55UrOzWMp0swXFd97771WCEsv6EGD9/4//elP9xC6u3NRyO4YuU4nq1atsl61nUjexWVaGPhb8Dvh7dxBb+zuPPRmTT4U+bpAeyHDNddcY79fFCO77xW3V3LN1157LXfNvfbaywqJeS4X2MmGIm4+P/x2M3jT6eJR1M+Jge8RJ9ilAJjvIn5v88N3vvMdK/ylOLlUoGC5UOB2tsuxTEDxrjcel5+88xkzZe2upoujf0Ls7yfwXRQfWJuym5/rK44IiIAIiIAIiIAIRJ2ABLtR/4WUvooJZOB9tHMWvOu+iQqEzxAbS48NCdO6LYwTCZ8HBYiWnPGkiY3YGLWUbNZj0lhfacR5gPtW1BAJ4Lls2Q5eGKZlTPtKeGFY5O/czQvazEarB5qBmzRFulcrexqzNzGNJ5zo0YOGgloGl/26rwGvglj40IxQen3l+piZubjVLPqgyXQku4/qefyH2dvdQ6H9bU0ZM3ZI0my7cacZOoDCKBdKX59nzz+fO1JzERABEeiPBGhwp7GbgUOgDh06NNc41og86vFdJCf7dbEfGPzh/6ynXYp3G2a/Tan+iED/IqB3YPW/d6N40C2XzupJ6Ay9RUD5NjhpDplOgdOrr76aEzAEP0v3Ee++t9D8/e57TQpCl6m77GQOPXB/M3LkiEpPV/fjli1bbmbPnWcefOQJ8/Bj080njjzMTBi3Sd3T5RKQXg+xIUZBS8PBgt+Q2Bpi3Y8mQh2y3Qlxvd748sW6FNL1ZrjhhhsMp2KBgsW99947t5vi3htvvNHstNNO1n72ve99z3r5pDCRgeLEUaNG5eLTux/DkCFDzB//+MecWNdFoKdaCnQodKWgqFig+MyJdRmHokYKKunpj+emYMgbmObx48dbz7svvvhibheFt05oRQ+RXrEuI/E4inF5X4zHehFFj++//37uHHwXeAP3M+20K3rT6I0TpeWmMfAaDa1z+j2MpPaqvzyRno88NBveDbeKGXrqDSs4Ia7zrsvz5ot1z/g/KIZrHJgnKbqjSI9CVwY+W5xcoMiPz+shhxziq65PT530yEmhIIW1r7/+uqGgvVxgJyiK2ClAp0dneuukKN6F22+/3S7yuad3T2+g10sGigedWNft5/m+8Y1v2NXBgwe7zaHN48PwbDCZaN4y6fKnzSxFG9pDaGNYnTFt+2ZMC4TaYXgyL3/l/hGDvzfbOJxwd7vttjNf+MIX7M2z84QLlXocd8dTBMrA9+0BBxxg3//jxo2z2yo995w5c6wnXXsS/GHHEApa6d2Wzz+9tvP5DxLomfeiiy6yhzCvf/GLX9zg8Ntuu81uo1CVvBh4LSfW5faDDjrIvuf5zmdHE070Gk+xf6HgRKwU9rLjCOtS+d/9/OOqvSbfC+TDdxa9ErPc+jt432ZgB5PDDjvMbL755va9Qi/0HR0dhp7zGSiSdt9858k4lUrZ9x7fZQx8tnhevtNuvfVWK+KlCJzxvZ6VbeTsn6uvvtq7WnDZpcHtbI21mV9/7Uqz/cJdTOfzeKn4dY6Fd1B8FN5HQ92ZNBcBERABERABERABEcgnIMFuPhGt9xkCycXw2PAGjF2rfd7SAGOaPxLe8GqFrpp87XmTGLfph2pA2NVoWrPDDPOARlsvdJPaVnMCcQz/17pbwnS8nTTph+EDr4NPUZmAinQX8kNqJwxxtYmP+GVOV6vdNGLSWMmJQxNxCCQ2MNTS266lASMsLDXIg+CZnZdan7e8xdz1ykDzwgKfw/8EALbLhA5z1JR1ZtII9PL2mR7GUxABERCB/k6Anuk4jN3w4cPtd6Qv8KjHd5EFUn5VWD4tOMe+gttd/Ijs7wu/v+5BBIIQ0DswCK3icZ2H2kafF79D7YkSAeXbyn8NDvlLb3HO41glZ6JX3RtuvtUc94kjzV57TK3kFJE7hmJjTryf6U8/Z3515XXm1BMxlHJEvO0m38NQynNhe/HjTRR0Y9CbtuwZwyho2YJmiMQLiXbd6bmPwpneDBT1lLJ9eYWCLl3MBxzum+I/in2dgJAiQ3oS9YZnnnnGrlIYO2bMGO+u3PInPvEJK9iluIzDt2+6KWzYnrD11lv3ECy6XZtvvrkVVFIglC9OZBwKpBYsWNCDKQVfLlC0RkFufthjjz1ym2bNmmXz+6RJk6wAimmkN2EO8U4vvttss42N6+pPuQOjvIDHumXLmOnaI2bS76PL5DIfiV0PL7tzkI8Q3+YLH4f4jVJItOuOvfbepHlurg/1pzugijk73XLYenqSpGdbivT4/LjA55wTvUxStF7O0QPtytdff70VtPO5oXDPecB15yw251D0FMUxULR78skn22U+rxyynoEi4La2Nrvs/kybNs2mkcfQqy49aVLczueTZcxaCHXdtenNMjEedfpheKaWu61l5ujz3PUYOlO8n8bzCCHjTnHTNBbCXTgOUaiOgBOK3nnnnVY0znILPb3mh0o8juefgyJQdoBIJHr+cJWem8Ji5hkGer31CtMvu+wy+0w78Wh+Woqtb7nllnaEBHqPpTA3X7C7cOHCnGdX572YnfJ/+ctf2lN+8pOftF7W3T3SWzW9wlOISmE/25KKfeNuvvlm+70oljbv9jCuyY4B7CxA774uHHrooTnBNt9j3/72t60Nk88Eyx5OLMtvOL3LewPFyI43O+d4PR/zHUMhM/fzvMUEu87Bgfe8xZZpGTzxgFPM14/8lpmwfJLpehzlt26nxMUO6bE9ho4DTePC7VzS4wJaEQEREAEREAEREIE+QID9LBVEoE8S6HoL4kRMfkMCPdNbd4+bxAhYy2oUUm/NNmYQep1SEMikYW5T2IjrNWKk0/ojkB7SZdZuudLEJvmLz1j0Nt31du8YV/2nqnhMGi/pNYfiKzdEUfHYle9xedDv/IHZA80l9wyviViXd/H/2TsPOLmq8u+fmd1NDwRIIKHuQuidIChIwNAUqUEB/aMUQSQgKk2KCCLlpYM0QZAiiEiTIlWQFnqUEumBJAQIhAQI6dmdfZ/vmX1mz569d+bemTu7s5v7fHb23HLqc099nt95zsvT+tr4ScftI0rlr3wOpCFTDqQcSDnQ8znAOMF4wbhRTeVXd3Kqq8bF/Ngjo46dp/Zgtzs/Vpp2yoEu5kDaBybH8FKWa3vK++Q4ksZULQ6k7bYyzgJ+mDZtWtmRYFkXsO4hB/5frwHr+swAtEv5KCfl7XaSaeXiyTmDhdBIJFqL+g1EVrthncn0rY6sFnCMAnc1T0HP9F013SuvvNLWaep10I/3QfSzn/3MWtzjHcAqrCuec845Hbwydj377LP22QYbbNDhnXsDAFjJtYarz8JAUPo+zFphkLXbl19+WYNZK4KcjuL/tt9++4IfzQ9gR9cSMWAtyoS1XYBfDz30UCD4txBRjV1Qt/ttLPqI9aSOR9TU5UTf0TyVdVryhQG0CzjXJe4VzOs+r/Y19ZHv+/7775spU6ZYC5JqmZS0Ad0qGLJUXnbeeWdzxBFHWG+AaNXKZalwgNaxKgoBHlbCYrUC57AG7NNpp51WsOILsBerpNRvLIACGvT7HT98pfcNYiU3K2DwWCR7FLD0vPAfOTP3jhYz/6kWCww3LbFi6ZGeqWPLLbdc6C/oGydZ0KgWx0lTLY776bOZ4cILL+wE1i03bjZDqGVrLKe7YF3Sxno0dbkcAkAM/fvf/7YAWzcO18L72LFj7Sssb2Phmh8W4hWsq+E0Pu5feuklfdzBPeywwyKDdQmYRJqAp12wLvFibZdxGnrnHdEVx6D33nuv4Fvj0AfDhw83WESGR2eeeaY+7uQuXry40zP/AUDdtfqsY246/DZzwS6XmRX/12hyb8iAEwOsS5zo2xvYcJVSyoGUAykHUg6kHEg5kHIg5UAoByKKAULDpy9SDtQkBzhiDcEVR/pEoqXEuu6mYrGhsboLiNyM6bIzWQxbi3BR1j15lwz2xPtIjE09VYsD7IYdsuEga2nXRDx5qFVO82sWxUjrgipIdKtUUCwUYCkxzu7fuFnRVp9381YFiSPo/jEB0f71pYgMj5sRzz/pkF7U/HnB09uUAykHUg4sURxgnGC88C3b9DYmdMW4yMBjR0M7ANkbYWNHt0e8720fPy1PyoEiHEj7wCLMifkKIBCU/y+u3vtuW7y1+r4te6lTwxxI221lHweLiYASyqV7/vmwtay71sg1yo2iR4SjfFgQprzdTbm5YlgBmZRYcoxCGTmxvmFDsfK4vPbIUULF9+MCdN3r+DF1TwjAsIABlZqamjptYMRasFpJHDJkiHrt5LpHm1fSvjpFHPBAwY4BrwIfffll+xncWAJ+4YUXzLhx4wrHsRMfllh32203a4l38uTJgfHU4sP6FbK2rmeGRctd6+ci350m1lClTVWDXNBud4F1/XIBDtxrr70sWHvChAmF7843j2rkARAbVqIhrFG64Dc/PfdereoCLvzoo4/sKyyDQrQ31xK0fSj/sPiMVWuAuy6wDsvBBx98sD1NDnB5tahhRalTsuEBC5dxydYvsaQ5//YWAe42m7mPt5jFU3OmNSZYL2663e2fPjLsx4kI1aQgi+NYcXZ/bj3D4rhP3/nOd/xH9r7cuN1w9LlBxNjjjhtBfoKeYSVXyQXo8uy2226zr2jvzPUgxjk2sPNzrbjDH4DF7maRuXPn2jD+PwXe+8/D7pNIE6vaPrF2XHfdde3juOPgZpttVohu1113NX/+8587AJ6RF8KjYlbHGxoaCnH4F/WmwWzcXzZ7rTrOHLvhb8xWX33LND8r40zEeZsbX2a5tjnciBSC4vIlvU45kHIg5UDKgZQDKQdSDvgcEORgSikHeh8HWmaI0OpDWUyU3jBoC89uvz7ryTE//aorBG5dxJlvki/kaSQV053wznvmivseMg9PeMV8MXeezXs5/4YMHGB2GrWxGbfrzmbUmqvHzkc1dvCXU44lNYwKiQYPHWQWbZAzzbL7veUVKlMJEsFaiwh0mz9rNQ0rV7eul8hJrNcIGtgNTrmLHQ8YK1LHszbD/KO81et27rTfvz+rwdzsgXVHLN1sBja0mg9n15n5i8oXQPTvkzMrLSWC0MUZ8/GX7UMz6TUtt9g0LaudWXt+gvPrFCy9TDmQciDlwBLCAR0XGS+WBKr2uGinqhkZHe0AGey2Bryf8uYH5tE7nzQTX3jDzJtTvkJrwKD+ZoMt1jXbjx1tVltnlcB8BKXv5te+XxIqQ1rGlAPCgbQPTLYaFCzotkVbuOdUHKHCvfcexTlH3QLOmDNnTtvb8hz6eRS8WGHTI74L6Wo+vPT99+WlnIbqKg6k7bZyTgNGiArS8lP73xtvmZZcrtda1vXLi6XdCS+/aij3+uuu7b/usvvmT0V2haHfiNYa69YWWe1aImcpX9QSuWxq7VLdyAFrwOPbb79tTjnllEJOnn76aXPttdeaQw45pPAMEM+GG25oXnvtNfPmm28WnvsXWOdTKmaJV/1U4pIfpQ8++CD0CHP147ubbLKJufjii835559vywWY8tJLLzUffvihtciKRdUgUJsfT03cy+n1fdbOmsUjRcb7SX6+UTRf0oZaPsrLd/sMapdgFg0T86Va1FU3ZvCqeqfuAL496qijbDrU61GjRpVMEwu3AHy//vWvW78AZ13LnGERAAJX4hh6LDkrYJc4dPOW+lEXkPFJJ51kf5MmTTLjx4+3ALtnnnnGeiFeLGz6Fjg1fCVupo+xlps5fTLuMfY2XcQAn4pqTXRszRMFsCu6s/o1c6ZhddlEsUrG1C0l9a46Va+SYpcddvnll7f9ZlgEChwNe1/pc9/ieKn4sDi+/vrrd/AWlsdy43YBu2uvHTx3oO4DIn3iiSc65KXUDRtH9ttvP/O3v/3N3H777RbETpjp06dbq7tc//jHP8bpQI899pi55557zCOPPBLbOi0WlMuhStJcZRWRZwVQOSBnogHoe8wxx5gLLrjAWvjGwj7ERgQAvFiCZmwsRjvssIP57W9/28HLsLoVzMZLb2Y2WXaU/a2/zEZmWL9hJjunvAlYc7bZ9N+sQU5IEH17OD64Qx7Sm5QDKQdSDqQcSDmQciDlwJLKgXZU0JLKgbTcvZIDCLdyn0QsWn85Yk2EwA0rdaGUQZMSl8tW597m2rnX93959Elz4nV/NSftu5c55yf7m6FL5a182vdFihr0/rPZX5m/P/GM2eN355qzD/qh+dH2o/MxOOlqPjR9ve/g5kOl/7uYA4BXETJCAG/r18qYlrdEkgYevATlpotQV4RtDSuX8Fhjrykv5a4GYNdWeyxmofwWN9Pm+vf3/W9gB66sOWyR+VDAtduuMdcc2bTQDO4jEnMnHg0fxf1qUZ157v2+5p6JAw3xvjNDJKttdJ88+/m2YkmkRP7Uf+qmHEg5kHJgSeOAOy4uKWWv5rhox0JhJKBXLOkyT83PB8Pvn3nweXPbH+8xu/14Z/P9cXuapYYMEvxsm3+Jy4aPeD/7iznmxcf+Yy4+4Srz/Z/tbrb69pYl0w/K35JSF9JyphxI+8Bk6wCKZ8CvcVwspF199dVm//33NyhOOUI1Tng/PSyvAjwC5IEFuJ122il2fMlyJY0taQ6k7TZpjsaL75WJr5tRm2wUL1AP9015KXd3AnZbBLCbE3lUJFpKZLVynHvdcszykqFSMZUD1vWP5U4mp9FjwbrggQceaANsueWWBlDVjTfeaC3Pjhkzxqy++uqFyHgPsJGNJWHEeyUfDKbPk3I33njjQlSvvvqq2XHHHQv3cS6wtrjpppvaHwBOjj0HlMkR91hQdXkQJ96u9ls/TOS7UuebX5U28lXp1FtF94F81zSW9hvmQ0WYYe/LAev2rQCcBahVrYheeOGFRi3bBuWv3LYHuPD3v/+9BbkDnFXwbFAa+gxw3Y9+9CNbr2hfAGzVYjWgwyi0xhprGH6AELGKqUC7p556qiqAXfJUL5Yt+21jTO6zFtPyutQVEVvHJgnWOlMsOs8EuNtqFq3cmu+bG0WXJsDd+uEZkx1YqneNnWqXBxg4cKAB5N9dFNfSqmtxvFSey4175kz58G2keii9d91iVttdf/41bQrA7r/+9S8LPgU0rdZ2aXPumMBYx8YUgKpBhH9tk0Hvy3mWRJqsB5Mk4jv77LPNN7/5TXP99debu+++20YP8P+iiy6yv+9+97vm5ptvLugO/fQVLDwoM9isO3ADs/6QjQwA3Q3kt/rgkWZwQ17n7IeLer84t9j026SP6ffNOlO/QrLlj5qH1F/KgVriAHNr5qP0xch5aINssGAuwZyk3PlMLZUxKC/Tpk0zk2Uujo6BPqu3Edbc33jjDVssNtkjA1zSidNPFsmpLqtK3V511VUjs4M1G3MO5mJqgT5y4NRjyoFewoHytkj1ksKnxei9HLAWdkWQEIWyI0TAIEKGTN8uXEAAvIMQeli3/T7/vP2eKyzrAta9//QTzbjddjZDB7dZkJOX1qcTX1B4C/Sz6di3NjzxEB/xEn8+XN5x/ReNv8176nQtB7Aio0d+YxW6vknqrwjIolBOrOu2fBbFZ3w/TMjuuOMO8+ijj8YPXCIE5S3Xek6JqAttSOt6kPvFvIx5eVrfQlRY1gWse9yYz80Oa8+zYN2gcLSlKM8B+xIP8REv8Su9/GFfQ/ql4lH/qZtyIOVAyoEljQPuuFgrZUfYwJjID0F/0lTNcTE/dsmoY//4x1gWfj/lzakWrHv0eYebMWO3MYOXHljUf6n4CE88xAcImPiLpR8aX9JMT+NLOVCjHKjFPhALs9oHfvwx5hSTpWr2gb6l2lL3WO8DrHvOOedYi7gqqC8Vrtj7pZde2sZFnMSN9cRi/uGu/z5ZjqexJc2BWmy3lBGgBG3XBe0lVfZqttu4eXx/8gdmzTWa4gZL3H8Qv6s1h6S8lLvbSKaSLSKPap0VLQdZMarQsKpYZkvQ1Mgyy5ZxNnyR7NLvoljsTsK67EsvvWSzcOWVV9qxSME4WNhtaWlH6KkFUpTL+PVp6tSpBUu9AGBps9UkgAqa19/85jeB1umffPJJw7Ho/KZMmWKz8+CDD1rQI5ZRP/roow5ZBLzLEe1KOjbqfS271PX61bImu2JU+a60KXQf8lcufe/ryasGR7VjxGNnC0BrY2OjBd6de+65Juxoe6zUA5xVigvKxkLlVlttpcEjuf/3f/9n/f33v/81p556qr2mrgVZx6UfB5jLjw1YPn3rW98qPMqJtfeqkVQlrJT321nq1UhJpdLPPVfAv2IwZNGDObPg73JK3G0tZs49LWbe0y1m0Xs5k5sTXh+z2XziSZVXZSzZOjFP3QvItzjOPLHY7/DDD49c6nLjdq2sa/8blCgbLsoh2gEgXUiBuq7lak5SUAJYr2BdLMQC8sUyOxvg4NPkyZPVa2Jud6QZNfOAcm+77Tbz+eefW2vD9Gk6nsLLX//6152jkuZJG22qX9Ocuv1Z5vh1f2uO3fBkc9T6x5p9m/Y3Gy+7acVg3eZci3l11n9tn9NnDWnz0YazznlNn6Qc6AUc+OSTT8wll1xiNyagN6efArBL38VcgtOZzjjjjKIb6XoyG7AE/4DM2R944IGeXIzQvHOiB6cu8MM6fHcR86EZM2bYn86NouSl3HDF4r733nvtN3/99deLeev07uGHH7Z87K11pVOB0wcpBwI4UOkyLSDK9FHKge7lQOsiWXx8LnkQIUIUyq4iArGVurgpyK4iS7poKXF/xX0PWcu6G62+Wlu4eOHZxRSUHvFhsZf4g94XFlUh4fOB0v9dzQEmUwihlRpWzpq6lfSuhCuns+Y+FyXJ4hL+ynh93nnn2aN3sFSQNFHeOBPOOOkXmqENhC3BPOXd/P1bn7YLiXg7sKHV7L7BXLPqMi2B/vHjho96T3zES/wukX6p+Fz/PeF6oey2SynlQMqB0hxYvHhxAYRT2veS6cMfF2uBCyiSOY6OHwqEpKma4yIDjh397MBjb4reP3rnk9ay7iprMhkp7T9q/MS3q1jsJf44+SnEnzTT0/hSDtQoB2qxD8SCiPaBcYW1UdhczT5QLSFFdVG0YFl35EiQENILtq2dk3ABrhA3acSNLwofUz/dx4FabLdwA1AcbRfFU9JUzXYbN6+fi7J0ueWSBW/GzQP+9x67l/m/H/7A/MPh90MPPWif8TzJOSTlpdzdRcigciQ/L1oOkHFhuTFJwpoVVgKTAHESx7Bhw0It2JWTbyzfAu4r9gOcpMQx53qsNRbZAVdx5Pell15qvTz99NPm8ssvV+/me9/7nlHg1i9+8QtriQ/w7meffWbbPO1fLRSefvrphXDVumBcUwAWwIW9997bYLEeMAObfa699lrbJwE+Yi6x0kqsNYx1scqIBUHKBB/oUwECjh8/3px55pnWH2VlHO1J1CBg3boREXM8X7C6HMYlbatc2n901mzSlJxO5EfbZc3mYiW4EuJkAQiLkdTpO++80wCK4PtifYvj6bHU9vzzz1t/gGKXWWYZex31H+MRVm7j0OjRowvgQt3UEmYBeMUVV7QAROopdRTDFtp2AewcccQRhaR32WWXwnU1LjIizu63Udb0/26dya4j36YCC8iF/AnGuFWMgbT8R8C79+bM/L8JeFcAvHP+Ie7jLWbhGznTMkt0D86+ZTY38J3effddM2tWxJ0bhQQ7X+g3GD58eOeXNf4kaAzyLY4nWYRy49bxgryEgXIBjAJQL4doh2ohHvAp4DYFuDMXdQmArtJVV11laI8rrLBCQT8Wlj8NU47bHWm6+XQ33LjP3WvaFRsHsLpL39LU1GRf6zyeNsjGjoWv58zcf0sbvSvfVn+43IHmgJGHmG1W2M4M7z/C1GcrB74vbFloJsx8wcz++kzTbwPZcNVRleZmO71OOdDrOcDGIjZeq4Vz+rtVVlnFrLPOOnYuoZtYWOsh65k4cWKv50lawOpwgDXSxRdfbH9xgMPlhqtOKdJYUw6kHGhHfKW8SDnQSziQmysCga8E7NYR7xZcOmkBdSIArlumMmFScORFnpI3kozoPjzhFXPOT/aP7D9qvPjbZ9utzNm3tiljIuYnEm+LFL8ar5jcqtLL3YFbjbSIU9OLEj9WKXQSHsV/XD91y0odliNmmuvlAzrCsMB4xEtO2gftpG5IF9f7wAx1/0Ot9vmcSP8hF+2cyd9P/6rjcPnh7DpzZOMC8Rns3w8f535LiffuiR2ttLSnXyq9ZPlJm1IlYUOiOgVgAABAAElEQVRDg+EXldywtEkWphBC9rFjx5r777/foAQ64YQTokaZ+kuQA4AJsQrCsTtPPPFE0W+r3xKFWv/+/RPMhbHKFo7xmjBhguFIt+OOO86gPEwpz4FHHnnEcMQiSgh2m6qSstr8+X//7/9Zpe3XvvY1c9lll1Wc3A033GCuuOIKK1C/5557Ko4vjaD6HLCjjR0Q5R9/mbxrcIXc9xNfeMN8f9we1l/Q+1Lhi73fYsym5p83PtQhPT/90PA2p9X7hwAWAReC1UGDBhkUYVh3quacr3qlSWNOOZByQDmgSvSoLgArjt+O6j+uP6xPAUqKG07LU02Xef3//vc/a/UQMA3WhVdeeWXDMerLVmjJkvknyniU1QDSsCSVUsqBlAM9lwNYdbOy2ihFELFD3fJyzPrS7ZKUKMFK+UGe0djYaNedzOPKJdbQgGSKHRFeTtxY4eJXjADYAkJdsGCBUbAgAJ3jjz++EAygE+svgE/HHnus2WmnnSxAAOvt9913n7UsSp+NBb4gK3zXXHNNlx0ND1gLS2Ns/FegcqEgbRdYDbz11lsLMiVAZFg7ZWzEuvAWW2zhB7GWBs8666xOz2v9AXU+O0zqPZv4SwFxxUtBvtunvLaywhBjrjg0a/45IWMmf5pfzpXDo77SZrccaQT8W14+3DSpE5xegByCeoo8JIwAw5ZqM2FhWbdR17FEHYWQaeLXrVe77757YNC+ffsajFr87Gc/syD473znO9YfdVlB8Tz43e9+Z4/FDowkwYecztdv0zqTEaPZC/6VM80TpfK0Y/8rS0n0EK1Sd1o+lRP9XpZ4l5b+W4DnWQGe18mplugr6M/rh2bMtqO3Nf+4+x/muuuuM2PGjCkAoONkABk1c28s9zHfXHvtteME71a/euz5c8891ykfanGc+oHF8W984xtWxuB6xOL4RRddZB8Bzgmy7uz61+ty42a8VDr66KPNdttt1wEcz9rEBZ+r3zgu7Rtr2oBjaY/QmmuuaY+Jd+MBGKzky6VZj8QF4GtcxdzuSFPrCPliI4tPfH+eY5kYua3qWvBH/7LtNtuaz6d8YTYZuLmZ/3yLaflE2uV00QN+JG30I2mfs8WjAO4HGzm6Pbm9Gmb2otnm+RnjzU2TrjP3PSQbTVOwrv/p0vsljANsNmOuDm222WZmt912My5mAVkH+hH0YdAtt9xi9XSuH/si/VezHBgxYkRhvaTW4ms2s2nGUg6kHKh5DnREINV8dtMMphwozQEL2I1oXTczSNYmAtbNRMeglc5ACR+IrlpVfiVulPsv5s4zQ5cabGOO4j8o/l1OOdtss8E61qKu+36YxEv8Gnms+POhauI/ggN2ra277rpWaFPtTGl6UdJB4MCO/2oRi+CsGIfJCMYT6wqlqBUruylgt8Am6ry1Qi2CJtxMmyta8cL9wmbrqxBm/qKsGdxXJBwh/kvFV+z9UhIv8btUSL9Yem6AhK6xZIFVL2iPPfawxy1Fjfrggw+2R77g320DgJsA60IIsFPArmVFl/8DsIuQb/PNNy8K1iVjbj1AmYYVgyQIMKoPvnAFokmk0dPjQOiMwJ4fylUAQV1Bb775pq0fWGhKgvS4p1SAkQQ3uyIOa8/Wzld1XtjBlSy49/PmzDdLDRkMbjb/XF3x5Ppj/mnvY7wnXuInR3HDSzJVIRTHjHFq/cVNBCUJmw6wcuYqT1w/6XXKgZQDtc0BNiihgI7qzpkzxwCCiuo/rr8hQ4bYY8Ljhqsml1UxjtIYC3hB9JOf/MQCyJqamoJel3xGGnrMezo/LMmu1EPKgZrnADKomVNnCUSktCXMzxfMMq8/87LZY89vV6Vc9Nn8aoHibvTSTdT0v4B3ITZGuuBhxgss66633nr2/bhx4+xGWW5QLrMOP+WUU8wdd9xh3+s/QFIAxXzLhrx3QUTq33UBKJZLpMn3ALSllsg0roMOOsiceOKJprGxUR9ZF8AfG1rOOeecDuMQc3E2e1x44YWm3PGnQ0JdfJMRTV1WQLRWvotF6hJk5bvzxCBDBYZIsrJA221zVmm1QdQlvt/WW29t11RB1jvZyAxQkGPgqe8uuffaXtz37jWyeo7vvfvuu93Hodf77rtvAbALaJyNSmHEehFAKaB5tQasYN0tt9zSnHbaaWb77bcPC57484w00X4bipXdQRmzYFjOLH4pZ4G2dhGfVGoiJjeCq2yRk/1a/ieY834ynx4qdRpjOQLcXWf5TczuTfXm2dfHm7tvutcsrJtvchkCxSeAugqEjh+6e0LQJ1EXkCcgD8eYBRvcsDxMvcXiOBam1eI4uifqChtMkKOzMYM6RDxxNvOXGzf9PmPNr371K5vnffbZx15vtdVWFlT/l7/8xdx+++0VMRMr2ptuuqktMwB26NBDD+0UJ20Fy7oQhh7gDXUAHQP9Bdask6buSJPNQArsh7djBNiORXHqCOM8RoG0rIABj/7l0Wa1YU1mwSeLzFN3jjeDnxpqTlzvdPONDbY2826VNv6ZSOnymMGk2WPjy7XmzAdzp5p/f/ywuWPyrebQ8w5OwbpV4XQaaU/jABuPIOa39PXu3ITnyIt5PmPGDDN16lQe2dMlom7EsAHSf93KAV1zdGsm0sRTDqQc6DUcSAG7veZTpgVRDrTKIqR1od6VcAfLjl8B7XYlAWawQEABHsiFgA/EBRhY7N6Gyf+L5N+Lb5dTzjJPTXxTfnlh7on77NkxvbLiJ1Dtke5cq6WcLVwYtUKWn+uM1GVDXY4C2KWNJH86d/mZ7+aQtvVJmynmBmWxmH9Av5W8Lye9oDBJPkOAjVAxilCQ4zdUgOTngaNfVBiH8iWl7uEASjoI4V8cYgdwUoRiUen888+3u1Irtcam8fUWF4sxKFIRAuywww69pVhpOWqdA4xh+WlqNFfKY0c9GfhihYvqv9z4q8DnZ5991nz/+9/vACZQhQrJoUA744wzzAsvvGBuvPHGii1MVqEIaZQpB1IOlOBAuZZs44artv8SxSz7NUc6A8b1gV5uX0jkHGX+97//3VqOAXTjE5vH1DIdCi3ABymlHEg50Ds5APjomhNuMDst2NVsvcLokoX8bM4Mc9Nf/2K+f/HuFtyE/KC30oorrlg41ShOGQGx8gujkSNHhsbLOyx50Z9PmzbNWgADyDt06NBOgAKNH6CUgqX0mesy7+UXRhz3G0aAGI466ihz5JFH2iPRORadjaPwphhQGLAlP8rx3nvvGTa4YOW9pxOASivfjQLYFXFzb5Xv7r333oYf6ytAeQBaOHmolBV/1mr8otJtt90W1as1EqKnkEUJBNjyqaeesicCTpkyxZ4agGXfbtvYKafe9xmZtcZrFq6UMYuez5mWd2RRnpS1XZ8p6B+mCYB3mgB4kZIPMGaNoeuZVZceab7MzDJz+84xiwYuMIsHLjSLB8jJif0XmVxDix9Lh3t4RztHttzTaNdddy3Iyk8++WTDj82+gHchrEvHtTgelQflxg0wHmvGnIzG6Wz8XGKjB1bfmdeXS+SNeYISwHif2KCBkR42qmBdnZ9L9BX+2sR9X851d6RJPtk0g1Ei+r4f/ehHNuuAd1k37Tf2B+af1zxo5k9dYGbfu8Bc/eiNpnGZ1c3QumFmpYErmyPXO8YMqh9kMgtkA6q0u2rSl4u+NK/Oetk8+OG95oGP7jXjTj3MHHzIQdVMMo075UCP4ABYAOamEHNZH6zrFgJDOgrYRe8aBNidPHmyeffddwv+Ghsbbb+76qqrhsZNHl4UufT7EnbWrFnWWA/gYdYArKt8S77kgY3YbBr4+te/btN6+umnbVh0U8y/lPDLuIDLhhLiJd/bbLNN0ZM5P/roI7vZ4+2337Yn05F/5nRR5+6vvvqqBTiTD/JIXn1Cb6njFLxn3FBiEzgW7j/++GMze/ZsuwmCtQMndzCn8L8TZfzss8+sRXP8/Oc//zEvv/yyLTNjIyeFctoUBE996+9x02OzOnFqvuGTfnfKCr822mijgqV7vjHfCL4qcT9s2DDDiZlhm8rihItbBs0H7ty5c+0GfDbeEQ9rTeouJ6PE3bBKPXvttdfsupXNnaxZmXswB+HEw5RSDvQGDqSA3d7wFdMydOBAK1iiiHiiDDt9yzcC0CHdWDcijMxTm1vqHs/Wa0T/TnxY1gWsq3TW3+4yJ+67V9ut5qPc+DXWJdfFWuBdd91VlAFMpqpNWanH1OUoS/GJz79m/vfZf80WP9i00xFD5BMBBxM9rHGwmxjhIpM9Jo1MhlhIYBWTyWMxQvHKEe4QRzkRLogQ6jMZBaiHhYKuJm0Fedfa8LNZ8O/9fPnvk76Pm57vvxr3WDHB+kkpYpd9GCFcBfA0c+ZMu4AI85c+rx4HUICpNTR26ncXcZwbRLtHQZdSZw4gdEY4gGUYf+Hf2Xf6JAoHEN4AIGJMY7EPbbLJJtYSE0dU+YQFFMCXjHl8D8a2Rx991Ap5Fi9ebIUgAN+Joxj1lDHRlkEGNDsaZphVcNPZ7fC+EKjdX4f3pcKXel9m/DZYgv8A1/3whz8sgHU5oh3QGkIn6gKCOiy9MGdi/nPppZfaI80SzEIaVcqBRDhAH4YQG4Ez1mGxTsQ8HYUgVntcQmmApX3mb9R35uwPPPCA7Rd5h2Aageu3v13aCqLO+YmLI4J9gTjpIpR+6KGHbBawmoVCoauJfNHemdvbXk3vfbftveavEE79RQzfKVxAeNLo5K9E/ISpBmH5SxXibOTjGPM999zTCspbWlpsX4iVRMZaFM0ou/UI97D8VHI0fVicve05PMQKIIAGQD+NjY127kG7ZRxyCevEWNeEdtppJwM4iGM5OUKauQ9tnqM5OUHFtcrpxqHXPaXdan672+X73CGginfeeVsUU1/I/HGEKJNGmr1F0anWTrs7j12dPkc2M2f65tLfMt/dQGWRxXMxv2W+md+cV3QDeDv99NPTk3mKs6yst7T/tdZaq6yw1QiE8pb+zO/TSqVFObDS2FsI2S4nqTEHKUmi/7B6kJIee64HNgTRD/DrqcTcF2BBrVD9cmLxdps6U7+qgHb/K9Z25ZcTYK2ptnEP6dZbxZBgveljljPDzXLU9WXEAu9QMagjhztlyJecIMhpmHVD5NnS4oox9EwfK6CoCvuYX5dDYZsJill1BkgOgOWPf/xjB4Cqm345FseLpVlp3IT/wx/+YDdEXHzxxW50du3IZmXdPOIDwDp4LnKDnA3gMsSaMmgMABCGDPnnP/95AfSsUTLHwJK8rk9ob0ph30nfq+uG0WflphkFiKRW6YPSPfPMMy047qY/3WxyYiF3RL+VzDJTh5u5DzWbulmDzA0/vtVMfWmqyX5Zb5atX870q++fVxtrxqvsLmhZYN6Z/ZZ5evrj5uEP7zcT5jxvfnv6b9N5WpX5nkbfczjg9smAFZF1hOl0Nt54Y7tJjdL5pxIiW2H9zxrepUmTJlm9BHN4dGp+PwKgEXk0MgGXkN/pyaeHH354BxAucT722GMWSElekeUoKfgYGRmyRP+0OcCYgIrBEHAyZBAAF8NBjz/+uEZpXcLQryPPiLIJh/wjb4foQ4N0mpSPckDoahSwiw4oCMOBXAVgLhsFAeFq30x4wL2AkpGloEedMGECjwuEfhUZCwRmwl1TlZMeZcPiMnmmHMhrXeI0THhIPkkPw3VaVvWnei7d4KbPXTdquHLKoOlgzAvr965xPfSb5A++slEHsHQUYiMTm4bcuPQkT8ZbNm8C3E0p5UBP50D77LWnlyTNf8oB5YDMQ+Q0jmiUlUV/XTSvifpqwzPkNYASc6l7TbyUP+99Hqybt6qrUZy0nwjIPX/6rtNz3597Xwi0ZF+wu4kdS91O1OOIdXn257PNrdfdao665HB7jBBH4bnKeQRHKPFRyv/rX/+yRzK55QO0edZZZ9nJOYrCMGKCy/Fk0C677GKCLGqwo+2QQw6xfvbaa69uAexqtbaZkEYQdJ9/F/Q/2H+7uK+890EpFctfe3rhIZN4Q9349a9/bcGDYfEBhnMtpwb5YzLNbr+UuocDgA+VukvpQT0BxAEFLbA1f6lrQnfEpryJzwGEOwiCVMCjMTDmXXLJJXasuvLKKzsoCBBGnXbaaaapqckKu/yNJaoUuOeee4oC1nrKmGh5IgNhKyBaOyAGux3eFwLJRVu4Du8D4on1vtz4bbjk/iHEow5BHA2JkEwJgSygbYSQWBVAsPWnP/3JbnKJqiTSuFI35UC1OICigHkc8zmXnnnmGcP8HiUsLgBcJSzW6XweqxnUe20H+FEBNcpllKXFaPz48TZ+/LB+CtrMxxxS55Hbbbddseiq9q5g+bYthcK9KCigwn3be3UKz9Vf24tOz7voveYrSZfv7SpvAG+7yhX6O6x+sHmP+b6euAFAm40M5YIikixDT4wLa8Uo1VxinMHaFsfBM4fZf//9C69Rzmm75R0b41zFmlpBA8yLZcEwBSIR9pR2Wyh8N14cI5t2Lr/8ssAcnHnmGfIdfmHObbOiF+ipFz5UsC5FqxPhazaiALZFEIjNDgpRx5cTTjihF3IpLVLKAY8DMeS7YrbUmKg6EC+Z9HbJ5gDA8L5rZU3DCAHtrim/V3Om+Y1Wk2O5W23grrIeC9HTxQLvdCzwCiFLEIN5FsS7rAB2BcybEfBuVjAdWQHw1gmAN7uUXHNi5kDZIpyAZhtQE7+4hFVctYzrhtWNh+4zvWYezElz/LDuBxjLt4CHn7gWxwGERaFy4iZedEZsxmPzDFbZsc4HgEnnjwBp+JVLgNSiWK4GQMtGMtargKxYY2EkR8FxQXGwfg167ucVWU8QlZMmm7z5FSPKwQ9iupObK21vtrSD2cY0fDnI/HLUCebnTb82Cz9dZDJfilXs9+vM/AnS2bOXqTVrVjGN8mEI3XU0v3m+eX/OJPPSjOfNE9MfNeNnPWE2Hb2JGX/ueLuJt+tykqaUcqC2OYAcZIUVVrCnRgAyRH687bbb2s2byywjA5tDgG3D9Os33HCDAUgL0Q8D5ESfhoyOzR9sdmf8YsxQuTPv6Y8VrEsYALRY2SUc4Fr1E7SuIhwyBiXyp3EjT1CZAmVkI9Lw4StIvO9bGSFh6Z+ROfobOBSsS1nRCSNTVMuwyI6QJ+qYomn7LjJE1edg6TZIn+iCXBWzAVCUk2Mh8j1q1CgLFiUP8IRvhGEpwNFYE/YJPy75ZXPfcV1pemzUVgIEjD6JegBwmvEMHh933HF27GNDMN8UjAXEmAdepRgYljGzVLhKy6CGoqi3bBaHMGQDrwElM/5FMd7EnMOVXzeJbo45A+UFTE2do75jmR85ZEopB3oyBxJY1vTk4qd575UcAIQrv0gk65zW7hBsKbpOXC7t8cFk2Hlu89/23l4XeR8UPgys225dN5+eJqnp+W7R/FnPyf1D0AGAC2tKWGQFJMNEiUkKkwyAEAcffLCd8CaXaj4mLH5iPYpjBpj8rLLKKnbSxyStR5jVpx5HrMvDVlzeDJ0x1BgRAsBzJmmAkXxCMajETiWsGqBoZcLFhBbhAwr+MGICzsSZifT9999vJ4/+ooTvq+QqGfVZV7i2DWTkP8pzcTNtbof7sIyE+S8VX6n35aQXFibB5+zQ5FtijSmMqCMukCPIH7vzmfhjwZkFq0tMtFH+s2uRRRb1k92mHKWLha4gQlCHUJQwk2V3JgsBLKywS58dkmFE/UVJzaKHdJtk0o+FMHZg+oACFrZqTUAV5pSV3aMsMAErUB6sTwdROeUiHhZdN910k91Ny2KERS0WsWiT/s7boHSDnpFniONc/DYZ5D/sWTk8gVcstOCHEotmviG0zz77FKzjuGMC3/S+++6zggEWa1hxcMHGLPoAH7BTk12WCCSoN3yTICvnbtwcvwMAhTGHHaCEO/TQQ01jY6PNE3ynP8RiFvkm3Z133rmoQDJO3bKJhPybOHGiBcYgDHDB8rQNNkGw8EXAwi5bNljwbRG8UCYWq3zjMKLes6glDayDsljfb7/9Ai2v+3FUo176aSR9z9jOmKT9ExtJuMe6JG0Z4Av9G8fP6a5yNw8oQRSsS1iEJoRRYRHH07G7OqxNUZ96wphoyyxjVEYuANVyxTyz2D1h8v6i+S8Vn/++3PgJlyS5O9eZqwYRgszf/e53BcuGjHUIagHv0jdxmsAvf/nLoKC2v0eQC40dO9bOe5No67RXQHNs1qD/ZE5N/cXCT5Bl6HL6dvpPPXbs2GOP7aR41AKff/75VjmJVVY2akHV7o/p6/76179aCwX6PRDkMe8MOi2C/p4xiSPWaOs+AXo9++yz7WN3zFJ/KF8ZrxgzOLIN4ThzEuqMC2xU/13pshlPhe+MD8znEIozZjEOMscnn1iLdo+80zwyR4IIy1wJAalaqWBcZv224447qvdOLv0rwmWIMcwH7DJ+6SkNjOPFxrBOkSf4gDkgCuCoriYd1X85/kgjbjjNV5LuBRdcUIiObx9Wp8kr8z3mZ7QFteiMcoT5OnM/FeITIaC+RhknmfcHKXjwQ1+mc2+UJtQfnZP5VmXwDzG/oa4xR2KNwLqePNP+qWM++X0u1j/o35AVAEy47LJgMKYfT5L3jB+6QYS5P3M1FDHklc1CyE9URhLU/tRiGWGRbTAfYrMR4eAn/RkAjDDqKe02LP9d9Zw6rWBdLLzsLxvEsPo5QeaK9K/w+w9/uMSMlrUvR2IvCcR4qkBbytvS2mJyEQWwdYLCqveQWMRVag22JPA1LeMSwIEY8l1ruIGFWkopB8rkAODXfpvVmYbVs2bRBmJt93UB7r4lKoZpIiOfX2ak5QaTJM0ckUPIr+UDB8QrwMSMAHYzFrgr1wB3xfIuFnizg8UFwIs7qA3IKxaqa518oK6fX0BF5Vgc9+MJui83buSP3XH6iV8GZC7My7uSkkizVYDwFpj7lYBzxX5Fbg4gXXEFqJv7Ugy+fCHXX0r9F7f1C2kMC6ROtzbYYtI0uou+WvyVmTT7HfPyrJfMM58+ZZ6d+ZTZYJv1zb2n32PX/92VrzTdlAO1zAF0BKzjIcC16Bv4sT5samqyfRj9WJhuDzAuskwIYCzyCwWKstlDwbzIOJHfKVgR/RCnYkHoKLfaait7rf+QDaM7Y22KXID8+ITuS2V7anEWvy5YF7Cla4yJTd1sfACQSb59WQvjDic1gblQQiaBTAOivOjjihFWZUkTwCe6OvQ5Lm4DMKvKmEhHx1n0NqqHPPLIIztgS5BBYgkWnvnAXDcv5B95KDJ0BTC7793rJNIDdHvggQcWZNZslEFfwHf74osvrFyd8qGnQu5866232iwgww6ycOzmj29eKlwSZUAmAn5E6y2ydIzkAI5Gf4Y+stQJKWokh/zDD9eSLt8L+TLfFp2wtgG3rOl1yoGexIEUsNuTvlaa10gcsDLdiDW7VRY+/LqcCoBASd8iIGTZJUqtgmlP/71mULzt8tuzzVMT3zBYyj1xn70Cw+9yylni500NZV31b2+KxJ9HZLTnJzR/HWJP5gbrLwACUdQh3Nedpho7SsFTTz3VsIMqyeMEmWC6O3U0PdIHdIESO+g4HvVXC26curzmRmuaK4693Ly+/yt2Eou1XJR3QRMkJte33HJLgd8sMEaPHm0n9gCV+F5hCwv44loyBITp7zAGLAkBBg5SMNqXVf6H0AOQbjE3KAvF/JeKr9T7ctILCpPkMyb8LCyvuuqqooDdq6++2iYLEJdFFwsJn4iDBRRKdBewy4IDMIkL5Cas7oLkHUABdzGJXybsbjq6gET5fPPNN3dIQ/MCYEotuOkzXPIGGJZFNWADJfIGmAACDAlIUoF/PAMIgBKfOs5iwQ8bt1zEyWKVBbJbNp4DtjnppJMs4KEcMAvAAwgwayVUDk9YkCkfNW0WVWrpCwCC9kU6JrDwOv74483zzz+vQQpH0vOOBasewaYetA7QtwCcgo8uadwsuDnKme+nBHgBABlxIJDwQdgo3VEYh1lUjVu3NN0gl00kyi/AGgoG5WgcfQ6ozD+KnDxiAYM6iUDEJ6yA+uWi3IDSqVvFqFr1sliaSbxDKKBtlm8OIEgJS/NYOUFwxZhPG6bN+kR9QijmAi04eu+aa66xXjnKqdiGhp4wJtqCMCba+SnzVBnt+Ct2L4HsKGr9RfBfKj7/fbnx28Ik94+j35VoB2FKIuYz/pyG+ZK2WYCyblwaJ+1W/eiu/krbOsJaNrz44whp0s8xz/X7z3L6dubumnfGJcroE8I07V/og5Wq2R8jNA7aEMZzLDiw2cffDEQ/ALiQuUAQYBcBtJYV4LGOWZQHfrNZSIXEWkZc+hzKqpt+3Hddcc0YqmBd+n/m9yhdlRQUSF1hzPXXYeqPuRWgbAVIIhimb4Pgp1/3NRwumxZYN9AemJ/RF7vzJfpfrav0yd1FoRZxWUML+e81n/7z7r7XfCXlohTRTSqARv15hJ8O83XmIfRBEHN2ALsolLQNaRjanRLWeF3lD8+pF6TH+lNJ5260VdYfzOlcYt1KfXTD8J580P8xdhPWJbfPRRmgG3Xw4yud3HDVumYDgFq+QbHHHN5VwFA2VcIx34O37jpJ80W/dPnll9tNIzzD+q6uIVhnFQPs9pR2q2XtLve8c8+xSVNvnn/hxQ7fgc0yI9fIA0uelX7OnUd2V367Il1/vFvUstAszglaJQKtOXIt0//NzgpkxifWMSmlHOjNHGjF6qj8IpHoPzxse6RgqaeUAz4H6gQQ23/zOtNnzaxZPFmAu++0muZ3BUj4vqz0wf6077n3g1b3num3AIdb50s+PtZsyMM6eS7DREYs7maWygN4uQa8mymAd+WdBfG2gXkHyDvwj+2i3urmPY19yeIAcqzFUkexlmt/cg8od648E7cVkK6Ac1stSFfetV1bq7ktNcYqWVbNq59rZvT51HzS70PzyciPTP1SLeak7xwnmybzwLAay3GanZQDNcUBNiOzqRYDYchYldAzsWbnB2FQYbvttrNGYVTGxnPkwxDP2ECroEeeARhFzok8F2JzsYIVkVcC9kQ2guzFJzZdANiFkJcEyQ6QcfrrVU7dUdArchlfXrPDDjtYwC7xosvyZSdjZMO/C9bFH3lWwC6bs6MQG7bR80GUw9X3AQBVcp8DcIYnGGzAoIZL8Jd8AdiFH2GErieIn0H+k0gP/bJrYALgNGBhNcKEnEgByUF5qPRZpWWArxgScustxiIweoF+DgLj48rT/Tyz+R/ZMYTc3gXr8gydDLIwZJR8P4yk+HUMfymlHOgpHIgIa+wpxUnzmXJA1tx9879IvJCFUmv4OBwpirI8KQhMBQSl7tsSOfvvd1mwLrdn/e0u+9RazHXC5y3rBoB1992rLRZxHP/tD3nedue/D7vvEDi5G5S3EMAYlEsMtIA9VdmGRS6s3ShwqZKUAasqWBcFMjulmLihDENpDLiHCSr3xY4SqCQPSYTNye5cdqFHIdrIkOWXNn/+85/tsc2EYbdS0AQJPy44msktClqd2AO+KwbYZTJ72GGH2WyRhgvYRemr1th47oIGopQjKT+Fam8jFOGdhe5qc2i/99PLh2t/n/R93PR8/0nfowQGsItyHKAS1vl8wgIlfiBAbIcccojvpeg94HkF66JAB1BKHWORSl0ByM/CUo94VWAMkVIPAcPg0j8ANGFSj5VCLMBRd5Ww8Ktg3SZRfrPrlYUEeceiN2HZveqDmDS8AlPoi1gosjOQfgQwAVb8WLi6YKW45SIddovutttuBeAKcXKUC1bKFMCMFbwXX3wx1oYCLCdq++XY9qQoKk+w2IcVPhZ+bMCAWNQjnICwHuwTwFMIgBv+2FGri1bGBv1OvKfPIQ3Atvz4JoDCWbT5i3LiZAyACMcR4OwG1qOeWViy+xMCsEEfyXsFlVBvWBC6R/ZUWrdsYjH/AdZlvATgR3+N0Od6sZwLsXOY444bGxvtPf8QnNCPK7HohUcINgBzwRPiC6Jq1cugtJJ8xo5p/dYAVFywLukg7AKspt8W/gUBdgFq+0Ir6r4CdvU4p7C894Qx0eZdBjQ7ugHWZXJYsLQbcm99YYk35H2p8KXelxm/LUuC/+gjlOgTqC+MUz5ITP24Lm1OhamA/X0QC34VTIlgU4Wtbhxx2zr1kXFCAZDa1gHOsgmO5/TD9J0+aE3Tjdq3A+giHubN9KHuGKhx6djFPWOzT9pGk+qPGQMUrEufRl+IxQaAqyr8xlIf1j4VuObnKc494xrjmQoUTz75ZNsnM68A1AqIF0uXjHPMHbqaXIAkcxZ/3o1leb4Rmzeo2/jxhffMRRQ8qPnnW2o9YawtRsy12GTFuE5dQUAL6FlJrfVyH1SH1F+1XUDEgG2jupqfqP7L8UcaccNpvpJy3Y1TvnXksDTc9aUeg4iigbkgAni1qMxcWdeU7pxd41UrsYDoAQAzPwOkS3tj3o7VXIDkSrRH6prKDxDk018DnKT9E451Cqcw6BxUw6qrYF3mSOS5mgoRTdN3mY9oH86mRResi1++A30nmyFoUyjr/A158JU5jmt9hpMr6BNp7+6Ri3763PeUdhuU96581iCnYTB+HyaAc7/v5Ls1yZqTtfKnM/JKp67MW3ekhaUin+Y1zzUj1hgRSW41QFBYJ8vGmruPym/w1riQCRD30UcfrY9SN+VAr+MAwC4TUVcRSwfS6ziVFqgaHKgTq7V1G9eZvmu3msUfyW+SWNwV0G7LFAEbfih1c141Ui0jTgCO6PX4Sb4KeGJkEugGB7X92gC83GOBNyOi4YwAd7PWlWeAePvn3Wx/ucY6r4AVU0o50IkDUsnYd9Q6T+obAHIRF+e4lv66VdqFfc51GzgXS9Gtoq+zdRSdHXuWEJnVMkm7yK4kfcBqxizXNNgMX2Nps9mKa4m+XeSCKaUcSDkQiwPoFo877jh7miNrbvSpyCMU+EpkgHk5EQi5BTp05MvIorCcCwFSdPVO9qH8AwipMljiVEI+4Mtq0ImQDjJiNtmXoiB9IXp8pSBL65wmR/4xzsS1T0EnM7l6OtW/+eH8e+QyCthFR+oCc5HtQvAQY0tK4Et8wmItOlLktGzaLkZh4OewMJWmh6zW1eNpOqoL5T4qvzRsXLfSMiAXCaq3yEWQzyPj0joeljdXvuzKjV3/1Cs1KoCuIwXsutxJr3saB1LAbk/7Yml+S3IgOzC/+C7pUTzYI3ZmycJJdj/aHbZRAiXhh8UZ65yobluavtXcAmhXLO0SXx6s+0aHHHa0rBuSroaImh/8VZkY1AHMqsIO63cojlHmoehAaRdm+Slq1jja+LTTTrPeARowYcVCGER6xI8iD3Ab6Vaano24Cv/s7l3ZhBYVfG6FVNJOXHACwEefmkSpFLRzzJ3wqgLRD6v3TNABNaKAB4jJ4kCBzzq5xi/AuO4irfb59KU/kIt2MUT+Pjxvwf798HHvy08vPGSlb1Dq6kIQ65N6HLQbL5YnIRTDPqjN9Rd0zQ5TBcsByHXjB3QISATwDe1QAbsu+Icdmaropz4B+CHP1FHaOuBXCEW2KvRR+gOQQhENAR5gpx91FRDTGNn9GQaq8a2r0leg/IbggwJNyikXcWBZjr4OYsOAu1imDIAHABsAsHHbkg1Q5B9HoiuFlU3fx3Wj8ARr5VhGQliggF2+1wEHHFA0OeoA1tD8Y2d4BtFfsUDTHb4AitgkwC5kCJ7pUd72gfPv0ksvLWws4DHAaAQqCroCFOyCH+g7AWJBgFzxDyVVt2xkMf5R79npjHViJSzKKdCEOq51nvc8177b/2aAQSiPll3jU7da9VLjr5bLIl/LTJsJInYrA+hh7hEmrNF27YZ3hU7scC5GPWFM1Pzb0c0OiPKPPxRfei+eOrwvdV8qfKn35cavhUnIpZ9hMwobPqhPjEuMi4BxERLSdsJOZEBQq/UL8KYP2EVQqBtegsDiFCFuW2czFAAuCICaa/kUy+RY50Y4yfiFQNfdoGUDtf3z+4mg8Q4BJtYj2HTH2By021/HePjmCmbdtJLqj+EnYFwIYSBHhPGtlOi7dYMIoObJkycX5gLqJ64LmFH7Tua9lFOJTU/wmPf0yUmPv5pOMZcNPhCC1zD+ky8AfBDCThdsyTN34x33EGsnhKcIy7Wfzb8J/s+YrxtxqFsqeGVeoCdvAC53v1dwTNV7GtcyruYkbrhq+9d8JeVOnz69EJW7jiw8DLhASM+6HgXVlClTrA82JPDjdAUF7NJ/hPVBGi2yAPwpMTckHtoV63h3rgOgT9cJZ555pp3XaTj8U9fpH2kPzBF8gCV+6XOZA0Ytq8afpKtWYujH/NMUNB13vc6mLHfOih/W4i5YV8PBO23vKA3px8OoJ7TbsLx31fN///vxTkkxFqFAvU02sui6rpOnXvqAtuPTzMUzzYczPjSr91/Tf9XpHnDLyOFrilyG7dRMQNuJuFPAbjs/0qvexYFWASHmOA49qkGGgQJMEMBhSikHkuZApl/G9Fldfo1Z0/KlAHenCnB3sljdnSoARcEG5aZL3yyAxZojhowF0ob4WbyTO4bINWqfASL3l7aTadMh5kG8cg94V95leQ94Vw4j4WeBvPZagL64Al5MLfXW3JcvP0NSLdCttS6Uum3rjsw8pG7nFojLPddtAF0F5qKDs9diSddey70Fs0s8PY6o88Olbq8sG/VWzZh6afMNqwhoV8D7KXi9x33NNMM1yAEMy/BDzoUMCHkE8hF0mRgBglgzsjZnze9am8UfOIUgUuAvLvI01W9yj/4PGR1pLVoU7YQTTQNDOT654MrlllvOf23v2QwdRkFh0MMoqWxM78Nc5EuAmJFlI89B74osBwArcl0IQw3KC/tA/vGeDeRgIFijK+/0fTGXjdtsno9DlaSneBg/Pddarf+uGveVlCGoDmkeqQvIjt16ru9cFyNeSpwIWoqiyKNLxZG+TznQnRwIl8h2Z67StFMOVMABu1tWds+KXLc0NRvT8onsEv7cXbyXDlaJD5stzZtms9R9W4L3//5Es80G63ZIHtAulnfDwLonYVk3Yvz4s15L+df3HXKS7A3HRfiTE47H1N09ahmrklT1CAEUYBwLq2BdjRNrY2pxLCw9FC9MMsJ+ChbTOKvhtgjonHpspD6XJPl2WY6KEiEUk1kUqFAQOCkMdOIqNKNMphU0RjqqFORaLcmhkAfE0l2Ur/NtlVom34H3YZkL86+T+HLfl5teWLgEnrPQOeKII2xMWLRiQeQSR64AtIFoq357cv0GXbsgAN96FGnTBllQAYpUYnEG0YaXXnppfWzd7bbbzk78CeMeaa3H56KEByTgLuAAgwIIJj5Id+jZG+cfYCpfad7U1FToL/RYG4KUUy54q20FQKoL1iVOgGEKaMYfi/KopGVicQsPkqI4PImbJrwFeOGDdYlH6wUbKxSsq/EDltJv6dYbfY8LCEOtgOtz7fe5B+jtAx9c67QKpMBvEnWLeOISdcQF6xIea7sKdtJ2wnMWwwhsIKzM+vWYfv+mm26y7/1/1ayXflpJ37sgCR33gtJQ8DWLfIRaPgUJmHrbmJgvM2OhjIZ2DAtw7VvnuQTq4N9/78cT93258fsfMIF7gK6/+tWvCjEhIAToTpujHY6RjR6MI0GCIgDvkJ7gUIhELlxgSxAwHL9x2vqcOXNsOoT7jVioc8G6PKNvdK2ZkqcgitO3A+hS8q020Aa173H7WPWPm2R/rGkRLxZ/tT/kHgKIqpaxaetuP5n3Ef8/AFclPz2E8wDpmJMAHuxqov/WPs3deOfnA2sVSpMmTdLLghsmdNU1G1ZNSxHfWfthTiVQ4nQEzaO7dtD3XemqMD6qq3mL6r+r/Gm+knKxsq9UrB6pH3V1bNUNBPo8jov1ahesS1g2wbDmgLC66dY/XbszF2QTlkvMf3UDAX21njzh+uGa/r47wbrkASs8UJDSyb6Qf24eg/qysPl+nPlLT2i3yo/udFESHiOWX7/x9S1Nv759zIojhpstvra5jN/ndme2uiVtPUnJTXxGyydm0rR3rKLafR54LYCXlhmtZq/tOltEIm4sdKeUcqA3ciAnwMic1H0TEfSVEf0HhktSSjlQNQ6I9rhumYzpJ1Z3B+5SbwbtU2/675M1fffKmvrRUv9GSv1DhNpTqiFt60sBW34kIMx3RJ/ysoCQxwsg+ZFWs+junFl4a87MvyX/m/e3FjPv7y1mLr/b5Hd7s5lzR4uZc2ez+eofcv1As5n7mPgZ32LmT2gxC15rMQvfzplFk3NinVgAVJ9Je56dB32a0sukqn3CJS5i4TVAW3jPN+BbLHpfvu1bOfuN5r+U/2Z8uzn357/lV/JN59ye/8b2W8v3nner/KQOzP+bhJMfdYM6Ql1pfiZfd3KilqAuUaei9tvd/j1oq0uJfnBNAedum7FtmTZN26aN99soa9t8Ctbt9i+VZqCHcgD5G/oXDFf5hCyIDfToLdmAqAaG8Kf6eU5zdAlwadDP98M96XK6FsaIAAG7YF1OKw7Sa7jxcB20kVfzhCEulWf54YrdJwk2dU+/U1mOuuQB4xQuAXrmVCJ0ogCPFaxLObFa658+5oblOkgf6ftx7ytNr1R+3LSqdV1pGYLqkOY1KmbAbT9B9V+fabxRcCrqN3VTDtQiB/Im5WoxZ2meUg6UyQGOrskuI4Fld2CUI6RycnJnsyzc6pevKzPFeMEsNFh2UuUlGbJol0maSKyL35NEPqABtLvLKWcZ19quWtrFmxJA3RP32bMtWPT4I+XH5ldTSt7FAhWWyIIICzFYTUS5xjEO7lEAQf6LPVNLU4DhwixNceS5Ai+mTp1qj8304wwCZagfdiJVmxZPk0l73oBa6aSwvjBEap+0EwgFHhOwIMCfWsLN+yz/PyARgCHwCctZWDAFxIi1VIjjSotN4spPOVpI2zqkThdzg2Iq5j9TIr5S78tJLyhM0s848pgjV/mWAH1cQAULQW0LvkI9Sj6ampoK9QQwFAtM6spaa61lgwOs9a1DYR1L2yeKfACI7FZV4Ii6bvra7gEPsCvTr/vs7sTqHopAPUrFDc+1v/DT95pXF5BQTrlcECjWv/08kp67OEVhGRU4gbVhyAdv2YcV/IvDk7jJYP0wjIK+MQu2uXPn2vqodZL7IMJSsU8IMJSCrCC6gHKO0FFKom5pXHFcBcK4YRCeAIiiLioAivdu3WJ8CyJ4on22+94Nm3S9dNOpxrV7dFMx4ZT77YMW+u7u73LzWetjoi0XYxhCfBnoIrnWK54j+o/rr9z4bWGS/UfbOuecc6xglfkoFtVdcCgCQH74AcTvbn7C8rtaeMayqGtlVy2LAqJ3w7i5j9PWXWFlWB/KmEU/wTyQ8Q7LuT7F6duJjz4TS7OAZF3gsVq6pG/xNwpomkn2x1iqUEIQHkQuX15++eUCiDTIb5RnarEXv5wycPrpp1sru7rG6E6hq7t5yN/c4pbNnfsH9YH+PMwNG+eauT9zNoDcWD/G0ifHACqFjU/6vtqulj2qq/mJ6r+r/Gm+quGqkiNK3C6QNor/ID/uUYfue5178wzlC+2NebNuQqD9B82jXZDrK6+8Emj1mrlOdxNAf0j7kaD8uO026LssKe02iDdd+eyiiy40J8oJHz4NG7a82WHHHcwtzgYF309vu8cadhA1C5JlxoJPzdzmuWZQg5xNXoKQcX32XzlKKoB0jRfwKtIjNu+zobPU6RhhkbFJi37Jt0Qf5j99nnIgKgcWfyQgsI8j+sYqIvJdLIZWQA8JYPHGJ3JmEhZTyyRUG9/7etbsPzprVpA8pdQ7OUBdq19BQH4r1JnWjWVjhRjAaf5QgKkfU28FnCp1NycGRVpnSfnjGfSrHYblJCtin6J1Xr49uP/zmWxrJwJkNuhW2izvZvrJ877SHsX6Ls8z9jrvGnkG76wuhnf2Wp6hmeean73OP+PeyH2mXu5RV9prua+TuOXePiP93kTCdyyMA2xubZE6hF0K+eFyb68FbG2fL86/xyouIFlrHZdnUufsM1zq3yJ5JiJb/RmueW4t54oFf3F5Zusq3z2U2r556Pse8IJ6J6fUW0u6I6QajZB2PEJA9yuJJd0hbXWxBxQjzWLKgZ7AAeS9KpNF7oWF1jBC5sq6BHAi1naRFblGiZCV6elhYXGgV1dALEbJVAe2yiqr2JO+wFko0BbZL4bS4hIyBfK4eDEdb/cSJx2iJ0bOgzweObTqcJE5+3o7DAWonISN0MiCsAasOkU2c+v3qrRk6Am7Mr1K8xsUPokyuLpIPw0Ff7s6ON8P99RZ8D8Q4PZSwGl3Q7oNlP5LOdDDOMBSIKWUA72OA3XDZIfv0IzJybEkpSgnwrDFk1tN33Vb84vqUgGSeI8ky1KbW+oev9Zr3v/9vz8p0KJuPk5jTtpPwLpY1lWKGT8W1fJUKn+aQLKuq/D2Y3aPnkbBWy5gl8mvWlwsJmR300OZ5x/tAOD12muv9bNZuA+zRFXwUOEFx/U0vy9CsYiC1ay0jTppG0qAkCG3nPouKRdQJJaGscoKYAPlilo9Ig0X0JFUmnHiUW7kXRFSWOhuW5OTO7334yzlv9L3cdPz/VfjHmUxIN2bb77ZXH755R0Au1deeaVNEivY5bRLQFDXXXedtVJIRABd+NHGWJgC3sXSqWsRl3oFKAhwLQChsWPH2jxgsRmwDO9dK3e0+/Hjx1s/1MFSE3ntI2wA559vzVRfsSj0qZxyARxSCgMo6Htc+qYogF0Uki+99JIN6lvtdeMr5zoOT+LGX6ofBbCMQOLRRx+1u5HjKHCxzlaMggCafFOfkqpbfrxR7hHABFFQfXRBt2uvvXZQMLtTWkHrrodq1Us3jWpdu9bl3GOc/PRcYK8bxvdXyX2tj4m2bFLF7eiXYR7NTWe3w/tCoHZ/Hd6XCl/qfZnx22BV+sd4OG7cOPtD2IRwECu5f/7zn+08ByuHAMXonxWoibAJC90IA2+99dYCYJcNKvfff7/N6QEHHBCa4zhtnXSVwto67zfddFML2FVwm4ZRN27fjhVhxmPme4w5KphmrIaYQ9AGgiip/pi4FbDLJsAwoR7AVfpJxgz8V3oqBuDnY445xlpcRjiplj+xaK9zEteCbRAPqvXM7c9cK6l+ei6wN+zb+2HKucciNYoLiLrCHEYtnvLOBSCWE3+lYRjnGdcZ7W2vpve+2/Ze0yuEU38Rw3cKFxCeNDr5KxE/YZIkFzSK9RcsR0chjmOE3Dl5lHCun6amJve2cK1KlsIDuXAtb2Jd17ew6/rlWpU7/vNiG3x8v9W6R/ZAf+IeB+in5SpDwvjkhynnvtbbbTllSirMi1LHFazLuHK89G9jxmxvZSxaR1968cVErLknledqxuNaw/HTmTZ3qvlkwXQB7I70X3W6/+qtuWa9ZTY0T335mPTF9MbtxKYoxvhyCFkGm5WQBZTTLzE+TJkyxf7YhFQL4P5y+JCGqT0OAERrniIGGURPEYUyciJx3XJ24RbFe6AfwLqnihXJSkmahbnt2Zx5Z7oxVxyaNVkmUSn1ag4AMK0XHUP9MEGQCng3N0f0EwLWteBdcVs+FV3FpzKXFrf1S2FF92N8kv0eADwX5H+MUe2ttv2qPcG2Z4BvAeNa0K40kj7yHLBug1w3yNrDutyLH7T28iuAegW8a++Jo+2XAbTLtbiFa0C9zn3hOX4heW1FPG2uvXee20v/Hdlv+9mSOPf45x19gPqxz+AP4Ns214ibvxaP+tz3w3O6I0C6AsBVwC5u/pm4FqAr79qAurZeLZK1G/4tSFf8EG9JEv+9mahXsnkiu7zoyIfl3brh0l75CeieE2oL37438yEtW8qBbuAAchIFgLLmCDIG42aLtQUE8BaZjysPA3zr3rvhOOHzcznFq2+/fgYDDwAt1YgQshtOlCQ+lxQA6T6Lco38lDUe+eGUVZVza1iMlmHZFxAtazSMrlWL4BOybAznfPDBBwYZJ9aEId/oBEYCFKy79dZbdziFVfNXLk80vOt2dXpu2kldJ1EGV7bs5guLz6qXKyVvQ46tVqcJF2TchNMFX247SXQt0XO6sm833fQ65UBP4ABT/5RSDvQ6DtiFh5z0nZsSoWhiALX5bQHtbtxq+jR1nMBECF2eF+ZgJBXV1VQc/3lLu2eLpd039K11LVh3n7YJkeO/aHoaQ1T/+KsiubvI/GTcdwAcyiUmsArqCpv0ErcLeOIYW59QwJTa5eaHSfJ+8TQRhkn9NVKPo1BW9KoA2iEmtEzAoDCLxvZlAv84JhnALvTwww9bkCXX7Ghbb731uOw20mqfz0BeyNbeE7hCt6AsBvv3w8e9D0qpWP7a4w8PmdSbn/70pxawC/CTXYwskAABYlEQ4n25hEU1lPrXX3+9+ctf/mLbKEporvk1NTUZjtlubGy0SbC7E6AHIA+OtlYwKsAjflgD/u1vf2uPAyeA2+5tBCX+hVnc8Re7JaIxccvlKt5Lxc173ZlYyq9agMVfFCBwqfjc93F54oat5BoQ2P777x8YBYu0uLwMjCjCw6TqVoSkOnmJw3t2aysVA6wHjYtxeRm1Xmp+qumuvvrqhegBHgOk9AkBGeMTxNgUh69+XKXua3lMtHmXgbEVEK0dIIPdDu8LgeSiLVyH9wHxxHpfbvw2XPX/MTcdM2aM/QFCBNTEGMQci3HS7W+xVM+YxXsEqQBFAPoquVZf9Zm6ceqkCsAIq2Ahjcd1ta27fYP7Pk6ahEMoq0BVxms2ZXFEuI7PlYJi3bwVu1ZwWykQMIJ01gMuv4rFW+wdvDr77LMtcId5DPMTCPD2RRddZH/f/e537RyqWP9bLI1y3zFf0jFRv0VQXHr6Be/8TYpB/st9Bvgci8psuKI90H50jHFPbyg3/krDqcKErgsq3LcpUgr3+deF/4Xn6q/tTafnXfS+kLGELlyALnN/vlsp4jhI2gBUTRC4m49ioHTXn16Hzff1fXe6bASgzbIJAyVY0IYHLPIosVaqFtV6u61WuaPE+9DDDxW83X33PWYrUQa6hCJJ24H7vLdeF7O8NHnOe+bjeR+aNQaPLFn8fs39zUbLbGpW+3B1M3nxpA7+i6XRwaN3Q3tBcT5q1Ci7Idh7HfkWwO5NN91kHnzwQWuhv5TCMXLEqcclmgMtcnR78ySZfcyOxoasgK5cgwzRQnX0hWXdJOllOXb+nxMyZrfNu1JKmWQJ0rjK4oB87uzgjOnDT7p3wOctX+RBuwB37U/q93+eazVDBFQ5VKodWziXuFoCGJWfAH1dbUP7ta4+gr6C9w7m8WsD7CqI14J120C7pk7CuIBeDSPrViu3sff8E3+Fd8Sbf6+yALuWIXn7k3esZbgmkF53eC+Pc/KgDZBrWsSfXFtLuZRfn7su0ZVNNjNlh+4VAbH0vIy0QzHSkx2ad9H/1WERG9Du0rKlPkWC9IpPnRai9jngGjLCcBA6hjAZIGBR1Z/oaVgAUllbIKedNGmSBcqq7FZLDy4CS64Qpw4B2HVP+sV4gvbhGgbdlQKJ9VlUt6mpqbCexUiDf0Lak08+WTjZqNo4A/JMeVXPyZpMiTWeS6zDlVxciT5DDhkmD1c/cdyuTi9O3qL6TaIMyOTee+894+rjSJ9vpgBqrEcXI9doCWt4jHn5hPETNVgCYDellAM9mQO6t64nlyHNe8qBThywFnblSA+7a7XT284PWt5pNYtez8kRKV20wJOsWRLXXjr3+lxdfaX3rgtod5sN1rWP+FewrKuBxLWXzr0bnpf6yn+u90XDW0/J/2N3WBi9/fbbhVdRLEoWPHsX7AJjsgy9+eab3tv2Wz2GkifFLPG2h+i6K47uWTQxZ1rei1hvZXdtHUfdtFnYvfHGGwuZDTueuOChwgssnuoOp4svvtgoIOAnP/lJhTFXHjxfx9taggilAu/Dkgnzj3ALKvd9PnTn/6Xi6xwi8ScAj7Tton5HVAAAQABJREFUqHVpLApCWJELAsLFyQTW56gjgG1YALI7Uy3fAH7yAfIseA8++GALfgKEzhHl7gQeK7161DjtHsU3dOSRRxp25xX7Jblgi1Mu5S/5pEzF8sg791h1woQRADGoqampLCvIYfF213NAIArWpY5gsZI+G/AVfGF3bbmWl+KWqTvrVpy8uuMYiuYwwoK9T9Wql3461bhnka8bcC655JKCEMlNi8W/bmLZc8893VeJX9fymGgLa8caGcfsH/8YG4vcS6Ci70uFL/W+3PgT/3KlI8Qi+KWXXlrwqJYl9cG3vvWtwnyIY9IgHaMOOeSQUCGuho/qupZcAcyGkc65EXYmQRxpBWAZUqu6Clxl7PGtHSSRZlAc2ve7lsF9fwirFUDl8kv9tbSgTexMWJMoRoBy+aYI0B955BFrdVf7H6z7q2XZYnFU450CxxFouusbTYv8Mo5C9FHVBh8BXof4BieffLK9hk877rijve7Of6rYiOpqXqP67yp/mq+kXLf9Pvfcc5GiZdOC0g477KCXVXXdzaD0Q6Xm0ZzSUKukCifmtjpWuHlF2aHrMJ7TdqtJtdxuq1nuUnHP/Kx9Q9zKASdf3Ns23peKp7e8b2gQwVMIvT3vTTNlzvumORc8xrrBsjI/3GS5zcw3hn0zP890XhZLw/HW6ZITdJAfuPKCTp4iPGADgo5XrowyQtDUS8qBYA4IcG3RWyLffTeifFdAeHUrYt1U1mgV0KSIp7UFJXHYTg2Gn0+TxapqSks2BwAG1ovuoe96WTNguzozaK96s3iXenOFgAavHZIxNyyVMXcKYvdJsTT7htTlGVKNBcebUhwO0FUAeBVLs2ah/ObJ7yv5fSnA2FkCARaAdOsncv2R/KaJ16nymyK/yfJ7X6wfvyfuJPlJn5N7V1zZX5cTlVvuLfm9Kc/EPlDL6wK2lh/XOVGd2XdiNMb6JQxhiYO43pcfcU+RZ1MlbUnTpk0eyIvkibwZsFPklTyTd8qQUjwOSLebkcPisiNFx/e1jGnYOWP67Z01/fepMwPkN3CfetvmaHt9181aS+xRwLoAs8vdEBWvAL3PN7KllFIOKAfQj6688sr2Ft3iBRdcYPEH6LEg2hryN/TjnGCq5OpU99hjD31sjRThXwmdKYaLlPS0DwCpgH0h5GxqdRaZAafsog/BQq4ScpKohHXaPn1k0BbC2Al6I7uZQ+4BFashJ9IvdsqbjSCBf+gBFYCrBhgaGxsLuh9Nwt10DnhaN2tTdsDLrvwePmmZNHxct6vTI3+utWPAq1g5jkJh4ZIqww033GBYJ5Mf5OucbKenC2JYpBRglxOh1aou5QIUrt+Hb4W8XcG6+FPsSZSyp35SDtQiB1LAbi1+lTRPFXMg21+EVqsKdECOh4pEsmBc/F8BP8qisktIJmWWxLFXzn3+ufdeM9X2WEamQnhAuyftu5e5//cnmRMLlnXb39srx3/c+IuG13wl7GJFJmxioYMwSVY6+dPjKHQ3VlAx3F1nlQCEg+Ku9Nmi92UhLceXRbW+kJEdtrQL07fVgih+97vf2Syg2BsTwUJSJfnlOGKAKBAgTKW9995bL7vN1Tpe1A3IXVH/0uYqel9GegFBqvboiCOOsHFjNZnF32WXXWbvAcEqCKHSxOvr66313qOPPtouMlVBDKCOHXpBxHEvu+22m7V244J0sPKnpGCDqEADDZeUG6VcG2+8cSG5IOBk4WXMCwXKb7/99jFD1qZ3FtpK5557rrXsiEXAvn372scIQopZEtSwSbndXbeilMMF3YbVLYRAClx146xWvXTTqNY1QqUzzjjDRo9VU6x+qpV9HjLWu8c1jRs3rlpZsfHW8phoM2jHMBnF7B//GNOK3Eugou9LhS/1vtz4bWGS+8e8ExCjzmfCYub7hhFjwAEHHGBfA46kvQHihH74wx9aN4l/bnvFEmYQMddGYAYpwDXIX9xnP/7xj20QgLoIQxUEeuCBByY2RyiVJwW5YS1BLbf6YbCwp8RpAUpqkTjsWLRiAGiNA5d4sDqB1V3CAFiG7rrrLut29b9TTjmlkCSgYhe0yyki9IHaL7p+C4ESvmC+pqQbitiApUoAfdcdrgqBo7qax6j+u8qf5ispFwG4WlK5/fbbzZ133lk0ao5MdE/e4MSJMAoDyIf5L/acfOpmP+3jivmv5Xf0m6p4YOxRBQd5RjHMBgCd3//mN78xpayKV1rWWm63lZatkvBrr7N2Ifh5551rVBlL33rZZZeagw46sPB+nqMkLTzsZRfFwPlf5j43b335hpm5cEakUq88YBXzzRW2NY0Na3Tw71uZ6vCyyA3zEjYXJUHaz6hVrCTi1DioQ8jNAOr/6U9/MmwsdBX16i91ew8HmsUK6aLXBCgQEezKUef1q4jVxIEi4+0GGrVG1vx0p3r780G7smqsiFij0AZcS3EVRRgxMIp/9AT8dK4WMWigN+QtGp8eUR3ocQl4mLEAw4yZNihjJiyTMf8UMO9fls+aa8X907J5EO9fBhlzj4B4x7eBeD+Vqg0ErtL6tASwNy1ib+aAtAf029k1BJw7SsC52wsQfs+s6fd9AcPvkzWD9q0zg/cVgO5u9WbA1gLQXTtr6pcTnXh9PKbQR2HgAaAWfWFK0TgAaAyDD2w8xuBMSikH4AC6UU6OQv4Lsemfk0PPPPNMc+qpp9qTQM8//3zzr3/9y77nH7p5F8CIlVrV4bAGwD/hf//735s//OEP1uou4bbYYovCybmk68p2r7zySuufNK+66ipryVet+BIWvW7U9k5ZXD0+cl5ONSVuNhDTFiD0LaqXsw+q+M83PKF6OTdJrB2rMQLWbOecc44566yzDLgITvsi3/qea3RHb731lhtFrOuuTo/MAVRWQrbKN4lShrBwSZWB+TygXfJDXcHIlhKGPqJgCPCnIHT0+8SDDhiZ9eOPP26j470adNL4UzflQE/kQArY7YlfLc1zJA40NMpCRn5RCSu7C1+U3eyfd4EoQCZPljR7pe61ECH+T9xvL7G0u47MBts8lorPf18ifhk98z78+DVcwi6KdQXWuFGzWwulN8SEtdLJnyrzUdgzgfWJnWeqsEaR7+468v129X2L7Ey29TWidV2Ejf984R6zz+F7GybmOolhQckuv64gJuwusVMQgGV3U6Fa24xYG4FtVzjt9/ah8y8frv190vdOUvayVPy+/2reu9/S3fG53377lZ0sx0kC8jnooIOMD5JhUagAARKgPvP71a9+ZcMEtV8s6aqC282UtnuAnGr9z33PYuKoo46ywBUWAJVS3HKRHhZ71Bofynf3KBLND7sKAdfwK2YpVf2j8NDdrttss40+7tEuQBAl5Zfe4ypIzH1WzeuurlvllKWxsbEQDDC8r/ilXSkgv+Cx7aIa9dJPo5r3WHRXUB4ASQQyADCbmprssbgKVEOIpcKaaubH7UdJp1bGRFtmGXDs6GYHHntT/F4CxfLfVfHbwiT3b+zYsRbQyAkFxYRf1113XSHRoM1lOlYiSNPxC9BHkpYRXavSxx9/fKe2TgYRmmm917ZRyHgFF2wK0T4ZaxG6cULLXUHUkYO6gOWf//znnZTuWFP45S9/WYjPFYwrLwDB+X0kAegjguiiiy6yc5Jjjz2208ZD+NHdYy9l/MUvfmGzzqYMrJDS/1FHUcwpaJYNUl2xsce1xqz8RKlRC6SC46iu5jmq/67yp/lK0qU/UaJNq5VufaYuAFzm9GrFepdddumggMKfu7nB3SSrcVTiqkVp+qCg03SmT59ulUnMo10QbCVpViMslkBdqy8ohLHWw0Zi+hWs5EDIRtg4WW2q5XZb7bIXi3+PPfKKevz8SRSfyy4zxGy4wfpmxRHDzbHHHGO/lSpcUVR9bfNRgeNLsTR60judA4Tl+bVZ/zXvzhYzfhGoPltvthi6ldlhxM6m3jlC7Wc/+1mE0D3PC4BiFPHM45g3MC6yNmNcRnbGmO2elNXzSpjmOIgDnPa38JUWa8kyqrXJbKMYKhHArizCuoVckC7AXQC8SREbggDlYzkNK3JdRRgj4GQAfshFKiXWERpfan3R46bU22bBMc0Ugztvi7XdpwW0e5cAeK8fljXXCNjwmjYQ7w2DjblzgDF9tqoz9etnTXZlkToMzpiWbqr3XinS25QDyXGAPd9S37MryRppPenfv5Exfb4t4Nyx7eDcgWI9dxDgXLFYPXD7etNvkzrTsKq0CwHCmwq74Pvuu8+u25APuad3JFfA3hnT66+/XlhLnnfeeb2zkGmpyuLAUkstZU488UQLqHUjQO/oEvoHZBJBMjjkLchRlNDt6Ylf6EoJ42+KZnO+e+IQ/gGiAmrkxDdkggAyIfKi1mlVRsVz95p7JUD9hx12WAEjQbxaHuQW++67bweZjwItNXzSrurhiBd+uOXWtMgDcikXqKxWhsF6gJE49NBDC4YD4JfKyTX/6mqc6gbxKYn0XDmZplXMxejB6NGjO3jR79LhoXcTFq6SMmgS3/nOdwKN7ZEmJ8WutdZa6tW6ymN19SWyavSXquOnzrmbZTHcxFq53M28mk7qphyoBQ7E3GtVC1lO85ByIBoH6leQHYVryaRBjm6JZIF0vljZfSlnFqyUMQO+kTWZvlVc/SP3IfqorhY5qv+4/sqJX8NUyWWnE5MTlFJMIp944gm780knTBxzH0QooNXKTNB7nqHEx/oMO3SuuOIKa1mPySoTsm9/+9t2AocFC0DDpdILS6OqzxdmzIK3W8ziCbJzTeptFJq1cJb5z8yXzCOTHxT5b37HGzvu2EnGxMYlPV5QXfddsWsmxlBYOBSLKKpUIctkuRZIm0s+L9ZGoCPzzt+H5zPYf3vvUd778tMLD5nkG5RwKIWxrKvfEwtalVirAaxEfYQAQtE2WQgyUefoSnaRQtQhdplCAHuxVEc4+gsWuCzAmLjTh6hVPZ4rcfwlynuA+izKUABgBQgwIunSt6i1Qx9Qp3HEccspFws+gPTwFAE/O1hZnGCdAysjAAsATNA/AbZR6z7F8jVhwoTCawUxFB700AsX/ATwDOEAPELRguU33XDRVcXr6rpVTrloJ4DKALtjQYE8cw1QkPrPjm94F0TVqJdB6VTrGUKBx2X3LQIz+hfItSRMv4Zy0N0cgJ+4ghLCQK7gxhc48L5Wx0TyBtnRyw6Q8o+/TN41uP77Uvelwpd6X278ZDRBAjShm5wYi9jUseuuu9rxg6MDaUMI6bUN0TcHWZkjrM6HTjvtNJtDAOVB9aSS7NPWschIPde2Tv/PJo975HhuVSggtA0SDpebNvNAxi94Rd8McUQb41VXEYCWA8Uy5fXXX2/nCQjwAKLS7hgPsSShAFU2xrjCPRe8y1z1wgsvtHPlDz74wPaff/3rXwOLgbBX5zGsKRi3V199dQM4mOcKsOlOUCrfnA1NCnTyrX1RZ/xNG24fGDbHD2KI2weGhYMX2l4ASm+yySZBUXX5MwVpRHU1g1H9d5U/zVeSLkfA05aYL0A777yztXLBmh0hOvNU5q70jy4Q1gWdan4ApCmxpgCMRt+ownh9V47LPJm6xVwZZQGWVJg30k6xWnmMgCgVTEwbr2ViHYMsBCvstFnfcjgbHrGywzw4iOJucmY+BN/ctu/GW6vt1s1jV19zBOPdd98jbWN/+41IX+vX6NHbmqvFQupH8u3GjPmWzRrrZ8YJqMDvepAaeRI4kl4mPjcoRFzFC8Zg5tPU2yB6be4r5n9fvGo2XW5zM6A+uN664UYMWMnstNJ3zcTPXzPPfvWk+6pXXdO+UbqrfEULp3WEe+Z0zO04aYYxO6zda9jU7QEckHUQp6ctekFWX59FzG8/ASaItcX6Ee19RcSQiXgDrOsCdK9+uNlMmJSXMyeSgBNJFMCB4z297MkckOq8SCzxzmjIGGywW/t2rWKB98A+ZrBY5c19IUZ2vmw1Tz3TYv77as4MaWk1Q6TarTckY4b3kfbzlcgsOOl7cU9mQpr33s6BhS0LzezFX5q+Q/uaZVYdYjJLiexQgLoZAa7XLS2426XFcrr9iSwSd4A0jArBuFF4itxK5xvoS1OKxgGObEeOwfq3u/WcbPoaOlSOVxVCDpbkCV7RuJH68jmA7AHjHLQv9I8zZswwnMDC/B1sAnKPUsastt56a2s1l3UC68k60b+jf11zzTUD1+vo51mvIzNAhsk8CuMtpKUyOuSBbGBGVqmyl+22287wK0XgCNC3UQ70b8ix0cXy82XayGH4hRFyCtX3hvkp9hxQdJTw8AvsB7Jwys13QT7NxjClE044wfKMjeeqZwXIW4z4BkHpl5seBqSKEf1NUHqEQS6H3J3NYpQvqiGasHDlloGNp0rkB10Jp7sBNkf3rn2U+lG3GK/JC7yZOXOmrdPo/fn21MWw+DTe1E050JM4kAJ2e9LXSvMaiwMct9NHjgFZ3NRqWl4RCVgEav1IhANP5OToEGP6ricC83aZeYTQ0bwgThN5Q57EjXI/ZOAA89nsr8zQpQZH8h8n/pkSL/FbipifQvxtxUjaYfcYgDkGeHeQ13QA1LFbLIyYaBQjwHpMApiUsYMUoBKTXo6U5OfTNddcYyc9/vNuuW+RVN9vMAuflqPSpkfPweCNB5jdx+5i1p6/mhk5cqQFQqJYCiJXuRr0nsk7E3qfbrnlFv9Rp3uACyggWAzstNNOnd53xwPbHAUgKSYUpEGKeqzNde/71nfsQ/qLMPCrhVkzuF9roH/iccPHuZ+zIGOIf/4imzPLkkL6Ifmz8Xcx81AUoVxX4r4SQkHPgvLmm2+21vg40sUnhEcAcZVQxnN8DEplAMT8VMCkfugrXCASoBz6F45JYfGKwj6IELQkYQ2wnHKRH4BGLKzpA9mEELQRgbJiRVbB8kHl0GdqXZdFZ2Njoz7u0S67LAEpAIJCOOYD4wAlIZhQhXm1C9vVdavc8gDGeuWVV6wAD0W6r0xH4AAoHuvQPiVdL/34q33fv39/c/HFF1vQLlYB3377bcNYCIgPYU0QOCVsbqB5RcAUNCYiAFNQnPr13VocE/N5zENFmO8xEnVy5Zn7fMCg/mbOF3PNoCGD8s+996XCF3s/54s5hvjJUcFfxPjFW6LEJhLmhDreMQbxCyL6n3/84x+h/TNxqLVTwv/gBz8IiqaiZ/SPbGzhyKigtk7kjFFYm48L6CqVMcqj4Gb80nd0JSGIZr6PMJa+jO/Gzyfy5W/uQKDMeML8gjmxPy9mc19Q/0iZ//jHP9oNQQCC+flzEvrXUv2Cn8ek7w8++GBrWRRrMPSDCHOxRAHAij7SJ9ZJQX2c6++xxx5zb+01datUOBWEEwBLHbVC1B9AtVHdQYMG2c1izAPihIsaP8o30ojqX/1Vi5+0LSxbMGdnLq1z8KD0WPPde++91lqk/565Bm2CeRqWuFWZQ7tFgVUJAf5+4IEHbJys8/V0GT9O+gXG/1onNluwKYR5C+2WtQ/tlrEGBYZPrA1KtT82K/DzCUVIMarVdlssz13xbitRpr428X/mP7Ip5L333jOrNa5mNttslB0HSJ/11xQ5wWnatA/tmKvK2Rmfdeb3YTKH5NeTifbsrzG0PPMEUfXCjOfM1stva9ZfZkN9HOpmpU/eeNnNzF6rfd98+OYHZtwZtTNehGY65gs2OyAf03UrCk6OaqXt056xzskJOyhp2XDEaQ4oym+77baYKaXea40DzZ+2mgXjxbruux1ljsXymRXLug1riVVFsU7a1QRYF4u6Ll31cIqQdPmRXifHgcN2bjCbbdimnFs5a4HhJ3/SbDLLC2BdzOwObG41h26aNU1rG5Ob3WpygHbll5sjAN45ci0A3la5NlzPk3xRVaM3teQKksa05HCAbrmPyMtQtQ4UV6zfZgbhStXrnzNXXXCpmbVgptn90N3MtruPNlkB62YFrAswN9Oxa+1SnrEuA3wHuAogVErROMAcDSMzrJ9cC57RQlfPl1oQrV4KacxxODBw4EC7mR8dQDmEvJawccIjh1Ewrp8mug93Te+/j3KPvKZSmU2UdJLyg4ysUdbj/IIIHrsbyoP8xHnW1emRN+oZv7gUFi6JMmC8AZlVpUReAOemAN1KOZmGr2UOZGs5c2neUg5UyoEGhFgbyEop6jpDFu0t7whQ7tGcWTRFtulWYRFvowQQyIW4Ue53GrWx+fsTz0T2b4GCEeO/VeIl/jj5sfFX+nGKhMckPhYjUIi7hNIb8FoQqJZBuxwCqPPII49YC5Z+eBSIN9xwgwWE+e/KTc+PJ9a9fNNF7wug/Ln+JveuhLSVJ0IMsllsqa8PNN/abxt75ACWkcLAuhFiK9vLxx9/LJZn7rbhOZ44Csiw7MRiBNQ2WMwdPrjjcSUrLdVsnpssZi2cNlwsfBx/xEv8LpF+qfhd/0ldF6vnKInVEiVWTYtZRfOBQGHfHsUTinPanku0fYC3KPNdQD5Hn0ycONG2X/xAKLAhFgNYncFiJmAUlzhK9tFHH7W7XN3nXJP29bITGQuc7s7QICCfHxYLnkEUt1waB0r0888/P3CBDaAYK4HF+K7x4GI1HHLBy/ZBhH9h9aASnrhxhlneC3vuZhlAFGA0XwgB+BtAlQoP/DpXKm6tT25aUa7LqVvF4g3jsVs3w8Jru/PLjn8ssbnHwWscWM0DpKZ8C6rT5dTLsHJoul3tApIYM2aMBc6x252NLF2dx1odE+23sGObjDoR3Q22WNc8/9iEyP6jxos/4iV+O2OOmJ9C/FWoWIBg6XsZ94KIvgMQKPPYYiCwsWPHFoIDiFTL8YWHbReVtnWsBHBkepAwlrKwcc21KkCyUdpCUN/g5h0rte5Y7h/T5vqtVn9MvFjDBRjt9+ncA9QFeOiOR+SLOQMWcbFK7Iej37zqqqsK2Xf5AFjzueeeM8cdd1xhTNI5CfwfN26ctexZrF4UIq7yBeWiDgPexfIKc4kgsG6Vs2EBn5oG/K4VimsB92tf+5rdWBU3XFT/AKJJI6p/9VctftJGOCqV+TLA7DCivbz44ovW6lCQH9ooa0MscrsEGBjy26brR6/dOY7flzDnxZo4p8r4BCgfq/v0gy5F6XNd/115TX/DxhGOmmTTB2NHEFi32nkCqK1US+1W89SdLtaSvimWnH98wAGyTt6u0xiywgrDDetXPUWmO/Na7bSxMq+ygqC0Xpj1jPmw71QLagl67z8b1DDIjFlxJ7Pnqt8zv/zpr/zXPf4eK+AK1sVSG/MzrIJrH8e6DjneQw89ZHbbbTdbXvpPTg1KqedyIPeVgHWfbzHNL8m6K+LpaQDB6uW49IbVypOBV8KtILDuT69cWEmUadiUA6EcKFbf2Mi7WMCNX/TLmM9Xypr+W9aZgTvWm8F7yW/fejNIfgP3rTMD9sn/+u2TNf2+lzV9ds+ahh0F7LuVWDPdWECSa4o13+yn5pP50828FkH0ppry0O+RvmjjgNSR+bn5ts58mplu61DdJvk6Rd3qs0e+rvX7frZQ/wZKPRy0T70ZsHfG/L+3TzNXT73UfLrSNNN3XamPAkSvE8Bud4J19dsiD0jBusqN6C7rx1oC60bPeeoz5UDKgZQDKQdSDqQcqBUOZMTqgsUA1UqG0nykHEiaAwAc594mu9UnADyIGLvsgmyQxfuAXepMgyz8xahXIjR73J6m73f3ix3XhHffM3ucJsdK/v5Es1HTarHDhwV49f0pZpdTzjZ3n3a8GTVy9TBvgc/LKUdgRM5DgE5Y6QF8pdZe5syZY499Q7HMexVYO8ESu8Q0P7tJOZ4QQCs7dqIoChPLQLGIpO4u/iBn5v2zxSx6NmcyYoU1Eom3+i2kLn+vzvRZreslT3p8GeAPjl3XY8ixHKpWZaKUg3g4NiRJoDHtMffTEabfcNdaM3x1O4r8/Rfzs+aYfwwrZHXE0s3mS3l23JgvzKrLuNYkgsMXAtrOpHP8+n7q5w3mvMeGmKVl1/XHX7Zvrb5gzxlmiDzLd0bB4fsN31Wj6RUu7RHrRABgaPulCHACADh2NQN8ino8JLuOsbyF1RqO5qi2cCpuuSg3wAWOzuHHkSYrrrhiJECV8oyyKegIQLQPTlB/Pd2l/4a/1Jeo37+aZe7qulVOWRjv4Bt1hJ3acQBbldbLcvIbFoa2j4C0mnOEsLTjPE9qTCTNaoyLX7x8uNntvn+bg0YfIaOVWJi046GOax1d9/2Ut6aai399lTn6/MPNKiPpr8UyZYzw+XG3c/xT351mLjz2SvPLcw4zq629qo1Xx8Eo8R80+khYVTXCeiHWDjneCQAbAJwo4xUZwlKiAt0AgFb7+Dy3vTIeACD1N7MkySh4Q5/CvB5AKMC+7iQsxdBPYI2OvoI5aJT+grkFx6bR3rC2oBshopSFo8gIyzFdugkiSrhy/PSUPpCyMe5Q9yZNmlSwtHDsscd2OEEhCg+q0Qduc8Y6ZvT8ve3mJr59oVeSjaH23nclo8zKAVmdeOKJ5txzz7X1nvVjnPAF/xpOXYn7XeETm1U5YQIryB3y0ZZ+WPhyNmlJlLGJbzlVLIeyVmMeQT/IBtw41j1oo6z7aWPVmMPR9pnvEz/z/ThtOTZDIgZI221ERpXwdvLJJ4ceDVks6Jnn/cH89KD9ZW1VmTXnYmnU2ruZM2eZq6+7yZx8XPHjNpPKNyeghG1wIo1dhu5p/nzAzSY3yZVvhKeOry8GzTIr/WSY6T8qazIC1IpLyBmZA5U6cjRKvPQpbILEGq5vbCBKePXD+hWZB8QcDb4xdwgj+lrdiMX80d1IpGGYg9x0001204T2NZtttpmVA/gbXQlzxx132BNYOGqVeRun+3BCz/P/v70vgZOrKrP/qqqX7AlZIHvSCQkQIAsJWwaiifzREWRkVxQVEAcUFEQcZQYdfzCC6OCCgMMijIyAQliCyL5MBglhiSGBhCQQyEYSspC900tV/c+53bfyurqqu6q6qruq+3zJ6/vW++497753X33v3PPNn+/KxmgkHCjQEiGFfQEHSlHBf/Pmze5diwO4qHBO/0WyBc/JyEYcbMuBFIwEw/7uzDPPdKRlHkcFYr5Lsjx8tySpmSGCP/vZzyZnm1jOFgMeyPdlqrNzcN6CBQuMA0EmTZrkzjVz5sxE3vmYie+FWMirMat+LGrxVZnnSIJhDxARu03Mj3/3mB82FQtgSaaObVAyDZaK6267uDK4ym57ut5Sqeuec3zEvv3Z7O9Pnzmjf3hl/Pfffz/R3tmXM1oO7eKLL3bp008/7QanM6oI2y/ffVqKyMd2QWGOV1991fkOOcCQZHgOLmQb8xEf+L6aahAPFa6pbM32zvZSVVVln//8591g4OTvB1QZZ960d955p5kyHiMokJzPe37RokXu/Ym/J6lQzrp0Ntu8w+zk6/Lf3r5+QsS+/qnM2lsc7vtYNbwcu6HGC/VdTnf/+m57838X2cjBo+ySb19qcZDn49yH6V7O40rgfq3fGbUdG3dYZaibVUQqLRLKzz3Y2a5zqdYnFo9BgLnO6sP1Vt67zLrtV2lbdm6xHdXbrQzLow8dZSGomlM5926IjSxZ/rZNmH6Inf/d8+21Ra/a64tftTeWvG5Dxw2xo6Yf6VTzkwfW0UfCqCk0Dn6k0ASjMlFQhL8n6e9nNMCvYuBX8qDqIK7Z9rfsz3ge/gbngG4OMuY5qQxLnw2jJ/J3GH/L0i644AL3e4nz+XjuMg8+dzmQk+8wfO5y8OSpp57qhFkYjYXGyALJz1G3ofEPf/8z6iqN75fpnvV8vvPZymc4v0UGseR7BgfXU/yFg6vZx3Pie1zy96DkutPHz+hLfLYTL/YFPIbvgnzvYf+TarBaNudMvlbsOyiqQREW1p/vYxy86X2JxILfwThIn/2W7yM5sHPGjBnc7Pbncd7oo+IAML7rfPDBB+6di33P6aef7tqg30+pEBACQkAICAEh0H4IiLDbfljrTB2EAH+M75kbtb2PwAm2MYtCQJW3fDpGQ56I0Y55Iu0mCLv0NNOXkEV6z/Nz7Yd33WtXnX2qnTVjug3sCzXJLI4Pnm/z9p3257kv20//9LBdd945du4svMBnWZ7Kk7MnHreGPj/uJRN2WzumS2zHdXZk3aeiVvcKFhoERDOqemiwWffTI9Z9esRC5RkdktedGLKTznR+ePAqY1Q6+/nPf57VefhDmIQyOi/yZZ6wWwnCbtC1528rfx6/fNPcfrZw3T4H9bhBtbYOpNpTDtttx4zea70rY+4Qv3/y8S0t76oJO8XeOW/1tGEgA6/YBNmMRps8vMYuPX6bX0zc9n6FP19nI+z6+iltOwL8sEWFHhqdUiRRyIRAZ0KADkqSb7zzu1jrlq8+kfUrRL+YIOwe/62s3wtffupVe+B3c+zkr5xoR806wnr3Y8w/FDTL90vuv3PbLnv1+QX2lz88bWdedIpN//RROeVz/oxLi7UpuI8Tjz/+uHs/4iCmQhDUOrLy/GhBEiaNH4RIEpEVDoFSeQYSARKBGNabv/m88UNRKjKP354qLcQz0BN2qcCerZEwQtV/EkxI6gl+GMw2L+6/fft2R5gi4YoKtAyVnq21F2E323Jp/wYEdN/mpyXkSti994GHbTRIkcccNTU/BSmBXF55FR/mQa4/58xT2620119/vRuQn+qEfcP97H/Oe9Am7TzSymobQ56n2jG4Du+JEfDYuv9TxCoPg49rn9skuFfa+WIk7FIJ/IwzznBlvvXWWx1RJm0FGjeQ7EpiLEUGPHHRH8PBZMcee2zC/+bX+5QEjSDRg+tJxv3DH/7gyMdU8E0V1Yw+PRJVUpGwgwRLf55gSmJIMuE1eE72u56EEzyOfkMSSOjLIEE62Xg9KfiQbLlgsG3bNoe9Jw4l50kC03/+53/m5Z09Xgv+35tRq54TtdhynIm/mTKxngYRkLD1/EzEwgizng9LJux6VdNkMi7JuiTtekve7tczLRRhlwP6PZH1nnvuccSzVO2C75qMcpVM/OK+bL/Bd1BfbpLHTj755EQUolSEXUYO8CIU/jifclD87bff3uScLRF2ScJi2/bK2j4fn5J8lXxv+22lmqYi7KZrb2/8onuTarbU3rIh7DbJtHHhkksuce/wVVVVtmzpMotBNDq+B4RekHRJ1oWYKoi7DfNrlq+1u2+823qW9bRJE6fYjE/McKRewzGvPfeaxZEOGzLMBu8/BCEScRzzqolbdG/McNc2aR+pyqJ1eUSArxV4R9i282PbXbvHuvWptEEjB2IdSLf4tMPpw43r7H9ffNH21O9xCst76nfb7jpM9Ttt5mkzbfWG1fbXJ/5iE449xG695xZH2A3juFknzHKDWnjf0weZ6rnAfpZEyyBpN0jYvemmm+zBBx905M/kWnNgDcmtqURrculv+XuSkXVojJRBorA3RifkQBkKhPhw8A8//HCCDNvW5y6PZ6QY/03Qn5cpf9+SdMvvhLRUz123IfCHgyD4bPXlDmxKzLIPILbEkX4GDtTmb2tGf2Dfkcp4vUjyDWIerDvfz77//e83qQcHivA9jGRYPsuvuOIKu+666xLZ53LO4LXiQKZ0A8JIsvZRakjgbinkPLHwEa/4jsOIYKmuB/Fi+0hFOk5USjNCQAgIASEgBIRAQRDYJ99XkOyVqRDoeARIUqycFLb6VXGrexGEOoyOzcgw8rfuZSiawnHWAwOiGaIkb6FxvF8NKWcZysdZitRvP/dTM2zCqOF2y2NP2XUg2m7bjVA9OVq/nj3sxKmTnLLuNCjrJnyDLZw/ZflyPL8OywIBNNm61WiHT4OsOx9XKguyrnVDu50WxocMOIU6gKwbrKX/IcgffVdddVVwU0bzVB3hB4JCmGv2ULKCZBVuSDhuGtPk5ZNBzA0SdkmqpdLu66u72aNv9bLqWn8DZV/K7hVxG9an3inrBsm6zOnkQzHkP4PyZX9WHdFVEKA6Do3Ol2CI8q5Sf9Wz8yNAsiP7mWIn7Por0dY+kfkUsl90fSHOEQ81KuWie2MP19LyP3zmaBtWNcSemz3XHgfRds8uStHkZj16dbfDjjrEKeuOhrIu31NbO3+q7bmdvXBHUVWXhAU63vnxhnb11Vfn5cN/4Uqdec5UiaKyGgm6TGlUPhNZN3MMc92z1J6BQaIEP0plS9YlToV8BqZTrG1pPT84VuFDPz9w8kMXCcVtMfZn/LiZUlnXK/C2krbl/Dq28Ajovi08xi2dYdJhE+x5DGLvSoTdNxYuslkY/N+eRiU3WipS5fbYNvvpn39i3z3sh3bM/sdlplaIl8IoCI7VT8BRFgm5cNLZknbbs/6ZnIuDWLxl+s5Eoh+nZKNyHQm3/rcGiTDsS6jg+eijj7rdqd6ZjghEvwEn+gxI7qCiLt9ZOTFPkkNI+A1GKaAar1dDpc+O/SHV6jhomIPTaJ/+9KfdcclEYW7z55w2bZojTLION998MzfZlVde6Yh0JFqStEI1YyoGk1zM8lx77bVO0Y5qu95yxYCqy56sSxIWB72QwMQ6kBx055132oEHHugIOf5cuaQk69a8DVERtOHYu8iBP3QyMfzYiRyMNj8lnDeybvJpPXmS679xYsMnQyrocn2mZN3kPAu1fO6557qsqdBIEi4Hwfzud79z7YK/Q9j2qdLsje+Np512WoKsy7bI3ykkVD300EOujbPNpjMORvSkPL7v8f7gfUAS+9KlS12bZKQvRlxozaLRqFOX9O/DHHgyYcIEl8+f/vQnR/wigY3Pg1QE+dbyL5Xt6dpbpkrOBaknP/2RKwwlVQwJaXaK8cePtNv+5TeunVVtG2NLbl7aQMoFofeu+/7Ltq7ZYqdPONO+fNaXE2TdB+560N5f+r5VRrrZoRMOtRHDR1rt7lrbsnaL7dq62yrCFTYWz5bhw0fgAxCIwRAhXvXOKgvHwlYWLrMyfNCpiFRYZXkl5ssshPX8TdK8dM2KW1Ir+CiMQ+W2PlYPGOqse+/uFq7AVeCjqAykZ/wj+XLP3l1WG6u1Hv16Wve+3W3b9o9t3fp1VhvdCxJu2D77hc9ar/4Y3YDvYHw/uPdnd9uaD9fYP/zjdPvCWWdjH2CH9ctWgjT/49NsR3SH7YztsP/3mRPs6GOPtnVL33PP/XtuujOBX594D4v0b444+yIahWrYt/Ldnkq2r7/+ui1evNj4nCIJNJVdemnD4HL66Tloh7/92AfxecJnw1lnnWXPPPNMk6hIbe1vWQ5P1uX3ucmTJzdTlU1VVr8u2+cuFc2D7yTs5/k+wPV8J+GAV07ZGMvAPpk4ceCDH8Th86AKLgmqNBJT/fsKf1N7si7LwYFCVOBlH89rxYlq6en6AT+Agn0H3zkY9aa1iC1tPSffe/hexfbBPoICEFSCp3GgAd+3Ro8e7aI58X2IQkfXXHON284+kIO3aP7d0g8U4Tq2Ow7OYkr/Hdsy2x37SUbOySZSDvOTCQEhIASEgBAQAm1DQITdtuGno0sEgbKBIet2bNhi6/AD7y38BMzUIUbS7t9AlqyNW3eSdqvwoziSe6VDFWBQ0hKEQMzy915g2f3iDiwHt08dO8buvPziFvdPPr61ZQdF4HzJ+wfPv48xkSmArrb6kyMCdNLUrkSINJB16xcA82y++8LJFDkIztyjwxYZ0NypkGORsj6Mjkw6HBm2hc5t/rD1P5Yzzcx/8M4mVHumeXM/tmaSdFtLR/evsy9N22l/fH0fcXg9FHbzYST7vru5Oaua5+N5WbjWypePciiPzokAQyfR6JBKVhnpnDVWrboaAuwf+NGW/UUxk3bz0Sfy2ha6X+R7acP7H/oekHZdH+TeV1teHjV+hJ1/FdQ6XIeFguYhdb0zi5DB+RvKGShvkd0IJDt41VkWjR9hfNjVIitqTsWhAkkwxDRVPqgcIys8AqXyDCQSVKahghlJQAy9GFSxyRSpQj8D+QGOlm1KghPrl2/Lthx+/3yXQ/nlFwHdt23Hk0plFRVgXeRghx5ykP3vS68YVWe7AmmX9YyAmMB6t7eRtEuCRiri2as759kTax+zET1H2cheozIrWhSk3bfjVg3yDt9ZKydkr7Sb2YnaZ6+gQuhBB7Xt+px33nn2/vvvu4Iz3LWPssMVDH1Ngg4JGRdeeGFaEhGVcEmkYehsGhXp+H5HMiQJMiTs+mvJcNG8tjSSShYtWmTDhg1zy/zD6D6eKEIyk1e6S+zQOMN3YpJFSJ6hUR3Pk3CpWvfjH//YSGr0xv29AhxDX/t9uT0XDEjmvP/++132yQp5JMWQ+EKiFMvI7bkalTZr3oaP9/GYRd/BuwaacKbG6GmVxyAC4IgGjDI9ri37kbRLom6QrMv8SOItBqM6dVB9kKrN/h5i+PUgYZdkJhLXaSQpeVITl2+88UZHtiMJLJXx3vG/4UjyJRnM+7WZL9sjiXZsp/S5+fsjVV5cR0KYJ+sGlSy5jaR4ksm4nedpLS8e01ksVXt7471Y0bQ34kx/KklwJBm+v2GlWa+YlfXlh8KQvbn3dVuxbYVN6X24dT+24eMhny3f+NxX3CW68rtX2ik/OdHi+MZI4n5ddb19++vftsXzEQWt5iC77YrbLE7CLm6v3194q1Vvr7ZykHmHDRtu37r8W460y+9EfG78/ZW/28vPvuwIvWPHH2izPv0pSAE3PFOe/8tztm3Tdhs5epRNPXoq1uMYTK/932u2a9tO6w5S6ZRjjrCK8sb3Jxy2af0mW7FkBWoRsnETxtuAgQNcmZcuXGK7d+22nr162iFTJrh1gIDVtbr6Ops/dz5cMHEbfeBoGzFmhFvPbZxCfFT5iXBg/n34C+a/NN+isahVdC+3fzzzs9ZnP4Q4xXbuv3TJMnts9hyri9XZ8f94vH3yM580w2cXknZ/9fPf2MK/L7QaEHOv/s+r7fCphztxGgrULFy80M7AIJY98d321z6zbfYcEDZ5btiffvAHW7F2hQ3s09u6HXFOw0r8PeXEk2xd3Tq3zHvfkxu5gvcf771g/+x2TPGHBFgO6PD9F/tMEixJ5mc7oWqs70+TDyfhkgTf4POEIje/+MUv3HOChE+vPp+v/pYEzSeeeKKZ0n5y2dItZ/PcZV28ijgjLhAbb1Ss989Ovy6T9J/+6Z9cVADuS+z8wDB/LEnO3r74xS+6WSro//KXv3TzPJ79fSTScI8SX/+Owz6CA3UOOOAAn0WTlAONWeZMLB/n5LX629/+ZqNGjUqckgrDnnTNPoJ9E1Wc6YPgAHrft7Gv4rte0PzALa5bsGCBI+ty/uyzzzbiwvZIv/rzzz/viNbcJhMCQkAICAEhIATaB4H8MI3ap6w6ixBoEwIVY8IWnQGn7sdRi6/NIiuQJOvm4efn7qh1OwHO4INB2u3GX5/ZW3gQXvjxo9TCDT8K3I9YZuN+7TJtzLNUlhuLm6+E4c6qq6udGkO+8izVfGLVcatdCkfus3DkkmSeqTJ0Y4VDw+DM/UTYKkAy70jj6GIqHuRqdGxw5G26H8u55hs8LnHbuZV0TwFvWMP6psuzxjUoBgZJu27nAvwhWdefL115WEpf3gIUQVl2EgT4wYsKIP5jWSeplqohBJog0K9fP+dcpbM7nUO8yQEdsNDWPpFFbo9+kR2g611I1nULXmm3tJY74BK3eEqGyiOJYCRCcFN5jB//O9MgCoYDvOCCC5zCBxVA2O8UKjpCi0B30Y2l8AzkpaGSD6dcrT2egbwvSXot9TRXjHVc+yGg+7ZtWG/evLlJqOFsczvlpBPtVzffjn6rn40/cGy2h5fM/svffc8emvO4Xfatph/u27MCVJ8jwZrEOBJFPDEOQ9PtyQ//YuP6HGSnjT7LepeDuJOJgbTkSLuxmCM+VR4ehiqi9+xkkkHx7EPFWBoHOvG3QrJR6YzE11RGdTcqwdJIDPNKdfStBsm63E4yEkM1UwGU+3FQvScJcbu322+/vdlvqcsuu8wRdrkPQy97EqEnQHI9w3QHybpcx4E5d9xxhyPXkABF4k6qsM1UL/VkJx5HVWC2GebPd0kSLIPGuvBcJFMxlLe3XDHYsGGDzwIql8MT85whRlTg4/tHsIxNdspgIYbwfTWLYrb3Sfh4l+M3FYl3mRrFIiHGwHZeSEVpT8T16rosXjJZ9xu31mRa6oLux98cQbIuT1ZVVWVURyaxmkqEQWOUE9r06dMdsTa4jdeYRCz+fiFZKdl8ZBSSp6jQGLxvSPri+fj7jsdSMdrfH8n5+GUOcvSWfM8MHjzY3n33XXd/5jogxedd7GkptbcglvSr+mctlZ3ZLtJZ8NkydMRQqLvCu1LZ0FdFIAF7y19uSjxbKnvs+37zyOY/J0jdS59eav3HNu0bZpxxpN12zq9t9uyH7IB1g23l79GmQNiN45Pj/Q/8t72x6A07/ZAzbcbZRzUMDABh9+iTJlkcaVl5mZWXgeWKx5Abo4h0SE1/u/LzN9muHbvs1MNOtQvPxvsC1m/tvd5u/vlv3X6//+7vbeD+Axuqiio88/Tz9ovFP8duMbv/+vut56DAt076k1gdTljt5qGK/+4jb9k1t1xldXgA3nzbb23YWf2b7HOkHWZn33OKe7Z/vPs8O+nEff3bvz91lTs3+7dp50xqKEfj3yNHHGHfvvYS17899vQcp9JLdeJ0tnbt2gQZ94YbbmhC1uUxvKYk4WfiQ+dglmDfwOfD5Zdf7gi7zIvPoqlTQZxOMp6DaqnB5wl3IYH0xRdfdCq9fPZ4wm6++lsSV1Op3ScVL+Vits9dEj9p9HsRk6Dx2cmBFSxLJsRof2zfvn0dYZURbe67775mhF2vrst3CPrfaH369DESnmn0FXuyrluBP/TR8TrSqI7M8iYbB9pnStblsfk4J9t6kKzLfEkGJzmXmHkyNNdnYn5/vlcRx6B98pOfdN9f6QMplGBS8HyaFwJCQAgIASEgBJoikP7Ntel+WhICJY8AfxRXTgZpdzOIkE/DqftxFlUCWZIKp9U7EbJqZkM+kX4NP7CzyMUio8dbfNdOC/Xuh1+rOBI/fks2zabiGe7rRz5muHun3S36cdz2/j1mNS9ELfYeqpmNIxe7h+DvqJwBZ+7EwjpzC30BqJ5Fsi4JIIV0VPrbsKE+HBvecFumW545bo9VDaizv7zd0xauxYMlzzZ5WI2dfNhuq6KyLqy18jTdnufCKLtOgUA2TqVOUWFVoksiwH6C/QXDoFJhoJiVdnO9QO3VL7J8rjd0HQz+8H+j0i4k6V3xS2J7rkAX6Dg6wTl1ViPB4dZbb+2s1Sv6eukZmL9L5BVqSz3NHyLKqVAI6L5tG7IkMo4YAUW3HG340CF23pfPtjvu/qOddspJnVJpl8q6JOuynqxvRxvV1bzCGskRVCCrq6uzXrsrbQve4Xvt6W2haIa+Vk/a3Qv/7h74wKYgulTfDI/taCAC5/chldMNOCRh56KLLgoc0XSWhDGSL4Kk3uOOO84R/pruaXbUUSBvNdqyZcsSZBa/jgQiEg+TLbiOv7W8UaHNW7p3XCrrelu4cGEzwi7V6fv3hxMzyUaPHu0IuyQ/JhOauKsn+TAEtLdcMagC0ZMYknBJUhH9kPShjB8/3mXN87flt2V0G3y8b8DH+xx8vCuRJUhzGRu+3JUd3hA1MFVI9ozzyXDHVCRKf+htT9cbFU+LwY455piUxfDXLEgAYxthuHMaVQRTtSeKRJxwwglGxdtke+2119wqEslJZCLZPWi8h0ns40AEKlC3ZkESIKNOkJBHgpgXqkj3LGgt31Lc3lp7K/Y6tTb4tq3PFqotjx07tjkM6OpOOfUU+/PsP9uH29bahu0f2tChQ91+m2IbbXX9B7YlstHKh5Ix22Dl1tPPJtIYBr3s3r3bPfueWDPHrT8kfiCU6xuOO37YMXb6Vae49XOWzLaLP4Gon412xw9utXk75zri/NBj0pOW/f5Ma7pX26bYR27VlOmTIYgU3MpvMSHXR/D+9SrU3CPXZ3vT3PctBQd6eJX4fVsb5jjgxA8MSd7mlzkAwPfhfh3T4DVbs2ZNSsLurFmznP8yeBzn+Xzic4rEUU5+cE0++lvmz/eDXC2b5y7fTbzif7qB6uxXOfCCCsXZ2Je//GUjYZeq/3yX8crqbMscPET72te+5lL+IaE6VR9ObNnvB68h80hljD6QjeXjnOxzko3PHA58Sr5HkvdLtcz3KQ4wYZ3Z33EwFOvVs2fDs8GnqY7VOiEgBISAEBACQqCwCIiwW1h8lXuRIUDnbffpYYtvB2n3JRAOoJ6bsdEZjJBV1TuiFv0obt0YimoYfsBipGimFplwhNU9/5hFDgZhl4Yf2PjfEOa3FJdZZln+EMBI6Lo1UFx4JWa1mOIU2mjgxWR+jl5QXjg2jPYZsUgftq7SMv5YpnIFlTFodFgWkqzLcziUqGrNoeVIQ41pS8tVA+rt0uO32ba9EVu2sdw27Cyzmvrc8a4si9vg3vV20AF11q8bGoIrDwuXWXnc/qyMTAgIASHQhRHgBzT2G/z4z36EKlX84JXqo1ypwNQR/SJ7RvZocfxJmWJbyvV+/yLZXirXWOUUAvlCQM/A/CBZ6sq6vvz5QUO5FBoB3be5I8wP9UECYi45HXrIQU55ds7jT9sbCxfZ1MkTbdzYKhswoDmBMJf8O+KYLVu22or33nf1iYCkQGXdYiDrJmMRJKFSFbBmYdT2PARC47vYM1M/GLiDsXfhp90LPy1Ikd3hBys7oPGFNPmERbpMoskLL7zgyKmpisjfMskKjoxMRsJF0EiG9RYM7e3XJackLHn1Ob/Nkx39sk/T/ZbyBCKSypIV6/yxgwYNSpBhuX+yUIMnKfr9k9MgkSa4Laho6NfnigH7zbvuussp1zEvEig5EXeSuUjepZJxOhz8+ZulaMd1G+DjnQcf7//Bx/sh9si0bTMzNOUwuHrdZiJ62sh9xLtm58nzilQkSpJ1/fo8ny6n7JJVB30mJF4nGwld3lIpPPttEydObEbY5eAthiSnUWk5lQq2P57pvHnzgosp51mGK664whgSnqRE/ywkeZ0EXt4jbYlGkfKkRbzSt6ugsnOxtbcgfCRRehswYICfTZm29dkSJHcnn+Dggw9OrFq0aFGCsJtYmWKG9wJVSZ977jlbsmRJs34k+RBGgvjCF75g999/v/3pT3+yiy9uIOxyUMNf//pXt/tXv/rV5MMyWk434CrVPZzrsz1dQYJqtbzv0hkJqrNnz0632Q488MCU2zIhPpIQnM6C25YvX+7Uv/PR3/J8rbXZdGXi+myeu0GSNdXL01kuz7pPfOITrn/m8/ORRx5JqPB7NXSe6/TTT292Sir+zpkzx5555pms1Wlzxa0t58zmHmlW2RQr2LeQ0MzBJfPnz7fTTjvN7UXiue97klXfU2SjVUJACAgBISAEhEABEBBhtwCgKsviRqBsCMiMs+DU3YPga6/CUwb13IwNu8fXwZH8FEJYrY9b5T9gOgih13qTttC6lU851moeuNPCICWGIrz9oE/miHn02DGPUlpuvb7aI3MEYjsRHm0pFBf+FrP6xWgP2ZDJG08T7xa3+gk1Vn3IbtteC4b5mszPXyx70gFOgi4dNPx42R7m7j44YXNJSa49alS08e71d3Ee0hzK0x5Y6RxCQAgIgWJHgH0IP67yQzZJu/yYTdJrqVpH9IscsEKyLjvGkk5L9aKr3EKgDQjoGdgG8BoPLXVlXV/+tiOhHNoLAd232SPNcMb8UJ9MOMw+J3Nk1m9e+FV7e+kye/OtJfbC3L/Zxxj8Vaq2Hwg2VaNH2KwZ042E5FKwEIQQKqDoF90OFy18tfS7Zmx8X4Xvq/ZJRETbAnGF4yNWMbp0ok0FyUKbN29uprh3zjnnGKegXX311fazn/3MrfJ+s6AaYXDfdPPbtwPsNtrGjRtdDqkUcoNZDx482P0mY/0KaW3B4JRTTrFXX33VhSi/5557XLbUe5EAACv3SURBVHmZH+c5VVVV2VNPPWWjR4/OqArxWrTJlSDr/l/U6l5HI80myl/jGULDQdY9Ae354OzEQjIqYCs7BUmUxUieJBEyUyO50FtL6rWp2jHVeZPJ8T6vVOmOHTtSrW6yjmW/7rrrnNLl3XffbY8++qjbznDlDFfPiYqUVJBsjSDcJOMSXij29uah5Ts2iW40EttSDRzw+/q0Lc+W5LD1Pk+mwW3BNh7cJzhPoh6VSVMZ/Wfpnp/nnnuuI+y+/PLLTtWT9X7iiScS2QRV1BMrM5jJ5h5OV7Z0p2mtf2NkLm+8vxmhK5UVss9Kd06Wo0+fPoniUIyAVgz9bTbXLPg8bal95oIxfaTnn3++XX/99XbvvfcmCLueXE2F4uBAJ/qD+d7EQRKpzCvsp9qW67p8nDMbvDMpJ1WG2d+QgH/HHXc4BWcex3ub01VXXWU/+tGP7N/+7d8yyU77CAEhIASEgBAQAnlEQITdPIKprEoHAY5Mj59oVl0L0u5COM6yIe2ymhAyqH8lbrH1IFceBdLu1Aa13VAGd1TF//u81b35qpWN4+jCRgdTwtFUasulc82LtaRxcIioqluD8Gh1r+IDA0m2UBfJ2hBGqBztsO9JvaxiLH7YZ+67zPpUne0AD1VDSlVBPBNgpbbc2a6L6iMEhIAQaAsC/HjtP2C3JZ8ueSw6QNcbhtgfcqF5Wgrbu+S1U6WFQCMCegbm3hT4cYwf5PlbwD39/HJyWuTbc0dAR3YUArpvM0eeiqTHH3985gdksCfJraVCcM2gOiW3S7h7yLrBpxXfjcHsEEmIN0TNzrge8a3wrc2Fn/YjqO0eDz/t4WFjlLVky9eghmi0wXGXCWEruQzB5WDobBKqvvnNbwY3p5ynOiKNyrZe9fXwww9P7MsQ3K0p1yZ2bsMMz//SSy9ZUP0wOTsSHklEpOWipJecX0vLbcWA5fvVr35lv/jFL2zx4sVO+fimm25yJDWG9qbablCtNV1ZqPZcswh+XqjqRpfhTSLbbw7IOHSAWeWnwlY5BSIhuDc6wjyJ0qcdUYZ8nDOoRLp69eq0Wb799tvNtpHgS0VcKrpfcsklduONNzbbJ9cVJOVyYgh2qrY++eSTdttttzmCMNV8Ga6c7a+rmG9nPi3GelOZ1RO4SQrM1HJ9tqRqk/6cVF711trgJQ5k92RdEm7ZjqdOner6Ca9iTpXNoHqwz3vmzJkJNVOqk1Jl94EHHnCbv/71r7cLqbytz3ZfF59OmTLFz7pn/YwZMxLLfoaESyqRFsr4TElnwWvrn1/F1t+mK7tf78vNZb4j8FmXylK1uVT7Ja+jWiwJu8SReA0fPtwRUbkfSeZBIxnVk3VPOOEE+8EPfmCMbkDVXL5D8Z7OVUE3eJ7gfEecM3j+dPMcBEKyMyeSwDlQierZfP+kMboAsTnzzDPTZaH1QkAICAEhIASEQAEQaL94OgUovLIUAjkjgJZfOTZs3T+LcGmT4fgC2TFrg282thJOuMdjtmd21KpfhlMYag6NXL+02VXMPNlCMShGbMcIb34BpJVq2lB6/c0FAVzz+k0I3fe3qO1G+6l5AmTdD5BRg88/uxzRfsuOCFkPtOeKMWjcHePLza7MRbS3v/0aitSgtLuveKW2vK/kmhMCQkAICAEhkBMC6Bhd7+c6SLeAbJqmJbE9p8rrICEgBLo6Ap7M5R6BACOxDBIvLbHslgLLRba9sXhKhECnQ4Dhyffu3Wskl8g6FwIk2HabDr/WJ6GQ23Kk8dQVr4ZLDaIM1Q/DT/tU1GrfB/G3bt+uDOf84Ycf2qpVq/atzHHOh9QeOnRojjk0HOZDO3Pppz/9qYsQ0lKG69evT5CqggTYSZMmJQ5jePT2MBK+aFQ/TKeAGCQlBUlShShfvjAggYdl/e53v+vIxp78Q9LuypUr0xadba32PbS9J/GN4GF8I1iE94ZcyLoQf6yYiW8Wx0Qs0qewDt6EfkiaWuVCnqwsT5NZB60med2rLfr7NlVRXnvttVSr7ZhjjnHrX3nllZTb27qyZ8+exucAVXc/+OADp+bMPB9++OG2Zl1Ux2fSLnJqb2X+jb2w1V23bp1RLdfb6aef7mczTrN9tpDMmC5a1Jtvvpk4Lwl2LRnfm7zdcMMNduqpp9rIkSPNk3VJ6E1HnGSZv/rVr7rDSeyjWioJ5bRk9Xe3sgB/8vVs90U77LDD/Kxdc801VlsLSfQkIxm0kJbuecNz+ucUydVeqbbY+tvWsCkvL0+8p996663GyBjJ9vzzzyfaUvK21pY5kIIkZtojjzxizz77rJunWi4H1wTNb+O6//qv/zIStNkvsG3TCvHO1BHndJVp/OMHlQXXJc8Tg8997nP2P//zP00GXjGagEwICAEhIASEgBBoXwRE2G1fvHW2YkIAIdcqx8EBdhJIuyA7Wo8cC7cTxMv5cAjPjtmuOfW2d2HUYjtadhZ0+9I3re7v8yy+d3cDt9L731KkblWK9a60WN+h23OErKsfFkX72LsARN05cOI+CCfua2gvaEc5WU+QdY8EWRftuAIkdNNTPWsYG+6hxpsM3uqSXs669jpACAgBISAEhEASAq4vRG/o/vMP+8YSXE6qlhaFgBAQApkg4MNPlnqaSV21jxAoNQRIUHnxxRcd2aTUyq7yZoZA2YCQdZ/RBtIu3GvxNRBXeDJmu+Fvq34FPretXGl27LHHukKQnEBVMRKwsp2o0MmQwlRPY1jtIPEnsxo23YtkPRJ1aSS9nnfeeQkFx6Z7mpGsS3U4b0GyFMnIJKrQGM54165dfrdEOnfuXHfvkKyVD9JykER16aWXJga0+BOSBHXZZZf5RZs4cWJivhAzuWJAZdOvfOUrDnsSuoNGQg/JlN78oB2/7FK0LQp4UMiDbc4pRK/DFqzP1kKDQNadhW8Vx4Os2x+/vwpsZxyTfyfy1DEFLnQO2R999NHuqJtvvtlSEeVI4vIkueTsPVGOhEavQhjch4TKb3/72+7eIhmyNfvlL3/p2tv3vve9ZmRM3sP5Vo9vrTzttb13d7MpVflv01PH5D/PZEw2b95sJ554YmJgAklumVyntj5b2Cdce+21ycWx9957zxG8uYHqs55422zHxhXbtm1LbPL9RGIFZkjEbcm+8IUvuM3s90i+pJFM2l4Dp3J9truCpvjDfpd9LY0qulQK5v1PkiOx/dnPfuaURlMcmrdV8+fPt7vuuqtZfvPmzXNK29zgBwtwvtj6W5apNfvGN77hdmE7piI1CbrV1dW2adMm9yxtq4prkEj+4IMPunNxXfL9QJK5t+QobLFYzH7/+9/7zXlLO+KckQjIDo2W3J/x3eXyyy93fY+/h/2+TEmA9gNbgus1LwSEgBAQAkJACLQPAg3DiNrnXDqLECg+BBpJuyGk1d2iVvc6vGk7cigmDouvj1vdFjjplsesblLcyhF+rWJ0yMI9mzsOwgcMsx4XXWV7fvdTK59yrIX69HNkCOfM4+5U5wE5womZJS2TL1EU23OAqasfEtsVh8IHpsUxq38TirprgUhA7SNrfPqalYOs2/0EfMwYLbJu1vg1HoC7DdG+G5R0SznNtf46TggIASEgBIRAEwTYJ7r3TbxyhviSyxR7uLSElptUSgtCQAgIgcwQ8GScUk8zq632EgKlgwAV4kjWZVhnEiVlnReBsv3h55oJRy3eP2tfhEru5hzqCr5qFD7e6nVRq4cfrgJCDRPGHGqf+cxnXOj52bNn55DpvkPYBs8666x9K9owR+Ltr3/9axeam6qab731liNjHXHEETZ48GAX8pkEY5IBqfJKu+SSS+y4445LnJWDTBjymQQZEjWo/kiFWBIVSZD561//at///vcdGbiqqsqRrRIH5zhDVcevfe1rdvfddzs10G9961suFDXDs7/xxhuOdESCF40k4n794PsuoOWKAYln999/vyvZsmXL7JZbbnFE7HA4bCRP/cd//IfbRmLc2LFjm9Qgths+Xqjq1i7AN4G/o61uwGb8XMrFEmRdENbLBvHHV+HtyzPCtgJlXgg16nzYuVDHnja2fcqeTXkZAv2xxx5zh5Cwzntp5syZ7n7w90a6/Hifk+hLtWj2PwwjTuI8SYRsLwwh7hVHMyGgdevWLdHeqBbP+3TMmDFO5ZPt8A9/+IMrype+9KV0RSrZ9d85OWzfuTNm2/fkeJMk1fzCE8I2YUR+2htJuS+88ELiDBxwsGHDBkfwvu222xLr+bzgMyITa8uzxefPAR0k4n3+8583KrqTYPqTn/wkMbCD7a81C5KLf/zjH1uPHj1c30DVUxIdr7766haz4LOP0+LFi+3f//3f3b4XXHCB8RnZHpbrs72lsv3mN79xCuovvfSSux99H+CPIXmRJEbiXSj753/+Zze4hoqwJFKz/bGf9hacL7b+1pexpZTvNnxukgDNtsP3r2Tju0qu72M8loOFmDcnWnAgkz/Xpz71Kaesy+Urr7zSPXOJ55IlS+zGG29MPI/9/vlIO+KcJKKzHe3cudPd17NmzXLvifvtt5+75zkgie+YbOt8prAvHDRokG3fvt0NHPORErheJgSEgBAQAkJACLQvAiLsti/eOlsxIoDfllQmDVWCtNsTZNt5OTqDWTdEUIm9ByWHdXDULcE0MWTlh4C4OwrE3V5NHQiRsQdbz+9dZ3vvvcXiH623sjEIX4OXZWck69L8IcW63FBK/W0FgdhOOHA/QHtYiva1OG6xVXBM5RAWLXgaOnLLp0N14RNhKx+GRuzbSnAnzWeEgIeuIaWGYIPjsNSWM6qsdhICQkAICAEh0BoC6ABdb0iyLl8wkJbicmvV1HYhIASEQCoE+FGYZN1ST1PVTeuEQCkiQEIJSQwkNpHcILJuKV7F7MucIO2WN5J212efhxtsBsHU2i0YNP8uxssfEbejJk638ReNt/fWvOdICtnmSoISSVNtVdYNnpcqrgxBfOGFFzri34oVK+yMM84I7tJk/qSTTkqp/kfy7Jo1a1yIb94zQfKZz4BkDqop+lDQfn0uKftJEhlJaqOS5B133OGm5LxYrtYIYcnH5LqcCwYkopEc+cc//tGFhT/qqKOanZ64eSVkbozXwMdLJedF8PMugCDDB1jZPKo6d83IQkMRBRDKut2mg6w7sMEbmdGBbdzpAHCob7kwbI+/EbIPPsqZa2yVuE+PPtBsclX7lT2bqh955JFORfH88893KqlsJ8lGsnuQmOm3k2hOQi7VLklouuKKK/ymJikVO70SaZMNSQtf/OIX7Xe/+50jsvF8nDzJyu86btw4u+iii/xip0kPHhqyB74XsWcWxW0dRG9ytR74hsf2dji+t+XLSHIjcbIlo8ouByhk+h6Sy7MleH62J7a9a665xk3BbZwnWZf9QWvGgR9UEScZnAM6gkrtPJbEVCpFs+9JZ1Sh/c53vpPYzHbcnpbLs72l8lGF9YEHHnCDX5IJo8SHRE5OhSLs8n2Wyt58nqR6ptxzzz02ZcqURBWKsb9NFK6FGZLLaSTtBq2qqsoNVNqyZUvOhF3ehySXkoRK43Nz2rRpwdO4eQ7OYBsneZj9PKegtYU0HMwnON8R5+T5eV+yT+Hz7Nxzz3VFIin/lFNOcWTwZ5991m3joC9OyX0PnyckG8uEgBAQAkJACAiB9kVAhN32xVtnK1YE8Pu+fARIu58O2V6oltbMBWl3LQqb6wBzkDFj78BxB2JmHZwQdYeCuHsQJqigRvriZI3+BKe0e/l/WO0Lf7HaZx+xUP/9LTJ0pFnP3haKRPah1ciXcDxCHlsMy/tKp7lUCOAaRbfj2kOloBZtof5tEHVXY2UbiboGbm4YTaQCRN1uR7Wf6kKqKnaWdf52aqhPo9JuonKltpwouGaEgBAQAkJACOSMgOv9XAeJP/xP8q5fRq4lsT3n2utAISAEujICpa6s68vfla+h6l7aCFDVjkp3q1evdh/XGTqXSqLtFXq5tNHrXKWnymgPKO2Ge8CV9iz8tGtQv1z8tDX00cLXuw7E3WVx6zGxv007dKCVTYMfGETDYjASTx566CH77W9/60hC69ata1YsqjVSiZfEi3RGJdu+ffs6BVGvlub3JaHwhz/8oY0ePdqvcmkwjHKTDYEFT+qoqKgIrIUvvbzc7r33Xqf4yLDSJIl44zGXXXaZUd2UZKOgtXbO5JDWwWNbm88FA4YmJ8GGpKIgaY11mDFjhrsmJBjFESWt7kP4ed8GUffNuEVX4AcS1JxzNvp4R4GsC6VQ+njdN4OcM8vtwDAuzeemNb0+ueWUn6OS24rPtbU2w/2S26c/linVcWtqaowKo8F7g30LiXlvvvlmYvfkMgwfPtyee+45pxT96KOPJvbjDEli//qv/2pnn312E8XRdOUlAfiVV16xa6+91v77v//blcXfN7zHGTqe23r16tXkPJ1loU93s9OPLv72Rrypsjpy5EhHAmT7SUXm99cl3SCITJ8tPp9gOn78eLvqqqsc0Y6DIrzxuUT11aACq9/GZ3IqI4mPz36SxYPtn4MVOBjBK8anq8dpp52WIOzynklWG091zuR1mSjy+md/qnLk8mxPlY8v14ABA+y+++5zeFC9nu+frBcH5dA4UCyVpcPY7xu899PtS/V7kqipsD1//nx/qGtzJGjzeZJsufa3meCebp9gXZLL45dbeu4yX9bnX/7lX+zdd9+1rVu3OnVyKpTz2tx5550+m2bvCYkNLcwQQ0/Y5YCMVMZ3orlz5zo13mQl5R/96Ef2zW9+M0EaDraXTOrO8wWP8efP9ZzproPPl2lL9wgjApCgH7zPfX82depUF8GBbe7pp59272u+7yGhmYNWiIXfP3hOzQsBISAEhIAQEAKFRSCEF1F+epUJASHQiADVUPe+GbOaF2IWXY7bA47dNhtG/oaHh6zsYJB2x2EaA+IuRsyHkijzdX+fZ9ElCyz6wQqLbdpg8drUPwzbXB5lUDgE4mUWjw2yeP2BcOSOs1j9QRaP4od+HI2grRbaizaz3CLdXrRQxUL8gGqLV7ithekcx8e+MaRzVES1EAJCQAgIASGQBwQ+95cX8pCLshACQkAIlCYCM6pPL82Cq9RCoBMhwA//DN86YsQII1nl0EMP7US1U1VyQSC2C37ahTHb+xyUTEmQbIOSKc8fgqpohP7Zw0JWcVDYyoaAuNuUh5pLMfN6zMcff+xCPG/cuNFIFuS9QHJRphaLxYzHcuJxJCBlSj7J9BzJ+9XV1dn69esdIYdhlg844ICURJbk4wq1nCsGe/bssZUrVxqJlcSeFkebc0Tdd0DUfQtEXRC/bXsbS442F4G4R+WnQNadFLZwz+IhMbaxZkV9eDQaNYYGp7IjSWPsb7Kx3bt3Gwn1JP/y+D59+mRzeLN9ea+vWrXKEUP79+/fbLtWdB4EUj1bUtWOzx2SakkmJEmVtmvXLiOplGRdbk9FEkyVV6p1jFzAsjCfHj0wIiYDW7ZsmVExmEZlWA4A6SjL9dkeLK8nybKvGjNmTHCTm+c5SGIk5ldeeaWRCFko888ADtwZMmRIRn11sfW3qbBZsmSJI4WSYDp58uRUuziCKNX5qSbsr0nKHfO0ks9/Pm85wJVk/HSE6jydzmXTEedk+92+fbsbRELycLKx/nxfYz9Iknqmz4HkfDrDckuE885QP9VBCAgBIVAIBDjISZZfBETYzS+eyq2TIEBHXO27cAa/FLX6BdAQ25qnikE0N3QAHHIg7ZaNbSDulg8LySmXJ3g7Mht+QKhbh2klFDvea1BZiCOcmEXzU6rQQIzYPCJk3Y6LWAUI38X2MSE/tVQuQkAICAEhIASEgBAQAkJACAgBISAEhIAQEAJCYB8CcYgp1CyP2t7n4XODsmmbVE19tuDplY2Hf3YCiLvjw0b/bKibSJMeHqVQZq5GxDT4emuXg6iLyGlOUXdbHpDpjbY3OWTdZ8HHO04+3jwgqiyEQKdBIBVht6Mrd+qpp9rjjz/uCMNr1qwpeYIfVYJff/11B+vChQttwoQJCYjr6+udyjWVh2lPPfWUU2BP7KCZjBAg4fz66693+9599912zjnnNDmO7Yntinb11Ve7qckOWhACQkAICAEhIASEQBdBQITdLnKhVc0cEID/t34jVBxei1rtPKg4rEIeCH2VN8MA7MjokEXGgLiLtGwkpv3lpMsbvu2QUbwGjtuPQNJdjfQDOG5XYkJq+yLAtb0UiGQUrkJYr2OhuDAtgjaCjwf6ftB2XJWDEBACQkAICAEhIASEgBAQAkJACAgBISAEhEBpIBCDuMJqiCv8DeTJ+TGLb0Sx4YJrs0F8LAJRhTKonZaDPFkB/2y4t3xvbca1VDNAm4oi+l7dKkwrQBCHmm4Uwgy2Iw8VYrNCoK+Ko+Hj/QeQxIeH4fTNQ77KQggIgU6DQLEQdqmqS7Lqk08+ac8++6zD94YbbrDLLrus5LGeM2eOnXHGGYl6HH300XbkkUcaFeOeeeYZp6zLjdOmTbPnn3/eunXrlthXM5khQAVXqpB7GzdunB133HGO9E2y9Msvv+w2UTV63rx5LpKA31epEBACQkAICAEhIAS6EgIi7Halq6265oRAbDdG0i+LWc0rcNItyqPari9NGZx1gxrJuyTujoCDeFjYIgOg7FBkIdl8kbtySvXl+s1UWEB7WNNA0CVJN74ZqNTnF5kQot2VTUJ4tGPwwQBqH+EeYurmF2HlJgSEgBAQAkJACAgBISAEhIAQEAJCQAgIASFQKghEt0Jc4e/w074EcYV3QaSE+m5erDu4kxRTIHGX4gpV8M0OhG8WA+llnR+BOEQ66jeBDP4+fL4g6NYvj1sMfl+rzlPdK+H7h6JzxXEg605G29pPPt48IatshECnQqBYCLs333yzXX755QlszzrrLLv99tute3d0lp3A/vznP9vFF19sO3emVt4599xz7be//W2nqW9HXLIFCxbYeeedZ0uXLk15+ilTptjs2bONbV4mBISAEBACQkAICIGuioAIu131yqve2SEAFYf6jVBxWBCz2tfgsIOSqu3NLouM9sZgzfABUHIYCSceiLtlCMdWNgQTHcQKy5YRhIXYiSHQoiTpridRF/Mk6q6GkAcUmPP2YSBYcPg9qO5RfmTIuk2Bqi7ahFR1gwBpXggIASEgBISAEBACQkAICAEhIASEgBAQAkKgKyIQB0m3Fuqne1+OWv1CDKLfAhTgosuLeWGFA+GPpW9uVNj5ZyN94JuTGmpeIC6aTODvj+6Ar3ctFXUhzACibhQk8LyKMtClC6GOssnw8U6PWMVYRNcDeVcmBISAEEiFwH333WfV1dU2adIkmzp1aqpd2mXdiy++aCzLyJEjXVlOOukkC4U610CDTZs2OXXXd955x1avXm0DBw60iRMn2mGHHSbF1zy1spqaGps7d66tWLHCTWVlZXb44Ye76dBDD7WKCilW5QlqZSMEhIAQEAJCQAiUKAIi7JbohVOxOwaB2F448EDWrQFxt34hlBw+RDnyrKqaqBnIu055d3jIIkMbJxA3ywZhnk7iSGJPzeQbgWijw/YjOGpByo1+2DiBrBv/CCfLl3pHcrnxUSA8jE7csFUeAVXdKhG1kyHSshAQAkJACAgBISAEhIAQEAJCQAgIASEgBIRAF0cABN16+O1qFkatZj7EFai2m29xhV7w08EvWwb/XARR0coprjAYQgs9ycLs4viXavXRTBhNr46iDBBkqEfUtChUdWMg7druPFeKggwgflccjehpkyHIAJ++2k2eMVZ2QkAICAEhIASEgBAQAkJACAgBISAEShQBEXZL9MKp2B2LQHRb3GrfgdouQrDVLwGJcxPKg1H5BTOqO+wHJzHUdsOD4eyDcziyPyYo77qJjmIReHOHnwTdXXDQbsG0CROJuhvgrN2AywoHbvxjZI19CmZQ6AjtD6LuoXDigqxbcTBCo/WV579geCtjISAEhIAQEAJCQAgIASEgBISAEBACQkAICIGSR8Cp7b4Xs5rXYlYHcYU4fHl59+HRb9cPftmR8MOOAmmXJF5GRRN5tzTaD0m68PvWw9dbx8hpIOdGV8Hvuxo+3+2oQr59+vDRh4aYlU+BIMORFGSQqm5pNBSVUggIASEgBISAEBACQkAICAEhIASEQPshIMJu+2GtM3U2BODMqwe5s2YJHMKLYxZdCiffVlQSTsCCG9V3B8JRDMXdCEbnhxFaK0zybn9M+2EC2VPhtdJfhXgNHLNwyEa3IsUUayTqxqCeGwNZ14U+y7cqR6riUFgB1zFyMIi6E+HAPQRh9nAdFWIvFVhaJwSEgBAQAkJACAgBISAEhIAQEAJCQAgIASEgBJojQP8efbS1iIoWpbgCfbSFMJIxKarAiGhQ3GVUtDIILDjyLv2xElQoBOpZ5xlHRLzodvh9QdKthxiDi54GRV0q6ca3IbsCCTOEBsDPS0EGRE6rhJ+XfnqZEBACQkAICAEhIASEgBAQAkJACAgBISAEkhEQYTcZES0LgWwRgIOvbiMcwm+DuAuHcHQ5HH9bkEm+R+e3VC4SeOksBtkzDMdgeABSLvdDCmdxhGkfLHcjQ7SljDrZNiooVMMZu6PBSRuDozYGdeQYnPYk6cZwnZg6J35NO9adyhwk6o5HOD04cSsngKi7P1bKqd+OF0GnEgJCQAgIASEgBISAEBACQkAICAEhIASEgBDoNAjQR7sBaruLqLYLH+27cAzuLGDt6N+jv5UR0YbBrYfURURDVLQyCiwwIlpX8sMWEOpWs/Yquptx3TdiYvQ0EnXXwfeL1LWDQvrq0Q4i40DUnQQ/L0QZygajceC/TAgIASEgBISAEBACQkAICAEhIASEgBAQAqkQEGE3FSpaJwRyQIAj9+tJ3F0WIO5uQkYFGrHfYhHpEOwBn3AjadelGNHvSLu9kfaGzxBpqBdSOI/DPTBf3mKORb0xXgvn6x4QcDHFd2F+J+bhkI/tQAqyLkm68Y+RfoyUKgp7MBXSSZsOrTJcE6ghRw6CAxcqCxVQ1o2AqCv1jXSAab0QEAJCQAgIASEgBISAEBACQkAICAEhIASEgBDIHIE4BuXXrQVxFxHR6heDtLkShM3dmR+f854+Itpg+PswhfeHD5AR0TCVUVyBBF6ROHOGt8mB8OtGd+HaMmpaInIa5jfA5QtVXRc9rT3EGXriGo+FIMPh8PUeHrby4fDzVjQpqRaEgBAQAkJACAgBISAEhIAQEAJCQAgIASHQDAERdptBohVCoI0IgKBbj9H8tctB3MUUXQFH4YdwDO9tY775OBwOQ5J0qf4Q6gOSLoi7oV5wGHMdybsk7nbHvJuwno7mSqyrbEjDdDi2pwossIyBjBuvgaMVTlamsWqke7GMNAbibZwkXTjdY3DSkqwbB1E3DqJuHERdzltdPoBrYx7AMTwMzvlxZmXjQdTFVAZnvZz0bcRVhwsBISAEhIAQEAJCQAgIASEgBISAEBACQkAICIEUCNB/WLsKE4m7jIr2Afyz8B22i1FZl2IKiLAVhuJuBAP4XWS0/pjnBGGFSN8Gf6tUeFu5Irhs9AlHIcIQhRhDdCv8w5yopguxjBjUdB1BF75iw77tYvCjR6rg62XktMNA1B0J/zkj28mEgBAQAkJACAgBISAEhIAQEAJCQAgIASGQAQIi7GYAknYRAjkhAAdhFMqude+DuLsibvXvwYkIJ7FR4bW9nIeZFpz+RCjshuBIds5kOpQ9eRdkU/PEXaZU4uW+5TjIpZgnibdxcvPMD1OIqhGc98Z6QwEh7lOq3FKBGBMVijlZHZysJNlionKuI+rCwW4k7IL0TKKuI+lSJdcRdpFiv6Iz1D3UD874UXDeUmkBYdHKq8JwxhOYoiutCiQEhIAQEAJCQAgIASEgBISAEBACQkAICAEhIAQ6HQKxavhnV4O4uwTE3aXwz1JxFwP9293oV6WvEGq7oQENaZjL/UjehXACCLxhCCw4QYX2FExodyDSn5C+YRdFjVHTtsNlvJ0pJkZOA0k3vgUpFHUZSY2+4nY3XCOnqHsI/LyInlY+Ateruxy97X4ddEIhIASEgBAQAkJACAgBISAEhIAQEAIljoAIuyV+AVX80kCAjuH6dXAOr4RjGE7h6PtwLq6Hc7gYVHezhZAO4yakXdTDk3XLsI3znqhLbmooZHGm2C1Opi7+u6mRrBuvx8YoVpKsi/k4CLuOgMtlknlLzaBOHB4CR3sV1HTHwHk7Bmq6Q+W8LbXLqPIKASEgBISAEBACQkAICAEhIASEgBAQAkJACHQeBKjSWrcWxN134J9dDv8sxBVIAO0w/yNcok4kAaTdEEi74f0aU0RGCyMqWrg3iL2NkdFI4g33xDqquJY6mZcR1SDOEGPEtN2N6U5cC0wxREuLMXLaNqSY4lDUjYO463zo9Cl3hAFvKiWTqFs2PmQVB4Ooi0hqjEonEwJCQAgIASEgBISAEBACQkAICAEhIASEQC4IiLCbC2o6RgjkigBIqgzdVfsBHMMfwDEMdQdOcYTvKkqV2Fzr2dWOq4Djdn84bhH+jFP5aE5Q04Wz3ZGXuxoeqq8QEAJCQAgIASEgBISAEBACQkAICAEhIASEgBAoQgQY2av+o4aIaHUrYiDughz6IdigxSKsQEIuBAFCUNsNgbwb6gX3IiaSdznPCGlUdQ1xHwoHcL4S8yCQMg1XIIWvst2JvSTiumhp8HX7FJiSnOsipiFqGkUt4iDqumkXCLq7MM+JJF2qHjOiGkUeisGILUQYImOhXTEOJF1ETyvbP2whClbIhIAQEAJCQAgIASEgBISAEBACQkAICAEh0AYERNhtA3g6VAi0BQE6Lus3QdlhFRzDa0DchcJDdC0clJvhIO6IkF5tqUxXPJaO8EFw2g6D/3s4HLYg6paNgpou1oWoQCwTAkJACAgBISAEhIAQEAJCQAgIASEgBISAEBACQqA4EYALlsIKdRBWqIPabv37IJBCYCG+FcUtFtJoMnKMakafJBR3rUfckXdDJOx2wzpMRtIu57lPkwhpWAbRNEQycOPk5hujpCFAGjY2Tkh8hDQGS/OR0uKMhNY4uXlER2OkNBKgDZMj6ZKoS+IzSbrwb3M+DhIuJwNhN76n0e9drPgCm1B/QAQxhkgVBBmgqpsQZSA+MiEgBISAEBACQkAICAEhIASEgBAQAkJACOQBARF28wCishACbUWAIdnqP8IE0i6nKFQdYh/CN4x1TlmAzlFZxyJApyxDz+2PEHRD4LhF6LMyEnU5kaSrMGgde310diEgBISAEBACQkAICAEhIASEgBAQAkJACAgBIZADAs43ux5R0VY2RkVbBb/sOjhkdyKzUvXLkoxL0i4jg5XDsVmGipCsWwY/ZqRx3hF2sS2EZSZh/MFsnExd/Ld4w7IjMEdBwiVhtx7rMM80Xou0kbBbtCRnFLlFQ3WsN3y+8PFGRgEeRE2rGAN/72D5e1vETRuFgBAQAkJACAgBISAEhIAQEAJCQAgIgZwREGE3Z+h0oBAoDAJOeXcLSbtwEMNRHMUU2wgn8UY4RT/GOaFUIGsnBOjQhqqCI+kOhk97CJy1nIaGLdIfTluGl5MJASEgBISAEBACQkAICAEhIASEgBAQAkJACAgBIVD6CIB/Gt3RIKjgoqKthm92Dfyy8M/ablQPiawTIECSbi/4fOHnjYyAzxeR08oZOY2k3d7YyO0yISAEhIAQEAJCQAgIASEgBISAEBACQkAIFAgBEXYLBKyyFQJ5QQDhwaI74RgGWbceE1Oq7sY2wVG8GQTebTgLwovJ8oQAw8X1g7MWirnhQQ1E3QgUdamoEDkAUy94a6k8IRMCQkAICAEhIASEgBAQAkJACAgBISAEhIAQEAJCoPMiQL/sx3GrWwtRBUZE47SukbxL5V1sl5UQAvTp9mkk6Q5rjJ42AkTd4RBm6CefbwldSRVVCAgBISAEhIAQEAJCQAgIASEgBIRAySMgwm7JX0JVoCshEK+HL3g7yLsg7UY3YQJpNwY13tgWCDxsBYF3K1KqPTA8maxlBBACLgQlhdB+mAaAoDsADlukkYGYQNgtA1E33AcqumUtZ6OtQkAICAEhIASEgBAQAkJACAgBISAEhIAQEAJCQAh0YgRI3qVPdh0nEHg/hD92A/y0G+CPhV9WEdGK9NpTnIE+X4gxhBE9rWwofL7DoKQ7DP5f+H0lzFCk103FEgJCQAgIASEgBISAEBACQkAICAEh0MkREGG3k19gVa+TIwBibnQ3iLsg7TryLki7sY/hLN6GFOq7VOCNI4xbnKoPXVmJl87Z3phIwKWCLqf94KgFWTfcHw5aEnU5SUG3k98wqp4QEAJCQAgIASEgBISAEBACQkAICAEhIASEgBBoAwJx+F7hj6WgQv16+GQ5uaho8MNiXXw78obogqwDECiH/7cvJkZP2x8quoyYNgQkXU6YD/cASRf/ZUJACAgBISAEhIAQEAJCQAgIASEgBISAEOhIBETY7Uj0dW4hUAAE4nVwGu+Coxgh20jcjcJJHIcCRGwH1jeSd+O7sA6OZWO6B4XoDE5kKOGGeqAuVM0F8dap54KkG+4NZywctVTLdURdhDhjmDOul3puARqgshQCQkAICAEhIASEgBAQAkJACAgBISAEhIAQEAJdBAH6YqP0wZLAiymGifOxzfC7QmTBEXi7spBCIdsBRRoozAAhhtBAEHRB1I0gapoj6jKFD1j+30JeAOUtBISAEBACQkAICAEhIASEgBAQAkJACOSCgAi7uaCmY4RAqSFA5Qc4hmM74SzmBKIu0ziIvZwnaTe+B8tMqxsm24vlvagojovTqVyLCYq+7W4RnLECzlc4YK2bT+Fs7Y55EHQbUixjPkyyLgm6IOxynqTcCIm5PFbqCe1+6XRCISAEhIAQEAJCQAgIASEgBISAEBACQkAICAEh0JUQiMOH6gi8m0Hc5QTSbgxpbCt8rIiMFofIgouG1hkEFNrzwlI9lxHUSMJl1LQBDURdFzVtIHzAJOtyG/aTCQEhIASEgBAQAkJACAgBISAEhIAQEAJCoJgR+P+yGoNALwam9QAAAABJRU5ErkJggg==" + } + }, "cell_type": "markdown", "id": "35bc2c92-d90e-4a26-a04b-5bd7dc4e7d23", "metadata": {}, "source": [ - "### Filter to `lof` variants passing filters" + "### Filter to `lof` variants passing filters\n", + "\n", + "![Screenshot 2024-12-20 at 11.12.35 AM.png](attachment:7348e149-4f8f-4eca-aa55-6234293c1f3d.png)" ] }, { @@ -2653,17 +2667,24 @@ } ], "source": [ - "var_ht = filter_by_consequence_category(plof=True, ht=drd2_interval_ht)\n", + "var_ht = filter_by_consequence_category(plof=True, ht=drd2_ht)\n", "var_ht.show(5)\n", "print(\"The total number of lof variants passing filters in DRD2 is: \", var_ht.count())" ] }, { + "attachments": { + "440e8e62-f912-4c99-9687-12d655742ab5.png": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAACvIAAAGQCAYAAAB2jGXFAAAMQWlDQ1BJQ0MgUHJvZmlsZQAASImVVwdYU8kWnluSkEBoAQSkhN4EESkBpITQQu8INkISIJQYA0HFjiwquBZURMCGroooWAGxI3YWxd4XCwrKuliwK29SQNd95XvzfXPnv/+c+c+Zc2fuvQOA2gmOSJSNqgOQI8wTxwT50ccnJdNJPUAZaAJ1QASjOdxcETMqKgzAMtT+vby7ARBpe9VeqvXP/v9aNHj8XC4ASBTEqbxcbg7EBwDAq7kicR4ARClvNj1PJMWwAi0xDBDixVKcLsfVUpwqx3tkNnExLIjbAFBS4XDE6QCoXoY8PZ+bDjVU+yF2FPIEQgDU6BB75+RM5UGcArE1tBFBLNVnpP6gk/43zdRhTQ4nfRjL5yIrSv6CXFE2Z+b/mY7/XXKyJUM+LGFVyRAHx0jnDPN2K2tqqBSrQNwnTI2IhFgT4g8CnsweYpSSIQmOl9ujBtxcFswZ0IHYkcfxD4XYAOJAYXZEmIJPTRMEsiGGKwSdIchjx0GsC/Fifm5ArMJmk3hqjMIX2pgmZjEV/DmOWOZX6uuBJCueqdB/ncFnK/Qx1YKMuESIKRCb5wsSIiBWhdghNys2VGEzriCDFTFkI5bESOM3hziGLwzyk+tj+WniwBiFfUlO7tB8sU0ZAnaEAu/Ly4gLlucHa+NyZPHDuWCX+UJm/JAOP3d82NBceHz/APncsR6+MD5WofNBlOcXIx+LU0TZUQp73JSfHSTlTSF2zs2PVYzFE/LggpTr42mivKg4eZx4QSYnJEoeD74ChAEW8Ad0IIE1FUwFmUDQ0dfUB+/kPYGAA8QgHfCBvYIZGpEo6xHCaywoAH9CxAe5w+P8ZL18kA/5r8Os/GoP0mS9+bIRWeApxDkgFGTDe4lslHDYWwJ4AhnBP7xzYOXCeLNhlfb/e36I/c4wIROmYCRDHulqQ5bEAKI/MZgYSLTB9XFv3BMPg1dfWJ1wBu4+NI/v9oSnhE7CI8J1Qhfh9hRBofinKMNBF9QPVOQi9cdc4JZQ0wX3w72gOlTGdXB9YI87Qz9M3Ad6doEsSxG3NCv0n7T/NoMfnobCjuxIRskjyL5k659HqtqqugyrSHP9Y37ksaYO55s13POzf9YP2efBNvRnS2wxth87i53EzmNHsCZAx45jzVg7dlSKh1fXE9nqGvIWI4snC+oI/uFv6MlKM5nrWOfY6/hF3pfHnyF9RwPWVNFMsSA9I4/OhF8EPp0t5DqMojs5OjkDIP2+yF9fb6Jl3w1Ep/07t/APALyODw4OHv7OhRwHYK8b3P6HvnPWDPjpUAbg3CGuRJwv53DphQDfEmpwp+kBI2AGrOF8nIAr8AS+IACEgEgQB5LAZBh9BlznYjAdzAYLQDEoBSvAGlAJNoItYAfYDfaBJnAEnARnwEVwGVwHd+Hq6QYvQD94Bz4jCEJCqAgN0UOMEQvEDnFCGIg3EoCEITFIEpKCpCNCRILMRhYipUgZUolsRmqRvcgh5CRyHulEbiMPkV7kNfIJxVAVVAs1RC3R0SgDZaKhaBw6CU1Hp6EFaBG6DK1Aa9BdaCN6Er2IXke70BfoAAYwZUwHM8HsMQbGwiKxZCwNE2NzsRKsHKvB6rEW+JyvYl1YH/YRJ+I0nI7bwxUcjMfjXHwaPhdfilfiO/BGvA2/ij/E+/FvBCrBgGBH8CCwCeMJ6YTphGJCOWEb4SDhNNxL3YR3RCJRh2hFdIN7MYmYSZxFXEpcT2wgniB2Eh8TB0gkkh7JjuRFiiRxSHmkYtI60i7ScdIVUjfpg5KykrGSk1KgUrKSUKlQqVxpp9IxpStKz5Q+k9XJFmQPciSZR55JXk7eSm4hXyJ3kz9TNChWFC9KHCWTsoBSQamnnKbco7xRVlY2VXZXjlYWKM9XrlDeo3xO+aHyRxVNFVsVlspEFYnKMpXtKidUbqu8oVKpllRfajI1j7qMWks9RX1A/aBKU3VQZavyVOepVqk2ql5RfalGVrNQY6pNVitQK1fbr3ZJrU+drG6pzlLnqM9Vr1I/pH5TfUCDpjFGI1IjR2Opxk6N8xo9miRNS80ATZ5mkeYWzVOaj2kYzYzGonFpC2lbaadp3VpELSsttlamVqnWbq0OrX5tTW1n7QTtGdpV2ke1u3QwHUsdtk62znKdfTo3dD6NMBzBHMEfsWRE/YgrI97rjtT11eXrlug26F7X/aRH1wvQy9Jbqdekd18f17fVj9afrr9B/7R+30itkZ4juSNLRu4beccANbA1iDGYZbDFoN1gwNDIMMhQZLjO8JRhn5GOka9RptFqo2NGvcY0Y29jgfFq4+PGz+nadCY9m15Bb6P3mxiYBJtITDabdJh8NrUyjTctNG0wvW9GMWOYpZmtNms16zc3Ng83n21eZ37HgmzBsMiwWGtx1uK9pZVlouUiyybLHitdK7ZVgVWd1T1rqrWP9TTrGutrNkQbhk2WzXqby7aorYtthm2V7SU71M7VTmC33q5zFGGU+yjhqJpRN+1V7Jn2+fZ19g8ddBzCHAodmhxejjYfnTx65eizo785ujhmO251vDtGc0zImMIxLWNeO9k6cZ2qnK6NpY4NHDtvbPPYV852znznDc63XGgu4S6LXFpdvrq6uYpd61173czdUtyq3W4ytBhRjKWMc+4Edz/3ee5H3D96uHrkeezz+MvT3jPLc6dnzzircfxxW8c99jL14nht9urypnuneG/y7vIx8eH41Pg88jXz5flu833GtGFmMncxX/o5+on9Dvq9Z3mw5rBO+GP+Qf4l/h0BmgHxAZUBDwJNA9MD6wL7g1yCZgWdCCYEhwavDL7JNmRz2bXs/hC3kDkhbaEqobGhlaGPwmzDxGEt4Wh4SPiq8HsRFhHCiKZIEMmOXBV5P8oqalrU4WhidFR0VfTTmDExs2POxtJip8TujH0X5xe3PO5uvHW8JL41QS1hYkJtwvtE/8SyxK7xo8fPGX8xST9JkNScTEpOSN6WPDAhYMKaCd0TXSYWT7wxyWrSjEnnJ+tPzp58dIraFM6U/SmElMSUnSlfOJGcGs5AKju1OrWfy+Ku5b7g+fJW83r5Xvwy/rM0r7SytJ50r/RV6b0ZPhnlGX0ClqBS8CozOHNj5vusyKztWYPZidkNOUo5KTmHhJrCLGHbVKOpM6Z2iuxExaKuaR7T1kzrF4eKt+UiuZNym/O04I98u8Ra8ovkYb53flX+h+kJ0/fP0JghnNE+03bmkpnPCgILfpuFz+LOap1tMnvB7IdzmHM2z0Xmps5tnWc2r2he9/yg+TsWUBZkLfi90LGwrPDtwsSFLUWGRfOLHv8S9EtdsWqxuPjmIs9FGxfjiwWLO5aMXbJuybcSXsmFUsfS8tIvS7lLL/w65teKXweXpS3rWO66fMMK4grhihsrfVbuKNMoKyh7vCp8VeNq+uqS1W/XTFlzvty5fONaylrJ2q6KsIrmdebrVqz7UplReb3Kr6qh2qB6SfX79bz1Vzb4bqjfaLixdOOnTYJNtzYHbW6ssawp30Lckr/l6daErWd/Y/xWu01/W+m2r9uF27t2xOxoq3Wrrd1psHN5HVonqevdNXHX5d3+u5vr7es3N+g0lO4BeyR7nu9N2XtjX+i+1v2M/fUHLA5UH6QdLGlEGmc29jdlNHU1JzV3Hgo51Nri2XLwsMPh7UdMjlQd1T66/BjlWNGxweMFxwdOiE70nUw/+bh1SuvdU+NPXWuLbus4HXr63JnAM6fOMs8eP+d17sh5j/OHLjAuNF10vdjY7tJ+8HeX3w92uHY0XnK71HzZ/XJL57jOY1d8rpy86n/1zDX2tYvXI6533oi/cevmxJtdt3i3em5n3351J//O57vz7xHuldxXv1/+wOBBzR82fzR0uXYdfej/sP1R7KO7j7mPXzzJffKlu+gp9Wn5M+NntT1OPUd6A3svP5/wvPuF6MXnvuI/Nf6sfmn98sBfvn+194/v734lfjX4eukbvTfb3zq/bR2IGnjwLufd5/clH/Q+7PjI+Hj2U+KnZ5+nfyF9qfhq87XlW+i3e4M5g4Mijpgj+xXAYEXT0gB4vR0AahIANHg+o0yQn/9kBZGfWWUI/CcsPyPKiisA9fD/PboP/t3cBGDPVnj8gvpqEwGIogIQ5w7QsWOH69BZTXaulBYiPAdsivyampMK/k2Rnzl/iPvnFkhVncHP7b8Ah9d8bcAadJgAAACWZVhJZk1NACoAAAAIAAUBEgADAAAAAQABAAABGgAFAAAAAQAAAEoBGwAFAAAAAQAAAFIBKAADAAAAAQACAACHaQAEAAAAAQAAAFoAAAAAAAAAkAAAAAEAAACQAAAAAQADkoYABwAAABIAAACEoAIABAAAAAEAAAryoAMABAAAAAEAAAGQAAAAAEFTQ0lJAAAAU2NyZWVuc2hvdAMwFUYAAAAJcEhZcwAAFiUAABYlAUlSJPAAAALYaVRYdFhNTDpjb20uYWRvYmUueG1wAAAAAAA8eDp4bXBtZXRhIHhtbG5zOng9ImFkb2JlOm5zOm1ldGEvIiB4OnhtcHRrPSJYTVAgQ29yZSA2LjAuMCI+CiAgIDxyZGY6UkRGIHhtbG5zOnJkZj0iaHR0cDovL3d3dy53My5vcmcvMTk5OS8wMi8yMi1yZGYtc3ludGF4LW5zIyI+CiAgICAgIDxyZGY6RGVzY3JpcHRpb24gcmRmOmFib3V0PSIiCiAgICAgICAgICAgIHhtbG5zOmV4aWY9Imh0dHA6Ly9ucy5hZG9iZS5jb20vZXhpZi8xLjAvIgogICAgICAgICAgICB4bWxuczp0aWZmPSJodHRwOi8vbnMuYWRvYmUuY29tL3RpZmYvMS4wLyI+CiAgICAgICAgIDxleGlmOlBpeGVsWERpbWVuc2lvbj4yODAyPC9leGlmOlBpeGVsWERpbWVuc2lvbj4KICAgICAgICAgPGV4aWY6VXNlckNvbW1lbnQ+U2NyZWVuc2hvdDwvZXhpZjpVc2VyQ29tbWVudD4KICAgICAgICAgPGV4aWY6UGl4ZWxZRGltZW5zaW9uPjQwMDwvZXhpZjpQaXhlbFlEaW1lbnNpb24+CiAgICAgICAgIDx0aWZmOlJlc29sdXRpb25Vbml0PjI8L3RpZmY6UmVzb2x1dGlvblVuaXQ+CiAgICAgICAgIDx0aWZmOllSZXNvbHV0aW9uPjE0NDwvdGlmZjpZUmVzb2x1dGlvbj4KICAgICAgICAgPHRpZmY6WFJlc29sdXRpb24+MTQ0PC90aWZmOlhSZXNvbHV0aW9uPgogICAgICAgICA8dGlmZjpPcmllbnRhdGlvbj4xPC90aWZmOk9yaWVudGF0aW9uPgogICAgICA8L3JkZjpEZXNjcmlwdGlvbj4KICAgPC9yZGY6UkRGPgo8L3g6eG1wbWV0YT4KqDOjLgAAQABJREFUeAHs3QdgVFXah/F3Jo2ETiCh995RRJqi2FBs2Nbe8MO2q7iu3a2ua+8VC6iooIIgInYUKYqASEdDld57IG3mO+8Jd5iaTEJ6nqPD3Htu/92byZT/vHFlZmZ6hYYAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACJSrgLtGtsTEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQsAIEebkQEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQKAUBgrylgM4mEUAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQIMjLNYAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggEApCBDkLQV0NokAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggABBXq4BBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEESkGAIG8poLNJBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEECPJyDSCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIFAKAgR5SwGdTSKAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIBALAQIIIIAAAiUtsGvXLhk3bpzUrVtXBg8eLPHx8SW9C2wPAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEECh1AYK8pX4K2AEEEECgcgn8+OOPMmDAAN9Bp6SkyLJly6R69eq+PgYQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgcogQJC3MpxljhEBBAIE/vjjD9m7d6/tW7NmjWRnZ0vr1q2lcePGUqtWrYB5I40sXbpUPB5PpMm2Py4uTjSkqut0uVx5zluZJj799NMBh7t161b54IMP5IYbbgjoZwQBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQqOgCBHkr+hnm+BBAIEBAw7daDXbDhg0B/Tpy5513yiOPPBLSH66je/fu4boj9nXo0EGuvPJKufTSS6VJkyYR56sME1atWhVymL///ntIHx0IIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAQEUXcFf0A+T4EEAAAX+BOXPmhA3x6jyjR4+WnJwc/9mLbHjZsmXywAMPSKtWreQvf/mLHDp0qMjWXd5WdOONN4bs8lVXXRXSVxY7xo8fL8nJyQG3v/3tb2VxV9knBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQKAcCBHnLwUliFxFAoOgExo0bF3FlW7dulZkzZ0acXlQTRowYEbEqcFFtoyyvRysTP/XUU9KmTRvp37+/jB07Vrp06VKWd9m3bxkZGbJv376Qm28GBhBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBAggQ5C0AFrMigED5FsjOzpaRI0fmeRAfffRRntOLauL8+fPliiuuEN2nytaSkpJsVeIlS5bI1KlT5YILLqhsBBwvAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIGAFCPJyISBQxgQ02Flc4U6PxyObN2+W3bt3F/qodR1btmyxNx0uqrZnzx67b/mtLycnRzZt2iR6X9D2ww8/2EqqeS33/vvvS2ZmZl6zRJz25Zdfytq1a+3t999/l2nTpsmzzz5rK8+GW2jWrFm2Mm24aaXVpxVn1bcoz62u0+v1FskhFcf+7dq1y17PRbKDUa5k27Ztsnfv3ijnZjYEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBCoqAIuE1grmnRVRRXiuBAoAYHFixfLCy+8IN9//72sXr3abrFLly5y6qmnyj333CN16tSR++67T3755ZeAvXnuueekffv2tm/Dhg1y/fXXB0xv1aqVvPzyy7Jo0SL5z3/+I5988olvekpKivTp00cefvhhadu2ra8/3MCaNWvk3XfflTFjxkhaWlrALC1atJArr7zSVpdt2bJlwDRn5LHHHrOVV51xvf/Xv/4lPXv2lCeffFJeeukl2bp1q51cvXp1Oemkk+Txxx8X3X+nffrpp7Zv9uzZvvlOPPFEGThwoNx8880SGxvrzBrxXud78803A6YPGzZMXnvttYC+SZMmyaBBgwL6gkfi4+ODu0Sr7Hbq1CmkX4PZl112WYC//0waJK1atap/V8iw+lx11VUh/eqn10q4dt1118nGjRsDJqm7nnen7d+/X0aMGCHz5s2TBQsWBJzfvn37Svfu3e35OP/8851FAu71uHbu3BnQN27cOLtdrW48ZcoUmTt3rp2u18+FF14ozzzzjHzxxRcByzzxxBPStWvXgD4dKa79O3TokOh1OWrUKF+4W6+9bt26yd133x1w/tPT02XIkCF239avXx9gpJ36s+R/3vVnOfhnSn8Gx44da41//PFH3zYbNWpkfw50u0OHDpUGDRrY7fAPAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIVA4BgryV4zxzlGVYQAOrDz74YMQ91HDh5MmT5aGHHpJvvvkmYL4ZM2ZIr169bN+KFSukY8eOAdM14KmhSg3M7tu3L2Ca/8jbb79tg6b+fTqsVVQ1CHzHHXcETwo7rmHM2267TVwuV8B0DZS+9957AX0TJkyQ7777Tp5//vmAfv+Rr7/+Wk444QS59tprbQjSf5r/8NVXX23DqDExMf7dAcMa3NTQpL9Dhw4dRMOmnTt3DphXA7PBgd+AGcxIQYK8uqyGQc866yzRKrzB7YMPPvAFRYOn+Y9r2HPZsmX+XTagfe+99wb06YhW1W3WrFlI/2+//SYavtam/hr+1hB4fu3WW2+1Qeq4uLiAWRs3buwLYTsTNJiuAWsnnO30a2BYr4U///nPIeFpDblecMEFzqz2vrj2T6smawA53LlwduCWW26x1ZR1XK+Z5ORkZ1K+9xo279Gjh51PKxu/+uqrMnz48HyX0591vR7VjoYAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAKVQ8BdOQ6To0SgbAo8/fTTeYZ4da81RHjxxRdHFbYMPkqtlKqVVP3Dq8Hz6Pg111wjW7ZsCZmklUmjDfHqwnfddZfceeedIesJ1/HGG2/kGeLVZTRMqdVNNeSZV3vnnXfkH//4R16zyLfffhvioNVhtXJqmzZtApYdPXq0Dd4GdB7lSFJSkmh4WcOawU3Dm9G0K664ImS24Mq2zgw//PCDM+i710C3E+LVCsdnnHFG1NeVVk0+77zzRKsL59c09Bsc4s1vmeDpxbl/Wpk5rxCv7osG2L/88svg3SrwuIaWownx6or151QrQX/44YcF3g4LIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAQPkUIMhbPs8be10BBFavXi3hKqmGOzQNRQZXYg03X3CfVlqNdjkNFfs3DYg+99xz/l1RDb/44ovy2Wef5TtvNPOkpaXZcHC+KzMzaFXhvJpWvQ1uGprUFlwJVvuKIsSp6/FvtWvXln79+vl32eElS5aE9IXr0OBxcNNA6u7du4O7RasZBzetNOy0p556yhkMuNegcbiwsc6kFaGjOW/Tpk0LWGdhRopz/6ZMmRLVLt1///1RzRc8U2Jiou1aunSpaGA9uGmlbK1cfc455wRPsuPPPvts2H46EUAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAoOIJEOSteOeUIyonAlrxM1zTqqmvvfaazJ07V0aOHCn9+/cPN1uB+rRC6nfffSeLFi2SSAHJ4Aqlt99+e9htvPXWW7J582Z70+Fw7a9//at4vd5wkwL6+vbtK5MmTZJffvlFHn/88YBpwSO63zqfhklPPfXU4Mm2AuyaNWtC+rVDK50GV/VNSUmRY4891s5/1llnhSwXPH/IDIXs0PMb3NavXx/cFXa8VatWEm75GTNmBMzv8XgkXKVerc6sTR2Dz7d6zJ8/X7Zv3y7btm2Tn3/+WTp06BCwXh0Jt96QmQ53aPD40UcftfZ6/sKFmMMtWxL7d/rpp9sKyRp014rIevzBTX9eDhw4INWqVZNNmzbZm1aIDm5DhgzxTdfK1u3bt7ezzJw5M3hWUZPZs2fLk08+KePHj7feTpVkZ2b92Y82gO8swz0CCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgiUT4HY8rnb7DUC5VtAQ67jxo0LOQgN9Gm10Fq1atlpXbt2tdViTz75ZBuyDFkgig4N5D7xxBO+Odu1aydut1vuuOMOX58OaPVQp2mQUisGBzetLnr55Zf7unU4OztbbrjhBl+fDuiyug4nKBsw8fCIHuuECRNEq9Rq69y5sxw8eFD++c9/Hp7jyJ1u9+qrr/Z1HHPMMTYsqZWK/ZsGUZs3b+7fZYfDhU811BoTE2OnH3fccbYKrQZ+nab7ppVunXPh9B/tfbdu3UJWodvVY3cquYbM4Ndx5ZVX2pC3X5cNN5999tm+Lq3wG2yj11CDBg3sPPXq1bNBUt8CZkCDrU4A1eVySffu3eXOO+8MObdr1671Xyzi8MSJEyVcQDriAn4Tinv/jj/+ePnwww8lKSnJblUD0s2aNZNevXr57UXuoB5vx44dJTk52XaEq1as14gz3X8FGngPbnrtxsYe+dVbo0YN+zOvwWn/1rBhQ/9RhhFAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQKCCChxJE1XQA+SwECiLAlrdc8OGDSG7ppV4g4OjGjYcNWqUDVaGLBBFR3BgVxe55JJLQoK8GiZNT0+34cYvv/wyZM1aCdY/TOvMoH2vvvpqSLj0q6++yjPIqyFgJ8TrrEsr7YYL8moVU/+mFVL79Okjn3zyiX+3rbwb0HF4JFx1Xf+QqQYrL7roIuvsv/xnn30mV1xxhX/XUQ/Xr18/7DoOHToUVZBXq78OHz48YB3q8Oyzz/r6tPpycLv00kt9XU2aNJHbbrvNNx5p4MQTTwyZpNdIfu1f//pXoUO8uu7i3j89difE6xyLBpe1AnFwJVz9WdUgb2FauOUeeOAByczMtJV5NVSvoWkNEuuNhgACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAApVPgCBv5TvnHHEZEAiulursUqQKthow1Eqg/hVjnWXyuk9JSZFwlT214mm4lpOTY7vDhYw1yBup6bS5c+cGTA63Dv8ZtNpwcAu3r1q5t2rVqsGzivZH03bs2CGffvppyKwnnXRSQN8555wTEuQdM2ZMkQd509LSArbrjNSsWdMZzPNeq+pqdV3/sK5ar1y50hcG1RB1cNPjC9e0OrTu048//mgrKe/cudNWItZqxDNnzgy3SL594QLA+S4UYYbi2L9wVZF18y1btgwJ8mrF6cI2DZuHa//+979Fb/ozrddh7969RSsq6885DQEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBCqXAEHeynW+OdoyIqBhyeDWqFEj0Uqz4ZpW7ezSpYvMmjUr3OSIfampqRGn5RUMDhfCbd++fcR1hQsghluH/wri4+P9RyMOa7XccE1NommTJ08OO9uIESMC+vfv3x8wriMaiN2yZYvk5RiyUD4dCxcuDJlDA9dutzukP1LHZZddFhDk1fmmTp1qg7xaMTc4yKvVh+vWrRuwOg3IqoFWiC1oQDxgRWFGwl0PYWbLs6s49y9SkD1cYDzPncxnogbTH3vsMbnnnnvCzqnuGjLXm54HddNqwUOHDg07P50IIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCBQ8QTCJ+Qq3nFyRAiUKYHExMSQ/dHgq1bEjYmJCZmmHZs2bQrbXxydTmVe/3VXqVLFfzRgOCEhIWBcR8KtI2SmEuh4//33w24lUrgyeOZPPvlEhg0bFtxd6PH58+eHLNu0adOQvrw6wlXX1fDu//3f/8lPP/0UsqgGf/3bnj175Nprr5XPPvvMv7vIhgsSSg630eLev3DbLK6+O+64w1aU/s9//iORKnE72162bJncfPPN8ttvv8mjjz5aoHC3sw7uEUAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAoHwJRF8CsnwdF3uLQJkW0Aqs4dqaNWvCdYsGG1evXh12WnF01q9fP2S1K1asCOlzOtLS0pxB3324dfgmltCAhp+/++67o9papCBwYVaq+zNt2rSQRU8++eSQvrw6kpOTZfDgwQGzaOA4MzPTVuYNmGBGzjzzzICu9957L2yIV6s0X3rppXLvvffKI488InfddVfAciU1Utb3r6AOGgTXn+1JkybJ1VdfLS1atMhzFc8++2xIVeU8F2AiAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIlFsBKvKW21PHjpdngYYNG4bd/RdeeEE0xBfctL8kW7j9W7p0acRdWLJkSci0cOsImamYOyZOnHjUW5g1a5b88ccfUtCqucEb9ng8cttttwV32/HzzjsvbH9enVplN7ii7pw5c+Tzzz8PWOzCCy+UGjVqBPRNmTIlYFxHnnnmGbnxxhslNvbIr4Vff/1VnnjiiZB5i7ujrO9fYY5fXQcNGmRvuvy2bdtEr61Ro0ZJuOOdMWOGb97CbI9lEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAoHwIHElslY/9ZS8RqBACiYmJogHL8ePHBxzPyy+/LO3atZPrr79eEhISJCsrSz788EP5z3/+EzBfcY/07t07ZBMaNpw9e7Ycf/zxAdO074svvgjo05Fw6wiZqZg7Ro8eHXYL4cLSzozDhw93Bn33ep7uuOMO33hBB3bt2iValVWr5ga3Ro0aSc+ePYO78x0PrrKrC7z99tuyaNGigGW1wq5/S09PD1vt9YYbbggI8eoy33zzjf+iJTJc1vcvHMLcuXPDddsqvPv27fNNc7vd0qlTJzter1490QC33h544IGQwPTChQt9yzGAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACFVeAIG/FPbccWRkX0LBucJBXd/n222+3tx49esiKFSvEPwhYUoc0cOBAqV69esi2r776alvxtWXLlnZXVq1aJdoX3HRZXUdptpUrV0q4gOWCBQukQ4cOEXdt//798uCDDwZMf/fdd6MK8n799deybt06u2xmZqZs3LhRfvnlF3nrrbcC1uc/8uqrr4oGPAva1FhDumPHjvUtGm47p512mm+6DsTHx4c9txraHTx4sG9ePZb777/fN15SA2V9/zSEH9w0PP3pp5/KGWecYX2d6eqZlpbmjNr7559/Xm666aaAPj2Xwa1x48bBXYwjgAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBABRQgyFsBTyqHVD4ENGB50UUXybhx48Lu8Pz58wP6wwVrA2YowhENU953330hQc7Vq1dL+/btfUHYZcuWhd3qPffcExBoDDtTMXd+/PHHIVto0aKFb99DJh7u0Eq3wUFeDWouX77cHnuk5bT/7rvvzmtyyDStgqvhz8K2P/3pTwFB3uD1aMg6KSkpoDs2NlZOPfVUmTBhQkD/kCFDZMCAAdK9e3eZN2+ezJgxI2B6SY2U9f1r3bp1WAqtsK0/ozVq1JBJkyZJly5d5JZbbgkJgN92220ya9YsOeGEE+y806ZNkzfeeCNknTqdhgACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAhVfoOBlICu+CUeIQIkJjBgxQgYNGpTv9h566CHp169fvvMV5QzDhw+Xvn37hl2lBngjhXh1mb/+9a9hlyvJTq2iG9w0OJ1f69y5szRq1ChktkiB65AZo+y48cYb5Zlnnoly7vCznXLKKTY8Gn6q2KB4uGmRrjkNlT733HOlFuJ19rUs71+rVq0immv17A0bNkh2drY9lMsvv9w5pIB7raJ86623ylVXXRU2xKsh4IsvvjhgGUYQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEECgYgoQ5K2Y55WjKicCWsFz/Pjx8uKLL4pWiw1uGuibOHGiaIXbkm5aGVW3fc4550S96cGDB9tKr7psabbFixeHDRprtd38msvlChuiHD16dH6LRjU9JSVFRo4cKS+88IIkJCREtUykmapUqSKXXHJJ2Ml6bQ0cODDstGuuuSakUmy4GTVoXhqtLO+fVjh+5513omKpXbu2/Prrr7Y6b1QLmJm0ivL3338vpf0zFO3+Mh8CCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggcnQBB3qPzY2kEjlogLi5Ohg0bJsuXL5d169aJhlDnzZsn27Zts/dnnXWW3cbevXtDtqXLOi1c8E/DnAVpweuoVauWfPTRR6Ih1v79+0dclU57++23bShZw4vBLT4+PrhLNIQaTatWrVo0swXM8/XXXweM64ha9O7dO6Q/XIdj7j9t9erVsnLlSl9XtLYa0B4wYIAMHTpUPv/8c1m7dq1ceeWVvvUc7UCkyq1aDTacu27P7XbLY489Js8//7z06NEjZBe0Iu7s2bPDBoE1yOrf/K9Bpz9cnzNN74OvM/9pOlza++e/P4mJif6jdlgD61qR+v777w9bvdn/+Dt27CizZs2Sv//979KhQ4eQdWmHXkt6jYwZM8ZW6I322gq7MjoRQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEECgXAm4MjMzveVqj9lZBCqIwNy5c2X79u0BR6OhytTU1IA+Hdm/f7/UqVMnpH/Dhg1Sr169kP7i6tiyZYusX7/ehox1G7rtRo0aSf369Ytrk6y3BATS09NtSFmrEWvwuGrVqiWw1eg3Udb3z+Px2J9RDShr8FcdI7WMjAxJS0uz3hqK1qBvw4YN81wm0rroRwABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgfIvQJC3/J9DjqCcCjz44IPy+OOPB+x9ly5dZOrUqVKzZk1f/549e+Tmm2+WcePG+fp0QAO0WiWWhgACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAAC5VOAIG/5PG/sdQUQ0Gq6Wv00XDv++ONFQ727du2Sr776Svbt2xcy26uvvirXX399SD8dCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCBQPgQI8paP88ReVlCBv/zlLzJixIgCH92ll14qI0eOlNjY2AIvywIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIFA2BNxlYzfYCwQqp8Dzzz8vr7/+ulSvXj1qgPvvv1/efPNNQrxRizEjAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAmVTgIq8ZfO8sFeVTGDTpk3yxhtvyMKFC+1t9erVAQJ9+/aVwYMHy8UXXyzNmzcPmMYIAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgiUTwGCvOXzvLHXFVwgPT1dMjIypEqVKpKYmFjBj5bDQwABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQKByChDkrZznnaNGAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEChlAXcpb5/NI4AAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggUCkFCPJWytPOQSOAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIlLYAQd7SPgNsHwEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEECgUgoQ5K2Up52DRgABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBAobQGCvKV9Btg+AggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggEClFIitlEddlAftEfFm6s0r3ixzn21uOV4Re282lGPGzajozcybO+ISMf+Lxqh1UIdjzL25iTkjrhiXuPQ+ztzizXD84XnNHQ0BBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAoGIIEOSNdB5N8FYDup50r715083wIRPWPWj69abDGuDNyJ1PMg6PmwCvhnhtkFfvNbxrA7x+92bQP8hrA70m1KvhXQ3y2jCvhnjNTRJMkDdBA73mpvdVzHgVc59ocsA6nGTuq7rEnWSGdX4NBdMQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBMq8AEFeUzHXc9CEdfd5JWevGTb33n3mfr/pO2BCuubeu9/c67CZTwO9ctBlg7xiQrw2tFusp1lL+ZqmZ+pwkFdMeNeV6DU3E96taoarmTBvtdxhe1/djFd3SUyN3Hu3mU8r/tIQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBMqOgCszM/NwUrTs7FRx7YlXQ7smmJuz24R09bbLjOv9HnO/x4R0zb1X702gV4O7klVce1JM69UqvibU6zIBXlcNE+ytaYK8NU213lrmvpbem3CvDtc296aKL+HeYjoPrBYBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBCIQqBCB3m9mWJDuzk7THjX3DzO/U4T1LU3E9o11XfLXWA3ihMbMIsGfDXcawK87jomyFvH3Ceb+7om0JtsbmY8xoR8XfEBSzGCAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIFCMAhUqyOvNNsFdU1E3Z6u5bTO3LSa8a+4920zFXXPv3W0kTbiXZgRMaNdVOzfM665n7lNMmPfwLbaeCfqaSr6uWKQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBIpLoNwHeT0Hc0O72ZvN/SZzM/eezSa4a+69ewybCffSohAwoV1XLRPorW9CvPVFYsy93mIbmJsJ9rqquKJYCbMggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCEQrUC6DvJ4DXtHgbvYGE9zdaG56b25eU3lXMqI9dObLU6CKCfaaSr0xjUygV28NTaDX3MemmqBvVUK9edoxEQEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEIhCoNwEebXyrg3vrjf360xwd62pvGvuvbvMUeZEcaTMUniBGBPqrWOq9TYxgd5mJszb2NzMsA31JhLqLTwsSyKAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAQGUWKNNBXm+2yehu90rWHx7JXmMCvObmMQFe705zygjvls51G3s41NvUBHlbmFtzl8Q1dUtMsktcZhoNAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQCA6gTIZ5PXsN+FdU3k3a5UJ8K4y1XfNzbvVHFBmdAfFXCUkEG9CvammSm9LkdiWJtDb0i1xplqvuypVekvoDLAZBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBAoxwJlJ8jrEcneacK7qz2StcKEd9PMzVTglf3lQDfG7GOcuWmwNc6EWGPNfmt1WtPv0mluc9Nsq3NvBsXMIuaYnXuvVhjWm6lCLNku8WaZGTS4nHW439yV6VbdHK6pzhvbxtxam1Bvc7fE1jEHrcdMQwABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBAIESj1IK/XBFezt5rwrgnuZv1mKvD+Zqrvbjb7qQHW0m4avtVwbpK5r6r3LjvsqmKGE83N3EuC6UswwzqfuYkJ8ro01KshXhPmjSbI69VArwnxqoUGee29CfJ6TZDXm2FuGujNMOOHzPBBc9P7dHM7YMK+B3KHrZeGg0u7GQN3A1Olt62haOeW+LZmuK7bWpT2rrF9BBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAoCwJlFqQ12uCutmbPZJpwrtZy0z1XQ3wbjc0Gmot6aaBXQ3m1tCbCeKae7cOV3eJWwO81cx4VdNfzYzrfObmTjTjJsjrNkFeDe0WZ9NqvV4N8poQr+fQ4ft0c29CvB4T5vWaqsUec/Pu84pnr96b217Tv8fslQn92qq/xbmD4dZtKvG66hmadqY6bwcT6DX3sfUJ9Iajog8BBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBCqnQIkHeW0FXg3wmvBu1mJPboB3l8EvqWqyGtrVirq1TQi3jgnj6n1tE9CtZe5rmfua5t4EeGNMoNdtgru2ym45uDa0aq9nvwlEmwCvx97M+C4zvNvc7zahXmPs2Zl7X6LhXuPtqmMCve1NoLezCfSa+9hUAr3l4JJiFxFAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAoJgFSi7IayrtZm/1SsYyU4F3oQnwmiCvhkuLPcCrwV1TVdddzwRzTYVYd11zSzbD5hajNxPijalpArsJxSxdSqv3moq8OXtMwNeEenNMkNez3dx26L0J9m4zNzMuprJvSZwHG+jtYAK9Xd2S0NEtsXXNyTGVe2kIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAZRQokSCvhkgzfzNVeH/1SPYiE+A1IdJiDY5qxd1kkxFtYEK6qebehHhjUk0lWL3XEG+SlomtjKc7192TbkK9Jsyrweocc/Po/RYT6t18+NxkFKON0ptAdWwXl8T3MBV627olxlRCpiGAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAKVTaBYg7zeQybAu8pU4f3FBHjne8Sz0fDmFAOx5kC16q4J7robisSY+1gN8eq9VuKtzMHd/LhNQV4N9mqoN3uTCfQevum50mBvsVXrjTHnq7EJ9HY31XmPNYHe5qYqchUCvfmdLqYjgAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggEDFESieIK9HJHuzRw4t8EjWzyYcutIEQg8VA1o1EwZtaAK7TUx4t7EJ7eqtUW6FV1dsMWyvEqzSm22y1qaCcvYGE75eb86dvZlQ70ZzDvcXA4CpnhzTxlTnPc4lCd3cEpvqNie1GLbDKhFAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIEyJlDkQV7PAVOF9zePZPxkgqALveLdWcRHbIKf7vqmym4zU821mQnuNnNLnAnwxtQ01VwJgBYttqmenLPHK1kmzJu91pzPtV7xrD1cqTejaDflSjbns5sJ8/Y21XnbunOrKBftJlgbAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggUKYEii7Ia6rwZpkqvBnzPJL5o0c8a8xxmuquRdJMQNdV2+R0m5vgbktza+GSOBPgjanjEldMkWyBleQjYCv17jShXg30rjbB3lWmWu8aU6V3t1nQnPsiaaaKsruFSHxft1Q5NkZiUwhnF4krK0EAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgTIpUCRBXm+GqcKb5pFDMzySNd+EO3cV0bHGmwBvfVOptY0J77Y24d2WpvpuAxPerWICnrRSE/AeMoHejea2yoR6V5hQb5qpvLzZ7E5W0eySq44558e4pEp/U523lVtcCZzvopFlLQgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggUJYEjjrIm7PbKxkLTCXe7z2SYwKdklkEh5doKrM2NeHddia829bcTJgztjbVWYtAtmhXYSrxZmuV3hUmwG3OffZyr3jWmWvgUBFsxoS4Y8z5TzjJLQldTfXlmoR5i0CVVSCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAQBkSKHyQ1+Q1szaZKrw/eiTTVOL1bjRHZfqOqlU14c1mLonp4JL4jubWwi3uagQ4j8q0hBb27DNVmVeb21JTpXeZCfSuNRdD+lFu3Jx6V2NzHfR3SWJvE+au7zYdR7lOFkcAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQTKiEDhgrw5pvDuGo8cnJojWXNMYHP3UR6NVuBtbirvdjahzU5uiTPD7iQSm0epWiqLew6YCr1rTKB3ianSu+hwoPdoK/TWFonr5ZbEk90S38yEeWNK5dDYKAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIFCkAgUO8nozRTJ+M5V4v86R7IVHWXU13gR4m4jEdnVLgrnFtSDAW6RntxRXpoHezFXmttBU6DU3z3qzM1lHsUNJ5jrpbirznhYj8W3c4jLXDg0BBBBAAAEEEEAAgeIQ+OWXX2TkyJHSo0cPGTp0aHFsgnUigAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCBgBQoU5PUe8sqhxSbE+7lHcpabEG9hg5mmqKorRQO8Lkk4xlRZNcFMd3Uq8FbEa9Kzz2uD35m/mECvqdDr3WaO0lPIIzXh3ZiOJsw7yAS/TeVmVwLXTCElWQwBBBBAAAEEEEAgD4Fu3brJ8Bv6yOp1e2T3oXry/PPP5zE3kxBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEECi8QGy0i3rSTSBzgUcOfp4jnjSzVE60SwbNV92EMdu7JP44E8bs7JbYZBPGJI8ZhFRxRjWgnXhsjMQ1c0tGa49kzj0cAt9fiGM01aBzFnvlYKZHvCZErlWc3YlcPIWQZBEEEEAAAQQQQACBCAKjRo2SYzvVkEED2sre/Yfk5ns/lPnz59vqvBEWoRsBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIFCC0RVkddz0FTinWcq8U4xId5VZluFqahqIsPuxiJxGuA1t7jGpqJq1DHiQh8fC5YhAW+2KeL8h0cy5ngkywR6PevNzhUmEG4qOrtbiyQOjpGE7oR5y9ApZlcQQAABBBBAAIFyL9CqVSv57J3rpXGD2vZYPvhkjsxc5JKRI0eW+2PjABBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEyp5AvlFaDfFmzD8c4l1pDsBbiIMwVXhjO7skoa8J8XY0wUtTpZVW+QQ0uB3f0i0xdV2S2cwlGTM9kr3EXFAFrc5rguRaFfrgFDNgQr1VuplQeBWuqcp3RXHECCCAAAIIIIBA0QosWLBAalXz+EK8uvZBAzvLvf97tGg3xNoQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBA4LGBikJGbN1MkY5FHDn5+uBJvQUO8JlvpaiSScJpbql4QI4k9YwjxRuauNFNiargk8bgYSTLXRPypJoTbwBx6QXO45lr0pHlNmDdHDi3xiF6rNAQQQAABBBBAAAEEjkZg2rRp0q9Xq4BV1KyeKE0aVBMN+dIQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBAoaoHIQd4cE+JdbirxfuERzwqzWVP8tEAtzhRLbe+SKueawOagGIlrZjYVU6A1MHNFFjDXQnwLE/A+M8ZcI6ZKcztzsOaaKVDTyry/i71GM9PMiLlmaQgggAACCCCAAAJlR2DhwoXy7rvvlp0dymdP9uzZI/2Oax0y141Xnyi7d+8O6acDAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBoxUIH+Q11U4zV5sQ71c5kvObGSloQLKqSGxPlyRd6JakPm6JqVXQcqtHe1gsX14EYmqb66RfbnXe2GPMdZJUwD0312bOMlOZ11yrmWtNmLegVaMLuDlmRwABBBBAAAEEEIhO4N5775Xnn/63pC36Qt57773oFirluXQ/+/UKDfI2b5Is77//finvHZtHAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEKiIAmGDvNmbPXLwuxzJXmRSkVkFPOzaprBqfxPOPN9UWu0cI64qhHgLKFjpZtdrpEoXE+Y110xcP3O91CwgQaZI9gKvHPreI9lbSfIWUI/ZEUAAAQQQQACBIhfQ0OuBnYvk6iGt5aIz28qEj0bKokWLinw7Rb3CxLiDUqtG6DfLOrZtKKtWrSrqzbE+BBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEJCTIm7PXVDf9yQQi55pA5MGCCbnqicSfbKrwnhUj8c3NqkPWXrD1MXclEogx107Lw9eOuYZcdQt47Okmc/6zqSI9O0c8+wjzFlCP2RFAAAEEEEAAgSIVePjhh+WGy3rJMV2aSYumdWVgn4by8ssvF+k2inplY8aMCVuNV7dTu2aS5GTuKOpNsj4EEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQCo7ZeU303Y5FHMmd6xLurYDqu+iaIeaoJYp5qqqo2MAleCvEWDJC57TUT18hcQ6eZIPgpJsybUjAU706RzBkeyVhirt+CVpIu2KaYGwEEEEAAAQQQQCCCwNixY6Vru+rSqpn5lt/hdvZpXeX3pbNl8eLFTleZu1+xYoXUrhVajVd3dPxn82Tv7m0yZMgQ0eOjIYAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggUFQCsf4ryvrDhCBNENK73r83/2EN8SaYEG9i/xiJqVM5ErxTp06V119/XS6++GK54IILIiLpnxCePn16yPRq1apJgwYNpGvXrpKamhoyvSQ6Zs+eLfPmzbObat++vQwcOLBAm92wYYN88skndpk//elPkpycHNXyHo9Hxo0bJ5MnT5bVq1dLkyZN5PTTT5crr7xSYmNjJbaeSxJPMiV6TR48c6q5HrdEtVo7k+cPkUPmGo5JdUl8C7MCGgIIIIAAAggggECJCqSlpUnrFkdCvLrxOrWqypBBHWXHjrJd1bZDm4YhVh9P+UXSVqyWmy/vIq74qvLxh29Kly5dpFOnTiHz0oEAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggEBBBVyZmZleXShnt1cOTMmRzK89IgeiX43LfEYff5qpojrAhHhrV44QrwZRW7VqJRpk1Zaenm4DqOHU3njjDbnlllvCTfL1nXfeefZPDderFxh48M1QDAPbt2+Xdu3ayb59++zahw0bJi+++GLUW5o0aZJcd911vuXnz58fVZghIyPDhp+/+OKLkG0df/zx8vnnn4uGnLXl7PRK+nfmmvzWK97t9jINWSZsh1k8YZC5Js8w12TNynFNhnWgEwEEEEAAAQQQKAUB/aLaW08PkbYtA7+sNnPOCpk8I0teeOGFUtir/Dd52WWXyaN/6yHJtXOfizpL9B78P3nriUFSo1qsZHlryLc/bpC0TXXK7HE4+809AggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggED5EMgtWZojkrHUI1lzCxbildomxHvi4Uq8lSTEq6f1xx9/9IV4dfzbb7/VuzxbmzZt5JFHHrG3hx56SC688EKpXr26XUar2p599tmya9euPNdRlBP/+te/+kK4BVmvhpb//Oc/y0UXXVSo5R988EFxQrx33XWXTJs2Tf7+979bC60QfNNNN/l2R6s7J54YI3H9TRi3lq87/4H9IllzvJK53FzP5n8aAggggAACCFQOAa34/68Hh8vYtx+11f8rx1GXwaPM3h0S4tW9bN+6vixdOLMM7nDuLv3www8hId6JX8yXDi1rStsWyRIXFys7du6U887oZo9j6dKlZfZY2DEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgfIjYIO82Vs9kjnPI95NBdjxJJG44zVo6ZbYupWr6umYMWMCoN57772A8XAjHTt2lDvvvNPe7rnnHtF1bNu2Tb755hs7u1a0HTJkiOzfb1KoxdymTJkiY8eOteHZu+++u0BbO+644+S1116zy3700UcFWlYrGD/33HN2Gb1/+OGHpU+fPjbIq+vU9uGHH8qiRYvssP4TW89cYye5Ja6nucbMNRdt86w3Qd5fPJK9tQCVfKNdOfMhUIkFli1bVomPnkNHAIGyLDB+/HhZNPdT6d3JJa0bHLDD2kcrWQE179erVdiNaqVbb84hKau/S/S5eXCb9OUCOffUNr5u89dMbNj3nNPaiQZ/aQgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCBytgNubZarxLvJIzlITeDSVeaNqsSZg2VUDljESWz+3qO/KlStlxIgRttLsueeea0Oau3fvlu+//16GDx8uEydO9K16x44dtk+rs2ZnZ8s777wjN9xwgwwcOFBuvvnmPD8U//333+WNN96Qyy+/XHQ7TzzxhGglV48ntPTqv//9b7udLVu2yKRJk+TGG2+029BqtOvXr7f7o/v4v//9z65L1/ff//5X1q1b59vX4AGtSOuETnW72jQUq+spaHO73XLiiSf6KtTOmjUrqj/Rq8espnPmzAm7ybfeestO10q/wW3v3r0ybNgw2/3qq69KamrgnzwOnj94PC0tTfr37y8LFiyQ8847zzfZ5co/zK3XgrYWLVrI0KFD7bDzzwUXXCA9e/a0o1999ZXTbe/jGpiqzwPNtWaCOWKuvaiauZazF3slY4kJqJtrnIYAAkcnoKErfax85YVH5OOPP7a3o1sjSyOAAAJFK6DP4c4+uan0P76NqfzawA5/NOb1MhsaLdqjLztr0yq1dZOrRdyhtq1T7V9kiDhDKU3Q33PtWoU+L5758wrp27OJ3atqSQm+vevQpkGer1l8MzKAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAPgKx2ZtMNd6FXvHuzGdOv8nuFiJVTJXU+GYmxGuyldOnT5dTTjnFbw6x4dRXXnlFLrroInn55ZelatWqcv7559t5du3aZftSUlJkp/nztBrMddqMGTPkzTfflJdeekn+7//+z+m295MnTxYNfPq3L774wo7efvvtNtTrP+3111+XrVu3SmJiojz11FO+SbqNt99+W7788ku5+OKLRSvFOk3Xp9vXeRo1auR0++4///xzOzxgwADp0aOHDB48WD777DPR0Ow111zjm68gAxpg/tvf/iZPPvmkvPvuu3LfffflubhWC1NTrd6rFXL9mwajtfLvvn37AoK2zjwPPfSQNdH91mN/4YUXnElR3T/zzDM2EB0bG22i9shqNQSs7ZJLLpH4+PgjE8yQBoGvuOIKmTt3rmhYO6CZayy+hVtyTvKKZ2eOeFYGTI044t0ukmVC6tntXBLXODdwHnFmJiCAQJ4CWnVw3YoZcvYpbSS11lp56pWvRCuNt2/fPs/lmIgAAgiUhMCECROkZaMY0XCl03S4V9da9gtY+vyFVjICy5cvlzP71Y+4sf69Wsvn5rXDTTfdFHGe0pigrxn6mX3zb59+vUCO754q9erk/lmIhPhY31/PaNsyVbZsmCZ6vPwu9FdjGAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEECgoALujGUe8aww1XjN/9E0V7IJVfYzId72JhgZI6KVeJ2A7qBBg2zl20WLFvmq1mrgNFLTD8w1xKuh3YULF9oQa9++fe3s9957r+zZs8e36I8//ugL8WpF2alTp8q8efPkscces/M899xz8uyzz/rm9x/QEK9W5128eLENGGtAV4Ouui2tUDtmzBj57bffZNy4cVK9enUb7NUqweHa6NGjbbdWBNZ22WWX2ftRo0bZ+8L+4wRyNeyqAd28mrNtDa1kZGQEzKoBZD02DUlrtV//piFZddJW0ACvs55bb71VwoV4vd78LyDnzyg3a9bMWV3AfdOmTe24VnILaeZaS+horru+bnHVCZkavsPsUs5vXsk0N292+FnoRQCB/AX0iwob1/wk11zcQwb0aSftmydIz841fI/z+a+BORBAAIHiFdDneOef2SNkI9qnz+9oJSegX/zoe1xgINZ/6/WSq9svlfn3lYVhDeTWqxtYSXjp7xulY+u6AbsXd/i7bHoc3pyDon/5g4YAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggMDRCLizl5uQ464oVxEnEtvdJVWOiRF3kimTatr7779vg6NanXbs2LGiYd527drJtddeG9WfXh85cqStvKuVrLRSq1OdV8Oo+oG607RarbZLL73UhlD79+8vXbp0kTvuuEO08q+2u+++W3Jycuyw/z9arVer3LZt21a0+u1rr73mm6zB3AsvvFBatGgh5557rjz44IN22s8//+ybx5sfJXQAAEAASURBVBnYtGmTTJkyxY7qvNrOOussez9r1ixZtWqVHS7MP127dvUtphV382rdu3eXDh06WPfvvvsuYNaJEyfaca1mHBNj0q+Hm1bq1RCuNg3zNm7c+PCUkrvTkI22SNtu0iT3zxaHDfKa5dxVzbXX0y2xXc21F2VBYK00nbXcIznb8w8a253jHwQQCBHQP1c/6ISG0rndkSrlQ0w4bsG8H+yXIEIWoAMBBBAoYYFJkyZJv+NahWw1xYQta1T18lgVIhPYoV9oK6qmwVZ1j9TatEgpk+dDv2AY3NJWbpWzTg4MJWtV3vmLVsmzr39jZy9Ku+DtM44AAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggUDkE3DkrTcAxyoyj2xRMTTjOBClTckO8SjRnzhwrdcstt0hSUu6fnXXoevXq5Qu6On3B904Q1ulv3bq1DdXq+IYNG5xumT17th2+6667xOU6sn3tHDp0qK2kq8MrVqzQu4B2zjnnBIx37tzZN37SSSf5hnXAmRauutZHH31k5x08eLAkJ5vSxKZVq1ZNnAq5GmQubNMKuk5LT093BiPeX3/99Xbaxx9/7JtHw7pOxWANPPu3119/XebPny8auNaQb2m0zZs3283WqFEj7Oa1GrI2DXFnZmaGnSc21VTlNdegOzfzG3aegE5zbeekeSVrtSegm5HyKaBhGQ31f/rpp6VyAP7bryzBHbVuVDdHurQ/EuJV/JS6NWTQSS19X74olRPCRhFAAAEj4DxO6eNSuHbtn/ryWBUO5nCf/l4d8fITMuGD563l0fx+02U1qJtX0/NUPbF8PC+bOWeF+RJL4PH8snirvDdulsS70qV1s2r22joas7ysmIYAAggggAACCCCAAALlU0BfI+hrLf3LgvqaldcM5fM8stcIIBBZQB/jHn/kQd/jXOQ5mYIAAggggAACCBStgL7G0ucietNhWvkS0NfHet44d+XrvLG3JSfg9m6PcmOJInE9TIiyrduURj2yzMyZM+1Ip06djnT6DR1zzDF+Y4GDGtysU6dOYKcZc8K0Xm9uwnjjxo2+P8Hbpk2bkPm1w9nOggULQqY3bNgwoM8/CBwcPk5ISAiY139kxIgRdlTDxr/++qvv1qpVbgW4l19+WTyewgUT/KvQOiFh/20HD2v1Ym3jx4+XjIwMO6znQkOwPXv2tFWRbaf5RysJa1VibVq9ODY2ynK2domi+0crKGvzD2j7r93p1+rI8fHx/pOODJtrL6G9CZN3MwNVjnTnNeQ1BdayVnvFsz/KxHpeK2NaqQlMnjxZXn/1KfEeWCxzZ02Qpx77h/z+++8ltj/B29d9Kcntl9iBBm1IH+u6dAwM8TqzXHDWMfLhhx86o9wjgAACpSKQ1+OU7pA+Vuk8tFCBZ555RtKWTJX+3RIkpeom2b1pprz55puhM0bZo1/a6tcrtDJy8OKp9WqUyd+hrZun+nZ1xZqtUr1q4HPmL6atlBlzN8jJx9eX809vJVcN6SgNa+86KjPfBhlAAAEEEEAAAQQQQACBCiGg7xfec8899j3M7q0O2vcxdbwyvI9YIU4gB4EAAvkKOO8ntU7dJc7jnH5+QkMAAQRKSkCfV+njDs+vSkqc7SBQdgT0Z1+zIq1SttqbDvM8pOycn/z2RM+V5mz080g9dzfffDOP5fmhMb3SCbglO7pjdrdwSXxnUwm1WmA13Lp169oV7NmzJ+yKdu7cGbZfOxMTTTo4THO7/ZLCZvru3bt9c0UK2jpVXnft2uWbtygHNACSlpZmV/ncc8+JVht2bg899JDt1z/J+9NPPxVqs/4BZMc0rxU1aNDAVjvW4O53331nZ50wYYK9v+666wIWffDBB+34RRddJM2aNZMdO3b4bvv377fTDh48aMPSur7iah07drSr/uOPP8JuYt26dbbfmS/sTKbTXd1ci13Mtdgs8FqMNL9e4zkmyJu1iSBvRKMyPuGzzz6TOTMnSO/OsTJkUDs5rW+qNKu73b4p7vxcFuchhNu+7ou+CV8S2y/OY8tv3XrsZ5x0pIq5//waxKqakF3hDfyPmWEEECh7Avo43Lp5YNVU/73UxypPZvE8P/TfTjTDuq/PPvus6GOr3kqz6faXLfharrqgm5x+Uifp1rGJ9OlWU3ZvXVzofdPjS00JXxk5+Fj1i2bF3fy9o9lWfb9937Jtr/Q9NvCLLE+89pP06FhXTunXTOrXqybdOqTKRWe2tWZ6Xst78/cq7evzaC31WGgIIIAAAggggAAChRfQ51Nl4XVL4Y+g9JbU9wtbpKbb9zCvvriPfR9Tx4/mS5OldzRsGYGyL+A8XpX9PS2ZPfR/bV8cWwx+P8l5nBv77gg+JygOcNaJAAIBAs5jnIbA9HPj7754p9DvZQesmBEEECgXAvo8RH/2NStyWv/muTczzPOQsnn69DHbvznnT3M2+nmknscqnpW8VvZHYhgBIxBYZioSial8GtfJJXHNQ4OTffv2ldWrV8vPP/8sp5xySsAatDrt9OnTA/oKM+JfhXf9+vXSpEmTkNUsXrzY9nXt2jVkWlF0fPDBB77VBAdldcKoUaPs9Pfff1/UpCAtKytLPvroI7vIhRdeGHXF3KuuukqmTJkiGuA99dRTZfTo0XYdF1xwQcDmp06dasfHjRsnegvXdFm9DRgwQL7++utwsxx1X9u2be06nHMVvMIlS5bYrg4dOgRPChmPb+mSzI7mtsaEc3MLEofM49/hWe+VnA1m3vAFnf1nZbgMCvz3v/+VJ+4bIN07N7V7V79eTZFOTWT67DT7i/3RRx8t1r0u7e0X68HlsXJ9crVn5zrpbqwjtasv6SPTpk0T/8fpSPPSjwACCBSHwA8//CD/uOXGPFftzUm3HyYUxWOV88JT788666w8t+s/UZ+zff/tJEmuflB+nrHITlq5cqXcdttt/rOV2LDvd5vfY7z+fr36gq7yqvnwZfDgwQXel2jDua2a1yvwunUBNf/88899HwydeeaZEc9BsHfasnnStmPPiPPrunu1zf2Com5rpanIW79uVR207avpqySlThU577RWkp2TLfHmP23161WVC85IlZvue1aGDx9u+8rqP861q4b6F0a0OdfwX/7yFznv9DbSuNZ63/Wpf8XEmV5Wjyl4v/S86/ElxmdJwwYN7TnXn/ui+NkP3hbjCCCAQFkX0Md9vZW3x/KjcdXj5TH/aARZFoFcgeeff17Wr10qndvWts+Lv/jiC/u65Wh/virDz6g+H806sFpuve5P5rWCef/SNH1frb75gumN935cZK9Lc88U/yJQuQX8X//pa0B9rMrrfYLKoFXQ90LURB+btUX7GB/u/SR9nOvcumQ+q7E7yz8IIFBpBe69917p1aWa9OqYJA1S9D3mbPl6xsdSHt/HrLQnkQNH4CgEyuLzkMrwOregp8z/ebr/5zRjzGePN13WMSDzo6+VH391us29Vab3MAtqyvyVSyCqIK+7kQnxtjEVUJNCg7y9e/eW9957T/75z3/KoEGDpEePHj5BfSBdtCg3qODrLMRAXFycDcfOmjVLvvrqKxk6dGjAWpYvX27DxNrZpUuXgGlFMaJB29dee82uauLEiWE/BLniiitsmHbMmDHy+OOPS1JSUlSb1rDzsGHDbBBOF7j22mujWk5n0jclqlevbsO5Wm1Xq+lqEDg5OTlgHRqMdSoWB0wwI1qdVysJa9P5GjdubIeL459OnTrZ1er1ct9994kT7NVO/VPMTz75pJ3uzGdHIvzjrqrXpEuyG7jEo2HefJrXFHXONhV5PQe94k4MvY7zWZzJpSigb8DVqZbu+4Xuvyt/vn6g3GTeBF+xYoUvkOI/vSiGS3v7RXEMhV2HhuPy+xPpPbo0lfenTJcbbrihsJthucMCxXkdg4xARRaoEpcp9VNyPyCNdJwtm9eVjRs3Rv2hRLj16M+o/k7QLy+0bFpL9u3ZIl9++aV9PqbPgYObM78na7f58HubiX1ulab1MmXQqT1l05bcvzYx+uPPzTrb2ufQwcsX53hev9v0SzNVYmbZYw13XEWxX/VTa9jf3foFMqc5Xs4HSPo813/7Ov3++++XYzskmT+XlGkXmz39Y1m1apX8+c9/dlZj7/X4dNqx7WLlmK7trfemLRtF3yTwf/6p8zmB1twQ8pEg76atR/7ayIGDGTJr7h/SpV2yDfd6cjwB2+vYJkX0OtR9dNYXMEMpjzi2eu2ecWJTWbNsqaxbWcu8Xqkq+pdQdPqq5T9IsysaSu9OLSWl9lq7x68f9iqLxxSO1DnvrVIOSINUfUzYaK+D6dPrySOPPBJuEfoQQACBCimgj4f6pYYqcVn291Nez1cqCoAes/4+W7dmqZzQt5us2Zhlfyf7P5eoKMfKcSBQ3AL687Ro3udyqvkrFMd0rSHN63vko0/nyciRI6N6TqU/i05znke++OKLNiimj0uHsuIivobS5XR5ZzlnPf734dbvP720h/XzkEfvOSPkNaq+Zj2lX9OoHUv7ONg+AmVdQB+r9DW+vkegr/8apNaVXxb+Yfv0dW5lfA6gJnm9FxL82KrzO88ZW5n3zV58cU+ej896TegykT6rufDsY4v9s5qyfl2yfwhUZAF9Dqa30nx81cegQ3tXyAWDLjUh3iOfB3i8Xilv72NW5GuFY0OguATK2vMQfUzUfdL3opzXufp8K/g5V7CHLpffPMHLlKdxNdHnpMGf04watUdqJuwOyfzoa+Urh3SRe81raSfI69jq56vuuFq8x1eeLgD2tUgE8g/ymsxjTCtTkbdp+PDj9ddfL5988ol88803cvzxx8s555wjLVu2FA2AzZ8/X1JSUnxB0aPZ43PPPVc0yHvzzTdLx44dpU+fPnZ1GgDV8Kq2008/XapVq2aHi/Kfb7/91oZkNTSrlW/DtX79+vmOVV/8OvsUbl7t0wpsP/30k3z88cfy6aef2tm0wu4ZZ5wRaZGQfg0LX3bZZTZk7AQYrrzyypD59BsPkZr+GeC7777bhon1TVWnacBYK8Rp9Vydp3v37s6kqO41+Kx/LuzOO++USy65xC5z8skn2wCNBjR0m2+//bbUrFlT0tPT5YEHHrDzqPGQIUOi2kZ8C7dktvSIR7MG+WV5c0Q8Jsibs90EeZuEv5aj2igzlbjAQw89JP+7KzQgpTuiL9RO6Zv7Jvj//ve/Ytm30t5+sRxUlCvV0FtuECbyAi2bajju6L+wEXkLFX/KSy+9JJ6sPbJhwwbJyI63vwdK882Qii/OEeYloC+ONOyh99r0xWSrVq1K9Q26/Pa3YWqtgFlW/bFdvvlhqe1r2Sy38mu/41rb517+wdGAhfIZUQ8Nke7YkiZnnlBPGqbkSFJigkydNUMmjVtjl/b/uXXm79G+ijRvlCh/e2WUjHlxiKTWrSmxrkw5pkszu4x5j1HeeOdV61wUL9z9z1teh6RfPLv71vC/W3U59dJ5/I8pr/X5T2vZNP9quzrPevM7xmn+Xs2Sc0O6P04bZ6/FW2+91fpocODArt/kwjPNG7WHz/m8hWvl3QmfyUsvuUTn06ZvErxnTG+4pJ0c2zXX2b6xa77rp4FqPY/ahl11ouzb+rNsid0gq9Zus9d8y6Yn22nOPy2a1pa1G3bIoUOZ8t1Pf8jDd/aWnBzzpNJUqnVaUpXcyrz6pyR1H4vr+YizvYLeq8cfK36Up556R84y126b1ARpUK2m/L56mxxzTFN7/eVk7rLXQ81quS8Nneuzw+zc6/7DDz8s6GZLfP7A836Mb/v17TXya7EG030bYwABBBAoAwLO46E+B9HXcg1Tk0V/X+rvVW2F+d1eFIelv+v1pu+FaSvI80vn+Y3eh9t/55jPHthKktvkSHX3KqlXJds8H/imyJ5jFYUB60CgPAjoz9Okca9I/x41pFPrJNm13fxlvPopctvQgbZCjr5/4TzvDj4e/RnV15L6IWbLZrlfkHtp5V77c7hgzmfSoZUG7WqaL9nttI9J+njgv6783huJtH7n9ULw/pTGuPrVStrve70XvA8Xa8jtvgnm8XCodQmezjgCCEQvoO/Z//nqznLOad18C9WqWVXSDy4QnabvsRTF+yy+lZfxAef5ULj3QjTgpu+F6PsVjonOr88PmyXvP/ycMUP279xi30/RQw33nEv7i+qzEuf5nf7e0OeF2iJt007kHwQQKDUB/+dgCbEZkrb8F/teamk8B3Meg/xDvAqj72Xq+5hl8b3ZUjtxbBiBCijgPAaEO7SSyIz4b1efS33/7adSM3GfdG+T6HudO3Lk3oDnXMHL6HOfhNhMadSokQmo1izQ+2P+6yqrw4HPSQM/p3nEfEb1+uPhc2D6OL5z22j73qH+3nFs9fNVd8wu87z1V/ueov97CMEGupzzHLM8Pa909tl5XlzZXscEn0fGcwXyD/JWF4k1Id6YWkc+sPbH02q5WmFVQ6haLdcJpeo8t99+u6Smpvo+MPdfrqDDd9xxhyxZskRGjx4tGsJo0aKF1KpVy4aFdV1aTVanFUd799137Wovv/xyiY/P/bA+eDsxMTFyzTXXyBNPPGH3IzjIq2HnSMvqurSa5dNPPx282nzHtRKwhmZXr15tq/Oedtpp+S4TzQwawnaqEI8YMUJeeeWVaBaz82RnZ/sqo91zzz2+IG9sbKy8/PLLovuo4eJ69erZF+czZ860QWldWMO/0VYzjqltrktzbWZVMymYffnvnmebSM4OE0pvkv+8zFF2BLZvWW2COFdE3KGLzjlWbv3HdxGnH80E/VAhv+0f262ZPPnGnKPZTJldVo//xB55B7I0TKXfhqIVTkAfW+f/PFlO7t1E6rQ0tQM3b5OffhhvvxyjX1xx3sgs3NpZCoGCCejP/N///nfp3CpOGtY4ZBeuE+8y1+SvtmqnfmGqrDX94liLwx8SrzYB3jfeny6DTmwuB/bukBZNasnc+ctkzbo90rBBXdm6/wfRL6AVpqmL/lWGkU8MlnNPbetbRcc2yTJl6u/yxoin7ZeVnJ9Znb9u1e0mdHqqLE/bJAPNl05O6NlIdu9Nl7QVaVK1apKthqpB0+mz0+Stt94SrdxU2KbPwfX8rVuzxK4iM6eK/YJbpHM2ffp0eemff4u4uX69WpuA7ISI0yNN0H3odWadSJN9/Q3r15Jp83ODPNrp7+UEs+cuWCMfTpprbU488UTZumG+DZs6IV5dTv285gOph557yz6nVP85c+ZIvGunL8Sr8zlNnzP8a8C/5LLze0jTunul6Znt7aRmqTky9qMMyTykVXhzg+Gr126Xto3ryd596bJ/f4akJFeR47qmmiCvR7KyPZKRkSEJCQlSJSFWDhxIF133oCveyDPIqz7OudIN6/nRfXauG7szRfiPbuv90SOkWf1sadcsRv5ybU8T6Kouu/ekS2KCV0yuXKbPmCm3XdNNkuIOyLo/9kmVKlVMUDlOksw1qsf09lUv2muruPaxqA537NixMuiElJDz7lwjI42D/pnQsn4cReXBehBAoPIKPPzww3LT5R3kvDOOfBlbHwv192ppPRY6zzEHDWguuzdtsAE/fX6pBQHye82jr5f0+U0L8yWgDRvWy6rff5XW7Y+xv0P1LOu69Xed/g4YbIK8/i07a599jqHPsXj895dhGIHIAvoYctVZSdKtfYrEu9PFE5slu3ZslITEWnLF+V0Cnnf7r8X5Oa9uviSnr5HaNqpqJ0+Y8K2s+m26DLuitwzo09G3iD4mvTtxsrxiqmbq40B+743ogs5r1S4tq0ij+gftun6dt6BM/ZzraxF9nzBS09cyJ/dpYgugOGG6SPOW5X4933pzWvDrTmd6cL8zP/cIHK2AvtatUWVfQIhX3w/auGm7XXX1uC3ywrP/k/adjrOPMUe7vfKwfF7vhWjYefpP42wRCX3scd4ruP6iNtKz25GAhT5n/OTLX0V/F4R7/aw/28Gfleh7cd/OWGaJdHjj5t0yb/F8+1dVIz3/0vXoY3qLpslSNW6v/LTh19zlzWec+juBhgACZUfA+XnVzwtyn4PVkQ2b18iy3StK/DmY89ivj1Xhmr6PebP5wtTKlUN5/RcOiD4EKoBA8POQ4EPSx4Hiyoz4b8t5LnVG/3pyXPf25jOX3M+U9HXuts2rwn7ep8vo5/8Na5jPK83nYyJrxB1bzbyn9U2Z/fzV/5ijHY70Oc0e89mofk7aKMVtijwesJ+PBq/zyot6298tce5DEmybmpz7HsJX5jOe4NeZ+rtK31PIOrRT4mMOmc9fq9r3HHW+4HmDt1na43pdfP/tJBnYv4N5z3S2fV68bmVj85dI+5T5fS9tu4q+/XyDvO6GLolt6BYx/0dqtWvXlsmTJ8uePXtEQ5lazbVr167StGlTefTRR0MWc/lVsQqZaDo08KlNw7FO02X0B7B58+Z2Wxo01aaBXg2G3nvvvaL7Ea75r0enO+sPN2/wtAMHDohThcqpLBtuOe3T8K4GeTWkunPnTqlTp4594A03v1aebdy4sZxwwgmiYVynwnC4efPq6927tzXQIK+GU/IKC4dbj/6ZIW3Bx92pUycbjl62bJmcffbZ4Ra1fXoc+/btC1he1zVs2DAbBL722msDltUQtoa9b7rpJvvGgX4rQ5tWbn7uuefk/PPPD5g/zxGz67GN3OKu7xXPPm+es+pE7w4z367858t3RcxQYgJff/219OsV+GFc8Mb1yZFWMy2OpgGx/LbfvEndYtu+c0z6Z8O1qYdWPNdWVKF9u7II/+jx3zfshghTj3R7sw/YP23u7NuRKQzlJaDnc96Pk8yHYZ3NE/0Wvlnn/LpaPjgcXtNvF9IQKAoB53Ekr59TfRO9ZsJmueis08wHo7kvPHXb9c01Oe37j0wRUlexP/ZEs5/+HlrJumF9k0Y07aFnJkvtah5p3qCNeHPqSdrqneYbPBnmhVu2zJm/QmKTsv0XjXpYf1bHjx9vPnBtGhDi1RXUr1fTfCDdXOYu+sm+ONefWZ1/15bF8q//XmZfwF83/C35z+19TOAzzs6/Y5cJTK5bL+3atbP7cPE5PeXMK9/IM8irLrpefUGqzfkdoPfaP8ucnzbNqknHZhl2+oZNW2xfuHOm62rbPPeDdTtzmH/0d2thHtv1fIjkH+TVTebOm/u7zd/L2Z2e3ZrbyrtPvDrd2Pwg/x5+vPmAqbmdrH/NQZt++atunWrSrGEV+wL/uuuusx4675p1uR/gTZ2x3Hw4lFsRTJfp0q6OCVi38725on16vHrNb9q0zn7RTNe7cfMeqVWjgTROrSafLd0mPbukSFysW2LcLvOz4DVVeg9KTGyMJJrKzDrcpkkTiXMfjPj7UM+Tfos4KXaX1EvMDcrreXvrrQOi++2cU90f/1bQnwn/Zd9//305vV9deeXtafYa1BCvtlo1k6R18xQZ/8V8Sa4ZI53b1DQ/KjulZu0aZqqxdcXIxvXbpFHjZnLlRcf7rm27cDH9o8ep17fe6/M6/QDQMXHuI21al9HKb+f949qws+h14wTm+b0alohOBBCoAAL6WKi/a9J3p0nbpt1l+/ZtsmXHQZn9yx++34NtmkiJPaYrqfO803mO2burKY/ftb39navPLx978Qvz+3ujfQ7kzOt/KvRL5fp66aTejc0y+6V1g1rmQ+OV5jnOSvtl9htvvNGG4WK9201wOfRL7Rpmnj5bf9e+ZavH+a+bYQQqsoA+HmjTxwT92dIglfMzltc0nT/JvUkGDThTcsyX5bzm/X13jHnzNTvDPk9u0LCJ/Xlcv359QDhClxs1apTUcKfJuQNbmOfwySb4m2M+PKshe/cfkpvObmYCd7nPfx13fX6mX8j77/Oj7Hvnwe+N6HP5bTv2+d4b0eeJ4V6rajD2mde+LjM/57qf15yb+2VB51iD74/r3lzGfF74L5kGr6+kx/Wx+Y/VS8zrz9zXlHquVuqXLNr1sLui14N+8KqvjfQLG/7Xn/9wSe8326tYAv81X9L59/Ajf9ly5JgZsnBRmi2UoEd6Rr8+8tnUheZ5xCYZYT7/0ucM5bUFP27rcYR7jaw/e/peSKR23qDu9mdSP5+bPXu2eQ9DfO+x+C+T+/wp9wvnwa+f/T8r+W7mclm9drPMmGMCK9t2yvHdUyXWmylV4w9K7arpvvdogvdVj8d5btjRvI+l4ZeNm3fZXXhv4qRyf778LRlGoCIIOD+v/p8X9OyW+/hR0s/B9LFL30eP1Jz3s4Ofq0aan34EECj7As7zIH09q8918stsOJkRXc55DVwcR+k8l/L/Er1ux/lM65b7J5rPOa737YPuu34WNKBnLfPcJ/d1k7NfOeZL6O+984r9qwm6z84x6zLOMQQ/n9JlnfmceZz1FfS+qNbjbDfS5zRzTMi5Z5cGklz7/9n7DsA6qivt89R7l6zem7sl914wxQ7gAKFDCBBCGsmfbHb/kCWFlGWTsC0hIY2WYHoNoRiwwU2We2/qvfden/7vO6N5HslPsvEC4Sfv2u/N08yde++cueWU75zrO8Y+at7HI+f4H6/6kTz637eNCVDAa6YO4XELrXiedKI+YqBtv+ROj5I46A67ezuwu2chaN7+sdi12Y4LSWw73/3FSyIkIbxdEtabfHHXx2aTv5B2u+75eChgIGYnqcs9GoDaKOfReHnbqVOn9BMcHCyrV6+W9evXjymNExnTjBkzHOeptBkYMLbNdZy0/OBWvs4SQapkGvlpbW2F0bxPYmJinGXVc2TWnKWIiIgJ61+yZMmYa0TsT9ZWa/m5ubln5SW49kKjv1nLnug3ARqnT5+e6PI5z3/jG98QfsYnRuM6dOiQPg+jjU2UmpsR4tZJeuihh+TBBx80onqNu37ppZdqnyFIuAbbKjNqMyMqn28kXmtxHlNs4jZFxF5oPev890gX8rUByDuM62cw4s4zu85+IiiQn5+vC+65GjMy1KUMy/+WWRlfD+cQRiWcLBH481HVz3qp9CbwZ/XSLGms2CW15fu1OZs3b1bA/If9zNZn5fNbwXzWa9bfyfCer6ysdDCU1muu384pwPe6873n5aYNY0G8zE1Qb2x0qBiM/u0uujonoevseVKA0fUpiHnYeoVj9Q/lPdqnOHesXbvWUQr7ZHPtUfnhz248a9yzT46MlMr9MJQ4ExgdhZzHj4mEwvNtJ6twVsb7eaelrbVFVi/IlHe2F0t1faf4+bhJUlwg2m6X0qq282id8yw0EDH9892LnGagcuDiZUnyu2dfVkAm8//wG5cpHWnU9Pe2y/zZsY57U5Mi5eipOnidJijvw3mW74fP5WxON9cBH7cWCYVBhKm6aAuAqs3CtYDnV8wNkQU5ZxwCmGfPwVLZhnmGvKL1XW/dulXm5yQzy6RpFdYd5nXWpklv/IAXrfQafytpExPpAV63SqZnXikVFeXwzBqSXsgAfj6e8vrhBjlxul6iwz3ldNEB+cPDLWLvK5Oyinh54516SUsKk9aWVgVyl432gRuuyJSQgGHwoiclIiISHwPkW4p3FR7iI5VVlZKVmSX8e2ZWBMC83uhPXZIcR5CrkdzdsSuEHWDe3j7wup5y6mSzePo0Kc/gbD005/zseLssyJ3qGGN8R95urfLkEw+PMXAzP/vDyFCHrq+sdWjEV9+j9V2ONsfpgWW42+vR/syz+iBvIJi3uq4TxrYYgHpDAVB2g1OkAYrn9ZGRYamuKpfL106T7/x0E858tI4lP/jBD2Tt0gRpBO9hB1/3yov5alxkW9iH2Q8n6ovsp0mxE8srLOO6K+fL13/4Hn+6kosCLgq4KPCpo4DJKzz93N/k37+zVPL2nJT2bpHmtn4J8LWJn/eAlFW1y9CwTZ5/4ynlV6xzKtcc80PimNd4dHbe2VrEfOb6NZ7vtPKY5I0ee2anOtxEhvlKfdUe4RrA6Pss16ybZe3Z+YrcDHnJyuPMR/u4fm589RVdOwnS/eE3nPNofJZvfeliWX/rIy4gL4nhSp8KCnCsmePE2QNRriLI0qpDKi+Kd8iBE11jQAby5ctnxUhndx/4bYCxfD1kcGAQfKHobg4Eqc7ImqIyCIFgTByrvM97pFq+/8NLJCzUB/r6Aenr75a3NheJDyL6XrIyA/x4KeSfHpV/KLvRaYt8fUlpmWx+4zFZuQA7qDS1Yn6o0fPVAHXFQS/S1tYD+e4pSU/0cyqrUl7gOP+k6E+488lDP/gnZ6/GcY4BAbZvf9Xx9/9PP9i/ODevWhAnC2bDaISUGDUk1bUFkGnyZUqEL5xr+2VwcFje2XJc6hta5ZZrl0pnfag0tAxIOZxZ34Wxif3NlVwUuFAKcB70xfa6ZlAEzikHjxSAZ8hGv4xzFNvbC2OQV6y8/M4rKlNa+x3LYJpsPnUU9Hf4YfJVrPrU8b3YIQjbNVcXwi4A9C0SdUHkm0yejHOxlSaaadwX555fPExQye1SdPqgfO+r5KoQCw682Xs7z9gX6Qh91boczKtPncU/qa0A4AjS/LlX88XDDVHbW9rkC1dPlRnZ4dCpcFvpTtm8q0L6h8/WdbA+yu9W3pDnTPsD1xuTxzOfjdddyUUBFwX+PhTg3DJ+vJot+XvwYGzPHx641GyC0yP12ZwjTV7VaSbXSRcFXBT4RFPA5INM24hp16yvr5d48CHnSsRs0EbDxHnDTOT7zI957kKObJ+VlxpfBufHlQvj1Nn0xz/+sV42bGALHPyr9Z7PXpYjJeWGcyp1Y8SE8Jkbq8j7jcWEsG5+TNqwnA9qN+I9pMuHUQ7LsiaWa7XTWPnM98FvXrsuBfYqPymuMJy4rPfyd2FJPXQOYXLJiqzxl/Rv8v/bdxc5aMv6SNtLF4zIqmvmImBPgOZr6+iTRTkxUlQ5eJbtzWnBf6eTbPsXr80Q9gEzneGLS+WJcXZDM4/r+I9BAY9JHxNO924RMFSHTAzkZTRWM1Ltr3/9a7n22mslJCREQaAvvPCCvP7661rFqlWrJq3qg16cKPruBy3HlX9iCtBoPhmId+I7jSu6Ne8EmVjunDlz9DNBlvM67R4KIG84+qcbpHz7OW5BID57Jz59I+LmP3GfPkcprssfIwUYaXrpTANgM1m1SQnhGonnQpVvrIeJTIuZWBbPX3vn5EBe5mf9zoA7ZlkXeqTAuWPLc4g8NCxxoa2IkpktVbUGc/PsK7vkRz+qkfvvv1+jcl9oHR/GffRuciXnFGAfGt+vGEl+165diH5YC6P0HKc3klFbsSAWTNoT+o6dZnKddFHgHBR45JFHZPf2lyU13hdOEaESH+kp9RUl4jPUC+FlkxoyLrroIi2FAsN9X7/UoTwfXzQBFF62N1URxvnRWb8ef4/5N8fBli1b9B63kR4VQh+p7FWhOTk5WcrKys7ZTtbprIza2lrJSfeTX/zmLVkxL0by9lciAku8ZKUEA6A4aliMDZC0xCB5a2ertt98ZrN9kx3Zdo7XlQsTxhiErPf4ItLurKkxMj2tAfPyj0CnZgfgZOfeItw31umM+X293TSKq+nEdPM1C52uY9Z1YNHcbCgqQrVqrgXxkYOy/qb/lD//6iZHfdZ28Z3ZR0pUkLUaQGh4SY4/99q6MDdFnt20XcE+1nLP9TspPnxMlvIqw+mLQruZzLWMz2ell3l9/DE9KVgKCk4DTIAovKBdADCbuw9WAhBQKTMyw2HU8pMZ6Wny7OulAP4GyN79J2VaGvp8FHAAdm95fxeiEtZ3SCKA3ewfvj7uABd0SEvToDQ1N+kuItW1bRD0g+UogMFvbu6FMbpNQgHiZSqv7pAluVOkp28I5Y3oce+RBqms7RJwlQBHdcse/F1U2iAcd9yVhHO9mYzxNU8W5aaap/TId8TPf/zubcd8T5oQ2Jua4CuJ0d7gAYxbqhEteMeWFikvL5c1a9aMKX9MoaN/sN/GAgS9+2CJXPuZqWdl2bq7XHYfqpGbrsyQsGAfae/sl+HhIeyIYoiHMVHB0tPbCKUQnhEfjgXrM51VoJMTvIdp/Hwx/m+O7e7mgxLsEyBvnyyUFQsT0a5paItdygE8e/u1P4ndLVjWXX6dOBu/BEx89rKZ+i5ZH8eVn68ffzoS11WN9HsBz+EoxPXDRYELpMD4scA17YOOpwus2nXbPwAFTF6huuykpMJviDsA7Dtar+tdfJQnFODhOrcnxfhAluzUPFYZg+tWWfExrDs+UgdDRzLW8R1b9gGgUSDzcrLgSBM25jxJyrXozjvvdFCXfZw8UDocVprhEBMfGyrlRSWyf3+pPP98r3z79qkSGuyFOb1Z/u1/3pBMRHEM8bfLjDREvo/JlBdePybvbcI6t2OHQ741106uk+OTweOM6Hp5Lj6C8787os1fyDo2vl7X3y4K/L0owHFOmYm8TEVFJXjNBHXqI09o5Y1M+W/5/NhxOqQO+cWDG2VqZjyi7abjWpRFv9Qhu3fuxRiuUbnntssvlrb2LkTJ8YGBzQuP7AW+mTubeItNuqSirlneeWuH0CBpzj86DgEAjosOVBJR3mF65JnX5PtfXyBuNrvKo1WYH2ohGuTvOyFpCcg7MgyAbqBEBvXJ0GCf5O85JtlpEdhtzl2yksD4S59Mh6x34EiHrFk6bUJZleM8McZb+WkaPs30ca+3nGc435wrmfOSNd94XoHXPu72W9vj7DffN/ULN26YPkau4fNsBXjbNnBIkiOxtezcOYiS/J5kJQfIHZ+bKgthQG0FIHvXwTqJ8g+WV9/ZpbswWtcRZ/W5zrkoMBEFGBV2QW6y4zL1Qd//+vyzdDbUg/kGBMmNV06XBx76kzoAWedSAiSsuinrfOoo/AP++DDGssmb5eXtBBDCX6anYicgON5OWxAqPYMD6oy8ez/B84UOvR7lfytNnDXbOle6DWMHHozdJ57Lk6qaRvHGTlZmqm9oUN0TbR3j+Sf+TVsNaX77Ndny6HOHoEtcIItG9W8sw8fbXRZ0o51R8fLalnKHroPXOI+UF+6Sf/6ac/2jyeORD7TqsXivK7ko4KLAGQp8GHPNmdIm/nUuewHnkY/LhsVnrq0qwNx1/cQNxpXrrpwn9/zo/UnzuC66KOCiwCeXAuQV3t/8N/GURodtxLRr7i2tksTQQNgs4CA6TvdvfSJiNshPMXEn+eR4I3hJAnZUpI2BQP/zsa9Yy7T+Ji9q8lLW89bfnIu+9q+vgpe6XW0j59JdmfndhuoUE8JnXoYdrUw7mokJcRvpntRuNJmMRdqSF6Ztprr8mAT7go5ePRIeHiH+sKe0tPc77E+TlWN9zvG/uUPkTVcvVP3fE8/mSSrk/ZdeP6TZdh8ok+/cMR0OvO1w8u1VW04E6rYm2rIyk0PG2E6t1/nbpBVpy3XKc7hCvnbr5WOy0a7XCjBveoKXBHk1jOFHx2T8O/7B98F+cdV65+sa+WLuMmnV4f4dm+uq+u9AAcNSO1HF0Jm5AZ9lo95ugjR//ny59dZb5S9/+Yvcc889+hmf9be//e2kkXPH53f97aLA+VLABnwF+6j44HNuXamMdI+IHfncJt9R+nyrd+X7iClAhdHSO1edsxZGzTW9q86Z2ZKBwt97772nhstkMHY2MEDliHDItHWLv4KqfnXfPMsdzn/Gx4aoYuvD9PIkqGX75udkaU6gLJ6b5qjYBHHx+MvfbtIFnEbTjyIlxZ/f9uism7T8MJ9//POwfH6YyGgS/GcmMtyftMT3x75ls3fDz6Bbwd7sW+WFifJodZ8aqb/31dxJm339hvnK6IvcP2k+10UXBZxR4NFHH5WqovfkBoDhrHOICSTkdi0EC9Jph2OqvfGkxEUulmaAGpl8xwHhCLwgsO8PD/+HZGVlS0q8j2O+NPs1d2YYPx45Fih4u9sbxAfjgcCO+HA3qSlFlOC+LghaT8rMDJ9ztjMhIVGqKk7CcF0h9mE47yxMk9374Hlq8xevQXdxt/XLtj2VctvV2XLNZeljSBIfbXhh2u2ntP3mM5/PPMJIIUwL55yJqDum8NE/GN00MyVE7nvwGfm/91zqyGIK2o4Toz/CQvyw5XWzhIUZoNdFc1MBmt0mX/jCFxxZOefxHd10RdKYd8gMXANKyhuhLE2QhCkwFztRXpjvrLrilO5mwffDxHfy3S+f8fDUkxN8mYYbXmZ7zmf+Ndcp1r9tV4FUwiiUFBcMA/6wVFS3a00ExooEycaNG4Vz3blSeLC7bs0aGxUJEC6AQCjndGmzbFibJnNnRAFcMIioy4w0aAf41kvPz5kWiai6HfLs307LLRuyZNveasmZFoFIvogsNmRXUJPd3odoMfW6ywfbwLIJsn757eNjmlRd14386LeIzOvr7SEb/3paCkrbZBU8q+32EdTpge2G6wFA6JHNb7+q4+q2225zlOEx0jjG2O24MPrDnO8ffTRJtr//BrZYCpbF89IcwG0z/679xfL0X19Q/oTlT/Y++L4+uzJB/vz8Lrn6olzp7e01tkYeLWz3wWoAeWvlVz9YhihrI4jIi00rQD93d7M2cQCbIxH9h2PvfIGHrNvKX/HeregLSVCaTctO0bXxRGGLAlAIeu5pO63A6615x8VDOiQquF8WzkxGROUIKKs6pLCsWbYAYLJ9M+RSzFnmPMN6ONdRefbPn79C+rqaALIekF5fXzlQ3S12mwHm5fpLBV5pWblG/znf5zhDCdcvFwUujAJWfpCyBscCE+WMEQikztbNC6vJddc/KgU4D5JXWD7HTTpbvSU6LFp++fv8MfwQoyJ29w5CeR4BfiZOAbU//+NLynNwrt75/guyHM5Qi2dF4DNV156vfnejeMB4EIS1O8w7RWavToKTt48M9JdAGd8kDzzwgK5BJm9BpXINooTEh6UI14zoCG9d98sj/aWnsw0AOw845BTIw08eFR/PfrnuMzmoJ0jXc767aRkR8vaOKik4eBpgQpvKlc7WTvIWTDxybq8oPSk5M2OVf6XhYaJ009ULXPP/RMRxnf9EU8DkqSqKdktKnA92LQAYH7uSSX87nDNbwRs1yfvvv6/rCR+E4/nGcfIfefNt+QWyZG4cot5GyewZUxw8psm38zhrtaF3yEoJAkAiAPwtFa1GIv/L5IPjwAD4rc5GlQ3y8vLUuXBgYEgdsYzcZ74Pn2yEM1yM7qZBh7lnXjshTW12OGBGITpOvGZ87PnD4ME9pKG5F7ucxMmcqVHgR+H4CH7OTI89f0QyE71U70fj6/jE56NsdKr4JbEN1p2lf/m41luu8yZNx7dx/N/Mx/dLvtSUmZnHmf7o42r/+DaO/5tGUuqxTJ2CzsWj8/Ezr+6VL9+QjTXASx7Z+L7O9d/+4iKd61lOfHQQ+Phh8fHzUtmfMg2f3eTrx9fl+ttFgckoYLUBcPx7AYRKHmd8op6mpqEFfXY2eJF85ZmSMZcmRnuJ+2CzjPS2ye4deyR/pz9kR3+VNVnGhfRLc76mc5QzG8Oqiy7XPn8uWZTyLedytjEhyi43rI+V2ZgX+/oG9fGaO4agr/OUzyJi7oMPb1LwAh2sOI9cvTbqnDwRbSj//puN8t2vLZef/tffxNujXzIS/DEnn3E6rqqjvgbbF8+acpbdgbQfnharNI+EQ7WXp80B4qWep7waUXSQDhyvB+/YCj1igvzidxuV7+Szc91gYItFuc4DW/BezjHVFU865kiec5ZIc36YJtONOLvXdc5Fgf+fKfBx8g3UKS/KvW5SclGnefltj33kwWjIZy1dcMZOOlGjTB5rouuu8y4KfBIoYK5fPH4Ua9hHXf5HRUO2mzquFXODYBsx9FNmXeQPNm9/SOZOT1T90pzZE/MSlA137dsNm1SQfP6qGZIA/ZORRhCYpUIKDr2oOx4waIiV72P9Ju0mey+0RZxrN2fORYkxXqoLPh8bGNvs59kpuVkesmb5mWcz5cuSskb55W9el2vWZUGntv4sudO0G9F24mynePKY1CtUVFbI9h175d6vLpEsRAPw83WHjdULNhW7JMRPlYKydrU/TVSO+T4mOpI2n1t7uWx8cSfsn/VSW1cjDCywHDu67NxbJpmpQWpPGwn1kPqaMmmGjTQiArs6jOr0tu0qlOvWnS3zW+sjTRh4hrpI8pav/fFK62XHb0On0SfL5sXKH557E+/2C3rtfN6xo5Bz/DjfPuOsGJWv4dw2WTLthi6cyGRU+vRemxTIawPuwXYekUvp1bB+/Xohyv7AgQNSXQ1DeU6OEOR78803y+LFiz+9FHQ92d+dAm4BNmFfRZC/cybmGekFAEhs58zryvD3oQCZIyZz8RsZngcl1Jlwy9jhz5HKq1r0d2l5k9R1uilohCeoGEpOTtZr/LKWaf375LE90ttRCgXzsHT5hemW2sP9RpncLpvC4c78Q0JDgVmXaTw0Iw4aRsQWqWnbLklJSWfV7WjEBO2wttPabnqJhfm3wfMoHs8PQ2V1s3qYNbYY26qzXkZL/MXDT6qh03qvtU7rb2d0mKh+3pcQawB5K1C3mUw6mH/zWF555vmt58/3t7Xt49vIMniOzB8Vk6Q73wuBP+a7INBufNR3a5nj2+GsDmse3msyctbz439PVAcN4tvefRbG73rQEKBF0DEhzl/iwvtRRItUlhRLwUkYuqcs0iJN+jqjbRlARyzPNJKPb4PrbxcFJqLAxj//Xh762ZUQUo0IruPzRQOUu23b6wCAwvOxsQlA0Xjp7W7Cx0Dx+fr5Sq9/GCJb+sKI6if//us3YTz2leq6eqko7gBQIw3K99E5uLBG8vYWq3crowZZ55W/PA5wSW4AIjBFqYDGdgwBRDlvTrKO4f6OIsnJnK1elpzrrCk8PFyuvWIejAv3qzE5GQCU6xFZtLKmFeBVbxnJiYXwVw6hvF2CAr0ViHjl2lQZAGDFTNV1XVIF8GVFTSdAmJ0Q0Etl/85ndB5prk6UCqwjrKes+KikpM/SOdw6/hnpk04NNGYPDAwgOpQBIjXLr6gxgKktbd0AqRr0MNcHM08iQKxmIgCVqaWtVw6fqpH6VoMfqazB3FBZo9c4R7ENnPeaao+DNrN1HeD8b10DSPMrAGTt7emUvPzD4u1nAFjMubGgqFrBNNmITPvMxj9KVfkppTnXl8rPREhzKqK5AADc3WsbU67Z/h3YoobtePihX2i7GtFPOP8SfGYm6/xrtpvvcd+RKtm5p0gjuzCCTEFhm2SkhGO9aJDE2CDpwxaXpQDisvwrlq/V52OZzta67fmF8pUb0nSbVoJN+R627ylXUHD0+nTJP1wHAOqIHDlZLweP1cjnr5kquQD32u122XmgSiOAXX1pmvz5pRNy2YoEeBb3oQy7DAK06uaG/g4Q6+GjRfpIza1d+rdJQwKDd+yrQf/pkMgwH4AMPGU/ohwePd0sFy9NkCsuSpEX3yySfmw5HB3BqGXREhvlL3kYW1bj4l03kJcx+rfJx5hzPusizal8ePrpp2W4t1oW3nWjbjfMLYfN60of5O1sq8N42ylTwuyy/2DBhOsh+89XrrlYx+bgwHQpLu+BEbNHgfBVGBfb91bqM0dH+ikQmudEeqW5wxg/FQq2FmyL24/IziMKEiFNzWRdK/nuzXHP3+Sv/KF4sgFsUlpYKKcKqqS/o0ki/eKl7HQl+p0dQItWCURXenfTfvnxtxZqhK4gfy+56/oZEgwwtpvbsDQ2dUhXTz+MfwESEuyNOadGDZUmGJ/12PqLtV+6w2kmwN9HGhq75c0tp+TwyToogcIUnN3c3CW79rujP7bKn//8Z+134/kG63OZz2Kecx1dFLgQCpzFD4bZsHZCaEWq4pxfUwJ+sUEBAy4+70Io/I99z2OPPYZ1o0O25x2S7tYCRK7Mke35zQDL9YMfsstnL0nVddAN0ds8PeEMA96oqLRRGloHpLO7HyC8Bo2m2dtRAueXZMlIjdb8pOqTL+Zjne6UO66bIdngFarr29UZo76xHUAsfxke6BHbcJs8+sf/Ud6P97TUH5fp2YhsMtAOQIcb1kA4b8FQUlndKGuXJWrk97e3HoXBoEp+9cNL9NrGV45hHLRDXgqUYawvvt4iS8GP7sQaSl7l5iuTdO0kL8r04htHhLwN+ar+vl6U3YolHGAWAIMb66s0L0E4Zn7rOjs4aMc29oa8roWNfnHNYuK8b13LeG783zznGqukgit9lBRgv2My5RHycyePbBkdp+Ho3xHgDQ2Zg/Jc3r4i8HrbHWPxrmsTxshVHA+UH555Za9cRpDstCngCatU/tGK8MU8NITRyNnTO6COcZ1dg3KsYKxsZuZvbu3RMtk2rnU//uZsqaltwg4lUepQZTruMX8SxndxZbt0dg1I/5CHPIVx/8075kkGIuycKm7UIrkFe/6hYfmXL82V+TOngPeE80E3negMuZQ8qjtEpqgwDykqKkR7x+66cKKoRfL2HIeD3RTMDf2Sk+Ummelj9S9cb6lPuv32283H+MiOiefhEG/qgEhDArH5jiMCDDmROqSsdBv0R+QZDP3Rudpv9hs+lNl3yKszWflaM5+ZRzOM+zLv42lrPt5bVX4S/WuNbHrvsMp75K2jANw9cLRGamqaIeflQs7tkf1HyuWh+y/CtTNgcJaXlhQpR9GvFi9cpDIODdpWwznzuJKLAueiAPsiP7NT/aSyqhKAjmMyf3a06gl4b21jL+R3YzydLm4GH9MpR4t6wWfYZUp4m1y0aKbOb33gJfp62uSqSxAcBLqc+qY2eevVP4q4eajzD+XF81n32RaOlTf/9pzaGBIAwA337VWdepifm+rTyPtTT7zVPUBuv/OeMePS+rycU3dseV7B7tzRaKgPIORRpwc6HTOVV9fIxpcPA3Dhp8/U2nBC3n79CawDu+Tuz22QQsjf1D2QJ2Ky6pCod6ANhXqdrq5ujY7+X/ddhLYGQacyrLTjPdzxqBp6NDpWPPnkk2rvMHklPuvp4hHVRT396lH53Lp0OFC3S97BWmyF3Cp9cOyIDPOV5tY+8fHpRxT3QnXUZRT3z3/+8/ruFs8Il1OFVdq2nh5jTWHbTN0Hj7RJmPewTWYivc22UB8g9i7JzkiQSjxTRZG/rpG8n7oq5uPHTBPp8c3rrqOLAudLAfZDJus6qSf+l1+T9VGzTs4TVr7Bx8dXQnxsUgJ9WalFP0++h/1/onX9XE3lfXy+XHWaPJsnNHlMlkPelPMK2/ZRJJMupEFYiA8CFfRoJEfWZcp+tF2Y/BXPn6s9ZpnM60ouCnwQCrAfmmOfvznOrIm8w7ny8DrlAE3D0NHnHZTlS3J0HeS58faW8XU4q5f3med55BpJJ2s/8D8cD72tidIIx0kms/xz8Tksh+l8nneyfGa7tLDRL2vd1npIF9rDFuV8Vny9YD8Av8Bk5WfSk8Lk2KlqOAiesYVRRrTyEbsQAGgeZMtr1mXI1ZdN1TJ64RRF2w7LKoRd6rHn35L9hwpUTiSN2Q7SrberUXmZxqZGMe2HtJVa6Ua7z0RB6My5iHPj8PCIPP7446qPumPDFQ4d15nnMWR7tp22vqlpQdC7eek8Z8r9Zt4dsLXlTJ8iudNCsLFNF8o6Y6fhXMhgTjDhyM9/+3uVsaz9xspjDvd76G4V82cbgYvIN7e0NcnhE3WSGF8tGRmZEhflIf/2b/+ma4j5/syjEhNf5jrBv81rPLK/kT9vqG+Qxblx8n5+uSzOmYKdeIIgLwaIt5c7dJdDEhzoJU0tXdAVdElrK220xvvku/vel2fLSdiT7DaDPmad44/kU5kWzJ6iOs0K7J7JVIndyKyprLINbSxXu5AdulQb6JcI3pP8o/TRRmysc+Y7tt5r/c1nZrKOCbPPUA+w/9BptdXtO1yt+SYqzyyH8vXiuddqXn5Z+47jJH6w7c7WWNdaZqXSp/P35EBe6MZsZxzgJ6XANddcI/y4kosCHzcFtI+O1Q1O2IQROC/z40qfTApwUXsDii8/KKfsg4ZbJDitAABAAElEQVQA2NVWC+CGLxT7tXLgWIN099kATAtQo/eIfVAZqr6eFgl075U3oXAjMzY1O1uaOjxVQUShldEgmUaGO2H4C1PGjAAlG4CWmamR2ErBFwbJLimv4BbSNs0bN8WY/H7xm02yeH62Asd4gaAvpqXzE7VuAre4LWhZzVF586+PydSpAJnVDWrdVkaJz2a2IyHa2GaQbRvpTXKAv8oABOa9vI/577kJ23iDady5rwqK8SqNSJIOgwcT2xGDiCZxEYOT1quZ8WXWT2ZiBMAaponqp2KNiUzDUy8B8AUjqZHA9BOoBmYwAQxXZY3BFI0MD0BRcEB+9rNyfTdkxswImHkH6vRWvjMKDtySvK1zQKNQNrUaggOf290nThWDpJG1jU+9tEfbybYyjcxL1GNZERirkQGtr/jw8xLhW6MRBeuaemCcHpTc3Fwt03wWvQlfCuApOjqmDvMa60qEoWnZoul47nz9zXbzHLdTN1NBaasB/Btt9/g6fvazn8k/3zULfeQS8xY9moBKRiQ9fqJAqqvKAUarUQM3DdjcVtKayEBHhnkKgZAUDMbXY83r+u2igJUCHO8JUzwnBPHu2FMoO3cfw9b1Wdg2tUZ8p/gDYOElcVMCdA41yhrU+aelxU3Bprv2AjAYPVU8PGwSE4H5cbhbwbRmvRTKdu4plod/80tZD09WRuhmO8pLjiO6W47syD+FMWoswJzTEmMCMbeVyyXLYiHE+UlXe7XY8A9ThAJxh/Gjq6sNHqDdyOsjV65NFH//AAh9kfphvRRqWSeFWc4nNyPqKo0PTBTWnnu9EAZgm+QfrIchwheCboTccHmGzExqlxmJAIEMtADYAicJ/0E5caBEdmzfKpFTYqAkGNa1guUwmgqjlU6BEbIYXq9/xbaA/JtAQs4PlYgWysToKP265Sx45+EeaW5plnBE2+VcvXgW5nmM56f/eibKa2Sot5RUdkpDCwH+RqKg+/BDv5Sy8jJtw/adB2XZ7HB55/2DEGoN4wafk6BkLJL6jP7ecPaAwLtzfzWcBhiei3N3i87RLa2dALwYZS/KiZbSooNqoOIZf69ueee9/ZqXwFLSkPTXe+NC9TffTwXm/yef3KiFUCGQgPdWUV2of1dCMC4vPiQVJYdVCB/sMwxCb7+3Tx559rA++1J4u5ZVDWG96EAd3Th2om3+KMcPgNhaPEMX6NUu9XVDcvB4oxw6XqPGeV0f0BfYnrx9FfKrf50HAOoQIgGinQDz7sS5fBiKngWgqFIBqFQcd6Af9MkCRI0ZGhqC8D4iew/Xo19ky/Z91QoU/ae7ctDHh2HwcldlQW//MHiLZjlZZKxz7+4AIB20pDGaaQAAXfZXtjMGAF228ZHnTiDqc5qsWZKgUX73H29AndFSVdcJhViPKiMI/Ob24EYf6ZIHv/MFAOYrcX+DlFXjGdB/hocGhCDa2oZORN7qQV5fyTtUpsCsp17coXwH6c1nTcS6UYE+TUVNb0+Hlrtt23Y8h4eY62EF1mTzfbDtVJrIUJvS5MW3ChSMTEBXGejk7oZxcaie2TQ6cT62uX1pUwnmALyX4y36PvmumCIAYG5qHZJtm19BXehDoAWfi85L4QEABuM9UXnRUYeoOTD2vfz6Xrn+sgjx9omQbtB3x95SCfAeBBgegAqU/8o7dVJQ0ixfvH669GLMHC9oUeD17zYegyf4PIDyvTA27bL3SAXAuC3Y1slL12HyD+Ghdn3Gvzz2K9m+65jcsC5cbkSUxecQAezoqXoYX/tk1yFs2RvmBfBZCNqKftc4hGjZYarMicNcRxrxM9JbjKdDrwfbNzg0DJq4a8TibZ5hkpKR41pz9e27vi6UAlz/tsJYv3i2/1n8oFFmmh527i1SPs+qwL7QOl33/eNQgP3rySd+BxmpTNfpe78yX3y8RrAGdYKv64NCPhNz3jBENvJVI1gv6zD3t+PTKV7Y7j4q1EeV3G+8+SL6ZzIAwIOyD+sP13kaGZ577ZDyZ1mpQQDlCkB/7VgrWwCu64PyWBRctzg3WiJCvKWxtV52Qd5LigsAkK4Y0fBiANQKw/zbjvrBk43YEQU0BlGAvdHWToBlUsGTech7ecW4r0KWzY2V8po2BYBQmW+3D0DRHwsZqVKyk7OkGWvntsIOOXQSPEZlnTCKXgCeITnaV7KSY+R4YT0cxiLk8PFyeXt7OeR6P0QUiTI6A2RFrsfkxZiKCyod8qq5llVAxqQcxrmfvxOxtsVjjeMWfBUV5VJZGKs8Ep2+mAgGJo/7Ue5EoxW5vv4hKcCxPV4f8uSTz8uPvjFLurs65efYxpz9ewTjhKDbnfvBr4IPWww+/zQMnPuONsqMtAxpb60BGBcXkHYUd4LXapKC4mr57l3ZqnMI8LNJZ3udw/mxl8CHWuxkgFto+Ht7G2QA8HsG327oQ3buq1X5grqRaMiCSzGui4+/Az3QQWlrjQaP5iuvvXtaurCVOvl+c4xxDvrlH/ZJDHjeowVtyi8z4u9j2Iq9q2dQebxwzElgUWFojVJZzmYbEQ9geAcHe7GzRqHUNfZAjosUf18PdUjr7qhVXpq6P6ZteYWyYEaoXLQsQ/YcKpXMrFjom0LBr4bq9SXY5YLr7S8e/p2C8qhv+6gS9VYJkKUmS0+9tFt1QBGIQHT80GZprKuUtUvCwA8nQ04Z0FspHyVGB0p8fIJY2z8eiEz9lh0yrdYLIB4T1wam0qRkPVY1uuucxTzsY3SqpL41MfaMsynrpTxImjZ3+hr8f0uflst3zsT7+a5+/tCbkCta5e2txSoTbLgYPA3n7rnRkINETkBXl54UDPnZE3JLt95LZ1gmBSLCAYNp6fx0efrV1/S368tFgfOhAPtvKfS57IvU06yZgzGDHVkqqxo0yve23aWQ+WvBu3gqH8L13YZJcgecgF99pwS7D0TKRZenysnTJdCHlcNxIExiw4chowbKvGkB4G88APBtlK4+Nzg+HQQvX4+5yW3CNZ/t4Yc6dgJwfKVcvnhDDuYAOMRrRPFeScTuSVB4YO5OVUdW6uK4q+n3v/99p49MHcL1V0zVcb8RjlU3fCZpTL4d+ypVr9Ta1oXdhiKlFbog6t+H+6EjR4qPtMnOA2Xg2/ZKfJzBDzHieTiAbwQr9/dEgF4GsODdbUfl67fMVCcJ0m4ndCaenmdMxfmQq6nnGsGuQ09C/l62eLrON9Qz7NwzJMvvzpH/fqQa0Xij5BeY5+mwTyfy6dBdcE2gzoU7QlRhd6PcqdPlXQCNf/9wI5yRT0tsUBocAo4AXOQhp0saVK8hbpgzEGhA1znoDnOmBssr2O1IEH1enw38WQTKPXKsQDYNYl4abJMsmAhI73CAGDsDBuTAkSLVIeGlSBn0Gj1NsdLdnKX6QpZh2l2oX/8o1wJtsOvrU0sBq21p43ObdV3lfMN11VzHX3m7CHOLP3Rk0GmTd4r0lT2HGdggUNdOXqM+krti4b/q6yhvbHMPRJCJmWfpo6x1vvzyy3LJ4lDME0nQrxVLfUMbdmzogo2QstQIwPUZuhPDGy//QVLAFzbDRkq9XnZGvMMmaNjAglQOIvBeeSob5gq0gXpY2k2XL56J+bIQc4yf2gfMF2o+41Pbq6W7ZwC2K4BIMGYZ6OBI/tPy2uYSx3P6+rhj7MMGMMqjMEgCaRCL56eMyt/UcVPHSBksgfMZnoEALy8IoszPtvUMBsm8nGx58ZVNkhnXCRmxRgNTsE3kY19+uxDO/9DRo+3USzKxzPfefFTtkfybjmJM7V1D6nTkFxjlsF/oBdeXiwLnoICVD7HiDGjfZ+LYoe6hvPiwjh3TvsR5IikxTvNwrqCMVV6GKLzgZzgGFuUmyqKZXhLlXyPvF54AP+ImG2Fr6W0rkMiIIHlr86Ex93PMnjpdJJve9FEchRbM+jFehvqbxMM7QiICe7CbCXZTGfSR1PhYSYZda8gO7ENvu9rlTxWfH5/z/ruvaPGm7EAezN5p2LnMeqkj6e6s1yBkpIvSoKxY7QZ8Xra3vLwCupUIp7oVlsM5jvMEy+fnxnWJ0ttZB36tFTYbQ5/DnWGmRMCJC3JIS1unnChukd1HdxhyK2hP/oG2rKWYG3nkHEDd2HzYiVpaO3RnGc5fO/fCDoR7Ka8S2NzVc0ieeLRF6RYOumUljOBeH8ybvjIzFU5RI83iPdwKntATwV72qtNWSkoKdGNlyHe23GfYXU8reWgLjQy1wQ6Sr3YaPy8EUGmqdsjoOl+N2ktpg6Mc/ZNvzYfjfZO8vaUe/JzBs5l2uzw813fvnq106GyrAf/np/MwHWADAmDX7bdDbob8OHeK0tHK65iYBcqWD/zqDfCYadgtx7BVJsYYzl8+0LW9vfU0bHaGw+0IZMYtbz6CCbRF7B3J6HfFsv096A5G5+2o6Djl60jrHfnHFVfBexgMhwF+0rDjA3fkmZEJuxaerQ92IPKtnOP58QGv6A5bc6iftwJ6CwsLgLMxIvlt2lYqEXBsjQgzZFwS1NR/EJvCNlB/SB6Y9TP4TN6BWugZqbeADGCDwYfKEk1wdoEjG/tOR12eBPgOw7F0Fuy/frDbQkeCFBeOXZTBpz/91IvS214I/MgUh6MI10TylnyG5Ytn6Jo+2NcKPrVIspPs4ufRKRlow8GjJWjPgAx29ktscIfapJ+EDaqs6JD2bzdGKEKi4yvxK0w506OkCo6JlPtNPQHb//SrR/Q6beh83iW54VJ06Fl9LgYeqkWwHqaCuHjxDZl6Ft+gF11fnwoKnJHOnD0OlPbg31zJRYFPNAVs7Kf4mFPypI2FvnAcVm7S7K6LHy8F6G311t9ekKy0cIAuDGNZkD8X3D7Ze7BUHnvhpDZoCQyH9BYnoxsOI1tIQLB0YnFsbIX3dXWTKvTI4NHAxjK3bnldlekEiMbBqzwufIoQIMWSN40qnz3dolVBZyzwADXBWMC0fW8tlFEjWNSDlAlgFCIunCMAscWAcQzxD1bFlId7G6IhFctWCKtc8Fm3lVGytiM2JENBYmwHn224D9F/AZrduvmYce+ay7Xd93/5Whhp+qCIKgfDajAkafGeKuxOCQ1VAfTyNalgbox6n3p5z1n16kPgy6x/KbajT4wLn7B+swzeR+bxFw9tgmIgHkCqKmWICI4jDeIBdqMHGJkkAsTy9heB+T0OhiJaYoJiZKjbAPPSsMMUgyiFQ15+YH48IDD0SBiMR94AEpnPXd3iKytWrNB3ZW0jo2SyHWai0co0Ci3FFrCsn9EPe/uqIcAPSTMUqI3Iv7W1VljmePArFaaMdmitwyybdQ13+0pUQA3odRDGqdjRZ4GCAQYLMpdkNkd6G/Wd8X2Nr8NQKB+FUeJqs9izjlQq6PbtXjaNjMN3vBTbXCZA4cN+baaRYW/JhYfdqeJj8hcwmeOfxcznOrooMJ4C7IdLF6aPP+34m0ILOrH885eXyFvvHZOjpW4SHzFi9MvRKB/M3Iwosy3t/RBy+rVvPgvBKxdg2Egoz9k/rf21orJPBRLO4QEY75wD2Q4aMs15hIIH5xCCbyswdjmW42MyFNzh5dYHQcRNFXY9iADah/HW2Ngo727FdqwYixvWpiK6ZoTjGfjDUATmK1CRAiKVfuQG3DC3UFn6P48fHp23uuTrn58FMHAqgC5UbMLWCKahvatfwoIiIbAPQGgMlQd+vQWKzUjJmZWuY5yOHzTKGHPQMNrbju2qd6uxnMZzCnBmouBpt4MZQaqqrpKW5lgF8hqOEFQgVOm9nFc4b8lIIICDMD7jPTCRLqTXT3/6E2wRHadt4N93XLVQlQ9vby/TbWkpkJrCMumXt0/UCG7Mi52gVTTa2yJLcsLE3ydQlR2kS/wULymrxHscpXtmSqj84emjMJq0Kd0IwuE15uX74W9z7iU4VhOO8YiEzDry9p9x0hjqLpDBLhi/YHynMnr/YRiOAISNwLxJYKvp0OHj7YY+w2cfhpHXEFxZbmjAEBRNnbL3UAm8odsVmMDn1LUG7WDygfHJExZ9Rt5zRz+pBmhWn1+Fc4CH0B6lK/IuggcuwQBuENhp+E+AMuLBPxlrEYGvVCTzGAL+IRR5CGwiuJUpb3+VPPVqgf7mF5XgrIeJ91BhwOe5+6YZ2kcJLpiRGa5RaP7r0YNoF/s0+jYEeyYqJ3g/lergVlWJUVrZAToxSjWUEWhDYkykRnrOmRYOIf2o3vf0y3vRbhjvo9xVET0y3K/1Xrl6CQDu/gBJDOLvGl1zSdOEmHC0laAG6Fa6CsCv1Om7iAafwrQbRji2m2v03iMNeuT7IWiKAO49ADy/tKlYz+v7GiGfZdCVSgrStgz9kR8+D8sZ7CyQABgPaaSbloyuPFQqviO92o/XLsmR3z11BBGAexVwffOGTIC0COZGnwVQmmnD2hR56C+GUsIOsAnHbCAi8tIAiCEMsEcL+L4TWpcvDHNsb1jAsB7J03AcXHnRPET7LVWa89298k6ptu+Rn6+BB3uY/Ablsw9mJAeBdwLN0T9r0Se0/aAT5xwCTPr7B2Hw9ZI6AIH5vDvyj+kcRrCyK7kocCEU4PxdVnRMvnPnTZPeThDL17771KR5XBddFBhPAc6BZ/gTrDWqdLdD8d0Lh4YelZG5BnINs8OxhWvXs38rAEA2RtdYH6yDBOFx7uda/8qmUyr30KCah7ycj+OjM7Be21UOJqiFTq5Dwx7yMpw+OIeqTIx1avXiQKkCAPAUDCFeiPz70iZDPmQervecU8kj8dPRNQAZFNF30ab380u0jOsvz1TwxwuIbk8wIvmrWMiaTKHBMDYNdsk7AJo881qh3HHtVOXl/HwNQBjz9CJ6aDbm+7cA4n357RKe0vZxDaOuICacn3CN+Lt9d5nk7TbWFXNNZL64CDiG7Tug9w6CNxzo8JfA0BBJj7VLT3+5+Mig8oWVVa2Qf19WxbkLyKvkcn19yBRwprOxD7aiT8fIL3+3S15965j2b+pfRjAeK7DTxQjGKXUz8RiPdU1wFoNz2Ijdhl2nfMCrDgiBWoUlLYbwA3C9L4xz0REYYzZESsSYZZ7mpk45dLTOwb+a/C4fb4lEYyyBJwTPbf729HDDVp4Z4DdPKm9VU9OgY3HzjhKD90b+V98p0raSbzR5R467qQB5cW7gdQL8m+joBzloBbbZVBQx6iQfr8B+tJfOaHRAo1O4p6cbHOv8MAb7VXc34jkodLIuLa+TL1+POQuJz+cscb2NB4D2k5AYHZkOqREhnqq7ZKSpJbnT0TQ7SGM33kk79JEwONOgx8T2lzvhF6jfGuqG7AY90mCbAbjVG/BVcqJEabsDcij1nNq/ADq84cpp6lQ71H1G/9QLp7uh7nbo0prlL88elUtWpilQV+selV/tCH7Q29Mrf3p6nxpneY1zvY83oJLohwTY6bwNvp6yA/sJnSLNXW2YX9OoDM1om+SXXMlFgfOlAPvwE4/+RrdV175jj0afi4S8Rxk8BQ6kiPr/xBHtfyYfwrmRwA/aCjKuzcDcMqwyeTx4nuvWZ6hzEsFdNP4TUDcPYI/2Hi+ZPWs2nCfe1HEz0ZrP9nA73GUL0lU/fv+3lgKEBvkbOp6erj7okAcBqBgEeKRbZiFKHMcxdTX5x8smfGQ+1+dWJ+t16pISYmaNyZsHIO+zr52Ur906U3ki2km6ujug2/DRfHQ+LoPcTZ5oSS51IdAVgB8KC/SU8KkhmDvtMjXVmCsqATaKQ3s5fvMP1civ/3zYMW/zPtULoFTSMjaiH3NEofKSrIj6Hn/fucozlmMnH/Jx1LlRxufcbtroqEen3m5gEHNESKb8+x+OYNzXQN6GwzR4TpZ9AOsPj3Tg5hrRg7koMyUE/F0w+DMfDRxCHUs/+DPv4GBJj8MaAn38Utyz4eJspTMBPZVwGKsAqFvtRXjvS+YlSCt0mn1D1WoLMu0Pzmw2SjzXl4sC50kBq22J88BS2M1ig+MwRoIlBsAv8lYnju6RvrYg2QP9G/XAwXAa3LYN/Ra/DbuZP4B2XgrA6h/GOtrbpPLGzt3FsmPXobNsQKwzNqxHSk/bdGeVnGmp4Bl6lDecNTUcPF0/eLKAUT5J5JpL01VnaO+rgfPANlk+P0a87AQtGTZB2sBiQ2JgBwuUIW9f8XEjeNaOsYLdV2Cn5HOF+dQg+nazxC1LgS4divTRZPIqz8AOmZEcLD3YLYX6y3Urk6DbrNVnjw1KlP5OlNVtw98nZBhOBByb27adQICNTBnAnLht2yH9vW1bAebjdBkKRFvQHgbi6MUOXW7uiJoJAF0j5tCNLx+XfXmhCPAkkhkTjzkWvO1o4nzLtgRDv0oavPgWAFdI17JMzFtD3n6I4ustg+A/yQ/1w9mzC1HLt23d5rBfjBblOrgoMCkFrHwIcQYcK0tyDfs+byyF4+S2bXvRt8bal6i74b20sXPMbdt2UtdeUz8TB1vL/Jnpqr/ZuddfnWpo5+pqOSW+7tzBD7vdAQjIMcT7fUID4chik+3P7JWwUGIVgtR2T93LgllRqvP4+udnY03OUj2IHUFvCLofsblLVMiIZGCtvfKyhefF57y/+VXHuhoTnCAxs6irwY4B4D24uxLluKf/+rSu33NgTyNdyoqLFdMw1ANnBbQ3NCZMfAAqbmlzrlsh7TjHcS7ls5Rj95jMlHQJDfRQXMSJwmbV+1NfFQXHJCbqgU4hKAvtPia/4uPJIGStarvikTbMCATSYbAXiL3KD3rDufDAsVoAeVsd95EHKS8rB09zQu68fhroNk35mBF+8z8+ESERGnQkCjuUbt1XrO9zIjmGDqQ7dp9y0C0X9p7k+FDFobCNpoxeXN7mcGjgHEpa0tbBNnPOpRxPWwp5INNux+eaMy1CggI80V8og/WKuwDMOmiDTA87LgCidMgwg9kpsUa/2F4Ts0Db39KcCPSbSuUVExFchm2gDY2OXV3d0A1Ajic/SPsP9XQxQfUSMtMbTrp75AAC3ZC+b78DMDScP5mP+bkjMTEblAvJK/p4RuszpiUGyolCOpIaPCidvWijJb9IvSV3V6XjGXeV2HPcCHp04Bj4Q6yZ4cEe2jY+hqn/iIuKUfvl6KNp/XxZ1GfugpPIUugT2Cba5Zg49w8OGnblRTO8JBROv4vAl1sTZVPyiOyDXc1wUPYHODfB0DHQgZA8JsfYcHcR3kEYdteM0H5w009XYS3EOolneuTZE8oHpyX4YW6IRf4utXH1d5yWoZBw6DXclG9trGuTEv8+ONe1qhNbVTUCNEHup57AxIrwHTGNoH9S30OdUHRgrZ4jkNcOuZxBfza/vUda+xPP4hs0o+vrU0GByWG66OyMeuVKLgp8oinAPnq+/ZQyxxm54xP9WP+IjVu2bBmi38DbEh5n7mqg2y2DdoM5y5mZhPA/8ABFRF5jwR9U8ElzB4FfdimqGJGUlCyJ7IOhISBSrrouW72+WGZcdJBUlJ5QklY3G+UlpU6XA3u3ydoVWVA+ecoUbNvc1AYgGf4xETDCtOFiLMK+AA3D6FhZTwUUPWwNhqMFdffAU7+4rBNbjQdJQGi8RCREyYq112rdWsDol7Ud0B8iWqxRPi+7+8SKu7e3JGVm6r3c3p0efk1t2CoU23DlzExEpMUIjQpb0wSQmgfiGxGFho5f29iPiBmekjVtntx770Vn1TtavbD+oYE2BALoksnqt5bBLf2u3TAPkY8AXMaWXTYBiNXNR5/f5g4hIT5Kf9c0DABMH4Y65uDvAPHwDxQGqfQMCJTkdLZT9Bx2cpVBREaw+QxLa2+obi+Wgmd282uWlakzJDk5+aw2Ll++QjY+Aw/80WRzg+EWyH0eq+oHwMQaxuL4hASJjEqA99GQzF0cLl3YKp5ljk833XSTlJUcc0oH1pWYACXGQDOexR8MaqC2GzIJjkHSCyNE78CQRCHqZXzyVEe7rXUwUmdSUjKYYACi4N02UTpd0ox3GyjXgb7cchYhBtC/YJByNyKw8D43d0RBbBsU9tUVq9dPVJTrvIsCZ1GA4LMtR84A4MdnWDo/DRHIq+U//pQvAQDXV1b3SyT2uDe96mlw6IPBoQdKvPCwCFkKB4hf/PpvmEsDJQ2RbDFpOforQcGcK6rqehUEmTtvoc43rJPtoKB07YaFOo9UYjvBEbcBWTI/FXXCKI0jgY9tHYMAarphjrEjiqev2OhFCgWcb4AdygUv+etbexRodzHmayZu1WymKkw2FMxoLKhGpA+CdJkIYLwHhoSaBoJRAlQYfHjjUUQtidA88RDOaFRw9/BCJNceRP7FxOwRIuvWX6MAYnOeZJuN9cAGAS1Evnn7XElJCMFzGfVU1ZmAzSAIrjC4IsXFxal3s5HD+KYB6dtfXKDCGw0ppO+Jgi7xD/QB/RAFrr5Mt125+eab4dlbgjXBTxJTpiHabI9kp0fCjO2lUQ4qsA7Fx0VqoRSQ58Brk/PO6dJOPZeUEI13Y9f5saCkUaMmkcb9iPTAedNGhCRSYVkbyp2COS8aEX1Bw3i7zuek5a6D2BY1AYoorLl5e0s0v/nFMtzcvVU45zludZuSkow5MkEaexgtX2RqepRceYmbFBbXSIC/p0bWY14qoRLjQgD46dS+RPozNbcP6zudNztFUhL7oHSAIS7OWG/ZHpEieJl2S2oiItJDMBkZMQSUz61LUwGYa3JFdZc6ufBdVSH6Ao1FpAuVPKTTwjnRqvRgpF96gveBHrqKosGMGuOHCF9U/MzKBq3Rh97dUaEAcT4Qo/kxMXoslWyfW9+p0XRmZUeokpjAcYJgWR8j7OKAZFMlA2nPVIX5nZFiyMvMnO4hDU3tOjaawEd49SIaLOb+6vpezXvlJdM1YgwVKDa8A75v5TvwmzwPo3aQrkzm+2D5Whfon5ycJElp2CId0bnau4w1ZcPFqRqZjfTgVkNsZzedX0APgiXm49xXEY2HypfFuQRcg9fBGlhR0wMFE+eDIV3nExMTUTZB9AZAqnVgRDyH/DCm7NguGe1ClMVly7zkCCKuXX7pfGlHBH43D0QRwLvOmQ5QF5SGjLRYWNqiihXWoZ75MLrxXbd39ivAms82EwBpAoBDgmAMxX2VtWjLgJv2OfI8iakCg2OdRqJmr14yNxF90wvAtFqN5NveMaD1huncwEjWPbjOcsAHAaTm7g3FVmKSAnndfOxqxE2OgHItGzRMm6Pvk+1wJRcFLoQCdE4j0GAyfrCytlV2QcHLud6VXBT4IBSgXFdSeMRwqgQP1twKRbcq7rBrAkBudN4g0I9rGCNzUIHMXQO8vKD+Qz5G3mwHSMwvKEp6Ohrk9uvnapQLrndunsEwyDCSEaMoAoQFh9bpGRHYFrkXRpRaRP7w1WtuiGJejXMRoe26rnP9oNGI/A6j13G9x1KIZMOc3wZHDQBIQnAv5mAbtu9bsTAF27LXyX8+ckAfnWsT+cwEGIJpZGL9hQDozZ4WI8sXTZUwOMC6QV56FrstcCtB8qoJyg/apBQOOWzjDVdkqvycMwP8J8C3THXNhixaVokIK4gUv2xZpq5hbn7kFRBdHgYJRpZz9wqTBKxxjPrmGZAg3SPgFQA2q0a0p8SkLKyZ4AMtsroW7vpyUeBDpoAznU0y5Kn38kpVJ3R9n7f2bTdP8Lf1w6qPocGKupnXEKmJfNow+i7goDBW+kCW8oe8lSlTpnTIbuw+wgg9lLcY0ScEjuGecGJiHvEYlEULIjGmDunYIr9r8LM0gFH3ZVOgvfm7DHxbYXm71LR4qawVGxMFWcsTu1WkAFDXDedtTzhZjyh/HYHxz/mIhi3ygJyL7CM2RG1LU16UvDnr4pjnaCUfTuDuwOAQdoLxxC4YmbIfO3Nx69PuniFpHYAjJoyTNhgubQB4+Pq7oQ0DcvBEk6xZCpCwzjtnvxiuxylphs7p7Ksf3hnKv4WHJy+POiDbSD+2Gz2p0W/pHMp3vBj6I9voewvzgPwKfZGZ2H5n/AL1WyMAe5sRK8sxnzElcT5DckckoJWXJOluE/Hx8TAQxiNCKIiMZOq59A98efiHy7ScXLnZYxbAjHHSM5ynl6gXoyziDmNmy758XTNOl7SiH5XAoD2skYboHEf5krw85/tjp5v1PXt5+2DtOeN8oQVaI8a4G3KW2QbX0UWBySigcyTAGLZBRGjbX485bUTlQ/IE1AMtAH/xzds9VR40+RDqU/qgx6XOSvUikCdzZyWr49OvnjiEe6IVwBsfE6w8Uwf6cBn0SqfL9mJeGpJbL182YZPYnnvvvRd2Jsj8XnTq7YDOoVrHMrdf5tzqiy4eFu4OvRp3K2hVEPFtd/9kwjIToNsm2Jc6Iu7mxp2dDAd245bFc+OhVwLgAXPhEy+d1DmbuoEBjEU+49GCZtVl05YREQYAL6OYYZJt7YIDL/hCTpI2D8jXSHS6p+NtIo4LZsfI12+DHh+RwqKjOhWIv3jU2NaHyGKM7ufhnyh1ndADYH4hqKizG3TFGhEDHQN3LCIA47UtjE5njGsCT6gj6QaQZy94PgKlp06fL03tB6GLCnXYF6h3MvUd1A3wt83DQw6fhs7EC/J5eoqeI9CjYwg6Ld8RlBMD3YMf1r5ijdbmiwjImelx4g1njmro2PkeGOUuEkCPyClTdKtmq93F5bCrXcD1dYEUsNqWOA8kQX5xh93IXFcJ4F++Yrl4AznmFdSlY9I32A9ySIj+pt0M3VPcfKGHx25rQxibUbEA6qitKVOSJ7BnjQzUamCi7sF28D0IegG+4QroDwmYIj9V3QineEQ2JG9YVomog72I4Dd/jdx8c4JMywAItqvbYRNUG1isMRdQlKRtoA8AV9pNaaekbnoutqS3+R6F01SBzrUmuUxehfyMH8Z9cyu2d4dqvKy6XTKyc/TZU1JD1XbJuWn5inCNGsogScuWcQesWL22bFmA/l62LEpSM2NQvM1BF/7GdI9xHiHzsAuL+M2RuXOyZP/+/eCPYEeDfZJJ51oc2ZbwUOiBQU8Pb+zOBXnWHfpBz4B0aYNa1G3AyG8DD+qBnVXnLl4okYntaM/Ec7xW4PpyUcBCASsfwtMO2xH4b+oS3L1jZfmqdXpHJGzUtO0wD227FXUDiLY9W68lpho6/Zr6YpWleHLB7Hjtt24e3tCvtIHHHhI36CgCIuCMjfFUUV6C+2fo/a391OtgWARhx6I0gGcxtqpawlRPThtYXdsJCQzPkscRHINge66R4eFB2PHEXbz9wuUU+PiDJ8+Pz2FAjHJgNZhq2w17HPUniYkpmPc6oEMPkXunb1DdflN9qeZLSsV4o+PecBvyJAJkCHA+5kXurB3lx2j9Z+tWyE9VlBzRZ8k71AU7HdbwyHChbicuNhKypcHr0Y5CfodBsmgT6+qBBAk+gsnkJcxjADAIlE/MgHFgZ1TunAP7BPk+oCwcNg/uzJcCzGZgWJTyMrQvEchLfoyJdo3DJ2pxxlP8Q1OF/Br5IWdpybx02Ivg8F5Dm79gd6kW6Rv21/ycP2mIoYy+cK4n5uyDmofgUeIusC+N2j04t9GGlJ4K+yx3N2gw7HaVdf24bgStsY94gO+BrOXjDdkZLQOeJj0yVt83nZfSwyldn0nJyWcwC6Qh7avXXT4N5bWrjpDyHJM/1gPubkO62vAePQMygPWwiVeg8f6T0ofFLxT2NThd8GhYa9HPR+1FxFE0tZ7U96Q6vphupR93kmCwINqY+rA2UAfA4CrcFcwGu097Z5ekp6ej77rJrx7ZBntduPQBoEy9h5uHEVGdeBSucbSX8Tfty9X1rZjvMSCwli7K4VrChPtquvHNNZF/QkOIwDF87jfeL4WOEToTyNe01VkTy6OteQqAswE9Ibom8jrHsHhFy/LVSdrPBhHorbXfS9eQd3dWok8b+secGdgJAr+pn9hzpEh1pSmw03lCIPAKNLAi7rCNz10co7wpcTGnXn9Rbcmsx4oVod2cSfli6HvyD4HHT0RgrQT2O/SUAJukTg0Vj+BOScucq3ldX59OCkwO5IUQDKdMV3JR4JNNAa5H59tPuRYZ69En+5n+QVvHbWX52bJli1Jg4ws7JRDeoUzr1sbgg8iDYPSYyqua9civXfuLpc+WInOXQcjE3ykpAAPhw0QGxVqmnuT57LXSg23efLw7JSXJqMMN0f4S4CHG8gaG3DXrN7+4EoKvwQwuRbh9Z+nQyXYsnCnyuStuGVO3Ne/4Z7Ne428CR6ztvuWWW+RU6X6ZM3u6XLI6VrMfh9eSNVUBQPfa5r1y733/ps9oPrM1j/mb9ZMWpaWl5qkxx/H182JSfLj86zc/o7RetmjGGJrz+pJRetBTaMWKXGGbx6dU5yRzZDPbbB7Ht5HvKT4pW7co503JCeEQYir0fjffREnIgDcxmGbez3uZzLLMo54c/eJWhKSBMzqwLt7Da2sMmct665jfZtnm0bzINtz8+buxPfpu2b3/HVk0z2C4yPRTicB3xr7LaI3hYKxvuSZC/7b2Z7MsHg8e3yG//9N/y5o1a6ynXb9dFJiUAhwTO7D96TLMZYvnGkKC9QZ64C9ZMF2+/r2nITRmi49/NLa6OiLLFySqsNejAEsaRqH4h6HUD9tUXXP5Aij1B6W4tErSAABlGnFDtI+aWghU8NJshBC64jNy22236XzE62yHDUKOHwTn5CREnY6H9yAvIJVXQvjAeL7r248BzJEqs2ak6Hlu60yTpS+885n8AmPlX37yChSCvVD4w9gAgSsxDkIrxhING8Mj7jItPQSGBpsCA79zl8HaJscHy3e/skCF3yqARphe21wkTyOim39gpCyDobmyslKyshKkqg0CKpQC3/veDG27dX6IT9olBScPwGmiT1YvyZDvfS1KDTzlUFAymccoGBF2Y5s0TTBImlsws41My+cn6sfM34LIIATEZmRk6Fxrg7DuEeAu999/v2MNTM6skDdf/rX86NuXyIb1vtg+GpF2F87U8vi18cXdMJQOyo1XZElJrZu+Oz/QjXMz6RsT0ywdHW3y1laskcPBMKoH6ztB8C5pbLPJZYhmSnrvPVwla1cb9Ga58XHx+m5I4yoYr2688cYxczAVNkuXLtWymH+5JQK9m9dmuWTNPFmCF/3zX78FY30fgM/eAFMHqpGJWw5VQJCuqe+BDA3HHPSR3qEAmRKTJOvwYWJ7Llp1pj1P//WEFAEskJoUji3BDeXr4twE8XAbUoMT75k/K1qBA8cRxZXRZ759pyHAzp0RBUNeg3zrzlx56a0SjfZqB984BE9fggEGRwFK3O731yjnCnir0wB4GEpxKhe8sLXkzRumKlCXXtCMvvulG2bIEy+ehDK7TW75bJbUAWRcCiCxJxxVohC9gtt5EtzLZ4tPxvvauVO6BxBtIzJBNqyDwwne0T484/i0HWOWdE1N8pQ7bprmuGx95zzZ0rZHjp5q0rxcEw0FWqIsXTVb6+S6xLXogQcekPJagKTRBwniopKKgFsCrGz496snDmJ8NKE/u8nqRQmIaBMr+YcbAaqHZm00Lc5Nkhp4Cb/6bikM+0ucrvNmXvM4F3rwt157DJGMunQNXL6oR/4GML7NzUOj4s7Du3J3H5FNO2olWHddEDmC55mVHa4ArbtumC5xcK5aPj9OLlqaKm2dwwo4OXaqWho73CVz6ly57777tLqXnv2NFFVW6zinIo6fBXP4/uowB9bomIiGEvPwiXrN7w6FKGm8FMp6k05mu3k013TzaL3m+u2iwAehAMegM37QLIPzKxX5w25R6M+3mqddRxcFzosClOsIjKCMVFV+Eo4oR+SSVVN167/stBDlAf/PHbk63zPiA+fTXGxLn3ewXud4Om49/OQ+uXTd7bLpjRdl9dIsmTnN4BdXLp2jssmPH3xFls3rxPaEiEybHCIJSYhi54OdCoa7oUBGJF8YENwANOuzAbybEijlNTuhVDYi6tbUtWCNN2RpRp2h009yfBDKCZYX4fiyYlEa5vd0BRFu21OhYBGuDTZsVbgb0TN60D6uoTQcRE5JlOzp4bIBlOHauW1XgZwo6dEILN19Xtg9ok8KyrsRWSRbcmdnYjtsD+XBxstWeXBSSs10Lq9yS0Qmjlv+5tFM1r+5NrjWB5MyruNHQQFnOpvlq73kVewwdeOG6fLde3LH6GQoV3E9ee61fbJ05RVSU1MjJ8sGIP8ZOgjynBvWx4FH7pU9B6uwpWcHwPFR0tY1DGOUoWNyyFyQ98i/kj+/bGUyeEdEyLWkReCvzNTW0SsP/vGAXHX9V2Qftt0MCZuiY/HKSxAZEdGRGlDfkrlJyr9tyauQf7l7PmSmDvH3D5AnXjgMB8QOufOGHM1HUDHz0OjMyD6LcmJ15yk7HPc8vXzk5qtmSnpKvdx97xtqfOsd8hZ/7ABlppwpfnLjVYOyH7zf4VO74aQPJ8GuYAC63Bz6F+Ytr/eE0/z15m0f6ZHvZLJ0yzWL9D0++9ejcssdd2vWA7tfB2jtoAIAKXuTf6+q7wNIdp++42F38gsG/2stm/otJlN+NY/Wucr6e9WqVY681nLM38z7mauMv6bOPlsH9fY778v3vrFO5VLOx0WltXA4hTEesvfm7acg740ASOOvsltD8yDkGgMcaZbP6Ji+vpT2DT0uHZ9cyUWB86WAVa9eUQeQrP+Q+AVEQObMAFC0Ub591wK5eEWm7BzdAYblqrO6Dbs3wdn6iWe3y7SsDsjkCx19eNehNq3+4MlO6CjaFfiZkIL5qbFXlq1Z7tBtOWuj2R6Ou5WrS+X3v30QqB5fbAFfK1kAlTJxLJNXOfzuCeX9E9MWTFomd2L76X236XzMSL+7D5aBH0twVE+90oyMcOxEUyi1zdgVStqkGroLyshubgcAfOmWZYunycWrfRG50gYbiuNWxw/aPJiyMuKxJXAJwPbesnJRin64ywKTuTV9/oEq2by7TZZf/AUHf5SSUizzp3tjXu+Gbg4RchNDZc3iJIAVugAOasG6AIUTEtcCAmjSU2Lk/d0NADddJrfecB3yPYCtl2PkinVjwRN6k+WLtgYCf53ZGhasNDIeP5KPyH0nVWdJ/aIXtkq2ARwZnz5d4sFLck5LHuXrnNk9LNW5froocN4U4NrLcc/PCtgqnSX4np+V1l5+1qkxJ8z12jxaL5p1JmcsUnmFfENhxUnlG8jnJSZEwFkA28wfwXbx4EMSkqbK8ovW63yz+hKjJJNH4F+0gU2WVq9L0cvT5pTK975zh8611vzkH++61eAxTbnrm/c9I7+/5QFx9uzmvStH28K/TdvbykvNq86PpMf6zxr6uscff1y2bvqT2tSY2+Rj2RbyT2zLiqWz9cj2fOFr/+m0UJPG5tFpJtdJFwXGUcBc903sguOyT5muNeY6w/PW8ca/l68y8vC3OQ7ee+89h72lvitcdiMC6XLscJeSBUdL5rPYW6x6Cb2Ir/D4pY41ziyT11atNepi+QV1J2D78ZMBz3CphD0nKzsbAbtgz2tEIKvz5HPGP68twCg/BbhijiFzHI3P56zNZtut9/EcaWveb/NJkUOn3pWL10TDxgQHdSQrLiIpvgSRiAPhzB0O4Ge2LFl0NrNDeezxZ7bA3lkJMHOULLLItpesSNcy/fx85L1dZeIbnC53f/U7eo5f5C1Ondyvf/e5gW6wHxK4O+wbAztitqQCj8D28hmq4KQVD1uXNS1fmCH8bMsv0NPkZzwCYpF/GE4PwJ/EYudRRAznnKWBdCw3cwfkd3YUy+yZU8GvZuoVPvvSRbP1d3zcFDxTlVy6IkGfnXY9M3E+ZJls0659JXLH18fKWbTvEbNgsxXL9Z+dj6A5nfJPdy0S6uSYyDO3weGfgZRoryS/mLe/Xlavu9OsQo93nzFNjjlv/WPji/kACWfLrj3HFCx87HSdyotrliTJl+/brNGRmZ/OHn0IJNWOyOo+fkGSmZklfGryz5eugJMwgNu0U5rphvhk86fS5MHfvq1rHiPfEoi8fEE8dI/BsD0atmBHZvw4XtioNtj47KukohnRdbGjR1Kzt9rVmI86SPLpCRnGuzX5R14z10yzr5vjm+OO4+x0jRFEcPqsDDlw6DQAwHBW9koB8DdRx7GWYdEzmuXw/FMbN8JmbvD6pp6Aaxlt99bENW3l+m84xjyvmeWYR2t+1+9PDwU8Jn0UgMjpOPFJTrW1tVJVVSXz58//JDfzf922np4eaW1t1W2lvb29/9flfRwFcPssbotNRiEU0R4+qjTyQfopevyoTemjao6r3A+BAiZokQtQ74D7GGYofLR8gkzNRKaCec37zPPWo7NrNICSQfSD9xAZWXfvYPFEFIr4FEOZlJBQDOYhUxkga1njf7N+r5DJ6zfvcdYO85r1SDDcE3+sQaSTDjCahiFmBbxQzUSG7OU3oOhfdonccccd5ulJj6QRP+ebWAeTSWvzOP5+Pn/azBWT0n/8PRP97ayNpNnmzZsdt1AIYCIzlZqa+oGeifc5q4PnzfRBaGTeYz3yfWzejIio6FsVzUbfSmpC1M/KThg5ghHiIBjAyWPat3kf6eqMtqR/XGL2h0JXa/tcvz/9FGAfvunWu+WZv74AIQbeiKNziPnk7FsNTdjCdPkyKBLW61i67ZarxRvznw/WbJ8AAGhHhT/znvu+dbluuTPkkYy50jCecr5cuSZDyiog/K+doX3VOn74+5bbviJPPPGExLd4S03FaYkbFW594SXa1DaCsRAhOw/3SvgURIJy0s69h8oACl2iioy8vJ1S3QC+D0ZNAwiMyCAAIc6ZkShPvXIIW5TFAaxbimggEMi5Zw5SakKwfvi7raMHnvhxcun6z+kzh2EuScY8kj0H+SxzifUZCJL80pd2wjDUILdebZTJshhxwXqsrqPHJiKnQLDfCaH7hg0GX7p0QRoisxhzqTW/h7sdQJYMCMaGUJ6/H57VoBeTuU5QKHx/82uIqkDaJIh1DdCyMHdc9YVfyR3Xz5NL1xgKAC2AX4uMX1t3nUZ02VL54t3/R0/weatq/12jMbGtTJetObO26InRe7kVEI2rP/nJT86ag1kOacZkttv8bZZ7+40rEAWiGcbnRhFs4ejrj8gOnr7YCjML2/SU6btnlIei8sNQTpxpw/j2kIY0AtUiZEVSgq96Xd+ILWF/+fs8WTbfHSDeKXDM6YeQ7qMRiPMPNSgQYM7UCETijZXfP31MfvOXw4j0x6jTALbCm5zevwSsMrotDXaxUKIwRUUES0dnnywCAOJk8X7dJpx9KAme0WxDSKC3RsOdkRWuBqo4RD4kQGn+7DiAXctgqGpG9IcwWbw8VwV1vksqmsc/44pFxnvXSvGVjyhpqTA23Xb39fKXx3+r4/NzlxtgZDMPj8zXbw+WmXMvVdA8z3FNNN+H9V0QyDswEgQFRrjUNg3IqsUpYkcUHDeMGXrh7zvWBHBA7eg27MGqPKFhkJ76ZqKxPXZKsJyuGJSZC89/nTf5K66BnC+CI6fCcx8OQMsXQAFWIdOmx6pjlh3Kw4sv85WiqmMyb1q0bN3TIH956ZRcfRm3OfVAmxElf6QDAOxhbJfVLSHR2QAxXO8YI2Y9Ns8aKH2A0EaakR0nacnR8HyuQ+QjOCJAqZWR1qzXXvzbAflXgCAuuugi/dv15aLAR0kBZ/wg62OkjjJETk9GNA3OEdZx+1G2x1X2p4sC7Dv8UEYicKSgHBHVEdXjdGGlRtb46zvgh9YhpAjSIOZQgVJ75aJkbCntDWMFnDOmz9V1hGv2qeLd0DNhkkaiESI1KVJWL58hjz5/VK66NA2xHrzkotVJMmNqkpCvaGjFloW1/cprcv1hIq9XW3FAUgHWiInxFK77TEkJPnKyqFrmzYxCNBE4uJwekN/8+aBcf8U0WQEHMn627i5XpxHyO9v2VMoNN9wgF4MnqqrfpXyVFoQvrp38sA1mKq/ejOhz7fLZKxL1FA0XTONlqw8ir2sBri8XBf5OFOCaYF0X+Nscp8XlBx2yFJtXDZluGDsnxSbNlR/96Eeqf3jn/RdUb2yVq5Li6ZSZCyeqU9KPSLezpqdpBBjrI1I+JNiWifLVTDhYhY5u1W7Nxx0qThU3YdcqX51DyItt3nkYkdXc4GzWB0BuEPhxCJNIU/Hxxpb2jMa7BHJacFCw0DHrVFmfTIlsB58e58iTOyMSTgKNiMLrLrOnRgH066vzFcvhPMFy2hBRcvr0jLPafuu1i3Ve2JpXIAdONkkXDBnNcChz6F9QxqqLLnfwjyzzo0zllWMd8J3VZc5Rpi5Pd9SB/ggwVzl1ugLtx3aZtlDlF+weMdp2zvkTJbPPmMfJ8p0rj3mvs3yMtEcdpbP5uKyqDWtDD2SPEN2h5eGNRwCsXKh9wiyzqKxB4hLSVKZ5Bs6aN3/hO+Yl19FFgfOmAMfCTjjL9g2U6Hxw1y2rVS9y79eWaxmcM8xEXUx6aoLqXf7rD+9KeWOwbN2L4AoAZWRnxGDuMEAW5GviEmdK5pyVjrnC2Rgwy7UemY8fzodM72/+mxw4bQBirWPZ5P2t947/zXKik5dDl3cADhXR2K76BHQeCbpzEPMSYMHdBC9enQPwR6Lc869Pq6z9pa/8k+ptuDvUuewY5ImYMtOwOyCcqF7cVArdiGFr5LzMXae4G9LugzXY5aFGLll3yxi7A/UMaeAVn3lpmzpsH4QTxio4BlNvsmJBHGT6Ki2/tb1PGloGAbiLlpb2o/LVe/6v0ok7EFI/8k/rRhVPmvvsL76v7959s+N9nJ3D0J1Z7QV2LwCf1xq6qvN9f87KdZ1zUeBcFDDH/bnyfZjXrXVa+Ybm7gpJgu6LUafjsR19bKqfjpvxeq8LGRO8xx+7uIy3z5rPRR6TPA11lR+HDYvt+TP4rHCLjdRsC48mf8Uj9Y2T8U7W+1y/XRT4IBQ4n351PuON5VjXsGUryxz6fbbnfMqYrN3jy/cJKZPECew55ypnsuvmtfOhi5nX2dG8n899/w+OypMvHYIMO1d1VFabGMGbxeUtwBxFqJw8at4aUySBkE8CTJq/vxQy5VHs5mzouxblgM/BTpHkdboRKThzxmpZd/l1Y+aK8XQz7YdW26FZGesZD+Q1r5m2HxM7QTvf6ZIKmTPT0NMxn5nHvIdz16XXb5cbrhkAP2fYyqzP7g45/Z57EdgnwBtg4ovN2xxHzsX/j737AJCiPv8//uxeo3P03nuRIk0ExC72FhVrNKCxJFGj0cT2+xnNz1iiMflrjDXWGEsUKwooKqBSBKT3ox2dOw64gyu7/+f5HrPu3e1eL8vxHl12b2Z2ymtmZ2dnPvPMLL3j5IjR5xVZf7xj1N9M+4/s0PPCX81aqnfcqi8nHdvBVUwOit5JQVpL0+atdD8tQ6vK5rpjft5yCY2kFC9sGY4d2VPPGe90hXfsbosffaEXvo3QC0D0Ql67q4s1e/VOkkFfoh5b0AtZwxakncuKi/Np8aceeg6zQ9Qx3nLvf9zxwzfffNOduz1G78hpQV57hDdpGQe0MvI2vcNNnyLnOW3f0Rr7bBw/rnRZk/DPZpH1pW3+8CKdq3MjKvSPfVfZsRhvPbJ1wPsu83r1vmO9Ywdee56PDAGNNUZvgnohQ/BA9O413SU9PT10G3k7cWBXFNTWZsKECfLuu+/KrFmzZOjQoVFnMycnR1544QVXcct6sit5GzTIP4ha+E379u2TZ5991h382LVLS61r2XK7NUhxG2YLFH/99dfuSqE5c+ZoefsWMmTIELGrApOTkwuMIisrSwYMGCCNGjWSJUuWuFBQgR4q6Q9bT8UepWh8ek7JHjSHj0BxO0MVnQv7QWuPtWvXuoc3vLGn5YeTvpuzWNL2ZJcY5LX32S3qKrOxnYHRJ14sM754S7Zs/cGdsPECcLN1h8yuzsqSDvJHPWFTVY0FsErbhO+8lPY9Zemv8MGHsry3JvqNtG510H10L/jmi28ob30wV377y6I70mQhTQAAQABJREFU3N70WojucJtvb9p5rnkB22/Iy8uTGT/MlTkLvtAD7D99R6/XkxSrtHrZlVffKCeffLKb2G49B8nWnXkyfPBPgcrCczH7hxT53d1PFGjtrdPec4GO+oetw7Z9sO3sivVBWb0l/wvbTkj74hvJnXfmX13oTeeIwV3cSWkbjk3ngUBTV33Iht+hcx83nHhflrTrrGEoHcba1A/19lo95fX3F+sJ4g7yxbcbXeDPwp3W2G2i7RaKqXq71pf0lkL3PPhiaJ5dDyX841UJmjUv/2REtN5T9TY0y1bv1vm5Ux57+H9CvXXWqghvvrtILtFb1YQ31n83rYDiNSmbduoFIfnfPV47c7MgtH0P+H3r8r8HDi3HzVoldduODD1530grkh6Qnr3zgyvee71nu9VQm/Y9xdYHr3nttddKtU9mPyK7dMmfprJsi2za2ul0jh3ZSx8aNN240wV6vfFbFVm7DdrW9C0uADDxqrPktuv1EtYozahh3fX2cXNl9IjeehBhn/i17kxy47p6Qqu9fDB1td56co80Ta7jqnT10lu0LVi0ybVfnbLbVXG39eL195doANiv68cmDXy3kdy8oN5+6aBW+qqr+6/N9eBIr9DY0/ZkyYTLx8pLb+Vffe11SEzwSxMdT5LeIuesE7toVdzdsmZDhqTtDciaTQeldesWsmbjfq2GM0zuvffe0PbeLsy5/77btRLaOv18dfEGV+D5jf9+L136nOo+L3YC0MK88YkrZaNerOh9Jjap6+oN+2XEmPPdOhztM+cNeOTIkTqNi2T40V1koYYaTjy2m9fJPV+mld3+81F+ZeFOegv0bK1SXL9BwZ1ku0WeLyFZQxfb5KbfFbySu8DACv1R+Dtw9KHcgU2zbQu8xpsHCzt/M+e/cuKYfrqupMucxXs1cBwni1fOFQsF1K3fVOIaHu32i8LXRW88s2fP1srOdXW9y79wsJlWWG7foUtoPbf10Jonn5vG92o+Bf9Wk4C3job/1vDWe++5miaF0dRSAVvH7HvD9hU6tG4pL781Wx67+yR566Mlul+XqbdE1ROvestp2x/ZmbbX7RPZPtMd9z3j9s9s/2Dq1E7u/UYU79vmpOo3aCKtOo2UJfq906J5C3nnk+UhwXadj5aRJ/QrsG9h+yz33XefpGpll3g5KC1bNNT9Oa0Sp49163fI+af3lRPHDnLhkgef+Fje+GC5VuDfolXU27jw34p1Gkj0N5WLL77YBRJtZNf+4tOI3522f2GNfa/ad92SlXrx+KEAr+sQ4Z/8fdibI3ShFQKxLWCfLe9zOnXqVDkYrxXXNIBmTW6whYbnu8oVE/PvLOT9/vv3B+/pbwef68c7htSoQR2tqLNZ91t90rxlJ0nfn//bwnryji/Z5+nbb7/Vi62Ch6ox5g+jrgZxrUnPOKif1yzJyUvS42QH3TbE28+1bczbHy/Tu2CMcP16/xzdr5Xu46XK+HP663v2y5ABHeVgsJkG6Zbqfr3+LgxqdWC9QHJj6l7p27OtfD5jswbHtkmXjmG/SX1xLlz8zbxdMva4sPbeSPTZtgv2u2dH5k63v2idwo+/VNd3rv0+LW1jv7W85nDZX7CqwP9+5S9u/bLfNd722ObDMozvfjhT727SUu8ucpw88+r38tcXZmsVJot064XCevvtjRr0XbV5ve7rp7nfNDbfNAiUR8COwX8z5XO5RC+gtpPdrVo20TvxbNb1L78SrjdMqxLuS6jn9hnsuMipZ13tfo/uDerFpHpsyvZp7HM7Uo9N2bGximwrvPXZO/7lTYM3TO/Zax/t+U9/+pM7X7cxZa606dBX3vxkkyxesU2a6bGI5OSGrqr12kU7ZZ4+AnEt9HjZje43rl2Evmb5B3JuCftENl7b3m/bsVfuu+1seenNmbpNzt//s+1yyqY9euwpWUMcWXqx1Ub558s/LzKpdpGYBeni47P1GEWG2m9V+9auv7FaDc0unF6s+2cWop723Q53TMpcrLHvjWt/MV7Gn5d/3Mi1LPSP7eNl63eFZ1qoc4E/S9NPgTfwBwK1QMDWe3uEH2fw9ntKu60pLcOo48aVeA7LLrSsjs9iafez7Lh0ZTuU1ov+ECiLQFV/bqp6+GWZ19L2a/sLdj7MzhXYcag4PQ8Yfm7EfkOt0zt3jhhxTNRB2r7h2GN7ujuFZmtfU+cEXEHIlC1ByZVGej6tnSteE23frzRuti/1/Q+L9O5Q3aNOh3VI3ZEr12ihHDvHeMOEc92+a7Q32Lk+O0f7w/Jc2ZMRORMy/NjTJFUv7Hr/8yjnjUafr0WJros4CpsvO35oxxUuuHikfPnDAj0usEVWrFwjx4/upxf9xktaxrbQ+afw84kRB1hCy7tuPsPtZ9ZNCkhKapa8+E7+BXQ/LtulRVia6j6n3v2yf3+9ELlF6ByODdLOZX04bY386ZhDJ3QijMf2FW3f3i5oXr9+vd4xaK48ed/x0q5VwTxcmh3D0OuVU3cGnK0NqjTLN8Ioo7aqyPCsyFFJOZHq+o6NOoN0qFGB+OLGHtyrB2IOVTcqrr+a6pab+1O5YAuNVmdjBzc//fRT6dOnT5UHiKdPn+5CvPaBLi7Ea/P/2GOPyf/8z08BknPPPTdikNeqGI8ZM0Y2b94cYrOQ8CuvvCI33XSTPPFEwaCO9ZSRkSHnnXdeqNy/98a33npL/va3v8mrr74qo/VWtV7TuHFj+ctf/uK+NB5//PGItwHz+q3Ic2BvUIL5FzqXOBgtVqG32Mk/GF1iz/RQ4wLHHHOMHmxbXOLOkJ0gvHRc9B23kmbEfthF+nFn47fKihefEz08b8Oeo7e6uuamsSWNpszdbUfSdqysIuOa1HQ9ARuvn9lNkpnbRBq3Hi53Xn99xOku84iivKG04WTzp4ksEG3duvrqq92ByzEj1smwQfkHM8OHYAcc3tag721/uCy8Na8RKJOA/WibMqWLPqbIvk0H3Hvtc92iY2MZcXzXAoFWOyn3yEO/lScfvNSFMAuPaM6CdZKV16TAewr3E+1v73Ng2zQvxFd4m+tN59pt9WWdhiK96TzllFNC2znvR2j4MKxKatqedW47vWDpdhfmXblut966L9VNTlKiX281XV+efHGu5OgPdZuGsjQ2nfZd8N1332n4Za/aNCzydquKslFvQdikZW+3z2NBWS/MaoHWlM37CrzX+s+TBFctyxuYfY/c9offeH+Gnr3vga+/fMt9B2z71CpxJestrLWSVdvucscdd8jS9XOlhS6fwtsSW2ZvTFpcZP/LDhzMnv9Bid+tFsDt2r/04U1vou19Nt9eYyf27RHemI/IFrdsfXprbs8rvB/vdWJCvJ5A2iy3/6qlJMbnSub+TL1qOk6GDuwiCXWSNVSQLTO0EnNS3QZacSFZl8VSvcXbaNf+24UaRtarcHt2baG32/bLuo3bZOPWLC1M6JOmTZvrrRfrSa8O+QcLbJq9ZdO3V0c3DxZYSG6UpFV/W7ow+KghWlUsUW9hqSeqjz26jVvf9uzL1dv16gU9Wv3G1scx6hu+fttrOwBly9Cngey2Gjb1fGy+bTnl+fWWoLqeWeMtc1vP07ITxftM5GioffioblEPxnhe3rP3PXPHDaPlN3e9WiRYYdWyzj6pm96CPVWDXq31Vpxxrgqu9/6t2/VqdQ1cZx70uc9++Dx5/ZT0bO8p/L7Cf9swbFqfOXBAb4WcJkdrFeVpX83VW7YnyRczVjiXIUPHSvi2oPB4ze6LWYvl1ut6FO4U+tucW7eL3j3UIy8QqAKBSJ+FKhgNgzxCBbzvjZn6PZMrDaVh/TgZM6ydfPndZtmr3315evHKj1oZrkWLJvLWh0skL65tgf0h7/3G5+1j2evLJpwia9assZcF2kfaHts6/sc//tHtc9p7OnWuL4GEXdK8vVbLb7NJPpm+RgYPPtrtD9xz65m6fV8u67Q6x/TZ2+TtDxdIq3Z95PLLzyuwrb/40gm6H/O+fndKsfs4f/7T3cXuR1RkH9bNPP8gEAMC9jm1hzXe5zTSPpX9XrJjSGu3bXUnKxP8W9177BjSeRdeKd26dZOte7Xbsk0S3s2OL91z5Snyy1/+0gVpL9A7nOzPsltd5ug+omhV3QQN9+6VzKyAXmjZKLRPZdNg+7mvvfy0fl5nyDkn99B93fzfS3v0N8+ooe31LhZb5eKz/bI6ZYdWxezrTtTZNNo2wN0G0Bcns5cclMED6smIYf31hOgG2ZOZ6D7XbuJ98S5YNmdRWtTPuu1TP/LUZP099XjIyb23mv8xj5J+29gk2fRG2i+190dartU8G1FHZ+ugbeO9bbP1aL9tUrXqqd39JpCgF9purycZWVvk1OP7yQv/nqF3UfnO/bZvWD9Bjhk5Wlat2KW/acaW+jdN1ImhwxEtYLebfu3lf4S2CXfcNE7Xy1ni0/+GDWwbsknLyNLfmD69SGCrOy7ibUeth+K2paEBlONFZXyOvWN5o07In859e7bI98sWSr/eLSRt7W53XsCOmV3x88GhbZ6ZnP6nu4otGGGzY8ee7rnncbH9p0vOTZdrxo+SL2cud3Nq2+UmTVtKq1bN9fd4I/dbvPA2yX57JyZsFtuf+/PfP9LKanvl0efmyR3XDdW7+dR3FdTsoo+NelvjtMw8WaOnHu14o9fY8I4dc5o88ewU/f1+SujYiNc92nEsrzvPCCDwk0BlbG9+GlrkV3a87vRTR7nwmXcsM7xP26fZokG1SypwbjZ8eMW9tvktzX6Wnc+1CuU0CCBweArY/pp93u2cpv32CD83MnREot55cFeB4GekubTMwj333BfqFL7fZ7+JbfgVabzzLrYvFWnbaMPOP+fTKjQuO7dq7Qqfw/Omw37P2j6aNcVlQpxJOc8bma23P2y+5tIqb43kJdWXjdt2SU6gTpnOP3nTHv5s+4qW67H9vPt/d67bzxwxpI/7/f8fzTxk58ZJfb2DYrLeyb1jx07hb3Wvr7hwhIwb/xe5/ddaZE/vGhup+XLWcnc+yZaj7Wc+oHcUffKl+XL1z/pK25YN9M4dmh/U4wj79SLlr+bs1GOO/UPn3iINr6ba2Xp0/323RV0vbH2JS2odk9NeU2ZH2niLDfJaldOAnmcP6iULWt065prmzZvLvHnzJEVvKXv66adX6/QtXLhQ/vznP8uFF15YpUFeq6Z38835lUO852gzalVvw0O80fqzYVrA10K8tkP729/+VgYOHCivv/66vPTSS/LUU0/p7cr6ycSJE0ODOKAn188880z5/nst296woTtJY7e6tnLw//jHP8Rui2OVfC0g3LJly9D7rMLvbbfd5vq3K25Le9VcaAAlvLB1M2BV8UuZ4/bV94k/8na/hDHRuSYEbIfi/rvfdV/4xY1/5uw18uIbpxTXS7m62fhfefbeEoO8K1P2h3bGyjWiYt7knSi1nTNrsmSNjD/1VHcCppi3VUon26FN3ZauB+J+CmRFGnDKBr2FhB5ApCm9gO1g/uySa+T1SR/oyWmfBtI6h95s5k8+N1WatOrvTmaHOvACgXII2DbEHt42xD7XkRrr58UX+7t1zy5e8NZJWx9T9aDcV3Ptx+9PB98jDaM07aL9SA6fTj1XUew2LnwYth+zbslsueLCY+SPj38oPy7fIRef2Vsy9NYs1sycu0k/YwflYK5Pjj+x7KFUG4b9oLIg7zufLJObfzHcWhVo7Ergb7VyVPde57j21v+Tz70mt1x3sgus+PRWAOu0qqgXArZbinZo/9PBgrkLU2R/TnLUz7vZ2MluaxavyZGGuc2lqVauOuHQd8Hnn3eRr6a/LXMXTtcTqfnba7+GY1es2ytDRp5TZLgW5L32hUdL/G6du2C9XH1j+czcxJbwj3dQdeToU916Z16Fv29s/Xv7w7nSpfsAmb9ki4YA8i+syczMv4KrV+/+bizX3/GqZMd11auxR7jw5+hjjnLD+mLGMtd9wFEJctLoPvLqO9/q7SlX6K2ZBrmL8cIn0Sp/2a2VevTID3va37N/1GqBA9u4W0W+/ckKueiM/G55uQH9ceSThIQEycraL62aJbtlbfsjdz9Q1MxbhracunSMl+2fLXDfm2vX79Rl30guv+qGAsvJ+vca++yW9Jnw+g1/ts+J2c5ZsFSvqBaZ+2OqDB3w00lNCy2fMLKz/Pkf38tIrYrYrVNTyc7Lv9WUHejYnpYt7dp3kgXfri8wbeHjqKzXNq2PPPKIfP653h5L53foMa20clJjXX9FTi3FPo995q6bMN6diCy8DnnT+Nq731fKNswbHs8IIIBALAl43zO5/lYaZPlUbrl2rIweOVArxWe6yVyrwYzRx/SRt7VSb/h3jDcPkdpZt/B9Lq/faM/Wr4UArQn/7rLXtg9pv2+8fcxxJ+Z/f998z5ty9PCT3R2ebHsf3tiwAoGA7oP+oL9JF4ROjtjJ4i+/2xjax7FjUbavcMu1kS/WeuSpz3T8j4UPmtcIHNYCJX0u7bNjnzvvYTMbfgzJa2/Phbv97ne/k78+9j9y9YX9JVEvXsvMzJZMDfNaZW/bP+zWraM8/vy3BfapvO1Pdl4drcD6vfz8okHStXNr2Zvll1P19u8fTPuvTPl6td4GvqUL8do4TxjVWx+6f6q/g+Yuy3H7rDO++0CuOK+zPHDn0W66LFBmvwUmTdbbquqxd/sda9uRwr8ZYu34iV/3YQtf2OhmKOwfu/tStO1uWG8x+dLbNq/est0VGkjwb5OWbbpppeZm+pvmIjfNtk/fNKGhXH1VJ3fhxtDR+b+Phh13qgzTl9GOScTkDDNRMSlg20H7ret91mybskbvAPDl7C0aKNuXfwJfq8JOm7lG9mTr3SQjHBcpaVta0zNeeBthnytrbNsdvk33ptPmJydQt9jj+OHHnsL3n8zPGtsue81F1z4Tcf8p/FzJxeeMkGl6cdbcBSkyXUMSSfE7tNJvut5Bqb7ePnqX9Oh/km4Xih6Tst/v99yzOrRv6B3HmqPDCd/H86aFZwQQqDkB27YcPez4YvfBWnc8ttr2a2zbX9xvP5Oy7rfeye+/mltrGDMCFRewbU+k40u2/3L/3TeUOIKqyox4I7bpK257ZPtcr2uBncsuv9V7i/sNbeeGfL6U0LlX62i/Z20fKPz8oA3f+71eOBNi3bzG+inPeSN7f/i+ZkWG402L91z4PE34fmaCFuxJ2bRRunVsqOdHI9/NJjExXovvNIu6rTdbC7faOU5rvOMRlm97/IV5cvKojhLUe4Xtzgi4IPD8laIXv11UYH69aa3pZ1uWdl7QO7c7bFDn0PldWydWbQzKscfH5rTXtN2RMv7ig7wBDUnuDEpeuq7yLX0xaXLUUUeJPWprM3fuXFm2bJkLFQwaNCjqbFp14muvvdZ1tzDv/fffH7XfSZMmyaJFi1x3ez1gwAD32jZ6devWlaefftqVI7cKwPa3NVaB2EK81tiBgyFDhrjXgwcPlnHjxrlgsH2B/t///Z/89a9/dd3sn8TERK2scrk888wz8vbbb7vQcKhjJbzISwu6dVTvslxyE6fHnRtYcbHYXJdLnoEjrw8L+fji68sW3ZFpEyVMOu/H9dK8VZcqwbHx2xWcxTU2fqtuXZWNHeSuiQPdbdu2dVdJRQvFePNsO5o1MX3e+A/X5xtuuEGe0pPTX86eLz8s2qDreGM3Kyl6a5Cd+5vr9vSBw3XWmO4YFCjNZ9SuXLzrrrt0ndwdWidtfWzWsoscc9yJLlBX1bNWmukMnwbrf+a0Pe72q/f+9mx59tWv5Ivvt0jfbk1cb40b1ZM9+4Ou+mxZh+2Nx/aP7I4Er0+armHHJnLWSflhTutut7yZowHJnfuS5fxhw9xbrP/JkyfL356fJhdp8HTIwE7yw+KtMlSrnu7RijC5gXi9DWFTb/AaLv2uRFsv3OI9h96sL6ydBV0+++wzqdOkhbtQq0PnbrrMurl9tPB+7bU5lPTdav0tX7u3yrbtFg73lof9uL/rrpU/eQ3IvxLXvvvNsGGz3hqg/oW8++8nZczw/P2BevXq2yS6xr6Hu/XoJyPH/szNr91u+J0P58lvJp4kJ2p415oT3b/6o/1nI2XoqQ+KX2+v2bhJG729bye3j5G6bY87aNKoSSt3C/FDvcuutByt8rPP3Qp23cYMydNSvDk5eZKb55OkpDr6SPJ6dcPJ1lsNe/MV6nDohbec7M8FKw5IvexukqwnvS857TTp3r174d5Df0cbXqiHYl6Y7f333S5dO7bQ9Xe5q5DWtmVDvdVljlZF266/LzpL/fqLZf6yNL01c2fJyMwPjNfRSsXt2rXIv536h+/Kb26/uJixVF6nSOt3aYZuRiOOPSW03Au/x9aR7GDTEj9nhd/H3wgggMDhJGDbUDsIfP99i+XHVfvl7FMGSqdDxS3se9C2he069pRhh/ZXqnLewr+77LXtY9oF47aPuW1XnqzdsEPatm3nvuOtW7TvQfu9ZPtUq5b/ICtnr3UXoq9dv18GDz9LrJs13nfdh1MWunkOny9rl3GgIdv/cBReHxEC9rkL/xyGz3Rx3exzZXcX+ezrVXL8SN0/1YsJbX/XLpJs3aaD7NwjEfepvO2P/Zb85+sLNMA7UNq0bix7NqbrfneyvPN5qlx3RcfwyXDbpNffXySXXXmz24cvzbGR8N8MNjA7FhVrx09sGztv4Ypi736yTreBXfqNLuBxOP1h68nq1avdw530LfR7xtYH627NCadJ1G384TTPTGvsCdhJ+7df+aP+1m3uzhlMvGyMTP1mmaxN2SLL122Rb75bJQOHnCCDBw0L7TPE3lyUfopK81t5/PjxUX8T25is0tvddz/iRurtP9n+oR0XCW+K238KP1dix1vsYe7WrNUwtaTrnZBSMyU1vak8dO0tET//hfcNu3aKk9TUzbInq2GBfbzwaeI1AgjUnIB3vsA7zm1TEr4P9ls99lhdjW27rrv6nKgXcdp02PHs0mwzq2uaGQ8CCFRMIPx3rZcZKW6Itm9TVZmR8PF6+1KFj0XZOS3b5xqkx63Ct0X22s7hffnVO+7cq+1/edtS2we6++67Q4Mv7jd7qCd9EW4T3r6srytrODZeG1a08zSjhneXiydO1ovHuhQ4Pxo+vZbJsczNivV7xGyHqpPlg8zVzuHZMYQLL725wLybrR0PteOOOw8elPT0NIlLbCoNG7XT4w1HF1gO4eOKhdfeevHiiy/KvuzdYvvFtp4vWpsgx590dkxPeyz41fZpiLut913/W+xMaugxvos+IgR5Fy9e7IKbs2fPFrt9S+Fmy5Ytcu+997oD7xZqsKpV1lgw1aq4/u1vf5Pnn39ebDh79+4tUhlr165dLlAyY8YMd7LhhRdecFVw7b1W6TUuLs6N/91335X+/ftLo0aNQpNgwdZXX33VDf+xxx5zJditeqyt/MnJBatLvvHGG2LDbtxYDzLu2SP//Oc/3XDff/99V1bcwqoWSLXGhmEh2alTp4oFBTIyMiRFKwLbyQWramvVar3mvffek+eee04efvhhF65YtWqVC+Q2aKBp0lI2Nl3ffPON3HTTTRGNvcGYiV1t0KdPH/nXv/7lpt+63XLLLQVcrN0TTzwhCxYskKuuuioU/rX21ti8Wvf9+/e7CrxelU07kPv111879xtvvDG/50P/2nI1V6voO2fOHDfO8GCD2Vm3zMxMsS+2ymyy1wYle3ZQgrtKHqpPM3IJQ/2S2M1fcs/0ERMCTZs2leUr1klmxibp2/OnKnLhE2c7RDf8+p6IB4bC+yvPaxv/G2++KyeP7qS3KK0TcRC33vcfmXDdrVUy/ogjrMaWu3fvlv1pq6Pa26Rs0Vtvv/TWAve5r8ZJqzWjGj58uFYKTdRKiVtkp140E1e3vdRp1M1dbRjthHatmXlmJOYEbJtn+wH1G7V262RS/TZufTxl3IVi62osNm5/7+UX5NLzh0uTxvXk5OP6StbBoGzcmiX7srRiamJdOf+MobqtSpe4Ou2K3ZeKNn+ey+TPv5JFK7bLvn375GB2jl4pmyofTF0h2/c1k8uuyj8BbcPw+p/0ySydhoDszdgt709eJA3qxUtzva11+/YddV80P2j8w6L1Mmfxfhl3xrkV+h6x7YVdWDXimDHSuWsv97q4bcgXX86UuOCeqNt3m67dmc3k/PPPj8YSsf20adPkqB71pGO7n4LKkXr8aOrC0PIo7LVs+WrZujtXZs3dKKs2x8tDDz3k1r9vZy+Rb2bMlKbJ9UIX99h30D9enS2nnvULN882rk6aWnrnvcnStkVCqD9vGmZp9auN2+Oka8/h7vtrz95MN55MrSD15YzFcs2lo0Pf99NnrdBbk7eVFk3rSYP6ifLp9BQZNaSNxMf5JT4+MXRrn93p+6Vu/WT59odNEkzsUKyZLRNvWdlnyh42/1XV2LDr6bSlpKyVjVv2yjo9qWm3R47TeVivJ9d2pMfJ1rRE2bM3R04/+Whp2aKZ/h5qos8tNeBbXz6e+qPefijNLYOqmsbKGm605W7r8mvv/SiXXPGrCn3GKms6GQ4CCCBQlQLedv+/H0yXrXo8Tu8w7U4QfP3tSlmWkitnnHtV6PuyKqej8LBtumw/xX73bNquwcD67aRj16PloosuKnHbbN+btn9j7x0y/AQ5eujIAvMQbZ5Xb9gn81fkyc+vua7EcRSeXv5G4EgWsOO7/37rI2nYIEn3CZtIXjBJkurUl6R6TeXeh9+XiTf8IeJnyj6L9lty6art0qBJR1m1bqds2pHgTuJ17TFIVq7eJLafb/vvq9Zuk/c/XykDh53pjjObd0nHRrzhW2Uaf0J92ZURL8vWHpAW7QbF1PET2ye9864H5Lorj4u6Gv39hS/k+pvuqNLfAVFHXkkdbHnY9jna7xnr7j0qaZQMBoECAnYsyI657N6VKiOO7uq6de2k1XcHdtE7M6XIaj2W8OdHniiwz1BgALXwj2i/iW1WC/+2t8+nHSv4ZuY8t2329hlt/+njLzfIr35zW9Rt/WOP/13OP71/6NiJuTt7DVrYMbmlq1KlV/+xxR4bsfF7+4YNkjvL/oN15eLxVx5Ry6sWroLMUi0VsM+r7ePFwj6YTcvUqZ9HPOZr/OU9nl1LFx2zhUCtE7BtgJ3XatMsr8h5H29m7Y6Mth8SKbfm9VMZzzYtti9lx9/8fp/7vWvH3hatSNeiP43F7nZj/YQ39vvJywPYb1rv96ztA9nvqtrSRNsntQtan3x+ulw9fox0aNc64uzaXVctczNg4FBnm1i3scz87kfnaufwWrQbHDqGED4As7Z9y7Ydeklys45y8qlnyukVPOcaPvyqfG3rhXde3vaLu/Ya7o591qZ1oir9avOwfann7csvvRRtLjX8WPfiOKl/UpyWMi3Y0/bt20O3U1++fHmR2+5ZFdbf/OY3cuyxx8r06dPdmy1Rfv311xcc0KG/rrvuOlfNNT4+v1CwXb3dt29fF461RLoFdr3GArdWLbZXr14uXGuVa73KsjZdVjnN2hVuLGhrIVz7QHjNNdfo7c01aGoBVQv/Wqg4vOnSpYsblr3XqtJGq765cOFCF6Q9cOCA2Ly8+eab4YNxr20Yn3zyibv1b5GOEVpYONiCzxYKPvPMMyP0IS5Q7F0tMWvWLBk6dGiB4LEdhA1vbPptPj788EM5Ta+aL9zYLcusmwWCLTBtzTnnnOPCyo8++qjcfPPNhd8iO3fu1Ioq+UHLefPmFaiSbGHA1q3zN8ibNm2Sli1bFnl/uVpoFd59n+XKgXf1RUbJQ/B39Um9S/xSZ7CuyzSHjYAF4G+96SJ585nrikzzgsUb5Jl/L5XX/v1BkW6V1cIuNtiZMll+9YsTiwzSxv+7h75yFauLdKwFLazK9mvP3SdP/PGSqHPzzkfz5Iu5OfLKK69E7YcOpRPwLvYoXd/0hQACnkCfnu1kzuSfrlj12oc/P/zUp9Kpz7kyceLE8NZlem37b7Zvap/VJNkiWTl1XYWp008/Xc4444wiw7L+7PHpp5+6bpvWL5VfXtpXQ6H1pXXLxjJfv0MWr8mWEWMujPj+IgOsxBY2L++98XDU7fv465+VG2/5vzJPl1Vp6NA4RX52Vv6dG6JNsi2PxOTh7oI/r59wrx498qsem6332rrbRYBNG2RKs4ZZbr9zTcoOSTvQxl3o5w3Hnm3+vv/mXTllZAvX2vOeNG2zXoV7vZsvb3laDzYe+x1w+8SjQtWzXnl7ltSJy5Cfnd5H9mcelEf++b00bRSntxruI3Ea5PUuzFu8YrO079hLbrzr3XKZuQms4n+8eTXD3MwU6douUW937JMDgeZ6Ze85+dW0Fn8oF+lyG9S/o2zVgIWtn+FeVTyJlTJ4b7nb+nG0zocFRabMWC/9jx7nfpNWykgYCAIIIHAYCNj20PY/7DszKzvBPaLtrxwGs1OqSfTmuX/PZLH9g/ad+rrvd28/olQDoScEEHACts/9+Ucvyu9/Nc79bftUazdlyuxF+wocmy+Oyz6T9vnzPoPeZ7RuYo60bdNW/InJUffPbJ/Ve1+kcVh3rymuP6+f6n4eOXKkPPqHsW6/uvC4a/txxMLzy98IVKWAbQvuv+82GX5UA/f7z8Zl26uaOs5SlfNa2mHbtrakYyHhw/K2zd4+o+0/WZgg0jEu732///3vJTl+dcRzJdZPeY8necPnGQEEYlcgFvbBbLv1/lv/T+64fow7vu5p2T7WlG931Mhxdm8aeEYAgaoXsG1AVZzXKu+U2/TYOcNAdrqs0bsT2O/T8HNa0YbrbU9j8fdstGkuS3tzsX3SwudpFq1Ik3NPahdxP7Lwb2UbhjV2fLO0rmWZRvpFINYF8hOzxU2lBiRzNwQlb49WCmyi5TzCGgtknn322S70OWnSJLn11lvDuoq89dZb7m+vCuuOHTtCIV4L+FpI1EK7n3/+uau8++yzz7qKHIWvkrBgrYV4ray4dbMAr1cht8AID/3x97//3QVvbfqsum7v3r1lyZIlLiRs1X1vu+02+eKLL4q89emnn3Ylqu0qCavO+84778gjjzzigsI2TLtFmAVrLbRswV8LK9j02Dis8arX2vxYiNfGb+G2Y445RuxWU//7v//rrP7whz9EHH/hCbIKthbitWbQoEGFO4f+NktrrPquhXhLapYuXep66dixY8Rerfy4NStXrgx1P+qoo1yQd9GiRaF24S/MxGvWr19fIMhrV0FYmHjz5s1i7z/ppJO8Xiv0nKfVK/N03ZSCueuow/RrliOuWcF1OGrPdIgZAfty3plRRyZ/uVjGndC/wHQ9rNV4z73oVwXaVfYf9hm/f+okWbBkowzq16HA4G38EyZU7fgLjLCa/7Bwvt3GoLhmzXq7NXftuVKsuHmt6m61dYe9qt0YPgKZB+Nl64490rqFXn0WpVmweKNcdX3Ru0dE6T1i6/ATGR9//LH07Nmz2BPM9pm2h/c+e8/6Nd9Kqlbgrp+0RXbod9vxJ10Q6h5xpFXU0qbpjVf+EfG7zb7v7HvXm+6yTEKbNm1kzbLZpXqL9RveFPYK72avrbvtj5uj/YgP1GsvScntZUKEC91s2oN6K+Al5q0VCbt3FvlxRUAuveKXofkqaf66dW4pb7+/1AV569dLkisvOEpue3CKnHViZ2nVIv9OHTZdaemZsjd7R7nNbBhV3YTPq/nZgSK7HtwuEjRXa266aYU74L1gySbJPBjn1s9wL9dTjP/jLXdbP5IaxMvqlID0HXRq1JBIjM8Ok4cAAgiUW8C2h/Yozf5KuUcSY2/05tm+4+wSXO/7LcYmk8lB4LAQsOPMK1askCUp8W5f2n5vtes4WC+ei1xgItJM2WcyvAn/jJb0+axo9/Dx1sTre+65Rx7+293uosnw36j2O+uV//4o1p0GAQQqLmDbCvvNar//du3doRcJtNHKrq1k+Ohhod/9FR/L4TUE29aWdCwkfI68bXNZ9hknTJgg10+8VEaPKHqupCLHk8Kni9cIIBCbAiXto1XHVNt2ywoQPfXSl3KhFiRo3bKR2HH/z79J0XPFNx2x2//qsGccCMSCgG0Dop3XshxJec9rlXfebHrK08TC9rQ8013a95iL7ZMWPk9z7kU95N+vPlPkvGSk38qerfdc2nHTHwK1RaDkIK/mJPPWBCVnQ0CDvEUrmV511VUunGrB1fAg7xY9aW6hWWusOq41VpnVgrEWkrVwr8+XH6q0SrozZ850Jxm++eabiOXOrSqmjas0jVWntfFYtdk+ffq4t1g7C5PaVfE2XRaSrVevXoHB2UbTwsdeewvPWvjUQrvfffed67dOnTqu8nCLFvkVvpo3b16kEvGUKVNcv1deeaWceGJ+FU8Lwlo14pdeeskNPxAIaKl1f4HxF/5j165doVaFq+p6Haxyrv3Qtu733Xef1zrq89atW0MVh6MNs3Pnzu79XojY/hg1apRYNV6rDGzLuV+/fq4f+yc7O1v+8pe/hP5et25d6LX3wrMMnyevW3mfc9YFJG+tvlvX0RIbXXX9bXwS15wgb4lWMdiDHeT+92v/1Fsl5Ie07ED4Qj0Avj09SY477rgqnWLbLozXg4Kvvvu0brNEBvbtINt2ZFTb+Kt05koYuM37fj1hY/PbqkWjiH0v1MDPdb/6ZcRutEQAAQSqQ8ACtVZ5LfwkaeHx/rg8rVIDHdHuklB4vOF/23tWruzhLpSykMm1l53pwsDh/VTna++7rY1WB/a28QuXbpRX/7uw3CeX7Xtj9lcl3yZh2/YMOfmc/ABpWefZHEvjH+5t47j2hJ7Fent3jwifnjXr00N/du/URAb2aSXvT1krN1zxU8XhTVsz5OOvv1GzB0L9xvKLaHZPPfWUfPTRR6HQV02vn+U19NYPuyDxBB2IbR9oEEAAgSNVINo2vzZ72L4IDQIIVFzA9g1tf8oetj9VWftUR8Jn1La9zz33nPz34x9k1PDuoeOIj2gxgN4DTinVb5mKL0GGgMCRIeD9/rPfspW5rTqc9czEO/Zk81HSsRDrpyz7jLYdP+u8y/XY0ZTQuRIbhh1PmjJrW7mPJ9kwaBBAAIHSCNgFBU888YTb5nTvEpSFy3Klz0D2sUpjRz8I1AYB77xWeGbDCv28N2Uj+yExtIC9/fTC52ks4Dtl5n/dfqRNrp0r/Ndbs/itHEPLjkmJDYGSg7w6nYFNGuRdFZTEHkHx1ysYhLSwbMOGDWX+/Pmucm2XLl3cnH3wQf6t7sePHy/JycmuXa9evcQekZpTTz3VnTjeuHFjpM5ywQUXRGwfqaVXAbhwtyFDfjrpbtWBO3XqVKCXc845JxTi9TpY+XML8lpF3dI23nBfffVVF0o++eSTXeVhCzBb1dzSNjt37nS9Rgvc7tu3T2644QbXz//7f/8vdIvf4oafkfFTuKK+3to5UmPL0xoLXnuNhSUtjGwVde31gw8+KMOHD5eUlBR54YUXZOrUqV6vEhenqdlCTbNmzVwbb54KdS7zn4H9QcnWdTKwpTQpXhGf5j/j2vqKrL9lHjFvqBGBs846y1258/nM99z4G9bdIqm74t0OWWWdTChuxmz8VnX685lLJT6phXzz7fJqHX9x01bV3S6++GL57yc/yA0/P77IqH5ctkm27k4Q86FBAAEEakrALhb6cel6GTWse8RJsG3VmDFjInar7paxdGLJtt1WweDbhenStV2GbNeLNiZ/tVZ69DuxQtv11et2lMhq/UQKzpb4xjL2UBbv/P2JtNAYWjZvJNt37g/9bS+sKu//PjFdVqxLl/i4fdK4UZJ89vUGkcTeFTIrMJIa/MPWidrynV4d+4c1uKgYNQIIIIAAAgggUOUCZdmXrvKJOcxG8PDDD8v99/1W9udsk8XLNsveLC3mkdhB7+o14TCbEyYXgcNDoLb8jq0s7arefluhn9/9LlXPleRv41q3aS2fTlssZ15wQ605plBZy4LhIIBA5QvYNu4f//iHKzJnQ792bM+o2ZPKHztDRACBmhaw/T4vs+H91qrfuK2Mv/w69kNqeuFEGH/h8zS2/CzM62V+9mb6pXXHYfxWjmBHqyNboFRBXjkgkrNEw7z9g5LUu2CQ1yrUWqVcu1J/0qRJoaDqf/7zHyd7+eWXFxC2SrjWzYIDlsC3Cq0W7ty7d2+B/sL/aNmyZalCquHvsWDx5MmTZfbs2bJhwwbZtm2bbN++PbyXIq8Lb0isB69dbm5ukf6jtbB5tivvrTKthYMtGGuVee3KA6tO7AWbo73fa++FXps2beq1KvD85z//2c3T2WefXeqrZjt06BAahpm0bds29Lf3wgtTh4euGzRo4DwtlGyVem+++Wavd/ds68CePXvcOhCpukJlB3mzU4KSu1RDvLpulqbxt/dJvAZ5aQ5fAVvP7YvdGrvF3y9vPKdaf5zdfvvtYhcobMvSItB186p9/DW15CZOnCgXnHtSxCDvp18sElsuNAgggEBNCtgPv/vvviHidsqmy7ZVvXoNr8lJjNlx2zbevlO37l0r3/ywTbr1PUHs+668TWnDudt2ZlTrd3hp58cq0HtNjy4tZc++XNmmYd5WzfMvfuvRuamMHtpO1m/JkZVrUyXeH5CNuxrLa6896r2NZwQQQAABBBBAAAEEEDjCBeyY+vjL8+9eZccS7e9HH63e45hH+CJg9hFAoIoFvONJbhsnLdzxJM4TVDE6g0cAgQICbHMKcPAHAkeUgJfZ8H5rnTiO31qH0woQnvmx38rhmbTDaT6YVgSqUiBeLMpbioxqYJ1WQF0UkAQNRPobFAxEXnbZZS7I+9Zbb7kg75YtW2TGjBliAdyTTjopNP0WELUgq1V19Rqr4Gsfzrlz53qtKvz8zDPPyG9+85vQcGw6LEjap08fFyAOdSj0wu/Xq+MroWnTpo3MmjVLT+q/Jq+88oqbXws52+O6666T9957r1TB26SkJDc1kULEFrp45JFHXPff//73LhAdadKt8nBCQoI0b95cbP7q1q0rVuF38+bNYssjUpB3/fr1blCFA7ktWrRwy9VC2PawQG/v3r3llFNOEavM7G1ku3cvWhEvJyfHDTM+vnTZ8Ujz4rUL7NN18ceABNaXrhqvreNxXXySQJDXIzxsny0YX5NNTY+/JubdPtd1G7SWL2YulxNH9Q5NwuIVm8Wf2FwGDBgQascLBBBAoCYEWrVqJb64urJ9115p2Sz/rgLh07F4eapcfR3bqnAT77Vt4739t76Dlrv9Oq9beZ5tWLYsSmoy9hf8LVFS/9XR3X4vrFo5u8CoenZtJatSdoeCvNZxyFEtpf+AoyWp7lqtWD/fXbTnGRZ4M38ggAACCCCAAAIIIIDAESvgHUP0no9YCGYcAQRqpYB3PIltXK1cvMwUAggggAACMS9g+yDsh8T8Yoo6gSy7qDR0QMAJ+H3NSimRqVV55wcke1VARP8Pb4YOHSoW+rQwbkpKSuh2Bj//+c8lPLj54osvulCr9TtlyhRXhdcCqRZ6feyxx8IHWe7XGRkZoRDvvffeK6tXr5ZNmzbJwoULXUXZcg+4jG+04LBVrZ03b55YsPnll1+WwYMHu6Gcf/75sn9/wVv1Rhq8hW+tsarFhRsbrteMGjVKLDwc/vC6DR8+XNq3b+8CuF67gQMHupcWxI3UmJU1hYO81s6qC1vlu0cffVQ++ugjt9wsxGvVfa0CsTXhVX9dC/3Hqy5sIYkKNbruHVwRkNyF+kIro5am8bUQSdAgb+EAemneSz8IICBy9913y5PPz5SlK1Mdxw4Nyz361GcyaPg5cu6550KEAAII1KiAXVQ04Ojj5P1P5xeZDtturd8SZFtVRKZoC3OsjMaf2FTseyJaY92OO+64aJ1rrL3N/46d+wqMv2+vNrJs1c4C7bKzc6VB/QZy5skDpEnjetK/f/8C3fkDAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBsgr447ppRaxSFsUKaKHWg3M1RLmzYCVUn88n11xzjRu3VZ19++233evx48cXmJ4vv/zS/X399dfL2LFjxas4ay29bgXeUI4/5syZ495lgdM//OEP0rFjx9BQvIBqqEUlvNizZ0+RoaSmprpQa3Z2tutmod5LL71UPvvss1C/ixcvDr2O9sLeZ8327dulcFXexo0buwrDVmU40sMbplXfte7h1l4FzYceeki8afT6nzx5ssyfnx+Esfd5zRtvvOEq7956661eqwLPFpq2ZsSIEQXC215PFvS1pqJB3tztWo13tlbj3egNuYRnXbfjevgkXoO8NAggUD4Bu/jgpNMulI+nb5J3P54nk6askH05zcTa0yCAAAKxIGB3PHjp3zNlx+6CAdIX35zJtqqaF5DdwWHl2vz9vkijnjlndYUr/0YabmW0W7mm4HRfM360fPTF6gKD3rf/YOjvVSkZrF8hDV4ggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCJRXwB/fWwOOyaV8e45I7oKgHPwhTwJZBcO8Xmj36aeflq+++kqOOuoo9wgfcvfu3d2fn376aYFgqr3n448/Du+13K+7dOni3rt3715X6dcbkIVrr732Wu/PCj9bkNaaqVOnumq04QO0cJvdWubXv/51eGsJr4BbmqpnXpDXBrJy5coCwzrzzDNdlWELJ0d6eD3PmDHDdbeArddMmDDBvbQKulZZ1wsJW+XgO++803U7++yzxbO0FmPGjHHL9amnnpJ//vOfrh/vH1t2//rXv9yfd9xxh9c69BwMBl21Zmtht78ubxPIDMqBeXmS+6Oue7oulqbxNdFqvLqOx7fwl6Z3+kEAgSgCd911lwwYdrZ8/t0B2R/sJn/961+j9ElrBBBAoPoF7OKjNh36yKTJC0IjX756i6TvS5K+ffuG2vGi6gWs2u6yVVuijmjFmq1iYd9YayJdbNarm+63+uJk5269NcmhJjEx0b2y9atVu15ea54RQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBAot4A/sbdf4rprmLeUBUuDO7Qq70ytiroiIJL303jbt28vJ598sqtEa20nTpz4U8dDr372s5+5VxZ+tUDnOeecI/a+W265RXr06FGk//K06Nq1qwwdOtS91abn2GOPleOPP146d+4su3fvLs8gI77n6KOPDrXv0KGDq0S7efNm1+722293zy+99JILw1599dVuXq0KsTU33nijeEFg1yLKP/Hx8TJu3DjXdcGCn4IpUXovdetOnTrJAw884Pq///77nc0ZZ5wh1t7CxlbN+OGHHy4wPJtHL+RrAeUhQ4a4ZXziiSeGKpFdfvnlctZZZxV4n/2RkpIiFqy2ZtCgQe65zP/oupa9LCDZMwMS3FXKd+s6HdfTJ4k9/eKLL+V76A0BBKIKXHjhhfL666/L3Xff7Sp9R+2RDggggEANCNgFBt/O3y0ffLZAZmnV15femic/Gz9RbNtFU30CFqr+YPLCqCNcsXqbWNg31hqb7p279xWZrF7d28sHU1e59tk5udJA95OteVErQNuFbjQIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAghUVMCf0NYvCUf5xCqXlrYJrNHKqNMDkrNRw7xhhXmvvPLK0CAuuOCC0GvvhYVS33nnHWnXrp0Ldk6ePFmysrJcVdibb77Z9ZaQkOD1Lj5fKdPFoXfkv7CKv15oY+7cua4yr4Vop0yZ4kKq1peFZL0mLi7OvQxv53Xz2nnPXnuruPvqq6+Gqg7Pnz9fMjIyXOeLLrpIbBosEGDh3jfeeENsXq3CrVW0LUslSy8Ya5V1y9P4/ZEr0Voo1wvrbt++3VUWtuEPHjxYpk2bJl715PBxWvj3ueeec4aLFi2SV155Rbzpuvfee123SMvsu+++c4OxIHdSUlL4IEv3Wtex7PUBt84FUkr3FuvL10yr8Q7QarxtIhuUfkj0iQACCCCAAAKxLmCVdy24+/6X6fL+F1ulZYcR4l1EFuvTXpumr3nz5lrEto7sSisairV2M+ZsitkqyTvTc4ssiomXj5YX384PJu9O3y+JCYmycu022bknPiYDyUVmgBYIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAjEv4MvOzg7mbA7I/nfzJPdbTUyGVdktdurriySO9Uu90+MkvlXZA7fbtm2TgwcPStu2bQuEaosdZxk75uTkyMaNG6VJkybuUca3l7r3/fv3u9BxvXr1irzHgsqpqalit+u1SrdlbTZs2OBCtfZeG065grDFjDQ9Pd1V4d2zZ4907NhRevfuLdHCv95g8vLyZM2aNbJq1Sp3a2QLNRdXYfi8886TTz75RF5++WW59NJLvcGU+jlnS0AyP8mTnG90/fzpzsbFv1+z2QljfFL/fF0/CfIWb0VXBBBAAAEEapnAkiVLpF+/frVsrg6f2TnllFPk9olHyahh3QtM9AefL5QPpu+RN998s0D7WPnDpvuFh0+Vpsn6QyesOf2yJ+W+Xw+TZo3jxZeQLA8/862cP/63cskll4T1xUsEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQTKJ+CCvBbezfw2T7I0zBvcXPoB+ZpqmPdkDfOeECdxzcoe5i39mI7sPq+55hp3O/v33ntPzjzzzMMKwwLbHTp0cNWIFy5cKHXq1CnT9OfuDErmtDzJ/kKrP6eV/q2+DiL1LoqTusM00ZtfcLn0b6ZPBBBAAAEEEEAAgXIL3HjjjdKvY4b8/OJjCwzjzgfflb5DLpCbbrqpQPtY+cOCub+4oF2RAPLSVVvk4b99IGOHtdT9yvryzpTd8vXXX8fKZDMdCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAKHuYDfTb8GHZP6+SVhiP5ZtKhs1FkM7hbJ/iooWbPyJC9dq6XSVInAn/70Jzfc++67T3Jzi97yt0pGWkkDfeihh9yQHn/88TKHePPSdN2aoZV4vy5biFe0iFriML8k9tb1mRBvJS1JBoMAAggggAACCJROwIK87366VNL27A+9Yc36HbI9zSdjx44NtYu1F8cdd5ysSdlRZLL69mgjZ582VP709ByZNjcoTz/9dJF+aIEAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggEB5BfKDvPruuCY+qTPCL3G9tLJuqG3Jgw1uC8rBaRq4nKlhXg1e0lS+QNu2beXvf/+7NGzYUObNm1f5I6iiIaalpcmCBQtkwoQJZa4knLdb16lv8ivxBovmKaJPsWV3+/gkSYO8cclUiY4ORRcEEEAAAQQQQKBqBPr37y89+wyXj6YsCo3gnY/myoCjx4p1i9XGpu2dDyPva//srCHStlVjmTRpUkzPQ6zaMl0IIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAtEF4sM7JXT2S9JoDVDuyJPgpvAuxb8OpmqY93PtJy9P6o6Kk7hmBCiLFyt711/+8pdij8OpadKkiUyfPr3Mk5y7M78Sb/YXAQluLdvbfe21uvRorS7dsQxp9LKNgr4RQAABBBBAAAEEShCwqrz333uLjBmxUyvzZoo/vrF07dq1hHfVbGfbd7VpjdSkZ2RK6vYDkTrRDgEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgQoJFEg7+hI0BDnAL4mj/OJLLttwg1s0zDslKJlf5EmuVumlQaDMArra5GwJSNY0rcQ7pRwh3ib5Id6k/rr+6rpMgwACCCCAAAIIIFAzAgMGDJDzL/qFvP3JCnn53ZXS46hxcvnll9fMxJRyrDbNqduzZI+Gdgs3M2evluOOO65wa/5GAAEEEEAAAQQQQAABBBBAAAEEENlegRsAAEAASURBVEAAAQQQQAABBBBAAAEEEECgwgIFKvLa0OIa+6TOSL8EtCpqzkxNVpah8FRQA7zZ04IS3B+UuifESUIHzQkXiApXeHoZQG0VCIhkr9cQ75d5kvO9rndpZZzRuiLxw3TdHeGXuEZUhC6jHr0jgAACCCCAAAKVLnDFFVfIK68E5ILLBsrAgQMrffhVMcCzzz5bZsxZI2eedFSBwc+cs1rGjDmnQDv+QAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAoDIEIsZsE9r4pY4GceP6ayCyjJVNg7s1kPl1UPZ/kCcHl+ZJ8CDVeStjQdXmYdg6cmBxnmRO0hDvN+UI8eo6Gj/AJ3WPj5P41hFX6drMx7whgAACCCCAAAIxK3DVVVcdNiFeQ7zyyitlllbfLdzMnL1Gxo4dW7g1fyOAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIFBhgSIVed0QNb+b2M0vwVODkpkZkMByDVdqxdRSN/tEcrWqamZaQPKOF0kaqFVStdIvDQKFBfLSg3JwQUAOTM+TwCrtmlO4jxL+jtMq0r21Eu+pcZLYRUO8rGYlgNEZAQQQQAABBBBAIJpA48aNZdGKHZKxL0saNdBbPmizaUuapO/zH1aB5GjzR3sEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgdgTiFq+1KcByaQ+cVJ3nF/83XTCo/YZZaayRfKWBCVrUkAyP9dKqxs0CZwXpV9aH3kCui7krNd147M8XUc0xLtMCcoa4tV10t9dpI6uo0m99A9dZ2kQQAABBBBAAAEEECivwKBBg6RTt8Ey+YsloUE88tRkueeee0J/8wIBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIHKFPBlZ2drud3oTSArKAfmacXUjzRsuU77K7bvKMNpJBI/wCdJx2rgsrcGgxtQNjWK1BHROrBXq/AuD8jBmQHJXaQr1N5yzLauQhbirXtWnNQZ7BdfHdapcijyFgQQQAABBBBAAIFCAvPnz5fbbr5annn4EtfltMuek3Xr7IcQDQIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAApUvUGKQ10YZyNQw71wN836iYd4Ua2Fty9jEa/Cyk0jCcL/UGeKX+LYavtR2NEeOQDBXi+5u0gCvBsNzZgcksFHnXduVubFKvF21Eu8ZGuLVdclflxBvmQ15AwIIIIAAAggggEBUgV/96lfStN5O171Tr1NkwoQJUfulAwIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAhURKFWQ10bgwrw/aJh3soZ512iLvHKO1qrz9vNJ4lCtztvXL3FNNYRJDrOcmIfJ27Tobu6uoGQvDUj2HK3Cu7ScVXhtduM0xNtDK/GOi5OkQRrircfKc5isBUwmAggggAACCCBwWAk8//zzbnonTpx4WE03E4sAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggcHgJlDrIa7MVOBCUgwstzBuQvJUaxswp58xqRVVfa58kDNJA72B9dNNAZgMCmeXUjOm3BfZqgHe1VuGdH5RcXXeC22xFKuckJ2iOt7dP6pyuVZ37a0XnOqwz5ZTkbQgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggEAMCZQry2vQGD4ocXJYnB6ZoZdXFGubNqsBcJGp11U6HAr1H+SVBX/vrEs6sgGjMvNUqOOekaIh3UUByNMAb2KCTll2ByaunlZyP0hDvKVqJt7eGeHXdoUEAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQOZ4EyB3ltZoN5Wox3TUCyvsiTnHka5t1TQYK6Wmm1qwZ6B+ijrwZ6O2igtx6B3gqq1sjbXYB3gwZ4l2rQ+8eg5K2rYNjb5iJZJGGoT+qeGCeJXbScc1yNzBojRQABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBCpVoFxBXjcFms/M2RyQAzMDkj0rIMGt2lbbVaipnx/oje/nk0StuprQUQO9DQj0Vsi0mt4c2KfhXa3Am7NcA7xLDwV491dw5LrofW1FEo/1S51Ruj600RAvq0MFUXk7AggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgjEikD5g7yH5iAvLSgHfsiTg18FJLBGW+ZUwqzVE/F30uq8fXwS30NDvVqFNS5ZE5ya46SJIYGAiC3/7HUByVkVlNxlQQmsr4QKvDaLiRrq7i6SdHycJA06tPxjaNaZFAQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQKCiAhUO8toEBA8E5eAKrc47Q6uxLtQgZ3pFJ+vQ+zXM6deKrHG9NNTbXSuydtFgbyuf+JIoy1pJwuUajC3vnG36WKfh3dW6zFcEJbhFB5VdrsEVfVMTkYSBPkka45eknn6Wd1Eh2iCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAQC0QqJQgr3PQ6qw5WzTMO0ers36r1Xk3atvcShLSSry+Zhro1SBvXDcN9XbWQG8Hv8Q30UBvXCWNg8EUKxDM0+q7uzW8u1GDuyka4F2j1XfXaoA3Td+my75SmnirxKwh3mP8UmeYBrdb64KnCnOl0DIQBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBCIPYHKC/IemrfAPq3OuywgBzXMm7fkUNCzMue7rmY722igt4tIfKdDgd52+ncjDfUS+qxMaRfQzdujod1UfWzQAO/6oOSt09ZbtOrygcodla+pLs/+PkkcqVV4e/vFX5+qy5UrzNAQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQCDWBCo9yOtm0KrzpmqYd35Asudo5dZ1Gvw8WAWz3lAL8rb3ib+jhkD1Ob6dVunVkK+/sU98Wt2VpuwCQa2inJeuwV0N6+bpMszdqM8bNLy7SZfhvrIPr8R31NH8dVcN8A7zSdJgqvCW6EUPCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCBQawSqJsh7iCeQFZTsNfqYq4HQhQEJbNUOeVVgZ8VbG2ggtK1W5m2v4V57bq3B3lb63FyDvXW1Bwq8RobXfK4tp7wdGt7dps9bLcCrj02HKu9aeFf7qfQmzpaXBrAHagXeIX5J7Kbh6zospEp3ZoAIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIBCzAlUa5PXmOm+3hnmXaXVerdCbuzQowV3apSrCod4Itcqrr0V+oNevgd64lvqwvzXUG9f0CA/2WnA3U4O6ukzydupDA7x527XdoQBvcKciHvAgq+DZMtXNNcDbT6vwDtIAbx+/xDUhwFsF0gwSAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQRiXKBagrzOICBa8TUgBxcHJOdHDY+u1EBvunapykCvjdgyolatV8O8/pb63EKfm2mot5mGejVA6k/W50ZaDTbJeq59TfCgFkHOCEogXc0tvKuPgAapAxrgDWzLf5aqqrobzmkB3ibq3ssnCQN8ktQvTuJ1mYg/vCdeI4AAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAkeOQPUFeQ+ZBnM10Juqgd4lGuhdosHSVZrkrY5Ar7dMLdhbV0OlTTVDqmFevz1roNeFTBvr3xrq9TfUdg30WR++BO+Nsf0czNZQ7n4N5+61x6Hw7h59rbbBNH3erd13HaqGbBV3qzpA7XF5Ad4eGuDtr1V4+/klvrVffPFeDzwjgAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACR6ZAtQd5PeZgjkiOBnqzlwUkd1l+oDeoYVPRyr3V3njh3mQN+FqYt7E+N9Iwb0MN8lqot54+1z/0bCFgffjraDt9+BN1auOqeIrzlEUr6wYPaiA3S8O4GsQNZmm7TH29X581wBvUqroBrbwbzLBn7a4hXlfxWPurttBuOINW2vVZ5WMN8Mb30Qq8fTTA20YDvIdJMDp8VniNAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIVIVAjQV5vZlxFXq3aaB3uVboXaGB3tUaQN2mXTXoW+ONBXw1qGshXtGHzyr01ssP8lqY11fXwrz6bGFe6y9B/9agqqs2axVn9eGzkK8NxyrTarjVvdYnF67V0HLQKuPas4Z1xR5asdhMgjnqoFV2zSHoQrz6bCFeDea6R6Y+a3hXLMSrYV6xfquryq6OKmpj899aZ727Bnh7awXeXhrgbUkF3qhedEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgSNWoMaDvCF5DbPm7gxKzhoN9GqYN1cfgY2aTLWwaqw3FtYNhXn1tVWdjdNQb7xOvwV6vQCvC/PqP9o6aAle/d8L9OYHeLVbrrbM9bkgrwvnWkDXAr6x3jTQWe7ok7juOvvd/ZLQTQO8zXR+bN5pEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQSKCMROkDds0gJ7NdC7IT/Um7tWq/SmaNXZHdpDLFTpDZvOI/6lVSFuoQHezlp9t6vPhXcTNMzr18rFNAgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACxQvEZJDXm+SgBndzd2igNyUgues00Ls+v0pvMF37OByq1HozUpuetfqwr4kW2u2g1Xc7aXi3i4Z4O2v13RZWgbg2zSjzggACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCFStQEwHecNnPZAZlNxUq9QbkLyNGurdKBLYrJV6CfWGM1XNay+8207Dux20Am8HvyRoiDe+jVbfrUv13apBZ6gIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIFDbBQ6bIG/4ggjs00DvFg32WqBXw7x5+jqgId/gLu3rYHifvC63QJJW3m2uod22GtbVwG5cO5EEDfC68G59wrvlduWNCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAwCGBwzLIG770rFJv3nYN9mqQN88e2zTUu00kqO2CGdpnbnjfvI4qEK/B3cb6aKnB3ZYa4G2tFXc1xGuPOGtH5d2odHRAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEyiNw2Ad5w2c6mCOSl54f7M3dGtCAr0hghwZ7d2qwd5cGe9O1b+2HRgUSDwV3m2tIt5kGd12AV4O7rTS4a49kn/g03EuDAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIFA1ArUqyFuYKHhQg71pGuzd+dMjoIHeQJoGe+2hod/gXn1Xba/am6Ch3Qb6aKLh3CYifns01bBuC31okNc9rJuGe2kQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBKpHoFYHeQsTBjWwG9inoV4L9+62QG9+qDewRwO9GRrsdY/8cG8wU999uFXvtcBu/UOh3UYazG2srxtpaLexVt1N1qq7Gt71a2DXPTfQ7nGFhfgbAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQKC6BI6oIG9E1DwN92ZqsDdDQ7179LU922OfBnv360ODv+5Zg73BLH2dpUM5oK/1Idn6qK5qvvE6Lq2Y66vjE6kbFF9dfV1Xw7j19NnCu/X1tT77G9pDA7sW3tUQb5w9a39CaFcBaRBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIHYESDIG21ZBDWsq0HdwH4N9drjUJA3/9mCvBrqPajP+rBAbzBb//aCvRruDWpA2IV87dmGpQ8J2Gt7oY1fw7X2vz7s2QVtNazrquRaaNdeW3A3UQO6+ixJ+toeGuS1EK/fArwa0LVnv4Z47eH6s2HRIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgjEvABB3oouIqvom6P53IMa5NVnydVnq9JrYV57WHjXBXj12YV5CwZ5XYjXr6Fce3gB3nhN4x4K8vq9IK92p0EAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQqD0CFh2lqYhAnFbE1Ydopdz8xnuuyEB5LwIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAbRegzmttX8LMHwIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBATAoQ5I3JxcJEIYAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgjUdgGCvLV9CTN/CCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIxKUCQNyYXCxOFAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIFDbBQjy1vYlzPwhgAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCMSkAEHemFwsTBQCCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAQG0XIMhb25cw84cAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggEJMCBHljcrEwUQgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACtV2AIG9tX8LMHwIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBATAoQ5I3JxcJEIYAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgjUdgGCvLV9CTN/CCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIxKUCQNyYXCxOFAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIFDbBQjy1vYlzPwhgAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCMSkAEHemFwsTBQCCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAQG0XIMhb25cw84cAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggEJMCBHljcrEwUQgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACtV2AIG9tX8LMHwIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBATAoQ5I3JxcJEIYAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgjUdgGCvLV9CTN/CCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIxKUCQNyYXCxOFAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIFDbBQjy1vYlzPwhgAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCMSkAEHemFwsTBQCCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAQG0XIMhb25cw84cAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggEJMCBHljcrEwUQgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACtV2AIG9tX8LMHwIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBATAoQ5I3JxcJEIYAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgjUdgGCvLV9CTN/CCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIxKUCQNyYXCxOFAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIFDbBQjy1vYlzPwhgAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCMSkAEHemFwsTBQCCCAQmwLLli2LzQljqhBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBw1Ag/jCcZiYZAQQQQKCaBSzA+95778nWTcvl+JPPc2O/4IILqnkqGB0CCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggULsEqMhbu5Ync4MAAghUicDXX38tG1fPkNNGNZGOyevl7X8/J8uXL6+ScTFQBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQOBIESDIe6QsaeYTAQQQKKfApEmTJDXlO/n5RYNl7Mhe0rtzkgzt30ieffbZcg6RtyGAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCJgAQV7WAwQQQACBYgUefPBBGTemrfTv1S7U3/mnD5aF876WFStWhNrxAgEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAoGwCBHnL5kXfCCBQgwIWGn3sscfkww8/rJGpCB//kRJgNet2zfPkqN4/hXgNv2XzRjLu+K7y/PPP18iyYKQIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAQG0Q8GVnZwdrw4wwDwggULsFPvroI5k+7QNplZwt+w74pVFyezn7/CukZ8+e1TLjhce//0C8XHfD7dU2/mqZyQgjeeCBByQ7fbbcedPpRbpu25EhJ178D1m/fn2RbrRAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBAoWYCKvCUb0QcCCNSwwMcffyxzZr4nx/SPl/PH9ZJTjm0lnZrvlDvvvFNWrVpV5VMXafw2LdU1/iqfwWJGYPN+2vH9I/bRqkUjqZ+UWy3LIOIE0BIBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQOMwFajTIu2XLFpkzZ06NE+bl5cmMGTMkLS2txqfFm4BYnCZv2iI9p6eny+bNmyUrKytS54jtrF97z/bt2yN2pyUCnsCD/5+984DToyj/+HOXRgqkkJCe0HtvAQIJCQEB6QIK0qWJIiAIIgSlyB8RVFBQQEC6IKAgVZqUCKGF3ksSIKEkIQRSSLn3P7+5m5e9N+/77u5779373t13Pre3u7OzM7Pfd2d3ym+fOecc237LfrbjmHVtQL+etuE6Q/32sH5f2ZVXXhmCNdu60uk324XFRCyR9BezPvC8CwU9aN8t7dFHHy10GH8IQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQKEKgSULeN9980y699FK76qqriiRRf+itt97yYW+88UbvIeHn8OHDbeTIkXbTTTfFnt+cAc4991wbO3asbbHFFlZXV9ecSSWOuxrzVCzzF154oa200kp20UUXFQvW6Nhjjz3mz/n+97/fyJ8dCEQJ3HfffdanxzzbcN1hUW+//ePDxtozTz1k77zzzlLHyuVR6fTLdR2lxKMyOnLzVYqeutF6w+zxxx8vGoaDEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIJCfQJOEvF27drXjjz/ejj76aHvjjTfyp9Dg+4c//MGHlShObvHixQ1HLJUV1+xJZdxYsGCBj23u3LlVI+RtiTxJQH3GGWfYxIkTy0azWoTQZbsgIqo4gbPPPttO/tGOefMxcIWett1WwxJ9TJA3ggSelU4/QRabLci0adNsYP+eReNfeVhfUzgcBCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCKQn0CQh77Bhw2zMmDE+1VtvvbVg6hKl3nzzzf74/vvv79d9+/a15557zm677TY76KCDCp7bEgdOO+00u+GGG7xVyY4dO7ZEkrFptESe7rzzTjvvvPPshRdeiM0PASBQKQIzPnnfNll/eMHk9951E3vmmWcKHm/KgXfffdfi0t9kg+HNln5T8l6Oc3X9Kw3rVzSqgf17Wd2i2UXDcBACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAE8hNokpBXUR588ME+5uuuu84ymUzeVB566CH78ssvbdlll7Vx48Zlw6y33nq26667WqXFs926dbN99tnHVlpppWzeKr1RjXmqNBPSb38EHnjgARu5+SpFL3yQF5J+UTRMqQcfe+yx2PRXHNrXCVmbJ/2Q7/fee8+0XHbZZSYmWlrC+evfbNXYpDKL5/r8xQYkAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQg0ItBk87MS4sq9//773sLupptu2igB7dx0003e76ijjmok2j333HPt008/tZNOOsmGDBnS6LyZM2faf//7X/vPf/5jH3zwgW277bbe+q/ir6mp8WHnzp1rslxbW1trv/3tb61Dhw7ZOB555BG74447bP3117fDDjss66+Niy++2IvODjnkENtwww29Rdq//e1vtu6669rhhx/uwyr9s88+23r06GG/+tWv7MYbbzSJ2iSmW2ONNWy//fazUaNGNYpXOxIzyzqoxMvKf58+fWyHHXawAw880JTGK6+8Yj/4wQ9MIuZiTlZyc/Ok8GeeeaZ9/vnnduqpp/p8S9D37LPPmqwjSyR9wAEHeB7F4tY5d999tz311FM+mH6f119/3SQe1m8SdUE0qHx37tzZNtlkE389I0aMiAZrtP3FF1/Yn//8Zx+/fqsdd9zRn5NGKF1XV2eTJk3Kchw6dKi/PlmAljVnXPsgoHt08MBesRebWfyVL5srr7xybNg0AT788EMn5C0uZB08oJc1V/rK64MPPmj/fejfNmbkGvbZ1Cdt+pTn/CXoGXPkkUdaua85ykfXr+uLcysOW94/p5szL3F54DgEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAIHWSKDJQl5Z2ZVIVRZ5//GPf1iukHfOnDl2yy23eDbf+973GjG65pprvABYQtuokHfKlCm28cYbeyu+4QSJ2eTOOOMMO/300/22hKe33nqrFwMfeuihjcSxV1xxhT+2wgormI4F8e/ixYu9GFYWgk888UQfz1tvvWWXXnqp7b777lkhr8Sy8tP5s2bNsr/+9a8+rP498cQTduWVV9oll1xiRxxxRNZfGxIUh/yFA7fddpv985//tPnz59ujjz7qRa1xQt58eVJ8ui6Jn8X9N7/5TUjC/ve//9nf//53L3y+/vrrs/75Nl566SV/beGYztWiOIOQV4Lko48+2q6++uoQzK/vueceL3AWj4MOOqjRMe1MmzbN1llnHZ/HcFCiYbnHH3/cigmAQ3itx48f71lG/ZQX/R5PP/20DRo0KHqI7TZKQB8IjFwvXrg9fOjyXmhfqpBU6chJqB+c4pL/Pj8oLuRVeKWvDw5KTT+kmbuWWPeJh2+xVQcuscG9P7e9d17TPpz+uQ9287+edB8ZTPPPszQi+dw0yrGfRGxdjnSIAwIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAQFsjUFuOC/r+97/vo7nhhhtMQtmoCyJOCVdlHTfOzZ4923bbbTcv4pUl13vvvddbZr3gggv8qWeddVZWGCxxrsLKSYganPJw//33+12JXmVNNjhtS8S72mqrmay8xjmdL9GqRLsSwEoku9VWW/nTfv7zn5uszwb3r3/9KyviPe6447xwdeLEid6i73333edFvCFsU9cS8SoNiVoV9/777++jlGhagtliTsLpN954wwuKFe6UU07x+88//3z2NFlCDiJeXfvLL7/sLYNKFC0ny8Xz5s3Lhg8bl19+uRcsB14SMMuKrtx3vvMdmz59eghacK10JYiWu+iii7zlYd1Ho0eP9gLhPffc02SNGdf2CUgcG2cRVxQURmHTOgl1r7rqKrv6r3+0R+6/0aa+9ZA9/pArQ26Rn6xwDxnYOzbaIYN6edFvbMAUAR5++GGfj5EbLWt777KJz4fyssXGK/vlxB/uYJ2WTDZ9ENFcbviQPomjDmLoxCcQEAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAASsyRZ5xXDUqFHeUqpEr7JWu+2222bR3nzzzX77kEMOyfoV27jpppvs9ddft4022shbmJXVXTlZedX2McccY7/+9a9t33339f7bb7+9F9rK0u1RRx3l/Z555hkv1h08eLB99NFHJquWwQJuEPzK+m5SJ6HfAQcc4IOvueaa3lrw2muv7dOQIDZYmf3DH/7gwygfQYgqD11Lz5497YQTTvDHy/FP1nCjaUgsK6vF+g0k7t1mm20KJtO7d2/TIgu8crKGnGtJtGPHjnb++ed77mIst8Yaa9hmm23mLR1LDC3OEtfmuhtvvNG+9a1veW/x2nrrrW3zzTf3Qsdrr73WC4dzzwn7dXV1dtJJJ/ld3QsS/8qJt9IeOXKkF3brNw0ibh+Af22GwOTJk/21SBiqJbNkU5s5sy57fXMXZDdtyoez6sNOmWEff1lrjzzyiN+XhdoVV1wxGzAapzzD/uuvPG3z57xvy3RaYl9162PL91rGlnxdH+eC+Qts6tSpNuGpF7zoP6Q15cOZPt7hQ5b3a+1P+WCWTZv9uA0fPtxy0/aBGv6FdIPoVfvRfEbPnTBhgvXpPttWX3GIu36XxkczrVvXbvbZrPnZdEdsvJKd/+frfTmMnhtNM7qdJn2dN3RQvZB3qks7uMAhiHyHDa7nUIqQOsTJGgIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAQHslUBYhr0SfsvJ63nnneWu5QcgrUek999zj2e69996JGD/77LM+3JFHHumFu9GT9ttvPy/kldBXFlm7d++eFZLKAm8mkzFZ6ZXIU07WXJWurMsef/zx3i8I/bbbbju/n+Tfzjvv3CjYqquu6sV6EuNJKCwnK8BBJCxLublO4t5yCnlllTbqdN177LGHySJuOQR14pOPUdeuXW3s2LF2xx13ZK89mg+JmoOIN/hLxHziiSfaj3/8Y29dN/jnW4upRMISGQcRbwjXq1cv++53v2vnnHOOjwchbyDTdtYS5N9z1y3WbZnOVrdolhfSfjV7uhPXdrWnXphuz7/yqc1dUGNDB/bwZT1Tt8j69elqC+bNsmU7zLd777jC5i9YZGs5AfmMOZ1MgvcpU6bYfx+6y0PKLPnShg3u4/2emPiO1Sz+xFZfuZ/V1Xa1JQu/silTP7PM4hofdnD/rn59/iX325abrWkfTPvc709tEA+P3GyYT3vqR7OsV/c6mzztZbv3zqttrbXWsg8+XuTTjop0dW0hH0MHdPJxKW+Z+cNNcchNdkJgnavzFP7Y/fvbvK8+swnPfmjPv/yhqfytumIvH1b5GNi/pw3uu6houj6w+xfSH+as7GYWf+m9C6UvbnIS8N54+wT74KPPnai3Xvgf8vrBhw3Wems6mliO/dbm/hz+QQACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgEByAmUR8io5iWwl5JUF3t/97ne2zDLLeLGnjkkIO3DgQG3GOk0nL/fDH/7QW4QtdMIrr7ziLeH26dPHttpqKy+ilXVcieiCeHinnXby1mBlqfarr77yIrgQ/5Zbblko6kb+EpQqjVy37rrr1lsLdeJhubfeeisbRJYxc53EziGfucdK2V9ttdWWOk3XLiertuVwEilLsPvUU0/Zm2++6a39zpkzxwttC8W/4YYb5j0ki7pyiquYe+GFF/xhiXllATjXBUumQfCde5z91k3gscces/vuutXWWGV5W32lekuvy3WXsHaBPTPpfbv61tf9BW618QAnLF3Ohjlx6fLLdbFePXq6+/Jr++zzqU58OsMmv/uKvf7OLC/0V5yPPny3DR3c2yRiHbx8N7f0t8cnTDLFfP+j73phcKfaAVZbW+sFwkrks8/m+bQef2a6E+pnnAB4OXvy+ek2ZEB3l3YPZyl4rg3s282JeHva3PmLrGOH2Tb383ft0YfesyeeftunHRXyRvMxqNdqXlCsfOjalixw1n+daPbRh16pP3fsLqbwZx69j2XqFtjzL01x1zPT53OVIZ1sUP/u1t9Z1V60aIntMnZlJyKuT/fGfz69VLr+Ity/kP7IEau4tJcvmH6IQ+dNdQLe8/90v2216RAn/q0X8ob4pk6dZh9M/9KmTpvjhcZj641wh8OsIQABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQCABgbIJeSUi3WijjWzSpEneIu63v/1tu+GGG3wWDjzwwARZqQ8ioWhwEgPnc0pr4cKF2UOyACtruFr69u1rEnnKEm+nTp1sl112sSeeeMIvgwcP9iJUCYu7deuWPb/Yhixg5nMS/EWdrMUGt8CJ8mQtONd99tlnuV4l7+emr4hklbdcTix33XXXrGhXguYBAwbYcGcxNFgezpeWrO/mcz169PDewYJxvjDymzlzZvZQod9fAUJ82cBstAkCW2+9tfVerpNNfe9F69C1s7umibaorv45sNF6w806dLN5ziKvBLxmi5wQt8Zmzqm1JU68/s7UjLOUvYb1WzDAhvXoZ3vuu6a/XxXn4AHL2dT3X/OMPppZH9/wldex5595zMaNWsO6d+1k/VfoYTNmL/BxKmDf3vXhdt9+JVumqxMND17WPvhksU+7Pn2zWS7teQtq7d3JX1qmdjnr0XuI9R26go0at49P2yfY8C+aD6c1tg6R51uHZQZZhy5dbPjqq/tzV1p1fW9Bd8bsxda1W61ttN4wGzKor0trsU2bkbHajhl3zfqIoNamf/a1zfyyk62x9qZ26qnbLZVuyIPSX7xwttUs+cqKpR+NY+ig3rbP7pvaioPry+8H0+otBw8dVP9xQ6bDHBsyZKBlavRb4SAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAgLYGyCXmV8GGHHWbHHnus3XTTTSaLtRJ8SgAqy7hJ3YgRI0wWdG+99VbbbbfdEp02btw4++Uvf+mFb0FQK7Gu3Pbbb28///nPfZzBiq2Ev+V2gwYNshVWWMFbrZWYWaK5qPv000/t7bffjnpV9fYpp5ziRby77767jR8/3v+eQTy855572t133503/7KUnM8Fi8WjR4/Odzjrt9566/ltibVffPHFrD8b7YPAmDFjTEuwnH3DrRNs2V711rx3GjfQdhpn9tX8esH6lA+/EX0/+dy7tqBmJdtk6+/bJg6VrGIHy9iyihuNM5Bccc1xNm/eXFumy5e20vD6NGo7dnBWb/uY4lu4uIMPetzho23O/Hrh/8gR64fTG61feP0L69hjJdt71wMapR0NlHtt0WPaXnHNxvk+4IAD7I33n7MNN1jHdhgzyAd/9e16IW0498Npn9u/H3rGTj39XH+N4ZrD8eha6YtFsGodPabt3PTlN3zI8nbacd+2wDqs5R91tR3K+iqJRs02BCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIACBNk2grOqrvfbaywt5b7nlFlt11VU9uP322y+x9VudsPnmm3vRrYR8+YS8b7zxhi1ZssRWWWUVCxZbZQlYgmGd07lzvWXI7bbbzqcvQbEEtv/+979tk00k8TMLx/xOGf9ts802dtttt9lRRx3lLQD37t3bxy7rwWmsEpcxS4mi+uKLLxqFmzt3rk2cONH7/eIXv7D11/9GvLho0SJ77LHHGoWP7jz++ONezCzmUXfXXXf53Y033jjqvdS2fi+5119/3aZNm2YSSEedLPZ+/PHHJsu/Q4YMiR5iuw0RGDt2rL8aCVPnL+xgQwbWlyV5BglpVEwq4a3ChvPyoch3LJPJ+OdGt+W72gdTpzqruD2tU/flbchK9RZnhw5911Z3VnK7dS1uwVvpd+5VPP2Qp3z5CMei64MPPtiuuWKavT1ljm2x8cr+0Kjl+2aDfDj9c/vnPZNsy6138B9RZA8U2RCjYmLf3FOVhlxgHda54bQ/dOjQfN74QQACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgEARArVFjqU+1K9fP5MFV7lzzz3Xr/fff3+/TvovWMu99NJL7aqrrrK6ujp/qsS7v//9772odNSoUV7MG+Ls2LGj7brrrl5Aeu2115qsug4cWG9hs6amxmRBVlYoZeV38ODBXpgXzi3n+oILLvCiYVneVR4OP/xwO+aYY2yNNdawRx55xIuNy5leU+MK1ovvu+8+mz9/fja67t27++uQxz333JP1//rrr+2II47wlnqznjkbX375pRctB3GwfrfLLrvM/v73v/uQ4ffNOS27K0H2Djvs4PfDbxoOTp482fTbS7h98803B2/WbZxAsALbHJcpUf+vf/1rG7PD/rb12H39MnS17ezQw4/1y8orr2yff7EwUdLlFpZLcKs8PfH8HCfYfd6envS+ffTxbL9o//eXPWDzbaj96le/SpS/UgJN/uAbq8dx56cRCMfFxXEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAALthUBZhbyCdtBBB2XZSTS75ZZbZveTbCi8RLxyRx99tEkcvPPOO9vw4cPtlFNO8f5//OMfTWLTqAviT/ntscce0UO24447ZveD0DjrUcYNXa8s/6611lpZUfFf//pXmzNnjv3tb3+zkSNHljG1pkc1YsQIH8kTTzzhLdxGuR166KH+2JlnnukteO6yyy7eOu6NN95Y1KLnpptu6kXL+t1koViWeY899lgf1/jx44taTA1XdN1119lqq61mL7/8sre6q3wqLllGDSJpCYpxbZ/AFlts4QWscVf60fTZprClOgl2x40bl120r0VxTnj6ndhon5k02UaPHh0bLm0A5WnkmH3sjQ+72WPPzbYnX/zSbr3ndb/fc8DmdtZZZ/l8po03afik4mTxx0EAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIBAegJlF/JKUCurqnISW8oiblonS7aXX365F9XJwuuDDz7ohbGyxCqhbD4rv2PGjMkmI/Fb1EkEGtz2228fNrPrDh06+O1OnTpl/eLyLSvAcuHccKLy+OKLL3oLwDfddJPde++99s477/g8y6JtUhfijeYpem44ns8v5C16LN/2AQccYBLXSmwr9/jjj2eDScCrY/otP/roI/vPf/5jffv2tbvvvts22WQTHy5fOhL8BsvHEydO9NZ7ZZ1YgsPTTjstG782amvrb7/ca+zdu7fnduSRR3oLypMmTTLFJXfCCSf4+2G55Zbz+/xr2wRUlh954s3Yi5zw9LuWr2zHnhgTQOlPeCZeyPvW5LnNJqjVdR12xHG21bb72KBVxlifwVv5/fPPP7/Z0gxYVlllFZv2SbxId/LUmV50H85jDQEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAALJCNQsXLgwkyxoZULNnz/fpk2bZgMGDFjKCm9lclQ4VVm2nTFjhq266qq27rrrNgqo65B1SwmTJewdNmxYo+OV3FmyZInNmzfPJKhdZpllGmUlk8l4Ia+Ew/oN4gTO4WSd9/HHH3uhcxAKh2Np19OnTzfFp/SD+DdtHIRvnQRUVo46fD/7y//taQP798p7Ec+9NMV+8dsnbMKECXmPN8VT6e+y0yh79v7TC0aj9K/658d2zTXXFAzTWg8cfPDBtv/Oy9vIzVYtegmbfusce+PtaUXDcBACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEliZQdou8SyfRNJ+uXbuarEJ27969aRG1wNnPPPOM7bvvvjZ69Gh75JFHvDhWAt6HHnrIW+SViHe11VarKhGvsEikK8u7uSJeHZNwVwLkgQMHJhbxhvN0TlNFvIpL8QwaNAgRr2C0MydR/OZbyiruuwWv/Lpbn/TWowsGaMIBpd+n34o2/dMvCsZy/iX32X777VfweGs+MGrUKJv+SeFr17WJzYJFnVvzZZJ3CEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACFSNQ9ULeipEpIeFDDz3U1lprLW9191vf+pb16tXLevbsaTvttJPdfffdXtR61VVXlRAzp0Cg/RI47LDD7Na7nssL4IVXptqCJb1sxx13zHu8HJ5K/7Yi6c/6qluzpl+Oayg1DgmZJzz9TtHTdVyCXxwEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIpCeAkDc9s4JnSLj79NNP2znnnGNjxozxVm5l6VYWek888USbOHGijRgxouD5HIAABJYmICvWM+YsY/c98spSB3/jrOFuu91uS/mX00Pl95V3vrYXXv1gqWiV/g9+8IOl/NuKhyxhxwl5353yqbc03laumeuAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCDQkgQ6tmRi7SGtLl262Mknn+yX9nC9XCMEWoLA6aefbjddf5kN7N/TJzegX0970QlrP53dpdmtwUpI/L0DjrLrbrvUamrMNlh7qH3y2ZwWS78l+BZKQ9c+9+uO/nr791sub7AXX/3QjvzxUXmP4QkBCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACxQkg5C3Oh6MQgEAVENhll10sk8nYfyb80+dm2a7TbdrMjiaB7+qrr97sOVT6b7zxhkv/NevYpZ89/uQbLZp+s19gkQT23Xdfu/2e5+2HB2+7VKiXXv/QPp7VycQHBwEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAALpCdQsXLgwk/40zoAABCDQ8gTuvPNOn+ibb75pu+22m62xxhotmolKp9+iF9uQmFjvtft2NvGeXyyV/G8uudc699rcxo8fv9QxPCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAgngAWeeMZEQICEKgSAhLvVtJVOv1KXLvE0l17DLCHJ7xhY0eumc3CK29+ZLWd+9r666+f9WMDAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABNIRqE0XnNAQgAAEINDeCJx22ml20V8n2GtvTfOX/tnML+23l9xvG26+m+2+++7tDQfXCwEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAoGwEahYuXJgpW2xEBAEIQAACbZLAueeea1/PectWHtzBPv8yY/c++pHdf//9bfJauSgIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAItRQAhb0uRJh0IQAACrZzAbbfdZrfffrutvfbattdee9laa63Vyq+I7EMAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEKgsAYS8leVP6hCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAALtlEBtO71uLhsCEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhUlgJC3ovhJHAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQKC9EkDI215/ea4bAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAoKIEEPJWFD+JQwACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCLRXAgh52+svz3VDAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIVJQAQt6K4idxCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAG0erpgAABAAElEQVQIQAACEIAABCAAgfZKACFve/3luW4IQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIACBihJAyFtR/CQOAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQg0F4JIORtr7881w0BCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCBQUQIIeSuKn8QhAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAE2isBhLzt9ZfnuiEAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQqSgAhb0XxkzgEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIBAeyWAkLe9/vJcNwQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgEBFCSDkrSh+EocABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhBorwQQ8rbXX57rhgAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEKgoAYS8FcVP4hCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAALtlQBC3vb6y3PdEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhUlgJC3ovhJHAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQKC9EkDI215/ea4bAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAoKIEEPJWFD+JQwACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCLRXAgh52+svz3VDAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIVJQAQt6K4idxCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAgfZKACFve/3luW4IQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIACBihJAyFtR/CQOAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQg0F4JIORtr7881w0BCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCBQUQIIeSuKn8QhAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAE2isBhLzt9ZfnuiEAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQqSgAhb0XxkzgEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIBAeyWAkLe9/vJcNwQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgEBFCSDkrSh+EocABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhBorwQQ8rbXX57rhgAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEKgoAYS8FcVP4hCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAALtlQBC3vb6y3PdEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhUlgJC3ovhJHAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQKC9EkDI215/ea4bAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAoKIEOowfP/5XFc0BiUMAAmUj8OGHH9rcuXNt2WWXLVucpUY0e/Zse+mll+yzzz6z5ZZbzjp16pQqqs8//9xeffVVmzFjhvXq1cs6duyY6nwCQyAfgfnz59v7779v3bt3r/g9lclk7N1337XXX3/dampqrGfPnvmyXNBP57/11lumcp+kjKUtkwsWLLD33nuvKlgVhMABCCQgUE3lXtmdMmWKL7u9e/dO/W6sq6vz5VLPDb1Xq+F9n+AnIAgEKkKgmurF8+bNs0mTJtnixYt9vTYtkDlz5tgLL7zgT1O5V72hkGtq/aJQvPhDoFoJVNt7vhycmuv59fXXX/u2x+TJk61bt27WtWvXcmSXOCDQ4gTUXzRt2jTfhq6tbV82KtK269viM7LFbzgSrAoCbelepl1fFbcUmWhFBNrCe3/69On28ssvm/oG1B/Y1PrLzJkz7cUXX/R1etXrcRBoKwSaqy1cKh+1Ob788suq6YNvS/WhUn8TzmsbBFry3d7UfvlqIV5tz8dq4dJW89GSz/tqLSNpxtJDXXvhwoV+/K3Y+FlruWfaV29na/lVyGe7IvDvf//bll9+eevcubO98sorS127BvzPPfdcf1zhct2SJUvszDPP9HGsvPLKNnz4cL+tc9QxmNbtueeePi3l55NPPlnq9Lj86ISLL77YVlhhBdt6661t8803t6FDh9pdd921VFz5PCQ+OO2006x///621VZb2aabbuobSbpGpR1177zzTjavym/uMnXq1GhwGzJkyFJhwjk33XRTo7DsVA+BWbNm2X777ed/O63zuddee8022WQTH+ayyy5bKohE4bqfJJZdd911vfB1m2228WK6pQLHeDzzzDPZ++inP/1p3tBx+VGFe+TIkbb22mvbmDFjbJVVVrHvfOc7vjMvb4Q5nr/+9a+tb9++tt566/kyJrH7OeecY4sWLcoJWb+bpkyqU1FsJA6OspI/DgItRaDayv1FF12ULff/+te/8mKIK/c6T++h1VZbzb8fVW5/8IMfmETzSZw+jtloo41srbXW8s8Nve832GCDvHWHaHwa7A/vP4WPuokTJ2avK7wPc9d33nln9BS2IdCsBKqpXlys7AQIcfViCXD1fld5V71Y5V/l8dFHHw1RFF3rgx+9k/XO11p1/Q033NAPAOY7MW39Iu65lS8N/CBQDgJxZUdpxN2fLV2/T1I3CWySPD9C2LBuSrs+SfvkkUce8W0OtZn0PBkwYICdffbZIXnWEGh2AknKUFw94Pbbb7c11ljD9xepTiwx+kEHHWR636Z1Ser3xfJzzTXXFKxHr7TSSmmzY3F9cYowTbu+nM/I1BfDCRBoIJCk3Ffb+75YftL2Q+e7EdK060M7PreNrv1oP/Zuu+1W8HmksLn9APnyhR8Eyk2gWFlSWknaA+V87yd5zxZ67zeljKmv/tBDD/Vjdttuu63vy994440LjknEPTffeOMNPwYycOBAGz16tGmtMQ/1BeAgUCkChcpOyE/cfd2UtnBII6yTtMXjnj86/qtf/cqPs6+44oqmRWPz8tOxJC7uGRiNI0meqdtHibFdKQJxZVn5inselPPdHtemL7VfPkmZjPsNCtU70o7HlfP5GJdnjjedQDnKSDmf981VRkSq0D2ej2K+9mzU72c/+1mj09KMpeujAOVF4+Wqa6uvsF+/fqZnTWt3mLhs7b8g+W+1BL766is7+eST7a9//Wv2GiRijTpZyjnkkEPsf//7n/fWl3+57qijjrJrr73WN9glFNBL/brrrvONCn1BIXFfUnfjjTfa3XffnQ1eSn4ee+wxO+mkk2zw4MF29NFH+wGVv/zlL7bXXnvZ22+/7R+k2QTybFxxxRX229/+1jTwceCBB/rOiMsvv9wkXPziiy/sd7/7XfasTz/91G/vvPPOvjGVPdCw0aNHj6yXGlgKL+GjBi5z3aqrrprrxX4VEPjvf/9rBxxwgP/tlJ1ccbruUd1fxx13XDa3uWFU6ZH4TU73pn5riVIvueQS23LLLb0ITp1eSZy+gFKZDC63jCTJj/J35JFH2rPPPuvFPRLy/uMf//ANnDPOOMMuuOCCEH3e9amnnmoXXnihFwOdfvrp/sv766+/3s466yz76KOP7M9//nOj89KUSQ0oSDwvd/zxx/sKjzodVNnToP9zzz3ny1CjBNiBQJkJVFu5l+XraEOilHJ/xx132L777uvfbSpPEsrr3a33teoDN998c1GK6nTYZ599vEVxNUr03nvzzTf980IDABL76aOZfO6UU07JPkNzOxv10c0xxxyT7zR74IEH/Hsbi/h58eBZZgLVWC8uVnZ0+XH1dJW37bff3lvilWh/7Nixvkyp41/+Tz31lKn8FnISCqjzQfVXnS8hsD76Ux1A72RZ5taHQMGlqV8kqa+EeFlDoNwE4spOkvuzJev3uv64ukkuo7jnR2547Zfaro9rnyhuzZKz9957e0tCP/nJT3xbXW0oCXnXX39923333RUMB4FmIxBXhpLUA9TmPeyww/z9q7Zvnz597N5777W///3vpndm6DdLchFx9fsk+fn44499UnpHd+nSpVGy+T7CbxQgZyeuL07B07Try/mMzMkquxBITCCu3Ffb+z5JftL0Q+cDlaZdn6Yfe6eddvIf/OWmqWeZ+h2WWWaZ3EPsQ6DZCCQpS3HtAWWunO/9uPds3Hu/KWVM41w33HCD72/Xx0cS8Ghf415PPPFEo5m64p6bmjlPhkE0RvjLX/7SVl99dXv44YftyiuvtC222ML3E2oWQhwEWopAXNlRPuLua4UptS2sc3NdXFs8yfPn8MMPNz03NE72ve99zyehNoeMZ8k64NVXX52bbHY/yTMwG7hhIy7P1O1zibFfCQJxZTnJ86Cc7/a4Nn1T+uXjymQc/2L1jrTjceV8Psblm+NNI1COMlLO531zlpFi93g+ij/60Y9M78dcpzw++OCD/qPUcCztWLrilrZNH7Z997vf9YazpI3T+/uWW26xPfbYI0Td+tbOvHCGBQbcAy1/D7gvAvTEyrgGfMZ9leu3nUguWx7dQIT3UxjX4M+E8NHfylmc9WHGjRuXcaLd7Lnui4+Mm3Y34yoEGWfpL+sfPTd32zVA/DnOUljGPdx8vIo/hEuSH/eVUsYJeP25TlyQPddZ8/N+TrCY9QvxRtdOROjDORFvxnVIZMO6CmD2+pXPcI4TP/rwjz/+eNYvHMtdu6+Sfdj/+7//iw2bey77LV8+xPzWW2/1v5nuYyd289tOwNbo93MCXu/vGtUZ/bYqL04klzfMQw891MjfNbx9eCcUb+Rf7Pf+xS9+4c8ZP368X7sKQqNzk+Tn0ksv9eeq3Ie03DS3GV2D8p+bzxBGazc1gA+jcuqm9cme7wYDMipfOv/pp5/O+qctk06s6ONwHRPZOJSus/Th/d3HB438o3ljuzLlpK1xr7Zy78QxGdcAyN7/KmNOdNuoHCQp9zvuuKOPw3UWZs/Ve05lWXE6C/hZ/3y/qeoKCnfVVVc1Cuc6P7y/8pDvPNeA8cd1vt7PSi9fuFw/PTv07NUSfR/nhmOfcl+ueyDUc6ulXhxXdpLUi1U/Vbl1orlG5c5Z8PP+ce/UE044wYfLrdeEvDnhXaN409Qvkjy3yvXbEg/Pieg9kKTsJLk/Q5jcenNz1O+T1E2i1xjKaJp3b1Pa9XHtE+XNfUzknyd/+9vfss+NDz74wPup30BtjOg1sE25Lec9kKQMxdUDlB+F0f3qBLTZ+1Xt6FDPdh+7ZP2L5T9J/T5JfvR+13s+aZ9boTzF9cXpvLTt+nI+IwvlG3+eE8XugSTlPtynrak/L00/dD4+adr15ejHVjtCzyn3wX+i52O+PONHWU97D8SV7STtAaVZrvd+kvdskvd+Pg5xZUxjfSqDGuuaO3duthyqL0D+bgbKrF+S52YY+9CzKJof91GRj09jcFF/tim/zX0PxJWdJPd1U9rCudcX1xZP8vxRW0Pl0xmEatQnrv5x+elYsX78uGdg2jwrfIizHP0fuemzz3MiyT2QpCzHPQ+UTrne7Una9KX2y8c9R+J4Jal35Isj33hcOZ+P+dLEr3zlv1xlpFzP++YsI6Xe4/nuN41v6b36wgsvZOuwoY8vyVi6xst1vtrZ0fjdDBbeX8+cqH9r2651F4eDAAQqQGDmzJn+y2JZ5O3Zs+dSOZD1WVml1Ve67sFt+SziuQ4A/xWgrNVGj8sSrab7kKWAXOt7SyXU4PHTn/7Uf82r/OT7cjdJfmQlTBZBZd0vaiHMPXT9VD+azlMmzgu5MH236wRpZNFE5tUnTJhgbrDRm0MP57sGk9/s379/8Cq4lhUiuaSWVwtGxIEWI6B7SVYnn3/+eXNi9bzpatooWbbWl06aYjOfkxXm3//+90tZYnYvcB88WNTId27UT9Zq9dWt7mdXKYgeym4nyU+4z/XlfHA1NTXmOuP8rqwKFXLBytDBBx/sp9kO4WRd44c//KHf1ZdQwaUtk2IuJ0t/URf2w/HoMbYhUE4C1Vbu9U5UuVPZX2eddfJealy5l5XM2tpab6V+0KBB2ThkuUvT4MnJom4hp/e4rOjICsD+++/fKJis9OrdeNpppzXy147qCLL+7cS43tL9UgGKeDihj69DyHJoroWxIqdxCAIlE6imenGSspOkXqznmazu60vgqJNlXTm9o4u5++67zx/WNJxRJ2u+TpRv+jpZ3IJLU7+Ie26FOFlDoNwEkpSdJPdnS9bvk9RNAqckz48QNroutV2fpH2iGXtkgUBtn+jzSG1ozQbiBiR9n0M0P2xDoJwEkpShuHqAE+x6y3Wqo8oSb3BqR4c6evSdGI7nWyep38flR/G6D2u9dWDV85vi4vriFHfadn25npFNuS7Obd8EkpT7anvfJ8lPmn7o3Dsgbbu+qf3YmqVP4wXqD9BMZzgItBSBuLKUpD1Qzvd+kvdskvd+Lr8kZUwzXcmpz79Tp07ZKE488US/rWmDg0vy3JS1Q42RqE8g6jSTj5xm7cFBoCUJxJWdJPd1qW3h3OtM0hZP8vyZMWOGj1r98NE+cW3LTy68o/1Ozr+4Z2A0eJI8Kzx1+yg1titBIElZjnselPPdnqRNrzyn7ZdPWiaL/QZJ6h35zs83Hleu52O+9PArL4FylBHlqFzP++YqI8pjqfe4zo06J97141uayXbttdf2h9KOpQc9jNq9UbfyyiubZtEKdfHosda03bE1ZZa8QqAtEdAU9cUEqBLCKoxEuYWcwpx00klLHX7yySft5Zdf9iJIiWDjnIQCt912mxfgbrnlll4wlHtOkvy4Lxr9aTJfnuu22WYbe/TRR01TAAVRYG4YmVCXU+eD8uS+mDL31YgXOknslMsrCDDViLrsssv89EEaoFRYTS0UdaFxpUGf22+/3U9n3K9fPx9W+enQoUM0ONtVQEDTvx599NGmwTk1AvK5P/zhD0vdF7nh8olu3Vc35r7U8UFVmY9zGgBXXuQuvvhin6d85yTJj8qmRPpRQZ/i2myzzXyUxTrdnLVtH6ZXr15+Hf2na5J7++23s95py+R3vvMdP23QJZdcYuedd54XH6ripH25vfbaKxs3GxBoDgLVVO6ddTo79thjfeNJH9S4ryrzXnJcudfgfrRzPkSiqUT0npeLfvwSjoe1+8LRb+rDBr3LnEVgc18U+vec3pcbbrhhCNpoLfGxGpDOorb17t270bFiOxqM0LkM+BWjxLFyE6imenGSspOkXqx3Zr73puoBcqGDohBL1X2c5cFGAwchbHjX6/kQpu9OU7+Ie26FdFhDoNwEkpSdJPdnS9bvk9RNAqckz48QNroWl7Tt+qTtEw0kyqk9ntvmVdtfLjxT/A7/IFBmAknKUFw9QH0++cqI6uua5lbvy0J14ujlJK3fx+VHcWpQYPjw4TZ58mSfB723N998c9/HpHp0EpekL07xpG3Xl+MZmST/hIFAIQJJyn21ve+T5CdNP3Qum7Tt+qb2Y1955ZX+41z150WFSLn5Yh8C5SYQV5aStAfK9d5P+p5N8t7P5ZSkjL355pv+NNUPok59dBo/k+GAIFhI8tyMGgWJxqeP++QKGTmJhmUbAuUkEFd2ktzXpbSF811DkrZ4kuePxpU1xqxxAInuwzizyrP8dCz45ctH3DMwek6SPCs8dfsoNbYrQSBJWY57HpTr3Z60TV9Kv3zSMlnoN0ha78g9v9B4XLmej7npsV9+AuUoI8pVOZ73zVlGSr3H8xE/++yzvfepp56aPZx2LF11YBnNkWZGxrAmTZrkt6UTU107iUYum3gVbiDkrcIfhSy1DwK5otTcq+7WrVuuV9F9iRI1SKdBfFnoGjFihF1xxRVFz9FBVRBkyVMDDbK8V8glyU+wKDhkyJClohk6dKj3U5hCQt7XXnvNCxx/9KMf2XXXXZeN409/+pP3l0XfqPgxWELQl8i5g4+XX365HXLIIdk4QgeoGl+5YfViVPimWlLJJsZGWQhIaB3n4spR9Hzde/o6R1ah77//fn8f/OUvf8kKaKNhc7f1Ndyzzz7rxa2ydu2mtMgN4vfj8qPyJmFdPgvDKmMagFQ5KOS22GILf+iuu+6yww8/vNE9+8wzz/hjQRCvnbRlcqeddjJVnsaPH++fI+uuu663/vP+++97fx3HQaA5CVRTuT/llFP8pbrp6htZzsi9/rhynxs+7F9zzTW+YeGmwCsqtA3vLFkNkPBPlvOi7pxzzvGWyaN+r776qrfCKwviEuincfpaUwOUGvCTtW8cBFqCQFw5SlIPjeaz1Hpx0rKTNj8hbyq/P/vZz/yuyn4xN3bsWC8MeuqppyyI7RRenTHBSRCw8cYb+/p8mvpFHO8QP2sIlJtAkrKT5v5sifp9krqJOCV9fsQxTfr8Sto+Ce2B0B6Pph/8Ql0jeoxtCJSLQJIylKbcuyllvfBF78B//vOf1rVrV9OsNlrHuXLW7/XelYWc3IF8temVxzhhcdK+OF1TKMdp+9qa8oyMY8lxCBQjUO5y35R7Oen7MslzKE0/dC6f8K5N2q5vSj+2nk3q41df/4EHHpibFfYh0KwE4spSkvZANIOlvvfTvGfj8hzNj7aTlrEg5B0wYEBuFKbxBQl51b4fPHhwo1kolwpcxCO0QTRrT77xhiKncggCTSYQV3aS1AeimUjaFo6eo+1QDuL6wZM+fzSGeNhhh5nGxoIRII1Nq5xpPLGYi2MSzk2a5xBe66bUh6LxsA2BtASSlOWk977SLvXdrnOTtukVNtcV65cvpUxG409T74iep+0k43GlPh9z02K/eQiUu4w05XnfXGWkKfd4LnUJ///973+bBNBhlq3cMNH9fGPpc+bM8ePYo0aN8h/VR43kyULvt7/9bW8UqzWLeRHyRu8CtiHQignoRS+hYXASpyYR4Fx44YVeWHj99df7rxTC+aWsg7WfYBksGkd4iWn6wUJOnRuqSEk0KAGRHuB6MVx00UWmLxklInzxxRezp4e41l9/fdN0wqooPvHEE/b973/fTyeuhtXIkSN9+GA1QUxkGXiDDTbwFg1//OMf+680FDa83LIJsNGmCMiKTfjCRxe2++67xw6uKZw6z08++WT/ta2sczbFhfuwb9++eaNRJ16w1JcvgAYJNbWCvnqS4F2LKiGy0KlyIqdBgeBKKZOy7iWncqgluOAf9llDoDUQKLXcq3NO1r2OPPJI/2FMua91woQJPm511p911llFo5eVLzmVcX1F+Mc//tFWXXVVk3h///33t9NPP91b3dAzTU6WfsOzKjwX/IEE/zQYceaZZzLgl4AVQaqbQCn14qaUnSQ0NJ2u6ucaxNfUmvqqvpjTtEJ6Du2yyy4mAYKm8NPHPj/5yU+ypwVhf1PrF9kI2YBAKyNQ6nu+nPV7ISvn8yPJ8ytN/mU1VC6fhdDQbg9tBh+QfxCocgL//e9/7Te/+U02l/owPfrBd/ZAzka56/ehrSzreGoz6Dmgma40k8d2223nregWmxUjTV9cKKOhzEYvrVhfW6nPyGj8bEOgGgiUei+neV8muc40/dC58aVt14f6fSn92DLsoXaC2hxJxgZy88o+BKqJQKnv/TTv2bTXm7SM6aMjfeDTsePSw/Chbh6EvGnzoPD6uED9BXLKU2sWKviL4F+7J5CkLZwLqZxt8RD3ggULsh8Jqg0RnMafy2HlvtQ8l1ofCvlnDYFqIVDqu70pbfpi/fKllskoz1LrHUnH40p5Pkbzx3brIlDq8765yojolXqP5yMftDq/+MUv8h1u5FdoLD3MeCNr+apv6wN/GcNRu/uEE06wu+++2xT/BRdc0Ci+1rRT25oyS14hAIHCBCROlYBPa1n6ksBPA/6qBBRy+qJDD0t9VbjPPvsUCpbYP1j0CZ2N0RPDAGIIEz0Wtpdbbjm/qTwdccQR3kKhRE7nn3++6WtKfU2hPAenqRHUKSkRssQQPXr08OFuueUWH+See+4JQb1wVwMssmSqB7m+vpQFM+3L3X777dmwbLRNAttvv73pCx293PX1mqzqysKtKsDFnO4bdYDLMnSnTp2KBY09Fr7Aj1rTi56kCoZE5YVcTU2Nr4wojKbw0j2sL4NVZk477TQ/QB/9eimUt6RlUlMYyGrHzjvvbE8//bTNmDHDr7Uv/ySVqkJ5xx8ClSBQSrlfuHCh6SMPVf7jRLalXJPeZbvttpuPX++pMPheKK6oAEAfrUjML4tj+tJQYgE5+Qend6A+alGZXWmllYJ3orWs0+t5J6vcDPglQkagKiVQSr24KWUnDoM6BEMHgsQ+miEizmlATmJ8lUlZ1tb03fqoTR+5henFgxi4qfWLuLxwHALVSqCU97yupZz1e8VXzudHkudXmvyrPS2Xr/0R2gj6mBAHgdZCQPe/2vX6APa3v/2t/fnPf7aVV1656Aex5a7faxps1bVvuOEG3w5XfV6CHImK1S7Xu3vixIkFkabti0vbrg8Jl/qMDOezhkC1ECj1Xk7zvkxyrWn6oXPjS9uulwEK5T9tP/ZXX33l+wj1TMo3NWtuvtiHQLUTKOW9n/Y9m4ZBmjKmPjnVCRYtWrRUEuHDgFBXXypAjIfiVd+iZgjQzJb68B8HgdZOIElbOPcay9kWV9z6WG+HHXbwFrM1hqixxDCeqP521UnCB325eUm6X2qeS60PJc0X4SDQUgRKebc3pU0f1y9fapkMvJpS70g6HlfK8zHkj3XrI1DK8745y0hT7vFc+jJQpXFxjXdJ31LMFRtL79WrV/ZUWffVB/XSfmlWW42ba3xfRnJas+vYmjNP3iEAgW8ISGCoRSJVLZMmTbIHH3zQ/vOf/9iee+75TcDIlqz4yX3rW9+yhx9+OHvkgw8+8Nv6ckOdCRILJXFhSsFgLSR6jkSTckFwED0WtiVAVOfD5ptvHryya+VRVkglLgxxyPJuPrf11lt7b32lEZz8gn/w07pPnz5eyKxrlei5e/fu0cNstyECtbW1Xpg2cOBAO+CAA/x9NHr0aPv9739vhx9+eN4r1eCghL5rrbWWqRKkKT/kwkC4Gu3333+/F9YlsQIkYZw68fQ1Va5TR6A64bbddtvcQ4321Rkv69sqC48//rivjGyzzTY+Xk0XEBXlpymTwfq18qdKTocOHXy6mhJU+7IAKsvYstaZZNrSRplmBwIVIlBKub/66qu9xUxZu9W7NLiXXnrJb2raDzUIVO6STskV4tD7VY0wlXU9T/RsiXPDhg3LBgkfvASPzTbbzG+Gd7ieU0EgKMFveGYpkAQPGjzQM0vv9txGkvJ0zjnneBHCwQcfHJJgDYFWSSBtvbgpZScJIJWtyy67zHbddVf/Lk1yjsJIECTx7mOPPWbvvfeet76twTrFJxfqxOWoX/gI+QeBVkaglPd8uev35X5+xD2/0uY/PCdCGz/6E4d2e7EPCaPh2YZANRCQVTsta6yxhl++/vprP0OFBtrVts/nyl2/17On0EeuGjxQu1ztdX2Qns+l7YtL066PplfKMzJ6PtsQqBYCpdzLad+XSa41TT90bnxp2vU6t9R+bLU51LY/99xz+Tg390dgv1USKOW9n/Y9mwZMmjImIYGEfxpHiD4DlJ7a93Lho1y/k/Cf6j7f/e53fZ+ljNxoGweBtkAgri2ce43lbosr/htvvNG/RzUzlsYGgtN4oozsHHrooXbTTTcVbAuE8IXWTclzKfWhQvnAHwKVJFDKu70pbfpi/fJNKZOBYan1jjTjcWmfjyFvrFsngVKe981VRkSw1Hs8H/2k1njjxtKl9QluxIgRYdOvZfhRWhsJfKVPy62HNwpcxTsIeav4xyFrEIgjcMcdd5gEqLLKNWTIkEbBJRSQkFfTiBVyocPg5z//ed4gEvJINBgG+PIGinjKCoqcpkXYb7/9skf0tZPyIhfCZA9GNiQUlPBYgsJcFyz6Rh/Mp5xyimk6k5/+9KeNgqvyIxcNKzHmG2+84a0S5IoQFbe+zMj1bxQpO62SwPz5801WZiVYyxXryhqvfvdwb+W7wDDgra9+JKTJdfpqSIvur6SWLiTc0zkSAUetZQbheTFhn8qGvgDu27evSYSsJTh1IMiFQT5th/KWpEyGcq5OxiDiVRxy2pc1EAnttais4iBQrQSaWu5VxuTUcacl18lKvBY9F4I4JjdMvv2ZM2f6wXxZv1MDQkLgJC5YyZMwN9dJnCsXniX6ICVY19MXjblO70fVDw488EBv1Tt6PAxGSHiANd4oGbZbC4Gm1IubUnbi+KhsqYNi3Lhx3nKfOiuTOHUyKF9rrrlmozqGBPmywq06THTQryn1iyT5IQwEqoVAU9/z5a7fl+P5keb5lTb/4WNDffSjqQSjzyB9JCCXpj5TLfcB+WhfBF599VU/ZfQee+zhO+OjV692ugYVNL10IVfu+r3KoUTDY8eOzU5pHdL+/PPP/ab60gq5tH1xadr1TX1GFsoz/hBoaQJNvZfTvi+TXF+afujc+NK063VuKf3Y6h+QgBdrvLn02W9tBJr63k/7nk3KJ20ZC/3nEvNGBYEar5ORDs2mKWFgGrdkyRI/k6XG2lT/CR/zp4mDsBCoJgJp2sK5+S5HWzw3zmCARx8N5rrgJ8uEpbq0eW5qfajUfHIeBMpNoKnv9lLb9HH98mnLZD4updY74sbjmvJ8zJdP/KqbQFOf981VRkSt1Hs8l7hmrpLRRo1d5xvvDuGTjKWrf1uGKd5++20/Y70MN0ZdMMgnPU1rdclGEVvr1ZFvCLRxAvoC59JLLzV9mXHhhRdmG/76gkgiIbmoUEiC2mjngKYh/OKLL5aidPHFF5vM9Mukf5rpfSSW1ENTX31IXBsaNnfffbfvnNh5550tak0wNz8SQup6ZPVTAyJBWCuBoeKUi1rrfeutt/zgiawbRh/4qvzIRUWOqozpupS/o446yh/XP12nxFh6aYgjrm0R0D305JNP+vtKAprQca6rlLhVorZ999230UVH78uNN944O3V9NJAqAD/+8Y/9NDu6n2S1NqmTxVwJec8666zsfa2pOYNFH1nai7pofmbNmuUFtRLryMJPly5dfFBdx89+9jMv6pFIL7g0ZVJlQ539Kq8SvUs4FJz2lWcdZ6A/UGFdrQSaWu71hb0s2+c6CWAuueQSO+GEE7x1nOjHIrlhc/f1DpLwQI0KTdUjK/PFXLTcKx2Va73X1ciJWvb64x//6KPRO1NOwj5Z0M7nDjnkEP9e1fTDuR//aDBCVjxUxrHGm48efq2BQFPqxaWWnTgut99+ux177LF+mst//OMfRUXy0XKveH/3u9/5+sv111/fqK6iMqxnSe6AXdr6RVzeOQ6BaiXQ1Pd8uev3pTw/cst7mudX2vyrjas6gCwK6XmibTm1Z37zm9/4d78+cMRBoJoJ6MMV9RWpDSzhSnRWjH/9618+66E+HK4jWs7KXb9Xnfmaa67xbWf1ufXs2dMnq7640B81cuTIkBWL5kWeafvi0rTrS3lGZjPKBgSqiEAp93K0rKV9Xya59DT90Iovmp807XqdW0o/dlQMIH44CLRWAmnf+9GypmtO+55NyimujOXmQ2NhJ598sp122ml+7Cn04yt/crljEknyof5/TRN83HHH2RlnnJHkFMJAoKoJpGkL60Ki5ayUtngcjDFjxviP8K+88ko/5hcM3khErxlA5KLjztH8xMWt42nzXEp9KEk+CAOBliaQ9t2u/EXLVylt+iT98mnLZG6+tF9KvSPJeFza56Pygmu9BEp53rdEGRHRtPd4NF/RXySJNd40Y+lHH320HyPTOFqYwVLpaaZafTSnWW6i/YfRvLSGbYS8reFXIo8QKEBAwkQJWP/0pz954Z0ErbLSpYEMPaDUWRCse0o4pIqOrO9KQCg3atSovDHfddddXuAqsVDU0lfewBFPWfCTxQA1ZDSdoB6gqoxImKvKkARQwUmcK6si+vL4f//7n/dWJ6umKbvhhhu8QFJfKktorE4SWRg888wzGz1wjznmGD9wsu2223phlUyjy0Kxzpcoca+99grJ+Y4RXbfEFJpeTYOVEvCGjpPjjz8+G5aNtkVAHWayEL3JJpvYkUce6cW8+u01ECin+zQ4ic9lKXfGjBledK77PyqMDeEmT57sN3Wf5TsewuVb676++eab/X06e/Zsb6FPHXC6L2VdOypWl1hYgnqJa1W+Jb7TNchP5fewww4zWRnRwLzKiAbnowK9NGVSIn91LKojcP3117cf/ehHvozqS6tQdnU8+jFAvuvDDwLVQKAp5V5WqbXkumDtXe+PtOVeH6roa0O5e++91y/R+Pfee29fxuWX+xySn6zkSsgrob/K6DrrrGMSFuvZoQ9ugihHXyEWyps+pFGjJd9xCQN1fWrsMOAn4rjWSKAp9eJSy04xThIbfe973/NBll9++aVmkFBnnOrwcvnq6Srrqquo/v7cc895a/j6El+zV6h+/8tf/tKfG/6lqV+Ec1hDoLUSSPOez61Pl7t+n/b5ka+8p3l+lZL/8847z3+Up3bE888/7+sOf/nLX/zPr3ZFr169WuutQL7bCQG9R9U+Vbt0s8028+373r17+49z9W7U7BTROm5ufbrc9XsJcfSeVt15q6228n0Keq+rfMvqnj4UV31dLl/fV9q+uDTteqWZ5hmp8DgIVCuBNPdybrkv5X0ZxyFNP3RufhR30na9wkrgl6YfW/3net/zca7o4Vo7gTTv/XK8Z5Pwiitj+er4mjVPVrJlvEP1BX04/9RTT9mtt97qx8TUTknj9DF/6EPQDABRYzWKJ/Tnp4mTsBCoNIE0beHccpa2LZ7kWr/97W/7sWWNc7/22mtZgxoyrqFxbLU7FEYu3/MnLo1S8pymPhSXPschUCkCad7tymNuXTptmz5pv3zaMpmv3Kdt3+v6kozHpXk+Kk5c6yeQ5nnfUmVEVNPc4/nKiOLQO1TjWnvuuWcj44w6FnVpxtKPOOIIXzfWDLrSskhHI8N0mkFLTrNXtGaHkLc1/3rkvc0QCF/1xQnkJIaNus6dO5umw5T4T40YWSaRU6edvs6V8DU4WQ2Qi34tGI4VWqfNj+KRFUNZB5aVsCAYVr5lrSRq3TdMUZJrlVCiXQkRZR0oiJ50vjojZeU36vRAlsDx0EMPzaal4/pqUsJGcQhOlg8kbpZQWIOVWuQkxLziiitsxIgRISjrKiQQrCWHdb4shvs1N4wG0SSc0/2jezM4/ebqAAvWdBcsWOBFvPKPWo4O4aPrkFZYR4+F7XAsNz/ylzBHnfK6f7XIaeAxt1KhzgK56P0pYbws/kiELmF6cOPHj8/7JX/SMql4fvjDH/ryp3wE8a78JRjSIGV0cFT+OAg0J4FQdsI6X1qFyllzlPuQfkgz7EfX4VhunmUBPLhgYT7sa62Bfr3TCj2HZCFb70QJ+i666KLsqRoIuO666xoJ+LMHE27MmzfP1NDROzMIghOeSjAINAuBaq0Xx11sbj39pZdeyp4SZsrIejRshEG4fPV0DQ6o01F119D5oNP0EZ8+3JGoJ+rS1C9yz9N+7nMrGoZtCDQngdyyE02r0Hs16XteceWrT0fTCNshrbAO/tF1KCdhHT2WdDtfeU/Tri+UTsh3WEfDaXoxPTdUjwgCXh2XFS99/IuDQEsRCGUnrPOlW6geIAsbw4cP93Xh0Nek8zUIoLZrmC6vUH06X1rBL1+5CccK5UflRx/A6WPXqJV8Ceb13g7XWKjvK8Sfb50vP2na9WmekfnSxw8C5SQQykJY54s73PO5YZLey2nKfUgrrNPkJ2k/dKH8pGnXp+3HluCIj3Pz/Zr4VZJAKGe5ZTs3T/naA0nf++V6z4Y8FXrvx5WxfHV8xSnjMZpOXIZnNIYnp352jV1JPJTPBV5hHcKEsTLtX3vttcE7u5a4UB8+4SBQCQKFyk7IS7ifwzr4p2kLFypnIa5S1rnPH4kNJ0yY4A1H3XnnnVkjVAoX+ufCh7Bxz5+kz8C4fCetD8XFw3EIlINAKMNhnS/OQs+DpO/2QnXpfGkFv1Dewn6afvlwTpJ1XLnPF0du3pKOx6V5PuZLF7/KEAhlI6zz5aJQGUn6vK+2MhK9xwuVEem85NSHVswlHUtXHBofk05OBvv0oZwWOWm/NEt77sxd/mAr+lfjpv3KtKL8klUIQKAAAZkpnzZtmh8sUGdfrtOgncS+sgDaEmbE9VWwHtZ6GamjMjdNdX7IkoHEx/m+5JDpdH01oQaSHrjRl0DutWl/6tSpfnpQTTnYvXv3fEGyfrNmzbI333zTWxvt379/1p+Ntk9AFWR9DSTrzbkCGFnp3WCDDbyFu7iKRDlI1dXV+TLy2Wef2dChQ32ecuNVx4EsVT/wwAO5h7zgT8IETeujMhI6EJYK2OARVyZzzwusJKzPLb+5YdmHQDUTCPdyNZT7OE5xzyG966dMmWKffPKJtxqc29kYFz/HIdBeCFRbvTiOe1w9/aOPPvJfFauOrxktinUEJalfxOWH4xBoTQSKved1HcXq05W4zrjyHvf8akqe1dGrNvbXX3/trXyLDQ4CrZHAzJkz/exPqt+HAZBwHXH16RCuXGu1x1WutJaVoFxRTlzfV9p8lNquz9cWSps24SFQSQLF3vctXe7FoVg/dFx+0rbr6ceu5J1H2tVAoNh7v9zv2VKvN66Or3E7zfCnGQXUj59bXyg1Xc6DQFsiENcWjitnzcFC/XFyUSNVIZ1KPH+K1YdCvlhDoDUQKPZuj6tLV/L6KlHudb1xz8dKMiHt5iFQ7HlPGVmaubQ20qWtuOKKlk8nt/QZ1e+T/5O/6s83OYQABHIISOiarzERgumhvsMOO7SYIE+dEprysJALX09GLY1Gw0qMu8kmm0S9im5rUEJLEieLRLJmgmt/BCRI1bRW+dy7777rvVvqCx2JcJSXQvlRQ0bWNFRu8zkJkSXyTeriymRuPMVY5YZlHwLVTKDYvdzS5T6OU1x+9K5f0TVEtOAgAIHCBKqtXlw4p/VH4urpquMXq+dH44+rX0TDsg2BtkCg2Hs+rj5dieuPK+9xz6+m5FnthzAbSVPi4VwIVJqAROiFhOhx9ely511CYs2uUcjF9X0VOq+QP+36QmTwb+sEir3vW7rci3Wxfui4/KRt19OP3dbvbq4vjkCx936537NxeSl0PK6OP2jQINOCgwAEChOIawvHlbPCMZd+pFhfXCWeP8XqQ6VfJWdCoOUJFHu3x9WlWz6336RYiXKv1OOej9/kkK22QqDY854ysvSv3K9fP9PSllxtW7oYrgUCEMhPQJZBXn755YKCwPxnNa+vLJZoup8uXbo0b0LEDoGEBFQBl3XLYgL0hFGVJVioiG233XZliY9IIACBpQlUW7mvtvwsTQwfCLR+AtVWL662/LT+X5grgMA3BKqtPk15/+a3YQsCzUWg2urT9H011y9NvBD4hkC1lftqy883pNiCQNsjUA3vWer4be++4oqqj0A1lrNqeP5U3y9FjiDQdALVXJem3Df99yWGphOgjDSdYWuIoWbhwoWZ1pBR8ggBCJROQCb3J02aZKussor17Nmz9IjKeKZeMrK6W+yLxjImR1QQiCUwffp0++KLL2zNNdeMDdsSAWSN9+2337YNNthgqelCWyJ90oBAeyBQbeW+2vLTHu4BrrH9Eai2enG15af93RFccVsmUG31acp7W77buLZqIVBt9Wn6vqrlziAfbZlAtZX7astPW/7tuTYIVMN7ljo+9yEEmp9ANZazanj+ND95UoBAyxOo5ro05b7l7wdSXJoAZWRpJm3RByFvW/xVuaaqJ9C5c2cbPXq0PfDAA1WfVzIIAQg0jcDZZ59tWh588EEbNWpU0yLjbAhAoFUQ4D3fKn4mMgmBshHgXV82lEQEgVZB4LHHHrNx48bRpm8VvxaZhEB5CGy//fb26KOPmjOIUZ4IiQUCEKhqAuFdP378eNOCgwAE2j4B3vVt/zfmCiEQJRD68njXR6mwDYG2TYBxu7b9+3J1EIgSCO/51tqPVxu9GLYhAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIACBliGAkLdlOJMKBCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQaEUDI2wgHOxCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQaBkCCHlbhjOpQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCECgEQGEvI1wsAMBCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAgZYhgJC3ZTiTCgQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEGhGoWbhwYaaRDzsQgECzE+jcubNPY/To0c2eFglAAAKVJ/Doo48a5b3yvwM5gEBLEVCZl6PctxRx0oFA5Qnwrq/8b0AOINCSBHjXtyRt0oJA5QlQ5iv/G5ADCLQ0Acp9SxMnPQhUlgBlvrL8SR0ClSBAua8EddKEQOUIUOYrx56UIVAJAirzTg9biaSbnCZC3iYjJAIIpCcQhLzpz+QMCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgEBhAh2tk3Wt6Wpda7tZl5ou1qmms3WqdUtNJ7fuZB3d0qGm1mqs1mpraqzGbWtPrs4ylsnUWV3Grd3ekswSW1y32BbVLbJFmYXZ9deZBTavbr4tyMw3d7RwZjgCAQhAAAIQgAAEIAABCEAAAhCAAARakEBrFfJ2bEFGJAUBCDQQaK0PDH5ACEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQaGECdU5g+7VZZr6T1rrFaWcto/0Fbl9rv7jJF53BmYzT1Dq9bcO281vs9t1iS9yiba21uDidUrfx4na9nlea3rDUuu0ObtctphElbWvtlprOLlAnrd3i1qZ1FycM7mJWu8w3205TbLVdnb9bat0xpxrGQQACEIAABCAAAQhAAAIQgAAEIAABCEQIIOSNwGATAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCLQ0AYlt6+Y6Ya5bMnPd9ldu+6t6Py/cnec0t/Pqj/l9J+Z15nCdmFdrd8yJeSXk9SJdt2oZJyVwg5PQV0JeJ+A1L+LVWuJd59ctLG7fbTtDwVbT3Yl6u7vtHs6vYV3bzW0zatUAlBUEIAABCEAAAhCAAAQgAAEIQAAC7YlAjbMMGulpaU+XzrVCAAIQgAAEIACBFiKg2pazdONmpqxfe8s3brAtWMDRsYbtjJu60lvECZZxGtb+XMWjww1rn3tty4W1D9Cw76bHtBodkBmdb1ZhV2sF8fvOGk502/vpmPd3G8ECj9by0wBdrRtg82u33+CfjdsdxkEAAhCAAAQgAAEIQAACEIAABCCQQ8C1/+ucIHfJF06oO8dtz9H6m+3Ml66J7wS8fq1tJ+yVUNdb0M2JqlXuqv9AQt8eDcuyrm9hWbftltrlnLh3uYa189d2h55u7QS+sgSMgwAEIAABCEAAAhCAAAQgAAEIQAACbZUAQt62+styXRCAAAQgAAEIlEzAi2o1FeUiJ7ZtmIJS22E6Sk1TaYvdMYWRALdhikofNrtff64s4fgw8o8Iduv9XZy5/jkC3jDVZRABe8GutLla5Aqu3QGvzHVhJMiVy7eWnxaJczWY1rCdXUf8gmi3fkpNFzCIeBvW9f4uDk2vKb+O9WG07S3qeL/67fppON1gnabglLUdv663vFPv586Vn87BQQACEIAABCAAAQhAAAIQgAAEWiMB18aXhd3Fs5xQd7YWt6/151q07Zr1TtCbcYJecxZ324xYt9TfSn0QstbbU4sT8Lp1bW+37u3WvdzaLR3cdgf5OYu+/qPjUtPiPAhAAAIQgAAEIAABCEAAAhCAAAQgUEUEEPJW0Y9BViAAAQhAAAIQKC8BL6yV2PZrNyjmppfMuIkINNVkdluCXB3XMb+uDxf8/DoIeEPY7NoJZSXg1XlBvLu4xgt/bUnDseAvcW57cRp0kzC3QbQrMW+9qNcx8QJfCXQbtjs1iHWdYNeLdrNr56+wbkpOPy2nBL2dG0S/8tN+8NO0nV0ajvttF05rBMAOFA4CEIAABCAAAQhAAAIQgAAEWpKA+haWOKHukplukXjXretmOn3uDLee5foPnIDXi3bVt4BLTkB9AM46b00fJ+Dt4/S7fd2yvNt2Swfn10FrJ/xVXwEOAhCAAAQgAAEIQAACEIAABCAAAQi0RgIIeVvjr0aeIQABCEAAAu2VgNN/esGtE+bWSZC7oEGY66aY1Lb3k787bhLn+u36tUnM27BvwV8iXRfOFjoBrhP5+m0NprUn4W2130sSBmsgTuJcJ+atX7vfKuxLxNuwWBc3aBfZ90LgBr9aTdupba0btmsVdhnnJ+GxixoHAQhAAAIQgAAEIAABCEAAAhBIQ0AfEHvhrhPqLvnMLZ+6vgm3rvu0XrybcVZ31QeBawYCatvLMq9Evf3csoIT8/arXzq6da2EvWrv4yAAAQi0BQKuO9TP9qZ+a2c8on72NtffnTvbmz/mAiucFrepU/0/bYRFm2HbBwjHtOM6StVXGvpLG7bD5G/ZYwoWDaN+XLf4Wd86uAPalrGF7No9lxXG+fm1tsP5bhMHAQhAAAIQgAAEIACB9k4AIW97vwO4fghAAAIQgEC1EHCdjHUS40qUO991Qs6vjaNr7QAAQABJREFU39faLzqmbXfcJOD14t1wzPnpnAY/P0gmga46MnHtk4A6iZ1QV4sX97oBPuvaIOTt6vy8oLdhX9vyixyvbdj2a3es1omAvZXh9kmTq4YABCAAAQhAAAIQgAAEIAABEXD6prp5GVss0e7Hbu2Wuk/c8rHzdyLezGwXBmu7lblXZLW3l2u/93ci3v6uCT/AiXq1uH0v7O3m2vUIxirz25AqBNorASek9UYpnDGJ+rX267c105v3W/zNvveTv2aBczO++bXfdn4NAt6siDcr4HUvJm27JRomKuT1+F2wRsJd6XVzFwWUn5yel+GZGbZz1l7EGw0jYW6DUNeLdRtEvPXbLmAQ8Ub8syJfzc7mZnarn9FN2y6uhsXPzKZZ32TsQeH0vHczvdWvv9n28bsgOAhAAAIQgAAEIAABCLRWAgh5W+svR74hAAEIQAACrYmAOgrdQFadxLbz6td1bp1xg19+v2GtbS/i9Wsdr9+3ec5irjvXC3QR57amX7515LVB9Cshr3XLWI0b3PPC3m6uI1gCX+03bNeGbbeudX5+X0Jf+atzOXRet44rJ5cQgAAEIAABCEAAAhCAAAQgEEfAiaeWzHGi3elumeYEvG69xK3rprs+C2eJF4u7cQArdFwf9vZ1bfdBTtQ7yAl6BzpBr1t3dOsOyzYIyiqUNZKFAARaIYEgyg0zxYXZ3zQrnJvpzc8E57fr9/1sca4/PCNjEyGMtuWnDz4aFgl7s36L3bMpCHmdwFfbQaTrhblut825iPC3XrirPlZ37UHU28ltNwh3/axtfttR0Gxt2nZrc7O4ae2Fvg2zuPl9vQfCfth2xhr8zG06x52P+LfN3VFcEAQgAAEIQAACEGjVBBDytuqfj8xDAAIQgAAEqoiA68z0FnXnuvVcN6Dl1hm3zmj/q4a1hLkNfvLXtnk/dx3qyHS7OAhUJQEJdNXh68S71t2tu7vOXq0l8HXbtd7P9f02+EfXOla7DIOEVfm7kikIQAACEIAABCAAAQhAAAL5CEi8O7teuLv4ozpb/KHr2/jQCXg/ch0Xc9wJ7jiuFRFwQrGanq5tPtiJeIdocRqxwbVe2NuhJ+31VvRLklUIlJ+A+rS/dt3SfjY414cdZoGLzA6XkWhX/i6c+eORfZ3bIOrVhx0+TIN414twy59jYixEQEYWJM6VeNf142ZnatNMa+rX1dIwS5v5dfBz/bxu3wt8XR+uDyPDDW7bz9bm4kPw6xjgIAABCEAAAhCAAASanQBC3mZHTAIQgAAEIACBNkTAjVepY3LJV/Xi3Lov69eZLxuEu84/40S7dVq7Yxm3tgYRL1NLtqH7gEvJT0CdxE60az1ch28Pt+2WWr+u39d2rY45yz9hu4OOqzPZ/eEgAAEIQAACEIAABCAAAQhAoIIEXJ/HEte/Iau7iz9w4t0prv9jiuv3cPum/g23wrUBAmp/L+va57LSO9xZ6NUytMY6uX212Wmft4HfmEuAQIRARhZu3UxvMjpR52aF87PERWaNq58RzoXRjHHzFbZ+MYUJ20686/u2+YgjQrYNbMoasIS/EvVqVjY3W5vW5rfdvp+hzfn5tXtvaEa2hnB+pjYZdwhhJCLGQQACEIAABCAAAQhAoIkEEPI2ESCnQwACEIAABNokAVkiUAenmzpyibM0U+cGsiTMlWVdiXczzr/O+XuxrtvW2lzHJlYG2uTdwEWVg0AHF4k6epdzixPyal3bsF2rAUQv8HXTfS7nOoC1yM91HmPtoRzwiQMCEIAABCAAAQhAAAIQgEBhAvpgefEnGVs02a3dskTLB061K8u7rVW8G8RJEii56clrNDW52qUNS43WCiNRa3Rxu/6add1hcX1EmSVuPyx+2nd3kqaD17Tvmh6+tYrb3GV4S71OyNthRSfodUsnrfvX1k/X7i4NBwEIVDkB9yjKOAu4foY49V1HZ4eLzAyn4zI64YW7fpa4Gi/elRXdVvsMq/Kfps1kT+9LP1Obe5/KiIOfoc29PzQLm4w0hBnaJPSVIQcJfMNax2TRV+9aHAQgAAEIQAACEIAABGIIIOSNAcRhCEAAAhCAQJsm4Do66zRN2Bdu7UW7DQLdBqFu3Reug3O26+DUOljY1QANDgIQKB8BN7DqLfhK2Oum9PSDiG5dq2k/nai3xol6vcBXfhIAu2nd6PwtH35iggAEIAABCEAAAhCAAATaIQHXH7JkthPvTnXL+3W25F0n3n3P9X3MciwkWK1GF4RE+uizayZrFdBPHy5rgn7acHdMs8VokYhX7c3Orl0pS4FBxNuwXZNQyJuRSNcxkVXLIObNuL6hjIS8WjsBnfZN63zTz+vD73numNaabr5aRb+OT83yDtPKTsi7iltWqrVOw5zA17XFaYO73w0HgQoT8JZ1ndXcJQ2GJhoZnvCzw33Tf13fj+32najXP3fc4woHgWYj4F4T/t3rhL2+j1dGHFx/btj2ol75Sdzr1h3cIiMONRL+6t2MgwAEIAABCEAAAhCAQAMBhLzcChCAAAQgAIF2QkCdnd4ygRPlLpFw163r3KBVnRPqap0V7Lpjsk7graq0EzZcJgSqkoAbXPUdvk7QK4FvbW+37uXWvVynr/bddgeJfbUt6w50/Fblz0imIAABCEAAAhCAAAQgAIHqIaC+kcWf1dkiJ9xd9LYT8L7t+kQ+cgoviUyrwUlcG2Zz0cwt3tKfa/f5tduXFUAn/KmfytttO1FvrRfxumMN61pZ/mvh9qEs9npBr/tY3It5nYXLOjcVvZ/OvkHE66etl6XMiIVMbx2zYRYo/xtUi8jX/Qa1Q5yYd7X6pfMqtdahr2PM1OnVUErIQ1sn4J4DfqY49WFrprhgcEKzwjUYo8hopjjta61+bH1MgINAtRKIGnGQ0YZgvEEGGzQzW8N+/Uxtzo9Z2qr1lyRfEIAABCAAAQhAoNkJIORtdsQkAAEIQAACEKgAATeAIusEsi5T97kWt6+1BLtuW/sZbbvOTz99WAWy2C6T1ICcFg2oNdp2HXje3w0e6gt+bedZL2UtxwXLWoVR+OC0rUXWJqIWJ8J2dK1t10Ge0bphe6m1jmswrc5FWucCyTqR33fr6LbbxbUAAVlZch28Nb1dR28Q97p1h4b9DhL7uu0OTtzb0oO3LXD1JAEBCEAAAhCAAAQgAAEIQCA1AYlLF01zy1tOxPuW6y9xS2aGi0Zt2ko4tdklvNXMLK4NVz8zi/Zde85Z6fPCHlnsk/U+J+it1fTdEva0sEC37Ggcby/Qc2LeOie+qwuWNRuEehLm1UmYF2aHCv1W6q+ohHO8a/o57KvXWCe/OCu9g2rrp0mvRH5IEwJtjEAwPOH7sGVsooDhCRmikGXvij2z2xh3LqdKCOidrve7+nlDXUD9ujLi4Neuf1fbMuKgj3taex2gSrCTDQhAAAIQgAAEIFDNBBDyVvOvQ94gAAEIQAACSQi4wYw6TSvmhLpL3BSQ9cLdhu1ZbmBqphsA0fpLF5mmQcQlIyArK1r0xXxHN1jWyYHO7svfdZ417GsgLTtNpfPznWo61qEhjI6ro61BxOu3G/br/esH47xQNyridds1GtyL+Pl9+WmRK7YOA13F1u6YF+kqjMS52g/bDfte6KttDXAucfdS2HZrWd0JYt6wrU54hdP95v38vttuWPupN7XtpuH0frKaobANa29FQ9uVGlB1Sbc6p/tOU7It7zp2+7hbRmsn7q3to7Xr9JXQV9sa+A33TKu7SDIMAQhAAAIQgMD/s3ce8HIV1R8/u/taeiGNhIQEEkJPMAKhd6SqgAh/AQsgCGJDQVARQRSwgiAIihVUBBURQbr0GmoCBAIJ6ZAe0l7Z3f/5zu5s7ttsf7vv7b53zufdd9vM3Lm/vXfuzJnf/MYQMAQMAUPAECgOAUijbfPj0vKGEnhfV1/JW9pWhRza2caATCXjuAGZm2lbjYGYkHOSazcgE6IO02zjT+iB5gl9EPlSpL7AAPWY+rycf8uTezsTI9rRSrSKqEJv/fYhaZiohF5V7A01WQO7M38Gu1aNI6B+xJQPW0Um8GFH1WcdY9F9xCfiegyVXWmp8Xu17BsCHUFAlfXdQB/qCOrTDeHrVb+uE3Fwa/0eQfTVOoPrN+jItSyuIWAIGAKGgCFgCBgChkBVIWBE3qr6OSwzhoAhYAgYAoZAfgRcx4YqlODojC5LOjxVRSa2VJ2eunadGjg8bUqxBJh0gDGtZIN2sDRqhx2dZ+w36j4kXXdO17pNuBAE3eAxwgRIuy4OpEk9liD56jbX4JgSdxPr5LEkkTdF3NVg3dqUeOum03SE3QRJ1xN5422KPech7HrSbpLI6wi8+ryyduFY47BPruMaDgd+8Jg7p4pKcZ2u051Lrp2jn+ubJZ5P1J0g9Q5Rv65OAxrWDuOI7kPqZR1Whaee2klsj4ghYAgYAoaAIWAIGAKGgCFgCHRfBOIbVH13nhJ4ZyiBd4b6Tt7RdiUDnDvD4Hb2oi2WbIepoiuDLV1bzLXHdB9yjvolbKBlnh9Ef7aY/pbMMBXVgeob/WAJH1hsifoFlOAr63XRsJ1iOog2Ml4JvTsooXeHJKGX39LMEDAE2iGQ8mHjv04u+K5juh3zwhPmw26Hme0YAlkRoI/C+3mpX+DXxc+r/t6Un1dV/c3PmxVBO2EIGAKGgCFgCBgChkBNIGBE3pr4mSyThoAhYAgYAj0ZAciLUdRIlKgb1Q4KHJ+OtLskQd5Fcdd1WPQUkOgbcURcdV7pNJSOmMt0lKqC0m6fThSIuRB3HXlXz/ttt9Z9R9zV86wh+rp9XUPqRQXXrGsRQPHXkXm1Y86TelsC20kiL2TexJIg9jrCL8cIu0FvQRd3Xjv/gvscd4T3zurs61o09SHXDNCZjIrDUHX2Jsm9zuGr+26tClDu+e/qvNr1DQFDwBAwBAwBQ8AQMAQMAUPAECgBAdqDrQtiCQLvy+pDmaUNvrUlJFRsFPwMEGuGa1trmBJrhmkbi8W3tXRKbPMzFAtqlvDqK4h+EPCT4St7X31l76mf7D1t90PsZbBvpa2v/s4o9O6cJPSODDu/UqUva+kbAtWKgCfutvFOJhfI9jF82Lp27ya+OLOOIYDPmiUw+5vbD6tPzx3T754/52d5wyeYXFj57Xbr4HG28Zf6JX2f42puVjcfhrWWz25hlrVYKDFTW0xPcNwdC6w5ZtYxBIJ+XgYN+TqH1j/qEHQwYm/H8LXYhoAhYAgYAoaAIWAIdAECRuTtAtDtkoaAIWAIGAKGQC4ENiHu4vCkQ+J99XnRIcEUgkpq7JaGsi2dX+qEcoTDXuqAxCGVWpL7jrirx5PkXQi8bIcDhF6IuWEl5jrHZbcEy24qKwLqGI6h4OuJvqj3QOZNEnkh86a2VbXH7et0q3G2U4s6mderw1mPO8IvzubuaKg5MJ2rOnjDwxPrVEczig46TZsRe7vjD2/3ZAgYAoaAIWAIGAKGgCFgCHQzBJQQ1PZeTJqnK4n3JSWRzdS2HEqPlTLIUarM6oi7I9X1MELbT7rUKZG3jvYVxF3HlqpUBizdFAL620fXJMi8beo3iy5OLLFF6hvQbafErKuK2QD9/ScqmXdyWBp3DLvf30jbFUPbEq4mBPS9iq2NS5v6raP67vH+OR/2e0kf9grNbHf1YRfzO/C9QDQiKSAh9Qoc/jiO4QtnJrjktp/1zc345meAq9OPCcRcXUIBAm9qBrjUcQ2n5xNk3kB4vkXBRXfZDwWP+e3kOVbZSLwp8m4wDGWsLvEAYdfN0ubIu+pzDZB422378MzeFtUEkjO5sU5tI+7APjO2cZ5nyi3qt1URh8S2HiOtnm48V4P0MdD6CH5eN6BI6yUR6iaIOvThh+/pINn9GwKGgCFgCBgChoAhUN0IGJG3un8fy50hYAgYAoZAT0BAHVkoiTinJ45PpyKijk+cnrodX6kg4KzqDobDsrfeiC6sQ73VURnc7qPHlLQb5niSvBuGzKth3Fq3w0r0tQ6R7vAwVMk96PsXQ71XCbuxJJk3tV6XOB5n7RZ9H/22dlSwLewr+VeUONwtDIevJ/YO01ct6ezF8UtndITOaDoPzAwBQ8AQMAQMAUPAEDAEDAFDwBCoEgSiK+LSMlMJvC/EpO1Vbasxc1ElDLKUkjbDo9Q3MUr5V7qOqApr3ea6ZhAkpCuzLkcAwhfPRNsifR4Wqp9Nl9h8PbZACV8Mjq8E2QtulCoy1+2khN4PhaVhYtg9E10OhmXAECgzAu79Wqnv1SJ9xyDN69q9Y7p2ZW938Y9lw82TchGTwEeNIAVrZnpLbSeOITLhCLv4wxGbSBJ5/QxxnswbUqKuI/Lik9PvCPueyOu+K5HE9yVF0M2Wt1o8ruUxxF5H1FUiL2u33RbYhsjrlsQxiLvBmdvcPoIOPHtureH8NursftY2v40qNNuaTkW+B5ps1RjPJLMFUE8ZqYuu6xh45Ost5uOtmp/KMmIIGAKGgCFgCBgChoBHwIi8HglbGwKGgCFgCBgCnYgAaqBtS3VJKYWo30gdniiFxGtZrQBnJo5MnV4wBClXR3kHt8P+uBJ1w3reEXaTa7eNU1N9lWaGQFUhoH19OIBj6/QdVQJvDPJucK3TtMbdou/vmuS2qgEljumd4CCuREdhZ4BEJ8JgfVdRcsDJO0J5vF5lajN9v1UJ28wQMAQMAUPAEDAEDAFDwBAwBAyBrkAgrkScljmqwvt8TFqVxBtfqLlA9a+chp8DxdUttD00WtejlQQzOiz12j4y1d1yAl2htLQ97wbPQzqcp8TeeUlSr64dqVdXZTUlRTmS9xRV59WlYWw4QeAr60UsMUOgcxFw5N3l+g4pKb5tQUyi85W8q+R4fNkVV7zurFulrIf0qCIS0iuu/q7ktlvrNmtmhiOM29Z1I34x1slt1pB1OZ5ch9WvZgPiO+dHdITgAJE3NVMbx1Kztum2n7ENgi+L30eogVnckkIPiW09Bum3Vv26Qehx4fZPknpHJeszo3QwEgTfQfrM2mCkIFq2bQgYAoaAIWAIGAKGQJchYETeLoPeLmwIGAKGgCHQoxBIdhy4acZQK/CKIIvUD6Squ6h61ozh9MEZ2U8dPH3Vsclap5NkoRML4m5qrUReyLvsp4i6NXOjllFDoHAEHNEXci+LknljEHlZ675bq+p2/AN1BkP0dds6/ZuGcUq+uqoZQx2baWJHqsPXKzmg5qDKvdaJXTO/omXUEDAEDAFDwBAwBAwBQ8AQqG0EtA3VtiQuza+oCu/TSip7Sw9AwCmnMegYxd0tVRhxrLZ5tlTyrraBbFrqcoLcyWnpY0JbvRUy4rtK6p2j/rl39Zjuiw7OLavpLFORiarOO1UJvTsrUUoHwtrA9bIibIlVGgElLkZX67uipN1W3pe56u+aq+8L5N1a8mN7nCAp+lnhEJ8IzhKXnA3OzRrHNrPFuZnitMxnDYGXY6wh5uIbN6t9BPRRdv5cSL5ah3CztSWJvDG3nziWmp0Ngi/iDm7R7aSwg6t/1OJsitRzEG0Yo9+rMSGp13qOm2mgvz7gENvNDAFDwBAwBAwBQ8AQMAS6BAEj8nYJ7HZRQ8AQMAQMgR6BAA7PVerwRPVjoXYsLdB9dX7SQeBUd6vdwYNTEmeljtQOqQOHdZhtJe46ZV09Foa8q/uR5BqyrqkM9Iin226yGARUEcqp+SqBN6pk3piuY5B6tUPErdlfzX7iGGun4qsO5ao2pvtDrRdCL+pU2smNioObVtacvlX901nmDAFDwBAwBAwBQ8AQMAQMgVpFwKnwvhOTDU9Fpe0F9a8s0TspV9uJNs4QdWuM03bNVrqMU/KuKvBGBhippVafl6z5TvrsWucqQXG2+u3e0fa6ruNLNUa5VJ31sQkNE6lHnXcPVefV5wmVTjNDoJoRQLm0VX3ZrbwXs9WfPVv9WOrPLjvZvdwg4MdGeMLPBpcUm0jsq18b0iIEXkQn/JrB6hB6lbwbVjVdIy+W+0fpJunp9yKmqrz4duPM1pYk8sYg8urgELfmWFLMwYk4JAUeIPvWhIgDQizq263T+g91oAbqQTojG+rSZoaAIWAIGAKGgCFgCBgCnYuAEXk7F2+7miFgCBgChkB3R8CTd1H3mJ+Ysi86Tx09qHtAzitX51K5cWTqL0i62jkV0ikjw7pA3oW4G9ZjbtHtCMdwhFrHQ7l/AUuvhyLglB/UuYvKSUyJ/xB63XqVFhcc0/042yvVWazkXzedWzViRQclZQcKVW6qWVWt2iI5PZuReqvxF7M8GQKGgCFgCBgChoAhYAgYAjWHQHSFqvC+HJPmx5Rc9qY6WJjuuhyG0iIElvHajhmv5F1IvMOUdInyolm3RyDeqgrP78WkVcm8bbPUlzdL2+UQF1WZsSzWpP40Vedt3CehzhsZaMSosuBqiZQVAQadt7yrBF7eAVU5j+n74IQo1NddVRbR3HjhieQscQhNOOEJv/azwyE8wSxxSt41Jd2q+hW7V2b0c5GaqQ1ib3KmNt6pxCxtej4l6pDYdj5eJf9Ktb1fqsSLaEOEetAEVemlTqRqvQi5mBkChoAhYAgYAoaAIWAIdA4CRuTtHJztKoaAIWAIGALdGQF11qSm5kPJQ6caizLVGE5/ddxUFXmXaZGYRgzCnXYchAbqOrnNfngQ+zryGsIuzlDrtOrOT67dWxUjkCL4Qu5lWamiQJB5dWE7rgvHWbsp3KrJ8YtvVztLUOiNbKnLGO0MH52chlY7UGwKwip+8CxrhoAhYAgYAoaAIWAIGAKGQDUioO2dVh0sveHJmLQ8HZP4Is2kulw6bAxYRnVuGyWrsKhiagSyivFVOgxtTSagzxSDbFtVhbR1ppJ6lcyISq8wqLajxmOlA18b9ghJ0560j9VBh4/OzBDoYgSYTa5VVc5bXtdnXpfYPH3mIRh2tVEOKwkeH7YTnnBiE7qNzxpfNmu3aDmu5bYJT3T1D2bXz4ZAysfrZmbTdwwRByfooFUZfL5exAE/r4o5uEFK5ajjZMtQocdRrFa/bt22+u3aHpXesHvnCo1u4QwBQ8AQMAQMAUPAEDAESkPAiLyl4WaxDAFDwBAwBAwBiW9QB+f76uxUtYK2OQnnfhRnpzpfytKh1FGMcXhC2h2oTpdBSsrV0dSsIetGWCtxN8I5FHd1CjHrqOoo4BbfEKgwAlq8xNarg1cdu1El8ELsjakiVWyFHl+uzl6/9uTeanD6UrTQwaLqDZGx6vzVpR4nMOpWTFtoZggYAoaAIWAIGAKGgCFgCBgChkAOBCDAtLwVk/UPR6XtRW3klINUqb6QyNbaNoGYsq3OJKJqvM4vkiMfdqpnIUDbu1V9fK1vKKn3NW2Dv63PHgSrjpqSEes/pGTeAyLSsLW2i23Gq44iavFLRABRipa3lcD7qvq1Z8SUwKsJaXnbJZbuw8ZfzZL0XzsftifvMlNcXZfk0i5qCJQVgXib+nOZpQ0yr35fnJADfl4v4oCfF1EHXTsRh67y86r/1s2+tqPWmVj024XKtZkhYAgYAoaAIWAIGAKGQGUQMCJvZXC1VA0BQ8AQMAS6KwKqAgN5rvVddeSrKkdUpxmLKok3vkxvONrFN63Of6dSMEQ7oCDtukXJc4PZ17U6PyNK2jXyXBf/TnZ5Q6DMCMR1OlmcvlEl87JA6nULDl8tm+LLtIyC3KvThXap6fSHoSEJxSumaKt3pF5VvNJyyZSIuvSXsYsbAoaAIWAIGAKGgCFgCBgCVYlAbG1cNrwSk+YHYhJVhdQOk8yUCBYfF5V1o1bL+lEfSHSIstbqi2fGQF8ZNHiwDBkyROrrbSqjqnx4ypQp2tutC5Ts+Jr6AWdom1tVet0A/o6kr6SoyHZK5j0oLI07dj0h6t6X4vLHR2Ly9uLi3wUPQ0hfik9MDcvJ+4ZluBIwzaoXAQZHtOqMcs0v6TP9ohJ439W8djaBV98BhCdCzmed5sPGf+182Hq+UR8sClwzQ6CnIKDFcEzFY1IiDhB78fOqbzch5BDw83b2e6t9T2F8uToYpXGyKstvYYNRespjafdpCBgChoAhYAgYAp2LgBF5Oxdvu5ohYAgYAoZAjSKAk7NtsTo4lbjbOks7kGapU2WhelY2dNEN4cRkeqPN1J+5mRJ1dR3WdURJvG5hG4dok3k7u+gXsssaAl2KgHP6qrM3qkTe6FJd6+Kcvklib2y5Zo+pEkvvp+vY/fXSMkunFY1M0H5zVXKoV2Jv3XBzAHcMVIttCBgChoAhYAgYAoaAIWAIdB8EGKy44bmoI/HG5uh96cDqkq2vEifHhyQ6oVmWDl4ssaE6yrGu442h3r17y9ixY0vOlkWsHQQc+RFC76vqG3xF29go9K7tQP7D2ibWdnDjwWFp+rAOcO3fNf47SLwX31o+ZYLJOvX6dZ9XcnLX3E4HfpCeEZXB3wyOaHk6OTiiI89wMZCpDyiE73po0oft/desEZ8wH3YxaFrYHohAys+r/tyoknqdnxdf71KtHunaicys7yRgqFNtq98vHbzRuJN+v5R4b2YIGAKGgCFgCBgChoAhUD4EjMhbPiwtJUPAEDAEDIFuiADqL24qPZ3GsU1VN6Kz1DECAa4jHUil4IQ/pI86PFHbHYrjM+H8jKgDNOIJvDq1mKjipZkhYAgYApsgoP1y0Q+0DEs6e6NL1NmrS3SJcnl1wenbJcRe7bykM4dO9bptVNVhAooOWs71NifwJr+hHTAEDAFDwBAwBAwBQ8AQMAR6CAJt2j7Z8KSSeB+OSXxBB24a9bgtdfDgLko2UfW4ea1zpDlevhHZ8XhctthiCxkwQKV+zXoEAvHmuLS8q8vLSTXTuXrbpaoiarM3NEqkUZV5e02NOP9eZ4N40tXRDinxZsrvt4+LyNEftjZ9Jmy67Jj6hFpUhXfDk/rcPqvl6mLNScfHMmS/naYkcXdYwo8d0bVb1I8d7d8qz7zylDz17FOydm3xTOKQyj9vvfXWsvfee8v48eOz58HOGALdGYGgnxf/7nv4eNXX+776eN9PEntVUb5ixvdLBRrqdwtJrz3UlztaHbzWL1UxuC1hQ8AQMAQMAUPAEOhZCBiRt2f93na3hoAhYAgYAgUiEFPCW8tsJfHOVALv6+oImaPezTUFRi5XMFXcDaFMMFw7noYlibvq+KzD+YkKL0Q384uXC21LxxDoWQhokRZbp2WbdpC3qYM3qgvEXhy+UV3iui2dpeTgke+nPt9xWsapqkP9xLA06HRt4X5WyHl4bG0IGAKGgCFgCBgChoAhYAj0BATatC2y/tGotDykZDMddFiS4S4ZoaK7k1Qxboq2LcarQmifkMyYMUMggZVi/fv3d9FWr17dLvrgwYNlxAi9mFmPQiC2Rv2GOui/eZr6DV9W0pS2o0slRoaGh6ThQCVD7RuROvX3daZNvbCt5MudeWi9i3vDfapwHbCT9onIl47o3PsIXN420xBATbpZ/dsbHohKm6pJd0hJOi3t1K5y+ESLyPAI9VlrcZhYq39H9+tQ4dXyVzTMunXr5K9/+Yu8M3u29OvXT3y5mkqngI1oNCqLF8NEFjnmmGNkypQpBcSyIIZAN0dARWei+l2CzNu2WNfJJaavSky35QO9/0oI06jwTN1k/X4dHJEGFWcI6QAqM0PAEDAEDAFDwBAwBAyBjiFQ17HoFtsQMAQMAUPAEOheCERXK3n3HZ1i7DV1eugSm6uOjvKJteQGS/3focHq11QHfljJuxFdR3B44gRFibeXOj3ND54bQztrCBgChSFAH4p2pLDUb6lRtKhLEXtRcViki65j7+lxXcdXaJj2fXOFXaeYUOpUjjJF6ZtaDm+pyw6at+21013JvUboLQZIC2sIGAKGgCFgCBgChoAhYAjUJgKOxPuIknhR4i2VxKukkshEJUbuHpamnXXKZ522vaO+lMbGxnaEs3Qyb0fQRtV3/frCR1E2NTVJOAxrzqwrEQjrrFhNk5V4qyqEzVupH/HpmGvLupluisxYXNvcLQ9qo1z/HJlXfYDVblO2DssZh27sXgySefU2ymorVqyQV199VWbOnCmjR4+WSZMmyeabb571Gm1tbdLSkpBJ7tWrV17yvg8PyZ/wWGtrq1vYLiQNwnFN0uL95D2tBkNBesMrSuK9R5/PmfrLlNOvo+qbzo+tqpxhVZau03XdSC1zN1c/9oCQhDY+HikoHnvsMUfi3WeffeSoo45KHS9244033pCbb75Z7rjjDtl2222lTx8t+M0MgZ6MAIK4/fXd06Vha/2c6BiN6MokqXehDjhZoD5eneEgtjDp41VF37KYimq3PReXdWuiEjssLk07Kpm3sfq/YWW5d0vEEDAEDAFDwBAwBAyBCiGQoSlVoStZsoaAIVAwAq0vPiXR115QBdC3VB1vscRbOotFWHAWLaAh0K0QiJ2xucQ3NEls0SiJz5noFlk6UkKtlR9CHG9cJzJwmTo+VbojucQHLZHYoOUS77Ve2sKq7rFc4WYxMwQMAUOgMxCg6NPOyPhmvSU+UkcXLB/qlvhylQZfrqMMVm0moeZE51ZFsqPVnph2MG14Z4NseHqhhMbOdEt4hG43WZ2oIpinJXr0XQ+nHbFdQ8AQMAR6DgL7rj+u59ys3akhUKUINDQ0yKBBgxxha5tttpEddtihSnNq2SonAtHlSmh9LKnEu7SElOHrjhSp31VJdErirR+jZJKEYGgJibWPElSNZLu5udkt7UOVtrdgwQLZaqutCo78+uuvu2nlC45gASuHgD5zdcykpQq09aNDsuGZmLQ+pyR0xEKLZLOi6IsKdUjJkZB5I4Oqmwjl1XgBF0Lv829HZdrb5ZV7fOKJJ+SMM86Qt956a5PfcNiwYXLNNdc4Rdb0k//4xz/k5JNPdocJc+aZZ6YHabf/t7/9TT772c+6Y0uWLJEBAwbI7373OznnnHPcsYcfflj22muvdnEy7Rx22GHy+OOPy6hRo2S2Ks52taHEu+HVmKy/Swl2MzU35fh5lCwYGqgDw/V5j+hSN0aXLRIiFE51N89jC5F36NChHSLxgivk3f3331/uv/9+gdTbVaq8fAsY6GHWPRDoTr8nRHq+TyyyQ1hQkW9VZd62+UrqV+Ga6Dwl+s7TD9Uq/e06WjZoWROdrn7cNv2GaRnRuGOkbPWv7vFk2V0YAoaAIWAIGAKGgCFQHAJG5C0OLwttCFQUgZaH75KWB+6Q8OBhEh45Rup22lVbW/qaqjIDPpCg/69a9huPPLGimFjihkClEVh91gk6Gnm0hJd8TOT1ISIL+kuoRb3mlbKQvsl9WyQ0bK0u6ySs6/DwdRIZtl7f/QZVK1BFCXqe9L1XyYii103Dj6xUzi1dQ8AQ6MEIxJtVYWGZOnxVxSGqKg5OsXeh+npVuVeYWTZYSSkTTqFW7QxZOE7Jw+MktPxwN1Vb4yTtkFeSsU3VViaQMySz8qWz3NHP7XtOqv7p6521uOY+zAwBQ8AQKBSBfS7b1gU96KCDtDqu7XCtj9fymvswMwRqEQFUDZcuXSpz586VZ599Vv7zn//I3nvvLXvuuWct3o7luQAEmB1p/dNJJd5SSLwqfhnZJiSN+4SFNkNkIDXX8hjE3SBRCzVeyD5mhoBHAMI4U4ozm9aGUSFpeUzbzbO0kVzkOFTIvM1K5hVtCvfeK1K1M9NA4kWR19uN97WVncR74403poi0/jr9+vWTDz5gfniR999/X0444QQ577zz5NJLL5VIJLMv90tf+pIccMABwqCQQiwaTchUfvzjH09d/7bbbstL5J03b54j8XKNk046qZBLVTaMPn4ts1SJ996YxN7US3WUqNdbybv6bEfURVM3VsmBW6pvBiVeneWpUPO/3ZAh6n8vg0GYxlavgolYunkl5UJSCCqiX3nllXLRRRfJEUccIZDHvVL6l7/8ZXnmmWccWZnzPcGuuOIK+ec//ym77rqrXHvttTV3y7FYTI499li5++67XXlywQUX1Nw95MywvqbMdNbIot8qR+pVZd62d1Wpd05cFjy2WHp/0Ef61vfNmUzOk1p0Rt/Qulyjknl763W2gfWfM4adNAQMAUPAEDAEDAFDwBDIgoARebMAY4cNgc5EIPbeAtnw5+skrsMV63fbXz3P6njyBL4YzBid7sTvJykV1bPfmUjZtQyBMiKgDsy299SxvuFAiT22m5LRxoqsL5NUS3o2Ie/2g7y7RkIj1uoUY4l1nRJ5QxwP6zuucfBtuLWSBkpdp1/a9g0BQ8AQKAcCIe1IpJOmfqTWUXZR5+wqSL0JJYe2+Ursna/9QkrwFfrUOtpBlJ5h7fyMqTO4Wa/T9mZcGqbEpHEnncJ0GJ7o9MC2XzYE+BYlP0w1vS4bIJaQIWAI9CQEIO9itb7uSb+Z3Wv3QgBF3pEjR7pl6tSpMn/+fEERccaMGU59sVwkoO6FWu3eTWy91vVf0NmIHlQl0/dKuI9B2laZEpImVTFt2Kq8g/4g8QbVeMkdRN5K2cUXXyyHHnpo1uQhihWj3ps1ITtREQRQ0YWAWzdcCb2PRKX1Ra1PrCzuUvFFSsDUdwGCZC9Vlw41VRcTChIvCrxBu+G+1uBuh7ffeeedFIkW8u71118vhxxyiFNqX7t2raDqetZZZwlq1j/+8Y/lwAMPlFyDl1DbfeSRR6S+vnC/L4q/Rx99tPz73/+WP/3pT/KjH/1I+DZls7///e+pUyee2PXCJ23vqTqmKpxDrJMENzmVv4I39NFz6rtbKXF3gvqDttZFCbyRAZwoOJWqD3juuecKxPFC7De/+Y18+tOfdkF5JjDIn6+99prsuOOObn/69Ony4osvyk477eT2e8I/VJG5580226wmb5ffj98Ro0zpdkTetF8l3BeirS7jw/KLy66VB+//n0ze7MMyafAust3AHWSzxiESRlq3WIPMO0PLnqFRN6CKb6GZIWAIGAKGgCFgCBgChkDxCLRvcRcf32IYAoZABxGIvvOGrPvVD6V+lz0k1F89z0GDvOssua7a/WCmbdsQqH4EGHXcMlM7iZ5VIu/6j4q8UwEnE69tHyXpDl+jCtu6KHk3PGKNRFR9N9y3TR2eQaZbSP2fCbJA4m0vfb/60bccGgKGQM0joFzeyGBVYtGlcfuwRD9Qgq2SeNvmqZKDTsvG9GwxJd3KGr3TRNFWnlvW9KIvqENYp4BrezsujbuFpUEVHnBAm1UAAYXVfY0YjEIvXYZ1LZyvADKWpCFgCPQABFJKvHqvrhTUtnhGZd4qP98Dfiq7xR6CwBZbbCGnnHKKMM36DTfc4KZM33LLLXvI3Xfz21TSR8sbqhr5YFTiOjiwKKOKqhMaNewdlqY9VRxhRHnV3zKReJcsWVJUFosNPGHCBKdoWGw8C189CDB7TON22k4doIK8m8Wk5QklqC/W/BXRNo7NVWXeB5TM21+kSacoF/2rBstE4j3j+vKrU//3v/9N3e6DDz4okydPTu336dNHDjvsMHn66adl9OjR7vjNN9+ck8j7/PPPC4qhxaqjfuYzn3FEXpRkH3roIXfdVEbSNiD7YrvsskuK0JkWpNN248qrbn45Km0v6UNXys9D2aqu8shEJe5uq8tELV83V1K5DvDu6RZUYz/11FPl6quvdoTdbbdNzOqRDx9mFuB5/NznPufqM/nC2/nOQYDfj3cXMjK/TVcag4X8gLXf//738qlPfapi2bnpdzfJNy4716X/wLL/yk59JsvUoXvJrkOmyp5j95V+0X5FfbtcQszoNk0HaG2pZN7BdYJivZkhYAgYAoaAIWAIGAKGQHEIGJG3OLwstCFQVgRQ4nUk3l330+lG+iR7CPUSrqewRtZlRcQSMwQqjIByZ1t1WvgNz8ek9WmdWkwd4xIrM4m3qU1CQ9dqZ9IHOuXYBxJh2Vz3+7Q6oW1/h/41T+xvVOQtz76/iq0NAUPAEKgwAtpXjhoLC52VTImLQm/rHB0o8a6Set/VYnaRlniqqlsui+tUu62PatpztWNqqhJ6pyQ6lUydt1wIJ9PRny0Oedd9sDKva+J8mWGx5AwBQ6BnIJBS4k3ebmo/Xam3ys/3jF/L7rInIbDXXntJ3759BdLWmWeemSI69CQMutu9tui0zhseUv/M23pn1DsLNW2HhMcpYfJgJfFOiTjlt0KjpodrbGyUIDmL8xzLpMSbHi49rc7cv+WWW2TmzJnukmeccYZAeA9aNBp1KqLr16935wgTtKeeespNBz9r1ixZt26dI0Xuvffe8olPfMK9Z8GwbKM4+vLLLwuEJxRHIVv+73//c8cmTpwoxx9/vOyzzz4uGteEgMT08u+//74jSPH+MgV9NluxYoV7t5977jlZtGiRDB06VD70oQ859UvUUTMZ06Hfc889Mm3aNHnhhRec4uqkSZOEax1wwAGZonTOsZCqRI9SMu8hIQkPVC6lKuzGtG1c8Ow1+i5EZ+kg1odjrq1dP1Yf+E60KVuHZdrbQQECEY6lK/HeeF/bJuHKkU1P5OV3D5J4g2kPHz7ckXMfffTRgpR2v//97zu169133z2YTM5t1LFRBIbIe+utt2Yl8r7++uvy6quvurRQ/003nmnyyXO6Zs0aR/Tlvo499lipqyt/F23bIiWQv6q+5mXpOSlgX5/XOsi7OycGbkeGK4G3SojkBeS+Q0F43v75z3/mTGPMmDGp8yi3nn/++U6FFrX0Yoxnyqx6EOA95Ju4bNky9+2plpyhQF5JQ9ncW6u0yAtrn5UX1z4n4z9xlQw7YIC0vKK+V1S9V/lQha2d31bLoLZtY1K/RXHvRmFXsFCGgCFgCBgChoAhYAh0bwTK30rs3njZ3RkCZUVgw5+vSyjxKolX/XuJ6Yu5AjtYYF3V5xO5tf+GQFUjwFSNLW9qB9Fjqhj5cvEOiJw3F9b0Bq6X8BZK3h292q3rUOEd2KLvsTq+UdPWIIm1buh+CBKAO17m/ZwZtZOGgCFgCFQQAS3qUqTebcPStlwJvXO1zJ2tzltdYrrEl+v12/cHlpYhFTaPzVJ+8FIlDCtxuHEfXSZU37Sjpd1clcTiW6VZgaybUN7Vz1YN7lcJmpYNQ8AQqDEEUoq8WhZmVOKtkeM1Brtl1xAoCAFIehChINt8/vOfLyiOBapOBKLaXtjwpLYXpqtfROv3BZv2aER0Suimj4SlcZKSJXtTSy3NvOouCngs3jKReIPnfbiuXKPe65UDIRGmE9Buuukmufjii10W//CHP7TL6pe//GX51a9+1e4YO3/84x/lkksukSeffFI233zzduchzHIesu8777wjl156aer8ww8/7NKD2Hbcccc5Qu+CBQtS5x944AE3Xfl3vvMd+e53v5s67jfefPNN2WOPPRxh0h9jffvtt8u3vvUtR4BMn6Z+5cqVctpppznF1GCcf/3rX26Xcz/96U+ld+/ewdOduh0ZFJJee0V0cH9INtwbdW3Ygp91VVVtUxLV+uGqzMvgWU2rM8yr7kLSveE+zUTSOB609PPBcx3d9qR0SOAQvAcNSpvFMHmBc889V1hy2WOPPZYimH/60592zxIDQgqxpqYmpwZ/3XXXCcT5a6+9VlAETjdI7t4g53qDTH/55Ze3e1c454nKqLPybpZbYb5lFoMjtFwtxlRJOryVKpzvquXq5LDUocDbw3qP+W133XXXYlCrKtJnURm3wJsgABmbASQ9xX72s59lvNXvXPQdOeeisySu9bL6iToo4MWYLHtglfRZoeq82tVVqEXfUp/wO3El8hYaw8IZAoaAIWAIGAKGgCFgCHgEelhTzN+2rQ2Brkeg5eG7lBihDpH+6ohSv0rcMSN0wxH7NH9p+1V7vuuhtBwYAnkRiK7QziF1OjT/T53mqLxs9EPnjZszgKrvyvA1ElHybmjMKqkfo+uhSuit12nzkhFZQ9rtrHXO/NpJQ8AQMAQ6CwFVbKkbGtIlIvEdtQNysTp/1YHbpqo+US2HYwu0VCyHSu9KLdKfUJLw+9pRtb8qZ2mHU2Rg53RwdhaUXXYdvl2uPpog826sr9bYfpcBaBc2BAyBWkYgqwKvlo1YrZyv5d/A8m4I5EIAtU2IhJANIUKZ1R4CcSWDbHhZZ0t6Tkf5FSM4B4l3OyVHHqlksx3Ur9pYet3fk3hBzxN3IeuyjSKvt3SSrz/e1evddttNLrroIkFp9D//+Y9TzIVEiy1cuFDOOecct82x//u//3Pb/PvhD3+YIvGiQPnxj39cUDd98MEH3TsFAfeoo45y+wMHqjxnmj3++OPC8uEPf9iFW7Jkifzyl790oc477zy58cYbhTQOO+wwR/pFXRcCMAqUl112mRx00EFOMdcnS/yjjz46ReI98sgjHZmOKc49Kffwww8XVE2D5GLIyP/+979dMhA0Sfe9995zWDzyyCMCkXn8+PHy9a9/3V+qS9ZhJfH2+rA+q0qU3HC3todnal1C3YkF2Rpt7z6rU5RvEZNeU5UQ3J5LW1ASxQTyJF7iePVdyLwcR5HXWyVJvFyDMv43v/mNuxzP0Z/+9CfZZptt/OWLWo8bN05++9vfyqmnniqzZ8+WCy64wBFyC02Eae0h8mIQcP075uNTJyR/GM8x75I3VKk94Z1v1Wc+8xl3iufzz3/+s3vfvvSlL8mdd97po3R4jZBFVP0t8RVFJDVACXu7qALvPmFpGK+DI3qVXq4WcdWaD3rXXXfJs88+K1tttZVkUmIO3uCPfvQjNwhp7ty57jAKzX5QAyrRlHtBK1ahnEEUlLGUlSikkzcGWMyfP9+Vu0El6mLT9vl6++23ndL69OnTpbW1Vbbffnunzo5yerH261//WubNm+fely9+8YsZo1Oe+28Liu/BwRyowT/xxBNCXrhvBnmxUF7477lPdPny5XLVVVe5XRRoUbm9++67hfeQgWG33Xabi/OLX/xCli5d6r4l++23n4+eWhdzTRTi77jjDmEwAGXOG2+8IQxoYWBBW1ub7LDDDnLCCSe0uyfUgK+++mrZsGGjs5QBBOCEEZ543qib8DvzrXzllVec8v6OO+7ongGU8/MZg3MyGc8mBpG/YUxYjj/tWIlND8txY0+UfUcdKP3D/TNF2+QYZVCblkWUSVambAKPHTAEDAFDwBAwBAwBQyAnAkbkzQmPnTQEKodAywN3SP3u+ycu4H0jkHixWttP5Nr+VwECTF3HdHgtLS3OKVAFWSopC0xn1NDQ4FQzevXqVVIaPlLbYlWveCIqLarEG1/oj3Zw3bdZQluo8u64VVI3dpVERqn6br/mje+uvsSq3eUuknidO2+/g3dm0Q0BQ8AQKDsCIe0Dr98yrIMddHpQJdq2ztEOe1VmaHtTO5jmaFm5uoOX1MEZ0de1rF+lZF4duNG0Z0TqhidKX/sudgBbhTChxMv3jB2vzFtb+x1AwKIaAjWPgJWBpf+EpshbOnYWs2MI2HtbOH4HHHCAI0KVk8g74/WZ8vL012T2nHmyQtU+a9UGKfly3NjRMmnH7WWH7SZW5W0wc0fL0+qnWVxE9nSwYESnfO91FCReJTUqMbKc5gm8QRIv6XemEi9k2vr67GzNESNGOOVaf98QhDyR54wzzhDei8GDB8vXvvY1FwSi7jXXXOODy0MPPSTf+9733D7Kuvfee2/qepCCIdyefvrpgsIvRFn2M9knP/lJd85PJw/ZEfIl9tZbbzkl4G9/+9upqIT3xCiIbz4sAVAVhmCJcf/77LOP2+YfU50TD2VWFLi5Vwzf51//+le3DVEX1VNvEJghxUFiI/9dTeQlXxDOmybpA6zNqg3xJJk36nOcex1fqETep2JSNyokDVttJNPmjlWes5B5IfAGSbykHFTqLc+V2qcCIRbi4TPPPONIapDTdtllFznmmGPc8SlTpmxC1mufQvu9k08+2ZG+Ua2GaH7EEUe4pX2ozHsotI4bN849o5Bv04m8zz//fOr5PeWUU9ol4pV6Ib1D4sPfjfHMQzKH5As5GDJ7uZRAYyuVOLdML1LgTEihzdRfs3dYeu2vPpuR+nzpM2pWGAKUp6g0QzDNR+SFJEo55o3tK664wu1+5StfaUfkLUWhHAIoacZiMTn//PPduxO8lt8uJW3i3n///e3yyLH77rvPEWRRTS/Wgvf/iU98oh0B3qcFwd1j5AejrFq1yqlwe/K8D0teMH4LvhPBQR+ot/t0UL8GH8i/3uhHw2644Qb3/YKk7L9XHC/lmq+99lrqmlOnTnUEY9LyxuAbyN08P3y7sWA+fTgGrLFglCOeyAsxmLKI7226ffOb33SEYEjLuQwicybjOP1y1Akg9fpw89fOlWXNS+X/dv60NKwroAKm37jYMi2PVqnad8e69zJl044ZAoaAIWAIGAKGgCHQrREwIm+3/nnt5qoVgbYXn5LQ4GHagkm+gkk+REKyU3NdS/vVCnIPyxcOBxr7GFPGDRgwIOUcrEUoGJnM6GOcKiwogOBAKMr0PWqdF5P1D0Wl9akilQgyXUgJTDJgg4S3XKVTja2UyLiVOs3YWnXGR2Xl+rC8MbdJ3vugTprbEh5P/xr7pArZb6qLy4h+bTJxWIsM6AVhyltS0dfvaiHRPr30/VRA2zAEDAFDoHoQ0EKN6UAjgyLSsK0SeefFpeVNnUpXFYmYcs0pxlC4lWIaL65KD833qpNYVYvq9o7Kmt7qLdZr2nexFEATcdzXxX1wAFj/+Bb6fQ1SE+dLv32LaQjULALWNuj4T1crirv58tlxJCyFzkLA3tvikWbqdYhPM2bMSBEbik8lEWP+wkVy53/uk6gSYKZM3lkOOWA/2WyzwaUm1+Xxli1bLm+9PVseevRJeeTxp+WjRx4qW4zcvMvz5TMQW6P19heUzKgD+1zd0p/ItdZ6fXi8SNMR5SPxeoJuUL0vncQLwa4z7Xe/+52wZDOIjHvssUfqNKTfP/zhD7Lzzjs7/9mFF17oVEEhLGKQFocMGZIKjxog1q9fP/nLX/6SIvH6ACjbQtyBAAvRKJtBSvMkXsJAdoRoiTIgaUMkChp5HjVqlFPqffnll1OnIOR6AhaKkkESL4GIB0mX+yIc/kLIkIsXb2SAUxYEjfPkHb9iMI/BMF2xDfG8aWcl8yq5aX2rzhg2S3NB2yqfaZjoG/rOvKRkXh2wisJvpcwTdL0aL9dJJ/Gecb0KGVTYeCch40HegwCL8WyxeIP8x/N68MEHF+QDR9kTBU8IhBBuX3/9dYHons8Y3AW5HWI6CtCoe0KW93b77be7TZ571ECDhkomBqnQk3j9edL76le/6nb79u3rD3d4HVOF87guBVlvJfHuHpLeh+hg6GGVe64Kyks3D8TvTR+HJ/Rut912ctJJJ7m7ZlCFt1IVyn18yKEY5e3+++/vyv+RI0e6Y6WmPWvWLKe86xLRfwwYgeiKGi7PPyrvPP/F2IknniiXXHKJi8K7ftppp20S/W9/+5s7BoEVvDCu5Um8HD/wwANdOU+ZzwAUFlTmGQSQyTy5FcIvA0poS6V/99PjdfSalAvgQ5mFijH11t+rWjfGwJNDDz1Uxo4d68oVVOubm5ud0j7nGZTiv/le+Tgajbpyj7IM49kiXcq0W2+91ZF7IYcTPqjE7AIn//3qV78K7mbcRu0/aDM2vCJ1R8Skz7hGaX1UP0zrg2czb1MWxdbxobPyJTNCdtQQMAQMAUPAEDAEDIHMCBiRNzMudtQQqCgCba+9IJGRKkvn2y+6ZtNNX8yVa22/omhZ4vkQQLGHaX8GDRok5XT85btuJc/j3OReWJjiiKmU6HgoWJ1X/QMt7yqJ914l8eoUdLJxkHXx2Ya0NFCd/0rcjUxYIXVbrZDwsA0SikRl9vIGueuZfvLSgo1TLhZ/gcwxJm/RLEftsE7GDdZR4eo0DjGNr67Vw5R7P3NydtQQMAQMgapCgGnVGrYJSf24sLRNUjWu11Wld4YSeki9p+8AAEAASURBVLUzP75cs6pFXSlG3Jb/xWTN0vXS53Ad2DJRO8SoZNW4dfi7WNL9o8ebqJ9mXOu5jMf1oDteJedLunWLZAjUMALWNijPj2eKvOXB0VIpDAF7bwvDKVMopg5GXc4rlGUKk+8YKry/u/lWOfajR8rU3abkC14T5yEhs3A/Tz87Ta765a/lcyfrlMxVos7bMkvr/i9phb9QspmiHlI3atOhEWnaMVxWJd5MZF7/I3MOQk1nGmSfXL6vIIHQ54v3gGnDIQVCAvbEQsiHKI8G7bnnnnO7EGaHDx8ePJXa/uhHP+qIvJDOmAZ+zBgFP2ATJkxoR2T0pyAiQbSEOJROWiQMxKkFCxa0wxQimDfIbBB102233XZLHZo5c6Z738eNG+eIUeQR9WGmikf1d5tttnFhffspFbFKNiDzNu4clrgSoNZviEp8XoEZ08GqrS/qQNgJOgPNTrS2KmeZyLz+ajfe1ybT3i5Q6tVHKnGNSMXdd9/tpqRHCRfyHs+PN55zFlQpIbPnE4DAr3zTTTc5ojvPDYQ+r5jr08y2Zkp7yHIYZN7PfOYzbpvn9ZZbbnHbkIObmprctv+37777ujwSBxVelDchvfN8UteshB8/ziu06Wvks9RuHeqjg6BVcdlIvO1gqciOJ5DecccdjkxOvQVl2HQrRaE8PQ3IoQyMiER04EDASk0bwjHvDIZKbpCw/tOf/tQ9055UGrhczs2tt95amFEBtVkIu+lE3kWLFqWUYL3aMSI2P//5z126H/vYx5wqu79H1K1RkYegyneIvqRs37ibb77ZfS9yZjB5shzXZMAAgwhQA/Z2yCGHpIjclGPf+MY3XN8ezwR1D0+i5RuOGn3QICl7vBm0A9nXG2UMBGfOk242Iq8XBPLx8q0hbqPQS5m27uGotE3TGRXWF+C4bVWfYoHlUb482HlDwBAwBAwBQ8AQMAR6EgKdOxdPT0LW7tUQyIFAdI5OedJHR6lCyKO9o2vX7KnF/Rz3aacqjwCqPZB4UaGphPOv8neQ/wrcF/fHfXK/hZhT4oXE+7S+WR0h8aoCb2jyYqk/9B1pOPxtaZi6QMKo8CqJ98G3estl9w6qCImXe3xpfqNLn+sEywhfVmRbF4KPhTEEDAFDoFoQCNWrAszosPQ+sE76HK8d88eEJaKKMDKwAznUcr/hFS07H1OViAWd08nYgdwWHbWU72LRFyGCq5/q16bW1yXdvEUyBGoTAWsblO93y6d0Wyvny4eIpVQpBOy97RiykCLmz59fciIo8ULiPf2zJ3UbEm86GJB5uT/uk/vtaouuUjLiKzqLxlzn1SgoO0z93rhfWJomK4m3qfwkRkgzntDrM5TpmD9XyfX111/vnmme60wL5zPZF77wBafQxzkIV6gxXnnlle2C8u166qmn3LEdd9yx3bngDsRgb0H1XH8sGznKn8+mbphJHfell17y0ZzqILOppC8HHXRQKozPDyTIoHIxJC7uCXVeCGH33ntvRlJwKqEu3GBQa+OUsDTso8/zRmHXvDmKzdF351VVsl5d+LuTN9EsASDzQtoNGvue5Bs8Xultnkd+39mzZ8u7777rFCe9kinXhozrSZL58vKRj3xEvvjFL7pgkGu9Kma+eJDZUSHFIBV7Q+HaE+pQD063733veynVXwi/kOF4vlEMhUyYXu6kxy9lP4R0U4HyTfF1yvmdrbMlLan8M1XKvXR2HJ6xzTbbLOuS6TcuZx4LVSjnml6hPP36DHL42c9+tgmJt9S0GSThlbBRWg+SeLk2atM8y6UYxGLs4YcfdsTbYBpBRfhjjz3WnUKpG0VsFhTlPYnXx/Ppsf/888/7w+3WZ555ZsEkXiKW45qQqoMkXtJFnZfvNPbWW9pXXIS98847qdA+DX9gxIgRgoIyGP3gBz/whzdZt7Yqw7ZAg8B7//33OxJv2/taXsxREq9T2S0gAS2LXJlUQFALYggYAoaAIWAIGAKGgCGwEQEj8m7EwrYMgU5DILZksRIBacWo8xn/M2usFvcTObf/XYQAo2dR4k0f8d9F2anYZbk/7rOQ0cJti+Oy/qGkEm8R6i7tMt+7VULbLZG6g2dL4+FK4p26SKevW6fvbdy9sg8pufbPzxc3ZVS79IvY4TpcL1lKJNcJlUSSSRzfuF9E0hbUEDAEDIGqQQDHbv0WCUJvXwi9H1NC7yQt4VQhpiTT8p/BHOsfjknbe92vU6qY72JJ+BFJ4XdfF/ehcTv+YGpdE+e5FzNDoIcgYG2D8v3QEISwxH9d+/30dfKS1Xo+mT1bVTEC9t527MdBYRGyQql253/uc0q824zfutQkaiIe94fiMPfb1dY6W+vnb2j9vLBx2iK9lJO2a0iado1IuJ8vlct/F0HibnC7/FeqTIqQZCEJehs3btwmA/5RF/aqigMHZh85GZwivSPvl89LrrUnQeYKEzy3atWq1C7Kwc8++6ycffbZqWndSQ/l1qOPPtop986ZMycVvpo2Ivos95qqSqhT9JluL+KaPZsqDt32Wlxa3+2c9m2QzNtVJN50MCANHnPMMY7EPW3atNTvzm9eqPgD5DZUpTHUK4OkuPTrBfe9Ci+kw4ULF7pTKIlivG9B5Wh3UP+hEI0KNoTeIOEOpeFTTz3VzT4H6bycFtYxzSjtFmTObxKTdQ+oH32hDoLunEeroKx1VSDKyGwLMyhU0jIplKP6HFyCzxkK5el2+OGHpx9y+6WmHYxHmZvJ+PYEvxuZwmQ6hqqutyBxl2O33XabO8X7Tl0P4zvHwHaWoOo7+EA4Dg4iWbs2c6eQJ+S7BAv4V45rosKdbrQdt9tuO3e42O/ghz70oVRyRx11lPz2t79tR4TGXwhGuVTK6+tVVaFAc3ULLRsQSlh3f1TWPLpBRAcBFGKUReHelau7FZIHC2MIGAKGgCFgCBgChkAtIqBd5maGgCHQ2QjEW7Sxg2cE5wjtmCLX0956R6676165b9rLsnJtga2mDDc5sE9vOXTKJDn7qI/IlAlbFZ0Pc+5kALUTD3nnEQ3znmDcJ6PHue9s0wyi7LL+CXU+PqUvVSlKvJGYhDb/QMI7KIl3x6VSN3KNhOoTao7+NZ29vF5uSSPxbj6gTfrUx2XB6oisbyl9jEyvhpiM6h+Vta0hWbRq4yea643brFXGDfajpRMq3hvdIOn7PeGJsHs0BAyB7oiAI/SqQm/dsLC0TohJ8ws67a4usfl6t+0FgfLfvn4HWp+MyYb+2v9/QEQi/TeWmvkjV3+IQr6LHboL/fDFQ/zTVLKsM51/94158uA/HpXpz74u69aU3tHVu28v2XG37eSgY/eVLbcdnTEfma4fzK873yEQLLIhUDsIWNugvL9VSnE3mWxqX9UMsdR+2nk61JkyF9LGmjU6D3YHjHKejl9U2/xU4anr+nykXT/9fAcub1E7AQF7bzsOMiSFQslb6Veb8fpMicZi3VaJN/1+Uead9tIrwn3vsN3E9NOdsh/TaZhbZ6oa7/xEWVrIRSMTlMS7Z6RTpn736ph+XUj+qiXMm2++6aa99vl5/PHH5aabbpLTTz/dH3IiADvttJO8+uqr8sYbb6SOp2+g5uctl3KvD9ORNfnxNm/evKxTofsw6evJkyfLVVddJT/5yU/cfUGyvOaaa2TBggVOwRUF1kxkt/R0umK/briqTO8lElsYleiMwt6J2Dx9h96KScP4kKDsW2nzCrx+XenrFZM+zw6k3C9/+csuGs/1lClT8iaBIi7E36lTp7qwEGqDSp7ZEoAc7o3p7FF+9kRe0vCDunwYv4Z8/K1vfcstb7/9tjzxxBOOePfkk0+6IKSLIme6YqePX+w6PFCfDZSecU8XMEFRfKmOq9AB0HFVem7aOy4NW1dG+bzY++iK8MOGDXPlZrZre0JptvMdPZ6uUJ4vPRTKd9hhh3bBsuWx1LSDRN6JEzPXHXj2IZc+8sgj7fKSb4cBJSeeeKL89a9/ldtvv92R24mzePFip9LL9qc//WlW7eyhhx6SO++806nEFqtmi+JyKdaRa44erf6sDFYK+ZlkIAB//etfl5/+9KdOERxFfowBChB7UY7m25jLDj74YPnud7+bK0jq3N677iPNM6Ky4TH8s1pGrG1Mncu1EVM/YnhIWMIDcoWyc4aAIWAIGAKGgCFgCBgCmRDYyBLKdNaOGQKGQGUR8P42XbMZD+y7Cwf2/fk/PfioXPi7P8u3TjhGrjztZBnSP6EK6s7nyG2m80tXfyB/e+RJ+dglP5LLP/cpOeWgfRMpBK7r8+Gv7/fbrROx7H8nIwCpFedjTzLul/vOROSNq5pL88sxaXlCnY8rSkClX7OEJy6TusnvSd34VTpaWBNEccsRmFRzkM5y3b9rRntZgwlDW2SBkm7323qtnDOuWfo1RJPxEuGZkjyRTv71By0ReXp2o9w5vY+Q7ltLGlI3cpce+9J+qjySTM/nZ5P9VAzbMAQMAUOgdhEIqV+4YRtV5R0RkpZxIWl+WpW7pms5ulGAqaCbiy/TTqnH1Hk8NCa9VMUrVLjoREHpd3WgXN/FDudNv3mJ+h9q9CFXT823/+R/n5HbfnWnHP3pj8jxZ39c+g/sq5/RZHzNkItf4P7qlWvkuYdekKsuuEGO/8JHZc/Ddi86P1zPzBDoKQhY26C8vzQd0pBii1mjqHbjjTfKySefLHSoMhVrMfHTr4dSK4QkyB8oxh166KFFp1deVCy1ciNg7225ES0uvZenvyZTJu9cXKQaD839ct9dReRtW6hTMr+tdXr0DQqwkIrwNewekgZtD7iKYAFx8gXJVz8shcSbPr13vjyU+zxqhJ/97GddsrvvvrtAtvrjH//olGoPPPBA2WorFW9IGuchPDLgJJtx3ls6ScwfL9d60qRJqaReeeUVOeSQQ1L7xWygzrjLLru4BWIn06dD1pw9e7ZTXA1iUEy6FQ2rD2PD1iFp3S0kMZ1djLZrXtNxkm2z9D3S8O69yBshfwCt8jjXYraQpZB4GzvQ7obs6lVHf/azn4lXws2Uv1LfPUiH3//+9x35HUItSz6DdHfKKae454r3C+KtV7iGjFiIbb311sICOREVTU/Ae+yxx8pH5FX1y8gobcEP1GdqeSG50jArdRD04zrIYrES9XaLS+POOrh6hBJ6IwXG7ybB+vTpI5D/u8qKVWYNKpTny3OpaS9btrFgytUPlUvlPVfeeKcg8j7wwAOOlAqZ2qvz8s4Fvwl86y666CJHYM2UJuH9O5npfCnHynFN2oPlNNK7/PLLZe+995bf//738q9//cslD6n55z//uVuOPPJIueWWW7L2HRZCIsYPuF3TTnL+LhfJsdseL1vWbyWNOGsLtMhmIRXJ6ZxBJwVmyYIZAl2GAHVrZgCgLMbPwzvIwAvqEtRJSq3PdNkNFXjh+fPnyxyti9M/TpnV3Qz199dff93dFoPv8QH2dGO2lBadBWaMPttjxowpGA7abNQ5qIt5xfqCI1tAQ6CbIlC6bGA3BcRuyxDoVAQg5GG6cluB/cTx9udR4oXEe/elF8rZR39EhvRLKrEWGD/llUsmS3zSIT3SJf3EdROrYPic+UsGt1XnIoDqDFPlVJtRUfv73/8uDz74YNmzxv1mU9tpnavKjaq8GE/MblbEtTXOsPkS2fddaTx0ttSrEi8kXv/MB9cr14XkpfkbHRYo8ULiPe/AFXLwxHWOxBsMzztUzD4kYNIhPdIlfW8vLWgUrp8vPR/e1oaAIWAIdAcEUNGFgNvn2Ig0fkQ7khCyKLIFg+JXsw7yaJ0X63RIcELwTWShA6Dcluu72OFruW+YfnXcH//4pmXff/eNuY7Ee+6Pz5IDj91H+g3okzN8vvSITzqkBzmY9HNdP2t6HQbCEjAEagOBamwboEjry8BFixaVHchKloHpyrb59lH7g8R75ZVXOgVd78DPFy/X+QEDBri0SJO0UVvMFR6A08+XHXRLsKwIVON7yw1CoODdDZL5ynXjlXxvi83j7DnzZMLW44qNVvbwmfCuVB2S++W+u8S0Gtk6R2faUEXRgkzr/HU7hqRxJx2M11g+EsygwUhVls8od+lw7EpDjfb55593Wbj++uvdt8iTdFDkjUZ1wHnSvGIpnc6ETbe5c+emlH0hxvLOVtIgMPi8fuc738moZv/oo48K06uzvPvuuy47//3vfx0ZEiXVhQvbOwIh9bqpwJMZ99/GSt5HqWnzbDdN0gGs2+szXmA7NzZHibxzE+2yUq8bjPeJqQVeOBgpz/aUrfIEyHEaouvYsWMdIe9HP/qRQJLIZKjaQ6j1VixZG0XLPffc00cvaH3SSSe5cC+++KJcfPHFbptnLZOaLuU4hF0WBmal2wEHHJA6FFN1+HJavarqhpUkXpQ1i1OGbr4jJmv/HpX1j0UdYVw2Fh9FJZcpcDiceNbKdb/exxKOdA/GcbpCOfXEXMtZZ52VCeaMx0pNO6jK7svfTBdgIEYpxnsAeRfzBN6g0jUzL3iDcI8KLYaiLORflNwZGAdOc+bMcefK+a8rrllo/iHr3nbbbbJixQqnTkyZ5r+nYPnNb34za1IM+Al+J4MBIfBu07CtfHb0mfKNHb8lp23zBZnQsF1RJF6+uxFVjq8fV2Q5FMyIbRsC3QCB9957T66++mo3YIF+c8opiLyUXdQlmM3psssuyznArpZhQDn+Hq2z33PPPbV8G1nzzgwgzNLAgpp8Vxn1oSVLlrjF140KyUup8XKl/e9//9v95q+99lquYJucu++++xyO3fVZ2eSG7YAhUAAC5W+lF3BRC2IIGAJJBHQUkjPfnsmzf91d9zol3p232jIZr7j4jHrKdD3SQ+GX9DOdT6leZImfiGT/OxsBKlk4p6vNfvzjH7spfFA2KLdxv5kqorE1StKaFpOoTtFYyLRhqXypLyhUP0PCe9wnjXsvUOXHtRIKaxr60KdeSxc4sT/z/Y3OIw73qY/LR3dcK2MGRTOGJ0winczpZTtPeqRL+kHj+vnSC4avhe1mHZ1nZggYAvkRaG1tTZFz8ofuZiG0xVI/Oiy9D41Ir49HEp2c7Yvj3DesfWLR1/U78aISB/R70ZlGBzPT2rHQsVBuy/ZdLMt19IPjvl7uw+N2cu4/+I9HnRLv6Amj9PL5wyeCJMLlCk96R6nCL+kXk59U+mUBwxIxBKofgWpsG6A44svAYp24hSBeyTLQKycVuqYDBiXe8ePHu6wXGq+QcBBaSJtrFBKeDPhwheBoYboOgWp8b0EDshzvLh1S5bZKvrfF5nWFdqJutll5SZ3F5oHwxx17jJz0qf+TOwJ433vvf90xjpezDsn9ct9dYbG1cYkqiTde4OVDyuup30lVIYe5ymjZsoz6FaqC5SB3ksbQoUOzKt6VkmmUciH95VogLXljunQ/PTYK7pCumDr8mmuucUEef/xx+eUvf+mDyyc+8QnxhK6vfOUrTrkPUu/SpUvdO8/77xUNL7300lS8Sm3wvfLELAgNxx13nKBwD8mBQUA33XSTK5MgJVGXGDWKtoa4NSqOKA5yT+BAmQpB8IknnpAf/OAHLhz3yne0mq1ueNg966GhheWSWcjadLAq71Q57OR9wzJ5XPm6CU/ZPywfLpZEmnYjzESAoTDJM/2Pf/xDIEvw+6LWxTT3KLs988wzLhxk2UGDBrntQv/xPUIVtxjbd999U6RDP9glm2LwyJEjHTGR55RnFMEL/+5C5PniF7+YuvQRRxyR2i7HRv1IfaZ0IESohE+ce76eiMv626NK6G2Ttf+LCuIZzITXUWPQA7/TrFmzZPnyQuWCs1/V/wYjRozIHqhKz2T6BqUrlJcz66Wm7b8X5CUbWRciKcT1Uoz30CvKQ0qF9OaJ79RFgwZx19sNN9wgvI/Dhw9P9Y9ly5+PU8q6K64ZzGdwIE7weHCb9wpSLiq9lC3jxo1zp/PV4w8//PBgMlIn9TKp1xQ5fczZ8o2dviNf3O5rcuioI2Ro0zDca0XZuoa1iTrc5uX7thSVAQtsCFQBAgw4YkC2V0SnvBs9erRsu+22ri7hB7fQ1sPXM3369CrItWWhFhGgjXTVVVe5pRhCcanxahEjy7MhUIsIVB8DrBZRtDwbAqUigL+NVlCB6/umvSxXnnZyweELTZdwn9xvT7n81mQnTYH5cemXeu8Vikel13eGBUfsVuhyrkOF6xViqFj4ynkh4S1M4Qi06NSMra/og5tZpCFzQr1V3WWSvoCv6XM/cZWE+mwRCOc0/wJOisT+4g/afzYXrI7IOWOZEzJz+I1OjuLP767p/mt6e1WXjdfPl17gVsqwyTPuOw/r6+uFpVALxuWdpMGK4Xw/9thj5e677xY6hy644IJCk7RwZUQAkiEqIkzf88gjj+T8bf1vSUdbr169ypgLcZ0wTAc2bdo0YWq48847T+hUNEsgcP/99wtTNdI5wehU33lZaXyuuOIK15m76667yrXXXtvhy/3hD3+Q6667zjna77zzzqLTc+q8u0ckPDAkG+5TdRjK/fUFJrNGFcBejkvLxLg0aYeWWWEIuK+NqxfqP/5CibWwVguen/7s63L82R9z4TKdzxc/1/ndDtxF/vPHe9tdL/36WeO7nFbuH45ZHF84XPv27St0kKEGZXW+ymFuKRsCnYGA71wvdA3ximm8Cw1fbDjUqiArFRuvM7CiXj9jxgynkgjJBjXiLbbYQpiOfXAHlS+pf9JJTyc2RDWUp8wMAUOgNhFoe1+JvIs07wWqO0YmhqRhGyWAlJkDgj9j7Nixrt1JPa5Uow0NeSbXVOOlpI1qF0sug3gLOXXDhg3iSYQQd84///xUNAhQtL8gRH3jG9+QQw891BEHUHu/6667nBIpZTaKfZlU+37zm9902hTzkLhQJkMQwBOYUzeS3EBl8NZbb035lCCXoY7KtxE14t122y09ilMm/OEPf7jJ8ao7oGKiDRPD0jo+Jm3vJdpZOfOo71B0oaryLo1LQ9+Ot22HDxS57vNh+c+0kMx5P9Gcy3n9LCcb1VW4u45nmjyu43nimWC2A/wQPKf4Q7IZJNl870y2uLTbeNZRri7E8GkSNvhcffSjH80YtbGxURC7+MIXvuDI8Z40x7PsyfJEvOSSS9z02hkTKfFgSAc+o/QcnaP+ciXlSrEkXJr9+iy0LtHnbLoSeVVZs25CTOq30sEVo0OCbybgNC8qlxAOISz97ne/kwMPPDBFjC4mEXzU1L1R+qO+ibporZifPv3pp5/eJMteoZznA4XyPfbYw/kYggFRKP/5z3/uDkHayaQGHQzvt0tNm++lt3PPPVf233//dqR52iZBUroPW8ya9xv1bUizvI/YhAkT3HTzwXQgDHtL90vTHimWmO/TyrXuimv6Z4R8McAl3fj9OY6SMX5b39dCOMqXffbZpyBiNb/nvffcK9Mff00mDfiQTB48xS07DNpZybtDJRwqrQK2vm29DDykn86ooLOqFd6FlH6btm8I1DwCDEKjro596EMfkqOPPlqCnAV8HfSP0B+G/eUvf3H9dMEw7oT9q1oENt9881R7yavLV21mLWOGgCFQcwi0ZyTVXPYtw4ZA7SKASyvu/VpJ30e+/ZVr18mQ/v3cTZcSP1f6QzVd0veJF5V+IlZV/KcByii37bbbzjlzKp0pf71CroMjAoUAs/IiEFuvTsk3ipiekctD4v1wSHofHpENb70msbrhCf9jSJ98dUChXh1KroP7zW28GRttfUtY+jWq1GOW8BwPxs+2f+QJ35W9p+4gF56rjunkdftruqQftNT1c10vGKFM2yhfoAKGfexjH3PTNhWa9KmnnuqmjiF88B2A9ASJF8OxbUReB0Wn/4PIi/Pvwx/+cE4SLxkLPgd0sqF6UA6DpJpOygg6SstxjVpPA2c0jnwWOl0hCnWGvfHGG+75QNGpHOanjeqIY8N1SG2v00TqDK/r6pTM+4KW2QX2vzMFaevMmDSoOlC4V/vyvBz31/3ScPq3rr4KWtQj2631WHB/3Zr10n9gP/i0ieN+nR7P7xdxnnRJnxyl8lFgfA1WEaNDmW+cV4sJXoTOEwYjoIoW7FQJhrFtQ8AQqG4EGLhEx3Sh6zVr1gjkqELDFxtu4MCBbrrxYuNVEmXfYU5nMop5mey0005zxLJx48ZlOp33GNfw08Vb/TAvXBbAEKhqBKJK5I0pKawQW968TJUsVYV8Q4t89etfKSRK0WEos1mqwYodAOYHV1P+QurFGDAZJBXzvUCJd/vtt3fnzz77bDeAlh06nWmHX3TRRfL3v//dnff/IE9BIEtXQuR8kFzkwwfXEBdLNa7J7wGZyyuX+bQ+97nPyYUXXihjx471h9waIiADXa688sp23yHq4gwC+dnPfpZSJmwXsQp36oYqUVLbqW6w6gf5MxhXwm+U92ls/rCFhAhrG+1o9ZNWi/Es8fvttdderk2VSe2TAc4QCJlOnuc9aMF9/74Ezwe38dUzDfC//vWv4OGs2yeccEKKyAuZnAFM2Yz2IkRTyPRePdiTeHfffXf53ve+JwcddFC26B06XqdKmE37qJDC0qhEX9NnpcBBFO0uqtHiy1QBehmEXh0YvUXcPaeRsSGdNUmf2RHqW+nTHvt28TPs4H9cvXq1K49QK+6IQeD1BOmOpNOZcakT8yzgT8AfjsgFA99QKua5RaEcRWqvUE7fE88KA0/wozNgg2eIdIoZ5F9q2pT7fGu+9rWvuTx/8pOfdNt77rmnI9v/6U9/kttvv71DEKK6vcsuu7h7htiOff7zn98kTd4VlHgxBCDAhmeAPgbKi44+T5tcUA90xTUZJOQJ/2AL4R0Fcp4RvvOIBfl7hSQIDgxKgODO8T/+8Y/uViifshmK7m2L43L1Sb+Se5c/IDsqeXerfuOlX32i7zlbvHzHW2OtsnrYChm2dz+pG15c2ZAvbTtvCNQaAgxIwqjfUtYH6yYcx1/M8SVLlsjcuXM55GajKHSAhotg/7oUAd/m6NJM2MUNAUOg2yJgRN5u+9PajVU7As51DWFPaNConhkOp3z73FQiYmHh86WXfr6k9IlUfeZHulVTzpqbm6spO90mL22oUKgiryQGN+a/L1UlqJucIPE2qJLABlEirpp7G/WdyLXOlHiu8JCB850/Qkm8jz81XR7TBbvgayc4EjHxMlm+9DLFKecxHNs4GwtxFjKNh3cspeeBKWS8k45OGbOuQYDOOwynYDHGiOFyGR2O3n7yk5+4UawdVW/z6XWXNQozdLDiHDj44IO7y22Vfh8oFm0dlvgRyuFtUzLvi1oyFqIwo98Jvhc4qxvGmUM57w/ANyxRTS1srQm6r57+HEXFKzR8qennvdHiAzz11FNy/PHHtyMZ+I4WUqNj7bLLLpNnn33WdaJYmVY8xhbDEOhqBEpVvi02XqXDVwpHpoaGpJtOAAuWhVybKdH/9re/OaUZyDjpxqAyr2RHR1ephN/0dG3fEDAEqgwBre/NfXGB9JrbX3qHdWR1Hnvng7flnun/lv+pOt/5F57nSE/4D7qrjRw5MjULUjH3CLmVJZuNHz8+a7qcQ/mL8nz+/PlOMQyC75AhQzYhGvj0IVB5EpU/FlxDHvIEouBxv40KZzaD3PDlL39ZzjnnHDe1OtOrM6AUbHIRiCFhsnAf77zzjjDwBVX4WrOQ9tLVbakDVkcq4X2mvjB5LLZUeZlKrkw4HfMEruHTxx13nLDQvoKsB9GFmYryqf7TVmMp1G677bZCgzrxED9rWSGRIGE+9thjbgbBd999180yAOmu4gM+tS2PqnnsI3EViohKjDFXCRd4IdneNIzOgsez2fKWDnQbrC6YMarMu6WSeSH0jtRlWJLUW4CrBR8kgwxmzZrlBqpterHcR8CO9xzfcq3ZUUcdlfKVf/vb3xYWBgFD6sVKUSgvFINS04Ywj/oxM6kxmxtL0BgAgko89fpSjbwF1WchzKcbAzcQ72EAC2rsLEGjrEhvmwTPl7LdFdcknwymQayIsu+UU05xWYfUS7uJc7/61a8cDoRhSW+D8ZugBp4y/Vw48q4OAnF9afN0MMi7cRk6d5T839aniH59UkFL3WiLRWVp3/dl/OfHOJ+t6/YuNTGLZwjUOAJwAaibYtRl00m8wdtjgIsn8tLvmonIO2fOHPfN9OHGjh3ryt0xY8ZkTZs8PKd+6dkad/ny5U7EB1IxbQDaVenKv6TNAG0GE0ydOtXl6fHHH3dx6Zui/uWNsHwXWDPQhHTJN4rg6YrpPg7rhQsXukEgb775ppvJjvxTpyu07v7KK6844jNpkUfymm70W/rvFNjz3fDG4HAU8RctWuQGFTE4grYDM31Qp0j/nbjHpUuXOgV0wrzwwgvy0ksvuXvm28jMosxOhYFp+r0Xez0GsZOmzzc4UVcCZ+4VvHbeeeeUMj6/Mb8RuHpjf+jQocIMm9kGmxUTr9h78PlgvXbtWjcwnwF5pENbk2eXmVSKHcjKc/bqq6+6diuDPmmzUvfge8cMiWaGQHdEwIi83fFXtXuqHQTUSZmw5DrfPoFd0ALD50sv/XzJ6Sfuoif/R13wn//8Z04IqGR1pVHhxDGJUwSHBw7xyZMnOwcAU3ukG44PKoA41hh9jNORSiCVSSpJNDBQ0aRSmcvokGUqeIwpoYiXyXD2U0mF7JJrxHB63Na56uSen9/J7eLpqxOZEJJeB4eVxKUOiuSrxDm/mVg7zT8fxZ1VTS63n/4vX/hc51HihcTr7fKf3yoXKpGX3JR6PZ9WJdeonqCWks8YlZ/NcLpChFq2bJlrWGQLZ8crhwAdY149jZH9XWVMC4fx3tNxZ7YpAjijKcNRkkl3CGwauocc0SK8UQdjxA+Jy7rV2in1ht535mK6HSAxdVS36TcjPLrNEYv4puEEwPgmotzEVFfphmIKpEy+efwefNsefPBB5/xpbW11zhE6o0gjl1X6m5jr2kWf0w+Y+xqFAJadTdftzrsLtA/X7ny++PnOl5h+0fedJwKku0996lMpEi9TvUNmwxnFs4ADD0UU6kzUf6655ho3NVqeZO20IdDpCFCG4dzGEY2aLGpG1NPpKETlJ2h0JqDMT/2N5506+z333OPKRc7hsMYRe9hhhwWjZdz2dX7SonMx3VFOJJzV9957r4uPyhYdDZ1t5Iv3nbq8K/38fvo6ed7nLxXPhysw/ibxMsTnGpuEy5M+cSphKIX5jnIG+DEd+sc//nHnQI9Go64sRFUREi8d0HSC+6ngs+WnI1PcZ0uzux0HQ1QDadNDBho7dqyre/De8h0KGmrGqHFihx56qFPqYnpPpqKm7sM7jx+AGVeCKp7BNPx2rby3Pr9dveb3+buSLd56603tsFqp9cfNtZNpvBynHaBeHbWr89jZ1//J5T+V+G2N8tnxmyrspeeFMne2EnlnfpBQmuU8RLhLL73UZvJJB6sM+7z/22yzTRlSKk8SdOpSnqWXaflS5z5Qdaxlq1cyZESL8tjMAu5ivdZPVunSqnUDFSzo7gZJjXKApVaNui+Eg840no2mndV5ogTe9f/V2eyUhCv6zHTINK04RPKlSgR8RWc9UlJveAt9dllGJVR6UeIM91dvQI7eZwhBQVJQh/LUwcjUr0uxbIMMcqlAQzCH2AIRM0hcDV6/FIXyXNfsaNrE/8UvfuHITldddVUwOdd2ZBCzH1SSTgxrFzjHDn42CM0YbcpM3wCIYviQv/SlL6XI0D5J/DIoz/v2Ce+bt2y/kz/v18E4/lip1yyEoORV7DNd9wc/+IF7P3hOvEq9f04hnUFEA/c//OEP7jztLYx2GXV7zvVp6usGfLRB3lVBg+gCXdQfSj9afLkGTqp0l4PE2xxtlqX935dtzh4rTTuGe8R3yQFu/wyBLAgEy2RIjPg6svXpTJo0yfXVk1T6LIb4Vmj/04YP2ttvv+36JajD06eWXo5QbuCPxicQNPx3fqbUs846q913mDQfeughR7Akr/hyvHlSMj4yfInps9NB0oRsDIeAmSQzEXMRFPrf//7nk3Rr4lCu488oZHAO+cffjlGGZurT5P64D4y+Gk/kpQ8oE4cDvwqEXfgSkHN92Ux8ylpItAzAoh912rRpHE4Z/av4WDA4E8E2VSnX495QaCbP3Af+2qAxeyYYkk+uh6Cdv1cfzvdz+YFv/nhwXWi8Uu7BXweRL9Tyg6J79G+SP3BlAA/fs0KMWT4ZTBRMy8/8yfeWQZ0Qes0Mge6GwMbabHe7M7sfQ6AWEEjyIVKj5/Pt+3vKF67U86Wk7+P08DWjoRjhVK2WSTmOvDIl0w9/+EM3HRFT6gU77XEU0LlPZ/0DqoLC1E5Bg8xJXCrtdCBmMyq+THOGHXHEEZJJgYMRcKeffroLc8wxxxRM5I2rAmNMnRHxFS5q3n+hIapGsGdIGiaoE1P/guZfm8QxpynoOu6D+8Hw7bczh9/oBtz0vFfiDaaTIPFyJBE+eK799qbptc9/+9Dl3uPZ+OY3v+lIhdnSZuRjUGk1Uzgq2YwONOsaBCAleuuqzhCeE+9szNTw9vmztWQdQdujsYmo02ZiWNr2iEvz+zE35WM+PPherHxrlZx68Uny0OMPtgvON+/qq69236rrr7++XccBTqrvfe97Mm7cOOcESx9w4jsL7rzzzpxEtkp+E9vdTDl29MMSh1zrPjCZ1+3Ou2u2D9fufIZ0ijpfavrlwCKQBs49HIcYU0ziPPOGoxYyN85JVAhweP361792g18K7TzyadnaEKgUAnQgUI+jPhe0J598Uqjf0znLGmKuNxTufH0elQ2ee/8eEMY7rul0phM1lz3xxBMufcLQfso0yI86pK9H7r///rmSq9i5lFJu8gqpfe24wFL7yfN+lTruwyVPbHK8k877fJVzze8d7NSB1B3sdKG8QyWEQX3U9/0MHRC3GeDgO6HLmaeekBbqxnS2BY3vDOpcTCtPHebkk09OnabTzr+3nGPAXLDDzaumQfJlwG+2jkUSrJX3NnXzXbjxdR3M88tfXpsxBz/4wWX6O3xFfpRU3csYqBsevOKKK+S6798gF+18WUHvf5syE+evnSuLowvboeG/LxdccEG747ZjCHQXBMIDlPw4VD2J9VrXyEe21CCxD5SQpdOjRxo2eh+7CxZ2H+VDINQUkqZdIhLScXobHohJ23R9eBIigR2/SJvWid9XPuD7ShB8SdMdoAIaSkgPKyE9srkSe5XQG1Gl3roheqy3PqdpvviOZ6A8KUB2YinWUNH1SrrBuH5AYvCY36YezMx0LKtXr3YKzemKeYQpVqEcolghVkrapEufEYP0GFSDijtqfhCbfP0Rgg1LqQZ5rRCla4i1DDCjvQr5ijYW4jmeNJcpDdqvmY6n5xVfTyYr5ZoM/mbJZdwHSybjmrStv/Wtb7lBtLSpOOYN3CH7skCgA4sxW4yRgY2DpA2S/Yy4rH2vTaJK4I1pdSqqM1rKao3dntPnk+vQem1srcS3b5OJx4+Txm2NxNshMC1yt0GAd3b48OFulgnIh/iP99tvPzeoc9CgQe3uExJutv51yPoQbDHKYQie9Kfho2NQCIPg+X7xzfB+Z85THnsSL3Eg1qLKSzzKDB8mU7uKePgYvJE/nzb+BO9T4B4ZoDRixHBNd7bzERKX8hmfY/rADk/i5V7pE8an6JVk8R1R5vlvir92+hofoifyooybqT8xSH71nA0IpMw0i5HvKVOmOBIpeQATfiMEpyBNoz6cboQJWvq9Bc+x3dHrMYDbG+Rg+pN4DiBU8z0D4/POO899+xgozG8KxwLjmwdfJRdJlm9mvngdvQcvIMVzyyByDIEbsIaszPevEFEn6hxB/zV9c9QZuF9I1jxzPO8o+eOHNDMEuhMCRuTtTr+m3UvtIeD9bLpm001DzF0EjrubSp532znO54uf73zJ6acilmcDBwjELtSXUHCFPEMFisoLlQ8IEqeeeqqrCJfnihtTgfCK2hTTFVApGj16tKsMUnmrVXl+RjjRSPDG6CRG+VHxo/JKZRXMqbxBUko3Ogy9ERcVBDpgqYgRF6cEHf/ZjIo5FWoq2BCHqVSmN1b4fb0FOx/9sWzr6Gp1TCxXR0RyBHG2cO64vkeR7ULSuJM6Lxv9S7YxhjsS0v90qus6lFy3298YvP1WtvBZ0ktX4iUxSLwXnnti++u3v8rGvVzX2xiqYluM6OS3ZIR3NuMZ4fnIZYzmp0GA4nPwGSUOFXBIAYxypPHF88lzy5S8KHplMpxWOEuJM0dHc9JAQJGFUf2MqMxmPL90XvNOcF0aAyiKMWIznWhAg9erD/iOdO6V0aY0PCExcD+oVWeyUu6LdHhvbr75Zjf6lkYKjV0UtHgn00fqZrpupmPkGWNamPR3MlP4bMdKwQSsaICBhzfKI35D7JOf/GRKTSf4TeA3veuuu5zDgEYcCgNBEjKNQUgJlHuMysRRwXPDb5JJFT2YNtP4QEzhm8OIUeJ9/vOfl7Fjx7o8gTvlIYoZ5JvrfuQjH3EqhC5Ahn/FPFsZoqcOTZ8+3RFmcBIESfS8GwyOoEGM44VRuQy84LfFIcM90YjlN85mPPc0drkGaqI04k888UT3fGWL449X4rn0aRe6pjxvVIWZNp3isfWJhHJizrja0XT/Hx+U159BwjcxwIRvFGqUvMsQYijfmKrOj0IPpkfniCfxMjgFZwpxvBOJae4YjZ3tneJ5qtQ3MZjPsmzzrdGEINuyRT0y1z7XTIQrLHy+9NLPl5o+8cppwZHu1FUzGQ7OSy65JKWEyLcOBy6kXsomZh/46le/mimqK+9x8GLHHnusq/eW413nfYVMxyAOyk/q1Dy/KAJlUpIupWyn/PTTl33jG9/IOgDhJz/5ieu0RMWVAVxYpctjyro///nPTtHA/x44+Kh3ZppdgvKebxJTtfGupxtk2Msvv9wdDn6zfDg6Zfle8c1g6jec5tRJeGaChEcfvjPXDNLzTnm+D9TncJbzzeI7SB2ffKIunUklizoSRlzqSjhOvaoF32Xab4ccckjWW6J8xemM8Q1LJ/Ly/fKzOvAdz/UNy3qRMpygDkjHcKFrf8lCw5cSjmsUG8/nq5zr4ABPfvtszzR5pb5H/Yx3wStA02lCfZ26n3fukz/IfmP1O0m9P1PHD2Eoy3zdm84Unh9fJ0tXoSE8Rv2GZ406Em0E2vXkmfefZyzd0stc1EIo3/AVQFi49trMJM30dMq5z/fDDxyh7k9djQ4a8sogIvwn3keS6f3zCmfExbeBr4NBSMQDT8oziBnZrFbe22z576zjPNOexIsizMmqLIRK6DStK1K+gvcvfnG17Kv+GabW7gnG9xQC7g5NO0v/+v4F3XLDZjow6pBJEp+lvpk0I618bbC0KLZrCNQMAqiXhlWYKtRH22Ar82c7vkZ9Z+uUyDuIVpqZIZAdgVCjEoDUHx7uG5INQ2PS+rwOhFYCrhu0mz1acWdw761QF/0KSIRa/2rSevQQfaZHJAi94WHql1eiemSz5NJHn1sdnN2TLZ3Am44FZKNSFMrT08m0X2ra+B+7YraU9HvA50K9vDOtK67J75TNv0h/WHRNXPqsHCATW3eS6LNxWbMkKlEVvYkt1tdbCb2yoXIIxbSt3DqwWQbt20+a9tLZL7dUpn4Pf6crh7alXIsI0EdAOx6DdEt/Awvtw3HjxrkyjHIsW98eJF18mRiEWfwXnkCKUq8n+eLjxH/nSYz0DzGLFkYf5Z577um2/T98w/Sd0TbFL0B+0o2+L+/b8wq1hA2SeCFhBkWaGOzNgAiImuQ73ddCecbMTnAuvOGTwKeBcb/0x+UyVGi5JkRQ+urozwnyNiC5eh8T1/HfWfptfD/kOeec045bgg8S5VgwSyfsBvNC/vGH4kP3xObg+eB2Oa4HGfezn/1symfNABr6C/jdVq5c6fzq3B/9VPidb731VpcFfNiZFJGD+eM3zxevHPeATwT+iH9u8aUjngNpmv4z+iPzzajixXPIP3gElXf5vfAv89vSJ+zfgeC92rYhUMsIGJG3ln89y3vtI5AiCkKS0NsJ7CeYEglCIU4Vd97fMb7stPAFxa9E+j5PZVyjFgNRkA48nP7pI1PpLLz44ouFEVflnJaQimdwZI+/Ja4PGYPO7UzT+vhw1br+9re/ncoalRk63L2hwss04lRuUdelUy9TxYlK91/+8pcU3jQ8iEeFHwITv1e2BgfXYmoMT3KCnJk+IhkSJQZJOFPHozuZ4V9MnRXxDzKcyHRIHeH1W6sKAOoWGcy9VvqO5FpniNYu/FGfvEgee2q6I+VeoMRcyMDp6WVT4iU8ZUAwfL7rZUo/U5xyHqMhQIPzhhtuyEnkvfHGG91lIejSGKOBkW6kwbNH53qQyEtDBJJJkOBNXDpGMc5BIAg2MglLRT54Hd+wpFP6lltuaXcNl5D+g0jlFd/8MdbkDZIsjW1ICN7IGyQDDJIk5MkgYRmCAJ37POM0ItLjFntfXIdGLA3n4L1xHBIOI/MhQpRCcoGQgEFy7YiVggkNNY+jvzblEwsGMcGXRf6bQIPs/PPPl2eeecZHSU0vxjkasn4qNx/APwOULRCqwDFoPm0a4kwJze/nDVIDxDLSwFGRTs6mM56O5GwKrMU+W/66mdYMLvF4QeLwTlym2PHHIZulT2lOHlHM4JnEUZJuqIam3xf3DVmdZyuXVeq5zHXNbOfqh4elbquYtLwQldB6dRznsca2JhnSMEzO/tYXHFHIB+ebiCoKDi2++bzDvLPpxvOEsyxIwGAKv9/85jcuKFNC5RroUKlvYno+O7zPN8nVN6mH6teJv1z7ekH3FXPhCgifL73086Wm32Eg2ifAVIXeeA+ydR5Rn0mv01Bf8u8sBNpgWj5N3lsfxqsAdPRdx4nLQJj07wjXpJyjnptefpZStlN393nnu8Q9phtONl++UAZ7q2R5jDM500AxjqP4wCCg9EFClAOQDqkLZCLy4pj29woh2X+zuB/wZhCRdx77e2QNOZF79YOBguc6Y5tvqCfxUv5Tv6cz1psnC/Ks8M1Nb4f5cNStIGt74iQOY8o2DDzTn30fjzWDGWg38D5QP+P7G6wvUf76Z5Uyuassq4Kulo1Y+nmfz/TjXb3v81WuNZ0lvl0HmTS9HpF+Herr1EMogzDq7BB56Wjy75CPw3vnDfXeYKcQx3kuuB7tT2++7sa7SvuDOl3QaLfyPAbjcJ58UP7x7SZu0IJlLp0EfgAPYdI7o4LxKrXNwACvlEOHH3X4YMcM9+Y756jvgW2wneTzRbn0y1/+0g0m4Rhqvb4NQTsrF5G3Vt5bf69dtf7xj650l+a5eebZ59r9DgyiGb/1Vu78U1rOBeuRXZXfzriu/971qesrTZFehV2yr8hRJxwpDxz3gBx88MGbxOH7RDvGzBDojghAtBR9B6QQIm+z1kdauiMKdk8VQSAi0jA+LGElfjePCknLMzGJvqX12nKp86ZnWgmE8flKNJyvxF6cCcoTcsReVeiF0BuG5Aupd7AumqcIJPYMwhvpydq+IdBTEYhv0HdJuXmOLL9Mybq6RJfqgI4luq1LXLcr9j6ng04/2zZh6bN7H2maHHbvcXoQ2zcEejoCDFJmsC3CYfhYvdHPRJudBUNoYf/993diMd7HxnH8wxjHGFjryZAcg0iKnxN/LsagY09ixF8JCRTfCL6XdGMwBv36GP6STL4DfJzp7VVm6fFkWPwy6f4a2m1e2Zy+rHTfCbyEIImX65NnT+Rl0HYhxkBu+vkw7iPY3wcx1FvwOMRnMEHIAaGNoIEv+YLICx7ZjL6eTHhmCl+O69G/HBSegFANidiLM+En8kTlTHno6LGO3gO4IjAUfG4RkUAMAzIvBscn6E9PzzOiAPiOMfz2QRIvx+iTwReGj5LfD/GU9GeMcGaGQK0iYETeWv3lLN/dAwFPDlMfnbN8+/6uCw2fL73086Wm7+OVeU2nLgZhhk4nPsCQQH0nHApeqON4QlNHLg+J1ZN46VhmZBUVOjrJ6EyGqEfFlf1cUxJ0JA+ViEsl2BPjIJUFSbxcD5XS3/72t276Z/YZ3ZSp4kSYIGmaSi8dt77CDykvF5GXSu6ZZ57JJdw1gkReOoO9ehvHg2QCFyHHvzijitVxXYjhHHRT1KnjMpOlXit30mkKJrdYbdx3BwP/EvFCcsXP/+pIvJy6/OeJ0W+o7PrzquklWZV4v3aixkqQAoLhA5dJbaafT99PBazQBp3DEHnpNIfAhJpfuqFYSRgMctvpp5+eHiTnPqR6T+KlYx2iKc8YjVeelf9n7zwA5Kqq/39mZje7qSSEAKFmE3qHAFIjBAR+9A4iSpPyAywI+BMV0R8igggqf0VABCkKP6SL9CK99xoSSigJkED6brI7M//zubNncvftm5k3bUvyTvL2tdvemVvP/d7vBeDPgNO2ijXADIGSDwHJcKZ+AIBCZx9WQxjjyLsmMAIbiJdJcVbJMsAg7TCA45fVrkFwk/k3wAp1EQNIVhJSjwAygPWPAa0PYir3u4iH1aV77bVXHtBCmGwJA6uZAZthzXv22WfLWmgA06KVX7Z/r5VE1QkMf7D2MSBkYQbCYB+jBQLbcFAApCIA33DHClwbzNI22O/Ee+oc4gCEy8FvAlicwVxwsE6YtAEI/thKHKODbRnNgJPVoghADupI3hvYhHzDQNHf+qfavOUiK/MPIF7aS4B/1NcYg65Spl2ElcZsmzxmzBh3zx8MKtTjJgyG0REGD0Be6ITwwqRe+TIsrkjPtF5nu8bsMKWAiQDkHdQwWDZcf6MuIF7iwQgGiM1+W/QXBuQFwB00ZpH3Dchr20IVSnu92sRC8VX8XBsYY9jlSlenFL/XiMpyXyq84PsKw6/4+wt4pI4woU4gv9BOBcFj5sY/U+bMyMoiAAO3+G4MZInB04yw/vtyyzr5kXbCgJFW1gHUsjiO59TD1J1BMJvFG7VuB+hFOPSbqUP9NtDCsraLe9rmoNS6PqYNMBAvdRp1IQwPAFrNKA6zX6WLYoLpp12jPTNDIwvqqJPpVwB2BdwLMybtHH2HnhYfOEmfJdjvhome34hFHeRt3ASN+vRFDFRo6ee3tHxCW1tM6Gux+Ip2nbyC4RYwtImx+3IflofMXb3PgIsB4UY9W3qiuq/EHXGU68/SVauzv6AqyKZcKA5/fGnbKTIBQV8Qw7wxMNNXtjGl32e3cI1VFnA9wGD6Z4B3KW/022HZBWBuQnkkr5n9AAM/9TWASso//hinsGuD9UHNr50NxEsfiTTXc6LE4gye6Y9YHc5iRh/Ei1t+B+pOFklQppjECy7UQ6/0cXy2Gna6oE6kvPtbNwbj576/lNuwtPfks0bdPYP2+3gFogfrTn63lpYWYaz82ee5yaieTFtvxAWzkcmAVJM0JhvttugZ5sjEAJEJW0xwdocgmBebAGH/4Ac/KBpO/DLWQH/UgOX/nIWwxBfobjNZPWKJNVCOBhoAz26fkobVFMz7orLz6pFRwK3UGxSugOHsVAUhTu0E9lLXj1Aw73Jqrx+p1w7Uq/cO1KvPltF0LkN74AwT5Xxi7DbWQP/WgDYA2YVaTuYoSHeWnvXIwHT9hT7XnSkzM/W5su1mwbxFnBermUK0f5ZcTUG8Ct5t2iwpjaslXZ+tZuHHAcUaWMI0wNzi6aef7nZ/ZMzNfCr2CAPE8rmAfNlBCLsFc+jYl7FFwbSLAF70553cQ/0DQNJssIRpgn0gaKuBdZZ4sBGz+L6UhM0XMo9vEsbMzu5zpB/SJq6DEraTkz9PZ/NvQX/Be+wyBuRljtQH7GLbRdAhJEwm4EuCAsMtc6TYaVnMXUwKgaIL+ak2Pmy1/jyexWNzodxH1Zf5Lfdc7TdgFwnLt9hFsM9j47I8Xihtvn3Ztxv77slXRjbAXEcM5PW1E1/3dw3EQN7+/gvG6e/fGsAqp7YUrcwtAABAAElEQVQIh9+LcravLddfVPeVhG9+6nSmsQdIaxN5sOUxocwkHxMgTOYVYoqKmiS2SP75z3/unANAoCMLoxhCfITPBB+gN+KtNj4XcA/98SfkbHI9GLWx8PAcQGRQWnSyKWylmd8RtonFoF+7p+MO2JGJeQCaDBoMEG2dbtwCmCtLFLOVTUf0oVt6JdVIWEismOTeO05BVzz9+0J+KcSPPpVbQWlufDAv7wsx8QL25X1Y/BZW93O4e6qReguTvTZAhK3StpX244WpEmHCOAh2892FXbMi1UB0AHX98AEjAh4BlEM5NCCvDwoCvG4AAPITgDnSTB6lrAOKRZjgtol+wAAAp5igRgAVsDKQvAq4aaKuFi0EtgmysVJXMCmOoAcDoFTyXYQBEx11HcJCAn8QzTcAKgCEAPDGL0vOQ5E/bK1uUujb7H255yg6gd0cJiWMCAbk5fc64ogjikZHHoA9Lbh9Dc8Q6isGbrYiGKARCxRYtYygM9sS3D3w/lx88cX5BQc8BjCNocXAWICFfVAEdacxngN+xT1Sq7zlAivjD/meldGwGZvAQGcAFPK45Xne89zq7uBvBkiE77Fvt/DsXK98aeFXck4ooWR2gDYKESSVSMkee+0R6pLVzQB96HsUMuJYufYD8I1RrIguJnVrE4tFWuE719q4Bkr/8L+TmRdQL9Llfan7Uv5Lva80fBJaQ6GeYZEKC0EoQ7RLtIuAdDEeUnYK7eCAAdfyF6DOIJAXA6IthAkDkfMZ5ZZ1FkkB7EIArvlMqTCZw+aN0ZL2C0Ovv3DLeer8E6wnwto7DJuwTbAYj7Y5jB3A2nj05hts/bhqVR+jT0C6CEZCthrjtzKh7raFI4Cd33///XxfwNyUewbkaHUn/V6+04TFUOiY99TJtW5/LZ5iZxb+IBhkC+mfdAHsQzCC+iBMnvkL8rhHGDthVMWIbm1L7k34X9p8W6BD3jKDLP0C26kD0Ln/e4WHVL+n5TLpWkrK9Vdv95auWp2nT5+eD8ofR+YfhlxgvGdcz9j0gw8+cC5YqMDBolMD8lJ/FKqDLFhsAbgzoW9IOJQrxvF+Xwegn40TzjnnHNevM3+4J69TP1IemCAIAi9xS51LHzDqt1r4tTwbqwz1WHD3BYvHH6+zWMvvs+KGsbgP4jV/6M7KO5OJ1OOFpD+U20Jp76nnDz30cLeoaIuYWL1RF7jYuK6boyX0AWXHhP53Uo9IotnQnLITVJgQdgzkDdNM/Kzfa4BiErGosK26RBsC93u1xB9QWw0AGG9SNs3G0QrmXVOPVzLS8aYCBBk21hvQa5+iAMSsdivT0wH2qmBjGKwnwL3K0pvUc0JBvUll6k0OB9Sr18P0eqieB+sS4nhm2zQZn/uxBliMkZmvZW9OJ3B3tl5zKEg3C4BXwbuAeLN6dmy7OVNcz38xAN5VdHHfegkZsFEyx+4Ng3wssQZiDUTSAIQzHNi5sAFhj8A+wlwm5EAIY0bG5oz5fXZa3IFTCBMDBHPGnmbzm9wz/4eNjrgWLSqvcYdAJyg+6BKCsDBhkXQhCfPDPIyJ2cbsvtAZ+xLgZmzZ2HOYd8WWA7AVuy4CgYPpwj3QP7xnYTkYCMbopjt7X+zMgm4W1Zcj1cRneJhgfD67bfBdPe6r+YawPGRpJC9gO/bzub3zz5B7mbCDaCmJYo8uFUb8PtZAX9JAYQttX0plnJZYA0ugBlyTb+2+niPdmx6iuu+p8C1ddTiz7USw08I2m7YayJi0qonatiJgYoztZQ3Ea2HCTmYMZYXiY0KGzkehw0BkFmZPnZl8NwljTuUdnVwmVpEw0FIhMIo/0Rmlk21gMuKxyUKujXmOiXrALWWJN8FT0l+bsmoVGa/kymBnodFOeeh9oUjU/b9v+F/ZfusNurgAzMtRkIn3B51smBXEF5q+MgcTXRIb8YYB0EknneRcw4DFQMkXtm4BgINQVoPlyXcbdu2DA4JsU8RNGWSgBVjShEEbQhleZhmla/Bkhx12cAMC/PhbY9s2vEzOAx7wB3aARAEKEx5iK/q8YN0lIKvgZHqLArysvrDtcXBcyXehWysrAFV9EC9hAhgzoDPuGKxHFfsmBr3ooFZSjk7KjRPdAsgIgngJx/IFCy4MxGvhA6Ky39LPN/aeM+AMYw235/Y7cg8APAiI8NlsDWCB21rkLcIpV8gjPogX/7DzGgjKygnPGSRjyEFgsA7mY+r9a6+91r0P/qlnvgzGVc59tk37Uu2ddXgJj2ldAbJaS2HDkoGyGfxj7ApKmOGpT7SJwYRWfU9bqDp1bVTI2b31nmt8XdwH3wfDKfd9peFXrYfuAQCAPeWUU/IvMBwCgKfMUQ4n6gIQ2pEwAxJAeMR2fMgHohc+4CUMMI7bcsr6vHnzXDz4++lPf9oFxMsz6kaf/ZQ0hUk5dTtAL5MgywP9Zat7/DrW3HOuZX1scREuDMFWH3KPAFA1Jm3Kul9P5lyU/9fvewfjw2gPwI4+CaDCnhbqb6vT/AV5wXTAbmEyZcoUu8yfCxljbcwGC2op4Xe28Qe7GJiwm4Kl0R872PuePJuRPurZ0hbVfU+5s3TV6gwrv0mxfGRu7Gxtqy0ssOflnGHl9EG8+GVxDGMOBJZOP//Z2J2+IIuzfKH/awsLqKttpwrfDdfU970J4iUNsPYgYZNR7oX+8dMYVpcV6u+X03/pD+XW9NGbZyYPT1Wm2K23+oo0Nw2QlUavKFtusbm237ndRXozbT0dt+28RLz0vzPZaIjDuV/OFd8pi1eDQtgwescSa2CJ0wDFJFpRyQF+dTgWS6yBSjUAKLZ5s5QM3rdBBh6UkgG7KEhWgb0ysNIQq/AHQHGeghc/1Dbj5ay0P5yVRbdmpO36jLTqMf+GtMy/MS3zbtLjtg6Zf39aWp9Oy8I3lFX4w4ykATsWsftXkbLYa6yBqjVA3iSPtk/NyMLXNU9r3p1/Xy4vz7tJ87Pm7QX/p3n6hlyeX3Sb5mstA+lXNF9rmRB2e+8NEO8gBfCupeDdXRMy6GCtK/ZpkOZNdHFWDOKtOk/EASzZGsD+xvwLhFZBwRbEwnrmLVmYaMRDuLP5eXZ/9AXQadgRdMM98bIbFyRFgIN9EC+7G4fNa/jhcB22wNfSBEGX2bOC/ord1xKE6u+WZ7YcO5MGSCt8AQzNLkbMiQJINhAv3wnLbXC3Mt8v12HzkUE3/n218ZVKjx9Xva6r/YawPGRpjYoZ8MtPWP63ZxZuFJyKuY3PsQb6gwbidYv94VeK07hEasCNu3TlFZAHRmFZAHil7tFEzmM096XCC76vKHw81UdgrIK5LExglIFlkUk3toPwtxQIc1/smTFTAZIrxEzF1ukGyJg6darbfjMYZhhYw9ywcqk3xBiPAGr4q9uCaWFij45ZGBDQmHODfsq9hwGOdKAnmLZgPAXcCLsqwranxTp3YfHBwCiLF+2FOck/y+jWQ+nPtQCBLUjlH+cvXGnUMlHsnHfsXfju71Qwb5B515h5PS8CC++PYOKtMr5EiH8/nnpdw+7M1q38lgCAfKAFA0QrC8GJ9ijpaWlpyecTQFIMPMkrBkQHcBtkk4JNy8onE/wAE1ndaoASO/vxW7kHVMAqzmDep7zA0scEoW3J4vvnOjggtPeWVh+oUMl3+eBQ2MKDaSQ+f9DKRGZUQAXsxIjPzOgeVPmnHJ2UGxVsiYUk7DdmIDd//nyXHy1Pch8mYZPDGDZMwlgTfaA5W/GY1CJvWVjlnA0g4/vBqAJQirxowCje+3mL9i1M0InV2f5732+t86UfT1nXWq9TvyfmhFTuIQG1dsyXYaOUSqKA+L99mAGgWHtaIMhuj+vRJnaLpNoHtDG5bmq0s8bnWlFtGMvyF9V9peFXq4cQ/5St8847zxlc6Y/CwO6DRjEMcuAGcL+/KAqmeFjUEZhIfVZeYyIFXO/78ZNQTln3jZiF6lDaLGPKpL2DaTco5dTthEedCTMt4FkfkGzMmNQtwQUEFmct62OYLUwwkIeJr5eXXnopDy4NcxvlmTH84pZdCf73f//XsfLaGKM3jbH+oqLgohf/2/y+f1gdGOyH+X7LuabvT58NgDdsyTCDsp2gSaH2yd7X+2zfHvVs6YnqvqfcWbrqcbbJjyhh+wDbKO7D3PhbJvrvre/NMyZlKG/0m21xAuU/rB/tg19ffvnlUJZs+jq9LSwAQKweCUuPX27DfpelpdyG6aYnn1100YVyhu4IEpRRo5aXnb+2s/zDW7gQdLOk3cOe7cui9EJpz0RDWA1pHqpbSi/27QOCFz+VvN3Bf1bONYv6WehZajeNQmGyeIt6KchcX8h9/DzWQBQNkPf9/F/Uj87s1YqV9J6XsnL1fzIyRdlRKxWmNg7cKimHT0jKCsMrDSX21xsaSCnj7cDNFci7ZlLa31cA4TtZ6ZisbKDv6QgfLFFUcHmtE0921CmVbKumY5olQ9Omj+cxlaZA5BGjlSVUzXeJYQo80vuEcjIAMkzC7tt5dveD9F2jesTGEUusgVprALtWu+ZR2HXdoffzuNZnes7O1bOy7mZ1A6+MHtnOa8eyW3odbK1TWzy8pBYTrcOTLQlpWCMhjVovDBgDI3ZceIorLn4ba2CxBrD3mk0WuxeMroUEmyvjEkCLsPNiK/LJirCV2W5jhcJgXt2AspCV2RzYqquu6nYGA2dhAFxsvxColSvYFEhje7tWdr0s7IzIPDF2Huzx2KFtDhebc3DeDgIBs5OwQBpbEOzBNqfIIm/7var9NOYJezK+atMb5r8W3+DPRQbjMFC4PwcXdMM9eRb8DwLovRSg2l+o7jzFf2IN9HMNxEDefv4Dxsnv5xrAwuWk81zqHrfOaUT3pcILvq84fPcRNf/jT4QHA/e3sGbit1IgL51iY2gsZnz342OSL7hFBEDYK664IpjM/H0h5qq8gzpdmF4AscGUWgg8ADgZ8b+z1kkCLAkzMSyuADlIk7EkEZcP9IgaN4a4xJCIrnVVf8e7auybkZWGFazsLfZrT3JnOAVzxuvg/WIfuavge5h5YeB99MnXgk7dPSDeM045VK/Dww+GFwwk+D54H3Rfj3smkQHvXnfddfLHP/6xC5D3kksucVHCmm35r5w0AI668sorHash/gDAcFDGGLAC6oUZ1WfQJV8BFmKCD+DQ/vvv76KE4RkQDe99VjzK/eOPP+7ckAdLdfCtjnAevD9B9lN7xWAxKJV8F4Aik0LABXvPmbopCpCXicrnnnvOeQ2y/PrhVXJdjk7KDb9UPQqQGUPFAw884FYvG3g3SjywuRWTMOAmv2lQapW3guFGuccwEyZh+dEH46699tph3tzKagOz+w7qlS/9OMq97vhMt4/S+j2xQK3NEeTLRV/KzNYZ6nKtUNfTpukMUacUYrCz95We69EmVpqWgv40i7vWkC0u6YCGnLu8dwF1ddflfSn/pd5XGH7B76vBC9rDE0880R0YoTAawqr717/+1fVzYEUEQEb9bH0wjFAwemMkvOGGG/JAXhau/Pvf/3apOuKIIwqmrpyyTrwmhco67zfddFO3oMtAb+bHzuXW7bAO0x7T36PNMYM1bTVCH4IyECa1qo8J24C8LA4sZOwD0Eo9SZuB+2p30QAUfeqppzqGZoyWxhQKA771SXzG2zAd1OuZX5/5rKrB+HzAb6HfPuinknsYrJnQQMgr9GGMIZV3PjCxkvCr9UM7T7tOa+9qQbsPnjvfW3x5f+Yuov9u/kL8E0c3dyXCx08txQeTwhYD03QUYVtHxO+TR/Hnu2lpafFv89c2+ZJ/oBc+UydsvEFGXt8t1zbpE3weha0m6KfW99geqE/8bQWDcfiTJIX0FPRTyX1fL7eVfFOt/DyredxAvLQrP9T6beLEnZyNxfLoc88+WxP291qluZ7h+Ow5xLNAF9K1pduiRQkjY+f6y7PPPrugHxZL0cZXItgyWMyOLaCSeon2gYXzHCxO6gug/0r0EPvpexoA8OWYFyMkLaHEBhzVCiDes5TttFrRYiE3PpmRd6aL/OnYpCTpRMXSrzSQWiYhqY1T0rS2Mod+oscUtbW8p8QYHyj48GP9gbtuytZr38ak9nA66AqGFAVFAux1gk2BcqFzBe7oBPZy7eYQAPcqoNeBfGEaBdyrw1LOyYF6PUBDiWZW6owwPi01GlAwO+uRsgsUnAuwXAHmGa61v5LVcuGec90J2s3Sl5mbA/ByLaxlIs/2ZdHykVxZ64DVFRzfogDecUlpXEnLRVNcmfflny1OW9/UAHYSA4Yy5ggjifFTztgCAZCLzce3hwHK9e99f+wI+qXu+tXU3CwQPwDANHIhbDfsQEl4vhgw0n8W5Rr7KWM80hOGNYDMDCZgwLWM0SBjq5egJ2zZEOp8+OGHgo0T9mEkSEYBeYCBeLfddtsuu7Za+irVifn3zz0dnx93ra5r8Q2+bdlPFwzRLMBHStnbsGMbSzX+wkhP2I3wpc6dR9fSeU7f9u3HG1/HGuiPGoiBvP3xV4vTvORogL4ZfaioZ/vyqO7LdVdJ+OanDmd/1VkweP8dwIdKhY6tgb0KdYYJ2wdCsR1uUJiYKbUqLuinJ+7XWGONfDQAt8ImOejo0jFDCjEg5wOp8oLtlgHyIvfee68DX3LNCrj11luPy7IkpSuBk8tqIUppZi9lc1YnHW9kZeHaaUmNaMgZ57zYrLjkHqmhRS8WD3Fy957zwGVX92HMvHjIgXgP0auu7gvdByLxbkv595zW6fK4445zQF4Aoax6ZOBEHoOBEOF9pQIDG5P9V111lVxzzTWujDI5zTVHi07is133mDFjXBSsBgUAAviDLbINpAogiQP24J/97GduW3E8+OXeBVDiTyGGnuAguEQwUu53+RPypcLmva1kLOXWGGNxFwUgXCo8/325OvH9VnMNOOzwww8PDYLBW7m6DA0owsNa5a0IUXVzUo7uWd1tUgzIHtYulqvLqPnS0lPuObtQ6/VXdBvFt3Ngq1L+2zPt8mnrNGmfNEe2k226OcdwRvuE0DaVo9dugZV4UOs2sUR05b/WhjDLRJhrEMPPXd67GLq66/I+JJyy3lcafvlfXpEP+qYTJ050B+BEwE60QfSxaCf9+hZme9os3mNgBUACANjEZ4m1Z3YuJ0+aYQy/BiKycPyzlXW/bvDflxMn/jDWGoCV9prFWmw1bu1ztWBZP23Frg30VgocjIGd8YCvr2LhFnuHrs4991wH6KEfQ/8EAdR90UUXuWOPPfZwfahi9W+xOCp9R3/J2kT7LcLCst0yeBdcvBjmvtJngNJhYGYhFuWB8mNtjL/bQ6XhV+vPJlKoupD8fecES/4+9zr/N//c3HW+6fa8h97nE1ajCx+4S9+f362UsK0kZQCpJzjcT0cxsLrvzq4L9fftfW+eWSBAmWVxBpNjYQshYPAxYaxUL+nr5bZe3x0l3HvuvSfv7LbbbpdtdJLQFyaYrBz4z5fU6yBT08z2mTKnfXakz3WsdbOycs7/niNn/7IwkDcYR6TA1RHlhQn18ePHu4XCUf0F3QHivfbaa+Xuu+92jP6lJiKD/uP7WANBDWTVrpmZpX0OQF8RJAHoSgGI1QpMvLWUl97LyJ3PJ2SvzatPWy3TFYcVXQOJ5oQMGKvHmKSkZyugd6oCet9XcoypClxUnEwG5mYFMvY5oeOua0ayHA4jYj15UqrXMPIqgJeykxisAEV31mueAep14F69BtSruwByOICvu9Y5CM4KaoyZfdHnEiKaLWDSxbaYcXlH51wA6bbpmXuuO4G7BthlsZG7VuZdd83iI0DuvU9SWf6PQp5fUfP2KgreXU0ZeLXMN66qYF4F9UsMai9fn7GPWAOdGvAJjiAUYo6hkA0QEKnNn9juWQBVGVtgp50yZYoD0Jrt1pQMLgLmV4RdigDy+jsDQ6oQtOcyd2UAYwsn6rlF7Qw2noW8Ibij2iOPPJLfCaneOAPSzPfaPCdjMhPGeL4wDjfxcSX2DDtkIXu4uSnn3NPxlZO2qG5r8Q3Y5N59910ZO3Zsl2j5zQxYDdt0MfHJTBjDQ/IVFEhRjMgEIG8ssQaWJA3EXbEl6deMv6X/acDsWXp2l969+xjv3i6Dz+0+kn8LJORsjyy84Llo+M5x7f+wmqyQTJo0Kf8qCgNl3nHgAnY0OtHIW2+9FXi7+Na2s+RJMebexT76xpXfETKm1GDKrr766vyjQtsc5x1UeQFDqq2I+t3vficGFDjmmGMqCpmV8qkVtPxE3LIt+7kugH4iK4smYx3vGmUuj3eWBAVhhN539bL4LsQ9zLzbb71B3o0D8f7g0Nx9iPtq4+viPx9r/S4AJFnZMTZqGAgRWOd22GEHd13pH9jqyCOAcBgYsprTmHIARQWB8wyEjz76aAeKApzOVud+xx5WX9uynHLPhDhy8sknC6v5ih21HMiV812mX9LJNxVLI+/87dnxU0gAjiEMvn2jQiH3ff054BAD8ZJHYLikzgaUhV5YjRu2iKEe39Wbeauc7/HbMSagCwmM90GpV74MxhPpXuvxhe9kZNFTajzPLeQt6W3mohnywbz35MKLf5s3LvmeMArY4pZ9993Xf1Xz61q3iTVPoGurtHVx//lD21jkXhNQ9H0p/6XeVxp+zRVTOkAYxC+++OK8Q2OitAc77rhjvj/EdmuItVHf/va3Cxp3zX/Us8/8CpC2kFifGyNoLYStsQAyI8bCa4BW2p4gO0It4gwLw+p+n0k86A4jthmifX2Zu3Q6fKUY7BPFBLAuvymG9fvuu8+x9NrCQHYDMCbaYmHU450ByjF0+uMbi4v00o4i1FH1BiUBakf4DX7yk5+4a/T0ta99zV335h+b8Ih6trRGdd9T7ixdtTr75fepp56KFCyLGUx23nlnu6zr2V8kSj1Uqh/Nrg59VWwiir6ttRV+WpkEsXEYzym79ZS+XG7r+d2lwp45Y/FCuVVCdsq4o7O9LxXOkvK+sRG01GL5PP2pzF40K78oYvGbkCsFwtx1xT1y6bmXh7xc/CgYx+I3xa/YcQf7gW8vKO4j/C0LE6y98m2U4a7jp7EGSmsgo4DJzOeKKosIBkso22hSwYjVyhRAmRXK8bs0CkdQ3v8s+CS+75ca0Nnj1IiENCtL7+DdG2TIwQ0y8OCkNO2XlIYJmv/W0PzHpmTVZ8OeUQ9lS9eUZD/RaYF3lGlY2ag7Hleg8n06V3BbRhbekJHWf+SOBdenZcH/pWU+x416/LND5t2Ulnk3d8jcW/X6rg6Z/6C6eTwtrc+npe3VtCyclJH5kxYqm7ECn3VHwIwyBgMGLUk+0jNfv3TEosN3dI7u+Q34LRbp4oJ5r7W536j1udxvxm8379+533Ku/qbz/pn7jd1vrb/3AmUpJw+0Xp+RNj3IG+QR8kqHzi2RdzLv5PISeSpqvd3rPwJldZhidNdU0O5XE64sU6Yp25Txpg0TkhmiHNcxcqTsnwrbUiyxBkwDzI+usooi5FWYW/ztb3/r8AfMYyEs9Mb+xvw4O56a+HOq++yzjz125EW4N2HOFEIjE9sdBKAqIGAEO5ux1GIzYFfe3//+945R1/xhJ4kqsNkOGKAT8iqQoDBvZAvWARsbwRPxF9sVLmp8pdwxD2jAXCNmGDNmTBdSNsLwF6MDqrZF3Hw7oGbffo+e7JtKxV/ofU/HRzpsF0CuAbXCihxFCvmr1Tf87W9/E8bJpAf7Ojvh2W6EEI74+JWw9LKDtLHw8l2Axe334bfC3m4gXtwZ9iQsrPhZrIH+qIGG/pjoOM2xBpYYDcDCo6AFFgRnGUR5984A4t279/bh2NcC7iP598IL9V9J+OanDmdYZ2jgGxq6V1XWOBNttZ1CtrWgw2art8I+xV+lVg1wOCzsej4DkAAr2i233OKYTFn99KMf/chtL0xH55///Kf84he/cElgwm/ixIn1TI6LF4DKr371KwfOtMgOOOAAuyz73LhaUhatogaUmREMz+okPSkrrfdn3Op6mAVMXLHSMlLsbG79czH3MPOee9ENDtC77VbruzJezH0iEL8fj12X8m/ueuJ80kknOcY9WJbJV//v//0/Fy3gWAMnVJsOyj9svxzf/e533XYwsPICtAtb0Ud8bBuz1157uQM2XgPmGCsgbgAhwMITFYCAn1pKlO/aeOON81EyMLZJwvzDCi8MQL/TTjtVGELf8sYA3OT888/vtm0PBpJizIPmt1bn3s5bUb7DB+OSt8JWSWMcMkCrH2a98qUfR6RrrQwxxrfdp2y8OgHjKu8IHjOjO+TNR1+Xj+d/7FhCWcxi4Draen/bpxNPPDFCiJU7SaVSUus2sfLUhPikTXL9TfqpOR0XvdcgXCuK0yjunTvnKZr7SsMP+bRqHtHvxEBIXvGNpsEw+X0LCW3AEUccIb/5zW8caPLQQw8VwJ3IYYcdVshb2c/98gpzZlhZp6+NIQ0x4GvZEYV4+Na3vuX6mQB4MZIaOPTII4+sWR8hJNoujwz8BrsCR5hBj76ACX0NE2MwLrS9WjFgtIXBmXBgqeCgT4KOqVvpm/vGYt9PPa/PPPPMPEswYGPyne3gwa4j+++/f363EtzWW+ivmdhCIxZm2eSAveuNsxmHo54tjVHd95Q7S1etzpQjY1JmLAlon3xTSNh60d+pgx0qCkkh4Hwh98Wek04mdmA9p46r9+KcYmmp9h31JuNn6jH6DSwW2X333V2wTBj/9Kc/zS+Q5boUC3m16enL5bbab6vG/9rrLGZ/+c1vzpfzzjvfgUWpW//+9+vktFNPzQe/QLcjXdIF0D674ph0KMLl87bPZH7HfBnSOMQeFzwPmT9M1hqyrkyfrWirAhJkpSrgrNtj+iW2SLjbyzIfWDjGolWm96LOGccyPmHSnbqUiUwWZLJgKpYlUwPtn6htc1rEb4NFUUkNHDNoRC+1djZet10/bpfFNvtL712MQNahXlXCGAWABbbFMCb6qgIv4hlAAG0pgr2wWtsm9pZjjz3WhXfzzTfXrO5xAfbwH/JawwoK/lshJVk1V6a/VEDjxwpYnUa+VVCj5t3Mp2oR+EITFh0X1MNfUSI6SD8UY5VdkMvB/t+cz86czXQCWKZOpt5Esz7X+zfeeF2mfT5NVl1nVVl3/DrK3qtuOhl8ISPBDXpMDNAl0BQdrjncde6ZK9N6n2jQe0wK7lrvU2qc0Xv3bPF0hjroLtjPIcXYc889pSfGdN1TUOYT1TuM5ACes2nNQ+CP9ODMvbvW6sU9b8+9h0UX8Kxj0+WZ5jn3jDP5b5E+U1wlzLovPvKiLPhigbSsPlZGLz9agb4JPTRccJe45XcvKJ2/ecH3/eAF+W5ZbTNg3h2t2Wi0luPRCsZfWZl3h3fmRf0Mxk277LKLsB06O+bUah6iH2ioqiQyx8p4GHAaRDLMkcUSa4D+AztNAeClTwMZAHOaCDZhngWFuXkf2IgNlzkcxgPM01xwwQVufEme88kFttxyy7y9l3ixOxqhBORegDXpU+EPgfXXdjBiXhcQcJTyTrqZx7dF0Nh5WWgMcNf/HnZla2qiAay/QEhx//335yPyF57bQ4iMjN2YMdt5553nbLXzvTG5vUdHv/zlL92Cz0pxJz0dH985ZswY+1xHdIV9Fbt8qW8o5A8guumkGp2RLwDzhgm2xCj9bNwBdue3YX6fvjpzef74mzxoRE9hccXPYg30Vw2U6PL318+K0x1roJ9oQDtVTjpP2moVv7fPiuq+VHjB95WGb/5qfGaiik5TUFjdxZa1CB3ZajuFNsnPRH4Yay1GczN6MMHvr1IKpq0v3jPpZyAlQLsYQAEj02G3zg3vGVT0hNCR94WVhQAvK5WGldT4ME4LRdSxgRppOl7IyoK707LofQYvuaYwX6xcQtSI0Zmg3HnxfTCdwffBe5h4t9tqg4LhBd0H78uNL+i+nvf+b+mvEAWQVKmwLSWDjKOOOkqC4BkGi/6WLQAgOE455RTnJ6z8wrwbBtyxcg/A09gC/TQzyMDwCVALcGi1Uu53ER8MP1Z2mUjwtzSx9LAKkTRyFGNWNfdMBtrq2O23394e9+szk5ompi+752zgMf9ZPa97Om9V8i1jxozJe/vBD37gjEH5B3pBuQKoHyb1yJdh8RR9plX3onczsuCutHS8rEZ1DO9RRCdZVpu4igxaO9dgAGDDKIFRo6WlxW2vC9sdcumll9adiZJ4/HqU+2rbRMKomWiD5Fo/1zC5m+L3GnFZ7nsq/JopJBeQAR0Bgb/99tsFQ7/yyivz78IMZ9ZWYlyz9gswSC2ZFNmCyurFH/7wh93KOgk866yz8sBNH8iaT3yFFywWsbgxuNmCCvvuCoMty5sPZP7Od76TX7VvgWDI/v73v2+3XQzmpgsWv/isF+aYOiJMLrroItcnOe2007oYsnGLPnq77WVS4Hvf+55LOoBiWEup/8ijMC6QHxEYN3tiwY/P3uwi1j9MdvQFMYNy1LOlOar7nnJn6arlmfrEhDJtrN72zM4Ac+nTG+s14FN/Ygp3/qIHf/GshVHN2RioqYPCdt9hkpp2mH60sYJUE1+9/MIc6gP/ASXD7sOYnnoFVh0E2wgLKustfbnc1vvbi4W/zz775tu9y3VCdNkRw2XDDdaXlUav6EC8/Fa2mI7dY7bYfHxo+1Isjv70zvoAfpo/mj9VPm2b7j8qeD12yDhZb8SGub5lAVcnnHBCgTf9+zFA47PPPlvox9FvoF1kbEa7jO2MNtvfWat/f22cetMAALWODzKSUTBvFEmM1DZ0ZG6MFsV9Pdz4TLwAegH21koAvQLWh2kN1rmeEpjr2EmAwxZdVRM34wgLb0liawR42jBKmXo3ScmQ3Rpk6EHK5nlISgYelJKmfRUguIMCBtdT68Byqj0Fqi5xwnQCTLtqjswqo3XmfcWCThJZp2F92XH0zrLG7LWl/UFl+b1Lj1uVzfXGHKtrG2y/yu4K669jfIX1VZleYf117L8w/3Ye826EJVaPmzjS4lhjYQPmuEWf3abHv/RQVtn5d+txX44heP7DaVn+7VVlnekbyfBJy0vrM8oqqyy07lDm4NYXlD34RT1e0uPlzuMVPSujsGMVfk2ZhV/X443Og2uedb5vwy3+8M+hYREmrMT5eIjzSf0mZSte8IgemiYYcF0aNa2k2aVdv4Fv8b/NsR7z3Z2H6YOzMSQv1p3Ggz6NNVf1iq5hzkX3/AZpHd5u1LCpbLX8trJC62jJfKC/mQLOHYsuv2EO16YXS5AADh+lbcT6CWnUskiZHHiwsmrrMfRAZdbetUFZtrWcLqdlVMuyyb/+9S83bsMu6u/2Ye/jc7gG3njjjfxYksX6scQaMA0MGzZMzjjjDAFo64sPeuU5cxPYJMJscNhbbBEvbpnbMxAvc6X4CS6WZtG+v0MR7gFBAnZkhzhsgrZLJ2kxNluzURGPf829CYsKjz/++DxGgnDte7BbHHLIIV1sPsRZT7F5OOJAH/53W7ykAbsUeAgTA/GC9QAjwaIrIxRAXzY/ZOm3s/m3c5ieahGfbyezuIqdSfuECRO6OLHfpcvDwE0hf9V8g0XxX//1X6FAYuJkZ9m11lrLnLqz6djO9hJbNfOXNsdPnvNBvKuttpobK1e6yNfiic+xBvqiBrxuWl9MXpymWANLuAawzanNLUcBGuFs6ijXX1T3lYRvfup0BoRKp4XJKjqX//nPfxyDrHWkWOUYJkxMG+tk2HueMbkPWw0rev70pz+5lW10Yumo7bbbbq5jxxbbgIlLxVcojr7wnJV7TIrC/Ib+EJtM5ZoVeqyypcPji21TaGf/XbFrOsxIIX9MONpKQtzRia5GkoPUKLFOQtpf0a1/JpPZI4iuru94WsG87WlJtK+jN3PzxTDnWwGiekHxzEnu3u66n8PdB/2Xe989HntSKj5zV98zk3NMFsPEaxPvMG5VwxADiIn8iACQomwyQKQDzxaY55xzjntHHjJmQQC/MNvhj/qCgS8DMzr0xl6FJ56bsI0mk/oA+BmsMTEAaxAgReKlbjF2xCDQzsIo51zJdzEQBGCPTjH8s+KVQQss4q2trc5IBJCC+qmlpSUSs8fzzz+fT7aBG/IP+umFD4oCkIbRAB0xAQNTnC3E6KnP6+m8Vcl3UU4AmwGCh3GBNHMNgJD8zwpxdBcm9ciXYfEUegazxqLJaqi/V0G8upUdbClRJbmaTjSt1yD/eugOZ0ijfkF85mHqNSYN/UUDuCnXgIIfxDfoBA0RvK91m0iYtRTX2rgGUf/wv5NpVzirdHlf6r6U/1LvKw2fhNZQjFGBIGmLWOwB0w3tR3t7uytDGO+tDFH/h20lj1/rD/385z93KTzmmGPyW6C5BzX4Q1mHwZF8bmWd+p/FH7frNt820YAxN8xoXGkS6AfSftGOUTcjsDzQXvWUAHQ5Upksr7rqKtdPAAQDQJVyR3sI84QBV1kw4xv9fLAhfdULL7zQ9ZU//PBDV3/+/e9/D/0MjMDWj2FMQbvNjhiAhnluwJveBKvym7PQyQBQtAO+kGeCizn8OrBQH98Pw679OrCQP3Rh5QUAte2kYGH01tnAG1HPls6o7nvKnaWrlmfYWihLxiiz6667OuZNxuwY1+mn0nelfvQBsj4Y1dIDUM2EMQUgNepGM9Lbu0rO9JPJW/SVmUSAeYV+I+UUlrJTlSHVxsWU8b4sjGMYy8PaTpll0TOHCQsh//CHP7h+sD3zz+UufqY/hN78su+H11fLrZ/Gnr5mK8fbbrtdy8bh7jcifstfEyZ8VS67/HL5RH+7iRN3dElj/Ew7geT13QD1Xk4UWmGXNe8b5AOu4wVtsLF3WzTvz3tXpi34WMYNXcMeFTyPaBopG43YVFb/eKy83z6loLsl7QXlm8l4s6/Y91ke4Z4+HX07dqahzWb8G0v/10Bat4DvmKIDojnRviWpzKgpBWH1lgDi9YG7l93bIc9PqQ8iLgoQobf0EMerGtBsmByakAEcWr0DSk/PUgDlZ96h+Ts7QwlUtevSps8H5rwtXepTtlkYZwEA56z6uc9ffK3lv6AE3lH0Oeg2gJHi3HkNc++Bgw+T1g1apXlhsyy4Xuc+cGN+IPbBnuPu+WPX5ib33sZxbsxC9O7Qd7rw310TgF13ea+PM/qA6sB9s7rTa8esy70998/6uHIh8qVcmvXnVLL+pLYJSQXPc04p0D4Fg/by+myZroDdQtrCbmX9DeZLY4mmAXZMwI7B+Lfaec5oMRZ2xWIwdm9BsIPVcsevwrHGb4ppANsDpB2UL+YfYcJlxxb672ATsHuUIrnadttt3Rw+4wTGkymdf2f+FdbUsPE68/OM17EXYMOkHwWpC3FZ3Y49kIXN2CrN9rLDDjsIRykBR8B8G9/B/BvzHczFcgTnPrDDcBQS7BQ231vITbHngKWj+EdfYD+whfPd/C4tLS1uwZiFD5s2OmNBOrZ8xHZVMDfBM79BWPyVxgexVDGhvgmLDz/Y5bC7s4iM7wMgHkUK+av0G1iQakJ6mCuZPHmyA6Ezd2J1lLmxczFdkxZ0M3PmTJenmffntycvFgrPwo3PsQb6swZyaKv+/AVx2mMN9FMN6BBWwRCdiddzlPvhgwfJjDlzZblhQyO5Lyf8mRou4TuJmJ58+J2fUesTq80A0tHw+42/xQPQjtVlhYQOSDEBxEfngNX9rDgFwERn+H/+53/cEfTL9smlwgz66Sv3gKDZdoCOKoxJdODZRheAJBNOYeJPuoa9p1NPRz8otrVG8Ll/D6CBiQkGCWzZU60MUNaH9o2yshDmiqigLsC8z2YlkVFw5zvPSnZEoySGqLURI5QatRKdZ/++qaGrcWjggKzMXZiUobqFVph7wvH9l3M/T7d5IvzWRdQOOcnHXyB9Lnxz3ENnJpCYdDfhvhph4p6B5nXXXefY+4IrVgkboxIAXRMm6dlChclmgMUcZngyN9QVPkAJsA71C9utMEBjIj9MMMDUgj2wku8iPQCQKK/UgSxOCFugwLfCOmsg+rDvsGfGxstgdMyYMfa4X59ZlQl4AXAURrMgYA6wEgYLm0iv98f2dN6q9HsAab388svOsAcwxBZ6WHgYIgDLwyYdlFrny2D4he4zc7PKEKIMGw9lJP2m1sfdm6BCXnV/e11gsolOLLWoEVuZ6X/3u985MC9t4qRJk1xbCLgPI06YEaxQ38AixPAU1iZiGDOwnLkNnmvdJgbDr/xe20L1TH8v9Kzv/OeDhgyUebN0u+ThQ3LPA++7hVPG+3mz5gnhk6J8OBH9q7OaCn0n+oTW3tEGcYQJ9c+tt95asH4mDGNHxf/Xv/71sGCqekb9yIIXtrcOK+sEThsFO325QK9SCeN7/B0fqDt6UjBQ09/HSEtdxu/GERTSFVz0gaGZ9oT+BX3iYL+YRX9h9SPf/Oc//9ktFAIozBHsk1C/lqoXgmms9f3RRx/tmEhhj6EexMgLcwXAq7DtixknhdVxfroefPBB/9Zdk7dK+TMDOR5g9ugrQv5h4jrqeciQIW4RGf2AcvxFDZ9JOeKI6t7c1UuflC2YMOiz05e2PnhYfIz57rjjDscuGXxPX4MyQT8N5m6b5KHcMrFVjQAKv+uuu1yYjPNtN5pgmNQLtP99XViEwYIr+i2UW8Y+lFvaGiY2gsLYoFT5YxEDR1CYICkmfbXcFktzT7zbRidZX33tdXlBF4u8++67svqY1WWzzca7doD4x4wZIx/ojk8fffSxa3Nt0vbzGd31fbz2ITn6s1Ce/THGpAVvyQfz3pOtRm0nDclU0U9Lah28ycjNZGt1+8En73YBPeHx17/+dVH//fEliyCwj9m4lYlPdtWi7FOeYfNkRx4mb1mIxO4PTKCzpW0s/VwDCmhb9LaOcaOSE2jxSbE7mQK1ekMA8cLA68ul97LPfSyxBtRGoFkDpk8OWU/tCZo10nMU1Pt5VmZ9mJW/KQPt8u1ZGaWgTo7lNP8vo+adAbHyomuA6QkOwLABARi8XIOyDnYW0exHOaeLneHRxL8OPiv2Drel3gfDs/v4XJUGGrWMDdVjWbWOAd7V4RKLOhx4FwAvR0TgbjAdjMsA5QG6AiAVSzQN0EeDfIbxk8/4Gc13/VwZ42j9YohDLkcDgwcPdov8mQOoRLDX4rcc/9hhDKQbjJO5D39MH3wf5R57TbU2myjx1MoNNrIxOh7nCBN07C80D3NTzrOejo+0kc84ypVC/mrxDZA6YLOqVkgLoN0YuFutJmP//UkDyf6U2DitsQaWJA24oW5+1Wrn2tsS97uM31j+7z9P6Dg5mnsHICSiCO5v0HAJ343BI7jPp7+OPwrU+jBMMFHuC5PhgNoA1QSFxrwSAcx63333OcbLoH8mFv/2t785oFjwXaXxBcPpiXtWwzFBCWscWxfApFQIxFvP9EybNk2Zam5zUbDNcRTwYan0sPK/abOkpNbS37+cLLBQs3z7BpJ5YhdZ+ORKkp4+UFeNawBeGbC8znnFoQr09WTlYR3y1Pu67LmA+2qeEy7h+0L8fnrCwvfd1+q6WD5n8tiYK2FBLcaiFgQIFfrtmZBiQp2y5wtlH0Auk/w+qJ4tVF577TVXfnGDMLGNMEiApQaGTUAqvrAl7QMPPOBWxfrPuSbuq3TlMoyd/krSMIBf0K9twxJ8Xu53mX8m1y+44ILQgTdAY1gFi+ndwuEMyzjig5rdgwh/CuWDanTih1mIqa/Qcz/JAKUAqQWNE4DCAVqZUSGY50qFbfnJjyvKdSV5q1i4hXTs581C/q3cBb8d9zC3+dvKWxiw7AFeM72F5elK8mWh77B4C551cqL9Y91u8AHdtu+WtKRf1ZqwHBCvjnhSytzetGlSkkMWNxKAJyZOnOgAdayOZ4FLxWksmPjiL+rRJhaPsYy3rm1TXUc8b7DluvL0g89Hdh81XNwRLuG7HnDE9OTDL+OTozoFHEvdS7sXJtQdgEPpx9L3KiT7779//hVASWOazz/svKi2rMMqwNbrYUZavoUFbSxs8yVKWQirG/wwYLX12/Lgdm++23rVx4QLey6A6WCdzj0AXgCJfntEuugzwKALi3HQH/XmpZdemk++rwdAnE899ZScfvrp+TbJ+iTo/8QTT3RMoMXyRT7gOl/wXeRhQL0wtdCXCAPx1jkZDghqcaDvviLlMuZuscUWbsFVuf6iugcoTRxR3Zu7eumTMsKWq/SXAWwXEsrLs88+61iKwtxQRhkbwuDtCyBhJFg2fTd27fdxgnUJfV7Yx9mFJiiA9R9++OFu4/wodW4wrJ66p75hQQlbVrIYhLYjDMRb7/QA4DbpS+XW0tSbZ9iVtlPm52/pjkhf/eoO3dqQFVZYURi/2q4zvZnWescNK73ZCohrduZLeXv2mzJz4eeRol5l0Kqy3QpflTGN47q5J+wlTWANNxAvzG70z2ARtzqOcR12PBbp77XXXu7zqT/ZZSiW/q2BDmUoXaQLVrPKVhpFEsMVo7eqArcGLx7bRvFXCzdhIN7jLlHjaiyxBgpoINGo+XWk2mPWUbv9V1JypwINr1k+KVfo+XIFI14xXO+HiNyuNL2PK5r3TQWqf6ZZm1zlbOAFwo0fxxpY4jWg5SGhhIrJcQrOHa87Uu6k5WjfpDQflJRBBydlyCEpGXpIgwzZq0EGbZuSprWTrqwBpq9UsAfEIN7ytcf4sS+BeMv/gthHrIFYA7EGYg3EGog10Nc0kFB2hng81Nd+lTg9S7wG5py4rzTtcWjZ3/n85Hdln5/r9pRnnyEbtaxetv9CHl557wPZ/cxz5baf/1DGr1HeirBKvqNQOuw5AChYfQBlGTvMvHnz3PZxTDjz3gzZ5qeW5wULFrjVp2xzCNCVFT5RJhBrmYYoYQH+YYBYT11ESUcUN7YNGqAQtm+37cxhGjUWmqjhsP1IGACZ7dZbn0hL661pyX4SJbSAm2Ftklx3hjRu/Jk0jJ0jiUE+SgzjuDIHtCbl1Ft1VXunjF6mQ2brs9MnzpLVRvjsEzn35k7NLnrpN7fF76d+2Si/eXC4LDMwI9NmL7a+/Hbfz2W4PisWXvOKey6Odgm4ojzCZgQwhrJfSgAtUDZYBQ0gKuo2k6xShqkLlhu2+Ki30arc7+K7ATSwBQ8HW6PAtB0FaGU649sMjARQGvDWkiiwB6Bf8kvU37+eeujpvFXJt9DeoTfyCCu7ywFyVZsvS6UXFt6Fyk608KmMdLyi9eisUj66v09o1TFw/5QM3DIlCTWE97bUqk3kOwirULtY6XfOeum/Za9/PSRHTThJWy9lpHTtl7VbXc/++w/eniq/+59L5QcX/Lesugb1tTJZluE/1052D3/q5I/kwtMuke+fd7ysvvZqLlxrB6OEf9SEkytVRSR/sB3Cjsg2UQDbAOZEaa8IHGZFA8ABDK33Nnx+eaU9AFgaXOQS6aMjOkI31Cn06wGKAvjrTYFZhj4C7HX0oemDRulH07dgVwvKG+wMtkAiyrewpRl+2e7LFkdE8VeJm/40NqDdIe9NmTIlz8xw2mmnddlxIYoO6lEHbv/LdWRC6wFu0RO/fb5W0gWj7j541oTSywd8dcYZZ8j555/v8j3jx3L8592bPztr2JNVTyxiZUcKWJO7pKMz/kL+K1m8pUGWLfyWU5VplDaJfgT1IAtzy2EDoYwy7qeM1aMPR9mnv0/49PfLKctlKySih7jcRlRUCWc/+clPCm4xWczrOb/5gxx31OE6tqqO/blYHH3t3cyZX8hlV14rPzm9+LadtUo3O6b4C5++MmQbOW3Dn8q2K0yIFMXH8z+Sy96+WK6cepl0SM7mcskll8gxxxwTyX+YI+yM9IFKbV0a5jf4jDqFxZGw5wZJCIJui90zfsXmgdBHQ2/0HQoJda0t0KL/6C8wMj/0Qa699lq3mMLqms0228zZAYILYPFz0003uR1b2LKVfhu7AbGjz9NPP+3Sxu4lLCAoBlShLWABFYz/M2bMcH0tFnbBiI79Iih+nOyExCJcFliwcwzt3UEHHeTAzPiDsZi+JOmhbwnYma2Gd99992Cw+ftydYBH+suwubNo74UXXhAWiGy88cYurh133DEfdq0usguzsuBhXbB6mwJ5Z0QLFUDX4INSMmBsbTh6tjqjK4kAqRg/LinPT8l0SRDPLvvvpi7PLru3Q8LYeA/bPiXf3Z1eVGXCbiHGpP/ee+/l8zttObvrIJBUIPfee69btM4uJORf+j7FdvAjX0DY8cwzzzjbIQsPAcmz6JA8ZjtE0F8NW9wDIzZM2OR38ktLS4vsu+++bpFwcP4AVnLCRt56661uTHrsuABonzL/yiuvuP4T40kYzfmWJU1mzBHZ89zu+W2LlqS8PCkjyyhT77L6ejk9NldW0b3WS0pmVlYys3NHq64DSWmZWWwpX9I0FH/P0qiBTEJ3ZNQtJme3z5LW1AJpWDYlq22yqjSv0CRJ7RqkRujCDQW8u7OSEwDULbe9pT1jtyjG4Cz0ZvEx5CYwyWKzYbdFxmGMZRH6WYyXkFrUu4RBvcsCT/ow1Lssqtxvv/0cYQu7tyDsRBCsR92Lzj+M/9mlFaF/Waiup36nbqUOZy7SX7hOP4NF95DCsOiaNp6DflxwPij47dj42a2Juh190Rbgh74g/R7aH38RW2eyXd8mapzB34q2A7INyFn4fvpjLOo0WyJxMA/G4n3aLWsjWfA5YUKuv417/Jlgo2JhGH2d999/3/W5aHsOOOAAN+dk7uJzrIFYA7EGYg3EGog10HsaiIG8vaf7OOalWAN5IC8zfvmZQb2OcH/Ng4/IGVf+XX58yH5y8IRtZLlllH0ygr+weGbMniv/98gT8qsbbpFzjzpMvjlRO/Zlpqdpz/IByaV+eib9gkDeUn6WxvcM0Jh8ZIvVvi5s/YmRnQkJYyWDGe03v/lNWUlngAzQDBBjmKTVuLfg/rQsulcN4BWAvaQhI4mV5khqw88ltd4MaVhxviQac4ZrK2YXPzJcXvp4seF6zVGL5GMF2+69wXzZakybDG3q6t7Saf6L3c9bmHQMv7e/NlhWVpDwO58vRpxtsspC+c72iz+qUHhLGpDX9BWfq9cAE14w+iAYqwBXxBJroK9qgMUZ7R8qgPfFjLQ/l5HMVE1p9/mekslnq7kBuylbxcSU216upIcecFCrNpGklmoXK/mcPJB3+5PK7hc+cc8zcuOfb5c9v7WLbDlxMxk6XPso1mCVeZ47a5488+AL8q+r75WDTthbttl1y7LTQ7/26AnfqUQNPeKHSYs777zT9Y9Y3FQP4FqPfEiBSJjMAJyJMFEEeCSW+mmgP40NAAixPThjPhMmkMJAPvY+7FyPOtCAvDC2lysASdglAOAJYB9/wrDcsHA/e/ZsB6QCiAVjLVuulys9BeQtN12x+5wG4nJbm5xQKZD37zfeImMULLnVluNrk5B+EMpTz+iEvYLuDztovx5L7a9//Wu3UJ8IByUGyw/XOVMOH3e0DGoYVDINGV1Q8eRnj8qFr/1anpz7iANvAECpRvoikBfm8AMPPNB9VlSgMiBYALOQDxig0fTCIrOtt946b3+z53YGuOEDQHgOSPfqq692oGQYf8N2QcOmB4DFB2dbmD7w0p75ZwAjQSCsHyftroFzfH/YDQGWYMsAOB0Ufk+IIIJSiQ5mzZrlwEsGKAqGCbDpt7/9be367Do+YtHqghs7d50JRhh2rxtNNe2dlMF7pCQ5sHKgrB90EMhrrLtBkC4gXsC8JsH39pxzvYC8LPQ3gOs111zjAGlh+YK+JrtiBQFhuCX/+n1QSzegMnaxs12LwoC8vDNyCvNnZxbLX3755V3iLAbkBZxF3jYmbgvHzoCygmXb3vXXcxiQt1B+e/78gZKZn5UOQLyzMnLPf9Ly2LNpWTYtMjydleFqfl9Gr5fRcjS6URdv63Xneo/+qp443Uu6BjSfymBdTs7AgwAAQABJREFUADp1ksxa+KWMXndFeefDSfL2B2/JjLbP5fO2T+WzViXwaJsmMlLz/ON3y+iVR3fTSiXtLeNJduJB2FmDHexM2M2QBTQQh9i28rfcckseJFttvYt/dpaxOUGLlzPjW8C4zBMiYfWue+H9YXEEdaul23uVv6QN+Oc//+l2ScLOwAJuxtbs6EDbESb0iwD/+gRC/rfTP/vhD3/Y5TtYQEI/DJAsdfmpp54q5557bj74SuL0fysWOBVaKAb42na1AdhdbOt6dGE7ZNHHYQexsN+DhV7kjzAwcv6j4otYA7EGYg3EGog1EGugRzQQL17sETXHkcQaKKABs7fpmcusd+98ePf2/ps7TZD1Vl9F/nTHPXKuAnBnzV9QIPDSj4cPHiS7jN/YMfFurky84CucePHavcVv913O7ib+09MaAOzBgKs/AHlNNzZAZDD44x//2B5HPsNSwsRBIUnp6uSB2+hqfTXytT+uOXpeIZcFnnckJTt1uHTMHCTpD5aRtIJ5G9f8QlKj2iSRVAuhMmPtqYBdH8gL2BZm3uemNsttrw2R1kVWgArEUeTxwAFZWXlYh2Pi9UG8eNlz/fkufqXgcudE57nbfZHw41dLtwZg00EwyvhbnS/dWom/vq9pIKtg3Y7pGVn0uh4vZiU9qYK63D5Km4vGrbVd2LrvgHgtaZyrbRMJo1S7iJuKRdu8XP+vk1lXb0rdb7vbV2TlltHywE2PyJ0KwF0wr7Xi6AcNGSgbbLmuY+Ido0y89FNLxR/2vuIE1MkjLLwAGTDIw6qBnHnmmbUDBNQp3VGDhVUKJjaAu5wRmNJiEG9UDVburr+NDXwABZNV5YJ40VQ968BCDLfFnjMR2dLSIkx8MgEG0LgaYZzHpGcoE68x9pY4VxN/7Lf+GojLbf11XCyGjTdYTx7Uxe1LE5D3+ZdekYlKCtCTYsBbwJYLsvPlmc+fkm2X/6qsP2LDkslIah238bKbyX6rHyQH7XOAnPyjHANnSY/9zAGLW0yi9pkAAHIEBaY7gLg21gAgQ1sC4+dtt93mnMP2CSueD1axcLAbcGAzAPQBAy99Vg7CBDQCENjf1QD2XmNPxWZHewi7HYuJWbSG7Lrrrs5fEEDMO4tz8803d0BKvuGPf/wjr+T00093i2QAYAJmgf0YhmFAx6Tnl7/8pWPAg53XpFIdwNJsIF5AmSyGAdjENwAauuKKK2SNNdZwQB2Lq5pzx2dZaXtcQbyTGelEk+Squr36WsmagXiDsRqokufH7ZKbOoRxl+dRQbzBMOt1/81vftMFzeJIwLksjvnzn//s8gXjEPI+rM4m9Bv333//PIiXvMg4BaDVzTff7PI4ebaQsEjRQLz09ygflAPA7W+++abLk+wMxg4NpSSdTjs2SusPsyBlvfXWc+HccMMNDhAGsI36IAw4Xyr8/vK+UH5zzM+KGU8OTcgAPS57IyOXvqd2+eXURqHFpSGtrNQdWVETugzX48B1ErL1qjq3NldZtefpnkLaBdfmRs85e1KW6TNI3aMXtf6iwjidfUgD7GbVkeiQee1z5YsFM5Vhd7akhiVl/NfGSxImXda5D0rL7489Pwfcfe5Tmd4+TQaPGih7H7C3tAxZWV674wV5S+sT+UTk4EMPlvvuu6/LLkrVtreoy0C8zM9tsskm3Vhoi6m03HoXBnS/T0I7T3+A5/RJWAjLUY6QBtpk6l0WRNjiDgsD1lyAqwiAVeuvMKY2EC/pYAERjL208a+++qo7YFcv1A7YwgraDvoc7JJTaoeXauOk30O/isVetBEQQ8Acj5x88smuvzVmzBi3+xP9IQiQzj77bPeeNpBFXYj1LW0BCc+YH2LRFmfsd/SraJNoJ9lpp5yddQgvllgDsQZiDcQaiDUQa6C2GoiBvLXVZxxarIFIGkgM0OXzSB6Ip5cOeaDWBDVSL0YqLL73348fN1auOEWN157/HLJhsfty750do0h4fvxd0pf7kvhvL2iALUsxWjNB3NfBvBg4MUSy/QtGbwa8NoiOqjqbCC+15XvDSkkZuJOGujAt7c9ozq4E6z5/gGRfW146Phom6XeHS8NaMyU1drY0jGyVMcu2yzc2nyvXPbcYUDxNGXlrIYCAJ89geXZXIT7ipexRVgHxFjp39RnfxRpYrAG2YEIwVAVZSRa7iq9iDfSOBhyA9zMF776lCzFezUj6Ta3nvqgiLcpy0bilgniVibdhRTpZfUdq0SbyNVHbxYq/nLbG9U+17WG2jP8R7ldfa1U5+sfK7uEaKo29BmfX6kWMP5dOHHemt2IF1McjIAhjqSWGgw8+OL99a31i7NlQYSzxt6qGFeTiiy/u2UQspbH1p7EBTDYwngEOYgvHMCBRqZ+x3nUgE3NIuWeAT3xfraXcdJj7WqcjDq+2GojLbfX6XLRokQwYMKCigNZfd235z2NPCSy1SwOYl+9MKWCB7+5pAcwLcANA2jNfPCEvzHxWxg5dUwY2dNpHiyRoSOMQOWSzb8jQLZodQAswzJImPqPo2mtX9/scddRR8t577zkVsW227crDA7bQBrgDUOPYY491zHNhuoQ5F4ANW3AjMNjRvwMkCXAGIK+BC9l2mt8WAWzyyiuvyMorr+zu+cNuQAYgAUBszHh5B50X9IkBkQCqQWDTM3AuLHdnnXWWAHY0wb0xxrGFtrnlfSU6AOR5/fXXu+CDjHqAZQDEAKAijbyvVjJzFcT7dFo6ntP+RtS1j1rVNaynQN7Ve64MAOYFwOuDePl2wL19QWCz9tkKYXm2MsQ27j6QF5ATgHYE8JKBnbi/8MILhfwJOCxMKDs2hgP8C0jM7NqES34EBE4+xeZm5SMsLJ4BFDMQr898yTvA8oDMeE88pcLCz5IiYfnt+SkK4vXyGzaJdjXDz2pICPvWTdVjyw1SssvEhGQXiqQVvAuYNwOYt/MaYG8GYO8CtSxwdtd6btXytyAhbV+0SUO2QVKJ1JKiyvg76qEBmqcmnZdRNvSPPv1QZsz93IF2h644RDbbCbCuzkkNTsmQ5ka58ZLr5JEXH5aZC2fIw//vIRk0slkS6ndRe0Zu/jTX1pBEFr7ceuutXeoTyG8uuOACV08ABDW2+lq1twA377rrrm7M/FFVVk69y7cY6zg7NNCfMIHh3upOexblvM8++7hdBHCL7mzBmPkF/Gzy9a9/3V3CuH/RRRe5a/zT3qdSufKOfq2PQxvBAp4VVljBguhyZgEyaY4itYiT3+rxxx+X1VdfPR8ljMQGxqaNoG0aMWKEs0GwsN7aNtoq+nq+2IIunr3wwgsOxMv1IYccIuiF/Mh884MPPugA2LyLJdZArIFYA7EGYg3EGugdDdQGedQ7aY9jjTXQbzWQHKUDgYzu95PsNA6Y/Q0QL9Lf7nOprtlftk1rbW117A01C3QJDWj48OFucInx0AzsffFTYRqCIaFSYVsdVuoWGkQHwx2wulpWduOpgnkxildKhjWrWbLPj5b2d0dIetwXkl7zS2lomSU7tqhlUMUH87oHdfgDiHfimout+rnqAZZE/S6V4H0dkhAHuYRogIkwGENsEm0J+az4M/q5BrI6/9fxqQJ4lXm3XVl4HYB3pn5Uroqr6OsygzLSsIVurbjrAGlcNTcRXFFAdfJUbZtIssptFyv6FG1gXGsDiJfWRs/98b6ib6+jJ7bcA1ywmm7lDVMZoIAlaXEF2wqy7fCyyy7rGENod4rtplBHVS+VQfeXsQHMPxyVSk/UgcWYdwHJ9pf3leo49tdzGojLbXW6njFjhpu8rjSUvffYRX73x8u13Roua60xrtJg+ry/SZOnyM233ynfP6nrhH5PJnzTTTcVgNcA5j67d5pMmfuObBCBlZc0Ns4ZIIv+k5XkMhkZOD4pieacJaQn01/PuGCYRVgAxVghKDCjAYgNE9jgYI5FAKMasx22VR/Ey3uY2djyGcZQ3LHY3sCIvDe5/PLLu9kYv//97zsgL27YwtnAhQaM5DnbffsgXp6xYOcvf/mLA90ATATQE7b9M2ynBuLFHyzC5BnCpy8J8NIXvoW4AEGzJbhJpTqYPn26BSGrrLJK/poLdARjX5Qtv7t4LHCTbVMQ74sZWfhoRrKMfSNKUgG8AzZMSmqZ+uV/A0waGy9JC4J4j7skZxONmOy6OWPM4YN4iailpUVgUwZwDXOhL+yKgmyzzTYOcOu/4zcGoAXjISCmoNhOKoCqYHT0yw1gMOJjfIdfGKatfATDsXsWP5oEy8yKK64okydPduWz0oUqFnZfP9c0v2GyaNbySvugzL1BwfaUUeBudr6CfBXIa8DejBKA3Hv1/TLlxSkyeuRKcuDBBynAV01SbQB9NRQtr3YvZP1FelRhrwqmK77vfQ1oTSzJJs0zgHQ1DyUGapo0H81vnyePPvqIzO+YJ0NXGCp7HL67e5cYnJCbzvuHvPDaczJr0Zeaf+6WphENkhykFrNOxMW2zZvLz/99hvu4t6a/LuNXHt/tQ6lPYFf16xMcASx9+OGH5bnnnnNM4QbkrVV7C6A1jB2/WwJDHpRb7wIIRbB7nXLKKV1CpO5kwQVp8Rc0dXEUcrPMMss4ICs74PzjH//oBuQ1Nl76ENjfkGHDhglAaIQ5VAPxugf6Bxsdi5UQ9E56g3L88cdHBvHitxZx0pfzQbyECzsvC4fRmYGkeR5FzD39KvToyw477ODmX7F1lCJS8v3F17EGYg3EGog1EGsg1kB9NBADeeuj1zjUWANFNZAas5auCJ4riaHDdWSoTjvxEf3yXPRLK3tpKyUr8710+cKgB2CCbeNYednXmXkr+XVg2wLEy3dGNmBquRrQouCt3TXGJmW4eFqNbizTr0RY6v/FQMl8uZJkJi8r6bFfKjvvLNl+9dkydsfZcsc7zfLSR2rpqbFssvJC2XOD+dICE6+KVRO5aPR79ILqIyfBe3sen2MNLNZA1BXji33EV7EG6qcBJlA6PsnKoncy0qEsvGkF8rpJzConRBIjdOJmc5H5G38pA0YOlQHsXbeESUXtYoU6cK2La3D0D/87mXndfpYaZr94X+G318sbxnGOJVUAPlxyySVL6uf1+e+Kxwa1+4mM0ba/n2unkTikemkgLrfVaRaA46qr6n7aFcoqK42Wow4/RP5y1XWy/957LJHMvDDxAuLlO/ne3hbY2DLHZmX+nWmZe1ubDEhHY1TOvJ+VhfemJakAmyZlX0xE89bbnxspftuaudACfUCEJ5xwQsGwZs6c6cCuPth3u+22c0DAoKctt9wy/+jtt9/Og1zsIcAiAIlB8Z9hgzSB0c2kUB8XplOTl156qRuQFzZ7FoEFhe2iAS4BigwCnXBr4B+2kjapVActCgAF2AIQE7ARdkhsKGuttZYLmvhrYXPNKgiwTXegabsvLdmpluoIZ3ac2VSBvGMXWwIj+KrISRi40gK67N4OgSG1L8hWW20Vmgz7zXxgGHmErdMRWAfD8hPkETvvvLPAkBuUZ5991j0CYA7ACRC8L5RhFs3D6AtjdSnxF9izSwVAPYBjRmBRqC4oFW5/fF8qv9XqmxK6AV6qUcvPsO5l6PFbHpDL3rpcNhq3kRx58Ncl0wnezThAr1o9OAMCBtyrx1P3PyWTX5oigxoGym577K52pybHBjzpxbcl2ZGSkcOXk2UGK0gO0K+a9bMduUWAtfqWOJzCGmDs1qFbfqWaU9pf0IU/2leY+uEHMrd1rgxbYZisvu7qjhn3k88+kf8oy/qCjgWy/zH7y6hVl+sE8SoYV/sZsO4OaV5G/nbbpfLW+2/K5jtuLoceuLcSM+XifuyXD8hjXzzmFgYMWl3RvwEZN27x4rAPP/xQxo/vDuSFvZv5rqBQP1FPASjlsEU3tWhviYv+QaVSTr1L38R2CCi0gJ12lQUZV1xxRVlJOvzwwwUgL7sE0JcxJvb58+e7RUUEduSRR+bDZKFQWBuObmn3rR+GB8IIE3YrKEdqESdtTlBYUMyCKNo4Y3YPuil0T3+KhSd8M+0di6T4rsGDtZOhYudC/uPnsQZiDcQaiDUQayDWQM9pIAby9pyu45hiDeQ1kFpvM2l/8A5JraNAXkTtB5gQwAs66W/3ncmOT72jAQyIGPrYrgXmCdg7MPiFGSV7J4Xlx8ogGqYLvgfh+yKDeC06LUcDxqjBRucL2oYq2+Njur56ur2s4EwB/VIBvc/rMWmkJFabLSsqoPcEPc9fd7a8ray/0+c1yMIOK8jlx9HUkJUVh3bI2iu0y/BmZe2GpdsBqNSIxPa+7j53LnhffrSxj1gDsQZiDfSMBrT6Ss9W5t2pekxWAO/bCuB9Vx/Ork30CcUlDNhet7LbrlGGLDsy1y62xu1i5drVtkc90/yFnvVd6HNz30feV/79sc9YA/1TA/HYoDa/W39h3C2VztpoIw6l3hqIy23lGmYC3wcmVhLS+uuu7Zhqb7/zXnn+pVdk/CYbyZrjWmTkyO7AwkrC7w0/M2d+Ie9Mec99T0rBCzDx9gUQr+kiOVQBiZtpv/3dJkm/rOMB/V9SGEtMEmm9S0GEqYQ0rZsD6JT01w8cAEB5SAFFPtuen2xsfABsfWEnM4AYvgCSNYGxtpTAZGtsdebWQJB2b+dCNkYDFm2++ebdGO7M76hRo/IgWdwHCRwMvGjug2cfYOO/8xl87XmlOqA9vfLKKx3THWEBrORA77vuuqsD9cJ8XEgPFn+xMyDeha+npU3zcGayuoyS7wlQx1epdTTPb5rUrdsZgdVfwsCVgHjtef1TUDqGIEuh+QjbDQSgl0kYI7S922ijjboBeQEGsrU5AjNzGGu2+ef85JNP+reh16Th1FNPFbaWB4hlQH1A7QB7KSPV7F4RGmkffmj5ymeC7vn8lpW5mTmSGpkQXSpSWFvaBF3yt4vkyVefkqGpYXLoPw6QRLvum6frCa655y8ye9ocB+7db999hTLP8c6r78jDtz0sTammzqNZhg4cKqOWW17nPEbLiGVGSEKx4Yo/1S2rcsenUz+TZDYpg5sHy8BmRZbyXKcKItcb6rRfCSpP6aGIhQWt82XBwlZJDUjKsqO1L6bPvpz1hXz00YeyKLNIFqXb9bxQ2vV6obtvk7b0QlmYbtP7hXrdJrsc+DXZdJtNFMibkGt+9Fd5b+q7ssu6X5P1Dj7aAXnvu/wOOffVX7nf/HvHHScNA8KhEstusoxMm/KxtMq6eRCvr9c11ljDv81fRwFEwlhfSPx3kyZNcmzhtWhviW/kyJGFoi35vJx6119YA9t5IamkrvvqV7/q2mfqz1tvvTXP2m/s6cR1wAEHdIsShuDbb79d7rvvvrLZbCvVWzVxFlqsGNbOdfvYkAe0LeyewKKTp59+Wvbff3/nCqZ6a3uCLPEhwcSPYg3EGog1EGsg1kCsgR7QQHjvtAcijqOINbA0a6Bx061l4Y1X6ArdDkmkKIa6otcAejlIRD+6X5p/yb7z7YBcMS5jyAf8ijE/yA7Qd1JbOiUYxvkmBqVMalYjjSupoXvnhCSVpXHhf9RY/p6GliO5rTzYubrS/vXlpWOKMvSO1lW7ys67yWpzpGEVZdoeuUCSjWzK1AlwquasxmIXThnnyj8q9hlrINZArIH6aICJi45PM9L+njJjvKsA3nd0G8OPtHZTVpOaiDKrJMcqM9cOSWneLCWpEcwAxO1i1bql7UGV+lP163PViogDiDXQ/zQQjw2q/836OxOvpb96TcQh9JQG4nJbvqY/+ugjB4AKAhHLD0kcyPXEY4+Q1998W15+7Q156JHHFTRS6bY+laSgtn5GDB8uLWNWlYkTthGAyn1RWHjdsVVW2qYrM2nURdcKYkq/ntVhhF5oX7VpvSWDmRfwnsmMGTO6MfQddthhwuHLmWeeKeedd557ZHazcpnZZs+ufkXlp59+6tIQxqjrp3fFFVd0tkq+r55SjQ723ntveeaZZ9xW59dcc41LL+FxzdHS0iL33HOPjBkzpuxPyC5URunXM9J6Z0bSuiONA+RFDCWxoo51t0pK46qdVJAR/VXrzAdX9jyosnTqAV9HFRiWTYqx3YblY9h8g6B5CyvsPGfOnLDHXZ6R9nPPPdcxY1511VVy2223ufdse8629xwwWMI4WQo43CXgfnzT1/ObqZZdiv7z9MMKAJ0rzaMHSNMY0Kc5eXieggOnvyOrDl9BDt/1QHssm+23rqT2aJcbrr5B/n3z3bJw9kJpVnr55lSzAnubZcxqY+QXv9KFAyOXlyxzFgraveqUS6V1Tpt8daevym6775YD+QLkpfmDFFvPc76cIzf/7SZd29Ig2+ywjYwdN1ay+vzRex6VOTPnyCqrrSIbj984516rnU8/mi5vvfq2zj7qP82D+X963aTzMO3tOlep/0atMEpa1mzJpV/fzfpilrz9+lva7GZls603k6aBTfLpJ5/KpDcnuWfb7rytpBpUDxRJPRJUVXagHr1OcNZj8qTJ8vhDj0laE3rkd49SsK6247jtfK+fIjdffYe8+uarMm6DsXLcQcc5IO9dNz0iN979f9KWUbBuJ2gXwG6r0ia3phX4m9Ujs0CnfNQAqTJ6heGy3S66XZfKPXNvl3dmvCPrDB4rA9YkMq1TV26QLzK59mju/LkyYoBOHIVIPdssdtcsJMOGDcu/grwH6QvtbTn1rl+f+nVw/sM6LyrRMXOHRx99tPz617+Wv//973kg70033eRChdHYXwDFPCn9JhZPhIkx8oe9q/RZLeIsR99R0gkrMe3N9ddfL3/5y18c4zP+nnjiCXf8+Mc/lp/97Gfy05/+NEpwsZtYA7EGYg3EGog1EGugjhqIgbx1VG4cdKyBYhoY8LV9pf3lZ6RhTVYjdhqedGCck/52X+xL43c9qQGM92bA78l4+3pcqWUTytCo4C5dVd/2qILIXlXrVWm7aunPamuQ7HsjJP3BcEmP0KkkZedNrqqr91eeJ6nR8yQxbJEaozQuLeO6Nt+Flyvd9bsvnejYRayBWAOxBnpAAzp5kJ6lzLsfKoD3A2XenZJj383O1Lj1Xc1Edyts2CghzcrEO2BtXbih29/5EreLvjbKvFZVutZKJ6pcXzXk3B/el/nVsfNYA0uUBuI6sPKfk0kzJqtpVVwtaPfBcx9/X7kGYp+9pYG43EbXPAym22+/fXQPEVwCeu2rwNcIye9XTtjuumnjpKR1gd+iBxWVlNuQqfQ3KMDJgXkzuoBa8TpNG3YfA5QKpFaLHdLp3MAmjBm2VBr89/4W3DClnXjiif7r0OsHHnjAPYcJ11hiN9xww7xbtvIuxXSbd1zFBfE/9thj4jPhBoMDCAlAEamEeS8YXrH7anVA+n73u9/JBRdcIK+++qpjSr744ovdFtZsEQ47r8/uWiwt9i6zQEG8r2Sk7W4F8U7SXgXMmlFFd7tu/ErS5XPKTE+LgSvt3NPx1yq+ddZZJx/U1KlT89fBi9dffz34yO16B4MuDPAnn3yyXHjhhd3cVPoAsC4HW7k/99xzcvfdd8tll13mgMOw/7LtOflvaRHLZ3bui98Nc7oBuwELRhLFjm68xUbu+N+LftGtbnnitf/Ik997pEvd8vdPr3SLlT5UYPCBe++5OBqtQgzI++z9L8lZr/1IGhON8uAfHpAh6+g8hTZLN9z6N3nplZdk37X2lW0O3sy5b2ttk6O3/YYD8K640mg54bsnyNrrrC2ALRsbdHW8hnvKf58ik9+YLLuO3VU2OPikXJw69mnODJczDrlUZnw+Q47/2vGyzwH7yF//5xJ56tUnZbf9/kv+67AdO93qCTsSWFkOBefmQLpqOQKoq88m3/SanHXxjxzg9sSDjpYBzQ05Nwy6OuWB6+6UWz64RfbYYA/5/oT/dk+Hft4kd118u7uuRfu26aabWnTu95gwYUL+3i4AYsJcWi+hTikksPCaWP3V19pbS1+hs6Wb9/QRqOvChLqvEoFdFiAvekRfq6yyigOoEtY3v/nNLkECVDUQ78477yw/+tGPhN0QYNmlD0WZrpRxt0tE3k1vxOlFX/CSxSGAoDkAh7OA6YYbbnBMvXhiNwJ0c9BBBxUMI34RayDWQKyBWAOxBmIN1F8DdKdjiTUQa6AXNDBgxz0lkVHWidm6IpyZQaS/nnOpj//GGujTGgDc1bxxSgbvl5Km3XSiZ4wmt1bLWTJqbZo5SDIvjpaOe8fJon+Pk7Z7WmThEytL+7vLSGaeGtKsfDst5Zh2Fyus1veLQ46vYg3EGog10GMa0HouPUcnKd/KyPz7O2TeTR2y4IaMLLxZF1A8pfXcZ5qS3Fx39UnS+jvZohP3/6VbDWq93rxRqhuIt/pIlvIQ9Pd0rZNrv9yNKqTruV+8X8p/xvjzYw3EGqhMAwbyclWgBpG/7+zU5+87g8/f97H3lX197CvWQN/XANuct7W1CVvBxtJ/NdCgi62bt01Kw/pqUynHPmNg3tsUHPm0giNnW21dWhdsC/3JJ5/IBx98UNpxCRcAupCVVlqphMvir22LaFz96le/cjttFfMxbdq0PIuaD4zdeOON895eeeWV/HU9L8aPH++Ch7m2EBuuD1bywVP1SFetdACwh7T+4Ac/cCBkAwUB5n333XcjJ53Fra1PKhPv7ekcE285IF4tEw0bahnZOikQFNRLFKdXVCoBVTYpLrAvCaB2Y2e0chuWvmeffTbssWy11Vbu+VNPPRX6vtqHgwcPFuoBWHrff/99aWlpcUHecsst1Qbdp/xHyRcV5beG6G1ANQr5+OOPBeZukwMOOMAuI5/LrVsAOXbZdVHLK6BYgP0vvvGCzM/OlVmZL2TN8Wu4eqJhVEI+yXwokxa9KdMbPpbG1XXRe0tSnv74cXlu/lPy7Lwn5dCzDpCvHbeDrDZhtAzZoEma1tFFNau3yV+euEQennWfvNc8SZo20PkTjvWTMmjDRlljv9Xl0dkPyp/u/b0sWH62/O7fv5Gn5j4mE47cWgaM0zg4xubiIk4YxNklsWFFPTRN1GGp4Qlpb1ro0rwou1AUf5wD+Jaog1Burep2+6E22GADu5Szzz5bFi3SlUEBASRaTylU3xCn1VMrr7yyA1vzrK+1t6SpmDQ2Nub76Zdccomwk0ZQHnzwQWHRQiXCAgvAzcitt94q999/v7uGXZdFN77YO55deumlAnCbdsEWQtWjz9QbcfrfbIvN/GfBa3Sw1157ybXXXttlQRa7D8QSayDWQKyBWAOxBmIN9K4GYiBv7+o/jn0p10DzN06U9heflGzbfMf0k/ujSrHBq3d2l969U51336vvl/LfMf78fqQBNXQ1rqagr11TMvDAlDRurSUnqWD6WgosvcrQm3liNWm/C1DvGrLwvhZZ9NRK0vG+Pp+HNTvZWeY7C7FazXNluEb3tfyeOKxYA7EGYg0U04DOlzjw7tsK3n0oLfNvAbybltYblYn3gaxklIlX976tqSSW1bp8W2Va13p88C5al6+iQ5p4VFNTHbvAXNuk7ZL7zx/aqn54X3vNxCHGGog1sBRowLax7O/npeCnij9xKdTAyy+/LA8//LDst99+S+HXL3mf3DgmKc0TdbF1i36bdjUji5L4ZiYrSPKOtCzQcUjHdB13RMBybb311i4KQAuwkAHMKveA0ZOtiWFbW2655cQHBEVOv+cQEB8AXgQw7FFHHZVnfPScuUtAvLDJmRx22GF2KYCUAbAgbIs8b968/Du7eOSRR1zZofzUAszsg6u+853v5Be+WHyAo77//e/brWy00Ub563pcVKoDmFC/9a1vOd0D9PYFoA8gSxNbvGP3oWfNi+3TMrLgwbS0/Sut42J1pXk2smhZSI4Tad5RgXFqx6ynHLhV7cMfP7aeKa4s7K985SvO4x//+EcJA9AB7jLwXDAGA9ABqoQ1OygALb/73e+6snX++ecHX3e7v+iii1x+O+2007qCNNUlZbjWbPPdEtBLD4YOFNm0pZyKPlpCx4+tfZjBmGfMmCG77LJLfsEC4Lcov1O1dQttwi9/+ctgcmTKlCkO+M0LmMibmpq6ufEfzJo1K39r7UT+gV7AyFlMDj30UPeadg9QJgLItKcWVFVat7uEhvyh3aWtRWDd/fa3v+3KP+BHdHveeec5ZtIQrzV79PTTT8uVV17ZLbwnn3zSMXPzwhYRcN3X2lvSVEqOO+4454R8DIM1wN3W1lb5/PPPXV1aLevrEUcc4cIn//7zn/901zwLlocvv1w8/xfczTSjOzz89a9/LfUpZb/vjThTKZ387JRge0bf5ZRTTnFtj5Vhc8sZYLQtePGfx9exBmINxBqINRBrINZA72igoXeijWONNRBrAA0kV1hZBp3wY1nw519J46ZbS2LYcAeScIZn7A+w+ShowpGfBe6dcbsvvI9/ylgD/VADyaEKANs8JQ0rJ2TeC/+SjlFbSOJTtZC31pAyQouvzG2SrB7pyctKeuhC6VhxniRGz5OUnpMrLJDUqAWSGNKuW0jlGHkTWqbxVs25H/4ccZJjDcQa6G8aUFZdwLtMlnd8ogxYH2b10Ge6La7M1o8pZ4KynG/XbUVTaySkcTMY1nPMHjGAtxwFlumWNsn1P7UrmtDflv/98b7Mz46dxxqINRBrAA0YSKe/n+NfM9bAkqYBmHgB8R5++OEOQLmkfd/S+D0wCw5YT9kAdRzRtkB3Lvu4DC3QP9VxyKK7M5KZmZXm7VMyQIHBMBUWEkC3u+22m9vC/qabbirkLNJzQLwHH3xwJLelHAHI/f3vf++2+IaF87XXXnMgrc0220xWXHFFt3U0wGNAgrDCIieffLJst912+aBZfMLW0QBnAHDAFgmjLABGgDP//ve/5Yc//KEDCbe0tDgQVt5zhRdsv3zkkUfKVVddJaT7pJNOcltar7/++vL88887MBLALwRw8fDhavuuo1SqAwBp119/vUvZ22+/LX/6058cQDuZTAqgqnPOOce9AzA3bty4ol+QVWLHRe8qW/SjaWl/TjPpYvxQUX/+y8QqCuLdWfOzMmWyPX095fAJSXlnum59/l5tBvLf3CEpm49j4Ni3hK3U77jjDpcogOyUpR133NGVBysbhVJMOQcADLs07Q/bkQOoB1xIfmErcmOVjAJMa25uzuc32OUpp2PHjnWsoOTDq6++2iXlG9/4RqEk9dvn39szKd+7IiOzF2jZqIEcu3NS1lu1NvkNsO5DDz2UTxULEaZPn+6A35dddln+OfUFdUQUqUXdwkIPAHr77ruvY4AHePqLX/wiv+CD/FdKfNDxWWedJYMGDXJtAyypACDPPPPMokFQ93G8+uqr8vOf/9y5PeaYY4Q6siek0rq9WNr+8Ic/OMb1xx57zJVHawPMD6BGwI3ou15y/PHHu0U3MMgCsCb/0U6b+Nd9rb21NBY707eh3gQYTd6h/xUU+iqV9sfwyyIiwuZA/AVOFtdOO+3kmHi5P/30012diz7feOMNufDCC/P1sbmvxbk34gSgTj6aO3euK9cTJ050/cQRI0a4Ms9CJfpq5HXqFNrCUaNGyezZs92CMttZIV4sWYscEIcRayDWQKyBWAOxBqrTQAzkrU5/se9YA1VrIDVuHRl82rnS9vc/6ZbT06Rh7NpqoOu00AHiRcwW0Vfvc6mM/8Ya6F8aUDtT48q6PV3zvZLd/nNJfLaPZN4aKdlpyl6yqMZW8owW4tnNkuWYNFIyQxdJYgXAvPNzx6hWSY7S6+FsK4XhHM7DnEEzV/yj3/evHyFObayBWAP9RQNMRqZ1crxjekY6pilw9xNl29VJ9vTHWlfN0a+ozZxfuDqUWCS5ugJ4N0pI0ya6PZ9u05coTjYSHk78tDwNaAPkWh9AvHRG9dwf78v76Nh1rIFYA7EGchpgshgQb38/x79nrIElRQMATQA3AHgC9ACAMpYlRwPJgbpQb3xSsvOzsvCejNpHy/u27BfKfvqIjk8+S0t6+6w0bai2nmVy1pSwkAC/rrXWWo51D/BCuQJwaaWVVqqaidePF9ZXtjI+9thjHSDwnXfekQMPPNB30uV6jz32CGULBFT74Ycfuq3CKTM+KM0CAOQBe51tKW3PKznTTgJwBOwG8+Rf/vIXdwTDIl2lgGJBP5XeV6IDAGqAJq+77jqBdXXLLbfsFj16M+bkbi87H6RnaR5+JSMLH9UFr2/rOKqtkMvCzxMriDTtlJSmTZWpWstGvWUFxVb/6dik3Pl8Qt7XspezRpYfa1OjyFfWENmkpf5pLj91IltssYVjXTz66KMdqyr5JCiA4H3Apr0HgA5QF3ZMgE6nnnqqvepyhuHTmEu7vAjcfP3rX5c///nPDuBGfBwGvjKna665ppxwwgl2u8Sc11kpITeelpL7XsnKxzMr/6xBahMiv22otqJaCeA3AJXFBFZeFi5E7YdUW7eQn8h7Z599tjuCaQPES3tQSlgQAus4IHEWevjM7vgFsAqzNG1PIYG19nvf+17+Nfm4J6WSur1Y+mBtvfHGG92imCCQFP0A8OSoF5CX/ixM4NQnYXXKNddcI5tuumn+E/pie5tPXJELQOcIYF5fWlpa3AKmmTNnVgzkpRwCOgWcilBvbr755n407ppFG+RxQMW08xy+VAMm9sPxr3sjTuKnXNKmUJ9985vfdEkCrL/33ns7kPj999/v3rEYjCPY9lCfAEKOJdZArIFYA7EGYg3EGuhdDcRA3t7Vfxx7rAGnAcfMe8o5suihf8mi+2+VxLLLS2ql1UQGD5VEKrVYS504ihxlpz7uC/eLUxdfxRronxpILJTkqh9I43pTJTN2lnS8taxk3llWsp8O0Zkgr/zV6uugM5yjTL16pN8ZKemBysgLMy/A3uUVzAuod2SrJPRIDepQ9BoFvZOpN5+GUvd5h/FFrIFYA7EGKtOAAnPTcxWw+7mCdz/Vs7LvGng3o/cyv7Jgy/IFgHeVhDSsn5ABCuIdME4nMgfXbpKmrLQspY5da+P6m/qH/53MvIB6kX7xfin97eLPjjUQa6A6DfR3Jl5Lf3VaiH3HGug9DcCCBzPe1KlT3aQ7W/ACvuypLZx778uX3pgB3jZvk5Ls/2/vTGIkueo8/CIyq3rf273vnjbY7aWN7TFiLI+GmRviwCKQkDhwGQlO5oAQIDhxQJzNCSHBBUtIIIEGicU2lsXYbg0ybZb20u2mF/fm3t1rVWZGzO/3MqLILme5q6syq3L5ngjei8jIyIgvoqL93vve/41pbPVzknnvVPC6ofrL/jzcOCeBUoMOFzymAYBbNABQcmG75Eh7vTaFsIWUX/ziF+Hpp5+O8tCJEyfed+qO7ujIvRYypkqOfLtixYoYcbSMrlbua9HwG9/4RtixY0e5Keat0zHf8kHLSil7jI7eGvJ4ZGQk/PSnP40RIj09teWRMvk7Tz31VHA0VEtIrel2vzl5auzW796uPBMGnuLc4o1lo1aZzdfw5JNPxnti8ahdymtqQjwmgff/sjC+T8/vSe3VrDK1233KbYnGKIz+RxoWfbQSKstv5TXllzrwQaqf+uSjc/d7tzvlyc9Kuf/tnhnvN/n5LL/r3NF0x8bGgiOStv5t+N8WC3uvvfbaxO6Tz2HLli3hueeei5Glf/nLX07s54LlsW9961vh85///C0RSqc6X4vBr7zySvjud78bfvKTn8RzKf9u/DfuKej92dKlapsewLR8UQifebz3nzej978T27Zti3Kgn592kn95i6YaHDGbd4sHnXzzm9+MAp4HS5TJ7yVHa22N2Fp+5ndyu2S5z+9+S+Stz78HMXiQQhlhfqrr+PSnPz0h8vpv5nbRydudw3Qi+Jbv/nbnMZN3e7vjlOe2Zs2a8Mwzz0Qejnbv//70dXmwjpMHkLVLUzEu9239259qX0fLt1ztiNz79u0rvxqfOYvbfp9MTjP993Y63Kfap/VaJp9Puf5B710f19fz9a9/PRw6dChcuHAhRjN3RHPfmx/96EflYd733wkTH3xAwQxLkdcDNdol/zfRiy++GKP3To68/J3vfCd85StfmZCJW5+X6Vy7f6/1O+Xvz/Q3p7oP5XGdf9DfiGcQsLjf+nde/nv2yCOPxBkf/Mz97ne/i/+9Vv7bY9HZg1nMoty/9TcpQwACEIAABCAwtwQS/YfpDJoU5vYk+TUIDBuB2p9fDo0Dr4bGkYMhO3s65OPtK4zDxoXrhUC3CGT/vXHi0Pm1JSE7uTXkR+/RFI0a2n9uQ0hqcxT6sToe8mWXQlilCMGrFQZj1bmQrPRyISTLL2t6SIXELOSpiROmAAEIQKATBDTIIB8bDfmVFSG/pOjkF9WDqCW/eFcIF9aF5KrC9NTbdwZ04udbj5GPqPd+7cmQbHs7JNvfCumm4yFZfL11F8pdJvDJ//lDl3+Bw0MAAhDoXQJP3vhM754cZwaBISFgIcDTwG7dujVGTt2zZ8+QXDmXWX9XMu4fGmH8hRnIvCU+uW+VezWbx0cV1XSPovOukjDWO85YeZa3zS9evBinij5z5kywRGihy9LRdFOWZcHf9eLvWUyarpQy3d+YvF+tVgunTp2Koo6na16/fn1bwWXy97q1PlMG169fD4cPHw4WLs1+yqSetcYFReH9myTeVySRv6ENMxz0mqjqHSXef6+E6l19+MBOCan3Pmg0GsFTjDsSpGUy/3tzJ+natWvBor2lYH9/+fLld/L19+3rv/WjR49GYXT16tXv+5wNg0Nguu8Wv3cs21oytLzqdPXq1WDZ1BKvP28nD06XlGc68Ln4OIsXL57W1958883gCMNOjiTrgSHzlWb6bm8931Ke9b9Vu3btav0olv0blhvN/Gtf+1qwINmtVL4DPKBn48aN0/q3utf+vW3H5sCBA1EWtXi6d+/edrtEcdTR/B19uLwnbXfs0Ea///2+9cBXS/pTidYd+rl4mPn4TT+/nnXCYrCl4snJ1+//XvO/g5bXp/semHycQVj/IBF9EK6Pa4AABCDQDQIe/ETqLgFE3u7y5egQgAAEINCnBBrv5aH2tiJpqBG+runwsqMzb4yfMQK1o6Xrk5BuUL4uCZV16oxaq04o+XWVNdruKfZo258xXr4IgaEmoFdadl1RdtXp6Ki7jXPOtU3RdrPTytWBHubanXWHu6ZFrHxI0XfV8T66UxF45zAK0VA/D1w8BCAAAQhAAAIQgAAEeoRAlHlfKGTeczM8KTeXaMz2yEfSMPoR1S12qW6xmAaUGdLka20IZNfyMO52w1fVfvhnieeqR88kCq8PHSXejysS75NIvG1QswkCQ0egncg73xA+9alPhV//+tdRJD5+/Hjfi3+OKvynP/0pYt2/f3+47777JhDX6/UYFduRip1++9vfxojtEztQmBYBi+jf+9734r4//vGPwxe+8IVbvufnyc+V07e//e243LIDKxCAAAQgAAEIQGBICSDyDumN57IhAAEIQGB6BNwwX5PEO/5mFuoHJbj9QxOJX9R3Ne38nCb3N0lySxWVI11fiL2K1hGFXkm9ldVaPOV8ZU7Pih+DAAT6hUBDkYKuFuLueb3LtERxV8JudkavNMm8MXKQsjlNqTotFXCmsjMJ1XuSMHKPpsDdpvec32ckCEAAAhCAAAQgAAEIQGAoCdRVP7nxx0LmPTULBJpgKd3ZFHoXPKi6xuYkJAuoa8yC6NB/NR9TO+FxReH9SxZqr2YhOyIkswhIlGzSNNmSeBd+TBLvWp7NoX/AAAABEegVkddReC2x/uY3vwnPPvtsvDff//73w1NPPdX39+lXv/pV+OxnPztxHY8//nh47LHHgiPM/f73v4+ReP3ho48+Gp5//vmwcOHCiX0pTI+AI746anmZdu/eHZ544okog1uifumll+JHjjL98ssvx5kHyn3JIQABCEAAAhCAwDATQOQd5rvPtUMAAhCAwLQJ5JrpvX5KkTYOSeg9JAHusMS3UzLetH1ektv2l6hDSo38iSL0WvCtaIbF1FJvKfZq1hw6qObl7vCjEJh3AvlNvacuN6f5bJTi7nm9txR5N1eneKbyvIi7JRm1f6cb9b66O4Tq3YqStVsi74Y0JKPlDuQQgAAEIAABCEAAAhCAwDATaFzKw819jXDzWUU7PS4SsxlQvUyDBz1w8MEkLNiThupG1T1Ghpku136nBPJaCLWTahf8uwTe11Tf1mD/cPVOj9Kyvwa1pvKbFvyXJN5/rYTKCiTeFjoUITDUBHpF5P3BD34QvvrVr07ci8997nPhhz/8YVi0aNHEtn4u/OxnPwtf/vKXw5UrV9pexhe/+MXw9NNPD8z1tr3ILm989dVXw5e+9KXw+uuvt/2lhx9+OPz85z+P8nrbHdgIAQhAAAIQgAAEhpAAIu8Q3nQuGQIQgAAEZkFAHUeNi4rQ+w8JvYfzUFeE3kwRe2OUXkW8nNckAS5ZpY4Ayb2p5N7EQq/XVznXNueaph5Rbl7vEj8OgY4T8ECDxnt6F6mj2++nTEtDkcNzC7yaitbRdvNL+tlZRAnqyEkrYrij76bbJe0qAu/ILi0701BZqQ5LdWKSIAABCEAAAhCAAAQgAAEItBLINKvIzf1ZuPmcIp9anJxlnSZZKaH3w6qH3J+E0Q8VQi+DCVuRU55EINczFwXeNyTw/k117Tf1HGrQ7KySnrnKhySV/6ck3odSZqSZFUy+DIHBI/DMM8+EGzduhIceeig88sgj83aBL7zwQvC5bNu2LZ7LJz7xiZAkgzXo4OzZszEa7BtvvBGOHTsW1q5dGx588MFw//33EyG2Q0/e2NhYePHFF8PBgwfjUq1WwwMPPBCXPXv2hNFR/kOsQ6g5DAQgAAEIQAACA0IAkXdAbiSXAQEIQAACc0/AES9rispbOyKpV0Jv45iEuXfUoO9B3MrmPbldbXEhzq2WyOuIvc4t9brzStE+Ui2V5dpnoXYerHa4ecfPCUCg4wT0Xsn03snUadi47LxYLmj7BZWdS96NAwuu69d75T2kd0y6Re+a7ZrSdoc6zXeow3yDBhX4vUOCAAQgAAEIQAACEIAABCDwAQQ8cHHsLUXmfV5tL4qEOqsoqOXvaNBzVRF6q/dJ6L0nDSObqZ+UaMibBLIbGrx/QgP535LA+3e1+Vkk9wDZ2SZFh67uTcKij1c0Mw2z0swWJ9+HAAQgAAEIQAACEIAABCAAAQgMEgFE3kG6m1wLBCAAAQjMDwG15TeuqIFfEm/taCahVw38mvYxO6kPrumUlPVMctTLJXJ2FQEzjdF6i7LE3tTbCrE3VeTedIk6sphqsmduHScyXAQ8baejT2WKtNt4T+VS2lXHoSPuWtZ1BN4JaXc208x2Gq393KV6p2ySvLtVnZTb1EG+vdk5ni5j0ECncXM8CEAAAhCAAAQgAAEIDDwB1XfGjyky7/9KqtyXhfyMrrgTbS0rNMj5btVXFB11RFLlqOou1FkG/mma+gKL9r2aZt6qHZQ4rui7jbe1UXXyWSdXhTeGMPq4ovD+m+rHW9RAx8w0s8bKASAAAQhAAAIQgAAEIAABCEAAAoNEAJF3kO4m1wIBCEAAAvNPQJ1LDcl1tXfU4H/cQq+WExLuFLm3ZyL1tqO0UB0K6sCKgq+kXpct9aaO1mupV0tFUUMQfNvBYxsEZk7A03Rm1yTsajBAFHYl7rqcF/JubnFXi/NcMm9QNKqeTJZ3HXl3o94Vm9UZvlWd4VvdOal1vUvooOzJu8ZJQQACEIAABCAAAQhAoK8INDQTyc0/Z2Hsj1nIDnWwfrRIVRYPQLTQu0vLzjRU1jK4ua8ejlmcrAfS1s9KEtdsW3WJu/W3VC9Xe164MYuDtn51gerIigA9+oQk3r16tjRTFgkCEIAABCAAAQhAAAIQgAAEIAABCEwmgMg7mQjrEIAABCAAgU4RKKVeTcVXP6FIvYrYm51sSr35Zf1IvVM/1KXjODKIOrMSy7yWei36WvCV1JtY6l3qSDVF7rIjcC5SZ0SlS+fDYSHQrwQa+rvXtJzZVeWOsitRN5Yt7F7RNud6J2RaLOvG98NNXWwvRdltx76qd4LEf8u76SZF3tV0tFVFFXKOvNsOGNsgAAEIQAACEIAABCAAgdkSyDW4cVzRUm++1Aj1/ao/ndcR5Vx2JLmOc5eaNf5FdRtF6h3RzCKxfqN2EAYndoRw7xzEbXYaSFvOrmWBtyE5PD+nU+xUe50eGz9P1b1JWPixShi9Ow2JpF4SBCAAAQhAAAIQgAAEIAABCEAAAhBoRwCRtx0VtkEAAhCAAAQ6TUCdSrGD4LQ6CU5K6i2E3sYp9Ted62CUj06fd7vjOXCIOh6SZRJ6l+cxj5F7vR7FXn22RGLfEvVzKU+KPF2s8ki7A7INAv1PwBF8susSdBVdN7+msqPsKs8t7jq3sKtOQud5mascI+x2qtN5LjBa7r9Lou4G/X1vUq6pQaub1bm9QWW9A4LfDyQIQAACEIAABCAAAQhAAALdJKA6VP3dPIztb4SxfapzOTqvB0N2MnmwsmYYqe5UXWeHpF7POqJ6j9s5qPd0EvQcHkuPievqNc2a5Vm06kck7yoKb6aB90H19o4m1Z0thI8+noQFeyuhqno0z01HCXMwCEAAAhCAAAQgAAEIQAACEIDAwBFA5B24W8oFQQACEIBAPxBwdM7GWXUaqPOgIbnXS3ZGHQpnJPpd0hVICuzL5Gi8C9U3oQi9yVJJvjHXugQ/R+yNUq+F3sUqa4lyrzo3nE+IvoiAfXnrB/qk1aeXj+vv01F1Jevm15tl57FcyruSdnNF3W0uLidR5I3TcfZ6dN2pbqDk+xh1d73+RterI9LCriLwVr2oIzJZyB/sVOjYDgEIQAACEIAABCAAAQh0l0CMzvt2Fsb+Lwu1/VnIT+v3NCNKR5NmK4p1om2qC21XPchyr2cjQertKOauHczyrurqdbW71TRjlmfLahxV3f6Y6uyeLavTdXW1iyUa8DrycBoWPJaG0Z1E4e3aveXAEIAABCAAAQhAAAIQgAAEIACBASOAyDtgN5TLgQAEIACBPiSgTqYYrVcSb5R6nSuyTPauhEDJvvl7uqZOTes3n3js+1kKVITeoCXKvEXEXm9LLPM6d8TPRRYEJfg693pZljSYehpCdaSRINARAuq0yzQ1a25J96b+3m5oXZGcvO5ymWeWdi3sxrwoO2KPo+1qW5DoOxDJU8mu0CJJN71L4q4E3riok7rqsqPuWtgnQQACEIAABCAAAQhAAAIQ6BECjQuKznsgC+OvagakA6q3XejSiVnSXKUmCcm8FUXorWiWkjjI0VLvCrVfUFfqEvg7O2yuNrTG5WYbWxxAf1JlReB15N04eL7TsndxeskaVZf3KArvRyTx3puGyioGvt7ZnWNvCEAAAhCAAAQgAAEIQAACEIDAcBNA5B3u+8/VQwACEIBADxJw5M/GRUULkczbOJtFodfRe7OzEgYt9jpiyCCIve3YSyKMEX0dtXeRwqZY5C2i90ahN25vir2JhF5HA23m6kgrywu0zeLvqPJRHQ/ptx3pwd6mTrlcUa2zMf29WNJ1Ljk3rlvS9TbnFnejtKuyxV1LupZ3Y67n77oi6mp7nKJ1UP/mLNcv11KKu+uaAm91nTodVa6sLP6OBvuJ4eogAAEIQAACEIAABCAAgX4noHpg7bSi8/7F0XnVnnJIdbkrXbwoR+pVXSrVbCXpZgmcymMdSvUoz16SauBywOPs4g1oObRudYy6e073vRgc3/AMWCe0XXl8Djodebfl54Oeg8puCbwPJWHBg6miNevhoC2qlRBlCEAAAhCAAAQgAAEIQAACEIAABKZBAJF3GpDYBQIQgAAEIDCfBCbEXkm8MVKvOiYyL+fVIXFe8uFFnZ3kw6FJ7gizoCtZ18Kul1guovg215syr0XeKPpa+rXY62i+3ha3a90So8sjRTmuq2yhmE4XQZjnpI42C7l5Tc95zFUeL8oS3mPZkXAt5jyPkMYAAAyuSURBVHrdwm7MXW6uW8JtSrvKCym3XI+Crr+vfr2hSY5w7QhSa9WxrGhB6RqLu+potrSrHHF3aJ4ELhQCEIAABCAAAQhAAAIDScB1wdo7Enr/moX6X9WOclgVPs+m0u3k9om1qmMpOm/FEXrXSe5UvctL1fUui720M3TmLqitoHFV91ZtYnHx4HcPhj+tdrLTahc4p5/Rc9D1pFmlKncnYeQBSbwPpGFkS9ocUN71H+YHIAABCEAAAhCAAAQgAAEIQAACEBhEAoi8g3hXuSYIQAACEBhoAjHS6HuK2OtII+q0iFJvKfZq+shcU0rmjjozqBFE7/TuWsq1yKtIvWFB3pR5y/VS6lUeCol3QvQtt1Wbkm/QcSz+lnni7T62tzuvNNfjVJqebrPcVpaHocPOkXCLJTT0HPoZLLfV1XnqsrbF7c4t6HqfWP5nnntfC7mWdy3aWt6Necu2KO9qvyjsap8xRc+VyBs763xMUvOZXqZnUdN5NqXdQtx1R3LRoZwuL55jeEEAAhCAAAQgAAEIQAACEBggAp6BZfyoFgu9B9R+ckT1xatzdIEegOzZhSz2xkGTylUHS1dL7PWiOlplhT53O4X3JU1NQLfNdf3GpebsVQ21eWVe3Cammass8EZx1wPcte+cpKVqAtqpevUeReC9XwLvNtWrNUsUCQIQgAAEIAABCEAAAhCAAAQgAAEIzIYAIu9s6PFdCEAAAhCAQC8QUEdFdk0dGOrIiJFIYqeGtl1054b6MRSxN1c5yr0SKUnTJGAR1+KuBV9Ju2FEoGPk3jLXZ8U+pdAbpV6Ju5Pl3rifhV7LvF7KsveN6+r0KT6Luft/vN6SJy3luN3r3qXIb+n8K7d5h9aOrKKcl9ucF0vuaSbL9bJc5PEzlWPuZyjTjpZy/XmZF+Uo5UY5V8+c97Wk6/XWsgTdpryr4xSRdkNNJ+2yJV5/XuyjEmk6BPQsJupMtLSbrNbj46i7FnhVrij6U+wsdhSoxeLc+nxM59jsAwEIQAACEIAABCAAAQhAoE8JZJqZpXZMQu8BCb2vq93EEXrfm4eLccTelaqnqV6WlLOjeH2lpV7V1ST2eqCl62xxgPA8nOJ8/6TbDrLrasvS4PXsspoRLjvXonYty7t568xUcxFxdzIQ3aMYgfdeReG9VwLvVt0vzQ5FggAEIAABCEAAAhCAAAQgAAEIQAACnSCAyNsJihwDAhCAAAQg0GMELFBmV9RBJYF3IlqJpN7sUrMzJFckk1zl3J1XjnRKmhsChaxrkTcuUeJVOXVHnToT4+fqBIoSb7Fu7zKuez8t7iNyHpM/1H7e5v9z2aUJu1crsnbj1vh/2scW7+Sy1wtpN2SKbBvXi/28PS7abhm3kHjjNq/HbcU+ykhzQMARpZdrUWdv7AguOn8t71rYnYjytFT3288aCQIQgAAEIAABCEAAAhCAwJATcFTX2jsSet+Q0PuW2kreboqhsU47H2xcjy/k3kQyr+tzMVddL9XMKuky1fdUp0s1YNNyb7pEuaO+9nsdz+1VipacXVOuQekxV/tVriXT7FKWeN1mlbndyoPSJfSGm1piO8Y83CjxdmRlC7zVe5Iw+mEJvJt1bxxNmQQBCEAAAhCAAAQgAAEIQAACEIAABDpIAJG3gzA5FAQgAAEIQKCXCcTIJlfVWWWZNy5yMN0pUsq96hzJ3WEiuTdXh4ojppIgAIF5JOAou+qsnZB2HaHJizt546Kyp2R1eYk6Eh0hmgQBCEAAAhCAAAQgAAEIQAACUxLINftL/d0s1A5K7D2YSeiVNHpSlqhl0V5IFnUXuR6oOp4HcFrk9ewrknrjLCyLta4osIn30RLLHuwpsTRRno4qH9Ux5lr4taCrgeIWpvMyF1NLu/kNbdfi6Mhub4qL2qeyqyp7KdqiwnWdtwcS90Iy202qb9+tyZl2S97dLZF3XUq9uxfuDecAAQhAAAIQgAAEIAABCEAAAhAYUAKIvAN6Y7ksCEAAAhCAwLQIqK/KHSkWexsSeZvTF2q9KEep12JvKfi6U0WdXiQIQKCDBEbU6WphV1GXJjprHYXJ06uWucqVKPJqm6fuJPhPB28Ah4IABCAAAQhAAAIQgAAEho6A2kM8uLl2RFKvovPW/6G2kCMSTS+IRK/IpJNvimfnsbSrCL1hca5cZUu9juyrJVjmddn7qJ4ZXNcc0b7OPVDUcm+xxHIx60+c1Md1zLKe6ei3WuJsPS6LR5yhxzPyaIllDf7Oa+LlNiItUd61wGsh2vLuWLOcqx3JS7DMe10H0/ae5Ss2yWoh2qH6984kjCgK78iONA6enWCj0ydBAAIQgAAEIAABCEAAAhCAAAQgAIFuEEDk7QZVjgkBCEAAAhDodwKOpCLBtyGBN0q9l5W7rGkOc0dNcV4uWnfZnTI92xnT7/eD8+9/Au4sdYeqZd04RWqzHKdLjdOmStxVxCUvUdh12Z2z7lglQQACEIAABCAAAQhAAAIQgEDXCDiKbP1UHsYPZ6EumbdxVM0bJySduq3DIms/JtclLfMqOm+Ueau6ENdLq5J9K0U5iryqdyZad5bq/1TMbfDqfyFvrse2nobafizy1rVNZef5uPJC5O3b9iBdTnCdfIvq4tuFR+Lu6C5F390gThKjSRCAAAQgAAEIQAACEIAABCAAAQhAYK4IIPLOFWl+BwIQgAAEIDAIBNRH42kRLfJmV5z/sxynQ7Tk62kSPTVizPUF50TyHYS7zzXcjoCjHCkiUvC0p0vU6ecou+U0qF532YJuFHeda/G2heocpH/wdnT5HAIQgAAEIAABCEAAAhCAQHcJqAnDA5rr7yhS79EsNI5J6j2u9g9Jvm7b6Fupt7vU+u/orn+7Lr5R8u5W+c3bFHl3exqqlnlVT6d+3n+3lDOGAAQgAAEIQAACEIAABCAAAQgMAgFE3kG4i1wDBCAAAQhAoBcIOIqvJV9JvFkUepvlGMG3FHs1jWI5rWLMr6kzzNMsOpqvpmCkU6wXbiTn0JaAO/ocyciirqcvVbTcOI1pLGu9EHfTKO8Wgu5S51q0LdV0p0TXbUuWjRCAAAQgAAEIQAACEIAABHqPQCap96KE3ncUpVdib8PLiULqdaRefU7qIwKOPry8kHc3S97drKi7WyXwbklDZSX19T66k5wqBCAAAQhAAAIQgAAEIAABCEBgYAkg8g7sreXCIAABCEAAAj1EQL5urukWM4m8XhytN5ZjtN5yXed7Q59b6tViuTfXepR8b2jKRpXDmD6js6yHbuyAnIqnF10gGdeRcRflIVmkssRb50FLWq5b0i0k3ijnWua1pKvcS+JpSy38kiAAAQhAAAIQgAAEIAABCEBgcAhY6r2sSL0nvEjsPam2i9NqnjitNovzukwPTCb1HgHX89eozr5BdfYNIVQ3Sd7drMi7kngrmi2Hwba9d8s4IwhAAAIQgAAEIAABCEAAAhCAwDATQOQd5rvPtUMAAhCAAAR6iEBel7jriL6FwHtLHqP2NqXe/GZzP+cWe5vrKuu7ebEeO9HckaYowaQhJWA5VxF0o6DrzjstQaJuslBlLaHIkwXFNsu6FnKjtKuyRN7U0q5zb/N3fUwSBCAAAQhAAAIQgAAEIAABCAwvAY0xzjS7UP1dLacUpdfLGbVlvKv2CW3LLwuN2jdI80BAg2uTFVruUj1+naLurpewu1HyrheVPQCXwbfzcF/4SQhAAAIQgAAEIAABCEAAAhCAAASmRQCRd1qY2AkCEIAABCAAgZ4gUEb2tbTbIvRmE+uF5Guh14tl3ljW/hPlYvu4tilKcJR+a4r4q/XgdS9E/RWEHkme/tKRbt0hN6pOtxHdJwm6Mfqt1hOXLekWsm7cx+ViexR3J2Rdddy1CLzNso5BJN0eudmcBgQgAAEIQAACEIAABCAAgf4i4HaFxiXJvBZ7tWRaXM7Oqe3hfCH2ql2C1AUCrvuvVGDdNarXr5W4K4G3sk6LBV7nK7W92oXf5ZAQgAAEIAABCEAAAhCAAAQgAAEIQKALBBB5uwCVQ0IAAhCAAAQg0BsEYpRfCbz5mDrPWoTepuTbFHkt+DYXCaJluRB883pT7vVxLPhG8deRg/1562eO/Ot9GhKCY67vTWzT9mESgy3eOnKtO8tiro4z5xUx8TYtcd1ibtVirrbF8uRcnxXCrqXcWC7F3YntOnYp8FrWjfJukdNZJ2gkCEAAAhCAAAQgAAEIQAACEJhLAm5fiGLvOQm9XiTzZsqzC2pLuOhFbRFXdEZuOyBNn4DbDZZZ3FWdf5Xl3abAW5HEW1mrxRKvP3MbAwkCEIAABCAAAQhAAAIQgAAEIAABCPQhgf8HyStAG1AbO6sAAAAASUVORK5CYII=" + } + }, "cell_type": "markdown", "id": "871c539b-a1c2-41a3-a33d-37649b603de2", "metadata": {}, "source": [ - "### Filter to `missense` variants passing filters" + "### Filter to `missense` variants passing filters\n", + "\n", + "![Screenshot 2024-12-20 at 11.12.46 AM.png](attachment:440e8e62-f912-4c99-9687-12d655742ab5.png)" ] }, { @@ -3742,17 +3763,24 @@ } ], "source": [ - "var_ht = filter_by_consequence_category(missense=True, ht=drd2_interval_ht)\n", + "var_ht = filter_by_consequence_category(missense=True, ht=drd2_ht)\n", "var_ht.show(5)\n", "print(\"The total number of missense variants passing filters in DRD2 is: \", var_ht.count())" ] }, { + "attachments": { + "f42fc1f8-afe3-4684-9fee-66582eba9080.png": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAACuQAAAGKCAYAAAD+cbWXAAAMQWlDQ1BJQ0MgUHJvZmlsZQAASImVVwdYU8kWnluSkEBoAQSkhN4EESkBpITQQu8INkISIJQYA0HFjiwquBZURMCGroooWAGxI3YWxd4XCwrKuliwK29SQNd95XvzfXPnv/+c+c+Zc2fuvQOA2gmOSJSNqgOQI8wTxwT50ccnJdNJPUAZaAJ1QASjOdxcETMqKgzAMtT+vby7ARBpe9VeqvXP/v9aNHj8XC4ASBTEqbxcbg7EBwDAq7kicR4ARClvNj1PJMWwAi0xDBDixVKcLsfVUpwqx3tkNnExLIjbAFBS4XDE6QCoXoY8PZ+bDjVU+yF2FPIEQgDU6BB75+RM5UGcArE1tBFBLNVnpP6gk/43zdRhTQ4nfRjL5yIrSv6CXFE2Z+b/mY7/XXKyJUM+LGFVyRAHx0jnDPN2K2tqqBSrQNwnTI2IhFgT4g8CnsweYpSSIQmOl9ujBtxcFswZ0IHYkcfxD4XYAOJAYXZEmIJPTRMEsiGGKwSdIchjx0GsC/Fifm5ArMJmk3hqjMIX2pgmZjEV/DmOWOZX6uuBJCueqdB/ncFnK/Qx1YKMuESIKRCb5wsSIiBWhdghNys2VGEzriCDFTFkI5bESOM3hziGLwzyk+tj+WniwBiFfUlO7tB8sU0ZAnaEAu/Ly4gLlucHa+NyZPHDuWCX+UJm/JAOP3d82NBceHz/APncsR6+MD5WofNBlOcXIx+LU0TZUQp73JSfHSTlTSF2zs2PVYzFE/LggpTr42mivKg4eZx4QSYnJEoeD74ChAEW8Ad0IIE1FUwFmUDQ0dfUB+/kPYGAA8QgHfCBvYIZGpEo6xHCaywoAH9CxAe5w+P8ZL18kA/5r8Os/GoP0mS9+bIRWeApxDkgFGTDe4lslHDYWwJ4AhnBP7xzYOXCeLNhlfb/e36I/c4wIROmYCRDHulqQ5bEAKI/MZgYSLTB9XFv3BMPg1dfWJ1wBu4+NI/v9oSnhE7CI8J1Qhfh9hRBofinKMNBF9QPVOQi9cdc4JZQ0wX3w72gOlTGdXB9YI87Qz9M3Ad6doEsSxG3NCv0n7T/NoMfnobCjuxIRskjyL5k659HqtqqugyrSHP9Y37ksaYO55s13POzf9YP2efBNvRnS2wxth87i53EzmNHsCZAx45jzVg7dlSKh1fXE9nqGvIWI4snC+oI/uFv6MlKM5nrWOfY6/hF3pfHnyF9RwPWVNFMsSA9I4/OhF8EPp0t5DqMojs5OjkDIP2+yF9fb6Jl3w1Ep/07t/APALyODw4OHv7OhRwHYK8b3P6HvnPWDPjpUAbg3CGuRJwv53DphQDfEmpwp+kBI2AGrOF8nIAr8AS+IACEgEgQB5LAZBh9BlznYjAdzAYLQDEoBSvAGlAJNoItYAfYDfaBJnAEnARnwEVwGVwHd+Hq6QYvQD94Bz4jCEJCqAgN0UOMEQvEDnFCGIg3EoCEITFIEpKCpCNCRILMRhYipUgZUolsRmqRvcgh5CRyHulEbiMPkV7kNfIJxVAVVAs1RC3R0SgDZaKhaBw6CU1Hp6EFaBG6DK1Aa9BdaCN6Er2IXke70BfoAAYwZUwHM8HsMQbGwiKxZCwNE2NzsRKsHKvB6rEW+JyvYl1YH/YRJ+I0nI7bwxUcjMfjXHwaPhdfilfiO/BGvA2/ij/E+/FvBCrBgGBH8CCwCeMJ6YTphGJCOWEb4SDhNNxL3YR3RCJRh2hFdIN7MYmYSZxFXEpcT2wgniB2Eh8TB0gkkh7JjuRFiiRxSHmkYtI60i7ScdIVUjfpg5KykrGSk1KgUrKSUKlQqVxpp9IxpStKz5Q+k9XJFmQPciSZR55JXk7eSm4hXyJ3kz9TNChWFC9KHCWTsoBSQamnnKbco7xRVlY2VXZXjlYWKM9XrlDeo3xO+aHyRxVNFVsVlspEFYnKMpXtKidUbqu8oVKpllRfajI1j7qMWks9RX1A/aBKU3VQZavyVOepVqk2ql5RfalGVrNQY6pNVitQK1fbr3ZJrU+drG6pzlLnqM9Vr1I/pH5TfUCDpjFGI1IjR2Opxk6N8xo9miRNS80ATZ5mkeYWzVOaj2kYzYzGonFpC2lbaadp3VpELSsttlamVqnWbq0OrX5tTW1n7QTtGdpV2ke1u3QwHUsdtk62znKdfTo3dD6NMBzBHMEfsWRE/YgrI97rjtT11eXrlug26F7X/aRH1wvQy9Jbqdekd18f17fVj9afrr9B/7R+30itkZ4juSNLRu4beccANbA1iDGYZbDFoN1gwNDIMMhQZLjO8JRhn5GOka9RptFqo2NGvcY0Y29jgfFq4+PGz+nadCY9m15Bb6P3mxiYBJtITDabdJh8NrUyjTctNG0wvW9GMWOYpZmtNms16zc3Ng83n21eZ37HgmzBsMiwWGtx1uK9pZVlouUiyybLHitdK7ZVgVWd1T1rqrWP9TTrGutrNkQbhk2WzXqby7aorYtthm2V7SU71M7VTmC33q5zFGGU+yjhqJpRN+1V7Jn2+fZ19g8ddBzCHAodmhxejjYfnTx65eizo785ujhmO251vDtGc0zImMIxLWNeO9k6cZ2qnK6NpY4NHDtvbPPYV852znznDc63XGgu4S6LXFpdvrq6uYpd61173czdUtyq3W4ytBhRjKWMc+4Edz/3ee5H3D96uHrkeezz+MvT3jPLc6dnzzircfxxW8c99jL14nht9urypnuneG/y7vIx8eH41Pg88jXz5flu833GtGFmMncxX/o5+on9Dvq9Z3mw5rBO+GP+Qf4l/h0BmgHxAZUBDwJNA9MD6wL7g1yCZgWdCCYEhwavDL7JNmRz2bXs/hC3kDkhbaEqobGhlaGPwmzDxGEt4Wh4SPiq8HsRFhHCiKZIEMmOXBV5P8oqalrU4WhidFR0VfTTmDExs2POxtJip8TujH0X5xe3PO5uvHW8JL41QS1hYkJtwvtE/8SyxK7xo8fPGX8xST9JkNScTEpOSN6WPDAhYMKaCd0TXSYWT7wxyWrSjEnnJ+tPzp58dIraFM6U/SmElMSUnSlfOJGcGs5AKju1OrWfy+Ku5b7g+fJW83r5Xvwy/rM0r7SytJ50r/RV6b0ZPhnlGX0ClqBS8CozOHNj5vusyKztWYPZidkNOUo5KTmHhJrCLGHbVKOpM6Z2iuxExaKuaR7T1kzrF4eKt+UiuZNym/O04I98u8Ra8ovkYb53flX+h+kJ0/fP0JghnNE+03bmkpnPCgILfpuFz+LOap1tMnvB7IdzmHM2z0Xmps5tnWc2r2he9/yg+TsWUBZkLfi90LGwrPDtwsSFLUWGRfOLHv8S9EtdsWqxuPjmIs9FGxfjiwWLO5aMXbJuybcSXsmFUsfS8tIvS7lLL/w65teKXweXpS3rWO66fMMK4grhihsrfVbuKNMoKyh7vCp8VeNq+uqS1W/XTFlzvty5fONaylrJ2q6KsIrmdebrVqz7UplReb3Kr6qh2qB6SfX79bz1Vzb4bqjfaLixdOOnTYJNtzYHbW6ssawp30Lckr/l6daErWd/Y/xWu01/W+m2r9uF27t2xOxoq3Wrrd1psHN5HVonqevdNXHX5d3+u5vr7es3N+g0lO4BeyR7nu9N2XtjX+i+1v2M/fUHLA5UH6QdLGlEGmc29jdlNHU1JzV3Hgo51Nri2XLwsMPh7UdMjlQd1T66/BjlWNGxweMFxwdOiE70nUw/+bh1SuvdU+NPXWuLbus4HXr63JnAM6fOMs8eP+d17sh5j/OHLjAuNF10vdjY7tJ+8HeX3w92uHY0XnK71HzZ/XJL57jOY1d8rpy86n/1zDX2tYvXI6533oi/cevmxJtdt3i3em5n3351J//O57vz7xHuldxXv1/+wOBBzR82fzR0uXYdfej/sP1R7KO7j7mPXzzJffKlu+gp9Wn5M+NntT1OPUd6A3svP5/wvPuF6MXnvuI/Nf6sfmn98sBfvn+194/v734lfjX4eukbvTfb3zq/bR2IGnjwLufd5/clH/Q+7PjI+Hj2U+KnZ5+nfyF9qfhq87XlW+i3e4M5g4Mijpgj+xXAYEXT0gB4vR0AahIANHg+o0yQn/9kBZGfWWUI/CcsPyPKiisA9fD/PboP/t3cBGDPVnj8gvpqEwGIogIQ5w7QsWOH69BZTXaulBYiPAdsivyampMK/k2Rnzl/iPvnFkhVncHP7b8Ah9d8bcAadJgAAACWZVhJZk1NACoAAAAIAAUBEgADAAAAAQABAAABGgAFAAAAAQAAAEoBGwAFAAAAAQAAAFIBKAADAAAAAQACAACHaQAEAAAAAQAAAFoAAAAAAAAAkAAAAAEAAACQAAAAAQADkoYABwAAABIAAACEoAIABAAAAAEAAArkoAMABAAAAAEAAAGKAAAAAEFTQ0lJAAAAU2NyZWVuc2hvdGxAPf0AAAAJcEhZcwAAFiUAABYlAUlSJPAAAALYaVRYdFhNTDpjb20uYWRvYmUueG1wAAAAAAA8eDp4bXBtZXRhIHhtbG5zOng9ImFkb2JlOm5zOm1ldGEvIiB4OnhtcHRrPSJYTVAgQ29yZSA2LjAuMCI+CiAgIDxyZGY6UkRGIHhtbG5zOnJkZj0iaHR0cDovL3d3dy53My5vcmcvMTk5OS8wMi8yMi1yZGYtc3ludGF4LW5zIyI+CiAgICAgIDxyZGY6RGVzY3JpcHRpb24gcmRmOmFib3V0PSIiCiAgICAgICAgICAgIHhtbG5zOmV4aWY9Imh0dHA6Ly9ucy5hZG9iZS5jb20vZXhpZi8xLjAvIgogICAgICAgICAgICB4bWxuczp0aWZmPSJodHRwOi8vbnMuYWRvYmUuY29tL3RpZmYvMS4wLyI+CiAgICAgICAgIDxleGlmOlBpeGVsWERpbWVuc2lvbj4yNzg4PC9leGlmOlBpeGVsWERpbWVuc2lvbj4KICAgICAgICAgPGV4aWY6VXNlckNvbW1lbnQ+U2NyZWVuc2hvdDwvZXhpZjpVc2VyQ29tbWVudD4KICAgICAgICAgPGV4aWY6UGl4ZWxZRGltZW5zaW9uPjM5NDwvZXhpZjpQaXhlbFlEaW1lbnNpb24+CiAgICAgICAgIDx0aWZmOlJlc29sdXRpb25Vbml0PjI8L3RpZmY6UmVzb2x1dGlvblVuaXQ+CiAgICAgICAgIDx0aWZmOllSZXNvbHV0aW9uPjE0NDwvdGlmZjpZUmVzb2x1dGlvbj4KICAgICAgICAgPHRpZmY6WFJlc29sdXRpb24+MTQ0PC90aWZmOlhSZXNvbHV0aW9uPgogICAgICAgICA8dGlmZjpPcmllbnRhdGlvbj4xPC90aWZmOk9yaWVudGF0aW9uPgogICAgICA8L3JkZjpEZXNjcmlwdGlvbj4KICAgPC9yZGY6UkRGPgo8L3g6eG1wbWV0YT4K++N+rwAAQABJREFUeAHs3QecFPX5x/Fn93qjc0ev0qUpNiSixlijBls01ojRGBOjMXb/aSYxtigYjRVbFFRUREEURVFEkd6RdvQOB9xxcG33/3sGZtkyu7d7jd27z+/FMjO/6e/d292b/e5zrtLSUq/QEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQKBKAu4qrcVKCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIGAJEMjlgYAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggEA1BAjkVgOPVRFAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEiGAAEEEEAAgdoWKCgokLFjx0qLFi3kvPPOk9TU1NreJdtHAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBOpMgEBunVGzIwQQQKBhCnz77bcydOhQ38nn5ubK0qVLJScnx9fHCAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCQyAIEchP53uPYEUAgKoF169bJ3r17rWXXrFkj5eXlctRRR0m7du2kSZMmUW1jyZIl4vF4Ii6bkpIiGjbVbbpcrojLNqSZ//73vwNOd9u2bfLWW2/JDTfcENDPBAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCQqAIEchP1nuO4EUAgKgEN0Wp11o0bN4Ysf8cdd8hDDz0U0u/UMWDAAKfusH29evWSq666Si6//HJp37592OUawozVq1eHnOby5ctD+uhAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBJVwJ2oB85xI4AAAtEIzJw50zGMq+u+/vrrUlFREc1mYl5m6dKlcv/990vXrl3ld7/7nRw4cCDmbdSXFW666aaQU7n66qtD+uKx491335XmzZsH3P74xz/G46FyTAgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIHAEBQjkHkF8do0AArUvMHbs2LA72bZtm3zzzTdh59fUjOeeey5sld6a2kc8b0crBT/++OPSrVs3GTJkiIwZM0b69u0bz4fsO7aSkhIpLCwMufkWYAQBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQMAIEcnkYIIBAvRUoLy+XUaNGRTy/d955J+L8mpo5d+5cufLKK0WPqaG1zMxMq0rw4sWLZcqUKXLRRRc1NALOFwEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBOq5AIHcen4Hc3rxL6ABzdoKaXo8HtmyZYvs3r27yhC6ja1bt1o3Ha+ptmfPHuvYKtteRUWFbN68WXQYa/vqq6+syqaR1nvzzTeltLQ00iJh533yySeydu1a67Z8+XKZOnWqPPnkk1YlWKeVpk+fblWKdZp3pPq0Aqz61uR9q9v0er01ckq1cXwFBQXW47lGDjDKjWzfvl327t0b5dIshgACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAokm4DJBtJpJTSXamXO8CBxBgUWLFslTTz0lX375peTn51tH0rdvXznjjDPk7rvvlmbNmsm9994rc+bMCTjKESNGSM+ePa2+jRs3yvXXXx8wv2vXrvLMM8/IwoUL5W9/+5t88MEHvvm5ubly0kknyT/+8Q/p3r27r99pZM2aNfK///1PRo8eLStWrAhYpHPnznLVVVdZ1V67dOkSMM+eePjhh61KqPa0Dv/yl7/IoEGD5LHHHpOnn35atm3bZs3OycmRU089VR555BHR47fbhx9+aPXNmDHDt9wpp5wip59+utx8882SnJxsLxp2qMu99NJLAfNvvPFGef755wP6xo8fL2effXZAX/BEampqcJdo1ds+ffqE9GvA+oorrgjw919IA6FZWVn+XSHj6nP11VeH9KufPlac2i9/+UvZtGlTwCx11/vdbkVFRfLcc8/J7NmzZf78+QH37+DBg2XAgAHW/fGzn/3MXiVgqOe1a9eugL6xY8da+9VqwxMnTpRZs2ZZ8/Xxc/HFF8sTTzwhkyZNCljn0UcflX79+gX06URtHd+BAwdEH5cvv/yyL6Stj73+/fvLXXfdFXD/FxcXy7Bhw6xj27BhQ4CRdurPkv/9rj/LwT9T+jM4ZswYy/jbb7/17bNt27bWz4Hud/jw4dK6dWtrP/yHAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACiS1AIDex7z+OPgEFNHj6wAMPhD1yDQl+9NFH8uCDD8pnn30WsNy0adPk+OOPt/pWrlwpvXv3DpivQU0NR2rwtbCwMGCe/8Srr75qBUb9+3Rcq5pqoPf2228PnuU4raHKW2+9VVwuV8B8DYa+8cYbAX3vv/++fPHFFzJy5MiAfv+JyZMny49+9CO57rrrrDCj/zz/8WuuucYKlSYlJfl3B4xrAFPDj/4OvXr1Eg2NHn300QHLavA1OLgbsICZiCWQq+tqqPPcc88VrYob3N566y1f4DN4nv+0hjaXLl3q32UFre+5556APp3QKrcdO3YM6f/hhx9EQ9Ta1F9D3BrmrqzdcsstViA6JSUlYNF27dr5wtT2DA2Ya1DaDlnb/Rr81cfCb3/725AQtIZVL7roIntRa1hbx6dVjDVI7HRf2Afwm9/8xqpurNP6mGnevLk9q9KhhsYHDhxoLaeVhp999lm57bbbKl1Pf9b18ah2NAQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEhsAXdiHz5Hj0BiCfz73/+OGMbVs9Ew4KWXXhpVaDL47LVyqVY29Q+hBi+j09dee61s3bo1ZJZWCo02jKsr33nnnXLHHXeEbMep48UXX4wYxtV1NBSp1UY1rBmpvfbaa/KnP/0p0iLy+eefhzhotVatZNqtW7eAdV9//XUrQBvQWc2JzMxM0RCyhi6Dm4Ywo2lXXnllyGLBlWbtBb766it71DfUYLYdxtWKw2eddVbUjyutYnzhhReKVvutrGl4NziMW9k6wfNr8/i0UnKkMK4eiwbRP/nkk+DDinlaw8fRhHF1w/pzqpWZ33777Zj3wwoIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCAQXwIEcuPr/uBo6rFAfn6+OFU2dTplDTcGV0Z1Wi64TyufRruehoP9mwY9R4wY4d8V1fh//vMfmTBhQqXLRrPMihUrrJBvpRszC2iV30hNq9AGNw0/aguuzKp9NRHG1O34t6ZNm8rJJ5/s32WNL168OKTPqUMDxMFNg6W7d+8O7hatLhzctPKv3R5//HF7NGCogWGn0LAupBWao7nfpk6dGrDNqkzU5vFNnDgxqkO67777oloueKGMjAyra8mSJaLB8+Cmlau1kvT5558fPMuafvLJJx376UQAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIHEESCQmzj3FUea4AJagdOpaRXT559/XmbNmiWjRo2SIUOGOC0WU59WLP3iiy9k4cKFEi7oGFwx9Pe//73jPl555RXZsmWLddNxp/aHP/xBvF6v06yAvsGDB8v48eNlzpw58sgjjwTMC57Q49blNBR6xhlnBM+2KrKuWbMmpF87tPJocJXd3NxcOfbYY63lzz333JD1gpcPWaCKHXr/BrcNGzYEdzlOd+3aVZzWnzZtWsDyHo9HnCrnarVkbeoYfH+rx9y5c2XHjh2yfft2+f7776VXr14B29UJp+2GLHSoQwPE//rXvyx7vf+cwshO69bF8Z155plWxWINrGuFYj3/4KY/L/v27ZPs7GzZvHmzddOKzcFt2LBhvvlaabpnz57WIt98803woqImM2bMkMcee0zeffddy9uuWmwvrD/70Qbp7XUYIoAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAQHwJJMfX4XA0CNRPAQ2rjh07NuTkNJin1TubNGlizevXr59VvfW0006zwpIhK0TRocHaRx991Ldkjx49xO12y+233+7r0xGt5mk3DURqBd/gptU+f/GLX/i6dby8vFxuuOEGX5+O6Lq6DTvwGjDz0ISe6/vvvy9aNVbb0UcfLfv375c///nPh5Y4PND9XnPNNb6OY445xgo9auVg/6aB0k6dOvl3WeNOIVINpyYlJVnzjzvuOKsqrAZ37abHppVn7fvC7q/usH///iGb0P3quduVVUMW8Ou46qqrrLC2X5cVUv7pT3/q69KKu8E2+hhq3bq1tUzLli2tQKhvBTOiAVU7SOpyuWTAgAFyxx13hNy3a9eu9V8t7Pi4cePEKegcdgW/GbV9fCeccIK8/fbbkpmZae1Vg84dO3aU448/3u8oDo7q+fbu3VuaN29udThVD9bHiD3ffwMaXA9u+thNTj78UtuoUSPrZ14D0P6tTZs2/pOMI4AAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAQIIJHE4JJdiBc7gIJJKAVtvcuHFjyCFrZdzgAKiGBl9++WUrIBmyQhQdwcFbXeWyyy4LCeRqKLS4uNgKKX7yySchW9bKrP6hWHsB7Xv22WdDQqKffvppxECuhnntMK69La186xTI1aqi/k0rlp500knywQcf+HdblXADOg5NOFW79Q+LakDykksusZz9158wYYJceeWV/l3VHm/VqpXjNg4cOBBVIFersd52220B21CHJ5980ten1ZCD2+WXX+7rat++vdx6662+6XAjp5xySsgsfYxU1v7yl79UOYyr267t49Nzt8O49rloAFkrAgdXptWfVQ3kVqU5rXf//fdLaWmpVSlXw/EaftZAsN5oCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggUH8ECOTWn/uSM4ljgeDqpfahhqsoq0FBrczpX8HVXifSMDc3V5wqbWoFUqdWUVFhdTuFhTWQG67pvFmzZgXMdtqG/wJa/Te4OR2rVtLNysoKXlS0P5q2c+dO+fDDD0MWPfXUUwP6zj///JBA7ujRo2s8kLtixYqA/doTjRs3tkcjDrXKrVa79Q/dqvWqVat8oU4NQwc3PT+nptWa9Zi+/fZbq7Lxrl27rMrAWh34m2++cVql0j6nIG+lK4VZoDaOz6lKse6+S5cuIYFcrQBd1aahcaf217/+VfSmP9P6ODzxxBNFKxzrzzkNAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEE6ocAgdz6cT9yFnEuoKHH4Na2bVvRyq9OTato9u3bV6ZPn+40O2xfXl5e2HmRAr5OYdqePXuG3ZZTkNBpG/4bSE1N9Z8MO67Va52amkTTPvroI8fFnnvuuYD+oqKigGmd0GDr1q1bJZJjyEqVdCxYsCBkCQ1Ou93ukP5wHVdccUVAIFeXmzJlihXI1Qq2wYFcrQbcokWLgM1p0FUNtGJrrEHvgA05TDg9HhwWi9hVm8cXLpDuFPyOeJCVzNSA+cMPPyx3332345LqrmFxven9oG5avXf48OGOy9OJAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACiSPgnHxLnOPnSBFICIGMjIyQ49QAq1aoTUpKCpmnHZs3b3bsr41Ou1Ku/7bT09P9JwPG09LSAqZ1wmkbIQvVQcebb77puJdwIcnghT/44AO58cYbg7urPD137tyQdTt06BDSF6nDqdqthnB/9atfyXfffReyqgZ4/duePXvkuuuukwkTJvh319h4LOFip53W9vE57bO2+m6//XarwvPf/vY3CVcZ29730qVL5eabb5YffvhB/vWvf8UU0ra3wRABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQTiQyD6Eo3xcbwcBQIJKaAVUZ3amjVrnLpFA4r5+fmO82qjs1WrViGbXblyZUif3bFixQp71Dd02oZvZh2NaIj5iy++qNbewgV6q7JRPZ6pU6eGrHraaaeF9EXqaN68uZx33nkBi2hwuLS01KqUGzDDTJxzzjkBXW+88YZjGFerJl9++eVyzz33yEMPPSR33nlnwHp1NRHvxxergwa69Wd7/Pjxcs0110jnzp0jbuLJJ58MqXIccQVmIoAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAQNwJUCE37u4SDqg+CuifsndqTz31lGgYL7hpf102p+NbsmRJ2ENYvHhxyDynbYQsVMsd48aNq/Yepk+fLuvWrZNYq9gG79jj8citt94a3G1NX3jhhY79kTq16m1whduZM2fKxx9/HLDaxRdfLI0aNQromzhxYsC0TjzxxBNy0003SXLy4ZeBefPmyaOPPhqybG13xPvxVeX81fXss8+2brr+9u3bRR9bL7/8sjid77Rp03zLVmV/rIMAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAJHVuBwEuvIHgd7R6BeC2RkZIgGJd99992A83zmmWekR48ecv3110taWpqUlZXJ22+/Lfrn7uuynXjiiSG709DgjBkz5IQTTgiYp32TJk0K6NMJp22ELFTLHa+//rrjHpxCz/aCt912mz3qG+r9dPvtt/umYx0pKCgQrZKqVWyDW9u2bWXQoEHB3ZVOB1e91RVeffVVWbhwYcC6WvHWvxUXFztWX73hhhsCwri6zmeffea/ap2Mx/vxOSHMmjXLqduqiltYWOib53a7pU+fPtZ0y5YtRYPYerv//vtDgs8LFizwrccIAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIJJ4AgdzEu8844gQV0NBtcCBXT+X3v/+9dRs4cKCsXLlS/AN9dXWqp59+uuTk5ITs+5prrrEqsHbp0sU6lNWrV4v2BTddV7dxJNuqVavEKSg5f/586dWrV9hDKyoqkgceeCBg/v/+97+oArmTJ0+W9evXW+uWlpbKpk2bZM6cOfLKK68EbM9/4tlnnxUNasba1FjDtmPGjPGt6rSfn/zkJ775OpKamup432r49rzzzvMtq+dy3333+abraiTej0/D9MFNQ9AffvihnHXWWZavPV89V6xYYU9aw5EjR8qvf/3rgD69L4Nbu3btgruYRgABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgQQSIJCbQHcWh5rYAhqUvOSSS2Ts2LGOJzJ37tyAfqeAbMACNTihoch77703JJCZn58vPXv29AValy5d6rjXu+++OyCY6LhQLXe+9957IXvo3Lmz79hDZh7q0MqzwYFcDVwuW7bMOvdw62n/XXfdFWl2yDytSqshzqq2n//85wGB3ODtaFg6MzMzoDs5OVnOOOMMef/99wP6hw0bJkOHDpUBAwbI7NmzZdq0aQHz62oi3o/vqKOOcqTQitf6M9qoUSMZP3689O3bV37zm9+EBLlvvfVWmT59uvzoRz+ylp06daq8+OKLIdvU+TQEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBIXIHYyzQm7rly5AgccYHnnntOzj777EqP48EHH5STTz650uVqcoHbbrtNBg8e7LhJDeKGC+PqOn/4wx8c16vLTq1qG9w0AF1ZO/roo6Vt27Yhi4ULTocsGGXHTTfdJE888USUSzsv9uMf/9gKgTrPFSvw7TQv3GNOw6EjRow4YmFc+1jj+fi6du0a1lyrWW/cuFHKy8utU/nFL35hn1LAUKsa33LLLXL11Vc7hnE1zHvppZcGrMMEAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIJJYAgdzEur842gQX0Iqa7777rvznP/8Rrd4a3DSYN27cONGKs3XdtFKp7vv888+PetfnnXeeVXlV1z2SbdGiRY6BYa1+W1lzuVyOYcjXX3+9slWjmp+bmyujRo2Sp556StLS0qJaJ9xC6enpctlllznO1sfW6aef7jjv2muvDanc6rSgBsaPRIvn49OKw6+99lpULE2bNpV58+ZZ1XKjWsEspFWNv/zySznSP0PRHi/LIYAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAgLMAgVxnF3oRqDWBlJQUufHGG2XZsmWyfv160TDp7NmzZfv27dbw3HPPtfa9d+/ekGPQde3mFODTUGYsLXgbTZo0kXfeeUc0jDpkyJCwm9J5r776qhUu1hBicEtNTQ3uEg2TRtOys7OjWSxgmcmTJwdM64RanHjiiSH9Th22uf+8/Px8WbVqla8rWlsNWg8dOlSGDx8uH3/8saxdu1auuuoq33aqOxKukqpWZ3Vy1/253W55+OGHZeTIkTJw4MCQQ9AKtTNmzHAM9Gog1b/5Pwbtfqc+e54Ogx9n/vN0/Egfn//xZGRk+E9a4xo81wrR9913n2M1Zf/z7927t0yfPl3+7//+T3r16hWyLe3Qx5I+RkaPHm1VzI32seW4MToRQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAgLgRcpaWl3rg4Eg4CgXouMGvWLNmxY0fAWWo4Mi8vL6BPJ4qKiqRZs2Yh/Rs3bpSWLVuG9NdWx9atW2XDhg1WWFj3oftu27attGrVqrZ2yXbrQKC4uNgKG2t1YA0QZ2Vl1cFeo99FvB+fx+OxfkY1aKwBXnUM10pKSmTFihWWt4abNbDbpk2biOuE2xb9CCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggEL8CBHLj977hyOqZwAMPPCCPPPJIwFn17dtXpkyZIo0bN/b179mzR26++WYZO3asr09HNAirVVtpCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCAQXwIEcuPr/uBo6rGAVrfVaqRO7YQTThAN5xYUFMinn34qhYWFIYs9++yzcv3114f004EAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAkdWgEDukfVn7w1M4He/+50899xzMZ/15ZdfLqNGjZLk5OSY12UFBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBCoXQF37W6erSOAgL/AyJEj5YUXXpCcnBz/7ojj9913n7z00kuEcSMqMRMBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBIydAhdwjZ8+eG7DA5s2b5cUXX5QFCxZYt/z8/ACNwYMHy3nnnSeXXnqpdOrUKWAeEwgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggEF8CBHLj6/7gaBqoQHFxsZSUlEh6erpkZGQ0UAVOGwEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIHEFCCQm5j3G0eNAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIBAnAu44OQ4OAwEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgYQUIJCbkHcbB40AAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggEC8CBHLj5Z7gOBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEElKAQG5C3m0cNAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAvAgQyI2Xe4LjQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBISIHkhDzqeDxoj4i3VG9e8ZaZYbm5VXhFrKE54AozbSZFb2bZgxMuEfNPNBatozqeZIbmJuaecSW5xKXDFHNLNeOph5Y1AxoCCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAQHwIEMit7H4wAVoN2nqKvdbNW2zGD5jQ7X7Trzcd1yBuycHlpOTQtAniahjXCuTqUEO4VhDXb2hG/QO5VjDXhHM1hKuBXCuUq2Fcc5M0E8hN02Cuuekw3Uynm2GGyfPqeKYZZrnEnWnGdXkN99IQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBGpdgECuTWwq2Hr2m9BtoVcq9ppxM/QWmmGR6dtnwrZm6C0yQx03y2kwV/a7rECumDCuFb61t1UrQy2ta5reY4cCuWJCuK4Mr7mZEG6WGc82odzsg+PWMMdM57gkqdHBodsspxV4aQgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACNSfgKi0tPZT0rLmNxvuWvBq+NQHbit0mbKu3AjOtwz1muMeEbc3Qq0MTzNUArpTF+xkFHZ9W1TXhXJcJ4roamYBuYxPIbWyq5zYxwyY6NCFdHW9qhqaqLiHdID8mEUAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgRgEGkQg11sqVvi2YqcJ4Zqbxx7uMoFb62bCt6YabsIFb2O4o61FNairIV0TxHU3M4HcZmbY3AxbmGBuc3Mz00kmrOtKjXXDLI8AAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgg0XIF6Gcj1lpsArqlwW7HN3Lab21YTwjVDz3ZTAdcMvbvNHW5CujQjYMK3rqYHQ7nulmaYa0K5h27JLU1g11TWdSUjhQACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCAQTqDeBHI9+w+Gb8u3mOFmczNDzxYTwDVD7x5z+iakS4tCwIRvXU1MMLeVCeO2EkkyQ70ltzY3E9B1pbui2AiLIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAg1HIKEDuZ59XtEAbvlGE8DdZG46NDevqYQrJQ3nTqzVM003AV1TOTeprQnm6q2NCeaaYXKeCexmEc6tVXs2jgACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCSGQcIFcrYRrhXA3mOF6E8BdayrhmqG3wHhXJIR54h5kkgnnNjPVc9ubYG5HE8ptZ25m3ArnZhDOTdw7liNHAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIHqCCREINdbbrK2O7xSts4j5WtMENfcPCaI691lTp0QbnXu/6qvm3wonNvBBHI7m1snl6R0cEtSc5e4zDwaAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggg0FAE4jqQ6ykyIVxTCbdstQnirjbVcM3Nu83cNaUN5e5JkPNMNeHcPFM1t4tIchcTzO3ilhRTPdedRdXcBLkHOUwEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEKiGQPwFcj0i5btMCDffI2UrTQh3hbmZirhSVI2zrKtVk8yOUsxNA6opJoyabI5bq8WafpfOc5ubZlTtoRkVs4iYc7aHXq34qzdTFVjKXeItMwtoALnsUL8ZxHXLMadrquUmdzO3o0w4t5NbkpuZk9ZzpiGAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAL1UCBuArleE0At32ZCuCaAW/aDqYj7g6mGu8WIaxD1SDcN0WrINtMMs3TossZd6WY8w9zMUNJMX5oZ1+XMTUwg16XhXA3jmlBuNIFcrwZzTRhXLTSQaw1NINdrArneEnPTYG6JmT5gxvebmw6LzW2fCe3uOzhueWnI90g3Y+BubarmdjcUPdyS2t2Mt3BbFkf60Ng/AggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggUJMCRzyQ6zWB2/ItHik1IdyypaYargZxd5hT1HBqXTcN3mrAtpHeTKDWDN06nuMStwZxs810lunPNtO6nLm5M8y0CeS6TSBXw7e12bR6rlcDuSaM6zlwaFhshiaM6zGhXK+pIuwxN2+hVzx7dWhue03/HnNUJrxrVeGtzQN02rapjOtqaWh6mGq5vUww1wyTWxHMdaKiDwEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEElPgiAVyrYq4GsQ1IdyyRZ6DQdwCg1hX1V01fKsVbpuaMG0zE6rVYVMTtG1ihk3MsLEZmiBukgnmuk0A16p6mwD3sVbR9RSZYLMJ4nqsm5kuMOO7zXC3CecaY8+ug8M6Dekab1czE8ztaYK5R5tgrhkm5xHMTYCHFIeIAAIIIIAAAgjUG4HvvvtOTjzxxHpzPpwIAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggED8CNR9INdUvi3f5pWSpaYi7gITxDWBXA2J1noQVwO4psqtu6UJ2JqKre4W5tbcjJtbkt5MGDepsQnepsXPnVOTR+I1FXIr9pigrgnnVphArmeHue3UoQnobjc3My2m0m5d3A9WMLeXCeb2c0tab7cktzB3jqmkS0MAAQQQQAABBBBAwElgxowZcsIJJzjNirpvxIgR8sr7L8ne9fvkzTffrPb2ot4xCyKAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIINAiBOg3kahi09AdTFXeeR8oXmiCuCYPWagBUK+A2N1nP1iZsm2eGJoyblGcqs+pQw7iZWra1QdzPoSdp8reeYhPONaFcDUhXmJtHh1tN/5ZD901J6Go11qP0Jhid3NclqQNNxdzubkkylYlpCCCAAAIIIIAAAgj4C4wcOdIK0qanp8sTfxlZ5SBtbm6uXPb3s2Xd0o2Sur6pjB071n83jCOAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIFAtgToJ5HoPmCDualMVd44J4s71iGeTOeaKah2388qa59QquCaA624jkmSGyRrG1aFWxm3IAVxnscO9hwK6Gs4t32yCuYduel9pQLfWqucmmfurnQnmDjDVco81wdxOpkpxOsHcw3cMYwgggAACCCCAQMMWyMvLk0v+dqZsWrVVkvMbyzvvvBMzyFNPPSWvfPqcnHHVECkvq5Bx/54so599W44//viYt8UKCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIOAkkO3XWWJ9HpHyLRw7M90jZ9ybkucoEOw/U2NYPbyjbhDrbmOBtexPCbWfCt3pre7Diqqt2z/DwMST6mMnAurNMtdrOejOFi8tNZtpUNC7faELUG8x9Z91MOHeTuQ+LavBkTTDbs1akdKtHKkxou/w4l6T1d0tyntscUA3uh00hgAACCCCAAAIIJJzA008/LW2PayHZTbKkS98OMu6zz+X777+POUg7efJk6dKvg3X+ySlJ0u/H3eWrr76KeTsJB8gBI4AAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgjUmUCtVcj17DNVcX/wSMl3JtC5wCveXTV8Tukmr9nKVL3taKqrdjQB3I5uSTFB3KTGmiyt4X019M2Z0GzFHq+UmVBu+Vpzf671WiFaq3JuSc3iuJqb+7O/CeWeaKrldncfrGpcs7tgawgggAACCCCAAAIJInDBBRdIWt8yE6Y1b/pN+2HmKknf0FzGjBkT0xk0adJEhj91iSSnHvy23rplG2XfbJeMHz8+pu2wMAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAuEEar5+rKmKW2aq4pbM9kjptx7xrDG7NtVWa6SZoK2rqcnbdjIB3C7mZqq5ppggblIzl7iSamQPbMRJwNiqsd68vd1SscuEczWYm28CuqaqbcUaUzV3t1nR3PfVbd6d5vHzldnm+gopH+yV9GOTJDmXkHV1XVkfAQQQQAABBBBIRAGtYjv80kt8h56Rky47dpo3jDG0mTNnSmarNF8YV1dt0yVPXnpibAxbYVEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQiC9RoINdbYqrirvDIgWkeKZtrQpoFkXce9dxUE8RtZSqndjMh3KNMCLeLqYbb2oRw001Qk1anAi7ziNGAbHJuknj7mmDuJnNbbcK5K004d4WphLzFHE5ZNQ/JBLg9K0RKdnqkYqMJ5Q4x1XK7usWVxv1dTVlWRwABBBBAAAEEEkZg1qxZkhEUpG3dOU9mjp8S0zloqLddr7yAdbRSrm5b9zFo0KCAeUwggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCBQFYEaC+RW7PZKyXxTGfdLE6I0wUwprcrhBK2TYarhdjDhzx4mhNvd3EwoM7kp1VKDlI7YpAaiU02l4tRObikfYIK5K00Q29z35cu84llvHgMHqndo3l0Hq+V6tprH1Kkiaf1MNeTGhHKrp8raCCCAAAIIIIBAYghokLZ9z8AgbUpaspSWl8QUpC0uLpYOPduEnLRue9++fSH9dCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIFAVgeoHck3usmyzqYr7rUdKTWVc7yZzGKavWi1LJKmjS5J6mbBnb3Pr7BZ3NkHMapnW5spuUzW3hQlOt0iStD6mSnK+uS0xVXOXmmDuWvNgKK7Gzk2wu2KRV/bvNqHcHV7JONGEsluZHfJwqAYqqyKAAAIIIIAAAvEvoGHZDr1Cg7QDTu8pGtaNtrLtnDlzpPPP2oacsG77xRdflKFDh4bMowMBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIFYBUyysRqtwhTCXe2R4gkVUvKJCeNuNNuqThhXK+KaEG7auW7JvCxJss9PkvS+SYRxq3EX1fWq7hyXpJtKtnrfZZn7UO9Lt6lwLOnVOBLzmPKairslkzyyb6IJfud7TEq3GttjVQQQQAABBBBAAIG4F9AgbfueoUHarCaZ8vXXX0d9/FOnTpWU9JSQ5bVvy5YtIf10IIAAAggggAACCCCAAAIIIIAAAghUTUCv55x44onWl6CrtgXWQgABBBBAAAEEEEAAAQQSW6DKgVyvqVx6wFRBLf6gQsq+MYnJ3dWASDVB3K4iqWe7rRBn1nkmyNnbBDkzKYNaDdUjuqo7ywSr+5j709yXGq5OPcvcn53NIYVmIaI/zgJTjflr85gbbwLgy0wA3DwGaQgggAACCCCAAAL1U0Cr4KY6BGn1bIuKiqI+6dSWzn8UpFWn3Ki3wYIIIIAAAggggAACCCCAAAIIIIAAApULXHvttdL9wjbyzcbJ8tvf/rbyFVgCAQQQQAABBBBAAAEEEKhnAs6fTldykt4DXjmwyCMHPvZIxTITxi2rZIVws00c2GU+B0/uZ8Kbx7gltZsJbZoKq7T6I6DB3PS+Lknt5JISUym3dI5Hyhd6xbvdnKMpdBtzKxYpn+WV4uIK8Z7ttUK/rjQeMzE7sgICCCCAAAIIIBDnAinNkxyPsFXHljL5qfGO84I7586da6rs5gV3W9Ma9l1bkO84j04EEEAAAQQQQAABBBBAAAEEEEAAgdgERo0aJa7WpdK6S66U7i+VCR9OEr02M3DgwNg2xNIIIIAAAggggAACCCCAQAILxFwh11NswrhzPbLfVCmtWFKNMG6OSNKxJqx5UZJk/SxZ0gcmEcZN4AdSZYeuQeuMY819Pczc18OSJOkYE6LNrmytMPNNZdyKRV7zGDSh8Hke8ew3j0MaAggggAACCCCAQL0R0A9r2oUL0makSnIzt/WBTmUnHKnKrq57oGx/VNupbD/MRwABBBBAAAEEEEAAAQQQQAABBBq6wN///ncZMuw4iyHVXL/pPri9jBw5sqGzcP4IIIAAAggggAACCCDQwARiqpCrwccDpsLpgYkV4lltpKpS4dTs0d1OJOU4t6SZW0o7t7hiOooGdg/Vp9M1Gdzkli5JOiVJUrRi7kyPlM0ygdoN5iQrYjzRcrOKqc68v9ysaB6HaQNMdeUMKuXGqMjiCCCAAAIIIIBAXApokDYtIyXssaWaeXv37g07355RU8vY22OIAAIIIIAAAggggAACCCCAAAIIIBAqMG/ePMnqkiI5zQ5X4znqmM7yxp0fhi5MDwIIIIAAAggggAACCCBQjwWijsJqGLfEVMa1wrirjEhVipKaqrjJR7skbbAJ4/Y2AUpTNZXW8AQ0gJ3axS1JLVxS2tEEc7/xSPli84AqitHCBHE9K0T2TzQjptZzen8T7k7nMRWjIosjgAACCCCAAAJxJ1BZkDa3Y9OojzmvU8uwy8aynbAbYQYCCCCAAAIIIIAAAggggAACCCDQwAX0y9WNmmcFKKSZKrnuJiLz58+X/v37B8xjAgEEEEAAAQQQQAABBBCorwImxlh585aKlCz0yP6PD1XGjTWMazKSrramiulP3JJ1UZJkDEoijFs5e71fIqmRSzKOS5JM85hIPcOEaVubU441T2sei54VplKuqdp8YLFH9LFKQwABBBBAAAEEEEh8gbyO4YO0+oGOfphTWVuwYIGkZaaGXaxDz7ZRbSfsBpiBAAIIIIAAAggggAACCCCAAAIIICBff/21OF3Lad8zT3bv3o0QAggggAACCCCAAAIIINBgBCoP5FaYMO4yUxl3kkc8K42LKUYaUzN/adbd0yXpF5jg5dlJktLR7DIppi2wcH0WMI+F1M4mqH1OknmMmKrJPczJhv/rxM4SWil3uViP0dIVZsI8ZmkIIIAAAggggAACiStgBWmzwgdpczu2kD179lR6gvqBT277FmGXSzP70A+MaAgggAACCCCAAAIIIIAAAggggAACVRfQCrnte7YJ2UD7Xm3kjTfeCOmnAwEEEEAAAQQQQAABBBCorwKRA7mm+mhpvgnjflohFT+YiViDjuYvkyQPcknmxW7JPMktSU1iLX9aX9k5r2CBpKbmcXLywWq5yceYx0lm8BKVTJvHZsVSUynXPFZL15pQbqxVnCvZPLMRQAABBBBAAAEE6k6gsiBtelaaLFy4sNID0mCvLhupUaUlkg7zEEAAAQQQQAABBBBAAAEEEEAAgcgCev1FcjyO12D0rxPl5+dH3gBzEUAAAQQQQAABBBBAAIF6JBAxkFu+xSP7v6iQ8oUm3VgW41k3NYVOh5iQ5c9M5dOjk8SVThg3RsEGt7g+RtL7mlCuecyknGweL41jJCgVKZ/vlQNfeqR8G4ncGPVYHAEEEEAAAQQQiBsBDdtWFqQtKCio9HgrWyZS9dxKN84CCCCAAAIIIIAAAggggAACCCCAAAKi1XHb9cx1lNDrO+t3r3WcRycCCCCAAAIIIIDAYQH9bOzee++VN99883AnYwggkJACYQO5FXtNtdHvTLBxlgk27o/t3FwtRVJPM1Vxz02S1E5mF2H3Ett2WboBCCSZx06XQ48d8xhyhf8Lw84YxSY7/r2p6jyjQjyFhHKdkehFAAEEEEAAAQTiW8CTVR7xAHPbNY84357ZpH0je9RxGG2lXceV60nnAw88IKNHj67W2SxatEhqYjvVOghWRgABBBBAAAEEEEAAAQQQQACBIyKgX4iO9MXq4tJ9otcOaAgggAACCCCAAALOAvo5zX0P3SM/FM+Tt6a8bn3m4rxkw+7lPWXDvv8T6ewdo7JeUw23ZKFHSr/xiLfywlMB5+tqZQKVZ5hA5Rmmymlrs3kK4wb4MBGFgHnMpLQ1j6GfmED3j00o1/lLtWE35N0lUjrNIyWLzeM31srOYbfKDAQQQAABBBBAAIGaFtBfnP/v//5Phg0bJmPGjPFtPj07zTfuNJKenV7pBzm67cq2o9vetcu8eWyATX3UfUnhbBnz+esB/rFw6P12/0P3+raj9ycNAQQQQACBuhLQ1zP/9xB1tV/2gwACCCCAAAIIIBAo0LJ9+C9Pt2jXRHbu3Bm4AlMIIIAAAggggECCC9TkdamVK1fKxj1rpF2/PMnt21je/fSdSj8HS3C+mA9fP3/Sz6N0qPY0BOJZINnp4MrWmTCjCTR6NzjNDd+nYdw0E8bNGJIkSc3qVxJ3ypQp8sILL8ill14qF110UVgELSH+9ddfh8zPzs6W1q1bS79+/SQvLy9kfl10zJgxQ2bPnm3tqmfPnnL66afHtNuNGzfKBx98YK3z85//XJo3D//Ltf+GPR6PjB07Vj766CPJz8+X9u3by5lnnilXXXWVJCc7PgSt1ZNbuiTjVFMy1+S6S6eYx+NW/61GHvesEzlgHsNJeS5J7Ww2QEMAAQQQQAABBBCIK4G33npLJs+dIO5mFeLqXixPv/qU9O3bN+pjrMiI/M0r/aBHP/CprDVpF7mKbmXrJ+p8/XOSS3cukDN/+iPZX7jf59+nT5+YTmncuHGyvnC1DDn9OGs7Y998Wy6//HKJdTsx7ZSFEUAAAQQQMAJ/+tOfZMHqeSIZ5eJyuUSvVdEQQAABBBBAAAEE6l5g8eLF0vTE8NdXOvRqI7rM0KFD6/7g2CMCCCCAAAIIIFALAnpdalPpGtmxc0e1r0vp52Wz130rx/7kaMkwBWn01uGYXPnvf/8rTz/9dC0cfeJtUo2+WPypdBzYShZtnyW7/rsLm8S7GxvUEYekISt2e+XADI9ULPOKeKK3cLU0lXFPN2HcH5kwbtP6FcbVQOnw4cNFA6nvvvuuFBcXhw2Sauj1tttuiwh34YUXyjPPPCMtWxq0Omo7duyQc889VwoLC6093njjjTEFcsePHy+//OUvfevrL83RBHJLSkqsEPOkSZN8Z6pGGtB96aWX5OOPPxYNK4dryc1dkjnUhHLNY7H0c694d5jHZTTNLF+xxCslHUwo14TDkxrXr8dkNAQsg0BlAnoBTH8We/fubf2cVrY88xFAAAEEEKhJgX/84x/S5cw86dGxqzTtmCNFuxfJs88+K5dccokJ0jaudFfpOZGr6OoGMiqptKvLRLMdXa4+tXfeeccKQw8ZNsh3cSejw0bL/6mnnor6VHU7G0ry5ZgzDl8kaj+wZczbiXqHLIgAAggggMAhAX0NmrLwE+kwME8yc3JkzGevidvt5ndbHiEIIIAAAggggMARENAv/fbq3FrWbVorbdq0kTat2wQcRUZOulXM6De/+U1APxMIIIAAAggggEAiCtjXpXqe0kla5OVYBU+OPvroKhcqWb58uWzfu0V6tO7g4+gxqKt89vzn1peaGnoBFPXWoj49f9JJmrdpKvtbH5A5E2aJ9mtRTRoC8SgQWDq0QqRkiUfKZpk0474YDrepCeOecqgybj0L46rCt99+a4VxbZHPP//cHg077Natmzz00EPW7cEHH5SLL75YcswHBNq0yuxPf/pTKSgoCLt+Tc/4wx/+4AvTxrJtDR//9re/tYIRdpg3lvUfeOABscO4d955p0ydOtUqH64WGsz99a9/XenmNFCbcUqSpAwxodrKi5wd3l6RSNlMr5QuM49n84/WsAU0ePrrP95oVWzT8Ybe1OBPjzwg83Z8K29OflX+9re/NXQSzh8BBBBAoA4F9HWopHGRtO95+AOaHsd1lc9nTJYlS5ZYIdFoDkeXDdcizQteJ5Zlg9dNxOlly5bJtr2brQsX9vH7+9t9lQ11O827NKr2dirbD/MRQAABBBAIFvj73/8uPX/UUdr3aGO9DjXvlSXaR0MAAQQQQAABBBCoWwG9xqNFgZKyzH4zK2Tt+nwpLDpYHMj/SHQZGgIIIIAAAgggkOgC+t5H8xV6XUrDoXpLbyfy3HPPVfnUdJu9TjgqYH39QlO7AS1Ev/jU0Jt+FlUou3yfRamN+nMtsKE/MuL7/AMCueXbPFI62yPezTEcdKZIygkamHRLcov6WYV09OjRASBvvPFGwLTThFacvOOOO6zb3XffLbqN7du3y2effWYtPnfuXBk2bJgUFZnUaC23iRMnypgxY6xA8F133RXT3o477jh5/vnnrXX12wWxNK0oPGLECGsVHWoVtJNOOskK5Oo2tb399tuycOFCazzSf8ktzWPsVLekDDKPMfOYi7Z5NphA7hyPlG+LsrJutBtmuYQS0MrWb376quzJ3izFbXbIf14eKUuXLk2oc6jpg9U3J6mdy6Vdvzxp1iNTPjV/MlydaAgggAACCNSFgL4Ot2jTxFS0y/DtTsfb9m8e00ULfX8drsXyQU+k7YTbfiL362t+z+MDL+7Y/rFc3NHtdPALVauJvZ2GZprIjweOHQEEEEg0AX39OZBTKM3bNvMduo5v2ruxwf+u7wNhBAEEEEAAAQQQqCMB/awhPS/F+nJ1dpNMcaeLrF27JmDvLdocft8WMIMJBBBAAAEEEEAgwQT0861tezYFXJeyCp58N7lK16V0e8HXuWyS5m2bWn9lwJ5uqEO9FnjMj48OOH2uBQZwMBGHAr5ArrfMVMdd6JGKJSa4aCrlRtMqXBUyr3C2/HncvfLwqIdk9+7d8uWXX8ptt90m48aN821i586dVp9WSy0vL5fXXntNbrjhBjn99NPl5ptvjpjo19LcL774ovziF7+QCy64QB599FGrsqrHE1ry9K9//au1n61bt8r48ePlpptusvah1WE3bNhgHY8e4z//+U9rW7o9/UVx/fr1vmMNHtEKsXZ4VCu6atNwq24n1qZ/Ou+UU07xVYydPn26RPMnYfWc1XTmzJmOu3zllVes+Vp5N7jt3btXbrzxRqtb/wRwXl5e8CIRp1esWCFDhgyR+fPny4UXXuhb1uWqPHytjwVtnTt3luHDh1vj9n8XXXSRDBo0yJr89NNP7e6Iw5TWpgrz6UmS3MfsOznioodnmsdy+SKvlCw2QXPzGKc1PAF9A6M/5016pEuHXm2tbxaltKmIKewTD2rvvfee/O6eW0SHeqtO0/WLs/ZYHpmNMsyfBW8m3Yd04BtE1UFlXQQQQACBmAT0tajH8V1D1tHXpGir1TZv0zhkfToqF7DfB6h1cNO+aAO59nb0vURw0+28//77wZ8EqeQAAEAASURBVN1MI4AAAgggUCMCehH+5GHHhmxrwBk9Eu53/ZCToAMBBBBAAAEEEEggAb02sHHPeknJOvyhXXaTLNlRsCOgIJFeO9DPamgIIIAAAggggECiCzh9vqXvddr0b1al61L6V8ZbtHX+U+H6pab5q+YmOlm1jt/+LMrpMy2uBVaLlpVrWcD3G1L5ZlMdd4FXvLui26PWG128c6E8veQJmbjjA/FO8sp///tfueSSS+SZZ56RrKws+dnPfmZtrKCgwOrLzc2VXbt2WQFbey/Tpk2Tl156SZ5++mn51a9+ZXdbw48++kg0uOnfJk2aZE3+/ve/t8K5/vNeeOEF2bZtm2RkZMjjjz/um6X7ePXVV+WTTz6RSy+9VLRyq910e7p/XaZt27Z2t2/48ccfW+NDhw6VgQMHynnnnScTJkwQDb9ee+21vuViGdEg8h//+Ed57LHH5H//+5/ce++9EVfX6lJqqtV0tWKtf9OAs1biLSwsDAjM2ss8+OCDloket557NAFge10dPvHEE1awOTnZ91Dxnx1xXMO82i677DJJTU0NWFYDvVdeeaXMmjVLNHQdVTM53NTObqk41SueXRXiWRXVWuI1fwWnzITNy3u4JKWdL4Me3coslfACGirZl7FbWrZr7jsXrQg3+cVPREvb9+zZ09cfryMaaHnjk1ckOc9jDXdt2iNahbuqx64B5SG/OBiIt89ZfTYUTEkYE/u4GSKAAAIIJJ6Avq4FvzbbZ6EXFxq3ybEnIw4zG5mSK5W0Fn6V88It2iwo2GsHSfWvWdTHtnjxYvO+qKnjqan/lInfO84L7qxsO5MnfhK8CtMIIIAAAgjUiIB+EPHTC4eGbMv+XT9kBh0IIIAAAggggAACtSKgnzX0/3EPWbl8pW/7SSlJkt4oVdasXSNH9zlcyawkeb9vGUYQQAABBBBAAIFEFIj0+ZZelxr717Hy5JNPxnRqX3/9tQnkhhZQ0Y1o0LfwwN4GneGI9FmUmi9+e3FM3iyMQF0JWOlEb7mpjrvUI56VJmarSdso2pb9m2VZ1kL5zbM3yoKFC3xVZDU4Gq5pWFar3Wr4dsGCBVYYdfDgwdbi99xzj+zZs8e36rfffusL42qF1ylTpsjs2bPl4YcftpYZMWJE2CcyDeNqtdxFixZZ1Wg1aKuBVd2XVowdPXq0/PDDDzJ27FjJycmxArpatdepvf7661a3VujVdsUVV1jDl19+2RpW9T87WKuhVQ3aRmr2vvXJvaSkJGBRDRLruWnYWavv+jcNu6qTtliDuPZ2brnlFnEK43q9lT9Q7G+7duzY0d5cwLBDhw7WdLRV0KyFk0TSersldbBbXM6vSQH7sCbMoVb84JVSc9PHOq1hCWhQP7hyjr5xaXV0U9/zVjyLaPj/jUmvSKOjUqVTn3bW0J1bVuVj1+0VphVIy/aHA8r2+fczF87siuB2H0MEEEAAAQRqWkDfo7ds7xwI1dfotr1yA/7UT6T965drIrXMxqHVW4OXzzoU7NXXyNsf+L1MWjDOeu29/vrrrYscwcsn+rSa+f+Jb//z8b+449/vNK7b6T6oi9OsgItEjgvQiQACCCCAQBUF9PU6xe96kP81tVhex6q4e1ZDAAEEEEAAAQQQOCRgf9bgTnJLWk5gUR6tkrt586YAq4zG6fXyOkvASTKBAAIIIIAAAvVaoLLPtw6YLyBV9rlVMJAWmGvfs01wt2+6WZtGon8lPtFbrC72+Vb2WdTmvYcLctrrMEQgHgSsQG75NlM9dJkJKxZEd0glFSWypGyBXP3kFfKTC86QHj16yHXXXRfVn1EfNWqUVQlXKztq5VQN6GrTUKn/D6BWj9V2+eWXW2HSIUOGSN++feX222+3KvHqvLvuuksqKip0NKBp9VytOtu9e3fRarT+ATMN2F588cXSuXNnueCCC+SBBx6w1v3++9BKUJs3b5aJEyda83VZbeeee641nD59uqxevdoar8p//fr1862mFXAjtQEDBkivXr0soy+++CJg0XHjxlnTWl04KcmkVQ81rZyrYVptGspt167doTl1N9AXI23h9t2+fXtrfkyBXLOGO8sl6YPcktzPlMyNsnCvVn4uW+aRih2VB4mtg+K/eiEwfvx42ZOyQ3I7tAg5n14nmG8omVB+vDf9hnlO1xTfOei56LF/+s0k64sFsR6/fhkit4NzCMrebqzbZHkEEEAAAQRiFWjexvm1SLeTpd/43b8nqk3qF/7CNf0CXrRNl9XX3I3eFZLS2mu99i7eM9v3u0q020mE5fTb1h0iXdxp3Uj0AlBlTbfj9B7LXq+Z2U59uEhknw9DBBBAAIH4ENDfafW9graVq1bKivzlsnLtctmydYvV1+3YDlG9jlkL8x8CCCCAAAII1HsB/X3/0UcfFf2sQG+0mhOwP2vYt7s4ZKPJpkqux+2Ron2BBYm4ThBCRQcCCCCAAAIIJJCAvrcsSyrxXYcKPvR2PXNj/lxE3x9lNc4M3pRvWj/P+fDDD33TiTZivx9/8N9/lRtuuCHm9+SVfRa198CeKuVmEs2R4008ASuQW7bKKxXmFm113JV7l0vOaRmS0zHwSeH444/3BVbDUdiBVnv+UUcdZYVjdXrjxsPJ9RkzZliL3HnnneJymeClXxs+fLhV2Va7Vq5c6Tfn4Oj5558f0Hf00Yf/JMqpp57qOM/pl8B33nnHWva8886T5s0PVpPMzs4Wu2LtmDFjArYVy4RWtLVbcXHoL6v2PHuoFbq0vffee3aXaOjWruCrwWX/plVB586dKwMHDrQC0P7z6mp8y5aDH4Y0atTIcZdanVibhrFLS0sdlwnXmZxnquQe5xb3wUxvuMUO92uV3BVeKcv3HO5jrN4LzJ8/3wRF/Ern+J2xvqkpdu2LqxdnfTOiX0b445/vEK0MruOripbJ5j0bzBu3gz9Pegp67Ll9GlcpJKRv1rod29lP4vCobpc3LIc9GEMAAQQQqB0BfS3q0Ktt2I3v2rJH9hbuDTs/2hlO7+/DratfEixI2i6d+3U4+DrbsYUcd1Z/mfT1x3H1XiHc8cfSr+9/Il7c6dWm0iCTvmfR7URqHcx2Pvroo0iLMA8BBBBAAIGYBfQ1SH+nXbV6pWwr2CLe1HLZV14oG7ett/pyzWt4NF8siXnHrIAAAggggAACcSFgX0PXawuVBRN0vn7wPy3/M3l94ijrVtk6cXGScX4Qeh/YN/sL19ktQ/9CUUZ2eshf/YzzU+PwEEDgkID9XKufV+rzpk7TEEAAgXgWqIvnKX0+1GtO6W2SrOtQ8xfMC/nyUayfi+hxdzgmfHVcNc9qkimae0nUppk/fT9e2mK3bExbISNfejLs+/jg+1GnK/ss6ii+nJ+oD416f9xuT5FXyk1I0bsjunMtKt8nX22ZIq0Gm4CqFecNXO+YY44J7PCb0gBms2ah4Tg7MOv1HqxeumnTJrGrXXXr1s1vC4dH7f04PfG0aRP4hOUf6M3MDAwRp6WlHd5o0Nhzzz1n9WhoeN68eb5b165drf5nnnlGPJ6qBTz9q8LaYd+g3QdMajVhbe+++67vF9hvvvnGCrMOGjTIqlJsr6CVfbVKsLb//ve/kpwcZRlZewM1NNSKxtr8g9b+m7b7tVpxamrgn7PxX85x3Dz20nqaKrn9zUi64xIhnV5TQK0s3yv6mKc1DIHly5dLt2Ocw6cq0O/0brXyQZ3u94knnrBCKLEEUe6++275etVkmbPuG3nllVfk5QnPS6M2GVLiKjZv6kwod9vhP0XQ64Ru8vbbb8d8R+pzWV7HlmHXaxplVbywG/CboQ56/rEY+K3OKAIIIIBAPRVYvXVlxEDovt0HxP/PT4djaBahym64dcL16+vjkGHHBsy2vgDTO0deeumlgP5EntDX5ra9Dn8xUM9l15bdsnLuGt9pte/ZttJvcOtFp+Dt+DZwaEQvEqkrDQEEEEAAgZoU0KoYkuGRrbu2SFbTDMk01XLTMlMlOdNt9ZW5S8RapiZ3yrYQQAABBBBAIC4E9DrzP5580LqGPmHue/L6hFFhrz3r778jXxohB5rtknb98ySrc5J10z6d11BaTZ6r+t98883WffDMmBHWe65m7RtblOk5oZ/xZWSlBxQa0c8eJkyYwGcGDeXBx3nWuID+POtnj3f/7c5a/Tnyf65dU7pY9PlWP7+syeeTGsdhgwggUOcC8fKcoM9Z+tyo7xH1+VHHa6PpfvR9ZEHFTsnJy7SuQxWW7pF169YG7M7pc5FIVvpZS17H0Ayd/0abtWqasM/Ben8s3jrfej/epX9H6XdKL2nSO9X6i5X+Lv73o77f1Glt0XwWlceX8/0fLozHkUBy2QZTHXeNOaLy6I4q/8BKE8j9QgaXOgdvd+3aFXZDGRmh35DUhd3uwGTv7t27fdsIF5i1q64WFBT4lq3JEf3weMWKFdYmR4wYIXoLbhoa/u6772Tw4MHBsyqd9g8St2jRotLlW7dubVUfnjhxonzxxRdy9tlny/vvv2+t98tf/jJg/QceeMCavuSSS6Rjx46yc+dO33w73LB//34r9Kz3iV2p1rdQDY307t1bpk+fbl6E1jlucf369Va/LleV5s5xSWpft5QvNSHbH6II2ZrHeIUJ5JZt9kpaN1dVdsk6CSagL9CX//ScsEed16mlddHoV7/6VdhlYp1xyy23SEqeyB7zLYdvJ5gPCk3TLwVope1ITS9Efbdimgzs0UPWztkszQely7qVG6TLOS0l0wRayksrZM261ZKdlS1ZWVmSbfr2eQut56lwX1wI3p8+p7Uf2Dq4O2Ba/+SBfnhZXZMnn3xS5i6fIxl5SSbos0c+/vhjue222yTaYw04KCYQQAABBOqNgL4WZTZx/p3A/yRLSg74TzqO62thZa1ZqyaVLWLN19dHfV8Q3Hqd2E0+fnmCDJ0w1PeaW9lrevA24mla3xtlNz7oryHcLRu2iqR4pahgnwnlrpXjz+0vauZ/IcTp+PUvYdjbcZqvfbqd6cu/CjebfgQQQACBBiSgr//62qJDvelfz6rK66muq78HL1/xg+S0yrKCuDajhnL1ytCmLRusZex+hggggEA8C9jPj927d0+Ya2b2MVfleTye7wuOLf4F9Pq5VtPK6ZEs7TrrF03LJSPVZfU5XX/XL9du279BjhlwqnVy9jWEtUs3Wl+8ffjhh+P/pKtxhPqzqmZ6jb7PwB7Sp80Aqc5zjW7v73//uzTunyLZTbOkoGCzbCvaIjv37jDX//dKs9zQ4kcZOemyZ9Me6ywmjZoq+0oLJV8WS/KmMusahNP9Vo1TZlUEal3Afg3UHdXV66C9Tx1Om/uVlGXsk+QmLsmfsEp2m5+9HuYzxZr+3E1/1tue2sR6rs1ukiVFu/fJRu+qBvHcWesPInaAwBEU8H8+0fHqXJupyfcY1SHR89DnrF7ndJR9jffIyuIdMn3O11Y2Q3MJNdl0Pxk9zeceXbIkOSXJuiWlNJbd2wpkdf5q6dK5i7U7/89F1EmPMdL7Mfuvjkc6VjsXEmmZeJyn5//e1LesYjj2e3E9zq4DOsnaJYffk+ty+j6/7YDm1v24tWCtvDZhq3U/RvtZ1PJpW+KRgGNq4ALJ5Rs84tkYRZhRodJFtiZtkpl7v5Pvv/9efvzjHwfwabXYmqhC4f/GccOGDdK+ffuA/ejEokWLrL5+/fqFzKuJjrfeesu3meDAq854+eWXrflvvvlmzIHcsrIyeeedd6z1L7744qgr2F599dWigVwN4p5xxhny+uuvW9u46KKLrKH935QpU6zRsWPHit6cmq6rt6FDh8rkyZOdFql2n/5yr82+r4I3uHjxYqurV69ewbOink7t4pLS3ua2xjyGSypfzaMBdH28OxdernwDLJEwAvrmJtkEYyM1fUM04eWaC4roz+ekmR/JkIuOlVbmouCWNFOW2bSRLz4Z8WKXrvfoqIek3QnNZPP6LbJ7307pdm4bWfDaOslqlSr79xdbwfn9hftl3fq10qvnwRB739O6Wb8A/+tf/4p0mr55U6dOlVadTHXzCE3/jMLysZsDllBL/+flgJkOE3o+7375lrTs0UiyW+VKhrkWN2P6V+ZYcyTaY3XYbL3oUkttsXjWixPnJBBAAIFDAvqXMJq2yqnUI7uF+eLJvn3Wl1AiLWw/r4ZbRi8aB7cCrQg77/C3llfP2yi9TukUvJg1reu7G1fIQyP+Ic275Mi3P3wl0+dNk5MH/si6YOW4UpSdeuz6hRX9axx68asumv4lDW2r5q2RlctWibuRR9KzTFXBZK8UrC6Q+V8ukdMuHyxFJuxU3WZdsK+B7VT3OFgfAQQQQODIC2ggJn/PcvOFzRTZVLZRXvtos6xatUpuvfXWmA5O30ckm19py7ylkp7ZNGTddBPK3Xpgu3hTPb4v0oQsRAcCCCAQBwL27wJzf5gtxZ5C0b/4V77NJU899VQcHJ3zIQQfc039XuS8N3oRCBXQEETrUxrJUQM7+Wbq752F5gumOs8/HKeP14lTJ8gxPzt4Hd23ghnpfVI3mWi+eHvDihvq7TVaPf977rlHylsWSZIpYLt4Z5HMnjNbOjfuXuXr89b2cvfJgNNPtjjXLdsozbplm88ydsm2jTukWb+2/szWuIZVSitKrWsQej0it28jSW7pkYrG+yWjY+Wfm4RskA4EjpCA/kyNHDlSijx7JT3XbRWhmTRpkvX7TG1+1qOftb0z4S1rnx+//IWkH1MmuY1aSr/ufaVw2z7ZXlwY02eE0fDpPrd7NsvQgQN8i+tz7fHnDqj3z52+E2YEgTgV0Oei6jzn6Gt5br9Gst9bXOVrM+HeY+jvMvqXvuu62e9PUswXFZo3aWL9NcAuJ7axcgpaFDLW607hjl+fGxdtmS8DuvWS9EaH/yqAvtfJbJouq1ev8gVy7c9FdB3NiLTu30wKc3ZHfD/WrHXlhWUyzV+Jqu5jINz51Vb/nDlzxJNWauVmgvehrytvPfSW6Jfk7Pf5uT2bSq4cvN63JX+b5ZeX01oq81FztaEhEG8CyRWbRLx7ozssd1uX+cA2RYrfLZI///nPVpXWgQMH+lbWH5SFCxf6pqs6kpKSYoVctbrqp59+KsOHDw/Y1LJlyyQ/P9/q69u3b8C8mpjQwOzzzz9vbWrcuHGOH5BfeeWVVih29OjR8sgjj0hmZmZUu9bQ8o033igajNN23XXXWcNo/jvnnHOsUJ6GbLX6bWFhoWigt3lz82mEX9OAq11B2K/bGtVquVrZV5su165dO2u8Nv7r06ePtdk33nhD7r33XiuQaO9Hv8nw2GOPWZP2cva8WIbuLJekmGq35a1d4tFQbiXNu9t8b9pUyPXs94o7gyq5lXAl9GytANeqc+DPRvAJWRfszC/QNdH0l+/XPnpJTh52jO9NhYZytek3fEaNGiUPPfSQ465mz54ti/PnyTEX95Q107dITtsMcZmHc6NOqeJOcktJaYlklGdKTtNs2bZhm3TY19EKKLXqkiuzp8123KZTp1700hBypOb/hmXlypWi56UfDmS7G4k+B2l17kjNduh8Qitp3eVgIlq3qbdvPp5qba+ybUTafiLP+89//mNZNsnLkcykHNE3kGqhQSwaAkdawP55119Y9GddH5cN6bGp56+3hvr8VJePP3X2/yZsuH3rRY0DpkquVoWP1OyAaaRlgud98dYMyWjtluwWGdasnfkF4j3H+T3xqvlrRf/09Y7kddJ/wGnmg74iWVIwW2a/ONt6b1vVnxP7NWF76SaZvixbvp3/jRXyravH4PT350qL4zMkIzddUrOTRfZ5pHGXTFk3a4PM+nSB9SfA9b4Kd346r7L3FIqrf0o80naC7xumEUAAAQTqn4D+jvjN0qnS+cRWktelqeT1aiqbV2+Vdz4fbb2WxvLap68pFa5S87tx+PcHjZpnS0XKNtHwbnU+qKp/9wRnFM8C+tjWpj8v9u9i4d6HxfN5cGzRC9x3331S0myvCcp5ree0nbJRpn03W3r8p4f89re/jX5Ddbhk8DHr70WrPlpu/fXDWJ7L6/CQ2VU9EtDnx63lG+WUY/qHnFW3YzrL1NFvB/zuqZ8NuBqV+67T+6+k16mbd8+KeL3ef/l4H9fXEPWxQwh6XU8/f1xT+oOcOGCgVc1Wz2Gzd6t8891U0esRsT7P6Pbnrpsp5wwf6uMoMH8VL7t5hvkrSOlS4S2X9KaHwym+hcxIwYZC2e9ZJT1/0kE8yRXWtR6dr5+d6Ocm+txiFzDyX49xBOJJQD/fm/DdB9L/tJ7SJi9P0lK95i/EfiHZo7LDfu5XE8evuYu8Idmyf8sBKW60W3oce5T1JYSly5bIoGOP833uVpWf63DHp/vUzzmDW3177gw+P6YRiGcBfR3W13v9vL7PMT0ldV+W9XtjLO/Bfa/lPxkqeU1Dr83o75+6jP17aLht6/Oh9Z7AbEcr5mvT9xgzZ82q0nuM6rjb59R9UCeZ+fk8yethCp+t2C5JZamSkZ0mL775fI0EcvU5Vos0tu7bRDZtMAVPzJfAS0pKxP5L7+mZabK/8ID1uYqeT9O8xlJRUmGFTPU5XK+D5R0Kmdrvx/TYbWO9b7NN1d1oWjxe64p0PcMqSHN+R8dT09eVQpPTUV+n9/n2e8WvvlohJ/2y8kygbouGQLwJJHu2mtRXRRSHZbKLSV1Fzr7gJ3LG9DPks88+kxNOOEHOP/986dKli+gvuHPnzpXc3Fxf4DOKrYZd5IILLjBvZqfLzTffLL1795aTTjrJWlaDnBpC1XbmmWdKdna2NV6T/33++edW2DUnJ8cK3Tpt++STT/adqz6R2MfktKz2aeWP7777Tt577z358MMPrcW04u1ZZ50VbpWQfg39XnHFFVZY2P6F+aqrrgpZTr9tEa7pn5G/6667rFCwPrnZTYPC+g0RrWarywwYcPibb/YykYYaYNaKJ3fccYdcdtll1qKnnXaa9eGHXgjQfb766qvSuHFjKS4ulvvvv99aRo2HDRsWadOVzkvt7JbSLqbSsxY6Mw/niM081j0mkFuxwwRy2xPIjWgVJzP1RfyTTz6Rrl3NE5Bp9puTyg5P35BE02oqKDJz5kwpSimQPl26h+y29+DuMuGVj6Td0+2sP+O0d0uR9bNvf8iib7pyezQ1X3hIk8LtxdLm+KZSsKZI0hqlWIHc8opyOXBgv/V8l5qVbKrkrjNVcnuZN3RN5LuV00L2F64j2jd0hRV7rTfdn83+WJavWyZJjbyyZtcPsnX8Ruu57JZbbgm3C9EvKaT08PjCuPaC+qa8kwnpjnjhiajvQ3vd+jB8+umn5a3Jb0iL7jlS6jZ/4mfXPpm/xmV9SPzPf/6zPpwi55DAAvr41F/kt5VslH3lhdbPenZyI7nn1vt8v3wn8OlFPHR9/tXXmMKKPVJUvtca1/dm0b7WRNw4Mx0Fon19TkkzIdFaaLMnL5DdhQXS+ayjJKNxmhTt2C9J5tvTWpVq2/Ztktvy4JdpdNerTRh33teLJXdAtvlyjAnwmtcyvbU282ZsmWN9aPT222/HfJT6uLNfE9r1yZPCXUWyaNdMmfXCLGtbtfn40/cCBVv3yt79e6RtsxxxpZldJnkkOdMtaa5kyemcIvO+WiIVhV7ZuHFj2OcA68LPSaHVb5wwIm3HaXn6EEAAAQTqj4C+5r0y/kXrd0H7C5t6djruNddv9PdD+/fiaM7afh+RkX3wSzVO6+gXWVMy3NbvrvpXoWgIxLuAvj/718h/Suf+7WTGwhkybUmOtGvbVs44NvyXonUdbfb1slh+jmrDQ3/W9dq3/uly+5pXbb6nrYlzsA3tYV0aqtes/Blyzo+HBnzB4ORhx1q/J+ixROunx6/Lh2s6314m0nLh1rf7nY5Zfy/atGqr9Vyuy0V7zPY2GSIQi4Bee2/dpUXYVfqeepQVsLWvs2pYpP954f8yo16vH/PwmFoN0oU92BqcoT/fGmg90HSPdU1PN738hWWyevMqOenifr6gjPbb77+e/99z1s9rLM8J6t978FEB29NrGdr0M40kUx3One78edv+neZPW2a7pFP7XOv6h7XSof/0fnjrHxN8z1P+8xhHIF4E9DVw2pIvTUj1WGnT9VARGusaYbZM+/hL0WvrkT4zq+p56H43l26QHx17rrz+l3HS85wO1s9bckqybFu/Q/LX5EvnTp2t37Uef/zxmIP2Tsfl22cX579ObH/WOXzl8IjvP5y2TR8CCFRNQH8u9dpJbp/Gsjd9t8zdvFvcB1JkwhcH80bRvAfXbei1GX0es0O0ejT2e4MHH3xQeh3bw/qMUH8f1aa/3wU/t+l27OfD4O3otqvyHsPaWRX/0/cnB4pKRYu2pLZ0iye71BQdyZBd68znH5sKZcf/s/ce8I1dVf74UZclWZLl3ss0T2/pmUwqWTbLskCA328TWJa6bINlyx+WH+wCuwEW+FEWfgECgZCQUBYS0gikDZNMy/Q+Hnvce5El2eqS5f/53ucrP8uSLU9mJpN83pmRX7vvvvvOe+/eU77n3K6AwDvkw6NcTcA9w5dz8OAh2vYva6n7AF+ryEhhnt0YBFAufEyDRwKUWt5LnioXRUeCNGVIUrv/LPfh75pTteS52h4GW1dB+RSFwiExa6TaRzXn5MtwQ8qiG/+oeZ49A7KmGMdyjCm4HcjwGMO2fXhr1rvDuHNiRxtZHKasx9U7LxTmR12ntq5x4NVywJgay7MK7nuNdZwht8RIyHgKMCmy10pwKWr5+Mc/TuUcGQYF8NXSJz7xCTp16hQ99NBDBAN6Y2MjuTnNOEC/IGR3xbGLQT/96U9FtXfddReZzdmjOg0GA73vfe+jr371q6IdmYDcxx9/POe5qPxDH/oQff3rX19y85GZF+BXZAgGmPVNb3rTkuvIdgL4KrMCf//736fvfve72Ypl3ZdMJtOC/ic/+ck0INdoNNK9994r2giQcGlpqVD0d+/eLQDPqAwg3nyzC2e9OO80FOnIwO9mwsHenMlcpWb3p0YZg+4lMtXO7tPWLj8OQNDDeziR9NNQuJfsp5yikXj3AdTPh4oWyQYr67gQQBH0h+vvqpdVzlmO9XnJTyP00PM/5IxAJdRztp8Ft4MiQ3U1O1mO9R2iq1lQGT7LGfoYFOOqsdNYG099w1HlOrZj6fT8fnPmbhCirPzjPrGOrEDgD3glAcviQI4/AjxzjWIwyFFE7LZ7CugnT9xPxuoE1WwqpUKPEvgwcG6Ifv7sT0Xmi1zP4OWXX6Z33XF71uphrNj5iyfzbm/WSl5HO/Fc8F5g+ftDT5GpaoqqSl3kLnUIww2Mli//bod4z3Px83V0u1pTX6ccwDuK79qz3EE1q8v5e28kfOttLSfps5/9rIjgzKd/eT3ePu4dfd1wpE/0c85yOx07t4+GnugT/RwCvzS6OBzIZ3wucFiF8aHYU3zejUD/u4WUgB5U0nmihzpau6j5tloBxsW+sY4AOestpCvg4JOeTnJwRl6bTYlGhnM5Ph2h0mW1ImtLmA0i8tiaa9lp9MWnlzymyfeu4apyqlpegSaknfAtnDEGUxghm9/F+u4gCwy0jFLNjRwI5DKRuUAxZMB5hvXppmkK9A4RRRcGRAveFs3yVtxIlj/ICq+RxgGNAxoHNA5cOg6gf8bvcpFj4Bzp9XbQthuvmscE6Ic9Zw7TAw88IGTOeQVy7LBzJjaj2ZDjKNsu+RjKQM/XSOPA5c4BfK/QuwaM7WSOx4UNBraCYeoWugqm2Mz8niFP/uq3v6SG9TW079heYS+r5RnQbrvij+eVvRT3D9vdSydeJDOL7f6wnyb9QaFTLcV+dynaqb6Gmod9/b3kG5qgQrOL3nnHu/PmIZ4d6Hzkdsj82zjzXGa2bwHy4WiFe+65Z0FwK66NexgNDlNffx85jW7RbvW7guP7ju0RxyfjAcI7kho3CJvqUtuM60F3ztVm9OU///nPF2yzmv/ausaB8+EA3ummN9flPBU6+lMPPklf5H+glp7TtG3Z+pzll2pXz1nRa3wAY0hb8CRdezP3KWzTA/3si0+SZ5OFfCEvZ2ObDTrGMSF/rehfsvyFWX0abq1CFXPIXmwV21Fvgv0XcV6fHzTl74pQzZ8p7QCQUE14DusYiLFUeVBdh7auceBicwDjcsOb2Y43A8aV18P7C/ve93/6PTEGLnV8lfXkWkp5AfbMhCFKRXWKjQ36Dmat6unvFoBctCsfP6H0+2NcR1vxU8sOaAf0t6pluYMfhOziTCwYxJ/rfrT9GgfeqBzAN4Vf5vd0oe4XfZDnKitVrPVQBXnS1fpDvrx9CQvZZoY6R+j06DEKDgzT9bdekw6eyYYHgMzvaiiY1x+iUecrY6RvKMcKeAs5EEsQ+Cz7MOxH/+hsLCVPvYIjQRIW9Jf9x8do6Jz3VekpqP9rP/oyxe2T5FhuocJSG8UmkuRq5JmODZzkhUG5UX+Czj7bS7YSEzmWmai00UWRQIxSiWmqusJNXd1d1FDfINou/whezdjD3v/+94t7q2pmn9RAghO0RSkw6Sd3YZHAVslzsMzH1yL5JXmE5cUiXEvKoiVx8zx7xjLPqgXHFLSrksew0wfas75TOI5xZyoxlVWuxfFMuhCYn8w6tW2NA6+GA8bpcQYx5kH6Kh0Zq/RE/L+I05g/9dRTFAgECOBKZFfdsGED1dXV0Ze//OV5temAKFuAANwEAeQqCedAOGxoaBDXkkBcAHMBQv3Upz4l2iHLq5fqerBf1q8uI9czj4VCIZKZrmSmV1k2cwkQLgC5AJuOj4+Tx+MRAI7MctgGeLaGDV833HADAVQrM/5mK7vQvmuuuUaAk2HU/MAHPrAg6DdbPTDkgjLve+3atQLkfObMGXrLW96S7VSxD/cxOTk553zU9ZGPfEQAev/yL/9yzrkAUwO0/dGPflQI6IgiASGT8re+9S1629veNqf8eW3wLRmr9aSvmKYUZ/NajKa9XM63eLnF6tGOXzwOdHR0iAH8jO8o1a2uoprNFTThVSKuH/ndg+I7+6u/+qsFGwAhoO7q+UaizJPcZQrYNHP/UrYBYj/SfYBK/SbqHU6mBaTSklIB/mk9dY6qt7JnIhnnKQs4022llXpDrTQ80U5P7h4nZ52Vkjyt0xhPmY2suKDIeJzKN7rEup4Bucn4lFhHxsCJqZBYxx+7x0Z9fX1C+EzvzLECnmzxLC54TQwHKeb2U93yuWUBHEIWo+89eK/I8Ivs6Gp67rnnKFWkAIfV+9XrDeurhIEN0XZvZJLvcNDhpd89sIO2fng5mRn4NBoY5vHCS7W1dYT3o/7K8pz8fCPzR7u3y4MD+GZ//PgPxHtYvUIBBqJl+NYBxN/7hAKQeCN+r/LeDVUJunLF7HSHuPf+tiHBF8iiFyrw6fJ44pdHKzAWFTYqgNeFWgQnDbLDvxrC+Kim3Y8epqY/mjXO4FiUjSMWAFOtJp5GKMFZ6HupeVWzOK3rxACXV74NIwNWI2wMkYBcfCNrb1ScRkv5Rv6Tp32ru92TBuOq29d81TLaO3zooo6T4H/SHKPS5qo0GFfdhgKXmdz1ds60ESGMZbkyC2byVl2Her2wyLZgPeqy2rrGAY0DGgc0Dpw/B6CToo8PJHw0EfeLWa0gx8Dwnqm3nf9Vln4mZK7G23ODZ9ZypotHvvpI3oBc3KOzbHE5osBtSTtrlt5q7QyNA5eOA3BetfiP0bVvBZBKsU/JZf/0UDqLtPyO8U0hk46xNkHGeJTtZaXCXjaQ6nxNdBi0B3Y62DYqWKesICWYDjpVvva7S8dt5UpSFwxbfIKHVMo+CX2Chse78uIhzoecfLjlILnKChnI66ZJtqOhz81Hf8T5fYFOWr/85qy3Dp30t107xTXkc1cXxPkAZA+GekjnYFsh28XbxoLU/3i36Pthg0dfKd8THC+schDekVOnWmngswMEp28+bZXXxcyIPd72rMEVKIO+fPeDh3K2WdajLTUOnC8H8M2d7jpJ1y3/XzmrQN/pD4+L9xDfQHXzXCBqthOXYlfPdv5rvQ/9wd7WXXTHhzjb9swYgjbFkzGqXltD4yNeGh0bFTZodVuXKn+l+y1Pg7oa8o9MUvWNbrEvEUgSZvnLpJFWH8/MMy38IZnH5PZS2yPP05YaBy4FB/D+94a7uP9Zm/VyGLd3hg/k7aPLWkmWnenvjuWFXY/up9otc0GyyEztnfKJGWmR9GohGyX6UNQH2ayo3EkI1BmxdtNLJ18Uyb/Uvlb0n43rc+tvaGpdc6WQOXLZDLPcjrZL48AbkgOww4wgQK6v96LZYdJ90FV/Mo+H8CU8c3yH8CUAgyR1h2xyPurJZpsB4L/9bCc1v6mO5Ye4kCemklOMbeilId+AwEHJjPqoF3rBm//lunltkTsu9JiOdkvdB30XCHqPk3WwLc1X0CuvvEJX/+2qNBhXtgPL6g0lFOLMtWhzviT7S/SFhkId7X5uL41Vt1NqQk/OaqvASAW9Uar3lBD8RfFUggbPjlI0Eqc1t3MApH6KwL9UcpqMRayHMf6ju69LzMqYmaCwank5vbLrFSG7wtfS6FlDMYqQjmOdAtFxCoYnOWMbzZHjFvK1gFf7ju8V7yN0RftJJwdl1hL5jPSVr3wlXxYsqRx4mymLSpkU9ownn36caq+cO35lXsDPszlaPKy0LkDh8Qj5fEqyugWK0YXA/CxUv3ZM48D5cMA4rWDcFj3XwL5oQ5mOWlpaxM/lctHNN99Md9xxx5xz0fGB1q1bl94PB0Cco/xzEaY4z0bITgvDJH74yBARUFmJyZCyUy7HcElJSc7rX3fddXOO2Tkr1kJtVV95y5Yt88oCJIvfxSKAQ86ePXve1X/sYx8j/DLJarXS0aNHxf0gtXou8no5tWwW+s53vkNf+9rXCPVkEqZ+xnsDsC+yciGLMjIcZw48mectZdtYriM9J/5MtS1+Ft75lJ9RhcA3GhYvr5W49BzYuXMn7Wl5me748KwxSQ7gaM1Pf/uAcCzedtttORuHCJh8wKeFHrsQds5XeURmaQgyniaHEJAS8SRnnEhSIp6AnES7HztCTW8qIU+Dkzr29NPwkI+qtxTTyptryWQz8LQJk2QvtdA0v5BBb0RkqcRNTXbFROY6rOsMegbCJmhqaoqz/RjZuJVIK9quJQCKc/WRuIakrpO9lGCgjqdWMabJ/XIJ0N4xxxn6t3/7N9q+fXtawIeg/8gjj9C665fLolmX665fRU88+DgtBbyUtaLLfCf4c9p3hCrdZeRcUUBlK1jyZkry+zHpC1FrW6sQosHPnqZ+oTB94QtfuMzvSmveG40D+/bto54xdqptn5+xDH0unML4XuGsk8r8G4UHuPeWnhO07Yr5947vsp+GBDAkm/HiUvEAyr/84ZryGSw09l2qtr2a62B8LmmcLy9mqzMUDmfbfV77ML7FdDzOzkRKy0pCbECx15rFJmSCkb4hAcjNLI+AmDAH7qkz9soxLd9v5Pnnn6eeYCddu2KNvPy8Jerc9+i+efsv1A7IAqVX27OCcXENZMp1VtmpJ+4TzoQLcd185I8LcR3UgW8GBF6D5HeDpVwXB7Q/Ggc0DmgceANxADopdGSDK0XOYgc5Kwtpf+tO6vtNF+kDZoKe8Vr0gfmMe5A5/TzmoP/Op42QIwzVixtybIVW6u/VMuS+gV7zN+St4BvJtH2pb1TYC84owVrSXoDgLtcWIzVfvSJdVNrLoMN8875vXDIgPr7bH/9mfoAnGoa2g+594P8J4Gc+37c44RL8AQ9r31REzStm7VdpHjKQeCEe4pnhno3uaZ4Ja5xCU4U00TcpQNGn7jvJs1zpaDF9Ddff8KbVC97p2u1K4B8SX2TyTr4DNZsr5wDwAIJ+dveTNPBvA5RyxclQE5/znuCCGCNO721bsq77wAMPUCM76XMR+Odqsmq2rVwM0va/ag7AV1CVB8C2YV0VoSx0UOj3ixHKoy87X7/AYvVf7OPoD7bx9NCyD8P1YMswuzm5EvsQbEVWkSUbSSHUhPJLkb9gQ8vGz8nxMBWw7VvSNGfygP9CnTBpvHuCnDVWsV+Wy1xOJVPimckZPNHvyV9mWW1b48Cl5gDe/8V8XuhLXnjhhQval8DXtuFGRV7oOjlIa99VPe/WbYUFnFigR9gxYU985GuPZPW7wVcVKBgRAVSQBWQ2bcgO0CMhvyDpFggzYL7zj98071rqHXWrq5dsu5T2uky5Rl2vtq5x4PXEAWmHKWqyiWar7TDLi5uFHeZC3I8c67PVhTE/EovSz5/4GTVf1UR1w3XkY3Aj+iPoJFIvWcg2o8YwdJ/uoyMvnqRoMky+cT/L9xYKOIL0gye+Q8aURQD4U+7EHLkjs11LkTEW6xek7hU0ezkQFbpPo7gc+q5Bnonp3gdeEf73TH+Puk21W8roD787npfNCc+0Y/wsPfP4c9TedY6ctVZOshajtdtrqW+vlwpKzAK0HB1PMH5D8ScBlNt/2Eer7qgU+6KhGE2lpnhWRj8HRZrJZDUyMECX7qvVbSsqc9HpYDe1eVvEbgdngk0TB12grs6eDrLzbI5qTFU2Xwt4BT3WUBMTVYBfSHQ3MNVBJ0+cpeX3LU/38+lrvMoVXPO5g8/Mk0VltbAJPNW1g4O3lORzcn/msqeF9VfDLO4l8zi2zcVGSkzlxhrKc7LJq/KYttQ48FpxwChAiYtdnUHp+hIdGViRm+yeJJk59tvf/ja9613vIrfbLcCcv/rVr+jpp58Wtd10002L1bqk48jKq9HF5QCE7oXAuItdPRsYV56Dejdt2iR+ct+FXBqKGJBbzPBHPQNtU4vUzIG6KQ4qSUWnSW8HZFKjy4kDEBSfP/Q7uh5Tt7FxKJMwgMO4AyFUCpOZZbANQU49TXW2MtjnZoEnm/CSq7x6//33308PPf0A+WLjVF9bTFJYAuiSdNN0Yv9pCk8FGYzbRKNtPo4an6CaDeUCnCvrmU7oyVFVQCaLiSa6otRws2IgSwZmX2S8pTrOkisNWkYGBUU4ayAEMCcbF5Ex+0IZDvtaB3lahfmgI7TXPzpBR188RQbHNP3+5BOkq4vSsSG3iIZ3WT0iyuz2f7pW3lrWJZ6pL+wVbW7kjOdvRMI7/PKpPzCg/CZ68t4XOLKQI9BmCMbQonIX9Z8borGxMULAyFo2ljz8fx++YAqavJa21DiwGAf2n9jH05zOvp+Z5fG9OpvM9JOf/IQ+//nPZx5+XW6jv3zxxRdpF3+jU44Y9Qx2CYXYVmATmU/xTYIw1vz2ezvn9VU4HySNBViHIfFC92cYXw6dOUg6ngIMhlV3qZN2HlfAJ93d3fTBD34Ql76kdCHv3V26sBI+OaJEDEYjuTPkYkzCuMrquDAygRnZnkWYQb34tR5rJ3etLT2WSuZFeEqhmhsUPQN9dGIm6AXjYe2WWaeV1c4GmIyMvfhGUvYY9XJW3XwMynv37uV3a7ZO2Qb1EnWOBo/Pe/fUZV7tur10YUC0g4+b3YuDnV5tOy70+XhHP/e5z3EmoHI6ee6Y+G7Ucsqdf/xOuvXWWy/0ZbX6NA5oHNA48JpyALoHdNK6K8qoZuVsADtkGYxlJ84dnyPLXcjxfLEbz2fcQx1rb1wmdMl8xlKUR5DMYoSMURppHLjcOSC/Ech/uah6ZQU9/ODDwubT1dVFp4dO0Aeuefec4pCLQQgQP9F6bM43P6fgBd5ANpzusXO05Yp1Qt6GzA2CrQo/9EPdTX2XrD353B76zC6ereqaFW/JWly0mfWwbDowzv0WOzmd641Uyf1tJRWLOnAOaM8TB8Vx2NclZdNPTrQfp2v+JneWz6M7TtFon49+fvIRGguPUl1tLU2OhOiWW24R1aL9//ua+e1HO/Au/eKLT9Pq6xtp2zuuks1IL3H86j/ZTD//8lNCh8pXNl6szbgAbFt7H9ubvpa2onHgQnIAtvs6nuVlMUKfCTAZbDSw+S9GsjyCbF9vlKs/g/xX3KTcO+ShkWFvOrGH+h6RQThfWwbkx3z4qWM/MpIdFRQUpC+lBEErclkipiQxCU+FhV08HkrSSIeXvCPj5FpjpV/sfFDxdxwv4r6vjm674s2aDp/mpLbyWnEA39rqd9csePmL4d+BnPXONyvA2IA3wOD3pnltAPCov71PAHIxxuObziS0X/qqAMZVE2QH+Frv/fF30pnz4etcjHAt2C7zIdi4YUeX9arlmnzlkHyuo5XROHApOSCxAbnsMDsOPk/331//qn04ucZ63GvXKQbP7jxJzkYzeQf95Fllp/HQME3og/Sz3+8hBBNAL4E+IvXOTB6hjth0OI1ZYDgDnevroKotHqqo9ZCNZx4qjxdRR+tpqi1tEH1F45ZZu1NmfXIbMgb6sGw2HnFPrNeOcmZhzFQIKrJ4RNmGhoY54z5wINW3umj1yhWyarFE34Xf0RdbhL9nzsGMDcyeZPYYc7ZHFp99pqXU09VNq26vpiBn1zUXGchoNVB0IkGVVxQJexRm65Z4DV9nkAwWHblqFTAtZCEcG2sPkI0z6oLQVyMJDGQbNbAWz20k2k/XvHkLDZwclk1JLyHHhScD1NvXQ6tWNov92eQxyGnQU/XVUVp9zcr0+eirQVjCboiAqQvpV8R7BXtAtoRPshFhTkTnC4/JzazLgTMjVPfmojTuJVshzHAp/XZqHmYrq+3TOHC5cWBxKzZazPqTnpMl6hjsf+WVV9J73/teeuihh+jv//7vxS/zpu69994FM9lmlte2NQ68Wg7oWKfHO0oY2xT774JVToemKcXl9KpgkwVP0A5eMg7s2bOHukbbaNsN8w3HshFwND7zvZcWBKtkUz4DafCOAi4FwMk37KfOkAKwkvXnswSg64En7qe6raXUzcJZSRNeQIUA6MHv+Ml2Kl2jvGTergnOgpsik8NIo+f8omBoPEoiksrNsRE8hQFAuKZCg1CCZV1yKQG52MY03nB0yCx92e5VnqdeOkoXf+H9o0EqXe6eBzrqZsH83MlOGhlhwWhrOVW5POReaaNkGGCpKE9dd1Yo/HHazNtzFXt1G+R6T0/PBQewybpf66WMWISBY6TVS1s/NN9Y4qlwc5bcswKQi3I+nn5CI40Dl5IDUNK6xs/RHStvXvCy6G/37NqzYJnXy0H0279+5le0e9duGjf30/IbayiSClE0HKMoGx68EzwLAPtOS4oVUO7a7cuEIxYAP/Brx44dAiTrKkVGdARZcHQPU31dHS0vaSYYDKST9NXw5Ec/+pEYX1wNVqotqaQazmTiLC6kvrODolqMPXDGX6pM4wvdu7vAQwA5wtmFX76UaQDOPC/EinouwlgOY9EYO5WSnD2+wOGgHz32A1Fc3R48L1DPYLfILD82NE62OiOFwiGymhlwalGimFEGEc2pBAd1MSHoxTvu5SCUILnXsoA5QyYe17ORszj/wBjwMpvRJLPeKQb5Xsxx0tO48DiNLLlWlk3UhLbjB8L7B5lizDvXmALZRG0Qkd+Sup6LtS6/76ND+2lq+SoxfTO+mwkvvlNFTsF7AkPkhfhOL9Z9aPVqHNA4oHFgKRxAv4wMGNBJ1WBc1IHxcioxRXZXAT388CyYDwE/mbKMcdIiwH6QZdDHYynp1faZ+Yx7aDucNcgEmQ/ZPHMDS6BXg8K8xLqdj4+1+6meFgfu5HM9rYzGgYvFAcgvDTx7UjbCN3z0D6cpyVNgenXD9J2Hv0UnXjpNJRvs1HK2RdgSRjvHaYR/KGMvtvIySUbXND328v9Q6rMpMbPdq/2Gs7VN7gNoNVIVpI7u9vRsTgAFCyAWZwFCsCOytT3+0G8umwBPaa+R95BtiTY//PWH57UZfel0ZYT721knpzwfNrMIBxO2te6nr/zgS7R8TaPQF6ErGriPxSyDeBbotx3FShYtea5cymceSjLA2pWgEE1ST+Is9XScpYmxSep6rJ0GTg3Tlj9SnLHq8xCoKIHZZpbjdc6UkNVzyePIqIn7yQcIgzbDqb4YQcfr7Ny3WDHtuMaB8+aAs2RhPVZWLO3kzvqllZfnv16W8KGs2zYXoIK2S1sGZCLIRv6hSdo3fIiWrZq12dSvraG61VWiT8onyQd4uvzt8+WqydHQHHbpGegBEIqaEARdcbWTQv4IRfVxSk2niOcBpN6hHmp7boCnc04RQBZ1V5dSAU9XXFNbyn1ekHpirWzr6SUEpV/MGUnVbdXWNQ5k48DxtmN0NWe7XIguhn9H+osgH1jcpnmXl9/4wKlROqY/LYLSUQjypVr+k7JPLltsIWdkHOcEOrB/w7ZbVOdI2/tyyRG4Ds5ZiCA/wMZ9dPAVCkR85CwpFMWlXHP8vmPi+5Z1XEgdVNapLTUOXAwO4N2W2IBMOwyuJ/axm+HbP/xv8S0uxWeibi+ug7HeU+sQCVvUNndTyizAuI4GM9vAWU63pOj0gVZKxad5LDVT+cZCOrbvAH3j4f9iX36dwB5ks830nR2g4kbl20SfgiCa4rUuKm6YDWoC1gGZYfHDd6+P2CkcYR8AJ7jJRZAxpDymLoM+4bHfP0punlnDF571iZ8cnKTjw5ww5Vlz2naPvqwzcI6uXvkWdRXz1vW2WXDsvIMzO4qa7FnbI8vjWvKZwo5m4KaAr4d+cZac9RYyGBmQG0iQ0aEnvZ4Rt0zIgov1oWM+KltfKHAd8DtIWSgzCcy0cXoe4PTkrlbO/Kqj4rpZfIlsk1wCzDvMYN5agHmZ59nkYcwOIXy9d94sT5uzRP8PuyHeyQsJyMU72rA2uz1D3QABpF3gnYEvsLBs4cAX1KdOVodtjI9Kwp5ZzA/kYPgF85FvUYdGGgcuBQfmelpzXFHHuqtOlUkUUQJ33HGHmJ788OHDhCnjNm/eLMC6d999N1177cIZEnNcRtutceBVcUDv0BHeVcbULEooMx0B8EK3aFmtwKXlAByApY0eIdBFGNiBSGkAPIwsYIICo5PsQCwkR4mNHnzwQXrf+943x2GI8yV5GSgiwSH9J0dpsHdYGMjhoPMO+Ki4qoh6jo6Q1xakf//3fydk9s50QEphGYIFSG7v3r2bjCXsaCgxEYxPFieDajOmZJrsjVHxOjtN8PHRcxMsrE1Tz8EhIVACYBvxxyjh52y6TPFYQiwRkZpKpURGcrEj/YczlI+FaJr74kQwydPM91NqQnl/0WYJPMrWfqnMgmeL0UDLCK197/zpb3pZMA/GA7Tq1nr+eFhwZEdDz+n+dMS7w20TUWatba3prwrPDhTn9mYS2llfXz/n2WWWybaN80DyeYgN1R88H3lMPqvMbckP1Wnp1XzqX+z8Y61Had37/pTaWzoET6QhUj1dV4HDSiPd/H7OCKF4Nrj2QnWnG6mtaBy4ABwA6AFAwsUIgQtjDGZbCuFdlt9dtvPgjFST/O6wT32e/IbxXeRTRl1ntvUfPXof+fXDNGWPUIHFKiJTUQ7fI5wUkVCUzp5upVCxcr9TUylCX4/+FeNNi+8498FxcsYKycVGxIB+UoB3uyItdGLPUdL93pKO5M12/cX24R5xrXt/9t9kbSCqWFXFToqYGAd9wwFxOsbAlDVK//Vf/5X1Wpm8Xeyaix1Hm77+3a+xQt9G07YEOSN87zwGT88IW93eYQJfi2zF9A4G5krCeZn9mXyeeMb1Xld6fJbnYCnHeqxHgvxMIjHCWC4JgIPBjhGK8LRJZpeBzDYDjzEh8uuGRJHjRw7TmUMt1LimgU73HRP7IqmgAAiEJ2JU3ejm0JgpnsopLMZUgAUQGBMPJygZnaKwkZ89i4eDPcM06Q1Rqb2Eo5BnQT6JlI66E32iXimPBNhRhAw8kCEy71m2Wy5zObHkcbmsW11J4OFChgMcB8lvRs1z9TrKgPfqttlLZ7PV4Hg2srKxH/XgncRy16GXqd/bywZ+B3VzUI25yMiBJa3ilgMgAABAAElEQVRkMOk5iz8/OzbOTSVZLorYRHY21Ilnl2SHWzZCnSDZfrGR409m+7OdC0DBEe8eWrWtXshmRn43MMYClItfDecw6+Xpj775/W/McUzkuKS2W+OAxgGNA5ctB9AHyr4T8tzp3mN0841Xp8dL6L2ReESAtwqKzTQ0OEre6Qkxw4zXNEghnZ+aVjaSyW6ghH6KwV1j1H68mw73vkIrVy8jvy9Aq5tXpwOPYNjHGHc+Mgba6mSHrjCSs6EcJMdP9Tqmp7OzLIYxB32+vD8pO6CsehyzuRXZTTqhJzizvsluZJmJp7jzxUQAq78jQilnZ1rPRx2g87kP5Uztr8aB8+OAlFtwtny3ZU3QNf7iXW9N2wXwrYC62dYC+5Vvcky8z8YCHb1ybA+N9UzQhjtqqH+shwbah6ifv19T0TRZCk2kMzjJXeWkSruHhs+N0c92PCB0GQCZ1N8P6s+UrbBPkmxvZlvlcXkuvtcDZ16hzVc3iSBHY4rlcrYBYcao0V4vRVmW7zUPUE11jQBbyO87sy2y3kuxxL3BXrPqzj9meX8oq61KtgPBcZltRp975z23ySKib8MGnldvdx8lzTFyr7DQ2cARchL3sY4p6mJ5tLd9gDp9bYIPcNqa7Pp0n52ujFf2/voYTcb9tOq2ep5m3kJtr3RRDWd+AtAWNrdjuw5T57keetMt14rzoRuNdvkoloiK2S2CPp4ZhPtSvSMp7HfQbbupn3VWJZOv+lrQ859/8CX1rpzr+doOUMF4ZGFwTs6LaAc0DizCAdE31eUuJGUNgNc7O/tFf7v2zvr0t1bMgdeyj0UtEsAOGWSkc0J875m145qZfRbkCNGWmcKyr8wms8hysozcXmqd6vPV56KPKr+RnWEZBFtGoh3me6QGSZGxgMEi3iEyc5IQyE6g7jP9YjY+2DIWC4hCu9GGZltlmp8FnAUdFBqb64jTz8zwJw7O/IHNhdiFkUwmSM/jmd6AAykxVvh8Pmq+oZqsPI5FJxNCPoX+Pp2C347oxKkW+uIXefYonY7U9y7HIlFI+6Nx4CJyAO//Qj412a+gT8E3h+8yk2T/gHdY9gPyu84sK7fV1w1woLmNAXaSkOxHBCL6WN/hf3qjnrp7u1mGcFNBrZmDuL5J0OFk5m/IPld9dH5mfkxND90MCQ+Mzmn67dHHqNm3jteJegd7xOVg13Na3QIEJvtN2Q74RDPvV/1tfuELX6BzsRMcOLCK1hQ3ydNYbuoTvlnIkaPJPtJNGTiIq5jq++rn6KBov/q7T1egrWgceI05ANkY/hlPnSs9LkocgmwacAOOBiUrq+wD5LGFlvj20T9gietAl4vYQ9R2rpWcLmfa5h4bTFEwNkGrt6wW/cEY4w9S5KPCchtNm8xkLTVT403l1DfFibRG2ijRZiXPBs62mgGKhF/DVmUVTUJQc3IqSfaK2f4GfQ0oFeOkJ6zz4LsvYh+A18syP6sYwCqAZP8g7T2+kQB1hRW/guwX0F/8+Dc/JFeDhao21ZB9VLkOzoWuA5ls0hsUtiuM+7D1N22pEm0GVgSUyWe0p/yW4nnZ+UVh1Z+SZS7BU/AVJPtg+WyglzvrGNy8qpJ2PbqfKta5BV8nhyNUdY2bdds4xf1TQj6R/n70+fhFGeNRu90u1lE3ZCGQSMbGSWBk+cxEaygDma1qO/uf+P6QxVfyW8pr2EZAOoKrjk+eocq6csEnm2MWE4J7gDy3/oZVqFKQemzCDvlc8D6p+23wI1s/m7lf8knNN6zjHb1qzcr0d4BrQUZUg7VxX/AbAVOi3o+yklAGBD7IRHTymJTxxTaLhygTDyZotNMnbCYITjazPRBjZfGkmyZDAXpq929o+t+nc9oyM98DeS31MvOe1cfkuiwDHi6lTnm+5KfclkvUm+25yOPa8vXHgfwAuaxf6TL8tnfeeSfhp5HGgcuFA+IdVeSGRZvECdUIP40uPw5gAF/1nnLq7O4QhuUgCzwQEgudDo6W5kEVgNxgIaUK4vSLZx+hpD1KpnAB/cVf/IUQTh/l7IeSBr0DYpAPnYpTH6f71xdOkbWIs+AV6cjpsJB/UDFc9/v76Fs//xqd8B6gwPgkOVJFnPpeAZCs3ryCwTgxkRk2GUpRVY0yHUPb0XZKrI5QV3+nMD7Jaaz1jEoBoBYgH4BtJ/rCFBkapGBnlCpvKuQMuHqKjLPwFlSixQ1unTCAAQGEdRAiq0wuvSLA6XQU6ApR2Mvg3YkUOct4yQ6OZCBIoywgI6o8ZN5HgV8Nk8loppHRUeFABZ9ADfUNgj8LgXpEwZk/uO9sWQB7zwzTqrdXsEDIQNyDzEs2oMULu1jYxMeknGyw6cg/6aOO/naa7ItQaDTGWQdNbBTQ8b3MCqJTphg98dJjdG60hVaUrRbPTt2GXOswJOD5IgLMNxOB23t6KP2srEUmKndWiSlwAH7FswO1tbYLp9DWLVvFdpG9mErsZfOuC8Dd3uO7hYFjZGJQlJV/QuOscTA1smC1sebKrOeOhUbEO+ioMQujRU97PxWyEK9+N3T8fhQUKB1VphCazVEmr68tNQ5caA7AwZgPwRDe1bU/n6JC6cA3ind5PDQmgJvqE2W/dKTlEG1dc6UA5eO78/I0nCB8213dXWIdf9B/YboSgPd72elssxVkLYPMGcW2UgFezNXXof/oHG0V03YC3Bo2pcR1oNSiT0NfGvXHado4RUM6nzD2Bzia0sMBG1/+9hdp74ld7BitEdlNU2yBGIOSzAp1oiBCLoeb21VIJ15uETNIfPazn03fQz4raNuh0wcE3zAGhp3j5CwtoRMHzlCMlf1EaEo4t9HXwkhSscJDRRut9J1Hv0Yrlq8Q/VvYF6didrRK3ubiQz7tUZdBe3Yceo75dqUAIctjeC8kwUjx/KleOnu2VYx9cMgMTvSL54Z+GRT1JTjLSY1Yx7vXNeSkaJQz2NnsDOJUngXGy6mAMg6iYDzBmVMMU4SxHI590LlDfZTQxajxqipKBlM0eMYrMtsW2pT2GAt1tH/PPuowHydPjRLJzfnnyWw0UYzbgMxhoNE2P413TJLVahVj9VSCTdg8dg+eYdBSB2eesPrZwBRjMKmLYhNRmuyPEOQRmtLTmNPH2e4NFAnEyBNl40w8SHtbdtH9v/p+Wh7JpTBDMd9SvEy0YaE/eJ/AewQdZSM5HuJYV1e3GAfx3a3atJwNEAbq6ummhrp6mhgO8zOx0ZrVq9Nt06uCLLPVjX3jnZP87iVo34k91H1PNwUKh2k0MiiMG64487qCAdPHw8LRb7VYhBwTZ7HG4WDHGT8ztqaLqr2TDArLEikn249v/vjBU6L9eFfsHgthCktJ2dqP+5SygDwX5SGXVb7FRr74GPkGxshi4uh1lgUsnA3ZZDBTbU0t1fIUpz979EnRV+V6RvLa2lLjgMYBjQOXGwfU8oLs+9H3GVdNs4Olm2WZaQp0h2iwdYzMZayrTXB/OqynKZZxoIwd6NxL1exIsLN+lnJHWZ+KsEOBz+FsRVXXu2jaHaT2xCnylJVQspjH5Gkl49kLZ56ijvFWkfljqfIFxvxAYEiwMsAAGchbExxkWr68iDOxc3YVnp5Pd8pIY20TVF4ZpK/e+1+0fG0jnWP9DXINZEGQWtbDdv/xUeGoAPg2NT1FBaUm4aBANhgQDPK2Gj1N6kfpR8/dSycGD7MDhYNluU44KnAfS70XUbH2R+PAEjggv9lTB8+IQCYAKfpHlSk5ZTWQy9p7zpHLxTLlQJxtVABcWOjYU+fIs9VCtdeV0bnfD5LFY2C7Cgduu3Sc8cjCYCY9HX6ykyq2FlLVxmKWY6dJP61nYC6ceBxAzYFoFewgPt1+iL771Cgtb1ou5KJ87BrQS9Q2F9lWqcvhu4QdB3ocsrV5KhSZGzpV0MuyJ2xu/K1jxoUAT68Z7YhSgoGq3/npt4RMuhQbkLz2hVpitj84TQ/uOMr9z6TQJyxulhc5oyz6JGG44otN8cwZlloDfeMnXxU2phuu2E7bt2+nOAd2Sjrx8hkSM3Dw8+hkXci5zEIlNYxgYQp6DTwt8xhZMWU72x6v+7Mr6On7XqSDew9TXU09kS1J3cNdoiz+TE9NC9thb28fbXhHkwDjgp+BnjCdsrVQ94FhsvBUqeg/XZyhaYT7Ve+Ylzr2DCh2Tm57sYczWVXaKXE8TuNtcRpuG6dJ7suh4wQmoN/qxfWg84LMRouYkQP6yWJycb62A9SrBZuDCxpdDA7gPVy2pWxe1T0MLB0b8rKtZFLolbYiK4UKfRQd4UBcvYfts5McrBOl1GgHReNR1u+T/L2bRHlUBhkkmojQPffcI/pY7LNy8KmJAzzhJG+sa2Q7/JSwy5hSViFHZLNPZcos+K4wDiCQFTos9N3RSUUmqq6oZhuPojMHh6NZ60RyD+mD6B/rJZ1pmm3+IwTbtuyPd+3aRdvWbyC71ypkHLQdBHBKku32rnob98kFYrY+95SdbJxMhOyKjWasfVT4GezW3LZBtB8/2OzA/95BnmWKbWEgCcjFejAYFLYgrIPQ76gJ/hG9WUfmAhNZCixilkDMUNSzb5Sabi4TdhrMHEiGaQZZsN+Bn2n7yS5RBfwUQbeX7nv8O3PuHfyW/qDF+jB1W7R1jQNL5QC+X2dJ9oQWalmgY98g9zERoc9IWyiuleT+o7qyRgTH4J1F/1FRV0p7f3dA9A+ZtjDYP2HjneTviqxJnqa8l7/5kJANZNu7OeGPu8HGwFmWC/kb11tswr5qZsBT1RY3Be1j9MLZp8j/vXFhf69qLpWnzlliqnsX15NkP2vlZg85JkwUHPeJb5EsSh91ZMdJspkcVF5XQrhHyCMFLHdAbjKUJene33ydppP87c7YpT32knTChhcOP0t//uk/nXNN9NVnj7exLTVElZtcZK2ZpiCD8ao3N7P1dlYH/fXLPyOj0UhLtbHPuZi2oXHgInEAY2KE7SXAMCSS8TTYsCCiAKmkH8PEOISF7Pvq5kndEX1OF9v6W9vPCvkBZVa9o4JSJg6441k0EomE8IUMd/nJWWUXQNSxDj9FOKFIw41lVKjqr/CtYnw1kJGOHuoi47SL+rhPWbliVfrS0C9WbWNDP5O3I0CetQ4xjgOcO9YeEHodjhk5oDA2nhRYCFtJOQ2O9ovxGliHWIBxENxPQa+KTUWVRDb8rQfZbzb28ABVldbyDJC1tOOZnVSwhmgtz0aSOdZDfpuIMPajjjP77j1EX/3Bl6jtQCeVvol1rSx8ljyGH8paVLEgIFfcCwcy7Iq8LPw3uB/pg5Ty296dByi1Nsh4Eg6mZCxE3BTmQCG+N1+SdCw+xUJxSvpTApCb5IQkkqD3AqgLXgsdmLkNAghXJmOTchFwFwAyw0chCTKbs6xCATizOavrgIJLgK2L4b40wbgSC8uSBhs/n2i7KId+NMS4GPA2xQmFljUtE+/ZuvexnMbtR8CmlKNMTkUHxDkdp1MUS0bFOOWssXIynBgFQ8E0HgbjEfxKmfvRVomTaT/dye+7gr2AbaPf30s9wxZy2B1Cp0VZyIi6KZ24T8i7sBmIhEhZwLYoj7bJLPBov5rkewJ5cJp5jUQ7rcfaafwcJ6+z8D5LksdHnimI5fZCJz8DtjvYGzlYnwL0wAvfpaNnj8wLRsa3ls23pB67JzjAv2l9AxVyUpsTr7Rw8DMPjexnUpdBO8uLK+eN72p/VbbycdZRoB8Qy/aGDOyllPGlzQW4J43eGBzIC5BLrKehw9FI48DlzAEd3lP+KS6YRVrK4yX7bTS6DDkAgdM1wtHbLJz0tHBGW2+CFTwjTZunGAhlp4IqI8UY3GFmPRIK4mPP/Jr6GbAFhxqE28eeeTStJCOzIKLAe04MiCkbytcWiYhRoxXTCljYSB0UfZuNBQIokafHjlBpYTkd2d9B40M+FnRM1OI/KrL0uRwuGj4dEAI29k/ygLyWgR2JiJmMbj0Dh1hAYsM+ywRCyDWbleiuQA9H/RQpL5uztoCNYXbq/sOIALLivgC8RRQrCOs6xiKhHhCWgCb52bE6cjQosgFCnkOUuIGN6YNnfDwdoY6i7LwMdnrJbDVRDQtz3ulBCkxPsrI+QUdOH6LWl7sEuExUusgf3Fs2Gh/28X00CODa8KEJstZzQxqnafRMUAiGaPsUO0ABvp0I+zkLnZeBxwly1xeIaacw9ZSBpRbck7F4mk71HKGzXaepUl8/D9ya7frYJ59vbXM5A/2cAux35Mxh8ayKmjjqKmylZx9/QQi7JSsKqT18UgEvsyEDCklgakyA2YSSUbZm3nXhnDncu59KlhUKIQ4ZSSSFwzzNFwvBB07uo+P2lnnnQoh77uDvRPGEKU5jfjZsspAIx7j63TBwGgA1IFfWn8uwI49rS40DF4MD+I7yIfTL+RDK/cd//qeYztLFQDvXtPKdynN7RvrFN7iT++oPv/Ojwqn5n1y+YnWp6Ldxjpo6Rs7S6Zc7hKJvKtNT46o6Vujnl+nlsWKIgZSInM0FrsD3Le8XoFbXGuX7hmOm8/kRsjWYKNyVEIERzvopmuxmhQ4SRV2Cul/qFkAVPWcLmIwFlEjYGPdlMVaix1mJrqwThgxkzYVDc6mEvu3r3/u/gm/93SNUzaAYjF2DHcM0xn2ss8FCE12KEo4pciaiAe5beWogk59OjRwRxt0QO/Cdw26SvM3Fh/NpG6YYwr0tRDA+nehhsAsrlKFRDqJpKmCn8qjol3Fe/8FxAv8sTsUoMRmfEJlVQ1NBMWYCENvDGdrDYwlhwMA5eouOrGYGaPJYzvlrRX+OZ1e+uVAYgYaO+6jvpXGy1LAT3aE4tnAeyF1nZzCvEnkVCoUIY3KcDSiSJjhoZKKPwQFuZXzWmzhLi8nEUbV+8h5mQ05djKJj7MBjZxCyWMGwFWZ5BO1PGZPkcLGhoYYN8mZW+itNNNE/Vx7J5RDK91uS7cy1lOMhxo5+5pu+cJrHLROd6mfDFbcrUZgU78bEcIgK9HYx3kpZycTGscXI1xUU71zM1SuAriv+VxmVNcmpkzjLDj8vOBXMnMXGysYO8CjG2YyndSkyWSz8UxRHGFv8fexEyCDZfoznp3d1iPaLsZfHcZGxkUG5yUSSvL0BzsThEu2HLKOW9eS5ePcgA3g5UKlIX0NRxklA1kD7WKoiHYNTbGY7G0dKhJMQPMP1cz2jjKZqmxoHNA5oHLhsODBHXuC+H/0fxramLSVCNoDi2Nc2zIZ6A1VsKKHh4wHq2eUTelu0b4rKtzEQo4SBfNDXIgyENei4/KjILIvykKMwswn6cIz7cuyva64WGUJw/fORL9pPclAVj1G+Dp71hnVX6MCQZYxWDrgtZ1191xjFxpLUb2Vnc+conRw5yJ5rPdVO1RBkQYz90N+krIcHAnCaqIflo9JNdp6O0U1drGND/8R+M4MSC6sLyMxjO4J/WoeP81gdEbLSU2eeWVBmvGweuNaQ1z0H5DcrZWPIOpBzTDZFTsKMSQBS+IPsQI1FqH13PyU4rrp8pVs4yio3IRicnXC9EVpzd6WwIQW6I8IZZGSwa5KDvCv43cfsS2YT28lYFoPjb4wdqZMM8DLavFTU4KCoPcB2reNUwIFoi9k1oDOdHTnNQUyzNhf5INQ2JthxcH+Q+SX1HBzl4PIkuRsZAMb2NfzMTgZ5JKaobE3hedmAZN0Xaok2w2kL4KvvqJLtyb3RQlaLieIWM8v6bHtkFRCBDCXNdjrauZ+87UHqOtMtgg3VdpuTL5/jGUQ4cHuAZ7Fi24+r3sPNVGx5yEIJoInf76cJ/4RwRqIfC037afBEP2dfsnBgm5INGfcGQO4IbJCsa+gLlDrAT10BByf2D9IQ29c8mwo4Ey7rIZzxasoY5wA0fs7+EK2/o4703H+nuA6jheVetmNBrzWzjS4R5dkr2N4ZM4fIaFDeu4Q1zrN1Mfi7U3F2Qj9paGhAMzTSOPC65AAc9cf+0CJ0QmQQI9YDq9aW0CjPlEM2tk8gWzfbjAZf4sBbth3EWCaC/UfKEQBXWOsMok/DsoBlFuuEmWycWS5pmmK9OsB+Ac5COWGgya44PfPo7yibfSpTZnnve98rArbRT0IOgs26pEkJYOgIn6GwX7EzDxz00R8YoJJZp9STzTw1MsYOTMcMAIfa5o8HBrCsa7xwDiAX/ZxrvYuqNheLZwowDgCwACzgB0JbWp5jW1/2CW1EGfSZ0maHHbB1SwpxH5cGw8zYXOSxbEtTgTHt/5DHAXIpalBsTZgK2sDBJuhGFfCFIj/imVau81A8GZxz7/B3SBuH1odJjmrLS80ByAKhWFD4koZaRqmgzkgn+g6mbaFoD2b/2nv8JSovqhI+Onzrm65fQwdeOinkqExbWDQUo8AQJ4gwl/FsJjEBnnMQZAyFYMdG5sTmt1XLXUIGtNmtwvYJm2DdymoO2jTTg198iLZ+6cp0OfUKAFBjLHvMqaeNkxH0s3zAbk3Y80DB/gSFCsbYxppkeWRUyCMJKyeoiJqpfL2bWn0nKB5JijY3TjXRzpaXRCIcJNdQy03y2oGxCc7IO05b3r1S7iKf15/WPaUOioOQSzVAbppN2splxAHIzxMxP5n9DFRlHIOJAa8Y5+DDAIU5AEiA69mnbOzPHfiiviWMuT/41ffEdwNb/7SdZyqc8QlZixXgC3xVFrOJZ/lLcaAQ2+A5+Vc8zr5oTi4CX5GVk8dkI5mh1V4KfXA2wFCWlbJBGAlVONgQBJ1S+swgM1mSAOAoegqy6PqC49R/eJwDnaYo2qP4V4AZKGJdEPYmYrnFTyN0hGc6fHnfyxTj4JwE4z5uv/IaUX/mWG/jDKcuO3TLJFVy33Ky+ygNdftZlKugJPd5ZquF7ftW4TNT+4pQGQCvbN7KSbgXYBpMZUF68cDv55ST8hv8DiuqS6kp0ihmVYQsFa7ngK7QtPBdqU8CCFYQs0P4IFiWzIdEIrQM9uM6kmDfG2UQtJRRYT+L+zhRD+9HMjeTK8HYCy7N4Fy/boSOsh8Rbdl/Yh/52E7g6ptmebBkjhxVggznrB+Cty3P9YlZVY727CdngvV0zlrYVL+Mjuw8lB7LgLGKsm0CoG3sV+NkkL14spMT3pRbBfYCZY0M+OW5JykyFWY/DK8zFiMQZD11nBMocVtCY4rOjXvMBNvK+8a4kIvS7wkHNwPwDH9hT9sAjR+KUuPbPeSs5uQCM88BgFkQZHjIvfWVFTwbGAe3Zui7+NaAI8r0LUFWl9T50gi90rGbSjmzMmR1AHKBOVGXwb1OHmRfZcb4LmV4Kf/LOmX5wMm4GP/1rKdced0Vc5JaZdpcNECu5N7rf6lYYxa7D9aFZgKpFyupHdc48NpxAJhG/PIhjI/5jZH51KaVuYAcqKurI0RSkiVFlQz4nKrmqBcePEHmhIWBUEoUki6aoDJbOV27+Xqqe3u9MI5v27aNI1Q4m0jLYUXBJUV4LC7z8GA9xVEzPJVlARuxGHhj9zBQFFHh5Ty90micooEwldqaqLqskYqaaylYzAAej4mWr2ngqZm7RXa1KgYOQZlE9MoLT+wgXXSaCl1sOGJhz8xGcYBxQToWCjD4m1hQLV9XSMisa3KzmMhCp58j5yAgWAoNwhGYCCj3A5CtWOdjcIaKerDkn4uBRQArmTjDn8Njo8BwkOs3Uf2aahob4UyKVEJN3G5Ey5fYSsims1ExR1Vxfj8qqi+mO7eVEHgDgX4xinHGWwgGM6xLF3eUMviLAanFjS4KbYkKQd80baLicsUggOjYwY5RSnFErLPATdXLTBTxxMlg5I+SjXvWBE+hyPciwMTsPF7TsJGqi2tpy+or0tdYbAX3MMLZBGR2XLeukDY1bxHPyrXcJrIBHoucEdVsvGW1WJ471y6WVeXVPPUNO6s542UdZw0ssc+PDL7rrruo6UQDjQQHxTl2m/L+iA0WckubkSE4Ttesv07sUv95z3veQ82bObKP35X/+e0vBfgnYeZnOjGefjfwTshnK89FJmXQzCOXu7WlxoFLwoEL/d6hf/zYhz5OSUc0HcGL7xR9aD1/dwbuR9AngfA9o/y//uu/EvoX/8zUlhKwiGOgLfVshCwoIYNDxyYNRWPNLDOBMm9T+jlxUpY/tbW11NJyZN4RGBwabi1lRZeztHkmRQRoodtO5qgC/J2Y8FO1u5b8PKWp0WKg4jpM08XfLY8jFpOipGEalQmeEqWXp9W59sZb511jsR3gBSJr271nqWx6hM6NHKd6qiZ3RSEVGG08raCJTDylC8hdyUBXVn4jk+yALysVjteVPG5Os/MWfSr6tyvWZje2LtaObMcl33BvyC6ajWAsRYb2a7dcy45ddnqt4jGRx89R7kvrquvEKdUc3bpsYwMNckb6lkAHFZqd3O/pOUtuhAoLHDTFWVWXrWW+c7CMlw2zvuM9IssXstkV8bS7JgHMTfLYVkShgTAlq1JiPIpv46hwHncqqipENC0uZjIEaYQDaBo2wDg9RHa7PT0mi8bwHwB2+VKki3P2KooKJzgy9bprOAqcg0ssbOQJhGNi3EW/7a4p5IhYjsENsxOLM86apzgyOcZGriSDISZTLI9UzZFH5HUyl5Bx8iFMs7mm4aqcRfHOSHkH7wz4XcA/kN3NIOa4Ml0wMYZ2OjrzbszISlPhxQXgonrORM/AKWSdr95Ww5k5RvkbnXW+OVwMRmbC9EBGdpxBroFcnTLyuDeT4RZOBLQjwrJDJqnHc8sqd872Jzh7mDFlEe82ZBn0C5nnom7IAC3JNppmeUtMb8kNsrqs4t3A2IugKgGw57ITPBUU3muNNA5oHNA48HrjQKa8INs/FD9HNoODM2byeFXJU5VzwFDvHq8ANNjqGVBSzOCtAGd7H+DZS4o4WLSUHRksy9gcdvJU89TBM+WL6hi4x+Ouo8oj5BrUj+wMkHH0Eavof+U1l7JsWltLCc5YS0HOpMR6NDJEIOOtMVbAWTMYAGcKkZvHAmS3u/M97xZVDzAADeMt+n3obyAp68F4Xre1jEJ+zvAbYACa3kh9ezljPssDAKNh3Eb2O52Oj09wUCvXX8WZ6FY2K/onbAcXUlYSjdP+aBzIwgH5zSKDEmxI0s6ArDOgMGs33eEdVFlaKQKIHNd5aLyPZ0HiAKfqZj15edpR2F/K1jtp5CQHRXMQFGZNQnKBKf6HmXkmOADcWWNjJyEHtTPgEnIPzgkGQpxwhQMO+5IsJ/MUwLUN/C2wrLiIXQM2kcNnDs6xuchbg40JoFN8k7DjIHOkj2blw1oODgjNTJ0cZ8esQc/zVDAY18AZPgzswF1Tt3QbkLz2hVrimRw8dYDtVWVkjih9i6tyxvHGIquF7VZCrmXJMRadoLfe+GcUWZ+gbVtvUPojBtVKWnv9cgonlKzkcbbryeeF44koAwKrayhhTwo5FPsASllXtYZSET0dOLubgbWqgEd+NI51RXTs6XNiBg+UBz8n/DyDl8VJ5avQvxdQ1Jog76iXDNx3FpfYKFFhoL49Y6xjK9O7G8tZP+E+EEkD0NcjUzrPFUKFVhuPEcp7V8j9f7HDzDaxOB3vOifuC9dbiIQOc3KhErPHguxUbmhomN2hrWkcuIAcgMNeDdZC1bBTIEt4JKkAGpDgf7DbqwTYeuNkK7RTTX01Fd1eIoKSYvUMVGdZJDbF+j7sLOUMOuHp2vGeN21oELIKwBWY+hZ9WH9/P62oWSv0UtfKYlGuz9tLFfWlabsX2pEps9x0002cNKOGXjm1b1ZXZzszppWHtbmxupnCDOq/kWfiw7Uz64SevGLTMhoY70X1is2fgQ2jvZxVtm6FsPkP1/EMA0Ul86b2tXP/gIQQg8fGBTgnxcEaFv7uMe6AvJ0BscSYUrcyt40CfSZsduORMXom9Hth6xYn8h/IksJ/QJ1pm4s8hoBdNcE/EpvgZwHAtIqQFAQBAiKrHPt7EERg42yfRc0lbKNj2xD7PEARnvmnyOKmYl3FHH+H9AepqtRWNQ5cFA4gqCYbQRZA/wFdp3xVCcV5RrUyV1XaFopzkBEbdjLztFX46PCtx/hrtGzLYQtj2SHhZt8cBwZ4W71Uw/LEdMhA4cMztjW2v9n5W+rcyVly2XYHMnBGbAMAgOyLCvSHqGOyh+zkorfd/vZ58os4AX+4nysuL6KzL/QI2RG7whwsVlBQyGA6nwASI9C9dLmTPMVFFObZF3CPkEcEMcYqOsE2XZubluMeuc3rV24i2OjRdzQ2NnLyiZmyyhnir4tnXCswceKAmesKYH9UP0//1IVNdP3116vO1FY1Dlw+HIBduYIq2aYyC4AFKBeAQ8xUZzMzNoCzwoeHBsQYn0/L8d2obf0m9re/cnKPyMoaHIqSjcfFeCzBPhIAcjkJBesPmK0XSUgwjkbZ5oPZNUoYQKgmyEimmcA8gCPXbqlRHxbr8PsDtAkAIcZli511DdYpp2+FNZ1t7Fx/iGfORaZdewmSsUSptLyE7JuLhC/n3L4+UY/IoM1Jw0DQqQxRC227/gYxWzAwHgC3Hjuzj9ZuUuQ39VhP4Vm4mvS1mOucVOb0iGRtepZrwGNJ0lcEmYfTcQg9WB7LXOJeRhsnaOuqK+mqK67IKr9Fu39PZW6XSOZRyL5KOwdYYEbgMdar5Uwjol5ANvifeh26F1wjSAwiCXq5JCkXQW5y2+YmSEL75X7IS2pbF+xnRj2PB0xT3B873Dx7aIFyPnhbV6vIcOWF1fQHPwI/KkX7IRtL3oqJr2YSp6DPRzBGmbOCatnfCbuEi/twa3Mxx7OxPMa+JfTJEmeC/WqczLm2DopzchvIp7BtoGz35A6ymx1k5tkJcc9IqoN3v8KjtMUIMDmTkBlVcAuxc+YPxoVchHuJM54Egfr+JGNr2LToqXZTAYNxxtsCQt7FGFvA76+O7YEgZOX1907SeCJMN2y8ZZ6+i29N4kwgb4PgW1LTdXeXkoGDp4cDA9TAvAFllsk5vnOdal+drFeWj29MCftQ92AXh9sUE/znkjJtLnK/tnz9c2C291roXtjBKoFmCxXTjmkceE05MAMGyKsN6Jfn2gbyOk0rdPE5AGWtmCM6YTxG1kFQiAXOTDox0EobGrbQP/71PwsFD8dh9L355pvpxRdfpF/e9yhVFCvgoeKbykS2nwEGVA33jShVsXNCl2DAbJWbXKbqtKKYaThGe+BokIRtUKWzmp5p/RXVVzfSIUM7ZxuZHbClsGVlAQZgWkMcjhKk1GfsDhvqAaw1sSDiZ+fJFE8TCpAqHIdYB0FAAzhXgjeLGu0iww+FkV2VFVmORAPodf3mtfTyowfp6obrCYDQbIT2yjZnO565z6SfVSLUx5rW1FDvoWGq3VpOzbfXU//pIaqpqKPiaxVwHcr+5uRz5Oap2xtrlhGxXJ/gDEvIspRJeHZvveEdIsPSUtqGZ4vno34etG22dtTVeZ3yrGS9sqzcRmn1+uzZRO9///vpps6b5tavKiDPk0vVIfHeoX243sMPPyLe3QrOUHhub3/63ZDvhTwvyhHScDSDMPVQvkAteb621DjwajgAw8Evdw7Sum3NC1YDEEa+7ya+z89//vPiO5DfHipH1lgcA8nvRy5RHiTLy6U8jmNyXR6TS7lfXQbr2QjRhAc/dYBO7WllB46DjYxK5CUcAqv/qEGcYiseo0SYpxIrrhPfZoDvPXpaT8hsgmvub9vLgQed5KgtEuVLassYUDJJQ2fHSRcy0vbNt52XsRB9hxy76B1EH/3Hv6LEGE/fc+VqsvEUL2IM3Dh7Vyd2tbLjqIA++taPi51q3qp5MnvG+a9JvulGbXRqnHk3oyBjGluAacAjQ8xCd/7xu/j3zjkXUj93HEDbwMcv9X2J6mamtg3zVDW4R5BtBRusuE/sPsWg3d8xcMFkEVmg5FiOMhW3V9G+p3mK2TOYrtVGHs6mkvBNi6kck+xMAtgSjrCSomKanpmOFcaieIQz5vGYjEwSyFjlqrUJ8G18dJqGDnO2XoBKU+w4X8NTO1VwVq+Ug9r9DMJOMdCVQduOjQ5hZIgPsMGoei6Y098ZmSePoK3ZCDzANwXQ6ELkH+H3syx3icx3JndJ5QiuK9+NpI+BxQBHcGa1XORpKuTI6iBdX71NyBd4lvtadjG4vkecMjEOx1g/OYxOcpoLObo+LIwuqUiKM9SyAYdlFWTmLbSZaESV/UteD+3Heyu+ZX7nFyN1+3FetnNfqnqJfrHnAWqoQsZtjlieea9Qtxxr+84O0rKileJ7W+ya2nGNAxoHNA5cbhzI1vcD6Pcf932WGt7UJJpb4iyn6Qk9dZ3u46wsQXKvZt2Ss41NdPVRSbKKmkwNdJLBdo0rPWTgaZcbV9STvyNE/YfGyaNzUFP5SnKm7NR3eJTlv3rSjU5RfUENbX3bFefVd0LeLKm3isAXWj/LUT/P5OKemamh1FUuMnxGT6+if3r/p0ShhWS9L37xi1SzuYx1ac5EsUzRRUfP+VjRjpGZs1wisAaZXTDMOcZLhWyGzL4YO9TjyWxrtDWNAxeHA/Kble+zXKqvdmbXOVpWv0Lssq3m4Gv+NoQcyHuO7DlOvUOjHBRmo87dwyzDcgZcthnJYKfyFRx4Pmygbs4s7WFApomdsUlzUIDzYcOfZv1kQ+1GevsfvUO8//K6UiaUS7kfy6XYRABY+9in/458Q5zFx2HhLLhutv84RIY0Aa7g+pwcFFVRWkFHnz1Lf/epf3jNv0HoNt+675u0bvMaiq+Yb6tS8+LZHbvpn36o9EmSVx4OgJey/IYbV4vnVcmZd9CndbZ1ieflqubZKlindDUyeHmCgxpY/9h75BBtXL2FPviOj4hp3w8e28/6UKP6ckJ2HTzMs03tHRUO8PqrKqjtFc6At4Lfj5n+s/fsAA1wlik4UYuLi6nGHVX6+xEFXJxkp3ygm7ORc0ZNC+s8cPqhnJSF5QXdZYoj1388PufdkMczl+g/oWflQ0G2bWmkceBScqCe7dX4wY4Ago0ieIKz4LL53DrlYPtsNdmWKTYH2Kklib6W7Swo3/Z7G33605/O+j2o7RpSjpD9uVyiTtlPqNcxDsBHoSbUB8J3BcpZJ+vJOKa+Bsqr2zN81it8KMhApiYASQrZ1oWMcegTAHR1FusonOSkHmyL0HOQFIDNMQ40l+1Qny/X1eNYy5FW5qVLHlLp2wfI4VBAgTiYYh+HBP7IwrDFRBgcDT/HNBed4mxuupSOs5opoMKKjUU87XaBCK7COepnin6Phqz04Q//7Zy2Sr7Ja2hLjQMXiwML2cSlLCD6Ex6r9zx+hP723f8w712VbZPftPiuF7GFQc87ykmHahlw1dPSL5LEoB7YseuvqCDoP/i+QQarjqeyT5KnzE1+znJ7y21baSsHT+EbBiFYJpMwi9yWG9cJOSLUqxwfaBlnUC0HCPAMdxRjP6TBSptv4lnTOMOivEd1Pbjfj3z8Y+n7xf2B5HJL81ba+8Qhql1VRTWrKsUx9XUHj46wXdFNq9dtnK9/bpptvzhR+6Nx4DLiAIJunv/+k2n8gmzaHD8H26UHDnupgRN+5UNyzBVyw0z/sGPHDvrZz35GSQbM2kucNBWcIIfdyYHInHV+tYX8gwEybzJTHfcJx59soyBnxkpw5loAaEEFnDF3YoRBjGGe2Y4TcVmSnMgrU2Yo5kRcDLYFILeYs+f7Ov2ckMbFYHwH/9wiIzfq8vZwtloOBI+NMHifgb3Lr10hZAHoGeWV850YGL9XlW6if/7Av+L0NH3sU39PsM+rx3p5EDJZ39khWlGs6LC7du2iiINnYGSsSC5qKe2nWCBJllmYwryiuA8EI22/8iZ6zzvfM0e2kv1Vsa2UXmh9SuhNNavKSFce5xlnjBQc6KJpFh+tPAOwUcxwzOBfowKtY7GGsRw8Ww3PRhhlP5TNrQQeQRZC0n8AbEESF5ANlAqZbYJ1OXetRyTGbLy6ivt3f9rWJW8GGWcrPFUiCAt8qowsS2NCcA+pyf+giJV5xc+jfg1+s7KxrAM+rWfv300f+6d/Svfb8thiS1xDyqTqddgzGqsZD6Ii+GTS+ifL43j3MBMiwOrZCOMCymQj3Adsh908I8YwB6XpUnpauXEZOa9yUev+Lgqyvq1noLrRaOVnpeCIwOdV9s107abrxTjY0NAwp2p8a9i30Fgs3wt5z3MqmNmQZbApeZJPnbKuXHXLeuVSlteWr28OKL3BYvfA3wE6nMuBBgcHeZqGPrryyisvh+ZctDZg4Pb5fCKjo8WSe7C5aA1YYsVIiz86yp09d7RFRQpQZYlVvOriiIzI+z3lNx8pxjW6/Dhw3XXX0YutT9N1zVekG1eSRZja++RRuvv/3J1W8NKFeeWWW24Rm5ieWNDM+fVra6hrxkCH/X6ediroC4nyC01/km3ge9/73kcv/MOzFOUprCE0xSY5ipuj1NSESCJML7h6eyX5uhjYFYhQw5XVnE2PU5owOUuidM43JAIezAxaSQt0HO0lwbnq+iD02Xm6GFctC8OFHjH9urvUIXgg71ld/nzWcS+YOpEK5569fvtqOvTiMWp9sYdBuWWU5Oj65q0rKMngG1Bf6wClgtNiKoNMvs+tiRgQ1ybanI2vmWUzt3HOQudlHsvczqwvc3ux+jPLZ27j/A0rNor3omZlpRAkpcCtLhvh7FOFrDxJCnrDC96XLKctNQ5cKA7gXQ3MZBxbqM6eMwO0ffv2hYrMO3Y+3xHOAcnlvEpVxxYqk+087MM5//CRT9A3v/91VtKiNMTA2qKmWaeBibOO2+xsQKivEAAUnHNy11kxPnzgAx/AJr3wwgv062d+RYEowIgM8ggXUlXRcgrw1Hlbr71ClD2ftonK+I/sxz/595+iF488y2lAogxuTFBRhRKpiXLoaz2FJfSXd3+QZLvk+RdjKfmGusW9z2Qo0VMB1VmqKGBa2r2jvi996Uu00DiBsRqEaXwgV6bLYieP55vZYIzxOxLi/C6cKWWYjRQ3bC6nhi3N4p2G0RlKNRxVL/9qP2v9bAFhsjktFB1PCsCAiTOEIYLc4DIIoO5UPEUWG2cRLLSKLBCVpeXUztl1IVtiHwiZicvYsV6/Qmmf2Ml/YGDCfeX77OGwXwyQi7rzyeIq3xnZlnyXiHZ3lLJFZAFKcWZ+3JO8xs2dN1NHR4c4A7z9251/I8Z8PCPoLaBwWHHA23h6cGF84WNjpybEscw/S+FZPueivpHgMO3evYMDDVZxLjBky2XgOD+3iXBQfDvOZCl95jMfy6xO29Y4oHFA48DrigOyX0ajYcD95veL0roHxkmQWu/t43Gq3F4pMpxhfHzo1w/y9KdsqGaV1M0ZkJxbimhj7dXCaYvjIPTzcr2pqSnvMU6crPqDvnnfSKfol1W7eSaAWcK6lLlQHiSXYiPLnwgD3OBUkYT10TYG5c4QpnHVsWOktLCRPve5zy1anzxPW2ocuBgckO+zXKqvgX1Jnr0AMgsIzij8QAjX7jrZSxankTr1w7Sxkm1kjGUY7m0XoIaSK4vZ8WZQynAW2omhSTFdJGSf1Z5NtKq5WQTM3XrrraK+fP+gTdnamnk+dJF77rmHM2hzViYn25E40yRmpjDXmhmMpWTCqSitYvk7QRtXbUrLlJn1XMpt3FeR1cN2NQdVzmSVy3b9vtZBYdfJ5MOW1Vvp5O7jdN1bFXulfF7ox7CO53V2Xzsta1zOumJxWlcsavCI+0f/jX7b9o0MHWemEeu2rRR1BDl439vVS5OckSlUrsjZbpuHGkpX0GgxZwjlAH3oSLCVqvt7VOMwOWli8CQVuYtoy7UbhUw+U/2cBe5xKXp+PrYDXCAfHWZOQ7QNjQN5cgDvVkSVlTvzNGlHAHBt+/Zl1Nvby34161x7gkoFln2tLL8U+4rsG+Qysy3qbbXcpt6fuS7rkkt5PHNb7sdy586ddHDsJfWu9DoyaJYsU+SjifEQgzgqOLu2idxlLnJvdgpww64A20vyINkGnusgPV7J0+zFKqbyTsxsmC0JDrK7A0Shm9JTKjZFsVCc6jdU0fjZEHmP+8UMSbFJNsCUKrYX1B/ieZnR791y++2XxP4l70lbahxQcwDvP/w2uUjKAjj+7I92L/quoj75TeWqE/sFUOcbSolMGyJ0H7X+M9LrZUBUnfi+z/y+h/75b/5lzjXgq8K4D1+VmtBvSjkCOuOm8qvoxk030pnTZ6iWE/FIux7OkX2m+vzF7vfuu+8WQQldI+doX9vhOf3HipXLqVRfTW+bCRy7UPqnun3ausaBi8UBAPUnO3nW3dWJud/VjD0G18U359B5CHiHpZBabsA6knf9ct9PqLGuicIlIf4uFZt7edEEvfLUEeo7MiIClsuai4SOEPExKHdAyeg5dGyINq24gmcMqqOS5g5ylc8HxdStrqTOrg4hM5Q0uan/FM+S1xskx2pFP4U8AYrGrAKT4O/kDN9F9jnylZTB1PeZy18C/9yPHruPBqJj1NPbI/iHgEfosE4G/9+w6Za0Dot7v/+578zBiqivIdfD4zEqqfDIzQWXufpg4D1+c9ej4rnhfvY8/wptulMJnE3F2G/EWYPNnLVYp+PZSDixi0I6fj7KepT5bucs/yApCyEgKRrg/S4FiidAqda5clM1g3+7T3TRqhWrKM5+K5Da1iV28J/4OQ7UZDwG+mXYz3Af6ncFeh14VddcLU8R/Xt6g1ekjrsUmVd9vnrskutYZpMP1efhvqKT0XkzOmSWwXZBBn+wD+NPHS/3v3CUjOwvxEzImLG0kv24mXgflO9rHaIbr7qZFsP8yHvAObkonzLyXJRdanl5rrZ843MgL0DuNM/eMq0Ay19Tjvj9/nRq6Z/85Cf053/+569pey7mxT/4wQ/Sr3/9a9qzZw9dwSnU1XT8+HEhyO7evVsYPK+99lq67bbb6Oqrr1YXm7M+NjZGmNrv8OHDIhp/zZo1tGnTJhEdsBDgd//+/XTo0CHxQ0e/detWwvVWrlw5p34YXjds2EBOp5NOnTqV0+A356QLvIH3dGY260Vr1rFtGD+NLj8OCMHn7scIET+FnlmwlLql/W1D1OBcRgs5FnIZgRtmgD6iPl7f9Wh+xif19bGOgfW9f/KX9NDTPxZKedjLUWQzgFxkA8FUzTVry6jn2DARY9kQpXbw52cpsSZJZZzJBMQ2JhaYeVobTqFvtes4YkpPySDS1evE8Tl/OPuIGtipFkwwBVY+tJDxQJ5fvaKUek5283QHczMAIgpp680b6cgLJzmyb4wsU4UUOBchH4OiMDVCtX4FG9552i29IqDL+rIt+1tG3tBG+s985jP0of/v/XTHh2/kbJIuAXAuyABrjw/5OEMKz83BhPd5/bIN2Vil7dM4cNE4gD6yyFa8YF+Li/e0DNAnPvl/Llo7LmXFGDOQyQmgwq/+v6+wksvObx5nkM3TxNOq2IvZMVqCnlmhU7vP0Se+MnvvOB99vwQlohRAKuql2HiVfyAD1j9fL4wTqKqvZyRdY3XhCvrTP9lKKHOpSI61F/LeFxrjcV+2GaeOFVnhM0iM4zx+IztDj7mfIi06evt1/zvrs/jrv/5rYURGFdE10zQ4MMBTAJfNGU9xLDIeJwTGgKIhNhDwFIkYD8d5qks4sUDZopixH84tyMb5EMr9ofWZOcaRbOf1t43S9i+x8HCRCFNLLQbIDY3F5lwdzx8/SeAtDCAg6AgKKdszG5d0gbbB6eC8z0U9Qx3s0LPSYL93jpzyzre9a0HZ8ZI2WLuYxgGNAxoHLgAH0Pf9zfv/TuikcAxUr6hI14rxEuPtK08do09/8rNp2QHnXGxZRjYCemrPSwPzALnyuFwi0GahzPCynFyKWVjK5ZayLF0xGxgOaW7wzBgRi1DqsWvuGdqWxoHXngNCNtz9DF371q3zGoNvGL9Tu8/SFU1Xc1DRZ0SZu/7u3XTbnzan5S+UgVwsviMucXJ3K9109S0EEITUVeZVfoF24Bp/aGfZdlNDOjALVcNRrCxttOul/fTm9W8X25fDH9HmHDyX7dv92GH64Vd+LDfTy7vuuou+8f0hYcNR97cogOcQmYyQ1eumu9+l8F7yXy5RDn1SLj1cPnMAe3c9ephWNmyasbXVUqm9TDzPZZ5V9Icjz1BF7WwniPMkTVa66cBTJykxqku/I/KYepnrHtVl5Lq0HcjtXEvYtpYC8s1Vj7Zf40A2Dtxwww306yMPZjs0Z98kAzrWNF4lbD9RYllgEZLlFyl2WR6GD+XRv/r5PDkLtgy2YIg2Qz6Kn4vR6q0rs/YJ+foUUJl/NDAHUId9hWXzfTdq/wXKFLh5pkCrkQpL7GQxIQg6QsakhZYtb6L1G3jq+n0dNDIywsEEDG4qnKa+7pG0rwE6PPyeGmkceC05UGTxLGo/R/tQ7kKRWl6AXy4WUL5pdf34vuGHjPF03ptuXisOBTkbZqb+o/ZVZfO3FrPsAJ3xh1/5ipA1fvybH6btferrZa7jWgsR7Mn4Pf/88+JXWO4QwRKQK4Rcc0uT9n0vxEDt2GXLAXxjuewwaDTsMJC1P/3Rz75qOzTG+m/f/99U8gHY3Gft7jaeORBJSw7vPEltE31ElhRVNVSQsd7MgM1WwbsVpo30j+/9lPiuEcTz4+fvJdoiDqX/AMD58qMHaNWtdewbs1L56iLqOzgmMpzCpy392pM8C8bUgFckiglH2H6TB2WTMdAnSP9cR6qDM7IkyK8P0trqItFOjPlSd4Je8T9P/zKr7iUvD8yDbsBA5s1KVmC5P3Pp5YRpNe+c1Zkyj6ufqYtneSrQFVL/UZ6JpsHBAOUQFdYUiHYnQykG5KbE6YYZMK6rroATs4UZSDtrk5L1h72c3dhlE3iRAtP8DMUbblhNbf/dRSbd3GRv8nwsgTWxGjnr7Iz/JZv9TPLqzL42Wn2NAiRW1wE9refgCP37Z/5/9u4Dvq363v//R5J37DjOdCbZg4RMQhiFsEdYhVI2FC6rLbNAF6Xt/ZX2Uv4dl9Iy2wsFCrSUlLJHUjYkhJUEsveOs7zteEj6fz7HOYpkS7Y8I9mv84gi6czveUqWjs55n8+5K7x3qx83tj/Dnbkd57PKzm773f7h9zaOvceyhtbtRwgfZo/dK2zZcbvwbEz472DZ95vYivBFe+/VnyfPEehIgfgCuaUayNXKhwe6q9XLLridBUA7sps3b5689tprMm7cuHYPAr/zzjtOGNd2EtYP4z711FPOJcTC1/3NN990LhH929/+Vm66qWHVJwvhnnXWWc4P2/Dp7PHXvvY1+fvf/y59+/aNGFRVVSW33367PPzwwxH93Sd/+MMfxA7Eu11ubq787ne/k2uvvVZ+//vfh3YUu8M74j5QGtRLssW3JI/mBjyZUUKP8U3OWO0oYBtbZ514trz84mw9KDG1QSjXNhw2fFIgP7vzF422wubTVOCn0RnEMdDe77bx+FThU7Jt9WpJyfE6U/m0OklGSqZMPXqE7Fz8oQZ6SvQSgnpZ50HpUrnZL3tSSvRyEemSmqVnVGkVXbtsU4ZePiI9J8WpqJqll8f2da+bl83QPn0D/qBevrtuo9I2wCws5HbuBqr7PNZ9Uz+SbTq71M6q+zZEbNS487PL2h130ZHy8kP/kenDj5IjhmgAaUhdIG3EiBHOD+l3P3xdjjiz4cEkdx72mkwYfkhoo9rt35nu7UfDkOxhekmez2XohP6y6fMdMvr4uoCz7SQpK6qQvOyeoeDf4neXyfeu+FFnImBdkkDA/axt7G/WPm+H9OhcO8fcHflWLeW1Jf+SKVNHRv0x6Ky7/h2747svqbnF+5nrTtOSe1uufb9YFx6aOemkkzpk+dHa3JbrbidzRNsJ7C63+76DOt1CQU93yP57+04q2VPqeNR/nfaPpbuq9oWsU6alycqH1jcI44aP6+zg8GU67wn7nT1GbAAAQABJREFUPnzu/lf18zt8jMjH9p1ml3tsbPnhU1xxxRXygp501Fjnvvfa8322e3WJ9Du44U4it13VWpm5fHPDnf3u8ES9N7Nf//rXMmfOHKeJzt9O2HZKe5omqgntQgCBzi/g/iZ9Z/FcWbB6oQwcme/8DrY1D5b5tJrI0c5+GleiLb/P3XnGup85c6bc/rNbYw0O9d+yeqccfvXhoedNPait0TJrTXQ1VbUycODAJsZiMAIHVsDdNmxs39VXepLgn3/9aGh7c2zfCbLxy60ydsbIUONtu9huth05UU/8PfzwwzvkN4Pb/sItJREnBLgNs/Z496Y77XH7Heh7a/NnP/wk5oHd5R+vdvbnRNu+d3+jPfrvR0Kft7Y+9vrlZuWJf3Oa7g//kdhvtsY62+e5esfCmL+Hhk4Y7FQwOn7CCQ2C1fYZbu1f8NpCGafvgfDfVNYO2w916jGnSXFNYdR1tHHc3xvR1jFau22ZfbP7NbmPdd2XG+XqU8+ONgv6IdBqAXsfbnx6q4w/akyj8yosKNZKcYOcA/GP/eeBJk+GtfGdihmNzjUxB5qJ7Y+o/x0y9JDBsvCzRc7JxeH7OOqvhW1/2bZaPJ19r7y76vWonnalPTew4/droZF9xy/c+fa2S2BvKpbew3pIql5mu7ZaK/XqpbfdfTVTjp8g9vnxn0/nydevvMiZzNbNjjXYPR0CB1rATshpbP+5tc++W+3EgbbswrcXUoKpUYu+VJRpUYFedWU5rQ32t1q/s+97+01o2wjjjxod2mazzw7nqlJamd+Gu9sFeVqVv6nOpo22rGjT2Xzdedt+Ov6uoynRL9kEmrsfpqXrZ38vPdLyGnzX2/zsN4MdP/pQT+TL6ZEjfcYNks1bNsuRE45xFnfeLD2RU//+3M72zdQ/EdR+Q+bmdQ9lGDJ6pcrIcZqt2FCuV2PxyJbFO53JfeUZMvHgGdJXQ7+Pv/ioO8uY941tY4S3yT3uFe1zwfo5FXX1t9cWvZKhXVXG/e3j/qYxmx1fFUjlUfu3Reo3yvIZJasqm9zmCX9NR49Nk7de+kB6j86WHSs03zEyxynIZgFbX4ZXUrXqrXsCUv6kHrLshS1SNa3GyXnYIb1U3RbqeVA3J8zbZ3ieVv2v1ArDfRschzR/K4i5eO6K+s12ntt2XHCvR69SGFkksf7IrtW9j/ze+Z1o+wXdq/DYd8OeNeVy6awrIt4P9efRkufu/oD626Lh87LjfP17Dgjv1eCxFdAp3rYnai4lfORgTeMnnbrjRns/ucO4R+BACMQVyLWqo4Ei3ZmvVc49jZ9k0K7rYFWYrFqrXb7gtNNOa9dl1Z/5okWLnAO83/jGN9o1kOvXy8DffPPNzuLde7ctr7zySiiM+6Mf/UjOPvtssZDy3/72Nyc4awFau6yghW/dbvPmzaENY/uSs4pqAwYMkKVLl8oPfvAD+eCDD5yde+6Ba3e68DDuz3/+cye4ayHol19+WR555BGnjXYpsssvv9ydROyHyW233Sa/+MUvxM7aiVWhNDRBGz6w92bATsqJM6ft0WqkXreYVxu2g1m1jYB9ia/WgOu8lz6XCfoj0d3I2rK6QPasLpOLT728yR3c1pKmAj9ua1tzoO66665zzjq96Prz9YDICGeWVg2kb58+unHVTY46d6qs/Gq11OrO8CET+8uAnCHO801FOyQtW8vr60ZY4dpd0ntkrvTTyrnFmzWsOSxH0nv6ZG+JbsB1T3U2qq3ikW/fpRCCNcHQhltpYUXcZ/vEc1aQXbrKzlTauaZI/4Y1xVKv27p6u/Ts3tv5ez9ZLxkV3tlnzOM3PdpoINeqbTZ1cCJ8nsn62M48fuyxx/TU6FpZ9PwK6TEkW7J6pzuXP0/1p8tYvXykdeY5KHcYVUSS9YVO8na7ByPtfThAf6SFd/Yj6sPnP5OfXv//wnt3msfuuhdtLZGskZEbBObh35p6QE4uCgfuCp+V4etb/7FdxkevedNmnX2/9eybF9rB5M7Ydo44l0bUHs7OkT51J6nZ+Ha53cpi3aGjJ9H4tT15PSJ3Stt32pQxsU9CcZfh3tvOABs/2t+cO4793T189/+5T9v83rYFtuplPKtPqpG0zIaXi/BryGnn8iIJNHEyZjzbFG7jW7Od5c6jOfdd/W+nOVaMiwACnUPA+U365jCxk7W3bN0g/dKGyqCBg6SPBqjq/2bryDW2773c1OgHj9x22Hfi4KyhzfqNWKmXu2uq21tSJSOm1P0+b2pchiNwoATsb+TME86WV176l+5HaXhCerS/D9vXYAfaPilcpAH8fhH7y7Iqe8iVX7+mWX9PrVl3a/+3L/+uPP36E3r5Ton4TWltt5Pp491/15p2NGdaa/PN13xPHvv3n2V54Rq9Ykq3CMOajSn6O/AHMWdp25l24Ns+b73eupMDigKlMmXgNBlxzIi47G3f2Xt/eSNqsM1d8FYNys24akaD0Eqo/bq/afMXO6WsZk2o/cFSr5wwfpZTQGPNmjXOOn6ypu59YvO1K3tsXLZFpo8+Uq6/83x3UXHd21X53v/oTTn8jHpltcKmtjZTITcMhIdtKmC/P+2Ka0114e/Dn997Z6P7qG1etl+9satONrW8Az082neIXQmqcE2FFI4t0csmBzXE0TDE7H6/2GdKPJ3tQ3v83Oj7/Mv1qoEWyLVwilUVcY9fuPPtPSJXVszdLCPr8kFu74j79Mw0OXjoBLFtWjoEEk2gsfe/29b22JcXvr0w9qhhskkvTT/6uMHuIp37Mv1uP2Rs3UlaFmw/9aRzIoa7T+666y558MEHnd+K26t2yybNDWSndpexQw+Wo6aMjvjN2De77gRP95isO4/w+5Ye44v3Myd8WTxGIFEFOmo/jGVvYm2HDztkiHzy2pdy82W3Oiey2G8Adx+Qndjidva3F2vfjGUYPn1voWYY9Eq+vgw56swZzokyNu36eTskfW+WfP/7t4Tm+8Lcf0cNCLvLas42RlOfCe5vL/vtJoF0+WTBIhms24SFBSWSr/uRTv3+N5y8UrTPR7c9y+dscjIUTS3LxndfU3Mc3f0QZxYfBz7Wky5WSK/BuVKi+Y1eB+WKBZf3lmihte5pkpLl1X7dZf37BTL0mH4S8PglPT1NDjrMrpq8UvYeqlVy03IaHFeymZuVbf8M6jFIigftdYp5paT6nNfChvv8KTKo3xDpE3ZVT+sfrXOt3P2C5mUZMcfp1Gntso1lptG2Rd322fqV76mQlGDjB/kGj+svy74sCuVe3OnD76uKa6VXz7oTUML7139s2/Z0CCSagEb4tUl1+49ity2gn3O7guIvCkpK3wNbVfSQQw4Ru3XW7tNPP5Vly5bJqFGjZPLkusuZu+v6z3/+03n405/+VOzmdrbToLCwUJ599lknMBseyLV+1s2aNcupuuuesWFlxKdNmyaHHXaYWKn63bt3h86ks5Dv008/7Uxn03/96193Htt/p556qvTo0UP+P718hQ0LD+SmpaU54d6HHnpIrK233tp0JZTQjFv5wF8YdN6jou/VJjt9z3v0ajrejAP7Xm6ynV14BNtQtB+J999/v15ueJMEa9P0x+IW6Zs+WDf6pkVUZ47FZMHzatkTa3Cov305h2+YhgY044Ft4A7sNVgviz1UcvK6RUxpG8S28+vjtz6T8VMOlt3biiQn2EuKN9TI5OnTZeZpM+UHd98mGWmZ0l0zQJt0h/rQo/tJevcUKV5fLhkTe0iwfnXcsI2OLct2xN1+W89SLddfv40RDd73JGVHjmxdUyADRuy/DJ49X7+gQC48+dLQxnf4tBa46ZGpl/BpZBl2Cfgbfhn74Eb4/JL5sb0nbGPUguX56YNkzsLXJDC8Sg4aPdipSG5hbdfzJ9/5edyvYTKb0PbEE7DPhJuuvkV+9aCGbvUIqu1os88H+xue/8oXMn3EEZ32gJq77n998S/y6drFzmedXc7EuvTy7nLFWVdF/ZxLvFcx+VoU7/dztVa2a20gt34QdPwRI+XzDxc5B4ssZGtd39F5snr+Jj0ZJluy03J1O3d/5diDxgzUA907ZNSxg/WyilXSR0+2Ce/sO+3BZn6nXXjhhaG/ufDvWJvvyk/XyoCMIe363rP3/uZ3N0vRxjLnZJH6odxK3Zm0fbFWrxnRs9HKgvFuU7TFdla4OY8RQAABBKIL2O8Pu73++usycuRI5xZ9zI7ta997H82bKzNOjx7iWrtYDxyfHP3AcbSW2nbEqm0Low2K6Fe8Pc7LJ0VMxRMEOl7AQh4rV650fn+NP3K087vEfo9t0/0v9rvkJz/5SUSj7O88EAjIG2+8EdpfZiP0qRks5511frtuR0Y0ZN8Tu3qatef9JW/L9qo9UlJZJN0ze8j6RXX7jsKvrhZt+gPRzzV87tVnpUyr+27eqOHXw2ZIdU2anHd104bu563t73E7+9yNt7PfKIVapan+Pjd3eqd/I78JbPm2v8neA9aG0ppiZ7u97/B8uf76653Z2LZ6+PvEevZJGSzDx0xwxmlOe21ae5++eOkLTbbZlkuHQHsI2Hure0qPRvc5O8vdkxLax2r7qJvqbL+6/U0laxftO8Q5GblPD9m4UKumH3Vwg/0Ytq7N3f4y/2j7/LPzMkN0Fk6pXx3XBnbTyxB7g16prdADd3pMLlrX3PZEmwf9EGgvAff939Lv7Za2y91esO1Cu4rX7Af0Kl5hgVyrnJjmSw/9jW9ds0umXzk96uJsHewKu/Zb0YJmPctWO78XTznllAa/G6frMcvGfr/ZAgq3F8nASVyNJCo2PbuUgPu7oD33w9h3vV0hw44bjD408kQa91hCPL+5Yu2bsQzDHv2bXvnpahk2ZbCzvd97UC/n9+jwUcOcPED4/M847sxGPyPa+jvdjO13jXXphW/IyHz93aW1hdzPL8srFa4ulcIRpZI3JCfi/bf1y11SvLJCZl0U/1U86m8X2mt78y9uELuy8balhZJzat0yKrVabkqmT7wenww/YqAsfXW9bPhgh/QcpRs7egjJm+IVf7leIXlXjYyeNDj0WR3ewEXvLpdbrvyBcwzWjCt36xVmeqRImiddMjIypUf3vKjT1T/m5c4z/P1o/db0WhNycsdp6/v626LuyRzu/owTjjhJ30vrGz0ZNa9frpS91HhYMSWYIt26RRZWirYuRQWljR7TijYN/RBob4EUCyYGi5tejH+7yOqP18pD//mj9OzZU372s581mGjbtm1yzz33OP3/53/+J5Rkt4CpBTStymxJSYlMmTLFqdp67rnnRszDQqEWwsvOzpYf/vCH8uSTT8p//vMfJyxqiX4LfNp8d+zYIVbBNbwyk4VIn3rqKfnkk0+c6q+2k96Wc95558lBBx0UsRwLmy5YsEAuuOACycnJkeeff96pFGvLPfTQQ+XGG2902mATrVu3Tv7whz/IwoV1O/znz58vt9xyizM/a2P//v1D87b5vP/++864+fn5MnHiRKeibb9++wNtoZFjPLAPduvsizG8sy+bl156yekVHpB1x7EQrgVkLVwb3u3atcspw/69730vVD7dHT5p0iT3obMDz720xYYNG6S0tNQZVv+Lx3qefvrpTiB33rx5oendB1a11wK5L774YocGcmsLNJDb9EnSTjM9+l3p7aFhXJ/bau4TUcB2Dv/v//6v8yPR2mc7mS0QHu9OY6vK8O/FTzW5am315Xz6cWfIvI/e0gONUxoss++Q3tJD+srp48+TVatWyagpo0T0Cnbu+vz+od/ppZtKJDMnUzNxXufMqrxhejmDDWXS95AeWpUvINk5Gc583UsbuAvJ8XV3HzZ5b5+LhQV7mgzklhdWOhVD/vrin6VAD6gU6wGVUj3btmpnQC446ZLQDv76C7TXpjGHbWsLpH/aIGe960/bGZ+bh93sdf7Tn0bIB0vflqrdpVIS0EsEFhbIrhWljqcNp0PgQAnY+88+X+39GaxJlQK9NMie7cUyIvNgZ5sr3s/cA9X+1izX/dt77bXXpEDPFu3pG+hcReCoE47uMp9TrfFr6bT2nlqw6+24JrcdD63p6r9/h086SKyKwyoNpA6e0lfyBtftQCnfWSMBvcrCoMF60sS+Crm23EnHHixvPfuhfkeX6mZj5Ibjys/Wtug7zf2b+8ecp5xKYracnLxs2arfkZVrJOKkOxvWHl1vvVTS7pVlkt07SwK11VrBRncQ1Qb0cUAvYVQiudm5ermq3NCBzFhtKCzQk4zqnYhUf9y22s6qP1+eI4AAAghEF3C3b6IP7fi+//Vf/yWf/+BTcX4LDo/cN2b9BvcaJnbQN97Ofue/ev9svdyxX1LSIr+b3XnYwemavTXOdp3bj3sEElXAtldtX/cf//hH5zeJT4NLm79YJ33SBso3z7og6u8S+zu3m7sP2dbN5lN/27ej1tlCoCNeH+H8riwo3Sb9cvrLdN3n5YZDO6odzVmO+ZmX/RZ29jfO1P0yM+sc451PS71tumsvvU7s94BVsswO2562z8X1H2/X3wQ/b7QZNg93+dZ+93H4RPXfJ+HThI8Xz2ObtrE212z2dsjvmHjayjidV8COl8Xa925rbX8/4VWa++Xki514Hf43Fq5j448ZPDa8V9I9tr9N+w758Y9/LDWbA/LZ2i/1KgkDpVduH/HvDErP7IaVxFqy/WUw0fb55/XrLpUldccR7Wo7GRl1xy/qQ+aN1qvxLS0WuzRztKshbdOrB8YKEtafF88ROBACsb4D7TPGquM+cNcjbd4s+/u2v7s3X3lJDtdjjnVX8arWq3ilOb+FLEA3YcxEZ7n2dx3PcTfbNmiqs99vDx//UMwTKm16+5sN/7xtap4MR6CzC8Tzt9VSA/sssCt82FVSPiv8Uk/g7OucoJSrJ0E251iC/W2/fOmLsm2cfl7U2zdjRUNS9mRLaoVXtye8snnDDuf36AknTWvwm86dT9mRDbexWrqN0ZSN6+veh49v24dPvfqEFK+trKtaq5+Re4v1straFa7QAz7aXXTRRc59S/6zZd64+hbnt1t1Sa2U7qqQjNxUJyRsxdTsauLp6ely8KyhsvTNdVKxsVZ2phRL2a5Kp8LtzsWlkjUtspCbtcOsBmQPcT5L7TW2rmdmH+nVr4d004JeNt9oXTzFT6I5RZtXW/Rzt0Xd/Rl2jNkK7Ln7M2z4jOMPa/Q7xaq9W9bF+S6r99502+jT/X++YKr7NOa95Vtcz5gjMQCBDhZI8eR5NJAbbHKxgW1B6VHdSx544AFn3EsvvbTBZZNeeOEFZ/iRRx4ZCuM++uij8u1vfzti/m5o9Nprr5V7771XUlJSnOFW5dXmbyFZO0tr9uzZoen8/rpk/OOPP+6EZO0D3w3kWkDXQqpWXTa8s4Cq/SCdO3euE851h82ZM8cJ79pzC/264VN7bqHXv/71r868rB02b3edbfiWLVtCz610uQVy9+7dK7Yuf//7322UUPfcc8/Jb37zG3n11VfjvvTNv/71L2f6qVMjq4d4vV5nB6EFcy0QXb9z12HIkCERg2z9Y3UWlHa78KrDdrbcsGHDHOfPP/9cvva1r7mjOfcWZrYuvBKv00P/sxC0dR999JFj17evlvxs705PjKndoiGC7U2/j60pnp4e8eW1d6OYf1sJtHTDwb5wNz67VQ7WCiONdW315WyfSXagcfu6HZI/LPJ9//GrC2XWsWfIDTfcELUp3zz9fHns7QdkzPFDpOeQbCn4slC6D8iSrQsLJeAPSIovxdmgs4k9AY/0yO3hzMeW1ZwfvmayYPfbUdsQ3jPH2905uGOfN7Zj3w6olFSWyagTRsVcB3f6WA5lRbZz4nP5438/6I7ape7ttR/+6nD58Iv3paJWg13lpXLcCbHfE10Kh5U94ALu+9MaYn/zovvrTzvttC7xw8W+Y+xm22p2dQK70bWvgG077/mqqMmFlO+ukG5Do+94CJ84/OS48P6xHk/SqhILXq+W4jWVUrS5TDx+j6SnpEuWNycijGvT29m5k48+WL74aLH0HNrd+Y63g3nb1u6QilVBvZztnbEW02h/+5uz79h1xStl69atMqr3QVJR7pVrro4eumh0Zs0caF7eEVWy+qt1UrqxUvKG50hNRa2eoenRnVW1su3zEjn1opmy4FXdwacn8sTqbD41UhhrcKh/W21nhWbIAwQQQACBpBKw36B2RYa7H7lLT0TxhH4r2+/DdRo6+/G1P40aOIy1kja/msqAHoAqc76no41nJ7HaODYuHQLJIGDvVSsGYb9JrMuvGub8Hmvqt0lL95e1h0kitSXe9TP3A/U5Yb8H7BKic199RcYfOcoJDNpvjJ0rSuSbJ1zU7M/Fxta5rV6b+m22ZVrVPmtzcz/LG2svwxCIJeAEQC57ScqO0gBIj4b7Curvd7arQ3487205bFbD4hm2jDULN+hn7TmxFpc0/e1zzI4BWhEQO+F8VK9RMvUEvQyy7mv4ePHb0m/Q/uMU4fvnm/vZEM0/W08u3rxks/QZkys1epWjYJUWwam7GFGEX/chGVK1Keic7BxI0eO8afsHr/p8nfRLGdisz739U/MIgY4RqP8d6O4b3Lhsq0wZMr3d3r/2d7fyRyvFji/maeXr1e9tknGnDHV+C+Vk5ob2Y9b//GuNin2m2PFB+7yI9llrxyTtb/ZAbUO1Zt2YFoFkFbDvbDuWYN/zB/UdIEs2L5cpg6bJyKvrCkLFs172N3v1xdfKP996JmLfjP1Nu/tm3PnYMUI7Phjt96jNx/IO9bexWrON4S63JffO9snbL0l+fk8pLy/TYz6lerzH63x+9RuYJX2mtX4bwz2WU6uFAdd9vEZ/u2VKdalfsjKzQtmN7N6ZMmhGL+nl6a/DaiWje44U5e+V6YMOl6XzVkZsj4bvD3M/S51jLd0KQ5/rsSys+Eljx2xiTdee/W0dwvdn1H//NPadYu1aOm+NFnm8Tf7wt9/Jebed1qCp9h4t3V4mqYEoG5n1xrbx6BBINIEUT29t0vo4mlUiklmULZed8S158uXHxcK3VnU1vLMArHVWntq6nTt3hsK4N910k1x88cVO+Naq3d5xxx3yyCOPyDe/+U2ngqszwb7/LFxqYVy7LNfMmTMlMzPTqY4bPk74Y0vdWxjXwp8PP/ywjB07VpYsWeKEfT/44AO57bbb5K233gqfxHlsQVurAPv9739fcnNzxQK0VtrcquLaPK2NVkV2+fLlToDXqvdae2wZ1rmBYFsfC+Pa8p944gmn+q8Fiv/7v//bCfjaGarRlu/MJOy/iooKcUOykydPDhtS9zAvL3qKtLq6Wu677z5npBNO0F/bTXQ2/meffea8HjaqVTvOysqKmMpeW3vNrOLtgw8+KEcccYRUVVU562OVga1zX+fwCS0sbKXSLbj85ZdfSjztCZ++JY/9RUHxb9Qwbt3JuE3Owqul4n29dOcAXacWcKrBbm/8TWEbPaMGNB7YjRfJNkztQOOv/3yXM4mFcm3+29ftlJQd3eSq310Vc1ZXXXWVPPvK36Vg1R4NxmTLyjlbJDtfqwLq2zpQG5TM9Lq9VHsrqiUjJUs/a/o581r9xXo5dUL8Ow5tg27jBxpSPiL2Olub3ZDvrFmzYrY51gDX4fGX/0+2i26daldWVCG1+nc6ceBUack8Yy0r2frbutvNdpBaF+3HTLKtE+3tPAJd+W/TXsWuvv4d+U62z76yf1Y0uchCvXxsxpEZTY7X1Gepfa+F70DOy+8hp1wxU+w7dPUXG6Rn/1xJm9BNyrdURV3WiMlDnXDq5PzDpXhDiYzoNUTKSj1ylYZnW/O+se1s+z6wSxSPHq3fy8d2zPeCeRXu3iKTvzZeFr6/RHyeSknN8Ym/Wk9u01Bwv359xdb5nacWNPo9ZfNZsPudqGbhPdkJEq7BYwQQQKBrCtj3pX3ffbTiPVm4bolz8EBPhZEjxxzTou9Sn15WvmR37EBuVUWV2DiJdpCia776rHVzBFqzbdmc5TBuYgjYvsDSe0tl54ZtklmVIjml/eSYY09z9scnRgsbtiK8zQN0H6NWOXHazHu3oRV92l7AfoPOmnm6LJj3rhx2WuSxMztQ38fbP2K7wt6vr1iA1yq41QvwOvvs1++WqZdHFsVp+1Z3zBzNxvEJ25dv+xuseMiO5VrwI72m1fvnXf+39OSR4y8+ylkx259SPLdCKgr3OtVxy3Zq1bjudccxwtfco72cfRDzF0vO0Azpoxcrco+blK30t/hk5/Bl8BiB9hYI/w50v7dnDB4ZuqJueyzf/u5+/etfO1mHnYFtGsz9THYMKZLqmmo5+vgpob+j+p9/rW2LXV3Y/tYPmzU54vPT/m4/0IrA9/3sgdYugukRQKCZAra97W5zrzpGr8Srnw/N7ex4hAV7w/fNVG6XZu+bsc/DttzGaO56hI8f2j5ZXveZZZmMnv17SHVltaydv1XuaGFBlfBl2GOzs4KG511+row5YqgUbimU9MP3B0Qtv5GqGzyTjhofmnTxf1Y4n+HX/+A7svCtJXqCep/Q9lj9/WG2HvEca6nQCrAtee1DjWrHB+77s/4i7Dsl2va7jeduw5uvXeHejtmNnDI0NAsbXrlBpH4hy9AI9R5YDoYOgUQTSPHli+iJApr6aqJpGgzzrwnKZSde6QRyLYAaHsjdtm2bWPjVOqtWa92ePXucgKuFXS28adUwrJs4caJ8+OGH8sorr8j777/fIJBr4/zlL3+Ryy+/3B422dkHoAVpTznlFBk3bpwzvvWzYKgFSa1dFnatHzq1DywLEbv9LQRrQdKnnnpK5s+f78zHLrMyfPhw6dNHU5za9e7du0FlYKu4a91ll10mxx9/vPPYKs5adeDHHnvMmb99wVmV28a63bt3hwZb2+PtrDqXBXltGvvAitVZSXbztqq/1lkFYAseW6Xf+p1VNbZgswWWrRpyeGfL+dvf/iZHHVX3wzt8mD12HcPXp/44bfm8Zl1A/Gt1jvoebbLziXj7a4Xc3gRym7RK8hHs79su2dBYZ5etPv300xsbpVnDbF52oHGeHmhctGGpnhCeKbnSR3cq3dDoBpK19cb/ulkefPaP4s8ISu+BPWTn8iLxerwS2CuSmp0qVboxF6gIysABg0Jt2q47DqdcNiX0vKkHFrT9xR9/3uhoZnLYqGMbHaepgeYQDAZlzmevin03dNMzP6aMmSan39p21k21IZGHJ+rGciKb0TYEEOg8AvajuLCJE2bctY11aR53uJ3wIQ0vHOEOdu7tEm71D77ZAPth7/64Xzp/lSx6a3nEdOFPbHvi+1fdsT88O1PqQrThI7XgsX0fdPR3Qn5+vmz8cKuceqWuhHarPl+vl/XWCjU1PunZO08Ou3iY07+bR4+QNdK58zn4iMZ3/rETpBFEBiGAAAJdSOCWW26RkS+PdPYDju4+2vn+c05IaaaBfa94arySlZ7l/EZOz4oMfdjv5lQtu2bjdPR3bDNXhdERQKCLC9hn1P333y8vv/yyI2GfiS35XOxIxvA2u2117zuyHSyr6wrUBUA+k4L1Ox2Ebhq0LVi/Q7yFmQ1CnfZ+Pe2Y0+XT+e/J9FMnR6At030AvSW/TY8LRCwgAZ7Y+t901S3OicDrS1bpVVJLWr1/3vxX/GCFLHpnqeQP7eO8DlVFNdKvZ3/ZoFXdonW1NX7J7Z7r7H/Zs61Q1qxYJ56SLRLol+YcN7nyqgs79esQzYR+ySkQ/h1oa9BR39vhyz1i9NHy6ruv6In1Xtm+aqfUaBEc9/hjW6q6f+v2Wel+fto+2E9eWySH9J/C32xbYjMvBFogYJ8LLe0a7JuZNqrZv0HaYxujpetj07mfWfYZZccqCvV4UMGyIjl35gVt+nll2YdTjj5Nvtz2hZQV7y/uYts6hdsL5eBRh0Sshh1fca0sE7d7/fb9eYl62RQ71rLnq+jbUuEzLUnCCrD2+rx6+ctSdkSFHqeLLBBpJ3n84af3O6toebc//OVeWVS8NDSebeNffsZVsm3qNnlx6d/DKRo8tu8pt+Bcg4H0QOAACqT4NJwouZpkbPpvXAKbgzJp4lQZlDdEvvjiC6eS7LBhdQdtX3zxRWc1LrzwQunRoy4EN2bMGLFbtM6Cnvbhs2nTpmiD5dxzz43aP1rPaJVabTy7LI3bWbXegw46yH3q3J911lmhMK47wEqwWyDXKtzG27nzffLJJ51w8YknnuhUArYgsn2xxdvt2rXLGbU5YVyrXnvvvfc601lI1g0XR1umhYIrKytDg6wS8TPPPCMzZsxwQrShAfrAqttaheBonYWWbZn2g8MNKoeP16uXXutaO3d9woe19eNAeVCq9ZLBgW36Ho6j8+SK+AZ4xJtFIDcOrqQfJT9ngJQX6yWvcyO/4N0V27O1UPIP1rMS2rCzExVGvjTSqSZtfyNnnnlmzM/B8MXadHYpqfWlq2Rp5pdSuzxF/P7dUrSyQsPz2bK3tFpG6Bm3/fZVx7X16hXsJ2eccUb4bBp9bO3pnlH3+RxrxLYysXbZhqZb+S/Wd0GsdtAfAQQQQKBzCsTzXWRrnp6e0SSAfWc1FchtciY6gs2nomivFGzYKf0OqjsJz53O+k0aOaXDdrS7y22ve/Mv3FbizN4NJdslInv1z3POHrcBto1x9NFHN9qE8PnEGjGe+cSalv4IIIAAAp1PwH4jNuf3azQB+/7JCmbLgL6DpKBwq/hSfZKiN+ssjFtbEXCGbQ5ymbpofvRDAIHEE2jt5+KBWKNkbPOBcGKZbS9g2wE3XXWzPPHK/zkzL/QWSI6/l1xwxkVRtzEsAGAV3NYu2iDdNABgJ+tamNe7J0sDvN9r+wYm2Bzdv9UVK1Y4LWvt/nnzv+eee+R3v/udFGrFsgFpWsgoa6vk9+qvvlYxp2FXWbpXr8RTd7W/w2ZNke3rd8ng2rFy9Ihj4j5u0nCu9EHgwAm4f1cd3QJ3ue7lzd/99B3JH9G/Xf6O3L91q+q4c2WRlFYWS3VRQPIDQ+We39zT0avO8hBAoI0F7PPE/Uxp6azd6dtqG6Ol7bDp3M8s2z7JqPRJ7Z5iOftrJ0YUlmzN/MOnte0gK9C4o3SXsw/KhpUWlku3tJxQfsP62TEl9/iK6/3SSy85bY22PWbrUD57f4bL5hGts+BusnW2bt8670r55xtP6kkek0KZHTMKz7mYkxV7M6eKPWWSn99fZp5+rPNefffdd2XTbL0C9OGxw+iblm+R6aOPTTYe2tsFBFJSBns1oBgUf2EcgUat1Bhc4ZMbz71Ffvh/t8oLL7wQCpz+4x//cLguueSSCDarTGvD7A/FgllWNdWCmhYGjdX17dtXsrOzYw2O2t8Cwq+//rosWLBANm7cKAUFBaFKsFEn0J72AVC/c/vV1tbWHxTzua3zn//8ZyegbCFfqzxrlXLtTAmrFuwGlGPOYN8AN8Das2cTpb72jT979my5+eabnWdmHKtirbtc9zUqKiqSd955x3ldbB6HHXaYLF++PFT51ypaWjDZKuked9xx8tvf/taplltTUyOffvqpXHPNNc5rb6+lmaelRVYk6chAbvX6oNQu1feuvjfj6byDPJKigVy6riEwadIk+WL+h3LoKZOirvCOjXva5WwZC+Harbnd1VdfLbbxaic4jDlpjPP43S/eFv9Ij/Ttla87r/ZvaG1ctqVFy+jfvfGQclua2EZltA3L5rowPgIIIIBA5xJo6rsoKzdDevbq1qErPazvcPlQz8g95cpjQjsFdmzYJWVra+Xy88/v0La058Jsp01FceSG86ipdSdYusu1bYzpY451n0a9jzaf+iPGM5/60/AcAQQQQACBpgTsN2ZqIF1ys/L0ijI1UlVbLX6tSGInsQ7Xk1gL1+kl1PXqMHQIIIAAAggg0PkEbJ+7Hay3zvaj2/G4WPufrb9VibVqW8EBaVLk3SHdavO030Ut2q+erJqxfFqyPjavRx55pO74hT6+q/wu2a2Vb3vm5+q2WMNjvtVVNZKes/+E6/TMNLntttuiXjW1Je1hGgS6moB73NG9b6/1dz8/7XN2e7UG74cNkLNujv15217tYL4IIJDYAm25jdGaNXW3T9o7IGzLsUquN9xwgxRvK5OeffMkO627jBwxMqL5qz5bJ6dOOCeiX2Of206F3H1FVCImCntix6qSdV/X7bffLu+c8Y7UbPPKug0bJTuju5RtqW1whQszspu9juHvLfPZvHxHmEbDh7u16E6/cXUngTUcSh8EDpxASupAj/gOEvHbSZJxZFAD64Iya9JZ8kvPf8uzzz7rBHItwPnBBx+IBWlPOOGE0NpY9VsLpFq1Vbezirr2B2TBzrbqHnroIbnppptCs7N2WCh03LhxThA4NKDeA6/XW69Py57aJfM++ugjsQq1TzzxhLO+Fla227XXXivPP/98XCXR09PTnQbEEwaeM2eOXHTRRc749913n5xzTuSHemNrYgFhe13OPvtsp11z584Vq7T7m9/8xpnMquZaGPeQQw5xqhinpKQ4/VNTU50PeltXW2d7zefNm9fgx7MFd61zp3OetMN/gTKtjrs4IIENcYTJnQZpddxhHkklkNsOr0ZiztICrl879bGogdwdG3dJbk3viC/0A70W9tloN9uR6Ha33nqrLCqaLyMP278xZ21Pq8iWicdOdEeL+97+rhd9PF8OPbnhtFbJLtFM4l4xRkQAAQQQSBoB21a3AzaxKtj36p8r3brtP2DTEStm373z58+XT99cLONm1H3nrp63WW6/4scR38sd0Zb2XIZtZ2T6sxq9goDtvOg7tm+jzWir+TS6EAYigAACCCAQRcB+064uXiwHjT9IysrKpHRvsZRVlUvfvDzJ15NYV3+4UaZPODbKlPRCAAEEEEAAgc4gEL7vvKn1sXHdAK8VpbFjYmPHjm1qMoY3IeC+Blb97dkFjztjl+1sWNmturJaevWsu6KmjbSnibBJE4tlMAIIdKCA+3fegYtkUQgggECrBOyYRXt39tn4xz/+UWpri2TogOFRi0yWl1Q6ubl422Lt7p6hl/lupFv52doGId9GRk+4QVYA0oK273zyluSnDZCxp42Nedyt/usYz7EoM0/WwHLCvVg0qE0FvN4crRg63Cue/b+JGl9AhUifnfnyzUkXO6Ha9evXO6WjbaJvfetbESHMRx991Amn2mXLLUBqVXHtD80CnfZH1xZdSUlJKIz705/+VFavXi2bN2+WRYsWOdVb22IZ8czDAsBWrfazzz4TCyg//vjjMmXKFGdSC8uWl5c3OZvevXs741jl2ca6jz/+OBTwvfvuu+Xb3/521NH9fr+8//77TnA22ggej0dOPPFEZ9CyZctCo1jI1rqTTz454vV0R7B1daf75JNP3N6he7fSr4Ut2q0L6OUIVwSkdpE+aPg7P+piPXoF4lQN5HqzqZAbFagT9rSdaxm1mVKhX8L1u5WfrnV2wNXvn2jPLdS//atC2bmp7nPB1sUq+J00dVaL2m/zW/yfustU1V/XTcu3tmie9efDcwQQQAABBBoTsB/G7vdatPHKS/aKe6JatOHx9mvOtqiNa5c1GtNtkpSsrpbMkjyZddjZnfJ70baPLBAdqzP/mTNnxhoc6t/UfHZuKoxrPqEZ8gABBBBAAIE4BCxIs3HZVuegh1XJGDV0jIwaPlorktRdus6+fyZMmBDHnBgFAQQQQAABBLqCgG072O2HP/whYdw2fsFt34Edu4h2wnWVhnG9AV9EUKVSr9jTr1+/Nm4Fs0MAAQQQQAABBDpOwPY5+WpSI7Zxwpe+ZdmOZh8X6d99YNQ8S/h8m3O8K3y6RHhsx5Jse/x/f/kHZ5vcHjena+pYlJnbOHQIJJqAUyI2dYRWydWbxJlTDGwQuWzaFTI0dYRTBfaf//yns14XXnhhxPq9/fbbznMLjNoPs/AD6+6wiAla8MQNhObk5MiPf/xjGTJkSGguFspt6664uLjBLLdu3Srr1q2T6upqZ5gFVq167RtvvBEa96uvvgo9jvXAprPOqtPGqpK7ZMkSmTVrljPez3/+c+fyLs6TKP9ZpVqrhHv88cfLwoULo4whsnTpUqe/VRhxO/esg/CQrjvM7q1tFgq2buTI/VU7nR76X0FBgfOwPb8UandoddwFWh13k7vUJu71ve0bpeFzDeTSdS2B8847T5YvWB2x0js37xZvdZqMHz8+on8iPrGNh0vOvkyKV+6VpfNWyaZFBTIsZ3SLz/Kx+aXHCCkv+3hNUpgk4utEmxBAAAEE4hewQO6iGCeH2Fy2LC9wDtrEM8c+ffSMqxhdc36A27h2s5PqLjnlCrnx4lud3xYxZp3UvW37Z9fmPTHXoWZPMK6dF03Np2JjTVzzidkQBiCAAAIIIBBFwPY12XdV+Im32dnZzpjWr1tlj2ZdRSrKIuiFAAIIIIAAAgggEIeA7UcZ0H2QZOZkSFVZ3fFRd7Kyogrpn9/ffercF28tZT9BhAhPEEAAAQQQQCDZBKz4WazjW5ZBGZQ3pNnbO3aca9fW2Mdsdm4ubHE2JNl8o7W3sWNRrnm06eiHwIEWcAK5Kf28kjJWg4o94mxOjciowDiZNfAsefKhv8m7774rFugMD3XanNyw5muvvRYRMH3ggQfklVdeiXNhjY82bNgwZwSrvmuVd93OQrLXXHON+7TV97m5dWXC586dGwqcujO1CrgWYr3xxhvdXs59eKA1nkCAG8i1iVeuXBkxL3ti1YhPOeUUp9Lwj370I/nJT37SYJzwHhkZGXLZZZc5va677jpZs2ZN+GB5+umn5YknnnD6nXbaaaFhZ555pvP41Vdflbvuukus0q7bmbPN0+6tO+GEE9xBzr1d/ufTTz91HrfXma6BiqDs/cwvtYuDIvpejKfz5Gl1XH2Pp/Rx3vLxTMI4nUTA3vs1W32h4IlbYXbqkBly7rnnJsVa3nHHHXKxhoO6a3Xy6f2PlnvvvVfGjRvX4rZ/4xvfaBBStmBOVnlu0pi0eOWZEAEEEEDggAvYd1hadUZEkMZtlH0f2bDGAqPuuBWle5v8PgwP67jT1b+3+YR3tn3Qmu/Z8Hkl4mPbNlo4N3q1fHOfNKLuKh9Ntb2p+XCJoKYEGY4AAggg0BIB+44+8fCTox6o2Lh8C79pW4LKNAgggAACCCCAQAsFDj74YFn+8VopLagKzaG6skY8AY/k5HQP9bMHjZ1UHTEiTxBAAAEEEEAAgQQVaOz41ooFa1q0X8qOpTR2TKx8fXWnPmbV1Evd2LGolpo3tUyGI9AWAk460ZMikjbWK76RGsqNs4Cot9AnF024TAYWDdFJPHL11Vc3aI9VprTOQqwWzjzrrLNk0KBBcsstt8ioUXWXkmswUTN7DB8+XA499FBnqhNPPFGOPPJIOfbYY2Xo0KGyZ0/sswiauRiZOnVqaJLBgwfLjBkzZMuWLU6/22+/3bl/7LHHxALCV1xxhbOu7qVev/vd74ob6A3NJMqDlJQUOfXUU50h0SraWojOquda9+tf/1rS0tKi3sKDt7feeqvz4fzFF18499Zum4/bTpvXDTfcIEcddZQ9dLrp06eHKu9aINeqj5x00kmOq4WGZ8+e7Yz36KOP6g/qnH1T1d1ZaNgN606ePDliWJs80Wxw9bKAVH8YkODuOOeo72nfaI+kjfaKvdfpupaAbRTdcOVNsmdFhaz4ZI1sXlwgg9KHiX1xJ1Nnf7dPPfWUE8RvbUjI1r1qi1d2b6n7jLT7FR9skDvvvDOZSGgrAggggEASC9j3mn0v1++sqn28Qc7dWxpeuSJ8fr179250J4Y7blPzccfrLPd1O4zSpaK0ssEqff6fr+Too49u0D9aj7aaT7R50w8BBBBAAIHGBOzkmd1bChuMsnzB2i59gKIBCD0QQAABBBBAAIF2FrBjDRmlkccJi3eVSE5GbkSFXNsHYeFdOgQQQAABBBBAINkFYh3f2rW1qEX7peyY2MIYV5W0HEe8x8yS3TVW+xs7FtVS81jLoj8CbSkQKheaOsArqYdotFYricbbDU0bKecPu1QmZ02Tc89pWGnSwqXPPfecDBw40Alpvv7661JZWSm/+c1v5Oabb3YWk5qaGlqcxxNnGjg0Rd0Dq8BrH3rWWXVWq5RrYdg5c+aEAqMWdnU7n8/nPAzv5w5z+7n3bn+rgPvkk0+GqgBbwLWkpMQZ/M1vflOsDfZBYCFdqzxr62qh1/vvv9+pZunOp6n7M844wxnlgw8+aDBqQUFBg37ReoQ7DhkyRGxeFpi2YK21+6WXXnLaaRWNH3roIfn9738vronNz+v1yt133y3PPPOME3a2gK1VQXYrEB933HEyb948ufTSSxssfv78+U4/C2Onp6c3GN6qHloQt3pDQPa+E5DA+vjn5Oml1XEnanXc/qG3e/wTM2anELD348UnfUvSNubJ5N5HyH333deld/7Yjq8bNaS8e1m5rPx0rXM/ZdBh4p5E0SledFYCAQQQQCChBeyAzeaFu6QyrDrt7q2F0rd7f2fnQmVZZNXaWCtjodtYXXMO9DQ2n1jzT+b+FmSqH4i212LL8h3N2rnTVvNJZkvajgACCCDQ8QL2vb13s4htO7idPU4vzuZ3rQvCPQIIIIAAAggg0AECtu/FCn3UlPulrKhCqitqxSepMvSgoRFL36Vhkq627yUCgCcIIIAAAggg0GkEYh3faul+KdueSt2bFnG8zMVa9nH8RWzcaTrjfbRjUewL7IyvdOdaJ091dbXGHOu6mi0BKZ/tl9p52ksrkcbVddPqujO9knWaT1L6xQ7UWpi0qqpKBgwYIPXDrnEtJ46RampqZNOmTZKXl+fc4pikRaOUl5eLhV6zsrIaTG+B461btzrh1/rVYxuMHKXHxo0bZeTIkU6Q2ObT1qHW7du3y86dO8UqC3frpi9eHJ25rl271nndLGRsgd1Y3de//nV59dVX5fHHH5eLLroo1mgt6l+zLSAVr/ql5n19f1bEOQvNXqce7ZFu5+j7k0BunGiM1lUE/vGPf8izzz4r559/vkyYMEHGjx/fVVad9UQAAQQQSACB66+/Xlb7F8vk48aLBXDffPx9+X/X/4/k5+fLZTddLBfdcWajrXzsx8/JjrW7Yo5jJ5R97//7rpx0eeMVX5uaT8wFJPGAJUuWyHlXnisnXXeEZGZnOGtiAd3Vr2+Tr776Ku41a6v5xL1ARkQAAQQQQGCfgP2efWbu49JnfI5Wfd8rG77YLjdecKtccMEFGCGAAAIIIIAAAgh0sED//v1l3GUDpLteVTMnO0ePBQ+MaIHtc5iWe4z89Kc/jejPEwQQQAABBBBAIBkF7PjW4qIFMnb6cGe/VPnGGrnoxG+1eL9U+PGycI8X7p8jsx98scvnONxjUV+7eLL07J8XcUyRfYHh7xgeJ5JARLIyNd8raVO94slvRhPLRWrmB6Tyfb/4d4eyvQ1m0K9fP7Fqre0VxrUFWrVdC5paILc9OwuyRgvj2jIzMzNlxIgRocq8zW2HGV1yySVOReG5c+c2d/Imx7eAg1XGjTeMazM0V6sQbOvVWBjXQtcWxrXQ7jnnnNNkW5ozQu2uoFS+F5CaBc0I4+oCPAM0MK7v6ZS+EW/15iyacRHotAK2cTJ79mxnw5Awbqd9mVkxBBBAIGEFvvOd70j5er+s/mK9bF5cIH1loPOd1KuXXt4gjq5oc93VKhobddfmosYGO8PimU+TM0myEex7/7hDT5CFby+RPduLZMvq7RIsSnWq2jRnVerPx+bVkvk0Z5mMiwACCCCAgAnY79kLT7hcdnxVKmXLA3Lc+JNbfNADUQQQQAABBBBAAIHWCVjBjwljDpExo8c2COPanHdu2t26BTA1AggggAACCCCQQAJ2fKt3xaDQfinbR9WaYKjNb+PnO5ygqbuadrzFtzujy4dxzcOORZ13yvmOtx3PCj+m6Hpxj0CiCUSmFLWaaPp4r6RO094Ni7/GbHtwj0j1uxqY/EhDuUWxQ7kxZ8CACIFf/epXzvOf/exnUltbGzEskZ/cfffdTvN+//vfS0ZGXaWttmivv1DfWx9oZVwN5Mr+qxE2PWur3jxdQ+Zj9f2s7206BBBAAAEEEEAAgcQRsIM113/rRqldli4H50yTBx54wGmc9W+LLt5gb1ssKxnn8d3vflfySgfIji+LpXhJjYaaLpMLL7yw2asSPh//lpQWz6fZC2YCBBBAAIEuL2DfW/b99asf3y133XVXl/cAAAEEEEAAAQQQOFACPXv2lJ2bY4duK8urxMahQwABBBBAAAEEOoOAHcd6/vnnQ/ulWnJsJdzB5nfstONl5adrnd6FGsa1Yzd33nln+Ghd+rHt+7P9gCnbukccU+zSKKx8Qgt4qqurGyRoq1cFpPw5Ddcu0kGagYy38wzwSPpJHsk80ie+PE+8kzFeFIGHH35YnnnmGbnnnntkxowZUcZIrF6FhYVOVdxx48bJgw8+2GaN8++pC+NWzQ1IcHszZmsZ3Kke6fYNn6SNiMydN2MujIoAAggggAACCCBwAAT6jegjV/zPNxpd8uM3/1u2b298A3HIpIFy0R1ntno+jc4gyQc+/fTTzhU07Coarenaaj6taQPTIoAAAggggAACCCCAAAIIIIBAxwv86U9/kpeXPiuTZh4cdeF/vWO2zP33W87+h6gj0BMBBBBAAAEEEOjiAl9++aVcd/s1MvOCw2TJRyvlwuMvl4svvriLq7D6CCSvQNRAbrBGpHK+Xyqf90twc/NWztNfQ7knaCj3KA3l9iKU2zw9xg4XqN1VF8atfquZYVydiWeISOa5Psmc7hNPavhceYwAAggggAACCCCQ6AL9+vWTK+47J2Yz92pllaXPbJY5c+bEHMcG9Bupwd5fxQ72xjufRhfCQAQQQAABBBBAAAEEEEAAAQQQQKALC7z77rty2U0Xxzwp+n8ve1S0QFQXFmLVEUAAAQQQQACBpgWeeuqp0EiXXHJJ6DEPEEAg+QRSojXZAozpE73i3xGU6jc0DFkUbazo/YLbglKlx8WDVX7JPMYnKf0I5UaXom9MAS3MXLM9IHvfC0i13oI7Y44ZdYAnT9+/X/NK+gQvYdyoQvREAAEEEEAAAQQSW2DixIliYdmMbulRG7px+Rbp0aNH1GERPUsbv1LCjk274ptPxEx5ggACCCCAAAIIIIAAAggggAACCCDgCuTl5UlVefTAre3fGTZsmDsq9wgggAACCCCAAAIxBAjhxoChNwJJKBDzCLUv1yMZR3glZZoGajOat2bBAg3y/icgFa/VSs2GgIj+o0MgLgF9r1Svt/eOX6qsMm4zw7iSKZIyXd+7M7zi604YPC5zRkIAAQQQQAABBBJQwMKysbodG3aJhXab6mycqoqqmKPZwaJ45hNzBgxAAAEEEEAAAQQQQAABBBBAAAEEuriA7VsJlnii7oPZtHyrXHrppV1ciNVHAAEEEEAAAQQQQACBriQQM5BrCKn9vZJxnE98EzTYqFVzm9MF92iw8r2glL+owcqlfq2Yq2VP6RBoRMDeI3u/8kvFC36peV/fL4WNjBxtkL5HUyZ6JPNYrcyc3+hbO9rU9EMAAQQQQAABBBBIEIHc3Nw2a0nBxtjB3oINzT37q82axYwQQAABBBBAAAEEEEAAAQQQQACBTiNwzDHHSLR9MHaVo7bcz9NpwFgRBBBAAAEEEEAAAQQQ6LQCjacWNYebNsIrmSd7xTtKnzQ+dkOkMpHaj4NS8a+AVH4cEH8xodyGSPQxAX9RUCrnaWXcf/ml9hN9n5Q308Un4hurlXFP9knaMH2jUhy3mYCMjgACCCCAAAIIJI7A0UcfrVVVol/q0G1l9+7d3Ycx79tqnJgLYAACCCCAAAIIIIAAAggggAACCCCAgNi+nJLdemC4Xrd52Q6xsC4dAggggAACCCCAAAIIINBVBJqM2Ho06LhYyn0AAEAASURBVJg+zieZp2ood4SyNDlFPTo9ju5fomHLFzRs+aZWPt0Y0B71xuFp1xXQ90LNBn1vvOHX94hfAsuUoqaZHPqe9I4UydD3aPoYfaLvWToEEEAAAQQQQACB5BWYPHmybFy2NeYKVFXWxHUwxw74VDcS7LX52LLoEEAAAQQQQAABBBBAAAEEEEAAAQRaLmD7YD57fUnEDEr3lEmWP5t9LxEqPEEAAQQQQAABBBBAAIHOLhBXvNaTrqHcSV7JOM0n3qFK0tzqo1rwNLgpKFVvBKT83xq8/EKDl2VUy+3sb66m1i9QqkHtz/1S/rxfqt4MSHCLTtHct4UVbtageOYsn2Qc4hVPWlNLZTgCCCCAAAIIIIBAMgjs2LAnZjM3Ly+QKVOmxBzuDnCCvctjB3ttPvFU0XXnxz0CCCCAAAIIIIAAAggggAACCCCAQEMB20+TWdNNLITrdoveWSpXXnml+5R7BBBAAAEEEEAAAQQQQKBLCMQVyDUJb6ZHMqZqKFeDj95h1qMFPiUitfM1hDlbQ5hz6qrlBmtbMB8mSWoBe82r12s4WysmVz7nl9oFmsItbcEq6XvQwrgWFE+frGHcjOYmxVuwTCZBAAEEEEAAAQQQaHeBnJwcqd4b+7IJNbvjv+RGwfrYwd4964viCva2+wqzAAQQQAABBBBAAAEEEEAAAQQQQCDJBe6880755PVFzlqUFZZL98weMmDAgCRfK5qPAAIIIIAAAggggAACCDRPoFmxWm+WhnIP1VDuGRrKHakL8jVvYc7YGsYMrBGpekUDmRrMrZznF/9uK6HbgnkxSXIJ6Gtcu0sD2R/5pUJf+6pXAxJYp6vQklC2vve8o7Uyrr4XLShugXE6BBBAAAEEEEAAgc4hMHXqVKneWRs1lGtBXbsMYjydBXtrYgR7bT7Z2dnxzIZxEEAAAQQQQAABBBBAAAEEEEAAAQSaELjqqqvEX+yV7et3yqK5y+XkSWeK9aNDAAEEEEAAAQQQQAABBLqSQLMCuQbjhnIzz/SJb6yGIFNbyGXVcj+2arkazH3JL3sX+yVQRiq3hZoJP1mgNCh7F2pl5Bc1hK1h3NpP9LVuSVVcW1N9z/kO9kjmWfvCuBoUp0MAAQQQQAABBBDoXALTpk3TAzg7GqzUpuVbxAK78XQ2XpUGe6OFcm0+M2fOjGc2jIMAAggggAACCCCAAAIIIIAAAgggEIfAdy65QZbN3iSH9Dk07hOq45gtoyCAAAIIIIAAAggggAACSSOQ0pKWejO0Uu5kn3jSRfbOCUjtVxqurGzBnAJaGHdrUKq1amrtKo/UTA5K2iFeST3IQ8XTFnAm4iSBiqDUrNfX+MuA1CzSirgbtZXVrWhplkjKIfr+O8kn6WO94klrxbyYFAEEEEAAAQQQQCBhBfr27StVe3c3aN+2tTtk0oQGvWP2sGDvNg32Dhk7MGIcm8+pU8+J6McTBBBAAAEEEEAAAQQQQAABBBBAAIGWC1xzzTViNzoEEEAAAQQQQAABBBBAoKsKtCiQa1gWxk0/xOdUzK3M8UvNZxrKLW4howY0A6uCUrVZg7lLg5I60SOpB2swd7AGc6l+2kLUAzuZE8TdqEHcpRrYXhwU/7oWhrbDV6OHFsc9VCvjHu+TtGFa3NkXPpDHCCCAAAIIIIAAAp1J4Nprr5Xv33ujjJg8NGK1Kkr2Sp8+fSL6NfbExq2uKmwwSk11rWRl6dledAgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCLSBQIsDubZsjwYi00ZplVI9jr03LyDVHwUkuF0HaPayRZ1W2fUv0fCmVlSt0aq7KeM9kqZVUFOHaDA329OiWTJRxwoEyjSEa6/fcg3iarjaCeKWt7IN+tJ7Buh77UivZByl74f+Gsbl7dBKVCZHAAEEEEAAAQQSW8DCspuXFTRo5Lp5W+Xbr327Qf9YPa677rq6YO+kgyJGsXkfc8cxEf14ggACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAQEsFWhXIdRaqwcjUQV7xnqyh2d4iVe8GJLBGh9S0tEk6nQY4/V9qmHONBjsXacXccR5JGaXhXK2K6uuhC9Q8Jl0CCQT09SrUIO66gNRopePaZUEJbGiDiri2imlaCHekVmM+1ifpk/e9/gm06jQFAQQQQAABBBBAoH0Epk+fLhXbq6RWK9mmpNX9bKks2yvHHNO8EK0T7F2+I6KRNk+bty2DDgEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgbYQaH0gd18rfHkeyTrKJ77eHtn7gVZH1SCtFLWyiRUiAQ13VlkwVyukVo8JSOpIrZA6TAO6/TziSadMaiuFWzV5cK++LgV6W6ch3NX6mq8ISnCbzrK6VbPdP3Gehr0neST9aK+kj9ZKzLze+214hAACCCCAAAIIdAGBU045RdYu3iijDx3urO1nby6Wc465uFlrbqHb8q2VEcHejcu3NjvY26yFMjICCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAQJcTaLNArsl5MjyScci+UO5ArZY6T6vlbtIBta101YBnYL3eNmrw83O/VGsg1zfCI6lDNZg72CspGgYWXyuXweRxCQT9Wg13j4ZwN2kAd72+HhqWDqzVIG6hTq6Vctuk03elV68onHq4VzKmawA7X0siUxW5TWiZCQIIIIAAAgggkEwCt912m3z9irOcQG5tjV88AW+LgrQnn3yyrP1Sg73T6oK9FvK94uTrkomCtiKAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIJLhAmwZynXXV4GTqQK/4cj1SNVBvGsr1L9kX2GwthgY+gzs137tTg6Bfaii0vwZzhwUk5aB9wVxdnq+7hnMJb7ZWOnJ6dfcXq/lWvW3UIO6GoPjXaf52m1ZB3hs5amufeXqKpEzwSNoRWhV3rFe83aiC3FpTpkcAAQQQQAABBJJV4LDDDpPaXQEpL66QrWsKJD84VKxfc7vbb79dzr3ybCeQW1VRJZs+3iE3vnRjc2fD+AgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCMQUaPtA7r5FebM9kjnNJykamq3S0Gz1J1pJdZ0GOKtitqV5Ayo1EKqVWQNrRWpyguIbFBTvEA1zDtJwrgaCbbleDQV72m0Nm9fcZBs7qFWN/UUawNXQrX+rhnA36f1GNd+sr2FZO6xNhuaoh2sQd7pH0qdQFbcdhJklAggggAACCCCQlAI/+clP5K9P/5/T9ofu+UWL1mHGjBlSvdMvFSWVMu+lz8UCunQIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgi0pYCnurpaE5bt2wUqg1K9Rm+farBzUUAC23V5/nZYphVTzdZg5wCtlDtIxGf3+RrQ7af3vTWgm6kjUHA1Ory+C+x18lv14QK9325BXL1t3lcJ10K47fFO8dnrpUHqSVoRd5pX0kZoiDqDFyn6i0RfBBBAAAEEEECgawrMnz/fWfHDDz+8xQD33nuvPPavv0jxxjL5+9//Lq2ZV4sbwYQIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAp1WoEMCua6ef4+GcpdptdwvNJi7NCjB3TqkPUKe7gK16qqnT10w16vBXF9fvdlzDef6enbxgK4FcCs0cKuviX+X3jSI69+h/fYFcYO7FHGvC9kO95aN7q1B3PFaFXeyBnHHecWXRxC3HaSZJQIIIIAAAggggMA+gXnz5skRRxyBBwIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAm0u0KGBXKf1AdEKrAGp+iogNYs1BLpSg7lFOqQ9g7m2YMt6WvVcDeV6++p9H73vpeHcXhrO1SCot4fed9fqrOk2cufrglValLgkKIEiNbcQrt4CGogOaBA3UFB3L+1VBTec04K4eeo+xiOpEz2SPt4nKfqaiDd8JB4jgAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACySPQ8YHcfTbBWg3mbtVg7hIN5i7RgOgqTeR2RDDXfW0soJup4dCemgXVUK7X7jWY64RFc/W5hnO9OdovW+/15kl1J0zs+2C1hmvLNWRbard9Idxifay2wUK936PDd++rTmwVcNs7CO1yuUHcURrEnaBVccd7JSXfK54UdwTuEUAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgeQUOGCBXJcrWCNSo8Hc6mUBqV1WF8wNamhUtJJuh3duSLeHBnUtlJur9901lJujgVwL52bpfbd99xbm1Zs3Q/vpzZumrfW1c4v9yqKVboNVGqyt1FCtBmqDldqvQh+X670GcYNa5TaglXCDJXavwzWM61Qg1vE6LHwbzqCVbz1WiViDuCnjtCLuOA3i9tcgbpIEnMNXhccIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBANIEDHsh1G+VUzC3QYO5yrZi7QoO5qzVIWqBDNbB7wDsL6mrg1sK4ojePVczNqgvkWijXk2mhXL23UK6Nl6rPNXDqVH+1CrB681hY1+ZjlWI1pOo81jsnJKvh46BVqrV7Dd2K3bSCsJkEa9RBq96aQ9AJ4+q9hXE1YOvcKvReQ7hiYVwN5YqN21FVb3VRMTtb/3xd9ZEaxB2rFXHHaBC3LxVxY3oxAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEklYgYQK5IUENpdbuCkrNGg3maii3Vm+BTZowtdBponcWug2FcvWxVYH1aTg3RdtvwVw3iOuEcvU/7R20JK7+c4O5dUFcHVarPWs9TiDXCdla0NaCuoneZesqD/GIb6Su/kivpI7QIG4vXR9bdzoEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEECgEwokXiA3DDlQqsHcjXXh3Nq1WjV3vVaB3akjJELV3LB2dvmHVhW4jwZxh2o13OEeJ4SbqqFcr1YSpkMAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQ6u0BCB3Jd/KAGcGt3ajB3fUBq12kwd0Nd1dxgkY6RDFVj3RXpTPdaDdiTp4VvB2s13IM0hDtMw7hDtRpuH6sI3JlWlHVBAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEGhdIikBu+CoEKoJSu9Uq5wbEv0nDuZtEAlu0ci7h3HCm9nnshnAHagh3sFbEHeyVVA3jpvTXariZVMNtH3TmigACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACiS6QdIHccNBAmQZzt2lA14K5Gsr16+OAhnWDu3WsqvAxedxigXSthNtbw7cDNHSrwVvfQJFUDeI6IdxuhHBb7MqECCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCDQaQSSOpAb/ipY5Vz/Dg3oaiDXb7cCDecWiAS1X7BEx6wNH5vHMQVSNICbq7e+GsDtq0HcfK2Aq2Fcu/msH5VwY9IxAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEuqZApwnkhr98wRoRf1FdQLd2e0CDuiKBnRrQ3aUB3d0a0C3SsXUcOhVI2xfA7a1h214awHWCuBrA7acBXLv18IhHQ7p0CCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAALRBTplILf+qgarNKBbqAHdXftvAQ3mBgo1oGs3De8GS3Wqzl5FN1XDt9l6y9OQbZ6I1249NXTbR28ayHVuNkxDunQIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAvEJdIlAbn2KoAZvA2UazrWQ7h4L5taFcwPFGswt0YCuc6sL6QYrdOpkq6Zrwdtu+8K33TVgm6uPu2v4Nler4PbQKrgawvVq8Na5z9bhvvpCPEcAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQiFegSwZyo+L4NaRboQHdEg3nFutju7dbmQZ0y/WmAV7nXgO6wUp9XKlz2auP9SbVeuuo6ropuiytYOvJ8IhkBsWTqY8zNVSbpfcWwu2mj/Xem2M3Dd5aCFfDuD671/GE8K0C0iGAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAJtJ0AgtynLoIZuNXAbKNdwrt32BXLr7i2Qq+HcKr3XmwVzg9X63A3oakg3qEFfJ6xr9zYvvUnAHtsD7bwakrV/erN7JzCroVunaq2Fb+2xBXDTNGir95Kuj+2mgVwL43otiKtBW7v3ahjXbs54Ni86BBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIF2FyCQ21bEVmG3RnO2VRrI1Xup1XurmmuhXLtZCNcJ4uq9E8qNDOQ6YVyvhmvt5gZxUzRVuy+Q63UDuTqcDgEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAgcQQs+knXFgI+rVCrN9HKtXWde98WM2ceCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAKJKkC91UR9ZWgXAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggEBSCBDITYqXiUYigAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCSqAIHcRH1laBcCCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAQFIIEMhNipeJRiKAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIJKoAgdxEfWVoFwIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAUggQyE2Kl4lGIoAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggkqgCB3ER9ZWgXAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggEBSCBDITYqXiUYigAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCSqAIHcRH1laBcCCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAQFIIEMhNipeJRiKAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIJKoAgdxEfWVoFwIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAUggQyE2Kl4lGIoAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggkqgCB3ER9ZWgXAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggEBSCBDITYqXiUYigAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCSqAIHcRH1laBcCCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAQFIIEMhNipeJRiKAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIJKoAgdxEfWVoFwIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAUggQyE2Kl4lGIoAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggkqgCB3ER9ZWgXAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggEBSCBDITYqXiUYigAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCSqAIHcRH1laBcCCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAQFIIEMhNipeJRiKAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIJKoAgdxEfWVoFwIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAUggQyE2Kl4lGIoAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggkqgCB3ER9ZWgXAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggEBSCBDITYqXiUYigAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCSqAIHcRH1laBcCCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAQFIIEMhNipeJRiKAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIJKpASqI2jHYhgAACbSnw3HPPydz5b0rR5hI577zznFtbzp95IYAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIdF0BKuR23deeNUegywjMnj1bnn7zcSnO3iYVA3bJnx67T5YtW9Zl1p8VRQABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQaF8BArnt68vcEUDgAAtY8PaXv/yl9BiTIUPGDZRxM0ZK6gC/PPzwwwe4ZSweAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEECgswgQyO0sryTrgQACUQXee+89Kc8skj6DeoWGjz1spMyZ94YsX7481I8HCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCLRUgEBuS+WYDgEEkkLgz3/+sxx1zrSItmZ1z5T8CXnyyCOPRPTnCQIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAItESCQ2xI1pkEAgaQQePHFF6U4dZf0HdK7QXvHzRgpzz33XIP+idZjxYoVidYk2oMAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIFBPIKXec54igAACnUZg0aJFGsbtGXV9uuVmSYWnXCzwOmbMmKjjdHRPa8tLL70k20u3Scm2Uhk9erQsXPW5ZAWz5cwzz3RuHd0mlocAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIINC0AIHcpo0YAwEEklRg5cqVMmrqsJitn3j8KHnvvffaPJBry33llVdk1KhRzrLPOOOMmG0IH/DDH/5Qgv0rpXRvsXzw1Ocy7fyxkpLmk27pOfLkKzvF4/FIvPMKny+PEUAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBA4P9n7z7g5CjrP47/rqX33khIoYaaAJEaQJBeRQUEKVLFAoKiAiJF/hYQAUFBQDqCgEpHkQ7SQ5EaSigphPR2yeXK//k+ybPM7W2Z2du727t8nlc202eefd8+M8/M/OYZBBBoWQECclvWl7UjgEAbCijY9uC998iag8FrD7Qnn3zSjj322KzzJJ1w0kknWdVgs4UNc+y/9z3pF1cg7V577ZVzVQrgfXbqU7a5a633o5dnWv8tuljlyFprWF5v4zYaZYtnL7VLr/m9Dx4Ogb45V8hEBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBVhMob7UtuQ3NnDnTXnjhhdbcZMZt1dXV2VNPPWXz58/POL0tRpZinnI5LFiwwKZPn27V1dW5Zms0TfNqmdmzZzcazwACLSEwdepUq3SBsblSvyF9fAu5ueZJMu3++++3B1+41+Z3mmmD1u9rXUeZ/1x69e9N+cmWtNxvr/0/GzGpn838ZJYtWDrXRm03xMq7lNmylUvs408+siGjB9nKXovtmmuuybYaxiOAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCLSRQKKA3HfeeceuuOIKu/baa/NmV69s17y33HKLn1cBnKNGjbJtt93Wbr311rzLt+QMF1xwge288872pS99yerr61tyU7HXXYp5ypX5iy66yEaPHm2XXHJJrtkaTVNrpVrmm9/8ZqPxDCDQEgL6vQ0Z3T/nqnv06W6L6xflnCfuxAcffNBuuPca2/aACT54VsspiFafFT0X5dxvvvTSS/bGh69Y/7G9rHrhCus5vKt179fFyirMOvesspmfzbClS5fahluva/c/dq+99957cbPFfAgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAq0gUJlkG127drWTTz7ZL7LNNtvY+uuvn3Xx3//+93b11VfbwQcfbIceeqjV1tam5k3SqmpqoSL2LF++3K9NAW4KyC0vTxSXXMScfLGq1siTAqHfeust22uvvWzSpElfbLwZfaUS0NyMr8CiJS6g4NOHHnrIxo4d63O6++67x8rxjBkzYs3XvW9XH+A6bty4WPNnm0mtfy+pmm/jx6zbZJYNt1nX7rvuXhtx+QibvWSWLZq1xHbbbTfTNvVRMO+g9fpal+6dbfHny2zYVn39OioqKqxz905Ws3SZayX3Y9tg/Q2s37rdfHCvgvhJCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACpSGQKCB35MiRttNOO9mjjz5qd9xxh5155pkZv4WCS2+77TY/TcG4SgMGDDC1Ajlt2jTbY489/Li2+u+MM86wzTbbzLbYYgurrExE0GJZbo083X333XbnnXfa8OHDixaQ22IgrHiNF3j//fftj3/8oy2qXWCzln1i3d/o5U0+/PBDO/HEE2P59B3SJ9Z806dP94GxsWbOMtO//vUv2/jQURmnzvl0ri2w2Xbjw1fb4DED7ON3ptuLL75oI0aM8OXx1U9fskm7rW+fvTPfGirqrfeI7qn1KCi3snOFLVgw348bOnawvfDUC6np9CCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCLS9QOJo1COOOMIH5N54442mINKysrIm3+I///mPLV682Hr27Gm77LJLavrGG29s+rR16tatm33ta19r62w02n4p5qlRBhlAoBUFPvjgAzvrrLPsrfmv2MgNhtmIzYfYorlLfA5uefAG36r18ccfnzNHCugdOWlYznk0sc+gHnnnyTfDlVdeaVM+esEGLqiyTz6rtYEDB/pFBg4YaB++/rG9+8Z7Nnxif7PaGqteXG09hnaxT5a+a58tet/ueXqe9RrZxWobam3Oh/Otc6+qJpur6lJpSxcu8+P7Duptby6Z1mQeRiCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCLSdQOKA3H322cfnVq1UqsVbtTKbnm699VY/SgFz0RZo9Yr12bNn22mnneZbhowuN3fuXHvsscdMrUx+8skntuOOO/rWeLX+EPS7dOlSHwRcXl5uv/3tb00tR4akVnv/+c9/2iabbGJHH310GO27l156qSnA78gjj/Qt477yyit23XXX2UYbbWTHHHOMn0fbP++886xHjx72i1/8wm655RZ74okn/HLrrbeeHXLIIbbDDjs0Wq8GGhoaTK+qVxCy8t+vXz/7yle+Yocffrjfxv/+9z/79re/nTcQOVOetP5zzjnH5s+fbz/96U9N8/z73//2LWuqtWIFOx922GE+OFHzZkta5r777rNnn33Wz6K/z1tvvWUKAk5/7b3m1Uf57tSpk02cONF/n0mTJmVbvS1cuNC3ZKr162+1++67+2VGjx6ddZn0CfX19TZlypSU41prreW/n1pkVuvKpDVL4PHHH7dn3n7S9jx2svXstypgNnQlcdP919nYsWMbBfynC6nV2wn9xqaPbjLcs193X84nT57cZFqcEVdddZX95je/sX5jetjC5fNsZU2t1c+rdd2VpscVnv77FBuz6wDrt3Yv++CZ6fbZrPk2fEJ/W3entayqW4XN+3ixdR/Y2RqszpbMrbZ+45oGCCsgd1HdMlu2bJn3mL9sns/zmDFj4mSReRBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBFpYIHFArlq9VbCpWsj929/+1iQgd9GiRXb77bf7bB988MGNsn/99debAnkVMKtXtYf00Ucf2YQJE3yrumHcww8/7Ht//vOf25lnnun7FUB6xx13+KDeo446qlGQ65///Gc/bdCgQaZpIYi3trbWB7Wqxd5TTz3Vr+fdd9+1K664wvbbb79UQK6CXjVOy8+bN8+uvvrqkBV76qmn7JprrrHLL7/cjj322NR49SgwOOQvTLjzzjvt73//u1VXV5sCCxWgm69l4Ex50vr0vRTELPdf//rXYRP2zDPP2F//+lcfwHzTTTelxmfqee211/x3C9O0rD5aZwjIVWDxCSecYH/5y1/CbL57//33+0BleXzrW99qNE0DM2bMsPHjx/s8hokK/lV68sknLVcgb5hfXbWGKstoUl7093j++edt2LD8LZ1Gl6W//QoouP3hlx60bQ+YkArGjX6b4esM8YHw559/fs6AXAXhT7D8Abl9XIuzn376aXQTsfu1X7jxvuts/op5Nmqt/tajb3e/bK0LyrWyBnv9+TdtWd0SF4w7xj6fOt8WzF5kIzYZ7INzw0YaVpZbj2FdrapzlS2attzW3mlV67phurp6CKGqa4VVL6/2gfS9B/bwDy4QkBtVoh8BBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQaDuB8kI2/c1vftMvdvPNN5sCXqMpBGMqAFWt1eZLCxYssH333dcH46pl1QceeMC3lHrhhRf6Rc8999xUgK+CbDWvkgJKQ1IeHnroIT+o4FW17hqS+hWMu84665haXc2XtLyCTxV8q0BWBbtus802frGf/OQnvjXYsI5//OMfqWDcH/zgBz4A9bnnnvMt7D744IM+GDfM29yugnG1DQWnat2HHnqoX6WCnxX4mispAPrtt9/2gcGa7/TTT/fDL7/8cmoxtUwcgnH13V9//XVTULSCm5XUkrBa50xPah1UgcfBS4HIatVW6atf/arNnDkzfZEmw9puCMa95JJLfEvA+h2pxVL9PQ444ABT68ikNUNAZXva51NtxLpDs35hTXtt6qs+wD/bTGppOz0t/HyRffTGp/7z6mNv+u78zxbkXE/6OsLwI488YtfdfY2NnDjQevTvZgPG9AmTrLJTpXXt0dk+/t8sG7jhqiDdudMWuVZw662qR6V9/t4C/5n2/CxbPm+ldelTaXW1dVa70E3vWeEDjlMrW91TXlWeKoO9+ncvKM/p62QYAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEECgOAKJW8jVZnfYYQffcqmCJdV67I477pjKzW233eb7jzzyyNS4XD233nqrvfXWW7b55pv7Fl/VCq6SWl1V/3e+8x375S9/aV//+tf9+F133dUHzKrl2eOPP96Pe+GFF3zQ7fDhw02vqVcLm6FF2hC4q9Zw46Zrr73WDjvsMD/7+uuv71vv3XDDDf02FNgaWn39/e9/7+dRPkJAqUbou/Tu3dtOOeUUP70Y/6l12ug2FPSqgFn9DRSku/3222fdTN++fU0ftYirpNaJ01vWrKystN/85jfeXcZK6623nm255Za+5WEFNctZQbLp6ZZbbrHddtvNj5bXdtttZ1tttZUPGLzhhht8AHD6MmG4vr7eTjvtND+o34KCeJXkrW1vu+22PkBbf9MQjO1n4L8OKzBt2jQbOLqfLateZtUuCLxmaa0PRK2s7+S/88LPF1vvgT2tx4Bupt/XEUccYWuvvXbKQ8uHNHfuHL+s9iXT//e5zfzkMx9A3r1fF5s7Y771H9bXPn5lts3ttsTOPvtsvy/T8tH1jR492q9OrXsrheGnn37aKgfUWtcBVbb486XWuZcLqq2rs4qKCj+f/lv8yQrrv1F3W+Smf/7eIqvs0WAfvzjLt+BdVl5m1QtW2MoFqx5qqFmx0i+n1qpVLtQqbmjpWxPUX+1MQsoUcBym0UUAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEGhdgYICchW8qVZXf/WrX/nWa0NAroJD77//fv8NDjrooFjf5MUXX/TzHXfccT4AN7rQIYcc4gNyFbCrFlK7d++eCghVi7gKXFOQmoI1ldS6qrar1l5PPvlkP+7RRx/13S9/+cu+G+e/Pffcs9Fs48aN80F4CshTwK+SWuUNwb5quTY9KUi3mAG5aiU2mvS9999/f1MLtcUIzJNPJqOuXbvazjvvbP/85z9T3z2aDwUnh2DcMF7ByKeeeqp997vf9a3dhvGZujJVsK+ChUMwbpivT58+9o1vfMPOP/98vx4CcoNMx+4+8cQTtt5hg+3Djz6wz6fNtyWfVfvg3J69eljn3pXmA3KX9LT6rjV2279usdruy61qWVdT0PpHH31kdz1wRwpo5twZPgB36Rs19un/PrPynnXWpW8nq+9bZr1cC7YLZs63FSuX2/QFn9olf73QXp/7gi2ct9h61Pe1lXU1fj0bbL6OLVu8wge/1y6tt2EjVrXcO/WV923lBtU2bfqHtnSOCx5eXu3nLy8r9wG1KjsKtl30qZs2a6Yt+XC5Dd2xp2sBt9yq59VYzZI6P39FnzJTcK659nPVr1RXX7eqlVw3WFFe4fdzFa6F3JB6D+wVeukigAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgiUgEBBAbnKt4JlFZCrFnF/97vfWZcuXXzQpqYpoHXo0Oyvm9c8Iem170onnniib6E1jE/v/u9///Mt0/br18+22WYbHwyr1mo32GCDVBDwHnvs4VtnVcuxS5YsMQXEhfVvvfXW6avMOKzAUG0jPW200Ua+xVcFASu9++67qVlCi5mpEa5HQcshn9Hxhfavs846TRbVd1dSa5rFSAo2VuDts88+a++8844PQFy0aJEPmM22/s022yzjJLVwq6R15UqvvPKKn6ygXLXIm55Cq6QhcDt9OsMdT0BBtb1n11tlp0r7+G3Xou3cldalT6U1dKqzPoO6W9dhlbaiYZl1Gmi2ZN58+/sDd9r0t2b7YH0F8/79gbus14DuHmalrbDKruX28eszzDrX2+Dxfa28stwqu5S7Fmg727ypS6zM7QW79aly2+hkb86ZYgN7DrYpz39g82bNt859q+ztBa9Y9ZLl1rtHb/vszYW2srbGj1/8QbWNX3+YrazuZJV9yq1m5QofRNvgimNdbZ116rS6Rd+Pq61b31XBt73W6mq9R3W3jx6bbcsXrPpeVb1dXlyelNTvYu39eurNBeW6dSnAVwH45RWrgnU1n1oIJiGAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCJSOQMEBuQoG3XzzzW3KlCm+hdq99trLbr75Zv/NDj/88NjfUAGfISmoN1PStmpqVrVWqelqkVWt0+ozYMAAU7CmWsatqqqyvffe25566in/GT58uA8mVYCwXlkfJymIN1PS6+OjSa23hrR8+XLfem8YDt3PP/889Da7m759rVBBesVKstxnn31SwbcKTB4yZIiNGjUq1RJwpm2pNdxMqUePHn50aFE40zwaN3fu3NSkbH9/zRDWl5qZng4rMHLkSOvXfYAPoB06usHqhtdb/cpVgfCdVnZ2Qar17uNax16+0gZ1G2xbb76tjTxglP+tbrfddq4F3M726tsv27tPTrMq6+yd+g/qZ/UNdTbvvSVW1bXCyqvKrHu/rta5e5XZYLOln9fY8oXLbGC3MTZ80Gjru/5atqT/UuvUr8rGbbi2ffTxR1ZV0cmG1S3x2+nUt9L+c/ejLg8N1rO3C451RbFTVScfQKsNlnUus4qKCqtygcSDN+ppalm3qo8LD3Yt5i5oWOoCbt3X67mq5duVC1d9H30n3++mqWz7IFzXcm4o53UrXXTu6t3TojmLzQZ12J8AXwwBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQaHcCBQfk6pseffTR9r3vfc9uvfVWUwuyCupUIKdaqo2bJk2aZGrR9o477rB999031mK77LKLnX322fb4449bCIxV0K3Srrvuaj/5yU/8OkOrsgrgLXYaNmyYDRo0yLciq6BkBQJG0+zZs23q1KnRUSXdf/rpp/tg3P3228/OOuss//cMQcAHHHCA3XfffRnzr5aLM6XQgvDkyZMzTU6N23jjjX2/gq5fffXV1Hh61lyB0aNHW//uXazbwM621tCRHmLprOVNQF6f8a5tsvYE++GJp5mWUVp77bVtp5128i1j337VXTak/zA/vv+Og6xmSa3N+HiWffbpbD/OGqqsbKULmB3Wx3pXDfdlWOvROqJJ40JLzRoftjW013B74N07bNTw0fZSxfvWtcsXQf8KxlXq4gJ6e4/sbhU1nWzRxzU+ELfWBeBWVVZZVf8qW+Baz61b0LAqwLiszPdrOZW9ivJVAbsaVqqvWxWUrP4Fs92DDATkioKEAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCJSEQLMCcg888EAfkHv77bfbuHHj/Bc65JBDYrdGqwW22morHzz7yCOPZAzIffvtt62urs7Gjh1roQVVtcyrwF8tE14L/+Uvf9lvX4HBCpS95557bOLEiX5cmOYHivjf9ttvb3feeacdf/zxvkXevn37+rWrNd8krQQXMUuxVrVw4cJG8y1dutSee+45P+5nP/uZbbLJJqnpK1eutCeeeCI1nN7z5JNP+qBkmUfTvffe6wcnTJgQHd2kX38vpbfeestmzJhhCnSOJrWgO2vWLFNLvCNGjIhOor+DCmyzzTb2yLv32Tbrb5H6hgP6p3pTPf+95xX75hnfTAXIpia4np133tkPDujvWtpVWr38qPEjbNobn64a5/5fMHuhLZm/1M+vQPRsKQThRqcfccQR9p+T/2XL5660ngO724rFtdatz6oWecN8ZVUNtuiTattgh6E2f9pi1wpvta295XCrXVznZ+k1YLm9N3+Wb1m3U7cqq+xd7lvETQ/GDeujiwACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggUJoC5c3J1sCBA00tqipdcMEFvnvooYf6btz/Quu1V1xxhV177bVW715Hr6Qg3IsvvtgHh+6www5+OKyzsrLS9tlnHx8IesMNN5haWR06dKifrNe7q0VXtWipVneHDx9u6667bli0qN0LL7zQB/+qJVzl4ZhjjrHvfOc7tt5669mjjz7qg4aLusFmriy0Jvzggw9adXV1am3du3f330Mj7r///tT4FStW2LHHHutbzk2NTOtZvHixDz4OQb76u1155ZX217/+1c8Z/r5pi6UGFVj9la98xQ+Hv2mYOG3aNNPfXgHYt912WxhNt4MLKNB10Qc1tnjekqzfdPrUWbZ2r7GWK9h+rbXWyrj82i4oN3w222l8xnnijFSQ7uF7HWkfvzjblsxdZsvmflGmamtqfaDviPGDbM5bq77HyC2G+FZyVy6ttYHr9PWftScN9a3orlxa5wNxq/qUW+2Set+fnof6unrXCm/X1GgC1FMU9CCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACbS7QrIBc5f5b3/pW6kso+HXrrbdODcfp0fwKxlU64YQTTEG+e+65p40aNcpOP/10P/6yyy4zBY1GUwji1Lj9998/Osl233331HAIGE6NKGKPvq9a4t1ggw1SwcFXX321LVq0yK677jrbdttti7i15q9q0qRJfiVPPfWUb3E26nbUUUf5aeecc45vcXTvvff2rdXecsstGVsgDbnZYostfPCx/m5qMVgt5X7ve9/zk9XiaGipNMyfqXvjjTfaOuusY6+//rpvBVf51LoUSB2CnRUYTFozBMaMGWP77rKf/ffulzMG5SoY96MXPrMzzzwzJ4jWkyuoN+fCMSced9xxdtieR9pGYza22e/Ndy3uLvKf6oU11tm62oTtN7WuZd1t3keLrHv/LtZrRGer/rTOD1cvWGEK3FUrutVza2zlilrr3LPSVixY2WTrelChZtlK67+6xd/p731ukydPbjIfIxBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBNpGoNkBuQqMVSunSgqaVAu1SZNalr3qqqtsl1128a2xPvzwwz7AVS2jKuA1U6u7O+20U2ozWi6aFMwZ0q677hp6U92KigrfX1VVlRqXL99qlVcpLBsWVB5fffVV3yLvrbfeag888IC99957Ps9qYTZuCuuN5im6bJieaVzIW3Rapv7DDjvMFCSroFmlJ598MjWbAnE1TX/L6dOn27/+9S8bMGCA3XfffTZx4kQ/X6btKHA3tET83HPP+b+fWgs+99xz7YwzzkitXz3l5at+bunfsW/fvt5NwY0Kcp4yZYppXUqnnHKK6ffQq1cvP8x/a4bAkUceaev32dT+e8/LNuO9WT6wVsG1bz//vg/GPXT3b1mmsp2uM3/2wvRRGYf1uys0HX/88T44eN57y6xXpz7+M7D3YBu79jgbOGCgbXvgBFv84QofsDtyk6G27vhxfvjdxz6xqU98agN6DrL5HyyxivIKG7xOP1v46bImWamrrbeqsk7WrVs3P618fpUp4JiEAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCBQGgJlNTU1DaWRlVW5qK6uthkzZtiQIUOatIpbSvlUXtTS7Jw5c2zcuHG20UYbNcqevodeKb948WIfoDty5MhG09tyoK6uzpYtW2YKjO3SpUujrDQ0NPiAXAUA62+QL1A5LKzlZs2a5QOWQ8BvmJa0O3PmTNP6tP0QxJt0Hczf/gUU2H755ZfbzBWfWN/BvWz6jOk2qPNw23y9iXbSSSfl/YJHHHGE1YyZZyPXzx1s+8A1j9llZ1zZ7BZnN/nSxrbdkZtZz76NW/NWRj949SN77pGXbPzmG5rb51rNnAb79LVZtuWWW/rt/vj/TrXtTtrIlsyotjcemmYTjx7b6PstXVBtvcr62uabTbAZ739m5e/0suuvv77RPAwggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgi0ncCqZl/bbvtNtty1a1cbO7ZxMFqTmUpkxAsvvGCnn366b1VWrcROmjTJB7A+88wz9oc//MEH466zzjpWSsG4olOwbWjVOJ1SAbgKJE6atNzQoUOTLpZx/mKtJ+PKGdluBBTofvHFF9uDDz7o86wA3d13390HwMf5EjvssIP947Wb88664LPFvmXmvDPmmWGvnfa2/z7ziE3aa/Mmcw4aOcD62CDba/xBNnXqVFtn83XMXOPd4fv87k8X2fxPFlnXnl3dPqTcli+qsS69Ovn1KIB++cIVtsH4VeVSwb27b3RAk20wAgEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAoO0ESi4gt+0okm/5qKOOsuuuu87eeust22233ZqsQC3FXnvttU3GMwIBBOILKGi1kKSA3o9vn2EbbrNuzsWXzq+OHeSba0VHH320vfzjF23Wh7NtyOhBjWZ97v5XbM8d97bvfve7jcaHga/t9XX7y6NX2Ho7j7R+I3vYZ6/Pt1HbDjYfjLu4xnp07WWDBq5aZ/mKzjZx4sSwKF0EEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIESECgvgTy02yz06dPHnn/+eTv//PNtp5128q3OquXZyZMn26mnnmrPPfecbzW33X5BMo5AOxYYNmyYzZ+1OOc3WLJgqa0zLHfAbs4VRCaqNezvH3OyffDsDB+Uq0la/3tTplnl7O727W9/OzJ3415N676sn302dZ71HdPDZr+x2KoXrLC6lfW2ckmtDew30C+gYN/RvdaxPffcs/EKGEIAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEGhTgbKampqGNs0BG0cAAQRaSGDjL423PU/ZPuva33x2qm3Vb0c766yzss6TdMLFF19s/33nCVtUNtc6W1frbQPt63sdbHvvvXfOVWm5P95+mXUfW24LP1pmK2yZjZk8zMpXVNnokWPMlpXbsg/r7Vt7fzvvunJuiIkIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAJFF6gs+hpZIQIIIFAiAkN6DrOlC5dZ997dMuZo3oz5NmTDIRmnFTrylFNOsXH3jLN77rnH1l13Xdtnn31svfXWy7s6LTdjxgybtniqvdn1dat9u9JmvTLfxq031pbOXG6z3pxvP/72GQTj5pVkBgQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEECg9QVoIbf1zdkiAgi0ksBpp51mU+Y9bVvstmnGLd71+wft3useihUwm3EFRR75zjvvmD533323z5P6uw6vsE713WxIr2H2ox/9qMhbZHUIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAALFECAgtxjLtA++AABAAElEQVSKrAMBBEpS4O2337btdt/Wvv3rrzXJ3+yP59jrt02zF198scm0Uhqh77D++uuXUpbICwIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAQJpAedowgwgggECHEVAga5farrZsUXWT7/Tuix/Yfvvt12R8qY0gGLfU/iLkBwEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBoKkBAblMTxiCAQAcSOOigg+zt599r9I0+/3Suldd0svHjxzcazwACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAAChQgQkFuIGssggEC7ETj++ONt5YwKm/PpPJ9ntZb79N9fsgkjJ9mBBx7Ybr4HGUUAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEChdgbKampqG0s0eOUMAAQSaL3DHHXfYzf+6zhp6rbCyFRW26M2Vdtlll9mGG27Y/JWzBgQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgTVegIDcNf4nAAACa4bA3/72N9Nn/PjxdtBBB/numvHN+ZYIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAItLUBAbksLs34EEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgQ4tUN6hvx1fDgEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgRYWICC3hYFZPQIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAxxYgILdj/335dggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACLSxAQG4LA7N6BBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIGOLUBAbsf++/LtEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQRaWICA3BYGZvUIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAh1bgIDcjv335dshgAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCLSwAAG5LQzM6hFAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEOrYAAbkd++/Lt0MAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQaGEBAnJbGJjVI4AAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgh0bAECcjv235dvhwACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCDQwgIE5LYwMKtHAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEOjYAgTkduy/L98OAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQKCFBQjIbWFgVo8AAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggg0LEFCMjt2H9fvh0CCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAQAsLEJDbwsCsHgEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEECgYwsQkNux/758OwQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBFhYgILeFgVk9AggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggEDHFiAgt2P/ffl2CCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAItLEBAbgsDs3oEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgY4tQEBux/778u0QQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBFpYgIDcFgZm9QgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACHVuAgNyO/ffl2yGAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIItLAAAbktDMzqEUAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQ6tgABuR3778u3QwABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBoYQECclsYmNUjgAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCHRsAQJyO/bfl2+HAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIINDCAgTktjAwq0cAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQ6NgCBOR27L8v3w4BBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAoIUFCMhtYWBWjwACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCDQsQUIyO3Yf1++HQIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBACwsQkNvCwKweAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQKBjCxCQ27H/vnw7BBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIEWFqg466yzftHC22D1CCDQQgKffvqpLV261Hr27NlCW4i/2gULFthrr71mn3/+ufXq1cuqqqriL+zmnD9/vr3xxhs2Z84c69Onj1VWViZanpkRyCRQXV1tH374oXXv3r3Nf1MNDQ32/vvv21tvvWVlZWXWu3fvTFnOOk7Lv/vuu6ZyH6eMJS2Ty5cvtw8++KAkrLIiMAGBGAKlVO6V3Y8++siX3b59+yY+NtbX1/tyqf2GjqulcLyP8SdgFgTaRKCU6sXLli2zKVOmWG1tra/XJgVZtGiRvfLKK34xlXvVG7Kl5tYvsq2X8QiUqkCpHeeL4dRS+68VK1b4c49p06ZZt27drGvXrsXILutAoNUFdL1oxowZ/hy6vHzNalsi6Xl9R9xHtvoPjg2WhEBH+i1zXl8SPyky0Y4EOsJxf+bMmfb666+brg3oemBz6y9z5861V1991dfpVa8nIdBRBFrqXLhQH51zLF68uGSuwXek+lChfxOW6xgCrXlsb+51+VIRL7X9Y6m4dNR8tOb+vlTLSJJ76aGuXVNT4++/5bp/1ta/mTXrKmZba7N9BJzAPffcY/3797dOnTrZ//73vyYmunF/wQUX+OmaLz3V1dXZOeec49cxZswYGzVqlO/XMrrAlzQdcMABflvKz2effdZk8Xz50QKXXnqpDRo0yLbbbjvbaqutbK211rJ77723yboyjVAQwRlnnGGDBw+2bbbZxrbYYgt/sqPvqG1H03vvvZfKq/Kb/vn444+js9uIESOazBOWufXWWxvNy0DpCMybN88OOeQQ/7dTN1N68803beLEiX6eK6+8ssksCu7W70lBrxtttJEPYN1+++19UFyTmfOMeOGFF1K/ox/+8IcZ586XH1Wct912W9twww1tp512srFjx9pXv/pVf1Eu4wrTRv7yl7+0AQMG2MYbb+zLmILWzz//fFu5cmXanKsGk5RJXRyUjYJ8o1YaT0KgtQRKrdxfcsklqXL/j3/8IyNDvnKv5XQcWmeddfzxUeX229/+tin4PU7SQy6bb765bbDBBn6/oeP9pptumrHuEF2fbtqH45/mj6bnnnsu9b3C8TC9e/fdd0cXoR+BFhUopXpxrrITEPLVixVIq+O7yrvqxSr/Ko+PP/54WEXOrh7c0TFZx3x1VdffbLPN/I28TAsmrV/k229l2gbjECiGQL6yo23k+322dv0+Tt0k2MTZf4R5Q7c55/Vxzk8effRRf86hcybtT4YMGWLnnXde2DxdBFpcIE4ZylcPuOuuu2y99dbz14tUJ1ZQ+be+9S3T8TZpilO/z5Wf66+/Pms9evTo0UmzY/muxWmFSc7ri7mPTPxlWACB1QJxyn2pHe9z5SfpdehMP4Qk5/XhPD79HF3D0evY++67b9b9keZNvw6QKV+MQ6DYArnKkrYV53ygmMf9OMfZbMf95pQxXas/6qij/D27HXfc0V/LnzBhQtZ7Evn2m2+//ba/BzJ06FCbPHmyqat7HroWQEKgrQSylZ2Qn3y/6+acC4dthG6cc/F8+x9N/8UvfuHvs6+99tqmj+7Na5ymxUn59oHRdcTJM3X7qBj9bSWQrywrX/n2B8U8tuc7py/0unycMpnvb5Ct3pH0flwx94/58sz05gsUo4wUc3/fUmVEUtl+45kUM53PRsf96Ec/arRYknvpCu5XXnS/XHVtXSscOHCgaV9TqokmKEv1L0O+OpzAkiVL7Mc//rFdffXVqe+mYNRoUss1Rx55pD3zzDN+tJ7ES0/HH3+83XDDDf7EWzf8dXC+8cYb/cmBnmhQkF7cdMstt9h9992Xmr2Q/DzxxBN22mmn2fDhw+2EE07wN0b+9Kc/2YEHHmhTp071O8TUBjL0/PnPf7bf/va3phsYhx9+uL+ocNVVV5kCEBcuXGi/+93vUkvNnj3b9++5557+pCg1YXVPjx49UqN0oqT5FcCoG5Dpady4cemjGC4Bgccee8wOO+ww/7dTdtKDzPUb1e/rBz/4QSq36fOo8qIgNiX9NvW3VnDp5ZdfbltvvbUPZtPFqzhJTySpTIaUXkbi5Ef5O+644+zFF1/0QToKyP3b3/7mT1R+/vOf24UXXhhWn7H705/+1C666CIf1HPmmWf6J+FvuukmO/fcc2369On2xz/+sdFyScqkbgwoCF7p5JNP9hUXXTxQpU0371966SVfhhptgAEEiixQauVeLVFHTwgKKff//Oc/7etf/7o/tqk8KeBdx24dr1UfuO2223Iq6uLB1772Nd/Ct04udNx75513/P5CF/IVtKeHXzKl008/PbUPTb9oqIdnvvOd72RazP7973/74zYt1GfkYWSRBUqxXpyr7Ojr56unq7ztuuuuvmVcBd/vvPPOvkzpAr7GP/vss6bymy3phr8uIqj+quUV0KuH91QH0DFZLWXrgZ6QktQv4tRXwnrpIlBsgXxlJ87vszXr9/r++eom6Ub59h/p82u40PP6fOcnWrfeWnPQQQf5ln2+//3v+3N1nUMpIHeTTTax/fbbT7OREGgxgXxlKE49QOe8Rx99tP/96ty3X79+9sADD9hf//pX0zEzXDeL8yXy1e/j5GfWrFl+UzpGd+7cudFmMz1M32iGtIF81+I0e5Lz+mLuI9OyyiACsQXylftSO97HyU+S69CZoJKc1ye5jr3HHnv4B/fSt6l9ma47dOnSJX0Swwi0mECcspTvfECZK+ZxP99xNt9xvzllTPe5br75Zn+9XQ8RKRBHw7rv9dRTTzV6c1a+/abeZKcGPnSP8Oyzz7Z1113XHnnkEbvmmmvsS1/6kr9OqLcCkhBoLYF8ZUf5yPe71jyFngtr2fSU71w8zv7nmGOOMe03dJ/s4IMP9pvQOYcawVJrfX/5y1/SN5sajrMPTM28uidfnqnbp4sx3BYC+cpynP1BMY/t+c7pm3NdPl+ZzOefq96R9H5cMfeP+fLN9OYJFKOMFHN/35JlJNdvPJPiSSedZDo+pifl8eGHH/YPl4ZpSe+la92KbdMDat/4xjd8A1iKjdPx+/bbb7f9998/rLp0uq4Z3wY+GPAbaPnfgIvQ156nwZ2IN7inZH2/C3ZLlT93Q8GP0zzuxL0hzB/927gWYP08u+yyS4MLvk0t657AaHCvs21wB/YG1/Jeanx02fR+dyLhl3EtdzW4nZRfr9Yf5ouTH/fUUIMLxPXLuiCB1LKudT0/zgUepsaF9Ua7LhjQz+eCcRvchYXUvK4il/r+ymdYxgUx+vmffPLJ1LgwLb3rnhL28/7f//1f3nnTl2W45ctDJuM77rjD/830O3ZBa77fBaI1+vu5QFw/3p0cN+hvq/Ligt0yzvOf//yn0Xh3Au3ndwHfjcZnyksY97Of/cwvc9ZZZ/muO9A3WjZOfq644gq/rMp9WK97fWyDvoPyn57PMI+6rsl9P4/KqXtdTmp5d1G/QeVLyz///POp8UnLpAs69OtwFxhS69B2Xcsbfrx7iKDR+Gje6G+bctLR3Eut3LsglwZXkU/9/lXGXPBso3IQp9zvvvvufh3uol9qWR3nVJa1TtcifWp8pr+p6gqa79prr200n7uI4ccrD5mWcycifrqW1/FZ28s0X/o47Tu079UnejxOn49hyn2xfgOhnlsq9eJ8ZSdOvVj1U5VbF/zWqNy5FvX8+HzH1FNOOcXPl16vCXlzAXSN1pukfhFnv1Wsvy3rYT8R/Q3EKTtxfp9hnvR6c0vU7+PUTaLfMZTRJMfe5pzX5zs/Ud7cQ0F+f3Ldddel9huffPKJH6frBjrHiH4H+im3xfwNxClD+eoByo/m0e/VBcKmfq86jw71bPfQSmp8rvzHqd/HyY+O7zrOx73mli1P+a7Fabmk5/XF3Edmyzfj2U/k+g3EKffhd9qerucluQ6dySfJeX0xrmPrPEL7Kffgfqz9Y6Y8M46ynvQ3kK9sxzkf0DaLddyPc5yNc9zP5JCvjOlen8qg7nUtXbo0VQ51LUDj3RshU+Pi7DfDvQ/ti6L5cQ8H+fXpHlx0PP2U35b+DeQrO3F+1805F07/fvnOxePsf3SuofLpGnZqdE1c18c1TtNyXcfPtw9MmmfNH9ZZjOsf6dtnmP1EnN9AnLKcb3+g7RTr2B7nnL7Q6/L59iP5vOLUOzKtI9P9uGLuHzNtk3HFK//FKiPF2t+3ZBkp9Dee6fem+1s6rr7yyiupOmy4xhfnXrrul2t5nWdH1+/eKOHHa58THV8q/eUu0yQEEGgFgblz5/onfdVCbu/evZtsUa3BqpVYPTXrdsCWqYU6dyLvn8pT67HR6WoZVq/R0JP76a3hNdnQ6hE//OEP/dO1yk+mJ2nj5EetdqmFTrW2F22xy+08/St09JpMNR2eLYXXYruLGY1aGFGz5U8//bS5m4a+mfGwvDvx8b2DBw8Oo7J21SqQUtyWULOuiAmtJqDfklqBfPnll80FnWfcrl7HpJam9eSRXl2ZKalV5IsvvrhJy8juQOxnDy1cZFo2Ok6tx+opWP2e3cE9OinVHyc/4XeuJ9lDKisrM3dRzQ+qlZ9sKbT6c8QRR/jXV4f51NrFiSee6Af1ZFJIScukzJXU8l40heEwPTqNfgSKKVBq5V7HRJU7lf3x48dn/Kr5yr1arSwvL/etxg8bNiy1DrWkpdfLKamF22xJx3G1aqOn8g899NBGs6nVXB0bzzjjjEbjNaA6glrjdkG1vuX5JjPkGOECdnwdQi15prf4lWMxJiFQsEAp1YvjlJ049WLtz9QKvp7MjSa1dKukY3Su9OCDD/rJer1lNKl1XRdcb3paWG4hJalf5NtvhXXSRaDYAnHKTpzfZ2vW7+PUTYJTnP1HmDfaLfS8Ps75id6goxYBdO4T3R/pHFpv53A3Fv01h2h+6EegmAJxylC+eoALvPUtyamOqpZxQ9J5dKijR4+JYXqmbpz6fb78aL3uAVnfWq/q+c1J+a7Fad1Jz+uLtY9szvdi2TVbIE65L7XjfZz8JLkOnf4LSHpe39zr2Hprnu4X6HqA3jxGQqC1BPKVpTjnA8U87sc5zsY57qf7xSljevOUkq75V1VVpVZx6qmn+n69jjekOPtNtT6oeyS6JhBNerOOkt6iQ0KgNQXylZ04v+tCz4XTv2ecc/E4+585c+b4Ves6fPSauPo1Tikco/1A2n/59oHR2ePkWfNTt4+q0d8WAnHKcr79QTGP7XHO6ZXnpNfl45bJXH+DOPWOTMtnuh9XrP1jpu0xrrgCxSgjylGx9vctVUaUx0J/41o2mlwQrr+/pTfLbrjhhn5S0nvpIR5G573RNGbMGNNbrUJdPDqtFPorSyET5AGBNUFAr37PFUiqgFbNo+DabEnznHbaaU0m//e//7XXX3/dBzMqmDVf0g3/O++80wfSbr311j7wJ32ZOPlxTxj6xdQseHrafvvt7fHHHze9WicE96XPo6bJlXQRQXlyTzCZe4rDBywpaCndKwRS6mToyiuv9K/l0Y1GzatX9kRTOEnSzZu77rrLvyZ44MCBfl7lp6KiIjo7/SUgoNeqnnDCCaabbKrMZ0q///3vm/wu0ufLFDzrnoIx9+SMn1WV8nxJN7KVF6VLL73U5ynTMnHyo7KpYPtoYJ7WteWWW/pV5rp45lq/9vP06dPHd6P/6TspTZ06NTU6aZn86le/6l/Hc/nll9uvfvUrH0SoCpCGlQ488MDUuulBoCUESqncu9bi7Hvf+54/CdKDMe4px4xfOV+510366EX2sBK9okPHeaXoQyxheui6Jw59rx5Q0LHMtdBr7gk/f5zT8XKzzTYLszbqKohYJ4KuhWvr27dvo2m5BnRTQcty4y6XEtOKLVBK9eI4ZSdOvVjHzEzHTdUDlMKFhmyWqvu4lgAb3QAI84ZjvfYP4bXYSeoX+fZbYTt0ESi2QJyyE+f32Zr1+zh1k+AUZ/8R5o125ZL0vD7u+YluCCrpfDz9nFfn/kphn+IH+A+BIgvEKUP56gG65pOpjKi+rtfH6niZrU4c/Tpx6/f58qN16uL+qFGjbNq0aT4POm5vtdVW/hqT6tFxUpxrcVpP0vP6Yuwj4+SfeRDIJhCn3Jfa8T5OfpJch063SXpe39zr2HqFvfKr63nRgKL0fDGMQLEF8pWlOOcDxTruxz3OxjnupzvFKWPvvPOOX0z1g2jSNTrdP1MDACHwIM5+M9q4R3R9ekhPKVtjJdF56UegmAL5yk6c33Uh58KZvkOcc/E4+x/dV9Y9Zt0HUPB8uM+s8qxxmhbGZcpHvn1gdJk4edb81O2javS3hUCcspxvf1CsY3vcc/pCrsvHLZPZ/gZx6x3py2e7H1es/WP69hguvkAxyohyVYz9fUuWkUJ/45nEzzvvPD/6pz/9aWpy0nvpqgOr8RvFzKhRqylTpvh+xYmprh0nRi618VbsISC3FbHZ1JotkB5cmq7RrVu39FE5hxVcqJttuhmvFrMmTZpkf/7zn3Muo4k60KtlTd0wUEt42VKc/IQW/kaMGNFkNWuttZYfp3myBeS++eabPlDxpJNOshtvvDG1jj/84Q9+vFrYjQYxhpYJ9GRw+k3Eq666yo488sjUOsKFTJ1Epc+rA5zmb27LJqmN0VMUAQVM50v5ylF0ef329LSMWml+6KGH/O/gT3/6UyoQNjpver+eTnvxxRd9kKpan3avikifxQ/ny4/KmwLkMrX4qzKmG4kqB9nSl770JT/p3nvvtWOOOabRb/aFF17w00JguwaSlsk99tjDVAk666yz/H5ko4028q3xfPjhh368ppMQaEmBUir3p59+uv+q7jXwjVqySP/++cp9+vxh2L223p8guFfL5QyYDccsPcWvAD61ZBdN559/vm8pPDrujTfe8K3iqkVvBdonSXp6Mty4U+vbJARaQyBfOYpTD43ms9B6cdyykzQ/IW8qvz/60Y/8oMp+rrTzzjv7AJ9nn33WQtCc5tdFlZB0Y3/ChAm+Pp+kfpHPO6yfLgLFFohTdpL8Plujfh+nbiKnuPuPfKZx919xz0/C+UA4H49uP4wLdY3oNPoRKJZAnDKUpNy7V7X6ABYdA//+979b165dTW+ZUTdfKmb9XsddtViTfkNe5/TKY74A4bjX4vSdQjlOeq2tOfvIfJZMRyCXQLHLfXN+y3GPl3H2Q0muQ6f7hGNt3PP65lzH1r5J1/h1rf/www9PzwrDCLSoQL6yFOd8IJrBQo/7SY6z+fIczY/645axEJA7ZMiQ9FWY7i8oIFfn98OHD2/0VsgmM+cYEc5B9BadTPcbcizKJASaLZCv7MSpD0QzEfdcOLqM+kM5yHcdPO7+R/cQjz76aNO9sdCYj+5Nq5zpfmKulM8kLBs3z2F+dZtTH4quh34EkgrEKctxf/vadqHHdi0b95xe86anXNflCymT0fUnqXdEl1N/nPtxhe4f07fFcMsIFLuMNGd/31JlpDm/8XR1BfDfc889pkDm8Nar9Hmiw5nupS9atMjfx95hhx38w/HRxu7UYu5ee+3lG7cqxaBcAnKjf136EWhHAjpgK2AwJAWZxgmkueiii3yA4E033eSfGgjLF9INre+Elrqi6wgHI73WL1vSRQpViBT8pyf4tSPWDv6SSy4xPVmoYMBXX301tXhY1yabbGJ6Ta8qfE899ZR985vf9K/p1gnStttu6+cPrRjIRC31brrppr6Fwe9+97v+qQnNGw5SqQ3Q06EE1KpMeOJGX2y//fbLe5NM8+ki+I9//GP/9Ktay2xOCr/DAQMGZFyNLsaFlvMyzaCbfXplgZ5CUuC6PqpMqMVMlRMlXdwPqZAyqda2lFQO9QkpjA/DdBFoDwKFlntdZFNrW8cdd5x/wKXY3/Xpp5/269ZF93PPPTfn6tXqlpLKuJ7qu+yyy2zcuHGmIPxDDz3UzjzzTN8KhvZpSmp5N+yrwn7BT4jxn24qnHPOOdy4i2HFLKUtUEi9uDllJ46GXlOr+rluxuuVlXrKPVfS63q0H9p7771NgQR6NZ4e2vn+97+fWiwE6De3fpFaIT0ItDOBQo/zxazfi6yY+484+68k+VcrnkqZWuwM5+3hnMHPyH8IlLjAY489Zr/+9a9TudQD5tEHt1MT0nqKXb8P58pqrU7nDNoP6M1TerPGl7/8Zd+qba63VCS5FhfKaCiz0a+W61pbofvI6PrpR6AUBAr9LSc5Xsb5nkmuQ6evL+l5fajfF3IdWw106DxB5xxx7g2k55VhBEpJoNDjfpLjbNLvG7eM6eEhPahTWdn0tnuom4eA3KR50Px6SEDXC5SUp1IMOPCZ4z8EYgrEORdOX1Uxz8XDupcvX5562E/nECHp/nMxWp0vNM+F1odC/ukiUCoChR7bm3NOn+u6fKFlMupZaL0j7v24QvaP0fzR374ECt3ft1QZkV6hv/FM8iFW52c/+1mmyY3GZbuXHt5Ao9brVd/Wg/pq1Ebn3aeccordd999pvVfeOGFjdZXCgPlpZAJ8oAAAskFFGSqQDx11fKWAvV0414H82xJT1hop6en/L72ta9lmy32+NDCTrhoGF0w3AgM80Snhf5evXr5XuXp2GOP9S0GKljpN7/5jenpRj3doDyHpFcO6OKigokV1NCjRw8/3+233+5nuf/++8OsPgBXN0rUsqh2yHoaUi2KaVjprrvuSs1LT8cU2HXXXU1PzOggrafJ1MqtWpxVRTZX0u9GF7LVUnNVVVWuWfNOC0/ER1u3iy6kioKCw7OlsrIyX6nQPHo1ln7DelJXZeaMM87wN9qjTxOF8ha3TOrVAGpFY88997Tnn3/e5syZ47sa1vg4laNseWc8Am0hUEi5r6mpMT2soUp8vmDZQr6TjmX77ruvX7+OU+EmerZ1RW/k6+ETBeWrBTA9+aeb/koaH5KOgXo4RWV29OjRYXSsrlqL1/5OrWRz4y4WGTOVqEAh9eLmlJ18DLqwFy4EKGhHb2zIl3RjTUH1KpNq6VqvxdbDaXpYLby2OwT1Nrd+kS8vTEegVAUKOc7ruxSzfq/1FXP/EWf/lST/Op9WynT+Ec4R9FAgCYH2IqDfv87r9SDrb3/7W/vjH/9oY8aMyflga7Hr93q9tOraN998sz8PV31egTUKDtZ5uY7dzz33XFbSpNfikp7Xhw0Xuo8My9NFoFQECv0tJzlexvmuSa5Dp68v6Xm9GpJQ/pNex16yZIm/Rqh9UqZXnqbni2EESl2gkON+0uNsEoMkZUzX5FQnWLlyZZNNhAD/UFdvMkOeEVqvri2qxX69aVIP8JMQaO8Ccc6F079jMc/FtW49dPeVr3zFt2Cte4i6lxjuJ+p6u+ok4cG89LzEHS40z4XWh+Lmi/kQaC2BQo7tzTmnz3ddvtAyGbyaU++Iez+ukP1jyB/d9idQyP6+JctIc37j6fpqaEr3xXW/S/EtuVKue+l9+vRJLarWdvVgvGK/9JZZ3TfX/X01dlOKqbIUM0WeEEAgv4ACBfVRsKk+U6ZMsYcfftj+9a9/2QEHHJBxBWpVT2m33XazRx55JDXPJ5984vv1JIUuCijoJ04Kr+oLrXdEl1Hwo1IIHIhOC/0KJNRFhK222iqMSnWVR7UKqiDBsA61hJspbbfddn60npoISePC+DBO3X79+vmAZH1XBS937949Opn+DiRQXl7uA8yGDh1qhx12mP8dTZ482S6++GI75phjMn5T3eRTwO4GG2xgqszoVRpK4Ya2Tr4feughHyAXp1UeBbjpYpyebkpPuqCni2k77rhj+qRGw7qortawVRaefPJJX6nYfvvt/XrVDH80uD5JmQytUSt/qqxUVFT47epVmxpWi5xqqVqtZ8Z5HWijTDOAQBsJFFLu//KXv/gWLNX6rI6lIb322mu+V6/TUMVe5S7uq67COnR81cmUyrr2J9q35EsjR45MzRIeXAkjttxyS98bjuHaT4VAPwXuhn2WZlLggm4CaJ+lY3v6yY7ydP755/tggiOOOCJsgi4C7VIgab24OWUnDpDK1pVXXmn77LOPP5bGWUbzKLBHQbhPPPGEffDBB741bN100/qUQp24GPULv0L+Q6CdCRRynC92/b7Y+498+6+k+Q/7iXCOH/0Th/P2XA8ERuenH4FSEFArc/qst956/rNixQr/xgjdMNe5faZU7Pq99j3ZHlbVTQCdl+t8XQ+WZ0pJr8UlOa+Pbq+QfWR0efoRKBWBQn7LSY+Xcb5rkuvQ6etLcl6vZQu9jq1zDp3bX3DBBTxkm/5HYLhdChRy3E96nE0Ck6SMKSBAAXy6jxDdB2h7Or9XCg/X+oGY/6nu841vfMNfs1RjNeonIdARBPKdC6d/x2Kfi2v9t9xyiz+O6k1VujcQku4nqrGco446ym699das5wJh/mzd5uS5kPpQtnwwHoG2FCjk2N6cc/pc1+WbUyaDYaH1jiT345LuH0Pe6LZPgUL29y1VRiRY6G88k37c1nHz3UtXrE9IkyZNCr2+qwYcFWujQF3Fp6XXwxvN3AYDBOS2ATqbRKBQgX/+85+mQFK1kjVixIhGq9ENfwXk6vVc2VI48f/JT36ScRYF5Cj4L9yoyzhTZKRaJVHS6wYOOeSQ1BQ9faS8KIV5UhMjPQr4UwCxAgPTU2hhN7qDPf30002vCfnhD3/YaHZVYpSi8yqo8u233/atBKQHE2rdelIifXyjlTLQLgWqq6tNrb4q8Cw96Fat4+rvHn5bmb5guHGtp3AUEJOe9BSPPvp9xW15QgF4WkbBvNHWK0MAea4APZUNPZE7YMAAUzCxPiHpQoBSuFmn/lDe4pTJUM51sTAE42odShpW6xwKmNdHZZWEQKkKNLfcq4wp6QKcPulJrbbro/1CCHJJnyfT8Ny5c/1NebVGpxMBBfTGSaHVOgXYpicF2SqFfYkeLAmt3ekJw/Sk46PqB4cffrhvZTs6PdxUUAABreNGZehvLwLNqRc3p+zk81HZ0oWGXXbZxbekp4uOcZIuFihf66+/fqM6hgLr1Sq26jDRm3fNqV/EyQ/zIFAqAs09zhe7fl+M/UeS/VfS/IeHBvXwjl7RF90HKdhfKUl9plR+B+RjzRJ44403/KuY999/f39RPfrtdZ6umwN6bXO2VOz6vcqhgn933nnn1Kuiw7bnz5/ve3UtLVtKei0uyXl9c/eR2fLMeARaW6C5v+Wkx8s43y/Jdej09SU5r9eyhVzH1vUBBeLSOm66PsPtTaC5x/2kx9m4PknLWLh+rqDcaGCf7tepsQ293VIBfklSXV2df7Ok7rWp/hMeyk+yDuZFoJQEkpwLp+e7GOfi6esMDeno4b/0FMappcBCU9I8N7c+VGg+WQ6BYgs099he6Dl9vuvySctkJpdC6x357sc1Z/+YKZ+MK22B5u7vW6qMSK3Q33i6uN4kpcYXde860/3uMH+ce+m6vq0GJqZOnerfIK8GGKMpNKyneJpSS/HuDpZarskPAmuogJ6IueKKK0xPSlx00UWpE3g90aNgH6VowI8CY6Mn+Xq938KFC5voXXrppabm79VUfpLX5ijoUTs/PYWhINlwgnLffff5iwx67X20db/0/CigUd9HrXDqxkYIkFWgoNapFG0999133/U3QdTaYHTHrUqMUjRYUZUqfS/l7/jjj/fT9Z++p4KqtPOXI6ljCeg39N///tf/rhQIEy6A61sqSFXBaV//+tcbfeno73LChAmpV8JHZ9KBXK+01+tr9HtSK7Jxk1qwVUDuueeem/pd65WXoYUdtXwXTdH8zJs3zwfGKuhGLe507tzZz6rv8aMf/cgH5yjYLqQkZVJlQxftVV4VvK4AoJA0rDxrOjfsgwrdUhVobrnXE+9qaT49KZDl8ssv96+dV2s10Yc+0udNH9YxSAEEOjnQK3DU6nuuFC332o7KtY7rOlmJtrR12WWX+dXomKmkAD21aJ0pHXnkkf64qtf6pj/Eo5sKalVDZZzWcTPpMa49CDSnXlxo2cnnctddd9n3vvc9//rIv/3tbzmD3aPlXuv93e9+5+svN910U6O6isqw9iXpN96S1i/y5Z3pCJSqQHOP88Wu3xey/0gv70n2X0nzr3Nc1QHUwo/2J+pX0vnMr3/9a3/s14OKJARKWUAPoOhakc6BFYASfUvFP/7xD5/1UB8O3yNazopdv1ed+frrr/fnzrrm1rt3b79ZXYsL16O23XbbkBWL5kUjk16LS3JeX8g+MpVRehAoIYFCfsvRspb0eBnnqye5Dq31RfOT5LxeyxZyHTt6U19+JATaq0DS4360rOk7Jz3OxnXKV8bS86F7YT/+8Y/tjDPO8PeewnV85U8p/Z5EnHzo+r9ev/uDH/zAfv7zn8dZhHkQKGmBJOfC+iLRclbIuXg+jJ122sk/TH/NNdf4e36h4RoFw+uNHErR+87R/ORbt6YnzXMh9aE4+WAeBFpbIOmxXfmLlq9CzunjXJdPWibT86XhQuodce7HJd0/Ki+k9itQyP6+NcqIRJP+xqP5iv5F4rSOm+Re+gknnODvkek+WnijpLanN8fq4Tfdx49eP4zmpS37CchtS322jUBCAQUYKhD1D3/4gw+gU2CqWs3SDQntaHTSH1rbVACQKixqDVeBgEo77LBDxi3ee++9PlBVQT/RlrcyzhwZqRb19AS/Tkj0mj7tCFWpUICtKjUKZApJQbZq5UNPAj/zzDN+tC6W6vVfN998sw901JPDChjWxQ61+HfOOec02nF+5zvf8TdAdtxxRx8gpSbH1WKwlldw4YEHHhg25y9w6HsrKEKvLdNNRwXihgsgJ598cmpeejqWgC58qcXmiRMn2nHHHeeDcvW31w09Jf1OQ1IQuVqunTNnjg8e1+8/GuAa5ps2bZrv1e8s0/QwX6aufte33Xab/50uWLDAt5inC2n6Xaq162jQuYJ+FRivIFmVbwXR6TtonMrv0UcfbWr1QzfYVUZ0kz0aaJekTCpYXxcIdUFvk002sZNOOsmXUT35FMqupkeD+jN9P8YhUAoCzSn3aiVan/QUWl/X8SNpudcDJ3r6T+mBBx7wn+j6DzroIF/GNS59P6RxarVWAbkK2FcZHT9+vClAWPsOPTgTgmv0VGC2vOmBGJ18ZJquAD99P520cONO4qT2KNCcenGhZSeXk4KGDj74YD9L//79m7zRQRfVVIdXylRPV1lXXUX195deesm3Tq8n4/U2CdXvzz77bL9s+C9J/SIsQxeB9iqQ5DifXp8udv0+6f4jU3lPsv8qJP+/+tWv/MN1Oo94+eWXfd3hT3/6k//z67yiT58+7fWnQL7XEAEdR3V+qvPSLbfc0p/f9+3b1z9kq2Oj3hYRreOm16eLXb9XQI2O06o7b7PNNv6ago7rKt9qBU8PfKu+rpTp2lfSa3FJzuu1zST7SM1PQqBUBZL8ltPLfSHHy3wOSa5Dp+dH6457Xq95FaiX5Dq2rp/reM9DttIjtXeBJMf9Yhxn43jlK2OZ6vh6i51arVYjHKov6AH4Z5991u644w5/T0znKUmSHsoP1xDUIn+00RmtJ1zPT7JO5kWgrQWSnAunl7Ok5+Jxvutee+3l7y3rPvebb76ZahhDjWToPrbOOzSPUqb9T75tFJLnJPWhfNtnOgJtJZDk2K48ptelk57Tx70un7RMZir3Sc/v9f3i3I9Lsn/UOkntXyDJ/r61yohUk/zGM5URrUPHUN3XOuCAAxo1sqhp0ZTkXvqxxx7r68Z6o61iWRRHowbm9EYrJb1NohQTAbml+FchTx1eIDxlly/QTUGt0dSpUyfTayYVxKeTEbUUoqSLb3paVgGsIekpfqXo03thWrZu0vxoPWpVUK31qtWuEPirfKv1kGhru+HVH+mtBCr4VgGFaq0nBC9peV1UVKu70aQdqwIVjzrqqNS2NF1PMSpAUQ4hqSUCBSkr4Fc3HfVRUkDln//8Z5s0aVKYlW4JCoTWi0M3UxbD7zV9Ht0MUwCcfj/6bYakv7kuZIXWbZcvX+6DcTU+2pJzmD/aDdsK3ei00B+mpedH4xVgo4vr+v3qo6QbiOmVA530K0V/nwpwVws8CiZXgHlIZ511VsYn6+OWSa3nxBNP9OVP+QhBuBqvwB/dbIze5NR4EgItKRDKTuhm2la2ctYS5T5sP2wzDEe7YVp6ntUid0ihxfcwrK5u2OuYlm0/pBardUxUYN4ll1ySWlQX9G+88cZGgfipiTF7li1bZjph0TEzBPbGXJTZEGgRgVKtF+f7sun19Ndeey21SHhzRWrE6p5wMy1TPV0X+XXxUHXXcBFBi+lhPD2Ao+CcaEpSv0hfTsPp+63oPPQj0JIC6WUnuq1sx9W4x3mtK1N9OrqN0B+2FbphfLQbyknoRqfF7c9U3pOc12fbTsh36Ebn02u7tN9QPSIE4mq6WtXSQ7wkBFpLIJSd0M203Wz1ALV4MWrUKF8XDteatLwu5uvcNbyGLlt9OtO2wrhM5SZMy5YflR89yKaHVqOt1ivwXcft8B2zXfsK68/UzZSfJOf1SfaRmbbPOASKKRDKQuhmWnf4zafPE/e3nKTch22FbpL8xL0OnS0/Sc7rk17HVuAQD9lm+msyri0FQjlLL9vpecp0PhD3uF+s42zIU7bjfr4ylqmOr3WqERi9plsNyOgenpKus+velYKAMqXgFbphnnCvTMM33HBDGJ3qKkhQDzCREGgLgWxlJ+Ql/J5DN4xPci6crZyFdRXSTd//KGjw6aef9g1A3X333anGpDRfuD4XHmjNt/+Juw/Ml++49aF862E6AsUQCGU4dDOtM9v+IO6xPVtdOtO2wrhQ3sJwkuvyYZk43XzlPtM60vMW935ckv1jpu0yrm0EQtkI3Uy5yFZG4u7vS62MRH/j2cqI4ryUdA0tV4p7L13r0P0xxcmp4T098KaPkmK/9Nb09Ddp+Ykl8F+Ze71WQwnkgywggEBCATX/PWPGDH/RXxft0pNuviloVy1ytkbz3HpKVztdHVR0wTF9m7qIoZYFFESc6ckKNUmupxh0oqMdZ3Rnnv7dNPzxxx/7127qVX7du3fPNEtq3Lx58+ydd97xrX8OHjw4NZ6eji+giq6ezlFryumBLGo1d9NNN/UtzuWrEBRDqr6+3peRzz//3NZaay2fp/T16gKAWo7+97//nT7JB+4pwECvy1EZCRcCmsy4ekS+Mpm+XLBSgHx6+U2fl2EESlkg/JZLodznc8q3H9Kx/qOPPrLPPvvMt+KbftEw3/qZjsCaIlBq9eJ87vnq6dOnT/dP+aqOrzdM5LqgE6d+kS8/TEegPQnkOs7re+SqT7fF98xX3vPtv5qTZ12w1Tn2ihUrfKvbsiEh0B4F5s6d69/GpPp9uJERvke++nSYr1hdnY+rXKmrVnvSg2vyXftKmo9Cz+sznQsl3TbzI9CWArmO961d7uWQ6zp0vvwkPa/nOnZb/vLYdikI5DruF/s4W+j3zVfH1307vXFPLfzrOn56faHQ7bIcAh1JIN+5cL5y1hIWuh6nFG1sKmynLfY/uepDIV90EWgPArmO7fnq0m35/dqi3Ov75ts/tqUJ224ZgVz7e8pIU3PF2igube2117ZMcXJNl2i7MZkfyWu7/LBlBBCIKaCA1UwnBWFx7Zy/8pWvtFpgnS4u6FWC2VJ4mjHa8md0XgXVTpw4MToqZ79uLugTJ6mFILUuQlrzBBRYqtdFZUrvv/++H91aT8womEZ5yZYfnZCodQuV20xJAcUK1o2b8pXJ9PXkskqfl2EESlkg12+5tct9Pqd8+dGxfm13QqEPCQEEsguUWr04e05XTclXT1cdP1c9P7r+fPWL6Lz0I9ARBHId5/PVp9vi++cr7/n2X83Js84fwttBmrMelkWgrQUUTJ4toDxffbrYeVdAsN52kS3lu/aVbbls4zmvzybD+I4ukOt439rlXta5rkPny0/S83quY3f0XzffL59AruN+sY+z+fKSbXq+Ov6wYcNMHxICCGQXyHcunK+cZV9z4VNyXYtri/1PrvpQ4d+SJRFofYFcx/Z8denWz+0XW2yLcq+t59s/fpFD+jqKQK79PWWk6V954MCBpk97SOXtIZPkEQEEkgmopY7XX389a2BfsrUVZ261IKLX6HTu3Lk4K2QtCDRTQBVptTaZK5C8mZtItHioUH35y19OtBwzI4BAfIFSK/ellp/4ksyJQPsRKLV6canlp/38JckpAvkFSq0+TXnP/zdjDgSaK1Bq9WmufTX3L8ryCOQXKLVyX2r5yS/IHAi0X4FSOM5Sx2+/vx9y3n4ESrGclcL+p/38BckpAvEFSrkuTbmP/3dkzpYToIy0nG1rrLmspqamoTU2xDYQQKD1BNSU/ZQpU2zs2LHWu3fv1ttwji3pYKFWcHM9YZhjcSYhUHSBmTNn2sKFC2399dcv+roLWaFax506daptuummTV7DWcj6WAYBBJoKlFq5L7X8NBVjDALtX6DU6sWllp/2/xfmGyDwhUCp1acp71/8behDoKUESq0+zbWvlvpLs14EvhAotXJfavn5Qoo+BDqeQCkcZ6njd7zfFd+o9ARKsZyVwv6n9P5S5AiB5guUcl2act/8vy9raL4AZaT5hm25BgJy21Kfba8xAp06dbLJkyfbv//97zXmO/NFEVhTBc477zzT5+GHH7YddthhTWXgeyOwRglwnF+j/tx8WQT8cZ5jPT8EBNYcgSeeeMJ22WUXzunXnD853xQB23XXXe3xxx8315AFGgggsAYIhGP9WWedZfqQEECg4wtwrO/4f2O+IQJRgXDfjmN9VIV+BDq2APftOvbfl2+HQFQgHOdL7TpeeTST9COAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAMgECcpN5MTcCCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAKNBAjIbcTBAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAskECMhN5sXcCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIINBIgILcRBwMIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggkEyAgN5kXcyOAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIINBIoKympqah0RgGEECg6AKdOnXy65w8eXLR180KEUCg9AQef/xxo7yX3t+FHCHQUgIq80qU+5YSZr0IlJ4Ax/rS+5uQIwRaUoBjfUvqsm4ESk+AMl96fxNyhEBLC1DuW1qY9SNQWgKU+dL6e5AbBFpDgHLfGspsA4HSEaDMl87fgpwg0BoCKvMu/rU1NhV7GwTkxqZiRgQKFwgBuYWvgSURQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEIgvUGlV1rWsq3Ut72adyzpbVVknqyp3n7Iq162ySvepKCu3Miu38rIyK3P9GlKqtwZraKi3+gbXdUN1DXVWW19rK+tX2sqGmlR3RcNyW1Zfbcsbqs1NjZ855kQAAQQQQAABBBBAAAEEEEAAAQSKIFBqAbmVRfhOrAIBBPIIlFrBz5NdJiOAAAIIIIAAAggggAACCCCAAAIIIIAAAgiUmkC9C5RdYdZQ7UJk3cfFwFqDhpe7YXX9x70U0TUM0+BiY13c7Op+N67WDbuP1bmP+tXVx63TRdw2/rhBH5er2NzwKXf9FW7QfUx3ltSvrvuUdXIzVanrPq5r6nZ2Ab6dzcq7fNHvYoOtvKsb7z7lbpqL/iUhgAACCCCAAAIIIIAAAggggAACHUqAgNwO9efkyyCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggEB7FVDQbP1SF2DrPg1LXf8S179k1TgfgLvMxc4uWzXND7ugXNc8rQvKVddNc0G5Csj1wbau0zpJEb2rkwJ2FZDrAnHNB+OqqyBcN65b+Lhh1+8a7rWy7i44t7vr7+HGre6Wd3P93L1aDUoHAQQQQAABBBBAAAEEEEAAAQTak0CZa7kzcqWkPWWdvCKAAAIIIIAAAggggAACCCDQDgVcS2Rqkcy3SlbrgidC/+oWyhrq3Wm6WipzH/eW4C/6oy2X6WuHs3n3GmEXyuD/afTqtwyv6mq0WjVT62Pu495CHOl3EzROQRNq4UzdShf8EPo1TEIAAQQQQAABBBBoGQFX96t3gbV1C13A7SLXv0jdL/obFrvqngvE9V31uwBdBdz6emLL5Kh116p6qQJ2e6z+9HT10J6u333Ke7kg3V6ru268+it6u64L1FW9lYQAAggggAACCCCAAAIIIIAAAgiUqgABuaX6lyFfCCCAAAIIIIAAAggggAACpSngYiFWvQLYBdPqdcD6rIj0r3T97hXBJqZF9QAAQABJREFUptcE+48b1uuB1a+uPgrC9f1umgJxXb/vrg7KDQG5fr4QlKu42/BxvY36Nayk4NvwiQ6HYFwFMESCcr8IxHWLVbgFw2uHNZ9eP6xhvX64ygVIqJsaXj3Ov47Y9bvXFPtXFGtY/XpVsfJBQgABBBBAAAEEEPBBtGrxtnaeC7hdoI8bpe58fdTvqnYuMLfBBeaaawG3wwTdFvq3V31Vref21scF4rpueV/X7eu6fVzXfSpcf4XGuRZ2ff220G2xHAIIIIAAAggggAACCCCAAAIIIFBEAQJyi4jJqhBAAAEEEEAAAQQQQAABBNqxgAt8rXev+G2odoEReu2ve/2vXv2rYNt6dVf3+9cBaz7/cfPptcBhWK8Hdi+iCQG5VlPm+l0U7eoAXf/qYAXVtoekgFoF5iq4dnVQrnVymff9bpwCbzsrANf1q6sWzlaPSw3r9cRuWrmmqd93Nez6u7oACjeNAApnQEIAAQQQQACBDiWgumCdC7itm+s+CsJ13fq5rq45x3XnuXqkC8T1wbeqI5LiC6ge6lrLLevn6pH9XDVygPv0d/3uU+HGVajrAnj9w2Hx18qcCCCAAAIIIIAAAggggAACCCCAQNEECMgtGiUrQgABBBBAAAEEEEAAAQQQKGkBvRbYBdrWL3Vd10JZvWt9rMG9JrjBdetdEK66Pgh39Tj1mw/KddNWB+f61wQr6Fat1pKyC6hVMwXqKgC3q4Jx1a8g3NXDavHMvXK4TF03Tq8fTnW7rxouV9ctw2uJszMzBQEEEEAAAQRKQ0BvPvABuC7gtu5z95nt6pquWz/bVRvduAbXCq4e4CK1gIDqm2opV8G5A91nkAvKHbjqU+m65QrQ1VseSAgggEBHENADvu56RIOuSejNO+rWu+PM6rfthO6qaW5mP93N43q1aOpNOxrwI1wn9K8eXjWPBtz5uB7U1UdpdX9Z2rCfLTpu9Vt5ytTVm3hct2z123pWdd1+2U9z41fPm9qG3xD/IYAAAggggAACCCDQvgUIyG3ffz9yjwACCCCAAAIIIIAAAgggEBVQ0K1auF3iuktcd/HqfheA2+ACcf1H4930Bn3ceFvmWrF1Qbg+SEI3q0itJ6Cbb2pdVwG5LgDX3Efd8h6u28ONU1fD7lXEGlfuxvlPT9dPsG7r/Z3YEgIIIIAAAgg0FnBVx3pXf6xV8O0s13Wf+s/cZ5Yb74JxGxa42Wn9trFZaw2pFd0+rq442NUbB7tYsCEuOFcfN+wDdF29k8Cv1vpjsB0EEPAC7jqDWk7X23NWdb/oN/dAhx9Xu2qahv04jVd/nRu/elwqAFfBtyEYNxWI6w5M6eNXT/NBuW6yT67bKABX49M/mjHMr0DbaLBtGI50fYBudJ4QZKsgXPcJwbir+t2MIRh3dZCufwjXjfPzuQcoyirdPOpqWT1Qsfqj1s81zbeCrun+7T2rhqP9vIXHmZEQQAABBBBAAAEE2lSAgNw25WfjCCCAAAIIIIAAAggggAAChQio1Rffyu0iF/iwyPWrq+Dbxe6+kfuoX68BbnDjGxa7gFsF3i53WyLgthDutltGN+rU6pmCc3s2uI/rutcUl/fSsOsqQHf1sLoVbrxa26VV3bb7k7FlBBBAAAEEOqyAq0fWubpl7Uz3meECcV23znXrZ7o6p2sFlxZwS/Qvr4e/Brg64jBXRRzmAnOHusBc16103QpXtyRwq0T/bmQLgVIVCMG1K9z+37V83uC6Deq6N+k01ET7Vw2bxisYV2/aCfOo3wforuqu6nfHkTCu1u2bQkCuC9T1Qbqrg2077DWN1UG6/lzeB+C6c/5K991DcG6V618dgKvuqn7XdW/m8cG4ekNPJ7fM6mE/PgzrOKDxGg79nd1xQdcaNE7r0/ZJCCCAAAIIIIAAAggUSYCA3CJBshoEEEAAAQQQQAABBBBAAIGWEdDNLQU/1C9wQQ/u44NvF7obWgtdv+vWuxbIGjTs5rFlLg+6UUXq+AJqTaebu4Gm4Fy1gtbbffq4m2quq3HqVrhXFGucAnV1442EAAIIIIAAAggkElAQrqt/KgC3dnq91X7q6p6fujrpdFfvdA9/ddjAqERI7WhmtcCoOuNwVz8coY+L9Rpe7gN0VW8kIKsd/S3JKgLFFnD7ex9gu9xdZ3Bv3WlwD/Su+mh4db+CbzXeXaPQA78Nbt7UcCQ4Vw9o+HlWB+FyjaLYf6w861NAr4JsFYSr6wAKwvUft58P/QrG1Vt3fHf1dDdc5oZ9oO7q/rKuGnbXFbq6aQr6JXDXIZAQQAABBBBAAAEE8gkQkJtPiOkIIIAAAggggAACCCCAAAKtJuCDb12gbd18d9NLAbi+625mqfv/7H0HgBvF+f0n6XR3LuDe27njbjDF9G6aSWgB/qGEUJMAqZAACaH86AkEQgskhARIIUAooYQOwXSbYkxx770blyvS6v/eSCPvySornXQn6b7P3pvd2dnZ2afdndmZN+9bxxAL4iNbUCQl3jbb71JSJ6LrynZYQNL1dcLAWSeMmXUmMRchCbsk6CKepAsl6ZbUL6uFVQQUAUVAEVAEmgcBcG3D8LZgSLiLQcJdiDbpQhC1QMqVzSgCArUyQAA8LKHHBarmDoBiLpd+Pglim14Y4i7ay+BS9RIUAUUAr24qzoJo66AvwdmKEJN5uR1BaAi4Zhtx2BchATe2CNPYdXrdgYqtTsYoszuKJFsSeEnOBQHXR/ItQjHr2OZEYMaZEPUGvPLYdH7E+duh3rBpSAZWUwQUAUVAEVAEFAFFQBFo9QgoIbfV3wIKgCKgCCgCioAioAgoAoqAIqAIKAIthAAIteHNIDisI9mWIca1uA6XvyTfcp0EXMHglxIfWug3KpfTknDBATIScjtjwKwLFrouBlE3wG0TYh0DacZFZrlct16HIqAIKAKKgCKgCHhGgG7HQysj0rAAIZYwl8UxJdxSJeFakhGJRnD77aPLb3oZiC0+hkzDtpJ7waZpf/O67UI37dZlOkPjTh0HNSAB1kuapIbLMMq5IOQGakDMxRJk2MMfVUTE5akpAopAkSOAV1EEirTOFvQnoJ/BEG8RcjIv4xjG1zG5gkTcCOJlq8+QcKlqq0TbIv+NW7p4rC+psEtCLiYBmz4GTgbG4m/PMBpvCLvYNkRdG3IfFXZZ16opAoqAIqAIKAKKgCKgCJQ9AkrILfufWC9QEVAEFAFFQBFQBBQBRUARUAQUgeJAgIo0ziYQHEC4DZN0Gw8xEMbttSgnlW8x2K+mCBQcAQ6mcXAM5FxfF5BzQdANdMM2QywVjNsZg2aqcFPwn0JPoAgoAoqAIqAItBgC4GKF4X2hYRGW+Y6E56KdOg/ELUwOK1pvDJYQBLU+aROJq/QZ5X+q+1m33HTVzYVkXCy+yli7xpJx2cbBus8jITfCNjqIuGzTG2y4DqXICAm5DEGE47YwTObWnZPsYgqUTFO0bX5igvZhYBDag4OxDPRLsD/ah/CuoEQq/G5qikALI2CUbqFiy8m9ztd4lUDRPMKQ2yTaxrYjZh3bMVKuee/gdaWmCBQMAZJtWe+SpEuC7k6od6HEbtdJ2vUzLhYGsO7nfhJ8WTerKQKKgCKgCCgCioAioAiUDQJKyC2bn1IvRBFQBBQBRUARUAQUAUVAEVAEFIEiQwCD9GEScFdjsGwVFoQOl1UYLMMSWY/RMKrQqCkCxYIACSxUzO2OgbHuCLuRpIsF2xUMMWCmCrrF8mNpORQBRUARUAQUgdwRIKErtNqRBhBwG2aDiDsb7dOlaJuSNFoMRpIsXWXvTCJPlLzTSIGPyv8g8ERdZGMd5Fy/IeMibSz0U4mvmQk+VNA1xNxaEORIykVb34GLd+Mm3u0OPkGxMkqci5LqzG9QLBP08Bv4+6IdODS6VA72m4lbOmGrGB4SLUPZI4D3gLMN/Qcb0ZewCevoW3BiYWRjdDuC7QjiTQgCrlHqLntg9AJLFgFOjiFRl3U7J/92QB3DENsM/bHtANcZx4k3bA+oKQKKgCKgCCgCioAioAiUHAJKyC25n0wLrAgoAoqAIqAIKAKKgCKgCCgCikCRIgAOgwOlmjgBlyTcFRg0W4F4hJH1KDdVs9SigyokSHAx6mQYhAkAQG5zwIUh1VWwblTLGMeFcTSG7nXG4XBjDN3rJDRgMapmsXWjSMb1MNxzgjghIRzA0C7cpxZVt+kE6HtiQAxLoAd+mh4xgi5UdOmKMv47KF6KgCKgCCgCioAiUPQIkCTasAzLLJBxZ6GtiiWyBsVmG6gljO05EmhJzukYI+eAkEOiDlXzDEGHCnpU0wMx10+32CTosK1Yyga8DdHOuJbHulW6jBHuSLAj8S6yAQvIeCTfmYl8to3b3NcOvH3wpBAY5pOgWaCa29sfdT/e3GXR8ykCZYiA8aaD9wEVyx089yThOnYdoX0XcB+VtlvsnV2G2OslFQECrNNZv7P+t20BhP6OiDMh+iC4DqV2tgVUTbcIfjMtgiKgCCgCioAioAgoAhkQUEJuBoB0tyKgCCgCioAioAgoAoqAIqAIKAKKQBoEMJgexmBZCIRbLmEQHMLLoyTcCNRwBYpYZWt0/xtzBcxQqK7KkO6AGR/bT8Jt1FUw4qmIQgKudREcD0GsYDpLxk0k4tptkja40Nzr0ZgoEdcSFRhiSSTixrfx25l1KMRFYoTcuAtiE4d4Eqjhhjgacj0aR+UzqUc8FY7NOoi92DZECboxLlejUl1XDIT1woAYl95QSwNRlwtVbEqeHFOuv5telyKgCCgCikCrR4Dkz9CSiNR/BSLul2ivzka7hSTP5ja2F0Gq8XUCqaYL2hQMSbKJhQESb0i4oftqthNboVlinlHFdBHyHHjXcDDBz1mH9ug6F0m3OTFi+xuEqQAUc4MjfVI5HMRcKOj6qm0DvTkLo+dSBEoUAUz+5ETeMJ7pMJ9phnimHS7Y5kReetOh6q351izRy9RiKwJNRoD9SpywwzYCJgobbz6d0ffAbROiPmK7gROF2ZekpggoAoqAIqAIKAKKgCJQNAgoIbdofgotiCKgCCgCioAioAgoAoqAIqAIKAKlgQDJmRwwCy11JATyLUm4zlLEIRQOmpWyuirH0kmkJfEytghUyIzrX+P+F/EccOe63a7Cfg6UxAi5PrvNfEjADWK/OyS5otjH7PEbkgzB35pkXROCmGsIuSDgGlfEMUKuWQcxl4TcCF0Sk6TL0LgqZhhdBESYCNxAczGuiEn2RZYlayRJg5DhBynX3xsDYSTncukDV8YYIDMk7JK9OC24IqAIKAKKgCJQHgiwPdKwGETcz0HE/Rzt1nlofHzdTNfG9h7bkyTeUlkfCqv+LiDS2KUztkmqQdux6NuGzQRZytPgZ3PwW1IxM7wW3x1rYwS+NYiDwrGDiYAREHVNG7O52pdQMA4MATF3FIi5o2LEXP6WaoqAItAIAUOyh+q1eW757GIxzy1DPM+GYM9+BH4fqikCikB6BNi3RJIu2hJmYk8sDKCdESBJl9uYLNxaJ/WkB0/3KgKKgCKgCCgCioAi0HwIKCG3+bDWMykCioAioAgoAoqAIqAIKAKKgCJQsgiQdEkSbgNIuGGoi1FhzFmEwW+o4pqB71K5MqqGkDzbDgMU7VB2qo/BNaBZ2oIUQfItiRNY93Ef1uNxIOCSMEFCrh/kW1VDTf6jR6i8S4IuSRMk5cYIuVSmi8C9aCQWOiTnQhnJxDF+C/KDm9LIVqjtImxRt8TJLy19LO8fKOX6+0HsuB8GwqCWRlfGHBBTcm566HSvIqAIKAKKgCKQbwTYdmW71RBxPwUBbA7aFmxrFNo4QYsE3B5oE3RHc7E72gRcumEhWQauplXFLk8/AiaQhb/GbwtSbhiEXLOsQvtzJb5RVqJNSYIuJ4oV2trjd6Zi7tgYMRftP+M1o9Dn1fwVgSJFwBJwQ/a5REjSvLPaRZ7HN6JaExFg3waXQELox/eniUO9Z/cxHecLuBYzfcC1Hd+HZI3WkY2ZSMuQ5t6OxUUS4zhJmwv6BsTB970JkSgeZ/fF0iFQawIC7MPiJB+0NczkH9vmQPujghOClKDbBHD1UEVAEVAEFAFFQBFQBHJDQAm5ueGmRykCioAioAgoAoqAIqAIKAKKgCJQ/ghg0CQEV5GhxVDCXYQQi7MYYygk4RbzABoHlUiGAOHB1z4ivp0Ycjsa52cIQq4fRFw/0zAE+dZsU/2Wg1ZqBUfAEHdBznVAxnVIxAVJhqGDkIRcZzPCzYhnCCW76DoG8xBX9GRdErktObc/BsH6+w1JtwLuJPX+KvitpSdQBBQBRUARaM0IgOwTWulI3QyQcT8BSXMm2g1UXiyUkeQEpVRDwKViPup/LhUg5FaACMO2piE2Fer8mu92BPDbh9FODIOUGwIhN4xvFi7O8tj3C5WRcTsUzOA5ITAcpNzxfqkajbYffn8lXxcMbc24mBDAc8XvuBCevTCePT5/jpscvx6FVfXb6PuAXnQ4QRhedCQI4IwnHcTRi07Msw7Xjbop41zrvorYtyT6K3wuIq4h37IPIx4fffdESbmueETHibZcpyH0Jca79pk0fG/ad6ddRxgn4TKRK57rERfx1pBxY4TcKDEX6bHdaN2mp5eeMDJgiIVhfN1478E2PfdwP+8ps6CPAN56ouuIY16t3XhfdYr1SfTArcGJQWiXcKkgaRf9Ydo2ae03iV6/IqAIKAKKgCKgCBQaASXkFhphzV8RUAQUAUVAEVAEFAFFQBFQBBSBUkIA4xhUmqICbmgRiLgLMKi2AGMay7Cj2Ei4HCiCaq0PJAgfFT/gts9P131YZ+gnEZcECYR+hiBEkHirrvtK44Y0ykpQ0HVwP5Kca0ISc7kNYo0Dt6cRhNElul6URF2Sc3tj8GsgxlMHRMm5wT68J3UQrDTuRC2lIqAIKAKKQKkgEMZEsvqZIOJ+hDbsZ2gbrC1QyUl6AvnSz/q8D+p3hAGoolb0QojJN9rWLBDuWWbLtiTvidBy3A/4lgljcZYgbim+azYis0KQtti8g0JyxRgQc3fzS+VweEvghCw1RaDMEDDP1wY8V8vxjJH8jtA8YwjNuxcq5WVtJMSSXMv+CHrP4YRghpWoA+Lr0Tgf4gzxlkRcLJaQy3XjSSVGyiXhNr5tiLg4LkbINfVKIFq/xIm2yKpsDO9jM2GXBFwQcnl/cZGQa52EXLNE40jANdu41ywhl+r4XCQWF1+nWjq9+IC4S28+Zp39W1xHPgWpD5Bt0RjvSdRNfrZT2DeBsIITiGy7hYRuNUVAEVAEFAFFQBFQBBSBvCKghNy8wqmZKQKKgCKgCCgCioAioAgoAoqAIlCaCHCgIrTakYb5GFCbh8E0LosxWE0lqWIwDhBQyRbkBx+JDh2xjpDbJiQBtwMGFEjGJRGXA11qZYsAB9FIHCcp1ywgVTgbsY5BYWcDBtqwHeE6yRZ0T01FnpY2cjFADA/0w306CANgWIIDqVADt8YczFVTBBQBRUARUAQUgZwQYLugfgFUcaeiLQsybmQZssl33U/yFdqdgb6ox/tF6/OKfn4JgsyiKrg5/WzNe5CddEjyIL1/4DvHkHP5vcP2IoK8Gr5dDFl7AtRysVTWoL2n3yd5hVgza34EDAl3HZ4hkNtDSx0JYxJvGCR3B8+V6TfI93PU/JeIBxcnJXmxDT7e2sDbDgm3XDch1hnCq44h3Zp1bFdhm+uGiBvbR7It42Ohn997Snpsll/UEHtdhNxIXZSEa8i6dh1k3Egt4hmiDWEWu70NxWQ8vPlE4uuII3m3EBM5mgUV10nYL8H+M5Jx+8TaM30wqYhE3U64Z0ECV1MEFAFFQBFQBBQBRUARaDoCSshtOoaagyKgCCgCioAioAgoAoqAIqAIKAIliwBVRxsWYZmHgem5GFDDElmDy8k3iSEbhDgIRvJtJwxiYUDA3zkaBrBtyLcg4nKgIEA1XAxyqau9bMAt47QYAOZgWxikirAh5kYJuuF1iIc6mrMeIQaQGcpWLC05mEalo64Y/BoMQi6W4CAQekDUNaq5ZfwT6aUpAoqAIqAIKAJ5RQB1f2h1ROqmQxX3PZDDZiOC5Jl8GtukVMAdAKHCGtTbA1Bng7Si7p7zCXIz54XbxNmM7x+SChfiG4geQRYiDttmIlc+iwNPCYHhUMudCGLuWBCeuui3Sz7h1byaAQF8M4UxCZIedBr4vKDvwFmE54UkXH5TlZqRbNgW32Jc8H730YOO3QbxttE6PZ1gISHXhCTiMo4hCbYkNqqVPgK4lUnWdUjWRRuCRFwnRsh1zHY0LoL73Swk6tp1ePSJYAIwF9P+oKpvqRnbOSTn9kd91R99E2jnGOV/THY3BPVSux4tryKgCCgCioAioAgoAkWCgBJyi+SH0GIoAoqAIqAIKAKKgCKgCCgCioAi0GwIYFAtBGJiw3yoiM3C4BoWBwNreR+A9npBVI2B4pivKwa66EYPA9Uk4QYQBjpjISkXgwGqIuoVUE3nRoBuLDmI7OCeD8cWBy6sue2AfB5Zg0E0KqPRVWVLGAbAAgNwnw/D4BeWyoFwbYx7Xge/WuLH0HMqAoqAIqAIlAoCRhUXE8pq3w1L6CPU5atRcjRn82J24gyV7Klqj7qZE2cC8Mag9XNeEC6eTEg2hJeFhkUgGlpPIQjzOkERt42vOzzWUy13b6jl4n5StdziuQW0JMkR4ETHBpBujQcd9BuE5+P7CaTcFuszSF7MHWPxvAn7F9pjIeG2PfoRuG62sU7yIePboY/BhiDk+knMJfEWKrf6nt8RVo0BAqgvHKjkOiThYnEMKRchCbmY5GFCxm3B/s2Mi8abkIRdkH7z1k4p1A+C58QPTwAVaP8EsFSyHdQTzwYnwqspAoqAIqAIKAKKgCKgCGSFgBJys4JLEysCioAioAgoAoqAIqAIKAKKgCJQugjQxWRoFUi4UA9rmIVB55kYKFiO62luIiJdOYJw6++GAS+ohPpBxA1wwbYJoYBLd49qikChECCJJwzV3DDIuCEsTnzBABuU9iJQ1TUuKQtVgGT5YuDYKNMMB2FjOMgaQ0HMxTPhU9emydDSOEVAEVAEFIFWjADr8LpPHal7CyQxTCzLW51N5UMSUYZADXcISLgk43YHeZJKiGpljwAncYVW4ltpHtqHc/CtNAftQhIQoZSYF4NLe6rlVu0fVcsN4JtHTREoNgToQad+IfoL+Ayg38DB8xChhxGQEYvK+I1E9Vp6zdkJ30w74f2NhevxkORCEHK5bUKQcFXZtqh+xfIqDKoLo7QLQi5V2B0Qck2IZ4qkXOdr7Me6CTdF1yOIa3HvPcl+BXitYp9dgO2goZg4zDYR1HPVo08ysDROEVAEFAFFQBFQBBSB5AgoITc5LhqrCCgCioAioAgoAoqAIqAIKAKKQNkgYIi4GFyuBwG34XMQF0jEXYPLa65BNSrUdMIgWHd04EMdikTcQA8SHKIEXHbq++g6Uk0RaCEE+Ixw8Jlur8OroouD0FmFeIRmELq5iOsc/OqGwa9dMPA1EsRcEDcMGUifkRa6O/S0ioAioAgoAkWDANquDUugivsO2rXvOdGJZSDANNlA6KISXEVMrT5ItXq0T9UdeZORLc0McE/Ru4LxJoLvJpISw1DNFRKnmmq8rXpDdXBvn1TvA4JTbzT88F9NEWhpBIxSNFTH67/EPY/FWYx7HmqfLW7krYPMbjzqQKWcBFw/vevAgw5DetKJLniPk4xLRVz0P6gpAsWGgCHrgqhrvPeQmAtSrkNPPvDWE4FSO7fpuYfrxoMPJhEXhaIuFaTh0acC/ROVI6MeffjMqSkCioAioAgoAoqAIqAIpEdACbnp8dG9ioAioAgoAoqAIqAIKAKKgCKgCJQsApEwVJ5WRAfVGr4AEfcrdOyvxeXkg7iQDhX2zVOFhgTcnhgYg4u7QC8s2DYkXHbeq+pnOgR1XwsjwGfHwUCYIeiuxKDZCixw2eqsRDy2BQo3zfEc+aAgbYi5o6CkhgGwih5gbOiz08J3h55eEVAEFAFFoCUQIJGlfrYj214PS+jjPJEjO6JaHcwJMCCY7OKXCqjj+uGyXE0RsAg420DMBTGx4Sso536B9uBc3HsgTDXZQCoM7gZS7sEBqRwMFWYlEDYZUs0gNwSo4Fk/F30Gn+HbB5N3ncXIB+/bFjG+fkH+8+Hd7O8EYi3D2LofitJcApaES+KtTlhskZ9JT5pfBMzkYBJ1ScpF/cJ+CAeeAJwNXNDtAIVqrptJwttw7kL356W6PHix8vdDn8RotJm4oO7yQ3VaTRFQBBQBRUARUAQUAUUgOQJKyE2Oi8YqAoqAIqAIKAKKgCKgCCgCioAiULoIQD0stAYDaxg4roc73zAGjyPrcDmF7LjHYJhRwYXik783yA0g4FZw6QmFMQ6m6SBz6d5PWnLjejK8DoPUILiHQMw15NzlGBhbimcLg2QChd2CGca4fF3gOhtkoeA4KOaOAGGoMyJVTa1gkGvGioAioAgoAsWFgAP3z7XTHal7JerpoSlkMTaHnXYhqetTK/U12ySEJdwV7LNg6oYy6SadOneWrl27SjAYLC5wtDTNgkAESoUNS/FthUmODZ+jLQjVXIGaYZMM5KbACJByD8XEq9HNR2x68ZOIPPSmI3Mx4SxX8+GhOGmiX04/wC89QJhUKz0EOMmhYRHeq5/gnv4YRNyFuIbmJuLiGSDp1odvG39nfN6YBaRbbqMPgf0IJOD6qnDD8UWspgi0FgTwenZqSdBFfYP+hjAJuuiPcNZiIUEX/XsRrJu+iOZ+btG3569B3wQmlVSNh9J7X51U0lpuS71ORUARUAQUAUVAEcgOASXkZoeXplYEFAFFQBFQBBQBRUARUAQUAUWgqBEIQzmjflaUiBuCyk1kFYoLgm5BDB3xRsGzD0m4IN8iDEBZLAhFXKOUoYNmBYFdM21hBDg4BgWbBqrmgpAbwsLQkHOpQF2oATEQcH09QMwdAzUaDHxVDgXZHW5b1RQBRUARUAQUgXJGgIpxtR+GDRnXWYArbUK7NtwmLA29a6Vu0FZpGLRNnG4NqFi9kxLbtm0rNTU15Qy3XlsGBAyJkcTcz0BinI42IBVzt2Q4KN1utO/8g0BqOswv1bujbVdgN+Ak4171KFxB5MnGD/TLPeeBTKxN0jwh2jzZcKIhJznUvxeb5NCUezibIrfB9wwmGvq7ob+AYVf0H9gFJNwAybnVejNlA6mmbV0IGJIuyLlhEHLDIOSGMRHfMQuaRwiNRyyq6DaHtcekEnjxqcLkjKox0Yn4zXFaPYcioAgoAoqAIqAIKAKlgoASckvll9JyKgKKgCKgCCgCioAioAgoAoqAIpAGgUgdiLgLI1I3DQqeH0HhZikSF0K1E6JgHEQLwFVdoD8WhEGQcAMcVFMXv2l+Id1VrgjQlXF4FQi6SxDCpXEIi4PFDIaB55N3gxq1n8R3KtJMgCLNAFWkyTvGmqEioAgoAopAUSBAjw+174CM+7ojEbZtczQnCPJk9zqpGwoi7pCtEu6B2TNpFHFTnSYSiUjfvn2lQwdINqq1agTstxe9kRh10UWAI9dJWeAf+vqIVEEpt83EgAS6FI6QeNod4SYp4yb70X95YkCO3b1wZU52To3LEQFwseuhilv7Du7bD/BeXYF8vM9JyP6k1TikU0Q2VmyQpVsWy1pZI5uC62VT5Qb5OrhRagNbxfGln2Xhgxzz4MGDZb/99pMhQ4ZkXwY9QhEoZwTwTIe/Rj8EybmrsayMhg4m5jvoozB9ElB4L5ix/sLk/OCePmmzN/om+mGWSaBgZ9OMFQFFQBFQBBQBRUARKCkElJBbUj+XFlYRUAQUAUVAEVAEFAFFQBFQBBSBBAQwgBZCp3vd9LDUf4jO91mIyLciBpU5O4EEOCBKwq0AETeIpaK7TxVsEn4O3WzdCETgVpLPY8MihFjCXECUF7iZbIqiX1JU22KsazjUcvcAMXdsQCpAildXrkmR0khFQBFQBBSBEkQgBGLJtv+hffsaSGOrc7uACKrGUKd6qRu8VeqHb5Fw3zqJVKcnf9kz7bzzzmZ106ZNNsqEnTt3lp49ezaK043WiwC9JtTPdqKTIj+NeSfJkeDo64F23SEgNR2Adl2BSLkTL899xuYFkzAzE3bfS41nnJ22f0AuPloJucX+FFDduW4myLivhCUEdecmKTunulj0GwhenX54zAngNRnuEpL3Z70jczbMEqdTg1R1rpSIL7sHJBwOy4oVZA6LHH/88TJhwgSzrn8UAUUgCQJo4oRRL5GcG6JHn9ji4BFysC5f4xhvzaAkmaeJageHA+NRfx0WMJ58fPCmpaYIKAKKgCKgCCgCikBrRwC6KmqKgCKgCCgCioAioAgoAoqAIqAIKAKliADJf/VzMKj2LlRxP8YA8Jo8XwU61anEGahB53oNSLhwSVrRS5Vw84yyZldGCNDFahDE9eAAjHNBOTe0DOTc+Xg+F2AwbD7isJ23we+tGGyD2+FaKPOGQPqthiJN5SCo5aqb1zK6o/RSFAFFQBFonQgYMu6bIONSGTdHMq6gHVvba7PUjdwiDYO3SaSDdyJiVVWVWEIuf4FEUm5TfhWq7G7b5n32XHV1tfj9ZLmpFSMC/vY+qR4PAi1UAesGOVL/nhOdIIl2WrYWwaSu+lfRVsR/Q8rtWjwk1wmD/XL+pO3DiW5SLoqbV1u/fr189tlnMnPmTOnXr5+MGzdOevXqlfIcoVBI6uuj8sRt2rQRKqqmM5ue6Zie1tDQYBaue8mD6XhO5sXnk89pMRsVnWuno9/gBdyfM/GLNeZUN63oUMP0dUa/AVQy/VB6rkBY0Rvu69Fv8NoHb8jbdW/K/pP2l8mTJ+d8nq+++koeeeQReeqpp2SXXXaRdu3wgldTBBSBHRFAcyGwM/rwsFQORnWCpk94Q4ycuwz9EkvhzQceB9gvEVmPw6GwmxfbgglQEAjYujkszpHomxiNfomq9O/ivJxXM1EEFAFFQBFQBBQBRaCIEdj+BV3EhdSiKQLljkDDx+9K+IuPJLxgtjirV0ikvrbcL1mvTxFoUQSc81N34rZowfTkioAioAgoAopAFghENnYUZ84Icb6AQszyAeIL5UeCIiQhWRlYITOrvpQvqqfLzG3TZdlCKNosRw/7u1kUUJMqAopADAEMiNW3k951w2SX6nEyIjJGhteNlO7h7lKBf00ycjZAVNr00lZ5943p8lLH5+STjq9LQ9XGJmXbmg4+YNuJrely9VoVgaJEoLKyUjp16mSIV8OGDZNRo0YVZTm1UM2DQHgdCKtvxZRxc5lsBv6Hr7dIcA+/rOm6TpyeYJ5VZEcZdJNxuV5XV2eWfCCwdOlSGTRokOesvvzyS+Ou3fMBmrD5EcA9VwHybABKscF+Pql935GGD0Emp6hndreeROBmnKrQPpAcScoNdCoOQpNVxyW4JOZOnRuWaXPzK7P49ttvy/nnny+zZ8/e4Tfs3r273HnnnUYhNXHnv//9bzn99NNNNNNccMEFiUkabf/rX/+Ss846y8StXr1aOnToIA8++KBcdNFFJu7111+Xfffdt9ExyTaOPPJImTJlivTp00fmz5+fLElRxFEZt/YzR7Y9C6LcTBQpHz8bSH++jiDh4n4PYKEHnQpM5K2AMq6/HV/C0Uv/39tvSrdu3ZpExmVOJOEedNBB8vLLLwvJuS2lksu6gBM21MoDgdbwe/rQ3cD6iYuM8gtV3RuglDt/ykKZ9sQnsvPmDjJop6HSpaqrVPhR8TTF8K4JzwD5P4Q6DO+IqtEB8UWF1ZuSqx6rCCgCioAioAgoAopAySLQxJGfkr1uLbgiUBQI1L/+rNS/8pT4O3fHDOL+UjFmD3wd4bGEUgL7LNz9dcWyXXXMqUWBnRZCEcgVgU0/OM4cWt3zGHQO4snC81bKYXUPXIeaIqAIKAKKQKtCIAIFi4YFULeBwo3zMTq6MWibDwtVhGRThw2yvscqs0jPDVLToaMMqNgX7dJ94+1T2y4txvC7B0QHUfOBh+ahCBQCAQ6Ih1ZCPW0OVGqgbh0G38BZjvZoXdPO1ibSRnav20v2kIkSHA6ltn2hltsfo2BNHFNrWqmK/+j9r9vFFPLQQw/FZwG+w/F9UMohr0NNEShFBKgyuGbNGlm0aJF88MEH8txzz8l+++0n++yzTylejpa5CQiEN4GM+15MGTcXMi5EKgPDfFK1v1+qxvklvLQuo1pmYnFJwHUTrqiOS9KOmiKQCQESjyqHQhkUxKfaPj6pfwttPbT5JEvtDZJy60DKFfD+2u4bEP9O/PJqOSMZlwq51u5/KZR3Mu79998fJ8Ta8+y0007y9df0ry6yatUqOeWUU+TSSy+Va6+9VgKB5I3ciy++WA4++GDh5A4vFg5H5SGPO+64+Pkfe+yxjITcxYsXGzIuz3Haaad5OVXLpMHtZzzqvIi+g1koQlPJuG1BwsW9HRiIYSx40KkY4JcglXFJwk0w+9t17do1YU9umyQ+0zZtbNrEQ6ts7KUUboXym2++Wa688ko5+uijhSRwq1z+wx/+UN5//31DOub+1mA33XSTPPnkk7LHHnvIXXfdVXKX7DiOnHDCCfL888+b98lll11WcteQU4HxmLI++d3dN8uvf/1r2cnXQUa3HytjOo2XUZ3GyIiOo6Wm/SBpH2yfU/bmILxSw1+hLVeFvsq2aI8NQ92x4+sh9/z1SEVAEVAEFAFFQBFQBEoIASXkltCPpUUtHwSclUul9u/3SATTBIN7HoSeYnQgWWKgg14SUB4idjtGfSie7fL5HfRKWjcCfNJ8GHQv9bB1/4p69YqAIqAItD4EnG1wY/oVyLgYoA19hlosB1eoiaht8m2S2h5bZF2vFbKu50rZ1HO11LeBG10/8mdFSeMqO9GLPTSF1T+KQPEi4IOQdRAujYN9MVAFolD9PCiowW1sCIuzCA9YE59p6+rYWY38DolI1XC4iqzWEbBMdwRJuLRSDzNdp+5XBIoVASrk9u7d2ywTJ06UJUuWCBUKP//8c6OGmC8yT7Fev5YrigDbuXUfOVL3KpRFV+aASifUsRMwKQWqopWDUP/ReQTcMmdjJOO61XF5LAm5hbKrrrpKJk2alDJ7Er6yUdNNmZHuaFYEqGpLIm1FDxBz3wxLw8doZ2zIrgiR5SBS4lkg0bEN1J5bqj1HMi4Vcd1230sN7s0mr8+bNy9OhiUJ995775XDDz/cKKdv2bJF3nrrLfn+978vVJf+zW9+I4cccoikm4RE9ds333xTgkHv0oxU4D322GPlP//5jzz88MNyyy23COumVPbEE0/Ed516avEKmIRWQq0SiuMkyOXsmh6fEkYNdxAIuEN9EhyMBUTcQAfuiMNQMis//elPhQRwL/anP/1JzjzzTJOU9wSNJM4vvvhCRo8ebbZnzJghH3/8sYwZM8Zst4Y/VCnmNXfp0qUkL5e/H39HGt8prYaQi+slmZpkXNrXkY3y7tdvmaXH0l6yW8c9ZPJu35RdEXar7S5tw+3wiOfwkJOU+znePd3CEuiI9wbqQjVFQBFQBBQBRUARUARaIwLbp7W2xqvXa1YEWgCB8LyvZMutl4u/Z190YMAFHxVxSb6lMeRqMW+bguofRaD0EbDdANFwe9dCqW2X/i+hV6AIKAKKgCLgFQEqhtH96dZ/hyU0renEPaHoRc1X8o9Of5GZe02V+ROmy5rBC6W+XYyMy4apqRijoaktXdtmp2u7KPZ7BVPTKQItjQCenUBnECx2D0j7bwak3ckBqZqMge3R2NGuiYXbAhXeDyN4V8A1LdwlO19HyaZNzLWsD6cyLi36l5/kse3EMIZCse6PFU8DRaDkEejbt6+cccYZMnLkSLnvvvtk4cKFJX9NegEZEAB5w0w6ezUskSUZ0ibuxivbB+HEqkl+aXss6lNORknNo0s8Or6djIxLd/aFtKFDhxqFQaoMJlvolt3WOYUsh+adfwR4D1aNwD35DdyTh+Ge7IVz2IaGx9M5i6CU+wpI6jMha4pnpLktGRn3/Hvzrxb93//+N35pr776qpx88smGjMvIdu3ayZFHHinvvfdePM0jjzwSX0+2MnXqVEM6S7YvXdx3vvMds5vKrq+99lq6pIa0ywS77rprnJiZ9oAW2BkBb7ruU/QdfIJvgVx+Nr5bIW5bsQ8mOpzgl3an4LvlmAqpHhcwJLts7+cWgKDJp3Sro5999tkmPxJvd9kl6mUj0wmo9E9i9wUXXJApqe5vRgT4+/HZpX33u99txjPveCpO+uE9wuXvf//7jgnyGPPAAw/EybiJ2Z5/xbny9PLH5dx/nyFjrxwmXb6zswT3Qd0FznVU0ibxiAzbeOew37LuM7Tr8juHI8OJdbcioAgoAoqAIqAIKALFg0Djqa3FUy4tiSJQlghQGXfrH26Q4B4Hwl0HRlk5LsqOuFIKy/KX0YtqjQjYxy567TGl3DgQpbYdL7iuKAKKgCKgCJQpAuF1Ufe9RjGMJAVWZLkamqEBqtuM8klD5XPy32l/k159MUAUb5cic1NRNg4jvsbbkJpvlK4o9ueKiR6nCLQgAv72cOUIIi7VphpGQwX7cyhgz4hIeD6esVwVc0PwSAslrNotYXG2RKTNXhg4h1qbWnIE4sq4sd3x7UTl3CLfn/zqNFYRKF0E9t13X2nfvr2QfEUyiyrllu5vmank9QujHiCcuUiJ6s+zQW7EPxDERxAeqyfESGIZDq6qqhI3yYrJGZdMGTcxXYasC7r7b3/7m8ycOdOc4/zzzxcS190WDoeNque2bdvMPqZx27vvvmvcrM+ZM0e2bt0q/fr1k/32209OOukk85y503KdCqCffvqpIZ5RAZSkyTfeeMPEDR8+XL71rW/J/vvvbw7jOf/yl78Yt+2rVq0yRCc+v3TtnsrWr19vnu0PP/xQli9fLt26dZPddtvNqFFSrTSZ0c34Cy+8INOmTZOPPvrIKKCOGzdOeK6DDz442SEtG4emV7CPX/yH+8TfEZxIKN46C1Ek8Gs9GZ6F8By05153jBppsKYw+joTBvtl2tzGhWJcojLu/S+Fdkjn6ToyJLKEXP7u48ePT5q6R48ehmT7v//9z5Py7f/93/8Z9em99toraX7JIqlWTYVeEnIfffRRQwROlu7LL7+Uzz77zOyiGm+i8Z5mOXmfbt682RB2eV0nnHACtFmab0g2tNyRenjViaxNLKGHbdyvFbvg+2QsvlNGYtJgDxDz4OSxnIz325NPPpn2kvr37x/fTyXVn//850YVlurl2RjvKbXiQYDPIevEtWvXmrqnWEpGRfBCGpXGk9mVV14pXGi+KjFeBoL9/RIag3fIF1imox6aXi8V24JZ8fAja0Qa8A4K7eLAQ1B2z0yycmqcIqAIKAKKgCKgCCgCpYZA8339lRoyWl5FoAAI1P79Hgnuurch46I/Lur2l+fhBs0VFvX+aGn1ryJQ0giYx42KVxxkR+iLhSW3XdK/ghZeEVAEFAFFwAsCIbie3wY3k/VvwH3vCi9HpEiDjnX/AAyqjfNJ5Vi/BPv7ZNPMRSKfgLnHuhCHkVTLtQg2SnE7xZVrtCJQEgj422DAmwPfeE4bRoGYO92Rhk8j4ixCezUXVSscZpTVXuDxYamm6+SufLLVEhGg+iBJuKUeJl6XbisC5YAAyXYkNJE0c95555XDJek1JCDAiWe170QnowiapZ4NIxuBYVBuPMIvVeNAemybuY6zKrhUpONiLRkZ173fpmvJkGq6VsmPZMBEIhmV76666ipTxL/+9a+NivrDH/5Q/vCHPzSK48ZDDz0k11xzjbzzzjvSq1evRvtJfOV+knbnzZsn1157bXz/66+/bvIjQe3EE080xNylS5fG97/yyivGDfivfvWrpGp8s2bNkr333tsQH+MHYeXxxx+XK664whAZE92/b9iwQc455xz5z3/+4z5Enn76abPNfbfeequ0bdu20f5i2OCkqDZoh/na+aT2RUyWmoNSeb3XoSwYAhlqWw9H/B18eZ9gZVVwSba976XtMoaMd1vifve+pq5bcjnJ3CRqd+rUKWmWP/3pT4VLOnvrrbfiRPEzzzzT3Euc2OHFqqurjTr7PffcIyTA33XXXUahN/FYktWtkWRrjaT4G2+8sdGzwn2WcEy1VD6bAwYMsIcUNKyfAwL4XHwHZGNQdvYPAiFvD7xXx/uloheIuGU6ikz1ZSqTZ2OcOKBWHgiQVN2afs/bbrst6Q/nJuPaBJxQcMABB5gJJRUg4weHg1A7pErWvrJRAsuCUh2otkkzhuHZEWmYFwEhN2NSTaAIKAKKgCKgCCgCikDZIVCmn1Jl9zvpBZUBAvWvPwtiAzowdkaHEvpBSHKwxL+oAlnj7aLdXwa/hV6CIkAE2B1JEm6ph/prKgKKgCKgCJQ3AqE1GHx9E2Tc10DGhbpETgYlG7pIDYKoULkrFqhw+jEY3MhYJ5r2KdupbKwyRAoTltB2o4vSDUWgNBGIE3P7+qR+GBRp4Ga24dMYIT8Hd8WR5XAV+RKecRzb9kCoB3ZJeP5LE6a8ljqlIi4n7cFKZX9eQdHMFIEiQoDqlyQEkjRIQpNa+SAQqRepRR3X8CHUObMRhiMZdwRIjseANDYK/a1Vmes2S8YlepaAS9It16mQay2RrGvjWzrcc889jYIdlT+fe+45o2BLMixt2bJlctFFF5l1xv2///f/zDr/3HDDDXEyLhUhjzvuOKHa6KuvvmqeKRJpJ0+ebLY7doQsZoJNmTJFuOy+++4m3erVq+Xuu+82qS699FK5//77hXkceeSRhrxLtVsSeakIed1118mhhx5qFGxttjz+2GOPjZNxjznmGEOK+/jjj+Pk2qOOOkqoMuomCZNUbMm4JFoy35UrVxos3nzzTSEheciQIfKzn/3MnqqoQn5/tdkd9yoIj7XPOxKeiTaGV1LuZqgMfoD2XF9H2kwEsbcxVzbn67RkXGZg1XBJymU8FXKtFZKMy3PwHf+nP/3JnI730cMPPyzDhg2zp88qHDhwoPz5z3+Ws88+W+bPny+XXXaZIdZ6zeTb3/62kJBLI5HWPmP2eLYJWT4a72M+S9aoEm2J66yrvvOd75hdvD/pip512MUXXyzPPPOMPaRgobMN3jaWov2/PotTdECfwa6YILg/+gyGYJIDJguqbUfg2WeflQ8++EAGDRokyZSRt6cUo1bOyUSLFmECNIwEx1//+tdmnarNfO+5LVvFcE6G4DuW70oqlrNsnCixZMkS8951K0Nnm7ct19y5c43y+YwZM6ShoUFGjhwpVEunknm29sc//lEWL15snpcLL7ww6eF8n9u6hQrs7kkZVGd/++23hWXhdXOyFhe+L2x9bjNdt26d3H777WaTirBUnX3++eeFzyF/k8cee8wc8/vf/17WrFlj6pIDDzzQHh4PszknFdufeuopIamf75yvvvpKODGFEwRCoZCMGjVKTjnllEbXRHXeO+64Q2pra+Pn5EQA4kRjeh5njW0T/s6sK6dPn26U8EePHm3ugV122cUmSxlykk0y473ptsMPP9xgxTji8vLLL0sl1HIrusHLVk1H+ef3npB9uu8vnau6uA9Luc53UAjvIr6T9J2SEibdoQgoAoqAIqAIKAJlioAScsv0h9XLKj4E6l95SoJ7HRQtmO3LoDonrdS2o6XWv0WAAF3C0c1cfX29+bgvgiLlVAS6CaqsrDQqFm3atMkpj2wPij925kCjBRhbY1A626bQ+kcRUAQUAUXAIFBu9WJ1XVtxPghKPVyU5kzGpavJkVDEpcINXU2mclmPijGqjEvyGTesUm5pbeujoAiUEwL+9lD9Gx+AmjUIGENAzv0A6oFf4pncmP1VRlaLbAXBYuPmjRKZgEG/nRu7Jc4+x8Id0SLfBqqQW7gfVHNOi0C5tV2oTFmob3q6oyehKZ+E3M+/nCmfzvhC5i9YLOuhvlmq1gkkyoE1/WTc6JEyasTwkrqMhkWYePJell4gMNksAEX5NpNJxgU5EQTHXMwScd1kXObTnMq4JMUGg6nZlT179jRKsvb6SPSxhJzzzz9f+Fx07txZfvKTn5gkJNzeeeedNrm89tprcvXVV5ttKt2++OKL8fNRFY/E2XPPPVeouEvCK7eT2cknn2z2WTftJC2SREmbPXu2Ueb95S9/GT+U6S3BiQQ2m5YJqPJLoiSN17///vubdf6hC3EeR6VUKmLzWmns+/znP/9p1km4pQqpNRKRSW4jGY3lL1ZCLstL4nj1OM6WBCk3EiPlepxsFVmG9uC7jlT0wbfdoO1kWYtDPkKScknEdZNxma9bOTcf50nMg8RWEgjff/99QzYjyWzXXXeV448/3sRPmDBhB9JdYh7u7dNPP92Qt6kiTcL40UcfbRZ3mlTrVEwdOHCguUdZ5yQScqdOnRq/f88444xG2VjlXJLXScZjm5bGe55kcZJ1SfIlKb3QypzOBhDg1uLkHpv8PnDrgvv5pc1BUMPsjfsL96haYwT4PqVqMomimQi5JHvyPWaN6zfddJPZ/NGPftSIkJuLYjiJnMzTcRz5+c9/bp4d97nsei5581iSMBNJwy+99JIhulLFPFtzX/9JJ53UiMhu8yJR3WJkJ5Vs3LjRqGJbErxNy7LQ+FuwnnBP3qCaus2HatTEhyReaxxHo913332m/iLZ2NZXjM/lnF988UX8nBMnTjREYeZljZNobrnlFnP/sO6muctp05G0z4XG94gl5JLgy3cR69tE+8UvfmGIvSQfpzMSkpMZ4zkuxzYBybnudFxnHNVySaatHhuQKTu/JmsXr5Ej+2BCQpvtExKS5W3iUMc5a/E+Qh+Gv3mG/VIWRXcoAoqAIqAIKAKKgCLQ3AgoIbe5EdfztUoEQh+/K77O3fHFEXvkYryGqDQnICml7Vb5CxbfRbPjgB/tNA54dejQId7JV3ylzVwizhTmbGB2jnChIgc7Agpp9rGLniOmlBs/YaltxwuuK4qAIqAItEoEyrFe3LYG9eKUOvG/gSbkGgzaZmtodvprMKi2p1+qJ8QG1TJkY2o/U0HiD//HlHJJzqUl219XXykbtuwsW2qrJezgBOZ4kzg6iGe3TQ5J4mP7A/6wtKuulY7tNklVJQZIEO/l/NHzMZNY+cya/lEEyguBQGeftN2bxFy4OZ4KFUEQc51FuEavqmoxOALrAlLx0U5S3bODtBkQEBJ+i9Fa5NugxJRwUyn2FuPvqWVKjkA5tl0K/U1Pl+YkMH3++edxgkJydDPHLlm2XJ557iW0XRyZMH6sHH7wgdKlS+fMBxZpirVr18nsufPltf+9I29OeU++ccwk6dsb7hGK3JzNIBh+BFLiLDb8PBYWVZd/iEj10dmTcS3R1q2ml0jGJVGuOe3BBx8ULqmMhMS99947vpvkXbq8Hzt2rOk/u/zyy41KJ4mHNJIPu3btGk9PdT7aTjvtJP/4xz/iZFybgEqzJNuQyErCUCojucyScZmGpEUSJqnUx7xJCHIby9ynTx+jnPvpp5/Gd5FYa4lUVHh0k3GZiMeRbMvrYjq2CUhqXLFiRTwPvgvcxv0sO99B7jK60xTTOgnkJDUJSErbGsLizEHpvNz/SBP+Cs/MJyDl9kji8SSHi7REW6uOyywSybjn31uXQ87ZHcJnkqQ6kvBIZKXx3uJijSQ+3q+HHXaYpz5wKm1SUZNEQBJnv/zySyFhPZP5MEmLJHUSzKnITLVNkt6tPf7442aV9z3VOd1G1UoayYGWjGv3M78f//jHZrN9+/Y2umChA8XxCBZP1hb9Bnvhe+NwfCt0L87vA0/XUUSJ+HtzjMMSc0eMGCGnnXaaKSEnR1jLVTHcHk+SJ43v24MOOsi8/3v37m3ics17zpw5RgnXZII/nPhBwirVaXn/U6suSrsAAEAASURBVHWd9382RmXda665xhzCZ/2cc87Z4fB//etfJo5EVOJF47ksGZfxhxxyiHnP853PiSRcqPpOMn8ysyRVEnc5MYTfUIn1fuJxTT0n3wvEh+8sqgqz3foXqGfTOIFk0qRJUlNTY94rVJGvq6sTKt/TSIK2db5VIg6Hw+a9x3cZjfcW8+U77dFHHzUkXZK8md6tjGwSx/784Q9/cG8mXbdlcO8kSZdk3Ljh9fDQ63+WQcGhUuWvlsn9jpP2wczvM76LnK2s6PT9EsdSVxQBRUARUAQUAUWgVSAQYwe2imvVi1QEWgyB0BcfSaB3/+3fG/ju4KeHcQPMUpXadoshqScmAlTQoTudTp06SXN04DUH6uyk5LVwoesguijiAEKhlHV4TebzH52s6InBBjQBY2HJbTfHD6TnUAQUAUWgiBEox3ox4FRIYF4bqZyKAdo1OYC/M1Rxx8DVJBRuqnaBq0m4R81s1MeNtk+Thtjnjt+4rb0sWN5bVm/olDnrLFN067heanotkw5tN5v2sjlvwvnZjnaXR7v2swRZk5ceAuBtBOEqMtDFJ3X9sEyBWu4M3PnbxX48XVNkmUjda474O0DhZrf8uTz2dHKPiVrk2wDfAxygJQmjlEOPEGuyFkagHNsuzfXc0iUv1d6sYlguPyVVcR985FE54RvHyMQ9J+SSRdEdQzIxF17Pex9Mk9vv/qN893S4Oi5ytdz6OZhk8gnqMq+kMSDvQ/dq9aSAVI/256SMm4yUa39Q7iMxpjmNpJ10fV9uIqAtF58DuuMmuY9kXksQJImQSqBu+/DDD80mia89eiRXsvvGN75hCLkkj9G9ev/+ANllQ4cObURItLtqamoMYZIEoETyIdOQALV06dJGmJLQZY2kNBJuE23PPfeMR82cOdM87wMHDjQEJ5aRasB0wU4V3mHDhpm09h0UP7DIV0jKrRrrl8g29PPWhiWy2GOBN4s0fByR+qERqcb3Xj4sGSnX5nv/SyGZNtexmwUNKTZBt/JUgqQyLUl4vH+s8T7nQpVIktIzCTmwX/mBBx4whHXeNyTmWQVbm2eqkK7iSXqjkZT7ne98x6zzfv0bXMrTSPKle3q3kbjGMvIYquJSCZPkdd6fbGM2Zz9+hI/Wjo+Xu7jxdV879B9AGVnJuHFImrxiiaBPPfWUIYWz3UKl1kTLRTE8MQ+SPDnBIRDAB6PLcs2bxGE+MzSq1rqJ57feequ5py051HW6tKuDBw82Hg6o/kribSIhd/ny5XFlVqs+TDGa3/3udybfb37zm0Yl3V4j1aap6k6iKYn7HEtKVcc98sgjpr5IW8DYznyck8R/TgagOq+1ww8/PE7I5jvikksuMWN7vCfY9rBkWNbhVId3G8nGFm9OvnErF/MdQ6Iy9zPfVIRcK+zjzjfdOgnYO5BxcYAt57yG2fLZuo/lwJ6HeCLkSgP6Gj2+j9KVS/cpAoqAIqAIKAKKgCJQaggUxrdNqaGg5VUECoxAeAFcibTDrFES/vCfIYOS3C4wVpp9egSookMyLlVhmrMTL32p8ruX18Xr43Xyegtl9hks9bBQ+Gi+ioAioAiUAgJlWS+iYqrHoCcJc0YBM5sfgiRViKFUHe6XdicEpA1c3Xsj4+Ikpn2Kk3sIF6/uIR9+OaogZFxeLkm+zJ/n8VKeqHIv/5paPRvENK0iUHII8JluAyItn/GKgyMS7oKRrSz5GM4CuEnGO6Z+HggWRf7YNNu3Ab/VYamUZ0sl3lyE/ilqBMqy7ZKAeCGfW5IblixZknBG75tUxiUZ99yzTisbMm7i1ZOUy+vjdfJ6i9XCG0EqnA4Xxou8V0R0qV51ILw/jAcZtzrLys8FBMkvlphro5PF2X2FDO+9915zT/O+TrZwfzL73ve+ZxTzuI/EKaoj3nzzzY2Ssu569913Tdzo0aMb7XNvkOBrza1ma+NSkZzs/lRqg8nUaj/55BN7mFEBpNevxOXQQw+Np7HlIZnRrSRMMhaviWq5JHa9+OKLScm98YyKcIXuv6vgyaRyf9zP2wVYM5bUWYBn5zMoS2/y/uxkypSkXJJv3cZtS9Z1xxd6nfcjf9/58+fLwoULjQKkVRbluUmqtWTHTGU54ogj5MILLzTJSJK1KpWZjiMpnaqgNJKDrVFx2hLjqOabaFdffXVchZfEXZLaeH9TwZOkwMT3TuLx+dz2UYrJoxxTZCu4u/MjElqdv3sqn9dSqLx4j3Xp0iXlkuw3zmdZvCqG85xWMTzx/JyscNttt+1Axs01b052sMrUVD53k3F5bqo/817OxUgQpr3++uuGQOvOw63QfsIJJ5hdVM6mQjUXKrxbMq49zubH7alTp9roRuEFF1zgmYzLA/NxTpKj3WRc5ku1XNbTtNmzMVachc2bNy+e2uZhI3r27ClUNCZG119/vY3eIWxoACPWo5GI+/LLLzdWxsWxJONaQm5NcJCM6jQWZFyPSsl4F5l3kscyaDJFQBFQBBQBRUARUATKBQEl5JbLL6nXUdQIOKtXiC/Arw50FrO/mCGtFLejJde/LYQAZ7NSGTdxBn4LFadgp+X18Tqznb2bTYFiT2GMvxBVBeTx0fjS2c7mmjWtIqAIKALlhkA51oscBKudEpbwTAyGZSNGBDEU/1Aohh3rl7ZQDQv2w6deY4GU9D8/KkBT+5mK0GwgfeOQ+5es6SkzF9WkzytPe3kens+Ww0v58nRqzUYRKG4E8GwHB/ilbs9NEjw6Iv7BKC7iPBveLeEv4PL4nbCE1hT/wHuzfBvEvtHNKxBAkvhD2yE0sUnibfoW3h87vQZFjEA5tl2SwV2o55aKhyQd5GrPPPeSUcYdNoQvzvI1Xh8VgHm9xWoN86H0/hXqIK/zsNuAW7YH1N33wISznezbOvercxNw3eu559i8R5LsSrKftYEDB+4wcZ9qv1blsGPHjjbpDqHb9XhTnq8dMk4SYcmMSXYljdq4cWM8nkq+H3zwgfzgBz+Iu0tnflRSPfbYY42S7oIFC+LpS2ElgHu5zUQok07APd1YbDV18SHiHEI7rmFhfttwblJuS5FxEy+a5L/jjz/ekLGnTZsW/935m3sVcSBJjSrPNKpJusltiedzb1tVXJIHly2DiwkYlT1pfN7cSs4mEn+o2ExVahJz3cQ5Kv+effbZxhscyePNYf62aK9C+daTQaW84T1Htr4SloZlxT9hz9M1eUzEd2SqhR4NCmnJFMOpwuxe3PcZFcMT7aijjkqMMtu55u0+ju/cZMa6x11vJEuTLI4qt9bcBFzGPfbYY2YXn3e29Wis5zjJi4tbhZ34kDjsngyyZUtyqX1LrDcZeviTj3NSFTvR+E05YsQIE51tPbjbbrvFs5s8ebL8+c9/bkRoZpubGKVTDQ8Gg/E8Mq242xZM+7///U+o8GvJuLtUjZJzh/5ADuk9SXbySMjlu8jftultt0xl1/2KgCKgCCgCioAioAgUGwJgCKopAopAoRGI1NfiFOgkYz8ZvzuyDKfNnif3PPuivDTtU9mwBVOWc7SO7drKpAnj5AeTj5AJQwdlXQ5T7hzPrYc1HQHbCcQP7NZgvE7O5uZ1p3PflysW9jGMHh/V1NveLZB+e9qns+WeB56Vl1+fJhs2Ju/w8VKujh3ayaSDJ8j3z5ksu40bYl4PuZTHy7k0jSKgCCgC5YZAOdaLEQyu1n0Cghxd92Lds6FvPTACBIUj/FIF971UW8racMqIj39wZIpw47Z2O5Bx27XZJhWBkGzZ1lZC4WwYgY1LWBEIS7s2W5FHBfIC4yJmJOXu3G6z7Nxmc8bymfLbAzVUBMocAb4DfR0j0vHQtlLX3ZHaF6GURiK/V/EbvGMaPgIpt78jgf0DObn9bk6IC/5tYBVyYxeVUhE3YT8HxumKluSLzZvhR7oJxmvkAC5V1KwL7h3KkXD+xP1NOL0e2gwIlGPbJR1shXhuSTbwSsJKLNvnX86UsOOUrTJu4vVSKXfaJ9OF1z1qxPDE3S267WwDmRB1lrOEDU9vFhiKtu4+UIfvnkM7N8UprFqlDVMkK8roWbNmGXfStnBTpkyRBx54QM4991wbZSbzjxkzRj777DP56quv4vGJK1TXs5ZOSdemaUrI8lhbvHhxShfjNk1iOH78eLn99tvlt7/9rbkukiXvvPNOWbp0qVFUpSJqMtJaYj7FtF3RA6rP+2Iu5jJMyvzc2zPhLMYzNNuRyiG+3L79UgBgFXFtmCJZi0Tz3iG5lm7qabyvJ0yYkLEsVKglgXfixIkmLYmxbmXNVBmQ5G2NbuKpxGwJuczDTtqyaWxIEvEVV1xhlrlz5xrX9STQvfPOOyYJ86VCZqKCpj0+X6G/I+4NKi9TksnDRN/IGsyPeN2RCJSXq/eLSOXgpimR5+s6CplP9+7dzXsz1TksMTTV/qbGJyqGZ8qPiuGjRo1qlCxVGXPN203IHT48eduB9z5Jom+++WajsmTa4MSQU089Vf75z3/K448/bkjqPGbFihVGNZfrZ555JoNG9tprr8kzzzxjVFuzVZelAnIu1pRz9uvXL+kpcyExMyMSeX/2s5/JrbfeahS6qZBP40QDEnSp5My6MZ0ddthh8utf/zpdkvi+Aw44IL7OFR5Lq/JVy34dD5ITa06V/XocJF2ro8RpszPdH7yD/F3xPuqQLpHuUwQUAUVAEVAEFAFFoDwRUEJuef6uelXFioDtM0bI1Yhr2xTZtW33P/zq/+TyB/8uV5xyvNx8zunSdeeoGxCzP811Jtu/ZtPX8q8335FvXnOL3Pjdb8sZh8Y+rlznteWw57fbjcI059VdhUOA5FR2IrYm4/XyugtByDW3PZWsOPiO0BcLM20//M9X5Ir/+4tc/pNT5Oarz5GunfFMuvKxx3sJ16zDM/nkm3LcadfIDVeeJWecig6OLMvTmu4HvVZFQBFQBNwIlGO92LAILuQ/xKQQDIZ5tkqQccdAWenogFQNx6AZtnMy1oU4kKRWrrGdmri9YHmfRll3bP+1bAZ5tk/vVdJj8GypqmgAnzd2PFKa4z1u14WCsnJdF5m3rI8w3w2bo21enpDnHTt41g7lSSwft9UUgdaCgH0HUmmmelcQaqtEtr0AUi6JHB7VBiOrkPRDR4I1PjPoXuzYFfTbAO9Akls5wOw1pMLZ/fffL6effrpwYJQuTrM5PvE8VE4lsYgkDiq4TZo0Kev8iv03bO3ls89ta8KhkM9ttjh+OuMLmTB+bLaHlXR6Xi+vu9gIuaFlcI0+F/UV9Qs8mA+cj8q9UFcNRGsvywZfpuS5kHET3WZ7uIS8JqE64FlnnWXy3GuvvYSkqYceesgoxx5yyCEyaBBEGGLG/SQucuJIKuN+a4lkLxufr3DcuHHxrKZPn25U9+IRWaxQLXHXXXc1CwmadEtO0iVd0FMB1Y1BFtm2TFLcpJWDfdKwp0+cFfiaWuuhGBDuDM3Bc4T05rnwcIhNgqaO6Xq024lhLmTcKu/ii4mnE5JWrQrobbfdJlaZdoeEiMj12SN5kOqOdMVOYqwlxyY7h40jee6MM84w9xWfLxJoreI0SYVebPDgwcKFJEOSci2R7q233io8IRffCIE++LLHBL6IV2H5DZiwNwWTJVY4uB8jUjUW6s090ceQ+7xbLzC1WJp27doJSfwtZdkqpboVwzOVOde8167d/gJKNw6VTnU9Xdn4TJGQ+8orrxhyKUnRVi2XzxyVWK2xruMzSyJqMmN6+0wm259LXD7OmYqsn0t5eAzzu/HGG2W//faTv/zlL/L000+brEhO/t3vfmeWY445Rv72t7+lHDvMhgzMyW9ulVz2D46oHiOH9T5SDu99lIzsNFraBLZPos90XT5MDKjond/JI5nOqfsVgZZGgG1rtkf5LmY/D59BTqBgW4JtklzbMy19XZnOv2TJElmAtjheXOadlSl9qe2nGvuXX35pis1J9OwDbO1G7yX18MrSH/d2//79PcPBbza2OdgWswryng/WhIpAiSHA+ZFqioAi0FwIkGhHQ2DWXNvR+Mb7qYxLMu7z114uPzj2COm6U0wZ1ePx8d61WLY8nvkwP+bL/KPnjQbu9GnLF0uuQfMiQBUYuqApNmOD64knnpBXX30170Xj9eaqfpOpMPYezyac9slsQ8Z97tFrjaotybjZHM9nzJ2ex1Mdl/mR5Mv83fsT0yfbznSdul8RUAQUgXJFoBjrRXYmsE7kwo78bIxKYXXTQabDwGq0MvBwNJVxR/uk7WSQcUc0gYzLU5k6KnpuU1slbNfVB2X1hk7xQlEZl2Tc3YZ9Kf26L5fKQD2Knfr4TPnzeObD/Jgv87fG8/L8nvK3B2moCJQ5Au53IIn4VaMD0mayXwIjwbLwOvUaj2x4VkTqZ0ANqxYbTTQqxNp34PLly5uY246HF/TbIPZtnqg4m2qb6nsk4958881G0dZ2xKdK7yW+Q4cOJi/mybypfujlOCJl0+2ImsYUEwLu57aYykUiBJ9dNykvX+Ur5HObbRnnL1gsQwcPzPawvKdPhndT2pDpCsjr5XUXlaG6aVjgCBU+PRlGLyrQ3q0aw8knqOOytE6dKRGZP+P7lgOHLWlUh506daopwr333mvqIku2oUJuOByOF88qiHLwmGkTbdGiRXGlXRJcC93vSCKCLeuvfvWrpOrydI9Nt+VcFi5caIr83//+15AaqWy6bNmyRpdBcq6bPFSKdSLv7epxsXacxxE7ZwEIuYvwHHl8lCxoJ030eAJ7gIdwwiAPiVIkIWG1pqbGEOtuueUWSeV6nirzJMZay5Z0TYXJffbZxx7uKTzttNNMuo8//liuuuoqs857LZm6Ld/jJN5y4QSrRDv44IPjUQ7U2pvDglC59YPsnZXBiwYn+NU95ciWJ8Ky7S148AHxW7a/Vjxn5/dH77V8Xa/tY/EHyoMhnKgYznZiuuX73/++Z+xzzdutkm7fv8lOygkVuRifA5JwaZaI61aeJhnUGonzloxLlVaSeKmszgluxGnBggU2ad7Cljin18KTdPvYY4/J+vXrjVow32m2PiWWv/jFL1JmxYk77noyZULXjoP2P1iWv7tSzup3gVwy+go5Z9j3ZLeue2RFxmV2ASi5Bwdm+R5ylUNXFYFSQmDlypVyxx13mIkHHDfne4qEXL672Jagd6Xrrrsu7US5UrrexLJSyf0FtNlfeOGFxF1lsU2PHPSawIXq7i1lbA+tXr3aLLZt5KUsuR6XLu///Oc/5jf/4osv0iXbYd9LL71kcCzXe2WHC9aIVo1A/r++WzWcevGKQAYEMCvImP3+yLB9z7MvGmXcsYMGxI7L7njOQkp2PuZHxV3mn2x/XG0ixfHRg/RvcyPAxhI7mYvNfvOb3xjXOFQayLfxerNpUGZz/vhjaA6KqgJyNRqffPveB541yrhjRw3a/phkcXyq/JkfFXeZf7rzJzvenL6E/tRhtpyaIqAIZEagoQFKozFyUObUrTNFMdaLHCimuzguHCDIxhpASgh9gYGuLR6PwpdcYBiUcY/ySyWVcZvaREAFZGo/UxGZjUbbG7Y0nvVdEQjJoN5LZae2LPCO6aNR0fhs9jM/5sv83cbzpytf/Hzug3RdEShjBBLfgXwHVO0CUu6RGHiHW2/jntbL9W8GMQqD7g1ZuA1PlS0VQOw7MNvO2FR5uuML+m0Q+/a1ikaZQg6kUBl3yJAhpoiZ0mezn8QU5s1zZHOcGytdL04EEp/bYiklSW98djmwlG8r5HObbVnXYzC0S5f8kjOzLQPTn3jC8XLat/+fPOXC+8UX/2viGJ9tGzJdGXi9vO5iMmdLRMJo90Y8FssH3k5wDFQau6Nuy8GoRkWVv3x8WzGPbt26pVSgy6F4ZkCe5L10C8lH1uiG3LqdpqI6yVN0yX3nnXeaJFOmTJG7777bJpeTTjpJLDHrRz/6kVHSIzl3zZo15pnn828VBq+99tr4cYVaYb1mCVYkJpx44olCxXmSFTiZ54EHHjBEXJKL2Jbo0yfqoYMhVRWpAMhrIg58p5Lo9/bbb8v1119visxrZT1ailbRw2/udV83b6WPrIdKLtpvfKaysdMP8Mv4gfkbFjzjIL/sni3pM6HA9AxAo+Ij7+l///vfQtIDf1+qZ9F9PNUh33//fZOOpNdOnbZPFjWRGf6wPqJKbTZG1+2WPGgnraRS8O3du7chGPI+5T1K4Qr77JKQc+GFF8ZPffTRR8fXC7kS7I17ChMaqFCZrZn76+2IbHs8DGJuSLa8ERZ69Ilk0c3ByQv8nebMmSPr1nmV6U1dUvsb9OzZM3WiIt2TrA5KVAzPZ9FzzdvWFyxLKtItCaEkoOdifA6twjvJpSSvWQI726JuIwHX2n333Sd8Hnv06BEfH0tVPntMLmFLnNNdTveEGne8e53PFcm1VM3lu2XgwIFmd6Z2/FFHHeXOJuX6Nb+8Vp7744vy431+IU/+6AW5cMRPZFKfo6VbdXd2u2Vlvi6xNlyv/NU5WRVAEysCzYgAJw5xYrVVKOf7rl+/frLLLruYtoSdpMJvPfb1zJgxoxlLp6cqJwT4jXT77bebJRticK7HlRN2ei2KQEsg0NRh25Yos55TEShdBNg/xq8Wj+FL0z6Vm8853XN6r/ky3ckH7iM3PhobbPFYnmxn3DfHD8XGqx3Ucs+gLdS57fm85E9VCdvI9pJe0zQvAva2j57VaO65OhWSb7/0+jS56aqzcUjy/ds7JbLf/63jDpCbbn80BkK2x+cXOz5TdhAwGAwKF6/mPpbPJD88aexEP+GEE+T5558XDvJcdtllXrPUdHlEgGRBqnrQLc6bb76Z9re1vyUHzNq0aZPHUogZTKGbrWnTpgldrl166aXCwUG1KAIvv/yy0AUiBxk4W9QOQhYan5tuuskMyu6xxx5y1113Nfl0f/3rX+Wee+4xHebPPPNMk/Mr5wwi4J42zII67nzWTt7M1xfku0P9UMaFWlievupM7WMqSPzhf180FIRbahur9G/Z1lZ6DJ4Va6fyoFjtyNXYce7js9nfo/MambcMF+gynj9d+eL5u44pxCo7WNmBxY7T9u3bCwe6qM6kbb5CoK15ZouAD022qlEBcb4W2fZ1WCJLvOUQhtvw+jmOBGvyQO73dsqiS2UHyb2GdP1N99he02ebjupRJB1le1xzAMt2/eeff25UC0mWoTpw3759hW7OOzdRiZLtTw62czCahDMqQakpAopA+SBAVddPnpohuy6dKAPCgzxdWGC4TyqHgciRI5eD/Rk1NTXmu5PtuFyN39AkwaRz4Z1L3lTR4pLOSKAlybS2tlYsGZAEnJ///Ofxw0hk4vcXiU2XXHKJTJo0yRAAqL7+7LPPGmVQvrOpoJdMRe9Pf/pTs7luJxmLSmGc2G+JyPELia1Q9e/RRx+N9ymRJEa1UtaNvI/23HPPxEOMUuANN9ywQ3zJRED0kxMtG4Y4EloZ/b5KW3YoloaXYVLnmohUtt/eI5n2GOzs0VHknvP88tw0nyxYFf2cy3RMsv1VaHfuNURA7vV+7mT5MI73BL0PsB+C9yn7Q1IZya6ZnplUx/K7jfc6laS9GPs0mdZ9X33jG99IemhVVZVQtOJ73/ueIblb8hvvZUt654HXXHONcVudNJM8R9KLBpWXwwsw+Q7kWsmCTGuKgkMiuEcaVuM+mwFCLpQuK4bim2EQJkn080lgZ/z2GX5+EgdJPHrwwQflkEMOiROcs7lU9lGz7U3lPbY3qfZZKmbdkr/33ns7FNkqhvP+oGL43nvvbfoY3AmpGP673/3ORJF8k0yd2Z3erueaN+tLaz/96U/loIMOakR+57eJm1xu02YT8vmmGjbJr3weaUOHDjVu3N35kPhrLbFfmt8j2RLsbV7pwpY4p71HWC5OVEk0/v6M5+QA9tvasRam4/tl//3390SQ5u9JJUKOBySzboEe8u0Dz5CLx18iWx4Li4M+gk7ru0mntslSe4irgoeD3ejhAH0M3oeWPGSsSRSB4kSAk8nYVqfttttucuyxx4qbs8C+Do6PcDyM9o9//MOM07nTmB36p2gR6NWrV/x7yU7YKtrCasEUAUWgaBDI09Bt0VyPFkQRKFoE2DcRsR0UCL1sb9iyVbruvJO5Ji/ps8m/G/Jl/jbzrPKPHlUUf/khyVlnI0aMMJ0yhS6UPZ+X87BDgTP21YoTAd7zRkWaCpQ+qAXEQox6p9zesHGLdO0ChUCP6bPJvxvyZf7Gssk/ekRe/1KJgqpctG9+85vGHZLXE5x99tlGtYTp3c8AyUsk49LYQa2EXANFs/8hIZedeLvvvntaMi4L5r4POFhGFYJ8GMmmieQKd4dnPs5R6nmwU5kd8lw4eErCT3PYV199Ze4PKizlw6w7Ju2gyIxmeB0GuDBIJlCq9GSoiir3Bhl3LDq2t3v083Ro6kRGf9a0V2270B2GHYwQuywUDkhVRQgk2dhx2OdOz3Zpo+0U+2+95B4ZPm6wHHPmEfH0zJf5u43n55l2yNeeJ5a/+5h8rnNgmHWcVW9x581BEE4qoEqZe3DEnUbXFYHmQsCHga+q8Rh4h2vZuo1whwtybkZDGg7Uh9dHpKIbn9zWZ5yAxAFmr+HmzZuFJCev6bNN17FjR+PGO9vjCvnL2YFvDgpTwS6ZnXPOOYYgNnDgwGS7M8bxHNYNu7YPM8KlCRSBkkDg3XffNQR7SwA5qee3ZczIPUTQns1oSFMB5c1Al6bXTXxncykGy3Yil50kzfcvybk0Tnx0k4NZX1AZd+TIkWb/D37wAzMRlhscPOZ3+JVXXilPPPGE2W//kARFIliiMiH3u0lCNr07JAExV+M5+XuQlGWVxGxe3/3ud+Xyyy+XmpoaG2VCEvo4YeXmm29uVA+xLc7JHLfddpvkWv80OlELbrAdxns+NB3fhh7acBEQd8MgS0pNdoX245E6dvemP1fZnTV1at5L/P323Xdf802VTH2TE5VJBKSbdt7vbnNv2+fFvd+9zr56utd9+umn3dEp10855ZQ4IZekcE5ESmX8XiRhlKR4q+Zrybh77bWXXH311XLooYemOrwg8RVQpqzeH0IJa8ISpkceELmzNhwWWQtF5rUk5mIiX198M/DdXANX9CDmVvT0ib9d49/EnoP9j5s2bTLvI6oHN8VIxLVE56bk05zH8p3Ee4H9CewPp1gFJ7BROZj3LRXDqRBtFcM59sR7hRNI2I/OiRe8h5hPNpP1c82b733WNT/5yU9MmU8++WSzvs8++xjS/MMPPyyPP/54kyCkCvauu+5qrpkEddp55523Q558VqiMS6OQA7HhPcAxBr4vmno/7XBCRLTEOTnZxxL3iS2J61QE5z3Cep6iP/ZaSfYjDpxcQKI64x966CFzKXw/ZTLWuby/rLX37SQj2o2WUR3HyqhOY2V0aKzUPok+hNiwsU2XdYjuvMAIn1TvF5CKHsnfDVnnqQcoAkWOACcW0di+5bve3TZhPPuLGb969WpZtGgRo4x3CK8TLcwB+qdFEbDfHC1aCD25IqAIlBwCSsgtuZ9MC1yqCKDfAj0X/MsPEOh7seMo07Y5JvrHU/pM+SXuzyl/HlR8ZmeeFVPJ6urqiqk4WpYEBMzTiGcim5BZZJOeJN9s0ueSf8Jl5X2THdTsNPTS6Uf3GLaDKLEgdM1iO9s4uKLWMghwEI7Gzr1sjDN482UcOLT229/+1swqbaqams2vXEIqvnCglB/5hx12WLlcll5HGgQaFjviLE6TwLWLhNQgOrardvdHFWlc+5q0yjor2kxNGSbmb2o5VHSZjku1n2TcWZ/OxTLH1JeTz5xkKlqTfseTIQ1PluF8icflYZtEkm9961uNyAJ2wITZc4Dsuuuukw8++MAMhug7LQ+gaxZNQiDQAe+IPf0SWgiSxrToc5MpwzDGA0JLWy8hN1cl2myPK3T6TL9zrvvpcplk20Qil/tdyLzpavxf//qXUX4hqSbRODnMKstxwKrUiVOJ16fbioAisB0BkotIJLJEXLunb7v+0r2NN3fj/j4ge/UvP/V2ura3XoksLl5CklS5pLIhQ4akzJf7qMTF9/mSJUuMgheJul27dt2BMGDzJxHKkqFsnDskCcgSgdzxdp2qmKmMJIUf/vCHctFFFxmX5XRbzomhxCYdEZhkSi68jnnz5gknsFClvVyMnk8qBvjF3zsizky04TKYswb8SpAkzccUv+VK3E488UThwu8rku5IWKHnoEwq/PxW4+LVHnvsMa9JjQhINs8ryW5vvfWW8ei3cOFCo/pP8lyLTdzEfUGVceeIiGyrh+ol51SBb5ezQUuC92b9bExk6wzR3f4g5g4AKZfE3N5YusfIua77kX2QnCwwZ84cM+Es23MTOz7n7FsuNZs8eXK8r/yXv/ylcOFkXpJzaVSHzlYx3CsGueZN4jvViOnZjHV4Yj3OiRxUbWe7Pldj2dhOsEbie6JxAgZFeDgRheroXNzGd0Xit4l7fy7rLXFOlpOTYig6xHffGWecYYpOci6/m7jvD3/4g8GBabgkfoPxN6E6dybbdfyucvOvfyOP3fqEDO8wQoZ3HGnCoTsPl65V3aXCDyZtU8m4fhH/MKhzH+GXysHYcL0LMpVP9ysCpYoAuQBsm9LYlk0k47qvixNVLCGX467JCLkLFiwwdaZNV1NTY967/fv3T5k3y/Ah+qXn49h169YZMR6Sg/kNwHHZRCVe5s2J1pwUMHHiRFOmKVOmmGM5NsX2lzWmZb3AkBNGmC/LTYXuRAVzewzDZcuWmckcs2bNMp7lWH626by23adPn24IzMyLZWRZE43jlraeIvasN6xxkjcV6pcvX24mB3GSA78d6HmDbYrE34nXuGbNGqNIzjQfffSRfPLJJ+aaWTfS0ye9RdGIaeK1Z3s+TkZnnrbcxIltJeLMayVeY8eOjSvV8zfmb0RcrXG7W7duQo+XqSaNZXNcttdgy8Fwy5YtZoI9J9YxH35r8t6lZ5NsJ6TyPvvss8/Mdysnb/KblW0P1nf0WKimCJQSAkrILaVfS8ta+gigszFqsTDTNhObpB7TZ8ovcX/O+UevojX/pdrfk08+mRYCNpZa0thwZAcjOzfYccGO7fHjx5sPebrMSDR2YLAhxw4yzgZm5yEbc2wUsrHDDwWqWrJxmM44sEoX6zS6WuJxyYyd9mxskrTiZQZvsjyaEtf4aTSaeya7aHzpbDcFA6/HUoWE6iWZjLPkUxk7T0loWrt2rflASJVO4wuHAAe4rJoZZ9q3lNHdGo3PPQfg1HZEgJ3KfIdT2SXxw37H1BrjBQF2zpAgxDqNH/M01olUUqILqUSjggnJlazz+Huwbnv11VdNJ05DQ4Pp5OCgEvNIZ17rxA+enipDFo2UKvzLZJGdwxIcXynBPujYzqehAjS1n48Dv9xIDJOdrHG69MdHtXQjsXxvu+RuQ8a1uT770ItyLFRy7X4bHw8zls9q9caPyMsKyXPf/va342RculAnKY2dSrwX2BFHhRK2mdj+ufPOO43LsbycXDNRBJqAQLAvBsDGOVI7D1T2dZkzcqCoG17F0Xm/mYxFpXy233i/s81O95Z8L3LAgB3P7FA98sgjM2Zs2/zMi4OEiR3ezICdzi+++KLJi6pXHDBobmO5+LzjVRPltNjtxDC235YvfpxN5/H4HY5LcjzPsUO6DPnzmEIYlbvsgDcn6tHN+HHHHWc6wsPhsHkXUnGJdS0HkjmYbV2spypPU1zHp8qz3OKJIVX8+E1PUk9NTY1pe3CgnvWQ26guTHVMGl3Vk/xDt5l08cy2DxXF2A9ADyhuVU13Hna9VJ5bW96WDvn7PAHSxOzZszDwtAHtx14YLBoiJ2Ig06qVtnQZm/v8dKnMNlOiVUhQulV3l/YVmQfR2BIN9AE5EcqLavlDgM//sGFgyhSJcXCW77PEd1qm4vE6qLJYjhYEqTGAV7wz08PVbUO7ZSOWBrQZKj2kL5EkJJuR2OpWciyRoseLybYviQPFYLw3quFdh0Tcbf/FZGCQaQX3TJMMeUVICF+DbwgoOjeAnOvvi3uXCyZT8N1NZUz/zuglwCg0iT1uck+Tzt3Eg9m+zsVSTRZIp8pMojgJKiRUugmo7vPnohie7pxNzZvH//73vzekpdtvv92dnSGLcjKynRySSPBqlDjNBvvZSEym8ZsyWR1Awhf7kC+++OI4qdlmyTYGleDt9wmfN2upfie734buY2xcruf0QjSyqvLJznv99deb54P3iVWNt/cpyWMklBH3v/71r2Y/v7do/C5j2577UhGUItDYcDZC3RqK6iF8858z4EI58PgjJbAqKN2re0jQH7SX3/QQWQWGQxn3KChzj86nR6+mF01zUAQKiYD7nUwyIvs6Uo3pjBs3zozVszyJXgXZt8Lvf37Du23u3LlmXIJteI6pJb5H+N5gfzT7BNzG/jvrufT73/9+o3qYeb722muGKMmysi/HmiUXs4+M4yGJ3uJItiRpmBwCenZMRrClMNAbb7xhszQhj+F7nf0ZXibZsPzsb6fxHZpsTJPXx+ugcazGEnI5BpSMw8F+FRJvyZcgyda+m3k837Ukw7IvheOo06ZNY3TcOL7KPhYaORPub6pczsdro2Iyy8zrIAHYbfRmSQxZTp6PwnT2Wm06O85lJ7DZeHfo9bhcrsGeh2JdVK93i+dxfJPlI66ciMP6zItxohInBbnzsp44Wd9yciaJuWqKQKkgsL2VWiol1nIqAqWMQIzXEJ+1nmnbXmumdLnuzyV/e0wrDzk7iTOOitWSKbmxrHR1dMMNNxg3P3RVR5c31vjBz5lkHHR/5ZVXjMsku48hSZk8lo1vDgSmMjZg6T6MdvTRR0syRQzOSDv33HNNmuOPP75FCLn2sTGFwEPpZTualn+9pd/evectfe75bz+yEGu8N37xi18YcmCq/El2cyufJkvHxjJn66m1DAIk0VhrqUEN3ie20zDZB7Qtn4bw4JrGDaLikx0C7LxhR4/twLFHs8674447TF117733NhoAYGfT1VdfLQMHDjSdWYkTR2yn/zPPPJOWkOapTlywQj78z1QZMWQcRlFt6VKH4f4NUjm0ygxqpU6Vwx5UhIYMaypEbiAPkmfd4Q7ZNt6f6Xi7P5GMy2wnk4zLk9nzJZ7L7HLtt+lcYZTMm3hg07bZScd7iEbXjewEs8YOV5Ky2clIVQB2XP3xj380k1i8DgLZvDRUBPKNgA+DYcHhfqntjxG4dR4I/FswoA7ibqQuYhTnbHueqhe87+1zwHLaDmgOHicjXLmv5e233zbfEYzj91OyyXpsQ9p25EEHHeQ+vNnW48q1sTPGtzEAQYtvx/bbIB5v08V27BDfTPttufIZ8vd2D86QnO0ePOH7jqodnJzH9r71mEECNicq2MHkfJapNeRFtWEOmrmN9QzVsuiunW2Y008/Pb6bg2/2ueU+TnxzD5xZFTOSdTlxN9UAITMslec2fvEtuPIzTMq5++67kpbg+uuvw+/wI7klpoKXNFEZRqYi4/JSuwa6y5C+Qz29F+rDdTJ1xlQ58pyDyxAlvSRFIDUCfng68HfDh2EQbZBMpEkkcb6Gmu6WiAQqPXxMpj6t7ilzBHzVIMntGhAfhgJqX3EkNAM3T1OVMC1m+NyIrMK3xCqQcz9Bvh1AygOx3A9ieaAXCLog5gagnFvRFXFtcZ96+DSxWRciJGmJS7ZGVVurbOs+1k4sdMfZdbaD6SmOy6ZNm4xicmJ/H9NkqxhOwpcXyyVv5ssxI062u/baa406HdX1SFCy7UcSZbjkaiSheVGeJkGWE8U4LkUSFb+xKIJjyW/J8uD3a7L4xLKyryeZ5XJOTuLmks54HVySGc/Jb+srrrjCTIblNxXjrBF3kna5kAhHLIhDUu9M4OOxTgiRLM9nEkTcMIi4zjI8o8vwfG4S6e8MFGlrc89TCOHKijF4zxwWkKpdlIybJ1Q1mxJBgM9sjx49jNcHkgjZf3zggQeayZmdOnVqdBUk09bU1DSKsxsk3ZMoS+N7mERNjqfRKwQnd3AyO+sv1hm235n7+T62ZFweQ4IsVXJ5HN8ZNs1ll11mTxUPeRz7GKyxfDZv9ifYPgVeIyca9ezZA/nON32EPJbvZ44dJ07QsGRcXivHhNmnaJVd2XfEd56tU+y5E0P2IdrxHCrVJhtPdJNYLWeDRFB6fqWx3BMmTDBkUJaBmPA3onAUyc9UA040pnFb4rW593G9qefjRGxrJPlyPIn3AYnRrM+I8aWXXmrqPk745W9KjgWNdR75KunIrqwzMx3X1GuwQlC8bzkZnEahGmJN0jHrPy/iTPTkQj6CNY7Nsc3A6yVZmvcc73cq67MfUk0RKAUElJBbCr+SlrF8EEB/gzGEXI2743XFu/dHE+Nviv2Zjs+0P+f84wfmZ4UdGSRoUQ2JiqokwbAhxEYIGxEkOpx99tmmQZufM27PhcRVqj/RDQAbN/369TONOjbCUs0q3X50ca5xxhEb+9Y4W4iz7tiAYyOUjU5izkYYyUaJxoE/azyWqgQcSGWDiseyc+Gdd96xSXYI2cBmw5gNZRKA2ThM/Ojg72vNPYho45ojNI+VD385OI7QFwvTbtuCeU3fHPnbMhUw5AxL/paccZ3KeI/w/khnnF3Phj0VmN33KI9hQ5qD+5x1yI8o3p+8b+nqlgpbyYydT+z05DELMLuSDX0qpHCWPWc4pjLevxyE5jPB87JRT4UvzqBMJAzww9WqAdgBcV4rZ3/yA5JkBF4P1aOTWS7XxXz43DzyyCNmNiw/NvjRSkUrPpOJM2eTnTdZHMtMo7uVxGcyWfpUcblgQqz4IUU8rPF9xN+QdvLJJ8fVbdx1An/TZ5991nz482OMM/7dZGJ+1JFcwPceZ0myw4H3DX+TZCrl7rzpHocEE9Y5nMHJ48477zypqakxZSLufB9SwYLl5nmPOOIIowpoEiT5k829leTweNSMGTMM8YUf+24yPJ8NTnLghy07UDhLlhMo+NuyY4XXxI9R/sapjPc9P1p5Dqp78mP81FNPNfdXqmNsfCHuS5t3oULW7ayT7PuJE0W4vXnzZlO3kdjC9xtdwNlZ4e6ycJDDknF5LDtFeIztDKL7OM6OTvVM8X7KVCe++tTrcA3XTfw+D6NSQbwvezdAacZDWveFeFlHneVDOpJaucZ2pHvbbCTkE02XPH3i8Xb71ksaK+MySyrjHoOl0fkSzsWdXs6XeFhTt90zz9lWTWbsqLzmmmviyoSs69gRS3Iu300cJPnxj3+c7FDzvmdHLe2EE04w7d58POt8XkmK42QMvj/Zpub9S4WeZMrOubzb+f60bsEuueSSlBMJfvvb35rBR6qqciIWrdDvY77r/v73vxuFAft7sKOO7c5k3h74vmedRBdofNYTjeoWN954o4l211k2HQdXWV+xzqBLNXZ+s03Ce8ZNXLTpmysM9vLLyx+/KAc4h0ploDL9adEkjqzHYB0G6NzGNhKNdQvbSuwAtSoTrJf5/Xb44Ye7D2m0zvcrO49prMMSCbmsv6yXBdbj6eqwRhnneYNtQA7weg3t6b2mzyUdz5HtcbZc+QxvvfXWeHb87VPd0ywr23tsn/FZ4PuB7zMOfrC9zraf7aRnhiTt1dTUmHZ/sgEcpuG7zLa9OSjC+8e2yRJVYZiexvYN7zW2kfiNwO96lpnPP++xREt851K9g+839hWQeHDXXcnJlon55HOb9YedAMK2P9tqHGhhWTkZiP0nto8k2fNnFcd4LPs22B7iZCIeRzz5PiPBIpWVynObqvzNFc972pJxqdByOiaAUbVzGtqK/M4g3r///R1yAPpn6LK6NRjr01QTNTgp/LKzfilbHg1L6ANUOhlsY/0GefLZJ6Tndzum/QbLkI3uVgRKDgGqifohIOUDuSmyIXPxI5vxjbgVhNxO/JpSUwRSI+CrAsFnTED87X1S282RhqmOIdKaSbGpD8tuD7v91oP4x++Kz9Euq0b7uivuaSjmkpjr7w6SLgjngS6xpR3u20B2pyjV1IlE3MTrIGkoF8XwxHySbeeaN/sfW8J7SeI1sM+F7fLmtJY4J3+nVP2L9tq5v1GaMJ63zXje1mEhCXc1yLerEQcirrMC9QjipNYeXYCQfXXwbB/cHaq4+8JLzwD0V7aSZ7oAaGqWJYwAxwj4HU8jeZbjDVz4fThw4EDzDuN7LNXYHsm27MukkfjK/gtLBKVyriXrso+T3tosGZHjQ/RqReMY5T777GPW7R/2DXPsjN+m7BdgeRKNY1+2b88qxjKtm4xLMqVbbImTtjmxgYRLljuxr4XvM3paIufCGvsk2KdB4/VyPC6dURWW5yShk2N1HM9x8zZIVrV9TDyPrWc5bmPHIS+66KJG3BL2QVLJlZglEm/dZWH52R/KPnRLUHbvd6/n43wk1Z4FFVnbZ82JMBwv4O+2YcMG06/O6+M4FfudH330UVME9mEnUyh2l4+/eabj8nEN7BMhf+T/s3ceAHJV1f8/M1tTCEFKAiSQTegdAgiKEULzB0QQBBSRXvwBKt3KD/ypIEVA+QECUkR6kSaIoLQ/vQmhl9BLhEQSSLKb3Z2Z//nc2TN79+2bmTdtd3Z5J3n72m3vzO33e77X8i1z6ZDgAH5m/Yz1yGI7nBgJDulHHz4TLr8X88v8tqwJWxnwvzW+jjVQjxqIAbn1+KvEaRq+GsgB/gA76Gd691kEgg6OdBHLkYPx3oR56oD7SP5rEb6lqYpn2FsA/AHAY/I+aCnKot+JJ54oWEBVc7s/OpC+pY19EvEDqgBYFbZdjrmr1/PPfvazXNLolLBwbsICCNtz00mF7ZbFubAOEJ3nq6++OqdvBhD4o+MOEInfK9/Agbh8JkJAlkELYcCQCGDfsAVE97LGf1yx0jJSypkkleIekG8p7ssJv8ZqcqAUBo4XXHBBQUDuhRde6JIC0JZBFQOFoBAGeY9Fch+Qy4DiQGVm9oHa+GWBE+EdQAB/sIhbOuR+PDZAZHH5yiuv7BOHC0j/AIgyBjZ7xpm0AXZl0AyYwIS0ARZAADsCgjRgH89Y6GeRnjzOYCDot9TvIkwGowyA/W/jOZaqWMoDaCgHrAKwAAGsWomUoxMGXKZHi5v6iQMBYGB1kbUJDKyOP/54eeyxx8xLbtsu3jEgtS3SzIHlAeoWgFHo0RcLmwE1Wy3z+5kATgAgRhhMOARB1iyqs7icjxG11Lxl8YadMRIxfQHGsIlWtq6x54DGgluFk0YYLMiTTHgEBRbP4Hfx3YDOyVuFpFb5slCc1XjHoN/KLL85gB8T2kRYSpiYos2nDFNmg0J+YtLLB1KwNd4f//hH55StlgoZLBRrEx/820OybVM4qD+YlsSS2g4tlRYW0qoutFmuv6lx9DDjBu+DcRqjLe7PPOY8efXZWY7pdqd9tuvtz2pDaOH99tisGz8cmHF3dO4D8fuOuCac7J9ceMH0ufugvwrv2QLQhHKQbxGI/kywT0N/ycosQFg/LAuTcmtuzCq/0rLOZCwGLcF2hDip5+jnBuvPcup2+u6WdtolvjEoTJZZ/UIdbFLL+phJ4TCDL57DwIAxT9DYh3oA8CB9gTBALhPM9q0Ai63N4nvQN8ZANgls38iZOodvNaMe/91AXD/+zGNy/9P3yLprbSjjRugqWRHJKEtWpp3ea1+hbwXo2gCQTPxStyHoM5j3fd8YJTBuoDzQP6Mu9vtL1L+WV6mTB0vyMtoyplYJvrd0Bp8P9r2lq1pnFj3MCAVQaLAfEYyH/jr9EOoghD47gFwWjKwMmR/KnQlsuv7iDs/JF8TH+NPE+m6UVcYf9Ol8YdxKfvT98J50UP/RduPXF7/OZbLfDHFwE1xU8v3V6hqAvzHXsHBHH95fYOHbbJGN/h669cdJli7qpXPPPTfHnAV7ro0hGGcVAuQOlXJr3zpY59NPO9VFTb557PEn+vwOGMOsMiULHHlE6zm/HzlY6R2IePO1d/S7OTpfV/BXZ7SUAMj9pPMTNyZkHBNLrIHPkwYATMpo/eIogNzF2k+JWK4+TzqMvzWPBhpEmldJSlIB3ItXTEjnY2lJvab93Wqx5QajVSBg5j0FB76nQEHG84oDcgBdZcwFmJsErAs49wt6aJoaAKO39M7LBoOL72MNfN41kOnQsqTYOwd6n6ugWz1Sc9QwwwFxddZMr2tWnoPKV8ORhtUS0vxFBeNukHTlOOgkvo818HnRAMbGGM1CAMYcqwnrTIzZORAIE7bccktncGhzbDxnfhjhGQayBmrkGYBQ5jmZz0UwHjYwIvOVgDmZG2HuJSgYVbCujzBfEjZ3wBxncLzKrjkGamVeJjhfs8022zhALuGylhWcOwGX4INxcUeaDZCL8XUUwSCbdT6E7/DX+wB4mvjPATCjE8CtEGb4gn5JF4Bc9JFPWOsJ02eY+2rEx/qygXGJA2A0YGAjWWKeyADHYWmo9Fml34BeIQry8y0MyJBasD6HgPHx59ODaca4n7ljhHl7H4zLM9ZkmAtjjpLfDxKUYB7DXSyxBupNAzEgt95+kTg9w1sDBvKyOYVi96aNqO6LhRd8X2745q/KZxZnEYAvLB7RkALmtMU0GLVgqzFgUiXRA0Y1MC4LxFg60TFjsYtFYcA7dEC5L0T1X0kaauGXzqwB3ACH+WBc4oM19JJLLnHbKnOPtVFYBwg3PviZzisLsNZxB1xXCJBLZ/XQQw8lCheHD8hlUdfY1HiOpfVgSK5Yucgd517PFaehc+8SXcM/LPICyGXxGyAS7HpBgUESNwggtYMOOijopOA94HgD47JADmCUPMYglLwCUJ+Bo23BasAXAiUfAnbhTP0AoJ5OOyyDMLiRd01g6DUwLovbWK0yUCDtMHLjF+vTIEjJ/BvwhLqIgSCWfdQjgAVg4WNg6oORSv0u4sHac8aMGTlgCmGy1QosYwZQhm3viSeeKMlgAOZDK79sq14tiaqT8ePHO3ZbBnYYWCAM2pl8QGD/DQrAUgQAG+6wiLVBKW2D/U68p84hDsC0HPwmgL4ZlAUH3YRJG4Dgb9NNN3WTB7YVMwNHrDcRABnUkVj7GmiEfMOAz99Sp9K85SIr8Q9gXNpLAHzU10zqwHyLYPnLdsSTJk1y9/xhYoR63IRBLTpi4gKwNzohvDCpVb4Mi6uaz7B4tt8aAIoPxiUeJrMA4dtvi/7CALkAsYOTUuR9A+Tadkv50l6sTXz5yZdlp3V3y+e9z/PEGGVwHNXLNN3nZaU32jAaAy1XSh0fuO8fgbn/6+V3OTAuLv56+d+dQ0C59p7wzjw2HzOugnfD4nOheH+Kpi+bXs9HVS6pI0yoE8gvtFNBEJi58c+UOZssBcwfBlKxbcGYuLTJVD+MUss6+ZF2wgCOVtYBxmLkxnPqYerOICjN4o1atwPYIhz6zdShfhtoYVnbxT1tc1CsjFarPqYNMDAudRp1IYwLGHfY5DZs5+UatwTTT7tGe2YThhjGUSfTrwC0CkgXpkraOfoOAy0AIBsXj5R5CmiKAsjtXqTL5J26Su8JfREDB9pjfkvLJ7S1hYS+FkZUtOvkFSZgATWbGNsu92F5yNzV+gxIGDBt1LOlJ6r7ctwRR6n+LF3VOvuGUUF243xx+ONL26aQhQQYlZlgN0Zk+so2pvT77BausbwCkgfgS/8MEC7ljX47rLcAxU0oj+Q1mz9gop76GmAk5R9/jFPYRcH6oObXzgbGpY9Emmu54GFxBs/0R6wOxyjRB+Pilt+BuhNjB8oUi3FBgzv0Sh/HZ49h5wnqRIyx/C0Rg/FzP1TKbVjaB/JZk+5mQft9qALKgwub/G5tbW3CWPmjj7OLSgOZtsGIC6ahMDEwLu8yuq25cESQ9lS7tHcvcnMChH300UdH8BU7iTUwPDSAAWaiWctMlM/RMuXKVhS3sZttDxQTAABAAElEQVRYAz0aaAQE+5UGaVxJQbn/UrZcPdIKnJVag7sxAHxHwYTv9AB0yetLKSh3GQXnLq3XDpyr9w6cq8+W1HSqYXKi2U0IxL9frIHPjwa0Acgs1nKiO9ik5+lZjzTM0//R58qGm56rz5X9NgOmTQ0zBlS0fUqupKy4CsJt2SgpTSslXZs1oGmII4s1UIcaYG3xuOOOc7sxMuZmPZX5CAO2kmTAuuzow7wFa+jMLzMXBfMtAgjRX3dyD/UPQEebgyVME+YHgnM1rIkQD3PEGNEXk7D1QtbxTcKY0tkNjvRDvsR1UMJ2VvLX6Wz9LegveM+8jAFyWSP1gbfM7SLoEDIlE/AlQYFxljVS5mkxyi4k+cDN+fxUGh8YCX8dz+KxtVDuo+rL/JZ6rvQbmBcJy7fMizA/zxyX5fF8afPnl/15Y989+cpIA1jriAG5vnbi63rVQAzIrddfJk7X8NQAs2g6d+Bm06KcTQul+ovqvpzwzU+NzjTaAGJtQY6JewBvLNaxkMGiHItvlQhbD5900kkuCIAEdEhh+EKIj/BZqAO8RryVxucCHqA//sKaLZIHozZWHJ4DbAxKmy4ahVl++R1aWyAM+rV7OuCAFllgB2hJ59+AzdZ5xi3At8ESKybZ+B3nniuehe570xrNPcU8K9Hcm2sqidLS1+uz2lcs2tpAD/ZI267ZjwfmSISF3yBozXcXdo2FqIHhANz64QMqBAQCuIZyaIBcH9wDCN0W8slPAHpIM3mUsg64FWGh2hbsWdQHAMVCMwI4AEs98iogpelqvZkPNBNkR6WuYHEbQQ8GJCnnuwgDZjjqOgSDAH8wzDcADgBMcPDBB+cGos5xkT9sWW6S79vsfannKDqBbRy2WyYDDJDL77XvvvsWjI48AJtZcFsYniHUVwzAzEIXwBCGBlgRI+jMttp2D7w/55xzTs5wgMcAn5kwMVAVoF8f3EDdaQzkgFhxj1Qrb7nASvhDvsdSGXZhExjhDEhCHrc8z3ueW90d/M0Ae/A99u0Wnp1rlS8t/FqdGcTbN1NmwgRrYwA79D3yTcZYufb9+5NKWCgXkmJtYmOySRrYlzSKNGrrwFEjca0PwecYcvXG7kPiNPevPvt6n7c+KBf/YWDcXmbcnvj0ZOG5+PuEmL3p856k9aTT3Lv3If4qeUQ9g7EJBh3kJ9ol2kXAtkwCUnby7ajARKzlL8CZQUAuE4Fm0BIGBifdpZZ1jJ0AaCEA0HzmUpjFYddm8pH2iwlb3wDLeer5E6wnwto7Jihhf8CojrY5zFrf2nj05k+8+nFVqz5Gn4BtESb72MKL38qEutsMQAAts5W99QXMTalnwIpWd9Lv5TtNMGpCx7ynTq52+2vxFDpjwDM1tZmMGDOikLPcu/bPOmSJlK6ueeIb1tljxk5MjjIZbvWsvQs70+aboQ15yyZW6RfYzhmAx/3fKyycWj4rldnW0lKqv1q7t3RV6zx7tu5z2iP+ONKehZ2ZhGdcz9j07bffdk4wOODAeNQAudQf+eogC5e5ANyZ0DckHMoV43i/rwNgz8YJv/71r12/zvzhnjJI/chCA32EIIASt9S59AGjfquFX82zsbxQjwV3Q7B4/PE6Rld+nxU3jMV9MK75Q3cAchEWBanH88lQKLf50j5Qz++9975+UdEWsUB6vRqq2Liun6Nh+oCyEybsJpETtSt78ekXZfXmNXOP8l2kFGHY3YMyJOwYkJtPU/HzYakB7KM4okhKHdXIZjNK9LGboasBgN8tqymYbnkF5a6qx8y0dL+kQD+Gk7UG5praFEiY0e5majYAXRXG+Mqt4EC6ypqbVLBuQsG5SWXOTY4FnKvXY/R6CT2PUhPgiFMpFl18jjVQjxqgu5NeqGXv0x4A7ny95lCwbQYgroJwAeNm9OzYb5mnGwwBiDtBpyXXUlbc9ZJZtm0Y3WOJNRBroI8GII7hYJ6LOSDmI5gfYS0Tkh+EMSNjc8b8Plss7sAphIkBezkzn2Zzmtyz/sccHXF1dpbWiEOEExQfPAnRV5hg7JxPwvywDmNic2N2n+/M/BIgZeaymc9h3ZW5HACqzOsiEDGYLtwD/cN7DMTBQDBGN93Z+0JnDLMxji9FKonP8DDB+Hy22eC7WtxX8g1hecjSSF5g7tjP5/bOP0PSZcKOnsUkynx0sTDi97EGBkID+WdeByL2OI5YA58jDbim29pvPUe6N/1EdT9Q4Vu6anBmO4dg54PtK806x5itKonaKP5Z4Lr66qtzYFwLE7YwYwzLFx8LK3Qi8h0GBrMwB+qMRZBJGJMp7+isskCKhIGP8oFK/AXLKJ1lA4URjy36cW1McCy4A1IZLMmWwZ5Co53rSPeW2KjurdMe1X254Zu/GpwZyBx++OEuZBipGPD4wpYoAGkQyqqB2303ha79Rf4g+xNxUwYZMAF6NGHwhVCGl1xSaRI82XLLLV3HHj/+ltO2vS2L7IAA/AEaYE8Av4SHmIWdF6y7BCwVXBRvU6CW1Re27QyOy/kudGtlBcCpD8YlTIBfBljGHYPuqGLfxOAVHVRLStFJqXGiW4AVQTAu4Vi+wHDCwLgWPmAo+y39fGPvOQOyMBZve26/I/cAuYPABp9d1oASuK1G3iKcUoU84oNx8Q9broGZrJzwnMEuEzIILLHBfEy9f8UVV7j3wT+1zJfBuKp974MgrN0Li8PA1QzimbQKStgEUjXbRIAGjc0RV1sp9inr8AVTWuk9baGG7dqskHNI8Ob+mN8eLqutv0ofF4Byb1fm3DOPPT/HnmsOZuyzvQDINf/u7O68eM2xd+7jPphO8++5r9YlQNajjjoqFxwTgADZKXOUQww5aEfCJoIAtCO2A0MuEL3wgSthwG/cllLWFyxY4OLB389//vM+YFyeUTf6bKSkKUxKqdsBbJkEWRcog1b3+HWsuedczfrY4iJcGHutPuQegbXTmK0p6349mXVR+l+/7x2Mj8l3gHL0SQAHDrRQf/OdzQ3NMrJ1ZKTo2zsWSiJQHeWbVLUxG6ykxYTf2ephdhUwYXcDq3f9sYO9H8izTbZHPVvaorofKHeWrmqdYck38Q007Vm+s7WtZiCQz12h57BP+2Bc3GLkwpgDYScNP//Z2J2+IEZWvtD/NQMB6mrbOcJ3wzX1/WCCcUkDLDpI2KKSe6F//DSG1WX5+vul9F+GQrk1fQzmmUXAY5S5dfPNviitLc2ywvLjZdNNNtb2+7TBTNagxG07IQUj5zmLiRjw/OioH7ndRoJuwu4xWGvsQVoRBgzbscQa+NxoAIBtVJAtfTcdRsUSa6BcDQBubd2oQUbt0igjdm+Q5u0U7KoAXYlm01dutOH+ABouUBDiuzr18WxGuu7LSOfNaem4Ji3teiy8NiULr0/Jghv1uKVbFv4jJe2PpWTxi8ry+25aUoAWS8MhhacjfhproAYaIG+SR7veScviFzRPa95deHc2Ly+4UfOz5u1F12mevjab5ztv0XytZSA1U/O1lglhd/XBAOPqdEJyNQXhbp+QkXtoXbFzo7Ru0CDJGIxbg1wSBzkUNcD8G+svEFMFhbkgCApYt8TA0AiEcGfr8+zG6Avg0bAj6IZ74mV3LMiGAPn6YFx2Gw5b1/DD4TrMUNfSBNGWzWcF/RW6ryaY1N+9zuZy7EwaIJ/wBVAzuwqxJgqw2MC4fCess8V27Q1bj/TDD15XGl+x9ATjq8V9pd8QlocsnVExA375Ccv/9szCjYJTMbfxOdbAYGogth8cTO3HcX+uNODGSWoJlZ0h0wGUdsLUNKrwPRrKeozmvlh4wfdlhY+n2ggMUjCJhQkML7AesnjGNgs+VX+Y+0LPYIpCALvlY+piS3IDVrDtfZilVxjowuLFkmgwxBiIAFz41mbBtLBARwcrDNBnTLZBP6Xew8hGOtATzFcwkAJShO0UYTvRQp20UuMr1b0rfVomSjkTRynuEwMQfqnfXY572JbZEpXfEiCPD5hgoGdlIbhgHiUuQJeWTwA7MYAkrxigHOBskN0JdisrnyzUAzDE2tSAIXb247dyDzgAq8pg3qe8wJrHQp9tdeL75zo4sLP3llYfcFDOd/kgT9i7g2kkPn/wyYJkVGAEbMGIz5ToHlT4pxSdlBoV7IX5JOw3ZkC2cOFClx8tT3IfJjANB4UJCpMwFkMfMM4WNybVyFsWVilnA7r4fpgcAfBEXjSAE+/9vEX7FiboxMqi/973W+186cdTi2t/a6VCk0/+bx82kC/UnkZNd6E2ccORG8vY5TX/9bV3CA06o2S8iYU1Wm2lzSJobejynYOJcq1oj/ujz/hvBd+e1wd8e5uCcoPSy4xbJL6gR+JxicufPpfuoL8q3FO2Tj31VDdxSn8URnQf/MkEHwduAOn7xk0wtxtDM8ygPkuuMYMCkvf9+Ekupaz7k5H56lDaLOoJ+oG0dzDfBqWUup3wqDNhigUE6wOLjamSuiVoCGBxVrM+hmnChInuMPH18swzz+RAomFuozwzxl3cskvA//7v/zqWXBtjDOakqhkHLd2yrIzMKM1UBEk1pPptNRnsh0UIJtQJfX/6bAC1YS+GqZNt+kzytU/2vtZnq/+jni09Ud0PlDtLVy3OtogRJWwfKBvFfZgbfytC/731vXnG4grljX6zGRlQ/sP60T6I9dlnnw1lraavM9gCkB+xeiQsPf6YPex3+byU2zDdDOSzs846U36iO3QEZdlll5Nttt1GrvYMEIJuhts9bNbFBEDupqO/JFutu30xp+59a8MIGdHYa1BiY7xInkMcYZyPwWax3S1CvLpHGGFRL2HgE0usgVprIANraO+0Q+HodIWvVJbQvz+TkcvvT8ssZSUtV1ja+OZmSdl7WlLGKXtpLENfAw3KQDtiYwXkrpqUrrcUCPhaRrpfV3bON3UkDlYoKki82qogm+pSS6Zd0/GhJUMfNuhzbSYSYzgURKycDVwDME4o5wJgwaQOgxI9Z3c/Ut81qb8aTatU+9Pj8IaYBpi36tI8CtutO/R+Adf6TM+Zz/SsLLjM7aX1yPRcu/nA4nauA6uMpBYTrduTbQlpXCUhTVovNE/SMqVlLZZYA7EG+mqA+V6bk2XeC4bVfMKcK+MSwIew5TJX5JMOMVdmu3/lC4N1dQO8Qjpma2ATJ050O3WBszAgLXO/EKGVKswpkMauLq3UBlnYqZB1YuZ5mI9nHtrWcJlzDq7bQQRg8yQYOjMXBMbD1hQx1rbfq9JPY51wIOOrNL1h/qvxDf5aZDAOA3f7a3BBN9yTZ8H/IIDXiwGjfYNz5yn+E2ugTjUQA3Lr9IeJkzVMNcBMlZOec7F73DqnEd0XCy/4vuzw3UdU/Y+/oB0M3N8amgXccgG5dG6NMbHQJLofH4t1QUAugNaLL744mMzcfT4mqZyDGl2YXliogLk0HwgAkDHif2e1kwToEaZgWFUBZJAmYy0iLh+wUe24o4TXtzTCuZedhM4+Hzr3Ub61UjcsBgPCvfLKK+Xcc8/tA8g9//zzXfCwWFv+KyU+QE6XXnqpYxnEH0AWDsoYA0/AuTCV+oy25CtAP4BnAQDtuuuuLkoYlwHD8N5nqaPcP/TQQ84NebBYR93qCOfB+xNkI7VXDPqCUs53AQwyyQdAsPecqZuiAHJZcHzyySed1yDrrh9eOdel6KTU8IvVowCSmXD45z//6ayJS1mghV2tkIQBMPlNg1KtvBUMN8o9EyxhEpYffVDt6quvHubNWTobKN13UKt86cdRq2ufHc7fZikYnw/c9f0E3VVyX6hN/KTrExk3eVlFThePgUWwxH8aHONLorm4+5JcaBZ3rR9bRNIB7XcOC62vO5hyf3vMuX1Aub4vmHF33Ge7POFn+sbve+S6aPqy/oPeqnlPe3jYYYe5g8kkJv9gub3kkktcPweWQoBg1M/WB2MyCYZtJvuuvfbaHCAXA5Q77rjDJW/ffffNm8xSyjrxmuQr67zfcMMNHSDXwGvmx86l1u2wANMe09+jzbGJZ9pqhD4EZSBMqlUfE7YBcjHyyzdpB6s69SRtBu4r3dUCcPMxxxzjGJOZfDTmThjprU+ywQYbhH16zZ9RnzVKk6w0amVp7mqNFF/LF1okMUILWw0ERmkWJhDyCn0YYyzlnQ8wrEH0RYOknadd5+tdLWj3wXPPewsw58/cRfTfz1+If+Lo565I+PippvigUNhbYH6OImyXiPh98ij+fDdtbW3+be7aFlFyD/TCZ86EHTfIkOu75doWb4LPCxnwBN3W6p65B+oTf7u+YFz+Ykc+PQX9lHNf7+W2nG+qlp8nNI8bGJd25Xit36ZP39rNsVgefVKNwcMYjKuVhnoKx2ezKZSuRd0LpSPVUchJ7t2SzUvK2OZelB9GT7Tx5QhzGRgjMRdQTr1E+4ABPAdGRvUA3i9HD7GfoaMBgFuOCTFCkhMt2l/QI6oAxj1RWUYrFS0Wcv0jaXlttsh5ByclWZsuZKXJjP2XoYGGJRPSsH6DtKyuTJ4f6DFLt8Z+U1k631YQ4fv6w0cwJi4j2tK9kI0V4AjIMaPpyuGFmcugXIzuOXoAutwDyk0A0lVgrgPrKqA3CUhXh6uckzoWcnMtCkaMJdZAPw1oJksry21mkeY3AOIKFE9zrYDbjJYL95zrHvBtBrbnz7JAXK4F9mbNnnUtWj6SK2odsLJIY5sCcackpWkFLRctcSVf179bnLhB1QDzJAbwZMwRRvbiJ5CxBQKwljkffz4McK1/7/tjh85PdBeultZWgcABIKWRBDF3w46QhOeLARz9Z1GumT9ljEd6wrAGkJLBzAtIljEapGq1EvTEXDbEOO+++66wkxNswEiQVAISAAPjfvnLX+6zi6qlr1ydmH//PNDx+XFX67oa32CkEME0wdhs63LF5tuYxzbWaPyFkZewO+AzPTuBrqbrnLVaywt+R3wfa6ASDcSA3Eq0F/uNNVCqBuhj0ReKerbwo7ov1V054ZufGpx9K7Bg8P47AAzlCh1UA23l69QStg9oYpvZoLDAUsxKLehnIO5XWWWVXDQAsMIWK+iw0sFC8jES5wKp8IJtjAHkInfddZcDUXKNRdpaa63F5aCJFZdsAnRiRC96hyrh972JDX9fzH+x9+WH3+uzVleHHHKIA+QC7MQKkQEQeQxGQIT35QqMaCzaX3bZZfLnP//ZlVEWmbnmaNPFeLbBnjRpkosC60yAHIA42HrawKYAizhg8/2f//kft103Hvxy7wIo8icfY05wMFskGCn1u/yF9WJh894sC4u5NQZX3EUB+hYLz39fqk58v5VcA/Lae++9Q4NgEFaqLkMDivCwWnkrQlT9nJSie6ytTQoB0sPaxVJ1GTVfWnpqeZ48eXIueIDFACWDwgQY7RNC21SKXoNhFbvP1yaOW3NZGTtpSel8QVsiGqNCokbpiQ+apPvfaWmaWOUVIqJn4Yo05Dv3S1tf9/g/+ozD+jHl4q2XGTd/+H3iD8blouobXzCdzn/QX43u6ZtOnz7dHYAMAS3RBtHHop3061uY5mmzeM9EKUAQgLwmPmurPbNzKXnSJrjwa2AgC8c/W1n36wb/fSlx4o9JVwOi0l5jdMUW3tY+Vwp69dNW6NrAa8VAvkyUMx7w9VUo3ELv0NUpp5zigDn0Y+ifIACwzjrrLHfsuOOOrg9VqP4tFEe57+gvfXXSdFl1SWWSyEAfVVjSmbSMXnGkNPS3MyrsMeJbwOUwImNQRXmg/Fgb4+++EDG4qjuzBRGqQCR337NQkrvPvs79zT03dz1v+j0foPe5hFXpwgfg0vfndysmbNdoIMR8AP9iYZT6ngWZUiRff7+UMGrlFqA/9SdGFixyhRk0wKhjwlipVlLv5bZW3x0l3L/f1bsLwC233Cpf0sU+X1gosnLgPx+u11GZk+Z2zZUV1lhBRFnhisnY5qVkudZxOk+D+bQCwspkZ6K8sDA+depUZ/BbLN587wHjXnHFFXLnnXc6hv1iC4r5womfxxoopoGMggzT87QvAngrggAuBEgYVWDGraY882Zabn8qITM2jp6GasYfh1U7DSRadYv6yXpMSkpqvtbD7ygw9y1lzX1HAYiKg0nDsKyAxLoTOvRq+5HhmEPqrIffcw1DrgJxHTB3lLYyAHQ5eAY414F09Rpwrto1cjigrrtW0C5nBSfGTLvoc5iIZhGYbTOLNW+7vKM9D8C2HXrmnuseAK4BbzMGwlUmXHet9w6sPvhkkqX/KOT58Zq3JygIdyVlxNUy3zRRQbkKzpcqTz2WnrjYR6yB+teAT1QEMRBrDPnmAAGD2voJoFcEwCljC+ZpZ82a5YCwNndrXw8uAiZWhF2DAOT6O/VCjhCcz2XtyoDCFk7Uc5vOM9h4FhKG4A5nDzzwQG5nolrjDEgz32vrnIzJTBjj+cI43MTHldgz5iHzzYebm1LOAx1fKWmL6rYa38Cc3BtvvCH+ehzx85sZQBr250Lik5IwhoesKyiQmxghCYDcWGINDAUNxF2pofArxWkcPhqweSk9u0vv3n2kd2+Xwed2H8m/BRJytkcWXvBcMHznuPp/sO7KJ6+++mruVRRGyJzjwAVsZXSGkZdffjnwtvfWtonkSSEm3V4f9XHld2iMuTSYsssvvzz3KN/2wTkHFV7AWGoWSmeffbbce++9LsQDDzywwpAr957N4z0lQcEUke4t2qju1Z2TqO7LDd/81fAMsMjKjrFDwwiIwAIXBnQrJTmwx5FHANMwwMO60phrADcFAfAMaA844AAHbgJkzhbifgcdll3bCpxyz8I2csQRRwjWdYWOag7ISvku0y/p5JsKpZF3/rbn+MknAMAQBtH+5EA+9/X+HJCHgXHJIzBOUmcDrkIvWMeGGSPU4rsGM2+V8j1+O8ZCcj6BgT4otcqXwXhqcc8g3gxsfve73+Umify4GNybkcouu+ziv6r6db428dsHfEuSS2t7oRPgUaTh3Sbp1K0jM91RXJfgxrVVmg73nz+0jf59/7D6vu91D1Puauv3GgnBjAsgN5/77PNe/+4+GF0uXSQxLH09/oP+BuAeRu9zzjknF5MxQ9qDrbbaKtcfYhszxNqogw46KO8krfmPevaZWAHE5hPrczOZWQ1hyykAyYix4howlbYnyFZQjTjDwrC632f2DrpjMtomlH19mbtUKpwtDDaIQgLolt+UCfK7777bseZa/QM7vzHDFgqj2u+oI2asu4usueTakYJepCuLoyaM0AVnLV81EsDpCL/Bz372M3eNnrbddlt3PZh/bOEi6tnSGtX9QLmzdFXr7JffRx99NFKwGCWYbLPNNnZZ07Nv7Ek9VKwfzS4L9Sq2oETf1toKP60sZtg4jOf0L2op9Vxua/ndxcKeO6fX4G1CyM4Vt/W098XCGS7vm5pANxWXj1P/lmXaCu9WYqE0N7TIiqNWknENy7tHUeMw/3ZmBxzmD/z5AntXyhkDA2uv/DnKUsKI3cYaiKKBtAIf0x8rOiwiqCuh7J9JBRVGlVmAKMuUQ7drEo6gvPVR8El8P6w0oKvIDUslpFVZc0ft0Cij92iUEXskpeUbSWmcpvlPt7MXjPqiZ8PBVQ9lS3cfynygIEudW0kpa3T3Qwo4vjsjnbekZfG1aWm/OnssuiYli65LyUKO6/W4oVsW3JiSBX/pls9u7pZ5t3bIwnvUzUMpaX8qJR3PpWTxq2npfCut7MIKYJ6j5fnTLKhTwoeag6uLYRr74kWLHZAW3fMb8Ft0qvHA4lfS7jdqfzL7m/HbLbgj+1t+pr/pghuyv7H7rfX3XqRs4uSB9mvUnx7kDfIIeaX74WzeSb+WzUvkqaj19qCrnbI6RkGAq2rZ/ooSSmtZpkxTtinjreslXZmPwbj5fynmlmKJNWAaYH10wgRFtKuwtvjb3/7W4Q9Yx0Iw2Ga+kPVxdiA18ddUd955Z3vsSIh8YjLWTCEmMrHdOgCcAuZFmGcz1ljmDNgll/UQGG5NmCeJKrDLNjc3O+eQmbBuZIbngIaNqIn4C+3SFjW+Yu5YBzSArREsTJo0Kbf2Y/59o3LA0WaMzbcDTvbn79GTfZP5L/U80PGRPtuVj2vAqbAUR5F8/qr1DX/605+EcTLpYX6dnelsd0CIQ3z8Slh62dHZWHH5LkDf9vvwWzHfbmBc3Bn2JCys+FmsgXrSQGM9JSZOS6yBYa8BWHEU3IBRboZBj3fvJiy8e/feFMI8WcB9JP9eeKH+ywnf/NTgDAsMDbW/Nb1FY40s95V27tgugo6XWVNZHP7ZtxqrBADshzkQ1wALYCm76aabHLMo1kg//vGP3ba9dFhuuOEG+cUvfuGSwsLd9OnTa5ostgsGaHLyySc7kKVFtttuu9nloJ1dsdIyUsqZxJbiPjEA4Q+kAg8//HDHgAfrMfnq//7v/1z0gFwNZFBpeij/sO9y/OAHP3DbrMCSC2AuzMKO+NiOZcaMGe6AHdcANsbShxvABLDiRAUS4KeaEuW71l9//VyUDHBtsS/3sMwLA8JvvfXWZYZQX94YSJucdtpp/bbDYaLDWBnNXS3Pg523onybD6olb4VZLTPJY8BUP8xa5Us/jlpdM2n0q1/9Sn74wx86VlJYOzFKMZAcbb2/ndJhhx1Wq6S4cAu1iQ3v6iLWsgnd5o5WprAk5zdI17O6sKOLXk0rZSfdCvuI+JY2y/U36adqOvgfuA+G5FpR566/+6PP+G/565/vktXWmyKrbTBFAysefp/4+kemSbJ47KyOgvEH/VV4T7+TiT7yij/5GQyW3zef0Absu+++cvrppzsjgm9961sCSBPZa6+98nkr+blfXmGyDCvr9LWZEEMMwFpyRCEe9tlnH9fPBIjLZCfGEsh+++1XtT5CSLR9HhmIDbYDjrCJOfoCJvQ1TIxRON+2ZYUAzhYGZ8KBNYKDPgk6pm6lb+5P+vp+anXd9V5adlxzF2l9RemeoshyGWlYjkJfO6G/ZmIGQxhY2SS/vRuMs03yRj1bGqO6Hyh3lq5qnSlHxmzMWBLw/a677po3eLY09HfOYMeIfJIPAJ/PfaHnpJMFGljIqeNqbWRTKC2VvqPeZPxMPcZYGqOPHXbYwQXLwu/Pf/7znKEr18VYwStNTz2X20q/rRL/q6/Ry8Zy+umnyamnnuZAn+ywdNVVV8qxxxyTC36RtwiaezjMLgDfs0tNMelWpMrE9SZIh4KVirEq0iK1LaH9yNFryuz5H+TdurVYnPRLzNi3mNti7y0cY7Uq5r6U94xjGZ+weE5dyoIkhpUYPsXy+dJA1wcK8vow4jerUWdyrC4b9MfIRgwgurOpum35Idv1LidecFcvYliHZBUJYxSAEswthjHDVxR4Ac8s7NOWIswXVjq3yXzLwQcf7ML7y1/+UrW6xwVYJ3/Ia43jlEFzXINkdBoz9YkCE9/X+YkPybcKPtW8m/63jtz/owmOjvupk6/rSQYk0oqhyizK5mz/b9ZF9gk7jLSn2pUtt11GLTtaDRv1eYuWR2XPFcUwJdx19iw9jLoJsE28Uz0mmtWomCLFNYe7zj5zZVrvE416z1SDu9b7Bg1b792znukg5s8ht9hpp53khBNOyCZxKP5VvcMQDnA5k9I8BL5ID87cu2utdtzzrux7WG0BwTp2W32WVobbay66Vj6Y9YFs8ZUtHKNiRnGTdgjX5EvHfKsM/Hrmmcur/O55Jfub5309FF6Q79QmyjHhLi+yoPVT+d+zTpQn339cTr3kZNlmo22GwlcMehpZY2U8DMgMQhjWyGKJNUD/gZ2fAOLSp8GonzVNhDlhngWFtXkfoMgcLms4jAdYpznjjDPc+JI855MEbLrpprn5XuJl3tGIISDpAnRJnwp/CCy8tqMQ67qAeaOsO5Ju1vHNmJl5XgyGAeD638N6S0uLNngDIBBL/OMf/8jF5BuQ20MIiYxtmDHbqaee6uZqfWCyvUdHrB1huFku7mSg4+M7J02aZJ/rCKuYX2Vevtg35PMHoNx0UonOyBeAcsOEucQo/WzcAVrnt2F9n746a3n++Js8aIRNYXHFz2IN1JsGqriCW2+fFqcn1kAdakA7R056Ttr6FL63T4jqvlh4wfflhm/+qnxmwYnOT1CwtmIrWIQOaaWdO1usZ0E+jEWWyW+bvGCh3rcaCqatHu9ZvDOwEeBbJjIBFdPxtk4K7xkcDITQIfcFSz8AlIMtuWLlEgKrXlay56FzP5B69H9L32ITYFG5wnaPDBb2339/CYJgGPT5W6EAZOA46qijnJ+w8gsTbhgAx8o9QE1j7/PTzGCBCUwAV4A8K5VSv4v4YNyxssuCgL9ViKUHq0DSyFGI6dTcs6hn1qpf+YqavA8DYXHSxPRl95wNBOY/q+X1QOetcr5l0qRJOW9HH320m9TJPdALyhWA+zCpRb4Mi6dWz2BkN9AdAEgmF5icaGtrc9vWwj6HXHDBBe5drdJh4fr1KM+sTWyamJTkRHNV+AxWtvvFjHQ8lZb0Z1VcFNAG0LV+riF0N/3ugykr5h5mXAfGpZWNEH6f8PpH1i89fdxb+EF/Fd4z0U4+Acz9yiuv5A3t0ksvzb0LmwCztpJJMmu/AHVUk9nQZ4U+/vjj+5V1EnjiiSe67+HaygbXlQpGH1YnM3FmhhH23ZWGH8W/D0j+/ve/7+o23x8T0kceeWTukT/xbbrAiMVnoTDH1BFhctZZZ7k+ybHHHttnQhq36GOw2t6UMgEtfiIto2YvIQ2J4tM+1CRj1x0jjSsUdxumh6jPfDZl88OiRT2ITQxHPVuao7ofKHeWrmqeqU9MKNPGsm3P7AzAlj69sVADIvXLGe584wXfCNbCqOTMjh4IdVDYbjizZ88W2mH60cbSUUl8tfILk6cP4AdcDNsOY3rqFVhuEOZGMIystdRzua31txcKf+edd8m1exfpwuYXlhor666ztqyw/HgHxuW3MqM4dnPZZOOpoe1LoTiG0jvrA0RJ86GHHywffPZeFKcyefQUWWupdV0f8Hvf+14kP0PNEYDhX/7yl0I/jn4D7SJjM/pWzJ3Rr/R3uhpq3xentzQNADTrflvHeQrKjSKJpbVtZbcV/V9r8ZlxAeYC0K2WAF5la2aYz2CBGyiBSQ5mfw4znqokbsYRFt7ngT0RAGmjGha3btAgo7/WKEvsruyaezbIiN0bpGWXpKS+lJR/KdD0Q80qQxWbWyg/JHWcNapxlIxMjZKMMk+n31Iwsk4ZpGYqOPnJHtbde5R192963KzsqtdnWVY7YN9VtlVYeB0DKyysyrwKC69j44WJt+dYcD2srbDycqTEsbjCzstxkz67pVtWeW0d2WLe1jLh5Smy8O5ux9i78D4N6wE9YO59RI/H9VBWWHcok2/708rm+y89ntHj2Z5jpp6V4dex/D6vTL8v6PFiz8E1z3red+AWf/jn0LAIE5bgXDzEqXGTBpcWTROMtC6Nd2ralZl2wV+z38C3+N/mWIj57p7D9MHZGIt7dafxoE+Oq1Iyo3E3OWzNI2X9ORs73XfpbwADMr9J6jn9nV7R422dC1XguGO1ZTOcgmDcQrmgjt8B8l5W24i11Zh/y4QrkyP2UJZrPZb4ZqPc/umNcukzF8pzHz8jF192cR1/SH0l7cUXX8yNJTG6jyXWgGlgzJgx8pOf/EQAzPrig1d5ztoEcxJh5DnMt5gxLm5Z2zMwLmul+AkaPbNjl79jEO4BMwJaZMc2iEps10zSYuyyNkdFPP419yYYBx566KE5jATh2vcwb7Hnnnv2mfMhzlqKrcMRB/rwv9viJQ3MS4GHMDEwLlgPMBIYTxkxAPqy9SFLv53Nv53D9FSN+Px5Mour0Jm0T5s2rY8T+136PAzc5PNXyTdYFP/1X/8VCggmTnZ6XW211cypO5uO7WwvYetl/dLW+MlzPhh3pZVWcmNlxg2xxBoYKhrQIVMssQZiDQyYBphLY4Is6tkSFtV9qe7KCd/81OgMmJTOB4tOdBLvv/9+x+hqHSKsDsME5iljgQx7zzMW6WGPwcLmvPPOc5ZmdEbpcH3ta19zHTS2rgYUXCy+fHHUw3Ms6VjchIkN/SG2KMo1FnPXXHON0HHxxbb/s7P/rtA1HV8knz8WDs2yD3d0hutBrLhk06JAT72geGYl/N7eUoijuC8WXvB9+eH3+qzlFYtsLPrCjGsL6DBgVcLYAhiJ/IgAdKJsMtCjI87Wkr/+9a/dO/KQMf0B3IVpDn/UFwxgGWDRMTc2KTzx3AQrRxbnAeIz6GKCHxYfwIbES91ibIVBwJyFUcq5nO9iQAdQHp0ygY8FKoMPWL3b29vdZA+ACOqntra2SEwbTz31VC7ZBlLIPRiiFz64CWAZg390xEIKzG1mUDFQnzfQeauc76KcABoDzA5zHGnmGiAg+R+LbXQXJrXIl2Hx1OoZg/777rvPTYhRvyA+EzD1Got/PvgfN6VOhOAH8SdmghMKvM/XJrKI2jgpId3/0tZlAS6LyHwlAXlEQbnj0jJi4wZlViniPuJr17q5Bk7/8L+HKVc4h0gf9/q+z32I/5LeF4svX/gh/ip5ZAwHhEFbhNEGzDO0H11dXa4MMQlvZYj6P2yLdvxaf+ikk05ySTpQAeNh+cS9LPMPZR1GRfK5lXXqf4w4btXts23BgEnZsMnfMqN1/UDaL9ox6mYE1gXaq4ESACv7KbPkZZdd5voJgFnYap1yR3sIEwSAaATDF3/yzgcN0lc988wzXV/53XffdfXnVVddFfoZTOZaP4YxBe02O1QA/uW5AWgGEnQK489iZdHufExXFT8NTXa/hwndYpY6qOEL2d6pXwfm6+P3C0Qf+HVgPn/owsoLQGjb2SAsvIF8ZiCMqGdLW1T3A+XO0lXNM+wplCVjeNl+++0dEyZjdibJ6afSd6V+9IGuPqjU0gPgzIQxBWAz6kabbLd35ZzpJ5O36CuzGAATCv1GyimsYccoY6mNiynj9SyMYxjLw6JO3w3jZQ4TDBp///vfu36wPfPPpRox0x9Cb37Z98Or13Lrp3Ggr9ki8ZZbbtWysbf7jYjf8te0aV+VCy+6SD7Q32769K1c0hg/004gOX03QnmXFWdk1HNd7b6BxVHLM22wsWkXi+etBW/I3NQcWaFxQjGnslTL0rLeUhvKyu9PLup2KDqgfLOobvMr9g2WR7inT0ffjp1i6Ocx/o1l+GogpVurd8/SgU7EPlxSmUoblumdXayVZgDj+gDcC+/qlqdm1QbBFgVQUKvvjMOtQAOaDZNLJKSZYxWdG1Bwecd7GblI8/OKOj5ZXllMx3VnZFxKZDk9ltHsM0Kjq33ureCbauFVvx0GWNEugZsf6Ymj91rLf14JvEN5enxz9Heke+0uSXQlHChVFA/lmHTBRTWoH7obPOO+x48jCmKex93zx67NjT7T9za+c2MZoneHvlPDfndNAHbd570+TusDqgn3zepOrx3TLff23D/r4/KFyPlM/cd3fh6lVX8yJdVPapuQXCZ7blDAfAOM1roTTnJJ7W16iJCtt8kaVTMGYL00lmgaYAcD5jEY/w72OidGXeymgjAPVs0duKJpI3YV1ABzD5BvMC/M+iPMtOygQv8dbALzHsXIqr785S+7NXzGCYwnG3T9nfVXWEzDxuuszzNeZ76AOUz6UZCzEJfV4Rg2YqDMXKXNvWy55ZbCUUzAEbDexnew/sZYlbVYjuC4lXkYjnzCPIWt9+ZzU+g5oOco/tEX2A/mwvlufpe2tjZn+GXhw26NzjAsZy4fsV0OzE3wzG8QFn+58UEQVUiob8Liww/zcsy7YwzG9wH0jiL5/JX7DRiWmpAe1kpef/11ByZn7cTqKHNj50K6Ji3oZu7cuS5Ps+7Pb09ezBeehRufYw3Uowa87lc9Ji9OU6yB4aMBHXJmt/3lk/Qmyv3YUSNlzqefyTJjlojk3m3zGzH8uRou4TuJmJ5c+FlfVf+L9ReAOBpwvxG3iADMYe2VT+hIFBLAeDTyWNv/9a9/dUAkOrU/+tGP3BH0y7bExcIM+qmXe8DM0PnT4YTBiI74Kqus4oCOLByFib94Gvaezjkd9qDYlhXB5/49wAQWGOjsb7fddv6rQbumDLrJJyaNFAiZ6Dm7SaQ892OXHCVz5jLQXTKS+1LCnztnvhC+kzzxh4aX9TFgf1kIYvHchPtKhAV4BoxXXnmlY9MLWpASNotRAG1NWGxnaxImjAAIc/gLVrijrvCBRoBuqF/YxoSBFgvyYcJESjXY/Mr5LtIDkIjySh2IkUGYoQHfCgusgeHDvsOeGTsug8pJkybZ4yF9xkoSEAIgJya/gsA3WJKZeLAF8Vp/7EDnrXK/B2Das88+6yboAHiYwYaFx4QCoHfYnYNS7XwZDL/W9zDFn3322Q6US5v46quvCm0hIL02nYwJm8zK1zewtDKBFNYmMsFVjL0rrE1kUrxp1aR0TVLGjuezCwkWV75z+h1lwPynWrzrglfLmsk+E+v5/BR+rm2hOqC/F3ZuSLJS0iuNDSnp6m6WpkZd+NHHpDrMXy68Et53dTcJ4XeneoEqxE8Kc+EF09kTvp6qKhiJ0Ce09o42iCNMqH9uvvnmvPUzYTAhaPLtb3/bLqt2pn7EcIVto8PKOhHRRsEWXypgq1gi+R5/BwbqjoEUJprp7zPZSl3G78YRFNIVNN5gwpj2hP4FfeJgvxjjvbD6kW/+wx/+4Ax+APxyBPsk1K/F6oVgGsu9z+jCt2Mxuictmfeih9IwmYXz3noEg42wOs4P8Z577vFv3TV5q5g/m+jGA0wb9SLkHxaao55Hjx7tjMHoB5TiL2r4LK4RR1T35q5W+qRswUxBn52+tPXBw+JjzHfbbbc5tsfge/oalAn6aTBp22IN5ZYFqkoEcPff/vY3FybjfNsdJhgm9QLtf70LxhQYTtFvof/C2AcGGNoaFiiCwtigWPnDGIEjKCx0FJJ6LbeF0jwQ776ki6XPPf+CPK1GH2+88YasPGll2Wijqa4dIH7GX2/rDkzvvfe+a3Nt8fXjOf31faj2ITmGslCeg2OMsO/Z5ftfl40mbShdf9feY9/uZT/nSa2bN1h6I/nN98/Iuh1GIBuMGZgfs3ErC5jsckXZpzzDrskOOSzCYlDEbgwshLNVbCzDVANaHjpfSUvq9WjjQUB2DSso0EoBV7UUwLgw4vpywV2Krowl1kABDTDHkVBjv3dG66HuwH62KmB06U4F5Wr2Ga/jluW6MrKsgjM5AOguqW6aC4QZvwpogKoCnSWapLlR6VCR7CZQ+piXfaXvE//OvzY/9szO9pyz/8y/NjdRn5n7+FyyBvTnxqiWMuZAuDqMwjgDMC5ndwQAuME4GJcBrgM8BdAplmgaoI8GiQzjJ5+BM5rv2rkyBtDaxRCHXIoGRo0a5Yz1WQMoR5ivxW8p/pmHMbBtME7WPvwxffB9lHvmayqds4kST7XcMEc2ScfjHGGCjn2D8TA3pTwb6PhIG/mMo1TJ568a3wA5A3NWlQppAXwbA3Ar1WTsvx40MIymsepBnXEaYg3k14AbhuasRXuGxEXut5u6vlx3/8M6xo3m3gEJiSiC+2s1XMJ34+cI7nPpz/+JFb+Bsh7GBxa8fWFRG3Aa4Jig0CiXIwBx7r77bsdAGfTPAuGf/vQnB/gKvis3vmA4A3GPdVqbLjTC4saWADAb5QPj1jI9H374oTLH3OKiYPvgKCDCWqbHwrY8Xcp5u62mynU3P9CnjJXi3y+bQX+ES/jB58Xu7XuqeS6Uz1kENiZJWEkLsZoFgT75fnsWllgYp+z5QtkHWMtivQ+OZ2uS559/3pVf3CAsUCN09mGNgfESy0Bf2Or1n//8p7NS9Z9zTdyXqSUxDJq+ZWcYUC/oFwbOMCn1uywMFsnPOOOM0AE0gGFY/grp3cLhDOs34oOT3YMIf/Llg0p04oeZjzkv33M/yQCeAJsFJxkAdwOYssmBYJ4rFrblJz+uKNfl5K1C4ebTsZ838/m3chf8dtzDpOZv125hwHoHCM30Fpany8mX+b7D4h3oMyCI6dOnO2Ac1uoYqgx0Ggu1iU0r62LqWtqviUp6pQtWqZcz0n5nSjpfU/AdLCOViOsPaquT5zyqpb1P6KNGLJLZ/9FZ/zzuK3lOuITvC/G7HnGx+HxPVboG5ErdS7sXJtQdgDzpx9L3yie77rpr7hWAR2N+zz3suai0rGPlz5bmYZOtfAuGaRio+RKlLITVDX4YsMz6bXlwGzXfba3qY8KFzRbgc7BO5x4gLsBCvz0iXfQZYLSFVTjoj3rzggsuyCXf1wNgzEcffVSOO+64XJtkfRL0f9hhhzlmzkL5IhdwhRcOjKsgjvY7FcjxqpblIiCnXHQ6d9uk21g2TihvXJULJ+IFgE4T9F0vUiqD7SabbOIMp0r1F9U9gGfiiOre3NVKn5SRSy65xPWXAV7nE8rLE0884ViDwtxQRhkbwqjtC2BfJFg2fTd27fdxgnUJfV7YwNkVJiiA7mHNpx70JUqd67sfyGvqGwxD2AoSow7ajjAwbq3TVK/lttbfHSV82I62UCbmfXSHoq9+dct+bci4ceOF8avtAhMlzKHqBpZ4myvI9w28P+6kY6RxorY5EXeZnDByomw9aTvp/tjNjuQLesg9h8XbwLgwrdE/g9Xb6jjGdczjYWw/Y8YM933Un+z6E8vw1ED3R7qt/XM6ruslRC/4oQktQ5Sl5Kja9eHCwLiHnL+4YLril7EGwjSAYW27Tp++pwDdp5ZKyO0KGvzzckm5WM8XKajw4rEJeX2jBmnZtkGaNk5KwxQ1FtSdhMhtw6v2D9NO/CzWQAENaLlJKPFhcooCbacmpGlrNcrfJSmtuydl5B5JGb1ngyyxZ6OMntEoI7+sZWj1pDRq2fHZcPOFDoFBDMbNp538zxk/1hMYN39K4zexBmINxBqINRBrINbAYGsgoewJ8XhmsH+FOP5hr4FPD9tFWnb8Vsnf+dTrb8jOJ+m2j7/8iazXtnLJ/vN5mPnm27LDCafILScdL1NXKc1Cq5zvyJcOew6QCZYdwFXG1rJgwQK3LRsL4ry3CWnzU83zokWLnDUo2wcCWMXiJspCYDXTECUsQDwM9GqpiyjpiOLGthcD3MG26LZNOMyfxgoTNRy29agmkJjymD5keWkdv6OXBCav/eYw/P6pZ1+XXb7zC7n92l/KemtPKtl/r4e+4c984S3Zcc8T5OYrT5Sp66+izvq+L3TfOn6n3mCHwRXlEXYhAC6U/WIC+ICygVUywKao2zdiNQxzFqwzbJ1R68mnUr+L7waYwNY2HGw5AvN1FMCU6YxvM1ARgOcg+MDcDfUz1vzol/wS9fev5TcPdN4q51to79AbeQRLayZgo0ql+TJqPFHcDZV2sZQ2cbGC6RZdn5LUc9om+c1SIYW06ELs+gkZ8V8N0ryaLlopU0YpMu+Z/5YZf71X9p92uLY+yhDpIrZ2qPe8uKtJHpy5US7oUSPaZXFnk2y02kuyxEjAs8osWcB/1PefLhopT7+6prQ0d8nC9t68ucV6T0trU1fe9Fn4+087IpfGWlzAPghbIdsvAVADYBOlvSItMB0akA2AZ623t/PLK+0BANGgsUo1dYRuqFPo17NV3mVq6DKYAtML9QRscvSh6YNG6UfTt2CXCcoubAlm6BDlW9gqDL9so2VGDlH8lePGrwMzuokF9Uf7HT31R/9NLcKj0CLesEFCRn1T6w9l6a6V0O6Q92bNmpVjSjj22GP77IAQJW5+k2qPDb7yqzVkWvtuzniJ3z5X66nhp7sPnjWhVM+AqH7yk5/Iaaed5vI948dS/Ofcmz87a9ivq54wRmWHCLaB75OOnvjz+S/HCEuDLFn4Ld9R5k9+D/oR1IMY2JbCzkEZZdxPGatFH46yT3+f8Onvl1KWS1ZIRA9+uY3oZdCc1XO5/dnPfpZ368ZCCvv16b+XQ/bfW8dWalD0OZG5c/8jF156hfzsuMLbYVZLHexgks+AyeKgv9D5eloWXqtt1rPROryJZdV45hsKPJnWKAkFppQizDPSByq2JWiUMKlTMHKEzTZIJhDFv7lh/MqcB0IfDb3Rd8gn1LVmaEX/0TcUMj/0Qa644gpnFGF1zUYbbeTmAYKGrPi58cYb3Q4qbIVKv43dedhh57HHHnNpYzcRDAEKAU5oCzCEevHFF2XOnDmur4WBFgzlzF8ExY+TnYkwpsVQgp1caO923313B0rGHwzC9CVJD31LQMts4bvDDjsEg83dl6oDPNJfhl0d47unn35aMPRYf/31XVxbbbVVLuxaX2QWZ2TRfSnpuEUBuXOixQYwa9Tu2oebXFofbrOfKDVpQKYq+PGpWX2tuXh24X/rYNOTC+/qljB23L2+0iA/2IFeVHnC7h3GbP/mm2/m8jttObvdIJBNIHfddZczPmdXEPIvfZ9CO+qRLyDeePzxx93cIQaEgN0xHiSP2Y4NtHthRjowVMNMTX4nv7S1tckuu+zijH2D6wewhBM28vLLL/djtmMHBMD3lPmZM2e6/hPjSRjG+ZbhJnM+FdnplOj57YKDWyT1mRoXfqI7B+lx7wMpefJf3bK0Gh9/QY+xeiyl2XT5JpEWgtX7WGINDBsNKOs5BvpJJatNwG6rNtRJPRIKVp/b+bHc/+R98uK7z8ubn8ySEcu1ytrrrZW3vaU9Y/cmxuAYbGNEDEkJzK7M2bD7IeMwxrLIgQce6MZLXFej3iUM6l0MNenDUO9iHPmNb3zDEa+wmwrCzgDBetS96PnD+J9dUxH6l/nqeup36lbqcNYifQN0+hkYz0PugvE0bTwH/bjgelDw25njZ/ck6nb0RVuAH/qC9Htof8KM0UqJM/hb0XZAmgHJCt9PfwzjTJtLRBesg2GET7tlbSSGm9OmTeO1c48/E+aoMPCir/PWW2+5Phdtz2677RZ5m3sLKz7HGog1EGsg1kCsgVgDpWmg714zpfmNXccaiDVQqgaYZ86t8Ol1kfupUybLKfvv5cCzP93zG7LHtC/JMksqG2QRf/nez5n/mVz3wMNy8rU3uXAJ30kp4WV91Pwv23P6g4xaRsjiH4uH9S6w4zDIQjf1LgBOmCxnYcFYwmAqKwWMyzfyvT4LWTW/27J9Nsxe+FGhe8CyJ5+wnwPP/uSoPWWPXabJMkuzpU80/71T01n3c+d+6hh3TznrWvm1hpsF45KCUsPLpno4/KU8MiEQVZi0YaEnbLGnUBiABQay3Jf6XaSdSSTA6OUC0p955pmcCjbbbLPc9XC7iAqEG6jvHui8Vc53MSELO2w5Umm+LCfOfH6GSrtYSpvYPCkpXRunJf2BtgMRF2KhjOl+Rhdwu1KS2T4jzWslJdna2+Lk01+/59owZthH0jWQ/c8tjZ2yzNhPZM687DbZgGXHjv7UgWcnr/CejFtqrjQrYDaff54XCr9TAb///mRpeeODCTJa2XHnLejdMo94iZ+kFQ2/34dV94GxFZbSVlkKWAhB6B8xoV5rGejy+oc//MEBJviuaoBeKtUPgArALYUALmFx0LeYNGlS2Kuiz2CuHCj2SqsDRzaMksUvpKUDZtyXtJSUsINwYhnd4nQTZdlZqTQgR1FFBBwccMABbtttADUmRxxxhF1GPtd0bKBgXCT7V892Hzz3pJZFRVhejz/+eLcQCmiHhb+o/sPCnz9/vgNEAagibPqq/dz1xN/veU86e17X/IQhXD6W76iRU0ZrWV4AxdcaGB/1W82dlduhMKYfCuXW9Br13DZporw2683PFSCX7+W7B0qYBwI4gcF9PmEHrK02my5LNayg25MvLa2JvjvbhPmjX9z5eEYaV0pLCwYkZXR1w8IdrGcALUwAwxTrqwCKvfrqqx3wNWzbTozFNt9889z8m4V9ww03yE9/+lMHwAjOsQJCvfzyyx24GCPgsF3J2LkHIEoY4lxK9gAAQABJREFUyNoHUFp8nHkOCBrgRxDQ6seJIbaBbPAHIJi+5Omnn+4AIrAFA4A2QWe8I+yw/FWODubNm+dASAYMsrhsly8ASr/97W9rYjRicbmzdh4631R2XM3jkceAWmwalS2xcfnKC4Ox4AbBtjz3Jfjef1era36j3/zmNy54wEWMp4L5AmAZoHJ2qQoCu3BL/vX7oOQ1dl0CHMaucoUE5n8jmfDdAYrH6P2iiy7qF6fvzr8GZAX4yZix/XeUP8BVBjr23w2363z5zcDfjUspu6dOObj89n5aZFm9V+Dt6O6MLKkg3C/osetqCfmiYv4zn2qZUdBvRjdNy3ym15wXqsZKGA8NN/3G31PfGmCs2JlaLJ92zZd5nfNk3uJP9Pwf6Whsl+2/+zVZcsJoBeEq87k71HhWzzfefoN8Z5/v9P+w6yRve4uhjNWdjFvZUc7EthIHbGpuqCcxYEQqrXdp39npxdYECRNAK2Qh2223nQPVWrwnnXRSwToUg2pAxPgn3fkAuYBS6fNggGSET4yt2b3hz3/+M0nICUYdCP0iQLz+uov/7eiDsb7/HRiVIbQB1OUYmPqA3HLi9H8r1m+CBl+33367A07T1tkuM346XYL0D8YjHAi7xRgglz4OO3r530E7iNAPYycU/xvci/hPrIFYA7EGYg3EGog1UDUNxIDcqqkyDijWQAQN2ByZnrlkqx4nIWd7/92tp8laK0+Q8277u5yiQNp5C/tu39sTQqTT2FEjZbup6ztm3I2VGZcBoJMC8Ye+7/EWnwZWAwD6GDgNhcU704wN9BjUsQhQqsAaAmilFuKyvQIudJVbC6RaHfeci91/d8+tZa01J8n5f7xNfnP2tTJvPjN95cnYJUfJdltNlZuvOkmmrjfFpaNY/P3elxd17OtzoAHYbRAmo5h8iyXWwHDTwFBrF6O0iQklIGrdICmpdzLS9YC2T9m53uI/nbqDVXdRe0rSuiDVomE0KItGSUJbqB4AzXJFPzV4P3n5D3KAXMIGNAtT7kcOSDtRulNQepQnjQ0pB8SFGdcH4xIa8bq2Wq8Lpa/ELy4voSX6ApANIAEGMANfnHDCCbVf2C8xneU6h+UJZjQYVzgjMJfByBZLbTVAHfjpewsk8c4IWXyvlv1ZGl8pLFGwa2+k212u1yDUPbUWHwgB4LRUYyrSV9OxgdaBgFwBckQ9s6DY1tYmN910k1vIgjWnEmGcx+JlKDNuxHRVEn/st/YaGGp9l3ovt6X+Yuuvs5bco0bqm206tVSvQ9b9U8/MlOlq3D+QYgZIYaBJ0gEgl387LLOLHLX2j2TtpdYtnjztFqdeycjih9PSoFudNy5bj72+4p9hLh544AG7jNxnAsjHERSY52bMmJEDWgBWoS2BgdOApbBvwlLng04sHOYNOJgzgDEU8C99Vg7GL4A/YFTzdxkAyGFspszZ0R7CNgebLcARZPvttw8FAvPO4gQwAiCSbzj33HN5Jccdd5wDSwKkBJQCGzGMv4CHSc+vfvUrx0gHW65JuTrAgMzAuIArYboDnMw3AP65+OKLnSHrMcccY1HV5Nz9UUY6HlLG6NdzM/VF40lOVIMq3R0lOaKysmDgSCI8ZLvsUiEMuDyHIddkMMC4Fredv/vd77pLGBYBj8EQCIibfME4hLwPy7IJ/cZdd901B8YFfMU4BcDUX/7yF5fHybP5BAZEA+PS36N8UA4Aqb/00ksuT2KcxI4JxSSVSjkAsLWrML2vtdZaLpxrr73WAbsgsmAMFQaALxb+UHmfL78ZGNe+o09+0yzerVlzXmNC5qmDt/WYquOXbb6akPSijM5/cCjbtQJy3TWgXD3SCxSgq11zALoZvRauWVYDrBu9qKnjWGINlKgBquVmncIaqVltZEaenvmUfNo5X+YrAHd+1zzpau6UFdZeXlIju+WBx++Xp158QmZ3aTuXvlD+dvcdfXY1or39znezYNpy2ltSbmBc1uc22GCDfqywhb6u1HoXRnK/T0I7T3+A5/RJAMMaILZQvP470kCbTL2LYUOQTRxgMWBcBOCp9VcYUxsYl3RMnz7dkZ/Qxj/33HPugO08XztgBhK0HfQ5mCMotuNKpXHS7+F3/uY3v+naiBdeeMExufNtGDTT35o0aZIzOqU/xM539KsR2kCMsxCbjzNDEJ6xPoTxB2fm7+hX0SbRTrLzTSk73RBeLLEGYg3EGog1EGsg1kA0DcSA3Gh6il3FGqhIA4nmHraHHOBPB2MMzLz7LOJBZwN0oY1JAf89TLYXH6XbMhVwH/Rf7N7NOxQIz4/fTVJYeivSROy5Eg2wFSiTjCz01jsol4lKJhTZVgUWRgauNhiOqgNb0C5lK/WoYeOOMgAIt5wz4NmLfn9ktpgRjoVX6bmM9GiUscQaCNUAWxshTDgFWUJCPcQPYw0MMQ0MlXax1DaxcVxSWnV9OT1bF2Vf1FZKSWEiiTLFpF/R7V3Z4nFORlo3S0rTCrqI2ruOWjgY2qCeBs2YbIP3S4z8TFaf+Ja88u6kXFgw5VZDAPPOW9DfCIf4iLe3f0w/WfXC/7D0ViMxVQwDMMOxxx6bC3GPPfbIbYuaeziEL2A/8dlwYS0555xzhvAXDZGkK/C2cU6LZB7slEW6jWvi31oY6NRGFa0XGtZISOuXGgYE1ASzDIAbQD6wS4cBgoolveZjA8bGKvmYZ/M9B8DE91Vb8sVX7Hm10xGHV10NDJW+C19dr+UWZiqYhsuRtddcXe5/8FF59PGnPhegXL6zQXdd4bsHWgDlAsAoBCx7/D8Py9Nzn5DJS6wqIxp75k0LJbRdcVRPKCP8crqj87QGSY6mIzg0xWf4XH31yn6f/fffX958802nCLajhlnWBFY5ADgALg4++GDHBGfv/DNMtgBl2EkFgVGO/h1gRwAwAHLtt2Q7Z35bBNDIzJkzZcUVV3T3/GFLaAOCAARma+Sw+UD6xIBB2NEBgeHUQLawzp144okCaNEE98bgxtbU5pb35egAsOY111zjggdwe8opp1hUDvQCsAUgFGmsJSAXEGHHYynpflL7IZrHI4lWgY1rKSB35eqXAUC5AHF9MC5pAqRbD3Lrrbf2YQ886KCD3NbbpI3t0X1ALmAlgOkIICQDLXF/5plnCvkTkFeYUHZsDAeIF7CX5WPCJT8C5iafMudm5SMsLJ4B+DIwLoZc5C8TQO+AxXhPPMXCMn/D4RyW356alY6U3xK6st0wJuGOPrrQopTRXYRSCsIFlJsGiNtzDUA3rQDdR/72iHz8xhxZdsxyssnUTSXTrp4WqVEeZ/UbeQ6mT8TxzedFA7qnlRpDJCWBQYQCbkWbzhdefk7emf22Mt9+Kt/6/rekeclGSYzSrNSakjOvOkXmLp4jczo/lqnTN5RrbrpaGpuy0Iz9ZC9HYgMj/UOPPegMM409vlrtLQBMGOpZnytHSql3IeQxFnBYcOlPmMA4b3WnPYty3nnnnYW6Hrn55psdU7rv7+67787dfvvb33bXMMieddZZ7hr/tPcNDVkCAfRrfRzaCAxx8u3qiSExaY4i1YiT3+qhhx7KsRUT77bbbpsDVdNG0DaxywxjNQzkrW2jraKv54sZZvHs6aefdmBcrtmxC70A8GW9+Z577nFAat7FEmsg1kCsgVgDsQZiDVRXAzEgt7r6jEOLNRCqgeSy43T0paumyWyn36H3cAn41p2zpyFz35Pcap3Ycqy9vd2xKVQrzOEaztixY90gkUlAmyivx2+F+QfGgnKF7WixnM03GC43XN+fTVtnz44L0L0eavf+N8XXsQZ8DbCgBYOHLYb57+LrWAPDRQNDoV0suU3UhqhZt+JNTc9I+6cpybxTwq/F4tP7yh72d114+reyN3w5I80wJ420Vq9AWOoky4yrgdBZzTHl9r2fsNxs9/qVdyYVCKw6r1Zf6S2ZsKzGVyA9Dpzrva9OzNULhW3iAAmwFTHMYSy+DicjCbZNZjtftoWH5Yl2B3BGLLXTQHqhbmn8igKSHkpL47MKiFdGqFIluZIyaU9PSjPMZxGqh1LDD7qHiYejXBmQsYGOzQG7lsKQW4/uy9Vx7G/gNDAU+i5oo17L7Zw5c9widLm/2Nd33E7OPvcibbfGymqrTCk3mLr39+rrs+Qvt94uRx7ed2F+IBO+4YYbCgBqgG8AQYLAtznpj+T+2ffIhktvIutEYcnVxGc+1g0k7s/oVs5pGTFVwTCtA9CI1UBpML4iGDIxVggKTGUAW8MEdjaYXBFApcY0x9yqD8blPUxpAE1h8MQdRvMGKuS9yUUXXdRvjvHII490gFzczJo1KwcSNIAjz6+77ro+YFyeYXjDttSAZwAYAsyx7bF5bwL7qIFxeQarL3mG8OlLAqD0hW8B+AuY+dlnn829KlcHs2czxsjKhAkT7NKd0REMevQ//DT2cVSFm0yHgnH/lZbF/y8tmbnRA0wqELd5Xd0RRbcyr1QMaGvsuIQXBOMecj4IxcEXxhzBrbzb2toEdmOA0zAJ+sIuJciXvvQlB5z13/EbA7Ri/AIYKSi2swngKBgW/XIDqIv4GN/hF8bnYiBajBhNfAA7z8aPHy+vv/66K5/lGpxY2PV+HpD8xlSGAiQbaR+W6V9GMootv+ehO+SvM2+XdVZdT766x+bKnKvzJ8qeyxkW3YyC4wHnunOHyLsvvSsLPlogIxtHyYrjVpREl46hdJeikgwi6/3HidPnDL7buxZJe6pd0o0pGTdZLYA0HyV0yP3IIw/L+x+9Jwu7Fsi+x+4rTUtoH2RUQufaNL/p0fKSyCkHnihzuufIF9dYT6Zumt0xqLMzLfd8kq2LqE/+cNn5OTCuqRyA6H333SdPPvmkY+42QG612luAqeWCcUutdwF2Isx7HXXUUfaJ7kzdieEEafENk/o4CrlZcsklHSD1yiuvlKuvvrofINfYcelDMP+GjBkzRgA0I6yhGhjXPdA/zNFhdISgd99Iwj3UP4ceemhkMC5+qhEnfbmVV17ZkuDOsOUCvkVnBnbu46DAjbmnX4Uefdlyyy3d+itzGrUiRPLji69jDcQaiDUQayDWwOdVAzEg9/P6y8ffPaAaaJi0mlrifiaJJcZmFzx7cA1u0M68wFC6r4HmzHKxBkEPuyCZmAP4wHZsWELWO1NuOT8A7FeAcfnOWk5EWrHLprGHKTeX4KF2n0t4fBFrIKeBqBbcOQ/xRayBIaiB4douJpT1qHX9pKTnKyj3jpQkPu6/kFTw55qvDGIPZyT1YVq6N1Ng7obKljteF416bMPy+XWtn2sg9Q//e5hoAeci9h6Q7JiRC+TN2SvKnHlL5Quu7OfLjP1E2sa/L2NGQWejwQTid/f50ld2rLXxyCQ3x3AVAAznn3/+cP28+voute/s0jK9+Om0dD6qvDxvafKUGbtUSYxX0P90ZeJWIAd1Tb3LgI0NymTILcZYO9Dv6/33jNOn5S8e01eUDQAqTpw4sewwJqywvOy/957yx8uulF2/vuOwZMqFGRcwLt/J9w62wI5mDGmAH2AQ6+rKsm2OToyRFUYo4OU5TaWCoKJI+i01Prsrpex0CoBZp2FItGXB77Itj/MZ2gMG/N73vhf0lrufO3euA636oN0tttjCAfpyjnouNt1009yjV155JQdWsYcAhAAWBsV/xhykCQxrJvn6uDCPmjzzzDP9ALmwy2PMFRS2YQaABLjRB0CaOwPxsEWzSbk6aFMgJwAVAJWAhpiHZA5ltdVWc0ETfy3nXDMK5ut4Tg2s7i7RAFMZF5s2VEDu5BLHh6awkHMYSNKcXXhXt8BYWg+y2WabhSbDfjMf4EUeYUtyBBbAsPwECcQ222wjMNYG5YknnnCPAIoDVALM7gtlGON3DA1gkC4mvqE8u0YAuAMAZkQU+eqCYuEOxffF8lutvynRJLIw+Zm81vmydC9a7OZd+sSp2T2tVYwD6SpoHlDuY+c9IHff+w9ZommMnLz/yTKqabRkFKh77QXXStdn3bLO2uvIuuus55h5M4sz8tITL0mTNEtrQ6uMXWIpd06mdD5Gx3OxDIwGGIOlE2lpGKGTYDrm7ehulw9mv6/nDpmiOx+O/MJISbRoWvQAwJ1oUeCtnv941qXy4ZwPZcXVV5Af7PF9x4Kb1OfX3XO53DvzHll7s7XlyG8d2m8nqhW/ME7z1Cvu49794B2ZKllArv+1sGmz3hUU6ifqKYChHGY8U432lrjoH5QrpdS79E2MsT+fITrtKoYVF198cUlJ2nvvvQVALqz99GVsd4GFCxc64yAC22+//XJhYkwT1oajW9p964fhgTDChN0DSpFqxEmbExQMhjFsoo0zpvWgm3z39KcwIOGbae8wduK7Ro3SzoSKnfP5j5/HGog1EGsg1kCsgVgDlWsgBuRWrsM4hFgDRTXQsNZG0nXPbbotqAJyEZ0zY9rMbbM7FO9JcyyDpgEmApmwYxEDJgjYNJi4C5tcHLRElhgxg2GYJ/gehO+rJRiXONzUNSzVLL7rOdFzHnL3fEwssQZiDcQa+BxrYNi2i4kOWbhqu2Q2bZbGRxVxUAJrkssOinNIv6qAhY8z0q3AhZZNlC13dWVSGutawJAcAz9utn8aetZ3/vMxoxbKBlNelY6uZpm3YIws7GiVdDqZxc8SjrmPeE4m0zKqtUPGjv5UWps6e/wrY6VG6uK1cOw+eO55r6dYYg0MOw2k5ikr7ksKxtWturuf19I1r7xPTCybBeOO+GJ9b/U9KGMDHQ+wcBsz5JaXt2JfpWlg2PZdBmBMz0K8DzAsTfNZ12uvubpjjr319rvkqWdmytQN1pNVp7TJ0kv3BwiWE/5g+Jk79z/y2qw33fc0KAgBZtx6AOMGdREGMl38aloWLU5J6lmsrYI+Qu7VTepVkfa/KWqqISEtaw4NAxP/SwCS3HvvvQ586j+3a+b4AMr6ws5iACp8AexqAoNsMYFZ1tjjzK2BGe3ezvnmGA0gtPHGG/djnDO/yy67bA7sivsgEYOBEM198OwDZfx3YWy15eqA9v7SSy8VmOcQAJIc6H377bd34FyYiPPpwU9XqdeAcRe/kJIOzcPp19V3lHxPJDr+aVhD87waWyZHM0KqnoSBJAHj2vPqxVR+SEHWQAspbHcOAFsmYQzN9m699dbrB8ilP8iW4QhMyWEs1uaf8yOPPOLfhl6ThmOOOUbYsh1AldWFgNMB6FJGKtlNIjTSOn5o+cpnZq6b/Ka4WQw+ZERC7Zmz5eyml6+Tf3z0D6fRi3b9vyxztjZBF/zyd/Le6+/LD6cdKZvtsWEPIFfbqHGL5PxTfycjGkdmj4YRsvSSS8vktikKJFxDJq4wURIpHXvAsqvzNhnFez9x7+NqbJmQccuNkwkT1PBIn2UPddetlYTep5VttXuxMp0nGiWZ0IQOM6EqZKkGQ/KudJcs6ljkzt1Ka9yt9zzrdOfFeu6UzhT3i/V5p6y58Vqy8uorqcWCyPVXXScfzf1I1t50bdn669Md8PbeO+6Xm/95kyzqXiRXnnGFNI7UX9eBcbNA3CSAXPU786bH5canbpRtVlXw4iZH5jT8TvpN+TD1vmw7Zet+YFwcRQE2wiCfT/x3r776qmPvrkZ7S3xLL710vmiLPi+l3vUNZGAfzyfl1HVf/epXXftM/XnzzTfnWPSNzZy4dtttt35Rwth76623yt13310yu2y5eqskznxGh2HtXL+PDXlA28JuBhiPPPbYY7Lrrrs6VzDHW9sTZG0PCSZ+FGsg1kCsgVgDsQZiDVSggRiQW4HyYq+xBqJqoGnDzWXx9RdLUkGHiQaKnVrXMroEANgDMRg691G/OnZXSw0AVmWSmAl5QKxMyrNwPVSFCW6+icEli5MDIa70aRkc6ueB0FUcR6yBWAOxBupdA8O1XRwzcbQ0LdUq7a0p6byvtK1M7TfLfKJrNw8pO8hbaenaUEG5G+g29W1srRdYxKVN5JE2jKWcWxoXy7illDWrt1tr3duyzwRVajpy7u3D43OsgWGggfRCBeK+occzWn71yHygH1Ums1JqbEq6N1wkiyZ3KIheV5CVgLpeZVDGBm5srlXPED/X628ap6u/BoZr36WWY/r33nvPAZmCgML+2i3+BLDqYQfvKy+89Io8+/yLcu8DD8knavQ8VGWpsWOlbdJEmT7tSwLgeChJ86Sk29GhY7Yyhc6OmHJtC1Mv6E4SNIpab7esNbSYcgHhmcyZM6cfY95ee+0lHL6ccMIJcuqpp7pHNm9WKlPa/Pm6jUaF8u9//9uFEMZw6wc9fvx4N1fJ99VSKtHB17/+dXn88cflsssukz//+c8uvYTHNUdbW5v8/e9/l0mTJlXtE2DPXPxCWtpvT0vqZR31lNCvY5eDls1055OJtQHi+SDJugFHepoHRB1VYDw2KcQ+G5aPYdcNgt8trLDzp59+Gva4zzPSfsoppzimSvLbLbfc4t6znTjbyXPAKAkDZDEAcJ+Ah/BNvec3Uy1jA4BsCMC1nGGAFsNFmYUyN/2xzG/+jzSt1Fsup62zuYz58oieuuXi3vz0dELxok2y3irry9VXXy0Txk2UTJfOwygo94I/nSML/7NAdttzd1ltj73dM0C4gHWz54x88tF8ufD0i6Qp2Sjbf/1rsubaCnrUOuS2a26VubPnypTVVpEtttxCkbvqT5+/O+tdmfnYTGlINqj9ihpkKohXTVicAWJzc4t0depapebN8SuMl1XX1HaJuSA95s39RF59/lXndr1N1pfmlmaZ8+858sZrb6iTjGyyxSbS0KioWYqkHSjIrnvOYIbffUfT8NSzktIE7fTtGdLQpA/VqwbujGpwc+dtd2rYs2TC5Amy8147u/eP3POw3Hf3vT0AXAXfAsBV8G1nqlMWpzqkI92h58XZa70/6htHytp7Tnag2j+c/TuZ+eozcswOx8jOM7YjZTL3jQ/k+tlXuuvFKy2QkbrzZJjUss1it8t8MmbMmNwrSHiQemhvS6l3/frUr4NzH9ZzUY6OmR844IAD5De/+Y1cddVVOUDujTfe6EKFYdg3ZGKdlH4TRhBhwnillHo+LIzgs2rEWYq+g/GH3cMSTHtzzTXXyB//+EfHwIy7hx9+2B0//elP5X/+53/k5z//eZj3+FmsgVgDsQZiDcQaiDVQBQ3EgNwqKDEOItZAFA00b7uLdD37uDSuinUgo1JOPechd59Nfvx38DXAJLxNxA9+aoZWCvqWPp2MYtZJJft86NwPLa3HqY01EGsg1kBtNTAs20W1Uxmxpa5Y6EJF5/0KyPuoDB3qYkz6HQX1faRsucqa27WBMiutw2KutYYapl661i9Be8hN//NQeF+GdmIvsQbqTgPpdi2r7ypg43kF4v4LQL2WR906tVwBwDFyyyYZ8ZUvSOOyXrkvN8Bh6I/FL8eQq9/maj+7D57r/P0w/GmG/ScNy75LjX41GEW/8pWvVDV0wKtDDcBaVQXUQWAJ3Uq6Zf2kpN7Tvuo9iiLKbpxUPGUKUnKg3LT2j5VlsGVdBRopo2GYmLFF2LtSnqVS2qlWyQGySvHsuZ0yZUruDuayww47LHef7+Kf//ynewUzrbG2rrvuujnn7777rtttKvegRhfE/+CDD4rPTBuMCkAjQEOkHCa8YHiF7ivVAek7++yz5YwzzpDnnnvOMRefc845bmtott6GLddnWy2UlmLv0ou0bzczLR13KhhXx2SA7CKL7i7d9MWky+eUmVqJgSTtXKt4ah3uGmuskYvinXfeyV0HL1544YXgI7cLHYy2MLIfccQRcuaZZ/ZzU+4DQLccbJHO1vR33nmnXHjhhQ4YBhsv24mT/z4vYvnMzvX43f/6179ywD1Af1GlUN3y1OtPyPZ7bNtTt2Tbrcc+e1A++uQjaX2nUQ7eZN/QaB65+xk59bWT3Ltd9viaLLGOLu9rs3TVZZfIw88/Ivusv498bc8tHSB30YJ22X3NGY5Nd+JKK8mRxx7ptr1feqmlpampyYVx2AGHy6vPvSI7rrqTrL+HlhkGQXq0ppaSn+5xgXwy5xM5ePrBMmOXneS3P79Qnnj+Cdl2xrYy/dtfdlNGbhGF5PccfZY69Rlg29dvf0FOufQk6VZk8e43zpDmVk2zPld8sJ51hknPt95xrVz/0nWy4+QdZe/dsyyn6YZFcs6FZ7h0ltq+tStQOigbbrhh7hF1/bRp03L3dgGgEibRWgl1Sj6BFdfE6q96a28tffnOlm7e00egrgsT6r5yBLZXALnoEX1NmDDBAU0J67vf/W6fIAGcGhh3m222kR//+MfKTr26YwumDwUYt1wG3D4ReTeDEacXfd5LjDwAM3MA8sYQ6dprr3XMuXhidwB0s/vuu+cNI34RayDWQKyBWAOxBmINlK8B7frGEmsg1sBAaKB5q50kkVa2h/lqoc3gFhmq52zq47+xBoa0Bqz4ZT8iy5Tb+0FD7b435fFVrIFYA7EGYg0MPw00jkvIiOkN0rK98pmsqN/Hgkc50qFrMy/pQvBtaVl4fUoW3pWS9AcTdBFHF0W0YXStn2sg3Y3G0Pc8JN6Xo5fYT6yBOtFApkPBSK/p1t1aNhdel3JlNf2KlsNywbgshE5UkJLWHSMV2B+DcfP/0AbWclWgOsvdBxlze4Ko1/f5vzB+E2tgaGuA7cM7OjqELVZjGX4aaFw6Ia1fTkrj2tpwlUIfYqDcWxTk+JiCHOdbLd6rI7Zb/uCDD+Ttt9/ufVjmFcAsZIUVVigzhKw323qZu5NPPtntfFUowA8//DDHauYDXNdff/2ct5kzZ+aua3kxdepUFzxMsvnYaX3QkQ+CqkW6qqUDADqk9eijj3ZgYgP3AMp94403Kk56ap4yOj+izLi3prLMuKWAcbVMNK6rZWTzpDR8odyBYO8n5EBzvY/6XJUDjmzJ4vv6hDOYN+PGjcuxJVq5DUvPE088EfZYNttsM/f80UcfDX1f6UO2t6cegDX3rbfekra2NhfkTTfdVGnQdeU/Sr4oK7819q/ra/Hh77//vsCkbbLbblmwqN1HOZdatwBWzLcL4rPPPpuLcvU1VndgVgD67ZlFsjDzmSxMfiYNYxOunnj0lYfkja7X5NXOl+SAX+wj2x+wtay0+Qoyao0WaZ6izPTLd8jlj1wsjyoQ+N2WN6RldQX8r6HHmjpuXKdJpnxjJbl33l3yf/84Sxat+KmcfsfJct+8u2Xz/Td2bpxb/Kymx6p6rKI7MWm47pjMrkxqAL5yUhaOme/SQFoalsmmjTQml9BDDQ0SrSJd0unmovzVmGrV7aawddZZxy7ll7/8pXR2qiVPQAB71lLy1TfEafUULMzGNFtv7W0x3QD0tn76+eefL+xsEZR77rlHMD4oRzCUAKSM3HzzzfKPf/zDXcN2i/GML/aOZxdccIEDYNMumEFTLfpMgxGn/81mNOY/C16jgxkzZsgVV1zRx7CK3QBiiTUQayDWQKyBWAOxBmqjgRiQWxu9xqHGGgjVQOt3DlOGo0ck07Ewi6OwObSQs3sU8twFrM8H9X3o18UPYw0MLQ1ky1BPIdPZ6CF9P7RUH6c21kCsgVgDsQbK0ABAhRHTGqR1J2X/WkUDKAWsEIxPt6pPPZORjpvTkn5gB9n639+RsR8sL02LW1wn07WKrm3U1tH95w9Ph8B98Fvj+1gDQ0AD6YUKlH9JgfJ3ZoG4HQosSs3Uheb+5D7Rv0briORqyrA9o0GZcXWb0ioAOKJHPvRc2vaQQ/089DQfpzjWQHENAEC577775Bvf+EZxx7GLIauBpklJaZ2u/dw2/QTtckYWJdVNv65gx9tSsujelHTP1vbTw2ptvvnmLijAB7CCAbAq9YBhky1/YT9bZpllxAf2RE6n5xAwHkBcBFDr/vvvn2Ng9Jy5S8C4sLuZ7LXXXnYpgI0BoiBsN7xggXbyA/LAAw+4skP5qQYo2QdJff/7388ZsFi0gJyOPPJIu5X11lsvd12Li3J1ADPpPvvs43QPYNsXADuAJU3MCMfuSzprXuz6UI2t7klJx1/VGHKW+tY8G1m0LCSVULl1KwW4rVSdpbxvbladcPxvmDrZv6uP6y9+8YsuIeeee66EAeEAaRkILphiA8IBjoTFOigAJn/wgx+4snXaaacFX/e7P+uss1x+O/bYY/uBLSnD1WZ/75eAQXqwhO72s2FbKRV6tIROnVz9MIMxz5kzR7bbbruc4QEgtii/U6V1C23Cr371q2ByZNasWQ7AzQuYwVtadO6mgMybNy/31tqJ3AO9gCGzkHzrW99yr2n3AFcigEUNcOke1PBPuXV7viTR7tLWIrDgHnTQQa78A2JEt6eeeqpjCs3nvxrPH3vsMbn00kv7BfXII484pmxemDEA1/XW3pKmYnLIIYc4J+RjGKUB4La3t8vHH3/s6tJKWVj33XdfFz7594YbbnDXPAuWh08+UVKsHgnuLprWnRUuueQSe12182DE2dAA1XRWgu0ZfZejjjrKtT1Whs0tZwDOyy23nP8ovo41EGsg1kCsgVgDsQZqoIFKlnFrkJw4yFgDw1sDyXErysjv/VQW/eFkadpwc0mMGevADW6imHkE2HcU7ODIyAL3bjK6Ht4P758o/rrPkQa0tOlu3Fnb66F8/hz9ZPGnxhqINRBr4HOvgYYlFZT7JQXW6blDt/TtfkFbs/YK1MKa/YK1ZZ/EBGl/dIHMXWG2fDL+3/LZcnOkc0SHZJIaPv8Tdlb39X5fgTpir7EGBlQDWpZg8ut6My1dum1x98sZSb2lDysB4doHjFTM/jrKpKbApmZlOcq3hbc5j89atTHWVhnq5/i3jDUw3DQAMy5g3L333tsBIYfb98Xf06sBtq1uXiupbaNIxyLdYez93ndFr+ifvivSeacam83NSKsaojQrwBfmQMCzX/va19zW8DfeeGPRoAo5AIy7xx57FHIS+R3A2t/97nfC1tmwYj7//PMObLXRRhvJ+PHj3ZbMAIgB+8HSihxxxBGyxRZb5OLAiIQtmQHAAMSAvRGGV4CIAGDuuOMOOf744x3Yt62tzYGpcp7LvGBb4/32208uu+wyl+7DDz/cbRW99tpry1NPPeVARQC4EEDCY8fq3HcNpVwdACy75pprXMpeeeUVOe+881xeSSaTAjjq17/+tXsH8G3KlCllfUFGCRg731D25v+Xkq4nNZP24oMih6fDNGndRvOzMleKlpFqyN7TkvLabN1SXPug1ZDvbpmUjaewkFFfwhblt912m0sUgHTK0lZbbeXKg5WNfCmmnAPkhe2Z9odtvgHGAxIkv7DFt7E8RgGYtba25vIbbO+U08mTJzuWTvLh5Zdf7pLyne98J1+ShuzzH6pB8Q8vTsv8Rdm+dqUfcvA2SVlrYnXyG6Dbe++9N5ckDApmz57tANwXXnhh7jn1BXVEFKlG3YLBBkC7XXbZxTGyAyD9xS9+kTPcIP8VEx88fOKJJwrb1tM2wFoKkPGEE04oGAR1Hwdt1EknneTcHnjggUIdORBSbt1eKG2///3vHQP6gw8+6MqjtQHmB3AiIEX0XSs59NBDnfEMjK4Apcl/tNMm/nW9tbeWxkJn+jbUmwCcyTv0v4JCX6Xc/hh+MQYibA7EN1SyuLbeemvHjMv9cccd5+pc9Pniiy/KmWeemauPzX01zoMRJ0Bz8tFnn33myvX06dNdP3GppZZyZR6DI/qY5HXqFNrCZZddVubPn+8Mw2yng9josRo5IA4j1kCsgVgDsQZiDYRrIAbkhuslfhproGYaaJiyhow69hTpuOo8yXz0oTROXl0n1Hpm1ADjIjanUK/32VT+//bOLEauq87D51b15n3fdweHJM5iJ3aCmExGA/MWDRIQgUDKA0gZAS8kYhACBC8wEuI5jJAACYQgEhFoYCYSIU6IPJBFZILD4sRx4niN931pd3fVvfP7narbKbfbdnd1VXd19XeU43Purbt+91bfU7nf+R/+hcCkJjD4NYtn4Zh/lf8xWJk/eaYn9UXg4CEAAQhAYNQELNZ1byqGgqXchRL5XklDdmLUm7lihdnZnDD78Jww//jicG7/6XBKUu7pJcck5p4MvbPPhbRDL2sl5cano+VcN1ZbdPqKE2MCAi1IwHJG6Zi+u+9IwlVEv9KuLKSH9L3qa8zBJgpy0rlFUQb/UcOEWkZqkLzRmKNr3a34pa9l3Mleti5hjgwCoyNgYcSSgsUlywsWIUntT8Dt3J57CiFz5Pin1cY9Nrpzzk4pGul2PVePlUP5H7PQfUchdmSzxHrzzTfHKHiWEEabLCAtX758zJFxa/frKKweIviRRx6JYt/u3bvDQw89VLvIFfUHH3xw2Oh9lmMPHDgQh+D2d6ZWLss3YFnD0eTyoZrz+fWUfk5aVLS05kiQP/zhD2Meui0f142Er6Hr1DtdDwOLZpYff/aznwVHQb333nuv2r255ZGMr/rwBjPKZ3QP/yUNff+rUQ/U1guXb7DCMB8nS0Lo/rCGgt/c2M5VS+RI/+cjhfDU/yVhr75jlf8bOswB3GBWd2cI970vhE3r8v/DeoMVxvnjrVu3xiiIn/3sZ2OUU98nQ5Nl9lrxMv/cIrmFW0ertLD0pS99Kf/oitIRN/NIold8MGTiU5/6VPj+978fRTXvzzmXqPJFN2zYED73uc/lk21T3rI8CU/+ezE8o9E/Dp2s/7SmKyCs77c71jTufrPENnSo+6FH6Ci57oAw0nbIWP+2+H7yvfetb30r5qHHYxnXz4MbJXfscBRwy97usFEbad3rWjx1pGc/e66VHEX2i1/84uDHvo/HM9Xzt/16x+coqk8++WTs3DJUCDUfi5rOzRJy3Z51ZG7/PRnub8pPf/rTsHnz5sFTaMXn7eDBXadiedzJUm5tWrduXeyIdPLkybqFXH8PLY9aMnXy380tW7bU7ibW3fnC97jlYD/nnWvTWKTg2u3U1idin96/v5d+pvjv2cMPPxwPydL9Rz7ykSh7b9u2LX7mTl3OQ589/ntimZgEAQhAAAIQgEBzCCDkNocrW4XAdQnESLmP/Ufo//3/hP5t/xWS+YtDcfnqEGbM0gvT4nvrVn2H+H/G/P8aWmH6vaOjBoFJTSD/OlVOohopd/CMJtv04IFTgQAEIACBKUAg0a+4rg16MWspd5kiL72gaGDv6MQl+o0ldZY6wwJJufNOLAwX964OpxcfVz4WzknMvbDgdBhQ1NyYBiPm6mkaH6j+x9WaaVery1neHbfP4574BwItRkBfgfI5ybcHKxFxLeKWlTO/lC436FgVBbBwk8SND0rcuLsYOhY17mV1g46wpTcz2SPj5sff0pA5OAhch4Cj0jlS3f79++PLcw9ta4lyvIZGvs6h8dE4E/BIED0aESJTR5X+ZyXljlbg0ugR5R1Z6D0hEfJdSblb1UFlZSEOy9tqQ/NaLPnVr34VHn/88SgBHTp06CrajrboSLoWK66VHIl2zpw5MQJoHu0sX9bC4Fe/+tWwdu3afFYsa4c5vuKDmolc2ujqUiOjJnV2doaf//znMWKjh322BJInr/Poo48GRye1TFSbbrTPoUNO1657o3o9DDx0uAUaS0O1UprP4YEHHojXxALRaFI2ICl8v0TcP6Wh/2Xdv+9q7cpPodFsJiTqg9D1z4Uw7QMaHWX2lRxHtaFrLFzQJv91S+O3e43d3XD20HslX+FG94yXG3p/5uu6dHTbvr6+4Aihtd8NP1ss3r322muDiw89hpUrV4Znn302Rnr+9a9/PbicK5bAvv71r4dPfvKTV0QMvdbxWvB96aWXwre//e3wk5/8JB5L/r3xd9xDu/uzmTNnXrGfdpmYPS2Ej9/X+vebefs5sXr16ij5+f4ZTtbPr8u1OjmM5W+LO4987WtfiyKdOz3kyX+XHD21NoJq/pn/Jg+XLOn5b79l8Nr7350R3Nkgj/h+rfP42Mc+Nijk+jtTT7TwkUTUzf/2D3cc9fxtH247OZ8FCxaEJ554IvJw9Hm3P31e7nTj5I5gw6VrMc6Xrf3uX2tZRyi2JO0I2S+//HK+arznLGD778nQVO/zdiTcr7VM7bkMPZ58+np/d71dn89XvvKV8NZbb4VTp07F6OKOMO5r86Mf/SjfzFXthMEPrlMxw1zIdYeL4ZLbRNu3b4/RdIdGQv7mN78ZvvCFLwxKwbX3y0jO3furXSfff737vNZ1yLfr8nrfEUf0t4Bf+z3Pn2f33HNPHIHB99zvfve72F7Lnz0Wlt0pxSzy5Wv3SR0CEIAABCAAgcYQSNTgrON/CTRm52wFAhCoEBj484uhvPNVDVG6O6THj4Ssf/gffvCCAAQaQyD9N9lLJAhAAAIQgEAbEMj6u0J2cE1Id94dsnduDcl5DwvbmJdd/qF4NjkT9nS9FXb17Ay7pv09vDNjZzjXI1mgWGoDepwCBJpMoNwZ5vSuCOsu3Rbe37sx3KK8fuCmMEtRqRvzLa2I8EeLR8JL0/8Ynp333+HgLA3dyPdzVBf2gd6Pj2p5FoYABBpPwC/2PbzqqlWrYiTTjRs3Nn4nbHFSESgdk1T7+3Lof74OKTc/U7ltxVs1usQH1Fllo6LlztPTt1EP4HwfDSxPnz4dh2A+evRosAxoMcvy0EhTmqbB6zp7PQtGI5VLRrqPocsNDAyEw4cPR+HGwyAvWbJkWFFl6HrNmq6XwaVLl8KePXuCxUmzH3Vy56tTior7N8m4L0kGf0MzLo56K3GFZFFVxv0nOljVR/DqtcrlcvDQ3Y7MaCnMz5vRpIsXLwYL85Z7vf7s2bNHs/pVy/q7vm/fvih+zp8//6rPmdE+BEb6t8V/dyzNWha0hOp04cKFYGnUMq4/H04CHCkpjzzgY/F2pk+fPqLVdu3aFRzx18mRXd3BY6JSvX/ba483l2D9rFq/fn3tR7HufVhSNPMvf/nLwaJjs1L+N8Adc5YtWzaiZ3WrPW+HY7Nz584ofVog3bRp03CLRAHU0fUdDTi/JsMu2KCZ/vvvv7fuwGrZ/lrCdIN2FzczEfv0/etRICz4Wg4emnz+bq/5OWgJfaR/B4Zupx2mryeUt8P5cQ4QgAAEmkHAnZhI9RFAyK2PG2tBAAIQgAAEIAABCEAAAhBoDQJpCKWjabi8Iw0Df1Lkzbf1AljRwRqaCvIX5AMU1iahw3mV8krlRYWQaPhIEgQgUCGQXVYk3OOVaLilAyr3auhsZQ+jHfRdbWhStKnihiR0KcJZ9yZJG0taWzRq6LmzMQhAAAIQaHsCUcp9virlnqjzdP1oVJ/szrsLoetuPTPXa5SJ6S1s5dZ5mqw2cQTSi1nof1sRcV/VSAh/lkB+RMfino11pCjjfkiRcR9Axq0DH6tAYNISGE7IneiT+ehHPxqeeuqpKAQfOHBg0gt8jvL7yiuvRKw7duwIt9122yDiUqkUo1Q7crDT008/HSOoDy5AZUQELJR/5zvficv++Mc/Dp/+9KevWM/3k+8rp2984xsxX7EAExCAAAQgAAEIQKDNCCDkttkF5XQgAAEIQAACEIAABCAAgalJIOvTy+A9isz0ShpKknPTw+LQjEC2GhHRL4uLa5JQXF0Vc1eoXJiEpAfBYWrefVP7rNNeifAnJN9qaGxLuOX9yvsk4Voe0tDFDU8dkuM1qmbHZkX82yLBSJJ80s13r+Gc2SAEIAABCEw4AXdy6f1DVcp127bepA5khXUVMbf7zkLoVNuVZ2e9MFnPBPzba0Dtvr6/qFPkq/rttVczxxA4KFHbrlsybs8HJePqdxUJAhCYOgRaRch1VFzLqL/97W/Dtm3b4gX47ne/Gx599NFJfzF+85vfhIceemjwPO67776wdevW4IhvzzzzTIyM6w+3bNkSnnvuudDT0zO4LJWREXAEVkcRz9OGDRvC/fffH6Vuy9AvvPBC/MhRn1988cU4EkC+LCUEIAABCEAAAhBoRwIIue14VTknCEAAAhCAAAQgAAEIQGDKEiiflpj7hqI0Scot/b0qBTY6MmdOt0ty7mLJuYqYW5TYUFwuMdd5cRIKM/QimXfJOSnKdiKgqGeOhlY6qnxY8u2hapaUkR3XiY5BxrguJkeqlgzfsVER/jZJxL1Fw2/P5Ut2XWZ8CAEIQAACk55A+UwWLr9cDpe3KfroAZ3OWNq1s9RuvTkJnXcquvzGQuhYptEe1NmMBIGREsjU2WrgXf3W+rtE3NfUBtythuGFka49zHJq3xXkL3X/i2Tce4uhOIe23TCUmAWBtibQKkLu9773vfDYY48Nsv7EJz4RfvCDH4Rp0zQ0SxukX/ziF+Hzn/98OH/+/LBn8/DDD4fHH3+8bc532JNs8sxXX301fOYznwmvv/76sHvavHlz+OUvfxl8z5MgAAEIQAACEIBAuxNAyG33K8z5QQACEIAABCAAAQhAAAJTj4BEBUcU64svitNQ3iVR8LQw6H1x05KidiYL9EJ5ZUXMLS6TmLtEded5ikKG7NA09Gy4+QQySbYWgizhlo/oO6XhiC3ipgf13Tql/TcjGnV+Wnbb50sgen9VxL1NApEjp0ngIEEAAhCAAASmAoH0gqRcdTa7/KwikVqAHGPnl2Sunqu3SMy9Xc/W91fFXHU0I0HgWgTcFowirjo+DvxN7UH9vgpnr7X0COfrnnP7rvvDknHvKlQ6NI5wVRaDAATah8ATTzwRent7w1133RXuueeeCTux559/PvhYVq9eHY/lwQcfDEnSXp0Ejh8/HqOzvvHGG2H//v1h4cKF4c477wy33347EVsbdOf19fWF7du3h927d8fc0dER7rjjjpg3btwYurpocDUINZuBAAQgAAEIQKDFCSDktvgF4vAgAAEIQAACEIAABCAAAQjUSyCTJFg6rAhOO/XiWNFyy2+Og5jrg/U7m9nyBZdKxl2mUnKuxVxHzi1KJCzO0gLFes+K9SAwDgTKEm7PScA9oe+N5PbyEcm3joar4bJT1YOD6jRTcPcp6msSRVxH8nNUXEfyW6pIfnx3xuEGYBcQgAAEINBqBLK+EPreVKTc5zQKhCKTjikqaX5y8xR5Xs/Zjtv0nL25EDo14kPS017yUX6qlPURSHvVHlQnrP43q7+nLISfqW9bV6ylaM0dm5Iw7UPF0LVB7Tv8pCvwMAEBCEAAAhCAAAQgAAEIQAACEJjMBBByJ/PV49ghAAEIQAACEIAABCAAAQiMgMCgmPu6XiTvrIq5juo5liF/R7DfwUX0gjlGz5WUW3DE3MXycRepdF6AoDvIicqEEcgk4Kbn9d04qWwB91glp0c1X1FxYxTcMUbjG/HJKfKtvy9xSG0LQrdWRVxFoSZBAAIQgAAEpjQBtV379ytS7h/Vpn05DZme0w3pIDNHz92bJOYqWmmn5Miu1WqzugMZbu7UvN3k3JbVLhzYp7xbArii4Zbf1sxzDcDh20odFrvuU1Tcf5AEvlINP0Y9aABYNgEBCEAAAhCAAAQgAAEIQAACEGgdAgi5rXMtOBIIQAACEIAABCAAAQhAAAJNJRDF3KOKmKuXyqVdermsCE9RZBho6m6v3nhPjaBrKXeh3kNbzM3zXEUnI0rU1dyY0zACjrJXPiu5wgKucloVcdPjVQH3pHalZcY1dep7sVTR0jZUhKA4hPZiRUxDxB3Xy8DOIAABCECg9QmUT2Xh8p/T0PeHNKRvSZRs1DN7mtqkknGjmLtecu66QhzdIdEzmtT+BDL9Jiodl+z9jn4rScAtaXSR9IDur94GnXt3pcNV1/2ScTfp3pqH8d0gsmwGAhCAAAQgAAEIQAACEIAABCDQUgQQclvqcnAwEIAABCAAAQhAAAIQgAAExoGAoouVJCAOvKUXzhp+tbRbEuJBvWy+NA77Hm4XjqA7VwKE5NzCIpULVc6XoKthhAt6Ue2X1YWZknSRIYajx7wbELBcEaPfnpZ8q5w6K0J0ekLlCZWKiJt56OHxioA79Hhn6D5fKflHIm6nhs3ufJ8i4ur+J1raUFBMQwACEIAABN4j4M41/YpeevmFcijt0LPcnWnUnG1IUmeYRG3S4vv0fFbk3M41ejavUJt0Ns/nhvBtpY3od1H5nORb/RYa2KffRRJxy5K8M7URQ6lBB+qouLqfOjYloeeDxdB1kzpcSc4lQQACEIAABCAAAQhAAAIQgAAEINCeBBBy2/O6clYQgAAEIAABCEAAAhCAAARGRMAvoAf2Kr+dhvIevYBWRKgoNJRHtHpzFvKwrZYUF+jltcRElxZ0C4qcW7S4O0d1ZUsRMZIuwaWacx0m21Yl4WT9uoc1nHDq6LdnJNyeVT0KuBUJN3M0XMm44aKyBIwJS0Xd24oMXVwn0UcR+DokZnSt0X1t0YcEAQhAAAIQgMDICOjZXzqWhb4d5dD3sp7xjpZ7eWSrjnipmWp7uuOMntnFtZJzV6m+VM/sGbYsR7wVFmwlArpN0ov6/XNYIq4i4Jb0W8i/gWIHRbcRG5kUddlid9d9SejeVAwd6oDIfdNIwGwLAhCAAAQgAAEIQAACEIAABCDQegQQclvvmnBEEIAABCAAAQhAAAIQgAAExp1ApuigpaOKmOvhWfcoOtQ7elF9SG+rL4z7oQy/QwmMwUKEouYmEnNdOnpuMqcq6M6yzKgX3i4dTVdRd0ntS8D3a3rB8q3kifOqu3RWpNvMIu5plRZxHfnW9/BECua1l2GW7ldF2OtYpyhp6wuhU1H3OhYrShr3ay0l6hCAAAQgAIFREYjRctW5rO9PasvuSEN2RKs3+tmvDmNxRIfVEnPViabDkq6f6ci5o7pWE7awJVy1HUtHJOLqN05ZEXHL+9RW3K/OiOrA1fCOWu58tSyEzs2F0L1VHa/WERV3wq49O4YABCAAAQhAAAIQgAAEIAABCIwzAYTccQbO7iAAAQhAAAIQgAAEIAABCLQ0Ab2sjlFzY7QoibmOGLVfcqNeXjc84thYQTgqWY9edkvKTRQxN8q5knIdPTdxKTG3YIm3pkym6zPLvaSWJ5BpmOCsV6KE5IlUUu1geV7ihCVcRcF1BFxLFJnqmSLjxntUt2pLJd2jhWW6F9dIwpXA07lWw14rup7lcSKktdSV4mAgAAEIQGCSEyifUrTcnWnof1UjP+xU28BR8ZuRLFu6c5ik3KKf6csl5upZH+Vct0NpazaD+qi36bZk2aMm6HdMSdFwy+8q6zeOI+Fm7rTVaGm7eoSJRvcoblRU3Lsl495aCEV1IiRBAAIQgAAEIAABCEAAAhCAAAQgMHUIIOROnWvNmUIAAhCAAAQgAAEIQAACEBgVgUwvqcsnFUVqf1XM1Qvs8iHJjxoauOXk3Nozy0VdybiJIpImsyVGODKpBMg4PUN1ibkFlRZ0B0sNKVvo0cpIFLU0m1fX/ZVelhRxSeUliRF5qaGCPYxwpjKzjCvR1gJuJWu+6qFPudXE21pSFsUXS9BZqdvJQ1t7iOvVEnHnc3/VYqIOAQhAAAIQaDgBtS8Gjiha7l8cLVdt17fUYHDboVnJkXPdEcydb1boua+y6DaAcscitzP17HfblNR8ArrUMQruCV33o8r6zVK2iKvfL6nKeB+kTTwM3QfFDRJx70pC951q9y3VzaH/SBCAAAQgAAEIQAACEIAABCAAAQhMLQIIuVPrenO2EIAABCAAAQhAAAIQgAAE6iKQ9YdQ0svt0kHJuRZzPczrQTmRlnN769rkxKzkl+Ld8iIs41rYlSRRKat1SblJzJpvQTevO8ppt+Z5XUm7hS5tB3F3+Gto0Vb3SybZ1kNIW7p1GaPd6l7JYtY8l5JwM8m3qeTbUBVws4tJnBel22ZKE8Mfff1zfb8s0b1hCdfDWDuvkoyxQPeN7xcSBCAAAQhAAALjRsBtjwG1W/v+qrbrX9Vu3aM2q9sbzU7ulLNQbYKlknKVC4vVLliourLbBFHQRdJszFVQO7GszlvuQBjzcbUpLcTB1ZoAAAuZSURBVOEeUftTUXGzE9qNO3E1O+l3RfEmdb66QzLuHYXQubJA26/ZzNk+BCAAAQhAAAIQgAAEIAABCECghQkg5LbwxeHQIAABCEAAAhCAAAQgAAEItCKBbOA9Obd8SC+94xCwlRffTY881WwgjmAmedIyblD03GR6tW4x14JFzJqf1y3odlWFS68Xc2U66dR0p+od2pbrHarHUtOtHilNzoqH+fW1zkqaiKWnJTe4buG2X3WVIdY13adpi7fOl5017dLCtstqFNw4LRHX22zpKLc6vOsmyzSOiGfhZplEDA1XXVwhGUMSRtESrq41CQIQgAAEIACBiSXg9kj/PmWLuTvVbt2rds2FcTomt/fclrSg66i5i1RKzC0oYn7ReZ7yHH2uTl8t3zYcJ2TX3I3bpmprls9Iwj2t8pTkW2dHwz2u3yEScaOA63anlh2XpM59xXUSrTcqIu7tEnFXq/3n0TZIEIAABCAAAQhAAAIQgAAEIAABCExpAgi5U/ryc/IQgAAEIAABCEAAAhCAAATGRiBzNNQzWRiIw8FKdFCZ5lGpTmnbEjHbMvldu0VbC7mWKLqyGD03OIquo6FW5dwo4npay0Zx15Km615XEXbzMljWdcRdz7PoWZMHp73P6jv+pKaezxuUDywhWFpQEf9xRRHEMkebrclxWtfP4m1QGcoSGar1WFrItWwrCTcKuRZoqzJulHAdccxSrss+RbVVPUYh83LtmixiL9DlUSTc4tKKhNuxXFFwLePO0UUhanK7XnnOCwIQgAAEJjmBtFft1f0Sc3eqvfq6JE5HzD03ASfltsRctSXcecdtCkfN9fTcSluiIEG3MFvz3DFsirYr3A5N1ZErPad8Vk3Usy6VT2u+JNzspEpFxc00PS4RcIfeJrpGMSLureqIdatE3FW6XtOqjfShyzINAQhAAAIQgAAEIAABCEAAAhCAwJQjgJA75S45JwwBCEAAAhCAAAQgAAEIQKBJBOQ1pBezUFKEqpKGiS0f1YvzmDXfUasU0SpGRW3S7ifVZi3cVqXcKOgW9RI/TgtiQfVCpUxcWsbw8n7PX5s16ekk2rmqa9Es0z+e6TKrKVNNW76tEXKjnFuWSGsJ11FwLeVWhdz4mSanfHJEY0syEnALSyplR5RxFQ1Nke4sy8RrMuVBAQACEIAABCAwOQg4yurAQYm5b0jMfVPt1bcrgmdsB03EKagpEaqSbiIptzDPbQ+VjsI/y1li7kxNKxqr2x2FGSodhXWyy7pqd6aKXpxerPx+iOV5XQvl9LzmScb1b4dUOVNE3Exibuzo56buRCTxdqRji7gdNyeh6xaJuBoZIXbMm4jjYZ8QgAAEIAABCEAAAhCAAAQgAAEItCwBhNyWvTQcGAQgAAEIQAACEIAABCAAgUlOQC/aHdGqJCnXcm5ZUm5Zw8pmHlbWpaNaKQIrCQItQ8ARjy3gLpLwUh1WuughpiXhRhFXEesmvQDTMrA5EAhAAAIQgMDEEcgU0b90LA0DuyXo7k4l5qp9+q5sz1YZ3cHC7TS1S9T2SCTnJhZylS3nup5M17SisiZeRjnWqyM3JCoLXfrMozSMt7hr0dYjLEh8jiMtuBRTy7dZr+YrO1pxJhE35gsScC+o7mwJ11GLLym7E1krJLP1SAg3hdC5QRLuBnfKKlRGuWiF4+MYIAABCEAAAhCAAAQgAAEIQAACEGg5Agi5LXdJOCAIQAACEIAABCAAAQhAAALtScDiQ1kv2svHq3KuSou5qYadzTT8bHpK591KL+Db8zJwVjkBRx12lLn5ElnmS8D1sNELJVxIxnXusJQ7RzKLIxeTIAABCEAAAhBoTwIeJEARWAf2Ss5VtNzSO2qT7pUY6nZpq0ihQ8m7DWP51pH6p2dRzk0s5zrSrnLorta9jKL9B0f879SyLtWuSSzpVnOsV0diiIMuaLHB6P+ORqscB2BwXTwyCbcxmrDKWNfoCtmAeKmd75EwooRrIddisyXcvko9UxvfOVjKvaSNaX7L8hWbRO3D4lq1CdcloVNRcTvXFkJRkYsH2ejwSRCAAAQgAAEIQAACEIAABCAAAQhAYDgCCLnDUWEeBCAAAQhAAAIQgAAEIAABCDSfgF7klzUsbfnke9lyblqVcweHp9WLe8sAJAjUTcByiSPIOfqtZApLFoWqhFtcINnCIq5LRZ0b90hydZ8UK0IAAhCAAAQg0EgCjupaOpyF/j1pKEnKLe9Tu/SQGqHntZfJ2ha1bGspV9Fyo5TboROxjNuh9lCxWo9CrmVTTbso6B9VM5u4+i9kleko0JYl2VrKLWme6i6zfpVVIbdlJVsd8nWTTifMUvtwpdqDa4RHAm7XenXQWipOEpxJEIAABCAAAQhAAAIQgAAEIAABCEBgpAQQckdKiuUgAAEIQAACEIAABCAAAQhAoOkEHE2rfEYChKRcRytL83xGLsBpZX2WnVXpCFuWAUgQGErAUc0U+TaZo2z5Nkq4EizmKeKtclEibsz+TJHjSBCAAAQgAAEIQOAKAvJLPapD6aAi5+5LQ3m/2qUHJOdK1g0XtaQKUhsQsGc7U23EZWobrpKnvFqRcNcUQoel3Fn6EA+3DS4ypwABCEAAAhCAAAQgAAEIQAACEBh/Agi548+cPUIAAhCAAAQgAAEIQAACEIDAKAhkGu62LAk3CroSclNnTacSJVxm55TPStR19DJH00XUHQXdSbyoo7s56q2imSVzJNfOllAhCbeg+mBpAdfZci7RzSbxxebQIQABCEAAAhNEIK20QQcOKmquBN2y86GqnOu2pz4nTSICjgbsNqMl3BWScFcoCu4qibgrC6GozlrBn5MgAAEIQAACEIAABCAAAQhAAAIQgMAYCCDkjgEeq0IAAhCAAAQgAAEIQAACEIDAxBDISvIfLkrIlZRrWTeVkOu65dz0vMoLknQlSWSxrqF0tWzo07EiTUzMBat3r5YiFMU2RrxVBLNE0cqigOshhav1wmwLuBXpNsq4M7SMZV0SBCAAAQhAAAIQaCQBy7lqc5YOOUvQfVftzyNqXh5R2/OkdtTfyJ2xrYYRcFtygdqOS9VmXBpCx3JJuCsUCVcyblHtSCTchpFmQxCAAAQgAAEIQAACEIAABCAAAQiIAEIutwEEIAABCEAAAhCAAAQgAAEItA8BRcdNL0mOkIhblpDrMrWYKyHXkq4l3kxDDUdh95JKLRsuSdjtRdidkJsgF26nSYaYnoVkumTaGVUBV2VhZmU6lh5SWNJEsSrjFrwO4u2EXDZ2CgEIQAACEJjyBNR0dLuydEz5sNqdzkfV7jym9qXmZeowFtSBjDQBBDrVlvToCIsk4C5Wc3GJ2o+KiNvhrHpB7c2g/0gQgAAEIAABCEAAAhCAAAQgAAEIQKAZBBBym0GVbUIAAhCAAAQgAAEIQAACEIBA6xGwrCvxNq2KuanFXIkUaVXMzVz2ViTdWLruqLqXJVVcVl05ODv6mSQM0nUIWLSVDBF65DtUc+iRXJtPT9d8CbVJLFVXVNuC6xIkClURN5ZIt9eBzEcQgAAEIAABCLQKgWxA0XPPSMq1oKucKruenlCz8WRV0HW7ktR4Ao6AO1cdtxaobblQAq5E3OJiZYu4Ludqfkfjd8sWIQABCEAAAhCAAAQgAAEIQAACEIDAcAQQcoejwjwIQAACEIAABCAAAQhAAAIQmHoENAxxKlHCEXYdMddSbprLuJZzXa9KuhZ1sz5NW8513aVyFHgHNF9SRohZ0Xc1HeuOkiYpeNLIvI4c5gi0FmslMSSdmtGpc3HUMc/rktzQ5VLTFiFcj6Xmu8zlW4u3sS7Z1uU0CRNRxtW0lmOYYDEgQQACEIAABCDQVgTcNoyC7gmJuc6SclOV6Sk1BU87q72oURyIojvKy+52qEZLSCzZzrOEWxFxi5JxiwuVLeP6M7dVSRCAAAQgAAEIQAACEIAABCAAAQhAYAII/D+7abgJIr49ugAAAABJRU5ErkJggg==" + } + }, "cell_type": "markdown", "id": "5b980b4f-13bd-4bb4-bdbc-5584a6a59ca5", "metadata": {}, "source": [ - "### Filter to `synonymous` variants passing filters" + "### Filter to `synonymous` variants passing filters\n", + "\n", + "![Screenshot 2024-12-20 at 11.12.57 AM.png](attachment:f42fc1f8-afe3-4684-9fee-66582eba9080.png)" ] }, { @@ -4831,17 +4859,24 @@ } ], "source": [ - "var_ht = filter_by_consequence_category(synonymous=True, ht=drd2_interval_ht)\n", + "var_ht = filter_by_consequence_category(synonymous=True, ht=drd2_ht)\n", "var_ht.show(5)\n", "print(\"The total number of synonymous variants passing filters in DRD2 is: \", var_ht.count())" ] }, { + "attachments": { + "5565afe1-9dbe-42de-b70e-224b9d8651e4.png": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAACvYAAAGOCAYAAABGu6ZUAAAMQWlDQ1BJQ0MgUHJvZmlsZQAASImVVwdYU8kWnluSkEBoAQSkhN4EESkBpITQQu8INkISIJQYA0HFjiwquBZURMCGroooWAGxI3YWxd4XCwrKuliwK29SQNd95XvzfXPnv/+c+c+Zc2fuvQOA2gmOSJSNqgOQI8wTxwT50ccnJdNJPUAZaAJ1QASjOdxcETMqKgzAMtT+vby7ARBpe9VeqvXP/v9aNHj8XC4ASBTEqbxcbg7EBwDAq7kicR4ARClvNj1PJMWwAi0xDBDixVKcLsfVUpwqx3tkNnExLIjbAFBS4XDE6QCoXoY8PZ+bDjVU+yF2FPIEQgDU6BB75+RM5UGcArE1tBFBLNVnpP6gk/43zdRhTQ4nfRjL5yIrSv6CXFE2Z+b/mY7/XXKyJUM+LGFVyRAHx0jnDPN2K2tqqBSrQNwnTI2IhFgT4g8CnsweYpSSIQmOl9ujBtxcFswZ0IHYkcfxD4XYAOJAYXZEmIJPTRMEsiGGKwSdIchjx0GsC/Fifm5ArMJmk3hqjMIX2pgmZjEV/DmOWOZX6uuBJCueqdB/ncFnK/Qx1YKMuESIKRCb5wsSIiBWhdghNys2VGEzriCDFTFkI5bESOM3hziGLwzyk+tj+WniwBiFfUlO7tB8sU0ZAnaEAu/Ly4gLlucHa+NyZPHDuWCX+UJm/JAOP3d82NBceHz/APncsR6+MD5WofNBlOcXIx+LU0TZUQp73JSfHSTlTSF2zs2PVYzFE/LggpTr42mivKg4eZx4QSYnJEoeD74ChAEW8Ad0IIE1FUwFmUDQ0dfUB+/kPYGAA8QgHfCBvYIZGpEo6xHCaywoAH9CxAe5w+P8ZL18kA/5r8Os/GoP0mS9+bIRWeApxDkgFGTDe4lslHDYWwJ4AhnBP7xzYOXCeLNhlfb/e36I/c4wIROmYCRDHulqQ5bEAKI/MZgYSLTB9XFv3BMPg1dfWJ1wBu4+NI/v9oSnhE7CI8J1Qhfh9hRBofinKMNBF9QPVOQi9cdc4JZQ0wX3w72gOlTGdXB9YI87Qz9M3Ad6doEsSxG3NCv0n7T/NoMfnobCjuxIRskjyL5k659HqtqqugyrSHP9Y37ksaYO55s13POzf9YP2efBNvRnS2wxth87i53EzmNHsCZAx45jzVg7dlSKh1fXE9nqGvIWI4snC+oI/uFv6MlKM5nrWOfY6/hF3pfHnyF9RwPWVNFMsSA9I4/OhF8EPp0t5DqMojs5OjkDIP2+yF9fb6Jl3w1Ep/07t/APALyODw4OHv7OhRwHYK8b3P6HvnPWDPjpUAbg3CGuRJwv53DphQDfEmpwp+kBI2AGrOF8nIAr8AS+IACEgEgQB5LAZBh9BlznYjAdzAYLQDEoBSvAGlAJNoItYAfYDfaBJnAEnARnwEVwGVwHd+Hq6QYvQD94Bz4jCEJCqAgN0UOMEQvEDnFCGIg3EoCEITFIEpKCpCNCRILMRhYipUgZUolsRmqRvcgh5CRyHulEbiMPkV7kNfIJxVAVVAs1RC3R0SgDZaKhaBw6CU1Hp6EFaBG6DK1Aa9BdaCN6Er2IXke70BfoAAYwZUwHM8HsMQbGwiKxZCwNE2NzsRKsHKvB6rEW+JyvYl1YH/YRJ+I0nI7bwxUcjMfjXHwaPhdfilfiO/BGvA2/ij/E+/FvBCrBgGBH8CCwCeMJ6YTphGJCOWEb4SDhNNxL3YR3RCJRh2hFdIN7MYmYSZxFXEpcT2wgniB2Eh8TB0gkkh7JjuRFiiRxSHmkYtI60i7ScdIVUjfpg5KykrGSk1KgUrKSUKlQqVxpp9IxpStKz5Q+k9XJFmQPciSZR55JXk7eSm4hXyJ3kz9TNChWFC9KHCWTsoBSQamnnKbco7xRVlY2VXZXjlYWKM9XrlDeo3xO+aHyRxVNFVsVlspEFYnKMpXtKidUbqu8oVKpllRfajI1j7qMWks9RX1A/aBKU3VQZavyVOepVqk2ql5RfalGVrNQY6pNVitQK1fbr3ZJrU+drG6pzlLnqM9Vr1I/pH5TfUCDpjFGI1IjR2Opxk6N8xo9miRNS80ATZ5mkeYWzVOaj2kYzYzGonFpC2lbaadp3VpELSsttlamVqnWbq0OrX5tTW1n7QTtGdpV2ke1u3QwHUsdtk62znKdfTo3dD6NMBzBHMEfsWRE/YgrI97rjtT11eXrlug26F7X/aRH1wvQy9Jbqdekd18f17fVj9afrr9B/7R+30itkZ4juSNLRu4beccANbA1iDGYZbDFoN1gwNDIMMhQZLjO8JRhn5GOka9RptFqo2NGvcY0Y29jgfFq4+PGz+nadCY9m15Bb6P3mxiYBJtITDabdJh8NrUyjTctNG0wvW9GMWOYpZmtNms16zc3Ng83n21eZ37HgmzBsMiwWGtx1uK9pZVlouUiyybLHitdK7ZVgVWd1T1rqrWP9TTrGutrNkQbhk2WzXqby7aorYtthm2V7SU71M7VTmC33q5zFGGU+yjhqJpRN+1V7Jn2+fZ19g8ddBzCHAodmhxejjYfnTx65eizo785ujhmO251vDtGc0zImMIxLWNeO9k6cZ2qnK6NpY4NHDtvbPPYV852znznDc63XGgu4S6LXFpdvrq6uYpd61173czdUtyq3W4ytBhRjKWMc+4Edz/3ee5H3D96uHrkeezz+MvT3jPLc6dnzzircfxxW8c99jL14nht9urypnuneG/y7vIx8eH41Pg88jXz5flu833GtGFmMncxX/o5+on9Dvq9Z3mw5rBO+GP+Qf4l/h0BmgHxAZUBDwJNA9MD6wL7g1yCZgWdCCYEhwavDL7JNmRz2bXs/hC3kDkhbaEqobGhlaGPwmzDxGEt4Wh4SPiq8HsRFhHCiKZIEMmOXBV5P8oqalrU4WhidFR0VfTTmDExs2POxtJip8TujH0X5xe3PO5uvHW8JL41QS1hYkJtwvtE/8SyxK7xo8fPGX8xST9JkNScTEpOSN6WPDAhYMKaCd0TXSYWT7wxyWrSjEnnJ+tPzp58dIraFM6U/SmElMSUnSlfOJGcGs5AKju1OrWfy+Ku5b7g+fJW83r5Xvwy/rM0r7SytJ50r/RV6b0ZPhnlGX0ClqBS8CozOHNj5vusyKztWYPZidkNOUo5KTmHhJrCLGHbVKOpM6Z2iuxExaKuaR7T1kzrF4eKt+UiuZNym/O04I98u8Ra8ovkYb53flX+h+kJ0/fP0JghnNE+03bmkpnPCgILfpuFz+LOap1tMnvB7IdzmHM2z0Xmps5tnWc2r2he9/yg+TsWUBZkLfi90LGwrPDtwsSFLUWGRfOLHv8S9EtdsWqxuPjmIs9FGxfjiwWLO5aMXbJuybcSXsmFUsfS8tIvS7lLL/w65teKXweXpS3rWO66fMMK4grhihsrfVbuKNMoKyh7vCp8VeNq+uqS1W/XTFlzvty5fONaylrJ2q6KsIrmdebrVqz7UplReb3Kr6qh2qB6SfX79bz1Vzb4bqjfaLixdOOnTYJNtzYHbW6ssawp30Lckr/l6daErWd/Y/xWu01/W+m2r9uF27t2xOxoq3Wrrd1psHN5HVonqevdNXHX5d3+u5vr7es3N+g0lO4BeyR7nu9N2XtjX+i+1v2M/fUHLA5UH6QdLGlEGmc29jdlNHU1JzV3Hgo51Nri2XLwsMPh7UdMjlQd1T66/BjlWNGxweMFxwdOiE70nUw/+bh1SuvdU+NPXWuLbus4HXr63JnAM6fOMs8eP+d17sh5j/OHLjAuNF10vdjY7tJ+8HeX3w92uHY0XnK71HzZ/XJL57jOY1d8rpy86n/1zDX2tYvXI6533oi/cevmxJtdt3i3em5n3351J//O57vz7xHuldxXv1/+wOBBzR82fzR0uXYdfej/sP1R7KO7j7mPXzzJffKlu+gp9Wn5M+NntT1OPUd6A3svP5/wvPuF6MXnvuI/Nf6sfmn98sBfvn+194/v734lfjX4eukbvTfb3zq/bR2IGnjwLufd5/clH/Q+7PjI+Hj2U+KnZ5+nfyF9qfhq87XlW+i3e4M5g4Mijpgj+xXAYEXT0gB4vR0AahIANHg+o0yQn/9kBZGfWWUI/CcsPyPKiisA9fD/PboP/t3cBGDPVnj8gvpqEwGIogIQ5w7QsWOH69BZTXaulBYiPAdsivyampMK/k2Rnzl/iPvnFkhVncHP7b8Ah9d8bcAadJgAAACWZVhJZk1NACoAAAAIAAUBEgADAAAAAQABAAABGgAFAAAAAQAAAEoBGwAFAAAAAQAAAFIBKAADAAAAAQACAACHaQAEAAAAAQAAAFoAAAAAAAAAkAAAAAEAAACQAAAAAQADkoYABwAAABIAAACEoAIABAAAAAEAAAr2oAMABAAAAAEAAAGOAAAAAEFTQ0lJAAAAU2NyZWVuc2hvdGer8fQAAAAJcEhZcwAAFiUAABYlAUlSJPAAAALYaVRYdFhNTDpjb20uYWRvYmUueG1wAAAAAAA8eDp4bXBtZXRhIHhtbG5zOng9ImFkb2JlOm5zOm1ldGEvIiB4OnhtcHRrPSJYTVAgQ29yZSA2LjAuMCI+CiAgIDxyZGY6UkRGIHhtbG5zOnJkZj0iaHR0cDovL3d3dy53My5vcmcvMTk5OS8wMi8yMi1yZGYtc3ludGF4LW5zIyI+CiAgICAgIDxyZGY6RGVzY3JpcHRpb24gcmRmOmFib3V0PSIiCiAgICAgICAgICAgIHhtbG5zOmV4aWY9Imh0dHA6Ly9ucy5hZG9iZS5jb20vZXhpZi8xLjAvIgogICAgICAgICAgICB4bWxuczp0aWZmPSJodHRwOi8vbnMuYWRvYmUuY29tL3RpZmYvMS4wLyI+CiAgICAgICAgIDxleGlmOlBpeGVsWERpbWVuc2lvbj4yODA2PC9leGlmOlBpeGVsWERpbWVuc2lvbj4KICAgICAgICAgPGV4aWY6VXNlckNvbW1lbnQ+U2NyZWVuc2hvdDwvZXhpZjpVc2VyQ29tbWVudD4KICAgICAgICAgPGV4aWY6UGl4ZWxZRGltZW5zaW9uPjM5ODwvZXhpZjpQaXhlbFlEaW1lbnNpb24+CiAgICAgICAgIDx0aWZmOlJlc29sdXRpb25Vbml0PjI8L3RpZmY6UmVzb2x1dGlvblVuaXQ+CiAgICAgICAgIDx0aWZmOllSZXNvbHV0aW9uPjE0NDwvdGlmZjpZUmVzb2x1dGlvbj4KICAgICAgICAgPHRpZmY6WFJlc29sdXRpb24+MTQ0PC90aWZmOlhSZXNvbHV0aW9uPgogICAgICAgICA8dGlmZjpPcmllbnRhdGlvbj4xPC90aWZmOk9yaWVudGF0aW9uPgogICAgICA8L3JkZjpEZXNjcmlwdGlvbj4KICAgPC9yZGY6UkRGPgo8L3g6eG1wbWV0YT4K+8UNUAAAQABJREFUeAHsnQecFOX5x5/bO46uAoIoIogNRBB7Q0VjjFHRWGPXqNG/GnvsxiQaY9QYxRaxYy/Ye2+IDURFRUUFKyqGJlLvdv/vb/RdZ2dn93bv9o69u+/7ubmZeeedt3xn5m3zm2crFi1alDIcBCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgsEQJJJZo6iQOAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIBAQQ9nIjQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCECgDAgg7C2Di0AWIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCCAsJd7AAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACZUAAYW8ZXASyAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIACBKhBAAAIQgAAElhSBmTNn2ujRo23ZZZe1HXbYwaqrq5dUVkgXAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIDAEieAsHeJXwIyAAEIQKB1EnjllVdsyy23TBe+R48eNmnSJOvcuXPajw0IQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAKtiQDC3tZ0tSkrBCCQQeDzzz+3OXPmBH5Tp061mpoaW3XVVW3FFVe0ZZZZJiNsrp3333/fkslkrsOBf5s2bUyiVcVZUVGRN2xrOvif//wno7jfffed3XnnnXbooYdm+LMDAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCECgtRBA2NtarjTlhAAEMghIjCtrsV999VWGv3ZOPPFEO++887L84zyGDBkS553Tb8CAAbbffvvZXnvtZb17984ZrjUc+PTTT7OK+dFHH2X54QEBCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQKC1EEi0loJSTghAAAJhAm+88UasqFdhbr75ZqutrQ0HL9n2pEmT7IwzzrBVVlnFjj76aFuwYEHJ4m5uER1++OFZWd5///2z/MrR45577rFu3bplLH/+85/LMavkCQIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhBoRgQQ9jaji0VWIQCB0hEYPXp0zsi+++47e/nll3MeL9WBkSNH5rQaXKo0yjkeWS6+6KKLbLXVVrOhQ4faHXfcYYMGDSrnLKfztnDhQvvhhx+ylnQANiAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCNSDAMLeekDjFAhAoHkTqKmpseuvvz5vIe6+++68x0t1cMKECbbvvvua8tTaXIcOHQKrxe+99549++yztuuuu7Y2BJQXAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIBABgGEvRk42IFA+RCQ0LOxxJ7JZNK++eYbmzVrVr0LrDi+/fbbYNF2qdzs2bODvNUVX21trU2bNs20Lta9+OKLgaXVfOfddttttmjRonxBch574okn7LPPPguWjz76yF544QW75JJLAsu0cSeNHTs2sFwbd2xJ+ckirfiW8toqzlQqVZIiNUb+Zs6cGdzPJclggZFMnz7d5syZU2BogkEAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACLZ1AhROulUZl1dJJUT4INAGBd9991y677DJ7/vnnbcqUKUGKgwYNsm222cZOOeUU69q1q5122mn25ptvZuRmxIgR1r9//8Dvq6++soMPPjjj+CqrrGJXXnmlTZw40c4++2x74IEH0sd79Ohhm2yyiZ177rm2+uqrp/3jNqZOnWq33HKL3X777TZ58uSMICuvvLLtt99+gfXZfv36ZRzzO+eff35gmdXva/23v/3N1l9/ffv3v/9tV1xxhX333XfB4c6dO9uwYcPsggsuMOXfu4ceeijwe+2119LhtthiC9t6663tiCOOsKqqKh8051rhrrvuuozjhx12mF199dUZfg8++KBtt912GX7Rnerq6qiXyQrvwIEDs/wl1N57770z+IcDSVjasWPHsFfWtvjsv//+Wf7ip3slzv3hD3+wr7/+OuOQuOu6ezd37lwbOXKkjR8/3t5+++2M67vpppvakCFDguvxu9/9zp+SsVa5ZsyYkeE3evToIF1ZP3700Udt3LhxwXHdP7vttptdfPHF9vjjj2ecc+GFF9rgwYMz/LTTWPlbsGCB6b684YYb0mJv3Xtrr722nXzyyRnXf968ebbLLrsEefvyyy8zGMlTz1L4uutZjj5TegbvuOOOgPErr7ySTrNXr17Bc6B0DznkEFt++eWDdPgHAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCLQuAgh7W9f1prRlTEAC1jPPPDNnDiU2fPjhh+2cc86xp59+OiPcmDFjbMMNNwz8Pv74Y1tzzTUzjkvwKZGlBLQ//PBDxrHwzqhRowLhadhP27KyKmHw8ccfHz0Uuy9x5jHHHGMVFRUZxyUwvfXWWzP87rvvPnvuuefs0ksvzfAP7zz11FO2+eab20EHHRSIIsPHwtsHHHBAIE6trKwMe2dsS8gpEWWYw4ABA0zi07XWWisjrAS0UQFwRgC3U4ywV+dKHLr99tubrPRG3Z133pkWjkaPhfcl/pw0aVLYKxBsn3rqqRl+2pHV3T59+mT5f/jhhyYxtpz4SwwuUXhd7qijjgqE1W3atMkIuuKKK6ZF2f6AhOoSXHuxtveXgFj3wp/+9KcsMbVEr7vuuqsPGqwbK3+yqixBcty18Bk48sgjA2vL2tc9061bN3+ozrXE5+uss04QTpaPr7rqKjvuuOPqPE/Puu5HscNBAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAq2LQKJ1FZfSQqA8CfznP//JK+pVriUq3GOPPQoSX0ZLKUuqsrQaFrNGw2j/wAMPtG+//TbrkCyXFirq1cknnXSSnXjiiVnxxHlce+21eUW9OkfiSlk/legzn7vpppvsrLPOyhfEnnnmmSwOsh4ry6qrrbZaxrk333xzIMTN8GzgTocOHUxiZok3o05izkLcvvvumxUsavnWB3jxxRf9ZnotgbcX9coC8m9+85uC7ytZVd55551N1ofrchIBR0W9dZ0TPd6Y+ZPl5nyiXuVFgvYnnngimq2i9yViLkTUq4j1nMpS9F133VV0OpwAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCDRvAgh7m/f1I/ctgMCUKVMsztJqXNEkkoxaao0LF/WTJdZCz5PIOOwkGB0xYkTYq6Dtyy+/3B555JE6wxYSZvLkyYFYuM7IXABZHc7nZBU36iSilItaipVfKUSdiifsunTpYptttlnYK9h+7733svziPCREjjoJVGfNmhX1Nlk7jjpZIvbuoosu8psZawmP48THCiSL0YVctxdeeCEjzvrsNGb+Hn300YKydPrppxcULhqoffv2gdf7779vErBHnSxpy7L18OHDo4eC/UsuuSTWH08IQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAoOUSQNjbcq8tJWsmBGQRNM7JqurVV19t48aNs+uvv96GDh0aF6woP1lQfe6552zixImWSzAZtWB67LHHxqZx44032jfffBMs2o5zJ5xwgqVSqbhDGX6bbrqpPfjgg/bmm2/aBRdckHEsuqN8K5zEpdtss030cGAhdurUqVn+8pAl1KjV3x49eth6660XhN9+++2zzouGzwpQTw9d36j78ssvo16x+6ussorFnT9mzJiM8Mlk0uIs+cp6s5w4Rq+3eEyYMMG+//57mz59ur3++us2YMCAjHi1ExdvVqCfPSRE/te//hWw1/WLEzXHndsU+dt2220DC8oSvstissofdXpefvzxR+vUqZNNmzYtWGRBOup22WWX9HFZvu7fv38Q5OWXX44GNTF57bXX7N///rfdc889AW9vRdkH1rNfqCDfn8MaAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEGjeBKqad/bJPQSaNwGJXkePHp1VCAn8ZE10mWWWCY4NHjw4sCa71VZbBaLLrBMK8JBA98ILL0yHXGONNSyRSNjxxx+f9tOGrIt6J2GlLApHnayP7rPPPmlvbdfU1Nihhx6a9tOGzlUcXjibcfDnHZX1vvvuM1mxlVtrrbVs/vz59te//vXnEL+slO4BBxyQ9lh33XUD8aQsGYedhKl9+/YNewXbcWJUiVwrKyuD4xtssEFgpVYCYO+UN1nC9dfC+zd0vfbaa2dFoXRVdm/pNStAyGO//fYLRN8hr0DsvOOOO6a9ZAE4ykb30PLLLx+E6d69eyAsTZ/gNiR09YLUiooKGzJkiJ144olZ1/azzz4Ln5Zz+/7777c4wXTOE0IHGjt/G220kd11113WoUOHIFUJpvv06WMbbrhhKBc/baq8a665pnXr1i3wiLNmrHvEHw9HIAF81Onerar6pQleaqmlgmdeQuqwW2GFFcK7bEMAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACLZzAL6qiFl5QigeBciQg659fffVVVtZkqTcqJJX48IYbbgiEllknFOARFfDqlD333DNL2Ctx6bx58wKx4xNPPJEVsyzFhsW1PoD8rrrqqiyx6ZNPPplX2CtRsBf1+rhkiTdO2Csrp2EnC6qbbLKJPfDAA2HvwDJvhsfPO3HWd8OiUwktd99994Bz+PxHHnnE9t1337BXg7d79uwZG8eCBQsKEvbKOuxxxx2XEYc4XHLJJWk/WWeOur322ivt1bt3bzvmmGPS+7k2tthii6xDukfqcn/729/qLepV3I2dP5Xdi3p9WSRkloXiqKVcPasS9tbHxZ13xhln2KJFiwLLvRLZS0QtYbEWHAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCDQegkg7G29156SlwGBqDVVn6VcFm4lOJSl0LBFWX9OvnWPHj0szvKnLKLGudra2sA7TnQsYW8up2Pjxo3LOBwXRziArBFHXVxeZdm3Y8eO0aAm/0Lc//73P3vooYeygg4bNizDb/jw4VnC3ttvv73kwt7JkydnpOt3ll56ab+Zdy2ru7K+GxbvivUnn3ySFodKVB11Kl+ck/Vo5emVV14JLC3PmDEjsFQsa8Uvv/xy3Cl1+sUJgus8KUeAxshfnNVkJd+vX78sYa8sUtfXSXwe5/7+97+bFj3Tug833nhjk8VlPec4CEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQKB1EkDY2zqvO6UuEwIST0Zdr169TJZo45yseg4aNMjGjh0bdzin33LLLZfzWD6hcJwot3///jnjihMkxsURjqC6ujq8m3Nb1nTjnJgU4h5++OHYYCNHjszwnzt3bsa+diSQ/fbbby0fx6yT6vB45513skJIgJ1IJLL8c3nsvffeGcJehXv22WcDYa8s6kaFvbJOvOyyy2ZEJ8GsGMiCbLGC8YyIYnbi7oeYYHm9GjN/uYTtcQLyvJms46CE6ueff76dcsopsSHFXaJzLboO4iZrwoccckhseDwhAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAgZZLIF4p13LLS8kgUFYE2rdvn5UfCWFlMbeysjLrmDymTZsW698Ynt5ybzjudu3ahXczttu2bZuxr524OLICNYHHbbfdFptKLrFlNPADDzxghx12WNS73vsTJkzIOnellVbK8svnEWd9V2LeP/7xj/bqq69mnSohcNjNnj3bDjroIHvkkUfC3iXbLkakHJdoY+cvLs3G8jv++OMDi9Nnn3225bLU7dOeNGmSHXHEEfbhhx/av/71r6LE3j4O1hCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIBA8yRQuGnI5lk+cg2BsiYgC61xburUqXHeJqHjlClTYo81hmfPnj2zov3444+z/LzH5MmT/WZ6HRdH+mATbUgM/dxzzzUotVzC4PpEqvy88MILWadutdVWWX75PLp162Y77LBDRhAJkBctWhRY7s044HZ++9vfZnjdeuutsaJeWXHea6+97NRTT7XzzjvPTjrppIzzmmqn3PNXLAcJw/VsP/jgg3bAAQfYyiuvnDeKSy65JMvqct4TOAgBCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEINHsCWOxt9peQAjRnAiussEJs9i+77DKTqC/q5N+ULi5/77//fs4svPfee1nH4uLICtTIHvfff3+DUxg7dqx9/vnnVqxV3WjCyWTSjjnmmKh3sL/zzjvH+ufzlBXeqMXdN954wx577LGM03bbbTdbaqmlMvweffTRjH3tXHzxxXb44YdbVdUvzcNbb71lF154YVbYxvYo9/zVp/ziut122wWLzp8+fbrp3rrhhhssrrxjxoxJh61PepwDAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCDQvAr8ot5pXvsktBFoEgfbt25sEl/fcc09Gea688kpbY4017OCDD7a2bdva4sWL7a677rKzzz47I1xj72y88cZZSUh8+Nprr9lGG22UcUx+jz/+eIafduLiyArUyB4333xzbApx4mkf8LjjjvOb6bWu0/HHH5/eL3Zj5syZJqutsqobdb169bL1118/6l3nftQKr04YNWqUTZw4MeNcWeANu3nz5sVagz300EMzRL065+mnnw6f2iTb5Z6/OAjjxo2L8w6s9P7www/pY4lEwgYOHBjsd+/e3STo1nLGGWdkCajfeeed9HlsQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAItnwDC3pZ/jSlhmROQeDcq7FWWjz322GBZZ5117OOPP7awMLCpirT11ltb586ds9I+4IADAouw/fr1C7Ly6aefmvyiTucqjiXpPvnkE4sTXL799ts2YMCAnFmbO3eunXnmmRnHb7nlloKEvU899ZR98cUXwbmLFi2yr7/+2t5880278cYbM+IL71x11VUmwWexTowl2r3jjjvSp8al8+tf/zp9XBvV1dWx11Yi3h122CEdVmU5/fTT0/tNtVHu+ZMoP+okpn7ooYfsN7/5TcDXHxfPyZMn+91gfemll9r//d//ZfjpWkbdiiuuGPViHwIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhBowQQQ9rbgi0vRmgcBCS533313Gz16dGyGJ0yYkOEfJ7TNCFDCHYkrTzvttCxh55QpU6x///5pYeykSZNiUz3llFMyBI6xgRrZ8957781KYeWVV07nPevgzx6yhBsV9kq4+cEHHwRlz3We/E8++eR8h7OOyUquxKD1db///e8zhL3ReCS67tChQ4Z3VVWVbbPNNnbfffdl+O+yyy625ZZb2pAhQ2z8+PE2ZsyYjONNtVPu+Vt11VVjUcgCt57RpZZayh588EEbNGiQHXnkkVmC8GOOOcbGjh1rm2++eRD2hRdesGuvvTYrTh3HQQACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAKth0Dx5iFbDxtKCoEmIzBy5Ejbbrvt6kzvnHPOsc0226zOcKUMcNxxx9mmm24aG6UEvblEvTrnhBNOiD2vKT1lZTfqJKSuy6211lrWq1evrGC5BNhZAQv0OPzww+3iiy8uMHR8sF/96leBmDT+qAXC8bhjue45iUxHjBixxES9Pq/lnL9VVlklJ3NZ1/7qq6+spqYmKMo+++zji5SxlpXlo446yvbff/9YUa9EwXvssUfGOexAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAi2bAMLeln19KV0zISALn/fcc49dfvnlJmuyUSeB3/3332+ygNvUTpZTlfbw4cMLTnqHHXYILMHq3CXp3n333Vjhsazx1uUqKipiRZU333xzXacWdLxHjx52/fXX22WXXWZt27Yt6Jxcgdq1a2d77rln7GHdW1tvvXXssQMPPDDLkmxcQAnPl4Qr5/zJAvJNN91UEJYuXbrYW2+9FVjvLegEF0hWlp9//nlb0s9QofklHAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCBQGgIIe0vDkVgg0GACbdq0scMOO8w++OAD++KLL0yi1PHjx9v06dOD9fbbbx+kMWfOnKy0dK53cUJAiTuLcdE4lllmGbv77rtNotahQ4fmjErHRo0aFYiUJWaMuurq6qiXSZRaiOvUqVMhwTLCPPXUUxn72hGLjTfeOMs/zsMzDx+bMmWKffLJJ2mvQtlKsL3lllvaIYccYo899ph99tlntt9++6XjaehGLsuushYbx13pJRIJO//88+3SSy+1ddZZJysLspj72muvxQqDJWwNu/A96P3j/PwxraP3WfiYtpd0/sL5ad++fXg32JaAXRarTz/99FjrzuHyr7nmmjZ27Fj7y1/+YgMGDMiKSx66l3SP3H777YEF30LvrdjI8IQABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEmiWBikWLFqWaZc7JNARaCIFx48bZ999/n1EaiSyXW265DD/tzJ0717p27Zrl/9VXX1n37t2z/BvL49tvv7Uvv/wyEB0rDaXdq1cv69mzZ2MlSbxNQGDevHmBaFnWiiVE7tixYxOkWngS5Z6/ZDIZPKMSLEsILI653MKFC23y5MkBb4mkJfxdYYUV8p6TKy78IQABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAIGWQwBhb8u5lpSkmRI488wz7YILLsjI/aBBg+zZZ5+1pZdeOu0/e/ZsO+KII2z06NFpP21IUCsrsjgIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEmjcBhL3N+/qR+xZAQNZ2ZR01zm200UYmke/MmTPtySeftB9++CEr2FVXXWUHH3xwlj8eEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCDQvAgh7m9f1IrctlMDRRx9tI0eOLLp0e+21l11//fVWVVVV9LmcAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgEB5EUiUV3bIDQRaJ4FLL73UrrnmGuvcuXPBAE4//XS77rrrEPUWTIyAEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIACB8iaAxd7yvj7krpURmDZtml177bX2zjvvBMuUKVMyCGy66aa2ww472B577GF9+/bNOMYOBCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAs2bAMLe5n39yH0LJzBv3jxbuHChtWvXztq3b9/CS0vxIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACrZsAwt7Wff0pPQQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgECZEEiUST7IBgQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEWjUBhL2t+vJTeAhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAIFyIYCwt1yuBPmAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQaNUEEPa26stP4SEAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAATKhQDC3nK5EuQDAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAoFUTQNjbqi8/hYcABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhAoFwIIe8vlSpAPCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAgVZNoKpVl76UhU+apRZpSVlqsVvXuKU2ZRasXUK1bt/tmhYX9qedCjP3Z5JXa1PblW7tFnNXpqKywiq0buOWardd/XNYt8JBAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEItCwCCHvrup5OiCvBbnJeKlhS89z2Aifene/8tWhbgt6FP4WzhT/vO0GvRL2BsFdriXkDQW9o7TbDwt5A4OtEvhLzStgbiHsl6nWLtXXC3rYS+LpF63Zuv51bt3e6YG13cOuOFZbo4LYVXiJhHAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgECzIYCw118qZ1E3Od+Jd39IWe0ct+3WqR/ceq7z+9GJdt06Ndette3CSeBr8ysCYa85UW8g4vVxNcpapn6d0xX7WdhrTsxb0T7lFifm7ei2Ozlxb6eftoN1Z7ffucIql/ppnXDhZBEYBwEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIFB+BCoWLVr0s2K0/DLXWDlKScTrhLq1s5xoV8tMt6/1bLee7US7bp3S2gl8JeS1xY2Vk0aKV1Z+nci3wgl6K5ZyQt+lnbB3aWfNdxm3XkZrJ/bVdhe3dlZ+Efs20nUgWghAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgUASBViHsTS2yQMRb+z8n5nVL0q9nOOFusDgRr7PO2+wEvEVc6CCoBL8S+zpBb6KrE/Z2detubr2sE/h2c4vbr3Si34rqYiMmPAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgEBDCbRIYW+qxgl5ncXd2u/cMt0t3zoxr1snpzuLvG6dmuWwObEvzhFwIt6KLj+JexPd3bqHE/f+vFR1d8JfZ+m3ogpSEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAo1NoMUIe5PzfxLx1nzj1tPc4tbJb5yQ161Tsx1GJ/bFFUDAiXgrlnEC355O1NvTrNKttVQt7xYn9K1oV1FAJASBAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQKJZAsxb2Jn9MmYS8NV85Ie/XbtHaLSlnmdcWFouC8LEE2jmhr7PkW9nLCXy1rOAEvm5dtZwT/nZE5BvLDE8IQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIFAPAs1O2CvLvIGY90u3/sIJeT9zlnndOjXTlb62HgQ4pXAClU7k29VZ8+3tBL59nLh3Rbe47UDk2x6Rb+EgCQkBCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABLIJNAthb6rGaXa/T9niz5NWM9UJet2SdILe1AxXIMS82Ve1KXyqfhb5ruSEvSu7pW+FtVkpYZXdKqzCHcNBAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIFEegrIW9yblOzOss8y7+1Al6P3XWed2S+s4VcFFxhSR0IxOodiLf5ZwV335mVf2cwLdfwto4a76JjljxbWTyRA8BCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIBACyJQfsLepFnNDCfmnZK0xR87Me9ktzgLvTa3GVCvdHls4xYJXds4UWuVy7es1zr/Ch1LuEVaV792m+aCmCuzX6dkgViLs1JsNRWWWuwCSMi8+Gd/typr19kV11nvrVrNLas6kW/fhFV1dYVWmXEQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACOQmUjbA35YSsNd85Ma8T8i7+0Fno/dBZ5/3G5VuC1iXtJMaVWLeDW3fUuiLYrmjnttu7xa2trfNr67YVzi3mhL0VEvlK1OvEvYUIe1MS+DpRr1hI2BusnbA35YS9qYVukcB3odtf4Lbnu0XreW750Yl/f/xpO+AlsfCSdo5BYnlnxXd1h2KNhFWv7raXTQQslnTWWmr6r776qm288cYttXiUCwIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQg0OIJLHFhb8oJd2u+SdoiJ+ZdPMlZ55Wg93vHXSLXpnYS8Eqou5QWJ8x164S2O1dYQoLeTm6/o/Pv5PYVzi2J9m7fCXsTTtgrEW9jOlnzTUnY60S9yQU/r+e5tRP1Jp24N+WsGifdkvohZck5WrtljvOf7XLlRMCBVeDGzGBc3M5Sb0V3h2YNZ713gBP4unVVTwS+caga4jdixAi79957rW3btnbOOefYRhtt1JDoOBcCEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIACBJUBgiQl7Awu9EvQ6Me/id5M/CXpnOgJNZW1WIl5Z3O3iRLldnThX6y5OsLuMWy/j1ku7tRP0VjqBb8IJeQMrvEvgAhWbpKz6Juc6gbQT9CaDxe3PdNuz3HqWE/k6xskZP62bVOzreFd0dQLf/k7gu5YT+Lp11XIIfIu9vrnC9+jRw8466yz79NNP7fPPP7fRo0fnCoo/BCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAmVKoKrJ8+Us8dZ8l7KFk5yF3necoNcJeyU2bXRBr4S8zupuorsT6joLsoll3dLNbbulUosT9VYu7QS8bZucSEkTlAC50gmVtYRdylnsrZ3tBL9O5FvrhL3J793yP62d0He6W9y+Ocu/jXYdXPSp/7lrP9al/0GtLR7gBL6DU9Z2zYRVLevy6iz74upH4LLLLrP111/fll56aRs4cKA999xz9vrrr9uGG25Yvwg5CwIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAIElQqBJhb0SlS760FnpfStpNROdoNeJShtNSCqcssjbzWlGl3dC1+Xc2ol6K5dzlmK1lqi3g8zILhHuTZ5ohWNR1U5Wcn8usBPaJuc5ka0T90poXeuWpNbfOv9vfr42Cxshm17g+7JL66NaqxmUtOp1nAXf1RNW6Swl44onMGvWLOvQoUNwYnV1tQ0bNswuuugiu/POO4uPjDMgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQWGIEmkTYm1rgBL2fOiu9bzpB74SkJb925a1thDJLFyqrvE7Im1jBWa516yqJerWWpd5WJOStk65jlejomLilzUou9M9CX4l8a6Y50e3Pi66VhL4lt+Yrge93Zoufd2l97Cz4DnHWe9dzAt++zmqyEyDjCidw5ZVX2llnnZU+oWPHjjZjxoz0PhsQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEINA8CjSvsTZrVfJO0BW8nbfHrTsD5iVNzLmgEMJ2cSHUFJ+Dt7cS8KzoRr5ZeP1mArWjcEjZCYZZQlD8LfatXrrDqlZ3otsZpr52F5ZqvnBj7S3ftgsWJfL9213BuCfPoBN7Jz8wWfZu0Wif+rtmgwtqunXCWhRPuopYwnRYc1VJLLWWdOrmH4GfXt29fe+SRR/wuawhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAASaCYFGk70mf3RWej9M2sJXnTD0nZSlSm1AtJ3TffZ0Fmf7mFX1cULePglr4wS9lUtLodpM6JdxNiWIlpXjqu6VZoOcyHd2yhY7cW/NZ+56fpYKxLiBJd+FJSqEE3zXTkzZAiccrpnqrPdunLLq1RM/WVkuURItMZqrrrrK1lhjjYyitW3b1mpra23cuHG2/vrrZxxjBwIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAIHyJVB6Ya+z0rvYWeldOD5pi15JWnKqK7yz/loS5wS7FV2cbrevE5z2c4uzLtvGCXoru1ZYhdOf4hqJgGMrxlpSayasdoYT+UrgO8WJcJ2V3VonxLVZLm137RvqUv9z98+LLs4vaq1m05S1W6/Sqnog1s7Fdfr06VZdXZ11eNiwYfbiiy8i7M0igwcEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAoHwJjBw5Msjc4YcfXr6ZJGcQgAAEIAABCEAAAhCAAAQgAAEINCqBkgp7Uwudld7JSVswJmmLJzix58wS5d3pFit6Oguyqzkx76pOzNvPWedd3ol52znBJ65JCQSWfJ3QtqpHpaUGOYGvs7C7+FMn8v3YiXwnO8vM37jsLG5glpwQPDnZbOH/klb7lRP3Dk1Y9SoJq2jL9Y6SffPNN22VVVaJettSSy1lL730kp1wwglZx/CAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCECg/Ahcc801NmbMGOvbt69tuOGG9vrrr5dfJskRBCAAAQhAAAIQgAAEIAABCEAAAo1OoGTC3tpZKVv4trPU+7wTYzqBpy0qQd7bO+u8KzkR6RpOzLu6W5y4s6oL1ltLQLYkUUhYXe0sJ1f3TVjNECfw/dgJut21r/kgZckv3D2woGHJpGb8ZL03+a27p4aZtR3srDMvjbg3TPWFF16w7bffPuyV3p47d256mw0IQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAATKm8A//vEP+/Of/2zt2rWzWbNmmYx7rLvuuuWdaXIHAQhAAAIQgAAEIAABCEAAAhCAQMkJNFzY6/Sbi6c5K72vJG2Rs9Sb+trl0fk1yHU0q+xTYZUDnGh0TbesnLBEJwSdDWLamCcnnDXlZZ0Ae9lKazvQWW2e4pb3nRXfSU7g+5m7GeY1IHEnEK99N2XzZzlx7/cpa7+xE3f3dAlyOwRQJd7VBF/U9enTx/773/9GvdmHAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCECgDAlcd911ttpqq9kyyywT5G7bbbe1ESNG2KhRo8owt2QJAhCAAAQgAAEIQAACEIAABCAAgcYk4BSSDXC1zjDvp0mb90itLXzCiXq/cnE1RNQrC71OzNt2+4R12LPSOg2vtHaDKhH1NuASNfWpic4V1s5Z1tW16+iuoa5lwllctmztaeFZc/dUylkAXvh40n581AnIpySd2rfw01tqyAkTJpgEvHFOYt+uXbuawuAgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhAobwKPPPKIDR8+PJ3JwYMH27vvvss8f5oIGxCAAAQgAAEIQAACEIAABCAAgdZDoN4We1POkurCD52l3qdqreadBlplrXaC3t7O6qsThLZ1S5uVKyzRAZOszfk2THR0Au2BFdamb4UtGuAs+L7jLPi6JfmlK9XiepZspjv1JScg/yFlqV+bVa+WsAp377RWN2fOHFtjjTVyFr99+/amMDgIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAATKm8CLL75ou+yySzqTmuNfvHgx8/xpImxAAAIQgAAEIAABCEAAAhCAAARaD4F6WexNLUjZgndqbf79TtQ7vgGiXpd6RU+zNsMqrMMezkLvjs7C60Bn4RVRb4u5AyXwbTfIWfDdqdLau2vcZssKq1jOFa9ed547b55ZzbiUzXvAWYl+t9ZSC93910rdW2+9ZbLMm8v17u3U8jgIQAACEIAABCAAAQhAAAIQgAAEIAABCECgQQQ0D3f88cfbjTfe2KB4OBkCEIBALgKqZ2ShN+o222wzGzVqVNSbfQhAAAIQgAAEIAABCEAAAhCAAARaOIGi5ZXJeU7UOyFp8x+stdr3naiyvtZXO5tVrudEn7tWWsffVVm7dSot0RkrvS31ftO1bb+eu9a7uGu9S6VVruuudad6ltZZi659N+XuQWcx+i1nBXh+6xT31mWNV1/zv/322/WEzGkQgAAEIAABCEAAAhCAAAQgAAEIQAACEICACBx66KFWW1trzz//PAI7bgkIQKBRCMhab9euXbPiHjJkiH3xxRdZ/nhAAAIQgAAEIAABCEAAAhCAAAQg0LIJFCXslYBywZtO1PtQrSU/cmBq6wGnyhlr7WvWdruEdXQWXDsMrbSqZZ3IE01vPWA2s1PcNa7q7qwzb+EEvrs768y/cdaZ+7gyVNajHDXu9vvAiXvdvbiwFYt7V1pppZzwdGz27Nk5j3MAAhCAQGsjoI8dbrrpptZWbMoLAQhAAAIQgEALIkB/pgVdTIoCAQg0GwIaR3bq1MkGDhxoa6+9tp177rnNJu9kFAIQaD4EXnrpJYub7+/QoYPNmDGj+RSEnEIAAhCAAAQgAAEIQAACEIAABCBQEgIFC3sl6l3oLPUueNSJej9xaSfrkb6z0lu1gbPcupsTdm5XadV9E1bhhL641kVA17y6X8I6/LYyuBeq1q+n9V53DyYnm81/NGkL30laakHrstz7zjvvmCb1cjkdUxgcBCAAAQiY3XLLLfaPf/zDnnvuOdtuu+2oH7kpIAABCEAAAhBodgTozzS7S0aGIdAqCaiuOuyww+yUU05pMeMuCXl32mmnYB5u2WWXteWXXz4oX6u8wBQaAhBoNAKy2Lv66qvHxr948eIWU6fGFhBPCEAAAhCAAAQgAAEIQAACEIAABLIIFCTsTS0yWzjRWep9zIl6P3VxFKuflEHeXs5K76+dld5dnZhz/UpLdMZEb9bVaGUelUs5kfcGzmqzuyeqt3Ei7+UdgGJvC3cvJic7y71OcL7gPSfudfdqa3GzZs2yFVdcMW9xFQYHAQhAAAIWiHoHDx5sa621lulF7BVXXAEWCEAAAhCAAAQg0KwI6CMl+jPN6pKRWQi0OgK33nqrPfPMM9a7d2+bN29eixh3qUw9e/a07t27p6/nuuuua2+++WZ6nw0IQAACpSAwc+ZM69ixY2xUeg+g4zgIQAACEIAABCAAgcYhcOqpp5rGfzgIQAACEIBAORGoW9hb60S9HzhLvY8nLfmxy3qxlnrbmCX6V1i7nZyA01npbdPHJVlZTgjIyxIl4O6F6pWd4NtZ7223U8ISa7jcuHumKCfLvR9ZcI8umux23D3bGtzEiRNzTvSp/JrsUxgcBCAAgdZO4LbbbrMePXpY3759g/XQoUNt/Pjx1JGt/cag/BCAAAQgUDQBxhdFIyvZCfRnSoaSiCAAgUYk8OmnnwYfU2rsNXDgwBYx7nrggQdMQt6wW2ONNQKBHe1imArbEIBAQwioPslnxEP1DnVOQwhzLgQgAAEIQAACEMhNYMcdd7S5c+fa008/bdqm35WbFUcgAAEIQKBpCeQX9jprqIumOFHvk7VW+6HbKVYw6T4urlq/wjrslrAOmySscplizbE2LQxSW3IEKru4+2Szn6z3Vq3r7pMORebF3Zu1k5zlXnevLvrMiXuLtSpdZHLlEHzGjBl5s6Gv++sKkzcCDkIAAhBoIQT8z6b64qh+XGeddezKK6/0XqwhAAEIQAACEMhD4Pbbb7edd97ZRo0aFazffffdPKE51BgE6M80BlXihAAESklAbcWUKVOCjykVb0sZd7344ou2+uqrZ6BS2WTBl3m3DCzsQAACDSCgukbi3VxO9c5LL72U6zD+EIAABCAAAQhAAAL1JKCx7OzZs4OPU/WBaufOnXl/WE+WnAYBCEAAAqUnkFfYW/NN0uY/V2s1E51KcnGRiXdxhleHOrHm75wl1rUqraIdot4iCba64LpH2g1y4l53z7TZzN0vSxeJYJFZzdspW/B80mq+a/nK3nxf8HtyhYTxYVlDAAIQaKkE5s+fb8stt1xG8WRx6eOP9VMEOAhAAAIQgAAE6iLwj3/8w1ZdddWgPW3fvj2T23UBK/FxCanpz5QYaiNEp+t0xx13NELMRAmB5kFA46s5c+ZkZFbjrnHjxllz/SBE+V5ttdWsU6dOGeXSjgR4d955Z5Y/HhCAAATqQ0AfCki8m8v16tWLjwlywcEfAhCAAAQgAAEINICA5j132mmnYNynd4lbbLFFsx7HNgAFp0IAAhCAQBkSqMqVp9o5zvrpq04gOc4JJOfnChXvX9HdiXo3T1j7LRPWpqfTDrdgTe+zzz5r11xzje2xxx626667xgNxvjLXH/dFtSaGl19+eRs8eHCW6ChnZCU+8NprrwU/jado+/fvb1tvvXVRKXz11Vemn6WT+/3vf2/dunUr6PxkMmmjR4+2hx9+OLDo0bt3b9t2221tv333sw7bV9r8jklbPCZpqe8Liu6nQPOcBv11Z2V6WWf0d6tKS3RumTffe++9F/tSIUoq7sVDNAz7EIAABFoyAb1ojVpXUnlVP86aNctUn+oLXBwEIAABCEAAAvEE1JZ26dLFhgwZEgTYcsst7fHHHw/ETBr/yak9lfjJ7wee/CsZgThrkYqc/kzJEDc4Ij0nDz74oLVr187uvvtuO/vss+ljNpgqETQ3AnoODjjggIxsq55ae+217X//+1+Gf3PZUf0b/UjU513C3nvvvdfvsoYABCDQYAL5jHSoPm2uH0k0GAwRQAACEIAABCAAgUYi4Oc9e/bsmU6huY9j0wVhAwIQgAAEWgSBWGFvylnnXTgxaYtedqLKmcWVs8K1edVbOVHv5pVWtWzLFFV6IhKmHnLIISZh6z333GPz5s2zqqpYpCbx7HHHHedPjV3rp031s+D6Kbemct9//71tv/329sMPPwRJHnbYYUUJe/Xi6g9/+EP6fL3kLUTYu3DhwkAMrRfC3omRhL7XXXedPfbYY9bh1x1tfluzRc+5+/A7H6rudWqGO8cJgit7OAvA6zlr0W3qPqe5hdB1K9QhWiuUFOEgAIGWSOCjjz7K+VOGaouKqU9bIh/KBAEIQAACEKiLwP3332/Dhw9PB9Pk9qabbmryl5BXIkaNC6urq4NxsT561YKrm4DGau+//36dvCSIy/XTzPRn6ubc2CH0DDz55JPWr1+/QGw9fvx4u+qqq+yyyy5r7KSJHwJlReDHH38MjBdEM6UXpJrv05xhc3Oqf2UlM86pPdTHojgIQAACpSCgPuEqq6ySNyp9QISDAAQgAAEIQAACECgdAb1DDIt6fczNeRzry8AaAhCAAARaBgFnTjfbLf48aQtlKfXL7GP5fCTqbbtNwjps2fJFveLwyiuvBKJez+SZZ57xmznX+vm28847L1jOOecc22233axz585BeFm93XHHHW3mzCLV1DlTq/vACSeckBbl1h36lxASMf/pT3+y3XffvV7nn3nmmYGVJ8V40kkn2QsvvGB/+ctfAhYS+P7f//2fVXWvsPbDKq36VwmryPwF9V8ykmMr+bnZAncPL/4ymSNE8/deYYUVCioEorWCMBEIAhBooQT0AjmXEGb99dcPBEgttOgUCwIQgAAEmhEBvciXhU+1W+Xm9NPq0bGH9uWvfOvn6vr06RNYyNev0Whf/rj8BHStzz//fHviiSdsr732ysuM/kx+lkv6qO55/UKEFj0bw4YNs1dffTXvNV3SeSZ9CJSaQL56Ss9FU1u2LVU7pHhyjSfFUB9XlCqtUl8T4oMABJoXAc3hR/vc0RLoPRJ1TpQK+xCAAAQgAIGWSUBtfjnOE7Y02mK8wQYbZBVL/TLN7eAgAAEIQAACS5pAlrC3dlbKFryWtNoPUmZFaCIrnJHZ6q1/stRb2bVlW+r1F+3222/3m8H61ltvzdiP21lzzTXtxBNPDJZTTjnFFMf06dPt6aefDoJPmDDBdtllF5s7d27c6SX1e/TRR+2OO+4IxLQnn3xyUXGrg3P11VcH58o6TTFOFo5HjBgRnKL1ueeea5tsskkg7FWccnfddZdNnDjRqrpVBELx6mFO3FuMBWh379a+n7KFb7h7eba7l1uYmzRpUmAJqK5i6cU6DgIQgEBrJjB79uz0BzRRDuutt56pPsVBAAIQgAAEliQB/frLBRdcYNOmTQs+ftT4qFyc8ta1a9fY7Ky11lo2cuRI69ixYyB60oS3PprRx6zyx+UmIK7XX3+99e7d21ZddVWrqanJyyxff0bc6c/kZt3YR3Qt9QyEhTgS3fjno7HTJ34IlAuBfPNUeibatGnTZHWV2lG1q/vuu2+DP+R88cUXc44nxV7zbprXxUEAAhBoKAGJd7wBmHxxUefko8MxCECgMQhozCMDTVrjIACBpiGgMc3NN98czBPy/DUuc825hed0fGrql+lDTubcPBHWEIAABCCwpAhkCntrnaWB952V03FOFfljEVnq4kS9WzhR79BKmzrj0+CFlCzR7rTTToFoUz9L9vzzz9txxx0X/Fynj1k/ZyY/WW/Vi6ybbrrJDj30UNt6663tiCOOME2e5nIyi3/ttdfaPvvsE6Rz4YUXmiy9JpPZauS///3vQTrffvtt8BOhhx9+eJCGrNV++fIhAlsAAEAASURBVOVPZomVx3/+859BXMq3LK588cUXuZI3Waz1IlSlKyeRbH1+gi2RSNgWW2yRtmA7duzYgn6yUWUWvzfeeCM2nzfeeGNwXJaAo27OnDl22GGHBd76icjllivOJO7kyZNt6NCh9vbbb9vOO++cjr6iom5Rt+4FuZVXXtkOOeSQYNv/23XXXYOXwdrXT1nKSSjefotKazPUxb1M4FXYP6eNXvxGyhZ94O6J7NuisDjKNFShE3iFTAaWaRHJFgQgAIEGE9CAO591paWWWqqoQbniU19h//33b3KLUw2GQQQQgAAEIFCWBNS2SOCpCWQJAfXzuxq/lcuksQQGudpS/TS5XuwNHz48g+1WW23FC78MItk7mm/QGLx///7BT7yL2dSpU4N+RjR0Xf0ZicrK5X6J5r017OsZiXsBlO+XIXS96FO2hrujdZVR93Xcs+ApqC357rvv/G6jrWUZ+PXXXw/y0qVLl6CNbUgdKUFyPqdyNST+fHFzDAIQaF0ECpnvx4hH67onKC0EyoGA+laPPfZY8JGW1poXx0EAAo1LwI9p9P5K84Qak2geCVd6AmKda95Tqck4kH51GgcBCEAAAkuWgJ9Pl/FU1d2tzWUIe2u+S9qi8UlLTSsCQwezNhtJeJmwVyaNsQEDBtjRRx9tDz30UCBUlahWLyjvv/9+u/LKKzNEqDNnzgz8JEA95phjAlGvxL1jxoyx6667zrbZZhu75pprsjLz8MMPB3EeeeSRwU8QPP7443bGGWfY5ptvbrqQUac4lPYll1xiu+++u91www1BGpdffrmtvfbaNm7cOFtnnXXsb3/7W5BnxaefQZXYVtZl45wGMHJbbrllcO4OO+wQ7MeJaIMDBfyToPnPf/5zEPKWW26p8wxN9qhccdaQJJSWZWAdV8cv6s4555xgQl353mOPPaKH69y/+OKLA+HtiiuuWGfYaACJguX23HNPq66uzjgsYbAsashJvO1dVXd3jzmrvW3Wd+Jed88V6pJfOmHvm0mr+a7lWe0tlMEHH3xQaFDCQQACEGhRBOqyrqTCVlVVWaH1pD4I+vzzz4N2Vf2A8847r+x4qSzK14EHHmj33Xdf2eWPDEEAAhCAQCYBtVWLFy8OxtEat2l8pV95UZtTSufbh2LbBoXPNcH99ddfB+1odEyochTTvpaynM0hLl2Ltm3bpj9oVZ7FbOONNw7G79Ey1NWf8byj57HfNAT0jOhFT9T56xLtZyq8PtLWc68w6lMW+1xG02IfAuVAQHVVrvZC+dOx6POgccupp55asrGLniU9U6pPNT+90UYbWffu3dOGGYrlpPyuvvrqeU/Tc/zSSy/lDcNBCEAgP4Fo3ZA/dMs9mu/jCF9qGfGAl6fBGgIQaGwCvm8lYaH6Vlrr/W45zok3Ngvih0BTEpCIV2Mazbdp0fOneSTmDkp/Fd577728v5ggowaM90rPnRghAAEIFEvAazRkNLVcNRrFlqmY8Glhb2qxs9Y7MWm17zsBpLPcW5CrcoKYwRJcVtpnP06x3/3ud8Fp2223XWAZd+LEienJUwlMczlZbJD13SuuuMLeeecdk6h10003DYJrglcm8L175ZVXTFZd5WRx9tlnn7Xx48fb+eefH/iNGDEiEPAGO5F/F110kUlo/O677wYCXjXGP/zwQ5CWLNjefvvt9uGHHwZiYU2SSNQroXGc088fyMlisNzee+8drCUabojbYIMNgtM1OJo715mczeN82urI6acAwk7iaJWtR48egUA5fExCZnGSu+yyy8KHCt4+6qijgpe10RNSqboFtN6SRZ8+faKnB/srrbRSsJblm7Brs7yzCr11pVUNdOJed+8V5Ny9XPNuyha+5wTr7h5vja4pLKK0Rq6UGQIQKH8ChdR/ehEri/51OX24M2PGjODDIk2qyOq82t9yeqGivPz73/+2zz77zDp06GCPPvpoun9UV/k4DgEIQAACTU9A9bY+Wh02bFhG4rL0qbFQqdoYtWEaY2vMWGzboF/ZUVsZ5zSGXnrppWPHrfoA1v/CTdy5rdlPlj70YibKVX6VlZVZ173Q/kyp7pfWfG2KLbuYy3KOrl2c03MQteyin9PUPE2/fv2CF3XqU8pqN9cvjiB+zYmA6q9ovRbOv45J/Oud2qZXX3012NXYpRTPgZ4vPVPhZ1Jt6ssvv1yvZ0zPb74y+bIUUk/7sKwhAIFfCKgeOPjgg4N5DG235rZQZS+kvpHFXuqcX+4htiDQHAnoedf7bNV7WsrZRftW6mPpF2/LbU68nBmSNwgUS0D1Qtw8g/+V7GLjqyu86qRyr4vqKkNDj+f7RYSePXvS92ooYM6HAAQg0EACaqe8RkNGcTT3pznF1tR+pYW9NdOctd53UpaaUTjVxMpm7ZwV1eo+Cbvt9tsCIaks395xxx0mca+sMRx00EEFmULWBO4f//jH4KcoZclVQl85iVPDkzoSrMjttddegSh16NChNmjQIDv++OPtv//9b3Ds5JNPttrabHXysccea6eddlpgbUHWccMvGiXU3W233YKbQJ2jM888M4hLP98WddOmTQteiMpfYeW23377YD127Fj79NNPg+36/Bs8eHD6tLp+fmnIkCHBV1pi9Nxzz6XP04YsJMuJqSbXvZMlX4ly5STuDU92+zCNvZawWi5X2r179w6OR4W95vS81SsnrK275xLxmuDgvOi/1Pdmi51ovebbZPRQ2exLUP7ggw8WlZ98Hc2iImqkwCoTDgIQaJ4E9PzKktihhx6aUTc1t+da+a2rrtTAvK5yqX5+5JFHgjZfAiY5tVX6Utpb2i/kSufiWsi5hYRR30nW3/RLCfpAqm/fvsFPoRfbvhSSFmEgAAEIQKDhBCRwktjWj398jGprJPb1Y2LvX5+1b8Pat28fWNdR2yCBU7Rt8G1U2F9+uawvakw8YcKE4KfOJf6NOn2wOnr06Kg3+46ArqvmTeJc3HXXddCHx/mc+jOFfKiULw6OFU9Az3D0+Q3HomNhyy56vjQ/M3DgwHQwhenatWtJnvd0pGxAoIkJ5GsvfFbCL0R927ThhhsGz4PGLnoOihlb+Xj9WnnQPGr0mVSbqnFbfdrUQsRzKhcOAhAonoCvB/Rrft26dQsMtzSkDig+B+V1RqH9OD8nVV65JzcQgEChBFT33XrrrTZv3rxgrln9E/VhytEpXxq7RPtW2q9v36qucipNvZMQJxwEWiuBu+++O609CTPQs6fxTinrDD1vMoqnd1/Rd4HhtFvytnjmmvtUudX3CjMP11PUVS35zqBsEIBAuRBQvRun0dCcYjn3pUvNLxD2pmqctd5JSUt+7Kytur9CXEU3J7LczIl6+7sonG70jTfeCE478sgjAytx4TgE1Qtfw/7h7ejxVVddNRDZKows53r32muvBZsnnXSSVVQ4pWfIHXLIIekXXh9//HHoyE+bw4cPz/CT8MW7qJUkfyxuUkWdKrkddtghmHjSdqdOndLWeyVsrq+T5RbvNLiry+mrdrl77703HVTiXW9RWALosLvmmmuCF7B6kSjR75Jw33zzTZBsrq/Q/UtLCZYXLVqUmUV3r7Vd0913myasomvmoZx77p6u/TBli9yie72cnCoiWZ5Wx1nWurQd7iDmy2uhE3kPPfSQaWkqp/xLgK8ynXXWWU2adlOVkXQg0NIJqI1VO6qfM1DdpGfaP9daN2Wd0hDWasPzDcoVt47HtfXhdN9+++3gSzBvUd4fk2hJvzRQSL2tMHFcfVwNXeuafPTRR6Y8+fZB+VX/Rj/dhIMABCAAgfIjkO9ny1Wf33XXXQ3OtNoA/VKKb8O01k+Thyc91Lbr5aLaft/uK2HlL9eY7c477wxeRq622mpBG6m2Mux8W1RIGxk+rzVsq9/hr0e0vLruYZZq33UdZK1F/n4sHT1P/Rn1A8LOj8s0xlQ8XIswndJs19WHlOBP1887PY/+43Dvp7Wuu8JxjcJU2G5OBPK1F74c4Rei0bZJYfQcSEirNqk+TnnINfZrSJta14ei4XLVJ9+cA4HWSsDXA5tttlnwcbLeiTSkDqgPR7W75dT2FvqhQDnluT7cOQcCrZWAxmQab7dr1870/lvj9C5dutTr46OmYKi+VVTU69OVf3jc6v1zrVVvqY/n3xeKRdTpuN4p+nkJjWNxEGiNBPTsReeMNBekj+v1q0D1+WAxjqOeQ32IrHpI9ZHeBYbnCuPOaYl+4u3nMPOVT/WYmIXrKdXpcfVZvng4BgEIQAACxRFQPS1rvdG2Ufv6BeNc70uKS6X8QztVrlnNd86a6QdO9DizwAy3MasaUmHt1q20RIefxLWy+iMXtjwSjm3dddcN72ZsS8gpywxR58W1qdRPauOvv/46be5eLxDjnE8nblCxwgorZJwSFgbrZ9/Crm3btuHdjO2RI0cG+xp8vfXWW+lllVVWCfyvvPJKSybrZx02bKVWX6vX5WTdWO6ee+4JrD1pW9dColj93Fx4UltWlWS1WE7WjauqqoLtpv4nC8tyYcF2OA/eXya09dV+1CU6untv/YRVDXb3XoFFkCXqxR8krfb7ApXr0UQbaf+UU04xXRe9MFflo+3rrruuztSiL23jTtC9KZYSnatj+fe//z2YOIgLW0o/lUnidw0ItNZyxBFHZL1oLmWaxAUBCJSOwMUXXxzURWqDN99886CzdPvttwdtneqq2bNnBwP8fPWQjmlQ25hO8SuvWis9nx+t5a86T9sLFizImw0N2v25uQIqDVnJjzqdq8mUQupt1Y3qz3iuqvPVGS0VJ4m/9CFVdBJCba46tXWVMVo29iEAAQhAoPEJqL+8+uqrxybk6/OG1N9qY9T2xE16KH61Xwqj9kjjLrVRvn1SW6r2I05goHHGxIkTg5d8/qNMfZAZ/eWaZZZZptVMrMRexBhP8Q6P0aNBdF3mzJkTeOsa3HLLLQFDXR8x/uKLL2zu3LnR04L2X9fRO6Wj83X/6B7Qyxn1ReSPKx0B8Y3rI/oUws+xwuqZij6PCqtwWlrLRKTnw7rlEAjfu3F1VLikqofi2iY9AxrPPPHEE+HgBW+rDtxiiy1iw4efxdgAOTz13PpzcwTBGwIQqAeBuHpAz5o+ftE8sp69xnbqJ6lvpEXz1uXQR8r1QV2URfjDIrFSWZT/cihDNK/sQwACvxDQBw0aC/jxgNb6+Ehisaao937JSWFbGkPmGusst9xywbi10HyrrlVYGbPSmFZxh89V/aW+nOpBPy8hEaPqt1I4paW4/DtS6stSUG3dcfh7yrfBpaKhe1PPV9iNGjXKnnnmmeCZ0UdQmpNrqFM60g1o/KX3R6qP9C5Q/bFC3nXVJ33PrFz6XcWUQfObqqNUj4frKXGL1mfFxEtYCEAAAi2dgOp+LQ1x+fqka6+9dmDNtyHxN5dzA1nk4k9SVuuWQq31JlZyVlM3cMLKHr9YzF122WUDMakEP3FOKupcTj8LGuf0dVDYzZo1K72bS3jrJ0BmzixUpZyOsqANdZgmT54chB0xYoRpiTp1rF599dXgZ7Cjx+raDwuSxbQuJ8sRsnb86KOP2nPPPWfbbbed3XfffcFpf/jDHzJOP/PMM4P93XffPfj6KvyTqX7iff78+YF4WtfEv6TNiKQEO2uuuaaNHTvWPv/889jYNLCTU7hcrmo5Z7V3A3ffflZrySm5QoX83e1dOzlli6ckraqnM/tbJk7C2wMOOMDUKZRTp/mpp56ySy65xI477ricudRLE31Bl8vpPhJjiaMVt+4TPT+q+PQiOZcwPld8hfrLDPqbb74ZCOlk0VpOwuJx48YFE6X+3iw0PsJBAAJNS0DPsNoSvUzx9ZIs0sqCiizF6QMWPdNTpkzJ+Uyr/tKEpD5wUR234oorBhbuiymJ2lnf0fN1iT9feRw/frzV1rr636WhwbREUf369Qt+ikgftsjygdowfSyhtqZjx45Bvn0c0XX4RXT0mNJTOrnqXE1+yKLABRdcED01va84wvW90lM/RpO3paqXxWvbbbdNpxne0AtuTcicf/75YW+2IQABCECgHgTURpWiL614ZJlMH1tKEPvjjz8G+8qSn8RXv10Tx1Hxb6F50EcfcdZBlYZvvzR+V3vk2zm1/xJc6Vdo9CHsNttso+Bpp3GG+gZ9+/YNfqlHvxajPoIsfGgcpzKpryA3ePDgYJyqF3LKs8atKksp+KUz1IAN5UlttM9btM/RgKhznioWdYnENCZXf0qiXl0nOfVrdF00bp80aVJwzaKJ+P6MyqP+kfpvur66t3QttVZ/QBaQ8o01o/Gyn5uAns9c/S9/lp4p9Ul1XfKJunVM8zr6aAwHgeZIQHWMb8+Uf7UH0XGYnge1Tb7NiZZTz4F+EU7PS7FtRV3Po8ZEcW1qNA/h/brm3nxYlas+efbns4ZAayOgfkpcH1V1g579xp6/UD9Li94jybCKfmpe/a7HHnss6CP5+kfPdbivqOvUWP1FpVWsU94kzNH8mOaY1E+P9vOiZWis/Bebd8JDoNwI+GfQP/+lzp+eV80vq87RmM6PmdWHkDAsWu/5Z1f5WVLPrcYwufpsyrfqUIWJzldE2am+1bz4r371q/T7Bo1vJfbVfLrKqHZB5dQ8g5ziVzuheYkdd9wx8Mv1riA4GPkXvp7hulLpSsyoDyTU72ys6x3JDrstjED4ntL8ne6paPtb3yJrzki/suXdk08+GdyvMuSmekP1h+bklIeG1A0ak+n+98+4xj16LtSf0C906Ref6/t86Jn3H6yvt956vijpPovqwlIySydQjw3VFapv6nK6zjLOoLxLRCbnz/vggw+y6vC64uM4BCAAgcYi4PtAir++9Xip8qb2QHoR1aHTp08P3g0V23apPHVpNDSWbw0ukZybshondkx9X2BxnQa3zTpOVLm6E92GdLebbrppEMHrr7+eFZFgq8FrqAvffF9++WVsdO+++27gr5eIjeHUofFOwtno4o/ddtttfrPg9eLFi4Ov0nXCbrvtVrBF3f333z9IQ6JJvVi9+eabg/1dd901WPt/zz77bLA5evToQOgpsadf/vrXvwbHdK5EWNFzfRylWPuBnr9W0Tjfe++9wGvAgAHRQ7/su3uvbX8nLl/bbbT7xTvfVuo7Z7V3Ssp0z5eLGz58eLrzpzypI6gOuqxjhiveYvP74IMPBgNTCd30ElcDYn1dq46/Jgkay11zzTWBqFfXTgNjLb169bKhQ4cGQrxLL720sZImXghAoAQEJMzXZKLqDDm9FJCFOD3Lqj/8hxeaXNC2xAdhp321NbKCr2dfkwGqj6LhwueEtxVOE3n6Annq1KnBuUcffXRGfajjmsjTxy8SvmgyQ1/7y+K96iB92KNOouo8TZZKMOXzHU7LbytsPicmfoIjLpzqbfVz8tXZyrPq+4ULFwYfb0g8rQkY9Y308ruh9bK4aWIyl9P1CvdfcoXDHwIQgAAEchNQPa++rKxxqG0qtG3LFeMLL7xg+phSH8uoLVNbonZTH6RoLaf2VyIk75T+aaedFggR1LbUlQdNnPg23cfh17790see0TDa19hbbWC0nVT7LPGWPqKRmFcf4yrvWsJ9BaWj8ullg8Z3arPVJxC/fG2mz19jr8VOeQnnLdrnaIw8qOzhuQpda/W3tPjrLjGcJr70QkV9EP26kfpjEp3ITx9N6xrkcrq3NC+gvpDuH52jj2Y32WSTQPihFyiMy3LRK85f931dTtdTTtdCz3Qup2P013LRwb85ENDck9oz1VW+TYsbh+lZCNeD4bKpbVL7o3qsGKe6tXv37nlPUdsWblPzBg4djLaDoUMZm/qVORwEIFA3AfXB1E/RMxnnNH+hPmhjOaWvfpZ+CWHYsGGBYRZ95KZ+6/PPP5+en1E4vd8J9xU159RY/ViJ4wpxvk5SPpQfzb/J0p7mhDQPpzk55V1Oa4WR+FcfTejDcvV3cRCAwC8E9JxobK2xoZ75xhoTql7r3bt3MP5Xn0HzAH5Mp3GA6h9fv/h5B9U/GkOXYv7hlxIXtqW8+Pe4uc5QvvVBRD4nvqqXou9BVdfrfbjmxBUmrl1QO6F+4amnnhpcH2kPPA/PKi5tz0/XU3Wgrq9Ei6orNUZWXSnjJYo3XzxxceMHARHQPeXbXz0nvv0txTyL7kk/b6B5ItUV6q/IT+lorV/WUl+mvk5pyBCY74spHb2vkuhKz4r6FPV9XyUGeub1kbkWPbd6DvXsemb6mDmOmfKl+qApnepjP2eTL119oK+xpOqyqFN9Fq7Do8fZhwAEINBUBFQHq39z4YUX2n//+9/gPVJT16u+rL4PqLpf74/8u6Fi86P5wbo0Goo7V59O/uKitru5u6rFXzqrp1NdMWoKK0pi5QqrXithiU4VGSdsvPHGduutt5oEorIau84666SPC5R+qrOhTpaAJCCWJVJ9pXTIIYdkRKmvYtTJkVMnvdROA42rr746iPb+++8PVOXRNPbdd9/AqpGEmfraUDdrIU6T3ocddlh68vqggw4q5LQgzG9/+9ugoyXBrqzxylqhhMESNIWdxJbeonHYX9t6oStLw3IKJ3FvY7mBAwcGUet+0Yvp8ABRnUZZPpTz4YKdmH+Jzu5eHJSwmklOrPthAWJdd4/XOmHv4mkpa7ta5v0bE32TeOn+ePrpp9MvcXXfaoJu1VVXDTqJYTF7NEPRzqZeBOs501o/Pb/CCisEIrLwebL4JO76elBplNI9/vjj9sorrwSdYFmHCjvdixo0qwMvS10+beVD5+nrPeVb97KO+ePhONiGQGshoOfCu6Z+FjTJuNVWW/nkgy9nf/3rXwf7Eu+ondUX9nKqvyQ+0DMtp2dZA3R9hauPCryTdTk9+6rr6yqP+gsaCKutUnqqx1577TW7/vrr7bzzzgvS0MsX1WUSPik/mthQvfnAAw8Ek3Kqa1SnSDDr49GkhNq4aL2pPOrlca4On47revgXJ9qPc5pQ0SRAXJ0tLsqz0tZkp/KhTqgmA/TiW3mU9YF//etfcVEX5CcLxn7CJ+4ElVEWXHzdr7UW9ddwEIAABCBQNwHV5ZqMlkBJ4lVNgKvNU1vzpz/9KW8Evu6NBtLLe01y6wWW2jyNdfViT4Ion47qb4lzFcdll10W/NyePmzRZIjaLuUjVx6U53wffSg/ap/0QiDOqa2VBQ/lyzs/3tCYfMyYMcHHQMqv2hhNoCg9jedUDllp1KS3+gQa46iMyqs+zjn99NODdr2ufoFPt9Rr8fR9jv79+6fzFu5zlDpNH5+YqG+lD3w0dtM1lBhOfHRN9RGQrr/6FbJMpHG6v476WEnXQ30w9YPCH8KG+zjqN+llg9KQIFhl9E7Mde9pTBgel11++eVBEPWh1DdROPoJnlr8WveRrltdTn00hdW1P+GEE3IGj/bXcgbkAASKIKB7T+2Br28b67nWOEfziKo/fLuhtkDtXHgcprpKH2Lq16VyOb1g1geQhx56aK4gWf56vnRePqe0Vc8X41Qv69nEQQACpSOg+Yt8z6ueOfVHVH/5uiucuq/X9HzWZx5ZfUD1s2RxX6IS9b20qM+qfrkEsOoXySCJDKKE+7GffPJJ0I/VXJXmiYrpM+UqT7hshWz7Okn9afW3NQfmnepWPwenfrf/8F68dd5nn30WfEiv8tU1hvFxsoZASyagPpLG9XqfqrGZnhO9X9aYVvPQcXVQfXgoHdUtqmf8r9SqntMHm5pHV7pKS+M4Cd70vlDCU43j1G+a6j6uVd1VyNx6ffLnzwnXU+pb+frGH4+udbyuvpXqfAmao30/nat6+D//+U9OsZzS07WRBVP1YfWOUfyUpurAu+++O5qloN/r+engE088Yd9//32gV/Dl8XnRL+H4dw5ZEeEBgQgBPR9a5DSXFtf+RudZFFbnqA6Q03Pul8Aj5p+fM9IhfZSt+SP1V8JO7bp0MopXz0b42Q2H89vRPOj9nuaK5DRvpLj0XkvpaP5J8Uuo6uP38dS1Vng9f+H3g6rDpBvQ/FMuZn6OU3OL6ovpuVUfr7HGruFyiI2vG8L+cduqg3z9ET6u830drrYDBwEIQGBJEFAdrH6V3l2pHtb7Br2H0bulXO+P6pvPutod5SWqF1H9qXwUqhfxedN7jLo0GprvU/sZ1WgoH3qnp/G+DMQ1d1dV86WzrvNVAaJIldRZRm0zsMLa9K3IKvfBBx8ciGrUaEuUoxdJGqgIojreAuqFo1knF+Ghn99QJ+OII45IW53R6RpsScwqpwGBbtpSO1kQ1EBCHZvoT5L6tCRo9GXVxLbPkz8eXWtC6NVXX7V777036KTpuCzw/uY3v4kGzbmvF3t77713IDr2kzL77bdfVvh8Cnh93XXyyScH4mL/Uk8RSHB8zDHHBJNZChPueGUlEOMhIbS+7DrxxBNtzz33DEJINKYHSxNwSnPUqFGBwEkP1BlnnBGEEeNddtklJsZMr+p+FbZoTbdMdffwwsxjcXtJCdl1v68Wd7Tp/e65555gElApq8OqL+N0j+lnafTsaCCvyjGuAxt+iahnS3HJQoleBGvSUfHoRYosDninczQpoAHrP//5z8Bb8cvlSic4WMC/c845J3iRowkGTWxGndKVpW2ftipTWfCSCMALJCSY14SG8qaOMA4CrYmAnkENWiVWVTsip+fhqKOOqvN50Lla1KboWatrgiCOq55J1Ru+btGEpgQk/kMPTSKqE6i8aVH7IMsBOk91lOoAtb9q+8NO++o4+mc/fCy8rXjUuVp33XXT3jpX+VHfQseVhvoB8rvyyiuDttjnT8IX1Zl6sSHBrPIvC3d6sSwRbb6vb3Usl1NdfPzxx+c6HPhLsCH2Sj/qNHGrOk5flamuXmuttYK6Wp1qianUf9G5Kp9cfa/d73//++B81fty4hB2yqOugepctTf6WOmtt94K2vW4NiZ8LtsQgAAEWjMB1c8a0+in1vyLffHQRIQ+NlW9HVeP6jzV72rX1Z5qfBcOp3ZbYgG1aV4E5etutYfq02vSQuH00kptrn4FQ+2eXiJoclwfrmisHZcHtT+q69V+a7wo5/sX2lY7qTGXrLlGnca93in/ehGnc9Weq/2SdX/1UXS+nMS9EhFoEl5l1UeG4qNtlcH3LXy7rnFyXf0Cn37cWkzk/DrMNS581E9p5+tzXHHFFUH/K3peKfbV51B/QC9oxEh9B/HTNdLL3XHjxgX9GG+pV/dB+CWD7hVZS1a/xwuolS8xFg/ddyqbWOvLfH0AJafwGn9LnK341B/w10Dl1b2sPorG5OpH+V/XKZZtkFgr+aeXYeFnKlexdW3Un9Tz4Z+FfGEVr55pHAQaQkD1gZ5t9fv1vPtnWu2SxpelcEpD96rqHdVd+ujDt2eK37dp+hBB21pU/+T7IFHn6bnSS/FiXL7xnI9Hz5/Gu8W4cLyqu9V2iqnqVPUJ1MYpv1pyjQeLSY+wEGgNBFR31PViTn3MuPZQ9Y0+PNMzKEGK5pFV7+jnPAvps/j6Su8l+jrRivrS6lcrDq39+6SLLrrIDnJGV9Sf8k7b6iNLHKs+mPrE6jNJPCsXl77Kqnk+1T0qT9yYwMevdV1cfFjFq/muAw88MPBS/SSnfp7i0LsAlUEvdNVvV/nkp0XzY/qpUuV3SfU3PBet5cLvweI4BoH4B4ESE1B9oHG+xuQal6lOkGhLfRX9KpwfKxWarL+ftQ7fxz4d1Tf+V28Vp+owjfU0XlfaEjuo/6P3Z8qHxv0Ko7pHi+aPi81TXXlXXrWoDyMXnrvQ+KWuOkn9H1/uuLR0TPMVfkwaDaO+mcZIfvwaPa5+l+r7zTffPDCSofB+0Tvl6LhdrNUuhEWFMsC19dZbB/Wv6krl2Ttdp/r88q4/n3XrIKD7Sm25f58i8b9+DSnq9Jxq3KX5Owlk1bb5OUH5697TmExt8rHHHpuzDdYzIaf7X/0G/+4rnJ76K5qn07syvd/J18fQc6JnO5wHPQu+D6C5Kb1P9B+O+3f76u/IkrnC+bDhPES39bzHvR9UnSYDBerbRZ9BMZP/yJEjg3eCer6lcVCdrGdZLlyfRtMsxX54vJcvPuU916/O6DzposQLYW8+ihyDAAQai4DaKtXBmndTv8u3HWp79CGTxn+qyxtap6pNKWRsG9ceqOyq9wvRi6hN8X1MlU3GT/I5zTOq7xo2Cuv7herrh42e5Iun3I9V1TotS2pOYdlM9HKi3tWctd4O2cJedUY08JAoVS+F1BnwTp0UDQLUoWmok7hGLzVvvvnm4CWYBjwabGmAIKfOh441htNNL7fPPvukv2aKpqOXcppUkYlr5SMq7JVFQf8lVPRc7csihdT0xTpZCtZAVJ1KdYS8hcVi44mGF1fFK6fOlV4OFurU0fVC41NOOSUt7FVnVIIs5VFiY3XUVJG8/PLL6Ul2iYH9C+h86SU66p6ssJrlKywpcW8dLjXLCWidxd7k/JQl2mffx3Wc3iiHVZnomqnDrk6urDZpUlAVo6w46hpI1CbBnJxfhzMjUa/uPVk51vOhCkyc9TLfi7x8eHUwR4wYEYhndT3VqZeTpU6fTlwa/nytNSDR4sNpWx19lUMTEXFOnXINNiQyUB2hPEhIoJchGuiosVE8msz4y1/+Yhp04yDQWgjo3td9r3pPA3M/gFeHS/76Kl8D7Din50kiebWFqkM0QaB2Ri82dE6u86Jx6dmUMN87DaB9509CEH14IJGJLJPomVVeNSmpZ1ltjyYH1CnTINe/OFY7IOGP+giqz5RHHVfd4esPpafy6yutuJ+yUd0hse+5556bTkPx60vecP40QaBOqtLUORIh+4kI1S9KNyyA8eXUOjypF/bXtiZGFGc+p/TUadRHTlGnsimvmmTRxz/ip+ur+lkvgXyexFH1p9iqHdAHTP7aKQ5dZzlt++vqGeraqb+h+lNxyilNta9a5MRefTN9oKMXQBIV60s31d26fkoPBwEIQAAC2QTUfqkPqzYu7LTvLWJFJ0VUZ2vcp7pX9bEsxGg/XN/KGuGuu+4atJHheLWtdkXtj9JVe6EJ7T/+8Y/Bvo6rXdUipzZMbWg4D0pfiwSgspbohUwSIPh2Qe28XvRLhBt2Godo4kSTPXrxL6GnRAJay0qv2jE5H6c/V2MPCSKUpvoHGtsNcxNJvl3y4VQ25VV9fd+m+WOFrFUu9XskQlW/R+17oWMYxa80VcZ8fQ6N4+sSvvm2WWu1x75trqsMul4au4m/zpGwRPeI+EnYq7GcmGleQ9dG108iDN8XUThde7HWcfVxvNM9o/tV4z31lXR/qq+kL9PVt9B54q++mV6e+ntbE116+en7HYpP5dJ9pfyF/X1axaw9Kx+vZ+X7McXEVU5hVS4944U4Pe/hfnauczSeV7xxH4vlOgf/1knAP1f+eYo+pxpD6gMQzQ1pzkXbcnre9Vw35PlTPaz0NZekekVW0zSG1Xgs6lRHqU4L11d1PTeqp9T2KR25QvKq/OQb0/l8qS1T2CgvfzzXWnWqxk6qS9U2qg3U2Ep5FWP5q21Se695McVfSL5zpYc/BFoyAbWJeleUz6nN1LMabg9VJ9xwww1Bv1RzU1pUD+mZLLTPorkT1RU6R30rzUurHlP/SvtaNEejdVTQpv6jPnDfYostgj6WN36i8HHpK//heb7wmEDbcXWE6pRCnPp86rspvOon9R81z6O6XuI/zQ3pPYHmmNT/1xyU6i3NFar/LzHhjTfeuER+jjTMRf1Z5V39Ym2rzZDlQNWjzFEVcicQpiEEVB9orKVnxr9XU90gP43DNZ7Vu7O67kXd06qfVB9prK3nU/ex6gg95xpzaXwtUUHYqe5RPaMxrc7TuFbnqp6RsFdjcI2t1W/S8YaMocPpalt5VtnU31L66r8oL6oLxUJzF6qrNQeRz/k+W64wmisXz3x1m+r7uI+NFaf6WhLl6nyNYVV/yWlf43mN28XF9+v07kAGk/zcjX9/IA2B6urwx2Y+HvUNdf18HH4dJMS/Vk/g/9m7s2fPqipP4DeRqq6Oqoeq6Irqiurojtsd4YtvRuAQPqWGGjgwOIAIgomMBoICKpNAgoKCIPOgIjI4MIOICqKSPihP/gX9kv3Y0XZXdVR1dEd3SPb57Mv3sjh5fkMON8m8uVfEuef8ztln77XX2eu7hr3PucYGG28ejJ2lKzYv/rO17GyIn2AuyoIldtd9yprrkaNxP92jW/wD/sQ4ZnA9+iLGspBU7gZlr438ZwM44h78aYvuVh8D/+I/OiEmDA9PP/1086O0ofzUglX6BruW9Rfoe+YHIxP7zDHCM4toxzEb3BNH1o/p4Ve/pvyrWvf+Oh7zNFWv50qGs8hzg6n47jgyS0r9fJdAl8BGSYAPxLe1RqH+d0bxlTkGNgSm1vmjPeEFtlWbUmPbOt+lTuWm7EHaYxPnzQu5P2te3KNfPnbDX8y8VurKHgZbE1Jp7BfWa4fq8ZGv/NdhMeTaC0Dz+7Bl+BLPsKboz/7DcDCDCO25555rzrrARxDCIeAATP2LaYmFeSSQQIKJkHsEHRwmbWVBL+fcQtFLL7103fHJPdnXepxL/ble9+NrHH9vhKN8ebaWr8cW11jYa9GqgIOzZIBPkUSFyTZvHVqcO/Wm19R943PvfOc721udlIfSzls8PL7X7/A37reJJQpvcdm81fD6IUFU73d89tlnt4XB27Zte12zEnMCs3PPPbcFrJxLxIGyuOn4449/Xfl5P/78Px6x8n//0/Dl6f8ylFq0tncY668MC3v/9MdhYe+/nz/+5rW5v655bll4ZnxKSnJ0TRiQn69ZJSlnLJGxiWsAGhKgmkQ47rjjWuLRfZ4H8lwlBUyuB+yMR8kyC7WNUw41or8Zs9rwbBIEu46vF198sfEg4GcElKN3nHZJT46r+lwbB+TGpESEMWqRon55a1FZDr179d+/2BAsaK+2j4dOXQKbVQKCeToOE+hoKHpJJ7zhNCY66aUaQTx9gR2+KkDn4YWEpGv01DaP1FVfRlEHG4B27NjRJg3oqEUiSJITf5wqWGLxLbzxBXp9sHmrHk5IVCjLsTKpK3kAC6LjMAWOzQp6nb/vvvva13q1DQO1H5IwZaskTbQJT/kgfockOExeTL2ZVWWe8uRhM0ktySthAq9gafA0Zf2WCJki+Ig39UjkIPzxZ8iDzCSD8K0MLPRGtjEBK5Fji3q0gxf4qc/qIBv3WaBbF/fgVVkJSskRkyX8sfHkkQQN7GcvzjnnnNZe/9Ml0CXQJdAlsCYB/qgJulmLPGGwpHz1W9kOdk5cU79qUfGW/WP7phZBaZnfHLvFx1ZPtXspow12g00ID9qXqGGXzjjjjFYXW6BOdgGxJ7Hz6g+JK9gmbbF7bA/74Ng19tdLKuzQeGEWPhJTitHZYPXot1i62ih2V/xOBrNsv/5oz/W6J1u+jT7FfrvuZVR2cZG/wy7jZVa7zqs78oxs7J1D9957b/NbTLaytyZ0xPTsfXybKT7cT96+bGni1GQv2Yif+EH8uCyEZtsd87v0K8+Jf6P/nqdnaNI3ZDzon8Uy/LG3vvWtbVEvOa8O+RN+iNiTz6A9/znoiSeeaMmxsTz8NnHxwOCDnn766c0nSt9cy3HanrXX5yk/xhfvqi+oTmM39e5JG2lbW+pAxkSeQfYpt7/2JqCWIfrmGdT/SjHrPv32DKdeFpt1Tz+/fyUQPa/jcaPG0BTni9rHlxcujSnxHvyHPxZNJIejDNu1bcjDwUk4I7EP+2AKvGRXom/z+Ki6pJw8khcWg8NeEBffwXx4OM4DuUe78EoZ+/FiOWVCbI0y6tEPOJi807znQB/n5SxTv/0821PL5RhPYmw2zeQEnuAtPuE5WyDuJhfYyn7jfxmblDb6vkvgcJKAnDQd4Y/QF2Q/9hWrPYQ9XjCT8zbXRL9gG3/UffSQzzKVN6uyhSt8Kn6WNu1D/F46DqvkTuoLCfGR5W7473yY+LdHHXVUy+uM2+f/yP3gNz6rtvjG/Nl9xQj5updeeqlhETnoS/rDlvDZ+YvxJfmQcJoMLUzxr1H5G7EFYz8Kr/HH5uGvcrMoNq22cccdd6zLhT3jn5rHEEvIj3nOeBZXaDf3zmqjn+8S2FsJwAP2XAxmXo0tR/Y29t48tPmrWePQGE+sA4uMY3XyNeAEPc+CX3nxMbkHFskp7BxiStgj9y4+VBddSG7XeTH0GGvGdS76rd8WS5jvhYew7i1veUvDKe3xGfmV+kAn+ZnzCL6Rw5SM+GdT/a714SG2oJ6Hu+TH/2I38FMJPpEHW+E4fqPjED/W/Yis5d7H2O6ar2xaMIL0HfbsLe61SvqfQ1YC1RYa0+Zm5G3e9ra3tT7x9y1I4sfQD2OUbrLHcmn8BGPImBY/iLkc8y2Q2MEY5Au4Vyxnc58xZ5zLHyD5GAvfLdg1fvkdSAwIM5zzwjt/IHmh6mMoy9+Qh6i5STZX2zDGvJ65MsfaSTzHf1A/fRKLVX9BvVMEm6ZeoDcn5b8481FgghgqfYyek3X8qtSt7eSkpvy7PKtgT3Q/v1PPMvv4aZ4pfu1R5kbhenwsfJJVcCt9Ud4Ln55heHGuU5dAl0CXwEZLgA9kHog9EquyM3w6WM5ewXN5OLZqls+2iMf4u2yGl9XMnWiPHz1eX4CXeVgMc2f5tPqSuZ9gsz0fzvyUOSl9gsEVfx3z+0JTfmGuHcr7I1/545LsD+sEjxwW9b7pr6cXQwpQbIIeRvqDH/zg6yrOgheORohx45TPollf7DQQDSCbB2iAjt94rHWOnf5cM7hnte/fotRrBn39nTqm9hylcVmOz0ZOznDEODl7SxdccMGKbUyCSM6q/lCUWUShpujOO+9cuemmm9YXj9YygmJjRhBpYSdQMRkah6iWnXf8pr8ZxuUwNv/fXw2LzZb4r3qv/LdhLfvA7p+txXTzqt7wa1nUm4a8NSqJyGHk5HPoV4dJWEG9gMAkAUfamI6ja4H01uFrWHTvD3/4w/rCMXVKIDrva5sV4DiYvnKgnhNOOKE1nzb88HahZ3Lttdeug+9VV121DpbKcGZ9WVk5wYdFieo1VhgMNDVmjBXP/bTTTmsTy0lSAGTBjwloC9wFAtrv1CWw2SVAp+FgJl5rfzks7Cl7aFFFdYbcJ7lAt+maxRkCY7gCu+mkhayCTs4aO1HffE07rtksJpXESqKBTbHQnjMkqGczJQ5MAmiH7mrXl/s4hBYFc7gk5Dh3EgrqpNOwHWZJDsIJi3S9deWY8yfRwQbUwD78Za9eEy1IeRMRgmj87hySn1kcgz8TAJls5mCyK+w4n2EZIlsLYvSdg6mfsFmf4TSqmOo5keGY1ONesqxfmlHOJJb+6r8kqYkoZSVa1CfJCgfVq5++wOw8++DZ2vDomcBvuKvv6kD2ZK5e4wslieM8IpOcYxP6pEkTS//TJdAl0CWwLoHf/va3DSvXT0wcsGXVb2Wb+ebB19yS3/CWXYTp88gEGNsO78UEUyQuZuNsePAijfbFD+5Pcp/95AewpeyY8rHzWXi7c7Cl4j5+A9sh9nCPNtgX15G4WwxhMoCNjS/PHiunDT59fZGkTp61SoY/cgEWd47tI9tpS7zDRprMNCEn1mEHM6miLnIkW1+ltehDvdVfSnvZk5PnM49MbCpXYxEL4dhTtvv3v/99a5MPhDcLECyo4PfghZ2V//DCVvW9+GWeJ2KDxWieRe4lU/6Ga+w4X4YPxq+xsfXk7NhzERtWIgv123u+JoHIkc9UJ2QtoOB34R2vGZu1Lsdk6V+TmtQWq4n7THDwM/kltW/je/NbDFn9GDEk/wWf+sJvNbYsejE2+XPa8Lzf/va3L9WGtowZvhM++WgmjDwXdZlU98LxRpD+LKJFuj6+H++d3hgJZBwZQ+IAmIhglfG+zJjfF84Xta9uOJf8J72hS3IweKVv/tMYO4BXcYL4h17ADNghpoPVY4wL33iwwR54B7f0H8FW99FPMQw7A2PYAbaETZCDUn8ldZgghZnqhC3kqxx+YB5SRi6KXukjfGKHLPzSlyldTgxmv4yuJYZTXj9D+pYt5+zxkpybfpKnduB1+Gb3xGOeBUxH8Cd9nWeTWuH+p0vgMJBAdJXe0SH6zOfh79Atviqdgi2IrmZeiA924403Nj3Lwis+kYWqCD7wc0ze8SundFk5PPCttaM8PR4TPvhHPsDCf4kvDbNgH11HdB3+iQMQn6/m7fST33jRRRe16/VP/C5YDQ+VxdvLL7+8W4ygnWBN6oAtsAlO8/fECeFLGbzy1cgShgaT4TPfy33qtYl1tC2v70UN9ZEfGbAtcvjsyxT+hp/xXn3pk7Y8S3ZIvWTGX5b/hPnaI1djAYaKGfjFznvmfKLqj4/b6r+7BPZWAsYo7IAjW4fY0PxZJeORzacDfJ/EUrHpwZlxrFPr4Bvx2+gwX0F+eYr4U77qS2flzekvv80W4kvxmWDN7bffvvAlhtw3tYc9fEjzDfjT/2AI3wt2BV/hoN/BjClM0gb+IpvaJjmrf4pgmViNvtfcQcoGd/0mCzzhr2IiDLWw15wJfPdbGaScNrIwzzm5jmA7DPJxMvEn3IJ5CO6IV+GnPukDSv82Oh5ojfU/B1wCxgB/g91isxC/wnio49OYir4oa+xnHMcey6cZN/wM2CKfon6LaOXK5LPouvPGpDki49eYUx9M0I762W55IXFcnRdjN73Ao/6MaTz77V56bsziZZxPpHOrQ86QLyEHYx5PW8Ecxzb+mfaVnaXj2kT6Zxt/5RsvdAt2yDHCQot5yYZ/kDiLPwh3xZMoMdvYv3KNbPkteIKzeV5wjaz0Q9/pavTWfaHwao/syRwmmHPM2gbX/IZFfFdlyMVvZfgs+qZ9eS088wun8pzq6tQl0CXQJbAREoCJMB/FX3XMb4JZCMbCXVjFr93T+Eob/EH/RYFdSNwG/9gmMXNdX6D8LP+vMTT84bOxfZXcxwdLTtC1ncOcAd84NpBvri/aZv/YZD4fnIbJMB32m8/Y24+pVp4OtuMjd/2PtQV4ixg74h+GRMA/HDF8AnS6pEAoX7L15q3FggJxwb+vwJhkQYse5HTts88ypp02VgIcSkq/t0ThZpF6BU+2vaZhTB7574bJzr8fknr/vHg87/rvQ7l/XFxur/nZhxsl/03I+8qViQzJviQW7D0LG+dXMozecYZNzAJojjK9c46zjziygC6L25yToAO8/m1X/fcRaQtA+iL2gw8+uHLNNde0Bbza3DYk3pLU5NRKOHi++EASDNrl2FaD0S4Of/QL6APVJDITMHC6BRqCCZPQEhqC8llJj9TZ910Ch7oEJO85MRyPKXKerkUflREgctbojKDRBChdMvnA6ZGs57hZgMGxMRmqPPygf9Er9XibSjIAdiSZLnkJR+ixRbteWHEvzKbj6k4Ay3niOHkzC7ZYDIwXjh5s8OUkDiNccd2mbkkD7blXQkEbrmlH3fDMhhLMC5hhj7ZM2HDUTDCoz31wBCZJFuAR6YNreEpyoF0Y/qR++0xYu8Z51Ca8k3TBow2RDZzyWzshyYQxkTknU4KmOtXKwXD8a4cc9FndePTMJVjhoD7D3jo+HHvGJmEsLuKgejbKIv2VfCELuM4P8zKNur1Y4d48SzzAbmNMMnQq4dEq7X+6BLoEugQOQwn4CoZk+TyK3yopwpZIVsfPHd/nPByGt/CZ/YLJKMno7J3Lf6eB0bNIPGwywAsz6uUbsMXsA78b2WuHDWcf2KBKbJhkCpuqPrbJ3sJR9tuCALYSz+phs/DO7rC9fte2+AZsS6Uai8T++q8D1d/30iCZm0BhZ70cJI7Bg/Nk6+soU/VbBCqJxF9iN0N8Hv0KSfyffPLJrQ52vNrylDF5IKeRRBe+TDiw5/rsJWD3SRZ5GVNf+TWRD3mJ60w2uMeXk8ekD3wE8hNnZcLI+OC7sfVkSm7ki9h35zxD5NqYjMfIlw9nAYzFdJ6XsWUMiAPVgQdjcizP3M/P0BcTF3wNzwEv7s9kp391GoqcM0Gyc0i+WXDtGRs36vUSmOdoIovvmcXz5OQ3/834I+epNtJW3dM7k9JiYrEt/80ErrGDX8+O3KaeQ61nb46rf7Y394/vGevN+Hr/vXESMI6MOTpi/BlLxjqyCN8Yo4N1zO8JN2P9cO84LlvUPh3ysQR4F8oYhNnyrldccUXTWbkeukvv+ft03l55+OXftFb8VV90CfbDpdVhEhdZhKUubdgSN7oGuxJb0l+yY5NC7hO/wTsYog94EP/ABTI2AWoRBl314gF8UIa81ellGLy7Lm72DPAqBtYeYsdgj3IwdArblcM/TFen50rnYKDcdV4oqM8Yj3ggP2WMC+U8T22yz87hGdaKPcWd6hTn1xhe+526BA4nCdATeko36Sr9t4iK3vlNT+NDwgD5EHofP4iO0fUbbrih6ZscEIzOi03JW9FPdfMlbr311ua7B29MPkan1cfH4GPOsrfqlkdRTv3qtckBwd7kv9Xheghm1bydXJB2YUH8teCStvlfX//611ceffTR5rO/8MILrSq5MxjC/4I9+oEf58Oz/BlfByaaQyCvSvw/Pqn21EHG5Ir4Q/rIR+WPwSi88489A743TH/zm9/ccM+9Fh4t60t55tu3b2/8w3l8etaejYVP/D65KaRO+AmLleMT66O9PuFPrOC55xm2G/ufLoH9IAGT/fTE+Kw6xC+BWfTEGKQz5sjkdOmh/Dq94AvIv2e+jB6NiZ6LfcSJYlkxeubL+CshukFfYVn0PNfsk38Ww/OZ8EzX4n8p43diML9R9TPXzqz5evoFz/hnMKL2X15en/htCF/qTV4fPtnwGV6zTxt1zxfyn1lhaAiv+o8P7ZM5OScODlaaV4BxIe3qO3mEtG0RCGIvPBMxKIKfFlGKh4Pd6oDp/Dvxur57qRd5Xsi4gEtw3BfZyV05Pq97YWy1Le2m/ueglICxhqpuTOmFcmyX+SY6xjYh/ocXmuXY2FFjythJnsE4dh5GyBvKRyDt8TnovLFtnBrfbKG8Ch7Myxj/9hakejFcvBndY+v5FdE99bKPiO4a13QBT3wNxMYar87TZeNeW9oVn0XX6RzfAo/2Yjv3pH5YJH/EL1A/3eDPscezSF1wcuz3yGnCR/pDjvEr9ItsxKr0kszonXPiNXLFJ/0kh8xZJV4la/roPn3Av37yPVAWW5tfqz6E+82FkgeePRtYkzroPzmRiVxfZIc3YwOv2vCcHCO/+Xp41le416lLoEugS+BASCCYGNzhG8JRZM9mwahgK3wTX2W+Y1ke1Q8f2T1xKvyz+c0mshnwX2zJdxNbnnnmmXOrh7+xz7HX/HPn2EZ2jB3iy7Ed/ENYzZfGAxKPu86WsAmu33XXXc1P99LqscceO5eHQ/Hikbv+ZTm23/T3wyD4u7UkwNQd3jI69dRTVx5++OGV888/v23jcnfffff6lyXG1/rvLoF9kcCR/3bLyhGD3/zKf15cizH/yj8Nk6Pm0NfwbfFNB6CEoDNAC6x8OZFzjzixgA1IKcPxBZYScavDZAvA5Hi7biIEiCIJT8ShFAwANeDGEeUQCySAIJCsJIEpoHjmmWdaOXv/RkOiDXF2BfnKqEdygrMrqZE2lWMwACyegTEHl2MuQTgmRoBDLtC3wA9IO65JivE9/XeXwGaQgMA4Xx2Z1R86w+Gib0jS34IdTpJkI52nz/CAk2MTnCZoFlhzcLx5LFEPY+jW888/3yYslI8OCrK9oUoHJQok2gTwAnkBKmcQ3jiW8IAHnDr98AazY9glmSDgV4/63S+otuFBX2Abp8s99N+EgcU8cET9wUA8uR9O6i8MFIDjQz85pH5zJOGMBAS+U09wDiaFJATwApM4kWRBLvoDA8lc0qUSfrUPz7QroIepITJAEnww2zMiZ9hYSR1wmwz0WT/IiGwtxra+ALlcAABAAElEQVT3WxljI9ibOvAoAQnLkbL6ak9mZKcv6iET1zwHCVDy0Z5r5EFWniM5kMm2bdtanf1Pl0CXQJdAl8BKw8Wrr766iQLew2XkmK0IwVa4b/Jn/K/ncl/sBZ85tgsOw24+L9vLHvLb4Tg7xt9H+Tpj2os9yoICdlLCWXmLVv0eE3+cjWBPldUWYi8sCjYBwDaYDGPf/EbsBPuBH/aMXWE/kRhCffrAnusHnvAvAeOa8uyp/seup1/u2T5MoGSCwaScusQzFqg6z4bhPX4FHtktMnddveyiZ6PfFgngVWIfL2yo9vQT4cmz4huIjcKjcvwB5NgzQmy7RSgmRbTFxuuHF3/Ub5GZyVo8I/ypk+/lmfovBeThv/doN8Q/4LuJ5zxzdbkP4Yvc+Hc2MlBvKPa+nss1dRkf6uJv8K88Q8+GX1j9BXXjO/5EJjXwjR995rMZs8YAGZINH4lf+eSTT65PGN9///3tGfEnyC4TIe43IULenrdxYexp22JB5S2ws8enZ4UnPh8/KrpB9mS2Ovi6rqHIk09kYsWz8Gz4MyHjQj8snnG/DZmQHZO6Q57z/qaKGbPqJt9OB14CxpLxTP6wJ5TnYcx7+cFk69RkcMpP7dVtvImr6Bjch1nGNAzLBKmcCr318kKotu/FBbp6xsSLAsor615fOLQIQSIdFtA5BDND4gJ8wNXoBKzL4mXX6UN4o8/4hT2JC4PN6rWgFbkOK2A2YkfYGzEPuYnXLHCBcYnd4DYdVg5mmRQXq7Avcklwg16rUx/xqCxcgUOuxTbDHtiJBxgcTG/MDH/IHaaoF0/yWeqEOzZ9iQyCM86bEPYc9S9xHZwkF/xqC6bBergMh2NjxfDbhvgqcg4vfd8lsNklAFNM7NFdusV3pOv0hh7x0+CIDSbwAfgZ8iHJIZER35pu01n+gUV1/Dw6RufgAb1zjwX2/A3twR95cL7Ejh07mg7Sf5hBR+NzjZ+DMnRaHXBUPe5Rr5wZTELxz+r9bIX29B1e8/NgCExC+EbOwT7t8MHVBSPlmeCffoXIxMaXwRNcC17pN78dbyFl9SEvJsIt5TL5CdtcR/wS/PrvW3iQeyJj+Jt5Avkq/WYb+bT8o3l4xq/3DL3gHxumLbLx/PVPff4LB77I2BjxQpY8H9If8sATrL/lllv22Pa2ivqfLoE5EoAr/CRxSCX6Ky5BrhvHxmp+G98wBKaJrXwJs471VnD0B8bRW5vxTQ/oJtxD4kp8WDTBl0t7tRo8aQ9+ao8e00X+iTgs9dNreg4L4mfy6UL8Ei+put9iEC+0BkPU7yUmeAsD4DT91LbfsIn/CI8St+GFPKaILNWBNzgITyyyUF59cAmGsQswOX1I/+EoH0x7s0j7sJEM4Nl5553XMJtcYKp24bZ+wBTt6gNbwhflC6LgEpuCD3zjV536z0f1shoZyA0473gjYsZZfe3n90wCxp8FnMjzFMsgekE//NfpPL8p26U8+y/2MRbktMQcxpDxwH+hB2IP1/kg6jW26BJ7XeNKuQ/zeHSYD2DMG6PGp9+I32I8KyNuoR9jf0XbxrN+RHfx6gVReTL6ZTx7GZQexKcRi7KpSAzF5u4Y/CN2nw+lTqT+EB3VBp7wP4u0I97VLruOj+S3yI0eql879J0Pp308kTFcIE/ntOf+nQOO4UV98m2Zs+IXWuzLT5BLo4c+GqfO+JLaoOd8uBq/wwkycA8Z020YYk5QzOz5uFc9/BTPAB6SoT56HngkF3ji2Xs+sMQYgB/60alLoEugS+BASSD+CDzjW8J0fhScQ9nDYVjFB+UDw0O0WnzE+JXwd3wt/jGsVU8IzrJl7B9by0dik2AjmwZjx3m53OsavmKv3ed+9ciPIvaH3dW/xOT65D71atd6EvNm/EUY7Dfym0+HD5jPBm0GOrItblzUk8EWHfG3w9dh/vq1xMLULb56wNm2opox5sCYyLHo95RTTmkJjan7+rkugX2VwJv+ZljY+2+G8XnErmHV7oLahjWvrwzx4Cv/Z1gI9Zfzx/SCmvbLZQ6qzUJZk+icROAbcOTYe7ONQ8lptAfQHFxBuOBCchDASS4ISDnAnEnlABuQ45z6neBUsAEIAS/H2jGK8875Fqz4V2Kc8hqkc/7xpW2grSxQBLD4QHji4AJj9UsMCGY4uNpWNwODP6RdjrN6JfvwI7iwZ1CqgWk39D9dAptEAhwLiz2mSABJV5Sh77fddlvTGcE5JwpeSPrRbYsZBJT0iv2FBxwo1+ilgF8w7Toddk5wKgkJY+ixpB5ddAyDOIYJquFKJlZhERLUwwdtwCYOkjLqoNucM3v3crjgnIX78CSJQAkP+OG3CVKJU1iiDExw/87BmdQXfMIR9WoXzsAwWCRgD8EN/GiTTGCRevWZTMnBBovgo7Zgj+uSChZl4Qt+uV9ZMtUvm3adxzMMRBxOyQVkkjyBPFlyLPGjPPlbGEBm5E9ekrzqdU0Z+I0fctAHY6DSs88+256hMRByH75C6iIHyWZOLhz2LC3wGZP2yIhT36lLoEugS+BwlAA7g9jVSuwC+8t/ZW/YGskEeMl2xN7xryWaJSC8DQy33Zv7MpmnbnYHwWi2hL3WPrsBu+Exchycj41ji9gNfLIjeGN/Ur/y+OI3uA7fc298bjbZpBRiO9SB9MH9/AJ2GW/skPv0BeFNney5SUO2GZGHTR+05357PLC/7DuZiF+0wSex5zfk3yyrxyIANtIXNZKM0iY+8eAcuUlEkRve2G1+jfrZVXaODRX7kJM4Ag/alpAnr/gl6ox89Bcl4WTvubDtnukvfvGL1n/PRV36pJ++4MK+Iv1F6uJHWaSgvD7y9cgoySiLPdznHL+OnxA7zvbb9NOeXNlx9eu/3/Z8oSmSAHOdfN0vtuK7aRtp19gkD8eeqT65Dx94N7HsPzJ5xuSkH8pFTvwxfuJDDz3U2jJJTGbkjS/6gsjQOMKzZ6YP5KY/9Ofoo49u/fTbOPalGpMt5KIP2japoh+erzY8M2NIH/h16t+6dWvjx5jwvOmJ/hoX6ja+MwmEr/i4kQl/TZ3hW92rJcHpnjGZvDKJRIeiX+My9TdZBhtyvt6Xhb/G7dTC49xT9yYkO+27BOA3LDnuuOPamFKjZxU88BtmGW/KGtchx8ZK9s47DmVS0PM3/u3lRoxJ2OXYONCWOAl+i3XGRB/oAN3IWKJLGUP4pcd0Wjv6Q8foAoJ9mYQMPtNf443+0GFjmW475z/BqN/9JlT1yUJf9cBkbdCt1K8NeA0rbPgVQ2lTnivnlYMj6kDqg1Fkazzrmw3v4pjYRHrtPHmSAb3HA7xSRtzoN9xkK4PtrZHhj7iO3tN1L9HDG7LTRogM5bIfGP41oXIhz8N5X+/KebLy1UlxnnPa1if2Be8IBuN3PGZS73jf815jifTfh7IE2Fx2jb9Dh7xkTk/ZWjrLH6Y39mw8fXSeTsbHcj/fGvHv6BJ/wss8NnjHd7EgVW4HwaT4NfwR2AJrtQsHYC9M0pa6KvnNF+ML+Y8DMBCG4TP+kmt4DY6yDQiv6oef+q49ZWBhSNuIr4FPC/lgq0Wv5KANmGZD2nW/PQyVf8MfDNSWhS18Xv1VBjmP3Adr4RE+0lf5K7jL/4FdfGt4Cjudh23qchzSBvnqN7th4csU6QucPemkk3bDV+XZN5iJX7GEPuGPL+15hmCpfpK/RTTya2Mc1RZif0PO1d/Odz8p0un7KgFjha4a075ca4w7Nh7FycakuIWu0TM6YVzSW/oEp+ireuAJ/8E29su0SScT47kfpsA89QRP1AMHtOEcfip2hHfn+VbIPfSZH8lH0TZcE8Pgm4+mL65bFBdsoOMW86sLNvoPD/pKL9UNf/gjFszpI98LluIbjtBb2OKce/hn4YefGiJfHwCj28q7N3IiUxhDrviAo67hgwzcg382g+zgI7l4Pq5V3017+vbd73634Ro58AOdC67i3fON7dEWPPI1Vby5pjxZkR1sDI/qIGf47Tx7RgZsE6z3LMfU/bmxRA78by/ne86xjfIedMo5uQZj3zPM87MIyMuTxoINmYPy8mLmhIxNxxaUGgvGsHEh78S2iQHouHHkPn6LXAZKHkSujm6wgeyVnAv7a0yF1IkvusxWG4Ox4cYwHVa//ihnDMMAbRvTeIEvmbNTTn/5VvSWf4JXOqYNfgA945uoTz3BLDyRIR7pes1RGOdIf/gGeMh9dJf8YIJ66Tg/QltwBWkH3sAY5ek4vmxIu+6jm9omby+6qk9+zofIyJWdVyce9UmMR57qcb/8Iv70W7xrLOAjOGKvjcR0+FYXublHee3oG38Jn+r3LJzThnYRTNSXTl0CXQJdAhstAX4ggst8UZgJC2ETfPXbPuQ8XIP74lZ4iOQhYSCC2eykDcHAXGPbzjrrrGaT2CV188vYAL4XbOQjsaFykfCSfYTZMBc/U4Qn/qJ2vPCKrCtl27QBZ72Elr7AXzZRfTBXLpEvCYe1jxfH7LRybDcbwi7C881AaytzFvVkmK87YrBHW6bnjV53t8DA1qlL4EBKYMu/WhujK38xtLrmL89tftf/GpJjQ7kjXstTzS2/URcFyZxx4GST1AOsFudypAWTkpDAkcMuEAVWwAggAizgBECROgCWN1ozAWsPTAEhR1MZxMkUmArygWGSaDEA9iYi1MdRxycAVJfgF3hz2NWv/QAtvk0o4Z0THCdXmXy9QD1AXbvux5P2GA71uIYYpQQxeD/ttNNWVkvSrhXqf7oEDmEJcMA4XrPIV+foiclUE730iw5yvugM/eJoCW7hAp1THgYIYDlm9AtewAr4wVlCdFrQyimTUFCf4FUbSaLBGA6h63Gk6GKCVHXTW4tg7WGatpxXN5yQ9Ag+4I2D5ToccZ6Ou9dvSQZJjtoWPIEfAn1bEgASFHAmTh18dB1x3sjJb3JQL9whHwkSX0PQBwkNGEQuriOJBjx5NpExDBbEI7JWN8IzIhP9xadn4ktU5I2c06YJJ+2QAZlIEqpXwtH9+qFsFhB4hvlyBEzEi2fjuUnIuMc5ROauadN55JpnrbzxQhbaniKJFP3Om9tTZfq5LoEugS6BzSgBE8U2dgnB/uCo3+yhlynYCzaErWXb4q/C7fiyEhFshOS86+yX++Az2+caYttDrikvYa8tNgSmq9c1WM7uwXPt7hheenOenXJ+dfCLtZMFAGwIW8y/Vx9fPb44O4mUZRslvC1aYG/4/EidEts2Nk5ZtiVJcf3Bh4SIsnhBkjbqkPQhS9fZc4kci5pc0xcytNhVOfebTMk95G7yXhLGuZD72GB1aI8s2DRJH74AudpMWLpPG2y863wntlQ7XoCSaGLDtY3Ihm1Uno0m19hh+ySX1MWWuy/xl/uViU/kNyIvdWrHc+UfWKxqbCH90Rd1sdHkxc/CO/6Q/nl+KM8tfgUfhwzCu/FHZiHPzaZ+k05kx4/wZSbthrStbuOAXPkjxk7+TSF+jFukPWPBRk7K6rsFgI899lh7xuJFi/70GYnjyMBmgkl7/DZk8bjf+CE/8tI/9TpPDs6rSz+NUTKhV+ogQ/fYI/1PXOpZ6Xf8Y2Uc29MLsiBDvicZ67t4Wx9teOCTXX/99W0Rn2P1k1V0WJ+Q8ZfnY59x5ZnGP1Uux/y3TBQ5b8x7PrkeeZPBddddt16fcnnG+kEmuQfvdCpfVlVvpz2XgAVDcM+efI0/Og/L6C5M9hxc+8lPftLkn+fteSmvjH10GxfGAh01sUt31KkeWKqcse4+OA6r/DZGjXVj3PiIjTF+LJCLjaAL9ALmqUNcIQFujNjwVUl7xq49vtxnDNfNSwYWZUmc0yV6RTfVpQ31uk5vHLOJ6qI39IO8lLfRJ/dZIExuiA4q5z734wFpC8EU+Scy1z91kxciM/IgQ3XQOcdwhH7Y2BxtkQte2Ff2C79kS4biIv0SX6PosPZcgw3KwQl6Rl6ehb7QNRMHCG/wnd3Qf6TfcNKzQO41eSD29EVofTBGgiXGBL0Ppmibje15rya+/ucQlgDfml6ffvrprRfyH3wTegpL+BD8KXpIVxGsgxv0w0YH6VjwgY46Z0F9fCR4CCPkVugkf0q9dBmWqlNb6qCr1TfQFhyqhDe6Di/opTw8PFa3c0h70VltqBfRZZjk/uCFXBtcCJbhF2kHXmkfBjmGMzDDufBl735YpG/alXsLwRA+uDKwU7nwRq7w3TnH9gjuwkg84l+bO4b4QlvKux8veS76Swbud584Bg+pT53q8JsslFEPuxZ8VcZ18mHrPEcywTO7Aze1ST7KOY/cb4zgiU+uHYQnbSD+qt/GlvY9M1gbGXY/qYmp/ykSgE++4kkHkLkx449uiIWMHXtjOGNbOfY72ONe1/kz7mXn6WgWwCsLM9TFrtMZuOa38c+fgYnGrnpgVfCBTqsXLlSiM/QLjtFJOmHM852Me/e7z/hXr2N7eLNz8KvEIOJhv/EMK7Vr0RvfCZ7Qv/e+972tDXyoK/oEM2EN/vUDL7DV/a6plx+t747xpl2EFwQTydQ1FL13XbwMu2G2+vjl9JqPBTtsMEE/81yCCa7x9ZRPfiMfFcETHNE38lBOX80BONYueYo3yQMpB3c8b31BYmY2CfaQA/9T/x9//PH2WxlyQfw5Y4E/1+nAS4CO+3qtFzYz50Zv2AN74wXx6cXcyNihI/E5nON3GP/Gj3FPl40RttOYNSbopbFlbIg7XPebTjlH18U/9NxvMYJ2gh/0yHgx5pQzhozrjEXta8MeqVcfjF3Hxqc2YJI66JbNGIVtxrY2tEl/+CrBIvUi/MI8ckn/nQupF9nffvvt6/ocvt1Lf+K7wQD8aSu5IfrCV9M/7cbeO+YD6If+4BcP2qJ/yvMJ8Oa6HA3dgrnkLccFN0L6qG31wg7PCZbCATJSJ/0XCwY/3Kt+8To8i1xgCDl6/vxYZAy433hgM7Ql1kQw3/n4i+1k/9Ml0CXQJbABEvCygvUO7AF/UtwGL2Gp+Q/Y5RiWB8P95gfCPsew1TVrFtQDw9lF9hDOIv4Y+4HYU1gIA90H/5RXHxxkt5RnIxEbwR7xt9TvWFk2wp7fbM++mTdKmzCdveRDuo7Uq08wHumrY7zxF5XDE96zjk6//GYDlSULdkE9hzqtSWFBL7YMLwpvOQi+bLqAzX75MJfAEX81fNloGKu7llnYO5TZ9b8FW2uT0W+U6ABfnEU8AKSALYDh5AJoAMSJrJT7BAI2DjICnBzqKeJQJzAAdkCf443cD/xseYOCw8xJ9vYuvoCkttynPOdYkIPUy7kFlM4pZ0IfP+EVSCvnuqBDW45dV5+AXr/VQRZ+C/oF0wIfE5arq6utvf6nS2AzSIBDM48k2gTBMMBErd8cpSTmLYChGxyv6A99oq90TbnoaNrhSIXoIcdG0AkT6B2nDKkje1iUelzngGmHDsehcj+HTDnHknEIXiTZwbGi43iVJHRe0K7dLKzVVhIJcCHtKmehRviCjbmmniRYW6PDH/0XvKsbzqlTfSEOrC0UuQjc8UbO2iJ7dSH9wnuO4Vy+nkwWFrWQOeyUJMCT8rBRsjD3tYPhj6SS/qpDW5xLz5tstel+fXNMbmSvH/hA7nGsDs8ED8g5/c7zVCc+OMGzSCJl0XicdW8/3yXQJdAlcKhKQILXl1bgN5sAP2MrYCb7yAe3mMp5CWS/Y5+Cx/qvLgkIdk+ig406/vjjGzZL+sJkFJvSfgx/2D94r3z1jXNdG2wAwmP4Y2v4BrEZrjvHtrAVvmZvcRI7om73qV+yme1WVqKk2sO0z66ol33iY8Re4mVsS9giZS3eRI7Vr0/u89u/A2a33a9O5D7thFwjG/tK8Uuc07bfsa1ik61bt7Zn4kuKiB1m07WtXe3bxBGeXyV8stGIHcwEb8qQD38mkz/pq0UEaMxr7vO8kuDHq/EQwlfeEldfttSZcvP2niFSt/7yVUKVV+fUj8+Mm5QjR88I4dd4UI4uSI7V8hl/ypITfwWRTXwHfkgmbtrFV/9k3OVc/R2/BS+ebZ4VWSinX/i3N6adp2MmVI3zkHr8lvwzhtSjPs+P3qkDWfytLnIzsYTohrGpPfzbO6dfnpX7lffMtKOuGnuTVa4ZT2QodqV7ziuvPuQ+vEcG8EWsnOvuDa9iYHJR1nl82/TLmPUM9JXPesIJJ/SFvU3Ce/+H7nvOYiNjOfJWI5wRb0lMwxZj0TPLc3Qs/+J39sFSY9GYtc9z9mU4zxZG1LHkfnhtzLlmfLAn9V75FddN1OJDO8aHevCmDl+cGtsZ/TA+jS/3uF75t+AEf756qR4xmzyQ+EW58K5N551TF96QSYGMT/iUTeyqLJ5tdFI5mCjnQ+ZIm0hfxJOeR9p0Hs/Km/BGcE+cp7x64RLeyI/cgpHiMW0lTtKO5+G8OqO76iRrGCFnZlFI5C43BgM9MzzhDwU/nUtuS53aopeI/dQGW2eyQh9MppCB50FucmT6gDf3mYjpea8mvv7nEJYAG5p8kG7wTdhU/jB9kdehY2woPY7tc0yf5WSQycN6nY5F91xXh3N0yDF8QnSWrsEwGCCXpA110Uv30Gnk3hCdhD/8CWXH7dNbW0i9cElZGGKP7NlrL0LAQLxpT1vhAz7CMn2FX3A3foc6lA1v/Ap14VvdkRfsx4/z+hn/zP3siBe3034wlS2Ln6ceeOSZoNgGdaW8+yNjGOa855u+uE8ZdeknjMVXns24fc/P84mdiqzUw0bAQfco53d4E2fhI7gd/5MdUYd+sAHw1r3OG3cmdbufRLqdIgFjyX9iCRlLxpaN3hqbWcRlbJn7so9v4Rg5H3tu3LqHrqqHbec/IGXoNuzho9BZfqXyxnp0jb+JEhu4pi7XtWnvHP0xtvmCSL7BYrTEuf6bLj2Qs8AHvwYPCC7CBnVEt8RBIeVgFWyqPpzrwSPHysA/OpqYDAaiLORoP4Y/MAGm6Dd81Sf34zHyhRe297///c1OZHGue5ULJuk/zI3c7EPx8TwLz8ECEVgEm5zTrn4j9Wlb/Cvmgh3OIeXVyx54kSRywnN4d68y5EVOiDw88/hz+tsX9jbRHPA/8UGyqBcDdMYL+8hzNN48Q3jgeRprbCN77LdxgPgDxpOxSVeMJc/YVsspK56q59JOFpHmmnHp2NiWs8Onc3RWrsxYChlj7JmxGh2EI3wseKUf9Eq5+B3uxTeCZ/QU8TOU0Q/+gj4jdQTP0m/nw6+9vtjrY3SX7MgQNm0dcnLO++1FSD6LvXOI7Ub0SBuJJ13HFwwTI9Nbzw9uaQ924i/kmnyVXAtSBkU2ZEXP9Yfc5Y/4le4L/qQ+fQr/6nA+1/zmS3gu+pfzxoJ4nD3QJuwIads5ZbXXqUugS6BLYKMk4OUu/gdfsq6XgK/wtGJb/Bd+jfPiOfexBzCUPWNDbDCO3WBnYKRzIbiXl5syfwGjYaX6kPrVh2A7m+mlCfXyE9k4vqmcAHzVlnbYaGWQNuX64Lj8HP6VQ/AdzjqH//iezvk4gevOxw5oC982fhn/lj9+qNNr2Yg5PdkyPLstax/Bm1OqX+oSeGMl0Mboa77UXGZ2DS/a295oAmScSgR0ARTgCiByZpUB0s4DXeQ6J5KT6M1c9wFhIOgewAWkBKVADVAqKwgIAUqg6uvAwJaTq07kmiBCO/gyeahezqqFhIJ2eyAIYAGpdoCjY2XxI1mAN5MbnFo8AXrXTJy65v5MtABY7dq7pn5GgnFyn+RApy6BzSYBjsssEtwLVumVZBNnREBJ7+kRXfUvgF3j8IToEb0SpNNNDg0cUD56rl2BPlyhswmK6Rq91BbSjgBcPfndDoY/8IF+4s8xvOLAObYhvMYZ1GZ48aUOmAGblPVFb8lN7ePLPXiGZ8ix+/GivASBshxEGAVflAnhO86cuuGj67AOviifJIa24A5ZqBtv+JQE4IS6jk/9JEMEn5QVuFuUZdMfOOseEzQmEWCdhIS2yBUPniHSjrKeCfnmWJ2SNMrrm+v4Q5I+EikwVR/xxMklF+WTbMC/Tb/tlZtH7EX6Nq9cv9Yl0CXQJbCZJGAR02WXXdbwky2NT6qPcJldsnjWxBkcZQ/gOVvCDrAzwV0+K9vC7rHDbIr72Vik7uz52CE4HR+bDVEf+6a92IvYYItXnYP5kjKS8mIE7SG+N/vohRb1sH/x/7WDBzbG5rovp4Z/PKk7X0KTZGcv2Tr1Kqd/7iWHEN7UnaS93ymrPFul3iTSU04f2af8Vp8vbqTPtX51qJNM1J+Ygd0zUYFH9Se55HrOkY972XF8ZtJU2/qSuthBz7XSpz71qZXPf/7z6196CR/K1ON6D/7UyydA6jdmVldX229/8IP4TOpB+PVcUZ5Z+zH6k/qdVnfiwxQz/pQhe3XyzSTfyDn1u54x5lh7+BATkqdxkgV06iUrZJyRU9rkl/FByN59tvSTrD0PffVMteccnvzOmNG+DSlPbvigN8Y430R7fCnjzpj0TI2VJAzxhw/XXVNfFhlrx2JLfTJRHn0xYczvMqbIiC7nJTM84sXmfn1QFm+O+WjiUuXwZpIcX+Rogw3ibP6s9pThZ7sP3+pUDp/6mf45D2uU9ZVTbWkn8lGvcWzSmDyNK/fCsU77JgHPmnzpLqI/yBiX9+C/e87GjbHkuXhejm3I76nzks2JuZSja/I7ibWMPeMkL3kowybgR5vRc7wYc3RB/GWMBYuNI3XI0+AjMZG23OOaffDGb2PQOeNM/2PjEoM4h7dsxp77JcyVdZ/f9Nk97BFejdeMb7xow3h1nnyUo0s1diXD5J7govLq1oY6bOrUL/1H6qUL7IB2kbip7uEhXCdvPLtX3/NlY3yHlCVjY8BGxvRa/e7FDwzVf5PheHMND66TE8IXfv3GlzL0VGzod9okA/20uW6SGqb5F/fk1KlL4FCWgHF86aWXrnchi2voMDw0/umJXBYsNLGHnEN8cvpKn+gXgg3KVX/GOROJyrjXRyksylE/34RuwQ56ak//6HnqzF79jmGROvEIu9l+ugm31OV8vQfvysNgbWrD4jplYLgXA4MN+MZjcM0CHn46nIHn9N99qT97vKUuOJycDSxzXtvqgFH4hTk2PoIyyTXhM6RPrsNdeCcvhT91kQG8Vh7veFYPfrTjOowyl5CPiijDFuCB3MQiytpcIzvHCA5qk+zIjF8ZGak3x8po0zn9ZpOyqUc5z5i/5zye2U6+qL75rZ+o+0lNDP3PqxIwHozjiy++uOFMxqvLxpPxI+aBP8YRPbOnLxmfEaYxSu8zb8UvM+aR88jYp+tiULpg3NM1uhA/jv4Yr9m7Dy/4pM/q1DZddE5MY9zTAT4JvDzqqKPaIlT5BwTv8G3jYyojzlAffwmeIfkAuCiesuGJLqcfwaLad3Xin36KwdzHX/Ybf2SVL8Apx+eD/3weeIx39aqHrmuTjwVr8UmX5b7hAz49D/KsmEuW4TH4oj/wTBxLlmStTefSDxiqXfeoT//VD2fy3D177WZBMNx2Tr/IxjHMTHv65F5Y7jnC87xE2gr1PwdUAnyQe+65p8XU/HtkXH34wx9e9/U9S3pgLMqxsV18EuPDWPU86YXxY3x6USi5IrplHBhTdBL5nbFkrKoXGaPiDnXQPeODfTWGkHGY2EjcB2+0m3rxYayjYErwgE7CCWPNeKd78hqITvKZjGPjUj30qeqftvhM+Ens696M8egMXuGiMa+Pq0Neiw9AL8iR3uub3/i2qMy9iZfUqQ56h9RPJ/ELw5S1qJe+wijyhwvuCf6p20aukSMfxHH4zJ5c9A3ukl1yRrDfPJ/nHMwgS3IyPhyrI7qtbv1G6oG78V2CXfZk7TyskzfVP+c6dQl0CXQJbJQETj755OajsEewEPabBwq+wrKKufAN/ntJnQ8Kq2Eu7Id/7CFcdN4eDsO1ahv4kmwAWwLv4D8cZ5sSZ2qHvbGH2bBeO7CRPdY2Uib5gdi81cG2aBtmO6cOL1exBfqpDn3KBmf5oHK0fEh2Wh9dJwe8qS9+ZnKs+nWo01ILe1eGdTJblit5qMuj838IS2CLcTpsay7igo4MsfWutTmbBQU39rJAQ9IJAVUgx8Hn+AIjzipQ/PWvf91AFfgALKAo8SDoAHiAFNia/OSsJ/gFsohDK8EHiIEm8AKKvmIF/CQXlKmTK4DaBAhnl0NrEjJBBafbNYkLm39xom0Gg6OrTqQfjvEnsaAMUGUsBCuuu78SJ9k5iVyyMKFub+vUJbDZJEDHOSqzyKQ+x8UEv6/8fOQjH2lvtdJZ+ka36CX9T/KNHktKcHpgQBwrwb5zIckJuAAv8MD5E5jTU/XGmeNEwRv1aBMGuY53uOU+5+GSJAmSENuxY0dLxsGQOIewAu+SDu94xztaWfclKSkRKRkB/zhd+oVSBnbhT6IFfuEBPrmuDY6kDT/koLx9kjPKSqho3+JY8pCAgHf2CN7COwkb98JNjqfkgn5xCuEo3mCZMu4nQ+3gyVeWYOrPfvazVgZP/rW1pADe1WEix8SwRAM+YCcHVb02MpBEhKGOQ5IyEqb6HLmTpWfpeXs+HFjys3evtuCq5zZF7sszmLrez3UJdAl0CWxWCbz73e9esfFTMwlW++pfrrvui1eSFibH2VO2SpKXbw6X2UI+69NPP91siDrYTous3IdgO3vBrjsHoxGbHfvAprC3/GV2RDtshGNtZWGQe2G6RDxbB/MR2y3RoqzkjgUOzvG7Q2wNUm/8hXxpx3n2jz22N8mgbW0gNsx5tsX9+EjiiI1EbAq7p6+IfWJj9FuCxtc7EHvJHiZxzq7pD39Gv92HtCExz+Yhe7bZc+ALqNu9/hPK6hAX6Ts7yT9yTmIHP475NOy1fjiXuEhfPB82OaScZ69tfWHz3aNM4h73aZtPledpj0ftk4WJAsmsSu6z4cdGhmQTX4QMtME30KZnHfuevfo898RnqZ+c8fqb3/ym1eF58SU8H7L27MKr354DeYghxabiM7yYEHUf3vBDBtquchKLkhEZ+2LAjsH342/oR/pIZ5Qztj1XybtM2FhwzMfShr4Ya9rEA7nSSWOEPDMO8UIPPBcyQsr7WhVZ6Zv66ZgxgsgD7+JJEzrGAhIPK+M8HRTf0j++4jJfzMQX3XAPGVZSR6WbbrqptZPkJRnnOSjnuSEJ2ccee2zl/PPPb7/Hf3aWxdOJj7Mfl+2/l5eAmMu/ZRYXVTJuYSryjNiC8847b2V1wJpl6Vvf+lYbv0liu087WRBljNNji9PEC/Te5hwctKdX9IgOideCVTCzEh00Ltkn/NIX5Bydgjd00297scsnP/nJNjbleCzC0F/JcTpAP5XT3jPPPNP0GO46Z/zCOF+9gx90QD4L0VfX2Rj2xT14MVaVgwuwGsFhmEFn6bIy+Nd352CDe+G+GM0XnvSNvrO/ZEJeeIp9U1YbZKVsbJw24Y5/Mw23qt6SBXnKQ5G53/onBtcfmzrxp03jBYaw9TAGr8roD/2H286Jl5cZM+pF2bcf/U+XwCEqARjJ3smHwA9YQk/4pM7TPfaevyaPEz+VvtNfNpL+8UWip+6Vx4ETfKuaIzGRB2PZUFgHP/g9dJC+xh9QL5zi49FXWBhyHNxwHz7pM77dDz/4c/jBI1yCzfoHM2CN+vkSMA+OHnPMMQ2b+Arx8dyvXn3gP8JemKe/fBF8hC84auPLyfngxW+LZvAP04Nl5OE+8uHn8JP4S/qC/+SCfJFQP/leb3vb2xqfvkT405/+tL1UpDxZwtXcwwfUR7zqc/L0NXaKf/Kxj32s1UNe+uq5udezU4/nzSczJuQGYSSsxg/8s3nuyhgj5AKbtclPraRNtFpscvhwPniavXOdugTELrbbbrutjc3MoZEMHaKbxiQs4TPw8x0jOkp/xU90TA6AnvBP0Ngvc44uGP/GJt9FLAUPbGIZeAKT6DJMgGP8GzqI6FxI3OsaHNi6dWvzkWCd83APLqmTzukL34ififi66vSfAfBML5TDu/aDH/TWNXinbv2FYa4jOJ1jMhBb0WX+Iz0NvfTSSytPPfVU829hmDqUIUv4JR8Ob/DC//QihBw4nOFXwmr1kguKr6n/sLCS56IP8AZWwjxY6DechNOwBO/qxU/wS3l9RvDb88cjXMYfvm3qSizMdnn2sN48zWrBoOBN9pXPfnxgJOB5nHXWWS1uix+iZTZEPGUz7jy/xPwXXnhhs5nso2dNV5Rjy9lK+QW6xdbSU34Le2YsK2+siuPoonLOO4Ylxixs2DHEacY9nWHnjDXtGfcwxbgy/umtexD9iz7Tb2Rsim1ghfFtvOOXHhh3bDhcgV/8EjwYw9rRpmP3wCIUX4JewyuYgQ+kv/pir67kKDK+o0dPPPFEkwOM07Y2lA+pT73qsSd7eqYPrsFZ+kUerpOpdm34ovPw5vLLL1+5/vrrV0488cSGp/wd+u2ZKKdPZOZYTtMxHIsP4TnDtuCKdtgAfmSw3LOJP0dOYkJ44nnCDjLCF349E89HfxGMcRz5pP993yXQJdAlsD8lcPrpp6/PY5199tnNp4T58JyN4b+wKyGYxY+CbbCMzYCF8Hd1sJlwTXm+FJ+InRFDI3jt2q9+9at2D5xjbxCs4w+5JzgeTGRD1a1t52xT9Nxzz7V6taddPLGD2khb7K1zsYPqcc2cF/vL7rIpsB/uw265XOeVQ+zI2H9sFw7BP8st1z1iZWXLsB3MxCkxMcXR2szE2TAYJYwMzIOZKBCnlcJSpA0nY3TZceqlqYPkxSnghgAT4BTsP/roow3MyA0YZ1xLgnEkOamcTY4l4BKEIsAF5AQCxodxItg3wSHg4FwDVJMVAhIgrw1bJmFaRcMfz879X/nKV1auuOKK5pQHfIH5fffd13iQiLBYj7EArJxsBDBd44wjvFkwh/COv5qccF6QrRxAps8Crve85z0udeoS2JQS4PxwnOj+lGPBwbIJvk3yc9QEnBwmzorJUhhAb5yTkKPzgnY6JNBXLwzgHAlcBbwI1piohD30Fw6Y5DSp7Le3WCUcBLScPde1Q7dhkGM2SRv0XuCaNrRD9zmLHL8E2HiyyFSSAT7QeQl92KaMyZPgGx6cc005iQEOomPX2BjJf8l+7cIwWxJtGTB4wzP+OYSRKXwjV+XJx7PghEo0kolJWgG7L67AKhtZIP0gV8+OwwkvH3rooYaXyqkryQ3lPStlU55sYDB+OLfOkzE+XYORfqvDHq+Vjj322DZZQzbqtumXe/VHPZ4PWZIbzE9yRaIyCQd1ass1fR5PlNQ2+3GXQJdAl8BmlgDcto1JYpkds7EZIecRG2B74IEHVj796U+3iTL4y0bA7tjw3MdesONsYfxhNluyWfJCvWwc/GYfxAGxIeyBja1mj+JHiw3ZJTaFP8E+svXsMztmC7EPyvHDJXPYWfbYb4vM9MUeT9rCI1vrOmJn2VNte0GGjVGOfPQbsV38A31g32KD9VvbiP3Cl7ZOOumkdo6NtxjVni/Cn3GMBwko8mCr2HUy0cfYcteQiRdf+1A+/4ZUHRYsqBNZWKw/+LOpnxzUlVhHOc8KnXnmmW1BGx9FHOXZsrVspxevLDLji5hMjQzYWXGRhdHq8dVfhJc8U/eZwDS5kbfQ9QuRnzbUYVMveTjnOO141mMiW/6gf41ILurMhIlxYnw5py57MtXv1SEm5Rsa5zbnTfzyNcWWGY+RE78TH9oyiWUceX58MnxFlnnu2lUPX4sM9YcsyEHsZ1xpE68WoihnvJC750k3MubxunOYHM+EFz6N/Q996EOtXfzn+ZGP54wvcS1eE5OqY0zqji83vjb+rV0+pPG/DJGdDWU/vo8OwqIeA48ls7G/Teqa+IVxiZW0CMNDJvxc+8xnPpNTS+2NdWNNzGYcotgOx9pGXgyhU8b8mPAB99kJGEiH0HgcwSS+Pl2CS9qE4TAFHqPoJr7YrW3btrXzsDsvcyhDN+Wb6CmdwANbBbNgJl7FHuqHhyiY7xyywBUWydfSf3irPnaDDYAVsIHOu1f78NP9yuqnuvFP37XpGZx66qktjoXnwQfPx3X3wWN4G/nkOfrNFrBfjvGkDfiByG11wICjjz667clQvAxP6KV7YZ4ysIqdhU1kgufgdGy5yRVt7+mYacz0P10Ch7gE2Fx+Af2yEB7u0SEYJV9E5/kWwRP+DtvPrmahGDtL5+g6/WTn4RDdou+I7vGr5YnUQafptjbgBxyi00juWm6E7wwrpgiuwVr+tkWnsArvfCg8ay/+Gf75MCF4Jqdy5ZVXNlyDdQiu2dyPJ22rF2ZrD1bru/v1w6ZuG1+bbXKvtuJz86Hl/+EdUla9sJJ8+IPaJA/8qwPBKdfd61j95hn4xrBW/Y7DO17waO9ZnXLKKes+ylTsZDGzhcd83GCvdh17jrGlrt95550Nq52HqXAbwVT8kpUx4wUU9mqqvXZD/9MlsBcSMJ7EDHQvMYaxTnecE5sgPgy9ohfsO12Qx+bD2GBc/I3sKzv0z1gWd9FjY1schtQLT+iHHDF8Uae4CkaMid7ymcRhFifzIcU1sBZ2qpsu4TE6HD+T76KfX/3qV9fjl/DLtwp+mAvgE9JHWAgjbPBE/cGOxKXuhWHKVx11rB8ww73Kwxe+HlnIEZCna+onX3E8nwtueQZib2WQe9mPvChSZWNRyLbBn/3mN7/ZcEw/4Vvy7mSTuQFyFWOa74DB5KNt8jEP4F5jwD3sDN70BR8w0jV467kmtqy89OODQwJ87+QnxDViMM/NOPKbLsrzZMx6SZgt4mcoE/KivzHBrzB2HbNj8CE6YKzyQ4wZ9dFhZV037pC9nITxwz+xGc/GFz30GxmT6jPe6JY6jE9EVxD9oJv6o024wdehn/SHn2Tezb3q0q6cjD4rb58XnPWVbPzXLhigf8b96qAPCH/uUY7ejnMUkZ89nWD/zatl3gxe0Dn6Lpale+rXX8d4dm3nECu7Xx/xi3fkuvM2vHmuXipV10c/+tE27+i5WfeAR3qvz2TmXlhINvEhLrjgghbbuYbST88UluNNvsiz4SuSk/GCLzEsvCY/5fDtuQar4yfB+05dAl0CXQIbLQG4a+NniZfgkngZvrETNudscAk+yu+Jh8WR1pnAXrT6qo/IbwqNr4mhxYzB+5TjO7sPdsNM9pKN5IeyTzUvl3vq/sEHH2y88GXZDAuI4SqfS11ybqnffWyfvuinNsxj+AADm882OA+f3Q+zxa9sCFsLzzcDLbewd7Cju9Zs6UHZZ4kPDw0ZBAL+zUpnnHHGypNPPtkcTW8dUUKO4iIyOcApqcRZ8UakRLWATfDC0RHQJPir5XNMOSTXKAvlEFBKLmVxacpx/EwKU148brjS+OjVsuPU3O/a/G/YfcP3nE+TScYy59tisg984AONr3y9IA485xggeaZ33XVXCzoEDQAKsMU55QQDbQ6t+uMIc3idB4oJ8KsABAHav+qqq1obxplErMSbQEA9jhkA4Khtzi3SJuBEdRxlAsciAgZgPGGlDk5zdNk464vMmhj7n00uAc6XwFfyYBbRffpA520cHPpC3zlPEo0mHST1TW7SQXoKCzhbJi85RL6oa4ICCYjpGz2ml3RQMo6Tw/FTHz2XdJCg4ISpjzMoqLeHVQL/F154odkBb8qaNIH7HEVYoy6/YYUEPYcMhkkc6Jc6JAe0rX62DfmNOIX6xDGEG7Dke9/7XuNB0KwPbBielGVrbPrBmSULAb2tYhKnz8Y+SXpIYiCJAXaWb4HwFoLFAnt8SlQkQeO6hb3VzpI7mSGyquSZrQ4OM7mTh+sSGuTkvHrJHf9kNSZ8e77ky+GF58ZCEh/kShb2eEUSD2RBBinnnOvk9eKLL7Yk6Lit/rtLoEugS+BwlgBbCY8l1mHvLIKjcJ/dHNv08X1sKmI/2SbYbILKxmdnZ0JsBDsk5qo2LLGBcu5hE5A6MkHVTpQ/2oH/7LG4gO1G7IWYQx92Dkkd9UmasFVIwoQPwUYh9iYTnWyv63yIJI3cx7bi12Ql3k0wsjmxm2INPPM1tm/f3uol6+985zstzjRByQ57QUjSH882CxFMwvEL2HlEvpGxuNZXRNQVynESVP5lVexzyoSv/PbMPUsk/iY7XzLDsxjYpKONXEwC4FXcKz4jT/abj+K6N+njHxgjnjti340V/SMHcq++B3+HbMmaDN0XfwI/ftcx0Sod/pCZ8WrTTxOiZEYO4ji8GWOeHT+E/8Gn8fxR5OkZ8usslraoxvPVH34HfvkevsqWvtnbyDmytqBP8s8ia33g26nTXjvGowQkmfIblTGx7dnSE76vNvCe59iYHP3hF997772Nr6qr8WE9l0suueR1vI6qOCA/8bOIlimzqI5+fc8lQDfPOeecFgPQj+iQmoLZ9MUE/p5SdKTqhjpMMKKMbTGNGITOTbVP77du3bqbjWmVDH+MHTkUY91iKXqtTpgAo2Eool+ZkKz5lsiALsEWMSJMgkHhxzn4K6Zjv2CSeuECgktsRLDJnm6L1UxAs13KwCH36ZN6vEAgzvNlN5iVxf0wB8FebYgfPQPxrL6xS+yka88+++z6YjB9HON66oExbJAN//Je5KFP8Ns4SLzsHi+5w0OyMtkgh6YOmM8mice8+A4T4ah2nddnNskCv05dAoejBOIXsNE2H6ywYIwew1l6Cy/kI/gD/CZ7ukiHbYjO00v+ijKwCi7FX+Zr8mn4y/kQBl3mA9FTGBud5gfJv/GvYJByUwT71GlxPz9NzsrX6PAMd2z8NhhWySJB2ItHuAlbkivn48CI4IS65drJSV2wCOFLWfhHPjDFps34+3wovpg9GwVDQ9rFgxyhfsI59YTwhm/yEzPAXu3DZXNEFgtqx7NgO8wdySt5bhbtxqalvvGeX8+fh7FsEpnHt+H7wkp+GQzHq4VL+GAj5PzIW5ueTZ7nl770pSbTcVv9d5fAvkhArMdeG3v0AhmTxrixC1OMU74PXBI/J76DK3RG2fvvv389XzCLH7qkbjl72OJ3iG6LK73gZS4V/gT/UsaensICGEJnEs/iwTb2M+NfZp+6xMK+Vkz3YUfNHeCRLMSofDb8wAuywCe+YAr9xIffeEKRYdqxx5frMBSuwRKYIBaECzAKVsEj/dMmvlInn5iNCI6SG1wdk7quu+66lUceeaTxrLx2bA8ML2Djnf+J8OAZePGX32kMkIO6zZGak4Bf/Dt7z311yNPDfz5rrpvD0b9OB68EpnQj+pB9uBeX0fvMfztPHxDbZKxa/2AcsJXGNL8EsdvGv7wGG2qNBL2BHeyYetg+9s38HBvIzrJ/4su82MKeiymMce04tgaDHia20p58G35gBV2kk3wKMVdyOPRKW/SHfsnlwJnorLFPJ60H+eUvf7kel6UdOohnusKHYJfh4CzSf4t+5XrIJjoPJ8hlx/C14rwEoD98DLiiPe1YkwIX4ABso2t8PfyTFdn46jjiE4pXn3/++aa76hZ3kQefkN6KD7UNC2Be8EluD66LuZHng2AI/MGD50NOfhsT5IjIgSy1gz+8kROe4Ydnot94nSerVln/0yXQJdAlsJ8kwH59+ctfbn6pKvmq/J4QewRz4S2sco1/NOXDBCtzb90fd9xxLaZn09gdxAbBbOfgKVvht3h727ZtbY4qPl2tqx7D7GqvleeD+bAZfIXr/uMMe6QfsD2xsv4oz6fj3/H1xOPve9/7WhPmlmA6X24z0dpqj0U9GvK/uw7iF00Y/xDH4ECSr1h4S0hid6MXFHNSOB2UIgufvDUmab+IxskXE5AmyTgrY+JIaWfKAfnBD36w29cmLGZC/r2cNyM5NYjjdPPNN7fV9v794N5MgrSKlvyza0/G6cDilrV4bsnaN74Yp9w4ElACGhMGEnucSASwOKnAy3MzcR9Q5OyTN8fUYr8EJ8q6FidYPZxhzq2EGkB0LckAdUjWmUwxceGtDQSEOaXa5dDiSdsWw7kfOAJz93JgObqAlJMbAu4maPwLR4GNBCtjAvwBtE3iUh+0pc70I3X0fZfAZpQA/RJkCiLpyZicN1F54403rl8yMSFghK30CG7TfQkBepnFNSZy6Tu9F/jGqUlF6rFJYl188cVNZ+m2AJYOww+6ypmSgIQp9Ju+02/JBhv9NamgfbhlIgGe0XV2UmIOn3BMe2yXSR0OobbikME1vKLswysbiDdJB04aXuCP/sERDh3e8BU+lfNb/Xickq/6JG7wFSJbSQ6J0SQYOYrqIxPJiOBv7pnae66+tExekr7VqSZXC17UL7kjMWCvXs8cT3BYuxZfwV1ON3JdAoRDqw2TTMrBTeTZkY0+q3d1SELCdfL1XJxH6UMwt8qgFeh/ugS6BLoEDnMJWBBpYsvCxFkEQyXS0bZXbbpzwex6n/Ps38c//vG2QAhW20JsVmwVrGbjfJEni4pSru5NKLAJeBAneulP8pzdSQIn5cXN/G1JcuQ+ExFsua+jsRXiAokVttD97rHno/P12UL2Ft/uc7/ryjuP1MFeVorNcY6NJwvJ+erviz0kkiwcE6vY+DTsMR9G++RSFzCkDf6HumbZsrTDVrKfkXPur3tyqPXgS//Imk/G1yI7fdo6LLRT3qSLSZnwT8YnnHDCbr4XG47wQW428tI3Nhtph3+QZ0WW2uffhMh9qg/qJ1/Pie/g36DiiY+BxJxp26JbvtvY51KOf+T8ZZdd1vIG6uXX0Ql1S7JVGbkHkXNkbS/BaIIHL6mTj6W/xhAfBX/kQJ4mzsTC89pYa+m1v/ggHy/Jilc9X2OHPumrF9sS17521/45yvNcprap3Mv4PrqXZzW+1n9vrAQyjkzeyXkg48gYkhubNeaX5arqxtQ9y7RPj+hUYoNgAH7hED/fWLfIRIxFB+Rn6Ae9gNnRMwny6Gr4CQ9e+BPbsVf6btO2GMhkttjKvXCIDsMRxAZoo5L7tC/3FLsAx/EOA/CJJ5t/Z2xRhlwYDBXTBNPEuvUlVbzaEBvhP0ppaxliq5PvlEN2n/5kX+tgh+GRCRIT5nATietglcV14lz9NlYc4xlP8NLWqUvgcJbAWFctZv3a177WRMKvgQdy0XCFj8LfRPSInrof7t1www3NH7Ywhf7RN/fDIT4ZX4oe+hrblC6rUxm22J6fzMcck3rlb+TS+Cd8IRuMNWEZnOGnwYdKcDY6L0/Db5oVQ/CD4U7+db1jMYe8G/7IA9nDx0rwEX98dz4V+dUJS/lB9ZOLa/HP1cHfIle5IbiauRq4r30yhV+uwT6+KJnL8S3jS+nHN77xjfbiuDrhuHq0yU9mV/GmfXNVfETH2nF+5/CSIR7kt9iWb3/727vZqiqLftwlsLcSsIjAHFXiOrqC+Cc24xE+GbN8HfO+dANVn0FMI39L1+OXtULDH3XQYdgAL6KT/LNKMI2/xscQC/HBKuFDnMgPU6f2bZWmztXrOYapcJi+i81giMXNwRB80FX+mX7xk2AhHHIOjTEJHs4ifMGAYLtyOYbHNnG8PuZ86oK3/PK8iAbvx21HHu6Bu35bEKk+RO4wHbYj5+ENXFcOBrEH5OteffHMXDePEsqzz7zKWP4p1/cHnwSW0Q1lrr322rZgNDE73Wdn2XJ6Y3y6ZnywU+w1X8V4cv3HP/5xs510SW6ODTPPrw66L4clt+elZnPkxrMYSe6LDvhtzLGbd9xxR5tLM99DB+XkxE028RRe6LA1IubE8ISSbzEXpz22l36z41V3lPPSFX1XtxwEHNKW+vCCD7oD12DTpZdeOvfh8l3oF32vWKiP+kEm8hzwUB/gDJ78dt499JQviKqPJR+aj5ORtTr5GPJmzosz1YEH/eBXqIu+jnU192sjeu25WLit7xaFifvEeOyCY1jkGt+ITMmbbwU7HJOT5wg3zKHymTp1CXQJdAkcCAnAOLaDfWIX2B3xKDsFm+ClHBXftNT0egAAQABJREFUk82ywcE9pW1DDs2LILBQvXCczRB/++08m+SjaepnQ+B7tT3jNvldiZ1d0xftwOHUx66oA+aLD/HPRrnut3ZgvjJsmzkMH3xBiS9d30z02izinF7tGtbK7nr9vNyc0gf+kqDClxAE//nC6YHiQnAhYWGR7EYu7JV4yb/wzF4fJbY5LLNIUpxjE4dIOQFr3nDy9R0LcjmckufXXHNNK0+ZlOOIhQS7+Rdy5557bgtYKa0AiONrEtmz8EWLkIDKYjHXvTkwj9fcs7d743RlyXXdW4aX8m1vNHE+E1jixUIvgSTgkqjjeEsQIAvjBAyepbdpA4ielckVz3R1SDR4TvnCFMdcfWNnEvh5loJ3b79m4ooDLbHJIf7sZz/b2vUHoPpXPcoBb0YCYPrXuRxbyU3BCx00plwTaEyRMeXtRQGLNxiBv3PkICjBmy9i0atOXQKHgwToF2fHSyJsWA1+6YPzgt8kjyITvzlm3uqn65IC9F3gaRPQwg16RU/H96cee9cEoAL6tE+HtW9hkgDesboQ/Ikz6C1gQS1HjOPmS0YSkc6bMGaf8Yc4UfCNU+erG96mQnAAvgiAZ5F7BNrwDO4JvpPcS4ANe2zkkq8BJLkBb+fVX9uNbOEdDOacIk4wOzeuh2zIYEwcUc9P/yUhgs3KSQ5IykoUkRU+JQTYXpNGnkNw9/vf/37D3SQc9FFiVeKYDH/0ox81Z52vYOPUcnDtJUL054EHHli3G7Ef+CB3k/aZ0HGuU5dAl0CXQJfAmgTguMWycD72cSyb6rey6WIeyX+2g30KBW+D3ZLb84jdYvPYTTgdm1fvgfOSHGIBX7OP/fKlLJNSfHY2i21gRyU+2Hrn2Af9wie7YOObs7Wu+82eulcbbLoEkePEL7GxykgaIW3wF9hPtoo9EjOOqcqtXtMHG3nZyLDu+T3ss/PiJf20iUeWsWX6KNk1a6EFXlwfxyKZ2BOv4ceb30h8q/8WfHlG+Mpzz74VfPUPnpEFGfwZ8rKJ8/gLzps8sPHFyI9steF5KOuYn+NZVvI8+Qj2SVyZMDEeURbC8BdNNJlgwk/kW+tyLBYlL3GjMjZfYrFN9W18P32wCGTsx/BrJdjsEV9G3WhP22g3DX+MGe2FT7LEo7qX4TX17Mmer50vuMy7z/NAxukiUnaj+F3Udr++No6MJRiDjKeNHENjmQf/5rVPp1yH70gsQZ9M3iaHI7aUbxFbwmO4jeC6PsESuj1F4SG6ZDzWMXnPPfc0TGErxIMwxIcDsrh1vFhFG+yH2AfOyRnBqVpn+GCX4ItYVv/kKVeHHBddM9kaHE757Om++ujPLFudsvRQ+UwO6+88Uic5ssX4YZd9iUQ/kvOCy+Jfto4cyNykhq+5Lap/Xtv9WpfAZpMA3YM/fNLkT+BT8iswKiQnEt+X7vOF5FbknWAK/5WPpC738Zvks+fpnPa16x66DYvi06ZdegyvtC/HFrIwh6/Nt+X74bvijYU6tX0xhAXJ8Boe1LLwFcbxW8OvvfwP3pJ3S9vjPayMn4gv+CRu4OfZ+Hh8dHmmKlMyJH84zU8SR9T2q+3BI9siT7g3dlC9NvWgYL7fkYtz/FW+Lxx17Lo+4NWi5/A3lkH/3SWwrxKABfSEPmReje6H5MLpFh0zvzlrLNJ1uASfxHYoPj8dkxvwH2YR3KlttJPDH/oLb+zljmEGPUBiPvpA72GlRWOzeGk3LPEHz7fffntbYKjOHcOHNMzVwUNt+cJ65oQtXhsvNB43YVFgMH18jb8JT2s+PGX0yWbuQrtjInsfkWILyDK5+VrOvHRyAPrFvxPnB/vgfl0cDB+9CIfEyciLu/xNOKQNGAyf9lXOrfL+55CRgLHiozrVFhoHXjAxxo2L6CFdFgeYzzK3Q4+M9eQBjVcxjbHFxuXFJT6EeTPljEWLkNzn2AuOxpyF9zBEW8Yku420FRKPWPMhT2gcx8a6DkfwI2Z0ns1Vfy0jfhPL5LyPidE39yK4CA/knfglfJ5F+kB+7iGr6vPUfojprEGRO8MjElfBYHop1sr5dnH4wy/gX6k/hBdbnpUcHV8lVPuac3U/7gufTD9hUQhf8MDzCVb4wBJs0Q805cN6drmeuvq+S6BLoEtgIyUA09gK6wX5PPxR+MWXsyVHB598CMa6jD0lGCzPKL5k/8xHwECYyJawdRbUBl/5zovmXvhwfLdK2mG/zP3E72NHzF/wFdklMaq8m43NiM+nHvF97IW64xfWNg714+mVd6Ne7Rrs+a5/WXMgRpcOmp+S2LbNShJEnB6OIscnlIm1/K57DmbegrcQN+RLNsgb3L70EaXmpEhYS1BxZiz4rEGXr36g66+/fuWLX/xiO/Zn6/CVIs7ghRde2BaK1oW9lMhkuH+P8Pjjj69cdNFF6/ft74NX/nnXyq61+YqFVW8ZXmLb8q/XFmotLLyBBQAbBx4wIcDK8QeKgt4TTzyxBf2uASD/Kl5ioU4gWtBrYQAQ5NQDO044UFOf39UhtjBMIHLTTTe1hKSyJtbjcJq4PfroozX5OuIQ2zjJ/tUFPmxIAkOSgvMusZpJ/lqB80Cfky5ZaUG5CXgTugFf/Kbu6ozXevpxl8BmlAAnw4J9478mAiXrJfPozBTREw4NXLco1DHnib2omDF17/iciVY8pH3JBhPF9rDF4l6THBw3ATpnSnnkBQ4LYCTPLPi38Mcm8GZXkMWnvlAIJyT8MvHsmv5L2sMA9mRMwS2JBgT3YFgmemCRhIRAW5JUMI7IJCQZip8p0u6YyNYGW8kGVSexlieHvDBTz8NM/ZEIVQb2ZhEOrHddwsMXjMmYo+0ZwkkYGdzljMLZ/Nt0/Y090B4MlfzQRxM03piT/JE4Wh2SkwjGc7K9kR3nVr/JFuZ3zG1i6n+6BLoEugReJwE4LN6yaCn2rBaAoXzuiqHsG3vuZTtYD5v5xhYqwdvYP7gs8ZEv39R6+c3uM8EnnmJ72eQ6YaaMmM1XI9iA8GDPlnixRjKazWYb1CPmSFzAvrOrNYbWV8kg96kjL+BpX8xioZjFno75KJXYHf3Fl75JzrNtbPLYfk7JrdblODYwx9njS1zKpuEVb86dddZZ6zJQdhYt43OMn2mtK3ImP2SiwUKEapdr+XpMLp6D52ryV0xHRhZNiMk9c7IhY31Tlg8hXrPXV3tyRuMF08aDOJ3PwScy2cM/IR9+krHA1yA77ennqaee2vwLMWP1D/gIFmeL7euzqP1Z5pi8Fvkx6tHGvtK+8Lk3bWvPIulFxNczQW6/iDxDC5Y6vbESiJ6/UVzMa981GzuDYNAYf+AcHEhsmfhKEl+ccPzxxy/Ey1n6FBsnLoFdyOQ0XEpusZ0sf+Qm4UBskLzQLIJdtssvv7z9d5ead5p1j/PitfFE8lR5coHFyxKdxA9MFmOz2eJzC5uds+AYzpq4F+uxB3Jc42eybHu9XJfAZpcAbOEz8mlgU/zScb/pHh8pBHv4Xtu3b2/+Ul64hj0mFfmuJgEXkXyVXBK/mi7zkfES4ovBEwv6Km/wyxfv+G7u4U/xb5NT4TPV9vWTb8pnlRszAYnEBDBxGRwOT7P2iU9gkZcL+I/aVT/54EmMwJ80CcqHxDf560dduKyNebZnFg+LzuOnUpULfzTxBrsAP/lLniccTcxU7+/HXQL7SwLGotjX/Ccc4cvAGPG2fLc5K2PUXOY83VCPnL0PHtEv99ExvoY5XPE/XXz44YfXc+y1D8Y7PTDnS0/Nr8kbWNzLZ1MnfwsGwRvx+5lnnlmr2ONjPFt8gWfxPkzDB1zgy8gvpA/xIec1gi91TpE5CvKpc8zjcrAWD2PSZ3lteA1vxzl9cbM5gDwfPODf+cS1df5AH8mzYjsfT57ch7Qyz5n9mJ/++/CQQMZTeks/vTgv7jeu6AY9FPcktlE2uTS2GHZYEM/PkB+j23I69EmM4D+NsMHm7iyqt2XcwY7kDczR8W/4Q+a45NbUqYxcjkXCFveq2z1TPgZf5O67725rBLRv0we+AuyzUMuLm75gPY6R8A6/6oLXyGVqz4bTv3F5/YCx+ozvqoPK+o+WPnSTeb7UrS6y5LtN0fhZTZVZ9hwcQzCh7tuPV//Iv9nCf/a1jFhz3I96vR93CXQJdAlshATgIQw2b2OuiT9bY1w+EJyt80d7yse2Ic8oDyi25SuyJ2wUrB6vL1CWbZv3UZVZeKkvbK++8Kv5iPw9NonN4BOO55n0BY7XNRpTfuGe9vlgLP9a5mIed8PLQK8M8xW7hvmjLX++e0HBBmfERNFVV121WwHBuX+ZhCwKzaI/SVGLPQUNHBMLTRl5X/yrZGAIACRBLrnkkhYI+UKO897KkaBQbyay6oSnB/7DH/6wDQBJGckZ7VhcxNGvZNGRYO4Tn/hEW3hkRbgFPdoVTAl4kojhvN12221toZM6LND8whe+0KrDY52MUY+JTYuiLOjxBtHpp5++ngSvPMw6TtJ+lhMzdZ9/2cCpozgUOsTZQ74eMU68CxQ5cwIazlaCLnKkSJxNvI8p5Sg0R1WQFPKv1i3slejeqIW9xuYr/3No8bUX19L85H7LX25ZOWLtP1RMXj9QJ8kUMAFUk6nZOLmOJfri1Gcf3oAU4BRA+GK0xb0mbD1zOmXC3XMbA5xnBGSRhWNIoiH1Z98uzPiT+3PZPZ65xKH6veE3JpP/JpIEQspbCO6NR0kKi5iRMnSMPnfqEjicJEAnjHu4Tfcl5TleSQLO00v66LqFnzbHFmnMu2dKtoJOX97Owl5O0M0339ycIQlGkwVsnwDcMRvMZvoKGx7Y2iTPxi/bOM+Ozvq3PXjl6LF16oJtIfdanHTllVeuXH311ettSGRkkZNjvHHWBNX8DoG25APiuJrEGONh2uCIziILkSU6Kk/jsu6vk071un57OQcm85c4oBxozxnewT0JFW9mB1vHz85vW67X+h3jUR2rry7i1d9xX/lKkjQmqrSN2AiOcmxBO9n/dAl0CXQJdAm8TgJeevM2sxiqToCzT+wN+zSm4DW7LM5lp8ShFW/hugVZkhMwvJK4VswMy/nYYkAv4m199YVKtgTWW1gEy8c8aN896k/sLWaotoGdv+WWW3b7aqN/SyoO5NPni65soIlOPkIW9mq3Ep70w4SHiXkJ+N/97nevi4tTXlx43XXX5ece7fWN7MgWOa779mPOH+Xjc4z/4474alne8oznNLXbJW17nmTPdzCm2GSTPiZV+VaeF3m7zv8iT/EdO47E2u7h14wnN103USR3gj++UZ6bhBniO/Ex+Uxif2OSX8dHEUuaPOWbeNnXApW96WdrqPzRb9v+qKtUe1Ac0tVFZFzpuzh4EXnesKJTl8AiCczTJ/qW2JKdkncSX8r/yTHNu3dRu667v9YhppHri72rdbBVMIcNCrGf84jOwMraxrzyrollk+ucVxa2ks+yFH0U38JKOg+HYSQMdd5en7wAJGe6J/Uvy0cv1yWwmSRAX+nSvBzLlD2ECfw/C1ngmQUu8M3xsj4Lv97CXhOesMn9KH4sH0v+R3577Pvzkem63Dbcc53PNKt9/MIDeS74CIdhiv7Pwjf4twyph5+vfPJv/Hd4ZF5Mm67x+yyS5V/qr37iX7/HfvAy7e6PMpGLZ+lFNxO0YiWyCn5mvz/a63V0CcySADwwP20M7hziIJt5OjGZONsLjrN0tdZpvIqrjWlbHcvKaWfHjh3tWl1wQB/5JXSWnwRf5JDhn825GsPTawsLl+Gp8jd1HJ7VyTdE9DHzuuJQ/MHDRcRnm0UWCopl4dEszBezsgnmN8d0zDHHrLz88svN78qCO2XUNxW3y4tYxIjyUlnmDGC1flUic+f3h0xrvf1480ggY4N+8BHYVF/VNR5XX52HSW/5CT7eIi8mr+IjNnTNS/9iMjY5foC1JK6NyTnjG8GLBx54oM05GceVtCEe4YeoU34udYdn5R3DJfketh/m0DdlreeRL7JOZmpO37yafOWy/kJyp/Qqi+vxoB/mGLVXP1rnGowjS23x78gU/iE5sv0Ru7bK5vwhC+spFpF8qjzcLNJvz2Tquc66p5/vEugS6BLYXxLgA/nIp3WN5o+yVlJOTvwnHt2+ffteNwfbbHxHNjF2x7k636UB5+DhOJ5O44vwku1SR3xra+hgMJsxi6wzc08lMmGDUbVLtcyhdnzkCr/7TwvYHnIcr/xx+Dec/zR8Eefv1haD1DsIMg4zZ2UsHM6M6+9617vWJxa9sVy/Iqs+DhGSjLn11ltbwsFvjoz7LVyRtHjyySedbiTYQN5mFARwHjJYOSgMvwU1lR577LGW5LZ41SLf0IsvvtgWJvntLUpBR8hEKidKXfhQd/qsjKAvv/2LKAt7LVjUl0ceeSTVtL0FmP6NyM9//vPdJlJfV7D8eOqpp9qvOplcLu926A2tTJaOJ3pN9j300ENtolVimkMasuDHG9+IIxqS/Hnuuefyc7e9RVfIgs5xMBcZ+1cx5DZP8XareMkTf/rHXW2Mrqzl4+bfNYz5LcOL8kf8xWv9nn/Dxl21wNykt+SbZyEBZ2G1MXPttdfODSrJMgGx+1KXgJue0EOTvZ5piFPsuq+KVKrOfj2/J8cWD9APgGzx+jjYcF4wn7bsBROAmUFBAgmTIWPw3RM+etkugUNVAsa9F0YkD22STeOE06y+uXdf9cbkQt5AlnyAK2xsJmjZVhMn7Bv88WavYDs67V9feYlDkO7+ENtsAiP/Givnx3v228JfL+z4Egp8k1TlG5x22mmtHYtS2G5tSO55qYYNU9bEi7bs2SGLZMgxiVKLjGaRAH4Wpb/B26lysLW+0FPL6JfEhJdi2H2yyGIo+KxP5Pi5z32u3rZHxzC92oS6cCsVcWy9gW1MkUto2TGW8n3fJdAl0CVwuEmAffWVCzYSvkoue8mF/y6ejR0cy2XW+ZRjN8SQYl2LA0y4s1lsA39dDMW+sM9siYQ9mywZww5adGvz742m2nLOAk/+9RSx8+MvvqYcX17My37V+yXk/RtiiyHwgCcy4S+IZcSMbLB4T1lxt/6xz+rRH7bdItUpntP+ov2++j3kybfw4q2JivDmhSU2eV94W8Q7u2vyUOwmXiKPxGgmZ0x0kJdJZgup+TWV+GJ5WWls7/kzNnkMbZgYNol87LHHtsXW6tGmyWq+iBeaER+EjyIxp34LRMRk3Udo4pn5Z57/WG8yeeYFb7rhWVc/uZZzzF+j8526BPZVAnBSbEm3kbzLRuk1DLFQzoSslxlD7Bk75aXGEB3IZHXOjfezvtwxLld/6299SbVey7G2l9Xb3FNxkG2cRereV9s0q+5+vkvg/7N3H3BSVXf/x38zu8vSpCgWQAQUREOzYLChxhZjbGkmlthii89jTB59hRiNSUxiiiUaE1Me0+wm5J/ERI0KFiR5RFRERbCgNEE6KHXZnfmf78Ez3p2duju7O7P7OS+Gmb313Pe9c8u5v/ubjiagc0SdnyiYLlvJdjzU/ibcd9J+TaWYfZu+p2o/0Q1OnYOFxBS6h6PzYt3f0Dm5kqHo4XW1A4VzYX3PtV9Tu73GL+ScSfMLbT2hnS/bMqu7zhkKKdo3aTl07qr7PCphH6XzSF1b6PxPSWxUgrWmr+QzartrzfNdP9Mc/4X9ZXvWIUf16NVJBLQd6jpf967Vtqx9gDJHah+g+9jhu1soR9iu04dXd7WJ6x6tAvt0Ha3rfl2PqV0h7GP0/dR1qvYzavvWNXVo69X+SudPOrcrZYl+B/U5up9SIi/dowwJQDLNV/vFXNcuWnY9VBvdV0Wno/2V2gayXSdpvyYXBffqfFLD69xSx4hM1+1aBp1Hzp4927ed6FpfgSVq19B9hPT70rrnr3uwFARyCWi7Ct8PDadjrAJlQ9xDGFfbp+7H63sczVIYHiLSeYu+EzqG6z1bCd8HtdlpH6B2w/RsuhpXbYM6nmte0e9u+nS1L4teE2q6qqf2Rypqm1L8iaandkC9dP9K887V5pk+Hy2T9qmqk/apYd+mtim1QSk+QAlmoiWYaT+iZdB8tfy6ZlMsjNxbu6je2pflK9qfaB2G86304RUcrXNSCgIIINAeAtpf6oF7tYvpWlv3BHRuq2OIYgaz3T8qtq7RY2K0vSx9Ojr3/e53v9voelrDaL9fSLyI9s3hWKnzSJ075yo6X0w/LquuOgbrXF/Bwbq2V1K8Si7VCnBMrsu/CA3vuvjfFdkDe3VirBNh4SgTZ7Tohp7KOeec49+1AYWg3q985St+Y9JNQAXz6OfWdNP0c5/7nM904Ef44D/doFJQr56WVBYEXfiEzDXR4cJnZT5UoKFO2JUZVE9T6aReQcOKWNdPh+ukPr0oQFcnGMrMpIO1AnF/8pOf+I1N01QdlZlPJzpq5NENU9VH81AJgcVaHl38aP4KpNVFkAIuv+Mi4mV15ZVXZpx/en10MacbeyrpTzSlDxv+1jKqqCEqPYhTJxc6EXziiSd8oJHWgU6UdOKkbMNyVsNW+MKEaWZ617A6KQzR+Fo36UUXq5qfdh46uYkGDKcP29y/65e5wN78yXL85GPbuaDePjHzQe3NnWGJxlNggLalaKZHXajr+xA9+S9kdjoh10vT0ndIAcP6OwS/axoK2tZPvBc77ULm/6UvfclvU6q71rMyQ4aiAEDNW0Fl0dIa9YhOn88IVKKAToZynRC11jJpnnqSS9/VcGNg/PjxpocydAKkYCLdQFGArC52dVzS8SwUfZ8VhKvvvxrNVDScji164CXf913z/9GPfuSP0TpeqHFBF/Kqg45TKnpXv2jwr4JydEKmRhU9XasAGO0Htf+76667fMOnGhP0d6aiOubyVsOCToTDjZBM01Cjoc4DMhVNW+Pq3Ec3sHSCqWXQfNWIq3GV2b8lRcf1//3f/81aRx1XdBwOyxneWzJPxkUAAQQ6k4COYQpc1TEtPPCin9rLd2zLZaTjix521bmzrgl0zafjlV7aTytoU8dkfdZL16EPPvigv/bSzUYF1er4Eo6R6fPS9Z2u1XS8yRZIqEYRNahkevhFgcsq0fF1LNU14syZM/21uAJ81UgvGx2HtQy6flbRsHpQR8dzHfeU6VcBqTq253vYx0+gFf+Tp+qgB1flKAfVTTcw9OsArV10LqB1p8akaGYQmSkAVG0q8grXVKqjis4b9FIwSfo6C+czWrbo+ZzO13Qup2BdtZ/oZopu0OjGcnT71We9tI1rGpT8AnKSeyFFgfz6zmvdZ/s+alraDvEvRJRhChWIfs8LHac5w2n71r5Jx4XwoIr+1rEheh2m/Y++B9FjS/r81Jal689iio55mnauki1QMNc46perrmHcfPMOw/GOAALm207UfhHandJN0tsv0vu3dL+mc0AFcimDkIJO1Faim57aN4W2a91P0U1AnUfpnEzntzqvVluX2r91rC72nCnf8V3nCtHzwvTlDn+Hcw/VQ/eu5KWi8wt9Dm1wYRnUTqfzfRUto+4TtdTQT4z/EOgAAvou6FpW9zd1naWssbpO0/enlEXz0XdR96QVNKxrfp0jRQNNFXCgtmXtK8L+R3XQMNoHad+Vbz/S0jpHp6/P+c5vdG4VHSfT/LWvUjIwte+nXwfpHrnuLSigOno/IjodTV9t59r36aXrJWUYDb+eGx1Wn9U+onYTPaihdgiNr+t8LYv2kUPcg7yajj435x5s+vz4u/MIhG1d27TacvSd1rao7VrbVNie04+x6X/nE9N8QruBzpV070vbcDSRltp1dP0Tph3qlm3aYbjQX+cK4XupazXtl/R9Cb9ooO+cYn7SxwvjZ3vX8Bo3/fxJ+1Tta8N3UONHzcI+V99dtXXlW55s829u93z7Ok1XTgouU1tw+r5M/bUPz/Rr1+pHQQABBNpCQOdA+oU+ndcqaYzuAyh2QnF52e4fNbde+fbT0eOBHsoKx8pwrVrM8UXtjffff3/OZKnhPDp9eTSfcK6v+1aVXqpjfWMusDeZdzkSS5NWvyRptXu7QTNkm1fGG524KJA1GtirnxjQBYtK+FkPBfkpUFYXJAr21YWMip500c916uCtp4czBcnoSUHNq5CijVfz0cmPghlV1E0NNgcddJCvl1aiGp2jRRujgpFDdwXT6qRGQbzKDqiiBh8FOOknv1UUSBSeGPcd3H/KAKyikzwd7FV0Q003cPXT5Zq+LtJ0MZKr6GmmUFT3fEXmygiskp6tV9100agbtQrG1ZPb4elt9VNRo5ACfLMV3fgMT1uFEx5F/n//+99PLWf6uMEwuizpwzT774S7yflOwhLv5t+ONY/Y9jGr6tvsuZV0RP1kjLbncCKok1l1a+kNZd1E1w1cnUSHnaV2amqE1IVHaxR9b5S1Vz89pG1E3xE1SmqeCoLXE3bhBL015s80EUCg5QKhYSI0tumESQ8K6KEYBZrouK39lC5idexK/05rfB3DNYyORRpGT+anD5etptqP/OIXv/CBNjrB03jpgSuah/YzygilfYyOi2rc0L5Gx3gFXOlEUTeE1RihAKJcJ5lqKNGyZSsy0E2fbDedtG9VPXLN49RTT/VPp2l/Hx7mUP2U4UX1LdQnWx01f3mF9ZY+nG4OtXQe6dPkbwQQQKCzCZR6P6rjy89+9jN/XaXgJx2Pws09vavoWBF9AFB10Evn+Crpx0jf8YP/dFzS9bRutun4kF7C8UvHT33WDYlQ9LceztTxJdxQCP1Ubz2sp4Yh9dNxWDfE9DChApTD9bGGV/0VPKAnpkMDveqfq95hPq39rnrISJY6hupzW9xAkIV8dcNYJbp+wzLrPEY3KpWpScPqGloNcmqICtdZ0UA5jRc9n9G5kq7pdfzXOcgjjzzibwbpZrUCs3Odm+U6nwn14/1DAbVl6bw3XM9/2OfDT1qf+t5o/emmdVj3Hw6x7VNzgw7Tp8PfCLSHgPYdehhB3wm1c2p/o0xQ0YCVUC81rOt6Mj1jU+iv/Z6+M8UUzV83LXJ9H9OPqYVOP/04mG08HTMpCCCQX0DfVwWnZPu+6ljZmg+BhXNp3cPSQ9xKBKM2bN2virZd61xMD4HpHFb1VSKXK664ItX2U+pzJk1PP22ar2ifpKLhzz//fJsxY4Zvf1MbWXobXPipb53rhqLlpyCAwIcC+k7ope+7rgdb61pV12jKoqbrOD3EG675VROd++j7G/YrYf+jfq1ZJ00/W9F5Tb5zK12/5HsYS8ukdgkl6VC7hNodtP8Pyyx7DaPrV3VLb5fQPi56TCjEI32dahlvuukmfy9BD2vofFXe0elmc6A7AukC2l617ej8QMfecI9KMRLa9lpaom1Gul5SrIqyViu2REVteIqj0a9YN7eE72W4Jgv3qxRErDYy3WvTPqs5Jey/5KO2TsXm6PxJ01Xsg9q2dF2mwGS1J0bNop+bM+/mjFPMNZyG1b5M7WzRorY37VPao/7RevAZAQQQ0H5Ir3DvSCKtdW6bTzscD/SwldoIdU2d655EtumpfVAPBmcrOq+MnkenD5fJJH2YSvm7OqZfdpxfQHXfc8GTC5PW4IKAq1wwcHpRwIsO9sreo6eAQ+CnDtQqCvgLNzt0IyPbzQydqIQTovR56O9Pf/rTmTpn7Kag4UwlmsFWGfSiFwsaXj9VFIJ6w/jKhqfAXmXcLbSE6d55553+4kU/1aSbngqM0sZcaFFgkkohQb0aThcpKnqiSg1S6UU3lG688UYfhJ3eT3/rhFA/n6e03JmKLnx00zZalBn5D3/4gx8v/SajhlODvkpYFv9Hif5rWOu2S7dt2vuFTTDuYrGrdmi6DRc2dmmH0omgbtgqEFc3/PRStxNOOKFFM1IgtdazsjLrprzWmf5Wg19r7sAV1K956gJA+wJd3Gub10WNMmRTEECgvAW0f9BJUtgv6Weu9Pff/vY3n21W+xLtp9Swl6nxKzSu6buvE0f9ne14n0si1z5Q01RAkR4m0nx0rNM89FnvoXsIcNFDN9HG0vT5ank0zWwl9NNwOn6nF+3vctVXw6u/AqTVGKk6ylWNGGo8yeSYPo98f6uOWk+a/jHHHNNkcDVann322U260wEBBBBAoP0EtO9WEIECYnX9lOkaSvtv7d/TSzg2pXdP/1sNFz/4wQ8yBvbqOl0/k6eHW9Q4omO8jnM63qmfHhDVQ7D6O1o0vH6JRoEQejjlgAMO8EFcOu7qOia6HOqv6xIdB/MdK6PzaKvPcizUslR10jq59NJLswa0aT46p9FDwgrCVVuCim7e6PxLDVXhoWXf44P/ouczWiZd92m96qax2gS0vrTudN7RnHOz6Lz4/KGArPMF/Wl9ajhdj2ud6IZ2pnNKnTtr26AgUIkC2r/ohqYSNoQs45muwdTg/uMf/9hfs2QK7A3BFs3ZN+t4mev72JrXRFqu5tS5Etc1dUagFAI6P1S7k37+OVr0PdX5TmufN6r9WudZaj9ScInaaBTUovalaGnrc1idOxdSwvm26qfgHJ1DRNvHotNobcvovPiMQCULtPZ3RecJOl9SoqQQoCev6PV31K+16xOdV6bPqq8CMHKdW2m/U0g9w4On2seHcz1dG4U2cc0rXL+mt0sogK6QeWRahuh42u9rX6n9vuYX7idkGo9uCOQT0LalV7gPVcrtSd8X/aJ1uFbSNc7DDz/sf31J7Qj6xQElt4lu3/nqm6m/5qOkdHrASedBKjo/e/PNN307pL4nzS3BR/uI0P6k6el7r27aryhmIFsMSnPn25zxVC9dy+UrOkcL+yk90Kp1oZf2adq3hP1ZvunQHwEEEGgLgZbsw0tZv0zHg2Knr2XROanOmbO1pxdyTCwXk2KXPzp8dZVLUteghLEu62nO4uImG+a5DDELEy6wt6rJoLopqUx0yrSnn44MgatKjaxyxhlnNBpHNwnVTz9XoIOestAo6FM3rLIVZXrI1DCcbXh1V3ChnnZW8IwOsDphCFlms42XacWGboooL7RomXXjRoHOChZW4LMy9+pmnrIXh0DnfNMLwbAK0MxXlFn4lltu8YNlO5H44Q9/aNddd50f5te//rU/AVTGYT1ZpvqqkV1B0ZpfpicuFagZMu/qp1X1hJIyKetJd2V1VKZY/SRrtLRmYO/WtxPW8Jabm9tG8xa36cb7u4y9/cojsFeZlfXS06g6qdV29j//8z95FyM04OUaUE/2aZvXd1ONldoGw0l0rvFa2i8sk27s6/unJ3L1xC0FAQQqQ0AXqGG/pOOC9vnKcq/jxJo1a/x+Kt/+RPua1t7fqMEketMlzC90VyOBjr8KmMpVlFk4Uyap6DhqRFTQrB7QSS8yKuSXBGSqp5O1v1dQrzJZTZgwodEypE+7mL+13tQYowdFoie3Og7o+BK1Kma6DIsAAggg0HoCaqBXMEF0vx3mFvbf4fgWuhfzrhuHui7TtEJDvcYP09b8NX39uoYyeekmmo6JCszScUPHyEmTJvljS3S+euhV/TSeGreVHb9Lly7+5kJ0OB2LOf5ERczfzE0Plo4OoXUTrvVkp2O4fjVI5w46F8vWJpJ+PhPG1TrQuZBuDOU7f4vWg8+FCSgIKNf6jPbTd03X+1onOl+LFq13fVf5vkRV+FxJAtq2//znP/sq52u31XdB+7lXXnnFRo0a1Wgx9WBJtrbMRgNm+EMN+fqFtEzHzXDcK/Y7pnpGv8cZZus76VhOQQCBwgXUfqEEENH9gL5r2gdcddVVhU+oBUNqf6CXjsuZ9hstmHSzRy10XxKtrz7rVez+rdmVZEQEEGi2gM5x9Kunuv7X9bn2e2pv1jVeOX6Hda2jdu/oPicsfPS6NXTL9q7x1S6u/a328/o7/dpUyx/aJdSOoetgtUuoLb0URfPUqxydS7F8TKN9BLQ9lXqb0naqe/raP2hfoe/Dueee6++167PuLWX7ZcliFDQftROpzU/fR81L3/clS5b4X8IuZlrZhtU8oqU1vKLTb83P2n+pDVXXh4qjUfyD2lB1j0/ntaXeDlpzWZg2Aggg0NYC6ceDYuevc9JsMRqKAW2rNoRi613q4aurXJCj9XYRkWvyTzqx2AX2vpG0LsOTFu/eNDBST9cosFc/DaDAXt1cmjZtmr8wOeqoo1Iz0MmBAlv1VEsoyvCrlarMr6Uqv/rVr+wrX/lKanK6QFKAqTLcKKA4W1EWnFIUHdgV5HrXXXfZHXfc4ZdXQc96XXjhhfbXv/61oNT8IUi2kKBiXSCp6CRCgZ3pRT/d+Z3vfMd3VqP7ySefnBpEF5Pf+973/N8K7v3JT36SMbA3NYL7oJ+hOu+88/z61BPiWqcK9E0/idF8VRQgVsqS2JC0OrdNJpYWEtVrFnPJFqsGuJ9aybD9lrJehU5L27yCorVN6LOejiukaFj9hHshRcO2ZWBtWCZdiCu4vdBlKmRZGAYBBFpfIHyHw/FKf+updn2X9b2ulO+06q3jfraAqaikhstVdHGu4F1lJYwGX+l8RsEyavzIV1QfTUdFjjr+ltJS0z/00EP9ya0+Dxo0yDfGzJ8/v9k3x/MtE/0RQAABBFomoGumbEFIekCukONLrhqEY4/moQbncGwIGePVX0XXCjrupx+f1Gj985//POMsdA2oBxL1YKluuOkGQ7ToJsSOO7qfSqE0EpC5Gv7DTZpGPd0f6etd28Ctt97qf1FIWVlylfTzmZZuP7nmRb9tAvoOKyt2eqBu8NHNHz3IFYpunOkha20H0XNKtU9FhwvD845ApQjoBme+gDTt98J2rsAWfXf0PdCxSf2UOKDQa6tMLqrDnDlzmlyzadj0fWum8TN1U32VQT1XUd01bwoCCBQuoOPgDTfc4M9B9ZCY9gXKlqaHmNr6/CWcDxde+/YdUvuc9HO+9q0Rc0cAgUIFtH/TuYoyYuq8R8GrNTU1fn9Y6DTacrhs7eGqg65fQjt3IXXSvlavXPv40C6h6WnYUrabF1JHhkGgXAQUa5F+TyvEeyjWQm1wpSj6zmmfpPtHytar+A1dp1XauVFLLbS8Or+KttGkT1PteBpOL+27VdLbUNPH4W8EEEAAgdIIZDsnLSZGozQ1ad+pxKsHxX2gY0HV2Gy2dbay9mYOolTqfJ1wKDhXJwL6GQIV/fxzNKBTNxYVAKph1UCqLL264aEgWDXqlKKoUSgE9epnRMPFkn4aThl826ookPiyyy6z559/3gc6//GPf0wF3H7qU5+yDRs25K2KGrVUQpbcbCPoSa3bbrvN99YyZyo6SQsl0891q58yMKkoKDsEEytLoy7W9CR9pqLsvocccojvpXWZXkLW4VI3PNXNT1r9q257dNtmISW+a8yqXWBvuZXmBHhpGy/nogtvLr7LeQ1RNwRyC2i/pOP1xIkTU9/lSvtOKyAp375S/ZVZPFfRcuuY/fjjj/uGVw2rBlhlBC7mSTCZ6hU1zTXfYvvpoSGdK6heyu6n9+OPP77RQzzFTpPhEUAAAQRaTyAEIWU6Vuk4k57JsDk10XHnwAMP9MeEt956y19/6m91j5ZMxycd/zLVLYyn63/VU78Okp6hUb/Kkz6PMF5nf9fPTmd7oDnTetd2oJsIuUoh5zO5xqdf8wT0Hda2nq3oYffo+bO+E2o7ia5/rXNlvC7F9z1bPeiOQGsL5DteaP76roTvg74Lur4K1y1qa9SvqxVzbZW+TJq22iWj3y8No+9Y3759m/UdK2S5dNNd150UBBAoTkDfLz0opl911Pd/8ODBduONNxY3kQ40dKEPCOjcgoIAApUroDZhtdVq36f9njLShvOjcluqXOdWun7J157enOXROaJe5WrSnGViHASKFdC1xauvvtpkNF3XKLBX35FSFd3/0z5Jyfn04GUpp12qOrb2dBS3kushVbW3Ra/3wn6qte7xtfbyMn0EEECg0gR0XhhiNMK9Kr235S/+lINZvGZgzKoGu6oUmEg18bbLkPpywhLrmwb3KguQfhJARRl/ws+wfeELX/Ddwn9PPPGE/3jxxRf7k/+QkVYdQ78wbHPflY5ZZbvttrMrr7yy0U+PKri31EVP86QX/WSBGqn1s5kqCvI97bTT7JFHHkkNmi1QNjXAB+PpbzVyhUDbaP/wWVl2VXRSoaerMhVlwghl9uzZ4WOj95BJWYHXISBbN4EVCKyLtc2bm0bR6gmlF154wU9HGZHTy7Jly3ynUgb2ahuse8ltiwuabovp8/d/u228amjMasowsDdjffN01PZFQQABBBDILqCTvUwPm0THiN5gjnZP/6xziR49eti8efNs+vTp/l0PwuhkslyKllc3xlQvndSWW/3KxYl6IIAAAuUioP32wQcfnDEISb/OUapjjI5hOiYoG9CZZ57pr48LNdD1Z2gwSR9n//3399e76d31t67HR44cmalXp++mB3F0kybdVTdpMq13/dpRqc5nOj1+iQH0Hc71HVFG6/TvwU033WQrVqzw55N68Frnljp/K9X3vcSLyOQQKFgg13dBE0lvwwrHJu0L9QtiyhjV0u9B2L9qfxrKk08+6aff3Gnnusmreaj+2hdQEECgeAF9L5UERd9/7RM683dJy55+bli8KGMggEAlCIR9XyXs99LPrbSfUhCFrl868z67ErYz6li5AgoiVWxJ9JpGS6PvnjLqlrpon9SZv8/6lRa13WQrao/rzD7ZXOiOAAIItKWAzpt1bFTModrTFWOpTOvNbetry7qXal7x+HYug+nucYvtUOAkN7qsvTMTVveGyxiTIWlMCOJV5lhleB09erR/RaeujD4qDz/8cKNAVY3z4IMPRgdt9uehQ4f6cZUNWJmAQ1FD8gUXXBD+bPF7SM0/efJkvyFFJ6gNSWn5L7300mhnv7GFDoWcDCggOJRs2WB0M+j222/3g2XL1queylJx7LHH+uHOOeecRnVRR2Uz/uY3v+n7h3WpP3TTVoG+8vzyl7/s3/1A7j813l9++eU+8FjdjjjiCL2lioJ+Q8aMQp8+T42c7YPb9ra8lrD6We7DpmwDNe4ec78EW+MCe+M9yy9jb+Oa5v+rmJ+1LWbY/HNmCAQQQKByBPQwSb5sJnrKudBy5513+sAoZbFXgNSnP/3pQkdts+FUJ71U13KsX5tBMCMEEECgQgQuuugifx0ZGpH1rqzrpW6s1zFB13mZHsLMRfWZz3wmdS2XPpxu6oVXtJ+WYdOmTRyHoiiRz1oHBx10UBNX/eJRpvVe6vOZSFX4WAKBbN+RbN8DrX/dCNf5pM5Dy/WcsgQ0TKKTCWjbznXtpfbE9PapcN3SnONTJl7VQckO1Eaqn0bVr8n179/fPvKRj2QaPG837X/zBdqlByznnSgDIIBAEwF9dylNH4DIZpK+L802HN0RQACBlgpEz62effZZH0ShZFq0ObdUlvERyC6g753ahtQ2qHYFXY/o2oZ2tuxmLekjb/3qdrbC9V42GbojgAACbSugY+PYsWN94oBdd93Vbr755ratQDvPLa751+zhsva6lxUY75hY4IIqn3NBlSubZkoV4tFHH53K3HP++ec3WUT99KSKgmEV6HnSSSeZxvvqV7/qg0ebjNCMDrvvvrvpp0FVVB9lQlLA6ZAhQ2z16tXNmGLmUfbbb79UD2XDHT9+fOrJHv2Misrvf/97U6CxAmm1rOEnSi655BIfSZ6aQJYPypp73HHH+b4vvvhixqF++MMf+u4KJh4zZkzGYUJHDTtw4EB74403/MavDDInnHCCr6Pqp8b2Qw891HSTOVp+9rOf+QzId999t88+fOSRR/rxtA5//vOf+0H1lL0yGkaLGtI1TZVsmYSjwxfyuX65y9b7rMvWu6iQod0wbtuuGu6C2F1gb0cohTZ4rl+/vuib9x3Bh2VAAAEEJKB9ZTj+ZBJRv+jP6GQaJr2bgjd0HNQ7BQEEEEAAgZYK6FilIL8333zTB3quXbvWP1RZLscZ3bDL1sCth07VX9kQoyVbgGp0mM7+WdfaygKpGwR6KQPIhg0bMp5f5Duf0fjFns90dv9SLr/Wpb4D6eecerg52/c4nE9ef/31WYcpZR2ZFgJtIZBvX6VjRlvsq6666irfhqpfG1Oiga9//evN/p5pmQp5ELRfv35tQcw8EECggwsoYDf9fCJ9kWnrTxfhbwQQaG2BcG6lXx3RA1OdLYiitX2ZPgKZBNRmoIRraivUry8vWrQo44PgmcalW3ECOv+K/rJ4+th6eFXXhRQEEEAAgfYV0LFRL7Xz6fy0s+2bfWBv9c5xq97LBTz2KXBluOR29S8mbcsLDZbY1DS494tf/GJqQpme3FOQ6qRJk3xwqRorlCVWTxrppsZll13mx9XPhIYSizUvGFMZgbVyVXRTRZl7FVT72GOP+QBVdVfQbChVVVX+Y7Rb6Be6hffQXRl5lRVPmYlVZs6cmcrm8LnPfc5nJdZGpaeq7rnnHr+sCvL9xS9+UdQFkAJvVaZNm+bfo/8tWLDA7rjjDt8pU4af6LD6rLrKQ+tJ2ScU4Pvoo4/6Oior7ze+8Q175JFHfL/ouEcddZTpqUytPz2VqbpoPK1DuSpD82mnnRYdxX/WU2UqCujOdXLkByrgv8TGpG1+vsHqX3LbXoGJFmN9XQC728ard/SbfAFzKf9B1JCXr/AkWT4h+iOAQEcX0E9aZ7sxoiCa5mZv6uhuLB8CCCCAQNsJ6Drp4x//uM90qGu0a665pu1mnmdOClbSNVymY6mOo/fdd58PSlXwr649FLilYcPDvHkm32l76/xDAd3xeNw/eKyg3lzX8rnOZ2bMmMH5TDtuSVqXauOJBsDru6BfdyrkF5raserMGoGSCqj9VceFTEXHBe3H2uraS8egG2+80R9PWzpPjZ/pGBiWUzd62yJgOcyPdwQQ6LgC2t/ka8tXfx4m6LjbAEuGQLkK6NxK1/5qq2jpuVW5LiP1QqDcBPR9U1uhkqtNnDiRdrZWWkHap/Xp0yfjNZ+uA/XT77RxthI+k0UAAQSaIdBZz0V9VGvM/d9lr7htHZa0hudcsGTTWN0mpMkVLmvvv5NWtUvCuo52AbHbYmL9cAruzBTgGZ2IMsPqtWzZMt+4O2DAgFSQ7YUXXhgd1PbYYw+rq6tr1C39j0yNx7qRcu+99/rsCnqaqW/fvv6lcVetWpU+Cbv99tv9q0kP12HUqFFZ6/D5z3/e9NLNOAUhd+/ePTUJBcPOmjXLBy6r4UWBtAqKLbaEjL3333+//fSnP20UIDt48OCsdcs2nx122MF++9vf+t5aB3oNGTLEevXqlW0U313r4oEHHrBEIuF/0k6ZK9QtPeA5OhHVWeXEE0+Mdm7e5wazujkJq/t3wpJNV2Hmabq48Ko9Y9Zlz7hpW+8oJV9DX1hOGvuCBO8IINAZBZTJXkFGesI5vejcQRn9KQgggAACCLS3gB4K1avcin7dRdd7L7zwQuqXZ1RHBTKFX2rRE9J/+tOffCO4MiTqb0p+gbC+lX1FzrlKrvMZPfC555575hqdfq0scOutt9rll1/uvxealbJWX3rppWX5nW5lCibfiQXU9pSprVUkbZWttzX41X6a7XpS83vrrbfy7sNbo15MEwEEOqeAAkzynTd2ThmWGgEEEEAAgY4nENqNOt6SldcSqU0tvd1TNazk69jyEqY2CCCAAAItFUilL60ZELea0TFTZtNCS2Key5z6ZMK2LkoUFAycabp60mi33XbLGRiaabxiuin77+67754K6i1m3GKG1Y3NaFBvdNxu3br5G6LNCerVdGR0xhln+JulkydPjk66xZ+1DsaMGZM3qDc6I2UWkqkyFucK6lXA8EMPPeQz2OhmZIuKCzivW5Dw21xifuFTiu3gsvWOcdl6+6c298JHLtMhdWOhkKKbvDT2FSLFMAgg0FEFTj311KyZo3RhrgdzKAgggAACCCCQXeCUU07xD6tGfzFEgYshw6yOpX/5y1/smGOOsSuvvJJja3bKjH0KuV7jfCYjXdl01Do855xzbO7cuaafqNVPOXKOWTarh4q0kYC+B8p0FD1WhFnrgcoJEyaEPyvqXfXOlExCC6FlJVtvRa1OKotAWQtsv/32Gfeh0UrrIToKAggggAACCCCAQOkEvvzlL9vjjz/eZIL6ZSa1iVIQQAABBBBob4FUpGOsi1nt6LhVfUTpTQusVr1Z/aykbXLBvfXLC0jzW+BkGSyzwA9+8APfQz+/UF/v8Cug/PCHP/S1vOmmm6xr164tqvHWdxO26YkGq3/ZbWuFLr7blqtHxax2pMvWW9Oi2ZfVyMogXUhZvHhxIYMxDAIIINBhBfQgxMqVK5ssnx480UM3FAQQQAABBBDILfCFL3zBxo0bZ1OnTvW/9DJv3jxbvXq1qXu06O9Cr1Oi4/E5vwDnM/mN2nsIbf8Kbj/77LPtr3/9a3tXh/kj0C4Cw4YN85mO0meuwNjDDz88vXNF/K16v/POOxnrquXiuJeRho4IINAMAT0okO1BAk1ODxOwz2kGLKMggAACCCCAAAI5BHR+pXuFumcYij5navsM/XlHAAEEEECgLQVSgb2aac0uceuynwuA3KWIKmww2/qMC7h8usEaVhHcW4Rc0YMOGDDA9BOPyvqrp4TKvaxZs8ZefPFF+9KXvmSf/OQnW1Td+pUugHyqyw79rNvGNhY+qdgA89t09U6NNvXCJ1DGQ2bKglLG1aVqCCCAQLsI6KJ86NChtnz58kbznzJlCj8V3kiEPxBAAAEEEMgucMkll/hfj1m6dKlv6L7qqquyD0yfkgtkO5954IEHOJ8puXbzJ3jaaacRcNN8PsbsAAI6VsycOdM2bHCNxR8UXYfV1tZW7HdD+98uXbo0WqawbArA22OPPcKfvCOAAAItEtD+JtuDBJqwfnWqb98ifm6zRbVhZAQQQAABBBBAoPMIqJ1z2rRp/j6irmdpb+s8654lRQABBCpBoHG0o8tuqsymNfu7zt0Lr35ytVndUy7w8j8uuHctwb2FyxU/5EUXXWRPPvmkjR8/vviR23gMNTSprr/85S9bNOeGNW7bmtZgW11gr60pYlI9XFDvAS5YfS+3PReahbqIybf3oNEbJdnqQmNfNhm6I4BAZxI4+eST/YV4WGbdXFbm+9NPPz104h0BBBBAAAEEcgiMHj3a/vnPf/pspLq+4xiaA6uVemU6n9E5DeuilcCZLAIIFC2gY8X++++fytobboheffXVRU+rnEbQMmXKoqkgO/bB5bSmqAsClS2Qrx1/0aJFpv0sBQEEEEAAAQQQQKC0Arqu22uvveyVV16x2bNn29atW7nWKy0xU0MAAQQQaIFA48BeN6GqvjHrOj5uVSNiZk36Zp9TclnStkxxAZj/dsG9LhCTgkApBBpWu23KZYOuezxhyRVFTFGxvHvHrNYF9lb1cdtyByxjxozJmDEkLKpuoGgYCgIIINDZBc444wx79913bcGCBX6/qadtTzrppM7OwvIjgAACCCBQtADXF0WTlWyEcD6zYsWK1PnMf/3Xf5Vs+kwIAQQQKIWA9ktvvfWWvfrqq/6G6JYtW0z7r0ouusmbHtirfXF1dXUlLxZ1RwCBMhPQebYyhOcqffr0ydWbfggggAACCCCAAALNFPjRj35kRx11lHXv3t1+/etfN3MqjIYAAggggEDpBTKG7tYMiVvtoXGLDShuhsklLrj30W2BmA2rCO4tTo+h0wXqVyZt49QG2zLZBfW+m94399+xXV32abcN1+yWcRPPPXIF9V28eHHW2qofjX1ZeeiBAAKdTEA/paOfhV2yZIm/UXLYYYd1MgEWFwEEEEAAAQQqXUDnMy+99BLnM5W+Iqk/Ah1YQIFpZ511lj333HNWW1vbIW6Iqm1t2bJltnHjxtSa46dZUxR8QACBEgooa290XxOd9KZNm4y2rKgInxFAAAEEEEAAgdIKnHnmmfbjH/+YxGmlZWVqCCCAAAItFMiYWiBW44Iix8StYRveTLwAAEAASURBVHnS6h5xQZVrC59LcqkL7n3MLLmlwbodVmXVO3fMbKmFizBk0QIuJnzruwnbPDVhde5VVKZeN7NY321BvbWjXHC625Y7aundu3fORVMjIBm1chLREwEEOpGAbi6PHTvWXnzxRbv22ms70ZKzqAgggAACCCDQUQR0PpNMbnuImvOZjrJWWQ4EOp6A9lV6dZSi68h99tnHX0vqXe1t77zzTodaxo6yrlgOBCpdQO39ixYtshEjRjRZFGUO1/6IggACCCCAAAIIIIAAAggggAACnUcgY2CvFr+qd8y6HhS3hMuauvXf7sbR5sJRkstcQPCUpCU3JK3bx6qsZpDLmtqxE6cWjsOQuQUSZnULErbpiQbbOt1td2tyD96kbzez6gPctjs+blW9OnZQuRry1q7NHnW/cOFC01P+FAQQQACBbQLab3IThK0BAQQQQAABBCpZ4Oyzz67k6lN3BBBAoCIFLr30UvvpT39q+nWsdevWmTKoUxBAAIFSC0yYMMHmzp3bZLKrVq1KPdzVpCcdEEAAAQQQQAABBBBAAAEEEECgwwrkDLet6R+3ri4wt2qUC5AsMvNpcrUL0JyatA0PNNiWVxtcBt9tWWU6rCQL1mIBbSObX2mwjX93Qb1PNyOo122j1WNi1u0Ilyl6l5ybdovrWg4T6NWrl+lJ/VxFw1AQQAABBBBAAAEEEEAAAQQQQAABBBBAoHkCytT7xz/+0XbffXc799xz7ZxzzmnehBgLAQQQyCFw2GGH2b///e8mQ0ybNo39ThMVOiCAAAIIIIAAAggggAACCCDQ8QVyRz+6eN4ue8St27Fxiw93f+QeuqnWerN6l3V14/9zGVinJ6xhHcG9TZHoIoGGtUnb9H8Jt600WP0Mt51sKNKlymWZ3stl6j22yroMdRtqx07W63F0U0FZebOVzZs3mxoDKQgggAACCCCAAAIIIIAAAggggAACCCDQMgEF9e67774tmwhjI4AAAlkEtH+pqamxTZs2NRpC7fwDBw5s1I0/EEAAAQQQQAABBBBAAAEEEECg4wtU51vEmAuYrN27ypKbzTZtbbDEPDdGIt9Ykf51LmhztgvaXOcCe5clrev4uNUMdIGXbroUBKzBbOvihG1+JmF17pVc4kyKjf92m1N8mFnX4+JWO6LzbFvbbbddzg1I2Xy52ZCTiJ4IIIAAAggggAACCCCAAAIIIIAAAggggAACCJSFwKhRo+z111+3sWPHpuqjdv7zzjsv9TcfEEAAAQQQQAABBBBAAAEEEECgcwi4KMj8JVbrgnvHxq3rJ6osPsQNX2w2VBeomVyUtC2PJGzD3xps00wXILy+2OjN/PVkiMoSSLzvAr5faLANf22wLY+6oN53XP2L3SyUSHoPs27HV1nX0XGLdaksg5bUdr/99rPq6uyx+atWrWrJ5BkXAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEE2kjgsssus1mzZqXmtnbtWqurc9lzKAgggAACCCCAAAIIIIAAAggg0OkECgrslUq8W8y67ueCe10AZXyoOjTD6j2z+mdcMOdfXDDnYw22daEL5qxvxnQYpaIFtM7r5rsg70ddkPekBqt/1kXzvt+MRXLboIJ6FXBeu48L6u1abMR5M+ZZZqPssMMOpp/iSi/qdvjhh6d35m8EEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBAoQwEl83j++edt3bp1vt3/gQcesKuvvroMa0qVEEAAAQQQQAABBBBAAAEEEECgtQWyp/vMMOd4dxfcO07RlGab/+Wy7s5zAzVkGDBXJxfUqfG2rEhYw/ykdRmXtNqPxK1qexeU2fniMnNJdbx+Ln63flXS6l5NWN2MhNW/2syAXslUuc1wuMvUe9y2oF4FnnfG0qNHD1uwYIGNGDGi0eLr57rUCEhBAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACByhD47Gc/a9OnT7cdd9zRFi1aZBdccEFlVJxaIoAAAggggAACCCCAAAIIIIBASQWKzrsbgnu7nVhlVXu5YMqaZtZH2XunK3uvy9z6jwbb/JILFF7vAj0pHVIg8X7SNr/oMjU/4LL0uozN9TNaENTrtrmqj8Ss20lVPou0tsnOWiZMmGDvvee+TGnl7bfftu7du6d15U8EEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBAoV4Hf/OY3dsghh9j7779vd911V7lWk3ohgAACCCCAAAIIIIAAAggggEArCxSVsTfUJd7VZe7dp8pitS5z72Mu8+orLkhzU+hbxHvCLLnEZXBdmbT6N2K2dR+XwXd03GoGx6yzZmAtQq8iBk1sTNpWl5m57uWEbZ2VsMRCV+26FlTdxapWj3bb3zEuU+9ecYt1acG0OsCo48aNsz/+8Y92wAEHNFqa9evX22GHHdaoG38ggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAeQtcfPHF5V1BaocAAggggAACCCCAAAIIIIAAAq0u0KzAXtVKQb21o6tM2VI3bddgW593wb3rmllfF+iZeCNpWxa7AN9Xk1YzJmY1H3EBvoNcgG8nzsbaTM2yGM0H9C50Ab2vusDvl5LW8HYzg7+jS9PHJYge5zL1HlllXYa6ZNNV0Z6d87Oy8lZVNYV45plnmgT7dk4hlhoBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACByhFodmCvFjHm4gm7DHdZU10W1c19E1b3n4Ql33U9XAxns4rL+tsw2wWBugyvW10W4OqRMevisrLW7OYCfHvGmjVJRmpbgcR6F8yr9TfXBfS6IG0f0LuhhXVwqz42wG1rB8et6yFue+jvgnrZHDyqMvX269fP6urqrEuXbemLydbbwu2N0RFAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBoJ4EWBfb6OrsAy5pd4xY/1gXf9jPb8lTCEvNcn60tWCIXCNrwsgsKnecCRGe5DL57x6x6uAvydVlaq/q4Gbq4TkoZCSTc+lrjAnrfTthWl3m5fk7SEgtKkKFXi+hiVauGuezQR1RZ7T4frP8yWvRyqEqfPn3slVdesf32289XZ8qUKTZhwoRyqBp1QAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBIgRaHtj7wcyq+sas+yFVVtUvZpunuWytLiDX1hZRk0yDbjRLuCDRLQrwdRlb60YkrGaYy9g61AX67hyzWC1pWzOxtVW35Ga3Xpa519sumPdNt85fS1pyqZt7XYlq0NcFjY+NWe2EuNXu6TJDs74zwl5xxRV28cUX2+jRo62mpsYSiYQddthhGYelIwIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIlK9AyQJ7tYixrjHrOvqD4N6BLnvr/7nsvYtcj/oWArhA0cR891roAkhfaLA6F9hbtUfMaoa4AN9Bcat2QcVW1cJ5MHpBAskGl513tQvmXeQCeee79eGCrhNvuYDeNW50l7m3JMVtlfHBLqj3wLh1PcAFcu/iUjSTpTkr7fjx42333Xe32bNn+/dYLGbqRkEAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgcoSiNXV1bnUuqUvifUu0+6chG1xwb0Nsz8I/CzlbLq5WM/+LsB3qFn14A8CfAe6v3u5IF+CQEsp7QN2G9a5IN4l7rXQBfQuSFrD267zUrfpbC7trGLbu/U5KmZdDnJZeveKW7wHWZkLEX7mmWfs6quvti1bttj1119vBx54YCGjMQwCCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCJSRQKsF9vpldBlcty5xwb0zE1Y3w2V2fdsFgm5phaXfziXs3TVm8d1cUKh7rx7osvi6oN9475jFSpqTuBXqXqaTTLosyw1rXSCvC95tcOuwfpF7X+iCeRe7dbi+FSrd1cVj7+4Ceg+IWe2+ZOltrvD//d//2UEHHdTc0RkPAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQTaUaB1A3s/WLDEpqTVzXOv51yA6KyEJd51PRpaYamV3LWnCxAd4DL37uqCffW+iwv03dm993OBvt3cACSAzQzv4nW1nhpWuGDeZe79XQX0utfiDzLzKpjXDVPyUqX15QKyx7oMvfvHrcseLhi7Kyup5M5MEAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEyl6gTQJ7g0LDahfcO8dl73UZfOtfTVpylevTGsGiYYYuC2xsx20BvnEX4Fu1k3vpbxfkW7V9Jw/0VSDvRhe469ZJw0r3cgG9Dctdtw8CepMrHeLmANkK74qx7ucCeke6LL37uIDeveNW1ZeA3laQZpIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIFAhAm0a2OtNEuYywiZsyysJ2/qSCyZ93QX4rnV9WjPAVzNWzKiy+brg3vhO7n1H976DC/LdwQX5uoDSeB/33stli63VwB2vJLe4JMnvJS2x1pkrmNe9Ei6wOuECehPLtr1ba2XljXIqoLevcx8Rs5oxMasdWWXVbp1YPDoQnxFAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIHOJ9D2gb0fGCfrXYDvEhfgO9sF+M52gaZvuMjetgjwDetYgb7dXJDp9i6m1AX3xvXuAnx90Glv97cL8o1v57r1dO/uFasJI5b3e7LOBelucMG67+v1QTDvOvfZ2SbXuPfVrv+qD7IlKyNvawdUB64Q0DvcBfSOcll6R8atepe4xarDALwjgAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACnVug3QJ7A3tyq9lWF+BbNydh9XO2BfgmXfCpucy+bV5CsG8fF/Cr4N7e7r2XC+7dzgX2Ksi3u3vv8cG7goLdK97VdXOveBdX26pWrnGDY3GZd5NbXIDuJhec6wJzk5tct43u8wb37gJ6ky7rbsJl5k2+p3fX3wX1+ozIbrg2C+KNMrhMvDFlRnYBvdV7uwy9e7uA3v4uoLdCAqWji8JnBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAoDUF2j2wNyycz+C7zAX4znUZfF9zAb5vuoDUZa6vC/xt96KAXxe4q6Bec6+YMvh23xbYq+DeWDcF97p3BfdquBr3twtc9dlolZHWvWIK+tV0lLnWBbv6z+7NB9u6IOakMufq3QXvml4uo7FMkludg8vCK4ekD+p17wrqdYG6/rXRvbtgXlNQrwvuNQ3bVll43ayyFi3/Lm7Rh7mA3r1cht4RLqB3JzL0ZvWiBwIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIdHqBsgnsTa0JF9xavzJpW+e5AF8X3FvvXolFLlJVwavlXhS8mwrudZ+VlbbKBflWu/orwDcE9PrgXvef65xURK/7FwJ8twX0un71rmN9zAf2+mBdBewq4LfcS0+3yLvFrGqYW/xhcavZwwX07uCWR8tOQQABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBDIKlB+gb2RqibedwG+C7cF+da/5bL4zndZaVe4Acohi2+knp3+o7IU7+gCeoe47Ly7x3wwb40L7o27zMYUBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIHCBMo6sDcsQtIF8tavcAG+8xNW/7YL8F2wLYtvcq0bohKy2IYF6UjvLjtxrK9LxDvIZecd7IJ5h7qg3iEuO++OylDckRaUZUEAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQTaRqAiAnujFImNSatfoky+CWtY5IJ8F5kl3nGZfAnyjTK1zucQzDvQBfMOchl6B8WtxgX1Vvd32Xm7kZ23ddCZKgIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIdBaBigvsja6YxHoX4LvUBfoqwNcF9za4zwkX9Jtc5YbaEh2Sz80WqHWZefu5IN4BLnjXBfBWDTSrcQG9Ppi3B8G8zXZlRAQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQCBNoKIDe6PLoky+DctdoK8L7G3Qa5kL8l1mlnTdku+5IeujQ/M5q0C1C+Tt7V47uUDenVxA7y4uI68L6tWrSt3IzJuVjh4IIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBASwQ6TGBvFCG51axh7bZA3/p3Ey7g1yyxwgX6rnSBvqtcoO9aN7QbhuIEunwQyNvPBe3u4AJ5fUCvC+Td2QXy6tUnZjEX7EtBAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEGhdgQ4Z2JtOltziAn3XuEDflR++Ei7AN7HGBfrq5YKAk++7sTp6Vt8aF8Tb0736umDdvmZxvbZ3wbs7upcL7PUv9XPBvhQEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgbYV6BSBvemkSRfAm1jvgnwV7LtaAb7bgnwT61yA73su0Ne/tgX7Jje6sSstu68CeHt8EMTbywXq9nafe7kg3t4uK28fl5XXBfPGXQCvf+/p+lelC/E3AggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggEBbC3TKwN6MyA0u2HejC/R9zwX5rnOf9a7Xehfou8G9XCCwf3eBvslN7vMmN5XN7rN7WZ17tVW232o3L5dRN9Y1ZtYtabFu7nM3F5zb3b0rmLeH++ze49vp5QJ4Fczrgnqr9O6GM4J4HSAFAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQKD8BAnvzrZOkC951gbuJDS7IV68PAnu3vSuw1wX5bnHv7qUA32Sd+zsE+rpg36QLGPZBv3rXtNzLEvqsD67EXbCt/rmX3n3grQve9Vl0FcSrzwrk7eICdt271brPernAXgX1xhXQ6wJ29R53Qb16+eE0LQoCCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAQMUIENhbqlWljL9bXbzuFhfY696t3r0ri6+Ce/VSMK8P6HXvPri3cWCvD+qNuyBdvUJAb7WLzv0gsDceAntdfwoCCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAQMcTUAgppRQCVS5jrnuZy6S7rYT3UkycaSCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIdHQB8r929DXM8iGAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIVIQAgb0VsZqoJAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBARxcgsLejr2GWr9MIPPPMM51mWVlQBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBDqiAIG9HXGtskydTuCWW26xiRMn2rHHHmvTp0/vdMvPAiOAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCDQEQRidXV1yY6wICwDAp1ZYKeddrJrrrnG3nrrLVu4cKFNmjSpM3Ow7AgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAghUpAAZeytytVFpBD4UuPXWW23cuHHWu3dvGzlypM2bN8+effbZDwfgEwIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIVIQAgb0VsZqoJALZBdauXWvdu3f3A3Tp0sWOOOIIu/HGG7OPQB8EEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEChLAQJ7y3K1UCkEChe47bbb7KijjkqN0KNHD1u9enXqbz4ggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggEBlCBDYWxnriVoikFWgV69e1rNnz1T/IUOG2MqVK1N/8wEBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBCpDgMDeylhP1BKBjAK/+tWvbMSIEY361dbWWkNDgz333HONuvMHAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgiUtwCBveW9fqgdAjkFVqxYYV26dGkyzBFHHGFTp05t0p0OCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCBQvgIE9pbvuqFmCOQVeOGFF2zIkCFNhuvVq5c9/fTTTbrTAQEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEyleAwN7yXTfUDIG8Ak899ZSNGDEi43Dr16/P2J2OCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCBQngIE9pbneqFWCBQkoODdrl27Nhl28ODBpmy+FAQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQqBwBAnsrZ11RUwQaCcycOdMUwJupKNh3++23Nw1DQQABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACByhAgsLcy1hO1RKCJwHvvvWcjRoxo0j106Natm2kYCgIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIVIYAgb2VsZ6oJQJNBF588UVTZt5sZdCgQdl60R0BBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBMpQgMDeMlwpVAmBQgTyZeNVxt5Zs2YVMimGQQABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBMhAgsLcMVgJVQKC5ArvttlvWUdVv3bp1WfvTAwEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEykuAwN7yWh/UBoGCBV566SXr3r171uHVT8NQEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEECgMgQI7K2M9UQtEWgisHbtWtt1112bdI920DAUBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBCoDAECeytjPVFLBJoIvPzyy9ajR48m3UMHBf1qGAoCCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCFSGAIG9lbGeqCUCTQRWr17dpFu0g4J+8w0THZ7PCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCDQvgIE9ravP3NHoNkCysibrxQyTL5p0B8BBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBNpGgMDetnFmLgiUVGD27NnWs2fPvNMsZJi8E2EABBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBoEwECe9uEmZkgUFqBlStXFjxBBQFTEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEECg/AUI7C3/dUQNEcgoMGDAgIzd0zsWEwScPi5/I4AAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBA2wkQ2Nt21swJgZIJzJkzx3r27Jl3ev379887DAMggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggEB5CBDYWx7rgVogUJTAihUrChp+u+22K2g4BkIAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgfYXILC3/dcBNUCgVQXmzp3bqtNn4ggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggUBoBAntL48hUEChbgeXLl5dt3agYAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgh8KEBg74cWfEKg3QRee+01e+CBB4qaf//+/YsanoERQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQKC8BarLu3rUDoGOLaCA3htvvDG1kP/85z/t8ssvtxEjRqS6ZfvQu3fvbL1S3Qn+TVHwAQEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIGyFyBjb9mvIirYkQUmTpxoS5cutV69etluu+3mP//2t7/Nu8ivv/563mE0QCHBvwVNiIEQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQKDVBQjsbXViZoBAdoF33nnHjj32WBs7dqwNHjzYf547d67dfPPN2Udyfd59992c/aM933jjjeiffEYAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgTIVKIvAXmUsnTFjRrsTNTQ02LRp02zNmjXtXpdQgXKsU6hbpve1a9eaglU3bdqUqXfGbhpW4yxfvjxj/47c8cQTT7Q+ffqkFlGfx40bZ/fee6+VKiBX3y8KAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgiUv0BJAntfe+01u+222+x3v/td3iV+/fXX/bD33HOPH1aBoMpUesghh/hgxrwTaMUBrrvuOjvyyCPtwAMPtEQi0YpzKnzS5VinXLW/8cYbbejQoXbLLbfkGqxRv6lTp/pxzjjjjEbdO8Mf3bt3t8mTJ9vdd9/tXy+99JKp27Bhw0wuucpOO+3UqPeyZcuaTEvdKAgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggUBkCJQns7datm331q1+1iy++2ObOnZtzyW+++WY/7L/+9S8/XH19fWr4YrK8pkYq4YfNmzf7qW3YsKFsAnvbok7KDnvNNdfY9OnTS6ZZLoHRJVugVprQX/7yF3v33XctmUza1q1bbdasWaZuCo5WYO+bb75p4buSXoW+ffumOinbscZTtumuXbv6l76LTz/9dGoYPiCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAQHkLVJeiervttpt97GMfsyeeeMImTZpkV199dcbJKkj1/vvv9/1OP/10/96vXz97/vnnbf78+faJT3wi43ht1fGqq66yffbZx8aNG2fV1SWhaXHV26JODzzwgA8KHThwoI0fP77FdWYCxQnstddett1221lDQ4MtXrzYlMX68ccft/fff9/uu+8+mzlzps/Ee+yxx/oJh/foXBTUW1VVZSNHjrTevXv7XosWLfKBvvPmzYsOymcEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEChTgZJFr5599tk+sPfOO+80BaPGYrEmizxlyhQfrKggxqOPPjrVf/To0aZXe5fu3bvb5z73ufauRqP5l2OdGlWQP1okcOCBB1qvXr38NBSYO3jwYHvrrbds6dKlPrj84Ycf9sG5yuq7evVq//2ZPHmyRYN1X3nlFR8MfPLJJ6eCejXBQYMGWW1trT300EP22GOP2THHHNOiujIyAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgi0rkDJAntPPPFEX9O3337bZ+BV1tv0cu+99/pOF110UaOMuNddd50tX77crrjiCtt1110bjbZq1Sp78skn7dFHHzVlID3iiCN8dmBNPwQPb9iwwQcTx+Nxu/76633m0jARZRH++9//bmPGjLHzzjsvdPbvP/vZz3wQ5TnnnOMz9b744ov2hz/8wUaNGmXnn3++H0bz/973vmc9e/a073znO3bPPffY1KlT/XgjRoyw0047zQ477LBG09UfyWTSZsyYYQpmVv233357U6bVL37xi34eCsb80pe+lDegOVOdNP3vfve7PuDzyiuvNA2jwM3nnnvOlD1ZQdNnnnmmySNX0TgPPvigPfPMM34wrZ85c+aYgom1TqJFw+qlenfp0sX2339/vzy5MvyuW7fOfvnLX/rpa10dd9xxfpyhQ4dGJ53zcyKR8Blrg6OCVbV8yhCtbM+VXkJQb1iOhQsX2qZNm3zmXa3PsWPH2pAhQ/x6laey+SqwV5l9td336NHD/vGPf/jvRcjUG6ald63Lfffd177//e8T2BuF4TMCCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACZSgQq6urS5aqXgpUVcber33ta/bjH/+40WTfe++9VCCmAhYVaBuKAmQVEJzefcGCBbbffvv5LKVh2PB+zTXX2NVXX+3/VBCtAj4VHPz88883CpY9/fTTbdKkSbbTTjv5wOAQDFxfX28777yzn7ayn2r8P/3pTz4gVplP//znP/tpv/nmm/aRj3zEj3/SSSfZ7bffHqqQev/FL35hF1xwQepvffjJT36Sql+0h4JbFbj51FNP2d/+9jc7/vjjo72bfM5UJw2kAGgt78SJE5tYq/+pp55qd911lz5mLTfeeKMpMDi9KKOyAppVZHvxxRfb73//+/TB/N/yOOuss1L9vvWtb/n6XHjhhX75VMf08vTTT1s0IPiRRx4xBYYffvjhPng4OryyPytYO71ofT777LM2YMCA9F4V9fe3v/3tRvXV90eB4jNnzvQB6h//+McbZeFVcLuy9yqY9+tf/7rffpXV94wzzvDTcd/n1PQUgL1161YfAK5tbdq0aVZMUHVqQnxAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIE2Ecid0rXIKoTgwrvvvtsUOBstygyrMnr06EZBvdFhop+VmVSBtO+//77P9KrgRQU73nDDDX6wa6+91gfi6g8F62pYlf/85z/+Xf+pDgoaVVGAqbLNhqLPmvbw4cN9UG/onu1d4yuIVUG8L730kg+aPfjgg/3g3/jGN0zZVENREGUIOr7ssstMgazTp0/3GX//9a9/+aDeMGxL3xVArXkoyFXTViCzigKCNd9cRRmM586d67PoajgFCevvF154ITWaMiWHoF4t+8svv+wzxp577rl+GGU23rhxY2r48OE3v/mND2AOXn/96199ll31/8xnPmNLly4Ng2Z913xDUO8tt9ziMxNrO1IAsNbHpz71KZ+1NusEKqzH/PnzfTBvQ0ODXy4FPytjscrq1at90Pprr71m69evN2X6VfC1guGV0XflypV+G1TQuILo9VL/LVu2+PEPOeSQkm53fqL8hwACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACJRWoLuXUlGlUmVQVdKnsoEcccURq8vfff7//fM4556S65fpw77332pw5c2zfffe1++67z7p37+4HHzlypP98ySWX2A9+8AOfmVY9jjnmGB94q0y4F110kR92xowZPnh34MCB9s4779iUKVNS2XxDALCy8xZafve73/mMvhp+r7328tmElc1XAcIKiA1ZaG+++WY/SdUjBKaqg5ald+/ePqOxH6AE/ylbbnQeH/vYx3zgrdaBgn0nTJiQdS59+/Y1vZShV0VZgHffffdGw1dXV/vsw3KXsYoyLB9wwAE+E7KWXc4Ktk0v99xzjynjrIq8Dj30UPvoRz/qszPfcccdPpA4fZzwtwJar7jiCv+ntgUFA6vIW/NWoKoCvbVOQ1C3H6AC/1MQu14KNg/Zq7XN9uzZ0y/NsmXL/LIq+67Wh96VSVnB0QsXLrRhw4b5oF4FWNfW1vogX21nGk5BwrLcfvvtfaB3od+/CmSkyggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAghUvEBJM/Yq6FBZYFWUMTYUBZk+9NBD/s/PfvazoXPOd2UiVbnwwgtTQb1hhNNOO81/VODvhg0b/OcQWKoMvQp6VFHQp4qyvaoo+2woTzzxhP941FFHhU55348//vhGwyigcujQob6bAodVlCU4BA0rk256CUHH6d2b+7ey1kaLshefcsopvtOiRYuivZr1WT5f/epXU0G9YSLdunWzI4880v8Zlj3007uCnENQb+iuYNPLL7/c//niiy+Gzhnf3377bR8wraDjENQbBuzTp499/vOfL2g6YZxyfVf2ZwXB//vf//ZBulo2ZX9WkLXWpdbhk08+6bMVr1mzxvRSNwVUL1682BT0+9Zbb/lMyvPmzfPB8Mreu2LFCh8srO+e/pb31KlTydpbrhsC9UIAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEDACZQ0Y69EFXT7ox/9yJSh96abbrKuXbva3//+d4+twNj+/fv7z/n+e/zxx/0gX/7yl33G2GzDK8upgkiVkfTggw/2QbXKnrv33nungok/8YlP+GyxkydPtvXr15uCUsP0DzrooGyTbtRdAaaaR3oZNWqUz0Abgolff/311CAh6DfVwX1Q8HOoZ7R7cz8PHz68yahadhVlai1FUeCu1uEzzzxjr732ms/I/N577/ng0mzT32effTL2UsZdFU0rVwmBvwpgVRbb9KLAX5UQAJ7ev1L+VlCvAnlD0XYkWwVBx+NxH7w7e/ZsH9z+5ptvhsH8exhPmXv1GjRokB+vV69eqeG0rWs4vTTMggULUv34gAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAAC5SVQ8sBeBZXuu+++NnPmTJ8x95Of/KTdfffdfqm/+MUvFrz0Cm4MRcHBmYrmVVdXl+qlDLHKlqtXv379fNCnMgTX1NTYCSec4DOjKpBy4MCBPihVgcbdu3dPjZ/rgwIkMxUFX0aLMq6GsnnzZuvRo0f4M/WubKqlKunz13SV6bVURZYnnnhiKohXAc677LKLDR48OJWZONO8FJiaqfTs2dN3zpTlNzr8qlWrUn9mW/8aIEwvNXCFfVBg+MKFC32ttc1v3LjRb5Nr1661YK1hlJlX22rYDtVfgeYK1N1zzz39eArojW5/mujWrVv99qAMwHvssYcddthhFSZEdRFAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBDoPAIlD+wV3XnnnWeXXnqp3XvvvaagRAWHKkhRmXMLLcrCqwy7kyZNspNOOqmg0Y4++mj79re/bU899VQqwFHBuyrHHHOMfeMb3/DTDFluFQhc6jJgwADbaaedfFZbBTcfeuihjWaxfPlye+ONNxp1K+c/Jk6c6IN6Tz75ZPvWt77l12cIJv7Upz5lDz74YMbqK5NyphIyGh9++OGZeqe6jR492n9W8PasWbNS3TvaBwXazp8/3y+WzJTRWZmeFfisYNzddtvNZ+KdMmWKD+xVkLMyMSsD78iRI30G5SFDhlhVVZUPYNe60TTq6+t9UK/elSVb44wdO9Y0LAUBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBMpToHG62RLV8dOf/rSf0p/+9Cf7/e9/7z+fdtppBWfH1Qgf/ehH/XiPP/64f0//b+7cuTZ79mxTVtxQlClYAcQa5+GHH/adjzrqKP+uAGMF3P7jH//wgb/qGPr5AUr434QJE/zULrroIluzZk1qysouXEzW4tSIbfRBwaLRsmHDBps+fbrv9M1vftPGjBljIahXmWCnTp0aHbzR56efftoHNzfq6P745z//6Tvtt99+6b0a/a31pTJnzhxbsmRJo376Qxl9tf4XL17cpF+ldVCwrV4K4tVy7b777vbqq6+aMvgq2/SOO+5oBxxwgA/k7du3r9/m1V3BvPvss4931rgK4N155539+6BBg3xAsKal8SkIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIFD+Aq0S2KtAQmV4Vbnuuuv8++mnn+7fC/0vZNO97bbb7He/+53POKpxGxoa7Kc//akPMlW2U/0dijKVnnjiiT7Q8Y477jBlfVWwo0osFjNlmH377bd9FuCBAwfannvuGUYt6fsNN9zgg4iVmVd1OP/88+2SSy6xESNG2BNPPOGDj0s6wxZOrE+fPn4K//rXv2zTpk2pqfXo0cMvhzo89NBDqe5btmyxCy64wGfyTXVM+/D+++/7IOYQLKz19Otf/9ruu+8+P2RYv2mjpf5UgPaxxx7r/w7rNPRUhlutewVy33///aFzxb8rOHfhwoWmgOpddtnFZsyY4YN3tWB77LGHf6m7tl0F9cpIwekap1+/ftarVy//UlZffd5hhx1S29q8efPsoIMOqngjFgABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBjizQKoG9AjvrrLNSbgpELDaoUMMrqFfl4osv9llHjz/+eBs8eLBNnDjRd7/11ltNwafREoJB1e2UU06J9rLjjjsu9XcIPE51KOEHLa8yA++9996pIOPbb7/dZ2D9wx/+YIccckgJ59bySY0fP95PZNq0ada7d+9Gbueee67v993vfteGDh1qJ5xwgg0YMMDuuece/3e2uY8bN84HMSvIWxmMlS350ksv9YN/61vfsiOPPDLbqKnud955pw0fPtxefvll23XXXU311LQUkB2CphVg3FGKAqy1zWh5FeSrbM8K7lXgrl4rV670gekK/F2+fLl3UKZfFWWuVqBveNXW1ppeKu+8847vfvTRR/u/+Q8BBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBMpToNUCexVgqyBDFQVfKmNusUWZbn/zm9+YAhKVAXby5Mk+oFGZWhU4mykL8Mc+9rHUbNIDGRUUGsoxxxwTPqbelQVVpaamJtUtX72VJVgljBtGVB1nzZrlAzHvvfdee/jhh+3NN9/0dVbG20JLmG60TtFxQ/9M3ULdov0yfT7zzDNNwbYKvlV5+umnU4MpoFf9tC4VIProo4/67LAPPvig7b///n64TPNRAPCkSZN8dtnp06f79afsxddee61dddVVqenrQzy+bTNMX8a+fft6twsvvNBPZ+bMmaZpqXzta1/z24My01Zy0XYdLWPGjLFu3brZq6++agr0VUDvk08+6V/Kuqug6lGjRvlA5xDUfuCBB/p1FrIjR6enbs8//7xdffXV0c58RgABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBMhSI1dXVJcuwXk2qtGnTJluyZIntsssuTbL0Nhm4nTso862yqw4bNswHYUaro+VQ9lkFdCrQV5lZy6U0NDTYxo0bfWBz165dG1UrmUz6wF4FEmsd5At4DiNrvHfffdcHPofA4dCv2PelS5eapqf5h2DgYqdRbsMffPDBNnLkyFRQtbL0KhBXy/faa6/ZqaeeaqtXr/bVPvzww+3jH/+4364UmB6yYit7r4KoFWA9duxYv31pBAX1TpkyxVasWOEDzMtt2akPAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgg0FtiWbrZxt7L8S1lM99hjj7KsW3qlZsyYYRMnTvRZbhVwOX78eB8I+5///Md+/vOf+6De4cOHl1VQr5ZBQbshy3L6MimQVwHJxRaN179//2JHyzh8qaaTceLt1DGRSPiA6QULFvhtRF567bfffv79lFNO8YG8qp4CxaNFQcDKaqyA6c985jM+uHf+/Pl+euq+atUqH9ybPl50GnxGAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIHyEaiYjL3lQ5a/JmvXrjVlV50zZ07GgRWI+Ze//MUH/GYcgI6dRuCGG27wGY1feuklv8zKRjxmzBi777777Nprr7Xjjz8+o4Uy9ipgfMSIEan+y5YtS01L01Gpra01Bfs+9thjqeH4gAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAAC5SlQMRl7y5Mvc6369Oljzz77rN1yyy02ZcoUe+655/yAysI6btw4++///m8bOHBg5pHp2qkENm3aZGPHjvWvsOAKxK2urs4a1BuGS3/feeedTS9NL5TXXnvNtmzZEv7kHQEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEyliAwN5WWjnKlPr1r3/dv1ppFky2Awg88MADdtZZZ5mCwVWU7Vndvv3tb5ds6YYPH16yaTEhBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBoPQECe1vPlikjkFegf//+NnnyZPvoRz9q69at8y91O+GEE/KOywAIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIINCxBOIda3FYGgQqS+D666+3HXfc0RYsWGBr1qyxYcOGmbrlKzvvvHO+QXx/BQtTEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEECgMgTI2FsZ64ladlCBESNG2O23325///vfTZ/32muvgpZUw27ZsiXvsEuXLrWddtop73AMgAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAAC7S9AYG/7rwNqgICdfPLJRSu89957RY/DCAgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggUL4C8fKtGjVDAIFcAkuWLMnVm34IIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIFBhAgT2VtgKo7oISGDHHXcsGKKYYQueKAMigAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggEDJBQjsLTkpE0Sg9QX23nvvgmayfv16K3TYgibIQAgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggg0GoCBPa2Gi0TRqB1BRS0m68sWbIk3yD0RwABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBMhEgsLdMVgTVQKBYgUKDdvv161fspBkeAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQTaQYDA3nZAZ5YItFRghx12KGgSyuo7cuTIgoZlIAQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQaF8BAnvb15+5I9AsgVGjRhU03uLFiwsajoEQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQKD9BQjsbf91QA0QaJaAsvFSEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEECg4wgQ2Ntx1iVL0skENmzYkHeJ+/btm3cYBkAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACB/8/eecBJUpT9v2Z2L8Pl47gjHBkk5yA5+SKIIpgjoIIBUVHwVURewmtC9FVRAcUE6N+ECUzkDJIzRz4y3B3huLC3uzPzf361U0Pv7ITumdndnt1vfba3OlT3VH+7K3X96ikIQAACEIAABCAAgXQQQNibjudALCCQmMCWW27paol7dUxhcBCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQi0BwGEve3xnIglBCoSePrppyvu104dmzp1atXjHIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAgXQQQ9qbreRAbCMQmMGXKlJphly9fjsXemoQ4CAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQSBcBhL3peh7EBgKxCWy11VZuxYoVVcM/+eSTVY9xAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAIH0EUDYm75nQowgEIvA5MmT3fz582uGVRgcBCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAu1BAGFvezwnYgmBAQS23nprV8sqb1dXl9tjjz0GnMcOCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABNJJAGFvOp8LsYJAXQKrrrpqzTCy5rvNNtvUDMNBCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABNJDAGFvep4FMYFAIgLbbrut6+zsrHrO4sWLqx7jAAQgAAEIQAABTyJWAABAAElEQVQCEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAALpI4CwN33PhBhBIDaBGTNmuK6urgHhtW/PPfccsJ8dEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCKSXAMLe9D4bYgaBugQmTZrkFixYMCDcQw895GTRFwcBCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIBA+xBA2Ns+z4qYQmAAgd13390tWbJkwP7HH3/cTZw4ccB+dkAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCCQXgIIe9P7bIgZBOoS2H777d1VV101INzSpUvdHnvsMWA/OyAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhBILwGEvel9NsQMAnUJyCpvR0fHgHA33XST22GHHQbsZwcEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAAC6SWAsDe9z4aYQaAuAYl3Z86c6bq7u0thsdZbQsEKBCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCECgrQgg7G2rx0VkITCQwNSpU929995bOnD55Ze73XffvbTNCgQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAALtQQBhb3s8J2IJgaoEvvCFL7irrrrK9fT0+DD5fN7tscceVcNzAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAIF0EkDYm87nQqwgEJvATjvt5NZbbz133333uSVLlrhMJuO0DwcBCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIBAexHIdHd3F9orysQWAhAoJ3DTTTe5r3zlK27lypXujDPOcDvvvHN5ELYhAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQSDkBhL0pf0BEDwJJCNx4441ul112SXIKYSEAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhBICQGEvSl5EEQDAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAYHQTyI7u2+fuIQABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCCQDgIIe9PxHIgFBCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAwCgngLB3lL8A3D4EIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIBAOggg7E3HcyAWEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAqOcAMLeUf4CcPsQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAAC6SCAsDcdz4FYQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCIxyAgh7R/kLwO1DAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIpIMAwt50PAdiAQEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIDDKCSDsHeUvALcPAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgkA4CHSeddNL/pCMqxAICEGgVgaefftotW7bMrbrqqq26ZMPXeeWVV9zdd9/tFi5c6CZPnuzGjBmT6Fovv/yyu++++9yiRYvc1KlTXWdnZ6LzCQyBSgRWrFjhHn/8cTdp0qRhf6cKhYJ79NFH3QMPPOAymYybMmVKpShX3afzH3roIad0HyeNJU2TXV1d7rHHHksFq6oQOACBGATSlO4V3QULFvi0O23atMRlYz6f9+lS+YbK1TSU9zEeAUEgMCwE0lQvXr58ubvjjjtcb2+vr9cmBbJkyRJ35513+tOU7lVvqOaarV9Uuy77IZBWAmkr51vBabDyr5UrV/q2xxNPPOEmTpzoJkyY0Irocg0IDDkBfS969tlnfRs6mx1dtiuStutHYh455C8cP5gKAiPpXaZdn4pXiki0EYGRUO4/99xz7p577nH6NqDvgc3WXxYvXuzuuusuX6dXvR4HgZFCYLDawo3yUZvjtddeS803+JFUH2r0mXDeyCAwlGV7s9/l00I8bfljWriM1HgMZX6f1jSSpC891LW7u7t9/1ut/rN2e2dG11fPdns6xHdUEfjb3/7mZsyY4caOHevuvffeAfcuAcDXvvY1f1zhyl0ul3OnnHKKv8Z6663n5s2b59d1jj4UJnVvf/vb/W8pPi+88MKA0+vFRyd8//vfd6uttprbbbfd3I477ujWWmstd/HFFw+4VqUdEiOceOKJbvbs2e6Nb3yj23777X2jSfeo3466Rx55pBRXxbd8efLJJ6PB3ZprrjkgTDjnN7/5Tb+wbKSHwEsvveTe+973+mcnv5K7//773XbbbefDnHPOOQOCSCSu90ni2c0339wLYXfffXcvrhsQuM6OW265pfQeHXfccRVD14uPKuC77rqr23TTTd3ee+/t1l9/fXfYYYf5j3sVL1i283//93/dzJkz3RZbbOHTmMTvp59+uuvp6SkL2beZJE3qI6PYSCwcZaX9OAgMFYG0pfvvfe97pXT/5z//uSKGeule56kc2nDDDX35qHT7kY98xElEH8dpsMw222zj3vCGN/h8Q+X9VlttVbHuEL2eOv9D+afwUXfzzTeX7iuUh+X+X//61+gprENgUAmkqV5cK+0ECPXqxRLkqnxXele9WOlf6fHqq68Ol6jpawCQymSV+fJV19966619h2ClE5PWL+rlW5V+g30QaAWBemlHv1Hv/Rzq+n2cuklgEyf/CGGD30y7Pk775Morr/RtDrWZlJ+svvrq7rTTTgs/jw+BQScQJw3VqwdcdNFFbuONN/bfi1Qnljj9Qx/6kFN5m9TFqd/Xis8vf/nLqvXoddddN2l0XL1vcbpgknZ9K/PIxDfDCRAoEoiT7tNW3teKT9Lv0JVehCTt+tCOL2+jazv6Hfutb31r1fxIYcu/A1SKF/sg0GoCtdKSfitOe6CV5X6ccrZaud9MGtO3+iOOOML32e21117+W/62225btU+iXr754IMP+j6QOXPmuD333NPJV5+HvgXgIDBcBKqlnRCfeu91M23h8BvBj9MWr5f/6Pj//M//+H72ddZZx2lR37z26VgcVy8PjF4jTpyp20eJsT5cBOqlZcWrXn7QyrK9Xpu+0e/ycdJkvWdQrd6RtD+ulfljvThzvHkCrUgjrczvByuNiFS1d7wSxUrt2ei+448/vt9pSfrSNUhAcVF/uera+lY4a9Ysp7xmpDhMX46UJ8l9tC2BpUuXuhNOOMH99Kc/Ld2DRK1RJ0s6hx9+uLvhhhv8bo0MLHdHH320+9WvfuUb8BIOqJA///zzfSNDIywk9ovrfv3rX7tLLrmkFLyR+FxzzTXuC1/4gltjjTXcxz/+cd/BcvbZZ7tDDz3UPfzwwz5jLf1AhZWf/OQn7owzznDqCPngBz/oP06ce+65TkLGV1991X3nO98pnfXiiy/69QMPPNA3rkoHiiurrLJKaZcaXAovIaQ6MsvdBhtsUL6L7RQQuOqqq9wHPvAB/+wUnXKxut5RvV+f+cxnSrEtD6NKkMRwcno39awlUv3hD3/odtllFy+K00ewOE4jpJQmgytPI3Hio/gdddRR7tZbb/ViHwl7f//73/sGz1e/+lX37W9/O1y+ov+lL33JnXnmmV4c9JWvfMWPzL/gggvcqaee6p555hn34x//uN95SdKkOhgkppf77Gc/6ytA+gihyp9EALfddptPQ/1+gA0ItJhA2tK9LGNHGxaNpPu//OUv7l3vepcv25SeJJxX2a3yWvWB3/72tzUp6iPEO9/5Tm9xXI0UlXvz58/3+YU6BCT+0yCaSu6LX/xiKQ8t//ioQTif/OQnK53mLr30Ul9uYzG/Ih52tphAGuvFtdKObr9ePV3pbf/99/eWeiXi32effXyaUkeA9t90001O6beak3BAHyNUf9X5EgZrEKDqACqTZblbA4OCS1K/iFNfCdfFh0CrCdRLO3Hez6Gs3+v+69VNyhnVyz/Kw2u70XZ9vfaJrq1ZdN7xjnd4S0PHHnusb6urDSVh75Zbbune9ra3KRgOAoNGoF4ailMPUJv3yCOP9O+v2r7Tp093//jHP9z/+3//z6nMDN/N4txEvfp9nPg8//zz/qdURo8bN67fz1YalN8vQNlGvW9xCp6kXd/KPLIsqmxCIDaBeuk+beV9nPgk+Q5dCVSSdn2S79hvfvOb/QDA8t9UXqbvDuPHjy8/xDYEBo1AnLRUrz2gyLWy3K9XztYr95tJY+rnuvDCC/33dg1GkqBH2+r3uu666/rN5FUv39TMejIUoj7Ck08+2W200UbuiiuucOedd57beeed/XdCzVKIg8BQEaiXdhSPeu+1wjTaFta55a5eWzxO/vPRj37UKd9QP9l73vMe/xNqc8iYlqwH/vznPy//2dJ2nDywFLi4Ui/O1O3LibE9HATqpeU4+UEry/Z6bfpmvsvXS5P1+NeqdyTtj2tl/lgv3hxvjkAr0kgr8/vBTCO13vFKFD/1qU85lY/lTnG87LLL/CDVcCxpX7quLW2bBrq9+93v9oa0pI1T+f273/3OHXLIIeHS7eubGeICCwx4B4bvHbARA8rBCtagL9ioXb9uorlSurSOCb9PYewDQCGEjz4zs0jrw+y3334FE/GWzrURIQWbprdgFYSCWQIs7Y+eW75uDRJ/jlkSK1hm56+r64dwceJjo5gKJuj155rYoHSuWfvz+0zAWNoXrhv1TVTow5mot2AfKEphrUJYun/FM5xjYkgf/tprry3tC8fKfRu17MN+/etfrxu2/Fy2hyed/OEPf/DPTO+xid/8ugna+j0/E/T6/dbILujZKr2YaK5imMsvv7zffmuI+/AmHO+3v9bz/vKXv+zPOemkk7xvFYZ+58aJz49+9CN/rtJ9+C2bFrege1D8y+MZwsi3qQR8GKVTmwaodL51DhSUvnT+f/7zn9L+pGnSxIv+GvahonQN/a5ZAvH7bTBCv/3RuLE+POlkpHFPW7o3sUzBGgSl919pzES4/dJBnHR/wAEH+GvYx8PSuSrnlJZ1TbOQX9pf6ZmqrqBwP/vZz/qFs48hfr/iUOk8a9D44zpf5bN+r1K48n3KO5T3aomWx+Xh2Cbdt+odCPXctNSL66WdOPVi1U+Vbk1E1y/dmYU/v79emfq5z33Ohyuv14S4mRCv33WT1C/i5FuterZch3wi+g7ESTtx3s8QprzePBj1+zh1k+g9hjSapOxtpl1fr32iuNngIp+f/OIXvyjlG0899ZTfp+8GamNE74F10m0r34E4aahePUDxURi9ryaoLb2vakeHerYNfintrxX/OPX7OPFR+a5yPu43t2pxqvctTuclbde3Mo+sFm/2k0/UegfipPvwnrbT97wk36Er8UnSrm/Fd2y1I5RPmQGAWPljpTizj7Se9B2ol7bjtAf0m60q9+OUs3HK/Uoc6qUx9fUpDaqva9myZaV0qG8B2m8zVJb2xck3Q9+H8qJofGyQkb+e+uCi+1kn/Q72O1Av7cR5r5tpC5ffX722eJz8R20NpU8zENXvm7i+j2ufjtX6jl8vD0waZ4UP12zF94/y32ebfCLOOxAnLdfLD/Q7rSrb47TpG/0uXy8fqccrTr2j0jUq9ce1Mn+s9Jvsa136b1UaaVV+P5hppNF3vNL7pv4tlat33nlnqQ4bvvHF6UtXf7nOVzs7en2b4cLvV54T3d+u61m7SRwEIDCMBBYvXuxHHsti75QpUwbERNZpZbVWo3gtI3eVLObZBwE/SlDWbKPHZalW04PIkkC5db4BP1Tccdxxx/nRvopPpZG9ceIjK2KyGCrrf1ELYpYJ+6mBNP2nTKJXc2G6b/so0s/iicyxX3/99c46H7359HC+NaD86uzZs8Ouqr6sFMnFtcxa9UIcGDICepdklfL22293Jl6v+LuaZkqWrzUSSlNyVnKy0vzd7353gKVmK9B98GBxo9K50X2yZqtRuXqfrZIQPVRajxOf8J5rZH1wmUzG2cc5vymrQ9VcsEL04Q9/2E/LHcLJ+sYnPvEJv6mRUsElTZNiLidLgFEXtsPx6DHWIdBKAmlL9yoTle6U9jfbbLOKt1ov3cuKZjab9Vbs586dW7qGLHtp2jw5Wdyt5lSOy8qOrAS8733v6xdMVnxVNp544on99mtDdQRZBzdxrreEPyBAjR0m/PF1CFkWLbdAVuM0DkGgYQJpqhfHSTtx6sXKz2SVXyOFo06Wd+VURtdy//znP/1hTdsZdbL2ayJ9p9HL4hZckvpFvXwrXBMfAq0mECftxHk/h7J+H6duEjjFyT9C2KjfaLs+TvtEM/rIQoHaPtH8SG1ozRZiHZT+m0M0PqxDoJUE4qShevUAE/B6y3aqo8pSb3BqR4c6erRMDMcr+XHq9/Xio+vaQFtvPVj1/GZcvW9xunbSdn2r8shm7otzRzeBOOk+beV9nPgk+Q5d/gYkbdc3+x1bs/ipv0DfAzQTGg4CQ0WgXlqK0x5oZbkfp5yNU+6X84uTxjQTlpy++Y8ZM6Z0ic9//vN+XdMMBxcn35Q1RPWR6JtA1GmmHznN6oODwFASqJd24rzXjbaFy+8zTls8Tv6zaNEif2l9h49+E9e69smFMtpvlP2rlwdGg8eJs8JTt49SY304CMRJy/Xyg1aW7XHa9Ipz0u/ycdNkrWcQp95R6fxK/XGtyh8r/R77WkugFWlEMWpVfj9YaURxbPQd17lRZ2Je37+lmW433XRTfyhpX3rQw6jdG3Xrrbee0yxboS4ePdaO653tGGniDIGRREBT2tcSpEoYqzAS6VZzCvOFL3xhwOEbb7zR3XPPPV4UKVFsPSfhwB//+EcvyN1ll128gKj8nDjxsRGP/jSZOy93u+++u7v66qudpgwKIsHyMDK5LqePEYqTjahyNqrEC58kfirnFQSZalSdc845frohdVgqrKYiirrQ2FIn0EUXXeSnP541a5YPq/h0dHREg7OeAgKaLvbjH/+4U2edGgWV3P/93/8NeC/Kw1US4dqoHGcjeXxQVe7rOXWIKy5y3//+932cKp0TJz5KmxLtRwV+utYOO+zgL1nrI5xZ4/Zhpk6d6v3oP92T3MMPP1zanTRNHnbYYX6aoR/+8IfuG9/4hhcjqiKlbblDDz20dG1WIDAYBNKU7s16nfv0pz/tG1MaYGOjLivecr10r87+6Mf6cBFNPaJyXi46GCYcD76NgPSrGuigsswsBjsbcejLOZWXW2+9dQjaz5cYWQ1Ks7jtpk2b1u9YrQ11TuhcOgBrUeJYqwmkqV4cJ+3EqRerzKxUbqoeIBc+WFRjqbqPWSbs15EQwoayXvlDmO47Sf2iXr4VfgcfAq0mECftxHk/h7J+H6duEjjFyT9C2KgvLknb9XHbJ+pYlFN7vLzNq7a/XMhT/Ab/INBiAnHSUL16gL75VEojqq9rWlyVl9XqxNHbiVu/rxcfXVOdBPPmzXNPPPGEj4PK7R133NF/Y1I9Oo6L8y1O10narm9FHhkn/oSBQDUCcdJ92sr7OPFJ8h26nE3Sdn2z37HPO+88P1hX3/OiwqTyeLENgVYTqJeW4rQHWlXuxy1n45T75ZzipLH58+f701Q/iDp9o1P/mQwJBAFDnHwzaiQkej0N9pOrZvQkGpZ1CLSSQL20E+e9bqQtXOke4rTF4+Q/6ldWH7P6ASTCD/3MSs/ap2NhX6V41MsDo+fEibPCU7ePUmN9OAjEScv18oNWle1x2/SNfJePmyarPYO49Y7y86v1x7Uqfyz/PbZbT6AVaUSxakV+P5hppNF3vBLx0047ze/+0pe+VDqctC9ddWAZ0ZFmRsax7rjjDr8unZjq2nE0cqUfT/EKwt4UPxyiNjoIlItUy+964sSJ5btqbkukqE47derLgtdOO+3kfvKTn9Q8RwdVYZClT3U8yDJfNRcnPsHi4JprrjngMmuttZbfpzDVhL3333+/Fzx+6lOfcueff37pGmeddZbfL4u/UTFksJSgkcrlnZHnnnuuO/zww0vXCB9E1RgrD6uCUuGbtbRS+jFWWkJAwut6rl46ip6vd0+jd2Q1+l//+pd/D84+++ySoDYatnxdo+VuvfVWL3aVNWybAqM8iN+uFx+lNwntKlkgVhpTh6TSQTW38847+0MXX3yx++hHP9rvnb3lllv8sSCQ10bSNPnmN7/ZqTJ10kkn+Xxk880399aBHn/8cb9fx3EQGEwCaUr3X/ziF/2t2vT2/SxrlN9/vXRfHj5s//KXv/QNDZsyr6bwNpRZsiogIaAs60Xd6aef7i2XR/fdd9993kqvLIxLsJ/EaTSnOizVAShr4DgIDAWBeukoTj00Gs9G68Vx007S+IS4Kf0ef/zxflNpv5bbZ599vFDopptuckF8p/D6OBOcBALbbrutr88nqV/U4x2ujw+BVhOIk3aSvJ9DUb+PUzcRp7j5Rz2mcfOvuO2T0B4I7fHo74d9oa4RPcY6BFpFIE4aSpLubQpaL4RRGfinP/3JTZgwwWnWG/n1XCvr9yp3ZUGnvGNfbXrFsZ7QOO63ON1TSMdJv7U1k0fWY8lxCNQi0Op038y7HLe8jJMPJfkOXc4nlLVx2/XNfMdW3qRv/PrW/8EPfrA8KmxDYFAJ1EtLcdoD0Qg2Wu4nKWfrxTkaH63HTWNB2Lv66quXX8Kpf0HCXrXv11hjjX6zVA4IXGNHaINoVp9K/Q01TuUQBJomUC/txKkPRCMRty0cPUfrIR3U+w4eN/9RH+KRRx7p1DcWjAKpb1rpTP2JtVw9JuHcuHEO4eU3Ux+KXod1CCQlECctx3339duNlu06N26bXmHLXa3v8o2kyej1k9Q7oudpPU5/XKP5Y/lvsT04BFqdRprJ7wcrjTTzjpdT10CAv/3tb06C6DALV3mY6HalvvQlS5b4fuw99tjDD7KPGs2TBd+DDjrIG8kaCeJehL3Rt4F1CIwAAir4JTwMTmLVOIKcM8880wsNL7jgAj+KIZzfiB+sAQXLYdFrhEJN0xVWc/rYoYqVRIQSFClDV0Hxve99z2mko0SFd911V+n0cK0tt9zSafphVRyvu+469/73v99PP66G1q677urDB6sKYiLLwVtttZW3eHjMMcf4URwKGwq70g+wMqIIyMpNGAGkG3vb295Wt7NN4fQx/YQTTvCjcWW9sxkX3sOZM2dWvIw+6gVLfpUCqNNQUzFoVJQE8FpUKZEFT6UTOXUSBNdImpT1LzmlQy3Bhf1hGx8C7UCg0XSvj3Wy/nXUUUf5gTKtvtfrr7/eX1sf70899dSal5cVMDmlcY0y/MEPfuA22GADJzH/+973PveVr3zFW+VQniYnS8Ahrwr5gj8Q4586J0455RQ6AGOwIki6CTRSL24m7cShoel3VT9Xp76m4tSo+1pO0xApH3rLW97iJEjQlH8a/HPssceWTgtC/2brF6ULsgKBNiPQaDnfyvq9kLUy/4iTfyWJv6yKylWyIBra7aHN4APyDwIpJ3DVVVe5b37zm6VYaqB6dAB46UDZSqvr96GtLOt5ajMoH9BMWJrpY9999/VWdmvNmpHkW1xIoyHNRm+t1re2RvPI6PVZh0AaCDT6LicpL+PcZ5Lv0OXXS9quD/X7Rr5jy9CH2glqc8TpGyiPK9sQSBOBRsv9JOVs0vuNm8Y0CEkDfjo7B3bHh7p5EPYmjYPCa7CBvhfIKU4jQbjgb4Z/o5ZAnLZwOZxWtsXDtbu6ukqDBtWGCE79z62wgt9onButD4X440MgLQQaLdubadPX+i7faJqM8my03hG3P66R/DEaP9bbi0Cj+f1gpRHRa/Qdr0Q+aHW+/OUvVzrcb1+1vvQwI46s6au+rQH/Mo6jdvfnPvc5d8kllzhd/9vf/na/67XjRrYdI02cIQCB6gQkVpWgT74sgUnwJwGAKgXVnEZ8KPPUqMN3vvOd1YLF3h8s/oSPj9ETQ4diCBM9FtYnT57sVxWnj33sY96CoURP3/rWt5xGW2q0heIcnKZS0EdKiZIljlhllVV8uN/97nc+yN///vcQ1At51eEiS6fK2DU6UxbOtC130UUXlcKyMjIJ7L///k4jeFTYa3SbrO7KAq4qxLWc3ht9EJfl6DFjxtQKWvdYGKEftbYXPUkVDonMq7lMJuMrJwqjKb/0DmvksNLMiSee6Dvso6ObQnqLmyY15YGsehx44IHuP//5j1u0aJH3ta39cSpZ1eLOfggMB4FG0n13d7fToA81BuqJbhu5J5Vlb33rW/31VU6Fzvhq14oKAjSIReJ+WSTTSESJB+S0PziVgRrkojS77rrrht2xfFmvV34nq910AMZCRqCUEmikXtxM2qmHQR8IwwcFiX80g0Q9pw46ifOVJmV5W9N9a5CbBr2F6ciDOLjZ+kW9uHAcAmkl0Eg5r3tpZf1e12tl/hEn/0oSf7Wn5Sq1P0IbQYMLcRBoFwJ6/9Wu14DYM844w/34xz926623Xs0Bsq2u32vabNW1L7zwQt8OV31eAh2JjNUuV9l98803V0Wa9Ftc0nZ9+OFG88hwPj4E0kKg0Xc5SXkZ516TfIcuv17Sdr0MUij+Sb9jL1261H8jVJ5UaSrX8nixDYG0E2ik3E9aziZhkCSN6Zuc6gQ9PT0DfiIMFAh19QEB6uzQdfVtUTMIaOZLGQLAQaDdCcRpC5ffYyvb4rq2Bu+96U1v8ha11YeovsTQn6jv7aqThAF+5XGJu91onButD8WNF+EgMFQEGinbm2nT1/su32iaDLyaqXfE7Y9rJH8M8cNvPwKN5PeDmUaaecfL6ctglfrF1d8lfUstV6svferUqaVTZf1XA+yl/dKst+o3V/++jOaMBNc5Em6Ce4AABF4nIMGhFolWtdxxxx3usssuc//+97/d29/+9tcDRtZk5U/uv/7rv9wVV1xROvLUU0/5dY3s0McFiYfiuDAFYbAmEj1HIkq5IECIHgvrEiTqY8SOO+4YdpV8xVFWSiU2DNeQZd5KbrfddvO7NYojOO0L+8M++dOnT/fCZt2rRNCTJk2KHmZ9BBHIZrNeqDZnzhz3gQ98wL9He+65p/vud7/rPvrRj1a8U3UWSvj7hje8walSpClC5ELHuBrx//rXv7zQLo6VIAnl9FFPo63KnT4M6qPcXnvtVX6o37Y+zss6t9LCtdde6ysnu+++u7+upheIivSTpMlgHVvxU6Wno6PD/66mENW2LITKcrasecaZ5rRfpNmAwDARaCTd//znP/cWNWUNV2VpcHfffbdf1TQhaiAo3cWdwitcQ+WrGmVK68pPlLfUc2uvvXYpSBgAE3bssMMOfjWU4cqngmBQAuCQZymQBBDqTFCepbK9vNGkOJ1++ulelPDhD384/AQ+BNqSQNJ6cTNpJw4gpa1zzjnHHXzwwb4sjXOOwkggJDHvNddc4x577DFvnVudd7qeXKgTt6J+4S/IPwi0GYFGyvlW1+9bnX/Uy7+Sxj/kE6GNH33Eod1ea2BhNDzrEEgDAVm907Lxxhv7ZeXKlX4GC3W8q21fybW6fq+8p9qgV3UmqF2u9roGqFdySb/FJWnXR3+vkTwyej7rEEgLgUbe5aTlZZx7TfIduvx6Sdr1OrfR79hqc6ht/7WvfY3BuuUPge22JNBIuZ+0nE0CJkkak7BAQkD1I0TzAP2e2vdyYZCu34j5T3Wfd7/73f6bpYzeaB0HgZFAoF5buPweW90W1/V//etf+3JUM2epbyA49SfK6M4RRxzhfvOb31RtC4Tw1fxm4txIfahaPNgPgeEk0EjZ3kybvtZ3+WbSZGDYaL0jSX9c0vwxxA2/PQk0kt8PVhoRwUbf8Ur041rrrdeXLq1PcDvttFNY9b4MQUprI8Gv9Gnl9fB+gdtgA2FvGzwkogiBegT+8pe/OAlSZbVrzTXX7BdcwgEJezXtWDUXPiD893//d8UgEvZIRBg6/CoGiuyUlRQ5TaPw3ve+t3REo6EUF7kQpnQwsiLhoITIEhiWu2DxN5pRf/GLX3Sa/uS4447rF1yVIbloWIkzH3zwQW+1oFyUqGtr5Eb5/n4XZaMtCaxYscLJCq0EbOXiXVnr1XMP71alGwwd4BoVJGFNudOoIi16v+JawpCQT+dIFBy1phmE6LWEfkobGiE8c+ZMJ1GyluD0QUEudPppPaS3OGkypHN9dAyiXl1DTtuyFiLhvRalVRwE0kqg2XSvNCanD3layp2syGtRvhDEMuVhKm0vXrzYd+7LOp4aFBIGx3HBip6EuuVOYl25kJdogEqwvqcRj+VO5aPqBx/84Ae91e/o8dA5ISEC1nqjZFhvFwLN1IubSTv1+Cht6YPFfvvt5y376eNlHKePDorXJpts0q+OIYG+rHSrDhPtBGymfhEnPoSBQFoINFvOt7p+34r8I0n+lTT+YfChBgFp6sFoHqRBA3JJ6jNpeQ+Ix+gicN999/kppg855BD/cT5692qnq5NB01FXc62u3ysdSkS8zz77lKbADr/98ssv+1V9S6vmkn6LS9KubzaPrBZn9kNgqAk0+y4nLS/j3F+S79Dl10vSrte5jXzH1vcBCXqx1ltOn+12I9BsuZ+0nI3LJ2kaC9/PJe6NCgTVXyejHZptU0LBJC6Xy/mZLtXXpvpPGNyf5BqEhUCaCCRpC5fHuxVt8fJrBoM8GkRY7sI+WS5s1CWNc7P1oUbjyXkQaDWBZsv2Rtv09b7LJ02Tlbg0Wu+o1x/XTP5YKZ7sSzeBZvP7wUojotboO15OXDNbyYij+q4r9XeH8HH60vV9W4YqHn74YT+jvQw5Rl0w0Cc9Tbu7eL2J7X6XxB8CI5yARuj86Ec/chq5ceaZZ5Y+BGiEkURDclHhkAS20Y8Fmrbw1VdfHUDp+9//vpNZf00BkGQ6IIknlYlqVIjEtqGhc8kll/iPFQceeKCLWhssj4+EkbofWQVVB0kQ2kpwqGvKRa35PvTQQ74zRdYPowWAKkNyUdGjKme6L8Xv6KOP9sf1T/cpcZYKEXHEjSwCeoduvPFG/15JUBM+pOsuJXaVyO1d73pXv5uOvpfbbrttaar7aCBVCI455hg/LY/eJ1m1jetkUVfC3lNPPbX0Xmsqz2DxR5b4oi4an5deeskLbCXekQWgcePG+aC6j+OPP96LfCTaCy5JmlTa0Md/pVeJ4CUkCk7birOO0/EfqOCnlUCz6V4j8GX5vtxJEPPDH/7Qfe5zn/PWc6KDR8rDlm+rDJIQQY0MTe0jK/S1XDTd63eUrlWuq9ETtfz1gx/8wF9GZaachH6ysF3JHX744b5c1XTF5YOB1DkhKx9K41jrrUSPfe1AoJl6caNppx6Xiy66yH3605/202L+/ve/rymaj6Z7Xfc73/mOr79ccMEF/eoqSsPKS8o78JLWL+rFneMQSCuBZsv5VtfvG8k/ytN7kvwrafzVxlUdQBaHlJ9oXU7tmW9+85u+7NeARxwE0kxAA1n0rUhtYAlZorNm/PnPf/ZRD/XhcB/RdNbq+r3qzL/85S9921nf3KZMmeJ/Vt/iwveoXXfdNUTFReOinUm/xSVp1zeSR5YiygoEUkSgkXc5mtaSlpdxbj3Jd2hdLxqfJO16ndvId+yoOED8cBBoVwJJy/1oWtM9Jy1n43Kql8bK46G+sBNOOMGdeOKJvu8pfMdX/OTK+yTixEPf/zWt8Gc+8xn31a9+Nc4phIFAqgkkaQvrRqLprJG2eD0Ye++9tx+Uf9555/k+v2AAR6J6zRAiF+13jsan3rV1PGmcG6kPxYkHYSAw1ASSlu2KXzR9NdKmj/NdPmmaLI+Xthupd8Tpj0uaPyouuPYl0Eh+PxRpRESTvuPReEWfSBxrvUn60j/+8Y/7PjL1o4UZLvV7mslWg+g0C070+2E0Lu20jrC3nZ4WcYVAFQISKkrQetZZZ3khngSusuKljg1lWPp4EKx/Skikio+s80pQKLfHHntUvPLFF1/sBa8SD0UtgVUMHNkpC3+yKKCGjaYfVIaqyomEuqocSRAVnMS6sjqikck33HCD362PrprW7MILL/SCSY1klvBYH01kgfCUU07plwF/8pOf9B0pe+21lxdayZS6LBjrfIkUDz300PBz/kOJ7lviCk3Hps5LCXrDh5TPfvazpbCsjCwC+oAmC9LbbbedO+qoo7y4V89eHYNyek+DkxhdlnQXLVrkReh6/6NC2RDuiSee8Kt6zyodD+Eq+Xqvf/vb3/r39JVXXvEW/PRBTu+lrG9HxesSD0tgL7Gt0rfEeLoH7VP6PfLII52skKijXmlEnfVRwV6SNCnRvz406sPglltu6T71qU/5NKqRWCHt6nh0cECl+2MfBNJAoJl0L6vVWspdsAav8iNputfAFY1GlPvHP/7hl+j13/GOd/g0rn3l+ZD2yYquhL0S/iuNbrbZZk5CY+UdGoATRDoapVgtbhpYo0ZMpeMSCur+1PihA1DEce1IoJl6caNppxYniY/e8573+CAzZswYMMOEPs6pDi9XqZ6utK66iurvt912m7eWr5H6mt1C9fuTTz7Znxv+JalfhHPwIdCuBJKU8+X16VbX75PmH5XSe5L8q5H4f+Mb3/CD9NSOuP32233d4eyzz/aPX+2KqVOntuurQLxHCQGVo2qfql26ww47+Pb9tGnT/GBdlY2avSJaxy2vT7e6fi9hjspp1Z3f+MY3+m8KKteVvmWVTwPHVV+Xq/TtK+m3uCTtev1mkjxS4XEQSCuBJO9yebpvpLysxyHJd+jy+Ojacdv1CivBX5Lv2Pp+rvKewbqih2t3AknK/VaUs3F41Utjler4mlVPVrRlzEP1BQ2kv+mmm9wf/vAH3yemdkoSp8H94RuCZgiIGq/RdcL3/CTXJCwEhptAkrZweTpL2haPc68HHXSQ71tWP/f9999fMrAhYxvqx1a7Q2HkKuU/9X6jkTgnqQ/V+32OQ2C4CCQp2xXH8rp00jZ93O/ySdNkpXSftH2v+4vTH5ckf9Q1ce1PIEl+P1RpRFSTvOOV0oiuoTJU/Vpvf/vb+xlr1LGoS9KX/rGPfczXjTXDrrQs0tHIUJ1m2JLT7BYjwSHsHQlPkXsYMQTCqL96gjmJY6Nu7NixTtNnSgyoRo0sl8jpI55G70oIG5ysCshFRxOGY9X8pPHRdWTlUNaDZUUsCIgVb1kziVr/DVOalFstlIhXwkRZDwoiKJ2vj5OyAhx1yqAleDziiCNKv6XjGlUpoaM4BCfLCBI7SziszkstchJm/uQnP3E77bRTCIqfQgLBmnLwK0UxvK/lYdSpJiGd3h+9m8HpmeuDWLC229XV5UW92h+1LB3CR/3wW8GPHgvr4Vh5fLRfQh19pNf7q0VOHZHllQx9PJCLvp8SyssikETpEqoHd9JJJ1Uc6R83Teo6n/jEJ3z6UzyCmFf7JSBSp2W0s1T7cRAYTAIh7QS/0m9VS2eDke7D74ffDNtRPxwrj7MshAcXLNCHbfnq+FeZVi0fkgVtlYkS+H3ve98rnaqOgfPPP7+foL90MObK8uXLnRo+KjODQDjmqQSDwKAQSGu9uN7NltfT77777tIpYSaN0o7iSuiUq1RPV2eBPkKq7ho+Rug0DerTQB6JfKIuSf2i/Dxtl+db0TCsQ2AwCZSnnehvVStX45bzulal+nT0N8J6+K3gh/1RP6ST4EePxV2vlN6TtOur/U6Id/Cj4TQdmfIN1SOCoFfHZeVLg4FxEBgqAiHtBL/S71arB8gCx7x583xdOHxr0vnqFFDbNUyvV60+Xem3wr5K6SYcqxYfpR8NiNPg16gVfQnoVW6He6z27Stcv5JfKT5J2vVJ8shKv88+CLSSQEgLwa907fDOl4eJ+y4nSffht4KfJD5xv0NXi0+Sdn3S79gSIDFYt9LTZN9wEgjprDxtl8epUnsgbrnfqnI2xKlauV8vjVWq4+uaMiaj6cdliEZ9eHL6zq6+K4mJKrnAK/ghTOgr0/avfvWrsLvkS2yogVA4CAwHgWppJ8QlvM/BD/uTtIWrpbNwrUb88vxH4sPrr7/eG5L661//WjJKpXDh+1wYGFsv/4mbB9aLd9z6UL3rcBwCrSAQ0nDwK12zWn4Qt2yvVpeu9FthX0hvYTvJd/lwThy/XrqvdI3yuMXtj0uSP1b6XfYND4GQNoJfKRbV0kjc/D5taST6jldLI9J5yekbWi0Xty9d11D/mHRyMuCngXNa5KT90izu5TN7+YNt+C9j04MV2jDeRBkCEKhCQGbNn332Wd95oI9/5U6deBL/ykLoUJgd16hhZd4qnPThsvw39TFElg4kRq400kOm1jWqQg0mZcDRQqH83rT95JNP+ulENUXhpEmTKgUp7XvppZfc/PnzvTXS2bNnl/azMvIJqMKs0UKy7lwuiJEV36222spbwKtXsWgFqXw+79PIwoUL3VprreXjVH5dfUiQJetLL720/JAXAEqooGmAlEbCB4UBAYs76qXJ8vMCKwnty9NveVi2IZBmAuFdTkO6r8epXj6ksn7BggXuhRde8FaFyz8+1rs+xyEwWgikrV5cj3u9evozzzzjRx2rjq8ZL2p9GIpTv6gXH45DoJ0I1CrndR+16tPDcZ/10nu9/KuZOOvDr9rYK1eu9FbAxQYHgXYksHjxYj87lOr3oUMk3Ee9+nQI1ypf7XGlK/myIlQu0qn37StpPBpt11dqCyX9bcJDYDgJ1Crvhzrdi0Ot79D14pO0Xc937OF88/jtNBCoVe63upxt9H7r1fHVb6cZADXjgL7jl9cXGv1dzoPASCJQry1cL50NBgt9j5OLGq0KvzMc+U+t+lCIFz4E2oFArbK9Xl16OO9vONK97rde/jicTPjtwSFQK78njQxkLq2NdGnrrLOOq6STG3hG++ypPBSwfeJPTCEAgTICEr5WalyEYMrk3/SmNw2ZQE8fKTRFYjUXRldGLZFGw0qcu91220V31VxXJ4WWOE4Wi2TtBDf6CEigqmmwKrlHH33U7x6qETwS5Sgu1eKjho2sbSjdVnISJkv0G9fVS5Pl16nFqjws2xBIM4Fa7/JQp/t6nOrFR2X9OtYw0YKDAASqE0hbvbh6TPuO1Kunq45fq54fvX69+kU0LOsQGAkEapXz9erTw3H/9dJ7vfyrmTir/RBmK2nmOpwLgeEmIFF6NWF6vfp0q+MuYbFm36jm6n37qnZetf2066uRYf9IJ1CrvB/qdC/Wtb5D14tP0nY937FH+tvN/dUjUKvcb3U5Wy8u1Y7Xq+PPnTvXacFBAALVCdRrC9dLZ9Wv3PiRWt/ihiP/qVUfavwuORMCQ0+gVtlery499LF9/ReHI93r1+vlj6/HkLWRQqBWfk8aGfiUZ82a5bSMRJcdiTfFPUEAApUJyHLIPffcU1UgWPmswd0riyaaHmjcuHGD+0NcHQIxCahCLuuXtQTpMS/VkmChYrbvvvu25HpcBAIQGEggbek+bfEZSIw9EGh/AmmrF6ctPu3/hLkDCLxOIG31adL768+GNQgMFoG01af59jVYT5rrQuB1AmlL92mLz+ukWIPAyCOQhnKWOv7Ie6+4o/QRSGM6S0P+k74nRYwg0DyBNNelSffNP1+u0DwB0kjzDNvpCpnu7u5CO0WYuEIAAo0TkIn+O+64w62//vpuypQpjV+ohWeq0JFV3lojHlv4c1wKAnUJPPfcc+7VV191m2yySd2wQxFA1noffvhht9VWWw2YXnQofp/fgMBoIJC2dJ+2+IyGd4B7HH0E0lYvTlt8Rt8bwR2PZAJpq0+T3kfy28a9pYVA2urTfPtKy5tBPEYygbSl+7TFZyQ/e+4NAmkoZ6nj8x5CYPAJpDGdpSH/GXzy/AIEhp5AmuvSpPuhfx/4xYEESCMDmYzkPQh7R/LT5d5ST2Ds2LFuzz33dJdeemnq40oEIQCB5gicdtppTstll13m9thjj+YuxtkQgEBbEKCcb4vHRCQh0DIClPUtQ8mFINAWBK655hq333770aZvi6dFJCHQGgL777+/u/rqq50ZymjNBbkKBCCQagKhrD/ppJOcFhwEIDDyCVDWj/xnzB1CIEogfMujrI9SYR0CI5sA/XYj+/lydxCIEgjlfLt/x8tGb4p1CEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAYHgIIOwdHu78KgQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAE+hFA2NsPBxsQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEBgeAgh7h4c7vwoBCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAgX4EEPb2w8EGBCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAASGhwDC3uHhzq9CAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQKAfgUx3d3eh3x42IACBISMwduxY/1t77rnnkP0mPwQBCAwfgauvvtqR3oePP78MgaEmoDQvR7ofavL8HgSGjwBl/fCx55chMBwEKOuHgzq/CYHhI0CaHz72/DIEhosA6X64yPO7EBgeAqT54eHOr0JgOAmQ7oeTPr8NgaEnQJofeub8IgSGk4DSvOlihzMKTf82wt6mEXIBCDROIAh7G78CZ0IAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAQCLS7sLcz3Ag+BCAw9ATaPQMZemL8IgQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAYOQSQNg7cp8tdwYBCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgMBoJJB3rtCjpdDn9xqEnG3nCkXfthXGFme7Xl+0kfF/8sKSydq6LZkO823JdNhB62HKhGVMxmXG9IWx/zgIQAACEIAABCAAAQhAAAIQgAAEIACBJggg7G0CHqdCAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAgSEhYCLc/ErT4K4ouLwthRW2ru0u25bvFxPmdtu6RL3m963bPhP2ForiXr9uIl8JfSXufV3UW1w3Lwh6S76EvV7Qa756lrQuX8LesSbyNVFvZqwtEvfKH2dC33GmBR7/+npmgm1PsP22ZO2YhMI4CEAAAhCAAAQgAAEIQAACEIAABCAAgYEEEPYOZMIeCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIDDkBCS+zS8zoa4thWW2vtTWl/bt80Le5abDXd53zG+buNeZsLfQJd+OmbhXYl4v2jVvaJys/BadLPpK2GuCXudFvfIl5rV9E8Ni27ae1fYkE/lOsvVVbF/Rz060dXqvikDxIAABCEAAAhCAAAQgAAEIQAACEBiNBDLd3d2RLy6jEQH3DAEIQAACEIAABCAAAQhAAAIQgAAEIACBUU7AvhD2m7LdLD32WXS0A37qdtseMGW7Piv2n659wFTtnXZcVh1lydFbcyyKtWw3DgIQgMCoJmB5a94EurlXTbi7xNaXyH99vfCa5csm6PW+1k3oK+Gut7A7EsDJWq+Ev6sUl1WtfFjV1m3JTjax7+Sib/u13jHFfBP8qkzBQQACEIAABCAAAQhAAAIQgAAEIACBkU4AYe9If8LcHwQgAAEIQAACEIAABCAAAQhAAAIQgMDoJSDBrllulHhMi6w7+unbZdUxLCttv6ZtD1O2yw6ApnCPTtmudU3XXj5lu8hKpBsWCbVsCdOzl6Zq99Ozm2jLfG/J0VtztG2bil1WHbX46dllwVFTtMtao8IiADYIOAhAoO0JWN4pC7y9L1le/IoW25b/shatW55rAt+CCXydWeQdMeLdRh+cyhJZ852ixcoE87PTzJ9m/lTzbemw9Q7tM4u/KndwEIAABCAAAQhAAAIQgAAEIAABCEBgJBFA2DuSnib3AgEIQAACEIAABCAAAQhAAAIQgAAEIDAqCcjarp+u/TUTiZllxzB1e0FTuNtU7rL0WND07VovCnz9lO2y/qhFwl0Z4B0KJ7GuplgvCnqdpmfXusS8Ng173yKxltbNl/VGm6I9a1Yds7LcqOnazfovDgIQgEBaCShPzplwN7fYFol5zc8vtrx5kfkvWXZrgl4v4pV1dFx8ArL8btZ7M9OtLJhuZcJMW2bYui0dtq9DvgmBKSPiIyUkBCAAAQhAAAIQgAAEIAABCEAAAukkgLA3nc+FWEEAAhCAAAQgAAEIQAACEIAABCAAAQhAYCABE9/mu0wY9mqfaCyvKdz9YvtNRCahmKZ0L5jA1/mp2+0SEu22ozPxr0S+rjg9u6Zil/VGb61RvqZqNwFXhyw3TrVj40wxjIXfdnzSxBkCbU9AFs69kNeEu7mFtrxoebP5+Rf7xLyFl+0WV7b9babzBjQwRJZ7JfKdZctqVibM6ls6zVc54a3IpzP2xAoCEIBAMgIaiGdW4AuaRSNX9PPWBrB1v7/o9x1Tw6Fvvwbw6VT/Tyth0WpY9wHCMW0U69ahfi1fu8q2B+wLM3jI77DA5mc6bL3kW77sj9l++VrCNW0VBwEIQAACEIAABCAAAQj0EUDYy5sAAQhAAAIQgAAEIAABCEAAAhCAAAQgAIGUEpBYLG8i3WD10Vt+NGuPebMAWZAvq48m8h1VU7er8784Rbufmt2sNma8tUbTBZi4y1tslAVHCYIlIsBBAAIQaDUB0zvlzfp5r0S8z5tvS/4FW563/SbqLbxiP4g13lZTj3c9WfW1wR7Z2VYOzDZN2epWLmixbS/0NevwCMjioSQUBCDQIgIS4lqZUOix8sH7r69rAJ7f19t3zA/I077i4nK239b9/iDklXg3uq7rWzjt67df2xFhr21ZQPuTZrfWUgwnz+eXQXQrv8Lihb7RMEGsq3q4LUHU27duAXW8bH9J9KuBfZ0WRr7CaJaP4iJr7DrmrbLruLbH9G1H1/317TQcBCAAAQhAAAIQgAAE2p0Awt52f4LEHwIQgAAEIAABCEAAAhCAAAQgAAEIQGDkELAO+NwS6Sy41QAAQABJREFUE4mZMCwny4+atj1q9dHEvG6FLeqMx71OQGICiX391Owm5jKrjbLYmJ1ZtNooC44m9JWIAAcBCECgIQImjvL583OWRz9r+bP5OfPzz1mWbHk1Fnkbojr4J42zssHKguxcKwLmWlkwxwS+5nea78sFCcxwEIAABOISCCLdlZb/myX2gvkF+d1aout92077JeY1368rjNaLAl8/CKQo+i3t67U6axD2muA3iHq9cFdC3ZHoimJfX1f3Ql4T7HbavQeR7xhbLwp55fetmz+2KPA13421c4rbfn/YVjmg/doO6zbTR1YW37VP16MsMAg4CEAAAhCAAAQgAIG0EUDYm7YnQnwgAAEIQAACEIAABCAAAQhAAAIQgAAERhUBWX3U1O29Zu0xV1wkFPNWHzV9uzr/cckJqAN/WtFq4xwTdJm1Rm+xUb5EvxOkBsZBAAIQqEFAYt5X+oS8vc/kXe/Tljc/bXn1MyYwWmLnjVSBVQ0kbX3IhFuZKVYurGHlwJpaTDO2RtYLfTumWJmAsKutHy+Rh0BTBCw/90LdLhPsrjDxbZeJcf2i7eK6RLzaZ0JeVzxW2o6IfDXQw4cpinm9ILepyHFyIgISBkusq7aACXmdxLx+sXw+rEvUO962vV88btsZ2/aC3+J6ZoK2+9oNEgdTThgDHAQgAAEIQAACEIDAkBFA2DtkqPkhCEAAAhCAAAQgAAEIQAACEIAABCAAAQgYAdOD5V4zoZhN3S6Lj7L8mDeRmCw/FhbZcRMK4AaBgHXMy2pjx1zrkzdRl7fWaFYbx9gU7dlVrGPf/nAQgAAESnm05cm9T5mYd4HlzwtM8GXbbqnxMQ83Aggoz1/VygNZ8Z1nZYKWtaxMsG3KhBHwfLkFCJQRKMgCrgl288ssP7dBdfnlfdsF872Q12/bPjtWkJC3uDiJfMO66uhmXZdBHWVw231TgzokBJbIV+0FG/wn3/l129asINrnfSs3JvYd176s7ctO6vN9GImKcRCAAAQgAAEIQAACEGgRAYS9LQLJZSAAAQhAAAIQgAAEIAABCEAAAhCAAAQgUJWACcHySwuuR0JeWXs0sVjuKdtngt7CK3ZWruqZHBgMAh3WQS9rvrLaaEIuLZ1mvRGR72DA5poQaA8Cmk5dltN7njDflpyWpyzzlmXedhXzBrGSBEs2nXlGU5lb/heWjNYVRiLX6GKb/p5132Exa5YFlVVh8dPE20k9FsDW21rsZrfhLfmqPFjHygNbxsifnfXTt9vd4SAAgbQTsKyoYBZy88tMtGt1bi/gNb8gIa/tk19at0EaEvQWbL9bnvFiXlnZRbCb9oc8zPFTeSmLvxL2TrJ1CX3N15JdRX7ffi/8tW0v+A2+jsnir8paHAQgAAEIQAACEIAABGISQNgbExTBIAABCEAAAhCAAAQgAAEIQAACEIAABCCQlEDBpvPtMcu8svjorT4+WRSKvWpXYgr3pDgHJ7x10memWue7BF1rm5CraLlxzGzrgNcUvTgIQGDkEjBNV+4Vy6ctb+553AZcPGp59GMmAHvJbjmtAy6CsMgsBboJhdetC5rYyFsbDNONawpyLRL12pIZa3maLAkWhb1hPRNT2FtQmWVMZPUyiHsLZrmyIGGvfBPUadvJrzRdvVm8dEWLmAqT2jJQAz9mGKb1rDxY35Z1s26MlQ0dU6T+tXjjIACBYSXgLe+aVd2cxLuvWVZis2AU5Gtbgt3idsGv23ZR3OvzHcuucBAYNAIqI1TuSuwroe+qVu6aZfiwLvFvVvuKfoetZ3VcQmGVzTgIQAACEIAABCAAAQiUEUDYWwaETQhAAAIQgAAEIAABCEAAAhCAAAQgAAEINEXAhE+9L8vqo03hbhYfex83oYEtXiiGmLcptIN+sgRd063TfV2JuWyR1cZ5Wdc53XrqJX7DQQACI4KAhGG9C/Oux4S8PQ+boPdhE4WZBXUn8WkanPIbTQE+WYKgPhFQP4uAshJoQiBNAR6mDc9qCvFxFrboZ2UZcIiFQrLo6wW+NqjFi3vNAmbepq4v2FT2fdPe27qmuS+zoNknwOsT5/lnkJay0p5B1qy5d27Yt4xdP+s6ZhpjplpPQyohDiOdgOUDeeUdr5qI1yyn55fYetEv2AA5bRdsuxB8E/J6y+EjnQv3174ENMhGgl+V7ZOtLJliZYx825afLW53aF37NICH9kf7Pm9iDgEIQAACEIAABFpAAGFvCyByCQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIeOu8z5lI7DET9D5igt5HTGxg295CWDvgUcexxEreuqN1MmvK9qJ1R29FSgIxhZE1qrDYammadllBMxFGaar2olXHQo8FLlp09IILhWsHZ1Yvs3PMSuMGhmEDs9holhvHrG5cTDiHgwAE2pOAxKY9z9rykIl6HzKxmC2FRXYvw2WdV9mJhLgS+UwtinxM2CPBj6z4eaGPLPrJup8JfLOa7ltCnyEW7Lb8aRtvL9hbZkI9E+N5S5uyuFkU7kmoJwFf4RVbTNQnEZ8zkbAvb1oemRgX1KCPWYZ9IysH/GJlwtxs37TqMU4nCAQgUJuABlvkLT+QBfW8pXuJefNh3fyQF+iYLH8PW55d+zY4CoHGCKhMV/mu8j/UBczPakYR71t7ROtmOV51Aaz7NoaZsyAAAQhAAAIQgEA7EkDY245PjThDAAIQgAAEIAABCEAAAhCAAAQgAAEIpIaAhAg9C14XiuU1jfvLFr00CVgl0JVlR00N633rFDZLhF5QFqw8Fqdt91PIhinb7bzSdO1JhL0m0PACX/nFqdplxdFP0a5p2r01R9v2lhxt2xjKgqMWb61RouC0ONPQeSu+EvYGQddaEtgh8E3LIyIeEKhHQCLS3qcLrvtBE/Q+YOKxhy2Dllh0qJ0NGMiYOCczzfKQGSbSkS+xTtHvkIBHwh1Ny618exS6IPDzVjojwr68WcLPW9maf8nKipciYt+hZKRs34RXHWbBd8ymGTd2YxP4mkXfzHjKg6F8DPxWmxOQJV6z3J2zNJ1TmpZvaTqvxbZVhy7YPlnjbZvBcW3+SIh+SgmobaaBP6ojTDN/utUXbBaRDm1738oj1RuszoBl35Q+Q6IFAQhAAAIQgAAEmiSAsLdJgJwOAQhAAAIQgAAEIAABCEAAAhCAAAQgMDoJ5MyaWM8TJhJ70ARjEoo9YUIxWREbLhembjfRkaw9ycKjn+7VBKh+CneJem3dW36UaEwCXxMjZSU0M9+LyAZbm2SIJNqSsNdPzy5/hW3LaqOEvUuLvhf59ol982bFsWSx0cLKKvCwOWPYsa5Nyb6Jibo2MUHXOta5bpY1cRCAQDoJeEvqT5mg9z7Lq++zfNoGXjjLU4bEKWuwARQZCXhnWl47y/wZlmeERQIdiXNkBZxspPYjsceWV3lhQt/cYjPWubgoBFxk+8zicn6hlRcm+PUDQyzskDizqNyxgZUFm5nAd7OiwBeL7kOCnh9pLwJerG9WuH26Vdq1xadb+ZaevVBfIl4bCIaDAATqELCZVbzY1+oSfoBQ0e+wekaHxL7atrbJaB0cVIcehyEAAQhAAAIQgEDbEUDY23aPjAhDAAIQgAAEIAABCEAAAhCAAAQgAAEIDCeB/GsmEnu0TyjWa0KxvInG/BThQxkpdeqaqChjlh1l/VEWH7Uepmz11pvsuKzKasmYxae2EY4ZTln3lSVkv5jYo29qZts2C5sFWXD0ft96QSK9obbwa1aOs2a1t3PzPkHXWBP7ZldFmTeUSYDfgkAtAspDep7J9wl67zIh2SOWscgi+GA7DZSQkHe25QmrmfBzNRPZaJlli0Q3NoU2VvVa9BBskEfOyuOciXtzJuz1y4tWPrxg5ccLRaHvyhb9Vq3L2CAab8F3y6LAd262r8ytdQ7HIDCCCQQhb29Il+ZLfJ9fGBHh24wNuCYJaECfljCjRvCzVu/361bulfZZOFVTI4uvtUa2S8csWL91u4yfhUS+XHS7uK9Qvk+D8LTk5Gf6ZvHIW6DSvnCsGM48XBMENIhIg4WsruEHEYU6h9U/OjWwCKFvE3A5FQIQgAAEIAABCAwvAYS9w8ufX4cABCAAAQhAAAIQgAAEIAABCEAAAhBoEwISmXY/bss9edd7jwkUhlLQGzps1Tkr0ZisMakD1yzzSsTbJ+QtCnjbhGcj0fSCXwm5ZLVRAl9NzW5WGvNFq295E3h5q41DJRgxEV92bbPYKEHX5maxUQJfTYeLgwAEhoeAiYZ6X8i7lfeaqPdOyyfmm5BIliAHy0lUpUEUEvLONQ3V6pYf29Jp250mqMlKyEuWMFj0+1/Xnn3OrL7nTNzba8Le3PN9S/45KyNs3VtqlvhssJxZy+/Y2MqCrbNunJUHev6IuAcLNtdNFQHpNa2O3GtpL2dpT+kvHxXZv2yxxRpvX35gA/OcDbbLjLH8YYyB00A97eu0xfaFdW9tVftsCeuZTjtHQl1bMhFBrxfx9tvfl/f0iXsj4W13SbCrdTnzM+X7I8d8GOWbIe8M6+aXxLwKFNmv9UJEwFuQuNcLfK2O7v2+7X7rIbxm9cjZBeRr0F5x8ev2DvX5xeN6p/xiwuFu2xe2da3R7vReTbNXzuoj2dn2ymiAkdVLtHRK/GuDPqmbjPaXhPuHAAQgAAEIQKBdCCDsbZcnRTwhAAEIQAACEIAABCAAAQhAAAIQgAAEhoWAt/z4lAnF7rap3G83scIT1nk82FYA1ekfrD7a9O0lq4+y+Chxr1mHZYrVvtchWIaT1cZeTcsuC3ESlLxoQpNgtdGsdw6qkwVfE/WO2Sbjxm2pKdmx2DiovLk4BCoQyJnQv3u+CXpv7xt8UbAp3gfFSVRlIs7sGpYXr2G6K/M7zEpr5xzzbaAFefOgUE98UZUNeid6n7P34VkrF2zJP237nrEy3Ky+e8uRia9a5wRppazs7tzCBL7bZt3YjbP+nahzFoch0HYEfPrSIKvnLI1JRG++T2Pm+7x3sOtdw01MwloJcq3+l7FBXk7W2uWPtTKgtN63L2P7vIBXdXvNoFEU9mrdC3mL4l4Jd0vbXtBr5xWFvb5c6egrX0qCXbvUiHEmxpXQ1wt3Tdgr36/3RtZNuFvwS98+CXn9tr1rQdirNpsWV9xXWle7zRaFK4R1DQLUul1nUMoDu2xqnN5JtStVT5lri/mdGogU6i0ShuMgAAEIQAACEIAABFJJAGFvKh8LkYIABCAAAQhAAAIQgAAEIAABCEAAAhAYdgLWySzrYyvvybnu20yw8JCJgZYOUqys797ZdN7estIcE/IWO1tl9dGLepm+PT54e25+enZ7dt5qo8QmJjrxVhtN6OufoXmD4sxyp7fYuJ1ZbNzChH4mwsZi46CQ5qIQKBGQSKf7CRt8casGX+Rd4Vk7JKuArXQSccki65qWJ69l/lomilnLRPwmisEqbytBD9K1LM9XudArEaIN1Ok1i/te5CvL+xL5trpMMJGUF32rLLBl7DoM9hikJ8tlh5CAF/O+ZGnIRPK9z+Rd7mmrX5lYPm/patAtYg/VfSqvlwhygtXfJhRcRsJdrXvf1uWPL4p3/bptj7NtrXtBb/GYRLvaX/SzEgEjnhySp+gFwhFhb2Fln5jXi37Duol6C122X77VIfwStldYNLV/hR0vrds+iYBHgjVgtTknF0W+axTrM2tYm0WC32n2zpqYHAcBCEAAAhCAAAQgkB4CCHvT8yyICQQgAAEIQAACEIAABCAAAQhAAAIQgEBKCORtOu/uh0wodosJgO6yjt1FgxAxdazK6qM6UtWxalYfO9WxKutJ6liVCADXNAFZ8/JWG5+1Z2mWGmWtMfeM9c2bMMUtscu3WtBlzzUz04ysbW3We7c3QddG2b4pb5u+Ey4AAQj0I2Bpt9csdMuaevdNJjJ72HZIhNNKN0kCTcuT51maXsfy6Hkm5rU8m2msWwl5iK9lr4nK+B6JExdYuWBW+HMLimXCshbHZYKV7Rub9d6dTeBr1tw7Z6iAaPFvcDkIDCYBDZZaYmnFRLw9Si9Pmij+SUsvEvMuH8wfHqRrS7Q40ZKhFsvfMxOtvh22TcDbb93Sb9YWCXu9L0Gv9slXHZ20PEgPaYgva6+yRL95iX6tDiFBb74o7M377aLI1973ghYJfsP6clu3ckOLr3+YpeG2c6rnqO25tpVXa9vsI1bP8TMRTLYXXEJ3HAQgAAEIQAACEIDAsBJA2Dus+PlxCEAAAhCAAAQgAAEIQAACEIAABCAAgVQRMAFDjwlAu2T58ea8Fy/4KVpbGUlZ5pVQzDpQO60DVVYfvZUkOlBbSbnytSRQebVobU5WG02gkpNARSLfVltjNtFHdp7NuCxBl1lsHDPHesfpIK/8XNgLgYQEvJXexyyvvjHnem83Yc1Cu4Al45Y4TX1u4vyOdS1/Xs+WdS39moXejimIXFrCN00XKZYJPU9aefC4lQ2PWZlgvh/M0yqrz/baZFZzboys9+5igz3sfZIVTxwE0kxAVk57TLzbo3TxuA2ceNzqSibuda0Wv7cagsS2spJrdW0v3LUZL/y637Z1iRgl6J2kARpF34S9WQl8JeA1q7vU1Vr9UEbI9ay8yJvV3rzEvLbkvbjXfAl7bbCI97VvmR23NkXfUlxXujHxcMvqKYOFVG1Um5mg0+o/qgONVT3IZpGR9WkcBCAAAQhAAAIQgMDwEEDYOzzc+VUIQAACEIAABCAAAQhAAAIQgAAEIACBlBHIW0ds93wTil1vAp+7Tbyg6blb5SQyMGGPF4rJ6qNNy+2FYoh5W0U4+XWCoMumYu99wp65rDZK0PWiXcqs/LbKZaaagHsrs967a9F6r4lHcBCAQOMEZIF75V1mUf1aE5s9ZHm1psduhZMlRglaNrA0u4Hl0RL1rmYiTKynt4Ju6q8h6+69L9igHhP39j5iZcIjRSGjWW5siRvfZ7133O591ns7plIWtIQrF2kpgfxrVhdeYIJepQGzgp639FB42X7C6kypch0WG1nTnWzLqiY8XNXyb1u0XvIlUjRhr7a9b2JeLO2m6imOrMhYdcRb/rX2pKzC503c631LUxL55l+z47bufZsxROsF2+ctX6ctfdlAxMx0K7NUD9rQrPiqTmSDUbOWvnAQgAAEIAABCEAAAkNLAGHv0PLm1yAAAQhAAAIQgAAEIAABCEAAAhCAAARSSKD3xYJZ6c257uvMSu8TFsFWTaVqYoKOeWb1aH3rFNVigt6OmSYs0FTAuNQQKNjz7l0ky3QmZHlUi3XAm7ClZVZ8Zb1Xlq92y7jx23e4TnsHcBCAQEICJnzpedoGX9yQd9035V3hOTvfkmkzTqfnJ1rev3qX61nTlrW6XG7OSleYVN9cq1LxtOnT3cyZM92YMah/m3kOqTrXXorckr7yoGe+iXxN3KhBH04CrGadvTSZuVYW7GJlwRtNKDU3PZbc/3Vnwf3q6rx79PnGE1XG7u8dZqX+A3tk3Wwb1IJrHwKazaDHrKB3P2DvvC15G/TkBYfDfQvKaE0Un5mixerPJuTNat0GxsnPyveL1bcl6pWFXixiD/dT4/crEPCiXxP8qnyRgD5v4t681m0gacHSn7YLxXX5ftBS49lxhRg0uEsWra0t27mJlV2byopv1qe5Bq/GaRCAAAQgAAEIQAACCQkg7E0IjOAQgAAEIAABCEAAAhCAAAQgAAEIQAACI4eABJ09C0wodl3O9dxslpMWteDeJNyZYQIDE/J2bmRi3g37rPNmzVIYLv0EZLm550lbHjaBr1kDzT1q78VLFu8WdK776dh3yrrxu8nylVkClcU5HAQgUJeABDHdliZXXJlzvXdYYmxSZKnknJ/U67rnrnTd66xwvfNWuPysHlcYl9xs3sSJE90666xT9x4I0H4E8iusLDCBY8+DZsn3/r7yoCXW/E2cOGZbE/fu3eHGrm9lwTALESXqPfm39cXscZ/g1ib8+tHHTPxFtScusmELJ4ui3TagqfseE/TeZ4PbnrKoWH47LE7vi4kINdNBdpoJdOUX17Nm4VpLRxDzSsDLILlheUz8aGsJqC2qdChxvUS+efk2M0H+FS3W/HjZ9tm6t5y9wn67Be2Rhu5gnKXHtaxtu7mJe7VY2UXbtiGSnAQBCEAAAhCAAAQSEUDYmwgXgSEAAQhAAAIQgAAEIAABCEAAAhCAAARGCoFCl03nbmKdrstNwGmChqYtk5lIMzPLBL0S88qq0cZZ17k607i36/vip2V/zsQu803QZdbrcma1sbDQ7ia57q8/gknOdW5pgq59bTp2e0cy41A+9QfEFgT6E5DYvuvuvFt5Wd7lzIJqs6Kz3CpmoXfuCte97grXY6Le/MweU1k2rpQpFApuzTXXdFOmmOIMNyIJFFbaIKBnrDy438qD+/rKA2fWFZtyJpLqeEOxLNh8eAVS7/9erilLvZU4nHhYhzt4e8q3SmzSsE+DJXqetHz1Tnun7zBB7wKL1RALenOdObc0s9S9ln3VLet4zS0ds9Qt7XzNLetc0uePec0t71zqerKWR5epGTNmHnr99dd3u+22m9tggw3SgJQ4QKB1BKxKkrd2qkS+ORP35iT0fcmWxbZI6GsDDgu2XrBjQ51unQ1Eya5jbV0bnDJuaxuouObwD05pHXiuBAEIQAACEIAABNJHAGFv+p4JMYIABCAAAQhAAAIQgAAEIAABCEAAAhAYZAKyjNRlYoYuE4rlTbDppBlo1NlM2l7QawKdsZtl+wS9s0zMgjXWRomm6zwzYtj7oonAJfC914SFD1pHuiw7NyPwHWOvx8bWIb6fWe/d0gRdZnkOBwEIDCQgC3Zdt+S8qDf/hB1vJt2tYulug4x7adaLrme9Pgu9rjOZoHfyZDO1am7Jkv6qzunTp7vVV1/dH+PfyCXgxZAS+N5j5cHdJrgyi+5uWRP3a/WH7HrFsmD7rOuYPDxlwc5fMpORDbqj32QFmrlz/t2/IvX+3Tvcpw8cnvtp8FZGzWk5EwhqsET3TcXBEs28w0moTeib0aIwPe8eX/Soe27Fs6571S5XmJZzK8YvcyvHmfX0jv7vUbXL53I59/zzz/vDb3/72912221XLSj7ITBiCHixr4l8cybszZmwN7fIhL5+seqR+YXFdquy6jsUTnUqG8g6bmcbqLiFlV9mZRsHAQhAAAIQgAAEINB6AkxU0nqmXBECEIAABCAAAQhAAAIQgAAEIAABCEAgxQRyNp1p13+KQrEnLaJNCMUy061TU4JeE2eO3dQs9ErQa0Id3AgiYALtzjk29ezsDte7SdatvD/XJ+gyK75+WtxGbtV0Kzmb1r1rWc4VrAN+vARdU+gQbwQl54xcAr0mUum6wfLqK/Ou8EwT9ynrcvPMKO82Jj4x63LPLbW5rm1fUjdu3DgXhL06t1zcm/R60fCy+rtiRXw1zvjx4102S2ETZTgU6xl7b8auaxYK52Zc9yYF131X0dqp6hKNWDu1+kfexMFdXSoLCm7Czh2uY0b7lAXb2VTsR73p9W7GqLg3mWS+/tN7+eWX3T333OPmz5/v1lprLbfVVlu5OXPmVD2xt7fXdXf3PZQJEyY4WXit5UJ4hVN4uZ6eHr9oPc41FE6/qWspfSqdpsrZQKVus9LbdYO9t/+xfFW62FY/qOgN2+1nZlj+u1rGZTWjhflabnnkVnfd0mvc9v+1rTvsrYdGz0i0/uCDD7oLLrjA/fnPf3abbLKJmzTJpkTAQWAEE8iOt7SkNknI+ixN514zga9EvgtteaHPz79oZYsNSvRCX7M4PyhuqeWRt+Td4ntecqsdOMNN2MXKxrWsXsLA1kHBzUUhAAEIQAACEBi9BF5vcY9eBtw5BFJLoOeOG62T53aXe+Jhl1/4vCt0d6U2rkQMAiOBQP6o8EVkJNwN9wABCEAAAhBojsDBF1/Z3AU4GwIQgEBKCXSunOx2XXywO+SVd7l5veu62jKP6jfRlV3hnh/7rHs884h78qlH3SsvLHZ5s/6LG/kEsoUON617hls7s75bd/wGbvbKuW58oQHxjr0uucede/q85909v7/DPTT5XrfMpp3G9REYO3asmzZtmhdwbbTRRm6zzTYDzSgi0GsClRXX5Fz3FSY+W9jgjVsGnzEjup1bmUW57WzwxQZmHXtSxhXuK1jenzz3j4p6tb5y5Uq/NBi7fqc988wzbr311uu3r9bGAw884KehrxWGY4NHIDPO3qmNbCpyCXzNCvTK2/Ku9y4TUZmYKrFQ0oSVhaedW/lPO7875ybs0eE620TcG6z1irQEvrc+mnO3PdrautD111/vjjrqKPfwww8PeKCrrbaa+8EPfuBksbXcXXTRRe4DH/iA360wRx99dHmQftu/+93v3OGHH+73LVy40E2ZMsX9/Oc/d8ccc4zfd+WVV7pdd9213zmVNg444AB33XXXuTXWWMM9/rgV8ilxsjatmQe6Lsu5XrM23ZSl6Wr3pLEGZtQ8u7oJeC3v7fNNhGjbGvim/FeD3/598d/drDmz3EFvPajalWLtl5h3r732cpdeeqmTyHe4rPaqLNDAD9zIINBWz9NEtB1TLb3Z4tY3/mpb2Kw0Evn2Pm9+ccmbiD9v607NjBZm0VkbCDF15TS38Lcvuw6b0WTOu2a6sRtmnQbB4CAAAQhAAAIQgAAEWkMAYW9rOHIVCLSUQPeVF7vuy/7sstNXc9m5a7vOLXawL9CWXM1ygz45W/Or5NKyPe6g95TixAoE2pHAkk8e4qM9fnX7oCgLDpbe2tkfP7u5D6Pt+AyJMwQgAAEItI7AK3d+wl/siD2OKdU/Q72zHX3dBw4CEICACGjq4eXXmlDMBLiFBmedzmfzbsXU5W7JvJdc97zX3MyZq7rpHVt4S3CyuChLb2ny9913Xx7+IBEomAWsngV5t/J2s3xnoq68LIomfK9Urs7oneX2Hvdf7oA9DnATdjVrjUxl65+YrB4uWrTIPfnkk+4///mPu+SSS9xuu+3m3vjGNw7SE+WyaSHgRb1XW14tS72NinonmdhlY7OmvpNZzTSL6h3TLbUpwTXoJOSNCrdkrVfiH9zoJpBdJePGb21CXLNSuHK9vOu+Ke9yD9k3xeXJuRTM0mL35Xau/Xlx78wmXtjkP5/4DIl6ZbE3uHP/3dtyUe+5555bEtaG31l11VXda6/1DYJ58cUX3bvf/W53/PHHu1NPPdV1dJjKrYL79Kc/7fbee2+nQSJxXC5nZjDNHXLIIaXf//3vf19X2PvUU095Ua/Off/73y8vFa6w0qxC322i3n/Y+znfXjCbNaBlzpBr9oqsidyza1g3lvmdcy3PNauimokgU9YLHZ7dzJkzWxIFCajllrxqltibcMHScpxLRC2mf/Ob33QnnXSSO/DAA53E5MGS+rHHHutuvvlm95a3vMUfj3Pddg/zjW98w/3pT39yO+ywgzvrrLPa7nby+bw79NBD3d///nefn/z3f/93292DhPMdky3t2TLWhL5q72qmGi/yfdYGoDxT8O2V/LPFWUf6srqm73PK2Cmu694u98CTj7qNj1nPjd/cxL02AAYHAQhAAAIQgAAEINA8gbImVfMX5AoQgEDjBPIvPOO6fv0jV8jYlCU77mUtMH0VscaPBIZ5W+yrXiFsFyUW6dlu/L45EwJpIqCUlrE01+5+mpgSFwhAAAIQaGMCKhP1Ld4Kxrb22/gREHUIQKB1BNSpueL6oqj3hcau2z2h27029xX36nqL3PK5S1xu/OvKCIl55dLmN3annBWHQMaMs43dyMQrZomue12z2GiCrt577T1oQFtSeK7gVl5q51qHvBf3mhhmtDtZ7J07d65fdt55Z/f00087WUy87777vHXGVomCRjvntN2/BmCs0AAMWepd1EDsLOlk5jo3ZgcT9Jqod8zaJi4Z08B1IqdI1Bu11qtDEvYOljv55JPdm970pqqXl3AsiXXfqhfiQGsI2DvXaSLcjt07bBryjOu62QZ72PTkBbOQ6D8wJvgVWfzVu5+xbgGJe9M60EOiXlnojbpz/v16nSi6v9H1xx57rCSqlZj3xz/+sdt///29Jfdly5a5a6+91n3iE59wsnZ9xhlnuH322cfVGswka7xXX321GzMmfoYgi8AHH3yw+9vf/ubOP/98961vfcupbKrm/vjHP5YOvec96TCEIku9XffYoLSLcy4/36LXCmudVlfJTLUqi73vHbZ0rm3LmrZYfchb5W3DKsxxxx3nJCSP437605+6D33oQz6o3gk5iUHvv/9+t/nmm/vte++9191xxx1uiy228Nuj4Z+sJuueZ8yY0Za3q+en5yinPKUthb1l5CWsV/mkxW2WdXmz5ttjlnt7nzaR/5Nm0fcpE/4+ZWLflwvWBGku4Y7vGO9Wf20N9/APnnAbfWYdN27zjqbrX2W3wyYEIAABCEAAAhAYlQReH047Km+fm4ZAegjkHnvQLTvzSzY90Zquc8PN+iz0SsQrJ1+rad72EeUfBNqfQPh80ee/PjFju223/5PgDiAAAQhAIBUErAD0paEvCP2GRau/3xbHUwGTSEAAAsNJIP+aWSq7OedWXm5CmwZEvflswS2bsdQt3OxZt3C7p93SdV9y+Ql9pll9Fmk3J0u9cgN8v7fC/hB+kI8XL483iARkFWvCDh1u0qEdbtwBWZddx37MRFlJXeE5myb7MntXTRCmjndcfwJrrrmm++AHP+g23XRTd84557gFCxb0D8BW2xPILTFR701FS72NiHrHW9LbwtLjIZYeD+wwa3WDI+pduLBRM8LxHtGGG27oLR7K6mGlRdPNh7Im3hUJNRQEJCDXFOSTDupw4+0d7NjM6gX2TiZ1EveuNHHvCqu3qP6SNldJ1HvUj1tvvfqf//xn6dYvv/xy9653vcuLerVz0qRJ7oADDnA33XRTKcwFF1xQWq+0cuuttzpZFE3qPvzhD/tTZGn2iiuuqHm6xL9y22yzTUngWfOEwT5or0/3I2ap919Wr3jIfqxZUe9EE/NumHFj9jNL1e/Iuonv6nCrHNbhJu5l+e0GVv8xC9ZNagMHm0hLrh+11n7kkUf6a0rAu8kmm8S6vmYekED86KOPjhWeQENDQM9PaVfuiCOOGJofrfIrGjykd0TLr3/96yqhEu625JldNePGqZzau9PSbqdPw3fOvtn98fHfuHtfvtst7Vma8KL9g3dmO92spau7F377iut+zDKc9BVh/SPMFgQgAAEIQAACEGgDAv2H1LZBhIkiBEYiAVnqXX7218ySxJ4uM9HmiVNjxxpZbeWPxAfDPY1KAiH59d180XJviUS7bZcizgoEIAABCECgMQJWMBYy+menV/Hb4nhjd89ZEIDACCHgpx++M2+CSRP1Ppv8pnrH9rrX5rzqXt7oBbPS+6pZ6e0T9IaOSmWRclUt9fYdHrbjxZ/HG2wCZj5hjE3F3jHVLPeuYRYbrzZLWA/Y25FwOvbC07Lca9YaTTwzYTumsa302HbddVe3yiqrOIm4JIrBcm8lSu23L7/C3v3bLa9ucACGm2ZpcDsTm5mV07HrWdqpblSzIpxx48a5qFhLgbSvkqXe8nAVLzhEOy+88EI3f77McDp31FFHOQngoy6Xy3kroytWrPDHFCbqbrzxRj99/COPPOKWL1/u1lprLbfbbru5d7zjHT6dRcNqXRZJ77rrLi9gk0VSiS+vuuoqv2/jjTd273znO93uu+/uT9Nv/uIXv/DT0b/44oteMKX0qynrq7mXX37Zp+1bbrnFPffcc27WrFlu22239dYxZT21ktP06f/4xz/cbbfd5m6//XZvkXWrrbZy+q2999670imDuk9Wdifu2uE6Z6ssyLmeO6wseCXZT2qgR7elBVk/nWDWpzPj1VkwtG47E8bf9mh/Jaj2lVvqPfffvQPCtSKmQdir57711ltXvOTs2bO9WPeaa66JZYn3tNNO89awd9ppp4rXq7RT1rNlMVjC3t/+9rdeUFwp3AMPPODuuecef0jWgcud3mnFU+/p0qVLvfBX93XooYe6zs7B6artfcEGC5kF9NyD9g7mymMUc9tePW+ddz2z+ilR7/q2zLP6jmYWGPrXMmakGw+m9+1Pf/pTzQusvfbapeOy7HrCCSd4K7Wypp7E6Z3CpYeA0qHKxMWLF/uyJy0xk4XywXAS4o/bKOMO/Ma+bnbHHLft1B3c1jO2d1tN38a9Yepmbub4WZbEkyfyMdkxLmdlR9d1Od8uUlmIgwAEIAABCEAAAhBonMDgtBYbjw9nQmBUEuj69Y/cmG128aJeNXH8NMciEdo7ET/Vx0fl0+OmRxoBn9xkOUvT6JqfKfpttz3SHgz3AwEIQAACw0NAZaH9ssS7WlM9tR23hwcevwoBCKSCgIkYVj5gHYuXmdW7p5LHaOWkle7VdRabqPdF1z1rmctnTHBpeaNEvO3iJ79rzmiGgCxhjd/eLDXOyLgV1+Rc7y02QPSlZFfMLzCBownRO1Y1YeGmZvrX/nD9CUi0J2GUxDcf+9jH+h9kq/0IWF7d/aDl1ZfnXOHphNFX/XSuWUrdLevGvzHrxqxuwipVWBM4iXe1yEKeluAqiXqjx0O44fRl3TdYFpSosFyQdt5557mTTz7ZR/GXv/xlv6gee+yx7uyzz+63Txu/+tWv3CmnnOJuuOEGN2fOnH7HJaDVcYl/H3vsMXfqqaeWjl955ZX+ehK6HXbYYV7g+8wzz5SOX3bZZX5686985Svuq1/9aml/WHnooYfcLrvs4gWUYZ/8P/zhD+7LX/6yF0SWT2v/yiuvuI985CPub3/7W/QU95e//MVv69iZZ57pJk600RJD6CQsH/cGs2A6xbmuGXnXfb0NLnreImCfG+O6/JOy4m7i3slm+NemNB/KsiBY5ZVo95x/95SirP1RV348eqzZ9SBSlyhcgu9p00y9X8Edd9xxTkstd+2115YE5x/60If8u6QBInHc+PHjvbX4H/3oR05C+rPOOstbDC4/V6L34CTWDU7i+q9//ev90oqOBeGyrLcqbc6bNy+c0hK/YI9t5V1WD7nTXrpGDCorb51hr93GJuTdxJaNLX+dowFHLYleai8ia9CylJ7EaQACbmQQkDh7ND3P73znO/7BvZB7zv1j8V/dZYv/6baYtLX74gdOdHuvv5/LzS+2YxKUXbrgeMsoXr5iieucN8V1TO90smiPgwAEIAABCEAAAhBojADC3sa4cRYEWkag+8qLTSBhH0Qm24cpaxx5UW9JSGg/ow/Rke3UHm8ZES4EgeEloG8UEvO2uz+8FPl1CEAAAhAYMQRUJvr6qOqpqqyG+mqbbY+YB8KNQAACSQl0P2VCsStt+uFH7Mz+RudqXkotgq4pK9xLZqX31Q0WuZ7JXaXwVS3zqu1uLm3HSxFnZcgIZOyLq6Zjl8h3xbSc677GBF1mfdE3NOPEwt5VdaSvsHc3axbxxqydzAJcnJ8YCWFkjVPCQokPJYzCtS+B7gWWV19hefWjdg99WWm8m7GkkV3XBJT7mah3OxPUm8XspC6IenVeEPJKvKt1WewNrlz0G/YPt7/jjju6k046yckS6SWXXOIt6kpUK/fss8+6Y445xq9r33vf+16/rn9f+9rXSqJeWag85JBDnKyfXn755T5NSZD7lre8xW9PnTq1dF5Yue6665yW7bff3odbuHCh++EPf+gPH3/88e7cc891usYBBxzgRcCyvitBsCxUnn766W7ffff1FnXD9XT+wQcfXBL1HnTQQV5cd8cdd5REum9+85udrJ5GxcYSJwdRrwSbuu4LL7zgWVx99dVOwuYNNtjAff7znw8/NXS+vY5j1rCyYP+MyxpCWaPOL7Cfj1sfsbSQe8TqI1YWyDrqmHWGpiwIol6BCtZ5Je7VflnsDW4wRb36DeXxP/3pT/3P6T06//zz3UYbbRR+PpG/7rrrup/97GfuyCOP/P/snQecXFX598/ObJJNAQIkJFR3IQm9RoogLUAQBGkKvgqigFQRUeRPUQkgCkiVJr0oAoI0EQ1NQTpEqSGUkJBQAkkggdRt8z7fM/vMnr1778y9s3d2dzbn+ezsbafd5576nN/5HTNt2jRzyimnWIBu3EC+853vGIC9CIBcLWPqn74f6UPIx5QlFVirFQBPW3XooYfaR+TPP//5z7a8HX/88eb+++9XL6kcmz8SQPmr0qOdW0Zwkl9rAfNuIoyeGwg77wiZv/KLjEIV+cADD5jnn3/erL322iaMqdn1dP7559tFSTNmzLC3YXDWRQ6wSFPvuZKUwZxFFdSx1JUwqJM2Fly8//77tt51maqThq3pmjp1qmVif+2110xTU5PZYIMNDOztMKsnlWuvvdbMnDnTlpfjjjsu1Dv1ubYtMMK7iztgi3/qqacMaeG9WfTFj/pC23MN9NNPPzWXXHKJvTzmmGMMLLgPPvigoRyyUOzOO++0fn7/+9+bOXPm2LZkxx13VO+FY5I4YZC/9957DYsDqHOmTJliWODCQoPm5maz4YYbmoMOOqjDO8EWfOmll5olS9rHniwoQE8I7vGnQt+E70xb+corr1hm/o022sjmgfXWW0+dRR5ZrONKk2k0/134vLlmymVmr1N2N42TpR55JWc+ffozs3x2aKJ1U4ObhpgmqYOa12s1/dZobzvc+Py514DXgNeA14DXgNeA14DXQGkNeGBvaR15F14DFdVA4yP3mn5b75SPQ23PsIUi1XadT7X/3ws0wFZ3bJ/X2NhojQS9IEllJYHtj/r3729ZNQYOHFhWGEk9FYqd9Wi5CdvOOFTPtU20/+c14DXgNeA1YDXg28UuZARpGPNMvSAsuFDm3uq67oIGvFevgarXwLJcB7Z8JmCYp1tNs0womnayuZLfVDYsNrP7C0PvpgvM51+aa1oHN1ugWbUw9AbTWfKFvYOKaaB2pGzHPi4rAN8862IiQJfk2cb/tZiFdV+Y1u0WC+IwLhKsYq+TOODuGNPvvPPOFhiVJrD39TfeNC+/NtlMmz7TfCZsoNUqKwoYs6F+TbPpRhuYDddft9e+RsunbXX1a1JXS3UbW2RmIytbSNftnjEDNhXw5CC16MQOIdShAnpdUC8Ou5OpF3Btv37R9HYjR460zLb6AgCGFNhz5JFHGsrFSiutZE488UTrBODuZZddps7NY489ZiZMmGCvYd6dOHFiIT5AwgBwjzjiCAMDMMBZrsPkwAMPtM90+3nAj4AxkbffftsyBZ9++ukFr7hXoBRAOHWLA1iHAVwivP/2229vz/nH1uj4g7kVhm7eFcH2efvtt9tzgLuwoqoAaAYkB6iN9PcIsLctMdkVa8zA7bKmZnCNWTJRdhBgsVHcvC5tQbOAqhaPyC/0IKzuFsC9AHpdUC9pcJl8K5EmALIAEZ977jkLWgOstvnmm5v99tvP3h87dmwn8F6xdBx88MEWBA6rNcDzPffc0/6K+dFnMLg2NDTYPAoYNwjsffHFFwv595BDDlFv9qhMvoDgAfXRNiLkeUDngH4BCwNuT5MptPEdFkswbk8gwjSdWVsWJ20p9epmGVMLQ6+fRS6qQOpTWJwBnJYC9gIapR5T4fzcc8+1lyeccEIHYG85DOYAQgmztbXVnHzyybbsuHHpeTlh4/fhhx/ukEbuPfTQQxYwC6t6UnHf/5vf/GYHQLyGBeBddaSLU+bPn29ZuhVMr25JC8K3oJ1wF4HA7q7hwI6NfgADqzCPhlx99dW2/QK0rO0V98uJc/LkyYU4t9lmGws4JiwVFuMA9ib/0HYjbjrVHQvY+CHUIwrsBShMXUR7G5T/+7//swBhQMzFBGBzmDz6+CNmcEOdOeMXE8z0p2aaYTNHml1W292st8IGpi5bF+al0z1siUsmN5n+7wrb9xqdHvsbXgNeA14DXgNeA14DXgNeAzE14IdkMRXlnXkNVEIDzf97xtSstIpYS9qKInYWbHPVeKyEgnyYiTWAAYLBP8IWcyussELBWJg4sF7ggZXLrE7GyMIPhhCAvpUULX75ONqYewsRVtt1IeH+xGvAa8BrYJnUgG8X0/nstvWzDaT846+NuReQL1IVz9NRhQ/Fa6CqNLCs14FsP7zk5VbT9LyAIRck+HTCRvZ69lXz/tBpZs11RprW/oK8yVd3sZl4FzbWmFkLa828pRnT3No1AE5tJmeGDmg1Iwe3mEH98sDOpIzACd7eO62ABmAQHbitALrqZHL7HwLoelciiYnRzSwUFtI3hpiBG6xgBo6RMKJxfhVIedeD7I4xPVu1A4R6/fXXC0CHclP+/ocfmfv//pBpEUDM2M02MbvtvKNZeeWVyg2ux/3NnfupeXvqNPPYE0+bx5981nzj6+PNGqut2uPpchOQExyNratfkEKx0H1S4lxMqdn1pWx9XcBnG7I1fPl1rQJ2XXa/IKgXwF13yo033mj4RQnAxq985SuFx4CAb775ZrPJJptY+9mpp55qWUMBMCKAGIcNG1ZwD1sgstxyy5nbbrutAOpVBzDfwiQJIBbgUZQAUlNQL24APwK8hDmQsAEWuUKaV199dcvk+/LLLxceAdBVQBaMky6oF0f4A7TLe+GOugVw5KxZswphUBe4wnPSjl3RTaPrpjvPMwLqHfhlyati1lzyYKtlZY8N7pV+TNPzObN0jVYzcJvKtwUK2FW2XvQUBPUeedXSiquPMgk4DzAfgFiEvMVPBTAg+XXXXXeNZQOH+ROGTwCFAHDfeOMNA/C9lLBoCrA7QHUYomH/BDyvctddd9lT8j1soa7AookAMlRQrz4nvJ/85Cf2csiQIXq7y8fWxTnT8oGM1D9LENQKwjC9uTD0bp8x/UfJYomB5derCWJdppzyvZnjUIDv+uuvb7773e9aHbDIQqVcBnP1D1gUob7daaedbP2/2mqr2Xvlhv3OO+9YZl4biPxjAQnAV9hyyf+wwJP/kwhMv2eeeab1Qlk//PDDO3n/y1/+Yu8BaEVfCHEpqJf748aNs/U8dT4LUvjBQs+igDBRsCsAYBaYMLYKtvtBf12Nk3oB/VBnwXJMv/UmYfNGWIgyfvx4U19fb+sVWO2XLl1qmfh5ziIVbfOVGbmlpcXWe9RlCHmLcKnT7rjjDgv2BSyOe5ep2Tpu+/eHP/zBvQw9P/PXE+z9upqB5rXPXjYH1H/bjKsfbwa1DAp1H7yZ/SJrmqUuok7ydUpQO/7aa8BrwGvAa8BrwGvAayCeBjywN56evCuvgYpooHnyf012tbXyYF5iEFsJ5hK73XE1XpNmLz2mAZi42CZoxRVXNGkaAnvshSRijJ28Cz+2RGLrJSYiKsneSxk0sGazja4ca9qOVXfdkx/Ox+014DXgNdALNODbxbQ+Ahwb+f5p6FGehd6Xm/Z+L3meljZ8OF4D1aIBXwcKAGaGbBv6XKvJfZTgq8kOoZlRxty24AazRt1qZo0Bwy2oN8iAG3U9Z3Gteenj/mbG55Uxt621QrPZbJWlZvggeS8Zp0SlI3g/gQa80wppAEBXnQC6jADHl/xdwL1TJaKY4N7ch8L2+2yrqV29xvRvkDCqSLprTM9Ww7DPKYNZOSqCpffGP91h9v/G1802W40tJ4he5wdQMj/e59nnJ5lLrrjW/OBg2cK5F7H32rpa8neuHZ9ZWo9SjrKyRfzAvQD1CsgxhfXfYeBeTQjPANh0pwD+KWb7cgGFmi7KAduMAxIEFKxAQ8CIMJO68sILL9hLALQjRoxwHxXOv/GNb1hgLyA0to1fay2xYTsyevToDsBGfQQwCeAlQKIgiBE3AKk++OCDDjoFGKYCuA3gblC22mqrwq0333zTlveGhgYLlCKNsBOztTyswGPGjLFutQ4qeOzhEwDodZtKBpaB0pJcG7i3JV6ich8KsPeZtrZg7cq3BWHgXk3pNQ81m0lTYzZi6qnMI6QVDz74oN3CHqZcwHzkHxXyOT9YKwG3lyKEwK58/fXXW+A7+QaAnzLqaphRx4MOOsiC53gOuPfQQw+1Tsmvt956qz0HLFxX15HNcocddrBpxA8svTBzAoInf9Jnq4Qdv3WeAOnmSpJifqaalQXU+9WMGbiTMGuuJvmLwbyX1DWggNJ7773Xgsvpt8AcG5RyGMyDYQAWZaFENit1jiPlhg0AmTKDwKLrAtgvvPBCm6cVZOpEV/R0nXXWMey4ABstAN4gsPejjz4yyiirbMiQ2lx88cU23H322ceytus7wn4NyzyAVdoh5pKi2rg//elPtr0omsC2h2nEyQICFhXAFqyy2267FYDd1GMnnXSSndsjT9D3OPvss61T2nDY6l0BtKz6ZhEP4F8V6hgAzzwn3ChgrxIEqb9ixyW5xaZxo4VmvWMbzNAvBpump2XhwKfFfOSf1cgi19a5Uh/Nl3F292zIWTpR3oXXgNeA14DXgNeA14DXQJVpoPIWgCpTiE+u10B3aqBlumyRMlhWsQIclD+OHKryujsV5+PqpAHYuAD1wlJTCWNgpwh74AbvxfvxnrxvpUTLYLUfK6UfH67XgNeA10A1aMC3iyl+Jds/lVax2o8pqsQH5TXQ2zXg60DBMCwQ8MukNsCM7djH+GoCYMg0GFO3R9ZMGfqkacwslaov7znO8Y25/c39bw+qGKiXN5gxv1biGGwmz+lnXyhOumK8uXfSTRqApapuc2Hg/VrWZL4kkcYFzUg2bJksefp/sqW25O1qlUqO6QFJvP/++2WrBqZeQL1HfP+7fQbUG1QG4F7ej/fkfXuD2Lr6v1JXvyX5Om7Wpq6WBRh1e6YH6lVdAKJRgG+xe/qskserrrrK5mnyddiP52Fy9NFHWwY/ngHAgq3xvPPO6+CUtuOZZ56x9zbaaKMOz9wLgMIqLruu3osCS+nzKPbDMPbcl156Sb1ZVkJ2IQv+dtlll4IbTQ+gSJfZGFAX7wR7LwCxiRMnhoKECwH1wAlA9LpNstLfEEbUtSUBSdqCKdIWvCRtwcK4BaZrLwi4FxCvK1wr6Ne9X+lz8iPfd9q0aea9996zjJTKdErcgHMVNFkqLbvvvrs57rjjrDPAtsqaWcof4HZYShFAxiowYCvADnbhoEyYMKHACgwAGJZT8jeMooALg/VO0H85163CgJ6Ly4IuxJv9tq4xg3bLmn6re1AveWzllVeO/IV943K+UZSfuAzm+FcG82BYDQ0N5qKLLuoE6i03bBZNKFM2TOwuqJe4YaMmL5cjAI2Rf/3rXxaI64bhMsbvv//+9hFM3jBm84NxXkG96k/D4/rFF1/U2x2ORx11VGxQLx7TiBOQtQvqJVzYe2mnkbfflrniBPLuu+8WXGsYemPkyJEGhmV0dM455+jtTsempqZO96Ju/PKXvzQTH55ottlvSzNofNbUbimNV0ygLnVR66Luabei0u/vew14DXgNeA14DXgNeA1UswY8sLeav55Pe9VroHX2LFOTrRUDngyC5M8eeatqvK76r1HdL8DqWph6g4wA1f1WnVPP+/GeSVYTdw6l+B2KIpI/5lkKq/HavoT/5zXgNeA1sIxqwLeLKX542021/yTQ8KNtLW3D2Yufp6gSH5TXQG/XgK8DjWl8p9U0vSSTh7J1dVypkd1pBwigoW4zMZVl8yAWAENI/j9D9bbrwBFQ7zMfdGRnixtvOe6IizgL6WkLpHAdSF85cXg/ldGABfduIYDEXWU79pEJ4mAb9v/lTOO06p4Ur9SYHgZGwAvlyv1/f8gy9Y4ZtU65QVSFP94PRmLetzdIoa6OCz6TRNcIaWydAErqNpIylAJTb1APLrjXPQ+6663XgGYBDao0NDR0IgCAfVhZF4cOHapOOx3dLdW7Ur46BRxyQ0GRIY9Cb82fL9R/bQKz8PPPP2+OPfbYwjbwhAez6957722ZfadPn67Oe8WRvDtgE1noIf2OmjUSJEnbgne7ry1wwb09BRhNrz4AAEAASURBVOoNaggQ4X777WdB3ZMmTSp8d755XDIIwG6wTiOwW7oguWB87rWy9AJC/PDDD+0jmEYRypvLLG1vyj8YpGHJBuDrAvBgIj7ssMPs7nSA0NOUHF3ZjpjsyOBrBsuueetkTO0q2uONdLrMPKCOjPqxM0olJYzBHFZo9+fmMxjMg7LHHnsEb9nrcsN2/VHnhgltj9tuhLkJuwfrrooL5OXenXfeaR9R3unrIbRzLBbj57LCox8AyO6ikoULwzsYCtC3Acb4l0acsHQHhbHb+uuvb28nbQe32GKLQnB77bWXueGGGzoAo+lzo6NiLOb9+uUXixYCKnLi9i1qR2bMtMZ3zNwFc4r4cB4JftjWSc4tf+o14DXgNeA14DXgNeA14DUQXwOCKPTiNeA10FMayDUukajFEIctDrtJwuOkt981Vz4w0Tw06WUzb+Gisl9j6OBBZvzYTc2xe+1uxo4WqoCE6bDuy47de+yqBtSYxEB9WRDek9XlvHexbQnL1YVm/7z/PIt2u1mz+PWkl982V17/gHn4X5PMvPnhhqM46Rq6wmAzfuex5pjD9zJbbDqqACSgcCZLX5zYvBuvAa8Br4G+pQHfLqb8PaXhydXwT8KNOIY9f2/KTPPo3U+Y155/wyxaUP7E16AhA81GW61vdtl/B/Ol9dYMTUdY/G567fOU1eKD8xrorRrwdaAwm34u4MdXZbvPmVRc8aRmJWP67yAAm7HCnjfI6f0rY29bMGEMuXMWZzuBeofWtZr+2ZyZtyRjGlvaw4uXmo6uCIfwCIfwVAD3Dh/UYoYNbLFVHvfD0qfu/bH3aCAzWJh7t8zaLWkbH241uc/ipa11uuTt1yRv1deYzHJdy1fxYqyMq0qM6QEtxAVzBd/q9TfeNC2trX2WqTf4vjD3TnrpFcN7b7j+usHH3XbdMl/y8ytSV89IUFfLVvEDdpS6WhZg1NRVrgwoe6Yeu00pKUT01ltvGVj1VJ588klz/fXXmyOOOEJvWVKAjTfe2Lz66qtmypQphfvBE9j+VIox+6qbrhxJj8rMmTMjt05XN8HjZpttZi655BJzwQUX2PcCdHnZZZeZDz74wDK8wtAaBn4LhtOd1yz0GCD9jpZ5Uhb+KW1BzLUJti14tdX0+1KNyS5fuXLg6kIZevXoPuvpc/IOIN0f//jHNink67Fjx5ZMFoy5AIG32WYb6xaArcv0GRUAYHGVe+65xzJDK7CXMHSRlbrRI2Dk0047zf6mTp1qnnrqKQvEe/rpp60TwoWxM8joqf6THmuY+Y05+5uTaaVmWTjUvF7O1A7vnjyV9H260/0qq6xi682oOBVgGvW8q/eDDOalwoPBfMMNN+zgLCqN5YbtAnvXXTe870DeB2z6+OOPd0hLqQsWmHz72982t99+u7nrrrss2B0/s2bNsiy+nH/ve9/j0EEee+wxc//995uHH344MdstjMzlSFfiXHNNsWeFSDlgaIIBEPyzn/3MXHjhhZYxHMZ+hAULAH1hlqZtLCa77rqr+dWvflXMSeHZDjvsUDhv/iRnnrjuSbP3WsKinC3cjj6RusjWSdEu/BOvAa8BrwGvAa8BrwGvAa+BIhqIObQrEoJ/5DXgNdB1Dai9RI6c5pxrG7hzrc//+OgT5tQb/2xOO2g/c97hB5thyy9XcFrMJG79B1I85/MvzF8ef9rsc+b55rc/+I45ZJe2QZoTrwau8et1h2MgXH/ZPRoA5IoxclkS3pf3rgSw12Z7GK6YxJdjTdux1PUfb3/EnHb2TebUEw8y50043AxbScqkE476j3Oc86mUyXseN/t+90zzm19+3xzy7V0Tp2dZyg/+Xb0GvAa8BlwN+HbR1UYK57SFEgzgWM7op5a6fvqfz5k7/3C/2ft7u5tvHbuvWX7oEAGdtfmXsKz/mNefz1tgXnjsv+aSU6423zr6G2bbr21dMv6w9KWgCR+E10BVaMDXgcJqOrXVNE+WvvzSmJ9sgOAextaYgV/JmuwK1CDtwgQ1YNlix5c+lgAcGTG4xXwmANx1V2o0o+qbzYBsa1H/pcJfLAxH787vb/47q78h7I8Xts+evvTJALPrlxaVDN9Jnj/tJRrIDpU8t23GtM4WQNdTkscaYyRM8nTz6+J+w5xs494xr8bw3aucVHJMn/RFX35tshm72SZJvVW1e96X9+5JYG/TNKmrp0hdHSfvo23Z7pltnwHFpwFsL1WCygH1BrcD7+5MAlvh97//fRvt1ltvbQBf3XLLLZbJdty4cWbttYXMoU14DgASFtEo4blKEDSm99M6brrppoWgXnnlFbPbbrsVrpOcwN64+eab2x9AT7ZbB7w5bdo0y8jq6iBJuJVym5VFGgO3ybcFTf+R8gAHSCmhLZB+TtPGOZPduFROLhVY+3M1Ybbf6XhWDqh3QHwyyI6RyRXgV2Ulveiii4wy5XZyKDfKLXuAEM8++2wLhgdgqyDbsDj0HiC8Qw45xOYryhdAXGXABpwYR9ZZZx3DD7AiLJsKyPvPf/6TGrA3I1MFMPHGEuGmaHq21SyS7zVQFk/0W1UWkqWXtWIloTc5Gjx4sGExQE9JUuZWl8G8VJrLDXvu3LmFoIvNQxVjgS8EEHJCmQLY+8gjj1iQKuBqZe+lzLltAm0dC1gAtIYJ7rVMhj0v514acUaB/stJD34I77e//a356le/am666SZz33332aBYIHDxxRfb39e//nVz6623Rs4dJgEVs4hu5x13NqtnvmR26rebGbfaeLNcv/ycdKl3oC5yF8+Wcu+few30VQ3Qt2aHAOpidtqiDLIQg74EfZJy+zO9XV/vv/++mS59cam4bJ3V29ObNH2ww7/xxhvWG7s0LL/88kmD6HPu2U2lUXaJWUvy9lprrRX7/Riz0eegL6aM9rE9e4deA31cA+1UH338Rf3reQ30ag0AHETkYM+c6/z9js9h6gXU++BZp5pj997dDFuujak1pn8LLGyLjwP+CYfwCJfwrbRF67ovmr68L/+/mzUAKw1b6/Q2oeP217/+1Tz66KOpJ433LZeNp1RiNI8nOU566W0L6v37HWdZll1AvUn8U8Zc9/iHrZfwAAsTvvs86D7sutR7+udeA14DXgN9VQO9sV3EKEGbyI8JgbSlku1ivo2RVsj+8Y82K/r6vSkzLKj3p787xozbf3uznLDQF3NfKjz8Ew7hARYm/LLCS1vpPjyvgV6qgd5YBy5YsKBQB3700Uepa86tA1sXC9DlLWGA/EDqqZiSHS1Ase2ypnZEZwRDFAOu3l/YWGNmfN6+Zh5mXUC9e6y9yGw4rNGCekmGui/nWFebMxusvNSGSdjEoTJjfq1Z1JQpGb6698fepYFaAc4M+GrWtKwh6O2YArtp0zvC7Lgkfh6PGXQnZwAq6Lu44L5Ojsq84ZbbMoNIzdu06TPN6HUaUguv3IDC9F2pPiTvy3v3lNi6+k2pq9+Pn49tXb2t1NUpbRW/4kpC1Z6iUL8zAdmTAlvtiy++aJNw1VVXmfPOO6+wLTqMvS0tLYXkKaMpk9C4DcqMGTMKzL8AZSmzlRQADQow+sUvfmHoOwTliSeeMGzHzu+9996zj//5z39acCRMqx9++GEHL4B83a3DtQ3u4KgXXNSOEBZq6Ydk1+ncD4lKHrsSNL3daihLack3BWCctoxtx5InDhrga319vQXonX/++QbQRJiwWwUAW5Wk4G0YL7fddlv1Huv43e9+17r73//+Z8444wx7Tl4LY9ulHgfAyw8m6aDsvPPOhVutwh6flmRkAVGGai7mZ83NkXUW/xJw799azNLJshtEBfsZmUw+UWm9r9pYMtn2xW9p6bEnwgkymDO+K/Y75phjYiez3LBd1natf8MiZWFGOUI5AMyLKKDXZcIGVKoCAF9BvTDOAgaG6Z0Fruhp+vTp6jS1Y0/EGTfxgHfvvPNO89lnn1n2Yuo0bU/R5f/93/9FBsUCILedjHQoDwbU1JmNs1uYw9Y62myV2c6MHLhqMeftz6S4Z4ZJfbRC+y1/5jWwrGng448/NpdeeqldwMC8OfUUwF7qLvoS9957r/n1r39ddMFdNesMZvl/SJ/9H//4RzW/RmTa2SGEXRz4wTbfU0J/aPbs2fanfaM4aSnXX7Gw//a3v9lvPnny5GLOOj176KGHrB77al7p9ML+htdAAg3EHNYlCNE79RrwGkiuAVmlZEXtdyWur3xgomXq3WTtL7X5S+afVVFh8REeDMCEH/a8sFI7wn/ek//f3Rqg04WxurfJ7373O7vlD8wHaQvvm6RjmiT+QjG0nvIshZzm74dfX3X9A5apd5MN124vJgn8R4VPeDAAE36x+MP82+ir6N9SWb3nxWvAa6C0BpqamgrgndKul00XvbFdZMKZbfD4MdGQtlSyXaQBsq2fbYjsRdHrR+9+wjL1rjl6dXnN0u7jhk94ewkDMOEnSU8h/LSV7sPzGuilGuiNdSCMJFoHJjXqxlGzWwc2fyjbCE8VkEscxjsJvEZ2Ye2/dY3pD5jG1nMdY1RmpajjrEUdx2EDsjmz+YilZtigPDAjyl8591ce2GK2GNlo+kscrswSBt9S4bnu/Xkv0oDkuQECLG/eaLGpWTFmuiRvN78jgK6POuaDmL4TOQM8R9llgiptcctt2mEnDe8zmVRdeeV0QZ5J04D7A/bfz3z3O//P3Ovoe+LEf9p73E+zD8n78t49JYnr6mFtdXVDeF1dznvAjgXrYBpgT8IYPnx4JCNeOemDSRcQYLEfICYVtlfX7bRPO+00AwiLrcYvu+wy6+TJJ580V1xxhTo33/zmN40CvE444QTL7AfId86cObbMU/6V8fCss84q+KvUCe2YArUAOBxwwAFm4sSJFvTAoqDrr7/eAnoBKdGXWH11xhrGHmF5hJGQd0IP9IUADD711FPmnHPOse54V4CivVIkW9MP6beVjHLi7g6/ON8WNM9Kry04eIeM2awhvenCQ3bKmC/Tv+qCHHnkkdY3DJTk6bvvvtsAnuD7wub12GOPWea35557zroDPLviinEb1HzCaI9gzU0ibEmvIERd/BLFKLzaaqtZoCL5lDwKAYaWXYA9xx13XCHqPffcs3De1RPYMbOrS54amiAkaRaansyZRXe1moX/ajFNH8hCovb1AAkCKu6URRB8p3feecd8+umnxR3HeKrfYOTIkTFc9y4nYW1QkME8zRSXG7a2F6QlCrwLsBQgezlCOVTGeUCqgOAUCE9f1BWAvCpXX321oTyOGDGiMD8WlT71U86xJ+J00+kuzHHvu+eUK0C6sPhStzQ0NNjHpfrxe+yxhxtMp3PsbxvUbWL+dOSd5rStzzLrLd7IDKuTjllMqZEudu1qAuwd2LX2IGZ03pnXQK/TAAuQrrnmGsvSS+Ko79Zcc02z3nrr2b6ELnZhrAfA97XXXut17+ATVB0aYIx0ySWX2F8SgHG5/qpDKz6VXgN9RwMdZyD6znv5N/EaqC4NYINjXBPz+NCkl815hx8c233ccHF34I7bmt/e0TZpEzM9NvxepnE6wTqp7a7orVQyNb444cNyoZ31OO69m+7VgGb7fKyWE9CZ4w+/fuhfk8y5ZxwmXsKft5stkj//1r47mHMvuaNNCUn9p6s7ypROJvbr18/wiyuuX8okA1gEY/z+++9vHnzwQcNk0SmnnBI3SO8uRQ0AOoRlhO1+Hn/88aLfVr8lE28DBw5MMRXGTsqwfdikSZMMW8n9/Oc/N0wyeslr4OGHHzZs7chkBatXdTKz0vo599xz7eTulltuaS6//PIuR3fzzTebK6+80hre77///i6H5wOovAZs62MbSPnHX03+aDiKuM9fe/4N861j97Huwp6X8l/s+VbjNjd/v2Vih/iC8Uf6tymt3D8MtRjCMMAOGTLEMGEGW5Tv81VO5z5kr4FOGpAqqWm6sNcJo2ksEexK7UY1ZsAmGVMzoL3H7vrVyfao47wlHf3BqLvLl9oX4UT5K/f+2is0mv/OamesIq3zlvYOxl769a+//rplUQR0w/aDa6yxhmH79pW6yIxJ/5NJeya1Aa7BTNVXpKauxuTWazTZuQLwfUbybgyyvtbpAmCXfN6/XrTQMQv2FbX49+jLGtC6WhhHY4nW1RvLIoaIujpWOAFH2DPq6+vtuJN+XLnCGBowTbGtycsJG1YvfsUEIC5g1SVLlhgFFQLkOfnkkwveAEQx/gIgddJJJ5nx48dbIMEKK6xgHnjgActUSp0No18Yq991113XbVvSA+qCuQyCAAU0F16k7QQWwjvuuKNgUwJsBnsqwF7YirfaaqugF8tc+Jvf/KbT/d50g7xdt2nGLtxofqpn2oIRAgC98ocZ8/dJNWb6J/nhXDk6GiCmwq1HGQEJd72BIk+8+eab1g5BPsUeEiWAZkuVmSi/jNvI6zBbxxFsmrh189U3vvGNUK8DBgwwkF8cffTRFiyvIDrysoLn8XjmmWfa7bhDAynzZr91MqZxnZxp+TRmfUs8wrvQ8rowqrNY7m3pa2wiv/Uypna4fM9smQkJ8QYAEQDTjTfeaMaNG1cASoc4jbyFjZpFEDAB0t+EfbRaRLdbf/bZZzslWRnMyR8wmH/lK1+xNgbXIQzmF198sb0FiCeMLdp1r+flhk17qfLTn/7U7LTTTh1A9IxtXJC6uk1ypHzDzg2IlvKIjB492m5P74YDgFglaJdmPJIUqK9hFTv2RJyaR0gXC16CwvfnPosMsNvqXAvuqF+23377WEBrvifMiMwHuAKgd3T/dc12I3Yy39hwf7P10m1N6xsJ6pK2wLKjZOFKCu2BmzZ/7jVQTRpgURp9dWSLLbYwe++9t3ExC9g6mB9hPgy57bbb7Dyd68Y+8P96rQZWXXXVwnhJF3712sT6hHkNeA1UrQY8sLdqP51PeF/RACauHP8QOca5nrdwkRm2/HLqJbH/YvENl3AJXwOPk55CeHlfveI/A1JWwa2//vrWuFPpRGl8ceLBMAGDgJfeqQFbHGvkvxikYLeuaTsWu543f6EZtvLysd1b1uyY4Q+XcAnfSsz02PAroF6YMQ4+WBYViOyzzz52m6e40Rx22GF2qxncu2UAEBSgXgRDtwf2WlV0+z+AvRgDv/zlLxcF9ZIwNx8w6QYrQhoCaDUI0nANp2nEUe1hYJzGsM+PSdijjjqqW15pypQpNn/A+JSG6DZT3tCRhja7IwzM+fn+auhRnrn3Fy1YbJYfuhz42vx9PYoj1x39R3ud4DnhEj4pSupfoqmIMMFMG6dsMm4kTKawOAHWNHeSxXXjz70GvAbS00DrQgEuCFAsF5OEsma4Mf02FqCCbIEdJSxkYqI66tgcGAw3tggwpzbafVQ4wfuAqzbZZBPb93bjHyhgGeJwpblVasUS6XTdp32uE+hMLsOoFyaHH364BZo1NDSEPS55jzh0e/k+2T8c3mLzYstbsvX17JLqMDnBMzS/L6CbRTmTGdwxP5T27V14DfSsBrSubhWgWb6XWTw9HzfOMm/NeM3st0p6TJZujABc+fUGSbogTBdbU/8C8kVYQOmCjGkfYOrdYIMN7PNjjz3WLqjlgkloxuG//OUvzV//+lf7XP8BpgJQFmRK5LkLNlL37hEgY7lCnHwPwF2ffCLoUkd+8IMfmFNPPdXU19c7d40FBrKN+3nnndehHaIvzqKQiy66yJTb/nSIqMIX9Ef6bSx9GdqCj0tHVmgLpP+TGZJOW5CRYPb+cjphlX6D0i7IS3y/7bbbzo6pwthAWfAMoJDt58nvrrjXWl7c5+45tnq2Db7vvvvc25HnBx10UAHYC7icBU1RwngR4CngemUXVlDv1ltvbSZMmGB22WWXKO9l3++3muSpjWTRm+xmkUtIjGvzl4DMyY9N67eaWgH39pddBmpHyoK4jmvMykof9sfPP//c1kewGXdFAPQqYLor4XSnX+ok8gL2BOzhkF6wEA4mY/ItDOYwViuDOXNP5BUWomBHZwEHeYhwkiz6Lzds6n3amhNPPNGm+cADD7Tn2267rQXf//GPfzR33XVXl1QIK/fmm29u3xmgO/LDH/6wU5iUFZh6EQgh0A15gDkG6ouu5qdOEcqNnoiTRUO6AADdAoD/6le/avMI7TzkQfqugAbRA4sUALxz/5ZbbrGvQv1USmhzyV9IrelnNhy4idlq+DZmy+FfMVusvKUZOWBVWU1aKpTOz2Ght+PtVaPH2519+TteA31LAyxQQujfUte7fRPuYy/m/uzZs82MGTO4ZditIu6CDevB/+tRDeiYo0cT4SP3GvAa6PMa8MDePv+J/Qv2dg3YNY4A/MSczVr4HAaoUte8VN5jPPelwgs+Lyt8PPU+0ZVwvSllS5fK0ncvvVYDtjRKmUhy5GWSuAcsnMR9OeFXWsEYujE+xjEesu2HGpqC6WLLGTXaMUnjpWc0wGQegpEwibCiOC1hAlLlggsusKtcu8rupuH1lSMMNEy4YizYdddd+8pr+ffo7Rqgzcp3U+Md5X1sKycNXSJ/cd2XG34F9PzMM8+Yb33rWx1ABzrxQnRMtP361782zz//vJ1U8XVaBT6CD9JrwNFA88cCPvhIbsRgPMVbdt0a03+MVHBF5hlLMevaTr2TBj0t5a/Yc0C9bCGr28gyGRt0r/HoMfg8eK3u0j6ylTSg3SAgzK0LiZMt1P/yl79YJhrAOUFhkZky3THxVQ0ArOA7dOla8mD/9WpMkwBmmmczUiwhsi12ywfCpCdu+3tgbwll+ce9TQOvPzHFzL7nc7PJgM1LJo267LkPnzbnTzzbHHTRvhYEhf2gr8pqq61W2CUpyTsCduUXJaNGjYoMl2cwg1Gfv//++5ZRDMDvsGHDOgEPNHwAVQqq0nvuETCRAorc+3oOS2eUAHb48Y9/bH70ox/ZrdjZjp0FpuimGKAYUCY/3uPdd981Q4cOtazxUfH0yvvChtp/3YxpGtVq6NOUFNoCWFXnSFuQErC3ZJw95OCAAw4w/BhfAd4D+MJORqV2BWCsxi+u3HnnnXGdWjIR3dUsjidAc//5z3/sDoPvvfee3YUAEF4lF4ACwIUJumV6zjTBBN0YJ6WOG8bogq9vkv5G82sC8BXmzdrRrabf2rIwbs0ak11e+tHYCsoUbJAsOnjnnXfMggULEoeC7tgdAttytclee+1VsJWffvrphh+LggH5IuUwmMfVQblhA6CHHZmd1mB3DTK8siAEFnn69eUKaXPZaQHQB4WFHJD5sKAFtnZ+rlBXBMcm7vNyznsiTtLJ4hrIi6j7DjnkEJt0QL6Mm3j2hz/8weoBN/yCYzC+CWzhpWTzzTY3v/vFhWbilY+YzVYaa38brriJGV433GRqigyWiwUsa3xqt5DdcWQhbY0sTvXiNbAsagAsAH1ThL5sENTr6oQFLwrsZd41DNg7ffp022aqu/r6elvvrrXWWpFhk4YXxC49Tfx++umnltQHkDFjAMZVQWZgwmbBNosLttlmG5umJ5980vplbor+lwpuaRc4svCEcEk3jOFBRnX1w/HDDz+0i0Leeustu9Md6adPR5seR7CVAYRGSCNpDQrzltpOoXvaDRUWi8OYD4CaRUYslmDswE4g9CmC34l3nDNnjmVIx81///tf89JLL9l3pm1k51F2r0LQafDdk8bHonbC1HSjJ/pK6Jl3RV8QAbAYCOEb843QqwrXw4cPN+zAGbX4LIm/pO+g6eC4cOFCu1CfBXqEw1iTvMtOK0kXtpLPXn31VTtuZREoY1b6HrR37KDoxWugL2vAA3v78tf171Y9GhCjZV7ajqWucWydxnRfKrzg87LDz7/Fsvwf9sF77rmnqArodPWk0AHFUImRBAMIBvLNNtvMGgTYCiQoGELoEGJoY3UyRkg6hXQu6TQx4IBlk05mMWGClq3jEbaQwl+YYPyn0wr4Jc6K4rAwunKvY2mEPyZvTM/fr57rruggrl+2S4NNpZSwaj9KMMICjJo7d64daES58/crpwEmypRdjZX/PSVsI4dQ7pnI89JZAxinqcNhmgkaCDq79nfiaAAjD0Aj2jSMAghtIsxObI0VFBhVAGnS5vE9aNseffRRawxqamqyxhImpwijmFRLm2jfQRpA2/rV0B5y0fnY4XnBU7u7Ds9L+S/1vMzwrbcU/wE0+c53vlMA9bI1POA2jFPkBQx6MKbQZ6L/c9lll9mt1FJMgg/KayAVDVCHYezGMM2EOmxH9NOZOIQFyBUmF2Dup/9GfqfPzrad1Is8w4CNYfZrX/ua6y30XPv8hMVkY9BwjieM1xMnTrT+YeFi4qGYtHwiDKZxQJEEIhvg1Ao4ITus+EQl6aK8MxawtZpetx3tg5BEFfyp+wj/BXdtzxXUq0H+6U9/sn0jN3595h7d5za9Gq+m03Wc4jlMYjpxzoI/tk/fd999rUG9paXF1oUwQNHWMiHNpLhuHR+VDAz1y6LUriIgGcBcr0pO+6K0Bma/Osdc8+Lt5r737zT19fW270G5pR1yBbZj2DqR8ePHWyYvtgNl62r6PpR57ADsyOKyfLph6Hklyq2G3ReP2Fz+KuCLt99+Syaw5kn/cVWZdBplDpAJUWVP7YvvXeyd2Cr6lSunmBM2+LkxAvgoJZ81fmpe+fR/ZlrTVOsUYNxZZ53ld/oppbgynlP+x4wZU4bPynhhkpf6LFinlYqN94D1sVqldrgAJ9eRRR6vxGsLcixqou9TX61vnCzdgNaoB5RZMpnv3uGavi8AhO6SWmHKrNte1r3NaTEtkyWvCCA8sYi33FzZLWAuAN+caVwjZ/Nptr7G9BOAb+3ImrJ3EAAg5IKEEqctRQ9h45E4wUctOijGEg3gHKALwEwXyOrGVw6DebE4uxo2/n//+99b8NMll1ziBmfHjixq1kUmQaBYB8dFLrCzAXBGGFOGtQEAx7AhH3/88QVwtAaJXQZmeh2fUN5Uor6TPtej60fvlRtnHMCSstyHxXvOOefY8kE+URZ7zaeA0ACmofebb77ZPme8hTAuo2/Ps2JAJ3ZRaJ4lwP8ZOfODNY82u+7+DTPo8yFmuX4yWO6KyEKV7Pqyk81Xs7I7DiNVL14Dy6YG3DoZUCO2jqg5nU033dTO1aOp4C6H2FbYVYAxvCtTp0618xL04ZlTC9Yj1BvYo7EJuIL9TndSPeaYYzq0w4T52GOPWcAlacWWo6IgZWxO2BKDu9cB2gR8DIaAnSbDgLoQDP373//WIO0RP9Tr2DPiLNYh/djbEerQsDlN3o/3QJirUWAvc0BhGA4WXQHgBS8BWFfrZvxT1wKqZUEW86iTJk3idkGYX8XGgoCZcMdU5cTHuwFcJs28B/ZaV9hdEx2STuKD4E7fVd3pPJcuhNP77jGuv3LeQeOB9As2fZeEj/lN0odeWdBDexZH2AWUxUVuWLozKO0tizwB+HrxGuirGmjv1fbVN/Tv5TVQDRoQ40j7TKGcl7rWdyrlrtzn5YSvfpbxI6ulWAHVWyWMWY60soXTb37zG7t9EVvwuZP4GA6Y7Gfy/pFHHrFbQbnvB7gTv3TimVCMEjrCbIuG7LnnniaMoYMVckcccYR1s99++/UIsFeLjU2EFMY413m3/I/nvt2cEc99+eG3+6zEGXkD8IE7QA3GA2jOZWINPueaTjerB730jAYA46j01OQI+USNj2EDcU2fP5rIFbZeN8k1gBEIg5EagjQE2rxLL73UtlVXXXVVh4kEjFYTJkwwDQ0N1igWXICikwf3339/UWBbtbSJVifSEOYA29oGMfzY4XnBk5y0+evwPCScRM/LDd/6S+8fxj7yEMKWlBjTVGgXAXdjrISlAAPYtddeaxfDxJ1M0rD80WugUhpgQoF+HP05V55++mm7pTWTtfTzAeqqwICn/XlYOMj3Wg5wo4ZsJqGZVC0mTz31lA0fN4yfwhb90YfUfuROO+1ULDhbR7UI2CDuNsPZNQAiCHtQCasYExZI/r8c9brtWHgQSF3QXZT/gjvxHwT1EuTBBx9sQw76tzedf8HnhXA1nY7btE753u4kDyBvdxKG+g4WERb50d/XHTwAcrPgQSel00pPtYdDXqz9UsZkVhWA+hf6RaPfqnZBP/PR67PMi9NftO0M7F1sQ08fRvMNvpnE03LLMxbQuRNwyqoG6JcFwFETjYSVerkl0D4qP5PFPVdccXno251zzq/lO5xgzm9j5Qt11AdvAuqlbfjJOqeYVQa2Mz0Ve9V3v5hqJs97Vara9slobV9OOeWUYl79M6+BqtRAoS1YTXL9m6XbgtY5gtOU/k9+rFaVr+wTXWkNiBG6/5iMad09ZxY3tpjWtyXC9io1eewLxbvkzca3ZeHbSkICvJYslPuSgHsB+K4mv1XaQL7txu/kcfSQD8BP/JIKLLvKtOv61QWK7j09px/MznX8YAsEtBVk1MNNUgZzgGNxpJywCZc5IxbtscgGlnfY/gA6af8RwA2/cgUwWxwmbIC2LDhjvAoYi7EPZDo6RxEWBuPXsPvBtGLrCZNy4mQxOL9iwnvwCxPiZGx92mmn2UW1jKm4p4LeAf/yA1CHLtBD5G5R0lxYMK8sCmmG8X2mLA55T9obAfbmPjNmRKssEOynoZd5lHWzGVknVLd7xvRfRy6qsC4o8829N6+BThqgzI4YMcLuQgEYEfvxjjvuaBd5KtuqegKUGzW/DngfwC1CPQzgk/k0bHQsEmFRPO0XbYbanXlOfaygXvwAtIW1F3/UGeombFyFP2wMKqRPw8aeoDYF3pEFSyNHjpBwp1kbIX6pn7FxBRd6KKiXd2VOGJuiMs1iO6LO0zZF4w4esSHqfA7MuWHziS4YVjEbAErZiRYh3WPHjrWgUtKATvhGEFABooadOCi4cSX4bu4zzrsaH4viVQALM59EPgBgTXuGjn/+85/bto+Fw3xTMBYIbR54lWKgWdrMUv66+g5KKEW+ZVE5AuENuga8TPsXh+SJPodrv2Zujj4D7wvomjxHfofpHzukF6+BvqiBElMYffGV/Tt5DfRCDejgRo6c2m2LSaZz36a67bk9L/K8lP9Sz8sOv+AxnRMMIgC9YGeC4RUwDR0qOjN0RgBMHHbYYbZjnE6M7aEAgIWNiu0N6CStueaatnNIZ67YKtf2EHrfGSugGDSosHqJVYB0BOnM0nlF53TmAC0Fhe1TVfALSwITsnTM8IuRAiBAlNBRp4NNhxsgMZ3M4OCF76viTkbqve442mJXI/+ZBJdjTdux6LUmLK777ghf01TBIys++ZasAI8S8gj5o5iw2p8BAozQbh7FDx1yQAKsgmQwRv4k37KFL4xfYYIRC+MpfqbLak8GDDC2sOqfFZdRQv5lMpsyQbwMDmAcY0VnEHjAAFjZCVjVivCurEZlIAqogfeBzTpMynkvwqHcwNzG6lwGLQx+YdiiTAZX8obFG3aPNCNsIxMsk2Huo+6VoxN0xYAMfahQH/ENkQMPPLDAtuO2CXzTBx54wBoQGNTBQOCCkhkcAlKg3mPVJoYL8g3fJIw13Q2bbX8AqtDmsKIUfz/84Q9NfX29TRN6pz6EUYN0E+/uu+9uWQqtg5B/SfJWiPfCrddee80CaDAauKB6ygaLJRggY4hh1S4LMfi2GGh4Jwa1fOMoId8z+CUO2EYZ1H/729+2+SvKj96vRL7UsCt1pG2nTdL6iQUnXMNWSVkGiEn9xtZ2ukrdTQuTJQrqxS/GFfyoUYlt8VitHVWmyE/V0Cbad5Y2q0ZOAN9yRj+y2DV+8u7iuS8VXvB5ueHjL01xV8LTVw0TDJ5nnnlmgSmRtg6DLiBf6iYmW37yk5+EebX1PQZfZP/997f93jTKOuUVcB2LOqg/6VOTf2EMCmOaLqdup/7U7c5OOumkThOU+sIXXHCBncSE5ZUFXUil62Pquj//+c+W8UC/BwY/+p1hu09Q39MmsbUbZT0ogGN/+9vf2ttum6XumKSlvaLNYKs4jOj0ScgzLgBS3XfnkUV7aqSnfaA/h/GcNot2kD4+6YR9OoxFiz4Sgl/6ShhSlfWCdpnx22677Rb5StSvGKER2rAgsJf2S3d9oB0v1obZQJpqTKtMRpqYZK+Z1QVEuSq1WXGhD8hEcdTRVoghQUS5j7ofBeolbwbjD4kuMn0aX5ifrt678MILC0Hw7aPyNGmgv0f/jLKgDNFMotBfp++nxn4CBPxXX19v+/1hE0G4oS7TvjeTK+Qf7ZMFWWpwj9C/Ia/RR2KMwLieNKNj8lhQgnUubCLUb9gKADBcfnk4aDMYTpJrADEZ2Qin9a3SvobULmfGfXU3M+bYevPCy88bFhVhP1EbSVj5UwY0xg3YNugPsSgJf+iT+gygRpSkXm6jIqry++RpBfXCGHOwLCSDRXSS9BWpX9H3739/qdlB7DNsxb0sCO0pgNxaQYsMr1vFDKkdEuu1B61TZ958pn1CUz0RVqkxmLr1R6+BatNAP2kLsoKtan0zRsql35ObL78mGYP1j+HeO1kmNUDeqNtEAHZielv8z1YB94rNW/JMl0TCygEsnyPAQGGYbhKQb0YWzrF4Lrt6nsUXps7M8mId8LPQRVUdBPQGHQM+KofBPBhO2HW5YWN/LLWbSlh8ad/D5kK/vDulJ+LkO0XZF/XdeR7mJtcsRX++gHgB8wo7b8sH8ntfwLzys4tiy2Hx1kiDx37C1LuuMPXuIUzhG8kiWt8uBTXkr5dBDTBHgB0YAYTLfAM/xofMP1KH8Yua2wO0iy0TAUCL/UIBpSwKUdAvNk7sdwpqZH6IXbYQ5ii33XZbe67/sA0zd8bYFLsA6QkKc19q21MGW9y6oF5AmS5pE4u/WSABcJN0B20t1Gfs/ATmQgWbBPYXhPdlPq6YwFJLnABDmatjPsfFbQB6VRsT8Wg7y7yNzkP+6Ec/6oAtwQYJsyw6CwJ43bSQfuyh2NAV6Ow+d8/TiA9w7veF1VZt1iyoYb6A7zZv3jxrV+f9mKfC7nzHHXfYJGDDDmNMdtPHNy/lL413wCYCfkTzLbZ0yHQAUTN/xnxkqR1XlEyH9KMPl5mX74V9mW/LnLCWAfdd/bnXQF/QgB9S9YWv6N+h+jVQAA4CmpDXca7zyIk8wJDV9/a5vrFchz4v5b/U83LCVz8pHmGTATgIkI9JgODKVSYPzzjjDMOKrDS3MaQj6q780VcifsAZTHaHbQOk7nrr8fTTTy8kjc4NE/AqsPSy7TidXdh3meQL60jRCb/tttsK+mYggj8GAACa+F5RAxDicpkRAWsGVywDqkQADYdNRNqHFf5ni5WUkSRHkpTEPWDhJO7LCb/CarLgFgagV199dVFg7zXXXGOTAmCXwRkDjqAQBnmPyXYX2MvABNCJC/jGLxOlCM8AFLiDTtzSsXfj0YEmk9S33nprhzhsQPIPYJUywuk9jqQN0CyDb0AJKqQN0AECaBIwpQIEuQdggMl+8jiDiqDfpO9FmAxqGUi778Z9QDms3AcYURL0goeAAFBAAL12RcrRCQM31aPGTf3ED2FlqdZF2iYwQDv55JPNc889p14K25HxjIGtbv2mDjQPULcAsEKPrmjYDMzZQprvpwLIAaAZYWC4CIK1mZxnYjmKoTVp3tJ4w44sNlF9wZKoBlu25NH7gM+CW6CTRhg1yJMYToICq2jwvXhvwOvkrWJSqXxZLM40nmE80DLLNwc4pEKbCGsKBi7afMowZTYo5CeMZy4ggy3/rrvuOuuULaSKLXyohjbRvghtlu2f0g+V1ou/YtfiybZy1l0M96XCCz4vN3z7Mun9Y2tDFcpB1GQS/Zlgn4b+kpZZALVuWBom5VbdKEtAV8s6Rl0WxgTbEeKknqOfG6w/y6nb6btr2mmXeMegYHTT+oU6WKWS9THGZQzgQeE+jBAsCgouGqIeAIRIXyAM2IuhWt8VgLK2WcSBvllUpMZkN17qHN5VFwe5z7rjnDZUQb3U//TvmZxVod9DO0Neoc0NjsPUHX0rwNsKpMSATN2GoM9g3ld/HFncwLiB8kD/jLrY7S9R/2pepU4uKYsEgLsgX+eUdCsTjhnYxARoUEoA1SJRR9upDwlE3aM/jOvkPQzmet89RoF6o9yHRBcarpvuMD9ducfkiS5mYSFQsB8RDJv+Ov0Q6iCEPjvAXiaetAypH8qdCuy+7iQR98kXxMf4U0X7bpRVxh/06Vxh3Ep+dP3wnHRQ/9F249cVt85l0oDvoRKcnNL7XT1mVxAwjGzD3txP8l1T8dAyMjbZ8Ss7miHf3MUcu+Ix9t10so7+Hrp1x0kaGvXSFVdcUWDygs1XxxCMs4oBe1Mvt5qoPnb83fnn2Tci3zz3/AsdvgOLakatkwegPCP1nNuP7GNq6PA62t4Ny65ihvZfsUN938GheyF19RZf38z86bu3mF3Gdx6rUr8yjvHiNdDXNJCRtiAjbYGJ0RbQD4HlHQbGbP/S/Zq+piv/PvE1UFMnYLvNs6ZGuvxLHmk1za9J5lkU339RlwIczH0iIN9PBDD4koS7gjFZFisJQD0rC+myAvDNSt+7dpjcGyT5tGM3rWjQ/qHXgNdAQg0I6N6y8gK6p0wKoLdFAL2tH0oZFZZe87mEJ25Sl8GycHZjqWd2zZoB63lQb+r69QFWrQZYtMziW4jEsLGqMM/EmJ0fAvHCTjvtZMlj1MbGfezDCPdYaKvgSO4BLMXWhD0XYRGyghqxVwIKxTaC7SUoLM5gXh/BXhJmO8DGGRyvsouPgmOxywTtNbvuuqsF9hIuc1lB2wm4BBfUizvSrMBeFnHHERZ2M8+H8B7ufB9AURX3PkBodAJIFuINV9Av6QLYiz6ihLmeMH2GuU8jPuaXFdRLHACsARUrWROEEgpcDktDV+919R3QK4RDbr6FVAJyDObnEDA+rj09mGZIArAdI9jtXVAv95iTwRaGjZLvB5lKMI/hzovXQLVrwA+hqv0L+vT3DQ0oWEztb6Wu9a3jui8VXvB5ueGrv5SPTPIymQyABsAegBuX0QmGr7idvVJJA9SqoF4mmpkQIz6dIAMEREfW7YCXCrM3PKdTrEA5QGYuqJf0wWJ6ww03FJLqrn4q3JQT3LggajrBTOSqANIrJi7AKRgHk8PK7kZn1QUXFAsz7WeFYmUDhnMwL/lj9VynrZdgeAoOZBIdQFOYwGgJ+BcB7JZUANkrqJeJdgB0gBMV/AvgXzv/hK0AGib7Kb+AfmF6A5hC/UHnH9bD4MAMxmAF9bJKFiYrJrh10En9EwQcuO8CgIW6gboId2x/QnwIrIAKnFE/Sd8Lf6w+3XvvvQsAFwbNE4RZ2y1TsOpRjpIITIw6gGe7+LQkrk5gAITVT40PxM/gn3v8YCMOCnkAQBJAOAAWfC8d3LJgQEFpPCffAU5QoBZ5g/wTVVfRBpCn0SvbmDHAVGEAqvUd8cJopte4YfU1q01d6WrecsOKew6ol/wHCAqgCu2mCiuRYahzBQOL+x7oirylQEJ0ouXQ9cd5pfJlMJ60r1mBzXshAFlcUC/3MIrpSnquYTIOEwDdQeOWAtpwr9tIhfnlnlt+e2ubaNMuDaBt/WxDaC+KX4unRO67K3z7Mun922qrrQqBUScALFHDZuFBxIlb5lgUECbadtAWqVHWdZe0rJMfaScUKKllnfZV2ywWzEUBOIk7bt0O8EvByoBmw0QX6fCMtjkoadfHLM5QUC/vC7CN9sEFI8L8p21iMD1JrzF80p4pqJcFdoBXARCrAZL2y12kkjSOrrh3+zWMfYL9bpjqx48fb6MAZMmEQ1DQHQubMNKquN8SQ2oxwZ+2UfSjMOS6ouy/3AsDh7tu7fliAfZG2947OK+Rblp2qNRU7Unv8Ny9ULBx1FEqvFDBPd8cUC/CjgtcB8OJAvVqfg261+tgpHo/6hh039VrN++6Y/Ni4bqGet1+kQkJ+nxu+0lfWfuCjDeDQtkBoAvYnv4a5UoXl1KHwbLiCuWRvKagXsb2uohH/R1xxBFG0+T61XMF9dKPJH7tJ+nztI7kycyK0o52fu3QKMjzrYtkgl6E76D9G8oUk3pB4X3p47jb87IThpZ3d6vHoF+uUy+3YZH0gXv9ZHcN2u/jpO8dnCCFNYcxJ/LJ7PzkVB945aKv4JbJlfutbJbvt3xR9/qQujojdfX2O23fYeGlPsd+5Iat9/3Ra6DaNWDbgqEJ2oIF7W1Btb+7T39lNVAzQJh7N86aQftmTf+dBXgHpiWiL1t2SgAMCian5XVh8X0kZ5bc2WoW3d5iFv6lxSz4q/wmNpvFL7aYxmmtpuVz6cO0lB2T9+g14DWABqQMtQgjL2Vq8QtSxv7ZbBbcLWXuzhaz6I5Ws+SuVlsWWyZLeQNTmDaoF5uegPj7j8vYuqVuQw/q9RnTayCoAZh2mTM8/vjjra2QHSWDi5HBHLDDEON1tS+zIBwmXgRbIoDIoACYVBssi0hVsA9AqIDdTtl2mRMhPOxULMYvJWHzhe78YxhzO7aGo446yoKZsQ8HJWynJxdkG5xfC/rXa3fXOXaGcgUCJAQdQ8qkgi0Ynagtkvsw4PJOELSwuLuYRIGko/x0NT5stfX19Z2C17lQHsTVV6dAYt7o6jtgFwnLt9hFdD5C83hUklz7MqQaYeLmq2KMy2F+/T2vgWrRQIxpjGp5FZ9Or4Eq1gDzMBhR4h71VeO6T+qunPDVT4WONP6wNunEHhNxTEIz6Qd4kMm1YkCEOMliS2XATAgdTjq2MI4hxEf4TPgx4U+8XY3PBtxN/9wJOnfS1I1eWXq4B0AyKA0y+RS2Es3tGCtYJOhXr+nUA35koh6gGIMVViIiurqOcwB0PSVaXPLxtzHrFhITfl14nOcodGyi4e7bbabxnpcffrvPtM+Y/GXAyKQxbJa6DbUbD0BchAnkIPjNdRd2DoBE2boA2brhA04ETAJIh3LIc8QFCQFm14l68hMAOtJMHqWsA5JFmPCGaQ4BHACQSgEqAAoAdpJXATsBiGclaJgE2VqpK5gkR9CDAlLKeS/CAKRJXYfAsOsOqnkHQAYAlwHiuGXJeijyj63YVaLeTZ8nPcbRCeznMC1hVEDHCN/r0EMPLRodeQDQanC7G+4h1Fes0NQVwxgwAE6yqhlBZ7qFuL3h/Lvsssus8UFvbbnlltbwoqtCAQ+77MbUncqIzmpg3CNp5S1NR9wj+Z6V07Adq8BQp4AU8rjmeZ5zX+vu4DcDHM/76LtreHqsVL7U8Ct1xBig70yZCRMMXgB/6HtEGXW0XLv+XSMCK6aLSTW0iZp+21rl5KrA2CsXei23OzwvdY3XtnBseEH3pZ4H3Qevo/yLuzSFeobFAywMIT/RLtEuAtqFDYCyE7XDAwZdzV8wnCqLnaaPRRe6MObwELZo3CUt6yyaos1GYHtwmVRhOoftGxAq7RfGX3chl/XU9i9YT4S1dxg6YaNgcR5tcxh7gLbx6M014LpxpVUfo09AuwhGQwzYavTmHnW3LiQB/MwCCO0L8LwcAfSodSf9Xt5ThcVR6Jjn1Mlpt78aT7HjCy+8YB9joI3SP+mCvR3BKOqCMrlHngoKYyeMrBjVtZ4NunGvafNZsIOQt9RAS79Ad/IAhO5+L9d/h/NGAfYu7XAn8qJmiIB6B0c+7vDAZdblQfDa1oUdfOQvcKegXn0MuBeh7eV5FKhXn+M2GJ9e88wVvR91dN2mcT5r1qxCMO44snAz5ARjPuN6xqbvvfeedcHCBX4sQmVBHkL9EVUHWQfyD1sA7lToGxIO5YpxvNvXAfin4wSAwEyoqeCevE79SHmgjxAEYuKWOpc+YNx31fDLOWYkf5oh4pOJ9xKSWyJ5xMn37nidxVtun5WgGIu7W1Rq8OhOyzuTiMFJRnXHMdVy6wbch87/9a9/d3ob2iImWu+UBS86ruvkqI/eoOyoDK4dYuqynSek9XmHo5QDravZKSpMCPunP/1p2CN/z2ugqjWQqC2QdiDXWNWv6xPfnRrICgBvVEYWEtWYpavXmMbnBGD7tgyiO6/jSydV9FUEZ9TyvrCG0nEeJHX7MAHbCIMvuxRkOF9ZzleSn6QpC6h9QLvlPJ1E+FC8BvqOBnJLpCzNlzL1mRznChOv/FoE99c6W87llwMDWKnyHFSjjKmzY2pM/60zpm6zjC3HQSf+2mvAa6BdA5Dc8MPOhe0GewT2EeYy586dax0yZmRsDqGDS2iGO3AKYaJAYI7Y09SmyTXzf9joiKuxMVmHcdgwaaQD4oIwIQwLE4DLURLmR4HH+FGbVpR/vY99CbAztmzsOcy7YssB6IpdF9l0000LurA35B/PWdQNBoIxuupOnxc7woyri+mLuXOfdSU+xcO44XHust8Gn1XiuivvEJaHNI3kBWzHbj7XZ+7RJWlih9FSEsceXSoM/9xroDdqwDP29sav4tO0TGnAminUViHHWNeqobjuuyt8TVcFjmxTEezEsC0nk2+IbkfRlah16wIm/NmOVkG9GiaMZro9Z1R8TNDQGYn6KahMw+yuo7tCacyYMaHR0ullohUJAzFFgVPcic84nW4FlxGPTh5yrsx0TNwrQzL3u1vyZbCt0AjTVqxrTWRc9+LOSlz35Yav/ipwZHAIEy7CdrdBJje2egGQg1BWg+XJPijyzwULsHrPFeKmDDLwAjypoqx4lOEVVpB93xzZSbaxYYCAH3crbd22l8l6wAQ66MUroFGAw7pyULcbdoK1p4CuGGi70iCAL60vdDsdnpfzXuhWywrAVRfUS5gAyBT4jDsG73FF34lBMDpIS5LoJGmc6BaARhDUSziaL1iAoaBeDR9QlX5LN9/oc46ANVhR7Ip+R+4BCA8CJFzmTXebnzTylpuOuOfkERfUiz9Y5RQUpeWE+5QJXdEMuCiYj6n3FYSEe1cqmS/deCpx7oIptN0Li0dB2hgDMH4FJcwQ1dfaxPw70xZKu2XbrJCjfercF08d3AefB8NJ+rzc8IMfMIVrALEnnnhiISQMiQDiKXOUQxaE0I6EGZQAxiOAxxVwqwG5AJgwADnukpT1BQsW2HjwB7OlC+rlHnWjy45KmsIkSd0O8EslyAJBGdS6x61j1T3HNOtjjYtwYRDW+pBrBMDqddddZ88p6249aW+W8c/tewfjw4gP4I4+CSDD7hbqb63T3AV6wXS47BdTp04NPjZRxlkds8GSWkr4zloPs8uByrPPPltIozt20Oehxxaph+J2gQZIPSW/OKJG+6ijVGGhgvvzzjuvE+O2MvdGgXpLMfVqOoKR6v2oY9B9V69h7Vcplo/UjR61bQ3We/o8zhE2bBfUix8WyzDmQGDxdPOfjt3pC7qgXtzS/9WFBtTVUazd1PfdAeolTeTNuPmTPJ9z8r2bxrC6LKq/n6T/kmq55YX7qDCZ+DMBnH5lm61N3YD+ZrVVR5qttvyytN/5xQx99LVDX0t3ZuJh/+wA0y+TX0Af6ti5uWDJF6amf/sN3bmn/U6+vLM1pxevgb6mAdsWOPm/6PsF2oKibv1Dr4E2DdQKmHbQ9sLe+62sGbCHAH3Xlgdx81xXtCiAw9wMASW+KAyj/xA20b8Iy6gw+i4SRt+FdzWbL+6R40PC6ivMo41vC0DpEwEqLmX1blci9X69BqpQA2R7AfFSBhrfknLyvJQNYby2ZUTKCmVm8R0tlhW76Z8C0J8kZUXKVreAeqWuyIwytu4YLHXIoK9mPai3CrOYT3LlNYD9jfmXsB2Asd2w0J55SxYqKhERqdL5+fnzBcXvCCDUsJ/jpABUJV5264K0CLCwC+pdccUVLYbB9Rd2HrbgV9MEYZfan8L8Rt1LE5Tq7qanthw9Ej8kFq4AjmaXI+ZEASgrqJf3hAU3uJuZ65fzsPnIoBv3uqvxlUqPG1elzrv6DmF5SNMaFzPglp+w/K/3NNw4OBV1649eA9WkgdpqSqxPq9dAX9SAtUmdVLfnAABAAElEQVTIyiwgEFgoctKZkyVJxa9RRN5jPPelwgs+Lyt8PFVGYLSC2SxMYJyBhZFJOLYYdrcgCHNf7J4yVwGai2KuYqt1BWjMmDHDhK08CwNvaLysbOoJUUYkgBvu6rdgWpjoo6MWBgxUZt2gn6TXgElIB3qCiQtGVMCOsK8ibINRrLOXNL6k7m3pkzKR5EgcSdzXdEP4Sd+7HPewP7N1Cd8SQJALvGDAqGUhOPEeJ66GhoZCPgE0xUCUvKLAdAC4QbYp2La0fDLhD2CC1a8KMNGjG7+We0AGrPIM5n3KCyx+TEbqFi6uf86DA0R9rml1gQvlvJcLFoVNPJhG4nMHsUxsxgVYwF6MBEFe9mYX/iXRSdJoYFOMkrBvzMBu4cKFNj9qnuQ6TMImizF0qISxKrrAc7buUUkjb2lYSY4KmHH9YGQBOEVeVDAXz928RfsWJuhE62z3ues37XzpxlOJc3fLqDBwrsbpfvswg0Cx9lTDKHXs7W2iTT9tVr6bGu8onmwrKg1jIn9x3ZcbfqmPUcZzyhbAPQyw9EdhaHdBpBgK+eEGsL+7SAomeWWMhqnUZe1VplLA9q4fN4lJyrpr1IyqQ2mzqCfoB9LewcQblCR1O+FRZ8JcC5jWBSgrcyZ1S3BBgcaZZn0M84UKBvMwcfXy0ksvFcCmYW7j3FMGYNyya8FZZ51lWXt1jNGTxll3kVFwEYz7bm7fP6wODPbDXL9Jzun702cD8A3DLcyhbD+oEtU+6fPCUbYUzckvlmRzpiYTy2WBLUR1EDzmx+Wdw1J3lP8giDds0QyA3jhMvRpuMEa9H3UMuk/zWidD4oTpAm7juA9zw6K2MNG+N8+YpKG80W/WxQqU/7B+tAuGffnll0NZtMO2kAxLQyr3yJsx86fdStfJ9265Dfsuva7cpqKw3hfIxRdfZE6VHUOCMnz4KmbX3XY1tzkLGYJu+to17NquZGuyJiO/OLLcissZ16kLEHb96xjPvZfknEX+LPwstdtGVJgs5qJeCjLbR7n3970GYmmAYhKvqAhCUtw6bUGs8CMcTXwpZ255vNVMnYWVszxhauOb22TMwTtkzAhhX/XSezUAgHzAmIzpt6ow946W3ysCpH1DWD/Z6CUZqV/5LwnjtGwE0SJ5jqwMq+8CyUNzpC9kf1IO5sgs9txsjflUjp/Jb778FtbWmGZ5VitrRQ7cNmMOH5cxg2Iu3Cs/sd6n10BlNMBCvdaFUvY+l3Igm3+1zpdzfp9J+Zgnx0/lnjD05uRogbvlV9FdewEAvWtIudtAWHo3yeTZv9ltxIvXgNdAqAaw96pNFrsQjK9Rgs2VcQkgRth7se245EXYynQ3sqgwmFdX4CzkZToHtuaaa9qdw8BZKCAX2y+EakkFmwJpbGpqSuo1dffsnMg8MXYe7PHYoXUOF5tzcN4OQgG1k8Dmiy0IjIfOKbLoW79XVxPLPGF3xtfV9Ib5T+Md3LnIYBwKEnfn4IJuuCbPgv9BmIMpBbB2F65bT/6f10Af0UBcU3EfeV3/Gl4DvVQDWLwY/3BESl1bN23u4rgvFV7weTnh46dC4k6MB6Nwt7wObnUadFvsmk6yMjgWM8a78THpFxSAsQAao35RW2UEw0n7WgHPTHjApBolgJUR9z2j3JZ7H/CkMhcD7CBNyqJEmC7wo9w4uuJPTRH5YxtjrwRYbddd0UFcv0yWK5j3iiuu6ODtqquustewamv+6+CgxAVgqRtvvLHgCkAMZZPBGIyBsP8FJ+bJVwoEAki0//77GwYFTOJfcMEFnRgRKfdPPfWUjYM8SIc/7KcTiFpHFBLVdhJkR9XnDB6DUs57ATBSYcIwLI0ui2xY3aT+3SMTly+++KK9FWQBdt2Vc55EJ0nDj2II1HAANk+YMMEyGwPaBDzFsb6+Xp1EHmF7KyZhQE6+aVDSylvBcONcY6gJk7D86IJz11133TBvduV1WDtcqXwZmoiUb7psde72UcFoXACw6yforivXvb1NtO8mWTzPwMuVveh07PC83VPBXYfntsh0DCfR83LDt/4q84/28Nhjj7UgVlgs2VL+hBNOsKB4YoQ1kbbI7YNhlFLG7zvuuKOQMBayPPjgg/b60EMPLdwPniQp6267EFXWCX/zzTe30SgILhhn0rpdWYnp77lgGYC+CH0IykCYpFUfE7YCe1ksGGX8A+Cq9aS6D0tX3HuApH/2s59Z5xgxYRLlm7HwBmO+W4fGDTMtd2595rKuBsN3AcBR3z7op5xrGK5VyCsAP5VBlWcuUFHdhR7FuhUXrAv4JS4IWNt5W3VJxIVrbf/1QSBRrrsw5l7XOaDeg6U8IK6/Dtf2afvztsvCQZMR5b/gMKUTBakTnLLJxAmabSCRIJN1HL/qpqGhQU87HHUyxr3pMnnC1hvWj3bzmE4CuWFwXmwhUNBtl68BZ8UFaEm+d0HA7qRJlJ66nD4JILVym0ZielkYL0geV1Av7crZv/61eerpZ8zcTz8zM4Up6cYbb7JbhvayZFcsOS67DpG05FpMa9wK2Kmrzz777Mg06k4pkQ6KPLj11lsLtgXqpaQ/bB0spKfd0t1wikTnH3kNxNdAkrYAALB2BOLH0MkloN4zhP2xK6BeAhVTm7nzmVZzhjCxtvYU+KzT2/kbxTSQWa7G1G2RNYP3rTUDhX2z//gakxGgrwkfqhULqsvPyM4rSL5ZR1C+Wwtm6OsyjXHIAmOOFJDjkQJsPGJuzhw2J2e+O7vV7D07Z7b5OGde+VuLufqKFtM0U1hLAT92Fyi5y2/rA1jWNEDeJI82zWg1S18XFt7nhIX34Raz4L5ms+CvzWbhnXn26sV3CJv17a2m8b5W0/RvAfu+Ivl6pmgLnoqeqFcHyZBjjIB5dxem7wOlrtin1tRtJou1PKh3WcvC/n0TaoAdu1QgUiglzCkhAHSx7bi2CkC6XIf9IHN5TXawVPsHgEwlG8J2ww6V2ESZK1WbkQIlS6Up+FwJAkiPa+dWd5CbnXHGGeb000/vsDucPk/ziJ7Ulj1z5kyDjRN2YiRITgGZgIJ6t9tuO0sihe3WtSOVq5Owd+ru+MLS0NV7abyDa1t20wODtM7LlbK3uXZs/IWVAQDelAF+QRuEG68/9xqoZg3I2kYvXgNeAz2uAfpqGODiHjXBcd0ndVdO+OqnAkd3VVowePcZQIhyhY6usny4neVgeDrhz322zw0KncBSq+aCfrrjetSoUYVoAHLRiQ8KHV86akgUQ3LQT7nXbM98zTXXWO8PPfSQZXLjghVyG2ywQbnBpuJPi0s+MMs56NjHw6/bIw5/3m5fL+95+eG3+6zU2ZFHHmmYDAMgyqpIBlLkMZ3U4nm5AkMbk/833XST+eMf/2jLKJPVnPNjshqAb319vY2C1aIAQphUY0ttBa0CUOIHu/CvfvUruw05HtxybwMo8c8FJblOdTDs3it2nvS93An6YuHqM13pqNdRR2WU5XkU81mU31L3k+qkVHhxnwMW0y2sg34YACbVZTCMuNdp5a248bnukuie1d8qAF2iJKxdTKrLuPkyKg1p3l977bULwQGuA3AZFAxptE8IbVMSvQbDKnXdm9tEm3ZpGHM1/JOriGOH5wVP7e47PA8JJ9HzcsO3/ir/j77puHHj7A8AJ+An2iD6WLSTbn0L8z1tFs8xuAIm+cc//lFIpMsiW7jZdpIkT6qhDK+uwTIYppZ1t25w3SSJE3/srAGgFaG9ZvEWW5Nr+6wLvayDCv77+OOPbeilwMIY3BkPuPoqN1no6re//a2B5ZN+DP0TBJD3xRdfbH9f//rXbR+qWP1bbvzF/NFf0jZRv0WYe91Ng2dhu5SE+SnnHoBnFmaxkIryQPnRNkYXkMUKV1h4TVwLlwAE4k7468QKVRdSuG6bcImaWA26C2PuJbwCUy8XIkF/hev848LztsvCISp96r/gMKUTd4KKvj/frZSwDSVlAKkkWNxNRzHwuutOz6P6+/q8O445mOvaN4EoHqWw1NU4+R6GHxXGSpWS1MptpRLYg+FOfGhiIfb77rvfbCuThq4sWLCgUA7c+331PMjk1Niy1DS1xkNcaVkA1FsM2BuMI64uKS9MsI8dO9ZO7Mb1F3QHsBcmdhZ2MTlcamIy6N9few2EaUDzf9izTvekHXDbgk7PY96AqTdNeWlaq/n7pBqz95fbraJphu/DSl8D2aE1ZuCXBdg7OmOapgug8O2caX5H2EKniT17vsSXbhaJ/QKsYxrCT+JfizQIuynSLB1x2H0/k9+8F1vMu3Iy8ksCiBKgco1wLQA6zAyW8tF2tNeD5Jn0nxxjvw3L//MaSEUDMijLCSDdsu/CwCtA3NyC/LFVjrkv5Jmw8uZg5ZVfru3csvBCWd2bRApejbCuZxpqTO2oGtNP6oX+9VKmlvd1em/6TD4tvVsDLuERBEPMMUTZAAGV6vyJgmcBrjK2wE47depUC1hU262+ObgImGERdjFihzd352BYgoP2XOauymWmbRA7g9p1IFdSoiVNzxNPPFEgZKo0zoA4eV+d53R3x2KM5wrjcBUXV6L3sENG2cPVTZJjd8eXJG1x3abxDtjk3n33XePOxxE/30yB1rBRFxOX3IQxPDv7BgWSFCU2GRNBYBT046+9BqpNA4yJvHgNeA30tAZ0LCRHe+pc26Q513oavK/XsfxrICFHvaXhBY9Fw7eO0//3+uuvRwb61ltvFZ7F3Xq+4ME5gdGRTjUyZcoU50nH03feeadwoxizb8FRLzlxO0bKpBpM2i233FK4FbUtcsFBF0+23XZbCyggmEsuucQocAAm1p6WfB5vKwkCyoh1rYmO617cWYnrvtzw1V8FjwCUtOxcf/31NqYbbrjBHkePHh0KmEuSnM0228zmEUA5DBTPPffcAsMXIKkgkJ6B8WGHHWZBUoDV2Rrd7ejD/KtbnFPumXhDfvSjHxlW+xX7pTmwS/Jeql/SyTsVSyPP3O3c8RMlAMkQBuOukSHKfW+/D1hEQb2A42DApM4GpIVeWK0btqihEu/Vk3kryfu47RgT0lESxohfqXwZlYY072MM0IU6l156acHY5MaBkUAXu+y7777uo9TPe3ObaF/WtlXSbtk//tE2FrkWT0Wfl/Jf6nm54af+5UoHCMP4ZZddVnCoTJV6Y+eddy70h9ieDdE26ogjjog09qr/uEfaHBWAtVGifW6MomkITBDK6qgsvQpwpe0JsiekEWdYGFr3F2PJxaithmlXXxoeLLJhEsZO4boDvMs3xdD+8MMPWxZfrX/YLQDwd0+IAswxfLrjG00L6VUmaeqoSoOUALkjfANYPRD0tNtuu9nzWP/65wzbCceRnNjz+cURnQCJOlIdhkmY+yBzr2XqFbZeJMx9sfvWk/OvlH/HaSqnbvl99tlnY4XJ4gaVXXfdVU8renQXjVIPlepHs11lTwuT/paNK0ZCyPM1/fMOmRTRcRh3KLuVlFTKbSUT2ENhz53TvnBujZCdNP7W1t73UPK6Pdp+/UBPtcuiZmF2apHVFTFk6dxGc+mvLi0K6iWYYBwxgrZO2JEH+4FrL4jr13XHQgVtr1wbpevGn3sNJNVA4rYgZh+oWDq6wtR71Ph+hl9Qpn8SvOOvq0ED2RWEwXfTrBmylzBzCjtn3Tczpt+4Nhbf6DXh3f5qrG0aKt2mBgH7bi5g35XfFCbUh3Jm6d15ttPFtwv7qbBQL/qLsKLeJayodwkr6t3ye0CYUR9tMYufbTFLXmkxje8IiPmDNrZfmijAw10Uxpdeep8GuvxdJG+0Sh5p+VTymuQZ8g55aNEzksckT5G3viCPOey75MHFt0leu01YeiVvNj0sgPnnBOz7hgB8PxAdCdjXhJsbekaBAobPjDYmu3POln3qAOqCuk0yHtQb44t0OY/FiMM7qR4NMD/KDqQIc4sXXnihxR8wj4WwEBv7G/Pj7o6oLgnJPvvsY93yDzIj3KswZ8o9FcgFEICrgIIR7GzKYovNgF17mQ+BcVcFO0lcge22f/+8EQJSFOaNdEE54GMlfCL+YrvGxY2vlDvmARWoq0QN9fX1hbkf9e8uTgdkrYu6eXdAzq79Hj3pO6n/pMfujo/0MSepAsg1uOOtPgseo/yl9Q4333yzYZxMerCvs1Oe7lYIAYmLXwmmjWt2mF511VXtI94L8Lh+H74V9nYF9eLOZfgNC8/f8xqoVg14YG+1fjmf7r6lAYftR2wR9Oby79d2cK/1lnWgF457e8u5zrtrcyiHWM/zsbc5lgsnvKL+1V/KR5ikojog2lgTZVc7iVtvvbVNua7uCnsNdxVbV4DEYWFX8h4ABVjTEJhOzznnHNuB4pqOD5OcZ555Jpd2AnBcDMYl67jMf2yDDGAFAaypcsABB+hpjx01jyc6SmoTuZcylch9GeF3pwKPO+44Gx0szAwSL7/8cnsNWFZBBl1ND1tpwAb805/+1A5GdSIZ4B0r/sKEbWb23ntvy57jgnlgDVRRUEJcQIL6S+sY57023XTTQnRhAMvCw4QnCqjfZZddEvrsnc4ZkKucf/75ts6DYXDAgPwMFwaTYsyE6jetY0/nrTjv4YJzo/IWxiIFuLphVipfunFU6hzj069lW2QEllRYRJW1n3u09dpmcn3sscdyqJj05jbRvrRts6TVsn/8ow0rci2eij4v5b/U83LDT/kL0u8E7Kj9majg+b5RQhtw6KGH2seAKClvgD2R73znO/aYxj+3vMKsGSb0tTGsIQqEDXOX9N73vvc96wVAL0ZTBYt+//vfT62PUCpNytIA+4IywQb9uFvi6TZuuFGG46jt2IoBpd04CAcWC1h88QOwGbnnnntcZ912/stf/rIQF+BjF9zLriTUgVovum4LnlI+ob+moguPWKilkwX6rOhxoAB7YwINYEpqmSc1VYwJVDUWRx2pDsMkyj3gXgC9HGEkjnJX6n4wzqTug/6TXmMoV2aWu+66y9x9991Fg2ArPHcnD3awiJIoIH2U+2L3SScTPYjWccXc9/SznIBSWudJOxoXeM7EuzDPMYHMQgHt3//iF78wpVjKu/quqZTbriaiF/pfd711C6n63e/ONzppS916+eWXmR/84PuF54ucydTCzT52EgTxz22aaz5vgvaxtMBi98V7C/ILxoo4D7JWFXHa4RH9EhYhpSFazyjLVhphahjkIexmLBS69tprDQsQ3Ql9deePfUcD9E/KaQt6SgNj18mYI8fX2l8Q3BvRTYqdVMYolAGXeS625y44BCDAPAE/7WN1ITgLetHwdGvsroTXXX5r6mpM/7UzZvAutWbIt2rNoAMzpm6/jKndXkC+DbK6bWB3pSRhPGQ8AV/m5khZmi79/lcFSPl0COjXAn9bzcI24O/ndzSaz25fbD69a7H57P7FZt7D8vvPIjP/hUWm8W0BZM5sNc2zBZD5hYwjwECFZHDmWVgcziJFyCl6Un784x/bPFyM9b4n09edcZf8LvIt+aZ8W74x37rxrTxod/HzAtx9XEC7/xTQ7n150K4Cd//7q8nmf7+YbD64fLYBSL7kdvEHeFcA5s3P5GzeIw/mWPe1VH4heaY79RAZl4yjM2sLM+8OMq7YeYE55eETzQ4TtjJPt/7b9G/IyAJaKe9eimqgZB4r6ts/7KsaYG4Uuw/2XwRyAJ2fP+OMM+zOohdccIF55JFHCipgbt4FOsJ6q3M4jAFwz/w+dfvvf/97y+KL56222qqwEy/xurZdyL5wT5xXX321ZQZWVmD8Mq9L3yeO8C7uPD52XnZJJWwWGlMWEOZbdF4uTrhdcRMkqNB5OTdMiI2UtIAxGza53/zmNxYXwe5hpFufc87c0ZtvvukGkei8u+MjcfX19YU0Ylvlm8R5hyh/ab0D/XnAvaSHvAIZlwqEIHEwBLhTsDrz+4TDHDA263//+982OJ4r8ZOG749eA31JAx7Y25e+pn+X6tWAdLKs6Pio1LW+aVz3pcILPi83fPWX8pEJeAXguEGz+ovJcYSObVc7iTrpz8R+GKstK9l0YpsJf3cVk5uu3npOJ1UZwgDxDhw40ABOpgOvnR2es2qwO4SOvSusPASI2dNSKFY2IZZzsO2MQ/Vc20R30z/3W7orSL/97W+XnQK2sQQM9IMf/MAEwTQMHhVIQAQY2fmdeOKJ1k9Y+YWZN2ylnpZ7AJ/KJugmmkEHhlAALgwUuipJ34v4YADSssskvbsFiqaHVYqkkV8x5lV1z8SIrp7dfvvt9XZVHwGMqKi+9Jqjgsnce5U87+68Vc671NfXF7wBmg9OEFOuFLhfcNh2Uol8GYyjktcwxCt4DyAlhhuAmoDt+HYKaMPYpUadSqbHrUeJp7e0ifadpWG0rZ9tIO1F8WvxlMh9d4VvXya9f/vvv7/NJ+x4UMxIduONNxYiDVuEpm0lBjdtvwCHpMm06LJUn3zyyZ3KOgnEuKb5XstGIeFdOGHxiNbJsE/oAgt97y4EHdurC2w+/vjjO03Ow87wk5/8pBCea0BXXQCWC9aReKCOCJOLL77Y9klOOumkTgsU0UdPt7284wknnGCTzuINWE2p/8ijMDIouJaFVN2xAMhld1Z9MvmRSAYJsFe23ZUKqLQ0yaQtk/LzS8+sqoE56hgVX5R77vNumi+LueNFop4HXzLKnd4Puk/jmvpEhTKtrN96T48AdenTKyv2nnvu2WGiCnfuIgh3Ma2G0ZWjMlRTB4XtzjNr1iw76UQ/WllDuhJfV/ySJ8mbRvJoKWmVftqNN95gtt5hK1vPwrqDYBthgWWlJZVyW+lE9kD4++yTB/MQ9bUyQbrSikPNxhttaFZbdaQ56Wc/s99KJ2aZ0Nryy2ND25ceSHpFotQ+gAY+u+VjM79xXqe2WJ+7x/7ZAWb1wWuZEdlV3dudzo8++uhO9/rCDYDHTMDTj6PfQNvB2Ix2GdsZbba781ZfeGf/DnkNJGkL8EH/JzM4TgeoMhp2wbwAfAH6piUsHAK8DxMbrHTdJZAWsNMAvzSAvYwjNLyqZHOUT5pdMc/iO3hPAfkeWGsGCsh3ACBfAQJmRkn+W06+Ts9lw2RZg36WrDHJfShjgrcFfPmSgDCfkuNjNab1waxp/Isx825cZGZe+rGZcs408+Kpr5p//vBf5sEjHjOPHv+kmXLxe+bzuxrNF/cKyPMfwv77mAA/nxJW1kkt5q0Hppl5Ty4wmw36svnbFf8wzXOkbycLVXICNO5uVlYW9ZLv4tiJkymwClzLAgl0ju75BlOeeNt89O/ZZtvldzT/veFVs/jF/Dfj2y14UAC78i0t064wOy8UZueFd8pRfpbxWQC7iwWwC2h36R0C3L2vjXVXwOKjmseY0XXrmhWbVrJ5Kk4fvldoj7K6vIB5RwuYd8caW5Yp05TtBxfebW566Vrz5tw3zA03Xt8rklsNiZg8eXJhLPm73/2uGpLs09hNGlh++eXNqaeeaoG3bpTMO7rC/AM2iTAbHPYW7CgqzO3pDmLMleInuHiaRfzuDka4B7AK+JEd5LAJ6i6epEXZbl0bknuucXNkF8ijjjqqgJEgXH0fdkQ56KCDOth8FJDphpHmuc7DESb6cN9b4yEN2KVcQLOyFoP1ACPxwx/+sEAwgL7UTq7p16OGqccwPaURn2sn07iKHSFH2GGHHTo40e/S4WbgIspfV95Bo9hjjz1CSfmIk51nx4wZo07tUXWsR32IrZr5S53jJ8+5i2oheGKsXO6iX43HH70GerMG8ktEenMKfdq8BpYFDTCfyGAq7lF1Etd9UnflhK9+KnQElEonhhXPdDYff/xxu5JKO1ZnnXVWaMxMVCtrTagDucmkKmw2rPi58sorLVMfnVo6bl/72tdsRw9GDMDFpeKLiqM33GdlH5OkMMOhP0QnVzlnBR8r0+gAuaLbGurRfVbsnA40EuUPUDETWjpxS6e6N4gWl3xaxPAmJxTPvIRf61MKcRz3pcILPi8//HaflTxjso7JY5h69XvCyNUV9htATeRHBMAUZZMBIx16tsxkVSpCHiJvIwCAYb7DH/UFA2EGanTwqUOUpY/7Kmy7ySQ/gH4Gb0wUwCoEaJF4qVuUPTEIvNMwkhzLeS8GhgDu0SkGWVbEMoiB7QPWEgAIACuonxoaGgqsZMXSNWnSpMJjBTsUblTpiQuSAqCGEQEdMSEDk5wuzOiu1+vuvFXOe1FOAJ8Bioc1hjRzDqCQ/M8KcnQXJpXIl2HxVOoexoN/y2peDGvUL4jLTEy9xiSiu4gAN0kNKvhBXANP0DDB897aJpI2xLZutoGTf/zV5I+GY/B5qetS/ks9Lzd8EpqiAK7QxVC0RSz+2GuvvWz70dTUZMsQxnwtQ9T/QdY6koNf7Q9NmDDBphDgeVg+sQ/L/EdZh12YfK5lnfqfSb77ZVtwnXjAuBtmRC4zWtsPpP1CV9TNCFvD0V51lwB8+b4wBN900022n4ChD8Aq5Y72EGYKBbKygMY1ArogX/qqF110ke0rz5w509aff/7zn0NfA6Ow9mMYU9Bur7322gYQMfcViJMYvBoaW3k3+eYsfFJAVJA9jDwTXNzh1oFRffyw1Lh1YJQ/dKHlBUA1O44kkn45kxkqPth5bnFpn60fGNM8K2eyK7X3vMN8KZgj6mg7/yEeo9yndT8YZalwg+7TuGbrecoS/QVk9913t6wZjNkxttNPpe9K/egCZt0tDjUdANdUGFMAWqNuVKO9PivnSD+ZvEVfmUkFmFnoN1JOYcH8mYAtdVxMGe9JafpIQCUCMokjC5sXmPfmTjOvTHu54JyFkbD20A8Ok6SLoekPoTe37LvhdrncuoH1kXO2frzvvvulbBxs+9e8luavHXbY0VwjjKsfSr973Lid7RszfqadQAr6rs3aa/7ZxVJtV2n3DQqRVPCENpj+tNqgmgXxMnvJJ2Zh80IzpN+QojFTOzcst44ZM2R9M2t+zIJRNMTqeUibzOS82lc05ZpHuKZPR9+OnWtos6PKvfr1x+rRQNOH0hZ8FDO9Ut3T/6npF9N9ys4A9bpA3mseajaTpuaZ2lKOqgAYSTtcH14yDZDXakcIGHBE1uRkg7GWzwQ4+YEAeujDyK9V8m7rx2JB+FTCjb+zd7JEVNh1bSZrlsssZ5brB1o5IGRv2QSnSX65mlZhMpVrGX/AblxTlzPD+69pfrXNb8zc+XPMiIYRFiRq3QjjKbqr6S/u5Zc/l3tMn3Cfnz3P3+PayHVNrVzTLbDncp2V1lGu7b30MPQSQS8Q0a3dUQVQbovkITBv8uPItT0XULa935R/ngOkzT37k3uS5+w9juS/RrknTLmrLmkwZ253rmle2GzWXH0ts/iOFgH+1shPwpXnNq8WrbrEXbUL+U7wx5mRAsaXNVPZVaUcryrg/NVrTHZoW16Udxw3fudCn5T5Ui/xNMBW8dgxGP/29Dwni8OGDRtmE44dLM0dweJpw7sKagDbAyQe2IWZf5w9e7ZhRxf672ATsHuUIr3abrvt7Bw+4wTGk1mZf2f+dfTo0aHjdebnGa8zJ4oNE4AnJC/EpTY67IEsdMZWqbaXnXbayfArJeAImG/jPZh/Y6zKXCy/4LgVOwy/KMFOofO9UW6K3Qc8Hcc/+gL7gS2c9+a7NIh9mgVkKqeccorVGQvUseUjAH6LCd8gLP5y44NoqphQ34TFhx/sctjdWVTG+8UlrInyV+47uLsFkB7mStgtDlA6c+9aRwXfs5iuSQu6mTt3rs3TzPvz7cmLUeEFw/fXXgPVrAGGCl68BrwGelADGKpz/EPkGOd66OBBZs7nX5hhyy8Xy32S8OdKuISfJD2F8PO+Uv/PajSAdXQE3M6ARgTwjtVnUUKHpJgA6qOzQOftgQcesIAmOsdsZckvKNddd53tHAXvV8M1oGi2KaDjCqMSHfpRo0ZZwCQTUGHiTsKGPaeTT8c/KLfddlvwVqdrAA5MVDBoGD9+fKfn/7+984CTq6rb/29mtqV3kkB6CJBOSKgiSldBmhRB8AWUIq+vguDrK76I/kGwvWBHURQpAiJFeHmVFoq0UFNoIY00kpCE9Gy2zMz/ec7smdydzOzOzM7szuw+57N3bz/33O/ce8659z7nOR2xwN2OEFLCkgE3JF5qNI1bmu/bp4etW88H5j5Zbc94W4ovuH79uk3G+F3IMj1u/3aGxw9K/AjvQ2tdk/vtMo35IZ8Pnnfeeadz92NXMqmBH7Uo2PWBH+3ZbQ0/PlNozCH44YvbMa8ICpYo3mH+wu5Z+JDLD/vpAl/IFMJdMJ/zYnooSOL9yjyQjRXSNVjgudKV1ovq052HX+bdevlwOmrUKL+4rMdstUkxA8VSfImWKqCjeIkvMPyH9WKfbHtfW/meD0Vbc+bMcYI3fnD3H919fHwxQfE83aZTQ6Gvy9T4iz1P5/qf/exnTtzLMvG9994zloUU+/GlTjoRS6a6gU8rX0SlKxP5osyL5/y2qeNSLBMTaURZiAnW99KOsS64vHvPbrZ1I8QafXsmlqes3yWeHNZv3bjVGD9TlIwny/2xWUEDG5uwTujLO5ZBHNIF5j8PPvhgxvyZcXj3VO5/5plnpoumTcuYP7IBDLuqSnevM3KWUXSvz1X41VrCeD5eBM1tmXe0Z+ALa9b3+dKWeRl/Nw6pgelKbQTCF88sT1i/YJ04tV7MRoDp8kee829/+1vXcIjCYQ6pdRLmr63lC6lpLPT8+eef75xK6S7DfJAvfelsQSEW88jUwIYf6fK44HYzZ84MzrppXlut7edfmHMHOn/kHJARhQcid8DHyvjK1veOroAIAV2sVu2NrkXxcTxT4PVD0WymcWXKvlWRuO1oDFk3fIxvab9M8bW2vC4aNh6jPsqcNxEqwpnT5+Pz2xZ6zHuLThmss7Mu7evg6Y7DZ76HH37YuU+mrmddg/cE62l09vYffXjf8kNXWwJF4v/4xz9cnHzO973VpMbJfIHlf0eFOEQLjUtjFoOgK5tQPbTKjj/0OJvYZ09337Ks4YeO1MBng9buPzZq4JAa+MGkpdDm+7alyMt43SH46DrvzbfsdTQeWbx4sY0cNdL222+6Kwd4Wnz+WooeoVasWOnKXP8Rd+26XXlfhDokh3IOvJ+Dzxgrti2zNTtWQ9i7Z6unNabnWJvQb7L9a9PMREOzlD06upvzlOQUZJaNIvh+zD+38kMoe91igyzez3T7ZI89/JjLhknsHYIf1O+9996CHF+RdCyBXMuC0ACIswagTrCzWtBuJ0BRLx16g+F3j1Flp9BVCFCIWjEI4sBBqBBD5Bvbivo1RL1O5Itx9EMIfT9EnRjjOBxyy8bNNMsf0LVzZtscDDjDZHu/Kd3RQJGf17C8Yaav1zWN+eyA54SEuBc3bhWWYz5UiWk0VEyMOY9teHthSIp/IfJ184yjaQhR3MtpjJPTFP9i/ojKT9vwoWNtat0Mq30Zalluy4DVHPCYk5zmYr/cTaauY/KbBncmgXluz3X8hOK3ccsolKVIt2lsGCemsaFfnrqNE/ViP4p5Id71wl6OvbA3IeTFuiZBr7uu6vHMxu2dmBfbMt6UMKPHgWb8xIL9Yku5Ett35sDrCg0/wrtByDsoMY5A1FvBAeL8cE9eBLsC4HMZRXoUYVEwpZAdAdbRaEbD56egI2h2exdvK+9IWrwjKOZcCPTo0cM1+uc3gHwC39dy31z253sYL9pNPSa/fQSf6VPXZzPP9zVtfWeTzXEKtQ3fkY0aNcoN6eIk42DD83Tb5LKsvY/HtPE645BryLRfIc6BJg98Z9XWwLRQxCshb1tJav9yJND8ybscz0BpFoEyJ+AeH91TL5+i8AIAhVLiKTjz/DHTp9pfn3nBLjn+mKy2by2+4Pp7EC/jTzzXZpeexP7F+yFoxX/llVc6sUTwwzk/jmcSUbBwzydQ0PP444+7j/rsFjEY+KGRH7vSiS3yPV4w/vaaZmu50aNHd+hHS57rqlWr4GTzd3fa7BY5GzFiezDiPUkxby7jYw6fbn998Fm75EvH57RfNsdhvIw/l/Q4MXIRYLV0nVME4p146JLakstaqmAo02/PD1R0DqSrlv+oxdPivc8uReioxWvZB3a5wm7G6Ir32GOPOYEvRb4MfGigY+All1zihBl+H46HDRtmTz75pLu//TXp1/O+/853vuO6jwm2NE0n+PP7+DEdQdOFXM/Lx8H8hw0Q6Hrm3Yf9OgqP6Tw6atQov6jFMV3IGYIi5xZ3CKzMdB20hUkwzkxOfpmWB5LmhFNkQDFVkBFF4hSB06WSIfWaay3uVDFW8JgtTedzbbUUXybGwWsz0/7+vks9d25PZzcKkSlyDQa68F177bXu2uLydNd0PtdlpvMIHrs9pymm4HDEEUe052GbHatUy0SXSJaJrFahIMpmPOmA8TZr5mt25MmHZbV9tvFyO8bL+F0pnWV6kvE3I16YGYpl6cjBsoWuj6mBeQdd1lle9eyZ2ZXulFNOSQp7KZz0TvSp8bX1XqfrgC9HKG4LBp4LG48EXQq4Ppv7NV3eEIybrrdesMflqd3DBbctVn7MeOmuS2HMH//4R1dH8Mfl73TppZca+QTLI66n0JUOu/yNKQz09Qqu4z50OafTAEOQA/PUl156yeWhf/7zn12Z5PflS3M6dTB/bem6cJG2wz+eP+tuHDoyUBjqgy+v/Xy24wr30TJk0ZXIIFoLqCI2LITgYN+4+7CZafPWnHD7VOHrcyD0rYnZoo2VNnFgouFja/vnun7hhgrjMT7cxi/4idC3OoZH8sQ5Zxr7bQs95j3Ce4ruvRTwp7pL+uP5+yVTY1Leo6yHsy5CIbwPFA0zpN6bfn1wHKzjpOYlrPPSnZyNgikcDgaK91mfYf4bDNnkucHt2zrduBZud7gmLfH40mp03UbW2MdP+ZgdOfrjrW5brA0Kcd8WK20dHS/dlw6FMzSHdGHw4CGofw5Jt6rTLePzOctQL+59f+tiW7V9pY3ttWer59qveoBN6TfNRq4cY+83LNple8bd2ULw/QfrmTQgCLrx8rmOeS7fidCBjQ0mmH+yF6JCfCztbDzL7Xyi6DK+cRHKgs3ZpTwMcVYEDZvaO6QT9V54E20vFbosAVyG4V4hq+KA7J0i9ejGhLiXAl834PqOr0MdHGLfHVjGZoTtf/V28C/ERwcOTWJgn5rElwjOtfQck7KO8Dg0CXu92NeJfCHuPbXHWVY7qdZq6mps+93RhPDX78NvZ1Qmu3n+89NNcTat93Vw94zBw7sB2/PZg9OMwE83W4/FMSxoEu4aGyVi2jnv8vz98uCY0eUdXGLy3rtT7EjnaLTxY2PXMMxaOY5AeB+hwzafk/uEEiLxLE6WjXzTNfTNYtcuvQmfH0tJ1NulfwydvAiIgAiIgAh0MgIhuDaoxtvJflSdTvkQ2HzJSVZ93OdzTvBrCxfbid9Dd5bXfNumjB6Z8/6Zdpi7ZKl95qrr7e/f+0+bvmduLcbyOY9M6fDLKYiiMIvOYvzQxrB161bX3Rw/QHN98OOd369QY3YJwNap7BaRHyDZAsi/zCjUMQoRD8VAfGAsJotCpJNx0C2TgSIRCiF89+d0IvUuNW6DVv4xHnZXkunDcCu7p13N+zF24VCrGXJcYH3Ti63kkvTzr81ZaCd94fv2yD3X2JSJo5JbJ96OBYvZ9Pvv3KH5+rlvvW/HnXGVPXjn1TZ9Kj96NV/f0nzNkON3RtsJpng/0u2IQhne+60FvnDkvcFW0hRIBT+EtbQvWzFT7EQXHAp1it0yPdfzYtopcGCXPRzYlQqduLMRXvnz5rkxD2WgMxnFXJ0xMP8mX14v2f7+xeTQ3tdWPufC8o7ceI2w5XcuL3Hbel3mk95M+5RLuVioMpEcilEubpz9Ffvs/z5l5x327yh94H7ivtr4cqj5OLh+6fxl9rNv/c6+8dOv2PA9mV/DdSaH/bn9zvItcRzuv2zhCrvhipvs0h9dZCP3HuHi9dtlE/95h30V+xQv0A2Rrs/sVopCNzr6ZlNeMUXz5893brmc/t3vflf0bvuC9yvLAwpNmeZiBbJhnsJ6PQUot956a7EOlVW8dJ5hPkF3O9ahWQfNph7NugV7veD9RvcG32Aim4OyCzTuy+7Biu1kUS55ILmx3OG1t2jRoqQY6YorrmjWI0M2fH0eOLjnENtyHzp6/yfyEX4kbiWEoKnrdlrEun8MX8O9g1XTPh+/dh87rPZzrhEUf/tkroeP3G6+aVzbGLG73t7phEHR7faGkH1m7HbrX4MP6H57xOtyNz+fOs5i/braiP1jcXfrDjevjTt2Jvjz47daj0qIexFH8ngp8efTmKsJRU4j/pbL4ETKZzXWI5gPsqFuLm4hvEf53M97rBh1ON77rO8zftb3c7mXc4KRw8arVq6ynu8OsPoHcJ1A7NJqwCVbdVzYep4USbhttbpD4TYo9H1byGd6NsjM1CVlSwR+8JNf2IXnnY1nq7a5Q7d0jFJbt379R3bzn+6w73yz5W4+C5Vu9qjiG5D0Cfez/554jZ0x+hxjd+ethfe3LrFfvv1Tu/uD25DPMadLhJtuusm+9KUv+dmcx3zPyDpQa12dZhMx8xQ2lqS7Lt388w18fuU7DwbW0ciNdYdMgXmtd9liY1/WI1MD6yB33HGHvfLKK67+w7rPfvvt594DpHPvoskBe3RhF6+st7G3IPb4w0ZsTBt7N2FvEy0JV1gWsEEVewRYtw7d0aOuxYZedEzn+4vUEDwme0qiqcPTTz/t0sFeBE477TT7eJNIno7GrEsyPaxbUvzMrok/85nPpEabnM+VAXdkfZmC9NfgvP36668bG4xMnTrVHYsN0IsSUHfZ/q+o1d6HLuJXZ3GEApcFB3078c42eOTpY8P22qLmlSouu/kr1cHN7ObHGi2dW+9ZH4/Y1z7DWlR+gb2JeKf9JUuWJK93luW+YfJXvvIVFzkb+LMRO3sp4fXLuk9LPfzxumADvJdfftm9O2RDRIrm2QiR15jvQYLlXrrGPi/AMZtO2bzeeb2MHj3aTjrpJNdgOPX7ARs2MG6Gd999dxenPXabThE/7/m5c+e6+hOfJ+l4znPpDCEOl9ToZgh816IeuzxuN98Ts93gsDoIIk8OA3GZsd+Bip3ZfGc4bZ2DCBSHQCWe+/Bqv75bnS3ftNw+2LLCNZqq67XD+u7Z244+60jbfa8huwh5WZ6xNyk+g7NhMxsj0+yETrN8Z8PeGPkcRlMRBtazfEPmQuS7jIP5LuskrMMw32Ujy5NPPtk1vmRjJQY2yE7NR92Kpn98/meDTQbWLzPl9czfmbcyD+e3yGBDdtYznn/+eWcSw0bYLOM5sB6X+j0o9dz5jp+9OTFvJy+WBdyHdUHWe1j+0AAnNeRyzNTfimUHe5JiOcfzZ33sjDPOSL5L5LH4HeznP/+5e8/iy0g2XmVjMAZuz/184Dsq9u7Kus7777/vem5i2UODAn5zUhABERABERABESgdAnLsLZ3fQinpygTcFzgAyHI8fewYu/68s5wI98ozTrbTDzvEBvbBk1yW+6dut27TFvvrsy/Ydfc84OJl/C7kEl87/X50tWJXru0R+BGRHyFLPdAdjC8ZS8HxqzVWFK7wpTs/UHjXMnY9nYuol8fg+QZd0Vo7bi7r/WWf2GenjKmleYpur7vqXCfC/fZlZ9jpJx1mAwewq6Ls9t/5ijux/fr1m50D8PU33mM/QLwJUS9TkGt8iVR3hv+8H/liIdvAlz/8YJTuo1FLcVB00J73fa7nxbTzZRQ/gOf7EXz27NlJBAcddFByurNNZCuoa6/zbu9rK5/z4ovdPfds3TkrXdxtvS7TxZnvsnIpFwtVJpJTMctF1hvjdHJxBWT6cXD9yL2G22kXn+BEuMd/8Rg74Ij9rFffnlnvn3qcLRu32sszX7f/ve0xFy/jd5EF0hM8fur+yfTne0FluR+vO5ZTuZRVPmp+UGFg/Ygv2osd2vt+DbqoF0I801Y+FGZQJNOSUCbdMVi3GDVqVLpVrS7r16+fcWiPUC55IFmcf/75rjvxoMv+V7+auwjf54HsTrRiWMga+iCD2NA6bQooG+bBJXVc2HVJmm4PingZEv8x9vNN424VURvRu9GWbU68XqPgdnCPqP3fou42bXCdje3bYDVYlWn/ZHxNB0/OB46zozHkXIDfWFNt/SAcXhNw6+WxuzeJel06A/sF55uiL/qIDeoyuY5ne3Deo8W8X0qxq8iKTdVWNweqlnWtixzJkd3qRnCth3vsfJLMlm9btyv0fdvW9BRi/9GjhtuCRUu6lLCX58vzbq/A90AUYLDh/qbYBpu/6R1bX7fWBndDC4tWwrDuw+3QwZ+wl9Y+b0saFrqtGVdbRL2tHLLDVlOw4QNFNa3VVSiuveuuu5yANl13pGx0dvDBByffv/m4//a3v7me0SjkSH3HSjHrbbfd5kTKbEz8rW99y++WHP/0pz91ghYv1k6uwERQiJm6nGJqCkhShbHBY7JBtxfrcH8Ki1mX/MlPfuKEJhT4BnueIDOuY9y8vlJDPgw2btzori8vMPJx+h6eeO3Rpb7QjU8a4WBaj3pJVg08kCiWBRXDi1cWeFfeVNEulwdD6vrgumJN8zf64Q9/6KKnSInPU6nXBQVqFKez16xUgRi35fUbrIPyWmOvARSZHX/88S0mnT0ReLOK4IYU17Px/O9///tdjhncLjhNsRZFVMGeyvx63n8UaXnxsl9ejuMQLpuKAairY4hA3//Ik+g1Ay6ufSDuHQDR79n7RGwElr81O2arlsSsP6pFA2Jmu7GKjfUKItAVCbhnSDTqDPdGc/a+HPBdgEP/kL2x8HX7n1/82JZvX2bL6t63zbGNOxFBl5uuvGWDG593UlTLHu588K7/FK36bZhPemFvW/Ndlu/7779/szoJhbE0HTnmmGOcONcf93vf+16LeSgbZlOMzP2Z7kzCXopbWedhQyZvHLVp0ybX2+Ptt9/uT92N2TiEgfUiioGD312C504e7EXWf9vkPmzMzsAygHk5G6oGhb35HDP4W/H7TWrDsUceecQJsFnWsZdKhmA63QL8YyMUDgwzZsxICntZxzn33HObnQfLQQbWw9gzS/Ac3Ar9EwEREAEREAER6DACiS8PHXZ4HVgERMAR8N9iMOak6+aYKwLL/XZ+/TlHHmYTRg6z3zz8qF0PQe7GbdvdJvn869ujux0zfapz6p0Bp17/0bGl4/v0NBvnc3Dt02YCfJHMB8lyEPb6k/UPvnw4vPLKK/3irMd0MaH4pRjB3XYQbrhupDAO8eN4FvPnnHGkTRg/ym76w8P2w5/dYxs3bcs7eX379LBjDp9uD/7lezZ9ytisjr9LevM+unbs7ATotsPAl1p8iacgAp2NQLmVi20tE/n7FbNcZBmYqH82Oe9iprX5j33qQNtj9FB78r5n7REIcrdvrc37Muves5tNOmC8c+odBade1lNbO3669XknoEg7UtjNDy10JPMijquuuqrgAoEiJb/VaOk6Rac2OsBwzEAnNTrEKRSXQLnlgUFBBR0Fc22URZrJPBA3f+WosNWPgBvYhuRTbWbgEAs0vhm3uj2jFukXsVA1c4/mgUIQim1bGu8LAa8X9nJvCm/p3LtkU6VRjFvPrmfbEKoicSfopVNvUNTLKPcdnPiI2FL6vFi4DUnQrkUkEK+DsGVBN2t4F+IsXJPZhPCokFWOwHXVtksrm0Ol3aag923aI7TvwqmTJthMNHY/6IDp7XvgDjzaa7Pn2hEwCWjP4BsyUXw576M3bOHm97IS9laEK+yAgYfYUUOPtT8tW2rf/X9XORFfe6a9vY717LPPJg+VbZ2JgkAOqYFOeJ/97GeTgg2KXiiooSOoF6jSDZSueUHxio+H7w048J0BHUwpImadlQOfXygioTA42OsBBSHeXZXv7CjUofsd3XUpQGE49thj3X6pgmKu88ek8ITCSp7Dr3/9a66yb37zm050SUEmxS10R2YvBRQhMz3XXnutc8ije68P+TJgQzQv6qVIk857FDnzHCgiuuWWW1yD2Msvv9wfqs1jlgVs4BF9G/WXHMoCCnuLURZ4US9P7MJjEp8Q6cjL5XTs9aEjRL3+2H58zjnnuEk6PlKERsdCisF5XfA5hNc+XZ99YL3xlFNOSYp6eS3yOYXCq/vvv99d47xmMwU6MnpR7+jRo939wfuA7o3vvPOOuybZyOnb3/52piiSy6PRqBMS+3KVzvMTJkxw8dxzzz1OIEZDDOYH6YT0yYjKcQKXbiMurfUVITv1xEo7DtdZHKbRBx4bs3sfabQ/PNtoV36iwrpXxY16xdjGuK2Ee/Q2OP72xW3SE4M+bpfjD680ZyLQiBugPlxntZFaW73pA1u5cQUaQa2zyICInfXFM61mt0qIeiGM7xeyf732jB1z9TEuKlfefia38pY7elEvv8/tu+++u7jUZkonl+ea79IhPVgnYTnP+gCXs05CUa0X1rZ03OA6poFlMvNdNpBIdTenQJmiXgYKWH195brrrjMv6mU6jjjiCGeiwjJ+3rx5bqD7eqZywDe0YNnBOgeftVvrAaatx2S9h7/zqaee6sqIt956yznL89zYMJr1rVGjRrneoVgfYk9811xzDVe7MpCNvBh83dI3KOEyfh9iIxKO+f6O9SqWSSwn2RNPLj3vMD4FERABERABERCB4hDQs09xuCpWEciKQKiqJrFdUjjYJOoNzLuXc4F5J/ptmqez7i2XobupwPrU7XOdd58/W4gvePydygq3V1bnrI0KT4BdnPJlJbt9KXVxL1948sUku4uhKyQfgP1DdbZkeJ4MuXQRn23c3I5XM8W8+Ywpwv39Ly5N3HaMx8fX1nEe6cEhFUQgLQF22cTAF1epriVpd9BCESgzAuVSLhaiTORPU+xykfXMRP2P9VSUjvxrKuBamqez7vlXwv3DFahIaAHGrnTO8viJdHLjpvSW2HVMUcQVV1yRTNXpp5+e7O41ubCMJ+jGEnTnpYvKL3/5yzI+o/JJernkgSRKpxsKdygWott1OmFRa+RT88CK3eEENjZk0Xdx89e1tjfyh3Vw2JkFYSXEwNV7I3Nj/hYIXhTb0nhgt6gdvMcOe3Fl0/M99qdzb6EChcGpgl7GzWMO7JboNrul9BUqHYqnCARwmdYvxL83KiwEwUpWAZdZxZ64zoemXKxZ7dz2jYpx37Y9VQmnLDqW5xMmjt/bnnnuJXvp5de6hLiX5xlBLzA87/YOFPdSyHH4QUfYWxvn2rQBM6x7RfdWkzG0+x526qSz7Cs3XmSTjt+n1e3LdYOg4+jee7ft9znvvPNsyZIlDgW72abTrQ90uaOQh8KNCy64wDnT+XXBMZ11Kbhhzy4M3/jGN1z9jqJJCmko7PViQ3ZTzd+WgeKTuXPn2h577OHm+e/NN99MCkooKGaXz+neB7JOTFEJe5hgoOOqF+vSBe/qq682ih994PbeUY5dbvttuT4fBhR93n333S56Cnevv/56fygnnqFIlAJmprFgwl6WBUvg1vsynnZQL8kqsCxAfae9ygKKeynoDYp6mU6KfUshPPTQQ83cDL/85S+7LsWZNnb7HhT2UvREgTsDxUxe/MT5G264wXh9UiyWLvDe8c9wFANTNOavY8bL65GicF6nfOfm7490cXEZhWNe1PvAAw80c52keJ6iM67ncVqLK9Mxyml5CF+rK/qF7cyzq2yvgytsEkXkELrHtsVt7ryo/b9F9dYfosZ+qP7S0bdvFCJfrO+DaXbYMRSuwKiWy+G3nH70rphWmp73MFuw7D3bWLfBNtZ/ZNWDqu3IM46wXv2qLNynt43qM8R+ecu/7PpfXWdb4pts9YFLkm72LG+P+fROUW++5S2FnHTMT9fQJpufJZd8l8Y+3pWcrrysT/hAB3yfd/pl2YxPP1HjvgAAQABJREFUPPFEY17P8OCDD+7S6Ovxxx9PRnPmmWe6aTra3njjjW6a+7O8j0Qibp4utXyHxToOywg26MnUyygbJDPN2YRCHJO/1fPPP590T+Zxjz766KQ4m2UEyyb2esNnNTa092UbyyrW9YLBN/Distdff92JejnNHsTIhUJhfm+eOXOmE2RznYIIiIAIiIAIiEDHEpCwt2P56+hdnEB40GC8mcDbhnDi4SH5ERGuQC747zTlMl/g35NdqdXW1jp3hwJH3emi69u3r3vY5MtE/8K9FE+SDmJ0UMg3sJtdtuTN9FCdb7zB/ZK3nVtIl8LEB9bE8vKZD56TpkUgSIAfxui441tpB9dpWgQ6C4FyKBfbWibyt2qPcpH1U1f6UdTrZrxzb3nNl9q1zS5jKTZgF8t0MqNIoDM1tmB30OymmF3e03WK5Q5FHgrtQ6Ac8kCSoDMQh3xDujww3B1OpnuFrGF2yGKLE/X41uKPLojbjufp2guBzGD/NJDYqzUnXL9+wsCEsCUo7m3tuG1ZT1Hv+AH1LToJU+zr09eWY2nf4hFoXINr7zk4NC5i2ZpdCA/DNQ5hb7hbtntkF2+2WxXjvs322C1tt27dOvcxu6VtWlp3wnHH2M9+/XuUW31trz3HtrRpWa97b+Eiu/+hR+zSf2/+gb89T2ratGlOyHLPfz9ga95abaNtTKuHD+O96OQ+U61qfdga16ExxqCOuf5bTWgbN6ADLQMbRPFZITXQOY0C2XSBbnF0lmWgONU73/HdalDUy/V0bqNglY6i3I6N7704ket9+P3vf7/LO8ZLL73UiV64zaJFi5JiQy+U5PK//vWvzUS9XMYGPOxumyIcChUp8PHdfnO9D3RD9aJeLqPLMK8Zxs+6JIWYwcBzoYCYoug5c+YkV+XLYPXq1ck4hg0blpzmBBnR0Y/1j2Aam22Ux0zjh4l6SJQNPbIMYTj1Vu4VLlpZ4AW73q2XyUoV9V54UxYtqLI8n7ZsxmeO1C7K2YiWbssUYNPZMBjYawrDIYcc4gS4wXX8jSnY4vMLRU2pwfe0QpEVHR+D9w3FYTwen++4Lx2oWxPjsjGkD0EhPJcNGTLEFi5c6O7PfBuu+LhLfdzi9QZtb7hXyL50P+raPUO2tOlk+HqiAo3fejTGrTeEvn0xnLpPyA4ejoZ7+OliWyGUhzdIfBsGTBun2eElq+zZ32qljk7pK0UCrKKgrVkIxfh2XHTvLHrbNtdvsv2O2s8Gjh5goZ64BLtH7ecX/NjW7ViLizdud91xp/UeXmUUt/tw6Y/+w+5/8V579dVXnZM4hacMhSpvKXDNV9Sba75LgSgD33tddtllbtr/Y97JBhhMS7CBk1+fadynTx8nbL3zzjvtrrvu2kXY6916WYfg+zeG3r17G4XRDPyG6kW9bgH+8R0dhb0M5M70poaLLrooa1Ev9y3EMVmXGzlyZLOk0L2XIl4y86LpZhu0MOO3Z72KHIPhk5/8pPv+yncJxTJWCh5P0yIgAiIgAiIgAtkRCFQTs9tBW4mACBSOQGTUXnixsMVCvfo6nYR7qcAHP75cKLdx4bAkY/ItKZMLNJGRAF/wUUDBbubYMrPUnXsznkgLK+jGRVEvz7OYLzT97ZdIivMGDHxkLbf5FoBqVZclkG2L8i4LSCfeKQioXCzsz+hKP1dA4h//mpx7YXHvDlQW6wuLpM2x8WU5h84aKIS46aabOuvplfx5dfU8sBLuXhUT4Hy3AnlUfRY/1w50BfwqRDUDo9btkxGL9OHDeCK05oQbXE+h7SB8pJ29ptqWbS7O67YRUC7sO7gOTr20I0N+jA9u2YzdRvpXUgSim+JW+0LUGt/Ab5itNqoaIpZJEHONDpfUuWSbmGI+01PwOHw41Dx5hmG7D7Xzzj7D/nDrnXbKCcd1SudeOvVS1Mvz5Pl2dDj1ipNs29+jVv847Bazyatrocd6JWY7djPrfljEwhB4dbbgu3LO1GCfosKLL74442mvX7/eiV+D4t9DDz3UCQNTdzrggAOSi+bPn58UvfiFFC5SoJgagsv4DtIHOr75kKmOSydUH2bPnr2LsHfcuHGuUZjfxo9HjRrlhEwUSQaFlH69FwOx62kf8mVAQSiFLhRmUnzE95B8h7LXXnu5qHn8Qr5zjW1B/WMWygLUQwzXeFYBgrGKCSgLRhb3HkgntvTpu/mxRnttEe7dEggHHXRQ2lT43ywoFOM1wq7WGehKmO56opnEUUcdZXTQTQ2vvPKKW0TBOQVPFMUHA+9hNqKn4y8drVsLwQb37MWCwj0KybyhRaa8oLV4y3F9a9db6jmxF6EGVLc3VoRsI1Yuw3DApIgdcwQsOpAVRCHmpbg3RkFv0zSFvjEKfbfjDQbHbhrjWtx/20O246MdVhGvsEioyYQn9aCaFwESYDUcdfIQGtmtWLPc1m1ZCxFvyPY7YpqFemB5DzTAc2Nk6zvq7YYvXW/r69bZ9y/+nn36c8daCPvWN8Ts/jUJd/jPf/rzNgiC39TA/In5FAWmHHwjnEKUtzwW6wf5hlzyXdZNfA8CmRq0s1xlA41bbrklpySdffbZRmEvexFgXcb3drBt2zbXyIiRnXvuuck42SgnXRlOtiz3fT2MOzCOdIG9GeQSCnFMljmpgQ142UCKZZx3fk/dJtM861NsiMJzZnnHRlM8rx49cOEi+HGm/bVcBERABERABESg/QkU50tD+5+HjigCZUkgMmE/a5j5sEX2gbCXAS8k+ErOdW9cjvNMs0KHEeALRb74Y/cudKaguwdfAKZ7SdlhiczxwHyophMGz4eB51dMUS+PwXsQ1la4EfFSD+NQ07js5nkeCiIgAiLQhQmoXCzUj0+/3kT9NO0Y69Iux0K3vETWF4qG4hGBciHQlfNACnOrJoes8R249sIJNZsQXw9t5bNxdH0as5oDd4omveNttuNB3WN21KjtVtsYsVVbw7apPmIN1OA2yxBzm69AI4q+NXEb0r3RelRBiIDnk2zT47fLhoG2aT8CMQhKdrwKQeO/YhZPmEZldfDwCFzbk8IW6c0LqjxCez3T84N+UKiYD52J4/d2TrYPPfKYvTZ7rk3fd4qNGzvaBgzon090JbHP+vUf2YJFS9z5RCBmoFNvKYh6CSfStymvfjeHvHotxDDPJPLqbtPDFqopn3shmwuCgpSnnnqqmRtfcD++46PgNhjY0xmFGcFA0awPdLRtLdDp1rvZ+W29KNLP+3Gmd4xeaDRjxoxdHPD8voMGDUqKZrl9qqGDFzP67VPHQcFNcF0699x8GbDc/NOf/mR0wmOg0JIDuR977LFO5Etn5EwcgulqbTq+A2XBGzGrY1mAeki2IQxBb9VklAWBhkjZ7pvrdunElhT1+uW5xleM7VNdDP0x0vUWQuGXD+kco/26KVOm7CLsZf2LXaEz0Lk5nau235/jF198MTibdpppuPzyy41d0VOY5YX7FLlT6Mt7pC29W6Q9aAkv9NdV0Ck65+sNxUKoBuJ3lg8Ddy0j4nDsjUHIG98G0S90e17oG8Onh8due8IWvbHIhg7Y3U49/TQIfvEeBA0AOTbcr37eNchig5TsHjNKmLiS1owALxc0nHCiXVxDoW6YxnXE8etvvGqLly22XoN72XFnf8Yto4D3vh/dZa+/+aodcOz+dtgZMxKiXoh8vfNu/YZKm7nhUXeY+h617tp0M4F/dLTPFILr3nvvPecmXojylscbMGBXMXGmdKQuzyXfDTa0oRt6ppBPXveJT3zClc/MPx988MGkq793V+exPve5z+1ySDoIP/TQQ/b444/n7HabL7e2HDNT48V05dwuJ5tmAcsW9q7ARiizZs2yU045xW1FJ3tf9qS6yKeJRotEQAREQAREQATakYCEve0IW4cSgVQCldMOtrp7b7EwxIuhCG9HvCDwgsKmL3/lM596dprvCAIUvfJlM1/sUwzLl/v8kFaugS/KeU58SKU4oT0C38lRzFvu4/ZgpWOIgAiIQKkTULlYgF+IZSI/cKBgLOtxAVAoChEoNwJdOQ+s2jNsDfvGrW41Mq/0Zju7/JxxOPzugHMkxQAWTbwuy9YRN3W7bhVRG9OXil7291u4gCzZhdTjtTZfuBQoprYScEKu2RByPQEh1wfZxxbrhn3GbLNtVVCXLG+6ELLfvcO2bI9n+hUrVjhBVKowMZ+Tpuj1kgv+zd56Z77NefNte+rZ520DGk+Xa+jXt6+NHjXcjjjsEKNwudRC1Tjk1VORV6/CNZ1oz91qEmPvY/vHohbGK6JquDOGKMLpJIFiPh/WrVvneqzy8xyfddZZbgguu+qqq+xHP/qRW+Tfm+Xq3LZp06ZglHlNr1mzxu3Xv3/LQvghQ4a4d5U8v2KGtjA44YQT7OWXX7Zbb73Vbr/9dpdexsdpDqNHj7ZHH33URo0alfcpxCEK3DEPDtSPRy1Oq9FsA8z0KqdB2DuGD2jtE4Jiy5xFlu2QRIqxsw10YPahJTfcdNcx3X5TRfQ+rnTjzZs3p1vcbBnTfv311zvnTF5vf//73916dpN+4403uoEOl3SkbE1I3CziMp4p9vUWqkTDkkpcM2kaST3/wJN287u/tyljp9i5p59psSYxb8wJfJuEvRQFQ+zLdbf97DaLNFZY/9797dhPf8o5BdMt+L035uN7X8QG9B1ofXqgm3uKgPlIwEcDhXYhwGejxji+ieH3ruxZ6eoKy5YvtS21W6z34N42cvxI55y7aMlC5PezbHvjdjvn0i9a97417lmQbrwU9HIcxrPhnc/80Z6c+4TNOHyGff7UExKuvTiT56590p776DkbUjnAKobubByay0my981MoXfv3slVNPNhKIXyNpd8N5ifBvPg5Ik1TeRTL+Bzxvnnn28//OEP7S9/+UtS2Hvfffe5WOl4HGwQxe+krDexMUW64B37063Ld1khjpkL72zSSddiljd33323/eEPf3CO0NzvhRdecMOVV15p3/3ud+2///u/s4lO24iACIiACIiACLQDAQl72wGyDiECLRGoOvoka5jzslWMY2vFphdRyRdS5Tbf0plqXXsS4Mt8/0K/PY/bGY7lXwcnxniJ4yS+/u4sn/nO8FvoHERABESgUARULraBJApEV/rBMdKVhmnG5bC+DQS0qwiUPYGumAeGe4WsGm6OjYvjFp2N/CsbHSS2ocNv7T+iNm7zQVZZU7XTGRdXgcsF8azOD8X8uNZsXOLry/4i7iQnQIe4ujkQcuEaiy1pumiyOTeUxZUTI9b38H4Qc+XvrpXNocpxGzqcfvzjHy9o0imCLUUhbEFPsgQiY15dtV9TXj0HuSwz2tYCtom+h+6t/xGDOgt5/Xg49+Yp7vWNIlo7ZGvro9GEWiudc2xr+wbXjx07NjlLJ7VLLrkkOZ9p4sknn3Sr6JTrXWQnT56c3Hz58uWu96vkgiJN8PjPPfecBZ1yUw9FYSQFiwz5OPOlxtfSfFsZMH0/+9nP7Kc//anNmzfPOSn/8pe/dF1es0txuvcG3V9bSkvqOop6696KoiyIWWwh1mZz3TMSlAWRfXDNTwtbuGfirWVq3MWa92JLPy7WcYod7z777JM8xLJlmRXVb731VnI7P0EhMB126RD/1a9+1W644Qa/qs1jinc5sOv3V1991f75z3/azTff7ITEdAdmN+m8/rpK8NeZH7fvecdtS2yzRQaEDE1HMh769ddet2+99nXrHe5jF3/pYjvl9OOSwt7bH/2DbVq12T513Gfs5JNOMt7zfqDAN14Pt+C6uG38cKN99MFHtmbpGothWVWkynrW9LS9J+A6pU8LhjXLPrRwPGzdqrtZj25Q9nM5i5xs842MZ1CiK4g8ggHKhe2122x7Xa1FqsLWfygajWDZlq2b7f33l1h9rN6mHryvVfXE8xpVDhDwurqAG+MNFesFlYnGP6FqrgvZ7f/1R1sC191jxh9tE04/3wl74+/ssO/fcqX7zfcfNdkO+8Su9UkKM+946s+IEHUPG58U9boFBfjHPCVToEuvDz7/KrXy1qcv09inm+tZR2Bely4w78sn0H2Wwl5yJK9hw4Y5wSrjOuecc5pFSeGqF/UeddRR9l//9V/G3hLowss6FBtv5OvI2+xAgZmOOGbg8Bkn2ViEomgOFIuzQdM999zjnHy5E3srIJvTTjstYxxaIQIiIAIiIAIi0H4EJOxtP9Y6kgikJVB1+PHW+MaLFt+0wUK90TqTD698MC+3cdqz00IRKD8C/vZLpLzJuTd5GuU2n0y4JkRABERABEQgPwIoGOMU87oCMv24LNbnd/baSwREoIwJVI4MW9WBcOFdBTe81VmeCHRiMXw/PbPiS/ZB3/ctVBe2eBX2b9rdi8B2GZf4+izPXpsVkUBsO65FOPU6US+FXLjWsg2hoXAmPShslcPzcwLL9jjluB27Rd+xY4ex61iF8iRQNQrC3oNwf6zOIa+GqCn6FhpiUN2ExhbVE3J37mU30kuXLnVDpi6lsyX6xhtvuE133333bHdJu12wS+nrrrvOzj333BZdOletWpV0WQsKZadOnZqMf+7cuXb00Ucn54s1MX36dBc1nW05BB3y/DGD4qVp06b5xUUZF4oBhT5MK4evfe1rdtFFFznXXop7Fy9ebGPGjMkp/XGI+ereilntIzGLvovaBS7hbENoSHHLAvqM4HbKGPIRWVZDZFdKYfDgwclu23nffvGLX0ybvFdeeSXt8oMOOsiJx1566aW069u6sEePHsZ8gAMdEyng47X2wAMPdCphbzbXRV7XWwUvYH5UK25YuXKlnXDiCdDo1tv62Fo74vOftMoRO+toT2993BasXmDD+w62s489dWdiUPeLNwl7KfTt1TDIhjUMtMYdY+2n1/yPPf/oc1YNe9ifX/QL223gYCfivfWy31nt5h3Wv29/u/w7l1sohuMw32Dxx7okxm+89IbNeWk22rpU2Jnnn4lxxOJY/q9H/2Wb12+2YSOG2dTpU93269esszdfm4cdw7bP5H1s8FAch9iahmhj1F557hVQDNmgwYNs9LjRWInADAJ/Sxe9b6tWrLIevXvY+Knjbdazs7Br3CZPn2x9B/RN4OdPwM2JxA8U62IaSXPC3YXvLbTnn3rOokjouV87D+JdlOPctmk9xbr33/awzXtnno2dNMYuPO1CJ+zd+lGD3XjBj2xHbIddde5VdsDH9je6MIfgwkwxr5uGiJdjd2yMfHh0y0O2YN0C26fHGGOPAQzjB+xlH8USDvLXXPv/7JGDH3G9R/p9OKZotJghU37DY/r6xR577GHe+bbUytvW2FRWVrp6OgWuN910k/3bv/2bE98G95s5c6axEUM+gQ0umFdSGPzggw+aFxLTfZeNcILhiSeeSM7+7ne/s+HDhyfnOcE6U6FDRxwzeA6+8VlwWeo0y8bPfvazbmDZ4+uU7J1Awt5UWpoXAREQAREQgY4hkKi9dsyxdVQREIEmAjVfuMQaKO7dsY3PvHgCbVqRZlzS65uSrZEIlDOBxD3WdPPhpVVZz5fzD6G0i4AIiIAIlAYBVxaiNHR//MeysQznS4OmUiECItCOBPhBt2YqxJAH4NUXDK6yDvgQPqVuX9tvw0HWe/FAi9Si+1Z+zEYo13HW564Ni0IgugkCxJcg6n0YTr00q8Q1lnXoCcOxA8NWPRmupCUmkMr6HIq04Zw5c+zpp5+2k08+uUhHULTtQYBCnGrm1TOQV3fP4YhwLXTi3odxb83GvQVH7FzCwQcf7Da/4447nEsZhVq5DnT8ZFfGFKsMHDjQJk2alEsSdtmWoj4Kehkojj3vvPOce9wuG2IBRb10m/PhrLPO8pNGoTIFLQzsRnnr1q3JdX7i2WefdfcO7x8KnNsagkLa//iP/3Cu9sE46+vr7dJLL00umjJlSnK6GBP5MqBTKsWeZP/BBx80SxpFvhRc+uAb+fj51saugccbEPU+BFHvO7he6byZbUA9JlkW4J4pRjgVDUgKHaaPKXSMbY/vwAMPdJH8+te/tnSCOoq9vJgu9WheUEcBGV21UwOdPSkA53314x//OHX1LvM33niju96uuOIK477BwHu40G70wfg7crpXN7NpoxN160KmY/qYwseZmr5169bZMccc4/JorqMYLpvfyeUt537Rzr/4PFu9ZZVzBK4YEnKNtrqNq7SRR+1uMzc8Zv9Y/5BFJ9Za90Mi1v2wiP1lzZ/sd0t/btfPudpumH2d9TqlwnqdhuGMxLB2/2X2b/eeYVe/+V/2QOgv1uesauuJdRzuqf2zXT/3anu85mHrcXrEDQv2ftN+PPda+8m8a2zNAcusO5YHh+d6P2n/M+86u+HN6+3pHo8m9/P715wRsv958zr7/vPftocb/mY/nfcDu23d723oRf2sxxmJY/htk2Ms74nj+HT1PL3CFo5/06X5qre+ad1PCyXPx50bzrHnCRX2ZOQRd+7P2GOOBZmMOG6IPVf/lD0FVpf/6mtWv9t2x5AsI/1Dxp4A/jUL5dvnTnb3YWvlG8td5vcMzzzzjH35y1929z/FkIsWLbIf/ehHzrnUbVCkf7NmzbI//elPu8T+4osvOudurmCjAh9Krbz16WppfOGFF7rVrNuceOKJRiFvbW2trV271uWlbRWPUizMQMfZv/3tb26ay6qrYdccCBs2bEjOpfZ2GovF7I9//GNyfaEmOuKYkQgV8omQWp6x7nLZZZe5sodC69RAoXS6xlmp22leBERABERABESgfQnIsbd9eetoIpCWQHjwHtb94itt+2+vs8ppB8O5l61b8SIC7/icqpDN5Zvm43w/EZgvmfVpz0wLRaD8CLjbDvdYuY/Lj7xSLAIiIAIiUJIEWCa6+ieqoE3OvWU5X5JwlSgREIFiE2A3ujWHhC22Jm6Nr6GG31wzkfHwEdhFDanf3WrnbLfIjgrbPHadNfSqSwqVvJinXMYZT1Qrik6g8UM4kb4YtbpnYhZficPxQTPbACFvxZSQdTs4bJF+LIwVPAE69VLUe/bZZztBpV+ucXkSqGBe/bGmvPqN7PNq5ulO3LsD99d2CISn4V7pk929QhHupz71Kdfl/X333dcmcBT1nn766W2Kw+9Mge7Pf/5zmzdvnnPpfPPNN+3666+3/fbbz4YMGeLcQtldMkWDdPJk+OpXv2qHHnqoj8I1QmFX0xTSUNDxuc99zr7xjW8YBY0U0vzf//2f/ed//qcTDY8ePdroBNjWwO6a6TB86623unT/+7//u+sCe+LEifbaa685cRIF0AwUG/fti3ffRQxsiJMPA7K4++67Xcrmz59vv/nNb5xgOxwOG0VWP/jBD9y6yZMn29ixY7M+g+hGlAWvxazuSYjQF2M3Om1mG/AFr2Iy7hGWBRCuFSucfVgYLqPoKn1JLonLnJpzPhm2GWOLl97MR255Dbtef/jhh91GXoB7+OGHu/vB3xuZYuB9TkEw3adZ/rD7cgrsKSTn9cKuy73rZDZCtZqamuT1Rvd53qd0gaYQntfhbbfd5pLyhS98IVOSynb5148P29dvidkm9GhQiHDBUWGbMLww1xvFu0899VQyWfw9Vq9e7YTgN998c3I58wvmEdmEQuQtbPhBwd5JJ51kdIinEPX73/++fbBxhUvCZd+71CJ9dzL4ILbc3qt/x1ZX7G/syYRh2omT7dX/SDhO/+evL7OfjPqJKxtWrFjhBJFXXXWV247/9qoZbdWTdgoEuWz8hD1t44i1rox67n+e5iL77mXftZq9cpMaNFTX2bb4Frc/G645J1831/K/fPP2lmL9xS9+YQsWLLDnnnvO3Xe+DPD7UORIsSN5FyvQDZ6NcOgwS1E/rz+W0z4Ep0utvPVpbGnMug3zTQqlWb9h/Ss1sK6Sb32M+7JREePmwBBs8OSPdeSRRxobbzB885vfdHkueb799tt2ww03JPNjv30hxh1xTArWeR1t2bLF3ddHHHGEqyf269fP9QTBhkt0gue1zjyFZeGgQYNs06ZNroEZBdgMXK4gAiIgAiIgAiJQGgRyq22XRpqVChHolAQiY/exHldcbzv+8huLf7jKKsbsja5nmh6cKepl8M/lpTqfSKX+i0BZE0jeZu4s6EmYeMGYWF4+82X9IyjxIiACIiACpUMABaAr/SjqZWUU43KcLx2gSokIiEB7E6jCh+zY4XHbvhFimvdw9Cz1A8zrum/sYZE3d7fK7dW2cdyHVj9wu8VCMSeaoqiXH5fLYdzezHU8XGYQHDYshZPov6LWMAuNZNbnSAX6i/A4uE4fDifT4QkxRo4xdMrNKTyh2IECKIogKKhU6BwEKkeFreaIprx6Ic4py7yaAsnYQrhi74gaxZPdDopYxWBXgW0VDMWwe+21l3Plo5gh10CxJ8VVbXXqDR6XrrDs+viCCy5wAkGKjU49NdCVe3BjTB933HFp3QQpsl2+fLldc8017p4JitR8FBR90N2Ox2xrYHlIwSPFb3Sm/MMf/uCG1HiZrqBwLHV9IefzYUDBLkWUd955p+vW+4ADDtglSeTmnZV3WZm6ANdxw2qUBS/GrP5fEKB/gA2yvbYZFy7l8NhEWVA1orhlwWBorX9zQdgeeS1k70PTk0syg6ddDZHegXua7TsaiS/BsP/++ztXxvPPP9+5rvI6SQ0UxQcFnH49BekU7tI9k8Knyy+/3K9qNqYD6Oc///lmy9LNnHnmmfbb3/7WCd54PA5ejOW3HzdunF188cV+ttOM99k9ZPdeEbHH58ZtZa51pACF7jDk5PU2eWThrjeK4SiwbCnQtZcNGbKth7Q1b+H1xGuPeTqH1EBROcuD1gIbiNCVnKJxNvwIOr9zXwpY6R7NsidToKvt17/+9eRqXsftGfLJ21tKH11d7733XtdIJlVYSj4UfHIolrCX9VmKTZmfpMtTbr/9dps2bVryFEqxvE0mroUJitAZKO4NhtGjR7sGTevXr89b2Mv7kCJUilUZmG/OmDEjeBg3zUYcvMYpMmY5zyEY2iIuDsYTnO6IY/L4vC9ZpjA/O+ecc1yS6GZ8wgknONH4E0884daxcRiH1LKH+QlFyQoiIAIiIAIiIAKlQaDtb21K4zyUChHoFAScc+9lP7D6p/7X6p940EL9d7PI7iPQbWgvtFqN7DxHvlnju4pSGu9MnaZEoKwJ+NsqcRJNzr3JMyq3+WTCNSECIiACIiACeRNwpZ8rIPGPf03OvRT5MpTF+rzPXjuKgAiUPQE8SldPgLgXplC126MWX57bGVVvq7EB8wdb5ZZq27D3Gqsdutmi1VBtIsixNzeWXWXr2Na41b0DZ0a49Da+ibJye+5nHh4OIddREaveB0KuwOug3GMq7z3okkfnvGXLlrmP8Oyyl2LMQw45pLxPTKnfhQDd+qqQV0ehr93BvHrlLptkXsD6KfL2+n/GLLY+bjUfj1gVhMKhqsy7+DV04iu1LocpULn//vvtV7/6lRMTrVy5Kwy6P9LZlwKNTIHOuH369HHuvt59zW9L4eG3v/1tGzVqlF/kxsHum5utCMx48UdVVXPAlZWV9pe//MU5SLI7a4pJfOA+l156qdEtlaKkYGjtmKldaQf3bW06HwbsEp1CHIqPguI2nsNhhx3mfhMKkVoL8Xpck4ubGni8iot0Zw/gre2aXB8aligLqtqpLAjjp/nsjOa/TzIxHTCReq34JLR2zXC71OvT78sx3Xbr6urs6quvdgJdv45lCwV8c+bM8Yt2uV6HDRtmTz75pHOe/vvf/57cjhMUk33nO9+xM844wyj89yFTeikUfumll+zaa6+1P//5zy4t/r7hPc4u67muZ8+ePqpONe7dzexzB5b+9UboLCdGjBjhxIK8ftKJ/v2Pk6mxRFvyFjZCufLKK50gj40nfGC+RDfXoKOrX8c8OV2g2I95P0XlwbKBjRrYaME70Gc6j1NOOSUp7OU9k4t7uU9P8P7wy1LHPu9Pl4588vZ08fhjDhgwwO666y7Hg274rH/yvNh4h4ENytKFTIz9tsF7P9O2dNOn2JqO3bNmzfK7umuOIm7mJ6kh3/I2G+6ZtgmeS2p6/HxL+S7j5fl861vfsoULF9pHH33k3M7peM7f5pZbbvHR7JLvJle0MEGGXtjLhhvpAutEzz77rHP3TXVm/u53v2uXXHJJUlwcvF6yOXceL7iPP36+x8z0O/h4OW7pHmEPAxTyB+9zX6ZOnz7d2CMEr7nHHnvM1dd82UPhMxu3kIXfPnhMTYuACIiACIiACHQMgRAqqImvsR1zfB1VBESgBQINb7xo0bdft+j7Cyy2drXF69M/QLYQhVaJgAjkQCB24dActtamIiACIiACItC5CXz2f5/q3CeosxMBEehSBMIN3eyQdSfaaRu+YMMbR7q2srkAgBekra1aY+/1eMcW93rXNlZ9hIYOhemuOpd0aNvSJRCKh61f/QAbu2UfG7d1vA1sQGPtHFW5fEm7oWK9ze7zis3vM892RPJQBZcuopxTRoEAu40dPny4c1adOHFiznFoh/IiEN0E991no1b3KNxNEz0B53YCEIpF9glZ9cfDVj05bJE+pSMay+1Edm69YcMG17X0mjVrjKJCCrwoQso2xGIx474cuB+FStmKVLI9Rup2DQ0NtmrVKifcYffOgwcPTit4Sd2vWPP5Mti+fbstXrzYKMAk+2wD3aPr5qKBB1x6o/ORs+fxSj80GKKdT4et26EoSXqX/3WcLbv23C4ajRq7JKdTJMVlLG9yCdu2bTMK7ykS5v69e/fOZfddtuW9vnTpUicg7d+//y7rtaDzEMg2b2G+Q/EtRYcUszJs3brVKD6lqJfr04kJsyXFnhCYFsbTvXv3rHabP3++0YGYgU6zbCjSUSHfvD2YXi+mZVk1ZsyY4Co3zWNQ7Ejm3/zmN42CyWIFnwewgc/QoUOzKqtLrbxNx+btt9924lEKUffdd990mzghKd3+6U7sf5O0GxZoIfN/5rdsqEvRfibhdYEO56LpiGPy+mWvFBQKU2ScGnj+rK+xHKSYPdt8IDWezjDfkjC9M5yfzkEEREAEikGAjaEU2oeAhL3tw1lHEQEREAEREAEREAEREAEREAEREAEREAER6EAC0Q1NgrHH8xSMMe3QfFROhWjswLBV7R22cE+JbTrwJy2ZQ8e2QMQ1HyKul+DSi26lbWN+SXNCrmMg5ILjaKSvrq38KGqvcifQCNfd2qeiVv8k8up8umjHrRMaFrIqOEFW7x+2ymFw701vXFjuqJT+EiMQbzBrWIay4JWY1c/C9fsBEsgWGzmG0EA4zh4Vtu6fRFnQX2VBjvi0uQh0GgLphL0dfXInn3yyPfLII05YvHz58rIXAtJ1+NVXX3VYZ8+ebRMmTEgibmxsdK7ZdDJmePTRR52je3IDTWRFgML0H/7wh27bW2+91c4666xm+/F64nXFcNVVV7mh2QaaEQEREAEREAEREIEuTkDC3i5+Aej0RUAEREAEREAEREAEREAEREAEREAERKCrEHCCsWcgGJvZBnFvhVl4ZMgq0V119bQm0VjzHsm7Cs4uf57sar1hOURcr8es4dWYxZYDSWN+WCjqdUIuinol5MoPovbqNAQaP2wS9z6dp7iXJNB7fWQ88umD4N47Ee69/aj47TSIdCKlRADi3ehHaODxZqKBR/RdLNiWXwJDg1AWHI4GHp+IWMUgXbD5UdReItA5CJSKsJcuvRS1/vOf/7QnnnjCwf3xj39sl156admDfuihh+zUU09NnseBBx5o+++/v9GB7vHHH3dOvVw5Y8YMmzlzptXU1CS31UR2BOgIS1dzH8aNG2eHHnqoE4dTVP3CCy+4VXShfvHFF13PBH5bjUVABERABERABERABMzwKUJBBERABERABERABERABERABERABERABERABDo/gYoBISeWCUXM6ijuXZXHOUO4GVsEAc+auDViXDUtbtWTwlaxGwQ4iFehCxCIQtC7Bo6MEHHVvx636HsQcW3N/7xDe6DL9SMh5DpEot78KWrPzkSA+Wm3w5GhIlutp7h3XR5nh3sy+ioEwiuj1rgEefV+cPEdA6f17hJL5kFTu2QgENsWt/pFibKg4Q1cq6uxIYqEfIIT9R6BsuAwiXrz4ad9REAEikOAYt4rrrgiGfnpp59uF110UXK+nCdOOOEEu+OOO+wrX/mKbdmyxWbNmuWG4Dmdc8459qtf/Uqi3iCUHKaHDh1qL730kp133nn2zjvv2IIFC9wQjGLatGl23333GcXsCiIgAiIgAiIgAiIgAs0JyLG3OQ/NiYAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIdHIC0Q0Qe70UtTp29U6X1TxFOBSdhQag5fxEOPhOCVvV3hD4DsTCcCcH2FVPLwZD3rUQcc2HiGtOzKJvxy2+vg0wcJ2Eh0PUe3TYag6EqLePBIdtoKldOyEB3m+1z8FlneLefBpieCbVuNdGm1XuB/de5NWVe4QsVK37zePROHcC8bo4HNvRyGcuHNvh2h57H3HAxT3fENodZQFEvTVo4OHqEflGpP1EQAQ6DYG77rrLamtrberUqTZ9+vQOO6+nn37amJYRI0a4tBx33HEWCnWuMnTt2rXOLfbdd9+1ZcuW2cCBA23KlCk2adIkOcgW6Mqrq6uzZ599NinsraiosMmTJ7th4sSJVlWlLnAKhFrRiIAIiIAIiIAIdDICEvZ2sh9UpyMCIiACIiACIiACIiACIiACIiACIiACItA6gdiWuO2AGGfHE1E48GJ7OPHmHSDQDO3WJPCFe2/VOAh84Q4sB9+8iZbWjnDobVwHQe97EHC9FbPGtyDoXYskQuibd6iE0HBPs5qjI1azL1xEe3YugUTeXLSjCKQQiG5EXj0riry6qSFGW+67XsiW92JDjJBVT0Q+PTRsIdyLCiKQLYF4AxzbP0DjDpQFDXPg2L6gbY7tbAgUHglR71EQ9R6gBh7Z/g7aTgREQAREQAREQAREQAREQAREQAS6AgEJe7vCr6xzFAEREAEREAEREAEREAEREAEREAEREAER2IVAfAfc9t6OWS0EY1GINa12l01yW8Ce49GFfMU+cIYcD1fIcZjeTcKx3CCWztYUcDWugYALwq3GdyDofbdJ0Auhb5tCd4jAJ4WsBkKualwncg5tE03t3AUIxLZC3DsbDTHgsh6jkLINzqjEFeoLge8+EPjiPnRO6xT4yiiuC1xJ+Z9iHNecE/S+C0HvmxD0zsd1uCn/+NyeuOYie0NkfiREvVPRwKOHGni0kah2FwEREAEREAEREAEREAEREAEREIFORUDC3k71c+pkREAEREAEREAEREAEREAEREAEREAEREAEciEQh1NvwxKIe5+NWuOrEG6uz2XvDNtCmxMamHCGrKA75FiIfIeFLNxdop0MxEpqcWwbulhfgWERxLzvQcCFwV0X0HG1NfC6qNwfot7DIlY5EmLCirbGqP1FoGsQiNeZ1b0H596ZuC/hlGpbC3De/SCyRx5dMQEC372QT+8RslCN8ukCkO00UcRq0bBjpXdsb3Lo3ViA04N7dMW+Iet2RMS5/EtYXgCmikIEREAEREAEREAEREAEREAEREAEOhkBCXs72Q+q0xEBERABERABERABERABERABERABERABEcidQOMaOEK+HLX65+EIuQz7Q/BbkNAbAt/REI7RvRdjijkj/SEek6CzIHgLFQkF3tH1EPMuhWhwCYRcFPS+D/HglgIdAb93eJRZ1cfgzLh/BE7OEg8WiKyi6UoEYjDrXQbnXuTTDbNiFl+Dky+A4N76IJ8eizwa7qmV48JWNQINMXqxhUZXgqtzTRLANRXdwvIAwwKUCXDnjS7Cws3JLfKf4GU1FGXBgSgLUB5UDgujcMg/Ou0pAiIgAiIgAiIgAiIgAiIgAiIgAiLQeQlI2Nt5f1udmQiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIQA4E2N173Tsxq4NorBFdbRdExOOPjy63Q0MgHhsD8RiGyhFhq4A7ZITiMYl6PKX2HUMkGN2ccGNsgFiwcTHEWxicWBDdrhcsQDRYMRndrUPEVb2PulsvGFdF1GUJRD9CQ4w3kFc/h4YYC5FXw823IKEbsmOIep3Al/n0aDTEGIiGGJUFiV2RlDiBeAPa9KyFaJyNOyDkZQOP2HJcX7UFSnh1wsm/6lCIevfFtdVPyvECkVU0IiACIiACIiACIiACIiACIiACItApCUjY2yl/Vp2UCIiACIiACIiACIiACIiACIiACIiACIhAXgSiZg0r4Qj5MsQ9r0A0thyxFMq91ycIXXBHhkPUOxJjCnyHQUg2RCJfj6eoY4p54cTYuArDCoh5l9GZ1yy2AuKtrQU+MsSA4eFmlQfQpRfOjHvImbHAhBVdFyYQh5i3Hm6qO16IWuNsCPLXAwZu44IEOGyHBiF/3hN5M5x86bTuGmL0VkOMgvAtpUh8Aw+UAc6xHYLeKMTi8XVIZKHKfrr04nqq2DdkNYdErGps2EIQ+SqIgAiIgAiIgAiIgAiIgAiIgAiIgAiIQEsEJOxtiY7WiYAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIdEkCMYg/696NWT3EvY3zmkRjhSZBs76+EI9B2OuHiqGYpsi3L1wiIS5TaDsBujBGN0KstZqCXvyeK+nCiGUU825C/IUSAwaSGhqYcOmtgqi3em+49PaUM2MAjyZFoDAEcO82foi8enbU6mbhvqZ7747CRJ2MpScE+mx8MRr58iiIfNEogw0xwj2o1kxupYlyIoDLJLYNQl428IAjb+P7KB/g0usaeGwr8InABZoC8aoD4dq+b8QqBum6KTBhRScCIiACIiACIiACIiACIiACIiACnZaAhL2d9qfViYmACIiACIiACIiACIiACIiACIiACIiACLSJAJz8GtfAEXI23HtfT7j4WaFFPz6BFIjByTe8O8Rju0MI5AW+u0FEhq7gnYgMhq8KWRCgA+NW/F7rMED01whBbwwCrugHEHNhbFsQB0ZFCRABRsZBxLUfRFxTIeLC72f63YqCWpGKgCfg3HsXxawODTEakF/HV2MN3NcLGnAfh9AQIzwCefRI5MsU++4hkW9BGRczMop5US6wPGhA4w427IguRdkA1/Y4G3ig3ChoiOB6GQrH9mlo3AHH9qrRcuktKF9FJgIiIAIiIAIiIAIiIAIiIAIiIAJdgICEvV3gR9YpioAIiIAIiIAIiIAIiIAIiIAIiIAIiIAI5E+AojF20V03h6KxhBDIsKyoAd100/U1TPfewRD27gbBKAS+kQGJgQ6wcvRN/AJxdJdOh+XoRxjWY1iL3wiC3ugaLIeIy3WpXl/UX8usBr8VxH6VU+nKGLbKERBxVRX5mIpeBESgGQHmAXVvw2n99ZhF38a9/1Gz1YWboWizH+55uq3DwTeCBhl0W3dOvn2QN2O9QscTYNkQ3YSywLm1Y/wBBjj00pk3vhHpK7T4u+mUQwNQXk9kAw+IeseHLdJP1s4dfzUoBSIgAiIgAiIgAiIgAiIgAiIgAiJQfgQk7C2/30wpFgEREAEREAEREAEREAEREAEREAEREAER6AAC7Lq7fiFEY3Ph+vdWQhxkxRaM+vNEd95O6ItuvMMU/FLkC7FQmA6SEJJFMDixb6XfoXOO4+BN10WKtWJwWYxRtAUxXwzuvLF1mF8LM16Ie622nc4fAmyK+yomQcQ1BcOYcMJduZ0Or8OIgAikEIBYs2E1GmLMTTTEiC5sculO2axgs3Ty7Y18AMLe8B5Nbutw6o7QbZ35dQ+IOqXrLBjuFiPyrrx0a1+DgQ086Na+EmWDd2svtDNvMEG4DpxjOxt4TAlD6I2LQ47tQUKaFgEREAEREAEREAEREAEREAEREAERyIGAhL05wNKmIiACIiACIiACIiACIiACIiACIiACIiACIhDdDIHvAojG3oTAF66QMbgAFt3BNxU7BLwUk4Ug7nXOkRT49t0p9KXYN9wTy7pjjMG5x5aLuAw4nYB3O9hy2JIQ8FLE68S8GzCG2yIdF+OYjm8GnIZUQEWe94LeCRDzUtQ7FoLe3uUCuMhsFL0IlAAB57S+AgLfeTFrnAdx52JkLNvaIWFw7066rcNxPem2jsYYFXBcd0JfiT0L80NApBtlQw86tQfd2lejzPBu7cV21+eZ9ICgdywc2yejLJgMx/ZhcmwvzA+sWERABERABERABERABERABERABESgaxOQsLdr//46exEQAREQAREQAREQAREQAREQAREQAREQgTwJ0DWWDr4N70LgOx9i02UQjm3PM7JC7EaxWHeIyijypeC3F6Yh7g3BMTIM4dHOcULwG6IArQbrIFINVWP7CuxfbG0qRbvoHj1eB0EuBFexHRjDXdcJeMEuDuFdHM7IMY4h2HLzEO7GNmIaQl7Ht5iOi639DuAbHgmB3t4QcI2HkAsOvXRLVhABEShNAnHkMfVLMVDgi4YY0feRCW1tp7Qya2CeTJd1uvgOwhgC33B/THNAPh3pk8h/i573ttMpF+0wLDtQbkRRDkTRoMM5tTe5tUfh1B6DO28cru3OrR3btktA+RoZjfJgIhx6J0HQOwLlKMpUBREQAREQAREQAREQAREQAREQAREQAREoBAEJewtBUXGIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAh0WQIxCFDrIRZreBfCsQVNwjGKUNtLXJQNeTj8OoEZRL6hnnEn8g1RcNYk7uXYKPClE3AVpiuxHacjmMbgx+xWPETdkh8w6c6ToiueL0S38SjGTYMT8ULIaw0QXdVjHQbjmILeHRhD1OsGL+Kl4A7L2t2BF4fMGHCuTixNAdc4CHr3gYBrVJPzZsadtEIERKCUCMRqkUej8UX928in30E+TQdfun23d2Cey8YXcO8NDUiMw5yH4zobCYQh9KX7t3NaZ/7bBQPLDdfYA+74dGlnIxrn2L4ByyHmja/HGA69ccy3u1s+fw/8Rs6hl407xqM8GI7fq5sEvV3wUtUpi4AIiIAIiIAIiIAIiIAIiIAIiEBRCUjYW1S8ilwEREAEREAEREAEREAEREAEREAEREAERKCrEKBYtWElBrr4LqRwDKLVNRCPUcxaDoGOv3TthbA3VAWREsXAEaQfyxLCXizjNiEso9g1jH+YjFPRiz83xLAsCsFVFONGLHSi3pDFIex1HDjfkY67OHzWgRyGQMw7Bgj2hIBrTwi4dpcjY9b8tKEIlCABur42rIDAlw0x3kM+vSghFHWNEToivcgqrUnsG4K4N9wP+Q7HvZHdwnU93IuNMTAPd1iKfem+HqYrbLmLftH4g47tdGePNbm0x7bgt8AQ24JlEPXSpT2GIQ6H3jgEvobGIK6c6YjfiQ1c4LxMQW/FXk0NPPbAbwO3ewUREAEREAEREAEREAEREAEREAEREAERKAYBCXuLQVVxioAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIdF0CECw1wk2wYQkEvnCFZNfvMThFOnfBchG1dtVfj47E/SGcQ5fqFXDlrRgDQe/osFX07wRCuq76m+q8RSANgXgD8ukPkUfDZb1hQQwCX4hIP0ADBIpHSyFQuNsN+RHce0MQ+YYo7MVAkS+n6bhOl9gQt8Hgpum6DqFpCOMwGmc49/X2FgBTsEtXdgionUs7x2BKEa93aKd7chyCXjfArT0Gp/Y4B4p56aK8HUOplJVkiwYdkbFo6zIOjTvg2l6xW9hCbASjIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAJFJCBhbxHhKmoREAEREAEREAEREAEREAEREAEREAEREIGuTYACpsZVCZFv41KIfJdDrwRXX9cFfKkIl7r2TwTVFgCwa3W4L4aHw513JMRboyHegluvulfv6heHzr/TE0B2HIUjbMP7EPnCvbdxCYSmaIwR/whnXqp5NPMsinjh4Gvd407kG6LIl86/GIziXk5zGzqvYwhVYluOkw7sWA7Rr3NjZ3xYHcLAsRswcu644ENTdjcNHnEId527McZuGi7sdGSnUNowODEvhb0USFPMW5eYjkOsy8FqOUaEWF6yfMkFDTwiaNwRQVlQCZfeylFhi8BJOckGyVcQAREQAREQAREQAREQAREQAREQAREQgWISkLC3mHQVtwiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiQAMVj6GK8EaLexuXoAh4OvrGVWAbRr7GLcYqlFNqPAIVbEPPSiTG8B8S8wyHkHQFBL+d7SbzVfj+EjiQCpUOALrNsiFG/GHk0xL3RpU0NMbYgjRS3lmOgaJfi3irkeRT3VuBEkP9ZBcS/kaZpJ+xlvod5jsL4h8k4Fb34s3hi3glxoxDrsrxqxDJMcxyvx7hJ2FuyYl0kucWA07FeKBOGQcw7Engg5K2CYzsbeNAFWUEEREAEREAEREAEREAEREAEREAEREAE2puAhL3tTVzHEwEREAEREAEREAEREAEREAEREAEREAER6NoEoIGKosvxRnT73vgBuoCH2De6CgIyCMri64GGToYKhSdAB8sBEG4NhXCLw+4Qb+0Rtgp2sy4xb+F5K0YRKFcCPo9eASffpcij0RDDua2zIcY2nBRGCp2AAPW6PZvKhOHQO4+AMy8c2yso7lWZ0Al+YJ2CCIiACIiACIiACIiACIiACIiACJQ3AQl7y/v3U+pFQAREQAREQAREQAREQAREQAREQAREQATKnEAM3ZI3rkk4RUZXw8kX09E10I6thdB3I06OTogKuROgQ2VfiLYGwYV3MMaDE+6LFRT17oZl7MZeQQREQARaIhBDQ4wNEPiugIsvhL5RDnBbZ0MMo5Mv1iuUEQG6E/duEvPCrT2yB8oFOLZXDgtbpC/KBK5XEAEREAEREAEREAEREAEREAEREAEREIESICBhbwn8CEqCCIiACIiACIiACIiACIiACIiACIiACIiACJAAuziPbUoIfaMfQkAGcW+MwzosXw+h7wZstIMbcmuFJAFqdLtByNsPuqwBEO0OxHggBLwQ9UYo6IWQN9IHG7ELegUREAERyIcARb7Mn+Gy3rgSQl+4rsdWI29Ggwzntl6fT6Tap+gEqpvc2oegbBgCp3a4tDu3doh6I70l5i06fx1ABERABERABERABERABERABERABEQgLwIS9uaFTTuJgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIQPEJxBshGtsMEdk6iHwxUNwb+wgDBL4c4hshKNuMdNRi6CrOkXRUpIi3DwcItSjm7c8B0xgqmgS9YXSlHqoo/m+kI4iACHRBAmhcEduGvBkNMBrh3hvlALf12IfIl7EsvglMkH8rdACByqbygW7tu6E9Bxp3RODUTrf2Ckw7t3Y2BlEQAREQAREQAREQAREQAREQAREQAREQgRImIGFvCf84SpoIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAINCNAMdkOCnshIoOwNwphb4wDRGRxOEnGIPKNo3v4+FZsuBXj7di7XMVlEOWGuiP9PTGmSLcXxLvoQj0Eh8VwX0xD1BvpxwHT6EI9XAOllsRazS4XzYiACLQPgXhDIj+m0zrFvjEMnKbbepxu6xT61rVPWrrcUejIyzIBbu0huLU7p3a6tFPQyzHKBzXy6HJXhU5YBERABERABERABERABERABERABMqegIS9Zf8T6gREQAREQAREQAREQAREQAREQAREQAREQAS6OoE4uoCPQcwbhbtvDMLe2BYIyTBwOr6NAl/MQ+TrhlpM7wAxDG5MsRnFv9ACt0ug+JZOuhRj1WCMgeNQN4ivIOR1Qw9M94BQq0nUG6aoF+JedpvunHjhyKggAiIgAqVKgHkyG17Qad0NdFun6/pHyGrpto7GGWyEUbYNLzoKPN14UR6EKNZlo44BCUFvBKLeSJNbuxv8yJ0AAAAnSURBVBPyqozoqF9IxxUBERABERABERABERABERABERABESgQgf8PcCBX5sY5k2oAAAAASUVORK5CYII=" + } + }, "cell_type": "markdown", "id": "cbcd2fa0-5108-4d94-a681-493882c295bf", "metadata": {}, "source": [ - "### Filter to 'Other' variants passing filters" + "### Filter to 'Other' variants passing filters\n", + "\n", + "![Screenshot 2024-12-20 at 11.13.08 AM.png](attachment:5565afe1-9dbe-42de-b70e-224b9d8651e4.png)" ] }, { @@ -4854,11 +4889,11 @@ "data": { "text/html": [ "\n", - "\n", - "\n", - "\n", - "\n", - "\n", + "\n", + "\n", + "\n", + "\n", + "\n", "
histograms
grpmax
fafmax
info
qual_hists
raw_qual_hists
age_hists
in_silico_predictors
gnomad
non_ukb
gnomad
non_ukb
vrs
vep
vqsr_results
region_flags
allele_info
gq_hist_all
dp_hist_all
gq_hist_alt
dp_hist_alt
ab_hist_alt
gq_hist_all
dp_hist_all
gq_hist_alt
dp_hist_alt
ab_hist_alt
age_hist_het
age_hist_hom
cadd
locus
alleles
freq
AC
AF
AN
homozygote_count
gen_anc
AC
AF
AN
homozygote_count
gen_anc
faf
faf95_max
faf95_max_gen_anc
faf99_max
faf99_max_gen_anc
faf95_max
faf95_max_gen_anc
faf99_max
faf99_max_gen_anc
a_index
was_split
rsid
filters
FS
MQ
MQRankSum
QUALapprox
QD
ReadPosRankSum
SB
SOR
VarDP
AS_FS
AS_MQ
AS_MQRankSum
AS_pab_max
AS_QUALapprox
AS_QD
AS_ReadPosRankSum
AS_SB_TABLE
AS_SOR
AS_VarDP
singleton
transmitted_singleton
sibling_singleton
omni
mills
monoallelic
only_het
AS_VQSLOD
inbreeding_coeff
VRS_Allele_IDs
VRS_Starts
VRS_Ends
VRS_States
allele_string
end
id
input
intergenic_consequences
most_severe_consequence
motif_feature_consequences
regulatory_feature_consequences
seq_region_name
start
strand
transcript_consequences
variant_class
AS_VQSLOD
AS_culprit
positive_train_site
negative_train_site
non_par
lcr
segdup
fail_interval_qc
outside_ukb_capture_region
outside_broad_capture_region
variant_type
n_alt_alleles
has_star
allele_type
was_mixed
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
phred
raw_score
revel_max
spliceai_ds_max
pangolin_largest_ds
phylop
sift_max
polyphen_max
locus<GRCh38>array<str>array<struct{AC: int32, AF: float64, AN: int32, homozygote_count: int64}>int32float64int32int64strint32float64int32int64strarray<struct{faf95: float64, faf99: float64}>float64strfloat64strfloat64strfloat64strint32boolset<str>set<str>float64float64float64int64float64float64array<int32>float64int32float64float64float64float64int64float64float64array<int32>float64int32boolboolboolboolboolboolboolfloat64float64array<str>array<int32>array<int32>array<str>strint32strstrarray<struct{allele_num: int32, consequence_terms: array<str>, impact: str, variant_allele: str}>strarray<struct{allele_num: int32, consequence_terms: array<str>, high_inf_pos: str, impact: str, motif_feature_id: str, motif_name: str, motif_pos: int32, motif_score_change: float64, transcription_factors: array<str>, strand: int32, variant_allele: str}>array<struct{allele_num: int32, biotype: str, consequence_terms: array<str>, impact: str, regulatory_feature_id: str, variant_allele: str}>strint32int32array<struct{allele_num: int32, amino_acids: str, appris: str, biotype: str, canonical: int32, ccds: str, cdna_start: int32, cdna_end: int32, cds_end: int32, cds_start: int32, codons: str, consequence_terms: array<str>, distance: int32, domains: array<struct{db: str, name: str}>, exon: str, flags: str, gene_id: str, gene_pheno: int32, gene_symbol: str, gene_symbol_source: str, hgnc_id: str, hgvsc: str, hgvsp: str, hgvs_offset: int32, impact: str, intron: str, lof: str, lof_flags: str, lof_filter: str, lof_info: str, mane_select: str, mane_plus_clinical: str, mirna: array<str>, protein_end: int32, protein_start: int32, protein_id: str, source: str, strand: int32, transcript_id: str, tsl: int32, uniprot_isoform: array<str>, variant_allele: str}>strfloat64strboolboolboolboolboolboolboolboolstrint32boolstrboolarray<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64float32float32float64float32float64float64float64float64
chr11:113409636["G","C"][(1,1.87e-03,534,0),(5,7.95e-06,628788,2),(0,0.00e+00,8,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,4,0),(1,2.56e-03,390,0),(0,NA,0,0),(0,0.00e+00,126,0),(0,0.00e+00,6,0),(0,NA,0,0),(0,0.00e+00,192,0),(1,2.92e-03,342,0),(0,NA,0,0),(0,0.00e+00,8,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,0.00e+00,152,0),(1,4.20e-03,238,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,36,0),(0,0.00e+00,90,0),(0,0.00e+00,2,0),(0,0.00e+00,4,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,6,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,0.00e+00,8,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,0.00e+00,26,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,0.00e+00,38,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,0.00e+00,74,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,0.00e+00,144,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,0.00e+00,180,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,NA,0,0),(0,0.00e+00,6,0),(0,0.00e+00,8,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,0.00e+00,222,0),(0,NA,0,0),(0,0.00e+00,6,0),(0,NA,0,0),(0,0.00e+00,6,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,0.00e+00,276,0),(0,0.00e+00,2,0),(0,0.00e+00,6,0),(0,NA,0,0),(0,0.00e+00,6,0),(0,NA,0,0),(0,0.00e+00,280,0),(0,0.00e+00,2,0),(0,0.00e+00,6,0),(0,NA,0,0),(0,0.00e+00,6,0),(0,NA,0,0),(0,0.00e+00,316,0),(0,0.00e+00,2,0),(0,0.00e+00,6,0),(0,NA,0,0),(0,0.00e+00,10,0),(1,2.56e-03,390,0),(0,0.00e+00,2,0),(0,0.00e+00,6,0),(0,NA,0,0),(0,0.00e+00,12,0),(0,0.00e+00,2,0),(0,0.00e+00,6,0),(0,NA,0,0),(0,0.00e+00,14,0),(0,0.00e+00,6,0),(0,NA,0,0),(0,0.00e+00,20,0),(0,0.00e+00,8,0),(0,0.00e+00,28,0),(0,0.00e+00,14,0),(0,0.00e+00,68,0),(0,0.00e+00,38,0),(0,0.00e+00,142,0),(0,0.00e+00,108,0),(0,0.00e+00,342,0),(0,0.00e+00,126,0),(0,0.00e+00,386,0),(1,1.87e-03,534,0),(5,7.95e-06,628784,2),(0,0.00e+00,8,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,4,0),(1,2.56e-03,390,0),(0,NA,0,0),(0,0.00e+00,126,0),(0,0.00e+00,6,0),(0,NA,0,0),(0,0.00e+00,192,0),(1,2.92e-03,342,0),(0,NA,0,0),(0,0.00e+00,8,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,0.00e+00,152,0),(1,4.20e-03,238,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,36,0),(0,0.00e+00,90,0),(0,0.00e+00,2,0),(0,0.00e+00,4,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,6,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,0.00e+00,8,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,0.00e+00,26,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,0.00e+00,26,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,0.00e+00,74,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,NA,0,0),(0,0.00e+00,6,0),(0,0.00e+00,8,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,0.00e+00,130,0),(0,0.00e+00,2,0),(0,0.00e+00,6,0),(0,NA,0,0),(0,0.00e+00,8,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,0.00e+00,144,0),(0,0.00e+00,2,0),(0,0.00e+00,6,0),(0,NA,0,0),(0,0.00e+00,10,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,0.00e+00,148,0),(0,0.00e+00,4,0),(0,0.00e+00,6,0),(0,NA,0,0),(0,0.00e+00,10,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,0.00e+00,222,0),(0,0.00e+00,8,0),(0,0.00e+00,6,0),(0,NA,0,0),(0,0.00e+00,20,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,0.00e+00,254,0),(0,0.00e+00,10,0),(0,NA,0,0),(0,0.00e+00,20,0),(0,NA,0,0),(0,0.00e+00,284,0),(0,0.00e+00,10,0),(0,NA,0,0),(0,0.00e+00,22,0),(0,NA,0,0),(0,0.00e+00,310,0),(0,0.00e+00,10,0),(0,NA,0,0),(0,0.00e+00,34,0),(1,2.56e-03,390,0),(0,0.00e+00,14,0),(0,NA,0,0),(0,0.00e+00,40,0),(0,0.00e+00,18,0),(0,NA,0,0),(0,0.00e+00,54,0),(0,0.00e+00,28,0),(0,0.00e+00,76,0),(0,0.00e+00,58,0),(0,0.00e+00,162,0),(0,0.00e+00,126,0),(0,0.00e+00,264,0),(0,0.00e+00,302,0)]NANANANANANANANANANA[(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]NANANANANANANANA1True{"rs200733424"}{}0.00e+006.00e+010.00e+005821.94e+01-2.11e+00[8,2,15,5]5.82e-01300.00e+006.00e+010.00e+005.41e-015821.94e+01-2.11e+00[8,2,15,5]5.82e-0130FalseFalseFalseFalseFalseFalseFalse4.51e+008.00e-01["ga4gh:VA.BlCz08hG7ZEQzvW20V8Kp4xJMx-pMKes","ga4gh:VA.U4eD7PXtXRCClN6FQteuMLA75Fi7VfV0"][113409635,113409635][113409636,113409636]["G","C"]"G/C"113409636".""chr11\t113409636\t.\tG\tC\t.\t.\tGT"NA"3_prime_UTR_variant"NANA"chr11"1134096361[(1,NA,NA,"protein_coding",NA,"CCDS8362.1",2412,2412,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000346454.7:c.*1091C>G",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"ENSP00000278597","Ensembl",-1,"ENST00000346454",1,["P14416-2"],"C"),(1,NA,"P2","protein_coding",1,"CCDS8361.1",2777,2777,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"8/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000362072.8:c.*1091C>G",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,"NM_000795.4",NA,NA,NA,NA,"ENSP00000354859","Ensembl",-1,"ENST00000362072",1,["P14416-1"],"C"),(1,NA,NA,"processed_transcript",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],4739,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000535984",3,NA,"C"),(1,NA,"A1","protein_coding",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],936,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"ENSP00000438215","Ensembl",-1,"ENST00000538967",5,["P14416-3"],"C"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],4228,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000540600",1,NA,"C"),(1,NA,"P2","protein_coding",NA,"CCDS8361.1",NA,NA,NA,NA,NA,["downstream_gene_variant"],277,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"ENSP00000442172","Ensembl",-1,"ENST00000542968",1,["P14416-1"],"C"),(1,NA,"A1","protein_coding",NA,NA,2453,2453,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000544518.5:c.*1091C>G",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"ENSP00000441068","Ensembl",-1,"ENST00000544518",1,NA,"C"),(1,NA,NA,"lncRNA",1,NA,NA,NA,NA,NA,NA,["intron_variant","non_coding_transcript_variant"],NA,NA,NA,NA,"ENSG00000256757",NA,NA,NA,NA,"ENST00000546284.1:n.245-1911G>C",NA,NA,"MODIFIER","2/3",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",1,"ENST00000546284",3,NA,"C"),(1,NA,NA,"protein_coding",1,NA,2777,2777,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"8/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_000795.4:c.*1091C>G",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,"ENST00000362072.8",NA,NA,NA,NA,"NP_000786.1","RefSeq",-1,"NM_000795.4",NA,NA,"C"),(1,NA,NA,"protein_coding",NA,NA,2690,2690,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"7/7",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_016574.4:c.*1091C>G",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"NP_057658.2","RefSeq",-1,"NM_016574.4",NA,NA,"C"),(1,NA,NA,"protein_coding",NA,NA,2505,2505,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"8/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","XM_017017296.2:c.*1091C>G",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"XP_016872785.1","RefSeq",-1,"XM_017017296.2",NA,NA,"C")]"SNV"4.51e+00"AS_MQ"FalseFalseFalseFalseFalseNATrueFalse"multi-snv"2False"snv"False[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,28,0,76,0,162,0,0,0,0,0,0,0,0,0,0,1]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,101,28,30,82,26,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][313709,2,2,0,442,0,76,0,162,0,0,0,0,0,0,0,0,0,0,1]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][240827,73298,103,28,30,82,26,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][2,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]008.46e+007.01e-01NA0.00e+002.00e-021.94e+00NANA
chr11:113409693["G","A"][(1,1.20e-03,834,0),(16,2.54e-05,628790,3),(0,0.00e+00,6,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,0.00e+00,444,0),(0,0.00e+00,6,0),(1,2.87e-03,348,0),(0,0.00e+00,20,0),(0,0.00e+00,4,0),(0,0.00e+00,270,0),(1,1.77e-03,564,0),(0,0.00e+00,4,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,0.00e+00,172,0),(0,0.00e+00,272,0),(0,0.00e+00,2,0),(0,0.00e+00,4,0),(0,0.00e+00,88,0),(1,3.85e-03,260,0),(0,0.00e+00,4,0),(0,0.00e+00,16,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,6,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,8,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,26,0),(0,0.00e+00,6,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,40,0),(0,0.00e+00,6,0),(0,0.00e+00,2,0),(0,0.00e+00,6,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,0.00e+00,78,0),(0,0.00e+00,2,0),(0,0.00e+00,6,0),(0,NA,0,0),(0,0.00e+00,6,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,0.00e+00,156,0),(0,0.00e+00,6,0),(0,0.00e+00,10,0),(0,NA,0,0),(0,0.00e+00,8,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,0.00e+00,208,0),(0,0.00e+00,8,0),(0,0.00e+00,10,0),(0,NA,0,0),(0,0.00e+00,12,0),(0,0.00e+00,6,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,0.00e+00,256,0),(0,0.00e+00,8,0),(0,0.00e+00,12,0),(0,NA,0,0),(0,0.00e+00,14,0),(0,0.00e+00,2,0),(0,0.00e+00,4,0),(0,0.00e+00,322,0),(0,0.00e+00,10,0),(0,0.00e+00,12,0),(0,NA,0,0),(0,0.00e+00,14,0),(0,0.00e+00,2,0),(0,0.00e+00,324,0),(0,0.00e+00,10,0),(0,0.00e+00,12,0),(0,NA,0,0),(0,0.00e+00,14,0),(0,0.00e+00,2,0),(0,0.00e+00,362,0),(0,0.00e+00,12,0),(0,0.00e+00,16,0),(0,NA,0,0),(0,0.00e+00,16,0),(0,0.00e+00,444,0),(0,0.00e+00,12,0),(0,0.00e+00,18,0),(0,NA,0,0),(0,0.00e+00,18,0),(0,0.00e+00,14,0),(0,0.00e+00,20,0),(0,NA,0,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,4,0),(0,0.00e+00,28,0),(0,0.00e+00,24,0),(0,0.00e+00,38,0),(0,0.00e+00,62,0),(0,0.00e+00,102,0),(0,0.00e+00,134,0),(0,0.00e+00,230,0),(1,3.21e-03,312,0),(1,1.81e-03,552,0),(1,2.87e-03,348,0),(1,1.62e-03,616,0),(1,1.20e-03,834,0),(16,2.54e-05,628784,3),(0,0.00e+00,6,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,0.00e+00,444,0),(0,0.00e+00,6,0),(1,2.87e-03,348,0),(0,0.00e+00,20,0),(0,0.00e+00,4,0),(0,0.00e+00,270,0),(1,1.77e-03,564,0),(0,0.00e+00,4,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,0.00e+00,172,0),(0,0.00e+00,272,0),(0,0.00e+00,2,0),(0,0.00e+00,4,0),(0,0.00e+00,88,0),(1,3.85e-03,260,0),(0,0.00e+00,4,0),(0,0.00e+00,16,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,6,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,8,0),(0,0.00e+00,4,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,26,0),(0,0.00e+00,6,0),(0,0.00e+00,4,0),(0,0.00e+00,6,0),(0,NA,0,0),(0,0.00e+00,6,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,26,0),(0,0.00e+00,6,0),(0,0.00e+00,4,0),(0,0.00e+00,6,0),(0,NA,0,0),(0,0.00e+00,6,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,0.00e+00,78,0),(0,0.00e+00,8,0),(0,0.00e+00,10,0),(0,NA,0,0),(0,0.00e+00,12,0),(0,0.00e+00,6,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,0.00e+00,140,0),(0,0.00e+00,14,0),(0,0.00e+00,12,0),(0,NA,0,0),(0,0.00e+00,14,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,0.00e+00,156,0),(0,0.00e+00,14,0),(0,0.00e+00,12,0),(0,NA,0,0),(0,0.00e+00,16,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,0.00e+00,162,0),(0,0.00e+00,14,0),(0,0.00e+00,12,0),(0,NA,0,0),(0,0.00e+00,16,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,0.00e+00,256,0),(0,0.00e+00,24,0),(0,0.00e+00,20,0),(0,NA,0,0),(0,0.00e+00,28,0),(0,0.00e+00,2,0),(0,0.00e+00,4,0),(0,0.00e+00,294,0),(0,0.00e+00,28,0),(0,NA,0,0),(0,0.00e+00,28,0),(0,0.00e+00,2,0),(0,0.00e+00,328,0),(0,0.00e+00,30,0),(0,NA,0,0),(0,0.00e+00,30,0),(0,0.00e+00,2,0),(0,0.00e+00,356,0),(0,0.00e+00,36,0),(0,NA,0,0),(0,0.00e+00,44,0),(0,0.00e+00,444,0),(0,0.00e+00,44,0),(0,NA,0,0),(0,0.00e+00,58,0),(0,0.00e+00,68,0),(0,0.00e+00,4,0),(0,0.00e+00,76,0),(0,0.00e+00,104,0),(0,0.00e+00,116,0),(1,5.15e-03,194,0),(0,0.00e+00,266,0),(1,2.87e-03,348,0),(1,2.31e-03,432,0),(1,2.02e-03,494,0)]12.87e-033480"nfe"12.87e-033480"nfe"[(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]NANANANANANANANA1TrueNA{}5.32e+006.00e+010.00e+008989.76e+000.00e+00[31,19,21,21]3.30e-01924.52e+006.00e+010.00e+001.00e+005538.01e+000.00e+00[31,19,15,15]3.30e-0169FalseFalseFalseFalseFalseFalseFalse5.16e+003.75e-01["ga4gh:VA.aXxME51cngsJBnH_3WX01B0Ms-SLay9X","ga4gh:VA.ynryFZCH9dBU67nwPrySbnukGdg_Y7dS"][113409692,113409692][113409693,113409693]["G","A"]"G/A"113409693".""chr11\t113409693\t.\tG\tA\t.\t.\tGT"NA"3_prime_UTR_variant"NANA"chr11"1134096931[(1,NA,NA,"protein_coding",NA,"CCDS8362.1",2355,2355,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000346454.7:c.*1034C>T",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"ENSP00000278597","Ensembl",-1,"ENST00000346454",1,["P14416-2"],"A"),(1,NA,"P2","protein_coding",1,"CCDS8361.1",2720,2720,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"8/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000362072.8:c.*1034C>T",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,"NM_000795.4",NA,NA,NA,NA,"ENSP00000354859","Ensembl",-1,"ENST00000362072",1,["P14416-1"],"A"),(1,NA,NA,"processed_transcript",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],4682,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000535984",3,NA,"A"),(1,NA,"A1","protein_coding",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],879,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"ENSP00000438215","Ensembl",-1,"ENST00000538967",5,["P14416-3"],"A"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],4171,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000540600",1,NA,"A"),(1,NA,"P2","protein_coding",NA,"CCDS8361.1",NA,NA,NA,NA,NA,["downstream_gene_variant"],220,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"ENSP00000442172","Ensembl",-1,"ENST00000542968",1,["P14416-1"],"A"),(1,NA,"A1","protein_coding",NA,NA,2396,2396,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000544518.5:c.*1034C>T",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"ENSP00000441068","Ensembl",-1,"ENST00000544518",1,NA,"A"),(1,NA,NA,"lncRNA",1,NA,NA,NA,NA,NA,NA,["intron_variant","non_coding_transcript_variant"],NA,NA,NA,NA,"ENSG00000256757",NA,NA,NA,NA,"ENST00000546284.1:n.245-1854G>A",NA,NA,"MODIFIER","2/3",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",1,"ENST00000546284",3,NA,"A"),(1,NA,NA,"protein_coding",1,NA,2720,2720,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"8/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_000795.4:c.*1034C>T",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,"ENST00000362072.8",NA,NA,NA,NA,"NP_000786.1","RefSeq",-1,"NM_000795.4",NA,NA,"A"),(1,NA,NA,"protein_coding",NA,NA,2633,2633,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"7/7",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_016574.4:c.*1034C>T",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"NP_057658.2","RefSeq",-1,"NM_016574.4",NA,NA,"A"),(1,NA,NA,"protein_coding",NA,NA,2448,2448,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"8/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","XM_017017296.2:c.*1034C>T",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"XP_016872785.1","RefSeq",-1,"XM_017017296.2",NA,NA,"A")]"SNV"5.16e+00"AS_MQ"FalseFalseFalseFalseFalseNATrueFalse"mixed"3False"snv"True[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,25,0,186,0,206,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,211,29,38,105,34,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][313080,4,2,0,906,6,189,2,206,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][240299,73676,214,29,38,105,34,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,3,0,0,1,5,3,1,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][8,4,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,1,1,2,0,1,0,1,0,0,4,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]009.08e+007.68e-01NA0.00e+000.00e+005.70e-01NANA
chr11:113409717["C","T"][(1,1.01e-03,990,0),(5,7.95e-06,628794,2),(0,0.00e+00,10,0),(0,0.00e+00,4,0),(0,0.00e+00,2,0),(0,0.00e+00,18,0),(0,0.00e+00,440,0),(0,0.00e+00,8,0),(1,2.17e-03,460,0),(0,0.00e+00,34,0),(0,0.00e+00,14,0),(0,0.00e+00,312,0),(1,1.47e-03,678,0),(0,0.00e+00,4,0),(0,0.00e+00,6,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,0.00e+00,6,0),(0,0.00e+00,12,0),(0,0.00e+00,170,0),(0,0.00e+00,270,0),(0,NA,0,0),(0,0.00e+00,8,0),(0,0.00e+00,122,0),(1,2.96e-03,338,0),(0,0.00e+00,8,0),(0,0.00e+00,26,0),(0,0.00e+00,2,0),(0,0.00e+00,12,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,6,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,8,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,0.00e+00,26,0),(0,0.00e+00,6,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,0.00e+00,4,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,0.00e+00,40,0),(0,0.00e+00,8,0),(0,0.00e+00,2,0),(0,0.00e+00,8,0),(0,0.00e+00,2,0),(0,0.00e+00,4,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,6,0),(0,0.00e+00,80,0),(0,0.00e+00,4,0),(0,0.00e+00,8,0),(0,0.00e+00,4,0),(0,0.00e+00,8,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,0.00e+00,12,0),(0,0.00e+00,156,0),(0,0.00e+00,10,0),(0,0.00e+00,12,0),(0,0.00e+00,4,0),(0,0.00e+00,10,0),(0,0.00e+00,4,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,0.00e+00,14,0),(0,0.00e+00,206,0),(0,0.00e+00,14,0),(0,0.00e+00,14,0),(0,0.00e+00,4,0),(0,0.00e+00,16,0),(0,0.00e+00,10,0),(0,0.00e+00,2,0),(0,0.00e+00,14,0),(0,0.00e+00,252,0),(0,0.00e+00,16,0),(0,0.00e+00,20,0),(0,0.00e+00,4,0),(0,0.00e+00,20,0),(0,0.00e+00,4,0),(0,0.00e+00,18,0),(0,0.00e+00,318,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,4,0),(0,0.00e+00,22,0),(0,0.00e+00,4,0),(0,0.00e+00,320,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,4,0),(0,0.00e+00,24,0),(0,0.00e+00,4,0),(0,0.00e+00,358,0),(0,0.00e+00,22,0),(0,0.00e+00,24,0),(0,0.00e+00,4,0),(0,0.00e+00,26,0),(0,0.00e+00,440,0),(0,0.00e+00,22,0),(0,0.00e+00,26,0),(0,0.00e+00,8,0),(0,0.00e+00,30,0),(0,0.00e+00,26,0),(0,0.00e+00,34,0),(0,0.00e+00,10,0),(0,0.00e+00,32,0),(0,0.00e+00,38,0),(0,0.00e+00,14,0),(0,0.00e+00,44,0),(0,0.00e+00,42,0),(0,0.00e+00,54,0),(0,0.00e+00,90,0),(0,0.00e+00,136,0),(0,0.00e+00,176,0),(0,0.00e+00,270,0),(0,0.00e+00,414,0),(0,0.00e+00,656,0),(1,2.17e-03,460,0),(0,0.00e+00,732,0),(1,1.01e-03,990,0),(3,4.77e-06,628784,1),(0,0.00e+00,10,0),(0,0.00e+00,4,0),(0,0.00e+00,2,0),(0,0.00e+00,18,0),(0,0.00e+00,440,0),(0,0.00e+00,8,0),(1,2.17e-03,460,0),(0,0.00e+00,34,0),(0,0.00e+00,14,0),(0,0.00e+00,312,0),(1,1.47e-03,678,0),(0,0.00e+00,4,0),(0,0.00e+00,6,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,0.00e+00,6,0),(0,0.00e+00,12,0),(0,0.00e+00,170,0),(0,0.00e+00,270,0),(0,NA,0,0),(0,0.00e+00,8,0),(0,0.00e+00,122,0),(1,2.96e-03,338,0),(0,0.00e+00,8,0),(0,0.00e+00,26,0),(0,0.00e+00,2,0),(0,0.00e+00,12,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,6,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,8,0),(0,0.00e+00,4,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,0.00e+00,4,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,0.00e+00,26,0),(0,0.00e+00,8,0),(0,0.00e+00,6,0),(0,0.00e+00,8,0),(0,0.00e+00,2,0),(0,0.00e+00,8,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,0.00e+00,26,0),(0,0.00e+00,8,0),(0,0.00e+00,6,0),(0,0.00e+00,8,0),(0,0.00e+00,2,0),(0,0.00e+00,8,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,6,0),(0,0.00e+00,80,0),(0,0.00e+00,16,0),(0,0.00e+00,12,0),(0,0.00e+00,4,0),(0,0.00e+00,14,0),(0,0.00e+00,10,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,0.00e+00,12,0),(0,0.00e+00,140,0),(0,0.00e+00,26,0),(0,0.00e+00,20,0),(0,0.00e+00,4,0),(0,0.00e+00,24,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,0.00e+00,14,0),(0,0.00e+00,156,0),(0,0.00e+00,28,0),(0,0.00e+00,20,0),(0,0.00e+00,4,0),(0,0.00e+00,28,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,0.00e+00,14,0),(0,0.00e+00,160,0),(0,0.00e+00,28,0),(0,0.00e+00,20,0),(0,0.00e+00,4,0),(0,0.00e+00,28,0),(0,0.00e+00,2,0),(0,0.00e+00,18,0),(0,0.00e+00,252,0),(0,0.00e+00,48,0),(0,0.00e+00,34,0),(0,0.00e+00,4,0),(0,0.00e+00,42,0),(0,0.00e+00,4,0),(0,0.00e+00,18,0),(0,0.00e+00,290,0),(0,0.00e+00,54,0),(0,0.00e+00,4,0),(0,0.00e+00,44,0),(0,0.00e+00,4,0),(0,0.00e+00,324,0),(0,0.00e+00,56,0),(0,0.00e+00,8,0),(0,0.00e+00,46,0),(0,0.00e+00,4,0),(0,0.00e+00,352,0),(0,0.00e+00,64,0),(0,0.00e+00,8,0),(0,0.00e+00,60,0),(0,0.00e+00,440,0),(0,0.00e+00,72,0),(0,0.00e+00,10,0),(0,0.00e+00,82,0),(0,0.00e+00,96,0),(0,0.00e+00,14,0),(0,0.00e+00,110,0),(0,0.00e+00,140,0),(0,0.00e+00,152,0),(0,0.00e+00,254,0),(0,0.00e+00,316,0),(1,2.17e-03,460,0),(0,0.00e+00,516,0),(0,0.00e+00,592,0)]12.17e-034600"nfe"12.17e-034600"nfe"[(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]NANANANANANANANA2TrueNA{}4.82e-166.00e+010.00e+002099.09e+008.42e-01[6,7,4,6]9.17e-01230.00e+006.00e+010.00e+002.67e-011781.05e+017.20e-02[6,7,3,5]1.00e+0017FalseFalseFalseFalseFalseFalseFalse6.19e+008.00e-01["ga4gh:VA.Q6p6okAv6qHSPSV8MOvy8Hhl0kZ6tQ4U","ga4gh:VA.WIfYWxgEc5ICUUByiDkxaU0AvS4kOB2-"][113409716,113409716][113409717,113409717]["C","T"]"C/T"113409717".""chr11\t113409717\t.\tC\tT\t.\t.\tGT"NA"3_prime_UTR_variant"NANA"chr11"1134097171[(1,NA,NA,"protein_coding",NA,"CCDS8362.1",2331,2331,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000346454.7:c.*1010G>A",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"ENSP00000278597","Ensembl",-1,"ENST00000346454",1,["P14416-2"],"T"),(1,NA,"P2","protein_coding",1,"CCDS8361.1",2696,2696,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"8/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000362072.8:c.*1010G>A",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,"NM_000795.4",NA,NA,NA,NA,"ENSP00000354859","Ensembl",-1,"ENST00000362072",1,["P14416-1"],"T"),(1,NA,NA,"processed_transcript",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],4658,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000535984",3,NA,"T"),(1,NA,"A1","protein_coding",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],855,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"ENSP00000438215","Ensembl",-1,"ENST00000538967",5,["P14416-3"],"T"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],4147,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000540600",1,NA,"T"),(1,NA,"P2","protein_coding",NA,"CCDS8361.1",NA,NA,NA,NA,NA,["downstream_gene_variant"],196,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"ENSP00000442172","Ensembl",-1,"ENST00000542968",1,["P14416-1"],"T"),(1,NA,"A1","protein_coding",NA,NA,2372,2372,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000544518.5:c.*1010G>A",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"ENSP00000441068","Ensembl",-1,"ENST00000544518",1,NA,"T"),(1,NA,NA,"lncRNA",1,NA,NA,NA,NA,NA,NA,["intron_variant","non_coding_transcript_variant"],NA,NA,NA,NA,"ENSG00000256757",NA,NA,NA,NA,"ENST00000546284.1:n.245-1830C>T",NA,NA,"MODIFIER","2/3",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",1,"ENST00000546284",3,NA,"T"),(1,NA,NA,"protein_coding",1,NA,2696,2696,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"8/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_000795.4:c.*1010G>A",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,"ENST00000362072.8",NA,NA,NA,NA,"NP_000786.1","RefSeq",-1,"NM_000795.4",NA,NA,"T"),(1,NA,NA,"protein_coding",NA,NA,2609,2609,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"7/7",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_016574.4:c.*1010G>A",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"NP_057658.2","RefSeq",-1,"NM_016574.4",NA,NA,"T"),(1,NA,NA,"protein_coding",NA,NA,2424,2424,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"8/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","XM_017017296.2:c.*1010G>A",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"XP_016872785.1","RefSeq",-1,"XM_017017296.2",NA,NA,"T")]"SNV"6.19e+00"AS_MQ"FalseFalseFalseFalseFalseNATrueFalse"multi-snv"2False"snv"False[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,95,0,197,0,202,0,0,0,0,0,0,0,1,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,286,30,40,105,34,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][313071,2,3,0,920,0,198,0,202,0,0,0,0,0,0,0,1,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][240226,73668,294,30,40,105,34,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][2,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]001.51e+011.40e+00NA0.00e+000.00e+001.05e+00NANA
chr11:113409758["C","T"][(1,1.23e-03,810,0),(4,6.36e-06,628786,1),(0,0.00e+00,12,0),(0,0.00e+00,4,0),(0,NA,0,0),(0,0.00e+00,14,0),(0,0.00e+00,424,0),(0,0.00e+00,2,0),(0,0.00e+00,320,0),(1,3.57e-02,28,0),(0,0.00e+00,6,0),(0,0.00e+00,280,0),(1,1.89e-03,530,0),(0,0.00e+00,6,0),(0,0.00e+00,6,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,0.00e+00,12,0),(0,0.00e+00,170,0),(0,0.00e+00,254,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,0.00e+00,92,0),(0,0.00e+00,228,0),(0,0.00e+00,6,0),(1,4.55e-02,22,0),(0,NA,0,0),(0,0.00e+00,6,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,8,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,10,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,26,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,0.00e+00,6,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,38,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,0.00e+00,8,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,0.00e+00,74,0),(0,0.00e+00,2,0),(1,1.00e-01,10,0),(0,NA,0,0),(0,0.00e+00,8,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,6,0),(0,0.00e+00,150,0),(0,0.00e+00,6,0),(1,8.33e-02,12,0),(0,NA,0,0),(0,0.00e+00,12,0),(0,0.00e+00,4,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,6,0),(0,0.00e+00,198,0),(0,0.00e+00,8,0),(1,7.14e-02,14,0),(0,NA,0,0),(0,0.00e+00,16,0),(0,0.00e+00,12,0),(0,0.00e+00,4,0),(0,0.00e+00,6,0),(0,0.00e+00,244,0),(0,0.00e+00,10,0),(1,5.56e-02,18,0),(0,0.00e+00,2,0),(0,0.00e+00,18,0),(0,0.00e+00,4,0),(0,0.00e+00,14,0),(0,0.00e+00,306,0),(0,0.00e+00,12,0),(1,5.56e-02,18,0),(0,0.00e+00,2,0),(0,0.00e+00,18,0),(0,0.00e+00,4,0),(0,0.00e+00,308,0),(0,0.00e+00,12,0),(1,5.56e-02,18,0),(0,0.00e+00,2,0),(0,0.00e+00,18,0),(0,0.00e+00,4,0),(0,0.00e+00,348,0),(0,0.00e+00,12,0),(1,5.00e-02,20,0),(0,0.00e+00,2,0),(0,0.00e+00,22,0),(0,0.00e+00,424,0),(0,0.00e+00,14,0),(1,4.55e-02,22,0),(0,0.00e+00,2,0),(0,0.00e+00,24,0),(0,0.00e+00,16,0),(1,3.57e-02,28,0),(0,0.00e+00,2,0),(0,0.00e+00,24,0),(0,0.00e+00,22,0),(0,0.00e+00,6,0),(0,0.00e+00,36,0),(0,0.00e+00,28,0),(0,0.00e+00,44,0),(0,0.00e+00,84,0),(1,8.33e-03,120,0),(0,0.00e+00,130,0),(1,4.27e-03,234,0),(0,0.00e+00,290,0),(1,1.92e-03,522,0),(0,0.00e+00,320,0),(1,1.70e-03,588,0),(1,1.23e-03,810,0),(4,6.36e-06,628784,1),(0,0.00e+00,12,0),(0,0.00e+00,4,0),(0,NA,0,0),(0,0.00e+00,14,0),(0,0.00e+00,424,0),(0,0.00e+00,2,0),(0,0.00e+00,320,0),(1,3.57e-02,28,0),(0,0.00e+00,6,0),(0,0.00e+00,280,0),(1,1.89e-03,530,0),(0,0.00e+00,6,0),(0,0.00e+00,6,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,0.00e+00,12,0),(0,0.00e+00,170,0),(0,0.00e+00,254,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,0.00e+00,92,0),(0,0.00e+00,228,0),(0,0.00e+00,6,0),(1,4.55e-02,22,0),(0,NA,0,0),(0,0.00e+00,6,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,8,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,10,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,0.00e+00,4,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,26,0),(0,0.00e+00,2,0),(0,0.00e+00,4,0),(0,0.00e+00,8,0),(0,NA,0,0),(0,0.00e+00,8,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,26,0),(0,0.00e+00,2,0),(0,0.00e+00,4,0),(0,0.00e+00,8,0),(0,NA,0,0),(0,0.00e+00,8,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,0.00e+00,74,0),(0,0.00e+00,8,0),(1,8.33e-02,12,0),(0,NA,0,0),(0,0.00e+00,14,0),(0,0.00e+00,12,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,6,0),(0,0.00e+00,134,0),(0,0.00e+00,16,0),(1,5.56e-02,18,0),(0,NA,0,0),(0,0.00e+00,18,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,6,0),(0,0.00e+00,150,0),(0,0.00e+00,16,0),(1,5.56e-02,18,0),(0,NA,0,0),(0,0.00e+00,22,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,6,0),(0,0.00e+00,156,0),(0,0.00e+00,16,0),(1,5.56e-02,18,0),(0,NA,0,0),(0,0.00e+00,22,0),(0,0.00e+00,4,0),(0,0.00e+00,14,0),(0,0.00e+00,244,0),(0,0.00e+00,32,0),(1,3.57e-02,28,0),(0,0.00e+00,2,0),(0,0.00e+00,36,0),(0,0.00e+00,4,0),(0,0.00e+00,14,0),(0,0.00e+00,280,0),(0,0.00e+00,38,0),(0,0.00e+00,2,0),(0,0.00e+00,36,0),(0,0.00e+00,4,0),(0,0.00e+00,312,0),(0,0.00e+00,46,0),(0,0.00e+00,2,0),(0,0.00e+00,38,0),(0,0.00e+00,4,0),(0,0.00e+00,342,0),(0,0.00e+00,48,0),(0,0.00e+00,2,0),(0,0.00e+00,50,0),(0,0.00e+00,424,0),(0,0.00e+00,60,0),(0,0.00e+00,2,0),(0,0.00e+00,62,0),(0,0.00e+00,86,0),(0,0.00e+00,6,0),(0,0.00e+00,92,0),(0,0.00e+00,106,0),(1,7.58e-03,132,0),(0,0.00e+00,178,0),(1,3.85e-03,260,0),(0,0.00e+00,320,0),(1,2.37e-03,422,0),(1,2.08e-03,480,0)]NANANANANANANANANANA[(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]NANANANANANANANA2True{"rs200557458"}{}0.00e+006.00e+010.00e+009471.26e+01-6.74e-01[16,19,18,22]7.22e-01750.00e+006.00e+010.00e+001.00e+007031.12e+01-1.13e+00[16,19,14,17]7.13e-0163FalseFalseFalseFalseFalseFalseFalse6.36e+005.00e-01["ga4gh:VA.k_gesWx8TbLs23MHIkc3NaVscBWVDrSE","ga4gh:VA.NJz3hsVBrqbTn17g5TCHVwOZKQSr_-gG"][113409757,113409757][113409758,113409758]["C","T"]"C/T"113409758".""chr11\t113409758\t.\tC\tT\t.\t.\tGT"NA"3_prime_UTR_variant"NANA"chr11"1134097581[(1,NA,NA,"protein_coding",NA,"CCDS8362.1",2290,2290,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000346454.7:c.*969G>A",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"ENSP00000278597","Ensembl",-1,"ENST00000346454",1,["P14416-2"],"T"),(1,NA,"P2","protein_coding",1,"CCDS8361.1",2655,2655,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"8/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000362072.8:c.*969G>A",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,"NM_000795.4",NA,NA,NA,NA,"ENSP00000354859","Ensembl",-1,"ENST00000362072",1,["P14416-1"],"T"),(1,NA,NA,"processed_transcript",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],4617,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000535984",3,NA,"T"),(1,NA,"A1","protein_coding",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],814,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"ENSP00000438215","Ensembl",-1,"ENST00000538967",5,["P14416-3"],"T"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],4106,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000540600",1,NA,"T"),(1,NA,"P2","protein_coding",NA,"CCDS8361.1",NA,NA,NA,NA,NA,["downstream_gene_variant"],155,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"ENSP00000442172","Ensembl",-1,"ENST00000542968",1,["P14416-1"],"T"),(1,NA,"A1","protein_coding",NA,NA,2331,2331,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000544518.5:c.*969G>A",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"ENSP00000441068","Ensembl",-1,"ENST00000544518",1,NA,"T"),(1,NA,NA,"lncRNA",1,NA,NA,NA,NA,NA,NA,["intron_variant","non_coding_transcript_variant"],NA,NA,NA,NA,"ENSG00000256757",NA,NA,NA,NA,"ENST00000546284.1:n.245-1789C>T",NA,NA,"MODIFIER","2/3",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",1,"ENST00000546284",3,NA,"T"),(1,NA,NA,"protein_coding",1,NA,2655,2655,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"8/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_000795.4:c.*969G>A",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,"ENST00000362072.8",NA,NA,NA,NA,"NP_000786.1","RefSeq",-1,"NM_000795.4",NA,NA,"T"),(1,NA,NA,"protein_coding",NA,NA,2568,2568,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"7/7",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_016574.4:c.*969G>A",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"NP_057658.2","RefSeq",-1,"NM_016574.4",NA,NA,"T"),(1,NA,NA,"protein_coding",NA,NA,2383,2383,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"8/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","XM_017017296.2:c.*969G>A",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"XP_016872785.1","RefSeq",-1,"XM_017017296.2",NA,NA,"T")]"SNV"6.36e+00"AS_MQ"FalseFalseFalseFalseFalseNATrueFalse"multi-snv"2False"snv"False[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,100,0,111,0,193,0,0,0,0,0,1,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,200,35,36,102,32,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][313441,3,2,1,640,0,111,1,193,0,0,0,0,0,1,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][240307,73671,209,36,36,102,32,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,1,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][1,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]009.13e+007.73e-01NA1.00e-023.00e-022.58e+00NANA
chr11:113410002["C","A"][(128,1.34e-01,952,15),(18463,2.94e-02,628994,6837),(0,0.00e+00,6,0),(17,1.93e-01,88,4),(0,0.00e+00,8,0),(2,5.00e-01,4,0),(3,1.88e-01,16,0),(0,NA,0,0),(101,1.30e-01,774,10),(5,1.39e-01,36,1),(0,0.00e+00,20,0),(58,1.39e-01,416,5),(70,1.31e-01,536,10),(0,NA,0,0),(0,0.00e+00,6,0),(8,1.60e-01,50,1),(9,2.37e-01,38,3),(0,0.00e+00,6,0),(0,0.00e+00,2,0),(0,NA,0,0),(2,5.00e-01,4,0),(2,3.33e-01,6,0),(1,1.00e-01,10,0),(0,NA,0,0),(0,NA,0,0),(47,1.37e-01,342,4),(54,1.25e-01,432,6),(1,1.67e-01,6,0),(4,1.33e-01,30,1),(0,0.00e+00,6,0),(0,0.00e+00,14,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,NA,0,0),(1,5.00e-01,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,NA,0,0),(1,5.00e-01,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(1,1.67e-01,6,0),(0,NA,0,0),(1,5.00e-01,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(1,1.25e-01,8,0),(0,NA,0,0),(1,5.00e-01,2,0),(0,NA,0,0),(0,NA,0,0),(1,5.00e-01,2,0),(1,5.00e-01,2,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,0.00e+00,2,0),(2,1.25e-01,16,0),(0,0.00e+00,2,0),(1,5.00e-01,2,0),(0,NA,0,0),(1,5.00e-01,2,0),(2,2.50e-01,8,0),(0,0.00e+00,4,0),(1,5.00e-01,2,0),(0,0.00e+00,2,0),(7,1.84e-01,38,1),(0,0.00e+00,6,0),(1,5.00e-01,2,0),(1,1.67e-01,6,0),(3,3.00e-01,10,0),(4,2.50e-01,16,1),(0,0.00e+00,6,0),(2,5.00e-01,4,0),(0,0.00e+00,2,0),(13,2.50e-01,52,3),(0,0.00e+00,8,0),(1,5.00e-01,2,0),(1,1.25e-01,8,0),(5,4.17e-01,12,1),(4,2.50e-01,16,1),(0,0.00e+00,12,0),(3,3.00e-01,10,0),(0,0.00e+00,6,0),(16,2.35e-01,68,4),(2,5.00e-01,4,0),(2,2.00e-01,10,0),(5,2.50e-01,20,1),(4,2.00e-01,20,1),(0,0.00e+00,14,0),(5,3.57e-01,14,1),(16,2.05e-01,78,4),(2,5.00e-01,4,0),(3,2.14e-01,14,0),(5,2.27e-01,22,1),(4,1.54e-01,26,1),(0,0.00e+00,14,0),(6,2.73e-01,22,1),(16,2.05e-01,78,4),(3,2.14e-01,14,0),(5,2.27e-01,22,1),(4,1.54e-01,26,1),(0,0.00e+00,14,0),(6,2.73e-01,22,1),(17,1.93e-01,88,4),(3,1.88e-01,16,0),(5,1.79e-01,28,1),(5,1.79e-01,28,1),(0,0.00e+00,16,0),(6,2.31e-01,26,1),(3,1.88e-01,16,0),(5,1.56e-01,32,1),(5,1.56e-01,32,1),(0,0.00e+00,20,0),(6,2.00e-01,30,1),(5,1.39e-01,36,1),(5,1.39e-01,36,1),(0,0.00e+00,20,0),(6,1.58e-01,38,1),(10,2.08e-01,48,2),(0,0.00e+00,20,0),(6,1.36e-01,44,1),(10,1.79e-01,56,2),(11,2.12e-01,52,2),(19,1.51e-01,126,4),(16,1.57e-01,102,2),(34,1.42e-01,240,4),(34,1.37e-01,248,4),(91,1.35e-01,674,9),(90,1.47e-01,614,11),(101,1.30e-01,774,10),(100,1.46e-01,684,12),(128,1.34e-01,952,15),(18256,2.90e-02,628782,6734),(0,0.00e+00,6,0),(17,1.93e-01,88,4),(0,0.00e+00,8,0),(2,5.00e-01,4,0),(3,1.88e-01,16,0),(0,NA,0,0),(101,1.30e-01,774,10),(5,1.39e-01,36,1),(0,0.00e+00,20,0),(58,1.39e-01,416,5),(70,1.31e-01,536,10),(0,NA,0,0),(0,0.00e+00,6,0),(8,1.60e-01,50,1),(9,2.37e-01,38,3),(0,0.00e+00,6,0),(0,0.00e+00,2,0),(0,NA,0,0),(2,5.00e-01,4,0),(2,3.33e-01,6,0),(1,1.00e-01,10,0),(0,NA,0,0),(0,NA,0,0),(47,1.37e-01,342,4),(54,1.25e-01,432,6),(1,1.67e-01,6,0),(4,1.33e-01,30,1),(0,0.00e+00,6,0),(0,0.00e+00,14,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,NA,0,0),(1,5.00e-01,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,NA,0,0),(1,5.00e-01,2,0),(0,NA,0,0),(0,NA,0,0),(1,5.00e-01,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(1,1.67e-01,6,0),(0,NA,0,0),(1,5.00e-01,2,0),(0,NA,0,0),(0,NA,0,0),(1,5.00e-01,2,0),(1,5.00e-01,2,0),(0,0.00e+00,2,0),(1,5.00e-01,2,0),(0,NA,0,0),(1,1.67e-01,6,0),(0,NA,0,0),(1,5.00e-01,2,0),(0,NA,0,0),(0,NA,0,0),(1,5.00e-01,2,0),(1,2.50e-01,4,0),(0,0.00e+00,2,0),(1,5.00e-01,2,0),(0,0.00e+00,2,0),(2,1.11e-01,18,0),(0,0.00e+00,4,0),(1,5.00e-01,2,0),(0,NA,0,0),(5,2.50e-01,20,1),(4,2.50e-01,16,1),(0,0.00e+00,6,0),(3,3.75e-01,8,0),(0,0.00e+00,6,0),(4,1.25e-01,32,1),(0,0.00e+00,6,0),(1,5.00e-01,2,0),(1,2.50e-01,4,0),(5,1.39e-01,36,1),(4,2.22e-01,18,1),(0,0.00e+00,10,0),(6,2.50e-01,24,1),(7,1.84e-01,38,1),(0,0.00e+00,8,0),(1,5.00e-01,2,0),(1,1.67e-01,6,0),(5,1.39e-01,36,1),(4,1.67e-01,24,1),(0,0.00e+00,12,0),(6,2.31e-01,26,1),(7,1.84e-01,38,1),(0,0.00e+00,8,0),(1,5.00e-01,2,0),(1,1.67e-01,6,0),(5,1.39e-01,36,1),(4,1.54e-01,26,1),(0,0.00e+00,12,0),(6,2.14e-01,28,1),(16,2.35e-01,68,4),(2,5.00e-01,4,0),(2,2.00e-01,10,0),(10,1.72e-01,58,2),(5,1.39e-01,36,1),(0,0.00e+00,14,0),(6,1.36e-01,44,1),(16,2.22e-01,72,4),(2,5.00e-01,4,0),(3,2.14e-01,14,0),(11,1.83e-01,60,2),(0,0.00e+00,16,0),(6,1.36e-01,44,1),(16,1.95e-01,82,4),(3,2.14e-01,14,0),(12,1.67e-01,72,2),(0,0.00e+00,18,0),(9,1.88e-01,48,2),(17,1.93e-01,88,4),(3,1.88e-01,16,0),(13,1.63e-01,80,2),(0,0.00e+00,20,0),(11,2.12e-01,52,2),(3,1.88e-01,16,0),(15,1.67e-01,90,3),(0,0.00e+00,20,0),(12,1.94e-01,62,2),(21,1.50e-01,140,4),(0,0.00e+00,20,0),(15,1.79e-01,84,2),(29,1.42e-01,204,4),(19,1.48e-01,128,3),(54,1.34e-01,402,6),(42,1.49e-01,282,6),(101,1.30e-01,774,10),(71,1.43e-01,498,10),(83,1.47e-01,564,11)]25.00e-0140"eas"25.00e-0140"eas"[(1.16e-01,1.08e-01),(0.00e+00,0.00e+00),(1.23e-01,1.01e-01),(8.88e-02,3.71e-02),(0.00e+00,0.00e+00),(1.10e-01,1.02e-01),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,(1.16e-01,1.08e-01),(0.00e+00,0.00e+00),(1.23e-01,1.01e-01),(8.88e-02,3.71e-02),(0.00e+00,0.00e+00),(1.10e-01,1.02e-01),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]1.23e-01"amr"1.02e-01"nfe"1.23e-01"amr"1.02e-01"nfe"1True{"rs6278"}{}2.80e+006.00e+010.00e+0019982391.99e+010.00e+00[19752,12842,45058,22649]9.83e-011002922.80e+006.00e+010.00e+001.00e+0019980921.99e+010.00e+00[19752,12842,45055,22646]9.83e-01100286FalseNANATrueFalseFalseFalse5.57e+007.33e-01["ga4gh:VA.HjAJ4gj43VVFJQmV-h5WuPZZPBmNwSFZ","ga4gh:VA.sT14AsCSWlf2AqH0whCJCrPrWiW09OFx"][113410001,113410001][113410002,113410002]["C","A"]"C/A"113410002".""chr11\t113410002\t.\tC\tA\t.\t.\tGT"NA"3_prime_UTR_variant"NANA"chr11"1134100021[(1,NA,NA,"protein_coding",NA,"CCDS8362.1",2046,2046,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000346454.7:c.*725G>T",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"ENSP00000278597","Ensembl",-1,"ENST00000346454",1,["P14416-2"],"A"),(1,NA,"P2","protein_coding",1,"CCDS8361.1",2411,2411,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"8/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000362072.8:c.*725G>T",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,"NM_000795.4",NA,NA,NA,NA,"ENSP00000354859","Ensembl",-1,"ENST00000362072",1,["P14416-1"],"A"),(1,NA,NA,"processed_transcript",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],4373,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000535984",3,NA,"A"),(1,NA,"A1","protein_coding",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],570,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"ENSP00000438215","Ensembl",-1,"ENST00000538967",5,["P14416-3"],"A"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],3862,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000540600",1,NA,"A"),(1,NA,"P2","protein_coding",NA,"CCDS8361.1",2378,2378,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000542968.5:c.*725G>T",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"ENSP00000442172","Ensembl",-1,"ENST00000542968",1,["P14416-1"],"A"),(1,NA,"A1","protein_coding",NA,NA,2087,2087,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000544518.5:c.*725G>T",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"ENSP00000441068","Ensembl",-1,"ENST00000544518",1,NA,"A"),(1,NA,NA,"lncRNA",1,NA,NA,NA,NA,NA,NA,["intron_variant","non_coding_transcript_variant"],NA,NA,NA,NA,"ENSG00000256757",NA,NA,NA,NA,"ENST00000546284.1:n.245-1545C>A",NA,NA,"MODIFIER","2/3",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",1,"ENST00000546284",3,NA,"A"),(1,NA,NA,"protein_coding",1,NA,2411,2411,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"8/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_000795.4:c.*725G>T",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,"ENST00000362072.8",NA,NA,NA,NA,"NP_000786.1","RefSeq",-1,"NM_000795.4",NA,NA,"A"),(1,NA,NA,"protein_coding",NA,NA,2324,2324,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"7/7",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_016574.4:c.*725G>T",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"NP_057658.2","RefSeq",-1,"NM_016574.4",NA,NA,"A"),(1,NA,NA,"protein_coding",NA,NA,2139,2139,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"8/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","XM_017017296.2:c.*725G>T",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"XP_016872785.1","RefSeq",-1,"XM_017017296.2",NA,NA,"A")]"SNV"5.57e+00"AS_MQ"TrueTrueFalseFalseFalseNATrueFalse"multi-snv"3False"snv"False[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,120,1,223,5,34,1,5,0,2,5,7,1,3,2,1,66]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,438,30,5,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,1,1,11,5,2,1,5,0,2,5,7,1,3,2,1,66]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,108,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,3,8,0,4,8,6,30,15,8,9,3,1,3,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][301848,5644,543,415,1889,1584,436,212,123,210,485,568,76,48,44,53,135,57,19,108]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][238198,75776,482,33,5,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][398,5642,541,415,716,1584,224,212,91,210,485,568,76,48,44,53,135,57,19,108]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][9330,2176,115,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,4,4,27,107,217,41,416,6,1084,414,43,1634,53,495,208,34,2,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,1,1,5,4,3,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,1,2,2,0,0,0]002.02e+009.23e-02NA0.00e+000.00e+001.61e+00NANA
chr11:113410657["C","T"][(18,1.25e-05,1445518,0),(24,1.64e-05,1461322,0),(1,3.02e-05,33096,0),(0,0.00e+00,44684,0),(0,0.00e+00,26010,0),(4,1.01e-04,39606,0),(0,0.00e+00,53166,0),(0,0.00e+00,4742,0),(10,9.10e-06,1098860,0),(1,1.67e-05,59762,0),(2,2.34e-05,85592,0),(12,1.65e-05,725392,0),(6,8.33e-06,720126,0),(1,5.24e-05,19098,0),(0,0.00e+00,13998,0),(0,0.00e+00,25658,0),(0,0.00e+00,19026,0),(0,0.00e+00,12572,0),(0,0.00e+00,13438,0),(4,1.94e-04,20642,0),(0,0.00e+00,18964,0),(0,0.00e+00,27516,0),(0,0.00e+00,25650,0),(0,0.00e+00,1942,0),(0,0.00e+00,2800,0),(6,1.06e-05,564798,0),(4,7.49e-06,534062,0),(1,3.18e-05,31454,0),(0,0.00e+00,28308,0),(0,0.00e+00,21712,0),(2,3.13e-05,63880,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,12,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,162,0),(0,0.00e+00,198,0),(0,0.00e+00,198,0),(0,0.00e+00,200,0),(0,0.00e+00,198,0),(0,0.00e+00,984,0),(0,0.00e+00,1000,0),(0,0.00e+00,994,0),(0,0.00e+00,1000,0),(0,0.00e+00,994,0),(0,0.00e+00,828,0),(0,0.00e+00,996,0),(0,0.00e+00,986,0),(0,0.00e+00,992,0),(0,0.00e+00,994,0),(0,0.00e+00,1976,0),(0,0.00e+00,2000,0),(0,0.00e+00,1984,0),(0,0.00e+00,1998,0),(0,0.00e+00,1992,0),(0,0.00e+00,1656,0),(0,0.00e+00,1988,0),(0,0.00e+00,1984,0),(0,0.00e+00,1976,0),(0,0.00e+00,1990,0),(0,0.00e+00,3952,0),(0,0.00e+00,4000,0),(0,0.00e+00,3978,0),(0,0.00e+00,3986,0),(0,0.00e+00,3984,0),(0,0.00e+00,3280,0),(0,0.00e+00,3970,0),(0,0.00e+00,3964,0),(0,0.00e+00,3962,0),(0,0.00e+00,3966,0),(0,0.00e+00,5692,0),(0,0.00e+00,5766,0),(0,0.00e+00,5732,0),(0,0.00e+00,5744,0),(0,0.00e+00,5740,0),(0,0.00e+00,4742,0),(0,0.00e+00,5714,0),(0,0.00e+00,5718,0),(0,0.00e+00,5716,0),(0,0.00e+00,5722,0),(0,0.00e+00,9872,0),(0,0.00e+00,9994,0),(0,0.00e+00,9944,0),(1,1.00e-04,9960,0),(0,0.00e+00,9938,0),(0,0.00e+00,9900,0),(0,0.00e+00,9894,0),(0,0.00e+00,9918,0),(0,0.00e+00,9912,0),(0,0.00e+00,19778,0),(0,0.00e+00,19982,0),(0,0.00e+00,19900,0),(1,5.02e-05,19940,0),(0,0.00e+00,19894,0),(0,0.00e+00,19780,0),(0,0.00e+00,19800,0),(0,0.00e+00,19830,0),(0,0.00e+00,19784,0),(0,0.00e+00,25850,0),(0,0.00e+00,26110,0),(0,0.00e+00,26010,0),(3,1.15e-04,26064,0),(0,0.00e+00,26006,0),(0,0.00e+00,25842,0),(0,0.00e+00,25870,0),(0,0.00e+00,25918,0),(0,0.00e+00,25850,0),(1,3.02e-05,33096,0),(0,0.00e+00,33450,0),(4,1.20e-04,33404,0),(0,0.00e+00,33316,0),(0,0.00e+00,33110,0),(0,0.00e+00,33158,0),(0,0.00e+00,33202,0),(0,0.00e+00,33108,0),(0,0.00e+00,39666,0),(4,1.01e-04,39606,0),(0,0.00e+00,39508,0),(0,0.00e+00,39258,0),(0,0.00e+00,39300,0),(1,2.54e-05,39374,0),(0,0.00e+00,39266,0),(0,0.00e+00,39964,0),(0,0.00e+00,39808,0),(0,0.00e+00,39554,0),(0,0.00e+00,39598,0),(1,2.52e-05,39670,0),(0,0.00e+00,39562,0),(0,0.00e+00,44684,0),(0,0.00e+00,44514,0),(0,0.00e+00,44226,0),(0,0.00e+00,44266,0),(1,2.25e-05,44352,0),(0,0.00e+00,44244,0),(0,0.00e+00,53166,0),(0,0.00e+00,52822,0),(1,1.89e-05,52870,0),(1,1.89e-05,52986,0),(0,0.00e+00,52850,0),(0,0.00e+00,59694,0),(1,1.67e-05,59762,0),(1,1.67e-05,59908,0),(0,0.00e+00,59748,0),(0,0.00e+00,85258,0),(2,2.34e-05,85592,0),(0,0.00e+00,85300,0),(0,0.00e+00,98824,0),(0,0.00e+00,98906,0),(1,5.06e-06,197618,0),(1,5.06e-06,197732,0),(4,1.01e-05,395192,0),(4,1.01e-05,395514,0),(7,7.08e-06,988108,0),(11,1.11e-05,988718,0),(10,9.10e-06,1098860,0),(13,1.18e-05,1099436,0),(11,1.76e-05,626724,0),(11,1.75e-05,628782,0),(1,5.67e-05,17648,0),(0,0.00e+00,43726,0),(0,0.00e+00,20972,0),(4,1.11e-04,36050,0),(0,0.00e+00,52892,0),(0,0.00e+00,3150,0),(4,1.14e-05,349876,0),(0,0.00e+00,32960,0),(2,2.88e-05,69450,0),(7,2.45e-05,285192,0),(4,1.17e-05,341532,0),(1,9.74e-05,10264,0),(0,0.00e+00,7384,0),(0,0.00e+00,25030,0),(0,0.00e+00,18696,0),(0,0.00e+00,9834,0),(0,0.00e+00,11138,0),(4,2.19e-04,18284,0),(0,0.00e+00,17766,0),(0,0.00e+00,27268,0),(0,0.00e+00,25624,0),(0,0.00e+00,1368,0),(0,0.00e+00,1782,0),(2,1.23e-05,162102,0),(2,1.07e-05,187774,0),(0,0.00e+00,16698,0),(0,0.00e+00,16262,0),(0,0.00e+00,14344,0),(2,3.63e-05,55106,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,12,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,152,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,998,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,994,0),(0,0.00e+00,764,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,992,0),(0,0.00e+00,1000,0),(0,0.00e+00,1998,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,1998,0),(0,0.00e+00,1992,0),(0,0.00e+00,1552,0),(0,0.00e+00,2000,0),(0,0.00e+00,1998,0),(0,0.00e+00,1986,0),(0,0.00e+00,1994,0),(0,0.00e+00,3988,0),(0,0.00e+00,4000,0),(0,0.00e+00,3998,0),(0,0.00e+00,3996,0),(0,0.00e+00,3984,0),(0,0.00e+00,3034,0),(0,0.00e+00,4000,0),(0,0.00e+00,3996,0),(0,0.00e+00,3976,0),(0,0.00e+00,3992,0),(0,0.00e+00,4136,0),(0,0.00e+00,4148,0),(0,0.00e+00,4146,0),(0,0.00e+00,4144,0),(0,0.00e+00,4130,0),(0,0.00e+00,3150,0),(0,0.00e+00,4148,0),(0,0.00e+00,4142,0),(0,0.00e+00,4124,0),(0,0.00e+00,4140,0),(0,0.00e+00,9974,0),(0,0.00e+00,9998,0),(0,0.00e+00,9994,0),(1,1.00e-04,9990,0),(0,0.00e+00,9938,0),(0,0.00e+00,10000,0),(0,0.00e+00,9966,0),(0,0.00e+00,9932,0),(0,0.00e+00,9974,0),(1,5.67e-05,17648,0),(0,0.00e+00,17688,0),(0,0.00e+00,17682,0),(1,5.66e-05,17680,0),(0,0.00e+00,17598,0),(0,0.00e+00,17684,0),(0,0.00e+00,17634,0),(0,0.00e+00,17590,0),(0,0.00e+00,17642,0),(0,0.00e+00,19994,0),(0,0.00e+00,19988,0),(1,5.00e-05,19986,0),(0,0.00e+00,19894,0),(0,0.00e+00,19986,0),(0,0.00e+00,19926,0),(0,0.00e+00,19888,0),(0,0.00e+00,19942,0),(0,0.00e+00,20976,0),(0,0.00e+00,20972,0),(1,4.77e-05,20970,0),(0,0.00e+00,20874,0),(0,0.00e+00,20970,0),(0,0.00e+00,20906,0),(0,0.00e+00,20866,0),(0,0.00e+00,20924,0),(0,0.00e+00,33088,0),(4,1.21e-04,33082,0),(0,0.00e+00,32938,0),(0,0.00e+00,33078,0),(0,0.00e+00,32960,0),(1,3.04e-05,32912,0),(0,0.00e+00,33000,0),(0,0.00e+00,36060,0),(4,1.11e-04,36050,0),(0,0.00e+00,35892,0),(0,0.00e+00,36046,0),(1,2.79e-05,35868,0),(0,0.00e+00,35962,0),(0,0.00e+00,39988,0),(0,0.00e+00,39810,0),(0,0.00e+00,39974,0),(1,2.51e-05,39776,0),(0,0.00e+00,39878,0),(0,0.00e+00,43726,0),(0,0.00e+00,43536,0),(0,0.00e+00,43712,0),(1,2.30e-05,43498,0),(0,0.00e+00,43608,0),(0,0.00e+00,52892,0),(0,0.00e+00,53106,0),(2,3.78e-05,52854,0),(0,0.00e+00,52980,0),(0,0.00e+00,69750,0),(2,2.88e-05,69450,0),(0,0.00e+00,69582,0),(1,1.00e-05,99946,0),(0,0.00e+00,99660,0),(3,1.50e-05,199866,0),(3,1.50e-05,199362,0),(4,1.14e-05,349876,0),(5,1.43e-05,348968,0),(6,1.50e-05,398694,0)]41.01e-04396060"eas"41.11e-04360500"eas"[(7.78e-06,6.42e-06),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(3.35e-05,1.99e-05),(0.00e+00,0.00e+00),(4.60e-06,3.36e-06),(3.88e-06,1.45e-06),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,(9.41e-06,6.88e-06),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(3.78e-05,2.24e-05),(0.00e+00,0.00e+00),(3.67e-06,1.80e-06),(4.78e-06,1.79e-06),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]3.35e-05"eas"1.99e-05"eas"3.78e-05"eas"2.24e-05"eas"3True{"rs200559334"}{}0.00e+006.00e+010.00e+00129921.27e+010.00e+00[543,53,386,37]7.04e-0110194.82e-166.00e+010.00e+001.00e+00128911.32e+01-3.90e-02[543,53,379,36]7.13e-01976FalseNANAFalseFalseFalseFalse9.14e+00-1.64e-05["ga4gh:VA.xwHxL6yO3I874HqhfGar1ZIaOp66ifsx","ga4gh:VA.eglRJIN5-izMH1peMx_9JvpakP8TCBXX"][113410656,113410656][113410657,113410657]["C","T"]"C/T"113410657".""chr11\t113410657\t.\tC\tT\t.\t.\tGT"NA"3_prime_UTR_variant"NANA"chr11"1134106571[(1,NA,NA,"protein_coding",NA,"CCDS8362.1",1391,1391,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000346454.7:c.*70G>A",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"ENSP00000278597","Ensembl",-1,"ENST00000346454",1,["P14416-2"],"T"),(1,NA,"P2","protein_coding",1,"CCDS8361.1",1756,1756,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"8/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000362072.8:c.*70G>A",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,"NM_000795.4",NA,NA,NA,NA,"ENSP00000354859","Ensembl",-1,"ENST00000362072",1,["P14416-1"],"T"),(1,NA,NA,"processed_transcript",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],3718,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000535984",3,NA,"T"),(1,NA,"A1","protein_coding",NA,NA,1408,1408,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"8/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000538967.5:c.*70G>A",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"ENSP00000438215","Ensembl",-1,"ENST00000538967",5,["P14416-3"],"T"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],4637,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000539420",3,NA,"T"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],3207,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000540600",1,NA,"T"),(1,NA,"P2","protein_coding",NA,"CCDS8361.1",1723,1723,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000542968.5:c.*70G>A",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"ENSP00000442172","Ensembl",-1,"ENST00000542968",1,["P14416-1"],"T"),(1,NA,"A1","protein_coding",NA,NA,1432,1432,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000544518.5:c.*70G>A",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"ENSP00000441068","Ensembl",-1,"ENST00000544518",1,NA,"T"),(1,NA,NA,"lncRNA",1,NA,NA,NA,NA,NA,NA,["intron_variant","non_coding_transcript_variant"],NA,NA,NA,NA,"ENSG00000256757",NA,NA,NA,NA,"ENST00000546284.1:n.245-890C>T",NA,NA,"MODIFIER","2/3",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",1,"ENST00000546284",3,NA,"T"),(1,NA,NA,"protein_coding",1,NA,1756,1756,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"8/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_000795.4:c.*70G>A",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,"ENST00000362072.8",NA,NA,NA,NA,"NP_000786.1","RefSeq",-1,"NM_000795.4",NA,NA,"T"),(1,NA,NA,"protein_coding",NA,NA,1669,1669,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"7/7",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_016574.4:c.*70G>A",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"NP_057658.2","RefSeq",-1,"NM_016574.4",NA,NA,"T"),(1,NA,NA,"protein_coding",NA,NA,1484,1484,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"8/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","XM_017017296.2:c.*70G>A",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"XP_016872785.1","RefSeq",-1,"XM_017017296.2",NA,NA,"T")]"SNV"9.14e+00"AS_MQ"FalseFalseFalseFalseFalseNATrueFalse"multi-snv"3False"snv"False[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,4430,0,32721,0,357851,0,60423,0,267316,0,0,0,0,0,0,18]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,29987,74977,120278,300405,170342,18935,3117,1021,684,644,577,507,353,258,173,112,77,60]0252[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,18]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,2,3,3,2,1,0,1,1,0,1,0,0,1,1,0,0,1]01[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,2,0,4,4,4,3,1,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][979,2,2487,1,8860,1,32722,0,357851,0,60423,0,267317,0,0,0,0,0,0,18]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][415,5663,30415,76214,120310,300505,170348,18947,3122,1023,686,644,577,507,353,258,173,112,77,60]0252[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][1,2,0,1,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,18]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,1,3,6,4,2,1,0,1,1,0,1,0,0,1,1,0,0,1]01[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,1,3,2,0,0,2,0,4,4,4,3,1,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][1,1,0,2,5,2,1,0,0,0]20[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]003.61e+002.42e-01NA0.00e+001.20e-01-4.68e-01NANA
chr11:113410658["G","A"][(23,1.59e-05,1448166,0),(23,1.57e-05,1461456,0),(0,0.00e+00,33180,0),(0,0.00e+00,44684,0),(1,3.84e-05,26038,0),(3,7.57e-05,39630,0),(0,0.00e+00,53152,0),(0,0.00e+00,4770,0),(17,1.54e-05,1101160,0),(1,1.67e-05,59860,0),(1,1.17e-05,85692,0),(14,1.93e-05,726896,0),(9,1.25e-05,721270,0),(0,0.00e+00,19144,0),(0,0.00e+00,14036,0),(0,0.00e+00,25658,0),(0,0.00e+00,19026,0),(1,7.95e-05,12586,0),(0,0.00e+00,13452,0),(2,9.68e-05,20662,0),(1,5.27e-05,18968,0),(0,0.00e+00,27504,0),(0,0.00e+00,25648,0),(0,0.00e+00,1952,0),(0,0.00e+00,2818,0),(10,1.77e-05,566134,0),(7,1.31e-05,535026,0),(0,0.00e+00,31512,0),(1,3.53e-05,28348,0),(1,4.60e-05,21744,0),(0,0.00e+00,63948,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,12,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,162,0),(0,0.00e+00,198,0),(0,0.00e+00,198,0),(0,0.00e+00,200,0),(0,0.00e+00,198,0),(0,0.00e+00,988,0),(0,0.00e+00,1000,0),(0,0.00e+00,996,0),(0,0.00e+00,1000,0),(0,0.00e+00,992,0),(0,0.00e+00,834,0),(0,0.00e+00,994,0),(0,0.00e+00,986,0),(0,0.00e+00,992,0),(0,0.00e+00,992,0),(0,0.00e+00,1980,0),(0,0.00e+00,1998,0),(0,0.00e+00,1988,0),(0,0.00e+00,1998,0),(0,0.00e+00,1990,0),(0,0.00e+00,1672,0),(0,0.00e+00,1986,0),(0,0.00e+00,1982,0),(0,0.00e+00,1980,0),(0,0.00e+00,1988,0),(0,0.00e+00,3964,0),(0,0.00e+00,3998,0),(0,0.00e+00,3980,0),(0,0.00e+00,3994,0),(0,0.00e+00,3980,0),(0,0.00e+00,3304,0),(0,0.00e+00,3972,0),(0,0.00e+00,3964,0),(0,0.00e+00,3972,0),(0,0.00e+00,3964,0),(0,0.00e+00,5712,0),(0,0.00e+00,5766,0),(0,0.00e+00,5738,0),(0,0.00e+00,5752,0),(0,0.00e+00,5740,0),(0,0.00e+00,4770,0),(0,0.00e+00,5718,0),(0,0.00e+00,5720,0),(0,0.00e+00,5728,0),(0,0.00e+00,5724,0),(0,0.00e+00,9908,0),(0,0.00e+00,9994,0),(0,0.00e+00,9950,0),(1,1.00e-04,9972,0),(0,0.00e+00,9942,0),(0,0.00e+00,9912,0),(0,0.00e+00,9904,0),(0,0.00e+00,9932,0),(0,0.00e+00,9920,0),(0,0.00e+00,19832,0),(0,0.00e+00,19980,0),(1,5.02e-05,19918,0),(2,1.00e-04,19956,0),(0,0.00e+00,19896,0),(1,5.05e-05,19818,0),(0,0.00e+00,19830,0),(0,0.00e+00,19858,0),(0,0.00e+00,19820,0),(0,0.00e+00,25916,0),(0,0.00e+00,26110,0),(1,3.84e-05,26038,0),(3,1.15e-04,26082,0),(0,0.00e+00,25998,0),(1,3.86e-05,25884,0),(0,0.00e+00,25910,0),(0,0.00e+00,25962,0),(1,3.86e-05,25892,0),(0,0.00e+00,33180,0),(0,0.00e+00,33452,0),(3,8.98e-05,33420,0),(0,0.00e+00,33304,0),(1,3.02e-05,33160,0),(0,0.00e+00,33206,0),(0,0.00e+00,33254,0),(1,3.02e-05,33158,0),(0,0.00e+00,39670,0),(3,7.57e-05,39630,0),(0,0.00e+00,39492,0),(1,2.54e-05,39322,0),(0,0.00e+00,39360,0),(1,2.54e-05,39426,0),(1,2.54e-05,39326,0),(0,0.00e+00,39968,0),(0,0.00e+00,39792,0),(1,2.52e-05,39622,0),(0,0.00e+00,39658,0),(1,2.52e-05,39722,0),(1,2.52e-05,39620,0),(0,0.00e+00,44684,0),(0,0.00e+00,44492,0),(1,2.26e-05,44294,0),(0,0.00e+00,44340,0),(1,2.25e-05,44416,0),(1,2.26e-05,44306,0),(0,0.00e+00,53152,0),(1,1.89e-05,52914,0),(0,0.00e+00,52958,0),(1,1.88e-05,53060,0),(1,1.89e-05,52926,0),(1,1.67e-05,59796,0),(1,1.67e-05,59860,0),(1,1.67e-05,59994,0),(1,1.67e-05,59832,0),(1,1.17e-05,85402,0),(1,1.17e-05,85692,0),(1,1.17e-05,85434,0),(2,2.02e-05,99006,0),(1,1.01e-05,99072,0),(4,2.02e-05,198028,0),(4,2.02e-05,198104,0),(9,2.27e-05,396076,0),(5,1.26e-05,396306,0),(15,1.51e-05,990236,0),(15,1.51e-05,990630,0),(17,1.54e-05,1101160,0),(19,1.72e-05,1101514,0),(14,2.23e-05,626744,0),(14,2.23e-05,628782,0),(0,0.00e+00,17650,0),(0,0.00e+00,43720,0),(1,4.77e-05,20968,0),(1,2.77e-05,36050,0),(0,0.00e+00,52878,0),(0,0.00e+00,3172,0),(10,2.86e-05,349848,0),(1,3.03e-05,32968,0),(1,1.44e-05,69490,0),(8,2.81e-05,285194,0),(6,1.76e-05,341550,0),(0,0.00e+00,10264,0),(0,0.00e+00,7386,0),(0,0.00e+00,25026,0),(0,0.00e+00,18694,0),(1,1.02e-04,9832,0),(0,0.00e+00,11136,0),(0,0.00e+00,18284,0),(1,5.63e-05,17766,0),(0,0.00e+00,27256,0),(0,0.00e+00,25622,0),(0,0.00e+00,1376,0),(0,0.00e+00,1796,0),(6,3.70e-05,162104,0),(4,2.13e-05,187744,0),(0,0.00e+00,16698,0),(1,6.15e-05,16270,0),(1,6.97e-05,14354,0),(0,0.00e+00,55136,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,12,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,152,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,998,0),(0,0.00e+00,1000,0),(0,0.00e+00,998,0),(0,0.00e+00,1000,0),(0,0.00e+00,992,0),(0,0.00e+00,766,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,992,0),(0,0.00e+00,1000,0),(0,0.00e+00,1998,0),(0,0.00e+00,1998,0),(0,0.00e+00,1996,0),(0,0.00e+00,1998,0),(0,0.00e+00,1990,0),(0,0.00e+00,1568,0),(0,0.00e+00,2000,0),(0,0.00e+00,1998,0),(0,0.00e+00,1988,0),(0,0.00e+00,1994,0),(0,0.00e+00,3986,0),(0,0.00e+00,3998,0),(0,0.00e+00,3994,0),(0,0.00e+00,3996,0),(0,0.00e+00,3980,0),(0,0.00e+00,3054,0),(0,0.00e+00,4000,0),(0,0.00e+00,3996,0),(0,0.00e+00,3982,0),(0,0.00e+00,3992,0),(0,0.00e+00,4134,0),(0,0.00e+00,4146,0),(0,0.00e+00,4142,0),(0,0.00e+00,4144,0),(0,0.00e+00,4126,0),(0,0.00e+00,3172,0),(0,0.00e+00,4148,0),(0,0.00e+00,4142,0),(0,0.00e+00,4130,0),(0,0.00e+00,4140,0),(0,0.00e+00,9972,0),(0,0.00e+00,9996,0),(0,0.00e+00,9990,0),(0,0.00e+00,9990,0),(0,0.00e+00,9944,0),(0,0.00e+00,9998,0),(0,0.00e+00,9968,0),(0,0.00e+00,9946,0),(0,0.00e+00,9974,0),(0,0.00e+00,17650,0),(0,0.00e+00,17686,0),(1,5.66e-05,17680,0),(1,5.66e-05,17678,0),(0,0.00e+00,17600,0),(0,0.00e+00,17686,0),(0,0.00e+00,17636,0),(0,0.00e+00,17610,0),(0,0.00e+00,17638,0),(0,0.00e+00,19990,0),(1,5.00e-05,19984,0),(1,5.00e-05,19984,0),(0,0.00e+00,19898,0),(0,0.00e+00,19986,0),(0,0.00e+00,19930,0),(0,0.00e+00,19912,0),(0,0.00e+00,19940,0),(0,0.00e+00,20970,0),(1,4.77e-05,20968,0),(1,4.77e-05,20968,0),(0,0.00e+00,20880,0),(0,0.00e+00,20970,0),(0,0.00e+00,20908,0),(0,0.00e+00,20890,0),(0,0.00e+00,20922,0),(0,0.00e+00,33082,0),(1,3.02e-05,33080,0),(0,0.00e+00,32926,0),(0,0.00e+00,33078,0),(1,3.03e-05,32968,0),(1,3.04e-05,32938,0),(0,0.00e+00,33000,0),(0,0.00e+00,36054,0),(1,2.77e-05,36050,0),(0,0.00e+00,35882,0),(0,0.00e+00,36048,0),(1,2.79e-05,35896,0),(0,0.00e+00,35960,0),(0,0.00e+00,39982,0),(0,0.00e+00,39794,0),(0,0.00e+00,39976,0),(1,2.51e-05,39804,0),(0,0.00e+00,39878,0),(0,0.00e+00,43720,0),(0,0.00e+00,43514,0),(0,0.00e+00,43712,0),(1,2.30e-05,43532,0),(0,0.00e+00,43608,0),(0,0.00e+00,52878,0),(0,0.00e+00,53108,0),(1,1.89e-05,52890,0),(0,0.00e+00,52980,0),(0,0.00e+00,69748,0),(1,1.44e-05,69490,0),(0,0.00e+00,69590,0),(1,1.00e-05,99940,0),(0,0.00e+00,99680,0),(4,2.00e-05,199860,0),(1,5.02e-06,199386,0),(10,2.86e-05,349848,0),(7,2.01e-05,348992,0),(7,1.76e-05,398714,0)]37.57e-05396300"eas"102.86e-053498480"nfe"[(1.06e-05,8.83e-06),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(2.01e-05,1.06e-05),(0.00e+00,0.00e+00),(9.40e-06,7.69e-06),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,(1.30e-05,1.01e-05),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(1.54e-05,1.15e-05),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]2.01e-05"eas"1.06e-05"eas"1.54e-05"nfe"1.15e-05"nfe"1True{"rs201475538"}{}8.65e-016.00e+010.00e+001428051.36e+01-1.80e-02[4798,567,4576,579]6.27e-01105181.55e+006.00e+010.00e+001.00e+00191891.44e+011.34e-01[4798,567,588,57]8.94e-011334FalseNANAFalseFalseFalseFalse6.96e+00-1.57e-05["ga4gh:VA.3n-gYs3xsspnxwI91EMCEDsIcrj9bIqO","ga4gh:VA.9Y9GDmOWCTqMks8dsNx1IJY-TlI1AbW8"][113410657,113410657][113410658,113410658]["G","A"]"G/A"113410658".""chr11\t113410658\t.\tG\tA\t.\t.\tGT"NA"3_prime_UTR_variant"NANA"chr11"1134106581[(1,NA,NA,"protein_coding",NA,"CCDS8362.1",1390,1390,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000346454.7:c.*69C>T",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"ENSP00000278597","Ensembl",-1,"ENST00000346454",1,["P14416-2"],"A"),(1,NA,"P2","protein_coding",1,"CCDS8361.1",1755,1755,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"8/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000362072.8:c.*69C>T",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,"NM_000795.4",NA,NA,NA,NA,"ENSP00000354859","Ensembl",-1,"ENST00000362072",1,["P14416-1"],"A"),(1,NA,NA,"processed_transcript",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],3717,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000535984",3,NA,"A"),(1,NA,"A1","protein_coding",NA,NA,1407,1407,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"8/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000538967.5:c.*69C>T",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"ENSP00000438215","Ensembl",-1,"ENST00000538967",5,["P14416-3"],"A"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],4636,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000539420",3,NA,"A"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],3206,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000540600",1,NA,"A"),(1,NA,"P2","protein_coding",NA,"CCDS8361.1",1722,1722,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000542968.5:c.*69C>T",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"ENSP00000442172","Ensembl",-1,"ENST00000542968",1,["P14416-1"],"A"),(1,NA,"A1","protein_coding",NA,NA,1431,1431,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000544518.5:c.*69C>T",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"ENSP00000441068","Ensembl",-1,"ENST00000544518",1,NA,"A"),(1,NA,NA,"lncRNA",1,NA,NA,NA,NA,NA,NA,["intron_variant","non_coding_transcript_variant"],NA,NA,NA,NA,"ENSG00000256757",NA,NA,NA,NA,"ENST00000546284.1:n.245-889G>A",NA,NA,"MODIFIER","2/3",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",1,"ENST00000546284",3,NA,"A"),(1,NA,NA,"protein_coding",1,NA,1755,1755,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"8/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_000795.4:c.*69C>T",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,"ENST00000362072.8",NA,NA,NA,NA,"NP_000786.1","RefSeq",-1,"NM_000795.4",NA,NA,"A"),(1,NA,NA,"protein_coding",NA,NA,1668,1668,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"7/7",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_016574.4:c.*69C>T",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"NP_057658.2","RefSeq",-1,"NM_016574.4",NA,NA,"A"),(1,NA,NA,"protein_coding",NA,NA,1483,1483,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"8/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","XM_017017296.2:c.*69C>T",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"XP_016872785.1","RefSeq",-1,"XM_017017296.2",NA,NA,"A")]"SNV"6.96e+00"AS_MQ"FalseFalseFalseFalseFalseNATrueFalse"multi-snv"2False"snv"False[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,4183,2,30033,1,354765,0,58262,0,276721,0,0,0,1,0,0,115]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,26988,70993,120130,305542,173013,19471,3177,1036,688,647,582,509,357,257,172,116,78,62]0265[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,21]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,1,2,4,3,4,1,1,0,0,1,0,1,0,0,0,2,0,1]02[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,2,0,1,0,3,3,8,5,0,1,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][886,4,2000,0,7936,2,30033,1,354765,1,58262,0,276721,0,0,0,1,0,0,116]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][362,4790,27388,71922,120182,305624,173020,19481,3184,1039,690,648,582,509,357,257,172,116,78,62]0265[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,21]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,1,2,4,3,4,1,1,0,0,1,0,1,0,0,0,2,0,1]02[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,2,0,1,0,3,3,8,5,0,1,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,1,1,5,3,2,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]002.90e+001.80e-01NA0.00e+005.00e-027.10e-02NANA
chr11:113410658["G","T"][(94,6.49e-05,1448162,0),(105,7.18e-05,1461456,0),(24,7.23e-04,33180,0),(4,8.95e-05,44684,0),(0,0.00e+00,26038,0),(0,0.00e+00,39630,0),(58,1.09e-03,53152,0),(2,4.19e-04,4770,0),(0,0.00e+00,1101156,0),(6,1.00e-04,59860,0),(0,0.00e+00,85692,0),(44,6.05e-05,726894,0),(50,6.93e-05,721268,0),(11,5.75e-04,19144,0),(13,9.26e-04,14036,0),(2,7.79e-05,25658,0),(2,1.05e-04,19026,0),(0,0.00e+00,12586,0),(0,0.00e+00,13452,0),(0,0.00e+00,20662,0),(0,0.00e+00,18968,0),(27,9.82e-04,27504,0),(31,1.21e-03,25648,0),(0,0.00e+00,1952,0),(2,7.10e-04,2818,0),(0,0.00e+00,566132,0),(0,0.00e+00,535024,0),(4,1.27e-04,31512,0),(2,7.06e-05,28348,0),(0,0.00e+00,21744,0),(0,0.00e+00,63948,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,12,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,162,0),(0,0.00e+00,198,0),(0,0.00e+00,198,0),(0,0.00e+00,200,0),(0,0.00e+00,198,0),(1,1.01e-03,988,0),(0,0.00e+00,1000,0),(0,0.00e+00,996,0),(0,0.00e+00,1000,0),(4,4.03e-03,992,0),(2,2.40e-03,834,0),(0,0.00e+00,994,0),(0,0.00e+00,986,0),(0,0.00e+00,992,0),(0,0.00e+00,992,0),(2,1.01e-03,1980,0),(0,0.00e+00,1998,0),(0,0.00e+00,1988,0),(0,0.00e+00,1998,0),(6,3.02e-03,1990,0),(2,1.20e-03,1672,0),(0,0.00e+00,1986,0),(0,0.00e+00,1982,0),(0,0.00e+00,1980,0),(0,0.00e+00,1988,0),(4,1.01e-03,3964,0),(0,0.00e+00,3998,0),(0,0.00e+00,3980,0),(0,0.00e+00,3994,0),(8,2.01e-03,3980,0),(2,6.05e-04,3304,0),(0,0.00e+00,3972,0),(0,0.00e+00,3964,0),(0,0.00e+00,3972,0),(0,0.00e+00,3964,0),(6,1.05e-03,5712,0),(0,0.00e+00,5766,0),(0,0.00e+00,5738,0),(0,0.00e+00,5752,0),(9,1.57e-03,5740,0),(2,4.19e-04,4770,0),(0,0.00e+00,5718,0),(0,0.00e+00,5720,0),(0,0.00e+00,5728,0),(0,0.00e+00,5724,0),(9,9.08e-04,9908,0),(0,0.00e+00,9994,0),(0,0.00e+00,9950,0),(0,0.00e+00,9972,0),(13,1.31e-03,9942,0),(0,0.00e+00,9912,0),(3,3.03e-04,9904,0),(0,0.00e+00,9932,0),(1,1.01e-04,9920,0),(18,9.08e-04,19832,0),(0,0.00e+00,19980,0),(0,0.00e+00,19918,0),(0,0.00e+00,19956,0),(23,1.16e-03,19896,0),(0,0.00e+00,19818,0),(3,1.51e-04,19830,0),(0,0.00e+00,19858,0),(3,1.51e-04,19820,0),(22,8.49e-04,25916,0),(2,7.66e-05,26110,0),(0,0.00e+00,26038,0),(0,0.00e+00,26082,0),(29,1.12e-03,25998,0),(0,0.00e+00,25884,0),(3,1.16e-04,25910,0),(0,0.00e+00,25962,0),(5,1.93e-04,25892,0),(24,7.23e-04,33180,0),(2,5.98e-05,33452,0),(0,0.00e+00,33420,0),(35,1.05e-03,33304,0),(0,0.00e+00,33160,0),(4,1.20e-04,33206,0),(0,0.00e+00,33254,0),(6,1.81e-04,33158,0),(4,1.01e-04,39670,0),(0,0.00e+00,39630,0),(44,1.11e-03,39492,0),(0,0.00e+00,39322,0),(4,1.02e-04,39360,0),(0,0.00e+00,39426,0),(7,1.78e-04,39326,0),(4,1.00e-04,39968,0),(44,1.11e-03,39792,0),(0,0.00e+00,39622,0),(4,1.01e-04,39658,0),(0,0.00e+00,39722,0),(7,1.77e-04,39620,0),(4,8.95e-05,44684,0),(48,1.08e-03,44492,0),(0,0.00e+00,44294,0),(4,9.02e-05,44340,0),(0,0.00e+00,44416,0),(7,1.58e-04,44306,0),(58,1.09e-03,53152,0),(0,0.00e+00,52914,0),(4,7.55e-05,52958,0),(0,0.00e+00,53060,0),(7,1.32e-04,52926,0),(0,0.00e+00,59796,0),(6,1.00e-04,59860,0),(0,0.00e+00,59994,0),(7,1.17e-04,59832,0),(0,0.00e+00,85402,0),(0,0.00e+00,85692,0),(10,1.17e-04,85434,0),(0,0.00e+00,99006,0),(10,1.01e-04,99072,0),(0,0.00e+00,198028,0),(21,1.06e-04,198104,0),(0,0.00e+00,396074,0),(31,7.82e-05,396304,0),(0,0.00e+00,990232,0),(70,7.07e-05,990628,0),(0,0.00e+00,1101156,0),(75,6.81e-05,1101512,0),(85,1.36e-04,626744,0),(87,1.38e-04,628782,0),(15,8.50e-04,17650,0),(4,9.15e-05,43720,0),(0,0.00e+00,20968,0),(0,0.00e+00,36050,0),(58,1.10e-03,52878,0),(2,6.31e-04,3172,0),(0,0.00e+00,349848,0),(6,1.82e-04,32968,0),(0,0.00e+00,69490,0),(39,1.37e-04,285194,0),(46,1.35e-04,341550,0),(6,5.85e-04,10264,0),(9,1.22e-03,7386,0),(2,7.99e-05,25026,0),(2,1.07e-04,18694,0),(0,0.00e+00,9832,0),(0,0.00e+00,11136,0),(0,0.00e+00,18284,0),(0,0.00e+00,17766,0),(27,9.91e-04,27256,0),(31,1.21e-03,25622,0),(0,0.00e+00,1376,0),(2,1.11e-03,1796,0),(0,0.00e+00,162104,0),(0,0.00e+00,187744,0),(4,2.40e-04,16698,0),(2,1.23e-04,16270,0),(0,0.00e+00,14354,0),(0,0.00e+00,55136,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,12,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(1,6.58e-03,152,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(1,1.00e-03,998,0),(0,0.00e+00,1000,0),(0,0.00e+00,998,0),(0,0.00e+00,1000,0),(4,4.03e-03,992,0),(2,2.61e-03,766,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,992,0),(0,0.00e+00,1000,0),(3,1.50e-03,1998,0),(0,0.00e+00,1998,0),(0,0.00e+00,1996,0),(0,0.00e+00,1998,0),(6,3.02e-03,1990,0),(2,1.28e-03,1568,0),(0,0.00e+00,2000,0),(0,0.00e+00,1998,0),(0,0.00e+00,1988,0),(0,0.00e+00,1994,0),(4,1.00e-03,3986,0),(0,0.00e+00,3998,0),(0,0.00e+00,3994,0),(0,0.00e+00,3996,0),(8,2.01e-03,3980,0),(2,6.55e-04,3054,0),(0,0.00e+00,4000,0),(1,2.50e-04,3996,0),(0,0.00e+00,3982,0),(0,0.00e+00,3992,0),(4,9.68e-04,4134,0),(0,0.00e+00,4146,0),(0,0.00e+00,4142,0),(0,0.00e+00,4144,0),(8,1.94e-03,4126,0),(2,6.31e-04,3172,0),(0,0.00e+00,4148,0),(1,2.41e-04,4142,0),(0,0.00e+00,4130,0),(0,0.00e+00,4140,0),(10,1.00e-03,9972,0),(0,0.00e+00,9996,0),(0,0.00e+00,9990,0),(0,0.00e+00,9990,0),(13,1.31e-03,9944,0),(0,0.00e+00,9998,0),(3,3.01e-04,9968,0),(0,0.00e+00,9946,0),(4,4.01e-04,9974,0),(15,8.50e-04,17650,0),(0,0.00e+00,17686,0),(0,0.00e+00,17680,0),(0,0.00e+00,17678,0),(20,1.14e-03,17600,0),(0,0.00e+00,17686,0),(4,2.27e-04,17636,0),(0,0.00e+00,17610,0),(6,3.40e-04,17638,0),(0,0.00e+00,19990,0),(0,0.00e+00,19984,0),(0,0.00e+00,19984,0),(23,1.16e-03,19898,0),(0,0.00e+00,19986,0),(4,2.01e-04,19930,0),(0,0.00e+00,19912,0),(6,3.01e-04,19940,0),(1,4.77e-05,20970,0),(0,0.00e+00,20968,0),(0,0.00e+00,20968,0),(24,1.15e-03,20880,0),(0,0.00e+00,20970,0),(4,1.91e-04,20908,0),(0,0.00e+00,20890,0),(6,2.87e-04,20922,0),(2,6.05e-05,33082,0),(0,0.00e+00,33080,0),(35,1.06e-03,32926,0),(0,0.00e+00,33078,0),(6,1.82e-04,32968,0),(0,0.00e+00,32938,0),(7,2.12e-04,33000,0),(2,5.55e-05,36054,0),(0,0.00e+00,36050,0),(41,1.14e-03,35882,0),(0,0.00e+00,36048,0),(0,0.00e+00,35896,0),(7,1.95e-04,35960,0),(4,1.00e-04,39982,0),(44,1.11e-03,39794,0),(0,0.00e+00,39976,0),(0,0.00e+00,39804,0),(9,2.26e-04,39878,0),(4,9.15e-05,43720,0),(48,1.10e-03,43514,0),(0,0.00e+00,43712,0),(0,0.00e+00,43532,0),(10,2.29e-04,43608,0),(58,1.10e-03,52878,0),(0,0.00e+00,53108,0),(0,0.00e+00,52890,0),(11,2.08e-04,52980,0),(0,0.00e+00,69748,0),(0,0.00e+00,69490,0),(15,2.16e-04,69590,0),(0,0.00e+00,99940,0),(21,2.11e-04,99680,0),(0,0.00e+00,199860,0),(29,1.45e-04,199386,0),(0,0.00e+00,349848,0),(50,1.43e-04,348992,0),(56,1.40e-04,398714,0)]247.23e-04331800"afr"158.50e-04176500"afr"[(5.41e-05,5.02e-05),(4.99e-04,4.24e-04),(2.99e-05,1.81e-05),(0.00e+00,0.00e+00),(7.37e-05,3.06e-05),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,(1.12e-04,1.03e-04),(5.23e-04,4.23e-04),(3.03e-05,1.84e-05),(0.00e+00,0.00e+00),(1.12e-04,4.63e-05),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]4.99e-04"afr"4.24e-04"afr"5.23e-04"afr"4.23e-04"afr"2True{"rs201475538"}{}8.65e-016.00e+010.00e+001428051.36e+01-1.80e-02[4798,567,4576,579]6.27e-01105180.00e+006.00e+010.00e+001.00e+001236161.35e+01-2.10e-02[4798,567,3988,522]5.96e-019184FalseNANAFalseFalseFalseFalse9.35e+00-7.19e-05["ga4gh:VA.3n-gYs3xsspnxwI91EMCEDsIcrj9bIqO","ga4gh:VA.R13f7bcCv-WGRkCM6W3Y_O-jy_2slTPt"][113410657,113410657][113410658,113410658]["G","T"]"G/T"113410658".""chr11\t113410658\t.\tG\tT\t.\t.\tGT"NA"3_prime_UTR_variant"NANA"chr11"1134106581[(1,NA,NA,"protein_coding",NA,"CCDS8362.1",1390,1390,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000346454.7:c.*69C>A",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"ENSP00000278597","Ensembl",-1,"ENST00000346454",1,["P14416-2"],"T"),(1,NA,"P2","protein_coding",1,"CCDS8361.1",1755,1755,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"8/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000362072.8:c.*69C>A",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,"NM_000795.4",NA,NA,NA,NA,"ENSP00000354859","Ensembl",-1,"ENST00000362072",1,["P14416-1"],"T"),(1,NA,NA,"processed_transcript",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],3717,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000535984",3,NA,"T"),(1,NA,"A1","protein_coding",NA,NA,1407,1407,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"8/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000538967.5:c.*69C>A",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"ENSP00000438215","Ensembl",-1,"ENST00000538967",5,["P14416-3"],"T"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],4636,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000539420",3,NA,"T"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],3206,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000540600",1,NA,"T"),(1,NA,"P2","protein_coding",NA,"CCDS8361.1",1722,1722,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000542968.5:c.*69C>A",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"ENSP00000442172","Ensembl",-1,"ENST00000542968",1,["P14416-1"],"T"),(1,NA,"A1","protein_coding",NA,NA,1431,1431,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000544518.5:c.*69C>A",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"ENSP00000441068","Ensembl",-1,"ENST00000544518",1,NA,"T"),(1,NA,NA,"lncRNA",1,NA,NA,NA,NA,NA,NA,["intron_variant","non_coding_transcript_variant"],NA,NA,NA,NA,"ENSG00000256757",NA,NA,NA,NA,"ENST00000546284.1:n.245-889G>T",NA,NA,"MODIFIER","2/3",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",1,"ENST00000546284",3,NA,"T"),(1,NA,NA,"protein_coding",1,NA,1755,1755,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"8/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_000795.4:c.*69C>A",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,"ENST00000362072.8",NA,NA,NA,NA,"NP_000786.1","RefSeq",-1,"NM_000795.4",NA,NA,"T"),(1,NA,NA,"protein_coding",NA,NA,1668,1668,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"7/7",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_016574.4:c.*69C>A",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"NP_057658.2","RefSeq",-1,"NM_016574.4",NA,NA,"T"),(1,NA,NA,"protein_coding",NA,NA,1483,1483,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"8/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","XM_017017296.2:c.*69C>A",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"XP_016872785.1","RefSeq",-1,"XM_017017296.2",NA,NA,"T")]"SNV"9.35e+00"AS_FS"FalseFalseFalseFalseFalseNATrueFalse"multi-snv"2False"snv"False[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,4183,0,30033,1,354765,0,58262,0,276721,0,0,0,1,0,0,115]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,26986,70993,120130,305542,173013,19471,3177,1036,688,647,582,509,357,257,172,116,78,62]0265[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,94]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,2,3,11,13,14,10,8,9,1,3,2,0,4,0,0,1,1,1]011[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,6,5,19,14,25,17,6,1,1,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][886,4,2000,0,7936,2,30033,1,354765,1,58262,0,276721,0,0,0,1,0,0,116]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][362,4790,27388,71922,120182,305624,173020,19481,3184,1039,690,648,582,509,357,257,172,116,78,62]0265[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][2,4,1,0,0,2,0,0,0,1,0,0,0,0,0,0,0,0,0,95]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,2,4,4,17,13,14,10,8,9,1,3,2,0,4,0,0,1,1,1]011[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,2,7,0,0,1,6,5,19,14,26,17,6,1,1,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,1,4,4,2,5,0,1,4,1]10[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]002.38e+001.31e-01NA0.00e+003.00e-027.10e-02NANA
chr11:113410660["A","G"][(1,6.89e-07,1450438,0),(2,1.37e-06,1461588,0),(0,0.00e+00,33208,0),(0,0.00e+00,44698,0),(0,0.00e+00,26050,0),(0,0.00e+00,39632,0),(0,0.00e+00,53222,0),(0,0.00e+00,4878,0),(1,9.07e-07,1103066,0),(0,0.00e+00,59922,0),(0,0.00e+00,85762,0),(0,0.00e+00,728116,0),(1,1.38e-06,722322,0),(0,0.00e+00,19158,0),(0,0.00e+00,14050,0),(0,0.00e+00,25670,0),(0,0.00e+00,19028,0),(0,0.00e+00,12590,0),(0,0.00e+00,13460,0),(0,0.00e+00,20660,0),(0,0.00e+00,18972,0),(0,0.00e+00,27540,0),(0,0.00e+00,25682,0),(0,0.00e+00,2012,0),(0,0.00e+00,2866,0),(0,0.00e+00,567156,0),(1,1.87e-06,535910,0),(0,0.00e+00,31542,0),(0,0.00e+00,28380,0),(0,0.00e+00,21788,0),(0,0.00e+00,63974,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,12,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,166,0),(0,0.00e+00,200,0),(0,0.00e+00,198,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,980,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,994,0),(0,0.00e+00,846,0),(0,0.00e+00,996,0),(0,0.00e+00,992,0),(0,0.00e+00,992,0),(0,0.00e+00,994,0),(0,0.00e+00,1974,0),(0,0.00e+00,2000,0),(0,0.00e+00,1990,0),(0,0.00e+00,1998,0),(0,0.00e+00,1994,0),(0,0.00e+00,1716,0),(0,0.00e+00,1984,0),(0,0.00e+00,1992,0),(0,0.00e+00,1980,0),(0,0.00e+00,1990,0),(0,0.00e+00,3960,0),(0,0.00e+00,4000,0),(0,0.00e+00,3984,0),(0,0.00e+00,3994,0),(0,0.00e+00,3986,0),(0,0.00e+00,3394,0),(0,0.00e+00,3970,0),(0,0.00e+00,3972,0),(0,0.00e+00,3972,0),(0,0.00e+00,3962,0),(0,0.00e+00,5716,0),(0,0.00e+00,5768,0),(0,0.00e+00,5744,0),(0,0.00e+00,5754,0),(0,0.00e+00,5750,0),(0,0.00e+00,4878,0),(0,0.00e+00,5722,0),(0,0.00e+00,5732,0),(0,0.00e+00,5728,0),(0,0.00e+00,5724,0),(0,0.00e+00,9914,0),(0,0.00e+00,9998,0),(0,0.00e+00,9962,0),(0,0.00e+00,9972,0),(0,0.00e+00,9954,0),(0,0.00e+00,9920,0),(0,0.00e+00,9922,0),(0,0.00e+00,9938,0),(0,0.00e+00,9922,0),(0,0.00e+00,19846,0),(0,0.00e+00,19986,0),(0,0.00e+00,19926,0),(0,0.00e+00,19956,0),(0,0.00e+00,19926,0),(0,0.00e+00,19836,0),(0,0.00e+00,19852,0),(0,0.00e+00,19864,0),(0,0.00e+00,19832,0),(0,0.00e+00,25940,0),(0,0.00e+00,26118,0),(0,0.00e+00,26050,0),(0,0.00e+00,26082,0),(0,0.00e+00,26038,0),(0,0.00e+00,25906,0),(0,0.00e+00,25940,0),(0,0.00e+00,25974,0),(0,0.00e+00,25914,0),(0,0.00e+00,33208,0),(0,0.00e+00,33460,0),(0,0.00e+00,33422,0),(0,0.00e+00,33354,0),(0,0.00e+00,33194,0),(0,0.00e+00,33234,0),(0,0.00e+00,33280,0),(0,0.00e+00,33184,0),(0,0.00e+00,39680,0),(0,0.00e+00,39632,0),(0,0.00e+00,39558,0),(0,0.00e+00,39368,0),(0,0.00e+00,39402,0),(0,0.00e+00,39462,0),(0,0.00e+00,39366,0),(0,0.00e+00,39978,0),(0,0.00e+00,39858,0),(0,0.00e+00,39664,0),(0,0.00e+00,39700,0),(0,0.00e+00,39758,0),(0,0.00e+00,39660,0),(0,0.00e+00,44698,0),(0,0.00e+00,44564,0),(0,0.00e+00,44334,0),(0,0.00e+00,44384,0),(0,0.00e+00,44448,0),(0,0.00e+00,44352,0),(0,0.00e+00,53222,0),(0,0.00e+00,52964,0),(0,0.00e+00,53010,0),(0,0.00e+00,53096,0),(0,0.00e+00,52982,0),(0,0.00e+00,59866,0),(0,0.00e+00,59922,0),(0,0.00e+00,60036,0),(0,0.00e+00,59886,0),(0,0.00e+00,85516,0),(0,0.00e+00,85762,0),(0,0.00e+00,85528,0),(0,0.00e+00,99132,0),(0,0.00e+00,99166,0),(0,0.00e+00,198282,0),(0,0.00e+00,198350,0),(1,2.52e-06,396678,0),(1,2.52e-06,396834,0),(1,1.01e-06,991944,0),(1,1.01e-06,992168,0),(1,9.07e-07,1103066,0),(1,9.06e-07,1103268,0),(1,1.59e-06,627050,0),(2,3.18e-06,628784,0),(0,0.00e+00,17650,0),(0,0.00e+00,43726,0),(0,0.00e+00,20970,0),(0,0.00e+00,36054,0),(0,0.00e+00,52946,0),(0,0.00e+00,3278,0),(1,2.86e-06,349920,0),(0,0.00e+00,32974,0),(0,0.00e+00,69532,0),(0,0.00e+00,285344,0),(1,2.93e-06,341706,0),(0,0.00e+00,10264,0),(0,0.00e+00,7386,0),(0,0.00e+00,25032,0),(0,0.00e+00,18694,0),(0,0.00e+00,9832,0),(0,0.00e+00,11138,0),(0,0.00e+00,18288,0),(0,0.00e+00,17766,0),(0,0.00e+00,27290,0),(0,0.00e+00,25656,0),(0,0.00e+00,1434,0),(0,0.00e+00,1844,0),(0,0.00e+00,162128,0),(1,5.33e-06,187792,0),(0,0.00e+00,16698,0),(0,0.00e+00,16276,0),(0,0.00e+00,14378,0),(0,0.00e+00,55154,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,12,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,156,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,998,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,994,0),(0,0.00e+00,792,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,992,0),(0,0.00e+00,1000,0),(0,0.00e+00,1998,0),(0,0.00e+00,2000,0),(0,0.00e+00,1998,0),(0,0.00e+00,1998,0),(0,0.00e+00,1994,0),(0,0.00e+00,1616,0),(0,0.00e+00,2000,0),(0,0.00e+00,1998,0),(0,0.00e+00,1990,0),(0,0.00e+00,1994,0),(0,0.00e+00,3988,0),(0,0.00e+00,4000,0),(0,0.00e+00,3996,0),(0,0.00e+00,3998,0),(0,0.00e+00,3986,0),(0,0.00e+00,3158,0),(0,0.00e+00,4000,0),(0,0.00e+00,3996,0),(0,0.00e+00,3984,0),(0,0.00e+00,3992,0),(0,0.00e+00,4136,0),(0,0.00e+00,4148,0),(0,0.00e+00,4144,0),(0,0.00e+00,4146,0),(0,0.00e+00,4134,0),(0,0.00e+00,3278,0),(0,0.00e+00,4148,0),(0,0.00e+00,4142,0),(0,0.00e+00,4132,0),(0,0.00e+00,4140,0),(0,0.00e+00,9974,0),(0,0.00e+00,9998,0),(0,0.00e+00,9994,0),(0,0.00e+00,9992,0),(0,0.00e+00,9954,0),(0,0.00e+00,10000,0),(0,0.00e+00,9968,0),(0,0.00e+00,9950,0),(0,0.00e+00,9974,0),(0,0.00e+00,17650,0),(0,0.00e+00,17686,0),(0,0.00e+00,17682,0),(0,0.00e+00,17682,0),(0,0.00e+00,17626,0),(0,0.00e+00,17688,0),(0,0.00e+00,17638,0),(0,0.00e+00,17616,0),(0,0.00e+00,17652,0),(0,0.00e+00,19992,0),(0,0.00e+00,19986,0),(0,0.00e+00,19988,0),(0,0.00e+00,19924,0),(0,0.00e+00,19990,0),(0,0.00e+00,19930,0),(0,0.00e+00,19916,0),(0,0.00e+00,19954,0),(0,0.00e+00,20974,0),(0,0.00e+00,20970,0),(0,0.00e+00,20972,0),(0,0.00e+00,20906,0),(0,0.00e+00,20974,0),(0,0.00e+00,20910,0),(0,0.00e+00,20898,0),(0,0.00e+00,20936,0),(0,0.00e+00,33086,0),(0,0.00e+00,33084,0),(0,0.00e+00,32974,0),(0,0.00e+00,33086,0),(0,0.00e+00,32974,0),(0,0.00e+00,32956,0),(0,0.00e+00,33018,0),(0,0.00e+00,36058,0),(0,0.00e+00,36054,0),(0,0.00e+00,35938,0),(0,0.00e+00,36056,0),(0,0.00e+00,35916,0),(0,0.00e+00,35980,0),(0,0.00e+00,39988,0),(0,0.00e+00,39856,0),(0,0.00e+00,39982,0),(0,0.00e+00,39824,0),(0,0.00e+00,39900,0),(0,0.00e+00,43726,0),(0,0.00e+00,43584,0),(0,0.00e+00,43722,0),(0,0.00e+00,43556,0),(0,0.00e+00,43632,0),(0,0.00e+00,52946,0),(0,0.00e+00,53120,0),(0,0.00e+00,52924,0),(0,0.00e+00,53008,0),(0,0.00e+00,69766,0),(0,0.00e+00,69532,0),(0,0.00e+00,69624,0),(1,1.00e-05,99960,0),(0,0.00e+00,99716,0),(1,5.00e-06,199898,0),(1,5.01e-06,199490,0),(1,2.86e-06,349920,0),(1,2.86e-06,349164,0),(1,2.51e-06,398918,0)]19.07e-0711030660"nfe"12.86e-063499200"nfe"[(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]NANANANANANANANA2True{"rs1950760213"}{}0.00e+006.00e+010.00e+0036191.78e+016.74e-01[83,21,79,20]6.91e-012034.82e-166.00e+010.00e+004.53e-0135911.98e+019.51e-01[83,21,77,19]7.15e-01181FalseFalseFalseFalseFalseFalseFalse4.34e+00-1.37e-06["ga4gh:VA.MHTiWiUO_hsQ_FAaIagdomN6DdnpjqRm","ga4gh:VA.D8-MF1xUzSMIKncRc7QFwqQ-l8WgfYlV"][113410659,113410659][113410660,113410660]["A","G"]"A/G"113410660".""chr11\t113410660\t.\tA\tG\t.\t.\tGT"NA"3_prime_UTR_variant"NANA"chr11"1134106601[(1,NA,NA,"protein_coding",NA,"CCDS8362.1",1388,1388,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000346454.7:c.*67T>C",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"ENSP00000278597","Ensembl",-1,"ENST00000346454",1,["P14416-2"],"G"),(1,NA,"P2","protein_coding",1,"CCDS8361.1",1753,1753,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"8/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000362072.8:c.*67T>C",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,"NM_000795.4",NA,NA,NA,NA,"ENSP00000354859","Ensembl",-1,"ENST00000362072",1,["P14416-1"],"G"),(1,NA,NA,"processed_transcript",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],3715,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000535984",3,NA,"G"),(1,NA,"A1","protein_coding",NA,NA,1405,1405,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"8/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000538967.5:c.*67T>C",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"ENSP00000438215","Ensembl",-1,"ENST00000538967",5,["P14416-3"],"G"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],4634,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000539420",3,NA,"G"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],3204,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000540600",1,NA,"G"),(1,NA,"P2","protein_coding",NA,"CCDS8361.1",1720,1720,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000542968.5:c.*67T>C",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"ENSP00000442172","Ensembl",-1,"ENST00000542968",1,["P14416-1"],"G"),(1,NA,"A1","protein_coding",NA,NA,1429,1429,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000544518.5:c.*67T>C",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"ENSP00000441068","Ensembl",-1,"ENST00000544518",1,NA,"G"),(1,NA,NA,"lncRNA",1,NA,NA,NA,NA,NA,NA,["intron_variant","non_coding_transcript_variant"],NA,NA,NA,NA,"ENSG00000256757",NA,NA,NA,NA,"ENST00000546284.1:n.245-887A>G",NA,NA,"MODIFIER","2/3",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",1,"ENST00000546284",3,NA,"G"),(1,NA,NA,"protein_coding",1,NA,1753,1753,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"8/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_000795.4:c.*67T>C",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,"ENST00000362072.8",NA,NA,NA,NA,"NP_000786.1","RefSeq",-1,"NM_000795.4",NA,NA,"G"),(1,NA,NA,"protein_coding",NA,NA,1666,1666,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"7/7",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_016574.4:c.*67T>C",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"NP_057658.2","RefSeq",-1,"NM_016574.4",NA,NA,"G"),(1,NA,NA,"protein_coding",NA,NA,1481,1481,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"8/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","XM_017017296.2:c.*67T>C",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"XP_016872785.1","RefSeq",-1,"XM_017017296.2",NA,NA,"G")]"SNV"4.34e+00"AS_MQ"FalseFalseFalseFalseFalseNATrueFalse"multi-snv"3False"snv"False[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,3304,0,26636,0,351846,0,54948,0,288484,0,0,0,0,0,0,1]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,24253,67281,120581,309738,175490,19882,3222,1041,692,644,582,508,354,258,173,113,79,64]0264[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]01[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][684,0,1637,0,6556,2,26636,0,351846,0,54948,0,288484,0,0,0,0,0,0,1]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][296,4122,24622,67964,120609,309787,175498,19891,3228,1043,694,645,582,508,354,258,173,113,79,64]0264[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]01[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][1,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]001.22e+00-1.85e-02NA0.00e+004.00e-02-1.27e+00NANA
chr11:113410662["G","A"][(2,1.38e-06,1451396,0),(2,1.37e-06,1461538,0),(0,0.00e+00,33252,0),(1,2.24e-05,44696,0),(0,0.00e+00,26064,0),(0,0.00e+00,39622,0),(0,0.00e+00,53232,0),(0,0.00e+00,4926,0),(1,9.06e-07,1103856,0),(0,0.00e+00,59956,0),(0,0.00e+00,85792,0),(1,1.37e-06,728678,0),(1,1.38e-06,722718,0),(0,0.00e+00,19190,0),(0,0.00e+00,14062,0),(1,3.90e-05,25668,0),(0,0.00e+00,19028,0),(0,0.00e+00,12598,0),(0,0.00e+00,13466,0),(0,0.00e+00,20652,0),(0,0.00e+00,18970,0),(0,0.00e+00,27536,0),(0,0.00e+00,25696,0),(0,0.00e+00,2038,0),(0,0.00e+00,2888,0),(0,0.00e+00,567634,0),(1,1.86e-06,536222,0),(0,0.00e+00,31566,0),(0,0.00e+00,28390,0),(0,0.00e+00,21796,0),(0,0.00e+00,63996,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,12,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,166,0),(0,0.00e+00,200,0),(0,0.00e+00,198,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,984,0),(0,0.00e+00,1000,0),(0,0.00e+00,998,0),(0,0.00e+00,1000,0),(0,0.00e+00,994,0),(0,0.00e+00,854,0),(0,0.00e+00,998,0),(0,0.00e+00,990,0),(0,0.00e+00,994,0),(0,0.00e+00,996,0),(0,0.00e+00,1978,0),(0,0.00e+00,2000,0),(0,0.00e+00,1986,0),(0,0.00e+00,1998,0),(0,0.00e+00,1994,0),(0,0.00e+00,1734,0),(0,0.00e+00,1988,0),(0,0.00e+00,1990,0),(0,0.00e+00,1982,0),(0,0.00e+00,1992,0),(0,0.00e+00,3970,0),(0,0.00e+00,4000,0),(0,0.00e+00,3982,0),(0,0.00e+00,3994,0),(0,0.00e+00,3986,0),(0,0.00e+00,3428,0),(0,0.00e+00,3978,0),(0,0.00e+00,3972,0),(0,0.00e+00,3972,0),(0,0.00e+00,3970,0),(0,0.00e+00,5726,0),(0,0.00e+00,5768,0),(0,0.00e+00,5742,0),(0,0.00e+00,5752,0),(0,0.00e+00,5750,0),(0,0.00e+00,4926,0),(0,0.00e+00,5734,0),(0,0.00e+00,5732,0),(0,0.00e+00,5728,0),(0,0.00e+00,5732,0),(0,0.00e+00,9918,0),(0,0.00e+00,10000,0),(0,0.00e+00,9958,0),(0,0.00e+00,9970,0),(0,0.00e+00,9950,0),(0,0.00e+00,9932,0),(0,0.00e+00,9930,0),(0,0.00e+00,9940,0),(0,0.00e+00,9932,0),(0,0.00e+00,19860,0),(1,5.00e-05,19986,0),(0,0.00e+00,19936,0),(0,0.00e+00,19948,0),(0,0.00e+00,19924,0),(0,0.00e+00,19854,0),(0,0.00e+00,19874,0),(0,0.00e+00,19884,0),(0,0.00e+00,19844,0),(0,0.00e+00,25972,0),(1,3.83e-05,26118,0),(0,0.00e+00,26064,0),(0,0.00e+00,26076,0),(0,0.00e+00,26038,0),(0,0.00e+00,25924,0),(0,0.00e+00,25962,0),(0,0.00e+00,25990,0),(0,0.00e+00,25934,0),(0,0.00e+00,33252,0),(1,2.99e-05,33458,0),(0,0.00e+00,33414,0),(0,0.00e+00,33356,0),(0,0.00e+00,33220,0),(0,0.00e+00,33256,0),(0,0.00e+00,33292,0),(0,0.00e+00,33206,0),(1,2.52e-05,39676,0),(0,0.00e+00,39622,0),(0,0.00e+00,39558,0),(0,0.00e+00,39392,0),(0,0.00e+00,39432,0),(0,0.00e+00,39480,0),(0,0.00e+00,39384,0),(1,2.50e-05,39974,0),(0,0.00e+00,39858,0),(0,0.00e+00,39690,0),(0,0.00e+00,39728,0),(0,0.00e+00,39776,0),(0,0.00e+00,39682,0),(1,2.24e-05,44696,0),(0,0.00e+00,44568,0),(0,0.00e+00,44372,0),(0,0.00e+00,44412,0),(0,0.00e+00,44468,0),(0,0.00e+00,44378,0),(0,0.00e+00,53232,0),(0,0.00e+00,52996,0),(0,0.00e+00,53046,0),(0,0.00e+00,53120,0),(0,0.00e+00,53012,0),(0,0.00e+00,59904,0),(0,0.00e+00,59956,0),(0,0.00e+00,60062,0),(0,0.00e+00,59924,0),(0,0.00e+00,85568,0),(0,0.00e+00,85792,0),(0,0.00e+00,85566,0),(0,0.00e+00,99198,0),(0,0.00e+00,99210,0),(0,0.00e+00,198402,0),(0,0.00e+00,198452,0),(1,2.52e-06,396938,0),(1,2.52e-06,397058,0),(1,1.01e-06,992632,0),(2,2.01e-06,992784,0),(1,9.06e-07,1103856,0),(2,1.81e-06,1103950,0),(1,1.59e-06,627150,0),(1,1.59e-06,628784,0),(0,0.00e+00,17654,0),(1,2.29e-05,43728,0),(0,0.00e+00,20976,0),(0,0.00e+00,36054,0),(0,0.00e+00,52956,0),(0,0.00e+00,3318,0),(0,0.00e+00,349938,0),(0,0.00e+00,32986,0),(0,0.00e+00,69540,0),(1,3.50e-06,285386,0),(0,0.00e+00,341764,0),(0,0.00e+00,10266,0),(0,0.00e+00,7388,0),(1,3.99e-05,25032,0),(0,0.00e+00,18696,0),(0,0.00e+00,9836,0),(0,0.00e+00,11140,0),(0,0.00e+00,18288,0),(0,0.00e+00,17766,0),(0,0.00e+00,27286,0),(0,0.00e+00,25670,0),(0,0.00e+00,1454,0),(0,0.00e+00,1864,0),(0,0.00e+00,162146,0),(0,0.00e+00,187792,0),(0,0.00e+00,16706,0),(0,0.00e+00,16280,0),(0,0.00e+00,14372,0),(0,0.00e+00,55168,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,12,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,156,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,998,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,994,0),(0,0.00e+00,806,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,994,0),(0,0.00e+00,1000,0),(0,0.00e+00,1998,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,1998,0),(0,0.00e+00,1994,0),(0,0.00e+00,1638,0),(0,0.00e+00,2000,0),(0,0.00e+00,1998,0),(0,0.00e+00,1990,0),(0,0.00e+00,1994,0),(0,0.00e+00,3988,0),(0,0.00e+00,4000,0),(0,0.00e+00,3998,0),(0,0.00e+00,3998,0),(0,0.00e+00,3986,0),(0,0.00e+00,3196,0),(0,0.00e+00,4000,0),(0,0.00e+00,3996,0),(0,0.00e+00,3984,0),(0,0.00e+00,3992,0),(0,0.00e+00,4136,0),(0,0.00e+00,4148,0),(0,0.00e+00,4146,0),(0,0.00e+00,4146,0),(0,0.00e+00,4134,0),(0,0.00e+00,3318,0),(0,0.00e+00,4148,0),(0,0.00e+00,4142,0),(0,0.00e+00,4132,0),(0,0.00e+00,4140,0),(0,0.00e+00,9974,0),(0,0.00e+00,10000,0),(0,0.00e+00,9996,0),(0,0.00e+00,9992,0),(0,0.00e+00,9950,0),(0,0.00e+00,10000,0),(0,0.00e+00,9976,0),(0,0.00e+00,9952,0),(0,0.00e+00,9976,0),(0,0.00e+00,17654,0),(1,5.65e-05,17690,0),(0,0.00e+00,17688,0),(0,0.00e+00,17682,0),(0,0.00e+00,17626,0),(0,0.00e+00,17688,0),(0,0.00e+00,17644,0),(0,0.00e+00,17624,0),(0,0.00e+00,17652,0),(1,5.00e-05,19996,0),(0,0.00e+00,19992,0),(0,0.00e+00,19988,0),(0,0.00e+00,19922,0),(0,0.00e+00,19988,0),(0,0.00e+00,19938,0),(0,0.00e+00,19924,0),(0,0.00e+00,19954,0),(1,4.77e-05,20978,0),(0,0.00e+00,20976,0),(0,0.00e+00,20972,0),(0,0.00e+00,20904,0),(0,0.00e+00,20972,0),(0,0.00e+00,20918,0),(0,0.00e+00,20906,0),(0,0.00e+00,20936,0),(1,3.02e-05,33088,0),(0,0.00e+00,33084,0),(0,0.00e+00,32976,0),(0,0.00e+00,33084,0),(0,0.00e+00,32986,0),(0,0.00e+00,32964,0),(0,0.00e+00,33016,0),(1,2.77e-05,36060,0),(0,0.00e+00,36054,0),(0,0.00e+00,35940,0),(0,0.00e+00,36054,0),(0,0.00e+00,35922,0),(0,0.00e+00,35978,0),(1,2.50e-05,39988,0),(0,0.00e+00,39858,0),(0,0.00e+00,39982,0),(0,0.00e+00,39834,0),(0,0.00e+00,39898,0),(1,2.29e-05,43728,0),(0,0.00e+00,43588,0),(0,0.00e+00,43722,0),(0,0.00e+00,43566,0),(0,0.00e+00,43630,0),(0,0.00e+00,52956,0),(0,0.00e+00,53120,0),(0,0.00e+00,52934,0),(0,0.00e+00,53010,0),(0,0.00e+00,69764,0),(0,0.00e+00,69540,0),(0,0.00e+00,69628,0),(0,0.00e+00,99958,0),(0,0.00e+00,99732,0),(0,0.00e+00,199906,0),(0,0.00e+00,199516,0),(0,0.00e+00,349938,0),(1,2.86e-06,349218,0),(1,2.51e-06,398984,0)]12.24e-05446960"amr"12.29e-05437280"amr"[(2.30e-07,9.00e-08),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]NANANANANANANANA1TrueNA{}5.51e-016.00e+010.00e+0030709.27e+000.00e+00[174,36,99,22]6.12e-013311.21e+006.00e+010.00e+008.45e-0129721.38e+011.49e+00[174,36,87,20]5.79e-01216FalseNANAFalseFalseFalseFalse5.24e+00-1.37e-06["ga4gh:VA.oDr3967BFZ6uu2LJEc9_RVWIOnNqtSF-","ga4gh:VA.N81rCvIHb-9PjhcHLL1zScmYT6cnOs-Y"][113410661,113410661][113410662,113410662]["G","A"]"G/A"113410662".""chr11\t113410662\t.\tG\tA\t.\t.\tGT"NA"3_prime_UTR_variant"NANA"chr11"1134106621[(1,NA,NA,"protein_coding",NA,"CCDS8362.1",1386,1386,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000346454.7:c.*65C>T",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"ENSP00000278597","Ensembl",-1,"ENST00000346454",1,["P14416-2"],"A"),(1,NA,"P2","protein_coding",1,"CCDS8361.1",1751,1751,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"8/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000362072.8:c.*65C>T",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,"NM_000795.4",NA,NA,NA,NA,"ENSP00000354859","Ensembl",-1,"ENST00000362072",1,["P14416-1"],"A"),(1,NA,NA,"processed_transcript",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],3713,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000535984",3,NA,"A"),(1,NA,"A1","protein_coding",NA,NA,1403,1403,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"8/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000538967.5:c.*65C>T",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"ENSP00000438215","Ensembl",-1,"ENST00000538967",5,["P14416-3"],"A"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],4632,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000539420",3,NA,"A"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],3202,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000540600",1,NA,"A"),(1,NA,"P2","protein_coding",NA,"CCDS8361.1",1718,1718,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000542968.5:c.*65C>T",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"ENSP00000442172","Ensembl",-1,"ENST00000542968",1,["P14416-1"],"A"),(1,NA,"A1","protein_coding",NA,NA,1427,1427,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000544518.5:c.*65C>T",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"ENSP00000441068","Ensembl",-1,"ENST00000544518",1,NA,"A"),(1,NA,NA,"lncRNA",1,NA,NA,NA,NA,NA,NA,["intron_variant","non_coding_transcript_variant"],NA,NA,NA,NA,"ENSG00000256757",NA,NA,NA,NA,"ENST00000546284.1:n.245-885G>A",NA,NA,"MODIFIER","2/3",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",1,"ENST00000546284",3,NA,"A"),(1,NA,NA,"protein_coding",1,NA,1751,1751,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"8/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_000795.4:c.*65C>T",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,"ENST00000362072.8",NA,NA,NA,NA,"NP_000786.1","RefSeq",-1,"NM_000795.4",NA,NA,"A"),(1,NA,NA,"protein_coding",NA,NA,1664,1664,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"7/7",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_016574.4:c.*65C>T",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"NP_057658.2","RefSeq",-1,"NM_016574.4",NA,NA,"A"),(1,NA,NA,"protein_coding",NA,NA,1479,1479,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"8/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","XM_017017296.2:c.*65C>T",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"XP_016872785.1","RefSeq",-1,"XM_017017296.2",NA,NA,"A")]"SNV"5.24e+00"AS_MQ"FalseFalseFalseFalseFalseNATrueFalse"multi-snv"2False"snv"False[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,4139,0,27770,1,353590,0,56800,0,283396,0,0,0,0,0,0,2]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,22477,65025,118275,313361,178106,20388,3276,1054,693,645,582,508,355,259,173,113,79,64]0265[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]01[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][653,0,1690,2,6865,0,27770,1,353590,0,56800,0,283396,0,0,0,0,0,0,2]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][264,3602,22767,65834,118294,313419,178113,20399,3282,1056,696,645,582,508,355,259,173,113,79,64]0265[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]01[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,1,0,1,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]006.25e+004.76e-01NA0.00e+002.10e-011.62e+00NANA

showing top 5 rows

\n" ], "text/plain": [ @@ -4867,11 +4902,11 @@ "+-----------------+------------+\n", "| locus | array |\n", "+-----------------+------------+\n", - "| chr11:113409636 | [\"G\",\"C\"] |\n", - "| chr11:113409693 | [\"G\",\"A\"] |\n", - "| chr11:113409717 | [\"C\",\"T\"] |\n", - "| chr11:113409758 | [\"C\",\"T\"] |\n", - "| chr11:113410002 | [\"C\",\"A\"] |\n", + "| chr11:113410657 | [\"C\",\"T\"] |\n", + "| chr11:113410658 | [\"G\",\"A\"] |\n", + "| chr11:113410658 | [\"G\",\"T\"] |\n", + "| chr11:113410660 | [\"A\",\"G\"] |\n", + "| chr11:113410662 | [\"G\",\"A\"] |\n", "+-----------------+------------+\n", "\n", "+------------------------------------------------------------------------------+\n", @@ -4879,11 +4914,11 @@ "+------------------------------------------------------------------------------+\n", "| array |\n", "+------------------------------------------------------------------------------+\n", - "| [(1,1.87e-03,534,0),(5,7.95e-06,628788,2),(0,0.00e+00,8,0),(0,NA,0,0),(0,... |\n", - "| [(1,1.20e-03,834,0),(16,2.54e-05,628790,3),(0,0.00e+00,6,0),(0,0.00e+00,2... |\n", - "| [(1,1.01e-03,990,0),(5,7.95e-06,628794,2),(0,0.00e+00,10,0),(0,0.00e+00,4... |\n", - "| [(1,1.23e-03,810,0),(4,6.36e-06,628786,1),(0,0.00e+00,12,0),(0,0.00e+00,4... |\n", - "| [(128,1.34e-01,952,15),(18463,2.94e-02,628994,6837),(0,0.00e+00,6,0),(17,... |\n", + "| [(18,1.25e-05,1445518,0),(24,1.64e-05,1461322,0),(1,3.02e-05,33096,0),(0,... |\n", + "| [(23,1.59e-05,1448166,0),(23,1.57e-05,1461456,0),(0,0.00e+00,33180,0),(0,... |\n", + "| [(94,6.49e-05,1448162,0),(105,7.18e-05,1461456,0),(24,7.23e-04,33180,0),(... |\n", + "| [(1,6.89e-07,1450438,0),(2,1.37e-06,1461588,0),(0,0.00e+00,33208,0),(0,0.... |\n", + "| [(2,1.38e-06,1451396,0),(2,1.37e-06,1461538,0),(0,0.00e+00,33252,0),(1,2.... |\n", "+------------------------------------------------------------------------------+\n", "\n", "+------------------+------------------+------------------+\n", @@ -4891,11 +4926,11 @@ "+------------------+------------------+------------------+\n", "| int32 | float64 | int32 |\n", "+------------------+------------------+------------------+\n", - "| NA | NA | NA |\n", - "| 1 | 2.87e-03 | 348 |\n", - "| 1 | 2.17e-03 | 460 |\n", - "| NA | NA | NA |\n", - "| 2 | 5.00e-01 | 4 |\n", + "| 4 | 1.01e-04 | 39606 |\n", + "| 3 | 7.57e-05 | 39630 |\n", + "| 24 | 7.23e-04 | 33180 |\n", + "| 1 | 9.07e-07 | 1103066 |\n", + "| 1 | 2.24e-05 | 44696 |\n", "+------------------+------------------+------------------+\n", "\n", "+--------------------------------+-----------------------+-------------------+\n", @@ -4903,11 +4938,11 @@ "+--------------------------------+-----------------------+-------------------+\n", "| int64 | str | int32 |\n", "+--------------------------------+-----------------------+-------------------+\n", - "| NA | NA | NA |\n", + "| 0 | \"eas\" | 4 |\n", + "| 0 | \"eas\" | 10 |\n", + "| 0 | \"afr\" | 15 |\n", "| 0 | \"nfe\" | 1 |\n", - "| 0 | \"nfe\" | 1 |\n", - "| NA | NA | NA |\n", - "| 0 | \"eas\" | 2 |\n", + "| 0 | \"amr\" | 1 |\n", "+--------------------------------+-----------------------+-------------------+\n", "\n", "+-------------------+-------------------+---------------------------------+\n", @@ -4915,11 +4950,11 @@ "+-------------------+-------------------+---------------------------------+\n", "| float64 | int32 | int64 |\n", "+-------------------+-------------------+---------------------------------+\n", - "| NA | NA | NA |\n", - "| 2.87e-03 | 348 | 0 |\n", - "| 2.17e-03 | 460 | 0 |\n", - "| NA | NA | NA |\n", - "| 5.00e-01 | 4 | 0 |\n", + "| 1.11e-04 | 36050 | 0 |\n", + "| 2.86e-05 | 349848 | 0 |\n", + "| 8.50e-04 | 17650 | 0 |\n", + "| 2.86e-06 | 349920 | 0 |\n", + "| 2.29e-05 | 43728 | 0 |\n", "+-------------------+-------------------+---------------------------------+\n", "\n", "+------------------------+\n", @@ -4927,11 +4962,11 @@ "+------------------------+\n", "| str |\n", "+------------------------+\n", - "| NA |\n", + "| \"eas\" |\n", "| \"nfe\" |\n", + "| \"afr\" |\n", "| \"nfe\" |\n", - "| NA |\n", - "| \"eas\" |\n", + "| \"amr\" |\n", "+------------------------+\n", "\n", "+------------------------------------------------------------------------------+\n", @@ -4939,11 +4974,11 @@ "+------------------------------------------------------------------------------+\n", "| array |\n", "+------------------------------------------------------------------------------+\n", + "| [(7.78e-06,6.42e-06),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(3.35e-05,1.... |\n", + "| [(1.06e-05,8.83e-06),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(2.01e-05,1.... |\n", + "| [(5.41e-05,5.02e-05),(4.99e-04,4.24e-04),(2.99e-05,1.81e-05),(0.00e+00,0.... |\n", "| [(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.... |\n", - "| [(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.... |\n", - "| [(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.... |\n", - "| [(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.... |\n", - "| [(1.16e-01,1.08e-01),(0.00e+00,0.00e+00),(1.23e-01,1.01e-01),(8.88e-02,3.... |\n", + "| [(2.30e-07,9.00e-08),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.... |\n", "+------------------------------------------------------------------------------+\n", "\n", "+-------------------------+---------------------------------+\n", @@ -4951,11 +4986,11 @@ "+-------------------------+---------------------------------+\n", "| float64 | str |\n", "+-------------------------+---------------------------------+\n", + "| 3.35e-05 | \"eas\" |\n", + "| 2.01e-05 | \"eas\" |\n", + "| 4.99e-04 | \"afr\" |\n", "| NA | NA |\n", "| NA | NA |\n", - "| NA | NA |\n", - "| NA | NA |\n", - "| 1.23e-01 | \"amr\" |\n", "+-------------------------+---------------------------------+\n", "\n", "+-------------------------+---------------------------------+\n", @@ -4963,11 +4998,11 @@ "+-------------------------+---------------------------------+\n", "| float64 | str |\n", "+-------------------------+---------------------------------+\n", + "| 1.99e-05 | \"eas\" |\n", + "| 1.06e-05 | \"eas\" |\n", + "| 4.24e-04 | \"afr\" |\n", "| NA | NA |\n", "| NA | NA |\n", - "| NA | NA |\n", - "| NA | NA |\n", - "| 1.02e-01 | \"nfe\" |\n", "+-------------------------+---------------------------------+\n", "\n", "+--------------------------+----------------------------------+\n", @@ -4975,11 +5010,11 @@ "+--------------------------+----------------------------------+\n", "| float64 | str |\n", "+--------------------------+----------------------------------+\n", + "| 3.78e-05 | \"eas\" |\n", + "| 1.54e-05 | \"nfe\" |\n", + "| 5.23e-04 | \"afr\" |\n", "| NA | NA |\n", "| NA | NA |\n", - "| NA | NA |\n", - "| NA | NA |\n", - "| 1.23e-01 | \"amr\" |\n", "+--------------------------+----------------------------------+\n", "\n", "+--------------------------+----------------------------------+---------+\n", @@ -4987,119 +5022,119 @@ "+--------------------------+----------------------------------+---------+\n", "| float64 | str | int32 |\n", "+--------------------------+----------------------------------+---------+\n", - "| NA | NA | 1 |\n", - "| NA | NA | 1 |\n", + "| 2.24e-05 | \"eas\" | 3 |\n", + "| 1.15e-05 | \"nfe\" | 1 |\n", + "| 4.23e-04 | \"afr\" | 2 |\n", "| NA | NA | 2 |\n", - "| NA | NA | 2 |\n", - "| 1.02e-01 | \"nfe\" | 1 |\n", + "| NA | NA | 1 |\n", "+--------------------------+----------------------------------+---------+\n", "\n", - "+-----------+-----------------+----------+----------+----------+\n", - "| was_split | rsid | filters | info.FS | info.MQ |\n", - "+-----------+-----------------+----------+----------+----------+\n", - "| bool | set | set | float64 | float64 |\n", - "+-----------+-----------------+----------+----------+----------+\n", - "| True | {\"rs200733424\"} | {} | 0.00e+00 | 6.00e+01 |\n", - "| True | NA | {} | 5.32e+00 | 6.00e+01 |\n", - "| True | NA | {} | 4.82e-16 | 6.00e+01 |\n", - "| True | {\"rs200557458\"} | {} | 0.00e+00 | 6.00e+01 |\n", - "| True | {\"rs6278\"} | {} | 2.80e+00 | 6.00e+01 |\n", - "+-----------+-----------------+----------+----------+----------+\n", + "+-----------+------------------+----------+----------+----------+\n", + "| was_split | rsid | filters | info.FS | info.MQ |\n", + "+-----------+------------------+----------+----------+----------+\n", + "| bool | set | set | float64 | float64 |\n", + "+-----------+------------------+----------+----------+----------+\n", + "| True | {\"rs200559334\"} | {} | 0.00e+00 | 6.00e+01 |\n", + "| True | {\"rs201475538\"} | {} | 8.65e-01 | 6.00e+01 |\n", + "| True | {\"rs201475538\"} | {} | 8.65e-01 | 6.00e+01 |\n", + "| True | {\"rs1950760213\"} | {} | 0.00e+00 | 6.00e+01 |\n", + "| True | NA | {} | 5.51e-01 | 6.00e+01 |\n", + "+-----------+------------------+----------+----------+----------+\n", "\n", "+----------------+-----------------+----------+---------------------+\n", "| info.MQRankSum | info.QUALapprox | info.QD | info.ReadPosRankSum |\n", "+----------------+-----------------+----------+---------------------+\n", "| float64 | int64 | float64 | float64 |\n", "+----------------+-----------------+----------+---------------------+\n", - "| 0.00e+00 | 582 | 1.94e+01 | -2.11e+00 |\n", - "| 0.00e+00 | 898 | 9.76e+00 | 0.00e+00 |\n", - "| 0.00e+00 | 209 | 9.09e+00 | 8.42e-01 |\n", - "| 0.00e+00 | 947 | 1.26e+01 | -6.74e-01 |\n", - "| 0.00e+00 | 1998239 | 1.99e+01 | 0.00e+00 |\n", + "| 0.00e+00 | 12992 | 1.27e+01 | 0.00e+00 |\n", + "| 0.00e+00 | 142805 | 1.36e+01 | -1.80e-02 |\n", + "| 0.00e+00 | 142805 | 1.36e+01 | -1.80e-02 |\n", + "| 0.00e+00 | 3619 | 1.78e+01 | 6.74e-01 |\n", + "| 0.00e+00 | 3070 | 9.27e+00 | 0.00e+00 |\n", "+----------------+-----------------+----------+---------------------+\n", "\n", - "+---------------------------+----------+------------+------------+------------+\n", - "| info.SB | info.SOR | info.VarDP | info.AS_FS | info.AS_MQ |\n", - "+---------------------------+----------+------------+------------+------------+\n", - "| array | float64 | int32 | float64 | float64 |\n", - "+---------------------------+----------+------------+------------+------------+\n", - "| [8,2,15,5] | 5.82e-01 | 30 | 0.00e+00 | 6.00e+01 |\n", - "| [31,19,21,21] | 3.30e-01 | 92 | 4.52e+00 | 6.00e+01 |\n", - "| [6,7,4,6] | 9.17e-01 | 23 | 0.00e+00 | 6.00e+01 |\n", - "| [16,19,18,22] | 7.22e-01 | 75 | 0.00e+00 | 6.00e+01 |\n", - "| [19752,12842,45058,22649] | 9.83e-01 | 100292 | 2.80e+00 | 6.00e+01 |\n", - "+---------------------------+----------+------------+------------+------------+\n", + "+---------------------+----------+------------+------------+------------+\n", + "| info.SB | info.SOR | info.VarDP | info.AS_FS | info.AS_MQ |\n", + "+---------------------+----------+------------+------------+------------+\n", + "| array | float64 | int32 | float64 | float64 |\n", + "+---------------------+----------+------------+------------+------------+\n", + "| [543,53,386,37] | 7.04e-01 | 1019 | 4.82e-16 | 6.00e+01 |\n", + "| [4798,567,4576,579] | 6.27e-01 | 10518 | 1.55e+00 | 6.00e+01 |\n", + "| [4798,567,4576,579] | 6.27e-01 | 10518 | 0.00e+00 | 6.00e+01 |\n", + "| [83,21,79,20] | 6.91e-01 | 203 | 4.82e-16 | 6.00e+01 |\n", + "| [174,36,99,22] | 6.12e-01 | 331 | 1.21e+00 | 6.00e+01 |\n", + "+---------------------+----------+------------+------------+------------+\n", "\n", "+-------------------+-----------------+--------------------+------------+\n", "| info.AS_MQRankSum | info.AS_pab_max | info.AS_QUALapprox | info.AS_QD |\n", "+-------------------+-----------------+--------------------+------------+\n", "| float64 | float64 | int64 | float64 |\n", "+-------------------+-----------------+--------------------+------------+\n", - "| 0.00e+00 | 5.41e-01 | 582 | 1.94e+01 |\n", - "| 0.00e+00 | 1.00e+00 | 553 | 8.01e+00 |\n", - "| 0.00e+00 | 2.67e-01 | 178 | 1.05e+01 |\n", - "| 0.00e+00 | 1.00e+00 | 703 | 1.12e+01 |\n", - "| 0.00e+00 | 1.00e+00 | 1998092 | 1.99e+01 |\n", + "| 0.00e+00 | 1.00e+00 | 12891 | 1.32e+01 |\n", + "| 0.00e+00 | 1.00e+00 | 19189 | 1.44e+01 |\n", + "| 0.00e+00 | 1.00e+00 | 123616 | 1.35e+01 |\n", + "| 0.00e+00 | 4.53e-01 | 3591 | 1.98e+01 |\n", + "| 0.00e+00 | 8.45e-01 | 2972 | 1.38e+01 |\n", "+-------------------+-----------------+--------------------+------------+\n", "\n", - "+------------------------+---------------------------+-------------+\n", - "| info.AS_ReadPosRankSum | info.AS_SB_TABLE | info.AS_SOR |\n", - "+------------------------+---------------------------+-------------+\n", - "| float64 | array | float64 |\n", - "+------------------------+---------------------------+-------------+\n", - "| -2.11e+00 | [8,2,15,5] | 5.82e-01 |\n", - "| 0.00e+00 | [31,19,15,15] | 3.30e-01 |\n", - "| 7.20e-02 | [6,7,3,5] | 1.00e+00 |\n", - "| -1.13e+00 | [16,19,14,17] | 7.13e-01 |\n", - "| 0.00e+00 | [19752,12842,45055,22646] | 9.83e-01 |\n", - "+------------------------+---------------------------+-------------+\n", + "+------------------------+---------------------+-------------+---------------+\n", + "| info.AS_ReadPosRankSum | info.AS_SB_TABLE | info.AS_SOR | info.AS_VarDP |\n", + "+------------------------+---------------------+-------------+---------------+\n", + "| float64 | array | float64 | int32 |\n", + "+------------------------+---------------------+-------------+---------------+\n", + "| -3.90e-02 | [543,53,379,36] | 7.13e-01 | 976 |\n", + "| 1.34e-01 | [4798,567,588,57] | 8.94e-01 | 1334 |\n", + "| -2.10e-02 | [4798,567,3988,522] | 5.96e-01 | 9184 |\n", + "| 9.51e-01 | [83,21,77,19] | 7.15e-01 | 181 |\n", + "| 1.49e+00 | [174,36,87,20] | 5.79e-01 | 216 |\n", + "+------------------------+---------------------+-------------+---------------+\n", "\n", - "+---------------+----------------+----------------------------+\n", - "| info.AS_VarDP | info.singleton | info.transmitted_singleton |\n", - "+---------------+----------------+----------------------------+\n", - "| int32 | bool | bool |\n", - "+---------------+----------------+----------------------------+\n", - "| 30 | False | False |\n", - "| 69 | False | False |\n", - "| 17 | False | False |\n", - "| 63 | False | False |\n", - "| 100286 | False | NA |\n", - "+---------------+----------------+----------------------------+\n", + "+----------------+----------------------------+------------------------+\n", + "| info.singleton | info.transmitted_singleton | info.sibling_singleton |\n", + "+----------------+----------------------------+------------------------+\n", + "| bool | bool | bool |\n", + "+----------------+----------------------------+------------------------+\n", + "| False | NA | NA |\n", + "| False | NA | NA |\n", + "| False | NA | NA |\n", + "| False | False | False |\n", + "| False | NA | NA |\n", + "+----------------+----------------------------+------------------------+\n", "\n", - "+------------------------+-----------+------------+------------------+\n", - "| info.sibling_singleton | info.omni | info.mills | info.monoallelic |\n", - "+------------------------+-----------+------------+------------------+\n", - "| bool | bool | bool | bool |\n", - "+------------------------+-----------+------------+------------------+\n", - "| False | False | False | False |\n", - "| False | False | False | False |\n", - "| False | False | False | False |\n", - "| False | False | False | False |\n", - "| NA | True | False | False |\n", - "+------------------------+-----------+------------+------------------+\n", + "+-----------+------------+------------------+---------------+----------------+\n", + "| info.omni | info.mills | info.monoallelic | info.only_het | info.AS_VQSLOD |\n", + "+-----------+------------+------------------+---------------+----------------+\n", + "| bool | bool | bool | bool | float64 |\n", + "+-----------+------------+------------------+---------------+----------------+\n", + "| False | False | False | False | 9.14e+00 |\n", + "| False | False | False | False | 6.96e+00 |\n", + "| False | False | False | False | 9.35e+00 |\n", + "| False | False | False | False | 4.34e+00 |\n", + "| False | False | False | False | 5.24e+00 |\n", + "+-----------+------------+------------------+---------------+----------------+\n", "\n", - "+---------------+----------------+-----------------------+\n", - "| info.only_het | info.AS_VQSLOD | info.inbreeding_coeff |\n", - "+---------------+----------------+-----------------------+\n", - "| bool | float64 | float64 |\n", - "+---------------+----------------+-----------------------+\n", - "| False | 4.51e+00 | 8.00e-01 |\n", - "| False | 5.16e+00 | 3.75e-01 |\n", - "| False | 6.19e+00 | 8.00e-01 |\n", - "| False | 6.36e+00 | 5.00e-01 |\n", - "| False | 5.57e+00 | 7.33e-01 |\n", - "+---------------+----------------+-----------------------+\n", + "+-----------------------+\n", + "| info.inbreeding_coeff |\n", + "+-----------------------+\n", + "| float64 |\n", + "+-----------------------+\n", + "| -1.64e-05 |\n", + "| -1.57e-05 |\n", + "| -7.19e-05 |\n", + "| -1.37e-06 |\n", + "| -1.37e-06 |\n", + "+-----------------------+\n", "\n", "+------------------------------------------------------------------------------+\n", "| info.vrs.VRS_Allele_IDs |\n", "+------------------------------------------------------------------------------+\n", "| array |\n", "+------------------------------------------------------------------------------+\n", - "| [\"ga4gh:VA.BlCz08hG7ZEQzvW20V8Kp4xJMx-pMKes\",\"ga4gh:VA.U4eD7PXtXRCClN6FQt... |\n", - "| [\"ga4gh:VA.aXxME51cngsJBnH_3WX01B0Ms-SLay9X\",\"ga4gh:VA.ynryFZCH9dBU67nwPr... |\n", - "| [\"ga4gh:VA.Q6p6okAv6qHSPSV8MOvy8Hhl0kZ6tQ4U\",\"ga4gh:VA.WIfYWxgEc5ICUUByiD... |\n", - "| [\"ga4gh:VA.k_gesWx8TbLs23MHIkc3NaVscBWVDrSE\",\"ga4gh:VA.NJz3hsVBrqbTn17g5T... |\n", - "| [\"ga4gh:VA.HjAJ4gj43VVFJQmV-h5WuPZZPBmNwSFZ\",\"ga4gh:VA.sT14AsCSWlf2AqH0wh... |\n", + "| [\"ga4gh:VA.xwHxL6yO3I874HqhfGar1ZIaOp66ifsx\",\"ga4gh:VA.eglRJIN5-izMH1peMx... |\n", + "| [\"ga4gh:VA.3n-gYs3xsspnxwI91EMCEDsIcrj9bIqO\",\"ga4gh:VA.9Y9GDmOWCTqMks8dsN... |\n", + "| [\"ga4gh:VA.3n-gYs3xsspnxwI91EMCEDsIcrj9bIqO\",\"ga4gh:VA.R13f7bcCv-WGRkCM6W... |\n", + "| [\"ga4gh:VA.MHTiWiUO_hsQ_FAaIagdomN6DdnpjqRm\",\"ga4gh:VA.D8-MF1xUzSMIKncRc7... |\n", + "| [\"ga4gh:VA.oDr3967BFZ6uu2LJEc9_RVWIOnNqtSF-\",\"ga4gh:VA.N81rCvIHb-9PjhcHLL... |\n", "+------------------------------------------------------------------------------+\n", "\n", "+-----------------------+-----------------------+---------------------+\n", @@ -5107,11 +5142,11 @@ "+-----------------------+-----------------------+---------------------+\n", "| array | array | array |\n", "+-----------------------+-----------------------+---------------------+\n", - "| [113409635,113409635] | [113409636,113409636] | [\"G\",\"C\"] |\n", - "| [113409692,113409692] | [113409693,113409693] | [\"G\",\"A\"] |\n", - "| [113409716,113409716] | [113409717,113409717] | [\"C\",\"T\"] |\n", - "| [113409757,113409757] | [113409758,113409758] | [\"C\",\"T\"] |\n", - "| [113410001,113410001] | [113410002,113410002] | [\"C\",\"A\"] |\n", + "| [113410656,113410656] | [113410657,113410657] | [\"C\",\"T\"] |\n", + "| [113410657,113410657] | [113410658,113410658] | [\"G\",\"A\"] |\n", + "| [113410657,113410657] | [113410658,113410658] | [\"G\",\"T\"] |\n", + "| [113410659,113410659] | [113410660,113410660] | [\"A\",\"G\"] |\n", + "| [113410661,113410661] | [113410662,113410662] | [\"G\",\"A\"] |\n", "+-----------------------+-----------------------+---------------------+\n", "\n", "+-------------------+-----------+--------+--------------------------------+\n", @@ -5119,11 +5154,11 @@ "+-------------------+-----------+--------+--------------------------------+\n", "| str | int32 | str | str |\n", "+-------------------+-----------+--------+--------------------------------+\n", - "| \"G/C\" | 113409636 | \".\" | \"chr11\t113409636\t.\tG\tC\t.\t.\tGT\" |\n", - "| \"G/A\" | 113409693 | \".\" | \"chr11\t113409693\t.\tG\tA\t.\t.\tGT\" |\n", - "| \"C/T\" | 113409717 | \".\" | \"chr11\t113409717\t.\tC\tT\t.\t.\tGT\" |\n", - "| \"C/T\" | 113409758 | \".\" | \"chr11\t113409758\t.\tC\tT\t.\t.\tGT\" |\n", - "| \"C/A\" | 113410002 | \".\" | \"chr11\t113410002\t.\tC\tA\t.\t.\tGT\" |\n", + "| \"C/T\" | 113410657 | \".\" | \"chr11\t113410657\t.\tC\tT\t.\t.\tGT\" |\n", + "| \"G/A\" | 113410658 | \".\" | \"chr11\t113410658\t.\tG\tA\t.\t.\tGT\" |\n", + "| \"G/T\" | 113410658 | \".\" | \"chr11\t113410658\t.\tG\tT\t.\t.\tGT\" |\n", + "| \"A/G\" | 113410660 | \".\" | \"chr11\t113410660\t.\tA\tG\t.\t.\tGT\" |\n", + "| \"G/A\" | 113410662 | \".\" | \"chr11\t113410662\t.\tG\tA\t.\t.\tGT\" |\n", "+-------------------+-----------+--------+--------------------------------+\n", "\n", "+------------------------------------------------------------------------------+\n", @@ -5179,11 +5214,11 @@ "+---------------------+-----------+------------+\n", "| str | int32 | int32 |\n", "+---------------------+-----------+------------+\n", - "| \"chr11\" | 113409636 | 1 |\n", - "| \"chr11\" | 113409693 | 1 |\n", - "| \"chr11\" | 113409717 | 1 |\n", - "| \"chr11\" | 113409758 | 1 |\n", - "| \"chr11\" | 113410002 | 1 |\n", + "| \"chr11\" | 113410657 | 1 |\n", + "| \"chr11\" | 113410658 | 1 |\n", + "| \"chr11\" | 113410658 | 1 |\n", + "| \"chr11\" | 113410660 | 1 |\n", + "| \"chr11\" | 113410662 | 1 |\n", "+---------------------+-----------+------------+\n", "\n", "+------------------------------------------------------------------------------+\n", @@ -5191,11 +5226,11 @@ "+------------------------------------------------------------------------------+\n", "| array |\n", - "+-------------------------------------------------+\n", - "| [0,0,0,0,28,0,76,0,162,0,0,0,0,0,0,0,0,0,0,1] |\n", - "| [0,0,0,0,25,0,186,0,206,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,95,0,197,0,202,0,0,0,0,0,0,0,1,0,0,0] |\n", - "| [0,0,0,0,100,0,111,0,193,0,0,0,0,0,1,0,0,0,0,0] |\n", - "| [0,0,0,0,120,1,223,5,34,1,5,0,2,5,7,1,3,2,1,66] |\n", - "+-------------------------------------------------+\n", + "+------------------------------------------------------------------+\n", + "| histograms.qual_hists.gq_hist_all.bin_freq |\n", + "+------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------+\n", + "| [0,0,0,0,4430,0,32721,0,357851,0,60423,0,267316,0,0,0,0,0,0,18] |\n", + "| [0,0,0,0,4183,2,30033,1,354765,0,58262,0,276721,0,0,0,1,0,0,115] |\n", + "| [0,0,0,0,4183,0,30033,1,354765,0,58262,0,276721,0,0,0,1,0,0,115] |\n", + "| [0,0,0,0,3304,0,26636,0,351846,0,54948,0,288484,0,0,0,0,0,0,1] |\n", + "| [0,0,0,0,4139,0,27770,1,353590,0,56800,0,283396,0,0,0,0,0,0,2] |\n", + "+------------------------------------------------------------------+\n", "\n", "+---------------------------------------------+\n", "| histograms.qual_hists.gq_hist_all.n_smaller |\n", @@ -5342,17 +5377,17 @@ "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", "+------------------------------------------------------------------------------+\n", "\n", - "+--------------------------------------------------+\n", - "| histograms.qual_hists.dp_hist_all.bin_freq |\n", - "+--------------------------------------------------+\n", - "| array |\n", - "+--------------------------------------------------+\n", - "| [0,0,101,28,30,82,26,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,211,29,38,105,34,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,286,30,40,105,34,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,200,35,36,102,32,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,438,30,5,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "+--------------------------------------------------+\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.qual_hists.dp_hist_all.bin_freq |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0,0,29987,74977,120278,300405,170342,18935,3117,1021,684,644,577,507,353... |\n", + "| [0,0,26988,70993,120130,305542,173013,19471,3177,1036,688,647,582,509,357... |\n", + "| [0,0,26986,70993,120130,305542,173013,19471,3177,1036,688,647,582,509,357... |\n", + "| [0,0,24253,67281,120581,309738,175490,19882,3222,1041,692,644,582,508,354... |\n", + "| [0,0,22477,65025,118275,313361,178106,20388,3276,1054,693,645,582,508,355... |\n", + "+------------------------------------------------------------------------------+\n", "\n", "+---------------------------------------------+\n", "| histograms.qual_hists.dp_hist_all.n_smaller |\n", @@ -5371,11 +5406,11 @@ "+--------------------------------------------+\n", "| int64 |\n", "+--------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", + "| 252 |\n", + "| 265 |\n", + "| 265 |\n", + "| 264 |\n", + "| 265 |\n", "+--------------------------------------------+\n", "\n", "+------------------------------------------------------------------------------+\n", @@ -5390,17 +5425,17 @@ "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", "+------------------------------------------------------------------------------+\n", "\n", - "+---------------------------------------------+\n", - "| histograms.qual_hists.gq_hist_alt.bin_freq |\n", - "+---------------------------------------------+\n", - "| array |\n", - "+---------------------------------------------+\n", - "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1] |\n", - "| [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0] |\n", - "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0] |\n", - "| [0,0,0,0,1,1,11,5,2,1,5,0,2,5,7,1,3,2,1,66] |\n", - "+---------------------------------------------+\n", + "+--------------------------------------------+\n", + "| histograms.qual_hists.gq_hist_alt.bin_freq |\n", + "+--------------------------------------------+\n", + "| array |\n", + "+--------------------------------------------+\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,18] |\n", + "| [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,21] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,94] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2] |\n", + "+--------------------------------------------+\n", "\n", "+---------------------------------------------+\n", "| histograms.qual_hists.gq_hist_alt.n_smaller |\n", @@ -5438,17 +5473,17 @@ "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", "+------------------------------------------------------------------------------+\n", "\n", - "+---------------------------------------------+\n", - "| histograms.qual_hists.dp_hist_alt.bin_freq |\n", - "+---------------------------------------------+\n", - "| array |\n", - "+---------------------------------------------+\n", - "| [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,108,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "+---------------------------------------------+\n", + "+-----------------------------------------------+\n", + "| histograms.qual_hists.dp_hist_alt.bin_freq |\n", + "+-----------------------------------------------+\n", + "| array |\n", + "+-----------------------------------------------+\n", + "| [0,0,0,2,3,3,2,1,0,1,1,0,1,0,0,1,1,0,0,1] |\n", + "| [0,0,1,2,4,3,4,1,1,0,0,1,0,1,0,0,0,2,0,1] |\n", + "| [0,0,2,3,11,13,14,10,8,9,1,3,2,0,4,0,0,1,1,1] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "+-----------------------------------------------+\n", "\n", "+---------------------------------------------+\n", "| histograms.qual_hists.dp_hist_alt.n_smaller |\n", @@ -5467,11 +5502,11 @@ "+--------------------------------------------+\n", "| int64 |\n", "+--------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", + "| 1 |\n", + "| 2 |\n", + "| 11 |\n", + "| 1 |\n", + "| 1 |\n", "+--------------------------------------------+\n", "\n", "+------------------------------------------------------------------------------+\n", @@ -5486,17 +5521,17 @@ "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", "+------------------------------------------------------------------------------+\n", "\n", - "+---------------------------------------------+\n", - "| histograms.qual_hists.ab_hist_alt.bin_freq |\n", - "+---------------------------------------------+\n", - "| array |\n", - "+---------------------------------------------+\n", - "| [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0] |\n", - "| [0,0,0,0,3,8,0,4,8,6,30,15,8,9,3,1,3,0,0,0] |\n", - "+---------------------------------------------+\n", + "+-----------------------------------------------+\n", + "| histograms.qual_hists.ab_hist_alt.bin_freq |\n", + "+-----------------------------------------------+\n", + "| array |\n", + "+-----------------------------------------------+\n", + "| [0,0,0,0,0,0,2,0,4,4,4,3,1,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,2,0,1,0,3,3,8,5,0,1,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,6,5,19,14,25,17,6,1,1,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0] |\n", + "+-----------------------------------------------+\n", "\n", "+---------------------------------------------+\n", "| histograms.qual_hists.ab_hist_alt.n_smaller |\n", @@ -5534,17 +5569,17 @@ "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", "+------------------------------------------------------------------------------+\n", "\n", - "+------------------------------------------------------------------------------+\n", - "| histograms.raw_qual_hists.gq_hist_all.bin_freq |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [313709,2,2,0,442,0,76,0,162,0,0,0,0,0,0,0,0,0,0,1] |\n", - "| [313080,4,2,0,906,6,189,2,206,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [313071,2,3,0,920,0,198,0,202,0,0,0,0,0,0,0,1,0,0,0] |\n", - "| [313441,3,2,1,640,0,111,1,193,0,0,0,0,0,1,0,0,0,0,0] |\n", - "| [301848,5644,543,415,1889,1584,436,212,123,210,485,568,76,48,44,53,135,57... |\n", - "+------------------------------------------------------------------------------+\n", + "+-----------------------------------------------------------------------+\n", + "| histograms.raw_qual_hists.gq_hist_all.bin_freq |\n", + "+-----------------------------------------------------------------------+\n", + "| array |\n", + "+-----------------------------------------------------------------------+\n", + "| [979,2,2487,1,8860,1,32722,0,357851,0,60423,0,267317,0,0,0,0,0,0,18] |\n", + "| [886,4,2000,0,7936,2,30033,1,354765,1,58262,0,276721,0,0,0,1,0,0,116] |\n", + "| [886,4,2000,0,7936,2,30033,1,354765,1,58262,0,276721,0,0,0,1,0,0,116] |\n", + "| [684,0,1637,0,6556,2,26636,0,351846,0,54948,0,288484,0,0,0,0,0,0,1] |\n", + "| [653,0,1690,2,6865,0,27770,1,353590,0,56800,0,283396,0,0,0,0,0,0,2] |\n", + "+-----------------------------------------------------------------------+\n", "\n", "+-------------------------------------------------+\n", "| histograms.raw_qual_hists.gq_hist_all.n_smaller |\n", @@ -5582,17 +5617,17 @@ "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", "+------------------------------------------------------------------------------+\n", "\n", - "+-----------------------------------------------------------+\n", - "| histograms.raw_qual_hists.dp_hist_all.bin_freq |\n", - "+-----------------------------------------------------------+\n", - "| array |\n", - "+-----------------------------------------------------------+\n", - "| [240827,73298,103,28,30,82,26,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [240299,73676,214,29,38,105,34,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [240226,73668,294,30,40,105,34,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [240307,73671,209,36,36,102,32,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [238198,75776,482,33,5,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "+-----------------------------------------------------------+\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.raw_qual_hists.dp_hist_all.bin_freq |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [415,5663,30415,76214,120310,300505,170348,18947,3122,1023,686,644,577,50... |\n", + "| [362,4790,27388,71922,120182,305624,173020,19481,3184,1039,690,648,582,50... |\n", + "| [362,4790,27388,71922,120182,305624,173020,19481,3184,1039,690,648,582,50... |\n", + "| [296,4122,24622,67964,120609,309787,175498,19891,3228,1043,694,645,582,50... |\n", + "| [264,3602,22767,65834,118294,313419,178113,20399,3282,1056,696,645,582,50... |\n", + "+------------------------------------------------------------------------------+\n", "\n", "+-------------------------------------------------+\n", "| histograms.raw_qual_hists.dp_hist_all.n_smaller |\n", @@ -5611,11 +5646,11 @@ "+------------------------------------------------+\n", "| int64 |\n", "+------------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", + "| 252 |\n", + "| 265 |\n", + "| 265 |\n", + "| 264 |\n", + "| 265 |\n", "+------------------------------------------------+\n", "\n", "+------------------------------------------------------------------------------+\n", @@ -5630,17 +5665,17 @@ "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", "+------------------------------------------------------------------------------+\n", "\n", - "+------------------------------------------------------------------------------+\n", - "| histograms.raw_qual_hists.gq_hist_alt.bin_freq |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1] |\n", - "| [0,3,0,0,1,5,3,1,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0] |\n", - "| [0,1,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0] |\n", - "| [398,5642,541,415,716,1584,224,212,91,210,485,568,76,48,44,53,135,57,19,108] |\n", - "+------------------------------------------------------------------------------+\n", + "+------------------------------------------------+\n", + "| histograms.raw_qual_hists.gq_hist_alt.bin_freq |\n", + "+------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------+\n", + "| [1,2,0,1,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,18] |\n", + "| [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,21] |\n", + "| [2,4,1,0,0,2,0,0,0,1,0,0,0,0,0,0,0,0,0,95] |\n", + "| [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2] |\n", + "+------------------------------------------------+\n", "\n", "+-------------------------------------------------+\n", "| histograms.raw_qual_hists.gq_hist_alt.n_smaller |\n", @@ -5678,17 +5713,17 @@ "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", "+------------------------------------------------------------------------------+\n", "\n", - "+---------------------------------------------------+\n", - "| histograms.raw_qual_hists.dp_hist_alt.bin_freq |\n", - "+---------------------------------------------------+\n", - "| array |\n", - "+---------------------------------------------------+\n", - "| [2,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [8,4,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [2,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [1,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [9330,2176,115,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "+---------------------------------------------------+\n", + "+------------------------------------------------+\n", + "| histograms.raw_qual_hists.dp_hist_alt.bin_freq |\n", + "+------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------+\n", + "| [0,0,1,3,6,4,2,1,0,1,1,0,1,0,0,1,1,0,0,1] |\n", + "| [0,0,1,2,4,3,4,1,1,0,0,1,0,1,0,0,0,2,0,1] |\n", + "| [0,2,4,4,17,13,14,10,8,9,1,3,2,0,4,0,0,1,1,1] |\n", + "| [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "+------------------------------------------------+\n", "\n", "+-------------------------------------------------+\n", "| histograms.raw_qual_hists.dp_hist_alt.n_smaller |\n", @@ -5707,11 +5742,11 @@ "+------------------------------------------------+\n", "| int64 |\n", "+------------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", + "| 1 |\n", + "| 2 |\n", + "| 11 |\n", + "| 1 |\n", + "| 1 |\n", "+------------------------------------------------+\n", "\n", "+------------------------------------------------------------------------------+\n", @@ -5726,17 +5761,17 @@ "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", "+------------------------------------------------------------------------------+\n", "\n", - "+------------------------------------------------------------------+\n", - "| histograms.raw_qual_hists.ab_hist_alt.bin_freq |\n", - "+------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------+\n", - "| [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,1,1,2,0,1,0,1,0,0,4,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0] |\n", - "| [0,0,4,4,27,107,217,41,416,6,1084,414,43,1634,53,495,208,34,2,0] |\n", - "+------------------------------------------------------------------+\n", + "+------------------------------------------------+\n", + "| histograms.raw_qual_hists.ab_hist_alt.bin_freq |\n", + "+------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------+\n", + "| [0,1,3,2,0,0,2,0,4,4,4,3,1,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,2,0,1,0,3,3,8,5,0,1,0,0,0,0,0,0] |\n", + "| [0,2,7,0,0,1,6,5,19,14,26,17,6,1,1,0,0,0,0,0] |\n", + "| [0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0] |\n", + "+------------------------------------------------+\n", "\n", "+-------------------------------------------------+\n", "| histograms.raw_qual_hists.ab_hist_alt.n_smaller |\n", @@ -5779,11 +5814,11 @@ "+--------------------------------------------+\n", "| array |\n", "+--------------------------------------------+\n", - "| [0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,1,1,5,4,3,0,0] |\n", + "| [1,1,0,2,5,2,1,0,0,0] |\n", + "| [0,0,1,1,5,3,2,0,0,0] |\n", + "| [0,1,4,4,2,5,0,1,4,1] |\n", + "| [1,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,1,0,1,0,0,0,0,0] |\n", "+--------------------------------------------+\n", "\n", "+---------------------------------------------+\n", @@ -5791,9 +5826,9 @@ "+---------------------------------------------+\n", "| int64 |\n", "+---------------------------------------------+\n", + "| 2 |\n", "| 0 |\n", - "| 0 |\n", - "| 0 |\n", + "| 1 |\n", "| 0 |\n", "| 0 |\n", "+---------------------------------------------+\n", @@ -5831,7 +5866,7 @@ "| [0,0,0,0,0,0,0,0,0,0] |\n", "| [0,0,0,0,0,0,0,0,0,0] |\n", "| [0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,1,2,2,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0] |\n", "+--------------------------------------------+\n", "\n", "+---------------------------------------------+\n", @@ -5851,11 +5886,11 @@ "+--------------------------------------------+---------------------------------+\n", "| int64 | float32 |\n", "+--------------------------------------------+---------------------------------+\n", - "| 0 | 8.46e+00 |\n", - "| 0 | 9.08e+00 |\n", - "| 0 | 1.51e+01 |\n", - "| 0 | 9.13e+00 |\n", - "| 0 | 2.02e+00 |\n", + "| 0 | 3.61e+00 |\n", + "| 0 | 2.90e+00 |\n", + "| 0 | 2.38e+00 |\n", + "| 0 | 1.22e+00 |\n", + "| 0 | 6.25e+00 |\n", "+--------------------------------------------+---------------------------------+\n", "\n", "+-------------------------------------+--------------------------------+\n", @@ -5863,11 +5898,11 @@ "+-------------------------------------+--------------------------------+\n", "| float32 | float64 |\n", "+-------------------------------------+--------------------------------+\n", - "| 7.01e-01 | NA |\n", - "| 7.68e-01 | NA |\n", - "| 1.40e+00 | NA |\n", - "| 7.73e-01 | NA |\n", - "| 9.23e-02 | NA |\n", + "| 2.42e-01 | NA |\n", + "| 1.80e-01 | NA |\n", + "| 1.31e-01 | NA |\n", + "| -1.85e-02 | NA |\n", + "| 4.76e-01 | NA |\n", "+-------------------------------------+--------------------------------+\n", "\n", "+--------------------------------------+\n", @@ -5878,7 +5913,7 @@ "| 0.00e+00 |\n", "| 0.00e+00 |\n", "| 0.00e+00 |\n", - "| 1.00e-02 |\n", + "| 0.00e+00 |\n", "| 0.00e+00 |\n", "+--------------------------------------+\n", "\n", @@ -5887,11 +5922,11 @@ "+------------------------------------------+-----------------------------+\n", "| float64 | float64 |\n", "+------------------------------------------+-----------------------------+\n", - "| 2.00e-02 | 1.94e+00 |\n", - "| 0.00e+00 | 5.70e-01 |\n", - "| 0.00e+00 | 1.05e+00 |\n", - "| 3.00e-02 | 2.58e+00 |\n", - "| 0.00e+00 | 1.61e+00 |\n", + "| 1.20e-01 | -4.68e-01 |\n", + "| 5.00e-02 | 7.10e-02 |\n", + "| 3.00e-02 | 7.10e-02 |\n", + "| 4.00e-02 | -1.27e+00 |\n", + "| 2.10e-01 | 1.62e+00 |\n", "+------------------------------------------+-----------------------------+\n", "\n", "+-------------------------------+-----------------------------------+\n", @@ -5915,12 +5950,12 @@ "name": "stdout", "output_type": "stream", "text": [ - "The total number of other variants passing filters in DRD2 is: 2739\n" + "The total number of other variants passing filters in DRD2 is: 783\n" ] } ], "source": [ - "var_ht = filter_by_consequence_category(other=True, ht=drd2_interval_ht)\n", + "var_ht = filter_by_consequence_category(other=True, ht=drd2_ht)\n", "var_ht.show(5)\n", "print(\"The total number of other variants passing filters in DRD2 is: \", var_ht.count())" ] @@ -6207,7 +6242,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "2024-12-19 17:34:53.716 Hail: WARN: No variant found at chr22:15528692 with alleles ['C', 'A']\n" + "2024-12-20 12:31:16.359 Hail: WARN: No variant found at chr22:15528692 with alleles ['C', 'A']\n" ] }, { From f482dba8d010a8d90b514d00e525e07aa9c23453 Mon Sep 17 00:00:00 2001 From: Qin He <44242118+KoalaQin@users.noreply.github.com> Date: Fri, 20 Dec 2024 15:26:58 -0500 Subject: [PATCH 049/121] Draft code --- gnomad_toolbox/filtering/vep.py | 62 +++++++++++++++++++++++---------- 1 file changed, 44 insertions(+), 18 deletions(-) diff --git a/gnomad_toolbox/filtering/vep.py b/gnomad_toolbox/filtering/vep.py index a8b8793..d37eed9 100644 --- a/gnomad_toolbox/filtering/vep.py +++ b/gnomad_toolbox/filtering/vep.py @@ -3,7 +3,7 @@ from functools import reduce import hail as hl -from gnomad.utils.vep import CSQ_CODING, LOF_CSQ_SET +from gnomad.utils.vep import CSQ_CODING, LOF_CSQ_SET, filter_vep_transcript_csqs from gnomad_toolbox.load_data import _get_gnomad_release @@ -75,23 +75,49 @@ def filter_by_csqs( return ht -# TODO: The following was in one of the notebooks, and I think we should add a wrapper -# around this function to make it much simpler instead of using it in the notebook. +def filter_to_plofs(gene: str, select_fields: bool = False, **kwargs) -> hl.Table: + """ + Filter to observed pLoF variants that we used to calculate the gene constraint metrics. + + .. note:: -# Filter to LOFTEE high-confidence variants for certain genes + pLOF variants meets the following requirements: + - High-confidence LOFTEE variants (without any flags), + - Only variants in the MANE Select transcript, + - PASS variants that are SNVs with MAF ≤ 0.1%, + - Exome median depth ≥ 30 (# TODO: This is changing in v4 constraint?) -# In this example, we are filtering to variants in ASH1L that are LOFTEE high-confidence -# (with no flags) in the MANE select transcript. + :param gene: Gene symbol. + :param select_fields: Boolean if the output should be limited to specific fields. + :return: Table with pLoF variants. + """ + # TODO: need to think more how to optimize this so it won't use a lot of memory + var_ht = _get_gnomad_release(dataset="variant", **kwargs) + cov_ht = _get_gnomad_release(dataset="coverage", **kwargs) + + var_ht = filter_vep_transcript_csqs( + var_ht, + synonymous=False, + mane_select=True, + genes=[gene], + match_by_gene_symbol=True, + additional_filtering_criteria=[ + lambda x: (x.lof == "HC") & hl.is_missing(x.lof_flags) + ], + ) + + var_ht = var_ht.filter( + (hl.len(var_ht.filters) == 0) + & (var_ht.allele_info.allele_type == "snv") + & (var_ht.freq[0].AF <= 0.001) + & (cov_ht[var_ht.locus].median_approx >= 30) + ) + + if select_fields: + var_ht = var_ht.select( + freq=var_ht.freq[0], + csq=var_ht.vep.transcript_consequences[0].consequence_terms, + coverage=cov_ht[var_ht.locus], + ) -# from gnomad.utils.vep import filter_vep_transcript_csqs -# ht = get_gnomad_release(data_type='exomes', version='4.1') -# ht = filter_vep_transcript_csqs( -# ht, -# synonymous=False, -# mane_select=True, -# genes=["ASH1L"], -# match_by_gene_symbol=True, -# additional_filtering_criteria=[lambda x: (x.lof == "HC") & hl.is_missing(x.lof_flags)], -# ) -# ht.show() -# ht.count() + return var_ht From 09551f89f2de83b5a88ec0ed13ce7dcde866025f Mon Sep 17 00:00:00 2001 From: jkgoodrich <33063077+jkgoodrich@users.noreply.github.com> Date: Fri, 20 Dec 2024 14:45:01 -0700 Subject: [PATCH 050/121] Small docstring fix --- gnomad_toolbox/filtering/vep.py | 8 ++++---- 1 file changed, 4 insertions(+), 4 deletions(-) diff --git a/gnomad_toolbox/filtering/vep.py b/gnomad_toolbox/filtering/vep.py index adbd6d3..049e5db 100644 --- a/gnomad_toolbox/filtering/vep.py +++ b/gnomad_toolbox/filtering/vep.py @@ -23,7 +23,7 @@ def filter_by_consequence_category( The [VEP](https://useast.ensembl.org/info/docs/tools/vep/index.html) consequences included in each category are: - pLoF + pLoF: - transcript_ablation - splice_acceptor_variant @@ -31,7 +31,7 @@ def filter_by_consequence_category( - stop_gained - frameshift_variant - Missense / Inframe indel + Missense / Inframe indel: - stop_lost - start_lost @@ -39,11 +39,11 @@ def filter_by_consequence_category( - inframe_deletion - missense_variant - Synonymous + Synonymous: - synonymous_variant - `Other + Other: - protein_altering_variant - incomplete_terminal_codon_variant From df9eb61f86460e96b4587cfacb0275d95481469d Mon Sep 17 00:00:00 2001 From: Qin He <44242118+KoalaQin@users.noreply.github.com> Date: Fri, 20 Dec 2024 16:59:14 -0500 Subject: [PATCH 051/121] Add to-do --- gnomad_toolbox/filtering/variant.py | 2 ++ 1 file changed, 2 insertions(+) diff --git a/gnomad_toolbox/filtering/variant.py b/gnomad_toolbox/filtering/variant.py index 386e83c..ca4ed39 100644 --- a/gnomad_toolbox/filtering/variant.py +++ b/gnomad_toolbox/filtering/variant.py @@ -115,6 +115,8 @@ def filter_by_gene_symbol(gene: str, exon_padding_bp: int = 75, **kwargs) -> hl. """ Filter variants in a gene. + # TODO: Add a pre-processing step to filter out these genes on chrY to match the gnomAD browser. + .. note:: This function is to match the number of variants that you will get in the From aa4e8e5fd7c1b45c1439f5a915f99a0b142206c0 Mon Sep 17 00:00:00 2001 From: Qin He <44242118+KoalaQin@users.noreply.github.com> Date: Fri, 20 Dec 2024 17:08:18 -0500 Subject: [PATCH 052/121] Move to-do --- gnomad_toolbox/filtering/variant.py | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/gnomad_toolbox/filtering/variant.py b/gnomad_toolbox/filtering/variant.py index ca4ed39..e4f78ce 100644 --- a/gnomad_toolbox/filtering/variant.py +++ b/gnomad_toolbox/filtering/variant.py @@ -111,12 +111,12 @@ def filter_by_intervals( return ht +# TODO: Add a pre-processing step to filter out these genes on chrY to +# match the gnomAD browser. def filter_by_gene_symbol(gene: str, exon_padding_bp: int = 75, **kwargs) -> hl.Table: """ Filter variants in a gene. - # TODO: Add a pre-processing step to filter out these genes on chrY to match the gnomAD browser. - .. note:: This function is to match the number of variants that you will get in the From f3d459ba2f8016116f92bfba52be28a5c72f1eb6 Mon Sep 17 00:00:00 2001 From: Qin He <44242118+KoalaQin@users.noreply.github.com> Date: Fri, 20 Dec 2024 17:08:59 -0500 Subject: [PATCH 053/121] Change param name --- gnomad_toolbox/filtering/variant.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/gnomad_toolbox/filtering/variant.py b/gnomad_toolbox/filtering/variant.py index e4f78ce..536c0bd 100644 --- a/gnomad_toolbox/filtering/variant.py +++ b/gnomad_toolbox/filtering/variant.py @@ -136,6 +136,6 @@ def filter_by_gene_symbol(gene: str, exon_padding_bp: int = 75, **kwargs) -> hl. """ # Load the Hail Table if not provided ht = _get_gnomad_release(dataset="variant", **kwargs) - ht = filter_to_gencode_cds(ht, genes=gene, padding=exon_padding_bp) + ht = filter_to_gencode_cds(ht, genes=gene, padding_bp=exon_padding_bp) return ht From 80b1af4de7faf352c14f73c7b45846def2bd3aac Mon Sep 17 00:00:00 2001 From: Qin He <44242118+KoalaQin@users.noreply.github.com> Date: Thu, 2 Jan 2025 15:17:26 -0500 Subject: [PATCH 054/121] Get relevant coverage table for each version --- gnomad_toolbox/filtering/vep.py | 90 ++++++++++++++----- .../notebooks/explore_release_data.ipynb | 2 +- .../intro_to_filtering_variant_data.ipynb | 2 +- 3 files changed, 72 insertions(+), 22 deletions(-) diff --git a/gnomad_toolbox/filtering/vep.py b/gnomad_toolbox/filtering/vep.py index d37eed9..9554bed 100644 --- a/gnomad_toolbox/filtering/vep.py +++ b/gnomad_toolbox/filtering/vep.py @@ -3,9 +3,11 @@ from functools import reduce import hail as hl +from gnomad.resources.grch37.reference_data import gencode as grch37_gencode +from gnomad.resources.grch38.reference_data import gencode as grch38_gencode from gnomad.utils.vep import CSQ_CODING, LOF_CSQ_SET, filter_vep_transcript_csqs -from gnomad_toolbox.load_data import _get_gnomad_release +from gnomad_toolbox.load_data import _get_gnomad_release, gnomad_session # TODO: I haven't looked over this function yet. Is there anything in gnomad_methods # that could be used here? If not, is there anything here that should be moved to @@ -75,42 +77,90 @@ def filter_by_csqs( return ht -def filter_to_plofs(gene: str, select_fields: bool = False, **kwargs) -> hl.Table: +def filter_to_plofs( + gene_symbol: str, select_fields: bool = False, **kwargs +) -> hl.Table: """ - Filter to observed pLoF variants that we used to calculate the gene constraint metrics. + Filter to observed pLoF variants that we used to calculate the gene constraint metrics. + + .. note:: - .. note:: + pLOF variants meets the following requirements: + - High-confidence LOFTEE variants (without any flags), + - Only variants in the MANE Select transcript, + - PASS variants that are SNVs with MAF ≤ 0.1%, + - Exome median depth ≥ 30 (# TODO: This is changing in v4 constraint?) - pLOF variants meets the following requirements: - - High-confidence LOFTEE variants (without any flags), - - Only variants in the MANE Select transcript, - - PASS variants that are SNVs with MAF ≤ 0.1%, - - Exome median depth ≥ 30 (# TODO: This is changing in v4 constraint?) + **Note: this number should match the number of observed pLOF SNVs on the gene page of gnomAD Browser.** - :param gene: Gene symbol. - :param select_fields: Boolean if the output should be limited to specific fields. - :return: Table with pLoF variants. + :param gene_symbol: Gene symbol. + :param select_fields: Boolean if the output should be limited to specific fields. + :return: Table with pLoF variants. """ - # TODO: need to think more how to optimize this so it won't use a lot of memory - var_ht = _get_gnomad_release(dataset="variant", **kwargs) - cov_ht = _get_gnomad_release(dataset="coverage", **kwargs) + var_version = kwargs.pop("version", gnomad_session.version) + var_ht = _get_gnomad_release(dataset="variant", version=var_version, **kwargs) + + # Determine the version of the coverage table + if var_version.startswith("4."): + cov_ht = _get_gnomad_release(dataset="coverage", version="4.0", **kwargs) + elif var_version.startswith("3."): + cov_ht = _get_gnomad_release(dataset="coverage", version="3.0.1", **kwargs) + elif var_version.startswith("2."): + cov_ht = _get_gnomad_release(dataset="coverage", version="2.1", **kwargs) + else: + raise ValueError( + f"Unrecognized version: '{var_version}'. Please specify a valid version." + ) + # Get the gene interval from gen_ht + gen_ht = ( + grch37_gencode.ht() if var_version.startswith("2.") else grch38_gencode.ht() + ) + interval = ( + gen_ht.filter( + (gen_ht.feature == "gene") + & (gen_ht.gene_name.lower() == gene_symbol.lower()) + ) + .select() + .collect() + ) + + if not interval: + raise ValueError(f"No interval found for gene: {gene_symbol}") + + # Convert to a list of intervals + interval = [row["interval"] for row in interval] + var_ht = hl.filter_intervals(var_ht, interval) + cov_ht = hl.filter_intervals(cov_ht, interval) + + # Filter to high-confidence LOFTEE variants var_ht = filter_vep_transcript_csqs( var_ht, synonymous=False, - mane_select=True, - genes=[gene], + mane_select=True if var_version.startswith("4.") else False, + # TODO: When this function is applied to DRD2 gene in v4.1, it will get 7 pLoF + # variants instead of 8 on the browser and the 4.1 constraint table, + # because one of them is not in mane select, nor in canonical transcript. + genes=[gene_symbol.upper()], match_by_gene_symbol=True, additional_filtering_criteria=[ - lambda x: (x.lof == "HC") & hl.is_missing(x.lof_flags) + lambda x: (x.lof == "HC") + & (hl.is_missing(x.lof_flags) | (x.lof_flags == "")) ], ) + if var_version.startswith("2."): + allele_type_expr = var_ht.allele_type + cov_cut_expr = cov_ht[var_ht.locus].median + else: + allele_type_expr = var_ht.allele_info.allele_type + cov_cut_expr = cov_ht[var_ht.locus].median_approx + var_ht = var_ht.filter( (hl.len(var_ht.filters) == 0) - & (var_ht.allele_info.allele_type == "snv") + & (allele_type_expr == "snv") & (var_ht.freq[0].AF <= 0.001) - & (cov_ht[var_ht.locus].median_approx >= 30) + & (cov_cut_expr >= 30) ) if select_fields: diff --git a/gnomad_toolbox/notebooks/explore_release_data.ipynb b/gnomad_toolbox/notebooks/explore_release_data.ipynb index 1801596..a6032d1 100644 --- a/gnomad_toolbox/notebooks/explore_release_data.ipynb +++ b/gnomad_toolbox/notebooks/explore_release_data.ipynb @@ -6582,7 +6582,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.12.2" + "version": "3.11.9" }, "toc": { "base_numbering": 1, diff --git a/gnomad_toolbox/notebooks/intro_to_filtering_variant_data.ipynb b/gnomad_toolbox/notebooks/intro_to_filtering_variant_data.ipynb index e6dd8fd..41f38ae 100644 --- a/gnomad_toolbox/notebooks/intro_to_filtering_variant_data.ipynb +++ b/gnomad_toolbox/notebooks/intro_to_filtering_variant_data.ipynb @@ -6252,7 +6252,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.12.2" + "version": "3.11.9" }, "toc": { "base_numbering": 1, From 532fcc86af78c43cafcfca12b6bf49b3053919ad Mon Sep 17 00:00:00 2001 From: Qin He <44242118+KoalaQin@users.noreply.github.com> Date: Fri, 3 Jan 2025 11:48:06 -0500 Subject: [PATCH 055/121] Revert notebook changes --- .../notebooks/explore_release_data.ipynb | 2 +- .../intro_to_filtering_variant_data.ipynb | 749 +++++++++--------- 2 files changed, 396 insertions(+), 355 deletions(-) diff --git a/gnomad_toolbox/notebooks/explore_release_data.ipynb b/gnomad_toolbox/notebooks/explore_release_data.ipynb index a6032d1..1801596 100644 --- a/gnomad_toolbox/notebooks/explore_release_data.ipynb +++ b/gnomad_toolbox/notebooks/explore_release_data.ipynb @@ -6582,7 +6582,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.9" + "version": "3.12.2" }, "toc": { "base_numbering": 1, diff --git a/gnomad_toolbox/notebooks/intro_to_filtering_variant_data.ipynb b/gnomad_toolbox/notebooks/intro_to_filtering_variant_data.ipynb index 41f38ae..ae240c0 100644 --- a/gnomad_toolbox/notebooks/intro_to_filtering_variant_data.ipynb +++ b/gnomad_toolbox/notebooks/intro_to_filtering_variant_data.ipynb @@ -41,7 +41,7 @@ { "data": { "text/html": [ - " \n", "
\n", " \n", - " Loading BokehJS ...\n", + " Loading BokehJS ...\n", "
\n" ] }, @@ -90,22 +90,14 @@ " * Handle when an output is cleared or removed\n", " */\n", " function handleClearOutput(event, handle) {\n", - " function drop(id) {\n", - " const view = Bokeh.index.get_by_id(id)\n", - " if (view != null) {\n", - " view.model.document.clear()\n", - " Bokeh.index.delete(view)\n", - " }\n", - " }\n", - "\n", " const cell = handle.cell;\n", "\n", " const id = cell.output_area._bokeh_element_id;\n", " const server_id = cell.output_area._bokeh_server_id;\n", - "\n", " // Clean up Bokeh references\n", - " if (id != null) {\n", - " drop(id)\n", + " if (id != null && id in Bokeh.index) {\n", + " Bokeh.index[id].model.document.clear();\n", + " delete Bokeh.index[id];\n", " }\n", "\n", " if (server_id !== undefined) {\n", @@ -114,8 +106,11 @@ " cell.notebook.kernel.execute(cmd_clean, {\n", " iopub: {\n", " output: function(msg) {\n", - " const id = msg.content.text.trim()\n", - " drop(id)\n", + " const id = msg.content.text.trim();\n", + " if (id in Bokeh.index) {\n", + " Bokeh.index[id].model.document.clear();\n", + " delete Bokeh.index[id];\n", + " }\n", " }\n", " }\n", " });\n", @@ -223,7 +218,7 @@ " \"\"}};\n", "\n", " function display_loaded() {\n", - " const el = document.getElementById(\"ab66414b-9a8d-4992-add5-5e50546bdda0\");\n", + " const el = document.getElementById(\"d5c4232b-0e66-4b61-983c-ba8423f8e445\");\n", " if (el != null) {\n", " el.textContent = \"BokehJS is loading...\";\n", " }\n", @@ -306,7 +301,7 @@ " document.body.appendChild(element);\n", " }\n", "\n", - " const js_urls = [\"https://cdn.bokeh.org/bokeh/release/bokeh-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-gl-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-widgets-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-tables-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-mathjax-3.3.4.min.js\"];\n", + " const js_urls = [\"https://cdn.bokeh.org/bokeh/release/bokeh-3.2.2.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-gl-3.2.2.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-widgets-3.2.2.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-tables-3.2.2.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-mathjax-3.2.2.min.js\"];\n", " const css_urls = [];\n", "\n", " const inline_js = [ function(Bokeh) {\n", @@ -329,7 +324,7 @@ " console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n", " root._bokeh_failed_load = true;\n", " } else if (force !== true) {\n", - " const cell = $(document.getElementById(\"ab66414b-9a8d-4992-add5-5e50546bdda0\")).parents('.cell').data().cell;\n", + " const cell = $(document.getElementById(\"d5c4232b-0e66-4b61-983c-ba8423f8e445\")).parents('.cell').data().cell;\n", " cell.output_area.append_execute_result(NB_LOAD_WARNING)\n", " }\n", " }\n", @@ -345,7 +340,7 @@ " }\n", "}(window));" ], - "application/vnd.bokehjs_load.v0+json": "(function(root) {\n function now() {\n return new Date();\n }\n\n const force = true;\n\n if (typeof root._bokeh_onload_callbacks === \"undefined\" || force === true) {\n root._bokeh_onload_callbacks = [];\n root._bokeh_is_loading = undefined;\n }\n\n\n if (typeof (root._bokeh_timeout) === \"undefined\" || force === true) {\n root._bokeh_timeout = Date.now() + 5000;\n root._bokeh_failed_load = false;\n }\n\n const NB_LOAD_WARNING = {'data': {'text/html':\n \"
\\n\"+\n \"

\\n\"+\n \"BokehJS does not appear to have successfully loaded. If loading BokehJS from CDN, this \\n\"+\n \"may be due to a slow or bad network connection. Possible fixes:\\n\"+\n \"

\\n\"+\n \"
    \\n\"+\n \"
  • re-rerun `output_notebook()` to attempt to load from CDN again, or
  • \\n\"+\n \"
  • use INLINE resources instead, as so:
  • \\n\"+\n \"
\\n\"+\n \"\\n\"+\n \"from bokeh.resources import INLINE\\n\"+\n \"output_notebook(resources=INLINE)\\n\"+\n \"\\n\"+\n \"
\"}};\n\n function display_loaded() {\n const el = document.getElementById(\"ab66414b-9a8d-4992-add5-5e50546bdda0\");\n if (el != null) {\n el.textContent = \"BokehJS is loading...\";\n }\n if (root.Bokeh !== undefined) {\n if (el != null) {\n el.textContent = \"BokehJS \" + root.Bokeh.version + \" successfully loaded.\";\n }\n } else if (Date.now() < root._bokeh_timeout) {\n setTimeout(display_loaded, 100)\n }\n }\n\n function run_callbacks() {\n try {\n root._bokeh_onload_callbacks.forEach(function(callback) {\n if (callback != null)\n callback();\n });\n } finally {\n delete root._bokeh_onload_callbacks\n }\n console.debug(\"Bokeh: all callbacks have finished\");\n }\n\n function load_libs(css_urls, js_urls, callback) {\n if (css_urls == null) css_urls = [];\n if (js_urls == null) js_urls = [];\n\n root._bokeh_onload_callbacks.push(callback);\n if (root._bokeh_is_loading > 0) {\n console.debug(\"Bokeh: BokehJS is being loaded, scheduling callback at\", now());\n return null;\n }\n if (js_urls == null || js_urls.length === 0) {\n run_callbacks();\n return null;\n }\n console.debug(\"Bokeh: BokehJS not loaded, scheduling load and callback at\", now());\n root._bokeh_is_loading = css_urls.length + js_urls.length;\n\n function on_load() {\n root._bokeh_is_loading--;\n if (root._bokeh_is_loading === 0) {\n console.debug(\"Bokeh: all BokehJS libraries/stylesheets loaded\");\n run_callbacks()\n }\n }\n\n function on_error(url) {\n console.error(\"failed to load \" + url);\n }\n\n for (let i = 0; i < css_urls.length; i++) {\n const url = css_urls[i];\n const element = document.createElement(\"link\");\n element.onload = on_load;\n element.onerror = on_error.bind(null, url);\n element.rel = \"stylesheet\";\n element.type = \"text/css\";\n element.href = url;\n console.debug(\"Bokeh: injecting link tag for BokehJS stylesheet: \", url);\n document.body.appendChild(element);\n }\n\n for (let i = 0; i < js_urls.length; i++) {\n const url = js_urls[i];\n const element = document.createElement('script');\n element.onload = on_load;\n element.onerror = on_error.bind(null, url);\n element.async = false;\n element.src = url;\n console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n document.head.appendChild(element);\n }\n };\n\n function inject_raw_css(css) {\n const element = document.createElement(\"style\");\n element.appendChild(document.createTextNode(css));\n document.body.appendChild(element);\n }\n\n const js_urls = [\"https://cdn.bokeh.org/bokeh/release/bokeh-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-gl-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-widgets-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-tables-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-mathjax-3.3.4.min.js\"];\n const css_urls = [];\n\n const inline_js = [ function(Bokeh) {\n Bokeh.set_log_level(\"info\");\n },\nfunction(Bokeh) {\n }\n ];\n\n function run_inline_js() {\n if (root.Bokeh !== undefined || force === true) {\n for (let i = 0; i < inline_js.length; i++) {\n inline_js[i].call(root, root.Bokeh);\n }\nif (force === true) {\n display_loaded();\n }} else if (Date.now() < root._bokeh_timeout) {\n setTimeout(run_inline_js, 100);\n } else if (!root._bokeh_failed_load) {\n console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n root._bokeh_failed_load = true;\n } else if (force !== true) {\n const cell = $(document.getElementById(\"ab66414b-9a8d-4992-add5-5e50546bdda0\")).parents('.cell').data().cell;\n cell.output_area.append_execute_result(NB_LOAD_WARNING)\n }\n }\n\n if (root._bokeh_is_loading === 0) {\n console.debug(\"Bokeh: BokehJS loaded, going straight to plotting\");\n run_inline_js();\n } else {\n load_libs(css_urls, js_urls, function() {\n console.debug(\"Bokeh: BokehJS plotting callback run at\", now());\n run_inline_js();\n });\n }\n}(window));" + "application/vnd.bokehjs_load.v0+json": "(function(root) {\n function now() {\n return new Date();\n }\n\n const force = true;\n\n if (typeof root._bokeh_onload_callbacks === \"undefined\" || force === true) {\n root._bokeh_onload_callbacks = [];\n root._bokeh_is_loading = undefined;\n }\n\n\n if (typeof (root._bokeh_timeout) === \"undefined\" || force === true) {\n root._bokeh_timeout = Date.now() + 5000;\n root._bokeh_failed_load = false;\n }\n\n const NB_LOAD_WARNING = {'data': {'text/html':\n \"
\\n\"+\n \"

\\n\"+\n \"BokehJS does not appear to have successfully loaded. If loading BokehJS from CDN, this \\n\"+\n \"may be due to a slow or bad network connection. Possible fixes:\\n\"+\n \"

\\n\"+\n \"
    \\n\"+\n \"
  • re-rerun `output_notebook()` to attempt to load from CDN again, or
  • \\n\"+\n \"
  • use INLINE resources instead, as so:
  • \\n\"+\n \"
\\n\"+\n \"\\n\"+\n \"from bokeh.resources import INLINE\\n\"+\n \"output_notebook(resources=INLINE)\\n\"+\n \"\\n\"+\n \"
\"}};\n\n function display_loaded() {\n const el = document.getElementById(\"d5c4232b-0e66-4b61-983c-ba8423f8e445\");\n if (el != null) {\n el.textContent = \"BokehJS is loading...\";\n }\n if (root.Bokeh !== undefined) {\n if (el != null) {\n el.textContent = \"BokehJS \" + root.Bokeh.version + \" successfully loaded.\";\n }\n } else if (Date.now() < root._bokeh_timeout) {\n setTimeout(display_loaded, 100)\n }\n }\n\n function run_callbacks() {\n try {\n root._bokeh_onload_callbacks.forEach(function(callback) {\n if (callback != null)\n callback();\n });\n } finally {\n delete root._bokeh_onload_callbacks\n }\n console.debug(\"Bokeh: all callbacks have finished\");\n }\n\n function load_libs(css_urls, js_urls, callback) {\n if (css_urls == null) css_urls = [];\n if (js_urls == null) js_urls = [];\n\n root._bokeh_onload_callbacks.push(callback);\n if (root._bokeh_is_loading > 0) {\n console.debug(\"Bokeh: BokehJS is being loaded, scheduling callback at\", now());\n return null;\n }\n if (js_urls == null || js_urls.length === 0) {\n run_callbacks();\n return null;\n }\n console.debug(\"Bokeh: BokehJS not loaded, scheduling load and callback at\", now());\n root._bokeh_is_loading = css_urls.length + js_urls.length;\n\n function on_load() {\n root._bokeh_is_loading--;\n if (root._bokeh_is_loading === 0) {\n console.debug(\"Bokeh: all BokehJS libraries/stylesheets loaded\");\n run_callbacks()\n }\n }\n\n function on_error(url) {\n console.error(\"failed to load \" + url);\n }\n\n for (let i = 0; i < css_urls.length; i++) {\n const url = css_urls[i];\n const element = document.createElement(\"link\");\n element.onload = on_load;\n element.onerror = on_error.bind(null, url);\n element.rel = \"stylesheet\";\n element.type = \"text/css\";\n element.href = url;\n console.debug(\"Bokeh: injecting link tag for BokehJS stylesheet: \", url);\n document.body.appendChild(element);\n }\n\n for (let i = 0; i < js_urls.length; i++) {\n const url = js_urls[i];\n const element = document.createElement('script');\n element.onload = on_load;\n element.onerror = on_error.bind(null, url);\n element.async = false;\n element.src = url;\n console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n document.head.appendChild(element);\n }\n };\n\n function inject_raw_css(css) {\n const element = document.createElement(\"style\");\n element.appendChild(document.createTextNode(css));\n document.body.appendChild(element);\n }\n\n const js_urls = [\"https://cdn.bokeh.org/bokeh/release/bokeh-3.2.2.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-gl-3.2.2.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-widgets-3.2.2.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-tables-3.2.2.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-mathjax-3.2.2.min.js\"];\n const css_urls = [];\n\n const inline_js = [ function(Bokeh) {\n Bokeh.set_log_level(\"info\");\n },\nfunction(Bokeh) {\n }\n ];\n\n function run_inline_js() {\n if (root.Bokeh !== undefined || force === true) {\n for (let i = 0; i < inline_js.length; i++) {\n inline_js[i].call(root, root.Bokeh);\n }\nif (force === true) {\n display_loaded();\n }} else if (Date.now() < root._bokeh_timeout) {\n setTimeout(run_inline_js, 100);\n } else if (!root._bokeh_failed_load) {\n console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n root._bokeh_failed_load = true;\n } else if (force !== true) {\n const cell = $(document.getElementById(\"d5c4232b-0e66-4b61-983c-ba8423f8e445\")).parents('.cell').data().cell;\n cell.output_area.append_execute_result(NB_LOAD_WARNING)\n }\n }\n\n if (root._bokeh_is_loading === 0) {\n console.debug(\"Bokeh: BokehJS loaded, going straight to plotting\");\n run_inline_js();\n } else {\n load_libs(css_urls, js_urls, function() {\n console.debug(\"Bokeh: BokehJS plotting callback run at\", now());\n run_inline_js();\n });\n }\n}(window));" }, "metadata": {}, "output_type": "display_data" @@ -360,7 +355,7 @@ " get_ancestry_callstats, \n", " get_single_variant_ancestry_callstats,\n", ")\n", - "from gnomad_toolbox.filtering.vep import filter_by_csqs" + "from gnomad_toolbox.filtering.vep import filter_by_consequence_category" ] }, { @@ -377,9 +372,8 @@ " __ __ <>__\n", " / /_/ /__ __/ /\n", " / __ / _ `/ / /\n", - " /_/ /_/\\_,_/_/_/ version 0.2.132-678e1f52b999\n", - "LOGGING: writing to /Users/jgoodric/PycharmProjects/gnomad-toolbox/gnomad_toolbox/notebooks/hail-20241210-2227-0.2.132-678e1f52b999.log\n", - "2024-12-10 22:28:45.710 Hail: WARN: No variant found at chr22:15528692 with alleles ['C', 'A']\n" + " /_/ /_/\\_,_/_/_/ version 0.2.133-4c60fddb171a\n", + "LOGGING: writing to /Users/jgoodric/PycharmProjects/gnomad-toolbox/gnomad_toolbox/notebooks/hail-20241220-1230-0.2.133-4c60fddb171a.log\n" ] } ], @@ -494,11 +488,18 @@ ] }, { + "attachments": { + "78f1b020-4f45-4800-82fa-0bdffb877962.png": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAACuoAAAGaCAYAAADjboe/AAAMQWlDQ1BJQ0MgUHJvZmlsZQAASImVVwdYU8kWnluSkEBoAQSkhN4EESkBpITQQu8INkISIJQYA0HFjiwquBZURMCGroooWAGxI3YWxd4XCwrKuliwK29SQNd95XvzfXPnv/+c+c+Zc2fuvQOA2gmOSJSNqgOQI8wTxwT50ccnJdNJPUAZaAJ1QASjOdxcETMqKgzAMtT+vby7ARBpe9VeqvXP/v9aNHj8XC4ASBTEqbxcbg7EBwDAq7kicR4ARClvNj1PJMWwAi0xDBDixVKcLsfVUpwqx3tkNnExLIjbAFBS4XDE6QCoXoY8PZ+bDjVU+yF2FPIEQgDU6BB75+RM5UGcArE1tBFBLNVnpP6gk/43zdRhTQ4nfRjL5yIrSv6CXFE2Z+b/mY7/XXKyJUM+LGFVyRAHx0jnDPN2K2tqqBSrQNwnTI2IhFgT4g8CnsweYpSSIQmOl9ujBtxcFswZ0IHYkcfxD4XYAOJAYXZEmIJPTRMEsiGGKwSdIchjx0GsC/Fifm5ArMJmk3hqjMIX2pgmZjEV/DmOWOZX6uuBJCueqdB/ncFnK/Qx1YKMuESIKRCb5wsSIiBWhdghNys2VGEzriCDFTFkI5bESOM3hziGLwzyk+tj+WniwBiFfUlO7tB8sU0ZAnaEAu/Ly4gLlucHa+NyZPHDuWCX+UJm/JAOP3d82NBceHz/APncsR6+MD5WofNBlOcXIx+LU0TZUQp73JSfHSTlTSF2zs2PVYzFE/LggpTr42mivKg4eZx4QSYnJEoeD74ChAEW8Ad0IIE1FUwFmUDQ0dfUB+/kPYGAA8QgHfCBvYIZGpEo6xHCaywoAH9CxAe5w+P8ZL18kA/5r8Os/GoP0mS9+bIRWeApxDkgFGTDe4lslHDYWwJ4AhnBP7xzYOXCeLNhlfb/e36I/c4wIROmYCRDHulqQ5bEAKI/MZgYSLTB9XFv3BMPg1dfWJ1wBu4+NI/v9oSnhE7CI8J1Qhfh9hRBofinKMNBF9QPVOQi9cdc4JZQ0wX3w72gOlTGdXB9YI87Qz9M3Ad6doEsSxG3NCv0n7T/NoMfnobCjuxIRskjyL5k659HqtqqugyrSHP9Y37ksaYO55s13POzf9YP2efBNvRnS2wxth87i53EzmNHsCZAx45jzVg7dlSKh1fXE9nqGvIWI4snC+oI/uFv6MlKM5nrWOfY6/hF3pfHnyF9RwPWVNFMsSA9I4/OhF8EPp0t5DqMojs5OjkDIP2+yF9fb6Jl3w1Ep/07t/APALyODw4OHv7OhRwHYK8b3P6HvnPWDPjpUAbg3CGuRJwv53DphQDfEmpwp+kBI2AGrOF8nIAr8AS+IACEgEgQB5LAZBh9BlznYjAdzAYLQDEoBSvAGlAJNoItYAfYDfaBJnAEnARnwEVwGVwHd+Hq6QYvQD94Bz4jCEJCqAgN0UOMEQvEDnFCGIg3EoCEITFIEpKCpCNCRILMRhYipUgZUolsRmqRvcgh5CRyHulEbiMPkV7kNfIJxVAVVAs1RC3R0SgDZaKhaBw6CU1Hp6EFaBG6DK1Aa9BdaCN6Er2IXke70BfoAAYwZUwHM8HsMQbGwiKxZCwNE2NzsRKsHKvB6rEW+JyvYl1YH/YRJ+I0nI7bwxUcjMfjXHwaPhdfilfiO/BGvA2/ij/E+/FvBCrBgGBH8CCwCeMJ6YTphGJCOWEb4SDhNNxL3YR3RCJRh2hFdIN7MYmYSZxFXEpcT2wgniB2Eh8TB0gkkh7JjuRFiiRxSHmkYtI60i7ScdIVUjfpg5KykrGSk1KgUrKSUKlQqVxpp9IxpStKz5Q+k9XJFmQPciSZR55JXk7eSm4hXyJ3kz9TNChWFC9KHCWTsoBSQamnnKbco7xRVlY2VXZXjlYWKM9XrlDeo3xO+aHyRxVNFVsVlspEFYnKMpXtKidUbqu8oVKpllRfajI1j7qMWks9RX1A/aBKU3VQZavyVOepVqk2ql5RfalGVrNQY6pNVitQK1fbr3ZJrU+drG6pzlLnqM9Vr1I/pH5TfUCDpjFGI1IjR2Opxk6N8xo9miRNS80ATZ5mkeYWzVOaj2kYzYzGonFpC2lbaadp3VpELSsttlamVqnWbq0OrX5tTW1n7QTtGdpV2ke1u3QwHUsdtk62znKdfTo3dD6NMBzBHMEfsWRE/YgrI97rjtT11eXrlug26F7X/aRH1wvQy9Jbqdekd18f17fVj9afrr9B/7R+30itkZ4juSNLRu4beccANbA1iDGYZbDFoN1gwNDIMMhQZLjO8JRhn5GOka9RptFqo2NGvcY0Y29jgfFq4+PGz+nadCY9m15Bb6P3mxiYBJtITDabdJh8NrUyjTctNG0wvW9GMWOYpZmtNms16zc3Ng83n21eZ37HgmzBsMiwWGtx1uK9pZVlouUiyybLHitdK7ZVgVWd1T1rqrWP9TTrGutrNkQbhk2WzXqby7aorYtthm2V7SU71M7VTmC33q5zFGGU+yjhqJpRN+1V7Jn2+fZ19g8ddBzCHAodmhxejjYfnTx65eizo785ujhmO251vDtGc0zImMIxLWNeO9k6cZ2qnK6NpY4NHDtvbPPYV852znznDc63XGgu4S6LXFpdvrq6uYpd61173czdUtyq3W4ytBhRjKWMc+4Edz/3ee5H3D96uHrkeezz+MvT3jPLc6dnzzircfxxW8c99jL14nht9urypnuneG/y7vIx8eH41Pg88jXz5flu833GtGFmMncxX/o5+on9Dvq9Z3mw5rBO+GP+Qf4l/h0BmgHxAZUBDwJNA9MD6wL7g1yCZgWdCCYEhwavDL7JNmRz2bXs/hC3kDkhbaEqobGhlaGPwmzDxGEt4Wh4SPiq8HsRFhHCiKZIEMmOXBV5P8oqalrU4WhidFR0VfTTmDExs2POxtJip8TujH0X5xe3PO5uvHW8JL41QS1hYkJtwvtE/8SyxK7xo8fPGX8xST9JkNScTEpOSN6WPDAhYMKaCd0TXSYWT7wxyWrSjEnnJ+tPzp58dIraFM6U/SmElMSUnSlfOJGcGs5AKju1OrWfy+Ku5b7g+fJW83r5Xvwy/rM0r7SytJ50r/RV6b0ZPhnlGX0ClqBS8CozOHNj5vusyKztWYPZidkNOUo5KTmHhJrCLGHbVKOpM6Z2iuxExaKuaR7T1kzrF4eKt+UiuZNym/O04I98u8Ra8ovkYb53flX+h+kJ0/fP0JghnNE+03bmkpnPCgILfpuFz+LOap1tMnvB7IdzmHM2z0Xmps5tnWc2r2he9/yg+TsWUBZkLfi90LGwrPDtwsSFLUWGRfOLHv8S9EtdsWqxuPjmIs9FGxfjiwWLO5aMXbJuybcSXsmFUsfS8tIvS7lLL/w65teKXweXpS3rWO66fMMK4grhihsrfVbuKNMoKyh7vCp8VeNq+uqS1W/XTFlzvty5fONaylrJ2q6KsIrmdebrVqz7UplReb3Kr6qh2qB6SfX79bz1Vzb4bqjfaLixdOOnTYJNtzYHbW6ssawp30Lckr/l6daErWd/Y/xWu01/W+m2r9uF27t2xOxoq3Wrrd1psHN5HVonqevdNXHX5d3+u5vr7es3N+g0lO4BeyR7nu9N2XtjX+i+1v2M/fUHLA5UH6QdLGlEGmc29jdlNHU1JzV3Hgo51Nri2XLwsMPh7UdMjlQd1T66/BjlWNGxweMFxwdOiE70nUw/+bh1SuvdU+NPXWuLbus4HXr63JnAM6fOMs8eP+d17sh5j/OHLjAuNF10vdjY7tJ+8HeX3w92uHY0XnK71HzZ/XJL57jOY1d8rpy86n/1zDX2tYvXI6533oi/cevmxJtdt3i3em5n3351J//O57vz7xHuldxXv1/+wOBBzR82fzR0uXYdfej/sP1R7KO7j7mPXzzJffKlu+gp9Wn5M+NntT1OPUd6A3svP5/wvPuF6MXnvuI/Nf6sfmn98sBfvn+194/v734lfjX4eukbvTfb3zq/bR2IGnjwLufd5/clH/Q+7PjI+Hj2U+KnZ5+nfyF9qfhq87XlW+i3e4M5g4Mijpgj+xXAYEXT0gB4vR0AahIANHg+o0yQn/9kBZGfWWUI/CcsPyPKiisA9fD/PboP/t3cBGDPVnj8gvpqEwGIogIQ5w7QsWOH69BZTXaulBYiPAdsivyampMK/k2Rnzl/iPvnFkhVncHP7b8Ah9d8bcAadJgAAACWZVhJZk1NACoAAAAIAAUBEgADAAAAAQABAAABGgAFAAAAAQAAAEoBGwAFAAAAAQAAAFIBKAADAAAAAQACAACHaQAEAAAAAQAAAFoAAAAAAAAAkAAAAAEAAACQAAAAAQADkoYABwAAABIAAACEoAIABAAAAAEAAArqoAMABAAAAAEAAAGaAAAAAEFTQ0lJAAAAU2NyZWVuc2hvdGugYMcAAAAJcEhZcwAAFiUAABYlAUlSJPAAAALYaVRYdFhNTDpjb20uYWRvYmUueG1wAAAAAAA8eDp4bXBtZXRhIHhtbG5zOng9ImFkb2JlOm5zOm1ldGEvIiB4OnhtcHRrPSJYTVAgQ29yZSA2LjAuMCI+CiAgIDxyZGY6UkRGIHhtbG5zOnJkZj0iaHR0cDovL3d3dy53My5vcmcvMTk5OS8wMi8yMi1yZGYtc3ludGF4LW5zIyI+CiAgICAgIDxyZGY6RGVzY3JpcHRpb24gcmRmOmFib3V0PSIiCiAgICAgICAgICAgIHhtbG5zOmV4aWY9Imh0dHA6Ly9ucy5hZG9iZS5jb20vZXhpZi8xLjAvIgogICAgICAgICAgICB4bWxuczp0aWZmPSJodHRwOi8vbnMuYWRvYmUuY29tL3RpZmYvMS4wLyI+CiAgICAgICAgIDxleGlmOlBpeGVsWERpbWVuc2lvbj4yNzk0PC9leGlmOlBpeGVsWERpbWVuc2lvbj4KICAgICAgICAgPGV4aWY6VXNlckNvbW1lbnQ+U2NyZWVuc2hvdDwvZXhpZjpVc2VyQ29tbWVudD4KICAgICAgICAgPGV4aWY6UGl4ZWxZRGltZW5zaW9uPjQxMDwvZXhpZjpQaXhlbFlEaW1lbnNpb24+CiAgICAgICAgIDx0aWZmOlJlc29sdXRpb25Vbml0PjI8L3RpZmY6UmVzb2x1dGlvblVuaXQ+CiAgICAgICAgIDx0aWZmOllSZXNvbHV0aW9uPjE0NDwvdGlmZjpZUmVzb2x1dGlvbj4KICAgICAgICAgPHRpZmY6WFJlc29sdXRpb24+MTQ0PC90aWZmOlhSZXNvbHV0aW9uPgogICAgICAgICA8dGlmZjpPcmllbnRhdGlvbj4xPC90aWZmOk9yaWVudGF0aW9uPgogICAgICA8L3JkZjpEZXNjcmlwdGlvbj4KICAgPC9yZGY6UkRGPgo8L3g6eG1wbWV0YT4KEgzzqQAAQABJREFUeAHs3QecFPX9//HP7vVGO7iDo/cDqYoNURRJQuzYYmJJLNGfmlhi7CQxmvyNGqNANBIVC4qoYEFBFIOigKIgHYQDjt7hOMpxdff//QzssrM7u7fX4Mrr+3Cdme/058zdLrvv/ZyruLjYKzQEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQqFYBd7VujY0hgAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAgCVAUJcbAQEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgRoQIKhbA6hsEgEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAYK63AMIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgjUgABB3RpAZZMIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggQ1OUeQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAoAYECOrWACqbRAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAgKAu9wACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAI1IEBQtwZQ2SQCCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIEdbkHEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQqAEBgro1gMomEUAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQIKjLPYAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggEANCBDUrQFUNokAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggABBXe4BBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEakCAoG4NoLJJBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEECOpyDyCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIFADAgR1awCVTSKAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIEBQl3sAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBGhAgqFsDqGwSAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBWAgQQAABBBA43gJ5eXkyceJEad68uZx//vkSHx9/vA+J/SOAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACVRYgqFtlQjaAAAIIIFAVgW+++UYGDx7s30RGRoasWLFC0tLS/H2MIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAJ1UYCgbl28ahwzAghUq8CGDRtk37591jbXrVsnpaWl0qVLF2nTpo00adIkqn0tX75cPB5PxGXj4uJEQ6i6TZfLFXHZhjTzX//6l+10d+zYIW+//bbcdNNNtn4mEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIG6JkBQt65dMY4XAQSqVUDDtVrNdfPmzSHbveeee+Txxx8P6Xfq6Nevn1N32L4ePXrINddcI1dddZW0bds27HINYcbatWtDTnPVqlUhfXQggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAnVNwF3XDpjjRQABBKpT4Pvvv3cM6eo+xo0bJ2VlZdW5O/+2VqxYIQ8//LB07txZfv/730thYaF/XkMbueWWW0JO+dprrw3pq40dkyZNkvT0dNvjj3/8Y208VI4JAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEjoMAQd3jgM4uEUCg9ghMnDgx7MHs2LFDZs+eHXZ+dc0YM2ZM2Kq+1bWP2rwdrSz89NNPS9euXWXQoEEyYcIE6d27d20+ZP+xFRUVyf79+0Me/gUYQQABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgQYtQFC3QV9+Th6Bhi1QWloqY8eOjYjw7rvvRpxfXTMXLFggV199tegxNbSWnJxsVRVetmyZzJgxQy699NKGRsD5IoAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAQD0VIKhbTy8sp1V/BDS4WVPhTY/HI9u2bZO9e/dWGky3sX37duuh49XV8vPzrWMrb3tlZWWydetW0WFF21dffWVVQo203vjx46W4uDjSImHnffrpp7J+/XrrsWrVKpk5c6Y8++yzVuVYp5XmzJljVZZ1mne8+rRirPpW57XVbXq93mo5pZo4vry8POt+rpYDjHIjO3fulH379kW5NIshgAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAXRFwmQBa9aSl6soZc5wI1AGBpUuXyujRo+XLL7+U3Nxc64h79+4tQ4cOlfvvv1+aNWsmDz74oPzwww+2sxk5cqRkZ2dbfZs3b5YbbrjBNr9z587y/PPPy5IlS+TRRx+VDz/80D8/IyNDTj/9dPn73/8u3bp18/c7jaxbt07eeOMNeeuttyQnJ8e2SMeOHeWaa66xqsN26tTJNs838cQTT1iVU33TOnzkkUdkwIAB8s9//lOee+452bFjhzU7LS1Nzj77bHnyySdFj9/XPvroI6tv7ty5/uXOOussGTJkiNx6660SGxvrWzTsUJd7+eWXbfNvvvlm+e9//2vrmzx5sgwbNszWFzwRHx8f3CVaJfeEE04I6dfg9S9/+Uubf+BCGhRNSUkJ7AoZV59rr702pF/99F5xatdff71s2bLFNkvd9br72oEDB2TMmDEyf/58WbRoke36Dhw4UPr162ddj0suucS3im2o57Vnzx5b38SJE639anXiqVOnyrx586z5ev9cdtll8swzz8i0adNs6zz11FPSp08fW59O1NTxFRYWit6Xr7zyij+8rfde37595b777rNd/4KCAhk+fLh1bJs2bbIZaaf+LAVed/1ZDv6Z0p/BCRMmWMbffPONf5+tW7e2fg50vzfeeKO0atXK2g//QwABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgbopQFC3bl43jroeC2ggdcSIEWHPUMODH3/8sTz22GPy+eef25abNWuWnHLKKVbf6tWrpWfPnrb5GuDU0KQGYvfv32+bFzjx2muvWUHSwD4d1yqoGvS9++67g2c5TmvY8o477hCXy2Wbr4HRN99809b3/vvvyxdffCGjRo2y9QdOTJ8+Xc4880z5zW9+Y4UcA+cFjl933XVW2DQmJiaw2zauwUwNRQY69OjRQzRM2qtXL9uyGogNDvTaFjATFQnq6roa9jzvvPNEq+gGt7ffftsfBA2eFzitYc4VK1YEdlkB7AceeMDWpxNaFbd9+/Yh/StXrhQNV2tTfw13a8i7vHb77bdbQem4uDjbom3atPGHrH0zNHiuAWpf+NrXr4FgvRd+97vfhYSjNcR66aWX+ha1hjV1fFr1WAPGTtfCdwC33XabVQ1Zp/WeSU9P980qd6hh8v79+1vLaWXiF154Qe66665y19Ofdb0f1Y6GAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACdVPAXTcPm6NGoH4K/Otf/4oY0tWz1pDgFVdcEVWYMlhJK51qJdTAcGrwMjr961//WrZv3x4ySyuLRhvS1ZXvvfdeueeee0K249Tx0ksvRQzp6joaltTqpBrijNRef/11+fOf/xxpEfnf//4X4qDVXbXyadeuXW3rjhs3zgrW2jqrOJGcnCwaTtYwZnDTcGY07eqrrw5ZLLgyrW+Br776yjfqH2pg2xfS1QrFP/vZz6K+r7Tq8cUXXyxaHbi8pqHe4JBueesEz6/J49PKypFCunosGlD/9NNPgw+rwtMaSo4mpKsb1p9TreT8zjvvVHg/rIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAK1Q4Cgbu24DhwFApKbmytOlVCdaDT0GFxJ1Wm54D6tlBrtehoaDmwaAB05cmRgV1Tj//73v2XKlCnlLhvNMjk5OVb4t9yNmQW0KnCkplVrg5uGIrUFV3LVvuoIaep2AlvTpk3ljDPOCOyyxpctWxbS59ShweLgpoHTvXv3BneLViMOblop2Neefvpp36htqEFipzCxLqQVnaO5bjNnzrRtszITNXl8U6dOjeqQHnrooaiWC14oKSnJ6lq+fLloID24aaVrrTx94YUXBs+ypp999lnHfjoRQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEECg9gsQ1K3914gjbCACWrHTqWnV0//+978yb948GTt2rAwaNMhpsQr1aYXTL774QpYsWSLhApDBFUbvvPNOx328+uqrsm3bNuuh407tD3/4g3i9XqdZtr6BAwfK5MmT5YcffpAnn3zSNi94Qo9bl9Ow6NChQ4NnWxVc161bF9KvHVqpNLgqb0ZGhpx00knW8uedd17IesHLhyxQyQ69vsFt06ZNwV2O0507dxan9WfNmmVb3uPxiFOlXa2urE0dg6+3eixYsEB27dolO3fulO+++0569Ohh265OOG03ZKEjHRos/sc//mHZ6/VzCik7rXssju+nP/2pVeFYg+xa0VjPP7jpz8vBgwclNTVVtm7daj20wnNwGz58uH++VqbOzs62Fpk9e3bwoqImc+fOlX/+858yadIky9tX5di3sP7sRxuw963DEAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBGqHQGztOAyOAoGGLaAh1okTJ4YgaGBPq302adLEmtenTx+r2us555xjhShDVoiiQwO3Tz31lH/J7t27i9vtlrvvvtvfpyNa/dPXNCipFX+Dm1YH/dWvfuXv1vHS0lK56aab/H06ouvqNnxBWNvMIxN6ru+//75olVltvXr1kkOHDslf/vKXI0scHeh+r7vuOn/HiSeeaIUhtdJwYNOgaYcOHQK7rHGncKmGVmNiYqz5J598slVFVgO9vqbHppVqfdfC11/VYd++fUM2ofvVc/dVYg1ZIKDjmmuusULcAV1WePmCCy7wd2mF3mAbvYdatWplLdOiRQsrKOpfwYxocNUXMHW5XNKvXz+55557Qq7t+vXrA1cLO/7BBx+IUwA67AoBM2r6+E499VR55513JDk52dqrBqDbt28vp5xySsBRHB7V8+3Zs6ekp6dbHU7VhvUe8c0P3IAG2oOb3ruxsUefihs1amT9zGswOrBlZWUFTjKOAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACdUTgaDqojhwwh4lAfRTQ6pybN28OOTWtpBscDNUw4SuvvGIFJ0NWiKIjOJCrq1x55ZUhQV0NixYUFFjhxU8//TRky1rJNTAs61tA+1544YWQ8Ohnn30WMairIV9fSNe3La2U6xTU1SqkgU0rnJ5++uny4YcfBnZblXNtHUcmnKrjBoZINTh5+eWXW86B60+ZMkWuvvrqwK4qj7ds2dJxG4WFhVEFdbV661133WXbhjo8++yz/j6tnhzcrrrqKn9X27Zt5Y477vBPhxs566yzQmbpPVJee+SRRyod0tVt1/Tx6bn7Qrq+c9FgslYQDq5kqz+rGtStTHNa7+GHH5bi4mKrsq6G5jUUrUFhfdAQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEECg7gsQ1K3715AzqAcCwdVOfacUrgKtBgi1kmdgxVffOpGGGRkZ4lSZUyuWOrWysjKr2ylErEHdcE3nzZs3zzbbaRuBC2i14ODmdKxaeTclJSV4UdH+aNru3bvlo48+Cln07LPPtvVdeOGFIUHdt956q9qDujk5Obb9+iYaN27sG4041Kq4Wh03MIyr1mvWrPGHPTUkHdz0/JyaVnfWY/rmm2+sSsh79uyxKglrNeHZs2c7rVJun1PAt9yVwixQE8fnVNVYd9+pU6eQoK5WjK5s0zC5U/vrX/8q+tCfab0PTzvtNNGKyPpzTkMAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIG6LUBQt25fP46+nghoGDK4tW7dWrRSrFPTqpu9e/eWOXPmOM0O25eZmRl2XqTgr1PINjs7O+y2nAKGTtsI3EB8fHzgZNhxrXbr1NQkmvbxxx87LjZmzBhb/4EDB2zTOqGB1+3bt0skx5CVyulYvHhxyBIaqHa73SH94Tp++ctf2oK6utyMGTOsoK5WvA0O6mr14ObNm9s2pwFYNdAKrxUNgNs25DDhdD84LBaxqyaPL1xQ3SkQHvEgy5mpwfMnnnhC7r//fscl1V1D5PrQ66BuWu33xhtvdFyeTgQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEKj9As6Jt9p/3BwhAvVKICkpKeR8NNiqFW1jYmJC5mnH1q1bHftrotNXWTdw24mJiYGTtvGEhATbtE44bSNkoWPQMX78eMe9hAtPBi/84Ycfys033xzcXenpBQsWhKzbrl27kL5IHU7VcTWc+9vf/la+/fbbkFU12BvY8vPz5Te/+Y1MmTIlsLvaxisSOnbaaU0fn9M+a6rv7rvvtipCP/rooxKukrZv3ytWrJBbb71VVq5cKf/4xz8qFN72bYMhAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIHF+B6Es2Ht/jZO8I1GsBraDq1NatW+fULRpczM3NdZxXE50tW7YM2ezq1atD+nwdOTk5vlH/0Gkb/pnHaETDzV988UWV9hYu6FuZjerxzJw5M2TVc845J6QvUkd6erqcf/75tkU0UFxcXGxV1rXNMBM///nPbV1vvvmmY0hXqyxfddVV8sADD8jjjz8u9957r229YzVR24+vog4a9Naf7cmTJ8t1110nHTt2jLiJZ599NqQqcsQVmIkAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAK1RoCKurXmUnAgDVkgKyvL8fRHjx4tGtILbtp/LJvT8S1fvjzsISxbtixkntM2Qhaq4Y4PPvigynuYM2eObNiwQSpa9TZ4xx6PR+64447gbmv64osvduyP1KlVcoMr4n7//ffyySef2Fa77LLLpFGjRra+qVOn2qZ14plnnpFbbrlFYmOPPk0sXLhQnnrqqZBla7qjth9fZc5fXYcNG2Y9dP2dO3eK3luvvPKKOJ3vrFmz/MtWZn+sgwACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAsdH4GgC6/jsn70igIARSEpKEg1QTpo0yebx/PPPS/fu3eWGG26QhIQEKSkpkXfeeUceffRR23I1PXHaaaeF7ELDhHPnzpVTTz3VNk/7pk2bZuvTCadthCxUwx3jxo1z3INTGNq34F133eUb9Q/1Ot19993+6YqO5OXliVZV1aq3wa1169YyYMCA4O5yp4Or5OoKr732mixZssS2rlbIDWwFBQWO1VpvuukmW0hX1/n8888DVz0m47X9+JwQ5s2b59RtVdHdv3+/f57b7ZYTTjjBmm7RooVoQFsfDz/8cEggevHixf71GEEAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIG6I0BQt+5cK460ngtoGDc4qKunfOedd1qP/v37y+rVqyUw6HesSIYMGSJpaWkh+77uuuusiq2dOnWyDmXt2rWifcFN19VtHM+2Zs0acQpQLlq0SHr06BH20A4cOCAjRoywzX/jjTeiCupOnz5dNm7caK1bXFwsW7ZskR9++EFeffVV2/YCJ1544QXRAGdFmxprCHfChAn+VZ3285Of/MQ/X0fi4+Mdr62Gcs8//3z/snouDz30kH/6WI3U9uPTkH1w03D0Rx99JD/72c8sX9989czJyfFNWsNRo0bJ//3f/9n69FoGtzZt2gR3MY0AAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAJ1QICgbh24SBxiwxDQAOXll18uEydOdDzhBQsW2PqdgrO2BapxQsOSDz74YEhQMzc3V7Kzs/1B1xUrVjju9f7777cFFh0XquHO9957L2QPHTt29B97yMwjHVqpNjioq0HMH3/80Tr3cOtp/3333Rdpdsg8rWKr4c7Ktl/84he2oG7wdjREnZycbOuOjY2VoUOHyvvvv2/rHz58uAwePFj69esn8+fPl1mzZtnmH6uJ2n58Xbp0caTQCtn6M9qoUSOZPHmy9O7dW2677baQgPcdd9whc+bMkTPPPNNadubMmfLSSy+FbFPn0xBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQKDuCVS8bGPdO0eOGIE6IzBmzBgZNmxYucf72GOPyRlnnFHuctW5wF133SUDBw503KQGdMOFdHWdP/zhD47rHctOrYIb3DQYXV7r1auXtG7dOmSxcIHqkAWj7LjlllvkmWeeiXJp58XOPfdcKxzqPFesILjTvHD3nIZGR44cedxCur5jrc3H17lz57DmWv168+bNUlpaap3Kr371K98p2YZaBfn222+Xa6+91jGkqyHfK664wrYOEwgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIFA3BAjq1o3rxFE2EAGtwDlp0iT597//LVrtNbhpYO+DDz4QrVB7rJtWNtV9X3jhhVHv+vzzz7cqteq6x7MtXbrUMUis1XLLay6XyzEkOW7cuPJWjWp+RkaGjB07VkaPHi0JCQlRrRNuocTERLnyyisdZ+u9NWTIEMd5v/71r0MqvTotqEHy49Fq8/FpheLXX389KpamTZvKwoULreq6Ua1gFtIqyF9++aUc75+haI+X5RBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQMAuQFDX7sEUAsddIC4uTm6++Wb58ccfZePGjaIh0/nz58vOnTut4XnnnWcd4759+0KOVdf1Nadgn4Y1K9KCt9GkSRN59913RUOqgwYNCrspnffaa69ZoWMNJwa3+Pj44C7RkGk0LTU1NZrFbMtMnz7dNq0TanHaaaeF9Dt1+MwD5+Xm5sqaNWv8XdHaagB78ODBcuONN8onn3wi69evl2uuuca/naqOhKu8qtVcndx1f263W5544gkZNWqU9O/fP+QQtKLt3LlzHYO+GlQNbIH3oK/fqc83T4fB91ngPB0/3scXeDxJSUmBk9a4BtK1ovRDDz3kWH058Px79uwpc+bMkT/96U/So0ePkG1ph95Leo+89dZbVoXdaO8tx43RiQACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAsdVwFVcXOw9rkfAzhFAwBKYN2+e7Nq1y6ahocnMzExbn04cOHBAmjVrFtK/efNmadGiRUh/TXVs375dNm3aZIWIdR+679atW0vLli1rapds9xgIFBQUWCFkrSasweKUlJRjsNfod1Hbj8/j8Vg/oxpA1mCvOoZrRUVFkpOTY3lr6FmDvFlZWRHXCbct+hFAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQKD2CRDUrX3XhCNqoAIjRoyQJ5980nb2vXv3lhkzZkjjxo39/fn5+XLrrbfKxIkT/X06ogFZrfJKQwABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACB2iFAULd2XAeOAgHRarhavdSpnXrqqaKh3by8PPnss89k//79IYu98MILcsMNN4T004EAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAsdHgKDu8XFnrwg4Cvz+97+XMWPGOM6L1HnVVVfJ2LFjJTY2NtJizEMAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgWMo4D6G+2JXCCBQjsCoUaPkxRdflLS0tHKWPDr7oYcekpdffpmQ7lESxhBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBCoFQJU1K0Vl4GDQMAusHXrVnnppZdk8eLF1iM3N9e2wMCBA+X888+XK664Qjp06GCbxwQCCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCNQOAYK6teM6cBQIRBQoKCiQoqIiSUxMlKSkpIjLMhMBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBGqHAEHd2nEdOAoEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgXom4K5n58PpIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggUCsECOrWisvAQSCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAII1DcBgrr17YpyPggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACtUKAoG6tuAwcBAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAfRMgqFvfrijngwACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCBQKwRia8VR1OWD8Ih4i/XhFW+JGZaaR5lXxBqaEysz02ZS9GGWPTzhEjH/icakdVTHY8zQPMRcEVeMS1w6jDOPeDMef2RZM6AhgAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCNQNAYK64a6TCdZqANdT4LUe3gIzXmjCuIdMvz50XAO6RYeXk6Ij0yagqyFdK6irQw3nWgHdgKEZDQzqWoFdE9rVcK4Gda2wroZ0zUMSTFA3QQO75qHDRDOdaIZJJuer48lmmOISd7IZ1+U19EtDAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEDjuAgR1TcVbzyETxt3vlbJ9ZtwMvfvN8IDpO2hCuGboPWCGOm6W08CuHHJZQV0xIV0rlFujl1FL8ZqmV+pIUFdMONeV5DUPE85NMeOpJqybenjcGqaZ6TSXxDQ6PHSb5bRiLw0BBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBA4NgJuIqLi48kQY/dTo/XnrwayjXB27K9JoSrjzwzrcN8M8w3IVwz9OrQBHY1mCslx+tIK7lfrcJrQrsuE9B1NTLB3cYmqNvYVNttYoZNdGjCuzre1AxNFV7Cu5V0ZjUEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAgCoF6HdT1FosVyi3bbcK55uHxDfeYIK71MKFcUz23zgVyo7iwtkU0wKvhXRPQdTczQd1mZphuhs1NYDfdPMx0jAnxuuJtazGBAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIFAFgXoV1PWWmmCuqYhbtsM8dprHdhPONUPPTlMx1wy9e42UCe/SjIAJ5bqaHg7ruluYYYYJ6x55xLYwQV5TidcVixQCCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAQGUF6nxQ13PocCi3dJsZbjUPM/RsM8FcM/TmGxYT3qVFIWBCua4mJrDb0oR0W4rEmKE+YluZhwnuuhJdUWyERRBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEfAJ1MqjrOegVDeaWbjbB3C3moUPz8JrKuVLkOzWGVRJINMFdU2k3prUJ7OojywR2zTA20wR5UwjtVsmWlRFAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAoEEI1JmgrlbOtcK5m8xwownmrjeVc83Qm2euU1mDuFbH7yRjTGi3mam229YEdtubsG4b8zDjVmg3idDu8bsw7BkBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBGqzQK0O6npLTQZ3l1dKNnikdJ0J6JqHxwR0vXsMKeHc43NfxR4J7bYzQd2O5tHBJXHt3BKT7hKXmUdDAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEDgsUCuDup4DJpxrKueWrDUB3bWmeq55eHeYAy7mstUqgXgT2s00VXY7icR2MoHdTm6JM9V23SlU2a1V14mDQQABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACB4yJQe4K6HpHSPSacm+uRktUmnJtjHqaCrhw4Li4V22mMWTzOPDS4GmdCqrHmuLW6rOl36Ty3eWh21Tc0o2IWEXPOvqFXKwTrw1QRllKXeEvMAhpMLjnSbwa1uqWZ0zXVdWO7mkcXE9rt4JbYZuak9ZxpCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAQAMUOO5BXa8JppbuMOFcE8wtWWkq6K401XO3mSuhAdXj3TRcq+HbZDNM0aHLGnclmvEk8zBDSTB9CWZclzMPMUFdl4Z2NaRrwrrRBHW9Gtg1IV210KCuNTRBXa8J6nqLzEMDu0VmutCMHzIPHRaYx0ET5j14eNzy0vDv8W7GwN3KVNntZii6uyW+mxlv7rYsjvehsX8EEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEDgWAoct6Cu1wRxS7d5pNiEc0tWmOq5GtDdZU5dQ6vHumkgV4O3jfRhgrZm6NbxNJe4NaCbaqZTTH+qmdblzMOdZKZNUNdtgroayq3JptV2vRrUNSFdT+GRYYEZmpCux4R1vabqsMc8vPu94tmnQ/PYZ/rzzVGZUK9VtbcmD9Bp26aSrquFoeluquv2MIFdM4xtSWDXiYo+BBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBConwLHPKhrVdDVgK4J55Ys9RwO6OYZ3GNVDVZDuVoRt6kJ2TYzYVsdNjUB3CZm2MQMG5uhCejGmMCu2wRzrSq5deDaa9VdzwETeDYBXY/1MNN5ZnyvGe41oV1j7NlzeHhMw7vG29XMBHazTWC3lwnsmmFsJoHdOnBLcYgIIIAAAggggECDE/j222/ltNNOa3DnzQkjgAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCNScwLEL6ppKuaU7vFK0wlTQXWwCuiaoq+HRGg/oajDXVMV1tzDBW1Ph1d3cPNLNuHnE6MOEdGMam0BuQs0hH88te01F3bJ8E+A1od0yE9T17DKP3To0wd2d5mGmxVTmPRbXwQrs9jCB3T5uSejpltjm5uKYyrs0BBBAAAEEEEAAAQSqIjB37lw59dRTq7IJGTlypLz6/suyb+NBGT9+fJW3V6WDYWUEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgXojcEyCuhoSLV5pqugu9EjpEhPQNSHRGg2GasXcdJMBbWVCuJlmaEK6MZmmkqsONaSbrGVe6801rNiJmFyup8CEdk1YV4PTZebh0eF207/tyLUpqtgmK7S00pvAdGxvl8T3NxV2u7klxlQypiGAAAIIIIAAAgggUBmBUaNGWQHbxMREeeaRUZUO2GZkZMiVfxsmG1ZslviNTWXixImVORzWQQABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAwCZQo0Fdb6EJ6K41VXR/MAHdBR7xbDH7LrPtv3omNOepVXNNMNedJRJjhrEa0tWhVtJtyMHc8oSPBHc1tFu61QR2jzz0Wmlwt8aq7caY69XGBHb7meq6J5nAbgdT1TiRwG55l4v5CCCAAAIIIIAAAnaBzMxMufzRn8qWNdslNrexvPvuu/YFopgaPXq0vPrZGBl6zSApLSmTD/41Xd564R055ZRTolibRRBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEAgvEBt+VhXmeERKt3mkcJFHSr4z4c81JvBZWIXthVs11YQ9s0wgt60J57YxoVx9tD5codVVM2cW7kjqbr/JxrpTTHXbjvowhY5LTZbaVEAu3WzC1ZvMtbMeJrS7xVzDA9V4miaw7VkvUrzdI2UmzF16sksS+rolNtNtDqga98OmEEAAAQQQQAABBOqtwHPPPSetT24uqU1SpFPvdvLB5/+T7777rsIB2+nTp0unPu0sp9i4GOlzbjf56quvKrydegvNiSGAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIVFqg2ivqeg6aKrorPVL0rQl6LvaKd0+lj815xUST42xpquS2N9VY25tgbnu3xJmAbkxjTZw6r0JvJQVMmLYs3yslJqxbut5cz/VeK1xrVdotquQ2w6zmSjfXs68J655mqut2cx+ughxmWboRQAABBBBAAAEEEFCBiy66SBJ6l5iQrfnHgWkrv18jiZvSZcKECdZ0tP9r0qSJ3Dj6comNP/xtvw0/bpaD810yefLkaDfBcggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCDgKVF/dWVNFt8RU0S2a75HibzziWWf2Z6qzVkszAVxXU5PD7WCCuZ3Mw1R/jTMB3ZhmLnHFVMse2IiTgLFVY314e7qlbI8J7WpgN9cEd00V3LJ1psruXrOiufZVbd7d5v75ymxzY5mUDvRK4kkxEptB+LqqrqyPAAIIIIAAAgjUZwGtenvjFZf7TzEpLVF27TYvLCvQvv/+e0lumeAP6eqqWZ0y5eVnJlZgKyyKAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIICAs0C1BHW9RaaKbo5HCmd5pGSBCW/mOe+swr3xJqDb0lRa7WrCuV1MOLeTqZ7byoRzE02Ak3ZMBVzmTtHgbGxGjHh7m8DuFvNYa0K7q01oN8dUTt5mDqekiodkgt2eHJGi3R4p22zCuoNMdd3ObnElcL2rKMvqCCCAAAIIIIBAvROYN2+eJAUFbFt1zJTvJ8+o0Llq2LdNj0zbOlpZV7et+xgwYIBtHhMIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAghURKDKQd2yvV4pWmQq6X5pwpUmsCnFFdl9mGWTTPXcdiYU2t2Ec7uZhwlrxjalumoYrWPerUHpeFPZOL6DW0r7mcDuahPQNte+9EeveDaae6Cwaofk3XO4uq5nu7mnzhZJ6GOqJzcmrFs1VdZGAAEEEEAAAQTql4AGbNtm2wO2cQmxUlxaVKGAbUFBgbTLzgrB0W0fPHgwpJ8OBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEKiJQ+aCuyWOWbDVVdL/xSLGppOvdYnZr+qrUUkRi2rskpocJgfY0j45ucacS0KySaU2u7DZVdpubQHXzGEk4wVRVzjWP5abK7goT2F1vboaCKuzcBL7Llnrl0F4T1t3llaTTTFi7pdkht0MVUFkVAQQQQAABBBCoPwIaom3XIzRg229ItmiIN9pKuD/88IN0vKR1CIxu+6WXXpLBgweHzKMDAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBaAVM8rESrcwUzl3rkYIpZVL0qQnpbjbbqEpIVyvomnBuwnluSb4yRlIvjJHE3jGEdCtxaY7XKu40lySayrd67VLMNdRr6TYVkSWxCkdk7imvqdBbNM0jB6eaQHiux6R3q7A9VkUAAQQQQAABBBCoNwIasG2bHRqwTWmSLF9//XXU5zlz5kyJS4wLWV77tm3bFtJPBwIIIIAAAggggAACCCCAAAIIIIBA5QT0/ZzTTjvN+nJ05bbAWggggAACCCCAAAIIIIBA3RSocFDXayqdFpqqqQUflknJbJOk3FuFE483Ad3OIvHD3Fa4M+V8E/DsaQKeyZRNrYLqcV3VnWIC1yeY62mupYau439mrmdHc0ih2YfojzPPVG/+2txzk00w/EcTDDf3IA0BBBBAAAEEEECgYQto1dx4h4Ctqhw4cCBqnPgWzn9kpGWHDP829EOk3/3ud/Lyyy/7+xhBAAEEEEAAAQQQQAABBBBAAAEEEKiYwK9//WvpdnGWzN483XqvpWJrszQCCCCAAAIIIIAAAgggUHcFKhTU9RZ6pXBxmRz6oExK55uQbkElT9zs1dXSZDfPdknyFaaC7gUmoGvCnQR0K+lZC1fTwG5ib1Nh96IYSTLXOG6wS1yZ5kArdMcFnJi510rnea2AeNHSMvEWVaWEc8B2GUUAAQQQQAABBBCokwJx6TGOx92yfQtZsGCB47zgTl2ubba+SA1tGgJen5drzbj++uvlpO6lsn7l53LHHXeELkwPAggggAACCCCAAAIIIIAAAggggEBEgbFjx4qrVbG06pQhTdqnyGffTov6PZyIG2YmAggggAACCCCAAAIIIFAHBKKOTXoKTEh3gUcOmaqmZctNSLKkkmeXJhJzkglxXhojKZfESmL/GHGnUUG3kpq1fjW9tkknmWs93Fzr4TESc6K51qmVPGxTSbdsqdfcgx4pXOgRzyHCupWUZDUEEEAAAQQQQKBOC2jAtk24gG1SvMQ2c0f1QU+kqrwKVFhySO6880456YRGMmxwN7n6kt6ydOFXUW27TgNz8AgggAACCCCAAAIIIIAAAggggEA1C/ztb3+TQcNPtrYab96/6TawrYwaNaqa98LmEEAAAQQQQAABBBBAAIHaKRBVUFcDkYU/mJDuR2XiWWVOpKwSJ2P+oqy7g0jCMLekmAqryYNiJLa5CW2S0a0EZh1bxVzj2BamevJZJrB7uame/DNTPbm9OQfnImiRT67U3H4/mrCuuReLCOtGtmIuAggggAACCCBQTwU0YJuQFBf27OLNvH379oWd75sRzTLjx4+X+24fJmmpidK6ZRO5enh/GT16tG8TDBFAAAEEEEAAAQQQQAABBBBAAAEEyhFYuHChpHSKk7RmR6v5dDmxo3z88cflrMlsBBBAAAEEEEAAAQQQQKB+CJQb1NWQbpGppFs41YR015iT9lTixE0V3diTTWXVy0xQc1iMxHdwi8sEd2kNS0CveXwntyT/PMa6F2IHVLK6rrkHPTkih6Z6pGixR7yFVNZtWHcSZ4sAAggggAACDV2gvIBtRvumURNldmgRdlndTrusVGnT6uj2hg3pJR999FHYdZiBAAIIIIAAAggggAACCCCAAAIIIGAX0C9dN0pPsXUmmKq67iYiixYtsvUzgQACCCCAAAIIIIAAAgjUR4GIQV1vsUjRElNJ9xMT0l1rTr+ieUgtmNvaVNH9iamie6kJZw6IEXcaJXTr441UkXOKaWRC2yebqsrmnogfakLbrczaFb0tzL3oyTGVdU2AvHCZCeuae5WGAAIIIIAAAggg0HAEMtuHD9jqBz3RfMizePFiSUiOD4um2znjlM62+Y3TkqRtq9Sotm9bkQkEEEAAAQQQQAABBBBAAAEEEECggQp8/fXX4vReTtvsTNm7d28DVeG0EUAAAQQQQAABBBBAoCEJhA/qlpmQ7o+mku40j3hWG5KKVtI1f4nWne2SxItMINNU0Y1rb3YV05BoOdeIAuZeiO9oAtymum7iRW5xdzdLh//rxc6b0sq6q8S6R4tzzIS5Z2kIIIAAAggggAACtVdAg7FvvPFGlQ/QCtimhA/YZrRvLvn5+eXuRz8IymjbPOJy7bOSQubfct1ZfIgUokIHAggggAACCCCAAAIIIIAAAggg4CygFXXbZmeFzGzbI0vefPPNkH46EEAAAQQQQAABBBBAAIH6JuAc1DXVSotzTUj3szIpW2kmKhqANH+5JHaAS5Ivc0vy6W6JaVLRcqn1jZnzCScQ09TcJ2ccrq4be6K5T5LDLRmm39ybZStMZV1zrxavN2HdilZ9DrNZuhFAAAEEEEAAAQSqV+CBBx6QUf/6q+QsmVblD2DKC9gmpiTIkiVLyj0BDfzqsuHaitm50qVdasjsDm3TZfz48SH9dCCAAAIIIIAAAggggAACCCCAAAII2AX0/RdJ8zi+B9Muu7Xk5ubaV2AKAQQQQAABBBBAAAEEEKiHAo5B3dJtHjn0RZmULjGpx5IKnnVTUxh1kAlfXmIqpfaKEVciId0KCja4xfUeSextwrrmnok7w9wvjStIUCxSusgrhV96pHQHSd0K6rE4AggggAACCCBQ4wIaaj24Z4lcN7yLXP7zbvL+u2OjCtKGOzAN4UYK2Op6eXl54Vb395e3TEZqvKQkh/7Zh57dsmTt2rX+7TCCAAIIIIAAAggggAACCCCAAAIIIOAsoNV022RnOM7U93c27l3vOI9OBBBAAAEEEEAAgaMC+tnYgw8+SCGZoySMIVDnBEKCumX7THXSb03gcZ4JPB6q2Pm4WojEn2Oq6J4XI/EdzKZDtl6x7bF0AxKIMfdOpyP3jrmHXJH/AnEoTIHJlH9nqkDPLRPPfsK6oUD0IIAAAggggAACx0/g73//u9z0y1PkxN7tpWO75jLk9Cx5/vnnK31AnpTSiOtmtEmPON83s0nbRr7RkOHyOaukb99M2b9vf8i8po2Tpax4d0h/fewYMWKEvPXWW1U6taVLl0p1bKdKB8HKCCCAAAIIIIAAAggggAACCCBwXAT0i9KRvnBdUHxQ9L0DGgIIIIAAAggggICzgH5O89DjD8jKgoXy9oxx1mcuzks27F5eUzbs618Xzt4WpfWa6rlFSzxSPNsj3vILUNnOz9XSBC2HmqDlUFMVtZXZLIV0bT5MRCFg7pm41uYe+okJep9rwrrOX64NuyHvHpHiWR4pWmbu34pWgg67VWYggAACCCCAAAIIVEVgwoQJ0qd7mnRub77Vd6Rd8JM+smr53HI/hNF/UP/pT3+S4cOHi27H1xJTE3yjjsPE1MSoth1pO3u27ZVGjRKkpMT8+YagNmnKfNm3d2fIcQUtVqcn1V7dl++fLxP+N87mX5ET0+v28OMP+rej15OGAAIIIIDAsRLQ57PA1xDHar/sBwEEEEAAAQQQQMAu0KJt+C9VN2/TRHbvbhhfiLarMIUAAggggAAC9VmgOt+XWr16tWzOXydt+mRKRu/GMumzd8v9HKw+2zqdm37+pJ9H6VDtaQjURoHYwIMq2WBCjibo6N0U2Fv+uIZ0E0xIN2lQjMQ0a5gJ3RkzZsiLL74oV1xxhVx66aVh0bQU+ddffx0yPzU1VVq1aiV9+vSRzMzMkPnHomPu3Lkyf/58a1fZ2dkyZMiQCu128+bN8uGHH1rr/OIXv5D09PD/6A7csMfjkYkTJ8rHH38subm50rZtW7nozEvk5+dcIqVfini3By4dedyzQaTQ3MMxmS6J72jLoUdekbkIIIAAAggggAACNSKQk5MjXToeDenqTpo1SZHhw3pG/BDm7bfflukLpoi7WZm4uhXIc6+Nlt69e0d9jGVJkb+5pR8A6QdBkVrHjk0lNinOtsh7U3+QnNW5cuuveosrPkXee+dl67hOOOEE23J1fUL/LOWK3YvlpxecKYf2H/L7V/Q8P/jgA9m4f60MGnKytZ2J49+Rq666Siq6nbruyfEjgAACCBx7gT//+c+yeO1CkaRScblcou9V0RBAAAEEEEAAAQSOvcCyZcuk6Wnh/6pRux5ZossMHjz42B8ce0QAAQQQQAABBGpAQN+X2lK8Tnbt3lXl96X087L5G76Rk37SS5JMoRp9tDsxQ/7zn//Ic889VwNHX/c2qUZfLPtM2vdvKUt3zpM9/9mDTd27jA3iiP1B3bK9Ximc65GyH70inujP3WU+c48fYkK6Z5qQbtOGGdLVoOmNN94oGlSdNGmSFBQUSGysn9aGqWHYu+66y9YXPHHxxRdbfwq4RQt7oCF4ueqc3rVrl5x33nmyf//hP+178803VyioO3nyZLn++uv96+s/pqMJ6hYVFVnh5mnTpvlPR400uHvB6RfLi//3mri+jhPvLnNfRtPMvVu23CtF7UxY14TGYxo3zHsyGiqWQaA8AX1jTH8We/bsaf2clrc88xFAAAEEEHASePfdd+XVfw0PmdW1U4b1PBPuQ5i///3v0umnmdK9fWdp2j5NDuxdKi+88IJcfvnlJmDbOGR7wR2JaZGr7urySREq8+7avFf6XtdbSnYdfn3s2/6Tz02TV58aJo1SY6XE20gOHPJaxzV69GjfInV+qNdMQ9KDhg/wv+mT1G5zhc9Tt7OpKFdOHHr0zaO2/VtUeDt1HpQTQAABBBA45gL6HDRjyafSrn+mJKelyYTPXxe3282/bY/5lWCHCCCAAAIIIICAiH4ZuEfHVrJhy3rJysqSrFZZNpaktESryNFtt91m62cCAQQQQAABBBCoiwK+96Wyz+ogzTPTrEIovXr1qnQBk1WrVsnOfduke6t2fo7uAzrL5//9n/Vlp4ZeGEW9tdhP9k86SHpWUznUqlB+mDJPtF+LbdIQqE0Ch0uOlokULfdIyTyTcjxYgcNrakK6Zx2ppNtAQ7qq9c0331ghXZ/c//73P99o2GHXrl3l8VrEBH8AAEAASURBVMcftx6PPfaYXHbZZZJmPjjQplVpL7jgAsnLywu7fnXP+MMf/uAP2VZk2xpK/t3vfmcFJnwh34qsP2LECPGFdO+9916ZOXOmVYZcLT7+5kN59KMREjfIhG0jFzuz7/KASMn3Xin+0dzP5j8aAtEIaCD1//54s1XhTccbelODPz85Qhbu+kbGT39NHn300YZOwvkjgEAdFNDfZY+MuEsmvPYPKxBaB0+hfhxy6V7p1in0L0Zkd2kpyxfPdjxHvXZFjQ9I2+yjH9x0P7mz/G/udFm+fLkVHnVcMahTlw3XIs3Tdbas2ClNmiRaqx84cDis+8G0BdKjU2Pp1jFd4uJiZfeePXLxz/pa51He9sIdR23s//HHH2XHvq3WGxq+4wv09/WVN9TtpHdqVOXtlLcf5iOAAAIIIBAs8Le//U2yz2wvbbtnWc9D6T1SRPtoCCCAAAIIIIAAAsdWQN/j0WJBMSlmv8llsn5jruw/8j5L4JHoMjQEEEAAAQQQQKCuC+hrH81X6PtSGhrVR2IbkTFjxlT61HSbPU7tYltfv+jUpl9z6wtRthkNcEI/i9ove/yfRamN+vNeYAO8GerAKVtB3dIdHime7xHv1goccbJI3KkuSTJB3djmDbtq6VtvvWWDe/PNN23TThNaofKee+6xHvfff7/oNnbu3Cmff/65tfiCBQtk+PDhcuCASZ3WcJs6dapMmDDBCgrfd999FdrbySefLP/973+tdfXbCBVpWoF45MiR1io61Kppp59+uhXU1W1q+8/Ef8vGVmskboC5x8w9F23zbDJB3R88Urojykq80W6Y5eqlgFbCHv/Za5KfulUKsnbJv18ZJStWrKiX5xrtSemLlviOpdKmT6Y0654sn5mqeuoU3Bq6U7AH0wggUHsE9HfWknkfyWknuKRLq4PWuNPvsdpzxPXzSNT8jFM6O55cetNU8ZYVOj7n6vNL86wmpgJekn9dHW/dN71Cb2bo6+twrbwPgIr2F/lXLS4utsYnf7pILhra1dav53HhT7rXqzdD9Lpln2J/08fnr1Vwom26nXYBYWtdz7edSNcm2u2zHAIIIIAAAk4C+vxTmLZf0ls388/W8S37Nju+7vAvxAgCCCCAAAIIIIBAtQvoZw2JmXHWl65TmySL23wnev36dbb9NM86+rrNNoMJBBBAAAEEEECgjgno51s78rfY3peyCqF8O71S70vp9oLf5/KRpLduav1VAt90Qx3qe4EnntvLdvq8F2jjYKIWCbi9Jaaa7hKPlC03gUZTWTeqFisS28eEdM+OkdiWh4vyBq+3Zs0a60N0rRR70UUXWSHMvXv3ypdffil33XWXfPDBB/5Vdu/ebfVpddXS0lJ5/fXX5aabbpIhQ4bIrbfeGvFDby3x/dJLL8mvfvUraz9PPfWUzJ07Vzye0FKqf/3rX639bN++XSZPniy33HKLtQ+tJrtp0ybrePQY/9//+3/WtvS49R+QGzdu9B9r8IhWlPWFSnW/2jT0qtupaNM/wXfWWWf5K8zOmTNHovkTunrOavr999877vLVV1+15mul3uC2b98+ufnmm61u/VPCmZmh1c6C1wmczsnJkUGDBsmiRYvk4osv9s9yucoPb+u9oK1jx45y4403WuO+/1166aUyYMAAa3LaDx9L0hBzr5mgjZh7L6pm7uXSpV4pWmYC6OYepyEQTkBf2OjPeZPuidKuR2vrm0hxWWUVCgGF2/ax7H/vvffk9w/cLjrUR1Warl+Qkm95JDdKMn9evJl0G9TO9o0jddPflf8Z/Xi17LMqx8u6CCCAgJOA/m6/4Jx2MujUrpLdpZU1/u5bL1bqH8FO26cvOgGtMts8PTXswt26ZFp/USF4AX0u6u4Q8NXnpGgr16ZnNQ7ebNTTu7fkSfv2oevP/m61DBzQ1tpOanKCf3s9uraK+G8W/4J1YMT3OkCtg5v2RRvU9W1HX0sEN93O+++/H9zNNAIIIIAAAtUioG/OnzH8pJBt9Rvavc79Wz/kJOhAAAEEEEAAAQTqkIC+N7A5f6PEpRz9cC+1SYrsyttlK1Sk7x3oZw40BBBAAAEEEECgrgs4fb6lr3Wy+jar1PtS+lfJm7d2/hPk+mWnRWsW1HWyKh2/77Mop8+0eC+wSrSsXEMC7tKtppruYq9490S/B3dHkcSz3RLf3oR0HfKYX3/9tfTo0UN+//vfy0cffWQFTzUk26tXLyug+/zzz9tCpXl5eaJ9Gii94447rJCuhnVnzZolL7/8sgwdOlRefPHFkAP8+OOPrW3edttt1p8znjZtmjz88MNy5plnilapDW66Dd3Ps88+K5dffrm88sor1j7+/e9/S9++fWXevHnSv39/eeSRR6xj1u3pn3vX8KxWf3Vqn3zyidU9ePBga93zzz/fmnYKxTqt79SnAeU//vGP1qw33njDaRFbn1aj0vNyKpWuwWet3KvzGzVqZFtPJx577DHZsWOH6HFfccUVIfPL63jmmWfks88+kzZtTK32CjYN+Wq78sorJT4+3ra2Bn2vvvpqq0/D2PEd3ZJg7jl3e9tiESe85q/klJgQeun20NB2xBWZ2aAENGxyMGmvtGiT7j9vrSA3/ZtPRUvk14WmQZc3P31VdsSvt4ajXxlZpWPXcNug4YeD8r7zV59NeRv821W3jatnyc/OaCrtmqwXDb/VFS/fOTFEAIH6K6C/Fzu1jhENT/qajp/Sp4n/C1a+foY1K6DPDd07twy7k0HmOVf/7RDY9PoFPzf75uubDo2z0nyTEYfJjUyJlnJa84BKe4GLHtxXYP59cPi4YxMOf5j00fRFcmq/TCkrK5FtO/MlIT7W/6FSt06Zsn3zynrxXLhs2TLzuqhpIId/vCJv+pS3HX2tRUMAAQQQQKAmBPQDisB/4/v24fu3vm+aIQIIIIAAAggggEDNCuhnDX3P7S5pGUe/7BwTFyOJjeJl3fp1tp0XxR6yTTOBAAIIIIAAAgjUNYFIn2/p+1ITJ06s8CnpZ2jhPsvSAPD+wn314rOpCsMcWSHSZ1FqrvNpCNQmAXfRCo94Vptquua/aJrLZNnizzAh3WwT0o0JXUMr6V5yySXWjGHDhlmVa5csWeIPRWhgNFzTwKhWx33uuedk8eLFoiHVgQMHWos/8MADkp+f71/1m2++Ea26qk0rws6YMUPmz58vTzzxhNU3cuRIK5BrTQT97+mnnxYNDi9dutQK5LZu3Vr2799v7UsrzL711luycuVK65dkWlqaFdLV4LBTGzdunNWtFX21/fKXv7SGGgKuSjv55JOt1TXMeuDAgYib8u1bf+kXFR39E726koad9dwyMjKswHHghjSYrE7aoqncG7iub/z222+X2Nij34T19Xu95d9Qvm/Htm/f3reabdiuXTtr2qqaZu61hJ7mvhvoFldocS/bev4JcwhlK71SbB7eUn8vIwjYBDTAH1xpR1/QtOzV1P97y7ZCLZvQLwW8Oe1VadQlXjqc0MYaujNKKn3sur39CXnSou3R4LLvlPuYN9S0grgus2Xdt/LrK/rL4NO7S3aHBBnQq1Gl9+nbPkMEEECgugT0Nd4lP+8fsjntq8w/gkM2REfUAvrFjoEndwm7fIv0NOtLY4EL6PVr0dY5KKrP0a17ZNj+ZFDgusHj5X2JJLlxaLVX3YZW1G3a9HDQ1x17+C+ILF+1xfz1iWTZfnC/bN6zVxav2CTFR15763l4yw6J/uWOut7ULPBPhQeeT0Xe9NHtdBvQKXB1/3hFtuNfiREEEEAAAQSiENB/r8YFvG8U+J4azz9RALIIAggggAACCCBQTQK+zxrcMaYQT5q9WI9W1d26dYttT0mNExt0yMSGwQQCCCCAAAII1EmB8j7fKjRfTCrvc6vgE9fP2dpmZwV3+6ebZTWqN59N+U+qAiPlfRa1dZ9zUc4K7IJFEahWAXfpjybEmBflNuNEYvu5JPHEGHEnO5TSNZsZP368FQzVyrQTJkwQDet2795dfvOb30T159jHjh0rv/3tbyU7O9uqtKrBXW0aNg38hfXPf/7T6r/qqquskOmgQYOkd+/ecvfdd8t//vMfa959991nKl6VWeOB/7vzzjvlwQcflG7duolWr9Xgma9p8Payyy6Tjh07ykUXXSQjRoywZn333Xe+RfzDrVu3ytSpU61pXVbbeeedZw3nzJkja9eutcYr878+ffr4V9OKuZFav379rArGavTFF1/YFv3ggw+saTWNiTmarNZKuxqy1aZh3cpUxLVWrsL/9ElKW7h9t217+M8K+/68sTvF3HsD3BLbx9x7odlgxyPRStElP3qkbFf5wWHHDdBZrwUmT54s+XG7JKNd85Dz7HFq5b7RFLKhGu7Qb6SndY7zn4Oeix77Z7OnWV84qOju9UsSGe2cw1G+7eo+h52ZJb26t/ZvfrgJvy2a/1Wl9unfCCMIIIBANQno7/czTu4csrUME6ZslOLld1WIjL1Dv7BWXU2Dq+oernXtmOF4PdKznJ+LdDspJqy7/1B+uE3a+vWLgOFapPM8uLfAtpqGfKZ+vkROHthSPCa/6012S35ZobXMgiVr5dkXP7fGI23TtsFaPKHfzm4X6U2fVo1E3xgqr+l2nF5j+dZrZrZTH4LNvvNhiAACCCBQOwT037T6WkHb6jWrJSd3laxev0q2bd9m9XU9qV1Uz2PWwvwPAQQQQAABBOq9gP47/qmnnrKKDun7SbTqE/B91hD8HovuIdZU1fW4PXLgoL1QEe8TVJ8/W0IAAQQQQACBYy+gry1LYor870MFH0Gb7IwKfy6ir49SGicHb8o/rZ/n6F+6r6vN93r8sX/9VW666SbrdXlFzqW8z6L2FeY7fg5ZkX2wLALVKeAuW2MCjFFmGN2mwGnCySYomeEc0tUD+/77763ju+222yQ52f7L4pRTTvEHWcOdhC/o6pvfpUsXKzSr05s3H026z50711rk3nvvFZfLfjw33nijaCVcbatXr7aGgf+78MILAyelV69e/umzzz7bP64jvnlO/zh89913rWXPP/98SU8/XH0yNTVVfBVuNahc2aYVcH2toMAeFPD1Bw5vuOEGa/K9997zd2sY11fxVwPNgU2riC5YsEA0UK0h3uPRtm07/CFJo0aNHHfvu4YaQC4uLraWic00VXXNPeg+nOF1XM/Wae7tshyvlOR6bN1M1A8BfdLW0H5lX3gsWrTIBEgCSu0EsOiLnQLXwYhP2oH71/Gabr79/fEv91iVxPXc1xz4UbbmbzIv6A7/POkx6LFnnNDYqlBe0WNSy64ndXRcTberL2RaNy+T3tlHQ7q6cEbzRjLs7E6V2qfjzuhEAAEEKimgv8f095T+XnJqv/nFQH5XOcEc6dPnljHPPyXvvz3Ken6tyvObrqtB3EhNr1Nakv11ml7Ddj3szzOB29izLV/27d8X2FWpcafX9+E29P4n82XJii3StXsz0Qq7cUkxkto8URbl7JY3J86ReFeBdGmfat1bVTELt/9j2a+vfyK+6dMjq9yAkxrodiK1dmY7H3/8caRFmIdAvRHQnwn9/frUiAer/Lu13qBwIgjUkID1+sP8m3bN2tWyI2+beONL5WCpqYa/Y6PVl9G+ebnPYzV0aGwWAQQasIDvtYD+ZUD9945O0xBAoGYEfD9v+rOmj0hN52sgYFbu5zJu6ljrUd46kbbXkOfpv3eefHyE9bmFGup10Ifvi9ipLUL/olFSamLIXwltyIacOwJ1ScD3u1Y/r/T9zNel4+dYEUCgfgno7yF9LaKPcK/l9PdWTTfdtxY5ScyKsd6HWrR4YciXkir6uYged7sTw1fT1XNKaZIsmnupq00zf5O+fVM2lK2UzQk5MurlZ6O+jupT3mdRXfjSfl29Nertcbu9u6I8N/NvqLj+JiTZzS1i/gvXZs+ebc064YQTHBc58cQTHfu1U4OZzZqFhuZ8YVmv93CieMuWLf4/kdu1a1fH7fn24/QLKSvL/ossMOgbHC5OSEhw3L52jhkzxpqnYeKFCxf6H507H67g9vzzz4vHYw8ehN1Y0AxfFVnt9oWAgxaxTV555ZXW9KRJk/z/sNVroSHXAQMGWFWNfStoJWCtKqxNqw/HxkZZnta3gWoaagVkbYEB7MBN+/q1unF8/JE/i2PuvYRsExbva0YSA5cOP+41hdRKcr3iORBlIj38pphTiwQ02PHiC0+L9+BSmTfnfXn6iT/LqlWrKnSEunzXE51DqbqhPkO6hv0AL3j/eizR7l+Xe+aZZ6xwSkUCKvfff798vWa6/LBhtrz66qvyypT/SqOsJCky4aDNO0xYd8d2//n3OLWrvPPOO/7paEf0d1lm+xZhF29qqt/17ukcnrr0vBMrtE910POviEHYA2MGAgggcERAf4+F+z2li+jvKl2GFiqgz005y2bIoL4JkpGyVfZunS0vv/xy6IJR9uiXss44JbSycfDqmS0a2Z5D125fHTEoenBvoQT+Gevg7fmmm0WoyutbJtKwbdvG/tmvvbtA2raxVwae+/1WWbBspwzs31Qu+WlnuXZ4T8lqmlclM/8Oj9OIPje37mEPV+/ZtldWL1jnP6K25ss65YWc9c2o4O34N3BkRN884mcxWIXp+ihg/bvh6Sely45c6bJ3i7RYvUj0dX20/3aojyacEwI1KaBVNMR8CWj7nm2S0jRJkk113YTkeIk11fC1r8RdJNYyNXkQbBsBBBAIENDnfH3u1/cw+3U+ZL2PyWuBACBGEahGAX3t/fdnH7PeQ5+y4D0ZN2Vs2Pee9Wdz1MsjpbDZHmnTN1NSOsZYD+1rSK/Vq+Ncfe8nrV7+tfW5xegX/yl/GfWQ9Zqr2ZH3VhLTjnzGF3C9k1ISbQVI9LOHKVOm8JlBgBGjCFREQH+e9efx/kfvrdGfo8DfteuKl4n+vj3er2303PW4quN3WkXMWRYBBMILHKufR/3Z16xI54wd1kPHtc/XdFx/N+prRP39qOM10XQ/+joyr2y3pGUmW+9D7S/Olw0b1tt25/S5SCQr/awls31ohi5wo81aNq2zv//0eny/5itpkh0raW3jRJoWS2z7EtG/8BzoEngdb731Vv81juazqEy+tB94uzBeCwRipTS6o3B3dEl8L1PJNNVevTZ47ebNm1vh0Px85z9Hu2fPnuBV/NNJSaHfqNSZbrc9Gbx3717/OuGCtL4qrXl5ef5lq3NEP1TOycmxNjly5EjRR3DTP7X77bffysCBA4NnlTsdGDBW0/Jaq1atrGrFU6dOlS+++EKGDRsm77//vrXa9ddfb1t9xIgR1vTll18u7du3l927d/vn+0IPhw4dssLQek18lW39C1XTSM+ePWXOnDnmyWmD4xY3btxo9etygc2dZu7F3m4pXWHCtyujCN+ae7zMBHVLtnoloWvk+zdwP4zXXgF9s+b72e/Lab0SpF+vjrJtxz7z2GX9Q/DJJ5+UcAH+4DPSJ+6rLvh5cLd/OrNDC+vNpOCq0877z49q/7fffrvEZYrkm29JfDPFfIBomn5ZQCtzR2q6z29zZkn/7t1l/Q9bJX1AomxYvUk6/byFJJugS2lxmazbsFZSU1IlJSVFUk3fQe9+6/dUtB76O61t/1aRDkN25O6RbufZq6X7VtCgVUpCaVT7fPbZZ2XBqh8kKTNGtDLiJ598InfddVfU1863T4YIIIBAsID+Ljv3ZHvQMHAZ/V3lKa6Z14eB+4lmXI9Vf7/7fk+X91wQzTYru4wex4pF0+W6y/pKvxMO/+mCzBb58vWcr61jrMyx6fllZjhXNg4+Tv0iWbdu3aznkOQmzv8mCFynqKgwcNJxXJ8LA1ugt+98mrVsEriIbTw9/fD6C5fvlD0lxXLWAPsXVV4ft0wu+UlHGTSgpezee0hmz9skLVsky94dS0Wf5/R5ra41fW2U2viwv4ZzN6/fIqWuEjmQd9CEddfLKef1FTULfIPE6Rw1pO3bjtN87dPtzFn1VbjZ1dqv1973c1atG2ZjCEQhoG8q3ndSN/lpx07+pTse2mOF+p944gl/HyMINGQB/T2tzy061If+tS3fc3VFXHRd/XfwqpyVktYyxQro+tbXsK6+g7Rl2yZrGV8/QwQQiE7A93OqS1fm5zO6vdTPpTS40jGzQIYPO9X8e6GxLFy2Ufbt2RTVawGfu/5bqa68nvUdM/dJ/byfa/NZ6fsaWn3L3aZQUjOSJSajVJLiXVaf0/vv+sXkHYc2yYn9zrZOy/cewvoVm6P6+azNFoHHpj+TvveeAn8uff36Hv0J/bvLCVn9rPdlKvq7xvd+0hkntZLnXvlCTr+6i8Q02Sfzf1wpOw7kye59u8z7//ukWUZoUaSktETJ33L4s+RpY2fKweL9kivLJHZLifUehNN1Czw3xhGobQK+50A9rsCft5o8Tt8+dThrwVdSknRQYpu4JHfKGtlrfva6m88UK/pzXd7x6vscrc9uIm3MX1JLbZIiB/YelM3eNcfld6fvd9nmDSsk2Xw+uXltK/NvytOPmX95VsxHoC4JBP4+0fGqvDejrw+q+hojGjvdj2ZGfjIw0/+5VoumMfLCG2P8hQz1d1aPn7eXg43zZXXBLpnzw9dWNqO6P7/R/SRlm889OqVIbFyM9YiJa2w+L8qTtblrpdOR94YDPxfR41frSFa+v1IeycOXC4m0TG2Yp+ca+Jyk5z9xxmty0sVdpHnbNCkqLpWdJveT1KyxeFoW+J9XdDl9nd+6X7p1HbfnrZfXp2y3rmO0n0WtmrWtNhBwDAhYAtGVUk001XRPcElch/JDjhpKzc3Nle+++07OPfdcG7NWl62OqhWBP7ybNm2Stm0PhwkCd7Z06VJrsk+fPoHd1Tb+9ttv+7cVHITVGa+88oo1f/z48RUO6paUlMi7775rrX/ZZZdFXfH22muvFQ3qakB36NChMm7cOGsbl156qTX0/W/GjBnW6MSJE0UfTk3X1cfgwYNl+vTpTotUuU/fYNTmu1bBG1y2bJnV1aNHj+BZEt/JJcU9zWOd+ZilKGR2SIdnk1fKNptlnQswhyxPR+0W0Bc6Tz042IR021kHqm9yiwkVfT03x3rC/sc//lHuCegLgVgTmI3U9IXSlFdCAySV3b/+fE77/mMZdOlJ0tL8A3Zbwg5r96Neejbim2C63lNjH5c2pzaTrRu3yd6Du6XreVmy+PUNktIyXg4dKrAC9Yf2H5ING9dLj+ye1nZ7n9M1ag9dYebMmdKyQ7q1rtP/8kxFvaSSMmnVwv6m2pr1O6XzkSq81115urWdwN/TwdvS85n05dvSonsjSW2ZIUlmc3PnfGWONU2iuXbB26tP03pfaovkV5/Ol3NBoCYENGj459tuibhpb1mB9Y/f6vhZ8/3c6lDfuIi26e/CL/83WdLTDsl3s5ZYq61Zs0buuOOOaDdRrcv5n9uOhHR14/r8et2lfaw3NSrz5rKGb6Npnc0XY3xN/3JG05b2yrW+eYHD1ObJ5ktl282fDTooBw8esGZlZmRKhnkENt/1CfbOWTHfugdObNI5cHFrXJ/v1i7cLIX9msuBHQfkiy/XSXxqjKQ3Oxxg1YW+/XaLtM5IkQuGdpQv5m6Uz+Zvkby4UinML5T40jL5rBqCunrs+kUW/esdFbm3Qk4oTIfPxrcPXcx3zeZ89p3k78oXT0qxuMzztDQtld0bt8uiL5fLOVcNlAMmBFXVZr2RXw3biXQcet31/JLiSySrVZZ06znAeo6tjp/9SPtlHgI+Ab0HWxTul2G9uvu6rOHvzxkov530mfk9dBOv+2wyTNSkgP7e10dNPKdU9bg1KJObv8p8kTNOtpRsltc/3iqVeV2kryNizT9pS7zFkpjcVErNc3JsbIz/8BJNWHd74U7xxnuq7bWgf+OMIFCPBUaNGiWb1i+XXt2aypp1O2TatGnWv1uq+ppKfydVdRu1nV1fC5QczJXbr/+F9e8rPV79YmRL8wXSWx54L+zvIrXR17ELVs6XAs9+0b8QWLrDJaNHj661pxx8zHMWzpIz+p9ZK593ai0iB1YlAX1fY1ez9dKtWXspKMuX3E0HzJeHMyW1W4xVkSvwfQ29X6fOnCInXnL4ffTAHf9/9r4DMK6rSvvTSBppVEa9d1m25N5bnNjpxSQhISSUUAKh/izw87MLLLtLXUIL7AIJIT2kN1Kdaidx73K3LKv3Ls1IUzWa8n/njt94JI2KHYeY3bm25rX77rvvvFvOPec758xZPROvP/wavvQ/gFcPJQvR1sU/+MEP4M6wIpKqleP9VlQeqERJ0izcfvvtihzTHZ81edJv73kbriwvFq3NV/c7XSOw9DmpyxhAT3sfUheMNn6WTAJicXlcqD/UpOQRmfONiMrwwpPkgKEImEpvoh4U/glT4DyggIwpwi9ZvUOIzdQp5zTnil+a7PWkjz/32jPqmW8QKB+7ZASZxgwsmDUflh4beu2WM9IRTvYs7Zo8s9fbiXWLF2mnFFh3xfpFH8rYKWPZivkJWDEnDjmZImN2Y+P2FxR463xc+waIFt4JU+ADoICMRdOdv0M9XvpT5gIjHD77WctmpA6heAxZy0hk8HOdND5Ecz4j5cv+vDI/ZkTq4860IZoGDGnJyRyfzShdlatwCuIs8lzp42RsPNZ1GItmzkZ0/Gk5lPA6cSmxaGioDwB1Nb2I3CO8Ts7CVFgSzaP4sbF4idSciR3OaDSNY1Sp99sGtLLO9VbeNZSeRr6fO4fr3Zl+PZ0+Jhox+ii0NA+gaFkOnnnwGYijC8mXs9aIzIoUZCJFVa+rsUfRLysxB1PRR2gutAmnMAXOFwpMC6iryyNIdya96cZNDdRdtWoVnnjiCfz4xz9WXl0XL14ceFfpQEeP+oEIgZNnsRMdHa3Ar+KN9e233w4sHLWiqqurFVhYjufPn6+dPmdbAdLed999qryXXnoppLDp1ltvVWDZp556CuLhMy4ublrPFzDzV77yFQV0kxtuu+22ad0nma655hoF1hPwrXjLtVgsEKBvWhq1FEFJgK+ax+Gg02pXvOuKJ2BJki8/37+oVifO8c/cuXNVidJe/vVf/1UBFbVHiOXDnXfeqQ61fNo12eripU1GcOCOgFfAulMkn5msOT3qeh0+6AxTt+Mpigtf/hApIIvb1AR7AKQbXJV/+uKl+BqF3HV1dQrUEnxt7L4AubJLRveNsXlk0rZwYR2czvb5ct+jGx7EmhuXKJCulClgXUnNVe146KGH8Mtf/lIdj/2prKzE8cZDWHJTBZp2diExz4AINntjsR66SB2ti4ZhcMchMSUBPW09KLQVKa+62aWZqNxeOba4CY8FnCPg5IlSS3UHFjIMmI2gKEkNBOhu3FqFw03tSIAeV6ybg8XzC/Hk69vwpS99KWQxGh1KVmYjp9QPphI6y9+ON7YoZY94BP/fmO666y6lgEnOSkRcZCKEsRRaCEArnMIU+LApIOOq9F9ZyAi/Ie3yfG2bsdEuZGdSyzBJKi1OhwA5piu0kPeXv+DxSaOJGDmUFibDMtiNt956S9EnOJ9WDS2/d8RM5XYvR02O1xkuXH35MnR2k1FheuyFN0jnWaOeo93/QW4nm9vEKCY2cucHOj5nZxkVfcVATOikrH851/T09gRAuALAzcw47Sk51qint7waJKfHQxfjVeTpHuiEzW5HSXFJgFwyt8n77dn2ApaWR2HJggpF787uDkhb0eY0uUGeJ17ptz9zEFaLlWJdD8Njj+DIUZ4vE7SqP7mHPag61kugQhpqGsx4obIRDgp6smYkoa8zAr7hCFiO9k+LH9HKHLvV5oReVwd2Vidg1+EdSskdqm2NvXeqY60tStu9am0hmk5UobU+meuVeDTRa43NbkPN1maUXpaBeHq8iYzVwWUfQbQISA63Yf/bR1QocSlnonFArk3GU2h1lJDkk5Wj5TubrfbdZ1AQl5MlY0KHagfbtmVMyHOdzXPC94QpMBkFRAbym6vXjcuSnZSIy4uyJ10DjLspfCJMgbOkgIyHIgyPjR5Rc99k/MpZPuJ93Sb123FiC0pWZSOrNAVZs1PQ2dCN5955SsmJzmTukznFE+GCPj4advIEbo8b0dFR8JFViIyMhETlMqYlwBPdc0a84Pt6wfDNYQqcAwpI25Yk/UVbi03Eh52Dx40qQp55tPINXL6miLy0EcXZXjz3auW05zCt7lKoVmfhdWVtKeOScyR6wjWU3DMVrxiqfLnvfEnCC/zq+1eNW6PKmvWyNYUT0vGHP/whhlOHCKDzUd4Xj360Y/vuSpTfVY5/+qd/Ol9eb1Q9xta5ylSJ+g01KlrimYzlowoNH4QpME0KyFjVaK7Cso/MhJ7Ld71ez3U9nVq0N6OwoBhb2veNGk9ENxBhdAfk88GPETl12qz4CftncN7zeV9oIrKQ5FgTPZPZsH1vHeUhg8grmKkc9DS5TmLVosVI4BgjafvBvdjzxgHYBjsxf24R7rprcNLxWe6RZ4iupnfAiiPdrVjzmdNOd0QXp08k/5UYDY/PjdgUvdwyLpnaLHB461FxRSG8UR44T0VQEt2J6E1kbNEcG427OXwiTIHzhAKi33tt98tYeEkFcrOyCDLyMaLse0h4KOEDlUEJn5F1YQIcXU7YjWaULy2DhVGxTlRzPFy6PKB3E97rXPEP8kzRc4pMVWSImrz2wxg7ZQxyDtXhY1d/kiDd0/oAr8+H++lNUxyGafznedJUwtUIU+ADoYD0BVkXiZHf3CUV0NviVds/Ex5cyjjYsg/XXLEOWSnjZTPSlySP1qcmKlvGQ60cjcfo9HVj3/795C3O3VgkhJT6TIQZuenapQoz0mjrxqxlxdj3ziFkldMhWm0vIkf0MCTE4IEn7zsnQF15L3HemD4rAc31LYgkLExwWsKPRkZG0ZA8Bg6LU+lVpN4p1FV4qGPSxvCEQj2y4v06LaHVjt2j8RLybRPopXc66Uz0ntMp71zkke/03luPQWdvREFWHuIjbeRRW+j4chCCgfnID07jCeV5AtbNzDZSZ9WucDpC3wYa9xekLkNdYw0iI6L9OJhTvOLWrbVY/YWpMYFjMT/n4t3CZYQpcLYUmBqoS0xjJAHs0YXcmUb64he/iJdffhmbNm3CypUrcd1116G0tBSy8D148CC9XGUGgKDTKG7CLNdffz2Z3J34+te/jjlz5mD16tUqrwA8BZwq6corr0RCQoLaP5c/77zzjhpcExOpXKPn2lBpzZo1gXcVhYhWp1B55Zx4Ctm9ezdeeOEFvPrqqyqbeMi96qqrJrpl3HkBA3/qU59SIGKN4f7MZz4zLp9YLEyUJEzv9773PQUWlkFPSwIgFosS8X4reRYtWqRdmtZWgM3iIeW73/0ubrnlFnXPJZdcogAyIpiVZ/71r39FUlKSUqb827/9m8ojNL7xxhtDPkNfQtBAqRfeZl6eCqvrAbwE6nr6CNQtmF5bDvnQ8MkPnQI///nPcce/nAZyNrT0YRPBoqWnPLpedoFfyH3HHXdMWldhVKaTxgJIxj4/uAxZCE70/H379sEabcLcUr8n6eD75lwwC689sgH5d+czHFQXhrqsqu8Ls6sxvpnlKYiNj4Gl147cFSkwNVkRY4xWQF1RPjqdDjXe6eMJomltoVfd2WT0krG7bnvwoybdn4rRs1DgVkAPhiJY27TtBDZWVaOuk8B+gpMaTMPo2mzBjHgBv7knfI4YL0SXewMgXS2jMOvFBO/+4f7/+rsD1LQ6fJjbu+++G89sfIJMfCJ2bWpAhGUYKYYUNXfKvDrRgufDrHP42f87KCDjgoA5tjMUzLG2A7C7LTjacRClOWX4wbd+GFiUny/UkPrmcuwLTto8Iee0uWLN8jLFewkwdLIkC0h5fws9sVjdQ2pfeDMZm0VR0N9N4PJFGcjN9CCO7sHf3bkdrzzfpIoM7rdSL8m/uCIWxTS2+Od7HsZTd92IrPQkRBFMsmR+kbqHMkQ88OhfVPmawGOy+k11TZ4raaqyZGz+3jdOz61jyxV6SZ7gdxqbZ6Lj0sLT3nIny9N2al6W+VmEvCdOnuC8p+Mi5BQIt78DvQTSFgeBcH2RbqTTq20MF+6Shobs6OnqBpoADawrNHiCNP3SLeVYusBPZyW45br93ke3qufIvdl5qbANm3FkczUGzP2IpFFYbmkiuoccGI72IC0pGjm58bD3OxHBaW7f/i5cfVEhHtnAei6OQ15hPAUvMUiN9sFgSICtf1h982effVaKP6Mk7U6bE/LnZkHm32MD+7D//v2qnLP5DloFpOyWul343e8exXq23ZlZMchJSEJNYy+WLCnEz/77XXQO9EJH/VlsahRB0BGIIlA3IorGQVE6JBQP4xD5Lo/Fh/b29gnblhIIrR7vLUerR/B2snKC853Jvrzn6e++JHBr9pFmPP7iISXEez90DBQY3glTYBIKSDtMtpmxpCh0X7h56Xx89cW3KUi/fcK+NEnx4UthCkyLAtp4KDyIGC3kZqWhkmPhri3Pq/s/rLFQ5mf5E1mYRFuJK9WNWiOKUafwRbI+FD4mmJfR+BvZjq1/YJ0fRVkRDW4i6MREtiwKLqdLKUjEwDXaoJsWLzgtIoczhSnwAVNA2vqv/ngHShbmY8/RPdhelYj8vDxcvvSacX1Aq4rWT2QtM2PGjHH9SMs31VbGkFeevwcXLjZiblkcTH2MbMfISN+6/VL85i/bILKMb3zjGyGLkTrI81ubqtR1MfYurCggH+lFd+sBLFuQo8alzu4BNSbJeBBclpTtHRlUPOewW6/kZMF9Prj80qJ09Yy764dUGcFjRsjKTeOkRkNtO3YsmkYRiudMjrMG1ntj77lZlMf/+uI4XkDovr9xD665bJ0C6Wr3rblxqVonSF2CaaFdD7WV+k9GD7mu5ZksX6iyg8+FqnMOM3TUd6uxXPJOt87B5Yb3wxSYLgVEZp9Zmoxcru0DyemDk7KcA1sOo3R5jgLeajoDAZEs/MhpUGngnlM7Iq9/+tdPf6AAu7HPPJfHGg94KSP0bdjYDGvqCKJmR6NgdjpOvHcU/Vt6sPqmBQGQbsPhZmRw7b/qpgLoXTXIT02ENa1PraulXhP1X01Xsmkb9TMrspXHOO097GbKT6iK8+m8iKQ3OV1saL2cg/KTEUYoys2gzoNe7mw6v+G2gP/kOzzzi9cC45RWdngbpsD5RAHpb9urNhO8uhS5M045p6G+K4Hrju1vbJ6UX3o/7yHP7XS14aKl6/HYT15CxTV0tkAdYlR0FHpa+9DY1Kjko6J3+93vfndOgLryzHrzSeTrEtHf0g1fhBcW6yCcjmEls9V0nbf/neQc2hgUDNIVmoqsffaeulHj/vuhdfjeMAXOZwpIvxTZSebcJAzFmnGw0wydMxqvvefHG000hwe/k5TxyCsPqHFMA9fKdU02I31t9tJy9AzTeJDrUUlj129yTsrRxsOx5cgYeR8B9FKf97PukOdoSRsDtOPgrYwLoos7ccClvPbrM3TwJriQVGrAQMsQhjos6GsafN96Anln0eXs30+Q9Gdz0Vc9hLh0A0a8w/A4qUjyRSBiOAqdBxm9sKwVqblJcDKKo4e6rSPtB3CxYRkaW+phiDVAFxGF+MTTeAmhk/yJrMuQ5VF6MzGS0Awkgt/3fN0X+tz/l9/hqkvjMaOwHFE6ApdjY2Gkodcvf/cysisSkFFy2tBCew+j0QCny6F4eJnD8i5Mof7OhBjyqx7Sqbt/UBmMyLxz9L1axCT4dYTa/bI10UBNeEtJpQvp5O4DdBqjHnKOfjQZxPuV55yj6kxYjFZPbau11wlvCF8YRYGpgboca6MI0o0kEGs6SbzdiodUAZmKt1sNdCr3fvvb30YWLckEqPB+03e+8x0cP34cjz32mLL+LCkpQTLdlQsYWJJ4g5VrH0R6/PHHVbGf/vSnlSVEqGeIp47Pf/7z+O1vf6vqMRaoK2BmsaKYKIk3yt///vcTXZ7wvHjyFVBsY2Oj8q57xRVXTJj3TC4IXTUvwvfeey/uueeead/udrsDC4Dvf//7AaBuVFQU/vznP0PqKODhjIwMNTnv2LFDAaHlAQLuncgbcWQK2yXb5kgCVS6Wqavj7QU8/cR7FEydN5zj/KVAX3cjgTa3kmnpo6XTNgx5nOhwDSGBIQMkzUhIp8XYvmm9QMok3mODC9AAJMJ0as8Pvh68v5QT/Z0PjH++jIfzP+0HCAXnl/2+tn6Y6VnxsU0P0INQOlpOtpOh2688WudR+XK4rRIrr6pA90kTfJFeJOXHo6+WIXRohS7Crggd+wE9fUsSqyzzgEnti8eNITc9N7LeopiZKilQzSq/ICFUXlOPBXmzC3G8wYRDnR3wEPSeviiJjE2syt5Dr4Lb99Whu57I+AnStm3bcPP6K0NeFSHGlmdenXZ9QxbyD3RSvou0C9m+VbkB0bkexJp1yEvU45IrS9WbtPLaq3/7izJ+EcOU6XzHfyAShKt6nlNA2uZ//Md/oNVSjcgcF3KW0HN3aiYajrRiR00LrzmUxef51C7FMKzklJJWmyeuXlsM21A/SgqSsf/gCTS1DiI3J52GEVshQPiJkvTPv77yILodbXzvBBiz4nG4bje6XmnjCi8KElXhod9+BNdfftoAY87MNLz+bg0euPf3yhhJo43QMT2+DzddczmqaztxKY1KLlqWBzOBpbV1tbT+jFPeTAVIum1PLR555BFF24nqNtV5bWxpbTqusro8scqATYzYQiUZm+/+8T+HuqTOrVlRRnDjixNen+iCtKEV1wQpySbImMv5eMtB/zwuWSyc11Mj9QThpp8G4Q4ShNsziFYao0iKjolEVnZS4LqcMxppqky2sLWpleEt/d53ZQ7XRxQEQLqST0sNLb2In8HnELgUpU+Es9eJob5BlF2WjZo3O5HCefadjS1Io7Wyw+RCYkwUojjdWmwuKpDiCfbRoXPYgeXFmfB6fAQUeSlMiYDH41YKqr/958uTzmnB84DUSb6PnNt69F0Ur8hCblm2qqrM55Kq6WFGQiGJJ2itbakL0/yRdvHkY/eiKNuN8qJIfPO2ZQRsJcJM2hpifCBuHPUNTRgcsqHwihTojVEEMvmXi1FRBOzG6JFcTN6izQE4J19GynssSZma9xAv8h9Eevrppwmkzhz33aWP+Yj8eoh0OFs6fhD1DZf5P5MCYqh3y7L5E75cbrIRJbFRk4LeJ7w5fCFMgWlS4Be/+AW+9unZ+OhVfmNr4Y/KijNgTDR8aGOhzBHCG129rhgvPLcJ7VE0/KAH/6oTx1FcVKx4Ink9WR+2nDgwii8SWZTwNyU0BGpvb0NDzSGUVSxRc6hGkthkhsmL03NuJ0o3KHGmhtVmQWJ8IuLTDKrvBV0O74YpcF5SQOsvHVH1BE65kL8oQxlxdaNZrVUkVOdYHl94vudffxbF8/Ox+/AuxB83ooAR0y5fds24vFO9tIwhn10fh4UVmdDr7PR0OAITDehiDMm49Yb5+PkfHlGy3LG8qVbvRPbvusY+OBJGoEuLROWmLUgdicRnCQ67bGURior8crL9h5vw+EsbcA/fR2Qf0tcP7t2AS1YVIJXikY6uXuze+reAbETqLePIvBnRmF8ai7xs8qdMhyoPq/PimWhsnVSGaf4E07CtvZXKvSEk6pPw8fW3TJuGQgPhBUROOFHKoZHpJasLlJF2sLJaeP4L6alOWwdo9yvwD3lZ+S6TKdzl2fIOvdZutHGsNEYlq3oHtxW5vvvwTnXd4hpUbcQ7EKnof6a0k7L+/PQfMevCAoIi7eAoq1VZjeWHN2+G4s//l0bQChAjvPOBUUDaoPS39d/38zvyoBOb26Cz+p1JJLu89Ng6otqhBtStbqnChTMm5tXPVK7+gb3cWRYs9NBHDOD1d9pR6+rB/EXFKDolw2852AN9mQsmWz8YuwiNR1vQvK8BX7p5DubOzYSl24IMGjWt/cxavPzWITXmhFo/y1ij6UruuP91ZF+WAofDhZ7mQdi7htF+fAD64khYB21w9o9Qf+Hi2xjGvZG5yYGsJQQGm+iYJC4Kw24HejjXSHQE4Q3nXVw2ih8cV0D4RJgCHzIFZF4uvppyvFMgXa06Mo6IfO/ex/8Skl/S8p3tVuMXpA+PRDqRUuiXsck6SKJciUdxcWQg9ZqOnlDT+0vfFl5A/oJ5B6mnGluSdQospY/T0XMw+6zLBvuIDdXVJ5QDIRhH/i5yDhn7jbGWcbI/jZ4fv24pvk6DqPr6298XX6iVF96GKXC2FJA+JX9j+9PZljf2PhmDUlfEIntuKrJxWhdjtpmmrUuQvt3a34AL160YWzy6GntQ1XsY1o5urLlslVqPSqan335cRc6Q9ZuWhOdPKjaMGw/lupLxzGw/p3O68CGzy25Ac3Mz+QZ/NOB04o3i6dxQogeKLs4ZYYOxJAOpRUZVTUNSjBov24/0oauu/32tU2QcuvOhX9Hrq0lFQc4uTUL/4SEYkvX0ChsF94gXtl4HWreZCN6NRgLXrwJKdQwO0yjVh9J16bC5BpCcYqSJuY2Y3ii0ttHANb8E9jiTotUXvvAF1X5yK7jGYjREp9OJQYsZyYkpClul0V6209G1SFuUemvj/Jmu/YKfN9W+PEva5yUX6lBxylmRe8TNN7WhrbtP3Z6Ub1D6NPE8PDZl5shcNgBLVC8WzZ9P/Z8hoA8cEn0hHXgmxDNq1ognwNdKGWbqESs3HgMxvYwsQZ0edYnvHGvDULf17zI/jX2PMzmWb7P5nVdw6YWzYe7cg93th+hZOB8NDas/sDHkTOqn5VX1fPUlXFYxA93UwTb2DmBrbBwuvu6G86qeWn3Px+34Fj+mlrpcKmVz2Yr5f7ophe7QN2zYgMHBQQjoUryxLliwAIWFhfjVr341rpgIQZpNkgTQKUnAr1qSe4RpLC4uVs/SALoC2BXg5w9+8AMq11O07KO2weXIBa38UZlOHYy9JlYKmmcszTNsqPvknIBzBagrINSBgQGkpqaqCStUfvEcm0+h6UUXXQQB22oegkPlnezcqlWrIDQQoK6ATyYDA4cqRwS8ksa+99y5cxX4+cSJE7j22mtD3arOyXuIK/fg+2X/K1/5igL63nbbbaPuFU92Aub+2te+pgZGsaqQJJ6X//CHP+CGG24YlX/UAasalaeDLtsHL716TZV8/cxnmjrfVOWEr394FNi4cSPWrJhBkFUffv5fG3DC3oXsWSnInJMEm8mpKrZtfz2Bon4h3GQ1FeagcGXuZFnUteTMhEAeAYDJ8ydLxQXpyuNHcB4Btx9s3ocMczRau90BxikjPUMJwmqO1yFvaRrgdjH0AT3j5sSi1VZDL34Eae4YgLEwFm56se1rpKUQvei6XR44BlxIn5uogEECSnJ7/ODYaDJ+Qx4/Myp1iE+NQ1tb27QWokKTJakTv1/HiR4s/NZK/PjfN6Ho+jxa0rHOQUm8Fkhdao6eIMPQoLypB12GfD9vih9QHHw+eL94fq5iPMUK7n9yEvqIUsma0I83H3kPS79cRssuC4wDPbju8iIsXpxLZjMGw8tysW9LI47XbCNdDPifTpf/yd/8fHs3aYOSJOrBREna6M4Tm7D42hJkzjjtFTVqaR46G83YtnMT22XZB9oup1PP4PoLKDOX4E1JMk+kJHhRnDMTPk8GahsHaLEzDD0tVfcdrENU3MRzhYxXD798PyJzR7B85sLAIwQ4uf2Fvdj34jGsXZE3CqQrmbIzkrBudTH2H90dGMukLFP3MfzkPz+lvP1+4f8+gp99ezVi6QVW8vczHFlraxvKy8vVc26+bhmu+cwDkwJ1hS5SrozbkjTDLNnK+Z2bn8PMogTMKRpW19s7u9U54Z+1vOoCf6SsWQRfTpbES7HPbQs5tk92n3wPBAmHps7rt8ROTItBQeFpkK7cZ0yKo7Us59GmAbWgnp+eTs+1/jWCAGMlyWI+Ql6ZApCdG/YjOoLxLpk+c9NKxTvI/rvbqwnu8Xvc6ugaxIL4vIBX3uqNrSi8MhNJ9I4bqeuigMCDPnqyNxDw019nRWFaPL9ZHA5V9WLp/Axs2d2OGVekE5xLb338E89/OoJ3PR4vvWbEIXteYqAdyLODk3ynze+8irgoExVgfh5GvtujT7+DmdfnYFHZeIVhBXmQN468N2GZweWH2pfwS1euScc9f92i2qCAdCUlk7ZlBBv/7c2DBEEMQp+tQ3p5YgCkK3kE3CrtJ8aoh7EgDn2tTtUeJvJKLbzHdFIi6SRtcGw5ck7at2zFk5oAy7S2q20nKl/uEc9tH/3RbSGzLFtYHADEh+fVkCQKnzxLCkjbk6SNzdLPH7xmVaC0xj7OQ0za9tKKMqwpK1Kgo7F9IHBTeCdMgbOkgLRHaYN2cy1mFS7CQ09tV2Npp3UI3fxblJ2Ptua2s55TzqRaWt/Q+E7hMZNiurBqwXz85I5mLPxcMWKSqIxo6lEKh4ry2QGD7bn0jPHkb59UfJGsqyt3vYKLV+UTlGdFGQX27V315HHqlQzsq1/9qup/CZyro6kwHpvknHvECQej0RiSYwJ9dWy+8HGYAucTBaS/VJsPY/X1BG3SeFCStm33dQW8Tmv9S/q9eFOKKqDnRJcT+YszCHhvR1VXH3b/Z6Xi50QRp+XX+qfcJ+eCr8m5OF0nQfXXMLISoe6U7wuvC/cwPRK1MtpEgeqPY2VOct/DDz8Mo64WiQR6WQ0OJM+NRy6NGpsqu/GZry1FYR5lVb3kF8lDFxUWQfgz4Tf/848PK9m59PVbb5iH5YtK1DuLHLC334JnXtmvxi2Za2Uc+fj6KzgeUBZ1Kgnw9b/u2/i+xjZVf64F7TEmRUNwKRypG0H3QJNaI4ZaU2nPl63cL3Q9UL1fyeM+ujIGIk/PyEhHOuWAY9NygueeeuO0Eanc3zbYiPlll4zNqo5lTfp60xb1DO07BmeU+wWo3WlrQUQCZYX8ZLV9VEi+3Kx4DpHBC/20diLXE3MT0OGl7Ol4DTr+owOiDJ6K59aeKWOzOG0ZNLahbE4+PRsxPKltEImM2mHtdFDu2YpYflsLve9JRL3gNha8r5UX3oYpcDYUEHB+YkaM8qgr91dvaUNMr0uNUXKckWFAXQOVx93tkDYrfSePBghTpTORq09V1rm6PnbclnJD9VcZC9YtT8Km4ydw4WdnBxxtSH6X14OMWUZ09XYirS8d7bVdWDYzRYF05bqB6/R2hhouL69Qxl6aQfnY9bOmK3lvRzU9wrVgqV2PzgMmuAnSnVeYhlZ6NM6bnUK9hRcjg264TjkakWdoqafGBK/Pg6wyIxISoxFriITXFcFtFHq7OmWaQDA/qN0X3oYpcL5QQPpaq70JF5TNDVklmbe32PdNW0cXspAQJ4P5BZFVFyzxyzq1rOJZt99jUoB3cYY1d50f8D62H0t+GVekvCfffJRROo10oDCInthmbD32bmCdpZUr+fIJBgyOcCbXBDzV2tzHaJ+UrVbk/F3kHHv27IHI0SdKmjx7LK86Uf7w+TAFzjUFhOfoEcO5tlYMucyqX8icfS554MAYtOIj46ofrEsQDJK2dpiIbyi5snBcGWIIUH+yERVXFMJFDIOsRT1uj+Lxu0wdCgelGRxKucIbXP0vF4wrRzvxfud0jQ+Sd5F3Lycwtq6pHg4a+Yz4/PgDe5cD0bpoAjypBzzUjDmfz0VS3nj9V94CgmT7HKrOWv2m2mrjpaynIhMjsGPjLvTl1WPY5kUadWwJxHCM2DwwpNHRGjFXgj21dgxjmIZMM64qUM7YhH6WbjuSsqJRuCANBsqqkqifEd2WJK/Xzbo3IZkyLxnn5JkyjmUZSjDEiJDCHA06R2C104sh9wVrIknAqRPpWuS60Gv3kV2qPcpaMf6YGPQWKKdEv/nNbySLSsE01s6d7VbaQ2trFS678kZEnjKkitfFAABAAElEQVSm17ZH6jpUsQnpMTT0cqqo0WOfk0kHO1sqq8hPGsnPG0ddFn0h1XGKVvYBB0wmk7oubfbIlpOYmxCJJfMyeV88Bul4py7Sh8j8REXP81UOL9/oiUfvwRUXpKMgjca06yuor5P3smILdYdTySJGEegDPJB67nz+ScyFC4VD3ShMjEKROxbtZrM6f77U8wMkwTkperzkekyxkdkURmXKcmh6qbq6mlZT1RxQknDJJZdg/fr1o26UAUXSvHnzAudlQnLRK8BESULthkoCQhWBpfxJ5xMLgpwcCaoUOskgFiqlU9E/0fMvuOCCUdfi4+NHHYcqTzu3ZMmScXkFPDuZ9zbt3rPdSsM/efLk2d6Ob33rW+pvbAHigvzQoUPqfQQ8NlHq7+8Peemuu+7CnXfeqVyZj80gIaSlzYjQUjx6itdl8Yg8kSfd4PujsiKgowNQb23w2dD7PivzmTlkU0aJyNB5wmfPbwrs3r0beWRMtu+tw54mWnZ9bg6BqH5vrtpW3qC+sVoxvJdffvmELyTgoclAqdqNianxgUlbxhDxKjhZEgWBz21V9wijKJ6ohcFJLU0g4zSAEZcb3gE3tyNK0LTjRYaQJ8gntdiIhp3t6OaEm7ckDbMuKUB0XCTDL1gQT0Gjjw3X2u9AfDbBm0MuWJqGYbhWT0WJHzgjYCL5ixLlo2cksABPCgIaT1ZvuTbRGKndJ4xOS4sZvV47lhT7wT3aNW2bOSMZWbOS8KMf/Qhr164NMP5CCwEIzVszOf3mrSnHK4++/IEC/7S6fphboU+V6SBykjNhnElPAhyacnTxuPbqInr4S1bhGmSsjaFAZeGSXFoERuMPf32L7eoLAZp+mPUPP/sflwIyJslCKyrCgWIKze9rtqs2JX00eMzctGkTnn/+eSy8toAg3dOKT3lzWTSihIvBASte2fSyUuLJ/WeTJlr0Tbee8sxQZWzeeRJm0wAuWTELG7fVo51A+DiaTxblJVIB7EVjGxe0kySZb6pbjuLCZeMtiJuOdao7v37reCClXBAh4BUXFuEvz7yoaCMKox9/62qlQBYFc3yMF8sXnjYUKS3KwNHqLo7bBYr3kXlEvo+8Vyi6yrcRgGdnew3aCPAVAKPGX7/zzju0Eh3A2qXJWLGYHyko7T3YiK3v+Rdzwd96y5YtWL64OChn6N2LOT5L3lB1Cn3H2Z0V774zrk8OWMYGlxJDcLOLhioyH8XFc5/rB7GU9lLJJMZm3TUWDLc5kZ4agwh6+6o+2YOl8zLQ1NKO1zd2Y0ZRKkz0Oi9A7aZTbSA9U4QgbBOHOjGscyuQrjzTMSBlRqCr06rm3pa9JsyrSKf342h09djQ3mFF24gd5SX5zO1Teb1sW5G8x9ztgM+hQ/7CDDz9ylPj+oh8wx38FhX5XqxYMjsALvj13W/AkzgEjyElMI9LXZqO0YsXBS0xkToI17PprReVJ335jsHfUvJOlOSZkd5uJBtnjWuDco+Addu7/CEqkopiFUhX1hWBxHlKwBNReh0SaVDURuHiVHxD4N4pdkKVI/Pk5WsK0Evey0u+6qW/7Q60c6mXtMOJ2qK006Lc0OsV6YOSbHYXnnvtyQBAeLLypqh++HKYAooCMm+1HD+KkvQURDmsBOOa0HD4IGKuWIImAnTfPUmham8fLinKQbdpEE1mK5roHVAfGwOZc8IpTIFzSQGNV3jq2Q341T+vwZMv7MZ7dd0w+WxIy41HNL14vN54BIbIGLVGE0BW8JgqPIj2J/XSrsk21PlQc5Hkk3rIdizf2d95FD/+xadQ29ANG41VPAYf+vto8E2hvcVh4vx9Amlp6UrZIEogs8uk1tV7d7yEWz86bxSPs5z1Ex7niZdfUsou4SPiL4yakJwxBj0jLTgRl0gBcqsYFIVTmALnLwWkD+2s3ob1X14XAOcG1zZvZjYOb/Ebcf3sZz9Tl2TtkbQkChUrZ6rjg+8eIzjKjqU0tmyksm/Dy/dhRvEMdJAlkj7d0ngcl5DP723Zhc7mSjTX5as1ojhckLIuWpBD0KUA3F2IJ2hKZFlkCVU0BlFOzivPgqxBNEWX1Fnui/G14zO3r8Ddrx1AxpIEeiyKQ+uxHhQmx2PRwmwVWUQXrUNzaxOO1fSjhwpSCtPQ0NiEd15/GOtWMAIK59KHn6byjufbRVaWnQKz2c713ZMoY3kyjgSDdOWF5fg7X7kC/+eHL3H8GT22KYJM40fqX8DoEhUzT8uvAuBogtn++77/mlC5Lu//8Ev3IyrZx8hZA9ixfT/+7+evR/9wP6yU74kmVfQQwUkM/rdtezlwSp6/4IrZgeNQO3PX+sE24hBDG6O1fHK/tIH8xTmj2o0A8d7e8So6ftQBb5KLSkpXoJ1o9xrTElC1q1Z9w1AKfC2fthX+R8Zm4WXWf28RFdORSi7pGrbgxH4CAEdisIre/dxuGlJua8Shgyfx+U+upWI6BT1c1zXTWHUTlU/S3sIpTIGzpYDwGtIGy9b4gbftVf3Q97jw8WtnEnh6ur9l59K7G8PIbN74JJ7sJUA9+zRgQzy3Shqrjyqel6t4GW2MO9s6vt/7NL5Kyqk+vg+ZjAzQ2V7LcZvgCiYZh4PlAzIWGSJN2LyjSxnfB+tNhD7R9IapQBKUT4nX7ZEBG6745BxVVkfHECP9dcDcakZzT6wydL7xmsUcV58cJ6+XtbzoavYeakR0fCS6agYQP+jD5ReWUL+Xhhp6qsudQdDfkN+I3OfzKv1FsCOlgeYhZFBvkp6TQGNsvQL/ROnpcS6BskemHoJ1o30xSv4gY44kGfe0P3Ui/BOmwIdIARl/ptJ5yVgSzC+di+qKrm3BOj+/ILLquTfnjSs2jlFUWhiZrIKge9G7PXnn+H4sN4kMbtDQg6LlWRBeIDHVL1MW3uHx1x9RwCCZq2Vskff91KfXjJPbisy2gFHu6qq7UVZUjt1vnpmcQ8Y5SWP5GnVygh+pz32/vGqCq/7TIs8+17Sf9IHhi2EKnKKAzFnSf1JK/fOZMScRe2u2oO2lJpSlVUBbv71fggnvf+GNS0MWIzoFx7BT6ScqVpSisLuQDmWGQvINLdZGrJ7p5wWCCwvGMDRXtUHWlxJBwzRgRlJpDAYTrLj/lbsQ5Y1RwH5v8sioNUhwWbKvyXikz0/V37VxQe6T/u5zDxH02RrQa3Z3dyMlnTIe/tPTS26s3o8XGbYNK73Rpm0nkFQWQ+doMfBQfyTe/Xtq/WBOKVP4o9SiROx7s1bxe1PVR75pw8BJvPEyHeg01dGZSSydrw1jBte3bbu6MPtiRl0kr2PrdyE2SS+PgERE7jpoRtHl6YgmcJQ2r6ou1RvbkDsrAXEJ0XQyRF1UEFA1I9PI4z4aOg6i3+rC4RY/ti6WBk2ih5JE14QsZwRH91QhxZCm9EZW6msdnYPKaLWgoGCU3kjoJ+vYyHw/TyZrxaF+Kzo8DTh29CR0P9Cp76HRWJ7h9hlG8Zdy7kySPPORRx7BwoVZSt4n92p8puwfPNwtG2TPNAaiRqsTQT999UNw9zHSdKZ43fWMcuop2URXPUgZgT6NsgqPS+nRpM1+7epSGuzlUVfrN3YeJC+6clE25QhJeP3VZ5T8YqrvHVSNv9uu9Ocv3TwTN1y9OPBMTebh8zXir3+9Z0JZROCGv8OO1POnKyuwosQvd5JH5iUnqSfvbWzBw3+5+7yo59+BFO/rERNLr6VYHf+nRyAyOUhJO8XjxJuq5mn2T3/6E26++WYkJycrkKcAPl577TVVwsUXXzxFSWd2eSLvuWdWSjj3ZBQQpfhkIN3J7pVrAvadKEm5ixYtUn8T5Ql1PjKFQN00tk8dJyZvqBxB5+hszUuZqJeWvLr46bfpoBLCux8yBcRT9Ii1H9X0Orro2tIASDe4WgIoK1mTpYTKoRSGWl5h8JYgtPdYc++QymbuGYK510KB+TbImCXPv/n204J6rayx26ICWoyTWXzvvffw2GuPwDQ8ADmXcCp0tZtgXUT4cHRvFeweK0G6peglcyjPy1+QpUC7Wpm+ER0SKEiM5kJ3qMlJEG8yEhP1cA966SWIFuYE6qrEjdVqVRZHUfSqK16CRLhoJNBY6n2uBIrHjpHxpadBYYjGJgvDN5zc3k6pJvD64RcRUejE4a5kvpcFSbGpyirtyu+uHnvbqGNh0k32flXnkhK/QGBUhn/wA/kW7777Lt7a9zouvnU5dj17hJaIBCLVmrEyMxWz5/kFyC4uJIaHXRxz9TDQK7KLDPnaFblkwv6Kn/70p//gVAhX/8OiwIMPPog9215EKUOJ5OWkID8jGt0tDYiltenjBILLPH/ZZZep6gmjLZaMuRSsh0qyAIpL1aNHZ1LtUoD5WpIFzmT9V+sHMg7rfAxjR8Dwg60OtRAsLi5GU1PTlPWUZ0hfGltGZ2cnFpfF4Td3v4m1y3Kws7KV4VLzCaZMUgsxqWMhvQXNKDTizR0mJZTQ3lmuaXXbfnwzPAnDaOls4oo0AnEGf6icKJ+e/bUfa5bnYCFpI55cIyNPs9Ma+NM8RIMJSy9+8pOfwO1oJaDkE1I8duyrw4qFOWpf+zFwfDfE6Ghw5h+35fyt9AAr1qZjF4siWNz+7rNUcm5HbEo0cpelwpcXgaGRTnSeGMCu3+/Cvb+6gc9bpBUf2Apw1+trGDc/imKlOP+08ipww5idlUtK8Mxb2xTodMwldSi0kxQsQJHjovzRbai5zW/UpQEmJU9bp19AIu8n8+eq/NMeKOV6cBru8xv3iXf5qEjh59wEyYIgXRMiO0dw8ews5S3H7nDTsMULvduHPfuOo2IG2zz1dj4KjTbv6kU3hVKSkijEEdFGF79rUgEX/G6WxygeI4N+oG5fnx3RmbFwmj1q/vVy3m3psKCLVs9FS1MpEKFYhH89BAlbqWxOiIpW28FoGzoJru3qH1TvFPwtpX/9+z8tw6olpaoOwT+ZM5IYisfHEEctKJ9VgabjBGPvqUd5URJmEmiO7AIMdQ4h0nGIbWFAhXW69NJLJ+1zUv6uXbuQmxGFPQcbcPNHxiv+t+xpxp5DfivmOBoIjU0KtEteQ8KGi0V4dBKJfoYpmL8KvlXajnx7SVrftvUfJO+QgLdP1GLtykJ8+vo5ClDd3DaIt199AF5dEq659pbAmBVcnvBtN1w9H339flCu8EPSh6Xt3fGH15FVkYzjAx3w5A3iiU0PwWX1KD7lpms+HrK84LLD+2EKjKWAtF+Zj/a89BzW5aYhX8+w5ClJ8HTZUGCMx8ETNXimsQvl8XpUxMeiMIq9iIB3H8Nuba+pQ4ODISHp8EHKmWzuHPvc8HGYAhNRQOMV2ptOoJR2QeLB/73aDmQsTURBejLiE+jVg/9G5qRgqM1Ory69o9YYwi+eOLYXWamci0QBwnXs21VbCcBow7LF5Zg7KxVdcp7z+/Z396tqSIjB22+/PVAlac/CA5Xle9FPzzH5uSkE/zWgsrIRzz3nwP/7wmykUGkhc1IMhenD9Pqpi+SczNCAMTFx6OX6sbPHif6BflRwLpy7bgZ+/etf495f3zgKpKs90M/j+MjP3qPqPE8vRjShkz+KlA/R7IPhFKbA+U4B4d/yZmaMU3QKfyjecmKiImAiXyjeTEVGI3xUVddRfHHVLerVDr13HJ72flxExeG8/Dgsvb4crQ39ykvsC8/tx+xZ+fSWW4a8lEx6pq04xZMPYc+OfezDHYp//Py1V8A8aEUaw6UnM7ICoIdzmDIt0DCOXl1auvqx8c3tStGsjT/6iH6sIMC3uX0Q3S4HyvOTyIMDVRs78L2vLiPv7FVjkzfCiyMNfegm37uAntdEQ1lGUGeG0am8X+/ee4w8fDqjxUWSFzbwmU7M5VrvwJEhXLpmzjiQrnpp/ogiq5DKWJGfnMk6Ve6Xd2hidKtVM6/Vihu1FXB084n9o8ZNLYPc+wcqP43zo5AzKweG3mgkse5x9Ewpqf54N0O5H6fcjl5RTiUB6cp6KRJ+kKCcPlp/BAtuu04Z7mngQTmveFrytfJde9tMePrYk+izMywqlbAWGhLKmkCS1P+Tq8bXX+ouMrdn7ngNs9eU4MKPrVD5g3/k+sqPLMbTv9owbq0cnE/25X1FvvCpj87Fi5u2Bwx8BajTwbVpgkW8mWYzgmA66XWI6+d0LJ+XhcsuzIGJytRdB7uQGZ+El+mFSkB7wfPI2GeFj8MUmIwCIjuRlE2PsJIObWjkenvFKJCunBeeaBYj88V47PjvB/dzfC2gQ4pmegx3Kzm6RPAZcXoD8h8B1efNylZ6ATFqOpskPJGkYDmJjNVnwvcLb9ZUfww7d+6gQWo85pZGwkAhyJwVNPAdYcQ91nNPZQ35oNqAXE/mDzGwaLEPYPaMYlUH7aen3oyUkgRl7BwTF422ox2YGZfICJfxjFx6Ev0cT4yxkdTlRdGhCJ2K9PQgnzJE4QvHrlnkeM189vFndyKvLAUt+/rx799YQSdNp2VMkZTbJJD/lCS6DIeD0QQTEtSx6EN6a4cwc3Uaomm84eL84nF7CSry0DCEwZLokW6gdhAdlkNImhOLZ7Y86td3HEnh2FeIy5ddHV7DK0qGfz5MCsh8OPuWidcfUre5BIs+8bsnzhkwT8qUse/jV18huxik7DHKUEhZtFMdy49EExEnRO31bQqoK3O89OOxSeq/jXLw9V++WIF0g68L7yBG+39++C7luVvTF8hcHyrJ+cTkWAza2bet/ohCofIFn5MxTsZI0aFKCuZrgmX2wffIvow/nW015Pv8Mvex17XjW65fhm/+ZLN2GN6GKfB3oYC0a8EGFC7LRD7XBVqSPtVW04n39m/Cgw8WvW/+V/rvRGsXWTMe3HIMxhI9+jvNSC2Px4CtG0M6K556a6cC3WvOMLR1p1ZPbStlDFN/J47GJBHOgLq2BuQuSaWKIhVxjFSU5UpBQ00VCjKK1VhRsuT0+2rljN1KVINQui/Jp96J+sFeeiIWD91W8iVioDTYW03vucmMrJQe0Gs+t/UwPvaxLOgTYxjpm0KlU0kcYIH2WO3EXCTRwNNl8VDH0okh6iDNTQ4U5J5yRJbsQr+dBqNME9XnVJH8Xto3ZcSapmaUX5kHK41N9Sk0OO+0w9kxgvQZ5K+oYxU9khad0NRgAyh+SiauQtbBXESj62Q/bM30ILs6VRUfFR0Jl3OYa3pDAIiaRU+yh0+2wB5px8L1xdhydzV1RpFcMlNBw+SiAa2lZRi2WjpimhWLuTOog8tOxXBBPCNr+ZQOUZPVyXgp61RdnhOzV81S98uPtAuRKwzbR/D8M/fjqksWwGhwKcP5eK47BwaHA/qns1mrSbuSvz/+cT0BuhbFZ84sMmLbZj9/fPw4LeeYFICZXoZdLkZD1Y/WSwnfKimDtA0F1JVrQquoBB1sgw7sePcAKlJi8PXPLJBLgZTENjJIUPVSrklPnqwPuZ4PZP6QdqTtiyzlxvWh5zWRfUqUiw8bJyL1jOnvIkj3ypCUWlFSiK21TR96PUNW7jw7OblkmjIwXTLHDP86alpVX758OT772c/isccewze/+U31N/bGP//5z5N6vh2bP3wcpsBEFIjgeC1tVLkXOy3TnCg7fDaCKZiPjivD6R+QArKQzE/XoWmwG4vXzpjwDUQw99ZLu8YJj4JvCLUoHSRAVxhPOxmT9FQDjFSip1DZIR5/Hn7gT4pR++O/LwsuJuR+fm4yHnroITQwzGjh0gw0k2lLJwOpJfF6K39HjtUjY46/MfY3DSkLqOgEhnWq8zMetgEnnAMjiE2OYshtWg0RnJvJUOYJZCgkiSWWeO7zHxCqNDyihF1R0VFKoJ+W6gdHhXpX/02jfxPo/n+ylEPL9k56FsyclagYouC8IoRvq+6jJ6QhpM81IouWM8mz4uBWTK4TLf0nlSDABbEC8gvjgu8fu9/S0jKp0FIYS/mTJKA+AfdpSVNOaMfnw1YAHALcjvDa8OQzr2De1QWw+4YI7OpH+Scz0fvGEBZcWRGoqoCtbTYrFdWpqq2M0DLuEx9dgW/8m3hZ+WkgX3gnTIHpUkDGpLa69/BJgt1WLz09fmpAQc+IRYEbZHEufaq2+iA9gRsIzDeoBZKAUYM9Xli4CHW0jdBTkg9vv/ECirNH6A3JD8Bsri3EQ+1OFVlhbH+UvrD5nQ307NmDWPYHAW7kp+nQ0Uhva04rQaSPY/7M2CnrWUCBfFvLCSpVWuCVxenKGdizvwG+iHjoRyIRGTGMrXtb8fmPVeCmq8tGkSk/2z8Geb3VuO+e3ylFhryzpO2VW7F9xw44k0woW5cPB+votA/DSYFE/1A/vbX6F8LLaFQh3kc0S1dRQm/d24JDjT2IT4tB+yDHbA77z254Bp9Zv0CNf3FxhgAgVT0s6Cc1OQ59ff1IPTVur1paSlDsVtx2222BXDLmCQDF4+yEM96NiDwCW7J8SKcH3+K0WHhGPMgxxCI72x9doZzeiYKTgBRzMpPQ3lKtolFI5AtJ8k1+8LXTFprB94zdl/lEG3tlK3ST8Ve2Qrvsokx6jxfDE4u6VfIY9BfB7rAzVC3DCO2qQWtHLz0bJ1Fo4WFYmkGVr7ldQLNGBTKQE8HeXlSGED/R0RHQc76LoacVa5+TYS29WL+2FGm0hK480IUT9AA/SI+7RYlxuGJtIRZxEd7ZM4ynX23BWgKtt+71oandooC2Uryd821MYTS90tMyV9yEMSlwKqUndpMfHKxO8qeDADwXFUcJ9EzhdntRt7MXIxTGrKOVbkIkAfAUoHTTq67dQcBvvEHxBMEGLlG+3pAg3ebWASSmG5Rwoe5kN7z7deg63IH1F+RjAdtc1ikLYFPLABbMXICTjWY89crzij/5/Oc/H/geWj2D+598ixvWFeDR53bhY5ctUfyCCl18KvOeg+0E6naqo2SGaRKh0dgk9BBP/pFUoMUknRZ+ST4pX/4kSXsQnkIDyo5Y3ehpHICjn55y6MHYYXbiyOEuCsWMSKSH4oSoTtW2mziGFBZSscCwuHMIrN6y8zjlWEPITKLF8/xiekROZx8aQm1TP94lgGQbsb1SJ+095fky1olg7V8+dx2c1j7YqZx0GAx482gvNu5vxGZGXchPykAareVT4xPQG9FGi2wqFMmnPPTi/aPKUy8T/glTYAoKiHBMV38cn55TgtUzigK5BaxbTlDkm/SkG03h6XUVs9HpdOORI7VoHSLQn+N+flIsWm0WZDIE7J9//UvEZmSFnDsDhYZ3whSYggIyDgqvcNEiHSwmRmJxGPC7J/bSmyVBurP961FRFrjJO7kZli8qUgdDUrSaf8WwU8bv1155gB6QqCBl+Ls8jtn59KL+6z9sp1GDDSPmIaTGzMPMlRmIoSH2oKmLHhHt+OUvf6nu1XgL6Rcd9MyZT09MGVSoZNP4S+b9Zs4NdouZALoo1NTUkC+o5bwXq8LQxXL9I/M5o6ZBZ/Wih3OihwbZ9u5hiPFqdqp33NypGf/IVvjQlsYTikKxyaMVx46BYXXewflc9nWUdQ61OpGoK5iCov7LY+c44X20pM1B2nF4G6bAuaSA8OnFjLakJU1mpbfZkUF51ZbXamFl+FFvih2PvPRnGIbTkL4gnl6pq+GzUFF1oh3XrS3CvAWZiCDv7CXwatasZJysHsSy+Rn0WpuC5YuyFABLniFALG274JKfqv3yEiMBEPSIazztfMHA/ipJ+q3LRX6LBorST3bu3Eml6QjPuZWh1X/+aQeGS7xoJ/8mHrP7Gx2Yyec7xCsvdZSHaADQ1eHAxUuyya/PVGU+/NxhGAgO6+Ha4YoL88jDZ3IdSsNG8nNaevi5I5hVqFdrLPEUNDZt3V2DhuZeVNe/gIiRLmU4L2PEZOtUrQwBoEzkkUrLIx7pnvj9E+OMqJ8gYNqX46Ay3q/8HOq3BPj3ysoObN3XDBdDburiapCaY1RjnqyH9UM6FRZeaChJxqim1ga1L+HgYw3RcNKwx0Mdr7mBIT3tfdAlRdBvlAUtIyfR0nASQ/RK3vRiPToIBl5y1WnZkhQi7cbviMBvqKinjDHC6FW8ejq9l4dKQgN5n8kAMkKrH/6fJWqNmc3IWk7huxnSdZhhWA9taMC/fJnuEcqS8Myz1Ugnz/+N2xYhIyGGoEIj8rON5Lv5bnF6tfaXNU1JSUmArw9Vp/C5MAUmooAm906gLEDk0wXGOAJFM8ZljyaAwzHixKwSyqE43omcZ9Dug56G0/YhBzzDUWir71d9TU9gafnMcrRUtyPedBr4Nq7QCU5IfxY5sABsxegpglENNJnZlnfjcfFl16o2L+1+siTr2x2bn0dhth4FmV58cn0uQe+Z7G/+0M79Q24YCLa9gR5v77znLWWYLaAMmT86uwc5h4yng/BbifMMiica7LIrL7jrL83DAw/sRwrH6nkEUKxcmkMZEw2fI/UEafifJXIw4fHEGEtLQnvPnFzspjHW6tnFyKehogbS7eyk8TJlJ5mDLo5hYuDBRD2GREWVMV1kjKIPsdIxifFmAwZ67Zw/GKUoinIHHw3S6cSieWMPIlMpnKC9Q94yhobOYOSiggyOeTQUGa7hGr5VGS9/kVFMw/yan8Th378/BY7UHsZKesecLImXWhOjbZ7LpJXXTH1mZFwE138Wzq00qRL+jKB3Sze9R1roPZLj2mFdFZJPhQyX8SF4DaPxPlLHUCmRzocG6FhH+r7weiUr05SuQPKOBVTJOQFMHT/Uynv84Dc5FypJn5Ux7lDnHgwyqoox3Q+c0/iaI/cdVv1bu3fsGkx0AmtWnNZxaPnGbmW813issdfCx2EKfBAUkPb2yCsPKmxAMEhXe5Y65wP+9MAfVV8UXkBro7IVuczY9q7dG7yVvNInUwsSlOfs4KgA0V69AukmFOsZZSOTNpZeVO2rgdtJ/pvykoy58Tiwew9+/9ivaLRZpLAHydQbjU1tJzuQVuLvm4JXsPU7kTY3CWnFp/MK1sFAr7byJ2OFzkG5D3VB4jRjolQ4Ozek4YCMCS++9QKSS2O55hlQ65iWHQ34HEGX8y8wopDOrkqLihSQVNacrb/bgPnzZitdukR6H5v6qYOIKYlCy7ZeDDYyKntiPL75ifnICYqqILxKXboJb2x4VuklgsdHobH2Te586NcoWJbOKAHUexk9iq6Vz5yEsSgGAw1EMDMZRBYlAzGTyN4kdR00IWuBH+gsxzoaMLVW9sgu0sv8tBWsh4/O3YKBqP2NFrTt7VFjbl6FH9CrDM9P+U6xNVphqbJQ31OKOeXpKJuRo3grJ8GoqRHJ6BuKVHoj0Z3IfU0DdVh/0yXqufJzeHMVRK7g7qeeq9nEqDRcuxHAnJ3JqNEEBtppvFaQPxs1TYOBcoTfOpMktJPkosOdTW/Vwkve7tgRRr3MT2Qk01zsp+GmpCjyfhF8fyeNuQSArKe+T5tfOqv9Dn7iGEFzoiTGdkI7B53oCObi3ns/orK2MEpEC6NiSmqh/rEwz0iDUSdyadi7fcsb/La3qWtaPafb99RNE/xobUYun2l5an39jasmKNl/+hMfXf6h40Sknv9+9brJ67l8IT7y0HiZyaQ3/S+86JesTfDiEeTLIs7C86hYFaxfv16F0Dtw4AAkxPzixYshIN5bb70Vq1evnuCJ4dNhCpw5BXQJHMDZVilbmTJJHp9DJkf/RDnlDeEMHzoFZCKTpE1uybGJtAAzkPGSCdtLBaNbCaei3H7uxEpGUYTDsjh99NFHlfcMYXSLi4tVOVp5ctBPT2uadwqxarJRgJUW4eafD2leFzIT4uFUHkMsOLj3DQUI27H7kGICexl2W5KmHNQ8BvqVhAN4+qW3sOazi8icRsPSa0OMMWoUkyX3WlqHkTYvHoMEv/YSiBuVQC99+7vIkLBNkzFzmIepDPULsvob/AJ1Eb55vfQAxBBV4k3QS6GZJDdp4aG3aLuL+ajIbOlrh3fI387lnUU4KEn2NVrIsdBGY0IEwC400ZLhlAc67VgAQocJrFmytlgJ3n30/ii0dtMTXf0eAseiXQQeJyHSQAv4HjdaqtoDypQEghH0qVTI1tbQGt7/Ti4CdyZKUs8iMtxa0uoox3JNQDgieBS6y6JcgD3at5CQ1xdffLF266ht8PvKvqTgskdlPnUQfE+o68HnJG8wfeWa0H7rpmcQ5Sboit9uwE4azlhI0CRDsdHaboSKtTh7BCpm+5ntHi4MJLU2mOiR3i8MNreaGAKjj+/erMrTlOAqY/gnTIEpKCB95olH78VPv3MBgXHJ7Od+QK12W1paGhdgSexXr3ER7UAfQ3PLQjKeHnOHGRpHkgjQo6L0aiv7B1+hV/KyNERx3DB3jWDE3k6lhl/g2EivbTv31WMHAa/iKSS4Tzz2yD1YWhGpQuPFxvoVBgJ0XLaoWPXh4aE6LJ61ELOKT9dTG28F6KrVU5TFBXkp9BwwCx30jOr1cIHFMaq13YRd+wdhpEEDsSe4/vJSuAhg1VJ7lxVt3RTo04Kzo9vCkIGNqNzxtBpHKtu60ItOKjyHKUiIRQzDzrgJFHFbfbBY7XBYneg8ZKaxWYJSVtO6Ao3sm2Z6CHjy5eM46TTTCy9BplExasyPLI5GrCkSWfRe1UHvnbo+Kn8opBTPqFoSgK+kAbMDh6s7GA7dP263dgxQWNGhrsn3k3FKxr2tW7chfWYCkqhUSeb7WqjIkNRZPQCZ/65fXQCXZxi79x1FUwfDOnMc18bGmrp2BZYRz7JPP3E/2pqr1TX5Tq0fSUd/Kb2xUIhic0RAo7ncq81v2/fUqXrcc9dv1DN72U627TyIkjlF6BnuYPjcNmS3Z/C7FGCQiuJBUZxwfK6trWWYXQdO1JnQJiBdeoCpoRfxmSVpVFQx/C3Bmk4JE9/o96YuhbsIsFWLawJqxLutAGskyTt2nvQvzsWzFqdrZYncRQ8riQyv6Kbl7eMvVqPRbKFnGTfMLXasZtjYJfMyFcB018E2elluozfoYrYB/7zqIVgpgm3FRuVb5lo/iEkET5I8dg966DlXT4GTJOkXuw90EixqRRaBR0Z6nu2ts0Df6WW7zcRqeks+cLCbwCg3kqmMTqeQJJNj+k72LU15KOV8+ZPLAv2QkYRVam5jaNy9dSj6eCa/AwEX9OpTc6geRr7XPNa/ncIE+etiGxZDInM/gRlkRSzmLva3HfR86EXlwZoJ50NpP1+/6QrVN13Dc1DfbEdHj10B3dtY5rZ9rf6K8DeOgCqnorlYgPtp7zT5lXMxVOzL9xBZk7RNpXwMmpcFoFtVeYLzm3/Ot3U7EW3ToYAW9hkGL7z0EG/pYn8lSZflxZGP8GCIQK/qehNBuwxj9VYlfvadlcrDlpEeSD/3sdmQXmE2W7G503JqLIpEMj0he9juRDAgfJPURTxAOk1HVbvzkB/S0T1jb+8g9h+txjMbqtCf5ELO/BToYn3oo2fefo4BrAycqbR45zjYVF0TKC9AjFM7oeb3sXnCx/87KfD444/jtS/eiIIU//ihUaG534R8Ggo8ebwBL193AY73mnDP8SYqnn24qChDgXQL6J3+wtJUDNkZ+rn1AFqOOPDiiSOqTYd5PY2S4e1kFJCxT3gE2dqGulF56CTnM84F2fOwbTeBq21mtOkIgqsoCygJ6nf3YZi8kYmAOa4mObcOY5Cea2U8NRptWLmCkRcotHZFEEjH9vrKO1VwuZ342LVlKClOhMtrwpvvtsFCjxv55Ilc5B0jPGY8dP8fFO8n9R3oPo65FQXwugZpVKPjHEjjLILSWtt7GQq5EKkEqb+95Sh5tgZc9NVS8lpu1B0YYDg7/1xjp9cON+edfk6SrVRo632x+PJH56i5U/hB4afe2FwL4W0KafwzzHWp8IA+zp2S9Ay9bqNR2fAgZQWcsyw9DhWO2cV1qK3XiUgCcoaahhmavhE//vGPA2tHoaMk4V1lX9ue2Lcbjh6C/dJo2EHeZkDWnuzjaQS4aWvPcJ9VpAv/TEEBrY1NJYPQihE+/XM3Xx+Q09QdaIavdRC5jBDSTX40pojrjQgqpSgXcjOKREttC2Zflk2Qah16Kx34Bo2BZ1QkcnUzTEPGSOjIP/cRoPXO7iZ84soZWDArg/xlG9tymvZItU1LNtCwzqh4UrfHy7XQCI5R4RUq9ZtokEf5mPCawhf+7NsL0dHZRzkHedMmhv9clesH5hKgmpVlIC9rU3xkD9cxzz57Et/+3GIV7aS6vlcV30n+bPchD773laVYPj+LITA9lP/ZFA8oGYRvpW4TmZQv1dXVqvVOcL2q6gawc+9xXLwyi2PDMBaX6zCrLB55aQLY5xqroZ7ymR4lTxrrIVO+z+GaQyi/6Rp0tnTRQGFimZWMBfK+wTyi0OCmX1weqM4gPThl0AnAvt2teH1vPYZiOMZxvRhNo8uoFD0cHGfrfP2oO9YJs8umZJhyc3wK5X1clUqKIWg5OiZCefys/FuN8jaUR8+TAmZpO+JFPr1ySdQKkbkd3n4AjXUtuOLS1arNiKFcb5OJY74T+uRItUYbJuBOl+CGlePzyaoaNKNd8cHqYWN+5H20NiuXgtutnG9rPsF1+6V48c2jFEO60dzYiygCwm1WGkRwHS2g7BG2zZNVvfivH63jWj6O8kD/OC/lzSA/dJTtavXKVWpdKsDgYMW45AmnMAUmooC0Qa1Nau3URResPZSvL6E3V+WxjDf3kAfo5LghqaPdymh0BGy4Y1Sbyyw3wphsRPdRypS47pUeX6iPg21kGK2M2LPj2AHySXakxVlUf1eFBP3Ic4VXCE6aDFnAHo6hRhQQYGtgPy8vy0dqnF930W8yKTnxlsgEXHzptYHbtffQypTjt1/7K774iWUE70v4424sIEhX5AWSrJRXWC02PPHiYQIq4hipyQtTT5W6Z8eOXaRDLvUj/gh8bv+QotbyIj8ZiXMrWYCbUaJGaLw1zDLr2Fd/8d3VSt4lRr3tlJ25aSyQmRan9sVwQtY+Iq+XOkr95BucrKdwgKmrZhA3XzaDTj5sOHS4Bx1tVkV/J/u9yP0keTmnCBBFogIKWNd+SvZiIyhDwD8RBGqIF91oAg3tvcMcy6woWZhOQ2HqQ4Z9sNkps+KcoBlCHztxAHve3K/WTyIPcFjpZTw/lXNdH1rq6DyFchaRawm/JnWWPy0Fj9/aufA2TIEzpYD0g4T0OCVPdbB9ynpDUigeQmSKwjuci6Q998T+GgK5WhhVkyHfyS9I/3EShGQmCN9MnmuYjn107Fe1jOaT1J8IQ4Eev/zvXwTWMFKO8D4zbr4swG9q9RM+Qsrr7uihrNmFv731HPkaysuT6GCGRpySXHr2b+6KrkA8S2qpl6AvS69n0vcV3e3ujvcgBlBZ6UUB2vU2muhR241dh3egxVwfAPsVcQ1m7rWS9zOo+gvwLJXeex2UZcv6UJLIWKXfj00a3zb2vHYcHg80SoS3Z0oBbS6U+2Rf5hnhoa0+E7EBuapfybggRnOipxlkBN+kDD84c4DGd9IPRLct96hEl7Wib7nogsVq/pJzmsxB9rVnyFbuER25NZZOLepqYEzi+o3zqjzPS6PNAcp5ii6fhea9XRik/sxDWY7I/L3RXEMSVFu8Nh2tqEZt81FENBuRsdg/lgUDbEW/E5cbK49GHz2bCr8Qy3WYeO+WyME+P0uixryW3naFhUihHkX0jw6Df0wUDEYUgcOS5P3VlgaNTfbTuAWRp8j4+PBLD8AXP4y8vHKM9NKja5dZRUm8aGU+PMRDNHX1cj1pQXJagYqoKWVlUxdhoZJkyES9Az3W9lDfIQ52RIfSSV1CfGEsBihvXUz+8Mb1M3DNJSWqDsN0piBrLXEuU5pvxLOvVgUMnuQ7Co013mI/ZW2+DK6/M9JQ9c4JpNE7cT9lUBY6asldlYzWPX59lehLCLlV5Ws/TvMIci9IgcvO+YGXPMRyOE3+uUIzMrdRLif0tDJqip7fR3RgXYw6MCQYkk/GK12ZYAnk+womRKIDdh8xYbYhGTMZZdpNXZSsOfUGPZ0bDaIsk8a4+fk0vo9SemEfwR/z15VrVUJzVRscdV246ooSHD1OvdZVM7B4boYqp4O884C5D4erumgwWoc1qxaqcu644w619hW6aGksXxXMm2t9QfIeYhRHp8mBZYz0s3NvO1bQULeMOlKJfNo/7DesF0cCI9TnKd6UukH9KWBuTx15xtRIzmeMujBiYwSG0+tJwQdJMjf75yQzZY+Schgl4qlXT2JXZSdMEqKBSfR5IsO0Mlqni3iiPtJS+p/XPUSZppX8IyNlc40PZyHlqbXqnuC+p06M+dH4fu10cJsRflRktNK/9x9un1Z5sr5eNOcjBBX7ZS+h5jMpqKnJjxPRnqtt/x5zmbxjW/VxrL7ltNxDe37wtoAOTCJsfv1r8Pnw/mgK+LXOo88Fjri+Q8Rpg/XA+ens3HTTTZC/cApT4IOmgGqjfj5hykf5OH7LXzj9Y1BAJsHXKdiKi9WT+RhQSjG7JRaz5uWjek87htpp7cPFYiLBGtEeHYX+8UjnAo1ib6Quz+fk/wYZwuP02EPvbCNGCGMgZWaf8qbY1t1C5tRFkM0gmreYsJReb5Py/aGfkowxqCNopNnkF+bFM8yzpN/c/RZSqcQQtaaN1jkut5+JWLE0XykcjjV1q3zy40mk5XdHI5WEXCxywagsl4gGEmbR1ulSIFxrGz3utXXCKtZcFydS6K5TQjNhtCRFJkdgkEAjc7OD1ljiJZIAqloqJmhEMczQ6hKGSkBCdhM9Dbl8BPsSuAQdrLRO76LAWwC/Nv1uDD7fjWiC7Hp6ezGbHr1ayWQlRumwcuVchkpk+AiuZSMofDNZehTwWZ4dR4GZm2UW0JuSi3QWBriXYDUzGSpntwsGK8E6YsFP7wMijMtamYgOKlg9fD8HFasj9FonKfEU7QQ83UqPLq5GP2M0RKFBPJmtOIIBhYF1nwLTxST66EnyCRxgOMFYCvAqZubD5/Yz8E++sFctPmQBIsm3rFBtmwh6bWkfwADDptZ200DEdVyd76m3YoT1EdpT/knPncUqlI4ID2YvnglzPcF3zl4qJmIJ8vNbtYlXSvEY8NaWejKKtOxaNRdPvrBblaenwkQ8HMeIZdypJN48Rxg6Q1JeXj6Wl67B5z73uVNXgV/84hdUCjlQwdCPokCOz9MzxAKB4QzDkEDvjbJwmjMvTQkZ33unBWYqzgSEGElQr9VtVXUXxdu2XUcoDImGAB0F8BX8jMDDwjthCgRRQJjmzRtewbaDh6lYcCCNixh77+kxykEPfpK276vD8eo2hpYvZ1jTDhg4lm7bKUC6FI4bEadKFOUvjQdc9GrR7oKdix9jeSZG2HmLqcQVlyMFWTGn8gKrl+QRdFiPe+7+LdZfewvES5uMvyeO78OCGYu42DlBj9F+j5wCfCzMScSO/c248sJchjuNg3WwnUpYG8Ng1sPOkKiSUpin+mg3cjP1BODmqzAyafQEtGN/H720DqGVC29J4sWnj+PUrR8tDwjv5dqz9DgVSa3ubgIpJVzO4rnp+OS1MzG/aFApX2yR/ShbnoHG7f18LwI0D/ehp0HGVxcSOE5ZOebb6NUtk8CrlrYh/PGhg/TQ6kAXBZFHe3pQdmWWEoxKHTzsv/HZsWpsSxEBCAGKLqsLJwkouWzVYoJExRLVP05J/gyGY2lotdArnX9OkXPy/e6567e0LK1Gv7UTxw/UcnwmEKVtGAn5mTi0r4EGHf5vKCAbSW3pSdjB8aLyUDdSU3qo+IjjuEOPMlz0DtCzAuWyKq1anE0l7kF1TU7E623Y+F6lGkdFqCnKdpqMqGMBRMu+fJ8WjmGPP/6EKkMEo3Jsi+dzMmOUgMBjtsHk6CYQOwGz6X2rZhtQeaSJQOYaVaaAcn1eWjvze7UTzNtKwHQqwa7DnhE1x6uC+eMcpkdazivDbTS84SJd3rO7mwttut7qqeWWSUC68iNeproYKrGBXli6mKdbT4Ay6SkAUTuFHqLgV1IQ/u4/2qNCG22taWd78c/vOs6TYskseQ1UmJtojdx10MzcwOHd3Qy/7UCs61RbrezCXQ8dRjvbpoQxSmG9qjZ24+LZuTAPu/DYE1UUGBBYOztNKaUsNLiJZv1zaaW9fft2FJAu8tw7//k2AuJbcfB4D736ktYsy0OjjdYOE0oNGcp6OJr9o4/eZejQGe++XafmYAnLJJbG6RSMd/fUYw293DjsQ6pcAXGLdzNtPpTn1NVWBkBTIpSG28y+4cTf3qRnY/YJZU3Ntize+XezzUjSkb8wN5KOBKVnEVTVTBB4HrdgyCZJ3iQf2k746VN9ch/nuGa2y17OzU3Kc05MTDxmzvRh50kq0CjoOLm1C1/91AIlohrsG8bBo3201I9T85zQ4+WNjQSTDOJLn5jL8JZuHK8ZUO3tcFUfvv/1paijcGnH8U72ZT6X9RLLZ0lmvt/CGVFoPnYUj97/3xzHqvCpq9IwqzxbKQ52UQBygMpBed8kztnVFCaWXZ2OiH4aZJEfMtLwqb/XDDuBVic7GW65tJBgYoZbb6vG0b89rL6JPKeVYXnFW9GSJUsZHqooPPcKUcIpQAGZ1wr1EeNAupKhdWAQ29t66NWb3tTJaP/pUC0FplH4lwsrcEFheqAM2XG6GW6X8wat3fD8rmo8ds9dyrPuqEzhgzAFgiig8XiyJpLxt7mzESc4ycuY992vLqHxTycOHO2goUkkvXwkca5k++L/nloLjr7RiZQMtsuTFmX8GcM1plyTeWrdujxGfTFwvSRGUF7Ojzq8xXF67ZpcrsGT6RFTh4OHelBVw7Ul93t6emVqJt+XjXQaZPSaurGLXu2L8hIofK/HykU5BGKlcs4Z5CM4jzDzBZy7Urh+b6FXe0m9TVa0c87p5ppWKVrp4T6SQK9szp3Cgxl0MeQBGMqvKE6BD/8/e+cBHudZ5fsjaaQZadR716hbzbbcuxOnd0JCAimUAAkBdtkNLG1zucty94EFFnbpsElISCUJ6dWJu+UqF9myLduyeu+9l/s77+iTxzXJBXbh7hw9U/T1753vfd9T/ud/dN7cu7+BYEqfuAgYOQkCpcXhI0iLA0gIWztzi7KlaFLJWN+kBIbAxEHyyAi6kgZiVHTe0/lf58YnHv2pmSvNfrSn6kxb/UkG5btPQJREAWYrAlyXgU8icWhQtOJjwGCzOIZ6xGe0B932oGxpbTBzquq7XvG2wIVaQOcMtc3SIsMJnPbI9soa6aTk1yD6pIIotVqBKfmo1R3wVwxSrUH1svqWGgNY6kDfrSxplq/cNU+efeGElB/rkKU3JMkp2CNjKQPZUodux/ZBIZpcSVJX/4AUYtv44iPSTq76ppaW3LShXtrpU6no6j1q3wGwqGmrZgv+APuq4K5g3GAvXuu3YgOgd6nerqK+scHOMfpokMRjN0ZG2aWYSlKHDsFIc/KA9PYkSFREoPzg17vEBijNht+pg/FmmMoWqr8/C+tQSnyIHAAQ1kFgs4BS6c+8doLkSgBy6LpREQ76EwldRbHGllNmHRu3MD4+TOLVSWkB4KtBRCdzqvpiBvuazb0Z3xTXt3XHSVlSGCGXrcqWPQer0Q0TqVoSwdjgZgtesShTSrB/v//LX5m51oWf0BKtDqggmtJNB6ULXVmTNnWM1EQ1Rzg+QW0QRPV9e4qf/PixH0hcaKKsXrTGkASMOd0gEd3m8LZjUr6tUtbmR8prO2CvSiJZdabSlvqcfP2nJRTGzqaDvRJLcLm5oof7ewo/4ZSE5QZSNtrD50SFpT4AhmOMYVnXJZAU6i/Vu5sMiO1IEMmXe1vFTuBWn5EIV6C0dTRLVxtJkCTU+2EvBwBwi8JODIfBvKUMHyT+PN3Hz69DIh0OysmPSRJtr6LVM5TxqIOAdaRzUL7zne8Y20MDmTrn6G+kot/1t/rXn70p+8ubpGd6QIJ77BIBWGmQ33Xe3Ggzzh5Fp08n8J0QG+i2zXEvWExRgYyrPHTmeCsXZ8nTL79qvnvfvC1wsRbQsbT6cJnxc03PsFPW1rl9xA7maAXWxuXHExNokbJD+HQAawwQ9FcZwO/Q1zZCCWX1GY1IfnKcdFT1SEtpp2G4DsTnOhgQgH5kI34E0UIrIDX65Eh4vfHt+sFkreJAr/AP8jMg1fTUdPxkMHhBWDFFJUcFsWr/8JuE/e22udivkWafKekx1Y8UZJIaHyZHj5fLS4Dcdx05ZMZ8R4S/tJNEqpIUn2T88McPVsrSrEBTmUjHrRtIxKgn+U99XjoH7NzntuE7iV2of0tBrVpBanLUHdxXP3lyR4QcBHQcG+Luu1GB+EoYw4O6bRKSEihOktzbDw3KseNd8sW7ixifg/ENtFBtp8WUkFa/hybA6jK1i6fHh+SJ3/5EVi0vkO07jxhdqmSPu31Vl5taPS2/e/wIPm0fmZcTZe4nFBIU1btU/JgTbESkJ/BHNh8fkO4qd/J5O7qnrd9Hursor008ol7LMHdPSsracHESo/FHp23DPzIJEFfHLwf/q0wAHmzv75ZXXvk17GxTkhhDpYbwUXyKw1J5vB7fDcnxjDM1R7pkqCORe8/lt3eP1TX8VvUQD6h/3XMuMAf2vnlb4H22gOoO/kFT0tLWIBU7aiXYhzLwGqMMITHx7Sr8yQCusG9UNEb40EM/MusPMT4lJThNn01keyWZeH1DLXEydA6AsF3EChWUpfGs8LgQGcdfpqJArp7jIwCWOnEfEMsrr5NIBdyTDNWDv9TG492GbzQc2yk8IcgkK/pDIIQrFhnnf6qwVeyT3pYTEuBTJxthVLTHwrRYXw0TLyQd9K0pdAH1Ax8kNhaZ6ZSqQy0w4jthtA6SUcZPX1XoZnz1x7c3MF5BnNCvCaAa6wsw8b5QCDAC0sfM2BkXpzpjEMmadtm0rVGSuN9GrnFnxXZZdnc+Y3OXVOD3DIbBsZUEAbI9waXQn4uc4oilDLrd18Q460aOSTe2WU/FGAD9LYAeY+WKFZH49ppIGCBptbyFarp++BDrYSCn4ZD6NrfvV229zW8+bKqwofKaCjO6vpekrC78fkEhsbPxC13uFW8LvFcLGH2k8rCZ86cn+818r/P/9HCabN20QYaDIf8qOUQxaIhgiK0H+k1LpCtGDu6slohY95ycD6vopndfNDH/mhk9e9mCVFlWFCCxzibZfPKoseuerCqT48f2ySA2QUVZldE1mnrdjPJ6nZk3xUgXZDCjzZCY4QdRYq1m4hsJi0KkHuKthm0wVkMok7Y21rDpWvcWSH9lkjS2zeHDgDynIqWhoV5yqChgSV/HoOSuijcg3fp97YaJdxqilFaq67af6hUH9oyKvyYjjfSbcS4wPBabDVulZRR2U+xAgLr+U/huGA8Vj2HJkaC98qtn2oz9sWP/dtn05hYZCAKo3zYp218sZfm4NEHY8tV7itBtRkgCajfxszFYWRMSOyEjqTKHmuwnnkAcr4FKLbUQc7S3D4sLEGgpuovGk8KrJySWMfJjN+SYajJD/fiZwFWo7Vuyq1HWbyNmwriggN3ugX3y8MOd4C6oxhc8JLmp4COoMvWHl2pl7mWpjJEj0oU+osmXIxxnlHiSD3rN+EzcRC9I7WpLNM40yjq1z7V6lPrU1Nad6HNvo9qR4jvGiIFpIq7aZqp3KSC3hf9VgrG/W9DT9LBN+zpJPseG55lSPSlqqV2ee4ZkzhA/Yn+jxHWJGQFQTohpJS5Yyd6Qlfh2y7HtzXLdupUmsUETOXe8eEA+d2MWv3U48azDcscN2fKThw9QcQu8Cc9QLERB9VQMrd1eJSWAXVXGRtvltdd+jV9NE2x9IHVrB+gcY9bpGBuL/rrvwHEz3u/ec0xWLMuXhs56E6cpK2uW3JQweeGNk1KUE2lIlEaoVqnmtT4XOu+orojaaSp/KWB3kKSuwuO7IAAAQABJREFUHiphqfjxfCkxzpTqkPjQVVpP9ElHBQB4MCa9dSQD4xsIHfWXXhmRHz1EIhfVKod5NtKpLhaLDzQnwu0PUHt/AH+IxuG6m7ZJGMQxy5eqzh4ky+fOke0Q6ew/usec48lnXub7LuNvUByLyhAx4qEu9zUsWZJHRe0a6Zug2jXLclKnJMjWJxm0x6HDVTIJBkYTcLdvP2T2tWJ1gcz1Ku57Jx43oyfn50bKQ09uMbgkZQdWQib1uWgCnIrG0NVnuWJBlFQe/L25Lk2sbsbeUTkBPiUwPO/PGr/ScW6lR0VBc+ILvClYV/3XXj37Ag3EYveTcKH1+IR0gPGKtwX+klsA8ghKuJk56r0vk7ETPIdX/kpaQDPC3nrtecnNBHgB856KOtLiAAI1HOmU3nK3UjcXB3AcCkgc9Pb5+e7tFNjYSuZoc0u5HC3bI0cBmlxz/UdEjef58+PNsUYo9R4Cm0/XqT6jQApO8207m0xWTSyBhW17m2Q0eMoAtMZUQ0C27VWlpJkJlMxRJt55ZHUrK8TACGwUla1SR2ZaEM41lRHfAUqmo0TgyBsjG19FA5mTKLIdp9xAo34UDXXwqYTiIAtLdUrtFsCyBGsUEOofRtlSgpGj9ZMSTbkHBep2odxpYMAXp5eW7RpqRuE9SjYXAYTwdDIseMinFbh0rM8Y9KGJMAbAVBhA+yQnp0jndLMcIOM8HuM7wK9OnChrUybz3p9MM5RGAkPKlKvBz3Yy1pQpaBDwqDKf+GO4K5Nv47FuSRgPNIpuGsArvbFBnJ1d5acDEy3NbkaUftpKgzm63yDBmTEflGUUh0kYhP2CAUaPBdBmgLHJJNOAgH/UtOyt2CE7t+yRVJxxAdcuQUmKMsZOzSmY8gCGWTKNYq9gJFUEVVRpjaNcREXzflPGtfxQs/Sh0IS5UHBpmk1vbDNBgejsEDk1VC7VlNAq5PmZA9OH0xEtkQS12ADQMw4KypNNDgbCrEyJwq0HzPFD0gMkgja295N1SLBD1WkNYo/jjFDWwa2lW6QiGmcsTj4VVVr0mpOisuSXT28yy8btsAf2AzLnPBo0V7anUAGszN+Gd8jCJmMunHLuCShgqnQpkGoSR0g7mV4LCuIAG5XL4yiR1jnMQb1v3hY4Twvo86fsaHRQ+fRt+TI9OixBPFuWDCkrNkbEwQOnDBDj63+zVt7aVC6Hq2G/pF87Cbr6e2yvBtIYwHd1vKmBsJ7ndfE8wKmUnpuG0Vb3saSOsU1BmTqGB4fGG6CuXo8TJsufPrJVlgLo0ACCMiIpoLeOPqx9OTkh24A3AnxHGF/a5aGnSzEMYQYhMOpoo0xNabd89sOF8qErM0wwYxeG4u9fPWZOG0eAoZXSLiqa4W/GBfqYGr96nv94tMws0/N88eNzDduuOve5JfnPp1vIKLZJMGCO0T7AoYzLrVu7jLHYz9gWwBTQX+U2DFtg79gDWHLPIbeBpOfLuT7GgDwNEEYXsL0CLbWstIJrp3BgaiZv/UxWf0lpA8Hr3QAtE2euMwTQCI5b2lFFQZTu3+87AFxHzNg2QDBF70tBuSfebaV9To+3Zifeyo92wk6njK8ApxP6DXBGgzPLiyNp+xBYbQnU0NbJcQE4YUdn20NLP/7m6cNynCCVrleQjbafftffR79bY6/Ow0ZmPuOyw6STEjLDOD2i+J2SIJVMJoFqMWDgDetPSTVA0GMkvkQTyN0PMFVfKpN+U8zdzJ8wPB0oPw0g13UK5tXyPnYWR7JNLaBdvd/Y7EBdbUTBBjo1a5byIADnNtbrNkUfTTAsOt0V7mdhcVGse3ueA2VU9uOBUNC1JQreVmN4BKeJJrf0wjTbSQBbpRxQqYquU9mtv/tB9/XrcxR6krG5ElBx5JBUwIrTdhKA+Edz5YrLU+XxJ44ZnUUd7/U4DVS0PXW/KZIw9MqVQbe6vg8nNSzNrFPRZ1Cvxwmj8wBO/D4c3m+/XWn2zU0JZS4eEPBLALBa5PZrXTDROGUAhpod+5sw0uPNvFHXaA5lnP9WRr46wmMJnKvsKWtl+xaz/V6eY91Pfx87z2inbYQ2GJSushHJ8g2ToZoJgvOU2cxwPxcTtMUkLL8q+oy2tVaI6mFz58YYoG4Mjg+ZjpKthxvFwb1MjUzL2nUp8uzTgAiO98mR8k6Zd1Mkz18/iQGjtKf7t7/p8nT52eNup8W20ibjtA+GUffVjZQMPdpAQA2GHfQuNBbzO6baA2Uq2A0Y3rptq9TjeLtx3SL52VOHuZdA2byrTp57tdJc5//5x2VkXlPiF91J2icZv+wSCyj3JAGUbvr3eBsgjKABycYZlpUWLWGtlWbuHUUnCUTnrG/pkzerKqUrMsE795oW9b5ZLaB9IBXA1YWkvm9QVibggETv29vWIx8tSjkHpKv7agB8egoHa5RT8iJD5FcA773ibYGLtYBbR6A8e1YaYD/ApSlOM+foPpogtP9Qq5l7VW8ojAxj7NRgK45sAgA6ljr9cYwgCj5RG1KBJSoa0NiyBXaL4jhAIk4zRqsNmEQpRbsTHZKDHIfVIyONxBt2eemtKjOHJAPYS8FhfOlyGB7RQSpOwYLr7ycvMH+pDqHzjNqoymbvQD/SVx8JTCqNJ3qkfyaR08G1dFr6BefXueXQIbdN6cvk14fN/c6W4/L8a6fkntvy5IbLMzgW16UXgyhwRQPduze75xZdFrEySBLmh0tNSTu23TS2N3YcADgNloxjv+ncrHOlmUP5nhjlD/v+ft1Vduw6Il9YliW3FGWYwAFmn2GH9PENkGhHFCXzBmXVkkL5AwyWegwvUNc0m/ftAi2gz8iW11+h37okNYpnsvyQHOhoMkDdEEqSKqBCga3TdsDg/gGUwwSAAZhiaLRPsMqkBQBCAODzObnhBqBlTtMwIR2VgF1vSEQnhD0ae8EOeF1Z3KKcDrEBzHAL8wz95DDBtE3vwrpLhY0BQFK+/gCmYKDuHUenon8rMG2KlwLANLFOpWQf1VLQGy2JywkiKDYk8+dFm6TsYHwZV17hAhB31IwbjS1tpi/uR79X/5EPDIjNB2BvRN9SaWtrNP2t/HCnuQ4bc+Cbm2uNDdjRhd6FHbRmSdJsv1ZbTnVUakiZZDMF2seQdOnPtSfgi/Pxgb2VjaZJSj0BA1t1bYt87vZsc65Au9s3Z/7xeFNQaPILuz2WuL/qb6Qgmvr6Buk+6LZ5wucpQx0J1vYAALIEdBluJvF/Rc8hYFa9RzpJDq85RrUnAF+h0UT5ZkRBul2t3dKCHl09PiDz16RYq0yS4OQ0bEEkxh8vaZDF2QkGONcSTBJ9LQG+nGiC2G5Qj+6kfsQ+rkt9hAFcgw0bveVQrwF3Nzc2S0tFp0TOp/IYviWny8nvOiVd9Z0yBFCt4Ppk93m5bg2Ammeqxjr2hFx2TZIkYbuZF2OgAepS8aIR11jEWDSAu8flyrWZsKCfMsex7NepMew/2OvUXlcJKwyQYAA4aseMAw6IwYeljOo9JC6q3a92lp7fGq/NTvpGO6ikJEYa28L8433ztsBFWkD76WM//6nUdfVIKuC1FXOTCJC7DWD1DwzhG4hlbChDf3jiyQpzJPXhx+EHVt90+xESJGZYzILw+1Tvaaf/4X8iQTcK3EwNtnswYBbLV68HCMA3r+d1pPrh92FdH37sGPzc/pNyBEDpMEl5Lbuw82f0Kd3n7+4vRiezST9juEovCT4aq1DA/TTjoor6WFp9tgPCc1JpzYHfP8wsrxo6JkME9mtr2yXBAYvt8+Vm+cdvdwFKdYM2SqgUZNm7991ZINeuc8ljzx0j0WJcwvGlq6i+NdJH1YJNXRJV7O8GBTI3mHXoQvHFlDbWfologrIG/202X9mHz+YXT5SbsVr9F6rLWfOA6kuJ0bC+DZ6EEc4NCNbkMBUFLajeuJ555guAflVP+96v9osTu94SPb6Oo/6MCT21AFNmfguNKcQPBcmpw/ghSDKrZDxX0XLeWl0wKMgmDVReCKEiXQNgnKjMQEP8oSWmFRgYHjYkl11Gsj5trIDG4xsapRE/VRoOKheA7BWLUozeNjIBSBCGYGUq27KhHDDGSaO/uVwucz7vm7cFPmgL6Nig1el6qbZWVdooBQlR+G4B6wbwoHdDZoBe1XnqtP/2+PF9EFdEM6ZUyFJsrhgnFQCCgvGnOuTo4T3iE+UjYSlBUrm1k6qi+MITbBIzHm0At/psjwBQqwYsNzc7jmT3IbHbHDIvL1reaWoyumMKoPwhqhhkXBVrkjb1flQHHGVunwSUNgxouJjtXa5oaW8qN/7h0mZij25aXJkGIKZJUoNsN9wLcJ4KX1WoTFkkzbcRaz3a3SexPqEGPK/Hbi4jeZExsv2AGySUvpRxhbk9FJ0gLi1Y9jxVImsWJzEe4Y+ctHOPx/GxhkozsUabk6qc+EenqfqgbbduXrLsK23FdguWzBVxhuBDwcOamOUD+dEwlXJtwWFSt7tGsmPCpa0Zm28KBlHavo4k6Yef3ivrUuOk5GCtLOe6FaxbsqdKLxP/aRbgxZMy7u8wgOFJ5gv1K49CBzoA8+fWLVtn4xdmB++btwXeowW07z/2yM9l5ZJMw+Q+CXHWigVx7DWCekvCn++Y1EF0YW/3g6QJDAH+jWj0hiAAuy0VrbJkPj4X5v8XD1UZ/Xn5ggRT0SQJn/XioiyjN5fsdZrYnPp1tnG+ScgzumohB8MXqbpKWDoAxepRccY6pAMsQNiwTdJ57o+CBVCdREmyWmHR17k2/NIIfOOn52O9PbqBmZMNSJ95ORA9yWKn1vWWBBEzqKNvamwsa120BDCXD0Ki1rl/SELSJ4zO5GsjBmBqE2hCAWRB05DqYKO0s41b+pm70XWysDd0AW8D0iFHGqh6TKzr3Xc3yUDjuKQsipN6zqUSQxxI7ZtEyNUUCHwMsq7q6l6jz4yP9c+C/mV0irGlU5pJ6NSYlkooSZ2qk6gMc/9JMWFUZCFxkDHZH/C/E6Cuvg5h976xsdZsp2+abKjJ8K2tx0w89abLianOrA2HPEjFxPsaJ2ViBAZf2lnxHp46oOo5ligZivrdfKcVy8F50Yl0TLa219+gAz+dg1uux76bTuBasZ3aaRNNrFJREpg2MCxj+LC6Od7ArC1nVstWEiC0ArPBhzgYawPRZxkXpZ8XMopuqFIPCFuxHnXHGnkG22XOPyyWCWJwavs3LkmgSsopE4c1hEVUp3LCwD5cPmFig7q/tk1vz1GJi3Wa53n37nZRQK6KJoytf4fK0cQxNaG3hfkiPpKYJiDc6IBAOUyMLQQbVuNA2YCotfKmJoCqnhlH7FfbxghxOiW6U5tygBhsM7EkFY3RmLmAZFfMciPdJCo34mdQnXAI4rhpXB9TxGJVnn290vgicuMiJCMpxNim0dinKqr7agXNI+VdgOLtprrMMvwDlqiO2D0CpobfQEX7egx2RNCIW7+u24Odjc6r0kN7KBi8D9+KAnU/+p21kulKN4kvjz57TCIm/STHz/LJiGk7PZ5es+qvgUPgYngeNFFbbZgMCHCeeXGPdODj0Jjj/Hkx2Nixs7/BNHp4cmwCY02CxIcoVonnEUflFHZ5HX6UDev3SPdo6l9M/EpjJjpeuVwuc63et3Nb4PTTce46IkYM1DN943yrvcu8LfAX0QL6jL7f51THaPc4/Rdx6d6LuHgLrFq1SiJgiqgjY8wPyn4gMjhvI8Tu6y8J2ZESFkp2GGWepoMZygBNtpLZPUXGlEp7Q78khyczyaZJSlqsfOjDqVIwd6mh+6+sPGjYdh3+OItJwQnHsJvOJYOcjKkFhTEwyeL8RkkLJuM7DuU0iCwiSxu7iVIA7T2qPiGZlFVAwU7gZf5N9YURI1w6KOFNYQeZptRzSCTAGzYP8GcSn1HQfOyAgrLs0ry/V8KzUA4mUNLCxwkWkhE77S4DaCcDSo3F8d4pCVkeJB2hML+iHOmkG4Hj3e9otykHNUTJ0aB4u4STTWvDcLWR0a/sQQGUXs8oSoUpBaNeYiQjNh1A+7REB0VLEKDc+XMWGEbd0FCHKRnhhBlxePQw32FxQSmY5OVwhnB9gM/IZLcRsNRs4PZBMkxRJmMpp+ALUGdqGIBLiC8gMrv4OGAXLHDIKOyyyo7r8A80+2rbhLK+u7dZgmBdDLBDeQ8rZzhta4epgKoCMhVAmXq280PhGqdM3sLc5ZKAca5GiB+luxrBSvkBoFm9eo1oFpMlGiRVpL71OQh7QCsqvpYTSInPkoCCNKOIK8BWQcrHfN3BhXnr8swhyoaPSZwaSTCLjE0SfJnkeFzIGMr16tWRkpqSYByPq1a5f+MASiwEEhxRURYT/U31Z/XBlxqbn4AyNS4r56826/VNle60NAJxyZFyX+Elhr3yZUC/Wr7Czmu8T9l+UbRRDPX3vvSyNOnFQTwEiPckJS0ncFTo8gkcuYG0ZwcA7rSMAllz6bWz5/B+8bbAhVpAg4V33ne/1B09LA3tNSQPAFTz8zcBtUD6vA/++UBbiFy+hpJRe2rl3x7aJcE4v+sbCXYybunzqwzZCkbXoJqCE/wJGsfnBMiOtxsxcAIlk0BxOyVF6mGa9fVzM4LqON3QMgzIoUEWLFoqOpar6PVoiZ8br8oEFOEAiDFsSoAXFyaYUiMrFmcYAF6PYQtnXAkOkk/dvtAEU6Zg21GQSVlvg+wFZKhehGXFSdLKuP2R6+aY409gdL64+ZQBHGp5E2U9NTEHDOF4DLG/AZzb1EbpZYxdzZr9JdmixflaEpHDMY4M4UCdhJ1d2VAcwbC8ZtlgQAiR4ePTJD0QeEzHgQCjgQIaFwFQXshrL5m5akjVUtKP+LmEk2yh7HUqNgAqKg5HIMY4WZ+DMwBXliUTAHngM0tMOytL6gilyI6eGIDNBIAxQcq61hozjt15552ybds2cxx9q606gl9zWiIyQ2WSwL0y3VnSBtt6AUyuE4xfwWQf69gdGxMKKzpjKKxJJ6raDeuRglVHyVjVcVMDpionaygjlBXHmBcvnV0wtLKPGssakNl5oJPlOJqomWhlKlvn1N96kGxdZVYJLYC1fQr2UnuI1HKrEzDkMXzBuBwiKxclkNVL2zGmR1DqXSUcUK8rJRxAT5+kw9qrgWoLBOzDsxqTycAagyOZY00BIIgNDTZzjYJhjXBsNWR9GUOV6eHyy1II/OMch6neLxDGqmWh0nl80P2bk/SgkoizqplnwHJ06DJ9tvWlrBX6zIcBklAWmKZtfYbt/AUYMAJhsRgmS3nRvFi56ap0efntavMcKHvZ4GLYJGCevoESj3sdsFYRkN4AO7oGiEKczE/8gb8zACZte5UG+ksKzDrFRWlSVGCD9arXjPXanlqNR53iYySvaCD9kqVplG2k3CbP9BDO6Qie5TAc+NpvOvtwVPNbBnMeFf1Nff3QNzSDDWklKUbnQ31NjXVRBsrt4LnpCsqMcywFMy3hOdb+MUhWsvbJCVjyw9Kcpg26cDIEplGuyk6mOWyCHWSN66SnAUrVTxz2GPp3KteqTEUdsnFjnQmKOgEbqoz2j0sY+s7RIx2SRyJVEuxpAzjrRggQFM6JknEGlUWAsBS0uxMQdKo6TnCaKdOiPnt6PfPnUHaJ26kBrD2dNM1zif7B3BiNXjgKOF8Zb3WMScsW2QVLwIK5aXLkZBdMagkSbLdLRVW3VOmzyPXoczENbrsGYFU1r+EAWE8myOon2aAn1FcqHczHFW2McfPM7zFCECQ4WmDTJYAxPCpXL15m7sv75m0BqwXWrFkjj37vO9a/Z3ymAI5cCft5fU+frEyMlkSC4jvqYL6ibO3yFB6ss4ShWw7XtMn6KvpCfuFZa73/elvgzBawdDwXAYa6d7dIWnyolMAkrjqKjv1F2dGyK6GV8RSmeBzkcQRDdFKOYd6KzaIMMQ5fT9HkUB3XVW6+OZOARQD2Sxgs+eMSBdNja/OQjFKmj2mSaicRUltJEg4M6HEwJCobki5vRPeLjuhlXqcKC875JXNjjb6jALpUzeIxKgdlV6t7zPwYFU70AEmCwaPLbyaJlf08RUHsVmKSsuoqK92lywvYPxyd0h/2yRPocgSpSTJNhv1d7Sqda5PWwBRKRRq1o4Q5umV/j9FVfDD1dK4fbKdcoCLfEN1e50lXVr7RfZRl1y8gUlJY1tBxVEKyC+U/S8slB5oNPV4KzJwTKCc+sBocYA46Nt4gDeO+cveMvut5/d7v3hbwbAHVVyZ7CJYN9EkDK9IKikQ6U8wmypimIEwTpAmkGhD2RULhsGyD6TowgGebPhaXESvd3T0m6Wku/etEHV4n57QJ8lTv7XSXgkSPU2bZIcCRA5QTm8Rf5oN+o11BO2FBEToN+nJ705A4Caaqf3QA2ysyItLdRzFf7OhXPtnYEAnHzLE0aKx93BInZVIznMqoC7CMY/TSn5phe+3pD0Lvrke/xIdEkriC99t9KXPq5F7mh0r3iUGx92qgOoqqWTYpKIw0GM0JDn7NJfht0A+7esfc44mOK5xQ7U8F5o6RMGrjXLdcnQNbWhvjCExCjEndY6Om4pUPSexq5wYC+GiC6e0ALK7rVsKYY+7buvLTnztKT0l6ZqG4XK7TC/mmv1EpFWCSMgG34NdTCcNuNUKczj5OsrZpCwW89MmNa2+S4aJxWbVwtbF1lXHKkoKVWXLqSC2XwO854EMAdkCiM93sWTr8OBx2mSZQn7MiWYKCCdThH4sLh/2XlUMAEP3we84KD0BibpQ0UPVDkw7V35Y4H7sBP1GwPVTicvGvJQBeBijUb/YlwZyA/Vg8iaLbOwCBExDnuh3MCQEB/mIjkBsQxbiPP2pA5xGG3joqySRZQzC2EcVC5DDBdbVHFwGEHJrcYS4nDX1d7UQ/Z790le4y9vpx9O0jww3Gpurvo6IIv3kzSRvj2EORgKoPwMKuovPBBPenz/eseDLE+Lltttl13i/eFjhPC2g/VSYty0+SnptkqrmARiCgPmZ8WLpbEf79O+/wARjQbo4SC8hDpRlfQyAAXfU9aFWdGPzbPXV0cB7TEPy0ftiLKalh0kPJXT/8960yZHQk1RUy5roMGEV1iQASmLQvNjY2SnZygWQU46/F56WiAWmtOnAYsPDyxZlmmR3bVHHp6mMLBCjWAyu/2v8Z84okGBZYFWeQXWrra0VhAOlJcyS2oJ9jj5AEXSDPvlwKyHdagqkOo6L2bnRYiBw82krf8pMnXqgwIAb1Dai/R4/twzygCQaZayPFh0TgCeInNfildLxRnamFigYK/texMhqdTsESShqxID+GqjgFxrcVSwKCJoAsnwm+jTA42OzRjO2qO8UZXUkBScpKpqxgsfgW1DejjGevbaw219oD6NhOzELF+BYZG1QiSPxqDx8GwILPGzDRdLK/BEOM0eMAHJKGjx7ddBifgg/JWuMAL2z45KepiBc3Em2S2RWApEOyn22cZJVg2bgJZlF8CcqolpOeKOn4MhoA7+3cD2i3dUBiADbExMUZkIofv0daTo6sufwjs7+buSjvm7cFPmAL6Jh04MlS4mmBkg4Zgx8J4S3EvVqokBmfFyf96Co2m9tHpozfDohiwmG7W7Uqmn5KMmQIvi9MMzuMtavXrNYRx5DDxK8aNgQ8thDihsTPnFQvGR8jNuickOTVI7BkB8uRLW9LHWx7yfQxrfyZAsOeMuo62yekCiKg0GS3/9VObFMBTn7oUgqO7QD4Fs7xHJHx6EP4kUv24VcMdd853VN9nD7TIxIZT5URKpUoi2AfulgXIGEVHfvUd66SshDSJGiyfQbcwP1ggPAqvZD1DBOm1XExN3ee0UMmGTtXr4klJuYn2Xl+suNwOeclqZSObNouIRydBh01KEDqdnZSvQ29ZSbeqRXj1H8/AuBNJSgohmOlovuhe/niS0+KkY/cuEjmhIdKPcdPgRDBJHMsNptzTwGAfLMEVVP8JhyMgXqPPrTHlCxcvlRiUnuNHuje2vvubYH3bgFLH/EZbzEbW/HrevwJGr9tHtglKXPCZTACUDqZQB3jVErBX+0bESw92GKT4U452jSIrgFBFTpGU+spE8PQgy0hLl7fxLbE+Buae5jfmSeDYyW3MEOGkyYMm31WkUv2lu80INCBFqoLkrA9gp4wSNyoewp9HF+3xsXCkp0kLBM/IH7TU0OFTMjCrHiQnkvHhikCF1odchg9au6iZF18hmg136j0MGlP7zMJQP4QczhhH41b6u6PIXGBhuFVibadkIQMkxAdSfUAtV+DnehbVB0Yxk4Jjwuj/2uMzy22ITsxp1SJmZPIhXB+gKgb9q+XhTcVSANgZq3UO9SNLkYyTwL+noK8GKoWhkpvLyylE/Rz/EPqj/IBE1EAGDqNyrWDE+5riiSOojazgih9XD6ARUmAIN6e7goj/ZN2wo5SKZoTLXd9OFcqILfRWIzGc7KzF/JCL4yMgUCkxvjZ1J7uwucVTGwrBKyDPQnCMaojj6NPqk6l9tXEzPhkDjzzFg6WozW8n4EHXYZrGxzS2Az2YSjVFWHV1baIxk9nS/CRSJKxRrD7FG8xhv2o+prGsDR+EuUCrBxG4lUumBYYWlWUWCaG5LSbb8w01+9grHbMJGv5ToFjICapUkUl0HZml7iIBBMvTKG9j0ZXUU2hkzaKN7gPJZG5nySrYySRBYOV8JsAVDwBcUt4MBVI481xxplvwsLyiGNy7lEqKubQFuBWVDSR1hkxLLnmP5I7sjQRM1jK696VjsFhcw7VMRWEPEzbzycmq7q4+jD12VP9UNtC5wMeUKPrO51sP8dfyt9sNPPGJO0wPKwxTbdOGZ4aDGga4C7J+36+o+BPhqQF9maVW6/JlBe2VfE8wLYMaUxQZL/RUXWdAnV1zlR5e2utrF5KHAz/gD5PKhqbLcpIkXdOHDX/x4QkQaA2h3bnIUCi893tr/PbKCzDoTNtoOs27migerX72SouJJkasG/DjN6r6x2B0fT3IJlDX1agrt6v3rnGN6NJ3t237R257aZFMOoOyomIFnwuwfhnnaJxcxW1w33QKXYd7JS0VOJn9B89gi3YRzLyIsQW1i+ZOQvNtn/ON02YfD+i/cayj97P9v8Tt8Fkuogwns34ri+ykXeVtwX+m1tAB2733PveF/JBQL3vfTTvFn/mFrj00ktNKbqNGzeaMz35fAnloTDQ1Om/NNYs0zIOytZgSQdfensHoZVvlFtWrpbbb71L0tPTzUu30WPq8Z577k0yrtLMbuFr4wzjyIktFWbC1/JzvbAyFkDBHwuop5xS2Qp4UvnSZ9ZK37Db4DQLPN9Wuv955qW9KKwwuPbbJX1ephywVQP+Pb2POqWxCzGG/U2ZKQdUr704BXVSnsAJ5Y/R7A8wtqdumEDOtGFWiS6CtaQE0BmniKbsgLIBKeBXJSInGECtk3bQrHFKheJAiwyOkiIcedteKJWlrpVy1113mW1n31bNfpv98shrr0l4iLtdhfiBAupmr5vbTyDQIs0A+wiKZi6IJQsVBYwMXJXJk7BPdnVLEsa5Oh2VBTAjNYtyMm6GY93m1KEmSUUJTE/MpF3cyoouP1v6G0/IR6+6c5aRqLq6enYT15zLJTmN8gMErFRcKVHiG1Bnvq9ZMx/WSqcxbPQ3d7lcIleaVeZNl1WvdR9Lv6tUrzh9bLPA402byOzD+ddd47HiAl+tY1qfuplew50fv0/qKnfL1ECbLMp1ybOv7JUwAIh+GEsy3WaCJU3tvSZYccXVGTBBU3KcgPE4Cl1Q6Iwjp5XyKRhsv3zioPz6oX+XdevWXeAqvIu9LXC6BfT5+/a3v23GvH/8+pdkNezbyxcmQXMBsy5AXR2VAunnyS76sF+ofPGbT8vShXMA6cdLbeMema7wkdSFsPlgsBuDE8dbAM7BQMBu0cURkhBMNi2OfP8pwIh+DrLunVLT1Axot4VyfL6yYs118olPfGK2fLc+w9EJBRiJGAyuVMnPdQcjhjCgNFEijf782Qd+K2uWZsjcwnTJw0e4cMF8c0MDwz7ms3Zup3zok78ggDAqrR3u4MMlK3IobdONPe8ryYBGXNABhTGO7wD49+XPulXd9ORw+fr9SwyzbgPXrPLqhkp5+tWTgGNjJJfkhZPb90gVGZEOgCO+jNN5V6aRjED5WMC3Kv1dA1I10Co+pN2nwWx681VZsru0BQMrEKapRtnX2GpK90XCoKrGZUCI+9wdgFt8szC2QmMkOxPHA7J6cap51VKWSKUL0KACLLPxAqQlR2FwwoBFmVrr99NtFDjyu4e+L62DNkmkhGoyBq0GZCyp3NFEuRmb3EYAu+JoHwYxEw1y+SUw0sKolJDQKX19PfIWbEgjk2E8A2FmXKlvI7mFBJSrL1tknou9ZQ1y+aWn56xkSqbob6Nt3NA6IR/72MfOGINLDpXJgjlzpby5VNQObRyekniCOXspXaisevk58ZKbnS5PvlSO8ToCS4QdsDQAaEAE2alR0tU+KukpDqmk7I4+I3qfDnugpBRoedQp6ayCgSp1xmHM/bSeUDZADeIzaeJUVUM2NitUkmOC5eor0+WJF2GfcVBmJh3GfNi+Xn63Sr7wiXlqs8IAHSuHCNwH47w6TulDfRY0gKyiQSUtKaMOFAWqKlC3eFk8gHSHEjQYoO6KRTAgE5xWsHiY026OU3BVvPTvG5B8V4TkupQ5AiBu3YApFxcZHSgnYBMmJs18kEZfK4KWrEQGx0gQiUmRm65JMX2wlDZX2X2gVSZ55oIJPvX14mzPBeREqdhrr7XcHOQIKSCpe0gigiJEf5uunj0E0Ttk5cqVZk7U9luDc//s+fC73/0updEnJZmA3YoFiQCaKIXOfK0Bc3U0/OSxA/QP1aJIrkkOhKHfSRnKAXHluuf5ZhkV1yXRpt3VodFS1itr5q0x+kVNTQ0MjFvMb6f+kMauLnOcIL8QyV8OUwiggljYRPILoqSADOujB9rJ2J6CBY0gICwXyob4NiWYwgAmm/OTEDQXIO+zr52ULwCwn48jTkH5AST16BikUl7RKO19Aea+H3zwQbPshd//nKoAbQbgu3pxCn0sRU4BAi47CkM0jqV+EmEicOK0A0BW8UsNkJy0FKOrqM7TUEegMilXCm/5lFlvvVnzuvVpLfd+eltA51mfkDCp7+4VLefkKWlRgBnR4+p7qYTB8/43xTnyclWz/GD7cVmT1inLPMC6A4AMT3TCFOBDoG7xWnnwto96Hsr73dsC57SApeOpnZS2bLVZn5xZJCcoh1hWdlS+/eXLZDuVYJRJbW9lm+SvIeGGsT4xN1RsjPtNsMW1M8brqGuHGa6lx21rqH44tzAcoF24sU0ysqNgKhqUx39XJlkAd+fnExxKjRBfyslNT5JYgVN9F4wldZQ09CcZc8SHeSudhJ2mEpzG8YYRpqmlCz3Sra+sIOijVQ5czG1ZBEhUkvPCJZkAlkoLbBltgIDVUa8JSeUw82qAKWDagZ0aIWkJGbKgKEquvAT2C4JcW3eekGM1JLTCpDsEoKaTIHUDttSKz2ZJZP2wmeM4ORV0YChhblGZHFVbdUycMXaJSk0084gy4WqbquicpqL/r1lXYz43bdokR44eMsv77eHMd/WwmmbIZDSVIFJTZFVoxKy+azbyvnlb4DwtoL4ofa48/Rvn2eyMRdVH7wXw6jLLkhNEjg2fkje3NUpxcYJhhq5u6YbdJVRaYWsa0MT1gWkZojqIJhB2EhArL4UpB7vBj2RM1UcL0eu0qsDPf4beBwPN3JwYrVAq6XHps+dV+zAzWUGVb9B9sBHWutAdsSEvID19w/LD/9wvN99+PwzYgEIj4kxffOCzS+WrP9lIwHhC4uYCrgdQ1bm+T26n+kQbbEdLfRJk86Z6OYqu/LEbc2VoxJf9xghu1ZnEyv1H2knMTERXhz0HO88/wCF33lwkWemtct833jCBzuEJOyXRaZgZKaYSx8duHpd96H5lFbvFiR+rcyBMcrDFNNit9oxKbas/4KzbZ/Y6/aFVi/7jN/8uhcX5MpaNYXMRWb+pRL780NfNFpaOGBkULX2d/SSqh8jctXk67IrvqRa59bp82XuySU7WthLkpqYVLswA2PIGYM3xh623nHulqeUf7v+60ad/8rsfSAdjWehMgqMDH6iCX30CfKQWwIwz0SEZS2ERPdhE8gRRZEwMlXpHkxws6ZII7NsoF0lyAANqqEwxBEDNCMHWEcZgG0HluKJQiQ6OE78oQD0z/spW91bud7u2XZB861vfMv/nzTvXB7X+nc3yzb+9Rt7Gvvzfj7dwu1wjWytI53AJdg1jeTTfqwiKN1P5JJnA4sQMg64eVFnJAwPxMyI7953ChlljvnvfvC1wsRY4O1ag29b3+MsTTzwBCI3Ecog9yqnCdxcsswsXJkDUgcNjRtS/kBUVJrZRm7z0TpUBkmVQdc8Z5MSXgw1LedwQzN9gfBYtR7R0PI4Axkw7cYBvfvObZgy3jmV9qt7gcrnMv9ZYoOP8r3/xQ0qu41sikSKFxOQgkjDUFtdxqBO9qxl/lgLhL7nseutQ5tNTD5EbRB766VflwzcADmCQqAREcuXyTLNdyhUw45G8+s7WUyQ5jEpzJ/3Pt8cww+XkLWQM328SylOj4yR7RZKMwcg+0svggyjAJDDCbhjglOlNgw0JAAFeWl+lbhNZBthw+aIkxs1+wIf+0jmz3679DbJhd4+svuKTs/fc2PpdWVxglx/+Yr0BzyYmYuMXU/KaRDGdZ1R6AfAriEJlEpCKgvzsdgcJsiFSF9nlBuqSSOAXZZOkpSRx4FRJSoH5vQlWYdja4orCxEnShBKVREXESBYgbEvqjzdRmtoh11z7GRnsazGlwXVdXk4KYMQOQHghkkzMJBlfk/4+rpnfyjWHuY//rd/MOp7309sCH7QFVHd4+IXfkACfJPFXJRGfoxodL5WM9DOPtuPlA3LPPX9nnsPrz+z6ZkO67vsW9f29vWerZKzOxs/ZJN3Ms7nXJwJqG6MkfIA0HEbvAZykEgj5hC8ENbH4m429N/eqM5ikv/erRyE2SD3j3HHgleJD3XqEM2CAcWYCkgEcfsgg55hGN9MYZ87KZIBSxAgB4HlK5Ykm6YPp85++9OBsv/Ncr999GLd37dqE7zNBll61wLTdylg3IEz1l9rj9QzBUZKV50Iv6jCAvjHfKSm8aQVJUmuMrbfl7YdILE00rxXLF5j4Qup81+ypVq6eZ75/6cFn5BOf/9Hscs8v1jhgfXqu8373tsCFWuB8+ojZ1lEjaXN8ZddTe6X48rlm0SBAWhXbMGBJ9O7orHixQa5SX3/C6L8au1efgxXzbh2Ikt3lLbJ6RbGk57rjUp85y2eh85nu8/TTT8sEQNqkLCp09JMoNxog86/KhQyqX/qo/pu5JkliUyeIe9WLDQZprZzrgDxFRT+VxXOEPj1C0oxjymmSWczKmbcQyDiGuoYlJiuc8WVE2mogBiMJMA6Aq76GSLa2gUfow94IIulurL2DuM2IzC2eJ0GZ7viS3v8Q9z6LNeDYOn/nJs6Xuz7mxm9Y5+z4OsDHAj9Jy3Pbn+GxjQBKu2XhklRsYPQZEgZqakYZc+Olu+8I/qh68SMGV1QcA1stFQshHvOUJ54ok/4oEg1qhuXdknpjjyj5jiWrlieJvl5HByrZ04wukyv3ff4r1mo5cmiXVOBnU93q5M7DkrkqiSQvzhEHgVooTK4t9SYRK4DqUBZQV3U2SyKoUKhMtyMQrmllp3H8wwqOtkEYMolupkag2vM24q65gKxV71LSn2jI11qpZlX2OhVXiFfF52oSah34C5I9kt32UzeJlt20x+135JqK0oHE05RkaRJgt3Ma3Ye4keqdP9j5tvF7hTqCzW+Qlh8kS2+aK1shg3Pit77yyizirMPywL0LZfvOesiTQkiUnaQS4pAUX5lg4pVqq+3Y1yrXXX+fdWuycNHs1wt+Kdl1lGSUDvkw56gkuezma7LkBPpsKiztlyxPkU07G839KYOuJi2jkgLS1cROiPSoxhyMvqaAVk1AVnI9O7EhB4RuKunzqOzFb6H4IH3m9r5TOduuX7l3gSGoKa/vNmDnIBL1NBaoosQ1o8xpqpcn594sdZ1tvKjC0Gk3trhus7hwKSDieWdiTXSFh+iccbZvR/tkZfNRs1XB3GzZf/C4NBDT0ridxj2tKlzaf88WPd6VL74in737UjOX1Ta453Dd7sqVZ26tc9raa/9WPI+j+6tYn2fu8af7T+9D4yDvR7QCnOc1vp99/qdt47aQLnTXxDA9/CcX2uovanlzM+V+GygbtXjxX9R1/akvRkEt3ZTYjY6OxrDFe/ZXIk1NTUaBjo93K9x/issmOfj9P6c88TMxoj/Fqb3H+C9qAQuUqBNMfASZJHXtklo4o0yhn5wtY9Vklw5NGYeXta/nNtayaGj+jcxgSdUZdbK8XpJgvx00TBgwxqHkRsblkfk5R45WvUIJupwzFErP41rfVWmxBefKyc4KGaFUcwgsRKM4+4Jw9HmKMtwOt4+Law1lM2v6cZgNi2txkkzASKsSGj0ild0tJmFCFbDO8mGCkDBmhASYTDn7DIOebqvORh8/SmcA7nKGTktMCIzDKPvhAJe03ax71m0vJApSmW2T82zUirKtYF1lMQ4mSBBB+SlLQgAjjW2bNCU2ovJDDFBpzsJsmQCwpdKAca5Bo5zsXDNuWfud7/PIjpNnOMvOViz0XjZs2DC7q6cTMyMj46KKyNnHOvv/2YN6fHk/23hsfs7Xe+65h+tNM2BJHwB9c3MWUaoCR2JqpDGANIjRDcC6q2MUBgMyEWGmiSFrbRp2ychIdxZXC4Gmgrw0SUqd875+y3Muwrvgf3QLaJ/5zH1/J+9sft70v2ULMs5oj4bmbpxtlBhdvUpWX3KtUZ6ffOYVwIDjGIlknDN3qnHkyXyz8ENZcmxXvRzaTOnSwrlk/yYQPIyixH221MDutOryQvOsevYf/X7XJ+6Xxx57THpGIqTpxHFK1bgHcQ0wdJCY4HBGwwhHyUGMXc/r1GHaus4VK1YYR8WOHSXSgiHVTPk7BaIqmNQGw+yKRZny1EsHZSWg5Fc3VMO8lEWw2g0QyUgJE32p9PQNwZKSJFdde6u559zCS+SpFzW40y1NVbU4GzgrdrWDxAljJAPwcMCuXfZipZQeajNA3dU4CdRovHR5umzZXSsvbz8pPYBFBodGpbGmj5J6yRj0nfLxG1eZtr/ikgGY27rN+fUtLcl9LTa/KVmzLBvDN8es27WvanYss8ZvNfw2b3hVkkabmVsmZSxRZy2CSGTyquTgKNj4dKV89KYCufGaOcaBaVbo2zL3ty07j8u726vN86BL1FBqaP6eYZtPSUkxG11NCaMzZGbfkr2Vxnn0ne9854wxeNVMYOrxP/xOeke6cPoGSXhsiIQC5Gkp7TWAYdVXAwIjpYbfqaGpXQTHaiDskn4wha9ckislpTXmt9dAlQJKFZBpSTKAXU+JzwmTU7vaDVtMACVzFKycuSxG9q1vkWLKRt3xoTnS0AijCwzwDRjhuwBsL4MJTEu7LcehU3aUQBCOEC0R8+zrJ3mu+ZERB8z8I4AD7HwqU5WKH3NdLGNyL2yy5ApzLsDrhmk4RKrr+iSOcTsSYG93kp+8XVovOak4rWBWLySLu7KKgDSB8CYyt7OyiuWOu+82feLRRx+VytoyQLqn23nNMvfvrsEtf0riKHg2mIDSkqtwuL9bgSE/TBlHd0BOr6u3udcw5Te0wcY/FSZFC68yoHhdp3Oi/q5nz4farmPToYCjougzYzhD0nEMAdSlz9hwrpeWd9BWzXoI9BGcTYCZ1Znko51gRkxuM4+dBs4UxKt92no+1UFZVVVlttRr+MI/fN7M+fo8tFV3SQX61SCOtEFYq9sBV7dT5nINmfVtx9vIvo6lLCisvz5OueLqQKlsKJdF+fHSsadNHocZ6MNXZ6N72bnmLABYfQT1yZBuJ3AaP0cefPD22WvQ69JkLB//Jp4xd78onBMqmS7KAiXHy/YjzbKp/JgkzYeBB3DZ8ARg6Kh0+maM0VNcMdlyz733zh7Pum/vp7cFLtYCd9x7vzy7+S1ZGR8pyzLODG419A/JPCJc/7bvuHx5WZHkxkXLlroWqQB8Mz7hdrjpNidI2Fpx9Q0yb8ly8/x5zp0XO7d3nbcF9Fmxnhcdj9VGMsCQ1kkY3HLk3a3HJBQgWwPA3NR8BcP6SBygiJisEACxMIuwpA0Qq7SGyje+8Q3ToAdK32AucusqrrQYyUxyAtjIkD+8WimBJmjglIVF2bJqSRBg2U5pQyepI4HqjrvvM/OPHkR1vea6/QSnE7AfQQwy76ukkZhzrLJRFhXFShb9ZdnCVmlhPshYGkO1HIckUKmhuQLGGBjNxyhJ2EJm6DzmyF7YcRuoDmDpKhrgWYMtr/On6jaW1Da6bUQFo0RlU8XFxz2HRcJi2QUA2BIn4GM/GwwsEenyT//0T7NtaK0/+9NqW2t5xMxce8172J7W9t5PbwtYLeDZZ61lF/vU7bFAAH66fS9FawKkBp2qlcTLCRK1fUi26yRAp8xn461Tpo9MEMhLzk2U8FVx8tb2JmPHFFGGdRKGRZXoIABNa+YAiG01FS0WFeedE5BVu6u20d1n1L4qwi6KoI+eLcP01YpTHSZxURM0VRfbUFIGQNMX+yhN4v6TalBjvm6ASBLMrdJF3/OhhGOs6Z8TsBbtLScYC4vkFavnmMMrmEsrXe062I4d6kc551iCroEmKKcbrMH+0m16BmBOKsg+59rv/shyMy5s2XFC9lPGc4DARufQAPZiP+xJbttLgXHar88Wbe8IR6Q4se8SCEBfSBpONFNyet45Y8cCArjlJYdkxY3uqGV4bKic2lst112XK/H7gmXfvmaSP4dgIPJFt/WXRP9QGYSxbiGB6OdP7QO8c48J9v3syf+QEAeMlejMyj7l5wNTHSDY9AWpMtnrI8PoETWtlJ+FpGAwzg2aCQ+KFNVl26MoexsYbnx70ZizaQXJUnOkYfZWwhwR0tdcLhHhEbJgOQF0dPXzid6jAme1TVSsT89ts+cUAz7uM3a42jAJsA9ZUhfSIScptZsNa3pWbqT86vFD8oVPFksMCbWWVFJJICklkwB7lTzzylG585NfsVZ5P70t8J4t4NmHS0pKzPYBgBPmrE6R9T8vl4/DCqZSXHwajKGVjLJIsI30jYDttUZGKKPeBzBlEkbFlOUxJDK5A/jtJPVEFcVJAiXU1a+dMJxp+qc54Pt40/6i46HK5g2vSUUdKDbKQXcSq5jySaT/dsJGe67PzOxw1tuGDVfRP/bjv4iXf/3pbrlyDYntVJ1RUQBFRlqELIxKMP6fv/nHp4kF5Mm9939Z1G+TENcMsAGfEWOa6JDmzhuXQ29Um3E5IiNEWvCPDOm8gY9aqw89D1DFn+QAZdubnxsl7fgOMlJDSCpukt0kB1x5zV1ntIX6GTLRF1WU4fYIIGn1yyRQIacYwO5Tz1VIKBWBFHzhFh8TM1BwtPoYo9JJqK0aFgeOx0AYv0NIuB4lwUOTg0Mj8MUcH5K+U+is+G0mR6mEBINfBGV0VTTWoOPeuiuvnL2ms+MFqy4/1zfivg7vu7cF/jQtoP1dmXJnY2rqwL6ArH+kZPZZvcAm73ux+oiDfhwk8y7JlxpigKeewFc8Cu7en/LncbAghsVKV7WSCNgA8fZCoJCDrzZMKjc3n2P/LJu73MQwk3MSzji/px7RAKgu0ccFsLAen2En44r24ZlYAW5bjQ1a0svYFDMWJUdKGy56vzpOJmxMkJreSqncWT2r7+pxsnOyJMY3ST501YeNjWn5OnWd5e9UwoDf1cMwacV4WZcGi7ASYJwt6m/0nDfOXu/939sC/68tcL7nSvvnv/86dLZfaV/ylDT+UV07kuwgjYXoMfTlOYetWltjnn193lXOp4vrPhpDeHbXYyQzZsvQ0CC6PVVP0O972vtk92sHpA9272Tm4z6AiGojDMHwOdo8Yo7ZQnxrYd4SiUtOkuqCWgmLc8fPzMqZt9S8BKmuqYL1FfsiI1waSTAc0ngI7J0qQVSHVKHGrsEk9FQPkQwOmZZh+jSrGB/dn57vCtTVezq7/f7u3r+XR178jfiH4meqr5MIksg3vlIGtiJQ1i6iim5stBReTlUB+r0maitpWguxlyhIY4JIcly48EzbRoG6Ku1UhDlCAoPv81R5qu0xyxbOjSNuM0BC4aCcIo7jjMwxOpTnNVm/y83scf8D98lIGwQ+BalSuu2gLLotiXEQ3AN6oyXqgrL8ULrM+j4JC3kAifGqDun3cCo6tlIVWqsjB5E8paLMukGwp1qkcTquHt1DVQAIUGKui3RjQrCl7DP2lLKl74I9PWEv1SyXJ1JRK9LYz4MQQcTYaZ9+m7R0TcptH/u0Ads+/M7PIFJLMucycwc24kYA4baBEdlCTCiRpK2V6HABAH7hYOcVL5EkfFVi7zXBiqw+P8+2MQd6jzf9jbuOdVKtMEGamvqoqgprOtf/+qYaCFYSqcY1bI4whd6n1R+VLMoP/0Ng4GnfQwgxqhaIexQX4ww83T5mR/djKP3tVNTaSMXnFKe0NPQRNxqCtGmxbNvbOHuFdcQLVUI5zgF8EK6sdKMve/a7qYAas43L5ZJPvA9/n96fp1jPi7UsMrHGfNXjWXOXte58nzpXdVEdSeex881luo/azooTUd/Bf4foPU8FhUgDYN3ks0hLPK9nVxXA8tx8z0Xe7+dpAaAXF5Zp+gf+or8a6enpmaVQ1sCAMn79/yqf/vSn5Q9/+IPs2LFDFi1yOwCte9XyP88995ysX7/eOPiSk5MNcPnWW2+VpCT3IGxt6/nZ29srDz/8sOzevRs6+FbJz883+91+++0XdNx57q/fdd99+/aZxXPmnAso+9znPidvvfWW2aaoyO0wOfsYH/R/fU7FPZa/565aCXimGvB7buvd4C+zBVYuzpKDzzSYDBnnDDjp7CsdwYm0KGMpoJbLzl41+78V5JtdwBcXDmx99bT1iX9br1lVXgK766UrjMK8a2859PkoTh7suJ77e35fvXq1LBtfJo+//ltjrA+RNWMBdSfIaBoh0ym5IFbqYOWTNVDWL4qX0meOy3j+hMSS/a+ibq4GSo6PD05KCABOf8ontNUOyAROKRV1WqkoSFdLMviQyarOt56h/tmyBrpex4D3I+pUuJg0wzy4bl2GlO5vlvCrQs7YNCQmUPJXJ0vF1kbpOtInQT6R0ls5LN20oyrlSb7ZBI0o3zUDnDlj57P+aaTs9Pl+H8/NLvbbem73l/Jdr1dfCmJKy1omN91zvVz7mXSJjKX82KifJC6IkM2UDL/1o+7g1AQBr9DgUHP5ozwroSg+CpL7a7vvv5T2916HiOoNk5OTsn1/qew9uBGWIrdjW9umFnDFydpBufuTn5fLL7/cNNfy5culvHI/GYnTGKmnDSPPtpwIpFwLduilMGBbToOzPz231+/6DKsyr33heO00GYbuCVz7vI8tVL72tQKzi3WdS4vTpZFAsYpe58hUJMC8B835Ulx55jg2n2FJclGWhGNUNb0qC+fnGPbWFQtTZOPOegPoW4zhraLlVbTEsYInf/v8UXnw/zwye8+6Xktx6LX94Offl7GuKQmNDDbGsb8fhiCgeluy3QB1dwP+nCSzVEv9WLJ2aZoB3tY09MoRnA0vvVsnX/zCV+WH//q/Z50TLhgUn/nDYbn9+jONlKaWXsnMPj1W1zR0SEC42xFjHV/bTYHO2zc+S4CiWd4F+JVEWbB2WECbKIOkYrNFYvROykoYe88ngZSyTkjOMc+DtV6ZZy4UoLW20U8N2Kenu6/pfGOR9bta++izUPruQcC4oWbeXLs8Vw3RztUAAEAASURBVNYuB0hK2XcF7FqizOgKqmzpaTZgUw30aBbshZ67OIK9CtTlcZYJygFNTY6RkWyT8IJgeWVrtSyjtJwrLUyiBgOld+6odAHGWb+5lnYZkExXjKzEqfPkS0fIFHbPeTYbpaCYTyNwkHTXD0kkTIB+BIlOC0xQOEoaSk8DfHSdln3tpGRULGCn5ALKP50ckF0N7Yalr5PEmR6yoDsc49KBs+NRnlmrbymI4dvf+orsOVAtS3i+PWXJgnTZXHVCHNOAZGHCSkyLl7Gl4/LatkohpkcG8BAg4FipOUb5Rp9eaaIZl66+2Rzb6nuex/P8rn36cMVh0XOUAVpYt+I08Fe3uwOA9+9fO0b/6JchWI6DYNmxnEnWcdSZ5MM/+jlEIpKn6O+vL0vuv//+2cQcV0HQrH7lh16wMivFbBZCkKDsSKssSSo0epZ1Dwpm3rb3BVm3uoBnpQcABwAUgnjlJ0qlpqEHkDfMcCELZNW6286YF/W51NeePXsA4QbS393emijKbyanpMuqZTAXPAPT40i3hFCWcFPpEYnOcYkvABjVU2790EfOOJ51L95PbwtcrAV0fv0NA9JTLz0nTT19OKlCJSk8THZX18vxjh75p3VL5B0CYy/Xthkw79UZsOzAoLC9vlUaAelOkrBQ2lwjT3ztm7Nz6cXO513nbYGLtYCOgRrwVF0hJT6WMX2PfPETi+SRDYcMK2U0YAid81QfCIaRUdmQ2gH5/ePXvjerG7yLLvTisz83p2ls7oNlLsgwFBXMz6RkHg5/khu6D+sc6p5Hk1wLZPmlBbP76446HygLY1N7p9hklBJzIehzPeZVXdsOi0a+rFs7X9p6fOXrDz8vIa4g0XLpoZTps0WTOEPiqt3HIYWrc2CuzZP9b5XLi28elqsunXfO3Kn6hYrOqzrX7dy5E1YnyuFphMRDIrPctpUussfaZKCBeYyp3XPu8tj8nK/n033O2ci7wNsCf+IW0Gd6c8mbsvzGhebI4QAx5tPfFKw7BXNu8YI02fZimczLKZblNy0388iDP/q6XA77YtD8IDmwsVzegfU6mMCl+qFiSeQeGxgnISxA9hwE6DkEWDR5QnoGq2cTKPcQ+Nm+p3K2Pw0AZNOS4WK0QFjZYOpW6aHPdvVQsnzSjp+MChn0e0vPVZvnudePyUeuzZNN7Q0Sm+8EEEfwNsMJ2yE2BQl9E/ixNGBXPtUp2/e1USIS/RuqWU1kVBbH/JxEWb+9EWBYK9tHm3OaNx8/k5y5bV+nrF3jsfz0FtgcuWaca4e9R/VFlZRsN7BDv1s6p34/WzRY7tnmZ6/X/0te3C8Pff+356y644475Me/bpHGky2SlB2PLXnab7aQJNK8jAhpqxoSG2BZBakZO4ijaHu99NZBczxtx6ToFEmKSRE/h68JuOsKDbonsEztNv39t7+wX3Jc82d8bSkS44w195UZmSubD7wp8Slu+1f3VT+nJf3Yj3tfK5fxdirHcKwLyYXu0XN7tcuf/t2/GQBhmN0JeO40uHn+9eny+vZauYrf+brr5sjvfndIfvm7g3LzZVnibMTWgBGpnsozJxtr0fW7jU3jHWc9W9f7/YO0gOX3HoDpTRnHJoJ8AIx2mGounsfRRNWJ8Qkpr2k1Pom1IWkS4BsKtMTPMO7HpceReEBCMcEj1Xe0jxwpOf6+dQXPc1nPs/ZpK6FV11vjj/Xpuc/5vv/Lv/yL/OY3v5H6mlJJSMmXZ95okPLjsHMDfg0PD8FfFSJVhztkH68pvxj8ZZ83Nq2ybW575xHZVVUtuavOPHIsYBtLtKJQN8y3vQNjcu+9i+SVVypk014SX5Fqqh51dk9JelosII1hktPr5dePfcLadfZzfGLS+KYcgAP3VXZIMVWMCvLd43MCic8hsOUqO5pbYJGzwH0s0HhI4z7KLKMDxsAQp34eZZ1T8qhgSh5nAhA6/G6N9DZQdRDVcyR8Whqwq6xYg9rwlq9Fj2+1u/tc3ndvC/zXtECEPdJUYQvxmAfPd2bd7k8lOrZEwDar1d90np9EX3OQ2KTVNlXsgTZJLaZENiaRX6Cv0R91+QD2nO7rKTqff+arn5JrP7uWUu+n53Jrmyh0h92vlaH7fF+2bt0qj77w8zMIFqztrM9urkkJGwbajluLzvup/VVf7777rnmFUHpdgcDq3zd6DXFIz/599kHeK35obd/Y0jM79lrLvJ/eFvhztoD2sc9/6osGG6B+CbULPEX7rera3/zc/zpj3vp/mcPU/vrpwz+R6Ht03j1tGwUR5yheWyj7t5TLyb4GBoUpSYTIwpYWIOXbT5jLmRNYLA/c/XXTPxT4/tt3fyGywPNKmacBdm57Ya/kXpZKbMwhcQB0G0o7TKwnEGIyfan0Q6gxSaBCwcdDw25sxZlHOvc/S3/zXKNtoD4t1Z2qpqqobDAuEauTqKKMDbYLNt+gPrl0VbBs210n+w/VmV3r0WNS007bPp7HU1CsMp2nr0PHQx8pO9ojZW/0yBiMqisrO6VlcEQ6qETTUdYvv/711874PazjWL/LV4jzKd5jkphoiA3QMomlkS7wGPWDEpJkl6GacRnugfwEFnMVyycVlhYofcScIvDHaekCH8DVScXRVFCmaiTAaQXqTimLLHauVUlQ95+iOmE2mIv2wz3S0Tigi0x1RP2cRPfypVpDcB7xsM01MszQ7zPaYuJG9VSmGu6th0wI5txVN6Pf3Wva87nXn4V46aTkQRakonNHDW1dfbhehoMC5Nk32vAPBMqpU4fkklUFMjpOokdfq1SScKbxJ/V/f1BRf4Y+Wyr33LPA6JmxVLU8UdcrDz13dPZwCtLVSjyhoSFmfvEkjFK9VYG6wxDshFKB9HyibaX7aIXIyQ5/+fHDB+TfHlwNGDjp9OaLIb+hknY11V62QA6TWTTfrLN+39Mb/nHf/pjjqS/i2VdK5YH7rrjgRShZwR9zjgse+AOs0Ov8feke+fIVqy+417++tUUe/PHPLrjeu8LdAp5R6HPaZBpw+TQAjb8WUYCqJZpx/l8pGgx48803JS8v788OEN68ebMB6WpHOBukqyy7V199tRw4cOCM23/22Wfln//5n+Wpp56Sq6666ox1+s/BgwdNx+7vd2cU6DIFAT/00EPys5/9THT/zMwzA/q6jadoOZlrr71WrGPo4K/ZA57yfZR5Beo+8MADBkhsTVSe23zQ71P98HsNvr+9fPBB+jB5eeWvswWWLVsG5Xu5XLuiUN4gWDf3atc5QJ62Uz1Su6NdHvrBf1z0JtUhpgrx+YxPZb3Ql4pmtqno9nr+EgIWt82wY5gV53nbe6BGPvWFtWYfVSqf7H5Smiuh3Q/xNVsrG4bDFigLVmdK+6ES6SIjKZJyWqEAwIYbJqXL1ieBYXbxD6JslbLudgJCQom0U8JhZHAc1oxR8aM0gpaK4vBGOZuEiSQ8PNQoIwoCjqLshCXv1/mnhvrFJCgyUK65Jlu2f6fWZDWdvW0IQJjFt2TLO788KEvzV8ryVBBZYMX0/Dp+qIG9peQtWX6DO8h09v76v/4mhRlFZp/zrf9rX6Ztoa+FriVkCteLq5BMsrIOSVscL1tfqZfCudGSheKpoECLLX0IYFagLUqee2W7fPkbd/y1N4H3+v8bW0Dn5XfeSef1DuAEdyaWGsQxqWGy9JIznV/qpLvuuuvk1O4WmXuN65yr1uz4FljUls5fZoy9cza4yAKrH6izzQpY6DJPsa6zqtUp1Q0kNsxc5xVXXDE7Puj9qHgeo42kiO7eajNOHzzaJgrWPQGb5+bd7kCDPcBXoiOd8h+PlMq4hJ7j8LMcgOoYfPPICwS/s84JYMZkRUodJVrayR6OAczoKa7kcEozB0hX9wBlZotN2ygQVp2CSYCj9VWDYa1gyKR4d+BWWVCA/M6CGvV4Oo98+Rt/63lo812vT+eVkk3PSk60TVprKwm6T8pQk83MUWs/slZqaxWMXS2L55/peNVlT71cboDOngdWpqQ9B14B3Jvlufic7wqwzShcc85ya4H1u1r/W5+6n963JRqI1penaPuINJvfVn9rzYK9EFA3KN4hvgTeNMyjpdamybSdmlKGQEDLvoOyEyDnFODPSEozTfr7k/E7KJ/75FrABGOyswxgAKW7czJiKA+sc3IjgSDN1sVpBitN/e8rxW8djFX87x/GsWlrnWcVtOoI80PHHSNY5C/FRZRTgsnr8c0n0EUS9UoICIbyYm7meIOwCya6QmWywU/8+kLOeM60nRRwvZXf0MenmmzliNn2uXRlrvznA1ulODOHcuJuB76rMMVcx/4mmGRb+6WipkfCbCmSkV0kS1Zmvu/+98lPflI+e89H5av3r5K//ebj8vefXsp1nxZ9dm+AtfdXTx6kRDhOdZhoPUXbwtKgxwFaDDWetrs8t7vYd0/9ytouHPCWtonV93S5XuuvRkYot9stC+YnyoYtpTDF2WXj9uPmOV+4aK14jgXWsaxP1dc27iiXv7/X7XiylrsItH77H26STSUVgFOqJXU6X65fdIs5v+opZ49D1n7eT28LvFcL6HykfeTYkUNSSRnndBtJecnYzidqJS8zQ1bD+v3w9r1ychS29e4+SQ8PJmEmTsYdA5KRECu1Dtjez5oH3+uc3vXeFrhQC3jqChRwliKYDK9pTZVNla1ymNLrjqgACSAAMIwnvweHe2b43DPmEmt/Pb6lY+n3z/zNFTjsT+nXM5afbzzW51n9T6pz6j5pgECm/DslOtkhUQkN8sbmU7CskXCxJEtGvktSalgwoIwx6cHx3knSbBAl+ZKT4iUmJtboYY2V7XLbLXejxxxm7qQM3UV0nPvuu88ksZoLPc+bJlr5kKLhg+5wsUT28+zqXeRtgf/yFlCd6OU7XzzHd6X6ob5Udrx62Oj32hdV1PaoO9wkc5ZmSfG6QjmwoVxKqgkCdg1KwFAjZUITSO5LkQ/dMs/4aVr6W6ThWIP4+7aY/YcmIiQsfok8ePcVov1JgbIfpkLJ4DBl00fGYW2iEoXdH/AuyV0wTY5MoQMnuXUu7fuq5z7x2C/or9vlu1+7RN741SkZyB7B30Vi1PwIqajolmuv8ZVR+rw/fMELChKkOzHQXU5ZkVmMT3uOjErxXAKLiwtl9/466R0KMPaUuUD8aZoYufdw96yNZZZ7vKlt8f2fv4U99aMzdEyPTS74Vdt839f2zoJtz96wYnelpAann/e41vj5yEu/kT2VBym9Gi9t2CINgN3iAe36jfjJymVzTTUHz+Pq9VptqMtvvPwmqWw7aALj5wPT6m+vvsp1hZedkeym++pvoNe/582Dkscz4OnzVH/bTpg5r15zjfSO034zgGLdzxLdRpdf6B6t7fRT71fH+J0lLxHspkpUc7+x4fQ5CSDporPdH9Bwt2REjaDDp8iLzx+h8gllRUkICcGmWrZ8lZw83olNs/aMecjzHN7v3hZ4Py2gZWTVj9ByoluyliWIAsWff+2k0RnyZwCjepxxQBCnqvpk2/Y+UUKbhu6TkrYqzZxCq1eqnN3nlInSMGmYtR/8Tfukvv4YsXx5Ky9162ADvc2y+1iZFODD6K6CEZdxW+//rk8Uz45N2ibf+5dvSgAVg85OhE7Mi6TiTQMVdChtDCg2HiDuVhjbtPTxjTfOkb17AfQgRwHmFhYWShxVQXxJrFc7++x70WUB/o3GB/fMwd0SlhAkT715Qu5E24qB1EMTxAaJa/g43N6Ecdjdw0JP+4cU9JNYHC6tJ/okPFVZ0qjqBXuujRlCyUjU9xhJVaWkMZfseq5MPvQpNzGTXofXhv9jnirvvn/KFtBEnfeKeencqsQ+f0qx9AWd623T/jCAU20T1klP6WNej4qKMov0GrTPni06n6+Ys9roCAUrc2ZBhaoTKAtnX92wWa/bad/7+cM/pgLKOLEr/7MPZZZPjAHItwWc91zn7MACPa6+VNT+PHucMSvO86bb+diUkMPtcz/PJmaRxnO9dt+FWse7/M/VApafcPOhd2ftAu1TKtNUBtE+Z8W2/phr0H4QHhBxjr2ox7RiCiUk+IWQ3BOTl4wu3kB1THd859Zrb5vte7r9V771wGyCqP6vor78MAgJLAyDVp7MygNbAenPVL+PNB6iciLiN+iQuflLJRYw8GOvPGKWXexNfTyqq5xPrPFA1xmf1G3urSz/khUvVJv11lsT5cSxI7JsCXYkwSJbgJ/ZWONl4+Ak8jJIiKTSSuQc4g8rkiUqyY2BGCSGCA2POMFl2AYcBqh7oetxn13M76W+X/1Nc+YEyMZXt0MAEky1wD7JvDJGusJGDPBWqzYGQipj4Z8SIOk6+gJ2+DxsJCX9IdYUHhfKue3SBQlMDEnlCrwNIPbhCVCtr2kHQzJPXi7ZKIferjGXMTWhpDWQtuHTsmGYR7ns0jfhkBN9bvb0Tpu/lEFkE+VMx0780Owzps+JshX/+29+ZOxEtVO1ak9UYoQhlbNPO+Wuaz9pzjEgp2SSJMx6KkCMTzk+UPzJHMDjTW1r9U8cOdIm8+fPk899bonRMzPzqGRBcu4775xiHZUzqUjtH0S7nYckL3sFyb1bGmQAYpnENI3nnSuaIKJt58+8tPLmAtFn/qePlsnHP5wniXFUvIYYbXzaR3oHx2R9SYPEJOa/7znq3LP9+ZZoe337W18+b2xXz6rxXT97/H/7tZvr/EqZ7IGkZEm62y/l2SovHjgiwxGxZ4wvnuu930+3wEWBuspSOkXcfHoMP5k7AeD0nn+B3zRLS9lctQzCNddc8196hWVlZfK9731Pbrnllj8rUFfZ8L70pS+Ze7M+rRvVCULPryDd2NhYcz3z58+X5uZm+eEPfyibNm2SG264wbDseiqmbW1tsyBdBf4q84ka98eOHZOvfvWr8n/ZOw8AKYvz/39393ovHNcoB3f03kUEbCAqNtSIWKJR1NhbzN+W/BITE2NMNLHGQoyxRMWGYgERBKT3drTrvfeye7v7f55Z3mV3b3dvrwB3xzOw977vvPPOzPt533feeWe+88yePXuwYMECFS+b0ffkWHyriXQ9hWEru5yHZcuW4bPPPsMVV1zhKahP/nxvWqi9xGeLuqH0+vJsMMCnNCXQqSPAFbTfPb4UL/xhITL+Voo9VDkZPC0BoTR9MbtSmp6g9kgDCvdXKwFHWzlla6+OjdaewmvPC6f/n3892aZQ9xBVrrQPSu7YGDRoEK6962fUUZKqkmBLGH3jeGR+KGYsmIhDe0loRY3kA8YmIil8gNrOrSpBQJgf+oT3pUa3MvRJi0Q8WdptqGykyl8kAmOoc5Uawlm8q6cGLKuBprUJtBXUVpomVGtYrK2kqS3oefbFtRUugka1+tP08akkuCqgUVypNN2pqyvJqEIDWVbhBoq5NPWUo2N+b9/7llehbk56gU/XzjHenrjOIsglS5YA0S1knfMgNUaSdSsa9PfRZwdx5YVpZM18kDottqZbRQ2aH/24nab5GH1asOmJ17Mn5Zk7cPmnCS08DcLhMFyn+O7HL0l8GIW+NLUNO26Ia6aOt8LMKpTurcOVv726U6evlZWukTjmk/oivA4WcoyDy+vMfZtx/ZVn4Pd/W4bd6STsIAs+NWQdhN16mnZLp6Mpflp0OPvcWcrP3R/+2OAOzioSR4akOZd1KWNoWhYS6n79Yy5GDmtdvrLl2Q3UoZ027FIVNcf1wuv/pY/h85VAVUfWWTJJTKoJdXnKz/79jnfcbN2VhXpTlMfnndlwne9Mip1nTxhMFqZ0/pGqzOXr+d13g7Bm9UfYums1iUBt101PDZcHqYN+0vRLW8XLQt3Fbz5LokZb5747Huy3dWc2brrTMzNPx/nqr71r+RxKS2lqIxqRHBjo3OjL919VfR1CqcOnjoS3cX2CVOeN2UyNMeQGTbCJS7evIkEADWCxBATQlNyNZEl1DH2U01RJ6w6ocGPH+OO8s0bgM+rALiluQF9qHImnKSOj+xSpEc6R3EEU40cNH1YMHxGLzCqalocaonbTtDhjaSres6YmYzlNCRlJ8TeQqCiYGmD4mhjofWyhhqCQGLJUGBaCoh8O46wJrb9JtGvI12nQAD+UfLtTvaszssswcvB4GEj0wBZ8NDdozABtFW88/D+8/+bzrd6x9gAeVvg5mX7WXPqg308joul67i7A5LFJ9tAsGD9negq++D4TRTRFuulcko8HG+z7SbKsGph4YFAFWQ+2tDGYs606hT1iWtGuvebHeeXBfXx/c1k1+Yx4dY9PovE/XLfwVG5px/Mzd9stC3HNZVXqumv+2vKcGcOV1TJ+F7vWVbQwshQC7SXAdX6+X7X361lUlm0+cAhGf9uAjlvOmoLMsgpklFaoqAfHxYC76bZk5bUql9ubtoQXAq4EtPdMiz6exHJf436yjjT2UDVNkZaDXUX5iA8LR9KgKHy6bTvmXN76/c/Hu3OOdS53+x39OCw/F+z4udDqc7zO5e8Lr69U39UJNItIkN4Psf3DcJi+BWOi+pCVtIEk7rC9BwuOFKF/SIp6L7zyyitYs3U7zYxAArhjdRzumP1hY669jsPviMJ62/veMT/aelNjMw26CUdZTS1SJ6Rq3rIUAt2SAD9Hl5x3Gb5a9gm1o0xs1X7Fz8fIFOd2An6+uANuS+UuEorGI21CiprpKJMGskU2xpFBhSuc6lPau0t7fy10qGv96le/wvN//S1uunI0WbYxkHVXIxroW7CRfqSMoDrZAPztjQ1OAwG18sdoDsLn3+7DdOoQ3rOdhGRNRvQfFYeduzKwa3cxBiSFw586y/rF9aMZL2xCOf4O2nrApOqs6zZ+gesvT8FTv7aZdcrMKaNnvwqfk+VZ/k7lZ53LEf7G4nq+5jgM+3e0/YSZ37f4ASz57HWkVx4lq7hkDfKYdbl8GvBgyvGj831ES67VUjt/rsfq9WTpSL8bZblNGJ00iAb/hbQS6XIEPHuSY7nLbWc/vvGtfWrSVomQRwF1bk+jgXeu5bI9/9TelLeDZvswHbXn31qrx3mjLgLPfMHXm89xy1HbfcJp1JCYO+dAPqYMPRN3PXGsR9xd4g5+XM5baKaAgzS99t41GUidkUxC7hCyTxqIkZOTUVfUiPW7czE01Y8sb5GV0v5nYPJZtm/KKbPmYgqttlW3d0hOVoWAWwJ833M79CtLXlD7k0fG4kBJI1l1zkFZGbWj9wmBxWpRFmLXry/G9df/WpWD5yyYZW+j1trRXRPgdvVp06a5ep/0bccyghPnMoYdP8uO5bbypD/MxGQJxhSyEszijjHzyNjJsf4TttxWQ9a9a4c1wGLSYfSEUdhfdZQsWh4ljmOpTbofuD16ZFw0zpzOLU/A1YtfpbLvr2rd8Y/WV3L/4vPx5tdrkTYrGcUHK/HV+lwSBwaihKcizqxBUFwADYa2iVa0/gstnoFTE7DupX2IHRWBGKr+GagZwkLvh9LGGlTTlMhxMYkIMAWp951Wt9SOlaUQ6A4EuA3q7QXe+7zWf7oNr/3pzS7NrmN9YfiMQcjdUYKh5zgLZuro3T5muM0wQ+aeHMyb474//qmnngJ/a+UXZKOouRy5eXkIoxnShqeMxIwJQ+1tZ1y2RAbGITOdZjwYHu/UbstttrlUXwsPiSHDQyanuo2vJ87xt8dxO+dHy7bS965N6OvuWN7/wK9bl1/uwoqfEOhKAvzOGkT9NPzO5mcrPiCFBiST0ZywePsz1RXpcR1o7U/f4Yz5LuZwKXLuU9jy9R7cd8ODqs7N9QatLdyxDq6ebX/3gl/WMGz9cacyHBZkCMKMS6aRFdYclfWsDSUIbArBr351vz3ez1d+5lY4rJ2r1sbjy/PuGEarA/A5aO1LbK31kftvVAMi/SxkZKXKNtswz1gb4heKXyyahQ9pBsHC3RVIpJkL+w7VxG7RWnbw0xv7VL+MY1r2nS4r2jXlPAyNGKP2brJsQn7pQZpFJgKV2Q2IS42gGW0C0ESzM7MBtqCoAET1D0H22lKkzIwnNbFVaTmGnd8fmT/kod+0WGqjCiLtha0fjMvSmppG6GkAhqnKrOo/3M+yqWKTErTSuFb61tKpGSENZj+MmUpG0o61n1WR5sW6kzQW59oG3Tpm3/E7le9HWAKRR2V9ArW3zZs3yd5+x8c4MnaMo73rzJTvz3fffYXeCWmkXQtV9UwtHh0N6GKhbhXNtNJ/NLFx43jQWR8SWtfQrCyGaa1ljTXUp+VP92UzWUmOjYlV9zxH8+PqdFQu2YHzzxoAIw3WK6pshl+gHz76+giefPL2Dr2j3GSvS72Y13U3/tLetztlfIq9f3fLziwczqU+4bOvPuV5V/m84y6s/ug9FFbvQxLNLJhMhgTZbcnKxbeldU5tRF0KqZdF1vqOdjxBCz2nZVaYq2gEVF+d455uuz5mzBjwr7e6rVu3KgHtkCFDaPTBeKfTXL58OdatW6f8vvjiC5pCzPZS5pGvbAabrduyldwXXnhBdXJoBz/33HNKYMvi3m+//Rbh4TYLb3wcizdGjhyp0uT458+frx3mtOR9H3zwgTqWG/y4c92T40KZhbosUuusUNdcSaNH6B5VZtU8Jaj508tLR5bl9cdG8Gresuw5BFjIoaPKVRC9TJ988BL86501KMitgX8zUEjThif60aiw0BDop/Rt86SSkpJghK2j3FtgbpDTKqycPo/A9Oa27c5uNTqWK77Jsf1p+tEUhEeHOh3OFWUrVUY2rdqGURNGopymBA23xqI624TxU6Zg9oWz8cifHkJQQDAi6LRyqaGdK3OBEX6ozWtAyNgoGm1lodHrtgqmsqZLlRHN5dP02Fr+NT9PSw5XW0nTNLjkUQsfFh1Mo5xqyEJlItaR9ZLSuGrEDYrUdqM0sxrFW6pIWNxor5Tbd9IK84sKpqmAvKSxb/0R3P0Hz50ejvH15HW+J7gyc4QsLScE9sOKnV/TNJBkYZKmnlyzs5IGWJhUQ3J9eT0a6sJpLMJAPE0NJuKEQFcR8KVc4EY682Nm5O84TPWEImrUD4SZzJiZ6mlKlI0luGjapaqe0FV5chePL/l0PI7Dr/++Wk2Pqr0nVm0qxMhU28d3ZEQIjZy0Kuux3uLmfffeej/+/cUb2JqxG0mp8aijsotd/9jBSL48Df/7cjWG0XM7/7wh9iwUl9ZgCwkgy+qicAWV4ey4LsWzCfzjje9x9SWTMWncQGzfW4TJYxJQTR/dLRYSp8TG2ON45+ONbstQewBa0RpUtKXrPu4s5TpdUHQc8vPz0T8lFWfMSlWzLjiG5XU+V363FlKndqJDJ7druHSaGtsbM9fw7dkuIJGNFje/n3c1ZCIvpxxxJKCNoGvGjhsp2C84MJymiq1DPVm3jY6ijxVyBpo6UXM1NSS8TYtDfGwSmqhhePuy/fh42Ta6nlQXJnEuu3OPBU6Kj0RFSR11oNOIWxLTDZ4ajwObyaIYTaNjpncz7cDEyYnY8skudUQ2fWTGlYQgjDqZM/Nqcf74ftiwpQzDz0ugDmqowSygiTPZcX6LDlRj4f0L1bbrH752fJ3Y7TzYhBBjKqISU/H444vwx1d+h4K+xeq+czzu0NYMDB8w0n79Hff5ss6dB7/7zcMk7o7Du5+n04c+CbX6hqOJ8sqC8SFDUtS+gs3VqKE6RkS/YPiRWFfH/+jZ53/NtSaU7K1Bn9SYVgJbxzzw9fT2vtfCOtazND9t6e7+1vZ5W3La086cY7/urmG5rma0xnSYo2t8si0ENAJ87/FPc1PoPfDhth24/7yzlNegPjHgn6P7+8p1OHPGBY5esi4EuoQAl6H8vfG73+zF7sP1uGTuJPVbufYABg8kC2xk/bmsiAQcx+orXZKoh0gcnwte5zrmSy+9hB82VyB1cAr2rcnByHNT1Tt++PARakp4LaoMms5w3twr1Ca3NXGd6nD6dhzanKHeQxlkyWXC1PlKeMaBuB5xuGA7TEayyBFwvH7A+9iPLY/wzCXVRbZ6HfuLEwLdmQDX3w4dOoSNX+3AqDOHqvoh17EKjxYjsD6C6o6PO2Vfq2Pyt0Bhfi5NH04dg2QOcurwOLDVJJ6FzdG5vrsc9/EzxxZwvv3xMM6enkaWPLhTkQReNAgyIbE/yqrhtk6llT+PPfYYmmrSEVwfiEPfF6GpDKhoasR/392Hqy8ehgtnpSnrqpwm18/e/WwPFt1wn8rjS1RP/mHzDmynTuBEqrOzy8qnaUnr++Dpp59S2489dsj+jcUeLNJ1DaMCtvOPxvDj5R+iLr+GvkFIFDt1GoymAFx168/arEPy8fzj9h6/OmpHK9xuP093Wcmk+AeNstUVeD+3nVUebkQBXWP+DnV1yj9ogMd8aPz5HuA81JqqVZx9ByfgrrvuUtHxdde+Gfk+YRfHs3YMG63CpKXR9fbR8X3CBgrueuRO+oYwYtD0YfZynPuMud1zH1myMgQOUOV/e+L2MQsSTAioDmvuj2qopG9rEqSOOJusxu0tw7rMMgQctKK6uZG+8cOoXVtnrzNwG3VbjtvV+Znqbs6XPC1cuJBmYVqHIQF9ydhJNlLJ2Am340f0DUEUDUIo2F2GsWeNVuKOsbMDsIUsbo+nmalGjuxLZXcTEvskqNNetmIXaprC3XLQ+kpeeGohEiKjkBgbhegzQtFQ2IwsGtRhptmQeICHocWfZnUgO+rH+i8ceYbGBlObjp4GQZPVdr8mqr8ZoCdrcQF+NLghOgEpA1Ow7pPN9vqg47GyLgS6AwF+p3J50tH3dkfPQasvcL1w7OwRWPryciehLvcTBhgC7QKugqNlmHKzra3aNU0+Bzb2xd9aLNCKqTsCfl/z7Lyu720uW95c+U+yfuin2m05LiOJ4pqbyMqjORD9+w/Ajn37kDwu2TWZLt/mevJtN13qVajL7dm+lJldnjmJUAgQAb73+MfPFj9Lrs9TV0Di54ANznC/wdDJzmJ39kui7waur7fl+Nn+acNKTLt4olNQrstXUN/Noa1HyEhKf1XW9ekXq75HBw8ZRAOGrneKf/45l7iNR4vUsY1H82vPkssrzXE5GBbZFwPiByiv0pYSmqGJNBhk200zlsb9P3U0M2BlTi2iB9j0T9rxBXvKUH2oARdde5nm1ebStTzha3vf7+9GZEoQMjZnIWmyTZ/BMyWzoTWeXaDP6Ajk/EiDIDaUIWYICZXoGykiIYSMntEMyzSbqDGGwtCgptqaGlWWgvoLhwwZim1f7Mf9Nz+i+hf5GjbWFZHwNwh+pNZlzUhURLS9jOeMR/WNRDT19TAXd87xfuT9R2OPui3nHRm7i6c9flp7xnc048LVV42CHxmDY2ekQcCTaFAvsAmVNPtr6gRNRK122/9UUdtlfFosslYXIHVmDcIjgqlNwt9mUIr6tEqKacaW5MGkfz6AUNIHseN7llls+243VhytpQFoRtRTN1woaV8qaaZI7q/tro6vEX+nv/XWW2SIqILabw3qeu7J8MfZ513Sbd5nWj7XLPsMBysaEFhUganUvrzbrxqLbr+x2+Szu15nLV/Ordaar8PSTDNfmUt9E+ru3bsXb7zxBmJiYpRVVodo1Cpbdn3mmWfU+tNPP223+MiWWz/66COwVdoaKoQmTJigzDazFVdHV15erhp0eNqTX//613jnnXfw/fffg/15REoAWbXieNlC7MMPP+xkRbKlpYUU+++SSe0t2L9/v2q853R4mhuecsnRvffee9i8eTOuueYaJTz99NNPlQCW02WLs/fcc4+y3sXHZGZmKuHrzp07VRQbN27E/fffr9Y5j4mJiWqd/3A8a9euBYdNSEjA2LFjcfPNN9P0Ma0b3ewHuaxwgc+OX5iu7uOPP1ZePKJDE+lqYdgSLp8/XyMW5Do69mf397//3S7S1fZz3lavXk2NGAUYNmyY5u205Gummeh/9dVXUVREN40Xxw8vOz4XtsCrCYO9HOJxV0sxCXVLPO522qGj968+igTntneA0z7Z6BkEuBI7dfr5ZG3iKK6aPwl/fvxKrPhxv8p8Rmgp5swaiX+8+T2NhnmszRPiF/Fnu233vrfAVTSdn1ap4fRj4lJQSKOSEukl787x9Hr3PGQr5xz3X3zOfGz4aRVVcic4eqv1vmQNkexV4uJRV+Hw4cMYMoFEX3OgOic4zb+9+hwqSZAcHB5MQhk9NZaROGlQKKqy69B3DAl1TRaEhVPNk1w9ib7iyAqv5sINtlEs2ra3JXdqVhZXeBTqDhhBViRLGzCWBG9jho+lKb83oYJGt9cam6ghtBktJS2YMZgsGKUb3SbD5+KNQ2FGMRID+rXqOHIbWS/wZB78446yF19Mxbr9P6A5thYlZFHxzf/uxughA3HxvIuRkJKMOykMhxUnBE4mAb7nuF7F7+ulq/8HPyOVO3XlZPkoEGcMmK32dbf7ksvrTHqG2LGlWe09kZFdqvyCw2Jw6UUj8dGXW9W2tz9aJ/bXX3+NYhpdGmNIVvXHGefNVM/jjTfeiDeXZqCorB6jhlDjBH0U7thfAJM+CYvvuNNelmkcH330UazaVK5Ekcu+3YvoiABMmzSIPrqHKAvrnJfte1hAGN1p0QznXcs/d862dZ36DRxpf7e6Y8L56sgHLL9XfHEZ1DkdEDVIBeW85uSkk961BTVVLairraABOkE0RTe9W6hzZwQJeA5/U0gfrEBJUQ1paf1JzBusjmVxbElRLX2cp1JjTF/klOera3Ygq0WxnTjGuc4fFOSPKOpMCguMUmmFUAOJv8EfGWsKadRzC6or6X0bGYh6mloniBpWQmhaxhZ/HQl1A9BCQoWZ05Kx8+NylNPU4TH9bA0BnBED1bsztxVjbPJE+3VQGXT5o10jbant5mv2vxXv0jvf5hMeTR2K9I5sPAqq4zypBWv3ktled+MdePc/ryCL6vYv/nsr5sxMwcB+USipNKO0rkYJHPxi9cpqbghZwLGSVWE9NaBYqK7B0ytVZtQhMiySpr2KdBIkustMJYklPA3+0cI71rM0v65Y/uIXv1BTBfG963jdefu/n+4mDvd1RTIShxDwSoDvw9suvdAu1HUXOJOmm/1/3biB0F2exa/nEHAs94tLajBx7ADVmL2KxLqVDaHqneD6DjoZZ8f54vYnrmPGJY/H/5Z9gPpCM0aMcRbp8vdh/9hBTvUizi//+FiOhwff8FJzXF9Z/tJSNFOjv5UqCwY/gxoYS8O26Z1GDfOhoWpqPxOJRnytp2hxy1IInAoCfH/zN9k///lP9U1iIEFT3o5MxAUk4+pLr3Fb13R8TrQ8czyOz4rm39aS656v/uMJBAZHYuJoqtuTJd0ImlY5MDgaf3n6A7ftXxynY75npMThg4+WI7EpGVMvnAdzLVm2zM3EynW5SDxco7Kwcn02xk252H4+LCjl51x9i9WYqF0uCeF9o/D0jcfbRjQuB/MCVRxHsww0QHGqUxi1owN/mCGfA9fL+Tdv9jxgtnN501a0fDzXBeZf+G88et+lHoNvpwEJP//l8c5CPu62629X3wMRZM03zGEwPZeLWZuK6Jvgtx7j4x0cB//YefoedL1PHI9RB7bjD8f1wJEHVZ6tZEwBxz+NwHkOM0Xj7icX2/PUjqglqBDwiQC3BV122WU4unk3xlxg++7vN5oMIpDb/1MumgP8kRDeB4PDjrfLx4cnqAHZjs+YY2J87w7rP9zRq0et276J99FArSFk4XwndDkWHCArV/EkWGmmb5CyXGrHmGcTk0ST34Cpg8kKcS4OHiyj2fQicbQpF4fzDVi+hssc9+0QXG400SAG7iuZN42mGt6cqfjHxNqEMHVkIa26uZ7KsRDqvzAjKMjWf+EKMnpoCJpKWxDTP0jV00L0wRhEfQxcb2NXSLMNehIYusYl20LgVBDw9N5mow9sTfflp/7V5dni54/72r77ahnOoD5Hbs9sJAuOwWTBkad9Z2Hd6GFjVbpcnvnS78bv87Ycly1/e+05BM0Lh7HRJjFhkW4o1RUH9eurBuvwM9uRduS20nbdzwySBwxx2+bLYTvanu2ajmwLgc4S8OXZ6mga/BzwjCA8q8q2yj000K+vMp4RGRzVrr4Efra/vP4LFI6g8mKws26JBw/6VdCMuw16mPL0yMsuUd+j582ZZB8IqOVfi6fuTH7/297j2j4ui1zbeLR9HVnyuXO/Vm5Rg2r/1yzLOsY1Y2oa1h7JQTUZGGNtBVu5ZWu37CoPNqrltddeq5Yd+cPX9p4j96vvoLpKMjRzsAJmPwvMNOiIBzHoSVQbGhOMkfNScHBVDhpyWlBKYsY6mvWBLeLmb6vEoKlkWI5mWNbKUu7XqqG+xqSwAaos5fNkFxMch1gytBNKszVrdSTXPHsziqKFPZH3o5aGtuS883f7Iw/dgV2bczF1cir1jzYhmOp6eqvtHZK3vQrTrrCta8dpy9Liahgs/gj3i0U6zZY6gsTo5cZaauejQfgBNKgrKl71AxpooJeBrBBrjuu2598wkzQv1ep9yDOPst+Gr/d3+29Svj7Mjb/j2aXQ+q0jjreDaOd4qpeO+eS8DqR830LVCO1+PdX56wnpu7/rHXJuKbSipYBGzI8gT73DDjerLAB9+eWX1Z7rr7++1fRLn3/+udp/5pln2kW6rAi/4447nGJjU+XsWPz5/PPPw8/Pls3Kykp1PAs7eVTX0qVL7ceZzdTiTu7tt99W4ll+EWhTrrJw9/LLLwdbo3V0H374oSocVq5cqcTB2r4VK1YoUStvsxiYxaSaY0uw//73v1VcnA+OWztnDsNWy7RtFsyyULepqUmdC1ucdXQsrH322WfB1mh9nULnk08+UVG4CnHZkwXI7BYvXqyWRqNRPcRRUVGqA4IbLDTBoQpAf6qqqtQ58DaLltnx+TJfHg0fGRmpLBR7s1LM1lCYw8UXX4yrr75aNR6riDz8YW4c3549e5QI+JJLLvEQsg1vEmi05JNooMjaRkDbbl0MmYKP9imoBOrGBPjZfuCuq5VQl7PJ4lzN7dybgyZzlL1hX/N3t+QXRc6HBRhJFkm8ufrKRqeXCqe/9MtvcPcvNHt8x4/m9CvqQtymz8dtf2QrijJLkDDouJCWj960fCcuOns+7r777uOROaxdffHPsOSHlzHs3AGIGRCGYrJmG5EUgoKdlTQttwV+ZEmQrZqw01l0SnTE65xWez6Imcnm8h/4ULcumhrpdu/KxIR+w3Aecedpvo9mlaIEtajVNdLI/L6Io4a4kjrn83OMzBOHOhoVtf7T7fjn/73iGPy0WedrP3j5YKzfsRYpo2sxtM8YTBg2Cffee+9pw0BOtHsS4HJB3Z9kkY2d9nFw4YUXOpWN3SX3nF/uIHB0ju8JR3/HwVSO/o7r/LHBP66rsaCWf5rjaWWZBw+wKNhciEZTJPShA6kj9sJW7wHOF3+QcljubJ5z4Qis3LIfqWl+aGppgtlajR30Dtl71IhrqVOW0+wqx2m35Xhw2qfvPWN/t7qG/8tL3+LO+5929W5zW12P4qw2wzkG4Oti3GvChOmjUF9fh+KSYujIkkoIfXjztGpaI0RznYn8aNobEtPW1TZRh0+gEvOGBUWqj3MtTn4P8gC379cupYYRm/I1gQbbMO8MEnVPHzKNBrHFU122GHX19RgxYxiytxeiTpePnIPUqD2iD033FqimaqyoaELo+Hi0NJsxKC0Ku9LLcNP8Efho41FUkgDIz2CCNcCKhpIm7P8mF/957a9aNtq15GeOR85mVh9Sg+WG9BmIhno9Ft/qXozRnsj53uK4tXv3mw1ZGJxsRm2jDtSujmhKK3hMOHIP5aM2pwnRg0NhqmtR01uZas0o2lGLedfOxubl1PDnRYjN19FEVNpyrvWstsL7up/vPX6W+Lrv3JdLwpIBqmxYsS4bYya1fkZ9jVfCCYH2EOD7UBcajqLqWrIwZeusdjx+R04+kkeM7pbvU8d8ynrPJqCV+1z/qNxYhkYjdeAa+4Drcl1Z3+gIJS19tvz7p389hdr4eoTSgFR2/H2YSWK0R2970m0+tWNd0+XnztRInSKN1E4UoCdxro7ee2R8wEAWR4IDqX3RgPKKKhWGw4oTAj2BAN+rPDsaf5OwS2gepJ5hx28Td+fh6TlxF9aTH8fBFn0//PItDKZ2Ynb8vZWRV4KgCNvAY0/Havnm/WnDJjp9T/G5cLlUQBYUkxKTqH42slWbGKfNPzWg3eE7TEtPi5/3szuHfm0xUQF9/MPx868zjo/n+jW3F46n+qir09oRXdPh7wGeinTl8q/IkvIQ1cldmFGC0oM1uPq8a92Wi65xa9uucWv+2rIr7hOOyzXP7MdW/jjPnspyDiNOCHQFAb7Puc3lyuvmI5esRkbF2eoTRrKmH5EcoWbc+fEdbnd+2J7cpEmTsGnDD5h60XHxrn0nrRzdmU1l7RWOXj1qnZnwN/Em+ia+7ILxOEqimt3781GRUUOzu6XR7EFJyN6dh3gS1rFLpdmfdlbU4x//2Ih771hAA3ajYI0YSHGc57XM4faWpV9uww1XT8c3D+9Dw7RmhETZ+il4mb27BEmjLTCRWMXaTG0ytl1OLCMG0JTFNJ2vkQZMg7qCud1Ha/s5vD0T8X7JXvPgFJlsCIFTQMD1HcjiNH5v5xwowIQBU07Y/ct9bYf+3yHVvxgdF4UjP+ZixAUp9P6tQzgJZ1nsxa4r+924bEkIT0QKWTDUHddE2Z9Z7pPkZ7at+kdXXSYu5/774YtIIvEat/dqjutY39P3L7d5ixMCvZ0A1+e5vZ+/rwb2TcK+vHTqx5+EtFu9f685cuFn9tZFt+GjVe+T8RCdXcfAz7TWNqOF534FblNy9+3F8bDewbWO5agB6KrvD84PP+PvUL+Wo6EOLZ+8rK5tRCQNMk1IiFF9TdVkYVVn1iMsKhTxySGIm9T5OobWl0MGfZFxcB8CwgJgpH4UP12A0rgFBFBbVJQB/abFIlZHfV+1LfQtHY6qhCZM6XcGKmrykETWitlx/cexPUwrS1VfS2ilvVxXgd38YaMo3vps3Bxywr3UvXX7g1i29BVUlB3FkEGxNFG6FT/tKAPXx7dt20YzKxyvP2oZqiXDdKR6RvmRWjz44EN47G+/xrSZU1BM/EJDwxBPfXrMi+/R2qI6+FtaVzJZnMs/zXG4nuCYmXbtu3N+e0o+uytD+uxpw9HA9pYcK8zVVhI52jq3PR3BQl0WXbKYlUW5DzzwgFNQFsayu4nMsLMrLS21i3RZjLRo0SJVYLF1XJ4e61//+pcSfs6ePVuF1/6wkJRFujy9F+8LDg5W1nS1/a5LtjrAIl3O32uvvYbhw4djH029wCLgdevW4aGHHsKqVatcD1OC27lk/fVXv/qVEqyysJan0GEruhwn53HcuHFIT09Xwl4WrHJ+OA12mlCYz4dFupz+f/7zH2UtmIWw//d//6dYKQtrbtJ3zVBDQwPY+jC78ePHO+3mF/COHTuUX2xsrGocY36a45clv6yYmYE6KDTH+WDH4mlueOWXiSaUZn8WELOfp8osc+XGYnbMxFfH8bJQl/PcUaGuuYruS7o3SSPok9OTKXlDrPd72KeIJNApJcD3cllNEL75YS/mnTPaKS/PkDXby652L3Z1CkgbXFGpJKt73hxXhoYkOQt5+Rn/3crPlehj/ChbxUmLg9O/5Rb36XO+eRr1P7/+lArOYl2OvyizFH4lobjluVu0aFotb7nlFnz41QcoPlxBgpkwHFqRj7AEsh5Itz9btwsODFDHNJHVoCASM7HgiN2RHVmYN9r3BkWu6OWsI/HydOdzVpHRH664bt5VhNjrpyuvubNHKYsi2n5ePvPS11Q5n+ro5bSucXj7yzdRRBJfdnVVDWih55ktD1500UVO4U+nDT53/mmdTMxKnBDoLgR60rPZ0OyHotJqJMQd/wBz5bhzby5uvMO5fukaxnHb3fk7+n311VcYOnSo28YJLR5+pvmnHcfHZB/dQNMNFiI0sBCl9G47+7wF9v3acSdjyXl6j6yssqDR9d3Gfvze1fLdnvzwe+Xogc0+HcJh2TGjuo8a1Ec2f2hr7zTXSCppGtoZZ55F4loS8xYfE/P6h6gPdMewGnMeXLKPedMMH2kpwO6DFjWgLiQgTAXndGzN18DwsUPxfsEyGtWsp+kWA3DGuH5YSw28u6mD6bxzB8Iv0ICLL0rFP1/YivlzBmEBCXc3F1ajmKwrB8focXRDFdKSR3WImZZ3/jbi9wHXz/newtldJzxwvJZ8H3I6MZQwD7oLj/qABu2sRmhUCAoPlqKGBuJYg6xgYbQfTZ0cH98XqeNTsPrdzW3e7xxPW+5ENo7wefJ1ZyFIII1KP5Jlwcjxc2UQTFsXRfZ3KYHJ587Bx9v34O5zznSKl8W7z3yzBrf/4S9O/rIhBE4EAS4P+edLfeVEpN9WnJw3ft/9dPBH7Mzcp77VA8kc45nDZnXoXWogy25NtUbE948jA/22Qf0s0NVcc0MzOEx367zQ8idLIeCJAD8rp8JxvfTgwYPYl+Wn6tL8vZU8YAL+/OeLfc6Oa955m39cD+X6ujfX2f3e4j4Z+3iA5zP/eBx///01Tt+o/J31n092g/e7c9wWWPt8LUqzCxFMzMNr4zHr7Au7dV3WMc9J/H1HfTicZ9fr7+58xU8IdJYAlxUXnnM5PvjxLYw6d7DNeqs1CH1jo2Cp1yFOn+h0L/L9+tUNy6AsvlGbt6NTbfZZ5Zh440RH7x63zs8efxPnUVuInroPrrp8FLWFVFLb06WqneGuR36JknQyBBJoUu3zQQhW7QLnXHBDm21cGgzmeMet1+KsaUMwd8pIrFpxEFOvtvUtBEUFoKGsBeYGq7oedTRTXxDNLuXqSMeC8WeNws6NuxFOU0fH0RhHrd+k7pDZYznpGo9sC4FTScDxHai9t6f1T7PPwHsi8sbl3p///GeldSi1FJJgdxtKBlTBaDJi5rkT7M+Ra/nX2bywXmAVtbVNvWi86jPU4uPndh1ZEP7Hb17WvE74kss51jS8tOQHXEmzsCb0jaABUrn4bm0W9RXf5VTun/DMSAJC4BQS4GdBq3MfntX2N5a7rPJ3H+uNHNtmGotIQ9TOthkuD9lwmWMd40RpAPicPfVrsY5E9WuRrmNVuq3MYk1GTGIUWQQ3ImNjAR7z8C3mjo83P2aXmpqKq25cgGHTE1GZTwbXzoiwH8L6DX+q8IybMcrut/v7g6oM5/rY4U1ZJI6OQ2FVqdJLuDLn8t6XvpYGMj7X1vezPQMncYWvk9ZP06iLpn6aUtVPc9nVQ8D6uowtRRg9Z6A9R7UksOaZMyP8qB6vD1ffwO+99x5q8hsxZsJYezgW6TZmo9VM8/YALitaH6SLt2wKgVNCoG2hLgnBzEetMNHUKIbo4w3bnnLL0wCzUJeFqY5C3ULqFGdRLDu2bsuuoqJCCV/ZaiuLd3mEBruxY8di/fr1qhNh7dq1Svyqdjj8eeONN8Bp+eK4YGSB7QUXXIARI9g0MI0QJT+2Ljt9+nSVLxbBhoSEOEXHBRmLizV/Fseyxdx3330XGzduVGF5uha2/qGZU+/Th6bQOWZ1TouMLfSyu+GGG3DuuTYrnGxRlq0JL1myRMXPLz49TZPrzZWXl9t3u1rG5XyxYzEwj2LdtGkT2HLt5MmTlSiZGz7/8Ic/qPy/8sor9rQ0y3h8jizWZRE0xzFq1Cj88MMPKh6Oq7m5uRXvFpqSmKciY8diXU2YrDza+DNs2DAVgi3xdtSZMslKSgYdTfdom45uXX0iWdTtI0LdNln1gADciP3+f19D4rFRMCzG2kUN3CVVgT5bkOXnm6d+8OZy0gtU45RjGD5uIY3SfGfpy2pK6nEj+6O4tMan9FkAwx2QG6gDclf2fhpAHoxIxFFj091eK06c5j2/uA+vfPhPmEks0yc5CqXpVWQZUA/DYABzAABAAElEQVRLE+Af5q+m9rRQo1dyUj97douoQXHCDRPs222tsNXB3//ztx6DxdDUAGXU4Wky+3sMs2tfHm67+3aP+3kHc+AK2Ypty8HvhlBdH2U99uIHfe/k8ZpAD9/J11ucEBACHSfAoka29u1NqLubOiK68lnjcq29zvZOGKLeC1xPW7zoYpsgs70RdVF47d2WSNYH4uNsjQi79ufinU92dbhThBlvXmObztZbNnk67vMvtZV9/LHc1kAaLS4W8vKPR8+6czwQRClQaacjbw67+Jyh2LknQ019wwNRXF0oTekb1jeMptgNx9xzB9E3wT7k+QfZg/XrF66s6n65MgM3XzESE2tTcCS7EgcOF2B3XQWeeM59h7s9Ah9WmF9X3qfuknS9dxMSEpCzvgDzbp6NI32zcHh7FoyGBgRaw9A3vg/SzhukognVtbYO6hi/Fs/I6d7faSe6cYTPz3btDykra0r07JhRWRcCJ5gAN07/7qH78e2+Q7hglK3DuqimFi+tps7ygUNafWuc4OxI9Kc5AdcyvzvhuP/++5H2ZZpNTBxhG/zUkTKb3ys6kx4hgSHqGzkwxFkM0sydIwhQYU70O7Y78ZW8CIHOEnjppZfUd4s2iKwjz6e7PJwOzyGXva+//jo++Wo7eOpVrR3xLzTYf/jYOR7rAsyGuX/55ZcKHTPvKu7urkVX+DnmWcurtuyK+CUOIdAWASUMObgNlpom6C1BZCktHsVZJdBXBrdq1+D79cJZF2Prxh8xZZ6zUZwDGw+jDxI8Pp9t5aM77bd9D9vanjhf3BaiPZf33nK/GjCRVXMY1uoae/u8tt+X82CO8y+/jtqOVuDMif1xiKa1PrQuH+FkZCT3YBnMdRbExyQim6zAuXMtJjMiIyKRNiEFFYWVOHowE7qafFjiA1S/yc23LOwV18HduYtf7yLg+A7kM+PnqD3PUkdpOKY7fehMLF/zFfzD9Sg6XAoTGcfR+h87Gr+747isPfjIQXBZqZWf3Aa75etdGJM44aQ/s5yfv//971jxUzHSBlmx60ALRozzXMdyd07iJwR6EwEuFzrqWrXNTBrS7rKM0/dUx+hovrwdp/VrscxM+9ZiQz6frshV9T8ui7nM4jKK+yoqi6pQfKAKC2Zf06XlFde5Lph5IfYU7kBddbM9y1zXqSyqxMghY+x+vML9KxorHlhfnlV0XC/h0t/IfS0Ve93XpRwjrenGFmOZj61e6txPw3qRR3//IKrG1cMQrIeJZsQoLKhETEQc9q/KwQtPvqROkbVBL7zxPHZV76dBIjZNH9fxb5x/CwonFuKL/R84omi1zu+p9sxC3SoC8RACXUygbaEuJWjJI6HuYSsChlihD/EudGQxLAtE2VIqW54ddGxarC+++EJlnUWkUVE2cRyLNTXBput5sSVbLpRyc3Ndd6ntBQsWuPV356lZ8HXdx+a0NcfWfQcOPK7UZ/9LL73ULtLVwrEpdxbqapZoNX9vSy3ed955R4mOzz//fGU5mAXK/MLz1ZWVlamgriJd9uTpsNix8JV/Tz75JNhSr5+fnxLEsSXfxYsXK2Ewi5M1JtnZ2eq4lStXquVnn31mH3FjNBpx33334c0338Stt96qrOs6Xi9uZOTrPGHCBBW3isDHP2z1lx1bQOuIs9TTVDh0T1oKfVHpAjoyqmdI0rV5/3YkL3LMyScwf/58dV9/t/5TlXh4cCEKyv3sFS5fc5QQnoT6arLaF+ks0teOr6CKQMLIBG3TvuT02ZL2d+v3k1W9OKzdkO5z+jyAIW1ZmhrQwJVDtijt+FzZE3FZ4eMKCgqQVXsY+4P3oCXdD2ZzOaoONVCZG6YsBqXSCF1NrMTnFWuNB+fVV8f5iQiylc+ejkkaEYc1m7IxZdLoVkF2H8hDUYW/T2lyvrgCqnXy+MKgVYLiIQSEgBBwQ4AHVu3en40ZU9Lc7CVLqlRWzZw50+2+k+3J5S7/uoPjcpktEGzYVYXByTUooUEo36zJwJBR5/pUrns6hyM0Srktx2G4sYGdL+8iDhcYeFw0y9vuHL/HNaEu728P75iE4yOe+5DFl6jwAJoqm0bHODi2qvvOkr2YMb4G4WHh1NjSBx98sZum9p3UKWYOSZz0VWZUWWgTV3NHGf94qsnYxGg12pwzxHWMtp4hx3g8nYQv8Xg6tr3+nB9xQuBUEOB7b+Ftv8QHr72M0tp6xEeE4UhdEw4HROLZZ545FVmSNIVAtyXAdZH2fL+6OxF+5kJocElS334oriyAwd8AP/qxY5FuS4NF7cuz9ozp7tydo/gJgVNFgJ8vqVN1jP4z9M7/3W8eRL2pGHsP5KO2kYx1BPSnWbluaTPCzpaLbSZwAgL0xDyfAAwS5SkgwGXUvbfch/989SZA43bzyooRbo7FNfOvdVvH4GeQLb5l7MpWs8rwIN5iGvitrwihfoYHTsEZnJgkPZXf2rPKVtPZdbR9nvstfvWrAmQUlGN4WgI+/HI/YoeaMSx+EupCdiAhNpH4ssWd1q6xtolm7rENvp560QQUZZWhf8twzEyd5XO/SetYxUcInDoC2nN1snOgpatNlb1m62okpCaekOeIyxSu27AVyNJDVVSvqYaxyoIESwqeefbkt3NwfthAGRuRY7d49tAOl2cn+7pJekKgOxLg8kQrUzqaP+34ztYxfEmf09I0G9q3VmhkEhZed5v9PLjMeu655xDUaEBLRTUuO+t8J4OTvqTjSxhOhw03ltSWqTYoPqa2sh6hAeF2/Qb7FWeX2vtXNN5chnF55q4+xv71Sxv5UK9O62PzGugU7+RzcXTa9Xvj678hfmwsQsJDEU6G9gItoU46Fw7Hol7m1FBRR/2JiZh98dnqGnO/Zu5SmjH6DM8i9dz0fEwZerZj0rIuBE4pAZ+EuqA+adM+EuuOtiJwuHehLluYZUu3POL7888/twtR//e//6kTve6665xOmC3Z8j5+gFiwxVZjWZDKll09Obb4GhZmm6bWUxhXfxaUfvPNN9i8eTNycnKUQLQta66uBQXHqfmxNVlfHZ8zi1pZuMziXxYys2VdHjXA1oU14XJb8WlC3ZiYmFZBmYnmLrvsMiXU1bbZUvHPf/5z9ZLil9B3331nF+o6FtgvvviiXaTLxwYEBID9du3aha1bt+LHH3+0vxzYCiaLeNlxBZgFwe1x0dHRKjgLpDvijFlWtOwnka6zXsJjVPp+OviRUFdc7yHAAld+IbPjit7td15qvz99Pctx48Zhx8b1mHzBOLeHlORUeBxd8/DDD4MHIBRTvcgabG5X+px3/rXXsWCez5XTHTZnmFpfs+MHmNN0NI1XAjVq2UROHG8ONfx3JI3ECO/i5RajGR99uQsP39naeuTXq/a0K02ubLqrcLaXi4QXAkJACDgS4A+23z3+S/zy52c7etvXuawaNmyqfVtWjhPQ3jNFtRlYu70YqSPPAb/vOuoc65ne4iguq3F6H7T1LgqJDEJMbGsruN7S6Mi+iorjjR9Xzx+N19/fTjOCNCEmxiYSTugTiomjaUoimvRi3fYc+OktyC2PxH//+2xHkusWx/A1a6h2rmAPmTjIKW9cx5gy7GwnP9cNd/G4hvElHtdjZFsI9EQC2ncL1+EjGlqQOHISnqV2AakH98SrKXnuCQT42fK3BCIyJJpmoDGhucUIM1kwaaLZYQbT4NbKTJqKnWaTEScEhIAQOFkEuFxaeJ1t9inVpkfbzz4rdYGTxV/SOb0IaHVvPmtuR+f+OE/1bvZni29sncuaFIAqfQlCW6LJ79p2tXH3dMKe+LTnvLT2JC7j7rnnPHUos+fpjMsLySpaQiTVxVr3+RqbTQgMPz4QOzA4AA899JDbWVbbkx8JKwROVwJan6C2PFEctPKTy9kiYwFN2Z6ES+/zXN6eqHw4xnuiz9kxLVkXAkLANwJdUcfwJSVNs6F9a507z7k84nz861//UnVDju9E5YvjZcuvd999N6oL6xDTNxphARFIS3U2KnR4Wybmjb7C6dS8lWHc11JxzLiK00EOGyXZZT22rYuv3+rVq+FH9cJmayOSYpNQk9+oWDqcoqqfMyd+9zheQ+aTl+59FvdyMuoTP8I2OMwxTlkXAqeKgB9YX+mD5tSSSRZM91jgT4JHfZh3weOiRYuUUPfDDz9UQl0Wda5btw4sJj3vPNtHGp8wW8tloeqePXvs588WePnBYmFoV7lXX30V9957rz06zgdbdB0xYoQSCNt3uKzo9TS6vQscT733008/Uaf9f8GWbfl8WcTMv9tuuw2ffvqpT6bVAwMDVW7ciYT79etnz6kmJrZ7HFthS74s1P3222+VwJEFvCkpKfZgbMXY1RkMBsybN09dj7Vr19ot5/JLht1VV12lLBGzwFpzdXU2yySNjY3Kum9wcLASJ2v7eWkymdSmv7+/o7dP65Y6uhd3W2DJ9s2aLt/jhkE6+ItQ1ye+PSkQN/Z0xnED0lnzlrgV6pbklCHS1MfpRe+aVmfTd42vrW0uG/nnmO6DDz6IXVUbkUbT52mO8x7QEIaxZ4/VvHxejhkzBrs2bcTkua2PZct3zAQ0TmLV+nScO2O4Pd69B/OhD+iDsWNbH2cPJCtCQAgIgZNAgC1x6AzBKCmvpUEM4a1S3JtegJtuk7KqFRjy0N4zvG/k+HQMH368nHcXvi0/jo+vRVuupt7524Lr6tyR48nifWxiJEJDj3fktBV/R/aH0vQ5OTlV9kNvXXQGPl9xGEcOlGPCJNvAGGOVCVNGxeOM6VOxZkMGPlm+w2snoD2ybrzC1yzYHOJ1xgFu1Og7/PggQXen01XxuItb/IRATyTA9Xf+sYWHzpatPfH8Jc9C4GQS4G/aI9W7MXDUQHD7VG1TNeqa69GXBown0ODWI+tzMGX02SczS5KWEBACQsDelufYpidYhIAQODEE2vOccVjNGAjX1dkIjtTX239dtPYkV/Y8G8+Hm99WEdaVHh8MraVgbDQiNiZW22xThGIPKCtCQAiccgKuz/spz5BkQAgIgdOaAJdJbZVLXF850Y7z8M9//hMtLVVISRrs1vhkfU2j0s35mhfOd0RQpNfgh7ZltBL/ej2gm+3861//qgS4q7esQkJAEoZfONzj9XS9jrzdVp8WM5dB+93sop/m2dHrjn8DeUdBU8WYdlhgPGwB6L83N3nyZDWlOYtts7Ky7NMNsFVXR8urb731lhKt8vTnK1asUFZ0WQHPolZ+GLvC1dTU2EW6Tz75JI4cOYK8vDxlJZYt7J4sx8JgtkC7bds2sHD57bffxoQJE1TyV1xxBerr69vMSp8+JJAj5yiK1Q5iEW9ycrLaHDx4sObttGRhLjsWzmrOUahrNps1b6eldpyjcHnVqlUqzMcffwwWIjv+fvvb36p977zzDlhAvGDBAqf4eKOiokL5adPatArgyYPuveaDFrTsopXW3/Vuj9LFAf4k1G1LYO72YPHs1QS40S2oJRgN9HJ2dYe2ZqiGOVf/7rbNYv+ivZUozbWJ5flc1n+6DXMmXtSh/HN8u7+3TXfleq65JG7jxsrHH3+cLA2sx/5DBSpIKYnhnn3pW4yfemmH0nRNR7aFgBAQAp0hwGX72Imz8NnXO1pFw+VWdqFVyqpWZFp7dFXHlD4gBvye8OR4n+sHMm9r7zV3x9XXNEEbwOZuv69+jjNSuB4TmxSNysrjlmUDqK59+YXjcfRAJXT1FgSa9DSFfTgCaDrtsNAwXHz+WERHhmD06NGuUfW4bb72LJT25Jj/7NmzPe22+7cVT2lupU/x2COUFSHQCwh0VdnaC1DIKQiBE0aAv1lzDhSozhC2qjEkZRiGDB5KFkxsU+Dx+6c3vK9PGECJWAgIASEgBITAaUaA6w78+/Wvfy0i3S6+9tx2wH0X7gZiN5NIV2+hNhWH2VMbaYafdvcZdnGeJTohIASEgBAQAkJACHSGALc5GUz+TnUcx/jyD5S0u18kMSLZrZ7FMV5v/V2O4brjOreZc3387394QdXJeb09rq2+KGYu7fLtISphTzQBvSGVxJvORqw8pmnJJpHkVhJJlnm3ZMrCzptvvlnFw1ZjP/roI7W+cOFCp7h/+OEHtX3HHXeowsixw13b53RABza2bNmijgoPD8ejjz6KAQMG2GPZtWuXfb2rVqqrq1tFVVBQgMzMTBiNRrWPRbvXXnutsmyrBd67d6+26nHJx7ErKSmhURitzSBrFnFXrlzpNg4WQ7ObM2cONPFtUlIS2IoxO22/2jj2x2Kx4Msvv1RbZ599tn0XWyP29HN8CXAYR2u/WgR8DuxY4Nse11JC1nQ3kzXdXB+PonvbMEQHPxLqihMC7giwVej0zUecdpXmlUNvDMCoUaOc/LvjBlcqrrvsBlQfasL+DYeRu6sYg8KHthI9+Zp3ji/Qg3j5wKajigkPLjjvgivx1eo8LP1qG1kYPIg6UyzYX5wQEAJCoDsQ4EEHS95fj9IKZ4HoWx+sl7LqJF+guLg4HMoo9pjq+i1HWn0gs1B3l4dBIxxRfnqx6szxGKnDDk7fk2vrwzwn53i9Ppw6jm5eeBYOHK1GckwUBsXHInVgHOrqm+3RH86q6RX3F9d/yvJsg+rsJ+ewYqqwtrpmDrvtq23F05Bj8ikee4SyIgSEgBAQAkLABwLcJsXvKscBuZoAhP1CG6N6xfvaBxQSRAgIASEgBISAEBACp5QAt7skRfRDcHgQmuts/aNahuqqGpCY4Nw/WF1QK+0EGiBZCgEhIASEgBAQAj2SAPdPeurfYg1Kv+gB7a7vcD9XWYHnPpvSvMoOa0N6JGSXTHvri9KYuxwim0LglBLQ+w0nAWOUj3kwAS07rWjeboal0btYVxPlvvzyy1izZg146jn+Obq0NNtU7V9//bWT8JSP+eqrrxyDdnhdE6HW1tYqS71aRCyeXbx4sbbZ6WVkpM3cOItki4udxQgsXmOT2/fcc49TOgcOHLBvtyUU4ICaUJfXDx06xAsn98QTT6jtpUuX4i9/+YvTvvfffx/PPfec8jv//PPt+9jC8Z///Ge1fe+992L16tX2fSzSZSvAO3bYLNI5Wjtbvny5skrMYmfX38MPP6ziUC8h2r9kyRJ7nNqKJpJuz+hYS4MVTdvMaNlN9x7di744XTRZ06V73C9O70twCXMaErj99tthKjDYBSmaRdqJA6a5tQbdHRE99thjWHTBTYgoTcCUxJl4/vnnlZC+o3m98sorW4mXWbATUh9pZ8Jpjp1yCb7b2IR6a6pKs6PpyXFCQAgIga4mwAOFEvuPwOff7LRHnX6kEFV1gRg5cqTdT1ZOPAGuPx44XOgxoYNHi+AqpuXrF2AMchLYaBHw+4j3eROSamEbapvafB86ini043gZGn58BgprC83kQG5YajwNcDTAz0CjoUOClF9AQIBa8v0Vn3zip05SiZ3gP1w32rnSvXV95j4udYJPOWgrHsdvC58ilEBCQAgIASEgBHwgwPWI88+Y67YDIyc93/5N60NUEkQICAEhIASEgBAQAkKgkwS4HS59UwZqi48PdDY2mqCz6BAeHuEUu2v7kNNO2RACQkAICAEhIASEQA8g4K1/6+Dmox1ql+K+FG99YvVZxjb7wnoAug5n0VtfVEeZdzgzcqAQ8IGAPmC4HoY0Euv6aHDUWkpWddeTVdOD1GFt9pwCW1FlQShbkmV36623tgrMlizZsbiVBZuXXnqpsr56//33Y8gQ25R0rQ5qp8fgwYMxefJkdRTn58wzzwRbhk1JSUFFhedRB+1MBhMnTrQf0r9/f0ybNg35+fnKTxOusmCVhcM33XSTOldtytg777wTmtDXHombFRbVzps3T+3ZufO48EQLyuk+/fTTapNFu5zW1VdfrSxg/vznP1f+LJ5la76O7vLLL7fHy1Z5Oe8s1GPrw6+99poK+u9//xvMsqvc2rVrVVQ+d9DTvWY8YIFxvQXWch9zQfe0YagOAUP10Pn5eIwEO+0IcGXp7pvvRcXBBhzcchR5u4vRL3AQ+IXekxw/s++++y4ef/zxTlfE+Nyb8/Uoz7eVkbw8uC4b2mAAjUtXpqnFKUshIASEQFcR4EELG3ZU4Itvd+Instq65MNtuGrhraqO01VpSDxtE+D37Bff7PIY8OCRYrcjffkdw+9lV8dW8H2tP5bnH7eI6xoPb/fp08dj40ZscgyqqprUYabm4zNZDEvrhy9WHlb+RlMLwmjWDnZvkQXnmTNnqvWe/sfWkBSIhtrGVqey/fu9Pp9nV8XTKhPiIQSEgBAQAkKgDQILFiyg79nKVqHSN2d0+nu5VaTiIQSEgBAQAkJACAgBIeCRAPc1BNXa2k60QNVlNQgPinSyqMttEDK4XiMkSyEgBISAEBACQqAnE/DUv1VWUNWhdinuE9vpYRZK1nH42mfWk5l6y7u3vqiOMveWnuwTAp0loPdP0sN/jA5sedRXZzlKlk1XW2DKJbEuGTf15G644Qb7Lm4kd3UsOv3444+RnJwMtnj7zTffoLGxEc8++6yy5Mrh/f397YfpdD6qie1H2FbYYi8Xhuy2bt2qLOuySHbFihU0YtP2gcgiWM0ZDAa16uin7dP8tKXmzxZz33nnHbvVYLZCW1NTo3azWJbzwAUEi3ffe+89da4spH3ppZfaZYly/vz5Ks5169ZpSTstWRT86aefqvPitD7//HMcPnwYPPUfC/j+8Y9/QK93ti7LXD/55BM89dRTKi7O+7Jly1BSUqLyzNZ4Fy1a5JSOtw0tfldG2jE5OTkqbmY/adIkzdvzku4xY7ZF3XOWLM/BXPfoYun+GUvWdBOdz9c1nGwLAR40sGjOzxGQE43xfaar5+R0bhTic7+HxMvlB+pxaGuGWk7oNxXa4Aq5Y4SAEBACPYEAl2UszP3shyp8tqoIfftPk3LsFFw4FsPqDEEor6xrlTr7rduS57Yjhjty8naWoZGs4mquvKASfSMSVaNDY91xf22/uyWn78m19a4vLD8uVPU/Zjn31uvOwlsf2YTHFVX1CPAPwKGMYpRV+/WqxhD+dnMVSvO1yE8vadd5dlU8nq6h+AsBISAEhIAQcEeA3/9NeQDXHTTH64HVYVIf1IDIUggIASEgBISAEBACJ4EAt72wARBTvRl1VQ0wNrTAAH+kDExxSr2MRCbe2nCcAsuGEBACQkAICAEhIAS6MQFP/VsdbZfi+pR/U4BTf5l2+gc2+W7cRjumNy7d9UVJW2BvvNK945x0RqPRasq3oH6pGS0bSBFJlkt9cqFAwGw9Qi6k6V/jOyagdUynuLgYzc3NSEpKgieBp2P4jqybTCbk5uYiOjpa/ToShy/H1NfXg8WvISEhrYKzELmgoEAJZzWRcKtAXjxY5JqWlqaEuBxPYGCg29BmsxlHjx5VFo05fGpqqttwrp6cv/T0dJSVlWHcuHEqn65hOrvNFu4eeeQR3HLLLXjllVfajM5UaEHDcjNMa+n+bGgzuC0Aaa39Z+oQegXdnyLU9RGaBBMCzgT+97//4cMPP8TPfvYzjB49Wlnndg4hW0JACAiBnkFg3759Uoadwks1Z84cPHzrGMyYkuaUiy++24UvVlfjgw8+cPLXNu666y4cMe/G+HNGgYW53729Fr+762kkJCTghnsX4drHLtGCul0uefRjlGSUud3HnmvWrMEDf7kTc250bwn3/aeX4dU/nY+mwmrMPWeuPZ4LF72A39wzBbGRftD5R+GZVzfgioUP4pprrrGH6ekr/MxcdfMCzLl9OoLDgtTpsHD3yDeF2Lt3r8+n11Xx+JygBBQCQkAICAEhcIwAf8++v/JtxI0KJyvxTcjeUYR7ruld72u52EJACAgBISAEhIAQ6CkEEhMTMeKGJESQAZ/wsHDqC052yjq3OUyKnIUnn3zSyV82hIAQEAJCQAgIASHQEwlw/9buqs0YPmWwapeqzzHh2vN/3uF+JMf+Mkcen7+0Aktf+eK07wPV+qLOWjQeMYnRTn2KvanvzvHay3rPJaBMjfon6BEwUQ9dQjtOpB4wbbSgca0Z5nIvZnV9jDI+Ph4DBgw4YSJdzgZb5x08ePAJFelyOqGhoW5FurwvODhYiWY7ItLl45nRddddpywQr1y5kr3cOrYKPHToUFxwwQU+i3Q5Is7fhAkTwIIKtsLb1c5qtSrLwxzvfffd12b0LWVWNP5I1ps3t0OkS7HqkkhITve0X1+xptsmZAkgBDwQ4ErL0qVLVYVx1KhRHkKJtxAQAkKg+xOQMuzUXqMhQ4bgSGZJq0ys33wEM2e6F8ly4F/+8peozzLjyI4s5O0uRl8kq3dSbCxNm+CDq8qzzW7hLWhZXpXH3UFhATTorRItjSanMM/97md49b09WLc1H2s3Z6GgPLDDjStOEXejDX5mzpl8Hnb+sA8VRVXIP1IEa5W/soLTnmy6xsNxdSSe9qQpYYWAEBACQkAIMAH+nl143o0o2VuLunQLzhk1t9e9r+VKCwEhIASEgBAQAkKgpxBgQyCjh43BsKHDW4l0+RxKc8t7yqlIPoWAEBACQkAICAEh0CYB7t/q09DP3i7FbVSdEYxyfDnbS5QAVUuc+1sM5UGnvUiXeXBf1FUX/Ezx5v4sxz5FjZcshUB3IWBTMZL10cBRevhPos3WRmA95tVaARjXkJDyJxLrVnVerOsxIdnhROCPf/yj2v7Nb36DlpYWp33dfePTTz/Fnj178MADD2D48OFes2uupHtrHVnSJaEujs9W6PUYtZOtPU8h8flwup/p3hYnBISAEBACQkAICAEhcOoI3HnnnVj69X5UVtNIv2PuaHYpSip1mD17tubVasmdOHf9/B60HAjEyPBJePnll1UY9u8K15bgd8CIROS5EfuOHJKISy6YjD++vAXfb7Xa89UVeepOcfB1i65NQsmealTvM5HY6QYsXLiw3Vl0jMec79fheNqdsBwgBISAEBACpz0Bfm/x++uPj/4JTz311GnPQwAIASEgBISAEBACQuBUEYiJiUFpnmcxbmN9MziMOCEgBISAEBACQkAI9AYC3I/F2iitXaojfSuOHDi+syedi0NbM5R3JYl0ue/miSeecAx2Wq9z2x/z9iuMcOpTPK2hyMl3SwI6o9FoV9gaD1tQ/zGJbneRF2kjfXW6JB0C5+gQfKYBhmidr4dJuE4QeO211/D+++/jmWeewbRp0zoR08k99Oabb0ZBQQF4CsKoqCiPiZsrbCLd5pUWWIs8Bmu9g7W5E3UIvdKAgFSbDr11IPERAkJACAgBISAEhIAQOJkE7rjjDowb3IAbrjpDJfvMS18jIGpqh6c0jE+Nw01PX+n1FN6+7zMUFXmvSA4Yl4xrH7vEbTw56fk4+tUuPHrLRJptYm6rMDMvewY79mS38u9tHu+99x7GjBmjfp05t66KpzN5kGOFgBAQAkJACAgBISAEhIAQEAJCQAgIgZNP4MUXX8SX+z/EuNkj3Sb+78eWYuVnqzrd9uA2cvEUAkJACAgBISAEhEAvIMAGEW9/eDFmXzMV+346hIXn3ohFixb1gjOTUxACpxcBP8fT9U/RI/AsEkiWmmHNc9zjfd1aYEXzdxTGbEbwDBLrxopY1zuxzu+9/fbbwb+e5pYsWdJmllvKbCJd46p2inQpZl0/sg59FlmHHiAi3TZBSwAhIASEgBAQAkJACJwkAmxV9XdP3o+Z08rIsm4D9H6RGDx4cMdTr/Ne12siSywsLm3LNdcbPQYJDg1CbW0zwiMiWoWpqmlAQUlTK//e6NFVDT1dFU9vZCznJASEgBAQAkJACAgBISAEhIAQEAJCoDcT4Daav7z+J49C3crcap/acXozIzk3ISAEhIAQEAJCQAh4I8D1qbtuvEcFGX3ONBHpeoMl+4RANybgJNTV+ZPIcawe5hIrjN+SSLLK95xbC0msuwKwNpNYd5YBfvEi1vWdnoRUBMiQs6nIgqYfLTDSz1raPi66aJtIN3C0HnwvixMCQkAICAEhIASEgBDoHgTGjh2LK67+BT5a/jXyixpx9pwFuO666zqcOY6PxbhBoYFu42BruN5mb7AfVOtZ8BvXPxa5RXUwmuyh7SvrNx/BrFmz7NuyIgSEgBAQAkJACAgBISAEhIAQEAJCQAgIASHgnkB0dDQ8DZbm9p1Bgwa5P1B8hYAQEAJCQAgIASEgBOwEOtOvZo9EVoSAEDilBJyEupwTQ6QOQdP1sJBVU9N6Uk62w1CUtZgEvt9bYa23IvgcA/z7U8e3577vU3rikng3I2ABjNkWNP5ghmkT3XeV7cxfMOA3he7daXoYIkQk3k56ElwICAEhIASEgBAQAiecwPXXX4///MeCBYvGYdy4cZ1OryS3DAOGJ7uNpyS7DPPGznS7z9GTBb/NDc0IDHEv+E0cHocCmm3E1a3fcgQzZ17q6i3bQkAICAEhIASEgBAQAkJACAgBISAEhIAQEAIuBLj9xVqjc9sGk5teAG4zEicEhIAQEAJCQAgIASEgBISAEOjtBNzKaP0T9Qgioa1hNAke22mZ1FpBgssfraj/wozm/WaysEuiS3FCwAsBvkea9prR8DmJdNd2QKRL96jfWB2CzyZLzglub2kvqcsuISAEhIAQEAJCQAgIgZNF4MYbb+wSkW5kZGSXZbk4p8xjXH0HxGBPekmr/es3H8Xs2bNb+YuHEBACQkAICAEhIASEgBAQAkJACAgBISAEhEBrAjwzkbs2GJ4VqSvbeVqnLD5CQAgIASEgBISAEBACQkAICIHuQcC9qpH0uQGpegTP1UM/hDbch/J8BnVAC1lFbfiELKRussBcLWJdz7BO7z3mKisaN1joXjGjZQvdJ/Xt5GEgK9DDyZLuXAMCBtGNKsZ02wlQggsBISAEhIAQEAJCoOcRmDlzJllhMXrNeEREhNf9vNOXMOs3H0FNXaM9rrzCSlTV6btEcGyPVFaEgBAQAkJACAgBISAEhIAQEAJCQAgIASHQiwlwW05NOXUgu7i8AyVgEa84ISAEhIAQEAJCQAgIASEgBIRAbyfgUYKrIwFk4AgDgueRWDeVMHgM6QER9Zub95EI83MSYX5HllJzLOThIax4n34E6F4wZdO98a2Z7hEzLAcIgamdGOie1KcBQXSPBg6jDbpnxQkBISAEhIAQEAJCQAj0fgLjx49HzoECjyfa3GjyqZOHO4KMXgS/HE9FrQ7frNpnT+svL32DJ554wr4tK0JACAgBISAEhIAQEAJCQAgIASEgBISAEBAC3glwG8y2b463r3Do2oo6hJjDwO084oSAEBACQkAICAEhIASEgBAQAr2dgFf5rS6QxLrj9Ai60AB9CqFor7VSMpBqzbWi+VsL6j8jQeYOEmTWiXXd3n5TtXV+lloScG83o/5TM5q/s8CaT0e097ZgQ88kIA++yICgMXroAtpKVfYLASEgBISAEBACQkAI9CYCJdkVHk8nL70YEyZM8Lhf26EEv+meBb8cD4ty//vJNhQUV6nfDxvycPPNN2tRyFIICAEhIASEgBAQAkJACAgBISAEhIAQEAJCoA0C3E4TbApV4lwt6K7V+6WNRYMhSyEgBISAEBACQkAICAEhIAR6PQG/ts5QH6xD0ETS85JB3KblJLTNoiNovV2uBmjZaIWl0IyWqVYETdLDL4nElW2m3q5UJHA3J2BtIaO5eRY0b7PAtNkCSy5lmPza7diS7mCypEsC8sDxdB8FtVdB3u4U5QAhIASEgBAQAkJACAiBbkQgPDwcxibP0zGYyn2fyqM4y7PgtyKrCr/4xS+wfft2/PfT3YqAWNPtRjeCZEUICAEhIASEgBAQAkJACAgBISAEhIAQ6DEEuE3l1S+ex7mLZqCush4RwVFISkrqMfmXjAoBISAEhIAQEAJCQAgIASEgBDpDwKtFXS1ifQiJdSeTZd35ZFk3jXwN2p52LEmQaTkKNH9F1nWXknXdDWaYy9nkbjvikKA9kwBd45YysqL7kxkNdO2bl5NIN5NOpSMiXbr39EPJki7diywgZyG5OCEgBISAEBACQkAICIHTi8DEiRNhLG1xK9ZlAS9Pp+iLY8GvyYPgl+MJCwtT0bz44osYMPR89bvlllt8iVrCCAEhIASEgBAQAkJACAgBISAEhIAQEAJCQAg4EOA2FXO1HkVZpdi1Mh1zx10CaWdxACSrQkAICAEhIASEgBAQAkJACPRqAj7btNXEujp/sqz7jQXmQ6S+9GzEyjM0tq67yQpztgUtR60ImKBDQCoJLsNEcOkZWs/dY6m1wniErOjusKJllwXWYjqX9lpk1k6f7j3DcBKNX0ii8dFiSVfDIkshIASEgBAQAkJACJyOBCZNmkQdOyUYMDzZ6fRz0/MxceIMJz9PGyz4bSbBL4t1/YOosungOJ7Zs2fbfW699Vb7uqwIASEgBISAEBACQkAICAEhIASEgBAQAkJACLSfwC+vuxuvv/46Jk2a7PNA6/anIkcIASEgBISAEBACQkAICAEhIAS6HwGfhbqcdX0QiSTHG6ALJLHuChLa7iWxbmMHToqEmtYCEnCSldWWwzqYxpNgd4we/gN1YiG1Azi74yGWBitMWXSN91hgIoGuJYdyaexETkMAvzF0/80xIHA4iXQDOhGXHCoEhIAQEAJCQAgIASHQ4wn07dsXzU3lrc6jMKME40a38vbowYLfQjeCX45n3sQrPB4nO4SAEBACQkAICAEhIASEgBAQAkJACAgBISAE2kdg8eLF4J84ISAEhIAQEAJCQAgIASEgBITA6UagXUJdhsMi3cAxBrCF3cZwM0zbSKxb3UFsJNy0HLaiOY8Eu/ut8B+rg/9IEuz2J8EuxS+u5xFQAt0cEujuJyH3brKcnNlBMbfjqUcB/pN1CD7XgIBBejKr67hT1oWAEBACQkAICAEhIARORwK33XYbfvX8PUgdn+J0+g01TYiLi3Py87bBYY3Nla2CmIwtCAmh0WLihIAQEAJCQAgIASEgBISAEBACQkAICAEhIASEgBAQAkJACAgBISAEhIAQEAJCQAh0gkC7hbqclo6EkgFDyKop9Vs3RVtg/MkCaxHtIE1mhxxZ5TXvI1EnWWA1kZVev1E6BJDVVP8BJNgNE8Fuh5ie5IMsdSTO5euXTgJdEl0rgW59JzNBl16XRPfamXoEzaD7IZFEunI7dBKqHC4EhIAQEAJCQAgIgd5BgEW0eQeKW51M5oYC3PH1Ha38PXncfvvtNsHvuIFOQTjuWY/NcvKTDSEgBISAEBACQkAICAEhIASEgBAQAkJACAgBISAEhIAQEAJCQAgIASEgBISAEBAC7SXQIaGuSoQEk/799NDPJTFtH6B5jQWWo7TH1N4sOIQnYad5D4k8j5LgcxdZ2B2hg98QEu2SFVVDFCVIOk1x3YiAha5XJQl0My0wkWXklgNWWLK7wIIun2IAGc5NI+vNZxsQOP7Y9e9Gpy5ZEQJCQAgIASEgBISAEDi1BKZMmYKGoma0kOVbvwDbZ01jXRNmzWqfuFYJftNLnE6G4+S4OQ1xQkAICAEhIASEgBAQAkJACAgBISAEhIAQEAJCQAgIASEgBISAEBACQkAICAEhIAQ6Q6DjQt1jqRqidQiZYYChjw5N68iaKglsUdWZLNGxDYCFRJ/NLNgli6rGYRb4p5FF1UEk3I3XQRcoZlU7SbhTh1ub6LoU0y+TxLlH6JoftMJaSFEaOxXt8YOjSQQ+TofAmXoEDiXLzXK9j7ORNSEgBISAEBACQkAICAE7gQsuuAAZu3MwdPJg5bftu924YtYi+35fVliMW1/Q6CT4zUkvaLfg15e0JIwQEAJCQAgIASEgBISAEBACQkAICAEhIASEgBAQAkJACAgBISAEhIAQEAJCQAicfgQ6LdRlZLogHYLGHBPrJpN11Q1kXTeXdrR0EigJPy1Z9MshQeh2M4wk1DWk6uCfQoLd/nr4kUgYhk6mIYf7RMBqJuu5FSTOzSVhbhZdDxJRWzJIoFtJh5Nl3S5xdDfqacZh/zP0CJpCwuwEMqEsVpS7BK1EIgSEgBAQAkJACAiB3kjgoYcewuU3XaqEui0mM3QWfYcEtnPnzkXGHhL8TrIJfln8e9Pc23sjMjknISAEhIAQEAJCQAgIASEgBISAEBACQkAICAEhIASEgBAQAkJACAgBISAEhIAQOMkEukSoq/JMgkr/ZD0MkTo0J9OPxLrmfceEnJ09KRKCWktJ91tKAtE9JBZNJMHuIAv8Bh4T7FJ6hggS7Yqos7OknY8n7uZqYl5AvxwS6GZbYc4kXW4hWU1ucg7a2S1dDOA3WoeA6WRFd7ge+lCxmtxZpnK8EBACQkAICAEhIAR6O4GpU6eipcyC+uoGFBwtRoI1BezXXvfwww9jwc2XKaFuc0MzcjeV4J5l97Q3GgkvBISAEBACQkAICAEhIASEgBAQAkJACAgBISAEhIAQEAJCQAgIASEgBISAEBACQqAVga4T6h6LWh+mQ/AkA/xITNtMYlrjFrK8mknCzuZWaXfMo5GEomTJ1ZIBmMKtMPSzQj+ARJ79SLRLQmFOV09iYV2Xn1nHstvTjrKSFWRzFQlzSYxrLiBxbi4tc4h5Hl3DuhNwNkGkrx5MAt0pOgROECu6J4CwRCkEhIAQEAJCQAgIgV5N4PHHH8e/33tTneOrz/y+Q+c6bdo0GEvNaKhpxIZl28HCXXFCQAgIASEgBISAEBACQkAICAEhIASEgBAQAkJACAgBISAEhIAQEAJCQAgIASEgBLqCgM5oNJIC88Q4S6MVxqP020qCz10WWIooHfMJSIuNr4aR4DOJLOv2Awy8TCDhbjwt+5BwN5gCiIFW9+Dp6vN1MrO14mJaFrFAl355xyznsjj3RNwhBr5eJLAeRxZ0J+kRkEri6iC5SO4vkvgKASEgBISAEBACQkAIeCOwceNGtfuMM87wFszrvueffx5LPnkD1Tl1+OCDD9CZuLwmJDuFgBAQAkJACAgBISAEhIAQEAJCQAgIASEgBISAEBACQkAICAEhIASEgBAQAkLgtCJwQoW6GklzBYl1D5B13R0k2N1vhbWc9pwI8aeWIFlp1cXZBLt6Euwa+tKPt0m0a4g5zYW7LMxtICEuXRNzGf1IoGsuIb9jAl1rGUFs0kCegCVrpvuQQHcUWdEdTwLdEXoYokWgewJIS5RCQAgIASEgBISAEBAC7SSwYcMGTJ8+vZ1HSXAhIASEgBAQAkJACAgBISAEhIAQEAJCQAgIASEgBISAEBACQkAICAEhIASEgBAQAp4JnBShrkreArLYakHzXgtMu0kceogEu1W050QKdjlh1oCytV0S6+r70jKOlrEk2o0l0S4JRPVRtIwga66BHLj3OWszGTGuscJSRcxZnEs/CwmlLSTQtRTbljhRVnMdcbJAN5q4D9PBf6wOgaMM8KNrAr1jIFkXAkJACAgBISAEhIAQEAJCQAgIASEgBISAEBACQkAICAEhIASEgBAQAkJACAgBISAEhIAQEAJCQAgIASEgBIRA7yFw8oS6x5hZW0iwW0CC3X0k2N1HwtHDpNQ9GYJd7ZqxcDeYRKMxpBElsa6elyTYVSLSSNom0a4+nPzCaEk/nb92YPdeWo0kuq0n8W0t//4/e/cBIEdZ/3/8mwZppPcKIfRQJEKAQOhI70WadIIoCoqgQlAQ+YmCCghK70QgoJRIEQQSEEJACDWhhpYA6b3f/Z/PE579z83t3s7s7d3ubd4PXHZ2dsozr91n6ne+801w7jzX7Wyr57jX2e7zWd9kM1bG3IYOkA5cIUB3AxegO8Rl0d2subXs1dyatQwD8IoAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAghUpkCjB+oGxuoVZitcwO7yd6ts5burA3arXTCpucy7jV5C8G4nF8CrYN2O7rWDC9ZdxwXqKmi3rXtt982rgnzdX/PWrp/7a76Wq22LBq7xKsfiMuNWL3MBt0tcsK0LtK1e4votdt2L3KsL0K12WXGrXObc6vl6dZ+7IF2fsdgN12hBuVEGlym3mTIXuwDdlpu4DLqbuADd3i5At4kEPkcXhW4EEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEECgEIGSBeqGyvoMu1+5gN3JLsPuFBew+4ELMP3KfeoCeUteFMDrAnEVpGvur5ky7LZdHairYN1mbRSs614VrKvhWrn3LhDVZ4tVxlj310xBvJqOMsu64FXf7V588KwLSq5WZlu9umBc05/LOCyT6hXOwWXJlUO1D9J1rwrSdYG3/m+xe3XBuaYgXResaxq2sbLkulnlLFr+Xm7RB7sA3Y1dBt2NXIBuDzLo5vTiAwQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQqFiBkgfqZmRdsOrKmdW24kMXsOuCdVe6v6rPXOSpglHLvSgYNxOs67qVNbaFC9pt6eqvgN0QoOuDdd0/rne1InTd/yFgd3WArvtspeu5spkP1PXBtwrAVQBvuZf2bpEHNLMWg93iD25urdZ3Abpd3fJo2SkIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIDAGihQPoG6EfyqBS5g99PVQbsrP3JZdqe6rLEz3ADlkGU3Us81vlNZhLu7AN11XfbcQc18cG4rF6zb3GUepiCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAJrukBZBuqGL6XaBeaunOECdqdW2cqPXcDuJ6uz7FbPdUM0hSyzYUEq6dVlD27W2SXK7e+y5w50wbnruSDddV323O7KIFxJC8qyIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAvUTKOtA3eiiVS2utpXTlGm3ylZ95oJ2PzOr+sJl2iVoN8rUMN0hOLevC87t7zLo9m9urVyQbsveLntuG7LnNgw6U0UAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgaYu0GQCdaPQVQtdwO50F7irgF0XrLvKdVe5IN7qWW6oZdEh6S5YYG2XObebC8rt44JxXUBui75mrVyArg/ObUdwbsGujIgAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAmuMQJMM1I1+O8q0u+prF7jrAnVX6e8rF7T7lVm161c93w25Mjo03TkFWrrA3I7ur4cLzO3hAnR7uYy5LkhXfy3Uj8y5Oen4AAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEMgm0OQDdaMLVb3CbNXc1YG7K7+scgG8ZlUzXODuTBe4O8sF7s51Q7thKE5grW8Cc7u5INyuLjDXB+i6wNyeLjBXf52aWTMXvEtBAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEChMoKICdeME1ctc4O4cF7g78///VbmA3ao5LnBXfy6ot3qBG6vSs+62ckG57d1fZxd829msuf66uGDc7u7PBer6P33mgncpCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAALFEajoQN04UbULyK1a6IJ2Fbw7WwG7q4N2q+a5gN35LnDX/60O3q1e7MZuatl3FZDb7pug3A4u8Laj6+7ggnI7uqy5nVzWXBec29wF5PrX9u7zFnEh3iOAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIFEtgjQrUzYq2ygXvLnaBu/Nd0O48161X/S10gbuL3J8L7PWvLnC3eonrXuKmstR1uz9b7v4aKxtvSzcvl/G2WetmZm2qrVkb193GBdu2da8Kzm3nut1r83X05wJyFZzrgnRb6NUNZwTlOkAKAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggg0HgCBOrmsq52wbguELdqkQva1d83gbqrXxWo64J2l7lX96eA3erl7n0I3HXBu9UuANgH8epV03J/VqVudbjS3AXP6n/3p1cfSOuCcX2WWwXlqluBuWu5AFz3amu7bv25QF0F6TZXgK4LwNVrcxekqz8/nKZFQQABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBAouQCBuvX9CpSRd4WLv13mAnXdq610r8qyq2Bd/Sk41wfoulcfrFszUNcH6TZ3Qbf6CwG6LV207TeBus1DoK77nIIAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggg0HQEFBpKqY9AC5fR1v2Zy3S7uoTX+kyUcRFAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEmroAeVqb+jdI/RFAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEylKAQN2y/FqoFAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAUxcgULepf4PUHwEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEECgLAUI1C3Lr4VKIYAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgg0dQECdZv6N0j9EUAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQTKUoBA3bL8WqgUAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggEBTFyBQt6l/g9QfAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQKAsBQjULcuvhUohgAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCDR1AQJ1m/o3SP0RQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBMpSgEDdsvxaqBQCCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAQFMXIFC3qX+D1B8BBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAoCwFCNQty6+FSiGAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIINHUBAnWb+jdI/RFAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEylKAQN2y/FqoFAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAUxcgULepf4PUHwEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEECgLAUI1C3Lr4VKIYAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgg0GNwIigAAQABJREFUdQECdZv6N0j9EUAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQTKUoBA3bL8WqgUAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggEBTFyBQt6l/g9QfAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQKAsBQjULcuvhUohgAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCDR1AQJ1m/o3SP0RQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBMpSgEDdsvxaqBQCCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAQFMXIFC3qX+D1B8BBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAoCwFCNQty6+FSiGAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIINHUBAnWb+jdI/RFAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEylKAQN2y/FqoFAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAUxcgULepf4PUHwEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEECgLAUI1C3Lr4VKIYAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgg0dYGWTX0BqD8CCCBQDIExY8bYUy89aXM/n2+HH364/yvGdJkGAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIDAmitARt0197tnyRFA4BuBBx54wO558nab1366Le4z0/5y69X27rvv4oMAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAvQQI1K0XHyMjgEBTF1BA7qWXXmqdNmptAzbpa5sMG2yt+qyy66+/vqkvGvVHAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBAosQCBuiX+Apg9AgiUVmDcuHG2qM1c696va6YiG2872P794hM2efLkTD86EEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEgrQKBuWjGGRwCBihK48cYbbfghQ2ssU9sObazXkM52ww031OjPGwQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQTSCBCom0aLYRFAoKIEHn74YZvXaqb1GNCt1nJtMmywjRkzplZ/eiCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCQVIBA3aRSDIcAAmUnMGXKFLviiivskUceKahukyZNckG6XbKO265jW1vcbJFpHrlKdP51DZdrfPojgAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAghUtkCLUaNG/bqyF5GlQwCBShR49NFH7cH7b7N2Labb1I+n2P9efdW69ehrXbt2Tby4N910k3Xbsr2179Qu6zirVq2wDlVdbejQobU+j8//pZcm2LqDNko1/1oTpQcCCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggEBFCZBRt6K+ThYGgTVDYOzYsTbxhX/YdkNa2iF7b2R77tDTBnabaeeff769//77iRHGjRtnPdftnnN4fTZ+/Phan2ebv+qSdv61JkwPBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBihIoq0Dd6dOn28SJE0sOvGrVKnv++edtzpw5Ja9LqEA51inULdvr3Llz7YsvvrAlS5Zk+zhrPw2rcb7++uusn9MTgSBw6aWX2p7bd7e9dx1ivbp3tK026++7B3RfaDfffHMYrM5XBfS27FnnINalVydTMG+8FGP+8WnyHgEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAoPIEihqoO2XKFLvuuuvslltuySv13nvv+WHvueceP6wCOwcOHGjDhw+30aNH5x2/IQe47LLLbLfddrPtttvOqqqqGnJWiaddjnWqq/JXXnmlrbfeenbVVVfVNViNzxQQqXGOPfbYGv15g0BU4PHHH7cu7RfbVkMGRHv77h+evJtNfOlp++CDD2p9Fu+h31uv9brGe9d4375TO1tQNb9Gv2LNv8ZEeYMAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIFCRAkUN1G3Tpo2dffbZdsYZZ9jkyZPrBPvzn//sh1XQm8rKlSszw6fJwpoZqYgdS5cu9VNbtGhR2QTqNkadFCB90UUX2YQJE4qmWS6BzkVbICZUcoHf/OY3dt4P9s7U46NPZ9oNd42zp8a/a29PmWa77zAg0c0C06ZNy0yjro52ndvUCPyNzz86bu8eHRPPPzoe3QgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAApUp0LKYizVgwADbdddd7ZlnnrExY8bYhRdemHXyCjq99957/WfHHHOMf+3WrZu9+uqrNnXqVNtnn32yjtdYPS+44ALbaqut7Nvf/ra1bFlUooIXoTHq9PDDD9sDDzxgffv2tWHDhhVcV0ZEoCEFZn71sQ3d4lj72AXo3nTPeJu/aqlNWz7f2n/0oZ/t+u272WtTJiaqQudenRIN98UXX9jgwYPtww8/tDD/XCMO3XKgXXFTsvnnmgb9EUAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEKkOgqBl1RXLCCSd4mTvvvNOqq6uzKj399NO2YMECW2eddWyPPfbIDLP55pvbAQccUPLg2LZt29oRRxxh6623XqZupe4oxzqV2oT5r3kC//73v234tuvb1M9m2m/+9Kj95+Mp9nnr+dZtq462ql8z/zf+gw99QG0+HQXdDti4T77BrFOP9plhxo0b5+ef6ZGlY93+3axqxbwsn9ALAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEBgTRMoerpYBdqqfPzxxz5DrrLSxsvo0aN9r5EjR9YIyr3sssvs66+/tnPPPdf69etXY7RZs2bZs88+a08++aR99tlntssuu/jsvZp+s2bN/LCLFi0yZZ5t3ry5/eEPf7AWLVpkpqEsvw899JBtscUWdvLJJ2f6q+Pqq6+2jz76yE488USfSff111+32267zYYMGWKnnnqqH1bz1yPv27dvb7/+9a/tnnvuMQXtabyNNtrIjj76aBsxYkSN6eqNgpUnTpxoCk5W/bt06WJ77bWXHX/88X4eb731lp1yyimmIOW6SrY6afiLL77Y5syZY7/4xS9MwyiQ8ZVXXjFlN1YQ9HHHHec96pq2xhk7dqy99NJLfjB9P++++64pOFjfSbRoWP2p3muttZYNHTrUL09dGXjnzZtnf/3rX/309V3tvffefpw0gdBVVVX22muvZRz79+/vl08ZnJWNmbJmCOg32rd3J3v+5Q9swtSPbMfvbWrturT2Cx9e9ebDjyfbU089VeNGgLiQsuRu3WX9eO9a79fp0s6385133tk+//xzF6g7uNYw0R59XZbe6pUL/TiDBg2KfkQ3AggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIDAGibQbPny5dnT3tYDQoGnyqh7zjnn2OWXX15jSvPnu+yX3wRWKqBUgbOhKOBVAb7x/p988oltvfXWPgtvGDa8XnTRRXbhhRf6twqKVQCngn1fffXVGsGvxxxzjI0ZM8Z69OjhA31DcO/KlSutZ8+eftrKsKnx77vvPh/getBBB9n999/vp/3BBx/Ypptu6sc/8MAD7aabbgpVyLxee+21dtppp2Xeq+P3v/99pn7RDxSsumTJEnvuuefsn//8p+27777Rj2t1Z6uTBlJAs5b3/PPPr2Wtz4888ki766671JmzXHnllT7QNz6AMh4rQFlFtmeccYbdeuut8cH8e3l873vfy3w2atQoX5/TTz/dL5/qGC/jx4+3aIDvE0884TMqKyBSwcDRogBsBV/Hi77Pl19+2fr0yZ8ZNT4u75uegILsVyycbEvbrbLlfaqt5+BOWRdi0viPrc1HfX1wfNYBXM/111/fDr9sz6wfz50x3/ef+/V8e+v5KTZs3Z1Mv2kF6593yvrWr3fnrOOFnmddMNpOPONS02+ZggACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggsOYKNG+IRT/22GP9ZO+++25TIGy0KHOrijLIRoN0o8NEu+fOnWsKjF2wYIHPxPrYY4/5zKpXXHGFH+ySSy7xgbV6o+BbDavy3//+17/qH9VBQaAqChhVNthQ1K1pb7DBBj5IN/TP9arxFZSqoNw33njDB8HusMMOfvCf//znpuyxoSgANwQR//jHPzYFpk6YMMFn5H388cd9kG4Ytr6vCojWPBS0qmkrMFlFAb6ab11FwY+TJ0/2WW41nIJ+9f5///tfZjRlMg5Bulr2N99802csPemkk/wwyjy8ePHizPCh44YbbvABycHrH//4h8+ErM8PO+wwmz59ehg056vmG4J0r7rqKp85WL8jBUHq+zjkkENM2ZQplS+gbNotWzS3qfNm5gzSlUKvDTrbS2+86AP/c6loWvEyzwXoTnr2HXv3mbdtxqSPrM2s2dZ51SqbNf1Nu/Wma3wW7XxBuppmvz6d6px3fL68RwABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQqEyBlg2xWCNGjPCZZxVE+fzzz9suu+ySmc29997ru0888cRMv7o6Ro8ebe+++65961vfsr///e/Wtm1bP/hmm23mu88880z77W9/6zPH6oM999zTB9IqU+3IkSP9sBMnTvTBuH379jU97v7pp5/OZNsNAb3Knpu03HLLLT7jrobfeOONfbZfZdtVwK8CXEOW2D//+c9+kqpHCDRVDy1Lx44dfcZhP0AR/lE22+g8dt11Vx9Iq+9Awbs77bRTzrl07tzZ9KcMuirK0jto0KAaw7ds2dJnB5a7jFWUAXmbbbbxmYq17HLOlkH0nnvuse985zt+HHntuOOOtu222/pAxjvuuMMHBvsPs/xTVVVl5557rv9EvwUF96rIW/MePny4D9zWdxqCtP0A/FMxAlOnTvXLomzb+uvUeh3rsF4bF5y9xJYvr7KVi1ba0qUrrOXK1fcdLJy11L1fbi3aNjP9vrQ+Wm+99Wzdddf10wnT05tZs2ZmAsznfLTIFn01z7o2W+n+qq1r1XLr0b6dLe2wlhtygb328mP26aef2gsvvW5du3azGbOX+Ol98vnqrNMD+3X178M/2QKBw2e8IoAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIrBkCDRKoq6BOZWn93e9+5zO6hkBdBY3+61//8rKHH354IuFXXnnFD3f66adngnTDiEcffbQpUFeBvMqo2q5du0ygqDLoVldX+yy7CuJUUTZWzVfZYc8++2zf75lnnvGvu+++u39N8s++++5bY7DBgwf7QEAFESoQWEVZfEMQsDLdxouCd88555x474LfK6tstCi78MEHH2zKaFuMgEH5ZDNq06aN7bbbbvbQQw9llj1aDwUthyDd0F9Byj/96U/thz/8oc+OG/pne5WpgoAVRByCdMNwnTp1sqOOOsouvfRSPx0CdYNM5bwq4P5fj95nbVuvZVUrZvtA2cULWtuGQ/rZ5Alf2PwvFrtA3VW2Tse1rdWq5tazZzvr1lwBu62syzb93O/iMReM+7YN6D3AFq/o4IN1Nc1evdp7pM+/+tRWuYDcGR/Ms0+em2NDB3Wyjv3aW3M3jY4d1rYPPpxjn8xZ6Idt11UBu2a/v/YJ23LIQJs5e6n179PeqlctN6s2W7p4lu+nYWbPW2rvTXrOjj/++EyAsPpTEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEE1iyBBgnUFaGCaBWoqwy6f/zjH61169Y+mFOfKdC1d+/e6sxb/vOf//hhvv/97/uMrrlGeOutt3wm2y5dutgOO+zgg2SV3XaTTTbJBAfvs88+PpvrU089ZQsXLjQFmYbpb7/99rkmXaO/AkY1j3gZMmSIz/ap4GCV9957LzOIsnnGi4KZQz3jnxXyfoMNNqg1mpZdRVlpi1EUhKyA3JdeesmmTJliCryeP3++D6TNNf2tttoq60fKiKuiadVVXn/9df+xgnWVwTdeFMirEgK645/zvmkLjBs3zh5/dIxttH5X23C91RlrZ85Zaj3nLrLP355l895yQbKubLFFNxek29p6tm7lsi2vHm7Viir76svFNv3Lt+ydSS/bO5Nn2z77H2F33nmnbbVVLz/e0hUuCLxja5v94XxbNHOxmQvUHf/iNOvXu7316NzGxk+cZsvaV1n7LmvZchf8rjJ+4nRbuara+rthqlY2s+2/1cvfFLB8ebVVr6yyz6cvdMHxc+ydt762Tz75hEBdr8Y/CCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggMCaKdBggboKEv3Wt75lr732mimj7X777Wd33323V1aWyaRFgaChKNg3W9G8li9fHbCnz5XBVdls9detWzcfxKlMuq1atbL999/fnn/+ef/Xt29fH2SqwOG2bdtmm3StfgruzVaUgTNalO01lKVLl/psv+F9eJ0xY0borPdrfP6aoLLqFqvI8oADDsgE5SpguVevXjZw4MBM5uBs81L23GylffvVGU1DBuJsw6jfrFmzMh/l+v41QJheZmA6KkJgxx13tM4dWtmnH02yFm2U0XaCy2Lb2dZu3sp6b9DFZb1dbisXr7Lq9m5V1rGVfbV0hVV9Ps8v+4zPF1i/Tv2sW9eB1n9gDzv40AG22RbDrF+/fvbBB6/7bLutW7W3ZlUtrVP3Tla90do2Y9YS23pId2vbpqWt1bqlte+wlvV0mXTbdnTTXx2DbwftuZ61btvBB+qqjU2bufqD5ub+a9nOrEWVLVw6x3YasZNvHxXxRbAQCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACBQk0WKCuanPyySfbWWedZaNHjzZlnFWwpwI8ldk2aRk2bJgpA+6YMWPswAMPTDTaHnvsYb/61a9Mj7gPAbMKxlXZc8897ec//7mfZshCq8DeYpc+ffpYjx49fNZZBSsr4DBalI32/fffj/Yq6+7zzz/fB+kedNBBNmrUKP99huDgQw45xMaOHZu1/sp0nK2EjMM777xzto8z/TbffHPfrWDsSZMmZfrTsWYI7Lrrrqa/kPn67jEv2IBea7kg2lbWf1gPj7By4Spb4f5Cmek65s1bZG+8+YUdNnwnO+rw40xZrUNm6zC9++9/zPr2HOhH67RzT1u+cKW999xkW7tVC+vQfi2bt2CZbbZhF9eO29tbb37tM3Br4B+furPNX5I7sF/JrWfMWWkbbL4d2XS9Lv8ggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAmuuQIMG6h566KE+UPe+++6zwYMHe+Wjjz46cfZajbDtttv6oFoF6mUL1J08ebKtWrXK1l9/fQsZV5XJVwHBGmettZSF02z33Xf3rwoYVgDtI488YkOHDq3xmX9TxH922mkne+CBB2zkyJE+g2/nzp391JX9N01W4SJWKdGk5s1bnZE0DLxo0SKbMGGCf/vLX/7Stthii/CRrVixwsaNG5d5H+8YP368D1aWebQ8+uij/u3WW28d7V2rW9+XyrvvvmvTpk0zBUBHizLufvnll6bMvcqUSqlMgd12280vmIJte3VeZO99OsMGDOm5emFXN6saC77845Uu026VHXvssRbGjQ4Q+nXr2m11766rX5Qb9/23PrO+rda2RTMXuXctbMWcZdal5ya20UYb2zsfPWwbbrihy7ibO1BXU3rx1Q/1QkEAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEFjDBZo35PJ3797dlIFV5bLLLvOvxxxzjH9N+k/IdnvdddfZLbfcYlVVVX5UBef+6U9/8kGjI0aM8MG6YZotW7a0Aw44wAeI3nHHHaasrL179/Yf61H1ygD78ccf+yy9ffv29YF3Ydxivl5xxRU+KFiZc1WHU0891c4880wX8LeRPfPMMz6YuJjzq++0Qvbhxx9/3JYsWZKZXLt27fxyqMe//vWvTP9ly5bZaaed5jPtZnrGOhYsWOCDkkPwr76366+/3v7+97/7IcP3Gxst81YB13vttZd/H77T8OHUqVNN370Cs++9997Qm9cKFxi+zWBb/NEyWzR7ac4lXTpzuX170LBMgH62Afv371+r97qb9bNdjtreum8xyDptNsD/vfP1Ytt8qx3spFPPskGDBtmcectrjZetB4Hj2VTohwACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgisWQINGqgryu9973sZUQXFbr/99pn3STo0vIJ0Vc444wxT8O++++5rAwcOtPPPP9/3v+aaa0zBpNESgjvV7+CDD45+ZHvvvXfmfQgkzvQoYoeWV5l7N9lkk0zQ8E033WTz58+32267zYYPH17EudV/UsOGDfMTef75532G2qjbSSed5D+7+OKLTVlN999/f5/d9p577vHvc83929/+tg9K1vemDMPKrHvWWWf5wUeNGpU122l8WnfeeadtsMEG9uabb/qsuaqnpqXMpiEIWgHDlMoX2G677WzGrAW27w5D7I3Hp2YN1v36w7n2yX9n2IUXXlgniIJuF8xemHWYTj062LpD+vu/Tt3X8cNoeM3/hZc/yDpOtOfE16bazjvvHO1FNwIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAwBoo0OCBugqYVVZUFQVTKqNt2qJMtDfccIPtsccePnvrU0895QNflUlVgbDZsvTuuuuumdlovGhRkGcoe+65Z+jMvLZo0cJ3t2rVKtMvX72VxVcljBtGVB0nTZrkM/iOHj3aHnvsMfvggw98nZWRNmkJ043WKTpu+Dxbv1C36GfZuo877jhT8KyCaVXGjx+fGUwBuvpM3+UXX3xhTz75pHXr1s3Gjh1rQ4cO9cNlm48CeseMGWMKWp4wYYL//pRd+JJLLrELLrggM311NG+++ucYX8bOnTt7t9NPP91P57XXXvPT0jjnnHOO6ffQoUMHvaVUuIDa8jPPT7HjDtvONm7T0958Yqp9/dFcWzRnqf+b+upX9tUrc2z6O/MsW9uO88z5el68V9b3+v2qaP4vTMwfqPve1EU++27WidETAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEBgjRFotnz58uqmtLRLliyxadOmWa9evWpl0S235VBm2pkzZ9rgwYNtyJAhNaqn5ejXr58PXFXg7oABA2p8Xso3q1atssWLF5sCZlu3bl2jKtXV1T5QV4HB+g7yBTCHkTXel19+6QOZQyBw+Czt6/Tp003T0/xDcG/aaTB80xRQWxl56tH2t/87xJYsW2k33PmcTVs13zr0aGPTv5xnvVquYyvnrbKpXza3F154oc6FPOGEE2z5oNk2YOPVQbi5Bn7s5mftmguu9xlyNf/99xlhrzyRO1vvq298Yrf840u7/fbbc02S/ggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAmuIQINn1C22Y5s2bWz99dcv+yBdLffEiRPtyCOP9AF+zzzzjA9+VYDu008/7TPqLliwwDbYYIOyCtJVvRWEq8y58SBdfabAXAUY9+7dO3GQbhhP49Q3SFfT0nT69OlDkK4w1rCioPdtt1dW2w9t0IBu9rsLDrPjdxlmB226he21/sb20+P3tDZtWvnsz/loRowYYQtnL8o3mM39aoHP5KwBNf8u3de16XVk4v39tY/b0UcfnXe6DIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIFD5Ak0uULcpfSUnnXSSbbLJJj5r7ne+8x3r1KmTdezY0fbZZx8bO3asD1q95ZZbmtIiUVcESi5w8skn25hHX83UY88Rm5r+Rh6/s81fsMSWrupke++9d+bzXB0Kuv108rRcH2f6L5qzxAfohh6a/wOR+Yf+en39rU9t9sK2ieYfHY9uBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACByhQgULcBv1cF5r788st26aWX2q677uqz1CpT7c4772w//elPbcKECTZs2LAGrAGTRqDyBJSFeub81vb4M2/VWrjLXTbbXXY/sFb/bD2UlXnOlwuyfZTpt3DuItugz4aZ9+pQ+33rg2X2+tuf1eivN5r/KaecUqs/PRBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBNZMgZZr5mI33lKvvfbadt555/m/xpsrc0KgsgUuvPBCG33X9da7Z0e/oL26d7RJLnD267lr24gRIxItvAJ+O7bpVOewyri733771RhG4333uJF25wPXWbNmZltu2t++mjE/9fxrTJQ3CCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACFSlAoG5Ffq0sFAKVLbD//vtbdXW1PfnCP/yCrtNmuk2b1dIUwLvhhjUz4NYl0WudPrZo3mJr17Ft1sFmT5tjvTbtVeszzX/y5Mlu/u9Yy7W72/gXJxc0/1oTpgcCCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggEBFCRCoW1FfJwuDwJojcMABB/hgXS3xlClTbOSZB9pGG22UCmDLLbe01156wb79nS2zjvf1p7NzZug999xz7eGHH7avlphVt1lV0PyzzpSeCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACFSPQbPny5dUVszQsCAIIIJBCQFlxd9x7uJ1y+RG1xvr605n25r1T7ZVXXqn1GT0QQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQSCLQPMlADIMAAghUosDGG29srVe2scXzXVrcWHnvlY/soIMOivXlLQIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAALJBQjUTW7FkAggUIEChx9+uE1++YMaSzbj81nWfPlattlmm9XozxsEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEE0ggQqJtGi2ERQKDiBEaOHGkrprWwmZ/P9sum7Lov/ONV23rAMDv00EMrbnlZIAQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgcYTaLZ8+fLqxpsdc0IAAQTKT2DMmDF295O3WXWHZdZsWQub/84Ku+aaa2zTTTctv8pSIwQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgSYjQKBuk/mqqCgCCDSkwP3332/622yzzezwww/3rw05P6aNAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCBQ+QIE6lb+d8wSIoAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgiUQKB5CebJLBFAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEKh4AQJ1K/4rZgERQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBEohQKBuKdSZJwIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAxQsQqFvxXzELiAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCBQCgECdUuhzjwRQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBCpegEDdiv+KWUAEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgVIIEKhbCnXmiQACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCBQ8QIE6lb8V8wCIoAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgiUQoBA3VKoM08EEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgYoXIFC34r9iFhABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAoBQCBOqWQp15IoAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAghUvACBuhX/FbOACCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAKlECBQtxTqzBMBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAoOIFCNSt+K+YBUQAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQKIUAgbqlUGeeCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIVL0CgbsV/xSwgAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggEApBAjULYU680QAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQqHgBAnUr/itmARFAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEESiFAoG4p1JknAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggEDFCxCoW/FfMQuIAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIFAKAQJ1S6HOPBFAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEKl6AQN2K/4pZQAQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBUggQqFsKdeaJAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIFDxAgTqVvxXzAIigAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCJRCgEDdUqgzTwQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBihcgULfiv2IWEAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEECgFAIE6pZCnXkigAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCFS8AIG6Ff8Vs4AIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAqUQIFC3FOrMEwEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEECg4gUI1K34r5gFRAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBAohQCBuqVQZ54IIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAhUvQKBuxX/FLCACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAQCkECNQthTrzRAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBCoeIEWo0aN+nXFLyULiMAaKvD555/bokWLbJ111im5wNy5c+2NN96wGTNmWIcOHaxVq1ap6jRnzhx7++23bebMmdapUydr2bJlqvEZGIFsAkuWLLGPP/7Y2rVrV/LfVHV1tX344Yf27rvvWrNmzaxjx47Zqpyzn8Z/7733TO0+SRtL2yaXLl1qH330UVlY5UTgAwQSCJRTu1d1P/nkE992O3funHrbWFVV5dul1hvarpbD9j7BV8AgCJREoJz2ixcvXmyvvfaarVy50u/XpgWZP3++vf766340tXvtN+Qq9d2/yDVd+iNQrgLltp0vhlNDrb+WLVvmjz2mTp1qbdu2tTZt2hSjukwDgUYX0PmiadOm+WPo5s3XrJwUaY/rK3Ed2eg/OGZYFgKV9FvmuL4sflJUogkJVMJ2f/r06fbmm2+azg3ofGB9919mzZplkyZN8vv02q+nIFApAg11LFyoj445FixYUDbn4Ctpf6jQ74TxKkOgMbft9T0vXy7i5bZ+LBeXSq1HY67vy7WNpLmWHva1ly9f7q+/1XX9rFS/mTXr7GWplJkvAikEHnnkEevatauttdZa9tZbb9UaUxf0L7vsMv+5houXVatW2cUXX+ynMWjQIBs4cKDv1jg68Ze2HHLIIX5eqs9XX31Va/R89dEIV199tfXo0cN23HFH23bbba1///726KOP1ppWth4KLrjgggusZ8+etsMOO9i3v/1tfxCkZdS8o+WDDz7I1FX1jf99+umn0cGtX79+tYYJ44wePbrGsLwpH4HZs2fb0Ucf7b87vWYr77zzjg0dOtQPc/3119caREHf+j0pGHbIkCE+sHWnnXbywXK1Bs7TY+LEiZnf0U9+8pOsQ+erj3aohw8fbptuuqntuuuutv7669thhx3mT9ZlnWCs529/+1vr1q2bbb755r6NKZj90ksvtRUrVsSGXP02TZvUSUPZKPg3aqX+FAQaS6Dc2v1VV12Vaff//Oc/szLka/caT9uhDTbYwG8f1W5POeUUU1B8kqKbX771rW/ZJpts4tcb2t5vueWWWfcdotPTxfyw/dPw0TJhwoTMcoXtYfz14Ycfjo5CNwINKlBO+8V1tZ2AkG+/WAG22r6rvWu/WO1f7fG5554Lk6jzVTf0aJusbb5eta+/1VZb+Qt82UZMu3+Rb72VbR70Q6AYAvnajuaR7/fZ2Pv3SfZNgk2S9UcYNrzW57g+yfHJM8884485dMyk9UmvXr3sN7/5TZg9rwg0uECSNpRvP+DBBx+0jTbayJ8v0j6xgs2/973vmba3aUuS/fu66nP77bfn3I9eb7310lbH8p2L0wTTHNcXcx2ZemEYAYFvBJK0+3Lb3tdVn7TnobP9ENIc14fj+Pgxut5Hz2MfeOCBOddHGjZ+HiBbveiHQLEF6mpLmleS44FibveTbGdzbffr08Z0rv6kk07y1+x22WUXfy5/6623znlNIt96c/Lkyf4aSO/evW3nnXc2veqah84FUBAolUCuthPqk+93XZ9j4TCP8JrkWDzf+kef//rXv/bX2dddd13Tn67Nq58+S1LyrQOj00hSZ/bto2J0l0ogX1tWvfKtD4q5bc93TF/oefkkbTLfd5BrvyPt9bhirh/z1ZnP6y9QjDZSzPV9Q7URSeX6jWdTzHY8G+33s5/9rMZoaa6lK+hfddH1cu1r61xh9+7dTeuaciukpCy3b4T6rLECCxcutPPOO89uuummjIGCVKNFmW5OPPFE++9//+t76869eBk5cqTdcccd/oBcgQDaaN95553+oEF3QCh4L2m55557bOzYsZnBC6nPuHHj7Nxzz7W+ffvaGWec4S+Y/O1vf7NDDz3U3n//fb+izMwgS8eNN95of/jDH0wXNo4//nh/suGGG24wBSbOmzfP/vjHP2bG+vrrr333vvvu6w+WMh9809G+fftMLx1AaXgFNurCZLwMHjw43ov3ZSDw7LPP2nHHHee/O1UnHnyu36h+Xz/+8Y8ztY0Po50aBbep6Lep71pBp9dee61tv/32PshNJ7WSFN3BpDYZSryNJKmP6nf66afbK6+84oN3FKh7//33+wOYiy66yK644oow+ayvv/jFL+zKK6/0wT4XXnihv3P+rrvusksuucS++OIL++tf/1pjvDRtUhcMFByvcvbZZ/sdGp1U0M6cLuq/+uqrvg3VmAFvECiyQLm1e2Wujh4oFNLuH3roITvyyCP9tk3tSYHw2nZre639gXvvvbdORZ1UOOKII3xGcB10aLs3ZcoUv77QCX4F8+mmmGzl/PPPz6xD4ycTdVPNmWeemW00+/e//+2322S0z8pDzyILlON+cV1tR4ufbz9d7W3PPff0mXQVlL/bbrv5NqUT++r/0ksvmdpvrqJAAJ1c0P6rxlegr27q0z6AtsnKrK0bfUJJs3+RZH8lTJdXBIotkK/tJPl9Nub+vZY/375J3Cjf+iM+vN4Xelyf7/hE09ZTbg4//HCfCehHP/qRP1bXMZQCdbfYYgs76KCDNBgFgQYTyNeGkuwH6Jj35JNP9r9fHft26dLFHnvsMfv73/9u2maG82ZJFiLf/n2S+nz55Zd+VtpGr7322jVmm+0m+xoDxN7kOxenwdMc1xdzHRmrKm8RSCyQr92X2/Y+SX3SnIfOBpXmuD7Neex99tnH39AXn6fWZTrv0Lp16/hHvEegwQSStKV8xwOqXDG3+/m2s/m2+/VpY7rOdffdd/vz7bq5SAE6eq/rXs8//3yNJ23lW2/qyXdK/KFrhL/61a9sww03tP/85z92880323bbbefPE+opghQEGksgX9tRPfL9rjVMocfCGjde8h2LJ1n/nHrqqab1hq6Tffe73/Wz0DGHkmMpu9+tt94an23mfZJ1YGbgbzry1Zl9+7gY70shkK8tJ1kfFHPbnu+Yvj7n5fO1yXz+de13pL0eV8z1Y75683n9BIrRRoq5vm/INlLXbzyb4g9+8APT9jFeVMennnrK33QaPkt7LV3TVmybblw76qijfGIsxcZp+33ffffZwQcfHCZd+leX7reaPwz4DZT+N+Ai+rVGqnYH6NXurlrf7YLgMu3TXWjw/TSMO6CvDsNHvzuXMdYPs8cee1S7oNzMuO6OjWr3WNxqt8Gvdpn6Mv2j48a73QGGH8dl+qp2Ky8/XU0/DJekPu4uo2oXoOvHdcEDmXFdNj7fzwUkZvqF6UZfXZCgH84F6Va7Ew6ZYd0OXmb5Vc8wjgtu9MOPHz8+0y98Fn91dxX7Yf/v//4v77DxcXlfmvYyZswY/53pd+yC2Xy3C1Cr8f25AF3f3x00V+u7VXtxQXBZh3n66adr9HcH1n54Fwheo39d3/cvf/lLP86oUaP8q9sBqDFukvpcd911fly1+zAv9xjaai2D6h+vZxhGry51vx9G7dQ9diczvjvZX632pfFffvnlTP+0bdIFI/ppuBMPmWlovi5Th+/vbi6o0T9aN7pL004qzb3c2r0Lfql2O/iZ37/amAuqrdEOkrT7vffe20/DnQzMjKvtnNqypuky2Gf6Z/tOta+g4W655ZYaw7mTG76/6pBtPHeA4j/X+No+a37Zhov307pD6179RbfH8eF4T7sv1m8g7OeWy35xvraTZL9Y+6dqty4orka7cxn4fP9829RzzjnHDxffrwl1c4F1NaabZv8iyXqrWN8t02E9Ef0NJGk7SX6fYZj4fnND7N8n2TeJLmNoo2m2vfU5rs93fKK6uZuF/Prktttuy6w3PvvsM99P5w10jBFdBrppt8X8DSRpQ/n2A1QfDaPfqwuQzfxedRwd9rPdzSyZ/nXVP8n+fZL6aPuu7XzSc2656pTvXJzGS3tcX8x1ZK5605/1RF2/gSTtPvxOm9L5vDTnobP5pDmuL8Z5bB1HaD3lbuhPtH7MVmf60dbT/gbyte0kxwOaZ7G2+0m2s0m2+9kc8rUxXetTG9S1rkWLFmXaoc4FqL97gmSmX5L1Zrj2oXVRtD7upiE/PV2Di/anm/bb0L+BfG0nye+6PsfC8eXLdyyeZP2jYw21T5fwqcY5cZ0fVz99Vtd5/HzrwLR11vBhmsU4/xGfP+9ZTyT5DSRpy/nWB5pPsbbtSY7pCz0vn289ks8ryX5Htmlkux5XzPVjtnnSr3jtv1htpFjr+4ZsI4X+xrP93nR9S9vV119/PbMPG87xJbmWruvlGl/H2dHpuydQ+P5a50T7l7q7uassBQEEykBg1qxZ/s5gZdTt2LFjrRope6yyyuouW7ditmwZ7dwBvr+LT9lmo58rk6wex6E7/ePZ82rN6JseP/nJT/zduKpPtjtvk9RHWb6U0VPZ+aIZvtxK1T+KR4/bVAryXCU8Xtud5KiRkUTpz1944QVzFxN9uvIwvjsg8p09e/YMvXK+KouQStLMqTknxAeNJqDfkrJG/u9//zMXjJ51vnqskzJT604lPQIzW1EW5T/96U+1Mim7DbQfPGTEyDZutJ+yzequWf2e3UY/+lGmO0l9wu9cd76H0qxZM3Mn2/xbZQXKVUKWoBNOOME/BjsMp+wY3//+9/1b3ckUSto2KXMVZeqLlvA+fB79jG4EiilQbu1e20S1O7X9zTbbLOui5mv3ynLZvHlzn2W+T58+mWko85YeU6eijLi5irbjyoKju/iPOeaYGoMpy662jRdccEGN/nqjfQRl73bBtj5Tfa0B6ujhAnn8PoQyf8YzhNUxGh8hULBAOe0XJ2k7SfaLtT5T1nzdyRstyoyrom10XeXxxx/3H+sxmdGibLwu6N50d7HcQkmzf5FvvRWmySsCxRZI0naS/D4bc/8+yb5JcEqy/gjDRl8LPa5PcnyiJ+4og4COfaLrIx1D62ke7oKjP+cQrQ/dCBRTIEkbyrcf4AJyfeY57aMqk24oOo4O++jRbWL4PNtrkv37fPXRdN2Nsz67r/bz61PynYvTtNMe1xdrHVmf5WLcNVsgSbsvt+19kvqkOQ8d/wWkPa6v73lsPWVP1wt0PkBPKqMg0FgC+dpSkuOBYm73k2xnk2z3435J2pieVKWic/6tWrXKTOKnP/2p79ZjfUNJst5UtkJdI9E5gWjRk3hU9NQdCgKNKZCv7ST5XRd6LBxfziTH4knWPzNnzvST1nn46DlxdaufSthG+zexf/KtA6ODJ6mzhmffPqpGdykEkrTlfOuDYm7bkxzTq85pz8snbZN1fQdJ9juyjZ/telyx1o/Z5ke/4goUo42oRsVa3zdUG1EdC/2Na9xoccG5/vqWnkS76aab+o/SXksP8TA67o2WQYMGmZ6CFfbFo5+VsrtlKWfOvBFA4P8L6BHydQWYKtBVwyjoNlfRMOeee26tj1988UV78803fZCjglzzFQUCPPDAAz7Advvtt/cBQfFxktTH3ZHoR1N68XjZaaed7LnnnjM9oicE/cWHUYpzFZ1cUJ3cHU/m7vrwgUwKZop7hQBLHSRdf/31/vE+ugCpYfXon2gJB0+6qPPggw/6xw13797dD6v6tGjRIjo43WUgoMeznnHGGaaLb9rJz1b+/Oc/1/pdxIfLFlTr7poxd6eNH1Q76/mKLnCrLipXX321r1O2cZLUR21TQfjRgD1Na5tttvGTrOukmsuW7Yfp1KmTf43+o2VSef/99zO907bJww47zD/W59prr7Xf/e53PrhQO0Z6r3LooYdmpk0HAg0hUE7t3mWXs7POOssfHOmGGXdXZNZFztfudfE+evI9TESP+tB2XiV6c0v4PLy6OxR9p25c0LbMZfQ1d0eg385pe7nVVluFQWu8KrhYB4guI7Z17ty5xmd1vdHFBo3LBb26lPis2ALltF+cpO0k2S/WNjPbdlP7ASrhBEQuS+37uMyBNS4MhGHDtl7rh/B47TT7F/nWW2E+vCJQbIEkbSfJ77Mx9++T7JsEpyTrjzBs9FUuaY/rkx6f6EKhio7H48e8OvZXCesU/4Z/ECiyQJI2lG8/QOd8srUR7a/rMbTaXubaJ44uTtL9+3z10TR10n/gwIE2depUXwdtt7fddlt/jkn70UlKknNxmk7a4/pirCOT1J9hEMglkKTdl9v2Pkl90pyHjtukPa6v73nsm2++2d98q/N50UCjeL14j0CxBfK1pSTHA8Xa7ifdzibZ7sedkrSxKVOm+NG0fxAtOken62dKDBACEpKsN6NJP6LT0817KrmSmESHpRuBYgrkaztJfteFHAtnW4Ykx+JJ1j+6rqxrzLoOoKD6cJ1Z7Vn99Fnol60e+daB0XGS1FnDs28fVaO7FAJJ2nK+9UGxtu1Jj+kLOS+ftE3m+g6S7nfEx891Pa5Y68f4/HhffIFitBHVqhjr+4ZsI4X+xrOJ/+Y3v/G9f/GLX2Q+TnstXfvASoqjmBklu3rttdd8t+LEtK+dJEYuM/NG6CBQtxGQmQUCSQTiQafxcdq2bRvvVed7BR3qIpwu0ivD1rBhw+zGG2+scxx9qB0AZeLUhQRlzstVktQnZATs169frcn079/f99MwuQJ133nnHR/A+IMf/MDuvPPOzDT+8pe/+P7KyBsNbgyZDHQncfzi4g033GAnnnhiZhrhBKcOruLDasOn4eubCSUzMzqKIqBA6nwlXzuKjq/fnu6uUVbnJ554wv8O/va3v2UCZKPDxrt1N9srr7zig1eVrdo9ciI+iH+frz5qbwqcy5YhWG1MFxjVDnKV7bbbzn/06KOP2qmnnlrjNztx4kT/WQh415u0bXKfffYx7RyNGjXKr0eGDBnis/d8/PHHvr8+pyDQkALl1O7PP/98v6jucVB+PRkAAEAASURBVPI1Ml/Elz9fu48PH97ffvvt/sDBPaKuzkDasM3SXf8K7FPmu2i59NJLfWbxaL+3337bZ9FVBnAF4KcputtSFyB1QU/ZuikINIZAvnaUZD80Ws9C94uTtp209Ql1U/v92c9+5t+q7ddVdtttNx/489JLL1kIptPwOtkSii74b7311n5/Ps3+RT7vMH1eESi2QJK2k+b32Rj790n2TeSUdP2RzzTp+ivp8Uk4HgjH49H5h35hXyP6Gd0IFEsgSRtK0+7dI199YIu2gf/4xz+sTZs2pqfS6DVfKeb+vba7ynATv1CvY3rVMV/gcNJzcVqm0I7TnmurzzoynyWfI1CXQLHbfX1+y0m3l0nWQ2nOQ8d9wrY26XF9fc5ja92kc/w613/88cfHq8J7BBpUIF9bSnI8EK1godv9NNvZfHWO1kfdSdtYCNTt1atXfBKm6wsK1NXxfd++fWs8RbLWwHX0CMcgeupOtusNdYzKRwjUWyBf20myPxCtRNJj4eg46g7tIN958KTrH11DPPnkk03XxkKSH12bVjvT9cS6Sj6TMG7SOofh9Vqf/aHodOhGIK1Akrac9LeveRe6bde4SY/pNWy81HVevpA2GZ1+mv2O6HjqTnI9rtD1Y3xevG8YgWK3kfqs7xuqjdTnNx5XV2D/I488YgpwDk/Jig8TfZ/tWvr8+fP9dewRI0b4m+ajSfCUYXe//fbzSa/KKViXQN3ot0o3AhUkoA25AglDUfBpkgCbK6+80gcO3nXXXf4ugzB+Ia8hW0/I7BWdRthI6fGAuYpOXmhHSUGBChDSClor/quuusp0J6KCBCdNmpQZPUxriy22MD3uVzuCzz//vB177LH+cd86cBo+fLgfPmQ9kIky+2655ZY+I+EPf/hDf5eFhg0br8wM6KgoAWWhCXfoaMEOOuigvBfPNJxOjp933nn+blll16xPCb/Dbt26ZZ2MTtKFTHvZBtBFQD36QHctKaBdf9rJUIZNtRMVnfQPpZA2qexcKmqH+gsl9A/veUWgKQgU2u518k3ZuU4//XR/40uxl/WFF17w09bJ+EsuuaTOyStLl4rauO4CvOaaa2zw4MGm4PxjjjnGLrzwQp81Q+s0FWXqDeuqsF7wHyT4RxcbLr74Yi7oJbBikPIWKGS/uD5tJ4mGHner/XNdpNejL3VXfF1Fj/3Remj//fc3BRjoEXu6medHP/pRZrQQuF/f/YvMBOlAoIkJFLqdL+b+vciKuf5Isv5KU39l/VTJluEzHLeHYwY/IP8gUOYCzz77rF1++eWZWurG8+gN3ZkPYh3F3r8Px8rKbqdjBq0H9KQqPYlj991391lw63qqRZpzcaGNhjYbXbS6zrUVuo6MTp9uBMpBoNDfcprtZZLlTHMeOj69tMf1Yf++kPPYStyh4wQdcyS5NhCvK+8RKCeBQrf7abazaZc3aRvTTUW6gadly9qX5cO+eQjUTVsHDa+bB3S+QEV1KqdABF8p/kEgpUCSY+H4JIt5LB6mvXTp0sxNgDqGCEXXn4uRpb7QOhe6PxTqzysC5SJQ6La9Psf0dZ2XL7RNRj0L3e9Iej2ukPVjtH50Ny2BQtf3DdVGpFfobzybfIjV+eUvf5nt4xr9cl1LD0+sUbZ77W/rBn4lu9Fx9znnnGNjx441Tf+KK66oMb1SvmleypkzbwQQaDgBBZ8qQE+vytSlAD5d0NdGPlfRHRlaGequwCOOOCLXYIn7h4w84WRidMRwgTAME/0sdHfo0MF3qk6nnXaazzCoIKbf//73prshdTeE6hyKHl2gk44KMlawQ/v27f1w9913nx/kX//6VxjUB+bqAooykWpFrbsnlYFM71UefPDBzLB0VKbAnnvuabrDRhtv3X2mrLjKUKsd3LqKfjc6wa3Mzq1atapr0LyfhTvoo9nwoiNpB0JB47lKs2bN/M6GhtEjtvQb1p29ajMXXHCBvwAfvfsotLekbVKPGFDWjX333ddefvllmzlzpn/Ve/VPstOUq+70R6AUAoW0++XLl5tu4tDOfb4g2kKWSduyAw880E9f26lwcT3XtKIX+HVTioL1lTFMdwoqGEBF/UPRNlA3rajNrrfeeqF3oldll9f6Tlm1uaCXiIyBylSgkP3i+rSdfAw64RdOECiYR094yFd0wU3B9mqTyoytx2vrpjXdxBYe/x2Cfeu7f5GvLnyOQLkKFLKd17IUc/9e0yvm+iPJ+itN/XU8rZLt+CMcI+hmQQoCTUVAv38d1+sG1z/84Q/217/+1QYNGlTnDa/F3r/XY6q1r3333Xf743DtzyvgRkHDOi7XtnvChAk5SdOei0t7XB9mXOg6MozPKwLlIlDobznN9jLJsqY5Dx2fXtrjeiWYUP3TnsdeuHChP0eodVK2R6fG68V7BMpdoJDtftrtbBqDNG1M5+S0T7BixYpaswiB/2FfvdYAeXpoujq3qAz/ejKlbuynINDUBZIcC8eXsZjH4pq2bsbba6+9fMZrXUPUtcRwPVHn27VPEm7Yi9cl6ftC61zo/lDSejEcAo0lUMi2vT7H9PnOyxfaJoNXffY7kl6PK2T9GOrHa9MTKGR935BtpD6/8bi+ElDpuriudym+pa5S17X0Tp06ZUZVdl7dMK/YLz2VVtfNdX1fSXDKqbQsp8pQFwQQKJ6AAgj1pyBU/b322mv21FNP2ZNPPmmHHHJI1hkpC5/Kd77zHfvPf/6TGeazzz7z3brzQicLFAyUpIRH/oVsH9FxFBSpEgIKop+FbgUY6uTCtttuG3plXlVHZRFV8GCYhjLnZis77rij7627LEJRv9A/9NNrly5dfKCyllVBze3atYt+THcFCTRv3twHnvXu3duOO+44/zvaeeed7U9/+pOdeuqpWZdUF/8UyLvJJpuYdnL0SA6VcKFbB+VPPPGED5xLksVHgW86Sae7oeJFJ/p0km2XXXaJf1TjvU62K3u22sL48eP9zsZOO+3kp6t0/tGg+zRtMmSvVv20E9OiRQs/Xz2yU++VwVOZrZVtM8ljRWtUmjcIlEigkHZ/6623+oyXylarbWkob7zxhu/UYzm0w692l/SRWWEa2r7qIEttXesTrVvylQEDBmQGCTe0hB7bbLON7wzbcK2nQgCgAnrDOksDKaBBFwe0ztK2PX4QpDpdeumlPsjghBNOCLPgFYEmKZB2v7g+bScJkNrW9ddfbwcccIDfliYZR8Mo4EfBuePGjbOPPvrIZ8/WxThNTyXsExdj/8JPkH8QaGIChWzni71/X+z1R771V9r6h/VEOMaPfsXhuL2uGwWjw9ONQDkIKCud/jbaaCP/t2zZMv+ECV1I17F9tlLs/Xute3LdxKqLAzou1/G6bjjPVtKei0tzXB+dXyHryOj4dCNQLgKF/JbTbi+TLGua89Dx6aU5rte4hZ7H1jGHju0vu+wybr6Nfwm8b5IChWz3025n08CkaWMKFFBgn64jRNcBmp+O71XCTbf+TcJ/tO9z1FFH+XOWSmKjbgoClSCQ71g4vozFPhbX9O+55x6/HdWTrXRtIBRdT1QSnZNOOslGjx6d81ggDJ/rtT51LmR/KFc96I9AKQUK2bbX55i+rvPy9WmTwbDQ/Y401+PSrh9D3XhtmgKFrO8bqo1IsNDfeDb9pNl0811LV6xPKMOGDQud/lWJHRVrowBexafF98NrDNyIbwjUbURsZoVAQws89NBDpgBTZdXq169fjdkpEECBunrMV64STgj8/Oc/zzqIAnUUFBgu4GUdKNJTWUxU9NiCo48+OvOJ7lZSXVTCMJkPIx0KBFRgsQIG4yVk5I2ueM8//3zT40Z+8pOf1BhcOzcq0WEVbDl58mSfVSAeZKhp686KeP8aE+VNkxRYsmSJKUusAtLiwbjKpqvvPfy2si1guKCtu3YUKBMvuutHf/p9Jc1UocA8jaMg32i2yxBYXlfgntqG7uDt1q2bKchYf6HoBIFKuIin7tDekrTJ0M51EjEE6WoaKnqvbB4KpNef2ioFgXIVqG+7VxtT0Yk5/cWLsrzrT+uFEPwSHybb+1mzZvmL9cpepwMEBfomKSHLnQJv40XBtyphXaIbTkJ2PN2RGC/aPmr/4Pjjj/dZuaOfh4sNCiwgm25Uhu6mIlCf/eL6tJ18PmpbOgGxxx57+Mx7OhmZpOgkguq18cYb19jHUMC9smhrHyZ6Ua8++xdJ6sMwCJSLQH2388Xevy/G+iPN+itt/cPNhLqpR4/6i66DdBOASpr9mXL5HVCPNUvg7bff9o90Pvjgg/3J9ujS6zhdFw30+Odcpdj792qHCgrebbfdMo+cDvOeM2eO79S5tFwl7bm4NMf19V1H5qoz/RFobIH6/pbTbi+TLF+a89Dx6aU5rte4hZzH1vkBBeiSTTeuz/umJlDf7X7a7WxSn7RtLJw/V7BuNOBP1+uUhENPw1TgX5qyatUq/yRKXWvT/k+4WT/NNBgWgXISSHMsHK93MY7F49MMCXZ0U2C8hH7KLFhoSVvn+u4PFVpPxkOg2AL13bYXekyf77x82jaZzaXQ/Y581+Pqs37MVk/6lbdAfdf3DdVGpFbobzwuridPKSmjrl1nu94dhk9yLV3nt5V44v333/dPnFdixmgJCfcUT1MuJdlVwXKpLfVAAIE6BXQHzXXXXWe6s+LKK6/MHNjrDiAFAalEA4EUMBs9+NdjAufNm1drHldffbUpjb5S7qd5/I6CIbVS1F0bCp4NBy5jx471Jx/23Xdfi2YDjNdHgY5aHmXt1AWPEDirAEJNUyWabfe9997zF0eUnTC6QtfOjUo0iFE7W1ou1W/kyJH+c/2j5VSwlTYKcqRUloB+Qy+++KL/XSlAJpwY11IqeFVBa0ceeWSNhY7+LrfeeuvMo+WjA2kD/8Mf/tA/Bke/J2WdTVqU8VaBupdccknmd61HZ4aMPMqUFy3R+syePdsHzCoYRxl61l57bT+oluNnP/uZD9pREF4oadqk2oZO5qu9KqhdgUGh6L3qrM+5kB9UeC1Xgfq2e90hr8z08aIAl2uvvdY/vl7ZbaI3g8SHjb/XNkiBBTpo0KN0lCW+rhJt95qP2rW26zqIiWbmuuaaa/xktM1UUeCeMmBnKyeeeKLfrurxwPGbe3SxQVk41MbJpptNj35NQaA++8WFtp18Lg8++KCdddZZ/jGU999/f51B8NF2r+n+8Y9/9Psvd911V419FbVhrUviF+TS7l/kqzufI1CuAvXdzhd7/76Q9Ue8vadZf6Wtv45xtQ+gjEBan6hbRcczl19+ud/26wZGCgLlLKAbU3SuSMfACkyJPtXin//8p6962B8OyxFtZ8Xev9c+8+233+6PnXXOrWPHjn62OhcXzkcNHz48VMWidVHPtOfi0hzXF7KOzFSUDgTKSKCQ33K0raXdXiZZ9DTnoTW9aH3SHNdr3ELOY0cv9suPgkBTFUi73Y+2NS1z2u1sUqd8bSxeD10LO++88+yCCy7w157CeXzVTyV+TSJJPXT+X4/x/fGPf2wXXXRRklEYBoGyFkhzLKwFibazQo7F82Hsuuuu/ib7m2++2V/zCwltFCSvJ3ioRK87R+uTb9r6PG2dC9kfSlIPhkGgsQXSbttVv2j7KuSYPsl5+bRtMl4vvS9kvyPJ9bi060fVhdJ0BQpZ3zdGG5Fo2t94tF7RbyRJNt0019LPOOMMf41M19HCEyg1Pz1pVjfF6Tp+9PxhtC6l6CZQtxTqzBOBBhJQ4KECVP/yl7/4wDoFrCrLli5UaAWkkwEhO6cCg7Qjo+y5ChBUGTFiRNaaPfrooz6AVcFA0UxdWQeO9FQGPt3xrwMVPe5PK0jtbCjwVjs7CnAKRcG3ygqiO4f/+9//+t46iarHiN19990+AFJ3GiuQWCdBlCHw4osvrrFCPfPMM/2FkV122cUHTil1uTIMa3wFHR566KFhdv7Eh5ZbwRJ6/JkuRipAN5wYOfvsszPD0lFZAjohpgzPQ4cOtdNPP90H6+q714U+Ff1OQ1FwuTLdzpw50weV6/cfDXwNw02dOtV36neW7fMwXLZX/a7vvfde/zudO3euz7CnE2z6XSo7djQYXcHACphX8Kzat4LrtAzqp/Z78sknm7KE6MK72oguvkcD8NK0SQXx68ShTvRtscUW9oMf/MC3Ud0pFdquPo8G+2dbPvohUA4C9Wn3yiqtv3gJ2dq1/Ujb7nUjiu4WVHnsscf8X3T6hx9+uG/j6hdfD6mfstwqUFeB/Gqjm222mSlwWOsO3VATgm50F2GuuulGGR2UZPtcgX9aPh3McEFP4pSmKFCf/eJC205dTgom+u53v+sH6dq1a60nQOhkm/bhVbLtp6uta19F+++vvvqqz2avO+n19Ant3//qV7/y44Z/0uxfhHF4RaCpCqTZzsf3p4u9f592/ZGtvadZfxVS/9/97nf+pjsdR/zvf//z+w5/+9vf/Nev44pOnTo11Z8C9V5DBLQd1fGpjku32WYbf3zfuXNnf/Otto16ukR0Hze+P13s/XsF2mg7rX3nHXbYwZ9T0HZd7VtZ83QjuPbXVbKd+0p7Li7Ncb3mmWYdqeEpCJSrQJrfcrzdF7K9zOeQ5jx0vD6adtLjeg2rAL4057F1/lzbe26+lR6lqQuk2e4XYzubxCtfG8u2j6+n3inLtZJzaH9BN8a/9NJLNmbMGH9NTMcpaYpu1g/nEJTBP5qMRtMJ5/PTTJNhESi1QJpj4Xg7S3ssnmRZ99tvP39tWde533nnnUzCDCXP0HVsHXdoGJVs65988yikzmn2h/LNn88RKJVAmm276hjfl057TJ/0vHzaNpmt3ac9vtfyJbkel2b9qGlSmr5AmvV9Y7URqab5jWdrI5qGtqG6rnXIIYfUSL6oz6IlzbX00047ze8b6wm4imVRHI0Sz+kJWCp6+kQ5FQJ1y+nboC4IfCMQ7srLFwCnYNdoWWuttUyPq1Rwnw5SlFlERSfldHetAltD0V3/KtG7/cJnuV7T1kfTURZCZfdVlq8QEKx6K9tINDtveIRIPKuggnIVaKjsPiGoSePrZKOy9EaLVrgKYDzppJMy89LnuutRgYtyCEWZCxS8rEBgXYzUn4oCLW+88UYbNmxYGJTXMhQI2Y7Da7Yqht9rfBhdJFNgnH4/+m2Gou9cJ7hCNtylS5f6IF31j2Z+DsNHX8O8wmv0s9AdPovXR/0VeKOT7vr96k9FFxbjOw06GaAS/X0q8F0ZexRkrsDzUEaNGpX1TvykbVLT+f73v+/bn+oRgnPVXwFBuggZvfip/hQEGlIgtJ3wmm1eudpZQ7T7MP8wz/A++ho+i9dZGbxDCRniw3u96kK+tmm51kPKcK1togL2rrrqqsyoOtF/55131gjQz3yYsGPx4sWmAxltM0PAb8JRGQyBBhEo1/3ifAsb309/4403MqOEJ11kenzTES6yZdtP18l/nVTUvms4uaDRdJOebsxR0E60pNm/iI+n9/H1VnQYuhFoSIF424nOK9d2Nel2XtPKtj8dnUfoDvMKr6F/9DW0k/Aa/Sxpd7b2nua4Ptd8Qr3Da3Q4Pf5L6w3tR4QAXX2uLFy6uZeCQGMJhLYTXrPNN9d+gDJkDBw40O8Lh3NNGl8n+XXsGh5nl2t/Otu8Qr9s7SZ8lqs+aj+6wU03s0az3CsgXtvtsIy5zn2F6Wd7zVafNMf1adaR2eZPPwSKKRDaQnjNNu3wm48Pk/S3nKbdh3mF1zT1SXoeOld90hzXpz2PrYAibr7N9m3Sr5QCoZ3F23a8TtmOB5Ju94u1nQ11yrXdz9fGsu3ja5pKDqPHfSuxjK7hqeg8u65dKTgoWwle4TUME66V6f0dd9wRemdeFTyoG5soCJRCIFfbCXUJv+fwGvqnORbO1c7CtAp5ja9/FEz4wgsv+MRQDz/8cCbJlIYL5+fCja751j9J14H56p10fyjfdPgcgWIIhDYcXrNNM9f6IOm2Pde+dLZ5hX6hvYX3ac7Lh3GSvOZr99mmEa9b0utxadaP2eZLv9IIhLYRXrPVIlcbSbq+L7c2Ev2N52ojivNS0Tm0ukrSa+mahq6PKU5OCfl0I5z+VBT7paesx5+85T8s4T/N3GO4qks4f2aNAAINJKA04tOmTfMXA3QyL150UU7BvMrg2RhpvnVXr1bG2tjoRGR8njq5oUwECi7OdieGUpvrrgcdAGmFGl3Jx5dN7z/99FP/+E49ErBdu3bZBsn0mz17tk2ZMsVnC+3Zs2emPx2VL6AdYN3No+zL8QAXZdndcsstfYa6fDsKxZCqqqrybWTGjBnWv39/X6f4dHViQJmm//3vf8c/8gF9CjzQY3fURsIJgloDftMjX5uMjxesFDgfb7/xYXmPQDkLhN9yObT7fE751kPa1n/yySf21Vdf+ay/8ZOJ+abP5wisKQLltl+czz3ffvoXX3zh7wrWPr6eSFHXiZ4k+xf56sPnCDQlgbq281qOuvanS7Gc+dp7vvVXfeqsE7k6xl62bJnP0i0bCgJNUWDWrFn+6U3avw8XOMJy5NufDsMV61XH42pXelWWn3jQTb5zX2nrUehxfbZjobTzZngESilQ1/a+sdu9HOo6D52vPmmP6zmPXcpfHvMuB4G6tvvF3s4Wurz59vF13U5P6NMTAXQeP76/UOh8GQ+BShLIdyycr501hIXOx6lEk1CF+ZRi/VPX/lCoF68INAWBurbt+falS7l8pWj3Wt5868dSmjDvhhGoa31PG6ltrlgbxaWtu+66li1OrvYYjd8n+y16jV8P5ogAAkUWUCBrtoOFMButtPfaa69GC7jTSQc9kjBXCXc/RjOFRodVsO3QoUOjvers1kUH/SUpyiikbCSUNU9AAad67FS28uGHH/rejXWHjYJsVJdc9dGBirJhqN1mKwo0VhBv0pKvTcanU5dVfFjeI1DOAnX9lhu73edzylcfbevXdQca+qMggEBugXLbL85d09Wf5NtP1z5+Xfv50enn27+IDks3ApUgUNd2Pt/+dCmWP197z7f+qk+ddfwQniZSn+kwLgKlFlCQea5A83z708WuuwKF9XSMXCXfua9c4+Xqz3F9Lhn6V7pAXdv7xm73sq7rPHS++qQ9ruc8dqX/ulm+fAJ1bfeLvZ3NV5dcn+fbx+/Tp4/pj4IAArkF8h0L52tnuadc+Cd1nYsrxfqnrv2hwpeSMRFofIG6tu359qUbv7b/j70vAZCrqNOv7p4zB0kgJJBw5IRwBozc9ykiuIAgrID34uL590ZXVGRXRddrPRBWvHVFUBEB5TbcIvcVQgKEJJBAEkKAJJOZ6e7/9/3eqzevOz0z3T3dPd3TXyU1dder9/U76lV99VXfEYfjvufRB3s+9rVQvpGCwEDPe90jm//KW2+9taOtZ5Os58apbUJACFQHASp7PProo/0S/qpz1IFrpeIIt+Npb28fOKNShUCNEGAHm+qUAxHMa9QUO4zvaB111FG1PKyOJQSaCoF6u+/rrT1NdTHoZJsGgXrrF9dbe5rmQtCJNgUC9daf1v3eFJedTnKYEai3/rTGvob5gtDhmwKBervv6609TXER6CSbFoF6eM+qj9+0l59OvIYI1ON9Vg/Pnxr+BDqUEKgZAvXcl9Z9X7PLQAcaAAHdIwOAU8dJie7u7mwdt09NEwJCoAoIUBL/wQcfdDNnznTjxo2rwhFKr5IvEarmDrQisfRaVUIIlI/AihUr3Lp169ycOXPKr6SCJammu2jRIjd37tzNtvOs4GFUlRBoagTq7b6vt/Y09cWhkx+xCNRbv7je2jNif3idWFMiUG/9ad3vTXkZ6qRrjEC99ac19lXjC0CHa0oE6u2+r7f2NOVFoZNuGgTq4T2rPn7TXG460WFEoB7vs3p4/gzjT6JDC4GqIVDPfWnd91X72VVxCQjoHikBrDrKKqJuHf0YakrzItDW1uYOO+wwd+ONNzYvCDpzIdAkCFx44YWO9qabbnKHHnpok5y1TlMINDcCes839++vs28+BPSub77fXGfc3Ajcdttt7uijj9Y3fXNfBjr7JkPgmGOOcfPnz3cQwGiyM9fpCoHmRMC/688//3xHKyMEhMDIR0Dv+pH/G+sMhUAcAT+Wp3d9HBX5hcDIRkDzdiP799XZCYE4Av49Xy/jeMl44+QXAkJACAgBISAEhIAQEAJCQAgIASEgBISAEBACQkAICAEhIASEgBAQAkJACAgBISAEhIAQEAJCQAgIASEgBISAEBACQqAyCIioWxkcVYsQEAJCQAgIASEgBISAEBACQkAICAEhIASEgBAQAkJACAgBISAEhIAQEAJCQAgIASEgBISAEBACQkAICAEhIASEgBDIQUBE3Rw4FBACQkAICAEhIASEgBAQAkJACAgBISAEhIAQEAJCQAgIASEgBISAEBACQkAICAEhIASEgBAQAkJACAgBISAEhIAQEAKVQUBE3crgqFqEgBAQAkJACAgBISAEhIAQEAJCQAgIASEgBISAEBACQkAICAEhIASEgBAQAkJACAgBISAEhIAQEAJCQAgIASEgBIRADgIi6ubAoYAQEAJCQAgIASEgBISAEBACQkAICAEhIASEgBAQAkJACAgBISAEhIAQEAJCQAgIASEgBISAEBACQkAICAEhIASEgBCoDAIi6lYGR9UiBISAEBACQkAICAEhIASEgBAQAkJACAgBISAEhIAQEAJCQAgIASEgBISAEBACQkAICAEhIASEgBAQAkJACAgBISAEchBIdHd3Z3NiFBACQqDmCLS1tdkxDzvssJofWwcUAkKg9gjMnz/f6X6vPe46ohAYLgR4z9Povh+uX0DHFQK1R0Dv+tpjriMKgeFEQO/64URfxxYCtUdA93ztMdcRhcBwI6D7frh/AR1fCNQWAd3ztcVbRxMC9YCA7vt6+BXUBiFQOwR0z9cOax1JCNQDArznwY+th6Y4EXXr4mdQI5odAU/UbXYcdP5CQAgIASEgBISAEBACQkAICAEhIASEgBAQAkJACAgBITA0BFpcq+tMdLrO5CjXnmh3rYk215qETbTCbXUtsKlE0iVc0iUTCZeAnyGajMu6bDbjMlm4CKWzadeb6XU9mR7Xk+2O3E3ZLrchs9F1ZTc6pA6twSotBISAEBACQkAICAEhIASEgBAQAkJACAiBKiFQL0Tdliqdn6oVAkKgBATq5YFQQpOVVQgIASEgBISAEBACQkAICAEhIASEgBAQAkJACAgBISAEaoFABgTaTc5lN4I6CwturMsy3IUwXbPYPBECMVlwZsGnDf2I60UY1qVh6adLizrBxM21CBpfl5xdb5PwpxCEdZxRop8ubKINmVrpwsJ1dNtB/G13LtnR5wdn2CU7EQ+bRBpYwTJCQAgIASEgBISAEBACQkAICAEhIASEgBBoKgRE1G2qn1snKwSEgBAQAkJACAgBISAEhIAQEAJCQAgIASEgBISAEBACQkAI1BsCJNNm1oN4C5tdD//r8L8exBkxdwM4tRuCNAuDrAs5W5B16SINZF0SdY2EC6c2hkzf0JDIS6IuCLrOSLp0Sc5F3ChvEYYfQr8uMRqk3dHwj0Fc6CZHwa9ZqxBQOUJACAgBISAEhIAQEAJCQAgIASEgBITASEIgASXP2EjKSDo1nYsQEAJCQAgIASEgBIRAXB0Hu1YGSjmEJfRHcVEaPP2lxeNjdfj8jKIf04RBHT6Pd1ne+wu41pYC8fH6fRUWZ5Xl/YkyFBMfa6dlhxKQbwS2/uw7CXgZDLcBpS8yFh+F+jyDxEfJ9PhAnmtNYI158TnhnDQEEtkg2RdmetwyGA/H/DnxLNRvWlBnTn7mlRECQkAICAEhIASEgBAQAkJACAiBwRGAmm0GhNv0OhBxX4X/Vbp9/uxr+BoFQddc+kHcJRHXFHAHr73+c1BNl0TeMaEdC3LuWPhhk1uAvLtF6CKe/tQ4uCDwUslXRggIASEgBISAEBACQkAICAEhIASEgBAQAo2KgIi6jfrLqd1CQAgIASEgBIRA5RAguRNbPma57aN3LQ5/GA7TjX/KPD6cASU1Hka8ryM3b1BPv3X5+uiyjrxwVC5MdziutSEMR22I0gvU4dNiLr3RuVggFqaXDeH50fhysbC108d71+f1LuO937sDxFmdA+WzyvDH1+HD3i0UXyiO+fPjo4OHlXmyq6+7PzJqofhCcawnHu/9cTf0R4dmOJ7u6yglLqxjM2JtvG5MlCb8QTlpGq8/DPvkOIE3x291oKwvzzp8nD9WGGdsYfitzoHyx9IS9Idh8/u6kqwI/31euHF/1AbmK1A+akO8Hl+HrxOHlhECQkAICAEhIASEgBAQAkJACJSMAL6hqZDb+zKIuK/QIkx3LS39+DQFYTcLwq6DYm70DV7ygUZIAX6DUW13HC0IunCTE+BOgDseLmwK/hTjoMhr33gj5NR1GkJACAgBISAEhIAQEAJCQAgIASEgBITAyEZARN2R/fvq7ISAEBACQkAI1B8CmKQyYikUZAJSKyak4LfJKKaF/izJqHnxEQmWaTl5+8pbPNJ8WX8MX3+UzjysI3R9en6YpFiLI6kzXiYW9vFWX6F4xNn5WHlMJJEQynNjvM8fdzfzJ2L5WChsC11vWXchP6JlhEBNEMClbcRdT25lOO7PCSOAtIAkiws3v2y8XJSPZcK8TAexNk7etWNZvK83PH4Y59sSlWE8qkx4Am8sX04exMfDcX9wzL52JKjwFKuHfp+/L60vPxWhLD0s59vSlxfpqRAr1uvz0y8jBISAEBACQkAICAEhIASEQN0hkO3B5z6IuOk1sCTnws2swXDCargv47MdBF0j5SKfTAkItOLbCOq6iS1B0N0Sn10TYbeCHzaFuBRdEHsTyCcjBISAEBACQkAICAEhIASEgBAQAkJACAiBekRARN16/FXUJiEgBISAEBACtUAAfDcjxYIwGpBjQ8KsD5uLTD4MIqjP79IhedWnwTWSKl0fR+Io8kXxvrzFx+ryYU/MZfkwzgiwvk7G+XjLw7pBYAuPQX828gftsHSUyYn39cRdZJcRAkJACBREAI+ZiICcR8INiLMBkdZIxEaqxbOJBN2Y34V+I+KSlBsRc0N/GI6IuGGezfLHy0Z5+uoz8rKPp+vJvTlxaC/CngxsroVj8T4d7fZEYstHLGSEgBAQAkJACAgBISAEhIAQiBDI9mJYgsRcEHHTq2BfAiEXbuYlDFkgLgvVXLcpyi5PJRHowHcNlXVJ2t0adhLIulsHtgVuksTdlkoeUHUJASEgBIYRAQw32Th7OD4eiE2E4/k2/h2k29h8KHJhY+kox6KRwAMDFgHH+8NwkIcBDABxDMiPA4X+Qrtt5cSF42bBWBIK2fgY6onc2DhTmDc6BrLJCAEhIASEgBAQAkJACAiBkY6AiLoj/RfW+QkBISAEhEBjIuAH10hI7Y0RaDEBFBBhMWAGP4mzRp41P+J8GG5OOgmssTROJDEcjzM/jpUTHx2vL39Qpi9fEMbAm9XHeBJmmR/+cOAwx0W0jBAQAkJACAwBAU6QcEKDBNwcFxMejEvhQWtukMeTcUkY7vPnpWECO0ozPw4S1hHFI2wT3XQtLawvXjZMs/SWoA76g7B3+9phabF8dj5omowQEAJCQAgIASEgBISAEKhLBDjUsSHreknKXQkXNvMi7ErEg6SbfQWtllru8Px0VN0dj0+kySDpTsbnzDYg7dIibMTdUfg+4beUjBAQAkKgVghwjB/vhGwP3g/m9vlt7J5xHPvne4Pj8BzjD60JZYRxNv7ux9k5xu/9rD8c98/PY+PxzOfH4uHmEHMZn28RFeXn89I/M70/zzWSbjyPJ9/amFE4BhSOW/kdo+KLx/24VjRmxPGhcIzJxp/gtzCf70gz1XSmM9wahON+jSnxB5QRAkJACAgBISAEhIAQqGcERNSt519HbRMCQkAICIH6R4CDYXmDZ0aCZRwGySI/B9XCsMWRyBqW80Tb/tItHwfcWIfVG7ib+Y1ki8EsO07gWhkjzobljUDLtsByoE5GCAgBISAEhECxCHhScDjhEkye4H1DYjAnT0jIDV3HCRTm85MqcX+UB/mpNoxwNAET1pFfT+F0HMPXb3WwLUFdQfkg3fxsu4wQEAJCQAgIASEgBISAECgHAYyfpF8FKXcF7Asg6MJNw82swNgPVHOlmFsOqDUo045vg4kg7U7BZ8IUEHa3BWEXbgvc1Fh8O+gboQY/gg4hBEYQApwHILF2E57/UEqnm6XbTRv3B2HHeOaHa37moZ9xJOaGliTeKK4Xz6ZwzsBxrJ/zAX48f6SO5cfHmmyMh2M5HGcKx4ta4Q+JuXQDP9w2POMZD9e1oUwYtngf5nuA8Qx7fzveC1RkZxzr07sAIMgIASEgBISAEBACQkAI1AoBEXVrhbSOIwSEgBAQAvWBAAfUMLhlg2ThYFdAtA0HxGIDYUE8mh3FhYNoXOXOQbIw3vwcWGO9rJODbbF0G3SzvEiLx9vAG+viABzSOOjGdLojdeANpyYjBISAEBACQqBfBPwETUjANRXgaIImGxFzA3Iv3p+cVDGSbszlRI2f0PH1hHlsEsb84YRPmE4yb0D6DSZqAn9QT+SnWgvzkXSsiZx+f0IlCAEhIASEgBAQAkJgRCCAcZn0KwExt/f5jOtdjqGa5SDoPo/xm1dxhhq3aayfGf33xDh046eCpLsdLT4jpiaNuJsah28D9e8b6/dUa4VAJRHA89yIt10g4G7EWH0XxvbNMhz6ScplHIi5LkyLwjHSLhduWJ6QnGvj/JVsq+oaGAGO8XCciORcEHMdyblm8Zz3fpJ0OxA2N0xHOIGwEXhDf6KTYZB6O5FGMrDeEwBBRggIASEgBISAEBACQmCoCIioO1QEVV4ICAEhIARqgwAGzDxx1laZk/hKQqzfNsoTYBmmPyTL2up0EmtJpPUE2siN5c1P50p2v4Ld/CyfQN0h2Zb5RagFCDJCQAgIASEgBBoAAU6ocMImtEbkNZIvyL8h2dcIvyDjmjpLOLljaZ74ay7qiLtWNkbuDdO4BWNQHyZ9UJeFY2msV4TfBrhu1EQhIASEgBAQAkKguRDgGurXQnLuMpBznwMx9zkQuKCe614HFHBkRgAC6Kq7seBcUWV3Ryjs0m6fcK0IJ8cgkekyQkAIjBgEbE4BBNzMejzPN8DdgMc5CblwjZhrYcQhLUtibmgd83g/yLkmxqFFGiPmurAT4VgRx3VI2gUxN0FSLlxnfoRHhXHm4r0xKkhnviTikqMD18pxHElGCAgBISAEhIAQEAJCQAgMgoCIuoMApGQhIASEgBCoDAJUsTWirCfWkixLP7eAMmIt/BaHMONIhDUyLmZBfDzjzN8X57eQ8nkcSbVh/qA8RtfDOMZL8QQYyAgBISAEhIAQEAJDQ4CquhGZF30N24oREzZU/6XyLid6Qmt+vwVjmObT425E7g3zBmlBXfQzPXD7/I7tkBECQkAICAEhIASEgBAYEgLcvrz3xazrWQIXNk27DP06KufCaUjjyUfsk2K3iQT7q+w7hjZaNEZSatzyZHnOccvF8xzX85bjdVzczvG2cLF8w4634TRMaRdE3dQ0EHZhW+lOTgYKisRDRggIgfpGAI8izidk1oOE+3pIyIWbJTEXcXQjPxZdkKCbRbzbAFEOkHOpgtuwz7D6/mVGTuv4TqUiL4m6o+EncRcubXIM3SDeiLwIG4HXu0yjIi/ftTJCQAgIASEgBISAEBACTY+AiLpNfwkIACEgBIRAkQhwwMuIs3C7PakWLkm1sAE5Noz3RFtPxPUEW+aztKCclfFlUacp1oZ5fH10zXIyQEYICAEhIASEgBAQAiMJARIlIkIvZm3a0B8iKbcNfnODdJvUCcOF0iLFXp+HLlV9PenXXBI0grpZn5EzNFE0kq4mnYsQEAJCQAgIASFQCgLodqVfATl3KeyzGZd+GuTcZzBe9TIqqdcxKE8UgpKf68TOEF79D+QhUwP023uzrxf2A33fkrs8RCTd0J9gfewPxi2COSRdjgdSQRKY2EL7kKwbLLbnWF4wLmgL7jnmV2h7eChSulCxkuOCdUuIQ988sRVgmgGi7kzY6UnXugMIvOMAEDGSEQJCYFgRsLkJEGvTJOO+hkcJFNCzdBkmATcMZ82PcEjWtecOHlcyQqBqCPAdwfcuybsk7o7F+AuU272fZN4k40I3BX+S6ST+clxIRggIASEgBISAEBACQqBpEBBRt2l+ap2oEBACQiBEgCoYJNySbMsBdBtQD/0Wjvk5eO5JueZnuaCsEW7NzzxBfJ/LgXqsSDfyLdJJttW2UABBRggIASEgBISAEBACFUTAK6UZEQMzQxHRF8cA2dcIvp6oAdfH5cSDvBuPN1IHy3rSb1hPRPIlsYPHlRECQkAICAEhIASEQAMiwDGx3lUZ1wNibs8iEHQXYcjqeYxjkUxaD4b9LBJwtyDBJyD15Cj2UcUPxB5uue2Juklu2d2OvKGbZL+vxsQfKu7amGEXxhVJ1oVCZQZbxXN7+WCbefi5rXyewmVAqEM8yHb2G9TL+CF+g+R2IOvODmzbzKRLTQTG7AvLCAEhUF0E8BzI8NmxDqRcKJtnXoU/dLPrgnAW4SzizQUx1+Yfqtsq1S4EykeA4ysk8PLdvgXeJePwjqGLMN1kGE7RzzguyNG4S/l4q6QQEAJCQAgIASEgBOoYARF16/jHUdOEgBAQAoMiQNItibYYAM+EBNqASBvE0e/JszZIHifUYsDcyLrc2snHW1xQ1nVjMCCsk64Ndmnl+aA/iTIIgbpGgKv7vWVDvb+Qu1k6Mlk+PAgSGEhEejYJBR/6ongWCo3FFfAzKj8tFsckPmpwiCCfT4u7+X6G44Zl802hOObJj/fh/OddftjXXyi+UFyh/D5fzM3CzyZYFP/E0qyKeBwj4uHN8qKmeDrfGYzI+nj6Y3XQT5MfFw/np1sB/RECQqAhEeDDxki6eO5QwRck3wTV2DzBl4psJHmELskfphBD4q+P83kZZ/F4K3g/0pKWD3E8jiaZAIKMEBACQkAICAEhMFwIcFys5wXYp0DSfQrkL9jsarRmuNRz2RcjsZaknfHoL5GkA0sCD1X2jLhDxT2q74Gwm+T22iTu1JiAW/HfC3gbAc+2qIffK2OGRDwS70jIy74CC5IeSXm2Lb3/Xq14gwapkCq7WwP2nRKu1SxUdqckg37yIEWVLASEwOAIcPFEBs8DKpxncN+TnJvxfrj+WcA0KnMP2zN78FNRDiFQOgJ8p/P9zve/7wvATY5HnLlQdacfyu7sC0h9t3SIVUIICAEhIASEgBAQAvWGgIi69faLqD1CQAg0NQKB0i0Goqk8QZJsqEBBFQpPqo3iLZ15AFk8nyfeIo4D2ZYO0i3rEuG2qS8vnXwxCHCijESiuI3HkT2KtGB7SNxTPl9OnqC85WG6TyO51ef3LtPC9IiY6stE5YI8hdORaZA6graGx4ET5fflWEXMXyidcQlm6ieflY/X7f35LsvDlJU/LBvUwEoiX66nlPhCeeNx+ROB+WEeuVBcKfEoT3KuGbpxPyPj4dBfVn5fd56bZWV5cflhO15/edhEplH1yOcJ/ZvHI0OhPHlxlqdQHf4YdGFt+1UeJBZvcbFwPK2vDH5kyxOWzc/PsI+DV0YICIE8BPic9ARfI++GBF+Schn2JN542PxI92TeKA/ejRYXlA0IwGGc1MrygFdQCAgBISAEhIAQKAcBkkJ7l2dd95Mg6C4AGWwRvgNI/qy1Yf8HZJvEBJBttsJwAl2Sb0I3RUIOiTjcBrtJ+0GesGcqmjGiXmYtiHtr8Zn2Mr4DX46Rd2v5G7IPDCJVCgq7rbsmXNvOIOxCcTfRwQQZISAEikIAYy0ZKGuncU+neU/TxT2doUU4axb3OMj6No9RVKXKJARGIAIcJ+FCHvYRJsDdEv2FLUHaZdhcvI/Yb0CfweYnRiAEOiUhIASEgBAQAkJACIxUBETUHam/rM5LCAiB+kAAg08k1mYiIi0GmkLyLImztgWcJ9p64i23hfMkW/otjNPxpFtzManAclhxboSm+jhbtUIIFI8A5zE8WZUrx+kP3UQSiSlc47E4pkUkV58f+WwVua8ndPPjCpUz4ml+uWLCZJj64/j8sXMxAmo/6XZe8bzMF4ajcgz7PHAjcizyWp5YWnQOVgZ/wvrideWUQdUyQqAqCISk1jgxN+4nkzcg1eLouLU9CTY3D5IYEUv3/ni+iIjrj5lBgdBPN54elesnPWoX00MbL18ori89PG6hctzyNVan1RPFheV8GK4/jqnCsFwai2usPPL6dO8yHtEyQqDhEOC7ioSTiLzryb14lzOOanKwPj3YthlxSDOFX6SZOi+3dLY6mBb4k3QxiWXvQTgyQkAICAEhIASEgBAgAtkuqOcuA0H3cRB0HwcZ7Bl0pF+rETbs+3Siv0JC7kQQaaDImtwKBBtvSbgh2YaLnJhXpn8E+AmF35IKm+k1+ERaExL7ViMOisiZVfjeBIHXbYSt1bcSFI9Ts0DY3Q2E3d1Cwi5/SxkhIARyEDDyPVSy7b7lvQtr9y1d3M9GvCcpFzsGyggBITAIAlgwbeRd9CVswU/optDPSJG8yzBU+Zt1sc8g6ClZCAgBISAEhIAQEAJ1g4CIunXzU6ghQkAINAwCIMlE5NuQVBsQbjEwHJJqORlghNxY2NEfs6aC2wUyDvIa6ZbEWxJxZIRALRHgPAIJniS/RhYDOubHtRnFYSDI+y2/zxOWI5HUp8ONyLIWh7z+GKEbhZnXxzGvkXTp9tURr8vntfR4Xl8H3dAGecNj58eT5LtZHMrKCAEhIATiCPCdb6RZREb+kHicH5/OjbdyeK9H5c3PWWbU5eP53me9eW5A0EV9jI/nLZAvOA7qjaf5cqEbHdPCsTb49MhFv8TnieKCNtZs0huHkxEChgD7BSTqGpEX7+0OXLtQLMsh9jJMkq/loRuGfRzCSfMH8Unmpxow+wAyQkAICAEhIASEwIhEgGN2Pc9nAoLuwyCGLUYfYn0NTpX9ERJzJ6P/MQnDKZNAmqHdGpYkGmxZrT5IhX4HfEOlX8NvC7JuGkRdsy+B+PciPq9exHcUibscZ622GYPfmQq7e4aE3SnJYAFZtY+r+oVAnSLgibm9/r6ESzJ9ZhXuTbh2b2J+RGaICPgxbRtLR13ejUQt8N6L4pDO8f+YpTcejvzxePpRTWTzw0yDsUXy8Xx+rIxjSplwjMkvsrc4xHuXeWWGhgAXBXHxD/oatijI9znQ/2jhQiERd4eGr0oLASEgBISAEBACQqAKCIioWwVQVaUQEAINigAGCEz5FoNFVGroI9ViMCki2MbisXVeRL6FaoORcznQ5Mm39HM1eDho0aCoqNnDiQAH3Tio5i2U6BIpDKVRbZaqdIy3uMB1SDNSa5gWEWd9HqsHeXxZhH2e3HI8Rl+a+eN1ol1BO/ry+HqCcjhGrO2WFg0UhmVsRBDtlhECQkAICIHSECCxN5z48KRaTwr2pN4sSMM28YG+TUT25USIhZHGOhiGMr9PD9LCPL1B+UJpfWXCPFT3j+oO/VG9yBOmc8LO8kVpCPu4sC3qMwETmfIQYL+CBFyScrn9MEi9RuDtRJ/E4pAW8wdxQZoReT3hF3mNzEuXqmjsO8kIASEgBISAEBACjYEA+ri9L2bcpsdA0n0I5M2F6ItSqbFahuMeUFY1Yu4UdBu2ARkXtgVE3RYQZJIk5rKPIlN9BPDbp1/Hbw6ybi+IuumVgc2swKcP/KakDKdqZhx+/51B1t0r6dp3T9rvL1J21dBWxfWEAO6rzHrcd7j30rj3eP9l4qT5tWis1HLxogAO/F7FTjCJVrwYWgEc1VEZxzF3xHm/jdszDtb7Ey3htynH6/2YO9yc8XiLRz4fH+az/HwXxS2CDEc7sRVIY5b+SLoROTeeh89Y2Gh8yo87cbwHRF0bX0JcNPbk/aEbjDWhAo4ZcawotObHNRS4YTqvKbMgAncjzodZV7MbXlcTcBmgP5KcjHcTFwyhX0LbQjLvaP7wzQ6Szl8ICAEhIASEgBAQAsOLgIi6w4u/ji4EhEAtEMAHuingglhrhFu4RsKNwkj3xFwSbpluLhrnCbjmBmEHZQ4RSWrxwzXQMTjwFQ6gGaEDg2eJFgwS+UE1kjzMz3jvx5gI/WFanz/Mw4E3Xz7MF+Tpq8OTa/tcjLIgL8M+LiLO+jp4PBJ6w3yaOAAeMkJACAgBITA4AuxPYYIlINyGkyxh2BODg7QgX84kS0jEjdKNoIs6zA3r9JMw/hieLBzG22SO98O1sszj/dEx8C4My/qJHVMUHvwMlaNZEOCkFCZIbTtqknipQAMSb344iEdaSOI1Qi/JvsxPIi/8RuplXewLyggBISAEhIAQEALDhkB6bdZ1LwRB94GM630U/UxsqV4Vw/EWkDKTU9EPmIohGLgpqKi2bAt3fDheU5UDq9JSEOC3Aq+J3hW4Hl4AgRA2sxxxz+P7YR1qqgaZC91JKiq37AHC7huSrm3npF0TpbRbeYVAIyBg99cruK9W4B4jKR6u3WNw7dnLuZORbPjtR4ItvyWhpG47wNBtwzuAyurmD9wE4oyQS4IuvxvpkpRrLsIhWZdEXCPqMswxexJzzQ3CI3osP3+syY/xYFyH15qN/YCImzUbjiP5MK41T9Tl/B8t5+4YF/mprg5rcd5PgR36UU9V3geotm4Mr0mq/bOfMgUWbgsXFvl+C+eKZISAEBACQkAICAEhIARqioCIujWFWwcTAkKg4giAlGEquCDSZkKCrXdJto37jYC7AR/liHfm4oOdBFyGpX5b8Z+mrisMV5TboJof/OJKdvhtEIyDbUa2jYdDP/PE0nPItOEAWlSWg2sc7AjjbZDND7hF8bGBN4sLJnasnEgfAE9GCAgBISAEmgYBTtBwIsZIt+inRaRdxveRcm2ixiZswkkaP3kTuj5vROKN4oFkT189RuTlBA/S+/Ii3cdx0qYXCi3hsW0Sh22rxsQ+qpWpMwTQRbM+n5F50T/rhErvKESSqDsK1lzEh2RfEnc9udf7I1fqvHX246o5QkAICAEhMFIQyIJo070EKrr3ZVwPSLrZF3Bm7K9V0nBshoqp24HYsj3c7UFy2T7pWkFykWpuJYGuUl3o3qdfI2kXdhmIu8tC0i5cI+3CqajB2J6RuOdBXRe2bVoyIOhV9CCqTAjUFgF+M6dfxj0E0nvv8xmXXg5y7nJ8GuO+qrpida1Olc96khptEWffDi1GyA0Xa9oiTubhN6ARdcPvQcbhm8+IuiTh0h+6Sc4jcMxfpuoI2BhSjKib3YQxIyPpYtzH+zEPGIn2MI02JuJjO2iG84yBH81GnhExDsQxji1C0u7UsD8zFYuNSOCdgGuW814yQkAICAEhIASEgBAQAlVHQETdqkOsAwgBIVA2AiRr4MOaZNvMhoBUa8TbkGzr47IMM91c78dXZ1jGFHBFqCj7Z6irghww44CBEWUx6EU3tMH2UBhQyE8jSdbyhIMN8NugQ+jGy8XL5pBqeUyrJ6yD/nCluwi1wEZGCAgBISAEhEA9I+AJwEbYxUSiJ+7GSLtUZwni0ackUdeHzS0U5/MEaRHpN14O9RsJmHGwVmeYbqTfSpMC6vk3GMltiyZ0cZKexAtCr5F5Sej1fqQl6Q/zGIkX6XQtnv1V1iUjBISAEBACQkAIDI4Au3Srsm7TI1DRvQeksUWI4EL8SprReDVTMXdHDAlNAzl3R5BzQWbRttGVBLnGdeEyybyedT0kGz4H0u4SkA2fQxzCbn2F24I+X2pnqOvuD8LuniBCbYWxapKkZIRAoyCA7+j0q7hXQMrt4f2yFHM0S3G/kJyLeZiGMxzft+8z3Ip4vkffabYIM/Y+JBSDAABAAElEQVT9Fi7ATPK7jd9qdLnLClzbUYXfbbqXG+7nL9hgXMo2/0gSrwn64BonkZfzkaHATyT+Y3OSyBefg8R7I8t3B/sfXADeaIb9HCrr7oD31Q4J14p+ju0UsAUucI1NNNqvqfYKASEgBISAEBACDYSAiLoN9GOpqUJgxCEAhQuq4Wbs47Y/lx+74QcwP3xDQi4HT/lRbCRcfFDLNAgCHBDjYBZJstjmyVHF1vyI4/ZQUZrP413mZZnAer/jVlGM89tFefKsz+fJtQx7P9ugVewAQUYICAEhIASEgBAoCwH0YUnAzYZE3IDYiz4NybgWzzTUzPSQoJsfjhN3WU9umGVRB7dtDOtg2PVA3TfMa+FGnAjCaTSl4UQuVZYwCdw3ORxOBscmiZM2cUziLvKODieFQe5lmJPCmixryqtHJy0EhIAQEAJ5CJiK7jMZ13V32vU+gP7WKmSo1Nggx44mYthoOoi5M2Cng5wLBd3UOL2H836Gxg+ShLgOBMSlICA+CzLiMyDtws2uxqlVSpUZl01iEoY0qa57ANR1cT1xDFNGCNQzAlQe7QEZt4f3xbNYCPEs5nBA1q04mb3SIPCbi3MEY/gtRRffW/RbGH6SEhnP7yzv8jvLFlMiDt9r+t6q9I8yQurD+yIDVV0TDsL8ZDSfyTlKLP7IhHOVNo/5OuOCeHOR1hBzmLhPktg5oAX9H/aB2tgP2gb3DXcHkhECQkAICAEhIASEgBCoKAIi6lYUTlUmBIRADgIYv+HgOT9gMyDb2gcsXftwDV36ScQ11/tBQkAct5ap2MBoTsMUKBsBfpeT6MpBZZJk2/A7eZKsJ9pGYQx8gSAbpCOv9/t0Kx/kCdKCPJ50SyKvkXCNdIsD0xXBFoDKCAEhIASEgBAQAiMBAW7LGBB044Re+LlVY0jwdd2xtBhx10i8UT70x0L/5m5QX0D8RX8K9UUkX3hl6ggB9nOp1sSJYps4hj9yg7j4hLKfYObEsk0uc2JZc2h19IOqKUJACAgBIVANBNJroaL7cMZtuh3ksafQmeF21JUwVEokQWUWhr1mgZxLku4kkCo5liUz4hFg37v3xYzrAVm3dzGIu4tDYiLHpithOgJ13fZDAnXd1Hh12ioBq+qoLAKZ17Ku+zkQdHkPLMLcDe6H7FocAyTFujL+u2kLfP6MxXfSWDy/YemPXJIOQdRl2FyQc+15rluvrn7KEdMYdEdMmZdznyTugqhrLu4pknUzryEdfnNfDfxZxJkydb3dX1DSTWyJdxb7QbOhsss+EdR2k7i/ZISAEBACQkAICAEhIAQqg4CIupXBUbUIgeZFgKq43AoGRFsj44bEWyPjhh+l0UpSpiEuWknKwc56+xBtll+SW9dwsoHkV5JuQxv4MXBFMm1/cWGZBIm5Yb6ccj7dE3GZh34SfLVlDkCQEQJCQAgIASEgBIRABRBAP9oUfD2Z18i6ATE3IPsGfiPvMs1sXhyVelkeafF88TjXjUV0JPgyD1V81X8HCMNg2I8mkTdUf+pTh0IcJ6FDpaiIzIt83Jqb8abGqwVvw/Cj6ZBCQAgIASFQMQTQ/+hZDhXduzKu+56My65AzZVYdASil6nn7gQyCi0UT1Mko4iPUrGfrqEqwjWVfpVKoiDtLgRpF2RFquw6EqqGanhZTYFK4QEJ13EgiE9T0LnTOOlQUVX5CiBgytJQKe9egGseNrMM1zx3Mhxuw+cwSO6JcbSYW8DzOkn/FvjGgZukaxbPcZJ0qaDL+QwZIVBnCBiJF/OifL+QEJ8BWTdD/zp0ZaDsznA29NO1RUiV6OMMFQcqTu8Iwu4cvLt2pcpu0u65oVar8kJACAgBISAEhIAQaHYERNRt9itA5y8EikGAZNwufDD6laAk4IakW8Zx9adt8WJu4CcZ1wZ0tCVvMQgPLQ8HdT2plkpaJMaai8EpuBHh1qd5gq0PY/uaOOHWCLhhuVwyLvKRbKvJiqH9XiotBISAEBACQkAICIHhRgCTPoFqryf2hi5U6eKEXvNbHAqQ6BtL5+RRRPD1fmyTGo8zci8JviL3Vv8XZz8dE2lG4MVENV0j78b9IaE3IPCKxFv9H0VHEAJCQAgIgUogwL5F96KM23hr2vU+iD5JJUiT40HsmgliLoknc5KuBWq6yU4NeFXi9xopdVCYogeExZ4nQdp9AgSrp3HtkUA1VAOyYesbQNY9IuXaZkK1WcTCoSKq8mUiQMXP7qdB0H0UBN3HMyDooiJ+uw2H4eOX3zJ4Nicn4FuGbuhPQoGaNuXJuSTk8ttHRgg0OAJceM37kGR5knYzdLFzQOYVWoy3rEUc/KZsvREni9fQsBjMFSa3B2F3d/SZaPHu4piCjBAQAkJACAgBISAEhEB5CIioWx5uKiUERh4C+MjjwLd9GJKIGyPfMs7IuOFqT1PFZToHxvmBqIn3yl4PHGgiUTYi0jKMASgf510j5CI+JOYG6X35cgi3LEOCrndFuK3sb6bahIAQEAJCQAgIASHQDAjwmwGTSdmQkEul3Yi8GxJ6LUw/85gLP74zGI7Ivog3oq+5Qb6I+Ms4Lfar7NXk1XhJ2rVtYTHRFm4P67eKNQUqU6KKKVJxBw7Nv1X2t1BtQkAICAEhUBIC3L2r65GM23RTxqUXBn2JkirIzwyiV4pbOZNosgtUTacm3Wtdr7pVq1a5ri5u/VWe4etywpZbuokTJ7rWVr5AZUYKAuzP9jwPMuMTIOw+DkIVVHYd1A+HZDA+m9oFZN2jkq599/ojPF3/UNb9cn7GPb0S51qmSeCmOHX/pDvr0KSbDMKlTP0gwG+znqV4rj6Ea/pBEHSfQ9tqTdDlHAWui8SWIOFuiW8TsyDjMgyibooWz+sE5kT0PVI/145aUgME8Ng10SSQdtMg66ZJ3H0Zdg0sibsvY2wF/izSan7fYh4yOQ19KCw2ad8LfajttNikBleEDiEEhIAQEAJCQAiMQARE1B2BP6pOSQgMiID/0APJ1rZZIfmWfmy1QuKtbbnCrVbMBnGmjAtVXZkyEeA2s1RH4AAUrLkdAWk28AfxNvAU5klwW6cYOTcR5k/6dK+CS5f1c0ZARggIASEgBISAEBACQkAI1BsC+P4wcm8OqRffICA9ZLFrR0TmzQsHRF6kgzPDPBY2Pypk3jCOfi0cHMKPzm8Jqldh21gj8XJLWbMI0yV5F6TewA39+DbR98cQMFdRISAEhIAQKAoBKsx1/TNtJN3MEhQZilAAlOZTs0Au2QME3T0Cgm4CfNpXX33VLVu2zCXIKqyAGTVqlJs2bVoFalIV9YaAkRtJ2H0U5MZHQoVd7DhXtsFCquQMkJ2OTrqONyZdCn2xejAk6X7p8spNBOyFrdJ/9G8gI9fH6dUDxMPahjQIf1z80H1PuPhhKNdwKWfSic+HrXDNb43vCboTQcT1FuTcFEm7/MaQEQJCoCACRt4FaTcNom4aRN30aoypmEX3CG52DYpRVKkWhn2qOXh/YTFGO/pUJNbLCAEhIASEgBAQAkJACBSPgIi6xWOlnEKgsRDghDhWQqdBwA3It3RjRNxwO5UsCbrYVsXUcTnJLVMcAlSlopItCLWOpFq6JM16P12SakmwjfyM83ngIj1paT4PBqpI6OVkuYwQEAJCQAgIASEgBISAEGhWBMANyIQqvJ7MmwkJuxYOCbtG4qU/FnZRPoAXEoEtDvGmODMUkk8z/R6ca+P3DJV3QdglkTdJVatxgZtkOCT00p+iWi+/ZTRH10xXic5VCAgBIVA1BHpBOum6CyTdWzMu+/wQDoN3U3JH51r3BpmE6m/YutkWyodVPv30027TpsoNiGazWbfddtu5cePw0pQZkQhwl4ju52AfDtVIl+I0y1UjRb8pMRVdLijrdu6fcqmthr8jdeb30kNS0i30o//H21LuxDcO/7kValvTxOH7qhsqul134bq9F8/VlThzzB9VzXDOg4TcSfhm2BrTHXDNgqhrBN0xuB7CORA+g++66y53zz33uPXrS2cOc6HFzJkz3cEHH+xmzZpVtVNSxUKgrhDAPZ2GCJORdlfBfREWbuYljKW8FBJ3K9e92fzU+f6aggVQ+yZc5wHsX2HCVPOam+OkGCEgBISAEBACQkAIFECAm5/LCAEh0OgI8KMMW8FluB0KSLdGzCURF9ufZF9hfOBGhNxyBw8bHadi2s+nYkiwdZ3ZkHiLr04OLnnbGRJrfZhkXK4Kh2uKtxYPf+gmWKfGIotBX3mEgBAQAkJACAgBISAEhIBN8CTRv3bodw/akeYCxR5YkCaMzEtyLki5cX9E7oXCTEDuDfLQH5B4Eab6TFcC6aiQ8fjGamrDiXvgYHitIhL41jRAkMAFiyTveuIuFLCS4/FNhHDSiLyYgEd6CnHJUfgNNWFnyOmPEBACQkAIFIdAL4gmG29Lu+5bQCazd1Bx5XJy4fWT2Ma5lrlQfJuXdG2zoOg5evPBua6urrLVdLfYAi87GKryekPC2MaNG0XU9YCMQJdE7/adQE4CQakbKs2b7s+43ofRlwQ5qmTiI/uxy7FZxN9QvjvtOg9NuZZhJus+vZKdwPLMB46FTDXMJTegcx4zS4iNzLAhQDGXTQtB0r0p7XqhBu1K58IO3naKmnAR3zb4DsCzN3ATrgXhFqro8vnLPHlmw4YN7nf/93/umWefdWPHjnVTp4K5XqJJp9Nu8eLFZk8++WQ3b968EmtQdiHQgAjgG5vf27RuJtqPBcnp1wOybi+e4+nQZlYiic/114I8FTtTvr+ez7rXru4CMbjDdR6NYYLZyWDxbsUOooqEgBAQAkJACAgBITAyESB9TEYICIEGQoDbxma4UpIE3JCEa+5axGPrE0/OJSnXJpjLH1trIFSKaCoHguIEXBJrSbglAYCE2pBoG7hBGskBPt78oTpukq7UoooAXVmEgBAQAkJACAgBISAEhECVESARh8TRNkwAQ/0Vvv4PyMkkTFRz20gjoG6MkXtB1M2QyIu4IA1+5jMCL+PDNIY3hoReKtQ0o0IvMMyuDiz+BgTeBMDldxWIugkj7mIuHtvYJkMSr3eNvAsFLVvM2P8vpRQhIASEgBBoUgSMpDsfJF0q6ZZL0h0N8srOCde2X9J17IktmfE+Gqh7UA7U7e3tzhN1WT5O1i2nvngZqvKS7Fus6ejocMlkAQZcsRUoX1kIJNGf6dgLxFqoCG6akXHd92Rc+in0hzaUXl0WSojdN7OjinVqJOtOHKA/W3r1NSkxb2bSnXNs33RjnKyL06qoWbt2rXv00UfdwoUL3fbbb+/mzp3rtt12236P0dvb67q7A+WSzs7OQcn5Pj+J98xP09PTY5b+YupgPh6TdfH+5H06HIaLGbseAUn3r7g+F+KXyOVQD61JIAomtkSfH6T1JPi1LXBbpuCZuy3Ig/wm6Lsc+j3O7bffbiTdQw45xJ1wwgn95hss4cknn3S//vWv3VVXXeXmzJnjRo/Gi0BGCDQTAugGpLjTDWwbiLucR+YcspF2X8CCEpBqM9ihIPMCxjgwl1yphcnt6Xb3+m0b3UO3PuVe3G2Ze/sXT8rZuaCZfgKdqxAQAkJACAgBISAEikWgiE+lYqtSPiEgBCqOAJVysQqy++6HXfqJpS69fD3UcZNQjBrrshmMgmTGw50AdwwOHaxYr3gbGqJCAJWA3FNiIwbaMJBtlooYGBmN/IhPwvYgTy/iX98Qy9uXL5voxZhoMHzY7CJaDfHTV6mRmXP6H9yt0iFVrRAQAkJACAiBukXgxGturdu2qWFCoGoIZKC8h0mnlvQo154e7TrTY9wo2NFurBvVNtaNTsHfAYtvsVGZ0W400+AfTT9tNojvzI5yLfjXeHSLEpHlJxQ+t4zoTNUeK45vWfx7JbnWrW5Z5VanVrmXWl90q2BXw66BXdv2knu9bZXLtPA7LvgOK/HIVc9+6Ma3Vf0YOoAQEAIDI9DW1uYmTJhghKyddtrJ7bbbbgMXUGpDIpB+GQTV20MlXSwIKdmQjzsFI6T7gBQHkm7rDlB2q9JwaZykSz+3bqethHn++efdjBkziq5qwYIFtu170QWUsXII4JojqTZ1SArbfidc1z8yruefIJmjLxQOLxd9LCryUkU6AfIjybqpCY3Ve/RqujxhEnbvezrt7n+6siva7rzzTnfOOee4RYsWbYbrpEmT3Pe//31HRdV888c//tGdddZZFs08H/jAB/Kz5IR///vfu3e/+90Wt2rVKlPI/tnPfuY+/OEPW9ytt97qDjrooJwyhQLHHXecu+OOO0wl9lkoxtbacIFi16MZt/GatMssxNEr8XOADGiL8nC9p2BbdoDdDhbKuaaaW+JlS6Lu1ltvPSSSLnElOffwww93N954oyNpd7hUdfke4EIOmZGBQCP/niTK8/1kCz92S7oM5pl7oKzbuxyk/aVYbLsMc8/L8P1NwachPhs6Uh1uTmJXt+Gu9e7k6W93X/7zf7i99tlrZFwEOgshIASEgBAQAkJACFQBARF1qwCqqhQCZSGAbyIqO6WpiosVjRyc7r13gUs/+SJGPyZhbO+NUHQaAwUoyEVh0rhpDE+VClmj4FLhFlun0t9nEe7EwHtnK+K2wNaqQZ6k5QU3F6q5tKaA20SwNc31UYUTffWDJ1mtHdu8BRcTRhehZNLIbsdknIeMEBACQkAICIEyEXjloXOt5HsO/bARDfFWbGiX5yEjBCqGACa0TKGXyrxU4sX6vwwsyarmbggUeRmfzfEHYSO2Is2R18ObawSaNnzMTcpMdpO6JwdnBz4ueMsuAfXjBLbApQpXCls8J7cKFHipepiiMhe28OROJsPNcD7kP+dYu4866ih8FmTxWQA15QZ2eR4yQqAREaAq4erVq93SpUvdvffe66699lp38MEHuwMPPLART0dtLoBA+lWQdO8JlXTLIelCrDK1U8K1H5J07XOh6MitoKtkSMyNE7Goplspkm6Vmqxqq4wACeHc8jsFUlTX1ITrvh1EqMXo3EFXohRDsu4mkHW5K9yog1LYLaJ613Ep7RosL0m6VNT15tIbeitO0r300ksjoqw/ztixY91rr3E/d+deeukld/rpp7tPf/rT7itf+YpLpcB4LmA+8pGPuCOOOMJx0UcxJp0OpDxOOumk6PhXXHHFoETdZcuWGUmXxzjzzDOLOVRl8+Dy614MJd3rMy7zFKoeIhHPYc4liWs7NR1d+Wkg/+2IxRBU0kV/vlzjf7uJEyeWW0VOualTIesL8+o6Mg/LN14JuZga4ormF110kTv//PPd8ccf70gO90rnH/3oR90//vEPIyMzvRnM17/+dfenP/3J7bPPPu4HP/hBw51yJpNxp5xyirvuuuvseXLeeec13DnkNBi3Kd8n7bR4VxlpF8q6vc9BaXcJ5qSfxSMCirscnyjXtCRb3N5bvdG9c9b73cff/Bl33KeOcp8977PlVqdyQkAICAEhIASEgBAY0QiIqDuif16dXF0jgMGRzHp8DK3BJC5smhYD0ZnVCK/Y5LLLN2DSdwYmbIsbNKrrcx2ocRzDw2B6ArsRGRmXRNzQz3AyFjY/wkmmg4jLsMWByDvcE7gDnaLSGhMBDE1A1CvQV25ktzHRV6uFgBAQAkKg7hDgO5FzcHhBNrRbd8CqQQ2NAL5lEiQGgVDar+oZ7xmoWWVA1KUNyLwxdz3SQyKvkXvDsMO3YnYDSKEoYySPoU6u1xPQ2IaT221msUjVPc1dN+FyceY4WBBckpirT4K8m4JLwgv9LSDwGhGgjwNS0zMiOZem0d2agqaDCYEKIkBF3SlTppjdf//93fLlyx0VDR9//HFTT6wUyaeCTVZVJSDAxS6bHsi4TTdDifTFEgr6rNhsrHVewnVAhbRtBhbzc5ywSoYk3biaLg9Dom61zJe+9CV37LHH9ls9iWClqO/2W5ESKoIA+4Mk2LZMBmF3ftr1PIj+wyulVZ1dAYIl7gX2ezqhDp3gwqU6NiTpUkE3bi65oSceHLL/mWeeiUiyJOdefPHF7phjjjGl9fXr1zuqsp577rmOatTf/OY33ZFHHukGWpxEtdz58+e71tbiJbep2HviiSe6v/zlL+5Xv/qV+8Y3vuH4burP/OEPf4iSzjjjjMhfK0/vi1nXBYXy9JO4BsvdNhCXnqnnzkBffHbCtc6EBUE3NY4JtTqT2h/nE5/4hCMxvBjzk5/8xL3zne+0rLwmaEjufOKJJ9zuu+9u4ccee8w9+OCDbo899rBwM/yhqjHPeautsBqzAQ1/P/6ONHymNDxRN+83SI4BYZeLm2YlXXodlHZB2O15GnPVi7Lu1Uded509nS6ZKP3DuzXZ6t44cT/3tmlnuO9f+E185WdHHHZ5UCooBISAEBACQkAICIGyEMj9gi6rChUSAkKgKARIzMX2Ir0g4qZXkZSLiVq6qzDZBzdDtQhMynKO0mYpOVM5EgwHbaACYGpJo3FynngLsq0RbqmiZP7QDdM5GEl1XFNRKrwAfiSgo3OoYwT8eGPg4voMbs5wHLJxwnUMsZomBISAEBACjYQAXoj29rOt6RlgpzXXbYT0RoJcbR0hCPA2wfdQqn0AMi8mz7m7Sgbfg0bmpWtE3dAleRdhpmdDa0Te9SGRdyQo8oLMnPXfxvzp+YwZQ8IuvFsDu0kBgTdFPyy38KwlcTdS0kXT7OnXn7JunacTWhkhMBIQ2G677dzZZ5/tuA36JZdcYlua77jjjiPh1JrvHPAO7H4Sqo83Y9nG8hJPn+/YKRhFPTjpOg6EuuM2XEFTYh0lZC9E0l21Ci+vKprZs2ebImEVD6GqK4wAieLtuyRdEguQurbKuO47QUBfiYOwA1GkySyFsu5NIOtuAX2L3TEwXqdj44VIuudczI5pZc3f/va3qMKbb77Z7bVX35bqo0ePdscdd5y755573Pbbb2/5fv3rXw9I1L3vvvscFT9LVTd917veZURdKsHecsstdtyoYXkeknlp9t5774iwmZelasEseNKbHk673odw0ZXzc/DZij54amcQc+fA7ozn67YgjeObRiYXgbia+nvf+173ve99zwi5c+bMyc3YT4g7A/B6fM973mP9mX6yKbrGCPD3471LsjF/m+E0XAzkF6T9/Oc/d+94xzsq1xx0m7jAJDUhhfeWc3/44VXujvvudvtM3N/tueUb3OTOySUTdke1jHKHbXOke+KVR92Xv3iBe9Ob3mRYVq7RqkkICAEhIASEgBAQAo2PgIi6jf8b6gzqGAFOslIplyuY0y9hYhU2DWWIDMJZEnNL3P6qbk+Vk6itPVCsgJ08OiDlYlLVlHGxOtMIuaHL1ZqemMt4I+KWvjizbqFQw0YOAhw/75vf4frfRg6PnN9FZyIEhIAQEALDhABehFn2+eyFWNhtiPRhgk+HFQIDIgDyhS1UxPdRvMcZleGiT0/kJYH39YDAa8RdLAbNIEwiL+MDIm/oR9i2r2xENV4+a7CTcQbWLcF3NB8+2FXFFHcnY0IRSnXJSXBB4G2BNeXdzr7ee4RdhTyRkm5YXxTOV9qt8/QKwaFqhEDdIHDQQQe5MWPGOJKyPvCBD0REhrppoBoyKALdUHHrugVbsz+NrHz2F2swlpicDkLk0SDpzku51PjKvQPa29tdnHzFJjGukJJufr5im1+NfL/5zW/cwoULrepzzjnHkdAeN+l02lRAN27caGnMEzd33323bde+ePFit2HDBiM9Hnzwwe7UU0+1+yyel34qhj788MOOhCYqhpJM+fe//93idt55Z3faaae5Qw45xIrxmCQYcfv3l156yUg7vH+5RXx/Zu3atXZv//Of/3QrVqxwW2+9tXvDG95g6pVUNy1kuF35X//6V3f//fe7Bx54wBRT586d63isI444olCR6sThcmydCrLuMeivjAdXEgq5medwqGL7ZLgX0ouhiHprxtRLW6cN7+D5vJlJd//TuY1nXL6S7qU39G6WrxIAe6Iuf/c4STde9+TJk418e9tttxWllHvhhReaWvV+++0Xr2ZAP9WtqehLou7ll1/eL1F3wYIF7tFHH7W6qN6bb3hNs528Tl9//XUj8vK8TjnlFNfSMvQp294VIIg/iu+BNflHLiKM67WF5Nw9oba5K9RzJ4OgW6dE8SLOZkhZeL396U9/GrCOHXbYIUqn8upnPvMZU5Gl2nkphteUTP0gwPuQ78Q1a9bYu6deWkYF8WoZEvHfcd7bbYH+LSt2dYeCbHvw5MPdXlvOc1t1TIzNkw3egm06t3UHTT7M3fXS7XZP3HjjjYMXUg4hIASEgBAQAkJACDQRAkP/6msisHSqQmBQBKACwa1CeleG5NwVmDSFPw2X6kAOW5o2rDEybi/IuN1YPR1a+J35QdAN41oP2S+YZCZRl+RcKuTqSdOwP3szN9ymeKCUhf1tcTHjOg7dhgs384+ocxcCQkAICIHKIcB3IWojGZe+LAKNGK4cIKpJCNQQAZKR8F3FHUcc1GTzTbYXvA8sEuUOLhGJlyRXhr1LEm9kg3hbOJrLucivur7CG3EOy/B9vYw7+KKPzh1YwNNJbgNstgVZF24LLUi8tiVvBUkFkaJuf0q6DRJfXz+oWiMEKoMASXgkOpFM82//9m+VqVS11ASB9MsgIt6Vcb2P4ZmOd1nRBuOMKWzZ3PGmpGufCzIk3pGVMl41lwp2tN4UIunG032+4XSpvuuV/0gSzCeYXXbZZe5LX/qSNfEXv/hFTlM/+tGPuh//+Mc5cQz88pe/dBdccIG766673LbbbpuTTkIs00nmfeaZZ9xXvvKVKP3WW2+1+khce9vb3maE3eeffz5Kv+mmm2w78S984Qvui1/8YhTvPU899ZQ74IADjBDp4+heeeWV7vOf/7wRHPO3kX/llVfc+973PlM8jZf585//bEGmfetb33KjRrFDVRtDpcLOg1ImatF1fdplFuO4xV7rUEXtfSTrNk6Gsu44Kh5W7jov5ey9ai5JuJfcgEaFhvFxk58eTxuq35POSfImgXvChAkFq/zEJz7haAcyt99+e0Qgf+c732nXEhd8FGM6OjpMzf1HP/qRIzH+Bz/4gaOib74hid0bkm+9IVn+a1/7Ws69wjRPRKa6Ku/NoSrEdy/m4gc8V0sxUIJOzoBC+T54ru6VdC1U0G3yOR3+tvvss08pKNYVqbOkhivzZgiQbM0FIs1ivv3tb9upYqTAPbnpcbfwuQXu7pfucF8++7/cpPGHuswSJGM6uBjDb+c9Jsx1b9hqH/fr+Zc51j3Ys7mYepVHCAgBISAEhIAQEAIjBYEm/9QaKT+jzmM4EeBWQhxY5krl3hcwabgc9gVMioKc69ahZY008UkgU+mAjNtBMi72RiIBl+RcC4cuwkmG27oQD5JuC0YYUzhfEBnb9z5wOH8OHVsIVAwBDmeSnNvobsUAUUVCQAgIASHQ3Ajwnci5YXb5QmXdhgw396+osx+hCHASPbUFCBywmxksJs1sDEi8VKcledfc1wI3C5dkXiPx0g9OEv2uj4exWZV1E4GFsJwwzCzBgwnfowlsD03CbnIqlMC2Ax7wt0yBEhiILYlcLknJp9Cvgi4X88E0SnrJJ64CQqBBEKBaJomCJBOS6CRT/whkQfboejjjev6JgdNSBOL4ztsF5Me3gEy2G7diL/DuK/P0PUmXxT0xl2Rc+qmo600+idfHD7e77777uvPPP99RKfTaa681xVuSZGleeOEF9+EPf9j8jPvXf/1X8/PPV7/61YikSwXJk046yVGd9Oabb7Z7igTbE044wcLjx0NuM8/ccccdjvaNb3yj5Vu1apX74Q9/aLk+/elPu0svvdSxjuOOO85IvVTHJcGXCpL/+Z//6Y466ihTvPXVsvyJJ54YkXTf8pa3GFmOW5B70u2b3/xmR1XSOHmYZOO//OUvVg0JmKz3xRdfNCzmz5/vSFSeNWuW++QnP+kPVROXuyZ0vhHXKoiQXddlXHoh+g7FknXRJ+u5N+s2bZdxnfuD8DvE/kypJ+xJuizn1XNJ1mU8FXW9qSZJl8fgM/4nP/mJHY7X0a9+9Su30047+cOX5E6fPt399Kc/de9973vds88+68477zwj3BZbCbedJ1GXhgRbf4/58uwTsn00vI55L3lDVWlPaOe76l3vepcl8fr87W9/a/fbRz7yEXf11Vf7IiW77Penn0effm0JRcdBAXpvKOgeknRts7D4oYq7VJTQqobLes0117h7773XzZgxwxVSUo6f0De+8Q1bZLR06VKLpsKyX7RAlWc+9+KmVIVxLpLgM5bPSiqcs21cQLF8+XJ77saVpEut27fr6aefNqX0xx57zPX09Lhdd93V1NWpfF6q+d///V+3bNkyu18+9KEPFSzO57l/t1CxPb5Yg2rud955p2NbeN5cxEXL54V/n/tKX375Zffd737Xgueee66jSu11113neB9y4dcVV1xhZf7nf/7HrV692t4lhx12mC8euaUckwrvV111lSPZn8+cJ5980nHBChcO9Pb2ut12282dfvrpOedENd/vfe97rqurb1tWLhAgTjTMz3LesG/C35nvykceecSU83fffXe7Bqh8P5jh4pu4wWiBe3Tjg+4nC3/gjvnvI1zX7Zj/fgjvL4wXFGMmdUx2s7bYyXW80GlK9yLqFoOa8ggBISAEhIAQEALNgoCIus3yS+s8K4pAlpOda7OuZzk+TqDo07sUny3LEUdybqOo5oJcayq4HZtiLvwk4DIuJOoaIdfIupipTQ7COsZKSZn6QoBby3G7uu7ubvvor6/WFd8abjfU1tZmqhedndjztgbGX82Ba9qBdtRGC9cAKh1CCAgBIdAwCOi9OISfCi/AQEkX/V1q6UbKuo0VHgICKioEGhMBqMomudMJ7MZxed8G+K51G0GyWI97en3gJl4HkYT+0KXfLMJJxvfwSVCHBudCQkIa3+npJ9DM0dmAtAtiS8sOIOxujy18sQW1qdGVobQrRd06/M2bpEnquxT/Q3NbexKdKknUfXzBQvfwY0+4Z5csc2uh1tmoZgLIldOnbe/m7r6r222XneviNHqWYmv2ezIuu7KE5uD5ncKW7J0nkKQL0iKIj9U0nqAbJ+nyeLVU0iVZtrW1f3bmNttsY8qzHgcSgDxR55xzznG8L7bcckv38Y9/3LKQiPv973/fZ3e33HKL+/KXv2xhKuNef/310fFI+iWh9v3vf7+jQi+JsAwXMm9/+9stzW/3TjIjyZU0ixYtMiXf//iP/4iKMr8nPpHY5vMyA1WBSaCk4fkfcsgh5ucfbkXOclRWpYI2z5WGY5+/+93vzE8iLlVLvSFBmaQ3ktTY/loTddkOEso75uICRieqKxuSddkPK8JkIQyy6W70Z6YmXNsM9MWG0ZCsS4JunKTL5sSVdqvRPBJeSSz8xz/+YSQ0ks/23ntvd/LJJ1v8vHnzNiPjDdSOs846y0jdVJ0mkfz44483O1AZn0aF1enTp9s1yndOPlH3vvvui67fs88+2xcz1yvtktROkh7Hu2l4zZNEThIvyb8kq5er5Jl5BfNUa1DpINM4dmD8SWwFku7BSdd5eNK1YoFbfXb0fWvr2+XzlCrLJJAORtQlCZTPMW/o//rXv27Bj33sYzlE3XIUxknwZJ2ZTMZ95jOfsXsnfizvL6dulr3xxhtz2si4G264wQiwVD0v1cTP/9RTT80huPu6SGD3GPnFJuvWrTOlVk+O93nZFhr+FnxPxBd1UH3d10P1auJDcq83nEejueSSS+z9RRKyf18xvpxjPvHEE9Ex999/fyMQsy5vuLiG5G1eP3x308Tb6fNxQRotDZ8jnqhL4i+fRXzf5pvPfvazRvglKXkgQ6JyIfPX+de5LfbpdN/51P+48Ssnub0S+7jJnX0LEAqVYVxLssVN6ZziprZsZyTohQsXGmm8v/yKFwJCQAgIASEgBIRAMyEgom4z/do61yEjQPWhHijm9i4BQReqPennMOaBwTKHLTjr1lAhl0RbI9+SgEtiLmxn6Ieb9GEq57ZylBDnhIFDOiW7dQtEczWMAwr8mKfhlm7jxo2LBv8aEQmuLObqYQ6a0FLBg8Tdahp/+QfHgBIBPLwtAtNoYd9uuUJACAiB5kRA78XK/O729rMXIv7wf6isS9IuTUOkVwYK1SIEGgqBkp+BuKUzXYHibuZVuLBp7BaTXUc/0hDOMuxdzmtiXWddGagzZhajvYshWjcKpN0pUNjdESSXaSDtTgMRAWQXkpeLNY2imDtYO4s9X+UbfgRKvm+Hv8kDtqAW3/TcGp3EpscffzwiLgzYqAESl7+wwl197Q0uDYLLvL32dMcccZjbaqstByhR30lr1rzsFj39rLvltrvc/DvucW99y7FuuynbDlujOb666QGQFZ8K+pRFNQSP7OQs5zqOrx5J1xNw4+p7+SRdEuhqaX72s5852v4MiYoHHHBAlExS7y9+8Qu355572vjZ5z73OVP1JCGRhqTEiRMnRvmp5kczduxY93//938RSddnoDItlR5JcCWRqD9D0pkn6TIPyYwkUlLZj3WTKBQ3bPPUqVNNaffhhx+Okki49QQrKkLGSbrMxHIk4fK8mI/PFpIdV67sY3zzWRA3TGfbOa4Yb2M8Ty38JJZ37AmyLobeN/akrY9ig42DHRy3SfpJ3DMPoR8zGf0XKPTWyngCrlfT5XHzSbrnXLyp6s3hPUmyHcl5JLjS8Nqi9YbkPl6vRx99dFFj4FTmpAInCYIk1C5YsMCRyD6Y4eItktdJPKeCM9U5SYb35sorrzQvr3uqecYNVS5pSBr0JF2fzvr+3//7fxYcM2aMjy7ZzaAPnIUtyowCSXe/hBt1TMq1TKrddVVU20Z4Jv7enOPwhN1ddtnFnXnmmXbWXDThTbkK4748yZ80fN4efvjh9vyfMmWKxZVb9+LFi0051yrBHy4IIZGVara8/qnSzuu/FHPGGWe4Cy64wIrwXn/f+963WfHf//73FkeCKvGi4bE8SZfxRx55pD3n+cznAhNaqsST5F/IePIqCb1cMMJvqfz3fn65oR6TzwXiw2cWVYjZb/051LZpuLDk2GOPddOmTbPnClXnN23aZEr5TOeiE//O98rF6XTannt8ltHw2mK9fKZdfvnlRt4l+Zv540rKljn88+Mf/zgeLOj/+H9/1M1one0+vMsn3Qnbn+TGtA7+nNqibbwb34bnI8YK4mToggdQpBAQAkJACAgBISAEmggBEXWb6MfWqZaJAAbPeteAoPsMtmN7BhOUmOxLP4cRsr5FlmVWXOFiJEi0QiW3owskXAw8gpDrSMIlMZdhWCPpkqAL4m4Sirq2XXHYDA7FoIbIWJh/aOCWFA5K6e8wIUDFHW7LM2HCBDeUgb1han7Bw3LwkudCyy2IuNURJxaqqa5rlz9VormdLdxE6DZcuCCiihQCQkAINA8Cei9W6rcOVDTZf/T9whwXh8kJ5+erk/RKoaF6hECjIFDWMxD3L7e8TXIji/ikPbrFGXxm9pF3QYSlahfWB2ZA4iV5l34SerNcM8gFrfGPzOECDbveeNJuzxZZEHZhZ0FhdwZt0rVsiRMGb2YgI0XdgdBRWqURKOu+rXQjKlxfrb7pubUv1eG8wlg5p0EV3Z/9+nJ3ylvf4vbfd145VdRdGZKMaXk+99x7v/vuD//XvecsbJk8TOq63Ysxxsrtk4slkwHRxA4gOR6bch27Q+m9iuu2C5F1/Q/KNBJmamlI5hlo7CtOEPTt4n3Abb1J+iPJ1xMHSS6kcmjc/POf/7QgCbGTJxdWyHvrW99qRF2SbLhN+w474MeImdmzZ+cQFX0SiUYkUpIYlE9KZB4So55//vkcTEn08oZkNRJx882+++4bRVGhj/f79OnTjfjENlI9mFu5U7V3p512srz+GRQVHCYPr932PZMuiz7Sxq60yy4rsiGvg+f0YNZ1z866jj3Qb6mhKUTW9Ye/9IZed//TRUq3+kJluhSh4Pb0VI6kki3Jebx+vOF1TktVSZLVBxN44LjyZZddZkR2Xjck7HnFW19nfy63nCcZjoZk3Xe9613m5/XKrelpSP7lNvdxc+ihh1obWYYqulTOJKmd1yf7mpUYx8/yltn8tok3I/InRkP1EgrJIulGkNTM4wmiV111lZHF+Ryjsmu+KUdhPL8Okj+58CGVyv3gKbduEoo96ZIqt3FC+re+9S27pj1pNL8t/YVnzpxpOyJQLZaE3Hyi7ooVK0yVleW9WjFFar7zne9Ylf/yL/9iqur+HKlOTRV4ElD5HuJcUn/vuF//+tf2vuivbfH4ShyTCwK4SIBqvt4cc8wxEVGbz7FPfepTNrfHa4J9jwsvvNCy8h1ONfm4IQnZ481FOSTzesNnDAnMTGe9/RF1veCPL9ef+0zPIvfoyw+6Y3Y8zmGmrr9sUXxrstW1JdstzEUWbIuMEBACQkAICAEhIASEAOZeBIIQEAKFEeCgRs/yjNtwW9qt/0Ov23B52nVfC7WHxzCQPNwkXZJySbYdv86ltn3Rtcx4zrXuusi17bHAtc1d4NrnPuHa917gOvZ63LXvsdC1zX4WW32udKmJL2PV/QaXaOkJSLokHuI/iYd0jIA41HBhOBVbIwSoukOSLlVkKjG4V6Nml3QYnhfPj+fJ862W8fdEo7vVwkf1CgEhIAQaAQG9Fyv4K1l/EW/FRncrCImqEgL1jkDFn4Ek8IJvwMn8tlnYIndeyo0+qsWNPRn29BY3+nSEYTtPA5Hq1KRrOxET/4dCyXZPkH63B1qcyxvuUahXoUr3KIgu1+Bb//KMW/9HfOvfnnY9L2D79QFIDYMp1TZKer1fs2qfs29cfdOXfyWQ9LB8+fKyK6CSLkm673/3mSOGpJsPBsm6PD+eJ8+31iaNxRzdj2CRx1IbbSnq8Nyavf2wJMY5QdLtqD5JkaQYT9j1DSwU59Oq6V588cV2TfO6LmSZXsj8+7//uynsMY2EKqopXnTRRTlZ+e66++67LW733XfPSYsHSPz1Jq5+6+P6Iz/59P7UCQup2z700EO+mKkGcpewfHvUUUdFeXx7SHKMKw+TpMVzorouCV/XX399QdJvVFENPVwM1T4P/aRDcD33CbEO2oLMEtw7j2JuAjsa1NqQrEtSbtww7Em88fhq+3k98vd99tln3XPPPWeKkV6JlMcm2daTIAdry5ve9Cb3oQ99yLKRPOtVLQcrR7I6VURpSBr2hgrVnjBH9d988+UvfzlS7SWhlyqkvL6p+EmyYP5zJ798MeEEpZmKlGfKYjFb77PYPXJV7a+pYs5luPPwGttqq636tYV+40q2uViFcR7TK4znH5+LGL797W9vRtItt24ugvBK1lRKj5N0eWyqRfNaLseQOExz6623GrE2Xkdc0f2UU06xJCptU9GalorwnqTry/n6GL7vvvt8dI77gQ98oGiSLgtW4pgkTcdJuqyX6rp8T9MsWrTI3GL/PPPMM1FWX4eP2GabbRwVkInRf/3Xf/nozdyeHkjeFmGmtc5wZxx9lttqbJ8y/0DFejI9rjsTzN8Ve4yB6lOaEBACQkAICAEhIARGCgLDPUUyUnDUeYwkBKiguwKTdvNJ0E27jVdg0m4+iKxcoF3c90rl0WjtcYlxr7nUNi+BlLs0IOXuCVLuXoElKbcd/vbdF7u2Gctdy7ZrXBL5E+0YQEtioAWDlWbo0lvNcOXPXjWWgABXv1JJN3/FfglVNERWnh/Ps9jVvuWcVHjX2C3DG6dRw+Wcu8oIASEgBEYKAnovVvCXtG6k/UGlhV17W9oLs47TKwiJqhIC9Y5AzZ6BGFniNsytU7Ad+a5JN+qglBtzAsi7p2FXDBJ43w7yLmzHaTHy7u54YnDXVar22nOjxmji2z67HDvn3Jq1b/71V6aNsNu7Et/PGBPINyQA0fimRmEf792wYL2mh82TU8cI1Oy+HWYMqvVNT4VEkhHKNVdfe4Mp6e40a2a5VTREOZ4fFYN5vrU2Pc9mXO+TeNYWu+4a74mWfRKuY5+US471T+HqtzpOzI37q3/kyhyBJFiSAL2ZPn36Zgv6qQ7sVRHHjx/vs27mxrcwH8r9tVnFBSI8ybFAUsGodesg5x8aKv/ee++97oMf/GC07Trro/LqiSeeaMq7S5Ys8dmH1U3hWu7cHwua5uGazhVd7b9dEHPufQJ9F+70NwwmTtYdLpJu/mmTFHjyyScbSfv++++Pfnf+5sWKO5C8RlVoGqpPxklv+ceLh72KLkmFL7zwgiVRCZSG91tc+dki8YcKz1SxJmE3TqijUvB73/te2z2OpPKhmOQo9FehlFuUgap5zz2YB7spWLRWFzthFNXw2mXiM7I/yx0QqmkKKYxTtTlu49cZFcbzzZvf/Ob8KAuXW3e8HJ+5hQzfPfH3RqE8heKoiutNnJjLuCuuuMKSeL+zr0fD9xwFXWjjqu3Eh4Ti+CKR9esLS/h7wr1VWMSfShyTKtr5ht+Ou+yyi0WX+h58wxveEFV3wgknuJ/+9Kc5RGf2uYnRQCrjra2tUR39eea07+beP/uDbueeXZ0Dyb8Y82rPOvdKT9AvL+YYxdSpPEJACAgBISAEhIAQGAkIFLm2ciScqs5BCAyOQHotVqYvyLjuBzFo/DjIuWtQptZjX8kM1CE2ucSojWaTowu47Uhvxewh24bxvPsXPeN+dM317ob7H3avrC/yK6kAHONHj3LHzpvrPnjCm9y82TOi+v1xinIL1Kuo2iDgB4f44d0MhufJ1d8874G2ASwXi/D2CosHqtN9U0IDh+9/eJH70WXXuBtvvd+9sq7wQFAx7Ro/brQ79oh57tz3neDeMHdWRAzgzVla+4o5mvIIASEgBEYWAnovVvj3xIsny10d7AVU2C2U/tyTy9zNf7zNPXbvArfh9fInskaN6XS777uLO+qUQ92OcyDNWaAdhY4fz2fpFYZF1QmBekWgHp6BCexy2bI1etC0ocmCZEIluPTLsGugqOgt5u8y+P7OIpyF6m2xW/b6est2sVtzdhUOtxrtWZh2vbtnXNveIBTPSbrU+Fi7oTpIE/yF68P5btgQn84Jc25pS1LG669j3+ohGH7/cGKXqmt+K29/nMjNO34UH7ZzCIdX0RogUA/3bQ1OMzpENb7pSUIolpwVNST0PL5goUtnMiNWSTf/fKmse/9Djzie92677JyfXJVwZiNIhgvx7MdCiWJNajZIugemhmVrdq9u6d1i21wP+Z566il3/vnnR02544473GWXXebe//73R3Ek7+yxxx7u0UcfdU8++WQUn++hGp83Aynv+jxDcdkeb5YtW9bvVuU+T7671157ue9+97vuv//7v+28SKL8/ve/755//nlTYKWCaiEyW349tQi3TIZK9EHo/7yQdmnMQxRjMstwDy1CX2UWdiuAMm+tjVfQ9W6tjz/Q8XjtkHTL7e5peF3PmzdvoCKWRkVbEnv3339/C5MwG1fi7K8Ckr+94XbzVG72RF3W4Rdt+TzeJbn485//vNmnn37a3XnnnUasu+uuuywL66WiZr7ipi8/mJtE/zVJpWZKNKGfO5jJrsa6iVuxswT65x0HZ13bzNoolw/WrnpInzRpkj03+2uLJ4z2lz7U+HyF8cHqo8L4brvtlpOtvzaWW3ecqLvzzoX7Drz2SR6dP39+TlsGC3DByBlnnOF+97vfuSuvvNLI6yyzcuVKU9ml/53vfCedHHPLLbe4q6++2t14440lq9FSMbkcM5Rjbr89xrMKmHLIzayGBN9PfvKT7lvf+pYpelNRn4YLEEjcpfIz340DmaOPPtp98YtfLJilPdHhDh5/uHvbtDPcwZMPd23r8ZFfhOnNpN3KDS+4F3qWW+6BFgQVUZ2yCAEhIASEgBAQAkJgRCEgou6I+jl1MuUikIWaTs9zGdd1b8b13IeBCS6CLmIgo9zj5ZRrQ6j3JZfE5GVy9AaXGLPR3OQY+EHWTY7qAikXDcwbe2Mwiz+/uvk297mf/dZ9/vST3UXvO8tN3GKsVW/pOQfKDRRKX/3qa+738+9y/3LBN9zX3vMOd/ZRhwaFmJkm5lr5WDgn3QL6U2sESFrl4GIzGZ4vz7saRF27vKmMxUltuInQHSz8q9/d5D5/4c/d5z5+urvoy+9zE7fEPRmrx5cvxl39Mu7JP813J515gfvq+e92Z59xdMntaabrQecqBISAEIgjoPdiHI0K+PkuRDUku9LHfuhg4bv+9g93xY+vdie+803utA+e5LYYPwYkt7A86rLyRYZffeV1989bHnDfPe8Sd9q/v9UdeNx+gx6/UPsqgISqEAINgUC9PgM9edcIvEQSXW0StwLiLki8qzMuA8JAGsTZDAi0WbjZtciHT+KqGrSDhN2e27D972Is3N0n69r3AcMhQ5YDu/N47uF7oBSXimiXXnqpO+ussxwnTLlVainl849HpVUSjkjuoOLbscceW3J9VcVQlQ8ZgXq9b4d8YgNUUM1v+gEOWzDp4ceecPP22rNg2kiN5PnyvGtF1O19Ac/Yp/HA7SoO0QRE89r2S7i26WHHs7hiJeVif3EgUw5JN3/77YHqr0Ya1QTf/e53W9X77befI5nql7/8pSnNHnnkkW7GDIgzhIbpJDRyQUl/hune5JPAfHyl3Llz50ZVPfLII+6YY46JwqV4qK649957myVxk9ubk4zJreypmBrHoJR6K5oXF1/bzITr2TfhMlD0N8GQwQ6AdY+9i3EfIb/dF4PlLyPdD2H2V7Qckm774GKN/R3OkczqVUO//e1vO69kW6hAufceSYUXXnihkdtJmKUdzJBUd/bZZ9t1xfuLxFqvUE2yYTFm5syZjpbkQ6pgeoLd7bffXj5Rd1TCpabii308rqlAyHLwpryCPvAd6HuvxNzYvugD7wm1521A2E0NXnQk5xg9erQjuX+4TKnKqnGF8cHaXG7da9asiaoeaB6qXFIm7ykSdW+66SYjnZIs7dV1ec/F3wl813FBCgmqhQzz+3uyUHo5cZU4Jr8HK2lY39e+9jV38MEHu5///Ofuz3/+s1VPwv93vvMds295y1vcb37zm37nDguRhDnut0vHHu7oKce5Y6a82e06YXfXmeJ2OMWZVV0vusWvPeU2ZgNhKf98K660cgmBkY0A+9bsj/JZzHEe3oNcWMG+BPsk5fZn6h215cuXuyXoi2Mgy55Z9d7eUttH9fYFCxZYMS6u5xhgsxvudtKNXVx2wLW9ww47FA0Hv9nY52BfzCvOF11YGYVAgyAgom6D/FBqZvUQyKzPuk2PgaT794xLL8BgcfmCtMU1EgNTCewmlpwEYu7WgZu+7krXuvduIOWSnNvtEkmo5fJ7LSIGhlXHwiRHUEmXJN3rvvI5t+eMHYP8zIrTYHpO+bxwofSJY8e4D574JnfwbnPc8V/8mtt1h+3ylHVRsY3WDVB/2FQ5tUeAqjHjxo2r/YEHOSI7YlTB4ADNUUcdNUju0pKp/lHpARffAlztRs4txX3goUVG0r328q+4PXabHhKQSq+HpGAelyRfqukevP9u7i2nf9HtOgcfalTWDdOLcf35yBUCQkAINBsC9fhe5CDDAw88YD8Ft/WLb89Xid+nmu9F9iuD/iP7gXhL8b/1LwuHqaRLku4nvnmu23721CC/FSqcf7D6xkJl/shTDnGz95jhvv3pi93UadtGyrrFtCeqvxJAqw4h0AAI1OMzkIqyfjvfAw880FFRjB3mJAgFtK3bEdik40La9Csg71Ll9qXQrgJ54CU8PxDOgkxQNcVdfIpnoVa3CYq/vXBnrT0Q26Z2GEmXrctXqO0vTLU+knQvuugiI2CwLE1/+YuJ57ce1XSpGPfZz37WTZs2rX9lXY4dFDieRepP3SJQj/ctwSJBoqury663uNplJYCsat+lxAY+u2SZO+aIvZ2YmAAAQABJREFUw0osVfnshfCuVh9y9szp7tbb7qz8SRSqEY+lniVYjIFna1EG6yRadk+49j1SLtHOTmd1zIQtt7QtsitVO5/nnFAcTkM12fvuu8+acPHFF9v7loqfHD+joi5VBz0BgIqjP/nJT2xSmXnPPffcnKYvXbo0UuYl8ZX3bDUNCQqeXPWFL3zBHXDAAbZld/yYt912mxGPGEf1XJb529/+5n7729/aeVFVdcqUKVERfnNxK3YSdWn8OzfKMIweXtsdc5MB+fZO3BtFCIdklqCPshRE3WloeBVujVP3T7or7i6iISXgNq+PG15CqSAriazs85DU8o1vfMOdeuqpBe8xqtKTMOtNqWRsKlL+9a9/LYqk649x5pln2nX14IMPui996UsWzWuN12S+4XPc56Fi7xFHHJGTJR7OQN19KKYVqrjdM4OFcEXXw10voOyc4YKKRbi+9oTFDhO2uK5KhN1kEg96mKGerz9HkihpkqkqNdgfqEZuvM9VjsL4QM0st+64qvpzzz2X850TPx4XWpRjeB+QnEvyGvtDvFfiStXcOcEbEuo9SZeKsOedd54tTKFKLp/7fOeVq5jrj5HvDscx89vQX5hkXFoSxdgH4HuR36PEgVjy+5EK84UMF/Tw2UUVZBJ0Z7ft7A6Ceu4hsPMm7usmdkwq6XXD9+xjax92D6wO+iKFjqk4IdCMCLz44ou2GCF/sQTJunzOsz9x3XXXueOPP952UxppGFH53S+G4uKCkWa4gwe/uWi4sGy4iLrsD61dS8UD5yZMmFD0/FO55exA/fz5y1/+Yv28Qw45pCSi7g033OD4Hcr3uIi6/YCr6IZHIPgSavjT0AkIgfIQ4OTfxrvSbuOfsMXUQxgMqwZJlwNmENRMYoV8y0EYYD4x6TpPS7lRb0+5Mae3uDEntbhkx99dy+Q1Ljl2I1YqhyRdnlIiHG0Lnfzwj6653pR0jaRbRP788v2FWR8Velm/mX6O31/5oJD+1hoBdqIqTfipxDl885vftC12qExQacPz9YNwla47uuytYg5RBCZwC4cvvuwaU9Ldc7cZReVnjQPV59NZHxV6WX8x+Vmrb2/Q6sb5uwmr62SEgBAYHIGenp66mmAcvMW1z1GP70UOlHPbOVqScSptqvle5IvF3i72grHAgOGb/3ibKekaSTcoPGD+IEtQr70d+zke6zsBCr2sv5T2RPVXGnTVJwTqFIF6fAZSMcQ/A5944ol+kUtgcStJAe27JN2ow/DdfDK+m9/e4kbjG7rjtKRrfytIAweC3ItvbDcG1cCpuFkPssIDWffuVee6nV7d3bVsDCaFvQLSYO5VV11lSrqzZs2ypg2Wv5R0Elao0stjlFKu4hipwoojUI/3LU/y5JNPtnvXTzpV8sSr2ncpsaFrMUG61VbcL3x4zdtOOdmd+Y5/dVeFk3xszfXX/83iGF/JPiTPl+ddC0OhhDRIurbYoogDJiY517oHnvcQOqimoXoVVQErQd5kHVtvvXW/inXlnAeVbqmmPpClGrc33M7cb19NBXaSqjjB6ck5d9xxh/vhD3/osxvp0RO2PvaxjxkBlkpQq1evtolm3v9+gfxXvvKVqFy1PHyveeIVyQpve9vbbJEPCQwrVqywbejZJpKO2JeYOhULAmHoUoWRioEkchIHPlNJALzzzjsdybs0PFe+R+vJtExO2rWe2Lq4VnGngd7lIFTinqqGOevQpNtreuWmDc8+POneyD7bEAx3EqChQiSv6T/+8Y+OZAj+vlTb4jb0JHz84x//sHxUqCUxoRTD9xFVbUsxhx56qJEKWcYrT/en+EvyOK9bXqe8Rm+++WbbJY5llyxZ4j70oQ/Ra4YEnaGY1im4prDQIVHGK82uL5DGN16Zduv/0OvW/z3tepZiB8rKD18Y4Zq/0+LFi93LLxcr/9s/Mv432GabbfrPVKcphd5B+QrjlWx6uXX79wXb0h8Zl+QgEtPLMbwPvSL8FVdc4Uhq4/uPht+RcUPVXW8uueQSx/tx8uTJ0fxYf+3zZcpxh+OY8Xam05g7HsRwsRBJt1TZ5bNl+vTpVmKwfvyJx77Vze2c596/wwfdp/b4gvvQLh93x0493m1dIkmXB3uxa6W786Xb3IKuQJH/61//+iCtVrIQGPkIcEERyfOepMvn3fbbb+/mzJljfQm/eIXfehzreeyxx0Y+KDrDqiDAbyQuZqRduXJl0ccot1zRB1BGISAEchCQom4OHAo0EwKepLvpBgw0vFDhM8eiXVPNnYLJw22dS8FtocWWQaktMUjSt/Az98AcX+O4VZHuDfc/7C5631lF5y+2XuZ7+2EHuq9dHqz8KaVc7gkNf4idWj/ZFV9xW62W+eMVUz9VKHznu5j8ylNbBPxtGBw1ULjtG1YuHL7h1vvd17/0XhQpnD5Y+YHSTzvpUPf1714eglBq/ZXFjveUnxxsbW11tMWaeFnek/wgpeHg+imnnGIrRjn5w1XwMrVHgCRCKnxQXYer6Af6bf1vyYm0zs7it74q5qw4ycLtuu6//37Hrds+/elPO04aygQIUAGJWyly8oGrS/3kZLXx4cAqB3b32Wcf94Mf/GDIh/vFL37hfvSjH9lA+tVXXz3k+lRB9RGwt4+9IPGH/0NlXUi928Hj6Y/du8Cd9sF/Cfupm6cPVn6g9H2P3Ntd+8vrg7ctqy5w/H7LVxkmDrxyYIsDqmPGjHGcAKOak/p8VQZe1Y9oBBLoLrZMxPc0bPuuUNzFuq5eKN6msT0vt1FPw2ZWgFgLlwSwxNBEyPqwxDzoruk93DavbOs2LF7n1s1a5dKdkPuF8ZPp/bkkVnGb7f7ShxpPtSmSkUqtp+/kqudjv/7xxx93VNkiiYYqItttt53jdulbQrlyKIb9T07Cc5KaRDSqRskIASHQGAj0UiEdz2o3OMeE3Ti3cMPj7qGb73UpKDxWc7tkfvNOmzbNvjvZjyvX8Bua5JiBtgIvp+7vfe97jnYgQ2ItyadUvvYkwekg5nzmM5+JipHgxO8vEp4+9alPuWOPPdaIAVRrv+aaaxyV7vnMpuIebb6h6m6ttoAnSYuqYlzw7wnK+e2h6u7ll18ejSmRPEZ1U74bqSS477775hcxpd6vfvWrm8UPewTmEdp2TrqeWejXvBh8Nw3YJtxD7PP0YueBtjF9I4kDlikhcTJ2AvzRvyXdtfcn3BLuZlBC2XjWdgwV7of1SntNH3obeU1wtwKOQ/A65XhIf4Yk2MHumf7K8ruN1zqVp4sxHNNk3vh19da3vrVg0fb2dkcxCz7PSH5/85vfbPm8grQvdMEFF9j21z5cjsu5Jyo1p5dkXQ+Vmksl2aJIFr99D3a06H0MRN1Z6IfPzrjWGVg8sX3CpbbAbzr0n9VOjYRCEpJ+9rOfuSOPPDIiPpdy3hyjZt+bSn3sb1IdtFGMVze/5557NmtyuQrjm1VUIKLcuvm+9OYTn/iEO/zww3NI8fw2iZPOfd5SXN7fVM8mKZb3I83s2bNtO/h4PV4tkHH549L8HimVeB+vuz//cBzTXyNsExew5JvvfOc7Fk8lYo7b+rkW5uPzhSqG/5+984CTq6z+/jOzu9k0ktAJENiFGKoEE0CKYAhNKdIkQV4BAQEF9E/XgAhKCR0UkaYiVUIRUBCpKogICNJECGmEUIQE0stmd+Y932f2zD775N6ZOzN3dmc393z27m1Pu8889ZzfOScUOC19vW2ejBOiSHX0iO+aTceMMutlNhBw7pomnSpPYWNJ6xLzzEd/MU9++Kgs+XKLPtpKQkkNrOw1gLIOa3Vo1KhRZr/99jMuZgFeB/IR5GHQ7373Oyunc8PYF8m/mq0BvIbpfokxOaGkBpIaSGqgUA3k0DGFQiTvkhrohTWQWZI1S1/OmGWPxwjSBZwritrp9YVZYQ8RJq4nzIuhcg/TrMi+Bt6GdR9MfctNlPu5ixabNQaJud5clJLjk9/e50w0O2+5qbWg6+a/pqRL+pp4lPLk4+di1cR/NoFoqWEaH2ZNtUnzi5IPjAY0/BOqzRqgzVur0cJg4pxqP4s0PPR+7rxFZo3VB4W+j5rePuN/bL60/RZmwqnCeG7Pb01Jl/QtRSyPzS8XI9b/WK7AiheE63Y03KPS0Ucfba1HEN7tA4CacOsCwbhOgLq2Krr8H0BdmH7bbLNNQZAuBXPbQZwu2ACh+qALlxHa5ZVSgxnCbEaww4FQFSBQV9Bbb71l20dcruPUpVPCuOiKXy+OPGQulGRY7wWe5Z37fPHCJWbQkFWsYNc+996vkE7I+ytO/6XZZOTGZh+xoqvpky7pU6J8OiHx/fcSrCqEwJg5Tq29uJkgHEHZAKtmrtDEDZNcJzWQ1ED0Gkg1ipVF2Wc3DJVN+EgRLi4QEMGHcryfMXPfXGD6zx9oMmJpzlptjAAIK5Qz485qrWJt8c3+JtPQZhYMn2Pa6ltlmS3jj6zTw84LFy40gJ/C3lf6fMiQIYY8Sk2n0LdW+k4F4giLsXgXRMccc4wFjjU3Nwe9LvqMPNSde7I+LFpdSYCkBmqqBtoEqJsR0FcU+mzZHHPP03eZ62b8TNaSGfP973/fWocD2FYtsAdjNkctUKkKXqpgy/gLaBdCIdIFDTNfYEl38803t+9POOEEa4WUG4TK7MPPOeccc99999n3+g9w1I9+9KMVLBny3gUPaXj3DDCxXCJPfg/AWmp5TNPCFfqECRNMU1OTPrJngH4oslxyySWd5iHW4ih5XHnllabc+adTRlW4wZNAvVidbX1N+siC4hlkBdDbRn9qKh62nBBpWQDtt438qxGiLfH77bTTTnZPFQQ6Q4EZgOBpp51m10du0Wn/Stpf9N4/w6vHTe+DDz7ovwq8Hz9+fB6oC1i8kJtj9osASQHLq/VftVj9xS9+0Zx33nlmt912C8yn1If1Q9Om785iGGG2QOXelLZSzppYomXniILcHAC7WdOyfta207omWYcLYLd+HTFSM6CjbkstI+HhP86fP9+OR1gbroQA6CoAupJ0ujIuYxJtAX4C/HCMWKDYhqVh2i0WxrEorRbGmQNpKyiWwEdHIYM2RDqlKPGXmzbjPnPNKaecYss8btw4e42yB2D62267zdx7770VVSFWs7/whS/Ybwa4Dh177LErpElfwZIuhIEH6oY2gIyB8aLS9rRChvKgO/JECUgB/dQtgHYsiNNGmOcxBqTfCgiQekDpAAA7z2+99Vb7KYxPSlhkb/1IALozZS6ZIUoiU2WskP3zqMZtNUhZ5+WZ5eblOS+a+2ZMMlNbJts0rrvuurLSSiIlNdDbaoAxEmJ9y1jvrk14Dr+Y55988omZOXMmj6w3CRQrEuoZNaB7jp5R2qSUSQ0kNdDdNZAAdbv7F0jy7/oaEAZDy2QB6f6lzWTfrzB7+BCCyQOYm5a1Uv2GwqTYQMC5ZTAppFg5QJ4hUREqwkACoFfo3sbJ/YsU3ktv73MuMs+88ZYcOSbuhHEHdM6vrPSJVHukmmq1VLJly8QUVEI1WwO290mfKeXMx5QSHvCvH35vAen+/bk3zDNyQD88ZbwFCRMO8sMXu8/Fqt5/GNcwE6MwA3GzoYwjv0S4eFEmHEKXhLqnBhDOQTD9SiE0fuMiBIpKl19+udVCrdT6mqbXW85YiEGAyuZ/99137y2flXxHrdcAc1ZumRrtLN9jZzmZqEqK54QHpDv51alyTLHz375H7GknQpteuelXoZ6fe+45c8ghh3QCEagghewQnF1wwQXmhRdesEKSZEyrwo+QJLny1oAoxNYNFuVYORo3TZtP119k+tcNNq3iorf1XRE8vpsTOlrQCwvnMoihr+/c/ma1t9c2ywcuM4vWm5sb3+R5mEVbzSbsfXc913LFfcbtOiBcH+DljoXk+etf/9rcfffd1lIMYBufUBpTS3QIsmoVUOWXO7lPaiCpgSI1IONvm1j/zEb0bD5twVTz5tzXZaztMJGOxxcOlHoBNcE/6K207rrr5r0YlfKNgFc5wmj48OGh6fIOy12M57NmzbIWvwDwrrHGGisACTR9AFIKktJn7hlwkAKE3Od6jRXNMAK8AED7pJNOsq7PcX+Owih1UwggDMiSg++YNm2aQbEFq+61TtZ7wIZpk15XWv3bxRcsmdnSpwQ8aTdJLFRWEjr44IMNB/srwHgAWfA0VMxqP3s1jqhUikECjIOo17Eo6QOyfOaZZ6wHQLwP4CUAUF3sCp3SLvqMSJvMXlmzpKXNZNCh6hhSoxS1cxixHUHbbHlHFNXEQULLBrL+FlkYFnatJ8m12kG7ZbRHeJAoEUyZMsUqonXOuPgddUc/h7fc02jffffN88rPPvtsw4GSL6BdqBwL41HroNy0AcRjEAdPaDo3u3mi4IGVd9b15RJlc63HAoj3CcUM+h8KKlhT53CJscLfm7jvy7nujjwpJ1bxMUbE2Hf44YfbogPaZd/Eu+uvv97WA2E4/D3YiM+NMN854gTTMjXnkaZVLOi2yV45I0Dd7GeSXCVjgy2NAPozbea1T/9tbp3yK/PsvL/Zp3hNZI+YUFIDK3sNgAVgbQqxlvVBum79oMCiQF3krkFA3RkzZtg5U8M1NTXZcXeDDTYITZsyvCh86ekS99NPP7VGegANswdgX+Vb7iVtFLBRFth+++1tmf7+97/buMimWH8pEZZ5gTOKJKRLubHo7Vs81zicP/jgA6vkMXnyZOuJjvKzpou6dn/ttdcssJm0KCNl9Qm5JXMVRN0zbyih/I1F+w8//NAqDaH8wN4BTx2sKfzfiW+cPXu2tf5PmJdfftm88sor9puZG/EMincpiDr1v73U/FBSJ00tN/XEWol65lupr6222ipv2Z7fmN+IelXifs0117QeMsOUyUqJV+o3aDk4L1q0yCreo3BHOuw1abt4QilVUZV29vrrr9t9K0qd7FlZe7AGwcNhQkkN9IQaSIC6PeFXSsoYaw3gInPZixmTmVZBsg0Cn11LBIKi6V6/kYBzm9OmAbAulnPlr2wSJmSO2s/F7glsg0YM76SHJV1AukoX3XW/mTD+wPZbLUe56WuqK+8Z64C4By9ELKK6k1hQwniE6QFDA4b31ltvbTf4uN7wCcYGCzwYZ2gPw1RkkcdikUUQGwisYLJoLEQIXHHVDu2www42XlB4mPksQgGzuBq/QWGr8Ux7Qe5sbfbZbKp5jyVdQLpKE6+aZCYIUJeOLja7yspf06rmGaslWDspRmjVhxFMVYBOc+bMsRuHsHDJ8+rVAIIvtX6GZn530dNPP22zpt8jmEtoxRqA2cwYjiUYf8O/YujkSZQagGkDcIg5jU0+xJyI5SVcUfkEOADQJXMevwdz25NPPmmZO8uXL7fMD4RNpFGIesqcaL9BJkA7G6WYj7hZ8dzpfT5SR7hO74vEv/L0ay1IV+vvoVsfNfuJVd2sxiszfU0vrjNgu8MOOywP0sUVO4IImE20BRh0WDRhzcT655prrrGuy+LKP0knqYG4aoAxDOY1jGYstWKNiPU9gkCs9LiEsADL+qzfaO+s2R955BE7LvIOhjSM1q985StutMBrXfOTFq6AfUY4kWBGP/roozY+VrIQJIRS/6xpHJY2jRsLMEEs7S4Xy0DLp2MlSISR00QQKW58TRn6RewBBnyyihk0YzWzbMgS07ZKS7BFXQmXW7XnSsj3ME7kz+3v8/cVvCeHFdIpkj5xqkFY+lJBOAp8uCs/4IADLIMcAApjIVYRmWsRMCPkVlftYeWpxAV9WJq97Tl1iNU/9vSAfZqamuzag37LPOQS1oixpgnh8h5QEO43cRXN2oc+Dx8AjymuFU43Db2Ovd9qwr30zO9zn4Ap3nlnsgik5sr6cagIkYabg0XAqdZNe+mn5z8ru1wwIHPlNiefzj8PumAMnS5A3bcX5IwKBIUB6Ab4I/HEE1Q7lT2j/48YMaKyRGKMjdCW8cwf04plwXdglbEnUcO6AnyUoTvzdoRSL5H1xjw5pG+l+kQI38uCAEJjHODoqcTaF0BBNYm20Xcr0WoTEN6SP4s8TEC2RtpMRSRpZQGKi/JFm1iAXi6g3byHyfVyVnbr1xY52SDZ/ZcgfQbw44J+KipjhZFZX5dDYUoEhaw4AyAHuALQ0gWmuvmXY2G8UJ6Vpk38n//85xbMdPXVV7vJ2b0jSsqqNOIDvzoFLnADnw3AMsSeMmgOAAgGD/l73/teHuysScKXwXK87k/ob0phv5O+17MbR5+Vm2cUAJJaoQ/K98ILL7T9g3aiVua1nQIqA2hGvd9yyy32Pfst6YVm2+YvmoN3PcQc+bWjTP3LjWbRLAHt43kGxalyrGxrRXjnZW3LzCufvmxueedG8+fZD0nSrck6zauj5HblrgF3TAakCK8jTKYzcuRIK6unxnwvhPBW2P+zh3dp6tSpVi7BGh6Zmj+OMG7Aj4Yn4BL8O/V0+t3vfrfTPEyaTz31lAVQUlZ4OUoKOobXBS/R9y4HCBMwMRgCPEEGAW8xGPTXv/5Vk7Rn4jCuw8+IonxD+eG3Q4yhQTJNvo/vgJDVKFAXGVAQhgO+CoBc8BKAb3VsJj5jLSBZeCnIUV966SUe5wn5KjwWCMyEu6cqJz++DQvLlJnvgF/rEt4vqUPKSX4YrNNv1XAq51LFNn3unqPGK+cbNB+MeGHt3jWqh3yT8lGvKOgwn0UhvHSiLOSmpZ47mW9R2gSwm1BSA7VeAx2r01ovaVK+pAZiqoHl74iQDnc/5TAlGoXxAMNBlHPrRSO5jwj/6tYQpkNdTIWDGw0fIOpZs40avj1cDqTbmeF91qEC0vXTKSd9jbOSn9Fm2nbbbWu2FoIsv1FYXCZddNFF1l0QLu9coTyMAIT3COOfeOIJ63rJ/UDAmsRlUY6AMIxY2OKGDNp7771NkAUNNNi+/e1v2zAHHnhgtwB1tTvYQkjniHKfC8v/aOE72H5Zo5Z0O9Iw7SDdjvQ63pWafkfMalzRNn7wgx9Y0GBY+oDgXEupQeFYRKPdl1D31ACgQ6XuEnbQTmAmQkEbay1fchaD/oMGJdUQUw3A1IEBpIwdTZY572c/+5mdq3DV5goGYEKdd955prm52TK5fIUSFQb84Q9/KAhU6ylzoq0TmQgtSNZOiNzIU0CzzrnT+3ykjnCd3jvxNB1974N0SWpfQLpkpvHKTd/Gi+8fzDvaEIQLSJhjSjBiAWvDfMSKAAytm266ySq3RBUOaVrJOamBatUAAgLWcaznXPrHP/5hWN8jfOUM8FYJC3W6nsdKBu1e+wFhlDGNUBkhaSF69tlnbfqEYf8EONgn1pC6jhwzZoz/OvheFtoABBo3T1lrYoAJrAUh8a7TKvqqmQ9kMFkWHDXsabotbQZ+MMQsXG+eWTBQ/AALrWAZ14sc9n6F5yLgsOm1x6/We694sdzye7tCG0DbrlCF8Q4rHyjtsd5XDxsAs1FgUCFzLIVZiRLBOjHCNJeYZ7Cuhdt31jDf/OY3868Rymm/5R0Kca5ATa2eAeJFoTdMcEiCVeu3+dL2novTRFnn2mt/EfhBF154gfwO/2cubbeaFxiolzzMLJRVnChPRKFWQR4O2259c9x+x5pMqs0Ka9UKkhtf55cErOvWSnLdk2sgLd4B0mvKAqZB+koxuYUEQSEJ9+V1fTq4iz35+5OyV6cGUn1Tpu8X6kxK9O6WPiHr4Dek8URQmohUGlF+Qwmu7WMB7b4i6Q4WwzYCOE8L4LxuqADPBbBbJ5Z260V+lu7P4jxSqt0eCDATR6mEFVy1hOvGVYVD95lesw7GsxzH/PnzrYVln99HmFItjAMEi0LlpE26yIxQwkNpBivsWOMDuKTrRwA0HOUS4LQolqoBzqJAxn4VcBV7KIzjKCguKA32r0HP/bLC6wmicvJEuZujEPEdHEFEnuytzzrrLKsky56KZ0rU+4XnX2jO/+EF5rNp88zHb84xq4ulqcb5fWXfK330AdkLzxeAXmeMnkav6Dy/Zb55/pNnze1TbzZ/+fRxs9OXd7Rtozd7PqiowpLIK2UN0GfXXntt6yUCcCH84y9/+ctWaXPVVVftVCeAbMPk64DxAdBCjMMAOJGnwaND6QMld+Yv5gzlO/Oe8VhBusQBOItVXeIBqtUwQfsq4sFjUKJ8mjb8BOUp8I0oIK2zztqS7nTLIyQu4zM8R19xQ0G6fCsyYXiKagkW3hFjns4pmrd/hoeo8hws2wbJE11wq2I2AIjiKRai3KNHj7YgUcpAnfAbYVAKUDTWg30ijEv+t7nvuK40PxS0lQD/Ik+iHQCYZj6jjs844ww796EIzG8KxgJizgOvUggEy5xZLF6l36AGomi3KIlDGLChrgEjM/9FMdrEmsPlXyObY83A9wKips3R3rHEDx8yoaQGarkGEqBuLf86Sdlir4HssqxpnSHM4f+VmHQDAF0B535ewLlbiAVdALrCPIudNEk5c6lufe0NmXnv8/k7z+2zAvHDQLod1nRz+WiSmp5/5n1o+Wzg+P7B4AC4hfUkLLACjmGBxOKExQUAiKOPPtoudOPLNZcSgFasReFOgEXPsGHD7GKPxVlPNZ+PhhKbACW0i9DSY2HH4pTFKHXO4gwQkk8IBJWIixUDBKwstIgL0wHBfhix8GbBzAIaYDCLRn8zwu+r5AoX9VlXnG0fSMl/hOZyTrWfC95rwaKGb0/ft6RLMljSnXDqoZ3zLyd9jVPFMxqZ/JZYXwoj2gjtoxChjc+CH4vNbhslDgtshP5oKbK5on3SbnGZi0WuIIJBBzOUODNEG5MNABZV0MpHIzKMaL8Ip+kT5MtiH4tgY0Xj0gcSsKFV6wEqKOdb0RZlYwlIge/B2nQQlfNdpEO/uf322632LJsQNrNYwKJP+pq2QfkGPaPMEG5b/D4ZFD7sWTl1Ql2xwaI+lBiP+A2hcePG5a3huHMCv+lDDz1kGQJs0rAe4IKM2ewBOmDcQ6sSRgTtht8kyKq5mzZudgCeMOeg8Um8Y4891jQ1NdkyUe+Mh1i8oNzku9deexV0wVpK27KZhPx74403LCAGJoALkqdvoPzAhhfGClq1KFbw28Jw4ZvYpPIbhxHtns0seWANlE36oYceattXWBx9Xo12qWlX68zczpyk4xMKJNxjTZK+DOCF8Q1XcqpF7pYF4YeCdIkLs4Q4yiTCDR3a1GF9ivbUE+ZE+80yZ6XkAjAtV6wDC90TJxcuWnhN74rTO1vSJR0s6e4jh5tfuekTL05yNdVZqwYRDMyf/OQneUuGzHUwaAHtMjbhPeDkk08OimrHexi40EEHHWTXvXH0dforYDmUNBg/WVPTfrHoE2QJupyxnfFTgTWnn356qILB5ZdfboWSCHJQ0IKqPR4z1t15553WIoH+HjDwWHcGeYdgvGdOwpUafd0nwK4TJ060j905S8MhdGW+Ys7ANRtMcdYktBkX0Kjhu/KMEp4y3ZkfWM/BDGfOYh5kjU85sYgaZOWKNRJEXNZKMEbVKgXzMvu3PfbYI/STGF9hKkPMYT5Ql/lLvTIwjxeaw8Iyse6k18HCV51p2yJtAbvL/yO8gdfEspgILkuxsNt3fj/Td/YAs2iDuSZT12bXhgiEWSO6Zy2L/zzOe/IoNT0tV5znK664Ip8cv31Ym6asrPdYn9EXGB8YzxCKsF5n7afMexK8+OKLTVNTk133Bwl2CMNYpmtvhCW0H12T+VZkCA+xvqGtsUZij8C+njLT/2ljPvljLtY+GN/gFQBI+MUvgkGYfjpx3jN/qGIIa3/WaghgKCtKQvBPlEcS1P/UQhlx4W2wHkLJiHjUJ+MZwIsw6op+G5Z3T3pOm1aQLhZdvimKYVj5fEnWioyv1PfPf/4zs4vwZ3B93ZsJMGF2UbQv7LN6gxl7yBiz75jd8hGw0s3hE2DdYnswP05yn9RArdYA65W0GJJKidfe7NzipcwuFF7ZYgHqrsouKaGkBsJrINUogJ7P11lvkEvXzJjl/8rkvEwIyzs2gp33mQACPxPQ7n9kvdVX1sdrSJuWNTiA3TTeKQWIXrd6+zFA2m1cxm9i+4juTcgH6PqlAUxUjoVxP52g+3LThv9Y0NtJUGZVeAbPhXV5V1J35MnvlOcvikXcNlGEahMPstbC9SeivPGJ9Ln/DTBrfTRALF+LxeulcXbyzrWbyWbMe4tmmr98+Ji5b8YkM2SbgebJnz5h9/+dQyZ3SQ0kNUANICNgHw8BqkXewMH+sLm52Y5hjGNhsj1AuPAyIQCx8C8UIIqlXQXxwuOEf6cgReRDeMGCkFHuuOOO9lr/wRtGdsbeFL4A5fEJ2Zfy9tTCLGFdkC4gS9cIE8rcKDwAxKTcPq+F8QzPTGAulOBJwNOA+F7kcYUIK7LkCdATWR3yHBe3AYhVeUzko/MschuVQ5500kmdsCXwILH8Sp35gFy3LJQffig8dAUuu+/d6zjyA2z7rW99K8+zRkEGeQG/29y5cy1fne9DTgXfedKkSbYI8LCDLBq75eM3LxYvjm+AJwJ+RNstvHSM4wCKRn6GPLKYRxQ1jkP5qQ/Xci6/F/xlfltkwtoH3G9NrpMaqKUaSIC6tfRrJGWpeg20CZMLDd+iWulOSVLivqd+pFjhGS0g3U2qBNDV/PJAQEAQ8tC5zyETpOwi3LLGxFwenDze+8cTzTNv/NdgGXfCuAMD4+99zkUSRswHOaTh7SMnvzwIlxfs57zyhJbPJhTvP6y9AAQEmIeQ3NcsRRh47rnnGjSm4nQbyMLS1czRryJ/wBYIr13revq+1s9nn312vogsVhCoK2FFFzffLF6xjovQLmhhxKL6d7/7Xb6+2VgQjwU9ACV+r7ANBXm5lgsBX/oaxYAkIUDAQYJF+7LK/2yzlz5RypkiueH3HXeOeea5Nyzo9ocCvAXs677nPsySLuEZA9zwfvpB6bnhLbi4yvXEQp8N5Q033FAQqHvjjTfakgDAZbPFBsIn0qDtITx3gbpsNACRuABu4iL4hHgHQMDdRBKWhbqbj24cETrfcccdnfKwCck/gFJqsU2fcaZsgGDZTAMyUKJsgAggQJCAIxXwxzMAAAjvaeNsEvy4pX4XabJJZWPsfhvPAdmgWQ/QoRwQC4ADCBBrJVROnbAR03rUvBmfOCCABzoW6ZzAhuvMM880zz//vEbJu//iHRtVdbWmAbQNMLYAmKIeXdK02WgjCOb3UwK0AHCMNGBE+OBrhO0IisMsqJbatjTfoDPKI1pfgDSUSYsLHH0OmMx3OU4ZsXhBm4QR4hNWP/3v4rsBo9O2ClG12mWhPON4BzNA+yy/OUAgJeZErJrAsGLOpw/TZ32iPcEMcwEWuNj71a9+ZYPisqmQIkNPmBPthzAn2fWgTE/tlnQL3kskO4vJxET4K0/7pZn86lRrGXffI/bk5QrpXXF6Loxbx1jS3ceG9/L30g9KL7B8buIxXOPiXYl+ECYcYj3jr2lYL2mfBSDrpqVp0m81jGrxV9rXYdKi6OLPI+TJOMc61x8/yxnbWbtr2ZmX+EafYKLp+MIYrFTN8RhmcZAiGM+x2ICSj68ExDgAqJC1QBBQF8azfiuAY52z+B7qGyUhZQ7rN3JmzOFbVdnHfdcV18yhCtJl/Gd9j7BVScGAtBXmXH8fpuFYWwHGVmAkDGHGNoj69Nu+xuOMsgL7BvoD6zPGYne9xPirbZUxuVKqG5Iy/UbXiXccsSq0Scq0CFChVdz2ZgVYEIWwqttnQV9Tt6jBZAa1WXAu8QDpumd7E/DcD9fV91quuM4IQ1Q5BbCov47w82G9zjqEMQhizQ5QF0GS9iGNQ79TwvquK/ThOe2C/Nh/Kunajb7K/oM1nUvsW2mPbhzeUw7GP+Zu4rrkjrkIAVRBhzC+sMmNV61rgP9q6QaBHmt4V/DCt6nwjfUedevuk7RcjEvXXnutVRbhGdZ2dQ/BPqsQULer+62WuaedL7v0Eltk2s3zL7zY6XdASWb4xjlAyXMyzrnryJ72nVHKmxUL5tmWKCElzEBhQQpQ0SXW5fAIdt99d/exvWZ+Yh+TUFIDvaEG0gNlwyV9wEQB6pbSr3pD5STfUFkN1BnTZ3japAXYvUw8RrY8nzFt78j6NS7run7plsq4P0tkcbMERMhmXXA/FrgrFnYB7KYB8QLaXU0OKVMdIPXGDn6rn1xyn9TAyl4DWQHdtgnWzoLh5wgoV4622aKwYQG6sp+V66r1Z6/yl6aXmv/1/dC8O2yqGXvGzub0XU/yQiS3SQ0kNeDXAErIKNNiGAweqxJyJvbsHBCGFMaMGWONwSiPjefwhyGeoTirYEeeARSFzwk/F0KpWEGK8CsBecIbgffiE8oWyPUh+CVBvAN4nP5+FS87CnaFL+Pza9i3qWVyZFk+7wRcggvSJX/KrEBdlLKjEIrayPkgvsOV9wH8VHKfA2ymTjDUgCENl6hfygVQl/oII2Q9QfUZFD6O/JAvu4YlAEwDElbjS/CJFIgcVIZKn1X6DdQrBoTcdouRCIxdIJ+DwPi4/HS/zCj9wzuG4Nu7IF2eIZOBFwaPkt8P4yh+GyNcQkkN1EoNJEDdWvklknJ0SQ3gEgpt80gkfIHUBsY0filt+m6XNvVri4Cns4wnUjIlBVLwl/Ikit23Jz7x7vstSJfbi+663z61FnKd+DlLugEg3fEHtqciJyd8x0Oet9/578PuO0WO70atZwCIQajEBAvIU4VsWODCuo0ClirJGZCqgnQRHKMZxYINIRjCYkA9LEy5L+QyoJIyVCMui1wFvgEac0G65IeV0d/85jfWPTP3aCcFLYwI44KiWdQimNUFPaC7QkBdFrHHH388Wdg8XKAuwl61vsZzFyxgI3TRv3yzt/lZm4DtV5yK31981V0WpEvoiVfltNewkptLNxc/1JLuKYdKrJyw3w1PWqXeE6eahPAXoC5CcQBKWOPzCYuThIEAr33729/2gxS8BzSvIF0E5wBJaWNsTmkrAPjZUKorVwXEkCjtEBAMZ8YHACYs5rFKiMU32q4SFn0VpNvc3Gy1XNlAUHYseBMXbVUfvKTxFZDCWMQGEU1AxhFABFjtY8PqgpRK/S7yQTt0v/32ywNWSBOXLVglU+AyVu9efPHFkhQJsJSo/Rf37HFR1DrBQh9W99jwoXgBsZmHKQFhLdgnAKcQwDbCoUGrm1XmBv2deM+YQx6AbDn4TRD0slnzN+OkyRwAEQ9X3zAV1KUzG0q0PSGAGoyRvFcwCdrRbARd1zyVti2bWYn/AOkyXwLsY7yG2YOlXAhNYdwaNzU12Xv+wTBhHFdis0sdwdAAxEWdkF4QVatdBuUV5zM0pPW3BpjignTJByYXIDX9bam/IKAuAG2fWUXbV6Cuum0KK3tPmBNt2WUCsrMXIF1mo7xl3ZB7GwrLu1nz0K2PWZAu6Tx066OcBLC7Z6f0rjw9zJKugHqD8rNPc+kHvg8pH3nHSYwRSowJtBfmKR8cpmHcM31OmaiA/IPAmgqihKGpTFY3jVL7Ou2ReUKBj9rXAcyi/MZzxmHGTh+spvlGHdsBcpEO62bGUHcO1LR07uKeudkn7aNxjcfMAQrSZUxjLMRCA4BVZXpjma9cpRe//MxrzGfKSERhjjGZdQVgVsC7WLZknmPt0NXkAiNZs/jrbizJ8xuhtEHbJozPtGctoqBBLT+/pbYT5tpCxFoL5SrmddoKjFnXTaZa5yWNoDZUKO1C7yxgd9s6Uz8sZZaumzEtfxfLYgImaF+CF4pq6pc2mPplDaL/u9SCil1LuoCMFXxLInpfjXM56Rf8sDJeugpTvjXksOTc/aW6O0TAwFoQxrtaUGatrHtKd82u6apVWMDzAH9ZnwHOpb+xbsdKLgByJfojbU35BzDwGa8BTNL/icc+Ba8LugbVuHpWkC5rJMpcTUGI5umfWY/oGI6yogvSJSy/A2MnShD0KYR0viIe9coax7U2g6cKxkT6u+ta0c+f++7qt0FlqeVnDeL9gvn7eAGa+2Mnv1tzc7Nhr/zxJzlhUy1/S6Vly4p79FlTZpmhpkPBKSxNLD/+5603zDbbdraghHI4fAcfrAtPAKtHp556aliSyfOkBnpMDdD+U30iLUesRwD6VkJJDZRSA/WAY3eWNfAGAtb9t1jXlSPDGjiqMkUpmblhBRCcnSkgw5ntwF3a+qoibltDQLvi9CxlQbtyb0G78ky8WdYNpj9YRoSbUnKd1EDvrgFhseEZtm2+gHDnylmODJaqP5XnYj03M0eei7Vcq2gqChtdSjI/pUVmPnjr/matUZ8zozbYxM5ZXVqGJLOkBnpwDSBbPOOMM6z3RvbcyFPhRyjglU8DxIsHIPgWyNDhL8NjwlIuBDjRlTvZh/IPAKTyYElTCf6Az6tBJkI+8IhRri9GQfJC5PhKQZbV8R5H+THKxLVPQZ6YXDmdyt/8eP49fBkF6iIjdQG58HYh6hAjS0rgS3zCQi0yUvi0KGsXojDQc1icSvODV+vK8TQflYVyH7W+NG6p50q/Ab5IULuFLwJ/Hh6XtvGwsrn8ZZdv7IanXakxAWQdCVDXrZ3kutZqoL7WCpSUJ6mBataAZV4tj5iDgHLrmlM5kO5QuekKasc5WOGg8CCKntvL5FvJzYN1xbIuuIYcSPe/nb6gsyVdeRWUn8YopVwap0pnJnOAsiqow6oGAmOEeAg4ENaFWXqKWiRcGJ933nk2OAADFqpYBIPIj/QR4AFqI99K87MJd9E/V+CmwnM/a7Wiw3MAjz41izApSFPMXeiq4NCPq/cszAEzIngHgMmmQAHPuqgmLIC47iJt9rn8hfkhF3STHAXf61s67zP/zGlA6jMXrMv7MEu6gHl5H5SfphX2Prx8HTHjvkKYqxtArE2q22c3HyxNQgiEfTCbGy7oGo1SBckBxHXTB2wIOATQDf1Qgbou6Adwugr4aU8AfSgzbZS+DugVQoCtgnyE/QCjEEBDgAbQ7KOtAl4aK9qeYWAa35oqYwVCb4h6UIBJOd9FGliSY6yDUBRwN8l8A6ABQAYAa9y+ZCMU+Ifrc6Wwb9P3pZ6j1AnWybGEBJNAgbr8XkceeWTB7GgDWD/z3cvwDGK8YmOmGr0AiVBAQOsYos7UZbd94Py75ppr8goFPAYQDSNFwVaAgV3QA2OnWiwH3Ep4KK62ZRMr4R/tHs1mrBErYUFOASa0cW3zvOe5jt3+bwYIhO/Rb9f09FytdqnpV+vM5l6/mT4TRGgnA+Rh7RHGpNF+7cZ3mU1oNBeinjAnavnt7GQnKPnHH6BdvZdAnd4795NfnaJJ2LML1iV+EEi3w5KuRCEfobD0A99TtKDy2ZTi+8c4gxIKih60J+Yl5kVAuDAH6TthHhhg0Gr7ArTpA3VhEKqiSxBInK8ota+jBAVwCwKY5lo6xRI51rhhSjJ/wch1FbNspPZ//jgRNN/BuMRaBMp2zM1B2v06x1NvLkPWzSuu8Zj6BIQLwQTEFRi/lRJjtyqGAGaeMWNGfi2gYUo9A2LUsZN1L9+phLITdcx7xuS451/Np9AZxR4IhmtY/VMugHsQTE4XZMkzV+GOe4i9E0xTmOQ6zubeBP9nzlcFHNqWMlxZF6inDUDl7u8VnFKJT2Wb37Cu/BOMNNa+Wj+QgaOteBqpNll1cwgpKNc/ayr+8+6+13LFdf7oo4/ySbn7yPzDgAuY8+zr2Zu+++67NgSKCBwolSpQl/EjbAzSZOEFEE6JtSHp0K/Yx7trHYB8uk+48MIL7bpO4xGets74SH9gjeADKwnLmMsaMOq3avpxntUqDOOY7z1B83H36yhjuWtWwrAXd0G6Go+60/6OsJBxPIy6rd+GFagGn//lL39doVTMRQhO7xEFFt3XrRCoNz4Ql+jzP51vhvbpmHfDPvPt/7xlfvKrH5mnjnnU7m9da7mAdYOIfpkAdYNqJnnW42pArJ4ajijEmkX6VkJJDZRaAwDCG0ekTcNQAet+To7XxMPEfwUAyDax2oBdLawADLOyjGz7COCuEHv3AXICvCtWdtNyTgloNy2WdtPiEaNOgLvpQXK9ipwHiApxItnWmkzOPbgGkFdnFknfm98OzJ0n1xxiSDILQFfAuYB0s3K21nJzrLGu/2IAuuuLst7m4nl2K/Ewg3VuLMAnlNRAUgNl1QAGZTjgc8Ejgh8BfwRZJsZ/IPaM7M3Z87vWZQkHTiGIFPDLGX6ayje5R/4Hj468WlpKm+wxkOOTC6rEAFgQoQQdRkFxkMMoKe9M78PO8JcAL8PLhp+D3BVeDsBV+LoQBhq0LuwD+cd7FMfBQLBH17rT94XOKGy7nsAKhdV3leSneBhNS8+udVp9Vs1zJd8Q1Ia0rLQFeMduO9d37hnjXUp4AC1GUfjRxdJI3ic1UM0aCOe4VjPXJO2kBrqpBuwGPuomXhhdGZEZLX1ZFjT/kx1QlRlfdlujexs5R7pvr8c/nT/B7LzlZp1qFbAulnbDQLpnYUm3WH6aYtTyaHoarwpn3EL4ixLcYKo2j1rCqiRrdRWA4Av3rwrS1TSxLqYWxsLyQ+DC4iLsUJCYptlVZ4TrSkGWT3nHIhbBKRQESgoDm7iCzCiLaAWLkY8KA7lWy3EI4gGvdBfl+mB7oxbLWJHutbAS/k+Tfmp23mFLfWLPgHU5Qi3pntpuzTIsP00t7L08t+S/13hVOLPBOfHEE23KWLBiI+QSrlUA2ED0Vb8/uWGDrl3hv28tirzpg2ykAEMqsSmD6MODB4v5BYfGjBljF/zEcV1Xq5tchO+AA9yNGyBQgMCkB6lGnpOsvQRE5QvLmwXApeOFuq8hcDnfRd1qXwGI6oJ0SRNAmAKZCcdmPCrpN7GppQ7iolLqpNQ8qVsAFz5Il3S0XaBQoSBdTR+QlP6WbrvR95wBX6jVb32uvyP3ALx9wINrjVYBFISNo22RTqlEG3FBusTHuq6CnLSf8JxNMIwaCKuyfjtm3L/99tvte/9fNduln1fc9y44Que9oDwUdM3mHmaWT0GMpd42J+a+mblQ5hk7xwSc7VvnuUTS8KddcaIZMXJ4p6oDrPuwWNq98vTr8tZ2NcB+R+wlFnf3ysfPzcJe/k76ge/9cmr5NJMYzwBcTznllHyKMAYBuNPn6IdjRcGDeSSIQQTQHVKPDflE5ALQiVIQIJx3pfT1hQsX2nyI96Mf/agTSJdnjI2u9VLKFESljO0AuZR8Kw30QR173DFWw3OOczzWvEgXC786HnIPAUBVS9j0dXeczIUo/b+79vbzgykPgI41CaDBribGbx3TXIU7vxxYp1CaOnWqXubPYcxW3bNhxbQY8TvrOIwXAiW8IWgZ3b2Dvq/4LHv8VgEHLHtJLImJda+oe/5snYTlEFLmvH/WsvnPu/teyxXXGav6SoXakYbRs86tqjigz0s5Y1XTBekSF+UX9hwQVjbd9qd7d9aCKF+5xPpXFQcYq9XThBuGa8b77gTpUgas7kBBwib7Qv65ZQway8LW+6WsX7qt3+pH9pAzwsHTxNLrDtt/0fRt7GPWHbqO2W7bbWT+znkH6SGfUXkxRQKB15EotGThUlPfjsCiHz/99NOdoqGc6hPhsMidUFIDPb4GkD9ElUEA6JXtV0JJDZRbA4Be+46qMwMOqDf9DqkzffYUEKwAd02/clOsIB5La/GEmX1PwLuvZs3yv2ZNywMZs/SujFkix6JJbWbRPW1m4X1yPNhqFj3RZpY832aWvSlWgd/LmDbAjKXhjioobBI1qYHSaoC2SRtdPjNjlv1H2rS03UWP59rywvukPUvbXny3tOlJuTbf8qC0a+kDba9Ju5Y+YfC+ntt+lpZxpaH7C0B3hIBz90qZ/uNkrNi/3vTdui4B6VZar0n8la4G4L8hf8FglU/wiFCcR26J4qEaFiKcyuf9fRSg0qDDTVuBp+SLNy2MEAH+dUG6eCcOkmu46XAdpMCrZcIAl/K5/HiF7uMEmbre7pSXo2fKgFEKlwA744UImSiAY60rvhMrtb63MTcu10HySD+Me19pfsXK4+ZVretKvyGoDWlZo2IG3P4T1P71maYbBaeiYZNzUgPdUQNRIYvdUbYkz6QGYq8BtPxSOZxV8bRl45OZLkK7BbIhej9rGkeLpuDnRFNwUHU4YHafJZpTOQ6bbMBkcSaqVIXv+YpcRANYd+9zLjKudV21rEswJQC6E8Yd0B4tevqRymPLqznFf8biFJbHggiLMFhJRKiGuwbX5H9Q+ELP1LIUILgwy1K4NlfAxcyZM617TD/NIDCGhkHzqDtILRYBxHC10/yyILhj4RUE9FPLt36cUu+x4EY5qCcsZWGxFPAi1lEh3JIWWryVml+p4W3vkDZdypk83PAPC1jXt5yrlnXd8mBF94dY0i2Sn59+qkh43ncFYZ0Z16r8lgB8XCAFG0DtC74gPUrZmpub8+0EEBQbS9qKAs0B1PrWoLCGpf0TAT7AQ7RTFTCiZzd/7feABtDC9Ns+/QUrewgA1WWKG59rf8On77WsLhChnO9ywZ9Y+/bLSH7uphRBZVTABNaFIdeyon1Q4b9S6qTUrLB2GEZBvzEbtUWLFtn2qG2S+yAKEv7CuFAKsnroAslxlaMUR9vStEo5KwDGjQPTBCAUbVGBT7x32xbzWxBRJzpmu+/duHG3Szefaly7LpoKMaXc3z5og19oPo1a7lqfE+13MOewDJapJdLZBiVwLvypl39XQLm/7ATK/aOAdX3qsKRbJD8vfc2n6NnPMIZ7+tYll1xiGaqsR7Gg7oJCYfxxEAbwvqv0hKV3teiMJVHXqq5aEgU878Zxi1xKX3eZlGFjKHMW4wTrQOY7LOX6VMrYTnqMmViWBRzrAo7VsiVji68goHnGOR5jmUIJBngQufXyyiuv5MGjQWGjPFMLvYTFq8BPf/pTa1VX9xjdyWx1lYZ8pRb329y1f9AY6K/D3LilXLP2Z80GgBtrx1j2xN2fUtj8pO9LPbeJpaKWdzKm5V+imCtggGzOaEmkZFr7LjetjTlXPVon/lkT8p93972WqxpnFW5ESdsF0EYJHxTGdWnovte1N88QutDfWDer8gH9P2gd7YJbX3311UAr16x1upsA+EM6jgSVx+23Qb9LT+23Qd9ay8+uuupKM0E8evi05pprmd332N38zlFM8MP0tvsHHnzA9M0MivRZfev6mX71ggwRwlqUb0WXPXkQ6R4v6F2UZyjto8hZzBtGWFooZzEu+Zbnw8Inz5MaCKqBLFZGO9gJQUE6nolkr1pWRR99JWtu/VvGTBWFpnIJ0cbXt0+bb+6SNmsPKTeVJF5X1ECdWKztt40AdUX2tXyGAATfEU8TU8Sa53RZI6NjERU8HndhaX4iQskukXJ8qMWQssnjhdK+PpNjblqOOrmX/rDBRmkzaqRYC5bvSWOdV2SBnJEJpvuLXLBBIkqchJIaiL0G4HvJ9tBax8VCrrCbswtz54ycswvknVjNzYrDrYwc2fZrayW3uF5r7MUtmKD0qZSM2enmlKkfnjINMi70aZI+VCW5eMGyJC+TGuglNQC/V3my8L2wyBpG8FzZlwBKxLouPCTXGBG8MvUWFpYGcnUFwmKMTGVgw4YNs569wFkowBbeLwbSSiV4CpRx+fIcb6zU+HGGx7MhcmL4PPDj4UOrDBeesy+3w0CA8klQgIYXhPVflSmixK2/V6XlRE7YlflVWt6g+HF8gyuL9PNQ0Lcrg/PDcE+bBf8DAWovBph2FdFtpORfUgM1VgMJULfGfpCkONWtgTrB2KTXlN14veycIhoazM42ZvnfBKw7rc20jMyaPpvLAkc2KVXZmMDBstR+LnZPWBs0F/5P558VaEE3l6YxZx0qIF0s6SqVmD4W1HJUrHyaQbxnV9Dtp+y6mEawWy5Ql0WvWlgsxFx380OI57twAOj661//2i9m/j7M8lQ+QJUutF4QYGDpNFWTOeYAAEAASURBVAwcAPgYcr8z7iIBhsSyMFZYAWpQJrVyRF4ukCPuvKOk17m1Y6svx5zOPY9+j2VdLOg+89wbgdkC0p1wCpZ0y0u/WHkCM435IUJiwLl33HGHufbaazsBda+77jqbG1avtf2Vkj3gp5tvvtlaJSQeABcO+hgbUkC7WDZ1LeDSrgADIcADGHTQQQfZLLHQDEiG965VO/r9s88+a8PQBost4HWMsBGcf771Un3FZtCncr4LwJBSGDBB33NmbIoC1EUQ+a9//ctG9a30uumVc11KnZSafrFxFKAyjIgnn3zSah+XIrjFGlshCgJm8pv6FFfb8tONcg/jJYiC2qMLtt1kk02ColnNaAWruwGq1S7dPKp17VqTc901+fm5gF43jh+ukvtanxPtt0kTt7MfLilZgAacO73PR+oIj2XdK067thNY1603LOnuc8SeZaffKf+Q8rn5xX3NfHjCCSfYAyYTTEGs4v7mN7+x6xysGgIQY3zWNRhMJixywwScNGlSHqiLYsqf/vQnW8QjjzwytKil9HXyVQrr67z/whe+YIG6CmrTOHoudWzHajDzMes95hxlSDNXQ6wh6ANBFNd4TNoK1EX5L4yZB2CVcZI5g/CVesEA9HzaaadZC8swJdXSJxbsdU3iWqwNqoNqPXPHM9cqqp+fC+gN++39OOXcY4EagQVEW2ENoxZOeecCD8tJX+MA0F0+XQC6b4qQ/1WxQjJL3pQgV8ikJe4qS02mfy4S8z/zff4syeVW9bkc8881XPv7FZ6X8Z4cVkinSPrEiZNcsCjWXrAUHYVwuwi5a/Io8dwwzc3N7m3+WoUr+Qdy4VraxJqub1HXDcu1CnX854UUe/yw1bqH98B44rr98/NyhSBh9eTHKee+q/ptOWXr7jgvShtXkC7zypkyvo0du5vlsWgb/deLL8Zivb27vzVK/nMXfWaGtPWJEtQM7jPYjP78aPO9CcevANI9//zzQ9NAGYo5vhyCl4GSEryAcsYl5gEU4zlQPqoFUH859ZDE6f4aANBlLSdGKEqqUdYBcsRNgHTPFeullZJ0C3PPcxnzzkfG/PJYMX6yIsuk0iyS+DHXQN3glKkbWWcaN5H18gdyTBWFtukiF3tXwIViyMaCCmPOs5zkEGoPkeJwWBAxcj4BuGdez5jFb8pZZICpgXKIxWCM9nBtDfgA3hXArgXxYikU8K5sQzmn+8k105SAFBNKamCFGhCwekas4mYXC/gW4LgAyDNcA8gV54L2eTs4F1BuFuvQYgBKrw3WnmmvtUyA2teTMWBDEZ83C0B347RpWFf6RWMyeNfyz5aUrWfUAHwSBX6y5wgyAuN+CXsLCMAtPB+XHwbo1r134+HR8zPx2tXYt6/BsAMASzUeBO8GD5Kk55ICH91nUa7hnwLUpTxBWAOMlWHJF/AsezSMrVWLqCd42RjMee+99ww8TqwHQ76xCYwDKEh3p5126uR1VctXbp1ofPfc1fm5ecd1Hcc3uLxlt1xYeFa5XDF+G3xstTJNvCCjJngTfKXdc+gIkXO6vG833+Q6qYFaqIEEqFsLv0JShi6rATYVDU0ps3xt2Re9X0K2aENOM6blA2FOvCGWdzaTdMTlR0NT2tSvLosa0dqNhVh7sUaKetZMnfA5y7oTxbLuf/WtPVuQ7rj2hZATvmB+mkLU8ISrIrlaY3427juADeUSC1cFc4UtdknbBTrhrtYnBC/FtNr8OF1xP3z48Hw2ALOChBgsZFl4QWEWjPOJVHiBO2SAutBjjz1mwZVco8G2+eabc9ltpM0+VwBhrMhFxxYm+L6jsJ3fB1nWJWwOpDterjqHD7sPSz8sfEd5O2JW6+q4446zQF0An2gtsjGijWFBEOJ9uYQFNYT5v/3tb81tt91m+yjCZ645mpubDe60m5qabBZocwLwANyBC2sFoQI44sD6749//GPr9psIbr+3CRT5F2Zhx9/kFknGlPpdrsC9WNq8V03EYmHV4ivhogCAi6Xnvi+1Tty4lVwD/vrmN78ZmASbs1LrMjChCA/jalsRslohSCl1j3a2UiGgetC8WGpdRm2XWp5qnjfaaKN88gCOAVD6BGOM+QlibiqlXv20it3X8pxoyy4TYRbwq50Qg8+d3ucjyUV7PN6fevkJK1jWJWiHJd2O8BpPz1HSL1o+MusCYm06duxYewA+BMzEHMQai3nSHW+xTM+cxXsYqABEAPgquVZe9ZmeS2mTyvgiroKENB33rH3dHRvc96XkSTyYsQpQZb5GGQtX4Do/VwqGdctW6FpBbcXAvzDQ2Q+49VUo3ULvqKuJEydawA7rGNYnEKDtq666yh777LOPXUMVGn8L5VHuO9ZLOifqbxGUlnq74J2vnBgUvtxngM6xoIyiFf2B/qNzjOutoZz0s4I1aZstYAMshE0WgK6AdDOzZByLarHOyXTpoCVm6eqLTFt9DsCiApT82QnLZf55u6CFIRRa4XkXvc/lHt9/F5jL2p/frRjh9pE+AFUT/O2WoxAY3Q2n12HrfX3fnWcUAOizKF8g/ApSdMACjxJ7pWpRNftttcrcVek++tij+awefPAPZkcRArqEAEn7gfu8t14vEsRKennfSJ+3ev81zEnf+L4ZuFNnsQUg3UJA3XKtOdFfEJiPHj3aKgJHKmRAIEC6t99+u/nzn/9sLfIXEzQGJJE8WslrgPVKZq6sEQTgFYVSgKoEYBg3YUk3TnpFFKQefill9tsm/rLGWc4krY4aSPUVV/cbySGyL6vkNlNkYjNkDT2TNbS0UywtL+kIXytXYGwbpR9heIdD/jtFk+sGuRWALn0nNUAAiPYs1zwDtGvBu3INaFemLA4L4LXXAublLPLFxDKvU609/VKaBZZws8ukbS+V81KR0UjbznDmnut2YK4CcrMKzhXLufZa7i2IXdLpcUSbX0fa9voCzt1ALOhKn28YJmBdAe0bOlRCSQ0kNRBLDbgGjDAYhIwhjAcISFTlJ+r9CiAqewv4tFOnTrUAWeXdagHBRWC5FcLLEEBd17MvRhN8fi6yKwUQazpRz83CZ9D9LMYZfI9oTz/9dN6TUbVxBpSZ71U5J3syJfZ4LrEPV3JxJfoMPmQYP1zDlHLu6vxKKVvUsHF8Azy5adOmGVceR/78Zgqcxlp0IXKNlbCHx4iXTxg9UUMlAHUTSmqglmsgWWrV8q+TlK0qNYCrjnoB2tqNeak5yOYsI65/Wh4R7VzRLF90X6tZ9GSrWTZZLPGg8e7u/UtNm/DKr5KzvXTubXLOvV76z7kHrLvzlpvZV/zLW9LVSHK2l869Dezc66X/XO8LxreB4v+HNlgYTZ48Of8qigXJfGDvAutmLJKht956y3vbcavuJnlSyPJuR4zauHIXOmrp1C/Zrbfemn8U5oY4H6DCCyycqkbT1VdfbRQIcMwxx1SYcuXRc228vScIyCLSvWYbEB7LujvvsKWGyIF0Tz00dx8QPjA/jR01vITrKgJwpH1HrUljQRDCalwQAK6UsmFtjjYCyIaNH9qYaukG0JMPjGeje/TRR1vQE+BzXJG7C3es8qpLcfo9Am/opJNOMmjjFTri3KiV8l1av5STbypURt657tOJE0YAwyA21y7TICx8rT8H/KEgXdoIFioZswFdUS9o0wYpKVTju7qzbZXyPe48hoA5jLBY71O12qWfTzXu2dyr4s3PfvazPPPIzYtNvyqvHHDAAe6r2K9reU60H2vnHplX7B//mBsL3EuksPdY1h0xcni+DrGkC1A3LHzuOf+d/AqkHxhey5vPtesusAB+zTXX5DNUS5L6YNddd82vh3CHBukc9e1vfzuUeavxo55dy60AZcNI19wwOeMgXFcBVIbUiq4CVpl7fOsGceQZlIaO/a4lcD8cTGplNLv1peHa2nLgTL3XM9YjChFgXH5TGOePP/64tbKr4w/W/NWSbKE0qvFOAeMwMt39jeZFeZlHIcaoaoOOAK1D/AZnn322vaae9thjD3td0j/Zm2fEitGyt2Xv/oTs22Xvzh6+5c+yd58qL8sA6WbqMmbhuvPMkrUW5gUcKujwz1pW/3l332u54jq7/fef//xnpGRRVlDafffd9bKqZ1cJlHGo2Doarwy1SipoYm2rc4VbVoQcug/jOX23mhRrv61mQbs47TmzOxTh1g/wdPHH9vm+i4vVbdll+rWaeS1z80oKhQpSn603bZ+IBUdxCw0h5GUeKATSJVxDAwis0gmPOfAPXH5B6ankFA90vnJ5lOWklcRZOWsgI1b/M9L2o1r6x1poWsCGcdNUQJhl0vF7NhgOn2Z87D9J7ntEDYj0uG7VlOkrVnYH7F1vBo6rN/3GpU3jgSJf20Xa33Bpf2Kxlm16jyCAlPNEhPdBTsbXJtajW58VZb7HRd73YMYsm5QxS36XOxbf1WYW3y3yP4575Li31Sy8r80s/H2rWfCAXD8i+4unJMyzbWbJS21m6ettVkbYgmIgxn5ESTAj89jSebLpCN5C9ogq63GFBKiNDFfqnt+A36JFlAXYE/IbLflX7jeb9+hSs/BPud9ygfymC+/N/cb2t5bfm30jbWDJXRJPDtoGbYS20voPWaNI28m8k2tLtKmo43a31yd9dZBgcD8noNwvp2xfpk/Tt+njfbdK2z6vIF2US8tVhOr2b+3mAsBbSiipAa0B5KPrry+IeCFki1dccYXFHyDHguhr8N+Qj+OxVMmVqe6///762BonIrwSMlMMFimpdw+AqIB8IfhsamUWngFedZGHYBFXCT5JVMIabZ8+fWxwjJwgN1KFdMDEasCJ/At5dYuaX7FwyAEVeKuGF5qamvKyH43vKpsDmlYlbb4d0LLLv6ee9Js0fqnnrs6P8qkXP64BrWLVOAqFxYvrG2655RbDPpnywF/Hk516E8SgiItfCSovHqDVii7fBZ9Afx9+K/jtCtIlnGJPgtJKniU1UAs1UF8LhUjKkNRAV9YAFnAbtxVt4Hfb7GaqrLxlU599T/ZfYoWn9d9Zk94ga+qaZHOzoRzry7G2MCrK0WjHio6ACAD8Ztk0OfeW4eHc2/daePhnXnjAuhPvut98SQC7O2+xaS6kH9+59+MXSz+0fFqmKpyxGsME7rq412x08uW+0kUfbidYkKn2lebhnl0ts0qAwW6aXXEN4ACrZvfff7+1RIr20g9/+EPr/peFzL333mt+8pOf2KIg0Bs7dmxVi4XbYQAoF110kQVfamYHH3ywXnbb2XYr6SOlnClsofBY1p141SQL2N1p+y1sHy8UPuXlXyx9Pzz3XUknnniitZiHlWTa1S9+8QubPeBXBSVUWh76P9Z6Ob7//e9bdy1Y1QVIF6SRR364ddlvv/3sgTVdBd6oVT/CADLAik5UgAFx4qQo3zVy5Mh8lmx8VQiYf1jmhQLkd9tttzJTqK1obLCVLr300hXc6sAAKWQ5UOPGde7uthXlO1ywLW0rSMsZ5o8CVt00q9Uu3TyqdQ0z6YILLjD/93//Z62YYuUTZRUFzzHXu26ZTjjhhGoVxaZby3OiLSBzkl1vsk6V+YW/QvcSyc6iNtyK4U+9/LvmodseMyO22tiM2HpjCRxv+qHli/lXZN0JA5C24jJF/Wz4fcOIOeDII480l112mQVFHnrooQbwJnTYYYeFRSv5udtfsXwZ1NdZa8MogxTYWnJGARGOOOIIu84EoAsTVMGf3/rWt2JbIwRk2+mRgtuwjsARxLBjLaDEWkNJLRCHuT8rBHzWNDiTDlYmOFiTUMeMrazNXWawG6ea1+ecc07eyi9gYtqdeuDAa8hBBx2U9zZC2GoT6zUlVSRC8UqZ//qu4HlJyrRME+E4e/V3RYg6Qw6x/mXmSyw5lUtEXbTGAjO/aY5pHSBCt/a0lCnsnzUf/3l332u54jrTj9QSMntJQPm0mzDCNaLraQMPE2EUBowPC1/oOeVEcIPVcsa4aivfFCpLpe8YN9k/M46xl0YZZO+997bJIhD+0Y9+lFeA5bqYFfFKyxNLv620EDUYf5NNO6y3XHbZpeaSSy61YFDG1jvvvMOcftpp+VIvdoSj+Ye97GLMHl8299z2R7OodZEZ2CA+yItQ5n1jWgUsCEAsKqDftypVJIv8a9YlqgScf1jmhaajVrDKTCYwGvtY9icI1RlLEVSicIlCVEK9owaWfyBrlg8jfgtWEIeIOGBFTGzEBOIPNlrcpB+3Z4e48YbHQEXmqIIlmE2APQoACniLQZbkNZ+4zwj8mUsh+IWV8jbhtxx77LE2vd///vexjT02wSr/o60h86pfu85khT3Z9pmstd+XNfeHtFsBLUrbzfxP9vSfSkGi43yqXOoSk8eYtGCmsotzLdb9n0upvSWDeQKb1G5pN9VXnjdKfxRruzxPybVpzJrHH33cTJs+1Wz9pa3NTnuI4hTvpB5TfUS1mK7CNYe9zj2zfVruU/VyDwvBXst9naQt9/ZZDnMlL6MR/HOMXuy7776mK/Z00UrlhJJ6x6I4gOZsm7Qh8ERycObeXiOP5fny3Hus4AKOtdZweSZtzj7jTPtrkWds2doPlDRtGLGU+/H0j02qJWUG9x8iP4H8AAWNiLf/5pJkjyXa3WoyZ2A5d6g0o6HSj4cK2H49sZw7pL0tBnwc+6Y999zT4K4cjzdxySECsupVj5Cxsh8GfIahGGRkCSU1wPoBT1EAdFnToOyPTBOCJ8wzn5DNu8BFeLjIcNgPIKe5/PLL7f6SNucaD9huu+3y/F7yhe+oBiMw3gUYkzUV8SCs9qoHIuS6gHyj9HfKjRxflZzh86JIDDDX/R7kLY2NTIzVJwxOPPHEE/mMXMVyfYihIrVOzJ7tkksusbxaF7Cs76kjZEcodJaLO+nq/PjOpqYm/VxryAr+Knz5Yt8QFg+gudZJJXVGuwCsG0TwEqOsswkHmJ3fBvk+a3Vkee7+mzaohpyC8kqeJTVQKzVQ4pK+VoqdlCOpgQpqgP3ypqL5OyZtUrIxqYhkn5YVl1Rtr4nW7cOibYuVXdGyXfiAaFw+LdZ6poi1HixAFNzsOSWQRZOl9pPMSoXvNWpI+AmHHiiWdQWkG/K+0vRD42u5Yj4jiGJR5BPaWbiUhVioVrroUyE+gvogq7MwxZWpgQDf1TLyy1aL9wj1FIQEKBcGJ2BjFuS6eOE9m4auIBbqLqEZCLCyuynfbWxBhGnRXqDcufz7CaeMN1/afsvY0itWnq6sR/e3dDU8ARyVS7iNZBNx1FFHGR8cw2bQdakC8IHjlFNOsXGC+i+Wc4OAOdrvAXCqtT+3zGwiYGwCxAL8WSmV+l3kh2tg7bsIClyXI1oetAgpI0chy6gaHmGfarfuvPPO+rhHnxFaKml96T1nBYe5z6p53dVtq5xvcTfhp556qmX2uOnQrwDiB1E12mVQPtV6hgV3BeMBUIPpANOiubnZur/FWh10ww03VN2SJPm44yj3tTInUhYmLjv72YnH3hS+t1Fy4dojrxAeS7oWpJtLfIX3BfOLkH5gfL4lRlIgIyDvt99+OzTlm2++Of8uiDGmcyXMM52/AHvEaQnRtSJ95plnrtDXKeC5556bB2Zq38gXvIILlEF0TIahpgoT+t0VJB05qgtU/t73vpfXutcEYFSffPLJetuJIa51gXKLa7VCAzNGBNFVV11l1ySnn356J0Y1YamP7p57YfqjrAABGMbqKOMfbRSLCbRHCIuZXaHQ41pfthnLP4QZBUn22lhdXPaOWM79W5tJP9nf7snZm7f8KWPaXpf9OFaO5FQuEXXp4MXm003+Z5auI27yGNra9+phZ80r7H13PddyxXlmPFGiT6tVbn2mZ4C3rOnVajXgUlfwRDhXqcFVjtU0KjmrBWnGoCDvOQihmYdZR6tVj0ryq1ZcLH+6wH5Ax1jnYU/PuIJVHAjeCAqT1aay+m21C1UD6e+//wH5ee8mEXiutuoQ8/kttzDrDl3HgnT5rVRZDu8v224zOnB+qYFPiaUIqwxaxcxaNNP8b+lHkdL79PW55trTrjdf3eOrkcIT6Dvf+U7ksD0pIEBirAmzjmPdwLzI3ox5Gd4Zc7brGasnfVtS1o4aAIDW+q7IEQSsG4VSq8ucKcZIWJPUCrmWdAHsAtyNiwC1AsbHUhpW47qKsDyHJwAOVbaqJG/2EZpeT7a2CLC0fk2xtLt1nRn4lXqzyiFijXN8nel3SJ1pPEAAgGMEELi57MbXkNoSHGSvI2R9OFQR9mNWlEoyM0T8J6wAZIRt/xIAs1jpbX3KmF0b9jDHjPiOGfXx9tYq61Ks9Yp1Vqz2WoutWG0VS63IE631Xiz3th8L78HKqxziFQRLvtbqK9Z8Oe6XZw/K8ZAcYhV20Z/leDxn4XfRX3NySWvp9zmxCPtCm1nl7dXNsFkbmQGTVzVLXhbrv/+W4xU5Xm0/XpOzWJu1VoHfEMvA/5HjzfaDa561v19KWOIRn0PSIk2sCmOt1h6S5xLJmzIgI10sZcL6sC2jlJUy27LLN/At7rdZq8V8d/uh9cFZLRx31J3kQ32q1Vup12X35CzftjwilmCfyv0W/CbsCTNvi9zgXQGlpdcya/Rd0zRkioF0e2jLBfy9pswRW6RMg/RF+mS/cWIVW45Vvi6WsfcSy7kjpZ+uIX1U+nIYPfTQQ3bfBl/U9dYRFj55nquBN998M7+XRBk/oaQGtAYGDRpkJkyYYADSuuSCWnmObAKeRBAPDn6LKukSFtmegnSRlRLHV4ZGKd/1MER4QI6AGfHwBk9QvWxSFrVGqzwr8nGvuVdCafD444/PYyRIV78HvsX48eM78XzIs5qkcjjyoD7c79Z8KQN8KfAQSgrSBesBRgKlKjUYQH2pfEjLr2eNr+egeoojP5dPpnkVOlP2XXbZpVMQ/V06PfRuwuJV8g2axVe/+tVAoDB54hl2xIgRGtSetY71rC/hVSO/VBk/bc4F6W6wwQZ2r1yuEq/mk5yTGuiKGiiwDOuK7JM8khronhpI9xNGwjai/Ssb6mWPi+n6aHziwoVF4/Nj2ZB/LBs/cX2yHC1FtBLXk02RaCnWoaW4lpzFGkRKtBgDCV4cDLaoZ00kavhSw5WTvsap0hmQKYsShFEsHv/2t79ZC7C6UEJLMYgQPKvVyKD3PEN4j7UZNHJ++ctfWs00FqksxL7yla/YhRsusAELF8svLI9aeI7mHUJPLLdRf5AKS7lGww4tWRY0LqkbQT277wpdsyCGwuIhUFRNQMKxSK4F0u6SK4swcuSC7pmj4Ht9SyeOEr5Yev778tPviFnNK4SNCIOxpKuCdSxmVWLhBZAS7RECAEXfZAPIAh0XlRdeeKF9RxtSy4AAerFMRzzGCza2bLxYsKv1KSLxXAmtSIT2APTZjMH4x3IPIETyZWxR64Y+kE7TKOVcznex0QNAT53C2EdjlU0JVsCXLFlimUAAJRifmpubI1nmeOmll/LFVvBC/kEPvXBBTwDOYApQRwhYsPSmihZd9Xld3bbK+S76CWAyQO5YTKDMXAMQpP2j4U3dBVE12mVQPtV6BjPgr3/9q2WUMb5AruVgxjWEgq5SAGFKZZAQB3IZNj6jgfe1OidSNsjObnaCk3/8tVvWNZz998Xui8Uv9r7c9ClojKQWEUiSuQhlDizVMH/gIpA+BHNe+xDjf5BlOOLqeui8886zJTxGgORB7cS+LPMffR0LjLRz7euM/yh3/EHccKsgAWZtEFO4zGztOpD5i3mMsRnCSgPzVVcRQJZviSXK3/72t3adAMgFACr9jvkQyxEKTEUhxmXquWBC1qpXXnmlXSu/9957dvy88847Az8DJq+uY9hTMG/j0QJQMM8VWFMUjBqYejwP+c1RZFKAE/OAS7QZX1nDHQPD1vhuGnrtjoFh8agL7S8ApNUTgqbBGWtIbZ+K4JW990cCxsUCnRQ7837W9Pl0oGnL5MYkN06516T0Wf0cs3izeWbhhp+ZtoacpRMFa4SdNb+w9931XMsV5xlrK/QltQiz1157mR//+Md2zw7znHUqa1fGRxcA64JNtTwA0ZTYUwBCY2xUJry+K+fMOpm2xVoZIQGWU1g30k+xMnaaWDjVfTF9vJaJfQx7eayu02dRauZQQtHx5z//uV0H6zP3XKpyM+sh6s3t+256UfqtG35luMbV4oMP/kH6xjftb8Q3a/vaZZcvmxtvusl8IL/d2LG72upg/8w8AeXrux5TejkSTqJexr42yCdcxQvm4MGbDTIfLn7fbLzK8KI5DaobZLZbdwdz/e+uKRq2NwegfyNsV/6Kfqu2Ee5Z07G2w7MMczb734R6Xg20iYv21qmy6sADQARKi2XTOgFZ1QoB0nWBuTc+1mpemgqaMX6KAjSIP9ckxdAakGaYXiVl+nDI8A7ovG2urM1Zp+sh7Ts7W9bqc+SMp+7cdBeaZG97YXuqyA6xGMu356QGua/suC60f/HekSAHywQwT5zbr63lXftM4rQ/+3r/w8ziLRebVVoGiaEh6Zfwb2wa/NNrudRn8l73bXbPQvb2kACiyG+vCazXnd7LY/ZidH/7zRJOrq1lXO71uXuWx+UTma/k1Fd+OjGun5Y5IS3geM51AqSvwwK2yKPTg2UVmRPPlVRR8K10vYG8NKFoNYDHA/gY7H+7W86JshfeVyD4YHF67IpWG0kovwbgPWCUg/6F/BFLtnhcYf0ONgG+RzEjVjvttJOV4bNPYD9ZJ/J35K9YPQ3aryOfZ78OvwAeJusojLaQl4718ANRXIZXqbyXMWPGGI5iBI4AeRvfgfwNPjayWA6fpw0fhiOM4FOovDcsTKHngKGjxKe+wH7AC+e7+V2am5utQpimjzVs6gyFc3j5kHpF0DD+md8gKP9y88NwVCFivAnKjzjw5eC7oyTG9wEAj0Jh8cr9BhROlSgPspIpU6ZYkDmyEx2jNIyeC9U1ZaFu5syZY9s0cn9+e9piWHqabnJOaqCWaqCM5VktFT8pS1ID5dcAgNl+X5LdaoOAdZ8SsO5MSYsNYhwkm87sJ7IX/UQYEq9KgqtkxbWIHENlfywuRtgk1ckmCa3F9CDZrArx37oPbr+Jcj9kQH8ze/4Cs4ZYpogSvpT050i6pG9JEi8p/Vys2P+jLQZQjondndw1I4B0aIeFEQuMQgRIj8kf7Xw0RgEosdj9wQ9+YA8/Lu6Ni6Xpx6mVe0DOuAVgIYrFIxbouLkFAIlAKYhcoWrQexbtLOR9UtcX/nP3HsACggc2AbjUqQWizctORTqmMHzknGo/F7ofMniAmT2HDfDgSOFLSX/O7HmG9C1FLI9NPxejy/4jIEKorsR9JYRgno3kHXfcYa3v+RqnpA3TCACuEkJ4XJwgTAY4zKGMJQ3DWOECkADjML7gDoUNGIL6IILBEof1v3K+i/IAMKK/MgaifBCkgMC3YjVWQfJB36HP1Joum82mpiZ93KPPaFUCTgD8BFPMB8QBRoIhoYLyan9sV7etcr8HENarr75qGXcAP1SRQ9OD0QAYHmvQPsXdLv30q32PZfmrr77agnWZEydPnmznQsB7zcKkCWJyha0NtKwwloLmRBhfCobTsP65FufEXBllLpQL1pOBZ3nnPu8/sJ9ZOFfcGw8ZmHvuvV8hnRLeL5y70JA+JcqnEzG+BIuVWDuxJtT5jjmII4gYfx544IHQ8Zk01Lop8b/xjW8EJVPRM8ZHFFoA0QX1dRJnjsK6fKlArmIF43tcjw2MHV1JMKBZ78OEZSzjd+PwiXL5Sh0wkplPWF+wJvbXxSj1BY2PfPP1119vFYEAAnP4axLG12Ljgl/GuO+PPvpoa0kU6y+MgzBxsTwBsCrIvTD7pKAxzi3XU0895d7aa9pWsXjKACcCljmgrAj88VTTyv4agb+41W3DetWH8lzOZiGBbFA73uSuYvgv7IK30m+aDwe9a9YZsbpp7ZdzuYzAmvZU6Dxw4ECrJMY6oFC4YumEvUfoRh5h78Oex1ArgUnQt7BkwZqdtbSuwYMCs+f74x//aK1D+u9Za9AnWKdheVuFOPRbBFeVEKDvRx55xKbJPl+9yfhpMi4w/9c6oWSBMgjrFvotex/6LXMNgguf2BsU638oKXD4hACkEAX120LhV5Z3O4oQ9fU3/mNeFmWQadOmmQ2bNjSjRo228wB1wP7rXfHYNGvW+3bOVaHsJ7NXrO/jZQ3J0ZNpi7Gbmnfvnm62X/NLpj4tA2wBYo232YAtzKSr7zXbnzhKhvjCQJyLL764QGo98xVKDvDHdN+KYBOvWPR9+jPWOPGog3AWRSO8NyAgx+VsQj2sBkQe0fK2KB5NKdzO818l3aduXZErCBCrFgiQLhZ0XbrhMfFJn9BKWQPW2q7IvJB7mc1liS5NAe8XVk4mgN2MHG0C2M18asxykZ/NeTdrBkvT77NS1laZH81QwREgywyaL4c1bGjM4FyczHQiKrnX/rNC7whb7L2fnt4n54pqQGTZqVXkWE1WSoBzZXuE0oYF58qZ67oygbl+udiXAboDVAUAKqFoNcAaDeMy7J9ci53RYlcvlFoMrV4OScql1MCAAQOsEj8ygHIIfi1xS4kPH0ZBuH6eyD7cPb3/Pso9/JpKeTZR8okrDDwz9uMcQUQdu4rkQWFKedbV+VE22hlHqRQWL45vwGgDPKtKibIAyk2AuZXWZBK/O2sg3Z2ZJ3knNdDdNQBYt7+AdfsdUGfqthLmQb8qlIg9q2jDZyaLYPFv4pLz97hjyblqwXXNoodbTWaZaJF8vJrJLBT1x1bpliL4s1tdgIFchNzvOXqkuftv/wh9T7xC8Qu9nyTpkn7J8atQhZokpu+xEIEg3CWE3YDWAM34xGRdDgFWffzxx63FSj8+gsNbbrnFAsH8d+Xm56fTFfdosyGAxOobrgWwhBQG0q1meT788EOxNPOgzQI3xFHAhdUsj6atfbCU8567jjZ3P/B0pz5ZSny3r/vxSJf0/efF7vV74jwXaucIh9XyJFZMg6ygaVl8AFDYb4/ACYE5fc8l+j6AW4T4LmgeFydvvPGG7b+EgRBcQ2wCsDKDhUxAKC7hMvbJJ5+0Wq3uc67J+7eieYzFTVcTNAjA58fFYmcQlfpdmgbC88svvzxwYw2QGKuAhepd0+GMlXDIBS3bBxH+hbWDSurETTPM0l7Yc7fIAKEAofnMB0DfAKmUaeC3uWJpa3ty84pyXU7bKpRuWB27bTMsvvY7/9sJj+U11+27poGVPMBpWm9Bbbqcdhn2HZpvV58BR4wdO9YC5tBuR4Glq8tYq3Oi/S3selRmnYjnLbfbzDz/1EuRw0dNl3CkS/p2xRyxPPn0q9CwAL8y9jLvBRFjB+BP1rGFwF8HHXRQPjpASLUUn3/YflFpX8cqAK7Rg5iwfAsKayiuuRSlLwSNDW4aWKV153LfHZsbtlrjMeli/RZAtD+mcw9AF8ChOx9RLtYMWMDFCrEfj3HzhhtuyBffrQdAmv/85z/NGWeckZ+TdE1C/Z9wwgnWkmehdpFPuMoXfBdtGNAullZYSwSBdKtcDAv0TIv5p/XqNzAHjRpvXaZa16ji/hR3p+yll90v7vSeFgH/OzImscSzC+KYSyY6q3UjU+aWta43bw1+3Szvt8xmAOgWKnbedtttrUJVsXDlvgcITR6lxreFr8I/+gguUVkvA8gOI/rLiy++aK0MBYWhj7I3xAK3S4CAIb9vumH02l3j+GMJa16sh+NFxifA+FjZZxx0KcqY64bvymvGGxRGcCmJsgdzRxBIt9plAqCtxDiZUEcNYB3pS2K5+QjxaPTlL49ZYQ5Ze+11DPtX9RrTEbP3XZ145ndNy9rLzJxlgsyKQHgt26hthBk/5rCiobFY39sIq98K0sUyG+szrIDrGMe+Dj4eSvj77bef/XzGT7wEJdSzagAPAS2vixERafNRKDVE3PkOE2DWgPJ43lHyiBomCKR73HW5NVPUNJJwvbsGUg3SXldPmcZN01YON/Br9WaVcfVmwDjxdrl/nfn1kJS5baAxfxC53LPCPv2vANE/lqZNK6rGEr9313bydb2qBqQ/pMQAYnpjAd+OTpmG3aQfHZA2fQ+RvjQubQaOrzOrjK83A/erN/13qjONm4hHV+lr5VjPDas3+AEJSDesdsKfs3+sJZBueEmTN0kNJDWQ1EBSA0kNJDXQXTWQEmsKyX6nu2o/ybdmagDXmS3TM2bZ8xmz/GVhjH0kRQvQSK1KgWXDJeaATBo3JAMXC5NtiUkNaD/3X2LS/ZfK5kpMCAXw3l6aMs3sf564jzx/gtmqecPYivfa9HfN3udMNA+ed6YZPbw0ja7GfQ6NrRyaEAAnrPIAulLrLgsXLrTu3RAo814Z1RonzvPixYut9ihuCAGyoqETRUAYZxmipAW4hw1gNesiSjmihFE3ZYA+cK+u7saxFKpWZKKmg3uQOAHG8084wGSOG2r6rrOPUwQ6oDtdBt+/9OoUc8D/+4l5eNL5ZqstmkqO3xGhc/qv/WeG2Wf8OeaBO841o0cOl2Cd3xe677vOvh3J9oIr+iPWiAC+0PeLEeAF+gZazACeorqBRMsYS1tYqcEFR7WZUqV+F98NYAEXORy4LsFSdhQgldYZ36ZgI4DQPihBw/X0M9r/1C/tJervX81v7uq2Vc63MN9Rb7QRNLNLAWpV2i7LKW9YnJ4yL8Y1J1IPpBX3vDj3le+a/R76izlqlxNl9hELknY+1Hmo89l9/+7bM83VP7jBnHr5d82w4YzXYoGyhPi5eXfF9GdOmWWuPP06c/Ilx5sNN9nApqvzYJT0j9rlJKqqaoS1Qqwb4sYJ4BrAmyjzFQXCMqIC3AB+VttNnttfmQ8AjvpKLHFWFHXDmMK6HiAogL7uJCzDME5gfY41NGvQKOto1hZ4paC/YV1BFSCifAsux4iLOy5VfogSr5wwPWUMZEhZMnepqV/SaGa9/r658DsXmfUGDDNjtt3NbL3RF0xGwCvWRe6KjjvKqZbicURvNjVUHO+MFiHoF9Nmt99taXZZdqBVauK3z49KohBq7/2z5MCuAXDVhAkTzKWXXmrbPfvHUuLnw2s8PUvaU6ZOtUqqeJTA6nGncrTnHxa/HOUsSbJkmiplnCmWQpmTWEcwDqJ4W4o1D/oo+376WDXWcPR91vukz3q/lL5ccoVEjNBj+q18D+tF5gx+a7WIcvrpp3fydBLls6uxdjn77LNDXUAWKtOFl/3cHHfUN2VvtVqhYL3q3Zw5n5obb77dnH1GYbeacX306w+9ZaZdNsvstPYukZJMrWnMjx/9gbl55o2m1QRb6LzuuuvMMcccEym9oEDwGVkDFXMtGhTXf8aYgvIj1m99IwN+2EL37F/heUCs0fAUw9ohjBhrVQGL9aOrQKRxWIPcfvvtVllCx5pRo0ZZPoCv4Eqc++67z3pcwaUq6za8+eCR5/nnn7dlw/sICgKFgCiMDyhIYbF/9uzZdq2F4hYWzeFf+OTmiScjlGxRoMDzC/PdIYccYsHKxMPiMGtJysPaEjAzroD33ntvP9n8fal1QETWy1hjRynv5ZdfNiiAjBw50ua166675tMu9yK7LGsW/7XNLH1Q5BGzo6UCYGvAIXWmz0ayaKkCbT9B5BAejd44bV6a2llYwrMbv9vYKeSNj7WaIGu6h+1cZ76/N6uo8ghvH2oJf/r06fn2zlyOdxwIIxTQY489ZpXS8SJC+2XtU8gDH+0CgxwvvPCC5R2iWAgIHqVC2ph6eGDeC1LewaI1lqxp77SX5uZmc8ABB1glYF9+gEcT0obeeuutFSzh4TEBUD59/rXXXrPrJ/aTeBjgW3obzZ5vzL4Tpb3J4rmPnAYvz5rV5LyTWAud/UHGrC5eK1eTY4gc6zWkzNpiuDm7WALLfUJJDfSWGlieaTULly8w9avVmcEbDjIfzf/QvPvJDDPrs5mmpf8ys9Zma5rdvr6rGTxsFZEfC9erswFzWw2lzrfMZ3h7Yi2PIjfKxRgvwRIsPBu8JbIPYy8Lsc5ivwTFMe6SBuMuCpysYRh3UZo88MADrUEWvK9AeBLwx1H7ov0f+wi8rEIoHYeN9YzvjK2M4cgiXcV01hko1WP0BaVq5ngO1nG+PMj/dnj8eFtibKe+mAuIw1qQdQ/zjxq0aS+yPZWSp/9bMXdgTAPjK3w/6zGUNpWXSAbIwVDOZ97SORKFzl12ya2/CU88JXhUKH6x1pkxY4ZdczH3HHzwwVbmpOGSc1IDSQ0kNZDUQFIDSQ3EVwMJUDe+ukxS6gU10PapWLz9T8a0/FvcTf1XBILigsdK2bry29IZk+or4FxAuwLUBbSbErAuAN50P+6XmVSjHPXCkRC+xG1PPW0m3HynOWv8gWbcLjuaNQaL9Uh53iFBbP+GvEQx/H72vAXm7qf/YS6adL+ZeNRh5vCxsnCPEM/Nr3HfrgHqduVP0lPyYgOGcBEXqLVOuOaEiY7AQa2KYdnssssuK6nobIABkgFSjIsUqNsoQF2XhazdSvMJu79t0pPmrPN/ayacMt6MO2AXs8bqOddAYeELpTdnznxroXfiVZPMhed8yxwxfjcNnu92+iAs/d4G1NXvTc6V1wACLSzyQDCjAE8klNRAb6qBnjIvxjUn8ttVY17MA3V3PrHkdeE/Hn3B3HP9H8y+R+xpths7yqwyRNYoOmGVeF4wd6F54amXzUO3PmYO+c7XzI57bVdyeZjYj97lezXbzBFKPPzww3Z9hPJSNYBp3fnxCCsAcUEIggCHJFS9GqjVMRAlWdzfZj4Tt7cc4vr2T795xGTnpMxqYjJoaL91zWp9Vzd90n2qVzlBKcv4gMWius1Sps+otGncXOz6igeenS/Y1Oyy5GALtgiKVugZQBGs/AMsAczjCgQLxQt7N2/ePAuUAmiFxVlcopdKXQXULbVcSfhcDdRqvw36fQDuPf300xYgp+8R7AaB7/R90Lkaa5dygbp33nO/aRIw5PbbjQ4qaq989s8XRCAvoPrDDjmwS74vIwCrJ8941mzy4Zamf33/onmiIPaP/z1jrnzjYvPcgqdXCA84A4BJJVSLQF0sf3/961+3nxUViAzIFUAsxgUUsKj1ghLZDjvskOe/6XM9A8xwAR48B4R76623WtAxFnuDvJjB0wOgEuRVwgVWaj7uGUCID3R188TTiYJv3HjwDQGOwMsAGO0TvyeGHnwqpw7mzp1rwUkKGPLTBLh0xRVXlL9ml/3QsrczZvE9babtdTZHEUgcQzV+LW0G7FMncgKXaxkhbsQgPlBXreb6IFxAuoB1lfz3+pxztYC6KPIrgPW2226z40FQu2DOwquVD/giLO0XsLdPgMbwQqdeh4KAurxT4xN+fJThb7rppk55FgLqAr6ibaslbT89QFd+3/bD9LT7PFDXKbi2t5sebTW/emS5GdiaNYMFvHvb4Q2mba7sIebJIXuJqW9nzSezMmawdJ3BGVFqkHODpFOdXuEUMLlMaqCMGmCEX55pMQ1DGkzdYAHbriKHiIyyAzLi0ecXZvbST8zuh401Tz33hHniH4+b91tmmQXZefmcUKgB1BpkrKac+Zb9JJ50IDxj4IFOCQU8FGQwDKJu3++///48CLbScZf4eIZRmaDmy5n9LWBb5IRQ0LhrXzj/UH5gbNVyO6/yl8wB9957r/VyxH4FBW321nhkYO4IItZFgHvdOne/nfXZmWee2ek7UBBhHQYIlrH8tNNOMxMnTswnX06e7m+FAlOYIhjgavVK4ypS5jN3LqgL9XDFGgcPYEG/B+2O9hEENnaSSy6TGkhqIKmBpAaSGkhqoIwaCNC9KiOVJEpSA72kBupEW7f/jnWmYaOUaXlDrOv+RwSH4k6zSwG7mbRoBve3h/AYctRnuYB1sa6bA+3mrgXMKwDew0bub7aasLm5/rE/momTzjBzFy3WWCWfhwzob/YcPdJa0t1GLOnmWYTK4XDOXGade5uZ3peccxIhjhoAzMGGqicAdfV7dQPIZu+ss87Sx5HPWBlBMFANss1ZLFeJiSrh8gnzpP1c7P5wAdNuvlmTue5XfzQXXz3JzJ23qOziDRk8wOy562jzwJ3nmdFbbWzLUSz/Fd6XnXsSsbfXANZwIJgurivy3v7dyfetPDXQ0+bFSudEftlqzot2LpQ8sql2y7gyRTJXFrrf6StfNOs1DzVP3ve0eVgAtosXLqGYZVH/gf3MltttZi3pNoklXdapxfIPel9W5lWMhBVdgAow3LGKAZ1zzjnlC/yrWNZyksYqFJbUAOZyhrB0loB0y6nN0uLUwhiYFZ+1bQtEmC5CdStYF2Bu5jOxTicKshlRis3Mzu21d03taVJr0GO7gQRfkhLjmXWfE3eiW4o70S3FZeha8rCuc1nCLNQWeo6gsbm52SDYRMAFILESYp+HUDPQkq5a3C1yriT/JG71a6AW+m0pX+kCmxAilwrSJa+qrl1K+RgJO3LLzc1Tory+MgF1X3rlNTNWlP67itL9RQHi2zuY6Vd9YPovLQ7UFU6MGbnaKHPghoeY9996z8xsnZ4vahwg3XxiNXYBCF4p6poJgB+HT1iqA2irew0AMMwlWOx88MEHbXCsdYYBgOAbcMAzANSBBV3WrBykCSgEoK/rlQDru2r9FJ4d8yHW6VAWRikN2muvvWw8HyDMO81zm222sUBJvuHaa6/llTnjjDOsEgwAS8AqWC/GQjCgYspzwQUXWAt2WNdVKrcOsLKsIF1Alyi7AFziGwAF/frXvzbDhw+3QBzNq5Rzq3gNWPqsgHSn5DnwRaOnh8l6ZUS6aiBdvwAKmuT5cXvmRIlYzOV5VJCun2a17g8//HCbNMqPgG9Rfrn++uttu2AfQtvHKrMS889BBx2UB+nSFtmnAKT6/e9/b9s4bTaMUEJUkC7rPfoH/QDw+n//+1/bJvHshYeFYtTW1matSeq8isLJ5ptvbtOZNGmSBXwBXGM8CALGF0u/p7x329uxe9Vb2RPt7VIBhQ9oB4VnBbT724eXm9vfWG4GrZ4yQ+Qei7scg0SYNqgta0aumTLDBgivYqH0LVl+ZxGXYZQ9elfrKVWWlLOGaiAjsqNlbUvNwtYFZml6qakblDbLG5abGR9OM+9+NMPMbfnMrLbRqub4Y48z6UHiXVVEWm19s+b8750tTTNjfnnRlfZr4NMf/vX/Z2V8zEGMJ4wN48aNM48//ngnL0iVzrdkqCBd5HNbb731ClZkC1VxqeMuFszdNQnzPOsBnrMmQdGVoxSiDMzJ1BMKD6q8oWlg9RZgKgQgVdcr7KkVpEs5UBDC4i5z/Ouvv24PrKOHzQOqOMHcwZoDLzfFPLRUmifrHtZVKHMxR2D4Acvv0EknnWTXW01NTdZ7E+shDBydf/759j1zIEpbkK4tVUGEZ7Q7lLI4w79jXUW7Y57EU04pnnFIL6GkBpIaSGogqYGkBpIaKFwDCVC3cP0kb1fGGhCBXMN6OeFc6+ZiXfctAeyKhq4F7H4iFSKb/y6nlgaTlaNtbs4ypyAGxR9QS87iroB1R/RrNleN2cVc/RXAvGJtt+8yYdhheVfAvH2ESwEXwiIVOMsFTIki9wRRwF9QeAvSzQMXnfSIl1C31AAuRWFKIwCudbAuDEwYjbhnganNhlY3yVErTwXdpbhkj5o24Ww3kTZezhlQ7U0/PznXzSQt293iOJdRHr4loaQGgmoAF0kQjCjfqkhQ+ORZUgM9rQZ6yrwYx5zIb1PteZF1YW79J3Mka1H+2ie4Qvcbjhhmjj5LrHPYCVUKGsPZzs4R88+Vk8Dt5a2xhgzIQa3MUjSEL+petcaKWlZxsDjiupLGysk111xTVlpJpNJqoEvHQBGKZ5aKeFEsXLWJ4R9r6QqLV3Pluh2cm20H5xp02PIaqblvAojV5SQmt3CpbgG6m4gV3U2FB7BOOtCVKGVD8FbOGWATlnbipnLLE3c5kvTirYEu7bcVFp12jaVBQHu4RnWtTUVNuhprl5aWFtOnT3kWubfYbBPzt7//02BldmUA6/KddQJI4Lu7khqa02a93YaapWItMd0qihFFaGDDQDN23T3NrMUzzc3TbzSjdtnaumLGS1NvJdci6CabVPb7HHXUUWb69Om2qnBrrV51eICLa4A5ADGOPfZYazkuqE6xfAuABhfZEBboWN8BggQYA1BXwYO4hQZ0AwEmee2118x6661n7/mHNx8FiAAQVst2+QDtF6yJAYkAmoGwhqfgW6zUnXvuuQYwoxLh1eIbLq41LO/LqQNAnHfddZdN3reIBxgGwAsAKcrI+1IpI4pMS59vM63/kvVFVF1GGdrqNxeg7obdsG5q/0DAugB0XZAurwBT1gJhjdq1NoiVZu1DuFl3gbqAmACsQ4CTFMzE/ZVXXmlon4C/goi+o3s4wL2AwJSvTbq0RwB2tFN4bto/gtLiGUAwBem6lit5BxgeEBnvyadYWsTpLRTU3l5+N2N+8YwI6PqmjGw1zEznY8VRpWlsTZnvbJs2m2wp63cB6mbkyApYNyN7kKxYdc9yttdyXiL9b3EqdxYFQ3+P4iSdXCY1YNqybWZJ6xKzqHWhaROZ6/qbri/eT2VPKXpHjz3xqJn23lQzf/k807x1kznspMMsUDctTqW27LeROfL4I8zv/3SfMZON+c7dR5nG9vk02yLt0Gl4KLY88MADncYTjNtcfvnldpwA6KnW5uOabwFmPvLIIytY1o/6k5cy7vItajX84osvtusJzQcL9Tp26rMo5/333996ASAsded7WgDcrPSNb3zDXmIx/6qrrrLXxGe+r6sTYIAQ9atrHOYIFHTWXntt+87/h6IiZY5CceTJb/Xss8+aDTfcMJ8lFoUVbM0cwdy06qqrWh4EivM6tzFXsdZzSRW2ePbyyy9bkC7X48ePN9QL7RF581NPPWUB1rxLKKmBpAaSGkhqIKmBpAbiqYEEqBtPPSap9MIaSIngrmFY2jSsmzatn8+alikZ0zpVjmmyZ39PNvGVGcOprMZARSxrNBk5jFgksgRgQjQ0U/0EnCtHWgC8AHbtvQJ3ue/bIgBeOeqFoQFoF1L+Xlz3uVRj+49bsyVLlljrC7El2ksTGjJkiN08whxUBnotfiqWgrBwUC7h9gZN27BNcrnpuvHy3cI+BD4gfUwo97zn3NtCJ/+SGgioAQRdWPxQIVlAkORRUgM9vgZ6wrxY6ZzIj9QV8yIToJ39WHPaG7Ws27Pua61R4xIP8MAG4mobS2MI/XuT8gRu/3ALvNpqq1mLH8w71fKGUGu/bS2UJ/YxULo7wkRrJVdczuJ2NqPAXM4Czs3K/hRwbhbJOdarckvoWqiOXBnEchHW6Oo3ErDL8LTpI2CTeqz55uRyoeUsZDkX0GxPeR/6gcmLmqmB2Pttlb4Mi1sc5VK11i6zZ8+2wulyy/W1ffY0V197k8xbQ8yI4RuXm0zNx5s8Zar5/R8eNief2Flg3xUFrxsiyhGfT5nWt+pMZmq0SWJo//XMNzY7whxx5uHm84dtIrxN5dh0RYm7Pg8sxEIoOLFX8AnLZgBegwhrblh+hQCbqmU6eKsuSJf3WFbDJTMWPwmHMr2CDXmvdNNNN63AYzz55JMtUJcwuFhW8KACH3mOO24XpMszgP2/+tWvLKgG4CGAHb7TJ6yVKkiXd1gBBpxN+qwlAVa6xLeQFyBnXHYrlVsHH330kSZh1l9//fw1F9QRFveiuOTuFLH9JivKTUv/nTHLnsmY7JygEMHP0gLQ7fP5tHWbHhwi/qcKwFVruuTgg3SPuw6EY/cTew4XpEuJmpubDdaQAVRjedAlvJpAO+64owXUuu/4jQFgYbEQkJJP6gkF0BQWGd1+A9iL/NjfERcL0do//HT0HuVGJb/PrLPOOmbKlCm2f5ariKJp1/r5/7d3JnByVWXaf6uql2yEhCSQhCSSxLAFAiFNmSZKAABAAElEQVRsKoIgovOhfCMgzDDgNqMiMgoijjqDy89dZ9BREUVQlFFwQUFHZIcPkUV2AmEJICQEAtkI2brTXVXf87z3ntu3q6s71dXV3VWd58DJ2c+996nb95577v++Z6DnGxaqtC0A2jfAou4orJSRdkWw5AWAucVNeH4BqBvA3QKeVxzgZQhonvDuQ7c/bOueX2cTx+1k++y9T5Tfht54quNZqO6eb9IHqnj/FcB5U2wq2toNawHibrYxk8fY5FmT8V4VM1/4PsXD0RlbtWGN/fCCC21Dx6s2fa/pdu7J5+AdLCzjAta94g+X2jWP/S+Q24JteGADLKum0Yusffjs0yNQF3vHa9GiRYt67CevJ7SOmr6esBLB0VtvvdXuvfdet/QdQN1a3W8JrJazbt9jB8tk9Pe6S+CTjvNeZ599drceee3kBxXcl/QHS90qlUnsuOOODqpyBZvLL7+8B6gbrOlyDMH5N7rx48cbQWc6vkMNkK5n4B/O0fFjJDrqzv0tdfzAvlJIl21rsU2O5dKQLvuldV1+QEnNAgTN/EpcqM9xFXVMuze96U3+/pVzHYNlKCm9PcWlgBSQAlJACmxvCqRHi9vbset4pUBlCuCFXdNUvMibignk/bBcybKidTxTsPxzsBa0HA/1KzGpXOmX75VtsbpahHe3tuDFKfz68V3fYebyAHNjYJdWdh3WZRoe+VmmCe4mAG/aAi92hXManDevNKxu7/tsFb507LOSCl0BTtgRiOCybvxyst4t61bzs9HqDiFdHudgTlCG0z7aR0zkIdI1xddo6WqUVpuRrkB/JpNGuhY6vpGrgO6Ltf1t/e7nN0T8w/9jy7q+2gM21RDltZVkwL1x8pt+pDqCDRdeeOFIPby6P66qr4H8+27H8y6tT8HiW+FVhAHMRbwIy7kEdIsEcwHkFpHny8nWqyJ4yZqdlrHcTPC4gFya5+CD3Fl4qTqua3S/rV2v1oJtvbXb1nGqfPgVqPrvdvh3veI9GMxnegKMM2fij71KN2P6NHvfqSfbxZf+3I4/7tgRaVmXlnQJ6fI4ebzD4VrmYX51PywR/SJuOPyoYxuOV+vXtMy23HPgpJYUrHWfHFYQ20ajBi4OSyf39gE+IcHTTz+91yNcs2aNw6xpmPewww5z0K+00cEHH5xkPfHEEwnEEjIJDhE4LHXpPM5BBkeLbMH1NsalpdLgHnzwwR6gLq3R8yOvUsflnAkmEXosBZlYN8A9XOo5uGo1mA3Ak+AKQUvCRJyH5BzK7rvv7l1z+9XMufKDp7bFBWu7IW/FZWEvKwgBgjUvBKg7p/KxSwW9VlSlHDwZGl50fafdB8Mm9eAOPfTQsrsRfrM0+MVzhEub09FqYLnzicYhjj76aKOF21J3zz33eBYBcgJMhNzTjn/D/CieFnlpcXpbLv0BPa3VE8QjGBYMVPR2LdhWv41Yvq3zrdpjolGeXDP+fsb38jeE07iASweh3Vse/JPdsPhG2332HnbB57+fALxFwLruWQ/PSowT3n364WdszfNrbFTTKNtzj70sV8ihHLe3dZutGRtuyjan3ilUewRqV7ECeJ9r+L07Mh328pqXrT2/xXadN8NGTxiN96Bmt9/2Z1vz6mqbtecsO/DIAx3GfeLpJ+xnP/4prOVusE/916dszO45vDfFuyA+RwLSzcCPb51mvz7/Mgcij97jaBu14JPJLr1SXOuQLsH/cA9PChGZO3dukly+fHlZUJfWt/m+q9Tx+sTrFIFR+vBRTS3ut9wWxwfVuv5cdzk2CRb+e/tAnfdVfnBxySWX9GuXTj31VCOoSyv/HMsES+qbNm3yj4bY2Xvf+96kT34IVO4eTm1530//huyjnONqA/1xtdgm7zmljh8M84Mn3uOCZfbSOr2lOZ7ihyU8Zt7v+BEUj2vsWAw64ELYW3vlSwEpIAWkgBSQAtUrIFC3eu3UcjtUILtDxlrnY1Jsj6zlsXRnx3JY2HVgFy8qX8DD/EuVTTAPqXR5TAxsHuO+23ZhUTeBdgO8m1jcBcALeNfgswR4WxC2dFqR6wfRYT6DUxpkg92VpuNsBcOjACcIOZHH5VRoOYLWNzihV27ScXj2sP9b5UMyLVXweOh4fIMJ6XIbfnrTyjSXuUWYicOGS/Ng5KSAFJAC27ECui/W6senPd1o/Fc2RFnZfGR6fp2U10oN9SMFGkWBvq6BRTAFtBrFJWELMBaWhIRykS7GFnMJ4kZALsbFeOncEA4GCLO7AMbdFS/lYUGXy0Q3YcWc3E64lvHlbT9do1jM3dZ+9vOwVX2YFOjr73aYdmnAmx2qZ3q+oE+Dh9Xs+Py99nBLs7//4/V234MP26L9F9i8ubNt0qSe4GA1/Q9HmzVr1trSp//mx5MDnEBLusMF6fL4Ob/acgBWMHsGH4U8hHsL/t+mQ538k7CV8CfMTeYwP7tXdsTCugRMbrnlFodSy+nCOT4CtGnHlcgIWqQdIdjgaHF2W46WaIO1uVA3QI4hHcLe5hgDOHTggQf2sFAX2k6ZMiWBYFm/1EBDgBND/dIwDdCky9IWeEN+tRrwfvqTn/zELdWxL4KT9NT9rW99q0O7tFzcmw5h++mQkG77o3lrwzlceAollZz37AAPU7k9cc4vzPbrI6P0tgcaLwdPEtIN+QPtvxbtS60Mhj7LreZBkCu4chadQ9mCBQt6gLr8CItLj9PRsnI5q9ehPcM777wznSwb5z6cc845xqXfCVoFEJ/QOsFd/o0MxIp92Y3WcWY4r9KWnAf9fMsSyIQotJzavNL+uvEOW7XxRRt9UMmDA25Bbp0XlrEJ49JC9mW3/Mgef+RxG9M01i773M8t04F1+QDyXvLln9rmtZvt4EMPsTcefjgM7OCPHpZ9Vzz9gi2+a7G1ZFusGb4l12JjWsfYjuMm2ITxE2zMKDzI5NFHJ+qTAYddna2bO6wJDzGZDO59dfzbVbNrvBQWiwXLNOPYSCxQ8iY8szEOS7e0cP7Kq69Y67gWmzN/LuqZPb9iuS155FFrL2y1rfk2a8u3A8htQ7odcYSAc7d0wiPc3LnJ3v3md9ub/u4IHzf8+MoL7dEnFttph51mR558qPd37Vd+Zz947tvYoNkPj/suru04Ico4gqlXXnllmZIo67WvfW3ZskqAR1qc782ly5588km39l2L+y23N2nSpN42u838/lx30x/O0Fp5b66aa90RRxzh92deP6+66qrE6n6wfs5tnXDCCT02SQu/v//97+2GG27otzXaanUbyDZ7+xix3H2ux8GWyeC9hasf8KOSu+++244//nivReA83HtKrbyX6UZZUkAKSAEpIAWkQBUKCNStQjQ1kQJ8SGzaGS/6dgYEuwDPymsA7a6Ald3nMcG8Ah4rlDm0ixeaXaZt60y3ziYrbqSPvo5L9i5Y4HULu7C2G4fmwC4B3o7IQu8ohM2AeJlu7gDEix4IMsrVhQKEWDl5zIl6wq2crOeLsUZ1nPjmMfGhky8th8LxbCac2+jhUGilbUgBKSAF6l0B3Rdr8AvxnhgTtw0d1kAKdSEFGkoBvNht6mi2nWyKbVmDD9+ebLdX1693S7m2CS9AN+GFaPAbAYAwvhkPd3jB3FAvgfk8Oh4v2LEaTm4a3u/uiud1+hkxnIsXugNx9WYZt9r9GYgGaju0Cmjs0n+9n3/+eQecSkHD/vdkDrGe8YH32KOPPWEPPbLEbrntL7YOH0M3qps4YYLN3m2mHXX4640gcj24lt0A6h5atLaVsCy6ssI9wj0t/2gRC5shgrFp694j07Iu4bzgVq9e3cPC3imnnGL0aXfeeefZ17/+dc8K82b9tay2HuODgbqXXnrJuyhnETfd99SpU32uksc3mG4gGhx33HH217/+1Zciv+yyy3x/2R/j9LNnz7brrrvOdtttt20eAqG99kcLtuWPeH/wOGYacQpX6jJTYUvjUKwGgA+OhtOl4clBhyarOFDC1ZU6WkgOri9rteXOY1rjLYXiQ1/lwldf5Quivh33/atf/apbtrz00kvt6quv9gZclpzL0tPTAiUtRm4LDO57S41TWrfnG/4MaZU11xqdb3wddtldP/FzgkDb2Dd0vXL/2ccvcvjv3Lefa//n5KMc1CWwv3vHLMs/vNmu+d2f7Pbrb7eOjVutFeZbW3P0rTZt2nQ78+Nn2qQJkxNY95KvXGztm9pt0aEH2RuPfGN0DSE0zGtJIbqmbFy/0a7/7fX4liVnCw8+wGbOmunvJu/987224ZVXbZfpU22vBQAk+bID7qUXXranHl0K+JfPffgvDokCN+M9TEcHqGIc4KRdJtvsPebQjol/OLAWH/8seWgJuinaQW882EaNbrUXV7xojy9+zPOO+Ls3WVMLaFtesgjdUjOGcZwf24A39vzHHl1iN15zo+XxBelHP/sxa2pFJUiYAagbhWZ/+s5V9tdH/2p7H7iXffrkT3v+Xy69xX748A9sS4Ew7ibbXIQvbAYHDYHLuMPGHmxvnX+klzzZvsSe7XjGNjdt9N+SmWlLtvz75kqV5dxg3rN62yb3Y/x4POjGjsZ56Orhftuf6276epq+BseHlQTVaMx3h+9///vta1/7mv3iF79IQN0AVdMicfoDJ74n5biJH0eUc8GifrmyavNqsc3+6F3JftKqMO83V1xxhV188cVusZnt7rjjDvef+cxn7LOf/az9x3/8RyXdqY4UkAJSQApIASnQDwW6nhr60UhVpYAU6FKAX3A24WVg01Q8RO6PZ2Qs/9nxAmFdTLytRIjJZkK7Rc47bulqV7ex3izwcmljALkZWNl1T+u7Ic4QVncJ7RYfzlt2LCwXucdDNZeG0ZVm2H5uTs6HCfph24kG3XA03ebzTzgCTldFs1hRfuOkG1R+7bYUkAJSYFAU0H1xALLiBuh3P44JEcPXLD3CRigfgAJqKgXqVgG3jItlWvFu0gqbENJvxHtVWsrFSo1FWsfdgPiGJmuCzyHOPH8+jRdNqduD62vH8P1eZgre+dJyLgFdgCxN07LwiE/AdYovg2vk+FKMcCyfBfzqF9KlYZ2X10gOdTOECmjsUrnYtED6xjcCXqmhI9RaL2BrDQ+rLrrKtAA+3A8rlsHowdabcTOKFlDa9r7hG3SHdQsFQE/oY198ZIK5x4G48PHDQPpg23yexBTYI1gtHohLL5FNS2dnnHHGNru76aabvA4t2QYrr/vuu2/Sjkttb8tSbVJ5ABFu//bbb7e0JdvS7gg6EkCkq8ZyXml/faUHqgH379vf/rb953/+py1evNgtHX/3u9/1Jaa5hDet66ats5bblwLGaO0PF6ztWrwreBKjiP7YUYB9jeZDsn6e829muF2AJ0M43PtT7fb33HPPpOmyZcuSeGnk0UcfLc3yVetoAZcW3M8880w7//zze9SpNoMwLj2XWucS99dee61ddNFFDoHSei+XJef5t724cJ6FsB6P+4EHHkjAbcKA5VwhA2uxgHszMdzLOvtO3cv2PQaWlDs/2uPaYjACdPV5v+p2bfnuGd/0j5GOnXssoN8je4C6BHYfuHWxffnh82CMttmu/PKVNnYeHoZwe/3VdZf5Nt42+2124Mm4L+Ay1LalzT70pvc4nLvLtF3sA7C0v/se8wCo7mQtzXjhieeec878hC1dstSOmXuM7XPymdGh4XbbWtjJzj3hB7b65VV2xls/Ysef9E675JwL7I7Ff7FjT3y7HXfKMQmk60AuwVw+lwVgN9uVfuqKR+wL53/K+/7U/z0Lhlp6vki854K/2FUv/w7fkR6L1U6j++u0Qyfbo//1kLerxf1t4cKF0fHhX17rD4cF5FJH0JKWRwfL8ZrSm6MV3eDC9ave7rdh/3oLw36znGMEXuvKOV77qnG0DktQlzpSrxkzZjiAyr5OO+20bl0SRA2Q7tFHH22f+tSnjKsZ0Eoux1CEtau1mNttQ6nEcGwztfleo/z4g5AzPeFvfqD0y1/+0i3tshFXE6A273rXu3rtQwVSQApIASkgBaRA/xXoOertfx9qIQWkQFAAD5y5SXgpCG+YKOZEXH5V0Tod2EX8ZbwcXYXnY4TFtWjUFho2QEjTaVtbMAkOz5e6aYfJBmvudHB3KwDlzDhMPOyAZ+9xeOhmHJOKCbhLgBer92TGEOZFPicoBjZ/nd4TxaVAzRSI8aO4P34jjvM26b3R0smOKyIFpIAUkAJSoDoFcCMsEs71G2L5sCHKqzt6tZICw6sAHrcKWFaVIG6RQC7gWz5rwnCQQ7lFh3IRB5gb4gRzGXcYN+KGhvcYarH1URiPY+X5LFa3yWLF7xxCQrr8cDY3hc+ZXaP1Wmwu3UeAuHgJpEvSNKOVTnuqfsvj3VMgBUacAlyGvK2tzbhUq1zjKNCE+dNRb8D8KQwcdD6A62mlAGOAddsA6+Le2LoQ1tN3rO4ewGWbn3vuOfe9LeFcqaIEtuimT59eaZOy9dJLOH/lK1+x9773vX1a0XzxxRcTK2hp8HW//fZL+n/44YftLW95S5IerMiiRYu8a1qepU9bsAvbTMNIaTgqlNcyrJUGBHe4r/Qf/ehH7UMf+pBb1SWs+8wzz9icOXPK7jYNerTdV7D2m/JWeAZVMKar2OHNXdO++Bt5XbQ6QMXtBliRVjPj4U3ZnqqBJlvB/dWTI7TOc5PnKP9u3/3ud5fdvXvuuads/qGHHuow2F133VW2fKCZY8eONV4H6GnRkEAez7Xf/e53IwrUreS8qOp8a+L4vLp7Qn9+uxUrVhgtbwd3wgknhGjFYX+vLffce49bn22KgdboKKN/733qr7as81nf9mvfMNuaW6OXbk8VHrf7Nt1t85v3sJa5Ud7/u+EvdueG27zuzy/8uR39riO67TNXaLzojgs8b17rbta6V9QuqpS1vY5/rX3zm7+z7HUFe+vpR9l3r/mWF33zPV+z5tek63brtkeimO3PRbGrea2u7aHHffbZJ0Tti1/8ohGM5+oWaUcIdDBdb9cbbjOML2i1OVimrbf77ba0aQYAznE6gdULL7zQ3vOe9zhMm2538803u/bpvErj/ICC10qCvldddZUFMJjWcflRTdrdeOONSfKHP/yhzZw5M0kzwjFTrd1wbDN9DOFjsnReaZz3xne84x3uee8JY0quHiBQt1QtpaWAFJACUkAKDEyBykfMA9uOWkuB7VIBvijkg+noQ3I27h1NNu7kJht7Us5Gw7cejyWr3oIXigvxQpHPAYBWh2D+YHB+hyIuJQ7wjrPCUgDJmFzvvA0WMa7BROSvYTHgciztdUXeNv+yYJt/lbdNv4b/TadtvDJvG67utE3Xd9rm2/PWdn/e2h8vWMeygnWu5otoTKqMlJfKg6O8eh1EBXyKi7PTdAgbOh0dhf6VAlJACkgBKVC9An4vxN3Q/+c/vDc2YLp6BdRSCgyeAnjmoRVcPgPxWYjPRHw24jMSn5X4zLTxt9EzFJ+l+EzF56stV0TPWu2/KdjWP+EZ6s/RsxifyXwZcYK6jfo8hcuL4aPP7CwAuQfgufoYgCp4hh6DZ+mxJ+P5+iQ8X7+9yZ+1+cw9mJAuf/iwzGSjhzwWOSkw0hR46KGH7NZbb7V3vvOdI+3Qtovjad4ta6OOwnV8Ng6X1/5KHdiewlNF2/IH3BdvybuRBP+grNL2cb3Xve51Hvuf//kftyJG8Kq/nhY5uXQw4RMun50Gfvq5O16dkB4BXTqChO973/sSi42emfqHkC6twQV3yimnhKgRPCagQsdlizdu5MCgu7vtttv8b4d/PwSWB+rS8NS//uu/Jh+2hH63bt1qZ511VkjaggULkvhgRKrVgJZMCW9S+xdeeKHbrhGsI0AZXPh4J6Q9xJR2B4xZbL4Z893/C0j3aeT2h0fD30J2rtmoI7PWMmtoX+GdeGjtt7doTjd16iJxyCGH+H5ccMEFVg6QI7wV4LjSHQ6AHIEwWr0udbS8SaCbf1ff+MY3Sot7pL/1rW/5+faJT3zC2Dbt+Ddca2vx6f6HM74DVsdYOLs/F/7K9nbRnNr3Wbrl1atX2zHHHOPXaJYRbqvkdxrotYX3hC996Uulu2NPP/20ffWrX/V8WhJvbYUJ3z7cK6+8kpSG+0SSgQgtavbl/uEf/sGLA3TJBCHSofpgqtpre2/HxPsur/d0tJr7L//yL/73T7iR2n796193y6K9ta9F/t13320/+clPenR15513umVtFvAjgeDq7X4b9quv8IMf/KAX8zymBWqCuVu2bLFVq1b5tXSgMCjhXzqev7/5zW88zrzSv4d169Z5Gf8pXY20gBUbfvzjHyfltYoMxzZzOZqyjlzp/Yxjl7PPPtvvPQSnSx3B53IfW5XWU1oKSAEpIAWkgBSoTgFZ1K1ON7WSAv1XAHNcufEAc+FbXovmmJzLw+JRHi9jaXWXYYH+uQ2WX/oyzQRZsR2zFYWuwXT/N1oHLTAxScvBRXocX3eHNA+PlpEAKkceyEc6Tuu7SHMZuwzjCN0iL6Thy1jP51f5gz//0n3XlRrxCvBszeCBtdHDEf9D6QClgBSQAlJgaBTgPZHjLdwYg+XchkwPjVraihToUoB/M1vxWLcFz3rwxS2Ix5ZxozjymIZ1XFrL9ZBxgLsh7iuxlAVuOVIdIQ7PdJkd4XfCM94kPOvByiJDWsrNTYbVXHiu2DJcq7EECKfRwxFytugwpECiAC3pEtI99dRTHZBMChRpGAW4HHbL3lnLr8f04ea8FVf0Y9d5j10O2wHXFqywpmij3pizFoC/mZbK+yBU+7a3vc2XmL/yyisrb1imJiHdk046qUxJ/7MI3P73f/+3L8FNK5qPPPKIQ1gHHHCATZ061a15cnliQoC0tEl35pln2mGHHZZsjB+XcGlngjEENGjt8eMf/7gRUCQYc80119gnP/lJh4Bnz57tkFXSuMoIl0emBeBLL73UrX9+5CMf8SWn58+fb/fdd5/DRgS76AgPT5gwocotVdasWg0InF1xxRW+kSeeeMK+//3vO4CdzWaN0NSXv/xlLyMQN3fu3G47w3Hf1mfwMdWf89ZxL07SLh6oW72+EpkZmC4/Gufznnyh0FfN2pedenjWlq7E0uR/6w9Z3Pt+nPamrB04t/4m7rnU+R/+8Aff8QDUHnnkkf73EP42ejsq/p0T8KV1aN5/uFw4gXnCgzxfuFQ4LXLSVQKejRo1KjnfaB2ef6e00kywnefhz372M+/rn/7pnzwcSf987O1Z+9glBVtPgy01cB84Omt7z6zN+UYY95Zbbkn2ir/HypUrHey+6KKLknxeL3iNqMQN5NoS+ueHHATw/v7v/94tuBMs/cIXvpB80MHzb1suDRV/7nOfc6vtvDc8//zzDjied955fXbBax/94sWL7fOf/7zX/ed//mfjNXIoXLXX9r727Tvf+Y4tXbrUbr/9dv+7C/eA0IbQIuFF6j1Yjtba+VENLcASoOb5x/t0cOl4vd1vwz72FXJsw+smwWeeOxx/lTqOVaodj7EtPxJi3/R06Q+Ywrbe/OY3Gz/GoDv33HP9mks9lyxZYueff35yPQ71axEOxzYJoPM82rBhg/9dH3XUUT5OnDhxov/N80MkjjF5rvOawnvhlClTbP369f7BGIFqOubLSQEpIAWkgBSQArVVQKBubfVUb1KgcgU4zxaDuzYHzTAXwRe3+XUTrPOpTuv40y1W2IrJytZdAbmOwUvbUXipCw/LtVYYmgfeyg9mADX5wtlfRLsEkRBJdxCFh4oPgAnpmkO7MbBLmBegbgTxIg5w19MEeAn1hhAQcALzjiDZEokUGTQFwpReFOKcik2zNFp60ARSx1JACkgBKbB9KYAboN8NM3yBxkSxIdPb14+mox10BcAvOITbRgCXIC6f6ZAXA7khTMBch3FR7iH+lmJA1wB09MvK2qAf2CBvAMBJBtZyMxPhCebuhGe2GNDNTcLyzgR0mR7lF55B3pnKuufLYEK6jR5WdrSqJQXqXwGCJIQXCDQRaiAgKde4CnDebtSirH+k0o5ltIsRF1DxARXXwnopVvYqvJy3/BuL1rov7iU7RrM3lXRCuHX33Xd3q3mEE/rrCCZNnz59wJZ009ul1VYuNfyBD3zAgT/CQyeeeGK6Srf4scceW9baH6HZ5cuX+1Le/JtJQ2ehA0IctD7HbQ7U8T5JgJEwGy1HXnzxxe5L++V+bQsEK21TbboaDQigEYr8+c9/7stoH3zwwT02T92C5eNQmH+laO0PY3WEPxcs/wTGejBc0V+X2QVT4W/OWutCWJrG38ZQu13wOuL7H8jaH+/L2LP4W+TTXzWuFR9hHQJjJfsPgsXUavantM1BBx3kVhPf//73u1VUnieljpB7GsgM5QTMCeLSuiVBpnPOOScUdQtpoTNYHu1WUJL4x3/8R/vBD37gABu3Rx/gqlB13rx5dvrpp4fkiAn3nJ6xX38iZzc8XLQVa6o/rDF4f8Tzbd/X1O5vhnAbgcm+HK3q8sOESsch1V5bwj7wfOK598UvftF9yA8hIV3eD7bl+MEHrYYTAueHHGnL7GxLIJXWnXnv6c3R6uzHPvaxpJjn8VC6aq7tfe0fra7++te/9o9eSkFR6kOAk36wQF2OZwmP8npS7ppy2WWX2cKFC5NDqMf7bbJzfUQIldMR1k272bNn+wdKa9asqRrU5d8hoVLCp3S8bh544IHpzXicH2XwHCc0zPs8fdoNBBZO95OOD8c2uX3+XfKewuvZaaed5rtEa8PHHXecQ+A33nijl/FjL/rSew+vJ4SM5aSAFJACUkAKSIHaKjDw2Zfa7o96kwLbrwKYQ3ALsYBPm3fd2UYfcYJtvemP1n79j8wmzrbMjDlWKOwUQbsEdgO424Z4+wiDd9NnAT/e95fdCDFZg1fgqdI4nkNWCtR1oJdQb/AxuJvAu6wbAF6EGbwAzjKvFfgJr4q1m89J7auijaYAz66uUyE68xo33Wjqa3+lgBSQAlKgHhXwu6HfIPEP/ye0G9LY4YYor0dhtU/1pwBPbaw6WwSAW/DVQXB2I3SLuEw7kIu8+DnFgVxCt7E3WsYNcQIaZa3h1t9hD8oe4fkqg1W3M4A+MhPw3AU4NzsxDgHjEsjNwXpujtZy+VxXp67RLemG/a9TebVbUmCbCtCKHS3bLVu2zF+qc4lcwpVDtcTyNndQFQasAMHaUa/PYY4T1khvAqzbX2AL9+T8g0XbshqA5AuAdQ/KWvMMWNcFLFiJo6W8elvil8DJb3/7W/ve977ncNCKFSt6HAqtM9LyLoGL3hwt1+64445ufTdYRwt1CRJ++tOftt122y1keZheLrlbQSoRYI6Wlu4mjJubm+0Xv/iFW3jk8tGEQ4Jjm7POOstozZSQUdpta5ulS1en224rXo0GXIKcYA1hojSsxmM4/PDD/TeZDbCIrtgBWHwZAN17Crb1bpy/LzDTi/r1TwbfHLQcmbXRh+bcwEe/GtewchY/zTsO7P771LD7fndVeq6EDrZ1zrBe6fkZ2jKkNdz29najRdH03wbvLQTyHnrooaR66T7MmDHDbrrpJrcMffXVVyf1GCEc9u///u928sknd7Mw2tv+Evy966677Etf+pL99Kc/9X0Jfzf8G+cS8SwbNw5fuo1ANx7vZU44pP7PN0rP+8SsWbMc/uP5Uw7iDz9Rbx8/9OfaEvoKIT8q+cxnPuOAHT+GCI7XJVpbTVtcDWW8JpdzhPd47Scknj7/+ZECP0IIFuJ7O47jjz8+AXX5N1NqXbzcNkvzKrHAG6795fajmmt7uX7Cfk2aNMkuv/xy14PW6jn+5HHxYxw6fiBWzvWmcaib/tvvrS4tGhOepkXtu+++OzT1c45gNq8npa7a+20luvdWJ30spfsT0n1dd9kvj+ff/u3f7KmnnrK1a9e6NXJaJOdvc8kll4RueowTkoI+ItQwgLr8EKOc45jotttuc+u7pZaTP/vZz9oZZ5yRwMLp86WSY+f20m3C9qvdZm+/Q+iXYV9/I1wBgGB++u883M8WLVrkKzbwnLv++ut9vBbuPQSZ+bEKtQj109tUXApIASkgBaSAFBiYAhkMNKuYMhjYRtVaCkiB/inQ8cCdll9yv+WfXQrrEGus4GDuRCsS3C3gTWdhAsLIW2FHxMdjMpAenxKnUMP+bXWk1cbb8Qxm+zNb8GCB2fvYd4tn+aDNsra4DtJen2GXz3gcM7DVzLiONFlH6PEUPjhthB6ZDksKSAEpIAWkQP8VeMf/3tL/RmohBepVgULOsvkWa8qPtpb8GBtVgM+PtdH0hXE2BuGYAjzCsXGa4VjkRSHj8MWxNqo42prqmS4dwt8ASIptyWy2ddl1ti63xtbAr21eZWuaVtnq5pfhX7J1LS/bBvjOJpgUztZmOeWhOMTDt5wwFJvRNqSAFOhDAb7w5zKtM2fOdMun8+fP76O2ihpZgc6XcT+5JW9bb60C1g0HDpYtt1fGWg+FVdL5sK6LD0RGwvTounXrfCnnl156yQgJEtgiVFSpKxQKxrb0bEfwqFLopNJtlNbr6OiwF1980UEcLqe8yy67lAVYStsNVrpaDTZv3mzPPPOMEaik9onDm7X8WljRfQSQ7l2AxB9HBoY51bjMlBjSPSJnTVPqB1qs5lgarU0+nzcuAU5LjoTFeL/pj9u0aZMRpCf0y/bjx+O9zAAc/9afe+45B0J32glLT8iNWAV6vbaUHDGvO4RpCRESTqXbuHGjESYlpMvycnBgSTe9JrlSAfeF/YwZA+s3FbgnnnjCaCGYjpZg+eHHcLlqr+3p/Q1wLO9Vc+bMSRd5nNsgvEjNzz33XCMAOVguXAP4wc60adMqulfX2/22nDZLlixxGJRg6f7771+uioOhtMZP68HhNylbsUaZvP7zessPWwnh9wZS12hz3s1wbJPnL1eNIPhLaLjU8fg5XuN9kHB6pdeB0n5GQrov0HwkHJ+OQQpIASkwGArw4ya5/ikgULd/eqm2FKhPBcCg5jcWjctrFV4Bt8twfRxHWHwVSGkIN+IQdK3s/XekRV1a2eXSYqOwtCkt7QaLvHE+87wOrfLCGm8GPDQt9NIyr8c9DStRDGWlt3etVSIFpIAUkAJSQApIASkgBQaqAHgIt37bHlu/RUhrfLSAW2ScIXyhLc7Hd3m0lBtW7fDyLShDPkjTqAz1DRZ15XpRAIbzMoCgMni/kxmPZyCEWVhCzDKk1VxYz2WYox+L56o6tpTbyxEqWwpIASkgBYZRAYd1b41h3dVV7ghuPxl8g918QNZaDshYy5ysr2RWZW9qJgV6KFDYVLStT8OC7v1F63gAYPlKVMEQsxrnkO5RsKR7uCDdavRTGykw0hUoB+oO9zG/853vtD/+8Y8OCi9fvrzhwT5aBb733ntd1gcffND23nvvROLOzk63ak1Lw3TXXXedW1xPKihSkQIEzb/2ta953UsvvdROOeWUbu14PvG8ojvvvPPcd6ughBSQAlJACkgBKSAFRogCAnVHyA+pw5ACPRTgC2u8oM6/GkG7eYK77pHPPMK77vFSGiuQFQnwor5chQpkUS8GdCOwFy8AAOoawV7mMyS46wBvXJfQLsqyzIvjEdgbAF+81OZqcexbTgpIASkgBaSAFJACUkAKbK8K4EPEAj4uLGIBIIduA3zrAC6eZRi6j8othnGLBG7jeJSHNAHckMfnncYx5Dr8vz6fa3YIHs8sMA5GGJdwrkO5CLlUOSHdHIFd1B8JFguHX3jtgRSQAlJACnSugmXd22NY98UB6MF5uNkRsNu6IGvNu/J+hfk7OSlQpQL8EKxjOazoPlywjvsLVngWHQ3AKEZmOqaYAemOej0g3ck6N6v8WdRMCoxoBeoF1KUVXUKq1157rd14442u+Te+8Q0766yzGl7/3//+93biiScmx3HIIYfYQQcdZLQQd8MNN7glXRYeeOCBdvPNN9uoUXjJJ9cvBWixlVbHg5s3b54ddthhDnsTkr7jjju8iFai77zzTl85INRVKAWkgBSQAlJACkiBkaSAQN2R9GvqWKRAJQoA4KU1qcJ6hAB2HeRFSGi3AGCXeQ7uEt7dgDgBXr7cxstyuSoVoAUpWp3is7tDugzxYoDx2EfQb5zHF+Ksn4Z5W6IX3w72hjjrMM7+NY8LEeSkgBSQAlJACkgBKSAF6k4BfkCIZ4kEuu0G4BK4xTMHoVvmh7hDuEjTsm2whBtgW6YZJ3TLcoIRelaBCFU6PkvwI0MHcvFsEYO52R0A4ALMdSgXIUHcrHt+eIiHDz1/VCm4mkkBKSAFpEClCnDlsLa789Z2I6yVLkergXxsg/tbbveMNS/IWOv8rDVNy1qmudI9UT0pgLFnh1nHC7Cg+ygA3Ycwp74Ug1zOm1frYKghC16p9WhAugfn/OOnartSOykgBUa2AvUC6l5wwQV29tlnJ2KfdNJJ9qMf/chGj+YSlI3vfvWrX9mHP/xh27ABL0fLuNNOO82+973vjZjjLXOIg551//332/ve9z577LHHym5r4cKFduWVVxrPeTkpIAWkgBSQAlJACoxUBQTqjtRfVsclBfqrAF+g4yV3HnBuwX0E7TJOcDeEBHeLGyOA1yFevhwfyER5f/dzpNfnC+8meMK6tPDRWowsUxHsZV4AfeNyt1qVBnsd8EW9APF6yHTcnulmxLkNvVwf6WeTjk8KSAEpIAWkgBSQArVVgM8MnXxuwPOAA7e9xFPgLVftiCBchABxPc28BLZFX+0YmHoeygneAoSQq6ECXLGDMO5Y+HHwgHAZZkMc8FIE5gLGjeM51sGzg54Zavg7qCspIAWkgBTotwIFzEG2PViwtptguZRgJMcJA3CZCQB29wSwu0/GWvaIgV3e7+SkQC8KcBzrgO7jAHQfAaD7BM5DGMAYkMM5l9sD0PibAenul7XsWE3SDkhPNZYCI1yByy+/3LZs2WL77befLVq0aNiO9tZbbzXuy6xZs3xfjj32WMtkRtb1a9WqVW7N9fHHH7dly5bZ5MmTbcGCBbbPPvvIwmuNzrz29na77bbbbOnSpe6bmpps3333dT9//nxradHArEZSqxspIAWkgBSQAlKgThUQqFunP4x2SwrUlQJcehbLyDrAC1A3HRLW5aS5W+HdhBfu9EwjdEu8eJEvN8gKxBZ73WovoN0I8sU7dQd9EeK5NgF6aaWXz7kB7iXAy3LmxaGDvD3iqAdLIwJ8B/m3VPdSQApIASkgBaSAFBgKBcAXOHALIDaBbjt6wreEYWg9LKkDmNbzmJ+GbgnNELSNLeIGGJehAzX6sG/wf1V+iDcG43XCuIA9EijXgVykGdJKbmk4Gi9W+TwhJwWkgBSQAlKgThWgFf32J2FZ9+aCdcKS6YCsmIZjnIjv5GFht2lvALu7Z615V9wraTFeTgrECnAuvHNF0bY+CUD30diC7is1kAcfRTXtn7HRR+WsZR4sO3NOVk4KSAEpIAWkgBSQAlJACkgBKSAFpIAU2C4UEKi7XfzMOkgpMIgKEOLdDIgXcG4BcK6HsdXdAkPmbYrAXYd3PZ5BPibW+eJeL+0H8cfpo2ta1eISfw7s4kWEg7n4TUI6AXm76iQwL4FdTiIT8o3jURil2S/LHfhl3D3KCA9wu3JSQApIASkgBaSAFJACA1cA4+gItsVYmzCt+xi2RZxWaR2w9ZBx5qXKCdsG4DaJo47Ho7G6t4G1W/bjwC371fgdIgyD4ziaq2vEMK4FGBdgLq2wJRZyEXcYd1wqFIw7DD+YNikFpIAUkAI1VQDjj63LYFn3L4Am7y5Y8SX0juHJgN2O+F5lLoBdWDdtBjTZMovW5TFPJmZ3wNI2ZAc4p7jaXMdz8EsBhsN6bv5pZL5ag6PhaTUN06mHwIruGwCHz8DgTvOkNRBWXUgBKSAFpIAUkAJSQApIASkgBaSAFGgcBQTqNs5vpT2VAo2nACbRC4BxCeoGWNfjDvAGeBdlmzG3Tk8rvIB+kzhBXoDAcnWkAF9UALyNYFwkHNgtRmAuLfiyzKFfTD57GcLmqF4E78b5yIsA3rivAPOGvkMacG830FfWviCYnBSQAlJACkgBKTAiFMA4twdo24mxMGFYwrIEbAnWcoWKJI0487wM5ciPyiKQ1sHbOM/zAdgmdbZiTBaAW/ZZC7gF3cjVSAGOcwOICxjXQVxCufBZWskdg/EzoVwAuB4GOJdgLj0+tBNUVKPfQt1IASkgBaRA3SqQX1u0tgcK1n57wQpPYTDDucNauNG4xwLSdWB3DqDd2VnLTY7mrmrRvfqobwU4tu5cBQj8b7CiCzC380nMVy/H+bWlRvuNcVoOFpxbDgOkuz/OrYkYl8tJASkgBaSAFJACUkAKSAEpIAWkgBSQAtudAgJ1t7ufXAcsBepIAVrjbYtAXQd5AeumgV4Hdh3iBWAQYF6CvJwkZZohQQRBBnX0o/axK5yDplXdAOPCIq81A/JlOrbAG4G/MZxL0DcGdqMwpKNyI+wbg7yhPNPEPlHOfC9DOq7DsqS+LFZATDkpIAWkgBSQAlKgKgUCYAvYtRjAWsZjqNZB21TaLdsSrCUcm4JsQ37IS2Bcjm9RvxuA62lYtkX7UOYftGkcXNVPOOSNOA7meBcQkMXwbQZWbt06rqe74m4dN1jJZQhAl6Bulh/F6aO1If/ptEEpIAWkgBSoPwWKgHO3wtpp2x1563wQ84RrsI+1GhNxDmkKbrmvBbQLS7vNr8la064Zy43HfVhzSfV3Mgxkj2BgIv8qoNznaUEX1nMB6OYBfxdXo1OO22vhcNrwfGraP2OjXp+zlrlZy/DjKjkpIAWkgBSQAlJACkgBKSAFpIAUkAJSYLtUQKDudvmz66ClQIMogAlTWgArAM6NPNK0zpuCdxm3LchLwbtFpAn20upBsQ0hYQf0JTcCFOBLEbw0IYwb4FwD8JsB8BvlMZ4qiyHdqC5mxx38jfpwS73siwBvDPc61Bv379Av28c+KkPdJB3HCUzoZQ1EkJMCUkAKSAEpUKcKcEwZw7VGsJYQrXuMH5I49j3OC6CtpwNgG7dzuJb1CM6yzEP0mU6jPCpD/6wTg7ehDvP85b/GpxBiBDiOAwOECxCXMG6AcI3W+QjiBiiXZbR+G8O5DB3EpbVcfqSmMeUIOCF0CFJACkgBKTAkCnAY93LR2h/MW/vdmBcEYGmcA6ylG4db8wwAu7MB6u4GaHcm4lMjS/ayYl9LoYewL5wmNBLR8SIAXVjM7XwWcC6s6BYA6xpXequlw7iPwHfLIRlr3T9nTVNI7dZyA+pLCkgBKSAFpIAUkAJSQApIASkgBaSAFGg0BQTqNtovpv2VAlKguwLBKi+hXAd6ERLcDTAv8xMPiAKT9iFNwNfjnMinJ1SBeVm57UCBNPDr4C0hXvz4AdiltV4CvyjrysN8epKOoV+mvX06jABezyfEG5d72xzadUuzT9QP9TyM0p4nWAMCykkBKSAFpMB2o0AaqM1jnIZxXgTPYoiGtMcT4BZlrONwbVc9WpmlldvQrlsYA7JeToA2SaN9iMcWa4uduGd7HFZs2V9czv70ARg02B4cTgGO22wUxmsEbBEagVvGgx+VSsdAbgLhsg6t4SLMop6s4W4PJ42OUQpIASkgBYZaAbeu+3TB2u8pWMeDBSuuxB5wDFlLh7mZzATcz2cB2H0NYF3Cu7CyK2i3liIPYl8Yyhc2AspdCUB3BcBcQLn55zB3vAzPEuux3Vp/PIe5vcw0TCcuzFrrQVlrmS0ruoP466prKSAFpIAUkAJSQApIASkgBaSAFJACDaWAQN2G+rm0s1JAClSlACZcC1gWzwHeGM4tBEjXIV5MzjIkrEvI18Mo7XltmLhFXhRHHVpFwySvnBRIFCBgSx/DvZE1XpwkhDtiMDcKI1DX4wEE5gR+Ui8qD2n2yXgAeQ2gbwT8duV5WeiD5dyP0Ib5hIM9jPaR6aQN6woGhghyUkAKSAEpsE0FYojWQVjCsARnPUTLkCY0yxfdDAlIxCBtUi/kh7AUvmUblsFHIbaRSveMp8oDSJsHWEvANu7Dw1q/fMfuyTWwAhga0QKuA7iEcAngErhlnHBtyCOUG+dlE0A3Am9ZL8pDmssXazwFEeSkgBSQAlJACgyfAvm1sK67pGBb7y9Yfgnm8dYO0r5wfmUibv2AdXOwsJubDmB3Wgzt7hjPtwzSptVt5QrweSK/HkAu4NxOWM/NvwAPC7q0nFt8Bf3wuWMQXGYSpuDmw4ruAYB098pabiIHnnJSQApIASkgBaSAFJACUkAKSAEpIAWkgBSIFBCoqzNBCkgBKRAr4BbZ2iNQl1Avre0WAqTrIG+UF6DdYigj2EuQF20jmBeACOKy0qtTa8AKEPogTEuQ18P4pY+DvcUE2o3A3AjyDXUD0JuGdq3Uei/75EumbmEp2BtvO13P9yuuh3ho731lU+1DWciLjyfDENXkpIAUkAJSoAoFMMRwGJZwLAFUvmQuYAziIfIYsowQbFzOvFDu8Gwq39uH8lTo9ZCO+oq3E8oJz8aQrZcTimVdz++KGyzROnRLeJZWaeM6Rmu17CudxzIBtRBBrioFOK7gR1CAZh28jcMMLdkmcZbF8G0C5SLtcC6A25AHKNfjrMsxkpwUkAJSQApIASnQGApgPNmxEtZ1H6Z1XYCZT2H8uWEQd51zHuMB7QLUze6K6RWEuZ0j3zQFeWMxDuEYRW7wFeCjD63mrsbv/hL8y/AEdFcgH6GfB4P5rIHzIDcPgO5+GWtdkIW1ZZwcnPuSkwJSQApIASkgBaSAFJACUkAKSAEpIAWkQEoBgbopMRSVAlJAClSkACZ2i7Cq6xAvYd4Y0E2DuwHwjQBe1CfUC6u+SdrjUZ7nM01LvYRU5KTAUCrAl0Z8eUAQJQDBidVdvMwIEC8gX8ul0rGl3jTom9SN20RlaBf6R74DL3HagV3mhfI00Iu8pG66frf8qO9Qz/thXdZhXyHO/UEyymcYtwvlcagXaNBGTgpIge4K4LJHeNSB2FToYCxf9Ma+qxwNyuUHCBVArfcXp7tA23gb3fLjvpAX6oUw6YP1Y19k3yGeyncgNpUOIC9BXC9zyBbXRU8DqPW6cV8BwOUxIUtOCgypArx/0/ItQdsEwAU8m8SRT7i2tSsvsoaLNPPdR/FsDOh6yD5575eTAlJACkgBKSAFRqQCnGfreB7A7uKCdS4GrPkMBrKbhuBQOfaYjGHGVMC68NmdMY0yGXH4pkkxuKsxSG1+CDyf5AHm5tfEfhUMLxDOXYnHLVjRLa7GZjjXOthuLH7juRlr3heQ7r5Za56RtQzHmnJSQApIASkgBaSAFJACUkAKSAEpIAWkgBQoo4BA3TKiKEsKSAEpUDMFMHFcwMSwW9tlCGDX08Eab5zHlwhuqRehEfxlOvacWGbctsawbzsgGsQd7CVAI3CmZj+XOhpCBWJwNsC9DswQyAFEG4G3OLHjNAHhBObtVof14T0PL8RS8bJ5KHeAN67fBe7G/Xh5V9zLw34S7o3jvp2Qz2xuN/hQJ5SzzyTOylHdrrxUOcti7/vZLd1VltSJ+/INJO2610v2leVyUmCwFOB9CN4h0jjeM40C3BOLqXKvw3SAQOMyB05DvbjM2zEe+ghtAvga+ulRHrdJ6qf21fPQkCHbpep4PM7vVh7yALP6fnZLR/04LMt8r9M9rwu0xXZjeDbKwx9pAG0LMSwb0qwX9+chj1VOCjSaArwP8YMggAsEbZMwhmwTGDeGci3At3E6sYTLfEAw2RjWJaQr+LbRTgbtrxSQAlJACkiBoVGAc3Bbn4MnsLsEEOezGEhvHJpt+3P7GIx7CO7Syu4UhAB2szshTj8RfkeOizBI0vN63z8KfjbOq+ZfwSPUOoRrMbdKT+u5q/CoBEDXwVwYU+Az5pC4cZiKmg0Aez4s6O4DQHcWx6j6IYdEe21ECkgBKSAFpIAUkAJSQApIASkgBaRAAysgULeBfzztuhSQAiNPAS4PHaBet9SbAnZDfgTwBmiX9eEDxAurvBHUG/dDK730gntH3smiIxocBQJwG0K+ZwnxYInX8/D2J+Sn6kSWfFGW5CGSjeom8G1ohzABaZnHNqFdOkQ8qZfKz5D2De1CmK6bykv6ZnvWiUPPR1Yo75afruMFXfV69MG6dHGbkAzppCxVp0deKEMYNuftQ37oNITeQdc/nt1LWdJPV/WuWG9tumpEsb5e+PVWhvzeipICVgiV4tChVG61JL9bulxZaB/apuswDl8KyrKqZ8blvo1UPKnv9fAPgVG4JD9VN4FIuR3WY1kIPY57V6ifyk/qpuunyr0PpL0t84MPfYa0h/hBUdH7DGkCr14XZQ72AoQN2/J0aj+79YV8OSkgBXoqwOtmAt0i0YI/KAK4tB5GkLYExs20II9wboBuWSeJox1h27g8m5ShDrchJwWkgBSQAlJACkiBASpQ2FK0jmUAdpcA2H0McOczGLu8OsBOq2lOi7sT8BgP67qZSVGYZXoCoV2MhwDuZscjHINyfmC8HTrOixY2A8J9FX49wNz1DOHXIR9wbnENQljRLSI9JBZzS38D/EZuQXcvWNHdC4DuTPxeozk4lpMCUkAKSAEpIAWkgBSQAlJACkgBKSAFpMC2FRCou22NVEMKSAEpUL8KACgqAsQtxKBuAvM6sIuJaw+jOqGM4K7DvR14McF4nA5xt9yLPE93YLJZ1nvr9/fXnkmB/irA90flPPsh2EtXrtzz8LIQYRE+AnpxDWEkwzBqmqRDPx7GdViJdUMZk/iviDyG3fuJK5XUZ7VoY3E/TNL5DoU8VkptJ6oQ5Xk9ZoS6UW9szxzvnsVwoUa0C1Eq+jeu5aRnVDf51yuEXkIPqc68Yro94uwnVA3tve+uMs/GP65Xaf2kLftFIkkzmcpj3NtGkCqPyzcT+mO7Us/9Jbjarc+SeqwjJwWkQGMqwEtEDNwaYdo0cMt0M647BGgDhOsh68V5DttGaQdvHdBFmvmpeNb7Rptwn0FUTgpIASkgBaSAFJACQ60A58U6ngew+ziA3ScB7D4dgZ++0sVQ7wy3x7FYDO9mAOtmJyKL4XgMm3agx7hqHNKw3kp4NzsWIa22NjrEixVDClxxbBPCTXG4Ab8FfGED8gDpFmE9twBfhAXdIoBda4MPz6WIDqmD3rSMTEC3afeMtewJQHdXjnn5A8pJASkgBaSAFJACUkAKSAEpIAWkgBSQAlKgcgUE6laulWpKASkgBUaGAoR7O+AJ9wLIJeQbIN0I2o3yPe4Qb5Q2b8N2kAGQr4cs93QIU3UD5It2BosYDnuNDAV1FFJACkgBKSAFpIAUqA8FCL8StgVU67BtM8Z1hGSZbo4g2iTNfPiQnwC3nh/VjQBb1kulu5Ujn30LuoUIclJACkgBKSAFpEAjKsA5sc6XC9axFODu0gKAXUxZvYAxFGHQenAEcUdjPAbruhlAuxmCuvCEdhnPjEEaVlwzrAPv8fABFcLkI6mhBnoJ4KbmEd1gADQllFvcgnlDeFo3LgLQdb8RYO5GxOkJ59LK8WZ4fixaD47aToe147kYPs8DnDsPoO7OWa36UA+/jfZBCkgBKSAFpIAUkAJSQApIASkgBaRAgyogULdBfzjtthSQAlJgyBXAOwsuQRcBvJhAT8G+UR7K0lZ64/LIMm/UzmFfQr6EdwPgy3pMh7YeD3nIJ+TLPEz4y0kBKSAFpIAUkAJSYEQpQICC4KvDtoRgMeBCOgJqWcY8pFnHIdsonkF+qBfqJnBtXNfbdQNu475CHrcpQ2AQQU4KSAEpIAWkgBTYLhXAsCsPi60dzwLahXXdzr8BHH0Wc1ZroUa9wKKlPww/liKUCwu7Ngar0wDazRDapWVeeIOVV4+zDseEPo6Mx40Y+2U49oy9x9kfin3xGY4L6emgDX20CgvifgtOXgAAB7NJREFU/Oif83Kx9zjnCMMcH+f24o/5iwSeCee2Iw/xIuBbeiOsuxmdIr9u9YU2mZ0g0W4AdGdnrBlWdJt3y1oOlo4TbbD7clJACkgBKSAFpIAUkAJSQApIASkgBaSAFKhGAYG61aimNlJACkgBKdA/BTi5j8n8BO7lBD7B3DCRH6fT1nm9bqiD8gjyjfpwi77MiyHeCPRFmadjEDgpw2R6Z7QtWfbt38+m2lJACkgBKSAFpEAvCqQt2TYRgMVYgzAEAQiHIpDn8G1Io8xBCdZh/a78NEThFm3ZnlZsvU5cN0C6hGzT+QQtAlCBqJwUkAJSQApIASkgBaRA/xWg9dfOF4u29ZmCdQLWzT8HlnQFxncb0BeChnQcrybjSgwYm3AgHDtyLJqL4w7qoiyDNIMs/kG0SEIX/1sxSjtYm8d8G0HdTuQhzpCrdfnH9Zyjq1e4GbvWp8Ph2A6wnjsDcO5rIA/A3JY5sJ47FToBfJaTAlJACkgBKSAFpIAUkAJSQApIASkgBaRArRQQqFsrJdWPFJACUkAKDK4CtN7h1joQxhY7EtiXoG9cFiDeCPTFLrGMwG8oD30gdCu+THu8K/S6hHtTZQ758iVEnB+l0QeqyUkBKSAFpIAUkAJ1rgAhBAcTEBKmBaDgsALhBU+HEPnpPEKxBG4dusXLetYN5Qy9HPkBpA3lzKc13NJ0yPd2aM/9kpMCUkAKSAEpIAWkgBSoDwUwx5N/FdDu87C0+1zB8ssA7S4HgwqI1zZhFzUHVB+/00D3gvztOAzFpwHOnYnHhFmwnPuarDUR1t0BhSyXkwJSQApIASkgBaSAFJACUkAKSAEpIAWkQI0VEKhbY0HVnRSQAlJACtS5AmngF9BtF6TbZYnXId8A6sYQsEO7tBDCNuk8Qr4B6A1t4ryu/BgCZjktC6fKLR/Dv26VBH2FUC9/6vxE0u5JASkgBaTAoCgQgNoA1eYi2NVo9YuwLMHXOIysgZXmlZR3q094Ni6PIVrvL+Sxbmk+0mGbocy3L8B2UH5+dSoFpIAUkAJSQApIgbpRAPNH+XUAdp+HlV2Au3n6FTG0S0u7jWpBtm4EHuId4fh9fAzn7go4d1dYzZ0JQHdG1nITMObX+H6IfxBtTgpIASkgBaSAFJACUkAKSAEpIAWkwPangEDd7e831xFLASkgBaRALRUI4K/DuoCIYmg3WN51S78xmFs+DzsT2pZAvFxS0KFeX1IQ8QDxxqGnQx1ug/VCmnVi361dKl+WYGp5IqgvKSAFpMB2oABfXtMTlGVYunRuDNdmGCZlcX2kPZ9t0/U8HWDcGKIlMMt8hgB1AygbwqTMreJGddN5pXFP68U7BJWTAlJACkgBKSAFpIAUqEoBQrvrYWl3BT3A3ReKVlgJVnclPuZegx63VtWrGg22Aq14VpiER5epGXg8VkwHnLsrLOcC0s2NF5w72PKrfykgBaSAFJACUkAKSAEpIAWkgBSQAlKguwICdbvroZQUkAJSQApIgfpQIADADtZGln8DtBuFAeJNh6jH+gR/A6TrAC/z4jLkh/YO9YZ6Hkagbzq/NN6VjqFgWpCJ+/CwgBcd3AbzCnF/oQ5DemTLSQEpIAWkwAAUwKXWQdkAyyYhgFeHZHGhDXkBkGW+54U6SHtdwrDl40ZrtuXqOFwbtyMsizoOwzJkfQdsmVdSFtoFwDZpF4G63pb7KCcFpIAUkAJSQApIASkgBepVAQy1C5sA7L4M/yKs7NK/BHD3ZUx3IK+4HjvOuRi5oVeAK2XsCD8FYO7OeEzZBUDuNMC59Ihnx+D5hM9SclJACkgBKSAFpIAUkAJSQApIASkgBaSAFBgGBQTqDoPo2qQUkAJSQApIgbpQAC+XEqA3BnUT0BdArVsADtBtKoxAXDRmXgzhhn4SSNfr8+0VjjS0jeM92jE/BfVGkG/Uju2TtNcL+xz3HfLikH37NkMa4HC0j93rOyyc1EEbOSkgBaRAXwoQHg2eL3ZDnCEtvmaLlknneX5Ur1s+IdZsDL+G+oRVU/XZdwKsxvWTPE/H5YyXtHXrs8yLy7w81Ashtp8GdLvVBUAb0lFYktZLbYguJwWkgBSQAlJACkgBKSAFuhQodmDa4xXAugR34QvwjBdWY/5iTQzutnfVV6yGCtBi7gQ8Yk3Cc8tkPOYA0M3tDE9Al+EE5PNjQTkpIAWkgBSQAlJACkgBKSAFpIAUkAJSQArUgQICdevgR9AuSAEpIAWkgBTYrhQAINsN8AWkm8C4CfyLvBikTSDgdLs02JsCbpN+WDcN7ea7+nP4N9UmgL1hez3Ki90hXyZDmzTwWy4/6TPdR6p90oZ5Ib9bHFQc0t3rIYP7H+qlw3L529XJpYMdVgUIcaY94dN0mvEkD4k4nQl1vAwndLd03Afh1bh+0gfru8fL117KKsr37aKDuL80WJuOs7xs2kHdaF8cbg39EIwN8TiMwFpsC2VpODe0i/JwPKwft4/KkJeAtnG/COSkgBSQAlJACkgBKSAFpIAUqC8FiltjcHc1gF16wLoFhIW1eIxfR4/5iQ3YZ1nd7d8PR2u5O8ATvp2IR61J9IBx6SfDE9JlGerJSQEpIAWkgBSQAlJACkgBKSAFpIAUkAJSoB4V+P+9mEkX8cOW3AAAAABJRU5ErkJggg==" + } + }, "cell_type": "markdown", "id": "756a996c-bad2-4d24-a304-6eb5e3efca65", "metadata": {}, "source": [ - "### Filter to `lof`, `missense`, and `synonymous` variants passing filters" + "### Filter to `lof`, `missense`, and `synonymous` variants passing filters\n", + "\n", + "![Screenshot 2024-12-20 at 11.12.17 AM.png](attachment:78f1b020-4f45-4800-82fa-0bdffb877962.png)" ] }, { @@ -1577,17 +1578,29 @@ } ], "source": [ - "var_ht = filter_by_csqs(['lof','missense','synonymous'], ht=drd2_interval_ht)\n", + "var_ht = filter_by_consequence_category(\n", + " plof=True, \n", + " missense=True,\n", + " synonymous=True, \n", + " ht=drd2_ht,\n", + ")\n", "var_ht.show(5)\n", "print(\"The total number of lof, missense, and synonymous variants passing filters in DRD2 is: \", var_ht.count())" ] }, { + "attachments": { + "7348e149-4f8f-4eca-aa55-6234293c1f3d.png": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAACuwAAAGOCAYAAAB2N7d1AAAMQWlDQ1BJQ0MgUHJvZmlsZQAASImVVwdYU8kWnluSkEBoAQSkhN4EESkBpITQQu8INkISIJQYA0HFjiwquBZURMCGroooWAGxI3YWxd4XCwrKuliwK29SQNd95XvzfXPnv/+c+c+Zc2fuvQOA2gmOSJSNqgOQI8wTxwT50ccnJdNJPUAZaAJ1QASjOdxcETMqKgzAMtT+vby7ARBpe9VeqvXP/v9aNHj8XC4ASBTEqbxcbg7EBwDAq7kicR4ARClvNj1PJMWwAi0xDBDixVKcLsfVUpwqx3tkNnExLIjbAFBS4XDE6QCoXoY8PZ+bDjVU+yF2FPIEQgDU6BB75+RM5UGcArE1tBFBLNVnpP6gk/43zdRhTQ4nfRjL5yIrSv6CXFE2Z+b/mY7/XXKyJUM+LGFVyRAHx0jnDPN2K2tqqBSrQNwnTI2IhFgT4g8CnsweYpSSIQmOl9ujBtxcFswZ0IHYkcfxD4XYAOJAYXZEmIJPTRMEsiGGKwSdIchjx0GsC/Fifm5ArMJmk3hqjMIX2pgmZjEV/DmOWOZX6uuBJCueqdB/ncFnK/Qx1YKMuESIKRCb5wsSIiBWhdghNys2VGEzriCDFTFkI5bESOM3hziGLwzyk+tj+WniwBiFfUlO7tB8sU0ZAnaEAu/Ly4gLlucHa+NyZPHDuWCX+UJm/JAOP3d82NBceHz/APncsR6+MD5WofNBlOcXIx+LU0TZUQp73JSfHSTlTSF2zs2PVYzFE/LggpTr42mivKg4eZx4QSYnJEoeD74ChAEW8Ad0IIE1FUwFmUDQ0dfUB+/kPYGAA8QgHfCBvYIZGpEo6xHCaywoAH9CxAe5w+P8ZL18kA/5r8Os/GoP0mS9+bIRWeApxDkgFGTDe4lslHDYWwJ4AhnBP7xzYOXCeLNhlfb/e36I/c4wIROmYCRDHulqQ5bEAKI/MZgYSLTB9XFv3BMPg1dfWJ1wBu4+NI/v9oSnhE7CI8J1Qhfh9hRBofinKMNBF9QPVOQi9cdc4JZQ0wX3w72gOlTGdXB9YI87Qz9M3Ad6doEsSxG3NCv0n7T/NoMfnobCjuxIRskjyL5k659HqtqqugyrSHP9Y37ksaYO55s13POzf9YP2efBNvRnS2wxth87i53EzmNHsCZAx45jzVg7dlSKh1fXE9nqGvIWI4snC+oI/uFv6MlKM5nrWOfY6/hF3pfHnyF9RwPWVNFMsSA9I4/OhF8EPp0t5DqMojs5OjkDIP2+yF9fb6Jl3w1Ep/07t/APALyODw4OHv7OhRwHYK8b3P6HvnPWDPjpUAbg3CGuRJwv53DphQDfEmpwp+kBI2AGrOF8nIAr8AS+IACEgEgQB5LAZBh9BlznYjAdzAYLQDEoBSvAGlAJNoItYAfYDfaBJnAEnARnwEVwGVwHd+Hq6QYvQD94Bz4jCEJCqAgN0UOMEQvEDnFCGIg3EoCEITFIEpKCpCNCRILMRhYipUgZUolsRmqRvcgh5CRyHulEbiMPkV7kNfIJxVAVVAs1RC3R0SgDZaKhaBw6CU1Hp6EFaBG6DK1Aa9BdaCN6Er2IXke70BfoAAYwZUwHM8HsMQbGwiKxZCwNE2NzsRKsHKvB6rEW+JyvYl1YH/YRJ+I0nI7bwxUcjMfjXHwaPhdfilfiO/BGvA2/ij/E+/FvBCrBgGBH8CCwCeMJ6YTphGJCOWEb4SDhNNxL3YR3RCJRh2hFdIN7MYmYSZxFXEpcT2wgniB2Eh8TB0gkkh7JjuRFiiRxSHmkYtI60i7ScdIVUjfpg5KykrGSk1KgUrKSUKlQqVxpp9IxpStKz5Q+k9XJFmQPciSZR55JXk7eSm4hXyJ3kz9TNChWFC9KHCWTsoBSQamnnKbco7xRVlY2VXZXjlYWKM9XrlDeo3xO+aHyRxVNFVsVlspEFYnKMpXtKidUbqu8oVKpllRfajI1j7qMWks9RX1A/aBKU3VQZavyVOepVqk2ql5RfalGVrNQY6pNVitQK1fbr3ZJrU+drG6pzlLnqM9Vr1I/pH5TfUCDpjFGI1IjR2Opxk6N8xo9miRNS80ATZ5mkeYWzVOaj2kYzYzGonFpC2lbaadp3VpELSsttlamVqnWbq0OrX5tTW1n7QTtGdpV2ke1u3QwHUsdtk62znKdfTo3dD6NMBzBHMEfsWRE/YgrI97rjtT11eXrlug26F7X/aRH1wvQy9Jbqdekd18f17fVj9afrr9B/7R+30itkZ4juSNLRu4beccANbA1iDGYZbDFoN1gwNDIMMhQZLjO8JRhn5GOka9RptFqo2NGvcY0Y29jgfFq4+PGz+nadCY9m15Bb6P3mxiYBJtITDabdJh8NrUyjTctNG0wvW9GMWOYpZmtNms16zc3Ng83n21eZ37HgmzBsMiwWGtx1uK9pZVlouUiyybLHitdK7ZVgVWd1T1rqrWP9TTrGutrNkQbhk2WzXqby7aorYtthm2V7SU71M7VTmC33q5zFGGU+yjhqJpRN+1V7Jn2+fZ19g8ddBzCHAodmhxejjYfnTx65eizo785ujhmO251vDtGc0zImMIxLWNeO9k6cZ2qnK6NpY4NHDtvbPPYV852znznDc63XGgu4S6LXFpdvrq6uYpd61173czdUtyq3W4ytBhRjKWMc+4Edz/3ee5H3D96uHrkeezz+MvT3jPLc6dnzzircfxxW8c99jL14nht9urypnuneG/y7vIx8eH41Pg88jXz5flu833GtGFmMncxX/o5+on9Dvq9Z3mw5rBO+GP+Qf4l/h0BmgHxAZUBDwJNA9MD6wL7g1yCZgWdCCYEhwavDL7JNmRz2bXs/hC3kDkhbaEqobGhlaGPwmzDxGEt4Wh4SPiq8HsRFhHCiKZIEMmOXBV5P8oqalrU4WhidFR0VfTTmDExs2POxtJip8TujH0X5xe3PO5uvHW8JL41QS1hYkJtwvtE/8SyxK7xo8fPGX8xST9JkNScTEpOSN6WPDAhYMKaCd0TXSYWT7wxyWrSjEnnJ+tPzp58dIraFM6U/SmElMSUnSlfOJGcGs5AKju1OrWfy+Ku5b7g+fJW83r5Xvwy/rM0r7SytJ50r/RV6b0ZPhnlGX0ClqBS8CozOHNj5vusyKztWYPZidkNOUo5KTmHhJrCLGHbVKOpM6Z2iuxExaKuaR7T1kzrF4eKt+UiuZNym/O04I98u8Ra8ovkYb53flX+h+kJ0/fP0JghnNE+03bmkpnPCgILfpuFz+LOap1tMnvB7IdzmHM2z0Xmps5tnWc2r2he9/yg+TsWUBZkLfi90LGwrPDtwsSFLUWGRfOLHv8S9EtdsWqxuPjmIs9FGxfjiwWLO5aMXbJuybcSXsmFUsfS8tIvS7lLL/w65teKXweXpS3rWO66fMMK4grhihsrfVbuKNMoKyh7vCp8VeNq+uqS1W/XTFlzvty5fONaylrJ2q6KsIrmdebrVqz7UplReb3Kr6qh2qB6SfX79bz1Vzb4bqjfaLixdOOnTYJNtzYHbW6ssawp30Lckr/l6daErWd/Y/xWu01/W+m2r9uF27t2xOxoq3Wrrd1psHN5HVonqevdNXHX5d3+u5vr7es3N+g0lO4BeyR7nu9N2XtjX+i+1v2M/fUHLA5UH6QdLGlEGmc29jdlNHU1JzV3Hgo51Nri2XLwsMPh7UdMjlQd1T66/BjlWNGxweMFxwdOiE70nUw/+bh1SuvdU+NPXWuLbus4HXr63JnAM6fOMs8eP+d17sh5j/OHLjAuNF10vdjY7tJ+8HeX3w92uHY0XnK71HzZ/XJL57jOY1d8rpy86n/1zDX2tYvXI6533oi/cevmxJtdt3i3em5n3351J//O57vz7xHuldxXv1/+wOBBzR82fzR0uXYdfej/sP1R7KO7j7mPXzzJffKlu+gp9Wn5M+NntT1OPUd6A3svP5/wvPuF6MXnvuI/Nf6sfmn98sBfvn+194/v734lfjX4eukbvTfb3zq/bR2IGnjwLufd5/clH/Q+7PjI+Hj2U+KnZ5+nfyF9qfhq87XlW+i3e4M5g4Mijpgj+xXAYEXT0gB4vR0AahIANHg+o0yQn/9kBZGfWWUI/CcsPyPKiisA9fD/PboP/t3cBGDPVnj8gvpqEwGIogIQ5w7QsWOH69BZTXaulBYiPAdsivyampMK/k2Rnzl/iPvnFkhVncHP7b8Ah9d8bcAadJgAAACWZVhJZk1NACoAAAAIAAUBEgADAAAAAQABAAABGgAFAAAAAQAAAEoBGwAFAAAAAQAAAFIBKAADAAAAAQACAACHaQAEAAAAAQAAAFoAAAAAAAAAkAAAAAEAAACQAAAAAQADkoYABwAAABIAAACEoAIABAAAAAEAAArsoAMABAAAAAEAAAGOAAAAAEFTQ0lJAAAAU2NyZWVuc2hvdKZZPWsAAAAJcEhZcwAAFiUAABYlAUlSJPAAAALYaVRYdFhNTDpjb20uYWRvYmUueG1wAAAAAAA8eDp4bXBtZXRhIHhtbG5zOng9ImFkb2JlOm5zOm1ldGEvIiB4OnhtcHRrPSJYTVAgQ29yZSA2LjAuMCI+CiAgIDxyZGY6UkRGIHhtbG5zOnJkZj0iaHR0cDovL3d3dy53My5vcmcvMTk5OS8wMi8yMi1yZGYtc3ludGF4LW5zIyI+CiAgICAgIDxyZGY6RGVzY3JpcHRpb24gcmRmOmFib3V0PSIiCiAgICAgICAgICAgIHhtbG5zOmV4aWY9Imh0dHA6Ly9ucy5hZG9iZS5jb20vZXhpZi8xLjAvIgogICAgICAgICAgICB4bWxuczp0aWZmPSJodHRwOi8vbnMuYWRvYmUuY29tL3RpZmYvMS4wLyI+CiAgICAgICAgIDxleGlmOlBpeGVsWERpbWVuc2lvbj4yNzk2PC9leGlmOlBpeGVsWERpbWVuc2lvbj4KICAgICAgICAgPGV4aWY6VXNlckNvbW1lbnQ+U2NyZWVuc2hvdDwvZXhpZjpVc2VyQ29tbWVudD4KICAgICAgICAgPGV4aWY6UGl4ZWxZRGltZW5zaW9uPjM5ODwvZXhpZjpQaXhlbFlEaW1lbnNpb24+CiAgICAgICAgIDx0aWZmOlJlc29sdXRpb25Vbml0PjI8L3RpZmY6UmVzb2x1dGlvblVuaXQ+CiAgICAgICAgIDx0aWZmOllSZXNvbHV0aW9uPjE0NDwvdGlmZjpZUmVzb2x1dGlvbj4KICAgICAgICAgPHRpZmY6WFJlc29sdXRpb24+MTQ0PC90aWZmOlhSZXNvbHV0aW9uPgogICAgICAgICA8dGlmZjpPcmllbnRhdGlvbj4xPC90aWZmOk9yaWVudGF0aW9uPgogICAgICA8L3JkZjpEZXNjcmlwdGlvbj4KICAgPC9yZGY6UkRGPgo8L3g6eG1wbWV0YT4KUGDUYwAAQABJREFUeAHs3Qd8FHX6x/Fnd1NI6L2XgEhH8FAQUBB7r3gq2MA/nt6pWDmVK5a707OiHicqeIoCCiigghVFEaQJiAhKCb33mrr7f56BXbcl2YQkpHx+L4aZ+c1v2nsmEJIvT1wZGRk+oSGAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAkQi4i+SoHBQBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEHAECu7wICCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIFKEAgd0ixOXQCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIENjlHUAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQKAIBQjsFiEuh0YAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQIDALu8AAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACRShAYLcIcTk0AggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACBHZ5BxBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEChCAQK7RYjLoRFAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEECCwyzuAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAEQoQ2C1CXA6NAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAHAQIIIAAAggUl8Du3btlwoQJUqtWLbnoooskISGhuE7NeRBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACB4yZAYPe40XNiBBBAoHwJzJ49W3r16hW46Tp16siyZcukcuXKgT4WEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIGyKEBgtyw+Ve4JAQSiCqxbt0727dvnbFuzZo1kZWXJCSecII0aNZJq1apF3Se88+effxav1xveHbIeHx8vFka1Y7pcrpBt5XnlueeeC7n9bdu2ybvvviu33nprSD8rCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggEBZEyCwW9aeKPeDAAJRBSxka9VdN27cGLH9vvvuk3/9618R/dE6OnXqFK07x742bdpI//795dprr5XGjRvnOK48bFi9enXEbf76668RfXQggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAmVNwF3Wboj7QQABBKIJzJs3L2pY18aOHj1asrOzo+12zH3Lli2TRx55RFq0aCF33nmnpKWlHfMxS+sBbrvttohLv+GGGyL6SmLHxIkTpWbNmiHT/fffXxIvlWtCAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBEihAYLcEPhQuCQEECl9gwoQJOR5027Zt8t133+W4vbA2jBgxIscqv4V1jpJ8HKs0/Oyzz0rLli2lZ8+eMm7cOOnQoUNJvuTAtaWnp8v+/fsjpsAAFhBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBXAQI7OaCwyYEECgbAllZWTJq1Khcb2b8+PG5bi+sjQsXLpR+/fqJXVN5a8nJyU6V4aVLl8r06dPlyiuvLG8E3C8CCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgiUUwECu+X0wXPbJU/AApxFFeL0er2yZcsW2bNnT4Fv3I6xdetWZ7Llwmp79+51ri2v42VnZ8vmzZvF5vlt33zzjVMZNbf9xowZIxkZGbkNyXHbp59+KmvXrnWmX3/9VWbMmCEvvPCCU0k22k6zZs1yKs1G23a8+qyCrPkW5rO1Y/p8vkK5paK4vt27dzvvc6FcYIwH2b59u+zbty/G0QxDAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBsiLg0oBa4aSpyooI94FAMQr89NNP8tJLL8nXX38tqampzpk7dOggZ599tgwZMkRq1KghDz30kPzwww8hVzVs2DBp3bq107dx40YZMGBAyPYWLVrI8OHDZcmSJfLYY4/J5MmTA9vr1Kkjp512mvzjH/+QE088MdAfbWHNmjXy9ttvy9ixY2XFihUhQ1JSUqR///5OtdjmzZuHbPOvPPXUU04lVf+6zf/+979Lly5d5JlnnpH//Oc/sm3bNmdz5cqVpXfv3vLvf/9b7Pr97cMPP3T65syZExh3xhlnSJ8+feT222+XuLg4/9Ac5zZu5MiRIdsHDRokr776akjflClT5Pzzzw/pC19JSEgI7xKrmtuuXbuIfgtgX3fddSH+wYMsMFqxYsXgrohl87nhhhsi+s3P3pVo7ZZbbpFNmzaFbDJ3e+7+duDAARkxYoQsWLBAFi9eHPJ8u3fvLp06dXKex+WXX+7fJWRu97Vr166QvgkTJjjntWrFU6dOlfnz5zvb7f256qqr5Pnnn5dPPvkkZJ+nn35aOnbsGNJnK0V1fWlpaWLv5RtvvBEIcdu7d9JJJ8mDDz4Y8vwPHTokV1xxhXNtGzZsCDGyTvtYCn7u9rEc/jFlH4Pjxo1zjGfPnh04Z8OGDZ2PAzvvwIEDpX79+s55+A0BBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQTKpgCB3bL5XLmrUiBgwdShQ4fmeKUWIvzoo4/k8ccfly+++CJk3MyZM+XUU091+lauXClt27YN2W5BTgtPWjB2//79IduCV958800nUBrcZ8tWFdUCv/fcc0/4pqjrFrq86667xOVyhWy34Og777wT0vfBBx/IV199JS+++GJIf/DK559/LqeffrrcfPPNTtgxeFvw8o033uiETj0eT3B3yLIFNC0cGezQpk0bsVBp+/btQ8ZaMDY82BsyQFfyE9i1fS30eeGFF4pV1Q1v7777biAQGr4teN1CncuWLQvucoLYf/7zn0P6bMWq5DZt2jSi/5dffhELWVszfwt5W9g7r/bHP/7RCUzHx8eHDG3UqFEgbO3fYAF0C1L7Q9j+fgsG27vwpz/9KSIkbWHWK6+80j/UmRfV9VkVZAsaR3sW/gu44447nOrItm7vTM2aNf2b8pxbqLxz587OOKtU/Morr8jgwYPz3M8+1u19NDsaAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIlE0Bd9m8Le4KgZIt8Nxzz+Ua1rWrt7Bg3759YwpVht+tVT61yqjBIdXwMbZ+0003ydatWyM2WaXRWMO6tvMDDzwg9913X8RxonW8/vrruYZ1bR8LTVq1Ugtz5tbeeust+etf/5rbEPnyyy8jHKzaq1VCbdmyZci+o0ePdgK2IZ3HuJKcnCwWUrZQZnizkGYsrV+/fhHDwivV+gd88803/sXA3ILb/rCuVSw+77zzYn6vrAryZZddJlYtOK9m4d7wsG5e+4RvL8rrs0rLuYV17VosqP7pp5+GX1a+1y2cHEtY1w5sH6dW2fm9997L93nYAQEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBEqHAIHd0vGcuMoyJJCamirRKqNGu0ULP4ZXVo02LrzPKqfGup+Fh4ObBUGHDRsW3BXT8ssvvywff/xxnmNjGbNixQonBJznwXSAVQnOrVkV2/Bm4Uhr4ZVdra8wwpp2nOBWvXp16dGjR3CXs7x06dKIvmgdFjAObxY83bNnT3i3WHXi8GaVg/3t2Wef9S+GzC1QHC1UbIOswnMsz23GjBkhxyzISlFe39SpU2O6pIcffjimceGDkpKSnK6ff/5ZLJge3qzytVWivuSSS8I3OesvvPBC1H46EUAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAoPQLENgt/c+QOyhlAlbBM1qzKqivvvqqzJ8/X0aNGiU9e/aMNixffVbx9KuvvpIlS5ZITkHI8Iqjd999d9Rz/O9//5MtW7Y4ky1Ha/fee6/4fL5om0L6unfvLlOmTJEffvhB/v3vf4dsC1+x67ZxFho9++yzwzc7FV3XrFkT0W8dVrk0vEpvnTp15He/+50z/sILL4zYL3x8xIACdtjzDW8bNmwI74q63qJFC4m2/8yZM0PGe71eiVZ516otWzPH8OdtHgsXLpQdO3bI9u3bZe7cudKmTZuQ49pKtONGDDraYQHjJ5980rG35xctrBxt3+K4vnPPPdepeGyBdqtwbPcf3uzj5eDBg1KpUiXZvHmzM1nF5/B2xRVXBLZbperWrVs7Q7777rvwoWImc+bMkWeeeUYmTpzoePurHvsH28d+rEF7/z7MEUAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAoHQIxJWOy+QqESgbAhZmnTBhQsTNWHDPqn9Wq1bN2daxY0en+uuZZ57phCkjdoihw4K3Tz/9dGBkq1atxO12yz333BPoswWrBupvFpi0CsDhzaqFXn/99YFuW87KypJbb7010GcLtq8dwx+IDdl4dMXu9YMPPhCrOmutffv2cvjwYfnb3/52dMRvMzvvjTfeGOg4+eSTnVCkVR4ObhY4bdasWXCXsxwtZGrhVY/H42w/5ZRTnKqyFuz1N7s2q1zrfxb+/mOdn3TSSRGHsPPavfsrs0YMCOro37+/E+YO6nJCzBdffHGgyyr2htvYO1S/fn1nTO3atZ3AaGAHXbAAqz9o6nK5pFOnTnLfffdFPNu1a9cG75bj8qRJkyRaEDrHHYI2FPX1de3aVd577z1JTk52zmpB6KZNm8qpp54adBVHFu1+27ZtKzVr1nQ6olUftnfEvz34ABZsD2/27sbF/fZXbpUqVZyPeQtIB7cGDRoEr7KMAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACZUTgt/RQGbkhbgOBkixg1To3btwYcYlWWTc8IGqhwjfeeMMJUEbsEENHeDDXdrnmmmsiArsWGj106JATYvz0008jjmyVXYNDs/4B1vfKK69EhEg/++yzXAO7Fvb1h3X9x7LKudECu1aVNLhZxdPTTjtNJk+eHNztVNIN6Ti6Eq1abnCY1AKUV199teMcvP/HH38s/fr1C+465uV69epFPUZaWlpMgV2r5jp48OCQY5jDCy+8EOizasrh7dprrw10NW7cWO66667Aek4LZ5xxRsQme0fyan//+98LHNa1Yxf19dm9+8O6/nuxgLJVFA6vbGsfqxbYLUiLtt8jjzwiGRkZTqVdC89bONoCwzbREEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAoOwLENgt+8+YOyxBAuHVT/2XllNFWgsSWmXP4Aqw/n1ym9epU0eiVeq0CqbRWnZ2ttMdLUxsgd2cmm2bP39+yOZoxwgeYNWDw1u0a7VKvBUrVgwfKtYfS9u5c6d8+OGHEUN79+4d0nfJJZdEBHbHjh1b6IHdFStWhJzXv1K1alX/Yq5zq5Jr1XKDQ7lmvWrVqkDo08LS4c3uL1qzas92TbNnz3YqI+/atcupLGzVhb/77rtou+TZFy3om+dOOQwoiuuLVuXYTt+8efOIwK5VkC5os1B5tPboo4+KTfYxbe9ht27dxCok28c5DQEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBMq2AIHdsv18ubsSJmChyPDWsGFDscqx0ZpV4ezQoYPMmjUr2uYc++rWrZvjttwCwNHCtq1bt87xWNGChtGOEXyAhISE4NUcl636bbRmJrG0jz76KOqwESNGhPQfOHAgZN1WLPi6detWyc0xYqc8On788ceIERasdrvdEf05dVx33XUhgV0bN336dCewaxVwwwO7Vk24Vq1aIYezIKwZWMXX/AbBQw4UZSXa+xBlWK5dRXl9OQXWowXDc73IPDZaAP2pp56SIUOGRB1p7hYmt8meg7lZ9d+BAwdGHU8nAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIlH6B6Im40n9f3AECJVIgKSkp4ros4GoVbj0eT8Q269i8eXPU/qLo9FfaDT52hQoVgldDlhMTE0PWbSXaMSIGFUPHmDFjop4lpxBl+ODJkyfLoEGDwrsLvL5w4cKIfZs0aRLRl1tHtGq5FtL9v//7P/n+++8jdrWAb3Dbu3ev3HzzzfLxxx8Hdxfacn7Cx9FOWtTXF+2cRdV3zz33OBWiH3vsMcmpsrb/3MuWLZPbb79dfvnlF3nyySfzFeL2H4M5AggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIlGyB2Es7luz74OoQKBUCVlE1WluzZk20brEAY2pqatRtRdFZr169iMOuXLkyos/fsWLFCv9iYB7tGIGNxbRgIeevvvrqmM6WU+C3IAe165kxY0bErmeeeWZEX24dNWvWlIsuuihkiAWLMzIynEq7IRt05YILLgjpeuedd6KGda3q8rXXXit//vOf5V//+pc88MADIfsV10pJv778Oljg2z62p0yZIjfeeKOkpKTkeogXXnghokpyrjuwEQEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBEqNABV2S82j4kLLgkCDBg2i3sZLL70kFtYLb9ZfnC3a9f388885XsLSpUsjtkU7RsSgIu6YNGnSMZ9h1qxZsm7dOslvFdzwE3u9XrnrrrvCu531yy67LGp/bp1WNTe8Qu68efNk2rRpIbtdddVVUqVKlZC+qVOnhqzbyvPPPy+33XabxMX99tfBokWL5Omnn44YW9QdJf36CnL/5nr++ec7k+2/fft2sXfrjTfekGj3O3PmzMDYgpyPfRBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQKBkCvyW0CqZ18dVIVCmBJKSksSClBMnTgy5r+HDh0urVq1kwIABkpiYKJmZmfLee+/JY489FjKuqFe6desWcQoLFc6ZM0e6du0ass36Pvnkk5A+W4l2jIhBRdwxevToqGeIFor2Dxw8eLB/MTC353TPPfcE1vO7sHv3brEqq1YFN7w1bNhQunTpEt6d53p41Vzb4c0335QlS5aE7GsVc4PboUOHolZvvfXWW0PCurbPF198EbxrsSyX9OuLhjB//vxo3U5V3f379we2ud1uadeunbNeu3ZtsaC2TY888khEMPrHH38M7McCAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIlB0BArtl51lyJ6VEwEK54YFdu/S7777bmTp37iwrV66U4MBfcd1anz59pHLlyhHnvvHGG50Krs2bN3cuZfXq1WJ94c32tWMcz7Zq1SqJFqRcvHixtGnTJsdLO3DggAwdOjRk+9tvvx1TYPfzzz+X9evXO/tmZGTIpk2b5IcffpD//e9/IccLXnnllVfEgpz5bWZsYdxx48YFdo12nnPOOSew3RYSEhKiPlsL51500UWBsXYvDz/8cGC9uBZK+vVZ2D68WUj6ww8/lPPOO8/x9W83zxUrVvhXnfmLL74of/jDH0L67FmGt0aNGoV3sY4AAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAJlQIDAbhl4iNxC6RKwIOXVV18tEyZMiHrhCxcuDOmPFqANGVCIKxaafOihhyICm6mpqdK6detA4HXZsmVRzzpkyJCQ4GLUQUXc+f7770ecISUlJXDtERuPdljl2vDArgUyly9f7tx7TvtZ/4MPPpjb5ohtVtXWQp4Fbb///e9DArvhx7EwdXJyckh3XFycnH322fLBBx+E9F9xxRXSq1cv6dSpkyxYsEBmzpwZsr24Vkr69Z1wwglRKaxitn2MVqlSRaZMmSIdOnSQO+64IyLofdddd8msWbPk9NNPd8bOmDFDXn/99Yhj2nYaAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIlD2B/Jd3LHsG3BECxS4wYsQIOf/88/M87+OPPy49evTIc1xhDhg8eLB079496iEtqJtTWNf2uffee6PuV5ydVhU3vFlAOq/Wvn17adiwYcSwnILVEQNj7Ljtttvk+eefj3F09GFnnXWWExKNvlWcQHi0bTm9cxYeHTZs2HEL6/qvtSRfX4sWLXI0t2rYGzdulKysLOdWrr/+ev8thcytKvIf//hHueGGG6KGdS3s27dv35B9WEEAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIGyIUBgt2w8R+6ilAlYRc6JEyfKyy+/LFb9NbxZcG/SpEliFWuLu1mlUzv3JZdcEvOpL7roIqdyq+17PNtPP/0UNVBs1XPzai6XK2pYcvTo0XntGtP2OnXqyKhRo+Sll16SxMTEmPbJaVCFChXkmmuuibrZ3q0+ffpE3XbTTTdFVH6NNtAC5cejleTrs4rFb731Vkws1atXl0WLFjnVdmPaQQdZVeSvv/5ajvfHUKzXyzgEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBDInwCB3fx5MRqBQhOIj4+XQYMGyfLly2X9+vViYdMFCxbI9u3bnfmFF17onGvfvn0R57R9/S1awM9Cm/lp4ceoVq2ajB8/Xiys2rNnzxwPZdvefPNNJ3xsIcXwlpCQEN4lFjaNpVWqVCmWYSFjPv/885B1WzGLbt26RfRH6/CbB29LTU2VVatWBbpitbUgdq9evWTgwIEybdo0Wbt2rfTv3z9wnGNdyKkSq1V3jeZu53O73fLUU0/Jiy++KJ07d464BKtwO2fOnKiBXwusBrfgd9DfH63Pv83m4e9Z8DZbPt7XF3w9SUlJwavOsgXTrcL0ww8/HLUac/D9t23bVmbNmiV/+ctfpE2bNhHHsg57l+wdGTt2rFNxN9Z3K+rB6EQAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIESLeDKyMjwlegr5OIQKGMC8+fPlx07doTclYUn69atG9JnKwcOHJAaNWpE9G/cuFFq164d0V9UHVu3bpUNGzY4YWI7h527YcOGUq9evaI6JcctBoFDhw45YWSrLmwB44oVKxbDWWM/RUm/Pq/X63yMWhDZAr7mmFNLT0+XFStWON4WfrZAb4MGDXLdJ6dj0Y8AAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAKlT4DAbul7ZlxxKRcYOnSo/Pvf/w65iw4dOsj06dOlatWqgf69e/fK7bffLhMmTAj02YIFZa3qKw0BBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBEqHAIHd0vGcuMoyJGDVca2aabTWtWtXsfDu7t275bPPPpP9+/dHDHvllVdkwIABEf10IIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAyRQgsFsynwtXVcYF7rzzThkxYkS+7/Laa6+VUaNGSVxcXL73ZQcEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEDg+Au7jc1rOikD5FnjxxRfltddek8qVK8cM8fDDD8vIkSMJ68YsxkAEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEESoYAFXZLxnPgKsqpwObNm+X111+XH3/80ZlSU1NDJLp37y4XXXSR9O3bV5o1axayjRUEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEECgdAgR2S8dz4irLicChQ4ckPT1dKlSoIElJSeXkrrlNBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBMq2AIHdsv18uTsEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgeMs4D7O5+f0CCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIlGmBuDJ9d8Vxc14RX4ZNPvFl6jxLp2yfiDPXC8jWdV0Vm3TskRWXiP4Si0vboi17dK6T6BNxeVzisnm8Tgm6nHB0rM5oCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAKlS4DAbk7PSwO2FsT1HvI5k++QLqdpKPew9ttkyxbUTT8yTtKPrmtQ18K6TmDX5hbSdYK6QXNdDA7sOsFdDe9aSNcCu05o18K6OkmiBnYTLbirk80r6HoFnSdp3teWk3Ve0SXuZF228Rb+pSGAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIlBgBArtaAdd7WEO5+32SvU+Xde7br/MD2ndQw7g69x3QuS3rOAvuymGXE9gVDes64dwifZxWmlebPamjgV3RkK4ryaeThnQr6nIlDe1WOrLszCvremWXeKocmbt1nFXwpSGAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIFL+AKyMj42gitPhPXtxn9Fk4VwO42Xs0jGvTbl23+V6d79Uwrs59NtfgrgV0JbO4r/AYz2dVeTW869KgrquKBniramC3qlbfrabzajbXEK8tV9e5VuUlxHuM3uyOAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIxCBQpgO7vgxxwrnZOzWkq5PXP9+lgVxn0nCuVtMtdcHcGB5syBAL8lqIV4O67hoa2K2h85o6r6XB3Zo66bpHw7yuhJC9WEEAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQKASBMhXY9WVpQFcr5GZv02m7Tls1pKtz73atoKtz3x4V0xAvTQU0nOuqfiS0666t8zoa2j06xdXWQK9W5nXFIYUAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggcKwCpT6w6z18JJybtUXnm3XSuXeLBnR17turPBripcUgoOFcVzUN7tbTsG49EY/ObYqrr5MGeF0VXDEchCEIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAuECpTKw6z3oEwvoZm3UgO4mnWyuk08r6Up6+C2yXiCBChrg1cq7noYa3LWpgQZ3dR5XVwO9FQnvFsiUnRBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAoFwKlJrArlXSdUK6G3S+XgO6a7WSrs59u/W5ZZfLZ1d8N+3R8G4Nrb7bWIO7TTW020gnXXbCu0mEd4vvQXAmBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBAojQIlOrDry9Is7g6fZK7zStYaDerq5NWgrm+XUhPSPT7vW9zR8G4TDeym6NTMJfFN3OKp6RKXbqMhgAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCIQKlMjArveAhnS1km7mag3qrtZqujr5tumFZ4RePGvHWSBBw7t1tepuc5G45hrcbe6WeK2+665I1d3j/GQ4PQIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIlCCBkhPY9Ypk7dKQbqpXMldqSHeFTlpRVw6UIK2cLsWjG+J1sgBrvIZV4/S6rdqs9rtsm1sny7D657ooOkT0nv1zn1UMtkmrCkuWS3yZOsACyplH+3VWoltlvV2tthvXUqcTNLzbzC1xNfSm7Z5pCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAQDkWOO6BXZ8GVLO2aUhXA7qZv2hF3V+0mu4WfSIWVD3ezUK2FsJN1nlFm7ucZVcFXU7SSeeSqH2JumzjdBIN7LosvGthXQ3txhLY9VlwV8O6ZmGBXWeugV2fBnZ96TpZcDdd19N0+bBONj+k00EN9R48sux4WQj4eDc1cNfXqrsnKkUrtyScqMu13I7F8b40zo8AAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggcD4HjFtj1aSA3a4tXMjSkm7lMq+laUHeHElh4tbibBXMtgFvFJg3c6txty5Vd4ragbiVdr6j9lXTdxunkTtJ1Dey6NbBr4dyibFZ912eBXQ3retOOzg/pXMO6Xg3t+rQKsVcn336fePfZXKd92r9Xr0rDvU4V36K8wGjH1sq6rtpK00qr7bbR4K7O4+oR3I1GRR8CCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCJRtgWIP7DoVdS2oqyHdzJ+8R4K6uxW5uKrDWjjXKuRW17BtDQ3d2ry6BnGr6byazqvqXIO6Hg3uujWg61TNLQXvgFXh9R7Q4LMGdb3OpOu7dXmPzvdoeFeNvbuOzIs1xKverhoa3G2twd32GtzVeVxdgrul4JXiEhFAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAoJAEii+wq5Vzs7b5JH2ZVtT9UYO6Gti1EGmRB3UtoKtVct21NYCrFV/dtXSqqcs6eWzSsK6nqgZzEwtJtIQdxqcVdrP3apBXw7vZGtj17tBpp801wLtdJ10XrdRbHM/BCe620eBuR7cktnVLXC19OFqJl4YAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgiUZYFiCexaWDTjF62qu8grWUs0qKth0SINiFoF3ZqaBa2vYdy6OtewrqeuVna1uYV1k63sa1l+rLncm+ZzvYc0vKuhXQtQZ+vktflW7d9y9Nmk57L/sW4yeg1Ox3VwSUJnrbh7ols8WtmYhgACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCJRVgSIN7PrSNKi7Wqvq/qBB3YVe8W5SxuwioLS8p1XR1YCuu4GIR+dxFta1uVXWLc8B3by4jwZ4LbybtVmDu0cne1YW4C2y6rsefV6NNLjbSavt/k6Du820ynEFgrt5PS62I4AAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBA6RMomsCuVyRri1fSFnslc66GQFdp8DOtCHAqaeizgQZzG2tIt5GGc21qeKRiqyuuCM5XDg7py9JMtVZEztqoIesN+uycScO7m/QZHigCAK2G7Gmp1XZPcUniSW6Jq+vWh1oE5+GQCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAwHESKPTArvegVtX9xSvp32vg80ef+HYV8p1pwNNdT6vmNtXqrE01oNvULfEa1PVU1eqsBD0LF1urIWfv9Ummhnaz1urzXOsT79qjlXfTC/dUrpr6PE/S0G43rbZ7ovtIVeTCPQVHQwABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBI6LQOEFdrWqbqZW1U1f4JWM2V7xrtH70WqthdI0iOuqrnncZhrQba5TikviNajrqeESl6dQzsBB8hBwKu/u0vCuBXdTNcC7WqvvrtGqu3t0R332hdK0KrI7RSShu1sq/M4jcXUIYReKKwdBAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIHjKlAogV1fulbVXeGVtJleyVyoIc7dhXRPCRrUraeVV1tqSPcEDek212q69TWkW0GDnLTjJuBL0+DuJp1Wa3h3pYZ3V2gl5S16OZmFc0muGvrMT3ZJhZ5abbeFW1yJPO/CkeUoCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCBwPASOObCbvccn6Yu1su7XXsnW4KZkFMJtJGml1SYa0m2lId0TddLQZlx1qq0WgmzhHkIr62ZZ1d2VGtTWZ5+13Cfe9foOpBXCaTSs7dHnn9jbLYkdtZpyVUK7haDKIRBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBA4DgIFDywq7nMzM1aVXe2VzK0sq5vk1699h1Tq6ghzaYu8bRxSUJbnVLc4q5EUPOYTItpZ+9+rbKcqtPPWnV3mQZ31+rLcOgYT66P3tVI34OeLknqpqHtem7tOMZjsjsCCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCBQzAIFC+xmayHdNV45PD1bMudpMHPPMV61VdRtppV022s4s51b4nXZnUwy8xhVj8vu3oNacXeNBneXatXdJUeDu8dacbe6SPypbkk60y0JTTW06zkut8ZJEUAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgQIJ5Duw68sQSf9FK+t+ni1ZPx5jFdUEDeo2Fonr6JZEneJTCOoW6CmWwJ0suJuxWqcfteKuTt4NepGZx3ChyfqedNJKu+d4JKGlW1z67tAQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACB0iCQr8CuL80naT9pWHeaV7KXa1i3oAFMLZLqqmNBXZcknqxVUzWA6a5MRd3S8MLk9xq9+31OwDvjBw3uasVd33Y9gje/Rzk6XkO6nrYa2j1fA95aidmVyDtTQEl2QwABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBYhSIObDrPaTBy8VeOTwtW7wr9AqzC3iVlTV02dolCado6LK9W+JqauiS3GUBMUvJbprtztqh788Sr2TMPxr2PlDAa4/T9+dEl1S44EhVZncSL08BJdkNAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQSKSSCmwK73sFbWXaCVdadqWHe1XllBKqRq0NLdSCTegro6xTfSCqnaRys/Ar4sLcq8zivp87ySqcFd7wa994IEv7VCs/sEkaSLPJLYSaszE9otPy8Rd4oAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAKRTIM7BrYd30hVpZ9yMN667SO9RqqfluWlU3rr1LErtrWLetBiwrUxU134ZlaIfsfT7J+FmDu995JWupvlAFqbarr5BbK+0mXeyWCidp+LsC71QZekW4FQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQTKlECugV1fhkjaomw5/KGGdVfofee3sq5mKF0NRBK6aqjytCNVdcVTpvy4mYIKaGXdDK22mzZbq+3O8Ypvix4ov2Fwq7TbSivtXuqRCh084koo6MWwHwIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIFB0AnE5HloDlenLNVD5iVe8K3VUfsO68RqmPEGr6vbWsG5nt3iqUQE1R+vyuEGD2wkpR96LtLr6rs3Q98wqOGfmA0PfSe+vGirXd9StFXYTW2uCl0B4PgAZigACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACxSEQPbCrlU4zUjWs+1m2ZP+iKxrezVerKBLX0SUVznJL4olucWmYkoZANAFPdZck9/CIp6ZL0r70StYSfd8ORRuZQ5++m9nLfHI4OVtcSUdCwMLrlgMW3QgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggcDwEogZ2s7Z45fBX2UfCk/mpeGp3UF0k/lSXJPXxSEJTrXiqv2gI5CZgge4KHTziruySw1WyJXOuhnb35rZH2LYMkazFPkmrqpV2K7okri6J3TAhVhFAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBA4DgKRAR2s/dptdLvtdLpfA1NHs7flblqa1j3dLck9XJLfD1N6pKbzB9geR7t0eq4za0as752Fb2SOdMrvh35ANGqvJlztSp0LZHkM4+Ef/OxN0MRQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBIhMIqX/r02q66Uu8kvGdhiV35++crnoauDzbLclneyS+PmHd/Okx2hHQgHd8Q32HztHqzGdpeLdO/lx8u0QyNOibvlTf3/xWhs7fqRiNAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIxCwQEtjNXKdhR6tsuiHm/Z2BFtZNtLBuL4/E1aKsbv70GB0uEFfbJUm9j4Z264ZvzX3du04kTd/hzA3e3AeyFQEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEECgmgUBgN3uPT9LmeCV7uU8kH1lHV22trNvHLUmne8RTg7BuMT23Mn+auJouJwCe0Fsr7eYnBK7vbvbPPkmfp+/yXn2XaQgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggMBxFjgS2M0WSf9Zq5LO17TjwXxcUXUN656hYd2eGtatTlg3H3IMjUHAAuBJZ3gkvqe+W9Vi2ME/5IBI5jyfZCzX9zkf4XP/7swRQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBwhRwArtZ27ySscArvs35OHSySHxXC1S6JS4/FVDzcQqGIhBXW98xrbIb30VDu/rOxdq8GzSw+4NXsrZRZTdWM8YhgAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggEDRCMT5MrW67hKvZP+swUattBtTixOJ62hBSo/E1TtSpDem/crAoOnTp8trr70mffv2lSuvvDLHO1qyZIl8++23EdsrVaok9evXl44dO0rdunUjthdHx5w5c2TBggXOqVq3bi19+vTJ12k3btwokydPdvb5/e9/LzVr1oxpf6/XKxMmTJCPPvpIUlNTpXHjxnLuuedK//79JS5OX6ocWnx9reKsl+jbmy1ZC/U9zcphYHC3vstZP/kk/USveGp6xBUfvJFlBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAoPgEXAdXpvkOvJct2fM0CBljMVJ3Sy12epVHKpzkEdFf5aVZ4LRFixZigVVrhw4dyjFo+vrrr8sdd9yRK81ll10mw4cPl9q1a+c6rjA37tixQ1q1aiX79+93Djto0CB5+eWXYz7FlClT5JZbbgnsv3DhQmnXrl2e+6enpzsh508++SRibNeuXWXatGliYeYcmwZwD/+QLYffzxbvqhxHhW7Qorxxp7mk4tUeiW9UvoLloRCsIYAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIDA8RRwpy/zindl7GFdlxZTTejhloTWGoAsR2Fde0izZ88OhHVt/csvv7RZrq1ly5byr3/9y5kef/xxueqqq6Ry5crOPlal9uKLL5bdu3fneozC3HjvvfcGwrb5Oa6Fk//0pz/J1VdfXaD9hw4dKv6w7gMPPCAzZsyQv/zlL46FVfz9wx/+kPvl6LuW2Fbfu+5ucdXIfWhgq77W2b/4JEMnXyxVeQM7soAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggUnoA7a7mGGWPNi8ZrxdJOLqlwskfcyVq+tJy1sWPHhtzxO++8E7IebaVt27Zy3333OdOQIUPEjrF9+3b54osvnOFWofaKK66QAwcORNu9UPumTp0q48aNc0KyDz74YL6Ofcopp8irr77q7Dt+/Ph87WsViYcNG+bsY/N//OMfctpppzmBXTumtffee0+WLFniLOf0m7uivntd3BLX0Urn5jQqtN+3SyRzuVeyd8RYPjp0d9YQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBYxZwZ6+Kvbquu4lWOT1FA5N1fgvrrlq1SkaMGOFUjr300kudMOaePXvk66+/lsGDB8ukSZMCF7lz506nz6qtZmVlyVtvvSW33nqr9OnTR26//Xb55ptvAmPDF3799Vd5/fXX5frrrxc7z9NPPy1WmdXr9YYPlUcffdQ5z9atW2XKlCly2223Oeew6rIbNmxwxts1/vOf/3SOZcd74oknZP369RHH8ndYhVl/uNTOa83Cr3ac/Da32y1nnHFGoOLsrFmz5KWXXsrzMHbPZjpv3ryoY//3v/85261yb3jbt2+fDBo0yOl+5ZVXpG7duuFDcl1fsWKF9OzZUxYvXiyXXXZZYKzL9du7EOgMW7B3wVpKSooMHDjQWfb/duWVV0qXLl2c1c8++8zfneM8rq5W2dV30N04xyGhG6zK7gqfZKZGviehA1lDAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEikYgzrcjxgMnicR31rDkiW4R/WXt22+/lbPOOuvIytHfP/nkE/nvf/8rV199tQwfPlwqVqwol19+ubN19+7dTl+dOnVk165dTgDXv/PMmTNl5MiR8p///Ef+7//+z9/tzD/66COxYGdws/NYu/vuu53wbvC21157TbZt2yZJSUny7LPPBjbZOd5880359NNPpW/fvmKVX/3NjmfntzENGzb0dwfm06ZNc5Z79eolnTt3losuukg+/vhjsXDsTTfdFBiXnwULKt9///3yzDPPyNtvvy0PPfRQrrtbZV4ztWq8VvE2uFkA2ir57t+/PyRQ6x/z+OOPOyZ23XbvsQSE/fva/Pnnn3eCz3FxMZa2DdrZwr7WrrnmGklISAjaImKB3379+sn8+fPFQtl5Nn33Elu7JfMkn2Rs1hBuWp57iG+bVtlN9UliB5+4K+UdMM77iIxAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEYhdwS1Zsg90pLklor5VNjwYerbKuP4h7/vnnO5VslyxZEqhCa8HSnJqFaa1aroVzf/zxRyes2r17d2f4n//8Z9m7d29g19mzZwfCulYhdvr06bJgwQJ56qmnnDHDhg2TF154ITA+eMHCulZt96effnKq2VoQ1wKtdi6rODt27Fj55ZdfZMKECVK5cmUnwGtVf6O10aNHO91W4dfadddd58zfeOMNZ17Q3/zBWwu1WhA3t+Y/9wcffCDp6ekhQy1obPdmYWir3hvcLAxrTtbyG9T1H+ePf/yjRAvr+nxawjaPtmzZMmdE06ZNo45s0qSJ0//zzz9H3R7e6a6s72IHfRebxhi+1Xc8WwO7mZvzvtbwc7GOAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIHKtAbOVSK2h13XYuiW/2W0ByzJgxTkDUqs2OGzdOkpOTnWtp1aqVtG3bVnr27JnrtY0aNUr69+/vjGndurWcfPLJzn4WOl2+fLl07drV2WbVZ61de+21TtjUKrJa69Chg1SpUkVuv/12efDBB+XOO+8Uj8fjbPP/ZtV3/VVrTzzxRCdMbBVmrVkA98ILL3SWU1JSZOjQoTJkyBCZO3eu0xf82+bNm2Xq1KlO16WXXurM/fvOmjVLVq9eLc2bNw/eJebljh07BsZaBd1KlSoF1sMXOnXqJG3atBELwH711VdiQWl/mzRpkrNo1YmDHazyroVtrVlot1GjRs5ycf5mgWlrOZ27cePGzvZYA7s2OKG5SzLa6rRGQ7ih2WXnWOG/eTf4JHujjm0ZvoV1BBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAoGgF3LEc3t1Qw7ottaJp8m+B3Xnz5jm73nHHHYGwrv9Yp556aiAM6+8Ln/sDr/7+E044QSw4a23jxo3+bpkzZ46z/MADD4g/rOvfOHDgQKcyrq2vXLnS3x2YX3LJJYFlW2jfvn1gvXfv3oFlW/Bv27p1a0i/rYwfP97ps7BvzZo1nWUL1vor3lpguaDNKuL626FDh/yLOc4HDBjgbHv//fcDYyyU668AbMHm4Pbaa6/JwoULxYLVFuY9Hm3Lli3OaS1gHa1ZdWNrFtbOyMiINiSiz13R3kmXuOv/9k5GDArq8O0RydIKu97DVNkNYmERAQQQQAABBBBAAAEEEECgkATsJ/jYfzp+euhD8uGHHzo/0aeQDs1hEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEyoBA3oFdzUN6WmiF3SahwcjvvvvOuf127dpFZbCKuTk1C2jWqFEjYrM/NOvzHQlVbtq0SbZt2+aMa9kyemlU/3kWL14ccbwGDRqE9AUHfv0Vgf0DEhMT/YsR8xEjRjh9FipetGhRYGrRQmG0DR8+XLxer7Oc39+Cq8r6w8C5HeOaa65xNk+cOFHS04+UlrVnYWHXLl26iFU49jerDGxVhq3997//lbi42Aoq+/cvrLlVQ7YWHMQOPra/33f55bkAAEAASURBVALbCQkJwZtyXU5IcYunuQ4JfTWj75Mt4tXAbvYOArvRgehFAAEEEEAAAQQQQAABBBAoqMBHH30krz37bzlhW6qcsGeT1F652PkpPr/++mtBD8l+CCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACZUwg78CuFj+N07Cup1poKrJWrVoOxd69e6OS7Nq1K2q/dSYlJUXd5naHXs6ePVoW9WjLKVDrr9q6e/du/9BCnVtAd8WKFc4xhw0bJlY92D89/vjjTr+Fir///vsCnTc4aOw3ze1A9evXd6oXW0D3q6++coZ+8MEHzvyWW24J2XXo0KHO+tVXXy1NmzaVnTt3BqYDBw442w4fPuyEou14RdXatm3rHHrdunVRT7F+/Xqn3z8u6qAonZ7q+l5akLxSlI1RurzbRbJ3RtlAFwIIIIAAAggggAACCCCAAALHIPDEE09I9/hMOTelgZzX7kTpWMElKYd3yciRI4/hqOyKAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCBQlgRCE7JR7szdwCVxDXRY2Mju3bs7o+fOnRuxl1Wb/fbbbyP689sRXFV3w4YNUXf/6aefnP6OHTtG3X6sne+++27gEBaIDZ/8G8eMGeNfjHmemZkp48ePd8ZfddVVMVfAveGGG5x9LKiblZUlo0ePdtavvPLKkHNPnz7dWZ8wYYJY0Dd4+tvf/uZss30bNWok4fuGHOgYV0488UTnCP5nFX64pUuXOl1t2rQJ35T7ur6TcQ3d4q4XGibPaSffTp94d1NhNycf+hFAAAEEEEAAAQQQQAABBPIvMHXqVKmdtl/Ob//bT7yxo9x5ZneZP/3zwH8Czv+R2QMBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQKAsCYTFcCNvzVNPxFMnMhDZrVs3Z7AFPxcuXBiyo1WWWbJkSUhfQVbi4+PFHwz+7LPPIg6xfPlySU1Ndfo7dOgQsf1YOyxQ++qrrzqHmTRpkowYMSJi+uKLL5ztY8eOlUOHDsV8Sgs1Dxo0SGbMmOHsc/PNN8e87wUXXCCVK1cWC+JalV2rjmuB35o1a4YcwwKwOU116tQJjLUxFtotqtauXTvn0O+8846E/zjQLVu2yDPPPONs94/Lz3XE1XWJu25se/i0qLB3jwZ2s2MbzygEEEAAAQQQQAABBBBAAAEE8hKwr4EMOb9XxLB6VSvL2U3ryahRoyK20YEAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIFD+BHIP7OpWdy2XeKpFBnYHDBggZ599tiPWtWtXJzD6wAMPiC3bN6uCA6HHwnrppZc6u99+++0ye/bswKEs6GkhVWvnnnuuVKpUKbCtsBa+/PJLJwxr4Vj/vYYfu0ePHs69Wmh22rRp4Zsj1letWiUWXO3bt68ztwFWMfe8886LGJtTR3Jyslx33XXOtf3pT39yhvXv3z9iuFX5Wbx4cdTp/vvvd8ZbaNjGvPHGG866BYntmL1795ZFixZFHDOvDgs42zvw3nvvBYaeeeaZ4q+W/OCDD8revXudbRZwfuSRR5xlM77iiisC+8S64Kmugd2a+n7m/iYfOVyWBnb365SmoV0aAggggAACCCCAAAIIIIAAAsco8Mknn0i1g3vk5KYNox6p7+86yNwvP5OVK1dG3U4nAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIFCSBOx7GjbZ90Bs4nschft0co85JmkOspqIKyHypFb91oKnFpa19uGHH8qwYcOcart33323DB48OHKnAvTcc889TqDVdu3Vq5e0atXKCYQ2adLE+bGSVh129OjRBThy3ru8/fbbzqDrr79eEhKiIOhWj8cjN910kzMu2nVMnjzZ2df2t8mu95ZbbnG8bKdbb71V/vOf/zj75+e3fv36OcOtwrCFXc8555z87J7jWKuWbKHbWbNmOdWEcxwYZUNWVpYT9rVjDBkyJDAiLi5Ohg8f7qw7Pyq0dm2xIHbjxo0Dz27kyJFiQeT8NlfikXdUKsS2p++gT7yxF0KO7aCMQgABBBBAAAEEEEAAAQQQKJcC8+bNk2u65PwTfxpUqyIpFeJk48aN5dKHm0YAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIHSI/DZZ5/JqGHPydpPJ8vWbz6T7yeOc9atn1Y4ArkGdl1atNZVMbK6rv/U1atXl48++ki2b98ukyZNkvfff99JVD/99NNi4c3w5nLlfCwba8FOaxaC9Tfb57///a/85S9/kc6dO4sFVC0QmpKSIlYd9uOPPxa7jmgt+Di23X/8aGPDtx08eDBQJfaaa66Jtkugz1/p18Kou3btcvrd7ui0Fq610K5d+4wZM5wga4UKMaZNA2cU6datm2NgXVbtOKdAcdAuIYv+6wu/73bt2jnXZ4MvvvjikH2CV+w+rAXvb8t2X9ZuvvlmZ+7/zcLWFupu2PBI1SFL31tVYqvEPHbsWLn88sv9Q/M9d1dyib2rsTSfhnV9h6mwG4sVYxBAAAEEEEAAAQQQQAABBEIFVq9eLTZ9/vnnganHCU0Dg1J37BKbpi9f6Uy2wbZ/8cUXgTEsIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIlTcC+9zFrwhhpl75HmuzbKt0rx0nv6hWcdeu37bRjF3BtuvxAjulFd4pI0u89knTybwFa/ymXL18uNlWtWlXOPPNMf3dgfsUVVzhh2jfffFOuu+66QP+xLuzevVvS0tKkfv36x3oo9s9BwOfzSUZGhiQmavnaAjR7PjmFkNPT02XZsmWyadMmqVu3rhMOLkhl3eDLOjw3Ww69ly2+dcG90Zc9J7ukYl+PJLSIHqiOvhe9CCCAAAIIIIAAAggggAAC5V3AfhrNuqVLJKVWdYk7fECDubvl9XcnyKz7B8oB8cj0X1bLhu075Mym9WXD7r2yZs8BqVujuiRUSJTxm/bxhazy/gJx/wgggAACCCCAAAIIIIAAAggggAACCCCAAAIIlGABK8j5aNfWcmpKk4irnJu6Tt5YtVX+9vRz0rx584jtdMQucKSkbU7j47XCbg4jrDqqv/LsSy+9JH379pVq1arJokWLZMKECU5Y1w7bu3fvnI5eoP6cqukW6GDsFFXAqhoXNKxrB8wprGvb7LidOnVyJlsvjOay91SnHJPnwSfRws++7OAOlhFAAAEEEEAAAQQQQAABBBDIWcB+0s/06dNlzqTx0qtBTWmUkCGNqleV7C0HpXGVirJw2a/ybuoWaVUxQVpXrCBN4nzSpHYV8el/Zt2wdYtM37JbNmaK8xOD7KcF0RBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBkiTw5ZdfSuLOLRrWPTfqZVmI95sVa8SKtz766KNRx9AZm0DuFXZbi1S8xiOJ7SMr7NrhBw4cKKNHj87xTMOHD5dbb701x+1sQKAwBNIWH6mw612R99E87V2SbO90ayrs5q3FCAQQQAABBBBAAAEEEEAAgb///e/iXrVUetStLqe1aBoAmblyjYyZ/q0k6T8vD2Vkyt1d2kjLurXkm7Vb5Jv1W8T+1dm0crKMX75GvPqTbLqcf4lUqF3X+SlFffr0CRyHBQQQOP4CFsy3ydqaNWukWbNmzrL9xsdrgIIFBBBAAAEEEEAAAQQQQAABBBBAAAEEECijAmeeeaYM/V3LkO+DhN/qev3pgheNel9WrlwZvon1fAjkUD/36BG8Wo1Up5zayJEj5cILL5QxY8bIDz/8IBs3bpTOnTvLKaecIv369ZPTTjstp13pR6DwBKy0bi7vaciJ7DumNtEQQAABBBAoYwIWLPCHDKLdmn2CXRaa3ae/Rbtff+XC4JCFfzxzBBAoXQL+j/doH+t2J/bxnp+P9cI+XunS5GqPReDtt9+WjwdcIY2rVws5zNqdu6WRBnLHLF0tky/pLtUSPPLtuq0yW8O6SfqPVNvWuFIFebBLa9l9OE0W/zRX4mvVlW+2bRL7yTZl5e/mEBRWCl2gvHyOV+hw+TjgG2+8IWt/+lHkwD5pWrOarF+3TlxNmsjanXuco8yYMcP5CWJ8zOYDtRwPLY+fb/jv2R67//M2/l1Wjj8IuHUECkkg+HMgWw7/tx9/LxcSNIdBAAEESpFA8N8N0S47v18rjHYM+hBAAAEEEIhFwP+1EP/XQcL3KY1/J9k9bVi+VE675uzw2wlZb6w/fdB1cF9IHyv5F8g9sKs/stGXlftBr7rqKrGJhsDxEvDF8J4Grk3feFf0gtGBISwggAACCCBQmgTsk+evP5oia9euFd/+PdKkRmiYaN2uI0GDtUuXSEqHk6RXr16l6fYC12r3+dZbbzn3aZ1N9EeQ2z3bjyL3t8OZmVK3fkPZnpYuyXXqO/daWu/Xf0/MESivAhaOsj/bmuqfaV79sy24Bf5ca9pM1mX65MYbb4z45m3weFsOPt6atWtC/qwMPp67YVPneOH7s15+BezdaZLgigjrmsj6XXtl5oZtWkU3SZrp30efamXdRTv3S4961aVng1ohaNsOHJKalSpKj15nyHdamXf0f18msBsixEq4QHn5HC/8vot73T7Gv31vjH7cVnP+bmhc0S2ntWnmXEaj9CP/43vmolkyY+sGcbvdpfZz6eJ2La/nC/58ozA+fynpjna/qUsWO/8us8/ZrNnnWdbW6udpTqtcVdxVqvH51RENfkcAgRgEgv9s8X+da53+Zxqf/mcaa4F/v5Xyr3PFQMEQBBBAAIGjAvbv42+++cb53NP/d0Mwjv/vhm8qV5PeF1/Kv9uCcVhGAAEEECh0Aft+tX09JK/vX5W27zfZ9917BP2EwdzgLLRrfz+H/8fK3PZhW6hAroFd32EN7KaF7sAaAiVNwN5TsSmG5orXwK5ONAQQQAABBMqKgH3y/MQTT0jPE5o6IQNv+r6QINqaTeucb2bYF7TOvO7GUvvFKv99NqlRVe9nr/RoVMcJ62YHBXYPHjos83+YJz/v3i/Ldu13qhcS2C0rbzr3Ud4E7M+sGR9P0T/bmkkTrXYY/J8RvGn7nD/XvtZqiGPmLnb+XMvriwLBxzPLRhrI8rfg421MIlDid2F+RMD+/gl+/8Jd1u87KD3q13C6N2kod93e/TLk5JbhwyTe45bsjHSnv4e+17e/MzliDB0IBAv4P/cp65/jBd/z8Vi2vx8a6deJrju1U8Tp/R/79jH75LSvnW8Q87llBBMdQQLBn28UxucvQYcukYt2v1+Nfcv5ezI77D+Orj7671ALT3gaNiOwWyKfIBeFQMkUsD9b3vzPSyFf5+peV/9TgH69y1pZ+TpXydTnqhBAAIGSKeD/93H3OlWdzz3Dvwfi/9rezJXfOP9ZjH+3lcznyFUhgAACZUVg9OjRkr1xTZ7fvyrL32+yr5va3895fW+urDzzoriP3AO7+zWwe8BXFOflmAgUmoB3v098B2M7nCtZA7tJrtgGMwoBBBBAAIFSINC0aVPpd9vt0izRrZ8Yr5MNes2exCpi1UeaaPURd/0m0qxle2mm/T179iwFdxT9Eu0+H3roIefHFH+78Eenwq7s2RkyuG2DBnIoI1MaH06Xy2vXK9X3G3JjrCBQDgXsz6vsPbucH0/u/3PNz+BpUEXc+uec/dn20FkXiv35kFcLPp6N3aj7+5sdL+XE9uLWH33eq31HfzdzBByBM844Q/735ONRNRrrfyKx/0Cyfs+R8MApdWvIB6u3yKzNO6V7/ZoR+3gSEmX97j0ya6WGgNu2j9hOBwLBAuXlc7zgez4ey/b3w4wNa+SZT7+R7vof4KzZx7a/2certQ36051uKMWfS/vvh3nRCgR/vhHt8xf/5xuxfv5StFd77Ee3+21YtZK4Dhz5e9D+PWqtadMjVTDtc6szdNmllc5oCCCAQKwC9mdLVlaWuLbYn6T6d7BOZfHrXM7N8RsCCCCAQEwC9u/j6667LuJ7IP6dA1/b068V2t8jNAQQQAABBIpS4Prrr5e1WlBG9Osh/n+v+M8X+DuplH6/yV+13n8/Oc1dGruL5XtzOe1Pv2YXN12eSyJXiw4lXumWSpfHiSsBLgRKnoAvQ2T/hCzJmOIV0V95tYSL9X2+yiPuioR287JiOwIIIIBA6RJITU0Vm/wt+MdQpKSkON3+uX9MaZ3779M/999H8P0FL/u3M0cAgdIlEP7nWvjV28d5fj7Wczue/zj+efi5WC/fAmd17SLDL+sj9mOegtvMlfojGectkO/Wb5UXzugotZKTZPK6bbJp7wFJEJ90Cwrt7tQq8Ev2pUmFZidIdu2G0kt/RGOfPn2CD8cyAlEFwv/sKsuf40UFKIbO6dOny1dffSWebRudszWtWV3Wr18njRs3kTVp2fqf4BqLq0p1GTBgQDFcDaco7QLhH7PB9+P/PMM/D95Wmpftnq3558H3F7xcmu+Ra0cAgeIXsL+fgxufAwVrsIwAAgiUT4Hy+Ll2+XzS3DUCCCBQ8gXK4t9Jdk/ndu8qi/96d54P4KTHhsmKzdvyHMeAnAVyD+zqfvG9XVLx6jiJq1OyAo6bN2+WDRs2yCmnnJLz3ZWBLYcOHZLdu3dLrVq1JDExscjuKCMjQ7Zv3y7JyclSvXr1IjtPYR84a6tPDrybJVkzfXkf2qMB9L5uqXxZnP6X7LyHMwIBBBBAAAEEEEAAAQQQQACBkSNHyqavP5Ee9WpIt+ZHqgaaigV2x0z/VqolxsuuAwflvm4dpHmt6jJj7RaZsW6LtKiSLBv2HZIN+w/Kcv0f9T0vvkzanHqaE9QlwMR7hUDJE/jyyy8DF+UPBTVv3jxf/zkkcAAWEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBUiTQokULmTbwKmkUVrwk+Ba+X71OHpv3i3z99dfB3SznU0CTi7m37C0i2dt9JSqwu2fPnkBp5TfffNP5EQi530Xp3Tpw4ECZOHGizJo1S7p06RJxI3PnzpX58+dLlSpVpH///oHtM2bMkKVLlwbWc1po1aqVnHXWWXL48GHp2LGjcxzbz4K7paFZYNcbY2jfVVnEXU2D54R1S8Oj5RoRQAABBBBAAAEEEEAAgRIhYP8ufzU7W8ZMGi+b9uzTL1ZVkYbVqsqc1PXyy4498vc+p8rnW/fK5LXbpEd6liTFeWTgSSfKTK28u/FQmmRXSJYftq+VMUMeFgv/0RBAoGQK2NfHaAgggAACCCCAAAIIIIAAAggggAACCCCAQHkU6Nevn7w7f67cd87pOd7+U5/MkKHPv5zjdjbEJpBnYNe72SdZm3yS2EYP6I7toEU9KisrK3AKC5oWZ5s9e7ZMmzZN2rRpU+RBYUujW1jXPiDCw7pm8NRTT8mjjz7q3H7lypVDAruTJ0+Wl1/O+wPkkksucQK7VatWlWeffVYGDRokzz33nAwdOrQ4WQt2Lq9I1kaveLfEUF1Xz+Cq4RJP6SkeXDAT9kIAAQQQQAABBBBAAAEEECh0Afu3ss/nk2VLf5SVew5KSlyWpDVqIfLrWmnTormc3q22jJw5T1akp8vG3fskJU1/EkxSstSpXVua168jaytUJaxb6E+FAyKAAAIIIIAAAggggAACCCCAAAIIIIAAAggggEBhCNx8883y6P2LZa4WKzk1pXHEIT9YuFQOV68jZ599dsQ2OvInkGdgV/ZpKHKdT7L3+jTsqNVJS0CrVauWLFiwQOzH011wwQXFekWLFy+WJ598Uq666qoiDexma/Weu+++27k3/9x/o+vWrZMbb7zRqbrr7wufX3zxxdK4ceQHj3/cuHHjZOHChVKtWjV/l1x//fVy3333yWOPPSY33XRTrvsHdjqOC9l79L3Ud1P2x3YR7tpaXLdmyXiHY7tiRiGAAAIIIIAAAggggAACCJQUgdtuu01WrVrlTHZNPfXHQ81d9qtkxCc6lziw5ymSumOXrN6+y1lvXruG2P9Dn7dmg5xzzjlOH78hgAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAiVNwH5CYL8//FG+Hj9GNu9dKg30Jw02rFbFucx5a9bLp9sPlI4CoCUNNsr15B3Y1Txk9iqfZK7zamDXE+UQx6erQ4cOYlNZbfPnz5dly5ZJy5YtpVOnToHbtG8OnnrqqbJ//36nyu+DDz4ot9xyS2C7f6FPnz5iU7S2a9cueeKJJ5xNf/jDHwJDEhISnGq+r7zyiowfP17uvffewLaSuJCZ6pXs1XplsRTY1VfXXV8r7NYisFsSnyXXhAACCCCAAAIIIIAAAgiUBoEWGtK1yd9OOeUUeW/BQhl8Vk+nK6VWDbEpuD3/xUzp3uO84C6WEUAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIESJXDuueeK1+uVGR9Okl92HZLELbvkVP0+yI9xe+X6224U2047doG8A7t6Du8GDeyu8ElCS5+4k13y008/yeuvvy41atSQv/71rxFXsXnzZnnqqaec/n/+85+SnJzsLFsA1YKgVqV237590rlzZ+nWrZtceeWVIcfYuXOnPP7441KpUiUZMmSIjB49Wr788kux/s8++0wsWGrH3bZtm9x///3SqFGjwP5ZWVnyzjvvyLx58+Tnn3+WBg0aOOe5+uqrpWnTpoFxtjBmzBiZO3eu/P73v5fKlSvLBx98IDNnznTO26VLF7nzzjudZRubmpoqw4YNk0WLFtmqfP/99zJ48GBn2a6xfv36zrL9Zsf59ttvnbH16tWTjh07OqHaunXrBsbktfDJJ584Q6699tqQoTt27HDCuha0tUq/FuDNb3vppZecY1x44YVi31wMbpdddplYYHfKlCklOrDrPeiTDH0nvZtjSeuKuKpqdd0GLuf9Db5flhFAAAEEEEAAAQQQQAABBBAoqMCAAQNk0KUXBAK70Y6TeihT/nzGGdE20YcAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIlBiB888/X0444QRZuXKlMzXV9YHni9NXYi6ylF+Ia9PlB2JKPLrbuaTi7z2S2NrtBGX9Idnly5eLlUQObhb4vOuuu6R79+7y9ddfO5tGjRolwdVcg8cPGjRIXnjhBYmLO5Iftgfetm1bJ0RryeyJEycGhu/du1eSkpKkVatWTojWKtFaINaaBXgvv/xysb7wZoHcL774wgnv+rdZZVoL995xxx1OKNiq1ga3lJQU51i275w5c+T00+2HWUY2CyC3adNG0tLSxO5l3LhxEYPsGFOnTpWuXf+fvTuBk6Mu88f/zExuCCEc4QgkHAnhCiKnHMohKB7giSueKArqf13wpyuygtd6rKL+dHd1V5cVgRUE8aeAKIorh4ggICBguHNzhCsk5M7M/L9PhR4nk05mJukkk8n7+0qnqqurvlX1ru7p6u5PP33wCrfVm/CSl7ykqrCb4d/Xve51HbNMmzatCjwff/zx1bR77rkn9t9//8oqA83dtaeeeipGjx5dzfbHP/6xWrbzMll9N0PG2WbMmBGjRo3qfHOfGV94X1vMv7Q12u7v0d03WvZpimFvK/ff3Zr7zD7YEAIECBAgQIAAAQIECBDY8AVeeeB+8V9veVVsO2L4Cjtz57SZ8b2ZL8SFF164wm0mECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIbFwCzdGjGrulyu7kUtH0nrZoK/neDHHWAqNXXHHFCmKXXXZZNe3kk0+uhhkSrYV1M8ib1WkzVJtVcrN9//vfjz/84Q/VeOf/MkCbYd1Pf/rTVWXdrFqb1XVX1rJybPab25dB16zoe/nll8fhhx9eVZT9+Mc/XnfR7373u3HIIYfEtddeW1Xc/eQnP1nNl1V1s89sGaDNcPI555xTXT/iiCOq6zmt9nOYWf03w7q5/qyQO3v27Ljjjjsqq9yXs846q1q2u//mz59fbXvOt++++y43+5gxYzrsl7uhh1cyGJ0tQ8AZ9O3asmpyLdCbYeC+2PI+uPgv5b44tWdh3byPt+zcFANLhV2NAAECBAgQIECAAAECBAg0UuCAo4+Ny/+84uvnJ56fG1+95obqV30auT59ESBAgAABAgQIECBAgAABAgQIECBAgAABAgQIbJgCA5q2jGh/sgcbPz9iyZ1tsXhcUwx5SUu85z3viauuuqoKqH7sYx/r6ODxxx+Pm266qbqe1W6zZdXWr33tazFixIjIEG9T07LgZFbGzaDu1VdfHRnGzRBs13beeedV6+o6vd71DM7mel796ldXFW9znpyWAdQM5OZ2ZRh22LBhyy0+fvz4yJBxbXqGZGfOnFlV381wcbYhQ4ZUlYS33nrr6vpWW221QmXhDPxme/e73x1HH310NT5x4sTI6sLnn39+1X9bW1s0N6+6ymvnSrm18GzV2Rr+l8fm3HPPrXqpBY/rdVnb/87bUW++9TKtLWLRA22x9O4ysqBnW9BUDtnAEtht3lRgt2di5iJAgAABAgQIECBAgACBngqccsop8fmPnxG/vu/BePVeu1WLPTFnbnzn+j9G89jxy/1qTk/7NB8BAgQIECBAgAABAgQIECBAgAABAgQIECBAgED/ExjQsmtTLJ1VKpX2oFhp29QSlry9LQaMbq5CscOHD48777wzshLtzjvvXOlceeWV1fDtb397bL755tX4hAkTIi/12qte9aoqsDt9+vR6N8eb3/zmutPrTaxV9O16W+dKslntd+zYscvNcsIJJ3SEdWs3vOY1r6kCu4888khtUrfDWr8XXXRRFT4+5phjYsCAAVVQ+Ywzzuh2+doMTz/9dDXayLBudvjNb36z6jerI++3337VeL3/ttyypLhLq21HvXnW17S8ry7+U6muW//usuJmlYxuy/imGFACuxoBAgQIECBAgAABAgQIEGi0wG677RZvP/XD8ePvfTeemjsvttls03j4hYXx0KARce5Xv9ro1emPAAECBAgQIECAAAECBAgQIECAAAECBAgQIEBgAxVoHrB7CTIuy9V2vwtLIpbe1R6L/twag9oHd1S+veKKKzqWvfTSS6vxd77znR3TciQr22aV2QzVHnrooVWAN4Ohp59++nLzdb4yatSo2HTTTTtP6nY8A8Rf+cpX4k1velNkUHeHHXaIQYMGrXK5/HCta6tNW7p0adebVno99zmDy7NmzYoMAW+zzTZx4oknxg9/+MOYPXv2SpfrekMtKLvFFlt0vWm1r2fF4G9/+9vV8mefffYq++mrgd22+e2x8I7WWPqXki4v98WetKaRpbpuuY8P2HrVVY170pd5CBAgQIAAAQIECBAgQIBAPYH8YuzfldDunwZuHjeUXyhq23P/6hduVvbl5Xp9mEaAAAECBAgQIECAAAECBAgQIECAAAECBAgQINC/BZoH7d4cLeNKaLeHBUjbnypVdv9Qqpw+0BbvePuyUO5ll11WKT3++ONx0003RQZtX/nKV3bIZfXcl7/85XHaaafFxRdfHLfffnt1W6M/uPrP//zPOPjgg+Ozn/1sVbX3ySefjAyfHnHEER3bUm+kubkxYc7tttsubr755upDuYkTJ8bcuXMjw8ynnnpqZXL11VfXW/0K0wYPHlxN601YeIVOukw499xzqyn5IeJLX/rSLrcuf3XJkmVp2KwO3Gdaa8TiSW2x+A9t0f5MD7eq3KdbdmuKQbs1R1Mf2pUebr3ZCBAgQIAAAQIECBAgQGADEsgv7p533nlx6j9+Kv7xH/9xpb80tAHtkk0lQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBBooEDzwO2bY+DEpshKpD1tbY+USqfXt8VLRr00dhu/WxXAnTJlSlx11VVVF+9973ujc9jzBz/4Qdxzzz0xfvz4uPbaa6sg6wMPPFCFW7/+9a/3dLWrnG/OnDnxD//wD9U855xzTjz88MMxY8aMuPvuu+Oaa65Z5bKNvLFWNfiOO+6IDDBfcMEFHQHZrPo7b968ble31VZbVfM880xPk6mr7nLq1Knx3e9+t5opbbprtQq/GbzuE60U1F08ta26z7VN6fkWNW1ZquvuU6rrbteYQHbP12xOAgQIECBAgAABAgQIENhYBXbfffeNddftNwECBAgQIECAAAECBAgQIECAAAECBAgQIECAwCoEmpsGRQyeWKrs7pnlSFcxZ+eblkYsvbuEdm9oj4+edEZ1S1aS/clPflKNv/3tb+88d1x33XXV9Q996ENVtdtaBdmcWLttuQVW48ptt91WLTV8+PA466yzYsyYMR29ZGi30e35559focvHHnssJk+eHIsXL65uy/DuSSedFL/+9a875r333ns7xlc2kstlmzVrVjSiyu5Xv/rVqr83vOENse+++1bjq/ovKxNn6yuB3SVPtMWC61pj6T0luVvuez1q5b48YO+mGLxXqa47sEdLmIkAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgsFYEqtKjA7dtjkH7lWDjtr1YRykUu+SWtnj9dm+O7Vt2qCq43nDDDTFx4sTq0rmncePGVVd/9atfLRdAzaqvV199dedZV3t85513rpadO3duVbm31lGGaD/4wQ/Wrq7xcMSIEVUfv/3tb6MWbK11mhV0J0yYEB/96Edrk6rhpEmTOq73pNJOLbCbCz344IMdy67OyCOPPFL9JGcu25Pquu3t7VXF5Jx/m222ycF6bUufbo8FN7bFkj+VsO78nm9K0/ZR3acHjFJdt+dq5iRAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgTWhsCyNGOpRpqVSAfuX64O6/lq2p+NGHLX8DjzmHPihanL0pQf+MAHVujgrW99azUtQ64ZAj3hhBNihx12iDPOOCPGjx+/wvyrM2GXXXaJAw44oFr0mGOOiUMPPTSOPPLI2GmnneLZZ8uGNqjtt99+HT3tuOOOcfDBB8fMmTOraZ/4xCeq4fnnnx8ZID755JOrfT3iiCOq6R/5yEeiFvjt6KTOyIABA+K4446rbrnrrrvqzNHzSV/5yleqmTNMvM8++3S74JQpUyJDz9l6Uo232w7XYIbW50pY96bWWFICu/FcLzrapIR1Dywh9N3L/bmnVaN70b1ZCRAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQK9EVgW2C1LtIxsiiEHN0fLhKaIjqndd9X+ZHu8ZqsT4qSd3hujWraNN7/5zSsslOHTyy+/PEaPHl2FQa+55ppYsGBBnHvuuXH66adX8w8cOLBjuaamsg2r0bKC71ve8pZqydtvv72qtJth2WuvvTaGDx9eTc8wbK21tCxLc3aeVrutNq02rE3PCroXXXRRRxXhO++8M+bMmVPdfOKJJ0Zuwx577FGFeC+++OLIfc3w7ne+85341re+Veum2+HrX//6ap6bbrpplfOuymrq1Klx4YUXVsufffbZq+ynduMtt9xSjWbIevDgwbXJ63zY+mwJ6/6+NRb/ri3an+rF6jOju0dTDC6B3ZbNV+9+1Iu1mZUAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAg0K1A0+LFi9trc7UviVhwS2ss+FlrtM+oTe3ZsGm7EpJ8ZVMMPawlWrZceVDyySefjEWLFsX2228fXcOwPVtT93MtWbIkpk+fHiNHjqwu3S+xenPMmzcvMjA7bNiKZYkzkPzYY4/FqFGjOsLCvVnLtGnTYty4cdWy2c+6Cs++8Y1vjF/+8pdxwQUXxEknndSbTW7YvEufXlZZtwrrPtG7bpvGRAx9c0sMPbAlmv6WAe9dJ+YmQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECDRQYLnAbvbb+nx7zP9tqWz661LZdHbv1tS0TVMMekUJ7b6iJQaUcW3NBN73vvfFj370o/jZz34Wr3vd69assx4snWHqHXfcsaoIfPfdd8eQIUN6sFQDZynR8SVPtMXCG9ticbn0qrJu2YymkRGDX9McQ48uofHN3P8aeGR0RYAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECKyBQHPXZVtGNMWQQ5pjwP4l8NjLvGb7k+2x+H/bYv6vlsaSqW0R5Z+2+gJf+tKXqoU/85nPxNKlS1e/ox4u+ZWvfKWa85vf/Oa6D+uW+8riKXnfaY1Fv+t9WDeGRgw4sNx3D24W1u3h8TYbAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgsG4EVgjs5moHbtccQ44qVUr3LqHdgb3bkPZnS/DyxvaYd2UJXv61NdoXlbKp2moJbL/99vFv//ZvMXz48LjjjjtWq4+eLvTcc8/FXXfdFaeccso6qebbebvyPrLw3taYf0VrLPl9ub881/nWHoyX++iAfUpl5yNLZedt696le9CJWQgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECa0egafHixXUTte2tEYvuKSHKn7dF2/1llt5Wyx0U0bJbUww+sjkGv6RUPS2VezUCXQVaZ7fHorvaYuH1rdH2ULl1Sdc5urneUu5ne5aw7htbYsieJaxbrmsECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgb4kMGBlG9NUgo+D92iJ9oURC5aUMOUjZc7ehHYXR7Te1x4Lnm+L1ifbY8jBzTFwtEDlyrw3uuklEL5kRgnq3tIWi8ul/bEiUDc6vgqZcndqHhcx5LgSCp/gvrUKKTcRIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAEC61FgpYHd3KamwSW0W6rjti+NWPiLEtqdXCb2JlRZ5m2fXiqoPt8erY+3x+BDy2X35mjeVLXd9XjM1/uq2+aW+8T9bbHoD22x9J5yJ5m7GptU7kLNu0YMfW2prDuxOZpKRWeNAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQINAXBZoWL17cbQS3bX57LLy9VEP9ZQntTim70ZtKu7W9LtHg5rERAw9qjiH7N8eA7UvIcpVx4dqChv1FIIPfWVV30R1tseRPbdE2vexZmdbrlpV1dymVdTOsW+5LzUMFwHttaAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIEBgnQn0KLCbW1OFdv9cQrvXlNDuI2VC62pu42YRA/ZqikEHNMfgPZujZYsStpS3XE3MDWSxEglf+kx7LP5rWyy+rVTV/etqVtXN3W0pYd3xpbLucS0xeN8S1h3mzrOB3AtsJgECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQ2GgFehzYTaG2he2x6O4M7bZF64MldLlkNd1KhdSmbZti4L4luPvSctm1BC83FbxcTc0+vVjb3BLUfbhU1b2zPZaW+077k3lHWs1NHljyurs3xZDXlCrNe5cKzUPcZ1ZT0mIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIDAOhToVWA3t6t9UcSiSa2x8NpSKfXeEtpdsAZbO6hUSx37YnB3YnMMLOPNQ4Uw10C0zyyaFZmXTClh3XvaYkkJ6rZNK5u2eA02b1ipzDyxhHWPLZV1dy9h3XLf0QgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECG4JArwO7uVPtraW47iNtseB3rbHkjhLafX4Nd3VoqZy6Swnu7lMue5bg7o4luDtMcHcNVdfL4lVQd1oJ6v61BLr/0h6tk9cw1J17sXnEwAOaYujRLTFo51KeuWW97JqVEiBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgRWS2C1ArvVmkoOc8nMtlj4h7ZYfHNbtD9RppZpa9Q2WRbcHbBXUwwqVVQHjinB3U0Fd9fIdB0t3PZCCemWirpL7i9B3b++GNSdt4YrL4e+afuIQYc2x5DDyv1huxLWdXdYQ1SLEyBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAutaYPUDuy9uaetz7bHwz62x6Ia2aHukTFzSgF0YFtE8tlTb3aMpBowv4d1SVbVl85LULHlNrQ8JtEXk8V88uS2WPNQeSye1R9vUBlTUzV0cVMLb4yIGH9kSg/d98fj3oV23KQQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgACBngqscWA3V9S+sD0WPVCq7d5UqqveXQKbs3u6+m7mK6HN5lJhtWVCCe+OKxVWdy4B3m2aommwMqvdyK3Vm/N4L3myXCaXkO7D5Zg/0B7tj5dVLm7QakdGDHxJUwx+eXMM3q3Z8W4Qq24IECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgACB9SPQkMButeml2uqSx0to97ZSbfWPpdru9DJ1aYN2qlTWbdqyBHdLYLdl1xLe3akEd3dsjgEjS3C3pUHr0M0qBdpbSzXdZ0tId3oJ6E4pQd1HSjXdR0tQ97myWDn2DWkDsrJyCeu+rDmGHFgC2tuWA6+qckNodUKAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAisP4HGBXZf3Ie2F0q13UltsaiEdlvvezHQ2cj9G1oynNuV4O7OEQPGvhjcHV2ub1bCu8KdjZSugritz5dw7mPlMq0Edae2R+vkMvnxUkV5YWNX1bRFOZ57N8WgQ0pV3d2bo3kTVZQbK6w3AgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAYH0JNDywW+1IVtt9rIR272yLxbeVSqyTS8Bz0VrYxeGlwO4OTdE8poQ9y3DA6FJ1t4R5m0c0RVOp1qr1XqC9VEVunV0CuiWU21qO4dLpZTithHRnlGP4Qu/763aJISVnvUsJ6h7YFINfqqput15mIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBDY4gbUT2H2RoW1Beyx+pFxuL8HPu9ui7YlyQ+taMMpirJuW4Of2pdLuDiXEm8NtS4B3mzLcqgR4h5YZFGytD19yuHmcWp8qId0ny/CJDOqWy4wXK+lmSLfM0/DWkserBK1fUirq7t8cg3YtIeshDlLDnXVIgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIrHeBtRrYre1d67MltDupVNstFXeX/rU92p8pt6yNEGhthaVqa9PWy4K7zSW42zKqXPJ6Ce+2bLGRB3gzoDu/BHLLMWl9ulxKULd1Vpn2YlC3/emCuLAGuRaGmZ3eqgR19ypVdfctQd09mqNlpKDuWpDWJQECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQINBHBNZJYLfa17YoFVzbYtG9bbHkLyUk+mAJ7s4ut6zN4G6uOLOgWX23hHabR5Xh1mW4ZQnvblnCuyUo2rx5GW5WqrsOzpn7X2tfVIoaz2mPttnFPEO65dJWAtNtJajb9uSyYaytKrqdOTOoO7K4T2iKgfs0xeC9WmJAOSbR3Hkm4wQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgACB/iew7gK7L9q1Ly3B3cdKcPe+Ety9rwRIHyqJ3XUR3K0duwzwDi3h0S1KVrSEdptzWIK7VZh0RLlewrvNw8u0TcuwXJoG1hbs28P2xSV8O6+EcOfm5cWQ7vNlvNi2P1eGz5bbn3mxunFW0F3bQekaVy2oO74EdfcuVXX3ao4B2zZH04DaDIYECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgf4tsM4DuzXO9iURS0pwd/Gktlg6aVlwt72ESqNU4l3nrRbi3bwEeTO0O6IMNyuh3eElsJvh3WFluMmLwwz7lkvzkDKtXJoHla1tWctb3FpYSqXc9kUleLughG5L4LZ9QZk2v4zPK8MS1G0vVXLbSiXd9jk5LLeXsG5VwbjMt87CuZ0ZSuXcpqxkXIK6A/YoFXX3KEHd7UpQdwMJQHfeFeMECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgTURWG+B3dpGVxV3nyzB3ftLxd0HSnD34RI0fbLcWgK9671lkLcEcjOsG+XSlBV3hy0L7GZot2lohnbLMEO7Od/Acr0EUqvqsVlBtlyaMsyb/WSl2RJircbLoArRlnBye1a6zWEJ5UZeSgXiNGlfUhxK1dx0aK/CumWYYd0SwK0u88uwhHQjw7oltBs577qqmltWtdKW+79t2fVxJai7e6moO6EEdUepqLtSLzcQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAEC/V5gvQd2O4RLaHXp0+2x5JES3C2h3aXl0ja9JFAzlNrXW4ZyO0K7ZTyryLaU8O6Asv0Z3K0FdavQbvmvTG7PpG75VwvuLgvqltuWlolLm6rAbhXCzSBuBnn7etu07PKYpmgZV3Z/XHMM3LUEdbcs+5P7rhEgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIENmKBvhPY7XQQ2uaW4O60ZeHdpY+WqrtTShXZp8oMfaHqbqft3OhHs6rw1iWou1OpprtLUxXSHVhCu82lErFGgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECCwTKBPBnZrB6e9BHSXPlWCu1PaYunkEtyduqzqbvvsMseGUHW2tiP9aViqCTeNLIVzdyzVdMeWkO7OJay7U6mmu3VWFO5PO2pfCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQKNEejTgd3Ou9g2vz2WPpaVd9uidXoJ706PaJtZKu8K73ZmWjvjtZDu6BLS3bFU1N2xOQaWsO6A7Uo13aGq6a4ddL0SIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAEC/UVggwnsdgZve6EEdx8vAd4M7pbQbmsZbyth3vZnylyLOs9pfLUFBpdKuluVcO72JZRbgrktoyMGlqBuFdLdREh3tV0tSIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECGx0AhtkYLfzUcrKu62zSoC3BHZb8/JkCe8+GdFeprXPKXMu7Ty38ZUKDCgB3RHlMqoEdEeVoO62pYJuCevmpSWnqaS7Ujo3ECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgRWJbDBB3Y771z7kojW2csCvEufaCtB3oi2p0qA9+kS4H2mBHhnl7nLPFoRGPRiQHerEsbdsgR0q6BuCehuUwK6edm8KZpKiFcjQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBBYM4F+FdjtStG+qAR4nysB3qf/dmkrwd2250qANy8l3Ns+tyzV36vwDizh3E3LZWQJ4Y6MaM7LFiWUu3W5lMBudcnbSohXI0CAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQaKxAvw7sdqVqL8HcthdKeDdDvM9mcHdZeLft+RLcnVMCvNVlWYi3fX5ZekOrxpvB3E1eDOduVgK4I8r4ZiWcO6JU0d28VNEtId3mEsythpuW21u6CrlOgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECDQaIGNKrBbF6+1hHjnlwDvnBLefb6M5zAvL5QA77xyKQHfalgCvO0LyviC0svCMl4usbhc1lV13gFlXaUCbtOQpoih7dE0tIwPLaHbYWWYId1NyngZNg/PSwnmZki3hHVbcljmC+HcAqgRIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBNa9gMDuyszbSyi3BHLb5pXwbl5eDOwuG2Zgt4R3F5VhuWRwt31xuV4L8JYQb3sJAldh3hxmX+USbTmeI6U1lxBt/iuXHFaB2hLKrareZjg3xzOgO6gEccswBpfxvJTAboZ1mzOoW4K4OWwuYd28VPNlXxoBAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgECfERDYXdNDkRV6l5Qc7qIS2C3DWFqGWXU3Q7t5yZBuFdQtwyq0u3xgtwrrNpfwbV5qQd0BJXX7YmC3uRbYLbdrBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECG55ARkS1NRFoKRVuyyVK5dtlrTZck04tS4AAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAg0F8E1G3tL0fSfhAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECPRJAYHdPnlYbBQBAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgEB/ERDY7S9H0n4QIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAj0SQGB3T55WGwUAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIBAfxEQ2O0vR9J+ECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQI9EkBgd0+eVhsFAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAQH8RENjtL0fSfhAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECPRJAYHdPnlYbBQBAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgEB/ERDY7S9H0n4QIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAj0SQGB3T55WGwUAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIBAfxEQ2O0vR9J+ECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQI9EkBgd0+eVhsFAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAQH8RENjtL0fSfhAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECPRJAYHdPnlYbBQBAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgEB/ERDY7S9H0n4QIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAj0SQGB3T55WGw1ycnaAABAAElEQVQUAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIBAfxEQ2O0vR9J+ECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQI9EkBgd0+eVhsFAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAQH8RENjtL0fSfhAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECPRJAYHdPnlYbBQBAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgEB/ERDY7S9H0n4QIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAj0SQGB3T55WGwUAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIBAfxEQ2O0vR9J+ECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQI9EkBgd0+eVhsFAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAQH8RENjtL0fSfhAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECPRJAYHdPnlYbBQBAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgEB/ERDY7S9H0n4QIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAj0SQGB3T55WGwUAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIBAfxEQ2O0vR9J+ECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQI9EkBgd0+eVhsFAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAQH8RENjtL0fSfhAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECPRJAYHdPnlYbBQBAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgEB/ERDY7S9H0n4QIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAj0SQGB3T55WGwUAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIBAfxEQ2O0vR9J+ECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQI9EkBgd0+eVhsFAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAQH8RENjtL0fSfhAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECPRJAYHdPnlYbBQBAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgEB/ERjQX3bEfhAgQIAAAQIECBAgQIAAAQIE1pfAAw88EFdddVW0z34mdj/40Nhtt91iwoQJ62tzrJcAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQKCPCaiw28cOiM0hQIAAAQIECBAgQIAAAQIENiyBX/ziF/Ff3/hajJs1OcbNfiy2fvjuOPPMM+PBBx/csHbE1hIgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECKw1AYHdtUarYwIECBAgQIAAAQIECBAgQGBjEPjiF78Yhw5cEq/aeft49V67xT5DmmLnBc/Gf//3f28Mu28fCRAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIEeiCwXgK7jz/+eNx222092Ly1O0tra2vcdNNN8dxzz63dFfWi9764Tava/NmzZ8fMmTNjwYIFq5ptudty3lxm1qxZy013hQABAgQIECBAgAABAgQIbGgCv/zlL2PrhXPjuL0nLLfpHz3q0Lj9d9fGQw89tNx0VwgQIECAAAECBAgQIECAAAECBAgQIECAAAECBDZOgdUK7D7wwAPx3e9+N37wgx90q5Y//5jzXnzxxdW8GfAcO3ZsHHbYYXHJJZd0u/zanOHLX/5yHH300fGyl70s2tra1uaqetx3X9ymVW38N77xjdh5553j29/+9qpmW+62G2+8sVrmne9853LTXSFAgAABAgRWT+Dhhx+OvFxzzTXVpV4vebtGgAABAgQINF4gq+ueedwRK3S87YjhcczYbXv03skKC5tAgAABAgQIECBAgAABAgQIECBAgAABAgQIECDQ7wQGrM4eDR06NM4444xq0UMPPTR23333lXbzrW99K84777x4+9vfHu94xzti6dKlHfP2piprx0INHFm4cGHV27x586rAbnPzauWXG7hFEetimzIoPWnSpHjd614XBx98cEO2v68EnhuyMzohQIAAAQIbiEAGdH/9619Xletzk7OC/bhx4+K4445bYQ/yi1Z57pW377rrrtUwxzUCBAgQIEBg9QXyuXjzebNjv7Gj63Zy4v4T47Sf/aZ8seaU6rm37kwmEiBAgAABAgQIECBAgAABAgQIECBAgAABAgT6iECtGFhtmLkC2YLGHZzVCuyOGTMmjjrqqLjuuuvi8ssvj7PPPrvuFmX49NJLL61uy7Butq222iruuOOOmDJlSrzmNa+ppq2v/z796U/HvvvuGwcccEAMGLBaFA3f9HWxTVdeeWX89Kc/jdGjRzcssNtwCB0SIECAAAEC3Qr8+Mc/jltvvbWaL0O4eU6Tz+/12jPPPBNZ5X7RokXVPDvssEO8733vi1e96lX1ZjeNAAECBAgQ6IHAbbfdFm87YOJK59x+881i5yEDOr5Us9IZ3UCAAAECBAgQIECAAAECBAgQIECAAAECBAgQWM8Cv/nNb+L6q34er9x913iyFAyb/NSzceOQYXHk8W+ULWjQsVntlOp73/veKrB70UUXRYZMm5qaVtik//3f/425c+fG8OHlZyCPOabj9okTJ0Ze1ncbNmxYnHjiiet7M5Zbf1/cpuU20BUCBAgQIECgzwi8/vWvj7xkywBuXlbWMpx77LHHxowZM+Laa6+NOXPmxGabbbay2U0nQIAAAQIE6gg8+uij1dRHHnmkGuZz6n+/5mUdc05++tlqvDY8evdxcdi4sfHb3/42jjjiiI75jBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIE+pJAfuZx8+UXx16xOMbMeTLGDB8QY5cOiZmzZ1fTMx+amQNtzQRWO7B7/PHHV2uePHlyVTE3K7p1bZdcckk16bTTTluugu2Xv/zlmDVrVnziE59YIViS1d+uv/76yLT29OnT48gjj6yq+Wb/tVDwvHnzqpBwc3NznHvuudHS0tKx6qz6e8UVV8Q+++wT73//+zum58i//uu/Rn64dvLJJ1eVde+666744Q9/GHvvvXd84AMfqObN9f/zP/9zbLrppvG5z30uLr744qoaXS43YcKEOOmkk+IVr3jFcv3mlfb29sjKOhlSzu3fYostqlT5u9/97mod9957b5xyyindBpXrbVP2//nPfz6ee+65OOussyLnyQfI7bffHlntOMPQ73rXuyI9VtVymauvvjpuueWWarY8PpMmTYoMCecx6dxy3rzkdg8aNCj233//an8OPvjgzrMtN/7888/Hf/zHf1T957HKn+POqn0777zzcvOt6kpbW1vceeedHY477rhjtX9Z0TmrM2sECBAgQGBjFMiQT7bOX4DK629961tz0KP2spf9LUxUez7vPK1HnZiJAAECBAhsxALf//73Y9p998TOW42MAQteiMlPPxeP3n1nDD52v5hSgrq/e+DRmPHU03HU2O3iyeeejymzX4gpTzwVg4YM7ngdvhHz2XUCBAgQIECAAAECBAgQIECAAAECBAgQIECgDwt88YtfjM8fvHsctPP4jq0cvfmIavxPk6fF+f/5nchf/t1ll106bjfSe4GmxYsXt/d+sWVLZAA1K+x+7GMfi69+9avLdZNV22oBywyWZoC21jL4mkHfrtOnTp0a++23X1WVtzZvbfiZz3wmzj777OpqhmMzyJmh3zvuuGO5EOw73vGOuPzyy2PUqFFV4LcW8l26dGlss802Vd9ZCSeXv+yyy6qg6xve8Ib4yU9+UvX98MMPx5577lktf8IJJ8R5551X24SO4Xe+85344Ac/2HE9R772ta91bF/nGzK0umDBgrjhhhvi5z//ebz2ta/tfPMK4/W2KWfKinm5v2eeeeYK1nn72972tvif//mfHF1p+8Y3vlEFfrvOkBWQM6icLW0/9KEPxfnnn991tup6erznPe/puO2cc86ptufUU0+t9i+3sWv7/e9/H7VgUN7261//OjLwndWFMhTcuWW15gxhd215PP/0pz/F9ttv3/Um1wkQIECAQL8WyC8D5ZeJXvnKV0Y+72oECBAgQIDAuhXI9y9+97vfxc0//XEcsf2WscPIEdXlpoenxH9de2N86uX7xaWTn4gJmwyKsZsMiYNHb11t4B+mz4oZc+fF7554LmYuiarKbm++0Lpu99LaCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgY1VIHMJXz39I/Hz/+9vucCuFl//zY3Rus/LqsKjXW9zvecCqy7J2k0/73znO6s5fvSjH0UGYju3rOSabeLEicuFdTvP03l8dimdnAHZuXPnVpVZf/WrX1WVVr/+9a9Xs33hC1+oArZ5JUO4OW+2m2++uRrmf7kNGQbNlsHRrA5bazmefY8fP74K69amr2yYy2c4NcO5f/nLX6ow7KGHHlrN/qlPfSqymmytZRC3FiY+/fTTIwOqt956a1Wh95prrqnCurV513SYwehcR4ZXs+8MKGfLoG+ud1UtKw7ff//9VdXbnC/Dv3n9z3/+c8diWdm4FtbNfb/nnnuqDxXzZ7SzZSXi+fPnd8xfG8lKQxlMrnn97Gc/qyoj5+1vectb4vHHH6/NutJhrrcW1v32t79dVRLO+1EGe/N4vOlNb4qsrqwRIECAAIGNRSDDQfkttnwezWrza7v94Ac/iLxoBAgQIECAwN8ELrjggph5fXn9vefO8db9J8bLdhnTEdqdsNXmcU2prDvwhefj+B23irfssVM8+tzc+OFfHopHSpXdbYcOioGLFsSY1vnx3a9+pfryTT6/awQI9C2BWjA/H595PpzD2qVvbamtIUCAAAECBAgQIECAAAECBAgQIECAQOMFMpdw5nFHrLLjvzvwJZE5UW3NBAasyeKveMUrqkq0Gaa86aab4sgjj+zo7tJLL63GTz755I5pqxq55JJLYtKkSfHSl740fvzjH8ewYcOq2ffaa69q/CMf+Uh86UtfqirJ5g3HHntsFajNyrWnnXZaNe9tt91WhXJHjx4dM2fOjEx+Z2A4Wy3Ym9V0e9ryDfp3vetd1ey77757Vf03q+9m8DeDrrWqsd/61reqeXI7aoHTnJD7MmLEiKoCcTVDA/7L6rad15HhnfyZ7DwGGeJ9+ctfvtK1jBw5MvKSFXWzZdXeriWqBwwYUFULTvc0zpYVkQ888MCqcnHuezpniLZru/jii+PVr351NTm9Dj/88DjooIOqasoXXnhhFRDuukzteltbW3ziE5+oruZ9IUO+2dI7133YYYdVAe48prWwdjWD/wgQIECAQD8W+MMf/hB5+exnP1s9r65qV6dMmVI9565snp4EfvM5OMMKRx99dOy0004r62q9Ts/9rLXc1q6tVrmwr25/1+11nQCBlQvUHu/1Huu5VD7ee/NYb3R/K99yt/Q3gfw1m6vf/6bYceTmy+3a1Geeix2GD4uL73s0rjj+0Nh8UEv8ftqT8cfpT8TQaKtu23HTIfHJA3aP5xYsjLvv/VMM3GqbuHHWY9UXkXvy3LzcCl3ZKAUacY63UcL1YqfzC+RT7/1LxAtzYuyWm8f0adOiacyYmPrM7KqXfO8x3/P0mO0F6kY868Z4vlHb5zzstfM2r8s24geBXSfQIIHO50A53vW1n+flBkHrhgABAhuQQOfnhnqb3dv3Cuv1YRoBAgQIEOiJQO29kNr7IF2X2RCfk3KfZtx/XxzytmO67s5y13csv0DYNG/OctNc6b3AGgV2M9yZVVv/5V/+parwWgvsZnj0l7/8ZbU1b33rW3u0Vbfffns136mnntoR1q0teNJJJ0UGdjPQmxVWN9lkk47AaFbUbW9vrz7syjBntqzOmuvNarFnnHFGNe26666rhvlz0j1tr33ta5ebddy4cdWHwvmAy0BwtqzqWwsDZ+Xbri1DvB/72Me6Tl7t61lltnPLasNvfOMbIyvcTp8+vfNNqzWePvWMhg4dWoV3rrjiio5977yCDC/Xwrq16RlW/vjHPx5///d/X1XLrU2vN0zTDANnmLgW1q3Nt/nmm8ff/d3fVRUG77rrLoHdGowhAQIECPR7gQwHZKt9gajeDufJ8/W/uDKmTp0a7XNnx5gtlg8TTXt2WdBg6n33xM4TX9JxDlWvr/xCTq7zxhtvXOGDkHrzr8tpuZ/5BaDcz2xjNtukGt+xDGttwZIlsc12o+OphYti2Kjtqn2t9yWj2vyGBAj0XYH8W5R/28aWv2lt5W9b59bxd23sTjFtSXvklxq7fnjbef4c79zflKlTlvtb2bm/5tFjq/66Lu/6xiuQ950xg5pWCOumyPRnn4+bZsyKscOHxk7l+ejXU5+Iu56ZG4dtOzIO336r5dBmvTA/ttx0kzjsiFfEHx6eEhf9x78L/y0n5EpXgUae43Xt2/W/CeRj/PeXXVwet5tXzw07btIch5RK2dl2WLTsh8luuuvmuOHJGdHc3LzKc+lqIf9t1AKdzzcacf7S1zFzfyffc3f1uizP2bLleVa2qeU8rWrDR0TzZps7v1qm4X8CBHog0PlvS+19rmnlyzTt5cs02Tpev/Xgfa4erM4sBAgQILABCOTr4/zMIs89a88NnTe79txw4/DN48jXn+B1W2cc4wQIECDQcIH8vDqfk7r7/GpD+7wpP4M/bNexPfLK0G4+P3f32VyPOttIZ1qjwG6aZZg2A7tZUfeb3/xmDBkyJDLUmS0Dr9ttt1013t1/tZ+E/PCHP1xVeF3Z/Pfee29V2XaLLbaIQw89tArLZrXbPfbYoyMk/JrXvKaqQpeVZ1944YXIsGmt/0MOOWRlXS83PYOjuY6ube+9964qBWRIONuDDz7YMUutckDHhDKSoebadnaevrrj48ePX2HR3PdsWaW2ES3DyHkMb7nllnjggQeq6r1z5sypArUr63/fffete1NWyM2Wfa2qZRA3W4Z2s6Jv11b7VkIt2N31dtcJECBAgEB/FBg7dmy8+93vjhyurOXJc/48xeHjxlYhg7ZFc5YLok15bFr1YUa+oXXUSe9Z5ZtVY1788KMWil3ZOtfH9Np+jtliRNmf5+OwHUZFhnVbOwV2581fELf/+bb4a/kp8knPzq2+0CWwuz6OlnUSWHOB/Jt1w9VXlr9tO8WYUu2w85cR2hbOqf6uXV+qIV78p7urv2vdvSnQub/cuh1KIKvWOvc3c6hASc3FcJlAPv90vv91dZk+Z14ctt2y9w4eK6Hcac/PjTP3W/F1+8CW5mhdvKha/LByv/7wj5a9b9K1P9cJ1ARq5z6NOMer9Wm4okA+P+wwsLy/edCK72vVHvv5mP2XX11ffUDs3HJFQ1P+JtD5fKMR5y9/67lvjuX+XnfJhdXzZGuXL44++uLr0AxPtIzeSWC3bx5CW0WgTwrk35YLvvNvy73Pdeg25UsB5f2ubL15n6tP7qCNIkCAAIFeC9ReHx86akR17tn1M5Dae3s3PXxj9WUxr9t6TWwBAgQIEOiFwEUXXRStM6d0+/lVf/68Kd83zefn7j6b6wXrRjfrGgd2Myz60pe+NO68887ICreve93r4kc/+lEFmQGTnrYMhNZahn7rtVzX4sWLO27Kiq5Z3TYvW221VWSYMyvrDhw4MF7/+tfHTTfdVF1Gjx5dBUEzQDxs2LCO5Vc1kiHfei2raXRuWf211hYuXFhV/61drw2feuqp2ugaD7uuPzvMKruNaml5/PHHd4RzM7i87bbbVkGhWiXheuvKarr12qabblpNrlUkrjdPTnvmmWc6blrZ8c8Zav11zGyEAAECBAj0Y4FddtklsopIXmph2q67m2Hed5724dhpcHM5MZ4WM8oMLYM361imebsxsdP4vWOnMv3www/vuvhy1/PEOlt38y230Dq6kvt51llnVT9T/Ps7/1JV2I3Zfzt/yM3Yc/vtY/7iJbHjgkXxxq237ZP7sY64rIbABi+Qf4daZz9b/Tx57e9abadatt8smsvfufzbdtYrX7vKLzXUluncX06bWZavtexv5932juby0+dH7L1PbbIhgUrgFa94RfzwX/65rsaO5Usk+QWS6bOXvZ9x4DZbxM8efSJufvyZOHS7LVdYpmXQ4Jj+3Oy4+eESAt5z7xVuN4FAZ4FGnuN17tf48gL5/HDDjCnx9V/fGIeWL8Bly8d2reXjNduMJRHv7uZcuraM4cYr0Pl8o975S+18o6fnL31dMvd39IhNo+mFZc+D+Xo029ixy6pg5rnVK8p4U6l0phEgQKCnAvm3JX/ZsumJ/EtanoPLZXXf56o68B8BAgQIbPAC+fo4i8h1/QyktmMd7+2V9wrzeUQjQIAAAQJrU+Ad73hHTC0FZaK8H1J7vVJbX8dz0gb6eVOtan1tf1Y2zJhiPj9rqy8wYPUX/duS73//++OjH/1oXHLJJZEVaDPYmUHPrHTb03bwwQdHVsS9/PLL44QTTujRYsccc0x89rOfrX7etBaczVButmOPPTY+9alPVX3WqtJmwLfRbfsSDBk1alRVhTZDy11PAmfNmhUPPfRQo1e71vo788wzq7DuG97whjjnnHOq41kLCb/pTW+Kq6++uu66s/JxvVarQNzdN9kmTpxYLZ6h7LvvvrteV6YRIECAAIGNTmDJkiVx/vnnVye8//RP/1R3//Oba5///OerXwCoVaTPGdvLz1CMLbflqXLtVwBqw7odlYmHHXZYdTnqqKNWNst6m17bz9yAoyZPrraj8/7mhM7713m8mtl/BAhsUAL5dygf910f57WdqP1t6+ljvbv+av3UhrX1GBLI+2FT+Tnv6c89H/kzT53b2C1HxtRS6X368y/Eo+UyZsTwOHHPneP3jz8bt5bQ7ss6hXafKVXg75mzMIYMnBKtW4+Os8/+UOeujBNYQSDve406x1uhcxM6BPL5IX9F67rrroubZs2spo8d1BbTp0+LHXccE1M23758cW7H8n7fyOiL58gdO2KkTwhsbOcbub95qZ2v1Yadz6c6j/eJg2QjCBDo8wK1vy21X82sbfDqvM9VW9aQAAECBDZsgZW9Pu68V7Xzztqw823GCRAgQIBAIwXe9773rfC5fOf+a89FtWHn2/ryeBYPy89BetJuKkUO8vlZW32BhgR23/zmN1eB3csuuyzGjRtXbU1+y6mn1WxzgYMOOqgK1+aL8HqB3fvvvz9aW1tj1113jVoF1qzsm8HgXGbQoEHVel/5yldWwwwOZ5D2qquuiv3333+526orDfzv5S9/efz0pz+N0047raroO3LkyKr3rAbcmyrDDdykHnX1/PPLP9DmzZsXt956a7VshoL22edv1aUyMJQ/RbSy9vvf/74KLad55/aLX/yiurrffvt1nrzCeB6vbJMmTYrHHnssMgjduWUF3ieeeCKyku8OO+zQ+SbjBAgQIECg3wq8973vjfxZjQsuuCCy2u7b3/72le5rnvSv6Yn/0UcfXQUWVrqSPnJDbT9rwz6yWTaDAIEGCzTi71rnTWp0f537Nt6/Bd5x6ofjsuuvicO23SJetsuyqoG1PZ4xd368pFTW/cYdD8THXzYx3j1xXNww9Ym4YdoT8egLC2PGnPkxY+68uL98o/7w178hdj3okMjnW89hNUHD7gT87epOaM1vz8dkXvKXw2qtrXz5bUx50/nIcg7u8VpTMeyJwMb4mK09RmrDnjiZhwABAt0J5HOzRoAAAQIEOgtsjOfanfffOAECBAj0HYH++JyU+9Q2bHjMKKHdHboUL+ksf8uj02L0hD07TzK+GgLNq7HMCotsvfXWkRVZs335y1+uhlkCujetVv32u9/9bvzgBz+Itra2avEM6f7f//t/q/Bo/hRlXq+1AQMGxPHHH18FRS+88MLIKq3bbbdddXNTU1NkRdj8Zn9W7R09enTstttutUUbOvz6179ehYOzkm5uwwc+8IH4yEc+EhMmTKgqdGSouC+1WjXia665JhYsWNCxaZtsskm1Hznhl7/8Zcf0RYsWxQc/+MGq8m7HxC4jc+fOrcLJtRBwHqfvfe978eMf/7ias3Z8uyzWcTWNXvWqV1XXa8e0duOU8iFJHvsMaF966aW1yYYECBAgQKDfC+SJcVa/33bbbeNzn/tc/PGPf1zr+1z78tNaX5EVECBAgACBDUTglFNOiW1efmxcfN+j8f/+fG/8afK0mFnetLp18vR44OnZ8ZoJO8eoHXaMK6bOij/NfCqGDmiJU16yWwwYMDBmzl8YrUOGxZ+fej4+cuY/RfaVz+8aAQJ9TyDPg2uXfKzmuMdr3ztOtogAAQIECBAgQIAAAQIECBAgQIAAgcYLvPOd74xLb//LKjv+6jU3lF8QPHuV87ixe4GGBHZzNe95z3s61pbh2EMOOaTjek9Gcv4M62b70Ic+FBkCfu1rX1v9BHQGVbL927/9W2SotHOrhTxz2hvf+MbON8Vxxx3Xcb0WKO6Y0MCR3N+s5LvHHnt0hIfPO++8mDNnTvzwhz+sflq6gatb464OPvjgqo+bbrqpqljb2S1Ld2fLn13MDyVe//rXV9VuL7744lV+SHHAAQdU4eQ8bllxOCvtfvSjH636Ouecc6pKJdWVVfyXFQTHjx8f99xzT1VFN7cz+8qgdS0MncFhjQABAgQIbEwCp556anXSm9XqX3jhhYbs+owZM6ovNOWXmjQCBAgQIECge4F8Pj7wDW+NSUO3iOtnL4qbX1gaC3fYNWLEyNhj113iC294VYwctU08tKgtrn9idtxcArpLhw6LUeU18uF7jIuXvexlVbX87tdkDgIECBAgQIAAAQIECBAgQIAAAQIECBAgQIDAuhU4+eST4+EYXIqWTK+74p/deV8sGDkqjjnmmLq3m9hzgQE9n3XVc2ZwNqukZqXVDFVmhdvetqxMm1VzL7vssvjtb39bXbKPrKz6hS98IepVaT3qqKM6VtP1DpFhz1o79thja6Mdw5aWlmp84MCBHdO62+7cvmy1ZWsL5jbefffdMXPmzLjlllsiq9hmsGbkyJHVz1jX5utuWOu38zZ1XqZ2e71ptW3rfFu98Xe9610xffr0qgLurFmz4ve//33HbBnUHTRoUHzrW9+q9iX3J4O7WSn3/PPPryoW11tPBns/9alPxemnnx633npr1V9WGz7xxBPjk5/8ZEf/OdLcvCwn3nUf0+pXv/pVfO1rX4urr7467rzzzo7lPvaxj1X9b7bZZh3TjBAgQIAAgY1FIM9jdik/x7vrrruusMu1593aDflFoh122KF2dbnhT3/60+r5/ZFHHonf/OY31XwZIFrZ/Mst7AoBAgQIENjIBU477bTI59C8ZDu8PC//adKDsXjg4Or6KYcfGJOffjYeferZ6vouW28R+a7EbVNmRL33JKqZ/EeAAAECBAgQIECAAAECBAgQIECAAAECBAgQWM8CmUd454f+v7j+JxfH48/fF9tvPiJGb74sp3fblOnx66deUF23QceoafHixe0N6quh3SxYsCAee+yx6iegu1bVbeiKGtBZVqp9+umnY9y4cbH33nsv12PuR4ZgMsj88MMPx5gxY5a7fX1eaW1tjfnz50cGZ4cMGbLcprS3t1eBngwI589wdxdkri2cyz3xxBNVoDmr7K5Je/zxxyP7y/XXQr5r0p9lCRAgQIBAfxQ4/vjjl9utPB856aST4qCDDlpuen4JJ8NCeW5y4IEHVrcdccQR1ReichmNAAECBAgQ6L3AP/3TP8WmD94ZZ7zy8JUu/A8/vjIOfe9p8f73v3+l87iBAAECBAgQIECAAAECBAgQIECAAAECBAgQILC+Ba655pq44aqfx+DFC8plYRxUsgW/nfRwHHH8G+O4445b35vXL9bfsAq7jdYYOnRo3SpyjV5PI/q77bbb4swzz6wqDOdPSx988MFVwPXmm2+Of//3f6/CuuPHj+9TYd3c7wzjZlXkei0DuqtTbS+X22677ep12etpjeqn1yu2AAECBAgQ2IAE8ptu+SWnbBnKfeaZZ6ovEHUN7GZQd6+99ooM6dZOpAV1N6ADbVMJECBAoE8KZAj31BNes8rA7uT5S+JTr3hFn9x+G0WAAAECBAgQIECAAAECBAgQIECAAAECBAgQqAlkliBzBFmYNC9jy/VTSk5XtqAmtObDPlthd813bd31MHv27Cr8MmnSpLorzUqz+RPUGeTVCBAgQIAAAQKNFnjooYeqLmvD/KJQXrq2vL3e9K7zuU6AAAECBAj0XOCVB+4X//WWV8W2I1b8Quyd02bG92a+EBdeeGHPOzQnAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIBAvxQQ2G3QYV20aFF8+9vfjv/93/+N22+/vep1v/32iwMOOCD+/u//PkaPHt2gNemGAAECBAgQIECAAAECBAgQ6CsC+Ys7W06+N/7+qEOX26Qnnp8bZ1x6VZz2xa/F6173uuVuc4UAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQGDjExDY3fiOuT0mQIAAAQIECBAgQIAAAQIEGiTw4IMPxuc/fka8dezW8eq9dqt6fWLO3PjOdX+MR4aMjJ///OcNWpNuCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIENmSBARvyxtt2AgQIECBAgAABAgQIECBAgMD6FNhtt93i7ad+OH78ve/GU3PnxTabbRoPv7AwHho0Is796lfX56ZZNwECBAgQIECAAAECBAgQIECAAAECBAgQIECAQB8SUGG3Dx0Mm0KAAAECBAgQIECAAAECBAhsmAJXXnll5GWz9qWx3e57xQknnBATJkzYMHfGVhMgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECDRcQGC34aQ6JECAAAECBAgQIECAAAECBDZWgfvvvz923333jXX37TcBAgQIECBAgAABAgQIECBAgAABAgQIECBAgMBKBAR2VwJjMgECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAIFGCDQ3ohN9ECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBQX0Bgt76LqQQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQaIiCw2xBGnRAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBCoLyCwW9/FVAIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQINERDYbQijTggQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAjUFxDYre9iKgECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAIGGCAjsNoRRJwQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgTqCwjs1ncxlQABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgEBDBAR2G8KoEwIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQL1BQR267uYSoAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQKAhAgK7DWHUCQECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAIH6AgK79V1MJUCAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQINAQAYHdhjDqhAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgEB9AYHd+i6mEiBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIEGiIgMBuQxh1QoAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQKC+gMBufRdTCRAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECDREQGC3IYw6IUCAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIFBfQGC3voupBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBBoiILDbEEadECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIEKgvILBb38VUAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAg0RENhtCKNOCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECNQXENit72IqAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgYYICOw2hFEnBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBOoLCOzWdzGVAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAQEMEBHYbwqgTAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAvUFBHbru5hKgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAoCECArsNYdQJAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgfoCArv1XUwlQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAg0BABgd2GMOqEAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAQH0Bgd36LqYSIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQaIiAwG5DGHVCgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAoL6AwG59F1MJECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQINERAYLchjDohQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgUF9AYLe+i6kECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIEGiIgsNsQRp0QIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQqC8gsFvfxVQCBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECDREQ2G0Io04IECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQI1BcQ2K3vYioBAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgACBhgi0nHPOOZ9rSE86IUBgvQnMmDEj5s2bF8OHD19v21Bb8ezZs+Mvf/lLPPXUU7HZZpvFwIEDazf1aPjcc8/FfffdF08//XRsvvnmMWDAgB4tZyYCqxJYsGBBTJ48OTbZZJP1fp9qb2+PRx55JCZNmhRNTU0xYsSIVW36Crfl8g8++GDk474nj7HePiYXLlwYjz76aJ+wWmHnTSDQC4G+9LjPzZ46dWr12B05cmSvnxvb2tqqx2X+3cjn1b7wfN+LQ2FWAutUoC+dF8+fPz/uvPPOWLp0aXVe21uIOXPmxF133VUtlo/7PG9YWVvT84uV9Ws6gb4q0Nee5xvhtLb+fi1atKh67TFlypQYNmxYDB06tBGbqw8C61wg3y967LHHqtfQzc0bVw2K3r6u749/I9f5Hc4K+4RAf7ove13fJ+5SNmIDEugPz/uPP/543HPPPZHvDeT7gWt6/vLMM8/E3XffXZ3T53m9RqC/CKyt18Kr65OvOebOndtn3oPvT+dDq3tMLNc/BNblc/uavi/fV8T72t/HvuLSX7djXf6976uPkd58ll471168eHH1+duqPj/rq/eZjevdzb56FGzXRilw1VVXxZZbbhmDBg2Ke++9dwWD/GD/y1/+cnV7zte1tba2xuc///mqj1122SXGjh1bjecy+QZgb9ub3vSmal25PU8++eQKi3e3PbnAv/7rv8aoUaPi8MMPj4MOOih23HHH+MUvfrFCX/UmZMjg05/+dGyzzTZx6KGHxgEHHFC9GMp9zHV3bg8//HDHtub2dr1Mmzat8+yxww47rDBPbZlLLrlkuXld6TsCzz77bJx00knVscthvfbXv/419t9//2qe733veyvMkuHvvD9lKHbvvfeuAq4vf/nLq9DcCjN3M+G2227ruB/9n//zf+rO3d325In1YYcdFnvuuWccddRRseuuu8Zb3vKW6k27uh12mfilL30pttpqq5g4cWL1GMtQ+xe/+MVYsmRJlzmXXe3NYzLfPEybDAF3tsrpGoF1JdDXHvff/va3Ox73P//5z+sydPe4z+XyeWj8+PHV82M+bk855ZTIcHxPWn4J5qUvfWnsscce1d+NfL5/yUteUvfcoXN/+aF+7fkv5+/cbr311o79qj0fdh1eeeWVnRcxTmCtCvSl8+JVPXZqCN2dF2fQNp/f8/Ge58X5+M/H4w033FDrYpXD/GJPPifnc34O81x/3333rT7oq7dgb88vuvu7VW8dphFohEB3j51cR3f3z3V9ft+Tc5OaTU/+ftTmrQ3X5HV9T16fXHfdddVrjnzNlH9Ptt122/jnf/7n2uoNCax1gZ48hro7D/h//+//xYQJE6r3i/KcOEPn73nPeyKfb3vbenJ+v6rtueCCC1Z6Hr3zzjv3dnOiu/fissPevK5v5N/IXu+MBQi8KNCTx31fe75f1fb09n3oeneE3ryur72O7/oaPa93fh/7hBNOWOnfo5y36/sA9bbLNAKNFljVYynX1ZPXA4183u/J8+zKnvfX5DGW79W/733vqz6zO/LII6v38vfbb7+VfibR3d/N+++/v/oMZLvttosjjjgicpifeeR7ARqB9SWwssdObXu6u1+vyWvh2jpqw568Fu/u70/e/rnPfa76nH2nnXaKvORn8zktb+tJ6+5vYOc+erLNzu07ixlfXwLdPZZzu7r7e9DI5/buXtOv7vvyPXlMdncMVnbe0dvP4xr597G7bXb7mgs04jHSyL/3a+sxklIru4/XU6z3erbztH/8x39cbrHefJae4f/clvy8PM+1873CrbfeOvJvzYbWlK7c0I6Y7d3gBV544YX45Cc/Geedd17HvmRYtXPLyjcnn3xy3HzzzdXk/CZf13baaafFhRdeWL0wz0BAPnlfdNFF1YuH/EZEhvh62i6++OK4+uqrO2Zfne258cYb4xOf+ESMHj06PvShD1UfnPznf/5nvPnNb46HHnqo+oPZsYI6I//1X/8V5557buQHHO9+97urNx2+//3vRwYUn3/++fjmN7/ZsdSsWbOq8de+9rXVi6aOG14c2XTTTTsm5QupnD8DjvkBZdc2bty4rpNc7wMC119/fbzrXe+qjl1uTtcQet5H8/51+umnd2xt13ny5CZDbtnyvpnHOsOn3/nOd+KQQw6pwm755lZPWn6jKR+Ttdb1MdKT7cntO/XUU+P222+vQjwZ2P3JT35SvZD5zGc+E1//+tdr3dcdnnXWWfGNb3yjCv2cffbZ1Tfp/+d//ie+8IUvxMyZM+M//uM/lluuN4/J/OAgQ/LZzjjjjOrEJt9cyJO6/HD/jjvuqB5Dy63AFQINFuhrj/usZN35BcPqPO6vuOKKeNvb3lY9t+XjKQPx+dydz9d5PnDppZeuUjHfXDjxxBOrCuH54iOf9x544IHq70W+0Z+hvvxyTL125plndvwN7fqmYn655iMf+Ui9xeLaa6+tnrdVuK/LY2KDBfriefGqHju5+92dp+fj7dhjj60q62Y4/+ijj64eU/kGf06/5ZZbIh+/K2sZCMg3GfL8NZfPwG9+uS/PAfI5OStt5xd+aq035xc9OV+p9WtIoNEC3T12enL/XJfn97n/3Z2bdDXq7u9H1/nz+uq+ru/u9Un2nb9689a3vrWqDPQP//AP1Wv1fA2Vgd199tkn3vCGN+RsGoG1JtDdY6gn5wH5mvf9739/df/N177/P3vnAS9HVbf/s7u3pZFOQgoQaiD0SBMIHZGigAVFeCki6gtYULAg8oJ8FPXFRnkpf0QEVBARFVS69FBDJyEJAUII6YWUW7b8n+fcPcvczZaZ3dm7s/c+J5k77czMme/OmTnnd57zOyNGjDD/+te/zJ/+9CfDb6azm/m5iXLlez/pef/99+2l+I1ubW3tcdlCne17RMhbKWeLY/Qg9fow35F5SdWqCPgmUC7fR+177yc9QezQhUAFqdcHsWN//OMftx378q/JdxntDm1tbfm7tC4CNSPgJy+Vqw8wcWF+98t9Z8t996vJY2znuuWWW6y9nZ2MKNThOtu9HnvssR4jb5V7b3IkPDoAYRvhhRdeaLbZZhvz4IMPmuuvv97stdde1k7IUQUVRKC3CJTLO0xHueeacSqtC/PY/FCuLu7n/XP66acbvjfYTva5z33OXoJ1DjrJore/G264If+yuXU/78Bc5OxCuTSrbJ9PTOv1IFAuL/t5H4T5bS9Xp6/GLl8uT5bjX6rcEbQ9Lsz3Y7l0a391BMLII2G+72uZR0o944UonnnmmYbfx/zANN5///2286nbF7Qtneemto0d2I4//njrIIvaOH6/b7vtNnPMMce4U0d/DvfAGU1ioGeg954BKPz5Zsqgop5BL1u7DDFcLh+iwcFuYxxU7DMuvvc3ggdZG+eQQw7JQJybOxY9ODIYLjeDD38Gnvty273H5i+jomGPgeevDF5i9rw8v4vnJz3odZSBUNceCxFB7lh457PbIEzMbXPn9c4hFrTxINbNwPCQi4uCXu7+mU53DESONv6jjz6a2+b25c/Ry9jG/clPflI2bv6xWu+9fOFlffvtt9vfjM8xRG12GUK1Hr8fhLp2OyrPGf62zC8QwxWM88ADD/TYjgq2jQ9BeI/t3jTkL3//+9+3x1xwwQV2joJAj2P9pOeqq66yxzLfu/NjeNoM74Hpz0+ni8M5XPrbOMynGI4ndzyM/hnmLx7/9NNP57YHzZMQJdpzwACROwevC88ddjs6GfTY7k2bluuTT/oa96jle4hgMijo555/5jGIa3vkAz/5/vDDD7fngFEwdyy/c8zLPCc82ue2F/pNWVZgvN/+9rc94sHIYbczDYWOQ0XF7ufx/D7zeoXi5W/ju4PvXk7e73F+PK0r34f1DLhyblTKxeXyjp9yMcunzLcQx/XId/DIZ7eX+6Z+85vftPHyyzUubRDY9ThvkPKFn/dWWL+tzqP3hPcZ8JN3/DyfLk5+ubkW5Xs/ZRPvPbo8GuTbW029vlz9hGlDpyH7Pvnd736Xe2/Mnz/fbqPdgHUM7z1oWfk2zGfATx4qVw5gehiHzyuEsrnnlfVoV85Gp5bc9lLp91O+95Meft/5nfdrcyuWpnK2OB4XtF4f5juyWLq1Xe+JUs+An3zvntNGsucFsUMX4hOkXh+GHZv1CL6n0LHf1/uxUJq1TXk96DNQLm/7qQ/wmmF99/18Z/189wtxKJfH2NbHPMi2rrVr1+byIW0B3I4RJXPb/Lw3XdsH30Xe9KDzkD0f2+C827Ws/FvrZ6Bc3vHzXFdTF86/v3J1cT/vH9Y1mD/h+KmHTZz2cW7jvlJ2/HLvwKBpZnx3zjDsH/nX17reE36eAT95udz7gNcJ69vup05fqV2+3HukHC8/5Y5C5yjUHhfm+7HQNbUtvPwfVh4J631fyzxS6TNe6Hlj+xa/qy+88EKuDOtsfH7a0tlezuNZz/aeHyNS2O1853i3R305jptREAER6EUCy5Ytsz2F6WF36NChG1yZ3mTpZZa9bvGCNoU83KGib3v10fusdz89y3KYDvb8z/emt8GFshvOOecc2zuX6SnUE9dPeuj1ix4+6a3P6/ELL1c7RA+H4aRr8mLBDbsNY0cPDyV0i/74448bNCpaN+bueFSM7OKYMWPcpqJzehVi8OtJteiJtKPXCPBZohfJ559/3kCUXvC6HO6JnqrZc4lDYxYK9Kr8y1/+cgPPyvhQ2+jOQ0ahY73b6H2WvWj5POPj792VW/aTHvecsye8C7FYzMDoZlfpJahYcF6DTj75ZDs8totHbxlf/epX7Sp7NrkQNE+SOQM993mDW3f7vfu0LAJhEohavuc3kfmOeX/KlCkFb7VcvqfXy3g8br3Ojxs3LncOeuLi8HUM9JBbLPA7Tq847NV/wgkn9IhGr7v8Np5//vk9tnOFZQR684bo1nqu3yBCiQ0Q9NgyBD2B5nsMK3GYdolAxQSiVC72k3f8lIv5PqMXffbs9QZ6ymXgN7pU+Pe//213c/hMb6B3XojvDXsbk5sLQcoX5d5b7pyai0DYBPzkHT/PZ2+W7/2UTRwnP+8PF9c7r7Re76d+whF46FGAdR/v+4h1aI7ugYZHa3PwpkfLIhAmAT95qFw5AMJc64mOZVR61nWB9WhXRvd+E93+QnM/5fty6eF50YHWevtlOb+aUM4Wx3MHrdeH9Y6s5r50bP8m4CffR+177yc9QezQ+U9A0Hp9tXZsjrrH9gLaAzhymYII9BaBcnnJT30gzO++n++sn+9+Pj8/eYwjVzHQ5t/c3Jw7xbe+9S27zOF+XfDz3qT3QraR0CbgDRyZh4Gj8CiIQG8SKJd3/DzXldaF8+/TT13cz/tn6dKl9tS0w3tt4lzmNgb3jbYreX/KvQO90f2kmfFVtvdS03I9CPjJy+XeB2F+2/3U6ZnmoHZ5v3my1G/gp9xR6PhC7XFhvR8LXU/bwiUQRh5hisJ639cqjzCNlT7jPNYbINK17VscmXb77be3u4K2pTs9DOu93rDFFlsYjorlyuLefVFebopy4pQ2EeiLBDi0fCmhKQWvjEPxbbHAON/+9rc32P3kk0+al19+2YodKXYtFygI+Mtf/mKFr9N9tgAAQABJREFUtnvvvbcVBuUf4yc96KFoD6Pb8fyw3377mYcffthw6B4n/suPQ9fnDDQyME3oAWXQC8QKmihqyuflhJasLF1zzTV22B82RDIuhwTyBleJYuPOHXfcYYchHj16tI3L9CQSCW90LUeAAIdt/cpXvmLYCMfCfqHwq1/9aoPnIj9eIXEtetEY9LyxUVloLxfY0M20MPzmN7+xaSp0jJ/0MG9SjO8V7vFcu+++uz1lKeMavGfbOMOGDbNz7x/eE8Ps2bNzm4PmyU996lN2uJ8rr7zSXHrppVZkyAIS1xmOO+643Lm1IAK1IBClfA9vc+bss8+2lSR2nEEvyYK3XC7fsxHfa4R3J+EQIPzOM3g7ubj9bo4ei3aRHRj4LYOHX4MegvY7x+/lLrvs4qL2mFNkzIoiPGSb4cOH99hXaoWNDjxWDXulKGlf2ASiVC72k3f8lIv5zSz03WQ5gMEZIoqxZNkHngR7NBC4uO5bz/eDG3Y7SPmi3HvLXUdzEQibgJ+84+f57M3yvZ+yiePk5/3h4nrn5BK0Xu+3fsIGQwbWx/PrvKz7M7h3il3RHxEImYCfPFSuHECbT6E8wvI6h6fl97JYmdh7O37L9+XSw3PS+L/ZZpuZt956y6aB3+099tjD2phYjvYT/NjieJ6g9fow3pF+0q84IlCMgJ98H7XvvZ/0BLFD57MJWq+v1o59/fXX2064tOd5BUf56dK6CIRNoFxe8lMfCOu77/c76+e7n8/JTx6bNWuWPYzlA2+gjY7tZ3QQ4IQJft6bXucf3vOxEx9DMWcm3rhaFoEwCZTLO36e60rqwoXuwU9d3M/7h+3KbGNmOwDF9a6dmfmZ27jPbSuUjnLvQO8xftLM+Crbe6lpuR4E/OTlcu+DsL7tfuv0ldjl/ebJYr+B33JH/vHF2uPCej/mX0/r4RMII48wVWG872uZRyp9xgsR/9GPfmQ3f+9738vtDtqWzjIwneNQM0OnVzNmzLDL1ImxrO1HI5e7eAQWJNiNwI+gJPQvAvni0/y7HzhwYP6mkusUH7Ixjo319Li15557muuuu67kMdzJggA9c7JBgZ70igU/6XEeAidMmLDBaSZOnGi3MU4xwe5rr71mhYxnnnmmuemmm3LnuOKKK+x2euj1ihydZwP2LM5vZLz22mvNKaeckjuHM3SykpUflx9Axq/WM0ruYloIhQAF1eVCuXzkPZ7PHnvb0MvzPffcY5+Dq6++OieU9cbNX2bvtmeffdaKWOm9GkNR5Eex6+XSw/xGAV0hj8HMY2xoZD4oFvbaay+766677jKnn356j2f2mWeesfuc8J0rQfPkxz/+ccNC0gUXXGDfIzvssIP15jNv3jy7nfsVRKCWBKKU77/zne/YW8Uw8z08YeTff7l8nx/frd944422AoGh60oKat03i14AKPCjJzxvuOSSS6ynce+2V1991XrVpUdwCvGDBPa+ZEMkG/bovVtBBHqDQLl85Kcc6k1npeViv3knaHpc2ph/zz33XLvKvF8qHHTQQVYANH36dONEdYxPo4sLbPjfbbfdbHk+SPmiHG93fs1FIGwCfvJOkOezN8r3fsom5OT3/VGOqd/3l9/6iasPuPq49/pumytrePdpWQTCIuAnDwXJ9xgK1gpc+A3861//agYMGGA4Sg3n5UKY5Xt+d+nxJr/BnnV6prGcgNivLY735PJxUFtbNe/Iciy1XwRKEQg731fzLPv9Xvp5DwWxQ+fzcd9av/X6auzYfDfRxk9b/0knnZSfFK2LQE0JlMtLfuoD3gRW+t0P8p0tl2ZverjsN485we7YsWPzT2HYvkDBLuv348eP7zGq5AaRS2xwdRCOwlOovaHEodolAlUTKJd3/JQHvInwWxf2HsNllw/K2cH9vn/YhnjaaacZto05Zz9sm2Y+Y3tiqVCOiTvWb5pdfM6rKQ95z6NlEQhKwE9e9vvs89qVftt5rN86PePmh1J2+UrypPf8Qcod3uO47Kc9rtL3Y/61tF4bAmHnkWre97XKI9U84/nUKfD/xz/+YSh0dqNm5cfxrhdqS1+9erVtx542bZrtPO91hkePu0ceeaR1ftVIol0Jdr2/upZFoAEJ8INOQaELFKH6EdpcdtllVkB48803214H7vhK5s57j/P05T2H+1hx2MBigUYMFpgoDqRQiC9qfgB+/etfG/ZMpFjwxRdfzB3uzrXTTjsZDgPMAuFjjz1mvvCFL9hhwFmB2meffWx85wWBTOjpd+edd7YeCs866yzb64Jx3UcsdwEt9CkC9Erjeuzwxj75yU+WbURjPBrJzzvvPNt7lt42qwnuORw1alTB09BY5zzvFYrAxkAOicBeTBS2c2Jhgx43mU8YaPx3oZI8SW9dDMyHnFxw29265iLQCAQqzfc0wtFb1xlnnGE7wIR9r48//rg9N43yF198ccnT02sXA/M4ewVefvnlZquttjIU6Z9wwgnmBz/4gfWiwXcaAz33uneVey/YHT7+sNHhoosuUsOeD1aKEm0ClZSLq8k7fmhwGFyWz9lYzyEx2Uu+VOBwQHwPHXXUUYZCAw69x049X/va13KHOQF/teWL3Am1IAINRqDS73yY5XsiC/P94ef9FST99ALKUMjjp6u3uzqDjag/IhBxAv/5z3/MT3/601wq2QHd27E7tyNvIezyvasr09sd6wx8D3DkKo7McfDBB1uvuKVGuQhii3N51OVZ762VsrVV+o70nl/LIhAFApU+y0G+l37uM4gdOv98Qev1rnxfiR2bDjxYT2Cdw0/bQH5atS4CUSJQ6Xc/yHc26P36zWPsXMSOPE1NGza/u7K5E+wGTQPjsxMB7QUMTFMjCRJsovVHBPII+KkL5x0Sal3cnbu9vT3XGZB1CBfY/hyG1/pK7QeVlodc+jUXgagQqPTbXk2dvpRdvtI86eVZabnDb3tcJe9Hb/q03FgEKn3f1yqPkF6lz3gh8k6r8/3vf7/Q7h7birWluxFs6P2e5W125KfTG9a7v/nNb5q7777b8Pz/+7//2+N8UV6JRzlxSpsIiEB5AhShUqjHOT13UcjHhn1+7IsF9tDgS5G9BD/zmc8Ui+Z7u/PQ44yK3gNdQ6GL493nljfaaCO7yDR96Utfsh4HKWb62c9+Ztg7kr0jmGYXOKQBjY8UG1P0MHjwYBvvtttus1H++c9/uqhWoMuGFHom5QubvSnpkYzrDHfccUcurhb6JoFDDz3UsMcNP+LsjUYvufRYy4JuqcDnhoZuenpubm4uFbXsPtej3usdz3sQCxIUjxcLsVjMFjoYh0Nv8RlmT1/mmfPPP982xHt7I7n85jdPcugBeuE44ogjzNNPP22WLl1q51zndj+Fp2Jp13YRqAeBSvJ9Z2enYWcOFvLLiWkruSd+yz7xiU/Y8/M75RrZi53L29DPzikU7dODGHsOUhTAwO0u8BvIzivMs5MmTXKbfc3pbZ7vO3rZVsOeL2SKFFEClZSLq8k75TDQ8OcMBRT1cMSHcoENbxTdM0/SUzaH3WbnNXZmc8OCO9FvteWLcmnRfhGIKoFKvvO8lzDL9zxfmO8PP++vIOlnfZqhUP3D1RHYaVBBBBqFAJ9/1uvZ0fXnP/+5+b//+z+zxRZblOz4Gnb5nsNXs6x9yy232Ho4y/MU3lA8zHo5v91PPfVUUaRBbXFB6/XuwpW+I93xmotAVAhU+iwH+V76udcgduj88wWt19PRBNMf1I69Zs0aayPkO6nQkKr56dK6CESdQCXf/aDf2SAMguQx2uRYJujq6trgEq4DgCurbxChzAael7ZFevznSJXs4K8gAo1OwE9dOP8ew6yL89zslHfYYYdZD9hsQ2RbomtPpL2dZRLXcS8/LX7XK01zpeUhv+lSPBHoLQKVfNurqdOXs8tXmicdr2rKHX7b4yp5P7r0ad54BCp539cyj1TzjOfTpyMqtouzvYv6llKhVFv6sGHDcofSWy87zlP7xVFq2W7O9n06w2mk0NRIiVVaRUAENiRAISEnilE5zZgxw9x///3m3nvvNccee+yGB2ALvfIxfOxjHzMPPvigXeaf+fPn22X2xKDRgKIgP8ENBei8f3iPoTiSwQkLvPvcMoWGNDLsscceblNuzjTSqyhFhO4c9KRbKOy77752M3tduMBtbrvbxvmIESOsYJn3SnHzoEGDvLu13IcIxONxK0DbZJNNzIknnmifo/3339/88pe/NKeffnrBO2UjIAW92223nWFhh0N1MLgGb1bO77nnHiug8+PVhwI4GuvYOyo/0OBHY9sBBxyQv6vHOo3u9KbNvPDoo4/aQsd+++1nz0s3/17xfZA86bxZM30szCQSCXtdDuXJdXr0pKdret/0M9xoj0RrRQTqRKCSfH/DDTdYD5j0XstvqQsvvfSSXeRwHSz4M9/5HUrLnYPfV1a2mNf5PuG7pVzYdNNNc1Fcxxa3Yffdd7eL7hvO95QTAlLY695ZjERhAxsJ+M7itz2/MsQ0XXLJJVZscPLJJ7tLaC4CDUkgaLm4mrzjBxDz1jXXXGOOPvpo+y31cwzjUPhDke4jjzxi3nzzTetNm41yPB+DKxOHUb6wJ9QfEWgwApV858Mu34f9/ij3/gqafveecHV870/s6u2lOgx642tZBKJAgF7qOG277bZ26ujosLYtNqizbl8ohF2+57unWGdWNhKwXs76OjueFwpBbXFB6vXe61XyjvQer2URiAqBSp7loN9LP/caxA6df74g9XoeW6kdm3UO1u1//OMfqxNu/o+g9YYkUMl3P+h3NgiYIHmMggEK/NiO4H0H8Hqs3zO4zrd2xecfln2OP/54a7OkMxsuK4hAXyBQri6cf49h18V5/j/84Q/2O8qRrtg24ALbE+lM59RTTzV//OMfi9YFXPxi82rSXEl5qFg6tF0E6kmgkm97NXX6Unb5avKkY1hpuSNIe1zQ96NLm+aNSaCS932t8ggJVvqMF6Lv17tuubZ0an1c2HPPPd2indPBI7U2FPJSn5ZfDu8ROUIrEuxG6MdQUkTAL4G//e1vhkJTetmaMGFCj8MoCKBgl8N/FQvOMPDd7363YBQKdigOdA15BSN5NtKrCQOHM/j85z+f28PeS0wLg4uT2+lZoCCQAmMKB/OD89DrfQF/5zvfMRyG5JxzzukRnYUcBm9cii5nzpxpvQzkiw15bva0yN/e46RaaUgC69evN/QaS2FaviiX3nX5u7tnq9ANuoZt9uKhYCY/sBcQJz5ffj1XUKDHYyj29Xq/dALzUgI+5g326B01apSh2JiTCzQUMLjGPC67/OYnT7p8TmOiE+vyHAxcp3cPCuo5Ma8qiEBUCVSb75nHGGig45Qf6PWdE98LTgSTH6fQ+rJly2yjPb3ZsaJAwa+f4LzeUYCbHyjCZXDvEnY8cd7y2EMxP/D7yPLBSSedZL10e/e7RgcKDORd10tGy41CoJpycTV5pxwf5i0aIg455BDriY9GST+BxgSma/LkyT3KGBTe06s2yzDexr1qyhd+0qM4IhAVAtV+58Mu34fx/gjy/gqaftepkJ17OASg9x3EzgAMQcozUXkOlI7+ReDVV1+1Qz0fc8wx1ujuvXvW09l4wGGhi4Wwy/fMhxQHH3TQQbmhqN21V6xYYRdpSysWgtrigtTrq31HFkuztotAbxOo9lkO+r30c39B7ND55wtSr+exldixaR+gUFfedfPpa73RCFT73Q/6nfXLJ2gec/Zzina9wj+219EZB0fHpAAwSEilUnZkSra1sfzjOu0HOYfiikCUCASpC+enO4y6eP45naMddg7MD24bPQ1WGoKmudryUKXp1HEiEDaBar/tldbpy9nlg+bJQlwqLXeUa4+r5v1YKJ3aFm0C1b7va5VHSK3SZzyfOEeionNGtl0Xau928f20pdO+TQcUs2fPtiPQ00GjNzjHe9TTNErw12rYKHejdIpAPyHAHjVXXXWVYU+Lyy67LFfBZ48gioEYvIIgCme9RgAOH7hq1aoNaP3mN78xdK9PV/xBhuWhKJIvR/bioIjWVWDuvvtua4Q44ogjjNc7YH56KHjk/dCLJxs+nICWQkKek8HrffeNN96wjST0Vuh9sbOQw+AVM7LQxfti+r785S/b/fzD+6Toih8HclToWwT4DD355JP2uaJQxhnIeZcUsVK89tnPfrbHTXufy9122y035Lw3Ej/0Z511lh0eh88TvdD6DfSAS8HuxRdfnHuuOaSm89BDz3ne4E3P8uXLrXCWohx67GltbbVReR/nnnuuFe9QjOdCkDzJvEGjPvMrxe0UCLnAdaaZ+9Wg76hoHlUC1eZ79pinp/r8QKHLlVdeaYe1p7cbb6eQ/Lj56/wGUWDAygOH2KHX+FLBm+95HeZrftdZmfF66rr88svtafjNZKCAjx6xC4VTTjnFflc5bHB+Jx82OtArB/O4vOsWoqdtjUCgmnJxpXmnHJc77rjDnH322XZ4yj//+c8lxfDefM/z/uIXv7Dll5tvvrlHWYV5mO+S/Ia5oOWLcmnXfhGIKoFqv/Nhl+8reX/k5/cg76+g6Wcdl2UAegji+4TLDKzP/PSnP7XffnZkVBCBKBNgBxXailgHpkDFO8rFnXfeaZPuysPuPrz5LOzyPcvMN954o6070+Y2dOhQe1na4pw9ap999nFJMd60cGNQW1yQen0l78hcQrUgAhEiUMmz7M1rQb+Xfm49iB2a5/OmJ0i9nsdWYsf2NvqTn4IINCqBoN99b17jPQf9zvrlVC6P5aeDbWHnnXeeOf/8823bk7PjM30M+W0SftJB+z+H9/36179ufvjDH/o5RHFEINIEgtSFeSPefFZJXbwcjAMPPNB2tr/++uttm59zbEOxPEf0YPC2O3vTU+7c3B80zZWUh/ykQ3FEoLcJBP22M33e/FVJnd6PXT5onsxPF9crKXf4aY8L+n5kWhQal0Al7/veyCMkGvQZ96bL+4v48a4bpC39K1/5im0jYzuaG5GS1+PIs+wcx3Z8r/3Qm5YoLkuwG8VfRWkSgTIEKECkUPWKK66wAjsKV+l1iw0WfBHRKOC8dVIgxAINvelSKMgwbdq0gle46667rJCVoiCv566CkT0b6ZGPHgBYYeEwgHxRstBBAS4LPRQ6uUARLr2EsCfxE088YTfTmMrhxW655RYrhGTPYwqKaQyhx8CLLrqox4v1v//7v20DyQEHHGAFVHRpTo/DPJ7iw+OOO85dzhpAeN8UTXBYNDZKUqjrDCTf+MY3cnG10LcI0DBGj89Tp041Z5xxhhXt8rdngx8Dn1MXKDKn59ulS5dacTmff68A1sV766237CKfs0L7XbxCcz7Xt956q31OV65caT3u0dDG55Lesr2idIqCKZyniJb5myI73gO3Mf+edtpphl5D2ADPPMJGeK8QL0iepJifBkQa/HbaaSdz5pln2jzKnlMu73K/V/Rf6P60TQSiQKCafE8v05zyg/Pezu9H0HzPDinsPcjwr3/9y07e83/605+2eZzb8t9D3EavtxTsUtDPPDplyhRDATHfHexY48Q37FVYLG3sMMPKSaH9FADy/lipUcMeiSs0IoFqysWV5p1SnCgq+tznPmejjBw5coMRIWh0YxmeoVA5nXmdZRWW35977jnr3Z496zkaBcv3F154oT3W/QlSvnDHaC4CjUogyHc+vzwddvk+6PujUH4P8v6qJP2XXnqp7XzHesTzzz9vyw5XX321/flZrxg2bFijPgpKdz8hwO8o66esl+6+++62fj98+HDbCZffRo424S3j5penwy7fU3DD7zTLzh/96EetTYHfdeZvetFjh3CW1xkK2b6C2uKC1Ot5zSDvSMZXEIGoEgjyLOfn+0q+l+U4BLFD56eH5/Zbr2dcCvmC2LFpP+f3Xp1wSU+h0QkE+e6H8Z31w6tcHitUxucoePR6TScdLC+wg/z06dPN7bffbtvEWE8JEthp39kQ6NHf65SG53H2/CDnVFwRqDeBIHXh/HwWtC7u516PPPJI27bMdu7XXnst5ziDTjTYjs16B+MwFHr/lLtGJWkOUh4qd33tF4F6EQjybWca88vSQev0fu3yQfNkoXwftH7P+/PTHhfk/chzKjQ+gSDv+97KI6Qa5BkvlEd4Dn5D2a517LHH9nDCyH3eEKQt/Utf+pItG3NEXGpZqKOhAzqOiMXA0SgaKUiw20i/ltLa5wi4XnrlhHAUvXpDS0uL4TCWFPmxskJPIww0zrG3LQWuLtALAIO395/bV2weND08D70S0tsvvX45YTDTTe8jXm+9bmiRfC+DFOdScEhvP07cxONpdKTXXm/gi5dCxlNPPTV3Le5nL0gKGMnBBXoyoIiZgmA2SnJioODyuuuuM3vuuaeLqnkECTjvx25eKInuec2Pw8YyCuT4/PDZdIG/OQ1dzjtue3u7Fetyu9cTtIvvnbtrubl3n1t2+/LTw+0U4ND4zueXEwMbGPMLDzQKMHifTwrg6cGHYnMK0F244IILCvbM95sneZ6vfvWrNv8xHU6ky+0UBrEx0tsIyu0KIlBLAi7vuHmhaxXLZ7XI9+767ppu3Tt3+/LTTI/eLjiP8W6dczbo85tW7D1Ej9f8JlK49+tf/zp3KA3+N910Uw+hfm6nz4V169YZVmj4zXTCX5+HKpoI1IRAVMvF5W42v5z+0ksv5Q5xI1/kNmQXXGNboXI6GwFoXGTZ1RkZeBg767GDDsU73hCkfJF/HNfz31veOFoWgVoSyM873msV+676/c7zXIXK095ruGV3LTd3271zl0/c3LvP73Kh/B6kXl/sOi7dbu6Nx2HB+N5gOcIJdbmfXrnYyVdBBHqLgMs7bl7ousXKAfSYsdlmm9mysLM18Xga+1l3dcPcFStPF7qW21Yo37h9xdLD/MOObuzU6vV6T2E8v9vuHovZvtz5C80LpSdIvT7IO7LQ9bVNBMIk4PKCmxc6t3vm8+P4fZaD5Ht3LTcPkh6/duhi6QlSrw9qx6awSJ1wC/2a2lZPAi6f5eft/DQVqg/4/e6H9Z11aSr23S+XxwqV8XlOOonhMOB0MMM2PAba2dl2RZFQoeB4ubmL49rKuP773//ebc7NKSJkBycFEagHgWJ5x6XFPc9u7rYHqQsXy2fuXJXM898/FBU+/vjj1kHU3//+95yzKcZz9jnX4bXc+8fvO7Bcuv2Wh8qdR/tFIAwCLg+7eaFzFnsf+P22FytLF7qW2+bym1sPYpd3x/iZl8v3hc6Rnza/7XFB3o+Frqtt9SHg8oabF0pFsTzi930ftTzifcaL5RHqvBhoQysV/Lal8xxsH6NOjo752CGOEwO1Xxx1PX8kLrszwn9iGLYrE+H0KWkiIAJlCNC9+HvvvWcbBWjUyw9snKOolx49e8P9N3v58qXMjw4NkvnXpJGDngkoMi7UM4Muz9kLghUhvli9L/v8e+P6O++8Y4f15FCBgwYNKhQlt2358uVm1qxZ1nvomDFjctu10PcJsCDM3j30xpwvdKHX3Z133tl6rCtXYAiDVDqdtnlkyZIlZuLEiTZN+eelgYCep++77778XVbYRwECh+NhHnGGgg0iZjeUy5P5xzlWFNDn59/8uFoXgSgTcM9yFPJ9OU7l3kP81r/99ttm0aJF1gtwvlGx3Pm1XwT6C4GolYvLcS9XTl+wYIHtJcwyPkeoKGXw8VO+KJce7ReBRiJQ6jvP+yhVnq7HfZbL7+XeX9WkmQZd1rE7Ojqs126yURCBRiSwbNkyO5oTy/euocPdR7nytIsX1pz1ceYrzun1J198U872FTQdldbrC9WFgl5b8UWgngRKfe97O9+TQyk7dLn0BK3Xy45dzydP144CgVLf/bC/s5Xeb7kyPtvtOGIfRwigHT+/vFDpdXWcCPQlAuXqwuXyWS1Y0B7H4HVG5a5Tj/dPqfKQS5fmItAIBEp928uVpet5f/XI97zfcu/HejLRtWtDoNT7XnlkQ+bU2lCXtvnmm5tCOrkNj4jelsJd+aKXTqVIBESgCAEKWgtVGlx0vrwPO+ywXhPe0fjAoQqLBdcb0us51BuXotupU6d6N5VcZuMDJz+BHobonUSh/xGg8JTDURUKc+fOtZt7q8cNxTZMS7H0sMJC7xjMt4UCBccU8/oN5fJk/nlKscqPq3URiDKBUs9yb+f7cpzKpYff+s1R4eCkIAIiUJxA1MrFxVPavadcOZ1l/FLlfO/5y5UvvHG1LAJ9gUCp73y58nQ97r9cfi/3/qomzaw/uNFFqjmPjhWBehOg2LyY4LxceTrstFMwzNEyioVytq9ixxXbrnp9MTLa3tcJlPre93a+J+tSduhy6Qlar5cdu68/3bq/cgRKfffD/s6WS0ux/eXK+OPGjTOcFERABIoTKFcXLpfPip+58j2lbHH1eP+UKg9Vfpc6UgR6n0Cpb3u5snTvp/bDK9Yj3/Pq5d6PH6ZQS32FQKn3vfLIhr/y6NGjDadGDvFGTrzSLgIiUJoAPX28/PLLRYV/pY+uzV56IOEwPa2trbW5gM4qAgEJsKBNb5WlhOYBT1lVdFfgOvjgg6s6jw4WAREoTiBq+T5q6SlOTntEoHEJRK1cHLX0NO4vq5SLwIYEolaeVn7f8DfSFhEIm0DUytOyfYX9C+t8IrAhgajl+6ilZ0Ni2iICfYdAFL6zKuP3nedJdxJdAlHMZ1F4/0T3F1PKRKByAlEuSyvfV/676sjwCCiPhMcySmeKdXZ2ZqKUIKVFBEQgPAJ0lT9jxgyz5ZZbmqFDh4Z34irOxI8JveiW6qFYxel1qAgEJrBw4UKzatUqM3ny5MDH1uIAetedPXu22XnnnTcY5rMW19M5RaA/Eohavo9aevrjM6F77vsEolYujlp6+v4ToDvsTwSiVp5Wfu9PT5/utV4Eolaelu2rXk+CrtufCEQt30ctPf3pWdC99j8CUfjOqozf/5473XHvE4hiPovC+6f3fwldUQRqTyDKZWnl+9r//rpCeQLKI+UZNWIMCXYb8VdTmhuWQEtLi9l///3Nfffd17D3oISLgAj4I/CjH/3IcLr//vvNtGnT/B2kWCIgAg1NQN/5hv75lHgRCExA3/rAyHSACDQ0gUceecQccsghqtM39K+oxItAMAKHHnqoefjhhw0cXgQ7ULFFQAQakoD71l9wwQWGk4IIiEDfJ6Bvfd//jXWHIuAl4Gx5+tZ7qWhZBPo2AbXb9e3fV3cnAl4C7jvfKHa8uDfxWhYBERABERABERABERABERABERABERABERABERABERABERABERABERABERABERABERABERABERABERABERABEQiXgAS74fLU2URABERABERABERABERABERABERABERABERABERABERABERABERABERABERABERABERABERABERABERABESgBwEJdnvg0IoIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIhEugKdzT6WwiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAJ1IZA2JtPFKdM9TyIVKaynMtk51hkHk8GmDyeuxOx/ztwUo9sXTLEE5phiCexEy1LMTc0xE2vujoO/CiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiUISLBbAo52iYAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiEBdCUBcm+6AtnZ9xqQxZdZjmevtWOfcThDcdmKZYl3Mu5exDYLdTFa0a5ch3qWAl6LdD8W62WXMnFA3N6dg1wp1MWeLEpc5p2C3BeJdiHVjLZgo2uW8FQLeVmh82z5cjg3A+gBsxxTHPgqAFURABERABERABERABERABERABERABESgPxKQYLc//uq6ZxEQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQgcgQoKg2vRYCXEyZtVheg+U13dusQHcd9LXruvfZdYh2DQS7mXbOsQ+iXYp0rRgXs94J9MqbDfTAS8EuhLrGinU5p0gX2wa6CetYjnN9EMS7g7A8GNuy8/hALKvVKgtUMxEQAREQAREQAREQAREQAREQAREQgb5IINbZ2emxqPTFW9Q9iUB0CLS0wGKJsP/++0cnUQFSkoD7hGZYXTm1wG1CE5YS+NuE8dA459+4neJwwOD955w1wICc/ZeGC4c0rMfd/5ImmeFS0nTBqtwFFxD4i7VOuz9AEhVVBCJF4OGHH27Y/B4pkEqMCDQIAeZ5hkb9zjcIZiVTBCJFQN/6SP0cSowI1JyAvvU1R6wLiECkCCjPR+rn6FOJoR11UGywGRYbYYbGhpmNYkPNEEx2Ht8Iy0PMoPgQMxhxBtnlQaYVKthErG+4pU3BDtwOlfG69FqzJrPGrM18YNZAmbwm/YFZnVllPsC0OrMa00o7rcyssHFoPa51UL6vNWGdXwSiRUB5Plq/h1IjAr1BQPm+NyjrGiIQHQLK89H5LZQSEegNAszz0MH2xqWqvoYEu1Uj1AlEwD8BJ9j1f0TvxITk1gyNDzfDm4abjZo5bWQGNQ3CNNgMbBqIaZAZkBhoWhOtmNpMGyYut2D8sqZ4s2mOU7SLCcsJzOMxinXj9l/MLmcFuxmKdCnZxTyTMSm4jUimIcxNQ6iLsdq43JnqNO3pdtOR6sDUbtoxrU+tN+uTa81aTOswrUmuMR90rTarulaalckVZmV6hRX79g4tXUUEREAEREAEREAEREAEREAEREAEREAEREAEREAEyhOglZR214mtm5lxA8ebMQPGmo3buqfRAzY2I1tHYRpphmMa3DQE9lW6qe2/IZlOwfb7gVnescxOy9qXmCXti83i9vfNovWLMC00761bYOZ3vmVWpVcBlPzR9N+nRXcuAiIgAiIgAiIgAiIgAiIgAiIgAj0JSLDbk4fWREAE6kkAdksOiZayw6h1D6WW4fBqGFLNzr3DqWHZcJ3DqGFItdxwahxSrfZODDakRBt1a8+h1GIDYsZwKDUMlRbjMGluGDUMn8Zh1GLZeWII1jmkGh0b4xAFERABERABERABERABERABERABERABERABERABEagVAfgkMKmVcFSwDNNy2F8xTy8zJr0U8+Wwt66AM4PVuDriKQQg0Azz7kaYRsDeO8KY+ChMI7GMKYFtCc6Hwg6MeAoiIAIiIAIiIAIiIAIiIAIiIAIiIAIiEGUC8rAb5V9HaROBCgjAaS2EuDAIwzCcXoUJBuD06u55husfwDBsJ4hxrWAXF8ExDR9otIVw1wzBnCJdzDGCHAy5MNwOxTLFuzDacpnGWyvkbWr4u9YNiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAI1IkAbbFWoAtBbmoJpsWwv2KeXtwt0s2sQMLoCEEhfAJtsP0Oh52X4t3RmDaGaHd099SEOW3BGAxOQQREQAT6BgE6FE+jfQ8TnevYeRqdQOhoh9uz8+59iMx4nLDIQ+0fLriJi27ZRnD7uAIPOHSC4xzhZJcxoGZ3cPsw77Etjt2YYpwnsJPLdMqTm+O9bPdl43DZnROLCiIgAiIgAiIgAiIgAiLQXwhIsNtffmndZ98kgMo2xblJeGZIw2NDCgbgNJfthMo21jMYGSwDwW6/NQyzsk8PvRTyDoMxYBhsA/TCQGMu1hPDYTegFwZ6ZxjUbUDomw+L7koEREAEREAEREAEREAEREAEREAEREAEREAERKAqAjCzptfBHktx7vuYY0ovwvQ+tkOsm1mJs8t7blWIKz6YDh1o+x0DO+8Y2HzHwubLCetWwIuR2iQMq5iuDhQBEaiEAIW0+CZkuvB9sPMPl+lIx25Ldu+zjnW4LTuZFLZj2W53Al2Kcr3LPD/i2dExvdsZj2JdTtTfMmDeQ6DL7flTNh5nhQS7uW1sd+MrNTvPxacANyvINRDqOrFu9zIiO7FuVsTL7TkxLzpYxJoQh3Meyw4X2Yne07nPelHnfq43d697l+35bWL0RwREQAREQAREQAREQASiTUCC3Wj/PkqdCPQgYL3nQnybpMcGDqOWHVKN3hsyWM5geLUMvObaynmPI7WyAQFW+CnihXg3NgqGW0xuKDUuN3Ed3nmtQWGDg7VBBERABERABERABERABERABERABERABERABESgXxCA4ClFm+xCTO/BLot5CvP0QthiYaPtt44Sov7j04kDbbzjIN4dB/vvJrD5Yt6EeQKjsUnYFfUfUOkTgYgRoDiWotsOvP/hOZ3zDOednLzL3euG2xkfc7vMOFzOCndt5w67jO+I25bEu8kJdiHkdWJd2+ZH8W1fDB6Bb7dAF+1yTbh3J95txnJWoMt59zLmLXjHczvmpgXHZNftdrfO7wC3c90tt+K7QA/t3Mbz8foKIiACIiACIiACIiACItDLBCTY7WXgupwIBCJAYzA86HIoNTekmh1WbVHWY4OGVAuEs2xkO4wa6ucYPi2+MQy58L5gh1HDehO3yQNvWYSKIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAINT4B22ZXdAt3kgrRJvgt77Luw0S6AcGg17q6vCqca/ocrcgMQZMWGwu47HvbeCZygBRsftwLexFCJd4tQ02YR6B8E8D63Atx2CHHXQ1TbDpGtnbieXaY4l9sg0DXZfbl1j3iXHThsnKxIV851evkRokdeinAp0oVA146+SaEuRLq5ZbYDtmHdzrvjcT2GdSvkzS7HBnAd7YIDusXAEvb28m+py4mACIiACIiACIhAHycgwW4f/4F1e41HgD1sUytgDH4/bYdVSy3EOrw2pDG8Gj3osieuQi8RYEUeHnjj9LrAaSyHUoMhl0Opjcj2vu2lpOgyIiACIiACIiACIiACIiACIiACIiACIiACIiACNSQALW7qg6xIdz5Eum9DoPs2hFzwpms4qhlmCn2AAHRaBiOvxel1dzM4auA0MWaasR4fjJ3cryACItBnCHDkygyEuOm1eJ+vw3xd93oGcyvQtevYhn0ZCnSzk6F41y1DpGs94qqzRp95LuyN0LsuBb4U70KgG6M4F3Njl7E+MLvNzvHdGNi9n/Hi2EYnP5zb4ygWVhABERABERABERABERABnwQk2PUJStFEoJYEOHROEsOncUi1JLw0pOCtIf0ejAUQ6RoYEWQMriV9n+emoXYwKuDwuhsfTw8MMOhi4rxpJCrp7KGrIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIi0FAErG12UcZ0vQXbLKYUp/mwy9KTbqOKdJ0IiUIkDCse45DiCSxnpxjnjEOTpnfCqr1n3rebIFDLpLDuJjtcOw7qQgQsN7SIDbdhPe9CsJvYHHZeTM2cj4nbYdRxdwoiIAJRJ4BXER3hpNeiXQ0jVlphLuYZCnSxjfPcMjpfUKibwXazLmZFuvSKK6/pUf+R65w+fi/p4IeC3UFYpkgXc05xtBvGINy1y9zPdkQKed2c++Dx135r63wburwIiIAIiIAIiIAIiEB0CEiwG53fQinpZwQyXbBxQqTbRW8NMADTCJyaD0PBYhgKaCBQiDYBDo+zMSrdE2HnhkHXemGYGDcJindpCFcQAREQAREQAREQAREQAREQAREQAREQAREQARGIJgGYYFMrYZt9B9M8jHQ2F7bZNyHsWo7kUpgaxeAEQ/DsZwZkPvQGCBGR9Q5IMRGdCnAocE60UWKKtcBeSc9/TqybXY75FOxm6FESTOil0ol2advOULDLOYRyXOfIcBQ/54aJd8PGw0OlyXqwtKPHRdVDJfjERgLTFrD1bolpUtw0bwoh71CqenEPCiIgAnUlYD3lwgtuiqLcD6CxhUf0DOdcpxA3u56xy1jPinbtewevKwURqBkBfiP43aWIlwLeIfjuwpO7W7biXW6jiBfzBKY491Pgy2+zggiIgAiIgAiIgAiIQL8jIMFuv/vJdcN1JQBjpDMEJ9+BUJfeGjC0WmYRUgWDpkKDEqAxfAyMuRw+jR4YNvUYc2n4VhABERABERABERABERABERABERABERABERABEag7AQq+kkvSpgsC3a7ZEOrOhtgLI54ZikqjEGhL5FDcG1Ho0y3u6eHBj179IPDpHoIbyxyWm0N5Q6gby87j9OTXywIgeuC1wt122Lop2oVDijQFuxyG3jvcfJ7Hy25hXbfozv4GURHz4jeIT4Cdd+vuqWVLOGoYBcYa8jwKuURp6OsE8B5I892xCu1n8HSeXo3l7Dyzqns9g/UMtts5BLrW03df56L7a1wC7DxDIS+/7RvhWzIU3xjOsc55PLue4DK3sWOO2hYb9/dWykVABERABERABETABwEJdn1AUhQRqJYAjQvJhTACQ6CbfBOG4DdhVIiSITjIDdLYS8Ok9dBAIyUM2lxn5RFz65mBy5zYq9TrfYC9mGl0zc57DKVmvTQgctYzQ8MOpQajeXw8esjSEwMmDqHWvAk4tXlBgIGCCIiACIiACIiACIiACIiACIiACIiACIiACIhArxCgiLTrPUxvQKz7BkRgmDJLcel6edOlqZACW4p3hmXFOxDsUMhDr3tWwEMPfPTGB+FunMNuU8DTy0Lc0H8c8LZCPDt0PZadp8ysII8CPArzMisxQaxHcZ4djY725HoE8I6NBvZtYOO1Exw1jIt3D29ej/TomiLQxwiwE0Ua7wM6ukkj31Okm3bLmLt3AffRU3fd3tl9jLtuJyIE+E3n953ff1cWwDw+DNvsHG2NXIand5YF5I03Ir+bkiECIiACIiACIiACIRCQYDcEiDqFCBQkACNiCsaFrrdhBJ4DoS6m9LxuA4MVrRY8qI4bOVwLPAcYemngHAZgzmN2KDXMKThlHE4U69o54nCZhktWLD3znFjXq1OlYdWJdSncpUGcQl03t0OoIQLndhn74Y3BeWWww6nBM4PBsEcZer3AZOdR9E4MwXJsOCrSkyDc3QoG3a1gzIUHXvaQ7SFixm0oiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIhE/AOlJ4N2M6Z8JG+zpEYbNhe6QItLcDbawQ3cSGQ3QzEjZDzinCyc4TFOZQkMPhsfupF1cn3LNeNT2CvfQK2NVXQMi3HLbg5R4Rb2/+hrRxQ1CVgMfd5u1jpmVb2HrhgVdOGnrzR9C1Gp4APeeibSeFPJ1inuYceTrNCesZOyGPQ7SvESkb/tfWDVRDgO2v7NDDMgLaGWMjUF4YgfZFrts5vkcsN6DMIE+81YDWsSIgAiIgAiIgAiJQPwIS7NaPva7cVwnA6JBcCqHu3G5vDclZMDbAKGwoNK13cMOuwEtDDB4aYpyj92ZsECp2HI6lx5Bq2M+hvyDU7RbtIg4My73pxcEOpeYEu+CX5nBqEOnSqMN5BvM0hlHL2AnbMPRRbhg1emLA9kgMhUSOEyHcdZ4YMIRa00hVpOudHXR9ERABERABERABERABERABERABERABERCBvkkg0w777HwIdV+FjfZViMLehH32g166V4o76QiBwtxRsKnCQ2sctsCEmyi8oeimFREZV6E4AfxsafyW9LiZWgbfD8uyAj/Y39PwkJxeApswhLx07GAdRRQ/U3h7YFNP0EHDFAh3p2SFu/wtFURABHoQsCJ8eM22+ZZ5F5PNt5wjP1sBPsW5cN6iIAIiUIYA23cp4kVZwnb8yc4TKGckKOLlOhwG9ddOP2XoabcIiIAIiIAIiIAIRI6ABLuR+0mUoEYlQHFpanHadMJLQ9draZOcCWPhYtwNhvTp9QDvrtZTLnr9c9gUem+wQ6pwSDVU6OyQalx2Q6rRcwN6bDZqyMDDLodNshMM7+kPsOyGT+MQSvCawaGT6J2Bc2vApYff3g7wjhEbA+HudsY0bxc3LVtDuDsaxlx6J1YQAREQAREQAREQAREQAREQAREQAREQAREQARGoigDthF0LYKOlUPdFCMQw6plhp/5aB3rQpUAXtr/4xjD3bQzxDCfY/qyYBkNZywteSD8C7Lop2H9TEO2mINi102LYgBfB/rsoK+CFE4iaB9jWrcfdnbLC3XHxhrax15yXLtDnCTiBbtLlS8wpqk8vQd7E3Irro+DYptF/Cbb/cWK7knceRzuf3YbvntvH/exP4Jm46F3PLXu3cxmnyU3569yHkPHG4TLb3ThxVM10rHt0zTR25La5fdl4mClUQYCdg9gJCGUN2znIlTlQ/mhihyEJeKuAq0NFQAREQAREQAREoLYEJNitLV+dvT8QQMUzSaEuBLpWqIuh1TLo3W8roL11/zQI22FRUAFj5cxOMAbbIdUwt4Jd7BuAqritjfdWwup8HRgBrAcGCHU5xFKKQ6nZIdQwh+eFXC9uinh7w4jrcMBIEoNnjabtOIQahLuTJdx1aDQXAREQAREQAREQAREQAREQAREQAREQAREQgcAEYAdMLkqbjldgp30BtkCMemboubFWgSIoeFq1At1x0EaNhQ0WUxM760MoE6dAtz/ZYWvF2c958dun1uA3h2g3CcFu6v3uKb0Q9l8sW8/KFJLVKsBpRmJbiHZ3iZvWHWDnxe8vcXatYOu8kSJAHSYcqSSR91LIe8x/aa94Hm0y8p4LBvxewDuqgdOcWDPeD80AR2+p3AYnLwbb3LL1jsptdP6Sm+MYCnAxxXiurBjXinN7bO9+93SLdj3xsTknyuUyA+ax/O2efTYO35vu3emWMc+JdBnJs53LGY8wl06OuoW7aDO1At7u9R7LLj4cH2VSOAHndIKUnewyPDB3z7P76ZHZThAEd2KbW+e5+nvgc4W24jjKI/ExeFTYcQjlEk50HhTHaKsqm/T3h0T3LwIiIAIiIAIiEBUCEuxG5ZdQOhqPACp/SQzd0zkT3hpegkfd17JCXdQPax7aUKeiKJfG31GYc8gT9py0w6qhEkavuhqGq+jPwCHxKN5NQbRrh2NyPb3dMGoYjqlXBLysG1O4i+HTmnfMCncxdI0MukV/Ou0QAREQAREQAREQAREQAREQAREQAREQAREQgR4EUuig3zkLQt3nYaN9GTZa2vZqESiW4ohm42GTHQ+bHuYJeFVt2gRz2mMprlKoOwEKu/hMJBfieXgPNmBM6XexbQEM9xiJrSaONmjnhYflph0h3N0Ndt5t4/aZqDsMJUAEQiZg8xfbVhYij1Ecj7nNY5jbdy+8nPfp4MS3bKODIx1DZzqct7BNzi13z2PYZoW5FOpyhMusYJfLVqCbFe3GmrKCXa5boS6Os/PudZPo/r7khLh9CTDaWSngtYJcCHY5t8tJzzIEuRk7dW+jQNeu41lzgl161+dksttyy3TUg4nxMm6ZXp65jPPU5HuA00Ym8Jmk93+WU8ZhwryJHYxcuYWCbwUREAEREAEREAEREIG6EJBgty7YddFGJ5CCx9bON+itIWsEXow7qmXvTRqD4SU3xooUekXScwO9NdjekRTrDkEFXhWryh8rGATsMGoQ7rre4Bw+LYVh1DKYZ+iBlz2AaxVg5OFv27QDbDbwxNCyDQy6GKpGQQREQAREQAREQAREQAREQAREQAREQAREQAREoDABim8634JX3WfhUAFi3cx7iBe2DY/iLHpQnQAb7ETMJ8KGNzFumiF2kRfdwr9LpLZCo0u7b5Liwvmw5c/Pincxt+LdsJ1vwEZvxdxT4W0XU8vm8W6hXqSgKDEiEIyAFekuRx6C+D25IG1S76LtBCL4NPJVzT1YB0tq5bH5rqe4kaNUDsiYGAW5XLZzLHPelhXl2mWsw2mO3W6Futl9FONye3Yepxddtd1V/rsEONIKfz2C3UxHt0jXinndMsS6dOiT4ZxCXk5ufT0uxu3rsT+3jG0U99ay/TfAPVYVlU2OG2XFu+Oz5Znx6HREIS9Ga1Wno6ro6mAREAEREAEREAERCExAgt3AyHRAfybAilvn2xnTQW8NM9K2Z74dmqUWUFjJh/dc9nqMj8OcPR83QeWJQt2hqFmpkl8L6vacrNinIcrmEE70xJCCsT/XSxxeeGvmfRe9puMw+jfvBk8Mu8KguxmNPKxFK4iACIiACIiACIiACIiACIiACIiACIiACIiACFgC0Igl0fG+A6OedU6H7W42NlBcE2YYROEl7LCbwdHh5rDLbgaRLu20Gk46TMq9ey48Juk1GdNF0eHbsO+/BdHh29iGdbM25KQMgPl+W9h494JwdyfY9DEynoYhD5mxTldbAhAoplYjr0Cc28X88g7E7u8gv1Cku662l67J2dH2YgYiG3LC+z02EG0vbh3C3B7LyL9xTBTs2jmFutzGOQW4arKpyU/U6yfFo0wxb5piXpQhKNRNZwW7abueFe/iec9wopDXLa/DMr4bnGz5A56BGy6wnENPu5vie7Up2iVRzrEjB9CZEAXsCiIgAiIgAiIgAiIgAjUlIMFuTfHq5H2GACpuFG92vJgynU/DkDcHG8I2AhMWRbobo4I0ARUkeG1o4kTD8GgaBmQFqNfzlEZFPLUYhikMm9bde5xzVMbRMFAT8S4MRYmtYNDdM2Zad06YJvz+MgLV69fXdUVABERABERABERABERABERABERABERABKJCwHrVfTNt2p9MmeTzEMwsQcpgogslQNBlHShMgk12C0yTINJF53rrPEHilVAQR+YkFCPCYUPXOxAizoMo8U3YezHP0FlDWF6aadLd2JhmetvdG84Z8DzR66aCCESZAL2SdkGU28V8MQ8dIuZB0AjRbuii9rAhsPmMXm0HY6IgdzDEtVy261imOJHb0ekiN0c7TJzCXQpz0TYnkWLYP0ofOR++F2l42U1TpIspbUW7mFOwi04gds5ta7F/Dbd1b7dzCnohCg6tnFIrpMgncbZHo/yTwNTCchBGBZVDoVoB13lFQAREQAREQAREAHWTzs7OsMxZ4ikCfZIAK2GdszG02lP0qosK17KQb5OG4JEQaMKbKqcm9GTksGpNo1AZkgEvZNjVn46NAsmlMFZxCDX0Kk/C43IaU2Y5zh1yL9rYaHjw2BWi3T1h0N0qLtF29T+fziACIiACIiACIiACIiACIiACIiACIiACItCgBFIr6FABdtpHISJ7A80aHKY6jEDPiRSqbAVbHGxwzRTrbgxxJT0pKvR5ApkuOutImy6IdpNzYPOdkxUowtNiKKENtn94223dr9vbbmKYHHOEwlUnCZVA+oPu0SW7mAfgtTyN/JBZgUtArBipwJEn6f12I0xD0IY2BO9vTFzOzSk+hGCX63YOka4840bqV+xbiUFxxHrqhWCXXtzTEOzaOfIURbvpD7Afy3a+uns5g23WU3XU8hc6J8VG4JvFctDW8LrLMhHarOPIXwoiIAIiIAIiIAIiIALhEpBgN1yeOltfIoBKVhJeVdufh1fdx9MmPQ83B+NdaAHGAg4zwt6KHFatGVPTGPVYDI1vL5yIvc2T76O3OYZPS74FQxaekTREvAaV8NACRNusHLd8FEbdqfC2CyG3vO2GRlcnEgEREAEREAEREAEREAEREAEREAEREAERiDoBCFq63oVX3SfSpnN62mQWIsEwwVUdIPiyttltYJvlBA+oCYpSpEupGm1DngDPVGo1PYtCvDsL9l6IFul111BYVW3gYzUONt69Y6btoxBAjYMqSl6bq6Wq40MgYD1Nw2t55+t45jGl5+OZh7fQuge+hyF2jw3lhHYzvK/jXN4I4kHM45zbCe9xinXpUVcOcOr+sykBGxKwYl4Iefl9oTA+DdFumsurUJSBp3euZ7LLnNvOSGGUcTZMSrAt9EBNJ1OT8e3anl534VQIeU5BBERABERABERABEQgHAIS7IbDUWfpYwRYgeqEYa79MQyt9hx6QS4N6QbR+5deUxNbopKDqXnL7mHVaExQaGwCrGh3wZjVNaQ8mtgAAEAASURBVBfC3bmofGMKcwg1PjfNH4EXhn2yw6fJw0djPzBKvQiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIQFkC1k6L0c/WPwQ7LUY/C0U8OazbPttMAcpkjHQG77pxDImuIAKOQHp91tY7E+Ld17ptvYZCqmoDRIfNu0G0e2DCtKBtQALDaoHq+EoJ0ANoJ9oyOl+GUPdVOKyZjzOhXawuga9fiANjeDfHh0N4y3l2OQ6P1JwSTqRLYS5GrVQQgUYnkMGIncyHFM1TvJvmHCMJpFdygoh3BbZh2Xq6Xo+7rZeItxX5cSLatHdAmYkTvl1xeK1WEAEREAEREAEREAERqI6ABLvV8dPRfZAAK0jtL2NotYcwtNpM1IDCGPqKFRr0oG/aBsOqbQORLoYRaRotw0IffHyMHUJtCQy6aEjglHoDler38ByFYezi8GloSGg7EMLdHVQp7ovPj+5JBERABERABERABERABERABERABERABESgm0Aaw0u3vwQ77f2wscHjadX2NQi+EhzimYKT7WCjHS/BpJ610gQyHfDuvACixtdg630Vwip43TXwhlhVQFtBYjvYeA+Wjbcqjjq4IgLsBNH1Dt6rL+CZngGh7ts4TRhtF0FSgzxAUW5sBMS4I9B2ZieIcrkOwW6CE97XsVaIAqULDEJWcRudAD4x6XYKePG9gWg3RQHvckzLMFHAuxy6XSxnsK/X8y08WMcxUiw7nbTugjLUBJWhGv1xU/pFQAREQAREQATqS0CC3fry19UjRiAJoWX7MynT+R8YKt5B4jDcWlUBAkvb8xAGuGZMLVtgWDX0BpaRoSqqjXEwKtasTHdiOKkuN5zUu9hYrQCco6WhUtxyQMwM2D1hEiNlsWqMB0KpFAEREAEREAEREAEREAEREAEREAEREAER8EuAHudop6VYN/0WjqrGTjsYAsmtYJ/dETa1HbNCXY1e5fenUDwQsCJHCnfh6KPrpazH3bVVoKGNdwuIng6JmzaMqpbQMONVwNShfgmkIPxjJ4jO6dlOENU8w34vyngD0CQ2Es88nNjEOR8FQa6bINJNULzbpnaOIEgVt38RsCJetDemINhNQbCbWgoBr51QPMI8sww86IW3NwLLVJPx/doLnU5QpqLAXkEEREAEREAEREAERCA4AQl2gzPTEX2RAHSUXe9haLWHYXB7PG0yS6q8SQp1N4VH3SkwAk+Jm5ZJMEQMUaWlSqoNe3hqNTzuQrjbieHTkq+gIj0fDxy8M1QTYhvj2doXnhimoZFhE1h49XhVg1PHioAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIRIRAEuKT9icg1sUIaJkFVSSK3uA2M6Z5V4hK6A0OQzpbj41VnFKH9m8CmQ44aHgb04tZ76R0+lGpd1LYc2PjjWmFp90Be8kxQ/9+smp89yk8pvCq2/4Entun8V59H9dDE0XNAtrHrEAXbRjx0RD3YW4nCHatUHcwHv5Eza6uE4tA3yeAPJ36AMJdinfhiCq1qHueXgwB7+KsgLfKNsiSEPn9wqiyzXvAsdDeLF+hjVJ5uiQy7RQBERABERABERCBfAIS7OYT0Xr/IwDvDJ1vQaz7QArGClgpVlWBAJ4Z4hOMaUKvwpadMKGXfJzGBwURAIH0Ghhz50C4Cy8MSXhjSL+HjV1VoMGwUM3oxToQRt3mTemWoYpz6VAREAEREAEREAEREAEREAEREAEREAEREAERqDMBjoC2/hGMgPZgFU4VKCQZCxvtzvAANxU22q3iJj5INto6/7R96vLWzjs7bTqeS5vkixBHQSRVqQAyNgaOGQ6C6GlawjRpNLU+9ZxE4WboHbpjFsS696dMEu0SphZeddkusRGaJ8ZCkIt3b/ccDm2w3kSvunz/qu0iCo+D0tBXCaCdO4X2R4p3k+9jnp3SEOensWw+wI1XM1JBMW6DUNbaBd+vQxKmZeu4iaGjlIIIiIAIiIAIiIAIiIA/AhLs+uOkWH2VAMW6c9Nm3b9hrHi+CmMFjcAbo2KyE4xr8NjQso2Gseqrj0wY98Uh/TphJOucAYPuyzDo0qMzHr+KAirEzR9BhfhwVIgnSbRbEUMdJAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiUHcCVqz7MMS69Kxb6QhosJUltoWNds+4aYNDhQSGW+fIVKtXrzZLliwx7e3tFd8nTmOGjxhhRo0aZZqb4blBoX8TgD03Ce+GHS/Bzjs9bVJvYMO6ypCwbaHlIHjapWh3FJ+02od7XsiY32PEwbkUc1UYYkjqp+FQ4kSMAjdmWIUn0WE1I0CP0O14Ptv/hedzFn7napyH5KcS3jRjI6DDhZfNODxFN2HeNA7v3E0g2h0Kb+ZN+QdoXQREoLcIZJIQ8K7MincxumxyAUb+xIgF6ffQHrkCqYCH3tACRLqJ7TAa6OEod+0A0W5r73zDQku/TiQCIiACIiACIiACdSIgwW6dwOuyESDgxLp3Z8W6ldpqh2SNwLtjaDVURqxBTfWRCPzAEU8CDbro7doBT7udz2YNZmsqTPMAGMQg2h14hES7FRLUYSIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAnUkkFqeMev+A7Hu/RDrLq0gIbDHxsahYztstG0Q63I0qlhWU0ux7vz5802M6sIQwsCBA83mm28ewpl0ir5AIAMRZBdG8Gt/Km26nsHzC4+GlThnoGi39dBu0W5ieDjPajG+FOteeGt4iq1d4Ejiqi/Bk3Vtk13sdrS9AAF61m1/KWXW/yNl0rMQIQzvmvAXEoMwOz4RolxMTZtimoAJnnStF139/gV+CW0SgToTQFskvcJ3oXNG8l20Rb4DD7zzodmdjx0ccTaMdwME/InJcCz0CbaTJ3LlrzrfuS4vAiIgAiIgAiIgApEmoD6Okf55lLiaEUA9pPNNeNb9ZxViXVRA4hPp3RQVEBiCmyfCCKwcVbOfrM+dGMarpo1h2ILXhObNY6YDol0adNnLNXDv1vUQ/z6LRo0YjKxHwBsDPe3KONbnHhndkAiIgAiIgAiIgAiIgAiIgAiIgAiIgAj0RQKp1RmzfnrWs24lYt02CEW2iZnW/WCn3RkeHof1NIzRs25YYl3yX7t2rVm1apUZOnRoX/w5dE8BCVAYzqHAE/CM2z4+ZjofhSBqDhogAjoIySw2puNBKKdajRm4T8LEh/R8jgMmq2R0etYNM7wwL23ufi5mjoZTCYUIEGD71xyIyO9Be8MbSE+1P/dAtIXh2U5MQpsG2jKaNkN7GD3rDvL/e3d0dJgnnnjCTJ8+3b5Dg1LiO3zLLbc0++67r9lqq62CHq74ItB/CSCb8nvSygnfKivehafd5NvwvPsWxLvz8IqAB16DdsaKA5omUzNRlmtNm9hAXAej0KqNsmKaOlAEREAEREAERKCfEJC8sJ/80LrNngS65qfN+nurEOsOhmFiCiod+8IIvD16jtfQeNYz5VrrawSsQXdLGHRHw5iLHukdj6OS/Boqx0G97WZFu+ubUyZ2JITkE1AhVhABERABERABERABERABERABERABERABERCBCBNIr8cIVM+nTccD8Ey6qIKEDocdbCqGYkan+JYt4FABQzPnh/b29ooFuxtttJE9Hb30ukDh2Pr16yXYdUA0twToFZdC26YxEO4+nDJdM2DjXRkMTmYhhJbICxRCDoCTkFibf0FkkCvNhafFSsOXD+t2XX3NvXAt7AlvQXCsEA0CyUUZ0/5oygroAjsHcbeAR896090CAt2tY6Z5S0wQ6iaGcoeL5G++bt0686c//tG8OW+eGTJkiBk/fry/Az2xUqmUmTNnjp2OPfZYM3XqVM9eLYqACPglEB9MQS2mreImtQqedyHc7ZoLAe9sinczJoPvVqySTwRFu6/i3TM6ZTtO8VuoIAIiIAIiIAIiIAIiUJyABLvF2WhPHyWQhDFq/YMwmD2HGkfQHoO0RYxFj/m9INTdO25a4FXXwNOugghUSyCxERoW9kiYBA26m6CCjCHUbCNFkIrxOgy/9gye74HoxfoxGNLgwVdBBERABERABERABERABERABERABERABERABCJJAOKOzpnwAvlAymTeDZhC2mnHwU4LhwptH4W3x7Hhe3NrbW01TrDL1HlFuwFTu0H0TAY2PIh+/Ya2tjYTj6uDvl9e9YpHwXjrdnDwAefL7SPTphPOGTLvIzUBbLzpd+Bp936IdqEVb8PQ4lFqf5gKxxNnHPZhs6JXtBvgFn39PCtWrDAvv/yymTVrlpk4caLZeeedzSabbFL02GQyaTo7O+3+AQMGlBXpu/gU4DM+Q1dXl5247OccjMdr8lzMn8yn9Q4Z6Kg7XoSzmhfwi3RUkBq+W0fisdsWAl0Mcd+8Ld6vm0A8Ds/PlYZHH33UinX3228/c9RRR1V6GjNz5kxz8803mzvvvNNMnjzZDBo0qOJz6UAR6PcE2LyNjiaJ4QnzwuqnzI3X3mxa5w00u4/ay+w0YjczZsAYE48FLHfgnZNE23vHZhDtjmgydFikIAIiIAIiIAIiIAIiUJjAhzXrwvu1VQT6FAEOr9b+JMS602Gs+CDgrSG3xLeAwe0AGF6mQliJikzYoWvGkyb12vMm9dZsk17yvsl0Bhw3K+wE6Xx1IZBJjzDxzj1MOjHNZJKbIw0BXtVw9tF59xKTeuDfJt72oInFgz7odbnlul00fUZxI2/dEqULi4AIiIAIiECdCBx910N1urIuKwIiIAL1JzBt/afqnwilQAT6OYGWlhYzfPhwK8zaZpttzJQpU/o5kb5/+53w6tb+IIZsn4t7DaL2g34kPgl22kOydtph4dtpSd8r1uUyh3TnFEZYsGCB2WILGJt9htdff90OB+8zuqLVkwAex+bxEO0eGjPxYdBMwmNu+m0kKO0zUcgLqTlox3gobb2ZNm8eUDDl8zKVRHPedXkshbvPzk2Z5+b6vTF/V3z88cfNGWecYWbPnr3BARtvvLG5/PLLDT2s5oc77rjDnHjiiXYz43z5y1/Oj9Jj/bbbbjOnnHKK3bZkyRLrMfuGG24wZ511lt320EMPmX322afHMYVWDj/8cPPYY49Zr7Hz4EG23iG5EELxl+Elc1kFKcHz2kSR7k7wvomRJRNjINQNwWENBbujR4+uSqzLu6FI94ADDjD33XefFe/Wy8suvwPs0KHQNwj0599zxowZ5rzzzjMPP/yw/TFjcJ/94MLtzbSxB5l9xxxgdhkx1YxsGxXIqXZmKTo/4B2UnJzWSKB9I4voLkRABERABERABGpEIIAKrEYp0GlFoJcIZNC5uuNFDK/2GHq1Lw94UXSMTkxBT+tD4VWXPeQHhGsE7nzoLtN5/50mPmJjEx+3qWnacXdYRpA94WmBV/Laq6Oy3nrk5wJCVPQgBOxwgK+i0eK+NETceAKCtAWkR5rM6BNN87H/ZQZ8JFFwKMAgaemrcVf/9zH21trGHgm3AchZyG+NPG8bg/tQEAEREAEREIEKCax84av2yFOnnZUrf7pyZyPOeR8KIiACIuCXwH6XTLZRDz74YFQLUA9H/aCR57wPBRFoRAL0Urh06VLzzjvvmKefftrcfffdZt999zUf/ehHG/F2lOYyBFLLIUh8Im2Sr8AekywT2bsbJtMEhnJu+xhGQNsZdtqBLK2GHyjQ9Qqy6F03LLFu+KnVGaNIgA4/BuwD2+wgjKh2T8qk5yCVfp91eElNvgQvzGPgaXcoPSDW5jkPwo1iXXrYdeHae5Ohi3WvvfbanGDWXWfIkCHmgw+6nVIsXrzYHH/88ebcc881F198sUkkCqtJzz77bHPggQcadv7wE1IpuPtGOOaYY3LX//Of/1xWsDt//nwr1uWxX/jCFzire+icw04Q3hYlH0mCZ2g6q2nZHe/VXeKmiR51Q2o9dr/dqFGjfCSkfJTx48fbSKtXrSofuUQM5xm5RJTcLq+H85/+9KfmggsuMEcccYShSNx5Pv/a175mnnrqKStK5v7+EC699FLz17/+1ey+++7miiuuaLhbTqfT5rjjjjP//Oc/7fvku9/9bsPdQzUJ5u/3wx/+sMcpIPU3MzteNbPeft08ufgxc9j4I8zB4z5mJg/d3rQl/HsQT83OmK43MxDs9ji9VkRABERABERABERABDwEPqxdezZqUQT6IoHONyHWfQRi3QUB724wtLN7xMzAYxKmdadEqGLd9KIFZt0vzzddLz5lmvc4AMMM7WhiG6EbM4c3S8OogoZCa1qhkJALUVoPiFHRgxGgKLxtl4R97po+AoNswNGd0vMx7MzDadMFTyUKpQm4PNbo89J3qb0iIAIiIAIi4JOALW+y7MlyaAPPfd6uoomACIiAlwBFugyNPvfek5ZFoJEI0MPuuHHjzF577WVOPfVUc8IJJ5i5c+ea6667zgp5G+lelNbSBOhYoR2OFbqegd1qbem4PfZSrLsdRJCfgGfd3Wor1vV612UaKNitVbjwwgsNvYoWm5588slA3nhrlU6dNziBOMS6Az4SNwOOxoh928LGG0QEuQZeCp+GjfcVtGlAwFvPQLEuPep6wzX3hpuoN998MyeWpUj35ptvNosWLTLLli0zK1asMH//+9+tF1um4ec//7n5z3/+403OBsv0ntvVFSyN9OB79NFH23PddNNNhqLOUuEvf/lLbvfnPld/Byd0ApJagJr8ilyyyi8MhUfoj6L96zNoizgkYZonhifWLX/x+sU455xzzLBhw3xNfBZd+NnPfmYXKfJ87bXX3GbzyiuvGHorffvtt3Pb+vrCzJkz7T0z7zZi4O/H35GB75T+FAqJdb33P23//cwx3z7KDPvsAPPuLnPNjK5nzPIO/267+Q5K4l3Ed5KCCIiACIiACIiACIhAYQIS7Bbmoq19jEByGQxb0+GpdBYqB0H0i0NgrNgrZgYdBbHu1uEaKlJvzjRrL/ueiY+dYJq2ntLtUZdePhk452KU121C9aeWBNiLvXXbuBkIg24zROMG4nHfAc95aiY8lTyF5x4eSxSKE8jmuuywPhz0pzt0zxtnvfgdao8IiIAIiIAIBCCAD6D9+tkPoV3BwT3nDbE/wC0rqgiIgAg4AvSsy9D9l1Xy7Hr+PHtAVPdnk6eZCDQ8gQkTJpiTTjrJbL/99uaaa67pVyKYhv/xytxA1zsYsh222sz7ZSJ6d8ORZgJDtQ84Ch4gd4DX0lb3tvZGqn6ZQt18se6SJUuqP3GJM2y99dbWQyG9FBaaOOy7++aUOI12RZQAn9W2nROm7ci49Q5tCjuFLZj6zHto13gS4vb5QRo1Cp6q4o2FxLpn/F+Q4eD8Xfrf//53LuIDDzxgPvvZz5rhw4fbbYMGDTKHH364mT59ei6OV0SZ2+hZePbZZw1FaUHDySefbA+hZ9gHH3yw5OEU9TLsuuuuZocddigZtzd2pldCIEdNnc/HJTYSXnUPQPvDJ/F84r0a9siSvXHPvXENr3f10047zV5yxx13NJMnT/Z1eY4UwE5JX/7yl33FV6TeIcDfj3mXgR3F6hnYKYjPCKc//OEPNU3K9ddfv4FnXXdBeodmR4X77rvPepL+zv+cZ075+RfM4VceaOaPnWcWrV/kopaew2l5Gu3y6eocYZe+hvaKgAiIgAiIgAiIQIMT6NkltsFvRskXgUIE2Pu84yUYtZ6HlaK9UIwi27Ji3YEf6+5VnGuxKxI9yGbrWffqH5vm3fc3sYFwnUo9JW3MjTQPcsOKWzkBdKtomQSx+BHGrIunTNdTeEjgXcFXWA8vDM/Cs/SmaMzYGw0Zzb6O6neRXLbrvvFur9YfNvk02nq/+/l0wyIgAiIgAmETwIcxE+MfnLjIvCH2h81F5xMBEegXBHKedbN3m1vP97wb8f394sfSTfYrAvvss48ZPHiw9bZIsUtYw2r3K4gRutn0GggQYadNvZEtc/pJGww18a2MaTsCYt0psHFh+PZqQ2trq/GKsHg+bssX61JEkx+v2mtXc/wtt9xiZs2aZU9xxhlnGArbvSGVShl6gFy/fr3dxzjeQG+9HMZ9zpw5Zt26dWbixIlm3333NZ/+9KdtPvPG5TI9iL744otWmEYPohRV/geeTblt2223NZ/5zGfMfvvtZw/jNX/3u9/ZYeEXL15shVDMvxw6vlig51QKL5955hmzcOFCM3r0aLPbbruZ//qv/zL0dloocBjzf/3rX+a5554zzz//vGlubjY777yz4bUOPPDAQofUfRuf2TaM3mcgYlrflTLpOUgS61zlAuLQKUPHC2nTNCZm6LG3VmHqlnHz3NyeSk9uy/ese+29yQ3ihZEmJ9jl777LLrsUPOWYMWOsCPeRRx6xv3vBSJ6NP/rRj8xhhx1m9txzT8/W0ouMTw+/FOzeeuutVihc6IjXX3/dvPzyy3YXvfnmBz7TTCef0zVr1lhBL+/ruOOOM01NtWmaTcNjecav1/KBcFazJzzrHpowTRvX7rnK5xK1dT5vf/3rX0sma9NNN83tpyfW8847z4wcORIDZQbzicVnSiE6BJgP+U2kF29+e6IS1q71m4krS/FXv/rVggdSrMtpg4DXAz1v73/RXmbONe+aNS+sMYOby3sX4rsovc4aFzc4pTaIgAiIgAiIgAiIgAgEG4BHvESgIQl0LYDHhufgscFnxz97kwNQAfkIjBU1EOvy/O1/uMo077q3FevSFJJx9pAC80jvt7D0p+YE8BA0b4qh0z6GZyWZMkkMhWYgxvUTMguNff6bN4/Zc/g5pr/FsdmOHrPYCI95LDtvuPX+9sPpfkVABERABGpDgN9CnJmiXC6xnNqI67WBo7OKgAj0dQL0XkiRbqPP+/rvpPvrnwQoxqPgiaKaL33pS/0TQh+56845cKzwAmwwAfQoMWil2g6jB0h0ag9BrOu86FKMy8mFQmJd734Xr55zeuN1ngApFswXmtFz3oUXXmiTeOONN/ZI6te+9jVz9dVX99jGld///vfmoosuMk888YTZZJNNeuynMJb7KerlsOcXX3xxbv9DDz1kz0cB26c+9Skr3F2wYEFu//3332+HGf/BD35Q0JvfG2+8Yfbee28rjMwdhIXbb7/dfP/737dCR3qx9IaVK1eaL37xi+Yf//iHd7P529/+Zte577LLLjMDB0KNGLHAZ7d1p7jJwK67vj1lMvN9JhDOG7pmZEzn1hnTtiNrZ+EH50WXYtxr7oUHlGzgdm/I3+/dV+2yE59T7E0ht/Oum3/ec845x3AqFR599NGckJzib4pm2fHDT2hra7Pe3a+66ipzCwTyV1xxhaGH3/xAMbsLFOG6QNH8T37ykx55hfucIJneVpk3N9tsM3dIaPNMEqfi5CPEcEtNEGT3Z7EuMfG3pWfzICFK4s4g6VbcDQlQdN2ffs9f/OIXG0LAlkJiXXY4mDZtWi5+09i42XTaeLPy7XX+nArhU2LfSbkzaEEEREAEREAEREAERMBLoDbdOL1X0LII1JFAph2GLHjXTc2CERj/fQXYoJp2gkdS9Cxmr0GrUPB1oL9InQ/dBeEDjMsbYTgnJssqILBgBYM4R956ZPf7u13FCosAnouWzWDQPRSedtelTIoNGx/aTotfBdFSr8MLwyvdXhhqNVxg8QREfw8QWZFuo8+jT1opFAEREAERaAgCEKp1lz9ZTsXXkf9t+bTB1hsCthIpAiIQNQJFPeqyUx9Co+yPGlelRwTCIkDvmRQMUlRIwZNC4xFIraKtFkMkv9P9XvVzBxyyvXX/uGnbBfbUNhZMqwtOrMuzOIEuRblcpoddF/LFvG57ved77LGHFdbQc+jdd99tPeBSLMvw3nvvmbPOOssuc9vnP/95u8w/P/7xj3NiXXqUPOaYYwy9lT7wwAM2T1Foe9RRR9n1YcOG5Y5zC4899pjh9JGPfMTGW7Jkibnyyivt7nPPPddce+21huc4/PDDrbiX3nIp9KVHyUsuucQcfPDB1gOuOx+PP/roo3Ni3SOPPNKK5mbMmJET33784x+3nne9ImKKjp1Yl0JMnnfRokWWxcMPP2woWN5qq63Mt771LXepSM3jA2KmdWrcpFYiL/wbTkaW+0te+i3EfzltmjeLmcRG1ecD71WdWJfbnDddina5nR52XailWJfX4Dv+//2//2cvx+fopptuMttss427fKD5pEmTzG9/+1tz2mmnmXnz5pnvfve7Vnjr9yQnnHCCoWCXgUJbl8fc8SwTMn0MfI6Zl1ygl2knbOe36uSTT7a7+HxyqHt+w84++2zz97//3R0S2jzGFl+frb4ZaO6S8zImOTljmkaH+0yFdkMRPNFdd91lnn76abPFFluYQp6VvUmmt3N2NnrnnXfsZgogf/jDH9plen3me88bgnocZ2cJvmP5rqTHc6aNHSneffdd+971epYOem6Xrrlz51rP6a+88orp6uoy22+/vaG3dXpCDxquu+46M3/+fJtfzjzzzIKH833uvi304O7ttEHv7o8//rhhWnjf7MzFie8L9z13J12+fLn51a9+ZVfpUZZea//5z38a5kP+Jn/+85/tMb/5zW/M0qVL7bdk//33d4fn5kGuSY/vd955p6Hon++cmTNnGnZcYQeCZDJppkyZYo4//vge90Tvvr/+9a9Ne/uHw8OyowA5MTA+j3OBZRP+zvxWvvTSS9aT/g477GCfgcmTJ7toRefshFMo8Nn0hkMPPdSy4jZyue+++0xyMd4Xb6VNS/rDspL3mA2W8S6y76QNdmiDCIiACIiACIiACIgACfisugmWCDQmga53M6brFRiAV/lMP+wSdni1Q+KmZVL4Yl2movP+OzHU0AHdCXJ2EIp1GRptvTvV+ttbBPB8tMJImjkkY9atxtBpb+DCPto3MiuN+eDpdWbFcLgumeCzi31v3VPedTgMUUtLi/WCMWAAXF33QshlO3st60swu8RZ46zbROuPCIiACIiAJcChWDm8a2dnpzWKNyqWenwXWR7t9qzLQgZXnKfdxlpv1N9c6RaBMAjoHVg5xUb3rOvSXzkBHVkvAsq3/slzuHsKnsIU7L76+izz4iuvmXlvzTcr4L2zUcNwiCwnbT7R7LzD9mbKdttG8ja65qVNcibKlZ0+kwfTUNPuMdO2e8LEhzgLjs9jfUZzQl2vWJeH9qZnXYpmm5t7ejL1Jn/s2LHWE63bRiGQE+ycccYZhvlixIgR5pvf/KaNQkHu5Zdf7qKbBx980PzP//yPXaen3HvuuSd3PXrVo7D29NNPN/TYS0Es1wuFz372s3afGwaeokaKLBlmz55tPfuef/75uUMZ3wmgKHBzcRmBXoIppGTg/e+33352mX84RDmPo6dVetTmvTKwjvenP/3JLlOQSy+mLlCoTPEbxWpMf1QFu0xvAs/ygL3iJr0EbRePIj98qNNyt7PhvAPiytcQf8eMSdTIy667KEW7FOp6xbrc5/W86+KGOafwlQLDp556yorRKELbddddzbHHHmu3T506dQNRXqnrn3jiiVbcTS/UFJQfccQRdip1jNtHj6uTJk2yzyi/OfmC3WeffTb3/J500knuMDt3nncpbqdYj/V6Bj7zFJNTzEsRMEXrYXv2jMOxND3n+gpoKuianjbr8OoZgE4RzZvUpj3MV1oaKBLfp/S6TCFpOcEuxaB8j7nA5UsvvdSufv3rX+8h2K3E4ziFnjxnOp025513ns073mu55UrOzWMp0swXFd97771WCEsv6EGD9/4//elP9xC6u3NRyO4YuU4nq1atsl61nUjexWVaGPhb8Dvh7dxBb+zuPPRmTT4U+bpAeyHDNddcY79fFCO77xW3V3LN1157LXfNvfbaywqJeS4X2MmGIm4+P/x2M3jT6eJR1M+Jge8RJ9ilAJjvIn5v88N3vvMdK/ylOLlUoGC5UOB2tsuxTEDxrjcel5+88xkzZe2upoujf0Ls7yfwXRQfWJuym5/rK44IiIAIiIAIiIAIRJ2ABLtR/4WUvooJZOB9tHMWvOu+iQqEzxAbS48NCdO6LYwTCZ8HBYiWnPGkiY3YGLWUbNZj0lhfacR5gPtW1BAJ4Lls2Q5eGKZlTPtKeGFY5O/czQvazEarB5qBmzRFulcrexqzNzGNJ5zo0YOGgloGl/26rwGvglj40IxQen3l+piZubjVLPqgyXQku4/qefyH2dvdQ6H9bU0ZM3ZI0my7cacZOoDCKBdKX59nzz+fO1JzERABEeiPBGhwp7GbgUOgDh06NNc41og86vFdJCf7dbEfGPzh/6ynXYp3G2a/Tan+iED/IqB3YPW/d6N40C2XzupJ6Ay9RUD5NjhpDplOgdOrr76aEzAEP0v3Ee++t9D8/e57TQpCl6m77GQOPXB/M3LkiEpPV/fjli1bbmbPnWcefOQJ8/Bj080njjzMTBi3Sd3T5RKQXg+xIUZBS8PBgt+Q2Bpi3Y8mQh2y3Qlxvd748sW6FNL1ZrjhhhsMp2KBgsW99947t5vi3htvvNHstNNO1n72ve99z3r5pDCRgeLEUaNG5eLTux/DkCFDzB//+MecWNdFoKdaCnQodKWgqFig+MyJdRmHokYKKunpj+emYMgbmObx48dbz7svvvhibheFt05oRQ+RXrEuI/E4inF5X4zHehFFj++//37uHHwXeAP3M+20K3rT6I0TpeWmMfAaDa1z+j2MpPaqvzyRno88NBveDbeKGXrqDSs4Ia7zrsvz5ot1z/g/KIZrHJgnKbqjSI9CVwY+W5xcoMiPz+shhxziq65PT530yEmhIIW1r7/+uqGgvVxgJyiK2ClAp0dneuukKN6F22+/3S7yuad3T2+g10sGigedWNft5/m+8Y1v2NXBgwe7zaHN48PwbDCZaN4y6fKnzSxFG9pDaGNYnTFt+2ZMC4TaYXgyL3/l/hGDvzfbOJxwd7vttjNf+MIX7M2z84QLlXocd8dTBMrA9+0BBxxg3//jxo2z2yo995w5c6wnXXsS/GHHEApa6d2Wzz+9tvP5DxLomfeiiy6yhzCvf/GLX9zg8Ntuu81uo1CVvBh4LSfW5faDDjrIvuf5zmdHE070Gk+xf6HgRKwU9rLjCOtS+d/9/OOqvSbfC+TDdxa9ErPc+jt432ZgB5PDDjvMbL755va9Qi/0HR0dhp7zGSiSdt9858k4lUrZ9x7fZQx8tnhevtNuvfVWK+KlCJzxvZ6VbeTsn6uvvtq7WnDZpcHtbI21mV9/7Uqz/cJdTOfzeKn4dY6Fd1B8FN5HQ92ZNBcBERABERABERABEcgnIMFuPhGt9xkCycXw2PAGjF2rfd7SAGOaPxLe8GqFrpp87XmTGLfph2pA2NVoWrPDDPOARlsvdJPaVnMCcQz/17pbwnS8nTTph+EDr4NPUZmAinQX8kNqJwxxtYmP+GVOV6vdNGLSWMmJQxNxCCQ2MNTS266lASMsLDXIg+CZnZdan7e8xdz1ykDzwgKfw/8EALbLhA5z1JR1ZtII9PL2mR7GUxABERCB/k6Anuk4jN3w4cPtd6Qv8KjHd5EFUn5VWD4tOMe+gttd/Ijs7wu/v+5BBIIQ0DswCK3icZ2H2kafF79D7YkSAeXbyn8NDvlLb3HO41glZ6JX3RtuvtUc94kjzV57TK3kFJE7hmJjTryf6U8/Z3515XXm1BMxlHJEvO0m38NQynNhe/HjTRR0Y9CbtuwZwyho2YJmiMQLiXbd6bmPwpneDBT1lLJ9eYWCLl3MBxzum+I/in2dgJAiQ3oS9YZnnnnGrlIYO2bMGO+u3PInPvEJK9iluIzDt2+6KWzYnrD11lv3ECy6XZtvvrkVVFIglC9OZBwKpBYsWNCDKQVfLlC0RkFufthjjz1ym2bNmmXz+6RJk6wAimmkN2EO8U4vvttss42N6+pPuQOjvIDHumXLmOnaI2bS76PL5DIfiV0PL7tzkI8Q3+YLH4f4jVJItOuOvfbepHlurg/1pzugijk73XLYenqSpGdbivT4/LjA55wTvUxStF7O0QPtytdff70VtPO5oXDPecB15yw251D0FMUxULR78skn22U+rxyynoEi4La2Nrvs/kybNs2mkcfQqy49aVLczueTZcxaCHXdtenNMjEedfpheKaWu61l5ujz3PUYOlO8n8bzCCHjTnHTNBbCXTgOUaiOgBOK3nnnnVY0znILPb3mh0o8juefgyJQdoBIJHr+cJWem8Ji5hkGer31CtMvu+wy+0w78Wh+Woqtb7nllnaEBHqPpTA3X7C7cOHCnGdX572YnfJ/+ctf2lN+8pOftF7W3T3SWzW9wlOISmE/25KKfeNuvvlm+70oljbv9jCuyY4B7CxA774uHHrooTnBNt9j3/72t60Nk88Eyx5OLMtvOL3LewPFyI43O+d4PR/zHUMhM/fzvMUEu87Bgfe8xZZpGTzxgFPM14/8lpmwfJLpehzlt26nxMUO6bE9ho4DTePC7VzS4wJaEQEREAEREAEREIE+QID9LBVEoE8S6HoL4kRMfkMCPdNbd4+bxAhYy2oUUm/NNmYQep1SEMikYW5T2IjrNWKk0/ojkB7SZdZuudLEJvmLz1j0Nt31du8YV/2nqnhMGi/pNYfiKzdEUfHYle9xedDv/IHZA80l9wyviViXd/H/2TsPOLmq8u+fmd1NDwRIIKHuQuidIChIwNAUqUEB/aMUQSQgKk2KCCLlpYM0QZAiiEiTIlWQFnqUEumBJAQIhAQI6dmdfZ/vmX1mz569d+bemTu7s5v7fHb23HLqc099nt95zsvT+tr4ScftI0rlr3wOpCFTDqQcSDnQ8znAOMF4wbhRTeVXd3Kqq8bF/Ngjo46dp/Zgtzs/Vpp2yoEu5kDaBybH8FKWa3vK++Q4ksZULQ6k7bYyzgJ+mDZtWtmRYFkXsO4hB/5frwHr+swAtEv5KCfl7XaSaeXiyTmDhdBIJFqL+g1EVrthncn0rY6sFnCMAnc1T0HP9F013SuvvNLWaep10I/3QfSzn/3MWtzjHcAqrCuec845Hbwydj377LP22QYbbNDhnXsDAFjJtYarz8JAUPo+zFphkLXbl19+WYNZK4KcjuL/tt9++4IfzQ9gR9cSMWAtyoS1XYBfDz30UCD4txBRjV1Qt/ttLPqI9aSOR9TU5UTf0TyVdVryhQG0CzjXJe4VzOs+r/Y19ZHv+/7775spU6ZYC5JqmZS0Ad0qGLJUXnbeeWdzxBFHWG+AaNXKZalwgNaxKgoBHlbCYrUC57AG7NNpp51WsOILsBerpNRvLIACGvT7HT98pfcNYiU3K2DwWCR7FLD0vPAfOTP3jhYz/6kWCww3LbFi6ZGeqWPLLbdc6C/oGydZ0KgWx0lTLY776bOZ4cILL+wE1i03bjZDqGVrLKe7YF3Sxno0dbkcAkAM/fvf/7YAWzcO18L72LFj7Sssb2Phmh8W4hWsq+E0Pu5feuklfdzBPeywwyKDdQmYRJqAp12wLvFibZdxGnrnHdEVx6D33nuv4Fvj0AfDhw83WESGR2eeeaY+7uQuXry40zP/AUDdtfqsY246/DZzwS6XmRX/12hyb8iAEwOsS5zo2xvYcJVSyoGUAykHUg6kHEg5kHIg5UAoByKKAULDpy9SDtQkBzhiDcEVR/pEoqXEuu6mYrGhsboLiNyM6bIzWQxbi3BR1j15lwz2xPtIjE09VYsD7IYdsuEga2nXRDx5qFVO82sWxUjrgipIdKtUUCwUYCkxzu7fuFnRVp9381YFiSPo/jEB0f71pYgMj5sRzz/pkF7U/HnB09uUAykHUg4sURxgnGC88C3b9DYmdMW4yMBjR0M7ANkbYWNHt0e8720fPy1PyoEiHEj7wCLMifkKIBCU/y+u3vtuW7y1+r4te6lTwxxI221lHweLiYASyqV7/vmwtay71sg1yo2iR4SjfFgQprzdTbm5YlgBmZRYcoxCGTmxvmFDsfK4vPbIUULF9+MCdN3r+DF1TwjAsIABlZqamjptYMRasFpJHDJkiHrt5LpHm1fSvjpFHPBAwY4BrwIfffll+xncWAJ+4YUXzLhx4wrHsRMfllh32203a4l38uTJgfHU4sP6FbK2rmeGRctd6+ci350m1lClTVWDXNBud4F1/XIBDtxrr70sWHvChAmF7843j2rkARAbVqIhrFG64Dc/PfdereoCLvzoo4/sKyyDQrQ31xK0fSj/sPiMVWuAuy6wDsvBBx98sD1NDnB5tahhRalTsuEBC5dxydYvsaQ5//YWAe42m7mPt5jFU3OmNSZYL2663e2fPjLsx4kI1aQgi+NYcXZ/bj3D4rhP3/nOd/xH9r7cuN1w9LlBxNjjjhtBfoKeYSVXyQXo8uy2226zr2jvzPUgxjk2sPNzrbjDH4DF7maRuXPn2jD+PwXe+8/D7pNIE6vaPrF2XHfdde3juOPgZpttVohu1113NX/+8587AJ6RF8KjYlbHGxoaCnH4F/WmwWzcXzZ7rTrOHLvhb8xWX33LND8r40zEeZsbX2a5tjnciBSC4vIlvU45kHIg5UDKgZQDKQdSDvgcEORgSikHeh8HWmaI0OpDWUyU3jBoC89uvz7ryTE//aorBG5dxJlvki/kaSQV053wznvmivseMg9PeMV8MXeezXs5/4YMHGB2GrWxGbfrzmbUmqvHzkc1dvCXU44lNYwKiQYPHWQWbZAzzbL7veUVKlMJEsFaiwh0mz9rNQ0rV7eul8hJrNcIGtgNTrmLHQ8YK1LHszbD/KO81et27rTfvz+rwdzsgXVHLN1sBja0mg9n15n5i8oXQPTvkzMrLSWC0MUZ8/GX7UMz6TUtt9g0LaudWXt+gvPrFCy9TDmQciDlwBLCAR0XGS+WBKr2uGinqhkZHe0AGey2Bryf8uYH5tE7nzQTX3jDzJtTvkJrwKD+ZoMt1jXbjx1tVltnlcB8BKXv5te+XxIqQ1rGlAPCgbQPTLYaFCzotkVbuOdUHKHCvfcexTlH3QLOmDNnTtvb8hz6eRS8WGHTI74L6Wo+vPT99+WlnIbqKg6k7bZyTgNGiArS8lP73xtvmZZcrtda1vXLi6XdCS+/aij3+uuu7b/usvvmT0V2haHfiNYa69YWWe1aImcpX9QSuWxq7VLdyAFrwOPbb79tTjnllEJOnn76aXPttdeaQw45pPAMEM+GG25oXnvtNfPmm28WnvsXWOdTKmaJV/1U4pIfpQ8++CD0CHP147ubbLKJufjii835559vywWY8tJLLzUffvihtciKRdUgUJsfT03cy+n1fdbOmsUjRcb7SX6+UTRf0oZaPsrLd/sMapdgFg0T86Va1FU3ZvCqeqfuAL496qijbDrU61GjRpVMEwu3AHy//vWvW78AZ13LnGERAAJX4hh6LDkrYJc4dPOW+lEXkPFJJ51kf5MmTTLjx4+3ALtnnnnGeiFeLGz6Fjg1fCVupo+xlps5fTLuMfY2XcQAn4pqTXRszRMFsCu6s/o1c6ZhddlEsUrG1C0l9a46Va+SYpcddvnll7f9ZlgEChwNe1/pc9/ieKn4sDi+/vrrd/AWlsdy43YBu2uvHTx3oO4DIn3iiSc65KXUDRtH9ttvP/O3v/3N3H777RbETpjp06dbq7tc//jHP8bpQI899pi55557zCOPPBLbOi0WlMuhStJcZRWRZwVQOSBnogHoe8wxx5gLLrjAWvjGwj7ERgQAvFiCZmwsRjvssIP57W9/28HLsLoVzMZLb2Y2WXaU/a2/zEZmWL9hJjunvAlYc7bZ9N+sQU5IEH17OD64Qx7Sm5QDKQdSDqQcSDmQciDlwJLKgXZU0JLKgbTcvZIDCLdyn0QsWn85Yk2EwA0rdaGUQZMSl8tW597m2rnX93959Elz4nV/NSftu5c55yf7m6FL5a182vdFihr0/rPZX5m/P/GM2eN355qzD/qh+dH2o/MxOOlqPjR9ve/g5kOl/7uYA4BXETJCAG/r18qYlrdEkgYevATlpotQV4RtDSuX8Fhjrykv5a4GYNdWeyxmofwWN9Pm+vf3/W9gB66sOWyR+VDAtduuMdcc2bTQDO4jEnMnHg0fxf1qUZ157v2+5p6JAw3xvjNDJKttdJ88+/m2YkmkRP7Uf+qmHEg5kHJgSeOAOy4uKWWv5rhox0JhJKBXLOkyT83PB8Pvn3nweXPbH+8xu/14Z/P9cXuapYYMEvxsm3+Jy4aPeD/7iznmxcf+Yy4+4Srz/Z/tbrb69pYl0w/K35JSF9JyphxI+8Bk6wCKZ8CvcVwspF199dVm//33NyhOOUI1Tng/PSyvAjwC5IEFuJ122il2fMlyJY0taQ6k7TZpjsaL75WJr5tRm2wUL1AP9015KXd3AnZbBLCbE3lUJFpKZLVynHvdcszykqFSMZUD1vWP5U4mp9FjwbrggQceaANsueWWBlDVjTfeaC3Pjhkzxqy++uqFyHgPsJGNJWHEeyUfDKbPk3I33njjQlSvvvqq2XHHHQv3cS6wtrjpppvaHwBOjj0HlMkR91hQdXkQJ96u9ls/TOS7UuebX5U28lXp1FtF94F81zSW9hvmQ0WYYe/LAev2rQCcBahVrYheeOGFRi3bBuWv3LYHuPD3v/+9BbkDnFXwbFAa+gxw3Y9+9CNbr2hfAGzVYjWgwyi0xhprGH6AELGKqUC7p556qiqAXfJUL5Yt+21jTO6zFtPyutQVEVvHJgnWOlMsOs8EuNtqFq3cmu+bG0WXJsDd+uEZkx1YqneNnWqXBxg4cKAB5N9dFNfSqmtxvFSey4175kz58G2keii9d91iVttdf/41bQrA7r/+9S8LPgU0rdZ2aXPumMBYx8YUgKpBhH9tk0Hvy3mWRJqsB5Mk4jv77LPNN7/5TXP99debu+++20YP8P+iiy6yv+9+97vm5ptvLugO/fQVLDwoM9isO3ADs/6QjQwA3Q3kt/rgkWZwQ17n7IeLer84t9j026SP6ffNOlO/QrLlj5qH1F/KgVriAHNr5qP0xch5aINssGAuwZyk3PlMLZUxKC/Tpk0zk2Uujo6BPqu3Edbc33jjDVssNtkjA1zSidNPFsmpLqtK3V511VUjs4M1G3MO5mJqgT5y4NRjyoFewoHytkj1ksKnxei9HLAWdkWQEIWyI0TAIEKGTN8uXEAAvIMQeli3/T7/vP2eKyzrAta9//QTzbjddjZDB7dZkJOX1qcTX1B4C/Sz6di3NjzxEB/xEn8+XN5x/ReNv8176nQtB7Aio0d+YxW6vknqrwjIolBOrOu2fBbFZ3w/TMjuuOMO8+ijj8YPXCIE5S3Xek6JqAttSOt6kPvFvIx5eVrfQlRY1gWse9yYz80Oa8+zYN2gcLSlKM8B+xIP8REv8Su9/GFfQ/ql4lH/qZtyIOVAyoEljQPuuFgrZUfYwJjID0F/0lTNcTE/dsmoY//4x1gWfj/lzakWrHv0eYebMWO3MYOXHljUf6n4CE88xAcImPiLpR8aX9JMT+NLOVCjHKjFPhALs9oHfvwx5hSTpWr2gb6l2lL3WO8DrHvOOedYi7gqqC8Vrtj7pZde2sZFnMSN9cRi/uGu/z5ZjqexJc2BWmy3lBGgBG3XBe0lVfZqttu4eXx/8gdmzTWa4gZL3H8Qv6s1h6S8lLvbSKaSLSKPap0VLQdZMarQsKpYZkvQ1Mgyy5ZxNnyR7NLvoljsTsK67EsvvWSzcOWVV9qxSME4WNhtaWlH6KkFUpTL+PVp6tSpBUu9AGBps9UkgAqa19/85jeB1umffPJJw7Ho/KZMmWKz8+CDD1rQI5ZRP/roow5ZBLzLEe1KOjbqfS271PX61bImu2JU+a60KXQf8lcufe/ryasGR7VjxGNnC0BrY2OjBd6de+65Juxoe6zUA5xVigvKxkLlVlttpcEjuf/3f/9n/f33v/81p556qr2mrgVZx6UfB5jLjw1YPn3rW98qPMqJtfeqkVQlrJT321nq1UhJpdLPPVfAv2IwZNGDObPg73JK3G0tZs49LWbe0y1m0Xs5k5sTXh+z2XziSZVXZSzZOjFP3QvItzjOPLHY7/DDD49c6nLjdq2sa/8blCgbLsoh2gEgXUiBuq7lak5SUAJYr2BdLMQC8sUyOxvg4NPkyZPVa2Jud6QZNfOAcm+77Tbz+eefW2vD9Gk6nsLLX//6152jkuZJG22qX9Ocuv1Z5vh1f2uO3fBkc9T6x5p9m/Y3Gy+7acVg3eZci3l11n9tn9NnDWnz0YazznlNn6Qc6AUc+OSTT8wll1xiNyagN6efArBL38VcgtOZzjjjjKIb6XoyG7AE/4DM2R944IGeXIzQvHOiB6cu8MM6fHcR86EZM2bYn86NouSl3HDF4r733nvtN3/99deLeev07uGHH7Z87K11pVOB0wcpBwI4UOkyLSDK9FHKge7lQOsiWXx8LnkQIUIUyq4iArGVurgpyK4iS7poKXF/xX0PWcu6G62+Wlu4eOHZxRSUHvFhsZf4g94XFlUh4fOB0v9dzQEmUwihlRpWzpq6lfSuhCuns+Y+FyXJ4hL+ynh93nnn2aN3sFSQNFHeOBPOOOkXmqENhC3BPOXd/P1bn7YLiXg7sKHV7L7BXLPqMi2B/vHjho96T3zES/wukX6p+Fz/PeF6oey2SynlQMqB0hxYvHhxAYRT2veS6cMfF2uBCyiSOY6OHwqEpKma4yIDjh397MBjb4reP3rnk9ay7iprMhkp7T9q/MS3q1jsJf44+SnEnzTT0/hSDtQoB2qxD8SCiPaBcYW1UdhczT5QLSFFdVG0YFl35EiQENILtq2dk3ABrhA3acSNLwofUz/dx4FabLdwA1AcbRfFU9JUzXYbN6+fi7J0ueWSBW/GzQP+9x67l/m/H/7A/MPh90MPPWif8TzJOSTlpdzdRcigciQ/L1oOkHFhuTFJwpoVVgKTAHESx7Bhw0It2JWTbyzfAu4r9gOcpMQx53qsNRbZAVdx5Pell15qvTz99NPm8ssvV+/me9/7nlHg1i9+8QtriQ/w7meffWbbPO1fLRSefvrphXDVumBcUwAWwIW9997bYLEeMAObfa699lrbJwE+Yi6x0kqsNYx1scqIBUHKBB/oUwECjh8/3px55pnWH2VlHO1J1CBg3boREXM8X7C6HMYlbatc2n901mzSlJxO5EfbZc3mYiW4EuJkAQiLkdTpO++80wCK4PtifYvj6bHU9vzzz1t/gGKXWWYZex31H+MRVm7j0OjRowvgQt3UEmYBeMUVV7QAROopdRTDFtp2AewcccQRhaR32WWXwnU1LjIizu63Udb0/26dya4j36YCC8iF/AnGuFWMgbT8R8C79+bM/L8JeFcAvHP+Ie7jLWbhGznTMkt0D86+ZTY38J3effddM2tWxJ0bhQQ7X+g3GD58eOeXNf4kaAzyLY4nWYRy49bxgryEgXIBjAJQL4doh2ohHvAp4DYFuDMXdQmArtJVV11laI8rrLBCQT8Wlj8NU47bHWm6+XQ33LjP3WvaFRsHsLpL39LU1GRf6zyeNsjGjoWv58zcf0sbvSvfVn+43IHmgJGHmG1W2M4M7z/C1GcrB74vbFloJsx8wcz++kzTbwPZcNVRleZmO71OOdDrOcDGIjZeq4Vz+rtVVlnFrLPOOnYuoZtYWOsh65k4cWKv50lawOpwgDXSxRdfbH9xgMPlhqtOKdJYUw6kHGhHfKW8SDnQSziQmysCga8E7NYR7xZcOmkBdSIArlumMmFScORFnpI3kozoPjzhFXPOT/aP7D9qvPjbZ9utzNm3tiljIuYnEm+LFL8ar5jcqtLL3YFbjbSIU9OLEj9WKXQSHsV/XD91y0odliNmmuvlAzrCsMB4xEtO2gftpG5IF9f7wAx1/0Ot9vmcSP8hF+2cyd9P/6rjcPnh7DpzZOMC8Rns3w8f535LiffuiR2ttLSnXyq9ZPlJm1IlYUOiOgVgAABAAElEQVRDg+EXldywtEkWphBC9rFjx5r777/foAQ64YQTokaZ+kuQA4AJsQrCsTtPPPFE0W+r3xKFWv/+/RPMhbHKFo7xmjBhguFIt+OOO86gPEwpz4FHHnnEcMQiSgh2m6qSstr8+X//7/9Zpe3XvvY1c9lll1Wc3A033GCuuOIKK1C/5557Ko4vjaD6HLCjjR0Q5R9/mbxrcIXc9xNfeMN8f9we1l/Q+1Lhi73fYsym5p83PtQhPT/90PA2p9X7hwAWAReC1UGDBhkUYVh3quacr3qlSWNOOZByQDmgSvSoLgArjt+O6j+uP6xPAUqKG07LU02Xef3//vc/a/UQMA3WhVdeeWXDMerLVmjJkvknyniU1QDSsCSVUsqBlAM9lwNYdbOy2ihFELFD3fJyzPrS7ZKUKMFK+UGe0djYaNedzOPKJdbQgGSKHRFeTtxY4eJXjADYAkJdsGCBUbAgAJ3jjz++EAygE+svgE/HHnus2WmnnSxAAOvt9913n7UsSp+NBb4gK3zXXHNNlx0ND1gLS2Ns/FegcqEgbRdYDbz11lsLMiVAZFg7ZWzEuvAWW2zhB7GWBs8666xOz2v9AXU+O0zqPZv4SwFxxUtBvtunvLaywhBjrjg0a/45IWMmf5pfzpXDo77SZrccaQT8W14+3DSpE5xegByCeoo8JIwAw5ZqM2FhWbdR17FEHYWQaeLXrVe77757YNC+ffsajFr87Gc/syD473znO9YfdVlB8Tz43e9+Z4/FDowkwYecztdv0zqTEaPZC/6VM80TpfK0Y/8rS0n0EK1Sd1o+lRP9XpZ4l5b+W4DnWQGe18mplugr6M/rh2bMtqO3Nf+4+x/muuuuM2PGjCkAoONkABk1c28s9zHfXHvtteME71a/euz5c8891ykfanGc+oHF8W984xtWxuB6xOL4RRddZB8Bzgmy7uz61+ty42a8VDr66KPNdttt1wEcz9rEBZ+r3zgu7Rtr2oBjaY/QmmuuaY+Jd+MBGKzky6VZj8QF4GtcxdzuSFPrCPliI4tPfH+eY5kYua3qWvBH/7LtNtuaz6d8YTYZuLmZ/3yLaflE2uV00QN+JG30I2mfs8WjAO4HGzm6Pbm9Gmb2otnm+RnjzU2TrjP3PSQbTVOwrv/p0vsljANsNmOuDm222WZmt912My5mAVkH+hH0YdAtt9xi9XSuH/si/VezHBgxYkRhvaTW4ms2s2nGUg6kHKh5DnREINV8dtMMphwozQEL2I1oXTczSNYmAtbNRMeglc5ACR+IrlpVfiVulPsv5s4zQ5cabGOO4j8o/l1OOdtss8E61qKu+36YxEv8Gnms+POhauI/ggN2ra277rpWaFPtTGl6UdJB4MCO/2oRi+CsGIfJCMYT6wqlqBUruylgt8Am6ry1Qi2CJtxMmyta8cL9wmbrqxBm/qKsGdxXJBwh/kvFV+z9UhIv8btUSL9Yem6AhK6xZIFVL2iPPfawxy1Fjfrggw+2R77g320DgJsA60IIsFPArmVFl/8DsIuQb/PNNy8K1iVjbj1AmYYVgyQIMKoPvnAFokmk0dPjQOiMwJ4fylUAQV1Bb775pq0fWGhKgvS4p1SAkQQ3uyIOa8/Wzld1XtjBlSy49/PmzDdLDRkMbjb/XF3x5Ppj/mnvY7wnXuInR3HDSzJVIRTHjHFq/cVNBCUJmw6wcuYqT1w/6XXKgZQDtc0BNiihgI7qzpkzxwCCiuo/rr8hQ4bYY8Ljhqsml1UxjtIYC3hB9JOf/MQCyJqamoJel3xGGnrMezo/LMmu1EPKgZrnADKomVNnCUSktCXMzxfMMq8/87LZY89vV6Vc9Nn8aoHibvTSTdT0v4B3ITZGuuBhxgss66633nr2/bhx4+xGWW5QLrMOP+WUU8wdd9xh3+s/QFIAxXzLhrx3QUTq33UBKJZLpMn3ALSllsg0roMOOsiceOKJprGxUR9ZF8AfG1rOOeecDuMQc3E2e1x44YWm3PGnQ0JdfJMRTV1WQLRWvotF6hJk5bvzxCBDBYZIsrJA221zVmm1QdQlvt/WW29t11RB1jvZyAxQkGPgqe8uuffaXtz37jWyeo7vvfvuu93Hodf77rtvAbALaJyNSmHEehFAKaB5tQasYN0tt9zSnHbaaWb77bcPC57484w00X4bipXdQRmzYFjOLH4pZ4G2dhGfVGoiJjeCq2yRk/1a/ieY834ynx4qdRpjOQLcXWf5TczuTfXm2dfHm7tvutcsrJtvchkCxSeAugqEjh+6e0LQJ1EXkCcgD8eYBRvcsDxMvcXiOBam1eI4uifqChtMkKOzMYM6RDxxNvOXGzf9PmPNr371K5vnffbZx15vtdVWFlT/l7/8xdx+++0VMRMr2ptuuqktMwB26NBDD+0UJ20Fy7oQhh7gDXUAHQP9Bdask6buSJPNQArsh7djBNiORXHqCOM8RoG0rIABj/7l0Wa1YU1mwSeLzFN3jjeDnxpqTlzvdPONDbY2826VNv6ZSOnymMGk2WPjy7XmzAdzp5p/f/ywuWPyrebQ8w5OwbpV4XQaaU/jABuPIOa39PXu3ITnyIt5PmPGDDN16lQe2dMlom7EsAHSf93KAV1zdGsm0sRTDqQc6DUcSAG7veZTpgVRDrTKIqR1od6VcAfLjl8B7XYlAWawQEABHsiFgA/EBRhY7N6Gyf+L5N+Lb5dTzjJPTXxTfnlh7on77NkxvbLiJ1Dtke5cq6WcLVwYtUKWn+uM1GVDXY4C2KWNJH86d/mZ7+aQtvVJmynmBmWxmH9Av5W8Lye9oDBJPkOAjVAxilCQ4zdUgOTngaNfVBiH8iWl7uEASjoI4V8cYgdwUoRiUen888+3u1Irtcam8fUWF4sxKFIRAuywww69pVhpOWqdA4xh+WlqNFfKY0c9GfhihYvqv9z4q8DnZ5991nz/+9/vACZQhQrJoUA744wzzAsvvGBuvPHGii1MVqEIaZQpB1IOlOBAuZZs44artv8SxSz7NUc6A8b1gV5uX0jkHGX+97//3VqOAXTjE5vH1DIdCi3ABymlHEg50Ds5APjomhNuMDst2NVsvcLokoX8bM4Mc9Nf/2K+f/HuFtyE/KC30oorrlg41ShOGQGx8gujkSNHhsbLOyx50Z9PmzbNWgADyDt06NBOgAKNH6CUgqX0mesy7+UXRhz3G0aAGI466ihz5JFH2iPRORadjaPwphhQGLAlP8rx3nvvGTa4YOW9pxOASivfjQLYFXFzb5Xv7r333oYf6ytAeQBaOHmolBV/1mr8otJtt90W1as1EqKnkEUJBNjyqaeesicCTpkyxZ4agGXfbtvYKafe9xmZtcZrFq6UMYuez5mWd2RRnpS1XZ8p6B+mCYB3mgB4kZIPMGaNoeuZVZceab7MzDJz+84xiwYuMIsHLjSLB8jJif0XmVxDix9Lh3t4RztHttzTaNdddy3Iyk8++WTDj82+gHchrEvHtTgelQflxg0wHmvGnIzG6Wz8XGKjB1bfmdeXS+SNeYISwHif2KCBkR42qmBdnZ9L9BX+2sR9X851d6RJPtk0g1Ei+r4f/ehHNuuAd1k37Tf2B+af1zxo5k9dYGbfu8Bc/eiNpnGZ1c3QumFmpYErmyPXO8YMqh9kMgtkA6q0u2rSl4u+NK/Oetk8+OG95oGP7jXjTj3MHHzIQdVMMo075UCP4ABYAOamEHNZH6zrFgJDOgrYRe8aBNidPHmyeffddwv+Ghsbbb+76qqrhsZNHl4UufT7EnbWrFnWWA/gYdYArKt8S77kgY3YbBr4+te/btN6+umnbVh0U8y/lPDLuIDLhhLiJd/bbLNN0ZM5P/roI7vZ4+2337Yn05F/5nRR5+6vvvqqBTiTD/JIXn1Cb6njFLxn3FBiEzgW7j/++GMze/ZsuwmCtQMndzCn8L8TZfzss8+sRXP8/Oc//zEvv/yyLTNjIyeFctoUBE996+9x02OzOnFqvuGTfnfKCr822mijgqV7vjHfCL4qcT9s2DDDiZlhm8rihItbBs0H7ty5c+0GfDbeEQ9rTeouJ6PE3bBKPXvttdfsupXNnaxZmXswB+HEw5RSDvQGDqSA3d7wFdMydOBAK1iiiHiiDDt9yzcC0CHdWDcijMxTm1vqHs/Wa0T/TnxY1gWsq3TW3+4yJ+67V9ut5qPc+DXWJdfFWuBdd91VlAFMpqpNWanH1OUoS/GJz79m/vfZf80WP9i00xFD5BMBBxM9rHGwmxjhIpM9Jo1MhlhIYBWTyWMxQvHKEe4QRzkRLogQ6jMZBaiHhYKuJm0Fedfa8LNZ8O/9fPnvk76Pm57vvxr3WDHB+kkpYpd9GCFcBfA0c+ZMu4AI85c+rx4HUICpNTR26ncXcZwbRLtHQZdSZw4gdEY4gGUYf+Hf2Xf6JAoHEN4AIGJMY7EPbbLJJtYSE0dU+YQFFMCXjHl8D8a2Rx991Ap5Fi9ebIUgAN+Joxj1lDHRlkEGNDsaZphVcNPZ7fC+EKjdX4f3pcKXel9m/DZYgv8A1/3whz8sgHU5oh3QGkIn6gKCOiy9MGdi/nPppZfaI80SzEIaVcqBRDhAH4YQG4Ez1mGxTsQ8HYUgVntcQmmApX3mb9R35uwPPPCA7Rd5h2Aageu3v13aCqLO+YmLI4J9gTjpIpR+6KGHbBawmoVCoauJfNHemdvbXk3vfbftveavEE79RQzfKVxAeNLo5K9E/ISpBmH5SxXibOTjGPM999zTCspbWlpsX4iVRMZaFM0ou/UI97D8VHI0fVicve05PMQKIIAGQD+NjY127kG7ZRxyCevEWNeEdtppJwM4iGM5OUKauQ9tnqM5OUHFtcrpxqHXPaXdan672+X73CGginfeeVsUU1/I/HGEKJNGmr1F0anWTrs7j12dPkc2M2f65tLfMt/dQGWRxXMxv2W+md+cV3QDeDv99NPTk3mKs6yst7T/tdZaq6yw1QiE8pb+zO/TSqVFObDS2FsI2S4nqTEHKUmi/7B6kJIee64HNgTRD/DrqcTcF2BBrVD9cmLxdps6U7+qgHb/K9Z25ZcTYK2ptnEP6dZbxZBgveljljPDzXLU9WXEAu9QMagjhztlyJecIMhpmHVD5NnS4oox9EwfK6CoCvuYX5dDYZsJill1BkgOgOWPf/xjB4Cqm345FseLpVlp3IT/wx/+YDdEXHzxxW50du3IZmXdPOIDwDp4LnKDnA3gMsSaMmgMABCGDPnnP/95AfSsUTLHwJK8rk9ob0ph30nfq+uG0WflphkFiKRW6YPSPfPMMy047qY/3WxyYiF3RL+VzDJTh5u5DzWbulmDzA0/vtVMfWmqyX5Zb5atX870q++fVxtrxqvsLmhZYN6Z/ZZ5evrj5uEP7zcT5jxvfnv6b9N5WpX5nkbfczjg9smAFZF1hOl0Nt54Y7tJjdL5pxIiW2H9zxrepUmTJlm9BHN4dGp+PwKgEXk0MgGXkN/pyaeHH354BxAucT722GMWSElekeUoKfgYGRmyRP+0OcCYgIrBEHAyZBAAF8NBjz/+uEZpXcLQryPPiLIJh/wjb4foQ4N0mpSPckDoahSwiw4oCMOBXAVgLhsFAeFq30x4wL2AkpGloEedMGECjwuEfhUZCwRmwl1TlZMeZcPiMnmmHMhrXeI0THhIPkkPw3VaVvWnei7d4KbPXTdquHLKoOlgzAvr965xPfSb5A++slEHsHQUYiMTm4bcuPQkT8ZbNm8C3E0p5UBP50D77LWnlyTNf8oB5YDMQ+Q0jmiUlUV/XTSvifpqwzPkNYASc6l7TbyUP+99Hqybt6qrUZy0nwjIPX/6rtNz3597Xwi0ZF+wu4kdS91O1OOIdXn257PNrdfdao665HB7jBBH4bnKeQRHKPFRyv/rX/+yRzK55QO0edZZZ9nJOYrCMGKCy/Fk0C677GKCLGqwo+2QQw6xfvbaa69uAexqtbaZkEYQdJ9/F/Q/2H+7uK+890EpFctfe3rhIZN4Q9349a9/bcGDYfEBhnMtpwb5YzLNbr+UuocDgA+VukvpQT0BxAEFLbA1f6lrQnfEpryJzwGEOwiCVMCjMTDmXXLJJXasuvLKKzsoCBBGnXbaaaapqckKu/yNJaoUuOeee4oC1nrKmGh5IgNhKyBaOyAGux3eFwLJRVu4Du8D4on1vtz4bbjk/iHEow5BHA2JkEwJgSygbYSQWBVAsPWnP/3JbnKJqiTSuFI35UC1OICigHkc8zmXnnnmGcP8HiUsLgBcJSzW6XweqxnUe20H+FEBNcpllKXFaPz48TZ+/LB+CtrMxxxS55Hbbbddseiq9q5g+bYthcK9KCigwn3be3UKz9Vf24tOz7voveYrSZfv7SpvAG+7yhX6O6x+sHmP+b6euAFAm40M5YIikixDT4wLa8Uo1VxinMHaFsfBM4fZf//9C69Rzmm75R0b41zFmlpBA8yLZcEwBSIR9pR2Wyh8N14cI5t2Lr/8ssAcnHnmGfIdfmHObbOiF+ipFz5UsC5FqxPhazaiALZFEIjNDgpRx5cTTjihF3IpLVLKAY8DMeS7YrbUmKg6EC+Z9HbJ5gDA8L5rZU3DCAHtrim/V3Om+Y1Wk2O5W23grrIeC9HTxQLvdCzwCiFLEIN5FsS7rAB2BcybEfBuVjAdWQHw1gmAN7uUXHNi5kDZIpyAZhtQE7+4hFVctYzrhtWNh+4zvWYezElz/LDuBxjLt4CHn7gWxwGERaFy4iZedEZsxmPzDFbZsc4HgEnnjwBp+JVLgNSiWK4GQMtGMtargKxYY2EkR8FxQXGwfg167ucVWU8QlZMmm7z5FSPKwQ9iupObK21vtrSD2cY0fDnI/HLUCebnTb82Cz9dZDJfilXs9+vM/AnS2bOXqTVrVjGN8mEI3XU0v3m+eX/OJPPSjOfNE9MfNeNnPWE2Hb2JGX/ueLuJt+tykqaUcqC2OYAcZIUVVrCnRgAyRH687bbb2s2byywjA5tDgG3D9Os33HCDAUgL0Q8D5ESfhoyOzR9sdmf8YsxQuTPv6Y8VrEsYALRY2SUc4Fr1E7SuIhwyBiXyp3EjT1CZAmVkI9Lw4StIvO9bGSFh6Z+ROfobOBSsS1nRCSNTVMuwyI6QJ+qYomn7LjJE1edg6TZIn+iCXBWzAVCUk2Mh8j1q1CgLFiUP8IRvhGEpwNFYE/YJPy75ZXPfcV1pemzUVgIEjD6JegBwmvEMHh933HF27GNDMN8UjAXEmAdepRgYljGzVLhKy6CGoqi3bBaHMGQDrwElM/5FMd7EnMOVXzeJbo45A+UFTE2do75jmR85ZEopB3oyBxJY1vTk4qd575UcAIQrv0gk65zW7hBsKbpOXC7t8cFk2Hlu89/23l4XeR8UPgys225dN5+eJqnp+W7R/FnPyf1D0AGAC2tKWGQFJMNEiUkKkwyAEAcffLCd8CaXaj4mLH5iPYpjBpj8rLLKKnbSxyStR5jVpx5HrMvDVlzeDJ0x1BgRAsBzJmmAkXxCMajETiWsGqBoZcLFhBbhAwr+MGICzsSZifT9999vJ4/+ooTvq+QqGfVZV7i2DWTkP8pzcTNtbof7sIyE+S8VX6n35aQXFibB5+zQ5FtijSmMqCMukCPIH7vzmfhjwZkFq0tMtFH+s2uRRRb1k92mHKWLha4gQlCHUJQwk2V3JgsBLKywS58dkmFE/UVJzaKHdJtk0o+FMHZg+oACFrZqTUAV5pSV3aMsMAErUB6sTwdROeUiHhZdN910k91Ny2KERS0WsWiT/s7boHSDnpFniONc/DYZ5D/sWTk8gVcstOCHEotmviG0zz77FKzjuGMC3/S+++6zggEWa1hxcMHGLPoAH7BTk12WCCSoN3yTICvnbtwcvwMAhTGHHaCEO/TQQ01jY6PNE3ynP8RiFvkm3Z133rmoQDJO3bKJhPybOHGiBcYgDHDB8rQNNkGw8EXAwi5bNljwbRG8UCYWq3zjMKLes6glDayDsljfb7/9Ai2v+3FUo176aSR9z9jOmKT9ExtJuMe6JG0Z4Av9G8fP6a5yNw8oQRSsS1iEJoRRYRHH07G7OqxNUZ96wphoyyxjVEYuANVyxTyz2D1h8v6i+S8Vn/++3PgJlyS5O9eZqwYRgszf/e53BcuGjHUIagHv0jdxmsAvf/nLoKC2v0eQC40dO9bOe5No67RXQHNs1qD/ZE5N/cXCT5Bl6HL6dvpPPXbs2GOP7aR41AKff/75VjmJVVY2akHV7o/p6/76179aCwX6PRDkMe8MOi2C/p4xiSPWaOs+AXo9++yz7WN3zFJ/KF8ZrxgzOLIN4ThzEuqMC2xU/13pshlPhe+MD8znEIozZjEOMscnn1iLdo+80zwyR4IIy1wJAalaqWBcZv224447qvdOLv0rwmWIMcwH7DJ+6SkNjOPFxrBOkSf4gDkgCuCoriYd1X85/kgjbjjNV5LuBRdcUIiObx9Wp8kr8z3mZ7QFteiMcoT5OnM/FeITIaC+RhknmfcHKXjwQ1+mc2+UJtQfnZP5VmXwDzG/oa4xR2KNwLqePNP+qWM++X0u1j/o35AVAEy47LJgMKYfT5L3jB+6QYS5P3M1FDHklc1CyE9URhLU/tRiGWGRbTAfYrMR4eAn/RkAjDDqKe02LP9d9Zw6rWBdLLzsLxvEsPo5QeaK9K/w+w9/uMSMlrUvR2IvCcR4qkBbytvS2mJyEQWwdYLCqveQWMRVag22JPA1LeMSwIEY8l1ruIGFWkopB8rkAODXfpvVmYbVs2bRBmJt93UB7r4lKoZpIiOfX2ak5QaTJM0ckUPIr+UDB8QrwMSMAHYzFrgr1wB3xfIuFnizg8UFwIs7qA3IKxaqa518oK6fX0BF5Vgc9+MJui83buSP3XH6iV8GZC7My7uSkkizVYDwFpj7lYBzxX5Fbg4gXXEFqJv7Ugy+fCHXX0r9F7f1C2kMC6ROtzbYYtI0uou+WvyVmTT7HfPyrJfMM58+ZZ6d+ZTZYJv1zb2n32PX/92VrzTdlAO1zAF0BKzjIcC16Bv4sT5samqyfRj9WJhuDzAuskwIYCzyCwWKstlDwbzIOJHfKVgR/RCnYkHoKLfaait7rf+QDaM7Y22KXID8+ITuS2V7anEWvy5YF7Cla4yJTd1sfACQSb59WQvjDic1gblQQiaBTAOivOjjihFWZUkTwCe6OvQ5Lm4DMKvKmEhHx1n0NqqHPPLIIztgS5BBYgkWnvnAXDcv5B95KDJ0BTC7793rJNIDdHvggQcWZNZslEFfwHf74osvrFyd8qGnQu5866232iwgww6ycOzmj29eKlwSZUAmAn5E6y2ydIzkAI5Gf4Y+stQJKWokh/zDD9eSLt8L+TLfFp2wtgG3rOl1yoGexIEUsNuTvlaa10gcsDLdiDW7VRY+/LqcCoBASd8iIGTZJUqtgmlP/71mULzt8tuzzVMT3zBYyj1xn70Cw+9yylni500NZV31b2+KxJ9HZLTnJzR/HWJP5gbrLwACUdQh3Nedpho7SsFTTz3VsIMqyeMEmWC6O3U0PdIHdIESO+g4HvVXC26curzmRmuaK4693Ly+/yt2Eou1XJR3QRMkJte33HJLgd8sMEaPHm0n9gCV+F5hCwv44loyBITp7zAGLAkBBg5SMNqXVf6H0AOQbjE3KAvF/JeKr9T7ctILCpPkMyb8LCyvuuqqooDdq6++2iYLEJdFFwsJn4iDBRRKdBewy4IDMIkL5Cas7oLkHUABdzGJXybsbjq6gET5fPPNN3dIQ/MCYEotuOkzXPIGGJZFNWADJfIGmAACDAlIUoF/PAMIgBKfOs5iwQ8bt1zEyWKVBbJbNp4DtjnppJMs4KEcMAvAAwgwayVUDk9YkCkfNW0WVWrpCwCC9kU6JrDwOv74483zzz+vQQpH0vOOBasewaYetA7QtwCcgo8uadwsuDnKme+nBHgBABlxIJDwQdgo3VEYh1lUjVu3NN0gl00kyi/AGgoG5WgcfQ6ozD+KnDxiAYM6iUDEJ6yA+uWi3IDSqVvFqFr1sliaSbxDKKBtlm8OIEgJS/NYOUFwxZhPG6bN+kR9QijmAi04eu+aa66xXjnKqdiGhp4wJtqCMCba+SnzVBnt+Ct2L4HsKGr9RfBfKj7/fbnx28Ik94+j35VoB2FKIuYz/pyG+ZK2WYCyblwaJ+1W/eiu/krbOsJaNrz44whp0s8xz/X7z3L6dubumnfGJcroE8I07V/og5Wq2R8jNA7aEMZzLDiw2cffDEQ/ALiQuUAQYBcBtJYV4LGOWZQHfrNZSIXEWkZc+hzKqpt+3Hddcc0YqmBd+n/m9yhdlRQUSF1hzPXXYeqPuRWgbAVIIhimb4Pgp1/3NRwumxZYN9AemJ/RF7vzJfpfrav0yd1FoRZxWUML+e81n/7z7r7XfCXlohTRTSqARv15hJ8O83XmIfRBEHN2ALsolLQNaRjanRLWeF3lD8+pF6TH+lNJ5260VdYfzOlcYt1KfXTD8J580P8xdhPWJbfPRRmgG3Xw4yud3HDVumYDgFq+QbHHHN5VwFA2VcIx34O37jpJ80W/dPnll9tNIzzD+q6uIVhnFQPs9pR2q2XtLve8c8+xSVNvnn/hxQ7fgc0yI9fIA0uelX7OnUd2V367Il1/vFvUstAszglaJQKtOXIt0//NzgpkxifWMSmlHOjNHGjF6qj8IpHoPzxse6RgqaeUAz4H6gQQ23/zOtNnzaxZPFmAu++0muZ3BUj4vqz0wf6077n3g1b3num3AIdb50s+PtZsyMM6eS7DREYs7maWygN4uQa8mymAd+WdBfG2gXkHyDvwj+2i3urmPY19yeIAcqzFUkexlmt/cg8od648E7cVkK6Ac1stSFfetV1bq7ktNcYqWVbNq59rZvT51HzS70PzyciPTP1SLeak7xwnmybzwLAay3GanZQDNcUBNiOzqRYDYchYldAzsWbnB2FQYbvttrNGYVTGxnPkwxDP2ECroEeeARhFzok8F2JzsYIVkVcC9kQ2guzFJzZdANiFkJcEyQ6QcfrrVU7dUdArchlfXrPDDjtYwC7xosvyZSdjZMO/C9bFH3lWwC6bs6MQG7bR80GUw9X3AQBVcp8DcIYnGGzAoIZL8Jd8AdiFH2GErieIn0H+k0gP/bJrYALgNGBhNcKEnEgByUF5qPRZpWWArxgScustxiIweoF+DgLj48rT/Tyz+R/ZMYTc3gXr8gydDLIwZJR8P4yk+HUMfymlHOgpHIgIa+wpxUnzmXJA1tx9879IvJCFUmv4OBwpirI8KQhMBQSl7tsSOfvvd1mwLrdn/e0u+9RazHXC5y3rBoB1992rLRZxHP/tD3nedue/D7vvEDi5G5S3EMAYlEsMtIA9VdmGRS6s3ShwqZKUAasqWBcFMjulmLihDENpDLiHCSr3xY4SqCQPSYTNye5cdqFHIdrIkOWXNn/+85/tsc2EYbdS0AQJPy44msktClqd2AO+KwbYZTJ72GGH2WyRhgvYRemr1th47oIGopQjKT+Fam8jFOGdhe5qc2i/99PLh2t/n/R93PR8/0nfowQGsItyHKAS1vl8wgIlfiBAbIcccojvpeg94HkF66JAB1BKHWORSl0ByM/CUo94VWAMkVIPAcPg0j8ANGFSj5VCLMBRd5Ww8Ktg3SZRfrPrlYUEeceiN2HZveqDmDS8AlPoi1gosjOQfgQwAVb8WLi6YKW45SIddovutttuBeAKcXKUC1bKFMCMFbwXX3wx1oYCLCdq++XY9qQoKk+w2IcVPhZ+bMCAWNQjnICwHuwTwFMIgBv+2FGri1bGBv1OvKfPIQ3Atvz4JoDCWbT5i3LiZAyACMcR4OwG1qOeWViy+xMCsEEfyXsFlVBvWBC6R/ZUWrdsYjH/AdZlvATgR3+N0Od6sZwLsXOY444bGxvtPf8QnNCPK7HohUcINgBzwRPiC6Jq1cugtJJ8xo5p/dYAVFywLukg7AKspt8W/gUBdgFq+0Ir6r4CdvU4p7C894Qx0eZdBjQ7ugHWZXJYsLQbcm99YYk35H2p8KXelxm/LUuC/+gjlOgTqC+MUz5ITP24Lm1OhamA/X0QC34VTIlgU4Wtbhxx2zr1kXFCAZDa1gHOsgmO5/TD9J0+aE3Tjdq3A+giHubN9KHuGKhx6djFPWOzT9pGk+qPGQMUrEufRl+IxQaAqyr8xlIf1j4VuObnKc494xrjmQoUTz75ZNsnM68A1AqIF0uXjHPMHbqaXIAkcxZ/3o1leb4Rmzeo2/jxhffMRRQ8qPnnW2o9YawtRsy12GTFuE5dQUAL6FlJrfVyH1SH1F+1XUDEgG2jupqfqP7L8UcaccNpvpJy3Y1TvnXksDTc9aUeg4iigbkgAni1qMxcWdeU7pxd41UrsYDoAQAzPwOkS3tj3o7VXIDkSrRH6prKDxDk018DnKT9E451Cqcw6BxUw6qrYF3mSOS5mgoRTdN3mY9oH86mRResi1++A30nmyFoUyjr/A158JU5jmt9hpMr6BNp7+6Ri3763PeUdhuU96581iCnYTB+HyaAc7/v5Ls1yZqTtfKnM/JKp67MW3ekhaUin+Y1zzUj1hgRSW41QFBYJ8vGmruPym/w1riQCRD30UcfrY9SN+VAr+MAwC4TUVcRSwfS6ziVFqgaHKgTq7V1G9eZvmu3msUfyW+SWNwV0G7LFAEbfih1c141Ui0jTgCO6PX4Sb4KeGJkEugGB7X92gC83GOBNyOi4YwAd7PWlWeAePvn3Wx/ucY6r4AVU0o50IkDUsnYd9Q6T+obAHIRF+e4lv66VdqFfc51GzgXS9Gtoq+zdRSdHXuWEJnVMkm7yK4kfcBqxizXNNgMX2Nps9mKa4m+XeSCKaUcSDkQiwPoFo877jh7miNrbvSpyCMU+EpkgHk5EQi5BTp05MvIorCcCwFSdPVO9qH8AwipMljiVEI+4Mtq0ImQDjJiNtmXoiB9IXp8pSBL65wmR/4xzsS1T0EnM7l6OtW/+eH8e+QyCthFR+oCc5HtQvAQY0tK4Et8wmItOlLktGzaLkZh4OewMJWmh6zW1eNpOqoL5T4qvzRsXLfSMiAXCaq3yEWQzyPj0joeljdXvuzKjV3/1Cs1KoCuIwXsutxJr3saB1LAbk/7Yml+S3IgOzC/+C7pUTzYI3ZmycJJdj/aHbZRAiXhh8UZ65yobluavtXcAmhXLO0SXx6s+0aHHHa0rBuSroaImh/8VZkY1AHMqsIO63cojlHmoehAaRdm+Slq1jja+LTTTrPeARowYcVCGER6xI8iD3Ab6Vaano24Cv/s7l3ZhBYVfG6FVNJOXHACwEefmkSpFLRzzJ3wqgLRD6v3TNABNaKAB4jJ4kCBzzq5xi/AuO4irfb59KU/kIt2MUT+Pjxvwf798HHvy08vPGSlb1Dq6kIQ65N6HLQbL5YnIRTDPqjN9Rd0zQ5TBcsByHXjB3QISATwDe1QAbsu+Icdmaropz4B+CHP1FHaOuBXCEW2KvRR+gOQQhENAR5gpx91FRDTGNn9GQaq8a2r0leg/IbggwJNyikXcWBZjr4OYsOAu1imDIAHABsAsHHbkg1Q5B9HoiuFlU3fx3Wj8ARr5VhGQliggF2+1wEHHFA0OeoA1tD8Y2d4BtFfsUDTHb4AitgkwC5kCJ7pUd72gfPv0ksvLWws4DHAaAQqCroCFOyCH+g7AWJBgFzxDyVVt2xkMf5R79npjHViJSzKKdCEOq51nvc8177b/2aAQSiPll3jU7da9VLjr5bLIl/LTJsJInYrA+hh7hEmrNF27YZ3hU7scC5GPWFM1Pzb0c0OiPKPPxRfei+eOrwvdV8qfKn35cavhUnIpZ9hMwobPqhPjEuMi4BxERLSdsJOZEBQq/UL8KYP2EVQqBtegsDiFCFuW2czFAAuCICaa/kUy+RY50Y4yfiFQNfdoGUDtf3z+4mg8Q4BJtYj2HTH2By021/HePjmCmbdtJLqj+EnYFwIYSBHhPGtlOi7dYMIoObJkycX5gLqJ64LmFH7Tua9lFOJTU/wmPf0yUmPv5pOMZcNPhCC1zD+ky8AfBDCThdsyTN34x33EGsnhKcIy7Wfzb8J/s+YrxtxqFsqeGVeoCdvAC53v1dwTNV7GtcyruYkbrhq+9d8JeVOnz69EJW7jiw8DLhASM+6HgXVlClTrA82JPDjdAUF7NJ/hPVBGi2yAPwpMTckHtoV63h3rgOgT9cJZ555pp3XaTj8U9fpH2kPzBF8gCV+6XOZA0Ytq8afpKtWYujH/NMUNB13vc6mLHfOih/W4i5YV8PBO23vKA3px8OoJ7TbsLx31fN///vxTkkxFqFAvU02sui6rpOnXvqAtuPTzMUzzYczPjSr91/Tf9XpHnDLyOFrilyG7dRMQNuJuFPAbjs/0qvexYFWASHmOA49qkGGgQJMEMBhSikHkuZApl/G9Fldfo1Z0/KlAHenCnB3sljdnSoARcEG5aZL3yyAxZojhowF0ob4WbyTO4bINWqfASL3l7aTadMh5kG8cg94V95leQ94Vw4j4WeBvPZagL64Al5MLfXW3JcvP0NSLdCttS6Uum3rjsw8pG7nFojLPddtAF0F5qKDs9diSddey70Fs0s8PY6o88Olbq8sG/VWzZh6afMNqwhoV8D7KXi9x33NNMM1yAEMy/BDzoUMCHkE8hF0mRgBglgzsjZnze9am8UfOIUgUuAvLvI01W9yj/4PGR1pLVoU7YQTTQNDOT654MrlllvOf23v2QwdRkFh0MMoqWxM78Nc5EuAmJFlI89B74osBwArcl0IQw3KC/tA/vGeDeRgIFijK+/0fTGXjdtsno9DlaSneBg/Pddarf+uGveVlCGoDmkeqQvIjt16ru9cFyNeSpwIWoqiyKNLxZG+TznQnRwIl8h2Z67StFMOVMABu1tWds+KXLc0NRvT8onsEv7cXbyXDlaJD5stzZtms9R9W4L3//5Es80G63ZIHtAulnfDwLonYVk3Yvz4s15L+df3HXKS7A3HRfiTE47H1N09ahmrklT1CAEUYBwLq2BdjRNrY2pxLCw9FC9MMsJ+ChbTOKvhtgjonHpspD6XJPl2WY6KEiEUk1kUqFAQOCkMdOIqNKNMphU0RjqqFORaLcmhkAfE0l2Ur/NtlVom34H3YZkL86+T+HLfl5teWLgEnrPQOeKII2xMWLRiQeQSR64AtIFoq357cv0GXbsgAN96FGnTBllQAYpUYnEG0YaXXnppfWzd7bbbzk78CeMeaa3H56KEByTgLuAAgwIIJj5Id+jZG+cfYCpfad7U1FToL/RYG4KUUy54q20FQKoL1iVOgGEKaMYfi/KopGVicQsPkqI4PImbJrwFeOGDdYlH6wUbKxSsq/EDltJv6dYbfY8LCEOtgOtz7fe5B+jtAx9c67QKpMBvEnWLeOISdcQF6xIea7sKdtJ2wnMWwwhsIKzM+vWYfv+mm26y7/1/1ayXflpJ37sgCR33gtJQ8DWLfIRaPgUJmHrbmJgvM2OhjIZ2DAtw7VvnuQTq4N9/78cT93258fsfMIF7gK6/+tWvCjEhIAToTpujHY6RjR6MI0GCIgDvkJ7gUIhELlxgSxAwHL9x2vqcOXNsOoT7jVioc8G6PKNvdK2ZkqcgitO3A+hS8q020Aa173H7WPWPm2R/rGkRLxZ/tT/kHgKIqpaxaetuP5n3Ef8/AFclPz2E8wDpmJMAHuxqov/WPs3deOfnA2sVSpMmTdLLghsmdNU1G1ZNSxHfWfthTiVQ4nQEzaO7dtD3XemqMD6qq3mL6r+r/Gm+knKxsq9UrB6pH3V1bNUNBPo8jov1ahesS1g2wbDmgLC66dY/XbszF2QTlkvMf3UDAX21njzh+uGa/r47wbrkASs8UJDSyb6Qf24eg/qysPl+nPlLT2i3yo/udFESHiOWX7/x9S1Nv759zIojhpstvra5jN/ndme2uiVtPUnJTXxGyydm0rR3rKLafR54LYCXlhmtZq/tOltEIm4sdKeUcqA3ciAnwMic1H0TEfSVEf0HhktSSjlQNQ6I9rhumYzpJ1Z3B+5SbwbtU2/675M1fffKmvrRUv9GSv1DhNpTqiFt60sBW34kIMx3RJ/ysoCQxwsg+ZFWs+junFl4a87MvyX/m/e3FjPv7y1mLr/b5Hd7s5lzR4uZc2ez+eofcv1As5n7mPgZ32LmT2gxC15rMQvfzplFk3NinVgAVJ9Je56dB32a0sukqn3CJS5i4TVAW3jPN+BbLHpfvu1bOfuN5r+U/2Z8uzn357/lV/JN59ye/8b2W8v3nner/KQOzP+bhJMfdYM6Ql1pfiZfd3KilqAuUaei9tvd/j1oq0uJfnBNAedum7FtmTZN26aN99soa9t8Ctbt9i+VZqCHcgD5G/oXDFf5hCyIDfToLdmAqAaG8Kf6eU5zdAlwadDP98M96XK6FsaIAAG7YF1OKw7Sa7jxcB20kVfzhCEulWf54YrdJwk2dU+/U1mOuuQB4xQuAXrmVCJ0ogCPFaxLObFa658+5oblOkgf6ftx7ytNr1R+3LSqdV1pGYLqkOY1KmbAbT9B9V+fabxRcCrqN3VTDtQiB/Im5WoxZ2meUg6UyQGOrskuI4Fld2CUI6RycnJnsyzc6pevKzPFeMEsNFh2UuUlGbJol0maSKyL35NEPqABtLvLKWcZ19quWtrFmxJA3RP32bMtWPT4I+XH5ldTSt7FAhWWyIIICzFYTUS5xjEO7lEAQf6LPVNLU4DhwixNceS5Ai+mTp1qj8304wwCZagfdiJVmxZPk0l73oBa6aSwvjBEap+0EwgFHhOwIMCfWsLN+yz/PyARgCHwCctZWDAFxIi1VIjjSotN4spPOVpI2zqkThdzg2Iq5j9TIr5S78tJLyhM0s848pgjV/mWAH1cQAULQW0LvkI9Sj6ampoK9QQwFAtM6spaa61lgwOs9a1DYR1L2yeKfACI7FZV4Ii6bvra7gEPsCvTr/vs7sTqHopAPUrFDc+1v/DT95pXF5BQTrlcECjWv/08kp67OEVhGRU4gbVhyAdv2YcV/IvDk7jJYP0wjIK+MQu2uXPn2vqodZL7IMJSsU8IMJSCrCC6gHKO0FFKom5pXHFcBcK4YRCeAIiiLioAivdu3WJ8CyJ4on22+94Nm3S9dNOpxrV7dFMx4ZT77YMW+u7u73LzWetjoi0XYxhCfBnoIrnWK54j+o/rr9z4bWGS/UfbOuecc6xglfkoFtVdcCgCQH74AcTvbn7C8rtaeMayqGtlVy2LAqJ3w7i5j9PWXWFlWB/KmEU/wTyQ8Q7LuT7F6duJjz4TS7OAZF3gsVq6pG/xNwpomkn2x1iqUEIQHkQuX15++eUCiDTIb5RnarEXv5wycPrpp1sru7rG6E6hq7t5yN/c4pbNnfsH9YH+PMwNG+eauT9zNoDcWD/G0ifHACqFjU/6vtqulj2qq/mJ6r+r/Gm+quGqkiNK3C6QNor/ID/uUYfue5178wzlC+2NebNuQqD9B82jXZDrK6+8Emj1mrlOdxNAf0j7kaD8uO026LssKe02iDdd+eyiiy40J8oJHz4NG7a82WHHHcwtzgYF309vu8cadhA1C5JlxoJPzdzmuWZQg5xNXoKQcX32XzlKKoB0jRfwKtIjNu+zobPU6RhhkbFJi37Jt0Qf5j99nnIgKgcWfyQgsI8j+sYqIvJdLIZWQA8JYPHGJ3JmEhZTyyRUG9/7etbsPzprVpA8pdQ7OUBdq19BQH4r1JnWjWVjhRjAaf5QgKkfU28FnCp1NycGRVpnSfnjGfSrHYblJCtin6J1Xr49uP/zmWxrJwJkNuhW2izvZvrJ877SHsX6Ls8z9jrvGnkG76wuhnf2Wp6hmeean73OP+PeyH2mXu5RV9prua+TuOXePiP93kTCdyyMA2xubZE6hF0K+eFyb68FbG2fL86/xyouIFlrHZdnUufsM1zq3yJ5JiJb/RmueW4t54oFf3F5Zusq3z2U2r556Pse8IJ6J6fUW0u6I6QajZB2PEJA9yuJJd0hbXWxBxQjzWLKgZ7AAeS9KpNF7oWF1jBC5sq6BHAi1naRFblGiZCV6elhYXGgV1dALEbJVAe2yiqr2JO+wFko0BbZL4bS4hIyBfK4eDEdb/cSJx2iJ0bOgzweObTqcJE5+3o7DAWonISN0MiCsAasOkU2c+v3qrRk6Am7Mr1K8xsUPokyuLpIPw0Ff7s6ON8P99RZ8D8Q4PZSwGl3Q7oNlP5LOdDDOMBSIKWUA72OA3XDZIfv0IzJybEkpSgnwrDFk1tN33Vb84vqUgGSeI8ky1KbW+oev9Zr3v/9vz8p0KJuPk5jTtpPwLpY1lWKGT8W1fJUKn+aQLKuq/D2Y3aPnkbBWy5gl8mvWlwsJmR300OZ5x/tAOD12muv9bNZuA+zRFXwUOEFx/U0vy9CsYiC1ay0jTppG0qAkCG3nPouKRdQJJaGscoKYAPlilo9Ig0X0JFUmnHiUW7kXRFSWOhuW5OTO7334yzlv9L3cdPz/VfjHmUxIN2bb77ZXH755R0Au1deeaVNEivY5bRLQFDXXXedtVJIRABd+NHGWJgC3sXSqWsRl3oFKAhwLQChsWPH2jxgsRmwDO9dK3e0+/Hjx1s/1MFSE3ntI2wA559vzVRfsSj0qZxyARxSCgMo6Htc+qYogF0Uki+99JIN6lvtdeMr5zoOT+LGX6ofBbCMQOLRRx+1u5HjKHCxzlaMggCafFOfkqpbfrxR7hHABFFQfXRBt2uvvXZQMLtTWkHrrodq1Us3jWpdu9bl3GOc/PRcYK8bxvdXyX2tj4m2bFLF7eiXYR7NTWe3w/tCoHZ/Hd6XCl/qfZnx22BV+sd4OG7cOPtD2IRwECu5f/7zn+08ByuHAMXonxWoibAJC90IA2+99dYCYJcNKvfff7/N6QEHHBCa4zhtnXSVwto67zfddFML2FVwm4ZRN27fjhVhxmPme4w5KphmrIaYQ9AGgiip/pi4FbDLJsAwoR7AVfpJxgz8V3oqBuDnY445xlpcRjiplj+xaK9zEteCbRAPqvXM7c9cK6l+ei6wN+zb+2HKucciNYoLiLrCHEYtnvLOBSCWE3+lYRjnGdcZ7W2vpve+2/Ze0yuEU38Rw3cKFxCeNDr5KxE/YZIkFzSK9RcsR0chjmOE3Dl5lHCun6amJve2cK1KlsIDuXAtb2Jd17ew6/rlWpU7/vNiG3x8v9W6R/ZAf+IeB+in5SpDwvjkhynnvtbbbTllSirMi1LHFazLuHK89G9jxmxvZSxaR1968cVErLknledqxuNaw/HTmTZ3qvlkwXQB7I70X3W6/+qtuWa9ZTY0T335mPTF9MbtxKYoxvhyCFkGm5WQBZTTLzE+TJkyxf7YhFQL4P5y+JCGqT0OAERrniIGGURPEYUyciJx3XJ24RbFe6AfwLqnihXJSkmahbnt2Zx5Z7oxVxyaNVkmUSn1ag4AMK0XHUP9MEGQCng3N0f0EwLWteBdcVs+FV3FpzKXFrf1S2FF92N8kv0eADwX5H+MUe2ttv2qPcG2Z4BvAeNa0K40kj7yHLBug1w3yNrDutyLH7T28iuAegW8a++Jo+2XAbTLtbiFa0C9zn3hOX4heW1FPG2uvXee20v/Hdlv+9mSOPf45x19gPqxz+AP4Ns214ibvxaP+tz3w3O6I0C6AsBVwC5u/pm4FqAr79qAurZeLZK1G/4tSFf8EG9JEv+9mahXsnkiu7zoyIfl3brh0l75CeieE2oL37438yEtW8qBbuAAchIFgLLmCDIG42aLtQUE8BaZjysPA3zr3rvhOOHzcznFq2+/fgYDDwAt1YgQshtOlCQ+lxQA6T6Lco38lDUe+eGUVZVza1iMlmHZFxAtazSMrlWL4BOybAznfPDBBwYZJ9aEId/oBEYCFKy79dZbdziFVfNXLk80vOt2dXpu2kldJ1EGV7bs5guLz6qXKyVvQ46tVqcJF2TchNMFX247SXQt0XO6sm833fQ65UBP4ABT/5RSDvQ6DtiFh5z0nZsSoWhiALX5bQHtbtxq+jR1nMBECF2eF+ZgJBXV1VQc/3lLu2eLpd039K11LVh3n7YJkeO/aHoaQ1T/+KsiubvI/GTcdwAcyiUmsArqCpv0ErcLeOIYW59QwJTa5eaHSfJ+8TQRhkn9NVKPo1BW9KoA2iEmtEzAoDCLxvZlAv84JhnALvTwww9bkCXX7Ghbb731uOw20mqfz0BeyNbeE7hCt6AsBvv3w8e9D0qpWP7a4w8PmdSbn/70pxawC/CTXYwskAABYlEQ4n25hEU1lPrXX3+9+ctf/mLbKEporvk1NTUZjtlubGy0SbC7E6AHIA+OtlYwKsAjflgD/u1vf2uPAyeA2+5tBCX+hVnc8Re7JaIxccvlKt5Lxc173ZlYyq9agMVfFCBwqfjc93F54oat5BoQ2P777x8YBYu0uLwMjCjCw6TqVoSkOnmJw3t2aysVA6wHjYtxeRm1Xmp+qumuvvrqhegBHgOk9AkBGeMTxNgUh69+XKXua3lMtHmXgbEVEK0dIIPdDu8LgeSiLVyH9wHxxHpfbvw2XPX/MTcdM2aM/QFCBNTEGMQci3HS7W+xVM+YxXsEqQBFAPoquVZf9Zm6ceqkCsAIq2Ahjcd1ta27fYP7Pk6ahEMoq0BVxms2ZXFEuI7PlYJi3bwVu1ZwWykQMIJ01gMuv4rFW+wdvDr77LMtcId5DPMTCPD2RRddZH/f/e537RyqWP9bLI1y3zFf0jFRv0VQXHr6Be/8TYpB/st9Bvgci8psuKI90H50jHFPbyg3/krDqcKErgsq3LcpUgr3+deF/4Xn6q/tTafnXfS+kLGELlyALnN/vlsp4jhI2gBUTRC4m49ioHTXn16Hzff1fXe6bASgzbIJAyVY0IYHLPIosVaqFtV6u61WuaPE+9DDDxW83X33PWYrUQa6hCJJ24H7vLdeF7O8NHnOe+bjeR+aNQaPLFn8fs39zUbLbGpW+3B1M3nxpA7+i6XRwaN3Q3tBcT5q1Ci7Idh7HfkWwO5NN91kHnzwQWuhv5TCMXLEqcclmgMtcnR78ySZfcyOxoasgK5cgwzRQnX0hWXdJOllOXb+nxMyZrfNu1JKmWQJ0rjK4oB87uzgjOnDT7p3wOctX+RBuwB37U/q93+eazVDBFQ5VKodWziXuFoCGJWfAH1dbUP7ta4+gr6C9w7m8WsD7CqI14J120C7pk7CuIBeDSPrViu3sff8E3+Fd8Sbf6+yALuWIXn7k3esZbgmkF53eC+Pc/KgDZBrWsSfXFtLuZRfn7su0ZVNNjNlh+4VAbH0vIy0QzHSkx2ad9H/1WERG9Du0rKlPkWC9IpPnRai9jngGjLCcBA6hjAZIGBR1Z/oaVgAUllbIKedNGmSBcqq7FZLDy4CS64Qpw4B2HVP+sV4gvbhGgbdlQKJ9VlUt6mpqbCexUiDf0Lak08+WTjZqNo4A/JMeVXPyZpMiTWeS6zDlVxciT5DDhkmD1c/cdyuTi9O3qL6TaIMyOTee+894+rjSJ9vpgBqrEcXI9doCWt4jHn5hPETNVgCYDellAM9mQO6t64nlyHNe8qBThywFnblSA+7a7XT284PWt5pNYtez8kRKV20wJOsWRLXXjr3+lxdfaX3rgtod5sN1rWP+FewrKuBxLWXzr0bnpf6yn+u90XDW0/J/2N3WBi9/fbbhVdRLEoWPHsX7AJjsgy9+eab3tv2Wz2GkifFLPG2h+i6K47uWTQxZ1rei1hvZXdtHUfdtFnYvfHGGwuZDTueuOChwgssnuoOp4svvtgoIOAnP/lJhTFXHjxfx9taggilAu/Dkgnzj3ALKvd9PnTn/6Xi6xwi8ScAj7Tton5HVAAAQABJREFUqHVpLApCWJELAsLFyQTW56gjgG1YALI7Uy3fAH7yAfIseA8++GALfgKEzhHl7gQeK7161DjtHsU3dOSRRxp25xX7Jblgi1Mu5S/5pEzF8sg791h1woQRADGoqampLCvIYfF213NAIArWpY5gsZI+G/AVfGF3bbmWl+KWqTvrVpy8uuMYiuYwwoK9T9Wql3461bhnka8bcC655JKCEMlNi8W/bmLZc8893VeJX9fymGgLa8caGcfsH/8YG4vcS6Ci70uFL/W+3PgT/3KlI8Qi+KWXXlrwqJYl9cG3vvWtwnyIY9IgHaMOOeSQUCGuho/qupZcAcyGkc65EXYmQRxpBWAZUqu6Clxl7PGtHSSRZlAc2ve7lsF9fwirFUDl8kv9tbSgTexMWJMoRoBy+aYI0B955BFrdVf7H6z7q2XZYnFU450CxxFouusbTYv8Mo5C9FHVBh8BXof4BieffLK9hk877rijve7Of6rYiOpqXqP67yp/mq+kXLf9Pvfcc5GiZdOC0g477KCXVXXdzaD0Q6Xm0ZzSUKukCifmtjpWuHlF2aHrMJ7TdqtJtdxuq1nuUnHP/Kx9Q9zKASdf3Ns23peKp7e8b2gQwVMIvT3vTTNlzvumORc8xrrBsjI/3GS5zcw3hn0zP890XhZLw/HW6ZITdJAfuPKCTp4iPGADgo5XrowyQtDUS8qBYA4IcG3RWyLffTeifFdAeHUrYt1U1mgV0KSIp7UFJXHYTg2Gn0+TxapqSks2BwAG1ovuoe96WTNguzozaK96s3iXenOFgAavHZIxNyyVMXcKYvdJsTT7htTlGVKNBcebUhwO0FUAeBVLs2ah/ObJ7yv5fSnA2FkCARaAdOsncv2R/KaJ16nymyK/yfJ7X6wfvyfuJPlJn5N7V1zZX5cTlVvuLfm9Kc/EPlDL6wK2lh/XOVGd2XdiNMb6JQxhiYO43pcfcU+RZ1MlbUnTpk0eyIvkibwZsFPklTyTd8qQUjwOSLebkcPisiNFx/e1jGnYOWP67Z01/fepMwPkN3CfetvmaHt9181aS+xRwLoAs8vdEBWvAL3PN7KllFIOKAfQj6688sr2Ft3iBRdcYPEH6LEg2hryN/TjnGCq5OpU99hjD31sjRThXwmdKYaLlPS0DwCpgH0h5GxqdRaZAafsog/BQq4ScpKohHXaPn1k0BbC2Al6I7uZQ+4BFashJ9IvdsqbjSCBf+gBFYCrBhgaGxsLuh9Nwt10DnhaN2tTdsDLrvwePmmZNHxct6vTI3+utWPAq1g5jkJh4ZIqww033GBYJ5Mf5OucbKenC2JYpBRglxOh1aou5QIUrt+Hb4W8XcG6+FPsSZSyp35SDtQiB1LAbi1+lTRPFXMg21+EVqsKdECOh4pEsmBc/F8BP8qisktIJmWWxLFXzn3+ufdeM9X2WEamQnhAuyftu5e5//cnmRMLlnXb39srx3/c+IuG13wl7GJFJmxioYMwSVY6+dPjKHQ3VlAx3F1nlQCEg+Ku9Nmi92UhLceXRbW+kJEdtrQL07fVgih+97vf2Syg2BsTwUJSJfnlOGKAKBAgTKW9995bL7vN1Tpe1A3IXVH/0uYqel9GegFBqvboiCOOsHFjNZnF32WXXWbvAcEqCKHSxOvr66313qOPPtouMlVBDKCOHXpBxHEvu+22m7V244J0sPKnpGCDqEADDZeUG6VcG2+8cSG5IOBk4WXMCwXKb7/99jFD1qZ3FtpK5557rrXsiEXAvn372scIQopZEtSwSbndXbeilMMF3YbVLYRAClx146xWvXTTqNY1QqUzzjjDRo9VU6x+qpV9HjLWu8c1jRs3rlpZsfHW8phoM2jHMBnF7B//GNOK3Eugou9LhS/1vtz4bWGS+8e8ExCjzmfCYub7hhFjwAEHHGBfA46kvQHihH74wx9aN4l/bnvFEmYQMddGYAYpwDXIX9xnP/7xj20QgLoIQxUEeuCBByY2RyiVJwW5YS1BLbf6YbCwp8RpAUpqkTjsWLRiAGiNA5d4sDqB1V3CAFiG7rrrLut29b9TTjmlkCSgYhe0yyki9IHaL7p+C4ESvmC+pqQbitiApUoAfdcdrgqBo7qax6j+u8qf5ispFwG4WlK5/fbbzZ133lk0ao5MdE/e4MSJMAoDyIf5L/acfOpmP+3jivmv5Xf0m6p4YOxRBQd5RjHMBgCd3//mN78xpayKV1rWWm63lZatkvBrr7N2Ifh5551rVBlL33rZZZeagw46sPB+nqMkLTzsZRfFwPlf5j43b335hpm5cEakUq88YBXzzRW2NY0Na3Tw71uZ6vCyyA3zEjYXJUHaz6hVrCTi1DioQ8jNAOr/6U9/MmwsdBX16i91ew8HmsUK6aLXBCgQEezKUef1q4jVxIEi4+0GGrVG1vx0p3r780G7smqsiFij0AZcS3EVRRgxMIp/9AT8dK4WMWigN+QtGp8eUR3ocQl4mLEAw4yZNihjJiyTMf8UMO9fls+aa8X907J5EO9fBhlzj4B4x7eBeD+Vqg0ErtL6tASwNy1ib+aAtAf029k1BJw7SsC52wsQfs+s6fd9AcPvkzWD9q0zg/cVgO5u9WbA1gLQXTtr6pcTnXh9PKbQR2HgAaAWfWFK0TgAaAyDD2w8xuBMSikH4AC6UU6OQv4Lsemfk0PPPPNMc+qpp9qTQM8//3zzr3/9y77nH7p5F8CIlVrV4bAGwD/hf//735s//OEP1uou4bbYYovCybmk68p2r7zySuufNK+66ipryVet+BIWvW7U9k5ZXD0+cl5ONSVuNhDTFiD0LaqXsw+q+M83PKF6OTdJrB2rMQLWbOecc44566yzDLgITvsi3/qea3RHb731lhtFrOuuTo/MAVRWQrbKN4lShrBwSZWB+TygXfJDXcHIlhKGPqJgCPCnIHT0+8SDDhiZ9eOPP26j470adNL4UzflQE/kQArY7YlfLc1zJA40NMpCRn5RCSu7C1+U3eyfd4EoQCZPljR7pe61ECH+T9xvL7G0u47MBts8lorPf18ifhk98z78+DVcwi6KdQXWuFGzWwulN8SEtdLJnyrzUdgzgfWJnWeqsEaR7+468v129X2L7Ey29TWidV2Ejf984R6zz+F7GybmOolhQckuv64gJuwusVMQgGV3U6Fa24xYG4FtVzjt9/ah8y8frv190vdOUvayVPy+/2reu9/S3fG53377lZ0sx0kC8jnooIOMD5JhUagAARKgPvP71a9+ZcMEtV8s6aqC282UtnuAnGr9z33PYuKoo46ywBUWAJVS3HKRHhZ71Bofynf3KBLND7sKAdfwK2YpVf2j8NDdrttss40+7tEuQBAl5Zfe4ypIzH1WzeuurlvllKWxsbEQDDC8r/ilXSkgv+Cx7aIa9dJPo5r3WHRXUB4ASQQyADCbmprssbgKVEOIpcKaaubH7UdJp1bGRFtmGXDs6GYHHntT/F4CxfLfVfHbwiT3b+zYsRbQyAkFxYRf1113XSHRoM1lOlYiSNPxC9BHkpYRXavSxx9/fKe2TgYRmmm917ZRyHgFF2wK0T4ZaxG6cULLXUHUkYO6gOWf//znnZTuWFP45S9/WYjPFYwrLwDB+X0kAegjguiiiy6yc5Jjjz2208ZD+NHdYy9l/MUvfmGzzqYMrJDS/1FHUcwpaJYNUl2xsce1xqz8RKlRC6SC46iu5jmq/67yp/lK0qU/UaJNq5VufaYuAFzm9GrFepdddumggMKfu7nB3SSrcVTiqkVp+qCg03SmT59ulUnMo10QbCVpViMslkBdqy8ohLHWw0Zi+hWs5EDIRtg4WW2q5XZb7bIXi3+PPfKKevz8SRSfyy4zxGy4wfpmxRHDzbHHHGO/lSpcUVR9bfNRgeNLsTR60judA4Tl+bVZ/zXvzhYzfhGoPltvthi6ldlhxM6m3jlC7Wc/+1mE0D3PC4BiFPHM45g3MC6yNmNcRnbGmO2elNXzSpjmOIgDnPa38JUWa8kyqrXJbKMYKhHArizCuoVckC7AXQC8SREbggDlYzkNK3JdRRgj4GQAfshFKiXWERpfan3R46bU22bBMc0Ugztvi7XdpwW0e5cAeK8fljXXCNjwmjYQ7w2DjblzgDF9tqoz9etnTXZlkToMzpiWbqr3XinS25QDyXGAPd9S37MryRppPenfv5Exfb4t4Nyx7eDcgWI9dxDgXLFYPXD7etNvkzrTsKq0CwHCmwq74Pvuu8+u25APuad3JFfA3hnT66+/XlhLnnfeeb2zkGmpyuLAUkstZU488UQLqHUjQO/oEvoHZBJBMjjkLchRlNDt6Ylf6EoJ42+KZnO+e+IQ/gGiAmrkxDdkggAyIfKi1mlVRsVz95p7JUD9hx12WAEjQbxaHuQW++67bweZjwItNXzSrurhiBd+uOXWtMgDcikXqKxWhsF6gJE49NBDC4YD4JfKyTX/6mqc6gbxKYn0XDmZplXMxejB6NGjO3jR79LhoXcTFq6SMmgS3/nOdwKN7ZEmJ8WutdZa6tW6ymN19SWyavSXquOnzrmbZTHcxFq53M28mk7qphyoBQ7E3GtVC1lO85ByIBoH6leQHYVryaRBjm6JZIF0vljZfSlnFqyUMQO+kTWZvlVc/SP3IfqorhY5qv+4/sqJX8NUyWWnE5MTlFJMIp944gm780knTBxzH0QooNXKTNB7nqHEx/oMO3SuuOIKa1mPySoTsm9/+9t2AocFC0DDpdILS6OqzxdmzIK3W8ziCbJzTeptFJq1cJb5z8yXzCOTHxT5b37HGzvu2EnGxMYlPV5QXfddsWsmxlBYOBSLKKpUIctkuRZIm0s+L9ZGoCPzzt+H5zPYf3vvUd778tMLD5nkG5RwKIWxrKvfEwtalVirAaxEfYQAQtE2WQgyUefoSnaRQtQhdplCAHuxVEc4+gsWuCzAmLjTh6hVPZ4rcfwlynuA+izKUABgBQgwIunSt6i1Qx9Qp3HEccspFws+gPTwFAE/O1hZnGCdAysjAAsATNA/AbZR6z7F8jVhwoTCawUxFB700AsX/ATwDOEAPELRguU33XDRVcXr6rpVTrloJ4DKALtjQYE8cw1QkPrPjm94F0TVqJdB6VTrGUKBx2X3LQIz+hfItSRMv4Zy0N0cgJ+4ghLCQK7gxhc48L5Wx0TyBtnRyw6Q8o+/TN41uP77Uvelwpd6X278ZDRBAjShm5wYi9jUseuuu9rxg6MDaUMI6bUN0TcHWZkjrM6HTjvtNJtDAOVB9aSS7NPWschIPde2Tv/PJo975HhuVSggtA0SDpebNvNAxi94Rd8McUQb41VXEYCWA8Uy5fXXX2/nCQjwAKLS7hgPsSShAFU2xrjCPRe8y1z1wgsvtHPlDz74wPaff/3rXwOLgbBX5zGsKRi3V199dQM4mOcKsOlOUCrfnA1NCnTyrX1RZ/xNG24fGDbHD2KI2weGhYMX2l4ASm+yySZBUXX5MwVpRHU1g1H9d5U/zVeSLkfA05aYL0A777yztXLBmh0hOvNU5q70jy4Q1gWdan4ApCmxpgCMRt+ownh9V47LPJm6xVwZZQGWVJg30k6xWnmMgCgVTEwbr2ViHYMsBCvstFnfcjgbHrGywzw4iOJucmY+BN/ctu/GW6vt1s1jV19zBOPdd98jbWN/+41IX+vX6NHbmqvFQupH8u3GjPmWzRrrZ8YJqMDvepAaeRI4kl4mPjcoRFzFC8Zg5tPU2yB6be4r5n9fvGo2XW5zM6A+uN664UYMWMnstNJ3zcTPXzPPfvWk+6pXXdO+UbqrfEULp3WEe+Z0zO04aYYxO6zda9jU7QEckHUQp6ctekFWX59FzG8/ASaItcX6Ee19RcSQiXgDrOsCdK9+uNlMmJSXMyeSgBNJFMCB4z297MkckOq8SCzxzmjIGGywW/t2rWKB98A+ZrBY5c19IUZ2vmw1Tz3TYv77as4MaWk1Q6TarTckY4b3kfbzlcgsOOl7cU9mQpr33s6BhS0LzezFX5q+Q/uaZVYdYjJLiexQgLoZAa7XLS2426XFcrr9iSwSd4A0jArBuFF4itxK5xvoS1OKxgGObEeOwfq3u/WcbPoaOlSOVxVCDpbkCV7RuJH68jmA7AHjHLQv9I8zZswwnMDC/B1sAnKPUsastt56a2s1l3UC68k60b+jf11zzTUD1+vo51mvIzNAhsk8CuMtpKUyOuSBbGBGVqmyl+22287wK0XgCNC3UQ70b8ix0cXy82XayGH4hRFyCtX3hvkp9hxQdJTw8AvsB7Jwys13QT7NxjClE044wfKMjeeqZwXIW4z4BkHpl5seBqSKEf1NUHqEQS6H3J3NYpQvqiGasHDlloGNp0rkB10Jp7sBNkf3rn2U+lG3GK/JC7yZOXOmrdPo/fn21MWw+DTe1E050JM4kAJ2e9LXSvMaiwMct9NHjgFZ3NRqWl4RCVgEav1IhANP5OToEGP6ricC83aZeYTQ0bwgThN5Q57EjXI/ZOAA89nsr8zQpQZH8h8n/pkSL/FbipifQvxtxUjaYfcYgDkGeHeQ13QA1LFbLIyYaBQjwHpMApiUsYMUoBKTXo6U5OfTNddcYyc9/vNuuW+RVN9vMAuflqPSpkfPweCNB5jdx+5i1p6/mhk5cqQFQqJYCiJXuRr0nsk7E3qfbrnlFv9Rp3uACyggWAzstNNOnd53xwPbHAUgKSYUpEGKeqzNde/71nfsQ/qLMPCrhVkzuF9roH/iccPHuZ+zIGOIf/4imzPLkkL6Ifmz8Xcx81AUoVxX4r4SQkHPgvLmm2+21vg40sUnhEcAcZVQxnN8DEplAMT8VMCkfugrXCASoBz6F45JYfGKwj6IELQkYQ2wnHKRH4BGLKzpA9mEELQRgbJiRVbB8kHl0GdqXZdFZ2Njoz7u0S67LAEpAIJCOOYD4wAlIZhQhXm1C9vVdavc8gDGeuWVV6wAD0W6r0xH4AAoHuvQPiVdL/34q33fv39/c/HFF1vQLlYB3377bcNYCIgPYU0QOCVsbqB5RcAUNCYiAFNQnPr13VocE/N5zENFmO8xEnVy5Zn7fMCg/mbOF3PNoCGD8s+996XCF3s/54s5hvjJUcFfxPjFW6LEJhLmhDreMQbxCyL6n3/84x+h/TNxqLVTwv/gBz8IiqaiZ/SPbGzhyKigtk7kjFFYm48L6CqVMcqj4Gb80nd0JSGIZr6PMJa+jO/Gzyfy5W/uQKDMeML8gjmxPy9mc19Q/0iZ//jHP9oNQQCC+flzEvrXUv2Cn8ek7w8++GBrWRRrMPSDCHOxRAHAij7SJ9ZJQX2c6++xxx5zb+01datUOBWEEwBLHbVC1B9AtVHdQYMG2c1izAPihIsaP8o30ojqX/1Vi5+0LSxbMGdnLq1z8KD0WPPde++91lqk/565Bm2CeRqWuFWZQ7tFgVUJAf5+4IEHbJys8/V0GT9O+gXG/1onNluwKYR5C+2WtQ/tlrEGBYZPrA1KtT82K/DzCUVIMarVdlssz13xbitRpr428X/mP7Ip5L333jOrNa5mNttslB0HSJ/11xQ5wWnatA/tmKvK2Rmfdeb3YTKH5NeTifbsrzG0PPMEUfXCjOfM1stva9ZfZkN9HOpmpU/eeNnNzF6rfd98+OYHZtwZtTNehGY65gs2OyAf03UrCk6OaqXt056xzskJOyhp2XDEaQ4oym+77baYKaXea40DzZ+2mgXjxbruux1ljsXymRXLug1riVVFsU7a1QRYF4u6Ll31cIqQdPmRXifHgcN2bjCbbdimnFs5a4HhJ3/SbDLLC2BdzOwObG41h26aNU1rG5Ob3WpygHbll5sjAN45ci0A3la5NlzPk3xRVaM3teQKksa05HCAbrmPyMtQtQ4UV6zfZgbhStXrnzNXXXCpmbVgptn90N3MtruPNlkB62YFrAswN9Oxa+1SnrEuA3wHuAogVErROMAcDSMzrJ9cC57RQlfPl1oQrV4KacxxODBw4EC7mR8dQDmEvJawccIjh1Ewrp8mug93Te+/j3KPvKZSmU2UdJLyg4ysUdbj/IIIHrsbyoP8xHnW1emRN+oZv7gUFi6JMmC8AZlVpUReAOemAN1KOZmGr2UOZGs5c2neUg5UyoEGhFgbyEop6jpDFu0t7whQ7tGcWTRFtulWYRFvowQQyIW4Ue53GrWx+fsTz0T2b4GCEeO/VeIl/jj5sfFX+nGKhMckPhYjUIi7hNIb8FoQqJZBuxwCqPPII49YC5Z+eBSIN9xwgwWE+e/KTc+PJ9a9fNNF7wug/Ln+JveuhLSVJ0IMsllsqa8PNN/abxt75ACWkcLAuhFiK9vLxx9/LJZn7rbhOZ44Csiw7MRiBNQ2WMwdPrjjcSUrLdVsnpssZi2cNlwsfBx/xEv8LpF+qfhd/0ldF6vnKInVEiVWTYtZRfOBQGHfHsUTinPanku0fYC3KPNdQD5Hn0ycONG2X/xAKLAhFgNYncFiJmAUlzhK9tFHH7W7XN3nXJP29bITGQuc7s7QICCfHxYLnkEUt1waB0r0888/P3CBDaAYK4HF+K7x4GI1HHLBy/ZBhH9h9aASnrhxhlneC3vuZhlAFGA0XwgB+BtAlQoP/DpXKm6tT25aUa7LqVvF4g3jsVs3w8Jru/PLjn8ssbnHwWscWM0DpKZ8C6rT5dTLsHJoul3tApIYM2aMBc6x252NLF2dx1odE+23sGObjDoR3Q22WNc8/9iEyP6jxos/4iV+O2OOmJ9C/FWoWIBg6XsZ94KIvgMQKPPYYiCwsWPHFoIDiFTL8YWHbReVtnWsBHBkepAwlrKwcc21KkCyUdpCUN/g5h0rte5Y7h/T5vqtVn9MvFjDBRjt9+ncA9QFeOiOR+SLOQMWcbFK7Iej37zqqqsK2Xf5AFjzueeeM8cdd1xhTNI5CfwfN26ctexZrF4UIq7yBeWiDgPexfIKc4kgsG6Vs2EBn5oG/K4VimsB92tf+5rdWBU3XFT/AKJJI6p/9VctftJGOCqV+TLA7DCivbz44ovW6lCQH9ooa0MscrsEGBjy26brR6/dOY7flzDnxZo4p8r4BCgfq/v0gy5F6XNd/115TX/DxhGOmmTTB2NHEFi32nkCqK1US+1W89SdLtaSvimWnH98wAGyTt6u0xiywgrDDetXPUWmO/Na7bSxMq+ygqC0Xpj1jPmw71QLagl67z8b1DDIjFlxJ7Pnqt8zv/zpr/zXPf4eK+AK1sVSG/MzrIJrH8e6DjneQw89ZHbbbTdbXvpPTg1KqedyIPeVgHWfbzHNL8m6K+LpaQDB6uW49IbVypOBV8KtILDuT69cWEmUadiUA6EcKFbf2Mi7WMCNX/TLmM9Xypr+W9aZgTvWm8F7yW/fejNIfgP3rTMD9sn/+u2TNf2+lzV9ds+ahh0F7LuVWDPdWECSa4o13+yn5pP50828FkH0ppry0O+RvmjjgNSR+bn5ts58mplu61DdJvk6Rd3qs0e+rvX7frZQ/wZKPRy0T70ZsHfG/L+3TzNXT73UfLrSNNN3XamPAkSvE8Bud4J19dsiD0jBusqN6C7rx1oC60bPeeoz5UDKgZQDKQdSDqQcqBUOZMTqgsUA1UqG0nykHEiaAwAc594mu9UnADyIGLvsgmyQxfuAXepMgyz8xahXIjR73J6m73f3ix3XhHffM3ucJsdK/v5Es1HTarHDhwV49f0pZpdTzjZ3n3a8GTVy9TBvgc/LKUdgRM5DgE5Y6QF8pdZe5syZY499Q7HMexVYO8ESu8Q0P7tJOZ4QQCs7dqIoChPLQLGIpO4u/iBn5v2zxSx6NmcyYoU1Eom3+i2kLn+vzvRZreslT3p8GeAPjl3XY8ixHKpWZaKUg3g4NiRJoDHtMffTEabfcNdaM3x1O4r8/Rfzs+aYfwwrZHXE0s3mS3l23JgvzKrLuNYkgsMXAtrOpHP8+n7q5w3mvMeGmKVl1/XHX7Zvrb5gzxlmiDzLd0bB4fsN31Wj6RUu7RHrRABgaPulCHACADh2NQN8ino8JLuOsbyF1RqO5qi2cCpuuSg3wAWOzuHHkSYrrrhiJECV8oyyKegIQLQPTlB/Pd2l/4a/1Jeo37+aZe7qulVOWRjv4Bt1hJ3acQBbldbLcvIbFoa2j4C0mnOEsLTjPE9qTCTNaoyLX7x8uNntvn+bg0YfIaOVWJi046GOax1d9/2Ut6aai399lTn6/MPNKiPpr8UyZYzw+XG3c/xT351mLjz2SvPLcw4zq629qo1Xx8Eo8R80+khYVTXCeiHWDjneCQAbAJwo4xUZwlKiAt0AgFb7+Dy3vTIeACD1N7MkySh4Q5/CvB5AKMC+7iQsxdBPYI2OvoI5aJT+grkFx6bR3rC2oBshopSFo8gIyzFdugkiSrhy/PSUPpCyMe5Q9yZNmlSwtHDsscd2OEEhCg+q0Qduc8Y6ZvT8ve3mJr59oVeSjaH23nclo8zKAVmdeOKJ5txzz7X1nvVjnPAF/xpOXYn7XeETm1U5YQIryB3y0ZZ+WPhyNmlJlLGJbzlVLIeyVmMeQT/IBtw41j1oo6z7aWPVmMPR9pnvEz/z/ThtOTZDIgZI221ERpXwdvLJJ4ceDVks6Jnn/cH89KD9ZW1VmTXnYmnU2ruZM2eZq6+7yZx8XPHjNpPKNyeghG1wIo1dhu5p/nzAzSY3yZVvhKeOry8GzTIr/WSY6T8qazIC1IpLyBmZA5U6cjRKvPQpbILEGq5vbCBKePXD+hWZB8QcDb4xdwgj+lrdiMX80d1IpGGYg9x0001204T2NZtttpmVA/gbXQlzxx132BNYOGqVeRun+3BCz/P/v70vgZOrKrP/qqqX7AlZIHvSCQkQIAsJWwaiifzREWRkVxQVEAcUFEQcZQYdfzCC6OCCgMMijIyAQliCyL5MBglhiSGBhCQQyEYSspC900tV/c+53bfyurqqu6q6qruq+3zJ6/vW++497753X33v3PPNn+/KxmgkHCjQEiGFfQEHSlHBf/Pmze5diwO4qHBO/0WyBc/JyEYcbMuBFIwEw/7uzDPPdKRlHkcFYr5Lsjx8tySpmSGCP/vZzyZnm1jOFgMeyPdlqrNzcN6CBQuMA0EmTZrkzjVz5sxE3vmYie+FWMirMat+LGrxVZnnSIJhDxARu03Mj3/3mB82FQtgSaaObVAyDZaK6267uDK4ym57ut5Sqeuec3zEvv3Z7O9Pnzmjf3hl/Pfffz/R3tmXM1oO7eKLL3bp008/7QanM6oI2y/ffVqKyMd2QWGOV1991fkOOcCQZHgOLmQb8xEf+L6aahAPFa6pbM32zvZSVVVln//8591g4OTvB1QZZ960d955p5kyHiMokJzPe37RokXu/Ym/J6lQzrp0Ntu8w+zk6/Lf3r5+QsS+/qnM2lsc7vtYNbwcu6HGC/VdTnf/+m57838X2cjBo+ySb19qcZDn49yH6V7O40rgfq3fGbUdG3dYZaibVUQqLRLKzz3Y2a5zqdYnFo9BgLnO6sP1Vt67zLrtV2lbdm6xHdXbrQzLow8dZSGomlM5926IjSxZ/rZNmH6Inf/d8+21Ra/a64tftTeWvG5Dxw2xo6Yf6VTzkwfW0UfCqCk0Dn6k0ASjMlFQhL8n6e9nNMCvYuBX8qDqIK7Z9rfsz3ge/gbngG4OMuY5qQxLnw2jJ/J3GH/L0i644AL3e4nz+XjuMg8+dzmQk+8wfO5y8OSpp57qhFkYjYXGyALJz1G3ofEPf/8z6iqN75fpnvV8vvPZymc4v0UGseR7BgfXU/yFg6vZx3Pie1zy96DkutPHz+hLfLYTL/YFPIbvgnzvYf+TarBaNudMvlbsOyiqQREW1p/vYxy86X2JxILfwThIn/2W7yM5sHPGjBnc7Pbncd7oo+IAML7rfPDBB+6di33P6aef7tqg30+pEBACQkAICAEh0H4IiLDbfljrTB2EAH+M75kbtb2PwAm2MYtCQJW3fDpGQ56I0Y55Iu0mCLv0NNOXkEV6z/Nz7Yd33WtXnX2qnTVjug3sCzXJLI4Pnm/z9p3257kv20//9LBdd945du4svMBnWZ7Kk7MnHreGPj/uJRN2WzumS2zHdXZk3aeiVvcKFhoERDOqemiwWffTI9Z9esRC5RkdktedGLKTznR+ePAqY1Q6+/nPf57VefhDmIQyOi/yZZ6wWwnCbtC1528rfx6/fNPcfrZw3T4H9bhBtbYOpNpTDtttx4zea70rY+4Qv3/y8S0t76oJO8XeOW/1tGEgA6/YBNmMRps8vMYuPX6bX0zc9n6FP19nI+z6+iltOwL8sEWFHhqdUiRRyIRAZ0KADkqSb7zzu1jrlq8+kfUrRL+YIOwe/62s3wtffupVe+B3c+zkr5xoR806wnr3Y8w/FDTL90vuv3PbLnv1+QX2lz88bWdedIpN//RROeVz/oxLi7UpuI8Tjz/+uHs/4iCmQhDUOrLy/GhBEiaNH4RIEpEVDoFSeQYSARKBGNabv/m88UNRKjKP354qLcQz0BN2qcCerZEwQtV/EkxI6gl+GMw2L+6/fft2R5gi4YoKtAyVnq21F2E323Jp/wYEdN/mpyXkSti994GHbTRIkcccNTU/BSmBXF55FR/mQa4/58xT2620119/vRuQn+qEfcP97H/Oe9Am7TzSymobQ56n2jG4Du+JEfDYuv9TxCoPg49rn9skuFfa+WIk7FIJ/IwzznBlvvXWWx1RJm0FGjeQ7EpiLEUGPHHRH8PBZMcee2zC/+bX+5QEjSDRg+tJxv3DH/7gyMdU8E0V1Yw+PRJVUpGwgwRLf55gSmJIMuE1eE72u56EEzyOfkMSSOjLIEE62Xg9KfiQbLlgsG3bNoe9Jw4l50kC03/+53/m5Z09Xgv+35tRq54TtdhynIm/mTKxngYRkLD1/EzEwgizng9LJux6VdNkMi7JuiTtekve7tczLRRhlwP6PZH1nnvuccSzVO2C75qMcpVM/OK+bL/Bd1BfbpLHTj755EQUolSEXUYO8CIU/jifclD87bff3uScLRF2ScJi2/bK2j4fn5J8lXxv+22lmqYi7KZrb2/8onuTarbU3rIh7DbJtHHhkksuce/wVVVVtmzpMotBNDq+B4RekHRJ1oWYKoi7DfNrlq+1u2+823qW9bRJE6fYjE/McKRewzGvPfeaxZEOGzLMBu8/BCEScRzzqolbdG/McNc2aR+pyqJ1eUSArxV4R9i282PbXbvHuvWptEEjB2IdSLf4tMPpw43r7H9ffNH21O9xCst76nfb7jpM9Ttt5mkzbfWG1fbXJ/5iE449xG695xZH2A3juFknzHKDWnjf0weZ6rnAfpZEyyBpN0jYvemmm+zBBx905M/kWnNgDcmtqURrculv+XuSkXVojJRBorA3RifkQBkKhPhw8A8//HCCDNvW5y6PZ6QY/03Qn5cpf9+SdMvvhLRUz123IfCHgyD4bPXlDmxKzLIPILbEkX4GDtTmb2tGf2Dfkcp4vUjyDWIerDvfz77//e83qQcHivA9jGRYPsuvuOIKu+666xLZ53LO4LXiQKZ0A8JIsvZRakjgbinkPLHwEa/4jsOIYKmuB/Fi+0hFOk5USjNCQAgIASEgBIRAQRDYJ99XkOyVqRDoeARIUqycFLb6VXGrexGEOoyOzcgw8rfuZSiawnHWAwOiGaIkb6FxvF8NKWcZysdZitRvP/dTM2zCqOF2y2NP2XUg2m7bjVA9OVq/nj3sxKmTnLLuNCjrJnyDLZw/ZflyPL8OywIBNNm61WiHT4OsOx9XKguyrnVDu50WxocMOIU6gKwbrKX/IcgffVdddVVwU0bzVB3hB4JCmGv2ULKCZBVuSDhuGtPk5ZNBzA0SdkmqpdLu66u72aNv9bLqWn8DZV/K7hVxG9an3inrBsm6zOnkQzHkP4PyZX9WHdFVEKA6Do3Ol2CI8q5Sf9Wz8yNAsiP7mWIn7Por0dY+kfkUsl90fSHOEQ81KuWie2MP19LyP3zmaBtWNcSemz3XHgfRds8uStHkZj16dbfDjjrEKeuOhrIu31NbO3+q7bmdvXBHUVWXhAU63vnxhnb11Vfn5cN/4Uqdec5UiaKyGgm6TGlUPhNZN3MMc92z1J6BQaIEP0plS9YlToV8BqZTrG1pPT84VuFDPz9w8kMXCcVtMfZn/LiZUlnXK/C2krbl/Dq28Ajovi08xi2dYdJhE+x5DGLvSoTdNxYuslkY/N+eRiU3WipS5fbYNvvpn39i3z3sh3bM/sdlplaIl8IoCI7VT8BRFgm5cNLZknbbs/6ZnIuDWLxl+s5Eoh+nZKNyHQm3/rcGiTDsS6jg+eijj7rdqd6ZjghEvwEn+gxI7qCiLt9ZOTFPkkNI+A1GKaAar1dDpc+O/SHV6jhomIPTaJ/+9KfdcclEYW7z55w2bZojTLION998MzfZlVde6Yh0JFqStEI1YyoGk1zM8lx77bVO0Y5qu95yxYCqy56sSxIWB72QwMQ6kBx055132oEHHugIOf5cuaQk69a8DVERtOHYu8iBP3QyMfzYiRyMNj8lnDeybvJpPXmS679xYsMnQyrocn2mZN3kPAu1fO6557qsqdBIEi4Hwfzud79z7YK/Q9j2qdLsje+Np512WoKsy7bI3ykkVD300EOujbPNpjMORvSkPL7v8f7gfUAS+9KlS12bZKQvRlxozaLRqFOX9O/DHHgyYcIEl8+f/vQnR/wigY3Pg1QE+dbyL5Xt6dpbpkrOBaknP/2RKwwlVQwJaXaK8cePtNv+5TeunVVtG2NLbl7aQMoFofeu+/7Ltq7ZYqdPONO+fNaXE2TdB+560N5f+r5VRrrZoRMOtRHDR1rt7lrbsnaL7dq62yrCFTYWz5bhw0fgAxCIwRAhXvXOKgvHwlYWLrMyfNCpiFRYZXkl5ssshPX8TdK8dM2KW1Ir+CiMQ+W2PlYPGOqse+/uFq7AVeCjqAykZ/wj+XLP3l1WG6u1Hv16Wve+3W3b9o9t3fp1VhvdCxJu2D77hc9ar/4Y3YDvYHw/uPdnd9uaD9fYP/zjdPvCWWdjH2CH9ctWgjT/49NsR3SH7YztsP/3mRPs6GOPtnVL33PP/XtuujOBX594D4v0b444+yIahWrYt/Ldnkq2r7/+ui1evNj4nCIJNJVdemnD4HL66Tloh7/92AfxecJnw1lnnWXPPPNMk6hIbe1vWQ5P1uX3ucmTJzdTlU1VVr8u2+cuFc2D7yTs5/k+wPV8J+GAV07ZGMvAPpk4ceCDH8Th86AKLgmqNBJT/fsKf1N7si7LwYFCVOBlH89rxYlq6en6AT+Agn0H3zkY9aa1iC1tPSffe/hexfbBPoICEFSCp3GgAd+3Ro8e7aI58X2IQkfXXHON284+kIO3aP7d0g8U4Tq2Ow7OYkr/Hdsy2x37SUbOySZSDvOTCQEhIASEgBAQAm1DQITdtuGno0sEgbKBIet2bNhi6/AD7y38BMzUIUbS7t9AlqyNW3eSdqvwoziSe6VDFWBQ0hKEQMzy915g2f3iDiwHt08dO8buvPziFvdPPr61ZQdF4HzJ+wfPv48xkSmArrb6kyMCdNLUrkSINJB16xcA82y++8LJFDkIztyjwxYZ0NypkGORsj6Mjkw6HBm2hc5t/rD1P5Yzzcx/8M4mVHumeXM/tmaSdFtLR/evsy9N22l/fH0fcXg9FHbzYST7vru5Oaua5+N5WbjWypePciiPzokAQyfR6JBKVhnpnDVWrboaAuwf+NGW/UUxk3bz0Sfy2ha6X+R7acP7H/oekHZdH+TeV1teHjV+hJ1/FdQ6XIeFguYhdb0zi5DB+RvKGShvkd0IJDt41VkWjR9hfNjVIitqTsWhAkkwxDRVPqgcIys8AqXyDCQSVKahghlJQAy9GFSxyRSpQj8D+QGOlm1KghPrl2/Lthx+/3yXQ/nlFwHdt23Hk0plFRVgXeRghx5ykP3vS68YVWe7AmmX9YyAmMB6t7eRtEuCRiri2as759kTax+zET1H2cheozIrWhSk3bfjVg3yDt9ZKydkr7Sb2YnaZ6+gQuhBB7Xt+px33nn2/vvvu4Iz3LWPssMVDH1Ngg4JGRdeeGFaEhGVcEmkYehsGhXp+H5HMiQJMiTs+mvJcNG8tjSSShYtWmTDhg1zy/zD6D6eKEIyk1e6S+zQOMN3YpJFSJ6hUR3Pk3CpWvfjH//YSGr0xv29AhxDX/t9uT0XDEjmvP/++132yQp5JMWQ+EKiFMvI7bkalTZr3oaP9/GYRd/BuwaacKbG6GmVxyAC4IgGjDI9ri37kbRLom6QrMv8SOItBqM6dVB9kKrN/h5i+PUgYZdkJhLXaSQpeVITl2+88UZHtiMJLJXx3vG/4UjyJRnM+7WZL9sjiXZsp/S5+fsjVV5cR0KYJ+sGlSy5jaR4ksm4nedpLS8e01ksVXt7471Y0bQ34kx/KklwJBm+v2GlWa+YlfXlh8KQvbn3dVuxbYVN6X24dT+24eMhny3f+NxX3CW68rtX2ik/OdHi+MZI4n5ddb19++vftsXzEQWt5iC77YrbLE7CLm6v3194q1Vvr7ZykHmHDRtu37r8W460y+9EfG78/ZW/28vPvuwIvWPHH2izPv0pSAE3PFOe/8tztm3Tdhs5epRNPXoq1uMYTK/932u2a9tO6w5S6ZRjjrCK8sb3Jxy2af0mW7FkBWoRsnETxtuAgQNcmZcuXGK7d+22nr162iFTJrh1gIDVtbr6Ops/dz5cMHEbfeBoGzFmhFvPbZxCfFT5iXBg/n34C+a/NN+isahVdC+3fzzzs9ZnP4Q4xXbuv3TJMnts9hyri9XZ8f94vH3yM580w2cXknZ/9fPf2MK/L7QaEHOv/s+r7fCphztxGgrULFy80M7AIJY98d321z6zbfYcEDZ5btiffvAHW7F2hQ3s09u6HXFOw0r8PeXEk2xd3Tq3zHvfkxu5gvcf771g/+x2TPGHBFgO6PD9F/tMEixJ5mc7oWqs70+TDyfhkgTf4POEIje/+MUv3HOChE+vPp+v/pYEzSeeeKKZ0n5y2dItZ/PcZV28ijgjLhAbb1Ss989Ovy6T9J/+6Z9cVADuS+z8wDB/LEnO3r74xS+6WSro//KXv3TzPJ79fSTScI8SX/+Owz6CA3UOOOAAn0WTlAONWeZMLB/n5LX629/+ZqNGjUqckgrDnnTNPoJ9E1Wc6YPgAHrft7Gv4rte0PzALa5bsGCBI+ty/uyzzzbiwvZIv/rzzz/viNbcJhMCQkAICAEhIATaB4H8MI3ap6w6ixBoEwIVY8IWnQGn7sdRi6/NIiuQJOvm4efn7qh1OwHO4INB2u3GX5/ZW3gQXvjxo9TCDT8K3I9YZuN+7TJtzLNUlhuLm6+E4c6qq6udGkO+8izVfGLVcatdCkfus3DkkmSeqTJ0Y4VDw+DM/UTYKkAy70jj6GIqHuRqdGxw5G26H8u55hs8LnHbuZV0TwFvWMP6psuzxjUoBgZJu27nAvwhWdefL115WEpf3gIUQVl2EgT4wYsKIP5jWSeplqohBJog0K9fP+dcpbM7nUO8yQEdsNDWPpFFbo9+kR2g611I1nULXmm3tJY74BK3eEqGyiOJYCRCcFN5jB//O9MgCoYDvOCCC5zCBxVA2O8UKjpCi0B30Y2l8AzkpaGSD6dcrT2egbwvSXot9TRXjHVc+yGg+7ZtWG/evLlJqOFsczvlpBPtVzffjn6rn40/cGy2h5fM/svffc8emvO4Xfatph/u27MCVJ8jwZrEOBJFPDEOQ9PtyQ//YuP6HGSnjT7LepeDuJOJgbTkSLuxmCM+VR4ehiqi9+xkkkHx7EPFWBoHOvG3QrJR6YzE11RGdTcqwdJIDPNKdfStBsm63E4yEkM1UwGU+3FQvScJcbu322+/vdlvqcsuu8wRdrkPQy97EqEnQHI9w3QHybpcx4E5d9xxhyPXkABF4k6qsM1UL/VkJx5HVWC2GebPd0kSLIPGuvBcJFMxlLe3XDHYsGGDzwIql8MT85whRlTg4/tHsIxNdspgIYbwfTWLYrb3Sfh4l+M3FYl3mRrFIiHGwHZeSEVpT8T16rosXjJZ9xu31mRa6oLux98cQbIuT1ZVVWVURyaxmkqEQWOUE9r06dMdsTa4jdeYRCz+fiFZKdl8ZBSSp6jQGLxvSPri+fj7jsdSMdrfH8n5+GUOcvSWfM8MHjzY3n33XXd/5jogxedd7GkptbcglvSr+mctlZ3ZLtJZ8NkydMRQqLvCu1LZ0FdFIAF7y19uSjxbKnvs+37zyOY/J0jdS59eav3HNu0bZpxxpN12zq9t9uyH7IB1g23l79GmQNiN45Pj/Q/8t72x6A07/ZAzbcbZRzUMDABh9+iTJlkcaVl5mZWXgeWKx5Abo4h0SE1/u/LzN9muHbvs1MNOtQvPxvsC1m/tvd5u/vlv3X6//+7vbeD+Axuqiio88/Tz9ovFP8duMbv/+vut56DAt076k1gdTljt5qGK/+4jb9k1t1xldXgA3nzbb23YWf2b7HOkHWZn33OKe7Z/vPs8O+nEff3bvz91lTs3+7dp50xqKEfj3yNHHGHfvvYS17899vQcp9JLdeJ0tnbt2gQZ94YbbmhC1uUxvKYk4WfiQ+dglmDfwOfD5Zdf7gi7zIvPoqlTQZxOMp6DaqnB5wl3IYH0xRdfdCq9fPZ4wm6++lsSV1Op3ScVL+Vits9dEj9p9HsRk6Dx2cmBFSxLJsRof2zfvn0dYZURbe67775mhF2vrst3CPrfaH369DESnmn0FXuyrluBP/TR8TrSqI7M8iYbB9pnStblsfk4J9t6kKzLfEkGJzmXmHkyNNdnYn5/vlcRx6B98pOfdN9f6QMplGBS8HyaFwJCQAgIASEgBJoikP7Ntel+WhICJY8AfxRXTgZpdzOIkE/DqftxFlUCWZIKp9U7EbJqZkM+kX4NP7CzyMUio8dbfNdOC/Xuh1+rOBI/fks2zabiGe7rRz5muHun3S36cdz2/j1mNS9ELfYeqpmNIxe7h+DvqJwBZ+7EwjpzC30BqJ5Fsi4JIIV0VPrbsKE+HBvecFumW545bo9VDaizv7zd0xauxYMlzzZ5WI2dfNhuq6KyLqy18jTdnufCKLtOgUA2TqVOUWFVoksiwH6C/QXDoFJhoJiVdnO9QO3VL7J8rjd0HQz+8H+j0i4k6V3xS2J7rkAX6Dg6wTl1ViPB4dZbb+2s1Sv6eukZmL9L5BVqSz3NHyLKqVAI6L5tG7IkMo4YAUW3HG340CF23pfPtjvu/qOddspJnVJpl8q6JOuynqxvRxvV1bzCGskRVCCrq6uzXrsrbQve4Xvt6W2haIa+Vk/a3Qv/7h74wKYgulTfDI/taCAC5/chldMNOCRh56KLLgoc0XSWhDGSL4Kk3uOOO84R/pruaXbUUSBvNdqyZcsSZBa/jgQiEg+TLbiOv7W8UaHNW7p3XCrrelu4cGEzwi7V6fv3hxMzyUaPHu0IuyQ/JhOauKsn+TAEtLdcMagC0ZMYknBJUhH9kPShjB8/3mXN87flt2V0G3y8b8DH+xx8vCuRJUhzGRu+3JUd3hA1MFVI9ozzyXDHVCRKf+htT9cbFU+LwY455piUxfDXLEgAYxthuHMaVQRTtSeKRJxwwglGxdtke+2119wqEslJZCLZPWi8h0ns40AEKlC3ZkESIKNOkJBHgpgXqkj3LGgt31Lc3lp7K/Y6tTb4tq3PFqotjx07tjkM6OpOOfUU+/PsP9uH29bahu0f2tChQ91+m2IbbXX9B7YlstHKh5Ix22Dl1tPPJtIYBr3s3r3bPfueWDPHrT8kfiCU6xuOO37YMXb6Vae49XOWzLaLP4Gon412xw9utXk75zri/NBj0pOW/f5Ma7pX26bYR27VlOmTIYgU3MpvMSHXR/D+9SrU3CPXZ3vT3PctBQd6eJX4fVsb5jjgxA8MSd7mlzkAwPfhfh3T4DVbs2ZNSsLurFmznP8yeBzn+Xzic4rEUU5+cE0++lvmz/eDXC2b5y7fTbzif7qB6uxXOfCCCsXZ2Je//GUjYZeq/3yX8crqbMscPET72te+5lL+IaE6VR9ObNnvB68h80hljD6QjeXjnOxzko3PHA58Sr5HkvdLtcz3KQ4wYZ3Z33EwFOvVs2fDs8GnqY7VOiEgBISAEBACQqCwCIiwW1h8lXuRIUDnbffpYYtvB2n3JRAOoJ6bsdEZjJBV1TuiFv0obt0YimoYfsBipGimFplwhNU9/5hFDgZhl4Yf2PjfEOa3FJdZZln+EMBI6Lo1UFx4JWa1mOIU2mjgxWR+jl5QXjg2jPYZsUgftq7SMv5YpnIFlTFodFgWkqzLcziUqGrNoeVIQ41pS8tVA+rt0uO32ba9EVu2sdw27Cyzmvrc8a4si9vg3vV20AF11q8bGoIrDwuXWXnc/qyMTAgIASHQhRHgBzT2G/z4z36EKlX84JXqo1ypwNQR/SJ7RvZocfxJmWJbyvV+/yLZXirXWOUUAvlCQM/A/CBZ6sq6vvz5QUO5FBoB3be5I8wP9UECYi45HXrIQU55ds7jT9sbCxfZ1MkTbdzYKhswoDmBMJf8O+KYLVu22or33nf1iYCkQGXdYiDrJmMRJKFSFbBmYdT2PARC47vYM1M/GLiDsXfhp90LPy1Ikd3hBys7oPGFNPmERbpMoskLL7zgyKmpisjfMskKjoxMRsJF0EiG9RYM7e3XJackLHn1Ob/Nkx39sk/T/ZbyBCKSypIV6/yxgwYNSpBhuX+yUIMnKfr9k9MgkSa4Laho6NfnigH7zbvuussp1zEvEig5EXeSuUjepZJxOhz8+ZulaMd1G+DjnQcf7//Bx/sh9si0bTMzNOUwuHrdZiJ62sh9xLtm58nzilQkSpJ1/fo8ny6n7JJVB30mJF4nGwld3lIpPPttEydObEbY5eAthiSnUWk5lQq2P57pvHnzgosp51mGK664whgSnqRE/ywkeZ0EXt4jbYlGkfKkRbzSt6ugsnOxtbcgfCRRehswYICfTZm29dkSJHcnn+Dggw9OrFq0aFGCsJtYmWKG9wJVSZ977jlbsmRJs34k+RBGgvjCF75g999/v/3pT3+yiy9uIOxyUMNf//pXt/tXv/rV5MMyWk434CrVPZzrsz1dQYJqtbzv0hkJqrNnz0632Q488MCU2zIhPpIQnM6C25YvX+7Uv/PR3/J8rbXZdGXi+myeu0GSNdXL01kuz7pPfOITrn/m8/ORRx5JqPB7NXSe6/TTT292Sir+zpkzx5555pms1Wlzxa0t58zmHmlW2RQr2LeQ0MzBJfPnz7fTTjvN7UXiue97klXfU2SjVUJACAgBISAEhEABEBBhtwCgKsviRqBsCMiMs+DU3YPga6/CUwb13IwNu8fXwZH8FEJYrY9b5T9gOgih13qTttC6lU851moeuNPCICWGIrz9oE/miHn02DGPUlpuvb7aI3MEYjsRHm0pFBf+FrP6xWgP2ZDJG08T7xa3+gk1Vn3IbtteC4b5mszPXyx70gFOgi4dNPx42R7m7j44YXNJSa49alS08e71d3Ee0hzK0x5Y6RxCQAgIgWJHgH0IP67yQzZJu/yYTdJrqVpH9IscsEKyLjvGkk5L9aKr3EKgDQjoGdgG8BoPLXVlXV/+tiOhHNoLAd232SPNcMb8UJ9MOMw+J3Nk1m9e+FV7e+kye/OtJfbC3L/Zxxj8Vaq2Hwg2VaNH2KwZ042E5FKwEIQQKqDoF90OFy18tfS7Zmx8X4Xvq/ZJRETbAnGF4yNWMbp0ok0FyUKbN29uprh3zjnnGKegXX311fazn/3MrfJ+s6AaYXDfdPPbtwPsNtrGjRtdDqkUcoNZDx482P0mY/0KaW3B4JRTTrFXX33VhSi/5557XLbUe5EAACv3SURBVHmZH+c5VVVV2VNPPWWjR4/OqArxWrTJlSDr/l/U6l5HI80myl/jGULDQdY9Ae354OzEQjIqYCs7BUmUxUieJBEyUyO50FtL6rWp2jHVeZPJ8T6vVOmOHTtSrW6yjmW/7rrrnNLl3XffbY8++qjbznDlDFfPiYqUVJBsjSDcJOMSXij29uah5Ts2iW40EttSDRzw+/q0Lc+W5LD1Pk+mwW3BNh7cJzhPoh6VSVMZ/Wfpnp/nnnuuI+y+/PLLTtWT9X7iiScS2QRV1BMrM5jJ5h5OV7Z0p2mtf2NkLm+8vxmhK5UVss9Kd06Wo0+fPoniUIyAVgz9bTbXLPg8bal95oIxfaTnn3++XX/99XbvvfcmCLueXE2F4uBAJ/qD+d7EQRKpzCvsp9qW67p8nDMbvDMpJ1WG2d+QgH/HHXc4BWcex3ub01VXXWU/+tGP7N/+7d8yyU77CAEhIASEgBAQAnlEQITdPIKprEoHAY5Mj59oVl0L0u5COM6yIe2ymhAyqH8lbrH1IFceBdLu1Aa13VAGd1TF//u81b35qpWN4+jCRgdTwtFUasulc82LtaRxcIioqluD8Gh1r+IDA0m2UBfJ2hBGqBztsO9JvaxiLH7YZ+67zPpUne0AD1VDSlVBPBNgpbbc2a6L6iMEhIAQaAsC/HjtP2C3JZ8ueSw6QNcbhtgfcqF5Wgrbu+S1U6WFQCMCegbm3hT4cYwf5PlbwD39/HJyWuTbc0dAR3YUArpvM0eeiqTHH3985gdksCfJraVCcM2gOiW3S7h7yLrBpxXfjcHsEEmIN0TNzrge8a3wrc2Fn/YjqO0eDz/t4WFjlLVky9eghmi0wXGXCWEruQzB5WDobBKqvvnNbwY3p5ynOiKNyrZe9fXwww9P7MsQ3K0p1yZ2bsMMz//SSy9ZUP0wOTsSHklEpOWipJecX0vLbcWA5fvVr35lv/jFL2zx4sVO+fimm25yJDWG9qbablCtNV1ZqPZcswh+XqjqRpfhTSLbbw7IOHSAWeWnwlY5BSIhuDc6wjyJ0qcdUYZ8nDOoRLp69eq0Wb799tvNtpHgS0VcKrpfcsklduONNzbbJ9cVJOVyYgh2qrY++eSTdttttzmCMNV8Ga6c7a+rmG9nPi3GelOZ1RO4SQrM1HJ9tqRqk/6cVF711trgJQ5k92RdEm7ZjqdOner6Ca9iTpXNoHqwz3vmzJkJNVOqk1Jl94EHHnCbv/71r7cLqbytz3ZfF59OmTLFz7pn/YwZMxLLfoaESyqRFsr4TElnwWvrn1/F1t+mK7tf78vNZb4j8FmXylK1uVT7Ja+jWiwJu8SReA0fPtwRUbkfSeZBIxnVk3VPOOEE+8EPfmCMbkDVXL5D8Z7OVUE3eJ7gfEecM3j+dPMcBEKyMyeSwDlQierZfP+kMboAsTnzzDPTZaH1QkAICAEhIASEQAEQaL94OgUovLIUAjkjgJZfOTZs3T+LcGmT4fgC2TFrg282thJOuMdjtmd21KpfhlMYag6NXL+02VXMPNlCMShGbMcIb34BpJVq2lB6/c0FAVzz+k0I3fe3qO1G+6l5AmTdD5BRg88/uxzRfsuOCFkPtOeKMWjcHePLza7MRbS3v/0aitSgtLuveKW2vK/kmhMCQkAICAEhkBMC6Bhd7+c6SLeAbJqmJbE9p8rrICEgBLo6Ap7M5R6BACOxDBIvLbHslgLLRba9sXhKhECnQ4Dhyffu3Wskl8g6FwIk2HabDr/WJ6GQ23Kk8dQVr4ZLDaIM1Q/DT/tU1GrfB/G3bt+uDOf84Ycf2qpVq/atzHHOh9QeOnRojjk0HOZDO3Pppz/9qYsQ0lKG69evT5CqggTYSZMmJQ5jePT2MBK+aFQ/TKeAGCQlBUlShShfvjAggYdl/e53v+vIxp78Q9LuypUr0xadba32PbS9J/GN4GF8I1iE94ZcyLoQf6yYiW8Wx0Qs0qewDt6EfkiaWuVCnqwsT5NZB60med2rLfr7NlVRXnvttVSr7ZhjjnHrX3nllZTb27qyZ8+exucAVXc/+OADp+bMPB9++OG2Zl1Ux2fSLnJqb2X+jb2w1V23bp1RLdfb6aef7mczTrN9tpDMmC5a1Jtvvpk4Lwl2LRnfm7zdcMMNduqpp9rIkSPNk3VJ6E1HnGSZv/rVr7rDSeyjWioJ5bRk9Xe3sgB/8vVs90U77LDD/Kxdc801VlsLSfQkIxm0kJbuecNz+ucUydVeqbbY+tvWsCkvL0+8p996663GyBjJ9vzzzyfaUvK21pY5kIIkZtojjzxizz77rJunWi4H1wTNb+O6//qv/zIStNkvsG3TCvHO1BHndJVp/OMHlQXXJc8Tg8997nP2P//zP00GXjGagEwICAEhIASEgBBoXwRE2G1fvHW2YkIAIdcqx8EBdhJIuyA7Wo8cC7cTxMv5cAjPjtmuOfW2d2HUYjtadhZ0+9I3re7v8yy+d3cDt9L731KkblWK9a60WN+h23OErKsfFkX72LsARN05cOI+CCfua2gvaEc5WU+QdY8EWRftuAIkdNNTPWsYG+6hxpsM3uqSXs669jpACAgBISAEhEASAq4vRG/o/vMP+8YSXE6qlhaFgBAQApkg4MNPlnqaSV21jxAoNQRIUHnxxRcd2aTUyq7yZoZA2YCQdZ/RBtIu3GvxNRBXeDJmu+Fvq34FPretXGl27LHHukKQnEBVMRKwsp2o0MmQwlRPY1jtIPEnsxo23YtkPRJ1aSS9nnfeeQkFx6Z7mpGsS3U4b0GyFMnIJKrQGM54165dfrdEOnfuXHfvkKyVD9JykER16aWXJga0+BOSBHXZZZf5RZs4cWJivhAzuWJAZdOvfOUrDnsSuoNGQg/JlN78oB2/7FK0LQp4UMiDbc4pRK/DFqzP1kKDQNadhW8Vx4Os2x+/vwpsZxyTfyfy1DEFLnQO2R999NHuqJtvvtlSEeVI4vIkueTsPVGOhEavQhjch4TKb3/72+7eIhmyNfvlL3/p2tv3vve9ZmRM3sP5Vo9vrTzttb13d7MpVflv01PH5D/PZEw2b95sJ554YmJgAklumVyntj5b2Cdce+21ycWx9957zxG8uYHqs55422zHxhXbtm1LbPL9RGIFZkjEbcm+8IUvuM3s90i+pJFM2l4Dp3J9truCpvjDfpd9LY0qulQK5v1PkiOx/dnPfuaURlMcmrdV8+fPt7vuuqtZfvPmzXNK29zgBwtwvtj6W5apNfvGN77hdmE7piI1CbrV1dW2adMm9yxtq4prkEj+4IMPunNxXfL9QJK5t+QobLFYzH7/+9/7zXlLO+KckQjIDo2W3J/x3eXyyy93fY+/h/2+TEmA9gNbgus1LwSEgBAQAkJACLQPAg3DiNrnXDqLECg+BBpJuyGk1d2iVvc6vGk7cigmDouvj1vdFjjplsesblLcyhF+rWJ0yMI9mzsOwgcMsx4XXWV7fvdTK59yrIX69HNkCOfM4+5U5wE5womZJS2TL1EU23OAqasfEtsVh8IHpsUxq38TirprgUhA7SNrfPqalYOs2/0EfMwYLbJu1vg1HoC7DdG+G5R0SznNtf46TggIASEgBIRAEwTYJ7r3TbxyhviSyxR7uLSElptUSgtCQAgIgcwQ8GScUk8zq632EgKlgwAV4kjWZVhnEiVlnReBsv3h55oJRy3eP2tfhEru5hzqCr5qFD7e6nVRq4cfrgJCDRPGHGqf+cxnXOj52bNn55DpvkPYBs8666x9K9owR+Ltr3/9axeam6qab731liNjHXHEETZ48GAX8pkEY5IBqfJKu+SSS+y4445LnJWDTBjymQQZEjWo/kiFWBIVSZD561//at///vcdGbiqqsqRrRIH5zhDVcevfe1rdvfddzs10G9961suFDXDs7/xxhuOdESCF40k4n794PsuoOWKAYln999/vyvZsmXL7JZbbnFE7HA4bCRP/cd//IfbRmLc2LFjm9Qgths+Xqjq1i7AN4G/o61uwGb8XMrFEmRdENbLBvHHV+HtyzPCtgJlXgg16nzYuVDHnja2fcqeTXkZAv2xxx5zh5Cwzntp5syZ7n7w90a6/Hifk+hLtWj2PwwjTuI8SYRsLwwh7hVHMyGgdevWLdHeqBbP+3TMmDFO5ZPt8A9/+IMrype+9KV0RSrZ9d85OWzfuTNm2/fkeJMk1fzCE8I2YUR+2htJuS+88ELiDBxwsGHDBkfwvu222xLr+bzgMyITa8uzxefPAR0k4n3+8583KrqTYPqTn/wkMbCD7a81C5KLf/zjH1uPHj1c30DVUxIdr7766haz4LOP0+LFi+3f//3f3b4XXHCB8RnZHpbrs72lsv3mN79xCuovvfSSux99H+CPIXmRJEbiXSj753/+Zze4hoqwJFKz/bGf9hacL7b+1pexpZTvNnxukgDNtsP3r2Tju0qu72M8loOFmDcnWnAgkz/Xpz71Kaesy+Urr7zSPXOJ55IlS+zGG29MPI/9/vlIO+KcJKKzHe3cudPd17NmzXLvifvtt5+75zkgie+YbOt8prAvHDRokG3fvt0NHPORErheJgSEgBAQAkJACLQvAiLsti/eOlsxIoDfllQmDVWCtNsTZNt5OTqDWTdEUIm9ByWHdXDULcE0MWTlh4C4OwrE3V5NHQiRsQdbz+9dZ3vvvcXiH623sjEIX4OXZWck69L8IcW63FBK/W0FgdhOOHA/QHtYiva1OG6xVXBM5RAWLXgaOnLLp0N14RNhKx+GRuzbSnAnzWeEgIeuIaWGYIPjsNSWM6qsdhICQkAICAEh0BoC6ABdb0iyLl8wkJbicmvV1HYhIASEQCoE+FGYZN1ST1PVTeuEQCkiQEIJSQwkNpHcILJuKV7F7MucIO2WN5J212efhxtsBsHU2i0YNP8uxssfEbejJk638ReNt/fWvOdICtnmSoISSVNtVdYNnpcqrgxBfOGFFzri34oVK+yMM84I7tJk/qSTTkqp/kfy7Jo1a1yIb94zQfKZz4BkDqop+lDQfn0uKftJEhlJaqOS5B133OGm5LxYrtYIYcnH5LqcCwYkopEc+cc//tGFhT/qqKOanZ64eSVkbozXwMdLJedF8PMugCDDB1jZPKo6d83IQkMRBRDKut2mg6w7sMEbmdGBbdzpAHCob7kwbI+/EbIPPsqZa2yVuE+PPtBsclX7lT2bqh955JFORfH88893KqlsJ8lGsnuQmOm3k2hOQi7VLklouuKKK/ymJikVO70SaZMNSQtf/OIX7Xe/+50jsvF8nDzJyu86btw4u+iii/xip0kPHhqyB74XsWcWxW0dRG9ytR74hsf2dji+t+XLSHIjcbIlo8ouByhk+h6Sy7MleH62J7a9a665xk3BbZwnWZf9QWvGgR9UEScZnAM6gkrtPJbEVCpFs+9JZ1Sh/c53vpPYzHbcnpbLs72l8lGF9YEHHnCDX5IJo8SHRE5OhSLs8n2Wyt58nqR6ptxzzz02ZcqURBWKsb9NFK6FGZLLaSTtBq2qqsoNVNqyZUvOhF3ehySXkoRK43Nz2rRpwdO4eQ7OYBsneZj9PKegtYU0HMwnON8R5+T5eV+yT+Hz7Nxzz3VFIin/lFNOcWTwZ5991m3joC9OyX0PnyckG8uEgBAQAkJACAiB9kVAhN32xVtnK1YE8Pu+fARIu58O2V6oltbMBWl3LQqb6wBzkDFj78BxB2JmHZwQdYeCuHsQJqigRvriZI3+BKe0e/l/WO0Lf7HaZx+xUP/9LTJ0pFnP3haKRPah1ciXcDxCHlsMy/tKp7lUCOAaRbfj2kOloBZtof5tEHVXY2UbiboGbm4YTaQCRN1uR7Wf6kKqKnaWdf52aqhPo9JuonKltpwouGaEgBAQAkJACOSMgOv9XAeJP/xP8q5fRq4lsT3n2utAISAEujICpa6s68vfla+h6l7aCFDVjkp3q1evdh/XGTqXSqLtFXq5tNHrXKWnymgPKO2Ge8CV9iz8tGtQv1z8tDX00cLXuw7E3WVx6zGxv007dKCVTYMfGETDYjASTx566CH77W9/60hC69ata1YsqjVSiZfEi3RGJdu+ffs6BVGvlub3JaHwhz/8oY0ePdqvcmkwjHKTDYEFT+qoqKgIrIUvvbzc7r33Xqf4yLDSJIl44zGXXXaZUd2UZKOgtXbO5JDWwWNbm88FA4YmJ8GGpKIgaY11mDFjhrsmJBjFESWt7kP4ed8GUffNuEVX4AcS1JxzNvp4R4GsC6VQ+njdN4OcM8vtwDAuzeemNb0+ueWUn6OS24rPtbU2w/2S26c/linVcWtqaowKo8F7g30LiXlvvvlmYvfkMgwfPtyee+45pxT96KOPJvbjDEli//qv/2pnn312E8XRdOUlAfiVV16xa6+91v77v//blcXfN7zHGTqe23r16tXkPJ1loU93s9OPLv72Rrypsjpy5EhHAmT7SUXm99cl3SCITJ8tPp9gOn78eLvqqqsc0Y6DIrzxuUT11aACq9/GZ3IqI4mPz36SxYPtn4MVOBjBK8anq8dpp52WIOzynklWG091zuR1mSjy+md/qnLk8mxPlY8v14ABA+y+++5zeFC9nu+frBcH5dA4UCyVpcPY7xu899PtS/V7kqipsD1//nx/qGtzJGjzeZJsufa3meCebp9gXZLL45dbeu4yX9bnX/7lX+zdd9+1rVu3OnVyKpTz2tx5550+m2bvCYkNLcwQQ0/Y5YCMVMZ3orlz5zo13mQl5R/96Ef2zW9+M0EaDraXTOrO8wWP8efP9ZzproPPl2lL9wgjApCgH7zPfX82depUF8GBbe7pp59272u+7yGhmYNWiIXfP3hOzQsBISAEhIAQEAKFRSCEF1F+epUJASHQiADVUPe+GbOaF2IWXY7bA47dNhtG/oaHh6zsYJB2x2EaA+IuRsyHkijzdX+fZ9ElCyz6wQqLbdpg8drUPwzbXB5lUDgE4mUWjw2yeP2BcOSOs1j9QRaP4od+HI2grRbaizaz3CLdXrRQxUL8gGqLV7ithekcx8e+MaRzVES1EAJCQAgIASGQBwQ+95cX8pCLshACQkAIlCYCM6pPL82Cq9RCoBMhwA//DN86YsQII1nl0EMP7US1U1VyQSC2C37ahTHb+xyUTEmQbIOSKc8fgqpohP7Zw0JWcVDYyoaAuNuUh5pLMfN6zMcff+xCPG/cuNFIFuS9QHJRphaLxYzHcuJxJCBlSj7J9BzJ+9XV1dn69esdIYdhlg844ICURJbk4wq1nCsGe/bssZUrVxqJlcSeFkebc0Tdd0DUfQtEXRC/bXsbS442F4G4R+WnQNadFLZwz+IhMbaxZkV9eDQaNYYGp7IjSWPsb7Kx3bt3Gwn1JP/y+D59+mRzeLN9ea+vWrXKEUP79+/fbLtWdB4EUj1bUtWOzx2SakkmJEmVtmvXLiOplGRdbk9FEkyVV6p1jFzAsjCfHj0wIiYDW7ZsmVExmEZlWA4A6SjL9dkeLK8nybKvGjNmTHCTm+c5SGIk5ldeeaWRCFko888ADtwZMmRIRn11sfW3qbBZsmSJI4WSYDp58uRUuziCKNX5qSbsr0nKHfO0ks9/Pm85wJVk/HSE6jydzmXTEedk+92+fbsbRELycLKx/nxfYz9Iknqmz4HkfDrDckuE885QP9VBCAgBIVAIBDjISZZfBETYzS+eyq2TIEBHXO27cAa/FLX6BdAQ25qnikE0N3QAHHIg7ZaNbSDulg8LySmXJ3g7Mht+QKhbh2klFDvea1BZiCOcmEXzU6rQQIzYPCJk3Y6LWAUI38X2MSE/tVQuQkAICAEhIASEgBAQAkJACAgBISAEhIAQEAJCYB8CcYgp1CyP2t7n4XODsmmbVE19tuDplY2Hf3YCiLvjw0b/bKibSJMeHqVQZq5GxDT4emuXg6iLyGlOUXdbHpDpjbY3OWTdZ8HHO04+3jwgqiyEQKdBIBVht6Mrd+qpp9rjjz/uCMNr1qwpeYIfVYJff/11B+vChQttwoQJCYjr6+udyjWVh2lPPfWUU2BP7KCZjBAg4fz66693+9599912zjnnNDmO7Yntinb11Ve7qckOWhACQkAICAEhIASEQBdBQITdLnKhVc0cEID/t34jVBxei1rtPKg4rEIeCH2VN8MA7MjokEXGgLiLtGwkpv3lpMsbvu2QUbwGjtuPQNJdjfQDOG5XYkJq+yLAtb0UiGQUrkJYr2OhuDAtgjaCjwf6ftB2XJWDEBACQkAICAEhIASEgBAQAkJACAgBISAEhEBpIBCDuMJqiCv8DeTJ+TGLb0Sx4YJrs0F8LAJRhTKonZaDPFkB/2y4t3xvbca1VDNAm4oi+l7dKkwrQBCHmm4Uwgy2Iw8VYrNCoK+Ko+Hj/QeQxIeH4fTNQ77KQggIgU6DQLEQdqmqS7Lqk08+ac8++6zD94YbbrDLLrus5LGeM2eOnXHGGYl6HH300XbkkUcaFeOeeeYZp6zLjdOmTbPnn3/eunXrlthXM5khQAVXqpB7GzdunB133HGO9E2y9Msvv+w2UTV63rx5LpKA31epEBACQkAICAEhIAS6EgIi7Halq6265oRAbDdG0i+LWc0rcNItyqPari9NGZx1gxrJuyTujoCDeFjYIgOg7FBkIdl8kbtySvXl+s1UWEB7WNNA0CVJN74ZqNTnF5kQot2VTUJ4tGPwwQBqH+EeYurmF2HlJgSEgBAQAkJACAgBISAEhIAQEAJCQAgIASFQKghEt0Jc4e/w074EcYV3QaSE+m5erDu4kxRTIHGX4gpV8M0OhG8WA+llnR+BOEQ66jeBDP4+fL4g6NYvj1sMfl+rzlPdK+H7h6JzxXEg605G29pPPt48IatshECnQqBYCLs333yzXX755QlszzrrLLv99tute3d0lp3A/vznP9vFF19sO3emVt4599xz7be//W2nqW9HXLIFCxbYeeedZ0uXLk15+ilTptjs2bONbV4mBISAEBACQkAICIGuioAIu131yqve2SEAFYf6jVBxWBCz2tfgsIOSqu3NLouM9sZgzfABUHIYCSceiLtlCMdWNgQTHcQKy5YRhIXYiSHQoiTpridRF/Mk6q6GkAcUmPP2YSBYcPg9qO5RfmTIuk2Bqi7ahFR1gwBpXggIASEgBISAEBACQkAICAEhIASEgBAQAkKgKyIQB0m3Fuqne1+OWv1CDKLfAhTgosuLeWGFA+GPpW9uVNj5ZyN94JuTGmpeIC6aTODvj+6Ar3ctFXUhzACibhQk8LyKMtClC6GOssnw8U6PWMVYRNcDeVcmBISAEEiFwH333WfV1dU2adIkmzp1aqpd2mXdiy++aCzLyJEjXVlOOukkC4U610CDTZs2OXXXd955x1avXm0DBw60iRMn2mGHHSbF1zy1spqaGps7d66tWLHCTWVlZXb44Ye76dBDD7WKCilW5QlqZSMEhIAQEAJCQAiUKAIi7JbohVOxOwaB2F448EDWrQFxt34hlBw+RDnyrKqaqBnIu055d3jIIkMbJxA3ywZhnk7iSGJPzeQbgWijw/YjOGpByo1+2DiBrBv/CCfLl3pHcrnxUSA8jE7csFUeAVXdKhG1kyHSshAQAkJACAgBISAEhIAQEAJCQAgIASEgBIRAF0cABN16+O1qFkatZj7EFai2m29xhV7w08EvWwb/XARR0coprjAYQgs9ycLs4viXavXRTBhNr46iDBBkqEfUtChUdWMg7druPFeKggwgflccjehpkyHIAJ++2k2eMVZ2QkAICAEhIASEgBAQAkJACAgBISAEShQBEXZL9MKp2B2LQHRb3GrfgdouQrDVLwGJcxPKg1H5BTOqO+wHJzHUdsOD4eyDcziyPyYo77qJjmIReHOHnwTdXXDQbsG0CROJuhvgrN2AywoHbvxjZI19CmZQ6AjtD6LuoXDigqxbcTBCo/WV579geCtjISAEhIAQEAJCQAgIASEgBISAEBACQkAICIGSR8Cp7b4Xs5rXYlYHcYU4fHl59+HRb9cPftmR8MOOAmmXJF5GRRN5tzTaD0m68PvWw9dbx8hpIOdGV8Hvuxo+3+2oQr59+vDRh4aYlU+BIMORFGSQqm5pNBSVUggIASEgBISAEBACQkAICAEhIASEQPshIMJu+2GtM3U2BODMqwe5s2YJHMKLYxZdCiffVlQSTsCCG9V3B8JRDMXdCEbnhxFaK0zybn9M+2EC2VPhtdJfhXgNHLNwyEa3IsUUayTqxqCeGwNZ14U+y7cqR6riUFgB1zFyMIi6E+HAPQRh9nAdFWIvFVhaJwSEgBAQAkJACAgBISAEhIAQEAJCQAgIASEgBJojQP8efbS1iIoWpbgCfbSFMJIxKarAiGhQ3GVUtDIILDjyLv2xElQoBOpZ5xlHRLzodvh9QdKthxiDi54GRV0q6ca3IbsCCTOEBsDPS0EGRE6rhJ+XfnqZEBACQkAICAEhIASEgBAQAkJACAgBISAEkhEQYTcZES0LgWwRgIOvbiMcwm+DuAuHcHQ5HH9bkEm+R+e3VC4SeOksBtkzDMdgeABSLvdDCmdxhGkfLHcjQ7SljDrZNiooVMMZu6PBSRuDozYGdeQYnPYk6cZwnZg6J35NO9adyhwk6o5HOD04cSsngKi7P1bKqd+OF0GnEgJCQAgIASEgBISAEBACQkAICAEhIASEgBDoNAjQR7sBaruLqLYLH+27cAzuLGDt6N+jv5UR0YbBrYfURURDVLQyCiwwIlpX8sMWEOpWs/Yquptx3TdiYvQ0EnXXwfeL1LWDQvrq0Q4i40DUnQQ/L0QZygajceC/TAgIASEgBISAEBACQkAICAEhIASEgBAQAqkQEGE3FSpaJwRyQIAj9+tJ3F0WIO5uQkYFGrHfYhHpEOwBn3AjadelGNHvSLu9kfaGzxBpqBdSOI/DPTBf3mKORb0xXgvn6x4QcDHFd2F+J+bhkI/tQAqyLkm68Y+RfoyUKgp7MBXSSZsOrTJcE6ghRw6CAxcqCxVQ1o2AqCv1jXSAab0QEAJCQAgIASEgBISAEBACQkAICAEhIASEgBDIHIE4BuXXrQVxFxHR6heDtLkShM3dmR+f854+Itpg+PswhfeHD5AR0TCVUVyBBF6ROHOGt8mB8OtGd+HaMmpaInIa5jfA5QtVXRc9rT3EGXriGo+FIMPh8PUeHrby4fDzVjQpqRaEgBAQAkJACAgBISAEhIAQEAJCQAgIASHQDAERdptBohVCoI0IgKBbj9H8tctB3MUUXQFH4YdwDO9tY775OBwOQ5J0qf4Q6gOSLoi7oV5wGHMdybsk7nbHvJuwno7mSqyrbEjDdDi2pwossIyBjBuvgaMVTlamsWqke7GMNAbibZwkXTjdY3DSkqwbB1E3DqJuHERdzltdPoBrYx7AMTwMzvlxZmXjQdTFVAZnvZz0bcRVhwsBISAEhIAQEAJCQAgIASEgBISAEBACQkAICIEUCNB/WLsKE4m7jIr2Afyz8B22i1FZl2IKiLAVhuJuBAP4XWS0/pjnBGGFSN8Gf6tUeFu5Irhs9AlHIcIQhRhDdCv8w5yopguxjBjUdB1BF75iw77tYvCjR6rg62XktMNA1B0J/zkj28mEgBAQAkJACAgBISAEhIAQEAJCQAgIASGQAQIi7GYAknYRAjkhAAdhFMqude+DuLsibvXvwYkIJ7FR4bW9nIeZFpz+RCjshuBIds5kOpQ9eRdkU/PEXaZU4uW+5TjIpZgnibdxcvPMD1OIqhGc98Z6QwEh7lOq3FKBGBMVijlZHZysJNlionKuI+rCwW4k7IL0TKKuI+lSJdcRdpFiv6Iz1D3UD874UXDeUmkBYdHKq8JwxhOYoiutCiQEhIAQEAJCQAgIASEgBISAEBACQkAICAEhIAQ6HQKxavhnV4O4uwTE3aXwz1JxFwP9293oV6WvEGq7oQENaZjL/UjehXACCLxhCCw4QYX2FExodyDSn5C+YRdFjVHTtsNlvJ0pJkZOA0k3vgUpFHUZSY2+4nY3XCOnqHsI/LyInlY+Ateruxy97X4ddEIhIASEgBAQAkJACAgBISAEhIAQEAIljoAIuyV+AVX80kCAjuH6dXAOr4RjGE7h6PtwLq6Hc7gYVHezhZAO4yakXdTDk3XLsI3znqhLbmooZHGm2C1Opi7+u6mRrBuvx8YoVpKsi/k4CLuOgMtlknlLzaBOHB4CR3sV1HTHwHk7Bmq6Q+W8LbXLqPIKASEgBISAEBACQkAICAEhIASEgBAQAkJACHQeBKjSWrcWxN134J9dDv8sxBVIAO0w/yNcok4kAaTdEEi74f0aU0RGCyMqWrg3iL2NkdFI4g33xDqquJY6mZcR1SDOEGPEtN2N6U5cC0wxREuLMXLaNqSY4lDUjYO463zo9Cl3hAFvKiWTqFs2PmQVB4Ooi0hqjEonEwJCQAgIASEgBISAEBACQkAICAEhIASEQC4IiLCbC2o6RgjkigBIqgzdVfsBHMMfwDEMdQdOcYTvKkqV2Fzr2dWOq4Djdn84bhH+jFP5aE5Q04Wz3ZGXuxoeqq8QEAJCQAgIASEgBISAEBACQkAICAEhIASEgBAoQgQY2av+o4aIaHUrYiDughz6IdigxSKsQEIuBAFCUNsNgbwb6gX3IiaSdznPCGlUdQ1xHwoHcL4S8yCQMg1XIIWvst2JvSTiumhp8HX7FJiSnOsipiFqGkUt4iDqumkXCLq7MM+JJF2qHjOiGkUeisGILUQYImOhXTEOJF1ETyvbP2whClbIhIAQEAJCQAgIASEgBISAEBACQkAICAEh0AYERNhtA3g6VAi0BQE6Lus3QdlhFRzDa0DchcJDdC0clJvhIO6IkF5tqUxXPJaO8EFw2g6D/3s4HLYg6paNgpou1oWoQCwTAkJACAgBISAEhIAQEAJCQAgIASEgBISAEBACQqA4EYALlsIKdRBWqIPabv37IJBCYCG+FcUtFtJoMnKMakafJBR3rUfckXdDJOx2wzpMRtIu57lPkwhpWAbRNEQycOPk5hujpCFAGjY2Tkh8hDQGS/OR0uKMhNY4uXlER2OkNBKgDZMj6ZKoS+IzSbrwb3M+DhIuJwNhN76n0e9drPgCm1B/QAQxhkgVBBmgqpsQZSA+MiEgBISAEBACQkAICAEhIASEgBAQAkJACOQBARF28wCishACbUWAIdnqP8IE0i6nKFQdYh/CN4x1TlmAzlFZxyJApyxDz+2PEHRD4LhF6LMyEnU5kaSrMGgde310diEgBISAEBACQkAICAEhIASEgBAQAkJACAgBIZADAs43ux5R0VY2RkVbBb/sOjhkdyKzUvXLkoxL0i4jg5XDsVmGipCsWwY/ZqRx3hF2sS2EZSZh/MFsnExd/Ld4w7IjMEdBwiVhtx7rMM80Xou0kbBbtCRnFLlFQ3WsN3y+8PFGRgEeRE2rGAN/72D5e1vETRuFgBAQAkJACAgBISAEhIAQEAJCQAgIgZwREGE3Z+h0oBAoDAJOeXcLSbtwEMNRHMUU2wgn8UY4RT/GOaFUIGsnBOjQhqqCI+kOhk97CJy1nIaGLdIfTluGl5MJASEgBISAEBACQkAICAEhIASEgBAQAkJACAgBIVD6CIB/Gt3RIKjgoqKthm92Dfyy8M/ablQPiawTIECSbi/4fOHnjYyAzxeR08oZOY2k3d7YyO0yISAEhIAQEAJCQAgIASEgBISAEBACQkAIFAgBEXYLBKyyFQJ5QQDhwaI74RgGWbceE1Oq7sY2wVG8GQTebTgLwovJ8oQAw8X1g7MWirnhQQ1E3QgUdamoEDkAUy94a6k8IRMCQkAICAEhIASEgBAQAkJACAgBISAEhIAQEAJCoPMiQL/sx3GrWwtRBUZE47SukbxL5V1sl5UQAvTp9mkk6Q5rjJ42AkTd4RBm6CefbwldSRVVCAgBISAEhIAQEAJCQAgIASEgBIRAySMgwm7JX0JVoCshEK+HL3g7yLsg7UY3YQJpNwY13tgWCDxsBYF3K1KqPTA8maxlBBACLgQlhdB+mAaAoDsADlukkYGYQNgtA1E33AcqumUtZ6OtQkAICAEhIASEgBAQAkJACAgBISAEhIAQEAJCQAh0YgRI3qVPdh0nEHg/hD92A/y0G+CPhV9WEdGK9NpTnIE+X4gxhBE9rWwofL7DoKQ7DP5f+H0lzFCk103FEgJCQAgIASEgBISAEBACQkAICAEh0MkREGG3k19gVa+TIwBibnQ3iLsg7TryLki7sY/hLN6GFOq7VOCNI4xbnKoPXVmJl87Z3phIwKWCLqf94KgFWTfcHw5aEnU5SUG3k98wqp4QEAJCQAgIASEgBISAEBACQkAICAEhIASEgBBoAwJx+F7hj6WgQv16+GQ5uaho8MNiXXw78obogqwDECiH/7cvJkZP2x8quoyYNgQkXU6YD/cASRf/ZUJACAgBISAEhIAQEAJCQAgIASEgBISAEOhIBETY7Uj0dW4hUAAE4nVwGu+Coxgh20jcjcJJHIcCRGwH1jeSd+O7sA6OZWO6B4XoDE5kKOGGeqAuVM0F8dap54KkG+4NZywctVTLdURdhDhjmDOul3puARqgshQCQkAICAEhIASEgBAQAkJACAgBISAEhIAQEAJdBAH6YqP0wZLAiymGifOxzfC7QmTBEXi7spBCIdsBRRoozAAhhtBAEHRB1I0gapoj6jKFD1j+30JeAOUtBISAEBACQkAICAEhIASEgBAQAkJACOSCgAi7uaCmY4RAqSFA5Qc4hmM74SzmBKIu0ziIvZwnaTe+B8tMqxsm24vlvagojovTqVyLCYq+7W4RnLECzlc4YK2bT+Fs7Y55EHQbUixjPkyyLgm6IOxynqTcCIm5PFbqCe1+6XRCISAEhIAQEAJCQAgIASEgBISAEBACQkAICAEh0JUQiMOH6gi8m0Hc5QTSbgxpbCt8rIiMFofIgouG1hkEFNrzwlI9lxHUSMJl1LQBDURdFzVtIHzAJOtyG/aTCQEhIASEgBAQAkJACAgBISAEhIAQEAJCoJgR+P+yGoNALwam9QAAAABJRU5ErkJggg==" + } + }, "cell_type": "markdown", "id": "35bc2c92-d90e-4a26-a04b-5bd7dc4e7d23", "metadata": {}, "source": [ - "### Filter to `lof` variants passing filters" + "### Filter to `lof` variants passing filters\n", + "\n", + "![Screenshot 2024-12-20 at 11.12.35 AM.png](attachment:7348e149-4f8f-4eca-aa55-6234293c1f3d.png)" ] }, { @@ -2654,17 +2667,24 @@ } ], "source": [ - "var_ht = filter_by_csqs(['lof'], ht=drd2_interval_ht)\n", + "var_ht = filter_by_consequence_category(plof=True, ht=drd2_ht)\n", "var_ht.show(5)\n", "print(\"The total number of lof variants passing filters in DRD2 is: \", var_ht.count())" ] }, { + "attachments": { + "440e8e62-f912-4c99-9687-12d655742ab5.png": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAACvIAAAGQCAYAAAB2jGXFAAAMQWlDQ1BJQ0MgUHJvZmlsZQAASImVVwdYU8kWnluSkEBoAQSkhN4EESkBpITQQu8INkISIJQYA0HFjiwquBZURMCGroooWAGxI3YWxd4XCwrKuliwK29SQNd95XvzfXPnv/+c+c+Zc2fuvQOA2gmOSJSNqgOQI8wTxwT50ccnJdNJPUAZaAJ1QASjOdxcETMqKgzAMtT+vby7ARBpe9VeqvXP/v9aNHj8XC4ASBTEqbxcbg7EBwDAq7kicR4ARClvNj1PJMWwAi0xDBDixVKcLsfVUpwqx3tkNnExLIjbAFBS4XDE6QCoXoY8PZ+bDjVU+yF2FPIEQgDU6BB75+RM5UGcArE1tBFBLNVnpP6gk/43zdRhTQ4nfRjL5yIrSv6CXFE2Z+b/mY7/XXKyJUM+LGFVyRAHx0jnDPN2K2tqqBSrQNwnTI2IhFgT4g8CnsweYpSSIQmOl9ujBtxcFswZ0IHYkcfxD4XYAOJAYXZEmIJPTRMEsiGGKwSdIchjx0GsC/Fifm5ArMJmk3hqjMIX2pgmZjEV/DmOWOZX6uuBJCueqdB/ncFnK/Qx1YKMuESIKRCb5wsSIiBWhdghNys2VGEzriCDFTFkI5bESOM3hziGLwzyk+tj+WniwBiFfUlO7tB8sU0ZAnaEAu/Ly4gLlucHa+NyZPHDuWCX+UJm/JAOP3d82NBceHz/APncsR6+MD5WofNBlOcXIx+LU0TZUQp73JSfHSTlTSF2zs2PVYzFE/LggpTr42mivKg4eZx4QSYnJEoeD74ChAEW8Ad0IIE1FUwFmUDQ0dfUB+/kPYGAA8QgHfCBvYIZGpEo6xHCaywoAH9CxAe5w+P8ZL18kA/5r8Os/GoP0mS9+bIRWeApxDkgFGTDe4lslHDYWwJ4AhnBP7xzYOXCeLNhlfb/e36I/c4wIROmYCRDHulqQ5bEAKI/MZgYSLTB9XFv3BMPg1dfWJ1wBu4+NI/v9oSnhE7CI8J1Qhfh9hRBofinKMNBF9QPVOQi9cdc4JZQ0wX3w72gOlTGdXB9YI87Qz9M3Ad6doEsSxG3NCv0n7T/NoMfnobCjuxIRskjyL5k659HqtqqugyrSHP9Y37ksaYO55s13POzf9YP2efBNvRnS2wxth87i53EzmNHsCZAx45jzVg7dlSKh1fXE9nqGvIWI4snC+oI/uFv6MlKM5nrWOfY6/hF3pfHnyF9RwPWVNFMsSA9I4/OhF8EPp0t5DqMojs5OjkDIP2+yF9fb6Jl3w1Ep/07t/APALyODw4OHv7OhRwHYK8b3P6HvnPWDPjpUAbg3CGuRJwv53DphQDfEmpwp+kBI2AGrOF8nIAr8AS+IACEgEgQB5LAZBh9BlznYjAdzAYLQDEoBSvAGlAJNoItYAfYDfaBJnAEnARnwEVwGVwHd+Hq6QYvQD94Bz4jCEJCqAgN0UOMEQvEDnFCGIg3EoCEITFIEpKCpCNCRILMRhYipUgZUolsRmqRvcgh5CRyHulEbiMPkV7kNfIJxVAVVAs1RC3R0SgDZaKhaBw6CU1Hp6EFaBG6DK1Aa9BdaCN6Er2IXke70BfoAAYwZUwHM8HsMQbGwiKxZCwNE2NzsRKsHKvB6rEW+JyvYl1YH/YRJ+I0nI7bwxUcjMfjXHwaPhdfilfiO/BGvA2/ij/E+/FvBCrBgGBH8CCwCeMJ6YTphGJCOWEb4SDhNNxL3YR3RCJRh2hFdIN7MYmYSZxFXEpcT2wgniB2Eh8TB0gkkh7JjuRFiiRxSHmkYtI60i7ScdIVUjfpg5KykrGSk1KgUrKSUKlQqVxpp9IxpStKz5Q+k9XJFmQPciSZR55JXk7eSm4hXyJ3kz9TNChWFC9KHCWTsoBSQamnnKbco7xRVlY2VXZXjlYWKM9XrlDeo3xO+aHyRxVNFVsVlspEFYnKMpXtKidUbqu8oVKpllRfajI1j7qMWks9RX1A/aBKU3VQZavyVOepVqk2ql5RfalGVrNQY6pNVitQK1fbr3ZJrU+drG6pzlLnqM9Vr1I/pH5TfUCDpjFGI1IjR2Opxk6N8xo9miRNS80ATZ5mkeYWzVOaj2kYzYzGonFpC2lbaadp3VpELSsttlamVqnWbq0OrX5tTW1n7QTtGdpV2ke1u3QwHUsdtk62znKdfTo3dD6NMBzBHMEfsWRE/YgrI97rjtT11eXrlug26F7X/aRH1wvQy9Jbqdekd18f17fVj9afrr9B/7R+30itkZ4juSNLRu4beccANbA1iDGYZbDFoN1gwNDIMMhQZLjO8JRhn5GOka9RptFqo2NGvcY0Y29jgfFq4+PGz+nadCY9m15Bb6P3mxiYBJtITDabdJh8NrUyjTctNG0wvW9GMWOYpZmtNms16zc3Ng83n21eZ37HgmzBsMiwWGtx1uK9pZVlouUiyybLHitdK7ZVgVWd1T1rqrWP9TTrGutrNkQbhk2WzXqby7aorYtthm2V7SU71M7VTmC33q5zFGGU+yjhqJpRN+1V7Jn2+fZ19g8ddBzCHAodmhxejjYfnTx65eizo785ujhmO251vDtGc0zImMIxLWNeO9k6cZ2qnK6NpY4NHDtvbPPYV852znznDc63XGgu4S6LXFpdvrq6uYpd61173czdUtyq3W4ytBhRjKWMc+4Edz/3ee5H3D96uHrkeezz+MvT3jPLc6dnzzircfxxW8c99jL14nht9urypnuneG/y7vIx8eH41Pg88jXz5flu833GtGFmMncxX/o5+on9Dvq9Z3mw5rBO+GP+Qf4l/h0BmgHxAZUBDwJNA9MD6wL7g1yCZgWdCCYEhwavDL7JNmRz2bXs/hC3kDkhbaEqobGhlaGPwmzDxGEt4Wh4SPiq8HsRFhHCiKZIEMmOXBV5P8oqalrU4WhidFR0VfTTmDExs2POxtJip8TujH0X5xe3PO5uvHW8JL41QS1hYkJtwvtE/8SyxK7xo8fPGX8xST9JkNScTEpOSN6WPDAhYMKaCd0TXSYWT7wxyWrSjEnnJ+tPzp58dIraFM6U/SmElMSUnSlfOJGcGs5AKju1OrWfy+Ku5b7g+fJW83r5Xvwy/rM0r7SytJ50r/RV6b0ZPhnlGX0ClqBS8CozOHNj5vusyKztWYPZidkNOUo5KTmHhJrCLGHbVKOpM6Z2iuxExaKuaR7T1kzrF4eKt+UiuZNym/O04I98u8Ra8ovkYb53flX+h+kJ0/fP0JghnNE+03bmkpnPCgILfpuFz+LOap1tMnvB7IdzmHM2z0Xmps5tnWc2r2he9/yg+TsWUBZkLfi90LGwrPDtwsSFLUWGRfOLHv8S9EtdsWqxuPjmIs9FGxfjiwWLO5aMXbJuybcSXsmFUsfS8tIvS7lLL/w65teKXweXpS3rWO66fMMK4grhihsrfVbuKNMoKyh7vCp8VeNq+uqS1W/XTFlzvty5fONaylrJ2q6KsIrmdebrVqz7UplReb3Kr6qh2qB6SfX79bz1Vzb4bqjfaLixdOOnTYJNtzYHbW6ssawp30Lckr/l6daErWd/Y/xWu01/W+m2r9uF27t2xOxoq3Wrrd1psHN5HVonqevdNXHX5d3+u5vr7es3N+g0lO4BeyR7nu9N2XtjX+i+1v2M/fUHLA5UH6QdLGlEGmc29jdlNHU1JzV3Hgo51Nri2XLwsMPh7UdMjlQd1T66/BjlWNGxweMFxwdOiE70nUw/+bh1SuvdU+NPXWuLbus4HXr63JnAM6fOMs8eP+d17sh5j/OHLjAuNF10vdjY7tJ+8HeX3w92uHY0XnK71HzZ/XJL57jOY1d8rpy86n/1zDX2tYvXI6533oi/cevmxJtdt3i3em5n3351J//O57vz7xHuldxXv1/+wOBBzR82fzR0uXYdfej/sP1R7KO7j7mPXzzJffKlu+gp9Wn5M+NntT1OPUd6A3svP5/wvPuF6MXnvuI/Nf6sfmn98sBfvn+194/v734lfjX4eukbvTfb3zq/bR2IGnjwLufd5/clH/Q+7PjI+Hj2U+KnZ5+nfyF9qfhq87XlW+i3e4M5g4Mijpgj+xXAYEXT0gB4vR0AahIANHg+o0yQn/9kBZGfWWUI/CcsPyPKiisA9fD/PboP/t3cBGDPVnj8gvpqEwGIogIQ5w7QsWOH69BZTXaulBYiPAdsivyampMK/k2Rnzl/iPvnFkhVncHP7b8Ah9d8bcAadJgAAACWZVhJZk1NACoAAAAIAAUBEgADAAAAAQABAAABGgAFAAAAAQAAAEoBGwAFAAAAAQAAAFIBKAADAAAAAQACAACHaQAEAAAAAQAAAFoAAAAAAAAAkAAAAAEAAACQAAAAAQADkoYABwAAABIAAACEoAIABAAAAAEAAAryoAMABAAAAAEAAAGQAAAAAEFTQ0lJAAAAU2NyZWVuc2hvdAMwFUYAAAAJcEhZcwAAFiUAABYlAUlSJPAAAALYaVRYdFhNTDpjb20uYWRvYmUueG1wAAAAAAA8eDp4bXBtZXRhIHhtbG5zOng9ImFkb2JlOm5zOm1ldGEvIiB4OnhtcHRrPSJYTVAgQ29yZSA2LjAuMCI+CiAgIDxyZGY6UkRGIHhtbG5zOnJkZj0iaHR0cDovL3d3dy53My5vcmcvMTk5OS8wMi8yMi1yZGYtc3ludGF4LW5zIyI+CiAgICAgIDxyZGY6RGVzY3JpcHRpb24gcmRmOmFib3V0PSIiCiAgICAgICAgICAgIHhtbG5zOmV4aWY9Imh0dHA6Ly9ucy5hZG9iZS5jb20vZXhpZi8xLjAvIgogICAgICAgICAgICB4bWxuczp0aWZmPSJodHRwOi8vbnMuYWRvYmUuY29tL3RpZmYvMS4wLyI+CiAgICAgICAgIDxleGlmOlBpeGVsWERpbWVuc2lvbj4yODAyPC9leGlmOlBpeGVsWERpbWVuc2lvbj4KICAgICAgICAgPGV4aWY6VXNlckNvbW1lbnQ+U2NyZWVuc2hvdDwvZXhpZjpVc2VyQ29tbWVudD4KICAgICAgICAgPGV4aWY6UGl4ZWxZRGltZW5zaW9uPjQwMDwvZXhpZjpQaXhlbFlEaW1lbnNpb24+CiAgICAgICAgIDx0aWZmOlJlc29sdXRpb25Vbml0PjI8L3RpZmY6UmVzb2x1dGlvblVuaXQ+CiAgICAgICAgIDx0aWZmOllSZXNvbHV0aW9uPjE0NDwvdGlmZjpZUmVzb2x1dGlvbj4KICAgICAgICAgPHRpZmY6WFJlc29sdXRpb24+MTQ0PC90aWZmOlhSZXNvbHV0aW9uPgogICAgICAgICA8dGlmZjpPcmllbnRhdGlvbj4xPC90aWZmOk9yaWVudGF0aW9uPgogICAgICA8L3JkZjpEZXNjcmlwdGlvbj4KICAgPC9yZGY6UkRGPgo8L3g6eG1wbWV0YT4KqDOjLgAAQABJREFUeAHs3QdgVFXah/F3Jo2ETiCh995RRJqi2FBs2Nbe8MO2q7iu3a2ua+8VC6iooIIgInYUKYqASEdDld57IG3mO+8Jd5iaTEJ6nqPD3Htu/92byZT/vHFlZmZ6hYYAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACJSrgLtGtsTEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQsAIEebkQEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQKAUBgrylgM4mEUAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQIMjLNYAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggEApCBDkLQV0NokAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggABBXq4BBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEESkGAIG8poLNJBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEECPJyDSCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIFAKAgR5SwGdTSKAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIBALAQIIIIAAAiUtsGvXLhk3bpzUrVtXBg8eLPHx8SW9C2wPAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEECh1AYK8pX4K2AEEEECgcgn8+OOPMmDAAN9Bp6SkyLJly6R69eq+PgYQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgcogQJC3MpxljhEBBAIE/vjjD9m7d6/tW7NmjWRnZ0vr1q2lcePGUqtWrYB5I40sXbpUPB5PpMm2Py4uTjSkqut0uVx5zluZJj799NMBh7t161b54IMP5IYbbgjoZwQBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQqOgCBHkr+hnm+BBAIEBAw7daDXbDhg0B/Tpy5513yiOPPBLSH66je/fu4boj9nXo0EGuvPJKufTSS6VJkyYR56sME1atWhVymL///ntIHx0IIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAQEUXcFf0A+T4EEAAAX+BOXPmhA3x6jyjR4+WnJwc/9mLbHjZsmXywAMPSKtWreQvf/mLHDp0qMjWXd5WdOONN4bs8lVXXRXSVxY7xo8fL8nJyQG3v/3tb2VxV9knBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQKAcCBHnLwUliFxFAoOgExo0bF3FlW7dulZkzZ0acXlQTRowYEbEqcFFtoyyvRysTP/XUU9KmTRvp37+/jB07Vrp06VKWd9m3bxkZGbJv376Qm28GBhBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBAggQ5C0AFrMigED5FsjOzpaRI0fmeRAfffRRntOLauL8+fPliiuuEN2nytaSkpJsVeIlS5bI1KlT5YILLqhsBBwvAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIGAFCPJyISBQxgQ02Flc4U6PxyObN2+W3bt3F/qodR1btmyxNx0uqrZnzx67b/mtLycnRzZt2iR6X9D2ww8/2EqqeS33/vvvS2ZmZl6zRJz25Zdfytq1a+3t999/l2nTpsmzzz5rK8+GW2jWrFm2Mm24aaXVpxVn1bcoz62u0+v1FskhFcf+7dq1y17PRbKDUa5k27Ztsnfv3ijnZjYEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBCoqAIuE1grmnRVRRXiuBAoAYHFixfLCy+8IN9//72sXr3abrFLly5y6qmnyj333CN16tSR++67T3755ZeAvXnuueekffv2tm/Dhg1y/fXXB0xv1aqVvPzyy7Jo0SL5z3/+I5988olvekpKivTp00cefvhhadu2ra8/3MCaNWvk3XfflTFjxkhaWlrALC1atJArr7zSVpdt2bJlwDRn5LHHHrOVV51xvf/Xv/4lPXv2lCeffFJeeukl2bp1q51cvXp1Oemkk+Txxx8X3X+nffrpp7Zv9uzZvvlOPPFEGThwoNx8880SGxvrzBrxXud78803A6YPGzZMXnvttYC+SZMmyaBBgwL6gkfi4+ODu0Sr7Hbq1CmkX4PZl112WYC//0waJK1atap/V8iw+lx11VUh/eqn10q4dt1118nGjRsDJqm7nnen7d+/X0aMGCHz5s2TBQsWBJzfvn37Svfu3e35OP/8851FAu71uHbu3BnQN27cOLtdrW48ZcoUmTt3rp2u18+FF14ozzzzjHzxxRcByzzxxBPStWvXgD4dKa79O3TokOh1OWrUKF+4W6+9bt26yd133x1w/tPT02XIkCF239avXx9gpJ36s+R/3vVnOfhnSn8Gx44da41//PFH3zYbNWpkfw50u0OHDpUGDRrY7fAPAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIVA4BgryV4zxzlGVYQAOrDz74YMQ91HDh5MmT5aGHHpJvvvkmYL4ZM2ZIr169bN+KFSukY8eOAdM14KmhSg3M7tu3L2Ca/8jbb79tg6b+fTqsVVQ1CHzHHXcETwo7rmHM2267TVwuV8B0DZS+9957AX0TJkyQ7777Tp5//vmAfv+Rr7/+Wk444QS59tprbQjSf5r/8NVXX23DqDExMf7dAcMa3NTQpL9Dhw4dRMOmnTt3DphXA7PBgd+AGcxIQYK8uqyGQc866yzRKrzB7YMPPvAFRYOn+Y9r2HPZsmX+XTagfe+99wb06YhW1W3WrFlI/2+//SYavtam/hr+1hB4fu3WW2+1Qeq4uLiAWRs3buwLYTsTNJiuAWsnnO30a2BYr4U///nPIeFpDblecMEFzqz2vrj2T6smawA53LlwduCWW26x1ZR1XK+Z5ORkZ1K+9xo279Gjh51PKxu/+uqrMnz48HyX0591vR7VjoYAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAKVQ8BdOQ6To0SgbAo8/fTTeYZ4da81RHjxxRdHFbYMPkqtlKqVVP3Dq8Hz6Pg111wjW7ZsCZmklUmjDfHqwnfddZfceeedIesJ1/HGG2/kGeLVZTRMqdVNNeSZV3vnnXfkH//4R16zyLfffhvioNVhtXJqmzZtApYdPXq0Dd4GdB7lSFJSkmh4WcOawU3Dm9G0K664ImS24Mq2zgw//PCDM+i710C3E+LVCsdnnHFG1NeVVk0+77zzRKsL59c09Bsc4s1vmeDpxbl/Wpk5rxCv7osG2L/88svg3SrwuIaWownx6or151QrQX/44YcF3g4LIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAQPkUIMhbPs8be10BBFavXi3hKqmGOzQNRQZXYg03X3CfVlqNdjkNFfs3DYg+99xz/l1RDb/44ovy2Wef5TtvNPOkpaXZcHC+KzMzaFXhvJpWvQ1uGprUFlwJVvuKIsSp6/FvtWvXln79+vl32eElS5aE9IXr0OBxcNNA6u7du4O7RasZBzetNOy0p556yhkMuNegcbiwsc6kFaGjOW/Tpk0LWGdhRopz/6ZMmRLVLt1///1RzRc8U2Jiou1aunSpaGA9uGmlbK1cfc455wRPsuPPPvts2H46EUAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAoOIJEOSteOeUIyonAlrxM1zTqqmvvfaazJ07V0aOHCn9+/cPN1uB+rRC6nfffSeLFi2SSAHJ4Aqlt99+e9htvPXWW7J582Z70+Fw7a9//at4vd5wkwL6+vbtK5MmTZJffvlFHn/88YBpwSO63zqfhklPPfXU4Mm2AuyaNWtC+rVDK50GV/VNSUmRY4891s5/1llnhSwXPH/IDIXs0PMb3NavXx/cFXa8VatWEm75GTNmBMzv8XgkXKVerc6sTR2Dz7d6zJ8/X7Zv3y7btm2Tn3/+WTp06BCwXh0Jt96QmQ53aPD40UcftfZ6/sKFmMMtWxL7d/rpp9sKyRp014rIevzBTX9eDhw4INWqVZNNmzbZm1aIDm5DhgzxTdfK1u3bt7ezzJw5M3hWUZPZs2fLk08+KePHj7feTpVkZ2b92Y82gO8swz0CCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgiUT4HY8rnb7DUC5VtAQ67jxo0LOQgN9Gm10Fq1atlpXbt2tdViTz75ZBuyDFkgig4N5D7xxBO+Odu1aydut1vuuOMOX58OaPVQp2mQUisGBzetLnr55Zf7unU4OztbbrjhBl+fDuiyug4nKBsw8fCIHuuECRNEq9Rq69y5sxw8eFD++c9/Hp7jyJ1u9+qrr/Z1HHPMMTYsqZWK/ZsGUZs3b+7fZYfDhU811BoTE2OnH3fccbYKrQZ+nab7ppVunXPh9B/tfbdu3UJWodvVY3cquYbM4Ndx5ZVX2pC3X5cNN5999tm+Lq3wG2yj11CDBg3sPPXq1bNBUt8CZkCDrU4A1eVySffu3eXOO+8MObdr1671Xyzi8MSJEyVcQDriAn4Tinv/jj/+ePnwww8lKSnJblUD0s2aNZNevXr57UXuoB5vx44dJTk52XaEq1as14gz3X8FGngPbnrtxsYe+dVbo0YN+zOvwWn/1rBhQ/9RhhFAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQKCCChxJE1XQA+SwECiLAlrdc8OGDSG7ppV4g4OjGjYcNWqUDVaGLBBFR3BgVxe55JJLQoK8GiZNT0+34cYvv/wyZM1aCdY/TOvMoH2vvvpqSLj0q6++yjPIqyFgJ8TrrEsr7YYL8moVU/+mFVL79Okjn3zyiX+3rbwb0HF4JFx1Xf+QqQYrL7roIuvsv/xnn30mV1xxhX/XUQ/Xr18/7DoOHToUVZBXq78OHz48YB3q8Oyzz/r6tPpycLv00kt9XU2aNJHbbrvNNx5p4MQTTwyZpNdIfu1f//pXoUO8uu7i3j89difE6xyLBpe1AnFwJVz9WdUgb2FauOUeeOAByczMtJV5NVSvoWkNEuuNhgACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAApVPgCBv5TvnHHEZEAiulursUqQKthow1Eqg/hVjnWXyuk9JSZFwlT214mm4lpOTY7vDhYw1yBup6bS5c+cGTA63Dv8ZtNpwcAu3r1q5t2rVqsGzivZH03bs2CGffvppyKwnnXRSQN8555wTEuQdM2ZMkQd509LSArbrjNSsWdMZzPNeq+pqdV3/sK5ar1y50hcG1RB1cNPjC9e0OrTu048//mgrKe/cudNWItZqxDNnzgy3SL594QLA+S4UYYbi2L9wVZF18y1btgwJ8mrF6cI2DZuHa//+979Fb/ozrddh7969RSsq6885DQEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBCqXAEHeynW+OdoyIqBhyeDWqFEj0Uqz4ZpW7ezSpYvMmjUr3OSIfampqRGn5RUMDhfCbd++fcR1hQsghluH/wri4+P9RyMOa7XccE1NommTJ08OO9uIESMC+vfv3x8wriMaiN2yZYvk5RiyUD4dCxcuDJlDA9dutzukP1LHZZddFhDk1fmmTp1qg7xaMTc4yKvVh+vWrRuwOg3IqoFWiC1oQDxgRWFGwl0PYWbLs6s49y9SkD1cYDzPncxnogbTH3vsMbnnnnvCzqnuGjLXm54HddNqwUOHDg07P50IIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCBQ8QTCJ+Qq3nFyRAiUKYHExMSQ/dHgq1bEjYmJCZmmHZs2bQrbXxydTmVe/3VXqVLFfzRgOCEhIWBcR8KtI2SmEuh4//33w24lUrgyeOZPPvlEhg0bFtxd6PH58+eHLNu0adOQvrw6wlXX1fDu//3f/8lPP/0UsqgGf/3bnj175Nprr5XPPvvMv7vIhgsSSg630eLev3DbLK6+O+64w1aU/s9//iORKnE72162bJncfPPN8ttvv8mjjz5aoHC3sw7uEUAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAoHwJRF8CsnwdF3uLQJkW0Aqs4dqaNWvCdYsGG1evXh12WnF01q9fP2S1K1asCOlzOtLS0pxB3324dfgmltCAhp+/++67o9papCBwYVaq+zNt2rSQRU8++eSQvrw6kpOTZfDgwQGzaOA4MzPTVuYNmGBGzjzzzICu9957L2yIV6s0X3rppXLvvffKI488InfddVfAciU1Utb3r6AOGgTXn+1JkybJ1VdfLS1atMhzFc8++2xIVeU8F2AiAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIlFsBKvKW21PHjpdngYYNG4bd/RdeeEE0xBfctL8kW7j9W7p0acRdWLJkSci0cOsImamYOyZOnHjUW5g1a5b88ccfUtCqucEb9ng8cttttwV32/HzzjsvbH9enVplN7ii7pw5c+Tzzz8PWOzCCy+UGjVqBPRNmTIlYFxHnnnmGbnxxhslNvbIr4Vff/1VnnjiiZB5i7ujrO9fYY5fXQcNGmRvuvy2bdtEr61Ro0ZJuOOdMWOGb97CbI9lEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAoHwIHElslY/9ZS8RqBACiYmJogHL8ePHBxzPyy+/LO3atZPrr79eEhISJCsrSz788EP5z3/+EzBfcY/07t07ZBMaNpw9e7Ycf/zxAdO074svvgjo05Fw6wiZqZg7Ro8eHXYL4cLSzozDhw93Bn33ep7uuOMO33hBB3bt2iValVWr5ga3Ro0aSc+ePYO78x0PrrKrC7z99tuyaNGigGW1wq5/S09PD1vt9YYbbggI8eoy33zzjf+iJTJc1vcvHMLcuXPDddsqvPv27fNNc7vd0qlTJzter1490QC33h544IGQwPTChQt9yzGAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACFVeAIG/FPbccWRkX0LBucJBXd/n222+3tx49esiKFSvEPwhYUoc0cOBAqV69esi2r776alvxtWXLlnZXVq1aJdoX3HRZXUdptpUrV0q4gOWCBQukQ4cOEXdt//798uCDDwZMf/fdd6MK8n799deybt06u2xmZqZs3LhRfvnlF3nrrbcC1uc/8uqrr4oGPAva1FhDumPHjvUtGm47p512mm+6DsTHx4c9txraHTx4sG9ePZb777/fN15SA2V9/zSEH9w0PP3pp5/KGWecYX2d6eqZlpbmjNr7559/Xm666aaAPj2Xwa1x48bBXYwjgAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBABRQgyFsBTyqHVD4ENGB50UUXybhx48Lu8Pz58wP6wwVrA2YowhENU953330hQc7Vq1dL+/btfUHYZcuWhd3qPffcExBoDDtTMXd+/PHHIVto0aKFb99DJh7u0Eq3wUFeDWouX77cHnuk5bT/7rvvzmtyyDStgqvhz8K2P/3pTwFB3uD1aMg6KSkpoDs2NlZOPfVUmTBhQkD/kCFDZMCAAdK9e3eZN2+ezJgxI2B6SY2U9f1r3bp1WAqtsK0/ozVq1JBJkyZJly5d5JZbbgkJgN92220ya9YsOeGEE+y806ZNkzfeeCNknTqdhgACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAhVfoOBlICu+CUeIQIkJjBgxQgYNGpTv9h566CHp169fvvMV5QzDhw+Xvn37hl2lBngjhXh1mb/+9a9hlyvJTq2iG9w0OJ1f69y5szRq1ChktkiB65AZo+y48cYb5Zlnnoly7vCznXLKKTY8Gn6q2KB4uGmRrjkNlT733HOlFuJ19rUs71+rVq0immv17A0bNkh2drY9lMsvv9w5pIB7raJ86623ylVXXRU2xKsh4IsvvjhgGUYQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEECgYgoQ5K2Y55WjKicCWsFz/Pjx8uKLL4pWiw1uGuibOHGiaIXbkm5aGVW3fc4550S96cGDB9tKr7psabbFixeHDRprtd38msvlChuiHD16dH6LRjU9JSVFRo4cKS+88IIkJCREtUykmapUqSKXXHJJ2Ml6bQ0cODDstGuuuSakUmy4GTVoXhqtLO+fVjh+5513omKpXbu2/Prrr7Y6b1QLmJm0ivL3338vpf0zFO3+Mh8CCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggcnQBB3qPzY2kEjlogLi5Ohg0bJsuXL5d169aJhlDnzZsn27Zts/dnnXWW3cbevXtDtqXLOi1c8E/DnAVpweuoVauWfPTRR6Ih1v79+0dclU57++23bShZw4vBLT4+PrhLNIQaTatWrVo0swXM8/XXXweM64ha9O7dO6Q/XIdj7j9t9erVsnLlSl9XtLYa0B4wYIAMHTpUPv/8c1m7dq1ceeWVvvUc7UCkyq1aDTacu27P7XbLY489Js8//7z06NEjZBe0Iu7s2bPDBoE1yOrf/K9Bpz9cnzNN74OvM/9pOlza++e/P4mJif6jdlgD61qR+v777w9bvdn/+Dt27CizZs2Sv//979KhQ4eQdWmHXkt6jYwZM8ZW6I322gq7MjoRQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEECgXAm4MjMzveVqj9lZBCqIwNy5c2X79u0BR6OhytTU1IA+Hdm/f7/UqVMnpH/Dhg1Sr169kP7i6tiyZYusX7/ehox1G7rtRo0aSf369Ytrk6y3BATS09NtSFmrEWvwuGrVqiWw1eg3Udb3z+Px2J9RDShr8FcdI7WMjAxJS0uz3hqK1qBvw4YN81wm0rroRwABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgfIvQJC3/J9DjqCcCjz44IPy+OOPB+x9ly5dZOrUqVKzZk1f/549e+Tmm2+WcePG+fp0QAO0WiWWhgACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAAC5VOAIG/5PG/sdQUQ0Gq6Wv00XDv++ONFQ727du2Sr776Svbt2xcy26uvvirXX399SD8dCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCBQPgQI8paP88ReVlCBv/zlLzJixIgCH92ll14qI0eOlNjY2AIvywIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIFA2BNxlYzfYCwQqp8Dzzz8vr7/+ulSvXj1qgPvvv1/efPNNQrxRizEjAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAmVTgIq8ZfO8sFeVTGDTpk3yxhtvyMKFC+1t9erVAQJ9+/aVwYMHy8UXXyzNmzcPmMYIAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgiUTwGCvOXzvLHXFVwgPT1dMjIypEqVKpKYmFjBj5bDQwABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQKByChDkrZznnaNGAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEChlAXcpb5/NI4AAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggUCkFCPJWytPOQSOAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIlLYAQd7SPgNsHwEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEECgUgoQ5K2Up52DRgABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBAobQGCvKV9Btg+AggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggEClFIitlEddlAftEfFm6s0r3ixzn21uOV4Re282lGPGzajozcybO+ISMf+Lxqh1UIdjzL25iTkjrhiXuPQ+ztzizXD84XnNHQ0BBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAoGIIEOSNdB5N8FYDup50r715083wIRPWPWj69abDGuDNyJ1PMg6PmwCvhnhtkFfvNbxrA7x+92bQP8hrA70m1KvhXQ3y2jCvhnjNTRJMkDdBA73mpvdVzHgVc59ocsA6nGTuq7rEnWSGdX4NBdMQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBMq8AEFeUzHXc9CEdfd5JWevGTb33n3mfr/pO2BCuubeu9/c67CZTwO9ctBlg7xiQrw2tFusp1lL+ZqmZ+pwkFdMeNeV6DU3E96taoarmTBvtdxhe1/djFd3SUyN3Hu3mU8r/tIQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBMqOgCszM/NwUrTs7FRx7YlXQ7smmJuz24R09bbLjOv9HnO/x4R0zb1X702gV4O7klVce1JM69UqvibU6zIBXlcNE+ytaYK8NU213lrmvpbem3CvDtc296aKL+HeYjoPrBYBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBCIQqBCB3m9mWJDuzk7THjX3DzO/U4T1LU3E9o11XfLXWA3ihMbMIsGfDXcawK87jomyFvH3Ceb+7om0JtsbmY8xoR8XfEBSzGCAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIFCMAhUqyOvNNsFdU1E3Z6u5bTO3LSa8a+4920zFXXPv3W0kTbiXZgRMaNdVOzfM665n7lNMmPfwLbaeCfqaSr6uWKQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBIpLoNwHeT0Hc0O72ZvN/SZzM/eezSa4a+69ewybCffSohAwoV1XLRPorW9CvPVFYsy93mIbmJsJ9rqquKJYCbMggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCEQrUC6DvJ4DXtHgbvYGE9zdaG56b25eU3lXMqI9dObLU6CKCfaaSr0xjUygV28NTaDX3MemmqBvVUK9edoxEQEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEIhCoNwEebXyrg3vrjf360xwd62pvGvuvbvMUeZEcaTMUniBGBPqrWOq9TYxgd5mJszb2NzMsA31JhLqLTwsSyKAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAQGUWKNNBXm+2yehu90rWHx7JXmMCvObmMQFe705zygjvls51G3s41NvUBHlbmFtzl8Q1dUtMsktcZhoNAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQCA6gTIZ5PXsN+FdU3k3a5UJ8K4y1XfNzbvVHFBmdAfFXCUkEG9CvammSm9LkdiWJtDb0i1xplqvuypVekvoDLAZBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBAoxwJlJ8jrEcneacK7qz2StcKEd9PMzVTglf3lQDfG7GOcuWmwNc6EWGPNfmt1WtPv0mluc9Nsq3NvBsXMIuaYnXuvVhjWm6lCLNku8WaZGTS4nHW439yV6VbdHK6pzhvbxtxam1Bvc7fE1jEHrcdMQwABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBAIESj1IK/XBFezt5rwrgnuZv1mKvD+Zqrvbjb7qQHW0m4avtVwbpK5r6r3LjvsqmKGE83N3EuC6UswwzqfuYkJ8ro01KshXhPmjSbI69VArwnxqoUGee29CfJ6TZDXm2FuGujNMOOHzPBBc9P7dHM7YMK+B3KHrZeGg0u7GQN3A1Olt62haOeW+LZmuK7bWpT2rrF9BBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAoCwJlFqQ12uCutmbPZJpwrtZy0z1XQ3wbjc0Gmot6aaBXQ3m1tCbCeKae7cOV3eJWwO81cx4VdNfzYzrfObmTjTjJsjrNkFeDe0WZ9NqvV4N8poQr+fQ4ft0c29CvB4T5vWaqsUec/Pu84pnr96b217Tv8fslQn92qq/xbmD4dZtKvG66hmadqY6bwcT6DX3sfUJ9Iajog8BBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBCqnQIkHeW0FXg3wmvBu1mJPboB3l8EvqWqyGtrVirq1TQi3jgnj6n1tE9CtZe5rmfua5t4EeGNMoNdtgru2ym45uDa0aq9nvwlEmwCvx97M+C4zvNvc7zahXmPs2Zl7X6LhXuPtqmMCve1NoLezCfSa+9hUAr3l4JJiFxFAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAoJgFSi7IayrtZm/1SsYyU4F3oQnwmiCvhkuLPcCrwV1TVdddzwRzTYVYd11zSzbD5hajNxPijalpArsJxSxdSqv3moq8OXtMwNeEenNMkNez3dx26L0J9m4zNzMuprJvSZwHG+jtYAK9Xd2S0NEtsXXNyTGVe2kIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAZRQokSCvhkgzfzNVeH/1SPYiE+A1IdJiDY5qxd1kkxFtYEK6qebehHhjUk0lWL3XEG+SlomtjKc7192TbkK9Jsyrweocc/Po/RYT6t18+NxkFKON0ptAdWwXl8T3MBV627olxlRCpiGAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAKVTaBYg7zeQybAu8pU4f3FBHjne8Sz0fDmFAOx5kC16q4J7robisSY+1gN8eq9VuKtzMHd/LhNQV4N9mqoN3uTCfQevum50mBvsVXrjTHnq7EJ9HY31XmPNYHe5qYqchUCvfmdLqYjgAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggEDFESieIK9HJHuzRw4t8EjWzyYcutIEQg8VA1o1EwZtaAK7TUx4t7EJ7eqtUW6FV1dsMWyvEqzSm22y1qaCcvYGE75eb86dvZlQ70ZzDvcXA4CpnhzTxlTnPc4lCd3cEpvqNie1GLbDKhFAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIEyJlDkQV7PAVOF9zePZPxkgqALveLdWcRHbIKf7vqmym4zU821mQnuNnNLnAnwxtQ01VwJgBYttqmenLPHK1kmzJu91pzPtV7xrD1cqTejaDflSjbns5sJ8/Y21XnbunOrKBftJlgbAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggUKYEii7Ia6rwZpkqvBnzPJL5o0c8a8xxmuquRdJMQNdV2+R0m5vgbktza+GSOBPgjanjEldMkWyBleQjYCv17jShXg30rjbB3lWmWu8aU6V3t1nQnPsiaaaKsruFSHxft1Q5NkZiUwhnF4krK0EAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgTIpUCRBXm+GqcKb5pFDMzySNd+EO3cV0bHGmwBvfVOptY0J77Y24d2WpvpuAxPerWICnrRSE/AeMoHejea2yoR6V5hQb5qpvLzZ7E5W0eySq44558e4pEp/U523lVtcCZzvopFlLQgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggUJYEjjrIm7PbKxkLTCXe7z2SYwKdklkEh5doKrM2NeHddia829bcTJgztjbVWYtAtmhXYSrxZmuV3hUmwG3OffZyr3jWmWvgUBFsxoS4Y8z5TzjJLQldTfXlmoR5i0CVVSCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAQBkSKHyQ1+Q1szaZKrw/eiTTVOL1bjRHZfqOqlU14c1mLonp4JL4jubWwi3uagQ4j8q0hBb27DNVmVeb21JTpXeZCfSuNRdD+lFu3Jx6V2NzHfR3SWJvE+au7zYdR7lOFkcAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQTKiEDhgrw5pvDuGo8cnJojWXNMYHP3UR6NVuBtbirvdjahzU5uiTPD7iQSm0epWiqLew6YCr1rTKB3ianSu+hwoPdoK/TWFonr5ZbEk90S38yEeWNK5dDYKAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIFCkAgUO8nozRTJ+M5V4v86R7IVHWXU13gR4m4jEdnVLgrnFtSDAW6RntxRXpoHezFXmttBU6DU3z3qzM1lHsUNJ5jrpbirznhYj8W3c4jLXDg0BBBBAAAEEEEAAgeIQ+OWXX2TkyJHSo0cPGTp0aHFsgnUigAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCBgBQoU5PUe8sqhxSbE+7lHcpabEG9hg5mmqKorRQO8Lkk4xlRZNcFMd3Uq8FbEa9Kzz2uD35m/mECvqdDr3WaO0lPIIzXh3ZiOJsw7yAS/TeVmVwLXTCElWQwBBBBAAAEEEEAgD4Fu3brJ8Bv6yOp1e2T3oXry/PPP5zE3kxBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEECi8QGy0i3rSTSBzgUcOfp4jnjSzVE60SwbNV92EMdu7JP44E8bs7JbYZBPGJI8ZhFRxRjWgnXhsjMQ1c0tGa49kzj0cAt9fiGM01aBzFnvlYKZHvCZErlWc3YlcPIWQZBEEEEAAAQQQQACBCAKjRo2SYzvVkEED2sre/Yfk5ns/lPnz59vqvBEWoRsBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIFCC0RVkddz0FTinWcq8U4xId5VZluFqahqIsPuxiJxGuA1t7jGpqJq1DHiQh8fC5YhAW+2KeL8h0cy5ngkywR6PevNzhUmEG4qOrtbiyQOjpGE7oR5y9ApZlcQQAABBBBAAIFyL9CqVSv57J3rpXGD2vZYPvhkjsxc5JKRI0eW+2PjABBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEyp5AvlFaDfFmzD8c4l1pDsBbiIMwVXhjO7skoa8J8XY0wUtTpZVW+QQ0uB3f0i0xdV2S2cwlGTM9kr3EXFAFrc5rguRaFfrgFDNgQr1VuplQeBWuqcp3RXHECCCAAAIIIIBA0QosWLBAalXz+EK8uvZBAzvLvf97tGg3xNoQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBA4LGBikJGbN1MkY5FHDn5+uBJvQUO8JlvpaiSScJpbql4QI4k9YwjxRuauNFNiargk8bgYSTLXRPypJoTbwBx6QXO45lr0pHlNmDdHDi3xiF6rNAQQQAABBBBAAAEEjkZg2rRp0q9Xq4BV1KyeKE0aVBMN+dIQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBAoaoHIQd4cE+JdbirxfuERzwqzWVP8tEAtzhRLbe+SKueawOagGIlrZjYVU6A1MHNFFjDXQnwLE/A+M8ZcI6ZKcztzsOaaKVDTyry/i71GM9PMiLlmaQgggAACCCCAAAJlR2DhwoXy7rvvlp0dymdP9uzZI/2Oax0y141Xnyi7d+8O6acDAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBoxUIH+Q11U4zV5sQ71c5kvObGSloQLKqSGxPlyRd6JakPm6JqVXQcqtHe1gsX14EYmqb66RfbnXe2GPMdZJUwD0312bOMlOZ11yrmWtNmLegVaMLuDlmRwABBBBAAAEEEIhO4N5775Xnn/63pC36Qt57773oFirluXQ/+/UKDfI2b5Is77//finvHZtHAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEKiIAmGDvNmbPXLwuxzJXmRSkVkFPOzaprBqfxPOPN9UWu0cI64qhHgLKFjpZtdrpEoXE+Y110xcP3O91CwgQaZI9gKvHPreI9lbSfIWUI/ZEUAAAQQQQACBIhfQ0OuBnYvk6iGt5aIz28qEj0bKokWLinw7Rb3CxLiDUqtG6DfLOrZtKKtWrSrqzbE+BBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEJCTIm7PXVDf9yQQi55pA5MGCCbnqicSfbKrwnhUj8c3NqkPWXrD1MXclEogx107Lw9eOuYZcdQt47Okmc/6zqSI9O0c8+wjzFlCP2RFAAAEEEEAAgSIVePjhh+WGy3rJMV2aSYumdWVgn4by8ssvF+k2inplY8aMCVuNV7dTu2aS5GTuKOpNsj4EEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQCo7ZeU303Y5FHMmd6xLurYDqu+iaIeaoJYp5qqqo2MAleCvEWDJC57TUT18hcQ6eZIPgpJsybUjAU706RzBkeyVhirt+CVpIu2KaYGwEEEEAAAQQQQCCCwNixY6Vru+rSqpn5lt/hdvZpXeX3pbNl8eLFTleZu1+xYoXUrhVajVd3dPxn82Tv7m0yZMgQ0eOjIYAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggUFQCsf4ryvrDhCBNENK73r83/2EN8SaYEG9i/xiJqVM5ErxTp06V119/XS6++GK54IILIiLpnxCePn16yPRq1apJgwYNpGvXrpKamhoyvSQ6Zs+eLfPmzbObat++vQwcOLBAm92wYYN88skndpk//elPkpycHNXyHo9Hxo0bJ5MnT5bVq1dLkyZN5PTTT5crr7xSYmNjJbaeSxJPMiV6TR48c6q5HrdEtVo7k+cPkUPmGo5JdUl8C7MCGgIIIIAAAggggECJCqSlpUnrFkdCvLrxOrWqypBBHWXHjrJd1bZDm4YhVh9P+UXSVqyWmy/vIq74qvLxh29Kly5dpFOnTiHz0oEAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggEBBBVyZmZleXShnt1cOTMmRzK89IgeiX43LfEYff5qpojrAhHhrV44QrwZRW7VqJRpk1Zaenm4DqOHU3njjDbnlllvCTfL1nXfeefZPDderFxh48M1QDAPbt2+Xdu3ayb59++zahw0bJi+++GLUW5o0aZJcd911vuXnz58fVZghIyPDhp+/+OKLkG0df/zx8vnnn4uGnLXl7PRK+nfmmvzWK97t9jINWSZsh1k8YZC5Js8w12TNynFNhnWgEwEEEEAAAQQQKAUB/aLaW08PkbYtA7+sNnPOCpk8I0teeOGFUtir/Dd52WWXyaN/6yHJtXOfizpL9B78P3nriUFSo1qsZHlryLc/bpC0TXXK7HE4+809AggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggED5EMgtWZojkrHUI1lzCxbildomxHvi4Uq8lSTEq6f1xx9/9IV4dfzbb7/VuzxbmzZt5JFHHrG3hx56SC688EKpXr26XUar2p599tmya9euPNdRlBP/+te/+kK4BVmvhpb//Oc/y0UXXVSo5R988EFxQrx33XWXTJs2Tf7+979bC60QfNNNN/l2R6s7J54YI3H9TRi3lq87/4H9IllzvJK53FzP5n8aAggggAACCFQOAa34/68Hh8vYtx+11f8rx1GXwaPM3h0S4tW9bN+6vixdOLMM7nDuLv3www8hId6JX8yXDi1rStsWyRIXFys7du6U887oZo9j6dKlZfZY2DEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgfIjYIO82Vs9kjnPI95NBdjxJJG44zVo6ZbYupWr6umYMWMCoN57772A8XAjHTt2lDvvvNPe7rnnHtF1bNu2Tb755hs7u1a0HTJkiOzfb1KoxdymTJkiY8eOteHZu+++u0BbO+644+S1116zy3700UcFWlYrGD/33HN2Gb1/+OGHpU+fPjbIq+vU9uGHH8qiRYvssP4TW89cYye5Ja6nucbMNRdt86w3Qd5fPJK9tQCVfKNdOfMhUIkFli1bVomPnkNHAIGyLDB+/HhZNPdT6d3JJa0bHLDD2kcrWQE179erVdiNaqVbb84hKau/S/S5eXCb9OUCOffUNr5u89dMbNj3nNPaiQZ/aQgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCBytgNubZarxLvJIzlITeDSVeaNqsSZg2VUDljESWz+3qO/KlStlxIgRttLsueeea0Oau3fvlu+//16GDx8uEydO9K16x44dtk+rs2ZnZ8s777wjN9xwgwwcOFBuvvnmPD8U//333+WNN96Qyy+/XHQ7TzzxhGglV48ntPTqv//9b7udLVu2yKRJk+TGG2+029BqtOvXr7f7o/v4v//9z65L1/ff//5X1q1b59vX4AGtSOuETnW72jQUq+spaHO73XLiiSf6KtTOmjUrqj/Rq8espnPmzAm7ybfeestO10q/wW3v3r0ybNgw2/3qq69KamrgnzwOnj94PC0tTfr37y8LFiyQ8847zzfZ5co/zK3XgrYWLVrI0KFD7bDzzwUXXCA9e/a0o1999ZXTbe/jGpiqzwPNtWaCOWKuvaiauZazF3slY4kJqJtrnIYAAkcnoKErfax85YVH5OOPP7a3o1sjSyOAAAJFK6DP4c4+uan0P76NqfzawA5/NOb1MhsaLdqjLztr0yq1dZOrRdyhtq1T7V9kiDhDKU3Q33PtWoU+L5758wrp27OJ3atqSQm+vevQpkGer1l8MzKAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAPgKx2ZtMNd6FXvHuzGdOv8nuFiJVTJXU+GYmxGuyldOnT5dTTjnFbw6x4dRXXnlFLrroInn55ZelatWqcv7559t5du3aZftSUlJkp/nztBrMddqMGTPkzTfflJdeekn+7//+z+m295MnTxYNfPq3L774wo7efvvtNtTrP+3111+XrVu3SmJiojz11FO+SbqNt99+W7788ku5+OKLRSvFOk3Xp9vXeRo1auR0++4///xzOzxgwADp0aOHDB48WD777DPR0Ow111zjm68gAxpg/tvf/iZPPvmkvPvuu3LfffflubhWC1NTrd6rFXL9mwajtfLvvn37AoK2zjwPPfSQNdH91mN/4YUXnElR3T/zzDM2EB0bG22i9shqNQSs7ZJLLpH4+PgjE8yQBoGvuOIKmTt3rmhYO6CZayy+hVtyTvKKZ2eOeFYGTI044t0ukmVC6tntXBLXODdwHnFmJiCAQJ4CWnVw3YoZcvYpbSS11lp56pWvRCuNt2/fPs/lmIgAAgiUhMCECROkZaMY0XCl03S4V9da9gtY+vyFVjICy5cvlzP71Y+4sf69Wsvn5rXDTTfdFHGe0pigrxn6mX3zb59+vUCO754q9erk/lmIhPhY31/PaNsyVbZsmCZ6vPwu9FdjGAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEECgoALujGUe8aww1XjN/9E0V7IJVfYzId72JhgZI6KVeJ2A7qBBg2zl20WLFvmq1mrgNFLTD8w1xKuh3YULF9oQa9++fe3s9957r+zZs8e36I8//ugL8WpF2alTp8q8efPkscces/M899xz8uyzz/rm9x/QEK9W5128eLENGGtAV4Ouui2tUDtmzBj57bffZNy4cVK9enUb7NUqweHa6NGjbbdWBNZ22WWX2ftRo0bZ+8L+4wRyNeyqAd28mrNtDa1kZGQEzKoBZD02DUlrtV//piFZddJW0ACvs55bb71VwoV4vd78LyDnzyg3a9bMWV3AfdOmTe24VnILaeZaS+horru+bnHVCZkavsPsUs5vXsk0N292+FnoRQCB/AX0iwob1/wk11zcQwb0aSftmydIz841fI/z+a+BORBAAIHiFdDneOef2SNkI9qnz+9oJSegX/zoe1xgINZ/6/WSq9svlfn3lYVhDeTWqxtYSXjp7xulY+u6AbsXd/i7bHoc3pyDon/5g4YAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggMDRCLizl5uQ464oVxEnEtvdJVWOiRF3kimTatr7779vg6NanXbs2LGiYd527drJtddeG9WfXh85cqStvKuVrLRSq1OdV8Oo+oG607RarbZLL73UhlD79+8vXbp0kTvuuEO08q+2u+++W3Jycuyw/z9arVer3LZt21a0+u1rr73mm6zB3AsvvFBatGgh5557rjz44IN22s8//+ybx5sfJXQAAEAASURBVBnYtGmTTJkyxY7qvNrOOussez9r1ixZtWqVHS7MP127dvUtphV382rdu3eXDh06WPfvvvsuYNaJEyfaca1mHBNj0q+Hm1bq1RCuNg3zNm7c+PCUkrvTkI22SNtu0iT3zxaHDfKa5dxVzbXX0y2xXc21F2VBYK00nbXcIznb8w8a253jHwQQCBHQP1c/6ISG0rndkSrlQ0w4bsG8H+yXIEIWoAMBBBAoYYFJkyZJv+NahWw1xYQta1T18lgVIhPYoV9oK6qmwVZ1j9TatEgpk+dDv2AY3NJWbpWzTg4MJWtV3vmLVsmzr39jZy9Ku+DtM44AAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggUDkE3DkrTcAxyoyj2xRMTTjOBClTckO8SjRnzhwrdcstt0hSUu6fnXXoevXq5Qu6On3B904Q1ulv3bq1DdXq+IYNG5xumT17th2+6667xOU6sn3tHDp0qK2kq8MrVqzQu4B2zjnnBIx37tzZN37SSSf5hnXAmRauutZHH31k5x08eLAkJ5vSxKZVq1ZNnAq5GmQubNMKuk5LT093BiPeX3/99Xbaxx9/7JtHw7pOxWANPPu3119/XebPny8auNaQb2m0zZs3283WqFEj7Oa1GrI2DXFnZmaGnSc21VTlNdegOzfzG3aegE5zbeekeSVrtSegm5HyKaBhGQ31f/rpp6VyAP7bryzBHbVuVDdHurQ/EuJV/JS6NWTQSS19X74olRPCRhFAAAEj4DxO6eNSuHbtn/ryWBUO5nCf/l4d8fITMuGD563l0fx+02U1qJtX0/NUPbF8PC+bOWeF+RJL4PH8snirvDdulsS70qV1s2r22joas7ysmIYAAggggAACCCCAAALlU0BfI+hrLf3LgvqaldcM5fM8stcIIBBZQB/jHn/kQd/jXOQ5mYIAAggggAACCBStgL7G0ucietNhWvkS0NfHet44d+XrvLG3JSfg9m6PcmOJInE9TIiyrduURj2yzMyZM+1Ip06djnT6DR1zzDF+Y4GDGtysU6dOYKcZc8K0Xm9uwnjjxo2+P8Hbpk2bkPm1w9nOggULQqY3bNgwoM8/CBwcPk5ISAiY139kxIgRdlTDxr/++qvv1qpVbgW4l19+WTyewgUT/KvQOiFh/20HD2v1Ym3jx4+XjIwMO6znQkOwPXv2tFWRbaf5RysJa1VibVq9ODY2ynK2domi+0crKGvzD2j7r93p1+rI8fHx/pOODJtrL6G9CZN3MwNVjnTnNeQ1BdayVnvFsz/KxHpeK2NaqQlMnjxZXn/1KfEeWCxzZ02Qpx77h/z+++8ltj/B29d9Kcntl9iBBm1IH+u6dAwM8TqzXHDWMfLhhx86o9wjgAACpSKQ1+OU7pA+Vuk8tFCBZ555RtKWTJX+3RIkpeom2b1pprz55puhM0bZo1/a6tcrtDJy8OKp9WqUyd+hrZun+nZ1xZqtUr1q4HPmL6atlBlzN8jJx9eX809vJVcN6SgNa+86KjPfBhlAAAEEEEAAAQQQQACBCiGg7xfec8899j3M7q0O2vcxdbwyvI9YIU4gB4EAAvkKOO8ntU7dJc7jnH5+QkMAAQRKSkCfV+njDs+vSkqc7SBQdgT0Z1+zIq1SttqbDvM8pOycn/z2RM+V5mz080g9dzfffDOP5fmhMb3SCbglO7pjdrdwSXxnUwm1WmA13Lp169oV7NmzJ+yKdu7cGbZfOxMTTTo4THO7/ZLCZvru3bt9c0UK2jpVXnft2uWbtygHNACSlpZmV/ncc8+JVht2bg899JDt1z/J+9NPPxVqs/4BZMc0rxU1aNDAVjvW4O53331nZ50wYYK9v+666wIWffDBB+34RRddJM2aNZMdO3b4bvv377fTDh48aMPSur7iah07drSr/uOPP8JuYt26dbbfmS/sTKbTXd1ci13Mtdgs8FqMNL9e4zkmyJu1iSBvRKMyPuGzzz6TOTMnSO/OsTJkUDs5rW+qNKu73b4p7vxcFuchhNu+7ou+CV8S2y/OY8tv3XrsZ5x0pIq5//waxKqakF3hDfyPmWEEECh7Avo43Lp5YNVU/73UxypPZvE8P/TfTjTDuq/PPvus6GOr3kqz6faXLfharrqgm5x+Uifp1rGJ9OlWU3ZvXVzofdPjS00JXxk5+Fj1i2bF3fy9o9lWfb9937Jtr/Q9NvCLLE+89pP06FhXTunXTOrXqybdOqTKRWe2tWZ6Xst78/cq7evzaC31WGgIIIAAAggggAAChRfQ51Nl4XVL4Y+g9JbU9wtbpKbb9zCvvriPfR9Tx4/mS5OldzRsGYGyL+A8XpX9PS2ZPfR/bV8cWwx+P8l5nBv77gg+JygOcNaJAAIBAs5jnIbA9HPj7754p9DvZQesmBEEECgXAvo8RH/2NStyWv/muTczzPOQsnn69DHbvznnT3M2+nmknscqnpW8VvZHYhgBIxBYZioSial8GtfJJXHNQ4OTffv2ldWrV8vPP/8sp5xySsAatDrt9OnTA/oKM+JfhXf9+vXSpEmTkNUsXrzY9nXt2jVkWlF0fPDBB77VBAdldcKoUaPs9Pfff1/UpCAtKytLPvroI7vIhRdeGHXF3KuuukqmTJkiGuA99dRTZfTo0XYdF1xwQcDmp06dasfHjRsnegvXdFm9DRgwQL7++utwsxx1X9u2be06nHMVvMIlS5bYrg4dOgRPChmPb+mSzI7mtsaEc3MLEofM49/hWe+VnA1m3vAFnf1nZbgMCvz3v/+VJ+4bIN07N7V7V79eTZFOTWT67DT7i/3RRx8t1r0u7e0X68HlsXJ9crVn5zrpbqwjtasv6SPTpk0T/8fpSPPSjwACCBSHwA8//CD/uOXGPFftzUm3HyYUxWOV88JT788666w8t+s/UZ+zff/tJEmuflB+nrHITlq5cqXcdttt/rOV2LDvd5vfY7z+fr36gq7yqvnwZfDgwQXel2jDua2a1yvwunUBNf/88899HwydeeaZEc9BsHfasnnStmPPiPPrunu1zf2Com5rpanIW79uVR207avpqySlThU577RWkp2TLfHmP23161WVC85IlZvue1aGDx9u+8rqP861q4b6F0a0OdfwX/7yFznv9DbSuNZ63/Wpf8XEmV5Wjyl4v/S86/ElxmdJwwYN7TnXn/ui+NkP3hbjCCCAQFkX0Md9vZW3x/KjcdXj5TH/aARZFoFcgeeff17Wr10qndvWts+Lv/jiC/u65Wh/virDz6g+H806sFpuve5P5rWCef/SNH1frb75gumN935cZK9Lc88U/yJQuQX8X//pa0B9rMrrfYLKoFXQ90LURB+btUX7GB/u/SR9nOvcumQ+q7E7yz8IIFBpBe69917p1aWa9OqYJA1S9D3mbPl6xsdSHt/HrLQnkQNH4CgEyuLzkMrwOregp8z/ebr/5zRjzGePN13WMSDzo6+VH391us29Vab3MAtqyvyVSyCqIK+7kQnxtjEVUJNCg7y9e/eW9957T/75z3/KoEGDpEePHj5BfSBdtCg3qODrLMRAXFycDcfOmjVLvvrqKxk6dGjAWpYvX27DxNrZpUuXgGlFMaJB29dee82uauLEiWE/BLniiitsmHbMmDHy+OOPS1JSUlSb1rDzsGHDbBBOF7j22mujWk5n0jclqlevbsO5Wm1Xq+lqEDg5OTlgHRqMdSoWB0wwI1qdVysJa9P5GjdubIeL459OnTrZ1er1ct9994kT7NVO/VPMTz75pJ3uzGdHIvzjrqrXpEuyG7jEo2HefJrXFHXONhV5PQe94k4MvY7zWZzJpSigb8DVqZbu+4Xuvyt/vn6g3GTeBF+xYoUvkOI/vSiGS3v7RXEMhV2HhuPy+xPpPbo0lfenTJcbbrihsJthucMCxXkdg4xARRaoEpcp9VNyPyCNdJwtm9eVjRs3Rv2hRLj16M+o/k7QLy+0bFpL9u3ZIl9++aV9PqbPgYObM78na7f58HubiX1ulab1MmXQqT1l05bcvzYx+uPPzTrb2ufQwcsX53hev9v0SzNVYmbZYw13XEWxX/VTa9jf3foFMqc5Xs4HSPo813/7Ov3++++XYzskmT+XlGkXmz39Y1m1apX8+c9/dlZj7/X4dNqx7WLlmK7trfemLRtF3yTwf/6p8zmB1twQ8pEg76atR/7ayIGDGTJr7h/SpV2yDfd6cjwB2+vYJkX0OtR9dNYXMEMpjzi2eu2ecWJTWbNsqaxbWcu8Xqkq+pdQdPqq5T9IsysaSu9OLSWl9lq7x68f9iqLxxSO1DnvrVIOSINUfUzYaK+D6dPrySOPPBJuEfoQQACBCimgj4f6pYYqcVn291Nez1cqCoAes/4+W7dmqZzQt5us2Zhlfyf7P5eoKMfKcSBQ3AL687Ro3udyqvkrFMd0rSHN63vko0/nyciRI6N6TqU/i05znke++OKLNiimj0uHsuIivobS5XR5ZzlnPf734dbvP720h/XzkEfvOSPkNaq+Zj2lX9OoHUv7ONg+AmVdQB+r9DW+vkegr/8apNaVXxb+Yfv0dW5lfA6gJnm9FxL82KrzO88ZW5n3zV58cU+ej896TegykT6rufDsY4v9s5qyfl2yfwhUZAF9Dqa30nx81cegQ3tXyAWDLjUh3iOfB3i8Xilv72NW5GuFY0OguATK2vMQfUzUfdL3opzXufp8K/g5V7CHLpffPMHLlKdxNdHnpMGf04watUdqJuwOyfzoa+Urh3SRe81raSfI69jq56vuuFq8x1eeLgD2tUgE8g/ymsxjTCtTkbdp+PDj9ddfL5988ol88803cvzxx8s555wjLVu2FA2AzZ8/X1JSUnxB0aPZ43PPPVc0yHvzzTdLx44dpU+fPnZ1GgDV8Kq2008/XapVq2aHi/Kfb7/91oZkNTSrlW/DtX79+vmOVV/8OvsUbl7t0wpsP/30k3z88cfy6aef2tm0wu4ZZ5wRaZGQfg0LX3bZZTZk7AQYrrzyypD59BsPkZr+GeC7777bhon1TVWnacBYK8Rp9Vydp3v37s6kqO41+Kx/LuzOO++USy65xC5z8skn2wCNBjR0m2+//bbUrFlT0tPT5YEHHrDzqPGQIUOi2kZ8C7dktvSIR7MG+WV5c0Q8Jsibs90EeZuEv5aj2igzlbjAQw89JP+7KzQgpTuiL9RO6Zv7Jvj//ve/Ytm30t5+sRxUlCvV0FtuECbyAi2bajju6L+wEXkLFX/KSy+9JJ6sPbJhwwbJyI63vwdK882Qii/OEeYloC+ONOyh99r0xWSrVq1K9Q26/Pa3YWqtgFlW/bFdvvlhqe1r2Sy38mu/41rb517+wdGAhfIZUQ8Nke7YkiZnnlBPGqbkSFJigkydNUMmjVtjl/b/uXXm79G+ijRvlCh/e2WUjHlxiKTWrSmxrkw5pkszu4x5j1HeeOdV61wUL9z9z1teh6RfPLv71vC/W3U59dJ5/I8pr/X5T2vZNP9quzrPevM7xmn+Xs2Sc0O6P04bZ6/FW2+91fpocODArt/kwjPNG7WHz/m8hWvl3QmfyUsvuUTn06ZvErxnTG+4pJ0c2zXX2b6xa77rp4FqPY/ahl11ouzb+rNsid0gq9Zus9d8y6Yn22nOPy2a1pa1G3bIoUOZ8t1Pf8jDd/aWnBzzpNJUqnVaUpXcyrz6pyR1H4vr+YizvYLeq8cfK36Up556R84y126b1ARpUK2m/L56mxxzTFN7/eVk7rLXQ81quS8Nneuzw+zc6/7DDz8s6GZLfP7A836Mb/v17TXya7EG030bYwABBBAoAwLO46E+B9HXcg1Tk0V/X+rvVW2F+d1eFIelv+v1pu+FaSvI80vn+Y3eh9t/55jPHthKktvkSHX3KqlXJds8H/imyJ5jFYUB60CgPAjoz9Okca9I/x41pFPrJNm13fxlvPopctvQgbZCjr5/4TzvDj4e/RnV15L6IWbLZrlfkHtp5V77c7hgzmfSoZUG7WqaL9nttI9J+njgv6783huJtH7n9ULw/pTGuPrVStrve70XvA8Xa8jtvgnm8XCodQmezjgCCEQvoO/Z//nqznLOad18C9WqWVXSDy4QnabvsRTF+yy+lZfxAef5ULj3QjTgpu+F6PsVjonOr88PmyXvP/ycMUP279xi30/RQw33nEv7i+qzEuf5nf7e0OeF2iJt007kHwQQKDUB/+dgCbEZkrb8F/teamk8B3Meg/xDvAqj72Xq+5hl8b3ZUjtxbBiBCijgPAaEO7SSyIz4b1efS33/7adSM3GfdG+T6HudO3Lk3oDnXMHL6HOfhNhMadSokQmo1izQ+2P+6yqrw4HPSQM/p3nEfEb1+uPhc2D6OL5z22j73qH+3nFs9fNVd8wu87z1V/ueov97CMEGupzzHLM8Pa909tl5XlzZXscEn0fGcwXyD/JWF4k1Id6YWkc+sPbH02q5WmFVQ6haLdcJpeo8t99+u6Smpvo+MPdfrqDDd9xxhyxZskRGjx4tGsJo0aKF1KpVy4aFdV1aTVanFUd799137Wovv/xyiY/P/bA+eDsxMTFyzTXXyBNPPGH3IzjIq2HnSMvqurSa5dNPPx282nzHtRKwhmZXr15tq/Oedtpp+S4TzQwawnaqEI8YMUJeeeWVaBaz82RnZ/sqo91zzz2+IG9sbKy8/PLLovuo4eJ69erZF+czZ860QWldWMO/0VYzjqltrktzbWZVMymYffnvnmebSM4OE0pvkv+8zFF2BLZvWW2COFdE3KGLzjlWbv3HdxGnH80E/VAhv+0f262ZPPnGnKPZTJldVo//xB55B7I0TKXfhqIVTkAfW+f/PFlO7t1E6rQ0tQM3b5OffhhvvxyjX1xx3sgs3NpZCoGCCejP/N///nfp3CpOGtY4ZBeuE+8y1+SvtmqnfmGqrDX94liLwx8SrzYB3jfeny6DTmwuB/bukBZNasnc+ctkzbo90rBBXdm6/wfRL6AVpqmL/lWGkU8MlnNPbetbRcc2yTJl6u/yxoin7ZeVnJ9Znb9u1e0mdHqqLE/bJAPNl05O6NlIdu9Nl7QVaVK1apKthqpB0+mz0+Stt94SrdxU2KbPwfX8rVuzxK4iM6eK/YJbpHM2ffp0eemff4u4uX69WpuA7ISI0yNN0H3odWadSJN9/Q3r15Jp83ODPNrp7+UEs+cuWCMfTpprbU488UTZumG+DZs6IV5dTv285gOph557yz6nVP85c+ZIvGunL8Sr8zlNnzP8a8C/5LLze0jTunul6Znt7aRmqTky9qMMyTykVXhzg+Gr126Xto3ryd596bJ/f4akJFeR47qmmiCvR7KyPZKRkSEJCQlSJSFWDhxIF133oCveyDPIqz7OudIN6/nRfXauG7szRfiPbuv90SOkWf1sadcsRv5ybU8T6Kouu/ekS2KCV0yuXKbPmCm3XdNNkuIOyLo/9kmVKlVMUDlOksw1qsf09lUv2muruPaxqA537NixMuiElJDz7lwjI42D/pnQsn4cReXBehBAoPIKPPzww3LT5R3kvDOOfBlbHwv192ppPRY6zzEHDWguuzdtsAE/fX6pBQHye82jr5f0+U0L8yWgDRvWy6rff5XW7Y+xv0P1LOu69Xed/g4YbIK8/i07a599jqHPsXj895dhGIHIAvoYctVZSdKtfYrEu9PFE5slu3ZslITEWnLF+V0Cnnf7r8X5Oa9uviSnr5HaNqpqJ0+Y8K2s+m26DLuitwzo09G3iD4mvTtxsrxiqmbq40B+743ogs5r1S4tq0ij+gftun6dt6BM/ZzraxF9nzBS09cyJ/dpYgugOGG6SPOW5X4933pzWvDrTmd6cL8zP/cIHK2AvtatUWVfQIhX3w/auGm7XXX1uC3ywrP/k/adjrOPMUe7vfKwfF7vhWjYefpP42wRCX3scd4ruP6iNtKz25GAhT5n/OTLX0V/F4R7/aw/28Gfleh7cd/OWGaJdHjj5t0yb/F8+1dVIz3/0vXoY3qLpslSNW6v/LTh19zlzWec+juBhgACZUfA+XnVzwtyn4PVkQ2b18iy3StK/DmY89ivj1Xhmr6PebP5wtTKlUN5/RcOiD4EKoBA8POQ4EPSx4Hiyoz4b8t5LnVG/3pyXPf25jOX3M+U9HXuts2rwn7ep8vo5/8Na5jPK83nYyJrxB1bzbyn9U2Z/fzV/5ijHY70Oc0e89mofk7aKMVtijwesJ+PBq/zyot6298tce5DEmybmpz7HsJX5jOe4NeZ+rtK31PIOrRT4mMOmc9fq9r3HHW+4HmDt1na43pdfP/tJBnYv4N5z3S2fV68bmVj85dI+5T5fS9tu4q+/XyDvO6GLolt6BYx/0dqtWvXlsmTJ8uePXtEQ5lazbVr167StGlTefTRR0MWc/lVsQqZaDo08KlNw7FO02X0B7B58+Z2Wxo01aaBXg2G3nvvvaL7Ea75r0enO+sPN2/wtAMHDohThcqpLBtuOe3T8K4GeTWkunPnTqlTp4594A03v1aebdy4sZxwwgmiYVynwnC4efPq6927tzXQIK+GU/IKC4dbj/6ZIW3Bx92pUycbjl62bJmcffbZ4Ra1fXoc+/btC1he1zVs2DAbBL722msDltUQtoa9b7rpJvvGgX4rQ5tWbn7uuefk/PPPD5g/zxGz67GN3OKu7xXPPm+es+pE7w4z367858t3RcxQYgJff/219OsV+GFc8Mb1yZFWMy2OpgGx/LbfvEndYtu+c0z6Z8O1qYdWPNdWVKF9u7II/+jx3zfshghTj3R7sw/YP23u7NuRKQzlJaDnc96Pk8yHYZ3NE/0Wvlnn/LpaPjgcXtNvF9IQKAoB53Ekr59TfRO9ZsJmueis08wHo7kvPHXb9c01Oe37j0wRUlexP/ZEs5/+HlrJumF9k0Y07aFnJkvtah5p3qCNeHPqSdrqneYbPBnmhVu2zJm/QmKTsv0XjXpYf1bHjx9vPnBtGhDi1RXUr1fTfCDdXOYu+sm+ONefWZ1/15bF8q//XmZfwF83/C35z+19TOAzzs6/Y5cJTK5bL+3atbP7cPE5PeXMK9/IM8irLrpefUGqzfkdoPfaP8ucnzbNqknHZhl2+oZNW2xfuHOm62rbPPeDdTtzmH/0d2thHtv1fIjkH+TVTebOm/u7zd/L2Z2e3ZrbyrtPvDrd2Pwg/x5+vPmAqbmdrH/NQZt++atunWrSrGEV+wL/uuuusx4675p1uR/gTZ2x3Hw4lFsRTJfp0q6OCVi38725on16vHrNb9q0zn7RTNe7cfMeqVWjgTROrSafLd0mPbukSFysW2LcLvOz4DVVeg9KTGyMJJrKzDrcpkkTiXMfjPj7UM+Tfos4KXaX1EvMDcrreXvrrQOi++2cU90f/1bQnwn/Zd9//305vV9deeXtafYa1BCvtlo1k6R18xQZ/8V8Sa4ZI53b1DQ/KjulZu0aZqqxdcXIxvXbpFHjZnLlRcf7rm27cDH9o8ep17fe6/M6/QDQMXHuI21al9HKb+f949qws+h14wTm+b0alohOBBCoAAL6WKi/a9J3p0nbpt1l+/ZtsmXHQZn9yx++34NtmkiJPaYrqfO803mO2burKY/ftb39navPLx978Qvz+3ujfQ7kzOt/KvRL5fp66aTejc0y+6V1g1rmQ+OV5jnOSvtl9htvvNGG4WK9201wOfRL7Rpmnj5bf9e+ZavH+a+bYQQqsoA+HmjTxwT92dIglfMzltc0nT/JvUkGDThTcsyX5bzm/X13jHnzNTvDPk9u0LCJ/Xlcv359QDhClxs1apTUcKfJuQNbmOfwySb4m2M+PKshe/cfkpvObmYCd7nPfx13fX6mX8j77/Oj7Hvnwe+N6HP5bTv2+d4b0eeJ4V6rajD2mde+LjM/57qf15yb+2VB51iD74/r3lzGfF74L5kGr6+kx/Wx+Y/VS8zrz9zXlHquVuqXLNr1sLui14N+8KqvjfQLG/7Xn/9wSe8326tYAv81X9L59/Ajf9ly5JgZsnBRmi2UoEd6Rr8+8tnUheZ5xCYZYT7/0ucM5bUFP27rcYR7jaw/e/peSKR23qDu9mdSP5+bPXu2eQ9DfO+x+C+T+/wp9wvnwa+f/T8r+W7mclm9drPMmGMCK9t2yvHdUyXWmylV4w9K7arpvvdogvdVj8d5btjRvI+l4ZeNm3fZXXhv4qRyf778LRlGoCIIOD+v/p8X9OyW+/hR0s/B9LFL30eP1Jz3s4Ofq0aan34EECj7As7zIH09q8918stsOJkRXc55DVwcR+k8l/L/Er1ux/lM65b7J5rPOa737YPuu34WNKBnLfPcJ/d1k7NfOeZL6O+984r9qwm6z84x6zLOMQQ/n9JlnfmceZz1FfS+qNbjbDfS5zRzTMi5Z5cGklz7/9n7DsA6qivt89R7l6zem7sl914wxQ7gAKFDCBBCGsmfbHb/kCWFlGWTsC0hIY2WYHoNoRiwwU2We2/qvfden/7vO6N5HslPsvEC4Sfv2u/N08yde++cueWU75zrO8Y+at7HI+f4H6/6kTz637eNCVDAa6YO4XELrXiedKI+YqBtv+ROj5I46A67ezuwu2chaN7+sdi12Y4LSWw73/3FSyIkIbxdEtabfHHXx2aTv5B2u+75eChgIGYnqcs9GoDaKOfReHnbqVOn9BMcHCyrV6+W9evXjymNExnTjBkzHOeptBkYMLbNdZy0/OBWvs4SQapkGvlpbW2F0bxPYmJinGXVc2TWnKWIiIgJ61+yZMmYa0TsT9ZWa/m5ubln5SW49kKjv1nLnug3ARqnT5+e6PI5z3/jG98QfsYnRuM6dOiQPg+jjU2UmpsR4tZJeuihh+TBBx80onqNu37ppZdqnyFIuAbbKjNqMyMqn28kXmtxHlNs4jZFxF5oPev890gX8rUByDuM62cw4s4zu85+IiiQn5+vC+65GjMy1KUMy/+WWRlfD+cQRiWcLBH481HVz3qp9CbwZ/XSLGms2CW15fu1OZs3b1bA/If9zNZn5fNbwXzWa9bfyfCer6ysdDCU1muu384pwPe6873n5aYNY0G8zE1Qb2x0qBiM/u0uujonoevseVKA0fUpiHnYeoVj9Q/lPdqnOHesXbvWUQr7ZHPtUfnhz248a9yzT46MlMr9MJQ4ExgdhZzHj4mEwvNtJ6twVsb7eaelrbVFVi/IlHe2F0t1faf4+bhJUlwg2m6X0qq282id8yw0EDH9892LnGagcuDiZUnyu2dfVkAm8//wG5cpHWnU9Pe2y/zZsY57U5Mi5eipOnidJijvw3mW74fP5WxON9cBH7cWCYVBhKm6aAuAqs3CtYDnV8wNkQU5ZxwCmGfPwVLZhnmGvKL1XW/dulXm5yQzy6RpFdYd5nXWpklv/IAXrfQafytpExPpAV63SqZnXikVFeXwzBqSXsgAfj6e8vrhBjlxul6iwz3ldNEB+cPDLWLvK5Oyinh54516SUsKk9aWVgVyl432gRuuyJSQgGHwoiclIiISHwPkW4p3FR7iI5VVlZKVmSX8e2ZWBMC83uhPXZIcR5CrkdzdsSuEHWDe3j7wup5y6mSzePo0Kc/gbD005/zseLssyJ3qGGN8R95urfLkEw+PMXAzP/vDyFCHrq+sdWjEV9+j9V2ONsfpgWW42+vR/syz+iBvIJi3uq4TxrYYgHpDAVB2g1OkAYrn9ZGRYamuKpfL106T7/x0E858tI4lP/jBD2Tt0gRpBO9hB1/3yov5alxkW9iH2Q8n6ovsp0mxE8srLOO6K+fL13/4Hn+6kosCLgq4KPCpo4DJKzz93N/k37+zVPL2nJT2bpHmtn4J8LWJn/eAlFW1y9CwTZ5/4ynlV6xzKtcc80PimNd4dHbe2VrEfOb6NZ7vtPKY5I0ee2anOtxEhvlKfdUe4RrA6Pss16ybZe3Z+YrcDHnJyuPMR/u4fm589RVdOwnS/eE3nPNofJZvfeliWX/rIy4gL4nhSp8KCnCsmePE2QNRriLI0qpDKi+Kd8iBE11jQAby5ctnxUhndx/4bYCxfD1kcGAQfKHobg4Eqc7ImqIyCIFgTByrvM97pFq+/8NLJCzUB/r6Aenr75a3NheJDyL6XrIyA/x4KeSfHpV/KLvRaYt8fUlpmWx+4zFZuQA7qDS1Yn6o0fPVAHXFQS/S1tYD+e4pSU/0cyqrUl7gOP+k6E+488lDP/gnZ6/GcY4BAbZvf9Xx9/9PP9i/ODevWhAnC2bDaISUGDUk1bUFkGnyZUqEL5xr+2VwcFje2XJc6hta5ZZrl0pnfag0tAxIOZxZ34Wxif3NlVwUuFAKcB70xfa6ZlAEzikHjxSAZ8hGv4xzFNvbC2OQV6y8/M4rKlNa+x3LYJpsPnUU9Hf4YfJVrPrU8b3YIQjbNVcXwi4A9C0SdUHkm0yejHOxlSaaadwX555fPExQye1SdPqgfO+r5KoQCw682Xs7z9gX6Qh91boczKtPncU/qa0A4AjS/LlX88XDDVHbW9rkC1dPlRnZ4dCpcFvpTtm8q0L6h8/WdbA+yu9W3pDnTPsD1xuTxzOfjdddyUUBFwX+PhTg3DJ+vJot+XvwYGzPHx641GyC0yP12ZwjTV7VaSbXSRcFXBT4RFPA5INM24hp16yvr5d48CHnSsRs0EbDxHnDTOT7zI957kKObJ+VlxpfBufHlQvj1Nn0xz/+sV42bGALHPyr9Z7PXpYjJeWGcyp1Y8SE8Jkbq8j7jcWEsG5+TNqwnA9qN+I9pMuHUQ7LsiaWa7XTWPnM98FvXrsuBfYqPymuMJy4rPfyd2FJPXQOYXLJiqzxl/Rv8v/bdxc5aMv6SNtLF4zIqmvmImBPgOZr6+iTRTkxUlQ5eJbtzWnBf6eTbPsXr80Q9gEzneGLS+WJcXZDM4/r+I9BAY9JHxNO924RMFSHTAzkZTRWM1Ltr3/9a7n22mslJCREQaAvvPCCvP7661rFqlWrJq3qg16cKPruBy3HlX9iCtBoPhmId+I7jSu6Ne8EmVjunDlz9DNBlvM67R4KIG84+qcbpHz7OW5BID57Jz59I+LmP3GfPkcprssfIwUYaXrpTANgM1m1SQnhGonnQpVvrIeJTIuZWBbPX3vn5EBe5mf9zoA7ZlkXeqTAuWPLc4g8NCxxoa2IkpktVbUGc/PsK7vkRz+qkfvvv1+jcl9oHR/GffRuciXnFGAfGt+vGEl+165diH5YC6P0HKc3klFbsSAWTNoT+o6dZnKddFHgHBR45JFHZPf2lyU13hdOEaESH+kp9RUl4jPUC+FlkxoyLrroIi2FAsN9X7/UoTwfXzQBFF62N1URxvnRWb8ef4/5N8fBli1b9B63kR4VQh+p7FWhOTk5WcrKys7ZTtbprIza2lrJSfeTX/zmLVkxL0by9lciAku8ZKUEA6A4aliMDZC0xCB5a2ertt98ZrN9kx3Zdo7XlQsTxhiErPf4ItLurKkxMj2tAfPyj0CnZgfgZOfeItw31umM+X293TSKq+nEdPM1C52uY9Z1YNHcbCgqQrVqrgXxkYOy/qb/lD//6iZHfdZ28Z3ZR0pUkLUaQGh4SY4/99q6MDdFnt20XcE+1nLP9TspPnxMlvIqw+mLQruZzLWMz2ell3l9/DE9KVgKCk4DTIAovKBdADCbuw9WAhBQKTMyw2HU8pMZ6Wny7OulAP4GyN79J2VaGvp8FHAAdm95fxeiEtZ3SCKA3ewfvj7uABd0SEvToDQ1N+kuItW1bRD0g+UogMFvbu6FMbpNQgHiZSqv7pAluVOkp28I5Y3oce+RBqms7RJwlQBHdcse/F1U2iAcd9yVhHO9mYzxNU8W5aaap/TId8TPf/zubcd8T5oQ2Jua4CuJ0d7gAYxbqhEteMeWFikvL5c1a9aMKX9MoaN/sN/GAgS9+2CJXPuZqWdl2bq7XHYfqpGbrsyQsGAfae/sl+HhIeyIYoiHMVHB0tPbCKUQnhEfjgXrM51VoJMTvIdp/Hwx/m+O7e7mgxLsEyBvnyyUFQsT0a5paItdygE8e/u1P4ndLVjWXX6dOBu/BEx89rKZ+i5ZH8eVn68ffzoS11WN9HsBz+EoxPXDRYELpMD4scA17YOOpwus2nXbPwAFTF6huuykpMJviDsA7Dtar+tdfJQnFODhOrcnxfhAluzUPFYZg+tWWfExrDs+UgdDRzLW8R1b9gGgUSDzcrLgSBM25jxJyrXozjvvdFCXfZw8UDocVprhEBMfGyrlRSWyf3+pPP98r3z79qkSGuyFOb1Z/u1/3pBMRHEM8bfLjDREvo/JlBdePybvbcI6t2OHQ741106uk+OTweOM6Hp5Lj6C8787os1fyDo2vl7X3y4K/L0owHFOmYm8TEVFJXjNBHXqI09o5Y1M+W/5/NhxOqQO+cWDG2VqZjyi7abjWpRFv9Qhu3fuxRiuUbnntssvlrb2LkTJ8YGBzQuP7AW+mTubeItNuqSirlneeWuH0CBpzj86DgEAjosOVBJR3mF65JnX5PtfXyBuNrvKo1WYH2ohGuTvOyFpCcg7MgyAbqBEBvXJ0GCf5O85JtlpEdhtzl2yksD4S59Mh6x34EiHrFk6bUJZleM8McZb+WkaPs30ca+3nGc435wrmfOSNd94XoHXPu72W9vj7DffN/ULN26YPkau4fNsBXjbNnBIkiOxtezcOYiS/J5kJQfIHZ+bKgthQG0FIHvXwTqJ8g+WV9/ZpbswWtcRZ/W5zrkoMBEFGBV2QW6y4zL1Qd//+vyzdDbUg/kGBMmNV06XBx76kzoAWedSAiSsuinrfOoo/AP++DDGssmb5eXtBBDCX6anYicgON5OWxAqPYMD6oy8ez/B84UOvR7lfytNnDXbOle6DWMHHozdJ57Lk6qaRvHGTlZmqm9oUN0TbR3j+Sf+TVsNaX77Ndny6HOHoEtcIItG9W8sw8fbXRZ0o51R8fLalnKHroPXOI+UF+6Sf/6ac/2jyeORD7TqsXivK7ko4KLAGQp8GHPNmdIm/nUuewHnkY/LhsVnrq0qwNx1/cQNxpXrrpwn9/zo/UnzuC66KOCiwCeXAuQV3t/8N/GURodtxLRr7i2tksTQQNgs4CA6TvdvfSJiNshPMXEn+eR4I3hJAnZUpI2BQP/zsa9Yy7T+Ji9q8lLW89bfnIu+9q+vgpe6XW0j59JdmfndhuoUE8JnXoYdrUw7mokJcRvpntRuNJmMRdqSF6Ztprr8mAT7go5ePRIeHiH+sKe0tPc77E+TlWN9zvG/uUPkTVcvVP3fE8/mSSrk/ZdeP6TZdh8ok+/cMR0OvO1w8u1VW04E6rYm2rIyk0PG2E6t1/nbpBVpy3XKc7hCvnbr5WOy0a7XCjBveoKXBHk1jOFHx2T8O/7B98F+cdV65+sa+WLuMmnV4f4dm+uq+u9AAcNSO1HF0Jm5AZ9lo95ugjR//ny59dZb5S9/+Yvcc889+hmf9be//e2kkXPH53f97aLA+VLABnwF+6j44HNuXamMdI+IHfncJt9R+nyrd+X7iClAhdHSO1edsxZGzTW9q86Z2ZKBwt97772nhstkMHY2MEDliHDItHWLv4KqfnXfPMsdzn/Gx4aoYuvD9PIkqGX75udkaU6gLJ6b5qjYBHHx+MvfbtIFnEbTjyIlxZ/f9uism7T8MJ9//POwfH6YyGgS/GcmMtyftMT3x75ls3fDz6Bbwd7sW+WFifJodZ8aqb/31dxJm339hvnK6IvcP2k+10UXBZxR4NFHH5WqovfkBoDhrHOICSTkdi0EC9Jph2OqvfGkxEUulmaAGpl8xwHhCLwgsO8PD/+HZGVlS0q8j2O+NPs1d2YYPx45Fih4u9sbxAfjgcCO+HA3qSlFlOC+LghaT8rMDJ9ztjMhIVGqKk7CcF0h9mE47yxMk9374Hlq8xevQXdxt/XLtj2VctvV2XLNZeljSBIfbXhh2u2ntP3mM5/PPMJIIUwL55yJqDum8NE/GN00MyVE7nvwGfm/91zqyGIK2o4Toz/CQvyw5XWzhIUZoNdFc1MBmt0mX/jCFxxZOefxHd10RdKYd8gMXANKyhuhLE2QhCkwFztRXpjvrLrilO5mwffDxHfy3S+f8fDUkxN8mYYbXmZ7zmf+Ndcp1r9tV4FUwiiUFBcMA/6wVFS3a00ExooEycaNG4Vz3blSeLC7bs0aGxUJEC6AQCjndGmzbFibJnNnRAFcMIioy4w0aAf41kvPz5kWiai6HfLs307LLRuyZNveasmZFoFIvogsNmRXUJPd3odoMfW6ywfbwLIJsn757eNjmlRd14386LeIzOvr7SEb/3paCkrbZBU8q+32EdTpge2G6wFA6JHNb7+q4+q2225zlOEx0jjG2O24MPrDnO8ffTRJtr//BrZYCpbF89IcwG0z/679xfL0X19Q/oTlT/Y++L4+uzJB/vz8Lrn6olzp7e01tkYeLWz3wWoAeWvlVz9YhihrI4jIi00rQD93d7M2cQCbIxH9h2PvfIGHrNvKX/HeregLSVCaTctO0bXxRGGLAlAIeu5pO63A6615x8VDOiQquF8WzkxGROUIKKs6pLCsWbYAYLJ9M+RSzFnmPMN6ONdRefbPn79C+rqaALIekF5fXzlQ3S12mwHm5fpLBV5pWblG/znf5zhDCdcvFwUujAJWfpCyBscCE+WMEQikztbNC6vJddc/KgU4D5JXWD7HTTpbvSU6LFp++fv8MfwQoyJ29w5CeR4BfiZOAbU//+NLynNwrt75/guyHM5Qi2dF4DNV156vfnejeMB4EIS1O8w7RWavToKTt48M9JdAGd8kDzzwgK5BJm9BpXINooTEh6UI14zoCG9d98sj/aWnsw0AOw845BTIw08eFR/PfrnuMzmoJ0jXc767aRkR8vaOKik4eBpgQpvKlc7WTvIWTDxybq8oPSk5M2OVf6XhYaJ009ULXPP/RMRxnf9EU8DkqSqKdktKnA92LQAYH7uSSX87nDNbwRs1yfvvv6/rCR+E4/nGcfIfefNt+QWyZG4cot5GyewZUxw8psm38zhrtaF3yEoJAkAiAPwtFa1GIv/L5IPjwAD4rc5GlQ3y8vLUuXBgYEgdsYzcZ74Pn2yEM1yM7qZBh7lnXjshTW12OGBGITpOvGZ87PnD4ME9pKG5F7ucxMmcqVHgR+H4CH7OTI89f0QyE71U70fj6/jE56NsdKr4JbEN1p2lf/m41luu8yZNx7dx/N/Mx/dLvtSUmZnHmf7o42r/+DaO/5tGUuqxTJ2CzsWj8/Ezr+6VL9+QjTXASx7Z+L7O9d/+4iKd61lOfHQQ+Phh8fHzUtmfMg2f3eTrx9fl+ttFgckoYLUBcPx7AYRKHmd8op6mpqEFfXY2eJF85ZmSMZcmRnuJ+2CzjPS2ye4deyR/pz9kR3+VNVnGhfRLc76mc5QzG8Oqiy7XPn8uWZTyLedytjEhyi43rI+V2ZgX+/oG9fGaO4agr/OUzyJi7oMPb1LwAh2sOI9cvTbqnDwRbSj//puN8t2vLZef/tffxNujXzIS/DEnn3E6rqqjvgbbF8+acpbdgbQfnharNI+EQ7WXp80B4qWep7waUXSQDhyvB+/YCj1igvzidxuV7+Szc91gYItFuc4DW/BezjHVFU865kiec5ZIc36YJtONOLvXdc5Fgf+fKfBx8g3UKS/KvW5SclGnefltj33kwWjIZy1dcMZOOlGjTB5rouuu8y4KfBIoYK5fPH4Ua9hHXf5HRUO2mzquFXODYBsx9FNmXeQPNm9/SOZOT1T90pzZE/MSlA137dsNm1SQfP6qGZIA/ZORRhCYpUIKDr2oOx4waIiV72P9Ju0mey+0RZxrN2fORYkxXqoLPh8bGNvs59kpuVkesmb5mWcz5cuSskb55W9el2vWZUGntv4sudO0G9F24mynePKY1CtUVFbI9h175d6vLpEsRAPw83WHjdULNhW7JMRPlYKydrU/TVSO+T4mOpI2n1t7uWx8cSfsn/VSW1cjDCywHDu67NxbJpmpQWpPGwn1kPqaMmmGjTQiArs6jOr0tu0qlOvWnS3zW+sjTRh4hrpI8pav/fFK62XHb0On0SfL5sXKH557E+/2C3rtfN6xo5Bz/DjfPuOsGJWv4dw2WTLthi6cyGRU+vRemxTIawPuwXYekUvp1bB+/Xohyv7AgQNSXQ1DeU6OEOR78803y+LFiz+9FHQ92d+dAm4BNmFfRZC/cybmGekFAEhs58zryvD3oQCZIyZz8RsZngcl1Jlwy9jhz5HKq1r0d2l5k9R1uilohCeoGEpOTtZr/LKWaf375LE90ttRCgXzsHT5hemW2sP9RpncLpvC4c78Q0JDgVmXaTw0Iw4aRsQWqWnbLklJSWfV7WjEBO2wttPabnqJhfm3wfMoHs8PQ2V1s3qYNbYY26qzXkZL/MXDT6qh03qvtU7rb2d0mKh+3pcQawB5K1C3mUw6mH/zWF555vmt58/3t7Xt49vIMniOzB8Vk6Q73wuBP+a7INBufNR3a5nj2+GsDmse3msyctbz439PVAcN4tvefRbG73rQEKBF0DEhzl/iwvtRRItUlhRLwUkYuqcs0iJN+jqjbRlARyzPNJKPb4PrbxcFJqLAxj//Xh762ZUQUo0IruPzRQOUu23b6wCAwvOxsQlA0Xjp7W7Cx0Dx+fr5Sq9/GCJb+sKI6if//us3YTz2leq6eqko7gBQIw3K99E5uLBG8vYWq3crowZZ55W/PA5wSW4AIjBFqYDGdgwBRDlvTrKO4f6OIsnJnK1elpzrrCk8PFyuvWIejAv3qzE5GQCU6xFZtLKmFeBVbxnJiYXwVw6hvF2CAr0ViHjl2lQZAGDFTNV1XVIF8GVFTSdAmJ0Q0Etl/85ndB5prk6UCqwjrKes+KikpM/SOdw6/hnpk04NNGYPDAwgOpQBIjXLr6gxgKktbd0AqRr0MNcHM08iQKxmIgCVqaWtVw6fqpH6VoMfqazB3FBZo9c4R7ENnPeaao+DNrN1HeD8b10DSPMrAGTt7emUvPzD4u1nAFjMubGgqFrBNNmITPvMxj9KVfkppTnXl8rPREhzKqK5AADc3WsbU67Z/h3YoobtePihX2i7GtFPOP8SfGYm6/xrtpvvcd+RKtm5p0gjuzCCTEFhm2SkhGO9aJDE2CDpwxaXpQDisvwrlq/V52OZzta67fmF8pUb0nSbVoJN+R627ylXUHD0+nTJP1wHAOqIHDlZLweP1cjnr5kquQD32u122XmgSiOAXX1pmvz5pRNy2YoEeBb3oQy7DAK06uaG/g4Q6+GjRfpIza1d+rdJQwKDd+yrQf/pkMgwH4AMPGU/ohwePd0sFy9NkCsuSpEX3yySfmw5HB3BqGXREhvlL3kYW1bj4l03kJcx+rfJx5hzPusizal8ePrpp2W4t1oW3nWjbjfMLYfN60of5O1sq8N42ylTwuyy/2DBhOsh+89XrrlYx+bgwHQpLu+BEbNHgfBVGBfb91bqM0dH+ikQmudEeqW5wxg/FQq2FmyL24/IziMKEiFNzWRdK/nuzXHP3+Sv/KF4sgFsUlpYKKcKqqS/o0ki/eKl7HQl+p0dQItWCURXenfTfvnxtxZqhK4gfy+56/oZEgwwtpvbsDQ2dUhXTz+MfwESEuyNOadGDZUmGJ/12PqLtV+6w2kmwN9HGhq75c0tp+TwyToogcIUnN3c3CW79rujP7bKn//8Z+134/kG63OZz2Kecx1dFLgQCpzFD4bZsHZCaEWq4pxfUwJ+sUEBAy4+70Io/I99z2OPPYZ1o0O25x2S7tYCRK7Mke35zQDL9YMfsstnL0nVddAN0ds8PeEMA96oqLRRGloHpLO7HyC8Bo2m2dtRAueXZMlIjdb8pOqTL+Zjne6UO66bIdngFarr29UZo76xHUAsfxke6BHbcJs8+sf/Ud6P97TUH5fp2YhsMtAOQIcb1kA4b8FQUlndKGuXJWrk97e3HoXBoEp+9cNL9NrGV45hHLRDXgqUYawvvt4iS8GP7sQaSl7l5iuTdO0kL8r04htHhLwN+ar+vl6U3YolHGAWAIMb66s0L0E4Zn7rOjs4aMc29oa8roWNfnHNYuK8b13LeG783zznGqukgit9lBRgv2My5RHycyePbBkdp+Ho3xHgDQ2Zg/Jc3r4i8HrbHWPxrmsTxshVHA+UH555Za9cRpDstCngCatU/tGK8MU8NITRyNnTO6COcZ1dg3KsYKxsZuZvbu3RMtk2rnU//uZsqaltwg4lUepQZTruMX8SxndxZbt0dg1I/5CHPIVx/8075kkGIuycKm7UIrkFe/6hYfmXL82V+TOngPeE80E3negMuZQ8qjtEpqgwDykqKkR7x+66cKKoRfL2HIeD3RTMDf2Sk+Ummelj9S9cb6lPuv32283H+MiOiefhEG/qgEhDArH5jiMCDDmROqSsdBv0R+QZDP3Rudpv9hs+lNl3yKszWflaM5+ZRzOM+zLv42lrPt5bVX4S/WuNbHrvsMp75K2jANw9cLRGamqaIeflQs7tkf1HyuWh+y/CtTNgcJaXlhQpR9GvFi9cpDIODdpWwznzuJKLAueiAPsiP7NT/aSyqhKAjmMyf3a06gl4b21jL+R3YzydLm4GH9MpR4t6wWfYZUp4m1y0aKbOb33gJfp62uSqSxAcBLqc+qY2eevVP4q4eajzD+XF81n32RaOlTf/9pzaGBIAwA337VWdepifm+rTyPtTT7zVPUBuv/OeMePS+rycU3dseV7B7tzRaKgPIORRpwc6HTOVV9fIxpcPA3Dhp8/U2nBC3n79CawDu+Tuz22QQsjf1D2QJ2Ky6pCod6ANhXqdrq5ujY7+X/ddhLYGQacyrLTjPdzxqBp6NDpWPPnkk2rvMHklPuvp4hHVRT396lH53Lp0OFC3S97BWmyF3Cp9cOyIDPOV5tY+8fHpRxT3QnXUZRT3z3/+8/ruFs8Il1OFVdq2nh5jTWHbTN0Hj7RJmPewTWYivc22UB8g9i7JzkiQSjxTRZG/rpG8n7oq5uPHTBPp8c3rrqOLAudLAfZDJus6qSf+l1+T9VGzTs4TVr7Bx8dXQnxsUgJ9WalFP0++h/1/onX9XE3lfXy+XHWaPJsnNHlMlkPelPMK2/ZRJJMupEFYiA8CFfRoJEfWZcp+tF2Y/BXPn6s9ZpnM60ouCnwQCrAfmmOfvznOrIm8w7ny8DrlAE3D0NHnHZTlS3J0HeS58faW8XU4q5f3med55BpJJ2s/8D8cD72tidIIx0kms/xz8Tksh+l8nneyfGa7tLDRL2vd1npIF9rDFuV8Vny9YD8Av8Bk5WfSk8Lk2KlqOAiesYVRRrTyEbsQAGgeZMtr1mXI1ZdN1TJ64RRF2w7LKoRd6rHn35L9hwpUTiSN2Q7SrberUXmZxqZGMe2HtJVa6Ua7z0RB6My5iHPj8PCIPP7446qPumPDFQ4d15nnMWR7tp22vqlpQdC7eek8Z8r9Zt4dsLXlTJ8iudNCsLFNF8o6Y6fhXMhgTjDhyM9/+3uVsaz9xspjDvd76G4V82cbgYvIN7e0NcnhE3WSGF8tGRmZEhflIf/2b/+ma4j5/syjEhNf5jrBv81rPLK/kT9vqG+Qxblx8n5+uSzOmYKdeIIgLwaIt5c7dJdDEhzoJU0tXdAVdElrK220xvvku/vel2fLSdiT7DaDPmad44/kU5kWzJ6iOs0K7J7JVIndyKyprLINbSxXu5AdulQb6JcI3pP8o/TRRmysc+Y7tt5r/c1nZrKOCbPPUA+w/9BptdXtO1yt+SYqzyyH8vXiuddqXn5Z+47jJH6w7c7WWNdaZqXSp/P35EBe6MZsZxzgJ6XANddcI/y4kosCHzcFtI+O1Q1O2IQROC/z40qfTApwUXsDii8/KKfsg4ZbJDitAABAAElEQVQA2NVWC+CGLxT7tXLgWIN099kATAtQo/eIfVAZqr6eFgl075U3oXAjMzY1O1uaOjxVQUShldEgmUaGO2H4C1PGjAAlG4CWmamR2ErBFwbJLimv4BbSNs0bN8WY/H7xm02yeH62Asd4gaAvpqXzE7VuAre4LWhZzVF586+PydSpAJnVDWrdVkaJz2a2IyHa2GaQbRvpTXKAv8oABOa9vI/577kJ23iDady5rwqK8SqNSJIOgwcT2xGDiCZxEYOT1quZ8WXWT2ZiBMAaponqp2KNiUzDUy8B8AUjqZHA9BOoBmYwAQxXZY3BFI0MD0BRcEB+9rNyfTdkxswImHkH6vRWvjMKDtySvK1zQKNQNrUaggOf290nThWDpJG1jU+9tEfbybYyjcxL1GNZERirkQGtr/jw8xLhW6MRBeuaemCcHpTc3Fwt03wWvQlfCuApOjqmDvMa60qEoWnZoul47nz9zXbzHLdTN1NBaasB/Btt9/g6fvazn8k/3zULfeQS8xY9moBKRiQ9fqJAqqvKAUarUQM3DdjcVtKayEBHhnkKgZAUDMbXY83r+u2igJUCHO8JUzwnBPHu2FMoO3cfw9b1Wdg2tUZ8p/gDYOElcVMCdA41yhrU+aelxU3Bprv2AjAYPVU8PGwSE4H5cbhbwbRmvRTKdu4plod/80tZD09WRuhmO8pLjiO6W47syD+FMWoswJzTEmMCMbeVyyXLYiHE+UlXe7XY8A9ThAJxh/Gjq6sNHqDdyOsjV65NFH//AAh9kfphvRRqWSeFWc4nNyPqKo0PTBTWnnu9EAZgm+QfrIchwheCboTccHmGzExqlxmJAIEMtADYAicJ/0E5caBEdmzfKpFTYqAkGNa1guUwmgqjlU6BEbIYXq9/xbaA/JtAQs4PlYgWysToKP265Sx45+EeaW5plnBE2+VcvXgW5nmM56f/eibKa2Sot5RUdkpDCwH+RqKg+/BDv5Sy8jJtw/adB2XZ7HB55/2DEGoN4wafk6BkLJL6jP7ecPaAwLtzfzWcBhiei3N3i87RLa2dALwYZS/KiZbSooNqoOIZf69ueee9/ZqXwFLSkPTXe+NC9TffTwXm/yef3KiFUCGQgPdWUV2of1dCMC4vPiQVJYdVCB/sMwxCb7+3Tx559rA++1J4u5ZVDWG96EAd3Th2om3+KMcPgNhaPEMX6NUu9XVDcvB4oxw6XqPGeV0f0BfYnrx9FfKrf50HAOoQIgGinQDz7sS5fBiKngWgqFIBqFQcd6Af9MkCRI0ZGhqC8D4iew/Xo19ky/Z91QoU/ae7ctDHh2HwcldlQW//MHiLZjlZZKxz7+4AIB20pDGaaQAAXfZXtjMGAF228ZHnTiDqc5qsWZKgUX73H29AndFSVdcJhViPKiMI/Ob24EYf6ZIHv/MFAOYrcX+DlFXjGdB/hocGhCDa2oZORN7qQV5fyTtUpsCsp17coXwH6c1nTcS6UYE+TUVNb0+Hlrtt23Y8h4eY62EF1mTzfbDtVJrIUJvS5MW3ChSMTEBXGejk7oZxcaie2TQ6cT62uX1pUwnmALyX4y36PvmumCIAYG5qHZJtm19BXehDoAWfi85L4QEABuM9UXnRUYeoOTD2vfz6Xrn+sgjx9omQbtB3x95SCfAeBBgegAqU/8o7dVJQ0ixfvH669GLMHC9oUeD17zYegyf4PIDyvTA27bL3SAXAuC3Y1slL12HyD+Ghdn3Gvzz2K9m+65jcsC5cbkSUxecQAezoqXoYX/tk1yFs2RvmBfBZCNqKftc4hGjZYarMicNcRxrxM9JbjKdDrwfbNzg0DJq4a8TibZ5hkpKR41pz9e27vi6UAlz/tsJYv3i2/1n8oFFmmh527i1SPs+qwL7QOl33/eNQgP3rySd+BxmpTNfpe78yX3y8RrAGdYKv64NCPhNz3jBENvJVI1gv6zD3t+PTKV7Y7j4q1EeV3G+8+SL6ZzIAwIOyD+sP13kaGZ577ZDyZ1mpQQDlCkB/7VgrWwCu64PyWBRctzg3WiJCvKWxtV52Qd5LigsAkK4Y0fBiANQKw/zbjvrBk43YEQU0BlGAvdHWToBlUsGTech7ecW4r0KWzY2V8po2BYBQmW+3D0DRHwsZqVKyk7OkGWvntsIOOXQSPEZlnTCKXgCeITnaV7KSY+R4YT0cxiLk8PFyeXt7OeR6P0QUiTI6A2RFrsfkxZiKCyod8qq5llVAxqQcxrmfvxOxtsVjjeMWfBUV5VJZGKs8Ep2+mAgGJo/7Ue5EoxW5vv4hKcCxPV4f8uSTz8uPvjFLurs65efYxpz9ewTjhKDbnfvBr4IPWww+/zQMnPuONsqMtAxpb60BGBcXkHYUd4LXapKC4mr57l3ZqnMI8LNJZ3udw/mxl8CHWuxkgFto+Ht7G2QA8HsG327oQ3buq1X5grqRaMiCSzGui4+/Az3QQWlrjQaP5iuvvXtaurCVOvl+c4xxDvrlH/ZJDHjeowVtyi8z4u9j2Iq9q2dQebxwzElgUWFojVJZzmYbEQ9geAcHe7GzRqHUNfZAjosUf18PdUjr7qhVXpq6P6ZteYWyYEaoXLQsQ/YcKpXMrFjom0LBr4bq9SXY5YLr7S8e/p2C8qhv+6gS9VYJkKUmS0+9tFt1QBGIQHT80GZprKuUtUvCwA8nQ04Z0FspHyVGB0p8fIJY2z8eiEz9lh0yrdYLIB4T1wam0qRkPVY1uuucxTzsY3SqpL41MfaMsynrpTxImjZ3+hr8f0uflst3zsT7+a5+/tCbkCta5e2txSoTbLgYPA3n7rnRkINETkBXl54UDPnZE3JLt95LZ1gmBSLCAYNp6fx0efrV1/S368tFgfOhAPtvKfS57IvU06yZgzGDHVkqqxo0yve23aWQ+WvBu3gqH8L13YZJcgecgF99pwS7D0TKRZenysnTJdCHlcNxIExiw4chowbKvGkB4G88APBtlK4+Nzg+HQQvX4+5yW3CNZ/t4Yc6dgJwfKVcvnhDDuYAOMRrRPFeScTuSVB4YO5OVUdW6uK4q+n3v/99p49MHcL1V0zVcb8RjlU3fCZpTL4d+ypVr9Ta1oXdhiKlFbog6t+H+6EjR4qPtMnOA2Xg2/ZKfJzBDzHieTiAbwQr9/dEgF4GsODdbUfl67fMVCcJ0m4ndCaenmdMxfmQq6nnGsGuQ09C/l62eLrON9Qz7NwzJMvvzpH/fqQa0Xij5BeY5+mwTyfy6dBdcE2gzoU7QlRhd6PcqdPlXQCNf/9wI5yRT0tsUBocAo4AXOQhp0saVK8hbpgzEGhA1znoDnOmBssr2O1IEH1enw38WQTKPXKsQDYNYl4abJMsmAhI73CAGDsDBuTAkSLVIeGlSBn0Gj1NsdLdnKX6QpZh2l2oX/8o1wJtsOvrU0sBq21p43ObdV3lfMN11VzHX3m7CHOLP3Rk0GmTd4r0lT2HGdggUNdOXqM+krti4b/q6yhvbHMPRJCJmWfpo6x1vvzyy3LJ4lDME0nQrxVLfUMbdmzogo2QstQIwPUZuhPDGy//QVLAFzbDRkq9XnZGvMMmaNjAglQOIvBeeSob5gq0gXpY2k2XL56J+bIQc4yf2gfMF2o+41Pbq6W7ZwC2K4BIMGYZ6OBI/tPy2uYSx3P6+rhj7MMGMMqjMEgCaRCL56eMyt/UcVPHSBksgfMZnoEALy8IoszPtvUMBsm8nGx58ZVNkhnXCRmxRgNTsE3kY19+uxDO/9DRo+3USzKxzPfefFTtkfybjmJM7V1D6nTkFxjlsF/oBdeXiwLnoICVD7HiDGjfZ+LYoe6hvPiwjh3TvsR5IikxTvNwrqCMVV6GKLzgZzgGFuUmyqKZXhLlXyPvF54AP+ImG2Fr6W0rkMiIIHlr86Ex93PMnjpdJJve9FEchRbM+jFehvqbxMM7QiICe7CbCXZTGfSR1PhYSYZda8gO7ENvu9rlTxWfH5/z/ruvaPGm7EAezN5p2LnMeqkj6e6s1yBkpIvSoKxY7QZ8Xra3vLwCupUIp7oVlsM5jvMEy+fnxnWJ0ttZB36tFTYbQ5/DnWGmRMCJC3JIS1unnChukd1HdxhyK2hP/oG2rKWYG3nkHEDd2HzYiVpaO3RnGc5fO/fCDoR7Ka8S2NzVc0ieeLRF6RYOumUljOBeH8ybvjIzFU5RI83iPdwKntATwV72qtNWSkoKdGNlyHe23GfYXU8reWgLjQy1wQ6Sr3YaPy8EUGmqdsjoOl+N2ktpg6Mc/ZNvzYfjfZO8vaUe/JzBs5l2uzw813fvnq106GyrAf/np/MwHWADAmDX7bdDbob8OHeK0tHK65iYBcqWD/zqDfCYadgtx7BVJsYYzl8+0LW9vfU0bHaGw+0IZMYtbz6CCbRF7B3J6HfFsv096A5G5+2o6Djl60jrHfnHFVfBexgMhwF+0rDjA3fkmZEJuxaerQ92IPKtnOP58QGv6A5bc6iftwJ6CwsLgLMxIvlt2lYqEXBsjQgzZFwS1NR/EJvCNlB/SB6Y9TP4TN6BWugZqbeADGCDwYfKEk1wdoEjG/tOR12eBPgOw7F0Fuy/frDbQkeCFBeOXZTBpz/91IvS214I/MgUh6MI10TylnyG5Ytn6Jo+2NcKPrVIspPs4ufRKRlow8GjJWjPgAx29ktscIfapJ+EDaqs6JD2bzdGKEKi4yvxK0w506OkCo6JlPtNPQHb//SrR/Q6beh83iW54VJ06Fl9LgYeqkWwHqaCuHjxDZl6Ft+gF11fnwoKnJHOnD0OlPbg31zJRYFPNAVs7Kf4mFPypI2FvnAcVm7S7K6LHy8F6G311t9ekKy0cIAuDGNZkD8X3D7Ze7BUHnvhpDZoCQyH9BYnoxsOI1tIQLB0YnFsbIX3dXWTKvTI4NHAxjK3bnldlekEiMbBqzwufIoQIMWSN40qnz3dolVBZyzwADXBWMC0fW8tlFEjWNSDlAlgFCIunCMAscWAcQzxD1bFlId7G6IhFctWCKtc8Fm3lVGytiM2JENBYmwHn224D9F/AZrduvmYce+ay7Xd93/5Whhp+qCIKgfDajAkafGeKuxOCQ1VAfTyNalgbox6n3p5z1n16kPgy6x/KbajT4wLn7B+swzeR+bxFw9tgmIgHkCqKmWICI4jDeIBdqMHGJkkAsTy9heB+T0OhiJaYoJiZKjbAPPSsMMUgyiFQ15+YH48IDD0SBiMR94AEpnPXd3iKytWrNB3ZW0jo2SyHWai0co0Ci3FFrCsn9EPe/uqIcAPSTMUqI3Iv7W1VljmePArFaaMdmitwyybdQ13+0pUQA3odRDGqdjRZ4GCAQYLMpdkNkd6G/Wd8X2Nr8NQKB+FUeJqs9izjlQq6PbtXjaNjMN3vBTbXCZA4cN+baaRYW/JhYfdqeJj8hcwmeOfxcznOrooMJ4C7IdLF6aPP+34m0ILOrH885eXyFvvHZOjpW4SHzFi9MvRKB/M3Iwosy3t/RBy+rVvPgvBKxdg2Egoz9k/rf21orJPBRLO4QEY75wD2Q4aMs15hIIH5xCCbyswdjmW42MyFNzh5dYHQcRNFXY9iADah/HW2Ngo727FdqwYixvWpiK6ZoTjGfjDUATmK1CRAiKVfuQG3DC3UFn6P48fHp23uuTrn58FMHAqgC5UbMLWCKahvatfwoIiIbAPQGgMlQd+vQWKzUjJmZWuY5yOHzTKGHPQMNrbju2qd6uxnMZzCnBmouBpt4MZQaqqrpKW5lgF8hqOEFQgVOm9nFc4b8lIIICDMD7jPTCRLqTXT3/6E2wRHadt4N93XLVQlQ9vby/TbWkpkJrCMumXt0/UCG7Mi52gVTTa2yJLcsLE3ydQlR2kS/wULymrxHscpXtmSqj84emjMJq0Kd0IwuE15uX74W9z7iU4VhOO8YiEzDry9p9x0hjqLpDBLhi/YHynMnr/YRiOAISNwLxJYKvp0OHj7YY+w2cfhpHXEFxZbmjAEBRNnbL3UAm8odsVmMDn1LUG7WDygfHJExZ9Rt5zRz+pBmhWn1+Fc4CH0B6lK/IuggcuwQBuENhp+E+AMuLBPxlrEYGvVCTzGAL+IRR5CGwiuJUpb3+VPPVqgf7mF5XgrIeJ91BhwOe5+6YZ2kcJLpiRGa5RaP7r0YNoF/s0+jYEeyYqJ3g/lergVlWJUVrZAToxSjWUEWhDYkykRnrOmRYOIf2o3vf0y3vRbhjvo9xVET0y3K/1Xrl6CQDu/gBJDOLvGl1zSdOEmHC0laAG6Fa6CsCv1Om7iAafwrQbRji2m2v03iMNeuT7IWiKAO49ADy/tKlYz+v7GiGfZdCVSgrStgz9kR8+D8sZ7CyQABgPaaSbloyuPFQqviO92o/XLsmR3z11BBGAexVwffOGTIC0COZGnwVQmmnD2hR56C+GUsIOsAnHbCAi8tIAiCEMsEcL+L4TWpcvDHNsb1jAsB7J03AcXHnRPET7LVWa89298k6ptu+Rn6+BB3uY/Ablsw9mJAeBdwLN0T9r0Se0/aAT5xwCTPr7B2Hw9ZI6AIH5vDvyj+kcRrCyK7kocCEU4PxdVnRMvnPnTZPeThDL17771KR5XBddFBhPAc6BZ/gTrDWqdLdD8d0Lh4YelZG5BnINs8OxhWvXs38rAEA2RtdYH6yDBOFx7uda/8qmUyr30KCah7ycj+OjM7Be21UOJqiFTq5Dwx7yMpw+OIeqTIx1avXiQKkCAPAUDCFeiPz70iZDPmQervecU8kj8dPRNQAZFNF30ab380u0jOsvz1TwxwuIbk8wIvmrWMiaTKHBMDYNdsk7AJo881qh3HHtVOXl/HwNQBjz9CJ6aDbm+7cA4n357RKe0vZxDaOuICacn3CN+Lt9d5nk7TbWFXNNZL64CDiG7Tug9w6CNxzo8JfA0BBJj7VLT3+5+Mig8oWVVa2Qf19WxbkLyKvkcn19yBRwprOxD7aiT8fIL3+3S15965j2b+pfRjAeK7DTxQjGKXUz8RiPdU1wFoNz2Ijdhl2nfMCrDgiBWoUlLYbwA3C9L4xz0REYYzZESsSYZZ7mpk45dLTOwb+a/C4fb4lEYyyBJwTPbf729HDDVp4Z4DdPKm9VU9OgY3HzjhKD90b+V98p0raSbzR5R467qQB5cW7gdQL8m+joBzloBbbZVBQx6iQfr8B+tJfOaHRAo1O4p6cbHOv8MAb7VXc34jkodLIuLa+TL1+POQuJz+cscb2NB4D2k5AYHZkOqREhnqq7ZKSpJbnT0TQ7SGM33kk79JEwONOgx8T2lzvhF6jfGuqG7AY90mCbAbjVG/BVcqJEabsDcij1nNq/ADq84cpp6lQ71H1G/9QLp7uh7nbo0prlL88elUtWpilQV+selV/tCH7Q29Mrf3p6nxpneY1zvY83oJLohwTY6bwNvp6yA/sJnSLNXW2YX9OoDM1om+SXXMlFgfOlAPvwE4/+RrdV175jj0afi4S8Rxk8BQ6kiPr/xBHtfyYfwrmRwA/aCjKuzcDcMqwyeTx4nuvWZ6hzEsFdNP4TUDcPYI/2Hi+ZPWs2nCfe1HEz0ZrP9nA73GUL0lU/fv+3lgKEBvkbOp6erj7okAcBqBgEeKRbZiFKHMcxdTX5x8smfGQ+1+dWJ+t16pISYmaNyZsHIO+zr52Ur906U3ki2km6ujug2/DRfHQ+LoPcTZ5oSS51IdAVgB8KC/SU8KkhmDvtMjXVmCsqATaKQ3s5fvMP1civ/3zYMW/zPtULoFTSMjaiH3NEofKSrIj6Hn/fucozlmMnH/Jx1LlRxufcbtroqEen3m5gEHNESKb8+x+OYNzXQN6GwzR4TpZ9AOsPj3Tg5hrRg7koMyUE/F0w+DMfDRxCHUs/+DPv4GBJj8MaAn38Utyz4eJspTMBPZVwGKsAqFvtRXjvS+YlSCt0mn1D1WoLMu0Pzmw2SjzXl4sC50kBq22J88BS2M1ig+MwRoIlBsAv8lYnju6RvrYg2QP9G/XAwXAa3LYN/Ra/DbuZP4B2XgrA6h/GOtrbpPLGzt3FsmPXobNsQKwzNqxHSk/bdGeVnGmp4Bl6lDecNTUcPF0/eLKAUT5J5JpL01VnaO+rgfPANlk+P0a87AQtGTZB2sBiQ2JgBwuUIW9f8XEjeNaOsYLdV2Cn5HOF+dQg+nazxC1LgS4divTRZPIqz8AOmZEcLD3YLYX6y3Urk6DbrNVnjw1KlP5OlNVtw98nZBhOBByb27adQICNTBnAnLht2yH9vW1bAebjdBkKRFvQHgbi6MUOXW7uiJoJAF0j5tCNLx+XfXmhCPAkkhkTjzkWvO1o4nzLtgRDv0oavPgWAFdI17JMzFtD3n6I4ustg+A/yQ/1w9mzC1HLt23d5rBfjBblOrgoMCkFrHwIcQYcK0tyDfs+byyF4+S2bXvRt8bal6i74b20sXPMbdt2UtdeUz8TB1vL/Jnpqr/ZuddfnWpo5+pqOSW+7tzBD7vdAQjIMcT7fUID4chik+3P7JWwUGIVgtR2T93LgllRqvP4+udnY03OUj2IHUFvCLofsblLVMiIZGCtvfKyhefF57y/+VXHuhoTnCAxs6irwY4B4D24uxLluKf/+rSu33NgTyNdyoqLFdMw1ANnBbQ3NCZMfAAqbmlzrlsh7TjHcS7ls5Rj95jMlHQJDfRQXMSJwmbV+1NfFQXHJCbqgU4hKAvtPia/4uPJIGStarvikTbMCATSYbAXiL3KD3rDufDAsVoAeVsd95EHKS8rB09zQu68fhroNk35mBF+8z8+ESERGnQkCjuUbt1XrO9zIjmGDqQ7dp9y0C0X9p7k+FDFobCNpoxeXN7mcGjgHEpa0tbBNnPOpRxPWwp5INNux+eaMy1CggI80V8og/WKuwDMOmiDTA87LgCidMgwg9kpsUa/2F4Ts0Db39KcCPSbSuUVExFchm2gDY2OXV3d0A1Ajic/SPsP9XQxQfUSMtMbTrp75AAC3ZC+b78DMDScP5mP+bkjMTEblAvJK/p4RuszpiUGyolCOpIaPCidvWijJb9IvSV3V6XjGXeV2HPcCHp04Bj4Q6yZ4cEe2jY+hqn/iIuKUfvl6KNp/XxZ1GfugpPIUugT2Cba5Zg49w8OGnblRTO8JBROv4vAl1sTZVPyiOyDXc1wUPYHODfB0DHQgZA8JsfYcHcR3kEYdteM0H5w009XYS3EOolneuTZE8oHpyX4YW6IRf4utXH1d5yWoZBw6DXclG9trGuTEv8+ONe1qhNbVTUCNEHup57AxIrwHTGNoH9S30OdUHRgrZ4jkNcOuZxBfza/vUda+xPP4hs0o+vrU0GByWG66OyMeuVKLgp8oinAPnq+/ZQyxxm54xP9WP+IjVu2bBmi38DbEh5n7mqg2y2DdoM5y5mZhPA/8ABFRF5jwR9U8ElzB4FfdimqGJGUlCyJ7IOhISBSrrouW72+WGZcdJBUlJ5QklY3G+UlpU6XA3u3ydoVWVA+ecoUbNvc1AYgGf4xETDCtOFiLMK+AA3D6FhZTwUUPWwNhqMFdffAU7+4rBNbjQdJQGi8RCREyYq112rdWsDol7Ud0B8iWqxRPi+7+8SKu7e3JGVm6r3c3p0efk1t2CoU23DlzExEpMUIjQpb0wSQmgfiGxGFho5f29iPiBmekjVtntx770Vn1TtavbD+oYE2BALoksnqt5bBLf2u3TAPkY8AXMaWXTYBiNXNR5/f5g4hIT5Kf9c0DABMH4Y65uDvAPHwDxQGqfQMCJTkdLZT9Bx2cpVBREaw+QxLa2+obi+Wgmd282uWlakzJDk5+aw2Ll++QjY+Aw/80WRzg+EWyH0eq+oHwMQaxuL4hASJjEqA99GQzF0cLl3YKp5ljk833XSTlJUcc0oH1pWYACXGQDOexR8MaqC2GzIJjkHSCyNE78CQRCHqZXzyVEe7rXUwUmdSUjKYYACi4N02UTpd0ox3GyjXgb7cchYhBtC/YJByNyKw8D43d0RBbBsU9tUVq9dPVJTrvIsCZ1GA4LMtR84A4MdnWDo/DRHIq+U//pQvAQDXV1b3SyT2uDe96mlw6IPBoQdKvPCwCFkKB4hf/PpvmEsDJQ2RbDFpOforQcGcK6rqehUEmTtvoc43rJPtoKB07YaFOo9UYjvBEbcBWTI/FXXCKI0jgY9tHYMAarphjrEjiqev2OhFCgWcb4AdygUv+etbexRodzHmayZu1WymKkw2FMxoLKhGpA+CdJkIYLwHhoSaBoJRAlQYfHjjUUQtidA88RDOaFRw9/BCJNceRP7FxOwRIuvWX6MAYnOeZJuN9cAGAS1Evnn7XElJCMFzGfVU1ZmAzSAIrjC4IsXFxal3s5HD+KYB6dtfXKDCGw0ppO+Jgi7xD/QB/RAFrr5Mt125+eab4dlbgjXBTxJTpiHabI9kp0fCjO2lUQ4qsA7Fx0VqoRSQ58Brk/PO6dJOPZeUEI13Y9f5saCkUaMmkcb9iPTAedNGhCRSYVkbyp2COS8aEX1Bw3i7zuek5a6D2BY1AYoorLl5e0s0v/nFMtzcvVU45zludZuSkow5MkEaexgtX2RqepRceYmbFBbXSIC/p0bWY14qoRLjQgD46dS+RPozNbcP6zudNztFUhL7oHSAIS7OWG/ZHpEieJl2S2oiItJDMBkZMQSUz61LUwGYa3JFdZc6ufBdVSH6Ao1FpAuVPKTTwjnRqvRgpF96gveBHrqKosGMGuOHCF9U/MzKBq3Rh97dUaEAcT4Qo/kxMXoslWyfW9+p0XRmZUeokpjAcYJgWR8j7OKAZFMlA2nPVIX5nZFiyMvMnO4hDU3tOjaawEd49SIaLOb+6vpezXvlJdM1YgwVKDa8A75v5TvwmzwPo3aQrkzm+2D5Whfon5ycJElp2CId0bnau4w1ZcPFqRqZjfTgVkNsZzedX0APgiXm49xXEY2HypfFuQRcg9fBGlhR0wMFE+eDIV3nExMTUTZB9AZAqnVgRDyH/DCm7NguGe1ClMVly7zkCCKuXX7pfGlHBH43D0QRwLvOmQ5QF5SGjLRYWNqiihXWoZ75MLrxXbd39ivAms82EwBpAoBDgmAMxX2VtWjLgJv2OfI8iakCg2OdRqJmr14yNxF90wvAtFqN5NveMaD1huncwEjWPbjOcsAHAaTm7g3FVmKSAnndfOxqxE2OgHItGzRMm6Pvk+1wJRcFLoQCdE4j0GAyfrCytlV2QcHLud6VXBT4IBSgXFdSeMRwqgQP1twKRbcq7rBrAkBudN4g0I9rGCNzUIHMXQO8vKD+Qz5G3mwHSMwvKEp6Ohrk9uvnapQLrndunsEwyDCSEaMoAoQFh9bpGRHYFrkXRpRaRP7w1WtuiGJejXMRoe26rnP9oNGI/A6j13G9x1KIZMOc3wZHDQBIQnAv5mAbtu9bsTAF27LXyX8+ckAfnWsT+cwEGIJpZGL9hQDozZ4WI8sXTZUwOMC6QV56FrstcCtB8qoJyg/apBQOOWzjDVdkqvycMwP8J8C3THXNhixaVokIK4gUv2xZpq5hbn7kFRBdHgYJRpZz9wqTBKxxjPrmGZAg3SPgFQA2q0a0p8SkLKyZ4AMtsroW7vpyUeBDpoAznU0y5Kn38kpVJ3R9n7f2bTdP8Lf1w6qPocGKupnXEKmJfNow+i7goDBW+kCW8oe8lSlTpnTIbuw+wgg9lLcY0ScEjuGecGJiHvEYlEULIjGmDunYIr9r8LM0gFH3ZVOgvfm7DHxbYXm71LR4qawVGxMFWcsTu1WkAFDXDedtTzhZjyh/HYHxz/mIhi3ygJyL7CM2RG1LU16UvDnr4pjnaCUfTuDuwOAQdoLxxC4YmbIfO3Nx69PuniFpHYAjJoyTNhgubQB4+Pq7oQ0DcvBEk6xZCpCwzjtnvxiuxylphs7p7Ksf3hnKv4WHJy+POiDbSD+2Gz2p0W/pHMp3vBj6I9voewvzgPwKfZGZ2H5n/AL1WyMAe5sRK8sxnzElcT5DckckoJWXJOluE/Hx8TAQxiNCKIiMZOq59A98efiHy7ScXLnZYxbAjHHSM5ynl6gXoyziDmNmy758XTNOl7SiH5XAoD2skYboHEf5krw85/tjp5v1PXt5+2DtOeN8oQVaI8a4G3KW2QbX0UWBySigcyTAGLZBRGjbX485bUTlQ/IE1AMtAH/xzds9VR40+RDqU/qgx6XOSvUikCdzZyWr49OvnjiEe6IVwBsfE6w8Uwf6cBn0SqfL9mJeGpJbL182YZPYnnvvvRd2Jsj8XnTq7YDOoVrHMrdf5tzqiy4eFu4OvRp3K2hVEPFtd/9kwjIToNsm2Jc6Iu7mxp2dDAd245bFc+OhVwLgAXPhEy+d1DmbuoEBjEU+49GCZtVl05YREQYAL6OYYZJt7YIDL/hCTpI2D8jXSHS6p+NtIo4LZsfI12+DHh+RwqKjOhWIv3jU2NaHyGKM7ufhnyh1ndADYH4hqKizG3TFGhEDHQN3LCIA47UtjE5njGsCT6gj6QaQZy94PgKlp06fL03tB6GLCnXYF6h3MvUd1A3wt83DQw6fhs7EC/J5eoqeI9CjYwg6Ld8RlBMD3YMf1r5ijdbmiwjImelx4g1njmro2PkeGOUuEkCPyClTdKtmq93F5bCrXcD1dYEUsNqWOA8kQX5xh93IXFcJ4F++Yrl4AznmFdSlY9I32A9ySIj+pt0M3VPcfKGHx25rQxibUbEA6qitKVOSJ7BnjQzUamCi7sF28D0IegG+4QroDwmYIj9V3QineEQ2JG9YVomog72I4Dd/jdx8c4JMywAItqvbYRNUG1isMRdQlKRtoA8AV9pNaaekbnoutqS3+R6F01SBzrUmuUxehfyMH8Z9cyu2d4dqvKy6XTKyc/TZU1JD1XbJuWn5inCNGsogScuWcQesWL22bFmA/l62LEpSM2NQvM1BF/7GdI9xHiHzsAuL+M2RuXOyZP/+/eCPYEeDfZJJ51oc2ZbwUOiBQU8Pb+zOBXnWHfpBz4B0aYNa1G3AyG8DD+qBnVXnLl4okYntaM/Ec7xW4PpyUcBCASsfwtMO2xH4b+oS3L1jZfmqdXpHJGzUtO0wD227FXUDiLY9W68lpho6/Zr6YpWleHLB7Hjtt24e3tCvtIHHHhI36CgCIuCMjfFUUV6C+2fo/a391OtgWARhx6I0gGcxtqpawlRPThtYXdsJCQzPkscRHINge66R4eFB2PHEXbz9wuUU+PiDJ8+Pz2FAjHJgNZhq2w17HPUniYkpmPc6oEMPkXunb1DdflN9qeZLSsV4o+PecBvyJAJkCHA+5kXurB3lx2j9Z+tWyE9VlBzRZ8k71AU7HdbwyHChbicuNhKypcHr0Y5CfodBsmgT6+qBBAk+gsnkJcxjADAIlE/MgHFgZ1TunAP7BPk+oCwcNg/uzJcCzGZgWJTyMrQvEchLfoyJdo3DJ2pxxlP8Q1OF/Br5IWdpybx02Ivg8F5Dm79gd6kW6Rv21/ycP2mIoYy+cK4n5uyDmofgUeIusC+N2j04t9GGlJ4K+yx3N2gw7HaVdf24bgStsY94gO+BrOXjDdkZLQOeJj0yVt83nZfSwyldn0nJyWcwC6Qh7avXXT4N5bWrjpDyHJM/1gPubkO62vAePQMygPWwiVeg8f6T0ofFLxT2NThd8GhYa9HPR+1FxFE0tZ7U96Q6vphupR93kmCwINqY+rA2UAfA4CrcFcwGu097Z5ekp6ej77rJrx7ZBntduPQBoEy9h5uHEVGdeBSucbSX8Tfty9X1rZjvMSCwli7K4VrChPtquvHNNZF/QkOIwDF87jfeL4WOEToTyNe01VkTy6OteQqAswE9Ibom8jrHsHhFy/LVSdrPBhHorbXfS9eQd3dWok8b+secGdgJAr+pn9hzpEh1pSmw03lCIPAKNLAi7rCNz10co7wpcTGnXn9Rbcmsx4oVod2cSfli6HvyD4HHT0RgrQT2O/SUAJukTg0Vj+BOScucq3ldX59OCkwO5IUQDKdMV3JR4JNNAa5H59tPuRYZ69En+5n+QVvHbWX52bJli1Jg4ws7JRDeoUzr1sbgg8iDYPSYyqua9civXfuLpc+WInOXQcjE3ykpAAPhw0QGxVqmnuT57LXSg23efLw7JSXJqMMN0f4S4CHG8gaG3DXrN7+4EoKvwQwuRbh9Z+nQyXYsnCnyuStuGVO3Ne/4Z7Ne428CR6ztvuWWW+RU6X6ZM3u6XLI6VrMfh9eSNVUBQPfa5r1y733/ps9oPrM1j/mb9ZMWpaWl5qkxx/H182JSfLj86zc/o7RetmjGGJrz+pJRetBTaMWKXGGbx6dU5yRzZDPbbB7Ht5HvKT4pW7co503JCeEQYir0fjffREnIgDcxmGbez3uZzLLMo54c/eJWhKSBMzqwLt7Da2sMmct665jfZtnm0bzINtz8+buxPfpu2b3/HVk0z2C4yPRTicB3xr7LaI3hYKxvuSZC/7b2Z7MsHg8e3yG//9N/y5o1a6ynXb9dFJiUAhwTO7D96TLMZYvnGkKC9QZ64C9ZMF2+/r2nITRmi49/NLa6OiLLFySqsNejAEsaRqH4h6HUD9tUXXP5Aij1B6W4tErSAABlGnFDtI+aWghU8NJshBC64jNy22236XzE62yHDUKOHwTn5CREnY6H9yAvIJVXQvjAeL7r248BzJEqs2ak6Hlu60yTpS+885n8AmPlX37yChSCvVD4w9gAgSsxDkIrxhING8Mj7jItPQSGBpsCA79zl8HaJscHy3e/skCF3yqARphe21wkTyOim39gpCyDobmyslKyshKkqg0CKpQC3/veDG27dX6IT9olBScPwGmiT1YvyZDvfS1KDTzlUFAymccoGBF2Y5s0TTBImlsws41My+cn6sfM34LIIATEZmRk6Fxrg7DuEeAu999/v2MNTM6skDdf/rX86NuXyIb1vtg+GpF2F87U8vi18cXdMJQOyo1XZElJrZu+Oz/QjXMz6RsT0ywdHW3y1laskcPBMKoH6ztB8C5pbLPJZYhmSnrvPVwla1cb9Ga58XHx+m5I4yoYr2688cYxczAVNkuXLtWymH+5JQK9m9dmuWTNPFmCF/3zX78FY30fgM/eAFMHqpGJWw5VQJCuqe+BDA3HHPSR3qEAmRKTJOvwYWJ7Llp1pj1P//WEFAEskJoUji3BDeXr4twE8XAbUoMT75k/K1qBA8cRxZXRZ759pyHAzp0RBUNeg3zrzlx56a0SjfZqB984BE9fggEGRwFK3O731yjnCnir0wB4GEpxKhe8sLXkzRumKlCXXtCMvvulG2bIEy+ehDK7TW75bJbUAWRcCiCxJxxVohC9gtt5EtzLZ4tPxvvauVO6BxBtIzJBNqyDwwne0T484/i0HWOWdE1N8pQ7bprmuGx95zzZ0rZHjp5q0rxcEw0FWqIsXTVb6+S6xLXogQcekPJagKTRBwniopKKgFsCrGz496snDmJ8NKE/u8nqRQmIaBMr+YcbAaqHZm00Lc5Nkhp4Cb/6bikM+0ucrvNmXvM4F3rwt157DJGMunQNXL6oR/4GML7NzUOj4s7Du3J3H5FNO2olWHddEDmC55mVHa4ArbtumC5xcK5aPj9OLlqaKm2dwwo4OXaqWho73CVz6ly57777tLqXnv2NFFVW6zinIo6fBXP4/uowB9bomIiGEvPwiXrN7w6FKGm8FMp6k05mu3k013TzaL3m+u2iwAehAMegM37QLIPzKxX5w25R6M+3mqddRxcFzosClOsIjKCMVFV+Eo4oR+SSVVN167/stBDlAf/PHbk63zPiA+fTXGxLn3ewXud4Om49/OQ+uXTd7bLpjRdl9dIsmTnN4BdXLp2jssmPH3xFls3rxPaEiEybHCIJSYhi54OdCoa7oUBGJF8YENwANOuzAbybEijlNTuhVDYi6tbUtWCNN2RpRp2h009yfBDKCZYX4fiyYlEa5vd0BRFu21OhYBGuDTZsVbgb0TN60D6uoTQcRE5JlOzp4bIBlOHauW1XgZwo6dEILN19Xtg9ok8KyrsRWSRbcmdnYjtsD+XBxstWeXBSSs10Lq9yS0Qmjlv+5tFM1r+5NrjWB5MyruNHQQFnOpvlq73kVewwdeOG6fLde3LH6GQoV3E9ee61fbJ05RVSU1MjJ8sGIP8ZOgjynBvWx4FH7pU9B6uwpWcHwPFR0tY1DGOUoWNyyFyQ98i/kj+/bGUyeEdEyLWkReCvzNTW0SsP/vGAXHX9V2Qftt0MCZuiY/HKSxAZEdGRGlDfkrlJyr9tyauQf7l7PmSmDvH3D5AnXjgMB8QOufOGHM1HUDHz0OjMyD6LcmJ15yk7HPc8vXzk5qtmSnpKvdx97xtqfOsd8hZ/7ABlppwpfnLjVYOyH7zf4VO74aQPJ8GuYAC63Bz6F+Ytr/eE0/z15m0f6ZHvZLJ0yzWL9D0++9ejcssdd2vWA7tfB2jtoAIAKXuTf6+q7wNIdp++42F38gsG/2stm/otJlN+NY/Wucr6e9WqVY681nLM38z7mauMv6bOPlsH9fY778v3vrFO5VLOx0WltXA4hTEesvfm7acg740ASOOvsltD8yDkGgMcaZbP6Ji+vpT2DT0uHZ9cyUWB86WAVa9eUQeQrP+Q+AVEQObMAFC0Ub591wK5eEWm7BzdAYblqrO6Dbs3wdn6iWe3y7SsDsjkCx19eNehNq3+4MlO6CjaFfiZkIL5qbFXlq1Z7tBtOWuj2R6Ou5WrS+X3v30QqB5fbAFfK1kAlTJxLJNXOfzuCeX9E9MWTFomd2L76X236XzMSL+7D5aBH0twVE+90oyMcOxEUyi1zdgVStqkGroLyshubgcAfOmWZYunycWrfRG50gYbiuNWxw/aPJiyMuKxJXAJwPbesnJRin64ywKTuTV9/oEq2by7TZZf/AUHf5SSUizzp3tjXu+Gbg4RchNDZc3iJIAVugAOasG6AIUTEtcCAmjSU2Lk/d0NADddJrfecB3yPYCtl2PkinVjwRN6k+WLtgYCf53ZGhasNDIeP5KPyH0nVWdJ/aIXtkq2ARwZnz5d4sFLck5LHuXrnNk9LNW5froocN4U4NrLcc/PCtgqnSX4np+V1l5+1qkxJ8z12jxaL5p1JmcsUnmFfENhxUnlG8jnJSZEwFkA28wfwXbx4EMSkqbK8ovW63yz+hKjJJNH4F+0gU2WVq9L0cvT5pTK975zh8611vzkH++61eAxTbnrm/c9I7+/5QFx9uzmvStH28K/TdvbykvNq86PpMf6zxr6uscff1y2bvqT2tSY2+Rj2RbyT2zLiqWz9cj2fOFr/+m0UJPG5tFpJtdJFwXGUcBc903sguOyT5muNeY6w/PW8ca/l68y8vC3OQ7ee+89h72lvitcdiMC6XLscJeSBUdL5rPYW6x6Cb2Ir/D4pY41ziyT11atNepi+QV1J2D78ZMBz3CphD0nKzsbAbtgz2tEIKvz5HPGP68twCg/BbhijiFzHI3P56zNZtut9/EcaWveb/NJkUOn3pWL10TDxgQHdSQrLiIpvgSRiAPhzB0O4Ge2LFl0NrNDeezxZ7bA3lkJMHOULLLItpesSNcy/fx85L1dZeIbnC53f/U7eo5f5C1Ondyvf/e5gW6wHxK4O+wbAztitqQCj8D28hmq4KQVD1uXNS1fmCH8bMsv0NPkZzwCYpF/GE4PwJ/EYudRRAznnKWBdCw3cwfkd3YUy+yZU8GvZuoVPvvSRbP1d3zcFDxTlVy6IkGfnXY9M3E+ZJls0659JXLH18fKWbTvEbNgsxXL9Z+dj6A5nfJPdy0S6uSYyDO3weGfgZRoryS/mLe/Xlavu9OsQo93nzFNjjlv/WPji/kACWfLrj3HFCx87HSdyotrliTJl+/brNGRmZ/OHn0IJNWOyOo+fkGSmZklfGryz5eugJMwgNu0U5rphvhk86fS5MHfvq1rHiPfEoi8fEE8dI/BsD0atmBHZvw4XtioNtj47KukohnRdbGjR1Kzt9rVmI86SPLpCRnGuzX5R14z10yzr5vjm+OO4+x0jRFEcPqsDDlw6DQAwHBW9koB8DdRx7GWYdEzmuXw/FMbN8JmbvD6pp6Aaxlt99bENW3l+m84xjyvmeWYR2t+1+9PDwU8Jn0UgMjpOPFJTrW1tVJVVSXz58//JDfzf922np4eaW1t1W2lvb29/9flfRwFcPssbotNRiEU0R4+qjTyQfopevyoTemjao6r3A+BAiZokQtQ74D7GGYofLR8gkzNRKaCec37zPPWo7NrNICSQfSD9xAZWXfvYPFEFIr4FEOZlJBQDOYhUxkga1njf7N+r5DJ6zfvcdYO85r1SDDcE3+sQaSTDjCahiFmBbxQzUSG7OU3oOhfdonccccd5ulJj6QRP+ebWAeTSWvzOP5+Pn/azBWT0n/8PRP97ayNpNnmzZsdt1AIYCIzlZqa+oGeifc5q4PnzfRBaGTeYz3yfWzejIio6FsVzUbfSmpC1M/KThg5ghHiIBjAyWPat3kf6eqMtqR/XGL2h0JXa/tcvz/9FGAfvunWu+WZv74AIQbeiKNziPnk7FsNTdjCdPkyKBLW61i67ZarxRvznw/WbJ8AAGhHhT/znvu+dbluuTPkkYy50jCecr5cuSZDyiog/K+doX3VOn74+5bbviJPPPGExLd4S03FaYkbFW594SXa1DaCsRAhOw/3SvgURIJy0s69h8oACl2iioy8vJ1S3QC+D0ZNAwiMyCAAIc6ZkShPvXIIW5TFAaxbimggEMi5Zw5SakKwfvi7raMHnvhxcun6z+kzh2EuScY8kj0H+SxzifUZCJL80pd2wjDUILdebZTJshhxwXqsrqPHJiKnQLDfCaH7hg0GX7p0QRoisxhzqTW/h7sdQJYMCMaGUJ6/H57VoBeTuU5QKHx/82uIqkDaJIh1DdCyMHdc9YVfyR3Xz5NL1xgKAC2AX4uMX1t3nUZ02VL54t3/R0/weatq/12jMbGtTJetObO26InRe7kVEI2rP/nJT86ag1kOacZkttv8bZZ7+40rEAWiGcbnRhFs4ejrj8gOnr7YCjML2/SU6btnlIei8sNQTpxpw/j2kIY0AtUiZEVSgq96Xd+ILWF/+fs8WTbfHSDeKXDM6YeQ7qMRiPMPNSgQYM7UCETijZXfP31MfvOXw4j0x6jTALbCm5zevwSsMrotDXaxUKIwRUUES0dnnywCAOJk8X7dJpx9KAme0WxDSKC3RsOdkRWuBqo4RD4kQGn+7DiAXctgqGpG9IcwWbw8VwV1vksqmsc/44pFxnvXSvGVjyhpqTA23Xb39fKXx3+r4/NzlxtgZDMPj8zXbw+WmXMvVdA8z3FNNN+H9V0QyDswEgQFRrjUNg3IqsUpYkcUHDeMGXrh7zvWBHBA7eg27MGqPKFhkJ76ZqKxPXZKsJyuGJSZC89/nTf5K66BnC+CI6fCcx8OQMsXQAFWIdOmx6pjlh3Kw4sv85WiqmMyb1q0bN3TIH956ZRcfRm3OfVAmxElf6QDAOxhbJfVLSHR2QAxXO8YI2Y9Ns8aKH2A0EaakR0nacnR8HyuQ+QjOCJAqZWR1qzXXvzbAflXgCAuuugi/dv15aLAR0kBZ/wg62OkjjJETk9GNA3OEdZx+1G2x1X2p4sC7Dv8UEYicKSgHBHVEdXjdGGlRtb46zvgh9YhpAjSIOZQgVJ75aJkbCntDWMFnDOmz9V1hGv2qeLd0DNhkkaiESI1KVJWL58hjz5/VK66NA2xHrzkotVJMmNqkpCvaGjFloW1/cprcv1hIq9XW3FAUgHWiInxFK77TEkJPnKyqFrmzYxCNBE4uJwekN/8+aBcf8U0WQEHMn627i5XpxHyO9v2VMoNN9wgF4MnqqrfpXyVFoQvrp38sA1mKq/ejOhz7fLZKxL1FA0XTONlqw8ir2sBri8XBf5OFOCaYF0X+Nscp8XlBx2yFJtXDZluGDsnxSbNlR/96Eeqf3jn/RdUb2yVq5Li6ZSZCyeqU9KPSLezpqdpBBjrI1I+JNiWifLVTDhYhY5u1W7Nxx0qThU3YdcqX51DyItt3nkYkdXc4GzWB0BuEPhxCJNIU/Hxxpb2jMa7BHJacFCw0DHrVFmfTIlsB58e58iTOyMSTgKNiMLrLrOnRgH066vzFcvhPMFy2hBRcvr0jLPafuu1i3Ve2JpXIAdONkkXDBnNcChz6F9QxqqLLnfwjyzzo0zllWMd8J3VZc5Rpi5Pd9SB/ggwVzl1ugLtx3aZtlDlF+weMdp2zvkTJbPPmMfJ8p0rj3mvs3yMtEcdpbP5uKyqDWtDD2SPEN2h5eGNRwCsXKh9wiyzqKxB4hLSVKZ5Bs6aN3/hO+Yl19FFgfOmAMfCTjjL9g2U6Hxw1y2rVS9y79eWaxmcM8xEXUx6aoLqXf7rD+9KeWOwbN2L4AoAZWRnxGDuMEAW5GviEmdK5pyVjrnC2Rgwy7UemY8fzodM72/+mxw4bQBirWPZ5P2t947/zXKik5dDl3cADhXR2K76BHQeCbpzEPMSYMHdBC9enQPwR6Lc869Pq6z9pa/8k+ptuDvUuewY5ImYMtOwOyCcqF7cVArdiGFr5LzMXae4G9LugzXY5aFGLll3yxi7A/UMaeAVn3lpmzpsH4QTxio4BlNvsmJBHGT6Ki2/tb1PGloGAbiLlpb2o/LVe/6v0ok7EFI/8k/rRhVPmvvsL76v7959s+N9nJ3D0J1Z7QV2LwCf1xq6qvN9f87KdZ1zUeBcFDDH/bnyfZjXrXVa+Ybm7gpJgu6LUafjsR19bKqfjpvxeq8LGRO8xx+7uIy3z5rPRR6TPA11lR+HDYvt+TP4rHCLjdRsC48mf8Uj9Y2T8U7W+1y/XRT4IBQ4n351PuON5VjXsGUryxz6fbbnfMqYrN3jy/cJKZPECew55ypnsuvmtfOhi5nX2dG8n899/w+OypMvHYIMO1d1VFabGMGbxeUtwBxFqJw8at4aUySBkE8CTJq/vxQy5VHs5mzouxblgM/BTpHkdboRKThzxmpZd/l1Y+aK8XQz7YdW26FZGesZD+Q1r5m2HxM7QTvf6ZIKmTPT0NMxn5nHvIdz16XXb5cbrhkAP2fYyqzP7g45/Z57EdgnwBtg4ovN2xxHzsX/j737AJCiPv8//uxeo3P03nuRIk0ExC72FhVrNKCxJFGj0cT2+xnNz1iiMflrjDXWGEsUKwooKqBSBKT3ox2dOw64gyu7/+f5HrPu3e1eL8vxHl12b2Z2ymtmZ2dnPvPMLL3j5IjR5xVZf7xj1N9M+4/s0PPCX81aqnfcqi8nHdvBVUwOit5JQVpL0+atdD8tQ6vK5rpjft5yCY2kFC9sGY4d2VPPGe90hXfsbosffaEXvo3QC0D0Ql67q4s1e/VOkkFfoh5b0AtZwxakncuKi/Np8aceeg6zQ9Qx3nLvf9zxwzfffNOduz1G78hpQV57hDdpGQe0MvI2vcNNnyLnOW3f0Rr7bBw/rnRZk/DPZpH1pW3+8CKdq3MjKvSPfVfZsRhvPbJ1wPsu83r1vmO9Ywdee56PDAGNNUZvgnohQ/BA9O413SU9PT10G3k7cWBXFNTWZsKECfLuu+/KrFmzZOjQoVFnMycnR1544QVXcct6sit5GzTIP4ha+E379u2TZ5991h382LVLS61r2XK7NUhxG2YLFH/99dfuSqE5c+ZoefsWMmTIELGrApOTkwuMIisrSwYMGCCNGjWSJUuWuFBQgR4q6Q9bT8UepWh8ek7JHjSHj0BxO0MVnQv7QWuPtWvXuoc3vLGn5YeTvpuzWNL2ZJcY5LX32S3qKrOxnYHRJ14sM754S7Zs/cGdsPECcLN1h8yuzsqSDvJHPWFTVY0FsErbhO+8lPY9Zemv8MGHsry3JvqNtG510H10L/jmi28ob30wV377y6I70mQhTQAAQABJREFU3N70WojucJtvb9p5rnkB22/Iy8uTGT/MlTkLvtAD7D99R6/XkxSrtHrZlVffKCeffLKb2G49B8nWnXkyfPBPgcrCczH7hxT53d1PFGjtrdPec4GO+oetw7Z9sO3sivVBWb0l/wvbTkj74hvJnXfmX13oTeeIwV3cSWkbjk3ngUBTV33Iht+hcx83nHhflrTrrGEoHcba1A/19lo95fX3F+sJ4g7yxbcbXeDPwp3W2G2i7RaKqXq71pf0lkL3PPhiaJ5dDyX841UJmjUv/2REtN5T9TY0y1bv1vm5Ux57+H9CvXXWqghvvrtILtFb1YQ31n83rYDiNSmbduoFIfnfPV47c7MgtH0P+H3r8r8HDi3HzVoldduODD1530grkh6Qnr3zgyvee71nu9VQm/Y9xdYHr3nttddKtU9mPyK7dMmfprJsi2za2ul0jh3ZSx8aNN240wV6vfFbFVm7DdrW9C0uADDxqrPktuv1EtYozahh3fX2cXNl9IjeehBhn/i17kxy47p6Qqu9fDB1td56co80Ta7jqnT10lu0LVi0ybVfnbLbVXG39eL195doANiv68cmDXy3kdy8oN5+6aBW+qqr+6/N9eBIr9DY0/ZkyYTLx8pLb+Vffe11SEzwSxMdT5LeIuesE7toVdzdsmZDhqTtDciaTQeldesWsmbjfq2GM0zuvffe0PbeLsy5/77btRLaOv18dfEGV+D5jf9+L136nOo+L3YC0MK88YkrZaNerOh9Jjap6+oN+2XEmPPdOhztM+cNeOTIkTqNi2T40V1koYYaTjy2m9fJPV+mld3+81F+ZeFOegv0bK1SXL9BwZ1ku0WeLyFZQxfb5KbfFbySu8DACv1R+Dtw9KHcgU2zbQu8xpsHCzt/M+e/cuKYfrqupMucxXs1cBwni1fOFQsF1K3fVOIaHu32i8LXRW88s2fP1srOdXW9y79wsJlWWG7foUtoPbf10Jonn5vG92o+Bf9Wk4C3job/1vDWe++5miaF0dRSAVvH7HvD9hU6tG4pL781Wx67+yR566Mlul+XqbdE1ROvestp2x/ZmbbX7RPZPtMd9z3j9s9s/2Dq1E7u/UYU79vmpOo3aCKtOo2UJfq906J5C3nnk+UhwXadj5aRJ/QrsG9h+yz33XefpGpll3g5KC1bNNT9Oa0Sp49163fI+af3lRPHDnLhkgef+Fje+GC5VuDfolXU27jw34p1Gkj0N5WLL77YBRJtZNf+4tOI3522f2GNfa/ad92SlXrx+KEAr+sQ4Z/8fdibI3ShFQKxLWCfLe9zOnXqVDkYrxXXNIBmTW6whYbnu8oVE/PvLOT9/vv3B+/pbwef68c7htSoQR2tqLNZ91t90rxlJ0nfn//bwnryji/Z5+nbb7/Vi62Ch6ox5g+jrgZxrUnPOKif1yzJyUvS42QH3TbE28+1bczbHy/Tu2CMcP16/xzdr5Xu46XK+HP663v2y5ABHeVgsJkG6Zbqfr3+LgxqdWC9QHJj6l7p27OtfD5jswbHtkmXjmG/SX1xLlz8zbxdMva4sPbeSPTZtgv2u2dH5k63v2idwo+/VNd3rv0+LW1jv7W85nDZX7CqwP9+5S9u/bLfNd722ObDMozvfjhT727SUu8ucpw88+r38tcXZmsVJot064XCevvtjRr0XbV5ve7rp7nfNDbfNAiUR8COwX8z5XO5RC+gtpPdrVo20TvxbNb1L78SrjdMqxLuS6jn9hnsuMipZ13tfo/uDerFpHpsyvZp7HM7Uo9N2bGximwrvPXZO/7lTYM3TO/Zax/t+U9/+pM7X7cxZa606dBX3vxkkyxesU2a6bGI5OSGrqr12kU7ZZ4+AnEt9HjZje43rl2Evmb5B3JuCftENl7b3m/bsVfuu+1seenNmbpNzt//s+1yyqY9euwpWUMcWXqx1Ub558s/LzKpdpGYBeni47P1GEWG2m9V+9auv7FaDc0unF6s+2cWop723Q53TMpcrLHvjWt/MV7Gn5d/3Mi1LPSP7eNl63eFZ1qoc4E/S9NPgTfwBwK1QMDWe3uEH2fw9ntKu60pLcOo48aVeA7LLrSsjs9iafez7Lh0ZTuU1ov+ECiLQFV/bqp6+GWZ19L2a/sLdj7MzhXYcag4PQ8Yfm7EfkOt0zt3jhhxTNRB2r7h2GN7ujuFZmtfU+cEXEHIlC1ByZVGej6tnSteE23frzRuti/1/Q+L9O5Q3aNOh3VI3ZEr12ihHDvHeMOEc92+a7Q32Lk+O0f7w/Jc2ZMRORMy/NjTJFUv7Hr/8yjnjUafr0WJros4CpsvO35oxxUuuHikfPnDAj0usEVWrFwjx4/upxf9xktaxrbQ+afw84kRB1hCy7tuPsPtZ9ZNCkhKapa8+E7+BXQ/LtulRVia6j6n3v2yf3+9ELlF6ByODdLOZX04bY386ZhDJ3QijMf2FW3f3i5oXr9+vd4xaK48ed/x0q5VwTxcmh3D0OuVU3cGnK0NqjTLN8Ioo7aqyPCsyFFJOZHq+o6NOoN0qFGB+OLGHtyrB2IOVTcqrr+a6pab+1O5YAuNVmdjBzc//fRT6dOnT5UHiKdPn+5CvPaBLi7Ea/P/2GOPyf/8z08BknPPPTdikNeqGI8ZM0Y2b94cYrOQ8CuvvCI33XSTPPFEwaCO9ZSRkSHnnXdeqNy/98a33npL/va3v8mrr74qo/VWtV7TuHFj+ctf/uK+NB5//PGItwHz+q3Ic2BvUIL5FzqXOBgtVqG32Mk/GF1iz/RQ4wLHHHOMHmxbXOLOkJ0gvHRc9B23kmbEfthF+nFn47fKihefEz08b8Oeo7e6uuamsSWNpszdbUfSdqysIuOa1HQ9ARuvn9lNkpnbRBq3Hi53Xn99xOku84iivKG04WTzp4ksEG3duvrqq92ByzEj1smwQfkHM8OHYAcc3tag721/uCy8Na8RKJOA/WibMqWLPqbIvk0H3Hvtc92iY2MZcXzXAoFWOyn3yEO/lScfvNSFMAuPaM6CdZKV16TAewr3E+1v73Ng2zQvxFd4m+tN59pt9WWdhiK96TzllFNC2znvR2j4MKxKatqedW47vWDpdhfmXblut966L9VNTlKiX281XV+efHGu5OgPdZuGsjQ2nfZd8N1332n4Za/aNCzydquKslFvQdikZW+3z2NBWS/MaoHWlM37CrzX+s+TBFctyxuYfY/c9offeH+Gnr3vga+/fMt9B2z71CpxJestrLWSVdvucscdd8jS9XOlhS6fwtsSW2ZvTFpcZP/LDhzMnv9Bid+tFsDt2r/04U1vou19Nt9eYyf27RHemI/IFrdsfXprbs8rvB/vdWJCvJ5A2iy3/6qlJMbnSub+TL1qOk6GDuwiCXWSNVSQLTO0EnNS3QZacSFZl8VSvcXbaNf+24UaRtarcHt2baG32/bLuo3bZOPWLC1M6JOmTZvrrRfrSa8O+QcLbJq9ZdO3V0c3DxZYSG6UpFV/W7ow+KghWlUsUW9hqSeqjz26jVvf9uzL1dv16gU9Wv3G1scx6hu+fttrOwBly9Cngey2Gjb1fGy+bTnl+fWWoLqeWeMtc1vP07ITxftM5GioffioblEPxnhe3rP3PXPHDaPlN3e9WiRYYdWyzj6pm96CPVWDXq31Vpxxrgqu9/6t2/VqdQ1cZx70uc9++Dx5/ZT0bO8p/L7Cf9swbFqfOXBAb4WcJkdrFeVpX83VW7YnyRczVjiXIUPHSvi2oPB4ze6LWYvl1ut6FO4U+tucW7eL3j3UIy8QqAKBSJ+FKhgNgzxCBbzvjZn6PZMrDaVh/TgZM6ydfPndZtmr3315evHKj1oZrkWLJvLWh0skL65tgf0h7/3G5+1j2evLJpwia9assZcF2kfaHts6/sc//tHtc9p7OnWuL4GEXdK8vVbLb7NJPpm+RgYPPtrtD9xz65m6fV8u67Q6x/TZ2+TtDxdIq3Z95PLLzyuwrb/40gm6H/O+fndKsfs4f/7T3cXuR1RkH9bNPP8gEAMC9jm1hzXe5zTSPpX9XrJjSGu3bXUnKxP8W9177BjSeRdeKd26dZOte7Xbsk0S3s2OL91z5Snyy1/+0gVpL9A7nOzPsltd5ug+omhV3QQN9+6VzKyAXmjZKLRPZdNg+7mvvfy0fl5nyDkn99B93fzfS3v0N8+ooe31LhZb5eKz/bI6ZYdWxezrTtTZNNo2wN0G0Bcns5cclMED6smIYf31hOgG2ZOZ6D7XbuJ98S5YNmdRWtTPuu1TP/LUZP099XjIyb23mv8xj5J+29gk2fRG2i+190dartU8G1FHZ+ugbeO9bbP1aL9tUrXqqd39JpCgF9purycZWVvk1OP7yQv/nqF3UfnO/bZvWD9Bjhk5Wlat2KW/acaW+jdN1ImhwxEtYLebfu3lf4S2CXfcNE7Xy1ni0/+GDWwbsknLyNLfmD69SGCrOy7ibUeth+K2paEBlONFZXyOvWN5o07In859e7bI98sWSr/eLSRt7W53XsCOmV3x88GhbZ6ZnP6nu4otGGGzY8ee7rnncbH9p0vOTZdrxo+SL2cud3Nq2+UmTVtKq1bN9fd4I/dbvPA2yX57JyZsFtuf+/PfP9LKanvl0efmyR3XDdW7+dR3FdTsoo+NelvjtMw8WaOnHu14o9fY8I4dc5o88ewU/f1+SujYiNc92nEsrzvPCCDwk0BlbG9+GlrkV3a87vRTR7nwmXcsM7xP26fZokG1SypwbjZ8eMW9tvktzX6Wnc+1CuU0CCBweArY/pp93u2cpv32CD83MnREot55cFeB4GekubTMwj333BfqFL7fZ7+JbfgVabzzLrYvFWnbaMPOP+fTKjQuO7dq7Qqfw/Omw37P2j6aNcVlQpxJOc8bma23P2y+5tIqb43kJdWXjdt2SU6gTpnOP3nTHv5s+4qW67H9vPt/d67bzxwxpI/7/f8fzTxk58ZJfb2DYrLeyb1jx07hb3Wvr7hwhIwb/xe5/ddaZE/vGhup+XLWcnc+yZaj7Wc+oHcUffKl+XL1z/pK25YN9M4dmh/U4wj79SLlr+bs1GOO/UPn3iINr6ba2Xp0/323RV0vbH2JS2odk9NeU2ZH2niLDfJaldOAnmcP6iULWt065prmzZvLvHnzJEVvKXv66adX6/QtXLhQ/vznP8uFF15YpUFeq6Z38835lUO852gzalVvw0O80fqzYVrA10K8tkP729/+VgYOHCivv/66vPTSS/LUU0/p7cr6ycSJE0ODOKAn188880z5/nst296woTtJY7e6tnLw//jHP8Rui2OVfC0g3LJly9D7rMLvbbfd5vq3K25Le9VcaAAlvLB1M2BV8UuZ4/bV94k/8na/hDHRuSYEbIfi/rvfdV/4xY1/5uw18uIbpxTXS7m62fhfefbeEoO8K1P2h3bGyjWiYt7knSi1nTNrsmSNjD/1VHcCppi3VUon26FN3ZauB+J+CmRFGnDKBr2FhB5ApCm9gO1g/uySa+T1SR/oyWmfBtI6h95s5k8+N1WatOrvTmaHOvACgXII2DbEHt42xD7XkRrr58UX+7t1zy5e8NZJWx9T9aDcV3Ptx+9PB98jDaM07aL9SA6fTj1XUew2LnwYth+zbslsueLCY+SPj38oPy7fIRef2Vsy9NYs1sycu0k/YwflYK5Pjj+x7KFUG4b9oLIg7zufLJObfzHcWhVo7Ergb7VyVPde57j21v+Tz70mt1x3sgus+PRWAOu0qqgXArZbinZo/9PBgrkLU2R/TnLUz7vZ2MluaxavyZGGuc2lqVauOuHQd8Hnn3eRr6a/LXMXTtcTqfnba7+GY1es2ytDRp5TZLgW5L32hUdL/G6du2C9XH1j+czcxJbwj3dQdeToU916Z16Fv29s/Xv7w7nSpfsAmb9ki4YA8i+syczMv4KrV+/+bizX3/GqZMd11auxR7jw5+hjjnLD+mLGMtd9wFEJctLoPvLqO9/q7SlX6K2ZBrmL8cIn0Sp/2a2VevTID3va37N/1GqBA9u4W0W+/ckKueiM/G55uQH9ceSThIQEycraL62aJbtlbfsjdz9Q1MxbhracunSMl+2fLXDfm2vX79Rl30guv+qGAsvJ+vca++yW9Jnw+g1/ts+J2c5ZsFSvqBaZ+2OqDB3w00lNCy2fMLKz/Pkf38tIrYrYrVNTyc7Lv9WUHejYnpYt7dp3kgXfri8wbeHjqKzXNq2PPPKIfP653h5L53foMa20clJjXX9FTi3FPo995q6bMN6diCy8DnnT+Nq731fKNswbHs8IIIBALAl43zO5/lYaZPlUbrl2rIweOVArxWe6yVyrwYzRx/SRt7VSb/h3jDcPkdpZt/B9Lq/faM/Wr4UArQn/7rLXtg9pv2+8fcxxJ+Z/f998z5ty9PCT3R2ebHsf3tiwAoGA7oP+oL9JF4ROjtjJ4i+/2xjax7FjUbavcMu1kS/WeuSpz3T8j4UPmtcIHNYCJX0u7bNjnzvvYTMbfgzJa2/Phbv97ne/k78+9j9y9YX9JVEvXsvMzJZMDfNaZW/bP+zWraM8/vy3BfapvO1Pdl4drcD6vfz8okHStXNr2Zvll1P19u8fTPuvTPl6td4GvqUL8do4TxjVWx+6f6q/g+Yuy3H7rDO++0CuOK+zPHDn0W66LFBmvwUmTdbbquqxd/sda9uRwr8ZYu34iV/3YQtf2OhmKOwfu/tStO1uWG8x+dLbNq/est0VGkjwb5OWbbpppeZm+pvmIjfNtk/fNKGhXH1VJ3fhxtDR+b+Phh13qgzTl9GOScTkDDNRMSlg20H7ret91mybskbvAPDl7C0aKNuXfwJfq8JOm7lG9mTr3SQjHBcpaVta0zNeeBthnytrbNsdvk33ptPmJydQt9jj+OHHnsL3n8zPGtsue81F1z4Tcf8p/FzJxeeMkGl6cdbcBSkyXUMSSfE7tNJvut5Bqb7ePnqX9Oh/km4Xih6Tst/v99yzOrRv6B3HmqPDCd/H86aFZwQQqDkB27YcPez4YvfBWnc8ttr2a2zbX9xvP5Oy7rfeye+/mltrGDMCFRewbU+k40u2/3L/3TeUOIKqyox4I7bpK257ZPtcr2uBncsuv9V7i/sNbeeGfL6U0LlX62i/Z20fKPz8oA3f+71eOBNi3bzG+inPeSN7f/i+ZkWG402L91z4PE34fmaCFuxJ2bRRunVsqOdHI9/NJjExXovvNIu6rTdbC7faOU5rvOMRlm97/IV5cvKojhLUe4Xtzgi4IPD8laIXv11UYH69aa3pZ1uWdl7QO7c7bFDn0PldWydWbQzKscfH5rTXtN2RMv7ig7wBDUnuDEpeuq7yLX0xaXLUUUeJPWprM3fuXFm2bJkLFQwaNCjqbFp14muvvdZ1tzDv/fffH7XfSZMmyaJFi1x3ez1gwAD32jZ6devWlaefftqVI7cKwPa3NVaB2EK81tiBgyFDhrjXgwcPlnHjxrlgsH2B/t///Z/89a9/dd3sn8TERK2scrk888wz8vbbb7vQcKhjJbzISwu6dVTvslxyE6fHnRtYcbHYXJdLnoEjrw8L+fji68sW3ZFpEyVMOu/H9dK8VZcqwbHx2xWcxTU2fqtuXZWNHeSuiQPdbdu2dVdJRQvFePNsO5o1MX3e+A/X5xtuuEGe0pPTX86eLz8s2qDreGM3Kyl6a5Cd+5vr9vSBw3XWmO4YFCjNZ9SuXLzrrrt0ndwdWidtfWzWsoscc9yJLlBX1bNWmukMnwbrf+a0Pe72q/f+9mx59tWv5Ivvt0jfbk1cb40b1ZM9+4Ou+mxZh+2Nx/aP7I4Er0+armHHJnLWSflhTutut7yZowHJnfuS5fxhw9xbrP/JkyfL356fJhdp8HTIwE7yw+KtMlSrnu7RijC5gXi9DWFTb/AaLv2uRFsv3OI9h96sL6ydBV0+++wzqdOkhbtQq0PnbrrMurl9tPB+7bU5lPTdav0tX7u3yrbtFg73lof9uL/rrpU/eQ3IvxLXvvvNsGGz3hqg/oW8++8nZczw/P2BevXq2yS6xr6Hu/XoJyPH/szNr91u+J0P58lvJp4kJ2p415oT3b/6o/1nI2XoqQ+KX2+v2bhJG729bye3j5G6bY87aNKoSSt3C/FDvcuutByt8rPP3Qp23cYMydNSvDk5eZKb55OkpDr6SPJ6dcPJ1lsNe/MV6nDohbec7M8FKw5IvexukqwnvS857TTp3r174d5Df0cbXqiHYl6Y7f333S5dO7bQ9Xe5q5DWtmVDvdVljlZF266/LzpL/fqLZf6yNL01c2fJyMwPjNfRSsXt2rXIv536h+/Kb26/uJixVF6nSOt3aYZuRiOOPSW03Au/x9aR7GDTEj9nhd/H3wgggMDhJGDbUDsIfP99i+XHVfvl7FMGSqdDxS3se9C2he069pRhh/ZXqnLewr+77LXtY9oF47aPuW1XnqzdsEPatm3nvuOtW7TvQfu9ZPtUq5b/ICtnr3UXoq9dv18GDz9LrJs13nfdh1MWunkOny9rl3GgIdv/cBReHxEC9rkL/xyGz3Rx3exzZXcX+ezrVXL8SN0/1YsJbX/XLpJs3aaD7NwjEfepvO2P/Zb85+sLNMA7UNq0bix7NqbrfneyvPN5qlx3RcfwyXDbpNffXySXXXmz24cvzbGR8N8MNjA7FhVrx09sGztv4Ypi736yTreBXfqNLuBxOP1h68nq1avdw530LfR7xtYH627NCadJ1G384TTPTGvsCdhJ+7df+aP+1m3uzhlMvGyMTP1mmaxN2SLL122Rb75bJQOHnCCDBw0L7TPE3lyUfopK81t5/PjxUX8T25is0tvddz/iRurtP9n+oR0XCW+K238KP1dix1vsYe7WrNUwtaTrnZBSMyU1vak8dO0tET//hfcNu3aKk9TUzbInq2GBfbzwaeI1AgjUnIB3vsA7zm1TEr4P9ls99lhdjW27rrv6nKgXcdp02PHs0mwzq2uaGQ8CCFRMIPx3rZcZKW6Itm9TVZmR8PF6+1KFj0XZOS3b5xqkx63Ct0X22s7hffnVO+7cq+1/edtS2we6++67Q4Mv7jd7qCd9EW4T3r6srytrODZeG1a08zSjhneXiydO1ovHuhQ4Pxo+vZbJsczNivV7xGyHqpPlg8zVzuHZMYQLL725wLybrR0PteOOOw8elPT0NIlLbCoNG7XT4w1HF1gO4eOKhdfeevHiiy/KvuzdYvvFtp4vWpsgx590dkxPeyz41fZpiLut913/W+xMaugxvos+IgR5Fy9e7IKbs2fPFrt9S+Fmy5Ytcu+997oD7xZqsKpV1lgw1aq4/u1vf5Pnn39ebDh79+4tUhlr165dLlAyY8YMd7LhhRdecFVw7b1W6TUuLs6N/91335X+/ftLo0aNQpNgwdZXX33VDf+xxx5zJditeqyt/MnJBatLvvHGG2LDbtxYDzLu2SP//Oc/3XDff/99V1bcwqoWSLXGhmEh2alTp4oFBTIyMiRFKwLbyQWramvVar3mvffek+eee04efvhhF65YtWqVC+Q2aKBp0lI2Nl3ffPON3HTTTRGNvcGYiV1t0KdPH/nXv/7lpt+63XLLLQVcrN0TTzwhCxYskKuuuioU/rX21ti8Wvf9+/e7CrxelU07kPv111879xtvvDG/50P/2nI1V6voO2fOHDfO8GCD2Vm3zMxMsS+2ymyy1wYle3ZQgrtKHqpPM3IJQ/2S2M1fcs/0ERMCTZs2leUr1klmxibp2/OnKnLhE2c7RDf8+p6IB4bC+yvPaxv/G2++KyeP7qS3KK0TcRC33vcfmXDdrVUy/ogjrMaWu3fvlv1pq6Pa26Rs0Vtvv/TWAve5r8ZJqzWjGj58uFYKTdRKiVtkp140E1e3vdRp1M1dbRjthHatmXlmJOYEbJtn+wH1G7V262RS/TZufTxl3IVi62osNm5/7+UX5NLzh0uTxvXk5OP6StbBoGzcmiX7srRiamJdOf+MobqtSpe4Ou2K3ZeKNn+ey+TPv5JFK7bLvn375GB2jl4pmyofTF0h2/c1k8uuyj8BbcPw+p/0ySydhoDszdgt709eJA3qxUtzva11+/YddV80P2j8w6L1Mmfxfhl3xrkV+h6x7YVdWDXimDHSuWsv97q4bcgXX86UuOCeqNt3m67dmc3k/PPPj8YSsf20adPkqB71pGO7n4LKkXr8aOrC0PIo7LVs+WrZujtXZs3dKKs2x8tDDz3k1r9vZy+Rb2bMlKbJ9UIX99h30D9enS2nnvULN882rk6aWnrnvcnStkVCqD9vGmZp9auN2+Oka8/h7vtrz95MN55MrSD15YzFcs2lo0Pf99NnrdBbk7eVFk3rSYP6ifLp9BQZNaSNxMf5JT4+MXRrn93p+6Vu/WT59odNEkzsUKyZLRNvWdlnyh42/1XV2LDr6bSlpKyVjVv2yjo9qWm3R47TeVivJ9d2pMfJ1rRE2bM3R04/+Whp2aKZ/h5qos8tNeBbXz6e+qPefijNLYOqmsbKGm605W7r8mvv/SiXXPGrCn3GKms6GQ4CCCBQlQLedv+/H0yXrXo8Tu8w7U4QfP3tSlmWkitnnHtV6PuyKqej8LBtumw/xX73bNquwcD67aRj16PloosuKnHbbN+btn9j7x0y/AQ5eujIAvMQbZ5Xb9gn81fkyc+vua7EcRSeXv5G4EgWsOO7/37rI2nYIEn3CZtIXjBJkurUl6R6TeXeh9+XiTf8IeJnyj6L9lty6art0qBJR1m1bqds2pHgTuJ17TFIVq7eJLafb/vvq9Zuk/c/XykDh53pjjObd0nHRrzhW2Uaf0J92ZURL8vWHpAW7QbF1PET2ye9864H5Lorj4u6Gv39hS/k+pvuqNLfAVFHXkkdbHnY9jna7xnr7j0qaZQMBoECAnYsyI657N6VKiOO7uq6de2k1XcHdtE7M6XIaj2W8OdHniiwz1BgALXwj2i/iW1WC/+2t8+nHSv4ZuY8t2329hlt/+njLzfIr35zW9Rt/WOP/13OP71/6NiJuTt7DVrYMbmlq1KlV/+xxR4bsfF7+4YNkjvL/oN15eLxVx5Ry6sWroLMUi0VsM+r7ePFwj6YTcvUqZ9HPOZr/OU9nl1LFx2zhUCtE7BtgJ3XatMsr8h5H29m7Y6Mth8SKbfm9VMZzzYtti9lx9/8fp/7vWvH3hatSNeiP43F7nZj/YQ39vvJywPYb1rv96ztA9nvqtrSRNsntQtan3x+ulw9fox0aNc64uzaXVctczNg4FBnm1i3scz87kfnaufwWrQbHDqGED4As7Z9y7Ydeklys45y8qlnyukVPOcaPvyqfG3rhXde3vaLu/Ya7o591qZ1oir9avOwfann7csvvRRtLjX8WPfiOKl/UpyWMi3Y0/bt20O3U1++fHmR2+5ZFdbf/OY3cuyxx8r06dPdmy1Rfv311xcc0KG/rrvuOlfNNT4+v1CwXb3dt29fF461RLoFdr3GArdWLbZXr14uXGuVa73KsjZdVjnN2hVuLGhrIVz7QHjNNdfo7c01aGoBVQv/Wqg4vOnSpYsblr3XqtJGq765cOFCF6Q9cOCA2Ly8+eab4YNxr20Yn3zyibv1b5GOEVpYONiCzxYKPvPMMyP0IS5Q7F0tMWvWLBk6dGiB4LEdhA1vbPptPj788EM5Ta+aL9zYLcusmwWCLTBtzTnnnOPCyo8++qjcfPPNhd8iO3fu1Ioq+UHLefPmFaiSbGHA1q3zN8ibNm2Sli1bFnl/uVpoFd59n+XKgXf1RUbJQ/B39Um9S/xSZ7CuyzSHjYAF4G+96SJ585nrikzzgsUb5Jl/L5XX/v1BkW6V1cIuNtiZMll+9YsTiwzSxv+7h75yFauLdKwFLazK9mvP3SdP/PGSqHPzzkfz5Iu5OfLKK69E7YcOpRPwLvYoXd/0hQACnkCfnu1kzuSfrlj12oc/P/zUp9Kpz7kyceLE8NZlem37b7Zvap/VJNkiWTl1XYWp008/Xc4444wiw7L+7PHpp5+6bpvWL5VfXtpXQ6H1pXXLxjJfv0MWr8mWEWMujPj+IgOsxBY2L++98XDU7fv465+VG2/5vzJPl1Vp6NA4RX52Vv6dG6JNsi2PxOTh7oI/r59wrx498qsem6332rrbRYBNG2RKs4ZZbr9zTcoOSTvQxl3o5w3Hnm3+vv/mXTllZAvX2vOeNG2zXoV7vZsvb3laDzYe+x1w+8SjQtWzXnl7ltSJy5Cfnd5H9mcelEf++b00bRSntxruI3Ea5PUuzFu8YrO079hLbrzr3XKZuQms4n+8eTXD3MwU6douUW937JMDgeZ6Ze85+dW0Fn8oF+lyG9S/o2zVgIWtn+FeVTyJlTJ4b7nb+nG0zocFRabMWC/9jx7nfpNWykgYCAIIIHAYCNj20PY/7DszKzvBPaLtrxwGs1OqSfTmuX/PZLH9g/ad+rrvd28/olQDoScEEHACts/9+Ucvyu9/Nc79bftUazdlyuxF+wocmy+Oyz6T9vnzPoPeZ7RuYo60bdNW/InJUffPbJ/Ve1+kcVh3rymuP6+f6n4eOXKkPPqHsW6/uvC4a/txxMLzy98IVKWAbQvuv+82GX5UA/f7z8Zl26uaOs5SlfNa2mHbtrakYyHhw/K2zd4+o+0/WZgg0jEu732///3vJTl+dcRzJdZPeY8necPnGQEEYlcgFvbBbLv1/lv/T+64fow7vu5p2T7WlG931Mhxdm8aeEYAgaoXsG1AVZzXKu+U2/TYOcNAdrqs0bsT2O/T8HNa0YbrbU9j8fdstGkuS3tzsX3SwudpFq1Ik3NPahdxP7Lwb2UbhjV2fLO0rmWZRvpFINYF8hOzxU2lBiRzNwQlb49WCmyi5TzCGgtknn322S70OWnSJLn11lvDuoq89dZb7m+vCuuOHTtCIV4L+FpI1EK7n3/+uau8++yzz7qKHIWvkrBgrYV4ray4dbMAr1cht8AID/3x97//3QVvbfqsum7v3r1lyZIlLiRs1X1vu+02+eKLL4q89emnn3Ylqu0qCavO+84778gjjzzigsI2TLtFmAVrLbRswV8LK9j02Dis8arX2vxYiNfGb+G2Y445RuxWU//7v//rrP7whz9EHH/hCbIKthbitWbQoEGFO4f+NktrrPquhXhLapYuXep66dixY8Rerfy4NStXrgx1P+qoo1yQd9GiRaF24S/MxGvWr19fIMhrV0FYmHjz5s1i7z/ppJO8Xiv0nKfVK/N03ZSCueuow/RrliOuWcF1OGrPdIgZAfty3plRRyZ/uVjGndC/wHQ9rNV4z73oVwXaVfYf9hm/f+okWbBkowzq16HA4G38EyZU7fgLjLCa/7Bwvt3GoLhmzXq7NXftuVKsuHmt6m61dYe9qt0YPgKZB+Nl64490rqFXn0WpVmweKNcdX3Ru0dE6T1i6/ATGR9//LH07Nmz2BPM9pm2h/c+e8/6Nd9Kqlbgrp+0RXbod9vxJ10Q6h5xpFXU0qbpjVf+EfG7zb7v7HvXm+6yTEKbNm1kzbLZpXqL9RveFPYK72avrbvtj5uj/YgP1GsvScntZUKEC91s2oN6K+Al5q0VCbt3FvlxRUAuveKXofkqaf66dW4pb7+/1AV569dLkisvOEpue3CKnHViZ2nVIv9OHTZdaemZsjd7R7nNbBhV3YTPq/nZgSK7HtwuEjRXa266aYU74L1gySbJPBjn1s9wL9dTjP/jLXdbP5IaxMvqlID0HXRq1JBIjM8Ok4cAAgiUW8C2h/Yozf5KuUcSY2/05tm+4+wSXO/7LcYmk8lB4LAQsOPMK1askCUp8W5f2n5vtes4WC+ei1xgItJM2WcyvAn/jJb0+axo9/Dx1sTre+65Rx7+293uosnw36j2O+uV//4o1p0GAQQqLmDbCvvNar//du3doRcJtNHKrq1k+Ohhod/9FR/L4TUE29aWdCwkfI68bXNZ9hknTJgg10+8VEaPKHqupCLHk8Kni9cIIBCbAiXto1XHVNt2ywoQPfXSl3KhFiRo3bKR2HH/z79J0XPFNx2x2//qsGccCMSCgG0Dop3XshxJec9rlXfebHrK08TC9rQ8013a95iL7ZMWPk9z7kU95N+vPlPkvGSk38qerfdc2nHTHwK1RaDkIK/mJPPWBCVnQ0CDvEUrmV511VUunGrB1fAg7xY9aW6hWWusOq41VpnVgrEWkrVwr8+XH6q0SrozZ850Jxm++eabiOXOrSqmjas0jVWntfFYtdk+ffq4t1g7C5PaVfE2XRaSrVevXoHB2UbTwsdeewvPWvjUQrvfffed67dOnTqu8nCLFvkVvpo3b16kEvGUKVNcv1deeaWceGJ+FU8Lwlo14pdeeskNPxAIaKl1f4HxF/5j165doVaFq+p6Haxyrv3Qtu733Xef1zrq89atW0MVh6MNs3Pnzu79XojY/hg1apRYNV6rDGzLuV+/fq4f+yc7O1v+8pe/hP5et25d6LX3wrMMnyevW3mfc9YFJG+tvlvX0RIbXXX9bXwS15wgb4lWMdiDHeT+92v/1Fsl5Ie07ED4Qj0Avj09SY477rgqnWLbLozXg4Kvvvu0brNEBvbtINt2ZFTb+Kt05koYuM37fj1hY/PbqkWjiH0v1MDPdb/6ZcRutEQAAQSqQ8ACtVZ5LfwkaeHx/rg8rVIDHdHuklB4vOF/23tWruzhLpSykMm1l53pwsDh/VTna++7rY1WB/a28QuXbpRX/7uw3CeX7Xtj9lcl3yZh2/YMOfmc/ABpWefZHEvjH+5t47j2hJ7Fent3jwifnjXr00N/du/URAb2aSXvT1krN1zxU8XhTVsz5OOvv1GzB0L9xvKLaHZPPfWUfPTRR6HQV02vn+U19NYPuyDxBB2IbR9oEEAAgSNVINo2vzZ72L4IDQIIVFzA9g1tf8oetj9VWftUR8Jn1La9zz33nPz34x9k1PDuoeOIj2gxgN4DTinVb5mKL0GGgMCRIeD9/rPfspW5rTqc9czEO/Zk81HSsRDrpyz7jLYdP+u8y/XY0ZTQuRIbhh1PmjJrW7mPJ9kwaBBAAIHSCNgFBU888YTb5nTvEpSFy3Klz0D2sUpjRz8I1AYB77xWeGbDCv28N2Uj+yExtIC9/fTC52ks4Dtl5n/dfqRNrp0r/Ndbs/itHEPLjkmJDYGSg7w6nYFNGuRdFZTEHkHx1ysYhLSwbMOGDWX+/Pmucm2XLl3cnH3wQf6t7sePHy/JycmuXa9evcQekZpTTz3VnTjeuHFjpM5ywQUXRGwfqaVXAbhwtyFDfjrpbtWBO3XqVKCXc845JxTi9TpY+XML8lpF3dI23nBfffVVF0o++eSTXeVhCzBb1dzSNjt37nS9Rgvc7tu3T2644QbXz//7f/8vdIvf4oafkfFTuKK+3to5UmPL0xoLXnuNhSUtjGwVde31gw8+KMOHD5eUlBR54YUXZOrUqV6vEhenqdlCTbNmzVwbb54KdS7zn4H9QcnWdTKwpTQpXhGf5j/j2vqKrL9lHjFvqBGBs846y1258/nM99z4G9bdIqm74t0OWWWdTChuxmz8VnX685lLJT6phXzz7fJqHX9x01bV3S6++GL57yc/yA0/P77IqH5ctkm27k4Q86FBAAEEakrALhb6cel6GTWse8RJsG3VmDFjInar7paxdGLJtt1WweDbhenStV2GbNeLNiZ/tVZ69DuxQtv11et2lMhq/UQKzpb4xjL2UBbv/P2JtNAYWjZvJNt37g/9bS+sKu//PjFdVqxLl/i4fdK4UZJ89vUGkcTeFTIrMJIa/MPWidrynV4d+4c1uKgYNQIIIIAAAgggUOUCZdmXrvKJOcxG8PDDD8v99/1W9udsk8XLNsveLC3mkdhB7+o14TCbEyYXgcNDoLb8jq0s7arefluhn9/9LlXPleRv41q3aS2fTlssZ15wQ605plBZy4LhIIBA5QvYNu4f//iHKzJnQ792bM+o2ZPKHztDRACBmhaw/T4vs+H91qrfuK2Mv/w69kNqeuFEGH/h8zS2/CzM62V+9mb6pXXHYfxWjmBHqyNboFRBXjkgkrNEw7z9g5LUu2CQ1yrUWqVcu1J/0qRJoaDqf/7zHyd7+eWXFxC2SrjWzYIDlsC3Cq0W7ty7d2+B/sL/aNmyZalCquHvsWDx5MmTZfbs2bJhwwbZtm2bbN++PbyXIq8Lb0isB69dbm5ukf6jtbB5tivvrTKthYMtGGuVee3KA6tO7AWbo73fa++FXps2beq1KvD85z//2c3T2WefXeqrZjt06BAahpm0bds29Lf3wgtTh4euGzRo4DwtlGyVem+++Wavd/ds68CePXvcOhCpukJlB3mzU4KSu1RDvLpulqbxt/dJvAZ5aQ5fAVvP7YvdGrvF3y9vPKdaf5zdfvvtYhcobMvSItB186p9/DW15CZOnCgXnHtSxCDvp18sElsuNAgggEBNCtgPv/vvviHidsqmy7ZVvXoNr8lJjNlx2zbevlO37l0r3/ywTbr1PUHs+668TWnDudt2ZlTrd3hp58cq0HtNjy4tZc++XNmmYd5WzfMvfuvRuamMHtpO1m/JkZVrUyXeH5CNuxrLa6896r2NZwQQQAABBBBAAAEEEDjCBeyY+vjL8+9eZccS7e9HH63e45hH+CJg9hFAoIoFvONJbhsnLdzxJM4TVDE6g0cAgQICbHMKcPAHAkeUgJfZ8H5rnTiO31qH0woQnvmx38rhmbTDaT6YVgSqUiBeLMpbioxqYJ1WQF0UkAQNRPobFAxEXnbZZS7I+9Zbb7kg75YtW2TGjBliAdyTTjopNP0WELUgq1V19Rqr4Gsfzrlz53qtKvz8zDPPyG9+85vQcGw6LEjap08fFyAOdSj0wu/Xq+MroWnTpo3MmjVLT+q/Jq+88oqbXws52+O6666T9957r1TB26SkJDc1kULEFrp45JFHXPff//73LhAdadKt8nBCQoI0b95cbP7q1q0rVuF38+bNYssjUpB3/fr1blCFA7ktWrRwy9VC2PawQG/v3r3llFNOEavM7G1ku3cvWhEvJyfHDTM+vnTZ8Ujz4rUL7NN18ceABNaXrhqvreNxXXySQJDXIzxsny0YX5NNTY+/JubdPtd1G7SWL2YulxNH9Q5NwuIVm8Wf2FwGDBgQascLBBBAoCYEWrVqJb64urJ9115p2Sz/rgLh07F4eapcfR3bqnAT77Vt4739t76Dlrv9Oq9beZ5tWLYsSmoy9hf8LVFS/9XR3X4vrFo5u8CoenZtJatSdoeCvNZxyFEtpf+AoyWp7lqtWD/fXbTnGRZ4M38ggAACCCCAAAIIIIDAESvgHUP0no9YCGYcAQRqpYB3PIltXK1cvMwUAggggAACMS9g+yDsh8T8Yoo6gSy7qDR0QMAJ+H3NSimRqVV55wcke1VARP8Pb4YOHSoW+rQwbkpKSuh2Bj//+c8lPLj54osvulCr9TtlyhRXhdcCqRZ6feyxx8IHWe7XGRkZoRDvvffeK6tXr5ZNmzbJwoULXUXZcg+4jG+04LBVrZ03b55YsPnll1+WwYMHu6Gcf/75sn9/wVv1Rhq8hW+tsarFhRsbrteMGjVKLDwc/vC6DR8+XNq3b+8CuF67gQMHupcWxI3UmJU1hYO81s6qC1vlu0cffVQ++ugjt9wsxGvVfa0CsTXhVX9dC/3Hqy5sIYkKNbruHVwRkNyF+kIro5am8bUQSdAgb+EAemneSz8IICBy9913y5PPz5SlK1Mdxw4Nyz361GcyaPg5cu6550KEAAII1KiAXVQ04Ojj5P1P5xeZDtturd8SZFtVRKZoC3OsjMaf2FTseyJaY92OO+64aJ1rrL3N/46d+wqMv2+vNrJs1c4C7bKzc6VB/QZy5skDpEnjetK/f/8C3fkDAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBsgr447ppRaxSFsUKaKHWg3M1RLmzYCVUn88n11xzjRu3VZ19++233evx48cXmJ4vv/zS/X399dfL2LFjxas4ay29bgXeUI4/5syZ495lgdM//OEP0rFjx9BQvIBqqEUlvNizZ0+RoaSmprpQa3Z2tutmod5LL71UPvvss1C/ixcvDr2O9sLeZ8327dulcFXexo0buwrDVmU40sMbplXfte7h1l4FzYceeki8afT6nzx5ssyfnx+Esfd5zRtvvOEq7956661eqwLPFpq2ZsSIEQXC215PFvS1pqJB3tztWo13tlbj3egNuYRnXbfjevgkXoO8NAggUD4Bu/jgpNMulI+nb5J3P54nk6askH05zcTa0yCAAAKxIGB3PHjp3zNlx+6CAdIX35zJtqqaF5DdwWHl2vz9vkijnjlndYUr/0YabmW0W7mm4HRfM360fPTF6gKD3rf/YOjvVSkZrF8hDV4ggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCJRXwB/fWwOOyaV8e45I7oKgHPwhTwJZBcO8Xmj36aeflq+++kqOOuoo9wgfcvfu3d2fn376aYFgqr3n448/Du+13K+7dOni3rt3715X6dcbkIVrr732Wu/PCj9bkNaaqVOnumq04QO0cJvdWubXv/51eGsJr4BbmqpnXpDXBrJy5coCwzrzzDNdlWELJ0d6eD3PmDHDdbeArddMmDDBvbQKulZZ1wsJW+XgO++803U7++yzxbO0FmPGjHHL9amnnpJ//vOfrh/vH1t2//rXv9yfd9xxh9c69BwMBl21Zmtht78ubxPIDMqBeXmS+6Oue7oulqbxNdFqvLqOx7fwl6Z3+kEAgSgCd911lwwYdrZ8/t0B2R/sJn/961+j9ElrBBBAoPoF7OKjNh36yKTJC0IjX756i6TvS5K+ffuG2vGi6gWs2u6yVVuijmjFmq1iYd9YayJdbNarm+63+uJk5269NcmhJjEx0b2y9atVu15ea54RQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBAot4A/sbdf4rprmLeUBUuDO7Qq70ytiroiIJL303jbt28vJ598sqtEa20nTpz4U8dDr372s5+5VxZ+tUDnOeecI/a+W265RXr06FGk//K06Nq1qwwdOtS91abn2GOPleOPP146d+4su3fvLs8gI77n6KOPDrXv0KGDq0S7efNm1+722293zy+99JILw1599dVuXq0KsTU33nijeEFg1yLKP/Hx8TJu3DjXdcGCn4IpUXovdetOnTrJAw884Pq///77nc0ZZ5wh1t7CxlbN+OGHHy4wPJtHL+RrAeUhQ4a4ZXziiSeGKpFdfvnlctZZZxV4n/2RkpIiFqy2ZtCgQe65zP/oupa9LCDZMwMS3FXKd+s6HdfTJ4k9/eKLL+V76A0BBKIKXHjhhfL666/L3Xff7Sp9R+2RDggggEANCNgFBt/O3y0ffLZAZmnV15femic/Gz9RbNtFU30CFqr+YPLCqCNcsXqbWNg31hqb7p279xWZrF7d28sHU1e59tk5udJA95OteVErQNuFbjQIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAghUVMCf0NYvCUf5xCqXlrYJrNHKqNMDkrNRw7xhhXmvvPLK0CAuuOCC0GvvhYVS33nnHWnXrp0Ldk6ePFmysrJcVdibb77Z9ZaQkOD1Lj5fKdPFoXfkv7CKv15oY+7cua4yr4Vop0yZ4kKq1peFZL0mLi7OvQxv53Xz2nnPXnuruPvqq6+Gqg7Pnz9fMjIyXOeLLrpIbBosEGDh3jfeeENsXq3CrVW0LUslSy8Ya5V1y9P4/ZEr0Voo1wvrbt++3VUWtuEPHjxYpk2bJl715PBxWvj3ueeec4aLFi2SV155Rbzpuvfee123SMvsu+++c4OxIHdSUlL4IEv3Wtex7PUBt84FUkr3FuvL10yr8Q7QarxtIhuUfkj0iQACCCCAAAKxLmCVdy24+/6X6fL+F1ulZYcR4l1EFuvTXpumr3nz5lrEto7sSisairV2M+ZsitkqyTvTc4ssiomXj5YX384PJu9O3y+JCYmycu022bknPiYDyUVmgBYIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAjEv4MvOzg7mbA7I/nfzJPdbTUyGVdktdurriySO9Uu90+MkvlXZA7fbtm2TgwcPStu2bQuEaosdZxk75uTkyMaNG6VJkybuUca3l7r3/fv3u9BxvXr1irzHgsqpqalit+u1SrdlbTZs2OBCtfZeG065grDFjDQ9Pd1V4d2zZ4907NhRevfuLdHCv95g8vLyZM2aNbJq1Sp3a2QLNRdXYfi8886TTz75RF5++WW59NJLvcGU+jlnS0AyP8mTnG90/fzpzsbFv1+z2QljfFL/fF0/CfIWb0VXBBBAAAEEapnAkiVLpF+/frVsrg6f2TnllFPk9olHyahh3QtM9AefL5QPpu+RN998s0D7WPnDpvuFh0+Vpsn6QyesOf2yJ+W+Xw+TZo3jxZeQLA8/862cP/63cskll4T1xUsEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQTKJ+CCvBbezfw2T7I0zBvcXPoB+ZpqmPdkDfOeECdxzcoe5i39mI7sPq+55hp3O/v33ntPzjzzzMMKwwLbHTp0cNWIFy5cKHXq1CnT9OfuDErmtDzJ/kKrP6eV/q2+DiL1LoqTusM00ZtfcLn0b6ZPBBBAAAEEEEAAgXIL3HjjjdKvY4b8/OJjCwzjzgfflb5DLpCbbrqpQPtY+cOCub+4oF2RAPLSVVvk4b99IGOHtdT9yvryzpTd8vXXX8fKZDMdCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAKHuYDfTb8GHZP6+SVhiP5ZtKhs1FkM7hbJ/iooWbPyJC9dq6XSVInAn/70Jzfc++67T3Jzi97yt0pGWkkDfeihh9yQHn/88TKHePPSdN2aoZV4vy5biFe0iFriML8k9tb1mRBvJS1JBoMAAggggAACCJROwIK87366VNL27A+9Yc36HbI9zSdjx44NtYu1F8cdd5ysSdlRZLL69mgjZ582VP709ByZNjcoTz/9dJF+aIEAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggEB5BfKDvPruuCY+qTPCL3G9tLJuqG3Jgw1uC8rBaRq4nKlhXg1e0lS+QNu2beXvf/+7NGzYUObNm1f5I6iiIaalpcmCBQtkwoQJZa4knLdb16lv8ivxBovmKaJPsWV3+/gkSYO8cclUiY4ORRcEEEAAAQQQQKBqBPr37y89+wyXj6YsCo3gnY/myoCjx4p1i9XGpu2dDyPva//srCHStlVjmTRpUkzPQ6zaMl0IIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAtEF4sM7JXT2S9JoDVDuyJPgpvAuxb8OpmqY93PtJy9P6o6Kk7hmBCiLFyt711/+8pdij8OpadKkiUyfPr3Mk5y7M78Sb/YXAQluLdvbfe21uvRorS7dsQxp9LKNgr4RQAABBBBAAAEEShCwqrz333uLjBmxUyvzZoo/vrF07dq1hHfVbGfbd7VpjdSkZ2RK6vYDkTrRDgEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgQoJFEg7+hI0BDnAL4mj/OJLLttwg1s0zDslKJlf5EmuVumlQaDMArra5GwJSNY0rcQ7pRwh3ib5Id6k/rr+6rpMgwACCCCAAAIIIFAzAgMGDJDzL/qFvP3JCnn53ZXS46hxcvnll9fMxJRyrDbNqduzZI+Gdgs3M2evluOOO65wa/5GAAEEEEAAAQQQQAABBBBAAAEEENlegRsAAEAASURBVEAAAQQQQAABBBBAAAEEEECgwgIFKvLa0OIa+6TOSL8EtCpqzkxNVpah8FRQA7zZ04IS3B+UuifESUIHzQkXiApXeHoZQG0VCIhkr9cQ75d5kvO9rndpZZzRuiLxw3TdHeGXuEZUhC6jHr0jgAACCCCAAAKVLnDFFVfIK68E5ILLBsrAgQMrffhVMcCzzz5bZsxZI2eedFSBwc+cs1rGjDmnQDv+QAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAoDIEIsZsE9r4pY4GceP6ayCyjJVNg7s1kPl1UPZ/kCcHl+ZJ8CDVeStjQdXmYdg6cmBxnmRO0hDvN+UI8eo6Gj/AJ3WPj5P41hFX6drMx7whgAACCCCAAAIxK3DVVVcdNiFeQ7zyyitlllbfLdzMnL1Gxo4dW7g1fyOAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIFBhgSIVed0QNb+b2M0vwVODkpkZkMByDVdqxdRSN/tEcrWqamZaQPKOF0kaqFVStdIvDQKFBfLSg3JwQUAOTM+TwCrtmlO4jxL+jtMq0r21Eu+pcZLYRUO8rGYlgNEZAQQQQAABBBBAIJpA48aNZdGKHZKxL0saNdBbPmizaUuapO/zH1aB5GjzR3sEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgdgTiFq+1KcByaQ+cVJ3nF/83XTCo/YZZaayRfKWBCVrUkAyP9dKqxs0CZwXpV9aH3kCui7krNd147M8XUc0xLtMCcoa4tV10t9dpI6uo0m99A9dZ2kQQAABBBBAAAEEECivwKBBg6RTt8Ey+YsloUE88tRkueeee0J/8wIBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIHKFPBlZ2drud3oTSArKAfmacXUjzRsuU77K7bvKMNpJBI/wCdJx2rgsrcGgxtQNjWK1BHROrBXq/AuD8jBmQHJXaQr1N5yzLauQhbirXtWnNQZ7BdfHdapcijyFgQQQAABBBBAAIFCAvPnz5fbbr5annn4EtfltMuek3Xr7IcQDQIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAApUvUGKQ10YZyNQw71wN836iYd4Ua2Fty9jEa/Cyk0jCcL/UGeKX+LYavtR2NEeOQDBXi+5u0gCvBsNzZgcksFHnXduVubFKvF21Eu8ZGuLVdclflxBvmQ15AwIIIIAAAggggEBUgV/96lfStN5O171Tr1NkwoQJUfulAwIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAhURKFWQ10bgwrw/aJh3soZ512iLvHKO1qrz9vNJ4lCtztvXL3FNNYRJDrOcmIfJ27Tobu6uoGQvDUj2HK3Cu7ScVXhtduM0xNtDK/GOi5OkQRrircfKc5isBUwmAggggAACCCBwWAk8//zzbnonTpx4WE03E4sAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggcHgJlDrIa7MVOBCUgwstzBuQvJUaxswp58xqRVVfa58kDNJA72B9dNNAZgMCmeXUjOm3BfZqgHe1VuGdH5RcXXeC22xFKuckJ2iOt7dP6pyuVZ37a0XnOqwz5ZTkbQgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggEAMCZQry2vQGD4ocXJYnB6ZoZdXFGubNqsBcJGp11U6HAr1H+SVBX/vrEs6sgGjMvNUqOOekaIh3UUByNMAb2KCTll2ByaunlZyP0hDvKVqJt7eGeHXdoUEAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQOZ4EyB3ltZoN5Wox3TUCyvsiTnHka5t1TQYK6Wmm1qwZ6B+ijrwZ6O2igtx6B3gqq1sjbXYB3gwZ4l2rQ+8eg5K2rYNjb5iJZJGGoT+qeGCeJXbScc1yNzBojRQABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBCpVoFxBXjcFms/M2RyQAzMDkj0rIMGt2lbbVaipnx/oje/nk0StuprQUQO9DQj0Vsi0mt4c2KfhXa3Am7NcA7xLDwV491dw5LrofW1FEo/1S51Ruj600RAvq0MFUXk7AggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgjEikD5g7yH5iAvLSgHfsiTg18FJLBGW+ZUwqzVE/F30uq8fXwS30NDvVqFNS5ZE5ya46SJIYGAiC3/7HUByVkVlNxlQQmsr4QKvDaLiRrq7i6SdHycJA06tPxjaNaZFAQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQKCiAhUO8toEBA8E5eAKrc47Q6uxLtQgZ3pFJ+vQ+zXM6deKrHG9NNTbXSuydtFgbyuf+JIoy1pJwuUajC3vnG36WKfh3dW6zFcEJbhFB5VdrsEVfVMTkYSBPkka45eknn6Wd1Eh2iCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAQC0QqJQgr3PQ6qw5WzTMO0ers36r1Xk3atvcShLSSry+Zhro1SBvXDcN9XbWQG8Hv8Q30UBvXCWNg8EUKxDM0+q7uzW8u1GDuyka4F2j1XfXaoA3Td+my75SmnirxKwh3mP8UmeYBrdb64KnCnOl0DIQBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBCIPYHKC/IemrfAPq3OuywgBzXMm7fkUNCzMue7rmY722igt4tIfKdDgd52+ncjDfUS+qxMaRfQzdujod1UfWzQAO/6oOSt09ZbtOrygcodla+pLs/+PkkcqVV4e/vFX5+qy5UrzNAQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQCDWBCo9yOtm0KrzpmqYd35Asudo5dZ1Gvw8WAWz3lAL8rb3ib+jhkD1Ob6dVunVkK+/sU98Wt2VpuwCQa2inJeuwV0N6+bpMszdqM8bNLy7SZfhvrIPr8R31NH8dVcN8A7zSdJgqvCW6EUPCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCBQawSqJsh7iCeQFZTsNfqYq4HQhQEJbNUOeVVgZ8VbG2ggtK1W5m2v4V57bq3B3lb63FyDvXW1Bwq8RobXfK4tp7wdGt7dps9bLcCrj02HKu9aeFf7qfQmzpaXBrAHagXeIX5J7Kbh6zospEp3ZoAIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIBCzAlUa5PXmOm+3hnmXaXVerdCbuzQowV3apSrCod4Itcqrr0V+oNevgd64lvqwvzXUG9f0CA/2WnA3U4O6ukzydupDA7x527XdoQBvcKciHvAgq+DZMtXNNcDbT6vwDtIAbx+/xDUhwFsF0gwSAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQRiXKBagrzOICBa8TUgBxcHJOdHDY+u1EBvunapykCvjdgyolatV8O8/pb63EKfm2mot5mGejVA6k/W50ZaDTbJeq59TfCgFkHOCEogXc0tvKuPgAapAxrgDWzLf5aqqrobzmkB3ibq3ssnCQN8ktQvTuJ1mYg/vCdeI4AAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAkeOQPUFeQ+ZBnM10Juqgd4lGuhdosHSVZrkrY5Ar7dMLdhbV0OlTTVDqmFevz1roNeFTBvr3xrq9TfUdg30WR++BO+Nsf0czNZQ7n4N5+61x6Hw7h59rbbBNH3erd13HaqGbBV3qzpA7XF5Ad4eGuDtr1V4+/klvrVffPFeDzwjgAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACR6ZAtQd5PeZgjkiOBnqzlwUkd1l+oDeoYVPRyr3V3njh3mQN+FqYt7E+N9Iwb0MN8lqot54+1z/0bCFgffjraDt9+BN1auOqeIrzlEUr6wYPaiA3S8O4GsQNZmm7TH29X581wBvUqroBrbwbzLBn7a4hXlfxWPurttBuOINW2vVZ5WMN8Mb30Qq8fTTA20YDvIdJMDp8VniNAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIVIVAjQV5vZlxFXq3aaB3uVboXaGB3tUaQN2mXTXoW+ONBXw1qGshXtGHzyr01ssP8lqY11fXwrz6bGFe6y9B/9agqqs2axVn9eGzkK8NxyrTarjVvdYnF67V0HLQKuPas4Z1xR5asdhMgjnqoFV2zSHoQrz6bCFeDea6R6Y+a3hXLMSrYV6xfquryq6OKmpj899aZ727Bnh7awXeXhrgbUkF3qhedEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgSNWoMaDvCF5DbPm7gxKzhoN9GqYN1cfgY2aTLWwaqw3FtYNhXn1tVWdjdNQb7xOvwV6vQCvC/PqP9o6aAle/d8L9OYHeLVbrrbM9bkgrwvnWkDXAr6x3jTQWe7ok7juOvvd/ZLQTQO8zXR+bN5pEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQSKCMROkDds0gJ7NdC7IT/Um7tWq/SmaNXZHdpDLFTpDZvOI/6lVSFuoQHezlp9t6vPhXcTNMzr18rFNAgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACxQvEZJDXm+SgBndzd2igNyUgues00Ls+v0pvMF37OByq1HozUpuetfqwr4kW2u2g1Xc7aXi3i4Z4O2v13RZWgbg2zSjzggACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCFStQEwHecNnPZAZlNxUq9QbkLyNGurdKBLYrJV6CfWGM1XNay+8207Dux20Am8HvyRoiDe+jVbfrUv13apBZ6gIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIFDbBQ6bIG/4ggjs00DvFg32WqBXw7x5+jqgId/gLu3rYHifvC63QJJW3m2uod22GtbVwG5cO5EEDfC68G59wrvlduWNCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAwCGBwzLIG770rFJv3nYN9mqQN88e2zTUu00kqO2CGdpnbnjfvI4qEK/B3cb6aKnB3ZYa4G2tFXc1xGuPOGtH5d2odHRAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEyiNw2Ad5w2c6mCOSl54f7M3dGtCAr0hghwZ7d2qwd5cGe9O1b+2HRgUSDwV3m2tIt5kGd12AV4O7rTS4a49kn/g03EuDAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIFA1ArUqyFuYKHhQg71pGuzd+dMjoIHeQJoGe+2hod/gXn1Xba/am6Ch3Qb6aKLh3CYifns01bBuC31okNc9rJuGe2kQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBKpHoFYHeQsTBjWwG9inoV4L9+62QG9+qDewRwO9GRrsdY/8cG8wU999uFXvtcBu/UOh3UYazG2srxtpaLexVt1N1qq7Gt71a2DXPTfQ7nGFhfgbAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQKC6BI6oIG9E1DwN92ZqsDdDQ7179LU922OfBnv360ODv+5Zg73BLH2dpUM5oK/1Idn6qK5qvvE6Lq2Y66vjE6kbFF9dfV1Xw7j19NnCu/X1tT77G9pDA7sW3tUQb5w9a39CaFcBaRBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIHYESDIG21ZBDWsq0HdwH4N9drjUJA3/9mCvBrqPajP+rBAbzBb//aCvRruDWpA2IV87dmGpQ8J2Gt7oY1fw7X2vz7s2QVtNazrquRaaNdeW3A3UQO6+ixJ+toeGuS1EK/fArwa0LVnv4Z47eH6s2HRIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgjEvABB3oouIqvom6P53IMa5NVnydVnq9JrYV57WHjXBXj12YV5CwZ5XYjXr6Fce3gB3nhN4x4K8vq9IK92p0EAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQqD0CFh2lqYhAnFbE1Ydopdz8xnuuyEB5LwIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAbRegzmttX8LMHwIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBATAoQ5I3JxcJEIYAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgjUdgGCvLV9CTN/CCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIxKUCQNyYXCxOFAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIFDbBQjy1vYlzPwhgAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCMSkAEHemFwsTBQCCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAQG0XIMhb25cw84cAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggEJMCBHljcrEwUQgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACtV2AIG9tX8LMHwIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBATAoQ5I3JxcJEIYAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgjUdgGCvLV9CTN/CCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIxKUCQNyYXCxOFAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIFDbBQjy1vYlzPwhgAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCMSkAEHemFwsTBQCCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAQG0XIMhb25cw84cAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggEJMCBHljcrEwUQgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACtV2AIG9tX8LMHwIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBATAoQ5I3JxcJEIYAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgjUdgGCvLV9CTN/CCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIxKUCQNyYXCxOFAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIFDbBQjy1vYlzPwhgAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCMSkAEHemFwsTBQCCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAQG0XIMhb25cw84cAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggEJMCBHljcrEwUQgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACtV2AIG9tX8LMHwIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBATAoQ5I3JxcJEIYAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgjUdgGCvLV9CTN/CCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIxKUCQNyYXCxOFAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIFDbBQjy1vYlzPwhgAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCMSkAEHemFwsTBQCCCAQmwLLli2LzQljqhBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBw1Ag/jCcZiYZAQQQQKCaBSzA+95778nWTcvl+JPPc2O/4IILqnkqGB0CCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggULsEqMhbu5Ync4MAAghUicDXX38tG1fPkNNGNZGOyevl7X8/J8uXL6+ScTFQBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQOBIESDIe6QsaeYTAQQQKKfApEmTJDXlO/n5RYNl7Mhe0rtzkgzt30ieffbZcg6RtyGAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCJgAQV7WAwQQQACBYgUefPBBGTemrfTv1S7U3/mnD5aF876WFStWhNrxAgEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAoGwCBHnL5kXfCCBQgwIWGn3sscfkww8/rJGpCB//kRJgNet2zfPkqN4/hXgNv2XzRjLu+K7y/PPP18iyYKQIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAQG0Q8GVnZwdrw4wwDwggULsFPvroI5k+7QNplZwt+w74pVFyezn7/CukZ8+e1TLjhce//0C8XHfD7dU2/mqZyQgjeeCBByQ7fbbcedPpRbpu25EhJ178D1m/fn2RbrRAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBAoWYCKvCUb0QcCCNSwwMcffyxzZr4nx/SPl/PH9ZJTjm0lnZrvlDvvvFNWrVpV5VMXafw2LdU1/iqfwWJGYPN+2vH9I/bRqkUjqZ+UWy3LIOIE0BIBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQOMwFajTIu2XLFpkzZ06NE+bl5cmMGTMkLS2txqfFm4BYnCZv2iI9p6eny+bNmyUrKytS54jtrF97z/bt2yN2pyUCnsCD/5+984DToyj/+HOXRgqkkJCe0HtvAQIJCQEB6QIK0qWJIiAIIgSlyB8RVFBQQEC6IKAgVZqUCKGF3ksSIKEkIQRSSLn3P7+5m5e9N+/77u5779373t13Pre3u7OzM7Pfd2d3ym+fOecc237LfrbjmHVtQL+etuE6Q/32sH5f2ZVXXhmCNdu60uk324XFRCyR9BezPvC8CwU9aN8t7dFHHy10GH8IQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQKEKgSULeN9980y699FK76qqriiRRf+itt97yYW+88UbvIeHn8OHDbeTIkXbTTTfFnt+cAc4991wbO3asbbHFFlZXV9ecSSWOuxrzVCzzF154oa200kp20UUXFQvW6Nhjjz3mz/n+97/fyJ8dCEQJ3HfffdanxzzbcN1hUW+//ePDxtozTz1k77zzzlLHyuVR6fTLdR2lxKMyOnLzVYqeutF6w+zxxx8vGoaDEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIJCfQJOEvF27drXjjz/ejj76aHvjjTfyp9Dg+4c//MGHlShObvHixQ1HLJUV1+xJZdxYsGCBj23u3LlVI+RtiTxJQH3GGWfYxIkTy0azWoTQZbsgIqo4gbPPPttO/tGOefMxcIWett1WwxJ9TJA3ggSelU4/QRabLci0adNsYP+eReNfeVhfUzgcBCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCKQn0CQh77Bhw2zMmDE+1VtvvbVg6hKl3nzzzf74/vvv79d9+/a15557zm677TY76KCDCp7bEgdOO+00u+GGG7xVyY4dO7ZEkrFptESe7rzzTjvvvPPshRdeiM0PASBQKQIzPnnfNll/eMHk9951E3vmmWcKHm/KgXfffdfi0t9kg+HNln5T8l6Oc3X9Kw3rVzSqgf17Wd2i2UXDcBACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAE8hNokpBXUR588ME+5uuuu84ymUzeVB566CH78ssvbdlll7Vx48Zlw6y33nq26667WqXFs926dbN99tnHVlpppWzeKr1RjXmqNBPSb38EHnjgARu5+SpFL3yQF5J+UTRMqQcfe+yx2PRXHNrXCVmbJ/2Q7/fee8+0XHbZZSYmWlrC+evfbNXYpDKL5/r8xQYkAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQg0ItBk87MS4sq9//773sLupptu2igB7dx0003e76ijjmok2j333HPt008/tZNOOsmGDBnS6LyZM2faf//7X/vPf/5jH3zwgW277bbe+q/ir6mp8WHnzp1rslxbW1trv/3tb61Dhw7ZOB555BG74447bP3117fDDjss66+Niy++2IvODjnkENtwww29Rdq//e1vtu6669rhhx/uwyr9s88+23r06GG/+tWv7MYbbzSJ2iSmW2ONNWy//fazUaNGNYpXOxIzyzqoxMvKf58+fWyHHXawAw880JTGK6+8Yj/4wQ9MIuZiTlZyc/Ok8GeeeaZ9/vnnduqpp/p8S9D37LPPmqwjSyR9wAEHeB7F4tY5d999tz311FM+mH6f119/3SQe1m8SdUE0qHx37tzZNtlkE389I0aMiAZrtP3FF1/Yn//8Zx+/fqsdd9zRn5NGKF1XV2eTJk3Kchw6dKi/PlmAljVnXPsgoHt08MBesRebWfyVL5srr7xybNg0AT788EMn5C0uZB08oJc1V/rK64MPPmj/fejfNmbkGvbZ1Cdt+pTn/CXoGXPkkUdaua85ykfXr+uLcysOW94/p5szL3F54DgEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAIHWSKDJQl5Z2ZVIVRZ5//GPf1iukHfOnDl2yy23eDbf+973GjG65pprvABYQtuokHfKlCm28cYbeyu+4QSJ2eTOOOMMO/300/22hKe33nqrFwMfeuihjcSxV1xxhT+2wgormI4F8e/ixYu9GFYWgk888UQfz1tvvWWXXnqp7b777lkhr8Sy8tP5s2bNsr/+9a8+rP498cQTduWVV9oll1xiRxxxRNZfGxIUh/yFA7fddpv985//tPnz59ujjz7qRa1xQt58eVJ8ui6Jn8X9N7/5TUjC/ve//9nf//53L3y+/vrrs/75Nl566SV/beGYztWiOIOQV4Lko48+2q6++uoQzK/vueceL3AWj4MOOqjRMe1MmzbN1llnHZ/HcFCiYbnHH3/cigmAQ3itx48f71lG/ZQX/R5PP/20DRo0KHqI7TZKQB8IjFwvXrg9fOjyXmhfqpBU6chJqB+c4pL/Pj8oLuRVeKWvDw5KTT+kmbuWWPeJh2+xVQcuscG9P7e9d17TPpz+uQ9287+edB8ZTPPPszQi+dw0yrGfRGxdjnSIAwIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAQFsjUFuOC/r+97/vo7nhhhtMQtmoCyJOCVdlHTfOzZ4923bbbTcv4pUl13vvvddbZr3gggv8qWeddVZWGCxxrsLKSYganPJw//33+12JXmVNNjhtS8S72mqrmay8xjmdL9GqRLsSwEoku9VWW/nTfv7zn5uszwb3r3/9KyviPe6447xwdeLEid6i73333edFvCFsU9cS8SoNiVoV9/777++jlGhagtliTsLpN954wwuKFe6UU07x+88//3z2NFlCDiJeXfvLL7/sLYNKFC0ny8Xz5s3Lhg8bl19+uRcsB14SMMuKrtx3vvMdmz59eghacK10JYiWu+iii7zlYd1Ho0eP9gLhPffc02SNGdf2CUgcG2cRVxQURmHTOgl1r7rqKrv6r3+0R+6/0aa+9ZA9/pArQ26Rn6xwDxnYOzbaIYN6edFvbMAUAR5++GGfj5EbLWt777KJz4fyssXGK/vlxB/uYJ2WTDZ9ENFcbviQPomjDmLoxCcQEAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAASsyRZ5xXDUqFHeUqpEr7JWu+2222bR3nzzzX77kEMOyfoV27jpppvs9ddft4022shbmJXVXTlZedX2McccY7/+9a9t33339f7bb7+9F9rK0u1RRx3l/Z555hkv1h08eLB99NFHJquWwQJuEPzK+m5SJ6HfAQcc4IOvueaa3lrw2muv7dOQIDZYmf3DH/7gwygfQYgqD11Lz5497YQTTvDHy/FP1nCjaUgsK6vF+g0k7t1mm20KJtO7d2/TIgu8crKGnGtJtGPHjnb++ed77mIst8Yaa9hmm23mLR1LDC3OEtfmuhtvvNG+9a1veW/x2nrrrW3zzTf3Qsdrr73WC4dzzwn7dXV1dtJJJ/ld3QsS/8qJt9IeOXKkF3brNw0ibh+Af22GwOTJk/21SBiqJbNkU5s5sy57fXMXZDdtyoez6sNOmWEff1lrjzzyiN+XhdoVV1wxGzAapzzD/uuvPG3z57xvy3RaYl9162PL91rGlnxdH+eC+Qts6tSpNuGpF7zoP6Q15cOZPt7hQ5b3a+1P+WCWTZv9uA0fPtxy0/aBGv6FdIPoVfvRfEbPnTBhgvXpPttWX3GIu36XxkczrVvXbvbZrPnZdEdsvJKd/+frfTmMnhtNM7qdJn2dN3RQvZB3qks7uMAhiHyHDa7nUIqQOsTJGgIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAQHslUBYhr0SfsvJ63nnneWu5QcgrUek999zj2e69996JGD/77LM+3JFHHumFu9GT9ttvPy/kldBXFlm7d++eFZLKAm8mkzFZ6ZXIU07WXJWurMsef/zx3i8I/bbbbju/n+Tfzjvv3CjYqquu6sV6EuNJKCwnK8BBJCxLublO4t5yCnlllTbqdN177LGHySJuOQR14pOPUdeuXW3s2LF2xx13ZK89mg+JmoOIN/hLxHziiSfaj3/8Y29dN/jnW4upRMISGQcRbwjXq1cv++53v2vnnHOOjwchbyDTdtYS5N9z1y3WbZnOVrdolhfSfjV7uhPXdrWnXphuz7/yqc1dUGNDB/bwZT1Tt8j69elqC+bNsmU7zLd777jC5i9YZGs5AfmMOZ1MgvcpU6bYfx+6y0PKLPnShg3u4/2emPiO1Sz+xFZfuZ/V1Xa1JQu/silTP7PM4hofdnD/rn59/iX325abrWkfTPvc709tEA+P3GyYT3vqR7OsV/c6mzztZbv3zqttrbXWsg8+XuTTjop0dW0hH0MHdPJxKW+Z+cNNcchNdkJgnavzFP7Y/fvbvK8+swnPfmjPv/yhqfytumIvH1b5GNi/pw3uu6houj6w+xfSH+as7GYWf+m9C6UvbnIS8N54+wT74KPPnai3Xvgf8vrBhw3Wems6mliO/dbm/hz+QQACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgEByAmUR8io5iWwl5JUF3t/97ne2zDLLeLGnjkkIO3DgQG3GOk0nL/fDH/7QW4QtdMIrr7ziLeH26dPHttpqKy+ilXVcieiCeHinnXby1mBlqfarr77yIrgQ/5Zbblko6kb+EpQqjVy37rrr1lsLdeJhubfeeisbRJYxc53EziGfucdK2V9ttdWWOk3XLiertuVwEilLsPvUU0/Zm2++6a39zpkzxwttC8W/4YYb5j0ki7pyiquYe+GFF/xhiXllATjXBUumQfCde5z91k3gscces/vuutXWWGV5W32lekuvy3WXsHaBPTPpfbv61tf9BW618QAnLF3Ohjlx6fLLdbFePXq6+/Jr++zzqU58OsMmv/uKvf7OLC/0V5yPPny3DR3c2yRiHbx8N7f0t8cnTDLFfP+j73phcKfaAVZbW+sFwkrks8/m+bQef2a6E+pnnAB4OXvy+ek2ZEB3l3YPZyl4rg3s282JeHva3PmLrGOH2Tb383ft0YfesyeeftunHRXyRvMxqNdqXlCsfOjalixw1n+daPbRh16pP3fsLqbwZx69j2XqFtjzL01x1zPT53OVIZ1sUP/u1t9Z1V60aIntMnZlJyKuT/fGfz69VLr+Ity/kP7IEau4tJcvmH6IQ+dNdQLe8/90v2216RAn/q0X8ob4pk6dZh9M/9KmTpvjhcZj641wh8OsIQABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQCABgbIJeSUi3WijjWzSpEneIu63v/1tu+GGG3wWDjzwwARZqQ8ioWhwEgPnc0pr4cKF2UOyACtruFr69u1rEnnKEm+nTp1sl112sSeeeMIvgwcP9iJUCYu7deuWPb/Yhixg5nMS/EWdrMUGt8CJ8mQtONd99tlnuV4l7+emr4hklbdcTix33XXXrGhXguYBAwbYcGcxNFgezpeWrO/mcz169PDewYJxvjDymzlzZvZQod9fAUJ82cBstAkCW2+9tfVerpNNfe9F69C1s7umibaorv45sNF6w806dLN5ziKvBLxmi5wQt8Zmzqm1JU68/s7UjLOUvYb1WzDAhvXoZ3vuu6a/XxXn4AHL2dT3X/OMPppZH9/wldex5595zMaNWsO6d+1k/VfoYTNmL/BxKmDf3vXhdt9+JVumqxMND17WPvhksU+7Pn2zWS7teQtq7d3JX1qmdjnr0XuI9R26go0at49P2yfY8C+aD6c1tg6R51uHZQZZhy5dbPjqq/tzV1p1fW9Bd8bsxda1W61ttN4wGzKor0trsU2bkbHajhl3zfqIoNamf/a1zfyyk62x9qZ26qnbLZVuyIPSX7xwttUs+cqKpR+NY+ig3rbP7pvaioPry+8H0+otBw8dVP9xQ6bDHBsyZKBlavRb4SAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAgLYGyCXmV8GGHHWbHHnus3XTTTSaLtRJ8SgAqy7hJ3YgRI0wWdG+99VbbbbfdEp02btw4++Uvf+mFb0FQK7Gu3Pbbb28///nPfZzBiq2Ev+V2gwYNshVWWMFbrZWYWaK5qPv000/t7bffjnpV9fYpp5ziRby77767jR8/3v+eQTy855572t133503/7KUnM8Fi8WjR4/Odzjrt9566/ltibVffPHFrD8b7YPAmDFjTEuwnH3DrRNs2V711rx3GjfQdhpn9tX8esH6lA+/EX0/+dy7tqBmJdtk6+/bJg6VrGIHy9iyihuNM5Bccc1xNm/eXFumy5e20vD6NGo7dnBWb/uY4lu4uIMPetzho23O/Hrh/8gR64fTG61feP0L69hjJdt71wMapR0NlHtt0WPaXnHNxvk+4IAD7I33n7MNN1jHdhgzyAd/9e16IW0498Npn9u/H3rGTj39XH+N4ZrD8eha6YtFsGodPabt3PTlN3zI8nbacd+2wDqs5R91tR3K+iqJRs02BCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIACBNk2grOqrvfbaywt5b7nlFlt11VU9uP322y+x9VudsPnmm3vRrYR8+YS8b7zxhi1ZssRWWWUVCxZbZQlYgmGd07lzvWXI7bbbzqcvQbEEtv/+979tk00k8TMLx/xOGf9ts802dtttt9lRRx3lLQD37t3bxy7rwWmsEpcxS4mi+uKLLxqFmzt3rk2cONH7/eIXv7D11/9GvLho0SJ77LHHGoWP7jz++ONezCzmUXfXXXf53Y033jjqvdS2fi+5119/3aZNm2YSSEedLPZ+/PHHJsu/Q4YMiR5iuw0RGDt2rL8aCVPnL+xgQwbWlyV5BglpVEwq4a3ChvPyoch3LJPJ+OdGt+W72gdTpzqruD2tU/flbchK9RZnhw5911Z3VnK7dS1uwVvpd+5VPP2Qp3z5CMei64MPPtiuuWKavT1ljm2x8cr+0Kjl+2aDfDj9c/vnPZNsy6138B9RZA8U2RCjYmLf3FOVhlxgHda54bQ/dOjQfN74QQACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgEARArVFjqU+1K9fP5MFV7lzzz3Xr/fff3+/TvovWMu99NJL7aqrrrK6ujp/qsS7v//9772odNSoUV7MG+Ls2LGj7brrrl5Aeu2115qsug4cWG9hs6amxmRBVlYoZeV38ODBXpgXzi3n+oILLvCiYVneVR4OP/xwO+aYY2yNNdawRx55xIuNy5leU+MK1ovvu+8+mz9/fja67t27++uQxz333JP1//rrr+2II47wlnqznjkbX375pRctB3GwfrfLLrvM/v73v/uQ4ffNOS27K0H2Djvs4PfDbxoOTp482fTbS7h98803B2/WbZxAsALbHJcpUf+vf/1rG7PD/rb12H39MnS17ezQw4/1y8orr2yff7EwUdLlFpZLcKs8PfH8HCfYfd6envS+ffTxbL9o//eXPWDzbaj96le/SpS/UgJN/uAbq8dx56cRCMfFxXEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAALthUBZhbyCdtBBB2XZSTS75ZZbZveTbCi8RLxyRx99tEkcvPPOO9vw4cPtlFNO8f5//OMfTWLTqAviT/ntscce0UO24447ZveD0DjrUcYNXa8s/6611lpZUfFf//pXmzNnjv3tb3+zkSNHljG1pkc1YsQIH8kTTzzhLdxGuR166KH+2JlnnukteO6yyy7eOu6NN95Y1KLnpptu6kXL+t1koViWeY899lgf1/jx44taTA1XdN1119lqq61mL7/8sre6q3wqLllGDSJpCYpxbZ/AFlts4QWscVf60fTZprClOgl2x40bl120r0VxTnj6ndhon5k02UaPHh0bLm0A5WnkmH3sjQ+72WPPzbYnX/zSbr3ndb/fc8DmdtZZZ/l8po03afik4mTxx0EAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIBAegJlF/JKUCurqnISW8oiblonS7aXX365F9XJwuuDDz7ohbGyxCqhbD4rv2PGjMkmI/Fb1EkEGtz2228fNrPrDh06+O1OnTpl/eLyLSvAcuHccKLy+OKLL3oLwDfddJPde++99s477/g8y6JtUhfijeYpem44ns8v5C16LN/2AQccYBLXSmwr9/jjj2eDScCrY/otP/roI/vPf/5jffv2tbvvvts22WQTHy5fOhL8BsvHEydO9NZ7ZZ1YgsPTTjstG782amvrb7/ca+zdu7fnduSRR3oLypMmTTLFJXfCCSf4+2G55Zbz+/xr2wRUlh954s3Yi5zw9LuWr2zHnhgTQOlPeCZeyPvW5LnNJqjVdR12xHG21bb72KBVxlifwVv5/fPPP7/Z0gxYVlllFZv2SbxId/LUmV50H85jDQEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAALJCNQsXLgwkyxoZULNnz/fpk2bZgMGDFjKCm9lclQ4VVm2nTFjhq266qq27rrrNgqo65B1SwmTJewdNmxYo+OV3FmyZInNmzfPJKhdZpllGmUlk8l4Ia+Ew/oN4gTO4WSd9/HHH3uhcxAKh2Np19OnTzfFp/SD+DdtHIRvnQRUVo46fD/7y//taQP798p7Ec+9NMV+8dsnbMKECXmPN8VT6e+y0yh79v7TC0aj9K/658d2zTXXFAzTWg8cfPDBtv/Oy9vIzVYtegmbfusce+PtaUXDcBACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEliZQdou8SyfRNJ+uXbuarEJ27969aRG1wNnPPPOM7bvvvjZ69Gh75JFHvDhWAt6HHnrIW+SViHe11VarKhGvsEikK8u7uSJeHZNwVwLkgQMHJhbxhvN0TlNFvIpL8QwaNAgRr2C0MydR/OZbyiruuwWv/Lpbn/TWowsGaMIBpd+n34o2/dMvCsZy/iX32X777VfweGs+MGrUKJv+SeFr17WJzYJFnVvzZZJ3CEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACFSNQ9ULeipEpIeFDDz3U1lprLW9191vf+pb16tXLevbsaTvttJPdfffdXtR61VVXlRAzp0Cg/RI47LDD7Na7nssL4IVXptqCJb1sxx13zHu8HJ5K/7Yi6c/6qluzpl+Oayg1DgmZJzz9TtHTdVyCXxwEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIpCeAkDc9s4JnSLj79NNP2znnnGNjxozxVm5l6VYWek888USbOHGijRgxouD5HIAABJYmICvWM+YsY/c98spSB3/jrOFuu91uS/mX00Pl95V3vrYXXv1gqWiV/g9+8IOl/NuKhyxhxwl5353yqbc03laumeuAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCDQkgQ6tmRi7SGtLl262Mknn+yX9nC9XCMEWoLA6aefbjddf5kN7N/TJzegX0970QlrP53dpdmtwUpI/L0DjrLrbrvUamrMNlh7qH3y2ZwWS78l+BZKQ9c+9+uO/nr791sub7AXX/3QjvzxUXmP4QkBCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACxQkg5C3Oh6MQgEAVENhll10sk8nYfyb80+dm2a7TbdrMjiaB7+qrr97sOVT6b7zxhkv/NevYpZ89/uQbLZp+s19gkQT23Xdfu/2e5+2HB2+7VKiXXv/QPp7VycQHBwEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAALpCdQsXLgwk/40zoAABCDQ8gTuvPNOn+ibb75pu+22m62xxhotmolKp9+iF9uQmFjvtft2NvGeXyyV/G8uudc699rcxo8fv9QxPCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAgngAWeeMZEQICEKgSAhLvVtJVOv1KXLvE0l17DLCHJ7xhY0eumc3CK29+ZLWd+9r666+f9WMDAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABNIRqE0XnNAQgAAEINDeCJx22ml20V8n2GtvTfOX/tnML+23l9xvG26+m+2+++7tDQfXCwEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAoGwEahYuXJgpW2xEBAEIQAACbZLAueeea1/PectWHtzBPv8yY/c++pHdf//9bfJauSgIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAItRQAhb0uRJh0IQAACrZzAbbfdZrfffrutvfbattdee9laa63Vyq+I7EMAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEKgsAYS8leVP6hCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAALtlEBtO71uLhsCEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhUlgJC3ovhJHAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQKC9EkDI215/ea4bAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAoKIEEPJWFD+JQwACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCLRXAgh52+svz3VDAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIVJQAQt6K4idxCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAG0erpgAABAAElEQVQIQAACEIAABCAAgfZKACFve/3luW4IQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIACBihJAyFtR/CQOAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQg0F4JIORtr7881w0BCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCBQUQIIeSuKn8QhAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAE2isBhLzt9ZfnuiEAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQqSgAhb0XxkzgEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIBAeyWAkLe9/vJcNwQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgEBFCSDkrSh+EocABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhBorwQQ8rbXX57rhgAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEKgoAYS8FcVP4hCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAALtlQBC3vb6y3PdEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhUlgJC3ovhJHAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQKC9EkDI215/ea4bAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAoKIEEPJWFD+JQwACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCLRXAgh52+svz3VDAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIVJQAQt6K4idxCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAgfZKACFve/3luW4IQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIACBihJAyFtR/CQOAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQg0F4JIORtr7881w0BCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCBQUQIIeSuKn8QhAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAE2isBhLzt9ZfnuiEAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQqSgAhb0XxkzgEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIBAeyWAkLe9/vJcNwQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgEBFCSDkrSh+EocABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhBorwQQ8rbXX57rhgAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEKgoAYS8FcVP4hCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAALtlQBC3vb6y3PdEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhUlgJC3ovhJHAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQKC9EkDI215/ea4bAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAoKIEOowfP/5XFc0BiUMAAmUj8OGHH9rcuXNt2WWXLVucpUY0e/Zse+mll+yzzz6z5ZZbzjp16pQqqs8//9xeffVVmzFjhvXq1cs6duyY6nwCQyAfgfnz59v7779v3bt3r/g9lclk7N1337XXX3/dampqrGfPnvmyXNBP57/11lumcp+kjKUtkwsWLLD33nuvKlgVhMABCCQgUE3lXtmdMmWKL7u9e/dO/W6sq6vz5VLPDb1Xq+F9n+AnIAgEKkKgmurF8+bNs0mTJtnixYt9vTYtkDlz5tgLL7zgT1O5V72hkGtq/aJQvPhDoFoJVNt7vhycmuv59fXXX/u2x+TJk61bt27WtWvXcmSXOCDQ4gTUXzRt2jTfhq6tbV82KtK269viM7LFbzgSrAoCbelepl1fFbcUmWhFBNrCe3/69On28ssvm/oG1B/Y1PrLzJkz7cUXX/R1etXrcRBoKwSaqy1cKh+1Ob788suq6YNvS/WhUn8TzmsbBFry3d7UfvlqIV5tz8dq4dJW89GSz/tqLSNpxtJDXXvhwoV+/K3Y+FlruWfaV29na/lVyGe7IvDvf//bll9+eevcubO98sorS127BvzPPfdcf1zhct2SJUvszDPP9HGsvPLKNnz4cL+tc9QxmNbtueeePi3l55NPPlnq9Lj86ISLL77YVlhhBdt6661t8803t6FDh9pdd921VFz5PCQ+OO2006x///621VZb2aabbuobSbpGpR1177zzTjavym/uMnXq1GhwGzJkyFJhwjk33XRTo7DsVA+BWbNm2X777ed/O63zuddee8022WQTH+ayyy5bKohE4bqfJJZdd911vfB1m2228WK6pQLHeDzzzDPZ++inP/1p3tBx+VGFe+TIkbb22mvbmDFjbJVVVrHvfOc7vjMvb4Q5nr/+9a+tb9++tt566/kyJrH7OeecY4sWLcoJWb+bpkyqU1FsJA6OspI/DgItRaDayv1FF12ULff/+te/8mKIK/c6T++h1VZbzb8fVW5/8IMfmETzSZw+jtloo41srbXW8s8Nve832GCDvHWHaHwa7A/vP4WPuokTJ2avK7wPc9d33nln9BS2IdCsBKqpXlys7AQIcfViCXD1fld5V71Y5V/l8dFHHw1RFF3rgx+9k/XO11p1/Q033NAPAOY7MW39Iu65lS8N/CBQDgJxZUdpxN2fLV2/T1I3CWySPD9C2LBuSrs+SfvkkUce8W0OtZn0PBkwYICdffbZIXnWEGh2AknKUFw94Pbbb7c11ljD9xepTiwx+kEHHWR636Z1Ser3xfJzzTXXFKxHr7TSSmmzY3F9cYowTbu+nM/I1BfDCRBoIJCk3Ffb+75YftL2Q+e7EdK060M7PreNrv1oP/Zuu+1W8HmksLn9APnyhR8Eyk2gWFlSWknaA+V87yd5zxZ67zeljKmv/tBDD/Vjdttuu63vy994440LjknEPTffeOMNPwYycOBAGz16tGmtMQ/1BeAgUCkChcpOyE/cfd2UtnBII6yTtMXjnj86/qtf/cqPs6+44oqmRWPz8tOxJC7uGRiNI0meqdtHibFdKQJxZVn5inselPPdHtemL7VfPkmZjPsNCtU70o7HlfP5GJdnjjedQDnKSDmf981VRkSq0D2ej2K+9mzU72c/+1mj09KMpeujAOVF4+Wqa6uvsF+/fqZnTWt3mLhs7b8g+W+1BL766is7+eST7a9//Wv2GiRijTpZyjnkkEPsf//7n/fWl3+57qijjrJrr73WN9glFNBL/brrrvONCn1BIXFfUnfjjTfa3XffnQ1eSn4ee+wxO+mkk2zw4MF29NFH+wGVv/zlL7bXXnvZ22+/7R+k2QTybFxxxRX229/+1jTwceCBB/rOiMsvv9wkXPziiy/sd7/7XfasTz/91G/vvPPOvjGVPdCw0aNHj6yXGlgKL+GjBi5z3aqrrprrxX4VEPjvf/9rBxxwgP/tlJ1ccbruUd1fxx13XDa3uWFU6ZH4TU73pn5riVIvueQS23LLLb0ITp1eSZy+gFKZDC63jCTJj/J35JFH2rPPPuvFPRLy/uMf//ANnDPOOMMuuOCCEH3e9amnnmoXXnihFwOdfvrp/sv766+/3s466yz76KOP7M9//nOj89KUSQ0oSDwvd/zxx/sKjzodVNnToP9zzz3ny1CjBNiBQJkJVFu5l+XraEOilHJ/xx132L777uvfbSpPEsrr3a33teoDN998c1GK6nTYZ599vEVxNUr03nvzzTf980IDABL76aOZfO6UU07JPkNzOxv10c0xxxyT7zR74IEH/Hsbi/h58eBZZgLVWC8uVnZ0+XH1dJW37bff3lvilWh/7Nixvkyp41/+Tz31lKn8FnISCqjzQfVXnS8hsD76Ux1A72RZ5taHQMGlqV8kqa+EeFlDoNwE4spOkvuzJev3uv64ukkuo7jnR2547Zfaro9rnyhuzZKz9957e0tCP/nJT3xbXW0oCXnXX39923333RUMB4FmIxBXhpLUA9TmPeyww/z9q7Zvnz597N5777W///3vpndm6DdLchFx9fsk+fn44499UnpHd+nSpVGy+T7CbxQgZyeuL07B07Try/mMzMkquxBITCCu3Ffb+z5JftL0Q+cDlaZdn6Yfe6eddvIf/OWmqWeZ+h2WWWaZ3EPsQ6DZCCQpS3HtAWWunO/9uPds3Hu/KWVM41w33HCD72/Xx0cS8Ghf415PPPFEo5m64p6bmjlPhkE0RvjLX/7SVl99dXv44YftyiuvtC222ML3E2oWQhwEWopAXNlRPuLua4UptS2sc3NdXFs8yfPn8MMPNz03NE72ve99zyehNoeMZ8k64NVXX52bbHY/yTMwG7hhIy7P1O1zibFfCQJxZTnJ86Cc7/a4Nn1T+uXjymQc/2L1jrTjceV8Psblm+NNI1COMlLO531zlpFi93g+ij/60Y9M78dcpzw++OCD/qPUcCztWLrilrZNH7Z997vf9YazpI3T+/uWW26xPfbYI0Td+tbOvHCGBQbcAy1/D7gvAvTEyrgGfMZ9leu3nUguWx7dQIT3UxjX4M+E8NHfylmc9WHGjRuXcaLd7Lnui4+Mm3Y34yoEGWfpL+sfPTd32zVA/DnOUljGPdx8vIo/hEuSH/eVUsYJeP25TlyQPddZ8/N+TrCY9QvxRtdOROjDORFvxnVIZMO6CmD2+pXPcI4TP/rwjz/+eNYvHMtdu6+Sfdj/+7//iw2bey77LV8+xPzWW2/1v5nuYyd289tOwNbo93MCXu/vGtUZ/bYqL04klzfMQw891MjfNbx9eCcUb+Rf7Pf+xS9+4c8ZP368X7sKQqNzk+Tn0ksv9eeq3Ie03DS3GV2D8p+bzxBGazc1gA+jcuqm9cme7wYDMipfOv/pp5/O+qctk06s6ONwHRPZOJSus/Th/d3HB438o3ljuzLlpK1xr7Zy78QxGdcAyN7/KmNOdNuoHCQp9zvuuKOPw3UWZs/Ve05lWXE6C/hZ/3y/qeoKCnfVVVc1Cuc6P7y/8pDvPNeA8cd1vt7PSi9fuFw/PTv07NUSfR/nhmOfcl+ueyDUc6ulXhxXdpLUi1U/Vbl1orlG5c5Z8PP+ce/UE044wYfLrdeEvDnhXaN409Qvkjy3yvXbEg/Pieg9kKTsJLk/Q5jcenNz1O+T1E2i1xjKaJp3b1Pa9XHtE+XNfUzknyd/+9vfss+NDz74wPup30BtjOg1sE25Lec9kKQMxdUDlB+F0f3qBLTZ+1Xt6FDPdh+7ZP2L5T9J/T5JfvR+13s+aZ9boTzF9cXpvLTt+nI+IwvlG3+eE8XugSTlPtynrak/L00/dD4+adr15ejHVjtCzyn3wX+i52O+PONHWU97D8SV7STtAaVZrvd+kvdskvd+Pg5xZUxjfSqDGuuaO3duthyqL0D+bgbKrF+S52YY+9CzKJof91GRj09jcFF/tim/zX0PxJWdJPd1U9rCudcX1xZP8vxRW0Pl0xmEatQnrv5x+elYsX78uGdg2jwrfIizHP0fuemzz3MiyT2QpCzHPQ+UTrne7Una9KX2y8c9R+J4Jal35Isj33hcOZ+P+dLEr3zlv1xlpFzP++YsI6Xe4/nuN41v6b36wgsvZOuwoY8vyVi6xst1vtrZ0fjdDBbeX8+cqH9r2651F4eDAAQqQGDmzJn+y2JZ5O3Zs+dSOZD1WVml1Ve67sFt+SziuQ4A/xWgrNVGj8sSrab7kKWAXOt7SyXU4PHTn/7Uf82r/OT7cjdJfmQlTBZBZd0vaiHMPXT9VD+azlMmzgu5MH236wRpZNFE5tUnTJhgbrDRm0MP57sGk9/s379/8Cq4lhUiuaSWVwtGxIEWI6B7SVYnn3/+eXNi9bzpatooWbbWl06aYjOfkxXm3//+90tZYnYvcB88WNTId27UT9Zq9dWt7mdXKYgeym4nyU+4z/XlfHA1NTXmOuP8rqwKFXLBytDBBx/sp9kO4WRd44c//KHf1ZdQwaUtk2IuJ0t/URf2w/HoMbYhUE4C1Vbu9U5UuVPZX2eddfJealy5l5XM2tpab6V+0KBB2ThkuUvT4MnJom4hp/e4rOjICsD+++/fKJis9OrdeNpppzXy147qCLL+7cS43tL9UgGKeDihj69DyHJoroWxIqdxCAIlE6imenGSspOkXqznmazu60vgqJNlXTm9o4u5++67zx/WNJxRJ2u+TpRv+jpZ3IJLU7+Ie26FOFlDoNwEkpSdJPdnS9bvk9RNAqckz48QNroutV2fpH2iGXtkgUBtn+jzSG1ozQbiBiR9n0M0P2xDoJwEkpShuHqAE+x6y3Wqo8oSb3BqR4c6evSdGI7nWyep38flR/G6D2u9dWDV85vi4vriFHfadn25npFNuS7Obd8EkpT7anvfJ8lPmn7o3Dsgbbu+qf3YmqVP4wXqD9BMZzgItBSBuLKUpD1Qzvd+kvdskvd+Lr8kZUwzXcmpz79Tp07ZKE488US/rWmDg0vy3JS1Q42RqE8g6jSTj5xm7cFBoCUJxJWdJPd1qW3h3OtM0hZP8vyZMWOGj1r98NE+cW3LTy68o/1Ozr+4Z2A0eJI8Kzx1+yg1titBIElZjnselPPdnqRNrzyn7ZdPWiaL/QZJ6h35zs83Hleu52O+9PArL4FylBHlqFzP++YqI8pjqfe4zo06J97141uayXbttdf2h9KOpQc9jNq9UbfyyiubZtEKdfHosda03bE1ZZa8QqAtEdAU9cUEqBLCKoxEuYWcwpx00klLHX7yySft5Zdf9iJIiWDjnIQCt912mxfgbrnlll4wlHtOkvy4Lxr9aTJfnuu22WYbe/TRR01TAAVRYG4YmVCXU+eD8uS+mDL31YgXOknslMsrCDDViLrsssv89EEaoFRYTS0UdaFxpUGf22+/3U9n3K9fPx9W+enQoUM0ONtVQEDTvx599NGmwTk1AvK5P/zhD0vdF7nh8olu3Vc35r7U8UFVmY9zGgBXXuQuvvhin6d85yTJj8qmRPpRQZ/i2myzzXyUxTrdnLVtH6ZXr15+Hf2na5J7++23s95py+R3vvMdP23QJZdcYuedd54XH6ripH25vfbaKxs3GxBoDgLVVO6ddTo79thjfeNJH9S4ryrzXnJcudfgfrRzPkSiqUT0npeLfvwSjoe1+8LRb+rDBr3LnEVgc18U+vec3pcbbrhhCNpoLfGxGpDOorb17t270bFiOxqM0LkM+BWjxLFyE6imenGSspOkXqx3Zr73puoBcqGDohBL1X2c5cFGAwchbHjX6/kQpu9OU7+Ie26FdFhDoNwEkpSdJPdnS9bvk9RNAqckz48QNroWl7Tt+qTtEw0kyqk9ntvmVdtfLjxT/A7/IFBmAknKUFw9QH0++cqI6uua5lbvy0J14ujlJK3fx+VHcWpQYPjw4TZ58mSfB723N998c9/HpHp0EpekL07xpG3Xl+MZmST/hIFAIQJJyn21ve+T5CdNP3Qum7Tt+qb2Y1955ZX+41z150WFSLn5Yh8C5SYQV5aStAfK9d5P+p5N8t7P5ZSkjL355pv+NNUPok59dBo/k+GAIFhI8tyMGgWJxqeP++QKGTmJhmUbAuUkEFd2ktzXpbSF811DkrZ4kuePxpU1xqxxAInuwzizyrP8dCz45ctH3DMwek6SPCs8dfsoNbYrQSBJWY57HpTr3Z60TV9Kv3zSMlnoN0ha78g9v9B4XLmej7npsV9+AuUoI8pVOZ73zVlGSr3H8xE/++yzvfepp56aPZx2LF11YBnNkWZGxrAmTZrkt6UTU107iUYum3gVbiDkrcIfhSy1DwK5otTcq+7WrVuuV9F9iRI1SKdBfFnoGjFihF1xxRVFz9FBVRBkyVMDDbK8V8glyU+wKDhkyJClohk6dKj3U5hCQt7XXnvNCxx/9KMf2XXXXZeN409/+pP3l0XfqPgxWELQl8i5g4+XX365HXLIIdk4QgeoGl+5YfViVPimWlLJJsZGWQhIaB3n4spR9Hzde/o6R1ah77//fn8f/OUvf8kKaKNhc7f1Ndyzzz7rxa2ydu2mtMgN4vfj8qPyJmFdPgvDKmMagFQ5KOS22GILf+iuu+6yww8/vNE9+8wzz/hjQRCvnbRlcqeddjJVnsaPH++fI+uuu663/vP+++97fx3HQaA5CVRTuT/llFP8pbrp6htZzsi9/rhynxs+7F9zzTW+YeGmwCsqtA3vLFkNkPBPlvOi7pxzzvGWyaN+r776qrfCKwviEuincfpaUwOUGvCTtW8cBFqCQFw5SlIPjeaz1Hpx0rKTNj8hbyq/P/vZz/yuyn4xN3bsWC8MeuqppyyI7RRenTHBSRCw8cYb+/p8mvpFHO8QP2sIlJtAkrKT5v5sifp9krqJOCV9fsQxTfr8Sto+Ce2B0B6Pph/8Ql0jeoxtCJSLQJIylKbcuyllvfBF78B//vOf1rVrV9OsNlrHuXLW7/XelYWc3IF8temVxzhhcdK+OF1TKMdp+9qa8oyMY8lxCBQjUO5y35R7Oen7MslzKE0/dC6f8K5N2q5vSj+2nk3q41df/4EHHpibFfYh0KwE4spSkvZANIOlvvfTvGfj8hzNj7aTlrEg5B0wYEBuFKbxBQl51b4fPHhwo1kolwpcxCO0QTRrT77xhiKncggCTSYQV3aS1AeimUjaFo6eo+1QDuL6wZM+fzSGeNhhh5nGxoIRII1Nq5xpPLGYi2MSzk2a5xBe66bUh6LxsA2BtASSlOWk977SLvXdrnOTtukVNtcV65cvpUxG409T74iep+0k43GlPh9z02K/eQiUu4w05XnfXGWkKfd4LnUJ///973+bBNBhlq3cMNH9fGPpc+bM8ePYo0aN8h/VR43kyULvt7/9bW8UqzWLeRHyRu8CtiHQignoRS+hYXASpyYR4Fx44YVeWHj99df7rxTC+aWsg7WfYBksGkd4iWn6wUJOnRuqSEk0KAGRHuB6MVx00UWmLxklInzxxRezp4e41l9/fdN0wqooPvHEE/b973/fTyeuhtXIkSN9+GA1QUxkGXiDDTbwFg1//OMf+680FDa83LIJsNGmCMiKTfjCRxe2++67xw6uKZw6z08++WT/ta2sczbFhfuwb9++eaNRJ16w1JcvgAYJNbWCvnqS4F2LKiGy0KlyIqdBgeBKKZOy7iWncqgluOAf9llDoDUQKLXcq3NO1r2OPPJI/2FMua91woQJPm511p911llFo5eVLzmVcX1F+Mc//tFWXXVVk3h///33t9NPP91b3dAzTU6WfsOzKjwX/IEE/zQYceaZZzLgl4AVQaqbQCn14qaUnSQ0NJ2u6ucaxNfUmvqqvpjTtEJ6Du2yyy4mAYKm8NPHPj/5yU+ypwVhf1PrF9kI2YBAKyNQ6nu+nPV7ISvn8yPJ8ytN/mU1VC6fhdDQbg9tBh+QfxCocgL//e9/7Te/+U02l/owPfrBd/ZAzka56/ehrSzreGoz6Dmgma40k8d2223nregWmxUjTV9cKKOhzEYvrVhfW6nPyGj8bEOgGgiUei+neV8muc40/dC58aVt14f6fSn92DLsoXaC2hxJxgZy88o+BKqJQKnv/TTv2bTXm7SM6aMjfeDTsePSw/Chbh6EvGnzoPD6uED9BXLKU2sWKviL4F+7J5CkLZwLqZxt8RD3ggULsh8Jqg0RnMafy2HlvtQ8l1ofCvlnDYFqIVDqu70pbfpi/fKllskoz1LrHUnH40p5Pkbzx3brIlDq8765yojolXqP5yMftDq/+MUv8h1u5FdoLD3MeCNr+apv6wN/GcNRu/uEE06wu+++2xT/BRdc0Ci+1rRT25oyS14hAIHCBCROlYBPa1n6ksBPA/6qBBRy+qJDD0t9VbjPPvsUCpbYP1j0CZ2N0RPDAGIIEz0Wtpdbbjm/qTwdccQR3kKhRE7nn3++6WtKfU2hPAenqRHUKSkRssQQPXr08OFuueUWH+See+4JQb1wVwMssmSqB7m+vpQFM+3L3X777dmwbLRNAttvv73pCx293PX1mqzqysKtKsDFnO4bdYDLMnSnTp2KBY09Fr7Aj1rTi56kCoZE5YVcTU2Nr4wojKbw0j2sL4NVZk477TQ/QB/9eimUt6RlUlMYyGrHzjvvbE8//bTNmDHDr7Uv/ySVqkJ5xx8ClSBQSrlfuHCh6SMPVf7jRLalXJPeZbvttpuPX++pMPheKK6oAEAfrUjML4tj+tJQYgE5+Qend6A+alGZXWmllYJ3orWs0+t5J6vcDPglQkagKiVQSr24KWUnDoM6BEMHgsQ+miEizmlATmJ8lUlZ1tb03fqoTR+5henFgxi4qfWLuLxwHALVSqCU97yupZz1e8VXzudHkudXmvyrPS2Xr/0R2gj6mBAHgdZCQPe/2vX6APa3v/2t/fnPf7aVV1656Aex5a7faxps1bVvuOEG3w5XfV6CHImK1S7Xu3vixIkFkabti0vbrg8Jl/qMDOezhkC1ECj1Xk7zvkxyrWn6oXPjS9uulwEK5T9tP/ZXX33l+wj1TMo3NWtuvtiHQLUTKOW9n/Y9m4ZBmjKmPjnVCRYtWrRUEuHDgFBXXypAjIfiVd+iZgjQzJb68B8HgdZOIElbOPcay9kWV9z6WG+HHXbwFrM1hqixxDCeqP521UnCB325eUm6X2qeS60PJc0X4SDQUgRKebc3pU0f1y9fapkMvJpS70g6HlfK8zHkj3XrI1DK8745y0hT7vFc+jJQpXFxjXdJ31LMFRtL79WrV/ZUWffVB/XSfmlWW42ba3xfRnJas+vYmjNP3iEAgW8ISGCoRSJVLZMmTbIHH3zQ/vOf/9iee+75TcDIlqz4yX3rW9+yhx9+OHvkgw8+8Nv6ckOdCRILJXFhSsFgLSR6jkSTckFwED0WtiVAVOfD5ptvHryya+VRVkglLgxxyPJuPrf11lt7b32lEZz8gn/w07pPnz5eyKxrlei5e/fu0cNstyECtbW1Xpg2cOBAO+CAA/x9NHr0aPv9739vhx9+eN4r1eCghL5rrbWWqRKkKT/kwkC4Gu3333+/F9YlsQIkYZw68fQ1Va5TR6A64bbddtvcQ4321Rkv69sqC48//rivjGyzzTY+Xk0XEBXlpymTwfq18qdKTocOHXy6mhJU+7IAKsvYstaZZNrSRplmBwIVIlBKub/66qu9xUxZu9W7NLiXXnrJb2raDzUIVO6STskV4tD7VY0wlXU9T/RsiXPDhg3LBgkfvASPzTbbzG+Gd7ieU0EgKMFveGYpkAQPGjzQM0vv9txGkvJ0zjnneBHCwQcfHJJgDYFWSSBtvbgpZScJIJWtyy67zHbddVf/Lk1yjsJIECTx7mOPPWbvvfeet76twTrFJxfqxOWoX/gI+QeBVkaglPd8uev35X5+xD2/0uY/PCdCGz/6E4d2e7EPCaPh2YZANRCQVTsta6yxhl++/vprP0OFBtrVts/nyl2/17On0EeuGjxQu1ztdX2Qns+l7YtL066PplfKMzJ6PtsQqBYCpdzLad+XSa41TT90bnxp2vU6t9R+bLU51LY/99xz+Tg390dgv1USKOW9n/Y9mwZMmjImIYGEfxpHiD4DlJ7a93Lho1y/k/Cf6j7f/e53fZ+ljNxoGweBtkAgri2ce43lbosr/htvvNG/RzUzlsYGgtN4oozsHHrooXbTTTcVbAuE8IXWTclzKfWhQvnAHwKVJFDKu70pbfpi/fJNKZOBYan1jjTjcWmfjyFvrFsngVKe981VRkSw1Hs8H/2k1njjxtKl9QluxIgRYdOvZfhRWhsJfKVPy62HNwpcxTsIeav4xyFrEIgjcMcdd5gEqLLKNWTIkEbBJRSQkFfTiBVyocPg5z//ed4gEvJINBgG+PIGinjKCoqcpkXYb7/9skf0tZPyIhfCZA9GNiQUlPBYgsJcFyz6Rh/Mp5xyimk6k5/+9KeNgqvyIxcNKzHmG2+84a0S5IoQFbe+zMj1bxQpO62SwPz5801WZiVYyxXryhqvfvdwb+W7wDDgra9+JKTJdfpqSIvur6SWLiTc0zkSAUetZQbheTFhn8qGvgDu27evSYSsJTh1IMiFQT5th/KWpEyGcq5OxiDiVRxy2pc1EAnttais4iBQrQSaWu5VxuTUcacl18lKvBY9F4I4JjdMvv2ZM2f6wXxZv1MDQkLgJC5YyZMwN9dJnCsXniX6ICVY19MXjblO70fVDw488EBv1Tt6PAxGSHiANd4oGbZbC4Gm1IubUnbi+KhsqYNi3Lhx3nKfOiuTOHUyKF9rrrlmozqGBPmywq06THTQryn1iyT5IQwEqoVAU9/z5a7fl+P5keb5lTb/4WNDffSjqQSjzyB9JCCXpj5TLfcB+WhfBF599VU/ZfQee+zhO+OjV692ugYVNL10IVfu+r3KoUTDY8eOzU5pHdL+/PPP/ab60gq5tH1xadr1TX1GFsoz/hBoaQJNvZfTvi+TXF+afujc+NK063VuKf3Y6h+QgBdrvLn02W9tBJr63k/7nk3KJ20ZC/3nEvNGBYEar5ORDs2mKWFgGrdkyRI/k6XG2lT/CR/zp4mDsBCoJgJp2sK5+S5HWzw3zmCARx8N5rrgJ8uEpbq0eW5qfajUfHIeBMpNoKnv9lLb9HH98mnLZD4updY74sbjmvJ8zJdP/KqbQFOf981VRkSt1Hs8l7hmrpLRRo1d5xvvDuGTjKWrf1uGKd5++20/Y70MN0ZdMMgnPU1rdclGEVvr1ZFvCLRxAvoC59JLLzV9mXHhhRdmG/76gkgiIbmoUEiC2mjngKYh/OKLL5aidPHFF5vM9Mukf5rpfSSW1ENTX31IXBsaNnfffbfvnNh5550tak0wNz8SQup6ZPVTAyJBWCuBoeKUi1rrfeutt/zgiawbRh/4qvzIRUWOqozpupS/o446yh/XP12nxFh6aYgjrm0R0D305JNP+vtKAprQca6rlLhVorZ999230UVH78uNN944O3V9NJAqAD/+8Y/9NDu6n2S1NqmTxVwJec8666zsfa2pOYNFH1nai7pofmbNmuUFtRLryMJPly5dfFBdx89+9jMv6pFIL7g0ZVJlQ539Kq8SvUs4FJz2lWcdZ6A/UGFdrQSaWu71hb0s2+c6CWAuueQSO+GEE7x1nOjHIrlhc/f1DpLwQI0KTdUjK/PFXLTcKx2Va73X1ciJWvb64x//6KPRO1NOwj5Z0M7nDjnkEP9e1fTDuR//aDBCVjxUxrHGm48efq2BQFPqxaWWnTgut99+ux177LF+mst//OMfRUXy0XKveH/3u9/5+sv111/fqK6iMqxnSe6AXdr6RVzeOQ6BaiXQ1Pd8uev3pTw/cst7mudX2vyrjas6gCwK6XmibTm1Z37zm9/4d78+cMRBoJoJ6MMV9RWpDSzhSnRWjH/9618+66E+HK4jWs7KXb9Xnfmaa67xbWf1ufXs2dMnq7640B81cuTIkBWL5kWeafvi0rTrS3lGZjPKBgSqiEAp93K0rKV9Xya59DT90Iovmp807XqdW0o/dlQMIH44CLRWAmnf+9GypmtO+55NyimujOXmQ2NhJ598sp122ml+7Cn04yt/crljEknyof5/TRN83HHH2RlnnJHkFMJAoKoJpGkL60Ki5ayUtngcjDFjxviP8K+88ko/5hcM3khErxlA5KLjztH8xMWt42nzXEp9KEk+CAOBliaQ9t2u/EXLVylt+iT98mnLZG6+tF9KvSPJeFza56Pygmu9BEp53rdEGRHRtPd4NF/RXySJNd40Y+lHH320HyPTOFqYwVLpaaZafTSnWW6i/YfRvLSGbYS8reFXIo8QKEBAwkQJWP/0pz954Z0ErbLSpYEMPaDUWRCse0o4pIqOrO9KQCg3atSovDHfddddXuAqsVDU0lfewBFPWfCTxQA1ZDSdoB6gqoxImKvKkARQwUmcK6si+vL4f//7n/dWJ6umKbvhhhu8QFJfKktorE4SWRg888wzGz1wjznmGD9wsu2223phlUyjy0Kxzpcoca+99grJ+Y4RXbfEFJpeTYOVEvCGjpPjjz8+G5aNtkVAHWayEL3JJpvYkUce6cW8+u01ECin+zQ4ic9lKXfGjBledK77PyqMDeEmT57sN3Wf5TsewuVb676++eab/X06e/Zsb6FPHXC6L2VdOypWl1hYgnqJa1W+Jb7TNchP5fewww4zWRnRwLzKiAbnowK9NGVSIn91LKojcP3117cf/ehHvozqS6tQdnU8+jFAvuvDDwLVQKAp5V5WqbXkumDtXe+PtOVeH6roa0O5e++91y/R+Pfee29fxuWX+xySn6zkSsgrob/K6DrrrGMSFuvZoQ9ugihHXyEWyps+pFGjJd9xCQN1fWrsMOAn4rjWSKAp9eJSy04xThIbfe973/NBll9++aVmkFBnnOrwcvnq6Srrqquo/v7cc895a/j6El+zV6h+/8tf/tKfG/6lqV+Ec1hDoLUSSPOez61Pl7t+n/b5ka+8p3l+lZL/8847z3+Up3bE888/7+sOf/nLX/zPr3ZFr169WuutQL7bCQG9R9U+Vbt0s8028+373r17+49z9W7U7BTROm5ufbrc9XsJcfSeVt15q6228n0Keq+rfMvqnj4UV31dLl/fV9q+uDTteqWZ5hmp8DgIVCuBNPdybrkv5X0ZxyFNP3RufhR30na9wkrgl6YfW/3net/zca7o4Vo7gTTv/XK8Z5Pwiitj+er4mjVPVrJlvEP1BX04/9RTT9mtt97qx8TUTknj9DF/6EPQDABRYzWKJ/Tnp4mTsBCoNIE0beHccpa2LZ7kWr/97W/7sWWNc7/22mtZgxoyrqFxbLU7FEYu3/MnLo1S8pymPhSXPschUCkCad7tymNuXTptmz5pv3zaMpmv3Kdt3+v6kozHpXk+Kk5c6yeQ5nnfUmVEVNPc4/nKiOLQO1TjWnvuuWcj44w6FnVpxtKPOOIIXzfWDLrSskhHI8N0mkFLTrNXtGaHkLc1/3rkvc0QCF/1xQnkJIaNus6dO5umw5T4T40YWSaRU6edvs6V8DU4WQ2Qi34tGI4VWqfNj+KRFUNZB5aVsCAYVr5lrSRq3TdMUZJrlVCiXQkRZR0oiJ50vjojZeU36vRAlsDx0EMPzaal4/pqUsJGcQhOlg8kbpZQWIOVWuQkxLziiitsxIgRISjrKiQQrCWHdb4shvs1N4wG0SSc0/2jezM4/ebqAAvWdBcsWOBFvPKPWo4O4aPrkFZYR4+F7XAsNz/ylzBHnfK6f7XIaeAxt1KhzgK56P0pYbws/kiELmF6cOPHj8/7JX/SMql4fvjDH/ryp3wE8a78JRjSIGV0cFT+OAg0J4FQdsI6X1qFyllzlPuQfkgz7EfX4VhunmUBPLhgYT7sa62Bfr3TCj2HZCFb70QJ+i666KLsqRoIuO666xoJ+LMHE27MmzfP1NDROzMIghOeSjAINAuBaq0Xx11sbj39pZdeyp4SZsrIejRshEG4fPV0DQ6o01F119D5oNP0EZ8+3JGoJ+rS1C9yz9N+7nMrGoZtCDQngdyyE02r0Hs16XteceWrT0fTCNshrbAO/tF1KCdhHT2WdDtfeU/Tri+UTsh3WEfDaXoxPTdUjwgCXh2XFS99/IuDQEsRCGUnrPOlW6geIAsbw4cP93Xh0Nek8zUIoLZrmC6vUH06X1rBL1+5CccK5UflRx/A6WPXqJV8Ceb13g7XWKjvK8Sfb50vP2na9WmekfnSxw8C5SQQykJY54s73PO5YZLey2nKfUgrrNPkJ2k/dKH8pGnXp+3HluCIj3Pz/Zr4VZJAKGe5ZTs3T/naA0nf++V6z4Y8FXrvx5WxfHV8xSnjMZpOXIZnNIYnp352jV1JPJTPBV5hHcKEsTLtX3vttcE7u5a4UB8+4SBQCQKFyk7IS7ifwzr4p2kLFypnIa5S1rnPH4kNJ0yY4A1H3XnnnVkjVAoX+ufCh7Bxz5+kz8C4fCetD8XFw3EIlINAKMNhnS/OQs+DpO/2QnXpfGkFv1Dewn6afvlwTpJ1XLnPF0du3pKOx6V5PuZLF7/KEAhlI6zz5aJQGUn6vK+2MhK9xwuVEem85NSHVswlHUtXHBofk05OBvv0oZwWOWm/NEt77sxd/mAr+lfjpv3KtKL8klUIQKAAAZkpnzZtmh8sUGdfrtOgncS+sgDaEmbE9VWwHtZ6GamjMjdNdX7IkoHEx/m+5JDpdH01oQaSHrjRl0DutWl/6tSpfnpQTTnYvXv3fEGyfrNmzbI333zTWxvt379/1p+Ntk9AFWR9DSTrzbkCGFnp3WCDDbyFu7iKRDlI1dXV+TLy2Wef2dChQ32ecuNVx4EsVT/wwAO5h7zgT8IETeujMhI6EJYK2OARVyZzzwusJKzPLb+5YdmHQDUTCPdyNZT7OE5xzyG966dMmWKffPKJtxqc29kYFz/HIdBeCFRbvTiOe1w9/aOPPvJfFauOrxktinUEJalfxOWH4xBoTQSKved1HcXq05W4zrjyHvf8akqe1dGrNvbXX3/trXyLDQ4CrZHAzJkz/exPqt+HAZBwHXH16RCuXGu1x1WutJaVoFxRTlzfV9p8lNquz9cWSps24SFQSQLF3vctXe7FoVg/dFx+0rbr6ceu5J1H2tVAoNh7v9zv2VKvN66Or3E7zfCnGQXUj59bXyg1Xc6DQFsiENcWjitnzcFC/XFyUSNVIZ1KPH+K1YdCvlhDoDUQKPZuj6tLV/L6KlHudb1xz8dKMiHt5iFQ7HlPGVmaubQ20qWtuOKKlk8nt/QZ1e+T/5O/6s83OYQABHIISOiarzERgumhvsMOO7SYIE+dEprysJALX09GLY1Gw0qMu8kmm0S9im5rUEJLEieLRLJmgmt/BCRI1bRW+dy7777rvVvqCx2JcJSXQvlRQ0bWNFRu8zkJkSXyTeriymRuPMVY5YZlHwLVTKDYvdzS5T6OU1x+9K5f0TVEtOAgAIHCBKqtXlw4p/VH4urpquMXq+dH44+rX0TDsg2BtkCg2Hs+rj5dieuPK+9xz6+m5FnthzAbSVPi4VwIVJqAROiFhOhx9ely511CYs2uUcjF9X0VOq+QP+36QmTwb+sEir3vW7rci3Wxfui4/KRt19OP3dbvbq4vjkCx936537NxeSl0PK6OP2jQINOCgwAEChOIawvHlbPCMZd+pFhfXCWeP8XqQ6VfJWdCoOUJFHu3x9WlWz6336RYiXKv1OOej9/kkK22QqDY854ysvSv3K9fP9PSllxtW7oYrgUCEMhPQJZBXn755YKCwPxnNa+vLJZoup8uXbo0b0LEDoGEBFQBl3XLYgL0hFGVJVioiG233XZliY9IIACBpQlUW7mvtvwsTQwfCLR+AtVWL662/LT+X5grgMA3BKqtPk15/+a3YQsCzUWg2urT9H011y9NvBD4hkC1lftqy883pNiCQNsjUA3vWer4be++4oqqj0A1lrNqeP5U3y9FjiDQdALVXJem3Df99yWGphOgjDSdYWuIoWbhwoWZ1pBR8ggBCJROQCb3J02aZKussor17Nmz9IjKeKZeMrK6W+yLxjImR1QQiCUwffp0++KLL2zNNdeMDdsSAWSN9+2337YNNthgqelCWyJ90oBAeyBQbeW+2vLTHu4BrrH9Eai2enG15af93RFccVsmUG31acp7W77buLZqIVBt9Wn6vqrlziAfbZlAtZX7astPW/7tuTYIVMN7ljo+9yEEmp9ANZazanj+ND95UoBAyxOo5ro05b7l7wdSXJoAZWRpJm3RByFvW/xVuaaqJ9C5c2cbPXq0PfDAA1WfVzIIAQg0jcDZZ59tWh588EEbNWpU0yLjbAhAoFUQ4D3fKn4mMgmBshHgXV82lEQEgVZB4LHHHrNx48bRpm8VvxaZhEB5CGy//fb26KOPmjOIUZ4IiQUCEKhqAuFdP378eNOCgwAE2j4B3vVt/zfmCiEQJRD68njXR6mwDYG2TYBxu7b9+3J1EIgSCO/51tqPVxu9GLYhAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIACBliGAkLdlOJMKBCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQaEUDI2wgHOxCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQaBkCCHlbhjOpQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCECgEQGEvI1wsAMBCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAgZYhgJC3ZTiTCgQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEGhGoWbhwYaaRDzsQgECzE+jcubNPY/To0c2eFglAAAKVJ/Doo48a5b3yvwM5gEBLEVCZl6PctxRx0oFA5Qnwrq/8b0AOINCSBHjXtyRt0oJA5QlQ5iv/G5ADCLQ0Acp9SxMnPQhUlgBlvrL8SR0ClSBAua8EddKEQOUIUOYrx56UIVAJAirzTg9biaSbnCZC3iYjJAIIpCcQhLzpz+QMCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgEBhAh2tk3Wt6Wpda7tZl5ou1qmms3WqdUtNJ7fuZB3d0qGm1mqs1mpraqzGbWtPrs4ylsnUWV3Grd3ekswSW1y32BbVLbJFmYXZ9deZBTavbr4tyMw3d7RwZjgCAQhAAAIQgAAEIAABCEAAAhCAAARakEBrFfJ2bEFGJAUBCDQQaK0PDH5ACEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQaGECdU5g+7VZZr6T1rrFaWcto/0Fbl9rv7jJF53BmYzT1Dq9bcO281vs9t1iS9yiba21uDidUrfx4na9nlea3rDUuu0ObtctphElbWvtlprOLlAnrd3i1qZ1FycM7mJWu8w3205TbLVdnb9bat0xpxrGQQACEIAABCAAAQhAAAIQgAAEIAABCEQIIOSNwGATAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCLQ0AYlt6+Y6Ya5bMnPd9ldu+6t6Py/cnec0t/Pqj/l9J+Z15nCdmFdrd8yJeSXk9SJdt2oZJyVwg5PQV0JeJ+A1L+LVWuJd59ctLG7fbTtDwVbT3Yl6u7vtHs6vYV3bzW0zatUAlBUEIAABCEAAAhCAAAQgAAEIQAAC7YlAjbMMGulpaU+XzrVCAAIQgAAEIACBFiKg2pazdONmpqxfe8s3brAtWMDRsYbtjJu60lvECZZxGtb+XMWjww1rn3tty4W1D9Cw76bHtBodkBmdb1ZhV2sF8fvOGk502/vpmPd3G8ECj9by0wBdrRtg82u33+CfjdsdxkEAAhCAAAQgAAEIQAACEIAABCCQQ8C1/+ucIHfJF06oO8dtz9H6m+3Ml66J7wS8fq1tJ+yVUNdb0M2JqlXuqv9AQt8eDcuyrm9hWbftltrlnLh3uYa189d2h55u7QS+sgSMgwAEIAABCEAAAhCAAAQgAAEIQAACbZUAQt62+styXRCAAAQgAAEIlEzAi2o1FeUiJ7ZtmIJS22E6Sk1TaYvdMYWRALdhikofNrtff64s4fgw8o8Iduv9XZy5/jkC3jDVZRABe8GutLla5Aqu3QGvzHVhJMiVy7eWnxaJczWY1rCdXUf8gmi3fkpNFzCIeBvW9f4uDk2vKb+O9WG07S3qeL/67fppON1gnabglLUdv663vFPv586Vn87BQQACEIAABCAAAQhAAAIQgAAEWiMB18aXhd3Fs5xQd7YWt6/151q07Zr1TtCbcYJecxZ324xYt9TfSn0QstbbU4sT8Lp1bW+37u3WvdzaLR3cdgf5OYu+/qPjUtPiPAhAAAIQgAAEIAABCEAAAhCAAAQgUEUEEPJW0Y9BViAAAQhAAAIQKC8BL6yV2PZrNyjmppfMuIkINNVkdluCXB3XMb+uDxf8/DoIeEPY7NoJZSXg1XlBvLu4xgt/bUnDseAvcW57cRp0kzC3QbQrMW+9qNcx8QJfCXQbtjs1iHWdYNeLdrNr56+wbkpOPy2nBL2dG0S/8tN+8NO0nV0ajvttF05rBMAOFA4CEIAABCAAAQhAAAIQgAAEWpKA+haWOKHukplukXjXretmOn3uDLee5foPnIDXi3bVt4BLTkB9AM46b00fJ+Dt4/S7fd2yvNt2Swfn10FrJ/xVXwEOAhCAAAQgAAEIQAACEIAABCAAAQi0RgIIeVvjr0aeIQABCEAAAu2VgNN/esGtE+bWSZC7oEGY66aY1Lb3k787bhLn+u36tUnM27BvwV8iXRfOFjoBrhP5+m0NprUn4W2130sSBmsgTuJcJ+atX7vfKuxLxNuwWBc3aBfZ90LgBr9aTdupba0btmsVdhnnJ+GxixoHAQhAAAIQgAAEIAABCEAAAhBIQ0AfEHvhrhPqLvnMLZ+6vgm3rvu0XrybcVZ31QeBawYCatvLMq9Evf3csoIT8/arXzq6da2EvWrv4yAAAQi0BQKuO9TP9qZ+a2c8on72NtffnTvbmz/mAiucFrepU/0/bYRFm2HbBwjHtOM6StVXGvpLG7bD5G/ZYwoWDaN+XLf4Wd86uAPalrGF7No9lxXG+fm1tsP5bhMHAQhAAAIQgAAEIACB9k4AIW97vwO4fghAAAIQgEC1EHCdjHUS40qUO991Qs6vjaNr7QAAQABJREFU39faLzqmbXfcJOD14t1wzPnpnAY/P0gmga46MnHtk4A6iZ1QV4sX97oBPuvaIOTt6vy8oLdhX9vyixyvbdj2a3es1omAvZXh9kmTq4YABCAAAQhAAAIQgAAEIAABEXD6prp5GVss0e7Hbu2Wuk/c8rHzdyLezGwXBmu7lblXZLW3l2u/93ci3v6uCT/AiXq1uH0v7O3m2vUIxirz25AqBNorASek9UYpnDGJ+rX267c105v3W/zNvveTv2aBczO++bXfdn4NAt6siDcr4HUvJm27JRomKuT1+F2wRsJd6XVzFwWUn5yel+GZGbZz1l7EGw0jYW6DUNeLdRtEvPXbLmAQ8Ub8syJfzc7mZnarn9FN2y6uhsXPzKZZ32TsQeH0vHczvdWvv9n28bsgOAhAAAIQgAAEIAABCLRWAgh5W+svR74hAAEIQAACrYmAOgrdQFadxLbz6td1bp1xg19+v2GtbS/i9Wsdr9+3ec5irjvXC3QR57amX7515LVB9Cshr3XLWI0b3PPC3m6uI1gCX+03bNeGbbeudX5+X0Jf+atzOXRet44rJ5cQgAAEIAABCEAAAhCAAAQgEEfAiaeWzHGi3elumeYEvG69xK3rprs+C2eJF4u7cQArdFwf9vZ1bfdBTtQ7yAl6BzpBr1t3dOsOyzYIyiqUNZKFAARaIYEgyg0zxYXZ3zQrnJvpzc8E57fr9/1sca4/PCNjEyGMtuWnDz4aFgl7s36L3bMpCHmdwFfbQaTrhblut825iPC3XrirPlZ37UHU28ltNwh3/axtfttR0Gxt2nZrc7O4ae2Fvg2zuPl9vQfCfth2xhr8zG06x52P+LfN3VFcEAQgAAEIQAACEGjVBBDytuqfj8xDAAIQgAAEqoiA68z0FnXnuvVcN6Dl1hm3zmj/q4a1hLkNfvLXtnk/dx3qyHS7OAhUJQEJdNXh68S71t2tu7vOXq0l8HXbtd7P9f02+EfXOla7DIOEVfm7kikIQAACEIAABCAAAQhAAAL5CEi8O7teuLv4ozpb/KHr2/jQCXg/ch0Xc9wJ7jiuFRFwQrGanq5tPtiJeIdocRqxwbVe2NuhJ+31VvRLklUIlJ+A+rS/dt3SfjY414cdZoGLzA6XkWhX/i6c+eORfZ3bIOrVhx0+TIN414twy59jYixEQEYWJM6VeNf142ZnatNMa+rX1dIwS5v5dfBz/bxu3wt8XR+uDyPDDW7bz9bm4kPw6xjgIAABCEAAAhCAAASanQBC3mZHTAIQgAAEIACBNkTAjVepY3LJV/Xi3Lov69eZLxuEu84/40S7dVq7Yxm3tgYRL1NLtqH7gEvJT0CdxE60az1ch28Pt+2WWr+u39d2rY45yz9hu4OOqzPZ/eEgAAEIQAACEIAABCAAAQhAoIIEXJ/HEte/Iau7iz9w4t0prv9jiuv3cPum/g23wrUBAmp/L+va57LSO9xZ6NUytMY6uX212Wmft4HfmEuAQIRARhZu3UxvMjpR52aF87PERWaNq58RzoXRjHHzFbZ+MYUJ20686/u2+YgjQrYNbMoasIS/EvVqVjY3W5vW5rfdvp+hzfn5tXtvaEa2hnB+pjYZdwhhJCLGQQACEIAABCAAAQhAoIkEEPI2ESCnQwACEIAABNokAVkiUAenmzpyibM0U+cGsiTMlWVdiXczzr/O+XuxrtvW2lzHJlYG2uTdwEWVg0AHF4k6epdzixPyal3bsF2rAUQv8HXTfS7nOoC1yM91HmPtoRzwiQMCEIAABCAAAQhAAAIQgEBhAvpgefEnGVs02a3dskTLB061K8u7rVW8G8RJEii56clrNDW52qUNS43WCiNRa3Rxu/6add1hcX1EmSVuPyx+2nd3kqaD17Tvmh6+tYrb3GV4S71OyNthRSfodUsnrfvX1k/X7i4NBwEIVDkB9yjKOAu4foY49V1HZ4eLzAyn4zI64YW7fpa4Gi/elRXdVvsMq/Kfps1kT+9LP1Obe5/KiIOfoc29PzQLm4w0hBnaJPSVIQcJfMNax2TRV+9aHAQgAAEIQAACEIAABGIIIOSNAcRhCEAAAhCAQJsm4Do66zRN2Bdu7UW7DQLdBqFu3Reug3O26+DUOljY1QANDgIQKB8BN7DqLfhK2Oum9PSDiG5dq2k/nai3xol6vcBXfhIAu2nd6PwtH35iggAEIAABCEAAAhCAAATaIQHXH7JkthPvTnXL+3W25F0n3n3P9X3MciwkWK1GF4RE+uizayZrFdBPHy5rgn7acHdMs8VokYhX7c3Orl0pS4FBxNuwXZNQyJuRSNcxkVXLIObNuL6hjIS8WjsBnfZN63zTz+vD73numNaabr5aRb+OT83yDtPKTsi7iltWqrVOw5zA17XFaYO73w0HgQoT8JZ1ndXcJQ2GJhoZnvCzw33Tf13fj+32najXP3fc4woHgWYj4F4T/t3rhL2+j1dGHFx/btj2ol75Sdzr1h3cIiMONRL+6t2MgwAEIAABCEAAAhCAQAMBhLzcChCAAAQgAIF2QkCdnd4ygRPlLpFw163r3KBVnRPqap0V7Lpjsk7graq0EzZcJgSqkoAbXPUdvk7QK4FvbW+37uXWvVynr/bddgeJfbUt6w50/Fblz0imIAABCEAAAhCAAAQgAIHqIaC+kcWf1dkiJ9xd9LYT8L7t+kQ+cgoviUyrwUlcG2Zz0cwt3tKfa/f5tduXFUAn/KmfytttO1FvrRfxumMN61pZ/mvh9qEs9npBr/tY3It5nYXLOjcVvZ/OvkHE66etl6XMiIVMbx2zYRYo/xtUi8jX/Qa1Q5yYd7X6pfMqtdahr2PM1OnVUErIQ1sn4J4DfqY49WFrprhgcEKzwjUYo8hopjjta61+bH1MgINAtRKIGnGQ0YZgvEEGGzQzW8N+/Uxtzo9Z2qr1lyRfEIAABCAAAQhAoNkJIORtdsQkAAEIQAACEKgAATeAIusEsi5T97kWt6+1BLtuW/sZbbvOTz99WAWy2C6T1ICcFg2oNdp2HXje3w0e6gt+bedZL2UtxwXLWoVR+OC0rUXWJqIWJ8J2dK1t10Ge0bphe6m1jmswrc5FWucCyTqR33fr6LbbxbUAAVlZch28Nb1dR28Q97p1h4b9DhL7uu0OTtzb0oO3LXD1JAEBCEAAAhCAAAQgAAEIQCA1AYlLF01zy1tOxPuW6y9xS2aGi0Zt2ko4tdklvNXMLK4NVz8zi/Zde85Z6fPCHlnsk/U+J+it1fTdEva0sEC37Ggcby/Qc2LeOie+qwuWNRuEehLm1UmYF2aHCv1W6q+ohHO8a/o57KvXWCe/OCu9g2rrp0mvRH5IEwJtjEAwPOH7sGVsooDhCRmikGXvij2z2xh3LqdKCOidrve7+nlDXUD9ujLi4Neuf1fbMuKgj3taex2gSrCTDQhAAAIQgAAEIFDNBBDyVvOvQ94gAAEIQAACSQi4wYw6TSvmhLpL3BSQ9cLdhu1ZbmBqphsA0fpLF5mmQcQlIyArK1r0xXxHN1jWyYHO7svfdZ417GsgLTtNpfPznWo61qEhjI6ro61BxOu3G/br/esH47xQNyridds1GtyL+Pl9+WmRK7YOA13F1u6YF+kqjMS52g/bDfte6KttDXAucfdS2HZrWd0JYt6wrU54hdP95v38vttuWPupN7XtpuH0frKaobANa29FQ9uVGlB1Sbc6p/tOU7It7zp2+7hbRmsn7q3to7Xr9JXQV9sa+A33TKu7SDIMAQhAAAIQgMD/s3ce8HIV1R8/u/taeiGNhIQEEkJPMAKhd6SqgAh/AQsgCGJDQVARQRSwgiAIihVUBBURQbr0GmoCBAIJ6ZAe0l7Z3f/5zu5s7ttsf7vv7b53zufdd9vM3Lm/vXfuzJnf/MYQMAQMAUPAECgOAUijbfPj0vKGEnhfV1/JW9pWhRza2caATCXjuAGZm2lbjYGYkHOSazcgE6IO02zjT+iB5gl9EPlSpL7AAPWY+rycf8uTezsTI9rRSrSKqEJv/fYhaZiohF5V7A01WQO7M38Gu1aNI6B+xJQPW0Um8GFH1WcdY9F9xCfiegyVXWmp8Xu17BsCHUFAlfXdQB/qCOrTDeHrVb+uE3Fwa/0eQfTVOoPrN+jItSyuIWAIGAKGgCFgCBgChkBVIWBE3qr6OSwzhoAhYAgYAoZAfgRcx4YqlODojC5LOjxVRSa2VJ2eunadGjg8bUqxBJh0gDGtZIN2sDRqhx2dZ+w36j4kXXdO17pNuBAE3eAxwgRIuy4OpEk9liD56jbX4JgSdxPr5LEkkTdF3NVg3dqUeOum03SE3QRJ1xN5422KPech7HrSbpLI6wi8+ryyduFY47BPruMaDgd+8Jg7p4pKcZ2u051Lrp2jn+ubJZ5P1J0g9Q5Rv65OAxrWDuOI7kPqZR1Whaee2klsj4ghYAgYAoaAIWAIGAKGgCFgCHRfBOIbVH13nhJ4ZyiBd4b6Tt7RdiUDnDvD4Hb2oi2WbIepoiuDLV1bzLXHdB9yjvolbKBlnh9Ef7aY/pbMMBXVgeob/WAJH1hsifoFlOAr63XRsJ1iOog2Ml4JvTsooXeHJKGX39LMEDAE2iGQ8mHjv04u+K5juh3zwhPmw26Hme0YAlkRoI/C+3mpX+DXxc+r/t6Un1dV/c3PmxVBO2EIGAKGgCFgCBgChkBNIGBE3pr4mSyThoAhYAgYAj0ZAciLUdRIlKgb1Q4KHJ+OtLskQd5Fcdd1WPQUkOgbcURcdV7pNJSOmMt0lKqC0m6fThSIuRB3HXlXz/ttt9Z9R9zV86wh+rp9XUPqRQXXrGsRQPHXkXm1Y86TelsC20kiL2TexJIg9jrCL8cIu0FvQRd3Xjv/gvscd4T3zurs61o09SHXDNCZjIrDUHX2Jsm9zuGr+26tClDu+e/qvNr1DQFDwBAwBAwBQ8AQMAQMAUPAECgBAdqDrQtiCQLvy+pDmaUNvrUlJFRsFPwMEGuGa1trmBJrhmkbi8W3tXRKbPMzFAtqlvDqK4h+EPCT4St7X31l76mf7D1t90PsZbBvpa2v/s4o9O6cJPSODDu/UqUva+kbAtWKgCfutvFOJhfI9jF82Lp27ya+OLOOIYDPmiUw+5vbD6tPzx3T754/52d5wyeYXFj57Xbr4HG28Zf6JX2f42puVjcfhrWWz25hlrVYKDFTW0xPcNwdC6w5ZtYxBIJ+XgYN+TqH1j/qEHQwYm/H8LXYhoAhYAgYAoaAIWAIdAECRuTtAtDtkoaAIWAIGAKGQC4ENiHu4vCkQ+J99XnRIcEUgkpq7JaGsi2dX+qEcoTDXuqAxCGVWpL7jrirx5PkXQi8bIcDhF6IuWEl5jrHZbcEy24qKwLqGI6h4OuJvqj3QOZNEnkh86a2VbXH7et0q3G2U4s6mderw1mPO8IvzubuaKg5MJ2rOnjDwxPrVEczig46TZsRe7vjD2/3ZAgYAoaAIWAIGAKGgCFgCHQzBJQQ1PZeTJqnK4n3JSWRzdS2HEqPlTLIUarM6oi7I9X1MELbT7rUKZG3jvYVxF3HlqpUBizdFAL620fXJMi8beo3iy5OLLFF6hvQbafErKuK2QD9/ScqmXdyWBp3DLvf30jbFUPbEq4mBPS9iq2NS5v6raP67vH+OR/2e0kf9grNbHf1YRfzO/C9QDQiKSAh9Qoc/jiO4QtnJrjktp/1zc345meAq9OPCcRcXUIBAm9qBrjUcQ2n5xNk3kB4vkXBRXfZDwWP+e3kOVbZSLwp8m4wDGWsLvEAYdfN0ubIu+pzDZB422378MzeFtUEkjO5sU5tI+7APjO2cZ5nyi3qt1URh8S2HiOtnm48V4P0MdD6CH5eN6BI6yUR6iaIOvThh+/pINn9GwKGgCFgCBgChoAhUN0IGJG3un8fy50hYAgYAoZAT0BAHVkoiTinJ45PpyKijk+cnrodX6kg4KzqDobDsrfeiC6sQ73VURnc7qPHlLQb5niSvBuGzKth3Fq3w0r0tQ6R7vAwVMk96PsXQ71XCbuxJJk3tV6XOB5n7RZ9H/22dlSwLewr+VeUONwtDIevJ/YO01ct6ezF8UtndITOaDoPzAwBQ8AQMAQMAUPAEDAEDAFDwBCoEgSiK+LSMlMJvC/EpO1Vbasxc1ElDLKUkjbDo9Q3MUr5V7qOqApr3ea6ZhAkpCuzLkcAwhfPRNsifR4Wqp9Nl9h8PbZACV8Mjq8E2QtulCoy1+2khN4PhaVhYtg9E10OhmXAECgzAu79Wqnv1SJ9xyDN69q9Y7p2ZW938Y9lw82TchGTwEeNIAVrZnpLbSeOITLhCLv4wxGbSBJ5/QxxnswbUqKuI/Lik9PvCPueyOu+K5HE9yVF0M2Wt1o8ruUxxF5H1FUiL2u33RbYhsjrlsQxiLvBmdvcPoIOPHtureH8NursftY2v40qNNuaTkW+B5ps1RjPJLMFUE8ZqYuu6xh45Ost5uOtmp/KMmIIGAKGgCFgCBgChoBHwIi8HglbGwKGgCFgCBgCnYgAaqBtS3VJKYWo30gdniiFxGtZrQBnJo5MnV4wBClXR3kHt8P+uBJ1w3reEXaTa7eNU1N9lWaGQFUhoH19OIBj6/QdVQJvDPJucK3TtMbdou/vmuS2qgEljumd4CCuREdhZ4BEJ8JgfVdRcsDJO0J5vF5lajN9v1UJ28wQMAQMAUPAEDAEDAFDwBAwBAyBrkAgrkScljmqwvt8TFqVxBtfqLlA9a+chp8DxdUttD00WtejlQQzOiz12j4y1d1yAl2htLQ97wbPQzqcp8TeeUlSr64dqVdXZTUlRTmS9xRV59WlYWw4QeAr60UsMUOgcxFw5N3l+g4pKb5tQUyi85W8q+R4fNkVV7zurFulrIf0qCIS0iuu/q7ktlvrNmtmhiOM29Z1I34x1slt1pB1OZ5ch9WvZgPiO+dHdITgAJE3NVMbx1Kztum2n7ENgi+L30eogVnckkIPiW09Bum3Vv26Qehx4fZPknpHJeszo3QwEgTfQfrM2mCkIFq2bQgYAoaAIWAIGAKGQJchYETeLoPeLmwIGAKGgCHQoxBIdhy4acZQK/CKIIvUD6Squ6h61ozh9MEZ2U8dPH3Vsclap5NkoRML4m5qrUReyLvsp4i6NXOjllFDoHAEHNEXci+LknljEHlZ675bq+p2/AN1BkP0dds6/ZuGcUq+uqoZQx2baWJHqsPXKzmg5qDKvdaJXTO/omXUEDAEDAFDwBAwBAwBQ8AQqG0EtA3VtiQuza+oCu/TSip7Sw9AwCmnMegYxd0tVRhxrLZ5tlTyrraBbFrqcoLcyWnpY0JbvRUy4rtK6p2j/rl39Zjuiw7OLavpLFORiarOO1UJvTsrUUoHwtrA9bIibIlVGgElLkZX67uipN1W3pe56u+aq+8L5N1a8mN7nCAp+lnhEJ8IzhKXnA3OzRrHNrPFuZnitMxnDYGXY6wh5uIbN6t9BPRRdv5cSL5ah3CztSWJvDG3nziWmp0Ngi/iDm7R7aSwg6t/1OJsitRzEG0Yo9+rMSGp13qOm2mgvz7gENvNDAFDwBAwBAwBQ8AQMAS6BAEj8nYJ7HZRQ8AQMAQMgR6BAA7PVerwRPVjoXYsLdB9dX7SQeBUd6vdwYNTEmeljtQOqQOHdZhtJe46ZV09Foa8q/uR5BqyrqkM9Iin226yGARUEcqp+SqBN6pk3piuY5B6tUPErdlfzX7iGGun4qsO5ao2pvtDrRdCL+pU2smNioObVtacvlX901nmDAFDwBAwBAwBQ8AQMAQMgVpFwKnwvhOTDU9Fpe0F9a8s0TspV9uJNs4QdWuM03bNVrqMU/KuKvBGBhippVafl6z5TvrsWucqQXG2+u3e0fa6ruNLNUa5VJ31sQkNE6lHnXcPVefV5wmVTjNDoJoRQLm0VX3ZrbwXs9WfPVv9WOrPLjvZvdwg4MdGeMLPBpcUm0jsq18b0iIEXkQn/JrB6hB6lbwbVjVdIy+W+0fpJunp9yKmqrz4duPM1pYk8sYg8urgELfmWFLMwYk4JAUeIPvWhIgDQizq263T+g91oAbqQTojG+rSZoaAIWAIGAKGgCFgCBgCnYuAEXk7F2+7miFgCBgChkB3R8CTd1H3mJ+Ysi86Tx09qHtAzitX51K5cWTqL0i62jkV0ikjw7pA3oW4G9ZjbtHtCMdwhFrHQ7l/AUuvhyLglB/UuYvKSUyJ/xB63XqVFhcc0/042yvVWazkXzedWzViRQclZQcKVW6qWVWt2iI5PZuReqvxF7M8GQKGgCFgCBgChoAhYAgYAjWHQHSFqvC+HJPmx5Rc9qY6WJjuuhyG0iIElvHajhmv5F1IvMOUdInyolm3RyDeqgrP78WkVcm8bbPUlzdL2+UQF1WZsSzWpP40Vedt3CehzhsZaMSosuBqiZQVAQadt7yrBF7eAVU5j+n74IQo1NddVRbR3HjhieQscQhNOOEJv/azwyE8wSxxSt41Jd2q+hW7V2b0c5GaqQ1ib3KmNt6pxCxtej4l6pDYdj5eJf9Ktb1fqsSLaEOEetAEVemlTqRqvQi5mBkChoAhYAgYAoaAIWAIdA4CRuTtHJztKoaAIWAIGALdGQF11qSm5kPJQ6caizLVGE5/ddxUFXmXaZGYRgzCnXYchAbqOrnNfngQ+zryGsIuzlDrtOrOT67dWxUjkCL4Qu5lWamiQJB5dWE7rgvHWbsp3KrJ8YtvVztLUOiNbKnLGO0MH52chlY7UGwKwip+8CxrhoAhYAgYAoaAIWAIGAKGQDUioO2dVh0sveHJmLQ8HZP4Is2kulw6bAxYRnVuGyWrsKhiagSyivFVOgxtTSagzxSDbFtVhbR1ppJ6lcyISq8wqLajxmOlA18b9ghJ0560j9VBh4/OzBDoYgSYTa5VVc5bXtdnXpfYPH3mIRh2tVEOKwkeH7YTnnBiE7qNzxpfNmu3aDmu5bYJT3T1D2bXz4ZAysfrZmbTdwwRByfooFUZfL5exAE/r4o5uEFK5ajjZMtQocdRrFa/bt22+u3aHpXesHvnCo1u4QwBQ8AQMAQMAUPAEDAESkPAiLyl4WaxDAFDwBAwBAwBiW9QB+f76uxUtYK2OQnnfhRnpzpfytKh1FGMcXhC2h2oTpdBSsrV0dSsIetGWCtxN8I5FHd1CjHrqOoo4BbfEKgwAlq8xNarg1cdu1El8ELsjakiVWyFHl+uzl6/9uTeanD6UrTQwaLqDZGx6vzVpR4nMOpWTFtoZggYAoaAIWAIGAKGgCFgCBgChkAOBCDAtLwVk/UPR6XtRW3klINUqb6QyNbaNoGYsq3OJKJqvM4vkiMfdqpnIUDbu1V9fK1vKKn3NW2Dv63PHgSrjpqSEes/pGTeAyLSsLW2i23Gq44iavFLRABRipa3lcD7qvq1Z8SUwKsJaXnbJZbuw8ZfzZL0XzsftifvMlNcXZfk0i5qCJQVgXib+nOZpQ0yr35fnJADfl4v4oCfF1EHXTsRh67y86r/1s2+tqPWmVj024XKtZkhYAgYAoaAIWAIGAKGQGUQMCJvZXC1VA0BQ8AQMAS6KwKqAgN5rvVddeSrKkdUpxmLKok3vkxvONrFN63Of6dSMEQ7oCDtukXJc4PZ17U6PyNK2jXyXBf/TnZ5Q6DMCMR1OlmcvlEl87JA6nULDl8tm+LLtIyC3KvThXap6fSHoSEJxSumaKt3pF5VvNJyyZSIuvSXsYsbAoaAIWAIGAKGgCFgCBgCVYlAbG1cNrwSk+YHYhJVhdQOk8yUCBYfF5V1o1bL+lEfSHSIstbqi2fGQF8ZNHiwDBkyROrrbSqjqnx4ypQp2tutC5Ts+Jr6AWdom1tVet0A/o6kr6SoyHZK5j0oLI07dj0h6t6X4vLHR2Ly9uLi3wUPQ0hfik9MDcvJ+4ZluBIwzaoXAQZHtOqMcs0v6TP9ohJ439W8djaBV98BhCdCzmed5sPGf+182Hq+UR8sClwzQ6CnIKDFcEzFY1IiDhB78fOqbzch5BDw83b2e6t9T2F8uToYpXGyKstvYYNRespjafdpCBgChoAhYAgYAp2LgBF5Oxdvu5ohYAgYAoZAjSKAk7NtsTo4lbjbOks7kGapU2WhelY2dNEN4cRkeqPN1J+5mRJ1dR3WdURJvG5hG4dok3k7u+gXsssaAl2KgHP6qrM3qkTe6FJd6+Kcvklib2y5Zo+pEkvvp+vY/fXSMkunFY1M0H5zVXKoV2Jv3XBzAHcMVIttCBgChoAhYAgYAoaAIWAIdB8EGKy44bmoI/HG5uh96cDqkq2vEifHhyQ6oVmWDl4ssaE6yrGu442h3r17y9ixY0vOlkWsHQQc+RFC76vqG3xF29go9K7tQP7D2ibWdnDjwWFp+rAOcO3fNf47SLwX31o+ZYLJOvX6dZ9XcnLX3E4HfpCeEZXB3wyOaHk6OTiiI89wMZCpDyiE73po0oft/desEZ8wH3YxaFrYHohAys+r/tyoknqdnxdf71KtHunaicys7yRgqFNtq98vHbzRuJN+v5R4b2YIGAKGgCFgCBgChoAhUD4EjMhbPiwtJUPAEDAEDIFuiADqL24qPZ3GsU1VN6Kz1DECAa4jHUil4IQ/pI86PFHbHYrjM+H8jKgDNOIJvDq1mKjipZkhYAgYApsgoP1y0Q+0DEs6e6NL1NmrS3SJcnl1wenbJcRe7bykM4dO9bptVNVhAooOWs71NifwJr+hHTAEDAFDwBAwBAwBQ8AQMAR6CAJt2j7Z8KSSeB+OSXxBB24a9bgtdfDgLko2UfW4ea1zpDlevhHZ8XhctthiCxkwQKV+zXoEAvHmuLS8q8vLSTXTuXrbpaoiarM3NEqkUZV5e02NOP9eZ4N40tXRDinxZsrvt4+LyNEftjZ9Jmy67Jj6hFpUhXfDk/rcPqvl6mLNScfHMmS/naYkcXdYwo8d0bVb1I8d7d8qz7zylDz17FOydm3xTOKQyj9vvfXWsvfee8v48eOz58HOGALdGYGgnxf/7nv4eNXX+776eN9PEntVUb5ixvdLBRrqdwtJrz3UlztaHbzWL1UxuC1hQ8AQMAQMAUPAEOhZCBiRt2f93na3hoAhYAgYAgUiEFPCW8tsJfHOVALv6+oImaPezTUFRi5XMFXcDaFMMFw7noYlibvq+KzD+YkKL0Q384uXC21LxxDoWQhokRZbp2WbdpC3qYM3qgvEXhy+UV3iui2dpeTgke+nPt9xWsapqkP9xLA06HRt4X5WyHl4bG0IGAKGgCFgCBgChoAhYAj0BATatC2y/tGotDykZDMddFiS4S4ZoaK7k1Qxboq2LcarQmifkMyYMUMggZVi/fv3d9FWr17dLvrgwYNlxAi9mFmPQiC2Rv2GOui/eZr6DV9W0pS2o0slRoaGh6ThQCVD7RuROvX3daZNvbCt5MudeWi9i3vDfapwHbCT9onIl47o3PsIXN420xBATbpZ/dsbHohKm6pJd0hJOi3t1K5y+ESLyPAI9VlrcZhYq39H9+tQ4dXyVzTMunXr5K9/+Yu8M3u29OvXT3y5mkqngI1oNCqLF8NEFjnmmGNkypQpBcSyIIZAN0dARWei+l2CzNu2WNfJJaavSky35QO9/0oI06jwTN1k/X4dHJEGFWcI6QAqM0PAEDAEDAFDwBAwBAyBjiFQ17HoFtsQMAQMAUPAEOheCERXK3n3HZ1i7DV1eugSm6uOjvKJteQGS/3focHq11QHfljJuxFdR3B44gRFibeXOj3ND54bQztrCBgChSFAH4p2pLDUb6lRtKhLEXtRcViki65j7+lxXcdXaJj2fXOFXaeYUOpUjjJF6ZtaDm+pyw6at+21013JvUboLQZIC2sIGAKGgCFgCBgChoAhYAjUJgKOxPuIknhR4i2VxKukkshEJUbuHpamnXXKZ522vaO+lMbGxnaEs3Qyb0fQRtV3/frCR1E2NTVJOAxrzqwrEQjrrFhNk5V4qyqEzVupH/HpmGvLupluisxYXNvcLQ9qo1z/HJlXfYDVblO2DssZh27sXgySefU2ymorVqyQV199VWbOnCmjR4+WSZMmyeabb571Gm1tbdLSkpBJ7tWrV17yvg8PyZ/wWGtrq1vYLiQNwnFN0uL95D2tBkNBesMrSuK9R5/PmfrLlNOvo+qbzo+tqpxhVZau03XdSC1zN1c/9oCQhDY+HikoHnvsMUfi3WeffeSoo45KHS9244033pCbb75Z7rjjDtl2222lTx8t+M0MgZ6MAIK4/fXd06Vha/2c6BiN6MokqXehDjhZoD5eneEgtjDp41VF37KYimq3PReXdWuiEjssLk07Kpm3sfq/YWW5d0vEEDAEDAFDwBAwBAyBCiGQoSlVoStZsoaAIVAwAq0vPiXR115QBdC3VB1vscRbOotFWHAWLaAh0K0QiJ2xucQ3NEls0SiJz5noFlk6UkKtlR9CHG9cJzJwmTo+VbojucQHLZHYoOUS77Ve2sKq7rFc4WYxMwQMAUOgMxCg6NPOyPhmvSU+UkcXLB/qlvhylQZfrqMMVm0moeZE51ZFsqPVnph2MG14Z4NseHqhhMbOdEt4hG43WZ2oIpinJXr0XQ+nHbFdQ8AQMAR6DgL7rj+u59ys3akhUKUINDQ0yKBBgxxha5tttpEddtihSnNq2SonAtHlSmh9LKnEu7SElOHrjhSp31VJdErirR+jZJKEYGgJibWPElSNZLu5udkt7UOVtrdgwQLZaqutCo78+uuvu2nlC45gASuHgD5zdcykpQq09aNDsuGZmLQ+pyR0xEKLZLOi6IsKdUjJkZB5I4Oqmwjl1XgBF0Lv829HZdrb5ZV7fOKJJ+SMM86Qt956a5PfcNiwYXLNNdc4Rdb0k//4xz/k5JNPdocJc+aZZ6YHabf/t7/9TT772c+6Y0uWLJEBAwbI7373OznnnHPcsYcfflj22muvdnEy7Rx22GHy+OOPy6hRo2S2Ks52taHEu+HVmKy/Swl2MzU35fh5lCwYGqgDw/V5j+hSN0aXLRIiFE51N89jC5F36NChHSLxgivk3f3331/uv/9+gdTbVaq8fAsY6GHWPRDoTr8nRHq+TyyyQ1hQkW9VZd62+UrqV+Ga6Dwl+s7TD9Uq/e06WjZoWROdrn7cNv2GaRnRuGOkbPWv7vFk2V0YAoaAIWAIGAKGgCFQHAJG5C0OLwttCFQUgZaH75KWB+6Q8OBhEh45Rup22lVbW/qaqjIDPpCg/69a9huPPLGimFjihkClEVh91gk6Gnm0hJd8TOT1ISIL+kuoRb3mlbKQvsl9WyQ0bK0u6ySs6/DwdRIZtl7f/QZVK1BFCXqe9L1XyYii103Dj6xUzi1dQ8AQ6MEIxJtVYWGZOnxVxSGqKg5OsXeh+npVuVeYWTZYSSkTTqFW7QxZOE7Jw+MktPxwN1Vb4yTtkFeSsU3VViaQMySz8qWz3NHP7XtOqv7p6521uOY+zAwBQ8AQKBSBfS7b1gU96KCDtDqu7XCtj9fymvswMwRqEQFUDZcuXSpz586VZ599Vv7zn//I3nvvLXvuuWct3o7luQAEmB1p/dNJJd5SSLwqfhnZJiSN+4SFNkNkIDXX8hjE3SBRCzVeyD5mhoBHAMI4U4ozm9aGUSFpeUzbzbO0kVzkOFTIvM1K5hVtCvfeK1K1M9NA4kWR19uN97WVncR74403poi0/jr9+vWTDz5gfniR999/X0444QQ577zz5NJLL5VIJLMv90tf+pIccMABwqCQQiwaTchUfvzjH09d/7bbbstL5J03b54j8XKNk046qZBLVTaMPn4ts1SJ996YxN7US3WUqNdbybv6bEfURVM3VsmBW6pvBiVeneWpUPO/3ZAh6n8vg0GYxlavgolYunkl5UJSCCqiX3nllXLRRRfJEUccIZDHvVL6l7/8ZXnmmWccWZnzPcGuuOIK+ec//ym77rqrXHvttTV3y7FYTI499li5++67XXlywQUX1Nw95MywvqbMdNbIot8qR+pVZd62d1Wpd05cFjy2WHp/0Ef61vfNmUzOk1p0Rt/Qulyjknl763W2gfWfM4adNAQMAUPAEDAEDAFDwBDIgoARebMAY4cNgc5EIPbeAtnw5+skrsMV63fbXz3P6njyBL4YzBid7sTvJykV1bPfmUjZtQyBMiKgDsy299SxvuFAiT22m5LRxoqsL5NUS3o2Ie/2g7y7RkIj1uoUY4l1nRJ5QxwP6zuucfBtuLWSBkpdp1/a9g0BQ8AQKAcCIe1IpJOmfqTWUXZR5+wqSL0JJYe2+Ursna/9QkrwFfrUOtpBlJ5h7fyMqTO4Wa/T9mZcGqbEpHEnncJ0GJ7o9MC2XzYE+BYlP0w1vS4bIJaQIWAI9CQEIO9itb7uSb+Z3Wv3QgBF3pEjR7pl6tSpMn/+fEERccaMGU59sVwkoO6FWu3eTWy91vVf0NmIHlQl0/dKuI9B2laZEpImVTFt2Kq8g/4g8QbVeMkdRN5K2cUXXyyHHnpo1uQhihWj3ps1ITtREQRQ0YWAWzdcCb2PRKX1Ra1PrCzuUvFFSsDUdwGCZC9Vlw41VRcTChIvCrxBu+G+1uBuh7ffeeedFIkW8u71118vhxxyiFNqX7t2raDqetZZZwlq1j/+8Y/lwAMPlFyDl1DbfeSRR6S+vnC/L4q/Rx99tPz73/+WP/3pT/KjH/1I+DZls7///e+pUyee2PXCJ23vqTqmKpxDrJMENzmVv4I39NFz6rtbKXF3gvqDttZFCbyRAZwoOJWqD3juuecKxPFC7De/+Y18+tOfdkF5JjDIn6+99prsuOOObn/69Ony4osvyk477eT2e8I/VJG5580226wmb5ffj98Ro0zpdkTetF8l3BeirS7jw/KLy66VB+//n0ze7MMyafAust3AHWSzxiESRlq3WIPMO0PLnqFRN6CKb6GZIWAIGAKGgCFgCBgChkDxCLRvcRcf32IYAoZABxGIvvOGrPvVD6V+lz0k1F89z0GDvOssua7a/WCmbdsQqH4EGHXcMlM7iZ5VIu/6j4q8UwEnE69tHyXpDl+jCtu6KHk3PGKNRFR9N9y3TR2eQaZbSP2fCbJA4m0vfb/60bccGgKGQM0joFzeyGBVYtGlcfuwRD9Qgq2SeNvmqZKDTsvG9GwxJd3KGr3TRNFWnlvW9KIvqENYp4BrezsujbuFpUEVHnBAm1UAAYXVfY0YjEIvXYZ1LZyvADKWpCFgCPQABFJKvHqvrhTUtnhGZd4qP98Dfiq7xR6CwBZbbCGnnHKKMM36DTfc4KZM33LLLXvI3Xfz21TSR8sbqhr5YFTiOjiwKKOKqhMaNewdlqY9VRxhRHnV3zKReJcsWVJUFosNPGHCBKdoWGw8C189CDB7TON22k4doIK8m8Wk5QklqC/W/BXRNo7NVWXeB5TM21+kSacoF/2rBstE4j3j+vKrU//3v/9N3e6DDz4okydPTu336dNHDjvsMHn66adl9OjR7vjNN9+ck8j7/PPPC4qhxaqjfuYzn3FEXpRkH3roIXfdVEbSNiD7YrvsskuK0JkWpNN248qrbn45Km0v6UNXys9D2aqu8shEJe5uq8tELV83V1K5DvDu6RZUYz/11FPl6quvdoTdbbdNzOqRDx9mFuB5/NznPufqM/nC2/nOQYDfj3cXMjK/TVcag4X8gLXf//738qlPfapi2bnpdzfJNy4716X/wLL/yk59JsvUoXvJrkOmyp5j95V+0X5FfbtcQszoNk0HaG2pZN7BdYJivZkhYAgYAoaAIWAIGAKGQHEIGJG3OLwstCFQVgRQ4nUk3l330+lG+iR7CPUSrqewRtZlRcQSMwQqjIByZ1t1WvgNz8ek9WmdWkwd4xIrM4m3qU1CQ9dqZ9IHOuXYBxJh2Vz3+7Q6oW1/h/41T+xvVOQtz76/iq0NAUPAEKgwAtpXjhoLC52VTImLQm/rHB0o8a6Set/VYnaRlniqqlsui+tUu62PatpztWNqqhJ6pyQ6lUydt1wIJ9PRny0Oedd9sDKva+J8mWGx5AwBQ6BnIJBS4k3ebmo/Xam3ys/3jF/L7rInIbDXXntJ3759BdLWmWeemSI69CQMutu9tui0zhseUv/M23pn1DsLNW2HhMcpYfJgJfFOiTjlt0KjpodrbGyUIDmL8xzLpMSbHi49rc7cv+WWW2TmzJnukmeccYZAeA9aNBp1KqLr16935wgTtKeeespNBz9r1ixZt26dI0Xuvffe8olPfMK9Z8GwbKM4+vLLLwuEJxRHIVv+73//c8cmTpwoxx9/vOyzzz4uGteEgMT08u+//74jSPH+MgV9NluxYoV7t5977jlZtGiRDB06VD70oQ859UvUUTMZ06Hfc889Mm3aNHnhhRec4uqkSZOEax1wwAGZonTOsZCqRI9SMu8hIQkPVC6lKuzGtG1c8Ow1+i5EZ+kg1odjrq1dP1Yf+E60KVuHZdrbQQECEY6lK/HeeF/bJuHKkU1P5OV3D5J4g2kPHz7ckXMfffTRgpR2v//97zu169133z2YTM5t1LFRBIbIe+utt2Yl8r7++uvy6quvurRQ/003nmnyyXO6Zs0aR/Tlvo499lipqyt/F23bIiWQv6q+5mXpOSlgX5/XOsi7OycGbkeGK4G3SojkBeS+Q0F43v75z3/mTGPMmDGp8yi3nn/++U6FFrX0Yoxnyqx6EOA95Ju4bNky9+2plpyhQF5JQ9ncW6u0yAtrn5UX1z4n4z9xlQw7YIC0vKK+V1S9V/lQha2d31bLoLZtY1K/RXHvRmFXsFCGgCFgCBgChoAhYAh0bwTK30rs3njZ3RkCZUVgw5+vSyjxKolX/XuJ6Yu5AjtYYF3V5xO5tf+GQFUjwFSNLW9qB9Fjqhj5cvEOiJw3F9b0Bq6X8BZK3h292q3rUOEd2KLvsTq+UdPWIIm1buh+CBKAO17m/ZwZtZOGgCFgCFQQAS3qUqTebcPStlwJvXO1zJ2tzltdYrrEl+v12/cHlpYhFTaPzVJ+8FIlDCtxuHEfXSZU37Sjpd1clcTiW6VZgaybUN7Vz1YN7lcJmpYNQ8AQqDEEUoq8WhZmVOKtkeM1Brtl1xAoCAFIehChINt8/vOfLyiOBapOBKLaXtjwpLYXpqtfROv3BZv2aER0Suimj4SlcZKSJXtTSy3NvOouCngs3jKReIPnfbiuXKPe65UDIRGmE9Buuukmufjii10W//CHP7TL6pe//GX51a9+1e4YO3/84x/lkksukSeffFI233zzduchzHIesu8777wjl156aer8ww8/7NKD2Hbcccc5Qu+CBQtS5x944AE3Xfl3vvMd+e53v5s67jfefPNN2WOPPRxh0h9jffvtt8u3vvUtR4BMn6Z+5cqVctpppznF1GCcf/3rX26Xcz/96U+ld+/ewdOduh0ZFJJee0V0cH9INtwbdW3Ygp91VVVtUxLV+uGqzMvgWU2rM8yr7kLSveE+zUTSOB609PPBcx3d9qR0SOAQvAcNSpvFMHmBc889V1hy2WOPPZYimH/60592zxIDQgqxpqYmpwZ/3XXXCcT5a6+9VlAETjdI7t4g53qDTH/55Ze3e1c454nKqLPybpZbYb5lFoMjtFwtxlRJOryVKpzvquXq5LDUocDbw3qP+W133XXXYlCrKtJnURm3wJsgABmbASQ9xX72s59lvNXvXPQdOeeisySu9bL6iToo4MWYLHtglfRZoeq82tVVqEXfUp/wO3El8hYaw8IZAoaAIWAIGAKGgCFgCHgEelhTzN+2rQ2Brkeg5eG7lBihDpH+6ohSv0rcMSN0wxH7NH9p+1V7vuuhtBwYAnkRiK7QziF1OjT/T53mqLxs9EPnjZszgKrvyvA1ElHybmjMKqkfo+uhSuit12nzkhFZQ9rtrHXO/NpJQ8AQMAQ6CwFVbKkbGtIlIvEdtQNysTp/1YHbpqo+US2HYwu0VCyHSu9KLdKfUJLw+9pRtb8qZ2mHU2Rg53RwdhaUXXYdvl2uPpog826sr9bYfpcBaBc2BAyBWkYgqwKvlo1YrZyv5d/A8m4I5EIAtU2IhJANIUKZ1R4CcSWDbHhZZ0t6Tkf5FSM4B4l3OyVHHqlksx3Ur9pYet3fk3hBzxN3IeuyjSKvt3SSrz/e1evddttNLrroIkFp9D//+Y9TzIVEiy1cuFDOOecct82x//u//3Pb/PvhD3+YIvGiQPnxj39cUDd98MEH3TsFAfeoo45y+wMHqjxnmj3++OPC8uEPf9iFW7Jkifzyl790oc477zy58cYbhTQOO+wwR/pFXRcCMAqUl112mRx00EFOMdcnS/yjjz46ReI98sgjHZmOKc49Kffwww8XVE2D5GLIyP/+979dMhA0Sfe9995zWDzyyCMCkXn8+PHy9a9/3V+qS9ZhJfH2+rA+q0qU3HC3todnal1C3YkF2Rpt7z6rU5RvEZNeU5UQ3J5LW1ASxQTyJF7iePVdyLwcR5HXWyVJvFyDMv43v/mNuxzP0Z/+9CfZZptt/OWLWo8bN05++9vfyqmnniqzZ8+WCy64wBFyC02Eae0h8mIQcP075uNTJyR/GM8x75I3VKk94Z1v1Wc+8xl3iufzz3/+s3vfvvSlL8mdd97po3R4jZBFVP0t8RVFJDVACXu7qALvPmFpGK+DI3qVXq4WcdWaD3rXXXfJs88+K1tttZVkUmIO3uCPfvQjNwhp7ty57jAKzX5QAyrRlHtBK1ahnEEUlLGUlSikkzcGWMyfP9+Vu0El6mLT9vl6++23ndL69OnTpbW1Vbbffnunzo5yerH261//WubNm+fely9+8YsZo1Oe+28Liu/BwRyowT/xxBNCXrhvBnmxUF7477lPdPny5XLVVVe5XRRoUbm9++67hfeQgWG33Xabi/OLX/xCli5d6r4l++23n4+eWhdzTRTi77jjDmEwAGXOG2+8IQxoYWBBW1ub7LDDDnLCCSe0uyfUgK+++mrZsGGjs5QBBOCEEZ543qib8DvzrXzllVec8v6OO+7ongGU8/MZg3MyGc8mBpG/YUxYjj/tWIlND8txY0+UfUcdKP3D/TNF2+QYZVCblkWUSVambAKPHTAEDAFDwBAwBAwBQyAnAkbkzQmPnTQEKodAywN3SP3u+ycu4H0jkHixWttP5Nr+VwECTF3HdHgtLS3OKVAFWSopC0xn1NDQ4FQzevXqVVIaPlLbYlWveCIqLarEG1/oj3Zw3bdZQluo8u64VVI3dpVERqn6br/mje+uvsSq3eUuknidO2+/g3dm0Q0BQ8AQKDsCIe0Dr98yrIMddHpQJdq2ztEOe1VmaHtTO5jmaFm5uoOX1MEZ0de1rF+lZF4duNG0Z0TqhidKX/sudgBbhTChxMv3jB2vzFtb+x1AwKIaAjWPgJWBpf+EpshbOnYWs2MI2HtbOH4HHHCAI0KVk8g74/WZ8vL012T2nHmyQtU+a9UGKfly3NjRMmnH7WWH7SZW5W0wc0fL0+qnWVxE9nSwYESnfO91FCReJTUqMbKc5gm8QRIv6XemEi9k2vr67GzNESNGOOVaf98QhDyR54wzzhDei8GDB8vXvvY1FwSi7jXXXOODy0MPPSTf+9733D7Kuvfee2/qepCCIdyefvrpgsIvRFn2M9knP/lJd85PJw/ZEfIl9tZbbzkl4G9/+9upqIT3xCiIbz4sAVAVhmCJcf/77LOP2+YfU50TD2VWFLi5Vwzf51//+le3DVEX1VNvEJghxUFiI/9dTeQlXxDOmybpA6zNqg3xJJk36nOcex1fqETep2JSNyokDVttJNPmjlWes5B5IfAGSbykHFTqLc+V2qcCIRbi4TPPPONIapDTdtllFznmmGPc8SlTpmxC1mufQvu9k08+2ZG+Ua2GaH7EEUe4pX2ozHsotI4bN849o5Bv04m8zz//fOr5PeWUU9ol4pV6Ib1D4sPfjfHMQzKH5As5GDJ7uZRAYyuVOLdML1LgTEihzdRfs3dYeu2vPpuR+nzpM2pWGAKUp6g0QzDNR+SFJEo55o3tK664wu1+5StfaUfkLUWhHAIoacZiMTn//PPduxO8lt8uJW3i3n///e3yyLH77rvPEWRRTS/Wgvf/iU98oh0B3qcFwd1j5AejrFq1yqlwe/K8D0teMH4LvhPBQR+ot/t0UL8GH8i/3uhHw2644Qb3/YKk7L9XHC/lmq+99lrqmlOnTnUEY9LyxuAbyN08P3y7sWA+fTgGrLFglCOeyAsxmLKI7226ffOb33SEYEjLuQwicybjOP1y1Akg9fpw89fOlWXNS+X/dv60NKwroAKm37jYMi2PVqnad8e69zJl044ZAoaAIWAIGAKGgCHQrREwIm+3/nnt5qoVgbYXn5LQ4GHagkm+gkk+REKyU3NdS/vVCnIPyxcOBxr7GFPGDRgwIOUcrEUoGJnM6GOcKiwogOBAKMr0PWqdF5P1D0Wl9akilQgyXUgJTDJgg4S3XKVTja2UyLiVOs3YWnXGR2Xl+rC8MbdJ3vugTprbEh5P/xr7pArZb6qLy4h+bTJxWIsM6AVhyltS0dfvaiHRPr30/VRA2zAEDAFDoHoQ0EKN6UAjgyLSsK0SeefFpeVNnUpXFYmYcs0pxlC4lWIaL65KD833qpNYVYvq9o7Kmt7qLdZr2nexFEATcdzXxX1wAFj/+Bb6fQ1SE+dLv32LaQjULALWNuj4T1crirv58tlxJCyFzkLA3tvikWbqdYhPM2bMSBEbik8lEWP+wkVy53/uk6gSYKZM3lkOOWA/2WyzwaUm1+Xxli1bLm+9PVseevRJeeTxp+WjRx4qW4zcvMvz5TMQW6P19heUzKgD+1zd0p/ItdZ6fXi8SNMR5SPxeoJuUL0vncQLwa4z7Xe/+52wZDOIjHvssUfqNKTfP/zhD7Lzzjs7/9mFF17oVEEhLGKQFocMGZIKjxog1q9fP/nLX/6SIvH6ACjbQtyBAAvRKJtBSvMkXsJAdoRoiTIgaUMkChp5HjVqlFPqffnll1OnIOR6AhaKkkESL4GIB0mX+yIc/kLIkIsXb2SAUxYEjfPkHb9iMI/BMF2xDfG8aWcl8yq5aX2rzhg2S3NB2yqfaZjoG/rOvKRkXh2wisJvpcwTdL0aL9dJJ/Gecb0KGVTYeCch40HegwCL8WyxeIP8x/N68MEHF+QDR9kTBU8IhBBuX3/9dYHons8Y3AW5HWI6CtCoe0KW93b77be7TZ571ECDhkomBqnQk3j9edL76le/6nb79u3rD3d4HVOF87guBVlvJfHuHpLeh+hg6GGVe64Kyks3D8TvTR+HJ/Rut912ctJJJ7m7ZlCFt1IVyn18yKEY5e3+++/vyv+RI0e6Y6WmPWvWLKe86xLRfwwYgeiKGi7PPyrvPP/F2IknniiXXHKJi8K7ftppp20S/W9/+5s7BoEVvDCu5Um8HD/wwANdOU+ZzwAUFlTmGQSQyTy5FcIvA0poS6V/99PjdfSalAvgQ5mFijH11t+rWjfGwJNDDz1Uxo4d68oVVOubm5ud0j7nGZTiv/le+Tgajbpyj7IM49kiXcq0W2+91ZF7IYcTPqjE7AIn//3qV78K7mbcRu0/aDM2vCJ1R8Skz7hGaX1UP0zrg2czb1MWxdbxobPyJTNCdtQQMAQMAUPAEDAEDIHMCBiRNzMudtQQqCgCba+9IJGRKkvn2y+6ZtNNX8yVa22/omhZ4vkQQLGHaX8GDRok5XT85btuJc/j3OReWJjiiKmU6HgoWJ1X/QMt7yqJ914l8eoUdLJxkHXx2Ya0NFCd/0rcjUxYIXVbrZDwsA0SikRl9vIGueuZfvLSgo1TLhZ/gcwxJm/RLEftsE7GDdZR4eo0DjGNr67Vw5R7P3NydtQQMAQMgapCgGnVGrYJSf24sLRNUjWu11Wld4YSeki9p+8AAEAASURBVLUzP75cs6pFXSlG3Jb/xWTN0vXS53Ad2DJRO8SoZNW4dfi7WNL9o8ebqJ9mXOu5jMf1oDteJedLunWLZAjUMALWNijPj2eKvOXB0VIpDAF7bwvDKVMopg5GXc4rlGUKk+8YKry/u/lWOfajR8rU3abkC14T5yEhs3A/Tz87Ta765a/lcyfrlMxVos7bMkvr/i9phb9QspmiHlI3atOhEWnaMVxWJd5MZF7/I3MOQk1nGmSfXL6vIIHQ54v3gGnDIQVCAvbEQsiHKI8G7bnnnnO7EGaHDx8ePJXa/uhHP+qIvJDOmAZ+zBgFP2ATJkxoR2T0pyAiQbSEOJROWiQMxKkFCxa0wxQimDfIbBB102233XZLHZo5c6Z738eNG+eIUeQR9WGmikf1d5tttnFhffspFbFKNiDzNu4clrgSoNZviEp8XoEZ08GqrS/qQNgJOgPNTrS2KmeZyLz+ajfe1ybT3i5Q6tVHKnGNSMXdd9/tpqRHCRfyHs+PN55zFlQpIbPnE4DAr3zTTTc5ojvPDYQ+r5jr08y2Zkp7yHIYZN7PfOYzbpvn9ZZbbnHbkIObmprctv+37777ujwSBxVelDchvfN8UteshB8/ziu06Wvks9RuHeqjg6BVcdlIvO1gqciOJ5DecccdjkxOvQVl2HQrRaE8PQ3IoQyMiER04EDASk0bwjHvDIZKbpCw/tOf/tQ9055UGrhczs2tt95amFEBtVkIu+lE3kWLFqWUYL3aMSI2P//5z126H/vYx5wqu79H1K1RkYegyneIvqRs37ibb77ZfS9yZjB5shzXZMAAgwhQA/Z2yCGHpIjclGPf+MY3XN8ezwR1D0+i5RuOGn3QICl7vBm0A9nXG2UMBGfOk242Iq8XBPLx8q0hbqPQS5m27uGotE3TGRXWF+C4bVWfYoHlUb482HlDwBAwBAwBQ8AQMAR6EgKdOxdPT0LW7tUQyIFAdI5OedJHR6lCyKO9o2vX7KnF/Rz3aacqjwCqPZB4UaGphPOv8neQ/wrcF/fHfXK/hZhT4oXE+7S+WR0h8aoCb2jyYqk/9B1pOPxtaZi6QMKo8CqJ98G3estl9w6qCImXe3xpfqNLn+sEywhfVmRbF4KPhTEEDAFDoFoQCNWrAszosPQ+sE76HK8d88eEJaKKMDKwAznUcr/hFS07H1OViAWd08nYgdwWHbWU72LRFyGCq5/q16bW1yXdvEUyBGoTAWsblO93y6d0Wyvny4eIpVQpBOy97RiykCLmz59fciIo8ULiPf2zJ3UbEm86GJB5uT/uk/vtaouuUjLiKzqLxlzn1SgoO0z93rhfWJomK4m3qfwkRkgzntDrM5TpmD9XyfX111/vnmme60wL5zPZF77wBafQxzkIV6gxXnnlle2C8u166qmn3LEdd9yx3bngDsRgb0H1XH8sGznKn8+mbphJHfell17y0ZzqILOppC8HHXRQKozPDyTIoHIxJC7uCXVeCGH33ntvRlJwKqEu3GBQa+OUsDTso8/zRmHXvDmKzdF351VVsl5d+LuTN9EsASDzQtoNGvue5Bs8Xultnkd+39mzZ8u7777rFCe9kinXhozrSZL58vKRj3xEvvjFL7pgkGu9Kma+eJDZUSHFIBV7Q+HaE+pQD063733veynVXwi/kOF4vlEMhUyYXu6kxy9lP4R0U4HyTfF1yvmdrbMlLan8M1XKvXR2HJ6xzTbbLOuS6TcuZx4LVSjnml6hPP36DHL42c9+tgmJt9S0GSThlbBRWg+SeLk2atM8y6UYxGLs4YcfdsTbYBpBRfhjjz3WnUKpG0VsFhTlPYnXx/Ppsf/888/7w+3WZ555ZsEkXiKW45qQqoMkXtJFnZfvNPbWW9pXXIS98847qdA+DX9gxIgRgoIyGP3gBz/whzdZt7Yqw7ZAg8B7//33OxJv2/taXsxREq9T2S0gAS2LXJlUQFALYggYAoaAIWAIGAKGgCGwEQEj8m7EwrYMgU5DILZksRIBacWo8xn/M2usFvcTObf/XYQAo2dR4k0f8d9F2anYZbk/7rOQ0cJti+Oy/qGkEm8R6i7tMt+7VULbLZG6g2dL4+FK4p26SKevW6fvbdy9sg8pufbPzxc3ZVS79IvY4TpcL1lKJNcJlUSSSRzfuF9E0hbUEDAEDIGqQQDHbv0WCUJvXwi9H1NC7yQt4VQhpiTT8p/BHOsfjknbe92vU6qY72JJ+BFJ4XdfF/ehcTv+YGpdE+e5FzNDoIcgYG2D8v3QEISwxH9d+/30dfKS1Xo+mT1bVTEC9t527MdBYRGyQql253/uc0q824zfutQkaiIe94fiMPfb1dY6W+vnb2j9vLBx2iK9lJO2a0iado1IuJ8vlct/F0HibnC7/FeqTIqQZCEJehs3btwmA/5RF/aqigMHZh85GZwivSPvl89LrrUnQeYKEzy3atWq1C7Kwc8++6ycffbZqWndSQ/l1qOPPtop986ZMycVvpo2Ivos95qqSqhT9JluL+KaPZsqDt32Wlxa3+2c9m2QzNtVJN50MCANHnPMMY7EPW3atNTvzm9eqPgD5DZUpTHUK4OkuPTrBfe9Ci+kw4ULF7pTKIlivG9B5Wh3UP+hEI0KNoTeIOEOpeFTTz3VzT4H6bycFtYxzSjtFmTObxKTdQ+oH32hDoLunEeroKx1VSDKyGwLMyhU0jIplKP6HFyCzxkK5el2+OGHpx9y+6WmHYxHmZvJ+PYEvxuZwmQ6hqqutyBxl2O33XabO8X7Tl0P4zvHwHaWoOo7+EA4Dg4iWbs2c6eQJ+S7BAv4V45rosKdbrQdt9tuO3e42O/ghz70oVRyRx11lPz2t79tR4TGXwhGuVTK6+tVVaFAc3ULLRsQSlh3f1TWPLpBRAcBFGKUReHelau7FZIHC2MIGAKGgCFgCBgChkAtIqBd5maGgCHQ2QjEW7Sxg2cE5wjtmCLX0956R6676165b9rLsnJtga2mDDc5sE9vOXTKJDn7qI/IlAlbFZ0Pc+5kALUTD3nnEQ3znmDcJ6PHue9s0wyi7LL+CXU+PqUvVSlKvJGYhDb/QMI7KIl3x6VSN3KNhOoTao7+NZ29vF5uSSPxbj6gTfrUx2XB6oisbyl9jEyvhpiM6h+Vta0hWbRq4yea643brFXGDfajpRMq3hvdIOn7PeGJsHs0BAyB7oiAI/SqQm/dsLC0TohJ8ws67a4usfl6t+0FgfLfvn4HWp+MyYb+2v9/QEQi/TeWmvkjV3+IQr6LHboL/fDFQ/zTVLKsM51/94158uA/HpXpz74u69aU3tHVu28v2XG37eSgY/eVLbcdnTEfma4fzK873yEQLLIhUDsIWNugvL9VSnE3mWxqX9UMsdR+2nk61JkyF9LGmjU6D3YHjHKejl9U2/xU4anr+nykXT/9fAcub1E7AQF7bzsOMiSFQslb6Veb8fpMicZi3VaJN/1+Uead9tIrwn3vsN3E9NOdsh/TaZhbZ6oa7/xEWVrIRSMTlMS7Z6RTpn736ph+XUj+qiXMm2++6aa99vl5/PHH5aabbpLTTz/dH3IiADvttJO8+uqr8sYbb6SOp2+g5uctl3KvD9ORNfnxNm/evKxTofsw6evJkyfLVVddJT/5yU/cfUGyvOaaa2TBggVOwRUF1kxkt/R0umK/briqTO8lElsYleiMwt6J2Dx9h96KScP4kKDsW2nzCrx+XenrFZM+zw6k3C9/+csuGs/1lClT8iaBIi7E36lTp7qwEGqDSp7ZEoAc7o3p7FF+9kRe0vCDunwYv4Z8/K1vfcstb7/9tjzxxBOOePfkk0+6IKSLIme6YqePX+w6PFCfDZSecU8XMEFRfKmOq9AB0HFVem7aOy4NW1dG+bzY++iK8MOGDXPlZrZre0JptvMdPZ6uUJ4vPRTKd9hhh3bBsuWx1LSDRN6JEzPXHXj2IZc+8sgj7fKSb4cBJSeeeKL89a9/ldtvv92R24mzePFip9LL9qc//WlW7eyhhx6SO++806nEFqtmi+JyKdaRa44erf6sDFYK+ZlkIAB//etfl5/+9KdOERxFfowBChB7UY7m25jLDj74YPnud7+bK0jq3N677iPNM6Ky4TH8s1pGrG1Mncu1EVM/YnhIWMIDcoWyc4aAIWAIGAKGgCFgCBgCmRDYyBLKdNaOGQKGQGUR8P42XbMZD+y7Cwf2/fk/PfioXPi7P8u3TjhGrjztZBnSP6EK6s7nyG2m80tXfyB/e+RJ+dglP5LLP/cpOeWgfRMpBK7r8+Gv7/fbrROx7H8nIwCpFedjTzLul/vOROSNq5pL88sxaXlCnY8rSkClX7OEJy6TusnvSd34VTpaWBNEccsRmFRzkM5y3b9rRntZgwlDW2SBkm7323qtnDOuWfo1RJPxEuGZkjyRTv71By0ReXp2o9w5vY+Q7ltLGlI3cpce+9J+qjySTM/nZ5P9VAzbMAQMAUOgdhEIqV+4YRtV5R0RkpZxIWl+WpW7pms5ulGAqaCbiy/TTqnH1Hk8NCa9VMUrVLjoREHpd3WgXN/FDudNv3mJ+h9q9CFXT823/+R/n5HbfnWnHP3pj8jxZ39c+g/sq5/RZHzNkItf4P7qlWvkuYdekKsuuEGO/8JHZc/Ddi86P1zPzBDoKQhY26C8vzQd0pBii1mjqHbjjTfKySefLHSoMhVrMfHTr4dSK4QkyB8oxh166KFFp1deVCy1ciNg7225ES0uvZenvyZTJu9cXKQaD839ct9dReRtW6hTMr+tdXr0DQqwkIrwNewekgZtD7iKYAFx8gXJVz8shcSbPr13vjyU+zxqhJ/97GddsrvvvrtAtvrjH//olGoPPPBA2WorFW9IGuchPDLgJJtx3ls6ScwfL9d60qRJqaReeeUVOeSQQ1L7xWygzrjLLru4BWIn06dD1pw9e7ZTXA1iUEy6FQ2rD2PD1iFp3S0kMZ1djLZrXtNxkm2z9D3S8O69yBshfwCt8jjXYraQpZB4GzvQ7obs6lVHf/azn4lXws2Uv1LfPUiH3//+9x35HUItSz6DdHfKKae454r3C+KtV7iGjFiIbb311sICOREVTU/Ae+yxx8pH5FX1y8gobcEP1GdqeSG50jArdRD04zrIYrES9XaLS+POOrh6hBJ6IwXG7ybB+vTpI5D/u8qKVWYNKpTny3OpaS9btrFgytUPlUvlPVfeeKcg8j7wwAOOlAqZ2qvz8s4Fvwl86y666CJHYM2UJuH9O5npfCnHynFN2oPlNNK7/PLLZe+995bf//738q9//cslD6n55z//uVuOPPJIueWWW7L2HRZCIsYPuF3TTnL+LhfJsdseL1vWbyWNOGsLtMhmIRXJ6ZxBJwVmyYIZAl2GAHVrZgCgLMbPwzvIwAvqEtRJSq3PdNkNFXjh+fPnyxyti9M/TpnV3Qz199dff93dFoPv8QH2dGO2lBadBWaMPttjxowpGA7abNQ5qIt5xfqCI1tAQ6CbIlC6bGA3BcRuyxDoVAQg5GG6cluB/cTx9udR4oXEe/elF8rZR39EhvRLKrEWGD/llUsmS3zSIT3SJf3EdROrYPic+UsGt1XnIoDqDFPlVJtRUfv73/8uDz74YNmzxv1mU9tpnavKjaq8GE/MblbEtTXOsPkS2fddaTx0ttSrEi8kXv/MB9cr14XkpfkbHRYo8ULiPe/AFXLwxHWOxBsMzztUzD4kYNIhPdIlfW8vLWgUrp8vPR/e1oaAIWAIdAcEUNGFgNvn2Ig0fkQ7khCyKLIFg+JXsw7yaJ0X63RIcELwTWShA6Dcluu72OFruW+YfnXcH//4pmXff/eNuY7Ee+6Pz5IDj91H+g3okzN8vvSITzqkBzmY9HNdP2t6HQbCEjAEagOBamwboEjry8BFixaVHchKloHpyrb59lH7g8R75ZVXOgVd78DPFy/X+QEDBri0SJO0UVvMFR6A08+XHXRLsKwIVON7yw1CoODdDZL5ynXjlXxvi83j7DnzZMLW44qNVvbwmfCuVB2S++W+u8S0Gtk6R2faUEXRgkzr/HU7hqRxJx2M11g+EsygwUhVls8od+lw7EpDjfb55593Wbj++uvdt8iTdFDkjUZ1wHnSvGIpnc6ETbe5c+emlH0hxvLOVtIgMPi8fuc738moZv/oo48K06uzvPvuuy47//3vfx0ZEiXVhQvbOwIh9bqpwJMZ99/GSt5HqWnzbDdN0gGs2+szXmA7NzZHibxzE+2yUq8bjPeJqQVeOBgpz/aUrfIEyHEaouvYsWMdIe9HP/qRQJLIZKjaQ6j1VixZG0XLPffc00cvaH3SSSe5cC+++KJcfPHFbptnLZOaLuU4hF0WBmal2wEHHJA6FFN1+HJavarqhpUkXpQ1i1OGbr4jJmv/HpX1j0UdYVw2Fh9FJZcpcDiceNbKdb/exxKOdA/GcbpCOfXEXMtZZ52VCeaMx0pNO6jK7svfTBdgIEYpxnsAeRfzBN6g0jUzL3iDcI8KLYaiLORflNwZGAdOc+bMcefK+a8rrllo/iHr3nbbbbJixQqnTkyZ5r+nYPnNb34za1IM+Al+J4MBIfBu07CtfHb0mfKNHb8lp23zBZnQsF1RJF6+uxFVjq8fV2Q5FMyIbRsC3QCB9957T66++mo3YIF+c8opiLyUXdQlmM3psssuyznArpZhQDn+Hq2z33PPPbV8G1nzzgwgzNLAgpp8Vxn1oSVLlrjF140KyUup8XKl/e9//9v95q+99lquYJucu++++xyO3fVZ2eSG7YAhUAAC5W+lF3BRC2IIGAJJBHQUkjPfnsmzf91d9zol3p232jIZr7j4jHrKdD3SQ+GX9DOdT6leZImfiGT/OxsBKlk4p6vNfvzjH7spfFA2KLdxv5kqorE1StKaFpOoTtFYyLRhqXypLyhUP0PCe9wnjXsvUOXHtRIKaxr60KdeSxc4sT/z/Y3OIw73qY/LR3dcK2MGRTOGJ0winczpZTtPeqRL+kHj+vnSC4avhe1mHZ1nZggYAvkRaG1tTZFz8ofuZiG0xVI/Oiy9D41Ir49HEp2c7Yvj3DesfWLR1/U78aISB/R70ZlGBzPT2rHQsVBuy/ZdLMt19IPjvl7uw+N2cu4/+I9HnRLv6Amj9PL5wyeCJMLlCk96R6nCL+kXk59U+mUBwxIxBKofgWpsG6A44svAYp24hSBeyTLQKycVuqYDBiXe8ePHu6wXGq+QcBBaSJtrFBKeDPhwheBoYboOgWp8b0EDshzvLh1S5bZKvrfF5nWFdqJutll5SZ3F5oHwxx17jJz0qf+TOwJ433vvf90xjpezDsn9ct9dYbG1cYkqiTde4OVDyuup30lVIYe5ymjZsoz6FaqC5SB3ksbQoUOzKt6VkmmUciH95VogLXljunQ/PTYK7pCumDr8mmuucUEef/xx+eUvf+mDyyc+8QnxhK6vfOUrTrkPUu/SpUvdO8/77xUNL7300lS8Sm3wvfLELAgNxx13nKBwD8mBQUA33XSTK5MgJVGXGDWKtoa4NSqOKA5yT+BAmQpB8IknnpAf/OAHLhz3yne0mq1ueNg966GhheWSWcjadLAq71Q57OR9wzJ5XPm6CU/ZPywfLpZEmnYjzESAoTDJM/2Pf/xDIEvw+6LWxTT3KLs988wzLhxk2UGDBrntQv/xPUIVtxjbd999U6RDP9glm2LwyJEjHTGR55RnFMEL/+5C5PniF7+YuvQRRxyR2i7HRv1IfaZ0IESohE+ce76eiMv626NK6G2Ttf+LCuIZzITXUWPQA7/TrFmzZPnyQuWCs1/V/wYjRozIHqhKz2T6BqUrlJcz66Wm7b8X5CUbWRciKcT1Uoz30CvKQ0qF9OaJ79RFgwZx19sNN9wgvI/Dhw9P9Y9ly5+PU8q6K64ZzGdwIE7weHCb9wpSLiq9lC3jxo1zp/PV4w8//PBgMlIn9TKp1xQ5fczZ8o2dviNf3O5rcuioI2Ro0zDca0XZuoa1iTrc5uX7thSVAQtsCFQBAgw4YkC2V0SnvBs9erRsu+22ri7hB7fQ1sPXM3369CrItWWhFhGgjXTVVVe5pRhCcanxahEjy7MhUIsIVB8DrBZRtDwbAqUigL+NVlCB6/umvSxXnnZyweELTZdwn9xvT7n81mQnTYH5cemXeu8Vikel13eGBUfsVuhyrkOF6xViqFj4ynkh4S1M4Qi06NSMra/og5tZpCFzQr1V3WWSvoCv6XM/cZWE+mwRCOc0/wJOisT+4g/afzYXrI7IOWOZEzJz+I1OjuLP767p/mt6e1WXjdfPl17gVsqwyTPuOw/r6+uFpVALxuWdpMGK4Xw/9thj5e677xY6hy644IJCk7RwZUQAkiEqIkzf88gjj+T8bf1vSUdbr169ypgLcZ0wTAc2bdo0YWq48847T+hUNEsgcP/99wtTNdI5wehU33lZaXyuuOIK15m76667yrXXXtvhy/3hD3+Q6667zjna77zzzqLTc+q8u0ckPDAkG+5TdRjK/fUFJrNGFcBejkvLxLg0aYeWWWEIuK+NqxfqP/5CibWwVguen/7s63L82R9z4TKdzxc/1/ndDtxF/vPHe9tdL/36WeO7nFbuH45ZHF84XPv27St0kKEGZXW+ymFuKRsCnYGA71wvdA3ximm8Cw1fbDjUqiArFRuvM7CiXj9jxgynkgjJBjXiLbbYQpiOfXAHlS+pf9JJTyc2RDWUp8wMAUOgNhFoe1+JvIs07wWqO0YmhqRhGyWAlJkDgj9j7Nixrt1JPa5Uow0NeSbXVOOlpI1qF0sug3gLOXXDhg3iSYQQd84///xUNAhQtL8gRH3jG9+QQw891BEHUHu/6667nBIpZTaKfZlU+37zm9902hTzkLhQJkMQwBOYUzeS3EBl8NZbb035lCCXoY7KtxE14t122y09ilMm/OEPf7jJ8ao7oGKiDRPD0jo+Jm3vJdpZOfOo71B0oaryLo1LQ9+Ot22HDxS57vNh+c+0kMx5P9Gcy3n9LCcb1VW4u45nmjyu43nimWC2A/wQPKf4Q7IZJNl870y2uLTbeNZRri7E8GkSNvhcffSjH80YtbGxURC7+MIXvuDI8Z40x7PsyfJEvOSSS9z02hkTKfFgSAc+o/QcnaP+ciXlSrEkXJr9+iy0LtHnbLoSeVVZs25CTOq30sEVo0OCbybgNC8qlxAOISz97ne/kwMPPDBFjC4mEXzU1L1R+qO+ibporZifPv3pp5/eJMteoZznA4XyPfbYw/kYggFRKP/5z3/uDkHayaQGHQzvt0tNm++lt3PPPVf233//dqR52iZBUroPW8ya9xv1bUizvI/YhAkT3HTzwXQgDHtL90vTHimWmO/TyrXuimv6Z4R8McAl3fj9OY6SMX5b39dCOMqXffbZpyBiNb/nvffcK9Mff00mDfiQTB48xS07DNpZybtDJRwqrQK2vm29DDykn86ooLOqFd6FlH6btm8I1DwCDEKjro596EMfkqOPPlqCnAV8HfSP0B+G/eUvf3H9dMEw7oT9q1oENt9881R7yavLV21mLWOGgCFQcwi0ZyTVXPYtw4ZA7SKASyvu/VpJ30e+/ZVr18mQ/v3cTZcSP1f6QzVd0veJF5V+IlZV/KcByii37bbbzjlzKp0pf71CroMjAoUAs/IiEFuvTsk3ipiekctD4v1wSHofHpENb70msbrhCf9jSJ98dUChXh1KroP7zW28GRttfUtY+jWq1GOW8BwPxs+2f+QJ35W9p+4gF56rjunkdftruqQftNT1c10vGKFM2yhfoAKGfexjH3PTNhWa9KmnnuqmjiF88B2A9ASJF8OxbUReB0Wn/4PIi/Pvwx/+cE4SLxkLPgd0sqF6UA6DpJpOygg6SstxjVpPA2c0jnwWOl0hCnWGvfHGG+75QNGpHOanjeqIY8N1SG2v00TqDK/r6pTM+4KW2QX2vzMFaevMmDSoOlC4V/vyvBz31/3ScPq3rr4KWtQj2631WHB/3Zr10n9gP/i0ieN+nR7P7xdxnnRJnxyl8lFgfA1WEaNDmW+cV4sJXoTOEwYjoIoW7FQJhrFtQ8AQqG4EGLhEx3Sh6zVr1gjkqELDFxtu4MCBbrrxYuNVEmXfYU5nMop5mey0005zxLJx48ZlOp33GNfw08Vb/TAvXBbAEKhqBKJK5I0pKawQW968TJUsVYV8Q4t89etfKSRK0WEos1mqwYodAOYHV1P+QurFGDAZJBXzvUCJd/vtt3fnzz77bDeAlh06nWmHX3TRRfL3v//dnff/IE9BIEtXQuR8kFzkwwfXEBdLNa7J7wGZyyuX+bQ+97nPyYUXXihjx471h9waIiADXa688sp23yHq4gwC+dnPfpZSJmwXsQp36oYqUVLbqW6w6gf5MxhXwm+U92ls/rCFhAhrG+1o9ZNWi/Es8fvttdderk2VSe2TAc4QCJlOnuc9aMF9/74Ezwe38dUzDfC//vWv4OGs2yeccEKKyAuZnAFM2Yz2IkRTyPRePdiTeHfffXf53ve+JwcddFC26B06XqdKmE37qJDC0qhEX9NnpcBBFO0uqtHiy1QBehmEXh0YvUXcPaeRsSGdNUmf2RHqW+nTHvt28TPs4H9cvXq1K49QK+6IQeD1BOmOpNOZcakT8yzgT8AfjsgFA99QKua5RaEcRWqvUE7fE88KA0/wozNgg2eIdIoZ5F9q2pT7fGu+9rWvuTx/8pOfdNt77rmnI9v/6U9/kttvv71DEKK6vcsuu7h7htiOff7zn98kTd4VlHgxBCDAhmeAPgbKi44+T5tcUA90xTUZJOQJ/2AL4R0Fcp4RvvOIBfl7hSQIDgxKgODO8T/+8Y/uViifshmK7m2L43L1Sb+Se5c/IDsqeXerfuOlX32i7zlbvHzHW2OtsnrYChm2dz+pG15c2ZAvbTtvCNQaAgxIwqjfUtYH6yYcx1/M8SVLlsjcuXM55GajKHSAhotg/7oUAd/m6NJM2MUNAUOg2yJgRN5u+9PajVU7As51DWFPaNConhkOp3z73FQiYmHh86WXfr6k9IlUfeZHulVTzpqbm6spO90mL22oUKgiryQGN+a/L1UlqJucIPE2qJLABlEirpp7G/WdyLXOlHiu8JCB850/Qkm8jz81XR7TBbvgayc4EjHxMlm+9DLFKecxHNs4GwtxFjKNh3cspeeBKWS8k45OGbOuQYDOOwynYDHGiOFyGR2O3n7yk5+4UawdVW/z6XWXNQozdLDiHDj44IO7y22Vfh8oFm0dlvgRyuFtUzLvi1oyFqIwo98Jvhc4qxvGmUM57w/ANyxRTS1srQm6r57+HEXFKzR8qennvdHiAzz11FNy/PHHtyMZ+I4WUqNj7bLLLpNnn33WdaJYmVY8xhbDEOhqBEpVvi02XqXDVwpHpoaGpJtOAAuWhVybKdH/9re/OaUZyDjpxqAyr2RHR1ephN/0dG3fEDAEqgwBre/NfXGB9JrbX3qHdWR1Hnvng7flnun/lv+pOt/5F57nSE/4D7qrjRw5MjULUjH3CLmVJZuNHz8+a7qcQ/mL8nz+/PlOMQyC75AhQzYhGvj0IVB5EpU/FlxDHvIEouBxv40KZzaD3PDlL39ZzjnnHDe1OtOrM6AUbHIRiCFhsnAf77zzjjDwBVX4WrOQ9tLVbakDVkcq4X2mvjB5LLZUeZlKrkw4HfMEruHTxx13nLDQvoKsB9GFmYryqf7TVmMp1G677bZCgzrxED9rWSGRIGE+9thjbgbBd999180yAOmu4gM+tS2PqnnsI3EViohKjDFXCRd4IdneNIzOgsez2fKWDnQbrC6YMarMu6WSeSH0jtRlWJLUW4CrBR8kgwxmzZrlBqpterHcR8CO9xzfcq3ZUUcdlfKVf/vb3xYWBgFD6sVKUSgvFINS04Ywj/oxM6kxmxtL0BgAgko89fpSjbwF1WchzKcbAzcQ72EAC2rsLEGjrEhvmwTPl7LdFdcknwymQayIsu+UU05xWYfUS7uJc7/61a8cDoRhSW+D8ZugBp4y/Vw48q4OAnF9afN0MMi7cRk6d5T839aniH59UkFL3WiLRWVp3/dl/OfHOJ+t6/YuNTGLZwjUOAJwAaibYtRl00m8wdtjgIsn8tLvmonIO2fOHPfN9OHGjh3ryt0xY8ZkTZs8PKd+6dkad/ny5U7EB1IxbQDaVenKv6TNAG0GE0ydOtXl6fHHH3dx6Zui/uWNsHwXWDPQhHTJN4rg6YrpPg7rhQsXukEgb775ppvJjvxTpyu07v7KK6844jNpkUfymm70W/rvFNjz3fDG4HAU8RctWuQGFTE4grYDM31Qp0j/nbjHpUuXOgV0wrzwwgvy0ksvuXvm28jMosxOhYFp+r0Xez0GsZOmzzc4UVcCZ+4VvHbeeeeUMj6/Mb8RuHpjf+jQocIMm9kGmxUTr9h78PlgvXbtWjcwnwF5pENbk2eXmVSKHcjKc/bqq6+6diuDPmmzUvfge8cMiWaGQHdEwIi83fFXtXuqHQTUSZmw5DrfPoFd0ALD50sv/XzJ6Sfuoif/R13wn//8Z04IqGR1pVHhxDGJUwSHBw7xyZMnOwcAU3ukG44PKoA41hh9jNORSiCVSSpJNDBQ0aRSmcvokGUqeIwpoYiXyXD2U0mF7JJrxHB63Na56uSen9/J7eLpqxOZEJJeB4eVxKUOiuSrxDm/mVg7zT8fxZ1VTS63n/4vX/hc51HihcTr7fKf3yoXKpGX3JR6PZ9WJdeonqCWks8YlZ/NcLpChFq2bJlrWGQLZ8crhwAdY149jZH9XWVMC4fx3tNxZ7YpAjijKcNRkkl3CGwauocc0SK8UQdjxA+Jy7rV2in1ht535mK6HSAxdVS36TcjPLrNEYv4puEEwPgmotzEVFfphmIKpEy+efwefNsefPBB5/xpbW11zhE6o0gjl1X6m5jr2kWf0w+Y+xqFAJadTdftzrsLtA/X7ny++PnOl5h+0fedJwKku0996lMpEi9TvUNmwxnFs4ADD0UU6kzUf6655ho3NVqeZO20IdDpCFCG4dzGEY2aLGpG1NPpKETlJ2h0JqDMT/2N5506+z333OPKRc7hsMYRe9hhhwWjZdz2dX7SonMx3VFOJJzV9957r4uPyhYdDZ1t5Iv3nbq8K/38fvo6ed7nLxXPhysw/ibxMsTnGpuEy5M+cSphKIX5jnIG+DEd+sc//nHnQI9Go64sRFUREi8d0HSC+6ngs+WnI1PcZ0uzux0HQ1QDadNDBho7dqyre/De8h0KGmrGqHFihx56qFPqYnpPpqKm7sM7jx+AGVeCKp7BNPx2rby3Pr9dveb3+buSLd56603tsFqp9cfNtZNpvBynHaBeHbWr89jZ1//J5T+V+G2N8tnxmyrspeeFMne2EnlnfpBQmuU8RLhLL73UZvJJB6sM+7z/22yzTRlSKk8SdOpSnqWXaflS5z5Qdaxlq1cyZESL8tjMAu5ivdZPVunSqnUDFSzo7gZJjXKApVaNui+Eg840no2mndV5ogTe9f/V2eyUhCv6zHTINK04RPKlSgR8RWc9UlJveAt9dllGJVR6UeIM91dvQI7eZwhBQVJQh/LUwcjUr0uxbIMMcqlAQzCH2AIRM0hcDV6/FIXyXNfsaNrE/8UvfuHITldddVUwOdd2ZBCzH1SSTgxrFzjHDn42CM0YbcpM3wCIYviQv/SlL6XI0D5J/DIoz/v2Ce+bt2y/kz/v18E4/lip1yyEoORV7DNd9wc/+IF7P3hOvEq9f04hnUFEA/c//OEP7jztLYx2GXV7zvVp6usGfLRB3lVBg+gCXdQfSj9afLkGTqp0l4PE2xxtlqX935dtzh4rTTuGe8R3yQFu/wyBLAgEy2RIjPg6svXpTJo0yfXVk1T6LIb4Vmj/04YP2ttvv+36JajD06eWXo5QbuCPxicQNPx3fqbUs846q913mDQfeughR7Akr/hyvHlSMj4yfInps9NB0oRsDIeAmSQzEXMRFPrf//7nk3Rr4lCu488oZHAO+cffjlGGZurT5P64D4y+Gk/kpQ8oE4cDvwqEXfgSkHN92Ux8ylpItAzAoh912rRpHE4Z/av4WDA4E8E2VSnX495QaCbP3Af+2qAxeyYYkk+uh6Cdv1cfzvdz+YFv/nhwXWi8Uu7BXweRL9Tyg6J79G+SP3BlAA/fs0KMWT4ZTBRMy8/8yfeWQZ0Qes0Mge6GwMbabHe7M7sfQ6AWEEjyIVKj5/Pt+3vKF67U86Wk7+P08DWjoRjhVK2WSTmOvDIl0w9/+EM3HRFT6gU77XEU0LlPZ/0DqoLC1E5Bg8xJXCrtdCBmMyq+THOGHXHEEZJJgYMRcKeffroLc8wxxxRM5I2rAmNMnRHxFS5q3n+hIapGsGdIGiaoE1P/guZfm8QxpynoOu6D+8Hw7bczh9/oBtz0vFfiDaaTIPFyJBE+eK799qbptc9/+9Dl3uPZ+OY3v+lIhdnSZuRjUGk1Uzgq2YwONOsaBCAleuuqzhCeE+9szNTw9vmztWQdQdujsYmo02ZiWNr2iEvz+zE35WM+PPherHxrlZx68Uny0OMPtgvON+/qq69236rrr7++XccBTqrvfe97Mm7cOOcESx9w4jsL7rzzzpxEtkp+E9vdTDl29MMSh1zrPjCZ1+3Ou2u2D9fufIZ0ijpfavrlwCKQBs49HIcYU0ziPPOGoxYyN85JVAhweP361792g18K7TzyadnaEKgUAnQgUI+jPhe0J598Uqjf0znLGmKuNxTufH0elQ2ee/8eEMY7rul0phM1lz3xxBMufcLQfso0yI86pK9H7r///rmSq9i5lFJu8gqpfe24wFL7yfN+lTruwyVPbHK8k877fJVzze8d7NSB1B3sdKG8QyWEQX3U9/0MHRC3GeDgO6HLmaeekBbqxnS2BY3vDOpcTCtPHebkk09OnabTzr+3nGPAXLDDzaumQfJlwG+2jkUSrJX3NnXzXbjxdR3M88tfXpsxBz/4wWX6O3xFfpRU3csYqBsevOKKK+S6798gF+18WUHvf5syE+evnSuLowvboeG/LxdccEG747ZjCHQXBMIDlPw4VD2J9VrXyEe21CCxD5SQpdOjRxo2eh+7CxZ2H+VDINQUkqZdIhLScXobHohJ23R9eBIigR2/SJvWid9XPuD7ShB8SdMdoAIaSkgPKyE9srkSe5XQG1Gl3roheqy3PqdpvviOZ6A8KUB2YinWUNH1SrrBuH5AYvCY36YezMx0LKtXr3YKzemKeYQpVqEcolghVkrapEufEYP0GFSDijtqfhCbfP0Rgg1LqQZ5rRCla4i1DDCjvQr5ijYW4jmeNJcpDdqvmY6n5xVfTyYr5ZoM/mbJZdwHSybjmrStv/Wtb7lBtLSpOOYN3CH7skCgA4sxW4yRgY2DpA2S/Yy4rH2vTaJK4I1pdSqqM1rKao3dntPnk+vQem1srcS3b5OJx4+Txm2NxNshMC1yt0GAd3b48OFulgnIh/iP99tvPzeoc9CgQe3uExJutv51yPoQbDHKYQie9Kfho2NQCIPg+X7xzfB+Z85THnsSL3Eg1qLKSzzKDB8mU7uKePgYvJE/nzb+BO9T4B4ZoDRixHBNd7bzERKX8hmfY/rADk/i5V7pE8an6JVk8R1R5vlvir92+hofoifyooybqT8xSH71nA0IpMw0i5HvKVOmOBIpeQATfiMEpyBNoz6cboQJWvq9Bc+x3dHrMYDbG+Rg+pN4DiBU8z0D4/POO899+xgozG8KxwLjmwdfJRdJlm9mvngdvQcvIMVzyyByDIEbsIaszPevEFEn6hxB/zV9c9QZuF9I1jxzPO8o+eOHNDMEuhMCRuTtTr+m3UvtIeD9bLpm001DzF0EjrubSp532znO54uf73zJ6acilmcDBwjELtSXUHCFPEMFisoLlQ8IEqeeeqqrCJfnihtTgfCK2hTTFVApGj16tKsMUnmrVXl+RjjRSPDG6CRG+VHxo/JKZRXMqbxBUko3Ogy9ERcVBDpgqYgRF6cEHf/ZjIo5FWoq2BCHqVSmN1b4fb0FOx/9sWzr6Gp1TCxXR0RyBHG2cO64vkeR7ULSuJM6Lxv9S7YxhjsS0v90qus6lFy3298YvP1WtvBZ0ktX4iUxSLwXnnti++u3v8rGvVzX2xiqYluM6OS3ZIR3NuMZ4fnIZYzmp0GA4nPwGSUOFXBIAYxypPHF88lzy5S8KHplMpxWOEuJM0dHc9JAQJGFUf2MqMxmPL90XvNOcF0aAyiKMWIznWhAg9erD/iOdO6V0aY0PCExcD+oVWeyUu6LdHhvbr75Zjf6lkYKjV0UtHgn00fqZrpupmPkGWNamPR3MlP4bMdKwQSsaICBhzfKI35D7JOf/GRKTSf4TeA3veuuu5zDgEYcCgNBEjKNQUgJlHuMysRRwXPDb5JJFT2YNtP4QEzhm8OIUeJ9/vOfl7Fjx7o8gTvlIYoZ5JvrfuQjH3EqhC5Ahn/FPFsZoqcOTZ8+3RFmcBIESfS8GwyOoEGM44VRuQy84LfFIcM90YjlN85mPPc0drkGaqI04k888UT3fGWL449X4rn0aRe6pjxvVIWZNp3isfWJhHJizrja0XT/Hx+U159BwjcxwIRvFGqUvMsQYijfmKrOj0IPpkfniCfxMjgFZwpxvBOJae4YjZ3tneJ5qtQ3MZjPsmzzrdGEINuyRT0y1z7XTIQrLHy+9NLPl5o+8cppwZHu1FUzGQ7OSy65JKWEyLcOBy6kXsomZh/46le/mimqK+9x8GLHHnusq/eW413nfYVMxyAOyk/q1Dy/KAJlUpIupWyn/PTTl33jG9/IOgDhJz/5ieu0RMWVAVxYpctjyro///nPTtHA/x44+Kh3ZppdgvKebxJTtfGupxtk2Msvv9wdDn6zfDg6Zfle8c1g6jec5tRJeGaChEcfvjPXDNLzTnm+D9TncJbzzeI7SB2ffKIunUklizoSRlzqSjhOvaoF32Xab4ccckjWW6J8xemM8Q1LJ/Ly/fKzOvAdz/UNy3qRMpygDkjHcKFrf8lCw5cSjmsUG8/nq5zr4ABPfvtszzR5pb5H/Yx3wStA02lCfZ26n3fukz/IfmP1O0m9P1PHD2Eoy3zdm84Unh9fJ0tXoSE8Rv2GZ406Em0E2vXkmfefZyzd0stc1EIo3/AVQFi49trMJM30dMq5z/fDDxyh7k9djQ4a8sogIvwn3keS6f3zCmfExbeBr4NBSMQDT8oziBnZrFbe22z576zjPNOexIsizMmqLIRK6DStK1K+gvcvfnG17Kv+GabW7gnG9xQC7g5NO0v/+v4F3XLDZjow6pBJEp+lvpk0I618bbC0KLZrCNQMAqiXhlWYKtRH22Ar82c7vkZ9Z+uUyDuIVpqZIZAdgVCjEoDUHx7uG5INQ2PS+rwOhFYCrhu0mz1acWdw761QF/0KSIRa/2rSevQQfaZHJAi94WHql1eiemSz5NJHn1sdnN2TLZ3Am44FZKNSFMrT08m0X2ra+B+7YraU9HvA50K9vDOtK67J75TNv0h/WHRNXPqsHCATW3eS6LNxWbMkKlEVvYkt1tdbCb2yoXIIxbSt3DqwWQbt20+a9tLZL7dUpn4Pf6crh7alXIsI0EdAOx6DdEt/Awvtw3HjxrkyjHIsW98eJF18mRiEWfwXnkCKUq8n+eLjxH/nSYz0DzGLFkYf5Z577um2/T98w/Sd0TbFL0B+0o2+L+/b8wq1hA2SeCFhBkWaGOzNgAiImuQ73ddCecbMTnAuvOGTwKeBcb/0x+UyVGi5JkRQ+urozwnyNiC5eh8T1/HfWfptfD/kOeec045bgg8S5VgwSyfsBvNC/vGH4kP3xObg+eB2Oa4HGfezn/1symfNABr6C/jdVq5c6fzq3B/9VPidb731VpcFfNiZFJGD+eM3zxevHPeATwT+iH9u8aUjngNpmv4z+iPzzajixXPIP3gElXf5vfAv89vSJ+zfgeC92rYhUMsIGJG3ln89y3vtI5AiCkKS0NsJ7CeYEglCIU4Vd97fMb7stPAFxa9E+j5PZVyjFgNRkA48nP7pI1PpLLz44ouFEVflnJaQimdwZI+/Ja4PGYPO7UzT+vhw1br+9re/ncoalRk63L2hwss04lRuUdelUy9TxYlK91/+8pcU3jQ8iEeFHwITv1e2BgfXYmoMT3KCnJk+IhkSJQZJOFPHozuZ4V9MnRXxDzKcyHRIHeH1W6sKAOoWGcy9VvqO5FpniNYu/FGfvEgee2q6I+VeoMRcyMDp6WVT4iU8ZUAwfL7rZUo/U5xyHqMhQIPzhhtuyEnkvfHGG91lIejSGKOBkW6kwbNH53qQyEtDBJJJkOBNXDpGMc5BIAg2MglLRT54Hd+wpFP6lltuaXcNl5D+g0jlFd/8MdbkDZIsjW1ICN7IGyQDDJIk5MkgYRmCAJ37POM0ItLjFntfXIdGLA3n4L1xHBIOI/MhQpRCcoGQgEFy7YiVggkNNY+jvzblEwsGMcGXRf6bQIPs/PPPl2eeecZHSU0vxjkasn4qNx/APwOULRCqwDFoPm0a4kwJze/nDVIDxDLSwFGRTs6mM56O5GwKrMU+W/66mdYMLvF4QeLwTlym2PHHIZulT2lOHlHM4JnEUZJuqIam3xf3DVmdZyuXVeq5zHXNbOfqh4elbquYtLwQldB6dRznsca2JhnSMEzO/tYXHFHIB+ebiCoKDi2++bzDvLPpxvOEsyxIwGAKv9/85jcuKFNC5RroUKlvYno+O7zPN8nVN6mH6teJv1z7ekH3FXPhCgifL73086Wm32Eg2ifAVIXeeA+ydR5Rn0mv01Bf8u8sBNpgWj5N3lsfxqsAdPRdx4nLQJj07wjXpJyjnptefpZStlN393nnu8Q9phtONl++UAZ7q2R5jDM500AxjqP4wCCg9EFClAOQDqkLZCLy4pj29woh2X+zuB/wZhCRdx77e2QNOZF79YOBguc6Y5tvqCfxUv5Tv6cz1psnC/Ks8M1Nb4f5cNStIGt74iQOY8o2DDzTn30fjzWDGWg38D5QP+P7G6wvUf76Z5Uyuassq4Kulo1Y+nmfz/TjXb3v81WuNZ0lvl0HmTS9HpF+Herr1EMogzDq7BB56Wjy75CPw3vnDfXeYKcQx3kuuB7tT2++7sa7SvuDOl3QaLfyPAbjcJ58UP7x7SZu0IJlLp0EfgAPYdI7o4LxKrXNwACvlEOHH3X4YMcM9+Y756jvgW2wneTzRbn0y1/+0g0m4Rhqvb4NQTsrF5G3Vt5bf69dtf7xj650l+a5eebZ59r9DgyiGb/1Vu78U1rOBeuRXZXfzriu/971qesrTZFehV2yr8hRJxwpDxz3gBx88MGbxOH7RDvGzBDojghAtBR9B6QQIm+z1kdauiMKdk8VQSAi0jA+LGElfjePCknLMzGJvqX12nKp86ZnWgmE8flKNJyvxF6cCcoTcsReVeiF0BuG5Aupd7AumqcIJPYMwhvpydq+IdBTEYhv0HdJuXmOLL9Mybq6RJfqgI4luq1LXLcr9j6ng04/2zZh6bN7H2maHHbvcXoQ2zcEejoCDFJmsC3CYfhYvdHPRJudBUNoYf/993diMd7HxnH8wxjHGFjryZAcg0iKnxN/LsagY09ixF8JCRTfCL6XdGMwBv36GP6STL4DfJzp7VVm6fFkWPwy6f4a2m1e2Zy+rHTfCbyEIImX65NnT+Rl0HYhxkBu+vkw7iPY3wcx1FvwOMRnMEHIAaGNoIEv+YLICx7ZjL6eTHhmCl+O69G/HBSegFANidiLM+En8kTlTHno6LGO3gO4IjAUfG4RkUAMAzIvBscn6E9PzzOiAPiOMfz2QRIvx+iTwReGj5LfD/GU9GeMcGaGQK0iYETeWv3lLN/dAwFPDlMfnbN8+/6uCw2fL73086Wm7+OVeU2nLgZhhk4nPsCQQH0nHApeqON4QlNHLg+J1ZN46VhmZBUVOjrJ6EyGqEfFlf1cUxJ0JA+ViEsl2BPjIJUFSbxcD5XS3/72t276Z/YZ3ZSp4kSYIGmaSi8dt77CDykvF5GXSu6ZZ57JJdw1gkReOoO9ehvHg2QCFyHHvzijitVxXYjhHHRT1KnjMpOlXit30mkKJrdYbdx3BwP/EvFCcsXP/+pIvJy6/OeJ0W+o7PrzquklWZV4v3aixkqQAoLhA5dJbaafT99PBazQBp3DEHnpNIfAhJpfuqFYSRgMctvpp5+eHiTnPqR6T+KlYx2iKc8YjVeelf9n7zwA5Kqq/39mZje7qSSEAKFmE3qHAFIjBAR+9A4iSpPyAywI+BMV0R8igggqf0VABCkKP6SL9CK99xoSSigJkED6brI7M//zubNncvftm5k3bUvyTvL2tdvemVvP/d7vBeDPgNO2ijXADIGSDwHJcKZ+AIBCZx9WQxjjyLsmMAIbiJdJcVbJMsAg7TCA45fVrkFwk/k3wAp1EQNIVhJSjwAygPWPAa0PYir3u4iH1aV77bVXHtBCmGwJA6uZAZthzXv22WfLWmgA06KVX7Z/r5VE1QkMf7D2MSBkYQbCYB+jBQLbcFAApCIA33DHClwbzNI22O/Ee+oc4gCEy8FvAlicwVxwsE6YtAEI/thKHKODbRnNgJPVoghADupI3hvYhHzDQNHf+qfavOUiK/MPIF7aS4B/1NcYg65Spl2ElcZsmzxmzBh3zx8MKtTjJgyG0REGD0Be6ITwwqRe+TIsrkjPtF5nu8bsMKWAiQDkHdQwWDZcf6MuIF7iwQgGiM1+W/QXBuQFwB00ZpH3Dchr20IVSnu92sRC8VX8XBsYY9jlSlenFL/XiMpyXyq84PsKw6/4+wt4pI4woU4gv9BOBcFj5sY/U+bMyMoiAAO3+G4MZInB04yw/vtyyzr5kXbCgJFW1gHUsjiO59TD1J1BMJvFG7VuB+hFOPSbqUP9NtDCsraLe9rmoNS6PqYNMBAvdRp1IQwPAFrNKA6zX6WLYoLpp12jPTNDIwvqqJPpVwB2BdwLMybtHH2HnhYfOEmfJdjvhome34hFHeRt3ASN+vRFDFRo6ee3tHxCW1tM6Gux+Ip2nbyC4RYwtImx+3IflofMXb3PgIsB4UY9W3qiuq/EHXGU68/SVauzv6AqyKZcKA5/fGnbKTIBQV8Qw7wxMNNXtjGl32e3cI1VFnA9wGD6Z4B3KW/022HZBWBuQnkkr5n9AAM/9TWASso//hinsGuD9UHNr50NxEsfiTTXc6LE4gye6Y9YHc5iRh/Ei1t+B+pOFklQppjECy7UQ6/0cXy2Gna6oE6kvPtbNwbj576/lNuwtPfks0bdPYP2+3gFogfrTn63lpYWYaz82ee5yaieTFtvxAWzkcmAVJM0JhvttugZ5sjEAJEJW0xwdocgmBebAGH/4Ac/KBpO/DLWQH/UgOX/nIWwxBfobjNZPWKJNVCOBhoAz26fkobVFMz7orLz6pFRwK3UGxSugOHsVAUhTu0E9lLXj1Aw73Jqrx+p1w7Uq/cO1KvPltF0LkN74AwT5Xxi7DbWQP/WgDYA2YVaTuYoSHeWnvXIwHT9hT7XnSkzM/W5su1mwbxFnBermUK0f5ZcTUG8Ct5t2iwpjaslXZ+tZuHHAcUaWMI0wNzi6aef7nZ/ZMzNfCr2CAPE8rmAfNlBCLsFc+jYl7FFwbSLAF70553cQ/0DQNJssIRpgn0gaKuBdZZ4sBGz+L6UhM0XMo9vEsbMzu5zpB/SJq6DEraTkz9PZ/NvQX/Be+wyBuRljtQH7GLbRdAhJEwm4EuCAsMtc6TYaVnMXUwKgaIL+ak2Pmy1/jyexWNzodxH1Zf5Lfdc7TdgFwnLt9hFsM9j47I8Xihtvn3Ztxv77slXRjbAXEcM5PW1E1/3dw3EQN7+/gvG6e/fGsAqp7YUrcwtAABAAElEQVQIh9+LcravLddfVPeVhG9+6nSmsQdIaxN5sOUxocwkHxMgTOYVYoqKmiS2SP75z3/unANAoCMLoxhCfITPBB+gN+KtNj4XcA/98SfkbHI9GLWx8PAcQGRQWnSyKWylmd8RtonFoF+7p+MO2JGJeQCaDBoMEG2dbtwCmCtLFLOVTUf0oVt6JdVIWEismOTeO05BVzz9+0J+KcSPPpVbQWlufDAv7wsx8QL25X1Y/BZW93O4e6qReguTvTZAhK3StpX244WpEmHCOAh2892FXbMi1UB0AHX98AEjAh4BlEM5NCCvDwoCvG4AAPITgDnSTB6lrAOKRZjgtol+wAAAp5igRgAVsDKQvAq4aaKuFi0EtgmysVJXMCmOoAcDoFTyXYQBEx11HcJCAn8QzTcAKgCEAPDGL0vOQ5E/bK1uUujb7H255yg6gd0cJiWMCAbk5fc64ogjikZHHoA9Lbh9Dc8Q6isGbrYiGKARCxRYtYygM9sS3D3w/lx88cX5BQc8BjCNocXAWICFfVAEdacxngN+xT1Sq7zlAivjD/meldGwGZvAQGcAFPK45Xne89zq7uBvBkiE77Fvt/DsXK98aeFXck4ooWR2gDYKESSVSMkee+0R6pLVzQB96HsUMuJYufYD8I1RrIguJnVrE4tFWuE719q4Bkr/8L+TmRdQL9Llfan7Uv5Lva80fBJaQ6GeYZEKC0EoQ7RLtIuAdDEeUnYK7eCAAdfyF6DOIJAXA6IthAkDkfMZ5ZZ1FkkB7EIArvlMqTCZw+aN0ZL2C0Ovv3DLeer8E6wnwto7DJuwTbAYj7Y5jB3A2nj05hts/bhqVR+jT0C6CEZCthrjtzKh7raFI4Cd33///XxfwNyUewbkaHUn/V6+04TFUOiY99TJtW5/LZ5iZxb+IBhkC+mfdAHsQzCC+iBMnvkL8rhHGDthVMWIbm1L7k34X9p8W6BD3jKDLP0C26kD0Ln/e4WHVL+n5TLpWkrK9Vdv95auWp2nT5+eD8ofR+YfhlxgvGdcz9j0gw8+cC5YqMDBolMD8lJ/FKqDLFhsAbgzoW9IOJQrxvF+Xwegn40TzjnnHNevM3+4J69TP1IemCAIAi9xS51LHzDqt1r4tTwbqwz1WHD3BYvHH6+zWMvvs+KGsbgP4jV/6M7KO5OJ1OOFpD+U20Jp76nnDz30cLeoaIuYWL1RF7jYuK6boyX0AWXHhP53Uo9IotnQnLITVJgQdgzkDdNM/Kzfa4BiErGosK26RBsC93u1xB9QWw0AGG9SNs3G0QrmXVOPVzLS8aYCBBk21hvQa5+iAMSsdivT0wH2qmBjGKwnwL3K0pvUc0JBvUll6k0OB9Sr18P0eqieB+sS4nhm2zQZn/uxBliMkZmvZW9OJ3B3tl5zKEg3C4BXwbuAeLN6dmy7OVNcz38xAN5VdHHfegkZsFEyx+4Ng3wssQZiDUTSAIQzHNi5sAFhj8A+wlwm5EAIY0bG5oz5fXZa3IFTCBMDBHPGnmbzm9wz/4eNjrgWLSqvcYdAJyg+6BKCsDBhkXQhCfPDPIyJ2cbsvtAZ+xLgZmzZ2HOYd8WWA7AVuy4CgYPpwj3QP7xnYTkYCMbopjt7X+zMgm4W1Zcj1cRneJhgfD67bfBdPe6r+YawPGRpJC9gO/bzub3zz5B7mbCDaCmJYo8uFUb8PtZAX9JAYQttX0plnJZYA0ugBlyTb+2+niPdmx6iuu+p8C1ddTiz7USw08I2m7YayJi0qonatiJgYoztZQ3Ea2HCTmYMZYXiY0KGzkehw0BkFmZPnZl8NwljTuUdnVwmVpEw0FIhMIo/0Rmlk21gMuKxyUKujXmOiXrALWWJN8FT0l+bsmoVGa/kymBnodFOeeh9oUjU/b9v+F/ZfusNurgAzMtRkIn3B51smBXEF5q+MgcTXRIb8YYB0EknneRcw4DFQMkXtm4BgINQVoPlyXcbdu2DA4JsU8RNGWSgBVjShEEbQhleZhmla/Bkhx12cAMC/PhbY9s2vEzOAx7wB3aARAEKEx5iK/q8YN0lIKvgZHqLArysvrDtcXBcyXehWysrAFV9EC9hAhgzoDPuGKxHFfsmBr3ooFZSjk7KjRPdAsgIgngJx/IFCy4MxGvhA6Ky39LPN/aeM+AMYw235/Y7cg8APAiI8NlsDWCB21rkLcIpV8gjPogX/7DzGgjKygnPGSRjyEFgsA7mY+r9a6+91r0P/qlnvgzGVc59tk37Uu2ddXgJj2ldAbJaS2HDkoGyGfxj7ApKmOGpT7SJwYRWfU9bqDp1bVTI2b31nmt8XdwH3wfDKfd9peFXrYfuAQCAPeWUU/IvMBwCgKfMUQ4n6gIQ2pEwAxJAeMR2fMgHohc+4CUMMI7bcsr6vHnzXDz4++lPf9oFxMsz6kaf/ZQ0hUk5dTtAL5MgywP9Zat7/DrW3HOuZX1scREuDMFWH3KPAFA1Jm3Kul9P5lyU/9fvewfjw2gPwI4+CaDCnhbqb6vT/AV5wXTAbmEyZcoUu8yfCxljbcwGC2op4Xe28Qe7GJiwm4Kl0R872PuePJuRPurZ0hbVfU+5s3TV6gwrv0mxfGRu7Gxtqy0ssOflnGHl9EG8+GVxDGMOBJZOP//Z2J2+IIuzfKH/awsLqKttpwrfDdfU970J4iUNsPYgYZNR7oX+8dMYVpcV6u+X03/pD+XW9NGbZyYPT1Wm2K23+oo0Nw2QlUavKFtusbm237ndRXozbT0dt+28RLz0vzPZaIjDuV/OFd8pi1eDQtgwescSa2CJ0wDFJFpRyQF+dTgWS6yBSjUAKLZ5s5QM3rdBBh6UkgG7KEhWgb0ysNIQq/AHQHGeghc/1Dbj5ay0P5yVRbdmpO36jLTqMf+GtMy/MS3zbtLjtg6Zf39aWp9Oy8I3lFX4w4ykATsWsftXkbLYa6yBqjVA3iSPtk/NyMLXNU9r3p1/Xy4vz7tJ87Pm7QX/p3n6hlyeX3Sb5mstA+lXNF9rmRB2e+8NEO8gBfCupeDdXRMy6GCtK/ZpkOZNdHFWDOKtOk/EASzZGsD+xvwLhFZBwRbEwnrmLVmYaMRDuLP5eXZ/9AXQadgRdMM98bIbFyRFgIN9EC+7G4fNa/jhcB22wNfSBEGX2bOC/ord1xKE6u+WZ7YcO5MGSCt8AQzNLkbMiQJINhAv3wnLbXC3Mt8v12HzkUE3/n218ZVKjx9Xva6r/YawPGRpjYoZ8MtPWP63ZxZuFJyKuY3PsQb6gwbidYv94VeK07hEasCNu3TlFZAHRmFZAHil7tFEzmM096XCC76vKHw81UdgrIK5LExglIFlkUk3toPwtxQIc1/smTFTAZIrxEzF1ukGyJg6darbfjMYZhhYw9ywcqk3xBiPAGr4q9uCaWFij45ZGBDQmHODfsq9hwGOdKAnmLZgPAXcCLsqwranxTp3YfHBwCiLF+2FOck/y+jWQ+nPtQCBLUjlH+cvXGnUMlHsnHfsXfju71Qwb5B515h5PS8CC++PYOKtMr5EiH8/nnpdw+7M1q38lgCAfKAFA0QrC8GJ9ijpaWlpyecTQFIMPMkrBkQHcBtkk4JNy8onE/wAE1ndaoASO/vxW7kHVMAqzmDep7zA0scEoW3J4vvnOjggtPeWVh+oUMl3+eBQ2MKDaSQ+f9DKRGZUQAXsxIjPzOgeVPmnHJ2UGxVsiYUk7DdmIDd//nyXHy1Pch8mYZPDGDZMwlgTfaA5W/GY1CJvWVjlnA0g4/vBqAJQirxowCje+3mL9i1M0InV2f5732+t86UfT1nXWq9TvyfmhFTuIQG1dsyXYaOUSqKA+L99mAGgWHtaIMhuj+vRJnaLpNoHtDG5bmq0s8bnWlFtGMvyF9V9peFXq4cQ/5St8847zxlc6Y/CwO6DRjEMcuAGcL+/KAqmeFjUEZhIfVZeYyIFXO/78ZNQTln3jZiF6lDaLGPKpL2DaTco5dTthEedCTMt4FkfkGzMmNQtwQUEFmct62OYLUwwkIeJr5eXXnopDy4NcxvlmTH84pZdCf73f//XsfLaGKM3jbH+oqLgohf/2/y+f1gdGOyH+X7LuabvT58NgDdsyTCDsp2gSaH2yd7X+2zfHvVs6YnqvqfcWbrqcbbJjyhh+wDbKO7D3PhbJvrvre/NMyZlKG/0m21xAuU/rB/tg19ffvnlUJZs+jq9LSwAQKweCUuPX27DfpelpdyG6aYnn1100YVyhu4IEpRRo5aXnb+2s/zDW7gQdLOk3cOe7cui9EJpz0RDWA1pHqpbSi/27QOCFz+VvN3Bf1bONYv6WehZajeNQmGyeIt6KchcX8h9/DzWQBQNkPf9/F/Uj87s1YqV9J6XsnL1fzIyRdlRKxWmNg7cKimHT0jKCsMrDSX21xsaSCnj7cDNFci7ZlLa31cA4TtZ6ZisbKDv6QgfLFFUcHmtE0921CmVbKumY5olQ9Omj+cxlaZA5BGjlSVUzXeJYQo80vuEcjIAMkzC7tt5dveD9F2jesTGEUusgVprALtWu+ZR2HXdoffzuNZnes7O1bOy7mZ1A6+MHtnOa8eyW3odbK1TWzy8pBYTrcOTLQlpWCMhjVovDBgDI3ZceIorLn4ba2CxBrD3mk0WuxeMroUEmyvjEkCLsPNiK/LJirCV2W5jhcJgXt2AspCV2RzYqquu6nYGA2dhAFxsvxColSvYFEhje7tWdr0s7IzIPDF2Huzx2KFtDhebc3DeDgIBs5OwQBpbEOzBNqfIIm/7var9NOYJezK+atMb5r8W3+DPRQbjMFC4PwcXdMM9eRb8DwLovRSg2l+o7jzFf2IN9HMNxEDefv4Dxsnv5xrAwuWk81zqHrfOaUT3pcILvq84fPcRNf/jT4QHA/e3sGbit1IgL51iY2gsZnz342OSL7hFBEDYK664IpjM/H0h5qq8gzpdmF4AscGUWgg8ADgZ8b+z1kkCLAkzMSyuADlIk7EkEZcP9IgaN4a4xJCIrnVVf8e7auybkZWGFazsLfZrT3JnOAVzxuvg/WIfuavge5h5YeB99MnXgk7dPSDeM045VK/Dww+GFwwk+D54H3Rfj3smkQHvXnfddfLHP/6xC5D3kksucVHCmm35r5w0AI668sorHash/gDAcFDGGLAC6oUZ1WfQJV8BFmKCD+DQ/vvv76KE4RkQDe99VjzK/eOPP+7ckAdLdfCtjnAevD9B9lN7xWAxKJV8F4Aik0LABXvPmbopCpCXicrnnnvOeQ2y/PrhVXJdjk7KDb9UPQqQGUPFAw884FYvG3g3SjywuRWTMOAmv2lQapW3guFGuccwEyZh+dEH46699tph3tzKagOz+w7qlS/9OMq97vhMt4/S+j2xQK3NEeTLRV/KzNYZ6nKtUNfTpukMUacUYrCz95We69EmVpqWgv40i7vWkC0u6YCGnLu8dwF1ddflfSn/pd5XGH7B76vBC9rDE0880R0YoTAawqr717/+1fVzYEUEQEb9bH0wjFAwemMkvOGGG/JAXhau/Pvf/3apOuKIIwqmrpyyTrwmhco67zfddFO3oMtAb+bHzuXW7bAO0x7T36PNMYM1bTVCH4IyECa1qo8J24C8LA4sZOwD0Eo9SZuB+2p30QAUfeqppzqGZoyWxhQKA771SXzG2zAd1OuZX5/5rKrB+HzAb6HfPuinknsYrJnQQMgr9GGMIZV3PjCxkvCr9UM7T7tOa+9qQbsPnjvfW3x5f+Yuov9u/kL8E0c3dyXCx08txQeTwhYD03QUYVtHxO+TR/Hnu2lpafFv89c2+ZJ/oBc+UydsvEFGXt8t1zbpE3weha0m6KfW99geqE/8bQWDcfiTJIX0FPRTyX1fL7eVfFOt/DyredxAvLQrP9T6beLEnZyNxfLoc88+WxP291qluZ7h+Ow5xLNAF9K1pduiRQkjY+f6y7PPPrugHxZL0cZXItgyWMyOLaCSeon2gYXzHCxO6gug/0r0EPvpexoA8OWYFyMkLaHEBhzVCiDes5TttFrRYiE3PpmRd6aL/OnYpCTpRMXSrzSQWiYhqY1T0rS2Mod+oscUtbW8p8QYHyj48GP9gbtuytZr38ak9nA66AqGFAVFAux1gk2BcqFzBe7oBPZy7eYQAPcqoNeBfGEaBdyrw1LOyYF6PUBDiWZW6owwPi01GlAwO+uRsgsUnAuwXAHmGa61v5LVcuGec90J2s3Sl5mbA/ByLaxlIs/2ZdHykVxZ64DVFRzfogDecUlpXEnLRVNcmfflny1OW9/UAHYSA4Yy5ggjifFTztgCAZCLzce3hwHK9e99f+wI+qXu+tXU3CwQPwDANHIhbDfsQEl4vhgw0n8W5Rr7KWM80hOGNYDMDCZgwLWM0SBjq5egJ2zZEOp8+OGHgo0T9mEkSEYBeYCBeLfddtsuu7Za+irVifn3zz0dnx93ra5r8Q2+bdlPFwzRLMBHStnbsGMbSzX+wkhP2I3wpc6dR9fSeU7f9u3HG1/HGuiPGoiBvP3xV4vTvORogL4ZfaioZ/vyqO7LdVdJ+OanDmd/1VkweP8dwIdKhY6tgb0KdYYJ2wdCsR1uUJiYKbUqLuinJ+7XWGONfDQAt8ImOejo0jFDCjEg5wOp8oLtlgHyIvfee68DX3LNCrj11luPy7IkpSuBk8tqIUppZi9lc1YnHW9kZeHaaUmNaMgZ57zYrLjkHqmhRS8WD3Fy957zwGVX92HMvHjIgXgP0auu7gvdByLxbkv595zW6fK4445zQF4Aoax6ZOBEHoOBEOF9pQIDG5P9V111lVxzzTWujDI5zTVHi07is133mDFjXBSsBgUAAviDLbINpAogiQP24J/97GduW3E8+OXeBVDiTyGGnuAguEQwUu53+RPypcLmva1kLOXWGGNxFwUgXCo8/325OvH9VnMNOOzwww8PDYLBW7m6DA0owsNa5a0IUXVzUo7uWd1tUgzIHtYulqvLqPnS0lPuObtQ6/VXdBvFt3Ngq1L+2zPt8mnrNGmfNEe2k226OcdwRvuE0DaVo9dugZV4UOs2sUR05b/WhjDLRJhrEMPPXd67GLq66/I+JJyy3lcafvlfXpEP+qYTJ050B+BEwE60QfSxaCf9+hZme9os3mNgBUACANjEZ4m1Z3YuJ0+aYQy/BiKycPyzlXW/bvDflxMn/jDWGoCV9prFWmw1bu1ztWBZP23Frg30VgocjIGd8YCvr2LhFnuHrs4991wH6KEfQ/8EAdR90UUXuWOPPfZwfahi9W+xOCp9R3/J2kT7LcLCst0yeBdcvBjmvtJngNJhYGYhFuWB8mNtjL/bQ6XhV+vPJlKoupD8fecES/4+9zr/N//c3HW+6fa8h97nE1ajCx+4S9+f362UsK0kZQCpJzjcT0cxsLrvzq4L9fftfW+eWSBAmWVxBpNjYQshYPAxYaxUL+nr5bZe3x0l3HvuvSfv7LbbbpdtdJLQFyaYrBz4z5fU6yBT08z2mTKnfXakz3WsdbOycs7/niNn/7IwkDcYR6TA1RHlhQn18ePHu4XCUf0F3QHivfbaa+Xuu+92jP6lJiKD/uP7WANBDWTVrpmZpX0OQF8RJAHoSgGI1QpMvLWUl97LyJ3PJ2SvzatPWy3TFYcVXQOJ5oQMGKvHmKSkZyugd6oCet9XcoypClxUnEwG5mYFMvY5oeOua0ayHA4jYj15UqrXMPIqgJeykxisAEV31mueAep14F69BtSruwByOICvu9Y5CM4KaoyZfdHnEiKaLWDSxbaYcXlH51wA6bbpmXuuO4G7BthlsZG7VuZdd83iI0DuvU9SWf6PQp5fUfP2KgreXU0ZeLXMN66qYF4F9UsMai9fn7GPWAOdGvAJjiAUYo6hkA0QEKnNn9juWQBVGVtgp50yZYoD0Jrt1pQMLgLmV4RdigDy+jsDQ6oQtOcyd2UAYwsn6rlF7Qw2noW8Ibij2iOPPJLfCaneOAPSzPfaPCdjMhPGeL4wDjfxcSX2DDtkIXu4uSnn3NPxlZO2qG5r8Q3Y5N59910ZO3Zsl2j5zQxYDdt0MfHJTBjDQ/IVFEhRjMgEIG8ssQaWJA3EXbEl6deMv6X/acDsWXp2l969+xjv3i6Dz+0+kn8LJORsjyy84Llo+M5x7f+wmqyQTJo0Kf8qCgNl3nHgAnY0OtHIW2+9FXi7+Na2s+RJMebexT76xpXfETKm1GDKrr766vyjQtsc5x1UeQFDqq2I+t3vficGFDjmmGMqCpmV8qkVtPxE3LIt+7kugH4iK4smYx3vGmUuj3eWBAVhhN539bL4LsQ9zLzbb71B3o0D8f7g0Nx9iPtq4+viPx9r/S4AJFnZMTZqGAgRWOd22GEHd13pH9jqyCOAcBgYsprTmHIARQWB8wyEjz76aAeKApzOVud+xx5WX9uynHLPhDhy8sknC6v5ih21HMiV812mX9LJNxVLI+/87dnxU0gAjiEMvn2jQiH3ff054BAD8ZJHYLikzgaUhV5YjRu2iKEe39Wbeauc7/HbMSagCwmM90GpV74MxhPpXuvxhe9kZNFTajzPLeQt6W3mohnywbz35MKLf5s3LvmeMArY4pZ9993Xf1Xz61q3iTVPoGurtHVx//lD21jkXhNQ9H0p/6XeVxp+zRVTOkAYxC+++OK8Q2OitAc77rhjvj/EdmuItVHf/va3Cxp3zX/Us8/8CpC2kFifGyNoLYStsQAyI8bCa4BW2p4gO0It4gwLw+p+n0k86A4jthmifX2Zu3Q6fKUY7BPFBLAuvymG9fvuu8+x9NrCQHYDMCbaYmHU450ByjF0+uMbi4v00o4i1FH1BiUBakf4DX7yk5+4a/T0ta99zV335h+b8Ih6trRGdd9T7ixdtTr75fepp56KFCyLGUx23nlnu6zr2V8kSj1Uqh/Nrg59VWwiir6ttRV+WpkEsXEYzym79ZS+XG7r+d2lwp45Y/FCuVVCdsq4o7O9LxXOkvK+sRG01GL5PP2pzF40K78oYvGbkCsFwtx1xT1y6bmXh7xc/CgYx+I3xa/YcQf7gW8vKO4j/C0LE6y98m2U4a7jp7EGSmsgo4DJzOeKKosIBkso22hSwYjVyhRAmRXK8bs0CkdQ3v8s+CS+75ca0Nnj1IiENCtL7+DdG2TIwQ0y8OCkNO2XlIYJmv/W0PzHpmTVZ8OeUQ9lS9eUZD/RaYF3lGlY2ag7Hleg8n06V3BbRhbekJHWf+SOBdenZcH/pWU+x416/LND5t2Ulnk3d8jcW/X6rg6Z/6C6eTwtrc+npe3VtCyclJH5kxYqm7ECn3VHwIwyBgMGLUk+0jNfv3TEosN3dI7u+Q34LRbp4oJ5r7W536j1udxvxm8379+533Ku/qbz/pn7jd1vrb/3AmUpJw+0Xp+RNj3IG+QR8kqHzi2RdzLv5PISeSpqvd3rPwJldZhidNdU0O5XE64sU6Yp25Txpg0TkhmiHNcxcqTsnwrbUiyxBkwDzI+usooi5FWYW/ztb3/r8AfMYyEs9Mb+xvw4O56a+HOq++yzjz125EW4N2HOFEIjE9sdBKAqIGAEO5ux1GIzYFfe3//+945R1/xhJ4kqsNkOGKAT8iqQoDBvZAvWARsbwRPxF9sVLmp8pdwxD2jAXCNmGDNmTBdSNsLwF6MDqrZF3Hw7oGbffo+e7JtKxV/ofU/HRzpsF0CuAbXCihxFCvmr1Tf87W9/E8bJpAf7Ojvh2W6EEI74+JWw9LKDtLHw8l2Axe334bfC3m4gXtwZ9iQsrPhZrIH+qIGG/pjoOM2xBpYYDcDCo6AFFgRnGUR5984A4t279/bh2NcC7iP598IL9V9J+OanDmdYZ2jgGxq6V1XWOBNttZ1CtrWgw2art8I+xV+lVg1wOCzsej4DkAAr2i233OKYTFn99KMf/chtL0xH55///Kf84he/cElgwm/ixIn1TI6LF4DKr371KwfOtMgOOOAAuyz73LhaUhatogaUmREMz+okPSkrrfdn3Op6mAVMXLHSMlLsbG79czH3MPOee9ENDtC77VbruzJezH0iEL8fj12X8m/ueuJ80kknOcY9WJbJV//v//0/Fy3gWAMnVJsOyj9svxzf/e533XYwsPICtAtb0Ud8bBuz1157uQM2XgPmGCsgbgAhwMITFYCAn1pKlO/aeOON81EyMLZJwvzDCi8MQL/TTjtVGELf8sYA3OT888/vtm0PBpJizIPmt1bn3s5bUb7DB+OSt8JWSWMcMkCrH2a98qUfR6RrrQwxxrfdp2y8OgHjKu8IHjOjO+TNR1+Xj+d/7FhCWcxi4Draen/bpxNPPDFCiJU7SaVSUus2sfLUhPikTXL9TfqpOR0XvdcgXCuK0yjunTvnKZr7SsMP+bRqHtHvxEBIXvGNpsEw+X0LCW3AEUccIb/5zW8caPLQQw8VwJ3IYYcdVshb2c/98gpzZlhZp6+NIQ0x4GvZEYV4+Na3vuX6mQB4MZIaOPTII4+sWR8hJNoujwz8BrsCR5hBj76ACX0NE2MwLrS9WjFgtIXBmXBgqeCgT4KOqVvpm/vGYt9PPa/PPPPMPEswYGPyne3gwa4j+++/f363EtzWW+ivmdhCIxZm2eSAveuNsxmHo54tjVHd95Q7S1etzpQjY1JmLAlon3xTSNh60d+pgx0qCkkh4Hwh98Wek04mdmA9p46r9+KcYmmp9h31JuNn6jH6DSwW2X333V2wTBj/9Kc/zS+Q5boUC3m16enL5bbab6vG/9rrLGZ/+c1vzpfzzjvfgUWpW//+9+vktFNPzQe/QLcjXdIF0D674ph0KMLl87bPZH7HfBnSOMQeFzwPmT9M1hqyrkyfrWirAhJkpSrgrNtj+iW2SLjbyzIfWDjGolWm96LOGccyPmHSnbqUiUwWZLJgKpYlUwPtn6htc1rEb4NFUUkNHDNoRC+1djZet10/bpfFNvtL712MQNahXlXCGAWABbbFMCb6qgIv4hlAAG0pgr2wWtsm9pZjjz3WhXfzzTfXrO5xAfbwH/JawwoK/lshJVk1V6a/VEDjxwpYnUa+VVCj5t3Mp2oR+EITFh0X1MNfUSI6SD8UY5VdkMvB/t+cz86czXQCWKZOpt5Esz7X+zfeeF2mfT5NVl1nVVl3/DrK3qtuOhl8ISPBDXpMDNAl0BQdrjncde6ZK9N6n2jQe0wK7lrvU2qc0Xv3bPF0hjroLtjPIcXYc889pSfGdN1TUOYT1TuM5ACes2nNQ+CP9ODMvbvW6sU9b8+9h0UX8Kxj0+WZ5jn3jDP5b5E+U1wlzLovPvKiLPhigbSsPlZGLz9agb4JPTRccJe45XcvKJ2/ecH3/eAF+W5ZbTNg3h2t2Wi0luPRCsZfWZl3h3fmRf0Mxk277LKLsB06O+bUah6iH2ioqiQyx8p4GHAaRDLMkcUSa4D+AztNAeClTwMZAHOaCDZhngWFuXkf2IgNlzkcxgPM01xwwQVufEme88kFttxyy7y9l3ixOxqhBORegDXpU+EPgfXXdjBiXhcQcJTyTrqZx7dF0Nh5WWgMcNf/HnZla2qiAay/QEhx//335yPyF57bQ4iMjN2YMdt5553nbLXzvTG5vUdHv/zlL92Cz0pxJz0dH985ZswY+1xHdIV9Fbt8qW8o5A8guumkGp2RLwDzhgm2xCj9bNwBdue3YX6fvjpzef74mzxoRE9hccXPYg30Vw2U6PL318+K0x1roJ9oQDtVTjpP2moVv7fPiuq+VHjB95WGb/5qfGaiik5TUFjdxZa1CB3ZajuFNsnPRH4Yay1GczN6MMHvr1IKpq0v3jPpZyAlQLsYQAEj02G3zg3vGVT0hNCR94WVhQAvK5WGldT4ME4LRdSxgRppOl7IyoK707LofQYvuaYwX6xcQtSI0Zmg3HnxfTCdwffBe5h4t9tqg4LhBd0H78uNL+i+nvf+b+mvEAWQVKmwLSWDjKOOOkqC4BkGi/6WLQAgOE455RTnJ6z8wrwbBtyxcg/A09gC/TQzyMDwCVALcGi1Uu53ER8MP1Z2mUjwtzSx9LAKkTRyFGNWNfdMBtrq2O23394e9+szk5ompi+752zgMf9ZPa97Om9V8i1jxozJe/vBD37gjEH5B3pBuQKoHyb1yJdh8RR9plX3onczsuCutHS8rEZ1DO9RRCdZVpu4igxaO9dgAGDDKIFRo6WlxW2vC9sdcumll9adiZJ4/HqU+2rbRMKomWiD5Fo/1zC5m+L3GnFZ7nsq/JopJBeQAR0Bgb/99tsFQ7/yyivz78IMZ9ZWYlyz9gswSC2ZFNmCyurFH/7wh93KOgk866yz8sBNH8iaT3yFFywWsbgxuNmCCvvuCoMty5sPZP7Od76TX7VvgWDI/v73v2+3XQzmpgsWv/isF+aYOiJMLrroItcnOe2007oYsnGLPnq77WVS4Hvf+55LOoBiWEup/8ijMC6QHxEYN3tiwY/P3uwi1j9MdvQFMYNy1LOlOar7nnJn6arlmfrEhDJtrN72zM4Ac+nTG+s14FN/Ygp3/qIHf/GshVHN2RioqYPCdt9hkpp2mH60sYJUE1+9/MIc6gP/ASXD7sOYnnoFVh0E2wgLKustfbnc1vvbi4W/zz775tu9y3VCdNkRw2XDDdaXlUav6EC8/Fa2mI7dY7bYfHxo+1Isjv70zvoAfpo/mj9VPm2b7j8qeD12yDhZb8SGub5lAVcnnHBCgTf9+zFA47PPPlvox9FvoF1kbEa7jO2MNtvfWat/f22cetMAALWODzKSUTBvFEmM1DZ0ZG6MFsV9Pdz4TLwAegH21koAvQLWh2kN1rmeEpjr2EmAwxZdVRM34wgLb0liawR42jBKmXo3ScmQ3Rpk6EHK5nlISgYelJKmfRUguIMCBtdT68Byqj0Fqi5xwnQCTLtqjswqo3XmfcWCThJZp2F92XH0zrLG7LWl/UFl+b1Lj1uVzfXGHKtrG2y/yu4K669jfIX1VZleYf117L8w/3Ye826EJVaPmzjS4lhjYQPmuEWf3abHv/RQVtn5d+txX44heP7DaVn+7VVlnekbyfBJy0vrM8oqqyy07lDm4NYXlD34RT1e0uPlzuMVPSujsGMVfk2ZhV/X443Og2uedb5vwy3+8M+hYREmrMT5eIjzSf0mZSte8IgemiYYcF0aNa2k2aVdv4Fv8b/NsR7z3Z2H6YOzMSQv1p3Ggz6NNVf1iq5hzkX3/AZpHd5u1LCpbLX8trJC62jJfKC/mQLOHYsuv2EO16YXS5AADh+lbcT6CWnUskiZHHiwsmrrMfRAZdbetUFZtrWcLqdlVMuyyb/+9S83bsMu6u/2Ye/jc7gG3njjjfxYksX6scQaMA0MGzZMzjjjDAFo64sPeuU5cxPYJMJscNhbbBEvbpnbMxAvc6X4CS6WZtG+v0MR7gFBAnZkhzhsgrZLJ2kxNluzURGPf829CYsKjz/++DxGgnDte7BbHHLIIV1sPsRZT7F5OOJAH/53W7ykAbsUeAgTA/GC9QAjwaIrIxRAXzY/ZOm3s/m3c5ieahGfbyezuIqdSfuECRO6OLHfpcvDwE0hf9V8g0XxX//1X6FAYuJkZ9m11lrLnLqz6djO9hJbNfOXNsdPnvNBvKuttpobK1e6yNfiic+xBvqiBrxuWl9MXpymWANLuAawzanNLUcBGuFs6ijXX1T3lYRvfup0BoRKp4XJKjqX//nPfxyDrHWkWOUYJkxMG+tk2HueMbkPWw0rev70pz+5lW10Yumo7bbbbq5jxxbbgIlLxVcojr7wnJV7TIrC/Ib+EJtM5ZoVeqyypcPji21TaGf/XbFrOsxIIX9MONpKQtzRia5GkoPUKLFOQtpf0a1/JpPZI4iuru94WsG87WlJtK+jN3PzxTDnWwGiekHxzEnu3u66n8PdB/2Xe989HntSKj5zV98zk3NMFsPEaxPvMG5VwxADiIn8iACQomwyQKQDzxaY55xzjntHHjJmQQC/MNvhj/qCgS8DMzr0xl6FJ56bsI0mk/oA+BmsMTEAaxAgReKlbjF2xCDQzsIo51zJdzEQBGCPTjH8s+KVQQss4q2trc5IBJCC+qmlpSUSs8fzzz+fT7aBG/IP+umFD4oCkIbRAB0xAQNTnC3E6KnP6+m8Vcl3UU4AmwGCh3GBNHMNgJD8zwpxdBcm9ciXYfEUegazxqLJaqi/V0G8upUdbClRJbmaTjSt1yD/eugOZ0ijfkF85mHqNSYN/UUDuCnXgIIfxDfoBA0RvK91m0iYtRTX2rgGUf/wv5NpVzirdHlf6r6U/1LvKw2fhNZQjFGBIGmLWOwB0w3tR3t7uytDGO+tDFH/h20lj1/rD/385z93KTzmmGPyW6C5BzX4Q1mHwZF8bmWd+p/FH7frNt820YAxN8xoXGkS6AfSftGOUTcjsDzQXvWUAHQ5Upksr7rqKtdPAAQDQJVyR3sI84QBV1kw4xv9fLAhfdULL7zQ9ZU//PBDV3/+/e9/D/0MjMDWj2FMQbvNjhiAhnluwJveBKvym7PQyQBQtAO+kGeCizn8OrBQH98Pw679OrCQP3Rh5QUAte2kYGH01tnAG1HPls6o7nvKnaWrlmfYWihLxiiz6667OuZNxuwY1+mn0nelfvQBsj4Y1dIDUM2EMQUgNepGM9Lbu0rO9JPJW/SVmUSAeYV+I+UUlrJTlSHVxsWU8b4sjGMYy8PaTpll0TOHCQsh//CHP7h+sD3zz+UufqY/hN78su+H11fLrZ/Gnr5mK8fbbrtdy8bh7jcifstfEyZ8VS67/HL5RH+7iRN3dElj/Ew7geT13QD1Xk4UWmGXNe8b5AOu4wVtsLF3WzTvz3tXpi34WMYNXcMeFTyPaBopG43YVFb/eKy83z6loLsl7QXlm8l4s6/Y91ke4Z4+HX07dqahzWb8G0v/10Bat4DvmKIDojnRviWpzKgpBWH1lgDi9YG7l93bIc9PqQ8iLgoQobf0EMerGtBsmByakAEcWr0DSk/PUgDlZ96h+Ts7QwlUtevSps8H5rwtXepTtlkYZwEA56z6uc9ffK3lv6AE3lH0Oeg2gJHi3HkNc++Bgw+T1g1apXlhsyy4Xuc+cGN+IPbBnuPu+WPX5ib33sZxbsxC9O7Qd7rw310TgF13ea+PM/qA6sB9s7rTa8esy70998/6uHIh8qVcmvXnVLL+pLYJSQXPc04p0D4Fg/by+myZroDdQtrCbmX9DeZLY4mmAXZMwI7B+Lfaec5oMRZ2xWIwdm9BsIPVcsevwrHGb4ppANsDpB2UL+YfYcJlxxb672ATsHuUIrnadttt3Rw+4wTGkymdf2f+FdbUsPE68/OM17EXYMOkHwWpC3FZ3Y49kIXN2CrN9rLDDjsIRykBR8B8G9/B/BvzHczFcgTnPrDDcBQS7BQ231vITbHngKWj+EdfYD+whfPd/C4tLS1uwZiFD5s2OmNBOrZ8xHZVMDfBM79BWPyVxgexVDGhvgmLDz/Y5bC7s4iM7wMgHkUK+av0G1iQakJ6mCuZPHmyA6Ezd2J1lLmxczFdkxZ0M3PmTJenmffntycvFgrPwo3PsQb6swZyaKv+/AVx2mMN9FMN6BBWwRCdiddzlPvhgwfJjDlzZblhQyO5Lyf8mRou4TuJmJ58+J2fUesTq80A0tHw+42/xQPQjtVlhYQOSDEBxEfngNX9rDgFwERn+H/+53/cEfTL9smlwgz66Sv3gKDZdoCOKoxJdODZRheAJBNOYeJPuoa9p1NPRz8otrVG8Ll/D6CBiQkGCWzZU60MUNaH9o2yshDmiqigLsC8z2YlkVFw5zvPSnZEoySGqLURI5QatRKdZ/++qaGrcWjggKzMXZiUobqFVph7wvH9l3M/T7d5IvzWRdQOOcnHXyB9Lnxz3ENnJpCYdDfhvhph4p6B5nXXXefY+4IrVgkboxIAXRMm6dlChclmgMUcZngyN9QVPkAJsA71C9utMEBjIj9MMMDUgj2wku8iPQCQKK/UgSxOCFugwLfCOmsg+rDvsGfGxstgdMyYMfa4X59ZlQl4AXAURrMgYA6wEgYLm0iv98f2dN6q9HsAab388svOsAcwxBZ6WHgYIgDLwyYdlFrny2D4he4zc7PKEKIMGw9lJP2m1sfdm6BCXnV/e11gsolOLLWoEVuZ6X/3u985MC9t4qRJk1xbCLgPI06YEaxQ38AixPAU1iZiGDOwnLkNnmvdJgbDr/xe20L1TH8v9Kzv/OeDhgyUebN0u+ThQ3LPA++7hVPG+3mz5gnhk6J8OBH9q7OaCn0n+oTW3tEGcYQJ9c+tt95asH4mDGNHxf/Xv/71sGCqekb9yIIXtrcOK+sEThsFO325QK9SCeN7/B0fqDt6UjBQ09/HSEtdxu/GERTSFVz0gaGZ9oT+BX3iYL+YRX9h9SPf/Oc//9ktFAIozBHsk1C/lqoXgmms9f3RRx/tmEhhj6EexMgLcwXAq7DtixknhdVxfroefPBB/9Zdk7dK+TMDOR5g9ugrQv5h4jrqeciQIW4RGf2AcvxFDZ9JOeKI6t7c1UuflC2YMOiz05e2PnhYfIz57rjjDscuGXxPX4MyQT8N5m6b5KHcMrFVjQAKv+uuu1yYjPNtN5pgmNQLtP99XViEwYIr+i2UW8Y+lFvaGiY2gsLYoFT5YxEDR1CYICkmfbXcFktzT7zbRidZX33tdXlBF4u8++67svqY1WWzzca7doD4x4wZIx/ojk8fffSxa3Nt0vbzGd31fbz2ITn6s1Ce/THGpAVvyQfz3pOtRm0nDclU0U9Lah28ycjNZGt1+8En73YBPeHx17/+dVH//fEliyCwj9m4lYlPdtWi7FOeYfNkRx4mb1mIxO4PTKCzpW0s/VwDCmhb9LaOcaOSE2jxSbE7mQK1ekMA8cLA68ul97LPfSyxBtRGoFkDpk8OWU/tCZo10nMU1Pt5VmZ9mJW/KQPt8u1ZGaWgTo7lNP8vo+adAbHyomuA6QkOwLABARi8XIOyDnYW0exHOaeLneHRxL8OPiv2Drel3gfDs/v4XJUGGrWMDdVjWbWOAd7V4RKLOhx4FwAvR0TgbjAdjMsA5QG6AiAVSzQN0EeDfIbxk8/4Gc13/VwZ42j9YohDLkcDgwcPdov8mQOoRLDX4rcc/9hhDKQbjJO5D39MH3wf5R57TbU2myjx1MoNNrIxOh7nCBN07C80D3NTzrOejo+0kc84ypVC/mrxDZA6YLOqVkgLoN0YuFutJmP//UkDyf6U2DitsQaWJA24oW5+1Wrn2tsS97uM31j+7z9P6Dg5mnsHICSiCO5v0HAJ343BI7jPp7+OPwrU+jBMMFHuC5PhgNoA1QSFxrwSAcx63333OcbLoH8mFv/2t785oFjwXaXxBcPpiXtWwzFBCWscWxfApFQIxFvP9EybNk2Zam5zUbDNcRTwYan0sPK/abOkpNbS37+cLLBQs3z7BpJ5YhdZ+ORKkp4+UFeNawBeGbC8znnFoQr09WTlYR3y1Pu67LmA+2qeEy7h+0L8fnrCwvfd1+q6WD5n8tiYK2FBLcaiFgQIFfrtmZBiQp2y5wtlH0Auk/w+qJ4tVF577TVXfnGDMLGNMEiApQaGTUAqvrAl7QMPPOBWxfrPuSbuq3TlMoyd/krSMIBf0K9twxJ8Xu53mX8m1y+44ILQgTdAY1gFi+ndwuEMyzjig5rdgwh/CuWDanTih1mIqa/Qcz/JAKUAqQWNE4DCAVqZUSGY50qFbfnJjyvKdSV5q1i4hXTs581C/q3cBb8d9zC3+dvKWxiw7AFeM72F5elK8mWh77B4C551cqL9Y91u8AHdtu+WtKRf1ZqwHBCvjnhSytzetGlSkkMWNxKAJyZOnOgAdayOZ4FLxWksmPjiL+rRJhaPsYy3rm1TXUc8b7DluvL0g89Hdh81XNwRLuG7HnDE9OTDL+OTozoFHEvdS7sXJtQdgEPpx9L3KiT7779//hVASWOazz/svKi2rMMqwNbrYUZavoUFbSxs8yVKWQirG/wwYLX12/Lgdm++23rVx4QLey6A6WCdzj0AXgCJfntEuugzwKALi3HQH/XmpZdemk++rwdAnE899ZScfvrp+TbJ+iTo/8QTT3RMoMXyRT7gOl/wXeRhQL0wtdCXCAPx1jkZDghqcaDvviLlMuZuscUWbsFVuf6iugcoTRxR3Zu7eumTMsKWq/SXAWwXEsrLs88+61iKwtxQRhkbwuDtCyBhJFg2fTd27fdxgnUJfV7Yx9mFJiiA9R9++OFu4/wodW4wrJ66p75hQQlbVrIYhLYjDMRb7/QA4DbpS+XW0tSbZ9iVtlPm52/pjkhf/eoO3dqQFVZYURi/2q4zvZnWescNK73ZCohrduZLeXv2mzJz4eeRol5l0Kqy3QpflTGN47q5J+wlTWANNxAvzG70z2ARtzqOcR12PBbp77XXXu7zqT/ZZSiW/q2BDmUoXaQLVrPKVhpFEsMVo7eqArcGLx7bRvFXCzdhIN7jLlHjaiyxBgpoINGo+XWk2mPWUbv9V1JypwINr1k+KVfo+XIFI14xXO+HiNyuNL2PK5r3TQWqf6ZZm1zlbOAFwo0fxxpY4jWg5SGhhIrJcQrOHa87Uu6k5WjfpDQflJRBBydlyCEpGXpIgwzZq0EGbZuSprWTrqwBpq9UsAfEIN7ytcf4sS+BeMv/gthHrIFYA7EGYg3EGog10Nc0kFB2hng81Nd+lTg9S7wG5py4rzTtcWjZ3/n85Hdln5/r9pRnnyEbtaxetv9CHl557wPZ/cxz5baf/1DGr1HeirBKvqNQOuw5AChYfQBlGTvMvHnz3PZxTDjz3gzZ5qeW5wULFrjVp2xzCNCVFT5RJhBrmYYoYQH+YYBYT11ESUcUN7YNGqAQtm+37cxhGjUWmqjhsP1IGACZ7dZbn0hL661pyX4SJbSAm2Ftklx3hjRu/Jk0jJ0jiUE+SgzjuDIHtCbl1Ft1VXunjF6mQ2brs9MnzpLVRvjsEzn35k7NLnrpN7fF76d+2Si/eXC4LDMwI9NmL7a+/Hbfz2W4PisWXvOKey6Odgm4ojzCZgQwhrJfSgAtUDZYBQ0gKuo2k6xShqkLlhu2+Ki30arc7+K7ATSwBQ8HW6PAtB0FaGU649sMjARQGvDWkiiwB6Bf8kvU37+eeujpvFXJt9DeoTfyCCu7ywFyVZsvS6UXFt6Fyk608KmMdLyi9eisUj66v09o1TFw/5QM3DIlCTWE97bUqk3kOwirULtY6XfOeum/Za9/PSRHTThJWy9lpHTtl7VbXc/++w/eniq/+59L5QcX/Lesugb1tTJZluE/1052D3/q5I/kwtMuke+fd7ysvvZqLlxrB6OEf9SEkytVRSR/sB3Cjsg2UQDbAOZEaa8IHGZFA8ABDK33Nnx+eaU9AFgaXOQS6aMjOkI31Cn06wGKAvjrTYFZhj4C7HX0oemDRulH07dgVwvKG+wMtkAiyrewpRl+2e7LFkdE8VeJm/40NqDdIe9NmTIlz8xw2mmnddlxIYoO6lEHbv/LdWRC6wFu0RO/fb5W0gWj7j541oTSywd8dcYZZ8j555/v8j3jx3L8592bPztr2JNVTyxiZUcKWJO7pKMz/kL+K1m8pUGWLfyWU5VplDaJfgT1IAtzy2EDoYwy7qeM1aMPR9mnv0/49PfLKctlKySih7jcRlRUCWc/+clPCm4xWczrOb/5gxx31OE6tqqO/blYHH3t3cyZX8hlV14rPzm9+LadtUo3O6b4C5++MmQbOW3Dn8q2K0yIFMXH8z+Sy96+WK6cepl0SM7mcskll8gxxxwTyX+YI+yM9IFKbV0a5jf4jDqFxZGw5wZJCIJui90zfsXmgdBHQ2/0HQoJda0t0KL/6C8wMj/0Qa699lq3mMLqms0228zZAYILYPFz0003uR1b2LKVfhu7AbGjz9NPP+3Sxu4lLCAoBlShLWABFYz/M2bMcH0tFnbBiI79Iih+nOyExCJcFliwcwzt3UEHHeTAzPiDsZi+JOmhbwnYma2Gd99992Cw+ftydYBH+suwubNo74UXXhAWiGy88cYurh133DEfdq0usguzsuBhXbB6mwJ5Z0QLFUDX4INSMmBsbTh6tjqjK4kAqRg/LinPT8l0SRDPLvvvpi7PLru3Q8LYeA/bPiXf3Z1eVGXCbiHGpP/ee+/l8zttObvrIJBUIPfee69btM4uJORf+j7FdvAjX0DY8cwzzzjbIQsPAcmz6JA8ZjtE0F8NW9wDIzZM2OR38ktLS4vsu+++bpFwcP4AVnLCRt56661uTHrsuABonzL/yiuvuP4T40kYzfmWJU1mzBHZ89zu+W2LlqS8PCkjyyhT77L6ejk9NldW0b3WS0pmVlYys3NHq64DSWmZWWwpX9I0FH/P0qiBTEJ3ZNQtJme3z5LW1AJpWDYlq22yqjSv0CRJ7RqkRujCDQW8u7OSEwDULbe9pT1jtyjG4Cz0ZvEx5CYwyWKzYbdFxmGMZRH6WYyXkFrUu4RBvcsCT/ow1Lssqtxvv/0cYQu7tyDsRBCsR92Lzj+M/9mlFaF/Waiup36nbqUOZy7SX7hOP4NF95DCsOiaNp6DflxwPij47dj42a2Juh190Rbgh74g/R7aH38RW2eyXd8mapzB34q2A7INyFn4fvpjLOo0WyJxMA/G4n3aLWsjWfA5YUKuv417/Jlgo2JhGH2d999/3/W5aHsOOOAAN+dk7uJzrIFYA7EGYg3EGog10HsaiIG8vaf7OOalWAN5IC8zfvmZQb2OcH/Ng4/IGVf+XX58yH5y8IRtZLlllH0ygr+weGbMniv/98gT8qsbbpFzjzpMvjlRO/Zlpqdpz/IByaV+eib9gkDeUn6WxvcM0Jh8ZIvVvi5s/YmRnQkJYyWDGe03v/lNWUlngAzQDBBjmKTVuLfg/rQsulcN4BWAvaQhI4mV5khqw88ltd4MaVhxviQac4ZrK2YXPzJcXvp4seF6zVGL5GMF2+69wXzZakybDG3q6t7Saf6L3c9bmHQMv7e/NlhWVpDwO58vRpxtsspC+c72iz+qUHhLGpDX9BWfq9cAE14w+iAYqwBXxBJroK9qgMUZ7R8qgPfFjLQ/l5HMVE1p9/mekslnq7kBuylbxcSU216upIcecFCrNpGklmoXK/mcPJB3+5PK7hc+cc8zcuOfb5c9v7WLbDlxMxk6XPso1mCVeZ47a5488+AL8q+r75WDTthbttl1y7LTQ7/26AnfqUQNPeKHSYs777zT9Y9Y3FQP4FqPfEiBSJjMAJyJMFEEeCSW+mmgP40NAAixPThjPhMmkMJAPvY+7FyPOtCAvDC2lysASdglAOAJYB9/wrDcsHA/e/ZsB6QCiAVjLVuulys9BeQtN12x+5wG4nJbm5xQKZD37zfeImMULLnVluNrk5B+EMpTz+iEvYLuDztovx5L7a9//Wu3UJ8IByUGyw/XOVMOH3e0DGoYVDINGV1Q8eRnj8qFr/1anpz7iANvAECpRvoikBfm8AMPPNB9VlSgMiBYALOQDxig0fTCIrOtt946b3+z53YGuOEDQHgOSPfqq692oGQYf8N2QcOmB4DFB2dbmD7w0p75ZwAjQSCsHyftroFzfH/YDQGWYMsAOB0Ufk+IIIJSiQ5mzZrlwEsGKAqGCbDpt7/9be367Do+YtHqghs7d50JRhh2rxtNNe2dlMF7pCQ5sHKgrB90EMhrrLtBkC4gXsC8JsH39pxzvYC8LPQ3gOs111zjAGlh+YK+JrtiBQFhuCX/+n1QSzegMnaxs12LwoC8vDNyCvNnZxbLX3755V3iLAbkBZxF3jYmbgvHzoCygmXb3vXXcxiQt1B+e/78gZKZn5UOQLyzMnLPf9Ly2LNpWTYtMjydleFqfl9Gr5fRcjS6URdv63Xneo/+qp443Uu6BjSfymBdTs7AgwAAQABJREFUADp1ksxa+KWMXndFeefDSfL2B2/JjLbP5fO2T+WzViXwaJsmMlLz/ON3y+iVR3fTSiXtLeNJduJB2FmDHexM2M2QBTQQh9i28rfcckseJFttvYt/dpaxOUGLlzPjW8C4zBMiYfWue+H9YXEEdaul23uVv6QN+Oc//+l2ScLOwAJuxtbs6EDbESb0iwD/+gRC/rfTP/vhD3/Y5TtYQEI/DJAsdfmpp54q5557bj74SuL0fysWOBVaKAb42na1AdhdbOt6dGE7ZNHHYQexsN+DhV7kjzAwcv6j4otYA7EGYg3EGog1EGugRzQQL17sETXHkcQaKKABs7fpmcusd+98ePf2/ps7TZD1Vl9F/nTHPXKuAnBnzV9QIPDSj4cPHiS7jN/YMfFurky84CucePHavcVv913O7ib+09MaAOzBgKs/AHlNNzZAZDD44x//2B5HPsNSwsRBIUnp6uSB2+hqfTXytT+uOXpeIZcFnnckJTt1uHTMHCTpD5aRtIJ5G9f8QlKj2iSRVAuhMmPtqYBdH8gL2BZm3uemNsttrw2R1kVWgArEUeTxwAFZWXlYh2Pi9UG8eNlz/fkufqXgcudE57nbfZHw41dLtwZg00EwyvhbnS/dWom/vq9pIKtg3Y7pGVn0uh4vZiU9qYK63D5Km4vGrbVd2LrvgHgtaZyrbRMJo1S7iJuKRdu8XP+vk1lXb0rdb7vbV2TlltHywE2PyJ0KwF0wr7Xi6AcNGSgbbLmuY+Ido0y89FNLxR/2vuIE1MkjLLwAGTDIw6qBnHnmmbUDBNQp3VGDhVUKJjaAu5wRmNJiEG9UDVburr+NDXwABZNV5YJ40VQ968BCDLfFnjMR2dLSIkx8MgEG0LgaYZzHpGcoE68x9pY4VxN/7Lf+GojLbf11XCyGjTdYTx7Uxe1LE5D3+ZdekYlKCtCTYsBbwJYLsvPlmc+fkm2X/6qsP2LDkslIah238bKbyX6rHyQH7XOAnPyjHANnSY/9zAGLW0yi9pkAAHIEBaY7gLg21gAgQ1sC4+dtt93mnMP2CSueD1axcLAbcGAzAPQBAy99Vg7CBDQCENjf1QD2XmNPxWZHewi7HYuJWbSG7Lrrrs5fEEDMO4tz8803d0BKvuGPf/wjr+T00093i2QAYAJmgf0YhmFAx6Tnl7/8pWPAg53XpFIdwNJsIF5AmSyGAdjENwAauuKKK2SNNdZwQB2Lq5pzx2dZaXtcQbyTGelEk+Squr36WsmagXiDsRqokufH7ZKbOoRxl+dRQbzBMOt1/81vftMFzeJIwLksjvnzn//s8gXjEPI+rM4m9Bv333//PIiXvMg4BaDVzTff7PI4ebaQsEjRQLz09ygflAPA7W+++abLk+wMxg4NpSSdTjs2SusPsyBlvfXWc+HccMMNDhAGsI36IAw4Xyr8/vK+UH5zzM+KGU8OTcgAPS57IyOXvqd2+eXURqHFpSGtrNQdWVETugzX48B1ErL1qjq3NldZtefpnkLaBdfmRs85e1KW6TNI3aMXtf6iwjidfUgD7GbVkeiQee1z5YsFM5Vhd7akhiVl/NfGSxImXda5D0rL7489Pwfcfe5Tmd4+TQaPGih7H7C3tAxZWV674wV5S+sT+UTk4EMPlvvuu6/LLkrVtreoy0C8zM9tsskm3Vhoi6m03HoXBnS/T0I7T3+A5/RJWAjLUY6QBtpk6l0WRNjiDgsD1lyAqwiAVeuvMKY2EC/pYAERjL208a+++qo7YFcv1A7YwgraDvoc7JJTaoeXauOk30O/isVetBEQQ8Acj5x88smuvzVmzBi3+xP9IQiQzj77bPeeNpBFXYj1LW0BCc+YH2LRFmfsd/SraJNoJ9lpp5yddQgvllgDsQZiDcQaiDUQa6C2GoiBvLXVZxxarIFIGkgM0OXzSB6Ip5cOeaDWBDVSL0YqLL73348fN1auOEWN157/HLJhsfty750do0h4fvxd0pf7kvhvL2iALUsxWjNB3NfBvBg4MUSy/QtGbwa8NoiOqjqbCC+15XvDSkkZuJOGujAt7c9ozq4E6z5/gGRfW146Phom6XeHS8NaMyU1drY0jGyVMcu2yzc2nyvXPbcYUDxNGXlrIYCAJ89geXZXIT7ipexRVgHxFjp39RnfxRpYrAG2YEIwVAVZSRa7iq9iDfSOBhyA9zMF776lCzFezUj6Ta3nvqgiLcpy0bilgniVibdhRTpZfUdq0SbyNVHbxYq/nLbG9U+17WG2jP8R7ldfa1U5+sfK7uEaKo29BmfX6kWMP5dOHHemt2IF1McjIAhjqSWGgw8+OL99a31i7NlQYSzxt6qGFeTiiy/u2UQspbH1p7EBTDYwngEOYgvHMCBRqZ+x3nUgE3NIuWeAT3xfraXcdJj7WqcjDq+2GojLbfX6XLRokQwYMKCigNZfd235z2NPCSy1SwOYl+9MKWCB7+5pAcwLcANA2jNfPCEvzHxWxg5dUwY2dNpHiyRoSOMQOWSzb8jQLZodQAswzJImPqPo2mtX9/scddRR8t577zkVsW227crDA7bQBrgDUOPYY491zHNhuoQ5F4ANW3AjMNjRvwMkCXAGIK+BC9l2mt8WAWzyyiuvyMorr+zu+cNuQAYgAUBszHh5B50X9IkBkQCqQWDTM3AuLHdnnXWWAHY0wb0xxrGFtrnlfSU6AOR5/fXXu+CDjHqAZQDEAKAijbyvVjJzFcT7dFo6ntP+RtS1j1rVNaynQN7Ve64MAOYFwOuDePl2wL19QWCz9tkKYXm2MsQ27j6QF5ATgHYE8JKBnbi/8MILhfwJOCxMKDs2hgP8C0jM7NqES34EBE4+xeZm5SMsLJ4BFDMQr898yTvA8oDMeE88pcLCz5IiYfnt+SkK4vXyGzaJdjXDz2pICPvWTdVjyw1SssvEhGQXiqQVvAuYNwOYt/MaYG8GYO8CtSxwdtd6btXytyAhbV+0SUO2QVKJ1JKiyvg76qEBmqcmnZdRNvSPPv1QZsz93IF2h644RDbbCbCuzkkNTsmQ5ka58ZLr5JEXH5aZC2fIw//vIRk0slkS6ndRe0Zu/jTX1pBEFr7ceuutXeoTyG8uuOACV08ABDW2+lq1twA377rrrm7M/FFVVk69y7cY6zg7NNCfMIHh3upOexblvM8++7hdBHCL7mzBmPkF/Gzy9a9/3V3CuH/RRRe5a/zT3qdSufKOfq2PQxvBAp4VVljBguhyZgEyaY4itYiT3+rxxx+X1VdfPR8ljMQGxqaNoG0aMWKEs0GwsN7aNtoq+nq+2IIunr3wwgsOxMv1IYccIuiF/Mh884MPPugA2LyLJdZArIFYA7EGYg3EGugdDdQGedQ7aY9jjTXQbzWQHKUDgYzu95PsNA6Y/Q0QL9Lf7nOprtlftk1rbW117A01C3QJDWj48OFucInx0AzsffFTYRqCIaFSYVsdVuoWGkQHwx2wulpWduOpgnkxildKhjWrWbLPj5b2d0dIetwXkl7zS2lomSU7tqhlUMUH87oHdfgDiHfimout+rnqAZZE/S6V4H0dkhAHuYRogIkwGENsEm0J+az4M/q5BrI6/9fxqQJ4lXm3XVl4HYB3pn5Uroqr6OsygzLSsIVurbjrAGlcNTcRXFFAdfJUbZtIssptFyv6FG1gXGsDiJfWRs/98b6ib6+jJ7bcA1ywmm7lDVMZoIAlaXEF2wqy7fCyyy7rGENod4rtplBHVS+VQfeXsQHMPxyVSk/UgcWYdwHJ9pf3leo49tdzGojLbXW6njFjhpu8rjSUvffYRX73x8u13Roua60xrtJg+ry/SZOnyM233ynfP6nrhH5PJnzTTTcVgNcA5j67d5pMmfuObBCBlZc0Ns4ZIIv+k5XkMhkZOD4pieacJaQn01/PuGCYRVgAxVghKDCjAYgNE9jgYI5FAKMasx22VR/Ey3uY2djyGcZQ3LHY3sCIvDe5/PLLu9kYv//97zsgL27YwtnAhQaM5DnbffsgXp6xYOcvf/mLA90ATATQE7b9M2ynBuLFHyzC5BnCpy8J8NIXvoW4AEGzJbhJpTqYPn26BSGrrLJK/poLdARjX5Qtv7t4LHCTbVMQ74sZWfhoRrKMfSNKUgG8AzZMSmqZ+uV/A0waGy9JC4J4j7skZxONmOy6OWPM4YN4iailpUVgUwZwDXOhL+yKgmyzzTYOcOu/4zcGoAXjISCmoNhOKoCqYHT0yw1gMOJjfIdfGKatfATDsXsWP5oEy8yKK64okydPduWz0oUqFnZfP9c0v2GyaNbySvugzL1BwfaUUeBudr6CfBXIa8DejBKA3Hv1/TLlxSkyeuRKcuDBBynAV01SbQB9NRQtr3YvZP1FelRhrwqmK77vfQ1oTSzJJs0zgHQ1DyUGapo0H81vnyePPvqIzO+YJ0NXGCp7HL67e5cYnJCbzvuHvPDaczJr0Zeaf+6WphENkhykFrNOxMW2zZvLz/99hvu4t6a/LuNXHt/tQ6lPYFf16xMcASx9+OGH5bnnnnNM4QbkrVV7C6A1jB2/WwJDHpRb7wIIRbB7nXLKKV1CpO5kwQVp8Rc0dXEUcrPMMss4ICs74PzjH//oBuQ1Nl76ENjfkGHDhglAaIQ5VAPxugf6Bxsdi5UQ9E56g3L88cdHBvHitxZx0pfzQbyECzsvC4fRmYGkeR5FzD39KvToyw477ODmX7F1lCJS8v3F17EGYg3EGog1EGsg1kB9NBADeeuj1zjUWANFNZAas5auCJ4riaHDdWSoTjvxEf3yXPRLK3tpKyUr8710+cKgB2CCbeNYednXmXkr+XVg2wLEy3dGNmBquRrQouCt3TXGJmW4eFqNbizTr0RY6v/FQMl8uZJkJi8r6bFfKjvvLNl+9dkydsfZcsc7zfLSR2rpqbFssvJC2XOD+dICE6+KVRO5aPR79ILqIyfBe3sen2MNLNZA1BXji33EV7EG6qcBJlA6PsnKoncy0qEsvGkF8rpJzConRBIjdOJmc5H5G38pA0YOlQHsXbeESUXtYoU6cK2La3D0D/87mXndfpYaZr94X+G318sbxnGOJVUAPlxyySVL6uf1+e+Kxwa1+4mM0ba/n2unkTikemkgLrfVaRaA46qr6n7aFcoqK42Wow4/RP5y1XWy/957LJHMvDDxAuLlO/ne3hbY2DLHZmX+nWmZe1ubDEhHY1TOvJ+VhfemJakAmyZlX0xE89bbnxspftuaudACfUCEJ5xwQsGwZs6c6cCuPth3u+22c0DAoKctt9wy/+jtt9/Og1zsIcAiAIlB8Z9hgzSB0c2kUB8XplOTl156qRuQFzZ7FoEFhe2iAS4BigwCnXBr4B+2kjapVActCgAF2AIQE7ARdkhsKGuttZYLmvhrYXPNKgiwTXegabsvLdmpluoIZ3ac2VSBvGMXWwIj+KrISRi40gK67N4OgSG1L8hWW20Vmgz7zXxgGHmErdMRWAfD8hPkETvvvLPAkBuUZ5991j0CYA7ACRC8L5RhFs3D6AtjdSnxF9izSwVAPYBjRmBRqC4oFW5/fF8qv9XqmxK6AV6qUcvPsO5l6PFbHpDL3rpcNhq3kRx58Ncl0wnezThAr1o9OAMCBtyrx1P3PyWTX5oigxoGym577K52pybHBjzpxbcl2ZGSkcOXk2UGK0gO0K+a9bMduUWAtfqWOJzCGmDs1qFbfqWaU9pf0IU/2leY+uEHMrd1rgxbYZisvu7qjhn3k88+kf8oy/qCjgWy/zH7y6hVl+sE8SoYV/sZsO4OaV5G/nbbpfLW+2/K5jtuLoceuLcSM+XifuyXD8hjXzzmFgYMWl3RvwEZN27x4rAPP/xQxo/vDuSFvZv5rqBQP1FPASjlsEU3tWhviYv+QaVSTr1L38R2CCi0gJ12lQUZV1xxRVlJOvzwwwUgL7sE0JcxJvb58+e7RUUEduSRR+bDZKFQWBuObmn3rR+GB8IIE3YrKEdqESdtTlBYUMyCKNo4Y3YPuil0T3+KhSd8M+0di6T4rsGDtZOhYudC/uPnsQZiDcQaiDUQayDWQM9pIAby9pyu45hiDeQ1kFpvM2l/8A5JraNAXkTtB5gQwAs66W/3ncmOT72jAQyIGPrYrgXmCdg7MPiFGSV7J4Xlx8ogGqYLvgfh+yKDeC06LUcDxqjBRucL2oYq2+Njur56ur2s4EwB/VIBvc/rMWmkJFabLSsqoPcEPc9fd7a8ray/0+c1yMIOK8jlx9HUkJUVh3bI2iu0y/BmZe2GpdsBqNSIxPa+7j53LnhffrSxj1gDsQZiDfSMBrT6Ss9W5t2pekxWAO/bCuB9Vx/Ork30CcUlDNhet7LbrlGGLDsy1y62xu1i5drVtkc90/yFnvVd6HNz30feV/79sc9YA/1TA/HYoDa/W39h3C2VztpoIw6l3hqIy23lGmYC3wcmVhLS+uuu7Zhqb7/zXnn+pVdk/CYbyZrjWmTkyO7AwkrC7w0/M2d+Ie9Mec99T0rBCzDx9gUQr+kiOVQBiZtpv/3dJkm/rOMB/V9SGEtMEmm9S0GEqYQ0rZsD6JT01w8cAEB5SAFFPtuen2xsfABsfWEnM4AYvgCSNYGxtpTAZGtsdebWQJB2b+dCNkYDFm2++ebdGO7M76hRo/IgWdwHCRwMvGjug2cfYOO/8xl87XmlOqA9vfLKKx3THWEBrORA77vuuqsD9cJ8XEgPFn+xMyDeha+npU3zcGayuoyS7wlQx1epdTTPb5rUrdsZgdVfwsCVgHjtef1TUDqGIEuh+QjbDQSgl0kYI7S922ijjboBeQEGsrU5AjNzGGu2+ef85JNP+reh16Th1FNPFbaWB4hlQH1A7QB7KSPV7F4RGmkffmj5ymeC7vn8lpW5mTmSGpkQXSpSWFvaBF3yt4vkyVefkqGpYXLoPw6QRLvum6frCa655y8ye9ocB+7db999hTLP8c6r78jDtz0sTammzqNZhg4cKqOWW17nPEbLiGVGSEKx4Yo/1S2rcsenUz+TZDYpg5sHy8BmRZbyXKcKItcb6rRfCSpP6aGIhQWt82XBwlZJDUjKsqO1L6bPvpz1hXz00YeyKLNIFqXb9bxQ2vV6obtvk7b0QlmYbtP7hXrdJrsc+DXZdJtNFMibkGt+9Fd5b+q7ssu6X5P1Dj7aAXnvu/wOOffVX7nf/HvHHScNA8KhEstusoxMm/KxtMq6eRCvr9c11ljDv81fRwFEwlhfSPx3kyZNcmzhtWhviW/kyJGFoi35vJx6119YA9t5IamkrvvqV7/q2mfqz1tvvTXP2m/s6cR1wAEHdIsShuDbb79d7rvvvrLZbCvVWzVxFlqsGNbOdfvYkAe0LeyewKKTp59+Wvbff3/nCqZ6a3uCLPEhwcSPYg3EGog1EGsg1kCsgR7QQHjvtAcijqOINbA0a6Bx061l4Y1X6ArdDkmkKIa6otcAejlIRD+6X5p/yb7z7YBcMS5jyAf8ijE/yA7Qd1JbOiUYxvkmBqVMalYjjSupoXvnhCSVpXHhf9RY/p6GliO5rTzYubrS/vXlpWOKMvSO1lW7ys67yWpzpGEVZdoeuUCSjWzK1AlwquasxmIXThnnyj8q9hlrINZArIH6aICJi45PM9L+njJjvKsA3nd0G8OPtHZTVpOaiDKrJMcqM9cOSWneLCWpEcwAxO1i1bql7UGV+lP163PViogDiDXQ/zQQjw2q/836OxOvpb96TcQh9JQG4nJbvqY/+ugjB4AKAhHLD0kcyPXEY4+Q1998W15+7Q156JHHFTRS6bY+laSgtn5GDB8uLWNWlYkTthGAyn1RWHjdsVVW2qYrM2nURdcKYkq/ntVhhF5oX7VpvSWDmRfwnsmMGTO6MfQddthhwuHLmWeeKeedd557ZHazcpnZZs+ufkXlp59+6tIQxqjrp3fFFVd0tkq+r55SjQ723ntveeaZZ9xW59dcc41LL+FxzdHS0iL33HOPjBkzpuxPyC5URunXM9J6Z0bSuiONA+RFDCWxoo51t0pK46qdVJAR/VXrzAdX9jyosnTqAV9HFRiWTYqx3YblY9h8g6B5CyvsPGfOnLDHXZ6R9nPPPdcxY1511VVy2223ufdse8629xwwWMI4WQo43CXgfnzT1/ObqZZdiv7z9MMKAJ0rzaMHSNMY0Kc5eXieggOnvyOrDl9BDt/1QHssm+23rqT2aJcbrr5B/n3z3bJw9kJpVnr55lSzAnubZcxqY+QXv9KFAyOXlyxzFgraveqUS6V1Tpt8daevym6775YD+QLkpfmDFFvPc76cIzf/7SZd29Ig2+ywjYwdN1ay+vzRex6VOTPnyCqrrSIbj984516rnU8/mi5vvfq2zj7qP82D+X963aTzMO3tOlep/0atMEpa1mzJpV/fzfpilrz9+lva7GZls603k6aBTfLpJ5/KpDcnuWfb7rytpBpUDxRJPRJUVXagHr1OcNZj8qTJ8vhDj0laE3rkd49SsK6247jtfK+fIjdffYe8+uarMm6DsXLcQcc5IO9dNz0iN979f9KWUbBuJ2gXwG6r0ia3phX4m9Ujs0CnfNQAqTJ6heGy3S66XZfKPXNvl3dmvCPrDB4rA9YkMq1TV26QLzK59mju/LkyYoBOHIVIPdssdtcsJMOGDcu/grwH6QvtbTn1rl+f+nVw/sM6LyrRMXOHRx99tPz617+Wv//973kg70033eRChdHYXwDFPCn9JhZPhIkx8oe9q/RZLeIsR99R0gkrMe3N9ddfL3/5y18c4zP+nnjiCXf8+Mc/lp/97Gfy05/+NEpwsZtYA7EGYg3EGog1EGugjhqIgbx1VG4cdKyBYhoY8LV9pf3lZ6RhTVYjdhqedGCck/52X+xL43c9qQGM92bA78l4+3pcqWUTytCo4C5dVd/2qILIXlXrVWm7aunPamuQ7HsjJP3BcEmP0KkkZedNrqqr91eeJ6nR8yQxbJEaozQuLeO6Nt+Flyvd9bsvnejYRayBWAOxBnpAAzp5kJ6lzLsfKoD3A2XenZJj383O1Lj1Xc1Edyts2CghzcrEO2BtXbih29/5EreLvjbKvFZVutZKJ6pcXzXk3B/el/nVsfNYA0uUBuI6sPKfk0kzJqtpVVwtaPfBcx9/X7kGYp+9pYG43EbXPAym22+/fXQPEVwCeu2rwNcIye9XTtjuumnjpKR1gd+iBxWVlNuQqfQ3KMDJgXkzuoBa8TpNG3YfA5QKpFaLHdLp3MAmjBm2VBr89/4W3DClnXjiif7r0OsHHnjAPYcJ11hiN9xww7xbtvIuxXSbd1zFBfE/9thj4jPhBoMDCAlAEamEeS8YXrH7anVA+n73u9/JBRdcIK+++qpjSr744ovdFtZsEQ47r8/uWiwt9i6zQEG8r2Sk7W4F8U7SXgXMmlFFd7tu/ErS5XPKTE+LgSvt3NPx1yq+ddZZJx/U1KlT89fBi9dffz34yO16B4MuDPAnn3yyXHjhhd3cVPoAsC4HW7k/99xzcvfdd8tll13mgMOw/7LtOflvaRHLZ3bui98Nc7oBuwELRhLFjm68xUbu+N+LftGtbnnitf/Ik997pEvd8vdPr3SLlT5UYPCBe++5OBqtQgzI++z9L8lZr/1IGhON8uAfHpAh6+g8hTZLN9z6N3nplZdk37X2lW0O3sy5b2ttk6O3/YYD8K640mg54bsnyNrrrC2ALRsbdHW8hnvKf58ik9+YLLuO3VU2OPikXJw69mnODJczDrlUZnw+Q47/2vGyzwH7yF//5xJ56tUnZbf9/kv+67AdO93qCTsSWFkOBefmQLpqOQKoq88m3/SanHXxjxzg9sSDjpYBzQ05Nwy6OuWB6+6UWz64RfbYYA/5/oT/dk+Hft4kd118u7uuRfu26aabWnTu95gwYUL+3i4AYsJcWi+hTikksPCaWP3V19pbS1+hs6Wb9/QRqOvChLqvEoFdFiAvekRfq6yyigOoEtY3v/nNLkECVDUQ78477yw/+tGPhN0QYNmlD0WZrpRxt0tE3k1vxOlFX/CSxSGAoDkAh7OA6YYbbnBMvXhiNwJ0c9BBBxUMI34RayDWQKyBWAOxBmIN1F8DdKdjiTUQa6AXNDBgxz0lkVHWidm6IpyZQaS/nnOpj//GGujTGgDc1bxxSgbvl5Km3XSiZ4wmt1bLWTJqbZo5SDIvjpaOe8fJon+Pk7Z7WmThEytL+7vLSGaeGtKsfDst5Zh2Fyus1veLQ46vYg3EGog10GMa0HouPUcnKd/KyPz7O2TeTR2y4IaMLLxZF1A8pfXcZ5qS3Fx39UnS+jvZohP3/6VbDWq93rxRqhuIt/pIlvIQ9Pd0rZNrv9yNKqTruV+8X8p/xvjzYw3EGqhMAwbyclWgBpG/7+zU5+87g8/f97H3lX197CvWQN/XANuct7W1CVvBxtJ/NdCgi62bt01Kw/pqUynHPmNg3tsUHPm0giNnW21dWhdsC/3JJ5/IBx98UNpxCRcAupCVVlqphMvir22LaFz96le/cjttFfMxbdq0PIuaD4zdeOON895eeeWV/HU9L8aPH++Ch7m2EBuuD1bywVP1SFetdACwh7T+4Ac/cCBkAwUB5n333XcjJ53Fra1PKhPv7ekcE285IF4tEw0bahnZOikQFNRLFKdXVCoBVTYpLrAvCaB2Y2e0chuWvmeffTbssWy11Vbu+VNPPRX6vtqHgwcPFuoBWHrff/99aWlpcUHecsst1Qbdp/xHyRcV5beG6G1ANQr5+OOPBeZukwMOOMAuI5/LrVsAOXbZdVHLK6BYgP0vvvGCzM/OlVmZL2TN8Wu4eqJhVEI+yXwokxa9KdMbPpbG1XXRe0tSnv74cXlu/lPy7Lwn5dCzDpCvHbeDrDZhtAzZoEma1tFFNau3yV+euEQennWfvNc8SZo20PkTjvWTMmjDRlljv9Xl0dkPyp/u/b0sWH62/O7fv5Gn5j4mE47cWgaM0zg4xubiIk4YxNklsWFFPTRN1GGp4Qlpb1ro0rwou1AUf5wD+Jaog1Burep2+6E22GADu5Szzz5bFi3SlUEBASRaTylU3xCn1VMrr7yyA1vzrK+1t6SpmDQ2Nub76Zdccomwk0ZQHnzwQWHRQiXCAgvAzcitt94q999/v7uGXZdFN77YO55deumlAnCbdsEWQtWjz9QbcfrfbIvN/GfBa3Sw1157ybXXXttlQRa7D8QSayDWQKyBWAOxBmIN9K4GYiBv7+o/jn0p10DzN06U9heflGzbfMf0k/ujSrHBq3d2l969U51336vvl/LfMf78fqQBNXQ1rqagr11TMvDAlDRurSUnqWD6WgosvcrQm3liNWm/C1DvGrLwvhZZ9NRK0vG+Pp+HNTvZWeY7C7FazXNluEb3tfyeOKxYA7EGYg0U04DOlzjw7tsK3n0oLfNvAbybltYblYn3gaxklIlX976tqSSW1bp8W2Va13p88C5al6+iQ5p4VFNTHbvAXNuk7ZL7zx/aqn54X3vNxCHGGog1sBRowLax7O/npeCnij9xKdTAyy+/LA8//LDst99+S+HXL3mf3DgmKc0TdbF1i36bdjUji5L4ZiYrSPKOtCzQcUjHdB13RMBybb311i4KQAuwkAHMKveA0ZOtiWFbW2655cQHBEVOv+cQEB8AXgQw7FFHHZVnfPScuUtAvLDJmRx22GF2KYCUAbAgbIs8b968/Du7eOSRR1zZofzUAszsg6u+853v5Be+WHyAo77//e/brWy00Ub563pcVKoDmFC/9a1vOd0D9PYFoA8gSxNbvGP3oWfNi+3TMrLgwbS0/Sut42J1pXk2smhZSI4Tad5RgXFqx6ynHLhV7cMfP7aeKa4s7K985SvO4x//+EcJA9AB7jLwXDAGA9ABqoQ1OygALb/73e+6snX++ecHX3e7v+iii1x+O+2007qCNNUlZbjWbPPdEtBLD4YOFNm0pZyKPlpCx4+tfZjBmGfMmCG77LJLfsEC4Lcov1O1dQttwi9/+ctgcmTKlCkO+M0LmMibmpq6ufEfzJo1K39r7UT+gV7AyFlMDj30UPeadg9QJgLItKcWVFVat7uEhvyh3aWtRWDd/fa3v+3KP+BHdHveeec5ZtIQrzV79PTTT8uVV17ZLbwnn3zSMXPzwhYRcN3X2lvSVEqOO+4454R8DIM1wN3W1lb5/PPPXV1aLevrEUcc4cIn//7zn/901zwLlocvv1w8/xfczTSjOzz89a9/LfUpZb/vjThTKZ387JRge0bf5ZRTTnFtj5Vhc8sZYLQtePGfx9exBmINxBqINRBrINZA72igoXeijWONNRBrAA0kV1hZBp3wY1nw519J46ZbS2LYcAeScIZn7A+w+ShowpGfBe6dcbsvvI9/ylgD/VADyaEKANs8JQ0rJ2TeC/+SjlFbSOJTtZC31pAyQouvzG2SrB7pyctKeuhC6VhxniRGz5OUnpMrLJDUqAWSGNKuW0jlGHkTWqbxVs25H/4ccZJjDcQa6G8aUFZdwLtMlnd8ogxYH2b10Ge6La7M1o8pZ4KynG/XbUVTaySkcTMY1nPMHjGAtxwFlumWNsn1P7UrmtDflv/98b7Mz46dxxqINRBrAA0YSKe/n+NfM9bAkqYBmHgB8R5++OEOQLmkfd/S+D0wCw5YT9kAdRzRtkB3Lvu4DC3QP9VxyKK7M5KZmZXm7VMyQIHBMBUWEkC3u+22m9vC/qabbirkLNJzQLwHH3xwJLelHAHI/f3vf++2+IaF87XXXnMgrc0220xWXHFFt3U0wGNAgrDCIieffLJst912+aBZfMLW0QBnAHDAFgmjLABGgDP//ve/5Yc//KEDCbe0tDgQVt5zhRdsv3zkkUfKVVddJaT7pJNOcltar7/++vL88887MBLALwRw8fDhavuuo1SqAwBp119/vUvZ22+/LX/6058cQDuZTAqgqnPOOce9AzA3bty4ol+QVWLHRe8qW/SjaWl/TjPpYvxQUX/+y8QqCuLdWfOzMmWyPX095fAJSXlnum59/l5tBvLf3CEpm49j4Ni3hK3U77jjDpcogOyUpR133NGVBysbhVJMOQcADLs07Q/bkQOoB1xIfmErcmOVjAJMa25uzuc32OUpp2PHjnWsoOTDq6++2iXlG9/4RqEk9dvn39szKd+7IiOzF2jZqIEcu3NS1lu1NvkNsO5DDz2UTxULEaZPn+6A35dddln+OfUFdUQUqUXdwkIPAHr77ruvY4AHePqLX/wiv+CD/FdKfNDxWWedJYMGDXJtAyypACDPPPPMokFQ93G8+uqr8vOf/9y5PeaYY4Q6siek0rq9WNr+8Ic/OMb1xx57zJVHawPMD6BGwI3ou15y/PHHu0U3MMgCsCb/0U6b+Nd9rb21NBY707eh3gQYTd6h/xUU+iqV9sfwyyIiwuZA/AVOFtdOO+3kmHi5P/30012diz7feOMNufDCC/P1sbmvxbk34gSgTj6aO3euK9cTJ050/cQRI0a4Ms9CJfpq5HXqFNrCUaNGyezZs92CMttZIV4sWYscEIcRayDWQKyBWAOxBqrTQAzkrU5/se9YA1VrIDVuHRl82rnS9vc/6ZbT06Rh7NpqoOu00AHiRcwW0Vfvc6mM/8Ya6F8aUDtT48q6PV3zvZLd/nNJfLaPZN4aKdlpyl6yqMZW8owW4tnNkuWYNFIyQxdJYgXAvPNzx6hWSY7S6+FsK4XhHM7DnEEzV/yj3/evHyFObayBWAP9RQNMRqZ1crxjekY6pilw9xNl29VJ9vTHWlfN0a+ozZxfuDqUWCS5ugJ4N0pI0ya6PZ9u05coTjYSHk78tDwNaAPkWh9AvHRG9dwf78v76Nh1rIFYA7EGchpgshgQb38/x79nrIElRQMATQA3AHgC9ACAMpYlRwPJgbpQb3xSsvOzsvCejNpHy/u27BfKfvqIjk8+S0t6+6w0bai2nmVy1pSwkAC/rrXWWo51D/BCuQJwaaWVVqqaidePF9ZXtjI+9thjHSDwnXfekQMPPNB30uV6jz32CGULBFT74Ycfuq3CKTM+KM0CAOQBe51tKW3PKznTTgJwBOwG8+Rf/vIXdwTDIl2lgGJBP5XeV6IDAGqAJq+77jqBdXXLLbfsFj16M+bkbi87H6RnaR5+JSMLH9UFr2/rOKqtkMvCzxMriDTtlJSmTZWpWstGvWUFxVb/6dik3Pl8Qt7XspezRpYfa1OjyFfWENmkpf5pLj91IltssYVjXTz66KMdqyr5JCiA4H3Apr0HgA5QF3ZMgE6nnnqqvepyhuHTmEu7vAjcfP3rX5c///nPDuBGfBwGvjKna665ppxwwgl2u8Sc11kpITeelpL7XsnKxzMr/6xBahMiv22otqJaCeA3AJXFBFZeFi5E7YdUW7eQn8h7Z599tjuCaQPES3tQSlgQAus4IHEWevjM7vgFsAqzNG1PIYG19nvf+17+Nfm4J6WSur1Y+mBtvfHGG92imCCQFP0A8OSoF5CX/ixM4NQnYXXKNddcI5tuumn+E/pie5tPXJELQOcIYF5fWlpa3AKmmTNnVgzkpRwCOgWcilBvbr755n407ppFG+RxQMW08xy+VAMm9sPxr3sjTuKnXNKmUJ9985vfdEkCrL/33ns7kPj999/v3rEYjCPY9lCfAEKOJdZArIFYA7EGYg3EGuhdDcRA3t7Vfxx7rAGnAcfMe8o5suihf8mi+2+VxLLLS2ql1UQGD5VEKrVYS504ihxlpz7uC/eLUxdfxRronxpILJTkqh9I43pTJTN2lnS8taxk3llWsp8O0Zkgr/zV6uugM5yjTL16pN8ZKemBysgLMy/A3uUVzAuod2SrJPRIDepQ9BoFvZOpN5+GUvd5h/FFrIFYA7EGKtOAAnPTcxWw+7mCdz/Vs7LvGng3o/cyv7Jgy/IFgHeVhDSsn5ABCuIdME4nMgfXbpKmrLQspY5da+P6m/qH/53MvIB6kX7xfin97eLPjjUQa6A6DfR3Jl5Lf3VaiH3HGug9DcCCBzPe1KlT3aQ7W/ACvuypLZx778uX3pgB3jZvk5Ls/2/vTGIkueo8/CIyq3rf273vnjbY7aWN7TFiLI+GmRviwCKQkDhwGQlO5oAQIDhxQJzNCSHBBUtIIIEGicU2lsXYbg0ybZb20u2mF/fm3t1rVWZGzO/3MqLILme5q6syq3L5ngjei8jIyIgvoqL93vve/41pbPVzknnvVPC6ofrL/jzcOCeBUoMOFzymAYBbNABQcmG75Eh7vTaFsIWUX/ziF+Hpp5+O8tCJEyfed+qO7ujIvRYypkqOfLtixYoYcbSMrlbua9HwG9/4RtixY0e5Keat0zHf8kHLSil7jI7eGvJ4ZGQk/PSnP40RIj09teWRMvk7Tz31VHA0VEtIrel2vzl5auzW796uPBMGnuLc4o1lo1aZzdfw5JNPxnti8ahdymtqQjwmgff/sjC+T8/vSe3VrDK1233KbYnGKIz+RxoWfbQSKstv5TXllzrwQaqf+uSjc/d7tzvlyc9Kuf/tnhnvN/n5LL/r3NF0x8bGgiOStv5t+N8WC3uvvfbaxO6Tz2HLli3hueeei5Glf/nLX07s54LlsW9961vh85///C0RSqc6X4vBr7zySvjud78bfvKTn8RzKf9u/DfuKej92dKlapsewLR8UQifebz3nzej978T27Zti3Kgn592kn95i6YaHDGbd4sHnXzzm9+MAp4HS5TJ7yVHa22N2Fp+5ndyu2S5z+9+S+Stz78HMXiQQhlhfqrr+PSnPz0h8vpv5nbRydudw3Qi+Jbv/nbnMZN3e7vjlOe2Zs2a8Mwzz0Qejnbv//70dXmwjpMHkLVLUzEu9239259qX0fLt1ztiNz79u0rvxqfOYvbfp9MTjP993Y63Kfap/VaJp9Puf5B710f19fz9a9/PRw6dChcuHAhRjN3RHPfmx/96EflYd733wkTH3xAwQxLkdcDNdol/zfRiy++GKP3To68/J3vfCd85StfmZCJW5+X6Vy7f6/1O+Xvz/Q3p7oP5XGdf9DfiGcQsLjf+nde/nv2yCOPxBkf/Mz97ne/i/+9Vv7bY9HZg1nMoty/9TcpQwACEIAABCAwtwQS/YfpDJoU5vYk+TUIDBuB2p9fDo0Dr4bGkYMhO3s65OPtK4zDxoXrhUC3CGT/vXHi0Pm1JSE7uTXkR+/RFI0a2n9uQ0hqcxT6sToe8mWXQlilCMGrFQZj1bmQrPRyISTLL2t6SIXELOSpiROmAAEIQKATBDTIIB8bDfmVFSG/pOjkF9WDqCW/eFcIF9aF5KrC9NTbdwZ04udbj5GPqPd+7cmQbHs7JNvfCumm4yFZfL11F8pdJvDJ//lDl3+Bw0MAAhDoXQJP3vhM754cZwaBISFgIcDTwG7dujVGTt2zZ8+QXDmXWX9XMu4fGmH8hRnIvCU+uW+VezWbx0cV1XSPovOukjDWO85YeZa3zS9evBinij5z5kywRGihy9LRdFOWZcHf9eLvWUyarpQy3d+YvF+tVgunTp2Koo6na16/fn1bwWXy97q1PlMG169fD4cPHw4WLs1+yqSetcYFReH9myTeVySRv6ENMxz0mqjqHSXef6+E6l19+MBOCan3Pmg0GsFTjDsSpGUy/3tzJ+natWvBor2lYH9/+fLld/L19+3rv/WjR49GYXT16tXv+5wNg0Nguu8Wv3cs21oytLzqdPXq1WDZ1BKvP28nD06XlGc68Ln4OIsXL57W1958883gCMNOjiTrgSHzlWb6bm8931Ke9b9Vu3btav0olv0blhvN/Gtf+1qwINmtVL4DPKBn48aN0/q3utf+vW3H5sCBA1EWtXi6d+/edrtEcdTR/B19uLwnbXfs0Ea///2+9cBXS/pTidYd+rl4mPn4TT+/nnXCYrCl4snJ1+//XvO/g5bXp/semHycQVj/IBF9EK6Pa4AABCDQDQIe/ETqLgFE3u7y5egQgAAEINCnBBrv5aH2tiJpqBG+runwsqMzb4yfMQK1o6Xrk5BuUL4uCZV16oxaq04o+XWVNdruKfZo258xXr4IgaEmoFdadl1RdtXp6Ki7jXPOtU3RdrPTytWBHubanXWHu6ZFrHxI0XfV8T66UxF45zAK0VA/D1w8BCAAAQhAAAIQgAAEeoRAlHlfKGTeczM8KTeXaMz2yEfSMPoR1S12qW6xmAaUGdLka20IZNfyMO52w1fVfvhnieeqR88kCq8PHSXejysS75NIvG1QswkCQ0egncg73xA+9alPhV//+tdRJD5+/Hjfi3+OKvynP/0pYt2/f3+47777JhDX6/UYFduRip1++9vfxojtEztQmBYBi+jf+9734r4//vGPwxe+8IVbvufnyc+V07e//e243LIDKxCAAAQgAAEIQGBICSDyDumN57IhAAEIQGB6BNwwX5PEO/5mFuoHJbj9QxOJX9R3Ne38nCb3N0lySxWVI11fiL2K1hGFXkm9ldVaPOV8ZU7Pih+DAAT6hUBDkYKuFuLueb3LtERxV8JudkavNMm8MXKQsjlNqTotFXCmsjMJ1XuSMHKPpsDdpvec32ckCEAAAhCAAAQgAAEIQGAoCdRVP7nxx0LmPTULBJpgKd3ZFHoXPKi6xuYkJAuoa8yC6NB/NR9TO+FxReH9SxZqr2YhOyIkswhIlGzSNNmSeBd+TBLvWp7NoX/AAAABEegVkddReC2x/uY3vwnPPvtsvDff//73w1NPPdX39+lXv/pV+OxnPztxHY8//nh47LHHgiPM/f73v4+ReP3ho48+Gp5//vmwcOHCiX0pTI+AI746anmZdu/eHZ544okog1uifumll+JHjjL98ssvx5kHyn3JIQABCEAAAhCAwDATQOQd5rvPtUMAAhCAwLQJ5JrpvX5KkTYOSeg9JAHusMS3UzLetH1ektv2l6hDSo38iSL0WvCtaIbF1FJvKfZq1hw6qObl7vCjEJh3AvlNvacuN6f5bJTi7nm9txR5N1eneKbyvIi7JRm1f6cb9b66O4Tq3YqStVsi74Y0JKPlDuQQgAAEIAABCEAAAhCAwDATaFzKw819jXDzWUU7PS4SsxlQvUyDBz1w8MEkLNiThupG1T1Ghpku136nBPJaCLWTahf8uwTe11Tf1mD/cPVOj9Kyvwa1pvKbFvyXJN5/rYTKCiTeFjoUITDUBHpF5P3BD34QvvrVr07ci8997nPhhz/8YVi0aNHEtn4u/OxnPwtf/vKXw5UrV9pexhe/+MXw9NNPD8z1tr3ILm989dVXw5e+9KXw+uuvt/2lhx9+OPz85z+P8nrbHdgIAQhAAAIQgAAEhpAAIu8Q3nQuGQIQgAAEZkFAHUeNi4rQ+w8JvYfzUFeE3kwRe2OUXkW8nNckAS5ZpY4Ayb2p5N7EQq/XVznXNueaph5Rbl7vEj8OgY4T8ECDxnt6F6mj2++nTEtDkcNzC7yaitbRdvNL+tlZRAnqyEkrYrij76bbJe0qAu/ILi0701BZqQ5LdWKSIAABCEAAAhCAAAQgAAEItBLINKvIzf1ZuPmcIp9anJxlnSZZKaH3w6qH3J+E0Q8VQi+DCVuRU55EINczFwXeNyTw/k117Tf1HGrQ7KySnrnKhySV/6ck3odSZqSZFUy+DIHBI/DMM8+EGzduhIceeig88sgj83aBL7zwQvC5bNu2LZ7LJz7xiZAkgzXo4OzZszEa7BtvvBGOHTsW1q5dGx588MFw//33EyG2Q0/e2NhYePHFF8PBgwfjUq1WwwMPPBCXPXv2hNFR/kOsQ6g5DAQgAAEIQAACA0IAkXdAbiSXAQEIQAACc0/AES9rispbOyKpV0Jv45iEuXfUoO9B3MrmPbldbXEhzq2WyOuIvc4t9brzStE+Ui2V5dpnoXYerHa4ecfPCUCg4wT0Xsn03snUadi47LxYLmj7BZWdS96NAwuu69d75T2kd0y6Re+a7ZrSdoc6zXeow3yDBhX4vUOCAAQgAAEIQAACEIAABCDwAQQ8cHHsLUXmfV5tL4qEOqsoqOXvaNBzVRF6q/dJ6L0nDSObqZ+UaMibBLIbGrx/QgP535LA+3e1+Vkk9wDZ2SZFh67uTcKij1c0Mw2z0swWJ9+HAAQgAAEIQAACEIAABCAAAQgMEgFE3kG6m1wLBCAAAQjMDwG15TeuqIFfEm/taCahVw38mvYxO6kPrumUlPVMctTLJXJ2FQEzjdF6i7LE3tTbCrE3VeTedIk6sphqsmduHScyXAQ8baejT2WKtNt4T+VS2lXHoSPuWtZ1BN4JaXc208x2Gq393KV6p2ySvLtVnZTb1EG+vdk5ni5j0ECncXM8CEAAAhCAAAQgAAEIDDwB1XfGjyky7/9KqtyXhfyMrrgTbS0rNMj5btVXFB11RFLlqOou1FkG/mma+gKL9r2aZt6qHZQ4rui7jbe1UXXyWSdXhTeGMPq4ovD+m+rHW9RAx8w0s8bKASAAAQhAAAIQgAAEIAABCEAAAoNEAJF3kO4m1wIBCEAAAvNPQJ1LDcl1tXfU4H/cQq+WExLuFLm3ZyL1tqO0UB0K6sCKgq+kXpct9aaO1mupV0tFUUMQfNvBYxsEZk7A03Rm1yTsajBAFHYl7rqcF/JubnFXi/NcMm9QNKqeTJZ3HXl3o94Vm9UZvlWd4VvdOal1vUvooOzJu8ZJQQACEIAABCAAAQhAoK8INDQTyc0/Z2Hsj1nIDnWwfrRIVRYPQLTQu0vLzjRU1jK4ua8ejlmcrAfS1s9KEtdsW3WJu/W3VC9Xe164MYuDtn51gerIigA9+oQk3r16tjRTFgkCEIAABCAAAQhAAAIQgAAEIAABCEwmgMg7mQjrEIAABCAAgU4RKKVeTcVXP6FIvYrYm51sSr35Zf1IvVM/1KXjODKIOrMSy7yWei36WvCV1JtY6l3qSDVF7rIjcC5SZ0SlS+fDYSHQrwQa+rvXtJzZVeWOsitRN5Yt7F7RNud6J2RaLOvG98NNXWwvRdltx76qd4LEf8u76SZF3tV0tFVFFXKOvNsOGNsgAAEIQAACEIAABCAAgdkSyDW4cVzRUm++1Aj1/ao/ndcR5Vx2JLmOc5eaNf5FdRtF6h3RzCKxfqN2EAYndoRw7xzEbXYaSFvOrmWBtyE5PD+nU+xUe50eGz9P1b1JWPixShi9Ow2JpF4SBCAAAQhAAAIQgAAEIAABCEAAAhBoRwCRtx0VtkEAAhCAAAQ6TUCdSrGD4LQ6CU5K6i2E3sYp9Ted62CUj06fd7vjOXCIOh6SZRJ6l+cxj5F7vR7FXn22RGLfEvVzKU+KPF2s8ki7A7INAv1PwBF8susSdBVdN7+msqPsKs8t7jq3sKtOQud5mascI+x2qtN5LjBa7r9Lou4G/X1vUq6pQaub1bm9QWW9A4LfDyQIQAACEIAABCAAAQhAAALdJKA6VP3dPIztb4SxfapzOTqvB0N2MnmwsmYYqe5UXWeHpF7POqJ6j9s5qPd0EvQcHkuPievqNc2a5Vm06kck7yoKb6aB90H19o4m1Z0thI8+noQFeyuhqno0z01HCXMwCEAAAhCAAAQgAAEIQAACEIDAwBFA5B24W8oFQQACEIBAPxBwdM7GWXUaqPOgIbnXS3ZGHQpnJPpd0hVICuzL5Gi8C9U3oQi9yVJJvjHXugQ/R+yNUq+F3sUqa4lyrzo3nE+IvoiAfXnrB/qk1aeXj+vv01F1Jevm15tl57FcyruSdnNF3W0uLidR5I3TcfZ6dN2pbqDk+xh1d73+RterI9LCriLwVr2oIzJZyB/sVOjYDgEIQAACEIAABCAAAQh0l0CMzvt2Fsb+Lwu1/VnIT+v3NCNKR5NmK4p1om2qC21XPchyr2cjQertKOauHczyrurqdbW71TRjlmfLahxV3f6Y6uyeLavTdXW1iyUa8DrycBoWPJaG0Z1E4e3aveXAEIAABCAAAQhAAAIQgAAEIACBASOAyDtgN5TLgQAEIACBPiSgTqYYrVcSb5R6nSuyTPauhEDJvvl7uqZOTes3n3js+1kKVITeoCXKvEXEXm9LLPM6d8TPRRYEJfg693pZljSYehpCdaSRINARAuq0yzQ1a25J96b+3m5oXZGcvO5ymWeWdi3sxrwoO2KPo+1qW5DoOxDJU8mu0CJJN71L4q4E3riok7rqsqPuWtgnQQACEIAABCAAAQhAAAIQ6BECjQuKznsgC+OvagakA6q3XejSiVnSXKUmCcm8FUXorWiWkjjI0VLvCrVfUFfqEvg7O2yuNrTG5WYbWxxAf1JlReB15N04eL7TsndxeskaVZf3KArvRyTx3puGyioGvt7ZnWNvCEAAAhCAAAQgAAEIQAACEIDAcBNA5B3u+8/VQwACEIBADxJw5M/GRUULkczbOJtFodfRe7OzEgYt9jpiyCCIve3YSyKMEX0dtXeRwqZY5C2i90ahN25vir2JhF5HA23m6kgrywu0zeLvqPJRHQ/ptx3pwd6mTrlcUa2zMf29WNJ1Ljk3rlvS9TbnFnejtKuyxV1LupZ3Y67n77oi6mp7nKJ1UP/mLNcv11KKu+uaAm91nTodVa6sLP6OBvuJ4eogAAEIQAACEIAABCAAgX4noHpg7bSi8/7F0XnVnnJIdbkrXbwoR+pVXSrVbCXpZgmcymMdSvUoz16SauBywOPs4g1oObRudYy6e073vRgc3/AMWCe0XXl8Djodebfl54Oeg8puCbwPJWHBg6miNevhoC2qlRBlCEAAAhCAAAQgAAEIQAACEIAABKZBAJF3GpDYBQIQgAAEIDCfBCbEXkm8MVKvOiYyL+fVIXFe8uFFnZ3kw6FJ7gizoCtZ18Kul1guovg215syr0XeKPpa+rXY62i+3ha3a90So8sjRTmuq2yhmE4XQZjnpI42C7l5Tc95zFUeL8oS3mPZkXAt5jyPkMYAAAyuSURBVHrdwm7MXW6uW8JtSrvKCym3XI+Crr+vfr2hSY5w7QhSa9WxrGhB6RqLu+potrSrHHF3aJ4ELhQCEIAABCAAAQhAAAIDScB1wdo7Enr/moX6X9WOclgVPs+m0u3k9om1qmMpOm/FEXrXSe5UvctL1fUui720M3TmLqitoHFV91ZtYnHx4HcPhj+tdrLTahc4p5/Rc9D1pFmlKncnYeQBSbwPpGFkS9ocUN71H+YHIAABCEAAAhCAAAQgAAEIQAACEBhEAoi8g3hXuSYIQAACEBhoAjHS6HuK2OtII+q0iFJvKfZq+shcU0rmjjozqBFE7/TuWsq1yKtIvWFB3pR5y/VS6lUeCol3QvQtt1Wbkm/QcSz+lnni7T62tzuvNNfjVJqebrPcVpaHocPOkXCLJTT0HPoZLLfV1XnqsrbF7c4t6HqfWP5nnntfC7mWdy3aWt6Necu2KO9qvyjsap8xRc+VyBs763xMUvOZXqZnUdN5NqXdQtx1R3LRoZwuL55jeEEAAhCAAAQgAAEIQAACEBggAp6BZfyoFgu9B9R+ckT1xatzdIEegOzZhSz2xkGTylUHS1dL7PWiOlplhT53O4X3JU1NQLfNdf3GpebsVQ21eWVe3Cammass8EZx1wPcte+cpKVqAtqpevUeReC9XwLvNtWrNUsUCQIQgAAEIAABCEAAAhCAAAQgAAEIzIYAIu9s6PFdCEAAAhCAQC8QUEdFdk0dGOrIiJFIYqeGtl1054b6MRSxN1c5yr0SKUnTJGAR1+KuBV9Ju2FEoGPk3jLXZ8U+pdAbpV6Ju5Pl3rifhV7LvF7KsveN6+r0KT6Luft/vN6SJy3luN3r3qXIb+n8K7d5h9aOrKKcl9ucF0vuaSbL9bJc5PEzlWPuZyjTjpZy/XmZF+Uo5UY5V8+c97Wk6/XWsgTdpryr4xSRdkNNJ+2yJV5/XuyjEmk6BPQsJupMtLSbrNbj46i7FnhVrij6U+wsdhSoxeLc+nxM59jsAwEIQAACEIAABCAAAQhAoE8JZJqZpXZMQu8BCb2vq93EEXrfm4eLccTelaqnqV6WlLOjeH2lpV7V1ST2eqCl62xxgPA8nOJ8/6TbDrLrasvS4PXsspoRLjvXonYty7t568xUcxFxdzIQ3aMYgfdeReG9VwLvVt0vzQ5FggAEIAABCEAAAhCAAAQgAAEIQAACnSCAyNsJihwDAhCAAAQg0GMELFBmV9RBJYF3IlqJpN7sUrMzJFckk1zl3J1XjnRKmhsChaxrkTcuUeJVOXVHnToT4+fqBIoSb7Fu7zKuez8t7iNyHpM/1H7e5v9z2aUJu1crsnbj1vh/2scW7+Sy1wtpN2SKbBvXi/28PS7abhm3kHjjNq/HbcU+ykhzQMARpZdrUWdv7AguOn8t71rYnYjytFT3288aCQIQgAAEIAABCEAAAhCAwJATcFTX2jsSet+Q0PuW2kreboqhsU47H2xcjy/k3kQyr+tzMVddL9XMKuky1fdUp0s1YNNyb7pEuaO+9nsdz+1VipacXVOuQekxV/tVriXT7FKWeN1mlbndyoPSJfSGm1piO8Y83CjxdmRlC7zVe5Iw+mEJvJt1bxxNmQQBCEAAAhCAAAQgAAEIQAACEIAABDpIAJG3gzA5FAQgAAEIQKCXCcTIJlfVWWWZNy5yMN0pUsq96hzJ3WEiuTdXh4ojppIgAIF5JOAou+qsnZB2HaHJizt546Kyp2R1eYk6Eh0hmgQBCEAAAhCAAAQgAAEIQAACUxLINftL/d0s1A5K7D2YSeiVNHpSlqhl0V5IFnUXuR6oOp4HcFrk9ewrknrjLCyLta4osIn30RLLHuwpsTRRno4qH9Ux5lr4taCrgeIWpvMyF1NLu/kNbdfi6Mhub4qL2qeyqyp7KdqiwnWdtwcS90Iy202qb9+tyZl2S97dLZF3XUq9uxfuDecAAQhAAAIQgAAEIAABCEAAAhAYUAKIvAN6Y7ksCEAAAhCAwLQIqK/KHSkWexsSeZvTF2q9KEep12JvKfi6U0WdXiQIQKCDBEbU6WphV1GXJjprHYXJ06uWucqVKPJqm6fuJPhPB28Ah4IABCAAAQhAAAIQgAAEho6A2kM8uLl2RFKvovPW/6G2kCMSTS+IRK/IpJNvimfnsbSrCL1hca5cZUu9juyrJVjmddn7qJ4ZXNcc0b7OPVDUcm+xxHIx60+c1Md1zLKe6ei3WuJsPS6LR5yhxzPyaIllDf7Oa+LlNiItUd61wGsh2vLuWLOcqx3JS7DMe10H0/ae5Ss2yWoh2qH6984kjCgK78iONA6enWCj0ydBAAIQgAAEIAABCEAAAhCAAAQgAIFuEEDk7QZVjgkBCEAAAhDodwKOpCLBtyGBN0q9l5W7rGkOc0dNcV4uWnfZnTI92xnT7/eD8+9/Au4sdYeqZd04RWqzHKdLjdOmStxVxCUvUdh12Z2z7lglQQACEIAABCAAAQhAAAIQgEDXCDiKbP1UHsYPZ6EumbdxVM0bJySduq3DIms/JtclLfMqOm+Ueau6ENdLq5J9K0U5iryqdyZad5bq/1TMbfDqfyFvrse2nobafizy1rVNZef5uPJC5O3b9iBdTnCdfIvq4tuFR+Lu6C5F390gThKjSRCAAAQgAAEIQAACEIAABCAAAQhAYK4IIPLOFWl+BwIQgAAEIDAIBNRH42kRLfJmV5z/sxynQ7Tk62kSPTVizPUF50TyHYS7zzXcjoCjHCkiUvC0p0vU6ecou+U0qF532YJuFHeda/G2heocpH/wdnT5HAIQgAAEIAABCEAAAhCAQHcJqAnDA5rr7yhS79EsNI5J6j2u9g9Jvm7b6Fupt7vU+u/orn+7Lr5R8u5W+c3bFHl3exqqlnlVT6d+3n+3lDOGAAQgAAEIQAACEIAABCAAAQgMAgFE3kG4i1wDBCAAAQhAoBcIOIqvJV9JvFkUepvlGMG3FHs1jWI5rWLMr6kzzNMsOpqvpmCkU6wXbiTn0JaAO/ocyciirqcvVbTcOI1pLGu9EHfTKO8Wgu5S51q0LdV0p0TXbUuWjRCAAAQgAAEIQAACEIAABHqPQCap96KE3ncUpVdib8PLiULqdaRefU7qIwKOPry8kHc3S97drKi7WyXwbklDZSX19T66k5wqBCAAAQhAAAIQgAAEIAABCEBgYAkg8g7sreXCIAABCEAAAj1EQL5urukWM4m8XhytN5ZjtN5yXed7Q59b6tViuTfXepR8b2jKRpXDmD6js6yHbuyAnIqnF10gGdeRcRflIVmkssRb50FLWq5b0i0k3ijnWua1pKvcS+JpSy38kiAAAQhAAAIQgAAEIAABCEBgcAhY6r2sSL0nvEjsPam2i9NqnjitNovzukwPTCb1HgHX89eozr5BdfYNIVQ3Sd7drMi7kngrmi2Hwba9d8s4IwhAAAIQgAAEIAABCEAAAhCAwDATQOQd5rvPtUMAAhCAAAR6iEBel7jriL6FwHtLHqP2NqXe/GZzP+cWe5vrKuu7ebEeO9HckaYowaQhJWA5VxF0o6DrzjstQaJuslBlLaHIkwXFNsu6FnKjtKuyRN7U0q5zb/N3fUwSBCAAAQhAAAIQgAAEIAABCAwvAY0xzjS7UP1dLacUpdfLGbVlvKv2CW3LLwuN2jdI80BAg2uTFVruUj1+naLurpewu1HyrheVPQCXwbfzcF/4SQhAAAIQgAAEIAABCEAAAhCAAASmRQCRd1qY2AkCEIAABCAAgZ4gUEb2tbTbIvRmE+uF5Guh14tl3ljW/hPlYvu4tilKcJR+a4r4q/XgdS9E/RWEHkme/tKRbt0hN6pOtxHdJwm6Mfqt1hOXLekWsm7cx+ViexR3J2Rdddy1CLzNso5BJN0eudmcBgQgAAEIQAACEIAABCAAgf4i4HaFxiXJvBZ7tWRaXM7Oqe3hfCH2ql2C1AUCrvuvVGDdNarXr5W4K4G3sk6LBV7nK7W92oXf5ZAQgAAEIAABCEAAAhCAAAQgAAEIQKALBBB5uwCVQ0IAAhCAAAQg0BsEYpRfCbz5mDrPWoTepuTbFHkt+DYXCaJluRB883pT7vVxLPhG8deRg/1562eO/Ot9GhKCY67vTWzT9mESgy3eOnKtO8tiro4z5xUx8TYtcd1ibtVirrbF8uRcnxXCrqXcWC7F3YntOnYp8FrWjfJukdNZJ2gkCEAAAhCAAAQgAAEIQAACEJhLAm5fiGLvOQm9XiTzZsqzC2pLuOhFbRFXdEZuOyBNn4DbDZZZ3FWdf5Xl3abAW5HEW1mrxRKvP3MbAwkCEIAABCAAAQhAAAIQgAAEIAABCPQhgf8HyStAG1AbO6sAAAAASUVORK5CYII=" + } + }, "cell_type": "markdown", "id": "871c539b-a1c2-41a3-a33d-37649b603de2", "metadata": {}, "source": [ - "### Filter to `missense` variants passing filters" + "### Filter to `missense` variants passing filters\n", + "\n", + "![Screenshot 2024-12-20 at 11.12.46 AM.png](attachment:440e8e62-f912-4c99-9687-12d655742ab5.png)" ] }, { @@ -3743,17 +3763,24 @@ } ], "source": [ - "var_ht = filter_by_csqs(['missense'], ht=drd2_interval_ht)\n", + "var_ht = filter_by_consequence_category(missense=True, ht=drd2_ht)\n", "var_ht.show(5)\n", "print(\"The total number of missense variants passing filters in DRD2 is: \", var_ht.count())" ] }, { + "attachments": { + "f42fc1f8-afe3-4684-9fee-66582eba9080.png": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAACuQAAAGKCAYAAAD+cbWXAAAMQWlDQ1BJQ0MgUHJvZmlsZQAASImVVwdYU8kWnluSkEBoAQSkhN4EESkBpITQQu8INkISIJQYA0HFjiwquBZURMCGroooWAGxI3YWxd4XCwrKuliwK29SQNd95XvzfXPnv/+c+c+Zc2fuvQOA2gmOSJSNqgOQI8wTxwT50ccnJdNJPUAZaAJ1QASjOdxcETMqKgzAMtT+vby7ARBpe9VeqvXP/v9aNHj8XC4ASBTEqbxcbg7EBwDAq7kicR4ARClvNj1PJMWwAi0xDBDixVKcLsfVUpwqx3tkNnExLIjbAFBS4XDE6QCoXoY8PZ+bDjVU+yF2FPIEQgDU6BB75+RM5UGcArE1tBFBLNVnpP6gk/43zdRhTQ4nfRjL5yIrSv6CXFE2Z+b/mY7/XXKyJUM+LGFVyRAHx0jnDPN2K2tqqBSrQNwnTI2IhFgT4g8CnsweYpSSIQmOl9ujBtxcFswZ0IHYkcfxD4XYAOJAYXZEmIJPTRMEsiGGKwSdIchjx0GsC/Fifm5ArMJmk3hqjMIX2pgmZjEV/DmOWOZX6uuBJCueqdB/ncFnK/Qx1YKMuESIKRCb5wsSIiBWhdghNys2VGEzriCDFTFkI5bESOM3hziGLwzyk+tj+WniwBiFfUlO7tB8sU0ZAnaEAu/Ly4gLlucHa+NyZPHDuWCX+UJm/JAOP3d82NBceHz/APncsR6+MD5WofNBlOcXIx+LU0TZUQp73JSfHSTlTSF2zs2PVYzFE/LggpTr42mivKg4eZx4QSYnJEoeD74ChAEW8Ad0IIE1FUwFmUDQ0dfUB+/kPYGAA8QgHfCBvYIZGpEo6xHCaywoAH9CxAe5w+P8ZL18kA/5r8Os/GoP0mS9+bIRWeApxDkgFGTDe4lslHDYWwJ4AhnBP7xzYOXCeLNhlfb/e36I/c4wIROmYCRDHulqQ5bEAKI/MZgYSLTB9XFv3BMPg1dfWJ1wBu4+NI/v9oSnhE7CI8J1Qhfh9hRBofinKMNBF9QPVOQi9cdc4JZQ0wX3w72gOlTGdXB9YI87Qz9M3Ad6doEsSxG3NCv0n7T/NoMfnobCjuxIRskjyL5k659HqtqqugyrSHP9Y37ksaYO55s13POzf9YP2efBNvRnS2wxth87i53EzmNHsCZAx45jzVg7dlSKh1fXE9nqGvIWI4snC+oI/uFv6MlKM5nrWOfY6/hF3pfHnyF9RwPWVNFMsSA9I4/OhF8EPp0t5DqMojs5OjkDIP2+yF9fb6Jl3w1Ep/07t/APALyODw4OHv7OhRwHYK8b3P6HvnPWDPjpUAbg3CGuRJwv53DphQDfEmpwp+kBI2AGrOF8nIAr8AS+IACEgEgQB5LAZBh9BlznYjAdzAYLQDEoBSvAGlAJNoItYAfYDfaBJnAEnARnwEVwGVwHd+Hq6QYvQD94Bz4jCEJCqAgN0UOMEQvEDnFCGIg3EoCEITFIEpKCpCNCRILMRhYipUgZUolsRmqRvcgh5CRyHulEbiMPkV7kNfIJxVAVVAs1RC3R0SgDZaKhaBw6CU1Hp6EFaBG6DK1Aa9BdaCN6Er2IXke70BfoAAYwZUwHM8HsMQbGwiKxZCwNE2NzsRKsHKvB6rEW+JyvYl1YH/YRJ+I0nI7bwxUcjMfjXHwaPhdfilfiO/BGvA2/ij/E+/FvBCrBgGBH8CCwCeMJ6YTphGJCOWEb4SDhNNxL3YR3RCJRh2hFdIN7MYmYSZxFXEpcT2wgniB2Eh8TB0gkkh7JjuRFiiRxSHmkYtI60i7ScdIVUjfpg5KykrGSk1KgUrKSUKlQqVxpp9IxpStKz5Q+k9XJFmQPciSZR55JXk7eSm4hXyJ3kz9TNChWFC9KHCWTsoBSQamnnKbco7xRVlY2VXZXjlYWKM9XrlDeo3xO+aHyRxVNFVsVlspEFYnKMpXtKidUbqu8oVKpllRfajI1j7qMWks9RX1A/aBKU3VQZavyVOepVqk2ql5RfalGVrNQY6pNVitQK1fbr3ZJrU+drG6pzlLnqM9Vr1I/pH5TfUCDpjFGI1IjR2Opxk6N8xo9miRNS80ATZ5mkeYWzVOaj2kYzYzGonFpC2lbaadp3VpELSsttlamVqnWbq0OrX5tTW1n7QTtGdpV2ke1u3QwHUsdtk62znKdfTo3dD6NMBzBHMEfsWRE/YgrI97rjtT11eXrlug26F7X/aRH1wvQy9Jbqdekd18f17fVj9afrr9B/7R+30itkZ4juSNLRu4beccANbA1iDGYZbDFoN1gwNDIMMhQZLjO8JRhn5GOka9RptFqo2NGvcY0Y29jgfFq4+PGz+nadCY9m15Bb6P3mxiYBJtITDabdJh8NrUyjTctNG0wvW9GMWOYpZmtNms16zc3Ng83n21eZ37HgmzBsMiwWGtx1uK9pZVlouUiyybLHitdK7ZVgVWd1T1rqrWP9TTrGutrNkQbhk2WzXqby7aorYtthm2V7SU71M7VTmC33q5zFGGU+yjhqJpRN+1V7Jn2+fZ19g8ddBzCHAodmhxejjYfnTx65eizo785ujhmO251vDtGc0zImMIxLWNeO9k6cZ2qnK6NpY4NHDtvbPPYV852znznDc63XGgu4S6LXFpdvrq6uYpd61173czdUtyq3W4ytBhRjKWMc+4Edz/3ee5H3D96uHrkeezz+MvT3jPLc6dnzzircfxxW8c99jL14nht9urypnuneG/y7vIx8eH41Pg88jXz5flu833GtGFmMncxX/o5+on9Dvq9Z3mw5rBO+GP+Qf4l/h0BmgHxAZUBDwJNA9MD6wL7g1yCZgWdCCYEhwavDL7JNmRz2bXs/hC3kDkhbaEqobGhlaGPwmzDxGEt4Wh4SPiq8HsRFhHCiKZIEMmOXBV5P8oqalrU4WhidFR0VfTTmDExs2POxtJip8TujH0X5xe3PO5uvHW8JL41QS1hYkJtwvtE/8SyxK7xo8fPGX8xST9JkNScTEpOSN6WPDAhYMKaCd0TXSYWT7wxyWrSjEnnJ+tPzp58dIraFM6U/SmElMSUnSlfOJGcGs5AKju1OrWfy+Ku5b7g+fJW83r5Xvwy/rM0r7SytJ50r/RV6b0ZPhnlGX0ClqBS8CozOHNj5vusyKztWYPZidkNOUo5KTmHhJrCLGHbVKOpM6Z2iuxExaKuaR7T1kzrF4eKt+UiuZNym/O04I98u8Ra8ovkYb53flX+h+kJ0/fP0JghnNE+03bmkpnPCgILfpuFz+LOap1tMnvB7IdzmHM2z0Xmps5tnWc2r2he9/yg+TsWUBZkLfi90LGwrPDtwsSFLUWGRfOLHv8S9EtdsWqxuPjmIs9FGxfjiwWLO5aMXbJuybcSXsmFUsfS8tIvS7lLL/w65teKXweXpS3rWO66fMMK4grhihsrfVbuKNMoKyh7vCp8VeNq+uqS1W/XTFlzvty5fONaylrJ2q6KsIrmdebrVqz7UplReb3Kr6qh2qB6SfX79bz1Vzb4bqjfaLixdOOnTYJNtzYHbW6ssawp30Lckr/l6daErWd/Y/xWu01/W+m2r9uF27t2xOxoq3Wrrd1psHN5HVonqevdNXHX5d3+u5vr7es3N+g0lO4BeyR7nu9N2XtjX+i+1v2M/fUHLA5UH6QdLGlEGmc29jdlNHU1JzV3Hgo51Nri2XLwsMPh7UdMjlQd1T66/BjlWNGxweMFxwdOiE70nUw/+bh1SuvdU+NPXWuLbus4HXr63JnAM6fOMs8eP+d17sh5j/OHLjAuNF10vdjY7tJ+8HeX3w92uHY0XnK71HzZ/XJL57jOY1d8rpy86n/1zDX2tYvXI6533oi/cevmxJtdt3i3em5n3351J//O57vz7xHuldxXv1/+wOBBzR82fzR0uXYdfej/sP1R7KO7j7mPXzzJffKlu+gp9Wn5M+NntT1OPUd6A3svP5/wvPuF6MXnvuI/Nf6sfmn98sBfvn+194/v734lfjX4eukbvTfb3zq/bR2IGnjwLufd5/clH/Q+7PjI+Hj2U+KnZ5+nfyF9qfhq87XlW+i3e4M5g4Mijpgj+xXAYEXT0gB4vR0AahIANHg+o0yQn/9kBZGfWWUI/CcsPyPKiisA9fD/PboP/t3cBGDPVnj8gvpqEwGIogIQ5w7QsWOH69BZTXaulBYiPAdsivyampMK/k2Rnzl/iPvnFkhVncHP7b8Ah9d8bcAadJgAAACWZVhJZk1NACoAAAAIAAUBEgADAAAAAQABAAABGgAFAAAAAQAAAEoBGwAFAAAAAQAAAFIBKAADAAAAAQACAACHaQAEAAAAAQAAAFoAAAAAAAAAkAAAAAEAAACQAAAAAQADkoYABwAAABIAAACEoAIABAAAAAEAAArkoAMABAAAAAEAAAGKAAAAAEFTQ0lJAAAAU2NyZWVuc2hvdGxAPf0AAAAJcEhZcwAAFiUAABYlAUlSJPAAAALYaVRYdFhNTDpjb20uYWRvYmUueG1wAAAAAAA8eDp4bXBtZXRhIHhtbG5zOng9ImFkb2JlOm5zOm1ldGEvIiB4OnhtcHRrPSJYTVAgQ29yZSA2LjAuMCI+CiAgIDxyZGY6UkRGIHhtbG5zOnJkZj0iaHR0cDovL3d3dy53My5vcmcvMTk5OS8wMi8yMi1yZGYtc3ludGF4LW5zIyI+CiAgICAgIDxyZGY6RGVzY3JpcHRpb24gcmRmOmFib3V0PSIiCiAgICAgICAgICAgIHhtbG5zOmV4aWY9Imh0dHA6Ly9ucy5hZG9iZS5jb20vZXhpZi8xLjAvIgogICAgICAgICAgICB4bWxuczp0aWZmPSJodHRwOi8vbnMuYWRvYmUuY29tL3RpZmYvMS4wLyI+CiAgICAgICAgIDxleGlmOlBpeGVsWERpbWVuc2lvbj4yNzg4PC9leGlmOlBpeGVsWERpbWVuc2lvbj4KICAgICAgICAgPGV4aWY6VXNlckNvbW1lbnQ+U2NyZWVuc2hvdDwvZXhpZjpVc2VyQ29tbWVudD4KICAgICAgICAgPGV4aWY6UGl4ZWxZRGltZW5zaW9uPjM5NDwvZXhpZjpQaXhlbFlEaW1lbnNpb24+CiAgICAgICAgIDx0aWZmOlJlc29sdXRpb25Vbml0PjI8L3RpZmY6UmVzb2x1dGlvblVuaXQ+CiAgICAgICAgIDx0aWZmOllSZXNvbHV0aW9uPjE0NDwvdGlmZjpZUmVzb2x1dGlvbj4KICAgICAgICAgPHRpZmY6WFJlc29sdXRpb24+MTQ0PC90aWZmOlhSZXNvbHV0aW9uPgogICAgICAgICA8dGlmZjpPcmllbnRhdGlvbj4xPC90aWZmOk9yaWVudGF0aW9uPgogICAgICA8L3JkZjpEZXNjcmlwdGlvbj4KICAgPC9yZGY6UkRGPgo8L3g6eG1wbWV0YT4K++N+rwAAQABJREFUeAHs3QecFPX5x/Fn93qjc0ev0qUpNiSixlijBls01ojRGBOjMXb/aSYxtigYjRVbFFRUREEURVFEkd6RdvQOB9xxcG33/3sGZtkyu7d7jd27z+/FMjO/6e/d292b/e5zrtLSUq/QEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQKBKAu4qrcVKCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIGAJEMjlgYAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggEA1BAjkVgOPVRFAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEiGAAEEEEAAgdoWKCgokLFjx0qLFi3kvPPOk9TU1NreJdtHAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBOpMgEBunVGzIwQQQKBhCnz77bcydOhQ38nn5ubK0qVLJScnx9fHCAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCQyAIEchP53uPYEUAgKoF169bJ3r17rWXXrFkj5eXlctRRR0m7du2kSZMmUW1jyZIl4vF4Ii6bkpIiGjbVbbpcrojLNqSZ//73vwNOd9u2bfLWW2/JDTfcENDPBAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCQqAIEchP1nuO4EUAgKgEN0Wp11o0bN4Ysf8cdd8hDDz0U0u/UMWDAAKfusH29evWSq666Si6//HJp37592OUawozVq1eHnOby5ctD+uhAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBJVwJ2oB85xI4AAAtEIzJw50zGMq+u+/vrrUlFREc1mYl5m6dKlcv/990vXrl3ld7/7nRw4cCDmbdSXFW666aaQU7n66qtD+uKx491335XmzZsH3P74xz/G46FyTAgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIHAEBQjkHkF8do0AArUvMHbs2LA72bZtm3zzzTdh59fUjOeeey5sld6a2kc8b0crBT/++OPSrVs3GTJkiIwZM0b69u0bz4fsO7aSkhIpLCwMufkWYAQBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQMAIEcnkYIIBAvRUoLy+XUaNGRTy/d955J+L8mpo5d+5cufLKK0WPqaG1zMxMq0rw4sWLZcqUKXLRRRc1NALOFwEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBOq5AIHcen4Hc3rxL6ABzdoKaXo8HtmyZYvs3r27yhC6ja1bt1o3Ha+ptmfPHuvYKtteRUWFbN68WXQYa/vqq6+syqaR1nvzzTeltLQ00iJh533yySeydu1a67Z8+XKZOnWqPPnkk1YlWKeVpk+fblWKdZp3pPq0Aqz61uR9q9v0er01ckq1cXwFBQXW47lGDjDKjWzfvl327t0b5dIshgACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAokm4DJBtJpJTSXamXO8CBxBgUWLFslTTz0lX375peTn51tH0rdvXznjjDPk7rvvlmbNmsm9994rc+bMCTjKESNGSM+ePa2+jRs3yvXXXx8wv2vXrvLMM8/IwoUL5W9/+5t88MEHvvm5ubly0kknyT/+8Q/p3r27r99pZM2aNfK///1PRo8eLStWrAhYpHPnznLVVVdZ1V67dOkSMM+eePjhh61KqPa0Dv/yl7/IoEGD5LHHHpOnn35atm3bZs3OycmRU089VR555BHR47fbhx9+aPXNmDHDt9wpp5wip59+utx8882SnJxsLxp2qMu99NJLAfNvvPFGef755wP6xo8fL2effXZAX/BEampqcJdo1ds+ffqE9GvA+oorrgjw919IA6FZWVn+XSHj6nP11VeH9KufPlac2i9/+UvZtGlTwCx11/vdbkVFRfLcc8/J7NmzZf78+QH37+DBg2XAgAHW/fGzn/3MXiVgqOe1a9eugL6xY8da+9VqwxMnTpRZs2ZZ8/Xxc/HFF8sTTzwhkyZNCljn0UcflX79+gX06URtHd+BAwdEH5cvv/yyL6Stj73+/fvLXXfdFXD/FxcXy7Bhw6xj27BhQ4CRdurPkv/9rj/LwT9T+jM4ZswYy/jbb7/17bNt27bWz4Hud/jw4dK6dWtrP/yHAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACiS1AIDex7z+OPgEFNHj6wAMPhD1yDQl+9NFH8uCDD8pnn30WsNy0adPk+OOPt/pWrlwpvXv3DpivQU0NR2rwtbCwMGCe/8Srr75qBUb9+3Rcq5pqoPf2228PnuU4raHKW2+9VVwuV8B8DYa+8cYbAX3vv/++fPHFFzJy5MiAfv+JyZMny49+9CO57rrrrDCj/zz/8WuuucYKlSYlJfl3B4xrAFPDj/4OvXr1Eg2NHn300QHLavA1OLgbsICZiCWQq+tqqPPcc88VrYob3N566y1f4DN4nv+0hjaXLl3q32UFre+5556APp3QKrcdO3YM6f/hhx9EQ9Ta1F9D3BrmrqzdcsstViA6JSUlYNF27dr5wtT2DA2Ya1DaDlnb/Rr81cfCb3/725AQtIZVL7roIntRa1hbx6dVjDVI7HRf2Afwm9/8xqpurNP6mGnevLk9q9KhhsYHDhxoLaeVhp999lm57bbbKl1Pf9b18ah2NAQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEhsAXdiHz5Hj0BiCfz73/+OGMbVs9Ew4KWXXhpVaDL47LVyqVY29Q+hBi+j09dee61s3bo1ZJZWCo02jKsr33nnnXLHHXeEbMep48UXX4wYxtV1NBSp1UY1rBmpvfbaa/KnP/0p0iLy+eefhzhotVatZNqtW7eAdV9//XUrQBvQWc2JzMxM0RCyhi6Dm4Ywo2lXXnllyGLBlWbtBb766it71DfUYLYdxtWKw2eddVbUjyutYnzhhReKVvutrGl4NziMW9k6wfNr8/i0UnKkMK4eiwbRP/nkk+DDinlaw8fRhHF1w/pzqpWZ33777Zj3wwoIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCAQXwIEcuPr/uBo6rFAfn6+OFU2dTplDTcGV0Z1Wi64TyufRruehoP9mwY9R4wY4d8V1fh//vMfmTBhQqXLRrPMihUrrJBvpRszC2iV30hNq9AGNw0/aguuzKp9NRHG1O34t6ZNm8rJJ5/s32WNL168OKTPqUMDxMFNg6W7d+8O7hatLhzctPKv3R5//HF7NGCogWGn0LAupBWao7nfpk6dGrDNqkzU5vFNnDgxqkO67777oloueKGMjAyra8mSJaLB8+Cmlau1kvT5558fPMuafvLJJx376UQAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIHEESCQmzj3FUea4AJagdOpaRXT559/XmbNmiWjRo2SIUOGOC0WU59WLP3iiy9k4cKFEi7oGFwx9Pe//73jPl555RXZsmWLddNxp/aHP/xBvF6v06yAvsGDB8v48eNlzpw58sgjjwTMC57Q49blNBR6xhlnBM+2KrKuWbMmpF87tPJocJXd3NxcOfbYY63lzz333JD1gpcPWaCKHXr/BrcNGzYEdzlOd+3aVZzWnzZtWsDyHo9HnCrnarVkbeoYfH+rx9y5c2XHjh2yfft2+f7776VXr14B29UJp+2GLHSoQwPE//rXvyx7vf+cwshO69bF8Z155plWxWINrGuFYj3/4KY/L/v27ZPs7GzZvHmzddOKzcFt2LBhvvlaabpnz57WIt98803woqImM2bMkMcee0zeffddy9uuWmwvrD/70Qbp7XUYIoAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAQHwJJMfX4XA0CNRPAQ2rjh07NuTkNJin1TubNGlizevXr59VvfW0006zwpIhK0TRocHaRx991Ldkjx49xO12y+233+7r0xGt5mk3DURqBd/gptU+f/GLX/i6dby8vFxuuOEGX5+O6Lq6DTvwGjDz0ISe6/vvvy9aNVbb0UcfLfv375c///nPh5Y4PND9XnPNNb6OY445xgo9auVg/6aB0k6dOvl3WeNOIVINpyYlJVnzjzvuOKsqrAZ37abHppVn7fvC7q/usH///iGb0P3quduVVUMW8Ou46qqrrLC2X5cVUv7pT3/q69KKu8E2+hhq3bq1tUzLli2tQKhvBTOiAVU7SOpyuWTAgAFyxx13hNy3a9eu9V8t7Pi4cePEKegcdgW/GbV9fCeccIK8/fbbkpmZae1Vg84dO3aU448/3u8oDo7q+fbu3VuaN29udThVD9bHiD3ffwMaXA9u+thNTj78UtuoUSPrZ14D0P6tTZs2/pOMI4AAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAQIIJHE4JJdiBc7gIJJKAVtvcuHFjyCFrZdzgAKiGBl9++WUrIBmyQhQdwcFbXeWyyy4LCeRqKLS4uNgKKX7yySchW9bKrP6hWHsB7Xv22WdDQqKffvppxECuhnntMK69La186xTI1aqi/k0rlp500knywQcf+HdblXADOg5NOFW79Q+LakDykksusZz9158wYYJceeWV/l3VHm/VqpXjNg4cOBBVIFersd52220B21CHJ5980ten1ZCD2+WXX+7rat++vdx6662+6XAjp5xySsgsfYxU1v7yl79UOYyr267t49Nzt8O49rloAFkrAgdXptWfVQ3kVqU5rXf//fdLaWmpVSlXw/EaftZAsN5oCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggUH8ECOTWn/uSM4ljgeDqpfahhqsoq0FBrczpX8HVXifSMDc3V5wqbWoFUqdWUVFhdTuFhTWQG67pvFmzZgXMdtqG/wJa/Te4OR2rVtLNysoKXlS0P5q2c+dO+fDDD0MWPfXUUwP6zj///JBA7ujRo2s8kLtixYqA/doTjRs3tkcjDrXKrVa79Q/dqvWqVat8oU4NQwc3PT+nptWa9Zi+/fZbq7Lxrl27rMrAWh34m2++cVql0j6nIG+lK4VZoDaOz6lKse6+S5cuIYFcrQBd1aahcaf217/+VfSmP9P6ODzxxBNFKxzrzzkNAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEE6ocAgdz6cT9yFnEuoKHH4Na2bVvRyq9OTato9u3bV6ZPn+40O2xfXl5e2HmRAr5OYdqePXuG3ZZTkNBpG/4bSE1N9Z8MO67Va52amkTTPvroI8fFnnvuuYD+oqKigGmd0GDr1q1bJZJjyEqVdCxYsCBkCQ1Ou93ukP5wHVdccUVAIFeXmzJlihXI1Qq2wYFcrQbcokWLgM1p0FUNtGJrrEHvgA05TDg9HhwWi9hVm8cXLpDuFPyOeJCVzNSA+cMPPyx3332345LqrmFxven9oG5avXf48OGOy9OJAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACiSPgnHxLnOPnSBFICIGMjIyQ49QAq1aoTUpKCpmnHZs3b3bsr41Ou1Ku/7bT09P9JwPG09LSAqZ1wmkbIQvVQcebb77puJdwIcnghT/44AO58cYbg7urPD137tyQdTt06BDSF6nDqdqthnB/9atfyXfffReyqgZ4/duePXvkuuuukwkTJvh319h4LOFip53W9vE57bO2+m6//XarwvPf/vY3CVcZ29730qVL5eabb5YffvhB/vWvf8UU0ra3wRABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQTiQyD6Eo3xcbwcBQIJKaAVUZ3amjVrnLpFA4r5+fmO82qjs1WrViGbXblyZUif3bFixQp71Dd02oZvZh2NaIj5iy++qNbewgV6q7JRPZ6pU6eGrHraaaeF9EXqaN68uZx33nkBi2hwuLS01KqUGzDDTJxzzjkBXW+88YZjGFerJl9++eVyzz33yEMPPSR33nlnwHp1NRHvxxergwa69Wd7/Pjxcs0110jnzp0jbuLJJ58MqXIccQVmIoAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAQNwJUCE37u4SDqg+CuifsndqTz31lGgYL7hpf102p+NbsmRJ2ENYvHhxyDynbYQsVMsd48aNq/Yepk+fLuvWrZNYq9gG79jj8citt94a3G1NX3jhhY79kTq16m1whduZM2fKxx9/HLDaxRdfLI0aNQromzhxYsC0TjzxxBNy0003SXLy4ZeBefPmyaOPPhqybG13xPvxVeX81fXss8+2brr+9u3bRR9bL7/8sjid77Rp03zLVmV/rIMAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAJHVuBwEuvIHgd7R6BeC2RkZIgGJd99992A83zmmWekR48ecv3110taWpqUlZXJ22+/Lfrn7uuynXjiiSG709DgjBkz5IQTTgiYp32TJk0K6NMJp22ELFTLHa+//rrjHpxCz/aCt912mz3qG+r9dPvtt/umYx0pKCgQrZKqVWyDW9u2bWXQoEHB3ZVOB1e91RVeffVVWbhwYcC6WvHWvxUXFztWX73hhhsCwri6zmeffea/ap2Mx/vxOSHMmjXLqduqiltYWOib53a7pU+fPtZ0y5YtRYPYerv//vtDgs8LFizwrccIAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIJJ4AgdzEu8844gQV0NBtcCBXT+X3v/+9dRs4cKCsXLlS/AN9dXWqp59+uuTk5ITs+5prrrEqsHbp0sU6lNWrV4v2BTddV7dxJNuqVavEKSg5f/586dWrV9hDKyoqkgceeCBg/v/+97+oArmTJ0+W9evXW+uWlpbKpk2bZM6cOfLKK68EbM9/4tlnnxUNasba1FjDtmPGjPGt6rSfn/zkJ775OpKamup432r49rzzzvMtq+dy3333+abraiTej0/D9MFNQ9AffvihnHXWWZavPV89V6xYYU9aw5EjR8qvf/3rgD69L4Nbu3btgruYRgABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgQQSIJCbQHcWh5rYAhqUvOSSS2Ts2LGOJzJ37tyAfqeAbMACNTihoch77703JJCZn58vPXv29AValy5d6rjXu+++OyCY6LhQLXe+9957IXvo3Lmz79hDZh7q0MqzwYFcDVwuW7bMOvdw62n/XXfdFWl2yDytSqshzqq2n//85wGB3ODtaFg6MzMzoDs5OVnOOOMMef/99wP6hw0bJkOHDpUBAwbI7NmzZdq0aQHz62oi3o/vqKOOcqTQitf6M9qoUSMZP3689O3bV37zm9+EBLlvvfVWmT59uvzoRz+ylp06daq8+OKLIdvU+TQEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBIXIHYyzQm7rly5AgccYHnnntOzj777EqP48EHH5STTz650uVqcoHbbrtNBg8e7LhJDeKGC+PqOn/4wx8c16vLTq1qG9w0AF1ZO/roo6Vt27Yhi4ULTocsGGXHTTfdJE888USUSzsv9uMf/9gKgTrPFSvw7TQv3GNOw6EjRow4YmFc+1jj+fi6du0a1lyrWW/cuFHKy8utU/nFL35hn1LAUKsa33LLLXL11Vc7hnE1zHvppZcGrMMEAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIJJYAgdzEur842gQX0Iqa7777rvznP/8Rrd4a3DSYN27cONGKs3XdtFKp7vv888+PetfnnXeeVXlV1z2SbdGiRY6BYa1+W1lzuVyOYcjXX3+9slWjmp+bmyujRo2Sp556StLS0qJaJ9xC6enpctlllznO1sfW6aef7jjv2muvDanc6rSgBsaPRIvn49OKw6+99lpULE2bNpV58+ZZ1XKjWsEspFWNv/zySznSP0PRHi/LIYAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAgLMAgVxnF3oRqDWBlJQUufHGG2XZsmWyfv160TDp7NmzZfv27dbw3HPPtfa9d+/ekGPQde3mFODTUGYsLXgbTZo0kXfeeUc0jDpkyJCwm9J5r776qhUu1hBicEtNTQ3uEg2TRtOys7OjWSxgmcmTJwdM64RanHjiiSH9Th22uf+8/Px8WbVqla8rWlsNWg8dOlSGDx8uH3/8saxdu1auuuoq33aqOxKukqpWZ3Vy1/253W55+OGHZeTIkTJw4MCQQ9AKtTNmzHAM9Gog1b/5Pwbtfqc+e54Ogx9n/vN0/Egfn//xZGRk+E9a4xo81wrR9913n2M1Zf/z7927t0yfPl3+7//+T3r16hWyLe3Qx5I+RkaPHm1VzI32seW4MToRQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAgLgRcpaWl3rg4Eg4CgXouMGvWLNmxY0fAWWo4Mi8vL6BPJ4qKiqRZs2Yh/Rs3bpSWLVuG9NdWx9atW2XDhg1WWFj3oftu27attGrVqrZ2yXbrQKC4uNgKG2t1YA0QZ2Vl1cFeo99FvB+fx+OxfkY1aKwBXnUM10pKSmTFihWWt4abNbDbpk2biOuE2xb9CCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggEL8CBHLj977hyOqZwAMPPCCPPPJIwFn17dtXpkyZIo0bN/b179mzR26++WYZO3asr09HNAirVVtpCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCAQXwIEcuPr/uBo6rGAVrfVaqRO7YQTThAN5xYUFMinn34qhYWFIYs9++yzcv3114f004EAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAkdWgEDukfVn7w1M4He/+50899xzMZ/15ZdfLqNGjZLk5OSY12UFBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBCoXQF37W6erSOAgL/AyJEj5YUXXpCcnBz/7ojj9913n7z00kuEcSMqMRMBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBIydAhdwjZ8+eG7DA5s2b5cUXX5QFCxZYt/z8/ACNwYMHy3nnnSeXXnqpdOrUKWAeEwgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggEF8CBHLj6/7gaBqoQHFxsZSUlEh6erpkZGQ0UAVOGwEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIHEFCCQm5j3G0eNAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIBAnAu44OQ4OAwEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgYQUIJCbkHcbB40AAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggEC8CBHLj5Z7gOBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEElKAQG5C3m0cNAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAvAgQyI2Xe4LjQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBISIHkhDzqeDxoj4i3VG9e8ZaZYbm5VXhFrKE54AozbSZFb2bZgxMuEfNPNBatozqeZIbmJuaecSW5xKXDFHNLNeOph5Y1AxoCCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAQHwIEMit7H4wAVoN2nqKvdbNW2zGD5jQ7X7Trzcd1yBuycHlpOTQtAniahjXCuTqUEO4VhDXb2hG/QO5VjDXhHM1hKuBXCuUq2Fcc5M0E8hN02Cuuekw3Uynm2GGyfPqeKYZZrnEnWnGdXkN99IQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBGpdgECuTWwq2Hr2m9BtoVcq9ppxM/QWmmGR6dtnwrZm6C0yQx03y2kwV/a7rECumDCuFb61t1UrQy2ta5reY4cCuWJCuK4Mr7mZEG6WGc82odzsg+PWMMdM57gkqdHBodsspxV4aQgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACNSfgKi0tPZT0rLmNxvuWvBq+NQHbit0mbKu3AjOtwz1muMeEbc3Qq0MTzNUArpTF+xkFHZ9W1TXhXJcJ4roamYBuYxPIbWyq5zYxwyY6NCFdHW9qhqaqLiHdID8mEUAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgRgEGkQg11sqVvi2YqcJ4Zqbxx7uMoFb62bCt6YabsIFb2O4o61FNairIV0TxHU3M4HcZmbY3AxbmGBuc3Mz00kmrOtKjXXDLI8AAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgg0XIF6Gcj1lpsArqlwW7HN3Lab21YTwjVDz3ZTAdcMvbvNHW5CujQjYMK3rqYHQ7nulmaYa0K5h27JLU1g11TWdSUjhQACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCAQTqDeBHI9+w+Gb8u3mOFmczNDzxYTwDVD7x5z+iakS4tCwIRvXU1MMLeVCeO2EkkyQ70ltzY3E9B1pbui2AiLIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAg1HIKEDuZ59XtEAbvlGE8DdZG46NDevqYQrJQ3nTqzVM003AV1TOTeprQnm6q2NCeaaYXKeCexmEc6tVXs2jgACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCSGQcIFcrYRrhXA3mOF6E8BdayrhmqG3wHhXJIR54h5kkgnnNjPVc9ubYG5HE8ptZ25m3ArnZhDOTdw7liNHAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIHqCCREINdbbrK2O7xSts4j5WtMENfcPCaI691lTp0QbnXu/6qvm3wonNvBBHI7m1snl6R0cEtSc5e4zDwaAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggg0FAE4jqQ6ykyIVxTCbdstQnirjbVcM3Nu83cNaUN5e5JkPNMNeHcPFM1t4tIchcTzO3ilhRTPdedRdXcBLkHOUwEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEKiGQPwFcj0i5btMCDffI2UrTQh3hbmZirhSVI2zrKtVk8yOUsxNA6opJoyabI5bq8WafpfOc5ubZlTtoRkVs4iYc7aHXq34qzdTFVjKXeItMwtoALnsUL8ZxHXLMadrquUmdzO3o0w4t5NbkpuZk9ZzpiGAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAL1UCBuArleE0At32ZCuCaAW/aDqYj7g6mGu8WIaxD1SDcN0WrINtMMs3TossZd6WY8w9zMUNJMX5oZ1+XMTUwg16XhXA3jmlBuNIFcrwZzTRhXLTSQaw1NINdrArneEnPTYG6JmT5gxvebmw6LzW2fCe3uOzhueWnI90g3Y+BubarmdjcUPdyS2t2Mt3BbFkf60Ng/AggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggUJMCRzyQ6zWB2/ItHik1IdyypaYargZxd5hT1HBqXTcN3mrAtpHeTKDWDN06nuMStwZxs810lunPNtO6nLm5M8y0CeS6TSBXw7e12bR6rlcDuSaM6zlwaFhshiaM6zGhXK+pIuwxN2+hVzx7dWhue03/HnNUJrxrVeGtzQN02rapjOtqaWh6mGq5vUww1wyTWxHMdaKiDwEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEElPgiAVyrYq4GsQ1IdyyRZ6DQdwCg1hX1V01fKsVbpuaMG0zE6rVYVMTtG1ihk3MsLEZmiBukgnmuk0A16p6mwD3sVbR9RSZYLMJ4nqsm5kuMOO7zXC3CecaY8+ug8M6Dekab1czE8ztaYK5R5tgrhkm5xHMTYCHFIeIAAIIIIAAAgjUG4HvvvtOTjzxxHpzPpwIAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggED8CNR9INdUvi3f5pWSpaYi7gITxDWBXA2J1noQVwO4psqtu6UJ2JqKre4W5tbcjJtbkt5MGDepsQnepsXPnVOTR+I1FXIr9pigrgnnVphArmeHue3UoQnobjc3My2m0m5d3A9WMLeXCeb2c0tab7cktzB3jqmkS0MAAQQQQAABBBBAwElgxowZcsIJJzjNirpvxIgR8sr7L8ne9fvkzTffrPb2ot4xCyKAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIINAiBOg3kahi09AdTFXeeR8oXmiCuCYPWagBUK+A2N1nP1iZsm2eGJoyblGcqs+pQw7iZWra1QdzPoSdp8reeYhPONaFcDUhXmJtHh1tN/5ZD901J6Go11qP0Jhid3NclqQNNxdzubkkylYlpCCCAAAIIIIAAAgj4C4wcOdIK0qanp8sTfxlZ5SBtbm6uXPb3s2Xd0o2Sur6pjB071n83jCOAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIFAtgToJ5HoPmCDualMVd44J4s71iGeTOeaKah2388qa59QquCaA624jkmSGyRrG1aFWxm3IAVxnscO9hwK6Gs4t32yCuYduel9pQLfWqucmmfurnQnmDjDVco81wdxOpkpxOsHcw3cMYwgggAACCCCAQMMWyMvLk0v+dqZsWrVVkvMbyzvvvBMzyFNPPSWvfPqcnHHVECkvq5Bx/54so599W44//viYt8UKCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIOAkkO3XWWJ9HpHyLRw7M90jZ9ybkucoEOw/U2NYPbyjbhDrbmOBtexPCbWfCt3pre7Diqqt2z/DwMST6mMnAurNMtdrOejOFi8tNZtpUNC7faELUG8x9Z91MOHeTuQ+LavBkTTDbs1akdKtHKkxou/w4l6T1d0tyntscUA3uh00hgAACCCCAAAIIJJzA008/LW2PayHZTbKkS98OMu6zz+X777+POUg7efJk6dKvg3X+ySlJ0u/H3eWrr76KeTsJB8gBI4AAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgjUmUCtVcj17DNVcX/wSMl3JtC5wCveXTV8Tukmr9nKVL3taKqrdjQB3I5uSTFB3KTGmiyt4X019M2Z0GzFHq+UmVBu+Vpzf671WiFaq3JuSc3iuJqb+7O/CeWeaKrldncfrGpcs7tgawgggAACCCCAAAIJInDBBRdIWt8yE6Y1b/pN+2HmKknf0FzGjBkT0xk0adJEhj91iSSnHvy23rplG2XfbJeMHz8+pu2wMAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAuEEar5+rKmKW2aq4pbM9kjptx7xrDG7NtVWa6SZoK2rqcnbdjIB3C7mZqq5ppggblIzl7iSamQPbMRJwNiqsd68vd1SscuEczWYm28CuqaqbcUaUzV3t1nR3PfVbd6d5vHzldnm+gopH+yV9GOTJDmXkHV1XVkfAQQQQAABBBBIRAGtYjv80kt8h56Rky47dpo3jDG0mTNnSmarNF8YV1dt0yVPXnpibAxbYVEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQiC9RoINdbYqrirvDIgWkeKZtrQpoFkXce9dxUE8RtZSqndjMh3KNMCLeLqYbb2oRw001Qk1anAi7ziNGAbHJuknj7mmDuJnNbbcK5K004d4WphLzFHE5ZNQ/JBLg9K0RKdnqkYqMJ5Q4x1XK7usWVxv1dTVlWRwABBBBAAAEEEkZg1qxZkhEUpG3dOU9mjp8S0zloqLddr7yAdbRSrm5b9zFo0KCAeUwggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCBQFYEaC+RW7PZKyXxTGfdLE6I0wUwprcrhBK2TYarhdjDhzx4mhNvd3EwoM7kp1VKDlI7YpAaiU02l4tRObikfYIK5K00Q29z35cu84llvHgMHqndo3l0Hq+V6tprH1Kkiaf1MNeTGhHKrp8raCCCAAAIIIIBAYghokLZ9z8AgbUpaspSWl8QUpC0uLpYOPduEnLRue9++fSH9dCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIFAVgeoHck3usmyzqYr7rUdKTWVc7yZzGKavWi1LJKmjS5J6mbBnb3Pr7BZ3NkHMapnW5spuUzW3hQlOt0iStD6mSnK+uS0xVXOXmmDuWvNgKK7Gzk2wu2KRV/bvNqHcHV7JONGEsluZHfJwqAYqqyKAAAIIIIAAAvEvoGHZDr1Cg7QDTu8pGtaNtrLtnDlzpPPP2oacsG77xRdflKFDh4bMowMBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIFYBUyysRqtwhTCXe2R4gkVUvKJCeNuNNuqThhXK+KaEG7auW7JvCxJss9PkvS+SYRxq3EX1fWq7hyXpJtKtnrfZZn7UO9Lt6lwLOnVOBLzmPKairslkzyyb6IJfud7TEq3GttjVQQQQAABBBBAAIG4F9AgbfueoUHarCaZ8vXXX0d9/FOnTpWU9JSQ5bVvy5YtIf10IIAAAggggAACCCCAAAIIIIAAAghUTUCv55x44onWl6CrtgXWQgABBBBAAAEEEEAAAQQSW6DKgVyvqVx6wFRBLf6gQsq+MYnJ3dWASDVB3K4iqWe7rRBn1nkmyNnbBDkzKYNaDdUjuqo7ywSr+5j709yXGq5OPcvcn53NIYVmIaI/zgJTjflr85gbbwLgy0wA3DwGaQgggAACCCCAAAL1U0Cr4KY6BGn1bIuKiqI+6dSWzn8UpFWn3Ki3wYIIIIAAAggggAACCCCAAAIIIIAAApULXHvttdL9wjbyzcbJ8tvf/rbyFVgCAQQQQAABBBBAAAEEEKhnAs6fTldykt4DXjmwyCMHPvZIxTITxi2rZIVws00c2GU+B0/uZ8Kbx7gltZsJbZoKq7T6I6DB3PS+Lknt5JISUym3dI5Hyhd6xbvdnKMpdBtzKxYpn+WV4uIK8Z7ttUK/rjQeMzE7sgICCCCAAAIIIBDnAinNkxyPsFXHljL5qfGO84I7586da6rs5gV3W9Ma9l1bkO84j04EEEAAAQQQQAABBBBAAAEEEEAAgdgERo0aJa7WpdK6S66U7i+VCR9OEr02M3DgwNg2xNIIIIAAAggggAACCCCAQAILxFwh11NswrhzPbLfVCmtWFKNMG6OSNKxJqx5UZJk/SxZ0gcmEcZN4AdSZYeuQeuMY819Pczc18OSJOkYE6LNrmytMPNNZdyKRV7zGDSh8Hke8ew3j0MaAggggAACCCCAQL0R0A9r2oUL0makSnIzt/WBTmUnHKnKrq57oGx/VNupbD/MRwABBBBAAAEEEEAAAQQQQAABBBq6wN///ncZMuw4iyHVXL/pPri9jBw5sqGzcP4IIIAAAggggAACCCDQwARiqpCrwccDpsLpgYkV4lltpKpS4dTs0d1OJOU4t6SZW0o7t7hiOooGdg/Vp9M1Gdzkli5JOiVJUrRi7kyPlM0ygdoN5iQrYjzRcrOKqc68v9ysaB6HaQNMdeUMKuXGqMjiCCCAAAIIIIBAXApokDYtIyXssaWaeXv37g07355RU8vY22OIAAIIIIAAAggggAACCCCAAAIIIBAqMG/ePMnqkiI5zQ5X4znqmM7yxp0fhi5MDwIIIIAAAggggAACCCBQjwWijsJqGLfEVMa1wrirjEhVipKaqrjJR7skbbAJ4/Y2AUpTNZXW8AQ0gJ3axS1JLVxS2tEEc7/xSPli84AqitHCBHE9K0T2TzQjptZzen8T7k7nMRWjIosjgAACCCCAAAJxJ1BZkDa3Y9OojzmvU8uwy8aynbAbYQYCCCCAAAIIIIAAAggggAACCCDQwAX0y9WNmmcFKKSZKrnuJiLz58+X/v37B8xjAgEEEEAAAQQQQAABBBCorwImxlh585aKlCz0yP6PD1XGjTWMazKSrramiulP3JJ1UZJkDEoijFs5e71fIqmRSzKOS5JM85hIPcOEaVubU441T2sei54VplKuqdp8YLFH9LFKQwABBBBAAAEEEEh8gbyO4YO0+oGOfphTWVuwYIGkZaaGXaxDz7ZRbSfsBpiBAAIIIIAAAggggAACCCCAAAIIICBff/21OF3Lad8zT3bv3o0QAggggAACCCCAAAIIINBgBCoP5FaYMO4yUxl3kkc8K42LKUYaUzN/adbd0yXpF5jg5dlJktLR7DIppi2wcH0WMI+F1M4mqH1OknmMmKrJPczJhv/rxM4SWil3uViP0dIVZsI8ZmkIIIAAAggggAACiStgBWmzwgdpczu2kD179lR6gvqBT277FmGXSzP70A+MaAgggAACCCCAAAIIIIAAAggggAACVRfQCrnte7YJ2UD7Xm3kjTfeCOmnAwEEEEAAAQQQQAABBBCorwKRA7mm+mhpvgnjflohFT+YiViDjuYvkyQPcknmxW7JPMktSU1iLX9aX9k5r2CBpKbmcXLywWq5yceYx0lm8BKVTJvHZsVSUynXPFZL15pQbqxVnCvZPLMRQAABBBBAAAEE6k6gsiBtelaaLFy4sNID0mCvLhupUaUlkg7zEEAAAQQQQAABBBBAAAEEEEAAgcgCev1FcjyO12D0rxPl5+dH3gBzEUAAAQQQQAABBBBAAIF6JBAxkFu+xSP7v6iQ8oUm3VgW41k3NYVOh5iQ5c9M5dOjk8SVThg3RsEGt7g+RtL7mlCuecyknGweL41jJCgVKZ/vlQNfeqR8G4ncGPVYHAEEEEAAAQQQiBsBDdtWFqQtKCio9HgrWyZS9dxKN84CCCCAAAIIIIAAAggggAACCCCAAAKi1XHb9cx1lNDrO+t3r3WcRycCCCCAAAIIIIDAYQH9bOzee++VN99883AnYwggkJACYQO5FXtNtdHvTLBxlgk27o/t3FwtRVJPM1Vxz02S1E5mF2H3Ett2WboBCCSZx06XQ48d8xhyhf8Lw84YxSY7/r2p6jyjQjyFhHKdkehFAAEEEEAAAQTiW8CTVR7xAHPbNY84357ZpH0je9RxGG2lXceV60nnAw88IKNHj67W2SxatEhqYjvVOghWRgABBBBAAAEEEEAAAQQQQACBIyKgX4iO9MXq4tJ9otcOaAgggAACCCCAAALOAvo5zX0P3SM/FM+Tt6a8bn3m4rxkw+7lPWXDvv8T6ewdo7JeUw23ZKFHSr/xiLfywlMB5+tqZQKVZ5hA5Rmmymlrs3kK4wb4MBGFgHnMpLQ1j6GfmED3j00o1/lLtWE35N0lUjrNIyWLzeM31srOYbfKDAQQQAABBBBAAIGaFtBfnP/v//5Phg0bJmPGjPFtPj07zTfuNJKenV7pBzm67cq2o9vetcu8eWyATX3UfUnhbBnz+esB/rFw6P12/0P3+raj9ycNAQQQQACBuhLQ1zP/9xB1tV/2gwACCCCAAAIIIBAo0LJ9+C9Pt2jXRHbu3Bm4AlMIIIAAAggggECCC9TkdamVK1fKxj1rpF2/PMnt21je/fSdSj8HS3C+mA9fP3/Sz6N0qPY0BOJZINnp4MrWmTCjCTR6NzjNDd+nYdw0E8bNGJIkSc3qVxJ3ypQp8sILL8ill14qF110UVgELSH+9ddfh8zPzs6W1q1bS79+/SQvLy9kfl10zJgxQ2bPnm3tqmfPnnL66afHtNuNGzfKBx98YK3z85//XJo3D//Ltf+GPR6PjB07Vj766CPJz8+X9u3by5lnnilXXXWVJCc7PgSt1ZNbuiTjVFMy1+S6S6eYx+NW/61GHvesEzlgHsNJeS5J7Ww2QEMAAQQQQAABBBCIK4G33npLJs+dIO5mFeLqXixPv/qU9O3bN+pjrMiI/M0r/aBHP/CprDVpF7mKbmXrJ+p8/XOSS3cukDN/+iPZX7jf59+nT5+YTmncuHGyvnC1DDn9OGs7Y998Wy6//HKJdTsx7ZSFEUAAAQQQMAJ/+tOfZMHqeSIZ5eJyuUSvVdEQQAABBBBAAAEE6l5g8eLF0vTE8NdXOvRqI7rM0KFD6/7g2CMCCCCAAAIIIFALAnpdalPpGtmxc0e1r0vp52Wz130rx/7kaMkwBWn01uGYXPnvf/8rTz/9dC0cfeJtUo2+WPypdBzYShZtnyW7/rsLm8S7GxvUEYekISt2e+XADI9ULPOKeKK3cLU0lXFPN2HcH5kwbtP6FcbVQOnw4cNFA6nvvvuuFBcXhw2Sauj1tttuiwh34YUXyjPPPCMtWxq0Omo7duyQc889VwoLC6093njjjTEFcsePHy+//OUvfevrL83RBHJLSkqsEPOkSZN8Z6pGGtB96aWX5OOPPxYNK4dryc1dkjnUhHLNY7H0c694d5jHZTTNLF+xxCslHUwo14TDkxrXr8dkNAQsg0BlAnoBTH8We/fubf2cVrY88xFAAAEEEKhJgX/84x/S5cw86dGxqzTtmCNFuxfJs88+K5dccokJ0jaudFfpOZGr6OoGMiqptKvLRLMdXa4+tXfeeccKQw8ZNsh3cSejw0bL/6mnnor6VHU7G0ry5ZgzDl8kaj+wZczbiXqHLIgAAggggMAhAX0NmrLwE+kwME8yc3JkzGevidvt5ndbHiEIIIAAAggggMARENAv/fbq3FrWbVorbdq0kTat2wQcRUZOulXM6De/+U1APxMIIIAAAggggEAiCtjXpXqe0kla5OVYBU+OPvroKhcqWb58uWzfu0V6tO7g4+gxqKt89vzn1peaGnoBFPXWoj49f9JJmrdpKvtbH5A5E2aJ9mtRTRoC8SgQWDq0QqRkiUfKZpk0474YDrepCeOecqgybj0L46rCt99+a4VxbZHPP//cHg077Natmzz00EPW7cEHH5SLL75YcswHBNq0yuxPf/pTKSgoCLt+Tc/4wx/+4AvTxrJtDR//9re/tYIRdpg3lvUfeOABscO4d955p0ydOtUqH64WGsz99a9/XenmNFCbcUqSpAwxodrKi5wd3l6RSNlMr5QuM49n84/WsAU0ePrrP95oVWzT8Ybe1OBPjzwg83Z8K29OflX+9re/NXQSzh8BBBBAoA4F9HWopHGRtO95+AOaHsd1lc9nTJYlS5ZYIdFoDkeXDdcizQteJ5Zlg9dNxOlly5bJtr2brQsX9vH7+9t9lQ11O827NKr2dirbD/MRQAABBBAIFvj73/8uPX/UUdr3aGO9DjXvlSXaR0MAAQQQQAABBBCoWwG9xqNFgZKyzH4zK2Tt+nwpLDpYHMj/SHQZGgIIIIAAAgggkOgC+t5H8xV6XUrDoXpLbyfy3HPPVfnUdJu9TjgqYH39QlO7AS1Ev/jU0Jt+FlUou3yfRamN+nMtsKE/MuL7/AMCueXbPFI62yPezTEcdKZIygkamHRLcov6WYV09OjRASBvvPFGwLTThFacvOOOO6zb3XffLbqN7du3y2effWYtPnfuXBk2bJgUFZnUaC23iRMnypgxY6xA8F133RXT3o477jh5/vnnrXX12wWxNK0oPGLECGsVHWoVtJNOOskK5Oo2tb399tuycOFCazzSf8ktzWPsVLekDDKPMfOYi7Z5NphA7hyPlG+LsrJutBtmuYQS0MrWb376quzJ3izFbXbIf14eKUuXLk2oc6jpg9U3J6mdy6Vdvzxp1iNTPjV/MlydaAgggAACCNSFgL4Ot2jTxFS0y/DtTsfb9m8e00ULfX8drsXyQU+k7YTbfiL362t+z+MDL+7Y/rFc3NHtdPALVauJvZ2GZprIjweOHQEEEEg0AX39OZBTKM3bNvMduo5v2ruxwf+u7wNhBAEEEEAAAQQQqCMB/awhPS/F+nJ1dpNMcaeLrF27JmDvLdocft8WMIMJBBBAAAEEEEAgwQT0861tezYFXJeyCp58N7lK16V0e8HXuWyS5m2bWn9lwJ5uqEO9FnjMj48OOH2uBQZwMBGHAr5ArrfMVMdd6JGKJSa4aCrlRtMqXBUyr3C2/HncvfLwqIdk9+7d8uWXX8ptt90m48aN821i586dVp9WSy0vL5fXXntNbrjhBjn99NPl5ptvjpjo19LcL774ovziF7+QCy64QB599FGrsqrHE1ry9K9//au1n61bt8r48ePlpptusvah1WE3bNhgHY8e4z//+U9rW7o9/UVx/fr1vmMNHtEKsXZ4VCu6atNwq24n1qZ/Ou+UU07xVYydPn26RPMnYfWc1XTmzJmOu3zllVes+Vp5N7jt3btXbrzxRqtb/wRwXl5e8CIRp1esWCFDhgyR+fPny4UXXuhb1uWqPHytjwVtnTt3luHDh1vj9n8XXXSRDBo0yJr89NNP7e6Iw5TWpgrz6UmS3MfsOznioodnmsdy+SKvlCw2QXPzGKc1PAF9A6M/5016pEuHXm2tbxaltKmIKewTD2rvvfee/O6eW0SHeqtO0/WLs/ZYHpmNMsyfBW8m3Yd04BtE1UFlXQQQQACBmAT0tajH8V1D1tHXpGir1TZv0zhkfToqF7DfB6h1cNO+aAO59nb0vURw0+28//77wZ8EqeQAAEAASURBVN1MI4AAAgggUCMCehH+5GHHhmxrwBk9Eu53/ZCToAMBBBBAAAEEEEggAb02sHHPeknJOvyhXXaTLNlRsCOgIJFeO9DPamgIIIAAAggggECiCzh9vqXvddr0b1al61L6V8ZbtHX+U+H6pab5q+YmOlm1jt/+LMrpMy2uBVaLlpVrWcD3G1L5ZlMdd4FXvLui26PWG128c6E8veQJmbjjA/FO8sp///tfueSSS+SZZ56RrKws+dnPfmZtrKCgwOrLzc2VXbt2WQFbey/Tpk2Tl156SZ5++mn51a9+ZXdbw48++kg0uOnfJk2aZE3+/ve/t8K5/vNeeOEF2bZtm2RkZMjjjz/um6X7ePXVV+WTTz6RSy+9VLRyq910e7p/XaZt27Z2t2/48ccfW+NDhw6VgQMHynnnnScTJkwQDb9ee+21vuViGdEg8h//+Ed57LHH5H//+5/ce++9EVfX6lJqqtV0tWKtf9OAs1biLSwsDAjM2ss8+OCDloket557NAFge10dPvHEE1awOTnZ91Dxnx1xXMO82i677DJJTU0NWFYDvVdeeaXMmjVLNHQdVTM53NTObqk41SueXRXiWRXVWuI1fwWnzITNy3u4JKWdL4Me3coslfACGirZl7FbWrZr7jsXrQg3+cVPREvb9+zZ09cfryMaaHnjk1ckOc9jDXdt2iNahbuqx64B5SG/OBiIt89ZfTYUTEkYE/u4GSKAAAIIJJ6Avq4FvzbbZ6EXFxq3ybEnIw4zG5mSK5W0Fn6V88It2iwo2GsHSfWvWdTHtnjxYvO+qKnjqan/lInfO84L7qxsO5MnfhK8CtMIIIAAAgjUiIB+EPHTC4eGbMv+XT9kBh0IIIAAAggggAACtSKgnzX0/3EPWbl8pW/7SSlJkt4oVdasXSNH9zlcyawkeb9vGUYQQAABBBBAAIFEFIj0+ZZelxr717Hy5JNPxnRqX3/9tQnkhhZQ0Y1o0LfwwN4GneGI9FmUmi9+e3FM3iyMQF0JWOlEb7mpjrvUI56VJmarSdso2pb9m2VZ1kL5zbM3yoKFC3xVZDU4Gq5pWFar3Wr4dsGCBVYYdfDgwdbi99xzj+zZs8e36rfffusL42qF1ylTpsjs2bPl4YcftpYZMWJE2CcyDeNqtdxFixZZ1Wg1aKuBVd2XVowdPXq0/PDDDzJ27FjJycmxArpatdepvf7661a3VujVdsUVV1jDl19+2RpW9T87WKuhVQ3aRmr2vvXJvaSkJGBRDRLruWnYWavv+jcNu6qTtliDuPZ2brnlFnEK43q9lT9Q7G+7duzY0d5cwLBDhw7WdLRV0KyFk0TSersldbBbXM6vSQH7sCbMoVb84JVSc9PHOq1hCWhQP7hyjr5xaXV0U9/zVjyLaPj/jUmvSKOjUqVTn3bW0J1bVuVj1+0VphVIy/aHA8r2+fczF87siuB2H0MEEEAAAQRqWkDfo7ds7xwI1dfotr1yA/7UT6T965drIrXMxqHVW4OXzzoU7NXXyNsf+L1MWjDOeu29/vrrrYscwcsn+rSa+f+Jb//z8b+449/vNK7b6T6oi9OsgItEjgvQiQACCCCAQBUF9PU6xe96kP81tVhex6q4e1ZDAAEEEEAAAQQQOCRgf9bgTnJLWk5gUR6tkrt586YAq4zG6fXyOkvASTKBAAIIIIAAAvVaoLLPtw6YLyBV9rlVMJAWmGvfs01wt2+6WZtGon8lPtFbrC72+Vb2WdTmvYcLctrrMEQgHgSsQG75NlM9dJkJKxZEd0glFSWypGyBXP3kFfKTC86QHj16yHXXXRfVn1EfNWqUVQlXKztq5VQN6GrTUKn/D6BWj9V2+eWXW2HSIUOGSN++feX222+3KvHqvLvuuksqKip0NKBp9VytOtu9e3fRarT+ATMN2F588cXSuXNnueCCC+SBBx6w1v3++9BKUJs3b5aJEyda83VZbeeee641nD59uqxevdoar8p//fr1862mFXAjtQEDBkivXr0soy+++CJg0XHjxlnTWl04KcmkVQ81rZyrYVptGspt167doTl1N9AXI23h9t2+fXtrfkyBXLOGO8sl6YPcktzPlMyNsnCvVn4uW+aRih2VB4mtg+K/eiEwfvx42ZOyQ3I7tAg5n14nmG8omVB+vDf9hnlO1xTfOei56LF/+s0k64sFsR6/fhkit4NzCMrebqzbZHkEEEAAAQRiFWjexvm1SLeTpd/43b8nqk3qF/7CNf0CXrRNl9XX3I3eFZLS2mu99i7eM9v3u0q020mE5fTb1h0iXdxp3Uj0AlBlTbfj9B7LXq+Z2U59uEhknw9DBBBAAIH4ENDfafW9graVq1bKivzlsnLtctmydYvV1+3YDlG9jlkL8x8CCCCAAAII1HsB/X3/0UcfFf2sQG+0mhOwP2vYt7s4ZKPJpkqux+2Ron2BBYm4ThBCRQcCCCCAAAIIJJCAvrcsSyrxXYcKPvR2PXNj/lxE3x9lNc4M3pRvWj/P+fDDD33TiTZivx9/8N9/lRtuuCHm9+SVfRa198CeKuVmEs2R4008ASuQW7bKKxXmFm113JV7l0vOaRmS0zHwSeH444/3BVbDUdiBVnv+UUcdZYVjdXrjxsPJ9RkzZliL3HnnneJymeClXxs+fLhV2Va7Vq5c6Tfn4Oj5558f0Hf00Yf/JMqpp57qOM/pl8B33nnHWva8886T5s0PVpPMzs4Wu2LtmDFjArYVy4RWtLVbcXHoL6v2PHuoFbq0vffee3aXaOjWruCrwWX/plVB586dKwMHDrQC0P7z6mp8y5aDH4Y0atTIcZdanVibhrFLS0sdlwnXmZxnquQe5xb3wUxvuMUO92uV3BVeKcv3HO5jrN4LzJ8/3wRF/Ern+J2xvqkpdu2LqxdnfTOiX0b445/vEK0MruOripbJ5j0bzBu3gz9Pegp67Ll9GlcpJKRv1rod29lP4vCobpc3LIc9GEMAAQQQqB0BfS3q0Ktt2I3v2rJH9hbuDTs/2hlO7+/DratfEixI2i6d+3U4+DrbsYUcd1Z/mfT1x3H1XiHc8cfSr+9/Il7c6dWm0iCTvmfR7URqHcx2Pvroo0iLMA8BBBBAAIGYBfQ1SH+nXbV6pWwr2CLe1HLZV14oG7ett/pyzWt4NF8siXnHrIAAAggggAACcSFgX0PXawuVBRN0vn7wPy3/M3l94ijrVtk6cXGScX4Qeh/YN/sL19ktQ/9CUUZ2eshf/YzzU+PwEEDgkID9XKufV+rzpk7TEEAAgXgWqIvnKX0+1GtO6W2SrOtQ8xfMC/nyUayfi+hxdzgmfHVcNc9qkimae0nUppk/fT9e2mK3bExbISNfejLs+/jg+1GnK/ss6ii+nJ+oD416f9xuT5FXyk1I0bsjunMtKt8nX22ZIq0Gm4CqFecNXO+YY44J7PCb0gBms2ah4Tg7MOv1HqxeumnTJrGrXXXr1s1vC4dH7f04PfG0aRP4hOUf6M3MDAwRp6WlHd5o0Nhzzz1n9WhoeN68eb5b165drf5nnnlGPJ6qBTz9q8LaYd+g3QdMajVhbe+++67vF9hvvvnGCrMOGjTIqlJsr6CVfbVKsLb//ve/kpwcZRlZewM1NNSKxtr8g9b+m7b7tVpxamrgn7PxX85x3Dz20nqaKrn9zUi64xIhnV5TQK0s3yv6mKc1DIHly5dLt2Ocw6cq0O/0brXyQZ3u94knnrBCKLEEUe6++275etVkmbPuG3nllVfk5QnPS6M2GVLiKjZv6kwod9vhP0XQ64Ru8vbbb8d8R+pzWV7HlmHXaxplVbywG/CboQ56/rEY+K3OKAIIIIBAPRVYvXVlxEDovt0HxP/PT4djaBahym64dcL16+vjkGHHBsy2vgDTO0deeumlgP5EntDX5ra9Dn8xUM9l15bdsnLuGt9pte/ZttJvcOtFp+Dt+DZwaEQvEqkrDQEEEEAAgZoU0KoYkuGRrbu2SFbTDMk01XLTMlMlOdNt9ZW5S8RapiZ3yrYQQAABBBBAIC4E9DrzP5580LqGPmHue/L6hFFhrz3r778jXxohB5rtknb98ySrc5J10z6d11BaTZ6r+t98883WffDMmBHWe65m7RtblOk5oZ/xZWSlBxQa0c8eJkyYwGcGDeXBx3nWuID+POtnj3f/7c5a/Tnyf65dU7pY9PlWP7+syeeTGsdhgwggUOcC8fKcoM9Z+tyo7xH1+VHHa6PpfvR9ZEHFTsnJy7SuQxWW7pF169YG7M7pc5FIVvpZS17H0Ayd/0abtWqasM/Ben8s3jrfej/epX9H6XdKL2nSO9X6i5X+Lv73o77f1Glt0XwWlceX8/0fLozHkUBy2QZTHXeNOaLy6I4q/8BKE8j9QgaXOgdvd+3aFXZDGRmh35DUhd3uwGTv7t27fdsIF5i1q64WFBT4lq3JEf3weMWKFdYmR4wYIXoLbhoa/u6772Tw4MHBsyqd9g8St2jRotLlW7dubVUfnjhxonzxxRdy9tlny/vvv2+t98tf/jJg/QceeMCavuSSS6Rjx46yc+dO33w73LB//34r9Kz3iV2p1rdQDY307t1bpk+fbl6E1jlucf369Va/LleV5s5xSWpft5QvNSHbH6II2ZrHeIUJ5JZt9kpaN1dVdsk6CSagL9CX//ScsEed16mlddHoV7/6VdhlYp1xyy23SEqeyB7zLYdvJ5gPCk3TLwVope1ITS9Efbdimgzs0UPWztkszQely7qVG6TLOS0l0wRayksrZM261ZKdlS1ZWVmSbfr2eQut56lwX1wI3p8+p7Uf2Dq4O2Ba/+SBfnhZXZMnn3xS5i6fIxl5SSbos0c+/vhjue222yTaYw04KCYQQAABBOqNgL4WZTZx/p3A/yRLSg74TzqO62thZa1ZqyaVLWLN19dHfV8Q3Hqd2E0+fnmCDJ0w1PeaW9lrevA24mla3xtlNz7oryHcLRu2iqR4pahgnwnlrpXjz+0vauZ/IcTp+PUvYdjbcZqvfbqd6cu/CjebfgQQQACBBiSgr//62qJDvelfz6rK66muq78HL1/xg+S0yrKCuDajhnL1ytCmLRusZex+hggggEA8C9jPj927d0+Ya2b2MVfleTye7wuOLf4F9Pq5VtPK6ZEs7TrrF03LJSPVZfU5XX/XL9du279BjhlwqnVy9jWEtUs3Wl+8ffjhh+P/pKtxhPqzqmZ6jb7PwB7Sp80Aqc5zjW7v73//uzTunyLZTbOkoGCzbCvaIjv37jDX//dKs9zQ4kcZOemyZ9Me6ywmjZoq+0oLJV8WS/KmMusahNP9Vo1TZlUEal3Afg3UHdXV66C9Tx1Om/uVlGXsk+QmLsmfsEp2m5+9HuYzxZr+3E1/1tue2sR6rs1ukiVFu/fJRu+qBvHcWesPInaAwBEU8H8+0fHqXJupyfcY1SHR89DnrF7ndJR9jffIyuIdMn3O11Y2Q3MJNdl0Pxk9zeceXbIkOSXJuiWlNJbd2wpkdf5q6dK5i7U7/89F1EmPMdL7Mfuvjkc6VjsXEmmZeJyn5//e1LesYjj2e3E9zq4DOsnaJYffk+ty+j6/7YDm1v24tWCtvDZhq3U/RvtZ1PJpW+KRgGNq4ALJ5Rs84tkYRZhRodJFtiZtkpl7v5Pvv/9efvzjHwfwabXYmqhC4f/GccOGDdK+ffuA/ejEokWLrL5+/fqFzKuJjrfeesu3meDAq854+eWXrflvvvlmzIHcsrIyeeedd6z1L7744qgr2F599dWigVwN4p5xxhny+uuvW9u46KKLrKH935QpU6zRsWPHit6cmq6rt6FDh8rkyZOdFql2n/5yr82+r4I3uHjxYqurV69ewbOink7t4pLS3ua2xjyGSypfzaMBdH28OxdernwDLJEwAvrmJtkEYyM1fUM04eWaC4roz+ekmR/JkIuOlVbmouCWNFOW2bSRLz4Z8WKXrvfoqIek3QnNZPP6LbJ7307pdm4bWfDaOslqlSr79xdbwfn9hftl3fq10qvnwRB739O6Wb8A/+tf/4p0mr55U6dOlVadTHXzCE3/jMLysZsDllBL/+flgJkOE3o+7375lrTs0UiyW+VKhrkWN2P6V+ZYcyTaY3XYbL3oUkttsXjWixPnJBBAAIFDAvqXMJq2yqnUI7uF+eLJvn3Wl1AiLWw/r4ZbRi8aB7cCrQg77/C3llfP2yi9TukUvJg1reu7G1fIQyP+Ic275Mi3P3wl0+dNk5MH/si6YOW4UpSdeuz6hRX9axx68asumv4lDW2r5q2RlctWibuRR9KzTFXBZK8UrC6Q+V8ukdMuHyxFJuxU3WZdsK+B7VT3OFgfAQQQQODIC2ggJn/PcvOFzRTZVLZRXvtos6xatUpuvfXWmA5O30ckm19py7ylkp7ZNGTddBPK3Xpgu3hTPb4v0oQsRAcCCCAQBwL27wJzf5gtxZ5C0b/4V77NJU899VQcHJ3zIQQfc039XuS8N3oRCBXQEETrUxrJUQM7+Wbq752F5gumOs8/HKeP14lTJ8gxPzt4Hd23ghnpfVI3mWi+eHvDihvq7TVaPf977rlHylsWSZIpYLt4Z5HMnjNbOjfuXuXr89b2cvfJgNNPtjjXLdsozbplm88ydsm2jTukWb+2/szWuIZVSitKrWsQej0it28jSW7pkYrG+yWjY+Wfm4RskA4EjpCA/kyNHDlSijx7JT3XbRWhmTRpkvX7TG1+1qOftb0z4S1rnx+//IWkH1MmuY1aSr/ufaVw2z7ZXlwY02eE0fDpPrd7NsvQgQN8i+tz7fHnDqj3z52+E2YEgTgV0Oei6jzn6Gt5br9Gst9bXOVrM+HeY+jvMvqXvuu62e9PUswXFZo3aWL9NcAuJ7axcgpaFDLW607hjl+fGxdtmS8DuvWS9EaH/yqAvtfJbJouq1ev8gVy7c9FdB3NiLTu30wKc3ZHfD/WrHXlhWUyzV+Jqu5jINz51Vb/nDlzxJNWauVmgvehrytvPfSW6Jfk7Pf5uT2bSq4cvN63JX+b5ZeX01oq81FztaEhEG8CyRWbRLx7ozssd1uX+cA2RYrfLZI///nPVpXWgQMH+lbWH5SFCxf6pqs6kpKSYoVctbrqp59+KsOHDw/Y1LJlyyQ/P9/q69u3b8C8mpjQwOzzzz9vbWrcuHGOH5BfeeWVVih29OjR8sgjj0hmZmZUu9bQ8o033igajNN23XXXWcNo/jvnnHOsUJ6GbLX6bWFhoWigt3lz82mEX9OAq11B2K/bGtVquVrZV5su165dO2u8Nv7r06ePtdk33nhD7r33XiuQaO9Hv8nw2GOPWZP2cva8WIbuLJekmGq35a1d4tFQbiXNu9t8b9pUyPXs94o7gyq5lXAl9GytANeqc+DPRvAJWRfszC/QNdH0l+/XPnpJTh52jO9NhYZytek3fEaNGiUPPfSQ465mz54ti/PnyTEX95Q107dITtsMcZmHc6NOqeJOcktJaYlklGdKTtNs2bZhm3TY19EKKLXqkiuzp8123KZTp1700hBypOb/hmXlypWi56UfDmS7G4k+B2l17kjNduh8Qitp3eVgIlq3qbdvPp5qba+ybUTafiLP+89//mNZNsnLkcykHNE3kGqhQSwaAkdawP55119Y9GddH5cN6bGp56+3hvr8VJePP3X2/yZsuH3rRY0DpkquVoWP1OyAaaRlgud98dYMyWjtluwWGdasnfkF4j3H+T3xqvlrRf/09Y7kddJ/wGnmg74iWVIwW2a/ONt6b1vVnxP7NWF76SaZvixbvp3/jRXyravH4PT350qL4zMkIzddUrOTRfZ5pHGXTFk3a4PM+nSB9SfA9b4Kd346r7L3FIqrf0o80naC7xumEUAAAQTqn4D+jvjN0qnS+cRWktelqeT1aiqbV2+Vdz4fbb2WxvLap68pFa5S87tx+PcHjZpnS0XKNtHwbnU+qKp/9wRnFM8C+tjWpj8v9u9i4d6HxfN5cGzRC9x3331S0myvCcp5ree0nbJRpn03W3r8p4f89re/jX5Ddbhk8DHr70WrPlpu/fXDWJ7L6/CQ2VU9EtDnx63lG+WUY/qHnFW3YzrL1NFvB/zuqZ8NuBqV+67T+6+k16mbd8+KeL3ef/l4H9fXEPWxQwh6XU8/f1xT+oOcOGCgVc1Wz2Gzd6t8891U0esRsT7P6Pbnrpsp5wwf6uMoMH8VL7t5hvkrSOlS4S2X9KaHwym+hcxIwYZC2e9ZJT1/0kE8yRXWtR6dr5+d6Ocm+txiFzDyX49xBOJJQD/fm/DdB9L/tJ7SJi9P0lK95i/EfiHZo7LDfu5XE8evuYu8Idmyf8sBKW60W3oce5T1JYSly5bIoGOP833uVpWf63DHp/vUzzmDW3177gw+P6YRiGcBfR3W13v9vL7PMT0ldV+W9XtjLO/Bfa/lPxkqeU1Dr83o75+6jP17aLht6/Oh9Z7AbEcr5mvT9xgzZ82q0nuM6rjb59R9UCeZ+fk8yethCp+t2C5JZamSkZ0mL775fI0EcvU5Vos0tu7bRDZtMAVPzJfAS0pKxP5L7+mZabK/8ID1uYqeT9O8xlJRUmGFTPU5XK+D5R0Kmdrvx/TYbWO9b7NN1d1oWjxe64p0PcMqSHN+R8dT09eVQpPTUV+n9/n2e8WvvlohJ/2y8kygbouGQLwJJHu2mtRXRRSHZbKLSV1Fzr7gJ3LG9DPks88+kxNOOEHOP/986dKli+gvuHPnzpXc3Fxf4DOKrYZd5IILLjBvZqfLzTffLL1795aTTjrJWlaDnBpC1XbmmWdKdna2NV6T/33++edW2DUnJ8cK3Tpt++STT/adqz6R2MfktKz2aeWP7777Tt577z358MMPrcW04u1ZZ50VbpWQfg39XnHFFVZY2P6F+aqrrgpZTr9tEa7pn5G/6667rFCwPrnZTYPC+g0RrWarywwYcPibb/YykYYaYNaKJ3fccYdcdtll1qKnnXaa9eGHXgjQfb766qvSuHFjKS4ulvvvv99aRo2HDRsWadOVzkvt7JbSLqbSsxY6Mw/niM081j0mkFuxwwRy2xPIjWgVJzP1RfyTTz6Rrl3NE5Bp9puTyg5P35BE02oqKDJz5kwpSimQPl26h+y29+DuMuGVj6Td0+2sP+O0d0uR9bNvf8iib7pyezQ1X3hIk8LtxdLm+KZSsKZI0hqlWIHc8opyOXBgv/V8l5qVbKrkrjNVcnuZN3RN5LuV00L2F64j2jd0hRV7rTfdn83+WJavWyZJjbyyZtcPsnX8Ruu57JZbbgm3C9EvKaT08PjCuPaC+qa8kwnpjnjhiajvQ3vd+jB8+umn5a3Jb0iL7jlS6jZ/4mfXPpm/xmV9SPzPf/6zPpwi55DAAvr41F/kt5VslH3lhdbPenZyI7nn1vt8v3wn8OlFPHR9/tXXmMKKPVJUvtca1/dm0b7WRNw4Mx0Fon19TkkzIdFaaLMnL5DdhQXS+ayjJKNxmhTt2C9J5tvTWpVq2/Ztktvy4JdpdNerTRh33teLJXdAtvlyjAnwmtcyvbU282ZsmWN9aPT222/HfJT6uLNfE9r1yZPCXUWyaNdMmfXCLGtbtfn40/cCBVv3yt79e6RtsxxxpZldJnkkOdMtaa5kyemcIvO+WiIVhV7ZuHFj2OcA68LPSaHVb5wwIm3HaXn6EEAAAQTqj4C+5r0y/kXrd0H7C5t6djruNddv9PdD+/fiaM7afh+RkX3wSzVO6+gXWVMy3NbvrvpXoWgIxLuAvj/718h/Suf+7WTGwhkybUmOtGvbVs44NvyXonUdbfb1slh+jmrDQ3/W9dq3/uly+5pXbb6nrYlzsA3tYV0aqtes/Blyzo+HBnzB4ORhx1q/J+ixROunx6/Lh2s6314m0nLh1rf7nY5Zfy/atGqr9Vyuy0V7zPY2GSIQi4Bee2/dpUXYVfqeepQVsLWvs2pYpP954f8yo16vH/PwmFoN0oU92BqcoT/fGmg90HSPdU1PN738hWWyevMqOenifr6gjPbb77+e/99z1s9rLM8J6t978FEB29NrGdr0M40kUx3One78edv+neZPW2a7pFP7XOv6h7XSof/0fnjrHxN8z1P+8xhHIF4E9DVw2pIvTUj1WGnT9VARGusaYbZM+/hL0WvrkT4zq+p56H43l26QHx17rrz+l3HS85wO1s9bckqybFu/Q/LX5EvnTp2t37Uef/zxmIP2Tsfl22cX579ObH/WOXzl8IjvP5y2TR8CCFRNQH8u9dpJbp/Gsjd9t8zdvFvcB1JkwhcH80bRvAfXbei1GX0es0O0ejT2e4MHH3xQeh3bw/qMUH8f1aa/3wU/t+l27OfD4O3otqvyHsPaWRX/0/cnB4pKRYu2pLZ0iye71BQdyZBd68znH5sKZcf/s/ce8I1dVf74UZclWZLl3ss0T2/pmUwqWTbLskCA328TWJa6bINlyx+WH+wCuwEW+FEWfgECgZCQUBYS0gikDZNMy/Q+Hnvce5El2eqS5f/53ucrP8uSLU9mJpN83pmRX7vvvvvOe+/eU77n3K6AwDvkw6NcTcA9w5dz8OAh2vYva6n7AF+ryEhhnt0YBFAufEyDRwKUWt5LnioXRUeCNGVIUrv/LPfh75pTteS52h4GW1dB+RSFwiExa6TaRzXn5MtwQ8qiG/+oeZ49A7KmGMdyjCm4HcjwGMO2fXhr1rvDuHNiRxtZHKasx9U7LxTmR12ntq5x4NVywJgay7MK7nuNdZwht8RIyHgKMCmy10pwKWr5+Mc/TuUcGQYF8NXSJz7xCTp16hQ99NBDBAN6Y2MjuTnNOEC/IGR3xbGLQT/96U9FtXfddReZzdmjOg0GA73vfe+jr371q6IdmYDcxx9/POe5qPxDH/oQff3rX19y85GZF+BXZAgGmPVNb3rTkuvIdgL4KrMCf//736fvfve72Ypl3ZdMJtOC/ic/+ck0INdoNNK9994r2giQcGlpqVD0d+/eLQDPqAwg3nyzC2e9OO80FOnIwO9mwsHenMlcpWb3p0YZg+4lMtXO7tPWLj8OQNDDeziR9NNQuJfsp5yikXj3AdTPh4oWyQYr67gQQBH0h+vvqpdVzlmO9XnJTyP00PM/5IxAJdRztp8Ft4MiQ3U1O1mO9R2iq1lQGT7LGfoYFOOqsdNYG099w1HlOrZj6fT8fnPmbhCirPzjPrGOrEDgD3glAcviQI4/AjxzjWIwyFFE7LZ7CugnT9xPxuoE1WwqpUKPEvgwcG6Ifv7sT0Xmi1zP4OWXX6Z33XF71uphrNj5iyfzbm/WSl5HO/Fc8F5g+ftDT5GpaoqqSl3kLnUIww2Mli//bod4z3Px83V0u1pTX6ccwDuK79qz3EE1q8v5e28kfOttLSfps5/9rIjgzKd/eT3ePu4dfd1wpE/0c85yOx07t4+GnugT/RwCvzS6OBzIZ3wucFiF8aHYU3zejUD/u4WUgB5U0nmihzpau6j5tloBxsW+sY4AOestpCvg4JOeTnJwRl6bTYlGhnM5Ph2h0mW1ImtLmA0i8tiaa9lp9MWnlzymyfeu4apyqlpegSaknfAtnDEGUxghm9/F+u4gCwy0jFLNjRwI5DKRuUAxZMB5hvXppmkK9A4RRRcGRAveFs3yVtxIlj/ICq+RxgGNAxoHNA5cOg6gf8bvcpFj4Bzp9XbQthuvmscE6Ic9Zw7TAw88IGTOeQVy7LBzJjaj2ZDjKNsu+RjKQM/XSOPA5c4BfK/QuwaM7WSOx4UNBraCYeoWugqm2Mz8niFP/uq3v6SG9TW079heYS+r5RnQbrvij+eVvRT3D9vdSydeJDOL7f6wnyb9QaFTLcV+dynaqb6Gmod9/b3kG5qgQrOL3nnHu/PmIZ4d6Hzkdsj82zjzXGa2bwHy4WiFe+65Z0FwK66NexgNDlNffx85jW7RbvW7guP7ju0RxyfjAcI7kho3CJvqUtuM60F3ztVm9OU///nPF2yzmv/ausaB8+EA3ummN9flPBU6+lMPPklf5H+glp7TtG3Z+pzll2pXz1nRa3wAY0hb8CRdezP3KWzTA/3si0+SZ5OFfCEvZ2ObDTrGMSF/rehfsvyFWX0abq1CFXPIXmwV21Fvgv0XcV6fHzTl74pQzZ8p7QCQUE14DusYiLFUeVBdh7auceBicwDjcsOb2Y43A8aV18P7C/ve93/6PTEGLnV8lfXkWkp5AfbMhCFKRXWKjQ36Dmat6unvFoBctCsfP6H0+2NcR1vxU8sOaAf0t6pluYMfhOziTCwYxJ/rfrT9GgfeqBzAN4Vf5vd0oe4XfZDnKitVrPVQBXnS1fpDvrx9CQvZZoY6R+j06DEKDgzT9bdekw6eyYYHgMzvaiiY1x+iUecrY6RvKMcKeAs5EEsQ+Cz7MOxH/+hsLCVPvYIjQRIW9Jf9x8do6Jz3VekpqP9rP/oyxe2T5FhuocJSG8UmkuRq5JmODZzkhUG5UX+Czj7bS7YSEzmWmai00UWRQIxSiWmqusJNXd1d1FDfINou/whezdjD3v/+94t7q2pmn9RAghO0RSkw6Sd3YZHAVslzsMzH1yL5JXmE5cUiXEvKoiVx8zx7xjLPqgXHFLSrksew0wfas75TOI5xZyoxlVWuxfFMuhCYn8w6tW2NA6+GA8bpcQYx5kH6Kh0Zq/RE/L+I05g/9dRTFAgECOBKZFfdsGED1dXV0Ze//OV5temAKFuAANwEAeQqCedAOGxoaBDXkkBcAHMBQv3Upz4l2iHLq5fqerBf1q8uI9czj4VCIZKZrmSmV1k2cwkQLgC5AJuOj4+Tx+MRAI7MctgGeLaGDV833HADAVQrM/5mK7vQvmuuuUaAk2HU/MAHPrAg6DdbPTDkgjLve+3atQLkfObMGXrLW96S7VSxD/cxOTk553zU9ZGPfEQAev/yL/9yzrkAUwO0/dGPflQI6IgiASGT8re+9S1629veNqf8eW3wLRmr9aSvmKYUZ/NajKa9XM63eLnF6tGOXzwOdHR0iAH8jO8o1a2uoprNFTThVSKuH/ndg+I7+6u/+qsFGwAhoO7q+UaizJPcZQrYNHP/UrYBYj/SfYBK/SbqHU6mBaTSklIB/mk9dY6qt7JnIhnnKQs4022llXpDrTQ80U5P7h4nZ52Vkjyt0xhPmY2suKDIeJzKN7rEup4Bucn4lFhHxsCJqZBYxx+7x0Z9fX1C+EzvzLECnmzxLC54TQwHKeb2U93yuWUBHEIWo+89eK/I8Ivs6Gp67rnnKFWkAIfV+9XrDeurhIEN0XZvZJLvcNDhpd89sIO2fng5mRn4NBoY5vHCS7W1dYT3o/7K8pz8fCPzR7u3y4MD+GZ//PgPxHtYvUIBBqJl+NYBxN/7hAKQeCN+r/LeDVUJunLF7HSHuPf+tiHBF8iiFyrw6fJ44pdHKzAWFTYqgNeFWgQnDbLDvxrC+Kim3Y8epqY/mjXO4FiUjSMWAFOtJp5GKMFZ6HupeVWzOK3rxACXV74NIwNWI2wMkYBcfCNrb1ScRkv5Rv6Tp32ru92TBuOq29d81TLaO3zooo6T4H/SHKPS5qo0GFfdhgKXmdz1ds60ESGMZbkyC2byVl2Her2wyLZgPeqy2rrGAY0DGgc0Dpw/B6CToo8PJHw0EfeLWa0gx8Dwnqm3nf9Vln4mZK7G23ODZ9ZypotHvvpI3oBc3KOzbHE5osBtSTtrlt5q7QyNA5eOA3BetfiP0bVvBZBKsU/JZf/0UDqLtPyO8U0hk46xNkHGeJTtZaXCXjaQ6nxNdBi0B3Y62DYqWKesICWYDjpVvva7S8dt5UpSFwxbfIKHVMo+CX2Chse78uIhzoecfLjlILnKChnI66ZJtqOhz81Hf8T5fYFOWr/85qy3Dp30t107xTXkc1cXxPkAZA+GekjnYFsh28XbxoLU/3i36Pthg0dfKd8THC+schDekVOnWmngswMEp28+bZXXxcyIPd72rMEVKIO+fPeDh3K2WdajLTUOnC8H8M2d7jpJ1y3/XzmrQN/pD4+L9xDfQHXzXCBqthOXYlfPdv5rvQ/9wd7WXXTHhzjb9swYgjbFkzGqXltD4yNeGh0bFTZodVuXKn+l+y1Pg7oa8o9MUvWNbrEvEUgSZvnLpJFWH8/MMy38IZnH5PZS2yPP05YaBy4FB/D+94a7uP9Zm/VyGLd3hg/k7aPLWkmWnenvjuWFXY/up9otc0GyyEztnfKJGWmR9GohGyX6UNQH2ayo3EkI1BmxdtNLJ18Uyb/Uvlb0n43rc+tvaGpdc6WQOXLZDLPcjrZL48AbkgOww4wgQK6v96LZYdJ90FV/Mo+H8CU8c3yH8CUAgyR1h2xyPurJZpsB4L/9bCc1v6mO5Ye4kCemklOMbeilId+AwEHJjPqoF3rBm//lunltkTsu9JiOdkvdB30XCHqPk3WwLc1X0CuvvEJX/+2qNBhXtgPL6g0lFOLMtWhzviT7S/SFhkId7X5uL41Vt1NqQk/OaqvASAW9Uar3lBD8RfFUggbPjlI0Eqc1t3MApH6KwL9UcpqMRayHMf6ju69LzMqYmaCwank5vbLrFSG7wtfS6FlDMYqQjmOdAtFxCoYnOWMbzZHjFvK1gFf7ju8V7yN0RftJJwdl1hL5jPSVr3wlXxYsqRx4mymLSpkU9ownn36caq+cO35lXsDPszlaPKy0LkDh8Qj5fEqyugWK0YXA/CxUv3ZM48D5cMA4rWDcFj3XwL5oQ5mOWlpaxM/lctHNN99Md9xxx5xz0fGB1q1bl94PB0Cco/xzEaY4z0bITgvDJH74yBARUFmJyZCyUy7HcElJSc7rX3fddXOO2Tkr1kJtVV95y5Yt88oCJIvfxSKAQ86ePXve1X/sYx8j/DLJarXS0aNHxf0gtXou8no5tWwW+s53vkNf+9rXCPVkEqZ+xnsDsC+yciGLMjIcZw48mectZdtYriM9J/5MtS1+Ft75lJ9RhcA3GhYvr5W49BzYuXMn7Wl5me748KwxSQ7gaM1Pf/uAcCzedtttORuHCJh8wKeFHrsQds5XeURmaQgyniaHEJAS8SRnnEhSIp6AnES7HztCTW8qIU+Dkzr29NPwkI+qtxTTyptryWQz8LQJk2QvtdA0v5BBb0RkqcRNTXbFROY6rOsMegbCJmhqaoqz/RjZuJVIK9quJQCKc/WRuIakrpO9lGCgjqdWMabJ/XIJ0N4xxxn6t3/7N9q+fXtawIeg/8gjj9C665fLolmX665fRU88+DgtBbyUtaLLfCf4c9p3hCrdZeRcUUBlK1jyZkry+zHpC1FrW6sQosHPnqZ+oTB94QtfuMzvSmveG40D+/bto54xdqptn5+xDH0unML4XuGsk8r8G4UHuPeWnhO07Yr5947vsp+GBDAkm/HiUvEAyr/84ZryGSw09l2qtr2a62B8LmmcLy9mqzMUDmfbfV77ML7FdDzOzkRKy0pCbECx15rFJmSCkb4hAcjNLI+AmDAH7qkz9soxLd9v5Pnnn6eeYCddu2KNvPy8Jerc9+i+efsv1A7IAqVX27OCcXENZMp1VtmpJ+4TzoQLcd185I8LcR3UgW8GBF6D5HeDpVwXB7Q/Ggc0DmgceANxADopdGSDK0XOYgc5Kwtpf+tO6vtNF+kDZoKe8Vr0gfmMe5A5/TzmoP/Op42QIwzVixtybIVW6u/VMuS+gV7zN+St4BvJtH2pb1TYC84owVrSXoDgLtcWIzVfvSJdVNrLoMN8875vXDIgPr7bH/9mfoAnGoa2g+594P8J4Gc+37c44RL8AQ9r31REzStm7VdpHjKQeCEe4pnhno3uaZ4Ja5xCU4U00TcpQNGn7jvJs1zpaDF9Ddff8KbVC97p2u1K4B8SX2TyTr4DNZsr5wDwAIJ+dveTNPBvA5RyxclQE5/znuCCGCNO721bsq77wAMPUCM76XMR+Odqsmq2rVwM0va/ag7AV1CVB8C2YV0VoSx0UOj3ixHKoy87X7/AYvVf7OPoD7bx9NCyD8P1YMswuzm5EvsQbEVWkSUbSSHUhPJLkb9gQ8vGz8nxMBWw7VvSNGfygP9CnTBpvHuCnDVWsV+Wy1xOJVPimckZPNHvyV9mWW1b48Cl5gDe/8V8XuhLXnjhhQval8DXtuFGRV7oOjlIa99VPe/WbYUFnFigR9gxYU985GuPZPW7wVcVKBgRAVSQBWQ2bcgO0CMhvyDpFggzYL7zj98071rqHXWrq5dsu5T2uky5Rl2vtq5x4PXEAWmHKWqyiWar7TDLi5uFHeZC3I8c67PVhTE/EovSz5/4GTVf1UR1w3XkY3Aj+iPoJFIvWcg2o8YwdJ/uoyMvnqRoMky+cT/L9xYKOIL0gye+Q8aURQD4U+7EHLkjs11LkTEW6xek7hU0ezkQFbpPo7gc+q5Bnonp3gdeEf73TH+Puk21W8roD787npfNCc+0Y/wsPfP4c9TedY6ctVZOshajtdtrqW+vlwpKzAK0HB1PMH5D8ScBlNt/2Eer7qgU+6KhGE2lpnhWRj8HRZrJZDUyMECX7qvVbSsqc9HpYDe1eVvEbgdngk0TB12grs6eDrLzbI5qTFU2Xwt4BT3WUBMTVYBfSHQ3MNVBJ0+cpeX3LU/38+lrvMoVXPO5g8/Mk0VltbAJPNW1g4O3lORzcn/msqeF9VfDLO4l8zi2zcVGSkzlxhrKc7LJq/KYttQ48FpxwChAiYtdnUHp+hIdGViRm+yeJJk59tvf/ja9613vIrfbLcCcv/rVr+jpp58Wtd10002L1bqk48jKq9HF5QCE7oXAuItdPRsYV56Dejdt2iR+ct+FXBqKGJBbzPBHPQNtU4vUzIG6KQ4qSUWnSW8HZFKjy4kDEBSfP/Q7uh5Tt7FxKJMwgMO4AyFUCpOZZbANQU49TXW2MtjnZoEnm/CSq7x6//33308PPf0A+WLjVF9bTFJYAuiSdNN0Yv9pCk8FGYzbRKNtPo4an6CaDeUCnCvrmU7oyVFVQCaLiSa6otRws2IgSwZmX2S8pTrOkisNWkYGBUU4ayAEMCcbF5Ex+0IZDvtaB3lahfmgI7TXPzpBR188RQbHNP3+5BOkq4vSsSG3iIZ3WT0iyuz2f7pW3lrWJZ6pL+wVbW7kjOdvRMI7/PKpPzCg/CZ68t4XOLKQI9BmCMbQonIX9Z8borGxMULAyFo2ljz8fx++YAqavJa21DiwGAf2n9jH05zOvp+Z5fG9OpvM9JOf/IQ+//nPZx5+XW6jv3zxxRdpF3+jU44Y9Qx2CYXYVmATmU/xTYIw1vz2ezvn9VU4HySNBViHIfFC92cYXw6dOUg6ngIMhlV3qZN2HlfAJ93d3fTBD34Ql76kdCHv3V26sBI+OaJEDEYjuTPkYkzCuMrquDAygRnZnkWYQb34tR5rJ3etLT2WSuZFeEqhmhsUPQN9dGIm6AXjYe2WWaeV1c4GmIyMvfhGUvYY9XJW3XwMynv37uV3a7ZO2Qb1EnWOBo/Pe/fUZV7tur10YUC0g4+b3YuDnV5tOy70+XhHP/e5z3EmoHI6ee6Y+G7Ucsqdf/xOuvXWWy/0ZbX6NA5oHNA48JpyALoHdNK6K8qoZuVsADtkGYxlJ84dnyPLXcjxfLEbz2fcQx1rb1wmdMl8xlKUR5DMYoSMURppHLjcOSC/Ech/uah6ZQU9/ODDwubT1dVFp4dO0Aeuefec4pCLQQgQP9F6bM43P6fgBd5ANpzusXO05Yp1Qt6GzA2CrQo/9EPdTX2XrD353B76zC6ereqaFW/JWly0mfWwbDowzv0WOzmd641Uyf1tJRWLOnAOaM8TB8Vx2NclZdNPTrQfp2v+JneWz6M7TtFon49+fvIRGguPUl1tLU2OhOiWW24R1aL9//ua+e1HO/Au/eKLT9Pq6xtp2zuuks1IL3H86j/ZTD//8lNCh8pXNl6szbgAbFt7H9ubvpa2onHgQnIAtvs6nuVlMUKfCTAZbDSw+S9GsjyCbF9vlKs/g/xX3KTcO+ShkWFvOrGH+h6RQThfWwbkx3z4qWM/MpIdFRQUpC+lBEErclkipiQxCU+FhV08HkrSSIeXvCPj5FpjpV/sfFDxdxwv4r6vjm674s2aDp/mpLbyWnEA39rqd9csePmL4d+BnPXONyvA2IA3wOD3pnltAPCov71PAHIxxuObziS0X/qqAMZVE2QH+Frv/fF30pnz4etcjHAt2C7zIdi4YUeX9arlmnzlkHyuo5XROHApOSCxAbnsMDsOPk/331//qn04ucZ63GvXKQbP7jxJzkYzeQf95Fllp/HQME3og/Sz3+8hBBNAL4E+IvXOTB6hjth0OI1ZYDgDnevroKotHqqo9ZCNZx4qjxdRR+tpqi1tEH1F45ZZu1NmfXIbMgb6sGw2HnFPrNeOcmZhzFQIKrJ4RNmGhoY54z5wINW3umj1yhWyarFE34Xf0RdbhL9nzsGMDcyeZPYYc7ZHFp99pqXU09VNq26vpiBn1zUXGchoNVB0IkGVVxQJexRm65Z4DV9nkAwWHblqFTAtZCEcG2sPkI0z6oLQVyMJDGQbNbAWz20k2k/XvHkLDZwclk1JLyHHhScD1NvXQ6tWNov92eQxyGnQU/XVUVp9zcr0+eirQVjCboiAqQvpV8R7BXtAtoRPshFhTkTnC4/JzazLgTMjVPfmojTuJVshzHAp/XZqHmYrq+3TOHC5cWBxKzZazPqTnpMl6hjsf+WVV9J73/teeuihh+jv//7vxS/zpu69994FM9lmlte2NQ68Wg7oWKfHO0oY2xT774JVToemKcXl9KpgkwVP0A5eMg7s2bOHukbbaNsN8w3HshFwND7zvZcWBKtkUz4DafCOAi4FwMk37KfOkAKwkvXnswSg64En7qe6raXUzcJZSRNeQIUA6MHv+Ml2Kl2jvGTergnOgpsik8NIo+f8omBoPEoiksrNsRE8hQFAuKZCg1CCZV1yKQG52MY03nB0yCx92e5VnqdeOkoXf+H9o0EqXe6eBzrqZsH83MlOGhlhwWhrOVW5POReaaNkGGCpKE9dd1Yo/HHazNtzFXt1G+R6T0/PBQewybpf66WMWISBY6TVS1s/NN9Y4qlwc5bcswKQi3I+nn5CI40Dl5IDUNK6xs/RHStvXvCy6G/37NqzYJnXy0H0279+5le0e9duGjf30/IbayiSClE0HKMoGx68EzwLAPtOS4oVUO7a7cuEIxYAP/Brx44dAiTrKkVGdARZcHQPU31dHS0vaSYYDKST9NXw5Ec/+pEYX1wNVqotqaQazmTiLC6kvrODolqMPXDGX6pM4wvdu7vAQwA5wtmFX76UaQDOPC/EinouwlgOY9EYO5WSnD2+wOGgHz32A1Fc3R48L1DPYLfILD82NE62OiOFwiGymhlwalGimFEGEc2pBAd1MSHoxTvu5SCUILnXsoA5QyYe17ORszj/wBjwMpvRJLPeKQb5Xsxx0tO48DiNLLlWlk3UhLbjB8L7B5lizDvXmALZRG0Qkd+Sup6LtS6/76ND+2lq+SoxfTO+mwkvvlNFTsF7AkPkhfhOL9Z9aPVqHNA4oHFgKRxAv4wMGNBJ1WBc1IHxcioxRXZXAT388CyYDwE/mbKMcdIiwH6QZdDHYynp1faZ+Yx7aDucNcgEmQ/ZPHMDS6BXg8K8xLqdj4+1+6meFgfu5HM9rYzGgYvFAcgvDTx7UjbCN3z0D6cpyVNgenXD9J2Hv0UnXjpNJRvs1HK2RdgSRjvHaYR/KGMvtvIySUbXND328v9Q6rMpMbPdq/2Gs7VN7gNoNVIVpI7u9vRsTgAFCyAWZwFCsCOytT3+0G8umwBPaa+R95BtiTY//PWH57UZfel0ZYT721knpzwfNrMIBxO2te6nr/zgS7R8TaPQF6ErGriPxSyDeBbotx3FShYtea5cymceSjLA2pWgEE1ST+Is9XScpYmxSep6rJ0GTg3Tlj9SnLHq8xCoKIHZZpbjdc6UkNVzyePIqIn7yQcIgzbDqb4YQcfr7Ny3WDHtuMaB8+aAs2RhPVZWLO3kzvqllZfnv16W8KGs2zYXoIK2S1sGZCLIRv6hSdo3fIiWrZq12dSvraG61VWiT8onyQd4uvzt8+WqydHQHHbpGegBEIqaEARdcbWTQv4IRfVxSk2niOcBpN6hHmp7boCnc04RQBZ1V5dSAU9XXFNbyn1ekHpirWzr6SUEpV/MGUnVbdXWNQ5k48DxtmN0NWe7XIguhn9H+osgH1jcpnmXl9/4wKlROqY/LYLSUQjypVr+k7JPLltsIWdkHOcEOrB/w7ZbVOdI2/tyyRG4Ds5ZiCA/wMZ9dPAVCkR85CwpFMWlXHP8vmPi+5Z1XEgdVNapLTUOXAwO4N2W2IBMOwyuJ/axm+HbP/xv8S0uxWeibi+ug7HeU+sQCVvUNndTyizAuI4GM9vAWU63pOj0gVZKxad5LDVT+cZCOrbvAH3j4f9iX36dwB5ks830nR2g4kbl20SfgiCa4rUuKm6YDWoC1gGZYfHDd6+P2CkcYR8AJ7jJRZAxpDymLoM+4bHfP0punlnDF571iZ8cnKTjw5ww5Vlz2naPvqwzcI6uXvkWdRXz1vW2WXDsvIMzO4qa7FnbI8vjWvKZwo5m4KaAr4d+cZac9RYyGBmQG0iQ0aEnvZ4Rt0zIgov1oWM+KltfKHAd8DtIWSgzCcy0cXoe4PTkrlbO/Kqj4rpZfIlsk1wCzDvMYN5agHmZ59nkYcwOIXy9d94sT5uzRP8PuyHeyQsJyMU72rA2uz1D3QABpF3gnYEvsLBs4cAX1KdOVodtjI9Kwp5ZzA/kYPgF85FvUYdGGgcuBQfmelpzXFHHuqtOlUkUUQJ33HGHmJ788OHDhCnjNm/eLMC6d999N1177cIZEnNcRtutceBVcUDv0BHeVcbULEooMx0B8EK3aFmtwKXlAByApY0eIdBFGNiBSGkAPIwsYIICo5PsQCwkR4mNHnzwQXrf+943x2GI8yV5GSgiwSH9J0dpsHdYGMjhoPMO+Ki4qoh6jo6Q1xakf//3fydk9s50QEphGYIFSG7v3r2bjCXsaCgxEYxPFieDajOmZJrsjVHxOjtN8PHRcxMsrE1Tz8EhIVACYBvxxyjh52y6TPFYQiwRkZpKpURGcrEj/YczlI+FaJr74kQwydPM91NqQnl/0WYJPMrWfqnMgmeL0UDLCK197/zpb3pZMA/GA7Tq1nr+eFhwZEdDz+n+dMS7w20TUWatba3prwrPDhTn9mYS2llfXz/n2WWWybaN80DyeYgN1R88H3lMPqvMbckP1Wnp1XzqX+z8Y61Had37/pTaWzoET6QhUj1dV4HDSiPd/H7OCKF4Nrj2QnWnG6mtaBy4ABwA6AFAwsUIgQtjDGZbCuFdlt9dtvPgjFST/O6wT32e/IbxXeRTRl1ntvUfPXof+fXDNGWPUIHFKiJTUQ7fI5wUkVCUzp5upVCxcr9TUylCX4/+FeNNi+8498FxcsYKycVGxIB+UoB3uyItdGLPUdL93pKO5M12/cX24R5xrXt/9t9kbSCqWFXFToqYGAd9wwFxOsbAlDVK//Vf/5X1Wpm8Xeyaix1Hm77+3a+xQt9G07YEOSN87zwGT88IW93eYQJfi2zF9A4G5krCeZn9mXyeeMb1Xld6fJbnYCnHeqxHgvxMIjHCWC4JgIPBjhGK8LRJZpeBzDYDjzEh8uuGRJHjRw7TmUMt1LimgU73HRP7IqmgAAiEJ2JU3ejm0JgpnsopLMZUgAUQGBMPJygZnaKwkZ89i4eDPcM06Q1Rqb2Eo5BnQT6JlI66E32iXimPBNhRhAw8kCEy71m2Wy5zObHkcbmsW11J4OFChgMcB8lvRs1z9TrKgPfqttlLZ7PV4Hg2srKxH/XgncRy16GXqd/bywZ+B3VzUI25yMiBJa3ilgMgAABAAElEQVRkMOk5iz8/OzbOTSVZLorYRHY21Ilnl2SHWzZCnSDZfrGR409m+7OdC0DBEe8eWrWtXshmRn43MMYClItfDecw6+Xpj775/W/McUzkuKS2W+OAxgGNA5ctB9AHyr4T8tzp3mN0841Xp8dL6L2ReESAtwqKzTQ0OEre6Qkxw4zXNEghnZ+aVjaSyW6ghH6KwV1j1H68mw73vkIrVy8jvy9Aq5tXpwOPYNjHGHc+Mgba6mSHrjCSs6EcJMdP9Tqmp7OzLIYxB32+vD8pO6CsehyzuRXZTTqhJzizvsluZJmJp7jzxUQAq78jQilnZ1rPRx2g87kP5Uztr8aB8+OAlFtwtny3ZU3QNf7iXW9N2wXwrYC62dYC+5Vvcky8z8YCHb1ybA+N9UzQhjtqqH+shwbah6ifv19T0TRZCk2kMzjJXeWkSruHhs+N0c92PCB0GQCZ1N8P6s+UrbBPkmxvZlvlcXkuvtcDZ16hzVc3iSBHY4rlcrYBYcao0V4vRVmW7zUPUE11jQBbyO87sy2y3kuxxL3BXrPqzj9meX8oq61KtgPBcZltRp975z23ySKib8MGnldvdx8lzTFyr7DQ2cARchL3sY4p6mJ5tLd9gDp9bYIPcNqa7Pp0n52ujFf2/voYTcb9tOq2ep5m3kJtr3RRDWd+AtAWNrdjuw5T57keetMt14rzoRuNdvkoloiK2S2CPp4ZhPtSvSMp7HfQbbupn3VWJZOv+lrQ859/8CX1rpzr+doOUMF4ZGFwTs6LaAc0DizCAdE31eUuJGUNgNc7O/tFf7v2zvr0t1bMgdeyj0UtEsAOGWSkc0J875m145qZfRbkCNGWmcKyr8wms8hysozcXmqd6vPV56KPKr+RnWEZBFtGoh3me6QGSZGxgMEi3iEyc5IQyE6g7jP9YjY+2DIWC4hCu9GGZltlmp8FnAUdFBqb64jTz8zwJw7O/IHNhdiFkUwmSM/jmd6AAykxVvh8Pmq+oZqsPI5FJxNCPoX+Pp2C347oxKkW+uIXefYonY7U9y7HIlFI+6Nx4CJyAO//Qj412a+gT8E3h+8yk2T/gHdY9gPyu84sK7fV1w1woLmNAXaSkOxHBCL6WN/hf3qjnrp7u1mGcFNBrZmDuL5J0OFk5m/IPld9dH5mfkxND90MCQ+Mzmn67dHHqNm3jteJegd7xOVg13Na3QIEJvtN2Q74RDPvV/1tfuELX6BzsRMcOLCK1hQ3ydNYbuoTvlnIkaPJPtJNGTiIq5jq++rn6KBov/q7T1egrWgceI05ANkY/hlPnSs9LkocgmwacAOOBiUrq+wD5LGFlvj20T9gietAl4vYQ9R2rpWcLmfa5h4bTFEwNkGrt6wW/cEY4w9S5KPCchtNm8xkLTVT403l1DfFibRG2ijRZiXPBs62mgGKhF/DVmUVTUJQc3IqSfaK2f4GfQ0oFeOkJ6zz4LsvYh+A18syP6sYwCqAZP8g7T2+kQB1hRW/guwX0F/8+Dc/JFeDhao21ZB9VLkOzoWuA5ls0hsUtiuM+7D1N22pEm0GVgSUyWe0p/yW4nnZ+UVh1Z+SZS7BU/AVJPtg+WyglzvrGNy8qpJ2PbqfKta5BV8nhyNUdY2bdds4xf1TQj6R/n70+fhFGeNRu90u1lE3ZCGQSMbGSWBk+cxEaygDma1qO/uf+P6QxVfyW8pr2EZAOoKrjk+eocq6csEnm2MWE4J7gDy3/oZVqFKQemzCDvlc8D6p+23wI1s/m7lf8knNN6zjHb1qzcr0d4BrQUZUg7VxX/AbAVOi3o+yklAGBD7IRHTymJTxxTaLhygTDyZotNMnbCYITjazPRBjZfGkmyZDAXpq929o+t+nc9oyM98DeS31MvOe1cfkuiwDHi6lTnm+5KfclkvUm+25yOPa8vXHgfwAuaxf6TL8tnfeeSfhp5HGgcuFA+IdVeSGRZvECdUIP40uPw5gAF/1nnLq7O4QhuUgCzwQEgudDo6W5kEVgNxgIaUK4vSLZx+hpD1KpnAB/cVf/IUQTh/l7IeSBr0DYpAPnYpTH6f71xdOkbWIs+AV6cjpsJB/UDFc9/v76Fs//xqd8B6gwPgkOVJFnPpeAZCs3ryCwTgxkRk2GUpRVY0yHUPb0XZKrI5QV3+nMD7Jaaz1jEoBoBYgH4BtJ/rCFBkapGBnlCpvKuQMuHqKjLPwFlSixQ1unTCAAQGEdRAiq0wuvSLA6XQU6ApR2Mvg3YkUOct4yQ6OZCBIoywgI6o8ZN5HgV8Nk8loppHRUeFABZ9ADfUNgj8LgXpEwZk/uO9sWQB7zwzTqrdXsEDIQNyDzEs2oMULu1jYxMeknGyw6cg/6aOO/naa7ItQaDTGWQdNbBTQ8b3MCqJTphg98dJjdG60hVaUrRbPTt2GXOswJOD5IgLMNxOB23t6KP2srEUmKndWiSlwAH7FswO1tbYLp9DWLVvFdpG9mErsZfOuC8Dd3uO7hYFjZGJQlJV/QuOscTA1smC1sebKrOeOhUbEO+ioMQujRU97PxWyEK9+N3T8fhQUKB1VphCazVEmr68tNQ5caA7AwZgPwRDe1bU/n6JC6cA3ind5PDQmgJvqE2W/dKTlEG1dc6UA5eO78/I0nCB8213dXWIdf9B/YboSgPd72elssxVkLYPMGcW2UgFezNXXof/oHG0V03YC3Bo2pcR1oNSiT0NfGvXHado4RUM6nzD2Bzia0sMBG1/+9hdp74ld7BitEdlNU2yBGIOSzAp1oiBCLoeb21VIJ15uETNIfPazn03fQz4raNuh0wcE3zAGhp3j5CwtoRMHzlCMlf1EaEo4t9HXwkhSscJDRRut9J1Hv0Yrlq8Q/VvYF6didrRK3ubiQz7tUZdBe3Yceo75dqUAIctjeC8kwUjx/KleOnu2VYx9cMgMTvSL54Z+GRT1JTjLSY1Yx7vXNeSkaJQz2NnsDOJUngXGy6mAMg6iYDzBmVMMU4SxHI590LlDfZTQxajxqipKBlM0eMYrMtsW2pT2GAt1tH/PPuowHydPjRLJzfnnyWw0UYzbgMxhoNE2P413TJLVahVj9VSCTdg8dg+eYdBSB2eesPrZwBRjMKmLYhNRmuyPEOQRmtLTmNPH2e4NFAnEyBNl40w8SHtbdtH9v/p+Wh7JpTBDMd9SvEy0YaE/eJ/AewQdZSM5HuJYV1e3GAfx3a3atJwNEAbq6ummhrp6mhgO8zOx0ZrVq9Nt06uCLLPVjX3jnZP87iVo34k91H1PNwUKh2k0MiiMG64487qCAdPHw8LRb7VYhBwTZ7HG4WDHGT8ztqaLqr2TDArLEikn249v/vjBU6L9eFfsHgthCktJ2dqP+5SygDwX5SGXVb7FRr74GPkGxshi4uh1lgUsnA3ZZDBTbU0t1fIUpz979EnRV+V6RvLa2lLjgMYBjQOXGwfU8oLs+9H3GVdNs4Olm2WZaQp0h2iwdYzMZayrTXB/OqynKZZxoIwd6NxL1exIsLN+lnJHWZ+KsEOBz+FsRVXXu2jaHaT2xCnylJVQspjH5Gkl49kLZ56ijvFWkfljqfIFxvxAYEiwMsAAGchbExxkWr68iDOxc3YVnp5Pd8pIY20TVF4ZpK/e+1+0fG0jnWP9DXINZEGQWtbDdv/xUeGoAPg2NT1FBaUm4aBANhgQDPK2Gj1N6kfpR8/dSycGD7MDhYNluU44KnAfS70XUbH2R+PAEjggv9lTB8+IQCYAKfpHlSk5ZTWQy9p7zpHLxTLlQJxtVABcWOjYU+fIs9VCtdeV0bnfD5LFY2C7Cgduu3Sc8cjCYCY9HX6ykyq2FlLVxmKWY6dJP61nYC6ceBxAzYFoFewgPt1+iL771Cgtb1ou5KJ87BrQS9Q2F9lWqcvhu4QdB3ocsrV5KhSZGzpV0MuyJ2xu/K1jxoUAT68Z7YhSgoGq3/npt4RMuhQbkLz2hVpitj84TQ/uOMr9z6TQJyxulhc5oyz6JGG44otN8cwZlloDfeMnXxU2phuu2E7bt2+nOAd2Sjrx8hkSM3Dw8+hkXci5zEIlNYxgYQp6DTwt8xhZMWU72x6v+7Mr6On7XqSDew9TXU09kS1J3cNdoiz+TE9NC9thb28fbXhHkwDjgp+BnjCdsrVQ94FhsvBUqeg/XZyhaYT7Ve+Ylzr2DCh2Tm57sYczWVXaKXE8TuNtcRpuG6dJ7suh4wQmoN/qxfWg84LMRouYkQP6yWJycb62A9SrBZuDCxpdDA7gPVy2pWxe1T0MLB0b8rKtZFLolbYiK4UKfRQd4UBcvYfts5McrBOl1GgHReNR1u+T/L2bRHlUBhkkmojQPffcI/pY7LNy8KmJAzzhJG+sa2Q7/JSwy5hSViFHZLNPZcos+K4wDiCQFTos9N3RSUUmqq6oZhuPojMHh6NZ60RyD+mD6B/rJZ1pmm3+IwTbtuyPd+3aRdvWbyC71ypkHLQdBHBKku32rnob98kFYrY+95SdbJxMhOyKjWasfVT4GezW3LZBtB8/2OzA/95BnmWKbWEgCcjFejAYFLYgrIPQ76gJ/hG9WUfmAhNZCixilkDMUNSzb5Sabi4TdhrMHEiGaQZZsN+Bn2n7yS5RBfwUQbeX7nv8O3PuHfyW/qDF+jB1W7R1jQNL5QC+X2dJ9oQWalmgY98g9zERoc9IWyiuleT+o7qyRgTH4J1F/1FRV0p7f3dA9A+ZtjDYP2HjneTviqxJnqa8l7/5kJANZNu7OeGPu8HGwFmWC/kb11tswr5qZsBT1RY3Be1j9MLZp8j/vXFhf69qLpWnzlliqnsX15NkP2vlZg85JkwUHPeJb5EsSh91ZMdJspkcVF5XQrhHyCMFLHdAbjKUJene33ydppP87c7YpT32knTChhcOP0t//uk/nXNN9NVnj7exLTVElZtcZK2ZpiCD8ao3N7P1dlYH/fXLPyOj0UhLtbHPuZi2oXHgInEAY2KE7SXAMCSS8TTYsCCiAKmkH8PEOISF7Pvq5kndEX1OF9v6W9vPCvkBZVa9o4JSJg6441k0EomE8IUMd/nJWWUXQNSxDj9FOKFIw41lVKjqr/CtYnw1kJGOHuoi47SL+rhPWbliVfrS0C9WbWNDP5O3I0CetQ4xjgOcO9YeEHodjhk5oDA2nhRYCFtJOQ2O9ovxGliHWIBxENxPQa+KTUWVRDb8rQfZbzb28ABVldbyDJC1tOOZnVSwhmgtz0aSOdZDfpuIMPajjjP77j1EX/3Bl6jtQCeVvol1rSx8ljyGH8paVLEgIFfcCwcy7Iq8LPw3uB/pg5Ty296dByi1Nsh4Eg6mZCxE3BTmQCG+N1+SdCw+xUJxSvpTApCb5IQkkqD3AqgLXgsdmLkNAghXJmOTchFwFwAyw0chCTKbs6xCATizOavrgIJLgK2L4b40wbgSC8uSBhs/n2i7KId+NMS4GPA2xQmFljUtE+/ZuvexnMbtR8CmlKNMTkUHxDkdp1MUS0bFOOWssXIynBgFQ8E0HgbjEfxKmfvRVomTaT/dye+7gr2AbaPf30s9wxZy2B1Cp0VZyIi6KZ24T8i7sBmIhEhZwLYoj7bJLPBov5rkewJ5cJp5jUQ7rcfaafwcJ6+z8D5LksdHnimI5fZCJz8DtjvYGzlYnwL0wAvfpaNnj8wLRsa3ls23pB67JzjAv2l9AxVyUpsTr7Rw8DMPjexnUpdBO8uLK+eN72p/VbbycdZRoB8Qy/aGDOyllPGlzQW4J43eGBzIC5BLrKehw9FI48DlzAEd3lP+KS6YRVrK4yX7bTS6DDkAgdM1wtHbLJz0tHBGW2+CFTwjTZunGAhlp4IqI8UY3GFmPRIK4mPP/Jr6GbAFhxqE28eeeTStJCOzIKLAe04MiCkbytcWiYhRoxXTCljYSB0UfZuNBQIokafHjlBpYTkd2d9B40M+FnRM1OI/KrL0uRwuGj4dEAI29k/ygLyWgR2JiJmMbj0Dh1hAYsM+ywRCyDWbleiuQA9H/RQpL5uztoCNYXbq/sOIALLivgC8RRQrCOs6xiKhHhCWgCb52bE6cjQosgFCnkOUuIGN6YNnfDwdoY6i7LwMdnrJbDVRDQtz3ulBCkxPsrI+QUdOH6LWl7sEuExUusgf3Fs2Gh/28X00CODa8KEJstZzQxqnafRMUAiGaPsUO0ABvp0I+zkLnZeBxwly1xeIaacw9ZSBpRbck7F4mk71HKGzXaepUl8/D9ya7frYJ59vbXM5A/2cAux35Mxh8ayKmjjqKmylZx9/QQi7JSsKqT18UgEvsyEDCklgakyA2YSSUbZm3nXhnDncu59KlhUKIQ4ZSSSFwzzNFwvBB07uo+P2lnnnQoh77uDvRPGEKU5jfjZsspAIx7j63TBwGgA1IFfWn8uwI49rS40DF4MD+I7yIfTL+RDK/cd//qeYztLFQDvXtPKdynN7RvrFN7iT++oPv/Ojwqn5n1y+YnWp6Ldxjpo6Rs7S6Zc7hKJvKtNT46o6Vujnl+nlsWKIgZSInM0FrsD3Le8XoFbXGuX7hmOm8/kRsjWYKNyVEIERzvopmuxmhQ4SRV2Cul/qFkAVPWcLmIwFlEjYGPdlMVaix1mJrqwThgxkzYVDc6mEvu3r3/u/gm/93SNUzaAYjF2DHcM0xn2ss8FCE12KEo4pciaiAe5beWogk59OjRwRxt0QO/Cdw26SvM3Fh/NpG6YYwr0tRDA+nehhsAsrlKFRDqJpKmCn8qjol3Fe/8FxAv8sTsUoMRmfEJlVQ1NBMWYCENvDGdrDYwlhwMA5eouOrGYGaPJYzvlrRX+OZ1e+uVAYgYaO+6jvpXGy1LAT3aE4tnAeyF1nZzCvEnkVCoUIY3KcDSiSJjhoZKKPwQFuZXzWmzhLi8nEUbV+8h5mQ05djKJj7MBjZxCyWMGwFWZ5BO1PGZPkcLGhoYYN8mZW+itNNNE/Vx7J5RDK91uS7cy1lOMhxo5+5pu+cJrHLROd6mfDFbcrUZgU78bEcIgK9HYx3kpZycTGscXI1xUU71zM1SuAriv+VxmVNcmpkzjLDj8vOBXMnMXGysYO8CjG2YyndSkyWSz8UxRHGFv8fexEyCDZfoznp3d1iPaLsZfHcZGxkUG5yUSSvL0BzsThEu2HLKOW9eS5ePcgA3g5UKlIX0NRxklA1kD7WKoiHYNTbGY7G0dKhJMQPMP1cz2jjKZqmxoHNA5oHLhsODBHXuC+H/0fxramLSVCNoDi2Nc2zIZ6A1VsKKHh4wHq2eUTelu0b4rKtzEQo4SBfNDXIgyENei4/KjILIvykKMwswn6cIz7cuyva64WGUJw/fORL9pPclAVj1G+Dp71hnVX6MCQZYxWDrgtZ1191xjFxpLUb2Vnc+conRw5yJ5rPdVO1RBkQYz90N+krIcHAnCaqIflo9JNdp6O0U1drGND/8R+M4MSC6sLyMxjO4J/WoeP81gdEbLSU2eeWVBmvGweuNaQ1z0H5DcrZWPIOpBzTDZFTsKMSQBS+IPsQI1FqH13PyU4rrp8pVs4yio3IRicnXC9EVpzd6WwIQW6I8IZZGSwa5KDvCv43cfsS2YT28lYFoPjb4wdqZMM8DLavFTU4KCoPcB2reNUwIFoi9k1oDOdHTnNQUyzNhf5INQ2JthxcH+Q+SX1HBzl4PIkuRsZAMb2NfzMTgZ5JKaobE3hedmAZN0Xaok2w2kL4KvvqJLtyb3RQlaLieIWM8v6bHtkFRCBDCXNdjrauZ+87UHqOtMtgg3VdpuTL5/jGUQ4cHuAZ7Fi24+r3sPNVGx5yEIJoInf76cJ/4RwRqIfC037afBEP2dfsnBgm5INGfcGQO4IbJCsa+gLlDrAT10BByf2D9IQ29c8mwo4Ey7rIZzxasoY5wA0fs7+EK2/o4703H+nuA6jheVetmNBrzWzjS4R5dkr2N4ZM4fIaFDeu4Q1zrN1Mfi7U3F2Qj9paGhAMzTSOPC65AAc9cf+0CJ0QmQQI9YDq9aW0CjPlEM2tk8gWzfbjAZf4sBbth3EWCaC/UfKEQBXWOsMok/DsoBlFuuEmWycWS5pmmK9OsB+Ac5COWGgya44PfPo7yibfSpTZnnve98rArbRT0IOgs26pEkJYOgIn6GwX7EzDxz00R8YoJJZp9STzTw1MsYOTMcMAIfa5o8HBrCsa7xwDiAX/ZxrvYuqNheLZwowDgCwACzgB0JbWp5jW1/2CW1EGfSZ0maHHbB1SwpxH5cGw8zYXOSxbEtTgTHt/5DHAXIpalBsTZgK2sDBJuhGFfCFIj/imVau81A8GZxz7/B3SBuH1odJjmrLS80ByAKhWFD4koZaRqmgzkgn+g6mbaFoD2b/2nv8JSovqhI+Onzrm65fQwdeOinkqExbWDQUo8AQJ4gwl/FsJjEBnnMQZAyFYMdG5sTmt1XLXUIGtNmtwvYJm2DdymoO2jTTg198iLZ+6cp0OfUKAFBjLHvMqaeNkxH0s3zAbk3Y80DB/gSFCsbYxppkeWRUyCMJKyeoiJqpfL2bWn0nKB5JijY3TjXRzpaXRCIcJNdQy03y2oGxCc7IO05b3r1S7iKf15/WPaUOioOQSzVAbppN2splxAHIzxMxP5n9DFRlHIOJAa8Y5+DDAIU5AEiA69mnbOzPHfiiviWMuT/41ffEdwNb/7SdZyqc8QlZixXgC3xVFrOJZ/lLcaAQ2+A5+Vc8zr5oTi4CX5GVk8dkI5mh1V4KfXA2wFCWlbJBGAlVONgQBJ1S+swgM1mSAOAoegqy6PqC49R/eJwDnaYo2qP4V4AZKGJdEPYmYrnFTyN0hGc6fHnfyxTj4JwE4z5uv/IaUX/mWG/jDKcuO3TLJFVy33Ky+ygNdftZlKugJPd5ZquF7ftW4TNT+4pQGQCvbN7KSbgXYBpMZUF68cDv55ST8hv8DiuqS6kp0ihmVYQsFa7ngK7QtPBdqU8CCFYQs0P4IFiWzIdEIrQM9uM6kmDfG2UQtJRRYT+L+zhRD+9HMjeTK8HYCy7N4Fy/boSOsh8Rbdl/Yh/52E7g6ptmebBkjhxVggznrB+Cty3P9YlZVY727CdngvV0zlrYVL+Mjuw8lB7LgLGKsm0CoG3sV+NkkL14spMT3pRbBfYCZY0M+OW5JykyFWY/DK8zFiMQZD11nBMocVtCY4rOjXvMBNvK+8a4kIvS7wkHNwPwDH9hT9sAjR+KUuPbPeSs5uQCM88BgFkQZHjIvfWVFTwbGAe3Zui7+NaAI8r0LUFWl9T50gi90rGbSjmzMmR1AHKBOVGXwb1OHmRfZcb4LmV4Kf/LOmX5wMm4GP/1rKdced0Vc5JaZdpcNECu5N7rf6lYYxa7D9aFZgKpFyupHdc48NpxAJhG/PIhjI/5jZH51KaVuYAcqKurI0RSkiVFlQz4nKrmqBcePEHmhIWBUEoUki6aoDJbOV27+Xqqe3u9MI5v27aNI1Q4m0jLYUXBJUV4LC7z8GA9xVEzPJVlARuxGHhj9zBQFFHh5Ty90micooEwldqaqLqskYqaaylYzAAej4mWr2ngqZm7RXa1KgYOQZlE9MoLT+wgXXSaCl1sOGJhz8xGcYBxQToWCjD4m1hQLV9XSMisa3KzmMhCp58j5yAgWAoNwhGYCCj3A5CtWOdjcIaKerDkn4uBRQArmTjDn8Njo8BwkOs3Uf2aahob4UyKVEJN3G5Ey5fYSsims1ExR1Vxfj8qqi+mO7eVEHgDgX4xinHGWwgGM6xLF3eUMviLAanFjS4KbYkKQd80baLicsUggOjYwY5RSnFErLPATdXLTBTxxMlg5I+SjXvWBE+hyPciwMTsPF7TsJGqi2tpy+or0tdYbAX3MMLZBGR2XLeukDY1bxHPyrXcJrIBHoucEdVsvGW1WJ471y6WVeXVPPUNO6s542UdZw0ssc+PDL7rrruo6UQDjQQHxTl2m/L+iA0WckubkSE4Ttesv07sUv95z3veQ82bObKP35X/+e0vBfgnYeZnOjGefjfwTshnK89FJmXQzCOXu7WlxoFLwoEL/d6hf/zYhz5OSUc0HcGL7xR9aD1/dwbuR9AngfA9o/y//uu/EvoX/8zUlhKwiGOgLfVshCwoIYNDxyYNRWPNLDOBMm9T+jlxUpY/tbW11NJyZN4RGBwabi1lRZeztHkmRQRoodtO5qgC/J2Y8FO1u5b8PKWp0WKg4jpM08XfLY8jFpOipGEalQmeEqWXp9W59sZb511jsR3gBSJr271nqWx6hM6NHKd6qiZ3RSEVGG08raCJTDylC8hdyUBXVn4jk+yALysVjteVPG5Os/MWfSr6tyvWZje2LtaObMcl33BvyC6ajWAsRYb2a7dcy45ddnqt4jGRx89R7kvrquvEKdUc3bpsYwMNckb6lkAHFZqd3O/pOUtuhAoLHDTFWVWXrWW+c7CMlw2zvuM9IssXstkV8bS7JgHMTfLYVkShgTAlq1JiPIpv46hwHncqqipENC0uZjIEaYQDaBo2wDg9RHa7PT0mi8bwHwB2+VKki3P2KooKJzgy9bprOAqcg0ssbOQJhGNi3EW/7a4p5IhYjsENsxOLM86apzgyOcZGriSDISZTLI9UzZFH5HUyl5Bx8iFMs7mm4aqcRfHOSHkH7wz4XcA/kN3NIOa4Ml0wMYZ2OjrzbszISlPhxQXgonrORM/AKWSdr95Ww5k5RvkbnXW+OVwMRmbC9EBGdpxBroFcnTLyuDeT4RZOBLQjwrJDJqnHc8sqd872Jzh7mDFlEe82ZBn0C5nnom7IAC3JNppmeUtMb8kNsrqs4t3A2IugKgGw57ITPBUU3muNNA5oHNA48HrjQKa8INs/FD9HNoODM2byeFXJU5VzwFDvHq8ANNjqGVBSzOCtAGd7H+DZS4o4WLSUHRksy9gcdvJU89TBM+WL6hi4x+Ouo8oj5BrUj+wMkHH0Eavof+U1l7JsWltLCc5YS0HOpMR6NDJEIOOtMVbAWTMYAGcKkZvHAmS3u/M97xZVDzAADeMt+n3obyAp68F4Xre1jEJ+zvAbYACa3kh9ezljPssDAKNh3Eb2O52Oj09wUCvXX8WZ6FY2K/onbAcXUlYSjdP+aBzIwgH5zSKDEmxI0s6ArDOgMGs33eEdVFlaKQKIHNd5aLyPZ0HiAKfqZj15edpR2F/K1jtp5CQHRXMQFGZNQnKBKf6HmXkmOADcWWNjJyEHtTPgEnIPzgkGQpxwhQMO+5IsJ/MUwLUN/C2wrLiIXQM2kcNnDs6xuchbg40JoFN8k7DjIHOkj2blw1oODgjNTJ0cZ8esQc/zVDAY18AZPgzswF1Tt3QbkLz2hVrimRw8dYDtVWVkjih9i6tyxvHGIquF7VZCrmXJMRadoLfe+GcUWZ+gbVtvUPojBtVKWnv9cgonlKzkcbbryeeF44koAwKrayhhTwo5FPsASllXtYZSET0dOLubgbWqgEd+NI51RXTs6XNiBg+UBz8n/DyDl8VJ5avQvxdQ1Jog76iXDNx3FpfYKFFhoL49Y6xjK9O7G8tZP+E+EEkD0NcjUzrPFUKFVhuPEcp7V8j9f7HDzDaxOB3vOifuC9dbiIQOc3KhErPHguxUbmhomN2hrWkcuIAcgMNeDdZC1bBTIEt4JKkAGpDgf7DbqwTYeuNkK7RTTX01Fd1eIoKSYvUMVGdZJDbF+j7sLOUMOuHp2vGeN21oELIKwBWY+hZ9WH9/P62oWSv0UtfKYlGuz9tLFfWlabsX2pEps9x0002cNKOGXjm1b1ZXZzszppWHtbmxupnCDOq/kWfiw7Uz64SevGLTMhoY70X1is2fgQ2jvZxVtm6FsPkP1/EMA0Ul86b2tXP/gIQQg8fGBTgnxcEaFv7uMe6AvJ0BscSYUrcyt40CfSZsduORMXom9Hth6xYn8h/IksJ/QJ1pm4s8hoBdNcE/EpvgZwHAtIqQFAQBAiKrHPt7EERg42yfRc0lbKNj2xD7PEARnvmnyOKmYl3FHH+H9AepqtRWNQ5cFA4gqCYbQRZA/wFdp3xVCcV5RrUyV1XaFopzkBEbdjLztFX46PCtx/hrtGzLYQtj2SHhZt8cBwZ4W71Uw/LEdMhA4cMztjW2v9n5W+rcyVly2XYHMnBGbAMAgOyLCvSHqGOyh+zkorfd/vZ58os4AX+4nysuL6KzL/QI2RG7whwsVlBQyGA6nwASI9C9dLmTPMVFFObZF3CPkEcEMcYqOsE2XZubluMeuc3rV24i2OjRdzQ2NnLyiZmyyhnir4tnXCswceKAmesKYH9UP0//1IVNdP3116vO1FY1Dlw+HIBduYIq2aYyC4AFKBeAQ8xUZzMzNoCzwoeHBsQYn0/L8d2obf0m9re/cnKPyMoaHIqSjcfFeCzBPhIAcjkJBesPmK0XSUgwjkbZ5oPZNUoYQKgmyEimmcA8gCPXbqlRHxbr8PsDtAkAIcZli511DdYpp2+FNZ1t7Fx/iGfORaZdewmSsUSptLyE7JuLhC/n3L4+UY/IoM1Jw0DQqQxRC227/gYxWzAwHgC3Hjuzj9ZuUuQ39VhP4Vm4mvS1mOucVOb0iGRtepZrwGNJ0lcEmYfTcQg9WB7LXOJeRhsnaOuqK+mqK67IKr9Fu39PZW6XSOZRyL5KOwdYYEbgMdar5Uwjol5ANvifeh26F1wjSAwiCXq5JCkXQW5y2+YmSEL75X7IS2pbF+xnRj2PB0xT3B873Dx7aIFyPnhbV6vIcOWF1fQHPwI/KkX7IRtL3oqJr2YSp6DPRzBGmbOCatnfCbuEi/twa3Mxx7OxPMa+JfTJEmeC/WqczLm2DopzchvIp7BtoGz35A6ymx1k5tkJcc9IqoN3v8KjtMUIMDmTkBlVcAuxc+YPxoVchHuJM54Egfr+JGNr2LToqXZTAYNxxtsCQt7FGFvA76+O7YEgZOX1907SeCJMN2y8ZZ6+i29N4kwgb4PgW1LTdXeXkoGDp4cDA9TAvAFllsk5vnOdal+drFeWj29MCftQ92AXh9sUE/znkjJtLnK/tnz9c2C291roXtjBKoFmCxXTjmkceE05MAMGyKsN6Jfn2gbyOk0rdPE5AGWtmCM6YTxG1kFQiAXOTDox0EobGrbQP/71PwsFD8dh9L355pvpxRdfpF/e9yhVFCvgoeKbykS2nwEGVA33jShVsXNCl2DAbJWbXKbqtKKYaThGe+BokIRtUKWzmp5p/RXVVzfSIUM7ZxuZHbClsGVlAQZgWkMcjhKk1GfsDhvqAaw1sSDiZ+fJFE8TCpAqHIdYB0FAAzhXgjeLGu0iww+FkV2VFVmORAPodf3mtfTyowfp6obrCYDQbIT2yjZnO565z6SfVSLUx5rW1FDvoWGq3VpOzbfXU//pIaqpqKPiaxVwHcr+5uRz5Oap2xtrlhGxXJ/gDEvIspRJeHZvveEdIsPSUtqGZ4vno34etG22dtTVeZ3yrGS9sqzcRmn1+uzZRO9///vpps6b5tavKiDPk0vVIfHeoX243sMPPyLe3QrOUHhub3/63ZDvhTwvyhHScDSDMPVQvkAteb621DjwajgAw8Evdw7Sum3NC1YDEEa+7ya+z89//vPiO5DfHipH1lgcA8nvRy5RHiTLy6U8jmNyXR6TS7lfXQbr2QjRhAc/dYBO7WllB46DjYxK5CUcAqv/qEGcYiseo0SYpxIrrhPfZoDvPXpaT8hsgmvub9vLgQed5KgtEuVLassYUDJJQ2fHSRcy0vbNt52XsRB9hxy76B1EH/3Hv6LEGE/fc+VqsvEUL2IM3Dh7Vyd2tbLjqIA++taPi51q3qp5MnvG+a9JvulGbXRqnHk3oyBjGluAacAjQ8xCd/7xu/j3zjkXUj93HEDbwMcv9X2J6mamtg3zVDW4R5BtBRusuE/sPsWg3d8xcMFkEVmg5FiOMhW3V9G+p3mK2TOYrtVGHs6mkvBNi6kck+xMAtgSjrCSomKanpmOFcaieIQz5vGYjEwSyFjlqrUJ8G18dJqGDnO2XoBKU+w4X8NTO1VwVq+Ug9r9DMJOMdCVQduOjQ5hZIgPsMGoei6Y098ZmSePoK3ZCDzANwXQ6ELkH+H3syx3icx3JndJ5QiuK9+NpI+BxQBHcGa1XORpKuTI6iBdX71NyBd4lvtadjG4vkecMjEOx1g/OYxOcpoLObo+LIwuqUiKM9SyAYdlFWTmLbSZaESV/UteD+3Heyu+ZX7nFyN1+3FetnNfqnqJfrHnAWqoQsZtjlieea9Qtxxr+84O0rKileJ7W+ya2nGNAxoHNA5cbhzI1vcD6Pcf932WGt7UJJpb4iyn6Qk9dZ3u46wsQXKvZt2Ss41NdPVRSbKKmkwNdJLBdo0rPWTgaZcbV9STvyNE/YfGyaNzUFP5SnKm7NR3eJTlv3rSjU5RfUENbX3bFefVd0LeLKm3isAXWj/LUT/P5OKemamh1FUuMnxGT6+if3r/p0ShhWS9L37xi1SzuYx1ac5EsUzRRUfP+VjRjpGZs1wisAaZXTDMOcZLhWyGzL4YO9TjyWxrtDWNAxeHA/Kble+zXKqvdmbXOVpWv0Lssq3m4Gv+NoQcyHuO7DlOvUOjHBRmo87dwyzDcgZcthnJYKfyFRx4Pmygbs4s7WFApomdsUlzUIDzYcOfZv1kQ+1GevsfvUO8//K6UiaUS7kfy6XYRABY+9in/458Q5zFx2HhLLhutv84RIY0Aa7g+pwcFFVRWkFHnz1Lf/epf3jNv0HoNt+675u0bvMaiq+Yb6tS8+LZHbvpn36o9EmSVx4OgJey/IYbV4vnVcmZd9CndbZ1ieflqubZKlindDUyeHmCgxpY/9h75BBtXL2FPviOj4hp3w8e28/6UKP6ckJ2HTzMs03tHRUO8PqrKqjtFc6At4Lfj5n+s/fsAA1wlik4UYuLi6nGHVX6+xEFXJxkp3ygm7ORc0ZNC+s8cPqhnJSF5QXdZYoj1388PufdkMczl+g/oWflQ0G2bWmkceBScqCe7dX4wY4Ago0ieIKz4LL53DrlYPtsNdmWKTYH2Kklib6W7Swo3/Z7G33605/O+j2o7RpSjpD9uVyiTtlPqNcxDsBHoSbUB8J3BcpZJ+vJOKa+Bsqr2zN81it8KMhApiYASQrZ1oWMcegTAHR1FusonOSkHmyL0HOQFIDNMQ40l+1Qny/X1eNYy5FW5qVLHlLp2wfI4VBAgTiYYh+HBP7IwrDFRBgcDT/HNBed4mxuupSOs5opoMKKjUU87XaBCK7COepnin6Phqz04Q//7Zy2Sr7Ja2hLjQMXiwML2cSlLCD6Ex6r9zx+hP723f8w712VbZPftPiuF7GFQc87ykmHahlw1dPSL5LEoB7YseuvqCDoP/i+QQarjqeyT5KnzE1+znJ7y21baSsHT+EbBiFYJpMwi9yWG9cJOSLUqxwfaBlnUC0HCPAMdxRjP6TBSptv4lnTOMOivEd1Pbjfj3z8Y+n7xf2B5HJL81ba+8Qhql1VRTWrKsUx9XUHj46wXdFNq9dtnK9/bpptvzhR+6Nx4DLiAIJunv/+k2n8gmzaHD8H26UHDnupgRN+5UNyzBVyw0z/sGPHDvrZz35GSQbM2kucNBWcIIfdyYHInHV+tYX8gwEybzJTHfcJx59soyBnxkpw5loAaEEFnDF3YoRBjGGe2Y4TcVmSnMgrU2Yo5kRcDLYFILeYs+f7Ov2ckMbFYHwH/9wiIzfq8vZwtloOBI+NMHifgb3Lr10hZAHoGeWV850YGL9XlW6if/7Av+L0NH3sU39PsM+rx3p5EDJZ39khWlGs6LC7du2iiINnYGSsSC5qKe2nWCBJllmYwryiuA8EI22/8iZ6zzvfM0e2kv1Vsa2UXmh9SuhNNavKSFce5xlnjBQc6KJpFh+tPAOwUcxwzOBfowKtY7GGsRw8Ww3PRhhlP5TNrQQeQRZC0n8AbEESF5ANlAqZbYJ1OXetRyTGbLy6ivt3f9rWJW8GGWcrPFUiCAt8qowsS2NCcA+pyf+giJV5xc+jfg1+s7KxrAM+rWfv300f+6d/Svfb8thiS1xDyqTqddgzGqsZD6Ii+GTS+ifL43j3MBMiwOrZCOMCymQj3Adsh908I8YwB6XpUnpauXEZOa9yUev+Lgqyvq1noLrRaOVnpeCIwOdV9s107abrxTjY0NAwp2p8a9i30Fgs3wt5z3MqmNmQZbApeZJPnbKuXHXLeuVSlteWr28OKL3BYvfA3wE6nMuBBgcHeZqGPrryyisvh+ZctDZg4Pb5fCKjo8WSe7C5aA1YYsVIiz86yp09d7RFRQpQZYlVvOriiIzI+z3lNx8pxjW6/Dhw3XXX0YutT9N1zVekG1eSRZja++RRuvv/3J1W8NKFeeWWW24Rm5ieWNDM+fVra6hrxkCH/X6ediroC4nyC01/km3ge9/73kcv/MOzFOUprCE0xSY5ipuj1NSESCJML7h6eyX5uhjYFYhQw5XVnE2PU5owOUuidM43JAIezAxaSQt0HO0lwbnq+iD02Xm6GFctC8OFHjH9urvUIXgg71ld/nzWcS+YOpEK5569fvtqOvTiMWp9sYdBuWWU5Oj65q0rKMngG1Bf6wClgtNiKoNMvs+tiRgQ1ybanI2vmWUzt3HOQudlHsvczqwvc3ux+jPLZ27j/A0rNor3omZlpRAkpcCtLhvh7FOFrDxJCnrDC96XLKctNQ5cKA7gXQ3MZBxbqM6eMwO0ffv2hYrMO3Y+3xHOAcnlvEpVxxYqk+087MM5//CRT9A3v/91VtKiNMTA2qKmWaeBibOO2+xsQKivEAAUnHNy11kxPnzgAx/AJr3wwgv062d+RYEowIgM8ggXUlXRcgrw1Hlbr71ClD2ftonK+I/sxz/595+iF488y2lAogxuTFBRhRKpiXLoaz2FJfSXd3+QZLvk+RdjKfmGusW9z2Qo0VMB1VmqKGBa2r2jvi996Uu00DiBsRqEaXwgV6bLYieP55vZYIzxOxLi/C6cKWWYjRQ3bC6nhi3N4p2G0RlKNRxVL/9qP2v9bAFhsjktFB1PCsCAiTOEIYLc4DIIoO5UPEUWG2cRLLSKLBCVpeXUztl1IVtiHwiZicvYsV6/Qmmf2Ml/YGDCfeX77OGwXwyQi7rzyeIq3xnZlnyXiHZ3lLJFZAFKcWZ+3JO8xs2dN1NHR4c4A7z9251/I8Z8PCPoLaBwWHHA23h6cGF84WNjpybEscw/S+FZPueivpHgMO3evYMDDVZxLjBky2XgOD+3iXBQfDvOZCl95jMfy6xO29Y4oHFA48DrigOyX0ajYcD95veL0roHxkmQWu/t43Gq3F4pMpxhfHzo1w/y9KdsqGaV1M0ZkJxbimhj7dXCaYvjIPTzcr2pqSnvMU6crPqDvnnfSKfol1W7eSaAWcK6lLlQHiSXYiPLnwgD3OBUkYT10TYG5c4QpnHVsWOktLCRPve5zy1anzxPW2ocuBgckO+zXKqvgX1Jnr0AMgsIzij8QAjX7jrZSxankTr1w7Sxkm1kjGUY7m0XoIaSK4vZ8WZQynAW2omhSTFdJGSf1Z5NtKq5WQTM3XrrraK+fP+gTdnamnk+dJF77rmHM2hzViYn25E40yRmpjDXmhmMpWTCqSitYvk7QRtXbUrLlJn1XMpt3FeR1cN2NQdVzmSVy3b9vtZBYdfJ5MOW1Vvp5O7jdN1bFXulfF7ox7CO53V2Xzsta1zOumJxWlcsavCI+0f/jX7b9o0MHWemEeu2rRR1BDl439vVS5OckSlUrsjZbpuHGkpX0GgxZwjlAH3oSLCVqvt7VOMwOWli8CQVuYtoy7UbhUw+U/2cBe5xKXp+PrYDXCAfHWZOQ7QNjQN5cgDvVkSVlTvzNGlHAHBt+/Zl1Nvby34161x7gkoFln2tLL8U+4rsG+Qysy3qbbXcpt6fuS7rkkt5PHNb7sdy586ddHDsJfWu9DoyaJYsU+SjifEQgzgqOLu2idxlLnJvdgpww64A20vyINkGnusgPV7J0+zFKqbyTsxsmC0JDrK7A0Shm9JTKjZFsVCc6jdU0fjZEHmP+8UMSbFJNsCUKrYX1B/ieZnR791y++2XxP4l70lbahxQcwDvP/w2uUjKAjj+7I92L/quoj75TeWqE/sFUOcbSolMGyJ0H7X+M9LrZUBUnfi+z/y+h/75b/5lzjXgq8K4D1+VmtBvSjkCOuOm8qvoxk030pnTZ6iWE/FIux7OkX2m+vzF7vfuu+8WQQldI+doX9vhOf3HipXLqVRfTW+bCRy7UPqnun3ausaBi8UBAPUnO3nW3dWJud/VjD0G18U359B5CHiHpZBabsA6knf9ct9PqLGuicIlIf4uFZt7edEEvfLUEeo7MiIClsuai4SOEPExKHdAyeg5dGyINq24gmcMqqOS5g5ylc8HxdStrqTOrg4hM5Q0uan/FM+S1xskx2pFP4U8AYrGrAKT4O/kDN9F9jnylZTB1PeZy18C/9yPHruPBqJj1NPbI/iHgEfosE4G/9+w6Za0Dot7v/+578zBiqivIdfD4zEqqfDIzQWXufpg4D1+c9ej4rnhfvY8/wptulMJnE3F2G/EWYPNnLVYp+PZSDixi0I6fj7KepT5bucs/yApCyEgKRrg/S4FiidAqda5clM1g3+7T3TRqhWrKM5+K5Da1iV28J/4OQ7UZDwG+mXYz3Af6ncFeh14VddcLU8R/Xt6g1ekjrsUmVd9vnrskutYZpMP1efhvqKT0XkzOmSWwXZBBn+wD+NPHS/3v3CUjOwvxEzImLG0kv24mXgflO9rHaIbr7qZFsP8yHvAObkonzLyXJRdanl5rrZ843MgL0DuNM/eMq0Ay19Tjvj9/nRq6Z/85Cf053/+569pey7mxT/4wQ/Sr3/9a9qzZw9dwSnU1XT8+HEhyO7evVsYPK+99lq67bbb6Oqrr1YXm7M+NjZGmNrv8OHDIhp/zZo1tGnTJhEdsBDgd//+/XTo0CHxQ0e/detWwvVWrlw5p34YXjds2EBOp5NOnTqV0+A356QLvIH3dGY260Vr1rFtGD+NLj8OCMHn7scIET+FnlmwlLql/W1D1OBcRgs5FnIZgRtmgD6iPl7f9Wh+xif19bGOgfW9f/KX9NDTPxZKedjLUWQzgFxkA8FUzTVry6jn2DARY9kQpXbw52cpsSZJZZzJBMQ2JhaYeVobTqFvtes4YkpPySDS1evE8Tl/OPuIGtipFkwwBVY+tJDxQJ5fvaKUek5283QHczMAIgpp680b6cgLJzmyb4wsU4UUOBchH4OiMDVCtX4FG9552i29IqDL+rIt+1tG3tBG+s985jP0of/v/XTHh2/kbJIuAXAuyABrjw/5OEMKz83BhPd5/bIN2Vil7dM4cNE4gD6yyFa8YF+Li/e0DNAnPvl/Llo7LmXFGDOQyQmgwq/+v6+wksvObx5nkM3TxNOq2IvZMVqCnlmhU7vP0Se+MnvvOB99vwQlohRAKuql2HiVfyAD1j9fL4wTqKqvZyRdY3XhCvrTP9lKKHOpSI61F/LeFxrjcV+2GaeOFVnhM0iM4zx+IztDj7mfIi06evt1/zvrs/jrv/5rYURGFdE10zQ4MMBTAJfNGU9xLDIeJwTGgKIhNhDwFIkYD8d5qks4sUDZopixH84tyMb5EMr9ofWZOcaRbOf1t43S9i+x8HCRCFNLLQbIDY3F5lwdzx8/SeAtDCAg6AgKKdszG5d0gbbB6eC8z0U9Qx3s0LPSYL93jpzyzre9a0HZ8ZI2WLuYxgGNAxoHLgAH0Pf9zfv/TuikcAxUr6hI14rxEuPtK08do09/8rNp2QHnXGxZRjYCemrPSwPzALnyuFwi0GahzPCynFyKWVjK5ZayLF0xGxgOaW7wzBgRi1DqsWvuGdqWxoHXngNCNtz9DF371q3zGoNvGL9Tu8/SFU1Xc1DRZ0SZu/7u3XTbnzan5S+UgVwsviMucXJ3K9109S0EEITUVeZVfoF24Bp/aGfZdlNDOjALVcNRrCxttOul/fTm9W8X25fDH9HmHDyX7dv92GH64Vd+LDfTy7vuuou+8f0hYcNR97cogOcQmYyQ1eumu9+l8F7yXy5RDn1SLj1cPnMAe3c9ephWNmyasbXVUqm9TDzPZZ5V9Icjz1BF7WwniPMkTVa66cBTJykxqku/I/KYepnrHtVl5Lq0HcjtXEvYtpYC8s1Vj7Zf40A2Dtxwww306yMPZjs0Z98kAzrWNF4lbD9RYllgEZLlFyl2WR6GD+XRv/r5PDkLtgy2YIg2Qz6Kn4vR6q0rs/YJ+foUUJl/NDAHUId9hWXzfTdq/wXKFLh5pkCrkQpL7GQxIQg6QsakhZYtb6L1G3jq+n0dNDIywsEEDG4qnKa+7pG0rwE6PPyeGmkceC05UGTxLGo/R/tQ7kKRWl6AXy4WUL5pdf34vuGHjPF03ptuXisOBTkbZqb+o/ZVZfO3FrPsAJ3xh1/5ipA1fvybH6btferrZa7jWgsR7Mn4Pf/88+JXWO4QwRKQK4Rcc0uT9n0vxEDt2GXLAXxjuewwaDTsMJC1P/3Rz75qOzTG+m/f/99U8gHY3Gft7jaeORBJSw7vPEltE31ElhRVNVSQsd7MgM1WwbsVpo30j+/9lPiuEcTz4+fvJdoiDqX/AMD58qMHaNWtdewbs1L56iLqOzgmMpzCpy392pM8C8bUgFckiglH2H6TB2WTMdAnSP9cR6qDM7IkyK8P0trqItFOjPlSd4Je8T9P/zKr7iUvD8yDbsBA5s1KVmC5P3Pp5YRpNe+c1Zkyj6ufqYtneSrQFVL/UZ6JpsHBAOUQFdYUiHYnQykG5KbE6YYZMK6rroATs4UZSDtrk5L1h72c3dhlE3iRAtP8DMUbblhNbf/dRSbd3GRv8nwsgTWxGjnr7Iz/JZv9TPLqzL42Wn2NAiRW1wE9refgCP37Z/5/9u4Dvq363v//R5J37DjOdCbZg4RMQhiFsEdYhVI2FC6rLbNAF6Xt/ZX2Uv4dl9Iy2wsFCrSUlLJHUjYkhJUEsveOs7zteEj6fz7HOYpkS7Y8I9mv84gi6czveUqWjs55n8+5K7x3qx83tj/Dnbkd57PKzm773f7h9zaOvceyhtbtRwgfZo/dK2zZcbvwbEz472DZ95vYivBFe+/VnyfPEehIgfgCuaUayNXKhwe6q9XLLridBUA7sps3b5689tprMm7cuHYPAr/zzjtOGNd2EtYP4z711FPOJcTC1/3NN990LhH929/+Vm66qWHVJwvhnnXWWc4P2/Dp7PHXvvY1+fvf/y59+/aNGFRVVSW33367PPzwwxH93Sd/+MMfxA7Eu11ubq787ne/k2uvvVZ+//vfh3YUu8M74j5QGtRLssW3JI/mBjyZUUKP8U3OWO0oYBtbZ514trz84mw9KDG1QSjXNhw2fFIgP7vzF422wubTVOCn0RnEMdDe77bx+FThU7Jt9WpJyfE6U/m0OklGSqZMPXqE7Fz8oQZ6SvQSgnpZ50HpUrnZL3tSSvRyEemSmqVnVGkVXbtsU4ZePiI9J8WpqJqll8f2da+bl83QPn0D/qBevrtuo9I2wCws5HbuBqr7PNZ9Uz+SbTq71M6q+zZEbNS487PL2h130ZHy8kP/kenDj5IjhmgAaUhdIG3EiBHOD+l3P3xdjjiz4cEkdx72mkwYfkhoo9rt35nu7UfDkOxhekmez2XohP6y6fMdMvr4uoCz7SQpK6qQvOyeoeDf4neXyfeu+FFnImBdkkDA/axt7G/WPm+H9OhcO8fcHflWLeW1Jf+SKVNHRv0x6Ky7/h2747svqbnF+5nrTtOSe1uufb9YFx6aOemkkzpk+dHa3JbrbidzRNsJ7C63+76DOt1CQU93yP57+04q2VPqeNR/nfaPpbuq9oWsU6alycqH1jcI44aP6+zg8GU67wn7nT1GbAAAQABJREFUPnzu/lf18zt8jMjH9p1ml3tsbPnhU1xxxRXygp501Fjnvvfa8322e3WJ9Du44U4it13VWpm5fHPDnf3u8ES9N7Nf//rXMmfOHKeJzt9O2HZKe5omqgntQgCBzi/g/iZ9Z/FcWbB6oQwcme/8DrY1D5b5tJrI0c5+GleiLb/P3XnGup85c6bc/rNbYw0O9d+yeqccfvXhoedNPait0TJrTXQ1VbUycODAJsZiMAIHVsDdNmxs39VXepLgn3/9aGh7c2zfCbLxy60ydsbIUONtu9huth05UU/8PfzwwzvkN4Pb/sItJREnBLgNs/Z496Y77XH7Heh7a/NnP/wk5oHd5R+vdvbnRNu+d3+jPfrvR0Kft7Y+9vrlZuWJf3Oa7g//kdhvtsY62+e5esfCmL+Hhk4Y7FQwOn7CCQ2C1fYZbu1f8NpCGafvgfDfVNYO2w916jGnSXFNYdR1tHHc3xvR1jFau22ZfbP7NbmPdd2XG+XqU8+ONgv6IdBqAXsfbnx6q4w/akyj8yosKNZKcYOcA/GP/eeBJk+GtfGdihmNzjUxB5qJ7Y+o/x0y9JDBsvCzRc7JxeH7OOqvhW1/2bZaPJ19r7y76vWonnalPTew4/droZF9xy/c+fa2S2BvKpbew3pIql5mu7ZaK/XqpbfdfTVTjp8g9vnxn0/nydevvMiZzNbNjjXYPR0CB1rATshpbP+5tc++W+3EgbbswrcXUoKpUYu+VJRpUYFedWU5rQ32t1q/s+97+01o2wjjjxod2mazzw7nqlJamd+Gu9sFeVqVv6nOpo22rGjT2Xzdedt+Ov6uoynRL9kEmrsfpqXrZ38vPdLyGnzX2/zsN4MdP/pQT+TL6ZEjfcYNks1bNsuRE45xFnfeLD2RU//+3M72zdQ/EdR+Q+bmdQ9lGDJ6pcrIcZqt2FCuV2PxyJbFO53JfeUZMvHgGdJXQ7+Pv/ioO8uY941tY4S3yT3uFe1zwfo5FXX1t9cWvZKhXVXG/e3j/qYxmx1fFUjlUfu3Reo3yvIZJasqm9zmCX9NR49Nk7de+kB6j86WHSs03zEyxynIZgFbX4ZXUrXqrXsCUv6kHrLshS1SNa3GyXnYIb1U3RbqeVA3J8zbZ3ieVv2v1ArDfRschzR/K4i5eO6K+s12ntt2XHCvR69SGFkksf7IrtW9j/ze+Z1o+wXdq/DYd8OeNeVy6awrIt4P9efRkufu/oD626Lh87LjfP17Dgjv1eCxFdAp3rYnai4lfORgTeMnnbrjRns/ucO4R+BACMQVyLWqo4Ei3ZmvVc49jZ9k0K7rYFWYrFqrXb7gtNNOa9dl1Z/5okWLnAO83/jGN9o1kOvXy8DffPPNzuLde7ctr7zySiiM+6Mf/UjOPvtssZDy3/72Nyc4awFau6yghW/dbvPmzaENY/uSs4pqAwYMkKVLl8oPfvAD+eCDD5yde+6Ba3e68DDuz3/+cye4ayHol19+WR555BGnjXYpsssvv9ydROyHyW233Sa/+MUvxM7aiVWhNDRBGz6w92bATsqJM6ft0WqkXreYVxu2g1m1jYB9ia/WgOu8lz6XCfoj0d3I2rK6QPasLpOLT728yR3c1pKmAj9ua1tzoO66665zzjq96Prz9YDICGeWVg2kb58+unHVTY46d6qs/Gq11OrO8CET+8uAnCHO801FOyQtW8vr60ZY4dpd0ntkrvTTyrnFmzWsOSxH0nv6ZG+JbsB1T3U2qq3ikW/fpRCCNcHQhltpYUXcZ/vEc1aQXbrKzlTauaZI/4Y1xVKv27p6u/Ts3tv5ez9ZLxkV3tlnzOM3PdpoINeqbTZ1cCJ8nsn62M48fuyxx/TU6FpZ9PwK6TEkW7J6pzuXP0/1p8tYvXykdeY5KHcYVUSS9YVO8na7ByPtfThAf6SFd/Yj6sPnP5OfXv//wnt3msfuuhdtLZGskZEbBObh35p6QE4uCgfuCp+V4etb/7FdxkevedNmnX2/9eybF9rB5M7Ydo44l0bUHs7OkT51J6nZ+Ha53cpi3aGjJ9H4tT15PSJ3Stt32pQxsU9CcZfh3tvOABs/2t+cO4793T189/+5T9v83rYFtuplPKtPqpG0zIaXi/BryGnn8iIJNHEyZjzbFG7jW7Od5c6jOfdd/W+nOVaMiwACnUPA+U365jCxk7W3bN0g/dKGyqCBg6SPBqjq/2bryDW2773c1OgHj9x22Hfi4KyhzfqNWKmXu2uq21tSJSOm1P0+b2pchiNwoATsb+TME86WV176l+5HaXhCerS/D9vXYAfaPilcpAH8fhH7y7Iqe8iVX7+mWX9PrVl3a/+3L/+uPP36E3r5Ton4TWltt5Pp491/15p2NGdaa/PN13xPHvv3n2V54Rq9Ykq3CMOajSn6O/AHMWdp25l24Ns+b73eupMDigKlMmXgNBlxzIi47G3f2Xt/eSNqsM1d8FYNys24akaD0Eqo/bq/afMXO6WsZk2o/cFSr5wwfpZTQGPNmjXOOn6ypu59YvO1K3tsXLZFpo8+Uq6/83x3UXHd21X53v/oTTn8jHpltcKmtjZTITcMhIdtKmC/P+2Ka0114e/Dn997Z6P7qG1etl+9satONrW8Az082neIXQmqcE2FFI4t0csmBzXE0TDE7H6/2GdKPJ3tQ3v83Oj7/Mv1qoEWyLVwilUVcY9fuPPtPSJXVszdLCPr8kFu74j79Mw0OXjoBLFtWjoEEk2gsfe/29b22JcXvr0w9qhhskkvTT/6uMHuIp37Mv1uP2Rs3UlaFmw/9aRzIoa7T+666y558MEHnd+K26t2yybNDWSndpexQw+Wo6aMjvjN2De77gRP95isO4/w+5Ye44v3Myd8WTxGIFEFOmo/jGVvYm2HDztkiHzy2pdy82W3Oiey2G8Adx+Qndjidva3F2vfjGUYPn1voWYY9Eq+vgw56swZzokyNu36eTskfW+WfP/7t4Tm+8Lcf0cNCLvLas42RlOfCe5vL/vtJoF0+WTBIhms24SFBSWSr/uRTv3+N5y8UrTPR7c9y+dscjIUTS3LxndfU3Mc3f0QZxYfBz7Wky5WSK/BuVKi+Y1eB+WKBZf3lmihte5pkpLl1X7dZf37BTL0mH4S8PglPT1NDjrMrpq8UvYeqlVy03IaHFeymZuVbf8M6jFIigftdYp5paT6nNfChvv8KTKo3xDpE3ZVT+sfrXOt3P2C5mUZMcfp1Gntso1lptG2Rd322fqV76mQlGDjB/kGj+svy74sCuVe3OnD76uKa6VXz7oTUML7139s2/Z0CCSagEb4tUl1+49ity2gn3O7guIvCkpK3wNbVfSQQw4Ru3XW7tNPP5Vly5bJqFGjZPLkusuZu+v6z3/+03n405/+VOzmdrbToLCwUJ599lknMBseyLV+1s2aNcupuuuesWFlxKdNmyaHHXaYWKn63bt3h86ks5Dv008/7Uxn03/96193Htt/p556qvTo0UP+P718hQ0LD+SmpaU54d6HHnpIrK233tp0JZTQjFv5wF8YdN6jou/VJjt9z3v0ajrejAP7Xm6ynV14BNtQtB+J999/v15ueJMEa9P0x+IW6Zs+WDf6pkVUZ47FZMHzatkTa3Cov305h2+YhgY044Ft4A7sNVgviz1UcvK6RUxpG8S28+vjtz6T8VMOlt3biiQn2EuKN9TI5OnTZeZpM+UHd98mGWmZ0l0zQJt0h/rQo/tJevcUKV5fLhkTe0iwfnXcsI2OLct2xN1+W89SLddfv40RDd73JGVHjmxdUyADRuy/DJ49X7+gQC48+dLQxnf4tBa46ZGpl/BpZBl2Cfgbfhn74Eb4/JL5sb0nbGPUguX56YNkzsLXJDC8Sg4aPdipSG5hbdfzJ9/5edyvYTKb0PbEE7DPhJuuvkV+9aCGbvUIqu1os88H+xue/8oXMn3EEZ32gJq77n998S/y6drFzmedXc7EuvTy7nLFWVdF/ZxLvFcx+VoU7/dztVa2a20gt34QdPwRI+XzDxc5B4ssZGtd39F5snr+Jj0ZJluy03J1O3d/5diDxgzUA907ZNSxg/WyilXSR0+2Ce/sO+3BZn6nXXjhhaG/ufDvWJvvyk/XyoCMIe363rP3/uZ3N0vRxjLnZJH6odxK3Zm0fbFWrxnRs9HKgvFuU7TFdla4OY8RQAABBKIL2O8Pu73++usycuRI5xZ9zI7ta997H82bKzNOjx7iWrtYDxyfHP3AcbSW2nbEqm0Low2K6Fe8Pc7LJ0VMxRMEOl7AQh4rV650fn+NP3K087vEfo9t0/0v9rvkJz/5SUSj7O88EAjIG2+8EdpfZiP0qRks5511frtuR0Y0ZN8Tu3qatef9JW/L9qo9UlJZJN0ze8j6RXX7jsKvrhZt+gPRzzV87tVnpUyr+27eqOHXw2ZIdU2anHd104bu563t73E7+9yNt7PfKIVapan+Pjd3eqd/I78JbPm2v8neA9aG0ppiZ7u97/B8uf76653Z2LZ6+PvEevZJGSzDx0xwxmlOe21ae5++eOkLTbbZlkuHQHsI2Hure0qPRvc5O8vdkxLax2r7qJvqbL+6/U0laxftO8Q5GblPD9m4UKumH3Vwg/0Ytq7N3f4y/2j7/LPzMkN0Fk6pXx3XBnbTyxB7g16prdADd3pMLlrX3PZEmwf9EGgvAff939Lv7Za2y91esO1Cu4rX7Af0Kl5hgVyrnJjmSw/9jW9ds0umXzk96uJsHewKu/Zb0YJmPctWO78XTznllAa/G6frMcvGfr/ZAgq3F8nASVyNJCo2PbuUgPu7oD33w9h3vV0hw44bjD408kQa91hCPL+5Yu2bsQzDHv2bXvnpahk2ZbCzvd97UC/n9+jwUcOcPED4/M847sxGPyPa+jvdjO13jXXphW/IyHz93aW1hdzPL8srFa4ulcIRpZI3JCfi/bf1y11SvLJCZl0U/1U86m8X2mt78y9uELuy8balhZJzat0yKrVabkqmT7wenww/YqAsfXW9bPhgh/QcpRs7egjJm+IVf7leIXlXjYyeNDj0WR3ewEXvLpdbrvyBcwzWjCt36xVmeqRImiddMjIypUf3vKjT1T/m5c4z/P1o/db0WhNycsdp6/v626LuyRzu/owTjjhJ30vrGz0ZNa9frpS91HhYMSWYIt26RRZWirYuRQWljR7TijYN/RBob4EUCyYGi5tejH+7yOqP18pD//mj9OzZU372s581mGjbtm1yzz33OP3/53/+J5Rkt4CpBTStymxJSYlMmTLFqdp67rnnRszDQqEWwsvOzpYf/vCH8uSTT8p//vMfJyxqiX4LfNp8d+zYIVbBNbwyk4VIn3rqKfnkk0+c6q+2k96Wc95558lBBx0UsRwLmy5YsEAuuOACycnJkeeff96pFGvLPfTQQ+XGG2902mATrVu3Tv7whz/IwoV1O/znz58vt9xyizM/a2P//v1D87b5vP/++864+fn5MnHiRKeibb9++wNtoZFjPLAPduvsizG8sy+bl156yekVHpB1x7EQrgVkLVwb3u3atcspw/69730vVD7dHT5p0iT3obMDz720xYYNG6S0tNQZVv+Lx3qefvrpTiB33rx5oendB1a11wK5L774YocGcmsLNJDb9EnSTjM9+l3p7aFhXJ/bau4TUcB2Dv/v//6v8yPR2mc7mS0QHu9OY6vK8O/FTzW5am315Xz6cWfIvI/e0gONUxoss++Q3tJD+srp48+TVatWyagpo0T0Cnbu+vz+od/ppZtKJDMnUzNxXufMqrxhejmDDWXS95AeWpUvINk5Gc583UsbuAvJ8XV3HzZ5b5+LhQV7mgzklhdWOhVD/vrin6VAD6gU6wGVUj3btmpnQC446ZLQDv76C7TXpjGHbWsLpH/aIGe960/bGZ+bh93sdf7Tn0bIB0vflqrdpVIS0EsEFhbIrhWljqcNp0PgQAnY+88+X+39GaxJlQK9NMie7cUyIvNgZ5sr3s/cA9X+1izX/dt77bXXpEDPFu3pG+hcReCoE47uMp9TrfFr6bT2nlqw6+24JrcdD63p6r9/h086SKyKwyoNpA6e0lfyBtftQCnfWSMBvcrCoMF60sS+Crm23EnHHixvPfuhfkeX6mZj5Ibjys/Wtug7zf2b+8ecp5xKYracnLxs2arfkZVrJOKkOxvWHl1vvVTS7pVlkt07SwK11VrBRncQ1Qb0cUAvYVQiudm5ermq3NCBzFhtKCzQk4zqnYhUf9y22s6qP1+eI4AAAghEF3C3b6IP7fi+//Vf/yWf/+BTcX4LDo/cN2b9BvcaJnbQN97Ofue/ev9svdyxX1LSIr+b3XnYwemavTXOdp3bj3sEElXAtldtX/cf//hH5zeJT4NLm79YJ33SBso3z7og6u8S+zu3m7sP2dbN5lN/27ej1tlCoCNeH+H8riwo3Sb9cvrLdN3n5YZDO6odzVmO+ZmX/RZ29jfO1P0yM+sc451PS71tumsvvU7s94BVsswO2562z8X1H2/X3wQ/b7QZNg93+dZ+93H4RPXfJ+HThI8Xz2ObtrE212z2dsjvmHjayjidV8COl8Xa925rbX8/4VWa++Xki514Hf43Fq5j448ZPDa8V9I9tr9N+w758Y9/LDWbA/LZ2i/1KgkDpVduH/HvDErP7IaVxFqy/WUw0fb55/XrLpUldccR7Wo7GRl1xy/qQ+aN1qvxLS0WuzRztKshbdOrB8YKEtafF88ROBACsb4D7TPGquM+cNcjbd4s+/u2v7s3X3lJDtdjjnVX8arWq3ilOb+FLEA3YcxEZ7n2dx3PcTfbNmiqs99vDx//UMwTKm16+5sN/7xtap4MR6CzC8Tzt9VSA/sssCt82FVSPiv8Uk/g7OucoJSrJ0E251iC/W2/fOmLsm2cfl7U2zdjRUNS9mRLaoVXtye8snnDDuf36AknTWvwm86dT9mRDbexWrqN0ZSN6+veh49v24dPvfqEFK+trKtaq5+Re4v1straFa7QAz7aXXTRRc59S/6zZd64+hbnt1t1Sa2U7qqQjNxUJyRsxdTsauLp6ely8KyhsvTNdVKxsVZ2phRL2a5Kp8LtzsWlkjUtspCbtcOsBmQPcT5L7TW2rmdmH+nVr4d004JeNt9oXTzFT6I5RZtXW/Rzt0Xd/Rl2jNkK7Ln7M2z4jOMPa/Q7xaq9W9bF+S6r99502+jT/X++YKr7NOa95Vtcz5gjMQCBDhZI8eR5NJAbbHKxgW1B6VHdSx544AFn3EsvvbTBZZNeeOEFZ/iRRx4ZCuM++uij8u1vfzti/m5o9Nprr5V7771XUlJSnOFW5dXmbyFZO0tr9uzZoen8/rpk/OOPP+6EZO0D3w3kWkDXQqpWXTa8s4Cq/SCdO3euE851h82ZM8cJ79pzC/264VN7bqHXv/71r868rB02b3edbfiWLVtCz610uQVy9+7dK7Yuf//7322UUPfcc8/Jb37zG3n11VfjvvTNv/71L2f6qVMjq4d4vV5nB6EFcy0QXb9z12HIkCERg2z9Y3UWlHa78KrDdrbcsGHDHOfPP/9cvva1r7mjOfcWZrYuvBKv00P/sxC0dR999JFj17evlvxs705PjKndoiGC7U2/j60pnp4e8eW1d6OYf1sJtHTDwb5wNz67VQ7WCiONdW315WyfSXagcfu6HZI/LPJ9//GrC2XWsWfIDTfcELUp3zz9fHns7QdkzPFDpOeQbCn4slC6D8iSrQsLJeAPSIovxdmgs4k9AY/0yO3hzMeW1ZwfvmayYPfbUdsQ3jPH2905uGOfN7Zj3w6olFSWyagTRsVcB3f6WA5lRbZz4nP5438/6I7ape7ttR/+6nD58Iv3paJWg13lpXLcCbHfE10Kh5U94ALu+9MaYn/zovvrTzvttC7xw8W+Y+xm22p2dQK70bWvgG077/mqqMmFlO+ukG5Do+94CJ84/OS48P6xHk/SqhILXq+W4jWVUrS5TDx+j6SnpEuWNycijGvT29m5k48+WL74aLH0HNrd+Y63g3nb1u6QilVBvZztnbEW02h/+5uz79h1xStl69atMqr3QVJR7pVrro4eumh0Zs0caF7eEVWy+qt1UrqxUvKG50hNRa2eoenRnVW1su3zEjn1opmy4FXdwacn8sTqbD41UhhrcKh/W21nhWbIAwQQQACBpBKw36B2RYa7H7lLT0TxhH4r2+/DdRo6+/G1P40aOIy1kja/msqAHoAqc76no41nJ7HaODYuHQLJIGDvVSsGYb9JrMuvGub8Hmvqt0lL95e1h0kitSXe9TP3A/U5Yb8H7BKic199RcYfOcoJDNpvjJ0rSuSbJ1zU7M/Fxta5rV6b+m22ZVrVPmtzcz/LG2svwxCIJeAEQC57ScqO0gBIj4b7Curvd7arQ3487205bFbD4hm2jDULN+hn7TmxFpc0/e1zzI4BWhEQO+F8VK9RMvUEvQyy7mv4ePHb0m/Q/uMU4fvnm/vZEM0/W08u3rxks/QZkys1epWjYJUWwam7GFGEX/chGVK1Keic7BxI0eO8afsHr/p8nfRLGdisz739U/MIgY4RqP8d6O4b3Lhsq0wZMr3d3r/2d7fyRyvFji/maeXr1e9tknGnDHV+C+Vk5ob2Y9b//GuNin2m2PFB+7yI9llrxyTtb/ZAbUO1Zt2YFoFkFbDvbDuWYN/zB/UdIEs2L5cpg6bJyKvrCkLFs172N3v1xdfKP996JmLfjP1Nu/tm3PnYMUI7Phjt96jNx/IO9bexWrON4S63JffO9snbL0l+fk8pLy/TYz6lerzH63x+9RuYJX2mtX4bwz2WU6uFAdd9vEZ/u2VKdalfsjKzQtmN7N6ZMmhGL+nl6a/DaiWje44U5e+V6YMOl6XzVkZsj4bvD3M/S51jLd0KQ5/rsSys+Eljx2xiTdee/W0dwvdn1H//NPadYu1aOm+NFnm8Tf7wt9/Jebed1qCp9h4t3V4mqYEoG5n1xrbx6BBINIEUT29t0vo4mlUiklmULZed8S158uXHxcK3VnU1vLMArHVWntq6nTt3hsK4N910k1x88cVO+Naq3d5xxx3yyCOPyDe/+U2ngqszwb7/LFxqYVy7LNfMmTMlMzPTqY4bPk74Y0vdWxjXwp8PP/ywjB07VpYsWeKEfT/44AO57bbb5K233gqfxHlsQVurAPv9739fcnNzxQK0VtrcquLaPK2NVkV2+fLlToDXqvdae2wZ1rmBYFsfC+Pa8p944gmn+q8Fiv/7v//bCfjaGarRlu/MJOy/iooKcUOykydPDhtS9zAvL3qKtLq6Wu677z5npBNO0F/bTXQ2/meffea8HjaqVTvOysqKmMpeW3vNrOLtgw8+KEcccYRUVVU562OVga1zX+fwCS0sbKXSLbj85ZdfSjztCZ++JY/9RUHxb9Qwbt3JuE3Owqul4n29dOcAXacWcKrBbm/8TWEbPaMGNB7YjRfJNkztQOOv/3yXM4mFcm3+29ftlJQd3eSq310Vc1ZXXXWVPPvK36Vg1R4NxmTLyjlbJDtfqwLq2zpQG5TM9Lq9VHsrqiUjJUs/a/o581r9xXo5dUL8Ow5tg27jBxpSPiL2Olub3ZDvrFmzYrY51gDX4fGX/0+2i26daldWVCG1+nc6ceBUack8Yy0r2frbutvNdpBaF+3HTLKtE+3tPAJd+W/TXsWuvv4d+U62z76yf1Y0uchCvXxsxpEZTY7X1Gepfa+F70DOy+8hp1wxU+w7dPUXG6Rn/1xJm9BNyrdURV3WiMlDnXDq5PzDpXhDiYzoNUTKSj1ylYZnW/O+se1s+z6wSxSPHq3fy8d2zPeCeRXu3iKTvzZeFr6/RHyeSknN8Ym/Wk9u01Bwv359xdb5nacWNPo9ZfNZsPudqGbhPdkJEq7BYwQQQKBrCtj3pX3ffbTiPVm4bolz8EBPhZEjxxzTou9Sn15WvmR37EBuVUWV2DiJdpCia776rHVzBFqzbdmc5TBuYgjYvsDSe0tl54ZtklmVIjml/eSYY09z9scnRgsbtiK8zQN0H6NWOXHazHu3oRV92l7AfoPOmnm6LJj3rhx2WuSxMztQ38fbP2K7wt6vr1iA1yq41QvwOvvs1++WqZdHFsVp+1Z3zBzNxvEJ25dv+xuseMiO5VrwI72m1fvnXf+39OSR4y8+ylkx259SPLdCKgr3OtVxy3Zq1bjudccxwtfco72cfRDzF0vO0Azpoxcrco+blK30t/hk5/Bl8BiB9hYI/w50v7dnDB4ZuqJueyzf/u5+/etfO1mHnYFtGsz9THYMKZLqmmo5+vgpob+j+p9/rW2LXV3Y/tYPmzU54vPT/m4/0IrA9/3sgdYugukRQKCZAra97W5zrzpGr8Srnw/N7ex4hAV7w/fNVG6XZu+bsc/DttzGaO56hI8f2j5ZXveZZZmMnv17SHVltaydv1XuaGFBlfBl2GOzs4KG511+row5YqgUbimU9MP3B0Qtv5GqGzyTjhofmnTxf1Y4n+HX/+A7svCtJXqCep/Q9lj9/WG2HvEca6nQCrAtee1DjWrHB+77s/4i7Dsl2va7jeduw5uvXeHejtmNnDI0NAsbXrlBpH4hy9AI9R5YDoYOgUQTSPHli+iJApr6aqJpGgzzrwnKZSde6QRyLYAaHsjdtm2bWPjVOqtWa92ePXucgKuFXS28adUwrJs4caJ8+OGH8sorr8j777/fIJBr4/zlL3+Ryy+/3B422dkHoAVpTznlFBk3bpwzvvWzYKgFSa1dFnatHzq1DywLEbv9LQRrQdKnnnpK5s+f78zHLrMyfPhw6dNHU5za9e7du0FlYKu4a91ll10mxx9/vPPYKs5adeDHHnvMmb99wVmV28a63bt3hwZb2+PtrDqXBXltGvvAitVZSXbztqq/1lkFYAseW6Xf+p1VNbZgswWWrRpyeGfL+dvf/iZHHVX3wzt8mD12HcPXp/44bfm8Zl1A/Gt1jvoebbLziXj7a4Xc3gRym7RK8hHs79su2dBYZ5etPv300xsbpVnDbF52oHGeHmhctGGpnhCeKbnSR3cq3dDoBpK19cb/ulkefPaP4s8ISu+BPWTn8iLxerwS2CuSmp0qVboxF6gIysABg0Jt2q47DqdcNiX0vKkHFrT9xR9/3uhoZnLYqGMbHaepgeYQDAZlzmevin03dNMzP6aMmSan39p21k21IZGHJ+rGciKb0TYEEOg8AvajuLCJE2bctY11aR53uJ3wIQ0vHOEOdu7tEm71D77ZAPth7/64Xzp/lSx6a3nEdOFPbHvi+1fdsT88O1PqQrThI7XgsX0fdPR3Qn5+vmz8cKuceqWuhHarPl+vl/XWCjU1PunZO08Ou3iY07+bR4+QNdK58zn4iMZ3/rETpBFEBiGAAAJdSOCWW26RkS+PdPYDju4+2vn+c05IaaaBfa94arySlZ7l/EZOz4oMfdjv5lQtu2bjdPR3bDNXhdERQKCLC9hn1P333y8vv/yyI2GfiS35XOxIxvA2u2117zuyHSyr6wrUBUA+k4L1Ox2Ebhq0LVi/Q7yFmQ1CnfZ+Pe2Y0+XT+e/J9FMnR6At030AvSW/TY8LRCwgAZ7Y+t901S3OicDrS1bpVVJLWr1/3vxX/GCFLHpnqeQP7eO8DlVFNdKvZ3/ZoFXdonW1NX7J7Z7r7H/Zs61Q1qxYJ56SLRLol+YcN7nyqgs79esQzYR+ySkQ/h1oa9BR39vhyz1i9NHy6ruv6In1Xtm+aqfUaBEc9/hjW6q6f+v2Wel+fto+2E9eWySH9J/C32xbYjMvBFogYJ8LLe0a7JuZNqrZv0HaYxujpetj07mfWfYZZccqCvV4UMGyIjl35gVt+nll2YdTjj5Nvtz2hZQV7y/uYts6hdsL5eBRh0Sshh1fca0sE7d7/fb9eYl62RQ71rLnq+jbUuEzLUnCCrD2+rx6+ctSdkSFHqeLLBBpJ3n84af3O6toebc//OVeWVS8NDSebeNffsZVsm3qNnlx6d/DKRo8tu8pt+Bcg4H0QOAACqT4NJwouZpkbPpvXAKbgzJp4lQZlDdEvvjiC6eS7LBhdQdtX3zxRWc1LrzwQunRoy4EN2bMGLFbtM6Cnvbhs2nTpmiD5dxzz43aP1rPaJVabTy7LI3bWbXegw46yH3q3J911lmhMK47wEqwWyDXKtzG27nzffLJJ51w8YknnuhUArYgsn2xxdvt2rXLGbU5YVyrXnvvvfc601lI1g0XR1umhYIrKytDg6wS8TPPPCMzZsxwQrShAfrAqttaheBonYWWbZn2g8MNKoeP16uXXutaO3d9woe19eNAeVCq9ZLBgW36Ho6j8+SK+AZ4xJtFIDcOrqQfJT9ngJQX6yWvcyO/4N0V27O1UPIP1rMS2rCzExVGvjTSqSZtfyNnnnlmzM/B8MXadHYpqfWlq2Rp5pdSuzxF/P7dUrSyQsPz2bK3tFpG6Bm3/fZVx7X16hXsJ2eccUb4bBp9bO3pnlH3+RxrxLYysXbZhqZb+S/Wd0GsdtAfAQQQQKBzCsTzXWRrnp6e0SSAfWc1FchtciY6gs2nomivFGzYKf0OqjsJz53O+k0aOaXDdrS7y22ve/Mv3FbizN4NJdslInv1z3POHrcBto1x9NFHN9qE8PnEGjGe+cSalv4IIIAAAp1PwH4jNuf3azQB+/7JCmbLgL6DpKBwq/hSfZKiN+ssjFtbEXCGbQ5ymbpofvRDAIHEE2jt5+KBWKNkbPOBcGKZbS9g2wE3XXWzPPHK/zkzL/QWSI6/l1xwxkVRtzEsAGAV3NYu2iDdNABgJ+tamNe7J0sDvN9r+wYm2Bzdv9UVK1Y4LWvt/nnzv+eee+R3v/udFGrFsgFpWsgoa6vk9+qvvlYxp2FXWbpXr8RTd7W/w2ZNke3rd8ng2rFy9Ihj4j5u0nCu9EHgwAm4f1cd3QJ3ue7lzd/99B3JH9G/Xf6O3L91q+q4c2WRlFYWS3VRQPIDQ+We39zT0avO8hBAoI0F7PPE/Uxp6azd6dtqG6Ol7bDp3M8s2z7JqPRJ7Z5iOftrJ0YUlmzN/MOnte0gK9C4o3SXsw/KhpUWlku3tJxQfsP62TEl9/iK6/3SSy85bY22PWbrUD57f4bL5hGts+BusnW2bt8670r55xtP6kkek0KZHTMKz7mYkxV7M6eKPWWSn99fZp5+rPNefffdd2XTbL0C9OGxw+iblm+R6aOPTTYe2tsFBFJSBns1oBgUf2EcgUat1Bhc4ZMbz71Ffvh/t8oLL7wQCpz+4x//cLguueSSCDarTGvD7A/FgllWNdWCmhYGjdX17dtXsrOzYw2O2t8Cwq+//rosWLBANm7cKAUFBaFKsFEn0J72AVC/c/vV1tbWHxTzua3zn//8ZyegbCFfqzxrlXLtTAmrFuwGlGPOYN8AN8Das2cTpb72jT979my5+eabnWdmHKtirbtc9zUqKiqSd955x3ldbB6HHXaYLF++PFT51ypaWjDZKuked9xx8tvf/taplltTUyOffvqpXHPNNc5rb6+lmaelRVYk6chAbvX6oNQu1feuvjfj6byDPJKigVy6riEwadIk+WL+h3LoKZOirvCOjXva5WwZC+Harbnd1VdfLbbxaic4jDlpjPP43S/eFv9Ij/Ttla87r/ZvaG1ctqVFy+jfvfGQclua2EZltA3L5rowPgIIIIBA5xJo6rsoKzdDevbq1qErPazvcPlQz8g95cpjQjsFdmzYJWVra+Xy88/v0La058Jsp01FceSG86ipdSdYusu1bYzpY451n0a9jzaf+iPGM5/60/AcAQQQQACBpgTsN2ZqIF1ys/L0ijI1UlVbLX6tSGInsQ7Xk1gL1+kl1PXqMHQIIIAAAggg0PkEbJ+7Hay3zvaj2/G4WPufrb9VibVqW8EBaVLk3SHdavO030Ut2q+erJqxfFqyPjavRx55pO74hT6+q/wu2a2Vb3vm5+q2WMNjvtVVNZKes/+E6/TMNLntttuiXjW1Je1hGgS6moB73NG9b6/1dz8/7XN2e7UG74cNkLNujv15217tYL4IIJDYAm25jdGaNXW3T9o7IGzLsUquN9xwgxRvK5OeffMkO627jBwxMqL5qz5bJ6dOOCeiX2Of206F3H1FVCImCntix6qSdV/X7bffLu+c8Y7UbPPKug0bJTuju5RtqW1whQszspu9juHvLfPZvHxHmEbDh7u16E6/cXUngTUcSh8EDpxASupAj/gOEvHbSZJxZFAD64Iya9JZ8kvPf8uzzz7rBHItwPnBBx+IBWlPOOGE0NpY9VsLpFq1Vbezirr2B2TBzrbqHnroIbnppptCs7N2WCh03LhxThA4NKDeA6/XW69Py57aJfM++ugjsQq1TzzxhLO+Fla227XXXivPP/98XCXR09PTnQbEEwaeM2eOXHTRRc749913n5xzTuSHemNrYgFhe13OPvtsp11z584Vq7T7m9/8xpnMquZaGPeQQw5xqhinpKQ4/VNTU50PeltXW2d7zefNm9fgx7MFd61zp3OetMN/gTKtjrs4IIENcYTJnQZpddxhHkklkNsOr0ZiztICrl879bGogdwdG3dJbk3viC/0A70W9tloN9uR6Ha33nqrLCqaLyMP278xZ21Pq8iWicdOdEeL+97+rhd9PF8OPbnhtFbJLtFM4l4xRkQAAQQQSBoB21a3AzaxKtj36p8r3brtP2DTEStm373z58+XT99cLONm1H3nrp63WW6/4scR38sd0Zb2XIZtZ2T6sxq9goDtvOg7tm+jzWir+TS6EAYigAACCCAQRcB+064uXiwHjT9IysrKpHRvsZRVlUvfvDzJ15NYV3+4UaZPODbKlPRCAAEEEEAAgc4gEL7vvKn1sXHdAK8VpbFjYmPHjm1qMoY3IeC+Blb97dkFjztjl+1sWNmturJaevWsu6KmjbSnibBJE4tlMAIIdKCA+3fegYtkUQgggECrBOyYRXt39tn4xz/+UWpri2TogOFRi0yWl1Q6ubl422Lt7p6hl/lupFv52doGId9GRk+4QVYA0oK273zyluSnDZCxp42Nedyt/usYz7EoM0/WwHLCvVg0qE0FvN4crRg63Cue/b+JGl9AhUifnfnyzUkXO6Ha9evXO6WjbaJvfetbESHMRx991Amn2mXLLUBqVXHtD80CnfZH1xZdSUlJKIz705/+VFavXi2bN2+WRYsWOdVb22IZ8czDAsBWrfazzz4TCyg//vjjMmXKFGdSC8uWl5c3OZvevXs741jl2ca6jz/+OBTwvfvuu+Xb3/521NH9fr+8//77TnA22ggej0dOPPFEZ9CyZctCo1jI1rqTTz454vV0R7B1daf75JNP3N6he7fSr4Ut2q0L6OUIVwSkdpE+aPg7P+piPXoF4lQN5HqzqZAbFagT9rSdaxm1mVKhX8L1u5WfrnV2wNXvn2jPLdS//atC2bmp7nPB1sUq+J00dVaL2m/zW/yfustU1V/XTcu3tmie9efDcwQQQAABBBoTsB/G7vdatPHKS/aKe6JatOHx9mvOtqiNa5c1GtNtkpSsrpbMkjyZddjZnfJ70baPLBAdqzP/mTNnxhoc6t/UfHZuKoxrPqEZ8gABBBBAAIE4BCxIs3HZVuegh1XJGDV0jIwaPlorktRdus6+fyZMmBDHnBgFAQQQQAABBLqCgG072O2HP/whYdw2fsFt34Edu4h2wnWVhnG9AV9EUKVSr9jTr1+/Nm4Fs0MAAQQQQAABBDpOwPY5+WpSI7Zxwpe+ZdmOZh8X6d99YNQ8S/h8m3O8K3y6RHhsx5Jse/x/f/kHZ5vcHjena+pYlJnbOHQIJJqAUyI2dYRWydWbxJlTDGwQuWzaFTI0dYRTBfaf//yns14XXnhhxPq9/fbbznMLjNoPs/AD6+6wiAla8MQNhObk5MiPf/xjGTJkSGguFspt6664uLjBLLdu3Srr1q2T6upqZ5gFVq167RtvvBEa96uvvgo9jvXAprPOqtPGqpK7ZMkSmTVrljPez3/+c+fyLs6TKP9ZpVqrhHv88cfLwoULo4whsnTpUqe/VRhxO/esg/CQrjvM7q1tFgq2buTI/VU7nR76X0FBgfOwPb8UandoddwFWh13k7vUJu71ve0bpeFzDeTSdS2B8847T5YvWB2x0js37xZvdZqMHz8+on8iPrGNh0vOvkyKV+6VpfNWyaZFBTIsZ3SLz/Kx+aXHCCkv+3hNUpgk4utEmxBAAAEE4hewQO6iGCeH2Fy2LC9wDtrEM8c+ffSMqxhdc36A27h2s5PqLjnlCrnx4lud3xYxZp3UvW37Z9fmPTHXoWZPMK6dF03Np2JjTVzzidkQBiCAAAIIIBBFwPY12XdV+Im32dnZzpjWr1tlj2ZdRSrKIuiFAAIIIIAAAgggEIeA7UcZ0H2QZOZkSFVZ3fFRd7Kyogrpn9/ffercF28tZT9BhAhPEEAAAQQQQCDZBKz4WazjW5ZBGZQ3pNnbO3aca9fW2Mdsdm4ubHE2JNl8o7W3sWNRrnm06eiHwIEWcAK5Kf28kjJWg4o94mxOjciowDiZNfAsefKhv8m7774rFugMD3XanNyw5muvvRYRMH3ggQfklVdeiXNhjY82bNgwZwSrvmuVd93OQrLXXHON+7TV97m5dWXC586dGwqcujO1CrgWYr3xxhvdXs59eKA1nkCAG8i1iVeuXBkxL3ti1YhPOeUUp9Lwj370I/nJT37SYJzwHhkZGXLZZZc5va677jpZs2ZN+GB5+umn5YknnnD6nXbaaaFhZ555pvP41Vdflbvuukus0q7bmbPN0+6tO+GEE9xBzr1d/ufTTz91HrfXma6BiqDs/cwvtYuDIvpejKfz5Gl1XH2Pp/Rx3vLxTMI4nUTA3vs1W32h4IlbYXbqkBly7rnnJsVa3nHHHXKxhoO6a3Xy6f2PlnvvvVfGjRvX4rZ/4xvfaBBStmBOVnlu0pi0eOWZEAEEEEDggAvYd1hadUZEkMZtlH0f2bDGAqPuuBWle5v8PgwP67jT1b+3+YR3tn3Qmu/Z8Hkl4mPbNlo4N3q1fHOfNKLuKh9Ntb2p+XCJoKYEGY4AAggg0BIB+44+8fCTox6o2Lh8C79pW4LKNAgggAACCCCAQAsFDj74YFn+8VopLagKzaG6skY8AY/k5HQP9bMHjZ1UHTEiTxBAAAEEEEAAgQQVaOz41ooFa1q0X8qOpTR2TKx8fXWnPmbV1Evd2LGolpo3tUyGI9AWAk460ZMikjbWK76RGsqNs4Cot9AnF024TAYWDdFJPHL11Vc3aI9VprTOQqwWzjzrrLNk0KBBcsstt8ioUXWXkmswUTN7DB8+XA499FBnqhNPPFGOPPJIOfbYY2Xo0KGyZ0/sswiauRiZOnVqaJLBgwfLjBkzZMuWLU6/22+/3bl/7LHHxALCV1xxhbOu7qVev/vd74ob6A3NJMqDlJQUOfXUU50h0SraWojOquda9+tf/1rS0tKi3sKDt7feeqvz4fzFF18499Zum4/bTpvXDTfcIEcddZQ9dLrp06eHKu9aINeqj5x00kmOq4WGZ8+e7Yz36KOP6g/qnH1T1d1ZaNgN606ePDliWJs80Wxw9bKAVH8YkODuOOeo72nfaI+kjfaKvdfpupaAbRTdcOVNsmdFhaz4ZI1sXlwgg9KHiX1xJ1Nnf7dPPfWUE8RvbUjI1r1qi1d2b6n7jLT7FR9skDvvvDOZSGgrAggggEASC9j3mn0v1++sqn28Qc7dWxpeuSJ8fr179250J4Y7blPzccfrLPd1O4zSpaK0ssEqff6fr+Too49u0D9aj7aaT7R50w8BBBBAAIHGBOzkmd1bChuMsnzB2i59gKIBCD0QQAABBBBAAIF2FrBjDRmlkccJi3eVSE5GbkSFXNsHYeFdOgQQQAABBBBAINkFYh3f2rW1qEX7peyY2MIYV5W0HEe8x8yS3TVW+xs7FtVS81jLoj8CbSkQKheaOsArqYdotFYricbbDU0bKecPu1QmZ02Tc89pWGnSwqXPPfecDBw40Alpvv7661JZWSm/+c1v5Oabb3YWk5qaGlqcxxNnGjg0Rd0Dq8BrH3rWWXVWq5RrYdg5c+aEAqMWdnU7n8/nPAzv5w5z+7n3bn+rgPvkk0+GqgBbwLWkpMQZ/M1vflOsDfZBYCFdqzxr62qh1/vvv9+pZunOp6n7M844wxnlgw8+aDBqQUFBg37ReoQ7DhkyRGxeFpi2YK21+6WXXnLaaRWNH3roIfn9738vronNz+v1yt133y3PPPOME3a2gK1VQXYrEB933HEyb948ufTSSxssfv78+U4/C2Onp6c3GN6qHloQt3pDQPa+E5DA+vjn5Oml1XEnanXc/qG3e/wTM2anELD348UnfUvSNubJ5N5HyH333deld/7Yjq8bNaS8e1m5rPx0rXM/ZdBh4p5E0SledFYCAQQQQCChBeyAzeaFu6QyrDrt7q2F0rd7f2fnQmVZZNXaWCtjodtYXXMO9DQ2n1jzT+b+FmSqH4i212LL8h3N2rnTVvNJZkvajgACCCDQ8QL2vb13s4htO7idPU4vzuZ3rQvCPQIIIIAAAggg0AECtu/FCn3UlPulrKhCqitqxSepMvSgoRFL36Vhkq627yUCgCcIIIAAAggg0GkEYh3faul+KdueSt2bFnG8zMVa9nH8RWzcaTrjfbRjUewL7IyvdOdaJ091dbXGHOu6mi0BKZ/tl9p52ksrkcbVddPqujO9knWaT1L6xQ7UWpi0qqpKBgwYIPXDrnEtJ46RampqZNOmTZKXl+fc4pikRaOUl5eLhV6zsrIaTG+B461btzrh1/rVYxuMHKXHxo0bZeTIkU6Q2ObT1qHW7du3y86dO8UqC3frpi9eHJ25rl271nndLGRsgd1Y3de//nV59dVX5fHHH5eLLroo1mgt6l+zLSAVr/ql5n19f1bEOQvNXqce7ZFu5+j7k0BunGiM1lUE/vGPf8izzz4r559/vkyYMEHGjx/fVVad9UQAAQQQSACB66+/Xlb7F8vk48aLBXDffPx9+X/X/4/k5+fLZTddLBfdcWajrXzsx8/JjrW7Yo5jJ5R97//7rpx0eeMVX5uaT8wFJPGAJUuWyHlXnisnXXeEZGZnOGtiAd3Vr2+Tr776Ku41a6v5xL1ARkQAAQQQQGCfgP2efWbu49JnfI5Wfd8rG77YLjdecKtccMEFGCGAAAIIIIAAAgh0sED//v1l3GUDpLteVTMnO0ePBQ+MaIHtc5iWe4z89Kc/jejPEwQQQAABBBBAIBkF7PjW4qIFMnb6cGe/VPnGGrnoxG+1eL9U+PGycI8X7p8jsx98scvnONxjUV+7eLL07J8XcUyRfYHh7xgeJ5JARLIyNd8raVO94slvRhPLRWrmB6Tyfb/4d4eyvQ1m0K9fP7Fqre0VxrUFWrVdC5paILc9OwuyRgvj2jIzMzNlxIgRocq8zW2HGV1yySVOReG5c+c2d/Imx7eAg1XGjTeMazM0V6sQbOvVWBjXQtcWxrXQ7jnnnNNkW5ozQu2uoFS+F5CaBc0I4+oCPAM0MK7v6ZS+EW/15iyacRHotAK2cTJ79mxnw5Awbqd9mVkxBBBAIGEFvvOd70j5er+s/mK9bF5cIH1loPOd1KuXXt4gjq5oc93VKhobddfmosYGO8PimU+TM0myEex7/7hDT5CFby+RPduLZMvq7RIsSnWq2jRnVerPx+bVkvk0Z5mMiwACCCCAgAnY79kLT7hcdnxVKmXLA3Lc+JNbfNADUQQQQAABBBBAAIHWCVjBjwljDpExo8c2COPanHdu2t26BTA1AggggAACCCCQQAJ2fKt3xaDQfinbR9WaYKjNb+PnO5ygqbuadrzFtzujy4dxzcOORZ13yvmOtx3PCj+m6Hpxj0CiCUSmFLWaaPp4r6RO094Ni7/GbHtwj0j1uxqY/EhDuUWxQ7kxZ8CACIFf/epXzvOf/exnUltbGzEskZ/cfffdTvN+//vfS0ZGXaWttmivv1DfWx9oZVwN5Mr+qxE2PWur3jxdQ+Zj9f2s7206BBBAAAEEEEAAgcQRsIM113/rRqldli4H50yTBx54wGmc9W+LLt5gb1ssKxnn8d3vflfySgfIji+LpXhJjYaaLpMLL7yw2asSPh//lpQWz6fZC2YCBBBAAIEuL2DfW/b99asf3y133XVXl/cAAAEEEEAAAQQQOFACPXv2lJ2bY4duK8urxMahQwABBBBAAAEEOoOAHcd6/vnnQ/ulWnJsJdzB5nfstONl5adrnd6FGsa1Yzd33nln+Ghd+rHt+7P9gCnbukccU+zSKKx8Qgt4qqurGyRoq1cFpPw5Ddcu0kGagYy38wzwSPpJHsk80ie+PE+8kzFeFIGHH35YnnnmGbnnnntkxowZUcZIrF6FhYVOVdxx48bJgw8+2GaN8++pC+NWzQ1IcHszZmsZ3Kke6fYNn6SNiMydN2MujIoAAggggAACCCBwAAT6jegjV/zPNxpd8uM3/1u2b298A3HIpIFy0R1ntno+jc4gyQc+/fTTzhU07Coarenaaj6taQPTIoAAAggggAACCCCAAAIIIIBAxwv86U9/kpeXPiuTZh4cdeF/vWO2zP33W87+h6gj0BMBBBBAAAEEEOjiAl9++aVcd/s1MvOCw2TJRyvlwuMvl4svvriLq7D6CCSvQNRAbrBGpHK+Xyqf90twc/NWztNfQ7knaCj3KA3l9iKU2zw9xg4XqN1VF8atfquZYVydiWeISOa5Psmc7hNPavhceYwAAggggAACCCCQ6AL9+vWTK+47J2Yz92pllaXPbJY5c+bEHMcG9Bupwd5fxQ72xjufRhfCQAQQQAABBBBAAAEEEEAAAQQQQKALC7z77rty2U0Xxzwp+n8ve1S0QFQXFmLVEUAAAQQQQACBpgWeeuqp0EiXXHJJ6DEPEEAg+QRSojXZAozpE73i3xGU6jc0DFkUbazo/YLbglKlx8WDVX7JPMYnKf0I5UaXom9MAS3MXLM9IHvfC0i13oI7Y44ZdYAnT9+/X/NK+gQvYdyoQvREAAEEEEAAAQQSW2DixIliYdmMbulRG7px+Rbp0aNH1GERPUsbv1LCjk274ptPxEx5ggACCCCAAAIIIIAAAggggAACCCDgCuTl5UlVefTAre3fGTZsmDsq9wgggAACCCCAAAIxBAjhxoChNwJJKBDzCLUv1yMZR3glZZoGajOat2bBAg3y/icgFa/VSs2GgIj+o0MgLgF9r1Svt/eOX6qsMm4zw7iSKZIyXd+7M7zi604YPC5zRkIAAQQQQAABBBJQwMKysbodG3aJhXab6mycqoqqmKPZwaJ45hNzBgxAAAEEEEAAAQQQQAABBBBAAAEEuriA7VsJlnii7oPZtHyrXHrppV1ciNVHAAEEEEAAAQQQQACBriQQM5BrCKn9vZJxnE98EzTYqFVzm9MF92iw8r2glL+owcqlfq2Yq2VP6RBoRMDeI3u/8kvFC36peV/fL4WNjBxtkL5HUyZ6JPNYrcyc3+hbO9rU9EMAAQQQQAABBBBIEIHc3Nw2a0nBxtjB3oINzT37q82axYwQQAABBBBAAAEEEEAAAQQQQACBTiNwzDHHSLR9MHaVo7bcz9NpwFgRBBBAAAEEEEAAAQQQ6LQCjacWNYebNsIrmSd7xTtKnzQ+dkOkMpHaj4NS8a+AVH4cEH8xodyGSPQxAX9RUCrnaWXcf/ml9hN9n5Q308Un4hurlXFP9knaMH2jUhy3mYCMjgACCCCAAAIIJI7A0UcfrVVVol/q0G1l9+7d3Ycx79tqnJgLYAACCCCAAAIIIIAAAggggAACCCCAgNi+nJLdemC4Xrd52Q6xsC4dAggggAACCCCAAAIIINBVBJqM2Ho06LhYyn0AAEAASURBVJg+zieZp2ood4SyNDlFPTo9ju5fomHLFzRs+aZWPt0Y0B71xuFp1xXQ90LNBn1vvOHX94hfAsuUoqaZHPqe9I4UydD3aPoYfaLvWToEEEAAAQQQQACB5BWYPHmybFy2NeYKVFXWxHUwxw74VDcS7LX52LLoEEAAAQQQQAABBBBAAAEEEEAAAQRaLmD7YD57fUnEDEr3lEmWP5t9LxEqPEEAAQQQQAABBBBAAIHOLhBXvNaTrqHcSV7JOM0n3qFK0tzqo1rwNLgpKFVvBKT83xq8/EKDl2VUy+3sb66m1i9QqkHtz/1S/rxfqt4MSHCLTtHct4UVbtageOYsn2Qc4hVPWlNLZTgCCCCAAAIIIIBAMgjs2LAnZjM3Ly+QKVOmxBzuDnCCvctjB3ttPvFU0XXnxz0CCCCAAAIIIIAAAggggAACCCCAQEMB20+TWdNNLITrdoveWSpXXnml+5R7BBBAAAEEEEAAAQQQQKBLCMQVyDUJb6ZHMqZqKFeDj95h1qMFPiUitfM1hDlbQ5hz6qrlBmtbMB8mSWoBe82r12s4WysmVz7nl9oFmsItbcEq6XvQwrgWFE+frGHcjOYmxVuwTCZBAAEEEEAAAQQQaHeBnJwcqd4b+7IJNbvjv+RGwfrYwd4964viCva2+wqzAAQQQAABBBBAAAEEEEAAAQQQQCDJBe6880755PVFzlqUFZZL98weMmDAgCRfK5qPAAIIIIAAAggggAACCDRPoFmxWm+WhnIP1VDuGRrKHakL8jVvYc7YGsYMrBGpekUDmRrMrZznF/9uK6HbgnkxSXIJ6Gtcu0sD2R/5pUJf+6pXAxJYp6vQklC2vve8o7Uyrr4XLShugXE6BBBAAAEEEEAAgc4hMHXqVKneWRs1lGtBXbsMYjydBXtrYgR7bT7Z2dnxzIZxEEAAAQQQQAABBBBAAAEEEEAAAQSaELjqqqvEX+yV7et3yqK5y+XkSWeK9aNDAAEEEEAAAQQQQAABBLqSQLMCuQbjhnIzz/SJb6yGIFNbyGXVcj+2arkazH3JL3sX+yVQRiq3hZoJP1mgNCh7F2pl5Bc1hK1h3NpP9LVuSVVcW1N9z/kO9kjmWfvCuBoUp0MAAQQQQAABBBDoXALTpk3TAzg7GqzUpuVbxAK78XQ2XpUGe6OFcm0+M2fOjGc2jIMAAggggAACCCCAAAIIIIAAAgggEIfAdy65QZbN3iSH9Dk07hOq45gtoyCAAAIIIIAAAggggAACSSOQ0pKWejO0Uu5kn3jSRfbOCUjtVxqurGzBnAJaGHdrUKq1amrtKo/UTA5K2iFeST3IQ8XTFnAm4iSBiqDUrNfX+MuA1CzSirgbtZXVrWhplkjKIfr+O8kn6WO94klrxbyYFAEEEEAAAQQQQCBhBfr27StVe3c3aN+2tTtk0oQGvWP2sGDvNg32Dhk7MGIcm8+pU8+J6McTBBBAAAEEEEAAAQQQQAABBBBAAIGWC1xzzTViNzoEEEAAAQQQQAABBBBAoKsKtCiQa1gWxk0/xOdUzK3M8UvNZxrKLW4howY0A6uCUrVZg7lLg5I60SOpB2swd7AGc6l+2kLUAzuZE8TdqEHcpRrYXhwU/7oWhrbDV6OHFsc9VCvjHu+TtGFa3NkXPpDHCCCAAAIIIIAAAp1J4Nprr5Xv33ujjJg8NGK1Kkr2Sp8+fSL6NfbExq2uKmwwSk11rWRl6dledAgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCLSBQIsDubZsjwYi00ZplVI9jr03LyDVHwUkuF0HaPayRZ1W2fUv0fCmVlSt0aq7KeM9kqZVUFOHaDA329OiWTJRxwoEyjSEa6/fcg3iarjaCeKWt7IN+tJ7Buh77UivZByl74f+Gsbl7dBKVCZHAAEEEEAAAQQSW8DCspuXFTRo5Lp5W+Xbr327Qf9YPa677rq6YO+kgyJGsXkfc8cxEf14ggACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAQEsFWhXIdRaqwcjUQV7xnqyh2d4iVe8GJLBGh9S0tEk6nQY4/V9qmHONBjsXacXccR5JGaXhXK2K6uuhC9Q8Jl0CCQT09SrUIO66gNRopePaZUEJbGiDiri2imlaCHekVmM+1ifpk/e9/gm06jQFAQQQQAABBBBAoH0Epk+fLhXbq6RWK9mmpNX9bKks2yvHHNO8EK0T7F2+I6KRNk+bty2DDgEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgbYQaH0gd18rfHkeyTrKJ77eHtn7gVZH1SCtFLWyiRUiAQ13VlkwVyukVo8JSOpIrZA6TAO6/TziSadMaiuFWzV5cK++LgV6W6ch3NX6mq8ISnCbzrK6VbPdP3Gehr0neST9aK+kj9ZKzLze+214hAACCCCAAAIIdAGBU045RdYu3iijDx3urO1nby6Wc465uFlrbqHb8q2VEcHejcu3NjvY26yFMjICCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAQJcTaLNArsl5MjyScci+UO5ArZY6T6vlbtIBta101YBnYL3eNmrw83O/VGsg1zfCI6lDNZg72CspGgYWXyuXweRxCQT9Wg13j4ZwN2kAd72+HhqWDqzVIG6hTq6Vctuk03elV68onHq4VzKmawA7X0siUxW5TWiZCQIIIIAAAgggkEwCt912m3z9irOcQG5tjV88AW+LgrQnn3yyrP1Sg73T6oK9FvK94uTrkomCtiKAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIJLhAmwZynXXV4GTqQK/4cj1SNVBvGsr1L9kX2GwthgY+gzs137tTg6Bfaii0vwZzhwUk5aB9wVxdnq+7hnMJb7ZWOnJ6dfcXq/lWvW3UIO6GoPjXaf52m1ZB3hs5amufeXqKpEzwSNoRWhV3rFe83aiC3FpTpkcAAQQQQAABBJJV4LDDDpPaXQEpL66QrWsKJD84VKxfc7vbb79dzr3ybCeQW1VRJZs+3iE3vnRjc2fD+AgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCMQUaPtA7r5FebM9kjnNJykamq3S0Gz1J1pJdZ0GOKtitqV5Ayo1EKqVWQNrRWpyguIbFBTvEA1zDtJwrgaCbbleDQV72m0Nm9fcZBs7qFWN/UUawNXQrX+rhnA36f1GNd+sr2FZO6xNhuaoh2sQd7pH0qdQFbcdhJklAggggAACCCCQlAI/+clP5K9P/5/T9ofu+UWL1mHGjBlSvdMvFSWVMu+lz8UCunQIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgi0pYCnurpaE5bt2wUqg1K9Rm+farBzUUAC23V5/nZYphVTzdZg5wCtlDtIxGf3+RrQ7af3vTWgm6kjUHA1Ory+C+x18lv14QK9325BXL1t3lcJ10K47fFO8dnrpUHqSVoRd5pX0kZoiDqDFyn6i0RfBBBAAAEEEECgawrMnz/fWfHDDz+8xQD33nuvPPavv0jxxjL5+9//Lq2ZV4sbwYQIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAp1WoEMCua6ef4+GcpdptdwvNJi7NCjB3TqkPUKe7gK16qqnT10w16vBXF9fvdlzDef6enbxgK4FcCs0cKuviX+X3jSI69+h/fYFcYO7FHGvC9kO95aN7q1B3PFaFXeyBnHHecWXRxC3HaSZJQIIIIAAAggggMA+gXnz5skRRxyBBwIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAm0u0KGBXKf1AdEKrAGp+iogNYs1BLpSg7lFOqQ9g7m2YMt6WvVcDeV6++p9H73vpeHcXhrO1SCot4fed9fqrOk2cufrglValLgkKIEiNbcQrt4CGogOaBA3UFB3L+1VBTec04K4eeo+xiOpEz2SPt4nKfqaiDd8JB4jgAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACySPQ8YHcfTbBWg3mbtVg7hIN5i7RgOgqTeR2RDDXfW0soJup4dCemgXVUK7X7jWY64RFc/W5hnO9OdovW+/15kl1J0zs+2C1hmvLNWRbard9Idxifay2wUK936PDd++rTmwVcNs7CO1yuUHcURrEnaBVccd7JSXfK54UdwTuEUAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgeQUOGCBXJcrWCNSo8Hc6mUBqV1WF8wNamhUtJJuh3duSLeHBnUtlJur9901lJujgVwL52bpfbd99xbm1Zs3Q/vpzZumrfW1c4v9yqKVboNVGqyt1FCtBmqDldqvQh+X670GcYNa5TaglXCDJXavwzWM61Qg1vE6LHwbzqCVbz1WiViDuCnjtCLuOA3i9tcgbpIEnMNXhccIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBANIEDHsh1G+VUzC3QYO5yrZi7QoO5qzVIWqBDNbB7wDsL6mrg1sK4ojePVczNqgvkWijXk2mhXL23UK6Nl6rPNXDqVH+1CrB681hY1+ZjlWI1pOo81jsnJKvh46BVqrV7Dd2K3bSCsJkEa9RBq96aQ9AJ4+q9hXE1YOvcKvReQ7hiYVwN5YqN21FVb3VRMTtb/3xd9ZEaxB2rFXHHaBC3LxVxY3oxAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEklYgYQK5IUENpdbuCkrNGg3maii3Vm+BTZowtdBponcWug2FcvWxVYH1aTg3RdtvwVw3iOuEcvU/7R20JK7+c4O5dUFcHVarPWs9TiDXCdla0NaCuoneZesqD/GIb6Su/kivpI7QIG4vXR9bdzoEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEECgEwokXiA3DDlQqsHcjXXh3Nq1WjV3vVaB3akjJELV3LB2dvmHVhW4jwZxh2o13OEeJ4SbqqFcr1YSpkMAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQ6u0BCB3Jd/KAGcGt3ajB3fUBq12kwd0Nd1dxgkY6RDFVj3RXpTPdaDdiTp4VvB2s13IM0hDtMw7hDtRpuH6sI3JlWlHVBAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEGhdIikBu+CoEKoJSu9Uq5wbEv0nDuZtEAlu0ci7h3HCm9nnshnAHagh3sFbEHeyVVA3jpvTXariZVMNtH3TmigACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACiS6QdIHccNBAmQZzt2lA14K5Gsr16+OAhnWDu3WsqvAxedxigXSthNtbw7cDNHSrwVvfQJFUDeI6IdxuhHBb7MqECCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCDQaQSSOpAb/ipY5Vz/Dg3oaiDXb7cCDecWiAS1X7BEx6wNH5vHMQVSNICbq7e+GsDtq0HcfK2Aq2Fcu/msH5VwY9IxAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEuqZApwnkhr98wRoRf1FdQLd2e0CDuiKBnRrQ3aUB3d0a0C3SsXUcOhVI2xfA7a1h214awHWCuBrA7acBXLv18IhHQ7p0CCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAALRBTplILf+qgarNKBbqAHdXftvAQ3mBgo1oGs3De8GS3Wqzl5FN1XDt9l6y9OQbZ6I1249NXTbR28ayHVuNkxDunQIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAvEJdIlAbn2KoAZvA2UazrWQ7h4L5taFcwPFGswt0YCuc6sL6QYrdOpkq6Zrwdtu+8K33TVgm6uPu2v4Nler4PbQKrgawvVq8Na5z9bhvvpCPEcAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQiFegSwZyo+L4NaRboQHdEg3nFutju7dbmQZ0y/WmAV7nXgO6wUp9XKlz2auP9SbVeuuo6ropuiytYOvJ8IhkBsWTqY8zNVSbpfcWwu2mj/Xem2M3Dd5aCFfDuD671/GE8K0C0iGAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAJtJ0AgtynLoIZuNXAbKNdwrt32BXLr7i2Qq+HcKr3XmwVzg9X63A3oakg3qEFfJ6xr9zYvvUnAHtsD7bwakrV/erN7JzCroVunaq2Fb+2xBXDTNGir95Kuj+2mgVwL43otiKtBW7v3ahjXbs54Ni86BBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIF2FyCQ21bEVmG3RnO2VRrI1Xup1XurmmuhXLtZCNcJ4uq9E8qNDOQ6YVyvhmvt5gZxUzRVuy+Q63UDuTqcDgEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAgcQQs+knXFgI+rVCrN9HKtXWde98WM2ceCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAKJKkC91UR9ZWgXAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggEBSCBDITYqXiUYigAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCSqAIHcRH1laBcCCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAQFIIEMhNipeJRiKAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIJKoAgdxEfWVoFwIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAUggQyE2Kl4lGIoAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggkqgCB3ER9ZWgXAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggEBSCBDITYqXiUYigAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCSqAIHcRH1laBcCCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAQFIIEMhNipeJRiKAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIJKoAgdxEfWVoFwIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAUggQyE2Kl4lGIoAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggkqgCB3ER9ZWgXAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggEBSCBDITYqXiUYigAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCSqAIHcRH1laBcCCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAQFIIEMhNipeJRiKAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIJKoAgdxEfWVoFwIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAUggQyE2Kl4lGIoAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggkqgCB3ER9ZWgXAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggEBSCBDITYqXiUYigAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCSqAIHcRH1laBcCCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAQFIIEMhNipeJRiKAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIJKoAgdxEfWVoFwIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAUggQyE2Kl4lGIoAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggkqgCB3ER9ZWgXAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggEBSCBDITYqXiUYigAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCSqAIHcRH1laBcCCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAQFIIEMhNipeJRiKAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIJKpASqI2jHYhgAACbSnw3HPPydz5b0rR5hI577zznFtbzp95IYAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIdF0BKuR23deeNUegywjMnj1bnn7zcSnO3iYVA3bJnx67T5YtW9Zl1p8VRQABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQaF8BArnt68vcEUDgAAtY8PaXv/yl9BiTIUPGDZRxM0ZK6gC/PPzwwwe4ZSweAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEECgswgQyO0sryTrgQACUQXee+89Kc8skj6DeoWGjz1spMyZ94YsX7481I8HCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCLRUgEBuS+WYDgEEkkLgz3/+sxx1zrSItmZ1z5T8CXnyyCOPRPTnCQIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAItESCQ2xI1pkEAgaQQePHFF6U4dZf0HdK7QXvHzRgpzz33XIP+idZjxYoVidYk2oMAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIFBPIKXec54igAACnUZg0aJFGsbtGXV9uuVmSYWnXCzwOmbMmKjjdHRPa8tLL70k20u3Scm2Uhk9erQsXPW5ZAWz5cwzz3RuHd0mlocAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIINC0AIHcpo0YAwEEklRg5cqVMmrqsJitn3j8KHnvvffaPJBry33llVdk1KhRzrLPOOOMmG0IH/DDH/5Qgv0rpXRvsXzw1Ocy7fyxkpLmk27pOfLkKzvF4/FIvPMKny+PEUAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBA4P9n7z7g5CjrP47/rqX33khIoYaaAJEaQJBeRQUEKVLFAoKiAiJF/hYQAUFBQDqCgEpHkQ7SQ5EaSigphPR2yeXK//k+ybPM7W2Z2du727t8nlc202eefd8+M8/M/OYZBBBoWQECclvWl7UjgEAbCijY9uC998iag8FrD7Qnn3zSjj322KzzJJ1w0kknWdVgs4UNc+y/9z3pF1cg7V577ZVzVQrgfXbqU7a5a633o5dnWv8tuljlyFprWF5v4zYaZYtnL7VLr/m9Dx4Ogb45V8hEBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBVhMob7UtuQ3NnDnTXnjhhdbcZMZt1dXV2VNPPWXz58/POL0tRpZinnI5LFiwwKZPn27V1dW5Zms0TfNqmdmzZzcazwACLSEwdepUq3SBsblSvyF9fAu5ueZJMu3++++3B1+41+Z3mmmD1u9rXUeZ/1x69e9N+cmWtNxvr/0/GzGpn838ZJYtWDrXRm03xMq7lNmylUvs408+siGjB9nKXovtmmuuybYaxiOAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCLSRQKKA3HfeeceuuOIKu/baa/NmV69s17y33HKLn1cBnKNGjbJtt93Wbr311rzLt+QMF1xwge288872pS99yerr61tyU7HXXYp5ypX5iy66yEaPHm2XXHJJrtkaTVNrpVrmm9/8ZqPxDCDQEgL6vQ0Z3T/nqnv06W6L6xflnCfuxAcffNBuuPca2/aACT54VsspiFafFT0X5dxvvvTSS/bGh69Y/7G9rHrhCus5vKt179fFyirMOvesspmfzbClS5fahluva/c/dq+99957cbPFfAgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAq0gUJlkG127drWTTz7ZL7LNNtvY+uuvn3Xx3//+93b11VfbwQcfbIceeqjV1tam5k3SqmpqoSL2LF++3K9NAW4KyC0vTxSXXMScfLGq1siTAqHfeust22uvvWzSpElfbLwZfaUS0NyMr8CiJS6g4NOHHnrIxo4d63O6++67x8rxjBkzYs3XvW9XH+A6bty4WPNnm0mtfy+pmm/jx6zbZJYNt1nX7rvuXhtx+QibvWSWLZq1xHbbbTfTNvVRMO+g9fpal+6dbfHny2zYVn39OioqKqxz905Ws3SZayX3Y9tg/Q2s37rdfHCvgvhJCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACpSGQKCB35MiRttNOO9mjjz5qd9xxh5155pkZv4WCS2+77TY/TcG4SgMGDDC1Ajlt2jTbY489/Li2+u+MM86wzTbbzLbYYgurrExE0GJZbo083X333XbnnXfa8OHDixaQ22IgrHiNF3j//fftj3/8oy2qXWCzln1i3d/o5U0+/PBDO/HEE2P59B3SJ9Z806dP94GxsWbOMtO//vUv2/jQURmnzvl0ri2w2Xbjw1fb4DED7ON3ptuLL75oI0aM8OXx1U9fskm7rW+fvTPfGirqrfeI7qn1KCi3snOFLVgw348bOnawvfDUC6np9CCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCLS9QOJo1COOOMIH5N54442mINKysrIm3+I///mPLV682Hr27Gm77LJLavrGG29s+rR16tatm33ta19r62w02n4p5qlRBhlAoBUFPvjgAzvrrLPsrfmv2MgNhtmIzYfYorlLfA5uefAG36r18ccfnzNHCugdOWlYznk0sc+gHnnnyTfDlVdeaVM+esEGLqiyTz6rtYEDB/pFBg4YaB++/rG9+8Z7Nnxif7PaGqteXG09hnaxT5a+a58tet/ueXqe9RrZxWobam3Oh/Otc6+qJpur6lJpSxcu8+P7Duptby6Z1mQeRiCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCLSdQOKA3H322cfnVq1UqsVbtTKbnm699VY/SgFz0RZo9Yr12bNn22mnneZbhowuN3fuXHvsscdMrUx+8skntuOOO/rWeLX+EPS7dOlSHwRcXl5uv/3tb00tR4akVnv/+c9/2iabbGJHH310GO27l156qSnA78gjj/Qt477yyit23XXX2UYbbWTHHHOMn0fbP++886xHjx72i1/8wm655RZ74okn/HLrrbeeHXLIIbbDDjs0Wq8GGhoaTK+qVxCy8t+vXz/7yle+Yocffrjfxv/+9z/79re/nTcQOVOetP5zzjnH5s+fbz/96U9N8/z73//2LWuqtWIFOx922GE+OFHzZkta5r777rNnn33Wz6K/z1tvvWUKAk5/7b3m1Uf57tSpk02cONF/n0mTJmVbvS1cuNC3ZKr162+1++67+2VGjx6ddZn0CfX19TZlypSU41prreW/n1pkVuvKpDVL4PHHH7dn3n7S9jx2svXstypgNnQlcdP919nYsWMbBfynC6nV2wn9xqaPbjLcs193X84nT57cZFqcEVdddZX95je/sX5jetjC5fNsZU2t1c+rdd2VpscVnv77FBuz6wDrt3Yv++CZ6fbZrPk2fEJ/W3entayqW4XN+3ixdR/Y2RqszpbMrbZ+45oGCCsgd1HdMlu2bJn3mL9sns/zmDFj4mSReRBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBFpYIHFArlq9VbCpWsj929/+1iQgd9GiRXb77bf7bB988MGNsn/99debAnkVMKtXtYf00Ucf2YQJE3yrumHcww8/7Ht//vOf25lnnun7FUB6xx13+KDeo446qlGQ65///Gc/bdCgQaZpIYi3trbWB7Wqxd5TTz3Vr+fdd9+1K664wvbbb79UQK6CXjVOy8+bN8+uvvrqkBV76qmn7JprrrHLL7/cjj322NR49SgwOOQvTLjzzjvt73//u1VXV5sCCxWgm69l4Ex50vr0vRTELPdf//rXYRP2zDPP2F//+lcfwHzTTTelxmfqee211/x3C9O0rD5aZwjIVWDxCSecYH/5y1/CbL57//33+0BleXzrW99qNE0DM2bMsPHjx/s8hokK/lV68sknLVcgb5hfXbWGKstoUl7093j++edt2LD8LZ1Gl6W//QoouP3hlx60bQ+YkArGjX6b4esM8YHw559/fs6AXAXhT7D8Abl9XIuzn376aXQTsfu1X7jxvuts/op5Nmqt/tajb3e/bK0LyrWyBnv9+TdtWd0SF4w7xj6fOt8WzF5kIzYZ7INzw0YaVpZbj2FdrapzlS2attzW3mlV67phurp6CKGqa4VVL6/2gfS9B/bwDy4QkBtVoh8BBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQaDuB8kI2/c1vftMvdvPNN5sCXqMpBGMqAFWt1eZLCxYssH333dcH46pl1QceeMC3lHrhhRf6Rc8999xUgK+CbDWvkgJKQ1IeHnroIT+o4FW17hqS+hWMu84665haXc2XtLyCTxV8q0BWBbtus802frGf/OQnvjXYsI5//OMfqWDcH/zgBz4A9bnnnvMt7D744IM+GDfM29yugnG1DQWnat2HHnqoX6WCnxX4mispAPrtt9/2gcGa7/TTT/fDL7/8cmoxtUwcgnH13V9//XVTULSCm5XUkrBa50xPah1UgcfBS4HIatVW6atf/arNnDkzfZEmw9puCMa95JJLfEvA+h2pxVL9PQ444ABT68ikNUNAZXva51NtxLpDs35hTXtt6qs+wD/bTGppOz0t/HyRffTGp/7z6mNv+u78zxbkXE/6OsLwI488YtfdfY2NnDjQevTvZgPG9AmTrLJTpXXt0dk+/t8sG7jhqiDdudMWuVZw662qR6V9/t4C/5n2/CxbPm+ldelTaXW1dVa70E3vWeEDjlMrW91TXlWeKoO9+ncvKM/p62QYAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEECgOAKJW8jVZnfYYQffcqmCJdV67I477pjKzW233eb7jzzyyNS4XD233nqrvfXWW7b55pv7Fl/VCq6SWl1V/3e+8x375S9/aV//+tf9+F133dUHzKrl2eOPP96Pe+GFF3zQ7fDhw02vqVcLm6FF2hC4q9Zw46Zrr73WDjvsMD/7+uuv71vv3XDDDf02FNgaWn39/e9/7+dRPkJAqUbou/Tu3dtOOeUUP70Y/6l12ug2FPSqgFn9DRSku/3222fdTN++fU0ftYirpNaJ01vWrKystN/85jfeXcZK6623nm255Za+5WEFNctZQbLp6ZZbbrHddtvNj5bXdtttZ1tttZUPGLzhhht8AHD6MmG4vr7eTjvtND+o34KCeJXkrW1vu+22PkBbf9MQjO1n4L8OKzBt2jQbOLqfLateZtUuCLxmaa0PRK2s7+S/88LPF1vvgT2tx4Bupt/XEUccYWuvvXbKQ8uHNHfuHL+s9iXT//e5zfzkMx9A3r1fF5s7Y771H9bXPn5lts3ttsTOPvtsvy/T8tH1jR492q9OrXsrheGnn37aKgfUWtcBVbb486XWuZcLqq2rs4qKCj+f/lv8yQrrv1F3W+Smf/7eIqvs0WAfvzjLt+BdVl5m1QtW2MoFqx5qqFmx0i+n1qpVLtQqbmjpWxPUX+1MQsoUcBym0UUAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEGhdgYICchW8qVZXf/WrX/nWa0NAroJD77//fv8NDjrooFjf5MUXX/TzHXfccT4AN7rQIYcc4gNyFbCrFlK7d++eCghVi7gKXFOQmoI1ldS6qrar1l5PPvlkP+7RRx/13S9/+cu+G+e/Pffcs9Fs48aN80F4CshTwK+SWuUNwb5quTY9KUi3mAG5aiU2mvS9999/f1MLtcUIzJNPJqOuXbvazjvvbP/85z9T3z2aDwUnh2DcMF7ByKeeeqp997vf9a3dhvGZujJVsK+ChUMwbpivT58+9o1vfMPOP/98vx4CcoNMx+4+8cQTtt5hg+3Djz6wz6fNtyWfVfvg3J69eljn3pXmA3KX9LT6rjV2279usdruy61qWVdT0PpHH31kdz1wRwpo5twZPgB36Rs19un/PrPynnXWpW8nq+9bZr1cC7YLZs63FSuX2/QFn9olf73QXp/7gi2ct9h61Pe1lXU1fj0bbL6OLVu8wge/1y6tt2EjVrXcO/WV923lBtU2bfqHtnSOCx5eXu3nLy8r9wG1KjsKtl30qZs2a6Yt+XC5Dd2xp2sBt9yq59VYzZI6P39FnzJTcK659nPVr1RXX7eqlVw3WFFe4fdzFa6F3JB6D+wVeukigAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgiUgEBBAbnKt4JlFZCrFnF/97vfWZcuXXzQpqYpoHXo0Oyvm9c8Iem170onnniib6E1jE/v/u9///Mt0/br18+22WYbHwyr1mo32GCDVBDwHnvs4VtnVcuxS5YsMQXEhfVvvfXW6avMOKzAUG0jPW200Ua+xVcFASu9++67qVlCi5mpEa5HQcshn9Hxhfavs846TRbVd1dSa5rFSAo2VuDts88+a++8844PQFy0aJEPmM22/s022yzjJLVwq6R15UqvvPKKn6ygXLXIm55Cq6QhcDt9OsMdT0BBtb1n11tlp0r7+G3Xou3cldalT6U1dKqzPoO6W9dhlbaiYZl1Gmi2ZN58+/sDd9r0t2b7YH0F8/79gbus14DuHmalrbDKruX28eszzDrX2+Dxfa28stwqu5S7Fmg727ypS6zM7QW79aly2+hkb86ZYgN7DrYpz39g82bNt859q+ztBa9Y9ZLl1rtHb/vszYW2srbGj1/8QbWNX3+YrazuZJV9yq1m5QofRNvgimNdbZ116rS6Rd+Pq61b31XBt73W6mq9R3W3jx6bbcsXrPpeVb1dXlyelNTvYu39eurNBeW6dSnAVwH45RWrgnU1n1oIJiGAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCJSOQMEBuQoG3XzzzW3KlCm+hdq99trLbr75Zv/NDj/88NjfUAGfISmoN1PStmpqVrVWqelqkVWt0+ozYMAAU7CmWsatqqqyvffe25566in/GT58uA8mVYCwXlkfJymIN1PS6+OjSa23hrR8+XLfem8YDt3PP/889Da7m759rVBBesVKstxnn31SwbcKTB4yZIiNGjUq1RJwpm2pNdxMqUePHn50aFE40zwaN3fu3NSkbH9/zRDWl5qZng4rMHLkSOvXfYAPoB06usHqhtdb/cpVgfCdVnZ2Qar17uNax16+0gZ1G2xbb76tjTxglP+tbrfddq4F3M726tsv27tPTrMq6+yd+g/qZ/UNdTbvvSVW1bXCyqvKrHu/rta5e5XZYLOln9fY8oXLbGC3MTZ80Gjru/5atqT/UuvUr8rGbbi2ffTxR1ZV0cmG1S3x2+nUt9L+c/ejLg8N1rO3C451RbFTVScfQKsNlnUus4qKCqtygcSDN+ppalm3qo8LD3Yt5i5oWOoCbt3X67mq5duVC1d9H30n3++mqWz7IFzXcm4o53UrXXTu6t3TojmLzQZ12J8AXwwBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQaHcCBQfk6pseffTR9r3vfc9uvfVWUwuyCupUIKdaqo2bJk2aZGrR9o477rB999031mK77LKLnX322fb4449bCIxV0K3Srrvuaj/5yU/8OkOrsgrgLXYaNmyYDRo0yLciq6BkBQJG0+zZs23q1KnRUSXdf/rpp/tg3P3228/OOuss//cMQcAHHHCA3XfffRnzr5aLM6XQgvDkyZMzTU6N23jjjX2/gq5fffXV1Hh61lyB0aNHW//uXazbwM621tCRHmLprOVNQF6f8a5tsvYE++GJp5mWUVp77bVtp5128i1j337VXTak/zA/vv+Og6xmSa3N+HiWffbpbD/OGqqsbKULmB3Wx3pXDfdlWOvROqJJ40JLzRoftjW013B74N07bNTw0fZSxfvWtcsXQf8KxlXq4gJ6e4/sbhU1nWzRxzU+ELfWBeBWVVZZVf8qW+Baz61b0LAqwLiszPdrOZW9ivJVAbsaVqqvWxWUrP4Fs92DDATkioKEAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCJSEQLMCcg888EAfkHv77bfbuHHj/Bc65JBDYrdGqwW22morHzz7yCOPZAzIffvtt62urs7Gjh1roQVVtcyrwF8tE14L/+Uvf9lvX4HBCpS95557bOLEiX5cmOYHivjf9ttvb3feeacdf/zxvkXevn37+rWrNd8krQQXMUuxVrVw4cJG8y1dutSee+45P+5nP/uZbbLJJqnpK1eutCeeeCI1nN7z5JNP+qBkmUfTvffe6wcnTJgQHd2kX38vpbfeestmzJhhCnSOJrWgO2vWLFNLvCNGjIhOor+DCmyzzTb2yLv32Tbrb5H6hgP6p3pTPf+95xX75hnfTAXIpia4np133tkPDujvWtpVWr38qPEjbNobn64a5/5fMHuhLZm/1M+vQPRsKQThRqcfccQR9p+T/2XL5660ngO724rFtdatz6oWecN8ZVUNtuiTattgh6E2f9pi1wpvta295XCrXVznZ+k1YLm9N3+Wb1m3U7cqq+xd7lvETQ/GDeujiwACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggUJoC5c3J1sCBA00tqipdcMEFvnvooYf6btz/Quu1V1xxhV177bVW715Hr6Qg3IsvvtgHh+6www5+OKyzsrLS9tlnHx8IesMNN5haWR06dKifrNe7q0VXtWipVneHDx9u6667bli0qN0LL7zQB/+qJVzl4ZhjjrHvfOc7tt5669mjjz7qg4aLusFmriy0Jvzggw9adXV1am3du3f330Mj7r///tT4FStW2LHHHutbzk2NTOtZvHixDz4OQb76u1155ZX217/+1c8Z/r5pi6UGFVj9la98xQ+Hv2mYOG3aNNPfXgHYt912WxhNt4MLKNB10Qc1tnjekqzfdPrUWbZ2r7GWK9h+rbXWyrj82i4oN3w222l8xnnijFSQ7uF7HWkfvzjblsxdZsvmflGmamtqfaDviPGDbM5bq77HyC2G+FZyVy6ttYHr9PWftScN9a3orlxa5wNxq/qUW+2Set+fnof6unrXCm/X1GgC1FMU9CCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACbS7QrIBc5f5b3/pW6kso+HXrrbdODcfp0fwKxlU64YQTTEG+e+65p40aNcpOP/10P/6yyy4zBY1GUwji1Lj9998/Osl233331HAIGE6NKGKPvq9a4t1ggw1SwcFXX321LVq0yK677jrbdttti7i15q9q0qRJfiVPPfWUb3E26nbUUUf5aeecc45vcXTvvff2rdXecsstGVsgDbnZYostfPCx/m5qMVgt5X7ve9/zk9XiaGipNMyfqXvjjTfaOuusY6+//rpvBVf51LoUSB2CnRUYTFozBMaMGWP77rKf/ffulzMG5SoY96MXPrMzzzwzJ4jWkyuoN+fCMSced9xxdtieR9pGYza22e/Ndy3uLvKf6oU11tm62oTtN7WuZd1t3keLrHv/LtZrRGer/rTOD1cvWGEK3FUrutVza2zlilrr3LPSVixY2WTrelChZtlK67+6xd/p731ukydPbjIfIxBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBNpGoNkBuQqMVSunSgqaVAu1SZNalr3qqqtsl1128a2xPvzwwz7AVS2jKuA1U6u7O+20U2ozWi6aFMwZ0q677hp6U92KigrfX1VVlRqXL99qlVcpLBsWVB5fffVV3yLvrbfeag888IC99957Ps9qYTZuCuuN5im6bJieaVzIW3Rapv7DDjvMFCSroFmlJ598MjWbAnE1TX/L6dOn27/+9S8bMGCA3XfffTZx4kQ/X6btKHA3tET83HPP+b+fWgs+99xz7YwzzkitXz3l5at+bunfsW/fvt5NwY0Kcp4yZYppXUqnnHKK6ffQq1cvP8x/a4bAkUceaev32dT+e8/LNuO9WT6wVsG1bz//vg/GPXT3b1mmsp2uM3/2wvRRGYf1uys0HX/88T44eN57y6xXpz7+M7D3YBu79jgbOGCgbXvgBFv84QofsDtyk6G27vhxfvjdxz6xqU98agN6DrL5HyyxivIKG7xOP1v46bImWamrrbeqsk7WrVs3P618fpUp4JiEAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCBQGgJlNTU1DaWRlVW5qK6uthkzZtiQIUOatIpbSvlUXtTS7Jw5c2zcuHG20UYbNcqevodeKb948WIfoDty5MhG09tyoK6uzpYtW2YKjO3SpUujrDQ0NPiAXAUA62+QL1A5LKzlZs2a5QOWQ8BvmJa0O3PmTNP6tP0QxJt0Hczf/gUU2H755ZfbzBWfWN/BvWz6jOk2qPNw23y9iXbSSSfl/YJHHHGE1YyZZyPXzx1s+8A1j9llZ1zZ7BZnN/nSxrbdkZtZz76NW/NWRj949SN77pGXbPzmG5rb51rNnAb79LVZtuWWW/rt/vj/TrXtTtrIlsyotjcemmYTjx7b6PstXVBtvcr62uabTbAZ739m5e/0suuvv77RPAwggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgi0ncCqZl/bbvtNtty1a1cbO7ZxMFqTmUpkxAsvvGCnn366b1VWrcROmjTJB7A+88wz9oc//MEH466zzjpWSsG4olOwbWjVOJ1SAbgKJE6atNzQoUOTLpZx/mKtJ+PKGdluBBTofvHFF9uDDz7o86wA3d13390HwMf5EjvssIP947Wb88664LPFvmXmvDPmmWGvnfa2/z7ziE3aa/Mmcw4aOcD62CDba/xBNnXqVFtn83XMXOPd4fv87k8X2fxPFlnXnl3dPqTcli+qsS69Ovn1KIB++cIVtsH4VeVSwb27b3RAk20wAgEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAoO0ESi4gt+0okm/5qKOOsuuuu87eeust22233ZqsQC3FXnvttU3GMwIBBOILKGi1kKSA3o9vn2EbbrNuzsWXzq+OHeSba0VHH320vfzjF23Wh7NtyOhBjWZ97v5XbM8d97bvfve7jcaHga/t9XX7y6NX2Ho7j7R+I3vYZ6/Pt1HbDjYfjLu4xnp07WWDBq5aZ/mKzjZx4sSwKF0EEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIESECgvgTy02yz06dPHnn/+eTv//PNtp5128q3OquXZyZMn26mnnmrPPfecbzW33X5BMo5AOxYYNmyYzZ+1OOc3WLJgqa0zLHfAbs4VRCaqNezvH3OyffDsDB+Uq0la/3tTplnl7O727W9/OzJ3415N676sn302dZ71HdPDZr+x2KoXrLC6lfW2ckmtDew30C+gYN/RvdaxPffcs/EKGEIAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEGhTgbKampqGNs0BG0cAAQRaSGDjL423PU/ZPuva33x2qm3Vb0c766yzss6TdMLFF19s/33nCVtUNtc6W1frbQPt63sdbHvvvXfOVWm5P95+mXUfW24LP1pmK2yZjZk8zMpXVNnokWPMlpXbsg/r7Vt7fzvvunJuiIkIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAJFF6gs+hpZIQIIIFAiAkN6DrOlC5dZ997dMuZo3oz5NmTDIRmnFTrylFNOsXH3jLN77rnH1l13Xdtnn31svfXWy7s6LTdjxgybtniqvdn1dat9u9JmvTLfxq031pbOXG6z3pxvP/72GQTj5pVkBgQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEECg9QVoIbf1zdkiAgi0ksBpp51mU+Y9bVvstmnGLd71+wft3useihUwm3EFRR75zjvvmD533323z5P6uw6vsE713WxIr2H2ox/9qMhbZHUIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAALFECAgtxjLtA++AABAAElEQVSKrAMBBEpS4O2337btdt/Wvv3rrzXJ3+yP59jrt02zF198scm0Uhqh77D++uuXUpbICwIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAQJpAedowgwgggECHEVAga5farrZsUXWT7/Tuix/Yfvvt12R8qY0gGLfU/iLkBwEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBoKkBAblMTxiCAQAcSOOigg+zt599r9I0+/3Suldd0svHjxzcazwACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAAChQgQkFuIGssggEC7ETj++ONt5YwKm/PpPJ9ntZb79N9fsgkjJ9mBBx7Ybr4HGUUAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEChdgbKampqG0s0eOUMAAQSaL3DHHXfYzf+6zhp6rbCyFRW26M2Vdtlll9mGG27Y/JWzBgQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgTVegIDcNf4nAAACa4bA3/72N9Nn/PjxdtBBB/numvHN+ZYIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAItLUBAbksLs34EEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgQ4tUN6hvx1fDgEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgRYWICC3hYFZPQIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAxxYgILdj/335dggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACLSxAQG4LA7N6BBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIGOLUBAbsf++/LtEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQRaWICA3BYGZvUIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAh1bgIDcjv335dshgAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCLSwAAG5LQzM6hFAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEOrYAAbkd++/Lt0MAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQaGEBAnJbGJjVI4AAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgh0bAECcjv235dvhwACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCDQwgIE5LYwMKtHAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEOjYAgTkduy/L98OAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQKCFBQjIbWFgVo8AAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggg0LEFCMjt2H9fvh0CCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAQAsLEJDbwsCsHgEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEECgYwsQkNux/758OwQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBFhYgILeFgVk9AggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggEDHFiAgt2P/ffl2CCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAItLEBAbgsDs3oEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgY4tQEBux/778u0QQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBFpYgIDcFgZm9QgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACHVuAgNyO/ffl2yGAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIItLAAAbktDMzqEUAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQ6tgABuR3778u3QwABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBoYQECclsYmNUjgAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCHRsAQJyO/bfl2+HAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIINDCAgTktjAwq0cAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQ6NgCBOR27L8v3w4BBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAoIUFCMhtYWBWjwACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCDQsQUIyO3Yf1++HQIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBACwsQkNvCwKweAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQKBjCxCQ27H/vnw7BBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIEWFqg466yzftHC22D1CCDQQgKffvqpLV261Hr27NlCW4i/2gULFthrr71mn3/+ufXq1cuqqqriL+zmnD9/vr3xxhs2Z84c69Onj1VWViZanpkRyCRQXV1tH374oXXv3r3Nf1MNDQ32/vvv21tvvWVlZWXWu3fvTFnOOk7Lv/vuu6ZyH6eMJS2Ty5cvtw8++KAkrLIiMAGBGAKlVO6V3Y8++siX3b59+yY+NtbX1/tyqf2GjqulcLyP8SdgFgTaRKCU6sXLli2zKVOmWG1tra/XJgVZtGiRvfLKK34xlXvVG7Kl5tYvsq2X8QiUqkCpHeeL4dRS+68VK1b4c49p06ZZt27drGvXrsXILutAoNUFdL1oxowZ/hy6vHzNalsi6Xl9R9xHtvoPjg2WhEBH+i1zXl8SPyky0Y4EOsJxf+bMmfb666+brg3oemBz6y9z5861V1991dfpVa8nIdBRBFrqXLhQH51zLF68uGSuwXek+lChfxOW6xgCrXlsb+51+VIRL7X9Y6m4dNR8tOb+vlTLSJJ76aGuXVNT4++/5bp/1ta/mTXrKmZba7N9BJzAPffcY/3797dOnTrZ//73vyYmunF/wQUX+OmaLz3V1dXZOeec49cxZswYGzVqlO/XMrrAlzQdcMABflvKz2effdZk8Xz50QKXXnqpDRo0yLbbbjvbaqutbK211rJ77723yboyjVAQwRlnnGGDBw+2bbbZxrbYYgt/sqPvqG1H03vvvZfKq/Kb/vn444+js9uIESOazBOWufXWWxvNy0DpCMybN88OOeQQ/7dTN1N68803beLEiX6eK6+8ssksCu7W70lBrxtttJEPYN1+++19UFyTmfOMeOGFF1K/ox/+8IcZ586XH1Wct912W9twww1tp512srFjx9pXv/pVf1Eu4wrTRv7yl7+0AQMG2MYbb+zLmILWzz//fFu5cmXanKsGk5RJXRyUjYJ8o1YaT0KgtQRKrdxfcsklqXL/j3/8IyNDvnKv5XQcWmeddfzxUeX229/+tin4PU7SQy6bb765bbDBBn6/oeP9pptumrHuEF2fbtqH45/mj6bnnnsu9b3C8TC9e/fdd0cXoR+BFhUopXpxrrITEPLVixVIq+O7yrvqxSr/Ko+PP/54WEXOrh7c0TFZx3x1VdffbLPN/I28TAsmrV/k229l2gbjECiGQL6yo23k+322dv0+Tt0k2MTZf4R5Q7c55/Vxzk8effRRf86hcybtT4YMGWLnnXde2DxdBFpcIE4ZylcPuOuuu2y99dbz14tUJ1ZQ+be+9S3T8TZpilO/z5Wf66+/Pms9evTo0UmzY/muxWmFSc7ri7mPTPxlWACB1QJxyn2pHe9z5SfpdehMP4Qk5/XhPD79HF3D0evY++67b9b9keZNvw6QKV+MQ6DYArnKkrYV53ygmMf9OMfZbMf95pQxXas/6qij/D27HXfc0V/LnzBhQtZ7Evn2m2+//ba/BzJ06FCbPHmyqat7HroWQEKgrQSylZ2Qn3y/6+acC4dthG6cc/F8+x9N/8UvfuHvs6+99tqmj+7Na5ymxUn59oHRdcTJM3X7qBj9bSWQrywrX/n2B8U8tuc7py/0unycMpnvb5Ct3pH0flwx94/58sz05gsUo4wUc3/fUmVEUtl+45kUM53PRsf96Ec/arRYknvpCu5XXnS/XHVtXSscOHCgaV9TqokmKEv1L0O+OpzAkiVL7Mc//rFdffXVqe+mYNRoUss1Rx55pD3zzDN+tJ7ES0/HH3+83XDDDf7EWzf8dXC+8cYb/cmBnmhQkF7cdMstt9h9992Xmr2Q/DzxxBN22mmn2fDhw+2EE07wN0b+9Kc/2YEHHmhTp071O8TUBjL0/PnPf7bf/va3phsYhx9+uL+ocNVVV5kCEBcuXGi/+93vUkvNnj3b9++5557+pCg1YXVPjx49UqN0oqT5FcCoG5Dpady4cemjGC4Bgccee8wOO+ww/7dTdtKDzPUb1e/rBz/4QSq36fOo8qIgNiX9NvW3VnDp5ZdfbltvvbUPZtPFqzhJTySpTIaUXkbi5Ef5O+644+zFF1/0QToKyP3b3/7mT1R+/vOf24UXXhhWn7H705/+1C666CIf1HPmmWf6J+FvuukmO/fcc2369On2xz/+sdFyScqkbgwoCF7p5JNP9hUXXTxQpU0371966SVfhhptgAEEiixQauVeLVFHTwgKKff//Oc/7etf/7o/tqk8KeBdx24dr1UfuO2223Iq6uLB1772Nd/Ct04udNx75513/P5CF/IVtKeHXzKl008/PbUPTb9oqIdnvvOd72RazP7973/74zYt1GfkYWSRBUqxXpyr7Ojr56unq7ztuuuuvmVcBd/vvPPOvkzpAr7GP/vss6bymy3phr8uIqj+quUV0KuH91QH0DFZLWXrgZ6QktQv4tRXwnrpIlBsgXxlJ87vszXr9/r++eom6Ub59h/p82u40PP6fOcnWrfeWnPQQQf5ln2+//3v+3N1nUMpIHeTTTax/fbbT7OREGgxgXxlKE49QOe8Rx99tP/96ty3X79+9sADD9hf//pX0zEzXDeL8yXy1e/j5GfWrFl+UzpGd+7cudFmMz1M32iGtIF81+I0e5Lz+mLuI9OyyiACsQXylftSO97HyU+S69CZoJKc1ye5jr3HHnv4B/fSt6l9ma47dOnSJX0Swwi0mECcspTvfECZK+ZxP99xNt9xvzllTPe5br75Zn+9XQ8RKRBHw7rv9dRTTzV6c1a+/abeZKcGPnSP8Oyzz7Z1113XHnnkEbvmmmvsS1/6kr9OqLcCkhBoLYF8ZUf5yPe71jyFngtr2fSU71w8zv7nmGOOMe03dJ/s4IMP9pvQOYcawVJrfX/5y1/SN5sajrMPTM28uidfnqnbp4sx3BYC+cpynP1BMY/t+c7pm3NdPl+ZzOefq96R9H5cMfeP+fLN9OYJFKOMFHN/35JlJNdvPJPiSSedZDo+pifl8eGHH/YPl4ZpSe+la92KbdMDat/4xjd8A1iKjdPx+/bbb7f9998/rLp0uq4Z3wY+GPAbaPnfgIvQ156nwZ2IN7inZH2/C3ZLlT93Q8GP0zzuxL0hzB/927gWYP08u+yyS4MLvk0t657AaHCvs21wB/YG1/Jeanx02fR+dyLhl3EtdzW4nZRfr9Yf5ouTH/fUUIMLxPXLuiCB1LKudT0/zgUepsaF9Ua7LhjQz+eCcRvchYXUvK4il/r+ymdYxgUx+vmffPLJ1LgwLb3rnhL28/7f//1f3nnTl2W45ctDJuM77rjD/830O3ZBa77fBaI1+vu5QFw/3p0cN+hvq/Ligt0yzvOf//yn0Xh3Au3ndwHfjcZnyksY97Of/cwvc9ZZZ/muO9A3WjZOfq644gq/rMp9WK97fWyDvoPyn57PMI+6rsl9P4/KqXtdTmp5d1G/QeVLyz///POp8UnLpAs69OtwFxhS69B2Xcsbfrx7iKDR+Gje6G+bctLR3Eut3LsglwZXkU/9/lXGXPBso3IQp9zvvvvufh3uol9qWR3nVJa1TtcifWp8pr+p6gqa79prr200n7uI4ccrD5mWcycifrqW1/FZ28s0X/o47Tu079UnejxOn49hyn2xfgOhnlsq9eJ8ZSdOvVj1U5VbF/zWqNy5FvX8+HzH1FNOOcXPl16vCXlzAXSN1pukfhFnv1Wsvy3rYT8R/Q3EKTtxfp9hnvR6c0vU7+PUTaLfMZTRJMfe5pzX5zs/Ud7cQ0F+f3Ldddel9huffPKJH6frBjrHiH4H+im3xfwNxClD+eoByo/m0e/VBcKmfq86jw71bPfQSmp8rvzHqd/HyY+O7zrOx73mli1P+a7Fabmk5/XF3Edmyzfj2U/k+g3EKffhd9qerucluQ6dySfJeX0xrmPrPEL7Kffgfqz9Y6Y8M46ynvQ3kK9sxzkf0DaLddyPc5yNc9zP5JCvjOlen8qg7nUtXbo0VQ51LUDj3RshU+Pi7DfDvQ/ti6L5cQ8H+fXpHlx0PP2U35b+DeQrO3F+1805F07/fvnOxePsf3SuofLpGnZqdE1c18c1TtNyXcfPtw9MmmfNH9ZZjOsf6dtnmP1EnN9AnLKcb3+g7RTr2B7nnL7Q6/L59iP5vOLUOzKtI9P9uGLuHzNtk3HFK//FKiPF2t+3ZBkp9Dee6fem+1s6rr7yyiupOmy4xhfnXrrul2t5nWdH1+/eKOHHa58THV8q/eUu0yQEEGgFgblz5/onfdVCbu/evZtsUa3BqpVYPTXrdsCWqYU6dyLvn8pT67HR6WoZVq/R0JP76a3hNdnQ6hE//OEP/dO1yk+mJ2nj5EetdqmFTrW2F22xy+08/St09JpMNR2eLYXXYruLGY1aGFGz5U8//bS5m4a+mfGwvDvx8b2DBw8Oo7J21SqQUtyWULOuiAmtJqDfklqBfPnll80FnWfcrl7HpJam9eSRXl2ZKalV5IsvvrhJy8juQOxnDy1cZFo2Ok6tx+opWP2e3cE9OinVHyc/4XeuJ9lDKisrM3dRzQ+qlZ9sKbT6c8QRR/jXV4f51NrFiSee6Af1ZFJIScukzJXU8l40heEwPTqNfgSKKVBq5V7HRJU7lf3x48dn/Kr5yr1arSwvL/etxg8bNiy1DrWkpdfLKamF22xJx3G1aqOn8g899NBGs6nVXB0bzzjjjEbjNaA6glrjdkG1vuX5JjPkGOECdnwdQi15prf4lWMxJiFQsEAp1YvjlJ049WLtz9QKvp7MjSa1dKukY3Su9OCDD/rJer1lNKl1XRdcb3paWG4hJalf5NtvhXXSRaDYAnHKTpzfZ2vW7+PUTYJTnP1HmDfaLfS8Ps75id6goxYBdO4T3R/pHFpv53A3Fv01h2h+6EegmAJxylC+eoALvPUtyamOqpZxQ9J5dKijR4+JYXqmbpz6fb78aL3uAVnfWq/q+c1J+a7Fad1Jz+uLtY9szvdi2TVbIE65L7XjfZz8JLkOnf4LSHpe39zr2Hprnu4X6HqA3jxGQqC1BPKVpTjnA8U87sc5zsY57qf7xSljevOUkq75V1VVpVZx6qmn+n69jjekOPtNtT6oeyS6JhBNerOOkt6iQ0KgNQXylZ04v+tCz4XTv2ecc/E4+585c+b4Ves6fPSauPo1Tikco/1A2n/59oHR2ePkWfNTt4+q0d8WAnHKcr79QTGP7XHO6ZXnpNfl45bJXH+DOPWOTMtnuh9XrP1jpu0xrrgCxSgjylGx9vctVUaUx0J/41o2mlwQrr+/pTfLbrjhhn5S0nvpIR5G573RNGbMGNNbrUJdPDqtFPorSyET5AGBNUFAr37PFUiqgFbNo+DabEnznHbaaU0m//e//7XXX3/dBzMqmDVf0g3/O++80wfSbr311j7wJ32ZOPlxTxj6xdQseHrafvvt7fHHHze9WicE96XPo6bJlXQRQXlyTzCZe4rDBywpaCndKwRS6mToyiuv9K/l0Y1GzatX9kRTOEnSzZu77rrLvyZ44MCBfl7lp6KiIjo7/SUgoNeqnnDCCaabbKrMZ0q///3vm/wu0ufLFDzrnoIx9+SMn1WV8nxJN7KVF6VLL73U5ynTMnHyo7KpYPtoYJ7WteWWW/pV5rp45lq/9vP06dPHd6P/6TspTZ06NTU6aZn86le/6l/Hc/nll9uvfvUrH0SoCpCGlQ488MDUuulBoCUESqncu9bi7Hvf+54/CdKDMe4px4xfOV+510366EX2sBK9okPHeaXoQyxheui6Jw59rx5Q0LHMtdBr7gk/f5zT8XKzzTYLszbqKohYJ4KuhWvr27dvo2m5BnRTQcty4y6XEtOKLVBK9eI4ZSdOvVjHzEzHTdUDlMKFhmyWqvu4lgAb3QAI84ZjvfYP4bXYSeoX+fZbYTt0ESi2QJyyE+f32Zr1+zh1k+AUZ/8R5o125ZL0vD7u+YluCCrpfDz9nFfn/kphn+IH+A+BIgvEKUP56gG65pOpjKi+rtfH6niZrU4c/Tpx6/f58qN16uL+qFGjbNq0aT4POm5vtdVW/hqT6tFxUpxrcVpP0vP6Yuwj4+SfeRDIJhCn3Jfa8T5OfpJch063SXpe39zr2HqFvfKr63nRgKL0fDGMQLEF8pWlOOcDxTruxz3OxjnupzvFKWPvvPOOX0z1g2jSNTrdP1MDACHwIM5+M9q4R3R9ekhPKVtjJdF56UegmAL5yk6c33Uh58KZvkOcc/E4+x/dV9Y9Zt0HUPB8uM+s8qxxmhbGZcpHvn1gdJk4edb81O2javS3hUCcspxvf1CsY3vcc/pCrsvHLZPZ/gZx6x3py2e7H1es/WP69hguvkAxyohyVYz9fUuWkUJ/45nEzzvvPD/6pz/9aWpy0nvpqgOr8RvFzKhRqylTpvh+xYmprh0nRi618VbsISC3FbHZ1JotkB5cmq7RrVu39FE5hxVcqJttuhmvFrMmTZpkf/7zn3Muo4k60KtlTd0wUEt42VKc/IQW/kaMGNFkNWuttZYfp3myBeS++eabPlDxpJNOshtvvDG1jj/84Q9+vFrYjQYxhpYJ9GRw+k3Eq666yo488sjUOsKFTJ1Epc+rA5zmb27LJqmN0VMUAQVM50v5ylF0ef329LSMWml+6KGH/O/gT3/6UyoQNjpver+eTnvxxRd9kKpan3avikifxQ/ny4/KmwLkMrX4qzKmG4kqB9nSl770JT/p3nvvtWOOOabRb/aFF17w00JguwaSlsk99tjDVAk666yz/H5ko4028q3xfPjhh368ppMQaEmBUir3p59+uv+q7jXwjVqySP/++cp9+vxh2L223p8guFfL5QyYDccsPcWvAD61ZBdN559/vm8pPDrujTfe8K3iqkVvBdonSXp6Mty4U+vbJARaQyBfOYpTD43ms9B6cdyykzQ/IW8qvz/60Y/8oMp+rrTzzjv7AJ9nn33WQtCc5tdFlZB0Y3/ChAm+Pp+kfpHPO6yfLgLFFohTdpL8Plujfh+nbiKnuPuPfKZx919xz0/C+UA4H49uP4wLdY3oNPoRKJZAnDKUpNy7V7X6ABYdA//+979b165dTW+ZUTdfKmb9XsddtViTfkNe5/TKY74A4bjX4vSdQjlOeq2tOfvIfJZMRyCXQLHLfXN+y3GPl3H2Q0muQ6f7hGNt3PP65lzH1r5J1/h1rf/www9PzwrDCLSoQL6yFOd8IJrBQo/7SY6z+fIczY/645axEJA7ZMiQ9FWY7i8oIFfn98OHD2/0VsgmM+cYEc5B9BadTPcbcizKJASaLZCv7MSpD0QzEfdcOLqM+kM5yHcdPO7+R/cQjz76aNO9sdCYj+5Nq5zpfmKulM8kLBs3z2F+dZtTH4quh34EkgrEKctxf/vadqHHdi0b95xe86anXNflCymT0fUnqXdEl1N/nPtxhe4f07fFcMsIFLuMNGd/31JlpDm/8XR1BfDfc889pkDm8Nar9Hmiw5nupS9atMjfx95hhx38w/HRxu7UYu5ee+3lG7cqxaBcAnKjf136EWhHAjpgK2AwJAWZxgmkueiii3yA4E033eSfGgjLF9INre+Elrqi6wgHI73WL1vSRQpViBT8pyf4tSPWDv6SSy4xPVmoYMBXX301tXhY1yabbGJ6Ta8qfE899ZR985vf9K/p1gnStttu6+cPrRjIRC31brrppr6Fwe9+97v+qQnNGw5SqQ3Q06EE1KpMeOJGX2y//fbLe5NM8+ki+I9//GP/9Ktay2xOCr/DAQMGZFyNLsaFlvMyzaCbfXplgZ5CUuC6PqpMqMVMlRMlXdwPqZAyqda2lFQO9QkpjA/DdBFoDwKFlntdZFNrW8cdd5x/wKXY3/Xpp5/269ZF93PPPTfn6tXqlpLKuJ7qu+yyy2zcuHGmIPxDDz3UzjzzTN8KhvZpSmp5N+yrwn7BT4jxn24qnHPOOdy4i2HFLKUtUEi9uDllJ46GXlOr+rluxuuVlXrKPVfS63q0H9p7771NgQR6NZ4e2vn+97+fWiwE6De3fpFaIT0ItDOBQo/zxazfi6yY+484+68k+VcrnkqZWuwM5+3hnMHPyH8IlLjAY489Zr/+9a9TudQD5tEHt1MT0nqKXb8P58pqrU7nDNoP6M1TerPGl7/8Zd+qba63VCS5FhfKaCiz0a+W61pbofvI6PrpR6AUBAr9LSc5Xsb5nkmuQ6evL+l5fajfF3IdWw106DxB5xxx7g2k55VhBEpJoNDjfpLjbNLvG7eM6eEhPahTWdn0tnuom4eA3KR50Px6SEDXC5SUp1IMOPCZ4z8EYgrEORdOX1Uxz8XDupcvX5562E/nECHp/nMxWp0vNM+F1odC/ukiUCoChR7bm3NOn+u6fKFlMupZaL0j7v24QvaP0fzR374ECt3ft1QZkV6hv/FM8iFW52c/+1mmyY3GZbuXHt5Ao9brVd/Wg/pq1Ebn3aeccordd999pvVfeOGFjdZXCgPlpZAJ8oAAAskFFGSqQDx11fKWAvV0414H82xJT1hop6en/L72ta9lmy32+NDCTrhoGF0w3AgM80Snhf5evXr5XuXp2GOP9S0GKljpN7/5jenpRj3doDyHpFcO6OKigokV1NCjRw8/3+233+5nuf/++8OsPgBXN0rUsqh2yHoaUi2KaVjprrvuSs1LT8cU2HXXXU1PzOggrafJ1MqtWpxVRTZX0u9GF7LVUnNVVVWuWfNOC0/ER1u3iy6kioKCw7OlsrIyX6nQPHo1ln7DelJXZeaMM87wN9qjTxOF8ha3TOrVAGpFY88997Tnn3/e5syZ47sa1vg4laNseWc8Am0hUEi5r6mpMT2soUp8vmDZQr6TjmX77ruvX7+OU+EmerZ1RW/k6+ETBeWrBTA9+aeb/koaH5KOgXo4RWV29OjRYXSsrlqL1/5OrWRz4y4WGTOVqEAh9eLmlJ18DLqwFy4EKGhHb2zIl3RjTUH1KpNq6VqvxdbDaXpYLby2OwT1Nrd+kS8vTEegVAUKOc7ruxSzfq/1FXP/EWf/lST/Op9WynT+Ec4R9FAgCYH2IqDfv87r9SDrb3/7W/vjH/9oY8aMyflga7Hr93q9tOraN998sz8PV31egTUKDtZ5uY7dzz33XFbSpNfikp7Xhw0Xuo8My9NFoFQECv0tJzlexvmuSa5Dp68v6Xm9GpJQ/pNex16yZIm/Rqh9UqZXnqbni2EESl2gkON+0uNsEoMkZUzX5FQnWLlyZZNNhAD/UFdvMkOeEVqvri2qxX69aVIP8JMQaO8Ccc6F079jMc/FtW49dPeVr3zFt2Cte4i6lxjuJ+p6u+ok4cG89LzEHS40z4XWh+Lmi/kQaC2BQo7tzTmnz3ddvtAyGbyaU++Iez+ukP1jyB/d9idQyP6+JctIc37j6fpqaEr3xXW/S/EtuVKue+l9+vRJLarWdvVgvGK/9JZZ3TfX/X01dlOKqbIUM0WeEEAgv4ACBfVRsKk+U6ZMsYcfftj+9a9/2QEHHJBxBWpVT2m33XazRx55JDXPJ5984vv1JIUuCijoJ04Kr+oLrXdEl1Hwo1IIHIhOC/0KJNRFhK222iqMSnWVR7UKqiDBsA61hJspbbfddn60npoISePC+DBO3X79+vmAZH1XBS937949Opn+DiRQXl7uA8yGDh1qhx12mP8dTZ482S6++GI75phjMn5T3eRTwO4GG2xgqszoVRpK4Ya2Tr4feughHyAXp1UeBbjpYpyebkpPuqCni2k77rhj+qRGw7qortawVRaefPJJX6nYfvvt/XrVDH80uD5JmQytUSt/qqxUVFT47epVmxpWi5xqqVqtZ8Z5HWijTDOAQBsJFFLu//KXv/gWLNX6rI6lIb322mu+V6/TUMVe5S7uq67COnR81cmUyrr2J9q35EsjR45MzRIeXAkjttxyS98bjuHaT4VAPwXuhn2WZlLggm4CaJ+lY3v6yY7ydP755/tggiOOOCJsgi4C7VIgab24OWUnDpDK1pVXXmn77LOPP5bGWUbzKLBHQbhPPPGEffDBB741bN100/qUQp24GPULv0L+Q6CdCRRynC92/b7Y+498+6+k+Q/7iXCOH/0Th/P2XA8ERuenH4FSEFArc/qst956/rNixQr/xgjdMNe5faZU7Pq99j3ZHlbVTQCdl+t8XQ+WZ0pJr8UlOa+Pbq+QfWR0efoRKBWBQn7LSY+Xcb5rkuvQ6etLcl6vZQu9jq1zDp3bX3DBBTxkm/5HYLhdChRy3E96nE0Ck6SMKSBAAXy6jxDdB2h7Or9XCg/X+oGY/6nu841vfMNfs1RjNeonIdARBPKdC6d/x2Kfi2v9t9xyiz+O6k1VujcQku4nqrGco446ym699das5wJh/mzd5uS5kPpQtnwwHoG2FCjk2N6cc/pc1+WbUyaDYaH1jiT345LuH0Pe6LZPgUL29y1VRiRY6G88k37c1nHz3UtXrE9IkyZNCr2+qwYcFWujQF3Fp6XXwxvN3AYDBOS2ATqbRKBQgX/+85+mQFK1kjVixIhGq9ENfwXk6vVc2VI48f/JT36ScRYF5Cj4L9yoyzhTZKRaJVHS6wYOOeSQ1BQ9faS8KIV5UhMjPQr4UwCxAgPTU2hhN7qDPf30002vCfnhD3/YaHZVYpSi8yqo8u233/atBKQHE2rdelIifXyjlTLQLgWqq6tNrb4q8Cw96Fat4+rvHn5bmb5guHGtp3AUEJOe9BSPPvp9xW15QgF4WkbBvNHWK0MAea4APZUNPZE7YMAAUzCxPiHpQoBSuFmn/lDe4pTJUM51sTAE42odShpW6xwKmNdHZZWEQKkKNLfcq4wp6QKcPulJrbbro/1CCHJJnyfT8Ny5c/1NebVGpxMBBfTGSaHVOgXYpicF2SqFfYkeLAmt3ekJw/Sk46PqB4cffrhvZTs6PdxUUAABreNGZehvLwLNqRc3p+zk81HZ0oWGXXbZxbekp4uOcZIuFihf66+/fqM6hgLr1Sq26jDRm3fNqV/EyQ/zIFAqAs09zhe7fl+M/UeS/VfS/IeHBvXwjl7RF90HKdhfKUl9plR+B+RjzRJ44403/KuY999/f39RPfrtdZ6umwN6bXO2VOz6vcqhgn933nnn1Kuiw7bnz5/ve3UtLVtKei0uyXl9c/eR2fLMeARaW6C5v+Wkx8s43y/Jdej09SU5r9eyhVzH1vUBBeLSOm66PsPtTaC5x/2kx9m4PknLWLh+rqDcaGCf7tepsQ293VIBfklSXV2df7Ok7rWp/hMeyk+yDuZFoJQEkpwLp+e7GOfi6esMDeno4b/0FMappcBCU9I8N7c+VGg+WQ6BYgs099he6Dl9vuvySctkJpdC6x357sc1Z/+YKZ+MK22B5u7vW6qMSK3Q33i6uN4kpcYXde860/3uMH+ce+m6vq0GJqZOnerfIK8GGKMpNKyneJpSS/HuDpZarskPAmuogJ6IueKKK0xPSlx00UWpE3g90aNgH6VowI8CY6Mn+Xq938KFC5voXXrppabm79VUfpLX5ijoUTs/PYWhINlwgnLffff5iwx67X20db/0/CigUd9HrXDqxkYIkFWgoNapFG0999133/U3QdTaYHTHrUqMUjRYUZUqfS/l7/jjj/fT9Z++p4KqtPOXI6ljCeg39N///tf/rhQIEy6A61sqSFXBaV//+tcbfeno73LChAmpV8JHZ9KBXK+01+tr9HtSK7Jxk1qwVUDuueeem/pd65WXoYUdtXwXTdH8zJs3zwfGKuhGLe507tzZz6rv8aMf/cgH5yjYLqQkZVJlQxftVV4VvK4AoJA0rDxrOjfsgwrdUhVobrnXE+9qaT49KZDl8ssv96+dV2s10Yc+0udNH9YxSAEEOjnQK3DU6nuuFC332o7KtY7rOlmJtrR12WWX+dXomKmkAD21aJ0pHXnkkf64qtf6pj/Eo5sKalVDZZzWcTPpMa49CDSnXlxo2cnnctddd9n3vvc9//rIv/3tbzmD3aPlXuv93e9+5+svN910U6O6isqw9iXpN96S1i/y5Z3pCJSqQHOP88Wu3xey/0gv70n2X0nzr3Nc1QHUwo/2J+pX0vnMr3/9a3/s14OKJARKWUAPoOhakc6BFYASfUvFP/7xD5/1UB8O3yNazopdv1ed+frrr/fnzrrm1rt3b79ZXYsL16O23XbbkBWL5kUjk16LS3JeX8g+MpVRehAoIYFCfsvRspb0eBnnqye5Dq31RfOT5LxeyxZyHTt6U19+JATaq0DS4360rOk7Jz3OxnXKV8bS86F7YT/+8Y/tjDPO8PeewnV85U8p/Z5EnHzo+r9ev/uDH/zAfv7zn8dZhHkQKGmBJOfC+iLRclbIuXg+jJ122sk/TH/NNdf4e36h4RoFw+uNHErR+87R/ORbt6YnzXMh9aE4+WAeBFpbIOmxXfmLlq9CzunjXJdPWibT86XhQuodce7HJd0/Ki+k9itQyP6+NcqIRJP+xqP5iv5F4rSOm+Re+gknnODvkek+WnijpLanN8fq4Tfdx49eP4zmpS37CchtS322jUBCAQUYKhD1D3/4gw+gU2CqWs3SDQntaHTSH1rbVACQKixqDVeBgEo77LBDxi3ee++9PlBVQT/RlrcyzhwZqRb19AS/Tkj0mj7tCFWpUICtKjUKZApJQbZq5UNPAj/zzDN+tC6W6vVfN998sw901JPDChjWxQ61+HfOOec02nF+5zvf8TdAdtxxRx8gpSbH1WKwlldw4YEHHhg25y9w6HsrKEKvLdNNRwXihgsgJ598cmpeejqWgC58qcXmiRMn2nHHHeeDcvW31w09Jf1OQ1IQuVqunTNnjg8e1+8/GuAa5ps2bZrv1e8s0/QwX6aufte33Xab/50uWLDAt5inC2n6Xaq162jQuYJ+FRivIFmVbwXR6TtonMrv0UcfbWr1QzfYVUZ0kz0aaJekTCpYXxcIdUFvk002sZNOOsmXUT35FMqupkeD+jN9P8YhUAoCzSn3aiVan/QUWl/X8SNpudcDJ3r6T+mBBx7wn+j6DzroIF/GNS59P6RxarVWAbkK2FcZHT9+vClAWPsOPTgTgmv0VGC2vOmBGJ18ZJquAD99P520cONO4qT2KNCcenGhZSeXk4KGDj74YD9L//79m7zRQRfVVIdXylRPV1lXXUX195deesm3Tq8n4/U2CdXvzz77bL9s+C9J/SIsQxeB9iqQ5DifXp8udv0+6f4jU3lPsv8qJP+/+tWv/MN1Oo94+eWXfd3hT3/6k//z67yiT58+7fWnQL7XEAEdR3V+qvPSLbfc0p/f9+3b1z9kq2Oj3hYRreOm16eLXb9XQI2O06o7b7PNNv6ago7rKt9qBU8PfKu+rpTp2lfSa3FJzuu1zST7SM1PQqBUBZL8ltPLfSHHy3wOSa5Dp+dH6457Xq95FaiX5Dq2rp/reM9DttIjtXeBJMf9Yhxn43jlK2OZ6vh6i51arVYjHKov6AH4Z5991u644w5/T0znKUmSHsoP1xDUIn+00RmtJ1zPT7JO5kWgrQWSnAunl7Ok5+Jxvutee+3l7y3rPvebb76ZahhDjWToPrbOOzSPUqb9T75tFJLnJPWhfNtnOgJtJZDk2K48ptelk57Tx70un7RMZir3Sc/v9f3i3I9Lsn/UOkntXyDJ/r61yohUk/zGM5URrUPHUN3XOuCAAxo1sqhp0ZTkXvqxxx7r68Z6o61iWRRHowbm9EYrJb1NohQTAbml+FchTx1eIDxlly/QTUGt0dSpUyfTayYVxKeTEbUUoqSLb3paVgGsIekpfqXo03thWrZu0vxoPWpVUK31qtWuEPirfKv1kGhru+HVH+mtBCr4VgGFaq0nBC9peV1UVKu70aQdqwIVjzrqqNS2NF1PMSpAUQ4hqSUCBSkr4Fc3HfVRUkDln//8Z5s0aVKYlW4JCoTWi0M3UxbD7zV9Ht0MUwCcfj/6bYakv7kuZIXWbZcvX+6DcTU+2pJzmD/aDdsK3ei00B+mpedH4xVgo4vr+v3qo6QbiOmVA530K0V/nwpwVws8CiZXgHlIZ511VsYn6+OWSa3nxBNP9OVP+QhBuBqvwB/dbIze5NR4EgItKRDKTuhm2la2ctYS5T5sP2wzDEe7YVp6ntUid0ihxfcwrK5u2OuYlm0/pBardUxUYN4ll1ySWlQX9G+88cZGgfipiTF7li1bZjph0TEzBPbGXJTZEGgRgVKtF+f7sun19Ndeey21SHhzRWrE6p5wMy1TPV0X+XXxUHXXcBFBi+lhPD2Ao+CcaEpSv0hfTsPp+63oPPQj0JIC6WUnuq1sx9W4x3mtK1N9OrqN0B+2FbphfLQbyknoRqfF7c9U3pOc12fbTsh36Ebn02u7tN9QPSIE4mq6WtXSQ7wkBFpLIJSd0M203Wz1ALV4MWrUKF8XDteatLwu5uvcNbyGLlt9OtO2wrhM5SZMy5YflR89yKaHVqOt1ivwXcft8B2zXfsK68/UzZSfJOf1SfaRmbbPOASKKRDKQuhmWnf4zafPE/e3nKTch22FbpL8xL0OnS0/Sc7rk17HVuAQD9lm+msyri0FQjlLL9vpecp0PhD3uF+s42zIU7bjfr4ylqmOr3WqERi9plsNyOgenpKus+velYKAMqXgFbphnnCvTMM33HBDGJ3qKkhQDzCREGgLgWxlJ+Ql/J5DN4xPci6crZyFdRXSTd//KGjw6aef9g1A3X333anGpDRfuD4XHmjNt/+Juw/Ml++49aF862E6AsUQCGU4dDOtM9v+IO6xPVtdOtO2wrhQ3sJwkuvyYZk43XzlPtM60vMW935ckv1jpu0yrm0EQtkI3Uy5yFZG4u7vS62MRH/j2cqI4ryUdA0tV4p7L13r0P0xxcmp4T098KaPkmK/9Nb09Ddp+Ykl8F+Ze71WQwnkgywggEBCATX/PWPGDH/RXxft0pNuviloVy1ytkbz3HpKVztdHVR0wTF9m7qIoZYFFESc6ckKNUmupxh0oqMdZ3Rnnv7dNPzxxx/7127qVX7du3fPNEtq3Lx58+ydd97xrX8OHjw4NZ6eji+giq6ezlFryumBLGo1d9NNN/UtzuWrEBRDqr6+3peRzz//3NZaay2fp/T16gKAWo7+97//nT7JB+4pwECvy1EZCRcCmsy4ekS+Mpm+XLBSgHx6+U2fl2EESlkg/JZLodznc8q3H9Kx/qOPPrLPPvvMt+KbftEw3/qZjsCaIlBq9eJ87vnq6dOnT/dP+aqOrzdM5LqgE6d+kS8/TEegPQnkOs7re+SqT7fF98xX3vPtv5qTZ12w1Tn2ihUrfKvbsiEh0B4F5s6d69/GpPp9uJERvke++nSYr1hdnY+rXKmrVnvSg2vyXftKmo9Cz+sznQsl3TbzI9CWArmO961d7uWQ6zp0vvwkPa/nOnZb/vLYdikI5DruF/s4W+j3zVfH1307vXFPLfzrOn56faHQ7bIcAh1JIN+5cL5y1hIWuh6nFG1sKmynLfY/uepDIV90EWgPArmO7fnq0m35/dqi3Ov75ts/tqUJ224ZgVz7e8pIU3PF2igube2117ZMcXJNl2i7MZkfyWu7/LBlBBCIKaCA1UwnBWFx7Zy/8pWvtFpgnS4u6FWC2VJ4mjHa8md0XgXVTpw4MToqZ79uLugTJ6mFILUuQlrzBBRYqtdFZUrvv/++H91aT8womEZ5yZYfnZCodQuV20xJAcUK1o2b8pXJ9PXkskqfl2EESlkg12+5tct9Pqd8+dGxfm13QqEPCQEEsguUWr04e05XTclXT1cdP1c9P7r+fPWL6Lz0I9ARBHId5/PVp9vi++cr7/n2X83Js84fwttBmrMelkWgrQUUTJ4toDxffbrYeVdAsN52kS3lu/aVbbls4zmvzybD+I4ukOt439rlXta5rkPny0/S83quY3f0XzffL59AruN+sY+z+fKSbXq+Ov6wYcNMHxICCGQXyHcunK+cZV9z4VNyXYtri/1PrvpQ4d+SJRFofYFcx/Z8denWz+0XW2yLcq+t59s/fpFD+jqKQK79PWWk6V954MCBpk97SOXtIZPkEQEEkgmopY7XX389a2BfsrUVZ261IKLX6HTu3Lk4K2QtCDRTQBVptTaZK5C8mZtItHioUH35y19OtBwzI4BAfIFSK/ellp/4ksyJQPsRKLV6canlp/38JckpAvkFSq0+TXnP/zdjDgSaK1Bq9WmufTX3L8ryCOQXKLVyX2r5yS/IHAi0X4FSOM5Sx2+/vx9y3n4ESrGclcL+p/38BckpAvEFSrkuTbmP/3dkzpYToIy0nG1rrLmspqamoTU2xDYQQKD1BNSU/ZQpU2zs2LHWu3fv1ttwji3pYKFWcHM9YZhjcSYhUHSBmTNn2sKFC2399dcv+roLWaFax506daptuummTV7DWcj6WAYBBJoKlFq5L7X8NBVjDALtX6DU6sWllp/2/xfmGyDwhUCp1acp71/8behDoKUESq0+zbWvlvpLs14EvhAotXJfavn5Qoo+BDqeQCkcZ6njd7zfFd+o9ARKsZyVwv6n9P5S5AiB5guUcl2act/8vy9raL4AZaT5hm25BgJy21Kfba8xAp06dbLJkyfbv//97zXmO/NFEVhTBc477zzT5+GHH7YddthhTWXgeyOwRglwnF+j/tx8WQT8cZ5jPT8EBNYcgSeeeMJ22WUXzunXnD853xQB23XXXe3xxx8315AFGgggsAYIhGP9WWedZfqQEECg4wtwrO/4f2O+IQJRgXDfjmN9VIV+BDq2APftOvbfl2+HQFQgHOdL7TpeeTST9COAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAMgECcpN5MTcCCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAKNBAjIbcTBAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAskECMhN5sXcCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIINBIgILcRBwMIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggkEyAgN5kXcyOAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIINBIoKympqah0RgGEECg6AKdOnXy65w8eXLR180KEUCg9AQef/xxo7yX3t+FHCHQUgIq80qU+5YSZr0IlJ4Ax/rS+5uQIwRaUoBjfUvqsm4ESk+AMl96fxNyhEBLC1DuW1qY9SNQWgKU+dL6e5AbBFpDgHLfGspsA4HSEaDMl87fgpwg0BoCKvMu/rU1NhV7GwTkxqZiRgQKFwgBuYWvgSURQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEIgvUGlV1rWsq3Ut72adyzpbVVknqyp3n7Iq162ySvepKCu3Miu38rIyK3P9GlKqtwZraKi3+gbXdUN1DXVWW19rK+tX2sqGmlR3RcNyW1Zfbcsbqs1NjZ855kQAAQQQQAABBBBAAAEEEEAAAQSKIFBqAbmVRfhOrAIBBPIIlFrBz5NdJiOAAAIIIIAAAggggAACCCCAAAIIIIAAAgiUmkC9C5RdYdZQ7UJk3cfFwFqDhpe7YXX9x70U0TUM0+BiY13c7Op+N67WDbuP1bmP+tXVx63TRdw2/rhBH5er2NzwKXf9FW7QfUx3ltSvrvuUdXIzVanrPq5r6nZ2Ab6dzcq7fNHvYoOtvKsb7z7lbpqL/iUhgAACCCCAAAIIIIAAAggggAACHUqAgNwO9efkyyCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggEB7FVDQbP1SF2DrPg1LXf8S179k1TgfgLvMxc4uWzXND7ugXNc8rQvKVddNc0G5Csj1wbau0zpJEb2rkwJ2FZDrAnHNB+OqqyBcN65b+Lhh1+8a7rWy7i44t7vr7+HGre6Wd3P93L1aDUoHAQQQQAABBBBAAAEEEEAAAQTak0CZa7kzcqWkPWWdvCKAAAIIIIAAAggggAACCCDQDgVcS2Rqkcy3SlbrgidC/+oWyhrq3Wm6WipzH/eW4C/6oy2X6WuHs3n3GmEXyuD/afTqtwyv6mq0WjVT62Pu495CHOl3EzROQRNq4UzdShf8EPo1TEIAAQQQQAABBBBoGQFX96t3gbV1C13A7SLXv0jdL/obFrvqngvE9V31uwBdBdz6emLL5Kh116p6qQJ2e6z+9HT10J6u333Ke7kg3V6ru268+it6u64L1FW9lYQAAggggAACCCCAAAIIIIAAAgiUqgABuaX6lyFfCCCAAAIIIIAAAggggAACpSngYiFWvQLYBdPqdcD6rIj0r3T97hXBJqZF9QAAQABJREFUptcE+48b1uuB1a+uPgrC9f1umgJxXb/vrg7KDQG5fr4QlKu42/BxvY36Nayk4NvwiQ6HYFwFMESCcr8IxHWLVbgFw2uHNZ9eP6xhvX64ygVIqJsaXj3Ov47Y9bvXFPtXFGtY/XpVsfJBQgABBBBAAAEEEPBBtGrxtnaeC7hdoI8bpe58fdTvqnYuMLfBBeaaawG3wwTdFvq3V31Vref21scF4rpueV/X7eu6fVzXfSpcf4XGuRZ2ff220G2xHAIIIIAAAggggAACCCCAAAIIIFBEAQJyi4jJqhBAAAEEEEAAAQQQQAABBNqxgAt8rXev+G2odoEReu2ve/2vXv2rYNt6dVf3+9cBaz7/cfPptcBhWK8Hdi+iCQG5VlPm+l0U7eoAXf/qYAXVtoekgFoF5iq4dnVQrnVymff9bpwCbzsrANf1q6sWzlaPSw3r9cRuWrmmqd93Nez6u7oACjeNAApnQEIAAQQQQACBDiWgumCdC7itm+s+CsJ13fq5rq45x3XnuXqkC8T1wbeqI5LiC6ge6lrLLevn6pH9XDVygPv0d/3uU+HGVajrAnj9w2Hx18qcCCCAAAIIIIAAAggggAACCCCAQNEECMgtGiUrQgABBBBAAAEEEEAAAQQQKGkBvRbYBdrWL3Vd10JZvWt9rMG9JrjBdetdEK66Pgh39Tj1mw/KddNWB+f61wQr6Fat1pKyC6hVMwXqKgC3q4Jx1a8g3NXDavHMvXK4TF03Tq8fTnW7rxouV9ctw2uJszMzBQEEEEAAAQRKQ0BvPvABuC7gtu5z95nt6pquWz/bVRvduAbXCq4e4CK1gIDqm2opV8G5A91nkAvKHbjqU+m65QrQ1VseSAgggEBHENADvu56RIOuSejNO+rWu+PM6rfthO6qaW5mP93N43q1aOpNOxrwI1wn9K8eXjWPBtz5uB7U1UdpdX9Z2rCfLTpu9Vt5ytTVm3hct2z123pWdd1+2U9z41fPm9qG3xD/IYAAAggggAACCCDQvgUIyG3ffz9yjwACCCCAAAIIIIAAAgggEBVQ0K1auF3iuktcd/HqfheA2+ACcf1H4930Bn3ceFvmWrF1Qbg+SEI3q0itJ6Cbb2pdVwG5LgDX3Efd8h6u28ONU1fD7lXEGlfuxvlPT9dPsG7r/Z3YEgIIIIAAAgg0FnBVx3pXf6xV8O0s13Wf+s/cZ5Yb74JxGxa42Wn9trFZaw2pFd0+rq442NUbB7tYsCEuOFcfN+wDdF29k8Cv1vpjsB0EEPAC7jqDWk7X23NWdb/oN/dAhx9Xu2qahv04jVd/nRu/elwqAFfBtyEYNxWI6w5M6eNXT/NBuW6yT67bKABX49M/mjHMr0DbaLBtGI50fYBudJ4QZKsgXPcJwbir+t2MIRh3dZCufwjXjfPzuQcoyirdPOpqWT1Qsfqj1s81zbeCrun+7T2rhqP9vIXHmZEQQAABBBBAAAEE2lSAgNw25WfjCCCAAAIIIIAAAggggAAChQio1Rffyu0iF/iwyPWrq+Dbxe6+kfuoX68BbnDjGxa7gFsF3i53WyLgthDutltGN+rU6pmCc3s2uI/rutcUl/fSsOsqQHf1sLoVbrxa26VV3bb7k7FlBBBAAAEEOqyAq0fWubpl7Uz3meECcV23znXrZ7o6p2sFlxZwS/Qvr4e/Brg64jBXRRzmAnOHusBc16103QpXtyRwq0T/bmQLgVIVCMG1K9z+37V83uC6Deq6N+k01ET7Vw2bxisYV2/aCfOo3wforuqu6nfHkTCu1u2bQkCuC9T1Qbqrg2077DWN1UG6/lzeB+C6c/5K991DcG6V618dgKvuqn7XdW/m8cG4ekNPJ7fM6mE/PgzrOKDxGg79nd1xQdcaNE7r0/ZJCCCAAAIIIIAAAggUSYCA3CJBshoEEEAAAQQQQAABBBBAAIGWEdDNLQU/1C9wQQ/u44NvF7obWgtdv+vWuxbIGjTs5rFlLg+6UUXq+AJqTaebu4Gm4Fy1gtbbffq4m2quq3HqVrhXFGucAnV1442EAAIIIIAAAggkElAQrqt/KgC3dnq91X7q6p6fujrpdFfvdA9/ddjAqERI7WhmtcCoOuNwVz8coY+L9Rpe7gN0VW8kIKsd/S3JKgLFFnD7ex9gu9xdZ3Bv3WlwD/Su+mh4db+CbzXeXaPQA78Nbt7UcCQ4Vw9o+HlWB+FyjaLYf6w861NAr4JsFYSr6wAKwvUft58P/QrG1Vt3fHf1dDdc5oZ9oO7q/rKuGnbXFbq6aQr6JXDXIZAQQAABBBBAAAEE8gkQkJtPiOkIIIAAAggggAACCCCAAAKtJuCDb12gbd18d9NLAbi+625mqfv/7H0HgBvF+f0n6XR3LuDe27njbjDF9G6aSWgB/qGEUJMAqZAACaH86AkEQgskhARIIUAooYQOwXSbYkxx770blyvS6v/eSCPvySornXQn6b7P3pvd2dnZ2afdndmZN+9bxxAL4iNbUCQl3jbb71JSJ6LrynZYQNL1dcLAWSeMmXUmMRchCbsk6CKepAsl6ZbUL6uFVQQUAUVAEVAEmgcBcG3D8LZgSLiLQcJdiDbpQhC1QMqVzSgCArUyQAA8LKHHBarmDoBiLpd+Pglim14Y4i7ay+BS9RIUAUUAr24qzoJo66AvwdmKEJN5uR1BaAi4Zhtx2BchATe2CNPYdXrdgYqtTsYoszuKJFsSeEnOBQHXR/ItQjHr2OZEYMaZEPUGvPLYdH7E+duh3rBpSAZWUwQUAUVAEVAEFAFFQBFo9QgoIbfV3wIKgCKgCCgCioAioAgoAoqAIqAIKAIthAAIteHNIDisI9mWIca1uA6XvyTfcp0EXMHglxIfWug3KpfTknDBATIScjtjwKwLFrouBlE3wG0TYh0DacZFZrlct16HIqAIKAKKgCKgCHhGgG7HQysj0rAAIZYwl8UxJdxSJeFakhGJRnD77aPLb3oZiC0+hkzDtpJ7waZpf/O67UI37dZlOkPjTh0HNSAB1kuapIbLMMq5IOQGakDMxRJk2MMfVUTE5akpAopAkSOAV1EEirTOFvQnoJ/BEG8RcjIv4xjG1zG5gkTcCOJlq8+QcKlqq0TbIv+NW7p4rC+psEtCLiYBmz4GTgbG4m/PMBpvCLvYNkRdG3IfFXZZ16opAoqAIqAIKAKKgCKgCJQ9AkrILfufWC9QEVAEFAFFQBFQBBQBRUARUAQUgeJAgIo0ziYQHEC4DZN0Gw8xEMbttSgnlW8x2K+mCBQcAQ6mcXAM5FxfF5BzQdANdMM2QywVjNsZg2aqcFPwn0JPoAgoAoqAIqAItBgC4GKF4X2hYRGW+Y6E56KdOg/ELUwOK1pvDJYQBLU+aROJq/QZ5X+q+1m33HTVzYVkXCy+yli7xpJx2cbBus8jITfCNjqIuGzTG2y4DqXICAm5DEGE47YwTObWnZPsYgqUTFO0bX5igvZhYBDag4OxDPRLsD/ah/CuoEQq/G5qikALI2CUbqFiy8m9ztd4lUDRPMKQ2yTaxrYjZh3bMVKuee/gdaWmCBQMAZJtWe+SpEuC7k6od6HEbtdJ2vUzLhYGsO7nfhJ8WTerKQKKgCKgCCgCioAioAiUDQJKyC2bn1IvRBFQBBQBRUARUAQUAUVAEVAEFIEiQwCD9GEScFdjsGwVFoQOl1UYLMMSWY/RMKrQqCkCxYIACSxUzO2OgbHuCLuRpIsF2xUMMWCmCrrF8mNpORQBRUARUAQUgdwRIKErtNqRBhBwG2aDiDsb7dOlaJuSNFoMRpIsXWXvTCJPlLzTSIGPyv8g8ERdZGMd5Fy/IeMibSz0U4mvmQk+VNA1xNxaEORIykVb34GLd+Mm3u0OPkGxMkqci5LqzG9QLBP08Bv4+6IdODS6VA72m4lbOmGrGB4SLUPZI4D3gLMN/Qcb0ZewCevoW3BiYWRjdDuC7QjiTQgCrlHqLntg9AJLFgFOjiFRl3U7J/92QB3DENsM/bHtANcZx4k3bA+oKQKKgCKgCCgCioAioAiUHAJKyC25n0wLrAgoAoqAIqAIKAKKgCKgCCgCikCRIgAOgwOlmjgBlyTcFRg0W4F4hJH1KDdVs9SigyokSHAx6mQYhAkAQG5zwIUh1VWwblTLGMeFcTSG7nXG4XBjDN3rJDRgMapmsXWjSMb1MNxzgjghIRzA0C7cpxZVt+kE6HtiQAxLoAd+mh4xgi5UdOmKMv47KF6KgCKgCCgCioAiUPQIkCTasAzLLJBxZ6GtiiWyBsVmG6gljO05EmhJzukYI+eAkEOiDlXzDEGHCnpU0wMx10+32CTosK1Yyga8DdHOuJbHulW6jBHuSLAj8S6yAQvIeCTfmYl8to3b3NcOvH3wpBAY5pOgWaCa29sfdT/e3GXR8ykCZYiA8aaD9wEVyx089yThOnYdoX0XcB+VtlvsnV2G2OslFQECrNNZv7P+t20BhP6OiDMh+iC4DqV2tgVUTbcIfjMtgiKgCCgCioAioAgoAhkQUEJuBoB0tyKgCCgCioAioAgoAoqAIqAIKAKKQBoEMJgexmBZCIRbLmEQHMLLoyTcCNRwBYpYZWt0/xtzBcxQqK7KkO6AGR/bT8Jt1FUw4qmIQgKudREcD0GsYDpLxk0k4tptkja40Nzr0ZgoEdcSFRhiSSTixrfx25l1KMRFYoTcuAtiE4d4Eqjhhjgacj0aR+UzqUc8FY7NOoi92DZECboxLlejUl1XDIT1woAYl95QSwNRlwtVbEqeHFOuv5telyKgCCgCikCrR4Dkz9CSiNR/BSLul2ivzka7hSTP5ja2F0Gq8XUCqaYL2hQMSbKJhQESb0i4oftqthNboVlinlHFdBHyHHjXcDDBz1mH9ug6F0m3OTFi+xuEqQAUc4MjfVI5HMRcKOj6qm0DvTkLo+dSBEoUAUz+5ETeMJ7pMJ9phnimHS7Y5kReetOh6q351izRy9RiKwJNRoD9SpywwzYCJgobbz6d0ffAbROiPmK7gROF2ZekpggoAoqAIqAIKAKKgCJQNAgoIbdofgotiCKgCCgCioAioAgoAoqAIqAIKAKlgQDJmRwwCy11JATyLUm4zlLEIRQOmpWyuirH0kmkJfEytghUyIzrX+P+F/EccOe63a7Cfg6UxAi5PrvNfEjADWK/OyS5otjH7PEbkgzB35pkXROCmGsIuSDgGlfEMUKuWQcxl4TcCF0Sk6TL0LgqZhhdBESYCNxAczGuiEn2RZYlayRJg5DhBynX3xsDYSTncukDV8YYIDMk7JK9OC24IqAIKAKKgCJQHgiwPdKwGETcz0HE/Rzt1nlofHzdTNfG9h7bkyTeUlkfCqv+LiDS2KUztkmqQdux6NuGzQRZytPgZ3PwW1IxM7wW3x1rYwS+NYiDwrGDiYAREHVNG7O52pdQMA4MATF3FIi5o2LEXP6WaoqAItAIAUOyh+q1eW757GIxzy1DPM+GYM9+BH4fqikCikB6BNi3RJIu2hJmYk8sDKCdESBJl9uYLNxaJ/WkB0/3KgKKgCKgCCgCioAi0HwIKCG3+bDWMykCioAioAgoAoqAIqAIKAKKgCJQsgiQdEkSbgNIuGGoi1FhzFmEwW+o4pqB71K5MqqGkDzbDgMU7VB2qo/BNaBZ2oIUQfItiRNY93Ef1uNxIOCSMEFCrh/kW1VDTf6jR6i8S4IuSRMk5cYIuVSmi8C9aCQWOiTnQhnJxDF+C/KDm9LIVqjtImxRt8TJLy19LO8fKOX6+0HsuB8GwqCWRlfGHBBTcm566HSvIqAIKAKKgCKQbwTYdmW71RBxPwUBbA7aFmxrFNo4QYsE3B5oE3RHc7E72gRcumEhWQauplXFLk8/AiaQhb/GbwtSbhiEXLOsQvtzJb5RVqJNSYIuJ4oV2trjd6Zi7tgYMRftP+M1o9Dn1fwVgSJFwBJwQ/a5REjSvLPaRZ7HN6JaExFg3waXQELox/eniUO9Z/cxHecLuBYzfcC1Hd+HZI3WkY2ZSMuQ5t6OxUUS4zhJmwv6BsTB970JkSgeZ/fF0iFQawIC7MPiJB+0NczkH9vmQPujghOClKDbBHD1UEVAEVAEFAFFQBFQBHJDQAm5ueGmRykCioAioAgoAoqAIqAIKAKKgCJQ/ghg0CQEV5GhxVDCXYQQi7MYYygk4RbzABoHlUiGAOHB1z4ivp0Ycjsa52cIQq4fRFw/0zAE+dZsU/2Wg1ZqBUfAEHdBznVAxnVIxAVJhqGDkIRcZzPCzYhnCCW76DoG8xBX9GRdErktObc/BsH6+w1JtwLuJPX+KvitpSdQBBQBRUARaM0IgOwTWulI3QyQcT8BSXMm2g1UXiyUkeQEpVRDwKViPup/LhUg5FaACMO2piE2Fer8mu92BPDbh9FODIOUGwIhN4xvFi7O8tj3C5WRcTsUzOA5ITAcpNzxfqkajbYffn8lXxcMbc24mBDAc8XvuBCevTCePT5/jpscvx6FVfXb6PuAXnQ4QRhedCQI4IwnHcTRi07Msw7Xjbop41zrvorYtyT6K3wuIq4h37IPIx4fffdESbmueETHibZcpyH0Jca79pk0fG/ad6ddRxgn4TKRK57rERfx1pBxY4TcKDEX6bHdaN2mp5eeMDJgiIVhfN1478E2PfdwP+8ps6CPAN56ouuIY16t3XhfdYr1SfTArcGJQWiXcKkgaRf9Ydo2ae03iV6/IqAIKAKKgCKgCBQaASXkFhphzV8RUAQUAUVAEVAEFAFFQBFQBBSBUkIA4xhUmqICbmgRiLgLMKi2AGMay7Cj2Ei4HCiCaq0PJAgfFT/gts9P131YZ+gnEZcECYR+hiBEkHirrvtK44Y0ykpQ0HVwP5Kca0ISc7kNYo0Dt6cRhNElul6URF2Sc3tj8GsgxlMHRMm5wT68J3UQrDTuRC2lIqAIKAKKQKkgEMZEsvqZIOJ+hDbsZ2gbrC1QyUl6AvnSz/q8D+p3hAGoolb0QojJN9rWLBDuWWbLtiTvidBy3A/4lgljcZYgbim+azYis0KQtti8g0JyxRgQc3fzS+VweEvghCw1RaDMEDDP1wY8V8vxjJH8jtA8YwjNuxcq5WVtJMSSXMv+CHrP4YRghpWoA+Lr0Tgf4gzxlkRcLJaQy3XjSSVGyiXhNr5tiLg4LkbINfVKIFq/xIm2yKpsDO9jM2GXBFwQcnl/cZGQa52EXLNE40jANdu41ywhl+r4XCQWF1+nWjq9+IC4S28+Zp39W1xHPgWpD5Bt0RjvSdRNfrZT2DeBsIITiGy7hYRuNUVAEVAEFAFFQBFQBBSBvCKghNy8wqmZKQKKgCKgCCgCioAioAgoAoqAIlCaCHCgIrTakYb5GFCbh8E0LosxWE0lqWIwDhBQyRbkBx+JDh2xjpDbJiQBtwMGFEjGJRGXA11qZYsAB9FIHCcp1ywgVTgbsY5BYWcDBtqwHeE6yRZ0T01FnpY2cjFADA/0w306CANgWIIDqVADt8YczFVTBBQBRUARUAQUgZwQYLugfgFUcaeiLQsybmQZssl33U/yFdqdgb6ox/tF6/OKfn4JgsyiKrg5/WzNe5CddEjyIL1/4DvHkHP5vcP2IoK8Gr5dDFl7AtRysVTWoL2n3yd5hVgza34EDAl3HZ4hkNtDSx0JYxJvGCR3B8+V6TfI93PU/JeIBxcnJXmxDT7e2sDbDgm3XDch1hnCq44h3Zp1bFdhm+uGiBvbR7It42Ohn997Snpsll/UEHtdhNxIXZSEa8i6dh1k3Egt4hmiDWEWu70NxWQ8vPlE4uuII3m3EBM5mgUV10nYL8H+M5Jx+8TaM30wqYhE3U64Z0ECV1MEFAFFQBFQBBQBRUARaDoCSshtOoaagyKgCCgCioAioAgoAoqAIqAIKAIliwBVRxsWYZmHgem5GFDDElmDy8k3iSEbhDgIRvJtJwxiYUDA3zkaBrBtyLcg4nKgIEA1XAxyqau9bMAt47QYAOZgWxikirAh5kYJuuF1iIc6mrMeIQaQGcpWLC05mEalo64Y/BoMQi6W4CAQekDUNaq5ZfwT6aUpAoqAIqAIKAJ5RQB1f2h1ROqmQxX3PZDDZiOC5Jl8GtukVMAdAKHCGtTbA1Bng7Si7p7zCXIz54XbxNmM7x+SChfiG4geQRYiDttmIlc+iwNPCYHhUMudCGLuWBCeuui3Sz7h1byaAQF8M4UxCZIedBr4vKDvwFmE54UkXH5TlZqRbNgW32Jc8H730YOO3QbxttE6PZ1gISHXhCTiMo4hCbYkNqqVPgK4lUnWdUjWRRuCRFwnRsh1zHY0LoL73Swk6tp1ePSJYAIwF9P+oKpvqRnbOSTn9kd91R99E2jnGOV/THY3BPVSux4tryKgCCgCioAioAgoAkWCgBJyi+SH0GIoAoqAIqAIKAKKgCKgCCgCioAi0GwIYFAtBGJiw3yoiM3C4BoWBwNreR+A9npBVI2B4pivKwa66EYPA9Uk4QYQBjpjISkXgwGqIuoVUE3nRoBuLDmI7OCeD8cWBy6sue2AfB5Zg0E0KqPRVWVLGAbAAgNwnw/D4BeWyoFwbYx7Xge/WuLH0HMqAoqAIqAIlAoCRhUXE8pq3w1L6CPU5atRcjRn82J24gyV7Klqj7qZE2cC8Mag9XNeEC6eTEg2hJeFhkUgGlpPIQjzOkERt42vOzzWUy13b6jl4n5StdziuQW0JMkR4ETHBpBujQcd9BuE5+P7CaTcFuszSF7MHWPxvAn7F9pjIeG2PfoRuG62sU7yIePboY/BhiDk+knMJfEWKrf6nt8RVo0BAqgvHKjkOiThYnEMKRchCbmY5GFCxm3B/s2Mi8abkIRdkH7z1k4p1A+C58QPTwAVaP8EsFSyHdQTzwYnwqspAoqAIqAIKAKKgCKgCGSFgBJys4JLEysCioAioAgoAoqAIqAIKAKKgCJQugjQxWRoFUi4UA9rmIVB55kYKFiO62luIiJdOYJw6++GAS+ohPpBxA1wwbYJoYBLd49qikChECCJJwzV3DDIuCEsTnzBABuU9iJQ1TUuKQtVgGT5YuDYKNMMB2FjOMgaQ0HMxTPhU9emydDSOEVAEVAEFIFWjADr8LpPHal7CyQxTCzLW51N5UMSUYZADXcISLgk43YHeZJKiGpljwAncYVW4ltpHtqHc/CtNAftQhIQoZSYF4NLe6rlVu0fVcsN4JtHTREoNgToQad+IfoL+Ayg38DB8xChhxGQEYvK+I1E9Vp6zdkJ30w74f2NhevxkORCEHK5bUKQcFXZtqh+xfIqDKoLo7QLQi5V2B0Qck2IZ4qkXOdr7Me6CTdF1yOIa3HvPcl+BXitYp9dgO2goZg4zDYR1HPVo08ysDROEVAEFAFFQBFQBBSB5AgoITc5LhqrCCgCioAioAgoAoqAIqAIKAKKQNkgYIi4GFyuBwG34XMQF0jEXYPLa65BNSrUdMIgWHd04EMdikTcQA8SHKIEXHbq++g6Uk0RaCEE+Ixw8Jlur8OroouD0FmFeIRmELq5iOsc/OqGwa9dMPA1EsRcEDcMGUifkRa6O/S0ioAioAgoAkWDANquDUugivsO2rXvOdGJZSDANNlA6KISXEVMrT5ItXq0T9UdeZORLc0McE/Ru4LxJoLvJpISw1DNFRKnmmq8rXpDdXBvn1TvA4JTbzT88F9NEWhpBIxSNFTH67/EPY/FWYx7HmqfLW7krYPMbjzqQKWcBFw/vevAgw5DetKJLniPk4xLRVz0P6gpAsWGgCHrgqhrvPeQmAtSrkNPPvDWE4FSO7fpuYfrxoMPJhEXhaIuFaTh0acC/ROVI6MeffjMqSkCioAioAgoAoqAIqAIpEdACbnp8dG9ioAioAgoAoqAIqAIKAKKgCKgCJQsApEwVJ5WRAfVGr4AEfcrdOyvxeXkg7iQDhX2zVOFhgTcnhgYg4u7QC8s2DYkXHbeq+pnOgR1XwsjwGfHwUCYIeiuxKDZCixw2eqsRDy2BQo3zfEc+aAgbYi5o6CkhgGwih5gbOiz08J3h55eEVAEFAFFoCUQIJGlfrYj214PS+jjPJEjO6JaHcwJMCCY7OKXCqjj+uGyXE0RsAg420DMBTGx4Sso536B9uBc3HsgTDXZQCoM7gZS7sEBqRwMFWYlEDYZUs0gNwSo4Fk/F30Gn+HbB5N3ncXIB+/bFjG+fkH+8+Hd7O8EYi3D2LofitJcApaES+KtTlhskZ9JT5pfBMzkYBJ1ScpF/cJ+CAeeAJwNXNDtAIVqrptJwttw7kL356W6PHix8vdDn8RotJm4oO7yQ3VaTRFQBBQBRUARUAQUAUUgOQJKyE2Oi8YqAoqAIqAIKAKKgCKgCCgCioAiULoIQD0stAYDaxg4roc73zAGjyPrcDmF7LjHYJhRwYXik783yA0g4FZw6QmFMQ6m6SBz6d5PWnLjejK8DoPUILiHQMw15NzlGBhbimcLg2QChd2CGca4fF3gOhtkoeA4KOaOAGGoMyJVTa1gkGvGioAioAgoAsWFgAP3z7XTHal7JerpoSlkMTaHnXYhqetTK/U12ySEJdwV7LNg6oYy6SadOneWrl27SjAYLC5wtDTNgkAESoUNS/FthUmODZ+jLQjVXIGaYZMM5KbACJByD8XEq9HNR2x68ZOIPPSmI3Mx4SxX8+GhOGmiX04/wC89QJhUKz0EOMmhYRHeq5/gnv4YRNyFuIbmJuLiGSDp1odvG39nfN6YBaRbbqMPgf0IJOD6qnDD8UWspgi0FgTwenZqSdBFfYP+hjAJuuiPcNZiIUEX/XsRrJu+iOZ+btG3569B3wQmlVSNh9J7X51U0lpuS71ORUARUAQUAUVAEcgOASXkZoeXplYEFAFFQBFQBBQBRUARUAQUAUWgqBEIQzmjflaUiBuCyk1kFYoLgm5BDB3xRsGzD0m4IN8iDEBZLAhFXKOUoYNmBYFdM21hBDg4BgWbBqrmgpAbwsLQkHOpQF2oATEQcH09QMwdAzUaDHxVDgXZHW5b1RQBRUARUAQUgXJGgIpxtR+GDRnXWYArbUK7NtwmLA29a6Vu0FZpGLRNnG4NqFi9kxLbtm0rNTU15Qy3XlsGBAyJkcTcz0BinI42IBVzt2Q4KN1utO/8g0BqOswv1bujbVdgN+Ak4171KFxB5MnGD/TLPeeBTKxN0jwh2jzZcKIhJznUvxeb5NCUezibIrfB9wwmGvq7ob+AYVf0H9gFJNwAybnVejNlA6mmbV0IGJIuyLlhEHLDIOSGMRHfMQuaRwiNRyyq6DaHtcekEnjxqcLkjKox0Yn4zXFaPYcioAgoAoqAIqAIKAKlgoASckvll9JyKgKKgCKgCCgCioAioAgoAoqAIpAGgUgdiLgLI1I3DQqeH0HhZikSF0K1E6JgHEQLwFVdoD8WhEGQcAMcVFMXv2l+Id1VrgjQlXF4FQi6SxDCpXEIi4PFDIaB55N3gxq1n8R3KtJMgCLNAFWkyTvGmqEioAgoAopAUSBAjw+174CM+7ojEbZtczQnCPJk9zqpGwoi7pCtEu6B2TNpFHFTnSYSiUjfvn2lQwdINqq1agTstxe9kRh10UWAI9dJWeAf+vqIVEEpt83EgAS6FI6QeNod4SYp4yb70X95YkCO3b1wZU52To3LEQFwseuhilv7Du7bD/BeXYF8vM9JyP6k1TikU0Q2VmyQpVsWy1pZI5uC62VT5Qb5OrhRagNbxfGln2Xhgxzz4MGDZb/99pMhQ4ZkXwY9QhEoZwTwTIe/Rj8EybmrsayMhg4m5jvoozB9ElB4L5ix/sLk/OCePmmzN/om+mGWSaBgZ9OMFQFFQBFQBBQBRUARKCkElJBbUj+XFlYRUAQUAUVAEVAEFAFFQBFQBBSBBAQwgBZCp3vd9LDUf4jO91mIyLciBpU5O4EEOCBKwq0AETeIpaK7TxVsEn4O3WzdCETgVpLPY8MihFjCXECUF7iZbIqiX1JU22KsazjUcvcAMXdsQCpAildXrkmR0khFQBFQBBSBEkQgBGLJtv+hffsaSGOrc7uACKrGUKd6qRu8VeqHb5Fw3zqJVKcnf9kz7bzzzmZ106ZNNsqEnTt3lp49ezaK043WiwC9JtTPdqKTIj+NeSfJkeDo64F23SEgNR2Adl2BSLkTL899xuYFkzAzE3bfS41nnJ22f0AuPloJucX+FFDduW4myLivhCUEdecmKTunulj0GwhenX54zAngNRnuEpL3Z70jczbMEqdTg1R1rpSIL7sHJBwOy4oVZA6LHH/88TJhwgSzrn8UAUUgCQJo4oRRL5GcG6JHn9ji4BFysC5f4xhvzaAkmaeJageHA+NRfx0WMJ58fPCmpaYIKAKKgCKgCCgCikBrRwC6KmqKgCKgCCgCioAioAgoAoqAIqAIKAKliADJf/VzMKj2LlRxP8YA8Jo8XwU61anEGahB53oNSLhwSVrRS5Vw84yyZldGCNDFahDE9eAAjHNBOTe0DOTc+Xg+F2AwbD7isJ23we+tGGyD2+FaKPOGQPqthiJN5SCo5aqb1zK6o/RSFAFFQBFonQgYMu6bIONSGTdHMq6gHVvba7PUjdwiDYO3SaSDdyJiVVWVWEIuf4FEUm5TfhWq7G7b5n32XHV1tfj9ZLmpFSMC/vY+qR4PAi1UAesGOVL/nhOdIIl2WrYWwaSu+lfRVsR/Q8rtWjwk1wmD/XL+pO3DiW5SLoqbV1u/fr189tlnMnPmTOnXr5+MGzdOevXqlfIcoVBI6uuj8sRt2rQRKqqmM5ue6Zie1tDQYBaue8mD6XhO5sXnk89pMRsVnWuno9/gBdyfM/GLNeZUN63oUMP0dUa/AVQy/VB6rkBY0Rvu69Fv8NoHb8jbdW/K/pP2l8mTJ+d8nq+++koeeeQReeqpp2SXXXaRdu3wgldTBBSBHRFAcyGwM/rwsFQORnWCpk94Q4ycuwz9EkvhzQceB9gvEVmPw6GwmxfbgglQEAjYujkszpHomxiNfomq9O/ivJxXM1EEFAFFQBFQBBQBRaCIEdj+BV3EhdSiKQLljkDDx+9K+IuPJLxgtjirV0ikvrbcL1mvTxFoUQSc81N34rZowfTkioAioAgoAopAFghENnYUZ84Icb6AQszyAeIL5UeCIiQhWRlYITOrvpQvqqfLzG3TZdlCKNosRw/7u1kUUJMqAopADAEMiNW3k951w2SX6nEyIjJGhteNlO7h7lKBf00ycjZAVNr00lZ5943p8lLH5+STjq9LQ9XGJmXbmg4+YNuJrely9VoVgaJEoLKyUjp16mSIV8OGDZNRo0YVZTm1UM2DQHgdCKtvxZRxc5lsBv6Hr7dIcA+/rOm6TpyeYJ5VZEcZdJNxuV5XV2eWfCCwdOlSGTRokOesvvzyS+Ou3fMBmrD5EcA9VwHybABKscF+Pql935GGD0Emp6hndreeROBmnKrQPpAcScoNdCoOQpNVxyW4JOZOnRuWaXPzK7P49ttvy/nnny+zZ8/e4Tfs3r273HnnnUYhNXHnv//9bzn99NNNNNNccMEFiUkabf/rX/+Ss846y8StXr1aOnToIA8++KBcdNFFJu7111+Xfffdt9ExyTaOPPJImTJlivTp00fmz5+fLElRxFEZt/YzR7Y9C6LcTBQpHz8bSH++jiDh4n4PYKEHnQpM5K2AMq6/HV/C0Uv/39tvSrdu3ZpExmVOJOEedNBB8vLLLwvJuS2lksu6gBM21MoDgdbwe/rQ3cD6iYuM8gtV3RuglDt/ykKZ9sQnsvPmDjJop6HSpaqrVPhR8TTF8K4JzwD5P4Q6DO+IqtEB8UWF1ZuSqx6rCCgCioAioAgoAopAySLQxJGfkr1uLbgiUBQI1L/+rNS/8pT4O3fHDOL+UjFmD3wd4bGEUgL7LNz9dcWyXXXMqUWBnRZCEcgVgU0/OM4cWt3zGHQO4snC81bKYXUPXIeaIqAIKAKKQKtCIAIFi4YFULeBwo3zMTq6MWibDwtVhGRThw2yvscqs0jPDVLToaMMqNgX7dJ94+1T2y4txvC7B0QHUfOBh+ahCBQCAQ6Ih1ZCPW0OVGqgbh0G38BZjvZoXdPO1ibSRnav20v2kIkSHA6ltn2hltsfo2BNHFNrWqmK/+j9r9vFFPLQQw/FZwG+w/F9UMohr0NNEShFBKgyuGbNGlm0aJF88MEH8txzz8l+++0n++yzTylejpa5CQiEN4GM+15MGTcXMi5EKgPDfFK1v1+qxvklvLQuo1pmYnFJwHUTrqiOS9KOmiKQCQESjyqHQhkUxKfaPj6pfwttPbT5JEvtDZJy60DKFfD+2u4bEP9O/PJqOSMZlwq51u5/KZR3Mu79998fJ8Ta8+y0007y9df0ry6yatUqOeWUU+TSSy+Va6+9VgKB5I3ciy++WA4++GDh5A4vFg5H5SGPO+64+Pkfe+yxjITcxYsXGzIuz3Haaad5OVXLpMHtZzzqvIi+g1koQlPJuG1BwsW9HRiIYSx40KkY4JcglXFJwk0w+9t17do1YU9umyQ+0zZtbNrEQ6ts7KUUboXym2++Wa688ko5+uijhSRwq1z+wx/+UN5//31DOub+1mA33XSTPPnkk7LHHnvIXXfdVXKX7DiOnHDCCfL888+b98lll11WcteQU4HxmLI++d3dN8uvf/1r2cnXQUa3HytjOo2XUZ3GyIiOo6Wm/SBpH2yfU/bmILxSw1+hLVeFvsq2aI8NQ92x4+sh9/z1SEVAEVAEFAFFQBFQBEoIASXkltCPpUUtHwSclUul9u/3SATTBIN7HoSeYnQgWWKgg14SUB4idjtGfSie7fL5HfRKWjcCfNJ8GHQv9bB1/4p69YqAIqAItD4EnG1wY/oVyLgYoA19hlosB1eoiaht8m2S2h5bZF2vFbKu50rZ1HO11LeBG10/8mdFSeMqO9GLPTSF1T+KQPEi4IOQdRAujYN9MVAFolD9PCiowW1sCIuzCA9YE59p6+rYWY38DolI1XC4iqzWEbBMdwRJuLRSDzNdp+5XBIoVASrk9u7d2ywTJ06UJUuWCBUKP//8c6OGmC8yT7Fev5YrigDbuXUfOVL3KpRFV+aASifUsRMwKQWqopWDUP/ReQTcMmdjJOO61XF5LAm5hbKrrrpKJk2alDJ7Er6yUdNNmZHuaFYEqGpLIm1FDxBz3wxLw8doZ2zIrgiR5SBS4lkg0bEN1J5bqj1HMi4Vcd1230sN7s0mr8+bNy9OhiUJ995775XDDz/cKKdv2bJF3nrrLfn+978vVJf+zW9+I4cccoikm4RE9ds333xTgkHv0oxU4D322GPlP//5jzz88MNyyy23COumVPbEE0/Ed516avEKmIRWQq0SiuMkyOXsmh6fEkYNdxAIuEN9EhyMBUTcQAfuiMNQMis//elPhQRwL/anP/1JzjzzTJOU9wSNJM4vvvhCRo8ebbZnzJghH3/8sYwZM8Zst4Y/VCnmNXfp0qUkL5e/H39HGt8prYaQi+slmZpkXNrXkY3y7tdvmaXH0l6yW8c9ZPJu35RdEXar7S5tw+3wiOfwkJOU+znePd3CEuiI9wbqQjVFQBFQBBQBRUARUARaIwLbp7W2xqvXa1YEWgCB8LyvZMutl4u/Z190YMAFHxVxSb6lMeRqMW+bguofRaD0EbDdANFwe9dCqW2X/i+hV6AIKAKKgCLgFQEqhtH96dZ/hyU0renEPaHoRc1X8o9Of5GZe02V+ROmy5rBC6W+XYyMy4apqRijoaktXdtmp2u7KPZ7BVPTKQItjQCenUBnECx2D0j7bwak3ckBqZqMge3R2NGuiYXbAhXeDyN4V8A1LdwlO19HyaZNzLWsD6cyLi36l5/kse3EMIZCse6PFU8DRaDkEejbt6+cccYZMnLkSLnvvvtk4cKFJX9NegEZEAB5w0w6ezUskSUZ0ibuxivbB+HEqkl+aXss6lNORknNo0s8Or6djIxLd/aFtKFDhxqFQaoMJlvolt3WOYUsh+adfwR4D1aNwD35DdyTh+Ge7IVz2IaGx9M5i6CU+wpI6jMha4pnpLktGRn3/Hvzrxb93//+N35pr776qpx88smGjMvIdu3ayZFHHinvvfdePM0jjzwSX0+2MnXqVEM6S7YvXdx3vvMds5vKrq+99lq6pIa0ywS77rprnJiZ9oAW2BkBb7ruU/QdfIJvgVx+Nr5bIW5bsQ8mOpzgl3an4LvlmAqpHhcwJLts7+cWgKDJp3Sro5999tkmPxJvd9kl6mUj0wmo9E9i9wUXXJApqe5vRgT4+/HZpX33u99txjPveCpO+uE9wuXvf//7jgnyGPPAAw/EybiJ2Z5/xbny9PLH5dx/nyFjrxwmXb6zswT3Qd0FznVU0ibxiAzbeOew37LuM7Tr8juHI8OJdbcioAgoAoqAIqAIKALFg0Djqa3FUy4tiSJQlghQGXfrH26Q4B4Hwl0HRlk5LsqOuFIKy/KX0YtqjQjYxy567TGl3DgQpbYdL7iuKAKKgCKgCJQpAuF1Ufe9RjGMJAVWZLkamqEBqtuM8klD5XPy32l/k159MUAUb5cic1NRNg4jvsbbkJpvlK4o9ueKiR6nCLQgAv72cOUIIi7VphpGQwX7cyhgz4hIeD6esVwVc0PwSAslrNotYXG2RKTNXhg4h1qbWnIE4sq4sd3x7UTl3CLfn/zqNFYRKF0E9t13X2nfvr2QfEUyiyrllu5vmank9QujHiCcuUiJ6s+zQW7EPxDERxAeqyfESGIZDq6qqhI3yYrJGZdMGTcxXYasC7r7b3/7m8ycOdOc4/zzzxcS190WDoeNque2bdvMPqZx27vvvmvcrM+ZM0e2bt0q/fr1k/32209OOukk85y503KdCqCffvqpIZ5RAZSkyTfeeMPEDR8+XL71rW/J/vvvbw7jOf/yl78Yt+2rVq0yRCc+v3TtnsrWr19vnu0PP/xQli9fLt26dZPddtvNqFFSrTSZ0c34Cy+8INOmTZOPPvrIKKCOGzdOeK6DDz442SEtG4emV7CPX/yH+8TfEZxIKN46C1Ek8Gs9GZ6F8By05153jBppsKYw+joTBvtl2tzGhWJcojLu/S+Fdkjn6ToyJLKEXP7u48ePT5q6R48ehmT7v//9z5Py7f/93/8Z9em99toraX7JIqlWTYVeEnIfffRRQwROlu7LL7+Uzz77zOyiGm+i8Z5mOXmfbt682RB2eV0nnHACtFmab0g2tNyRenjViaxNLKGHbdyvFbvg+2QsvlNGYtJgDxDz4OSxnIz325NPPpn2kvr37x/fTyXVn//850YVlurl2RjvKbXiQYDPIevEtWvXmrqnWEpGRfBCGpXGk9mVV14pXGi+KjFeBoL9/RIag3fIF1imox6aXi8V24JZ8fAja0Qa8A4K7eLAQ1B2z0yycmqcIqAIKAKKgCKgCCgCpYZA8339lRoyWl5FoAAI1P79Hgnuurch46I/Lur2l+fhBs0VFvX+aGn1ryJQ0giYx42KVxxkR+iLhSW3XdK/ghZeEVAEFAFFwAsCIbie3wY3k/VvwH3vCi9HpEiDjnX/AAyqjfNJ5Vi/BPv7ZNPMRSKfgLnHuhCHkVTLtQg2SnE7xZVrtCJQEgj422DAmwPfeE4bRoGYO92Rhk8j4ixCezUXVSscZpTVXuDxYamm6+SufLLVEhGg+iBJuKUeJl6XbisC5YAAyXYkNJE0c95555XDJek1JCDAiWe170QnowiapZ4NIxuBYVBuPMIvVeNAemybuY6zKrhUpONiLRkZ173fpmvJkGq6VsmPZMBEIhmV76666ipTxL/+9a+NivrDH/5Q/vCHPzSK48ZDDz0k11xzjbzzzjvSq1evRvtJfOV+knbnzZsn1157bXz/66+/bvIjQe3EE080xNylS5fG97/yyivGDfivfvWrpGp8s2bNkr333tsQH+MHYeXxxx+XK664whAZE92/b9iwQc455xz5z3/+4z5Enn76abPNfbfeequ0bdu20f5i2OCkqDZoh/na+aT2RUyWmoNSeb3XoSwYAhlqWw9H/B18eZ9gZVVwSba976XtMoaMd1vifve+pq5bcjnJ3CRqd+rUKWmWP/3pT4VLOnvrrbfiRPEzzzzT3Euc2OHFqqurjTr7PffcIyTA33XXXUahN/FYktWtkWRrjaT4G2+8sdGzwn2WcEy1VD6bAwYMsIcUNKyfAwL4XHwHZGNQdvYPAiFvD7xXx/uloheIuGU6ikz1ZSqTZ2OcOKBWHgiQVN2afs/bbrst6Q/nJuPaBJxQcMABB5gJJRUg4weHg1A7pErWvrJRAsuCUh2otkkzhuHZEWmYFwEhN2NSTaAIKAKKgCKgCCgCikDZIVCmn1Jl9zvpBZUBAvWvPwtiAzowdkaHEvpBSHKwxL+oAlnj7aLdXwa/hV6CIkAE2B1JEm6ph/prKgKKgCKgCJQ3AqE1GHx9E2Tc10DGhbpETgYlG7pIDYKoULkrFqhw+jEY3MhYJ5r2KdupbKwyRAoTltB2o4vSDUWgNBGIE3P7+qR+GBRp4Ga24dMYIT8Hd8WR5XAV+RKecRzb9kCoB3ZJeP5LE6a8ljqlIi4n7cFKZX9eQdHMFIEiQoDqlyQEkjRIQpNa+SAQqRepRR3X8CHUObMRhiMZdwRIjseANDYK/a1Vmes2S8YlepaAS9It16mQay2RrGvjWzrcc889jYIdlT+fe+45o2BLMixt2bJlctFFF5l1xv2///f/zDr/3HDDDXEyLhUhjzvuOKHa6KuvvmqeKRJpJ0+ebLY7doQsZoJNmTJFuOy+++4m3erVq+Xuu+82qS699FK5//77hXkceeSRhrxLtVsSeakIed1118mhhx5qFGxttjz+2GOPjZNxjznmGEOK+/jjj+Pk2qOOOkqoMuomCZNUbMm4JFoy35UrVxos3nzzTSEheciQIfKzn/3MnqqoQn5/tdkd9yoIj7XPOxKeiTaGV1LuZqgMfoD2XF9H2kwEsbcxVzbn67RkXGZg1XBJymU8FXKtFZKMy3PwHf+nP/3JnI730cMPPyzDhg2zp88qHDhwoPz5z3+Ws88+W+bPny+XXXaZIdZ6zeTb3/62kJBLI5HWPmP2eLYJWT4a72M+S9aoEm2J66yrvvOd75hdvD/pip512MUXXyzPPPOMPaRgobMN3jaWov2/PotTdECfwa6YILg/+gyGYJIDJguqbUfg2WeflQ8++EAGDRokyZSRt6cUo1bOyUSLFmECNIwEx1//+tdmnarNfO+5LVvFcE6G4DuW70oqlrNsnCixZMkS8951K0Nnm7ct19y5c43y+YwZM6ShoUFGjhwpVEunknm29sc//lEWL15snpcLL7ww6eF8n9u6hQrs7kkZVGd/++23hWXhdXOyFhe+L2x9bjNdt26d3H777WaTirBUnX3++eeFzyF/k8cee8wc8/vf/17WrFlj6pIDDzzQHh4PszknFdufeuopIamf75yvvvpKODGFEwRCoZCMGjVKTjnllEbXRHXeO+64Q2pra+Pn5EQA4kRjeh5njW0T/s6sK6dPn26U8EePHm3ugV122cUmSxlykk0y473ptsMPP9xgxTji8vLLL0sl1HIrusHLVk1H+ef3npB9uu8vnau6uA9Luc53UAjvIr6T9J2SEibdoQgoAoqAIqAIKAJlioAScsv0h9XLKj4E6l95SoJ7HRQtmO3LoDonrdS2o6XWv0WAAF3C0c1cfX29+bgvgiLlVAS6CaqsrDQqFm3atMkpj2wPij925kCjBRhbY1A626bQ+kcRUAQUAUXAIFBu9WJ1XVtxPghKPVyU5kzGpavJkVDEpcINXU2mclmPijGqjEvyGTesUm5pbeujoAiUEwL+9lD9Gx+AmjUIGENAzv0A6oFf4pncmP1VRlaLbAXBYuPmjRKZgEG/nRu7Jc4+x8Id0SLfBqqQW7gfVHNOi0C5tV2oTFmob3q6oyehKZ+E3M+/nCmfzvhC5i9YLOuhvlmq1gkkyoE1/WTc6JEyasTwkrqMhkWYePJell4gMNksAEX5NpNJxgU5EQTHXMwScd1kXObTnMq4JMUGg6nZlT179jRKsvb6SPSxhJzzzz9f+Fx07txZfvKTn5gkJNzeeeedNrm89tprcvXVV5ttKt2++OKL8fNRFY/E2XPPPVeouEvCK7eT2cknn2z2WTftJC2SREmbPXu2Ueb95S9/GT+U6S3BiQQ2m5YJqPJLoiSN17///vubdf6hC3EeR6VUKmLzWmns+/znP/9p1km4pQqpNRKRSW4jGY3lL1ZCLstL4nj1OM6WBCk3EiPlepxsFVmG9uC7jlT0wbfdoO1kWYtDPkKScknEdZNxma9bOTcf50nMg8RWEgjff/99QzYjyWzXXXeV448/3sRPmDBhB9JdYh7u7dNPP92Qt6kiTcL40UcfbRZ3mlTrVEwdOHCguUdZ5yQScqdOnRq/f88444xG2VjlXJLXScZjm5bGe55kcZJ1SfIlKb3QypzOBhDg1uLkHpv8PnDrgvv5pc1BUMPsjfsL96haYwT4PqVqMomimQi5JHvyPWaN6zfddJPZ/NGPftSIkJuLYjiJnMzTcRz5+c9/bp4d97nsei5581iSMBNJwy+99JIhulLFPFtzX/9JJ53UiMhu8yJR3WJkJ5Vs3LjRqGJbErxNy7LQ+FuwnnBP3qCaus2HatTEhyReaxxHo913332m/iLZ2NZXjM/lnF988UX8nBMnTjREYeZljZNobrnlFnP/sO6muctp05G0z4XG94gl5JLgy3cR69tE+8UvfmGIvSQfpzMSkpMZ4zkuxzYBybnudFxnHNVySaatHhuQKTu/JmsXr5Ej+2BCQpvtExKS5W3iUMc5a/E+Qh+Gv3mG/VIWRXcoAoqAIqAIKAKKgCLQ3AgoIbe5EdfztUoEQh+/K77O3fHFEXvkYryGqDQnICml7Vb5CxbfRbPjgB/tNA54dejQId7JV3ylzVwizhTmbGB2jnChIgc7Agpp9rGLniOmlBs/YaltxwuuK4qAIqAItEoEyrFe3LYG9eKUOvG/gSbkGgzaZmtodvprMKi2p1+qJ8QG1TJkY2o/U0HiD//HlHJJzqUl219XXykbtuwsW2qrJezgBOZ4kzg6iGe3TQ5J4mP7A/6wtKuulY7tNklVJQZIEO/l/NHzMZNY+cya/lEEyguBQGeftN2bxFy4OZ4KFUEQc51FuEavqmoxOALrAlLx0U5S3bODtBkQEBJ+i9Fa5NugxJRwUyn2FuPvqWVKjkA5tl0K/U1Pl+YkMH3++edxgkJydDPHLlm2XJ557iW0XRyZMH6sHH7wgdKlS+fMBxZpirVr18nsufPltf+9I29OeU++ccwk6dsb7hGK3JzNIBh+BFLiLDb8PBYWVZd/iEj10dmTcS3R1q2ml0jGJVGuOe3BBx8ULqmMhMS99947vpvkXbq8Hzt2rOk/u/zyy41KJ4mHNJIPu3btGk9PdT7aTjvtJP/4xz/iZFybgEqzJNuQyErCUCojucyScZmGpEUSJqnUx7xJCHIby9ynTx+jnPvpp5/Gd5FYa4lUVHh0k3GZiMeRbMvrYjq2CUhqXLFiRTwPvgvcxv0sO99B7jK60xTTOgnkJDUJSErbGsLizEHpvNz/SBP+Cs/MJyDl9kji8SSHi7REW6uOyywSybjn31uXQ87ZHcJnkqQ6kvBIZKXx3uJijSQ+3q+HHXaYpz5wKm1SUZNEQBJnv/zySyFhPZP5MEmLJHUSzKnITLVNkt6tPf7442aV9z3VOd1G1UoayYGWjGv3M78f//jHZrN9+/Y2umChA8XxCBZP1hb9Bnvhe+NwfCt0L87vA0/XUUSJ+HtzjMMSc0eMGCGnnXaaKSEnR1jLVTHcHk+SJ43v24MOOsi8/3v37m3ics17zpw5RgnXZII/nPhBwirVaXn/U6suSrsAAEAASURBVHWd9382RmXda665xhzCZ/2cc87Z4fB//etfJo5EVOJF47ksGZfxhxxyiHnP853PiSRcqPpOMn8ysyRVEnc5MYTfUIn1fuJxTT0n3wvEh+8sqgqz3foXqGfTOIFk0qRJUlNTY94rVJGvq6sTKt/TSIK2db5VIg6Hw+a9x3cZjfcW8+U77dFHHzUkXZK8md6tjGwSx/784Q9/cG8mXbdlcO8kSZdk3Ljh9fDQ63+WQcGhUuWvlsn9jpP2wczvM76LnK2s6PT9EsdSVxQBRUARUAQUAUWgVSAQYwe2imvVi1QEWgyB0BcfSaB3/+3fG/ju4KeHcQPMUpXadoshqScmAlTQoTudTp06SXN04DUH6uyk5LVwoesguijiAEKhlHV4TebzH52s6InBBjQBY2HJbTfHD6TnUAQUAUWgiBEox3ox4FRIYF4bqZyKAdo1OYC/M1Rxx8DVJBRuqnaBq0m4R81s1MeNtk+Thtjnjt+4rb0sWN5bVm/olDnrLFN067heanotkw5tN5v2sjlvwvnZjnaXR7v2swRZk5ceAuBtBOEqMtDFJ3X9sEyBWu4M3PnbxX48XVNkmUjda474O0DhZrf8uTz2dHKPiVrk2wDfAxygJQmjlEOPEGuyFkagHNsuzfXc0iUv1d6sYlguPyVVcR985FE54RvHyMQ9J+SSRdEdQzIxF17Pex9Mk9vv/qN893S4Oi5ytdz6OZhk8gnqMq+kMSDvQ/dq9aSAVI/256SMm4yUa39Q7iMxpjmNpJ10fV9uIqAtF58DuuMmuY9kXksQJImQSqBu+/DDD80mia89eiRXsvvGN75hCLkkj9G9ev/+ANllQ4cObURItLtqamoMYZIEoETyIdOQALV06dJGmJLQZY2kNBJuE23PPfeMR82cOdM87wMHDjQEJ5aRasB0wU4V3mHDhpm09h0UP7DIV0jKrRrrl8g29PPWhiWy2GOBN4s0fByR+qERqcb3Xj4sGSnX5nv/SyGZNtexmwUNKTZBt/JUgqQyLUl4vH+s8T7nQpVIktIzCTmwX/mBBx4whHXeNyTmWQVbm2eqkK7iSXqjkZT7ne98x6zzfv0bXMrTSPKle3q3kbjGMvIYquJSCZPkdd6fbGM2Zz9+hI/Wjo+Xu7jxdV879B9AGVnJuHFImrxiiaBPPfWUIYWz3UKl1kTLRTE8MQ+SPDnBIRDAB6PLcs2bxGE+MzSq1rqJ57feequ5py051HW6tKuDBw82Hg6o/kribSIhd/ny5XFlVqs+TDGa3/3udybfb37zm0Yl3V4j1aap6k6iKYn7HEtKVcc98sgjpr5IW8DYznyck8R/TgagOq+1ww8/PE7I5jvikksuMWN7vCfY9rBkWNbhVId3G8nGFm9OvnErF/MdQ6Iy9zPfVIRcK+zjzjfdOgnYO5BxcYAt57yG2fLZuo/lwJ6HeCLkSgP6Gj2+j9KVS/cpAoqAIqAIKAKKgCJQaggUxrdNqaGg5VUECoxAeAFcibTDrFES/vCfIYOS3C4wVpp9egSookMyLlVhmrMTL32p8ruX18Xr43Xyegtl9hks9bBQ+Gi+ioAioAiUAgJlWS+iYqrHoCcJc0YBM5sfgiRViKFUHe6XdicEpA1c3Xsj4+Ikpn2Kk3sIF6/uIR9+OaogZFxeLkm+zJ/n8VKeqHIv/5paPRvENK0iUHII8JluAyItn/GKgyMS7oKRrSz5GM4CuEnGO6Z+HggWRf7YNNu3Ab/VYamUZ0sl3lyE/ilqBMqy7ZKAeCGfW5IblixZknBG75tUxiUZ99yzTisbMm7i1ZOUy+vjdfJ6i9XCG0EqnA4Xxou8V0R0qV51ILw/jAcZtzrLys8FBMkvlphro5PF2X2FDO+9915zT/O+TrZwfzL73ve+ZxTzuI/EKaoj3nzzzY2Ssu569913Tdzo0aMb7XNvkOBrza1ma+NSkZzs/lRqg8nUaj/55BN7mFEBpNevxOXQQw+Np7HlIZnRrSRMMhaviWq5JHa9+OKLScm98YyKcIXuv6vgyaRyf9zP2wVYM5bUWYBn5zMoS2/y/uxkypSkXJJv3cZtS9Z1xxd6nfcjf9/58+fLwoULjQKkVRbluUmqtWTHTGU54ogj5MILLzTJSJK1KpWZjiMpnaqgNJKDrVFx2hLjqOabaFdffXVchZfEXZLaeH9TwZOkwMT3TuLx+dz2UYrJoxxTZCu4u/MjElqdv3sqn9dSqLx4j3Xp0iXlkuw3zmdZvCqG85xWMTzx/JyscNttt+1Axs01b052sMrUVD53k3F5bqo/817OxUgQpr3++uuGQOvOw63QfsIJJ5hdVM6mQjUXKrxbMq49zubH7alTp9roRuEFF1zgmYzLA/NxTpKj3WRc5ku1XNbTtNmzMVachc2bNy+e2uZhI3r27ClUNCZG119/vY3eIWxoACPWo5GI+/LLLzdWxsWxJONaQm5NcJCM6jQWZFyPSsl4F5l3kscyaDJFQBFQBBQBRUARUATKBQEl5JbLL6nXUdQIOKtXiC/Arw50FrO/mCGtFLejJde/LYQAZ7NSGTdxBn4LFadgp+X18Tqznb2bTYFiT2GMvxBVBeTx0fjS2c7mmjWtIqAIKALlhkA51oscBKudEpbwTAyGZSNGBDEU/1Aohh3rl7ZQDQv2w6deY4GU9D8/KkBT+5mK0GwgfeOQ+5es6SkzF9WkzytPe3kens+Ww0v58nRqzUYRKG4E8GwHB/ilbs9NEjw6Iv7BKC7iPBveLeEv4PL4nbCE1hT/wHuzfBvEvtHNKxBAkvhD2yE0sUnibfoW3h87vQZFjEA5tl2SwV2o55aKhyQd5GrPPPeSUcYdNoQvzvI1Xh8VgHm9xWoN86H0/hXqIK/zsNuAW7YH1N33wISznezbOvercxNw3eu559i8R5LsSrKftYEDB+4wcZ9qv1blsGPHjjbpDqHb9XhTnq8dMk4SYcmMSXYljdq4cWM8nkq+H3zwgfzgBz+Iu0tnflRSPfbYY42S7oIFC+LpS2ElgHu5zUQok07APd1YbDV18SHiHEI7rmFhfttwblJuS5FxEy+a5L/jjz/ekLGnTZsW/935m3sVcSBJjSrPNKpJusltiedzb1tVXJIHly2DiwkYlT1pfN7cSs4mEn+o2ExVahJz3cQ5Kv+effbZxhscyePNYf62aK9C+daTQaW84T1Htr4SloZlxT9hz9M1eUzEd2SqhR4NCmnJFMOpwuxe3PcZFcMT7aijjkqMMtu55u0+ju/cZMa6x11vJEuTLI4qt9bcBFzGPfbYY2YXn3e29Wis5zjJi4tbhZ34kDjsngyyZUtyqX1LrDcZeviTj3NSFTvR+E05YsQIE51tPbjbbrvFs5s8ebL8+c9/bkRoZpubGKVTDQ8Gg/E8Mq242xZM+7///U+o8GvJuLtUjZJzh/5ADuk9SXbySMjlu8jftultt0xl1/2KgCKgCCgCioAioAgUGwJgCKopAopAoRGI1NfiFOgkYz8ZvzuyDKfNnif3PPuivDTtU9mwBVOWc7SO7drKpAnj5AeTj5AJQwdlXQ5T7hzPrYc1HQHbCcQP7NZgvE7O5uZ1p3PflysW9jGMHh/V1NveLZB+e9qns+WeB56Vl1+fJhs2Ju/w8VKujh3ayaSDJ8j3z5ksu40bYl4PuZTHy7k0jSKgCCgC5YZAOdaLEQyu1n0Cghxd92Lds6FvPTACBIUj/FIF971UW8racMqIj39wZIpw47Z2O5Bx27XZJhWBkGzZ1lZC4WwYgY1LWBEIS7s2W5FHBfIC4yJmJOXu3G6z7Nxmc8bymfLbAzVUBMocAb4DfR0j0vHQtlLX3ZHaF6GURiK/V/EbvGMaPgIpt78jgf0DObn9bk6IC/5tYBVyYxeVUhE3YT8HxumKluSLzZvhR7oJxmvkAC5V1KwL7h3KkXD+xP1NOL0e2gwIlGPbJR1shXhuSTbwSsJKLNvnX86UsOOUrTJu4vVSKXfaJ9OF1z1qxPDE3S267WwDmRB1lrOEDU9vFhiKtu4+UIfvnkM7N8UprFqlDVMkK8roWbNmGXfStnBTpkyRBx54QM4991wbZSbzjxkzRj777DP56quv4vGJK1TXs5ZOSdemaUrI8lhbvHhxShfjNk1iOH78eLn99tvlt7/9rbkukiXvvPNOWbp0qVFUpSJqMtJaYj7FtF3RA6rP+2Iu5jJMyvzc2zPhLMYzNNuRyiG+3L79UgBgFXFtmCJZi0Tz3iG5lm7qabyvJ0yYkLEsVKglgXfixIkmLYmxbmXNVBmQ5G2NbuKpxGwJuczDTtqyaWxIEvEVV1xhlrlz5xrX9STQvfPOOyYJ86VCZqKCpj0+X6G/I+4NKi9TksnDRN/IGsyPeN2RCJSXq/eLSOXgpimR5+s6CplP9+7dzXsz1TksMTTV/qbGJyqGZ8qPiuGjRo1qlCxVGXPN203IHT48eduB9z5Jom+++WajsmTa4MSQU089Vf75z3/K448/bkjqPGbFihVGNZfrZ555JoNG9tprr8kzzzxjVFuzVZelAnIu1pRz9uvXL+kpcyExMyMSeX/2s5/JrbfeahS6qZBP40QDEnSp5My6MZ0ddthh8utf/zpdkvi+Aw44IL7OFR5Lq/JVy34dD5ITa06V/XocJF2ro8RpszPdH7yD/F3xPuqQLpHuUwQUAUVAEVAEFAFFoDwRUEJuef6uelXFioDtM0bI1Yhr2xTZtW33P/zq/+TyB/8uV5xyvNx8zunSdeeoGxCzP811Jtu/ZtPX8q8335FvXnOL3Pjdb8sZh8Y+rlznteWw57fbjcI059VdhUOA5FR2IrYm4/XyugtByDW3PZWsOPiO0BcLM20//M9X5Ir/+4tc/pNT5Oarz5GunfFMuvKxx3sJ16zDM/nkm3LcadfIDVeeJWecig6OLMvTmu4HvVZFQBFQBNwIlGO92LAILuQ/xKQQDIZ5tkqQccdAWenogFQNx6AZtnMy1oU4kKRWrrGdmri9YHmfRll3bP+1bAZ5tk/vVdJj8GypqmgAnzd2PFKa4z1u14WCsnJdF5m3rI8w3w2bo21enpDnHTt41g7lSSwft9UUgdaCgH0HUmmmelcQaqtEtr0AUi6JHB7VBiOrkPRDR4I1PjPoXuzYFfTbAO9Akls5wOw1pMLZ/fffL6effrpwYJQuTrM5PvE8VE4lsYgkDiq4TZo0Kev8iv03bO3ls89ta8KhkM9ttjh+OuMLmTB+bLaHlXR6Xi+vu9gIuaFlcI0+F/UV9Qs8mA+cj8q9UFcNRGsvywZfpuS5kHET3WZ7uIS8JqE64FlnnWXy3GuvvYSkqYceesgoxx5yyCEyaBBEGGLG/SQucuJIKuN+a4lkLxufr3DcuHHxrKZPn25U9+IRWaxQLXHXXXc1CwmadEtO0iVd0FMB1Y1BFtm2TFLcpJWDfdKwp0+cFfiaWuuhGBDuDM3Bc4T05rnwcIhNgqaO6Xq024lhLmTcKu/ii4mnE5JWrQrobbfdJlaZdoeEiMj12SN5kOqOdMVOYqwlxyY7h40jee6MM84w9xWfLxJoreI0SYVebPDgwcKFJEOSci2R7q233io8IRffCIE++LLHBL6IV2H5DZiwNwWTJVY4uB8jUjUW6s090ceQ+7xbLzC1WJp27doJSfwtZdkqpboVwzOVOde8167d/gJKNw6VTnU9Xdn4TJGQ+8orrxhyKUnRVi2XzxyVWK2xruMzSyJqMmN6+0wm259LXD7OmYqsn0t5eAzzu/HGG2W//faTv/zlL/L000+brEhO/t3vfmeWY445Rv72t7+lHDvMhgzMyW9ulVz2D46oHiOH9T5SDu99lIzsNFraBLZPos90XT5MDKjond/JI5nOqfsVgZZGgG1rtkf5LmY/D59BTqBgW4JtklzbMy19XZnOv2TJElmAtjheXOadlSl9qe2nGvuXX35pis1J9OwDbO1G7yX18MrSH/d2//79PcPBbza2OdgWswryng/WhIpAiSHA+ZFqioAi0FwIkGhHQ2DWXNvR+Mb7qYxLMu7z114uPzj2COm6U0wZ1ePx8d61WLY8nvkwP+bL/KPnjQbu9GnLF0uuQfMiQBUYuqApNmOD64knnpBXX30170Xj9eaqfpOpMPYezyac9slsQ8Z97tFrjaotybjZHM9nzJ2ex1Mdl/mR5Mv83fsT0yfbznSdul8RUAQUgXJFoBjrRXYmsE7kwo78bIxKYXXTQabDwGq0MvBwNJVxR/uk7WSQcUc0gYzLU5k6KnpuU1slbNfVB2X1hk7xQlEZl2Tc3YZ9Kf26L5fKQD2Knfr4TPnzeObD/Jgv87fG8/L8nvK3B2moCJQ5Au53IIn4VaMD0mayXwIjwbLwOvUaj2x4VkTqZ0ANqxYbTTQqxNp34PLly5uY246HF/TbIPZtnqg4m2qb6nsk4958881G0dZ2xKdK7yW+Q4cOJi/mybypfujlOCJl0+2ImsYUEwLu57aYykUiBJ9dNykvX+Ur5HObbRnnL1gsQwcPzPawvKdPhndT2pDpCsjr5XUXlaG6aVjgCBU+PRlGLyrQ3q0aw8knqOOytE6dKRGZP+P7lgOHLWlUh506daopwr333mvqIku2oUJuOByOF88qiHLwmGkTbdGiRXGlXRJcC93vSCKCLeuvfvWrpOrydI9Nt+VcFi5caIr83//+15AaqWy6bNmyRpdBcq6bPFSKdSLv7epxsXacxxE7ZwEIuYvwHHl8lCxoJ030eAJ7gIdwwiAPiVIkIWG1pqbGEOtuueUWSeV6nirzJMZay5Z0TYXJffbZxx7uKTzttNNMuo8//liuuuoqs857LZm6Ld/jJN5y4QSrRDv44IPjUQ7U2pvDglC59YPsnZXBiwYn+NU95ciWJ8Ky7S148AHxW7a/Vjxn5/dH77V8Xa/tY/EHyoMhnKgYznZiuuX73/++Z+xzzdutkm7fv8lOygkVuRifA5JwaZaI61aeJhnUGonzloxLlVaSeKmszgluxGnBggU2ad7Cljin18KTdPvYY4/J+vXrjVow32m2PiWWv/jFL1JmxYk77noyZULXjoP2P1iWv7tSzup3gVwy+go5Z9j3ZLeue2RFxmV2ASi5Bwdm+R5ylUNXFYFSQmDlypVyxx13mIkHHDfne4qEXL672Jagd6Xrrrsu7US5UrrexLJSyf0FtNlfeOGFxF1lsU2PHPSawIXq7i1lbA+tXr3aLLZt5KUsuR6XLu///Oc/5jf/4osv0iXbYd9LL71kcCzXe2WHC9aIVo1A/r++WzWcevGKQAYEMCvImP3+yLB9z7MvGmXcsYMGxI7L7njOQkp2PuZHxV3mn2x/XG0ixfHRg/RvcyPAxhI7mYvNfvOb3xjXOFQayLfxerNpUGZz/vhjaA6KqgJyNRqffPveB541yrhjRw3a/phkcXyq/JkfFXeZf7rzJzvenL6E/tRhtpyaIqAIZEagoQFKozFyUObUrTNFMdaLHCimuzguHCDIxhpASgh9gYGuLR6PwpdcYBiUcY/ySyWVcZvaREAFZGo/UxGZjUbbG7Y0nvVdEQjJoN5LZae2LPCO6aNR0fhs9jM/5sv83cbzpytf/Hzug3RdEShjBBLfgXwHVO0CUu6RGHiHW2/jntbL9W8GMQqD7g1ZuA1PlS0VQOw7MNvO2FR5uuML+m0Q+/a1ikaZQg6kUBl3yJAhpoiZ0mezn8QU5s1zZHOcGytdL04EEp/bYiklSW98djmwlG8r5HObbVnXYzC0S5f8kjOzLQPTn3jC8XLat/+fPOXC+8UX/2viGJ9tGzJdGXi9vO5iMmdLRMJo90Y8FssH3k5wDFQau6Nuy8GoRkWVv3x8WzGPbt26pVSgy6F4ZkCe5L10C8lH1uiG3LqdpqI6yVN0yX3nnXeaJFOmTJG7777bJpeTTjpJLDHrRz/6kVHSIzl3zZo15pnn828VBq+99tr4cYVaYb1mCVYkJpx44olCxXmSFTiZ54EHHjBEXJKL2Jbo0yfqoYMhVRWpAMhrIg58p5Lo9/bbb8v1119visxrZT1ailbRw2/udV83b6WPrIdKLtpvfKaysdMP8Mv4gfkbFjzjIL/sni3pM6HA9AxAo+Ij7+l///vfQtIDf1+qZ9F9PNUh33//fZOOpNdOnbZPFjWRGf6wPqJKbTZG1+2WPGgnraRS8O3du7chGPI+5T1K4Qr77JKQc+GFF8ZPffTRR8fXC7kS7I17ChMaqFCZrZn76+2IbHs8DGJuSLa8ERZ69Ilk0c3ByQv8nebMmSPr1nmV6U1dUvsb9OzZM3WiIt2TrA5KVAzPZ9FzzdvWFyxLKtItCaEkoOdifA6twjvJpSSvWQI726JuIwHX2n333Sd8Hnv06BEfH0tVPntMLmFLnNNdTveEGne8e53PFcm1VM3lu2XgwIFmd6Z2/FFHHeXOJuX6Nb+8Vp7744vy431+IU/+6AW5cMRPZFKfo6VbdXd2u2Vlvi6xNlyv/NU5WRVAEysCzYgAJw5xYrVVKOf7rl+/frLLLruYtoSdpMJvPfb1zJgxoxlLp6cqJwT4jXT77bebJRticK7HlRN2ei2KQEsg0NRh25Yos55TEShdBNg/xq8Wj+FL0z6Vm8853XN6r/ky3ckH7iM3PhobbPFYnmxn3DfHD8XGqx3Ucs+gLdS57fm85E9VCdvI9pJe0zQvAva2j57VaO65OhWSb7/0+jS56aqzcUjy/ds7JbLf/63jDpCbbn80BkK2x+cXOz5TdhAwGAwKF6/mPpbPJD88aexEP+GEE+T5558XDvJcdtllXrPUdHlEgGRBqnrQLc6bb76Z9re1vyUHzNq0aZPHUogZTKGbrWnTpgldrl166aXCwUG1KAIvv/yy0AUiBxk4W9QOQhYan5tuuskMyu6xxx5y1113Nfl0f/3rX+Wee+4xHebPPPNMk/Mr5wwi4J42zII67nzWTt7M1xfku0P9UMaFWlievupM7WMqSPzhf180FIRbahur9G/Z1lZ6DJ4Va6fyoFjtyNXYce7js9nfo/MambcMF+gynj9d+eL5u44pxCo7WNmBxY7T9u3bCwe6qM6kbb5CoK15ZouAD022qlEBcb4W2fZ1WCJLvOUQhtvw+jmOBGvyQO73dsqiS2UHyb2GdP1N99he02ebjupRJB1le1xzAMt2/eeff25UC0mWoTpw3759hW7OOzdRiZLtTw62czCahDMqQakpAopA+SBAVddPnpohuy6dKAPCgzxdWGC4TyqHgciRI5eD/Rk1NTXmu5PtuFyN39AkwaRz4Z1L3lTR4pLOSKAlybS2tlYsGZAEnJ///Ofxw0hk4vcXiU2XXHKJTJo0yRAAqL7+7LPPGmVQvrOpoJdMRe9Pf/pTs7luJxmLSmGc2G+JyPELia1Q9e/RRx+N9ymRJEa1UtaNvI/23HPPxEOMUuANN9ywQ3zJRED0kxMtG4Y4EloZ/b5KW3YoloaXYVLnmohUtt/eI5n2GOzs0VHknvP88tw0nyxYFf2cy3RMsv1VaHfuNURA7vV+7mT5MI73BL0PsB+C9yn7Q1IZya6ZnplUx/K7jfc6laS9GPs0mdZ9X33jG99IemhVVZVQtOJ73/ueIblb8hvvZUt654HXXHONcVudNJM8R9KLBpWXwwsw+Q7kWsmCTGuKgkMiuEcaVuM+mwFCLpQuK4bim2EQJkn080lgZ/z2GX5+EgdJPHrwwQflkEMOiROcs7lU9lGz7U3lPbY3qfZZKmbdkr/33ns7FNkqhvP+oGL43nvvbfoY3AmpGP673/3ORJF8k0yd2Z3erueaN+tLaz/96U/loIMOakR+57eJm1xu02YT8vmmGjbJr3weaUOHDjVu3N35kPhrLbFfmt8j2RLsbV7pwpY4p71HWC5OVEk0/v6M5+QA9tvasRam4/tl//3390SQ5u9JJUKOBySzboEe8u0Dz5CLx18iWx4Li4M+gk7ru0mntslSe4irgoeD3ejhAH0M3oeWPGSsSRSB4kSAk8nYVqfttttucuyxx4qbs8C+Do6PcDyM9o9//MOM07nTmB36p2gR6NWrV/x7yU7YKtrCasEUAUWgaBDI09Bt0VyPFkQRKFoE2DcRsR0UCL1sb9iyVbruvJO5Ji/ps8m/G/Jl/jbzrPKPHlUUf/khyVlnI0aMMJ0yhS6UPZ+X87BDgTP21YoTAd7zRkWaCpQ+qAXEQox6p9zesHGLdO0ChUCP6bPJvxvyZf7Gssk/ekRe/1KJgqpctG9+85vGHZLXE5x99tlGtYTp3c8AyUsk49LYQa2EXANFs/8hIZedeLvvvntaMi4L5r4POFhGFYJ8GMmmieQKd4dnPs5R6nmwU5kd8lw4eErCT3PYV199Ze4PKizlw6w7Ju2gyIxmeB0GuDBIJlCq9GSoiir3Bhl3LDq2t3v083Ro6kRGf9a0V2270B2GHYwQuywUDkhVRQgk2dhx2OdOz3Zpo+0U+2+95B4ZPm6wHHPmEfH0zJf5u43n55l2yNeeJ5a/+5h8rnNgmHWcVW9x581BEE4qoEqZe3DEnUbXFYHmQsCHga+q8Rh4h2vZuo1whwtybkZDGg7Uh9dHpKIbn9zWZ5yAxAFmr+HmzZuFJCev6bNN17FjR+PGO9vjCvnL2YFvDgpTwS6ZnXPOOYYgNnDgwGS7M8bxHNYNu7YPM8KlCRSBkkDg3XffNQR7SwA5qee3ZczIPUTQns1oSFMB5c1Al6bXTXxncykGy3Yil50kzfcvybk0Tnx0k4NZX1AZd+TIkWb/D37wAzMRlhscPOZ3+JVXXilPPPGE2W//kARFIliiMiH3u0lCNr07JAExV+M5+XuQlGWVxGxe3/3ud+Xyyy+XmpoaG2VCEvo4YeXmm29uVA+xLc7JHLfddpvkWv80OlELbrAdxns+NB3fhh7acBEQd8MgS0pNdoX245E6dvemP1fZnTV1at5L/P323Xdf802VTH2TE5VJBKSbdt7vbnNv2+fFvd+9zr56utd9+umn3dEp10855ZQ4IZekcE5ESmX8XiRhlKR4q+Zrybh77bWXXH311XLooYemOrwg8RVQpqzeH0IJa8ISpkceELmzNhwWWQtF5rUk5mIiX198M/DdXANX9CDmVvT0ib9d49/EnoP9j5s2bTLvI6oHN8VIxLVE56bk05zH8p3Ee4H9CewPp1gFJ7BROZj3LRXDqRBtFcM59sR7hRNI2I/OiRe8h5hPNpP1c82b733WNT/5yU9MmU8++WSzvs8++xjS/MMPPyyPP/54kyCkCvauu+5qrpkEddp55523Q558VqiMS6OQA7HhPcAxBr4vmno/7XBCRLTEOTnZxxL3iS2J61QE5z3Cep6iP/ZaSfYjDpxcQKI64x966CFzKXw/ZTLWuby/rLX37SQj2o2WUR3HyqhOY2V0aKzUPok+hNiwsU2XdYjuvMAIn1TvF5CKHsnfDVnnqQcoAkWOACcW0di+5bve3TZhPPuLGb969WpZtGgRo4x3CK8TLcwB+qdFEbDfHC1aCD25IqAIlBwCSsgtuZ9MC1yqCKDfAj0X/MsPEOh7seMo07Y5JvrHU/pM+SXuzyl/HlR8ZmeeFVPJ6urqiqk4WpYEBMzTiGcim5BZZJOeJN9s0ueSf8Jl5X2THdTsNPTS6Uf3GLaDKLEgdM1iO9s4uKLWMghwEI7Gzr1sjDN482UcOLT229/+1swqbaqams2vXEIqvnCglB/5hx12WLlcll5HGgQaFjviLE6TwLWLhNQgOrardvdHFWlc+5q0yjor2kxNGSbmb2o5VHSZjku1n2TcWZ/OxTLH1JeTz5xkKlqTfseTIQ1PluF8icflYZtEkm9961uNyAJ2wITZc4Dsuuuukw8++MAMhug7LQ+gaxZNQiDQAe+IPf0SWgiSxrToc5MpwzDGA0JLWy8hN1cl2myPK3T6TL9zrvvpcplk20Qil/tdyLzpavxf//qXUX4hqSbRODnMKstxwKrUiVOJ16fbioAisB0BkotIJLJEXLunb7v+0r2NN3fj/j4ge/UvP/V2ura3XoksLl5CklS5pLIhQ4akzJf7qMTF9/mSJUuMgheJul27dt2BMGDzJxHKkqFsnDskCcgSgdzxdp2qmKmMJIUf/vCHctFFFxmX5XRbzomhxCYdEZhkSi68jnnz5gknsFClvVyMnk8qBvjF3zsizky04TKYswb8SpAkzccUv+VK3E488UThwu8rku5IWKHnoEwq/PxW4+LVHnvsMa9JjQhINs8ryW5vvfWW8ei3cOFCo/pP8lyLTdzEfUGVceeIiGyrh+ol51SBb5ezQUuC92b9bExk6wzR3f4g5g4AKZfE3N5YusfIua77kX2QnCwwZ84cM+Es23MTOz7n7FsuNZs8eXK8r/yXv/ylcOFkXpJzaVSHzlYx3CsGueZN4jvViOnZjHV4Yj3OiRxUbWe7Pldj2dhOsEbie6JxAgZFeDgRheroXNzGd0Xit4l7fy7rLXFOlpOTYig6xHffGWecYYpOci6/m7jvD3/4g8GBabgkfoPxN6E6dybbdfyucvOvfyOP3fqEDO8wQoZ3HGnCoTsPl65V3aXCDyZtU8m4fhH/MKhzH+GXysHYcL0LMpVP9ysCpYoAuQBsm9LYlk0k47qvixNVLCGX467JCLkLFiwwdaZNV1NTY967/fv3T5k3y/Ah+qXn49h169YZMR6Sg/kNwHHZRCVe5s2J1pwUMHHiRFOmKVOmmGM5NsX2lzWmZb3AkBNGmC/LTYXuRAVzewzDZcuWmckcs2bNMp7lWH626by23adPn24IzMyLZWRZE43jlraeIvasN6xxkjcV6pcvX24mB3GSA78d6HmDbYrE34nXuGbNGqNIzjQfffSRfPLJJ+aaWTfS0ye9RdGIaeK1Z3s+TkZnnrbcxIltJeLMayVeY8eOjSvV8zfmb0RcrXG7W7duQo+XqSaNZXNcttdgy8Fwy5YtZoI9J9YxH35r8t6lZ5NsJ6TyPvvss8/Mdysnb/KblW0P1nf0WKimCJQSAkrILaVfS8ta+gigszFqsTDTNhObpB7TZ8ovcX/O+UevojX/pdrfk08+mRYCNpZa0thwZAcjOzfYccGO7fHjx5sPebrMSDR2YLAhxw4yzgZm5yEbc2wUsrHDDwWqWrJxmM44sEoX6zS6WuJxyYyd9mxskrTiZQZvsjyaEtf4aTSaeya7aHzpbDcFA6/HUoWE6iWZjLPkUxk7T0loWrt2rflASJVO4wuHAAe4rJoZZ9q3lNHdGo3PPQfg1HZEgJ3KfIdT2SXxw37H1BrjBQF2zpAgxDqNH/M01olUUqILqUSjggnJlazz+Huwbnv11VdNJ05DQ4Pp5OCgEvNIZ17rxA+enipDFo2UKvzLZJGdwxIcXynBPujYzqehAjS1n48Dv9xIDJOdrHG69MdHtXQjsXxvu+RuQ8a1uT770ItyLFRy7X4bHw8zls9q9caPyMsKyXPf/va342RculAnKY2dSrwX2BFHhRK2mdj+ufPOO43LsbycXDNRBJqAQLAvBsDGOVI7D1T2dZkzcqCoG17F0Xm/mYxFpXy233i/s81O95Z8L3LAgB3P7FA98sgjM2Zs2/zMi4OEiR3ezICdzi+++KLJi6pXHDBobmO5+LzjVRPltNjtxDC235YvfpxN5/H4HY5LcjzPsUO6DPnzmEIYlbvsgDcn6tHN+HHHHWc6wsPhsHkXUnGJdS0HkjmYbV2spypPU1zHp8qz3OKJIVX8+E1PUk9NTY1pe3CgnvWQ26guTHVMGl3Vk/xDt5l08cy2DxXF2A9ADyhuVU13Hna9VJ5bW96WDvn7PAHSxOzZszDwtAHtx14YLBoiJ2Ig06qVtnQZm/v8dKnMNlOiVUhQulV3l/YVmQfR2BIN9AE5EcqLavlDgM//sGFgyhSJcXCW77PEd1qm4vE6qLJYjhYEqTGAV7wz08PVbUO7ZSOWBrQZKj2kL5EkJJuR2OpWciyRoseLybYviQPFYLw3quFdh0Tcbf/FZGCQaQX3TJMMeUVICF+DbwgoOjeAnOvvi3uXCyZT8N1NZUz/zuglwCg0iT1uck+Tzt3Eg9m+zsVSTRZIp8pMojgJKiRUugmo7vPnohie7pxNzZvH//73vzekpdtvv92dnSGLcjKynRySSPBqlDjNBvvZSEym8ZsyWR1Awhf7kC+++OI4qdlmyTYGleDt9wmfN2upfie734buY2xcruf0QjSyqvLJznv99deb54P3iVWNt/cpyWMklBH3v/71r2Y/v7do/C5j2577UhGUItDYcDZC3RqK6iF8858z4EI58PgjJbAqKN2re0jQH7SX3/QQWQWGQxn3KChzj86nR6+mF01zUAQKiYD7nUwyIvs6Uo3pjBs3zozVszyJXgXZt8Lvf37Du23u3LlmXIJteI6pJb5H+N5gfzT7BNzG/jvrufT73/9+o3qYeb722muGKMmysi/HmiUXs4+M4yGJ3uJItiRpmBwCenZMRrClMNAbb7xhszQhj+F7nf0ZXibZsPzsb6fxHZpsTJPXx+ugcazGEnI5BpSMw8F+FRJvyZcgyda+m3k837Ukw7IvheOo06ZNY3TcOL7KPhYaORPub6pczsdro2Iyy8zrIAHYbfRmSQxZTp6PwnT2Wm06O85lJ7DZeHfo9bhcrsGeh2JdVK93i+dxfJPlI66ciMP6zItxohInBbnzsp44Wd9yciaJuWqKQKkgsL2VWiol1nIqAqWMQIzXEJ+1nmnbXmumdLnuzyV/e0wrDzk7iTOOitWSKbmxrHR1dMMNNxg3P3RVR5c31vjBz5lkHHR/5ZVXjMsku48hSZk8lo1vDgSmMjZg6T6MdvTRR0syRQzOSDv33HNNmuOPP75FCLn2sTGFwEPpZTualn+9pd/evectfe75bz+yEGu8N37xi18YcmCq/El2cyufJkvHxjJn66m1DAIk0VhrqUEN3ie20zDZB7Qtn4bw4JrGDaLikx0C7LxhR4/twLFHs8674447TF117733NhoAYGfT1VdfLQMHDjSdWYkTR2yn/zPPPJOWkOapTlywQj78z1QZMWQcRlFt6VKH4f4NUjm0ygxqpU6Vwx5UhIYMaypEbiAPkmfd4Q7ZNt6f6Xi7P5GMy2wnk4zLk9nzJZ7L7HLtt+lcYZTMm3hg07bZScd7iEbXjewEs8YOV5Ky2clIVQB2XP3xj380k1i8DgLZvDRUBPKNgA+DYcHhfqntjxG4dR4I/FswoA7ibqQuYhTnbHueqhe87+1zwHLaDmgOHicjXLmv5e233zbfEYzj91OyyXpsQ9p25EEHHeQ+vNnW48q1sTPGtzEAQYtvx/bbIB5v08V27BDfTPttufIZ8vd2D86QnO0ePOH7jqodnJzH9r71mEECNicq2MHkfJapNeRFtWEOmrmN9QzVsuiunW2Y008/Pb6bg2/2ueU+TnxzD5xZFTOSdTlxN9UAITMslec2fvEtuPIzTMq5++67kpbg+uuvw+/wI7klpoKXNFEZRqYi4/JSuwa6y5C+Qz29F+rDdTJ1xlQ58pyDyxAlvSRFIDUCfng68HfDh2EQbZBMpEkkcb6Gmu6WiAQqPXxMpj6t7ilzBHzVIMntGhAfhgJqX3EkNAM3T1OVMC1m+NyIrMK3xCqQcz9Bvh1AygOx3A9ieaAXCLog5gagnFvRFXFtcZ96+DSxWRciJGmJS7ZGVVurbOs+1k4sdMfZdbaD6SmOy6ZNm4xicmJ/H9NkqxhOwpcXyyVv5ssxI062u/baa406HdX1SFCy7UcSZbjkaiSheVGeJkGWE8U4LkUSFb+xKIJjyW/J8uD3a7L4xLKyryeZ5XJOTuLmks54HVySGc/Jb+srrrjCTIblNxXjrBF3kna5kAhHLIhDUu9M4OOxTgiRLM9nEkTcMIi4zjI8o8vwfG4S6e8MFGlrc89TCOHKijF4zxwWkKpdlIybJ1Q1mxJBgM9sjx49jNcHkgjZf3zggQeayZmdOnVqdBUk09bU1DSKsxsk3ZMoS+N7mERNjqfRKwQnd3AyO+sv1hm235n7+T62ZFweQ4IsVXJ5HN8ZNs1ll11mTxUPeRz7GKyxfDZv9ifYPgVeIyca9ezZA/nON32EPJbvZ44dJ07QsGRcXivHhNmnaJVd2XfEd56tU+y5E0P2IdrxHCrVJhtPdJNYLWeDRFB6fqWx3BMmTDBkUJaBmPA3onAUyc9UA040pnFb4rW593G9qefjRGxrJPlyPIn3AYnRrM+I8aWXXmrqPk745W9KjgWNdR75KunIrqwzMx3X1GuwQlC8bzkZnEahGmJN0jHrPy/iTPTkQj6CNY7Nsc3A6yVZmvcc73cq67MfUk0RKAUElJBbCr+SlrF8EEB/gzGEXI2743XFu/dHE+Nviv2Zjs+0P+f84wfmZ4UdGSRoUQ2JiqokwbAhxEYIGxEkOpx99tmmQZufM27PhcRVqj/RDQAbN/369TONOjbCUs0q3X50ca5xxhEb+9Y4W4iz7tiAYyOUjU5izkYYyUaJxoE/azyWqgQcSGWDiseyc+Gdd96xSXYI2cBmw5gNZRKA2ThM/Ojg72vNPYho45ojNI+VD385OI7QFwvTbtuCeU3fHPnbMhUw5AxL/paccZ3KeI/w/khnnF3Phj0VmN33KI9hQ5qD+5x1yI8o3p+8b+nqlgpbyYydT+z05DELMLuSDX0qpHCWPWc4pjLevxyE5jPB87JRT4UvzqBMJAzww9WqAdgBcV4rZ3/yA5JkBF4P1aOTWS7XxXz43DzyyCNmNiw/NvjRSkUrPpOJM2eTnTdZHMtMo7uVxGcyWfpUcblgQqz4IUU8rPF9xN+QdvLJJ8fVbdx1An/TZ5991nz482OMM/7dZGJ+1JFcwPceZ0myw4H3DX+TZCrl7rzpHocEE9Y5nMHJ48477zypqakxZSLufB9SwYLl5nmPOOIIowpoEiT5k829leTweNSMGTMM8YUf+24yPJ8NTnLghy07UDhLlhMo+NuyY4XXxI9R/sapjPc9P1p5Dqp78mP81FNPNfdXqmNsfCHuS5t3oULW7ayT7PuJE0W4vXnzZlO3kdjC9xtdwNlZ4e6ycJDDknF5LDtFeIztDKL7OM6OTvVM8X7KVCe++tTrcA3XTfw+D6NSQbwvezdAacZDWveFeFlHneVDOpJaucZ2pHvbbCTkE02XPH3i8Xb71ksaK+MySyrjHoOl0fkSzsWdXs6XeFhTt90zz9lWTWbsqLzmmmviyoSs69gRS3Iu300cJPnxj3+c7FDzvmdHLe2EE04w7d58POt8XkmK42QMvj/Zpub9S4WeZMrOubzb+f60bsEuueSSlBMJfvvb35rBR6qqciIWrdDvY77r/v73vxuFAft7sKOO7c5k3h74vmedRBdofNYTjeoWN954o4l211k2HQdXWV+xzqBLNXZ+s03Ce8ZNXLTpmysM9vLLyx+/KAc4h0ploDL9adEkjqzHYB0G6NzGNhKNdQvbSuwAtSoTrJf5/Xb44Ye7D2m0zvcrO49prMMSCbmsv6yXBdbj6eqwRhnneYNtQA7weg3t6b2mzyUdz5HtcbZc+QxvvfXWeHb87VPd0ywr23tsn/FZ4PuB7zMOfrC9zraf7aRnhiTt1dTUmHZ/sgEcpuG7zLa9OSjC+8e2yRJVYZiexvYN7zW2kfiNwO96lpnPP++xREt851K9g+839hWQeHDXXcnJlon55HOb9YedAMK2P9tqHGhhWTkZiP0nto8k2fNnFcd4LPs22B7iZCIeRzz5PiPBIpWVynObqvzNFc972pJxqdByOiaAUbVzGtqK/M4g3r///R1yAPpn6LK6NRjr01QTNTgp/LKzfilbHg1L6ANUOhlsY/0GefLZJ6Tndzum/QbLkI3uVgRKDgGqifohIOUDuSmyIXPxI5vxjbgVhNxO/JpSUwRSI+CrAsFnTED87X1S282RhqmOIdKaSbGpD8tuD7v91oP4x++Kz9Euq0b7uivuaSjmkpjr7w6SLgjngS6xpR3u20B2pyjV1IlE3MTrIGkoF8XwxHySbeeaN/sfW8J7SeI1sM+F7fLmtJY4J3+nVP2L9tq5v1GaMJ63zXje1mEhCXc1yLerEQcirrMC9QjipNYeXYCQfXXwbB/cHaq4+8JLzwD0V7aSZ7oAaGqWJYwAxwj4HU8jeZbjDVz4fThw4EDzDuN7LNXYHsm27MukkfjK/gtLBKVyriXrso+T3tosGZHjQ/RqReMY5T777GPW7R/2DXPsjN+m7BdgeRKNY1+2b88qxjKtm4xLMqVbbImTtjmxgYRLljuxr4XvM3paIufCGvsk2KdB4/VyPC6dURWW5yShk2N1HM9x8zZIVrV9TDyPrWc5bmPHIS+66KJG3BL2QVLJlZglEm/dZWH52R/KPnRLUHbvd6/n43wk1Z4FFVnbZ82JMBwv4O+2YcMG06/O6+M4FfudH330UVME9mEnUyh2l4+/eabj8nEN7BMhf+T/s3ceAHJV1f8/M1tTCEFKAiSQTegdAgiKEULzB0QQBBSRXvwBKt3KD/ypIEVA+QECUkR6kSaIoLQ/vQmhl9BLhEQSSLKb3Z2Z//nc2TN79+2bmTdtd3Z5J3n72m3vzO33e77X8i1z6ZDgAH5m/Yz1yGI7nBgJDulHHz4TLr8X88v8tqwJWxnwvzW+jjVQjxqIAbn1+KvEaRq+GsgB/gA76Gd691kEgg6OdBHLkYPx3oR56oD7SP5rEb6lqYpn2FsA/AHAY/I+aCnKot+JJ54oWEBVc7s/OpC+pY19EvEDqgBYFbZdjrmr1/PPfvazXNLolLBwbsICCNtz00mF7ZbFubAOEJ3nq6++OqdvBhD4o+MOEInfK9/Agbh8JkJAlkELYcCQCGDfsAVE97LGf1yx0jJSypkkleIekG8p7ssJv8ZqcqAUBo4XXHBBQUDuhRde6JIC0JZBFQOFoBAGeY9Fch+Qy4DiQGVm9oHa+GWBE+EdQAB/sIhbOuR+PDZAZHH5yiuv7BOHC0j/AIgyBjZ7xpm0AXZl0AyYwIS0ARZAADsCgjRgH89Y6GeRnjzOYCDot9TvIkwGowyA/W/jOZaqWMoDaCgHrAKwAAGsWomUoxMGXKZHi5v6iQMBYGB1kbUJDKyOP/54eeyxx8xLbtsu3jEgtS3SzIHlAeoWgFHo0RcLmwE1Wy3z+5kATgAgRhhMOARB1iyqs7icjxG11Lxl8YadMRIxfQHGsIlWtq6x54DGgluFk0YYLMiTTHgEBRbP4Hfx3YDOyVuFpFb5slCc1XjHoN/KLL85gB8T2kRYSpiYos2nDFNmg0J+YtLLB1KwNd4f//hH55StlgoZLBRrEx/820OybVM4qD+YlsSS2g4tlRYW0qoutFmuv6lx9DDjBu+DcRqjLe7PPOY8efXZWY7pdqd9tuvtz2pDaOH99tisGz8cmHF3dO4D8fuOuCac7J9ceMH0ufugvwrv2QLQhHKQbxGI/kywT0N/ycosQFg/LAuTcmtuzCq/0rLOZCwGLcF2hDip5+jnBuvPcup2+u6WdtolvjEoTJZZ/UIdbFLL+phJ4TCDL57DwIAxT9DYh3oA8CB9gTBALhPM9q0Ai63N4nvQN8ZANgls38iZOodvNaMe/91AXD/+zGNy/9P3yLprbSjjRugqWRHJKEtWpp3ea1+hbwXo2gCQTPxStyHoM5j3fd8YJTBuoDzQP6Mu9vtL1L+WV6mTB0vyMtoyplYJvrd0Bp8P9r2lq1pnFj3MCAVQaLAfEYyH/jr9EOoghD47gFwWjKwMmR/KnQlsuv7iDs/JF8TH+NPE+m6UVcYf9Ol8YdxKfvT98J50UP/RduPXF7/OZbLfDHFwE1xU8v3V6hqAvzHXsHBHH95fYOHbbJGN/h669cdJli7qpXPPPTfHnAV7ro0hGGcVAuQOlXJr3zpY59NPO9VFTb557PEn+vwOGMOsMiULHHlE6zm/HzlY6R2IePO1d/S7OTpfV/BXZ7SUAMj9pPMTNyZkHBNLrIHPkwYATMpo/eIogNzF2k+JWK4+TzqMvzWPBhpEmldJSlIB3ItXTEjnY2lJvab93Wqx5QajVSBg5j0FB76nQEHG84oDcgBdZcwFmJsErAs49wt6aJoaAKO39M7LBoOL72MNfN41kOnQsqTYOwd6n6ugWz1Sc9QwwwFxddZMr2tWnoPKV8ORhtUS0vxFBeNukHTlOOgkvo818HnRAMbGGM1CAMYcqwnrTIzZORAIE7bccktncGhzbDxnfhjhGQayBmrkGYBQ5jmZz0UwHjYwIvOVgDmZG2HuJSgYVbCujzBfEjZ3wBxncLzKrjkGamVeJjhfs8022zhALuGylhWcOwGX4INxcUeaDZCL8XUUwSCbdT6E7/DX+wB4mvjPATCjE8CtEGb4gn5JF4Bc9JFPWOsJ02eY+2rEx/qygXGJA2A0YGAjWWKeyADHYWmo9Fml34BeIQry8y0MyJBasD6HgPHx59ODaca4n7ljhHl7H4zLM9ZkmAtjjpLfDxKUYB7DXSyxBupNAzEgt95+kTg9w1sDBvKyOYVi96aNqO6LhRd8X2745q/KZxZnEYAvLB7RkALmtMU0GLVgqzFgUiXRA0Y1MC4LxFg60TFjsYtFYcA7dEC5L0T1X0kaauGXzqwB3ACH+WBc4oM19JJLLnHbKnOPtVFYBwg3PviZzisLsNZxB1xXCJBLZ/XQQw8lCheHD8hlUdfY1HiOpfVgSK5Yucgd517PFaehc+8SXcM/LPICyGXxGyAS7HpBgUESNwggtYMOOijopOA94HgD47JADmCUPMYglLwCUJ+Bo23BasAXAiUfAnbhTP0AoJ5OOyyDMLiRd01g6DUwLovbWK0yUCDtMHLjF+vTIEjJ/BvwhLqIgSCWfdQjgAVg4WNg6oORSv0u4sHac8aMGTlgCmGy1QosYwZQhm3viSeeKMlgAOZDK79sq14tiaqT8ePHO3ZbBnYYWCAM2pl8QGD/DQrAUgQAG+6wiLVBKW2D/U68p84hDsC0HPwmgL4ZlAUH3YRJG4Dgb9NNN3WTB7YVMwNHrDcRABnUkVj7GmiEfMOAz99Sp9K85SIr8Q9gXNpLAHzU10zqwHyLYPnLdsSTJk1y9/xhYoR63IRBLTpi4gKwNzohvDCpVb4Mi6uaz7B4tt8aAIoPxiUeJrMA4dtvi/7CALkAsYOTUuR9A+Tadkv50l6sTXz5yZdlp3V3y+e9z/PEGGVwHNXLNN3nZaU32jAaAy1XSh0fuO8fgbn/6+V3OTAuLv56+d+dQ0C59p7wzjw2HzOugnfD4nOheH+Kpi+bXs9HVS6pI0yoE8gvtFNBEJi58c+UOZssBcwfBlKxbcGYuLTJVD+MUss6+ZF2wgCOVtYBxmLkxnPqYerOICjN4o1atwPYIhz6zdShfhtoYVnbxT1tc1CsjFarPqYNMDAudRp1IYwLGHfY5DZs5+UatwTTT7tGe2YThhjGUSfTrwC0CkgXpkraOfoOAy0AIBsXj5R5CmiKAsjtXqTL5J26Su8JfREDB9pjfkvLJ7S1hYS+FkZUtOvkFSZgATWbGNsu92F5yNzV+gxIGDBt1LOlJ6r7ctwRR6n+LF3VOvuGUUF243xx+ONL26aQhQQYlZlgN0Zk+so2pvT77BausbwCkgfgS/8MEC7ljX47rLcAxU0oj+Q1mz9gop76GmAk5R9/jFPYRcH6oObXzgbGpY9Emmu54GFxBs/0R6wOxyjRB+Pilt+BuhNjB8oUi3FBgzv0Sh/HZ49h5wnqRIyx/C0Rg/FzP1TKbVjaB/JZk+5mQft9qALKgwub/G5tbW3CWPmjj7OLSgOZtsGIC6ahMDEwLu8yuq25cESQ9lS7tHcvcnMChH300UdH8BU7iTUwPDSAAWaiWctMlM/RMuXKVhS3sZttDxQTAABAAElEQVRYAz0aaAQE+5UGaVxJQbn/UrZcPdIKnJVag7sxAHxHwYTv9AB0yetLKSh3GQXnLq3XDpyr9w6cq8+W1HSqYXKi2U0IxL9frIHPjwa0Acgs1nKiO9ik5+lZjzTM0//R58qGm56rz5X9NgOmTQ0zBlS0fUqupKy4CsJt2SgpTSslXZs1oGmII4s1UIcaYG3xuOOOc7sxMuZmPZX5CAO2kmTAuuzow7wFa+jMLzMXBfMtAgjRX3dyD/UPQEebgyVME+YHgnM1rIkQD3PEGNEXk7D1QtbxTcKY0tkNjvRDvsR1UMJ2VvLX6Wz9LegveM+8jAFyWSP1gbfM7SLoEDIlE/AlQYFxljVS5mkxyi4k+cDN+fxUGh8YCX8dz+KxtVDuo+rL/JZ6rvQbmBcJy7fMizA/zxyX5fF8afPnl/15Y989+cpIA1jriAG5vnbi63rVQAzIrddfJk7X8NQAs2g6d+Bm06KcTQul+ovqvpzwzU+NzjTaAGJtQY6JewBvLNaxkMGiHItvlQhbD5900kkuCIAEdEhh+EKIj/BZqAO8RryVxucCHqA//sKaLZIHozZWHJ4DbAxKmy4ahVl++R1aWyAM+rV7OuCAFllgB2hJ59+AzdZ5xi3At8ESKybZ+B3nniuehe570xrNPcU8K9Hcm2sqidLS1+uz2lcs2tpAD/ZI267ZjwfmSISF3yBozXcXdo2FqIHhANz64QMqBAQCuIZyaIBcH9wDCN0W8slPAHpIM3mUsg64FWGh2hbsWdQHAMVCMwI4AEs98iogpelqvZkPNBNkR6WuYHEbQQ8GJCnnuwgDZjjqOgSDAH8wzDcADgBMcPDBB+cGos5xkT9sWW6S79vsfannKDqBbRy2WyYDDJDL77XvvvsWjI48AJtZcFsYniHUVwzAzEIXwBCGBlgRI+jMttp2D7w/55xzTs5wgMcAn5kwMVAVoF8f3EDdaQzkgFhxj1Qrb7nASvhDvsdSGXZhExjhDEhCHrc8z3ueW90d/M0Ae/A99u0Wnp1rlS8t/FqdGcTbN1NmwgRrYwA79D3yTcZYufb9+5NKWCgXkmJtYmOySRrYlzSKNGrrwFEjca0PwecYcvXG7kPiNPevPvt6n7c+KBf/YWDcXmbcnvj0ZOG5+PuEmL3p856k9aTT3Lv3If4qeUQ9g7EJBh3kJ9ol2kXAtkwCUnby7ajARKzlL8CZQUAuE4Fm0BIGBifdpZZ1jJ0AaCEA0HzmUpjFYddm8pH2iwlb3wDLeer5E6wnwto7Jihhf8CojrY5zFrf2nj05k+8+nFVqz5Gn4BtESb72MKL38qEutsMQAAts5W99QXMTalnwIpWd9Lv5TtNMGpCx7ynTq52+2vxFDpjwDM1tZmMGDOikLPcu/bPOmSJlK6ueeIb1tljxk5MjjIZbvWsvQs70+aboQ15yyZW6RfYzhmAx/3fKyycWj4rldnW0lKqv1q7t3RV6zx7tu5z2iP+ONKehZ2ZhGdcz9j07bffdk4wOODAeNQAudQf+eogC5e5ANyZ0DckHMoV43i/rwNgz8YJv/71r12/zvzhnjJI/chCA32EIIASt9S59AGjfquFX82zsbxQjwV3Q7B4/PE6Rld+nxU3jMV9MK75Q3cAchEWBanH88lQKLf50j5Qz++9975+UdEWsUB6vRqq2Liun6Nh+oCyEybsJpETtSt78ekXZfXmNXOP8l2kFGHY3YMyJOwYkJtPU/HzYakB7KM4okhKHdXIZjNK9LGboasBgN8tqymYbnkF5a6qx8y0dL+kQD+Gk7UG5praFEiY0e5majYAXRXG+Mqt4EC6ypqbVLBuQsG5SWXOTY4FnKvXY/R6CT2PUhPgiFMpFl18jjVQjxqgu5NeqGXv0x4A7ny95lCwbQYgroJwAeNm9OzYb5mnGwwBiDtBpyXXUlbc9ZJZtm0Y3WOJNRBroI8GII7hYJ6LOSDmI5gfYS0Tkh+EMSNjc8b8Plss7sAphIkBezkzn2Zzmtyz/sccHXF1dpbWiEOEExQfPAnRV5hg7JxPwvywDmNic2N2n+/M/BIgZeaymc9h3ZW5HACqzOsiEDGYLtwD/cN7DMTBQDBGN93Z+0JnDLMxji9FKonP8DDB+Hy22eC7WtxX8g1hecjSSF5g7tjP5/bOP0PSZcKOnsUkynx0sTDi97EGBkID+WdeByL2OI5YA58jDbim29pvPUe6N/1EdT9Q4Vu6anBmO4dg54PtK806x5itKonaKP5Z4Lr66qtzYFwLE7YwYwzLFx8LK3Qi8h0GBrMwB+qMRZBJGJMp7+isskCKhIGP8oFK/AXLKJ1lA4URjy36cW1McCy4A1IZLMmWwZ5Co53rSPeW2KjurdMe1X254Zu/GpwZyBx++OEuZBipGPD4wpYoAGkQyqqB2303ha79Rf4g+xNxUwYZMAF6NGHwhVCGl1xSaRI82XLLLV3HHj/+ltO2vS2L7IAA/AEaYE8Av4SHmIWdF6y7BCwVXBRvU6CW1Re27QyOy/kudGtlBcCpD8YlTIBfBljGHYPuqGLfxOAVHVRLStFJqXGiW4AVQTAu4Vi+wHDCwLgWPmAo+y39fGPvOQOyMBZve26/I/cAuYPABp9d1oASuK1G3iKcUoU84oNx8Q9broGZrJzwnMEuEzIILLHBfEy9f8UVV7j3wT+1zJfBuKp974MgrN0Li8PA1QzimbQKStgEUjXbRIAGjc0RV1sp9inr8AVTWuk9baGG7dqskHNI8Ob+mN8eLqutv0ofF4Byb1fm3DOPPT/HnmsOZuyzvQDINf/u7O68eM2xd+7jPphO8++5r9YlQNajjjoqFxwTgADZKXOUQww5aEfCJoIAtCO2A0MuEL3wgSthwG/cllLWFyxY4OLB389//vM+YFyeUTf6bKSkKUxKqdsBbJkEWRcog1b3+HWsuedczfrY4iJcGHutPuQegbXTmK0p6349mXVR+l+/7x2Mj8l3gHL0SQAHDrRQf/OdzQ3NMrJ1ZKTo2zsWSiJQHeWbVLUxG6ykxYTf2ephdhUwYXcDq3f9sYO9H8izTbZHPVvaorofKHeWrmqdYck38Q007Vm+s7WtZiCQz12h57BP+2Bc3GLkwpgDYScNP//Z2J2+IEZWvtD/NQMB6mrbOcJ3wzX1/WCCcUkDLDpI2KKSe6F//DSG1WX5+vul9F+GQrk1fQzmmUXAY5S5dfPNviitLc2ywvLjZdNNNtb2+7TBTNagxG07IQUj5zmLiRjw/OioH7ndRoJuwu4xWGvsQVoRBgzbscQa+NxoAIBtVJAtfTcdRsUSa6BcDQBubd2oQUbt0igjdm+Q5u0U7KoAXYlm01dutOH+ABouUBDiuzr18WxGuu7LSOfNaem4Ji3teiy8NiULr0/Jghv1uKVbFv4jJe2PpWTxi8ry+25aUoAWS8MhhacjfhproAYaIG+SR7veScviFzRPa95deHc2Ly+4UfOz5u1F12mevjab5ztv0XytZSA1U/O1lglhd/XBAOPqdEJyNQXhbp+QkXtoXbFzo7Ru0CDJGIxbg1wSBzkUNcD8G+svEFMFhbkgCApYt8TA0AiEcGfr8+zG6Avg0bAj6IZ74mV3LMiGAPn6YFx2Gw5b1/DD4TrMUNfSBNGWzWcF/RW6ryaY1N+9zuZy7EwaIJ/wBVAzuwqxJgqw2MC4fCess8V27Q1bj/TDD15XGl+x9ATjq8V9pd8QlocsnVExA375Ccv/9szCjYJTMbfxOdbAYGogth8cTO3HcX+uNODGSWoJlZ0h0wGUdsLUNKrwPRrKeozmvlh4wfdlhY+n2ggMUjCJhQkML7AesnjGNgs+VX+Y+0LPYIpCALvlY+piS3IDVrDtfZilVxjowuLFkmgwxBiIAFz41mbBtLBARwcrDNBnTLZBP6Xew8hGOtATzFcwkAJShO0UYTvRQp20UuMr1b0rfVomSjkTRynuEwMQfqnfXY572JbZEpXfEiCPD5hgoGdlIbhgHiUuQJeWTwA7MYAkrxigHOBskN0JdisrnyzUAzDE2tSAIXb247dyDzgAq8pg3qe8wJrHQp9tdeL75zo4sLP3llYfcFDOd/kgT9i7g2kkPn/wyYJkVGAEbMGIz5ToHlT4pxSdlBoV7IX5JOw3ZkC2cOFClx8tT3IfJjANB4UJCpMwFkMfMM4WNybVyFsWVilnA7r4fpgcAfBEXjSAE+/9vEX7FiboxMqi/973W+186cdTi2t/a6VCk0/+bx82kC/UnkZNd6E2ccORG8vY5TX/9bV3CA06o2S8iYU1Wm2lzSJobejynYOJcq1oj/ujz/hvBd+e1wd8e5uCcoPSy4xbJL6gR+JxicufPpfuoL8q3FO2Tj31VDdxSn8URnQf/MkEHwduAOn7xk0wtxtDM8ygPkuuMYMCkvf9+Ekupaz7k5H56lDaLOoJ+oG0dzDfBqWUup3wqDNhigUE6wOLjamSuiVoCGBxVrM+hmnChInuMPH18swzz+RAomFuozwzxl3cskvA//7v/zqWXBtjDOakqhkHLd2yrIzMKM1UBEk1pPptNRnsh0UIJtQJfX/6bAC1YS+GqZNt+kzytU/2vtZnq/+jni09Ud0PlDtLVy3OtogRJWwfKBvFfZgbfytC/731vXnG4grljX6zGRlQ/sP60T6I9dlnnw1lraavM9gCkB+xeiQsPf6YPex3+byU2zDdDOSzs846U36iO3QEZdlll5Nttt1GrvYMEIJuhts9bNbFBEDupqO/JFutu30xp+59a8MIGdHYa1BiY7xInkMcYZyPwWax3S1CvLpHGGFRL2HgE0usgVprIANraO+0Q+HodIWvVJbQvz+TkcvvT8ssZSUtV1ja+OZmSdl7WlLGKXtpLENfAw3KQDtiYwXkrpqUrrcUCPhaRrpfV3bON3UkDlYoKki82qogm+pSS6Zd0/GhJUMfNuhzbSYSYzgURKycDVwDME4o5wJgwaQOgxI9Z3c/Ut81qb8aTatU+9Pj8IaYBpi36tI8CtutO/R+Adf6TM+Zz/SsLLjM7aX1yPRcu/nA4nauA6uMpBYTrduTbQlpXCUhTVovNE/SMqVlLZZYA7EG+mqA+V6bk2XeC4bVfMKcK+MSwIew5TJX5JMOMVdmu3/lC4N1dQO8Qjpma2ATJ050O3WBszAgLXO/EKGVKswpkMauLq3UBlnYqZB1YuZ5mI9nHtrWcJlzDq7bQQRg8yQYOjMXBMbD1hQx1rbfq9JPY51wIOOrNL1h/qvxDf5aZDAOA3f7a3BBN9yTZ8H/IIDXiwGjfYNz5yn+E2ugTjUQA3Lr9IeJkzVMNcBMlZOec7F73DqnEd0XCy/4vuzw3UdU/Y+/oB0M3N8amgXccgG5dG6NMbHQJLofH4t1QUAugNaLL744mMzcfT4mqZyDGl2YXliogLk0HwgAkDHif2e1kwToEaZgWFUBZJAmYy0iLh+wUe24o4TXtzTCuZedhM4+Hzr3Ub61UjcsBgPCvfLKK+Xcc8/tA8g9//zzXfCwWFv+KyU+QE6XXnqpYxnEH0AWDsoYA0/AuTCV+oy25CtAP4BnAQDtuuuuLkoYlwHD8N5nqaPcP/TQQ84NebBYR93qCOfB+xNkI7VXDPqCUs53AQwyyQdAsPecqZuiAHJZcHzyySed1yDrrh9eOdel6KTU8IvVowCSmXD45z//6ayJS1mghV2tkIQBMPlNg1KtvBUMN8o9EyxhEpYffVDt6quvHubNWTobKN13UKt86cdRq2ufHc7fZikYnw/c9f0E3VVyX6hN/KTrExk3eVlFThePgUWwxH8aHONLorm4+5JcaBZ3rR9bRNIB7XcOC62vO5hyf3vMuX1Aub4vmHF33Ge7POFn+sbve+S6aPqy/oPeqnlPe3jYYYe5g8kkJv9gub3kkktcPweWQoBg1M/WB2MyCYZtJvuuvfbaHCAXA5Q77rjDJW/ffffNm8xSyjrxmuQr67zfcMMNHSDXwGvmx86l1u2wANMe09+jzbGJZ9pqhD4EZSBMqlUfE7YBcjHyyzdpB6s69SRtBu4r3dUCcPMxxxzjGJOZfDTmThjprU+ywQYbhH16zZ9RnzVKk6w0amVp7mqNFF/LF1okMUILWw0ERmkWJhDyCn0YYyzlnQ8wrEH0RYOknadd5+tdLWj3wXPPewsw58/cRfTfz1+If+Lo565I+PippvigUNhbYH6OImyXiPh98ij+fDdtbW3+be7aFlFyD/TCZ86EHTfIkOu75doWb4LPCxnwBN3W6p65B+oTf7u+YFz+Ykc+PQX9lHNf7+W2nG+qlp8nNI8bGJd25Xit36ZP39rNsVgefVKNwcMYjKuVhnoKx2ezKZSuRd0LpSPVUchJ7t2SzUvK2OZelB9GT7Tx5QhzGRgjMRdQTr1E+4ABPAdGRvUA3i9HD7GfoaMBgFuOCTFCkhMt2l/QI6oAxj1RWUYrFS0Wcv0jaXlttsh5ByclWZsuZKXJjP2XoYGGJRPSsH6DtKyuTJ4f6DFLt8Z+U1k631YQ4fv6w0cwJi4j2tK9kI0V4AjIMaPpyuGFmcugXIzuOXoAutwDyk0A0lVgrgPrKqA3CUhXh6uckzoWcnMtCkaMJdZAPw1oJksry21mkeY3AOIKFE9zrYDbjJYL95zrHvBtBrbnz7JAXK4F9mbNnnUtWj6SK2odsLJIY5sCcackpWkFLRctcSVf179bnLhB1QDzJAbwZMwRRvbiJ5CxBQKwljkffz4McK1/7/tjh85PdBeultZWgcABIKWRBDF3w46QhOeLARz9Z1GumT9ljEd6wrAGkJLBzAtIljEapGq1EvTEXDbEOO+++66wkxNswEiQVAISAAPjfvnLX+6zi6qlr1ydmH//PNDx+XFX67oa32CkEME0wdhs63LF5tuYxzbWaPyFkZewO+AzPTuBrqbrnLVaywt+R3wfa6ASDcSA3Eq0F/uNNVCqBuhj0ReKerbwo7ov1V054ZufGpx9K7Bg8P47AAzlCh1UA23l69QStg9oYpvZoLDAUsxKLehnIO5XWWWVXDQAsMIWK+iw0sFC8jES5wKp8IJtjAHkInfddZcDUXKNRdpaa63F5aCJFZdsAnRiRC96hyrh972JDX9fzH+x9+WH3+uzVleHHHKIA+QC7MQKkQEQeQxGQIT35QqMaCzaX3bZZfLnP//ZlVEWmbnmaNPFeLbBnjRpkosC60yAHIA42HrawKYAizhg8/2f//kft103Hvxy7wIo8icfY05wMFskGCn1u/yF9WJh894sC4u5NQZX3EUB+hYLz39fqk58v5VcA/Lae++9Q4NgEFaqLkMDivCwWnkrQlT9nJSie6ytTQoB0sPaxVJ1GTVfWnpqeZ48eXIueIDFACWDwgQY7RNC21SKXoNhFbvP1yaOW3NZGTtpSel8QVsiGqNCokbpiQ+apPvfaWmaWOUVIqJn4Yo05Dv3S1tf9/g/+ozD+jHl4q2XGTd/+H3iD8blouobXzCdzn/QX43u6ZtOnz7dHYAMAS3RBtHHop3061uY5mmzeM9EKUAQgLwmPmurPbNzKXnSJrjwa2AgC8c/W1n36wb/fSlx4o9JVwOi0l5jdMUW3tY+Vwp69dNW6NrAa8VAvkyUMx7w9VUo3ELv0NUpp5zigDn0Y+ifIACwzjrrLHfsuOOOrg9VqP4tFEe57+gvfXXSdFl1SWWSyEAfVVjSmbSMXnGkNPS3MyrsMeJbwOUwImNQRXmg/Fgb4+++EDG4qjuzBRGqQCR337NQkrvPvs79zT03dz1v+j0foPe5hFXpwgfg0vfndysmbNdoIMR8AP9iYZT6ngWZUiRff7+UMGrlFqA/9SdGFixyhRk0wKhjwlipVlLv5bZW3x0l3L/f1bsLwC233Cpf0sU+X1gosnLgPx+u11GZk+Z2zZUV1lhBRFnhisnY5qVkudZxOk+D+bQCwspkZ6K8sDA+depUZ/BbLN587wHjXnHFFXLnnXc6hv1iC4r5womfxxoopoGMggzT87QvAngrggAuBEgYVWDGraY882Zabn8qITM2jp6GasYfh1U7DSRadYv6yXpMSkpqvtbD7ygw9y1lzX1HAYiKg0nDsKyAxLoTOvRq+5HhmEPqrIffcw1DrgJxHTB3lLYyAHQ5eAY414F09Rpwrto1cjigrrtW0C5nBSfGTLvoc5iIZhGYbTOLNW+7vKM9D8C2HXrmnuseAK4BbzMGwlUmXHet9w6sPvhkkqX/KOT58Zq3JygIdyVlxNUy3zRRQbkKzpcqTz2WnrjYR6yB+teAT1QEMRBrDPnmAAGD2voJoFcEwCljC+ZpZ82a5YCwNndrXw8uAiZWhF2DAOT6O/VCjhCcz2XtyoDCFk7Uc5vOM9h4FhKG4A5nDzzwQG5nolrjDEgz32vrnIzJTBjj+cI43MTHldgz5iHzzYebm1LOAx1fKWmL6rYa38Cc3BtvvCH+ehzx85sZQBr250Lik5IwhoesKyiQmxghCYDcWGINDAUNxF2pofArxWkcPhqweSk9u0vv3n2kd2+Xwed2H8m/BRJytkcWXvBcMHznuPp/sO7KJ6+++mruVRRGyJzjwAVsZXSGkZdffjnwtvfWtonkSSEm3V4f9XHld2iMuTSYsssvvzz3KN/2wTkHFV7AWGoWSmeffbbce++9LsQDDzywwpAr957N4z0lQcEUke4t2qju1Z2TqO7LDd/81fAMsMjKjrFDwwiIwAIXBnQrJTmwx5FHANMwwMO60phrADcFAfAMaA844AAHbgJkzhbifgcdll3bCpxyz8I2csQRRwjWdYWOag7ISvku0y/p5JsKpZF3/rbn+MknAMAQBtH+5EA+9/X+HJCHgXHJIzBOUmcDrkIvWMeGGSPU4rsGM2+V8j1+O8ZCcj6BgT4otcqXwXhqcc8g3gxsfve73+Umify4GNybkcouu+ziv6r6db428dsHfEuSS2t7oRPgUaTh3Sbp1K0jM91RXJfgxrVVmg73nz+0jf59/7D6vu91D1Puauv3GgnBjAsgN5/77PNe/+4+GF0uXSQxLH09/oP+BuAeRu9zzjknF5MxQ9qDrbbaKtcfYhszxNqogw46KO8krfmPevaZWAHE5hPrczOZWQ1hyykAyYix4howlbYnyFZQjTjDwrC632f2DrpjMtomlH19mbtUKpwtDDaIQgLolt+UCfK7777bseZa/QM7vzHDFgqj2u+oI2asu4usueTakYJepCuLoyaM0AVnLV81EsDpCL/Bz372M3eNnrbddlt3PZh/bOEi6tnSGtX9QLmzdFXr7JffRx99NFKwGCWYbLPNNnZZ07Nv7Ek9VKwfzS4L9Sq2oETf1toKP60sZtg4jOf0L2op9Vxua/ndxcKeO6fX4G1CyM4Vt/W098XCGS7vm5pANxWXj1P/lmXaCu9WYqE0N7TIiqNWknENy7tHUeMw/3ZmBxzmD/z5AntXyhkDA2uv/DnKUsKI3cYaiKKBtAIf0x8rOiwiqCuh7J9JBRVGlVmAKMuUQ7drEo6gvPVR8El8P6w0oKvIDUslpFVZc0ft0Cij92iUEXskpeUbSWmcpvlPt7MXjPqiZ8PBVQ9lS3cfynygIEudW0kpa3T3Qwo4vjsjnbekZfG1aWm/OnssuiYli65LyUKO6/W4oVsW3JiSBX/pls9u7pZ5t3bIwnvUzUMpaX8qJR3PpWTxq2npfCut7MIKYJ6j5fnTLKhTwoeag6uLYRr74kWLHZAW3fMb8Ft0qvHA4lfS7jdqfzL7m/HbLbgj+1t+pr/pghuyv7H7rfX3XqRs4uSB9mvUnx7kDfIIeaX74WzeSb+WzUvkqaj19qCrnbI6RkGAq2rZ/ooSSmtZpkxTtinjreslXZmPwbj5fynmlmKJNWAaYH10wgRFtKuwtvjb3/7W4Q9Yx0Iw2Ga+kPVxdiA18ddUd955Z3vsSIh8YjLWTCEmMrHdOgCcAuZFmGcz1ljmDNgll/UQGG5NmCeJKrDLNjc3O+eQmbBuZIbngIaNqIn4C+3SFjW+Yu5YBzSArREsTJo0Kbf2Y/59o3LA0WaMzbcDTvbn79GTfZP5L/U80PGRPtuVj2vAqbAUR5F8/qr1DX/605+EcTLpYX6dnelsd0CIQ3z8Slh62dHZWHH5LkDf9vvwWzHfbmBc3Bn2JCys+FmsgXrSQGM9JSZOS6yBYa8BWHEU3IBRboZBj3fvJiy8e/feFMI8WcB9JP9eeKH+ywnf/NTgDAsMDbW/Nb1FY40s95V27tgugo6XWVNZHP7ZtxqrBADshzkQ1wALYCm76aabHLMo1kg//vGP3ba9dFhuuOEG+cUvfuGSwsLd9OnTa5ostgsGaHLyySc7kKVFtttuu9nloJ1dsdIyUsqZxJbiPjEA4Q+kAg8//HDHgAfrMfnq//7v/1z0gFwNZFBpeij/sO9y/OAHP3DbrMCSC2AuzMKO+NiOZcaMGe6AHdcANsbShxvABLDiRAUS4KeaEuW71l9//VyUDHBtsS/3sMwLA8JvvfXWZYZQX94YSJucdtpp/bbDYaLDWBnNXS3Pg523onybD6olb4VZLTPJY8BUP8xa5Us/jlpdM2n0q1/9Sn74wx86VlJYOzFKMZAcbb2/ndJhhx1Wq6S4cAu1iQ3v6iLWsgnd5o5WprAk5zdI17O6sKOLXk0rZSfdCvuI+JY2y/U36adqOvgfuA+G5FpR566/+6PP+G/565/vktXWmyKrbTBFAysefp/4+kemSbJ47KyOgvEH/VV4T7+TiT7yij/5GQyW3zef0Absu+++cvrppzsjgm9961sCSBPZa6+98nkr+blfXmGyDCvr9LWZEEMMwFpyRCEe9tlnH9fPBIjLZCfGEsh+++1XtT5CSLR9HhmIDbYDjrCJOfoCJvQ1TIxRON+2ZYUAzhYGZ8KBNYKDPgk6pm6lb+5P+vp+anXd9V5adlxzF2l9RemeoshyGWlYjkJfO6G/ZmIGQxhY2SS/vRuMs03yRj1bGqO6Hyh3lq5qnSlHxmzMWBLw/a677po3eLY09HfOYMeIfJIPAJ/PfaHnpJMFGljIqeNqbWRTKC2VvqPeZPxMPcZYGqOPHXbYwQXLwu/Pf/7znKEr18VYwStNTz2X20q/rRL/q6/Ry8Zy+umnyamnnuZAn+ywdNVVV8qxxxyTC36RtwiaezjMLgDfs0tNMelWpMrE9SZIh4KVirEq0iK1LaH9yNFryuz5H+TdurVYnPRLzNi3mNti7y0cY7Uq5r6U94xjGZ+weE5dyoIkhpUYPsXy+dJA1wcK8vow4jerUWdyrC4b9MfIRgwgurOpum35Idv1LidecFcvYliHZBUJYxSAEswthjHDVxR4Ac8s7NOWIswXVjq3yXzLwQcf7ML7y1/+UrW6xwVYJ3/Ia43jlEFzXINkdBoz9YkCE9/X+YkPybcKPtW8m/63jtz/owmOjvupk6/rSQYk0oqhyizK5mz/b9ZF9gk7jLSn2pUtt11GLTtaDRv1eYuWR2XPFcUwJdx19iw9jLoJsE28Uz0mmtWomCLFNYe7zj5zZVrvE416z1SDu9b7Bg1b792znukg5s8ht9hpp53khBNOyCZxKP5VvcMQDnA5k9I8BL5ID87cu2utdtzzrux7WG0BwTp2W32WVobbay66Vj6Y9YFs8ZUtHKNiRnGTdgjX5EvHfKsM/Hrmmcur/O55Jfub5309FF6Q79QmyjHhLi+yoPVT+d+zTpQn339cTr3kZNlmo22GwlcMehpZY2U8DMgMQhjWyGKJNUD/gZ2fAOLSp8GonzVNhDlhngWFtXkfoMgcLms4jAdYpznjjDPc+JI855MEbLrpprn5XuJl3tGIISDpAnRJnwp/CCy8tqMQ67qAeaOsO5Ju1vHNmJl5XgyGAeD638N6S0uLNngDIBBL/OMf/8jF5BuQ20MIiYxtmDHbqaee6uZqfWCyvUdHrB1huFku7mSg4+M7J02aZJ/rCKuYX2Vevtg35PMHoNx0UonOyBeAcsOEucQo/WzcAVrnt2F9n746a3n++Js8aIRNYXHFz2IN1JsGqriCW2+fFqcn1kAdakA7R056Ttr6FL63T4jqvlh4wfflhm/+qnxmwYnOT1CwtmIrWIQOaaWdO1usZ0E+jEWWyW+bvGCh3rcaCqatHu9ZvDOwEeBbJjIBFdPxtk4K7xkcDITQIfcFSz8AlIMtuWLlEgKrXlay56FzP5B69H9L32ITYFG5wnaPDBb2339/CYJgGPT5W6EAZOA46qijnJ+w8gsTbhgAx8o9QE1j7/PTzGCBCUwAV4A8K5VSv4v4YNyxssuCgL9ViKUHq0DSyFGI6dTcs6hn1qpf+YqavA8DYXHSxPRl95wNBOY/q+X1QOetcr5l0qRJOW9HH320m9TJPdALyhWA+zCpRb4Mi6dWz2BkN9AdAEgmF5icaGtrc9vWwj6HXHDBBe5drdJh4fr1KM+sTWyamJTkRHNV+AxWtvvFjHQ8lZb0Z1VcFNAG0LV+riF0N/3ugykr5h5mXAfGpZWNEH6f8PpH1i89fdxb+EF/Fd4z0U4+Acz9yiuv5A3t0ksvzb0LmwCztpJJMmu/AHVUk9nQZ4U+/vjj+5V1EnjiiSe67+HaygbXlQpGH1YnM3FmhhH23ZWGH8W/D0j+/ve/7+o23x8T0kceeWTukT/xbbrAiMVnoTDH1BFhctZZZ7k+ybHHHttnQhq36GOw2t6UMgEtfiIto2YvIQ2J4tM+1CRj1x0jjSsUdxumh6jPfDZl88OiRT2ITQxHPVuao7ofKHeWrmqeqU9MKNPGsm3P7AzAlj69sVADIvXLGe584wXfCNbCqOTMjh4IdVDYbjizZ88W2mH60cbSUUl8tfILk6cP4AdcDNsOY3rqFVhuEOZGMIystdRzua31txcKf+edd8m1exfpwuYXlhor666ztqyw/HgHxuW3MqM4dnPZZOOpoe1LoTiG0jvrA0RJ86GHHywffPZeFKcyefQUWWupdV0f8Hvf+14kP0PNEYDhX/7yl0I/jn4D7SJjM/pWzJ3Rr/R3uhpq3xentzQNADTrflvHeQrKjSKJpbVtZbcV/V9r8ZlxAeYC0K2WAF5la2aYz2CBGyiBSQ5mfw4znqokbsYRFt7ngT0RAGmjGha3btAgo7/WKEvsruyaezbIiN0bpGWXpKS+lJR/KdD0Q80qQxWbWyg/JHWcNapxlIxMjZKMMk+n31Iwsk4ZpGYqOPnJHtbde5R192963KzsqtdnWVY7YN9VtlVYeB0DKyysyrwKC69j44WJt+dYcD2srbDycqTEsbjCzstxkz67pVtWeW0d2WLe1jLh5Smy8O5ux9i78D4N6wE9YO59RI/H9VBWWHcok2/708rm+y89ntHj2Z5jpp6V4dex/D6vTL8v6PFiz8E1z3red+AWf/jn0LAIE5bgXDzEqXGTBpcWTROMtC6Nd2ralZl2wV+z38C3+N/mWIj57p7D9MHZGIt7dafxoE+Oq1Iyo3E3OWzNI2X9ORs73XfpbwADMr9J6jn9nV7R422dC1XguGO1ZTOcgmDcQrmgjt8B8l5W24i11Zh/y4QrkyP2UJZrPZb4ZqPc/umNcukzF8pzHz8jF192cR1/SH0l7cUXX8yNJTG6jyXWgGlgzJgx8pOf/EQAzPrig1d5ztoEcxJh5DnMt5gxLm5Z2zMwLmul+AkaPbNjl79jEO4BMwJaZMc2iEps10zSYuyyNkdFPP419yYYBx566KE5jATh2vcwb7Hnnnv2mfMhzlqKrcMRB/rwv9viJQ3MS4GHMDEwLlgPMBIYTxkxAPqy9SFLv53Nv53D9FSN+Px5Mour0Jm0T5s2rY8T+136PAzc5PNXyTdYFP/1X/8VCggmTnZ6XW211cypO5uO7WwvYetl/dLW+MlzPhh3pZVWcmNlxg2xxBoYKhrQIVMssQZiDQyYBphLY4Is6tkSFtV9qe7KCd/81OgMmJTOB4tOdBLvv/9+x+hqHSKsDsME5iljgQx7zzMW6WGPwcLmvPPOc5ZmdEbpcH3ta19zHTS2rgYUXCy+fHHUw3Ms6VjchIkN/SG2KMo1FnPXXHON0HHxxbb/s7P/rtA1HV8knz8WDs2yD3d0hutBrLhk06JAT72geGYl/N7eUoijuC8WXvB9+eH3+qzlFYtsLPrCjGsL6DBgVcLYAhiJ/IgAdKJsMtCjI87Wkr/+9a/dO/KQMf0B3IVpDn/UFwxgGWDRMTc2KTzx3AQrRxbnAeIz6GKCHxYfwIbES91ibIVBwJyFUcq5nO9iQAdQHp0ygY8FKoMPWL3b29vdZA+ACOqntra2SEwbTz31VC7ZBlLIPRiiFz64CWAZg390xEIKzG1mUDFQnzfQeauc76KcABoDzA5zHGnmGiAg+R+LbXQXJrXIl2Hx1OoZg/777rvPTYhRvyA+EzD1Got/PvgfN6VOhOAH8SdmghMKvM/XJrKI2jgpId3/0tZlAS6LyHwlAXlEQbnj0jJi4wZlViniPuJr17q5Bk7/8L+HKVc4h0gf9/q+z32I/5LeF4svX/gh/ip5ZAwHhEFbhNEGzDO0H11dXa4MMQlvZYj6P2yLdvxaf+ikk05ySTpQAeNh+cS9LPMPZR1GRfK5lXXqf4w4btXts23BgEnZsMnfMqN1/UDaL9ox6mYE1gXaq4ESACv7KbPkZZdd5voJgFnYap1yR3sIEwSAaATDF3/yzgcN0lc988wzXV/53XffdfXnVVddFfoZTOZaP4YxBe02O1QA/uW5AWgGEnQK489iZdHufExXFT8NTXa/hwndYpY6qOEL2d6pXwfm6+P3C0Qf+HVgPn/owsoLQGjb2SAsvIF8ZiCMqGdLW1T3A+XO0lXNM+wplCVjeNl+++0dEyZjdibJ6afSd6V+9IGuPqjU0gPgzIQxBWAz6kabbLd35ZzpJ5O36CuzGAATCv1GyimsYccoY6mNiynj9SyMYxjLw6JO3w3jZQ4TDBp///vfu36wPfPPpRox0x9Cb37Z98Or13Lrp3Ggr9ki8ZZbbtWysbf7jYjf8te0aV+VCy+6SD7Q32769K1c0hg/004gOX03QnmXFWdk1HNd7b6BxVHLM22wsWkXi+etBW/I3NQcWaFxQjGnslTL0rLeUhvKyu9PLup2KDqgfLOobvMr9g2WR7inT0ffjp1i6Ocx/o1l+GogpVurd8/SgU7EPlxSmUoblumdXayVZgDj+gDcC+/qlqdm1QbBFgVQUKvvjMOtQAOaDZNLJKSZYxWdG1Bwecd7GblI8/OKOj5ZXllMx3VnZFxKZDk9ltHsM0Kjq33ureCbauFVvx0GWNEugZsf6Ymj91rLf14JvEN5enxz9Heke+0uSXQlHChVFA/lmHTBRTWoH7obPOO+x48jCmKex93zx67NjT7T9za+c2MZoneHvlPDfndNAHbd570+TusDqgn3zepOrx3TLff23D/r4/KFyPlM/cd3fh6lVX8yJdVPapuQXCZ7blDAfAOM1roTTnJJ7W16iJCtt8kaVTMGYL00lmgaYAcD5jEY/w72OidGXeymgjAPVs0duKJpI3YV1ABzD5BvMC/M+iPMtOygQv8dbALzHsXIqr785S+7NXzGCYwnG3T9nfVXWEzDxuuszzNeZ76AOUz6UZCzEJfV4Rg2YqDMXKXNvWy55ZbCUUzAEbDexnew/sZYlbVYjuC4lXkYjnzCPIWt9+ZzU+g5oOco/tEX2A/mwvlufpe2tjZn+GXhw26NzjAsZy4fsV0OzE3wzG8QFn+58UEQVUiob8Liww/zcsy7YwzG9wH0jiL5/JX7DRiWmpAe1kpef/11ByZn7cTqKHNj50K6Ji3oZu7cuS5Ps+7Pb09ezBeehRufYw3Uowa87lc9Ji9OU6yB4aMBHXJmt/3lk/Qmyv3YUSNlzqefyTJjlojk3m3zGzH8uRou4TuJmJ5c+FlfVf+L9ReAOBpwvxG3iADMYe2VT+hIFBLAeDTyWNv/9a9/dUAkOrU/+tGP3BH0y7bExcIM+qmXe8DM0PnT4YTBiI74Kqus4oCOLByFib94Gvaezjkd9qDYlhXB5/49wAQWGOjsb7fddv6rQbumDLrJJyaNFAiZ6Dm7SaQ892OXHCVz5jLQXTKS+1LCnztnvhC+kzzxh4aX9TFgf1kIYvHchPtKhAV4BoxXXnmlY9MLWpASNotRAG1NWGxnaxImjAAIc/gLVrijrvCBRoBuqF/YxoSBFgvyYcJESjXY/Mr5LtIDkIjySh2IkUGYoQHfCgusgeHDvsOeGTsug8pJkybZ4yF9xkoSEAIgJya/gsA3WJKZeLAF8Vp/7EDnrXK/B2Das88+6yboAHiYwYaFx4QCoHfYnYNS7XwZDL/W9zDFn3322Q6US5v46quvCm0hIL02nYwJm8zK1zewtDKBFNYmMsFVjL0rrE1kUrxp1aR0TVLGjuezCwkWV75z+h1lwPynWrzrglfLmsk+E+v5/BR+rm2hOqC/F3ZuSLJS0iuNDSnp6m6WpkZd+NHHpDrMXy68Et53dTcJ4XeneoEqxE8Kc+EF09kTvp6qKhiJ0Ce09o42iCNMqH9uvvnmvPUzYTAhaPLtb3/bLqt2pn7EcIVto8PKOhHRRsEWXypgq1gi+R5/BwbqjoEUJprp7zPZSl3G78YRFNIVNN5gwpj2hP4FfeJgvxjjvbD6kW/+wx/+4Ax+APxyBPsk1K/F6oVgGsu9z+jCt2Mxuictmfeih9IwmYXz3noEg42wOs4P8Z577vFv3TV5q5g/m+jGA0wb9SLkHxaao55Hjx7tjMHoB5TiL2r4LK4RR1T35q5W+qRswUxBn52+tPXBw+JjzHfbbbc5tsfge/oalAn6aTBp22IN5ZYFqkoEcPff/vY3FybjfNsdJhgm9QLtf70LxhQYTtFvof/C2AcGGNoaFiiCwtigWPnDGIEjKCx0FJJ6LbeF0jwQ776ki6XPPf+CPK1GH2+88YasPGll2Wijqa4dIH7GX2/rDkzvvfe+a3Nt8fXjOf31faj2ITmGslCeg2OMsO/Z5ftfl40mbShdf9feY9/uZT/nSa2bN1h6I/nN98/Iuh1GIBuMGZgfs3ErC5jsckXZpzzDrskOOSzCYlDEbgwshLNVbCzDVANaHjpfSUvq9WjjQUB2DSso0EoBV7UUwLgw4vpywV2Krowl1kABDTDHkVBjv3dG66HuwH62KmB06U4F5Wr2Ga/jluW6MrKsgjM5AOguqW6aC4QZvwpogKoCnSWapLlR6VCR7CZQ+piXfaXvE//OvzY/9szO9pyz/8y/NjdRn5n7+FyyBvTnxqiWMuZAuDqMwjgDMC5ndwQAuME4GJcBrgM8BdAplmgaoI8GiQzjJ5+BM5rv2rkyBtDaxRCHXIoGRo0a5Yz1WQMoR5ivxW8p/pmHMbBtME7WPvwxffB9lHvmayqds4kST7XcMEc2ScfjHGGCjn2D8TA3pTwb6PhIG/mMo1TJ568a3wA5A3NWlQppAXwbA3Ar1WTsvx40MIymsepBnXEaYg3k14AbhuasRXuGxEXut5u6vlx3/8M6xo3m3gEJiSiC+2s1XMJ34+cI7nPpz/+JFb+Bsh7GBxa8fWFRG3Aa4Jig0CiXIwBx7r77bsdAGfTPAuGf/vQnB/gKvis3vmA4A3GPdVqbLjTC4saWADAb5QPj1jI9H374oTLH3OKiYPvgKCDCWqbHwrY8Xcp5u62mynU3P9CnjJXi3y+bQX+ES/jB58Xu7XuqeS6Uz1kENiZJWEkLsZoFgT75fnsWllgYp+z5QtkHWMtivQ+OZ2uS559/3pVf3CAsUCN09mGNgfESy0Bf2Or1n//8p7NS9Z9zTdyXqSUxDJq+ZWcYUC/oFwbOMCn1uywMFsnPOOOM0AE0gGFY/grp3cLhDOs34oOT3YMIf/Llg0p04oeZjzkv33M/yQCeAJsFJxkAdwOYssmBYJ4rFrblJz+uKNfl5K1C4ebTsZ838/m3chf8dtzDpOZv125hwHoHCM30Fpany8mX+b7D4h3oMyCI6dOnO2Ac1uoYqgx0Ggu1iU0r62LqWtqviUp6pQtWqZcz0n5nSjpfU/AdLCOViOsPaquT5zyqpb1P6KNGLJLZ/9FZ/zzuK3lOuITvC/G7HnGx+HxPVboG5ErdS7sXJtQdgDzpx9L3yie77rpr7hWAR2N+zz3suai0rGPlz5bmYZOtfAuGaRio+RKlLITVDX4YsMz6bXlwGzXfba3qY8KFzRbgc7BO5x4gLsBCvz0iXfQZYLSFVTjoj3rzggsuyCXf1wNgzEcffVSOO+64XJtkfRL0f9hhhzlmzkL5IhdwhRcOjKsgjvY7FcjxqpblIiCnXHQ6d9uk21g2TihvXJULJ+IFgE4T9F0vUiqD7SabbOIMp0r1F9U9gGfiiOre3NVKn5SRSy65xPWXAV7nE8rLE0884ViDwtxQRhkbwqjtC2BfJFg2fTd27fdxgnUJfV7YwNkVJiiA7mHNpx70JUqd67sfyGvqGwxD2AoSow7ajjAwbq3TVK/lttbfHSV82I62UCbmfXSHoq9+dct+bci4ceOF8avtAhMlzKHqBpZ4myvI9w28P+6kY6RxorY5EXeZnDByomw9aTvp/tjNjuQLesg9h8XbwLgwrdE/g9Xb6jjGdczjYWw/Y8YM933Un+z6E8vw1ED3R7qt/XM6ruslRC/4oQktQ5Sl5Kja9eHCwLiHnL+4YLril7EGwjSAYW27Tp++pwDdp5ZKyO0KGvzzckm5WM8XKajw4rEJeX2jBmnZtkGaNk5KwxQ1FtSdhMhtw6v2D9NO/CzWQAENaLlJKPFhcooCbacmpGlrNcrfJSmtuydl5B5JGb1ngyyxZ6OMntEoI7+sZWj1pDRq2fHZcPOFDoFBDMbNp538zxk/1hMYN39K4zexBmINxBqINRBrINbAYGsgoewJ8XhmsH+FOP5hr4FPD9tFWnb8Vsnf+dTrb8jOJ+m2j7/8iazXtnLJ/vN5mPnm27LDCafILScdL1NXKc1Cq5zvyJcOew6QCZYdwFXG1rJgwQK3LRsL4ry3CWnzU83zokWLnDUo2wcCWMXiJspCYDXTECUsQDwM9GqpiyjpiOLGthcD3MG26LZNOMyfxgoTNRy29agmkJjymD5keWkdv6OXBCav/eYw/P6pZ1+XXb7zC7n92l/KemtPKtl/r4e+4c984S3Zcc8T5OYrT5Sp66+izvq+L3TfOn6n3mCHwRXlEXYhAC6U/WIC+ICygVUywKao2zdiNQxzFqwzbJ1R68mnUr+L7waYwNY2HGw5AvN1FMCU6YxvM1ARgOcg+MDcDfUz1vzol/wS9fev5TcPdN4q51to79AbeQRLayZgo0ql+TJqPFHcDZV2sZQ2cbGC6RZdn5LUc9om+c1SIYW06ELs+gkZ8V8N0ryaLlopU0YpMu+Z/5YZf71X9p92uLY+yhDpIrZ2qPe8uKtJHpy5US7oUSPaZXFnk2y02kuyxEjAs8osWcB/1PefLhopT7+6prQ0d8nC9t68ucV6T0trU1fe9Fn4+087IpfGWlzAPghbIdsvAVADYBOlvSItMB0akA2AZ623t/PLK+0BANGgsUo1dYRuqFPo17NV3mVq6DKYAtML9QRscvSh6YNG6UfTt2CXCcoubAlm6BDlW9gqDL9so2VGDlH8lePGrwMzuokF9Uf7HT31R/9NLcKj0CLesEFCRn1T6w9l6a6V0O6Q92bNmpVjSjj22GP77IAQJW5+k2qPDb7yqzVkWvtuzniJ3z5X66nhp7sPnjWhVM+AqH7yk5/Iaaed5vI948dS/Ofcmz87a9ivq54wRmWHCLaB75OOnvjz+S/HCEuDLFn4Ld9R5k9+D/oR1IMY2JbCzkEZZdxPGatFH46yT3+f8Onvl1KWS1ZIRA9+uY3oZdCc1XO5/dnPfpZ368ZCCvv16b+XQ/bfW8dWalD0OZG5c/8jF156hfzsuMLbYVZLHexgks+AyeKgv9D5eloWXqtt1rPROryJZdV45hsKPJnWKAkFppQizDPSByq2JWiUMKlTMHKEzTZIJhDFv7lh/MqcB0IfDb3Rd8gn1LVmaEX/0TcUMj/0Qa644gpnFGF1zUYbbeTmAYKGrPi58cYb3Q4qbIVKv43dedhh57HHHnNpYzcRDAEKAU5oCzCEevHFF2XOnDmur4WBFgzlzF8ExY+TnYkwpsVQgp1caO923313B0rGHwzC9CVJD31LQMts4bvDDjsEg83dl6oDPNJfhl0d47unn35aMPRYf/31XVxbbbVVLuxaX2QWZ2TRfSnpuEUBuXOixQYwa9Tu2oebXFofbrOfKDVpQKYq+PGpWX2tuXh24X/rYNOTC+/qljB23L2+0iA/2IFeVHnC7h3GbP/mm2/m8jttObvdIJBNIHfddZczPmdXEPIvfZ9CO+qRLyDeePzxx93cIQaEgN0xHiSP2Y4NtHthRjowVMNMTX4nv7S1tckuu+zijH2D6wewhBM28vLLL/djtmMHBMD3lPmZM2e6/hPjSRjG+ZbhJnM+FdnplOj57YKDWyT1mRoXfqI7B+lx7wMpefJf3bK0Gh9/QY+xeiyl2XT5JpEWgtX7WGINDBsNKOs5BvpJJatNwG6rNtRJPRIKVp/b+bHc/+R98uK7z8ubn8ySEcu1ytrrrZW3vaU9Y/cmxuAYbGNEDEkJzK7M2bD7IeMwxrLIgQce6MZLXFej3iUM6l0MNenDUO9iHPmNb3zDEa+wmwrCzgDBetS96PnD+J9dUxH6l/nqeup36lbqcNYifQN0+hkYz0PugvE0bTwH/bjgelDw25njZ/ck6nb0RVuAH/qC9Htof8KM0UqJM/hb0XZAmgHJCt9PfwzjTJtLRBesg2GET7tlbSSGm9OmTeO1c48/E+aoMPCir/PWW2+5Phdtz2677RZ5m3sLKz7HGog1EGsg1kCsgVgDpWmg714zpfmNXccaiDVQqgaYZ86t8Ol1kfupUybLKfvv5cCzP93zG7LHtC/JMksqG2QRf/nez5n/mVz3wMNy8rU3uXAJ30kp4WV91Pwv23P6g4xaRsjiH4uH9S6w4zDIQjf1LgBOmCxnYcFYwmAqKwWMyzfyvT4LWTW/27J9Nsxe+FGhe8CyJ5+wnwPP/uSoPWWPXabJMkuzpU80/71T01n3c+d+6hh3TznrWvm1hpsF45KCUsPLpno4/KU8MiEQVZi0YaEnbLGnUBiABQay3Jf6XaSdSSTA6OUC0p955pmcCjbbbLPc9XC7iAqEG6jvHui8Vc53MSELO2w5Umm+LCfOfH6GSrtYSpvYPCkpXRunJf2BtgMRF2KhjOl+Rhdwu1KS2T4jzWslJdna2+Lk01+/59owZthH0jWQ/c8tjZ2yzNhPZM687DbZgGXHjv7UgWcnr/CejFtqrjQrYDaff54XCr9TAb///mRpeeODCTJa2XHnLejdMo94iZ+kFQ2/34dV94GxFZbSVlkKWAhB6B8xoV5rGejy+oc//MEBJviuaoBeKtUPgArALYUALmFx0LeYNGlS2Kuiz2CuHCj2SqsDRzaMksUvpKUDZtyXtJSUsINwYhnd4nQTZdlZqTQgR1FFBBwccMABbtttADUmRxxxhF1GPtd0bKBgXCT7V892Hzz3pJZFRVhejz/+eLcQCmiHhb+o/sPCnz9/vgNEAagibPqq/dz1xN/veU86e17X/IQhXD6W76iRU0ZrWV4AxdcaGB/1W82dlduhMKYfCuXW9Br13DZporw2683PFSCX7+W7B0qYBwI4gcF9PmEHrK02my5LNayg25MvLa2JvjvbhPmjX9z5eEYaV0pLCwYkZXR1w8IdrGcALUwAwxTrqwCKvfrqqx3wNWzbTozFNt9889z8m4V9ww03yE9/+lMHwAjOsQJCvfzyyx24GCPgsF3J2LkHIEoY4lxK9gAAQABJREFUyNoHUFp8nHkOCBrgRxDQ6seJIbaBbPAHIJi+5Omnn+4AIrAFA4A2QWe8I+yw/FWODubNm+dASAYMsrhsly8ASr/97W9rYjRicbmzdh4631R2XM3jkceAWmwalS2xcfnKC4Ox4AbBtjz3Jfjef1era36j3/zmNy54wEWMp4L5AmAZoHJ2qQoCu3BL/vX7oOQ1dl0CHMaucoUE5n8jmfDdAYrH6P2iiy7qF6fvzr8GZAX4yZix/XeUP8BVBjr23w2363z5zcDfjUspu6dOObj89n5aZFm9V+Dt6O6MLKkg3C/osetqCfmiYv4zn2qZUdBvRjdNy3ym15wXqsZKGA8NN/3G31PfGmCs2JlaLJ92zZd5nfNk3uJP9Pwf6Whsl+2/+zVZcsJoBeEq87k71HhWzzfefoN8Z5/v9P+w6yRve4uhjNWdjFvZUc7EthIHbGpuqCcxYEQqrXdp39npxdYECRNAK2Qh2223nQPVWrwnnXRSwToUg2pAxPgn3fkAuYBS6fNggGSET4yt2b3hz3/+M0nICUYdCP0iQLz+uov/7eiDsb7/HRiVIbQB1OUYmPqA3HLi9H8r1m+CBl+33367A07T1tkuM346XYL0D8YjHAi7xRgglz4OO3r530E7iNAPYycU/xvci/hPrIFYA7EGYg3EGog1UDUNxIDcqqkyDijWQAQN2ByZnrlkqx4nIWd7/92tp8laK0+Q8277u5yiQNp5C/tu39sTQqTT2FEjZbup6ztm3I2VGZcBoJMC8Ye+7/EWnwZWAwD6GDgNhcU704wN9BjUsQhQqsAaAmilFuKyvQIudJVbC6RaHfeci91/d8+tZa01J8n5f7xNfnP2tTJvPjN95cnYJUfJdltNlZuvOkmmrjfFpaNY/P3elxd17OtzoAHYbRAmo5h8iyXWwHDTwFBrF6O0iQklIGrdICmpdzLS9YC2T9m53uI/nbqDVXdRe0rSuiDVomE0KItGSUJbqB4AzXJFPzV4P3n5D3KAXMIGNAtT7kcOSDtRulNQepQnjQ0pB8SFGdcH4xIa8bq2Wq8Lpa/ELy4voSX6ApANIAEGMANfnHDCCbVf2C8xneU6h+UJZjQYVzgjMJfByBZLbTVAHfjpewsk8c4IWXyvlv1ZGl8pLFGwa2+k212u1yDUPbUWHwgB4LRUYyrSV9OxgdaBgFwBckQ9s6DY1tYmN910k1vIgjWnEmGcx+JlKDNuxHRVEn/st/YaGGp9l3ovt6X+Yuuvs5bco0bqm206tVSvQ9b9U8/MlOlq3D+QYgZIYaBJ0gEgl387LLOLHLX2j2TtpdYtnjztFqdeycjih9PSoFudNy5bj72+4p9hLh544AG7jNxnAsjHERSY52bMmJEDWgBWoS2BgdOApbBvwlLng04sHOYNOJgzgDEU8C99Vg7GL4A/YFTzdxkAyGFspszZ0R7CNgebLcARZPvttw8FAvPO4gQwAiCSbzj33HN5Jccdd5wDSwKkBJQCGzGMv4CHSc+vfvUrx0gHW65JuTrAgMzAuIArYboDnMw3AP65+OKLnSHrMcccY1HV5Nz9UUY6HlLG6NdzM/VF40lOVIMq3R0lOaKysmDgSCI8ZLvsUiEMuDyHIddkMMC4Fredv/vd77pLGBYBj8EQCIibfME4hLwPy7IJ/cZdd901B8YFfMU4BcDUX/7yF5fHybP5BAZEA+PS36N8UA4Aqb/00ksuT2KcxI4JxSSVSjkAsLWrML2vtdZaLpxrr73WAbsgsmAMFQaALxb+UHmfL78ZGNe+o09+0yzerVlzXmNC5qmDt/WYquOXbb6akPSijM5/cCjbtQJy3TWgXD3SCxSgq11zALoZvRauWVYDrBu9qKnjWGINlKgBquVmncIaqVltZEaenvmUfNo5X+YrAHd+1zzpau6UFdZeXlIju+WBx++Xp158QmZ3aTuXvlD+dvcdfXY1or39znezYNpy2ltSbmBc1uc22GCDfqywhb6u1HoXRnK/T0I7T3+A5/RJAMMaILZQvP470kCbTL2LYUOQTRxgMWBcBOCp9VcYUxsYl3RMnz7dkZ/Qxj/33HPugO08XztgBhK0HfQ5mCMotuNKpXHS7+F3/uY3v+naiBdeeMExufNtGDTT35o0aZIzOqU/xM539KsR2kCMsxCbjzNDEJ6xPoTxB2fm7+hX0SbRTrLzTSk73RBeLLEGYg3EGog1EGsg1kA0DcSA3Gh6il3FGqhIA4nmHraHHOBPB2MMzLz7LOJBZwN0oY1JAf89TLYXH6XbMhVwH/Rf7N7NOxQIz4/fTVJYeivSROy5Eg2wFSiTjCz01jsol4lKJhTZVgUWRgauNhiOqgNb0C5lK/WoYeOOMgAIt5wz4NmLfn9ktpgRjoVX6bmM9GiUscQaCNUAWxshTDgFWUJCPcQPYw0MMQ0MlXax1DaxcVxSWnV9OT1bF2Vf1FZKSWEiiTLFpF/R7V3Z4nFORlo3S0rTCrqI2ruOWjgY2qCeBs2YbIP3S4z8TFaf+Ja88u6kXFgw5VZDAPPOW9DfCIf4iLe3f0w/WfXC/7D0ViMxVQwDMMOxxx6bC3GPPfbIbYuaeziEL2A/8dlwYS0555xzhvAXDZGkK/C2cU6LZB7slEW6jWvi31oY6NRGFa0XGtZISOuXGgYE1ASzDIAbQD6wS4cBgoolveZjA8bGKvmYZ/M9B8DE91Vb8sVX7Hm10xGHV10NDJW+C19dr+UWZiqYhsuRtddcXe5/8FF59PGnPhegXL6zQXdd4bsHWgDlAsAoBCx7/D8Py9Nzn5DJS6wqIxp75k0LJbRdcVRPKCP8crqj87QGSY6mIzg0xWf4XH31yn6f/fffX958802nCLajhlnWBFY5ADgALg4++GDHBGfv/DNMtgBl2EkFgVGO/h1gRwAwAHLtt2Q7Z35bBNDIzJkzZcUVV3T3/GFLaAOCAARma+Sw+UD6xIBB2NEBgeHUQLawzp144okCaNEE98bgxtbU5pb35egAsOY111zjggdwe8opp1hUDvQCsAUgFGmsJSAXEGHHYynpflL7IZrHI4lWgY1rKSB35eqXAUC5AHF9MC5pAqRbD3Lrrbf2YQ886KCD3NbbpI3t0X1ALmAlgOkIICQDLXF/5plnCvkTkFeYUHZsDAeIF7CX5WPCJT8C5iafMudm5SMsLJ4B+DIwLoZc5C8TQO+AxXhPPMXCMn/D4RyW356alY6U3xK6st0wJuGOPrrQopTRXYRSCsIFlJsGiNtzDUA3rQDdR/72iHz8xhxZdsxyssnUTSXTrp4WqVEeZ/UbeQ6mT8TxzedFA7qnlRpDJCWBQYQCbkWbzhdefk7emf22Mt9+Kt/6/rekeclGSYzSrNSakjOvOkXmLp4jczo/lqnTN5RrbrpaGpuy0Iz9ZC9HYgMj/UOPPegMM409vlrtLQBMGOpZnytHSql3IeQxFnBYcOlPmMA4b3WnPYty3nnnnYW6Hrn55psdU7rv7+67787dfvvb33bXMMieddZZ7hr/tPcNDVkCAfRrfRzaCAxx8u3qiSExaY4i1YiT3+qhhx7KsRUT77bbbpsDVdNG0DaxywxjNQzkrW2jraKv54sZZvHs6aefdmBcrtmxC70A8GW9+Z577nFAat7FEmsg1kCsgVgDsQZiDVRXAzEgt7r6jEOLNRCqgeSy43T0paumyWyn36H3cAn41p2zpyFz35Pcap3Ycqy9vd2xKVQrzOEaztixY90gkUlAmyivx2+F+QfGgnKF7WixnM03GC43XN+fTVtnz44L0L0eavf+N8XXsQZ8DbCgBYOHLYb57+LrWAPDRQNDoV0suU3UhqhZt+JNTc9I+6cpybxTwq/F4tP7yh72d114+reyN3w5I80wJ420Vq9AWOoky4yrgdBZzTHl9r2fsNxs9/qVdyYVCKw6r1Zf6S2ZsKzGVyA9Dpzrva9OzNULhW3iAAmwFTHMYSy+DicjCbZNZjtftoWH5Yl2B3BGLLXTQHqhbmn8igKSHkpL47MKiFdGqFIluZIyaU9PSjPMZxGqh1LDD7qHiYejXBmQsYGOzQG7lsKQW4/uy9Vx7G/gNDAU+i5oo17L7Zw5c9widLm/2Nd33E7OPvcibbfGymqrTCk3mLr39+rrs+Qvt94uRx7ed2F+IBO+4YYbCgBqgG8AQYLAtznpj+T+2ffIhktvIutEYcnVxGc+1g0k7s/oVs5pGTFVwTCtA9CI1UBpML4iGDIxVggKTGUAW8MEdjaYXBFApcY0x9yqD8blPUxpAE1h8MQdRvMGKuS9yUUXXdRvjvHII490gFzczJo1KwcSNIAjz6+77ro+YFyeYXjDttSAZwAYAsyx7bF5bwL7qIFxeQarL3mG8OlLAqD0hW8B+AuY+dlnn829KlcHs2czxsjKhAkT7NKd0REMevQ//DT2cVSFm0yHgnH/lZbF/y8tmbnRA0wqELd5Xd0RRbcyr1QMaGvsuIQXBOMecj4IxcEXxhzBrbzb2toEdmOA0zAJ+sIuJciXvvQlB5z13/EbA7Ri/AIYKSi2swngKBgW/XIDqIv4GN/hF8bnYiBajBhNfAA7z8aPHy+vv/66K5/lGpxY2PV+HpD8xlSGAiQbaR+W6V9GMootv+ehO+SvM2+XdVZdT766x+bKnKvzJ8qeyxkW3YyC4wHnunOHyLsvvSsLPlogIxtHyYrjVpREl46hdJeikgwi6/3HidPnDL7buxZJe6pd0o0pGTdZLYA0HyV0yP3IIw/L+x+9Jwu7Fsi+x+4rTUtoH2RUQufaNL/p0fKSyCkHnihzuufIF9dYT6Zumt0xqLMzLfd8kq2LqE/+cNn5OTCuqRyA6H333SdPPvmkY+42QG612luAqeWCcUutdwF2Isx7HXXUUfaJ7kzdieEEafENk/o4CrlZcsklHSD1yiuvlKuvvrofINfYcelDMP+GjBkzRgA0I6yhGhjXPdA/zNFhdISgd99Iwj3UP4ceemhkMC5+qhEnfbmVV17ZkuDOsOUCvkVnBnbu46DAjbmnX4Uefdlyyy3d+itzGrUiRPLji69jDcQaiDUQayDWwOdVAzEg9/P6y8ffPaAaaJi0mlrifiaJJcZmFzx7cA1u0M68wFC6r4HmzHKxBkEPuyCZmAP4wHZsWELWO1NuOT8A7FeAcfnOWk5EWrHLprGHKTeX4KF2n0t4fBFrIKeBqBbcOQ/xRayBIaiB4douJpT1qHX9pKTnKyj3jpQkPu6/kFTw55qvDGIPZyT1YVq6N1Ng7obKljteF416bMPy+XWtn2sg9Q//e5hoAeci9h6Q7JiRC+TN2SvKnHlL5Quu7OfLjP1E2sa/L2NGQWejwQTid/f50ld2rLXxyCQ3x3AVAAznn3/+cP28+voute/s0jK9+Om0dD6qvDxvafKUGbtUSYxX0P90ZeJWIAd1Tb3LgI0NymTILcZYO9Dv6/33jNOn5S8e01eUDQAqTpw4sewwJqywvOy/957yx8uulF2/vuOwZMqFGRcwLt/J9w62wI5mDGmAH2AQ6+rKsm2OToyRFUYo4OU5TaWCoKJI+i01Prsrpex0CoBZp2FItGXB77Itj/MZ2gMG/N73vhf0lrufO3euA636oN0tttjCAfpyjnouNt1009yjV155JQdWsYcAhAAWBsV/xhykCQxrJvn6uDCPmjzzzDP9ALmwy2PMFRS2YQaABLjRB0CaOwPxsEWzSbk6aFMgJwAVAJWAhpiHZA5ltdVWc0ETfy3nXDMK5ut4Tg2s7i7RAFMZF5s2VEDu5BLHh6awkHMYSNKcXXhXt8BYWg+y2WabhSbDfjMf4EUeYUtyBBbAsPwECcQ222wjMNYG5YknnnCPAIoDVALM7gtlGON3DA1gkC4mvqE8u0YAuAMAZkQU+eqCYuEOxffF8lutvynRJLIw+Zm81vmydC9a7OZd+sSp2T2tVYwD6SpoHlDuY+c9IHff+w9ZommMnLz/yTKqabRkFKh77QXXStdn3bLO2uvIuuus55h5M4sz8tITL0mTNEtrQ6uMXWIpd06mdD5Gx3OxDIwGGIOlE2lpGKGTYDrm7ehulw9mv6/nDpmiOx+O/MJISbRoWvQAwJ1oUeCtnv941qXy4ZwPZcXVV5Af7PF9x4Kb1OfX3XO53DvzHll7s7XlyG8d2m8nqhW/ME7z1Cvu49794B2ZKllArv+1sGmz3hUU6ifqKYChHGY8U432lrjoH5QrpdS79E2MsT+fITrtKoYVF198cUlJ2nvvvQVALqz99GVsd4GFCxc64yAC22+//XJhYkwT1oajW9p964fhgTDChN0DSpFqxEmbExQMhjFsoo0zpvWgm3z39KcwIOGbae8wduK7Ro3SzoSKnfP5j5/HGog1EGsg1kCsgVgDlWsgBuRWrsM4hFgDRTXQsNZG0nXPbbotqAJyEZ0zY9rMbbM7FO9JcyyDpgEmApmwYxEDJgjYNJi4C5tcHLRElhgxg2GYJ/gehO+rJRiXONzUNSzVLL7rOdFzHnL3fEwssQZiDcQa+BxrYNi2i4kOWbhqu2Q2bZbGRxVxUAJrkssOinNIv6qAhY8z0q3AhZZNlC13dWVSGutawJAcAz9utn8aetZ3/vMxoxbKBlNelY6uZpm3YIws7GiVdDqZxc8SjrmPeE4m0zKqtUPGjv5UWps6e/wrY6VG6uK1cOw+eO55r6dYYg0MOw2k5ikr7ksKxtWturuf19I1r7xPTCybBeOO+GJ9b/U9KGMDHQ+wcBsz5JaXt2JfpWlg2PZdBmBMz0K8DzAsTfNZ12uvubpjjr319rvkqWdmytQN1pNVp7TJ0kv3BwiWE/5g+Jk79z/y2qw33fc0KAgBZtx6AOMGdREGMl38aloWLU5J6lmsrYI+Qu7VTepVkfa/KWqqISEtaw4NAxP/SwCS3HvvvQ586j+3a+b4AMr6ws5iACp8AexqAoNsMYFZ1tjjzK2BGe3ezvnmGA0gtPHGG/djnDO/yy67bA7sivsgEYOBEM198OwDZfx3YWy15eqA9v7SSy8VmOcQAJIc6H377bd34FyYiPPpwU9XqdeAcRe/kJIOzcPp19V3lHxPJDr+aVhD87waWyZHM0KqnoSBJAHj2vPqxVR+SEHWQAspbHcOAFsmYQzN9m699dbrB8ilP8iW4QhMyWEs1uaf8yOPPOLfhl6ThmOOOUbYsh1AldWFgNMB6FJGKtlNIjTSOn5o+cpnZq6b/Ka4WQw+ZERC7Zmz5eyml6+Tf3z0D6fRi3b9vyxztjZBF/zyd/Le6+/LD6cdKZvtsWEPIFfbqHGL5PxTfycjGkdmj4YRsvSSS8vktikKJFxDJq4wURIpHXvAsqvzNhnFez9x7+NqbJmQccuNkwkT1PBIn2UPddetlYTep5VttXuxMp0nGiWZ0IQOM6EqZKkGQ/KudJcs6ljkzt1Ka9yt9zzrdOfFeu6UzhT3i/V5p6y58Vqy8uorqcWCyPVXXScfzf1I1t50bdn669Md8PbeO+6Xm/95kyzqXiRXnnGFNI7UX9eBcbNA3CSAXPU786bH5canbpRtVlXw4iZH5jT8TvpN+TD1vmw7Zet+YFwcRQE2wiCfT/x3r776qmPvrkZ7S3xLL710vmiLPi+l3vUNZGAfzyfl1HVf/epXXftM/XnzzTfnWPSNzZy4dtttt35Rwth76623yt13310yu2y5eqskznxGh2HtXL+PDXlA28JuBhiPPPbYY7Lrrrs6VzDHW9sTZG0PCSZ+FGsg1kCsgVgDsQZiDVSggRiQW4HyYq+xBqJqoGnDzWXx9RdLUkGHiQaKnVrXMroEANgDMRg691G/OnZXSw0AVmWSmAl5QKxMyrNwPVSFCW6+icEli5MDIa70aRkc6ueB0FUcR6yBWAOxBupdA8O1XRwzcbQ0LdUq7a0p6byvtK1M7TfLfKJrNw8pO8hbaenaUEG5G+g29W1srRdYxKVN5JE2jKWcWxoXy7illDWrt1tr3duyzwRVajpy7u3D43OsgWGggfRCBeK+occzWn71yHygH1Ums1JqbEq6N1wkiyZ3KIheV5CVgLpeZVDGBm5srlXPED/X628ap6u/BoZr36WWY/r33nvPAZmCgML+2i3+BLDqYQfvKy+89Io8+/yLcu8DD8knavQ8VGWpsWOlbdJEmT7tSwLgeChJ86Sk29GhY7Yyhc6OmHJtC1Mv6E4SNIpab7esNbSYcgHhmcyZM6cfY95ee+0lHL6ccMIJcuqpp7pHNm9WKlPa/Pm6jUaF8u9//9uFEMZw6wc9fvx4N1fJ99VSKtHB17/+dXn88cflsssukz//+c8uvYTHNUdbW5v8/e9/l0mTJlXtE2DPXPxCWtpvT0vqZR31lNCvY5eDls1055OJtQHi+SDJugFHepoHRB1VYDw2KcQ+G5aPYdcNgt8trLDzp59+Gva4zzPSfsoppzimSvLbLbfc4t6znTjbyXPAKAkDZDEAcJ+Ah/BNvec3Uy1jA4BsCMC1nGGAFsNFmYUyN/2xzG/+jzSt1Fsup62zuYz58oieuuXi3vz0dELxok2y3irry9VXXy0Txk2UTJfOwygo94I/nSML/7NAdttzd1ltj73dM0C4gHWz54x88tF8ufD0i6Qp2Sjbf/1rsubaCnrUOuS2a26VubPnypTVVpEtttxCkbvqT5+/O+tdmfnYTGlINqj9ihpkKohXTVicAWJzc4t0depapebN8SuMl1XX1HaJuSA95s39RF59/lXndr1N1pfmlmaZ8+858sZrb6iTjGyyxSbS0KioWYqkHSjIrnvOYIbffUfT8NSzktIE7fTtGdLQpA/VqwbujGpwc+dtd2rYs2TC5Amy8147u/eP3POw3Hf3vT0AXAXfAsBV8G1nqlMWpzqkI92h58XZa70/6htHytp7Tnag2j+c/TuZ+eozcswOx8jOM7YjZTL3jQ/k+tlXuuvFKy2QkbrzZJjUss1it8t8MmbMmNwrSHiQemhvS6l3/frUr4NzH9ZzUY6OmR844IAD5De/+Y1cddVVOUDujTfe6EKFYdg3ZGKdlH4TRhBhwnillHo+LIzgs2rEWYq+g/GH3cMSTHtzzTXXyB//+EfHwIy7hx9+2B0//elP5X/+53/k5z//eZj3+FmsgVgDsQZiDcQaiDVQBQ3EgNwqKDEOItZAFA00b7uLdD37uDSuinUgo1JOPechd59Nfvx38DXAJLxNxA9+aoZWCvqWPp2MYtZJJft86NwPLa3HqY01EGsg1kBtNTAs20W1Uxmxpa5Y6EJF5/0KyPuoDB3qYkz6HQX1faRsucqa27WBMiutw2KutYYapl661i9Be8hN//NQeF+GdmIvsQbqTgPpdi2r7ypg43kF4v4LQL2WR906tVwBwDFyyyYZ8ZUvSOOyXrkvN8Bh6I/FL8eQq9/maj+7D57r/P0w/GmG/ScNy75LjX41GEW/8pWvVDV0wKtDDcBaVQXUQWAJ3Uq6Zf2kpN7Tvuo9iiLKbpxUPGUKUnKg3LT2j5VlsGVdBRopo2GYmLFF2LtSnqVS2qlWyQGySvHsuZ0yZUruDuayww47LHef7+Kf//ynewUzrbG2rrvuujnn7777rtttKvegRhfE/+CDD4rPTBuMCkAjQEOkHCa8YHiF7ivVAek7++yz5YwzzpDnnnvOMRefc845bmtott6GLddnWy2UlmLv0ou0bzczLR13KhhXx2SA7CKL7i7d9MWky+eUmVqJgSTtXKt4ah3uGmuskYvinXfeyV0HL1544YXgI7cLHYy2MLIfccQRcuaZZ/ZzU+4DQLccbJHO1vR33nmnXHjhhQ4YBhsv24mT/z4vYvnMzvX43f/6179ywD1Af1GlUN3y1OtPyPZ7bNtTt2Tbrcc+e1A++uQjaX2nUQ7eZN/QaB65+xk59bWT3Ltd9viaLLGOLu9rs3TVZZfIw88/Ivusv498bc8tHSB30YJ22X3NGY5Nd+JKK8mRxx7ptr1feqmlpampyYVx2AGHy6vPvSI7rrqTrL+HlhkGQXq0ppaSn+5xgXwy5xM5ePrBMmOXneS3P79Qnnj+Cdl2xrYy/dtfdlNGbhGF5PccfZY69Rlg29dvf0FOufQk6VZk8e43zpDmVk2zPld8sJ51hknPt95xrVz/0nWy4+QdZe/dsyyn6YZFcs6FZ7h0ltq+tStQOigbbrhh7hF1/bRp03L3dgGgEibRWgl1Sj6BFdfE6q96a28tffnOlm7e00egrgsT6r5yBLZXALnoEX1NmDDBAU0J67vf/W6fIAGcGhh3m222kR//+MfKTr26YwumDwUYt1wG3D4ReTeDEacXfd5LjDwAM3MA8sYQ6dprr3XMuXhidwB0s/vuu+cNI34RayDWQKyBWAOxBmINlK8B7frGEmsg1sBAaKB5q50kkVa2h/lqoc3gFhmq52zq47+xBoa0Bqz4ZT8iy5Tb+0FD7b435fFVrIFYA7EGYg0MPw00jkvIiOkN0rK98pmsqN/Hgkc50qFrMy/pQvBtaVl4fUoW3pWS9AcTdBFHF0W0YXStn2sg3Y3G0Pc8JN6Xo5fYT6yBOtFApkPBSK/p1t1aNhdel3JlNf2KlsNywbgshE5UkJLWHSMV2B+DcfP/0AbWclWgOsvdBxlze4Ko1/f5vzB+E2tgaGuA7cM7OjqELVZjGX4aaFw6Ia1fTkrj2tpwlUIfYqDcWxTk+JiCHOdbLd6rI7Zb/uCDD+Ttt9/ufVjmFcAsZIUVVigzhKw323qZu5NPPtntfFUowA8//DDHauYDXNdff/2ct5kzZ+aua3kxdepUFzxMsvnYaX3QkQ+CqkW6qqUDADqk9eijj3ZgYgP3AMp94403Kk56ap4yOj+izLi3prLMuKWAcbVMNK6rZWTzpDR8odyBYO8n5EBzvY/6XJUDjmzJ4vv6hDOYN+PGjcuxJVq5DUvPE088EfZYNttsM/f80UcfDX1f6UO2t6cegDX3rbfekra2NhfkTTfdVGnQdeU/Sr4oK7819q/ra/Hh77//vsCkbbLbblmwqN1HOZdatwBWzLcL4rPPPpuLcvU1VndgVgD67ZlFsjDzmSxMfiYNYxOunnj0lYfkja7X5NXOl+SAX+wj2x+wtay0+Qoyao0WaZ6izPTLd8jlj1wsjyoQ+N2WN6RldQX8r6HHmjpuXKdJpnxjJbl33l3yf/84Sxat+KmcfsfJct+8u2Xz/Td2bpxb/Kymx6p6rKI7MWm47pjMrkxqAL5yUhaOme/SQFoalsmmjTQml9BDDQ0SrSJd0unmovzVmGrV7aawddZZxy7ll7/8pXR2qiVPQAB71lLy1TfEafUULMzGNFtv7W0x3QD0tn76+eefL+xsEZR77rlHMD4oRzCUAKSM3HzzzfKPf/zDXcN2i/GML/aOZxdccIEDYNMumEFTLfpMgxGn/81mNOY/C16jgxkzZsgVV1zRx7CK3QBiiTUQayDWQKyBWAOxBmqjgRiQWxu9xqHGGgjVQOt3DlOGo0ck07Ewi6OwObSQs3sU8twFrM8H9X3o18UPYw0MLQ1ky1BPIdPZ6CF9P7RUH6c21kCsgVgDsQbK0ABAhRHTGqR1J2X/WkUDKAWsEIxPt6pPPZORjpvTkn5gB9n639+RsR8sL02LW1wn07WKrm3U1tH95w9Ph8B98Fvj+1gDQ0AD6YUKlH9JgfJ3ZoG4HQosSs3Uheb+5D7Rv0briORqyrA9o0GZcXWb0ioAOKJHPvRc2vaQQ/089DQfpzjWQHENAEC577775Bvf+EZxx7GLIauBpklJaZ2u/dw2/QTtckYWJdVNv65gx9tSsujelHTP1vbTw2ptvvnmLijAB7CCAbAq9YBhky1/YT9bZpllxAf2RE6n5xAwHkBcBFDr/vvvn2Ng9Jy5S8C4sLuZ7LXXXnYpgI0BoiBsN7xggXbyA/LAAw+4skP5qQYo2QdJff/7388ZsFi0gJyOPPJIu5X11lsvd12Li3J1ADPpPvvs43QPYNsXADuAJU3MCMfuSzprXuz6UI2t7klJx1/VGHKW+tY8G1m0LCSVULl1KwW4rVSdpbxvbladcPxvmDrZv6uP6y9+8YsuIeeee66EAeEAaRkILphiA8IBjoTFOigAJn/wgx+4snXaaacFX/e7P+uss1x+O/bYY/uBLSnD1WZ/75eAQXqwhO72s2FbKRV6tIROnVz9MIMxz5kzR7bbbruc4QEgtii/U6V1C23Cr371q2ByZNasWQ7AzQuYwVtadO6mgMybNy/31tqJ3AO9gCGzkHzrW99yr2n3AFcigEUNcOke1PBPuXV7viTR7tLWIrDgHnTQQa78A2JEt6eeeqpjCs3nvxrPH3vsMbn00kv7BfXII484pmxemDEA1/XW3pKmYnLIIYc4J+RjGKUB4La3t8vHH3/s6tJKWVj33XdfFz7594YbbnDXPAuWh08+UVKsHgnuLprWnRUuueQSe12182DE2dAA1XRWgu0ZfZejjjrKtT1Whs0tZwDOyy23nP8ovo41EGsg1kCsgVgDsQZqoIFKlnFrkJw4yFgDw1sDyXErysjv/VQW/eFkadpwc0mMGevADW6imHkE2HcU7ODIyAL3bjK6Ht4P758o/rrPkQa0tOlu3Fnb66F8/hz9ZPGnxhqINRBr4HOvgYYlFZT7JQXW6blDt/TtfkFbs/YK1MKa/YK1ZZ/EBGl/dIHMXWG2fDL+3/LZcnOkc0SHZJIaPv8Tdlb39X5fgTpir7EGBlQDWpZg8ut6My1dum1x98sZSb2lDysB4doHjFTM/jrKpKbApmZlOcq3hbc5j89atTHWVhnq5/i3jDUw3DQAMy5g3L333tsBIYfb98Xf06sBtq1uXiupbaNIxyLdYez93ndFr+ifvivSeacam83NSKsaojQrwBfmQMCzX/va19zW8DfeeGPRoAo5AIy7xx57FHIS+R3A2t/97nfC1tmwYj7//PMObLXRRhvJ+PHj3ZbMAIgB+8HSihxxxBGyxRZb5OLAiIQtmQHAAMSAvRGGV4CIAGDuuOMOOf744x3Yt62tzYGpcp7LvGBb4/32208uu+wyl+7DDz/cbRW99tpry1NPPeVARQC4EEDCY8fq3HcNpVwdACy75pprXMpeeeUVOe+881xeSSaTAjjq17/+tXsH8G3KlCllfUFGCRg731D25v+Xkq4nNZP24oMih6fDNGndRvOzMleKlpFqyN7TkvLabN1SXPug1ZDvbpmUjaewkFFfwhblt912m0sUgHTK0lZbbeXKg5WNfCmmnAPkhe2Z9odtvgHGAxIkv7DFt7E8RgGYtba25vIbbO+U08mTJzuWTvLh5Zdf7pLyne98J1+ShuzzH6pB8Q8vTsv8Rdm+dqUfcvA2SVlrYnXyG6Dbe++9N5ckDApmz57tANwXXnhh7jn1BXVEFKlG3YLBBkC7XXbZxTGyAyD9xS9+kTPcIP8VEx88fOKJJwrb1tM2wFoKkPGEE04oGAR1Hwdt1EknneTcHnjggUIdORBSbt1eKG2///3vHQP6gw8+6MqjtQHmB3AiIEX0XSs59NBDnfEMjK4Apcl/tNMm/nW9tbeWxkJn+jbUmwCcyTv0v4JCX6Xc/hh+MQYibA7EN1SyuLbeemvHjMv9cccd5+pc9Pniiy/KmWeemauPzX01zoMRJ0Bz8tFnn33myvX06dNdP3GppZZyZR6DI/qY5HXqFNrCZZddVubPn+8Mw2yng9josRo5IA4j1kCsgVgDsQZiDYRrIAbkhuslfhproGYaaJiyhow69hTpuOo8yXz0oTROXl0n1Hpm1ADjIjanUK/32VT+//bOLEauq87D51b15n3fdweHJM5iJ3aCmExGA/MWDRIQgUDKA0gZAS8kYhACBC8wEuI5jJAACYQgEhFoYCYSIU6IPJBFZILD4sRx4niN931pd3fVvfP7narbKbfbdnd1VXd19XeU43Purbt+91bfU7nf+R/+hcCkJjD4NYtn4Zh/lf8xWJk/eaYn9UXg4CEAAQhAYNQELNZ1byqGgqXchRL5XklDdmLUm7lihdnZnDD78Jww//jicG7/6XBKUu7pJcck5p4MvbPPhbRDL2sl5cano+VcN1ZbdPqKE2MCAi1IwHJG6Zi+u+9IwlVEv9KuLKSH9L3qa8zBJgpy0rlFUQb/UcOEWkZqkLzRmKNr3a34pa9l3Mleti5hjgwCoyNgYcSSgsUlywsWIUntT8Dt3J57CiFz5Pin1cY9Nrpzzk4pGul2PVePlUP5H7PQfUchdmSzxHrzzTfHKHiWEEabLCAtX758zJFxa/frKKweIviRRx6JYt/u3bvDQw89VLvIFfUHH3xw2Oh9lmMPHDgQh+D2d6ZWLss3YFnD0eTyoZrz+fWUfk5aVLS05kiQP/zhD2Meui0f142Er6Hr1DtdDwOLZpYff/aznwVHQb333nuv2r255ZGMr/rwBjPKZ3QP/yUNff+rUQ/U1guXb7DCMB8nS0Lo/rCGgt/c2M5VS+RI/+cjhfDU/yVhr75jlf8bOswB3GBWd2cI970vhE3r8v/DeoMVxvnjrVu3xiiIn/3sZ2OUU98nQ5Nl9lrxMv/cIrmFW0ertLD0pS99Kf/oitIRN/NIold8MGTiU5/6VPj+978fRTXvzzmXqPJFN2zYED73uc/lk21T3rI8CU/+ezE8o9E/Dp2s/7SmKyCs77c71jTufrPENnSo+6FH6Ci57oAw0nbIWP+2+H7yvfetb30r5qHHYxnXz4MbJXfscBRwy97usFEbad3rWjx1pGc/e66VHEX2i1/84uDHvo/HM9Xzt/16x+coqk8++WTs3DJUCDUfi5rOzRJy3Z51ZG7/PRnub8pPf/rTsHnz5sFTaMXn7eDBXadiedzJUm5tWrduXeyIdPLkybqFXH8PLY9aMnXy380tW7bU7ibW3fnC97jlYD/nnWvTWKTg2u3U1idin96/v5d+pvjv2cMPPxwPydL9Rz7ykSh7b9u2LX7mTl3OQ589/ntimZgEAQhAAAIQgEBzCCDkNocrW4XAdQnESLmP/Ufo//3/hP5t/xWS+YtDcfnqEGbM0gvT4nvrVn2H+H/G/P8aWmH6vaOjBoFJTSD/OlVOohopd/CMJtv04IFTgQAEIACBKUAg0a+4rg16MWspd5kiL72gaGDv6MQl+o0ldZY6wwJJufNOLAwX964OpxcfVz4WzknMvbDgdBhQ1NyYBiPm6mkaH6j+x9WaaVery1neHbfP4574BwItRkBfgfI5ybcHKxFxLeKWlTO/lC436FgVBbBwk8SND0rcuLsYOhY17mV1g46wpTcz2SPj5sff0pA5OAhch4Cj0jlS3f79++PLcw9ta4lyvIZGvs6h8dE4E/BIED0aESJTR5X+ZyXljlbg0ugR5R1Z6D0hEfJdSblb1UFlZSEOy9tqQ/NaLPnVr34VHn/88SgBHTp06CrajrboSLoWK66VHIl2zpw5MQJoHu0sX9bC4Fe/+tWwdu3afFYsa4c5vuKDmolc2ujqUiOjJnV2doaf//znMWKjh322BJInr/Poo48GRye1TFSbbrTPoUNO1657o3o9DDx0uAUaS0O1UprP4YEHHojXxALRaFI2ICl8v0TcP6Wh/2Xdv+9q7cpPodFsJiTqg9D1z4Uw7QMaHWX2lRxHtaFrLFzQJv91S+O3e43d3XD20HslX+FG94yXG3p/5uu6dHTbvr6+4Aihtd8NP1ss3r322muDiw89hpUrV4Znn302Rnr+9a9/PbicK5bAvv71r4dPfvKTV0QMvdbxWvB96aWXwre//e3wk5/8JB5L/r3xd9xDu/uzmTNnXrGfdpmYPS2Ej9/X+vebefs5sXr16ij5+f4ZTtbPr8u1OjmM5W+LO4987WtfiyKdOz3kyX+XHD21NoJq/pn/Jg+XLOn5b79l8Nr7350R3Nkgj/h+rfP42Mc+Nijk+jtTT7TwkUTUzf/2D3cc9fxtH247OZ8FCxaEJ554IvJw9Hm3P31e7nTj5I5gw6VrMc6Xrf3uX2tZRyi2JO0I2S+//HK+arznLGD778nQVO/zdiTcr7VM7bkMPZ58+np/d71dn89XvvKV8NZbb4VTp07F6OKOMO5r86Mf/SjfzFXthMEPrlMxw1zIdYeL4ZLbRNu3b4/RdIdGQv7mN78ZvvCFLwxKwbX3y0jO3furXSfff737vNZ1yLfr8nrfEUf0t4Bf+z3Pn2f33HNPHIHB99zvfve72F7Lnz0Wlt0pxSzy5Wv3SR0CEIAABCAAgcYQSNTgrON/CTRm52wFAhCoEBj484uhvPNVDVG6O6THj4Ssf/gffvCCAAQaQyD9N9lLJAhAAAIQgEAbEMj6u0J2cE1Id94dsnduDcl5DwvbmJdd/qF4NjkT9nS9FXb17Ay7pv09vDNjZzjXI1mgWGoDepwCBJpMoNwZ5vSuCOsu3Rbe37sx3KK8fuCmMEtRqRvzLa2I8EeLR8JL0/8Ynp333+HgLA3dyPdzVBf2gd6Pj2p5FoYABBpPwC/2PbzqqlWrYiTTjRs3Nn4nbHFSESgdk1T7+3Lof74OKTc/U7ltxVs1usQH1Fllo6LlztPTt1EP4HwfDSxPnz4dh2A+evRosAxoMcvy0EhTmqbB6zp7PQtGI5VLRrqPocsNDAyEw4cPR+HGwyAvWbJkWFFl6HrNmq6XwaVLl8KePXuCxUmzH3Vy56tTior7N8m4L0kGf0MzLo56K3GFZFFVxv0nOljVR/DqtcrlcvDQ3Y7MaCnMz5vRpIsXLwYL85Z7vf7s2bNHs/pVy/q7vm/fvih+zp8//6rPmdE+BEb6t8V/dyzNWha0hOp04cKFYGnUMq4/H04CHCkpjzzgY/F2pk+fPqLVdu3aFRzx18mRXd3BY6JSvX/ba483l2D9rFq/fn3tR7HufVhSNPMvf/nLwaJjs1L+N8Adc5YtWzaiZ3WrPW+HY7Nz584ofVog3bRp03CLRAHU0fUdDTi/JsMu2KCZ/vvvv7fuwGrZ/lrCdIN2FzczEfv0/etRICz4Wg4emnz+bq/5OWgJfaR/B4Zupx2mryeUt8P5cQ4QgAAEmkHAnZhI9RFAyK2PG2tBAAIQgAAEIAABCEAAAhBoDQJpCKWjabi8Iw0Df1Lkzbf1AljRwRqaCvIX5AMU1iahw3mV8krlRYWQaPhIEgQgUCGQXVYk3OOVaLilAyr3auhsZQ+jHfRdbWhStKnihiR0KcJZ9yZJG0taWzRq6LmzMQhAAAIQaHsCUcp9virlnqjzdP1oVJ/szrsLoetuPTPXa5SJ6S1s5dZ5mqw2cQTSi1nof1sRcV/VSAh/lkB+RMfino11pCjjfkiRcR9Axq0DH6tAYNISGE7IneiT+ehHPxqeeuqpKAQfOHBg0gt8jvL7yiuvRKw7duwIt9122yDiUqkUo1Q7crDT008/HSOoDy5AZUQELJR/5zvficv++Mc/Dp/+9KevWM/3k+8rp2984xsxX7EAExCAAAQgAAEIQKDNCCDkttkF5XQgAAEIQAACEIAABCAAgalJIOvTy+A9isz0ShpKknPTw+LQjEC2GhHRL4uLa5JQXF0Vc1eoXJiEpAfBYWrefVP7rNNeifAnJN9qaGxLuOX9yvsk4Voe0tDFDU8dkuM1qmbHZkX82yLBSJJ80s13r+Gc2SAEIAABCEw4AXdy6f1DVcp127bepA5khXUVMbf7zkLoVNuVZ2e9MFnPBPzba0Dtvr6/qFPkq/rttVczxxA4KFHbrlsybs8HJePqdxUJAhCYOgRaRch1VFzLqL/97W/Dtm3b4gX47ne/Gx599NFJfzF+85vfhIceemjwPO67776wdevW4IhvzzzzTIyM6w+3bNkSnnvuudDT0zO4LJWREXAEVkcRz9OGDRvC/fffH6Vuy9AvvPBC/MhRn1988cU4EkC+LCUEIAABCEAAAhBoRwIIue14VTknCEAAAhCAAAQgAAEIQGDKEiiflpj7hqI0Scot/b0qBTY6MmdOt0ty7mLJuYqYW5TYUFwuMdd5cRIKM/QimXfJOSnKdiKgqGeOhlY6qnxY8u2hapaUkR3XiY5BxrguJkeqlgzfsVER/jZJxL1Fw2/P5Ut2XWZ8CAEIQAACk55A+UwWLr9cDpe3KfroAZ3OWNq1s9RuvTkJnXcquvzGQuhYptEe1NmMBIGREsjU2WrgXf3W+rtE3NfUBtythuGFka49zHJq3xXkL3X/i2Tce4uhOIe23TCUmAWBtibQKkLu9773vfDYY48Nsv7EJz4RfvCDH4Rp0zQ0SxukX/ziF+Hzn/98OH/+/LBn8/DDD4fHH3+8bc532JNs8sxXX301fOYznwmvv/76sHvavHlz+OUvfxl8z5MgAAEIQAACEIBAuxNAyG33K8z5QQACEIAABCAAAQhAAAJTj4BEBUcU64svitNQ3iVR8LQw6H1x05KidiYL9EJ5ZUXMLS6TmLtEded5ikKG7NA09Gy4+QQySbYWgizhlo/oO6XhiC3ipgf13Tql/TcjGnV+Wnbb50sgen9VxL1NApEjp0ngIEEAAhCAAASmAoH0gqRcdTa7/KwikVqAHGPnl2Sunqu3SMy9Xc/W91fFXHU0I0HgWgTcFowirjo+DvxN7UH9vgpnr7X0COfrnnP7rvvDknHvKlQ6NI5wVRaDAATah8ATTzwRent7w1133RXuueeeCTux559/PvhYVq9eHY/lwQcfDEnSXp0Ejh8/HqOzvvHGG2H//v1h4cKF4c477wy33347EVsbdOf19fWF7du3h927d8fc0dER7rjjjpg3btwYurpocDUINZuBAAQgAAEIQKDFCSDktvgF4vAgAAEIQAACEIAABCAAAQjUSyCTJFg6rAhOO/XiWNFyy2+Og5jrg/U7m9nyBZdKxl2mUnKuxVxHzi1KJCzO0gLFes+K9SAwDgTKEm7PScA9oe+N5PbyEcm3joar4bJT1YOD6jRTcPcp6msSRVxH8nNUXEfyW6pIfnx3xuEGYBcQgAAEINBqBLK+EPreVKTc5zQKhCKTjikqaX5y8xR5Xs/Zjtv0nL25EDo14kPS017yUX6qlPURSHvVHlQnrP43q7+nLISfqW9bV6ylaM0dm5Iw7UPF0LVB7Tv8pCvwMAEBCEAAAhCAAAQgAAEIQAACEJjMBBByJ/PV49ghAAEIQAACEIAABCAAAQiMgMCgmPu6XiTvrIq5juo5liF/R7DfwUX0gjlGz5WUW3DE3MXycRepdF6AoDvIicqEEcgk4Kbn9d04qWwB91glp0c1X1FxYxTcMUbjG/HJKfKtvy9xSG0LQrdWRVxFoSZBAAIQgAAEpjQBtV379ytS7h/Vpn05DZme0w3pIDNHz92bJOYqWmmn5Miu1WqzugMZbu7UvN3k3JbVLhzYp7xbArii4Zbf1sxzDcDh20odFrvuU1Tcf5AEvlINP0Y9aABYNgEBCEAAAhCAAAQgAAEIQAACEGgdAgi5rXMtOBIIQAACEIAABCAAAQhAAAJNJRDF3KOKmKuXyqVdermsCE9RZBho6m6v3nhPjaBrKXeh3kNbzM3zXEUnI0rU1dyY0zACjrJXPiu5wgKucloVcdPjVQH3pHalZcY1dep7sVTR0jZUhKA4hPZiRUxDxB3Xy8DOIAABCECg9QmUT2Xh8p/T0PeHNKRvSZRs1DN7mtqkknGjmLtecu66QhzdIdEzmtT+BDL9Jiodl+z9jn4rScAtaXSR9IDur94GnXt3pcNV1/2ScTfp3pqH8d0gsmwGAhCAAAQgAAEIQAACEIAABCDQUgQQclvqcnAwEIAABCAAAQhAAAIQgAAExoGAoouVJCAOvKUXzhp+tbRbEuJBvWy+NA77Hm4XjqA7VwKE5NzCIpULVc6XoKthhAt6Ue2X1YWZknSRIYajx7wbELBcEaPfnpZ8q5w6K0J0ekLlCZWKiJt56OHxioA79Hhn6D5fKflHIm6nhs3ufJ8i4ur+J1raUFBMQwACEIAABN4j4M41/YpeevmFcijt0LPcnWnUnG1IUmeYRG3S4vv0fFbk3M41ejavUJt0Ns/nhvBtpY3od1H5nORb/RYa2KffRRJxy5K8M7URQ6lBB+qouLqfOjYloeeDxdB1kzpcSc4lQQACEIAABCAAAQhAAAIQgAAEINCeBBBy2/O6clYQgAAEIAABCEAAAhCAAARGRMAvoAf2Kr+dhvIevYBWRKgoNJRHtHpzFvKwrZYUF+jltcRElxZ0C4qcW7S4O0d1ZUsRMZIuwaWacx0m21Yl4WT9uoc1nHDq6LdnJNyeVT0KuBUJN3M0XMm44aKyBIwJS0Xd24oMXVwn0UcR+DokZnSt0X1t0YcEAQhAAAIQgMDICOjZXzqWhb4d5dD3sp7xjpZ7eWSrjnipmWp7uuOMntnFtZJzV6m+VM/sGbYsR7wVFmwlArpN0ov6/XNYIq4i4Jb0W8i/gWIHRbcRG5kUddlid9d9SejeVAwd6oDIfdNIwGwLAhCAAAQgAAEIQAACEIAABCDQegQQclvvmnBEEIAABCAAAQhAAAIQgAAExp1ApuigpaOKmOvhWfcoOtQ7elF9SG+rL4z7oQy/QwmMwUKEouYmEnNdOnpuMqcq6M6yzKgX3i4dTVdRd0ntS8D3a3rB8q3kifOqu3RWpNvMIu5plRZxHfnW9/BECua1l2GW7ldF2OtYpyhp6wuhU1H3OhYrShr3ay0l6hCAAAQgAIFREYjRctW5rO9PasvuSEN2RKs3+tmvDmNxRIfVEnPViabDkq6f6ci5o7pWE7awJVy1HUtHJOLqN05ZEXHL+9RW3K/OiOrA1fCOWu58tSyEzs2F0L1VHa/WERV3wq49O4YABCAAAQhAAAIQgAAEIAABCIwzAYTccQbO7iAAAQhAAAIQgAAEIAABCLQ0Ab2sjlFzY7QoibmOGLVfcqNeXjc84thYQTgqWY9edkvKTRQxN8q5knIdPTdxKTG3YIm3pkym6zPLvaSWJ5BpmOCsV6KE5IlUUu1geV7ihCVcRcF1BFxLFJnqmSLjxntUt2pLJd2jhWW6F9dIwpXA07lWw14rup7lcSKktdSV4mAgAAEIQGCSEyifUrTcnWnof1UjP+xU28BR8ZuRLFu6c5ik3KKf6csl5upZH+Vct0NpazaD+qi36bZk2aMm6HdMSdFwy+8q6zeOI+Fm7rTVaGm7eoSJRvcoblRU3Lsl495aCEV1IiRBAAIQgAAEIAABCEAAAhCAAAQgMHUIIOROnWvNmUIAAhCAAAQgAAEIQAACEBgVgUwvqcsnFUVqf1XM1Qvs8iHJjxoauOXk3Nozy0VdybiJIpImsyVGODKpBMg4PUN1ibkFlRZ0B0sNKVvo0cpIFLU0m1fX/ZVelhRxSeUliRF5qaGCPYxwpjKzjCvR1gJuJWu+6qFPudXE21pSFsUXS9BZqdvJQ1t7iOvVEnHnc3/VYqIOAQhAAAIQaDgBtS8Gjiha7l8cLVdt17fUYHDboVnJkXPdEcydb1boua+y6DaAcscitzP17HfblNR8ArrUMQruCV33o8r6zVK2iKvfL6nKeB+kTTwM3QfFDRJx70pC951q9y3VzaH/SBCAAAQgAAEIQAACEIAABCAAAQhMLQIIuVPrenO2EIAABCAAAQhAAAIQgAAE6iKQ9YdQ0svt0kHJuRZzPczrQTmRlnN769rkxKzkl+Ld8iIs41rYlSRRKat1SblJzJpvQTevO8ppt+Z5XUm7hS5tB3F3+Gto0Vb3SybZ1kNIW7p1GaPd6l7JYtY8l5JwM8m3qeTbUBVws4tJnBel22ZKE8Mfff1zfb8s0b1hCdfDWDuvkoyxQPeN7xcSBCAAAQhAAALjRsBtjwG1W/v+qrbrX9Vu3aM2q9sbzU7ulLNQbYKlknKVC4vVLliourLbBFHQRdJszFVQO7GszlvuQBjzcbUpLcTB1ZoAAAuZSURBVOEeUftTUXGzE9qNO3E1O+l3RfEmdb66QzLuHYXQubJA26/ZzNk+BCAAAQhAAAIQgAAEIAABCECghQkg5LbwxeHQIAABCEAAAhCAAAQgAAEItCKBbOA9Obd8SC+94xCwlRffTY881WwgjmAmedIyblD03GR6tW4x14JFzJqf1y3odlWFS68Xc2U66dR0p+od2pbrHarHUtOtHilNzoqH+fW1zkqaiKWnJTe4buG2X3WVIdY13adpi7fOl5017dLCtstqFNw4LRHX22zpKLc6vOsmyzSOiGfhZplEDA1XXVwhGUMSRtESrq41CQIQgAAEIACBiSXg9kj/PmWLuTvVbt2rds2FcTomt/fclrSg66i5i1RKzC0oYn7ReZ7yHH2uTl8t3zYcJ2TX3I3bpmprls9Iwj2t8pTkW2dHwz2u3yEScaOA63anlh2XpM59xXUSrTcqIu7tEnFXq/3n0TZIEIAABCAAAQhAAAIQgAAEIAABCExpAgi5U/ryc/IQgAAEIAABCEAAAhCAAATGRiBzNNQzWRiIw8FKdFCZ5lGpTmnbEjHbMvldu0VbC7mWKLqyGD03OIquo6FW5dwo4npay0Zx15Km615XEXbzMljWdcRdz7PoWZMHp73P6jv+pKaezxuUDywhWFpQEf9xRRHEMkebrclxWtfP4m1QGcoSGar1WFrItWwrCTcKuRZoqzJulHAdccxSrss+RbVVPUYh83LtmixiL9DlUSTc4tKKhNuxXFFwLePO0UUhanK7XnnOCwIQgAAEJjmBtFft1f0Sc3eqvfq6JE5HzD03ASfltsRctSXcecdtCkfN9fTcSluiIEG3MFvz3DFsirYr3A5N1ZErPad8Vk3Usy6VT2u+JNzspEpFxc00PS4RcIfeJrpGMSLureqIdatE3FW6XtOqjfShyzINAQhAAAIQgAAEIAABCEAAAhCAwJQjgJA75S45JwwBCEAAAhCAAAQgAAEIQKBJBOQ1pBezUFKEqpKGiS0f1YvzmDXfUasU0SpGRW3S7ifVZi3cVqXcKOgW9RI/TgtiQfVCpUxcWsbw8n7PX5s16ekk2rmqa9Es0z+e6TKrKVNNW76tEXKjnFuWSGsJ11FwLeVWhdz4mSanfHJEY0syEnALSyplR5RxFQ1Nke4sy8RrMuVBAQACEIAABCAwOQg4yurAQYm5b0jMfVPt1bcrgmdsB03EKagpEaqSbiIptzDPbQ+VjsI/y1li7kxNKxqr2x2FGSodhXWyy7pqd6aKXpxerPx+iOV5XQvl9LzmScb1b4dUOVNE3Exibuzo56buRCTxdqRji7gdNyeh6xaJuBoZIXbMm4jjYZ8QgAAEIAABCEAAAhCAAAQgAAEItCwBhNyWvTQcGAQgAAEIQAACEIAABCAAgUlOQC/aHdGqJCnXcm5ZUm5Zw8pmHlbWpaNaKQIrCQItQ8ARjy3gLpLwUh1WuughpiXhRhFXEesmvQDTMrA5EAhAAAIQgMDEEcgU0b90LA0DuyXo7k4l5qp9+q5sz1YZ3cHC7TS1S9T2SCTnJhZylS3nup5M17SisiZeRjnWqyM3JCoLXfrMozSMt7hr0dYjLEh8jiMtuBRTy7dZr+YrO1pxJhE35gsScC+o7mwJ11GLLym7E1krJLP1SAg3hdC5QRLuBnfKKlRGuWiF4+MYIAABCEAAAhCAAAQgAAEIQAACEGg5Agi5LXdJOCAIQAACEIAABCAAAQhAAALtScDiQ1kv2svHq3KuSou5qYadzTT8bHpK591KL+Db8zJwVjkBRx12lLn5ElnmS8D1sNELJVxIxnXusJQ7RzKLIxeTIAABCEAAAhBoTwIeJEARWAf2Ss5VtNzSO2qT7pUY6nZpq0ihQ8m7DWP51pH6p2dRzk0s5zrSrnLorta9jKL9B0f879SyLtWuSSzpVnOsV0diiIMuaLHB6P+ORqscB2BwXTwyCbcxmrDKWNfoCtmAeKmd75EwooRrIddisyXcvko9UxvfOVjKvaSNaX7L8hWbRO3D4lq1CdcloVNRcTvXFkJRkYsH2ejwSRCAAAQgAAEIQAACEIAABCAAAQhAYDgCCLnDUWEeBCAAAQhAAAIQgAAEIAABCDSfgF7klzUsbfnke9lyblqVcweHp9WLe8sAJAjUTcByiSPIOfqtZApLFoWqhFtcINnCIq5LRZ0b90hydZ8UK0IAAhCAAAQg0EgCjupaOpyF/j1pKEnKLe9Tu/SQGqHntZfJ2ha1bGspV9Fyo5TboROxjNuh9lCxWo9CrmVTTbso6B9VM5u4+i9kleko0JYl2VrKLWme6i6zfpVVIbdlJVsd8nWTTifMUvtwpdqDa4RHAm7XenXQWipOEpxJEIAABCAAAQhAAAIQgAAEIAABCEBgpAQQckdKiuUgAAEIQAACEIAABCAAAQhAoOkEHE2rfEYChKRcRytL83xGLsBpZX2WnVXpCFuWAUgQGErAUc0U+TaZo2z5Nkq4EizmKeKtclEibsz+TJHjSBCAAAQgAAEIQOAKAvJLPapD6aAi5+5LQ3m/2qUHJOdK1g0XtaQKUhsQsGc7U23EZWobrpKnvFqRcNcUQoel3Fn6EA+3DS4ypwABCEAAAhCAAAQgAAEIQAACEBh/Agi548+cPUIAAhCAAAQgAAEIQAACEIDAKAhkGu62LAk3CroSclNnTacSJVxm55TPStR19DJH00XUHQXdSbyoo7s56q2imSVzJNfOllAhCbeg+mBpAdfZci7RzSbxxebQIQABCEAAAhNEIK20QQcOKmquBN2y86GqnOu2pz4nTSICjgbsNqMl3BWScFcoCu4qibgrC6GozlrBn5MgAAEIQAACEIAABCAAAQhAAAIQgMAYCCDkjgEeq0IAAhCAAAQgAAEIQAACEIDAxBDISvIfLkrIlZRrWTeVkOu65dz0vMoLknQlSWSxrqF0tWzo07EiTUzMBat3r5YiFMU2RrxVBLNE0cqigOshhav1wmwLuBXpNsq4M7SMZV0SBCAAAQhAAAIQaCQBy7lqc5YOOUvQfVftzyNqXh5R2/OkdtTfyJ2xrYYRcFtygdqOS9VmXBpCx3JJuCsUCVcyblHtSCTchpFmQxCAAAQgAAEIQAACEIAABCAAAQiIAEIutwEEIAABCEAAAhCAAAQgAAEItA8BRcdNL0mOkIhblpDrMrWYKyHXkq4l3kxDDUdh95JKLRsuSdjtRdidkJsgF26nSYaYnoVkumTaGVUBV2VhZmU6lh5SWNJEsSrjFrwO4u2EXDZ2CgEIQAACEJjyBNR0dLuydEz5sNqdzkfV7jym9qXmZeowFtSBjDQBBDrVlvToCIsk4C5Wc3GJ2o+KiNvhrHpB7c2g/0gQgAAEIAABCEAAAhCAAAQgAAEIQKAZBBBym0GVbUIAAhCAAAQgAAEIQAACEIBA6xGwrCvxNq2KuanFXIkUaVXMzVz2ViTdWLruqLqXJVVcVl05ODv6mSQM0nUIWLSVDBF65DtUc+iRXJtPT9d8CbVJLFVXVNuC6xIkClURN5ZIt9eBzEcQgAAEIAABCLQKgWxA0XPPSMq1oKucKruenlCz8WRV0HW7ktR4Ao6AO1cdtxaobblQAq5E3OJiZYu4Ludqfkfjd8sWIQABCEAAAhCAAAQgAAEIQAACEIDAcAQQcoejwjwIQAACEIAABCAAAQhAAAIQmHoENAxxKlHCEXYdMddSbprLuJZzXa9KuhZ1sz5NW8513aVyFHgHNF9SRohZ0Xc1HeuOkiYpeNLIvI4c5gi0FmslMSSdmtGpc3HUMc/rktzQ5VLTFiFcj6Xmu8zlW4u3sS7Z1uU0CRNRxtW0lmOYYDEgQQACEIAABCDQVgTcNoyC7gmJuc6SclOV6Sk1BU87q72oURyIojvKy+52qEZLSCzZzrOEWxFxi5JxiwuVLeP6M7dVSRCAAAQgAAEIQAACEIAABCAAAQhAYAII/D+7abgJIr49ugAAAABJRU5ErkJggg==" + } + }, "cell_type": "markdown", "id": "5b980b4f-13bd-4bb4-bdbc-5584a6a59ca5", "metadata": {}, "source": [ - "### Filter to `synonymous` variants passing filters" + "### Filter to `synonymous` variants passing filters\n", + "\n", + "![Screenshot 2024-12-20 at 11.12.57 AM.png](attachment:f42fc1f8-afe3-4684-9fee-66582eba9080.png)" ] }, { @@ -4832,17 +4859,24 @@ } ], "source": [ - "var_ht = filter_by_csqs(['synonymous'], ht=drd2_interval_ht)\n", + "var_ht = filter_by_consequence_category(synonymous=True, ht=drd2_ht)\n", "var_ht.show(5)\n", "print(\"The total number of synonymous variants passing filters in DRD2 is: \", var_ht.count())" ] }, { + "attachments": { + "5565afe1-9dbe-42de-b70e-224b9d8651e4.png": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAACvYAAAGOCAYAAABGu6ZUAAAMQWlDQ1BJQ0MgUHJvZmlsZQAASImVVwdYU8kWnluSkEBoAQSkhN4EESkBpITQQu8INkISIJQYA0HFjiwquBZURMCGroooWAGxI3YWxd4XCwrKuliwK29SQNd95XvzfXPnv/+c+c+Zc2fuvQOA2gmOSJSNqgOQI8wTxwT50ccnJdNJPUAZaAJ1QASjOdxcETMqKgzAMtT+vby7ARBpe9VeqvXP/v9aNHj8XC4ASBTEqbxcbg7EBwDAq7kicR4ARClvNj1PJMWwAi0xDBDixVKcLsfVUpwqx3tkNnExLIjbAFBS4XDE6QCoXoY8PZ+bDjVU+yF2FPIEQgDU6BB75+RM5UGcArE1tBFBLNVnpP6gk/43zdRhTQ4nfRjL5yIrSv6CXFE2Z+b/mY7/XXKyJUM+LGFVyRAHx0jnDPN2K2tqqBSrQNwnTI2IhFgT4g8CnsweYpSSIQmOl9ujBtxcFswZ0IHYkcfxD4XYAOJAYXZEmIJPTRMEsiGGKwSdIchjx0GsC/Fifm5ArMJmk3hqjMIX2pgmZjEV/DmOWOZX6uuBJCueqdB/ncFnK/Qx1YKMuESIKRCb5wsSIiBWhdghNys2VGEzriCDFTFkI5bESOM3hziGLwzyk+tj+WniwBiFfUlO7tB8sU0ZAnaEAu/Ly4gLlucHa+NyZPHDuWCX+UJm/JAOP3d82NBceHz/APncsR6+MD5WofNBlOcXIx+LU0TZUQp73JSfHSTlTSF2zs2PVYzFE/LggpTr42mivKg4eZx4QSYnJEoeD74ChAEW8Ad0IIE1FUwFmUDQ0dfUB+/kPYGAA8QgHfCBvYIZGpEo6xHCaywoAH9CxAe5w+P8ZL18kA/5r8Os/GoP0mS9+bIRWeApxDkgFGTDe4lslHDYWwJ4AhnBP7xzYOXCeLNhlfb/e36I/c4wIROmYCRDHulqQ5bEAKI/MZgYSLTB9XFv3BMPg1dfWJ1wBu4+NI/v9oSnhE7CI8J1Qhfh9hRBofinKMNBF9QPVOQi9cdc4JZQ0wX3w72gOlTGdXB9YI87Qz9M3Ad6doEsSxG3NCv0n7T/NoMfnobCjuxIRskjyL5k659HqtqqugyrSHP9Y37ksaYO55s13POzf9YP2efBNvRnS2wxth87i53EzmNHsCZAx45jzVg7dlSKh1fXE9nqGvIWI4snC+oI/uFv6MlKM5nrWOfY6/hF3pfHnyF9RwPWVNFMsSA9I4/OhF8EPp0t5DqMojs5OjkDIP2+yF9fb6Jl3w1Ep/07t/APALyODw4OHv7OhRwHYK8b3P6HvnPWDPjpUAbg3CGuRJwv53DphQDfEmpwp+kBI2AGrOF8nIAr8AS+IACEgEgQB5LAZBh9BlznYjAdzAYLQDEoBSvAGlAJNoItYAfYDfaBJnAEnARnwEVwGVwHd+Hq6QYvQD94Bz4jCEJCqAgN0UOMEQvEDnFCGIg3EoCEITFIEpKCpCNCRILMRhYipUgZUolsRmqRvcgh5CRyHulEbiMPkV7kNfIJxVAVVAs1RC3R0SgDZaKhaBw6CU1Hp6EFaBG6DK1Aa9BdaCN6Er2IXke70BfoAAYwZUwHM8HsMQbGwiKxZCwNE2NzsRKsHKvB6rEW+JyvYl1YH/YRJ+I0nI7bwxUcjMfjXHwaPhdfilfiO/BGvA2/ij/E+/FvBCrBgGBH8CCwCeMJ6YTphGJCOWEb4SDhNNxL3YR3RCJRh2hFdIN7MYmYSZxFXEpcT2wgniB2Eh8TB0gkkh7JjuRFiiRxSHmkYtI60i7ScdIVUjfpg5KykrGSk1KgUrKSUKlQqVxpp9IxpStKz5Q+k9XJFmQPciSZR55JXk7eSm4hXyJ3kz9TNChWFC9KHCWTsoBSQamnnKbco7xRVlY2VXZXjlYWKM9XrlDeo3xO+aHyRxVNFVsVlspEFYnKMpXtKidUbqu8oVKpllRfajI1j7qMWks9RX1A/aBKU3VQZavyVOepVqk2ql5RfalGVrNQY6pNVitQK1fbr3ZJrU+drG6pzlLnqM9Vr1I/pH5TfUCDpjFGI1IjR2Opxk6N8xo9miRNS80ATZ5mkeYWzVOaj2kYzYzGonFpC2lbaadp3VpELSsttlamVqnWbq0OrX5tTW1n7QTtGdpV2ke1u3QwHUsdtk62znKdfTo3dD6NMBzBHMEfsWRE/YgrI97rjtT11eXrlug26F7X/aRH1wvQy9Jbqdekd18f17fVj9afrr9B/7R+30itkZ4juSNLRu4beccANbA1iDGYZbDFoN1gwNDIMMhQZLjO8JRhn5GOka9RptFqo2NGvcY0Y29jgfFq4+PGz+nadCY9m15Bb6P3mxiYBJtITDabdJh8NrUyjTctNG0wvW9GMWOYpZmtNms16zc3Ng83n21eZ37HgmzBsMiwWGtx1uK9pZVlouUiyybLHitdK7ZVgVWd1T1rqrWP9TTrGutrNkQbhk2WzXqby7aorYtthm2V7SU71M7VTmC33q5zFGGU+yjhqJpRN+1V7Jn2+fZ19g8ddBzCHAodmhxejjYfnTx65eizo785ujhmO251vDtGc0zImMIxLWNeO9k6cZ2qnK6NpY4NHDtvbPPYV852znznDc63XGgu4S6LXFpdvrq6uYpd61173czdUtyq3W4ytBhRjKWMc+4Edz/3ee5H3D96uHrkeezz+MvT3jPLc6dnzzircfxxW8c99jL14nht9urypnuneG/y7vIx8eH41Pg88jXz5flu833GtGFmMncxX/o5+on9Dvq9Z3mw5rBO+GP+Qf4l/h0BmgHxAZUBDwJNA9MD6wL7g1yCZgWdCCYEhwavDL7JNmRz2bXs/hC3kDkhbaEqobGhlaGPwmzDxGEt4Wh4SPiq8HsRFhHCiKZIEMmOXBV5P8oqalrU4WhidFR0VfTTmDExs2POxtJip8TujH0X5xe3PO5uvHW8JL41QS1hYkJtwvtE/8SyxK7xo8fPGX8xST9JkNScTEpOSN6WPDAhYMKaCd0TXSYWT7wxyWrSjEnnJ+tPzp58dIraFM6U/SmElMSUnSlfOJGcGs5AKju1OrWfy+Ku5b7g+fJW83r5Xvwy/rM0r7SytJ50r/RV6b0ZPhnlGX0ClqBS8CozOHNj5vusyKztWYPZidkNOUo5KTmHhJrCLGHbVKOpM6Z2iuxExaKuaR7T1kzrF4eKt+UiuZNym/O04I98u8Ra8ovkYb53flX+h+kJ0/fP0JghnNE+03bmkpnPCgILfpuFz+LOap1tMnvB7IdzmHM2z0Xmps5tnWc2r2he9/yg+TsWUBZkLfi90LGwrPDtwsSFLUWGRfOLHv8S9EtdsWqxuPjmIs9FGxfjiwWLO5aMXbJuybcSXsmFUsfS8tIvS7lLL/w65teKXweXpS3rWO66fMMK4grhihsrfVbuKNMoKyh7vCp8VeNq+uqS1W/XTFlzvty5fONaylrJ2q6KsIrmdebrVqz7UplReb3Kr6qh2qB6SfX79bz1Vzb4bqjfaLixdOOnTYJNtzYHbW6ssawp30Lckr/l6daErWd/Y/xWu01/W+m2r9uF27t2xOxoq3Wrrd1psHN5HVonqevdNXHX5d3+u5vr7es3N+g0lO4BeyR7nu9N2XtjX+i+1v2M/fUHLA5UH6QdLGlEGmc29jdlNHU1JzV3Hgo51Nri2XLwsMPh7UdMjlQd1T66/BjlWNGxweMFxwdOiE70nUw/+bh1SuvdU+NPXWuLbus4HXr63JnAM6fOMs8eP+d17sh5j/OHLjAuNF10vdjY7tJ+8HeX3w92uHY0XnK71HzZ/XJL57jOY1d8rpy86n/1zDX2tYvXI6533oi/cevmxJtdt3i3em5n3351J//O57vz7xHuldxXv1/+wOBBzR82fzR0uXYdfej/sP1R7KO7j7mPXzzJffKlu+gp9Wn5M+NntT1OPUd6A3svP5/wvPuF6MXnvuI/Nf6sfmn98sBfvn+194/v734lfjX4eukbvTfb3zq/bR2IGnjwLufd5/clH/Q+7PjI+Hj2U+KnZ5+nfyF9qfhq87XlW+i3e4M5g4Mijpgj+xXAYEXT0gB4vR0AahIANHg+o0yQn/9kBZGfWWUI/CcsPyPKiisA9fD/PboP/t3cBGDPVnj8gvpqEwGIogIQ5w7QsWOH69BZTXaulBYiPAdsivyampMK/k2Rnzl/iPvnFkhVncHP7b8Ah9d8bcAadJgAAACWZVhJZk1NACoAAAAIAAUBEgADAAAAAQABAAABGgAFAAAAAQAAAEoBGwAFAAAAAQAAAFIBKAADAAAAAQACAACHaQAEAAAAAQAAAFoAAAAAAAAAkAAAAAEAAACQAAAAAQADkoYABwAAABIAAACEoAIABAAAAAEAAAr2oAMABAAAAAEAAAGOAAAAAEFTQ0lJAAAAU2NyZWVuc2hvdGer8fQAAAAJcEhZcwAAFiUAABYlAUlSJPAAAALYaVRYdFhNTDpjb20uYWRvYmUueG1wAAAAAAA8eDp4bXBtZXRhIHhtbG5zOng9ImFkb2JlOm5zOm1ldGEvIiB4OnhtcHRrPSJYTVAgQ29yZSA2LjAuMCI+CiAgIDxyZGY6UkRGIHhtbG5zOnJkZj0iaHR0cDovL3d3dy53My5vcmcvMTk5OS8wMi8yMi1yZGYtc3ludGF4LW5zIyI+CiAgICAgIDxyZGY6RGVzY3JpcHRpb24gcmRmOmFib3V0PSIiCiAgICAgICAgICAgIHhtbG5zOmV4aWY9Imh0dHA6Ly9ucy5hZG9iZS5jb20vZXhpZi8xLjAvIgogICAgICAgICAgICB4bWxuczp0aWZmPSJodHRwOi8vbnMuYWRvYmUuY29tL3RpZmYvMS4wLyI+CiAgICAgICAgIDxleGlmOlBpeGVsWERpbWVuc2lvbj4yODA2PC9leGlmOlBpeGVsWERpbWVuc2lvbj4KICAgICAgICAgPGV4aWY6VXNlckNvbW1lbnQ+U2NyZWVuc2hvdDwvZXhpZjpVc2VyQ29tbWVudD4KICAgICAgICAgPGV4aWY6UGl4ZWxZRGltZW5zaW9uPjM5ODwvZXhpZjpQaXhlbFlEaW1lbnNpb24+CiAgICAgICAgIDx0aWZmOlJlc29sdXRpb25Vbml0PjI8L3RpZmY6UmVzb2x1dGlvblVuaXQ+CiAgICAgICAgIDx0aWZmOllSZXNvbHV0aW9uPjE0NDwvdGlmZjpZUmVzb2x1dGlvbj4KICAgICAgICAgPHRpZmY6WFJlc29sdXRpb24+MTQ0PC90aWZmOlhSZXNvbHV0aW9uPgogICAgICAgICA8dGlmZjpPcmllbnRhdGlvbj4xPC90aWZmOk9yaWVudGF0aW9uPgogICAgICA8L3JkZjpEZXNjcmlwdGlvbj4KICAgPC9yZGY6UkRGPgo8L3g6eG1wbWV0YT4K+8UNUAAAQABJREFUeAHsnQecFOX5x5/bO46uAoIoIogNRBB7Q0VjjFHRWGPXqNG/GnvsxiQaY9QYxRaxYy/Ye2+IDURFRUUFKyqGJlLvdv/vb/RdZ2dn93bv9o69u+/7ubmZeeedt3xn5m3zm2crFi1alDIcBCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgsEQJJJZo6iQOAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIBAQQ9nIjQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCECgDAgg7C2Di0AWIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCCAsJd7AAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACZUAAYW8ZXASyAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIACBKhBAAAIQgAAElhSBmTNn2ujRo23ZZZe1HXbYwaqrq5dUVkgXAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIDAEieAsHeJXwIyAAEIQKB1EnjllVdsyy23TBe+R48eNmnSJOvcuXPajw0IQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAKtiQDC3tZ0tSkrBCCQQeDzzz+3OXPmBH5Tp061mpoaW3XVVW3FFVe0ZZZZJiNsrp3333/fkslkrsOBf5s2bUyiVcVZUVGRN2xrOvif//wno7jfffed3XnnnXbooYdm+LMDAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCECgtRBA2NtarjTlhAAEMghIjCtrsV999VWGv3ZOPPFEO++887L84zyGDBkS553Tb8CAAbbffvvZXnvtZb17984ZrjUc+PTTT7OK+dFHH2X54QEBCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQKC1EEi0loJSTghAAAJhAm+88UasqFdhbr75ZqutrQ0HL9n2pEmT7IwzzrBVVlnFjj76aFuwYEHJ4m5uER1++OFZWd5///2z/MrR45577rFu3bplLH/+85/LMavkCQIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhBoRgQQ9jaji0VWIQCB0hEYPXp0zsi+++47e/nll3MeL9WBkSNH5rQaXKo0yjkeWS6+6KKLbLXVVrOhQ4faHXfcYYMGDSrnLKfztnDhQvvhhx+ylnQANiAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCNSDAMLeekDjFAhAoHkTqKmpseuvvz5vIe6+++68x0t1cMKECbbvvvua8tTaXIcOHQKrxe+99549++yztuuuu7Y2BJQXAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIBABgGEvRk42IFA+RCQ0LOxxJ7JZNK++eYbmzVrVr0LrDi+/fbbYNF2qdzs2bODvNUVX21trU2bNs20Lta9+OKLgaXVfOfddttttmjRonxBch574okn7LPPPguWjz76yF544QW75JJLAsu0cSeNHTs2sFwbd2xJ+ckirfiW8toqzlQqVZIiNUb+Zs6cGdzPJclggZFMnz7d5syZU2BogkEAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACLZ1AhROulUZl1dJJUT4INAGBd9991y677DJ7/vnnbcqUKUGKgwYNsm222cZOOeUU69q1q5122mn25ptvZuRmxIgR1r9//8Dvq6++soMPPjjj+CqrrGJXXnmlTZw40c4++2x74IEH0sd79Ohhm2yyiZ177rm2+uqrp/3jNqZOnWq33HKL3X777TZ58uSMICuvvLLtt99+gfXZfv36ZRzzO+eff35gmdXva/23v/3N1l9/ffv3v/9tV1xxhX333XfB4c6dO9uwYcPsggsuMOXfu4ceeijwe+2119LhtthiC9t6663tiCOOsKqqKh8051rhrrvuuozjhx12mF199dUZfg8++KBtt912GX7Rnerq6qiXyQrvwIEDs/wl1N57770z+IcDSVjasWPHsFfWtvjsv//+Wf7ip3slzv3hD3+wr7/+OuOQuOu6ezd37lwbOXKkjR8/3t5+++2M67vpppvakCFDguvxu9/9zp+SsVa5ZsyYkeE3evToIF1ZP3700Udt3LhxwXHdP7vttptdfPHF9vjjj2ecc+GFF9rgwYMz/LTTWPlbsGCB6b684YYb0mJv3Xtrr722nXzyyRnXf968ebbLLrsEefvyyy8zGMlTz1L4uutZjj5TegbvuOOOgPErr7ySTrNXr17Bc6B0DznkEFt++eWDdPgHAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCLQuAgh7W9f1prRlTEAC1jPPPDNnDiU2fPjhh+2cc86xp59+OiPcmDFjbMMNNwz8Pv74Y1tzzTUzjkvwKZGlBLQ//PBDxrHwzqhRowLhadhP27KyKmHw8ccfHz0Uuy9x5jHHHGMVFRUZxyUwvfXWWzP87rvvPnvuuefs0ksvzfAP7zz11FO2+eab20EHHRSIIsPHwtsHHHBAIE6trKwMe2dsS8gpEWWYw4ABA0zi07XWWisjrAS0UQFwRgC3U4ywV+dKHLr99tubrPRG3Z133pkWjkaPhfcl/pw0aVLYKxBsn3rqqRl+2pHV3T59+mT5f/jhhyYxtpz4SwwuUXhd7qijjgqE1W3atMkIuuKKK6ZF2f6AhOoSXHuxtveXgFj3wp/+9KcsMbVEr7vuuqsPGqwbK3+yqixBcty18Bk48sgjA2vL2tc9061bN3+ozrXE5+uss04QTpaPr7rqKjvuuOPqPE/Puu5HscNBAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAq2LQKJ1FZfSQqA8CfznP//JK+pVriUq3GOPPQoSX0ZLKUuqsrQaFrNGw2j/wAMPtG+//TbrkCyXFirq1cknnXSSnXjiiVnxxHlce+21eUW9OkfiSlk/legzn7vpppvsrLPOyhfEnnnmmSwOsh4ry6qrrbZaxrk333xzIMTN8GzgTocOHUxiZok3o05izkLcvvvumxUsavnWB3jxxRf9ZnotgbcX9coC8m9+85uC7ytZVd55551N1ofrchIBR0W9dZ0TPd6Y+ZPl5nyiXuVFgvYnnngimq2i9yViLkTUq4j1nMpS9F133VV0OpwAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCDRvAgh7m/f1I/ctgMCUKVMsztJqXNEkkoxaao0LF/WTJdZCz5PIOOwkGB0xYkTYq6Dtyy+/3B555JE6wxYSZvLkyYFYuM7IXABZHc7nZBU36iSilItaipVfKUSdiifsunTpYptttlnYK9h+7733svziPCREjjoJVGfNmhX1Nlk7jjpZIvbuoosu8psZawmP48THCiSL0YVctxdeeCEjzvrsNGb+Hn300YKydPrppxcULhqoffv2gdf7779vErBHnSxpy7L18OHDo4eC/UsuuSTWH08IQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAoOUSQNjbcq8tJWsmBGQRNM7JqurVV19t48aNs+uvv96GDh0aF6woP1lQfe6552zixImWSzAZtWB67LHHxqZx44032jfffBMs2o5zJ5xwgqVSqbhDGX6bbrqpPfjgg/bmm2/aBRdckHEsuqN8K5zEpdtss030cGAhdurUqVn+8pAl1KjV3x49eth6660XhN9+++2zzouGzwpQTw9d36j78ssvo16x+6ussorFnT9mzJiM8Mlk0uIs+cp6s5w4Rq+3eEyYMMG+//57mz59ur3++us2YMCAjHi1ExdvVqCfPSRE/te//hWw1/WLEzXHndsU+dt2220DC8oSvstissofdXpefvzxR+vUqZNNmzYtWGRBOup22WWX9HFZvu7fv38Q5OWXX44GNTF57bXX7N///rfdc889AW9vRdkH1rNfqCDfn8MaAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEGjeBKqad/bJPQSaNwGJXkePHp1VCAn8ZE10mWWWCY4NHjw4sCa71VZbBaLLrBMK8JBA98ILL0yHXGONNSyRSNjxxx+f9tOGrIt6J2GlLApHnayP7rPPPmlvbdfU1Nihhx6a9tOGzlUcXjibcfDnHZX1vvvuM1mxlVtrrbVs/vz59te//vXnEL+slO4BBxyQ9lh33XUD8aQsGYedhKl9+/YNewXbcWJUiVwrKyuD4xtssEFgpVYCYO+UN1nC9dfC+zd0vfbaa2dFoXRVdm/pNStAyGO//fYLRN8hr0DsvOOOO6a9ZAE4ykb30PLLLx+E6d69eyAsTZ/gNiR09YLUiooKGzJkiJ144olZ1/azzz4Ln5Zz+/7777c4wXTOE0IHGjt/G220kd11113WoUOHIFUJpvv06WMbbrhhKBc/baq8a665pnXr1i3wiLNmrHvEHw9HIAF81Onerar6pQleaqmlgmdeQuqwW2GFFcK7bEMAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACLZzAL6qiFl5QigeBciQg659fffVVVtZkqTcqJJX48IYbbgiEllknFOARFfDqlD333DNL2Ctx6bx58wKx4xNPPJEVsyzFhsW1PoD8rrrqqiyx6ZNPPplX2CtRsBf1+rhkiTdO2Csrp2EnC6qbbLKJPfDAA2HvwDJvhsfPO3HWd8OiUwktd99994Bz+PxHHnnE9t1337BXg7d79uwZG8eCBQsKEvbKOuxxxx2XEYc4XHLJJWk/WWeOur322ivt1bt3bzvmmGPS+7k2tthii6xDukfqcn/729/qLepV3I2dP5Xdi3p9WSRkloXiqKVcPasS9tbHxZ13xhln2KJFiwLLvRLZS0QtYbEWHAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCDQegkg7G29156SlwGBqDVVn6VcFm4lOJSl0LBFWX9OvnWPHj0szvKnLKLGudra2sA7TnQsYW8up2Pjxo3LOBwXRziArBFHXVxeZdm3Y8eO0aAm/0Lc//73P3vooYeygg4bNizDb/jw4VnC3ttvv73kwt7JkydnpOt3ll56ab+Zdy2ru7K+GxbvivUnn3ySFodKVB11Kl+ck/Vo5emVV14JLC3PmDEjsFQsa8Uvv/xy3Cl1+sUJgus8KUeAxshfnNVkJd+vX78sYa8sUtfXSXwe5/7+97+bFj3Tug833nhjk8VlPec4CEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQKB1EkDY2zqvO6UuEwIST0Zdr169TJZo45yseg4aNMjGjh0bdzin33LLLZfzWD6hcJwot3///jnjihMkxsURjqC6ujq8m3Nb1nTjnJgU4h5++OHYYCNHjszwnzt3bsa+diSQ/fbbby0fx6yT6vB45513skJIgJ1IJLL8c3nsvffeGcJehXv22WcDYa8s6kaFvbJOvOyyy2ZEJ8GsGMiCbLGC8YyIYnbi7oeYYHm9GjN/uYTtcQLyvJms46CE6ueff76dcsopsSHFXaJzLboO4iZrwoccckhseDwhAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAgZZLIF4p13LLS8kgUFYE2rdvn5UfCWFlMbeysjLrmDymTZsW698Ynt5ybzjudu3ahXczttu2bZuxr524OLICNYHHbbfdFptKLrFlNPADDzxghx12WNS73vsTJkzIOnellVbK8svnEWd9V2LeP/7xj/bqq69mnSohcNjNnj3bDjroIHvkkUfC3iXbLkakHJdoY+cvLs3G8jv++OMDi9Nnn3225bLU7dOeNGmSHXHEEfbhhx/av/71r6LE3j4O1hCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIBA8yRQuGnI5lk+cg2BsiYgC61xburUqXHeJqHjlClTYo81hmfPnj2zov3444+z/LzH5MmT/WZ6HRdH+mATbUgM/dxzzzUotVzC4PpEqvy88MILWadutdVWWX75PLp162Y77LBDRhAJkBctWhRY7s044HZ++9vfZnjdeuutsaJeWXHea6+97NRTT7XzzjvPTjrppIzzmmqn3PNXLAcJw/VsP/jgg3bAAQfYyiuvnDeKSy65JMvqct4TOAgBCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEINHsCWOxt9peQAjRnAiussEJs9i+77DKTqC/q5N+ULi5/77//fs4svPfee1nH4uLICtTIHvfff3+DUxg7dqx9/vnnVqxV3WjCyWTSjjnmmKh3sL/zzjvH+ufzlBXeqMXdN954wx577LGM03bbbTdbaqmlMvweffTRjH3tXHzxxXb44YdbVdUvzcNbb71lF154YVbYxvYo9/zVp/ziut122wWLzp8+fbrp3rrhhhssrrxjxoxJh61PepwDAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCDQvAr8ot5pXvsktBFoEgfbt25sEl/fcc09Gea688kpbY4017OCDD7a2bdva4sWL7a677rKzzz47I1xj72y88cZZSUh8+Nprr9lGG22UcUx+jz/+eIafduLiyArUyB4333xzbApx4mkf8LjjjvOb6bWu0/HHH5/eL3Zj5syZJqutsqobdb169bL1118/6l3nftQKr04YNWqUTZw4MeNcWeANu3nz5sVagz300EMzRL065+mnnw6f2iTb5Z6/OAjjxo2L8w6s9P7www/pY4lEwgYOHBjsd+/e3STo1nLGGWdkCajfeeed9HlsQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAItnwDC3pZ/jSlhmROQeDcq7FWWjz322GBZZ5117OOPP7awMLCpirT11ltb586ds9I+4IADAouw/fr1C7Ly6aefmvyiTucqjiXpPvnkE4sTXL799ts2YMCAnFmbO3eunXnmmRnHb7nlloKEvU899ZR98cUXwbmLFi2yr7/+2t5880278cYbM+IL71x11VUmwWexTowl2r3jjjvSp8al8+tf/zp9XBvV1dWx11Yi3h122CEdVmU5/fTT0/tNtVHu+ZMoP+okpn7ooYfsN7/5TcDXHxfPyZMn+91gfemll9r//d//ZfjpWkbdiiuuGPViHwIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhBowQQQ9rbgi0vRmgcBCS533313Gz16dGyGJ0yYkOEfJ7TNCFDCHYkrTzvttCxh55QpU6x///5pYeykSZNiUz3llFMyBI6xgRrZ8957781KYeWVV07nPevgzx6yhBsV9kq4+cEHHwRlz3We/E8++eR8h7OOyUquxKD1db///e8zhL3ReCS67tChQ4Z3VVWVbbPNNnbfffdl+O+yyy625ZZb2pAhQ2z8+PE2ZsyYjONNtVPu+Vt11VVjUcgCt57RpZZayh588EEbNGiQHXnkkVmC8GOOOcbGjh1rm2++eRD2hRdesGuvvTYrTh3HQQACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAKth0Dx5iFbDxtKCoEmIzBy5Ejbbrvt6kzvnHPOsc0226zOcKUMcNxxx9mmm24aG6UEvblEvTrnhBNOiD2vKT1lZTfqJKSuy6211lrWq1evrGC5BNhZAQv0OPzww+3iiy8uMHR8sF/96leBmDT+qAXC8bhjue45iUxHjBixxES9Pq/lnL9VVlklJ3NZ1/7qq6+spqYmKMo+++zji5SxlpXlo446yvbff/9YUa9EwXvssUfGOexAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAi2bAMLeln19KV0zISALn/fcc49dfvnlJmuyUSeB3/3332+ygNvUTpZTlfbw4cMLTnqHHXYILMHq3CXp3n333Vjhsazx1uUqKipiRZU333xzXacWdLxHjx52/fXX22WXXWZt27Yt6Jxcgdq1a2d77rln7GHdW1tvvXXssQMPPDDLkmxcQAnPl4Qr5/zJAvJNN91UEJYuXbrYW2+9FVjvLegEF0hWlp9//nlb0s9QofklHAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCBQGgIIe0vDkVgg0GACbdq0scMOO8w++OAD++KLL0yi1PHjx9v06dOD9fbbbx+kMWfOnKy0dK53cUJAiTuLcdE4lllmGbv77rtNotahQ4fmjErHRo0aFYiUJWaMuurq6qiXSZRaiOvUqVMhwTLCPPXUUxn72hGLjTfeOMs/zsMzDx+bMmWKffLJJ2mvQtlKsL3lllvaIYccYo899ph99tlntt9++6XjaehGLsuushYbx13pJRIJO//88+3SSy+1ddZZJysLspj72muvxQqDJWwNu/A96P3j/PwxraP3WfiYtpd0/sL5ad++fXg32JaAXRarTz/99FjrzuHyr7nmmjZ27Fj7y1/+YgMGDMiKSx66l3SP3H777YEF30LvrdjI8IQABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEmiWBikWLFqWaZc7JNARaCIFx48bZ999/n1EaiSyXW265DD/tzJ0717p27Zrl/9VXX1n37t2z/BvL49tvv7Uvv/wyEB0rDaXdq1cv69mzZ2MlSbxNQGDevHmBaFnWiiVE7tixYxOkWngS5Z6/ZDIZPKMSLEsILI653MKFC23y5MkBb4mkJfxdYYUV8p6TKy78IQABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAIGWQwBhb8u5lpSkmRI488wz7YILLsjI/aBBg+zZZ5+1pZdeOu0/e/ZsO+KII2z06NFpP21IUCsrsjgIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEmjcBhL3N+/qR+xZAQNZ2ZR01zm200UYmke/MmTPtySeftB9++CEr2FVXXWUHH3xwlj8eEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCDQvAgh7m9f1IrctlMDRRx9tI0eOLLp0e+21l11//fVWVVVV9LmcAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgEB5EUiUV3bIDQRaJ4FLL73UrrnmGuvcuXPBAE4//XS77rrrEPUWTIyAEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIACB8iaAxd7yvj7krpURmDZtml177bX2zjvvBMuUKVMyCGy66aa2ww472B577GF9+/bNOMYOBCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAs2bAMLe5n39yH0LJzBv3jxbuHChtWvXztq3b9/CS0vxIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACrZsAwt7Wff0pPQQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgECZEEiUST7IBgQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEWjUBhL2t+vJTeAhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAIFyIYCwt1yuBPmAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQaNUEEPa26stP4SEAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAATKhQDC3nK5EuQDAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAoFUTQNjbqi8/hYcABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhAoFwIIe8vlSpAPCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAgVZNoKpVl76UhU+apRZpSVlqsVvXuKU2ZRasXUK1bt/tmhYX9qedCjP3Z5JXa1PblW7tFnNXpqKywiq0buOWardd/XNYt8JBAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEItCwCCHvrup5OiCvBbnJeKlhS89z2Aifene/8tWhbgt6FP4WzhT/vO0GvRL2BsFdriXkDQW9o7TbDwt5A4OtEvhLzStgbiHsl6nWLtXXC3rYS+LpF63Zuv51bt3e6YG13cOuOFZbo4LYVXiJhHAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgECzIYCw118qZ1E3Od+Jd39IWe0ct+3WqR/ceq7z+9GJdt06Ndette3CSeBr8ysCYa85UW8g4vVxNcpapn6d0xX7WdhrTsxb0T7lFifm7ei2Ozlxb6eftoN1Z7ffucIql/ppnXDhZBEYBwEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIFB+BCoWLVr0s2K0/DLXWDlKScTrhLq1s5xoV8tMt6/1bLee7US7bp3S2gl8JeS1xY2Vk0aKV1Z+nci3wgl6K5ZyQt+lnbB3aWfNdxm3XkZrJ/bVdhe3dlZ+Efs20nUgWghAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgUASBViHsTS2yQMRb+z8n5nVL0q9nOOFusDgRr7PO2+wEvEVc6CCoBL8S+zpBb6KrE/Z2detubr2sE/h2c4vbr3Si34rqYiMmPAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgEBDCbRIYW+qxgl5ncXd2u/cMt0t3zoxr1snpzuLvG6dmuWwObEvzhFwIt6KLj+JexPd3bqHE/f+vFR1d8JfZ+m3ogpSEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAo1NoMUIe5PzfxLx1nzj1tPc4tbJb5yQ161Tsx1GJ/bFFUDAiXgrlnEC355O1NvTrNKttVQt7xYn9K1oV1FAJASBAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQKJZAsxb2Jn9MmYS8NV85Ie/XbtHaLSlnmdcWFouC8LEE2jmhr7PkW9nLCXy1rOAEvm5dtZwT/nZE5BvLDE8IQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIFAPAs1O2CvLvIGY90u3/sIJeT9zlnndOjXTlb62HgQ4pXAClU7k29VZ8+3tBL59nLh3Rbe47UDk2x6Rb+EgCQkBCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABLIJNAthb6rGaXa/T9niz5NWM9UJet2SdILe1AxXIMS82Ve1KXyqfhb5ruSEvSu7pW+FtVkpYZXdKqzCHcNBAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIFEegrIW9yblOzOss8y7+1Al6P3XWed2S+s4VcFFxhSR0IxOodiLf5ZwV335mVf2cwLdfwto4a76JjljxbWTyRA8BCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIBACyJQfsLepFnNDCfmnZK0xR87Me9ktzgLvTa3GVCvdHls4xYJXds4UWuVy7es1zr/Ch1LuEVaV792m+aCmCuzX6dkgViLs1JsNRWWWuwCSMi8+Gd/typr19kV11nvrVrNLas6kW/fhFV1dYVWmXEQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACOQmUjbA35YSsNd85Ma8T8i7+0Fno/dBZ5/3G5VuC1iXtJMaVWLeDW3fUuiLYrmjnttu7xa2trfNr67YVzi3mhL0VEvlK1OvEvYUIe1MS+DpRr1hI2BusnbA35YS9qYVukcB3odtf4Lbnu0XreW750Yl/f/xpO+AlsfCSdo5BYnlnxXd1h2KNhFWv7raXTQQslnTWWmr6r776qm288cYttXiUCwIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQg0OIJLHFhb8oJd2u+SdoiJ+ZdPMlZ55Wg93vHXSLXpnYS8Eqou5QWJ8x164S2O1dYQoLeTm6/o/Pv5PYVzi2J9m7fCXsTTtgrEW9jOlnzTUnY60S9yQU/r+e5tRP1Jp24N+WsGifdkvohZck5WrtljvOf7XLlRMCBVeDGzGBc3M5Sb0V3h2YNZ713gBP4unVVTwS+caga4jdixAi79957rW3btnbOOefYRhtt1JDoOBcCEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIACBJUBgiQl7Awu9EvQ6Me/id5M/CXpnOgJNZW1WIl5Z3O3iRLldnThX6y5OsLuMWy/j1ku7tRP0VjqBb8IJeQMrvEvgAhWbpKz6Juc6gbQT9CaDxe3PdNuz3HqWE/k6xskZP62bVOzreFd0dQLf/k7gu5YT+Lp11XIIfIu9vrnC9+jRw8466yz79NNP7fPPP7fRo0fnCoo/BCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAmVKoKrJ8+Us8dZ8l7KFk5yF3necoNcJeyU2bXRBr4S8zupuorsT6joLsoll3dLNbbulUosT9VYu7QS8bZucSEkTlAC50gmVtYRdylnsrZ3tBL9O5FvrhL3J793yP62d0He6W9y+Ocu/jXYdXPSp/7lrP9al/0GtLR7gBL6DU9Z2zYRVLevy6iz74upH4LLLLrP111/fll56aRs4cKA999xz9vrrr9uGG25Yvwg5CwIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAIElQqBJhb0SlS760FnpfStpNROdoNeJShtNSCqcssjbzWlGl3dC1+Xc2ol6K5dzlmK1lqi3g8zILhHuTZ5ohWNR1U5Wcn8usBPaJuc5ka0T90poXeuWpNbfOv9vfr42Cxshm17g+7JL66NaqxmUtOp1nAXf1RNW6Swl44onMGvWLOvQoUNwYnV1tQ0bNswuuugiu/POO4uPjDMgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQWGIEmkTYm1rgBL2fOiu9bzpB74SkJb925a1thDJLFyqrvE7Im1jBWa516yqJerWWpd5WJOStk65jlejomLilzUou9M9CX4l8a6Y50e3Pi66VhL4lt+Yrge93Zoufd2l97Cz4DnHWe9dzAt++zmqyEyDjCidw5ZVX2llnnZU+oWPHjjZjxoz0PhsQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEINA8CjSvsTZrVfJO0BW8nbfHrTsD5iVNzLmgEMJ2cSHUFJ+Dt7cS8KzoRr5ZeP1mArWjcEjZCYZZQlD8LfatXrrDqlZ3otsZpr52F5ZqvnBj7S3ftgsWJfL9213BuCfPoBN7Jz8wWfZu0Wif+rtmgwtqunXCWhRPuopYwnRYc1VJLLWWdOrmH4GfXt29fe+SRR/wuawhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAASaCYFGk70mf3RWej9M2sJXnTD0nZSlSm1AtJ3TffZ0Fmf7mFX1cULePglr4wS9lUtLodpM6JdxNiWIlpXjqu6VZoOcyHd2yhY7cW/NZ+56fpYKxLiBJd+FJSqEE3zXTkzZAiccrpnqrPdunLLq1RM/WVkuURItMZqrrrrK1lhjjYyitW3b1mpra23cuHG2/vrrZxxjBwIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAIHyJVB6Ya+z0rvYWeldOD5pi15JWnKqK7yz/loS5wS7FV2cbrevE5z2c4uzLtvGCXoru1ZYhdOf4hqJgGMrxlpSayasdoYT+UrgO8WJcJ2V3VonxLVZLm137RvqUv9z98+LLs4vaq1m05S1W6/Sqnog1s7Fdfr06VZdXZ11eNiwYfbiiy8i7M0igwcEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAoHwJjBw5Msjc4YcfXr6ZJGcQgAAEIAABCEAAAhCAAAQgAAEINCqBkgp7Uwudld7JSVswJmmLJzix58wS5d3pFit6Oguyqzkx76pOzNvPWedd3ol52znBJ65JCQSWfJ3QtqpHpaUGOYGvs7C7+FMn8v3YiXwnO8vM37jsLG5glpwQPDnZbOH/klb7lRP3Dk1Y9SoJq2jL9Y6SffPNN22VVVaJettSSy1lL730kp1wwglZx/CAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCECg/Ahcc801NmbMGOvbt69tuOGG9vrrr5dfJskRBCAAAQhAAAIQgAAEIAABCEAAAo1OoGTC3tpZKVv4trPU+7wTYzqBpy0qQd7bO+u8KzkR6RpOzLu6W5y4s6oL1ltLQLYkUUhYXe0sJ1f3TVjNECfw/dgJut21r/kgZckv3D2woGHJpGb8ZL03+a27p4aZtR3srDMvjbg3TPWFF16w7bffPuyV3p47d256mw0IQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAATKm8A//vEP+/Of/2zt2rWzWbNmmYx7rLvuuuWdaXIHAQhAAAIQgAAEIAABCEAAAhCAQMkJNFzY6/Sbi6c5K72vJG2Rs9Sb+trl0fk1yHU0q+xTYZUDnGh0TbesnLBEJwSdDWLamCcnnDXlZZ0Ae9lKazvQWW2e4pb3nRXfSU7g+5m7GeY1IHEnEK99N2XzZzlx7/cpa7+xE3f3dAlyOwRQJd7VBF/U9enTx/773/9GvdmHAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCECgDAlcd911ttpqq9kyyywT5G7bbbe1ESNG2KhRo8owt2QJAhCAAAQgAAEIQAACEIAABCAAgcYk4BSSDXC1zjDvp0mb90itLXzCiXq/cnE1RNQrC71OzNt2+4R12LPSOg2vtHaDKhH1NuASNfWpic4V1s5Z1tW16+iuoa5lwllctmztaeFZc/dUylkAXvh40n581AnIpySd2rfw01tqyAkTJpgEvHFOYt+uXbuawuAgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhAobwKPPPKIDR8+PJ3JwYMH27vvvss8f5oIGxCAAAQgAAEIQAACEIAABCAAgdZDoN4We1POkurCD52l3qdqreadBlplrXaC3t7O6qsThLZ1S5uVKyzRAZOszfk2THR0Au2BFdamb4UtGuAs+L7jLPi6JfmlK9XiepZspjv1JScg/yFlqV+bVa+WsAp377RWN2fOHFtjjTVyFr99+/amMDgIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAATKm8CLL75ou+yySzqTmuNfvHgx8/xpImxAAAIQgAAEIAABCEAAAhCAAARaD4F6WexNLUjZgndqbf79TtQ7vgGiXpd6RU+zNsMqrMMezkLvjs7C60Bn4RVRb4u5AyXwbTfIWfDdqdLau2vcZssKq1jOFa9ed547b55ZzbiUzXvAWYl+t9ZSC93910rdW2+9ZbLMm8v17u3U8jgIQAACEIAABCAAAQhAAAIQgAAEIAABCECgQQQ0D3f88cfbjTfe2KB4OBkCEIBALgKqZ2ShN+o222wzGzVqVNSbfQhAAAIQgAAEIAABCEAAAhCAAARaOIGi5ZXJeU7UOyFp8x+stdr3naiyvtZXO5tVrudEn7tWWsffVVm7dSot0RkrvS31ftO1bb+eu9a7uGu9S6VVruuudad6ltZZi659N+XuQWcx+i1nBXh+6xT31mWNV1/zv/322/WEzGkQgAAEIAABCEAAAhCAAAQgAAEIQAACEICACBx66KFWW1trzz//PAI7bgkIQKBRCMhab9euXbPiHjJkiH3xxRdZ/nhAAAIQgAAEIAABCEAAAhCAAAQg0LIJFCXslYBywZtO1PtQrSU/cmBq6wGnyhlr7WvWdruEdXQWXDsMrbSqZZ3IE01vPWA2s1PcNa7q7qwzb+EEvrs768y/cdaZ+7gyVNajHDXu9vvAiXvdvbiwFYt7V1pppZzwdGz27Nk5j3MAAhCAQGsjoI8dbrrpptZWbMoLAQhAAAIQgEALIkB/pgVdTIoCAQg0GwIaR3bq1MkGDhxoa6+9tp177rnNJu9kFAIQaD4EXnrpJYub7+/QoYPNmDGj+RSEnEIAAhCAAAQgAAEIQAACEIAABCBQEgIFC3sl6l3oLPUueNSJej9xaSfrkb6z0lu1gbPcupsTdm5XadV9E1bhhL641kVA17y6X8I6/LYyuBeq1q+n9V53DyYnm81/NGkL30laakHrstz7zjvvmCb1cjkdUxgcBCAAAQiY3XLLLfaPf/zDnnvuOdtuu+2oH7kpIAABCEAAAhBodgTozzS7S0aGIdAqCaiuOuyww+yUU05pMeMuCXl32mmnYB5u2WWXteWXXz4oX6u8wBQaAhBoNAKy2Lv66qvHxr948eIWU6fGFhBPCEAAAhCAAAQgAAEIQAACEIAABLIIFCTsTS0yWzjRWep9zIl6P3VxFKuflEHeXs5K76+dld5dnZhz/UpLdMZEb9bVaGUelUs5kfcGzmqzuyeqt3Ei7+UdgGJvC3cvJic7y71OcL7gPSfudfdqa3GzZs2yFVdcMW9xFQYHAQhAAAIWiHoHDx5sa621lulF7BVXXAEWCEAAAhCAAAQg0KwI6CMl+jPN6pKRWQi0OgK33nqrPfPMM9a7d2+bN29eixh3qUw9e/a07t27p6/nuuuua2+++WZ6nw0IQAACpSAwc+ZM69ixY2xUeg+g4zgIQAACEIAABCAAgcYhcOqpp5rGfzgIQAACEIBAORGoW9hb60S9HzhLvY8nLfmxy3qxlnrbmCX6V1i7nZyA01npbdPHJVlZTgjIyxIl4O6F6pWd4NtZ7223U8ISa7jcuHumKCfLvR9ZcI8umux23D3bGtzEiRNzTvSp/JrsUxgcBCAAgdZO4LbbbrMePXpY3759g/XQoUNt/Pjx1JGt/cag/BCAAAQgUDQBxhdFIyvZCfRnSoaSiCAAgUYk8OmnnwYfU2rsNXDgwBYx7nrggQdMQt6wW2ONNQKBHe1imArbEIBAQwioPslnxEP1DnVOQwhzLgQgAAEIQAACEMhNYMcdd7S5c+fa008/bdqm35WbFUcgAAEIQKBpCeQX9jprqIumOFHvk7VW+6HbKVYw6T4urlq/wjrslrAOmySscplizbE2LQxSW3IEKru4+2Szn6z3Vq3r7pMORebF3Zu1k5zlXnevLvrMiXuLtSpdZHLlEHzGjBl5s6Gv++sKkzcCDkIAAhBoIQT8z6b64qh+XGeddezKK6/0XqwhAAEIQAACEMhD4Pbbb7edd97ZRo0aFazffffdPKE51BgE6M80BlXihAAESklAbcWUKVOCjykVb0sZd7344ou2+uqrZ6BS2WTBl3m3DCzsQAACDSCgukbi3VxO9c5LL72U6zD+EIAABCAAAQhAAAL1JKCx7OzZs4OPU/WBaufOnXl/WE+WnAYBCEAAAqUnkFfYW/NN0uY/V2s1E51KcnGRiXdxhleHOrHm75wl1rUqraIdot4iCba64LpH2g1y4l53z7TZzN0vSxeJYJFZzdspW/B80mq+a/nK3nxf8HtyhYTxYVlDAAIQaKkE5s+fb8stt1xG8WRx6eOP9VMEOAhAAAIQgAAE6iLwj3/8w1ZdddWgPW3fvj2T23UBK/FxCanpz5QYaiNEp+t0xx13NELMRAmB5kFA46s5c+ZkZFbjrnHjxllz/SBE+V5ttdWsU6dOGeXSjgR4d955Z5Y/HhCAAATqQ0AfCki8m8v16tWLjwlywcEfAhCAAAQgAAEINICA5j132mmnYNynd4lbbLFFsx7HNgAFp0IAAhCAQBkSqMqVp9o5zvrpq04gOc4JJOfnChXvX9HdiXo3T1j7LRPWpqfTDrdgTe+zzz5r11xzje2xxx626667xgNxvjLXH/dFtSaGl19+eRs8eHCW6ChnZCU+8NprrwU/jado+/fvb1tvvXVRKXz11Vemn6WT+/3vf2/dunUr6PxkMmmjR4+2hx9+OLDo0bt3b9t2221tv333sw7bV9r8jklbPCZpqe8Liu6nQPOcBv11Z2V6WWf0d6tKS3RumTffe++9F/tSIUoq7sVDNAz7EIAABFoyAb1ojVpXUnlVP86aNctUn+oLXBwEIAABCEAAAvEE1JZ26dLFhgwZEgTYcsst7fHHHw/ETBr/yak9lfjJ7wee/CsZgThrkYqc/kzJEDc4Ij0nDz74oLVr187uvvtuO/vss+ljNpgqETQ3AnoODjjggIxsq55ae+217X//+1+Gf3PZUf0b/UjU513C3nvvvdfvsoYABCDQYAL5jHSoPm2uH0k0GAwRQAACEIAABCAAgUYi4Oc9e/bsmU6huY9j0wVhAwIQgAAEWgSBWGFvylnnXTgxaYtedqLKmcWVs8K1edVbOVHv5pVWtWzLFFV6IhKmHnLIISZh6z333GPz5s2zqqpYpCbx7HHHHedPjV3rp031s+D6Kbemct9//71tv/329sMPPwRJHnbYYUUJe/Xi6g9/+EP6fL3kLUTYu3DhwkAMrRfC3omRhL7XXXedPfbYY9bh1x1tfluzRc+5+/A7H6rudWqGO8cJgit7OAvA6zlr0W3qPqe5hdB1K9QhWiuUFOEgAIGWSOCjjz7K+VOGaouKqU9bIh/KBAEIQAACEKiLwP3332/Dhw9PB9Pk9qabbmryl5BXIkaNC6urq4NxsT561YKrm4DGau+//36dvCSIy/XTzPRn6ubc2CH0DDz55JPWr1+/QGw9fvx4u+qqq+yyyy5r7KSJHwJlReDHH38MjBdEM6UXpJrv05xhc3Oqf2UlM86pPdTHojgIQAACpSCgPuEqq6ySNyp9QISDAAQgAAEIQAACECgdAb1DDIt6fczNeRzry8AaAhCAAARaBgFnTjfbLf48aQtlKfXL7GP5fCTqbbtNwjps2fJFveLwyiuvBKJez+SZZ57xmznX+vm28847L1jOOecc22233axz585BeFm93XHHHW3mzCLV1DlTq/vACSeckBbl1h36lxASMf/pT3+y3XffvV7nn3nmmYGVJ8V40kkn2QsvvGB/+ctfAhYS+P7f//2fVXWvsPbDKq36VwmryPwF9V8ykmMr+bnZAncPL/4ymSNE8/deYYUVCioEorWCMBEIAhBooQT0AjmXEGb99dcPBEgttOgUCwIQgAAEmhEBvciXhU+1W+Xm9NPq0bGH9uWvfOvn6vr06RNYyNev0Whf/rj8BHStzz//fHviiSdsr732ysuM/kx+lkv6qO55/UKEFj0bw4YNs1dffTXvNV3SeSZ9CJSaQL56Ss9FU1u2LVU7pHhyjSfFUB9XlCqtUl8T4oMABJoXAc3hR/vc0RLoPRJ1TpQK+xCAAAQgAIGWSUBtfjnOE7Y02mK8wQYbZBVL/TLN7eAgAAEIQAACS5pAlrC3dlbKFryWtNoPUmZFaCIrnJHZ6q1/stRb2bVlW+r1F+3222/3m8H61ltvzdiP21lzzTXtxBNPDJZTTjnFFMf06dPt6aefDoJPmDDBdtllF5s7d27c6SX1e/TRR+2OO+4IxLQnn3xyUXGrg3P11VcH58o6TTFOFo5HjBgRnKL1ueeea5tsskkg7FWccnfddZdNnDjRqrpVBELx6mFO3FuMBWh379a+n7KFb7h7eba7l1uYmzRpUmAJqK5i6cU6DgIQgEBrJjB79uz0BzRRDuutt56pPsVBAAIQgAAEliQB/frLBRdcYNOmTQs+ftT4qFyc8ta1a9fY7Ky11lo2cuRI69ixYyB60oS3PprRx6zyx+UmIK7XX3+99e7d21ZddVWrqanJyyxff0bc6c/kZt3YR3Qt9QyEhTgS3fjno7HTJ34IlAuBfPNUeibatGnTZHWV2lG1q/vuu2+DP+R88cUXc44nxV7zbprXxUEAAhBoKAGJd7wBmHxxUefko8MxCECgMQhozCMDTVrjIACBpiGgMc3NN98czBPy/DUuc825hed0fGrql+lDTubcPBHWEIAABCCwpAhkCntrnaWB952V03FOFfljEVnq4kS9WzhR79BKmzrj0+CFlCzR7rTTToFoUz9L9vzzz9txxx0X/Fynj1k/ZyY/WW/Vi6ybbrrJDj30UNt6663tiCOOME2e5nIyi3/ttdfaPvvsE6Rz4YUXmiy9JpPZauS///3vQTrffvtt8BOhhx9+eJCGrNV++fIhAlsAAEAASURBVOVPZomVx3/+859BXMq3LK588cUXuZI3Waz1IlSlKyeRbH1+gi2RSNgWW2yRtmA7duzYgn6yUWUWvzfeeCM2nzfeeGNwXJaAo27OnDl22GGHBd76icjllivOJO7kyZNt6NCh9vbbb9vOO++cjr6iom5Rt+4FuZVXXtkOOeSQYNv/23XXXYOXwdrXT1nKSSjefotKazPUxb1M4FXYP6eNXvxGyhZ94O6J7NuisDjKNFShE3iFTAaWaRHJFgQgAIEGE9CAO591paWWWqqoQbniU19h//33b3KLUw2GQQQQgAAEIFCWBNS2SOCpCWQJAfXzuxq/lcuksQQGudpS/TS5XuwNHz48g+1WW23FC78MItk7mm/QGLx///7BT7yL2dSpU4N+RjR0Xf0ZicrK5X6J5r017OsZiXsBlO+XIXS96FO2hrujdZVR93Xcs+ApqC357rvv/G6jrWUZ+PXXXw/y0qVLl6CNbUgdKUFyPqdyNST+fHFzDAIQaF0ECpnvx4hH67onKC0EyoGA+laPPfZY8JGW1poXx0EAAo1LwI9p9P5K84Qak2geCVd6AmKda95Tqck4kH51GgcBCEAAAkuWgJ9Pl/FU1d2tzWUIe2u+S9qi8UlLTSsCQwezNhtJeJmwVyaNsQEDBtjRRx9tDz30UCBUlahWLyjvv/9+u/LKKzNEqDNnzgz8JEA95phjAlGvxL1jxoyx6667zrbZZhu75pprsjLz8MMPB3EeeeSRwU8QPP7443bGGWfY5ptvbrqQUac4lPYll1xiu+++u91www1BGpdffrmtvfbaNm7cOFtnnXXsb3/7W5BnxaefQZXYVtZl45wGMHJbbrllcO4OO+wQ7MeJaIMDBfyToPnPf/5zEPKWW26p8wxN9qhccdaQJJSWZWAdV8cv6s4555xgQl353mOPPaKH69y/+OKLA+HtiiuuWGfYaACJguX23HNPq66uzjgsYbAsashJvO1dVXd3jzmrvW3Wd+Jed88V6pJfOmHvm0mr+a7lWe0tlMEHH3xQaFDCQQACEGhRBOqyrqTCVlVVWaH1pD4I+vzzz4N2Vf2A8847r+x4qSzK14EHHmj33Xdf2eWPDEEAAhCAQCYBtVWLFy8OxtEat2l8pV95UZtTSufbh2LbBoXPNcH99ddfB+1odEyochTTvpaynM0hLl2Ltm3bpj9oVZ7FbOONNw7G79Ey1NWf8byj57HfNAT0jOhFT9T56xLtZyq8PtLWc68w6lMW+1xG02IfAuVAQHVVrvZC+dOx6POgccupp55asrGLniU9U6pPNT+90UYbWffu3dOGGYrlpPyuvvrqeU/Tc/zSSy/lDcNBCEAgP4Fo3ZA/dMs9mu/jCF9qGfGAl6fBGgIQaGwCvm8lYaH6Vlrr/W45zok3Ngvih0BTEpCIV2Mazbdp0fOneSTmDkp/Fd577728v5ggowaM90rPnRghAAEIFEvAazRkNLVcNRrFlqmY8Glhb2qxs9Y7MWm17zsBpLPcW5CrcoKYwRJcVtpnP06x3/3ud8Fp2223XWAZd+LEienJUwlMczlZbJD13SuuuMLeeecdk6h10003DYJrglcm8L175ZVXTFZd5WRx9tlnn7Xx48fb+eefH/iNGDEiEPAGO5F/F110kUlo/O677wYCXjXGP/zwQ5CWLNjefvvt9uGHHwZiYU2SSNQroXGc088fyMlisNzee+8drCUabojbYIMNgtM1OJo715mczeN82urI6acAwk7iaJWtR48egUA5fExCZnGSu+yyy8KHCt4+6qijgpe10RNSqboFtN6SRZ8+faKnB/srrbRSsJblm7Brs7yzCr11pVUNdOJed+8V5Ny9XPNuyha+5wTr7h5vja4pLKK0Rq6UGQIQKH8ChdR/ehEri/51OX24M2PGjODDIk2qyOq82t9yeqGivPz73/+2zz77zDp06GCPPvpoun9UV/k4DgEIQAACTU9A9bY+Wh02bFhG4rL0qbFQqdoYtWEaY2vMWGzboF/ZUVsZ5zSGXnrppWPHrfoA1v/CTdy5rdlPlj70YibKVX6VlZVZ173Q/kyp7pfWfG2KLbuYy3KOrl2c03MQteyin9PUPE2/fv2CF3XqU8pqN9cvjiB+zYmA6q9ovRbOv45J/Oud2qZXX3012NXYpRTPgZ4vPVPhZ1Jt6ssvv1yvZ0zPb74y+bIUUk/7sKwhAIFfCKgeOPjgg4N5DG235rZQZS+kvpHFXuqcX+4htiDQHAnoedf7bNV7WsrZRftW6mPpF2/LbU68nBmSNwgUS0D1Qtw8g/+V7GLjqyu86qRyr4vqKkNDj+f7RYSePXvS92ooYM6HAAQg0EACaqe8RkNGcTT3pznF1tR+pYW9NdOctd53UpaaUTjVxMpm7ZwV1eo+Cbvt9tsCIaks395xxx0mca+sMRx00EEFmULWBO4f//jH4KcoZclVQl85iVPDkzoSrMjttddegSh16NChNmjQIDv++OPtv//9b3Ds5JNPttrabHXysccea6eddlpgbUHWccMvGiXU3W233YKbQJ2jM888M4hLP98WddOmTQteiMpfYeW23377YD127Fj79NNPg+36/Bs8eHD6tLp+fmnIkCHBV1pi9Nxzz6XP04YsJMuJqSbXvZMlX4ly5STuDU92+zCNvZawWi5X2r179w6OR4W95vS81SsnrK275xLxmuDgvOi/1Pdmi51ovebbZPRQ2exLUP7ggw8WlZ98Hc2iImqkwCoTDgIQaJ4E9PzKktihhx6aUTc1t+da+a2rrtTAvK5yqX5+5JFHgjZfAiY5tVX6Utpb2i/kSufiWsi5hYRR30nW3/RLCfpAqm/fvsFPoRfbvhSSFmEgAAEIQKDhBCRwktjWj398jGprJPb1Y2LvX5+1b8Pat28fWNdR2yCBU7Rt8G1U2F9+uawvakw8YcKE4KfOJf6NOn2wOnr06Kg3+46ArqvmTeJc3HXXddCHx/mc+jOFfKiULw6OFU9Az3D0+Q3HomNhyy56vjQ/M3DgwHQwhenatWtJnvd0pGxAoIkJ5GsvfFbCL0R927ThhhsGz4PGLnoOihlb+Xj9WnnQPGr0mVSbqnFbfdrUQsRzKhcOAhAonoCvB/Rrft26dQsMtzSkDig+B+V1RqH9OD8nVV65JzcQgEChBFT33XrrrTZv3rxgrln9E/VhytEpXxq7RPtW2q9v36qucipNvZMQJxwEWiuBu+++O609CTPQs6fxTinrDD1vMoqnd1/Rd4HhtFvytnjmmvtUudX3CjMP11PUVS35zqBsEIBAuRBQvRun0dCcYjn3pUvNLxD2pmqctd5JSUt+7Kytur9CXEU3J7LczIl6+7sonG70jTfeCE478sgjAytx4TgE1Qtfw/7h7ejxVVddNRDZKows53r32muvBZsnnXSSVVQ4pWfIHXLIIekXXh9//HHoyE+bw4cPz/CT8MW7qJUkfyxuUkWdKrkddtghmHjSdqdOndLWeyVsrq+T5RbvNLiry+mrdrl77703HVTiXW9RWALosLvmmmuCF7B6kSjR75Jw33zzTZBsrq/Q/UtLCZYXLVqUmUV3r7Vd0913myasomvmoZx77p6u/TBli9yie72cnCoiWZ5Wx1nWurQd7iDmy2uhE3kPPfSQaWkqp/xLgK8ynXXWWU2adlOVkXQg0NIJqI1VO6qfM1DdpGfaP9daN2Wd0hDWasPzDcoVt47HtfXhdN9+++3gSzBvUd4fk2hJvzRQSL2tMHFcfVwNXeuafPTRR6Y8+fZB+VX/Rj/dhIMABCAAgfIjkO9ny1Wf33XXXQ3OtNoA/VKKb8O01k+Thyc91Lbr5aLaft/uK2HlL9eY7c477wxeRq622mpBG6m2Mux8W1RIGxk+rzVsq9/hr0e0vLruYZZq33UdZK1F/n4sHT1P/Rn1A8LOj8s0xlQ8XIswndJs19WHlOBP1887PY/+43Dvp7Wuu8JxjcJU2G5OBPK1F74c4Rei0bZJYfQcSEirNqk+TnnINfZrSJta14ei4XLVJ9+cA4HWSsDXA5tttlnwcbLeiTSkDqgPR7W75dT2FvqhQDnluT7cOQcCrZWAxmQab7dr1870/lvj9C5dutTr46OmYKi+VVTU69OVf3jc6v1zrVVvqY/n3xeKRdTpuN4p+nkJjWNxEGiNBPTsReeMNBekj+v1q0D1+WAxjqOeQ32IrHpI9ZHeBYbnCuPOaYl+4u3nMPOVT/WYmIXrKdXpcfVZvng4BgEIQAACxRFQPS1rvdG2Ufv6BeNc70uKS6X8QztVrlnNd86a6QdO9DizwAy3MasaUmHt1q20RIefxLWy+iMXtjwSjm3dddcN72ZsS8gpywxR58W1qdRPauOvv/46be5eLxDjnE8nblCxwgorZJwSFgbrZ9/Crm3btuHdjO2RI0cG+xp8vfXWW+lllVVWCfyvvPJKSybrZx02bKVWX6vX5WTdWO6ee+4JrD1pW9dColj93Fx4UltWlWS1WE7WjauqqoLtpv4nC8tyYcF2OA/eXya09dV+1CU6untv/YRVDXb3XoFFkCXqxR8krfb7ApXr0UQbaf+UU04xXRe9MFflo+3rrruuztSiL23jTtC9KZYSnatj+fe//z2YOIgLW0o/lUnidw0ItNZyxBFHZL1oLmWaxAUBCJSOwMUXXxzURWqDN99886CzdPvttwdtneqq2bNnBwP8fPWQjmlQ25hO8SuvWis9nx+t5a86T9sLFizImw0N2v25uQIqDVnJjzqdq8mUQupt1Y3qz3iuqvPVGS0VJ4m/9CFVdBJCba46tXWVMVo29iEAAQhAoPEJqL+8+uqrxybk6/OG1N9qY9T2xE16KH61Xwqj9kjjLrVRvn1SW6r2I05goHHGxIkTg5d8/qNMfZAZ/eWaZZZZptVMrMRexBhP8Q6P0aNBdF3mzJkTeOsa3HLLLQFDXR8x/uKLL2zu3LnR04L2X9fRO6Wj83X/6B7Qyxn1ReSPKx0B8Y3rI/oUws+xwuqZij6PCqtwWlrLRKTnw7rlEAjfu3F1VLikqofi2iY9AxrPPPHEE+HgBW+rDtxiiy1iw4efxdgAOTz13PpzcwTBGwIQqAeBuHpAz5o+ftE8sp69xnbqJ6lvpEXz1uXQR8r1QV2URfjDIrFSWZT/cihDNK/sQwACvxDQBw0aC/jxgNb6+Ehisaao937JSWFbGkPmGusst9xywbi10HyrrlVYGbPSmFZxh89V/aW+nOpBPy8hEaPqt1I4paW4/DtS6stSUG3dcfh7yrfBpaKhe1PPV9iNGjXKnnnmmeCZ0UdQmpNrqFM60g1o/KX3R6qP9C5Q/bFC3nXVJ33PrFz6XcWUQfObqqNUj4frKXGL1mfFxEtYCEAAAi2dgOp+LQ1x+fqka6+9dmDNtyHxN5dzA1nk4k9SVuuWQq31JlZyVlM3cMLKHr9YzF122WUDMakEP3FOKupcTj8LGuf0dVDYzZo1K72bS3jrJ0BmzixUpZyOsqANdZgmT54chB0xYoRpiTp1rF599dXgZ7Cjx+raDwuSxbQuJ8sRsnb86KOP2nPPPWfbbbed3XfffcFpf/jDHzJOP/PMM4P93XffPfj6KvyTqX7iff78+YF4WtfEv6TNiKQEO2uuuaaNHTvWPv/889jYNLCTU7hcrmo5Z7V3A3ffflZrySm5QoX83e1dOzlli6ckraqnM/tbJk7C2wMOOMDUKZRTp/mpp56ySy65xI477ricudRLE31Bl8vpPhJjiaMVt+4TPT+q+PQiOZcwPld8hfrLDPqbb74ZCOlk0VpOwuJx48YFE6X+3iw0PsJBAAJNS0DPsNoSvUzx9ZIs0sqCiizF6QMWPdNTpkzJ+Uyr/tKEpD5wUR234oorBhbuiymJ2lnf0fN1iT9feRw/frzV1rr636WhwbREUf369Qt+ikgftsjygdowfSyhtqZjx45Bvn0c0XX4RXT0mNJTOrnqXE1+yKLABRdcED01va84wvW90lM/RpO3paqXxWvbbbdNpxne0AtuTcicf/75YW+2IQABCECgHgTURpWiL614ZJlMH1tKEPvjjz8G+8qSn8RXv10Tx1Hxb6F50EcfcdZBlYZvvzR+V3vk2zm1/xJc6Vdo9CHsNttso+Bpp3GG+gZ9+/YNfqlHvxajPoIsfGgcpzKpryA3ePDgYJyqF3LKs8atKksp+KUz1IAN5UlttM9btM/RgKhznioWdYnENCZXf0qiXl0nOfVrdF00bp80aVJwzaKJ+P6MyqP+kfpvur66t3QttVZ/QBaQ8o01o/Gyn5uAns9c/S9/lp4p9Ul1XfKJunVM8zr6aAwHgeZIQHWMb8+Uf7UH0XGYnge1Tb7NiZZTz4F+EU7PS7FtRV3Po8ZEcW1qNA/h/brm3nxYlas+efbns4ZAayOgfkpcH1V1g579xp6/UD9Li94jybCKfmpe/a7HHnss6CP5+kfPdbivqOvUWP1FpVWsU94kzNH8mOaY1E+P9vOiZWis/Bebd8JDoNwI+GfQP/+lzp+eV80vq87RmM6PmdWHkDAsWu/5Z1f5WVLPrcYwufpsyrfqUIWJzldE2am+1bz4r371q/T7Bo1vJfbVfLrKqHZB5dQ8g5ziVzuheYkdd9wx8Mv1riA4GPkXvp7hulLpSsyoDyTU72ys6x3JDrstjED4ntL8ne6paPtb3yJrzki/suXdk08+GdyvMuSmekP1h+bklIeG1A0ak+n+98+4xj16LtSf0C906Ref6/t86Jn3H6yvt956vijpPovqwlIySydQjw3VFapv6nK6zjLOoLxLRCbnz/vggw+y6vC64uM4BCAAgcYi4PtAir++9Xip8qb2QHoR1aHTp08P3g0V23apPHVpNDSWbw0ukZybshondkx9X2BxnQa3zTpOVLm6E92GdLebbrppEMHrr7+eFZFgq8FrqAvffF9++WVsdO+++27gr5eIjeHUofFOwtno4o/ddtttfrPg9eLFi4Ov0nXCbrvtVrBF3f333z9IQ6JJvVi9+eabg/1dd901WPt/zz77bLA5evToQOgpsadf/vrXvwbHdK5EWNFzfRylWPuBnr9W0Tjfe++9wGvAgAHRQ7/su3uvbX8nLl/bbbT7xTvfVuo7Z7V3Ssp0z5eLGz58eLrzpzypI6gOuqxjhiveYvP74IMPBgNTCd30ElcDYn1dq46/Jgkay11zzTWBqFfXTgNjLb169bKhQ4cGQrxLL720sZImXghAoAQEJMzXZKLqDDm9FJCFOD3Lqj/8hxeaXNC2xAdhp321NbKCr2dfkwGqj6LhwueEtxVOE3n6Annq1KnBuUcffXRGfajjmsjTxy8SvmgyQ1/7y+K96iB92KNOouo8TZZKMOXzHU7LbytsPicmfoIjLpzqbfVz8tXZyrPq+4ULFwYfb0g8rQkY9Y308ruh9bK4aWIyl9P1CvdfcoXDHwIQgAAEchNQPa++rKxxqG0qtG3LFeMLL7xg+phSH8uoLVNbonZTH6RoLaf2VyIk75T+aaedFggR1LbUlQdNnPg23cfh17790see0TDa19hbbWC0nVT7LPGWPqKRmFcf4yrvWsJ9BaWj8ullg8Z3arPVJxC/fG2mz19jr8VOeQnnLdrnaIw8qOzhuQpda/W3tPjrLjGcJr70QkV9EP26kfpjEp3ITx9N6xrkcrq3NC+gvpDuH52jj2Y32WSTQPihFyiMy3LRK85f931dTtdTTtdCz3Qup2P013LRwb85ENDck9oz1VW+TYsbh+lZCNeD4bKpbVL7o3qsGKe6tXv37nlPUdsWblPzBg4djLaDoUMZm/qVORwEIFA3AfXB1E/RMxnnNH+hPmhjOaWvfpZ+CWHYsGGBYRZ95KZ+6/PPP5+en1E4vd8J9xU159RY/ViJ4wpxvk5SPpQfzb/J0p7mhDQPpzk55V1Oa4WR+FcfTejDcvV3cRCAwC8E9JxobK2xoZ75xhoTql7r3bt3MP5Xn0HzAH5Mp3GA6h9fv/h5B9U/GkOXYv7hlxIXtqW8+Pe4uc5QvvVBRD4nvqqXou9BVdfrfbjmxBUmrl1QO6F+4amnnhpcH2kPPA/PKi5tz0/XU3Wgrq9Ei6orNUZWXSnjJYo3XzxxceMHARHQPeXbXz0nvv0txTyL7kk/b6B5ItUV6q/IT+lorV/WUl+mvk5pyBCY74spHb2vkuhKz4r6FPV9XyUGeub1kbkWPbd6DvXsemb6mDmOmfKl+qApnepjP2eTL119oK+xpOqyqFN9Fq7Do8fZhwAEINBUBFQHq39z4YUX2n//+9/gPVJT16u+rL4PqLpf74/8u6Fi86P5wbo0Goo7V59O/uKitru5u6rFXzqrp1NdMWoKK0pi5QqrXithiU4VGSdsvPHGduutt5oEorIau84666SPC5R+qrOhTpaAJCCWJVJ9pXTIIYdkRKmvYtTJkVMnvdROA42rr746iPb+++8PVOXRNPbdd9/AqpGEmfraUDdrIU6T3ocddlh68vqggw4q5LQgzG9/+9ugoyXBrqzxylqhhMESNIWdxJbeonHYX9t6oStLw3IKJ3FvY7mBAwcGUet+0Yvp8ABRnUZZPpTz4YKdmH+Jzu5eHJSwmklOrPthAWJdd4/XOmHv4mkpa7ta5v0bE32TeOn+ePrpp9MvcXXfaoJu1VVXDTqJYTF7NEPRzqZeBOs501o/Pb/CCisEIrLwebL4JO76elBplNI9/vjj9sorrwSdYFmHCjvdixo0qwMvS10+beVD5+nrPeVb97KO+ePhONiGQGshoOfCu6Z+FjTJuNVWW/nkgy9nf/3rXwf7Eu+ondUX9nKqvyQ+0DMtp2dZA3R9hauPCryTdTk9+6rr6yqP+gsaCKutUnqqx1577TW7/vrr7bzzzgvS0MsX1WUSPik/mthQvfnAAw8Ek3Kqa1SnSDDr49GkhNq4aL2pPOrlca4On47revgXJ9qPc5pQ0SRAXJ0tLsqz0tZkp/KhTqgmA/TiW3mU9YF//etfcVEX5CcLxn7CJ+4ElVEWXHzdr7UW9ddwEIAABCBQNwHV5ZqMlkBJ4lVNgKvNU1vzpz/9KW8Evu6NBtLLe01y6wWW2jyNdfViT4Ion47qb4lzFcdll10W/NyePmzRZIjaLuUjVx6U53wffSg/ap/0QiDOqa2VBQ/lyzs/3tCYfMyYMcHHQMqv2hhNoCg9jedUDllp1KS3+gQa46iMyqs+zjn99NODdr2ufoFPt9Rr8fR9jv79+6fzFu5zlDpNH5+YqG+lD3w0dtM1lBhOfHRN9RGQrr/6FbJMpHG6v476WEnXQ30w9YPCH8KG+zjqN+llg9KQIFhl9E7Mde9pTBgel11++eVBEPWh1DdROPoJnlr8WveRrltdTn00hdW1P+GEE3IGj/bXcgbkAASKIKB7T+2Br28b67nWOEfziKo/fLuhtkDtXHgcprpKH2Lq16VyOb1g1geQhx56aK4gWf56vnRePqe0Vc8X41Qv69nEQQACpSOg+Yt8z6ueOfVHVH/5uiucuq/X9HzWZx5ZfUD1s2RxX6IS9b20qM+qfrkEsOoXySCJDKKE+7GffPJJ0I/VXJXmiYrpM+UqT7hshWz7Okn9afW3NQfmnepWPwenfrf/8F68dd5nn30WfEiv8tU1hvFxsoZASyagPpLG9XqfqrGZnhO9X9aYVvPQcXVQfXgoHdUtqmf8r9SqntMHm5pHV7pKS+M4Cd70vlDCU43j1G+a6j6uVd1VyNx6ffLnzwnXU+pb+frGH4+udbyuvpXqfAmao30/nat6+D//+U9OsZzS07WRBVP1YfWOUfyUpurAu+++O5qloN/r+engE088Yd9//32gV/Dl8XnRL+H4dw5ZEeEBgQgBPR9a5DSXFtf+RudZFFbnqA6Q03Pul8Aj5p+fM9IhfZSt+SP1V8JO7bp0MopXz0b42Q2H89vRPOj9nuaK5DRvpLj0XkvpaP5J8Uuo6uP38dS1Vng9f+H3g6rDpBvQ/FMuZn6OU3OL6ovpuVUfr7HGruFyiI2vG8L+cduqg3z9ET6u830drrYDBwEIQGBJEFAdrH6V3l2pHtb7Br2H0bulXO+P6pvPutod5SWqF1H9qXwUqhfxedN7jLo0GprvU/sZ1WgoH3qnp/G+DMQ1d1dV86WzrvNVAaJIldRZRm0zsMLa9K3IKvfBBx8ciGrUaEuUoxdJGqgIojreAuqFo1knF+Ghn99QJ+OII45IW53R6RpsScwqpwGBbtpSO1kQ1EBCHZvoT5L6tCRo9GXVxLbPkz8eXWtC6NVXX7V777036KTpuCzw/uY3v4kGzbmvF3t77713IDr2kzL77bdfVvh8Cnh93XXyyScH4mL/Uk8RSHB8zDHHBJNZChPueGUlEOMhIbS+7DrxxBNtzz33DEJINKYHSxNwSnPUqFGBwEkP1BlnnBGEEeNddtklJsZMr+p+FbZoTbdMdffwwsxjcXtJCdl1v68Wd7Tp/e65555gElApq8OqL+N0j+lnafTsaCCvyjGuAxt+iahnS3HJQoleBGvSUfHoRYosDninczQpoAHrP//5z8Bb8cvlSic4WMC/c845J3iRowkGTWxGndKVpW2ftipTWfCSCMALJCSY14SG8qaOMA4CrYmAnkENWiVWVTsip+fhqKOOqvN50Lla1KboWatrgiCOq55J1Ru+btGEpgQk/kMPTSKqE6i8aVH7IMsBOk91lOoAtb9q+8NO++o4+mc/fCy8rXjUuVp33XXT3jpX+VHfQseVhvoB8rvyyiuDttjnT8IX1Zl6sSHBrPIvC3d6sSwRbb6vb3Usl1NdfPzxx+c6HPhLsCH2Sj/qNHGrOk5flamuXmuttYK6Wp1qianUf9G5Kp9cfa/d73//++B81fty4hB2yqOugepctTf6WOmtt94K2vW4NiZ8LtsQgAAEWjMB1c8a0+in1vyLffHQRIQ+NlW9HVeP6jzV72rX1Z5qfBcOp3ZbYgG1aV4E5etutYfq02vSQuH00kptrn4FQ+2eXiJoclwfrmisHZcHtT+q69V+a7wo5/sX2lY7qTGXrLlGnca93in/ehGnc9Weq/2SdX/1UXS+nMS9EhFoEl5l1UeG4qNtlcH3LXy7rnFyXf0Cn37cWkzk/DrMNS581E9p5+tzXHHFFUH/K3peKfbV51B/QC9oxEh9B/HTNdLL3XHjxgX9GG+pV/dB+CWD7hVZS1a/xwuolS8xFg/ddyqbWOvLfH0AJafwGn9LnK341B/w10Dl1b2sPorG5OpH+V/XKZZtkFgr+aeXYeFnKlexdW3Un9Tz4Z+FfGEVr55pHAQaQkD1gZ5t9fv1vPtnWu2SxpelcEpD96rqHdVd+ujDt2eK37dp+hBB21pU/+T7IFHn6bnSS/FiXL7xnI9Hz5/Gu8W4cLyqu9V2iqnqVPUJ1MYpv1pyjQeLSY+wEGgNBFR31PViTn3MuPZQ9Y0+PNMzKEGK5pFV7+jnPAvps/j6Su8l+jrRivrS6lcrDq39+6SLLrrIDnJGV9Sf8k7b6iNLHKs+mPrE6jNJPCsXl77Kqnk+1T0qT9yYwMevdV1cfFjFq/muAw88MPBS/SSnfp7i0LsAlUEvdNVvV/nkp0XzY/qpUuV3SfU3PBet5cLvweI4BoH4B4ESE1B9oHG+xuQal6lOkGhLfRX9KpwfKxWarL+ftQ7fxz4d1Tf+V28Vp+owjfU0XlfaEjuo/6P3Z8qHxv0Ko7pHi+aPi81TXXlXXrWoDyMXnrvQ+KWuOkn9H1/uuLR0TPMVfkwaDaO+mcZIfvwaPa5+l+r7zTffPDCSofB+0Tvl6LhdrNUuhEWFMsC19dZbB/Wv6krl2Ttdp/r88q4/n3XrIKD7Sm25f58i8b9+DSnq9Jxq3KX5Owlk1bb5OUH5697TmExt8rHHHpuzDdYzIaf7X/0G/+4rnJ76K5qn07syvd/J18fQc6JnO5wHPQu+D6C5Kb1P9B+O+3f76u/IkrnC+bDhPES39bzHvR9UnSYDBerbRZ9BMZP/yJEjg3eCer6lcVCdrGdZLlyfRtMsxX54vJcvPuU916/O6DzposQLYW8+ihyDAAQai4DaKtXBmndTv8u3HWp79CGTxn+qyxtap6pNKWRsG9ceqOyq9wvRi6hN8X1MlU3GT/I5zTOq7xo2Cuv7herrh42e5Iun3I9V1TotS2pOYdlM9HKi3tWctd4O2cJedUY08JAoVS+F1BnwTp0UDQLUoWmok7hGLzVvvvnm4CWYBjwabGmAIKfOh441htNNL7fPPvukv2aKpqOXcppUkYlr5SMq7JVFQf8lVPRc7csihdT0xTpZCtZAVJ1KdYS8hcVi44mGF1fFK6fOlV4OFurU0fVC41NOOSUt7FVnVIIs5VFiY3XUVJG8/PLL6Ul2iYH9C+h86SU66p6ssJrlKywpcW8dLjXLCWidxd7k/JQl2mffx3Wc3iiHVZnomqnDrk6urDZpUlAVo6w46hpI1CbBnJxfhzMjUa/uPVk51vOhCkyc9TLfi7x8eHUwR4wYEYhndT3VqZeTpU6fTlwa/nytNSDR4sNpWx19lUMTEXFOnXINNiQyUB2hPEhIoJchGuiosVE8msz4y1/+Yhp04yDQWgjo3td9r3pPA3M/gFeHS/76Kl8D7Din50kiebWFqkM0QaB2Ri82dE6u86Jx6dmUMN87DaB9509CEH14IJGJLJPomVVeNSmpZ1ltjyYH1CnTINe/OFY7IOGP+giqz5RHHVfd4esPpafy6yutuJ+yUd0hse+5556bTkPx60vecP40QaBOqtLUORIh+4kI1S9KNyyA8eXUOjypF/bXtiZGFGc+p/TUadRHTlGnsimvmmTRxz/ip+ur+lkvgXyexFH1p9iqHdAHTP7aKQ5dZzlt++vqGeraqb+h+lNxyilNta9a5MRefTN9oKMXQBIV60s31d26fkoPBwEIQAAC2QTUfqkPqzYu7LTvLWJFJ0VUZ2vcp7pX9bEsxGg/XN/KGuGuu+4atJHheLWtdkXtj9JVe6EJ7T/+8Y/Bvo6rXdUipzZMbWg4D0pfiwSgspbohUwSIPh2Qe28XvRLhBt2Godo4kSTPXrxL6GnRAJay0qv2jE5H6c/V2MPCSKUpvoHGtsNcxNJvl3y4VQ25VV9fd+m+WOFrFUu9XskQlW/R+17oWMYxa80VcZ8fQ6N4+sSvvm2WWu1x75trqsMul4au4m/zpGwRPeI+EnYq7GcmGleQ9dG108iDN8XUThde7HWcfVxvNM9o/tV4z31lXR/qq+kL9PVt9B54q++mV6e+ntbE116+en7HYpP5dJ9pfyF/X1axaw9Kx+vZ+X7McXEVU5hVS4944U4Pe/hfnauczSeV7xxH4vlOgf/1knAP1f+eYo+pxpD6gMQzQ1pzkXbcnre9Vw35PlTPaz0NZekekVW0zSG1Xgs6lRHqU4L11d1PTeqp9T2KR25QvKq/OQb0/l8qS1T2CgvfzzXWnWqxk6qS9U2qg3U2Ep5FWP5q21Se695McVfSL5zpYc/BFoyAbWJeleUz6nN1LMabg9VJ9xwww1Bv1RzU1pUD+mZLLTPorkT1RU6R30rzUurHlP/SvtaNEejdVTQpv6jPnDfYostgj6WN36i8HHpK//heb7wmEDbcXWE6pRCnPp86rspvOon9R81z6O6XuI/zQ3pPYHmmNT/1xyU6i3NFar/LzHhjTfeuER+jjTMRf1Z5V39Ym2rzZDlQNWjzFEVcicQpiEEVB9orKVnxr9XU90gP43DNZ7Vu7O67kXd06qfVB9prK3nU/ex6gg95xpzaXwtUUHYqe5RPaMxrc7TuFbnqp6RsFdjcI2t1W/S8YaMocPpalt5VtnU31L66r8oL6oLxUJzF6qrNQeRz/k+W64wmisXz3x1m+r7uI+NFaf6WhLl6nyNYVV/yWlf43mN28XF9+v07kAGk/zcjX9/IA2B6urwx2Y+HvUNdf18HH4dJMS/Vk/g/9m7s2fPqipP4DeRqq6Oqoeq6Irqiurojtsd4YtvRuAQPqWGGjgwOIAIgomMBoICKpNAgoKCIPOgIjI4MIOICqKSPihP/gX9kv3Y0XZXdVR1dEd3SPb57Mv3sjh5fkMON8m8uVfEuef8ztln77XX2eu7hr3PucYGG28ejJ2lKzYv/rO17GyIn2AuyoIldtd9yprrkaNxP92jW/wD/sQ4ZnA9+iLGspBU7gZlr438ZwM44h78aYvuVh8D/+I/OiEmDA9PP/1086O0ofzUglX6BruW9Rfoe+YHIxP7zDHCM4toxzEb3BNH1o/p4Ve/pvyrWvf+Oh7zNFWv50qGs8hzg6n47jgyS0r9fJdAl8BGSYAPxLe1RqH+d0bxlTkGNgSm1vmjPeEFtlWbUmPbOt+lTuWm7EHaYxPnzQu5P2te3KNfPnbDX8y8VurKHgZbE1Jp7BfWa4fq8ZGv/NdhMeTaC0Dz+7Bl+BLPsKboz/7DcDCDCO25555rzrrARxDCIeAATP2LaYmFeSSQQIKJkHsEHRwmbWVBL+fcQtFLL7103fHJPdnXepxL/ble9+NrHH9vhKN8ebaWr8cW11jYa9GqgIOzZIBPkUSFyTZvHVqcO/Wm19R943PvfOc721udlIfSzls8PL7X7/A37reJJQpvcdm81fD6IUFU73d89tlnt4XB27Zte12zEnMCs3PPPbcFrJxLxIGyuOn4449/Xfl5P/78Px6x8n//0/Dl6f8ylFq0tncY668MC3v/9MdhYe+/nz/+5rW5v655bll4ZnxKSnJ0TRiQn69ZJSlnLJGxiWsAGhKgmkQ47rjjWuLRfZ4H8lwlBUyuB+yMR8kyC7WNUw41or8Zs9rwbBIEu46vF198sfEg4GcElKN3nHZJT46r+lwbB+TGpESEMWqRon55a1FZDr179d+/2BAsaK+2j4dOXQKbVQKCeToOE+hoKHpJJ7zhNCY66aUaQTx9gR2+KkDn4YWEpGv01DaP1FVfRlEHG4B27NjRJg3oqEUiSJITf5wqWGLxLbzxBXp9sHmrHk5IVCjLsTKpK3kAC6LjMAWOzQp6nb/vvvva13q1DQO1H5IwZaskTbQJT/kgfockOExeTL2ZVWWe8uRhM0ktySthAq9gafA0Zf2WCJki+Ig39UjkIPzxZ8iDzCSD8K0MLPRGtjEBK5Fji3q0gxf4qc/qIBv3WaBbF/fgVVkJSskRkyX8sfHkkQQN7GcvzjnnnNZe/9Ml0CXQJdAlsCYB/qgJulmLPGGwpHz1W9kOdk5cU79qUfGW/WP7phZBaZnfHLvFx1ZPtXspow12g00ID9qXqGGXzjjjjFYXW6BOdgGxJ7Hz6g+JK9gmbbF7bA/74Ng19tdLKuzQeGEWPhJTitHZYPXot1i62ih2V/xOBrNsv/5oz/W6J1u+jT7FfrvuZVR2cZG/wy7jZVa7zqs78oxs7J1D9957b/NbTLaytyZ0xPTsfXybKT7cT96+bGni1GQv2Yif+EH8uCyEZtsd87v0K8+Jf6P/nqdnaNI3ZDzon8Uy/LG3vvWtbVEvOa8O+RN+iNiTz6A9/znoiSeeaMmxsTz8NnHxwOCDnn766c0nSt9cy3HanrXX5yk/xhfvqi+oTmM39e5JG2lbW+pAxkSeQfYpt7/2JqCWIfrmGdT/SjHrPv32DKdeFpt1Tz+/fyUQPa/jcaPG0BTni9rHlxcujSnxHvyHPxZNJIejDNu1bcjDwUk4I7EP+2AKvGRXom/z+Ki6pJw8khcWg8NeEBffwXx4OM4DuUe78EoZ+/FiOWVCbI0y6tEPOJi807znQB/n5SxTv/0821PL5RhPYmw2zeQEnuAtPuE5WyDuJhfYyn7jfxmblDb6vkvgcJKAnDQd4Y/QF2Q/9hWrPYQ9XjCT8zbXRL9gG3/UffSQzzKVN6uyhSt8Kn6WNu1D/F46DqvkTuoLCfGR5W7473yY+LdHHXVUy+uM2+f/yP3gNz6rtvjG/Nl9xQj5updeeqlhETnoS/rDlvDZ+YvxJfmQcJoMLUzxr1H5G7EFYz8Kr/HH5uGvcrMoNq22cccdd6zLhT3jn5rHEEvIj3nOeBZXaDf3zmqjn+8S2FsJwAP2XAxmXo0tR/Y29t48tPmrWePQGE+sA4uMY3XyNeAEPc+CX3nxMbkHFskp7BxiStgj9y4+VBddSG7XeTH0GGvGdS76rd8WS5jvhYew7i1veUvDKe3xGfmV+kAn+ZnzCL6Rw5SM+GdT/a714SG2oJ6Hu+TH/2I38FMJPpEHW+E4fqPjED/W/Yis5d7H2O6ar2xaMIL0HfbsLe61SvqfQ1YC1RYa0+Zm5G3e9ra3tT7x9y1I4sfQD2OUbrLHcmn8BGPImBY/iLkc8y2Q2MEY5Au4Vyxnc58xZ5zLHyD5GAvfLdg1fvkdSAwIM5zzwjt/IHmh6mMoy9+Qh6i5STZX2zDGvJ65MsfaSTzHf1A/fRKLVX9BvVMEm6ZeoDcn5b8481FgghgqfYyek3X8qtSt7eSkpvy7PKtgT3Q/v1PPMvv4aZ4pfu1R5kbhenwsfJJVcCt9Ud4Ln55heHGuU5dAl0CXwEZLgA9kHog9EquyM3w6WM5ewXN5OLZqls+2iMf4u2yGl9XMnWiPHz1eX4CXeVgMc2f5tPqSuZ9gsz0fzvyUOSl9gsEVfx3z+0JTfmGuHcr7I1/545LsD+sEjxwW9b7pr6cXQwpQbIIeRvqDH/zg6yrOgheORohx45TPollf7DQQDSCbB2iAjt94rHWOnf5cM7hnte/fotRrBn39nTqm9hylcVmOz0ZOznDEODl7SxdccMGKbUyCSM6q/lCUWUShpujOO+9cuemmm9YXj9YygmJjRhBpYSdQMRkah6iWnXf8pr8ZxuUwNv/fXw2LzZb4r3qv/LdhLfvA7p+txXTzqt7wa1nUm4a8NSqJyGHk5HPoV4dJWEG9gMAkAUfamI6ja4H01uFrWHTvD3/4w/rCMXVKIDrva5sV4DiYvnKgnhNOOKE1nzb88HahZ3Lttdeug+9VV121DpbKcGZ9WVk5wYdFieo1VhgMNDVmjBXP/bTTTmsTy0lSAGTBjwloC9wFAtrv1CWw2SVAp+FgJl5rfzks7Cl7aFFFdYbcJ7lAt+maxRkCY7gCu+mkhayCTs4aO1HffE07rtksJpXESqKBTbHQnjMkqGczJQ5MAmiH7mrXl/s4hBYFc7gk5Dh3EgrqpNOwHWZJDsIJi3S9deWY8yfRwQbUwD78Za9eEy1IeRMRgmj87hySn1kcgz8TAJls5mCyK+w4n2EZIlsLYvSdg6mfsFmf4TSqmOo5keGY1ONesqxfmlHOJJb+6r8kqYkoZSVa1CfJCgfVq5++wOw8++DZ2vDomcBvuKvv6kD2ZK5e4wslieM8IpOcYxP6pEkTS//TJdAl0CWwLoHf/va3DSvXT0wcsGXVb2Wb+ebB19yS3/CWXYTp88gEGNsO78UEUyQuZuNsePAijfbFD+5Pcp/95AewpeyY8rHzWXi7c7Cl4j5+A9sh9nCPNtgX15G4WwxhMoCNjS/PHiunDT59fZGkTp61SoY/cgEWd47tI9tpS7zDRprMNCEn1mEHM6miLnIkW1+ltehDvdVfSnvZk5PnM49MbCpXYxEL4dhTtvv3v/99a5MPhDcLECyo4PfghZ2V//DCVvW9+GWeJ2KDxWieRe4lU/6Ga+w4X4YPxq+xsfXk7NhzERtWIgv123u+JoHIkc9UJ2QtoOB34R2vGZu1Lsdk6V+TmtQWq4n7THDwM/kltW/je/NbDFn9GDEk/wWf+sJvNbYsejE2+XPa8Lzf/va3L9WGtowZvhM++WgmjDwXdZlU98LxRpD+LKJFuj6+H++d3hgJZBwZQ+IAmIhglfG+zJjfF84Xta9uOJf8J72hS3IweKVv/tMYO4BXcYL4h17ADNghpoPVY4wL33iwwR54B7f0H8FW99FPMQw7A2PYAbaETZCDUn8ldZgghZnqhC3kqxx+YB5SRi6KXukjfGKHLPzSlyldTgxmv4yuJYZTXj9D+pYt5+zxkpybfpKnduB1+Gb3xGOeBUxH8Cd9nWeTWuH+p0vgMJBAdJXe0SH6zOfh79Atviqdgi2IrmZeiA924403Nj3Lwis+kYWqCD7wc0ze8SundFk5PPCttaM8PR4TPvhHPsDCf4kvDbNgH11HdB3+iQMQn6/m7fST33jRRRe16/VP/C5YDQ+VxdvLL7+8W4ygnWBN6oAtsAlO8/fECeFLGbzy1cgShgaT4TPfy33qtYl1tC2v70UN9ZEfGbAtcvjsyxT+hp/xXn3pk7Y8S3ZIvWTGX5b/hPnaI1djAYaKGfjFznvmfKLqj4/b6r+7BPZWAsYo7IAjW4fY0PxZJeORzacDfJ/EUrHpwZlxrFPr4Bvx2+gwX0F+eYr4U77qS2flzekvv80W4kvxmWDN7bffvvAlhtw3tYc9fEjzDfjT/2AI3wt2BV/hoN/BjClM0gb+IpvaJjmrf4pgmViNvtfcQcoGd/0mCzzhr2IiDLWw15wJfPdbGaScNrIwzzm5jmA7DPJxMvEn3IJ5CO6IV+GnPukDSv82Oh5ojfU/B1wCxgB/g91isxC/wnio49OYir4oa+xnHMcey6cZN/wM2CKfon6LaOXK5LPouvPGpDki49eYUx9M0I762W55IXFcnRdjN73Ao/6MaTz77V56bsziZZxPpHOrQ86QLyEHYx5PW8Ecxzb+mfaVnaXj2kT6Zxt/5RsvdAt2yDHCQot5yYZ/kDiLPwh3xZMoMdvYv3KNbPkteIKzeV5wjaz0Q9/pavTWfaHwao/syRwmmHPM2gbX/IZFfFdlyMVvZfgs+qZ9eS088wun8pzq6tQl0CXQJbAREoCJMB/FX3XMb4JZCMbCXVjFr93T+Eob/EH/RYFdSNwG/9gmMXNdX6D8LP+vMTT84bOxfZXcxwdLTtC1ncOcAd84NpBvri/aZv/YZD4fnIbJMB32m8/Y24+pVp4OtuMjd/2PtQV4ixg74h+GRMA/HDF8AnS6pEAoX7L15q3FggJxwb+vwJhkQYse5HTts88ypp02VgIcSkq/t0ThZpF6BU+2vaZhTB7574bJzr8fknr/vHg87/rvQ7l/XFxur/nZhxsl/03I+8qViQzJviQW7D0LG+dXMozecYZNzAJojjK9c46zjziygC6L25yToAO8/m1X/fcRaQtA+iL2gw8+uHLNNde0Bbza3DYk3pLU5NRKOHi++EASDNrl2FaD0S4Of/QL6APVJDITMHC6BRqCCZPQEhqC8llJj9TZ910Ch7oEJO85MRyPKXKerkUflREgctbojKDRBChdMvnA6ZGs57hZgMGxMRmqPPygf9Er9XibSjIAdiSZLnkJR+ixRbteWHEvzKbj6k4Ay3niOHkzC7ZYDIwXjh5s8OUkDiNccd2mbkkD7blXQkEbrmlH3fDMhhLMC5hhj7ZM2HDUTDCoz31wBCZJFuAR6YNreEpyoF0Y/qR++0xYu8Z51Ca8k3TBow2RDZzyWzshyYQxkTknU4KmOtXKwXD8a4cc9FndePTMJVjhoD7D3jo+HHvGJmEsLuKgejbKIv2VfCELuM4P8zKNur1Y4d48SzzAbmNMMnQq4dEq7X+6BLoEugQOQwn4CoZk+TyK3yopwpZIVsfPHd/nPByGt/CZ/YLJKMno7J3Lf6eB0bNIPGwywAsz6uUbsMXsA78b2WuHDWcf2KBKbJhkCpuqPrbJ3sJR9tuCALYSz+phs/DO7rC9fte2+AZsS6Uai8T++q8D1d/30iCZm0BhZ70cJI7Bg/Nk6+soU/VbBCqJxF9iN0N8Hv0KSfyffPLJrQ52vNrylDF5IKeRRBe+TDiw5/rsJWD3SRZ5GVNf+TWRD3mJ60w2uMeXk8ekD3wE8hNnZcLI+OC7sfVkSm7ki9h35zxD5NqYjMfIlw9nAYzFdJ6XsWUMiAPVgQdjcizP3M/P0BcTF3wNzwEv7s9kp391GoqcM0Gyc0i+WXDtGRs36vUSmOdoIovvmcXz5OQ3/834I+epNtJW3dM7k9JiYrEt/80ErrGDX8+O3KaeQ61nb46rf7Y394/vGevN+Hr/vXESMI6MOTpi/BlLxjqyCN8Yo4N1zO8JN2P9cO84LlvUPh3ysQR4F8oYhNnyrldccUXTWbkeukvv+ft03l55+OXftFb8VV90CfbDpdVhEhdZhKUubdgSN7oGuxJb0l+yY5NC7hO/wTsYog94EP/ABTI2AWoRBl314gF8UIa81ellGLy7Lm72DPAqBtYeYsdgj3IwdArblcM/TFen50rnYKDcdV4oqM8Yj3ggP2WMC+U8T22yz87hGdaKPcWd6hTn1xhe+526BA4nCdATeko36Sr9t4iK3vlNT+NDwgD5EHofP4iO0fUbbrih6ZscEIzOi03JW9FPdfMlbr311ua7B29MPkan1cfH4GPOsrfqlkdRTv3qtckBwd7kv9Xheghm1bydXJB2YUH8teCStvlfX//611ceffTR5rO/8MILrSq5MxjC/4I9+oEf58Oz/BlfByaaQyCvSvw/Pqn21EHG5Ir4Q/rIR+WPwSi88489A743TH/zm9/ccM+9Fh4t60t55tu3b2/8w3l8etaejYVP/D65KaRO+AmLleMT66O9PuFPrOC55xm2G/ufLoH9IAGT/fTE+Kw6xC+BWfTEGKQz5sjkdOmh/Dq94AvIv2e+jB6NiZ6LfcSJYlkxeubL+CshukFfYVn0PNfsk38Ww/OZ8EzX4n8p43diML9R9TPXzqz5evoFz/hnMKL2X15en/htCF/qTV4fPtnwGV6zTxt1zxfyn1lhaAiv+o8P7ZM5OScODlaaV4BxIe3qO3mEtG0RCGIvPBMxKIKfFlGKh4Pd6oDp/Dvxur57qRd5Xsi4gEtw3BfZyV05Pq97YWy1Le2m/ueglICxhqpuTOmFcmyX+SY6xjYh/ocXmuXY2FFjythJnsE4dh5GyBvKRyDt8TnovLFtnBrfbKG8Ch7Myxj/9hakejFcvBndY+v5FdE99bKPiO4a13QBT3wNxMYar87TZeNeW9oVn0XX6RzfAo/2Yjv3pH5YJH/EL1A/3eDPscezSF1wcuz3yGnCR/pDjvEr9ItsxKr0kszonXPiNXLFJ/0kh8xZJV4la/roPn3Av37yPVAWW5tfqz6E+82FkgeePRtYkzroPzmRiVxfZIc3YwOv2vCcHCO/+Xp41le416lLoEugS+BASCCYGNzhG8JRZM9mwahgK3wTX2W+Y1ke1Q8f2T1xKvyz+c0mshnwX2zJdxNbnnnmmXOrh7+xz7HX/HPn2EZ2jB3iy7Ed/ENYzZfGAxKPu86WsAmu33XXXc1P99LqscceO5eHQ/Hikbv+ZTm23/T3wyD4u7UkwNQd3jI69dRTVx5++OGV888/v23jcnfffff6lyXG1/rvLoF9kcCR/3bLyhGD3/zKf15cizH/yj8Nk6Pm0NfwbfFNB6CEoDNAC6x8OZFzjzixgA1IKcPxBZYScavDZAvA5Hi7biIEiCIJT8ShFAwANeDGEeUQCySAIJCsJIEpoHjmmWdaOXv/RkOiDXF2BfnKqEdygrMrqZE2lWMwACyegTEHl2MuQTgmRoBDLtC3wA9IO65JivE9/XeXwGaQgMA4Xx2Z1R86w+Gib0jS34IdTpJkI52nz/CAk2MTnCZoFlhzcLx5LFEPY+jW888/3yYslI8OCrK9oUoHJQok2gTwAnkBKmcQ3jiW8IAHnDr98AazY9glmSDgV4/63S+otuFBX2Abp8s99N+EgcU8cET9wUA8uR9O6i8MFIDjQz85pH5zJOGMBAS+U09wDiaFJATwApM4kWRBLvoDA8lc0qUSfrUPz7QroIepITJAEnww2zMiZ9hYSR1wmwz0WT/IiGwtxra+ALlcAABAAElEQVT3WxljI9ibOvAoAQnLkbL6ak9mZKcv6iET1zwHCVDy0Z5r5EFWniM5kMm2bdtanf1Pl0CXQJdAl8BKw8Wrr766iQLew2XkmK0IwVa4b/Jn/K/ncl/sBZ85tgsOw24+L9vLHvLb4Tg7xt9H+Tpj2os9yoICdlLCWXmLVv0eE3+cjWBPldUWYi8sCjYBwDaYDGPf/EbsBPuBH/aMXWE/kRhCffrAnusHnvAvAeOa8uyp/seup1/u2T5MoGSCwaScusQzFqg6z4bhPX4FHtktMnddveyiZ6PfFgngVWIfL2yo9vQT4cmz4huIjcKjcvwB5NgzQmy7RSgmRbTFxuuHF3/Ub5GZyVo8I/ypk+/lmfovBeThv/doN8Q/4LuJ5zxzdbkP4Yvc+Hc2MlBvKPa+nss1dRkf6uJv8K88Q8+GX1j9BXXjO/5EJjXwjR995rMZs8YAGZINH4lf+eSTT65PGN9///3tGfEnyC4TIe43IULenrdxYexp22JB5S2ws8enZ4UnPh8/KrpB9mS2Ovi6rqHIk09kYsWz8Gz4MyHjQj8snnG/DZmQHZO6Q57z/qaKGbPqJt9OB14CxpLxTP6wJ5TnYcx7+cFk69RkcMpP7dVtvImr6Bjch1nGNAzLBKmcCr318kKotu/FBbp6xsSLAsor615fOLQIQSIdFtA5BDND4gJ8wNXoBKzL4mXX6UN4o8/4hT2JC4PN6rWgFbkOK2A2YkfYGzEPuYnXLHCBcYnd4DYdVg5mmRQXq7Avcklwg16rUx/xqCxcgUOuxTbDHtiJBxgcTG/MDH/IHaaoF0/yWeqEOzZ9iQyCM86bEPYc9S9xHZwkF/xqC6bBergMh2NjxfDbhvgqcg4vfd8lsNklAFNM7NFdusV3pOv0hh7x0+CIDSbwAfgZ8iHJIZER35pu01n+gUV1/Dw6RufgAb1zjwX2/A3twR95cL7Ejh07mg7Sf5hBR+NzjZ+DMnRaHXBUPe5Rr5wZTELxz+r9bIX29B1e8/NgCExC+EbOwT7t8MHVBSPlmeCffoXIxMaXwRNcC17pN78dbyFl9SEvJsIt5TL5CdtcR/wS/PrvW3iQeyJj+Jt5Avkq/WYb+bT8o3l4xq/3DL3gHxumLbLx/PVPff4LB77I2BjxQpY8H9If8sATrL/lllv22Pa2ivqfLoE5EoAr/CRxSCX6Ky5BrhvHxmp+G98wBKaJrXwJs471VnD0B8bRW5vxTQ/oJtxD4kp8WDTBl0t7tRo8aQ9+ao8e00X+iTgs9dNreg4L4mfy6UL8Ei+put9iEC+0BkPU7yUmeAsD4DT91LbfsIn/CI8St+GFPKaILNWBNzgITyyyUF59cAmGsQswOX1I/+EoH0x7s0j7sJEM4Nl5553XMJtcYKp24bZ+wBTt6gNbwhflC6LgEpuCD3zjV536z0f1shoZyA0473gjYsZZfe3n90wCxp8FnMjzFMsgekE//NfpPL8p26U8+y/2MRbktMQcxpDxwH+hB2IP1/kg6jW26BJ7XeNKuQ/zeHSYD2DMG6PGp9+I32I8KyNuoR9jf0XbxrN+RHfx6gVReTL6ZTx7GZQexKcRi7KpSAzF5u4Y/CN2nw+lTqT+EB3VBp7wP4u0I97VLruOj+S3yI0eql879J0Pp308kTFcIE/ntOf+nQOO4UV98m2Zs+IXWuzLT5BLo4c+GqfO+JLaoOd8uBq/wwkycA8Z020YYk5QzOz5uFc9/BTPAB6SoT56HngkF3ji2Xs+sMQYgB/60alLoEugS+BASSD+CDzjW8J0fhScQ9nDYVjFB+UDw0O0WnzE+JXwd3wt/jGsVU8IzrJl7B9by0dik2AjmwZjx3m53OsavmKv3ed+9ciPIvaH3dW/xOT65D71atd6EvNm/EUY7Dfym0+HD5jPBm0GOrItblzUk8EWHfG3w9dh/vq1xMLULb56wNm2opox5sCYyLHo95RTTmkJjan7+rkugX2VwJv+ZljY+2+G8XnErmHV7oLahjWvrwzx4Cv/Z1gI9Zfzx/SCmvbLZQ6qzUJZk+icROAbcOTYe7ONQ8lptAfQHFxBuOBCchDASS4ISDnAnEnlABuQ45z6neBUsAEIAS/H2jGK8875Fqz4V2Kc8hqkc/7xpW2grSxQBLD4QHji4AJj9UsMCGY4uNpWNwODP6RdjrN6JfvwI7iwZ1CqgWk39D9dAptEAhwLiz2mSABJV5Sh77fddlvTGcE5JwpeSPrRbYsZBJT0iv2FBxwo1+ilgF8w7Toddk5wKgkJY+ixpB5ddAyDOIYJquFKJlZhERLUwwdtwCYOkjLqoNucM3v3crjgnIX78CSJQAkP+OG3CVKJU1iiDExw/87BmdQXfMIR9WoXzsAwWCRgD8EN/GiTTGCRevWZTMnBBovgo7Zgj+uSChZl4Qt+uV9ZMtUvm3adxzMMRBxOyQVkkjyBPFlyLPGjPPlbGEBm5E9ekrzqdU0Z+I0fctAHY6DSs88+256hMRByH75C6iIHyWZOLhz2LC3wGZP2yIhT36lLoEugS+BwlAA7g9jVSuwC+8t/ZW/YGskEeMl2xN7xryWaJSC8DQy33Zv7MpmnbnYHwWi2hL3WPrsBu+Exchycj41ji9gNfLIjeGN/Ur/y+OI3uA7fc298bjbZpBRiO9SB9MH9/AJ2GW/skPv0BeFNney5SUO2GZGHTR+05357PLC/7DuZiF+0wSex5zfk3yyrxyIANtIXNZKM0iY+8eAcuUlEkRve2G1+jfrZVXaODRX7kJM4Ag/alpAnr/gl6ox89Bcl4WTvubDtnukvfvGL1n/PRV36pJ++4MK+Iv1F6uJHWaSgvD7y9cgoySiLPdznHL+OnxA7zvbb9NOeXNlx9eu/3/Z8oSmSAHOdfN0vtuK7aRtp19gkD8eeqT65Dx94N7HsPzJ5xuSkH8pFTvwxfuJDDz3U2jJJTGbkjS/6gsjQOMKzZ6YP5KY/9Ofoo49u/fTbOPalGpMt5KIP2japoh+erzY8M2NIH/h16t+6dWvjx5jwvOmJ/hoX6ja+MwmEr/i4kQl/TZ3hW92rJcHpnjGZvDKJRIeiX+My9TdZBhtyvt6Xhb/G7dTC49xT9yYkO+27BOA3LDnuuOPamFKjZxU88BtmGW/KGtchx8ZK9s47DmVS0PM3/u3lRoxJ2OXYONCWOAl+i3XGRB/oAN3IWKJLGUP4pcd0Wjv6Q8foAoJ9mYQMPtNf443+0GFjmW475z/BqN/9JlT1yUJf9cBkbdCt1K8NeA0rbPgVQ2lTnivnlYMj6kDqg1Fkazzrmw3v4pjYRHrtPHmSAb3HA7xSRtzoN9xkK4PtrZHhj7iO3tN1L9HDG7LTRogM5bIfGP41oXIhz8N5X+/KebLy1UlxnnPa1if2Be8IBuN3PGZS73jf815jifTfh7IE2Fx2jb9Dh7xkTk/ZWjrLH6Y39mw8fXSeTsbHcj/fGvHv6BJ/wss8NnjHd7EgVW4HwaT4NfwR2AJrtQsHYC9M0pa6KvnNF+ML+Y8DMBCG4TP+kmt4DY6yDQiv6oef+q49ZWBhSNuIr4FPC/lgq0Wv5KANmGZD2nW/PQyVf8MfDNSWhS18Xv1VBjmP3Adr4RE+0lf5K7jL/4FdfGt4Cjudh23qchzSBvnqN7th4csU6QucPemkk3bDV+XZN5iJX7GEPuGPL+15hmCpfpK/RTTya2Mc1RZif0PO1d/Odz8p0un7KgFjha4a075ca4w7Nh7FycakuIWu0TM6YVzSW/oEp+ireuAJ/8E29su0SScT47kfpsA89QRP1AMHtOEcfip2hHfn+VbIPfSZH8lH0TZcE8Pgm4+mL65bFBdsoOMW86sLNvoPD/pKL9UNf/gjFszpI98LluIbjtBb2OKce/hn4YefGiJfHwCj28q7N3IiUxhDrviAo67hgwzcg382g+zgI7l4Pq5V3017+vbd73634Ro58AOdC67i3fON7dEWPPI1Vby5pjxZkR1sDI/qIGf47Tx7RgZsE6z3LMfU/bmxRA78by/ne86xjfIedMo5uQZj3zPM87MIyMuTxoINmYPy8mLmhIxNxxaUGgvGsHEh78S2iQHouHHkPn6LXAZKHkSujm6wgeyVnAv7a0yF1IkvusxWG4Ox4cYwHVa//ihnDMMAbRvTeIEvmbNTTn/5VvSWf4JXOqYNfgA945uoTz3BLDyRIR7pes1RGOdIf/gGeMh9dJf8YIJ66Tg/QltwBWkH3sAY5ek4vmxIu+6jm9omby+6qk9+zofIyJWdVyce9UmMR57qcb/8Iv70W7xrLOAjOGKvjcR0+FYXublHee3oG38Jn+r3LJzThnYRTNSXTl0CXQJdAhstAX4ggst8UZgJC2ETfPXbPuQ8XIP74lZ4iOQhYSCC2eykDcHAXGPbzjrrrGaT2CV188vYAL4XbOQjsaFykfCSfYTZMBc/U4Qn/qJ2vPCKrCtl27QBZ72Elr7AXzZRfTBXLpEvCYe1jxfH7LRybDcbwi7C881AaytzFvVkmK87YrBHW6bnjV53t8DA1qlL4EBKYMu/WhujK38xtLrmL89tftf/GpJjQ7kjXstTzS2/URcFyZxx4GST1AOsFudypAWTkpDAkcMuEAVWwAggAizgBECROgCWN1ozAWsPTAEhR1MZxMkUmArygWGSaDEA9iYi1MdRxycAVJfgF3hz2NWv/QAtvk0o4Z0THCdXmXy9QD1AXbvux5P2GA71uIYYpQQxeD/ttNNWVkvSrhXqf7oEDmEJcMA4XrPIV+foiclUE730iw5yvugM/eJoCW7hAp1THgYIYDlm9AtewAr4wVlCdFrQyimTUFCf4FUbSaLBGA6h63Gk6GKCVHXTW4tg7WGatpxXN5yQ9Ag+4I2D5ToccZ6Ou9dvSQZJjtoWPIEfAn1bEgASFHAmTh18dB1x3sjJb3JQL9whHwkSX0PQBwkNGEQuriOJBjx5NpExDBbEI7JWN8IzIhP9xadn4ktU5I2c06YJJ+2QAZlIEqpXwtH9+qFsFhB4hvlyBEzEi2fjuUnIuMc5ROauadN55JpnrbzxQhbaniKJFP3Om9tTZfq5LoEugS6BzSgBE8U2dgnB/uCo3+yhlynYCzaErWXb4q/C7fiyEhFshOS86+yX++Az2+caYttDrikvYa8tNgSmq9c1WM7uwXPt7hheenOenXJ+dfCLtZMFAGwIW8y/Vx9fPb44O4mUZRslvC1aYG/4/EidEts2Nk5ZtiVJcf3Bh4SIsnhBkjbqkPQhS9fZc4kci5pc0xcytNhVOfebTMk95G7yXhLGuZD72GB1aI8s2DRJH74AudpMWLpPG2y863wntlQ7XoCSaGLDtY3Ihm1Uno0m19hh+ySX1MWWuy/xl/uViU/kNyIvdWrHc+UfWKxqbCH90Rd1sdHkxc/CO/6Q/nl+KM8tfgUfhwzCu/FHZiHPzaZ+k05kx4/wZSbthrStbuOAXPkjxk7+TSF+jFukPWPBRk7K6rsFgI899lh7xuJFi/70GYnjyMBmgkl7/DZk8bjf+CE/8tI/9TpPDs6rSz+NUTKhV+ogQ/fYI/1PXOpZ6Xf8Y2Uc29MLsiBDvicZ67t4Wx9teOCTXX/99W0Rn2P1k1V0WJ+Q8ZfnY59x5ZnGP1Uux/y3TBQ5b8x7PrkeeZPBddddt16fcnnG+kEmuQfvdCpfVlVvpz2XgAVDcM+efI0/Og/L6C5M9hxc+8lPftLkn+fteSmvjH10GxfGAh01sUt31KkeWKqcse4+OA6r/DZGjXVj3PiIjTF+LJCLjaAL9ALmqUNcIQFujNjwVUl7xq49vtxnDNfNSwYWZUmc0yV6RTfVpQ31uk5vHLOJ6qI39IO8lLfRJ/dZIExuiA4q5z734wFpC8EU+Scy1z91kxciM/IgQ3XQOcdwhH7Y2BxtkQte2Ff2C79kS4biIv0SX6PosPZcgw3KwQl6Rl6ehb7QNRMHCG/wnd3Qf6TfcNKzQO41eSD29EVofTBGgiXGBL0Ppmibje15rya+/ucQlgDfml6ffvrprRfyH3wTegpL+BD8KXpIVxGsgxv0w0YH6VjwgY46Z0F9fCR4CCPkVugkf0q9dBmWqlNb6qCr1TfQFhyqhDe6Di/opTw8PFa3c0h70VltqBfRZZjk/uCFXBtcCJbhF2kHXmkfBjmGMzDDufBl735YpG/alXsLwRA+uDKwU7nwRq7w3TnH9gjuwkg84l+bO4b4QlvKux8veS76Swbud584Bg+pT53q8JsslFEPuxZ8VcZ18mHrPEcywTO7Aze1ST7KOY/cb4zgiU+uHYQnbSD+qt/GlvY9M1gbGXY/qYmp/ykSgE++4kkHkLkx449uiIWMHXtjOGNbOfY72ONe1/kz7mXn6WgWwCsLM9TFrtMZuOa38c+fgYnGrnpgVfCBTqsXLlSiM/QLjtFJOmHM852Me/e7z/hXr2N7eLNz8KvEIOJhv/EMK7Vr0RvfCZ7Qv/e+972tDXyoK/oEM2EN/vUDL7DV/a6plx+t747xpl2EFwQTydQ1FL13XbwMu2G2+vjl9JqPBTtsMEE/81yCCa7x9ZRPfiMfFcETHNE38lBOX80BONYueYo3yQMpB3c8b31BYmY2CfaQA/9T/x9//PH2WxlyQfw5Y4E/1+nAS4CO+3qtFzYz50Zv2AN74wXx6cXcyNihI/E5nON3GP/Gj3FPl40RttOYNSbopbFlbIg7XPebTjlH18U/9NxvMYJ2gh/0yHgx5pQzhozrjEXta8MeqVcfjF3Hxqc2YJI66JbNGIVtxrY2tEl/+CrBIvUi/MI8ckn/nQupF9nffvvt6/ocvt1Lf+K7wQD8aSu5IfrCV9M/7cbeO+YD6If+4BcP2qJ/yvMJ8Oa6HA3dgrnkLccFN0L6qG31wg7PCZbCATJSJ/0XCwY/3Kt+8To8i1xgCDl6/vxYZAy433hgM7Ql1kQw3/n4i+1k/9Ml0CXQJbABEvCygvUO7AF/UtwGL2Gp+Q/Y5RiWB8P95gfCPsew1TVrFtQDw9lF9hDOIv4Y+4HYU1gIA90H/5RXHxxkt5RnIxEbwR7xt9TvWFk2wp7fbM++mTdKmzCdveRDuo7Uq08wHumrY7zxF5XDE96zjk6//GYDlSULdkE9hzqtSWFBL7YMLwpvOQi+bLqAzX75MJfAEX81fNloGKu7llnYO5TZ9b8FW2uT0W+U6ABfnEU8AKSALYDh5AJoAMSJrJT7BAI2DjICnBzqKeJQJzAAdkCf443cD/xseYOCw8xJ9vYuvoCkttynPOdYkIPUy7kFlM4pZ0IfP+EVSCvnuqBDW45dV5+AXr/VQRZ+C/oF0wIfE5arq6utvf6nS2AzSIBDM48k2gTBMMBErd8cpSTmLYChGxyv6A99oq90TbnoaNrhSIXoIcdG0AkT6B2nDKkje1iUelzngGmHDsehcj+HTDnHknEIXiTZwbGi43iVJHRe0K7dLKzVVhIJcCHtKmehRviCjbmmniRYW6PDH/0XvKsbzqlTfSEOrC0UuQjc8UbO2iJ7dSH9wnuO4Vy+nkwWFrWQOeyUJMCT8rBRsjD3tYPhj6SS/qpDW5xLz5tstel+fXNMbmSvH/hA7nGsDs8ED8g5/c7zVCc+OMGzSCJl0XicdW8/3yXQJdAlcKhKQILXl1bgN5sAP2MrYCb7yAe3mMp5CWS/Y5+Cx/qvLgkIdk+ig406/vjjGzZL+sJkFJvSfgx/2D94r3z1jXNdG2wAwmP4Y2v4BrEZrjvHtrAVvmZvcRI7om73qV+yme1WVqKk2sO0z66ol33iY8Re4mVsS9giZS3eRI7Vr0/u89u/A2a33a9O5D7thFwjG/tK8Uuc07bfsa1ik61bt7Zn4kuKiB1m07WtXe3bxBGeXyV8stGIHcwEb8qQD38mkz/pq0UEaMxr7vO8kuDHq/EQwlfeEldfttSZcvP2niFSt/7yVUKVV+fUj8+Mm5QjR88I4dd4UI4uSI7V8hl/ypITfwWRTXwHfkgmbtrFV/9k3OVc/R2/BS+ebZ4VWSinX/i3N6adp2MmVI3zkHr8lvwzhtSjPs+P3qkDWfytLnIzsYTohrGpPfzbO6dfnpX7lffMtKOuGnuTVa4ZT2QodqV7ziuvPuQ+vEcG8EWsnOvuDa9iYHJR1nl82/TLmPUM9JXPesIJJ/SFvU3Ce/+H7nvOYiNjOfJWI5wRb0lMwxZj0TPLc3Qs/+J39sFSY9GYtc9z9mU4zxZG1LHkfnhtzLlmfLAn9V75FddN1OJDO8aHevCmDl+cGtsZ/TA+jS/3uF75t+AEf756qR4xmzyQ+EW58K5N551TF96QSYGMT/iUTeyqLJ5tdFI5mCjnQ+ZIm0hfxJOeR9p0Hs/Km/BGcE+cp7x64RLeyI/cgpHiMW0lTtKO5+G8OqO76iRrGCFnZlFI5C43BgM9MzzhDwU/nUtuS53aopeI/dQGW2eyQh9MppCB50FucmT6gDf3mYjpea8mvv7nEJYAG5p8kG7wTdhU/jB9kdehY2woPY7tc0yf5WSQycN6nY5F91xXh3N0yDF8QnSWrsEwGCCXpA110Uv30Gnk3hCdhD/8CWXH7dNbW0i9cElZGGKP7NlrL0LAQLxpT1vhAz7CMn2FX3A3foc6lA1v/Ap14VvdkRfsx4/z+hn/zP3siBe3034wlS2Ln6ceeOSZoNgGdaW8+yNjGOa855u+uE8ZdeknjMVXns24fc/P84mdiqzUw0bAQfco53d4E2fhI7gd/5MdUYd+sAHw1r3OG3cmdbufRLqdIgFjyX9iCRlLxpaN3hqbWcRlbJn7so9v4Rg5H3tu3LqHrqqHbec/IGXoNuzho9BZfqXyxnp0jb+JEhu4pi7XtWnvHP0xtvmCSL7BYrTEuf6bLj2Qs8AHvwYPCC7CBnVEt8RBIeVgFWyqPpzrwSPHysA/OpqYDAaiLORoP4Y/MAGm6Dd81Sf34zHyhRe297///c1OZHGue5ULJuk/zI3c7EPx8TwLz8ECEVgEm5zTrn4j9Wlb/Cvmgh3OIeXVyx54kSRywnN4d68y5EVOiDw88/hz+tsX9jbRHPA/8UGyqBcDdMYL+8hzNN48Q3jgeRprbCN77LdxgPgDxpOxSVeMJc/YVsspK56q59JOFpHmmnHp2NiWs8Onc3RWrsxYChlj7JmxGh2EI3wseKUf9Eq5+B3uxTeCZ/QU8TOU0Q/+gj4jdQTP0m/nw6+9vtjrY3SX7MgQNm0dcnLO++1FSD6LvXOI7Ub0SBuJJ13HFwwTI9Nbzw9uaQ924i/kmnyVXAtSBkU2ZEXP9Yfc5Y/4le4L/qQ+fQr/6nA+1/zmS3gu+pfzxoJ4nD3QJuwIads5ZbXXqUugS6BLYKMk4OUu/gdfsq6XgK/wtGJb/Bd+jfPiOfexBzCUPWNDbDCO3WBnYKRzIbiXl5syfwGjYaX6kPrVh2A7m+mlCfXyE9k4vqmcAHzVlnbYaGWQNuX64Lj8HP6VQ/AdzjqH//iezvk4gevOxw5oC982fhn/lj9+qNNr2Yg5PdkyPLstax/Bm1OqX+oSeGMl0Mboa77UXGZ2DS/a295oAmScSgR0ARTgCiByZpUB0s4DXeQ6J5KT6M1c9wFhIOgewAWkBKVADVAqKwgIAUqg6uvAwJaTq07kmiBCO/gyeahezqqFhIJ2eyAIYAGpdoCjY2XxI1mAN5MbnFo8AXrXTJy65v5MtABY7dq7pn5GgnFyn+RApy6BzSYBjsssEtwLVumVZBNnREBJ7+kRXfUvgF3j8IToEb0SpNNNDg0cUD56rl2BPlyhswmK6Rq91BbSjgBcPfndDoY/8IF+4s8xvOLAObYhvMYZ1GZ48aUOmAGblPVFb8lN7ePLPXiGZ8ix+/GivASBshxEGAVflAnhO86cuuGj67AOviifJIa24A5ZqBtv+JQE4IS6jk/9JEMEn5QVuFuUZdMfOOseEzQmEWCdhIS2yBUPniHSjrKeCfnmWJ2SNMrrm+v4Q5I+EikwVR/xxMklF+WTbMC/Tb/tlZtH7EX6Nq9cv9Yl0CXQJbCZJGAR02WXXdbwky2NT6qPcJldsnjWxBkcZQ/gOVvCDrAzwV0+K9vC7rHDbIr72Vik7uz52CE4HR+bDVEf+6a92IvYYItXnYP5kjKS8mIE7SG+N/vohRb1sH/x/7WDBzbG5rovp4Z/PKk7X0KTZGcv2Tr1Kqd/7iWHEN7UnaS93ymrPFul3iTSU04f2af8Vp8vbqTPtX51qJNM1J+Ygd0zUYFH9Se55HrOkY972XF8ZtJU2/qSuthBz7XSpz71qZXPf/7z6196CR/K1ON6D/7UyydA6jdmVldX229/8IP4TOpB+PVcUZ5Z+zH6k/qdVnfiwxQz/pQhe3XyzSTfyDn1u54x5lh7+BATkqdxkgV06iUrZJyRU9rkl/FByN59tvSTrD0PffVMteccnvzOmNG+DSlPbvigN8Y430R7fCnjzpj0TI2VJAzxhw/XXVNfFhlrx2JLfTJRHn0xYczvMqbIiC7nJTM84sXmfn1QFm+O+WjiUuXwZpIcX+Rogw3ibP6s9pThZ7sP3+pUDp/6mf45D2uU9ZVTbWkn8lGvcWzSmDyNK/fCsU77JgHPmnzpLqI/yBiX9+C/e87GjbHkuXhejm3I76nzks2JuZSja/I7ibWMPeMkL3kowybgR5vRc7wYc3RB/GWMBYuNI3XI0+AjMZG23OOaffDGb2PQOeNM/2PjEoM4h7dsxp77JcyVdZ/f9Nk97BFejdeMb7xow3h1nnyUo0s1diXD5J7govLq1oY6bOrUL/1H6qUL7IB2kbip7uEhXCdvPLtX3/NlY3yHlCVjY8BGxvRa/e7FDwzVf5PheHMND66TE8IXfv3GlzL0VGzod9okA/20uW6SGqb5F/fk1KlL4FCWgHF86aWXrnchi2voMDw0/umJXBYsNLGHnEN8cvpKn+gXgg3KVX/GOROJyrjXRyksylE/34RuwQ56ak//6HnqzF79jmGROvEIu9l+ugm31OV8vQfvysNgbWrD4jplYLgXA4MN+MZjcM0CHn46nIHn9N99qT97vKUuOJycDSxzXtvqgFH4hTk2PoIyyTXhM6RPrsNdeCcvhT91kQG8Vh7veFYPfrTjOowyl5CPiijDFuCB3MQiytpcIzvHCA5qk+zIjF8ZGak3x8po0zn9ZpOyqUc5z5i/5zye2U6+qL75rZ+o+0lNDP3PqxIwHozjiy++uOFMxqvLxpPxI+aBP8YRPbOnLxmfEaYxSu8zb8UvM+aR88jYp+tiULpg3NM1uhA/jv4Yr9m7Dy/4pM/q1DZddE5MY9zTAT4JvDzqqKPaIlT5BwTv8G3jYyojzlAffwmeIfkAuCiesuGJLqcfwaLad3Xin36KwdzHX/Ybf2SVL8Apx+eD/3weeIx39aqHrmuTjwVr8UmX5b7hAz49D/KsmEuW4TH4oj/wTBxLlmStTefSDxiqXfeoT//VD2fy3D177WZBMNx2Tr/IxjHMTHv65F5Y7jnC87xE2gr1PwdUAnyQe+65p8XU/HtkXH34wx9e9/U9S3pgLMqxsV18EuPDWPU86YXxY3x6USi5IrplHBhTdBL5nbFkrKoXGaPiDnXQPeODfTWGkHGY2EjcB2+0m3rxYayjYErwgE7CCWPNeKd78hqITvKZjGPjUj30qeqftvhM+Ens696M8egMXuGiMa+Pq0Neiw9AL8iR3uub3/i2qMy9iZfUqQ56h9RPJ/ELw5S1qJe+wijyhwvuCf6p20aukSMfxHH4zJ5c9A3ukl1yRrDfPJ/nHMwgS3IyPhyrI7qtbv1G6oG78V2CXfZk7TyskzfVP+c6dQl0CXQJbJQETj755OajsEewEPabBwq+wrKKufAN/ntJnQ8Kq2Eu7Id/7CFcdN4eDsO1ahv4kmwAWwLv4D8cZ5sSZ2qHvbGH2bBeO7CRPdY2Uib5gdi81cG2aBtmO6cOL1exBfqpDn3KBmf5oHK0fEh2Wh9dJwe8qS9+ZnKs+nWo01ILe1eGdTJblit5qMuj838IS2CLcTpsay7igo4MsfWutTmbBQU39rJAQ9IJAVUgx8Hn+AIjzipQ/PWvf91AFfgALKAo8SDoAHiAFNia/OSsJ/gFsohDK8EHiIEm8AKKvmIF/CQXlKmTK4DaBAhnl0NrEjJBBafbNYkLm39xom0Gg6OrTqQfjvEnsaAMUGUsBCuuu78SJ9k5iVyyMKFub+vUJbDZJEDHOSqzyKQ+x8UEv6/8fOQjH2lvtdJZ+ka36CX9T/KNHktKcHpgQBwrwb5zIckJuAAv8MD5E5jTU/XGmeNEwRv1aBMGuY53uOU+5+GSJAmSENuxY0dLxsGQOIewAu+SDu94xztaWfclKSkRKRkB/zhd+oVSBnbhT6IFfuEBPrmuDY6kDT/koLx9kjPKSqho3+JY8pCAgHf2CN7COwkb98JNjqfkgn5xCuEo3mCZMu4nQ+3gyVeWYOrPfvazVgZP/rW1pADe1WEix8SwRAM+YCcHVb02MpBEhKGOQ5IyEqb6HLmTpWfpeXs+HFjys3evtuCq5zZF7sszmLrez3UJdAl0CWxWCbz73e9esfFTMwlW++pfrrvui1eSFibH2VO2SpKXbw6X2UI+69NPP91siDrYTous3IdgO3vBrjsHoxGbHfvAprC3/GV2RDtshGNtZWGQe2G6RDxbB/MR2y3RoqzkjgUOzvG7Q2wNUm/8hXxpx3n2jz22N8mgbW0gNsx5tsX9+EjiiI1EbAq7p6+IfWJj9FuCxtc7EHvJHiZxzq7pD39Gv92HtCExz+Yhe7bZc+ALqNu9/hPK6hAX6Ts7yT9yTmIHP475NOy1fjiXuEhfPB82OaScZ69tfWHz3aNM4h73aZtPledpj0ftk4WJAsmsSu6z4cdGhmQTX4QMtME30KZnHfuevfo898RnqZ+c8fqb3/ym1eF58SU8H7L27MKr354DeYghxabiM7yYEHUf3vBDBtquchKLkhEZ+2LAjsH342/oR/pIZ5Qztj1XybtM2FhwzMfShr4Ya9rEA7nSSWOEPDMO8UIPPBcyQsr7WhVZ6Zv66ZgxgsgD7+JJEzrGAhIPK+M8HRTf0j++4jJfzMQX3XAPGVZSR6WbbrqptZPkJRnnOSjnuSEJ2ccee2zl/PPPb7/Hf3aWxdOJj7Mfl+2/l5eAmMu/ZRYXVTJuYSryjNiC8847b2V1wJpl6Vvf+lYbv0liu087WRBljNNji9PEC/Te5hwctKdX9IgOideCVTCzEh00Ltkn/NIX5Bydgjd00297scsnP/nJNjbleCzC0F/JcTpAP5XT3jPPPNP0GO46Z/zCOF+9gx90QD4L0VfX2Rj2xT14MVaVgwuwGsFhmEFn6bIy+Nd352CDe+G+GM0XnvSNvrO/ZEJeeIp9U1YbZKVsbJw24Y5/Mw23qt6SBXnKQ5G53/onBtcfmzrxp03jBYaw9TAGr8roD/2H286Jl5cZM+pF2bcf/U+XwCEqARjJ3smHwA9YQk/4pM7TPfaevyaPEz+VvtNfNpL+8UWip+6Vx4ETfKuaIzGRB2PZUFgHP/g9dJC+xh9QL5zi49FXWBhyHNxwHz7pM77dDz/4c/jBI1yCzfoHM2CN+vkSMA+OHnPMMQ2b+Arx8dyvXn3gP8JemKe/fBF8hC84auPLyfngxW+LZvAP04Nl5OE+8uHn8JP4S/qC/+SCfJFQP/leb3vb2xqfvkT405/+tL1UpDxZwtXcwwfUR7zqc/L0NXaKf/Kxj32s1UNe+uq5udezU4/nzSczJuQGYSSsxg/8s3nuyhgj5AKbtclPraRNtFpscvhwPniavXOdugTELrbbbrutjc3MoZEMHaKbxiQs4TPw8x0jOkp/xU90TA6AnvBP0Ngvc44uGP/GJt9FLAUPbGIZeAKT6DJMgGP8GzqI6FxI3OsaHNi6dWvzkWCd83APLqmTzukL34ififi66vSfAfBML5TDu/aDH/TWNXinbv2FYa4jOJ1jMhBb0WX+Iz0NvfTSSytPPfVU829hmDqUIUv4JR8Ob/DC//QihBw4nOFXwmr1kguKr6n/sLCS56IP8AZWwjxY6DechNOwBO/qxU/wS3l9RvDb88cjXMYfvm3qSizMdnn2sN48zWrBoOBN9pXPfnxgJOB5nHXWWS1uix+iZTZEPGUz7jy/xPwXXnhhs5nso2dNV5Rjy9lK+QW6xdbSU34Le2YsK2+siuPoonLOO4Ylxixs2DHEacY9nWHnjDXtGfcwxbgy/umtexD9iz7Tb2Rsim1ghfFtvOOXHhh3bDhcgV/8EjwYw9rRpmP3wCIUX4JewyuYgQ+kv/pir67kKDK+o0dPPPFEkwOM07Y2lA+pT73qsSd7eqYPrsFZ+kUerpOpdm34ovPw5vLLL1+5/vrrV0488cSGp/wd+u2ZKKdPZOZYTtMxHIsP4TnDtuCKdtgAfmSw3LOJP0dOYkJ44nnCDjLCF349E89HfxGMcRz5pP993yXQJdAlsD8lcPrpp6/PY5199tnNp4T58JyN4b+wKyGYxY+CbbCMzYCF8Hd1sJlwTXm+FJ+InRFDI3jt2q9+9at2D5xjbxCs4w+5JzgeTGRD1a1t52xT9Nxzz7V6taddPLGD2khb7K1zsYPqcc2cF/vL7rIpsB/uw265XOeVQ+zI2H9sFw7BP8st1z1iZWXLsB3MxCkxMcXR2szE2TAYJYwMzIOZKBCnlcJSpA0nY3TZceqlqYPkxSnghgAT4BTsP/roow3MyA0YZ1xLgnEkOamcTY4l4BKEIsAF5AQCxodxItg3wSHg4FwDVJMVAhIgrw1bJmFaRcMfz879X/nKV1auuOKK5pQHfIH5fffd13iQiLBYj7EArJxsBDBd44wjvFkwh/COv5qccF6QrRxAps8Crve85z0udeoS2JQS4PxwnOj+lGPBwbIJvk3yc9QEnBwmzorJUhhAb5yTkKPzgnY6JNBXLwzgHAlcBbwI1piohD30Fw6Y5DSp7Le3WCUcBLScPde1Q7dhkGM2SRv0XuCaNrRD9zmLHL8E2HiyyFSSAT7QeQl92KaMyZPgGx6cc005iQEOomPX2BjJf8l+7cIwWxJtGTB4wzP+OYSRKXwjV+XJx7PghEo0kolJWgG7L67AKhtZIP0gV8+OwwkvH3rooYaXyqkryQ3lPStlU55sYDB+OLfOkzE+XYORfqvDHq+Vjj322DZZQzbqtumXe/VHPZ4PWZIbzE9yRaIyCQd1ass1fR5PlNQ2+3GXQJdAl8BmlgDcto1JYpkds7EZIecRG2B74IEHVj796U+3iTL4y0bA7tjw3MdesONsYfxhNluyWfJCvWwc/GYfxAGxIeyBja1mj+JHiw3ZJTaFP8E+svXsMztmC7EPyvHDJXPYWfbYb4vM9MUeT9rCI1vrOmJn2VNte0GGjVGOfPQbsV38A31g32KD9VvbiP3Cl7ZOOumkdo6NtxjVni/Cn3GMBwko8mCr2HUy0cfYcteQiRdf+1A+/4ZUHRYsqBNZWKw/+LOpnxzUlVhHOc8KnXnmmW1BGx9FHOXZsrVspxevLDLji5hMjQzYWXGRhdHq8dVfhJc8U/eZwDS5kbfQ9QuRnzbUYVMveTjnOO141mMiW/6gf41ILurMhIlxYnw5py57MtXv1SEm5Rsa5zbnTfzyNcWWGY+RE78TH9oyiWUceX58MnxFlnnu2lUPX4sM9YcsyEHsZ1xpE68WoihnvJC750k3MubxunOYHM+EFz6N/Q996EOtXfzn+ZGP54wvcS1eE5OqY0zqji83vjb+rV0+pPG/DJGdDWU/vo8OwqIeA48ls7G/Teqa+IVxiZW0CMNDJvxc+8xnPpNTS+2NdWNNzGYcotgOx9pGXgyhU8b8mPAB99kJGEiH0HgcwSS+Pl2CS9qE4TAFHqPoJr7YrW3btrXzsDsvcyhDN+Wb6CmdwANbBbNgJl7FHuqHhyiY7xyywBUWydfSf3irPnaDDYAVsIHOu1f78NP9yuqnuvFP37XpGZx66qktjoXnwQfPx3X3wWN4G/nkOfrNFrBfjvGkDfiByG11wICjjz667clQvAxP6KV7YZ4ysIqdhU1kgufgdGy5yRVt7+mYacz0P10Ch7gE2Fx+Af2yEB7u0SEYJV9E5/kWwRP+DtvPrmahGDtL5+g6/WTn4RDdou+I7vGr5YnUQafptjbgBxyi00juWm6E7wwrpgiuwVr+tkWnsArvfCg8ay/+Gf75MCF4Jqdy5ZVXNlyDdQiu2dyPJ22rF2ZrD1bru/v1w6ZuG1+bbXKvtuJz86Hl/+EdUla9sJJ8+IPaJA/8qwPBKdfd61j95hn4xrBW/Y7DO17waO9ZnXLKKes+ylTsZDGzhcd83GCvdh17jrGlrt95550Nq52HqXAbwVT8kpUx4wUU9mqqvXZD/9MlsBcSMJ7EDHQvMYaxTnecE5sgPgy9ohfsO12Qx+bD2GBc/I3sKzv0z1gWd9FjY1schtQLT+iHHDF8Uae4CkaMid7ymcRhFifzIcU1sBZ2qpsu4TE6HD+T76KfX/3qV9fjl/DLtwp+mAvgE9JHWAgjbPBE/cGOxKXuhWHKVx11rB8ww73Kwxe+HlnIEZCna+onX3E8nwtueQZib2WQe9mPvChSZWNRyLbBn/3mN7/ZcEw/4Vvy7mSTuQFyFWOa74DB5KNt8jEP4F5jwD3sDN70BR8w0jV467kmtqy89OODQwJ87+QnxDViMM/NOPKbLsrzZMx6SZgt4mcoE/KivzHBrzB2HbNj8CE6YKzyQ4wZ9dFhZV037pC9nITxwz+xGc/GFz30GxmT6jPe6JY6jE9EVxD9oJv6o024wdehn/SHn2Tezb3q0q6cjD4rb58XnPWVbPzXLhigf8b96qAPCH/uUY7ejnMUkZ89nWD/zatl3gxe0Dn6Lpale+rXX8d4dm3nECu7Xx/xi3fkuvM2vHmuXipV10c/+tE27+i5WfeAR3qvz2TmXlhINvEhLrjgghbbuYbST88UluNNvsiz4SuSk/GCLzEsvCY/5fDtuQar4yfB+05dAl0CXQIbLQG4a+NniZfgkngZvrETNudscAk+yu+Jh8WR1pnAXrT6qo/IbwqNr4mhxYzB+5TjO7sPdsNM9pKN5IeyTzUvl3vq/sEHH2y88GXZDAuI4SqfS11ybqnffWyfvuinNsxj+AADm882OA+f3Q+zxa9sCFsLzzcDLbewd7Cju9Zs6UHZZ4kPDw0ZBAL+zUpnnHHGypNPPtkcTW8dUUKO4iIyOcApqcRZ8UakRLWATfDC0RHQJPir5XNMOSTXKAvlEFBKLmVxacpx/EwKU148brjS+OjVsuPU3O/a/G/YfcP3nE+TScYy59tisg984AONr3y9IA485xggeaZ33XVXCzoEDQAKsMU55QQDbQ6t+uMIc3idB4oJ8KsABAHav+qqq1obxplErMSbQEA9jhkA4Khtzi3SJuBEdRxlAsciAgZgPGGlDk5zdNk464vMmhj7n00uAc6XwFfyYBbRffpA520cHPpC3zlPEo0mHST1TW7SQXoKCzhbJi85RL6oa4ICCYjpGz2ml3RQMo6Tw/FTHz2XdJCg4ISpjzMoqLeHVQL/F154odkBb8qaNIH7HEVYoy6/YYUEPYcMhkkc6Jc6JAe0rX62DfmNOIX6xDGEG7Dke9/7XuNB0KwPbBielGVrbPrBmSULAb2tYhKnz8Y+SXpIYiCJAXaWb4HwFoLFAnt8SlQkQeO6hb3VzpI7mSGyquSZrQ4OM7mTh+sSGuTkvHrJHf9kNSZ8e77ky+GF58ZCEh/kShb2eEUSD2RBBinnnOvk9eKLL7Yk6Lit/rtLoEugS+BwlgBbCY8l1mHvLIKjcJ/dHNv08X1sKmI/2SbYbILKxmdnZ0JsBDsk5qo2LLGBcu5hE5A6MkHVTpQ/2oH/7LG4gO1G7IWYQx92Dkkd9UmasFVIwoQPwUYh9iYTnWyv63yIJI3cx7bi12Ql3k0wsjmxm2INPPM1tm/f3uol6+985zstzjRByQ57QUjSH882CxFMwvEL2HlEvpGxuNZXRNQVynESVP5lVexzyoSv/PbMPUsk/iY7XzLDsxjYpKONXEwC4FXcKz4jT/abj+K6N+njHxgjnjti340V/SMHcq++B3+HbMmaDN0XfwI/ftcx0Sod/pCZ8WrTTxOiZEYO4ji8GWOeHT+E/8Gn8fxR5OkZ8usslraoxvPVH34HfvkevsqWvtnbyDmytqBP8s8ia33g26nTXjvGowQkmfIblTGx7dnSE76vNvCe59iYHP3hF997772Nr6qr8WE9l0suueR1vI6qOCA/8bOIlimzqI5+fc8lQDfPOeecFgPQj+iQmoLZ9MUE/p5SdKTqhjpMMKKMbTGNGITOTbVP77du3bqbjWmVDH+MHTkUY91iKXqtTpgAo2Eool+ZkKz5lsiALsEWMSJMgkHhxzn4K6Zjv2CSeuECgktsRLDJnm6L1UxAs13KwCH36ZN6vEAgzvNlN5iVxf0wB8FebYgfPQPxrL6xS+yka88+++z6YjB9HON66oExbJAN//Je5KFP8Ns4SLzsHi+5w0OyMtkgh6YOmM8mice8+A4T4ah2nddnNskCv05dAoejBOIXsNE2H6ywYIwew1l6Cy/kI/gD/CZ7ukiHbYjO00v+ijKwCi7FX+Zr8mn4y/kQBl3mA9FTGBud5gfJv/GvYJByUwT71GlxPz9NzsrX6PAMd2z8NhhWySJB2ItHuAlbkivn48CI4IS65drJSV2wCOFLWfhHPjDFps34+3wovpg9GwVDQ9rFgxyhfsI59YTwhm/yEzPAXu3DZXNEFgtqx7NgO8wdySt5bhbtxqalvvGeX8+fh7FsEpnHt+H7wkp+GQzHq4VL+GAj5PzIW5ueTZ7nl770pSbTcVv9d5fAvkhArMdeG3v0AhmTxrixC1OMU74PXBI/J76DK3RG2fvvv389XzCLH7qkbjl72OJ3iG6LK73gZS4V/gT/UsaensICGEJnEs/iwTb2M+NfZp+6xMK+Vkz3YUfNHeCRLMSofDb8wAuywCe+YAr9xIffeEKRYdqxx5frMBSuwRKYIBaECzAKVsEj/dMmvlInn5iNCI6SG1wdk7quu+66lUceeaTxrLx2bA8ML2Djnf+J8OAZePGX32kMkIO6zZGak4Bf/Dt7z311yNPDfz5rrpvD0b9OB68EpnQj+pB9uBeX0fvMfztPHxDbZKxa/2AcsJXGNL8EsdvGv7wGG2qNBL2BHeyYetg+9s38HBvIzrJ/4su82MKeiymMce04tgaDHia20p58G35gBV2kk3wKMVdyOPRKW/SHfsnlwJnorLFPJ60H+eUvf7kel6UdOohnusKHYJfh4CzSf4t+5XrIJjoPJ8hlx/C14rwEoD98DLiiPe1YkwIX4ABso2t8PfyTFdn46jjiE4pXn3/++aa76hZ3kQefkN6KD7UNC2Be8EluD66LuZHng2AI/MGD50NOfhsT5IjIgSy1gz+8kROe4Ydnot94nSerVln/0yXQJdAlsJ8kwH59+ctfbn6pKvmq/J4QewRz4S2sco1/NOXDBCtzb90fd9xxLaZn09gdxAbBbOfgKVvht3h727ZtbY4qPl2tqx7D7GqvleeD+bAZfIXr/uMMe6QfsD2xsv4oz6fj3/H1xOPve9/7WhPmlmA6X24z0dpqj0U9GvK/uw7iF00Y/xDH4ECSr1h4S0hid6MXFHNSOB2UIgufvDUmab+IxskXE5AmyTgrY+JIaWfKAfnBD36w29cmLGZC/r2cNyM5NYjjdPPNN7fV9v794N5MgrSKlvyza0/G6cDilrV4bsnaN74Yp9w4ElACGhMGEnucSASwOKnAy3MzcR9Q5OyTN8fUYr8EJ8q6FidYPZxhzq2EGkB0LckAdUjWmUwxceGtDQSEOaXa5dDiSdsWw7kfOAJz93JgObqAlJMbAu4maPwLR4GNBCtjAvwBtE3iUh+0pc70I3X0fZfAZpQA/RJkCiLpyZicN1F54403rl8yMSFghK30CG7TfQkBepnFNSZy6Tu9F/jGqUlF6rFJYl188cVNZ+m2AJYOww+6ypmSgIQp9Ju+02/JBhv9NamgfbhlIgGe0XV2UmIOn3BMe2yXSR0OobbikME1vKLswysbiDdJB04aXuCP/sERDh3e8BU+lfNb/Xickq/6JG7wFSJbSQ6J0SQYOYrqIxPJiOBv7pnae66+tExekr7VqSZXC17UL7kjMWCvXs8cT3BYuxZfwV1ON3JdAoRDqw2TTMrBTeTZkY0+q3d1SELCdfL1XJxH6UMwt8qgFeh/ugS6BLoEDnMJWBBpYsvCxFkEQyXS0bZXbbpzwex6n/Ps38c//vG2QAhW20JsVmwVrGbjfJEni4pSru5NKLAJeBAneulP8pzdSQIn5cXN/G1JcuQ+ExFsua+jsRXiAokVttD97rHno/P12UL2Ft/uc7/ryjuP1MFeVorNcY6NJwvJ+erviz0kkiwcE6vY+DTsMR9G++RSFzCkDf6HumbZsrTDVrKfkXPur3tyqPXgS//Imk/G1yI7fdo6LLRT3qSLSZnwT8YnnHDCbr4XG47wQW428tI3Nhtph3+QZ0WW2uffhMh9qg/qJ1/Pie/g36DiiY+BxJxp26JbvtvY51KOf+T8ZZdd1vIG6uXX0Ql1S7JVGbkHkXNkbS/BaIIHL6mTj6W/xhAfBX/kQJ4mzsTC89pYa+m1v/ggHy/Jilc9X2OHPumrF9sS17521/45yvNcprap3Mv4PrqXZzW+1n9vrAQyjkzeyXkg48gYkhubNeaX5arqxtQ9y7RPj+hUYoNgAH7hED/fWLfIRIxFB+Rn6Ae9gNnRMwny6Gr4CQ9e+BPbsVf6btO2GMhkttjKvXCIDsMRxAZoo5L7tC/3FLsAx/EOA/CJJ5t/Z2xRhlwYDBXTBNPEuvUlVbzaEBvhP0ppaxliq5PvlEN2n/5kX+tgh+GRCRIT5nATietglcV14lz9NlYc4xlP8NLWqUvgcJbAWFctZv3a177WRMKvgQdy0XCFj8LfRPSInrof7t1www3NH7Ywhf7RN/fDIT4ZX4oe+hrblC6rUxm22J6fzMcck3rlb+TS+Cd8IRuMNWEZnOGnwYdKcDY6L0/Db5oVQ/CD4U7+db1jMYe8G/7IA9nDx0rwEX98dz4V+dUJS/lB9ZOLa/HP1cHfIle5IbiauRq4r30yhV+uwT6+KJnL8S3jS+nHN77xjfbiuDrhuHq0yU9mV/GmfXNVfETH2nF+5/CSIR7kt9iWb3/727vZqiqLftwlsLcSsIjAHFXiOrqC+Cc24xE+GbN8HfO+dANVn0FMI39L1+OXtULDH3XQYdgAL6KT/LNKMI2/xscQC/HBKuFDnMgPU6f2bZWmztXrOYapcJi+i81giMXNwRB80FX+mX7xk2AhHHIOjTEJHs4ifMGAYLtyOYbHNnG8PuZ86oK3/PK8iAbvx21HHu6Bu35bEKk+RO4wHbYj5+ENXFcOBrEH5OteffHMXDePEsqzz7zKWP4p1/cHnwSW0Q1lrr322rZgNDE73Wdn2XJ6Y3y6ZnywU+w1X8V4cv3HP/5xs510SW6ODTPPrw66L4clt+elZnPkxrMYSe6LDvhtzLGbd9xxR5tLM99DB+XkxE028RRe6LA1IubE8ISSbzEXpz22l36z41V3lPPSFX1XtxwEHNKW+vCCD7oD12DTpZdeOvfh8l3oF32vWKiP+kEm8hzwUB/gDJ78dt499JQviKqPJR+aj5ORtTr5GPJmzosz1YEH/eBXqIu+jnU192sjeu25WLit7xaFifvEeOyCY1jkGt+ITMmbbwU7HJOT5wg3zKHymTp1CXQJdAkcCAnAOLaDfWIX2B3xKDsFm+ClHBXftNT0egAAQABJREFUk82ywcE9pW1DDs2LILBQvXCczRB/++08m+SjaepnQ+B7tT3jNvldiZ1d0xftwOHUx66oA+aLD/HPRrnut3ZgvjJsmzkMH3xBiS9d30z02izinF7tGtbK7nr9vNyc0gf+kqDClxAE//nC6YHiQnAhYWGR7EYu7JV4yb/wzF4fJbY5LLNIUpxjE4dIOQFr3nDy9R0LcjmckufXXHNNK0+ZlOOIhQS7+Rdy5557bgtYKa0AiONrEtmz8EWLkIDKYjHXvTkwj9fcs7d743RlyXXdW4aX8m1vNHE+E1jixUIvgSTgkqjjeEsQIAvjBAyepbdpA4ielckVz3R1SDR4TvnCFMdcfWNnEvh5loJ3b79m4ooDLbHJIf7sZz/b2vUHoPpXPcoBb0YCYPrXuRxbyU3BCx00plwTaEyRMeXtRQGLNxiBv3PkICjBmy9i0atOXQKHgwToF2fHSyJsWA1+6YPzgt8kjyITvzlm3uqn65IC9F3gaRPQwg16RU/H96cee9cEoAL6tE+HtW9hkgDesboQ/Ikz6C1gQS1HjOPmS0YSkc6bMGaf8Yc4UfCNU+erG96mQnAAvgiAZ5F7BNrwDO4JvpPcS4ANe2zkkq8BJLkBb+fVX9uNbOEdDOacIk4wOzeuh2zIYEwcUc9P/yUhgs3KSQ5IykoUkRU+JQTYXpNGnkNw9/vf/37D3SQc9FFiVeKYDH/0ox81Z52vYOPUcnDtJUL054EHHli3G7Ef+CB3k/aZ0HGuU5dAl0CXQJfAmgTguMWycD72cSyb6rey6WIeyX+2g30KBW+D3ZLb84jdYvPYTTgdm1fvgfOSHGIBX7OP/fKlLJNSfHY2i21gRyU+2Hrn2Af9wie7YOObs7Wu+82eulcbbLoEkePEL7GxykgaIW3wF9hPtoo9EjOOqcqtXtMHG3nZyLDu+T3ss/PiJf20iUeWsWX6KNk1a6EFXlwfxyKZ2BOv4ceb30h8q/8WfHlG+Mpzz74VfPUPnpEFGfwZ8rKJ8/gLzps8sPHFyI9steF5KOuYn+NZVvI8+Qj2SVyZMDEeURbC8BdNNJlgwk/kW+tyLBYlL3GjMjZfYrFN9W18P32wCGTsx/BrJdjsEV9G3WhP22g3DX+MGe2FT7LEo7qX4TX17Mmer50vuMy7z/NAxukiUnaj+F3Udr++No6MJRiDjKeNHENjmQf/5rVPp1yH70gsQZ9M3iaHI7aUbxFbwmO4jeC6PsESuj1F4SG6ZDzWMXnPPfc0TGErxIMwxIcDsrh1vFhFG+yH2AfOyRnBqVpn+GCX4ItYVv/kKVeHHBddM9kaHE757Om++ujPLFudsvRQ+UwO6+88Uic5ssX4YZd9iUQ/kvOCy+Jfto4cyNykhq+5Lap/Xtv9WpfAZpMA3YM/fNLkT+BT8iswKiQnEt+X7vOF5FbknWAK/5WPpC738Zvks+fpnPa16x66DYvi06ZdegyvtC/HFrIwh6/Nt+X74bvijYU6tX0xhAXJ8Boe1LLwFcbxW8OvvfwP3pJ3S9vjPayMn4gv+CRu4OfZ+Hh8dHmmKlMyJH84zU8SR9T2q+3BI9siT7g3dlC9NvWgYL7fkYtz/FW+Lxx17Lo+4NWi5/A3lkH/3SWwrxKABfSEPmReje6H5MLpFh0zvzlrLNJ1uASfxHYoPj8dkxvwH2YR3KlttJPDH/oLb+zljmEGPUBiPvpA72GlRWOzeGk3LPEHz7fffntbYKjOHcOHNMzVwUNt+cJ65oQtXhsvNB43YVFgMH18jb8JT2s+PGX0yWbuQrtjInsfkWILyDK5+VrOvHRyAPrFvxPnB/vgfl0cDB+9CIfEyciLu/xNOKQNGAyf9lXOrfL+55CRgLHiozrVFhoHXjAxxo2L6CFdFgeYzzK3Q4+M9eQBjVcxjbHFxuXFJT6EeTPljEWLkNzn2AuOxpyF9zBEW8Yku420FRKPWPMhT2gcx8a6DkfwI2Z0ns1Vfy0jfhPL5LyPidE39yK4CA/knfglfJ5F+kB+7iGr6vPUfojprEGRO8MjElfBYHop1sr5dnH4wy/gX6k/hBdbnpUcHV8lVPuac3U/7gufTD9hUQhf8MDzCVb4wBJs0Q805cN6drmeuvq+S6BLoEtgIyUA09gK6wX5PPxR+MWXsyVHB598CMa6jD0lGCzPKL5k/8xHwECYyJawdRbUBl/5zovmXvhwfLdK2mG/zP3E72NHzF/wFdklMaq8m43NiM+nHvF97IW64xfWNg714+mVd6Ne7Rrs+a5/WXMgRpcOmp+S2LbNShJEnB6OIscnlIm1/K57DmbegrcQN+RLNsgb3L70EaXmpEhYS1BxZiz4rEGXr36g66+/fuWLX/xiO/Zn6/CVIs7ghRde2BaK1oW9lMhkuH+P8Pjjj69cdNFF6/ft74NX/nnXyq61+YqFVW8ZXmLb8q/XFmotLLyBBQAbBx4wIcDK8QeKgt4TTzyxBf2uASD/Kl5ioU4gWtBrYQAQ5NQDO044UFOf39UhtjBMIHLTTTe1hKSyJtbjcJq4PfroozX5OuIQ2zjJ/tUFPmxIAkOSgvMusZpJ/lqB80Cfky5ZaUG5CXgTugFf/Kbu6ozXevpxl8BmlAAnw4J9478mAiXrJfPozBTREw4NXLco1DHnib2omDF17/iciVY8pH3JBhPF9rDF4l6THBw3ATpnSnnkBQ4LYCTPLPi38Mcm8GZXkMWnvlAIJyT8MvHsmv5L2sMA9mRMwS2JBgT3YFgmemCRhIRAW5JUMI7IJCQZip8p0u6YyNYGW8kGVSexlieHvDBTz8NM/ZEIVQb2ZhEOrHddwsMXjMmYo+0ZwkkYGdzljMLZ/Nt0/Y090B4MlfzQRxM03piT/JE4Wh2SkwjGc7K9kR3nVr/JFuZ3zG1i6n+6BLoEugReJwE4LN6yaCn2rBaAoXzuiqHsG3vuZTtYD5v5xhYqwdvYP7gs8ZEv39R6+c3uM8EnnmJ72eQ6YaaMmM1XI9iA8GDPlnixRjKazWYb1CPmSFzAvrOrNYbWV8kg96kjL+BpX8xioZjFno75KJXYHf3Fl75JzrNtbPLYfk7JrdblODYwx9njS1zKpuEVb86dddZZ6zJQdhYt43OMn2mtK3ImP2SiwUKEapdr+XpMLp6D52ryV0xHRhZNiMk9c7IhY31Tlg8hXrPXV3tyRuMF08aDOJ3PwScy2cM/IR9+krHA1yA77ennqaee2vwLMWP1D/gIFmeL7euzqP1Z5pi8Fvkx6tHGvtK+8Lk3bWvPIulFxNczQW6/iDxDC5Y6vbESiJ6/UVzMa981GzuDYNAYf+AcHEhsmfhKEl+ccPzxxy/Ey1n6FBsnLoFdyOQ0XEpusZ0sf+Qm4UBskLzQLIJdtssvv7z9d5ead5p1j/PitfFE8lR5coHFyxKdxA9MFmOz2eJzC5uds+AYzpq4F+uxB3Jc42eybHu9XJfAZpcAbOEz8mlgU/zScb/pHh8pBHv4Xtu3b2/+Ul64hj0mFfmuJgEXkXyVXBK/mi7zkfES4ovBEwv6Km/wyxfv+G7u4U/xb5NT4TPV9vWTb8pnlRszAYnEBDBxGRwOT7P2iU9gkZcL+I/aVT/54EmMwJ80CcqHxDf560dduKyNebZnFg+LzuOnUpULfzTxBrsAP/lLniccTcxU7+/HXQL7SwLGotjX/Ccc4cvAGPG2fLc5K2PUXOY83VCPnL0PHtEv99ExvoY5XPE/XXz44YfXc+y1D8Y7PTDnS0/Nr8kbWNzLZ1MnfwsGwRvx+5lnnlmr2ONjPFt8gWfxPkzDB1zgy8gvpA/xIec1gi91TpE5CvKpc8zjcrAWD2PSZ3lteA1vxzl9cbM5gDwfPODf+cS1df5AH8mzYjsfT57ch7Qyz5n9mJ/++/CQQMZTeks/vTgv7jeu6AY9FPcktlE2uTS2GHZYEM/PkB+j23I69EmM4D+NsMHm7iyqt2XcwY7kDczR8W/4Q+a45NbUqYxcjkXCFveq2z1TPgZf5O67725rBLRv0we+AuyzUMuLm75gPY6R8A6/6oLXyGVqz4bTv3F5/YCx+ozvqoPK+o+WPnSTeb7UrS6y5LtN0fhZTZVZ9hwcQzCh7tuPV//Iv9nCf/a1jFhz3I96vR93CXQJdAlshATgIQw2b2OuiT9bY1w+EJyt80d7yse2Ic8oDyi25SuyJ2wUrB6vL1CWbZv3UZVZeKkvbK++8Kv5iPw9NonN4BOO55n0BY7XNRpTfuGe9vlgLP9a5mIed8PLQK8M8xW7hvmjLX++e0HBBmfERNFVV121WwHBuX+ZhCwKzaI/SVGLPQUNHBMLTRl5X/yrZGAIACRBLrnkkhYI+UKO897KkaBQbyay6oSnB/7DH/6wDQBJGckZ7VhcxNGvZNGRYO4Tn/hEW3hkRbgFPdoVTAl4kojhvN12221toZM6LND8whe+0KrDY52MUY+JTYuiLOjxBtHpp5++ngSvPMw6TtJ+lhMzdZ9/2cCpozgUOsTZQ74eMU68CxQ5cwIazlaCLnKkSJxNvI8p5Sg0R1WQFPKv1i3slejeqIW9xuYr/3No8bUX19L85H7LX25ZOWLtP1RMXj9QJ8kUMAFUk6nZOLmOJfri1Gcf3oAU4BRA+GK0xb0mbD1zOmXC3XMbA5xnBGSRhWNIoiH1Z98uzPiT+3PZPZ65xKH6veE3JpP/JpIEQspbCO6NR0kKi5iRMnSMPnfqEjicJEAnjHu4Tfcl5TleSQLO00v66LqFnzbHFmnMu2dKtoJOX97Owl5O0M0339ycIQlGkwVsnwDcMRvMZvoKGx7Y2iTPxi/bOM+Ozvq3PXjl6LF16oJtIfdanHTllVeuXH311ettSGRkkZNjvHHWBNX8DoG25APiuJrEGONh2uCIziILkSU6Kk/jsu6vk071un57OQcm85c4oBxozxnewT0JFW9mB1vHz85vW67X+h3jUR2rry7i1d9xX/lKkjQmqrSN2AiOcmxBO9n/dAl0CXQJdAm8TgJeevM2sxiqToCzT+wN+zSm4DW7LM5lp8ShFW/hugVZkhMwvJK4VswMy/nYYkAv4m199YVKtgTWW1gEy8c8aN896k/sLWaotoGdv+WWW3b7aqN/SyoO5NPni65soIlOPkIW9mq3Ep70w4SHiXkJ+N/97nevi4tTXlx43XXX5ece7fWN7MgWOa779mPOH+Xjc4z/4474alne8oznNLXbJW17nmTPdzCm2GSTPiZV+VaeF3m7zv8iT/EdO47E2u7h14wnN103USR3gj++UZ6bhBniO/Ex+Uxif2OSX8dHEUuaPOWbeNnXApW96WdrqPzRb9v+qKtUe1Ac0tVFZFzpuzh4EXnesKJTl8AiCczTJ/qW2JKdkncSX8r/yTHNu3dRu667v9YhppHri72rdbBVMIcNCrGf84jOwMraxrzyrollk+ucVxa2ks+yFH0U38JKOg+HYSQMdd5en7wAJGe6J/Uvy0cv1yWwmSRAX+nSvBzLlD2ECfw/C1ngmQUu8M3xsj4Lv97CXhOesMn9KH4sH0v+R3577Pvzkem63Dbcc53PNKt9/MIDeS74CIdhiv7Pwjf4twyph5+vfPJv/Hd4ZF5Mm67x+yyS5V/qr37iX7/HfvAy7e6PMpGLZ+lFNxO0YiWyCn5mvz/a63V0CcySADwwP20M7hziIJt5OjGZONsLjrN0tdZpvIqrjWlbHcvKaWfHjh3tWl1wQB/5JXSWnwRf5JDhn825GsPTawsLl+Gp8jd1HJ7VyTdE9DHzuuJQ/MHDRcRnm0UWCopl4dEszBezsgnmN8d0zDHHrLz88svN78qCO2XUNxW3y4tYxIjyUlnmDGC1flUic+f3h0xrvf1480ggY4N+8BHYVF/VNR5XX52HSW/5CT7eIi8mr+IjNnTNS/9iMjY5foC1JK6NyTnjG8GLBx54oM05GceVtCEe4YeoU34udYdn5R3DJfketh/m0DdlreeRL7JOZmpO37yafOWy/kJyp/Qqi+vxoB/mGLVXP1rnGowjS23x78gU/iE5sv0Ru7bK5vwhC+spFpF8qjzcLNJvz2Tquc66p5/vEugS6BLYXxLgA/nIp3WN5o+yVlJOTvwnHt2+ffteNwfbbHxHNjF2x7k636UB5+DhOJ5O44vwku1SR3xra+hgMJsxi6wzc08lMmGDUbVLtcyhdnzkCr/7TwvYHnIcr/xx+Dec/zR8Eefv1haD1DsIMg4zZ2UsHM6M6+9617vWJxa9sVy/Iqs+DhGSjLn11ltbwsFvjoz7LVyRtHjyySedbiTYQN5mFARwHjJYOSgMvwU1lR577LGW5LZ41SLf0IsvvtgWJvntLUpBR8hEKidKXfhQd/qsjKAvv/2LKAt7LVjUl0ceeSTVtL0FmP6NyM9//vPdJlJfV7D8eOqpp9qvOplcLu926A2tTJaOJ3pN9j300ENtolVimkMasuDHG9+IIxqS/Hnuuefyc7e9RVfIgs5xMBcZ+1cx5DZP8XareMkTf/rHXW2Mrqzl4+bfNYz5LcOL8kf8xWv9nn/Dxl21wNykt+SbZyEBZ2G1MXPttdfODSrJMgGx+1KXgJue0EOTvZ5piFPsuq+KVKrOfj2/J8cWD9APgGzx+jjYcF4wn7bsBROAmUFBAgmTIWPw3RM+etkugUNVAsa9F0YkD22STeOE06y+uXdf9cbkQt5AlnyAK2xsJmjZVhMn7Bv88WavYDs67V9feYlDkO7+ENtsAiP/Givnx3v228JfL+z4Egp8k1TlG5x22mmtHYtS2G5tSO55qYYNU9bEi7bs2SGLZMgxiVKLjGaRAH4Wpb/B26lysLW+0FPL6JfEhJdi2H2yyGIo+KxP5Pi5z32u3rZHxzC92oS6cCsVcWy9gW1MkUto2TGW8n3fJdAl0CVwuEmAffWVCzYSvkoue8mF/y6ejR0cy2XW+ZRjN8SQYl2LA0y4s1lsA39dDMW+sM9siYQ9mywZww5adGvz742m2nLOAk/+9RSx8+MvvqYcX17My37V+yXk/RtiiyHwgCcy4S+IZcSMbLB4T1lxt/6xz+rRH7bdItUpntP+ov2++j3kybfw4q2JivDmhSU2eV94W8Q7u2vyUOwmXiKPxGgmZ0x0kJdJZgup+TWV+GJ5WWls7/kzNnkMbZgYNol87LHHtsXW6tGmyWq+iBeaER+EjyIxp34LRMRk3Udo4pn5Z57/WG8yeeYFb7rhWVc/uZZzzF+j8526BPZVAnBSbEm3kbzLRuk1DLFQzoSslxlD7Bk75aXGEB3IZHXOjfezvtwxLld/6299SbVey7G2l9Xb3FNxkG2cRereV9s0q+5+vkvg/7N3H3BSVXf/x38zu8vSpCgWQAQUREOzYLChxhZjbGkmlthii89jTB59hRiNSUxiiiUaE1Me0+wm5J/ERI0KFiR5RFRERbCgNEE6KHXZnfmf78Ez3p2duju7O7P7OS+Gmb313Pe9c8u5v/ubjiagc0SdnyiYLlvJdjzU/ibcd9J+TaWYfZu+p2o/0Q1OnYOFxBS6h6PzYt3f0Dm5kqHo4XW1A4VzYX3PtV9Tu73GL+ScSfMLbT2hnS/bMqu7zhkKKdo3aTl07qr7PCphH6XzSF1b6PxPSWxUgrWmr+QzartrzfNdP9Mc/4X9ZXvWIUf16NVJBLQd6jpf967Vtqx9gDJHah+g+9jhu1soR9iu04dXd7WJ6x6tAvt0Ha3rfl2PqV0h7GP0/dR1qvYzavvWNXVo69X+SudPOrcrZYl+B/U5up9SIi/dowwJQDLNV/vFXNcuWnY9VBvdV0Wno/2V2gayXSdpvyYXBffqfFLD69xSx4hM1+1aBp1Hzp4927ed6FpfgSVq19B9hPT70rrnr3uwFARyCWi7Ct8PDadjrAJlQ9xDGFfbp+7H63sczVIYHiLSeYu+EzqG6z1bCd8HtdlpH6B2w/RsuhpXbYM6nmte0e9u+nS1L4teE2q6qqf2Rypqm1L8iaandkC9dP9K887V5pk+Hy2T9qmqk/apYd+mtim1QSk+QAlmoiWYaT+iZdB8tfy6ZlMsjNxbu6je2pflK9qfaB2G86304RUcrXNSCgIIINAeAtpf6oF7tYvpWlv3BHRuq2OIYgaz3T8qtq7RY2K0vSx9Ojr3/e53v9voelrDaL9fSLyI9s3hWKnzSJ075yo6X0w/LquuOgbrXF/Bwbq2V1K8Si7VCnBMrsu/CA3vuvjfFdkDe3VirBNh4SgTZ7Tohp7KOeec49+1AYWg3q985St+Y9JNQAXz6OfWdNP0c5/7nM904Ef44D/doFJQr56WVBYEXfiEzDXR4cJnZT5UoKFO2JUZVE9T6aReQcOKWNdPh+ukPr0oQFcnGMrMpIO1AnF/8pOf+I1N01QdlZlPJzpq5NENU9VH81AJgcVaHl38aP4KpNVFkAIuv+Mi4mV15ZVXZpx/en10MacbeyrpTzSlDxv+1jKqqCEqPYhTJxc6EXziiSd8oJHWgU6UdOKkbMNyVsNW+MKEaWZ617A6KQzR+Fo36UUXq5qfdh46uYkGDKcP29y/65e5wN78yXL85GPbuaDePjHzQe3NnWGJxlNggLalaKZHXajr+xA9+S9kdjoh10vT0ndIAcP6OwS/axoK2tZPvBc77ULm/6UvfclvU6q71rMyQ4aiAEDNW0Fl0dIa9YhOn88IVKKAToZynRC11jJpnnqSS9/VcGNg/PjxpocydAKkYCLdQFGArC52dVzS8SwUfZ8VhKvvvxrNVDScji164CXf913z/9GPfuSP0TpeqHFBF/Kqg45TKnpXv2jwr4JydEKmRhU9XasAGO0Htf+76667fMOnGhP0d6aiOubyVsOCToTDjZBM01Cjoc4DMhVNW+Pq3Ec3sHSCqWXQfNWIq3GV2b8lRcf1//3f/81aRx1XdBwOyxneWzJPxkUAAQQ6k4COYQpc1TEtPPCin9rLd2zLZaTjix521bmzrgl0zafjlV7aTytoU8dkfdZL16EPPvigv/bSzUYF1er4Eo6R6fPS9Z2u1XS8yRZIqEYRNahkevhFgcsq0fF1LNU14syZM/21uAJ81UgvGx2HtQy6flbRsHpQR8dzHfeU6VcBqTq253vYx0+gFf+Tp+qgB1flKAfVTTcw9OsArV10LqB1p8akaGYQmSkAVG0q8grXVKqjis4b9FIwSfo6C+czWrbo+ZzO13Qup2BdtZ/oZopu0OjGcnT71We9tI1rGpT8AnKSeyFFgfz6zmvdZ/s+alraDvEvRJRhChWIfs8LHac5w2n71r5Jx4XwoIr+1rEheh2m/Y++B9FjS/r81Jal689iio55mnauki1QMNc46perrmHcfPMOw/GOAALm207UfhHandJN0tsv0vu3dL+mc0AFcimDkIJO1Faim57aN4W2a91P0U1AnUfpnEzntzqvVluX2r91rC72nCnf8V3nCtHzwvTlDn+Hcw/VQ/eu5KWi8wt9Dm1wYRnUTqfzfRUto+4TtdTQT4z/EOgAAvou6FpW9zd1naWssbpO0/enlEXz0XdR96QVNKxrfp0jRQNNFXCgtmXtK8L+R3XQMNoHad+Vbz/S0jpHp6/P+c5vdG4VHSfT/LWvUjIwte+nXwfpHrnuLSigOno/IjodTV9t59r36aXrJWUYDb+eGx1Wn9U+onYTPaihdgiNr+t8LYv2kUPcg7yajj435x5s+vz4u/MIhG1d27TacvSd1rao7VrbVNie04+x6X/nE9N8QruBzpV070vbcDSRltp1dP0Tph3qlm3aYbjQX+cK4XupazXtl/R9Cb9ooO+cYn7SxwvjZ3vX8Bo3/fxJ+1Tta8N3UONHzcI+V99dtXXlW55s829u93z7Ok1XTgouU1tw+r5M/bUPz/Rr1+pHQQABBNpCQOdA+oU+ndcqaYzuAyh2QnF52e4fNbde+fbT0eOBHsoKx8pwrVrM8UXtjffff3/OZKnhPDp9eTSfcK6v+1aVXqpjfWMusDeZdzkSS5NWvyRptXu7QTNkm1fGG524KJA1GtirnxjQBYtK+FkPBfkpUFYXJAr21YWMip500c916uCtp4czBcnoSUHNq5CijVfz0cmPghlV1E0NNgcddJCvl1aiGp2jRRujgpFDdwXT6qRGQbzKDqiiBh8FOOknv1UUSBSeGPcd3H/KAKyikzwd7FV0Q003cPXT5Zq+LtJ0MZKr6GmmUFT3fEXmygiskp6tV9100agbtQrG1ZPb4elt9VNRo5ACfLMV3fgMT1uFEx5F/n//+99PLWf6uMEwuizpwzT774S7yflOwhLv5t+ONY/Y9jGr6tvsuZV0RP1kjLbncCKok1l1a+kNZd1E1w1cnUSHnaV2amqE1IVHaxR9b5S1Vz89pG1E3xE1SmqeCoLXE3bhBL015s80EUCg5QKhYSI0tumESQ8K6KEYBZrouK39lC5idexK/05rfB3DNYyORRpGT+anD5etptqP/OIXv/CBNjrB03jpgSuah/YzygilfYyOi2rc0L5Gx3gFXOlEUTeE1RihAKJcJ5lqKNGyZSsy0E2fbDedtG9VPXLN49RTT/VPp2l/Hx7mUP2U4UX1LdQnWx01f3mF9ZY+nG4OtXQe6dPkbwQQQKCzCZR6P6rjy89+9jN/XaXgJx2Pws09vavoWBF9AFB10Evn+Crpx0jf8YP/dFzS9bRutun4kF7C8UvHT33WDYlQ9LceztTxJdxQCP1Ubz2sp4Yh9dNxWDfE9DChApTD9bGGV/0VPKAnpkMDveqfq95hPq39rnrISJY6hupzW9xAkIV8dcNYJbp+wzLrPEY3KpWpScPqGloNcmqICtdZ0UA5jRc9n9G5kq7pdfzXOcgjjzzibwbpZrUCs3Odm+U6nwn14/1DAbVl6bw3XM9/2OfDT1qf+t5o/emmdVj3Hw6x7VNzgw7Tp8PfCLSHgPYdehhB3wm1c2p/o0xQ0YCVUC81rOt6Mj1jU+iv/Z6+M8UUzV83LXJ9H9OPqYVOP/04mG08HTMpCCCQX0DfVwWnZPu+6ljZmg+BhXNp3cPSQ9xKBKM2bN2virZd61xMD4HpHFb1VSKXK664ItX2U+pzJk1PP22ar2ifpKLhzz//fJsxY4Zvf1MbWXobXPipb53rhqLlpyCAwIcC+k7ope+7rgdb61pV12jKoqbrOD3EG675VROd++j7G/YrYf+jfq1ZJ00/W9F5Tb5zK12/5HsYS8ukdgkl6VC7hNodtP8Pyyx7DaPrV3VLb5fQPi56TCjEI32dahlvuukmfy9BD2vofFXe0elmc6A7AukC2l617ej8QMfecI9KMRLa9lpaom1Gul5SrIqyViu2REVteIqj0a9YN7eE72W4Jgv3qxRErDYy3WvTPqs5Jey/5KO2TsXm6PxJ01Xsg9q2dF2mwGS1J0bNop+bM+/mjFPMNZyG1b5M7WzRorY37VPao/7RevAZAQQQ0H5Ir3DvSCKtdW6bTzscD/SwldoIdU2d655EtumpfVAPBmcrOq+MnkenD5fJJH2YSvm7OqZfdpxfQHXfc8GTC5PW4IKAq1wwcHpRwIsO9sreo6eAQ+CnDtQqCvgLNzt0IyPbzQydqIQTovR56O9Pf/rTmTpn7Kag4UwlmsFWGfSiFwsaXj9VFIJ6w/jKhqfAXmXcLbSE6d55553+4kU/1aSbngqM0sZcaFFgkkohQb0aThcpKnqiSg1S6UU3lG688UYfhJ3eT3/rhFA/n6e03JmKLnx00zZalBn5D3/4gx8v/SajhlODvkpYFv9Hif5rWOu2S7dt2vuFTTDuYrGrdmi6DRc2dmmH0omgbtgqEFc3/PRStxNOOKFFM1IgtdazsjLrprzWmf5Wg19r7sAV1K956gJA+wJd3Gub10WNMmRTEECgvAW0f9BJUtgv6Weu9Pff/vY3n21W+xLtp9Swl6nxKzSu6buvE0f9ne14n0si1z5Q01RAkR4m0nx0rNM89FnvoXsIcNFDN9HG0vT5ank0zWwl9NNwOn6nF+3vctVXw6u/AqTVGKk6ylWNGGo8yeSYPo98f6uOWk+a/jHHHNNkcDVann322U260wEBBBBAoP0EtO9WEIECYnX9lOkaSvtv7d/TSzg2pXdP/1sNFz/4wQ8yBvbqOl0/k6eHW9Q4omO8jnM63qmfHhDVQ7D6O1o0vH6JRoEQejjlgAMO8EFcOu7qOia6HOqv6xIdB/MdK6PzaKvPcizUslR10jq59NJLswa0aT46p9FDwgrCVVuCim7e6PxLDVXhoWXf44P/ouczWiZd92m96qax2gS0vrTudN7RnHOz6Lz4/KGArPMF/Wl9ajhdj2ud6IZ2pnNKnTtr26AgUIkC2r/ohqYSNoQs45muwdTg/uMf/9hfs2QK7A3BFs3ZN+t4mev72JrXRFqu5tS5Etc1dUagFAI6P1S7k37+OVr0PdX5TmufN6r9WudZaj9ScInaaBTUovalaGnrc1idOxdSwvm26qfgHJ1DRNvHotNobcvovPiMQCULtPZ3RecJOl9SoqQQoCev6PV31K+16xOdV6bPqq8CMHKdW2m/U0g9w4On2seHcz1dG4U2cc0rXL+mt0sogK6QeWRahuh42u9rX6n9vuYX7idkGo9uCOQT0LalV7gPVcrtSd8X/aJ1uFbSNc7DDz/sf31J7Qj6xQElt4lu3/nqm6m/5qOkdHrASedBKjo/e/PNN307pL4nzS3BR/uI0P6k6el7r27aryhmIFsMSnPn25zxVC9dy+UrOkcL+yk90Kp1oZf2adq3hP1ZvunQHwEEEGgLgZbsw0tZv0zHg2Knr2XROanOmbO1pxdyTCwXk2KXPzp8dZVLUteghLEu62nO4uImG+a5DDELEy6wt6rJoLopqUx0yrSnn44MgatKjaxyxhlnNBpHNwnVTz9XoIOestAo6FM3rLIVZXrI1DCcbXh1V3ChnnZW8IwOsDphCFlms42XacWGboooL7RomXXjRoHOChZW4LMy9+pmnrIXh0DnfNMLwbAK0MxXlFn4lltu8YNlO5H44Q9/aNddd50f5te//rU/AVTGYT1ZpvqqkV1B0ZpfpicuFagZMu/qp1X1hJIyKetJd2V1VKZY/SRrtLRmYO/WtxPW8Jabm9tG8xa36cb7u4y9/cojsFeZlfXS06g6qdV29j//8z95FyM04OUaUE/2aZvXd1ONldoGw0l0rvFa2i8sk27s6/unJ3L1xC0FAQQqQ0AXqGG/pOOC9vnKcq/jxJo1a/x+Kt/+RPua1t7fqMEketMlzC90VyOBjr8KmMpVlFk4Uyap6DhqRFTQrB7QSS8yKuSXBGSqp5O1v1dQrzJZTZgwodEypE+7mL+13tQYowdFoie3Og7o+BK1Kma6DIsAAggg0HoCaqBXMEF0vx3mFvbf4fgWuhfzrhuHui7TtEJDvcYP09b8NX39uoYyeekmmo6JCszScUPHyEmTJvljS3S+euhV/TSeGreVHb9Lly7+5kJ0OB2LOf5ERczfzE0Plo4OoXUTrvVkp2O4fjVI5w46F8vWJpJ+PhPG1TrQuZBuDOU7f4vWg8+FCSgIKNf6jPbTd03X+1onOl+LFq13fVf5vkRV+FxJAtq2//znP/sq52u31XdB+7lXXnnFRo0a1Wgx9WBJtrbMRgNm+EMN+fqFtEzHzXDcK/Y7pnpGv8cZZus76VhOQQCBwgXUfqEEENH9gL5r2gdcddVVhU+oBUNqf6CXjsuZ9hstmHSzRy10XxKtrz7rVez+rdmVZEQEEGi2gM5x9Kunuv7X9bn2e2pv1jVeOX6Hda2jdu/oPicsfPS6NXTL9q7x1S6u/a328/o7/dpUyx/aJdSOoetgtUuoLb0URfPUqxydS7F8TKN9BLQ9lXqb0naqe/raP2hfoe/Dueee6++167PuLWX7ZcliFDQftROpzU/fR81L3/clS5b4X8IuZlrZhtU8oqU1vKLTb83P2n+pDVXXh4qjUfyD2lB1j0/ntaXeDlpzWZg2Aggg0NYC6ceDYuevc9JsMRqKAW2rNoRi613q4aurXJCj9XYRkWvyTzqx2AX2vpG0LsOTFu/eNDBST9cosFc/DaDAXt1cmjZtmr8wOeqoo1Iz0MmBAlv1VEsoyvCrlarMr6Uqv/rVr+wrX/lKanK6QFKAqTLcKKA4W1EWnFIUHdgV5HrXXXfZHXfc4ZdXQc96XXjhhfbXv/61oNT8IUi2kKBiXSCp6CRCgZ3pRT/d+Z3vfMd3VqP7ySefnBpEF5Pf+973/N8K7v3JT36SMbA3NYL7oJ+hOu+88/z61BPiWqcK9E0/idF8VRQgVsqS2JC0OrdNJpYWEtVrFnPJFqsGuJ9aybD9lrJehU5L27yCorVN6LOejiukaFj9hHshRcO2ZWBtWCZdiCu4vdBlKmRZGAYBBFpfIHyHw/FKf+updn2X9b2ulO+06q3jfraAqaikhstVdHGu4F1lJYwGX+l8RsEyavzIV1QfTUdFjjr+ltJS0z/00EP9ya0+Dxo0yDfGzJ8/v9k3x/MtE/0RQAABBFomoGumbEFIekCukONLrhqEY4/moQbncGwIGePVX0XXCjrupx+f1Gj985//POMsdA2oBxL1YKluuOkGQ7ToJsSOO7qfSqE0EpC5Gv7DTZpGPd0f6etd28Ctt97qf1FIWVlylfTzmZZuP7nmRb9tAvoOKyt2eqBu8NHNHz3IFYpunOkha20H0XNKtU9FhwvD845ApQjoBme+gDTt98J2rsAWfXf0PdCxSf2UOKDQa6tMLqrDnDlzmlyzadj0fWum8TN1U32VQT1XUd01bwoCCBQuoOPgDTfc4M9B9ZCY9gXKlqaHmNr6/CWcDxde+/YdUvuc9HO+9q0Rc0cAgUIFtH/TuYoyYuq8R8GrNTU1fn9Y6DTacrhs7eGqg65fQjt3IXXSvlavXPv40C6h6WnYUrabF1JHhkGgXAQUa5F+TyvEeyjWQm1wpSj6zmmfpPtHytar+A1dp1XauVFLLbS8Or+KttGkT1PteBpOL+27VdLbUNPH4W8EEEAAgdIIZDsnLSZGozQ1ad+pxKsHxX2gY0HV2Gy2dbay9mYOolTqfJ1wKDhXJwL6GQIV/fxzNKBTNxYVAKph1UCqLL264aEgWDXqlKKoUSgE9epnRMPFkn4aThl826ookPiyyy6z559/3gc6//GPf0wF3H7qU5+yDRs25K2KGrVUQpbcbCPoSa3bbrvN99YyZyo6SQsl0891q58yMKkoKDsEEytLoy7W9CR9pqLsvocccojvpXWZXkLW4VI3PNXNT1r9q257dNtmISW+a8yqXWBvuZXmBHhpGy/nogtvLr7LeQ1RNwRyC2i/pOP1xIkTU9/lSvtOKyAp375S/ZVZPFfRcuuY/fjjj/uGVw2rBlhlBC7mSTCZ6hU1zTXfYvvpoSGdK6heyu6n9+OPP77RQzzFTpPhEUAAAQRaTyAEIWU6Vuk4k57JsDk10XHnwAMP9MeEt956y19/6m91j5ZMxycd/zLVLYyn63/VU78Okp6hUb/Kkz6PMF5nf9fPTmd7oDnTetd2oJsIuUoh5zO5xqdf8wT0Hda2nq3oYffo+bO+E2o7ia5/rXNlvC7F9z1bPeiOQGsL5DteaP76roTvg74Lur4K1y1qa9SvqxVzbZW+TJq22iWj3y8No+9Y3759m/UdK2S5dNNd150UBBAoTkDfLz0opl911Pd/8ODBduONNxY3kQ40dKEPCOjcgoIAApUroDZhtdVq36f9njLShvOjcluqXOdWun7J157enOXROaJe5WrSnGViHASKFdC1xauvvtpkNF3XKLBX35FSFd3/0z5Jyfn04GUpp12qOrb2dBS3kushVbW3Ra/3wn6qte7xtfbyMn0EEECg0gR0XhhiNMK9Kr235S/+lINZvGZgzKoGu6oUmEg18bbLkPpywhLrmwb3KguQfhJARRl/ws+wfeELX/Ddwn9PPPGE/3jxxRf7k/+QkVYdQ78wbHPflY5ZZbvttrMrr7yy0U+PKri31EVP86QX/WSBGqn1s5kqCvI97bTT7JFHHkkNmi1QNjXAB+PpbzVyhUDbaP/wWVl2VXRSoaerMhVlwghl9uzZ4WOj95BJWYHXISBbN4EVCKyLtc2bm0bR6gmlF154wU9HGZHTy7Jly3ynUgb2ahuse8ltiwuabovp8/d/u228amjMasowsDdjffN01PZFQQABBBDILqCTvUwPm0THiN5gjnZP/6xziR49eti8efNs+vTp/l0PwuhkslyKllc3xlQvndSWW/3KxYl6IIAAAuUioP32wQcfnDEISb/OUapjjI5hOiYoG9CZZ57pr48LNdD1Z2gwSR9n//3399e76d31t67HR44cmalXp++mB3F0kybdVTdpMq13/dpRqc5nOj1+iQH0Hc71HVFG6/TvwU033WQrVqzw55N68Frnljp/K9X3vcSLyOQQKFgg13dBE0lvwwrHJu0L9QtiyhjV0u9B2L9qfxrKk08+6aff3Gnnusmreaj+2hdQEECgeAF9L5UERd9/7RM683dJy55+bli8KGMggEAlCIR9XyXs99LPrbSfUhCFrl868z67ErYz6li5AgoiVWxJ9JpGS6PvnjLqlrpon9SZv8/6lRa13WQrao/rzD7ZXOiOAAIItKWAzpt1bFTModrTFWOpTOvNbetry7qXal7x+HYug+nucYvtUOAkN7qsvTMTVveGyxiTIWlMCOJV5lhleB09erR/RaeujD4qDz/8cKNAVY3z4IMPRgdt9uehQ4f6cZUNWJmAQ1FD8gUXXBD+bPF7SM0/efJkvyFFJ6gNSWn5L7300mhnv7GFDoWcDCggOJRs2WB0M+j222/3g2XL1queylJx7LHH+uHOOeecRnVRR2Uz/uY3v+n7h3WpP3TTVoG+8vzyl7/s3/1A7j813l9++eU+8FjdjjjiCL2lioJ+Q8aMQp8+T42c7YPb9ra8lrD6We7DpmwDNe4ec78EW+MCe+M9yy9jb+Oa5v+rmJ+1LWbY/HNmCAQQQKByBPQwSb5sJnrKudBy5513+sAoZbFXgNSnP/3pQkdts+FUJ71U13KsX5tBMCMEEECgQgQuuugifx0ZGpH1rqzrpW6s1zFB13mZHsLMRfWZz3wmdS2XPpxu6oVXtJ+WYdOmTRyHoiiRz1oHBx10UBNX/eJRpvVe6vOZSFX4WAKBbN+RbN8DrX/dCNf5pM5Dy/WcsgQ0TKKTCWjbznXtpfbE9PapcN3SnONTJl7VQckO1Eaqn0bVr8n179/fPvKRj2QaPG837X/zBdqlByznnSgDIIBAEwF9dylNH4DIZpK+L802HN0RQACBlgpEz62effZZH0ShZFq0ObdUlvERyC6g753ahtQ2qHYFXY/o2oZ2tuxmLekjb/3qdrbC9V42GbojgAACbSugY+PYsWN94oBdd93Vbr755ratQDvPLa751+zhsva6lxUY75hY4IIqn3NBlSubZkoV4tFHH53K3HP++ec3WUT99KSKgmEV6HnSSSeZxvvqV7/qg0ebjNCMDrvvvrvpp0FVVB9lQlLA6ZAhQ2z16tXNmGLmUfbbb79UD2XDHT9+fOrJHv2Misrvf/97U6CxAmm1rOEnSi655BIfSZ6aQJYPypp73HHH+b4vvvhixqF++MMf+u4KJh4zZkzGYUJHDTtw4EB74403/MavDDInnHCCr6Pqp8b2Qw891HSTOVp+9rOf+QzId999t88+fOSRR/rxtA5//vOf+0H1lL0yGkaLGtI1TZVsmYSjwxfyuX65y9b7rMvWu6iQod0wbtuuGu6C2F1gb0cohTZ4rl+/vuib9x3Bh2VAAAEEJKB9ZTj+ZBJRv+jP6GQaJr2bgjd0HNQ7BQEEEEAAgZYK6FilIL8333zTB3quXbvWP1RZLscZ3bDL1sCth07VX9kQoyVbgGp0mM7+WdfaygKpGwR6KQPIhg0bMp5f5Duf0fjFns90dv9SLr/Wpb4D6eecerg52/c4nE9ef/31WYcpZR2ZFgJtIZBvX6VjRlvsq6666irfhqpfG1Oiga9//evN/p5pmQp5ELRfv35tQcw8EECggwsoYDf9fCJ9kWnrTxfhbwQQaG2BcG6lXx3RA1OdLYiitX2ZPgKZBNRmoIRraivUry8vWrQo44PgmcalW3ECOv+K/rJ4+th6eFXXhRQEEEAAgfYV0LFRL7Xz6fy0s+2bfWBv9c5xq97LBTz2KXBluOR29S8mbcsLDZbY1DS494tf/GJqQpme3FOQ6qRJk3xwqRorlCVWTxrppsZll13mx9XPhIYSizUvGFMZgbVyVXRTRZl7FVT72GOP+QBVdVfQbChVVVX+Y7Rb6Be6hffQXRl5lRVPmYlVZs6cmcrm8LnPfc5nJdZGpaeq7rnnHr+sCvL9xS9+UdQFkAJvVaZNm+bfo/8tWLDA7rjjDt8pU4af6LD6rLrKQ+tJ2ScU4Pvoo4/6Oior7ze+8Q175JFHfL/ouEcddZTpqUytPz2VqbpoPK1DuSpD82mnnRYdxX/WU2UqCujOdXLkByrgv8TGpG1+vsHqX3LbXoGJFmN9XQC728ard/SbfAFzKf9B1JCXr/AkWT4h+iOAQEcX0E9aZ7sxoiCa5mZv6uhuLB8CCCCAQNsJ6Drp4x//uM90qGu0a665pu1mnmdOClbSNVymY6mOo/fdd58PSlXwr649FLilYcPDvHkm32l76/xDAd3xeNw/eKyg3lzX8rnOZ2bMmMH5TDtuSVqXauOJBsDru6BfdyrkF5raserMGoGSCqj9VceFTEXHBe3H2uraS8egG2+80R9PWzpPjZ/pGBiWUzd62yJgOcyPdwQQ6LgC2t/ka8tXfx4m6LjbAEuGQLkK6NxK1/5qq2jpuVW5LiP1QqDcBPR9U1uhkqtNnDiRdrZWWkHap/Xp0yfjNZ+uA/XT77RxthI+k0UAAQSaIdBZz0V9VGvM/d9lr7htHZa0hudcsGTTWN0mpMkVLmvvv5NWtUvCuo52AbHbYmL9cAruzBTgGZ2IMsPqtWzZMt+4O2DAgFSQ7YUXXhgd1PbYYw+rq6tr1C39j0yNx7qRcu+99/rsCnqaqW/fvv6lcVetWpU+Cbv99tv9q0kP12HUqFFZ6/D5z3/e9NLNOAUhd+/ePTUJBcPOmjXLBy6r4UWBtAqKLbaEjL3333+//fSnP20UIDt48OCsdcs2nx122MF++9vf+t5aB3oNGTLEevXqlW0U313r4oEHHrBEIuF/0k6ZK9QtPeA5OhHVWeXEE0+Mdm7e5wazujkJq/t3wpJNV2Hmabq48Ko9Y9Zlz7hpW+8oJV9DX1hOGvuCBO8IINAZBZTJXkFGesI5vejcQRn9KQgggAACCLS3gB4K1avcin7dRdd7L7zwQuqXZ1RHBTKFX2rRE9J/+tOffCO4MiTqb0p+gbC+lX1FzrlKrvMZPfC555575hqdfq0scOutt9rll1/uvxealbJWX3rppWX5nW5lCibfiQXU9pSprVUkbZWttzX41X6a7XpS83vrrbfy7sNbo15MEwEEOqeAAkzynTd2ThmWGgEEEEAAgY4nENqNOt6SldcSqU0tvd1TNazk69jyEqY2CCCAAAItFUilL60ZELea0TFTZtNCS2Key5z6ZMK2LkoUFAycabp60mi33XbLGRiaabxiuin77+67754K6i1m3GKG1Y3NaFBvdNxu3br5G6LNCerVdGR0xhln+JulkydPjk66xZ+1DsaMGZM3qDc6I2UWkqkyFucK6lXA8EMPPeQz2OhmZIuKCzivW5Dw21xifuFTiu3gsvWOcdl6+6c298JHLtMhdWOhkKKbvDT2FSLFMAgg0FEFTj311KyZo3RhrgdzKAgggAACCCCQXeCUU07xD6tGfzFEgYshw6yOpX/5y1/smGOOsSuvvJJja3bKjH0KuV7jfCYjXdl01Do855xzbO7cuaafqNVPOXKOWTarh4q0kYC+B8p0FD1WhFnrgcoJEyaEPyvqXfXOlExCC6FlJVtvRa1OKotAWQtsv/32Gfeh0UrrIToKAggggAACCCCAQOkEvvzlL9vjjz/eZIL6ZSa1iVIQQAABBBBob4FUpGOsi1nt6LhVfUTpTQusVr1Z/aykbXLBvfXLC0jzW+BkGSyzwA9+8APfQz+/UF/v8Cug/PCHP/S1vOmmm6xr164tqvHWdxO26YkGq3/ZbWuFLr7blqtHxax2pMvWW9Oi2ZfVyMogXUhZvHhxIYMxDAIIINBhBfQgxMqVK5ssnx480UM3FAQQQAABBBDILfCFL3zBxo0bZ1OnTvW/9DJv3jxbvXq1qXu06O9Cr1Oi4/E5vwDnM/mN2nsIbf8Kbj/77LPtr3/9a3tXh/kj0C4Cw4YN85mO0meuwNjDDz88vXNF/K16v/POOxnrquXiuJeRho4IINAMAT0okO1BAk1ODxOwz2kGLKMggAACCCCAAAI5BHR+pXuFumcYij5navsM/XlHAAEEEECgLQVSgb2aac0uceuynwuA3KWIKmww2/qMC7h8usEaVhHcW4Rc0YMOGDDA9BOPyvqrp4TKvaxZs8ZefPFF+9KXvmSf/OQnW1Td+pUugHyqyw79rNvGNhY+qdgA89t09U6NNvXCJ1DGQ2bKglLG1aVqCCCAQLsI6KJ86NChtnz58kbznzJlCj8V3kiEPxBAAAEEEMgucMkll/hfj1m6dKlv6L7qqquyD0yfkgtkO5954IEHOJ8puXbzJ3jaaacRcNN8PsbsAAI6VsycOdM2bHCNxR8UXYfV1tZW7HdD+98uXbo0WqawbArA22OPPcKfvCOAAAItEtD+JtuDBJqwfnWqb98ifm6zRbVhZAQQQAABBBBAoPMIqJ1z2rRp/j6irmdpb+s8654lRQABBCpBoHG0o8tuqsymNfu7zt0Lr35ytVndUy7w8j8uuHctwb2FyxU/5EUXXWRPPvmkjR8/vviR23gMNTSprr/85S9bNOeGNW7bmtZgW11gr60pYlI9XFDvAS5YfS+3PReahbqIybf3oNEbJdnqQmNfNhm6I4BAZxI4+eST/YV4WGbdXFbm+9NPPz104h0BBBBAAAEEcgiMHj3a/vnPf/pspLq+4xiaA6uVemU6n9E5DeuilcCZLAIIFC2gY8X++++fytobboheffXVRU+rnEbQMmXKoqkgO/bB5bSmqAsClS2Qrx1/0aJFpv0sBQEEEEAAAQQQQKC0Arqu22uvveyVV16x2bNn29atW7nWKy0xU0MAAQQQaIFA48BeN6GqvjHrOj5uVSNiZk36Zp9TclnStkxxAZj/dsG9LhCTgkApBBpWu23KZYOuezxhyRVFTFGxvHvHrNYF9lb1cdtyByxjxozJmDEkLKpuoGgYCgIIINDZBc444wx79913bcGCBX6/qadtTzrppM7OwvIjgAACCCBQtADXF0WTlWyEcD6zYsWK1PnMf/3Xf5Vs+kwIAQQQKIWA9ktvvfWWvfrqq/6G6JYtW0z7r0ouusmbHtirfXF1dXUlLxZ1RwCBMhPQebYyhOcqffr0ydWbfggggAACCCCAAALNFPjRj35kRx11lHXv3t1+/etfN3MqjIYAAggggEDpBTKG7tYMiVvtoXGLDShuhsklLrj30W2BmA2rCO4tTo+h0wXqVyZt49QG2zLZBfW+m94399+xXV32abcN1+yWcRPPPXIF9V28eHHW2qofjX1ZeeiBAAKdTEA/paOfhV2yZIm/UXLYYYd1MgEWFwEEEEAAAQQqXUDnMy+99BLnM5W+Iqk/Ah1YQIFpZ511lj333HNWW1vbIW6Iqm1t2bJltnHjxtSa46dZUxR8QACBEgooa290XxOd9KZNm4y2rKgInxFAAAEEEEAAgdIKnHnmmfbjH/+YxGmlZWVqCCCAAAItFMiYWiBW44Iix8StYRveTLwAAEAASURBVHnS6h5xQZVrC59LcqkL7n3MLLmlwbodVmXVO3fMbKmFizBk0QIuJnzruwnbPDVhde5VVKZeN7NY321BvbWjXHC625Y7aundu3fORVMjIBm1chLREwEEOpGAbi6PHTvWXnzxRbv22ms70ZKzqAgggAACCCDQUQR0PpNMbnuImvOZjrJWWQ4EOp6A9lV6dZSi68h99tnHX0vqXe1t77zzTodaxo6yrlgOBCpdQO39ixYtshEjRjRZFGUO1/6IggACCCCAAAIIIIAAAggggAACnUcgY2CvFr+qd8y6HhS3hMuauvXf7sbR5sJRkstcQPCUpCU3JK3bx6qsZpDLmtqxE6cWjsOQuQUSZnULErbpiQbbOt1td2tyD96kbzez6gPctjs+blW9OnZQuRry1q7NHnW/cOFC01P+FAQQQACBbQLab3IThK0BAQQQQAABBCpZ4Oyzz67k6lN3BBBAoCIFLr30UvvpT39q+nWsdevWmTKoUxBAAIFSC0yYMMHmzp3bZLKrVq1KPdzVpCcdEEAAAQQQQAABBBBAAAEEEECgwwrkDLet6R+3ri4wt2qUC5AsMvNpcrUL0JyatA0PNNiWVxtcBt9tWWU6rCQL1mIBbSObX2mwjX93Qb1PNyOo122j1WNi1u0Ilyl6l5ybdovrWg4T6NWrl+lJ/VxFw1AQQAABBBBAAAEEEEAAAQQQQAABBBBAoHkCytT7xz/+0XbffXc799xz7ZxzzmnehBgLAQQQyCFw2GGH2b///e8mQ0ybNo39ThMVOiCAAAIIIIAAAggggAACCCDQ8QVyRz+6eN4ue8St27Fxiw93f+QeuqnWerN6l3V14/9zGVinJ6xhHcG9TZHoIoGGtUnb9H8Jt600WP0Mt51sKNKlymWZ3stl6j22yroMdRtqx07W63F0U0FZebOVzZs3mxoDKQgggAACCCCAAAIIIIAAAggggAACCCDQMgEF9e67774tmwhjI4AAAlkEtH+pqamxTZs2NRpC7fwDBw5s1I0/EEAAAQQQQAABBBBAAAEEEECg4wtU51vEmAuYrN27ypKbzTZtbbDEPDdGIt9Ykf51LmhztgvaXOcCe5clrev4uNUMdIGXbroUBKzBbOvihG1+JmF17pVc4kyKjf92m1N8mFnX4+JWO6LzbFvbbbddzg1I2Xy52ZCTiJ4IIIAAAggggAACCCCAAAIIIIAAAggggAACCJSFwKhRo+z111+3sWPHpuqjdv7zzjsv9TcfEEAAAQQQQAABBBBAAAEEEECgcwi4KMj8JVbrgnvHxq3rJ6osPsQNX2w2VBeomVyUtC2PJGzD3xps00wXILy+2OjN/PVkiMoSSLzvAr5faLANf22wLY+6oN53XP2L3SyUSHoPs27HV1nX0XGLdaksg5bUdr/99rPq6uyx+atWrWrJ5BkXAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEE2kjgsssus1mzZqXmtnbtWqurc9lzKAgggAACCCCAAAIIIIAAAggg0OkECgrslUq8W8y67ueCe10AZXyoOjTD6j2z+mdcMOdfXDDnYw22daEL5qxvxnQYpaIFtM7r5rsg70ddkPekBqt/1kXzvt+MRXLboIJ6FXBeu48L6u1abMR5M+ZZZqPssMMOpp/iSi/qdvjhh6d35m8EEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBAoQwEl83j++edt3bp1vt3/gQcesKuvvroMa0qVEEAAAQQQQAABBBBAAAEEEECgtQWyp/vMMOd4dxfcO07RlGab/+Wy7s5zAzVkGDBXJxfUqfG2rEhYw/ykdRmXtNqPxK1qexeU2fniMnNJdbx+Ln63flXS6l5NWN2MhNW/2syAXslUuc1wuMvUe9y2oF4FnnfG0qNHD1uwYIGNGDGi0eLr57rUCEhBAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACByhD47Gc/a9OnT7cdd9zRFi1aZBdccEFlVJxaIoAAAggggAACCCCAAAIIIIBASQWKzrsbgnu7nVhlVXu5YMqaZtZH2XunK3uvy9z6jwbb/JILFF7vAj0pHVIg8X7SNr/oMjU/4LL0uozN9TNaENTrtrmqj8Ss20lVPou0tsnOWiZMmGDvvee+TGnl7bfftu7du6d15U8EEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBAoV4Hf/OY3dsghh9j7779vd911V7lWk3ohgAACCCCAAAIIIIAAAggggEArCxSVsTfUJd7VZe7dp8pitS5z72Mu8+orLkhzU+hbxHvCLLnEZXBdmbT6N2K2dR+XwXd03GoGx6yzZmAtQq8iBk1sTNpWl5m57uWEbZ2VsMRCV+26FlTdxapWj3bb3zEuU+9ecYt1acG0OsCo48aNsz/+8Y92wAEHNFqa9evX22GHHdaoG38ggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAeQtcfPHF5V1BaocAAggggAACCCCAAAIIIIAAAq0u0KzAXtVKQb21o6tM2VI3bddgW593wb3rmllfF+iZeCNpWxa7AN9Xk1YzJmY1H3EBvoNcgG8nzsbaTM2yGM0H9C50Ab2vusDvl5LW8HYzg7+jS9PHJYge5zL1HlllXYa6ZNNV0Z6d87Oy8lZVNYV45plnmgT7dk4hlhoBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACByhFodmCvFjHm4gm7DHdZU10W1c19E1b3n4Ql33U9XAxns4rL+tsw2wWBugyvW10W4OqRMevisrLW7OYCfHvGmjVJRmpbgcR6F8yr9TfXBfS6IG0f0LuhhXVwqz42wG1rB8et6yFue+jvgnrZHDyqMvX269fP6urqrEuXbemLydbbwu2N0RFAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBoJ4EWBfb6OrsAy5pd4xY/1gXf9jPb8lTCEvNcn60tWCIXCNrwsgsKnecCRGe5DL57x6x6uAvydVlaq/q4Gbq4TkoZCSTc+lrjAnrfTthWl3m5fk7SEgtKkKFXi+hiVauGuezQR1RZ7T4frP8yWvRyqEqfPn3slVdesf32289XZ8qUKTZhwoRyqBp1QAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBIgRaHtj7wcyq+sas+yFVVtUvZpunuWytLiDX1hZRk0yDbjRLuCDRLQrwdRlb60YkrGaYy9g61AX67hyzWC1pWzOxtVW35Ga3Xpa519sumPdNt85fS1pyqZt7XYlq0NcFjY+NWe2EuNXu6TJDs74zwl5xxRV28cUX2+jRo62mpsYSiYQddthhGYelIwIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIlK9AyQJ7tYixrjHrOvqD4N6BLnvr/7nsvYtcj/oWArhA0cR891roAkhfaLA6F9hbtUfMaoa4AN9Bcat2QcVW1cJ5MHpBAskGl513tQvmXeQCeee79eGCrhNvuYDeNW50l7m3JMVtlfHBLqj3wLh1PcAFcu/iUjSTpTkr7fjx42333Xe32bNn+/dYLGbqRkEAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgcoSiNXV1bnUuqUvifUu0+6chG1xwb0Nsz8I/CzlbLq5WM/+LsB3qFn14A8CfAe6v3u5IF+CQEsp7QN2G9a5IN4l7rXQBfQuSFrD267zUrfpbC7trGLbu/U5KmZdDnJZeveKW7wHWZkLEX7mmWfs6quvti1bttj1119vBx54YCGjMQwCCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCJSRQKsF9vpldBlcty5xwb0zE1Y3w2V2fdsFgm5phaXfziXs3TVm8d1cUKh7rx7osvi6oN9475jFSpqTuBXqXqaTTLosyw1rXSCvC95tcOuwfpF7X+iCeRe7dbi+FSrd1cVj7+4Ceg+IWe2+ZOltrvD//d//2UEHHdTc0RkPAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQTaUaB1A3s/WLDEpqTVzXOv51yA6KyEJd51PRpaYamV3LWnCxAd4DL37uqCffW+iwv03dm993OBvt3cACSAzQzv4nW1nhpWuGDeZe79XQX0utfiDzLzKpjXDVPyUqX15QKyx7oMvfvHrcseLhi7Kyup5M5MEAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEyl6gTQJ7g0LDahfcO8dl73UZfOtfTVpylevTGsGiYYYuC2xsx20BvnEX4Fu1k3vpbxfkW7V9Jw/0VSDvRhe469ZJw0r3cgG9Dctdtw8CepMrHeLmANkK74qx7ucCeke6LL37uIDeveNW1ZeA3laQZpIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIFAhAm0a2OtNEuYywiZsyysJ2/qSCyZ93QX4rnV9WjPAVzNWzKiy+brg3vhO7n1H976DC/LdwQX5uoDSeB/33stli63VwB2vJLe4JMnvJS2x1pkrmNe9Ei6wOuECehPLtr1ba2XljXIqoLevcx8Rs5oxMasdWWXVbp1YPDoQnxFAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIHOJ9D2gb0fGCfrXYDvEhfgO9sF+M52gaZvuMjetgjwDetYgb7dXJDp9i6m1AX3xvXuAnx90Glv97cL8o1v57r1dO/uFasJI5b3e7LOBelucMG67+v1QTDvOvfZ2SbXuPfVrv+qD7IlKyNvawdUB64Q0DvcBfSOcll6R8atepe4xarDALwjgAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACnVug3QJ7A3tyq9lWF+BbNydh9XO2BfgmXfCpucy+bV5CsG8fF/Cr4N7e7r2XC+7dzgX2Ksi3u3vv8cG7goLdK97VdXOveBdX26pWrnGDY3GZd5NbXIDuJhec6wJzk5tct43u8wb37gJ6ky7rbsJl5k2+p3fX3wX1+ozIbrg2C+KNMrhMvDFlRnYBvdV7uwy9e7uA3v4uoLdCAqWji8JnBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAoDUF2j2wNyycz+C7zAX4znUZfF9zAb5vuoDUZa6vC/xt96KAXxe4q6Bec6+YMvh23xbYq+DeWDcF97p3BfdquBr3twtc9dlolZHWvWIK+tV0lLnWBbv6z+7NB9u6IOakMufq3QXvml4uo7FMkludg8vCK4ekD+p17wrqdYG6/rXRvbtgXlNQrwvuNQ3bVll43ayyFi3/Lm7Rh7mA3r1cht4RLqB3JzL0ZvWiBwIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIdHqBsgnsTa0JF9xavzJpW+e5AF8X3FvvXolFLlJVwavlXhS8mwrudZ+VlbbKBflWu/orwDcE9PrgXvef65xURK/7FwJ8twX0un71rmN9zAf2+mBdBewq4LfcS0+3yLvFrGqYW/xhcavZwwX07uCWR8tOQQABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBDIKlB+gb2RqibedwG+C7cF+da/5bL4zndZaVe4Acohi2+knp3+o7IU7+gCeoe47Ly7x3wwb40L7o27zMYUBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIHCBMo6sDcsQtIF8tavcAG+8xNW/7YL8F2wLYtvcq0bohKy2IYF6UjvLjtxrK9LxDvIZecd7IJ5h7qg3iEuO++OylDckRaUZUEAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQTaRqAiAnujFImNSatfoky+CWtY5IJ8F5kl3nGZfAnyjTK1zucQzDvQBfMOchl6B8WtxgX1Vvd32Xm7kZ23ddCZKgIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIdBaBigvsja6YxHoX4LvUBfoqwNcF9za4zwkX9Jtc5YbaEh2Sz80WqHWZefu5IN4BLnjXBfBWDTSrcQG9Ppi3B8G8zXZlRAQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQCBNoKIDe6PLoky+DctdoK8L7G3Qa5kL8l1mlnTdku+5IeujQ/M5q0C1C+Tt7V47uUDenVxA7y4uI68L6tWrSt3IzJuVjh4IIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBASwQ6TGBvFCG51axh7bZA3/p3Ey7g1yyxwgX6rnSBvqtcoO9aN7QbhuIEunwQyNvPBe3u4AJ5fUCvC+Td2QXy6tUnZjEX7EtBAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEGhdgQ4Z2JtOltziAn3XuEDflR++Ei7AN7HGBfrq5YKAk++7sTp6Vt8aF8Tb0736umDdvmZxvbZ3wbs7upcL7PUv9XPBvhQEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgbYV6BSBvemkSRfAm1jvgnwV7LtaAb7bgnwT61yA73su0Ne/tgX7Jje6sSstu68CeHt8EMTbywXq9nafe7kg3t4uK28fl5XXBfPGXQCvf+/p+lelC/E3AggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggEBbC3TKwN6MyA0u2HejC/R9zwX5rnOf9a7Xehfou8G9XCCwf3eBvslN7vMmN5XN7rN7WZ17tVW232o3L5dRN9Y1ZtYtabFu7nM3F5zb3b0rmLeH++ze49vp5QJ4Fczrgnqr9O6GM4J4HSAFAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQKD8BAnvzrZOkC951gbuJDS7IV68PAnu3vSuw1wX5bnHv7qUA32Sd+zsE+rpg36QLGPZBv3rXtNzLEvqsD67EXbCt/rmX3n3grQve9Vl0FcSrzwrk7eICdt271brPernAXgX1xhXQ6wJ29R53Qb16+eE0LQoCCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAQMUIENhbqlWljL9bXbzuFhfY696t3r0ri6+Ce/VSMK8P6HXvPri3cWCvD+qNuyBdvUJAb7WLzv0gsDceAntdfwoCCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAQMcTUAgppRQCVS5jrnuZy6S7rYT3UkycaSCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIdHQB8r929DXM8iGAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIVIQAgb0VsZqoJAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBARxcgsLejr2GWr9MIPPPMM51mWVlQBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBDqiAIG9HXGtskydTuCWW26xiRMn2rHHHmvTp0/vdMvPAiOAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCDQEQRidXV1yY6wICwDAp1ZYKeddrJrrrnG3nrrLVu4cKFNmjSpM3Ow7AgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAghUpAAZeytytVFpBD4UuPXWW23cuHHWu3dvGzlypM2bN8+effbZDwfgEwIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIVIQAgb0VsZqoJALZBdauXWvdu3f3A3Tp0sWOOOIIu/HGG7OPQB8EEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEChLAQJ7y3K1UCkEChe47bbb7KijjkqN0KNHD1u9enXqbz4ggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggEBlCBDYWxnriVoikFWgV69e1rNnz1T/IUOG2MqVK1N/8wEBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBCpDgMDeylhP1BKBjAK/+tWvbMSIEY361dbWWkNDgz333HONuvMHAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgiUtwCBveW9fqgdAjkFVqxYYV26dGkyzBFHHGFTp05t0p0OCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCBQvgIE9pbvuqFmCOQVeOGFF2zIkCFNhuvVq5c9/fTTTbrTAQEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEyleAwN7yXTfUDIG8Ak899ZSNGDEi43Dr16/P2J2OCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCBQngIE9pbneqFWCBQkoODdrl27Nhl28ODBpmy+FAQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQqBwBAnsrZ11RUwQaCcycOdMUwJupKNh3++23Nw1DQQABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACByhAgsLcy1hO1RKCJwHvvvWcjRoxo0j106Natm2kYCgIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIVIYAgb2VsZ6oJQJNBF588UVTZt5sZdCgQdl60R0BBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBMpQgMDeMlwpVAmBQgTyZeNVxt5Zs2YVMimGQQABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBMhAgsLcMVgJVQKC5ArvttlvWUdVv3bp1WfvTAwEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEykuAwN7yWh/UBoGCBV566SXr3r171uHVT8NQEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEECgMgQI7K2M9UQtEWgisHbtWtt1112bdI920DAUBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBCoDAECeytjPVFLBJoIvPzyy9ajR48m3UMHBf1qGAoCCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCFSGAIG9lbGeqCUCTQRWr17dpFu0g4J+8w0THZ7PCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCDQvgIE9ravP3NHoNkCysibrxQyTL5p0B8BBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBNpGgMDetnFmLgiUVGD27NnWs2fPvNMsZJi8E2EABBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBoEwECe9uEmZkgUFqBlStXFjxBBQFTEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEECg/AUI7C3/dUQNEcgoMGDAgIzd0zsWEwScPi5/I4AAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBA2wkQ2Nt21swJgZIJzJkzx3r27Jl3ev379887DAMggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggEB5CBDYWx7rgVogUJTAihUrChp+u+22K2g4BkIAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgfYXILC3/dcBNUCgVQXmzp3bqtNn4ggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggUBoBAntL48hUEChbgeXLl5dt3agYAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgh8KEBg74cWfEKg3QRee+01e+CBB4qaf//+/YsanoERQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQKC8BarLu3rUDoGOLaCA3htvvDG1kP/85z/t8ssvtxEjRqS6ZfvQu3fvbL1S3Qn+TVHwAQEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIGyFyBjb9mvIirYkQUmTpxoS5cutV69etluu+3mP//2t7/Nu8ivv/563mE0QCHBvwVNiIEQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQKDVBQjsbXViZoBAdoF33nnHjj32WBs7dqwNHjzYf547d67dfPPN2Udyfd59992c/aM933jjjeiffEYAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgTIVKIvAXmUsnTFjRrsTNTQ02LRp02zNmjXtXpdQgXKsU6hbpve1a9eaglU3bdqUqXfGbhpW4yxfvjxj/47c8cQTT7Q+ffqkFlGfx40bZ/fee6+VKiBX3y8KAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgiUv0BJAntfe+01u+222+x3v/td3iV+/fXX/bD33HOPH1aBoMpUesghh/hgxrwTaMUBrrvuOjvyyCPtwAMPtEQi0YpzKnzS5VinXLW/8cYbbejQoXbLLbfkGqxRv6lTp/pxzjjjjEbdO8Mf3bt3t8mTJ9vdd9/tXy+99JKp27Bhw0wuucpOO+3UqPeyZcuaTEvdKAgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggUBkCJQns7datm331q1+1iy++2ObOnZtzyW+++WY/7L/+9S8/XH19fWr4YrK8pkYq4YfNmzf7qW3YsKFsAnvbok7KDnvNNdfY9OnTS6ZZLoHRJVugVprQX/7yF3v33XctmUza1q1bbdasWaZuCo5WYO+bb75p4buSXoW+ffumOinbscZTtumuXbv6l76LTz/9dGoYPiCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAQHkLVJeiervttpt97GMfsyeeeMImTZpkV199dcbJKkj1/vvv9/1OP/10/96vXz97/vnnbf78+faJT3wi43ht1fGqq66yffbZx8aNG2fV1SWhaXHV26JODzzwgA8KHThwoI0fP77FdWYCxQnstddett1221lDQ4MtXrzYlMX68ccft/fff9/uu+8+mzlzps/Ee+yxx/oJh/foXBTUW1VVZSNHjrTevXv7XosWLfKBvvPmzYsOymcEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEChTgZJFr5599tk+sPfOO+80BaPGYrEmizxlyhQfrKggxqOPPjrVf/To0aZXe5fu3bvb5z73ufauRqP5l2OdGlWQP1okcOCBB1qvXr38NBSYO3jwYHvrrbds6dKlPrj84Ycf9sG5yuq7evVq//2ZPHmyRYN1X3nlFR8MfPLJJ6eCejXBQYMGWW1trT300EP22GOP2THHHNOiujIyAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgi0rkDJAntPPPFEX9O3337bZ+BV1tv0cu+99/pOF110UaOMuNddd50tX77crrjiCtt1110bjbZq1Sp78skn7dFHHzVlID3iiCN8dmBNPwQPb9iwwQcTx+Nxu/76633m0jARZRH++9//bmPGjLHzzjsvdPbvP/vZz3wQ5TnnnOMz9b744ov2hz/8wUaNGmXnn3++H0bz/973vmc9e/a073znO3bPPffY1KlT/XgjRoyw0047zQ477LBG09UfyWTSZsyYYQpmVv233357U6bVL37xi34eCsb80pe+lDegOVOdNP3vfve7PuDzyiuvNA2jwM3nnnvOlD1ZQdNnnnmmySNX0TgPPvigPfPMM34wrZ85c+aYgom1TqJFw+qlenfp0sX2339/vzy5MvyuW7fOfvnLX/rpa10dd9xxfpyhQ4dGJ53zcyKR8Blrg6OCVbV8yhCtbM+VXkJQb1iOhQsX2qZNm3zmXa3PsWPH2pAhQ/x6laey+SqwV5l9td336NHD/vGPf/jvRcjUG6ald63Lfffd177//e8T2BuF4TMCCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACZSgQq6urS5aqXgpUVcber33ta/bjH/+40WTfe++9VCCmAhYVaBuKAmQVEJzefcGCBbbffvv5LKVh2PB+zTXX2NVXX+3/VBCtAj4VHPz88883CpY9/fTTbdKkSbbTTjv5wOAQDFxfX28777yzn7ayn2r8P/3pTz4gVplP//znP/tpv/nmm/aRj3zEj3/SSSfZ7bffHqqQev/FL35hF1xwQepvffjJT36Sql+0h4JbFbj51FNP2d/+9jc7/vjjo72bfM5UJw2kAGgt78SJE5tYq/+pp55qd911lz5mLTfeeKMpMDi9KKOyAppVZHvxxRfb73//+/TB/N/yOOuss1L9vvWtb/n6XHjhhX75VMf08vTTT1s0IPiRRx4xBYYffvjhPng4OryyPytYO71ofT777LM2YMCA9F4V9fe3v/3tRvXV90eB4jNnzvQB6h//+McbZeFVcLuy9yqY9+tf/7rffpXV94wzzvDTcd/n1PQUgL1161YfAK5tbdq0aVZMUHVqQnxAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIE2Ecid0rXIKoTgwrvvvtsUOBstygyrMnr06EZBvdFhop+VmVSBtO+//77P9KrgRQU73nDDDX6wa6+91gfi6g8F62pYlf/85z/+Xf+pDgoaVVGAqbLNhqLPmvbw4cN9UG/onu1d4yuIVUG8L730kg+aPfjgg/3g3/jGN0zZVENREGUIOr7ssstMgazTp0/3GX//9a9/+aDeMGxL3xVArXkoyFXTViCzigKCNd9cRRmM586d67PoajgFCevvF154ITWaMiWHoF4t+8svv+wzxp577rl+GGU23rhxY2r48OE3v/mND2AOXn/96199ll31/8xnPmNLly4Ng2Z913xDUO8tt9ziMxNrO1IAsNbHpz71KZ+1NusEKqzH/PnzfTBvQ0ODXy4FPytjscrq1at90Pprr71m69evN2X6VfC1guGV0XflypV+G1TQuILo9VL/LVu2+PEPOeSQkm53fqL8hwACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACJRWoLuXUlGlUmVQVdKnsoEcccURq8vfff7//fM4556S65fpw77332pw5c2zfffe1++67z7p37+4HHzlypP98ySWX2A9+8AOfmVY9jjnmGB94q0y4F110kR92xowZPnh34MCB9s4779iUKVNS2XxDALCy8xZafve73/mMvhp+r7328tmElc1XAcIKiA1ZaG+++WY/SdUjBKaqg5ald+/ePqOxH6AE/ylbbnQeH/vYx3zgrdaBgn0nTJiQdS59+/Y1vZShV0VZgHffffdGw1dXV/vsw3KXsYoyLB9wwAE+E7KWXc4Ktk0v99xzjynjrIq8Dj30UPvoRz/qszPfcccdPpA4fZzwtwJar7jiCv+ntgUFA6vIW/NWoKoCvbVOQ1C3H6AC/1MQu14KNg/Zq7XN9uzZ0y/NsmXL/LIq+67Wh96VSVnB0QsXLrRhw4b5oF4FWNfW1vogX21nGk5BwrLcfvvtfaB3od+/CmSkyggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAghUvEBJM/Yq6FBZYFWUMTYUBZk+9NBD/s/PfvazoXPOd2UiVbnwwgtTQb1hhNNOO81/VODvhg0b/OcQWKoMvQp6VFHQp4qyvaoo+2woTzzxhP941FFHhU55348//vhGwyigcujQob6bAodVlCU4BA0rk256CUHH6d2b+7ey1kaLshefcsopvtOiRYuivZr1WT5f/epXU0G9YSLdunWzI4880v8Zlj3007uCnENQb+iuYNPLL7/c//niiy+Gzhnf3377bR8wraDjENQbBuzTp499/vOfL2g6YZxyfVf2ZwXB//vf//ZBulo2ZX9WkLXWpdbhk08+6bMVr1mzxvRSNwVUL1682BT0+9Zbb/lMyvPmzfPB8Mreu2LFCh8srO+e/pb31KlTydpbrhsC9UIAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEDACZQ0Y69EFXT7ox/9yJSh96abbrKuXbva3//+d4+twNj+/fv7z/n+e/zxx/0gX/7yl33G2GzDK8upgkiVkfTggw/2QbXKnrv33nungok/8YlP+GyxkydPtvXr15uCUsP0DzrooGyTbtRdAaaaR3oZNWqUz0Abgolff/311CAh6DfVwX1Q8HOoZ7R7cz8PHz68yahadhVlai1FUeCu1uEzzzxjr732ms/I/N577/ng0mzT32effTL2UsZdFU0rVwmBvwpgVRbb9KLAX5UQAJ7ev1L+VlCvAnlD0XYkWwVBx+NxH7w7e/ZsH9z+5ptvhsH8exhPmXv1GjRokB+vV69eqeG0rWs4vTTMggULUv34gAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAAC5SVQ8sBeBZXuu+++NnPmTJ8x95Of/KTdfffdfqm/+MUvFrz0Cm4MRcHBmYrmVVdXl+qlDLHKlqtXv379fNCnMgTX1NTYCSec4DOjKpBy4MCBPihVgcbdu3dPjZ/rgwIkMxUFX0aLMq6GsnnzZuvRo0f4M/WubKqlKunz13SV6bVURZYnnnhiKohXAc677LKLDR48OJWZONO8FJiaqfTs2dN3zpTlNzr8qlWrUn9mW/8aIEwvNXCFfVBg+MKFC32ttc1v3LjRb5Nr1661YK1hlJlX22rYDtVfgeYK1N1zzz39eArojW5/mujWrVv99qAMwHvssYcddthhFSZEdRFAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBDoPAIlD+wV3XnnnWeXXnqp3XvvvaagRAWHKkhRmXMLLcrCqwy7kyZNspNOOqmg0Y4++mj79re/bU899VQqwFHBuyrHHHOMfeMb3/DTDFluFQhc6jJgwADbaaedfFZbBTcfeuihjWaxfPlye+ONNxp1K+c/Jk6c6IN6Tz75ZPvWt77l12cIJv7Upz5lDz74YMbqK5NyphIyGh9++OGZeqe6jR492n9W8PasWbNS3TvaBwXazp8/3y+WzJTRWZmeFfisYNzddtvNZ+KdMmWKD+xVkLMyMSsD78iRI30G5SFDhlhVVZUPYNe60TTq6+t9UK/elSVb44wdO9Y0LAUBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBMpToHG62RLV8dOf/rSf0p/+9Cf7/e9/7z+fdtppBWfH1Qgf/ehH/XiPP/64f0//b+7cuTZ79mxTVtxQlClYAcQa5+GHH/adjzrqKP+uAGMF3P7jH//wgb/qGPr5AUr434QJE/zULrroIluzZk1qysouXEzW4tSIbfRBwaLRsmHDBps+fbrv9M1vftPGjBljIahXmWCnTp0aHbzR56efftoHNzfq6P745z//6Tvtt99+6b0a/a31pTJnzhxbsmRJo376Qxl9tf4XL17cpF+ldVCwrV4K4tVy7b777vbqq6+aMvgq2/SOO+5oBxxwgA/k7du3r9/m1V3BvPvss4931rgK4N155539+6BBg3xAsKal8SkIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIFD+Aq0S2KtAQmV4Vbnuuuv8++mnn+7fC/0vZNO97bbb7He/+53POKpxGxoa7Kc//akPMlW2U/0dijKVnnjiiT7Q8Y477jBlfVWwo0osFjNlmH377bd9FuCBAwfannvuGUYt6fsNN9zgg4iVmVd1OP/88+2SSy6xESNG2BNPPOGDj0s6wxZOrE+fPn4K//rXv2zTpk2pqfXo0cMvhzo89NBDqe5btmyxCy64wGfyTXVM+/D+++/7IOYQLKz19Otf/9ruu+8+P2RYv2mjpf5UgPaxxx7r/w7rNPRUhlutewVy33///aFzxb8rOHfhwoWmgOpddtnFZsyY4YN3tWB77LGHf6m7tl0F9cpIwekap1+/ftarVy//UlZffd5hhx1S29q8efPsoIMOqngjFgABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBjizQKoG9AjvrrLNSbgpELDaoUMMrqFfl4osv9llHjz/+eBs8eLBNnDjRd7/11ltNwafREoJB1e2UU06J9rLjjjsu9XcIPE51KOEHLa8yA++9996pIOPbb7/dZ2D9wx/+YIccckgJ59bySY0fP95PZNq0ada7d+9Gbueee67v993vfteGDh1qJ5xwgg0YMMDuuece/3e2uY8bN84HMSvIWxmMlS350ksv9YN/61vfsiOPPDLbqKnud955pw0fPtxefvll23XXXU311LQUkB2CphVg3FGKAqy1zWh5FeSrbM8K7lXgrl4rV670gekK/F2+fLl3UKZfFWWuVqBveNXW1ppeKu+8847vfvTRR/u/+Q8BBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBMpToNUCexVgqyBDFQVfKmNusUWZbn/zm9+YAhKVAXby5Mk+oFGZWhU4mykL8Mc+9rHUbNIDGRUUGsoxxxwTPqbelQVVpaamJtUtX72VJVgljBtGVB1nzZrlAzHvvfdee/jhh+3NN9/0dVbG20JLmG60TtFxQ/9M3ULdov0yfT7zzDNNwbYKvlV5+umnU4MpoFf9tC4VIProo4/67LAPPvig7b///n64TPNRAPCkSZN8dtnp06f79afsxddee61dddVVqenrQzy+bTNMX8a+fft6twsvvNBPZ+bMmaZpqXzta1/z24My01Zy0XYdLWPGjLFu3brZq6++agr0VUDvk08+6V/Kuqug6lGjRvlA5xDUfuCBB/p1FrIjR6enbs8//7xdffXV0c58RgABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBMhSI1dXVJcuwXk2qtGnTJluyZIntsssuTbL0Nhm4nTso862yqw4bNswHYUaro+VQ9lkFdCrQV5lZy6U0NDTYxo0bfWBz165dG1UrmUz6wF4FEmsd5At4DiNrvHfffdcHPofA4dCv2PelS5eapqf5h2DgYqdRbsMffPDBNnLkyFRQtbL0KhBXy/faa6/ZqaeeaqtXr/bVPvzww+3jH/+4364UmB6yYit7r4KoFWA9duxYv31pBAX1TpkyxVasWOEDzMtt2akPAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgg0FtiWbrZxt7L8S1lM99hjj7KsW3qlZsyYYRMnTvRZbhVwOX78eB8I+5///Md+/vOf+6De4cOHl1VQr5ZBQbshy3L6MimQVwHJxRaN179//2JHyzh8qaaTceLt1DGRSPiA6QULFvhtRF567bfffv79lFNO8YG8qp4CxaNFQcDKaqyA6c985jM+uHf+/Pl+euq+atUqH9ybPl50GnxGAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIHyEaiYjL3lQ5a/JmvXrjVlV50zZ07GgRWI+Ze//MUH/GYcgI6dRuCGG27wGY1feuklv8zKRjxmzBi777777Nprr7Xjjz8+o4Uy9ipgfMSIEan+y5YtS01L01Gpra01Bfs+9thjqeH4gAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAAC5SlQMRl7y5Mvc6369Oljzz77rN1yyy02ZcoUe+655/yAysI6btw4++///m8bOHBg5pHp2qkENm3aZGPHjvWvsOAKxK2urs4a1BuGS3/feeedTS9NL5TXXnvNtmzZEv7kHQEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEyliAwN5WWjnKlPr1r3/dv1ppFky2Awg88MADdtZZZ5mCwVWU7Vndvv3tb5ds6YYPH16yaTEhBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBoPQECe1vPlikjkFegf//+NnnyZPvoRz9q69at8y91O+GEE/KOywAIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIINCxBOIda3FYGgQqS+D666+3HXfc0RYsWGBr1qyxYcOGmbrlKzvvvHO+QXx/BQtTEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEECgMgTI2FsZ64ladlCBESNG2O23325///vfTZ/32muvgpZUw27ZsiXvsEuXLrWddtop73AMgAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAAC7S9AYG/7rwNqgICdfPLJRSu89957RY/DCAgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggUL4C8fKtGjVDAIFcAkuWLMnVm34IIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIFBhAgT2VtgKo7oISGDHHXcsGKKYYQueKAMigAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggEDJBQjsLTkpE0Sg9QX23nvvgmayfv16K3TYgibIQAgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggg0GoCBPa2Gi0TRqB1BRS0m68sWbIk3yD0RwABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBMhEgsLdMVgTVQKBYgUKDdvv161fspBkeAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQTaQYDA3nZAZ5YItFRghx12KGgSyuo7cuTIgoZlIAQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQaF8BAnvb15+5I9AsgVGjRhU03uLFiwsajoEQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQKD9BQjsbf91QA0QaJaAsvFSEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEECg4wgQ2Ntx1iVL0skENmzYkHeJ+/btm3cYBkAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACB/8/eecBJUpT9v2Z2L8Pl47gjHBkk5yA5+SKIIpgjoIIBUVHwVURewmtC9FVRAcUE6N+ECUzkDJIzRz4y3B3huLC3uzPzf361U0Pv7ITumdndnt1vfba3OlT3VH+7K3X96ikIQAACEIAABCAAgXQQQNibjudALCCQmMCWW27paol7dUxhcBCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQi0BwGEve3xnIglBCoSePrppyvu104dmzp1atXjHIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAgXQQQ9qbreRAbCMQmMGXKlJphly9fjsXemoQ4CAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQSBcBhL3peh7EBgKxCWy11VZuxYoVVcM/+eSTVY9xAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAIH0EUDYm75nQowgEIvA5MmT3fz582uGVRgcBCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAu1BAGFvezwnYgmBAQS23nprV8sqb1dXl9tjjz0GnMcOCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABNJJAGFvOp8LsYJAXQKrrrpqzTCy5rvNNtvUDMNBCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABNJDAGFvep4FMYFAIgLbbrut6+zsrHrO4sWLqx7jAAQgAAEIQAABTyJWAABAAElEQVQCEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAALpI4CwN33PhBhBIDaBGTNmuK6urgHhtW/PPfccsJ8dEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCKSXAMLe9D4bYgaBugQmTZrkFixYMCDcQw895GTRFwcBCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIBA+xBA2Ns+z4qYQmAAgd13390tWbJkwP7HH3/cTZw4ccB+dkAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCCQXgIIe9P7bIgZBOoS2H777d1VV101INzSpUvdHnvsMWA/OyAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhBILwGEvel9NsQMAnUJyCpvR0fHgHA33XST22GHHQbsZwcEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAAC6SWAsDe9z4aYQaAuAYl3Z86c6bq7u0thsdZbQsEKBCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCECgrQgg7G2rx0VkITCQwNSpU929995bOnD55Ze73XffvbTNCgQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAALtQQBhb3s8J2IJgaoEvvCFL7irrrrK9fT0+DD5fN7tscceVcNzAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAIF0EkDYm87nQqwgEJvATjvt5NZbbz133333uSVLlrhMJuO0DwcBCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIBAexHIdHd3F9orysQWAhAoJ3DTTTe5r3zlK27lypXujDPOcDvvvHN5ELYhAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQSDkBhL0pf0BEDwJJCNx4441ul112SXIKYSEAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhBICQGEvSl5EEQDAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAYHQTyI7u2+fuIQABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCCQDgIIe9PxHIgFBCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAwCgngLB3lL8A3D4EIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIBAOggg7E3HcyAWEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAqOcAMLeUf4CcPsQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAAC6SCAsDcdz4FYQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCIxyAgh7R/kLwO1DAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIpIMAwt50PAdiAQEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIDDKCSDsHeUvALcPAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgkA4CHSeddNL/pCMqxAICEGgVgaefftotW7bMrbrqqq26ZMPXeeWVV9zdd9/tFi5c6CZPnuzGjBmT6Fovv/yyu++++9yiRYvc1KlTXWdnZ6LzCQyBSgRWrFjhHn/8cTdp0qRhf6cKhYJ79NFH3QMPPOAymYybMmVKpShX3afzH3roIad0HyeNJU2TXV1d7rHHHksFq6oQOACBGATSlO4V3QULFvi0O23atMRlYz6f9+lS+YbK1TSU9zEeAUEgMCwE0lQvXr58ubvjjjtcb2+vr9cmBbJkyRJ35513+tOU7lVvqOaarV9Uuy77IZBWAmkr51vBabDyr5UrV/q2xxNPPOEmTpzoJkyY0Irocg0IDDkBfS969tlnfRs6mx1dtiuStutHYh455C8cP5gKAiPpXaZdn4pXiki0EYGRUO4/99xz7p577nH6NqDvgc3WXxYvXuzuuusuX6dXvR4HgZFCYLDawo3yUZvjtddeS803+JFUH2r0mXDeyCAwlGV7s9/l00I8bfljWriM1HgMZX6f1jSSpC891LW7u7t9/1ut/rN2e2dG11fPdns6xHdUEfjb3/7mZsyY4caOHevuvffeAfcuAcDXvvY1f1zhyl0ul3OnnHKKv8Z6663n5s2b59d1jj4UJnVvf/vb/W8pPi+88MKA0+vFRyd8//vfd6uttprbbbfd3I477ujWWmstd/HFFw+4VqUdEiOceOKJbvbs2e6Nb3yj23777X2jSfeo3466Rx55pBRXxbd8efLJJ6PB3ZprrjkgTDjnN7/5Tb+wbKSHwEsvveTe+973+mcnv5K7//773XbbbefDnHPOOQOCSCSu90ni2c0339wLYXfffXcvrhsQuM6OW265pfQeHXfccRVD14uPKuC77rqr23TTTd3ee+/t1l9/fXfYYYf5j3sVL1i283//93/dzJkz3RZbbOHTmMTvp59+uuvp6SkL2beZJE3qI6PYSCwcZaX9OAgMFYG0pfvvfe97pXT/5z//uSKGeule56kc2nDDDX35qHT7kY98xElEH8dpsMw222zj3vCGN/h8Q+X9VlttVbHuEL2eOv9D+afwUXfzzTeX7iuUh+X+X//61+gprENgUAmkqV5cK+0ECPXqxRLkqnxXele9WOlf6fHqq68Ol6jpawCQymSV+fJV19966619h2ClE5PWL+rlW5V+g30QaAWBemlHv1Hv/Rzq+n2cuklgEyf/CGGD30y7Pk775Morr/RtDrWZlJ+svvrq7rTTTgs/jw+BQScQJw3VqwdcdNFFbuONN/bfi1Qnljj9Qx/6kFN5m9TFqd/Xis8vf/nLqvXoddddN2l0XL1vcbpgknZ9K/PIxDfDCRAoEoiT7tNW3teKT9Lv0JVehCTt+tCOL2+jazv6Hfutb31r1fxIYcu/A1SKF/sg0GoCtdKSfitOe6CV5X6ccrZaud9MGtO3+iOOOML32e21117+W/62225btU+iXr754IMP+j6QOXPmuD333NPJV5+HvgXgIDBcBKqlnRCfeu91M23h8BvBj9MWr5f/6Pj//M//+H72ddZZx2lR37z26VgcVy8PjF4jTpyp20eJsT5cBOqlZcWrXn7QyrK9Xpu+0e/ycdJkvWdQrd6RtD+ulfljvThzvHkCrUgjrczvByuNiFS1d7wSxUrt2ei+448/vt9pSfrSNUhAcVF/uera+lY4a9Ysp7xmpDhMX46UJ8l9tC2BpUuXuhNOOMH99Kc/Ld2DRK1RJ0s6hx9+uLvhhhv8bo0MLHdHH320+9WvfuUb8BIOqJA///zzfSNDIywk9ovrfv3rX7tLLrmkFLyR+FxzzTXuC1/4gltjjTXcxz/+cd/BcvbZZ7tDDz3UPfzwwz5jLf1AhZWf/OQn7owzznDqCPngBz/oP06ce+65TkLGV1991X3nO98pnfXiiy/69QMPPNA3rkoHiiurrLJKaZcaXAovIaQ6MsvdBhtsUL6L7RQQuOqqq9wHPvAB/+wUnXKxut5RvV+f+cxnSrEtD6NKkMRwcno39awlUv3hD3/odtllFy+K00ewOE4jpJQmgytPI3Hio/gdddRR7tZbb/ViHwl7f//73/sGz1e/+lX37W9/O1y+ov+lL33JnXnmmV4c9JWvfMWPzL/gggvcqaee6p555hn34x//uN95SdKkOhgkppf77Gc/6ytA+gihyp9EALfddptPQ/1+gA0ItJhA2tK9LGNHGxaNpPu//OUv7l3vepcv25SeJJxX2a3yWvWB3/72tzUp6iPEO9/5Tm9xXI0UlXvz58/3+YU6BCT+0yCaSu6LX/xiKQ8t//ioQTif/OQnK53mLr30Ul9uYzG/Ih52tphAGuvFtdKObr9ePV3pbf/99/eWeiXi32effXyaUkeA9t90001O6beak3BAHyNUf9X5EgZrEKDqACqTZblbA4OCS1K/iFNfCdfFh0CrCdRLO3Hez6Gs3+v+69VNyhnVyz/Kw2u70XZ9vfaJrq1ZdN7xjnd4S0PHHnusb6urDSVh75Zbbune9ra3KRgOAoNGoF4ailMPUJv3yCOP9O+v2r7Tp093//jHP9z/+3//z6nMDN/N4txEvfp9nPg8//zz/qdURo8bN67fz1YalN8vQNlGvW9xCp6kXd/KPLIsqmxCIDaBeuk+beV9nPgk+Q5dCVSSdn2S79hvfvOb/QDA8t9UXqbvDuPHjy8/xDYEBo1AnLRUrz2gyLWy3K9XztYr95tJY+rnuvDCC/33dg1GkqBH2+r3uu666/rN5FUv39TMejIUoj7Ck08+2W200UbuiiuucOedd57beeed/XdCzVKIg8BQEaiXdhSPeu+1wjTaFta55a5eWzxO/vPRj37UKd9QP9l73vMe/xNqc8iYlqwH/vznPy//2dJ2nDywFLi4Ui/O1O3LibE9HATqpeU4+UEry/Z6bfpmvsvXS5P1+NeqdyTtj2tl/lgv3hxvjkAr0kgr8/vBTCO13vFKFD/1qU85lY/lTnG87LLL/CDVcCxpX7quLW2bBrq9+93v9oa0pI1T+f273/3OHXLIIeHS7eubGeICCwx4B4bvHbARA8rBCtagL9ioXb9uorlSurSOCb9PYewDQCGEjz4zs0jrw+y3334FE/GWzrURIQWbprdgFYSCWQIs7Y+eW75uDRJ/jlkSK1hm56+r64dwceJjo5gKJuj155rYoHSuWfvz+0zAWNoXrhv1TVTow5mot2AfKEphrUJYun/FM5xjYkgf/tprry3tC8fKfRu17MN+/etfrxu2/Fy2hyed/OEPf/DPTO+xid/8ugna+j0/E/T6/dbILujZKr2YaK5imMsvv7zffmuI+/AmHO+3v9bz/vKXv+zPOemkk7xvFYZ+58aJz49+9CN/rtJ9+C2bFrege1D8y+MZwsi3qQR8GKVTmwaodL51DhSUvnT+f/7zn9L+pGnSxIv+GvahonQN/a5ZAvH7bTBCv/3RuLE+POlkpHFPW7o3sUzBGgSl919pzES4/dJBnHR/wAEH+GvYx8PSuSrnlJZ1TbOQX9pf6ZmqrqBwP/vZz/qFs48hfr/iUOk8a9D44zpf5bN+r1K48n3KO5T3aomWx+Xh2Cbdt+odCPXctNSL66WdOPVi1U+Vbk1E1y/dmYU/v79emfq5z33Ohyuv14S4mRCv33WT1C/i5FuterZch3wi+g7ESTtx3s8QprzePBj1+zh1k+g9hjSapOxtpl1fr32iuNngIp+f/OIXvyjlG0899ZTfp+8GamNE74F10m0r34E4aahePUDxURi9ryaoLb2vakeHerYNfintrxX/OPX7OPFR+a5yPu43t2pxqvctTuclbde3Mo+sFm/2k0/UegfipPvwnrbT97wk36Er8UnSrm/Fd2y1I5RPmQGAWPljpTizj7Se9B2ol7bjtAf0m60q9+OUs3HK/Uoc6qUx9fUpDaqva9myZaV0qG8B2m8zVJb2xck3Q9+H8qJofGyQkb+e+uCi+1kn/Q72O1Av7cR5r5tpC5ffX722eJz8R20NpU8zENXvm7i+j2ufjtX6jl8vD0waZ4UP12zF94/y32ebfCLOOxAnLdfLD/Q7rSrb47TpG/0uXy8fqccrTr2j0jUq9ce1Mn+s9Jvsa136b1UaaVV+P5hppNF3vNL7pv4tlat33nlnqQ4bvvHF6UtXf7nOVzs7en2b4cLvV54T3d+u61m7SRwEIDCMBBYvXuxHHsti75QpUwbERNZpZbVWo3gtI3eVLObZBwE/SlDWbKPHZalW04PIkkC5db4BP1Tccdxxx/nRvopPpZG9ceIjK2KyGCrrf1ELYpYJ+6mBNP2nTKJXc2G6b/so0s/iicyxX3/99c46H7359HC+NaD86uzZs8Ouqr6sFMnFtcxa9UIcGDICepdklfL22293Jl6v+LuaZkqWrzUSSlNyVnKy0vzd7353gKVmK9B98GBxo9K50X2yZqtRuXqfrZIQPVRajxOf8J5rZH1wmUzG2cc5vymrQ9VcsEL04Q9/2E/LHcLJ+sYnPvEJv6mRUsElTZNiLidLgFEXtsPx6DHWIdBKAmlL9yoTle6U9jfbbLOKt1ov3cuKZjab9Vbs586dW7qGLHtp2jw5Wdyt5lSOy8qOrAS8733v6xdMVnxVNp544on99mtDdQRZBzdxrreEPyBAjR0m/PF1CFkWLbdAVuM0DkGgYQJpqhfHSTtx6sXKz2SVXyOFo06Wd+VURtdy//znP/1hTdsZdbL2ayJ9p9HL4hZckvpFvXwrXBMfAq0mECftxHk/h7J+H6duEjjFyT9C2KjfaLs+TvtEM/rIQoHaPtH8SG1ozRZiHZT+m0M0PqxDoJUE4qShevUAE/B6y3aqo8pSb3BqR4c6erRMDMcr+XHq9/Xio+vaQFtvPVj1/GZcvW9xunbSdn2r8shm7otzRzeBOOk+beV9nPgk+Q5d/gYkbdc3+x1bs/ipv0DfAzQTGg4CQ0WgXlqK0x5oZbkfp5yNU+6X84uTxjQTlpy++Y8ZM6Z0ic9//vN+XdMMBxcn35Q1RPWR6JtA1GmmHznN6oODwFASqJd24rzXjbaFy+8zTls8Tv6zaNEif2l9h49+E9e69smFMtpvlP2rlwdGg8eJs8JTt49SY304CMRJy/Xyg1aW7XHa9Ipz0u/ycdNkrWcQp95R6fxK/XGtyh8r/R77WkugFWlEMWpVfj9YaURxbPQd17lRZ2Je37+lmW433XRTfyhpX3rQw6jdG3Xrrbee0yxboS4ePdaO653tGGniDIGRREBT2tcSpEoYqzAS6VZzCvOFL3xhwOEbb7zR3XPPPV4UKVFsPSfhwB//+EcvyN1ll128gKj8nDjxsRGP/jSZOy93u+++u7v66qudpgwKIsHyMDK5LqePEYqTjahyNqrEC58kfirnFQSZalSdc845frohdVgqrKYiirrQ2FIn0EUXXeSnP541a5YPq/h0dHREg7OeAgKaLvbjH/+4U2edGgWV3P/93/8NeC/Kw1US4dqoHGcjeXxQVe7rOXWIKy5y3//+932cKp0TJz5KmxLtRwV+utYOO+zgL1nrI5xZ4/Zhpk6d6v3oP92T3MMPP1zanTRNHnbYYX6aoR/+8IfuG9/4hhcjqiKlbblDDz20dG1WIDAYBNKU7s16nfv0pz/tG1MaYGOjLivecr10r87+6Mf6cBFNPaJyXi46GCYcD76NgPSrGuigsswsBjsbcejLOZWXW2+9dQjaz5cYWQ1Ks7jtpk2b1u9YrQ11TuhcOgBrUeJYqwmkqV4cJ+3EqRerzKxUbqoeIBc+WFRjqbqPWSbs15EQwoayXvlDmO47Sf2iXr4VfgcfAq0mECftxHk/h7J+H6duEjjFyT9C2KgvLknb9XHbJ+pYlFN7vLzNq7a/XMhT/Ab/INBiAnHSUL16gL75VEojqq9rWlyVl9XqxNHbiVu/rxcfXVOdBPPmzXNPPPGEj4PK7R133NF/Y1I9Oo6L8y1O10narm9FHhkn/oSBQDUCcdJ92sr7OPFJ8h26nE3Sdn2z37HPO+88P1hX3/OiwqTyeLENgVYTqJeW4rQHWlXuxy1n45T75ZzipLH58+f701Q/iDp9o1P/mQwJBAFDnHwzaiQkej0N9pOrZvQkGpZ1CLSSQL20E+e9bqQtXOke4rTF4+Q/6ldWH7P6ASTCD/3MSs/ap2NhX6V41MsDo+fEibPCU7ePUmN9OAjEScv18oNWle1x2/SNfJePmyarPYO49Y7y86v1x7Uqfyz/PbZbT6AVaUSxakV+P5hppNF3vBLx0047ze/+0pe+VDqctC9ddWAZ0ZFmRsax7rjjDr8unZjq2nE0cqUfT/EKwt4UPxyiNjoIlItUy+964sSJ5btqbkukqE47derLgtdOO+3kfvKTn9Q8RwdVYZClT3U8yDJfNRcnPsHi4JprrjngMmuttZbfpzDVhL3333+/Fzx+6lOfcueff37pGmeddZbfL4u/UTFksJSgkcrlnZHnnnuuO/zww0vXCB9E1RgrD6uCUuGbtbRS+jFWWkJAwut6rl46ip6vd0+jd2Q1+l//+pd/D84+++ySoDYatnxdo+VuvfVWL3aVNWybAqM8iN+uFx+lNwntKlkgVhpTh6TSQTW38847+0MXX3yx++hHP9rvnb3lllv8sSCQ10bSNPnmN7/ZqTJ10kkn+Xxk880399aBHn/8cb9fx3EQGEwCaUr3X/ziF/2t2vT2/SxrlN9/vXRfHj5s//KXv/QNDZsyr6bwNpRZsiogIaAs60Xd6aef7i2XR/fdd9993kqvLIxLsJ/EaTSnOizVAShr4DgIDAWBeukoTj00Gs9G68Vx007S+IS4Kf0ef/zxflNpv5bbZ599vFDopptuckF8p/D6OBOcBALbbrutr88nqV/U4x2ujw+BVhOIk3aSvJ9DUb+PUzcRp7j5Rz2mcfOvuO2T0B4I7fHo74d9oa4RPcY6BFpFIE4aSpLubQpaL4RRGfinP/3JTZgwwWnWG/n1XCvr9yp3ZUGnvGNfbXrFsZ7QOO63ON1TSMdJv7U1k0fWY8lxCNQi0Op038y7HLe8jJMPJfkOXc4nlLVx2/XNfMdW3qRv/PrW/8EPfrA8KmxDYFAJ1EtLcdoD0Qg2Wu4nKWfrxTkaH63HTWNB2Lv66quXX8Kpf0HCXrXv11hjjX6zVA4IXGNHaINoVp9K/Q01TuUQBJomUC/txKkPRCMRty0cPUfrIR3U+w4eN/9RH+KRRx7p1DcWjAKpb1rpTP2JtVw9JuHcuHEO4eU3Ux+KXod1CCQlECctx3339duNlu06N26bXmHLXa3v8o2kyej1k9Q7oudpPU5/XKP5Y/lvsT04BFqdRprJ7wcrjTTzjpdT10CAv/3tb06C6DALV3mY6HalvvQlS5b4fuw99tjDD7KPGs2TBd+DDjrIG8kaCeJehL3Rt4F1CIwAAir4JTwMTmLVOIKcM8880wsNL7jgAj+KIZzfiB+sAQXLYdFrhEJN0xVWc/rYoYqVRIQSFClDV0Hxve99z2mko0SFd911V+n0cK0tt9zSafphVRyvu+469/73v99PP66G1q677urDB6sKYiLLwVtttZW3eHjMMcf4URwKGwq70g+wMqIIyMpNGAGkG3vb295Wt7NN4fQx/YQTTvCjcWW9sxkX3sOZM2dWvIw+6gVLfpUCqNNQUzFoVJQE8FpUKZEFT6UTOXUSBNdImpT1LzmlQy3Bhf1hGx8C7UCg0XSvj3Wy/nXUUUf5gTKtvtfrr7/eX1sf70899dSal5cVMDmlcY0y/MEPfuA22GADJzH/+973PveVr3zFW+VQniYnS8Ahrwr5gj8Q4586J0455RQ6AGOwIki6CTRSL24m7cShoel3VT9Xp76m4tSo+1pO0xApH3rLW97iJEjQlH8a/HPssceWTgtC/2brF6ULsgKBNiPQaDnfyvq9kLUy/4iTfyWJv6yKylWyIBra7aHN4APyDwIpJ3DVVVe5b37zm6VYaqB6dAB46UDZSqvr96GtLOt5ajMoH9BMWJrpY9999/VWdmvNmpHkW1xIoyHNRm+t1re2RvPI6PVZh0AaCDT6LicpL+PcZ5Lv0OXXS9quD/X7Rr5jy9CH2glqc8TpGyiPK9sQSBOBRsv9JOVs0vuNm8Y0CEkDfjo7B3bHh7p5EPYmjYPCa7CBvhfIKU4jQbjgb4Z/o5ZAnLZwOZxWtsXDtbu6ukqDBtWGCE79z62wgt9onButD4X440MgLQQaLdubadPX+i7faJqM8my03hG3P66R/DEaP9bbi0Cj+f1gpRHRa/Qdr0Q+aHW+/OUvVzrcb1+1vvQwI46s6au+rQH/Mo6jdvfnPvc5d8kllzhd/9vf/na/67XjRrYdI02cIQCB6gQkVpWgT74sgUnwJwGAKgXVnEZ8KPPUqMN3vvOd1YLF3h8s/oSPj9ETQ4diCBM9FtYnT57sVxWnj33sY96CoURP3/rWt5xGW2q0heIcnKZS0EdKiZIljlhllVV8uN/97nc+yN///vcQ1At51eEiS6fK2DU6UxbOtC130UUXlcKyMjIJ7L///k4jeFTYa3SbrO7KAq4qxLWc3ht9EJfl6DFjxtQKWvdYGKEftbYXPUkVDonMq7lMJuMrJwqjKb/0DmvksNLMiSee6Dvso6ObQnqLmyY15YGsehx44IHuP//5j1u0aJH3ta39cSpZ1eLOfggMB4FG0n13d7fToA81BuqJbhu5J5Vlb33rW/31VU6Fzvhq14oKAjSIReJ+WSTTSESJB+S0PziVgRrkojS77rrrht2xfFmvV34nq910AMZCRqCUEmikXtxM2qmHQR8IwwcFiX80g0Q9pw46ifOVJmV5W9N9a5CbBr2F6ciDOLjZ+kW9uHAcAmkl0Eg5r3tpZf1e12tl/hEn/0oSf7Wn5Sq1P0IbQYMLcRBoFwJ6/9Wu14DYM844w/34xz926623Xs0Bsq2u32vabNW1L7zwQt8OV31eAh2JjNUuV9l98803V0Wa9Ftc0nZ9+OFG88hwPj4E0kKg0Xc5SXkZ516TfIcuv17Sdr0MUij+Sb9jL1261H8jVJ5UaSrX8nixDYG0E2ik3E9aziZhkCSN6Zuc6gQ9PT0DfiIMFAh19QEB6uzQdfVtUTMIaOZLGQLAQaDdCcRpC5ffYyvb4rq2Bu+96U1v8ha11YeovsTQn6jv7aqThAF+5XGJu91onButD8WNF+EgMFQEGinbm2nT1/su32iaDLyaqXfE7Y9rJH8M8cNvPwKN5PeDmUaaecfL6ctglfrF1d8lfUstV6svferUqaVTZf1XA+yl/dKst+o3V/++jOaMBNc5Em6Ce4AABF4nIMGhFolWtdxxxx3usssuc//+97/d29/+9tcDRtZk5U/uv/7rv9wVV1xROvLUU0/5dY3s0McFiYfiuDAFYbAmEj1HIkq5IECIHgvrEiTqY8SOO+4YdpV8xVFWSiU2DNeQZd5KbrfddvO7NYojOO0L+8M++dOnT/fCZt2rRNCTJk2KHmZ9BBHIZrNeqDZnzhz3gQ98wL9He+65p/vud7/rPvrRj1a8U3UWSvj7hje8walSpClC5ELHuBrx//rXv7zQLo6VIAnl9FFPo63KnT4M6qPcXnvtVX6o37Y+zss6t9LCtdde6ysnu+++u7+upheIivSTpMlgHVvxU6Wno6PD/66mENW2LITKcrasecaZ5rRfpNmAwDARaCTd//znP/cWNWUNV2VpcHfffbdf1TQhaiAo3cWdwitcQ+WrGmVK68pPlLfUc2uvvXYpSBgAE3bssMMOfjWU4cqngmBQAuCQZymQBBDqTFCepbK9vNGkOJ1++ulelPDhD384/AQ+BNqSQNJ6cTNpJw4gpa1zzjnHHXzwwb4sjXOOwkggJDHvNddc4x577DFvnVudd7qeXKgTt6J+4S/IPwi0GYFGyvlW1+9bnX/Uy7+Sxj/kE6GNH33Eod1ea2BhNDzrEEgDAVm907Lxxhv7ZeXKlX4GC3W8q21fybW6fq+8p9qgV3UmqF2u9roGqFdySb/FJWnXR3+vkTwyej7rEEgLgUbe5aTlZZx7TfIduvx6Sdr1OrfR79hqc6ht/7WvfY3BuuUPge22JNBIuZ+0nE0CJkkak7BAQkD1I0TzAP2e2vdyYZCu34j5T3Wfd7/73f6bpYzeaB0HgZFAoF5buPweW90W1/V//etf+3JUM2epbyA49SfK6M4RRxzhfvOb31RtC4Tw1fxm4txIfahaPNgPgeEk0EjZ3kybvtZ3+WbSZGDYaL0jSX9c0vwxxA2/PQk0kt8PVhoRwUbf8Ur041rrrdeXLq1PcDvttFNY9b4MQUprI8Gv9Gnl9fB+gdtgA2FvGzwkogiBegT+8pe/OAlSZbVrzTXX7BdcwgEJezXtWDUXPiD893//d8UgEvZIRBg6/CoGiuyUlRQ5TaPw3ve+t3REo6EUF7kQpnQwsiLhoITIEhiWu2DxN5pRf/GLX3Sa/uS4447rF1yVIbloWIkzH3zwQW+1oFyUqGtr5Eb5/n4XZaMtCaxYscLJCq0EbOXiXVnr1XMP71alGwwd4BoVJGFNudOoIi16v+JawpCQT+dIFBy1phmE6LWEfkobGiE8c+ZMJ1GyluD0QUEudPppPaS3OGkypHN9dAyiXl1DTtuyFiLhvRalVRwE0kqg2XSvNCanD3layp2syGtRvhDEMuVhKm0vXrzYd+7LOp4aFBIGx3HBip6EuuVOYl25kJdogEqwvqcRj+VO5aPqBx/84Ae91e/o8dA5ISEC1nqjZFhvFwLN1IubSTv1+Cht6YPFfvvt5y376eNlHKePDorXJpts0q+OIYG+rHSrDhPtBGymfhEnPoSBQFoINFvOt7p+34r8I0n+lTT+YfChBgFp6sFoHqRBA3JJ6jNpeQ+Ix+gicN999/kppg855BD/cT5692qnq5NB01FXc62u3ysdSkS8zz77lKbADr/98ssv+1V9S6vmkn6LS9KubzaPrBZn9kNgqAk0+y4nLS/j3F+S79Dl10vSrte5jXzH1vcBCXqx1ltOn+12I9BsuZ+0nI3LJ2kaC9/PJe6NCgTVXyejHZptU0LBJC6Xy/mZLtXXpvpPGNyf5BqEhUCaCCRpC5fHuxVt8fJrBoM8GkRY7sI+WS5s1CWNc7P1oUbjyXkQaDWBZsv2Rtv09b7LJ02Tlbg0Wu+o1x/XTP5YKZ7sSzeBZvP7wUojotboO15OXDNbyYij+q4r9XeH8HH60vV9W4YqHn74YT+jvQw5Rl0w0Cc9Tbu7eL2J7X6XxB8CI5yARuj86Ec/chq5ceaZZ5Y+BGiEkURDclHhkAS20Y8Fmrbw1VdfHUDp+9//vpNZf00BkGQ6IIknlYlqVIjEtqGhc8kll/iPFQceeKCLWhssj4+EkbofWQVVB0kQ2kpwqGvKRa35PvTQQ74zRdYPowWAKkNyUdGjKme6L8Xv6KOP9sf1T/cpcZYKEXHEjSwCeoduvPFG/15JUBM+pOsuJXaVyO1d73pXv5uOvpfbbrttaar7aCBVCI455hg/LY/eJ1m1jetkUVfC3lNPPbX0Xmsqz2DxR5b4oi4an5deeskLbCXekQWgcePG+aC6j+OPP96LfCTaCy5JmlTa0Md/pVeJ4CUkCk7birOO0/EfqOCnlUCz6V4j8GX5vtxJEPPDH/7Qfe5zn/PWc6KDR8rDlm+rDJIQQY0MTe0jK/S1XDTd63eUrlWuq9ETtfz1gx/8wF9GZaachH6ysF3JHX744b5c1XTF5YOB1DkhKx9K41jrrUSPfe1AoJl6caNppx6Xiy66yH3605/202L+/ve/rymaj6Z7Xfc73/mOr79ccMEF/eoqSsPKS8o78JLWL+rFneMQSCuBZsv5VtfvG8k/ytN7kvwrafzVxlUdQBaHlJ9oXU7tmW9+85u+7NeARxwE0kxAA1n0rUhtYAlZorNm/PnPf/ZRD/XhcB/RdNbq+r3qzL/85S9921nf3KZMmeJ/Vt/iwveoXXfdNUTFReOinUm/xSVp1zeSR5YiygoEUkSgkXc5mtaSlpdxbj3Jd2hdLxqfJO16ndvId+yoOED8cBBoVwJJy/1oWtM9Jy1n43Kql8bK46G+sBNOOMGdeOKJvu8pfMdX/OTK+yTixEPf/zWt8Gc+8xn31a9+Nc4phIFAqgkkaQvrRqLprJG2eD0Ye++9tx+Uf9555/k+v2AAR6J6zRAiF+13jsan3rV1PGmcG6kPxYkHYSAw1ASSlu2KXzR9NdKmj/NdPmmaLI+Xthupd8Tpj0uaPyouuPYl0Eh+PxRpRESTvuPReEWfSBxrvUn60j/+8Y/7PjL1o4UZLvV7mslWg+g0C070+2E0Lu20jrC3nZ4WcYVAFQISKkrQetZZZ3khngSusuKljg1lWPp4EKx/Skikio+s80pQKLfHHntUvPLFF1/sBa8SD0UtgVUMHNkpC3+yKKCGjaYfVIaqyomEuqocSRAVnMS6sjqikck33HCD362PrprW7MILL/SCSY1klvBYH01kgfCUU07plwF/8pOf9B0pe+21lxdayZS6LBjrfIkUDz300PBz/kOJ7lviCk3Hps5LCXrDh5TPfvazpbCsjCwC+oAmC9LbbbedO+qoo7y4V89eHYNyek+DkxhdlnQXLVrkReh6/6NC2RDuiSee8Kt6zyodD+Eq+Xqvf/vb3/r39JVXXvEW/PRBTu+lrG9HxesSD0tgL7Gt0rfEeLoH7VP6PfLII52skKijXmlEnfVRwV6SNCnRvz406sPglltu6T71qU/5NKqRWCHt6nh0cECl+2MfBNJAoJl0L6vVWspdsAav8iNputfAFY1GlPvHP/7hl+j13/GOd/g0rn3l+ZD2yYquhL0S/iuNbrbZZk5CY+UdGoATRDoapVgtbhpYo0ZMpeMSCur+1PihA1DEce1IoJl6caNppxYniY/e8573+CAzZswYMMOEPs6pDi9XqZ6utK66iurvt912m7eWr5H6mt1C9fuTTz7Znxv+JalfhHPwIdCuBJKU8+X16VbX75PmH5XSe5L8q5H4f+Mb3/CD9NSOuP32233d4eyzz/aPX+2KqVOntuurQLxHCQGVo2qfql26ww47+Pb9tGnT/GBdlY2avSJaxy2vT7e6fi9hjspp1Z3f+MY3+m8KKteVvmWVTwPHVV+Xq/TtK+m3uCTtev1mkjxS4XEQSCuBJO9yebpvpLysxyHJd+jy+Ojacdv1CivBX5Lv2Pp+rvKewbqih2t3AknK/VaUs3F41Utjler4mlVPVrRlzEP1BQ2kv+mmm9wf/vAH3yemdkoSp8H94RuCZgiIGq/RdcL3/CTXJCwEhptAkrZweTpL2haPc68HHXSQ71tWP/f9999fMrAhYxvqx1a7Q2HkKuU/9X6jkTgnqQ/V+32OQ2C4CCQp2xXH8rp00jZ93O/ySdNkpXSftH2v+4vTH5ckf9Q1ce1PIEl+P1RpRFSTvOOV0oiuoTJU/Vpvf/vb+xlr1LGoS9KX/rGPfczXjTXDrrQs0tHIUJ1m2JLT7BYjwSHsHQlPkXsYMQTCqL96gjmJY6Nu7NixTtNnSgyoRo0sl8jpI55G70oIG5ysCshFRxOGY9X8pPHRdWTlUNaDZUUsCIgVb1kziVr/DVOalFstlIhXwkRZDwoiKJ2vj5OyAhx1yqAleDziiCNKv6XjGlUpoaM4BCfLCBI7SziszkstchJm/uQnP3E77bRTCIqfQgLBmnLwK0UxvK/lYdSpJiGd3h+9m8HpmeuDWLC229XV5UW92h+1LB3CR/3wW8GPHgvr4Vh5fLRfQh19pNf7q0VOHZHllQx9PJCLvp8SyssikETpEqoHd9JJJ1Uc6R83Teo6n/jEJ3z6UzyCmFf7JSBSp2W0s1T7cRAYTAIh7QS/0m9VS2eDke7D74ffDNtRPxwrj7MshAcXLNCHbfnq+FeZVi0fkgVtlYkS+H3ve98rnaqOgfPPP7+foL90MObK8uXLnRo+KjODQDjmqQSDwKAQSGu9uN7NltfT77777tIpYSaN0o7iSuiUq1RPV2eBPkKq7ho+Rug0DerTQB6JfKIuSf2i/Dxtl+db0TCsQ2AwCZSnnehvVStX45bzulal+nT0N8J6+K3gh/1RP6ST4EePxV2vlN6TtOur/U6Id/Cj4TQdmfIN1SOCoFfHZeVLg4FxEBgqAiHtBL/S71arB8gCx7x583xdOHxr0vnqFFDbNUyvV60+Xem3wr5K6SYcqxYfpR8NiNPg16gVfQnoVW6He6z27Stcv5JfKT5J2vVJ8shKv88+CLSSQEgLwa907fDOl4eJ+y4nSffht4KfJD5xv0NXi0+Sdn3S79gSIDFYt9LTZN9wEgjprDxtl8epUnsgbrnfqnI2xKlauV8vjVWq4+uaMiaj6cdliEZ9eHL6zq6+K4mJKrnAK/ghTOgr0/avfvWrsLvkS2yogVA4CAwHgWppJ8QlvM/BD/uTtIWrpbNwrUb88vxH4sPrr7/eG5L661//WjJKpXDh+1wYGFsv/4mbB9aLd9z6UL3rcBwCrSAQ0nDwK12zWn4Qt2yvVpeu9FthX0hvYTvJd/lwThy/XrqvdI3yuMXtj0uSP1b6XfYND4GQNoJfKRbV0kjc/D5taST6jldLI9J5yekbWi0Xty9d11D/mHRyMuCngXNa5KT90izu5TN7+YNt+C9j04MV2jDeRBkCEKhCQGbNn332Wd95oI9/5U6deBL/ykLoUJgd16hhZd4qnPThsvw39TFElg4kRq400kOm1jWqQg0mZcDRQqH83rT95JNP+ulENUXhpEmTKgUp7XvppZfc/PnzvTXS2bNnl/azMvIJqMKs0UKy7lwuiJEV36222spbwKtXsWgFqXw+79PIwoUL3VprreXjVH5dfUiQJetLL720/JAXAEqooGmAlEbCB4UBAYs76qXJ8vMCKwnty9NveVi2IZBmAuFdTkO6r8epXj6ksn7BggXuhRde8FaFyz8+1rs+xyEwWgikrV5cj3u9evozzzzjRx2rjq8ZL2p9GIpTv6gXH45DoJ0I1CrndR+16tPDcZ/10nu9/KuZOOvDr9rYK1eu9FbAxQYHgXYksHjxYj87lOr3oUMk3Ee9+nQI1ypf7XGlK/myIlQu0qn37StpPBpt11dqCyX9bcJDYDgJ1Crvhzrdi0Ot79D14pO0Xc937OF88/jtNBCoVe63upxt9H7r1fHVb6cZADXjgL7jl9cXGv1dzoPASCJQry1cL50NBgt9j5OLGq0KvzMc+U+t+lCIFz4E2oFArbK9Xl16OO9vONK97rde/jicTPjtwSFQK78njQxkLq2NdGnrrLOOq6STG3hG++ypPBSwfeJPTCEAgTICEr5WalyEYMrk3/SmNw2ZQE8fKTRFYjUXRldGLZFGw0qcu91220V31VxXJ4WWOE4Wi2TtBDf6CEigqmmwKrlHH33U7x6qETwS5Sgu1eKjho2sbSjdVnISJkv0G9fVS5Pl16nFqjws2xBIM4Fa7/JQp/t6nOrFR2X9OtYw0YKDAASqE0hbvbh6TPuO1Kunq45fq54fvX69+kU0LOsQGAkEapXz9erTw3H/9dJ7vfyrmTir/RBmK2nmOpwLgeEmIFF6NWF6vfp0q+MuYbFm36jm6n37qnZetf2066uRYf9IJ1CrvB/qdC/Wtb5D14tP0nY937FH+tvN/dUjUKvcb3U5Wy8u1Y7Xq+PPnTvXacFBAALVCdRrC9dLZ9Wv3PiRWt/ihiP/qVUfavwuORMCQ0+gVtlery499LF9/ReHI93r1+vlj6/HkLWRQqBWfk8aGfiUZ82a5bSMRJcdiTfFPUEAApUJyHLIPffcU1UgWPmswd0riyaaHmjcuHGD+0NcHQIxCahCLuuXtQTpMS/VkmChYrbvvvu25HpcBAIQGEggbek+bfEZSIw9EGh/AmmrF6ctPu3/hLkDCLxOIG31adL768+GNQgMFoG01af59jVYT5rrQuB1AmlL92mLz+ukWIPAyCOQhnKWOv7Ie6+4o/QRSGM6S0P+k74nRYwg0DyBNNelSffNP1+u0DwB0kjzDNvpCpnu7u5CO0WYuEIAAo0TkIn+O+64w62//vpuypQpjV+ohWeq0JFV3lojHlv4c1wKAnUJPPfcc+7VV191m2yySd2wQxFA1noffvhht9VWWw2YXnQofp/fgMBoIJC2dJ+2+IyGd4B7HH0E0lYvTlt8Rt8bwR2PZAJpq0+T3kfy28a9pYVA2urTfPtKy5tBPEYygbSl+7TFZyQ/e+4NAmkoZ6nj8x5CYPAJpDGdpSH/GXzy/AIEhp5AmuvSpPuhfx/4xYEESCMDmYzkPQh7R/LT5d5ST2Ds2LFuzz33dJdeemnq40oEIQCB5gicdtppTstll13m9thjj+YuxtkQgEBbEKCcb4vHRCQh0DIClPUtQ8mFINAWBK655hq333770aZvi6dFJCHQGgL777+/u/rqq50ZymjNBbkKBCCQagKhrD/ppJOcFhwEIDDyCVDWj/xnzB1CIEogfMujrI9SYR0CI5sA/XYj+/lydxCIEgjlfLt/x8tGb4p1CEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAYHgIIOwdHu78KgQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAE+hFA2NsPBxsQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEBgeAgh7h4c7vwoBCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAgX4EEPb2w8EGBCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAASGhwDC3uHhzq9CAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQKAfgUx3d3eh3x42IACBISMwduxY/1t77rnnkP0mPwQBCAwfgauvvtqR3oePP78MgaEmoDQvR7ofavL8HgSGjwBl/fCx55chMBwEKOuHgzq/CYHhI0CaHz72/DIEhosA6X64yPO7EBgeAqT54eHOr0JgOAmQ7oeTPr8NgaEnQJofeub8IgSGk4DSvOlihzMKTf82wt6mEXIBCDROIAh7G78CZ0IAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAQCLS7sLcz3Ag+BCAw9ATaPQMZemL8IgQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAYOQSQNg7cp8tdwYBCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgMBoJJB3rtCjpdDn9xqEnG3nCkXfthXGFme7Xl+0kfF/8sKSydq6LZkO823JdNhB62HKhGVMxmXG9IWx/zgIQAACEIAABCAAAQhAAAIQgAAEIACBJggg7G0CHqdCAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAgSEhYCLc/ErT4K4ouLwthRW2ru0u25bvFxPmdtu6RL3m963bPhP2ForiXr9uIl8JfSXufV3UW1w3Lwh6S76EvV7Qa756lrQuX8LesSbyNVFvZqwtEvfKH2dC33GmBR7/+npmgm1PsP22ZO2YhMI4CEAAAhCAAAQgAAEIQAACEIAABCAAgYEEEPYOZMIeCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIDDkBCS+zS8zoa4thWW2vtTWl/bt80Le5abDXd53zG+buNeZsLfQJd+OmbhXYl4v2jVvaJys/BadLPpK2GuCXudFvfIl5rV9E8Ni27ae1fYkE/lOsvVVbF/Rz060dXqvikDxIAABCEAAAhCAAAQgAAEIQAACEBiNBDLd3d2RLy6jEQH3DAEIQAACEIAABCAAAQhAAAIQgAAEIACBUU7AvhD2m7LdLD32WXS0A37qdtseMGW7Piv2n659wFTtnXZcVh1lydFbcyyKtWw3DgIQgMCoJmB5a94EurlXTbi7xNaXyH99vfCa5csm6PW+1k3oK+Gut7A7EsDJWq+Ev6sUl1WtfFjV1m3JTjax7+Sib/u13jHFfBP8qkzBQQACEIAABCAAAQhAAAIQgAAEIACBkU4AYe9If8LcHwQgAAEIQAACEIAABCAAAQhAAAIQgMDoJSDBrllulHhMi6w7+unbZdUxLCttv6ZtD1O2yw6ApnCPTtmudU3XXj5lu8hKpBsWCbVsCdOzl6Zq99Ozm2jLfG/J0VtztG2bil1WHbX46dllwVFTtMtao8IiADYIOAhAoO0JWN4pC7y9L1le/IoW25b/shatW55rAt+CCXydWeQdMeLdRh+cyhJZ852ixcoE87PTzJ9m/lTzbemw9Q7tM4u/KndwEIAABCAAAQhAAAIQgAAEIAABCEBgJBFA2DuSnib3AgEIQAACEIAABCAAAQhAAAIQgAAEIDAqCcjarp+u/TUTiZllxzB1e0FTuNtU7rL0WND07VovCnz9lO2y/qhFwl0Z4B0KJ7GuplgvCnqdpmfXusS8Ng173yKxltbNl/VGm6I9a1Yds7LcqOnazfovDgIQgEBaCShPzplwN7fYFol5zc8vtrx5kfkvWXZrgl4v4pV1dFx8ArL8btZ7M9OtLJhuZcJMW2bYui0dtq9DvgmBKSPiIyUkBCAAAQhAAAIQgAAEIAABCEAAAukkgLA3nc+FWEEAAhCAAAQgAAEIQAACEIAABCAAAQhAYCABE9/mu0wY9mqfaCyvKdz9YvtNRCahmKZ0L5jA1/mp2+0SEu22ozPxr0S+rjg9u6Zil/VGb61RvqZqNwFXhyw3TrVj40wxjIXfdnzSxBkCbU9AFs69kNeEu7mFtrxoebP5+Rf7xLyFl+0WV7b9babzBjQwRJZ7JfKdZctqVibM6ls6zVc54a3IpzP2xAoCEIBAMgIaiGdW4AuaRSNX9PPWBrB1v7/o9x1Tw6Fvvwbw6VT/Tyth0WpY9wHCMW0U69ahfi1fu8q2B+wLM3jI77DA5mc6bL3kW77sj9l++VrCNW0VBwEIQAACEIAABCAAAQj0EUDYy5sAAQhAAAIQgAAEIAABCEAAAhCAAAQgAIGUEpBYLG8i3WD10Vt+NGuPebMAWZAvq48m8h1VU7er8784Rbufmt2sNma8tUbTBZi4y1tslAVHCYIlIsBBAAIQaDUB0zvlzfp5r0S8z5tvS/4FW563/SbqLbxiP4g13lZTj3c9WfW1wR7Z2VYOzDZN2epWLmixbS/0NevwCMjioSQUBCDQIgIS4lqZUOix8sH7r69rAJ7f19t3zA/I077i4nK239b9/iDklXg3uq7rWzjt67df2xFhr21ZQPuTZrfWUgwnz+eXQXQrv8Lihb7RMEGsq3q4LUHU27duAXW8bH9J9KuBfZ0WRr7CaJaP4iJr7DrmrbLruLbH9G1H1/317TQcBCAAAQhAAAIQgAAE2p0Awt52f4LEHwIQgAAEIAABCEAAAhCAAAQgAAEIQGDkELAO+NwS6Sy41QAAQABJREFUE4mZMCwny4+atj1q9dHEvG6FLeqMx71OQGICiX391Owm5jKrjbLYmJ1ZtNooC44m9JWIAAcBCECgIQImjvL583OWRz9r+bP5OfPzz1mWbHk1Fnkbojr4J42zssHKguxcKwLmWlkwxwS+5nea78sFCcxwEIAABOISCCLdlZb/myX2gvkF+d1aout92077JeY1368rjNaLAl8/CKQo+i3t67U6axD2muA3iHq9cFdC3ZHoimJfX1f3Ql4T7HbavQeR7xhbLwp55fetmz+2KPA13421c4rbfn/YVjmg/doO6zbTR1YW37VP16MsMAg4CEAAAhCAAAQgAIG0EUDYm7YnQnwgAAEIQAACEIAABCAAAQhAAAIQgAAERhUBWX3U1O29Zu0xV1wkFPNWHzV9uzr/cckJqAN/WtFq4xwTdJm1Rm+xUb5EvxOkBsZBAAIQqEFAYt5X+oS8vc/kXe/Tljc/bXn1MyYwWmLnjVSBVQ0kbX3IhFuZKVYurGHlwJpaTDO2RtYLfTumWJmAsKutHy+Rh0BTBCw/90LdLhPsrjDxbZeJcf2i7eK6RLzaZ0JeVzxW2o6IfDXQw4cpinm9ILepyHFyIgISBkusq7aACXmdxLx+sXw+rEvUO962vV88btsZ2/aC3+J6ZoK2+9oNEgdTThgDHAQgAAEIQAACEIDAkBFA2DtkqPkhCEAAAhCAAAQgAAEIQAACEIAABCAAAQgYAdOD5V4zoZhN3S6Lj7L8mDeRmCw/FhbZcRMK4AaBgHXMy2pjx1zrkzdRl7fWaFYbx9gU7dlVrGPf/nAQgAAESnm05cm9T5mYd4HlzwtM8GXbbqnxMQ83Aggoz1/VygNZ8Z1nZYKWtaxMsG3KhBHwfLkFCJQRKMgCrgl288ssP7dBdfnlfdsF872Q12/bPjtWkJC3uDiJfMO66uhmXZdBHWVw231TgzokBJbIV+0FG/wn3/l129asINrnfSs3JvYd176s7ctO6vN9GImKcRCAAAQgAAEIQAACEGgRAYS9LQLJZSAAAQhAAAIQgAAEIAABCEAAAhCAAAQgUJWACcHySwuuR0JeWXs0sVjuKdtngt7CK3ZWruqZHBgMAh3WQS9rvrLaaEIuLZ1mvRGR72DA5poQaA8Cmk5dltN7njDflpyWpyzzlmXedhXzBrGSBEs2nXlGU5lb/heWjNYVRiLX6GKb/p5132Exa5YFlVVh8dPE20k9FsDW21rsZrfhLfmqPFjHygNbxsifnfXTt9vd4SAAgbQTsKyoYBZy88tMtGt1bi/gNb8gIa/tk19at0EaEvQWbL9bnvFiXlnZRbCb9oc8zPFTeSmLvxL2TrJ1CX3N15JdRX7ffi/8tW0v+A2+jsnir8paHAQgAAEIQAACEIAABGISQNgbExTBIAABCEAAAhCAAAQgAAEIQAACEIAABCCQlEDBpvPtMcu8svjorT4+WRSKvWpXYgr3pDgHJ7x10memWue7BF1rm5CraLlxzGzrgNcUvTgIQGDkEjBNV+4Vy6ctb+553AZcPGp59GMmAHvJbjmtAy6CsMgsBboJhdetC5rYyFsbDNONawpyLRL12pIZa3maLAkWhb1hPRNT2FtQmWVMZPUyiHsLZrmyIGGvfBPUadvJrzRdvVm8dEWLmAqT2jJQAz9mGKb1rDxY35Z1s26MlQ0dU6T+tXjjIACBYSXgLe+aVd2cxLuvWVZis2AU5Gtbgt3idsGv23ZR3OvzHcuucBAYNAIqI1TuSuwroe+qVu6aZfiwLvFvVvuKfoetZ3VcQmGVzTgIQAACEIAABCAAAQiUEUDYWwaETQhAAAIQgAAEIAABCEAAAhCAAAQgAAEINEXAhE+9L8vqo03hbhYfex83oYEtXiiGmLcptIN+sgRd063TfV2JuWyR1cZ5Wdc53XrqJX7DQQACI4KAhGG9C/Oux4S8PQ+boPdhE4WZBXUn8WkanPIbTQE+WYKgPhFQP4uAshJoQiBNAR6mDc9qCvFxFrboZ2UZcIiFQrLo6wW+NqjFi3vNAmbepq4v2FT2fdPe27qmuS+zoNknwOsT5/lnkJay0p5B1qy5d27Yt4xdP+s6ZhpjplpPQyohDiOdgOUDeeUdr5qI1yyn55fYetEv2AA5bRdsuxB8E/J6y+EjnQv3174ENMhGgl+V7ZOtLJliZYx825afLW53aF37NICH9kf7Pm9iDgEIQAACEIAABFpAAGFvCyByCQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIeOu8z5lI7DET9D5igt5HTGxg295CWDvgUcexxEreuqN1MmvK9qJ1R29FSgIxhZE1qrDYammadllBMxFGaar2olXHQo8FLlp09IILhWsHZ1Yvs3PMSuMGhmEDs9holhvHrG5cTDiHgwAE2pOAxKY9z9rykIl6HzKxmC2FRXYvw2WdV9mJhLgS+UwtinxM2CPBj6z4eaGPLPrJup8JfLOa7ltCnyEW7Lb8aRtvL9hbZkI9E+N5S5uyuFkU7kmoJwFf4RVbTNQnEZ8zkbAvb1oemRgX1KCPWYZ9IysH/GJlwtxs37TqMU4nCAQgUJuABlvkLT+QBfW8pXuJefNh3fyQF+iYLH8PW55d+zY4CoHGCKhMV/mu8j/UBczPakYR71t7ROtmOV51Aaz7NoaZsyAAAQhAAAIQgEA7EkDY245PjThDAAIQgAAEIAABCEAAAhCAAAQgAAEIpIaAhAg9C14XiuU1jfvLFr00CVgl0JVlR00N633rFDZLhF5QFqw8Fqdt91PIhinb7bzSdO1JhL0m0PACX/nFqdplxdFP0a5p2r01R9v2lhxt2xjKgqMWb61RouC0ONPQeSu+EvYGQddaEtgh8E3LIyIeEKhHQCLS3qcLrvtBE/Q+YOKxhy2Dllh0qJ0NGMiYOCczzfKQGSbSkS+xTtHvkIBHwh1Ny618exS6IPDzVjojwr68WcLPW9maf8nKipciYt+hZKRs34RXHWbBd8ymGTd2YxP4mkXfzHjKg6F8DPxWmxOQJV6z3J2zNJ1TmpZvaTqvxbZVhy7YPlnjbZvBcW3+SIh+SgmobaaBP6ojTDN/utUXbBaRDm1738oj1RuszoBl35Q+Q6IFAQhAAAIQgAAEmiSAsLdJgJwOAQhAAAIQgAAEIAABCEAAAhCAAAQgMDoJ5MyaWM8TJhJ70ARjEoo9YUIxWREbLhembjfRkaw9ycKjn+7VBKh+CneJem3dW36UaEwCXxMjZSU0M9+LyAZbm2SIJNqSsNdPzy5/hW3LaqOEvUuLvhf59ol982bFsWSx0cLKKvCwOWPYsa5Nyb6Jibo2MUHXOta5bpY1cRCAQDoJeEvqT5mg9z7Lq++zfNoGXjjLU4bEKWuwARQZCXhnWl47y/wZlmeERQIdiXNkBZxspPYjsceWV3lhQt/cYjPWubgoBFxk+8zicn6hlRcm+PUDQyzskDizqNyxgZUFm5nAd7OiwBeL7kOCnh9pLwJerG9WuH26Vdq1xadb+ZaevVBfIl4bCIaDAATqELCZVbzY1+oSfoBQ0e+wekaHxL7atrbJaB0cVIcehyEAAQhAAAIQgEDbEUDY23aPjAhDAAIQgAAEIAABCEAAAhCAAAQgAAEIDCeB/GsmEnu0TyjWa0KxvInG/BThQxkpdeqaqChjlh1l/VEWH7Uepmz11pvsuKzKasmYxae2EY4ZTln3lSVkv5jYo29qZts2C5sFWXD0ft96QSK9obbwa1aOs2a1t3PzPkHXWBP7ZldFmTeUSYDfgkAtAspDep7J9wl67zIh2SOWscgi+GA7DZSQkHe25QmrmfBzNRPZaJlli0Q3NoU2VvVa9BBskEfOyuOciXtzJuz1y4tWPrxg5ccLRaHvyhb9Vq3L2CAab8F3y6LAd262r8ytdQ7HIDCCCQQhb29Il+ZLfJ9fGBHh24wNuCYJaECfljCjRvCzVu/361bulfZZOFVTI4uvtUa2S8csWL91u4yfhUS+XHS7uK9Qvk+D8LTk5Gf6ZvHIW6DSvnCsGM48XBMENIhIg4WsruEHEYU6h9U/OjWwCKFvE3A5FQIQgAAEIAABCAwvAYS9w8ufX4cABCAAAQhAAAIQgAAEIAABCEAAAhBoEwISmXY/bss9edd7jwkUhlLQGzps1Tkr0ZisMakD1yzzSsTbJ+QtCnjbhGcj0fSCXwm5ZLVRAl9NzW5WGvNFq295E3h5q41DJRgxEV92bbPYKEHX5maxUQJfTYeLgwAEhoeAiYZ6X8i7lfeaqPdOyyfmm5BIliAHy0lUpUEUEvLONQ3V6pYf29Jp250mqMlKyEuWMFj0+1/Xnn3OrL7nTNzba8Le3PN9S/45KyNs3VtqlvhssJxZy+/Y2MqCrbNunJUHev6IuAcLNtdNFQHpNa2O3GtpL2dpT+kvHxXZv2yxxRpvX35gA/OcDbbLjLH8YYyB00A97eu0xfaFdW9tVftsCeuZTjtHQl1bMhFBrxfx9tvfl/f0iXsj4W13SbCrdTnzM+X7I8d8GOWbIe8M6+aXxLwKFNmv9UJEwFuQuNcLfK2O7v2+7X7rIbxm9cjZBeRr0F5x8ev2DvX5xeN6p/xiwuFu2xe2da3R7vReTbNXzuoj2dn2ymiAkdVLtHRK/GuDPqmbjPaXhPuHAAQgAAEIQKBdCCDsbZcnRTwhAAEIQAACEIAABCAAAQhAAAIQgAAEhoWAt/z4lAnF7rap3G83scIT1nk82FYA1ekfrD7a9O0lq4+y+Chxr1mHZYrVvtchWIaT1cZeTcsuC3ESlLxoQpNgtdGsdw6qkwVfE/WO2Sbjxm2pKdmx2DiovLk4BCoQyJnQv3u+CXpv7xt8UbAp3gfFSVRlIs7sGpYXr2G6K/M7zEpr5xzzbaAFefOgUE98UZUNeid6n7P34VkrF2zJP237nrEy3Ky+e8uRia9a5wRppazs7tzCBL7bZt3YjbP+nahzFoch0HYEfPrSIKvnLI1JRG++T2Pm+7x3sOtdw01MwloJcq3+l7FBXk7W2uWPtTKgtN63L2P7vIBXdXvNoFEU9mrdC3mL4l4Jd0vbXtBr5xWFvb5c6egrX0qCXbvUiHEmxpXQ1wt3Tdgr36/3RtZNuFvwS98+CXn9tr1rQdirNpsWV9xXWle7zRaFK4R1DQLUul1nUMoDu2xqnN5JtStVT5lri/mdGogU6i0ShuMgAAEIQAACEIAABFJJAGFvKh8LkYIABCAAAQhAAAIQgAAEIAABCEAAAhAYdgLWySzrYyvvybnu20yw8JCJgZYOUqys797ZdN7estIcE/IWO1tl9dGLepm+PT54e25+enZ7dt5qo8QmJjrxVhtN6OufoXmD4sxyp7fYuJ1ZbNzChH4mwsZi46CQ5qIQKBGQSKf7CRt8casGX+Rd4Vk7JKuArXQSccki65qWJ69l/lomilnLRPwmisEqbytBD9K1LM9XudArEaIN1Ok1i/te5CvL+xL5trpMMJGUF32rLLBl7DoM9hikJ8tlh5CAF/O+ZGnIRPK9z+Rd7mmrX5lYPm/patAtYg/VfSqvlwhygtXfJhRcRsJdrXvf1uWPL4p3/bptj7NtrXtBb/GYRLvaX/SzEgEjnhySp+gFwhFhb2Fln5jXi37Duol6C122X77VIfwStldYNLV/hR0vrds+iYBHgjVgtTknF0W+axTrM2tYm0WC32n2zpqYHAcBCEAAAhCAAAQgkB4CCHvT8yyICQQgAAEIQAACEIAABCAAAQhAAAIQgEBKCORtOu/uh0wodosJgO6yjt1FgxAxdazK6qM6UtWxalYfO9WxKutJ6liVCADXNAFZ8/JWG5+1Z2mWGmWtMfeM9c2bMMUtscu3WtBlzzUz04ysbW3We7c3QddG2b4pb5u+Ey4AAQj0I2Bpt9csdMuaevdNJjJ72HZIhNNKN0kCTcuT51maXsfy6Hkm5rU8m2msWwl5iK9lr4nK+B6JExdYuWBW+HMLimXCshbHZYKV7Rub9d6dTeBr1tw7Z6iAaPFvcDkIDCYBDZZaYmnFRLw9Si9Pmij+SUsvEvMuH8wfHqRrS7Q40ZKhFsvfMxOtvh22TcDbb93Sb9YWCXu9L0Gv9slXHZ20PEgPaYgva6+yRL95iX6tDiFBb74o7M377aLI1973ghYJfsP6clu3ckOLr3+YpeG2c6rnqO25tpVXa9vsI1bP8TMRTLYXXEJ3HAQgAAEIQAACEIDAsBJA2Dus+PlxCEAAAhCAAAQgAAEIQAACEIAABCAAgVQRMAFDjwlAu2T58ea8Fy/4KVpbGUlZ5pVQzDpQO60DVVYfvZUkOlBbSbnytSRQebVobU5WG02gkpNARSLfVltjNtFHdp7NuCxBl1lsHDPHesfpIK/8XNgLgYQEvJXexyyvvjHnem83Yc1Cu4Al45Y4TX1u4vyOdS1/Xs+WdS39moXejimIXFrCN00XKZYJPU9aefC4lQ2PWZlgvh/M0yqrz/baZFZzboys9+5igz3sfZIVTxwE0kxAVk57TLzbo3TxuA2ceNzqSibuda0Wv7cagsS2spJrdW0v3LUZL/y637Z1iRgl6J2kARpF34S9WQl8JeA1q7vU1Vr9UEbI9ay8yJvV3rzEvLbkvbjXfAl7bbCI97VvmR23NkXfUlxXujHxcMvqKYOFVG1Um5mg0+o/qgONVT3IZpGR9WkcBCAAAQhAAAIQgMDwEEDYOzzc+VUIQAACEIAABCAAAQhAAAIQgAAEIACBlBHIW0ds93wTil1vAp+7Tbyg6blb5SQyMGGPF4rJ6qNNy+2FYoh5W0U4+XWCoMumYu99wp65rDZK0PWiXcqs/LbKZaaagHsrs967a9F6r4lHcBCAQOMEZIF75V1mUf1aE5s9ZHm1psduhZMlRglaNrA0u4Hl0RL1rmYiTKynt4Ju6q8h6+69L9igHhP39j5iZcIjRSGjWW5siRvfZ7133O591ns7plIWtIQrF2kpgfxrVhdeYIJepQGzgp639FB42X7C6kypch0WG1nTnWzLqiY8XNXyb1u0XvIlUjRhr7a9b2JeLO2m6imOrMhYdcRb/rX2pKzC503c631LUxL55l+z47bufZsxROsF2+ctX6ctfdlAxMx0K7NUD9rQrPiqTmSDUbOWvnAQgAAEIAABCEAAAkNLAGHv0PLm1yAAAQhAAAIQgAAEIAABCEAAAhCAAARSSKD3xYJZ6c257uvMSu8TFsFWTaVqYoKOeWb1aH3rFNVigt6OmSYs0FTAuNQQKNjz7l0ky3QmZHlUi3XAm7ClZVZ8Zb1Xlq92y7jx23e4TnsHcBCAQEICJnzpedoGX9yQd9035V3hOTvfkmkzTqfnJ1rev3qX61nTlrW6XG7OSleYVN9cq1LxtOnT3cyZM92YMah/m3kOqTrXXorckr7yoGe+iXxN3KhBH04CrGadvTSZuVYW7GJlwRtNKDU3PZbc/3Vnwf3q6rx79PnGE1XG7u8dZqX+A3tk3Wwb1IJrHwKazaDHrKB3P2DvvC15G/TkBYfDfQvKaE0Un5mixerPJuTNat0GxsnPyveL1bcl6pWFXixiD/dT4/crEPCiXxP8qnyRgD5v4t681m0gacHSn7YLxXX5ftBS49lxhRg0uEsWra0t27mJlV2byopv1qe5Bq/GaRCAAAQgAAEIQAACCQkg7E0IjOAQgAAEIAABCEAAAhCAAAQgAAEIQAACI4eABJ09C0wodl3O9dxslpMWteDeJNyZYQIDE/J2bmRi3g37rPNmzVIYLv0EZLm550lbHjaBr1kDzT1q78VLFu8WdK776dh3yrrxu8nylVkClcU5HAQgUJeABDHdliZXXJlzvXdYYmxSZKnknJ/U67rnrnTd66xwvfNWuPysHlcYl9xs3sSJE90666xT9x4I0H4E8iusLDCBY8+DZsn3/r7yoCXW/E2cOGZbE/fu3eHGrm9lwTALESXqPfm39cXscZ/g1ib8+tHHTPxFtScusmELJ4ui3TagqfseE/TeZ4PbnrKoWH47LE7vi4kINdNBdpoJdOUX17Nm4VpLRxDzSsDLILlheUz8aGsJqC2qdChxvUS+efk2M0H+FS3W/HjZ9tm6t5y9wn67Be2Rhu5gnKXHtaxtu7mJe7VY2UXbtiGSnAQBCEAAAhCAAAQSEUDYmwgXgSEAAQhAAAIQgAAEIAABCEAAAhCAAARGCoFCl03nbmKdrstNwGmChqYtk5lIMzPLBL0S88qq0cZZ17k607i36/vip2V/zsQu803QZdbrcma1sbDQ7ia57q8/gknOdW5pgq59bTp2e0cy41A+9QfEFgT6E5DYvuvuvFt5Wd7lzIJqs6Kz3CpmoXfuCte97grXY6Le/MweU1k2rpQpFApuzTXXdFOmmOIMNyIJFFbaIKBnrDy438qD+/rKA2fWFZtyJpLqeEOxLNh8eAVS7/9erilLvZU4nHhYhzt4e8q3SmzSsE+DJXqetHz1Tnun7zBB7wKL1RALenOdObc0s9S9ln3VLet4zS0ds9Qt7XzNLetc0uePec0t71zqerKWR5epGTNmHnr99dd3u+22m9tggw3SgJQ4QKB1BKxKkrd2qkS+ORP35iT0fcmWxbZI6GsDDgu2XrBjQ51unQ1Eya5jbV0bnDJuaxuouObwD05pHXiuBAEIQAACEIAABNJHAGFv+p4JMYIABCAAAQhAAAIQgAAEIAABCEAAAhAYZAKyjNRlYoYuE4rlTbDppBlo1NlM2l7QawKdsZtl+wS9s0zMgjXWRomm6zwzYtj7oonAJfC914SFD1pHuiw7NyPwHWOvx8bWIb6fWe/d0gRdZnkOBwEIDCQgC3Zdt+S8qDf/hB1vJt2tYulug4x7adaLrme9Pgu9rjOZoHfyZDO1am7Jkv6qzunTp7vVV1/dH+PfyCXgxZAS+N5j5cHdJrgyi+5uWRP3a/WH7HrFsmD7rOuYPDxlwc5fMpORDbqj32QFmrlz/t2/IvX+3Tvcpw8cnvtp8FZGzWk5EwhqsET3TcXBEs28w0moTeib0aIwPe8eX/Soe27Fs6571S5XmJZzK8YvcyvHmfX0jv7vUbXL53I59/zzz/vDb3/72912221XLSj7ITBiCHixr4l8cybszZmwN7fIhL5+seqR+YXFdquy6jsUTnUqG8g6bmcbqLiFlV9mZRsHAQhAAAIQgAAEINB6AkxU0nqmXBECEIAABCAAAQhAAAIQgAAEIAABCEAgxQRyNp1p13+KQrEnLaJNCMUy061TU4JeE2eO3dQs9ErQa0Id3AgiYALtzjk29ezsDte7SdatvD/XJ+gyK75+WtxGbtV0Kzmb1r1rWc4VrAN+vARdU+gQbwQl54xcAr0mUum6wfLqK/Ou8EwT9ynrcvPMKO82Jj4x63LPLbW5rm1fUjdu3DgXhL06t1zcm/R60fCy+rtiRXw1zvjx4102S2ETZTgU6xl7b8auaxYK52Zc9yYF131X0dqp6hKNWDu1+kfexMFdXSoLCm7Czh2uY0b7lAXb2VTsR73p9W7GqLg3mWS+/tN7+eWX3T333OPmz5/v1lprLbfVVlu5OXPmVD2xt7fXdXf3PZQJEyY4WXit5UJ4hVN4uZ6eHr9oPc41FE6/qWspfSqdpsrZQKVus9LbdYO9t/+xfFW62FY/qOgN2+1nZlj+u1rGZTWjhflabnnkVnfd0mvc9v+1rTvsrYdGz0i0/uCDD7oLLrjA/fnPf3abbLKJmzTJpkTAQWAEE8iOt7SkNknI+ixN514zga9EvgtteaHPz79oZYsNSvRCX7M4PyhuqeWRt+Td4ntecqsdOMNN2MXKxrWsXsLA1kHBzUUhAAEIQAACEBi9BF5vcY9eBtw5BFJLoOeOG62T53aXe+Jhl1/4vCt0d6U2rkQMAiOBQP6o8EVkJNwN9wABCEAAAhBojsDBF1/Z3AU4GwIQgEBKCXSunOx2XXywO+SVd7l5veu62jKP6jfRlV3hnh/7rHs884h78qlH3SsvLHZ5s/6LG/kEsoUON617hls7s75bd/wGbvbKuW58oQHxjr0uucede/q85909v7/DPTT5XrfMpp3G9REYO3asmzZtmhdwbbTRRm6zzTYDzSgi0GsClRXX5Fz3FSY+W9jgjVsGnzEjup1bmUW57WzwxQZmHXtSxhXuK1jenzz3j4p6tb5y5Uq/NBi7fqc988wzbr311uu3r9bGAw884KehrxWGY4NHIDPO3qmNbCpyCXzNCvTK2/Ku9y4TUZmYKrFQ0oSVhaedW/lPO7875ybs0eE620TcG6z1irQEvrc+mnO3PdrautD111/vjjrqKPfwww8PeKCrrbaa+8EPfuBksbXcXXTRRe4DH/iA360wRx99dHmQftu/+93v3OGHH+73LVy40E2ZMsX9/Oc/d8ccc4zfd+WVV7pdd9213zmVNg444AB33XXXuTXWWMM9/rgV8ilxsjatmQe6Lsu5XrM23ZSl6Wr3pLEGZtQ8u7oJeC3v7fNNhGjbGvim/FeD3/598d/drDmz3EFvPajalWLtl5h3r732cpdeeqmTyHe4rPaqLNDAD9zIINBWz9NEtB1TLb3Z4tY3/mpb2Kw0Evn2Pm9+ccmbiD9v607NjBZm0VkbCDF15TS38Lcvuw6b0WTOu2a6sRtmnQbB4CAAAQhAAAIQgAAEWkMAYW9rOHIVCLSUQPeVF7vuy/7sstNXc9m5a7vOLXawL9CWXM1ygz45W/Or5NKyPe6g95TixAoE2pHAkk8e4qM9fnX7oCgLDpbe2tkfP7u5D6Pt+AyJMwQgAAEItI7AK3d+wl/siD2OKdU/Q72zHX3dBw4CEICACGjq4eXXmlDMBLiFBmedzmfzbsXU5W7JvJdc97zX3MyZq7rpHVt4S3CyuChLb2ny9913Xx7+IBEomAWsngV5t/J2s3xnoq68LIomfK9Urs7oneX2Hvdf7oA9DnATdjVrjUxl65+YrB4uWrTIPfnkk+4///mPu+SSS9xuu+3m3vjGNw7SE+WyaSHgRb1XW14tS72NinonmdhlY7OmvpNZzTSL6h3TLbUpwTXoJOSNCrdkrVfiH9zoJpBdJePGb21CXLNSuHK9vOu+Ke9yD9k3xeXJuRTM0mL35Xau/Xlx78wmXtjkP5/4DIl6ZbE3uHP/3dtyUe+5555bEtaG31l11VXda6/1DYJ58cUX3bvf/W53/PHHu1NPPdV1dJjKrYL79Kc/7fbee2+nQSJxXC5nZjDNHXLIIaXf//3vf19X2PvUU095Ua/Off/73y8vFa6w0qxC322i3n/Y+znfXjCbNaBlzpBr9oqsidyza1g3lvmdcy3PNauimokgU9YLHZ7dzJkzWxIFCajllrxqltibcMHScpxLRC2mf/Ob33QnnXSSO/DAA53E5MGS+rHHHutuvvlm95a3vMUfj3Pddg/zjW98w/3pT39yO+ywgzvrrLPa7nby+bw79NBD3d///nefn/z3f/93292DhPMdky3t2TLWhL5q72qmGi/yfdYGoDxT8O2V/LPFWUf6srqm73PK2Cmu694u98CTj7qNj1nPjd/cxL02AAYHAQhAAAIQgAAEINA8gbImVfMX5AoQgEDjBPIvPOO6fv0jV8jYlCU77mUtMH0VscaPBIZ5W+yrXiFsFyUW6dlu/L45EwJpIqCUlrE01+5+mpgSFwhAAAIQaGMCKhP1Ld4Kxrb22/gREHUIQKB1BNSpueL6oqj3hcau2z2h27029xX36nqL3PK5S1xu/OvKCIl55dLmN3annBWHQMaMs43dyMQrZomue12z2GiCrt577T1oQFtSeK7gVl5q51qHvBf3mhhmtDtZ7J07d65fdt55Z/f00087WUy87777vHXGVomCRjvntN2/BmCs0AAMWepd1EDsLOlk5jo3ZgcT9Jqod8zaJi4Z08B1IqdI1Bu11qtDEvYOljv55JPdm970pqqXl3AsiXXfqhfiQGsI2DvXaSLcjt07bBryjOu62QZ72PTkBbOQ6D8wJvgVWfzVu5+xbgGJe9M60EOiXlnojbpz/v16nSi6v9H1xx57rCSqlZj3xz/+sdt///29Jfdly5a5a6+91n3iE59wsnZ9xhlnuH322cfVGswka7xXX321GzMmfoYgi8AHH3yw+9vf/ubOP/98961vfcupbKrm/vjHP5YOvec96TCEIku9XffYoLSLcy4/36LXCmudVlfJTLUqi73vHbZ0rm3LmrZYfchb5W3DKsxxxx3nJCSP437605+6D33oQz6o3gk5iUHvv/9+t/nmm/vte++9191xxx1uiy228Nuj4Z+sJuueZ8yY0Za3q+en5yinPKUthb1l5CWsV/mkxW2WdXmz5ttjlnt7nzaR/5Nm0fcpE/4+ZWLflwvWBGku4Y7vGO9Wf20N9/APnnAbfWYdN27zjqbrX2W3wyYEIAABCEAAAhAYlQReH047Km+fm4ZAegjkHnvQLTvzSzY90Zquc8PN+iz0SsQrJ1+rad72EeUfBNqfQPh80ee/PjFju223/5PgDiAAAQhAIBUErAD0paEvCP2GRau/3xbHUwGTSEAAAsNJIP+aWSq7OedWXm5CmwZEvflswS2bsdQt3OxZt3C7p93SdV9y+Ql9pll9Fmk3J0u9cgN8v7fC/hB+kI8XL483iARkFWvCDh1u0qEdbtwBWZddx37MRFlJXeE5myb7MntXTRCmjndcfwJrrrmm++AHP+g23XRTd84557gFCxb0D8BW2xPILTFR701FS72NiHrHW9LbwtLjIZYeD+wwa3WDI+pduLBRM8LxHtGGG27oLR7K6mGlRdPNh7Im3hUJNRQEJCDXFOSTDupw4+0d7NjM6gX2TiZ1EveuNHHvCqu3qP6SNldJ1HvUj1tvvfqf//xn6dYvv/xy9653vcuLerVz0qRJ7oADDnA33XRTKcwFF1xQWq+0cuuttzpZFE3qPvzhD/tTZGn2iiuuqHm6xL9y22yzTUngWfOEwT5or0/3I2ap919Wr3jIfqxZUe9EE/NumHFj9jNL1e/Iuonv6nCrHNbhJu5l+e0GVv8xC9ZNagMHm0hLrh+11n7kkUf6a0rAu8kmm8S6vmYekED86KOPjhWeQENDQM9PaVfuiCOOGJofrfIrGjykd0TLr3/96yqhEu625JldNePGqZzau9PSbqdPw3fOvtn98fHfuHtfvtst7Vma8KL9g3dmO92spau7F377iut+zDKc9BVh/SPMFgQgAAEIQAACEGgDAv2H1LZBhIkiBEYiAVnqXX7218ySxJ4uM9HmiVNjxxpZbeWPxAfDPY1KAiH59d180XJviUS7bZcizgoEIAABCECgMQJWMBYy+menV/Hb4nhjd89ZEIDACCHgpx++M2+CSRP1Ppv8pnrH9rrX5rzqXt7oBbPS+6pZ6e0T9IaOSmWRclUt9fYdHrbjxZ/HG2wCZj5hjE3F3jHVLPeuYRYbrzZLWA/Y25FwOvbC07Lca9YaTTwzYTumsa302HbddVe3yiqrOIm4JIrBcm8lSu23L7/C3v3bLa9ucACGm2ZpcDsTm5mV07HrWdqpblSzIpxx48a5qFhLgbSvkqXe8nAVLzhEOy+88EI3f77McDp31FFHOQngoy6Xy3kroytWrPDHFCbqbrzxRj99/COPPOKWL1/u1lprLbfbbru5d7zjHT6dRcNqXRZJ77rrLi9gk0VSiS+vuuoqv2/jjTd273znO93uu+/uT9Nv/uIXv/DT0b/44oteMKX0qynrq7mXX37Zp+1bbrnFPffcc27WrFlu22239dYxZT21ktP06f/4xz/cbbfd5m6//XZvkXWrrbZy+q2999670imDuk9Wdifu2uE6Z6ssyLmeO6wseCXZT2qgR7elBVk/nWDWpzPj1VkwtG47E8bf9mh/Jaj2lVvqPfffvQPCtSKmQdir57711ltXvOTs2bO9WPeaa66JZYn3tNNO89awd9ppp4rXq7RT1rNlMVjC3t/+9rdeUFwp3AMPPODuuecef0jWgcud3mnFU+/p0qVLvfBX93XooYe6zs7B6artfcEGC5kF9NyD9g7mymMUc9tePW+ddz2z+ilR7/q2zLP6jmYWGPrXMmakGw+m9+1Pf/pTzQusvfbapeOy7HrCCSd4K7Wypp7E6Z3CpYeA0qHKxMWLF/uyJy0xk4XywXAS4o/bKOMO/Ma+bnbHHLft1B3c1jO2d1tN38a9Yepmbub4WZbEkyfyMdkxLmdlR9d1Od8uUlmIgwAEIAABCEAAAhBonMDgtBYbjw9nQmBUEuj69Y/cmG128aJeNXH8NMciEdo7ET/Vx0fl0+OmRxoBn9xkOUvT6JqfKfpttz3SHgz3AwEIQAACw0NAZaH9ssS7WlM9tR23hwcevwoBCKSCgIkYVj5gHYuXmdW7p5LHaOWkle7VdRabqPdF1z1rmctnTHBpeaNEvO3iJ79rzmiGgCxhjd/eLDXOyLgV1+Rc7y02QPSlZFfMLzCBownRO1Y1YeGmZvrX/nD9CUi0J2GUxDcf+9jH+h9kq/0IWF7d/aDl1ZfnXOHphNFX/XSuWUrdLevGvzHrxqxuwipVWBM4iXe1yEKeluAqiXqjx0O44fRl3TdYFpSosFyQdt5557mTTz7ZR/GXv/xlv6gee+yx7uyzz+63Txu/+tWv3CmnnOJuuOEGN2fOnH7HJaDVcYl/H3vsMXfqqaeWjl955ZX+ehK6HXbYYV7g+8wzz5SOX3bZZX5686985Svuq1/9aml/WHnooYfcLrvs4gWUYZ/8P/zhD+7LX/6yF0SWT2v/yiuvuI985CPub3/7W/QU95e//MVv69iZZ57pJk600RJD6CQsH/cGs2A6xbmuGXnXfb0NLnreImCfG+O6/JOy4m7i3slm+NemNB/KsiBY5ZVo95x/95SirP1RV348eqzZ9SBSlyhcgu9p00y9X8Edd9xxTkstd+2115YE5x/60If8u6QBInHc+PHjvbX4H/3oR05C+rPOOstbDC4/V6L34CTWDU7i+q9//ev90oqOBeGyrLcqbc6bNy+c0hK/YI9t5V1WD7nTXrpGDCorb51hr93GJuTdxJaNLX+dowFHLYleai8ia9CylJ7EaQACbmQQkDh7ND3P73znO/7BvZB7zv1j8V/dZYv/6baYtLX74gdOdHuvv5/LzS+2YxKUXbrgeMsoXr5iieucN8V1TO90smiPgwAEIAABCEAAAhBojADC3sa4cRYEWkag+8qLTSBhH0Qm24cpaxx5UW9JSGg/ow/Rke3UHm8ZES4EgeEloG8UEvO2uz+8FPl1CEAAAhAYMQRUJvr6qOqpqqyG+mqbbY+YB8KNQAACSQl0P2VCsStt+uFH7Mz+RudqXkotgq4pK9xLZqX31Q0WuZ7JXaXwVS3zqu1uLm3HSxFnZcgIZOyLq6Zjl8h3xbSc677GBF1mfdE3NOPEwt5VdaSvsHc3axbxxqydzAJcnJ8YCWFkjVPCQokPJYzCtS+B7gWWV19hefWjdg99WWm8m7GkkV3XBJT7mah3OxPUm8XspC6IenVeEPJKvKt1WewNrlz0G/YPt7/jjju6k046yckS6SWXXOIt6kpUK/fss8+6Y445xq9r33vf+16/rn9f+9rXSqJeWag85JBDnKyfXn755T5NSZD7lre8xW9PnTq1dF5Yue6665yW7bff3odbuHCh++EPf+gPH3/88e7cc891usYBBxzgRcCyvitBsCxUnn766W7ffff1FnXD9XT+wQcfXBL1HnTQQV5cd8cdd5REum9+85udrJ5GxcYSJwdRrwSbuu4LL7zgWVx99dVOwuYNNtjAff7znw8/NXS+vY5j1rCyYP+MyxpCWaPOL7Cfj1sfsbSQe8TqI1YWyDrqmHWGpiwIol6BCtZ5Je7VflnsDW4wRb36DeXxP/3pT/3P6T06//zz3UYbbRR+PpG/7rrrup/97GfuyCOP/P/snQecXFX598/ObJJNAQIkJFR3IQm9RoogLUAQBGkKvgqigFQRUeRPUQkgCkiVJr0oAoI0EQ1NQTpEqSGUkJBQAkkggdRt8z7fM/vMnr1778y9s3d2dzbn+ezsbafd5576nN/5HTNt2jRzyimnWIBu3EC+853vGIC9CIBcLWPqn74f6UPIx5QlFVirFQBPW3XooYfaR+TPP//5z7a8HX/88eb+++9XL6kcmz8SQPmr0qOdW0Zwkl9rAfNuIoyeGwg77wiZv/KLjEIV+cADD5jnn3/erL322iaMqdn1dP7559tFSTNmzLC3YXDWRQ6wSFPvuZKUwZxFFdSx1JUwqJM2Fly8//77tt51maqThq3pmjp1qmVif+2110xTU5PZYIMNDOztMKsnlWuvvdbMnDnTlpfjjjsu1Dv1ubYtMMK7iztgi3/qqacMaeG9WfTFj/pC23MN9NNPPzWXXHKJvTzmmGMMLLgPPvigoRyyUOzOO++0fn7/+9+bOXPm2LZkxx13VO+FY5I4YZC/9957DYsDqHOmTJliWODCQoPm5maz4YYbmoMOOqjDO8EWfOmll5olS9rHniwoQE8I7vGnQt+E70xb+corr1hm/o022sjmgfXWW0+dRR5ZrONKk2k0/134vLlmymVmr1N2N42TpR55JWc+ffozs3x2aKJ1U4ObhpgmqYOa12s1/dZobzvc+Py514DXgNeA14DXgNeA14DXQGkNeGBvaR15F14DFdVA4yP3mn5b75SPQ23PsIUi1XadT7X/3ws0wFZ3bJ/X2NhojQS9IEllJYHtj/r3729ZNQYOHFhWGEk9FYqd9Wi5CdvOOFTPtU20/+c14DXgNeA1YDXg28UuZARpGPNMvSAsuFDm3uq67oIGvFevgarXwLJcB7Z8JmCYp1tNs0womnayuZLfVDYsNrP7C0PvpgvM51+aa1oHN1ugWbUw9AbTWfKFvYOKaaB2pGzHPi4rAN8862IiQJfk2cb/tZiFdV+Y1u0WC+IwLhKsYq+TOODuGNPvvPPOFhiVJrD39TfeNC+/NtlMmz7TfCZsoNUqKwoYs6F+TbPpRhuYDddft9e+RsunbXX1a1JXS3UbW2RmIytbSNftnjEDNhXw5CC16MQOIdShAnpdUC8Ou5OpF3Btv37R9HYjR460zLb6AgCGFNhz5JFHGsrFSiutZE488UTrBODuZZddps7NY489ZiZMmGCvYd6dOHFiIT5AwgBwjzjiCAMDMMBZrsPkwAMPtM90+3nAj4AxkbffftsyBZ9++ukFr7hXoBRAOHWLA1iHAVwivP/2229vz/nH1uj4g7kVhm7eFcH2efvtt9tzgLuwoqoAaAYkB6iN9PcIsLctMdkVa8zA7bKmZnCNWTJRdhBgsVHcvC5tQbOAqhaPyC/0IKzuFsC9AHpdUC9pcJl8K5EmALIAEZ977jkLWgOstvnmm5v99tvP3h87dmwn8F6xdBx88MEWBA6rNcDzPffc0/6K+dFnMLg2NDTYPAoYNwjsffHFFwv595BDDlFv9qhMvoDgAfXRNiLkeUDngH4BCwNuT5MptPEdFkswbk8gwjSdWVsWJ20p9epmGVMLQ6+fRS6qQOpTWJwBnJYC9gIapR5T4fzcc8+1lyeccEIHYG85DOYAQgmztbXVnHzyybbsuHHpeTlh4/fhhx/ukEbuPfTQQxYwC6t6UnHf/5vf/GYHQLyGBeBddaSLU+bPn29ZuhVMr25JC8K3oJ1wF4HA7q7hwI6NfgADqzCPhlx99dW2/QK0rO0V98uJc/LkyYU4t9lmGws4JiwVFuMA9ib/0HYjbjrVHQvY+CHUIwrsBShMXUR7G5T/+7//swBhQMzFBGBzmDz6+CNmcEOdOeMXE8z0p2aaYTNHml1W292st8IGpi5bF+al0z1siUsmN5n+7wrb9xqdHvsbXgNeA14DXgNeA14DXgNeAzE14IdkMRXlnXkNVEIDzf97xtSstIpYS9qKInYWbHPVeKyEgnyYiTWAAYLBP8IWcyussELBWJg4sF7ggZXLrE7GyMIPhhCAvpUULX75ONqYewsRVtt1IeH+xGvAa8BrYJnUgG8X0/nstvWzDaT846+NuReQL1IVz9NRhQ/Fa6CqNLCs14FsP7zk5VbT9LyAIRck+HTCRvZ69lXz/tBpZs11RprW/oK8yVd3sZl4FzbWmFkLa828pRnT3No1AE5tJmeGDmg1Iwe3mEH98sDOpIzACd7eO62ABmAQHbitALrqZHL7HwLoelciiYnRzSwUFtI3hpiBG6xgBo6RMKJxfhVIedeD7I4xPVu1A4R6/fXXC0CHclP+/ocfmfv//pBpEUDM2M02MbvtvKNZeeWVyg2ux/3NnfupeXvqNPPYE0+bx5981nzj6+PNGqut2uPpchOQExyNratfkEKx0H1S4lxMqdn1pWx9XcBnG7I1fPl1rQJ2XXa/IKgXwF13yo033mj4RQnAxq985SuFx4CAb775ZrPJJptY+9mpp55qWUMBMCKAGIcNG1ZwD1sgstxyy5nbbrutAOpVBzDfwiQJIBbgUZQAUlNQL24APwK8hDmQsAEWuUKaV199dcvk+/LLLxceAdBVQBaMky6oF0f4A7TLe+GOugVw5KxZswphUBe4wnPSjl3RTaPrpjvPMwLqHfhlyati1lzyYKtlZY8N7pV+TNPzObN0jVYzcJvKtwUK2FW2XvQUBPUeedXSiquPMgk4DzAfgFiEvMVPBTAg+XXXXXeNZQOH+ROGTwCFAHDfeOMNA/C9lLBoCrA7QHUYomH/BDyvctddd9lT8j1soa7AookAMlRQrz4nvJ/85Cf2csiQIXq7y8fWxTnT8oGM1D9LENQKwjC9uTD0bp8x/UfJYomB5derCWJdppzyvZnjUIDv+uuvb7773e9aHbDIQqVcBnP1D1gUob7daaedbP2/2mqr2Xvlhv3OO+9YZl4biPxjAQnAV9hyyf+wwJP/kwhMv2eeeab1Qlk//PDDO3n/y1/+Yu8BaEVfCHEpqJf748aNs/U8dT4LUvjBQs+igDBRsCsAYBaYMLYKtvtBf12Nk3oB/VBnwXJMv/UmYfNGWIgyfvx4U19fb+sVWO2XLl1qmfh5ziIVbfOVGbmlpcXWe9RlCHmLcKnT7rjjDgv2BSyOe5ep2Tpu+/eHP/zBvQw9P/PXE+z9upqB5rXPXjYH1H/bjKsfbwa1DAp1H7yZ/SJrmqUuok7ydUpQO/7aa8BrwGvAa8BrwGvAayCeBjywN56evCuvgYpooHnyf012tbXyYF5iEFsJ5hK73XE1XpNmLz2mAZi42CZoxRVXNGkaAnvshSRijJ28Cz+2RGLrJSYiKsneSxk0sGazja4ca9qOVXfdkx/Ox+014DXgNdALNODbxbQ+Ahwb+f5p6FGehd6Xm/Z+L3meljZ8OF4D1aIBXwcKAGaGbBv6XKvJfZTgq8kOoZlRxty24AazRt1qZo0Bwy2oN8iAG3U9Z3Gteenj/mbG55Uxt621QrPZbJWlZvggeS8Zp0SlI3g/gQa80wppAEBXnQC6jADHl/xdwL1TJaKY4N7ch8L2+2yrqV29xvRvkDCqSLprTM9Ww7DPKYNZOSqCpffGP91h9v/G1802W40tJ4he5wdQMj/e59nnJ5lLrrjW/OBg2cK5F7H32rpa8neuHZ9ZWo9SjrKyRfzAvQD1CsgxhfXfYeBeTQjPANh0pwD+KWb7cgGFmi7KAduMAxIEFKxAQ8CIMJO68sILL9hLALQjRoxwHxXOv/GNb1hgLyA0to1fay2xYTsyevToDsBGfQQwCeAlQKIgiBE3AKk++OCDDjoFGKYCuA3gblC22mqrwq0333zTlveGhgYLlCKNsBOztTyswGPGjLFutQ4qeOzhEwDodZtKBpaB0pJcG7i3JV6ich8KsPeZtrZg7cq3BWHgXk3pNQ81m0lTYzZi6qnMI6QVDz74oN3CHqZcwHzkHxXyOT9YKwG3lyKEwK58/fXXW+A7+QaAnzLqaphRx4MOOsiC53gOuPfQQw+1Tsmvt956qz0HLFxX15HNcocddrBpxA8svTBzAoInf9Jnq4Qdv3WeAOnmSpJifqaalQXU+9WMGbiTMGuuJvmLwbyX1DWggNJ7773Xgsvpt8AcG5RyGMyDYQAWZaFENit1jiPlhg0AmTKDwKLrAtgvvPBCm6cVZOpEV/R0nXXWMey4ABstAN4gsPejjz4yyiirbMiQ2lx88cU23H322ceytus7wn4NyzyAVdoh5pKi2rg//elPtr0omsC2h2nEyQICFhXAFqyy2267FYDd1GMnnXSSndsjT9D3OPvss61T2nDY6l0BtKz6ZhEP4F8V6hgAzzwn3ChgrxIEqb9ixyW5xaZxo4VmvWMbzNAvBpump2XhwKfFfOSf1cgi19a5Uh/Nl3F292zIWTpR3oXXgNeA14DXgNeA14DXQJVpoPIWgCpTiE+u10B3aqBlumyRMlhWsQIclD+OHKryujsV5+PqpAHYuAD1wlJTCWNgpwh74AbvxfvxnrxvpUTLYLUfK6UfH67XgNeA10A1aMC3iyl+Jds/lVax2o8pqsQH5TXQ2zXg60DBMCwQ8MukNsCM7djH+GoCYMg0GFO3R9ZMGfqkacwslaov7znO8Y25/c39bw+qGKiXN5gxv1biGGwmz+lnXyhOumK8uXfSTRqApapuc2Hg/VrWZL4kkcYFzUg2bJksefp/sqW25O1qlUqO6QFJvP/++2WrBqZeQL1HfP+7fQbUG1QG4F7ej/fkfXuD2Lr6v1JXvyX5Om7Wpq6WBRh1e6YH6lVdAKJRgG+xe/qskserrrrK5mnyddiP52Fy9NFHWwY/ngHAgq3xvPPO6+CUtuOZZ56x9zbaaKMOz9wLgMIqLruu3osCS+nzKPbDMPbcl156Sb1ZVkJ2IQv+dtlll4IbTQ+gSJfZGFAX7wR7LwCxiRMnhoKECwH1wAlA9LpNstLfEEbUtSUBSdqCKdIWvCRtwcK4BaZrLwi4FxCvK1wr6Ne9X+lz8iPfd9q0aea9996zjJTKdErcgHMVNFkqLbvvvrs57rjjrDPAtsqaWcof4HZYShFAxiowYCvADnbhoEyYMKHACgwAGJZT8jeMooALg/VO0H85163CgJ6Ly4IuxJv9tq4xg3bLmn6re1AveWzllVeO/IV943K+UZSfuAzm+FcG82BYDQ0N5qKLLuoE6i03bBZNKFM2TOwuqJe4YaMmL5cjAI2Rf/3rXxaI64bhMsbvv//+9hFM3jBm84NxXkG96k/D4/rFF1/U2x2ORx11VGxQLx7TiBOQtQvqJVzYe2mnkbfflrniBPLuu+8WXGsYemPkyJEGhmV0dM455+jtTsempqZO96Ju/PKXvzQTH55ottlvSzNofNbUbimNV0ygLnVR66Luabei0u/vew14DXgNeA14DXgNeA1UswY8sLeav55Pe9VroHX2LFOTrRUDngyC5M8eeatqvK76r1HdL8DqWph6g4wA1f1WnVPP+/GeSVYTdw6l+B2KIpI/5lkKq/HavoT/5zXgNeA1sIxqwLeLKX542021/yTQ8KNtLW3D2Yufp6gSH5TXQG/XgK8DjWl8p9U0vSSTh7J1dVypkd1pBwigoW4zMZVl8yAWAENI/j9D9bbrwBFQ7zMfdGRnixtvOe6IizgL6WkLpHAdSF85cXg/ldGABfduIYDEXWU79pEJ4mAb9v/lTOO06p4Ur9SYHgZGwAvlyv1/f8gy9Y4ZtU65QVSFP94PRmLetzdIoa6OCz6TRNcIaWydAErqNpIylAJTb1APLrjXPQ+6663XgGYBDao0NDR0IgCAfVhZF4cOHapOOx3dLdW7Ur46BRxyQ0GRIY9Cb82fL9R/bQKz8PPPP2+OPfbYwjbwhAez6957722ZfadPn67Oe8WRvDtgE1noIf2OmjUSJEnbgne7ry1wwb09BRhNrz4AAEAASURBVOoNaggQ4X777WdB3ZMmTSp8d755XDIIwG6wTiOwW7oguWB87rWy9AJC/PDDD+0jmEYRypvLLG1vyj8YpGHJBuDrAvBgIj7ssMPs7nSA0NOUHF3ZjpjsyOBrBsuueetkTO0q2uONdLrMPKCOjPqxM0olJYzBHFZo9+fmMxjMg7LHHnsEb9nrcsN2/VHnhgltj9tuhLkJuwfrrooL5OXenXfeaR9R3unrIbRzLBbj57LCox8AyO6ikoULwzsYCtC3Acb4l0acsHQHhbHb+uuvb28nbQe32GKLQnB77bWXueGGGzoAo+lzo6NiLOb9+uUXixYCKnLi9i1qR2bMtMZ3zNwFc4r4cB4JftjWSc4tf+o14DXgNeA14DXgNeA14DUQXwOCKPTiNeA10FMayDUukajFEIctDrtJwuOkt981Vz4w0Tw06WUzb+Gisl9j6OBBZvzYTc2xe+1uxo4WqoCE6bDuy47de+yqBtSYxEB9WRDek9XlvHexbQnL1YVm/7z/PIt2u1mz+PWkl982V17/gHn4X5PMvPnhhqM46Rq6wmAzfuex5pjD9zJbbDqqACSgcCZLX5zYvBuvAa8Br4G+pQHfLqb8PaXhydXwT8KNOIY9f2/KTPPo3U+Y155/wyxaUP7E16AhA81GW61vdtl/B/Ol9dYMTUdY/G567fOU1eKD8xrorRrwdaAwm34u4MdXZbvPmVRc8aRmJWP67yAAm7HCnjfI6f0rY29bMGEMuXMWZzuBeofWtZr+2ZyZtyRjGlvaw4uXmo6uCIfwCIfwVAD3Dh/UYoYNbLFVHvfD0qfu/bH3aCAzWJh7t8zaLWkbH241uc/ipa11uuTt1yRv1deYzHJdy1fxYqyMq0qM6QEtxAVzBd/q9TfeNC2trX2WqTf4vjD3TnrpFcN7b7j+usHH3XbdMl/y8ytSV89IUFfLVvEDdpS6WhZg1NRVrgwoe6Yeu00pKUT01ltvGVj1VJ588klz/fXXmyOOOEJvWVKAjTfe2Lz66qtmypQphfvBE9j+VIox+6qbrhxJj8rMmTMjt05XN8HjZpttZi655BJzwQUX2PcCdHnZZZeZDz74wDK8wtAaBn4LhtOd1yz0GCD9jpZ5Uhb+KW1BzLUJti14tdX0+1KNyS5fuXLg6kIZevXoPuvpc/IOIN0f//jHNink67Fjx5ZMFoy5AIG32WYb6xaArcv0GRUAYHGVe+65xzJDK7CXMHSRlbrRI2Dk0047zf6mTp1qnnrqKQvEe/rpp60TwoWxM8joqf6THmuY+Y05+5uTaaVmWTjUvF7O1A7vnjyV9H260/0qq6xi682oOBVgGvW8q/eDDOalwoPBfMMNN+zgLCqN5YbtAnvXXTe870DeB2z6+OOPd0hLqQsWmHz72982t99+u7nrrrss2B0/s2bNsiy+nH/ve9/j0EEee+wxc//995uHH344MdstjMzlSFfiXHNNsWeFSDlgaIIBEPyzn/3MXHjhhZYxHMZ+hAULAH1hlqZtLCa77rqr+dWvflXMSeHZDjvsUDhv/iRnnrjuSbP3WsKinC3cjj6RusjWSdEu/BOvAa8BrwGvAa8BrwGvAa+BIhqIObQrEoJ/5DXgNdB1Dai9RI6c5pxrG7hzrc//+OgT5tQb/2xOO2g/c97hB5thyy9XcFrMJG79B1I85/MvzF8ef9rsc+b55rc/+I45ZJe2QZoTrwau8et1h2MgXH/ZPRoA5IoxclkS3pf3rgSw12Z7GK6YxJdjTdux1PUfb3/EnHb2TebUEw8y50043AxbScqkE476j3Oc86mUyXseN/t+90zzm19+3xzy7V0Tp2dZyg/+Xb0GvAa8BlwN+HbR1UYK57SFEgzgWM7op5a6fvqfz5k7/3C/2ft7u5tvHbuvWX7oEAGdtfmXsKz/mNefz1tgXnjsv+aSU6423zr6G2bbr21dMv6w9KWgCR+E10BVaMDXgcJqOrXVNE+WvvzSmJ9sgOAextaYgV/JmuwK1CDtwgQ1YNlix5c+lgAcGTG4xXwmANx1V2o0o+qbzYBsa1H/pcJfLAxH787vb/47q78h7I8Xts+evvTJALPrlxaVDN9Jnj/tJRrIDpU8t23GtM4WQNdTkscaYyRM8nTz6+J+w5xs494xr8bw3aucVHJMn/RFX35tshm72SZJvVW1e96X9+5JYG/TNKmrp0hdHSfvo23Z7pltnwHFpwFsL1WCygH1BrcD7+5MAlvh97//fRvt1ltvbQBf3XLLLZbJdty4cWbttYXMoU14DgASFtEo4blKEDSm99M6brrppoWgXnnlFbPbbrsVrpOcwN64+eab2x9AT7ZbB7w5bdo0y8jq6iBJuJVym5VFGgO3ybcFTf+R8gAHSCmhLZB+TtPGOZPduFROLhVY+3M1Ybbf6XhWDqh3QHwyyI6RyRXgV2Ulveiii4wy5XZyKDfKLXuAEM8++2wLhgdgqyDbsDj0HiC8Qw45xOYryhdAXGXABpwYR9ZZZx3DD7AiLJsKyPvPf/6TGrA3I1MFMPHGEuGmaHq21SyS7zVQFk/0W1UWkqWXtWIloTc5Gjx4sGExQE9JUuZWl8G8VJrLDXvu3LmFoIvNQxVjgS8EEHJCmQLY+8gjj1iQKuBqZe+lzLltAm0dC1gAtIYJ7rVMhj0v514acUaB/stJD34I77e//a356le/am666SZz33332aBYIHDxxRfb39e//nVz6623Rs4dJgEVs4hu5x13NqtnvmR26rebGbfaeLNcv/ycdKl3oC5yF8+Wcu+few30VQ3Qt2aHAOpidtqiDLIQg74EfZJy+zO9XV/vv/++mS59cam4bJ3V29ObNH2ww7/xxhvWG7s0LL/88kmD6HPu2U2lUXaJWUvy9lprrRX7/Riz0eegL6aM9rE9e4deA31cA+1UH338Rf3reQ30ag0AHETkYM+c6/z9js9h6gXU++BZp5pj997dDFuujak1pn8LLGyLjwP+CYfwCJfwrbRF67ovmr68L/+/mzUAKw1b6/Q2oeP217/+1Tz66KOpJ433LZeNp1RiNI8nOU566W0L6v37HWdZll1AvUn8U8Zc9/iHrZfwAAsTvvs86D7sutR7+udeA14DXgN9VQO9sV3EKEGbyI8JgbSlku1ivo2RVsj+8Y82K/r6vSkzLKj3p787xozbf3uznLDQF3NfKjz8Ew7hARYm/LLCS1vpPjyvgV6qgd5YBy5YsKBQB3700Uepa86tA1sXC9DlLWGA/EDqqZiSHS1Ase2ypnZEZwRDFAOu3l/YWGNmfN6+Zh5mXUC9e6y9yGw4rNGCekmGui/nWFebMxusvNSGSdjEoTJjfq1Z1JQpGb6698fepYFaAc4M+GrWtKwh6O2YArtp0zvC7Lgkfh6PGXQnZwAq6Lu44L5Ojsq84ZbbMoNIzdu06TPN6HUaUguv3IDC9F2pPiTvy3v3lNi6+k2pq9+Pn49tXb2t1NUpbRW/4kpC1Z6iUL8zAdmTAlvtiy++aJNw1VVXmfPOO6+wLTqMvS0tLYXkKaMpk9C4DcqMGTMKzL8AZSmzlRQADQow+sUvfmHoOwTliSeeMGzHzu+9996zj//5z39acCRMqx9++GEHL4B83a3DtQ3u4KgXXNSOEBZq6Ydk1+ncD4lKHrsSNL3daihLack3BWCctoxtx5InDhrga319vQXonX/++QbQRJiwWwUAW5Wk4G0YL7fddlv1Huv43e9+17r73//+Z8444wx7Tl4LY9ulHgfAyw8m6aDsvPPOhVutwh6flmRkAVGGai7mZ83NkXUW/xJw799azNLJshtEBfsZmUw+UWm9r9pYMtn2xW9p6bEnwgkymDO+K/Y75phjYiez3LBd1natf8MiZWFGOUI5AMyLKKDXZcIGVKoCAF9BvTDOAgaG6Z0Fruhp+vTp6jS1Y0/EGTfxgHfvvPNO89lnn1n2Yuo0bU/R5f/93/9FBsUCILedjHQoDwbU1JmNs1uYw9Y62myV2c6MHLhqMeftz6S4Z4ZJfbRC+y1/5jWwrGng448/NpdeeqldwMC8OfUUwF7qLvoS9957r/n1r39ddMFdNesMZvl/SJ/9H//4RzW/RmTa2SGEXRz4wTbfU0J/aPbs2fanfaM4aSnXX7Gw//a3v9lvPnny5GLOOj176KGHrB77al7p9ML+htdAAg3EHNYlCNE79RrwGkiuAVmlZEXtdyWur3xgomXq3WTtL7X5S+afVVFh8REeDMCEH/a8sFI7wn/ek//f3Rqg04WxurfJ7373O7vlD8wHaQvvm6RjmiT+QjG0nvIshZzm74dfX3X9A5apd5MN124vJgn8R4VPeDAAE36x+MP82+ir6N9SWb3nxWvAa6C0BpqamgrgndKul00XvbFdZMKZbfD4MdGQtlSyXaQBsq2fbYjsRdHrR+9+wjL1rjl6dXnN0u7jhk94ewkDMOEnSU8h/LSV7sPzGuilGuiNdSCMJFoHJjXqxlGzWwc2fyjbCE8VkEscxjsJvEZ2Ye2/dY3pD5jG1nMdY1RmpajjrEUdx2EDsjmz+YilZtigPDAjyl8591ce2GK2GNlo+kscrswSBt9S4bnu/Xkv0oDkuQECLG/eaLGpWTFmuiRvN78jgK6POuaDmL4TOQM8R9llgiptcctt2mEnDe8zmVRdeeV0QZ5J04D7A/bfz3z3O//P3Ovoe+LEf9p73E+zD8n78t49JYnr6mFtdXVDeF1dznvAjgXrYBpgT8IYPnx4JCNeOemDSRcQYLEfICYVtlfX7bRPO+00AwiLrcYvu+wy6+TJJ580V1xxhTo33/zmN40CvE444QTL7AfId86cObbMU/6V8fCss84q+KvUCe2YArUAOBxwwAFm4sSJFvTAoqDrr7/eAnoBKdGXWH11xhrGHmF5hJGQd0IP9IUADD711FPmnHPOse54V4CivVIkW9MP6beVjHLi7g6/ON8WNM9Kry04eIeM2awhvenCQ3bKmC/Tv+qCHHnkkdY3DJTk6bvvvtsAnuD7wub12GOPWea35557zroDPLviinEb1HzCaI9gzU0ibEmvIERd/BLFKLzaaqtZoCL5lDwKAYaWXYA9xx13XCHqPffcs3De1RPYMbOrS54amiAkaRaansyZRXe1moX/ajFNH8hCovb1AAkCKu6URRB8p3feecd8+umnxR3HeKrfYOTIkTFc9y4nYW1QkME8zRSXG7a2F6QlCrwLsBQgezlCOVTGeUCqgOAUCE9f1BWAvCpXX321oTyOGDGiMD8WlT71U86xJ+J00+kuzHHvu+eUK0C6sPhStzQ0NNjHpfrxe+yxhxtMp3PsbxvUbWL+dOSd5rStzzLrLd7IDKuTjllMqZEudu1qAuwd2LX2IGZ03pnXQK/TAAuQrrnmGsvSS+Ko79Zcc02z3nrr2b6ELnZhrAfA97XXXut17+ATVB0aYIx0ySWX2F8SgHG5/qpDKz6VXgN9RwMdZyD6znv5N/EaqC4NYINjXBPz+NCkl815hx8c233ccHF34I7bmt/e0TZpEzM9NvxepnE6wTqp7a7orVQyNb444cNyoZ31OO69m+7VgGb7fKyWE9CZ4w+/fuhfk8y5ZxwmXsKft5stkj//1r47mHMvuaNNCUn9p6s7ypROJvbr18/wiyuuX8okA1gEY/z+++9vHnzwQcNk0SmnnBI3SO8uRQ0AOoRlhO1+Hn/88aLfVr8lE28DBw5MMRXGTsqwfdikSZMMW8n9/Oc/N0wyeslr4OGHHzZs7chkBatXdTKz0vo599xz7eTulltuaS6//PIuR3fzzTebK6+80hre77///i6H5wOovAZs62MbSPnHX03+aDiKuM9fe/4N861j97Huwp6X8l/s+VbjNjd/v2Vih/iC8Uf6tymt3D8MtRjCMMAOGTLEMGEGW5Tv81VO5z5kr4FOGpAqqWm6sNcJo2ksEexK7UY1ZsAmGVMzoL3H7vrVyfao47wlHf3BqLvLl9oX4UT5K/f+2is0mv/OamesIq3zlvYOxl769a+//rplUQR0w/aDa6yxhmH79pW6yIxJ/5NJeya1Aa7BTNVXpKauxuTWazTZuQLwfUbybgyyvtbpAmCXfN6/XrTQMQv2FbX49+jLGtC6WhhHY4nW1RvLIoaIujpWOAFH2DPq6+vtuJN+XLnCGBowTbGtycsJG1YvfsUEIC5g1SVLlhgFFQLkOfnkkwveAEQx/gIgddJJJ5nx48dbIMEKK6xgHnjgActUSp0No18Yq991113XbVvSA+qCuQyCAAU0F16k7QQWwjvuuKNgUwJsBnsqwF7YirfaaqugF8tc+Jvf/KbT/d50g7xdt2nGLtxofqpn2oIRAgC98ocZ8/dJNWb6J/nhXDk6GiCmwq1HGQEJd72BIk+8+eab1g5BPsUeEiWAZkuVmSi/jNvI6zBbxxFsmrh189U3vvGNUK8DBgwwkF8cffTRFiyvIDrysoLn8XjmmWfa7bhDAynzZr91MqZxnZxp+TRmfUs8wrvQ8rowqrNY7m3pa2wiv/Uypna4fM9smQkJ8QYAEQDTjTfeaMaNG1cASoc4jbyFjZpFEDAB0t+EfbRaRLdbf/bZZzslWRnMyR8wmH/lK1+xNgbXIQzmF198sb0FiCeMLdp1r+flhk17qfLTn/7U7LTTTh1A9IxtXJC6uk1ypHzDzg2IlvKIjB492m5P74YDgFglaJdmPJIUqK9hFTv2RJyaR0gXC16CwvfnPosMsNvqXAvuqF+23377WEBrvifMiMwHuAKgd3T/dc12I3Yy39hwf7P10m1N6xsJ6pK2wLKjZOFKCu2BmzZ/7jVQTRpgURp9dWSLLbYwe++9t3ExC9g6mB9hPgy57bbb7Dyd68Y+8P96rQZWXXXVwnhJF3712sT6hHkNeA1UrQY8sLdqP51PeF/RACauHP8QOca5nrdwkRm2/HLqJbH/YvENl3AJXwOPk55CeHlfveI/A1JWwa2//vrWuFPpRGl8ceLBMAGDgJfeqQFbHGvkvxikYLeuaTsWu543f6EZtvLysd1b1uyY4Q+XcAnfSsz02PAroF6YMQ4+WBYViOyzzz52m6e40Rx22GF2qxncu2UAEBSgXgRDtwf2WlV0+z+AvRgDv/zlLxcF9ZIwNx8w6QYrQhoCaDUI0nANp2nEUe1hYJzGsM+PSdijjjqqW15pypQpNn/A+JSG6DZT3tCRhja7IwzM+fn+auhRnrn3Fy1YbJYfuhz42vx9PYoj1x39R3ud4DnhEj4pSupfoqmIMMFMG6dsMm4kTKawOAHWNHeSxXXjz70GvAbS00DrQgEuCFAsF5OEsma4Mf02FqCCbIEdJSxkYqI66tgcGAw3tggwpzbafVQ4wfuAqzbZZBPb93bjHyhgGeJwpblVasUS6XTdp32uE+hMLsOoFyaHH364BZo1NDSEPS55jzh0e/k+2T8c3mLzYstbsvX17JLqMDnBMzS/L6CbRTmTGdwxP5T27V14DfSsBrSubhWgWb6XWTw9HzfOMm/NeM3st0p6TJZujABc+fUGSbogTBdbU/8C8kVYQOmCjGkfYOrdYIMN7PNjjz3WLqjlgkloxuG//OUvzV//+lf7XP8BpgJQFmRK5LkLNlL37hEgY7lCnHwPwF2ffCLoUkd+8IMfmFNPPdXU19c7d40FBrKN+3nnndehHaIvzqKQiy66yJTb/nSIqMIX9Ef6bSx9GdqCj0tHVmgLpP+TGZJOW5CRYPb+cjphlX6D0i7IS3y/7bbbzo6pwthAWfAMoJDt58nvrrjXWl7c5+45tnq2Db7vvvvc25HnBx10UAHYC7icBU1RwngR4CngemUXVlDv1ltvbSZMmGB22WWXKO9l3++3muSpjWTRm+xmkUtIjGvzl4DMyY9N67eaWgH39pddBmpHyoK4jmvMykof9sfPP//c1kewGXdFAPQqYLor4XSnX+ok8gL2BOzhkF6wEA4mY/ItDOYwViuDOXNP5BUWomBHZwEHeYhwkiz6Lzds6n3amhNPPNGm+cADD7Tn2267rQXf//GPfzR33XVXl1QIK/fmm29u3xmgO/LDH/6wU5iUFZh6EQgh0A15gDkG6ouu5qdOEcqNnoiTRUO6AADdAoD/6le/avMI7TzkQfqugAbRA4sUALxz/5ZbbrGvQv1USmhzyV9IrelnNhy4idlq+DZmy+FfMVusvKUZOWBVWU1aKpTOz2Ght+PtVaPH2519+TteA31LAyxQQujfUte7fRPuYy/m/uzZs82MGTO4ZditIu6CDevB/+tRDeiYo0cT4SP3GvAa6PMa8MDePv+J/Qv2dg3YNY4A/MSczVr4HAaoUte8VN5jPPelwgs+Lyt8PPU+0ZVwvSllS5fK0ncvvVYDtjRKmUhy5GWSuAcsnMR9OeFXWsEYujE+xjEesu2HGpqC6WLLGTXaMUnjpWc0wGQegpEwibCiOC1hAlLlggsusKtcu8rupuH1lSMMNEy4YizYdddd+8pr+ffo7Rqgzcp3U+Md5X1sKycNXSJ/cd2XG34F9PzMM8+Yb33rWx1ABzrxQnRMtP361782zz//vJ1U8XVaBT6CD9JrwNFA88cCPvhIbsRgPMVbdt0a03+MVHBF5hlLMevaTr2TBj0t5a/Yc0C9bCGr28gyGRt0r/HoMfg8eK3u0j6ylTSg3SAgzK0LiZMt1P/yl79YJhrAOUFhkZky3THxVQ0ArOA7dOla8mD/9WpMkwBmmmczUiwhsi12ywfCpCdu+3tgbwll+ce9TQOvPzHFzL7nc7PJgM1LJo267LkPnzbnTzzbHHTRvhYEhf2gr8pqq61W2CUpyTsCduUXJaNGjYoMl2cwg1Gfv//++5ZRDMDvsGHDOgEPNHwAVQqq0nvuETCRAorc+3oOS2eUAHb48Y9/bH70ox/ZrdjZjp0FpuimGKAYUCY/3uPdd981Q4cOtazxUfH0yvvChtp/3YxpGtVq6NOUFNoCWFXnSFuQErC3ZJw95OCAAw4w/BhfAd4D+MJORqV2BWCsxi+u3HnnnXGdWjIR3dUsjidAc//5z3/sDoPvvfee3YUAEF4lF4ACwIUJumV6zjTBBN0YJ6WOG8bogq9vkv5G82sC8BXmzdrRrabf2rIwbs0ak11e+tHYCsoUbJAsOnjnnXfMggULEoeC7tgdAttytclee+1VsJWffvrphh+LggH5IuUwmMfVQblhA6CHHZmd1mB3DTK8siAEFnn69eUKaXPZaQHQB4WFHJD5sKAFtnZ+rlBXBMcm7vNyznsiTtLJ4hrIi6j7DjnkEJt0QL6Mm3j2hz/8weoBN/yCYzC+CWzhpWTzzTY3v/vFhWbilY+YzVYaa38brriJGV433GRqigyWiwUsa3xqt5DdcWQhbY0sTvXiNbAsagAsAH1ThL5sENTr6oQFLwrsZd41DNg7ffp022aqu/r6elvvrrXWWpFhk4YXxC49Tfx++umnltQHkDFjAMZVQWZgwmbBNosLttlmG5umJ5980vplbor+lwpuaRc4svCEcEk3jOFBRnX1w/HDDz+0i0Leeustu9Md6adPR5seR7CVAYRGSCNpDQrzltpOoXvaDRUWi8OYD4CaRUYslmDswE4g9CmC34l3nDNnjmVIx81///tf89JLL9l3pm1k51F2r0LQafDdk8bHonbC1HSjJ/pK6Jl3RV8QAbAYCOEb843QqwrXw4cPN+zAGbX4LIm/pO+g6eC4cOFCu1CfBXqEw1iTvMtOK0kXtpLPXn31VTtuZREoY1b6HrR37KDoxWugL2vAA3v78tf171Y9GhCjZV7ajqWucWydxnRfKrzg87LDz7/Fsvwf9sF77rmnqArodPWk0AHFUImRBAMIBvLNNtvMGgTYCiQoGELoEGJoY3UyRkg6hXQu6TQx4IBlk05mMWGClq3jEbaQwl+YYPyn0wr4Jc6K4rAwunKvY2mEPyZvTM/fr57rruggrl+2S4NNpZSwaj9KMMICjJo7d64daES58/crpwEmypRdjZX/PSVsI4dQ7pnI89JZAxinqcNhmgkaCDq79nfiaAAjD0Aj2jSMAghtIsxObI0VFBhVAGnS5vE9aNseffRRawxqamqyxhImpwijmFRLm2jfQRpA2/rV0B5y0fnY4XnBU7u7Ds9L+S/1vMzwrbcU/wE0+c53vlMA9bI1POA2jFPkBQx6MKbQZ6L/c9lll9mt1FJMgg/KayAVDVCHYezGMM2EOmxH9NOZOIQFyBUmF2Dup/9GfqfPzrad1Is8w4CNYfZrX/ua6y30XPv8hMVkY9BwjieM1xMnTrT+YeFi4qGYtHwiDKZxQJEEIhvg1Ao4ITus+EQl6aK8MxawtZpetx3tg5BEFfyp+wj/BXdtzxXUq0H+6U9/sn0jN3595h7d5za9Gq+m03Wc4jlMYjpxzoI/tk/fd999rUG9paXF1oUwQNHWMiHNpLhuHR+VDAz1y6LUriIgGcBcr0pO+6K0Bma/Osdc8+Lt5r737zT19fW270G5pR1yBbZj2DqR8ePHWyYvtgNl62r6PpR57ADsyOKyfLph6Hklyq2G3ReP2Fz+KuCLt99+Syaw5kn/cVWZdBplDpAJUWVP7YvvXeyd2Cr6lSunmBM2+LkxAvgoJZ81fmpe+fR/ZlrTVOsUYNxZZ53ld/oppbgynlP+x4wZU4bPynhhkpf6LFinlYqN94D1sVqldrgAJ9eRRR6vxGsLcixqou9TX61vnCzdgNaoB5RZMpnv3uGavi8AhO6SWmHKrNte1r3NaTEtkyWvCCA8sYi33FzZLWAuAN+caVwjZ/Nptr7G9BOAb+3ImrJ3EAAg5IKEEqctRQ9h45E4wUctOijGEg3gHKALwEwXyOrGVw6DebE4uxo2/n//+99b8NMll1ziBmfHjixq1kUmQaBYB8dFLrCzAXBGGFOGtQEAx7AhH3/88QVwtAaJXQZmeh2fUN5Uor6TPtej60fvlRtnHMCSstyHxXvOOefY8kE+URZ7zaeA0ACmofebb77ZPme8hTAuo2/Ps2JAJ3ZRaJ4lwP8ZOfODNY82u+7+DTPo8yFmuX4yWO6KyEKV7Pqyk81Xs7I7DiNVL14Dy6YG3DoZUCO2jqg5nU033dTO1aOp4C6H2FbYVYAxvCtTp0618xL04ZlTC9Yj1BvYo7EJuIL9TndSPeaYYzq0w4T52GOPWcAlacWWo6IgZWxO2BKDu9cB2gR8DIaAnSbDgLoQDP373//WIO0RP9Tr2DPiLNYh/djbEerQsDlN3o/3QJirUWAvc0BhGA4WXQHgBS8BWFfrZvxT1wKqZUEW86iTJk3idkGYX8XGgoCZcMdU5cTHuwFcJs28B/ZaV9hdEx2STuKD4E7fVd3pPJcuhNP77jGuv3LeQeOB9As2fZeEj/lN0odeWdBDexZH2AWUxUVuWLozKO0tizwB+HrxGuirGmjv1fbVN/Tv5TVQDRoQ40j7TKGcl7rWdyrlrtzn5YSvfpbxI6ulWAHVWyWMWY60soXTb37zG7t9EVvwuZP4GA6Y7Gfy/pFHHrFbQbnvB7gTv3TimVCMEjrCbIuG7LnnniaMoYMVckcccYR1s99++/UIsFeLjU2EFMY413m3/I/nvt2cEc99+eG3+6zEGXkD8IE7QA3GA2jOZWINPueaTjerB730jAYA46j01OQI+USNj2EDcU2fP5rIFbZeN8k1gBEIg5EagjQE2rxLL73UtlVXXXVVh4kEjFYTJkwwDQ0N1igWXICikwf3339/UWBbtbSJVifSEOYA29oGMfzY4XnBk5y0+evwPCScRM/LDd/6S+8fxj7yEMKWlBjTVGgXAXdjrISlAAPYtddeaxfDxJ1M0rD80WugUhpgQoF+HP05V55++mm7pTWTtfTzAeqqwICn/XlYOMj3Wg5wo4ZsJqGZVC0mTz31lA0fN4yfwhb90YfUfuROO+1ULDhbR7UI2CDuNsPZNQAiCHtQCasYExZI/r8c9brtWHgQSF3QXZT/gjvxHwT1EuTBBx9sQw76tzedf8HnhXA1nY7btE753u4kDyBvdxKG+g4WERb50d/XHTwAcrPgQSel00pPtYdDXqz9UsZkVhWA+hf6RaPfqnZBP/PR67PMi9NftO0M7F1sQ08fRvMNvpnE03LLMxbQuRNwyqoG6JcFwFETjYSVerkl0D4qP5PFPVdccXno251zzq/lO5xgzm9j5Qt11AdvAuqlbfjJOqeYVQa2Mz0Ve9V3v5hqJs97Vara9slobV9OOeWUYl79M6+BqtRAoS1YTXL9m6XbgtY5gtOU/k9+rFaVr+wTXWkNiBG6/5iMad09ZxY3tpjWtyXC9io1eewLxbvkzca3ZeHbSkICvJYslPuSgHsB+K4mv1XaQL7txu/kcfSQD8BP/JIKLLvKtOv61QWK7j09px/MznX8YAsEtBVk1MNNUgZzgGNxpJywCZc5IxbtscgGlnfY/gA6af8RwA2/cgUwWxwmbIC2LDhjvAoYi7EPZDo6RxEWBuPXsPvBtGLrCZNy4mQxOL9iwnvwCxPiZGx92mmn2UW1jKm4p4LeAf/yA1CHLtBD5G5R0lxYMK8sCmmG8X2mLA55T9obAfbmPjNmRKssEOynoZd5lHWzGVknVLd7xvRfRy6qsC4o8829N6+BThqgzI4YMcLuQgEYEfvxjjvuaBd5KtuqegKUGzW/DngfwC1CPQzgk/k0bHQsEmFRPO0XbYbanXlOfaygXvwAtIW1F3/UGeombFyFP2wMKqRPw8aeoDYF3pEFSyNHjpBwp1kbIX6pn7FxBRd6KKiXd2VOGJuiMs1iO6LO0zZF4w4esSHqfA7MuWHziS4YVjEbAErZiRYh3WPHjrWgUtKATvhGEFABooadOCi4cSX4bu4zzrsaH4viVQALM59EPgBgTXuGjn/+85/bto+Fw3xTMBYIbR54lWKgWdrMUv66+g5KKEW+ZVE5AuENuga8TPsXh+SJPodrv2Zujj4D7wvomjxHfofpHzukF6+BvqiBElMYffGV/Tt5DfRCDejgRo6c2m2LSaZz36a67bk9L/K8lP9Sz8sOv+AxnRMMIgC9YGeC4RUwDR0qOjN0RgBMHHbYYbZjnE6M7aEAgIWNiu0N6CStueaatnNIZ67YKtf2EHrfGSugGDSosHqJVYB0BOnM0nlF53TmAC0Fhe1TVfALSwITsnTM8IuRAiBAlNBRp4NNhxsgMZ3M4OCF76viTkbqve442mJXI/+ZBJdjTdux6LUmLK777ghf01TBIys++ZasAI8S8gj5o5iw2p8BAozQbh7FDx1yQAKsgmQwRv4k37KFL4xfYYIRC+MpfqbLak8GDDC2sOqfFZdRQv5lMpsyQbwMDmAcY0VnEHjAAFjZCVjVivCurEZlIAqogfeBzTpMynkvwqHcwNzG6lwGLQx+YdiiTAZX8obFG3aPNCNsIxMsk2Huo+6VoxN0xYAMfahQH/ENkQMPPLDAtuO2CXzTBx54wBoQGNTBQOCCkhkcAlKg3mPVJoYL8g3fJIw13Q2bbX8AqtDmsKIUfz/84Q9NfX29TRN6pz6EUYN0E+/uu+9uWQqtg5B/SfJWiPfCrddee80CaDAauKB6ygaLJRggY4hh1S4LMfi2GGh4Jwa1fOMoId8z+CUO2EYZ1H/729+2+SvKj96vRL7UsCt1pG2nTdL6iQUnXMNWSVkGiEn9xtZ2ukrdTQuTJQrqxS/GFfyoUYlt8VitHVWmyE/V0Cbad5Y2q0ZOAN9yRj+y2DV+8u7iuS8VXvB5ueHjL01xV8LTVw0TDJ5nnnlmgSmRtg6DLiBf6iYmW37yk5+EebX1PQZfZP/997f93jTKOuUVcB2LOqg/6VOTf2EMCmOaLqdup/7U7c5OOumkThOU+sIXXHCBncSE5ZUFXUil62Pquj//+c+W8UC/BwY/+p1hu09Q39MmsbUbZT0ogGN/+9vf2ttum6XumKSlvaLNYKs4jOj0ScgzLgBS3XfnkUV7aqSnfaA/h/GcNot2kD4+6YR9OoxFiz4Sgl/6ShhSlfWCdpnx22677Rb5StSvGKER2rAgsJf2S3d9oB0v1obZQJpqTKtMRpqYZK+Z1QVEuSq1WXGhD8hEcdTRVoghQUS5j7ofBeolbwbjD4kuMn0aX5ifrt678MILC0Hw7aPyNGmgv0f/jLKgDNFMotBfp++nxn4CBPxXX19v+/1hE0G4oS7TvjeTK+Qf7ZMFWWpwj9C/Ia/RR2KMwLieNKNj8lhQgnUubCLUb9gKADBcfnk4aDMYTpJrADEZ2Qin9a3SvobULmfGfXU3M+bYevPCy88bFhVhP1EbSVj5UwY0xg3YNugPsSgJf+iT+gygRpSkXm6jIqry++RpBfXCGHOwLCSDRXSS9BWpX9H3739/qdlB7DNsxb0sCO0pgNxaQYsMr1vFDKkdEuu1B61TZ958pn1CUz0RVqkxmLr1R6+BatNAP2kLsoKtan0zRsql35ObL78mGYP1j+HeO1kmNUDeqNtEAHZielv8z1YB94rNW/JMl0TCygEsnyPAQGGYbhKQb0YWzrF4Lrt6nsUXps7M8mId8LPQRVUdBPQGHQM+KofBPBhO2HW5YWN/LLWbSlh8ad/D5kK/vDulJ+LkO0XZF/XdeR7mJtcsRX++gHgB8wo7b8sH8ntfwLzys4tiy2Hx1kiDx37C1LuuMPXuIUzhG8kiWt8uBTXkr5dBDTBHgB0YAYTLfAM/xofMP1KH8Yua2wO0iy0TAUCL/UIBpSwKUdAvNk7sdwpqZH6IXbYQ5ii33XZbe67/sA0zd8bYFLsA6QkKc19q21MGW9y6oF5AmS5pE4u/WSABcJN0B20t1Gfs/ATmQgWbBPYXhPdlPq6YwFJLnABDmatjPsfFbQB6VRsT8Wg7y7yNzkP+6Ec/6oAtwQYJsyw6CwJ43bSQfuyh2NAV6Ow+d8/TiA9w7veF1VZt1iyoYb6A7zZv3jxrV+f9mKfC7nzHHXfYJGDDDmNMdtPHNy/lL413wCYCfkTzLbZ0yHQAUTN/xnxkqR1XlEyH9KMPl5mX74V9mW/LnLCWAfdd/bnXQF/QgB9S9YWv6N+h+jVQAA4CmpDXca7zyIk8wJDV9/a5vrFchz4v5b/U83LCVz8pHmGTATgIkI9JgODKVSYPzzjjDMOKrDS3MaQj6q780VcifsAZTHaHbQOk7nrr8fTTTy8kjc4NE/AqsPSy7TidXdh3meQL60jRCb/tttsK+mYggj8GAACa+F5RAxDicpkRAWsGVywDqkQADYdNRNqHFf5ni5WUkSRHkpTEPWDhJO7LCb/CarLgFgagV199dVFg7zXXXGOTAmCXwRkDjqAQBnmPyXYX2MvABNCJC/jGLxOlCM8AFLiDTtzSsXfj0YEmk9S33nprhzhsQPIPYJUywuk9jqQN0CyDb0AJKqQN0AECaBIwpQIEuQdggMl+8jiDiqDfpO9FmAxqGUi778Z9QDms3AcYURL0goeAAFBAAL12RcrRCQM31aPGTf3ED2FlqdZF2iYwQDv55JPNc889p14K25HxjIGtbv2mDjQPULcAsEKPrmjYDMzZQprvpwLIAaAZYWC4CIK1mZxnYjmKoTVp3tJ4w44sNlF9wZKoBlu25NH7gM+CW6CTRhg1yJMYToICq2jwvXhvwOvkrWJSqXxZLM40nmE80DLLNwc4pEKbCGsKBi7afMowZTYo5CeMZy4ggy3/rrvuOuuULaSKLXyohjbRvghtlu2f0g+V1ou/YtfiybZy1l0M96XCCz4vN3z7Mun9Y2tDFcpB1GQS/Zlgn4b+kpZZALVuWBom5VbdKEtAV8s6Rl0WxgTbEeKknqOfG6w/y6nb6btr2mmXeMegYHTT+oU6WKWS9THGZQzgQeE+jBAsCgouGqIeAIRIXyAM2IuhWt8VgLK2WcSBvllUpMZkN17qHN5VFwe5z7rjnDZUQb3U//TvmZxVod9DO0Neoc0NjsPUHX0rwNsKpMSATN2GoM9g3ld/HFncwLiB8kD/jLrY7S9R/2pepU4uKYsEgLsgX+eUdCsTjhnYxARoUEoA1SJRR9upDwlE3aM/jOvkPQzmet89RoF6o9yHRBcarpvuMD9ducfkiS5mYSFQsB8RDJv+Ov0Q6iCEPjvAXiaetAypH8qdCuy+7iQR98kXxMf4U0X7bpRVxh/06Vxh3Ep+dP3wnHRQ/9F249cVt85l0oDvoRKcnNL7XT1mVxAwjGzD3txP8l1T8dAyMjbZ8Ss7miHf3MUcu+Ix9t10so7+Hrp1x0kaGvXSFVdcUWDygs1XxxCMs4oBe1Mvt5qoPnb83fnn2Tci3zz3/AsdvgOLakatkwegPCP1nNuP7GNq6PA62t4Ny65ihvZfsUN938GheyF19RZf38z86bu3mF3Gdx6rUr8yjvHiNdDXNJCRtiAjbYGJ0RbQD4HlHQbGbP/S/Zq+piv/PvE1UFMnYLvNs6ZGuvxLHmk1za9J5lkU339RlwIczH0iIN9PBDD4koS7gjFZFisJQD0rC+myAvDNSt+7dpjcGyT5tGM3rWjQ/qHXgNdAQg0I6N6y8gK6p0wKoLdFAL2tH0oZFZZe87mEJ25Sl8GycHZjqWd2zZoB63lQb+r69QFWrQZYtMziW4jEsLGqMM/EmJ0fAvHCTjvtZMlj1MbGfezDCPdYaKvgSO4BLMXWhD0XYRGyghqxVwIKxTaC7SUoLM5gXh/BXhJmO8DGGRyvsouPgmOxywTtNbvuuqsF9hIuc1lB2wm4BBfUizvSrMBeFnHHERZ2M8+H8B7ufB9AURX3PkBodAJIFuINV9Av6QLYiz6ihLmeMH2GuU8jPuaXFdRLHACsARUrWROEEgpcDktDV+919R3QK4RDbr6FVAJyDObnEDA+rj09mGZIArAdI9jtXVAv95iTwRaGjZLvB5lKMI/hzovXQLVrwA+hqv0L+vT3DQ0oWEztb6Wu9a3jui8VXvB5ueGrv5SPTPIymQyABsAegBuX0QmGr7idvVJJA9SqoF4mmpkQIz6dIAMEREfW7YCXCrM3PKdTrEA5QGYuqJf0wWJ6ww03FJLqrn4q3JQT3LggajrBTOSqANIrJi7AKRgHk8PK7kZn1QUXFAsz7WeFYmUDhnMwL/lj9VynrZdgeAoOZBIdQFOYwGgJ+BcB7JZUANkrqJeJdgB0gBMV/AvgXzv/hK0AGib7Kb+AfmF6A5hC/UHnH9bD4MAMxmAF9bJKFiYrJrh10En9EwQcuO8CgIW6gboId2x/QnwIrIAKnFE/Sd8Lf6w+3XvvvQsAFwbNE4RZ2y1TsOpRjpIITIw6gGe7+LQkrk5gAITVT40PxM/gn3v8YCMOCnkAQBJAOAAWfC8d3LJgQEFpPCffAU5QoBZ5g/wTVVfRBpCn0SvbmDHAVGEAqvUd8cJopte4YfU1q01d6WrecsOKew6ol/wHCAqgCu2mCiuRYahzBQOL+x7oirylQEJ0ouXQ9cd5pfJlMJ60r1mBzXshAFlcUC/3MIrpSnquYTIOEwDdQeOWAtpwr9tIhfnlnlt+e2ubaNMuDaBt/WxDaC+KX4unRO67K3z7Mun922qrrQqBUScALFHDZuFBxIlb5lgUECbadtAWqVHWdZe0rJMfaScUKKllnfZV2ywWzEUBOIk7bt0O8EvByoBmw0QX6fCMtjkoadfHLM5QUC/vC7CN9sEFI8L8p21iMD1JrzF80p4pqJcFdoBXARCrAZL2y12kkjSOrrh3+zWMfYL9bpjqx48fb6MAZMmEQ1DQHQubMNKquN8SQ2oxwZ+2UfSjMOS6ouy/3AsDh7tu7fliAfZG2947OK+Rblp2qNRU7Unv8Ny9ULBx1FEqvFDBPd8cUC/CjgtcB8OJAvVqfg261+tgpHo/6hh039VrN++6Y/Ni4bqGet1+kQkJ+nxu+0lfWfuCjDeDQtkBoAvYnv4a5UoXl1KHwbLiCuWRvKagXsb2uohH/R1xxBFG0+T61XMF9dKPJH7tJ+nztI7kycyK0o52fu3QKMjzrYtkgl6E76D9G8oUk3pB4X3p47jb87IThpZ3d6vHoF+uUy+3YZH0gXv9ZHcN2u/jpO8dnCCFNYcxJ/LJ7PzkVB945aKv4JbJlfutbJbvt3xR9/qQujojdfX2O23fYeGlPsd+5Iat9/3Ra6DaNWDbgqEJ2oIF7W1Btb+7T39lNVAzQJh7N86aQftmTf+dBXgHpiWiL1t2SgAMCian5XVh8X0kZ5bc2WoW3d5iFv6lxSz4q/wmNpvFL7aYxmmtpuVz6cO0lB2T9+g14DWABqQMtQgjL2Vq8QtSxv7ZbBbcLWXuzhaz6I5Ws+SuVlsWWyZLeQNTmDaoF5uegPj7j8vYuqVuQw/q9RnTayCoAZh2mTM8/vjjra2QHSWDi5HBHLDDEON1tS+zIBwmXgRbIoDIoACYVBssi0hVsA9AqIDdTtl2mRMhPOxULMYvJWHzhe78YxhzO7aGo446yoKZsQ8HJWynJxdkG5xfC/rXa3fXOXaGcgUCJAQdQ8qkgi0Ynagtkvsw4PJOELSwuLuYRIGko/x0NT5stfX19Z2C17lQHsTVV6dAYt7o6jtgFwnLt9hFdD5C83hUklz7MqQaYeLmq2KMy2F+/T2vgWrRQIxpjGp5FZ9Or4Eq1gDzMBhR4h71VeO6T+qunPDVT4WONP6wNunEHhNxTEIz6Qd4kMm1YkCEOMliS2XATAgdTjq2MI4hxEf4TPgx4U+8XY3PBtxN/9wJOnfS1I1eWXq4B0AyKA0y+RS2Es3tGCtYJOhXr+nUA35koh6gGIMVViIiurqOcwB0PSVaXPLxtzHrFhITfl14nOcodGyi4e7bbabxnpcffrvPtM+Y/GXAyKQxbJa6DbUbD0BchAnkIPjNdRd2DoBE2boA2brhA04ETAJIh3LIc8QFCQFm14l68hMAOtJMHqWsA5JFmPCGaQ4BHACQSgEqAAoAdpJXATsBiGclaJgE2VqpK5gkR9CDAlLKeS/CAKRJXYfAsOsOqnkHQAYAlwHiuGXJeijyj63YVaLeTZ8nPcbRCeznMC1hVEDHCN/r0EMPLRodeQDQanC7G+4h1Fes0NQVwxgwAE6yqhlBZ7qFuL3h/Lvsssus8UFvbbnlltbwoqtCAQ+77MbUncqIzmpg3CNp5S1NR9wj+Z6V07Adq8BQp4AU8rjmeZ5zX+vu4DcDHM/76LtreHqsVL7U8Ct1xBig70yZCRMMXgB/6HtEGXW0XLv+XSMCK6aLSTW0iZp+21rl5KrA2CsXei23OzwvdY3XtnBseEH3pZ4H3Qevo/yLuzSFeobFAywMIT/RLtEuAtqFDYCyE7XDAwZdzV8wnCqLnaaPRRe6MObwELZo3CUt6yyaos1GYHtwmVRhOoftGxAq7RfGX3chl/XU9i9YT4S1dxg6YaNgcR5tcxh7gLbx6M014LpxpVUfo09AuwhGQwzYavTmHnW3LiQB/MwCCO0L8LwcAfSodSf9Xt5ThcVR6Jjn1Mlpt78aT7HjCy+8YB9joI3SP+mCvR3BKOqCMrlHngoKYyeMrBjVtZ4NunGvafNZsIOQt9RAS79Ad/IAhO5+L9d/h/NGAfYu7XAn8qJmiIB6B0c+7vDAZdblQfDa1oUdfOQvcKegXn0MuBeh7eV5FKhXn+M2GJ9e88wVvR91dN2mcT5r1qxCMO44snAz5ARjPuN6xqbvvfeedcHCBX4sQmVBHkL9EVUHWQfyD1sA7lToGxIO5YpxvNvXAfin4wSAwEyoqeCevE79SHmgjxAEYuKWOpc+YNx31fDLOWYkf5oh4pOJ9xKSWyJ5xMn37nidxVtun5WgGIu7W1Rq8OhOyzuTiMFJRnXHMdVy6wbch87/9a9/d3ob2iImWu+UBS86ruvkqI/eoOyoDK4dYuqynSek9XmHo5QDravZKSpMCPunP/1p2CN/z2ugqjWQqC2QdiDXWNWv6xPfnRrICgBvVEYWEtWYpavXmMbnBGD7tgyiO6/jSydV9FUEZ9TyvrCG0nEeJHX7MAHbCIMvuxRkOF9ZzleSn6QpC6h9QLvlPJ1E+FC8BvqOBnJLpCzNlzL1mRznChOv/FoE99c6W87llwMDWKnyHFSjjKmzY2pM/60zpm6zjC3HQSf+2mvAa6BdA5Dc8MPOhe0GewT2EeYy586dax0yZmRsDqGDS2iGO3AKYaJAYI7Y09SmyTXzf9joiKuxMVmHcdgwaaQD4oIwIQwLE4DLURLmR4HH+FGbVpR/vY99CbAztmzsOcy7YssB6IpdF9l0000LurA35B/PWdQNBoIxuupOnxc7woyri+mLuXOfdSU+xcO44XHust8Gn1XiuivvEJaHNI3kBWzHbj7XZ+7RJWlih9FSEsceXSoM/9xroDdqwDP29sav4tO0TGnAminUViHHWNeqobjuuyt8TVcFjmxTEezEsC0nk2+IbkfRlah16wIm/NmOVkG9GiaMZro9Z1R8TNDQGYn6KahMw+yuo7tCacyYMaHR0ullohUJAzFFgVPcic84nW4FlxGPTh5yrsx0TNwrQzL3u1vyZbCt0AjTVqxrTWRc9+LOSlz35Yav/ipwZHAIEy7CdrdBJje2egGQg1BWg+XJPijyzwULsHrPFeKmDDLwAjypoqx4lOEVVpB93xzZSbaxYYCAH3crbd22l8l6wAQ66MUroFGAw7pyULcbdoK1p4CuGGi70iCAL60vdDsdnpfzXuhWywrAVRfUS5gAyBT4jDsG73FF34lBMDpIS5LoJGmc6BaARhDUSziaL1iAoaBeDR9QlX5LN9/oc46ANVhR7Ip+R+4BCA8CJFzmTXebnzTylpuOuOfkERfUiz9Y5RQUpeWE+5QJXdEMuCiYj6n3FYSEe1cqmS/deCpx7oIptN0Li0dB2hgDMH4FJcwQ1dfaxPw70xZKu2XbrJCjfercF08d3AefB8NJ+rzc8IMfMIVrALEnnnhiISQMiQDiKXOUQxaE0I6EGZQAxiOAxxVwqwG5AJgwADnukpT1BQsW2HjwB7OlC+rlHnWjy45KmsIkSd0O8EslyAJBGdS6x61j1T3HNOtjjYtwYRDW+pBrBMDqddddZ88p6249aW+W8c/tewfjw4gP4I4+CSDD7hbqb63T3AV6wXS47BdTp04NPjZRxlkds8GSWkr4zloPs8uByrPPPltIozt20Oehxxaph+J2gQZIPSW/OKJG+6ijVGGhgvvzzjuvE+O2MvdGgXpLMfVqOoKR6v2oY9B9V69h7Vcplo/UjR61bQ3We/o8zhE2bBfUix8WyzDmQGDxdPOfjt3pC7qgXtzS/9WFBtTVUazd1PfdAeolTeTNuPmTPJ9z8r2bxrC6LKq/n6T/kmq55YX7qDCZ+DMBnH5lm61N3YD+ZrVVR5qttvyytN/5xQx99LVDX0t3ZuJh/+wA0y+TX0Af6ti5uWDJF6amf/sN3bmn/U6+vLM1pxevgb6mAdsWOPm/6PsF2oKibv1Dr4E2DdQKmHbQ9sLe+62sGbCHAH3Xlgdx81xXtCiAw9wMASW+KAyj/xA20b8Iy6gw+i4SRt+FdzWbL+6R40PC6ivMo41vC0DpEwEqLmX1blci9X69BqpQA2R7AfFSBhrfknLyvJQNYby2ZUTKCmVm8R0tlhW76Z8C0J8kZUXKVreAeqWuyIwytu4YLHXIoK9mPai3CrOYT3LlNYD9jfmXsB2Asd2w0J55SxYqKhERqdL5+fnzBcXvCCDUsJ/jpABUJV5264K0CLCwC+pdccUVLYbB9Rd2HrbgV9MEYZfan8L8Rt1LE5Tq7qanthw9Ej8kFq4AjmaXI+ZEASgrqJf3hAU3uJuZ65fzsPnIoBv3uqvxlUqPG1elzrv6DmF5SNMaFzPglp+w/K/3NNw4OBV1649eA9WkgdpqSqxPq9dAX9SAtUmdVLfnAABAAElEQVTIyiwgEFgoctKZkyVJxa9RRN5jPPelwgs+Lyt8PFVGYLSC2SxMYJyBhZFJOLYYdrcgCHNf7J4yVwGai2KuYqt1BWjMmDHDhK08CwNvaLysbOoJUUYkgBvu6rdgWpjoo6MWBgxUZt2gn6TXgElIB3qCiQtGVMCOsK8ibINRrLOXNL6k7m3pkzKR5EgcSdzXdEP4Sd+7HPewP7N1Cd8SQJALvGDAqGUhOPEeJ66GhoZCPgE0xUCUvKLAdAC4QbYp2La0fDLhD2CC1a8KMNGjG7+We0AGrPIM5n3KCyx+TEbqFi6uf86DA0R9rml1gQvlvJcLFoVNPJhG4nMHsUxsxgVYwF6MBEFe9mYX/iXRSdJoYFOMkrBvzMBu4cKFNj9qnuQ6TMImizF0qISxKrrAc7buUUkjb2lYSY4KmHH9YGQBOEVeVDAXz928RfsWJuhE62z3ues37XzpxlOJc3fLqDBwrsbpfvswg0Cx9lTDKHXs7W2iTT9tVr6bGu8onmwrKg1jIn9x3ZcbfqmPUcZzyhbAPQyw9EdhaHdBpBgK+eEGsL+7SAomeWWMhqnUZe1VplLA9q4fN4lJyrpr1IyqQ2mzqCfoB9LewcQblCR1O+FRZ8JcC5jWBSgrcyZ1S3BBgcaZZn0M84UKBvMwcfXy0ksvFcCmYW7j3FMGYNyya8FZZ51lWXt1jNGTxll3kVFwEYz7bm7fP6wODPbDXL9Jzun702cD8A3DLcyhbD+oEtU+6fPCUbYUzckvlmRzpiYTy2WBLUR1EDzmx+Wdw1J3lP8giDds0QyA3jhMvRpuMEa9H3UMuk/zWidD4oTpAm7juA9zw6K2MNG+N8+YpKG80W/WxQqU/7B+tAuGffnll0NZtMO2kAxLQyr3yJsx86fdStfJ9265Dfsuva7cpqKw3hfIxRdfZE6VHUOCMnz4KmbX3XY1tzkLGYJu+to17NquZGuyJiO/OLLcissZ16kLEHb96xjPvZfknEX+LPwstdtGVJgs5qJeCjLbR7n3970GYmmAYhKvqAhCUtw6bUGs8CMcTXwpZ255vNVMnYWVszxhauOb22TMwTtkzAhhX/XSezUAgHzAmIzpt6ow946W3ysCpH1DWD/Z6CUZqV/5LwnjtGwE0SJ5jqwMq+8CyUNzpC9kf1IO5sgs9txsjflUjp/Jb778FtbWmGZ5VitrRQ7cNmMOH5cxg2Iu3Cs/sd6n10BlNMBCvdaFUvY+l3Igm3+1zpdzfp9J+Zgnx0/lnjD05uRogbvlV9FdewEAvWtIudtAWHo3yeTZv9ltxIvXgNdAqAaw96pNFrsQjK9Rgs2VcQkgRth7se245EXYynQ3sqgwmFdX4CzkZToHtuaaa9qdw8BZKCAX2y+EakkFmwJpbGpqSuo1dffsnMg8MXYe7PHYoXUOF5tzcN4OQgG1k8Dmiy0IjIfOKbLoW79XVxPLPGF3xtfV9Ib5T+Md3LnIYBwKEnfn4IJuuCbPgv9BmIMpBbB2F65bT/6f10Af0UBcU3EfeV3/Gl4DvVQDWLwY/3BESl1bN23u4rgvFV7weTnh46dC4k6MB6Nwt7wObnUadFvsmk6yMjgWM8a78THpFxSAsQAao35RW2UEw0n7WgHPTHjApBolgJUR9z2j3JZ7H/CkMhcD7CBNyqJEmC7wo9w4uuJPTRH5YxtjrwRYbddd0UFcv0yWK5j3iiuu6ODtqquustewamv+6+CgxAVgqRtvvLHgCkAMZZPBGIyBsP8FJ+bJVwoEAki0//77GwYFTOJfcMEFnRgRKfdPPfWUjYM8SIc/7KcTiFpHFBLVdhJkR9XnDB6DUs57ATBSYcIwLI0ui2xY3aT+3SMTly+++KK9FWQBdt2Vc55EJ0nDj2II1HAANk+YMMEyGwPaBDzFsb6+Xp1EHmF7KyZhQE6+aVDSylvBcONcY6gJk7D86IJz11133TBvduV1WDtcqXwZmoiUb7psde72UcFoXACw6yforivXvb1NtO8mWTzPwMuVveh07PC83VPBXYfntsh0DCfR83LDt/4q84/28Nhjj7UgVlgs2VL+hBNOsKB4YoQ1kbbI7YNhlFLG7zvuuKOQMBayPPjgg/b60EMPLdwPniQp6267EFXWCX/zzTe30SgILhhn0rpdWYnp77lgGYC+CH0IykCYpFUfE7YCe1ksGGX8A+Cq9aS6D0tX3HuApH/2s59Z5xgxYRLlm7HwBmO+W4fGDTMtd2595rKuBsN3AcBR3z7op5xrGK5VyCsAP5VBlWcuUFHdhR7FuhUXrAv4JS4IWNt5W3VJxIVrbf/1QSBRrrsw5l7XOaDeg6U8IK6/Dtf2afvztsvCQZMR5b/gMKUTBakTnLLJxAmabSCRIJN1HL/qpqGhQU87HHUyxr3pMnnC1hvWj3bzmE4CuWFwXmwhUNBtl68BZ8UFaEm+d0HA7qRJlJ66nD4JILVym0ZielkYL0geV1Av7crZv/61eerpZ8zcTz8zM4Up6cYbb7JbhvayZFcsOS67DpG05FpMa9wK2Kmrzz777Mg06k4pkQ6KPLj11lsLtgXqpaQ/bB0spKfd0t1wikTnH3kNxNdAkrYAALB2BOLH0MkloN4zhP2xK6BeAhVTm7nzmVZzhjCxtvYU+KzT2/kbxTSQWa7G1G2RNYP3rTUDhX2z//gakxGgrwkfqhULqsvPyM4rSL5ZR1C+Wwtm6OsyjXHIAmOOFJDjkQJsPGJuzhw2J2e+O7vV7D07Z7b5OGde+VuLufqKFtM0U1hLAT92Fyi5y2/rA1jWNEDeJI82zWg1S18XFt7nhIX34Raz4L5ms+CvzWbhnXn26sV3CJv17a2m8b5W0/RvAfu+Ivl6pmgLnoqeqFcHyZBjjIB5dxem7wOlrtin1tRtJou1PKh3WcvC/n0TaoAdu1QgUiglzCkhAHSx7bi2CkC6XIf9IHN5TXawVPsHgEwlG8J2ww6V2ESZK1WbkQIlS6Up+FwJAkiPa+dWd5CbnXHGGeb000/vsDucPk/ziJ7Ulj1z5kyDjRN2YiRITgGZgIJ6t9tuO0sihe3WtSOVq5Owd+ru+MLS0NV7abyDa1t20wODtM7LlbK3uXZs/IWVAQDelAF+QRuEG68/9xqoZg3I2kYvXgNeAz2uAfpqGODiHjXBcd0ndVdO+OqnAkd3VVowePcZQIhyhY6usny4neVgeDrhz322zw0KncBSq+aCfrrjetSoUYVoAHLRiQ8KHV86akgUQ3LQT7nXbM98zTXXWO8PPfSQZXLjghVyG2ywQbnBpuJPi0s+MMs56NjHw6/bIw5/3m5fL+95+eG3+6zU2ZFHHmmYDAMgyqpIBlLkMZ3U4nm5AkMbk/833XST+eMf/2jLKJPVnPNjshqAb319vY2C1aIAQphUY0ttBa0CUOIHu/CvfvUruw05HtxybwMo8c8FJblOdTDs3it2nvS93An6YuHqM13pqNdRR2WU5XkU81mU31L3k+qkVHhxnwMW0y2sg34YACbVZTCMuNdp5a248bnukuie1d8qAF2iJKxdTKrLuPkyKg1p3l977bULwQGuA3AZFAxptE8IbVMSvQbDKnXdm9tEm3ZpGHM1/JOriGOH5wVP7e47PA8JJ9HzcsO3/ir/j77puHHj7A8AJ+An2iD6WLSTbn0L8z1tFs8xuAIm+cc//lFIpMsiW7jZdpIkT6qhDK+uwTIYppZ1t25w3SSJE3/srAGgFaG9ZvEWW5Nr+6wLvayDCv77+OOPbeilwMIY3BkPuPoqN1no6re//a2B5ZN+DP0TBJD3xRdfbH9f//rXbR+qWP1bbvzF/NFf0jZRv0WYe91Ng2dhu5SE+SnnHoBnFmaxkIryQPnRNkYXkMUKV1h4TVwLlwAE4k7468QKVRdSuG6bcImaWA26C2PuJbwCUy8XIkF/hev848LztsvCISp96r/gMKUTd4KKvj/frZSwDSVlAKkkWNxNRzHwuutOz6P6+/q8O445mOvaN4EoHqWw1NU4+R6GHxXGSpWS1MptpRLYg+FOfGhiIfb77rvfbCuThq4sWLCgUA7c+331PMjk1Niy1DS1xkNcaVkA1FsM2BuMI64uKS9MsI8dO9ZO7Mb1F3QHsBcmdhZ2MTlcamIy6N9few2EaUDzf9izTvekHXDbgk7PY96AqTdNeWlaq/n7pBqz95fbraJphu/DSl8D2aE1ZuCXBdg7OmOapgug8O2caX5H2EKniT17vsSXbhaJ/QKsYxrCT+JfizQIuynSLB1x2H0/k9+8F1vMu3Iy8ksCiBKgco1wLQA6zAyW8tF2tNeD5Jn0nxxjvw3L//MaSEUDMijLCSDdsu/CwCtA3NyC/LFVjrkv5Jmw8uZg5ZVfru3csvBCWd2bRApejbCuZxpqTO2oGtNP6oX+9VKmlvd1em/6TD4tvVsDLuERBEPMMUTZAAGV6vyJgmcBrjK2wE47depUC1hU262+ObgImGERdjFihzd352BYgoP2XOauymWmbRA7g9p1IFdSoiVNzxNPPFEgZKo0zoA4eV+d53R3x2KM5wrjcBUXV6L3sENG2cPVTZJjd8eXJG1x3abxDtjk3n33XePOxxE/30yB1rBRFxOX3IQxPDv7BgWSFCU2GRNBYBT046+9BqpNA4yJvHgNeA30tAZ0LCRHe+pc26Q513oavK/XsfxrICFHvaXhBY9Fw7eO0//3+uuvRwb61ltvFZ7F3Xq+4ME5gdGRTjUyZcoU50nH03feeadwoxizb8FRLzlxO0bKpBpM2i233FK4FbUtcsFBF0+23XZbCyggmEsuucQocAAm1p6WfB5vKwkCyoh1rYmO617cWYnrvtzw1V8FjwCUtOxcf/31NqYbbrjBHkePHh0KmEuSnM0228zmEUA5DBTPPffcAsMXIKkgkJ6B8WGHHWZBUoDV2Rrd7ejD/KtbnFPumXhDfvSjHxlW+xX7pTmwS/Jeql/SyTsVSyPP3O3c8RMlAMkQBuOukSHKfW+/D1hEQb2A42DApM4GpIVeWK0btqihEu/Vk3kryfu47RgT0lESxohfqXwZlYY072MM0IU6l156acHY5MaBkUAXu+y7777uo9TPe3ObaF/WtlXSbtk//tE2FrkWT0Wfl/Jf6nm54af+5UoHCMP4ZZddVnCoTJV6Y+eddy70h9ieDdE26ogjjog09qr/uEfaHBWAtVGifW6MomkITBDK6qgsvQpwpe0JsiekEWdYGFr3F2PJxaithmlXXxoeLLJhEsZO4boDvMs3xdD+8MMPWxZfrX/YLQDwd0+IAswxfLrjG00L6VUmaeqoSoOUALkjfANYPRD0tNtuu9nzWP/65wzbCceRnNjz+cURnQCJOlIdhkmY+yBzr2XqFbZeJMx9sfvWk/OvlH/HaSqnbvl99tlnY4XJ4gaVXXfdVU8renQXjVIPlepHs11lTwuT/paNK0ZCyPM1/fMOmRTRcRh3KLuVlFTKbSUT2ENhz53TvnBujZCdNP7W1t73UPK6Pdp+/UBPtcuiZmF2apHVFTFk6dxGc+mvLi0K6iWYYBwxgrZO2JEH+4FrL4jr13XHQgVtr1wbpevGn3sNJNVA4rYgZh+oWDq6wtR71Ph+hl9Qpn8SvOOvq0ED2RWEwXfTrBmylzBzCjtn3Tczpt+4Nhbf6DXh3f5qrG0aKt2mBgH7bi5g35XfFCbUh3Jm6d15ttPFtwv7qbBQL/qLsKLeJayodwkr6t3ye0CYUR9tMYufbTFLXmkxje8IiPmDNrZfmijAw10Uxpdeep8GuvxdJG+0Sh5p+VTymuQZ8g55aNEzksckT5G3viCPOey75MHFt0leu01YeiVvNj0sgPnnBOz7hgB8PxAdCdjXhJsbekaBAobPjDYmu3POln3qAOqCuk0yHtQb44t0OY/FiMM7qR4NMD/KDqQIc4sXXnihxR8wj4WwEBv7G/Pj7o6oLgnJPvvsY93yDzIj3KswZ8o9FcgFEICrgIIR7GzKYovNgF17mQ+BcVcFO0lcge22f/+8EQJSFOaNdEE54GMlfCL+YrvGxY2vlDvmARWoq0QN9fX1hbkf9e8uTgdkrYu6eXdAzq79Hj3pO6n/pMfujo/0MSepAsg1uOOtPgseo/yl9Q4333yzYZxMerCvs1Oe7lYIAYmLXwmmjWt2mF511VXtI94L8Lh+H74V9nYF9eLOZfgNC8/f8xqoVg14YG+1fjmf7r6lAYftR2wR9Oby79d2cK/1lnWgF457e8u5zrtrcyiHWM/zsbc5lgsnvKL+1V/KR5ikojog2lgTZVc7iVtvvbVNua7uCnsNdxVbV4DEYWFX8h4ABVjTEJhOzznnHNuB4pqOD5OcZ555Jpd2AnBcDMYl67jMf2yDDGAFAaypcsABB+hpjx01jyc6SmoTuZcylch9GeF3pwKPO+44Gx0szAwSL7/8cnsNWFZBBl1ND1tpwAb805/+1A5GdSIZ4B0r/sKEbWb23ntvy57jgnlgDVRRUEJcQIL6S+sY57023XTTQnRhAMvCw4QnCqjfZZddEvrsnc4ZkKucf/75ts6DYXDAgPwMFwaTYsyE6jetY0/nrTjv4YJzo/IWxiIFuLphVipfunFU6hzj069lW2QEllRYRJW1n3u09dpmcn3sscdyqJj05jbRvrRts6TVsn/8ow0rci2eij4v5b/U83LDT/kL0u8E7Kj9majg+b5RQhtw6KGH2seAKClvgD2R73znO/aYxj+3vMKsGSb0tTGsIQqEDXOX9N73vvc96wVAL0ZTBYt+//vfT62PUCpNytIA+4IywQb9uFvi6TZuuFGG46jt2IoBpd04CAcWC1h88QOwGbnnnntcZ912/stf/rIQF+BjF9zLriTUgVovum4LnlI+ob+moguPWKilkwX6rOhxoAB7YwINYEpqmSc1VYwJVDUWRx2pDsMkyj3gXgC9HGEkjnJX6n4wzqTug/6TXmMoV2aWu+66y9x9991Fg2ArPHcnD3awiJIoIH2U+2L3SScTPYjWccXc9/SznIBSWudJOxoXeM7EuzDPMYHMQgHt3//iF78wpVjKu/quqZTbriaiF/pfd711C6n63e/ONzppS916+eWXmR/84PuF54ucydTCzT52EgTxz22aaz5vgvaxtMBi98V7C/ILxoo4D7JWFXHa4RH9EhYhpSFazyjLVhphahjkIexmLBS69tprDQsQ3Ql9deePfUcD9E/KaQt6SgNj18mYI8fX2l8Q3BvRTYqdVMYolAGXeS625y44BCDAPAE/7WN1ITgLetHwdGvsroTXXX5r6mpM/7UzZvAutWbIt2rNoAMzpm6/jKndXkC+DbK6bWB3pSRhPGQ8AV/m5khZmi79/lcFSPl0COjXAn9bzcI24O/ndzSaz25fbD69a7H57P7FZt7D8vvPIjP/hUWm8W0BZM5sNc2zBZD5hYwjwECFZHDmWVgcziJFyCl6Un784x/bPFyM9b4n09edcZf8LvIt+aZ8W74x37rxrTxod/HzAtx9XEC7/xTQ7n150K4Cd//7q8nmf7+YbD64fLYBSL7kdvEHeFcA5s3P5GzeIw/mWPe1VH4heaY79RAZl4yjM2sLM+8OMq7YeYE55eETzQ4TtjJPt/7b9G/IyAJaKe9eimqgZB4r6ts/7KsaYG4Uuw/2XwRyAJ2fP+OMM+zOohdccIF55JFHCipgbt4FOsJ6q3M4jAFwz/w+dfvvf/97y+KL56222qqwEy/xurZdyL5wT5xXX321ZQZWVmD8Mq9L3yeO8C7uPD52XnZJJWwWGlMWEOZbdF4uTrhdcRMkqNB5OTdMiI2UtIAxGza53/zmNxYXwe5hpFufc87c0ZtvvukGkei8u+MjcfX19YU0Ylvlm8R5hyh/ab0D/XnAvaSHvAIZlwqEIHEwBLhTsDrz+4TDHDA263//+982OJ4r8ZOG749eA31JAx7Y25e+pn+X6tWAdLKs6Pio1LW+aVz3pcILPi83fPWX8pEJeAXguEGz+ovJcYSObVc7iTrpz8R+GKstK9l0YpsJf3cVk5uu3npOJ1UZwgDxDhw40ABOpgOvnR2es2qwO4SOvSusPASI2dNSKFY2IZZzsO2MQ/Vc20R30z/3W7orSL/97W+XnQK2sQQM9IMf/MAEwTQMHhVIQAQY2fmdeOKJ1k9Y+YWZN2ylnpZ7AJ/KJugmmkEHhlAALgwUuipJ34v4YADSssskvbsFiqaHVYqkkV8x5lV1z8SIrp7dfvvt9XZVHwGMqKi+9Jqjgsnce5U87+68Vc671NfXF7wBmg9OEFOuFLhfcNh2Uol8GYyjktcwxCt4DyAlhhuAmoDt+HYKaMPYpUadSqbHrUeJp7e0ifadpWG0rZ9tIO1F8WvxlMh9d4VvXya9f/vvv7/NJ+x4UMxIduONNxYiDVuEpm0lBjdtvwCHpMm06LJUn3zyyZ3KOgnEuKb5XstGIeFdOGHxiNbJsE/oAgt97y4EHdurC2w+/vjjO03Ow87wk5/8pBCea0BXXQCWC9aReKCOCJOLL77Y9klOOumkTgsU0UdPt7284wknnGCTzuINWE2p/8ijMDIouJaFVN2xAMhld1Z9MvmRSAYJsFe23ZUKqLQ0yaQtk/LzS8+sqoE56hgVX5R77vNumi+LueNFop4HXzLKnd4Puk/jmvpEhTKtrN96T48AdenTKyv2nnvu2WGiCnfuIgh3Ma2G0ZWjMlRTB4XtzjNr1iw76UQ/WllDuhJfV/ySJ8mbRvJoKWmVftqNN95gtt5hK1vPwrqDYBthgWWlJZVyW+lE9kD4++yTB/MQ9bUyQbrSikPNxhttaFZbdaQ56Wc/s99KJ2aZ0Nryy2ND25ceSHpFotQ+gAY+u+VjM79xXqe2WJ+7x/7ZAWb1wWuZEdlV3dudzo8++uhO9/rCDYDHTMDTj6PfQNvB2Ix2GdsZbba781ZfeGf/DnkNJGkL8EH/JzM4TgeoMhp2wbwAfAH6piUsHAK8DxMbrHTdJZAWsNMAvzSAvYwjNLyqZHOUT5pdMc/iO3hPAfkeWGsGCsh3ACBfAQJmRkn+W06+Ts9lw2RZg36WrDHJfShjgrcFfPmSgDCfkuNjNab1waxp/Isx825cZGZe+rGZcs408+Kpr5p//vBf5sEjHjOPHv+kmXLxe+bzuxrNF/cKyPMfwv77mAA/nxJW1kkt5q0Hppl5Ty4wmw36svnbFf8wzXOkbycLVXICNO5uVlYW9ZLv4tiJkymwClzLAgl0ju75BlOeeNt89O/ZZtvldzT/veFVs/jF/Dfj2y14UAC78i0t064wOy8UZueFd8pRfpbxWQC7iwWwC2h36R0C3L2vjXVXwOKjmseY0XXrmhWbVrJ5Kk4fvldoj7K6vIB5RwuYd8caW5Yp05TtBxfebW566Vrz5tw3zA03Xt8rklsNiZg8eXJhLPm73/2uGpLs09hNGlh++eXNqaeeaoG3bpTMO7rC/AM2iTAbHPYW7CgqzO3pDmLMleInuHiaRfzuDka4B7AK+JEd5LAJ6i6epEXZbl0bknuucXNkF8ijjjqqgJEgXH0fdkQ56KCDOth8FJDphpHmuc7DESb6cN9b4yEN2KVcQLOyFoP1ACPxwx/+sEAwgL7UTq7p16OGqccwPaURn2sn07iKHSFH2GGHHTo40e/S4WbgIspfV95Bo9hjjz1CSfmIk51nx4wZo07tUXWsR32IrZr5S53jJ8+5i2oheGKsXO6iX43HH70GerMG8ktEenMKfdq8BpYFDTCfyGAq7lF1Etd9UnflhK9+KnQElEonhhXPdDYff/xxu5JKO1ZnnXVWaMxMVCtrTagDucmkKmw2rPi58sorLVMfnVo6bl/72tdsRw9GDMDFpeKLiqM33GdlH5OkMMOhP0QnVzlnBR8r0+gAuaLbGurRfVbsnA40EuUPUDETWjpxS6e6N4gWl3xaxPAmJxTPvIRf61MKcRz3pcILPi8//HaflTxjso7JY5h69XvCyNUV9htATeRHBMAUZZMBIx16tsxkVSpCHiJvIwCAYb7DH/UFA2EGanTwqUOUpY/7Kmy7ySQ/gH4Gb0wUwCoEaJF4qVuUPTEIvNMwkhzLeS8GhgDu0SkGWVbEMoiB7QPWEgAIACuonxoaGgqsZMXSNWnSpMJjBTsUblTpiQuSAqCGEQEdMSEDk5wuzOiu1+vuvFXOe1FOAJ8Bioc1hjRzDqCQ/M8KcnQXJpXIl2HxVOoexoN/y2peDGvUL4jLTEy9xiSiu4gAN0kNKvhBXANP0DDB897aJpI2xLZutoGTf/zV5I+GY/B5qetS/ks9Lzd8EpqiAK7QxVC0RSz+2GuvvWz70dTUZMsQxnwtQ9T/QdY6koNf7Q9NmDDBphDgeVg+sQ/L/EdZh12YfK5lnfqfSb77ZVtwnXjAuBtmRC4zWtsPpP1CV9TNCFvD0V51lwB8+b4wBN900022n4ChD8Aq5Y72EGYKBbKygMY1ArogX/qqF110ke0rz5w509aff/7zn0NfA6Ow9mMYU9Bur7322gYQMfcViJMYvBoaW3k3+eYsfFJAVJA9jDwTXNzh1oFRffyw1Lh1YJQ/dKHlBUA1O44kkn45kxkqPth5bnFpn60fGNM8K2eyK7X3vMN8KZgj6mg7/yEeo9yndT8YZalwg+7TuGbrecoS/QVk9913t6wZjNkxttNPpe9K/egCZt0tDjUdANdUGFMAWqNuVKO9PivnSD+ZvEVfmUkFmFnoN1JOYcH8mYAtdVxMGe9JafpIQCUCMokjC5sXmPfmTjOvTHu54JyFkbD20A8Ok6SLoekPoTe37LvhdrncuoH1kXO2frzvvvulbBxs+9e8luavHXbY0VwjjKsfSr973Lid7RszfqadQAr6rs3aa/7ZxVJtV2n3DQqRVPCENpj+tNqgmgXxMnvJJ2Zh80IzpN+QojFTOzcst44ZM2R9M2t+zIJRNMTqeUibzOS82lc05ZpHuKZPR9+OnWtos6PKvfr1x+rRQNOH0hZ8FDO9Ut3T/6npF9N9ys4A9bpA3mseajaTpuaZ2lKOqgAYSTtcH14yDZDXakcIGHBE1uRkg7GWzwQ4+YEAeujDyK9V8m7rx2JB+FTCjb+zd7JEVNh1bSZrlsssZ5brB1o5IGRv2QSnSX65mlZhMpVrGX/AblxTlzPD+69pfrXNb8zc+XPMiIYRFiRq3QjjKbqr6S/u5Zc/l3tMn3Cfnz3P3+PayHVNrVzTLbDncp2V1lGu7b30MPQSQS8Q0a3dUQVQbovkITBv8uPItT0XULa935R/ngOkzT37k3uS5+w9juS/RrknTLmrLmkwZ253rmle2GzWXH0ts/iOFgH+1shPwpXnNq8WrbrEXbUL+U7wx5mRAsaXNVPZVaUcryrg/NVrTHZoW16Udxw3fudCn5T5Ui/xNMBW8dgxGP/29Dwni8OGDRtmE44dLM0dweJpw7sKagDbAyQe2IWZf5w9e7ZhRxf672ATsHuUIr3abrvt7Bw+4wTGk1mZf2f+dfTo0aHjdebnGa8zJ4oNE4AnJC/EpTY67IEsdMZWqbaXnXbayfArJeAImG/jPZh/Y6zKXCy/4LgVOwy/KMFOofO9UW6K3Qc8Hcc/+gL7gS2c9+a7NIh9mgVkKqeccorVGQvUseUjAH6LCd8gLP5y44NoqphQ34TFhx/sctjdWVTG+8UlrInyV+47uLsFkB7mStgtDlA6c+9aRwXfs5iuSQu6mTt3rs3TzPvz7cmLUeEFw/fXXgPVrAGGCl68BrwGelADGKpz/EPkGOd66OBBZs7nX5hhyy8Xy32S8OdKuISfJD2F8PO+Uv/PajSAdXQE3M6ARgTwjtVnUUKHpJgA6qOzQOftgQcesIAmOsdsZckvKNddd53tHAXvV8M1oGi2KaDjCqMSHfpRo0ZZwCQTUGHiTsKGPaeTT8c/KLfddlvwVqdrAA5MVDBoGD9+fKfn/7+984CTq6rb/29mtqV3kkB6CJBOSKgiSldBmhRB8AWUIq+vguDrK76I/kGwvWBHURQpAiJFeHmVFoq0UFNoIY00kpCE9Gy2zMz/ec7smdydzOzOzM7szuw+57N3bz/33O/ce8659z7nOR2xwN2OEFLCkgE3JF5qNI1bmu/bp4etW88H5j5Zbc94W4ovuH79uk3G+F3IMj1u/3aGxw9K/AjvQ2tdk/vtMo35IZ8Pnnfeeadz92NXMqmBH7Uo2PWBH+3ZbQ0/PlNozCH44YvbMa8ICpYo3mH+wu5Z+JDLD/vpAl/IFMJdMJ/zYnooSOL9yjyQjRXSNVjgudKV1ovq052HX+bdevlwOmrUKL+4rMdstUkxA8VSfImWKqCjeIkvMPyH9WKfbHtfW/meD0Vbc+bMcYI3fnD3H919fHwxQfE83aZTQ6Gvy9T4iz1P5/qf/exnTtzLMvG9994zloUU+/GlTjoRS6a6gU8rX0SlKxP5osyL5/y2qeNSLBMTaURZiAnW99KOsS64vHvPbrZ1I8QafXsmlqes3yWeHNZv3bjVGD9TlIwny/2xWUEDG5uwTujLO5ZBHNIF5j8PPvhgxvyZcXj3VO5/5plnpoumTcuYP7IBDLuqSnevM3KWUXSvz1X41VrCeD5eBM1tmXe0Z+ALa9b3+dKWeRl/Nw6pgelKbQTCF88sT1i/YJ04tV7MRoDp8kee829/+1vXcIjCYQ6pdRLmr63lC6lpLPT8+eef75xK6S7DfJAvfelsQSEW88jUwIYf6fK44HYzZ84MzrppXlut7edfmHMHOn/kHJARhQcid8DHyvjK1veOroAIAV2sVu2NrkXxcTxT4PVD0WymcWXKvlWRuO1oDFk3fIxvab9M8bW2vC4aNh6jPsqcNxEqwpnT5+Pz2xZ6zHuLThmss7Mu7evg6Y7DZ76HH37YuU+mrmddg/cE62l09vYffXjf8kNXWwJF4v/4xz9cnHzO973VpMbJfIHlf0eFOEQLjUtjFoOgK5tQPbTKjj/0OJvYZ09337Ks4YeO1MBng9buPzZq4JAa+MGkpdDm+7alyMt43SH46DrvzbfsdTQeWbx4sY0cNdL222+6Kwd4Wnz+WooeoVasWOnKXP8Rd+26XXlfhDokh3IOvJ+Dzxgrti2zNTtWQ9i7Z6unNabnWJvQb7L9a9PMREOzlD06upvzlOQUZJaNIvh+zD+38kMoe91igyzez3T7ZI89/JjLhknsHYIf1O+9996CHF+RdCyBXMuC0ACIswagTrCzWtBuJ0BRLx16g+F3j1Flp9BVCFCIWjEI4sBBqBBD5Bvbivo1RL1O5Itx9EMIfT9EnRjjOBxyy8bNNMsf0LVzZtscDDjDZHu/Kd3RQJGf17C8Yaav1zWN+eyA54SEuBc3bhWWYz5UiWk0VEyMOY9teHthSIp/IfJ184yjaQhR3MtpjJPTFP9i/ojKT9vwoWNtat0Mq30Zalluy4DVHPCYk5zmYr/cTaauY/KbBncmgXluz3X8hOK3ccsolKVIt2lsGCemsaFfnrqNE/ViP4p5Id71wl6OvbA3IeTFuiZBr7uu6vHMxu2dmBfbMt6UMKPHgWb8xIL9Yku5Ett35sDrCg0/wrtByDsoMY5A1FvBAeL8cE9eBLsC4HMZRXoUYVEwpZAdAdbRaEbD56egI2h2exdvK+9IWrwjKOZcCPTo0cM1+uc3gHwC39dy31z253sYL9pNPSa/fQSf6VPXZzPP9zVtfWeTzXEKtQ3fkY0aNcoN6eIk42DD83Tb5LKsvY/HtPE645BryLRfIc6BJg98Z9XWwLRQxCshb1tJav9yJND8ybscz0BpFoEyJ+AeH91TL5+i8AIAhVLiKTjz/DHTp9pfn3nBLjn+mKy2by2+4Pp7EC/jTzzXZpeexP7F+yFoxX/llVc6sUTwwzk/jmcSUbBwzydQ0PP444+7j/rsFjEY+KGRH7vSiS3yPV4w/vaaZmu50aNHd+hHS57rqlWr4GTzd3fa7BY5GzFiezDiPUkxby7jYw6fbn998Fm75EvH57RfNsdhvIw/l/Q4MXIRYLV0nVME4p146JLakstaqmAo02/PD1R0DqSrlv+oxdPivc8uReioxWvZB3a5wm7G6Ir32GOPOYEvRb4MfGigY+All1zihBl+H46HDRtmTz75pLu//TXp1/O+/853vuO6jwm2NE0n+PP7+DEdQdOFXM/Lx8H8hw0Q6Hrm3Yf9OgqP6Tw6atQov6jFMV3IGYIi5xZ3CKzMdB20hUkwzkxOfpmWB5LmhFNkQDFVkBFF4hSB06WSIfWaay3uVDFW8JgtTedzbbUUXybGwWsz0/7+vks9d25PZzcKkSlyDQa68F177bXu2uLydNd0PtdlpvMIHrs9pymm4HDEEUe052GbHatUy0SXSJaJrFahIMpmPOmA8TZr5mt25MmHZbV9tvFyO8bL+F0pnWV6kvE3I16YGYpl6cjBsoWuj6mBeQdd1lle9eyZ2ZXulFNOSQp7KZz0TvSp8bX1XqfrgC9HKG4LBp4LG48EXQq4Ppv7NV3eEIybrrdesMflqd3DBbctVn7MeOmuS2HMH//4R1dH8Mfl73TppZca+QTLI66n0JUOu/yNKQz09Qqu4z50OafTAEOQA/PUl156yeWhf/7zn12Z5PflS3M6dTB/bem6cJG2wz+eP+tuHDoyUBjqgy+v/Xy24wr30TJk0ZXIIFoLqCI2LITgYN+4+7CZafPWnHD7VOHrcyD0rYnZoo2VNnFgouFja/vnun7hhgrjMT7cxi/4idC3OoZH8sQ5Zxr7bQs95j3Ce4ruvRTwp7pL+uP5+yVTY1Leo6yHsy5CIbwPFA0zpN6bfn1wHKzjpOYlrPPSnZyNgikcDgaK91mfYf4bDNnkucHt2zrduBZud7gmLfH40mp03UbW2MdP+ZgdOfrjrW5brA0Kcd8WK20dHS/dlw6FMzSHdGHw4CGofw5Jt6rTLePzOctQL+59f+tiW7V9pY3ttWer59qveoBN6TfNRq4cY+83LNple8bd2ULw/QfrmTQgCLrx8rmOeS7fidCBjQ0mmH+yF6JCfCztbDzL7Xyi6DK+cRHKgs3ZpTwMcVYEDZvaO6QT9V54E20vFbosAVyG4V4hq+KA7J0i9ejGhLiXAl834PqOr0MdHGLfHVjGZoTtf/V28C/ERwcOTWJgn5rElwjOtfQck7KO8Dg0CXu92NeJfCHuPbXHWVY7qdZq6mps+93RhPDX78NvZ1Qmu3n+89NNcTat93Vw94zBw7sB2/PZg9OMwE83W4/FMSxoEu4aGyVi2jnv8vz98uCY0eUdXGLy3rtT7EjnaLTxY2PXMMxaOY5AeB+hwzafk/uEEiLxLE6WjXzTNfTNYtcuvQmfH0tJ1NulfwydvAiIgAiIgAh0MgIhuDaoxtvJflSdTvkQ2HzJSVZ93OdzTvBrCxfbid9Dd5bXfNumjB6Z8/6Zdpi7ZKl95qrr7e/f+0+bvmduLcbyOY9M6fDLKYiiMIvOYvzQxrB161bX3Rw/QHN98OOd369QY3YJwNap7BaRHyDZAsi/zCjUMQoRD8VAfGAsJotCpJNx0C2TgSIRCiF89+d0IvUuNW6DVv4xHnZXkunDcCu7p13N+zF24VCrGXJcYH3Ti63kkvTzr81ZaCd94fv2yD3X2JSJo5JbJ96OBYvZ9Pvv3KH5+rlvvW/HnXGVPXjn1TZ9Kj96NV/f0nzNkON3RtsJpng/0u2IQhne+60FvnDkvcFW0hRIBT+EtbQvWzFT7EQXHAp1it0yPdfzYtopcGCXPRzYlQqduLMRXvnz5rkxD2WgMxnFXJ0xMP8mX14v2f7+xeTQ3tdWPufC8o7ceI2w5XcuL3Hbel3mk95M+5RLuVioMpEcilEubpz9Ffvs/z5l5x327yh94H7ivtr4cqj5OLh+6fxl9rNv/c6+8dOv2PA9mV/DdSaH/bn9zvItcRzuv2zhCrvhipvs0h9dZCP3HuHi9dtlE/95h30V+xQv0A2Rrs/sVopCNzr6ZlNeMUXz5893brmc/t3vflf0bvuC9yvLAwpNmeZiBbJhnsJ6PQUot956a7EOlVW8dJ5hPkF3O9ahWQfNph7NugV7veD9RvcG32Aim4OyCzTuy+7Biu1kUS55ILmx3OG1t2jRoqQY6YorrmjWI0M2fH0eOLjnENtyHzp6/yfyEX4kbiWEoKnrdlrEun8MX8O9g1XTPh+/dh87rPZzrhEUf/tkroeP3G6+aVzbGLG73t7phEHR7faGkH1m7HbrX4MP6H57xOtyNz+fOs5i/braiP1jcXfrDjevjTt2Jvjz47daj0qIexFH8ngp8efTmKsJRU4j/pbL4ETKZzXWI5gPsqFuLm4hvEf53M97rBh1ON77rO8zftb3c7mXc4KRw8arVq6ynu8OsPoHcJ1A7NJqwCVbdVzYep4USbhttbpD4TYo9H1byGd6NsjM1CVlSwR+8JNf2IXnnY1nq7a5Q7d0jFJbt379R3bzn+6w73yz5W4+C5Vu9qjiG5D0Cfez/554jZ0x+hxjd+ethfe3LrFfvv1Tu/uD25DPMadLhJtuusm+9KUv+dmcx3zPyDpQa12dZhMx8xQ2lqS7Lt388w18fuU7DwbW0ciNdYdMgXmtd9liY1/WI1MD6yB33HGHvfLKK67+w7rPfvvt594DpHPvoskBe3RhF6+st7G3IPb4w0ZsTBt7N2FvEy0JV1gWsEEVewRYtw7d0aOuxYZedEzn+4vUEDwme0qiqcPTTz/t0sFeBE477TT7eJNIno7GrEsyPaxbUvzMrok/85nPpEabnM+VAXdkfZmC9NfgvP36668bG4xMnTrVHYsN0IsSUHfZ/q+o1d6HLuJXZ3GEApcFB3078c42eOTpY8P22qLmlSouu/kr1cHN7ObHGi2dW+9ZH4/Y1z7DWlR+gb2JeKf9JUuWJK93luW+YfJXvvIVFzkb+LMRO3sp4fXLuk9LPfzxumADvJdfftm9O2RDRIrm2QiR15jvQYLlXrrGPi/AMZtO2bzeeb2MHj3aTjrpJNdgOPX7ARs2MG6Gd999dxenPXabThE/7/m5c+e6+hOfJ+l4znPpDCEOl9ToZgh816IeuzxuN98Ts93gsDoIIk8OA3GZsd+Bip3ZfGc4bZ2DCBSHQCWe+/Bqv75bnS3ftNw+2LLCNZqq67XD+u7Z244+60jbfa8huwh5WZ6xNyk+g7NhMxsj0+yETrN8Z8PeGPkcRlMRBtazfEPmQuS7jIP5LuskrMMw32Ujy5NPPtk1vmRjJQY2yE7NR92Kpn98/meDTQbWLzPl9czfmbcyD+e3yGBDdtYznn/+eWcSw0bYLOM5sB6X+j0o9dz5jp+9OTFvJy+WBdyHdUHWe1j+0AAnNeRyzNTfimUHe5JiOcfzZ33sjDPOSL5L5LH4HeznP/+5e8/iy0g2XmVjMAZuz/184Dsq9u7Kus7777/vem5i2UODAn5zUhABERABERABESgdAnLsLZ3fQinpygTcFzgAyHI8fewYu/68s5wI98ozTrbTDzvEBvbBk1yW+6dut27TFvvrsy/Ydfc84OJl/C7kEl87/X50tWJXru0R+BGRHyFLPdAdjC8ZS8HxqzVWFK7wpTs/UHjXMnY9nYuol8fg+QZd0Vo7bi7r/WWf2GenjKmleYpur7vqXCfC/fZlZ9jpJx1mAwewq6Ls9t/5ijux/fr1m50D8PU33mM/QLwJUS9TkGt8iVR3hv+8H/liIdvAlz/8YJTuo1FLcVB00J73fa7nxbTzZRQ/gOf7EXz27NlJBAcddFByurNNZCuoa6/zbu9rK5/z4ovdPfds3TkrXdxtvS7TxZnvsnIpFwtVJpJTMctF1hvjdHJxBWT6cXD9yL2G22kXn+BEuMd/8Rg74Ij9rFffnlnvn3qcLRu32sszX7f/ve0xFy/jd5EF0hM8fur+yfTne0FluR+vO5ZTuZRVPmp+UGFg/Ygv2osd2vt+DbqoF0I801Y+FGZQJNOSUCbdMVi3GDVqVLpVrS7r16+fcWiPUC55IFmcf/75rjvxoMv+V7+auwjf54HsTrRiWMga+iCD2NA6bQooG+bBJXVc2HVJmm4PingZEv8x9vNN424VURvRu9GWbU68XqPgdnCPqP3fou42bXCdje3bYDVYlWn/ZHxNB0/OB46zozHkXIDfWFNt/SAcXhNw6+WxuzeJel06A/sF55uiL/qIDeoyuY5ne3Deo8W8X0qxq8iKTdVWNweqlnWtixzJkd3qRnCth3vsfJLMlm9btyv0fdvW9BRi/9GjhtuCRUu6lLCX58vzbq/A90AUYLDh/qbYBpu/6R1bX7fWBndDC4tWwrDuw+3QwZ+wl9Y+b0saFrqtGVdbRL2tHLLDVlOw4QNFNa3VVSiuveuuu5yANl13pGx0dvDBByffv/m4//a3v7me0SjkSH3HSjHrbbfd5kTKbEz8rW99y++WHP/0pz91ghYv1k6uwERQiJm6nGJqCkhShbHBY7JBtxfrcH8Ki1mX/MlPfuKEJhT4BnueIDOuY9y8vlJDPgw2btzori8vMPJx+h6eeO3Rpb7QjU8a4WBaj3pJVg08kCiWBRXDi1cWeFfeVNEulwdD6vrgumJN8zf64Q9/6KKnSInPU6nXBQVqFKez16xUgRi35fUbrIPyWmOvARSZHX/88S0mnT0ReLOK4IYU17Px/O9///tdjhncLjhNsRZFVMGeyvx63n8UaXnxsl9ejuMQLpuKAairY4hA3//Ik+g1Ay6ufSDuHQDR79n7RGwElr81O2arlsSsP6pFA2Jmu7GKjfUKItAVCbhnSDTqDPdGc/a+HPBdgEP/kL2x8HX7n1/82JZvX2bL6t63zbGNOxFBl5uuvGWDG593UlTLHu588K7/FK36bZhPemFvW/Ndlu/7779/szoJhbE0HTnmmGOcONcf93vf+16LeSgbZlOMzP2Z7kzCXopbWedhQyZvHLVp0ybX2+Ptt9/uT92N2TiEgfUiioGD312C504e7EXWf9vkPmzMzsAygHk5G6oGhb35HDP4W/H7TWrDsUceecQJsFnWsZdKhmA63QL8YyMUDgwzZsxICntZxzn33HObnQfLQQbWw9gzS/Ac3Ar9EwEREAEREAER6DACiS8PHXZ4HVgERMAR8N9iMOak6+aYKwLL/XZ+/TlHHmYTRg6z3zz8qF0PQe7GbdvdJvn869ujux0zfapz6p0Bp17/0bGl4/v0NBvnc3Dt02YCfJHMB8lyEPb6k/UPvnw4vPLKK/3irMd0MaH4pRjB3XYQbrhupDAO8eN4FvPnnHGkTRg/ym76w8P2w5/dYxs3bcs7eX379LBjDp9uD/7lezZ9ytisjr9LevM+unbs7ATotsPAl1p8iacgAp2NQLmVi20tE/n7FbNcZBmYqH82Oe9iprX5j33qQNtj9FB78r5n7REIcrdvrc37Muves5tNOmC8c+odBade1lNbO3669XknoEg7UtjNDy10JPMijquuuqrgAoEiJb/VaOk6Rac2OsBwzEAnNTrEKRSXQLnlgUFBBR0Fc22URZrJPBA3f+WosNWPgBvYhuRTbWbgEAs0vhm3uj2jFukXsVA1c4/mgUIQim1bGu8LAa8X9nJvCm/p3LtkU6VRjFvPrmfbEKoicSfopVNvUNTLKPcdnPiI2FL6vFi4DUnQrkUkEK+DsGVBN2t4F+IsXJPZhPCokFWOwHXVtksrm0Ol3aag923aI7TvwqmTJthMNHY/6IDp7XvgDjzaa7Pn2hEwCWjP4BsyUXw576M3bOHm97IS9laEK+yAgYfYUUOPtT8tW2rf/X9XORFfe6a9vY717LPPJg+VbZ2JgkAOqYFOeJ/97GeTgg2KXiiooSOoF6jSDZSueUHxio+H7w048J0BHUwpImadlQOfXygioTA42OsBBSHeXZXv7CjUofsd3XUpQGE49thj3X6pgmKu88ek8ITCSp7Dr3/9a66yb37zm050SUEmxS10R2YvBRQhMz3XXnutc8ije68P+TJgQzQv6qVIk857FDnzHCgiuuWWW1yD2Msvv9wfqs1jlgVs4BF9G/WXHMoCCnuLURZ4US9P7MJjEp8Q6cjL5XTs9aEjRL3+2H58zjnnuEk6PlKERsdCisF5XfA5hNc+XZ99YL3xlFNOSYp6eS3yOYXCq/vvv99d47xmMwU6MnpR7+jRo939wfuA7o3vvPOOuybZyOnb3/52piiSy6PRqBMS+3KVzvMTJkxw8dxzzz1OIEZDDOYH6YT0yYjKcQKXbiMurfUVITv1xEo7DtdZHKbRBx4bs3sfabQ/PNtoV36iwrpXxY16xdjGuK2Ee/Q2OP72xW3SE4M+bpfjD680ZyLQiBugPlxntZFaW73pA1u5cQUaQa2zyICInfXFM61mt0qIeiGM7xeyf732jB1z9TEuKlfefia38pY7elEvv8/tu+++u7jUZkonl+ea79IhPVgnYTnP+gCXs05CUa0X1rZ03OA6poFlMvNdNpBIdTenQJmiXgYKWH195brrrjMv6mU6jjjiCGeiwjJ+3rx5bqD7eqZywDe0YNnBOgeftVvrAaatx2S9h7/zqaee6sqIt956yznL89zYMJr1rVGjRrneoVgfYk9811xzDVe7MpCNvBh83dI3KOEyfh9iIxKO+f6O9SqWSSwn2RNPLj3vMD4FERABERABERCB4hDQs09xuCpWEciKQKiqJrFdUjjYJOoNzLuXc4F5J/ptmqez7i2XobupwPrU7XOdd58/W4gvePydygq3V1bnrI0KT4BdnPJlJbt9KXVxL1948sUku4uhKyQfgP1DdbZkeJ4MuXQRn23c3I5XM8W8+Ywpwv39Ly5N3HaMx8fX1nEe6cEhFUQgLQF22cTAF1epriVpd9BCESgzAuVSLhaiTORPU+xykfXMRP2P9VSUjvxrKuBamqez7vlXwv3DFahIaAHGrnTO8viJdHLjpvSW2HVMUcQVV1yRTNXpp5+e7O41ubCMJ+jGEnTnpYvKL3/5yzI+o/JJernkgSRKpxsKdygWott1OmFRa+RT88CK3eEENjZk0Xdx89e1tjfyh3Vw2JkFYSXEwNV7I3Nj/hYIXhTb0nhgt6gdvMcOe3Fl0/M99qdzb6EChcGpgl7GzWMO7JboNrul9BUqHYqnCARwmdYvxL83KiwEwUpWAZdZxZ64zoemXKxZ7dz2jYpx37Y9VQmnLDqW5xMmjt/bnnnuJXvp5de6hLiX5xlBLzA87/YOFPdSyHH4QUfYWxvn2rQBM6x7RfdWkzG0+x526qSz7Cs3XmSTjt+n1e3LdYOg4+jee7ft9znvvPNsyZIlDgW72abTrQ90uaOQh8KNCy64wDnT+XXBMZ11Kbhhzy4M3/jGN1z9jqJJCmko7PViQ3ZTzd+WgeKTuXPn2h577OHm+e/NN99MCkooKGaXz+neB7JOTFEJe5hgoOOqF+vSBe/qq682ih994PbeUY5dbvttuT4fBhR93n333S56Cnevv/56fygnnqFIlAJmprFgwl6WBUvg1vsynnZQL8kqsCxAfae9ygKKeynoDYp6mU6KfUshPPTQQ83cDL/85S+7LsWZNnb7HhT2UvREgTsDxUxe/MT5G264wXh9UiyWLvDe8c9wFANTNOavY8bL65GicF6nfOfm7490cXEZhWNe1PvAAw80c52keJ6iM67ncVqLK9Mxyml5CF+rK/qF7cyzq2yvgytsEkXkELrHtsVt7ryo/b9F9dYfosZ+qP7S0bdvFCJfrO+DaXbYMRSuwKiWy+G3nH70rphWmp73MFuw7D3bWLfBNtZ/ZNWDqu3IM46wXv2qLNynt43qM8R+ecu/7PpfXWdb4pts9YFLkm72LG+P+fROUW++5S2FnHTMT9fQJpufJZd8l8Y+3pWcrrysT/hAB3yfd/pl2YxPP1HjvgAAQABJREFUPPFEY17P8OCDD+7S6Ovxxx9PRnPmmWe6aTra3njjjW6a+7O8j0Qibp4utXyHxToOywg26MnUyygbJDPN2YRCHJO/1fPPP590T+Zxjz766KQ4m2UEyyb2esNnNTa092UbyyrW9YLBN/Distdff92JejnNHsTIhUJhfm+eOXOmE2RznYIIiIAIiIAIiEDHEpCwt2P56+hdnEB40GC8mcDbhnDi4SH5ERGuQC747zTlMl/g35NdqdXW1jp3hwJH3emi69u3r3vY5MtE/8K9FE+SDmJ0UMg3sJtdtuTN9FCdb7zB/ZK3nVtIl8LEB9bE8vKZD56TpkUgSIAfxui441tpB9dpWgQ6C4FyKBfbWibyt2qPcpH1U1f6UdTrZrxzb3nNl9q1zS5jKTZgF8t0MqNIoDM1tmB30OymmF3e03WK5Q5FHgrtQ6Ac8kCSoDMQh3xDujww3B1OpnuFrGF2yGKLE/X41uKPLojbjufp2guBzGD/NJDYqzUnXL9+wsCEsCUo7m3tuG1ZT1Hv+AH1LToJU+zr09eWY2nf4hFoXINr7zk4NC5i2ZpdCA/DNQ5hb7hbtntkF2+2WxXjvs322C1tt27dOvcxu6VtWlp3wnHH2M9+/XuUW31trz3HtrRpWa97b+Eiu/+hR+zSf2/+gb89T2ratGlOyHLPfz9ga95abaNtTKuHD+O96OQ+U61qfdga16ExxqCOuf5bTWgbN6ADLQMbRPFZITXQOY0C2XSBbnF0lmWgONU73/HdalDUy/V0bqNglY6i3I6N7704ket9+P3vf7/LO8ZLL73UiV64zaJFi5JiQy+U5PK//vWvzUS9XMYGPOxumyIcChUp8PHdfnO9D3RD9aJeLqPLMK8Zxs+6JIWYwcBzoYCYoug5c+YkV+XLYPXq1ck4hg0blpzmBBnR0Y/1j2Aam22Ux0zjh4l6SJQNPbIMYTj1Vu4VLlpZ4AW73q2XyUoV9V54UxYtqLI8n7ZsxmeO1C7K2YiWbssUYNPZMBjYawrDIYcc4gS4wXX8jSnY4vMLRU2pwfe0QpEVHR+D9w3FYTwen++4Lx2oWxPjsjGkD0EhPJcNGTLEFi5c6O7PfBuu+LhLfdzi9QZtb7hXyL50P+raPUO2tOlk+HqiAo3fejTGrTeEvn0xnLpPyA4ejoZ7+OliWyGUhzdIfBsGTBun2eElq+zZ32qljk7pK0UCrKKgrVkIxfh2XHTvLHrbNtdvsv2O2s8Gjh5goZ64BLtH7ecX/NjW7ViLizdud91xp/UeXmUUt/tw6Y/+w+5/8V579dVXnZM4hacMhSpvKXDNV9Sba75LgSgD33tddtllbtr/Y97JBhhMS7CBk1+fadynTx8nbL3zzjvtrrvu2kXY6916WYfg+zeG3r17G4XRDPyG6kW9bgH+8R0dhb0M5M70poaLLrooa1Ev9y3EMVmXGzlyZLOk0L2XIl4y86LpZhu0MOO3Z72KHIPhk5/8pPv+yncJxTJWCh5P0yIgAiIgAiIgAtkRCFQTs9tBW4mACBSOQGTUXnixsMVCvfo6nYR7qcAHP75cKLdx4bAkY/ItKZMLNJGRAF/wUUDBbubYMrPUnXsznkgLK+jGRVEvz7OYLzT97ZdIivMGDHxkLbf5FoBqVZclkG2L8i4LSCfeKQioXCzsz+hKP1dA4h//mpx7YXHvDlQW6wuLpM2x8WU5h84aKIS46aabOuvplfx5dfU8sBLuXhUT4Hy3AnlUfRY/1w50BfwqRDUDo9btkxGL9OHDeCK05oQbXE+h7SB8pJ29ptqWbS7O67YRUC7sO7gOTr20I0N+jA9u2YzdRvpXUgSim+JW+0LUGt/Ab5itNqoaIpZJEHONDpfUuWSbmGI+01PwOHw41Dx5hmG7D7Xzzj7D/nDrnXbKCcd1SudeOvVS1Mvz5Pl2dDj1ipNs29+jVv847Bazyatrocd6JWY7djPrfljEwhB4dbbgu3LO1GCfosKLL74442mvX7/eiV+D4t9DDz3UCQNTdzrggAOSi+bPn58UvfiFFC5SoJgagsv4DtIHOr75kKmOSydUH2bPnr2LsHfcuHGuUZjfxo9HjRrlhEwUSQaFlH69FwOx62kf8mVAQSiFLhRmUnzE95B8h7LXXnu5qHn8Qr5zjW1B/WMWygLUQwzXeFYBgrGKCSgLRhb3HkgntvTpu/mxRnttEe7dEggHHXRQ2lT43ywoFOM1wq7WGehKmO56opnEUUcdZXTQTQ2vvPKKW0TBOQVPFMUHA+9hNqKn4y8drVsLwQb37MWCwj0KybyhRaa8oLV4y3F9a9db6jmxF6EGVLc3VoRsI1Yuw3DApIgdcwQsOpAVRCHmpbg3RkFv0zSFvjEKfbfjDQbHbhrjWtx/20O246MdVhGvsEioyYQn9aCaFwESYDUcdfIQGtmtWLPc1m1ZCxFvyPY7YpqFemB5DzTAc2Nk6zvq7YYvXW/r69bZ9y/+nn36c8daCPvWN8Ts/jUJd/jPf/rzNgiC39TA/In5FAWmHHwjnEKUtzwW6wf5hlzyXdZNfA8CmRq0s1xlA41bbrklpySdffbZRmEvexFgXcb3drBt2zbXyIiRnXvuuck42SgnXRlOtiz3fT2MOzCOdIG9GeQSCnFMljmpgQ142UCKZZx3fk/dJtM861NsiMJzZnnHRlM8rx49cOEi+HGm/bVcBERABERABESg/QkU50tD+5+HjigCZUkgMmE/a5j5sEX2gbCXAS8k+ErOdW9cjvNMs0KHEeALRb74Y/cudKaguwdfAKZ7SdlhiczxwHyophMGz4eB51dMUS+PwXsQ1la4EfFSD+NQ07js5nkeCiIgAiLQhQmoXCzUj0+/3kT9NO0Y69Iux0K3vETWF4qG4hGBciHQlfNACnOrJoes8R249sIJNZsQXw9t5bNxdH0as5oDd4omveNttuNB3WN21KjtVtsYsVVbw7apPmIN1OA2yxBzm69AI4q+NXEb0r3RelRBiIDnk2zT47fLhoG2aT8CMQhKdrwKQeO/YhZPmEZldfDwCFzbk8IW6c0LqjxCez3T84N+UKiYD52J4/d2TrYPPfKYvTZ7rk3fd4qNGzvaBgzon090JbHP+vUf2YJFS9z5RCBmoFNvKYh6CSfStymvfjeHvHotxDDPJPLqbtPDFqopn3shmwuCgpSnnnqqmRtfcD++46PgNhjY0xmFGcFA0awPdLRtLdDp1rvZ+W29KNLP+3Gmd4xeaDRjxoxdHPD8voMGDUqKZrl9qqGDFzP67VPHQcFNcF0699x8GbDc/NOf/mR0wmOg0JIDuR977LFO5Etn5EwcgulqbTq+A2XBGzGrY1mAeki2IQxBb9VklAWBhkjZ7pvrdunElhT1+uW5xleM7VNdDP0x0vUWQuGXD+kco/26KVOm7CLsZf2LXaEz0Lk5nau235/jF198MTibdpppuPzyy41d0VOY5YX7FLlT6Mt7pC29W6Q9aAkv9NdV0Ck65+sNxUKoBuJ3lg8Ddy0j4nDsjUHIG98G0S90e17oG8Onh8due8IWvbHIhg7Y3U49/TQIfvEeBA0AOTbcr37eNchig5TsHjNKmLiS1owALxc0nHCiXVxDoW6YxnXE8etvvGqLly22XoN72XFnf8Yto4D3vh/dZa+/+aodcOz+dtgZMxKiXoh8vfNu/YZKm7nhUXeY+h617tp0M4F/dLTPFILr3nvvPecmXojylscbMGBXMXGmdKQuzyXfDTa0oRt6ppBPXveJT3zClc/MPx988MGkq793V+exPve5z+1ySDoIP/TQQ/b444/n7HabL7e2HDNT48V05dwuJ5tmAcsW9q7ARiizZs2yU045xW1FJ3tf9qS6yKeJRotEQAREQAREQATakYCEve0IW4cSgVQCldMOtrp7b7EwxIuhCG9HvCDwgsKmL3/lM596dprvCAIUvfJlM1/sUwzLl/v8kFaugS/KeU58SKU4oT0C38lRzFvu4/ZgpWOIgAiIQKkTULlYgF+IZSI/cKBgLOtxAVAoChEoNwJdOQ+s2jNsDfvGrW41Mq/0Zju7/JxxOPzugHMkxQAWTbwuy9YRN3W7bhVRG9OXil7291u4gCzZhdTjtTZfuBQoprYScEKu2RByPQEh1wfZxxbrhn3GbLNtVVCXLG+6ELLfvcO2bI9n+hUrVjhBVKowMZ+Tpuj1kgv+zd56Z77NefNte+rZ520DGk+Xa+jXt6+NHjXcjjjsEKNwudRC1Tjk1VORV6/CNZ1oz91qEmPvY/vHohbGK6JquDOGKMLpJIFiPh/WrVvneqzy8xyfddZZbgguu+qqq+xHP/qRW+Tfm+Xq3LZp06ZglHlNr1mzxu3Xv3/LQvghQ4a4d5U8v2KGtjA44YQT7OWXX7Zbb73Vbr/9dpdexsdpDqNHj7ZHH33URo0alfcpxCEK3DEPDtSPRy1Oq9FsA8z0KqdB2DuGD2jtE4Jiy5xFlu2QRIqxsw10YPahJTfcdNcx3X5TRfQ+rnTjzZs3p1vcbBnTfv311zvnTF5vf//73916dpN+4403uoEOl3SkbE1I3CziMp4p9vUWqkTDkkpcM2kaST3/wJN287u/tyljp9i5p59psSYxb8wJfJuEvRQFQ+zLdbf97DaLNFZY/9797dhPf8o5BdMt+L035uN7X8QG9B1ofXqgm3uKgPlIwEcDhXYhwGejxji+ieH3ruxZ6eoKy5YvtS21W6z34N42cvxI55y7aMlC5PezbHvjdjvn0i9a97417lmQbrwU9HIcxrPhnc/80Z6c+4TNOHyGff7UExKuvTiT56590p776DkbUjnAKobubByay0my981MoXfv3slVNPNhKIXyNpd8N5ifBvPg5Ik1TeRTL+Bzxvnnn28//OEP7S9/+UtS2Hvfffe5WOl4HGwQxe+krDexMUW64B37063Ld1khjpkL72zSSddiljd33323/eEPf3CO0NzvhRdecMOVV15p3/3ud+2///u/s4lO24iACIiACIiACLQDAQl72wGyDiECLRGoOvoka5jzslWMY2vFphdRyRdS5Tbf0plqXXsS4Mt8/0K/PY/bGY7lXwcnxniJ4yS+/u4sn/nO8FvoHERABESgUARULraBJApEV/rBMdKVhmnG5bC+DQS0qwiUPYGumAeGe4WsGm6OjYvjFp2N/CsbHSS2ocNv7T+iNm7zQVZZU7XTGRdXgcsF8azOD8X8uNZsXOLry/4i7iQnQIe4ujkQcuEaiy1pumiyOTeUxZUTI9b38H4Qc+XvrpXNocpxGzqcfvzjHy9o0imCLUUhbEFPsgQiY15dtV9TXj0HuSwz2tYCtom+h+6t/xGDOgt5/Xg49+Yp7vWNIlo7ZGvro9GEWiudc2xr+wbXjx07NjlLJ7VLLrkkOZ9p4sknn3Sr6JTrXWQnT56c3Hz58uWu96vkgiJN8PjPPfecBZ1yUw9FYSQFiwz5OPOlxtfSfFsZMH0/+9nP7Kc//anNmzfPOSn/8pe/dF1es0txuvcG3V9bSkvqOop6696KoiyIWWwh1mZz3TMSlAWRfXDNTwtbuGfirWVq3MWa92JLPy7WcYod7z777JM8xLJlmRXVb731VnI7P0EhMB126RD/1a9+1W644Qa/qs1jinc5sOv3V1991f75z3/azTff7ITEdAdmN+m8/rpK8NeZH7fvecdtS2yzRQaEDE1HMh769ddet2+99nXrHe5jF3/pYjvl9OOSwt7bH/2DbVq12T513Gfs5JNOMt7zfqDAN14Pt+C6uG38cKN99MFHtmbpGothWVWkynrW9LS9J+A6pU8LhjXLPrRwPGzdqrtZj25Q9nM5i5xs842MZ1CiK4g8ggHKhe2122x7Xa1FqsLWfygajWDZlq2b7f33l1h9rN6mHryvVfXE8xpVDhDwurqAG+MNFesFlYnGP6FqrgvZ7f/1R1sC191jxh9tE04/3wl74+/ssO/fcqX7zfcfNdkO+8Su9UkKM+946s+IEHUPG58U9boFBfjHPCVToEuvDz7/KrXy1qcv09inm+tZR2Bely4w78sn0H2Wwl5yJK9hw4Y5wSrjOuecc5pFSeGqF/UeddRR9l//9V/G3hLowss6FBtv5OvI2+xAgZmOOGbg8Bkn2ViEomgOFIuzQdM999zjnHy5E3srIJvTTjstYxxaIQIiIAIiIAIi0H4EJOxtP9Y6kgikJVB1+PHW+MaLFt+0wUK90TqTD698MC+3cdqz00IRKD8C/vZLpLzJuTd5GuU2n0y4JkRABERABEQgPwIoGOMU87oCMv24LNbnd/baSwREoIwJVI4MW9WBcOFdBTe81VmeCHRiMXw/PbPiS/ZB3/ctVBe2eBX2b9rdi8B2GZf4+izPXpsVkUBsO65FOPU6US+FXLjWsg2hoXAmPShslcPzcwLL9jjluB27Rd+xY4ex61iF8iRQNQrC3oNwf6zOIa+GqCn6FhpiUN2ExhbVE3J37mU30kuXLnVDpi6lsyX6xhtvuE133333bHdJu12wS+nrrrvOzj333BZdOletWpV0WQsKZadOnZqMf+7cuXb00Ucn54s1MX36dBc1nW05BB3y/DGD4qVp06b5xUUZF4oBhT5MK4evfe1rdtFFFznXXop7Fy9ebGPGjMkp/XGI+ereilntIzGLvovaBS7hbENoSHHLAvqM4HbKGPIRWVZDZFdKYfDgwclu23nffvGLX0ybvFdeeSXt8oMOOsiJx1566aW069u6sEePHsZ8gAMdEyng47X2wAMPdCphbzbXRV7XWwUvYH5UK25YuXKlnXDiCdDo1tv62Fo74vOftMoRO+toT2993BasXmDD+w62s489dWdiUPeLNwl7KfTt1TDIhjUMtMYdY+2n1/yPPf/oc1YNe9ifX/QL223gYCfivfWy31nt5h3Wv29/u/w7l1sohuMw32Dxx7okxm+89IbNeWk22rpU2Jnnn4lxxOJY/q9H/2Wb12+2YSOG2dTpU93269esszdfm4cdw7bP5H1s8FAch9iahmhj1F557hVQDNmgwYNs9LjRWInADAJ/Sxe9b6tWrLIevXvY+Knjbdazs7Br3CZPn2x9B/RN4OdPwM2JxA8U62IaSXPC3YXvLbTnn3rOokjouV87D+JdlOPctmk9xbr33/awzXtnno2dNMYuPO1CJ+zd+lGD3XjBj2xHbIddde5VdsDH9je6MIfgwkwxr5uGiJdjd2yMfHh0y0O2YN0C26fHGGOPAQzjB+xlH8USDvLXXPv/7JGDH3G9R/p9OKZotJghU37DY/r6xR577GHe+bbUytvW2FRWVrp6OgWuN910k/3bv/2bE98G95s5c6axEUM+gQ0umFdSGPzggw+aFxLTfZeNcILhiSeeSM7+7ne/s+HDhyfnOcE6U6FDRxwzeA6+8VlwWeo0y8bPfvazbmDZ4+uU7J1Awt5UWpoXAREQAREQgY4hkKi9dsyxdVQREIEmAjVfuMQaKO7dsY3PvHgCbVqRZlzS65uSrZEIlDOBxD3WdPPhpVVZz5fzD6G0i4AIiIAIlAYBVxaiNHR//MeysQznS4OmUiECItCOBPhBt2YqxJAH4NUXDK6yDvgQPqVuX9tvw0HWe/FAi9Si+1Z+zEYo13HW564Ni0IgugkCxJcg6n0YTr00q8Q1lnXoCcOxA8NWPRmupCUmkMr6HIq04Zw5c+zpp5+2k08+uUhHULTtQYBCnGrm1TOQV3fP4YhwLXTi3odxb83GvQVH7FzCwQcf7Da/4447nEsZhVq5DnT8ZFfGFKsMHDjQJk2alEsSdtmWoj4Kehkojj3vvPOce9wuG2IBRb10m/PhrLPO8pNGoTIFLQzsRnnr1q3JdX7i2WefdfcO7x8KnNsagkLa//iP/3Cu9sE46+vr7dJLL00umjJlSnK6GBP5MqBTKsWeZP/BBx80SxpFvhRc+uAb+fj51saugccbEPU+BFHvO7he6byZbUA9JlkW4J4pRjgVDUgKHaaPKXSMbY/vwAMPdJH8+te/tnSCOoq9vJgu9WheUEcBGV21UwOdPSkA53314x//OHX1LvM33niju96uuOIK477BwHu40G70wfg7crpXN7NpoxN160KmY/qYwseZmr5169bZMccc4/JorqMYLpvfyeUt537Rzr/4PFu9ZZVzBK4YEnKNtrqNq7SRR+1uMzc8Zv9Y/5BFJ9Za90Mi1v2wiP1lzZ/sd0t/btfPudpumH2d9TqlwnqdhuGMxLB2/2X2b/eeYVe/+V/2QOgv1uesauuJdRzuqf2zXT/3anu85mHrcXrEDQv2ftN+PPda+8m8a2zNAcusO5YHh+d6P2n/M+86u+HN6+3pHo8m9/P715wRsv958zr7/vPftocb/mY/nfcDu23d723oRf2sxxmJY/htk2Ms74nj+HT1PL3CFo5/06X5qre+ad1PCyXPx50bzrHnCRX2ZOQRd+7P2GOOBZmMOG6IPVf/lD0FVpf/6mtWv9t2x5AsI/1Dxp4A/jUL5dvnTnb3YWvlG8td5vcMzzzzjH35y1929z/FkIsWLbIf/ehHzrnUbVCkf7NmzbI//elPu8T+4osvOudurmCjAh9Krbz16WppfOGFF7rVrNuceOKJRiFvbW2trV271uWlbRWPUizMQMfZv/3tb26ay6qrYdccCBs2bEjOpfZ2GovF7I9//GNyfaEmOuKYkQgV8omQWp6x7nLZZZe5sodC69RAoXS6xlmp22leBERABERABESgfQnIsbd9eetoIpCWQHjwHtb94itt+2+vs8ppB8O5l61b8SIC7/icqpDN5Zvm43w/EZgvmfVpz0wLRaD8CLjbDvdYuY/Lj7xSLAIiIAIiUJIEWCa6+ieqoE3OvWU5X5JwlSgREIFiE2A3ujWHhC22Jm6Nr6GG31wzkfHwEdhFDanf3WrnbLfIjgrbPHadNfSqSwqVvJinXMYZT1Qrik6g8UM4kb4YtbpnYhZficPxQTPbACFvxZSQdTs4bJF+LIwVPAE69VLUe/bZZztBpV+ucXkSqGBe/bGmvPqN7PNq5ulO3LsD99d2CISn4V7pk929QhHupz71Kdfl/X333dcmcBT1nn766W2Kw+9Mge7Pf/5zmzdvnnPpfPPNN+3666+3/fbbz4YMGeLcQtldMkWDdPJk+OpXv2qHHnqoj8I1QmFX0xTSUNDxuc99zr7xjW8YBY0U0vzf//2f/ed//qcTDY8ePdroBNjWwO6a6TB86623unT/+7//u+sCe+LEifbaa685cRIF0AwUG/fti3ffRQxsiJMPA7K4++67Xcrmz59vv/nNb5xgOxwOG0VWP/jBD9y6yZMn29ixY7M+g+hGlAWvxazuSYjQF2M3Om1mG/AFr2Iy7hGWBRCuFSucfVgYLqPoKn1JLonLnJpzPhm2GWOLl97MR255Dbtef/jhh91GXoB7+OGHu/vB3xuZYuB9TkEw3adZ/rD7cgrsKSTn9cKuy73rZDZCtZqamuT1Rvd53qd0gaYQntfhbbfd5pLyhS98IVOSynb5148P29dvidkm9GhQiHDBUWGbMLww1xvFu0899VQyWfw9Vq9e7YTgN998c3I58wvmEdmEQuQtbPhBwd5JJ51kdIinEPX73/++fbBxhUvCZd+71CJ9dzL4ILbc3qt/x1ZX7G/syYRh2omT7dX/SDhO/+evL7OfjPqJKxtWrFjhBJFXXXWV247/9qoZbdWTdgoEuWz8hD1t44i1rox67n+e5iL77mXftZq9cpMaNFTX2bb4Frc/G645J1831/K/fPP2lmL9xS9+YQsWLLDnnnvO3Xe+DPD7UORIsSN5FyvQDZ6NcOgwS1E/rz+W0z4Ep0utvPVpbGnMug3zTQqlWb9h/Ss1sK6Sb32M+7JREePmwBBs8OSPdeSRRxobbzB885vfdHkueb799tt2ww03JPNjv30hxh1xTArWeR1t2bLF3ddHHHGEqyf269fP9QTBhkt0gue1zjyFZeGgQYNs06ZNroEZBdgMXK4gAiIgAiIgAiJQGgRyq22XRpqVChHolAQiY/exHldcbzv+8huLf7jKKsbsja5nmh6cKepl8M/lpTqfSKX+i0BZE0jeZu4s6EmYeMGYWF4+82X9IyjxIiACIiACpUMABaAr/SjqZWUU43KcLx2gSokIiEB7E6jCh+zY4XHbvhFimvdw9Cz1A8zrum/sYZE3d7fK7dW2cdyHVj9wu8VCMSeaoqiXH5fLYdzezHU8XGYQHDYshZPov6LWMAuNZNbnSAX6i/A4uE4fDifT4QkxRo4xdMrNKTyh2IECKIogKKhU6BwEKkeFreaIprx6Ic4py7yaAsnYQrhi74gaxZPdDopYxWBXgW0VDMWwe+21l3Plo5gh10CxJ8VVbXXqDR6XrrDs+viCCy5wAkGKjU49NdCVe3BjTB933HFp3QQpsl2+fLldc8017p4JitR8FBR90N2Ox2xrYHlIwSPFb3Sm/MMf/uCG1HiZrqBwLHV9IefzYUDBLkWUd955p+vW+4ADDtglSeTmnZV3WZm6ANdxw2qUBS/GrP5fEKB/gA2yvbYZFy7l8NhEWVA1orhlwWBorX9zQdgeeS1k70PTk0syg6ddDZHegXua7TsaiS/BsP/++ztXxvPPP9+5rvI6SQ0UxQcFnH49BekU7tI9k8Knyy+/3K9qNqYD6Oc///lmy9LNnHnmmfbb3/7WCd54PA5ejOW3HzdunF188cV+ttOM99k9ZPdeEbHH58ZtZa51pACF7jDk5PU2eWThrjeK4SiwbCnQtZcNGbKth7Q1b+H1xGuPeTqH1EBROcuD1gIbiNCVnKJxNvwIOr9zXwpY6R7NsidToKvt17/+9eRqXsftGfLJ21tKH11d7733XtdIJlVYSj4UfHIolrCX9VmKTZmfpMtTbr/9dps2bVryFEqxvE0mroUJitAZKO4NhtGjR7sGTevXr89b2Mv7kCJUilUZmG/OmDEjeBg3zUYcvMYpMmY5zyEY2iIuDsYTnO6IY/L4vC9ZpjA/O+ecc1yS6GZ8wgknONH4E0884daxcRiH1LKH+QlFyQoiIAIiIAIiIAKlQaDtb21K4zyUChHoFAScc+9lP7D6p/7X6p940EL9d7PI7iPQbWgvtFqN7DxHvlnju4pSGu9MnaZEoKwJ+NsqcRJNzr3JMyq3+WTCNSECIiACIiACeRNwpZ8rIPGPf03OvRT5MpTF+rzPXjuKgAiUPQE8SldPgLgXplC126MWX57bGVVvq7EB8wdb5ZZq27D3Gqsdutmi1VBtIsixNzeWXWXr2Na41b0DZ0a49Da+ibJye+5nHh4OIddREaveB0KuwOug3GMq7z3okkfnvGXLlrmP8Oyyl2LMQw45pLxPTKnfhQDd+qqQV0ehr93BvHrlLptkXsD6KfL2+n/GLLY+bjUfj1gVhMKhqsy7+DV04iu1LocpULn//vvtV7/6lRMTrVy5Kwy6P9LZlwKNTIHOuH369HHuvt59zW9L4eG3v/1tGzVqlF/kxsHum5utCMx48UdVVXPAlZWV9pe//MU5SLI7a4pJfOA+l156qdEtlaKkYGjtmKldaQf3bW06HwbsEp1CHIqPguI2nsNhhx3mfhMKkVoL8Xpck4ubGni8iot0Zw/gre2aXB8aligLqtqpLAjjp/nsjOa/TzIxHTCReq34JLR2zXC71OvT78sx3Xbr6urs6quvdgJdv45lCwV8c+bM8Yt2uV6HDRtmTz75pHOe/vvf/57cjhMUk33nO9+xM844wyj89yFTeikUfumll+zaa6+1P//5zy4t/r7hPc4u67muZ8+ePqpONe7dzexzB5b+9UboLCdGjBjhxIK8ftKJ/v2Pk6mxRFvyFjZCufLKK50gj40nfGC+RDfXoKOrX8c8OV2g2I95P0XlwbKBjRrYaME70Gc6j1NOOSUp7OU9k4t7uU9P8P7wy1LHPu9Pl4588vZ08fhjDhgwwO666y7Hg274rH/yvNh4h4ENytKFTIz9tsF7P9O2dNOn2JqO3bNmzfK7umuOIm7mJ6kh3/I2G+6ZtgmeS2p6/HxL+S7j5fl861vfsoULF9pHH33k3M7peM7f5pZbbvHR7JLvJle0MEGGXtjLhhvpAutEzz77rHP3TXVm/u53v2uXXHJJUlwcvF6yOXceL7iPP36+x8z0O/h4OW7pHmEPAxTyB+9zX6ZOnz7d2CMEr7nHHnvM1dd82UPhMxu3kIXfPnhMTYuACIiACIiACHQMgRAqqImvsR1zfB1VBESgBQINb7xo0bdft+j7Cyy2drXF69M/QLYQhVaJgAjkQCB24dActtamIiACIiACItC5CXz2f5/q3CeosxMBEehSBMIN3eyQdSfaaRu+YMMbR7q2srkAgBekra1aY+/1eMcW93rXNlZ9hIYOhemuOpd0aNvSJRCKh61f/QAbu2UfG7d1vA1sQGPtHFW5fEm7oWK9ze7zis3vM892RPJQBZcuopxTRoEAu40dPny4c1adOHFiznFoh/IiEN0E991no1b3KNxNEz0B53YCEIpF9glZ9cfDVj05bJE+pSMay+1Edm69YcMG17X0mjVrjKJCCrwoQso2xGIx474cuB+FStmKVLI9Rup2DQ0NtmrVKifcYffOgwcPTit4Sd2vWPP5Mti+fbstXrzYKMAk+2wD3aPr5qKBB1x6o/ORs+fxSj80GKKdT4et26EoSXqX/3WcLbv23C4ajRq7JKdTJMVlLG9yCdu2bTMK7ykS5v69e/fOZfddtuW9vnTpUicg7d+//y7rtaDzEMg2b2G+Q/EtRYcUszJs3brVKD6lqJfr04kJsyXFnhCYFsbTvXv3rHabP3++0YGYgU6zbCjSUSHfvD2YXi+mZVk1ZsyY4Co3zWNQ7Ejm3/zmN42CyWIFnwewgc/QoUOzKqtLrbxNx+btt9924lEKUffdd990mzghKd3+6U7sf5O0GxZoIfN/5rdsqEvRfibhdYEO56LpiGPy+mWvFBQKU2ScGnj+rK+xHKSYPdt8IDWezjDfkjC9M5yfzkEEREAEikGAjaEU2oeAhL3tw1lHEQEREAEREAEREAEREAEREAEREAEREAER6EAC0Q1NgrHH8xSMMe3QfFROhWjswLBV7R22cE+JbTrwJy2ZQ8e2QMQ1HyKul+DSi26lbWN+SXNCrmMg5ILjaKSvrq38KGqvcifQCNfd2qeiVv8k8up8umjHrRMaFrIqOEFW7x+2ymFw701vXFjuqJT+EiMQbzBrWIay4JWY1c/C9fsBEsgWGzmG0EA4zh4Vtu6fRFnQX2VBjvi0uQh0GgLphL0dfXInn3yyPfLII05YvHz58rIXAtJ1+NVXX3VYZ8+ebRMmTEgibmxsdK7ZdDJmePTRR52je3IDTWRFgML0H/7wh27bW2+91c4666xm+/F64nXFcNVVV7mh2QaaEQEREAEREAEREIEuTkDC3i5+Aej0RUAEREAEREAEREAEREAEREAEREAERKCrEHCCsWcgGJvZBnFvhVl4ZMgq0V119bQm0VjzHsm7Cs4uf57sar1hOURcr8es4dWYxZYDSWN+WCjqdUIuinol5MoPovbqNAQaP2wS9z6dp7iXJNB7fWQ88umD4N47Ee69/aj47TSIdCKlRADi3ehHaODxZqKBR/RdLNiWXwJDg1AWHI4GHp+IWMUgXbD5UdReItA5CJSKsJcuvRS1/vOf/7QnnnjCwf3xj39sl156admDfuihh+zUU09NnseBBx5o+++/v9GB7vHHH3dOvVw5Y8YMmzlzptXU1CS31UR2BOgIS1dzH8aNG2eHHnqoE4dTVP3CCy+4VXShfvHFF13PBH5bjUVABERABERABERABMzwKUJBBERABERABERABERABERABERABERABERABDo/gYoBISeWCUXM6ijuXZXHOUO4GVsEAc+auDViXDUtbtWTwlaxGwQ4iFehCxCIQtC7Bo6MEHHVvx636HsQcW3N/7xDe6DL9SMh5DpEot78KWrPzkSA+Wm3w5GhIlutp7h3XR5nh3sy+ioEwiuj1rgEefV+cPEdA6f17hJL5kFTu2QgENsWt/pFibKg4Q1cq6uxIYqEfIIT9R6BsuAwiXrz4ad9REAEikOAYt4rrrgiGfnpp59uF110UXK+nCdOOOEEu+OOO+wrX/mKbdmyxWbNmuWG4Dmdc8459qtf/Uqi3iCUHKaHDh1qL730kp133nn2zjvv2IIFC9wQjGLatGl23333GcXsCiIgAiIgAiIgAiIgAs0JyLG3OQ/NiYAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIdHIC0Q0Qe70UtTp29U6X1TxFOBSdhQag5fxEOPhOCVvV3hD4DsTCcCcH2FVPLwZD3rUQcc2HiGtOzKJvxy2+vg0wcJ2Eh0PUe3TYag6EqLePBIdtoKldOyEB3m+1z8FlneLefBpieCbVuNdGm1XuB/de5NWVe4QsVK37zePROHcC8bo4HNvRyGcuHNvh2h57H3HAxT3fENodZQFEvTVo4OHqEflGpP1EQAQ6DYG77rrLamtrberUqTZ9+vQOO6+nn37amJYRI0a4tBx33HEWCnWuMnTt2rXOLfbdd9+1ZcuW2cCBA23KlCk2adIkOcgW6Mqrq6uzZ599NinsraiosMmTJ7th4sSJVlWlLnAKhFrRiIAIiIAIiIAIdDICEvZ2sh9UpyMCIiACIiACIiACIiACIiACIiACIiACItA6gdiWuO2AGGfHE1E48GJ7OPHmHSDQDO3WJPCFe2/VOAh84Q4sB9+8iZbWjnDobVwHQe97EHC9FbPGtyDoXYskQuibd6iE0HBPs5qjI1azL1xEe3YugUTeXLSjCKQQiG5EXj0riry6qSFGW+67XsiW92JDjJBVT0Q+PTRsIdyLCiKQLYF4AxzbP0DjDpQFDXPg2L6gbY7tbAgUHglR71EQ9R6gBh7Z/g7aTgREQAREQAREQAREQAREQAREQAS6AgEJe7vCr6xzFAEREAEREAEREAEREAEREAEREAEREAER2IVAfAfc9t6OWS0EY1GINa12l01yW8Ce49GFfMU+cIYcD1fIcZjeTcKx3CCWztYUcDWugYALwq3GdyDofbdJ0Auhb5tCd4jAJ4WsBkKualwncg5tE03t3AUIxLZC3DsbDTHgsh6jkLINzqjEFeoLge8+EPjiPnRO6xT4yiiuC1xJ+Z9iHNecE/S+C0HvmxD0zsd1uCn/+NyeuOYie0NkfiREvVPRwKOHGni0kah2FwEREAEREAEREAEREAEREAEREIFORUDC3k71c+pkREAEREAEREAEREAEREAEREAEREAEREAEciEQh1NvwxKIe5+NWuOrEG6uz2XvDNtCmxMamHCGrKA75FiIfIeFLNxdop0MxEpqcWwbulhfgWERxLzvQcCFwV0X0HG1NfC6qNwfot7DIlY5EmLCirbGqP1FoGsQiNeZ1b0H596ZuC/hlGpbC3De/SCyRx5dMQEC372QT+8RslCN8ukCkO00UcRq0bBjpXdsb3Lo3ViA04N7dMW+Iet2RMS5/EtYXgCmikIEREAEREAEREAEREAEREAEREAEOhkBCXs72Q+q0xEBERABERABERABERABERABERABERABEcidQOMaOEK+HLX65+EIuQz7Q/BbkNAbAt/REI7RvRdjijkj/SEek6CzIHgLFQkF3tH1EPMuhWhwCYRcFPS+D/HglgIdAb93eJRZ1cfgzLh/BE7OEg8WiKyi6UoEYjDrXQbnXuTTDbNiFl+Dky+A4N76IJ8eizwa7qmV48JWNQINMXqxhUZXgqtzTRLANRXdwvIAwwKUCXDnjS7Cws3JLfKf4GU1FGXBgSgLUB5UDgujcMg/Ou0pAiIgAiIgAiIgAiIgAiIgAiIgAiLQeQlI2Nt5f1udmQiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIQA4E2N173Tsxq4NorBFdbRdExOOPjy63Q0MgHhsD8RiGyhFhq4A7ZITiMYl6PKX2HUMkGN2ccGNsgFiwcTHEWxicWBDdrhcsQDRYMRndrUPEVb2PulsvGFdF1GUJRD9CQ4w3kFc/h4YYC5FXw823IKEbsmOIep3Al/n0aDTEGIiGGJUFiV2RlDiBeAPa9KyFaJyNOyDkZQOP2HJcX7UFSnh1wsm/6lCIevfFtdVPyvECkVU0IiACIiACIiACIiACIiACIiACItApCUjY2yl/Vp2UCIiACIiACIiACIiACIiACIiACIiACIhAXgSiZg0r4Qj5MsQ9r0A0thyxFMq91ycIXXBHhkPUOxJjCnyHQUg2RCJfj6eoY4p54cTYuArDCoh5l9GZ1yy2AuKtrQU+MsSA4eFmlQfQpRfOjHvImbHAhBVdFyYQh5i3Hm6qO16IWuNsCPLXAwZu44IEOGyHBiF/3hN5M5x86bTuGmL0VkOMgvAtpUh8Aw+UAc6xHYLeKMTi8XVIZKHKfrr04nqq2DdkNYdErGps2EIQ+SqIgAiIgAiIgAiIgAiIgAiIgAiIgAiIQEsEJOxtiY7WiYAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIdEkCMYg/696NWT3EvY3zmkRjhSZBs76+EI9B2OuHiqGYpsi3L1wiIS5TaDsBujBGN0KstZqCXvyeK+nCiGUU825C/IUSAwaSGhqYcOmtgqi3em+49PaUM2MAjyZFoDAEcO82foi8enbU6mbhvqZ7747CRJ2MpScE+mx8MRr58iiIfNEogw0xwj2o1kxupYlyIoDLJLYNQl428IAjb+P7KB/g0usaeGwr8InABZoC8aoD4dq+b8QqBum6KTBhRScCIiACIiACIiACIiACIiACIiACnZaAhL2d9qfViYmACIiACIiACIiACIiACIiACIiACIiACLSJAJz8GtfAEXI23HtfT7j4WaFFPz6BFIjByTe8O8Rju0MI5AW+u0FEhq7gnYgMhq8KWRCgA+NW/F7rMED01whBbwwCrugHEHNhbFsQB0ZFCRABRsZBxLUfRFxTIeLC72f63YqCWpGKgCfg3HsXxawODTEakF/HV2MN3NcLGnAfh9AQIzwCefRI5MsU++4hkW9BGRczMop5US6wPGhA4w427IguRdkA1/Y4G3ig3ChoiOB6GQrH9mlo3AHH9qrRcuktKF9FJgIiIAIiIAIiIAIiIAIiIAIiIAJdgICEvV3gR9YpioAIiIAIiIAIiIAIiIAIiIAIiIAIiIAI5E+AojF20V03h6KxhBDIsKyoAd100/U1TPfewRD27gbBKAS+kQGJgQ6wcvRN/AJxdJdOh+XoRxjWY1iL3wiC3ugaLIeIy3WpXl/UX8usBr8VxH6VU+nKGLbKERBxVRX5mIpeBESgGQHmAXVvw2n99ZhF38a9/1Gz1YWboWizH+55uq3DwTeCBhl0W3dOvn2QN2O9QscTYNkQ3YSywLm1Y/wBBjj00pk3vhHpK7T4u+mUQwNQXk9kAw+IeseHLdJP1s4dfzUoBSIgAiIgAiIgAiIgAiIgAiIgAiJQfgQk7C2/30wpFgEREAEREAEREAEREAEREAEREAEREAER6AAC7Lq7fiFEY3Ph+vdWQhxkxRaM+vNEd95O6ItuvMMU/FLkC7FQmA6SEJJFMDixb6XfoXOO4+BN10WKtWJwWYxRtAUxXwzuvLF1mF8LM16Ie622nc4fAmyK+yomQcQ1BcOYcMJduZ0Or8OIgAikEIBYs2E1GmLMTTTEiC5sculO2axgs3Ty7Y18AMLe8B5Nbutw6o7QbZ35dQ+IOqXrLBjuFiPyrrx0a1+DgQ086Na+EmWDd2svtDNvMEG4DpxjOxt4TAlD6I2LQ47tQUKaFgEREAEREAEREAEREAEREAEREAERyIGAhL05wNKmIiACIiACIiACIiACIiACIiACIiACIiACIhDdDIHvAojG3oTAF66QMbgAFt3BNxU7BLwUk4Ug7nXOkRT49t0p9KXYN9wTy7pjjMG5x5aLuAw4nYB3O9hy2JIQ8FLE68S8GzCG2yIdF+OYjm8GnIZUQEWe94LeCRDzUtQ7FoLe3uUCuMhsFL0IlAAB57S+AgLfeTFrnAdx52JkLNvaIWFw7066rcNxPem2jsYYFXBcd0JfiT0L80NApBtlQw86tQfd2lejzPBu7cV21+eZ9ICgdywc2yejLJgMx/ZhcmwvzA+sWERABERABERABERABERABERABESgaxOQsLdr//46exEQAREQAREQAREQAREQAREQAREQAREQgTwJ0DWWDr4N70LgOx9i02UQjm3PM7JC7EaxWHeIyijypeC3F6Yh7g3BMTIM4dHOcULwG6IArQbrIFINVWP7CuxfbG0qRbvoHj1eB0EuBFexHRjDXdcJeMEuDuFdHM7IMY4h2HLzEO7GNmIaQl7Ht5iOi639DuAbHgmB3t4QcI2HkAsOvXRLVhABEShNAnHkMfVLMVDgi4YY0feRCW1tp7Qya2CeTJd1uvgOwhgC33B/THNAPh3pk8h/i573ttMpF+0wLDtQbkRRDkTRoMM5tTe5tUfh1B6DO28cru3OrR3btktA+RoZjfJgIhx6J0HQOwLlKMpUBREQAREQAREQAREQAREQAREQAREQAREoBAEJewtBUXGIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAh0WQIxCFDrIRZreBfCsQVNwjGKUNtLXJQNeTj8OoEZRL6hnnEn8g1RcNYk7uXYKPClE3AVpiuxHacjmMbgx+xWPETdkh8w6c6ToiueL0S38SjGTYMT8ULIaw0QXdVjHQbjmILeHRhD1OsGL+Kl4A7L2t2BF4fMGHCuTixNAdc4CHr3gYBrVJPzZsadtEIERKCUCMRqkUej8UX928in30E+TQdfun23d2Cey8YXcO8NDUiMw5yH4zobCYQh9KX7t3NaZ/7bBQPLDdfYA+74dGlnIxrn2L4ByyHmja/HGA69ccy3u1s+fw/8Rs6hl407xqM8GI7fq5sEvV3wUtUpi4AIiIAIiIAIiIAIiIAIiIAIiEBRCUjYW1S8ilwEREAEREAEREAEREAEREAEREAEREAERKCrEKBYtWElBrr4LqRwDKLVNRCPUcxaDoGOv3TthbA3VAWREsXAEaQfyxLCXizjNiEso9g1jH+YjFPRiz83xLAsCsFVFONGLHSi3pDFIex1HDjfkY67OHzWgRyGQMw7Bgj2hIBrTwi4dpcjY9b8tKEIlCABur42rIDAlw0x3kM+vSghFHWNEToivcgqrUnsG4K4N9wP+Q7HvZHdwnU93IuNMTAPd1iKfem+HqYrbLmLftH4g47tdGePNbm0x7bgt8AQ24JlEPXSpT2GIQ6H3jgEvobGIK6c6YjfiQ1c4LxMQW/FXk0NPPbAbwO3ewUREAEREAEREAEREAEREAEREAEREAERKAYBCXuLQVVxioAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIdF0CECw1wk2wYQkEvnCFZNfvMThFOnfBchG1dtVfj47E/SGcQ5fqFXDlrRgDQe/osFX07wRCuq76m+q8RSANgXgD8ukPkUfDZb1hQQwCX4hIP0ADBIpHSyFQuNsN+RHce0MQ+YYo7MVAkS+n6bhOl9gQt8Hgpum6DqFpCOMwGmc49/X2FgBTsEtXdgionUs7x2BKEa93aKd7chyCXjfArT0Gp/Y4B4p56aK8HUOplJVkiwYdkbFo6zIOjTvg2l6xW9hCbASjIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAJFJCBhbxHhKmoREAEREAEREAEREAEREAEREAEREAEREIGuTYACpsZVCZFv41KIfJdDrwRXX9cFfKkIl7r2TwTVFgCwa3W4L4aHw513JMRboyHegluvulfv6heHzr/TE0B2HIUjbMP7EPnCvbdxCYSmaIwR/whnXqp5NPMsinjh4Gvd407kG6LIl86/GIziXk5zGzqvYwhVYluOkw7sWA7Rr3NjZ3xYHcLAsRswcu644ENTdjcNHnEId527McZuGi7sdGSnUNowODEvhb0USFPMW5eYjkOsy8FqOUaEWF6yfMkFDTwiaNwRQVlQCZfeylFhi8BJOckGyVcQAREQAREQAREQAREQAREQAREQAREQgWISkLC3mHQVtwiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiQAMVj6GK8EaLexuXoAh4OvrGVWAbRr7GLcYqlFNqPAIVbEPPSiTG8B8S8wyHkHQFBL+d7SbzVfj+EjiQCpUOALrNsiFG/GHk0xL3RpU0NMbYgjRS3lmOgaJfi3irkeRT3VuBEkP9ZBcS/kaZpJ+xlvod5jsL4h8k4Fb34s3hi3glxoxDrsrxqxDJMcxyvx7hJ2FuyYl0kucWA07FeKBOGQcw7Engg5K2CYzsbeNAFWUEEREAEREAEREAEREAEREAEREAEREAE2puAhL3tTVzHEwEREAEREAEREAEREAEREAEREAEREAER6NoEoIGKosvxRnT73vgBuoCH2De6CgIyCMri64GGToYKhSdAB8sBEG4NhXCLw+4Qb+0Rtgp2sy4xb+F5K0YRKFcCPo9eASffpcij0RDDua2zIcY2nBRGCp2AAPW6PZvKhOHQO4+AMy8c2yso7lWZ0Al+YJ2CCIiACIiACIiACIiACIiACIiACJQ3AQl7y/v3U+pFQAREQAREQAREQAREQAREQAREQAREQATKnEAM3ZI3rkk4RUZXw8kX09E10I6thdB3I06OTogKuROgQ2VfiLYGwYV3MMaDE+6LFRT17oZl7MZeQQREQARaIhBDQ4wNEPiugIsvhL5RDnBbZ0MMo5Mv1iuUEQG6E/duEvPCrT2yB8oFOLZXDgtbpC/KBK5XEAEREAEREAEREAEREAEREAEREAEREIESICBhbwn8CEqCCIiACIiACIiACIiACIiACIiACIiACIiACJAAuziPbUoIfaMfQkAGcW+MwzosXw+h7wZstIMbcmuFJAFqdLtByNsPuqwBEO0OxHggBLwQ9UYo6IWQN9IHG7ELegUREAERyIcARb7Mn+Gy3rgSQl+4rsdWI29Ggwzntl6fT6Tap+gEqpvc2oegbBgCp3a4tDu3doh6I70l5i06fx1ABERABERABERABERABERABERABEQgLwIS9uaFTTuJgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIQPEJxBshGtsMEdk6iHwxUNwb+wgDBL4c4hshKNuMdNRi6CrOkXRUpIi3DwcItSjm7c8B0xgqmgS9YXSlHqoo/m+kI4iACHRBAmhcEduGvBkNMBrh3hvlALf12IfIl7EsvglMkH8rdACByqbygW7tu6E9Bxp3RODUTrf2Ckw7t3Y2BlEQAREQAREQAREQAREQAREQAREQAREQgRImIGFvCf84SpoIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAINCNAMdkOCnshIoOwNwphb4wDRGRxOEnGIPKNo3v4+FZsuBXj7di7XMVlEOWGuiP9PTGmSLcXxLvoQj0Eh8VwX0xD1BvpxwHT6EI9XAOllsRazS4XzYiACLQPgXhDIj+m0zrFvjEMnKbbepxu6xT61rVPWrrcUejIyzIBbu0huLU7p3a6tFPQyzHKBzXy6HJXhU5YBERABERABERABERABERABERABMqegIS9Zf8T6gREQAREQAREQAREQAREQAREQAREQAREQAS6OoE4uoCPQcwbhbtvDMLe2BYIyTBwOr6NAl/MQ+TrhlpM7wAxDG5MsRnFv9ACt0ug+JZOuhRj1WCMgeNQN4ivIOR1Qw9M94BQq0nUG6aoF+JedpvunHjhyKggAiIgAqVKgHkyG17Qad0NdFun6/pHyGrpto7GGWyEUbYNLzoKPN14UR6EKNZlo44BCUFvBKLeSJNbuxv8yJ0AAAAnSURBVBPyqozoqF9IxxUBERABERABERABERABERABERABESgQgf8PcCBX5sY5k2oAAAAASUVORK5CYII=" + } + }, "cell_type": "markdown", "id": "cbcd2fa0-5108-4d94-a681-493882c295bf", "metadata": {}, "source": [ - "### Filter to 'Other' variants passing filters" + "### Filter to 'Other' variants passing filters\n", + "\n", + "![Screenshot 2024-12-20 at 11.13.08 AM.png](attachment:5565afe1-9dbe-42de-b70e-224b9d8651e4.png)" ] }, { @@ -4855,11 +4889,11 @@ "data": { "text/html": [ "\n", - "\n", - "\n", - "\n", - "\n", - "\n", + "\n", + "\n", + "\n", + "\n", + "\n", "
histograms
grpmax
fafmax
info
qual_hists
raw_qual_hists
age_hists
in_silico_predictors
gnomad
non_ukb
gnomad
non_ukb
vrs
vep
vqsr_results
region_flags
allele_info
gq_hist_all
dp_hist_all
gq_hist_alt
dp_hist_alt
ab_hist_alt
gq_hist_all
dp_hist_all
gq_hist_alt
dp_hist_alt
ab_hist_alt
age_hist_het
age_hist_hom
cadd
locus
alleles
freq
AC
AF
AN
homozygote_count
gen_anc
AC
AF
AN
homozygote_count
gen_anc
faf
faf95_max
faf95_max_gen_anc
faf99_max
faf99_max_gen_anc
faf95_max
faf95_max_gen_anc
faf99_max
faf99_max_gen_anc
a_index
was_split
rsid
filters
FS
MQ
MQRankSum
QUALapprox
QD
ReadPosRankSum
SB
SOR
VarDP
AS_FS
AS_MQ
AS_MQRankSum
AS_pab_max
AS_QUALapprox
AS_QD
AS_ReadPosRankSum
AS_SB_TABLE
AS_SOR
AS_VarDP
singleton
transmitted_singleton
sibling_singleton
omni
mills
monoallelic
only_het
AS_VQSLOD
inbreeding_coeff
VRS_Allele_IDs
VRS_Starts
VRS_Ends
VRS_States
allele_string
end
id
input
intergenic_consequences
most_severe_consequence
motif_feature_consequences
regulatory_feature_consequences
seq_region_name
start
strand
transcript_consequences
variant_class
AS_VQSLOD
AS_culprit
positive_train_site
negative_train_site
non_par
lcr
segdup
fail_interval_qc
outside_ukb_capture_region
outside_broad_capture_region
variant_type
n_alt_alleles
has_star
allele_type
was_mixed
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
phred
raw_score
revel_max
spliceai_ds_max
pangolin_largest_ds
phylop
sift_max
polyphen_max
locus<GRCh38>array<str>array<struct{AC: int32, AF: float64, AN: int32, homozygote_count: int64}>int32float64int32int64strint32float64int32int64strarray<struct{faf95: float64, faf99: float64}>float64strfloat64strfloat64strfloat64strint32boolset<str>set<str>float64float64float64int64float64float64array<int32>float64int32float64float64float64float64int64float64float64array<int32>float64int32boolboolboolboolboolboolboolfloat64float64array<str>array<int32>array<int32>array<str>strint32strstrarray<struct{allele_num: int32, consequence_terms: array<str>, impact: str, variant_allele: str}>strarray<struct{allele_num: int32, consequence_terms: array<str>, high_inf_pos: str, impact: str, motif_feature_id: str, motif_name: str, motif_pos: int32, motif_score_change: float64, transcription_factors: array<str>, strand: int32, variant_allele: str}>array<struct{allele_num: int32, biotype: str, consequence_terms: array<str>, impact: str, regulatory_feature_id: str, variant_allele: str}>strint32int32array<struct{allele_num: int32, amino_acids: str, appris: str, biotype: str, canonical: int32, ccds: str, cdna_start: int32, cdna_end: int32, cds_end: int32, cds_start: int32, codons: str, consequence_terms: array<str>, distance: int32, domains: array<struct{db: str, name: str}>, exon: str, flags: str, gene_id: str, gene_pheno: int32, gene_symbol: str, gene_symbol_source: str, hgnc_id: str, hgvsc: str, hgvsp: str, hgvs_offset: int32, impact: str, intron: str, lof: str, lof_flags: str, lof_filter: str, lof_info: str, mane_select: str, mane_plus_clinical: str, mirna: array<str>, protein_end: int32, protein_start: int32, protein_id: str, source: str, strand: int32, transcript_id: str, tsl: int32, uniprot_isoform: array<str>, variant_allele: str}>strfloat64strboolboolboolboolboolboolboolboolstrint32boolstrboolarray<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64float32float32float64float32float64float64float64float64
chr11:113409636["G","C"][(1,1.87e-03,534,0),(5,7.95e-06,628788,2),(0,0.00e+00,8,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,4,0),(1,2.56e-03,390,0),(0,NA,0,0),(0,0.00e+00,126,0),(0,0.00e+00,6,0),(0,NA,0,0),(0,0.00e+00,192,0),(1,2.92e-03,342,0),(0,NA,0,0),(0,0.00e+00,8,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,0.00e+00,152,0),(1,4.20e-03,238,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,36,0),(0,0.00e+00,90,0),(0,0.00e+00,2,0),(0,0.00e+00,4,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,6,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,0.00e+00,8,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,0.00e+00,26,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,0.00e+00,38,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,0.00e+00,74,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,0.00e+00,144,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,0.00e+00,180,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,NA,0,0),(0,0.00e+00,6,0),(0,0.00e+00,8,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,0.00e+00,222,0),(0,NA,0,0),(0,0.00e+00,6,0),(0,NA,0,0),(0,0.00e+00,6,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,0.00e+00,276,0),(0,0.00e+00,2,0),(0,0.00e+00,6,0),(0,NA,0,0),(0,0.00e+00,6,0),(0,NA,0,0),(0,0.00e+00,280,0),(0,0.00e+00,2,0),(0,0.00e+00,6,0),(0,NA,0,0),(0,0.00e+00,6,0),(0,NA,0,0),(0,0.00e+00,316,0),(0,0.00e+00,2,0),(0,0.00e+00,6,0),(0,NA,0,0),(0,0.00e+00,10,0),(1,2.56e-03,390,0),(0,0.00e+00,2,0),(0,0.00e+00,6,0),(0,NA,0,0),(0,0.00e+00,12,0),(0,0.00e+00,2,0),(0,0.00e+00,6,0),(0,NA,0,0),(0,0.00e+00,14,0),(0,0.00e+00,6,0),(0,NA,0,0),(0,0.00e+00,20,0),(0,0.00e+00,8,0),(0,0.00e+00,28,0),(0,0.00e+00,14,0),(0,0.00e+00,68,0),(0,0.00e+00,38,0),(0,0.00e+00,142,0),(0,0.00e+00,108,0),(0,0.00e+00,342,0),(0,0.00e+00,126,0),(0,0.00e+00,386,0),(1,1.87e-03,534,0),(5,7.95e-06,628784,2),(0,0.00e+00,8,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,4,0),(1,2.56e-03,390,0),(0,NA,0,0),(0,0.00e+00,126,0),(0,0.00e+00,6,0),(0,NA,0,0),(0,0.00e+00,192,0),(1,2.92e-03,342,0),(0,NA,0,0),(0,0.00e+00,8,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,0.00e+00,152,0),(1,4.20e-03,238,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,36,0),(0,0.00e+00,90,0),(0,0.00e+00,2,0),(0,0.00e+00,4,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,6,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,0.00e+00,8,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,0.00e+00,26,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,0.00e+00,26,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,0.00e+00,74,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,NA,0,0),(0,0.00e+00,6,0),(0,0.00e+00,8,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,0.00e+00,130,0),(0,0.00e+00,2,0),(0,0.00e+00,6,0),(0,NA,0,0),(0,0.00e+00,8,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,0.00e+00,144,0),(0,0.00e+00,2,0),(0,0.00e+00,6,0),(0,NA,0,0),(0,0.00e+00,10,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,0.00e+00,148,0),(0,0.00e+00,4,0),(0,0.00e+00,6,0),(0,NA,0,0),(0,0.00e+00,10,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,0.00e+00,222,0),(0,0.00e+00,8,0),(0,0.00e+00,6,0),(0,NA,0,0),(0,0.00e+00,20,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,0.00e+00,254,0),(0,0.00e+00,10,0),(0,NA,0,0),(0,0.00e+00,20,0),(0,NA,0,0),(0,0.00e+00,284,0),(0,0.00e+00,10,0),(0,NA,0,0),(0,0.00e+00,22,0),(0,NA,0,0),(0,0.00e+00,310,0),(0,0.00e+00,10,0),(0,NA,0,0),(0,0.00e+00,34,0),(1,2.56e-03,390,0),(0,0.00e+00,14,0),(0,NA,0,0),(0,0.00e+00,40,0),(0,0.00e+00,18,0),(0,NA,0,0),(0,0.00e+00,54,0),(0,0.00e+00,28,0),(0,0.00e+00,76,0),(0,0.00e+00,58,0),(0,0.00e+00,162,0),(0,0.00e+00,126,0),(0,0.00e+00,264,0),(0,0.00e+00,302,0)]NANANANANANANANANANA[(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]NANANANANANANANA1True{"rs200733424"}{}0.00e+006.00e+010.00e+005821.94e+01-2.11e+00[8,2,15,5]5.82e-01300.00e+006.00e+010.00e+005.41e-015821.94e+01-2.11e+00[8,2,15,5]5.82e-0130FalseFalseFalseFalseFalseFalseFalse4.51e+008.00e-01["ga4gh:VA.BlCz08hG7ZEQzvW20V8Kp4xJMx-pMKes","ga4gh:VA.U4eD7PXtXRCClN6FQteuMLA75Fi7VfV0"][113409635,113409635][113409636,113409636]["G","C"]"G/C"113409636".""chr11\t113409636\t.\tG\tC\t.\t.\tGT"NA"3_prime_UTR_variant"NANA"chr11"1134096361[(1,NA,NA,"protein_coding",NA,"CCDS8362.1",2412,2412,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000346454.7:c.*1091C>G",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"ENSP00000278597","Ensembl",-1,"ENST00000346454",1,["P14416-2"],"C"),(1,NA,"P2","protein_coding",1,"CCDS8361.1",2777,2777,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"8/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000362072.8:c.*1091C>G",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,"NM_000795.4",NA,NA,NA,NA,"ENSP00000354859","Ensembl",-1,"ENST00000362072",1,["P14416-1"],"C"),(1,NA,NA,"processed_transcript",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],4739,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000535984",3,NA,"C"),(1,NA,"A1","protein_coding",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],936,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"ENSP00000438215","Ensembl",-1,"ENST00000538967",5,["P14416-3"],"C"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],4228,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000540600",1,NA,"C"),(1,NA,"P2","protein_coding",NA,"CCDS8361.1",NA,NA,NA,NA,NA,["downstream_gene_variant"],277,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"ENSP00000442172","Ensembl",-1,"ENST00000542968",1,["P14416-1"],"C"),(1,NA,"A1","protein_coding",NA,NA,2453,2453,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000544518.5:c.*1091C>G",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"ENSP00000441068","Ensembl",-1,"ENST00000544518",1,NA,"C"),(1,NA,NA,"lncRNA",1,NA,NA,NA,NA,NA,NA,["intron_variant","non_coding_transcript_variant"],NA,NA,NA,NA,"ENSG00000256757",NA,NA,NA,NA,"ENST00000546284.1:n.245-1911G>C",NA,NA,"MODIFIER","2/3",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",1,"ENST00000546284",3,NA,"C"),(1,NA,NA,"protein_coding",1,NA,2777,2777,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"8/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_000795.4:c.*1091C>G",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,"ENST00000362072.8",NA,NA,NA,NA,"NP_000786.1","RefSeq",-1,"NM_000795.4",NA,NA,"C"),(1,NA,NA,"protein_coding",NA,NA,2690,2690,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"7/7",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_016574.4:c.*1091C>G",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"NP_057658.2","RefSeq",-1,"NM_016574.4",NA,NA,"C"),(1,NA,NA,"protein_coding",NA,NA,2505,2505,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"8/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","XM_017017296.2:c.*1091C>G",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"XP_016872785.1","RefSeq",-1,"XM_017017296.2",NA,NA,"C")]"SNV"4.51e+00"AS_MQ"FalseFalseFalseFalseFalseNATrueFalse"multi-snv"2False"snv"False[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,28,0,76,0,162,0,0,0,0,0,0,0,0,0,0,1]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,101,28,30,82,26,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][313709,2,2,0,442,0,76,0,162,0,0,0,0,0,0,0,0,0,0,1]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][240827,73298,103,28,30,82,26,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][2,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]008.46e+007.01e-01NA0.00e+002.00e-021.94e+00NANA
chr11:113409693["G","A"][(1,1.20e-03,834,0),(16,2.54e-05,628790,3),(0,0.00e+00,6,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,0.00e+00,444,0),(0,0.00e+00,6,0),(1,2.87e-03,348,0),(0,0.00e+00,20,0),(0,0.00e+00,4,0),(0,0.00e+00,270,0),(1,1.77e-03,564,0),(0,0.00e+00,4,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,0.00e+00,172,0),(0,0.00e+00,272,0),(0,0.00e+00,2,0),(0,0.00e+00,4,0),(0,0.00e+00,88,0),(1,3.85e-03,260,0),(0,0.00e+00,4,0),(0,0.00e+00,16,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,6,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,8,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,26,0),(0,0.00e+00,6,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,40,0),(0,0.00e+00,6,0),(0,0.00e+00,2,0),(0,0.00e+00,6,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,0.00e+00,78,0),(0,0.00e+00,2,0),(0,0.00e+00,6,0),(0,NA,0,0),(0,0.00e+00,6,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,0.00e+00,156,0),(0,0.00e+00,6,0),(0,0.00e+00,10,0),(0,NA,0,0),(0,0.00e+00,8,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,0.00e+00,208,0),(0,0.00e+00,8,0),(0,0.00e+00,10,0),(0,NA,0,0),(0,0.00e+00,12,0),(0,0.00e+00,6,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,0.00e+00,256,0),(0,0.00e+00,8,0),(0,0.00e+00,12,0),(0,NA,0,0),(0,0.00e+00,14,0),(0,0.00e+00,2,0),(0,0.00e+00,4,0),(0,0.00e+00,322,0),(0,0.00e+00,10,0),(0,0.00e+00,12,0),(0,NA,0,0),(0,0.00e+00,14,0),(0,0.00e+00,2,0),(0,0.00e+00,324,0),(0,0.00e+00,10,0),(0,0.00e+00,12,0),(0,NA,0,0),(0,0.00e+00,14,0),(0,0.00e+00,2,0),(0,0.00e+00,362,0),(0,0.00e+00,12,0),(0,0.00e+00,16,0),(0,NA,0,0),(0,0.00e+00,16,0),(0,0.00e+00,444,0),(0,0.00e+00,12,0),(0,0.00e+00,18,0),(0,NA,0,0),(0,0.00e+00,18,0),(0,0.00e+00,14,0),(0,0.00e+00,20,0),(0,NA,0,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,4,0),(0,0.00e+00,28,0),(0,0.00e+00,24,0),(0,0.00e+00,38,0),(0,0.00e+00,62,0),(0,0.00e+00,102,0),(0,0.00e+00,134,0),(0,0.00e+00,230,0),(1,3.21e-03,312,0),(1,1.81e-03,552,0),(1,2.87e-03,348,0),(1,1.62e-03,616,0),(1,1.20e-03,834,0),(16,2.54e-05,628784,3),(0,0.00e+00,6,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,0.00e+00,444,0),(0,0.00e+00,6,0),(1,2.87e-03,348,0),(0,0.00e+00,20,0),(0,0.00e+00,4,0),(0,0.00e+00,270,0),(1,1.77e-03,564,0),(0,0.00e+00,4,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,0.00e+00,172,0),(0,0.00e+00,272,0),(0,0.00e+00,2,0),(0,0.00e+00,4,0),(0,0.00e+00,88,0),(1,3.85e-03,260,0),(0,0.00e+00,4,0),(0,0.00e+00,16,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,6,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,8,0),(0,0.00e+00,4,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,26,0),(0,0.00e+00,6,0),(0,0.00e+00,4,0),(0,0.00e+00,6,0),(0,NA,0,0),(0,0.00e+00,6,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,26,0),(0,0.00e+00,6,0),(0,0.00e+00,4,0),(0,0.00e+00,6,0),(0,NA,0,0),(0,0.00e+00,6,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,0.00e+00,78,0),(0,0.00e+00,8,0),(0,0.00e+00,10,0),(0,NA,0,0),(0,0.00e+00,12,0),(0,0.00e+00,6,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,0.00e+00,140,0),(0,0.00e+00,14,0),(0,0.00e+00,12,0),(0,NA,0,0),(0,0.00e+00,14,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,0.00e+00,156,0),(0,0.00e+00,14,0),(0,0.00e+00,12,0),(0,NA,0,0),(0,0.00e+00,16,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,0.00e+00,162,0),(0,0.00e+00,14,0),(0,0.00e+00,12,0),(0,NA,0,0),(0,0.00e+00,16,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,0.00e+00,256,0),(0,0.00e+00,24,0),(0,0.00e+00,20,0),(0,NA,0,0),(0,0.00e+00,28,0),(0,0.00e+00,2,0),(0,0.00e+00,4,0),(0,0.00e+00,294,0),(0,0.00e+00,28,0),(0,NA,0,0),(0,0.00e+00,28,0),(0,0.00e+00,2,0),(0,0.00e+00,328,0),(0,0.00e+00,30,0),(0,NA,0,0),(0,0.00e+00,30,0),(0,0.00e+00,2,0),(0,0.00e+00,356,0),(0,0.00e+00,36,0),(0,NA,0,0),(0,0.00e+00,44,0),(0,0.00e+00,444,0),(0,0.00e+00,44,0),(0,NA,0,0),(0,0.00e+00,58,0),(0,0.00e+00,68,0),(0,0.00e+00,4,0),(0,0.00e+00,76,0),(0,0.00e+00,104,0),(0,0.00e+00,116,0),(1,5.15e-03,194,0),(0,0.00e+00,266,0),(1,2.87e-03,348,0),(1,2.31e-03,432,0),(1,2.02e-03,494,0)]12.87e-033480"nfe"12.87e-033480"nfe"[(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]NANANANANANANANA1TrueNA{}5.32e+006.00e+010.00e+008989.76e+000.00e+00[31,19,21,21]3.30e-01924.52e+006.00e+010.00e+001.00e+005538.01e+000.00e+00[31,19,15,15]3.30e-0169FalseFalseFalseFalseFalseFalseFalse5.16e+003.75e-01["ga4gh:VA.aXxME51cngsJBnH_3WX01B0Ms-SLay9X","ga4gh:VA.ynryFZCH9dBU67nwPrySbnukGdg_Y7dS"][113409692,113409692][113409693,113409693]["G","A"]"G/A"113409693".""chr11\t113409693\t.\tG\tA\t.\t.\tGT"NA"3_prime_UTR_variant"NANA"chr11"1134096931[(1,NA,NA,"protein_coding",NA,"CCDS8362.1",2355,2355,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000346454.7:c.*1034C>T",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"ENSP00000278597","Ensembl",-1,"ENST00000346454",1,["P14416-2"],"A"),(1,NA,"P2","protein_coding",1,"CCDS8361.1",2720,2720,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"8/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000362072.8:c.*1034C>T",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,"NM_000795.4",NA,NA,NA,NA,"ENSP00000354859","Ensembl",-1,"ENST00000362072",1,["P14416-1"],"A"),(1,NA,NA,"processed_transcript",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],4682,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000535984",3,NA,"A"),(1,NA,"A1","protein_coding",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],879,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"ENSP00000438215","Ensembl",-1,"ENST00000538967",5,["P14416-3"],"A"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],4171,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000540600",1,NA,"A"),(1,NA,"P2","protein_coding",NA,"CCDS8361.1",NA,NA,NA,NA,NA,["downstream_gene_variant"],220,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"ENSP00000442172","Ensembl",-1,"ENST00000542968",1,["P14416-1"],"A"),(1,NA,"A1","protein_coding",NA,NA,2396,2396,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000544518.5:c.*1034C>T",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"ENSP00000441068","Ensembl",-1,"ENST00000544518",1,NA,"A"),(1,NA,NA,"lncRNA",1,NA,NA,NA,NA,NA,NA,["intron_variant","non_coding_transcript_variant"],NA,NA,NA,NA,"ENSG00000256757",NA,NA,NA,NA,"ENST00000546284.1:n.245-1854G>A",NA,NA,"MODIFIER","2/3",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",1,"ENST00000546284",3,NA,"A"),(1,NA,NA,"protein_coding",1,NA,2720,2720,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"8/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_000795.4:c.*1034C>T",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,"ENST00000362072.8",NA,NA,NA,NA,"NP_000786.1","RefSeq",-1,"NM_000795.4",NA,NA,"A"),(1,NA,NA,"protein_coding",NA,NA,2633,2633,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"7/7",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_016574.4:c.*1034C>T",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"NP_057658.2","RefSeq",-1,"NM_016574.4",NA,NA,"A"),(1,NA,NA,"protein_coding",NA,NA,2448,2448,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"8/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","XM_017017296.2:c.*1034C>T",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"XP_016872785.1","RefSeq",-1,"XM_017017296.2",NA,NA,"A")]"SNV"5.16e+00"AS_MQ"FalseFalseFalseFalseFalseNATrueFalse"mixed"3False"snv"True[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,25,0,186,0,206,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,211,29,38,105,34,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][313080,4,2,0,906,6,189,2,206,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][240299,73676,214,29,38,105,34,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,3,0,0,1,5,3,1,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][8,4,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,1,1,2,0,1,0,1,0,0,4,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]009.08e+007.68e-01NA0.00e+000.00e+005.70e-01NANA
chr11:113409717["C","T"][(1,1.01e-03,990,0),(5,7.95e-06,628794,2),(0,0.00e+00,10,0),(0,0.00e+00,4,0),(0,0.00e+00,2,0),(0,0.00e+00,18,0),(0,0.00e+00,440,0),(0,0.00e+00,8,0),(1,2.17e-03,460,0),(0,0.00e+00,34,0),(0,0.00e+00,14,0),(0,0.00e+00,312,0),(1,1.47e-03,678,0),(0,0.00e+00,4,0),(0,0.00e+00,6,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,0.00e+00,6,0),(0,0.00e+00,12,0),(0,0.00e+00,170,0),(0,0.00e+00,270,0),(0,NA,0,0),(0,0.00e+00,8,0),(0,0.00e+00,122,0),(1,2.96e-03,338,0),(0,0.00e+00,8,0),(0,0.00e+00,26,0),(0,0.00e+00,2,0),(0,0.00e+00,12,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,6,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,8,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,0.00e+00,26,0),(0,0.00e+00,6,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,0.00e+00,4,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,0.00e+00,40,0),(0,0.00e+00,8,0),(0,0.00e+00,2,0),(0,0.00e+00,8,0),(0,0.00e+00,2,0),(0,0.00e+00,4,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,6,0),(0,0.00e+00,80,0),(0,0.00e+00,4,0),(0,0.00e+00,8,0),(0,0.00e+00,4,0),(0,0.00e+00,8,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,0.00e+00,12,0),(0,0.00e+00,156,0),(0,0.00e+00,10,0),(0,0.00e+00,12,0),(0,0.00e+00,4,0),(0,0.00e+00,10,0),(0,0.00e+00,4,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,0.00e+00,14,0),(0,0.00e+00,206,0),(0,0.00e+00,14,0),(0,0.00e+00,14,0),(0,0.00e+00,4,0),(0,0.00e+00,16,0),(0,0.00e+00,10,0),(0,0.00e+00,2,0),(0,0.00e+00,14,0),(0,0.00e+00,252,0),(0,0.00e+00,16,0),(0,0.00e+00,20,0),(0,0.00e+00,4,0),(0,0.00e+00,20,0),(0,0.00e+00,4,0),(0,0.00e+00,18,0),(0,0.00e+00,318,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,4,0),(0,0.00e+00,22,0),(0,0.00e+00,4,0),(0,0.00e+00,320,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,4,0),(0,0.00e+00,24,0),(0,0.00e+00,4,0),(0,0.00e+00,358,0),(0,0.00e+00,22,0),(0,0.00e+00,24,0),(0,0.00e+00,4,0),(0,0.00e+00,26,0),(0,0.00e+00,440,0),(0,0.00e+00,22,0),(0,0.00e+00,26,0),(0,0.00e+00,8,0),(0,0.00e+00,30,0),(0,0.00e+00,26,0),(0,0.00e+00,34,0),(0,0.00e+00,10,0),(0,0.00e+00,32,0),(0,0.00e+00,38,0),(0,0.00e+00,14,0),(0,0.00e+00,44,0),(0,0.00e+00,42,0),(0,0.00e+00,54,0),(0,0.00e+00,90,0),(0,0.00e+00,136,0),(0,0.00e+00,176,0),(0,0.00e+00,270,0),(0,0.00e+00,414,0),(0,0.00e+00,656,0),(1,2.17e-03,460,0),(0,0.00e+00,732,0),(1,1.01e-03,990,0),(3,4.77e-06,628784,1),(0,0.00e+00,10,0),(0,0.00e+00,4,0),(0,0.00e+00,2,0),(0,0.00e+00,18,0),(0,0.00e+00,440,0),(0,0.00e+00,8,0),(1,2.17e-03,460,0),(0,0.00e+00,34,0),(0,0.00e+00,14,0),(0,0.00e+00,312,0),(1,1.47e-03,678,0),(0,0.00e+00,4,0),(0,0.00e+00,6,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,0.00e+00,6,0),(0,0.00e+00,12,0),(0,0.00e+00,170,0),(0,0.00e+00,270,0),(0,NA,0,0),(0,0.00e+00,8,0),(0,0.00e+00,122,0),(1,2.96e-03,338,0),(0,0.00e+00,8,0),(0,0.00e+00,26,0),(0,0.00e+00,2,0),(0,0.00e+00,12,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,6,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,8,0),(0,0.00e+00,4,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,0.00e+00,4,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,0.00e+00,26,0),(0,0.00e+00,8,0),(0,0.00e+00,6,0),(0,0.00e+00,8,0),(0,0.00e+00,2,0),(0,0.00e+00,8,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,0.00e+00,26,0),(0,0.00e+00,8,0),(0,0.00e+00,6,0),(0,0.00e+00,8,0),(0,0.00e+00,2,0),(0,0.00e+00,8,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,6,0),(0,0.00e+00,80,0),(0,0.00e+00,16,0),(0,0.00e+00,12,0),(0,0.00e+00,4,0),(0,0.00e+00,14,0),(0,0.00e+00,10,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,0.00e+00,12,0),(0,0.00e+00,140,0),(0,0.00e+00,26,0),(0,0.00e+00,20,0),(0,0.00e+00,4,0),(0,0.00e+00,24,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,0.00e+00,14,0),(0,0.00e+00,156,0),(0,0.00e+00,28,0),(0,0.00e+00,20,0),(0,0.00e+00,4,0),(0,0.00e+00,28,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,0.00e+00,14,0),(0,0.00e+00,160,0),(0,0.00e+00,28,0),(0,0.00e+00,20,0),(0,0.00e+00,4,0),(0,0.00e+00,28,0),(0,0.00e+00,2,0),(0,0.00e+00,18,0),(0,0.00e+00,252,0),(0,0.00e+00,48,0),(0,0.00e+00,34,0),(0,0.00e+00,4,0),(0,0.00e+00,42,0),(0,0.00e+00,4,0),(0,0.00e+00,18,0),(0,0.00e+00,290,0),(0,0.00e+00,54,0),(0,0.00e+00,4,0),(0,0.00e+00,44,0),(0,0.00e+00,4,0),(0,0.00e+00,324,0),(0,0.00e+00,56,0),(0,0.00e+00,8,0),(0,0.00e+00,46,0),(0,0.00e+00,4,0),(0,0.00e+00,352,0),(0,0.00e+00,64,0),(0,0.00e+00,8,0),(0,0.00e+00,60,0),(0,0.00e+00,440,0),(0,0.00e+00,72,0),(0,0.00e+00,10,0),(0,0.00e+00,82,0),(0,0.00e+00,96,0),(0,0.00e+00,14,0),(0,0.00e+00,110,0),(0,0.00e+00,140,0),(0,0.00e+00,152,0),(0,0.00e+00,254,0),(0,0.00e+00,316,0),(1,2.17e-03,460,0),(0,0.00e+00,516,0),(0,0.00e+00,592,0)]12.17e-034600"nfe"12.17e-034600"nfe"[(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]NANANANANANANANA2TrueNA{}4.82e-166.00e+010.00e+002099.09e+008.42e-01[6,7,4,6]9.17e-01230.00e+006.00e+010.00e+002.67e-011781.05e+017.20e-02[6,7,3,5]1.00e+0017FalseFalseFalseFalseFalseFalseFalse6.19e+008.00e-01["ga4gh:VA.Q6p6okAv6qHSPSV8MOvy8Hhl0kZ6tQ4U","ga4gh:VA.WIfYWxgEc5ICUUByiDkxaU0AvS4kOB2-"][113409716,113409716][113409717,113409717]["C","T"]"C/T"113409717".""chr11\t113409717\t.\tC\tT\t.\t.\tGT"NA"3_prime_UTR_variant"NANA"chr11"1134097171[(1,NA,NA,"protein_coding",NA,"CCDS8362.1",2331,2331,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000346454.7:c.*1010G>A",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"ENSP00000278597","Ensembl",-1,"ENST00000346454",1,["P14416-2"],"T"),(1,NA,"P2","protein_coding",1,"CCDS8361.1",2696,2696,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"8/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000362072.8:c.*1010G>A",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,"NM_000795.4",NA,NA,NA,NA,"ENSP00000354859","Ensembl",-1,"ENST00000362072",1,["P14416-1"],"T"),(1,NA,NA,"processed_transcript",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],4658,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000535984",3,NA,"T"),(1,NA,"A1","protein_coding",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],855,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"ENSP00000438215","Ensembl",-1,"ENST00000538967",5,["P14416-3"],"T"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],4147,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000540600",1,NA,"T"),(1,NA,"P2","protein_coding",NA,"CCDS8361.1",NA,NA,NA,NA,NA,["downstream_gene_variant"],196,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"ENSP00000442172","Ensembl",-1,"ENST00000542968",1,["P14416-1"],"T"),(1,NA,"A1","protein_coding",NA,NA,2372,2372,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000544518.5:c.*1010G>A",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"ENSP00000441068","Ensembl",-1,"ENST00000544518",1,NA,"T"),(1,NA,NA,"lncRNA",1,NA,NA,NA,NA,NA,NA,["intron_variant","non_coding_transcript_variant"],NA,NA,NA,NA,"ENSG00000256757",NA,NA,NA,NA,"ENST00000546284.1:n.245-1830C>T",NA,NA,"MODIFIER","2/3",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",1,"ENST00000546284",3,NA,"T"),(1,NA,NA,"protein_coding",1,NA,2696,2696,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"8/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_000795.4:c.*1010G>A",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,"ENST00000362072.8",NA,NA,NA,NA,"NP_000786.1","RefSeq",-1,"NM_000795.4",NA,NA,"T"),(1,NA,NA,"protein_coding",NA,NA,2609,2609,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"7/7",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_016574.4:c.*1010G>A",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"NP_057658.2","RefSeq",-1,"NM_016574.4",NA,NA,"T"),(1,NA,NA,"protein_coding",NA,NA,2424,2424,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"8/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","XM_017017296.2:c.*1010G>A",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"XP_016872785.1","RefSeq",-1,"XM_017017296.2",NA,NA,"T")]"SNV"6.19e+00"AS_MQ"FalseFalseFalseFalseFalseNATrueFalse"multi-snv"2False"snv"False[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,95,0,197,0,202,0,0,0,0,0,0,0,1,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,286,30,40,105,34,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][313071,2,3,0,920,0,198,0,202,0,0,0,0,0,0,0,1,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][240226,73668,294,30,40,105,34,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][2,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]001.51e+011.40e+00NA0.00e+000.00e+001.05e+00NANA
chr11:113409758["C","T"][(1,1.23e-03,810,0),(4,6.36e-06,628786,1),(0,0.00e+00,12,0),(0,0.00e+00,4,0),(0,NA,0,0),(0,0.00e+00,14,0),(0,0.00e+00,424,0),(0,0.00e+00,2,0),(0,0.00e+00,320,0),(1,3.57e-02,28,0),(0,0.00e+00,6,0),(0,0.00e+00,280,0),(1,1.89e-03,530,0),(0,0.00e+00,6,0),(0,0.00e+00,6,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,0.00e+00,12,0),(0,0.00e+00,170,0),(0,0.00e+00,254,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,0.00e+00,92,0),(0,0.00e+00,228,0),(0,0.00e+00,6,0),(1,4.55e-02,22,0),(0,NA,0,0),(0,0.00e+00,6,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,8,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,10,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,26,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,0.00e+00,6,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,38,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,0.00e+00,8,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,0.00e+00,74,0),(0,0.00e+00,2,0),(1,1.00e-01,10,0),(0,NA,0,0),(0,0.00e+00,8,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,6,0),(0,0.00e+00,150,0),(0,0.00e+00,6,0),(1,8.33e-02,12,0),(0,NA,0,0),(0,0.00e+00,12,0),(0,0.00e+00,4,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,6,0),(0,0.00e+00,198,0),(0,0.00e+00,8,0),(1,7.14e-02,14,0),(0,NA,0,0),(0,0.00e+00,16,0),(0,0.00e+00,12,0),(0,0.00e+00,4,0),(0,0.00e+00,6,0),(0,0.00e+00,244,0),(0,0.00e+00,10,0),(1,5.56e-02,18,0),(0,0.00e+00,2,0),(0,0.00e+00,18,0),(0,0.00e+00,4,0),(0,0.00e+00,14,0),(0,0.00e+00,306,0),(0,0.00e+00,12,0),(1,5.56e-02,18,0),(0,0.00e+00,2,0),(0,0.00e+00,18,0),(0,0.00e+00,4,0),(0,0.00e+00,308,0),(0,0.00e+00,12,0),(1,5.56e-02,18,0),(0,0.00e+00,2,0),(0,0.00e+00,18,0),(0,0.00e+00,4,0),(0,0.00e+00,348,0),(0,0.00e+00,12,0),(1,5.00e-02,20,0),(0,0.00e+00,2,0),(0,0.00e+00,22,0),(0,0.00e+00,424,0),(0,0.00e+00,14,0),(1,4.55e-02,22,0),(0,0.00e+00,2,0),(0,0.00e+00,24,0),(0,0.00e+00,16,0),(1,3.57e-02,28,0),(0,0.00e+00,2,0),(0,0.00e+00,24,0),(0,0.00e+00,22,0),(0,0.00e+00,6,0),(0,0.00e+00,36,0),(0,0.00e+00,28,0),(0,0.00e+00,44,0),(0,0.00e+00,84,0),(1,8.33e-03,120,0),(0,0.00e+00,130,0),(1,4.27e-03,234,0),(0,0.00e+00,290,0),(1,1.92e-03,522,0),(0,0.00e+00,320,0),(1,1.70e-03,588,0),(1,1.23e-03,810,0),(4,6.36e-06,628784,1),(0,0.00e+00,12,0),(0,0.00e+00,4,0),(0,NA,0,0),(0,0.00e+00,14,0),(0,0.00e+00,424,0),(0,0.00e+00,2,0),(0,0.00e+00,320,0),(1,3.57e-02,28,0),(0,0.00e+00,6,0),(0,0.00e+00,280,0),(1,1.89e-03,530,0),(0,0.00e+00,6,0),(0,0.00e+00,6,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,0.00e+00,12,0),(0,0.00e+00,170,0),(0,0.00e+00,254,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,0.00e+00,92,0),(0,0.00e+00,228,0),(0,0.00e+00,6,0),(1,4.55e-02,22,0),(0,NA,0,0),(0,0.00e+00,6,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,8,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,10,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,0.00e+00,4,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,26,0),(0,0.00e+00,2,0),(0,0.00e+00,4,0),(0,0.00e+00,8,0),(0,NA,0,0),(0,0.00e+00,8,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,26,0),(0,0.00e+00,2,0),(0,0.00e+00,4,0),(0,0.00e+00,8,0),(0,NA,0,0),(0,0.00e+00,8,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,0.00e+00,74,0),(0,0.00e+00,8,0),(1,8.33e-02,12,0),(0,NA,0,0),(0,0.00e+00,14,0),(0,0.00e+00,12,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,6,0),(0,0.00e+00,134,0),(0,0.00e+00,16,0),(1,5.56e-02,18,0),(0,NA,0,0),(0,0.00e+00,18,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,6,0),(0,0.00e+00,150,0),(0,0.00e+00,16,0),(1,5.56e-02,18,0),(0,NA,0,0),(0,0.00e+00,22,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,6,0),(0,0.00e+00,156,0),(0,0.00e+00,16,0),(1,5.56e-02,18,0),(0,NA,0,0),(0,0.00e+00,22,0),(0,0.00e+00,4,0),(0,0.00e+00,14,0),(0,0.00e+00,244,0),(0,0.00e+00,32,0),(1,3.57e-02,28,0),(0,0.00e+00,2,0),(0,0.00e+00,36,0),(0,0.00e+00,4,0),(0,0.00e+00,14,0),(0,0.00e+00,280,0),(0,0.00e+00,38,0),(0,0.00e+00,2,0),(0,0.00e+00,36,0),(0,0.00e+00,4,0),(0,0.00e+00,312,0),(0,0.00e+00,46,0),(0,0.00e+00,2,0),(0,0.00e+00,38,0),(0,0.00e+00,4,0),(0,0.00e+00,342,0),(0,0.00e+00,48,0),(0,0.00e+00,2,0),(0,0.00e+00,50,0),(0,0.00e+00,424,0),(0,0.00e+00,60,0),(0,0.00e+00,2,0),(0,0.00e+00,62,0),(0,0.00e+00,86,0),(0,0.00e+00,6,0),(0,0.00e+00,92,0),(0,0.00e+00,106,0),(1,7.58e-03,132,0),(0,0.00e+00,178,0),(1,3.85e-03,260,0),(0,0.00e+00,320,0),(1,2.37e-03,422,0),(1,2.08e-03,480,0)]NANANANANANANANANANA[(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]NANANANANANANANA2True{"rs200557458"}{}0.00e+006.00e+010.00e+009471.26e+01-6.74e-01[16,19,18,22]7.22e-01750.00e+006.00e+010.00e+001.00e+007031.12e+01-1.13e+00[16,19,14,17]7.13e-0163FalseFalseFalseFalseFalseFalseFalse6.36e+005.00e-01["ga4gh:VA.k_gesWx8TbLs23MHIkc3NaVscBWVDrSE","ga4gh:VA.NJz3hsVBrqbTn17g5TCHVwOZKQSr_-gG"][113409757,113409757][113409758,113409758]["C","T"]"C/T"113409758".""chr11\t113409758\t.\tC\tT\t.\t.\tGT"NA"3_prime_UTR_variant"NANA"chr11"1134097581[(1,NA,NA,"protein_coding",NA,"CCDS8362.1",2290,2290,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000346454.7:c.*969G>A",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"ENSP00000278597","Ensembl",-1,"ENST00000346454",1,["P14416-2"],"T"),(1,NA,"P2","protein_coding",1,"CCDS8361.1",2655,2655,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"8/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000362072.8:c.*969G>A",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,"NM_000795.4",NA,NA,NA,NA,"ENSP00000354859","Ensembl",-1,"ENST00000362072",1,["P14416-1"],"T"),(1,NA,NA,"processed_transcript",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],4617,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000535984",3,NA,"T"),(1,NA,"A1","protein_coding",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],814,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"ENSP00000438215","Ensembl",-1,"ENST00000538967",5,["P14416-3"],"T"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],4106,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000540600",1,NA,"T"),(1,NA,"P2","protein_coding",NA,"CCDS8361.1",NA,NA,NA,NA,NA,["downstream_gene_variant"],155,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"ENSP00000442172","Ensembl",-1,"ENST00000542968",1,["P14416-1"],"T"),(1,NA,"A1","protein_coding",NA,NA,2331,2331,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000544518.5:c.*969G>A",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"ENSP00000441068","Ensembl",-1,"ENST00000544518",1,NA,"T"),(1,NA,NA,"lncRNA",1,NA,NA,NA,NA,NA,NA,["intron_variant","non_coding_transcript_variant"],NA,NA,NA,NA,"ENSG00000256757",NA,NA,NA,NA,"ENST00000546284.1:n.245-1789C>T",NA,NA,"MODIFIER","2/3",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",1,"ENST00000546284",3,NA,"T"),(1,NA,NA,"protein_coding",1,NA,2655,2655,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"8/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_000795.4:c.*969G>A",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,"ENST00000362072.8",NA,NA,NA,NA,"NP_000786.1","RefSeq",-1,"NM_000795.4",NA,NA,"T"),(1,NA,NA,"protein_coding",NA,NA,2568,2568,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"7/7",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_016574.4:c.*969G>A",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"NP_057658.2","RefSeq",-1,"NM_016574.4",NA,NA,"T"),(1,NA,NA,"protein_coding",NA,NA,2383,2383,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"8/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","XM_017017296.2:c.*969G>A",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"XP_016872785.1","RefSeq",-1,"XM_017017296.2",NA,NA,"T")]"SNV"6.36e+00"AS_MQ"FalseFalseFalseFalseFalseNATrueFalse"multi-snv"2False"snv"False[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,100,0,111,0,193,0,0,0,0,0,1,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,200,35,36,102,32,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][313441,3,2,1,640,0,111,1,193,0,0,0,0,0,1,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][240307,73671,209,36,36,102,32,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,1,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][1,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]009.13e+007.73e-01NA1.00e-023.00e-022.58e+00NANA
chr11:113410002["C","A"][(128,1.34e-01,952,15),(18463,2.94e-02,628994,6837),(0,0.00e+00,6,0),(17,1.93e-01,88,4),(0,0.00e+00,8,0),(2,5.00e-01,4,0),(3,1.88e-01,16,0),(0,NA,0,0),(101,1.30e-01,774,10),(5,1.39e-01,36,1),(0,0.00e+00,20,0),(58,1.39e-01,416,5),(70,1.31e-01,536,10),(0,NA,0,0),(0,0.00e+00,6,0),(8,1.60e-01,50,1),(9,2.37e-01,38,3),(0,0.00e+00,6,0),(0,0.00e+00,2,0),(0,NA,0,0),(2,5.00e-01,4,0),(2,3.33e-01,6,0),(1,1.00e-01,10,0),(0,NA,0,0),(0,NA,0,0),(47,1.37e-01,342,4),(54,1.25e-01,432,6),(1,1.67e-01,6,0),(4,1.33e-01,30,1),(0,0.00e+00,6,0),(0,0.00e+00,14,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,NA,0,0),(1,5.00e-01,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,NA,0,0),(1,5.00e-01,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(1,1.67e-01,6,0),(0,NA,0,0),(1,5.00e-01,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(1,1.25e-01,8,0),(0,NA,0,0),(1,5.00e-01,2,0),(0,NA,0,0),(0,NA,0,0),(1,5.00e-01,2,0),(1,5.00e-01,2,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,0.00e+00,2,0),(2,1.25e-01,16,0),(0,0.00e+00,2,0),(1,5.00e-01,2,0),(0,NA,0,0),(1,5.00e-01,2,0),(2,2.50e-01,8,0),(0,0.00e+00,4,0),(1,5.00e-01,2,0),(0,0.00e+00,2,0),(7,1.84e-01,38,1),(0,0.00e+00,6,0),(1,5.00e-01,2,0),(1,1.67e-01,6,0),(3,3.00e-01,10,0),(4,2.50e-01,16,1),(0,0.00e+00,6,0),(2,5.00e-01,4,0),(0,0.00e+00,2,0),(13,2.50e-01,52,3),(0,0.00e+00,8,0),(1,5.00e-01,2,0),(1,1.25e-01,8,0),(5,4.17e-01,12,1),(4,2.50e-01,16,1),(0,0.00e+00,12,0),(3,3.00e-01,10,0),(0,0.00e+00,6,0),(16,2.35e-01,68,4),(2,5.00e-01,4,0),(2,2.00e-01,10,0),(5,2.50e-01,20,1),(4,2.00e-01,20,1),(0,0.00e+00,14,0),(5,3.57e-01,14,1),(16,2.05e-01,78,4),(2,5.00e-01,4,0),(3,2.14e-01,14,0),(5,2.27e-01,22,1),(4,1.54e-01,26,1),(0,0.00e+00,14,0),(6,2.73e-01,22,1),(16,2.05e-01,78,4),(3,2.14e-01,14,0),(5,2.27e-01,22,1),(4,1.54e-01,26,1),(0,0.00e+00,14,0),(6,2.73e-01,22,1),(17,1.93e-01,88,4),(3,1.88e-01,16,0),(5,1.79e-01,28,1),(5,1.79e-01,28,1),(0,0.00e+00,16,0),(6,2.31e-01,26,1),(3,1.88e-01,16,0),(5,1.56e-01,32,1),(5,1.56e-01,32,1),(0,0.00e+00,20,0),(6,2.00e-01,30,1),(5,1.39e-01,36,1),(5,1.39e-01,36,1),(0,0.00e+00,20,0),(6,1.58e-01,38,1),(10,2.08e-01,48,2),(0,0.00e+00,20,0),(6,1.36e-01,44,1),(10,1.79e-01,56,2),(11,2.12e-01,52,2),(19,1.51e-01,126,4),(16,1.57e-01,102,2),(34,1.42e-01,240,4),(34,1.37e-01,248,4),(91,1.35e-01,674,9),(90,1.47e-01,614,11),(101,1.30e-01,774,10),(100,1.46e-01,684,12),(128,1.34e-01,952,15),(18256,2.90e-02,628782,6734),(0,0.00e+00,6,0),(17,1.93e-01,88,4),(0,0.00e+00,8,0),(2,5.00e-01,4,0),(3,1.88e-01,16,0),(0,NA,0,0),(101,1.30e-01,774,10),(5,1.39e-01,36,1),(0,0.00e+00,20,0),(58,1.39e-01,416,5),(70,1.31e-01,536,10),(0,NA,0,0),(0,0.00e+00,6,0),(8,1.60e-01,50,1),(9,2.37e-01,38,3),(0,0.00e+00,6,0),(0,0.00e+00,2,0),(0,NA,0,0),(2,5.00e-01,4,0),(2,3.33e-01,6,0),(1,1.00e-01,10,0),(0,NA,0,0),(0,NA,0,0),(47,1.37e-01,342,4),(54,1.25e-01,432,6),(1,1.67e-01,6,0),(4,1.33e-01,30,1),(0,0.00e+00,6,0),(0,0.00e+00,14,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,NA,0,0),(1,5.00e-01,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,4,0),(0,NA,0,0),(1,5.00e-01,2,0),(0,NA,0,0),(0,NA,0,0),(1,5.00e-01,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(1,1.67e-01,6,0),(0,NA,0,0),(1,5.00e-01,2,0),(0,NA,0,0),(0,NA,0,0),(1,5.00e-01,2,0),(1,5.00e-01,2,0),(0,0.00e+00,2,0),(1,5.00e-01,2,0),(0,NA,0,0),(1,1.67e-01,6,0),(0,NA,0,0),(1,5.00e-01,2,0),(0,NA,0,0),(0,NA,0,0),(1,5.00e-01,2,0),(1,2.50e-01,4,0),(0,0.00e+00,2,0),(1,5.00e-01,2,0),(0,0.00e+00,2,0),(2,1.11e-01,18,0),(0,0.00e+00,4,0),(1,5.00e-01,2,0),(0,NA,0,0),(5,2.50e-01,20,1),(4,2.50e-01,16,1),(0,0.00e+00,6,0),(3,3.75e-01,8,0),(0,0.00e+00,6,0),(4,1.25e-01,32,1),(0,0.00e+00,6,0),(1,5.00e-01,2,0),(1,2.50e-01,4,0),(5,1.39e-01,36,1),(4,2.22e-01,18,1),(0,0.00e+00,10,0),(6,2.50e-01,24,1),(7,1.84e-01,38,1),(0,0.00e+00,8,0),(1,5.00e-01,2,0),(1,1.67e-01,6,0),(5,1.39e-01,36,1),(4,1.67e-01,24,1),(0,0.00e+00,12,0),(6,2.31e-01,26,1),(7,1.84e-01,38,1),(0,0.00e+00,8,0),(1,5.00e-01,2,0),(1,1.67e-01,6,0),(5,1.39e-01,36,1),(4,1.54e-01,26,1),(0,0.00e+00,12,0),(6,2.14e-01,28,1),(16,2.35e-01,68,4),(2,5.00e-01,4,0),(2,2.00e-01,10,0),(10,1.72e-01,58,2),(5,1.39e-01,36,1),(0,0.00e+00,14,0),(6,1.36e-01,44,1),(16,2.22e-01,72,4),(2,5.00e-01,4,0),(3,2.14e-01,14,0),(11,1.83e-01,60,2),(0,0.00e+00,16,0),(6,1.36e-01,44,1),(16,1.95e-01,82,4),(3,2.14e-01,14,0),(12,1.67e-01,72,2),(0,0.00e+00,18,0),(9,1.88e-01,48,2),(17,1.93e-01,88,4),(3,1.88e-01,16,0),(13,1.63e-01,80,2),(0,0.00e+00,20,0),(11,2.12e-01,52,2),(3,1.88e-01,16,0),(15,1.67e-01,90,3),(0,0.00e+00,20,0),(12,1.94e-01,62,2),(21,1.50e-01,140,4),(0,0.00e+00,20,0),(15,1.79e-01,84,2),(29,1.42e-01,204,4),(19,1.48e-01,128,3),(54,1.34e-01,402,6),(42,1.49e-01,282,6),(101,1.30e-01,774,10),(71,1.43e-01,498,10),(83,1.47e-01,564,11)]25.00e-0140"eas"25.00e-0140"eas"[(1.16e-01,1.08e-01),(0.00e+00,0.00e+00),(1.23e-01,1.01e-01),(8.88e-02,3.71e-02),(0.00e+00,0.00e+00),(1.10e-01,1.02e-01),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,(1.16e-01,1.08e-01),(0.00e+00,0.00e+00),(1.23e-01,1.01e-01),(8.88e-02,3.71e-02),(0.00e+00,0.00e+00),(1.10e-01,1.02e-01),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]1.23e-01"amr"1.02e-01"nfe"1.23e-01"amr"1.02e-01"nfe"1True{"rs6278"}{}2.80e+006.00e+010.00e+0019982391.99e+010.00e+00[19752,12842,45058,22649]9.83e-011002922.80e+006.00e+010.00e+001.00e+0019980921.99e+010.00e+00[19752,12842,45055,22646]9.83e-01100286FalseNANATrueFalseFalseFalse5.57e+007.33e-01["ga4gh:VA.HjAJ4gj43VVFJQmV-h5WuPZZPBmNwSFZ","ga4gh:VA.sT14AsCSWlf2AqH0whCJCrPrWiW09OFx"][113410001,113410001][113410002,113410002]["C","A"]"C/A"113410002".""chr11\t113410002\t.\tC\tA\t.\t.\tGT"NA"3_prime_UTR_variant"NANA"chr11"1134100021[(1,NA,NA,"protein_coding",NA,"CCDS8362.1",2046,2046,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000346454.7:c.*725G>T",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"ENSP00000278597","Ensembl",-1,"ENST00000346454",1,["P14416-2"],"A"),(1,NA,"P2","protein_coding",1,"CCDS8361.1",2411,2411,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"8/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000362072.8:c.*725G>T",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,"NM_000795.4",NA,NA,NA,NA,"ENSP00000354859","Ensembl",-1,"ENST00000362072",1,["P14416-1"],"A"),(1,NA,NA,"processed_transcript",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],4373,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000535984",3,NA,"A"),(1,NA,"A1","protein_coding",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],570,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"ENSP00000438215","Ensembl",-1,"ENST00000538967",5,["P14416-3"],"A"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],3862,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000540600",1,NA,"A"),(1,NA,"P2","protein_coding",NA,"CCDS8361.1",2378,2378,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000542968.5:c.*725G>T",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"ENSP00000442172","Ensembl",-1,"ENST00000542968",1,["P14416-1"],"A"),(1,NA,"A1","protein_coding",NA,NA,2087,2087,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000544518.5:c.*725G>T",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"ENSP00000441068","Ensembl",-1,"ENST00000544518",1,NA,"A"),(1,NA,NA,"lncRNA",1,NA,NA,NA,NA,NA,NA,["intron_variant","non_coding_transcript_variant"],NA,NA,NA,NA,"ENSG00000256757",NA,NA,NA,NA,"ENST00000546284.1:n.245-1545C>A",NA,NA,"MODIFIER","2/3",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",1,"ENST00000546284",3,NA,"A"),(1,NA,NA,"protein_coding",1,NA,2411,2411,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"8/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_000795.4:c.*725G>T",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,"ENST00000362072.8",NA,NA,NA,NA,"NP_000786.1","RefSeq",-1,"NM_000795.4",NA,NA,"A"),(1,NA,NA,"protein_coding",NA,NA,2324,2324,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"7/7",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_016574.4:c.*725G>T",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"NP_057658.2","RefSeq",-1,"NM_016574.4",NA,NA,"A"),(1,NA,NA,"protein_coding",NA,NA,2139,2139,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"8/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","XM_017017296.2:c.*725G>T",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"XP_016872785.1","RefSeq",-1,"XM_017017296.2",NA,NA,"A")]"SNV"5.57e+00"AS_MQ"TrueTrueFalseFalseFalseNATrueFalse"multi-snv"3False"snv"False[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,120,1,223,5,34,1,5,0,2,5,7,1,3,2,1,66]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,438,30,5,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,1,1,11,5,2,1,5,0,2,5,7,1,3,2,1,66]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,108,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,3,8,0,4,8,6,30,15,8,9,3,1,3,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][301848,5644,543,415,1889,1584,436,212,123,210,485,568,76,48,44,53,135,57,19,108]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][238198,75776,482,33,5,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][398,5642,541,415,716,1584,224,212,91,210,485,568,76,48,44,53,135,57,19,108]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][9330,2176,115,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,4,4,27,107,217,41,416,6,1084,414,43,1634,53,495,208,34,2,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,1,1,5,4,3,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,1,2,2,0,0,0]002.02e+009.23e-02NA0.00e+000.00e+001.61e+00NANA
chr11:113410657["C","T"][(18,1.25e-05,1445518,0),(24,1.64e-05,1461322,0),(1,3.02e-05,33096,0),(0,0.00e+00,44684,0),(0,0.00e+00,26010,0),(4,1.01e-04,39606,0),(0,0.00e+00,53166,0),(0,0.00e+00,4742,0),(10,9.10e-06,1098860,0),(1,1.67e-05,59762,0),(2,2.34e-05,85592,0),(12,1.65e-05,725392,0),(6,8.33e-06,720126,0),(1,5.24e-05,19098,0),(0,0.00e+00,13998,0),(0,0.00e+00,25658,0),(0,0.00e+00,19026,0),(0,0.00e+00,12572,0),(0,0.00e+00,13438,0),(4,1.94e-04,20642,0),(0,0.00e+00,18964,0),(0,0.00e+00,27516,0),(0,0.00e+00,25650,0),(0,0.00e+00,1942,0),(0,0.00e+00,2800,0),(6,1.06e-05,564798,0),(4,7.49e-06,534062,0),(1,3.18e-05,31454,0),(0,0.00e+00,28308,0),(0,0.00e+00,21712,0),(2,3.13e-05,63880,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,12,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,162,0),(0,0.00e+00,198,0),(0,0.00e+00,198,0),(0,0.00e+00,200,0),(0,0.00e+00,198,0),(0,0.00e+00,984,0),(0,0.00e+00,1000,0),(0,0.00e+00,994,0),(0,0.00e+00,1000,0),(0,0.00e+00,994,0),(0,0.00e+00,828,0),(0,0.00e+00,996,0),(0,0.00e+00,986,0),(0,0.00e+00,992,0),(0,0.00e+00,994,0),(0,0.00e+00,1976,0),(0,0.00e+00,2000,0),(0,0.00e+00,1984,0),(0,0.00e+00,1998,0),(0,0.00e+00,1992,0),(0,0.00e+00,1656,0),(0,0.00e+00,1988,0),(0,0.00e+00,1984,0),(0,0.00e+00,1976,0),(0,0.00e+00,1990,0),(0,0.00e+00,3952,0),(0,0.00e+00,4000,0),(0,0.00e+00,3978,0),(0,0.00e+00,3986,0),(0,0.00e+00,3984,0),(0,0.00e+00,3280,0),(0,0.00e+00,3970,0),(0,0.00e+00,3964,0),(0,0.00e+00,3962,0),(0,0.00e+00,3966,0),(0,0.00e+00,5692,0),(0,0.00e+00,5766,0),(0,0.00e+00,5732,0),(0,0.00e+00,5744,0),(0,0.00e+00,5740,0),(0,0.00e+00,4742,0),(0,0.00e+00,5714,0),(0,0.00e+00,5718,0),(0,0.00e+00,5716,0),(0,0.00e+00,5722,0),(0,0.00e+00,9872,0),(0,0.00e+00,9994,0),(0,0.00e+00,9944,0),(1,1.00e-04,9960,0),(0,0.00e+00,9938,0),(0,0.00e+00,9900,0),(0,0.00e+00,9894,0),(0,0.00e+00,9918,0),(0,0.00e+00,9912,0),(0,0.00e+00,19778,0),(0,0.00e+00,19982,0),(0,0.00e+00,19900,0),(1,5.02e-05,19940,0),(0,0.00e+00,19894,0),(0,0.00e+00,19780,0),(0,0.00e+00,19800,0),(0,0.00e+00,19830,0),(0,0.00e+00,19784,0),(0,0.00e+00,25850,0),(0,0.00e+00,26110,0),(0,0.00e+00,26010,0),(3,1.15e-04,26064,0),(0,0.00e+00,26006,0),(0,0.00e+00,25842,0),(0,0.00e+00,25870,0),(0,0.00e+00,25918,0),(0,0.00e+00,25850,0),(1,3.02e-05,33096,0),(0,0.00e+00,33450,0),(4,1.20e-04,33404,0),(0,0.00e+00,33316,0),(0,0.00e+00,33110,0),(0,0.00e+00,33158,0),(0,0.00e+00,33202,0),(0,0.00e+00,33108,0),(0,0.00e+00,39666,0),(4,1.01e-04,39606,0),(0,0.00e+00,39508,0),(0,0.00e+00,39258,0),(0,0.00e+00,39300,0),(1,2.54e-05,39374,0),(0,0.00e+00,39266,0),(0,0.00e+00,39964,0),(0,0.00e+00,39808,0),(0,0.00e+00,39554,0),(0,0.00e+00,39598,0),(1,2.52e-05,39670,0),(0,0.00e+00,39562,0),(0,0.00e+00,44684,0),(0,0.00e+00,44514,0),(0,0.00e+00,44226,0),(0,0.00e+00,44266,0),(1,2.25e-05,44352,0),(0,0.00e+00,44244,0),(0,0.00e+00,53166,0),(0,0.00e+00,52822,0),(1,1.89e-05,52870,0),(1,1.89e-05,52986,0),(0,0.00e+00,52850,0),(0,0.00e+00,59694,0),(1,1.67e-05,59762,0),(1,1.67e-05,59908,0),(0,0.00e+00,59748,0),(0,0.00e+00,85258,0),(2,2.34e-05,85592,0),(0,0.00e+00,85300,0),(0,0.00e+00,98824,0),(0,0.00e+00,98906,0),(1,5.06e-06,197618,0),(1,5.06e-06,197732,0),(4,1.01e-05,395192,0),(4,1.01e-05,395514,0),(7,7.08e-06,988108,0),(11,1.11e-05,988718,0),(10,9.10e-06,1098860,0),(13,1.18e-05,1099436,0),(11,1.76e-05,626724,0),(11,1.75e-05,628782,0),(1,5.67e-05,17648,0),(0,0.00e+00,43726,0),(0,0.00e+00,20972,0),(4,1.11e-04,36050,0),(0,0.00e+00,52892,0),(0,0.00e+00,3150,0),(4,1.14e-05,349876,0),(0,0.00e+00,32960,0),(2,2.88e-05,69450,0),(7,2.45e-05,285192,0),(4,1.17e-05,341532,0),(1,9.74e-05,10264,0),(0,0.00e+00,7384,0),(0,0.00e+00,25030,0),(0,0.00e+00,18696,0),(0,0.00e+00,9834,0),(0,0.00e+00,11138,0),(4,2.19e-04,18284,0),(0,0.00e+00,17766,0),(0,0.00e+00,27268,0),(0,0.00e+00,25624,0),(0,0.00e+00,1368,0),(0,0.00e+00,1782,0),(2,1.23e-05,162102,0),(2,1.07e-05,187774,0),(0,0.00e+00,16698,0),(0,0.00e+00,16262,0),(0,0.00e+00,14344,0),(2,3.63e-05,55106,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,12,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,152,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,998,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,994,0),(0,0.00e+00,764,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,992,0),(0,0.00e+00,1000,0),(0,0.00e+00,1998,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,1998,0),(0,0.00e+00,1992,0),(0,0.00e+00,1552,0),(0,0.00e+00,2000,0),(0,0.00e+00,1998,0),(0,0.00e+00,1986,0),(0,0.00e+00,1994,0),(0,0.00e+00,3988,0),(0,0.00e+00,4000,0),(0,0.00e+00,3998,0),(0,0.00e+00,3996,0),(0,0.00e+00,3984,0),(0,0.00e+00,3034,0),(0,0.00e+00,4000,0),(0,0.00e+00,3996,0),(0,0.00e+00,3976,0),(0,0.00e+00,3992,0),(0,0.00e+00,4136,0),(0,0.00e+00,4148,0),(0,0.00e+00,4146,0),(0,0.00e+00,4144,0),(0,0.00e+00,4130,0),(0,0.00e+00,3150,0),(0,0.00e+00,4148,0),(0,0.00e+00,4142,0),(0,0.00e+00,4124,0),(0,0.00e+00,4140,0),(0,0.00e+00,9974,0),(0,0.00e+00,9998,0),(0,0.00e+00,9994,0),(1,1.00e-04,9990,0),(0,0.00e+00,9938,0),(0,0.00e+00,10000,0),(0,0.00e+00,9966,0),(0,0.00e+00,9932,0),(0,0.00e+00,9974,0),(1,5.67e-05,17648,0),(0,0.00e+00,17688,0),(0,0.00e+00,17682,0),(1,5.66e-05,17680,0),(0,0.00e+00,17598,0),(0,0.00e+00,17684,0),(0,0.00e+00,17634,0),(0,0.00e+00,17590,0),(0,0.00e+00,17642,0),(0,0.00e+00,19994,0),(0,0.00e+00,19988,0),(1,5.00e-05,19986,0),(0,0.00e+00,19894,0),(0,0.00e+00,19986,0),(0,0.00e+00,19926,0),(0,0.00e+00,19888,0),(0,0.00e+00,19942,0),(0,0.00e+00,20976,0),(0,0.00e+00,20972,0),(1,4.77e-05,20970,0),(0,0.00e+00,20874,0),(0,0.00e+00,20970,0),(0,0.00e+00,20906,0),(0,0.00e+00,20866,0),(0,0.00e+00,20924,0),(0,0.00e+00,33088,0),(4,1.21e-04,33082,0),(0,0.00e+00,32938,0),(0,0.00e+00,33078,0),(0,0.00e+00,32960,0),(1,3.04e-05,32912,0),(0,0.00e+00,33000,0),(0,0.00e+00,36060,0),(4,1.11e-04,36050,0),(0,0.00e+00,35892,0),(0,0.00e+00,36046,0),(1,2.79e-05,35868,0),(0,0.00e+00,35962,0),(0,0.00e+00,39988,0),(0,0.00e+00,39810,0),(0,0.00e+00,39974,0),(1,2.51e-05,39776,0),(0,0.00e+00,39878,0),(0,0.00e+00,43726,0),(0,0.00e+00,43536,0),(0,0.00e+00,43712,0),(1,2.30e-05,43498,0),(0,0.00e+00,43608,0),(0,0.00e+00,52892,0),(0,0.00e+00,53106,0),(2,3.78e-05,52854,0),(0,0.00e+00,52980,0),(0,0.00e+00,69750,0),(2,2.88e-05,69450,0),(0,0.00e+00,69582,0),(1,1.00e-05,99946,0),(0,0.00e+00,99660,0),(3,1.50e-05,199866,0),(3,1.50e-05,199362,0),(4,1.14e-05,349876,0),(5,1.43e-05,348968,0),(6,1.50e-05,398694,0)]41.01e-04396060"eas"41.11e-04360500"eas"[(7.78e-06,6.42e-06),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(3.35e-05,1.99e-05),(0.00e+00,0.00e+00),(4.60e-06,3.36e-06),(3.88e-06,1.45e-06),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,(9.41e-06,6.88e-06),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(3.78e-05,2.24e-05),(0.00e+00,0.00e+00),(3.67e-06,1.80e-06),(4.78e-06,1.79e-06),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]3.35e-05"eas"1.99e-05"eas"3.78e-05"eas"2.24e-05"eas"3True{"rs200559334"}{}0.00e+006.00e+010.00e+00129921.27e+010.00e+00[543,53,386,37]7.04e-0110194.82e-166.00e+010.00e+001.00e+00128911.32e+01-3.90e-02[543,53,379,36]7.13e-01976FalseNANAFalseFalseFalseFalse9.14e+00-1.64e-05["ga4gh:VA.xwHxL6yO3I874HqhfGar1ZIaOp66ifsx","ga4gh:VA.eglRJIN5-izMH1peMx_9JvpakP8TCBXX"][113410656,113410656][113410657,113410657]["C","T"]"C/T"113410657".""chr11\t113410657\t.\tC\tT\t.\t.\tGT"NA"3_prime_UTR_variant"NANA"chr11"1134106571[(1,NA,NA,"protein_coding",NA,"CCDS8362.1",1391,1391,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000346454.7:c.*70G>A",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"ENSP00000278597","Ensembl",-1,"ENST00000346454",1,["P14416-2"],"T"),(1,NA,"P2","protein_coding",1,"CCDS8361.1",1756,1756,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"8/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000362072.8:c.*70G>A",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,"NM_000795.4",NA,NA,NA,NA,"ENSP00000354859","Ensembl",-1,"ENST00000362072",1,["P14416-1"],"T"),(1,NA,NA,"processed_transcript",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],3718,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000535984",3,NA,"T"),(1,NA,"A1","protein_coding",NA,NA,1408,1408,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"8/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000538967.5:c.*70G>A",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"ENSP00000438215","Ensembl",-1,"ENST00000538967",5,["P14416-3"],"T"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],4637,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000539420",3,NA,"T"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],3207,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000540600",1,NA,"T"),(1,NA,"P2","protein_coding",NA,"CCDS8361.1",1723,1723,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000542968.5:c.*70G>A",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"ENSP00000442172","Ensembl",-1,"ENST00000542968",1,["P14416-1"],"T"),(1,NA,"A1","protein_coding",NA,NA,1432,1432,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000544518.5:c.*70G>A",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"ENSP00000441068","Ensembl",-1,"ENST00000544518",1,NA,"T"),(1,NA,NA,"lncRNA",1,NA,NA,NA,NA,NA,NA,["intron_variant","non_coding_transcript_variant"],NA,NA,NA,NA,"ENSG00000256757",NA,NA,NA,NA,"ENST00000546284.1:n.245-890C>T",NA,NA,"MODIFIER","2/3",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",1,"ENST00000546284",3,NA,"T"),(1,NA,NA,"protein_coding",1,NA,1756,1756,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"8/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_000795.4:c.*70G>A",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,"ENST00000362072.8",NA,NA,NA,NA,"NP_000786.1","RefSeq",-1,"NM_000795.4",NA,NA,"T"),(1,NA,NA,"protein_coding",NA,NA,1669,1669,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"7/7",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_016574.4:c.*70G>A",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"NP_057658.2","RefSeq",-1,"NM_016574.4",NA,NA,"T"),(1,NA,NA,"protein_coding",NA,NA,1484,1484,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"8/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","XM_017017296.2:c.*70G>A",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"XP_016872785.1","RefSeq",-1,"XM_017017296.2",NA,NA,"T")]"SNV"9.14e+00"AS_MQ"FalseFalseFalseFalseFalseNATrueFalse"multi-snv"3False"snv"False[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,4430,0,32721,0,357851,0,60423,0,267316,0,0,0,0,0,0,18]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,29987,74977,120278,300405,170342,18935,3117,1021,684,644,577,507,353,258,173,112,77,60]0252[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,18]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,2,3,3,2,1,0,1,1,0,1,0,0,1,1,0,0,1]01[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,2,0,4,4,4,3,1,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][979,2,2487,1,8860,1,32722,0,357851,0,60423,0,267317,0,0,0,0,0,0,18]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][415,5663,30415,76214,120310,300505,170348,18947,3122,1023,686,644,577,507,353,258,173,112,77,60]0252[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][1,2,0,1,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,18]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,1,3,6,4,2,1,0,1,1,0,1,0,0,1,1,0,0,1]01[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,1,3,2,0,0,2,0,4,4,4,3,1,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][1,1,0,2,5,2,1,0,0,0]20[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]003.61e+002.42e-01NA0.00e+001.20e-01-4.68e-01NANA
chr11:113410658["G","A"][(23,1.59e-05,1448166,0),(23,1.57e-05,1461456,0),(0,0.00e+00,33180,0),(0,0.00e+00,44684,0),(1,3.84e-05,26038,0),(3,7.57e-05,39630,0),(0,0.00e+00,53152,0),(0,0.00e+00,4770,0),(17,1.54e-05,1101160,0),(1,1.67e-05,59860,0),(1,1.17e-05,85692,0),(14,1.93e-05,726896,0),(9,1.25e-05,721270,0),(0,0.00e+00,19144,0),(0,0.00e+00,14036,0),(0,0.00e+00,25658,0),(0,0.00e+00,19026,0),(1,7.95e-05,12586,0),(0,0.00e+00,13452,0),(2,9.68e-05,20662,0),(1,5.27e-05,18968,0),(0,0.00e+00,27504,0),(0,0.00e+00,25648,0),(0,0.00e+00,1952,0),(0,0.00e+00,2818,0),(10,1.77e-05,566134,0),(7,1.31e-05,535026,0),(0,0.00e+00,31512,0),(1,3.53e-05,28348,0),(1,4.60e-05,21744,0),(0,0.00e+00,63948,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,12,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,162,0),(0,0.00e+00,198,0),(0,0.00e+00,198,0),(0,0.00e+00,200,0),(0,0.00e+00,198,0),(0,0.00e+00,988,0),(0,0.00e+00,1000,0),(0,0.00e+00,996,0),(0,0.00e+00,1000,0),(0,0.00e+00,992,0),(0,0.00e+00,834,0),(0,0.00e+00,994,0),(0,0.00e+00,986,0),(0,0.00e+00,992,0),(0,0.00e+00,992,0),(0,0.00e+00,1980,0),(0,0.00e+00,1998,0),(0,0.00e+00,1988,0),(0,0.00e+00,1998,0),(0,0.00e+00,1990,0),(0,0.00e+00,1672,0),(0,0.00e+00,1986,0),(0,0.00e+00,1982,0),(0,0.00e+00,1980,0),(0,0.00e+00,1988,0),(0,0.00e+00,3964,0),(0,0.00e+00,3998,0),(0,0.00e+00,3980,0),(0,0.00e+00,3994,0),(0,0.00e+00,3980,0),(0,0.00e+00,3304,0),(0,0.00e+00,3972,0),(0,0.00e+00,3964,0),(0,0.00e+00,3972,0),(0,0.00e+00,3964,0),(0,0.00e+00,5712,0),(0,0.00e+00,5766,0),(0,0.00e+00,5738,0),(0,0.00e+00,5752,0),(0,0.00e+00,5740,0),(0,0.00e+00,4770,0),(0,0.00e+00,5718,0),(0,0.00e+00,5720,0),(0,0.00e+00,5728,0),(0,0.00e+00,5724,0),(0,0.00e+00,9908,0),(0,0.00e+00,9994,0),(0,0.00e+00,9950,0),(1,1.00e-04,9972,0),(0,0.00e+00,9942,0),(0,0.00e+00,9912,0),(0,0.00e+00,9904,0),(0,0.00e+00,9932,0),(0,0.00e+00,9920,0),(0,0.00e+00,19832,0),(0,0.00e+00,19980,0),(1,5.02e-05,19918,0),(2,1.00e-04,19956,0),(0,0.00e+00,19896,0),(1,5.05e-05,19818,0),(0,0.00e+00,19830,0),(0,0.00e+00,19858,0),(0,0.00e+00,19820,0),(0,0.00e+00,25916,0),(0,0.00e+00,26110,0),(1,3.84e-05,26038,0),(3,1.15e-04,26082,0),(0,0.00e+00,25998,0),(1,3.86e-05,25884,0),(0,0.00e+00,25910,0),(0,0.00e+00,25962,0),(1,3.86e-05,25892,0),(0,0.00e+00,33180,0),(0,0.00e+00,33452,0),(3,8.98e-05,33420,0),(0,0.00e+00,33304,0),(1,3.02e-05,33160,0),(0,0.00e+00,33206,0),(0,0.00e+00,33254,0),(1,3.02e-05,33158,0),(0,0.00e+00,39670,0),(3,7.57e-05,39630,0),(0,0.00e+00,39492,0),(1,2.54e-05,39322,0),(0,0.00e+00,39360,0),(1,2.54e-05,39426,0),(1,2.54e-05,39326,0),(0,0.00e+00,39968,0),(0,0.00e+00,39792,0),(1,2.52e-05,39622,0),(0,0.00e+00,39658,0),(1,2.52e-05,39722,0),(1,2.52e-05,39620,0),(0,0.00e+00,44684,0),(0,0.00e+00,44492,0),(1,2.26e-05,44294,0),(0,0.00e+00,44340,0),(1,2.25e-05,44416,0),(1,2.26e-05,44306,0),(0,0.00e+00,53152,0),(1,1.89e-05,52914,0),(0,0.00e+00,52958,0),(1,1.88e-05,53060,0),(1,1.89e-05,52926,0),(1,1.67e-05,59796,0),(1,1.67e-05,59860,0),(1,1.67e-05,59994,0),(1,1.67e-05,59832,0),(1,1.17e-05,85402,0),(1,1.17e-05,85692,0),(1,1.17e-05,85434,0),(2,2.02e-05,99006,0),(1,1.01e-05,99072,0),(4,2.02e-05,198028,0),(4,2.02e-05,198104,0),(9,2.27e-05,396076,0),(5,1.26e-05,396306,0),(15,1.51e-05,990236,0),(15,1.51e-05,990630,0),(17,1.54e-05,1101160,0),(19,1.72e-05,1101514,0),(14,2.23e-05,626744,0),(14,2.23e-05,628782,0),(0,0.00e+00,17650,0),(0,0.00e+00,43720,0),(1,4.77e-05,20968,0),(1,2.77e-05,36050,0),(0,0.00e+00,52878,0),(0,0.00e+00,3172,0),(10,2.86e-05,349848,0),(1,3.03e-05,32968,0),(1,1.44e-05,69490,0),(8,2.81e-05,285194,0),(6,1.76e-05,341550,0),(0,0.00e+00,10264,0),(0,0.00e+00,7386,0),(0,0.00e+00,25026,0),(0,0.00e+00,18694,0),(1,1.02e-04,9832,0),(0,0.00e+00,11136,0),(0,0.00e+00,18284,0),(1,5.63e-05,17766,0),(0,0.00e+00,27256,0),(0,0.00e+00,25622,0),(0,0.00e+00,1376,0),(0,0.00e+00,1796,0),(6,3.70e-05,162104,0),(4,2.13e-05,187744,0),(0,0.00e+00,16698,0),(1,6.15e-05,16270,0),(1,6.97e-05,14354,0),(0,0.00e+00,55136,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,12,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,152,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,998,0),(0,0.00e+00,1000,0),(0,0.00e+00,998,0),(0,0.00e+00,1000,0),(0,0.00e+00,992,0),(0,0.00e+00,766,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,992,0),(0,0.00e+00,1000,0),(0,0.00e+00,1998,0),(0,0.00e+00,1998,0),(0,0.00e+00,1996,0),(0,0.00e+00,1998,0),(0,0.00e+00,1990,0),(0,0.00e+00,1568,0),(0,0.00e+00,2000,0),(0,0.00e+00,1998,0),(0,0.00e+00,1988,0),(0,0.00e+00,1994,0),(0,0.00e+00,3986,0),(0,0.00e+00,3998,0),(0,0.00e+00,3994,0),(0,0.00e+00,3996,0),(0,0.00e+00,3980,0),(0,0.00e+00,3054,0),(0,0.00e+00,4000,0),(0,0.00e+00,3996,0),(0,0.00e+00,3982,0),(0,0.00e+00,3992,0),(0,0.00e+00,4134,0),(0,0.00e+00,4146,0),(0,0.00e+00,4142,0),(0,0.00e+00,4144,0),(0,0.00e+00,4126,0),(0,0.00e+00,3172,0),(0,0.00e+00,4148,0),(0,0.00e+00,4142,0),(0,0.00e+00,4130,0),(0,0.00e+00,4140,0),(0,0.00e+00,9972,0),(0,0.00e+00,9996,0),(0,0.00e+00,9990,0),(0,0.00e+00,9990,0),(0,0.00e+00,9944,0),(0,0.00e+00,9998,0),(0,0.00e+00,9968,0),(0,0.00e+00,9946,0),(0,0.00e+00,9974,0),(0,0.00e+00,17650,0),(0,0.00e+00,17686,0),(1,5.66e-05,17680,0),(1,5.66e-05,17678,0),(0,0.00e+00,17600,0),(0,0.00e+00,17686,0),(0,0.00e+00,17636,0),(0,0.00e+00,17610,0),(0,0.00e+00,17638,0),(0,0.00e+00,19990,0),(1,5.00e-05,19984,0),(1,5.00e-05,19984,0),(0,0.00e+00,19898,0),(0,0.00e+00,19986,0),(0,0.00e+00,19930,0),(0,0.00e+00,19912,0),(0,0.00e+00,19940,0),(0,0.00e+00,20970,0),(1,4.77e-05,20968,0),(1,4.77e-05,20968,0),(0,0.00e+00,20880,0),(0,0.00e+00,20970,0),(0,0.00e+00,20908,0),(0,0.00e+00,20890,0),(0,0.00e+00,20922,0),(0,0.00e+00,33082,0),(1,3.02e-05,33080,0),(0,0.00e+00,32926,0),(0,0.00e+00,33078,0),(1,3.03e-05,32968,0),(1,3.04e-05,32938,0),(0,0.00e+00,33000,0),(0,0.00e+00,36054,0),(1,2.77e-05,36050,0),(0,0.00e+00,35882,0),(0,0.00e+00,36048,0),(1,2.79e-05,35896,0),(0,0.00e+00,35960,0),(0,0.00e+00,39982,0),(0,0.00e+00,39794,0),(0,0.00e+00,39976,0),(1,2.51e-05,39804,0),(0,0.00e+00,39878,0),(0,0.00e+00,43720,0),(0,0.00e+00,43514,0),(0,0.00e+00,43712,0),(1,2.30e-05,43532,0),(0,0.00e+00,43608,0),(0,0.00e+00,52878,0),(0,0.00e+00,53108,0),(1,1.89e-05,52890,0),(0,0.00e+00,52980,0),(0,0.00e+00,69748,0),(1,1.44e-05,69490,0),(0,0.00e+00,69590,0),(1,1.00e-05,99940,0),(0,0.00e+00,99680,0),(4,2.00e-05,199860,0),(1,5.02e-06,199386,0),(10,2.86e-05,349848,0),(7,2.01e-05,348992,0),(7,1.76e-05,398714,0)]37.57e-05396300"eas"102.86e-053498480"nfe"[(1.06e-05,8.83e-06),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(2.01e-05,1.06e-05),(0.00e+00,0.00e+00),(9.40e-06,7.69e-06),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,(1.30e-05,1.01e-05),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(1.54e-05,1.15e-05),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]2.01e-05"eas"1.06e-05"eas"1.54e-05"nfe"1.15e-05"nfe"1True{"rs201475538"}{}8.65e-016.00e+010.00e+001428051.36e+01-1.80e-02[4798,567,4576,579]6.27e-01105181.55e+006.00e+010.00e+001.00e+00191891.44e+011.34e-01[4798,567,588,57]8.94e-011334FalseNANAFalseFalseFalseFalse6.96e+00-1.57e-05["ga4gh:VA.3n-gYs3xsspnxwI91EMCEDsIcrj9bIqO","ga4gh:VA.9Y9GDmOWCTqMks8dsNx1IJY-TlI1AbW8"][113410657,113410657][113410658,113410658]["G","A"]"G/A"113410658".""chr11\t113410658\t.\tG\tA\t.\t.\tGT"NA"3_prime_UTR_variant"NANA"chr11"1134106581[(1,NA,NA,"protein_coding",NA,"CCDS8362.1",1390,1390,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000346454.7:c.*69C>T",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"ENSP00000278597","Ensembl",-1,"ENST00000346454",1,["P14416-2"],"A"),(1,NA,"P2","protein_coding",1,"CCDS8361.1",1755,1755,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"8/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000362072.8:c.*69C>T",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,"NM_000795.4",NA,NA,NA,NA,"ENSP00000354859","Ensembl",-1,"ENST00000362072",1,["P14416-1"],"A"),(1,NA,NA,"processed_transcript",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],3717,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000535984",3,NA,"A"),(1,NA,"A1","protein_coding",NA,NA,1407,1407,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"8/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000538967.5:c.*69C>T",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"ENSP00000438215","Ensembl",-1,"ENST00000538967",5,["P14416-3"],"A"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],4636,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000539420",3,NA,"A"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],3206,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000540600",1,NA,"A"),(1,NA,"P2","protein_coding",NA,"CCDS8361.1",1722,1722,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000542968.5:c.*69C>T",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"ENSP00000442172","Ensembl",-1,"ENST00000542968",1,["P14416-1"],"A"),(1,NA,"A1","protein_coding",NA,NA,1431,1431,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000544518.5:c.*69C>T",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"ENSP00000441068","Ensembl",-1,"ENST00000544518",1,NA,"A"),(1,NA,NA,"lncRNA",1,NA,NA,NA,NA,NA,NA,["intron_variant","non_coding_transcript_variant"],NA,NA,NA,NA,"ENSG00000256757",NA,NA,NA,NA,"ENST00000546284.1:n.245-889G>A",NA,NA,"MODIFIER","2/3",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",1,"ENST00000546284",3,NA,"A"),(1,NA,NA,"protein_coding",1,NA,1755,1755,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"8/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_000795.4:c.*69C>T",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,"ENST00000362072.8",NA,NA,NA,NA,"NP_000786.1","RefSeq",-1,"NM_000795.4",NA,NA,"A"),(1,NA,NA,"protein_coding",NA,NA,1668,1668,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"7/7",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_016574.4:c.*69C>T",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"NP_057658.2","RefSeq",-1,"NM_016574.4",NA,NA,"A"),(1,NA,NA,"protein_coding",NA,NA,1483,1483,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"8/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","XM_017017296.2:c.*69C>T",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"XP_016872785.1","RefSeq",-1,"XM_017017296.2",NA,NA,"A")]"SNV"6.96e+00"AS_MQ"FalseFalseFalseFalseFalseNATrueFalse"multi-snv"2False"snv"False[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,4183,2,30033,1,354765,0,58262,0,276721,0,0,0,1,0,0,115]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,26988,70993,120130,305542,173013,19471,3177,1036,688,647,582,509,357,257,172,116,78,62]0265[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,21]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,1,2,4,3,4,1,1,0,0,1,0,1,0,0,0,2,0,1]02[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,2,0,1,0,3,3,8,5,0,1,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][886,4,2000,0,7936,2,30033,1,354765,1,58262,0,276721,0,0,0,1,0,0,116]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][362,4790,27388,71922,120182,305624,173020,19481,3184,1039,690,648,582,509,357,257,172,116,78,62]0265[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,21]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,1,2,4,3,4,1,1,0,0,1,0,1,0,0,0,2,0,1]02[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,2,0,1,0,3,3,8,5,0,1,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,1,1,5,3,2,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]002.90e+001.80e-01NA0.00e+005.00e-027.10e-02NANA
chr11:113410658["G","T"][(94,6.49e-05,1448162,0),(105,7.18e-05,1461456,0),(24,7.23e-04,33180,0),(4,8.95e-05,44684,0),(0,0.00e+00,26038,0),(0,0.00e+00,39630,0),(58,1.09e-03,53152,0),(2,4.19e-04,4770,0),(0,0.00e+00,1101156,0),(6,1.00e-04,59860,0),(0,0.00e+00,85692,0),(44,6.05e-05,726894,0),(50,6.93e-05,721268,0),(11,5.75e-04,19144,0),(13,9.26e-04,14036,0),(2,7.79e-05,25658,0),(2,1.05e-04,19026,0),(0,0.00e+00,12586,0),(0,0.00e+00,13452,0),(0,0.00e+00,20662,0),(0,0.00e+00,18968,0),(27,9.82e-04,27504,0),(31,1.21e-03,25648,0),(0,0.00e+00,1952,0),(2,7.10e-04,2818,0),(0,0.00e+00,566132,0),(0,0.00e+00,535024,0),(4,1.27e-04,31512,0),(2,7.06e-05,28348,0),(0,0.00e+00,21744,0),(0,0.00e+00,63948,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,12,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,162,0),(0,0.00e+00,198,0),(0,0.00e+00,198,0),(0,0.00e+00,200,0),(0,0.00e+00,198,0),(1,1.01e-03,988,0),(0,0.00e+00,1000,0),(0,0.00e+00,996,0),(0,0.00e+00,1000,0),(4,4.03e-03,992,0),(2,2.40e-03,834,0),(0,0.00e+00,994,0),(0,0.00e+00,986,0),(0,0.00e+00,992,0),(0,0.00e+00,992,0),(2,1.01e-03,1980,0),(0,0.00e+00,1998,0),(0,0.00e+00,1988,0),(0,0.00e+00,1998,0),(6,3.02e-03,1990,0),(2,1.20e-03,1672,0),(0,0.00e+00,1986,0),(0,0.00e+00,1982,0),(0,0.00e+00,1980,0),(0,0.00e+00,1988,0),(4,1.01e-03,3964,0),(0,0.00e+00,3998,0),(0,0.00e+00,3980,0),(0,0.00e+00,3994,0),(8,2.01e-03,3980,0),(2,6.05e-04,3304,0),(0,0.00e+00,3972,0),(0,0.00e+00,3964,0),(0,0.00e+00,3972,0),(0,0.00e+00,3964,0),(6,1.05e-03,5712,0),(0,0.00e+00,5766,0),(0,0.00e+00,5738,0),(0,0.00e+00,5752,0),(9,1.57e-03,5740,0),(2,4.19e-04,4770,0),(0,0.00e+00,5718,0),(0,0.00e+00,5720,0),(0,0.00e+00,5728,0),(0,0.00e+00,5724,0),(9,9.08e-04,9908,0),(0,0.00e+00,9994,0),(0,0.00e+00,9950,0),(0,0.00e+00,9972,0),(13,1.31e-03,9942,0),(0,0.00e+00,9912,0),(3,3.03e-04,9904,0),(0,0.00e+00,9932,0),(1,1.01e-04,9920,0),(18,9.08e-04,19832,0),(0,0.00e+00,19980,0),(0,0.00e+00,19918,0),(0,0.00e+00,19956,0),(23,1.16e-03,19896,0),(0,0.00e+00,19818,0),(3,1.51e-04,19830,0),(0,0.00e+00,19858,0),(3,1.51e-04,19820,0),(22,8.49e-04,25916,0),(2,7.66e-05,26110,0),(0,0.00e+00,26038,0),(0,0.00e+00,26082,0),(29,1.12e-03,25998,0),(0,0.00e+00,25884,0),(3,1.16e-04,25910,0),(0,0.00e+00,25962,0),(5,1.93e-04,25892,0),(24,7.23e-04,33180,0),(2,5.98e-05,33452,0),(0,0.00e+00,33420,0),(35,1.05e-03,33304,0),(0,0.00e+00,33160,0),(4,1.20e-04,33206,0),(0,0.00e+00,33254,0),(6,1.81e-04,33158,0),(4,1.01e-04,39670,0),(0,0.00e+00,39630,0),(44,1.11e-03,39492,0),(0,0.00e+00,39322,0),(4,1.02e-04,39360,0),(0,0.00e+00,39426,0),(7,1.78e-04,39326,0),(4,1.00e-04,39968,0),(44,1.11e-03,39792,0),(0,0.00e+00,39622,0),(4,1.01e-04,39658,0),(0,0.00e+00,39722,0),(7,1.77e-04,39620,0),(4,8.95e-05,44684,0),(48,1.08e-03,44492,0),(0,0.00e+00,44294,0),(4,9.02e-05,44340,0),(0,0.00e+00,44416,0),(7,1.58e-04,44306,0),(58,1.09e-03,53152,0),(0,0.00e+00,52914,0),(4,7.55e-05,52958,0),(0,0.00e+00,53060,0),(7,1.32e-04,52926,0),(0,0.00e+00,59796,0),(6,1.00e-04,59860,0),(0,0.00e+00,59994,0),(7,1.17e-04,59832,0),(0,0.00e+00,85402,0),(0,0.00e+00,85692,0),(10,1.17e-04,85434,0),(0,0.00e+00,99006,0),(10,1.01e-04,99072,0),(0,0.00e+00,198028,0),(21,1.06e-04,198104,0),(0,0.00e+00,396074,0),(31,7.82e-05,396304,0),(0,0.00e+00,990232,0),(70,7.07e-05,990628,0),(0,0.00e+00,1101156,0),(75,6.81e-05,1101512,0),(85,1.36e-04,626744,0),(87,1.38e-04,628782,0),(15,8.50e-04,17650,0),(4,9.15e-05,43720,0),(0,0.00e+00,20968,0),(0,0.00e+00,36050,0),(58,1.10e-03,52878,0),(2,6.31e-04,3172,0),(0,0.00e+00,349848,0),(6,1.82e-04,32968,0),(0,0.00e+00,69490,0),(39,1.37e-04,285194,0),(46,1.35e-04,341550,0),(6,5.85e-04,10264,0),(9,1.22e-03,7386,0),(2,7.99e-05,25026,0),(2,1.07e-04,18694,0),(0,0.00e+00,9832,0),(0,0.00e+00,11136,0),(0,0.00e+00,18284,0),(0,0.00e+00,17766,0),(27,9.91e-04,27256,0),(31,1.21e-03,25622,0),(0,0.00e+00,1376,0),(2,1.11e-03,1796,0),(0,0.00e+00,162104,0),(0,0.00e+00,187744,0),(4,2.40e-04,16698,0),(2,1.23e-04,16270,0),(0,0.00e+00,14354,0),(0,0.00e+00,55136,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,12,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(1,6.58e-03,152,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(1,1.00e-03,998,0),(0,0.00e+00,1000,0),(0,0.00e+00,998,0),(0,0.00e+00,1000,0),(4,4.03e-03,992,0),(2,2.61e-03,766,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,992,0),(0,0.00e+00,1000,0),(3,1.50e-03,1998,0),(0,0.00e+00,1998,0),(0,0.00e+00,1996,0),(0,0.00e+00,1998,0),(6,3.02e-03,1990,0),(2,1.28e-03,1568,0),(0,0.00e+00,2000,0),(0,0.00e+00,1998,0),(0,0.00e+00,1988,0),(0,0.00e+00,1994,0),(4,1.00e-03,3986,0),(0,0.00e+00,3998,0),(0,0.00e+00,3994,0),(0,0.00e+00,3996,0),(8,2.01e-03,3980,0),(2,6.55e-04,3054,0),(0,0.00e+00,4000,0),(1,2.50e-04,3996,0),(0,0.00e+00,3982,0),(0,0.00e+00,3992,0),(4,9.68e-04,4134,0),(0,0.00e+00,4146,0),(0,0.00e+00,4142,0),(0,0.00e+00,4144,0),(8,1.94e-03,4126,0),(2,6.31e-04,3172,0),(0,0.00e+00,4148,0),(1,2.41e-04,4142,0),(0,0.00e+00,4130,0),(0,0.00e+00,4140,0),(10,1.00e-03,9972,0),(0,0.00e+00,9996,0),(0,0.00e+00,9990,0),(0,0.00e+00,9990,0),(13,1.31e-03,9944,0),(0,0.00e+00,9998,0),(3,3.01e-04,9968,0),(0,0.00e+00,9946,0),(4,4.01e-04,9974,0),(15,8.50e-04,17650,0),(0,0.00e+00,17686,0),(0,0.00e+00,17680,0),(0,0.00e+00,17678,0),(20,1.14e-03,17600,0),(0,0.00e+00,17686,0),(4,2.27e-04,17636,0),(0,0.00e+00,17610,0),(6,3.40e-04,17638,0),(0,0.00e+00,19990,0),(0,0.00e+00,19984,0),(0,0.00e+00,19984,0),(23,1.16e-03,19898,0),(0,0.00e+00,19986,0),(4,2.01e-04,19930,0),(0,0.00e+00,19912,0),(6,3.01e-04,19940,0),(1,4.77e-05,20970,0),(0,0.00e+00,20968,0),(0,0.00e+00,20968,0),(24,1.15e-03,20880,0),(0,0.00e+00,20970,0),(4,1.91e-04,20908,0),(0,0.00e+00,20890,0),(6,2.87e-04,20922,0),(2,6.05e-05,33082,0),(0,0.00e+00,33080,0),(35,1.06e-03,32926,0),(0,0.00e+00,33078,0),(6,1.82e-04,32968,0),(0,0.00e+00,32938,0),(7,2.12e-04,33000,0),(2,5.55e-05,36054,0),(0,0.00e+00,36050,0),(41,1.14e-03,35882,0),(0,0.00e+00,36048,0),(0,0.00e+00,35896,0),(7,1.95e-04,35960,0),(4,1.00e-04,39982,0),(44,1.11e-03,39794,0),(0,0.00e+00,39976,0),(0,0.00e+00,39804,0),(9,2.26e-04,39878,0),(4,9.15e-05,43720,0),(48,1.10e-03,43514,0),(0,0.00e+00,43712,0),(0,0.00e+00,43532,0),(10,2.29e-04,43608,0),(58,1.10e-03,52878,0),(0,0.00e+00,53108,0),(0,0.00e+00,52890,0),(11,2.08e-04,52980,0),(0,0.00e+00,69748,0),(0,0.00e+00,69490,0),(15,2.16e-04,69590,0),(0,0.00e+00,99940,0),(21,2.11e-04,99680,0),(0,0.00e+00,199860,0),(29,1.45e-04,199386,0),(0,0.00e+00,349848,0),(50,1.43e-04,348992,0),(56,1.40e-04,398714,0)]247.23e-04331800"afr"158.50e-04176500"afr"[(5.41e-05,5.02e-05),(4.99e-04,4.24e-04),(2.99e-05,1.81e-05),(0.00e+00,0.00e+00),(7.37e-05,3.06e-05),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,(1.12e-04,1.03e-04),(5.23e-04,4.23e-04),(3.03e-05,1.84e-05),(0.00e+00,0.00e+00),(1.12e-04,4.63e-05),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]4.99e-04"afr"4.24e-04"afr"5.23e-04"afr"4.23e-04"afr"2True{"rs201475538"}{}8.65e-016.00e+010.00e+001428051.36e+01-1.80e-02[4798,567,4576,579]6.27e-01105180.00e+006.00e+010.00e+001.00e+001236161.35e+01-2.10e-02[4798,567,3988,522]5.96e-019184FalseNANAFalseFalseFalseFalse9.35e+00-7.19e-05["ga4gh:VA.3n-gYs3xsspnxwI91EMCEDsIcrj9bIqO","ga4gh:VA.R13f7bcCv-WGRkCM6W3Y_O-jy_2slTPt"][113410657,113410657][113410658,113410658]["G","T"]"G/T"113410658".""chr11\t113410658\t.\tG\tT\t.\t.\tGT"NA"3_prime_UTR_variant"NANA"chr11"1134106581[(1,NA,NA,"protein_coding",NA,"CCDS8362.1",1390,1390,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000346454.7:c.*69C>A",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"ENSP00000278597","Ensembl",-1,"ENST00000346454",1,["P14416-2"],"T"),(1,NA,"P2","protein_coding",1,"CCDS8361.1",1755,1755,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"8/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000362072.8:c.*69C>A",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,"NM_000795.4",NA,NA,NA,NA,"ENSP00000354859","Ensembl",-1,"ENST00000362072",1,["P14416-1"],"T"),(1,NA,NA,"processed_transcript",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],3717,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000535984",3,NA,"T"),(1,NA,"A1","protein_coding",NA,NA,1407,1407,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"8/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000538967.5:c.*69C>A",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"ENSP00000438215","Ensembl",-1,"ENST00000538967",5,["P14416-3"],"T"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],4636,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000539420",3,NA,"T"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],3206,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000540600",1,NA,"T"),(1,NA,"P2","protein_coding",NA,"CCDS8361.1",1722,1722,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000542968.5:c.*69C>A",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"ENSP00000442172","Ensembl",-1,"ENST00000542968",1,["P14416-1"],"T"),(1,NA,"A1","protein_coding",NA,NA,1431,1431,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000544518.5:c.*69C>A",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"ENSP00000441068","Ensembl",-1,"ENST00000544518",1,NA,"T"),(1,NA,NA,"lncRNA",1,NA,NA,NA,NA,NA,NA,["intron_variant","non_coding_transcript_variant"],NA,NA,NA,NA,"ENSG00000256757",NA,NA,NA,NA,"ENST00000546284.1:n.245-889G>T",NA,NA,"MODIFIER","2/3",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",1,"ENST00000546284",3,NA,"T"),(1,NA,NA,"protein_coding",1,NA,1755,1755,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"8/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_000795.4:c.*69C>A",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,"ENST00000362072.8",NA,NA,NA,NA,"NP_000786.1","RefSeq",-1,"NM_000795.4",NA,NA,"T"),(1,NA,NA,"protein_coding",NA,NA,1668,1668,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"7/7",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_016574.4:c.*69C>A",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"NP_057658.2","RefSeq",-1,"NM_016574.4",NA,NA,"T"),(1,NA,NA,"protein_coding",NA,NA,1483,1483,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"8/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","XM_017017296.2:c.*69C>A",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"XP_016872785.1","RefSeq",-1,"XM_017017296.2",NA,NA,"T")]"SNV"9.35e+00"AS_FS"FalseFalseFalseFalseFalseNATrueFalse"multi-snv"2False"snv"False[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,4183,0,30033,1,354765,0,58262,0,276721,0,0,0,1,0,0,115]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,26986,70993,120130,305542,173013,19471,3177,1036,688,647,582,509,357,257,172,116,78,62]0265[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,94]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,2,3,11,13,14,10,8,9,1,3,2,0,4,0,0,1,1,1]011[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,6,5,19,14,25,17,6,1,1,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][886,4,2000,0,7936,2,30033,1,354765,1,58262,0,276721,0,0,0,1,0,0,116]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][362,4790,27388,71922,120182,305624,173020,19481,3184,1039,690,648,582,509,357,257,172,116,78,62]0265[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][2,4,1,0,0,2,0,0,0,1,0,0,0,0,0,0,0,0,0,95]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,2,4,4,17,13,14,10,8,9,1,3,2,0,4,0,0,1,1,1]011[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,2,7,0,0,1,6,5,19,14,26,17,6,1,1,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,1,4,4,2,5,0,1,4,1]10[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]002.38e+001.31e-01NA0.00e+003.00e-027.10e-02NANA
chr11:113410660["A","G"][(1,6.89e-07,1450438,0),(2,1.37e-06,1461588,0),(0,0.00e+00,33208,0),(0,0.00e+00,44698,0),(0,0.00e+00,26050,0),(0,0.00e+00,39632,0),(0,0.00e+00,53222,0),(0,0.00e+00,4878,0),(1,9.07e-07,1103066,0),(0,0.00e+00,59922,0),(0,0.00e+00,85762,0),(0,0.00e+00,728116,0),(1,1.38e-06,722322,0),(0,0.00e+00,19158,0),(0,0.00e+00,14050,0),(0,0.00e+00,25670,0),(0,0.00e+00,19028,0),(0,0.00e+00,12590,0),(0,0.00e+00,13460,0),(0,0.00e+00,20660,0),(0,0.00e+00,18972,0),(0,0.00e+00,27540,0),(0,0.00e+00,25682,0),(0,0.00e+00,2012,0),(0,0.00e+00,2866,0),(0,0.00e+00,567156,0),(1,1.87e-06,535910,0),(0,0.00e+00,31542,0),(0,0.00e+00,28380,0),(0,0.00e+00,21788,0),(0,0.00e+00,63974,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,12,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,166,0),(0,0.00e+00,200,0),(0,0.00e+00,198,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,980,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,994,0),(0,0.00e+00,846,0),(0,0.00e+00,996,0),(0,0.00e+00,992,0),(0,0.00e+00,992,0),(0,0.00e+00,994,0),(0,0.00e+00,1974,0),(0,0.00e+00,2000,0),(0,0.00e+00,1990,0),(0,0.00e+00,1998,0),(0,0.00e+00,1994,0),(0,0.00e+00,1716,0),(0,0.00e+00,1984,0),(0,0.00e+00,1992,0),(0,0.00e+00,1980,0),(0,0.00e+00,1990,0),(0,0.00e+00,3960,0),(0,0.00e+00,4000,0),(0,0.00e+00,3984,0),(0,0.00e+00,3994,0),(0,0.00e+00,3986,0),(0,0.00e+00,3394,0),(0,0.00e+00,3970,0),(0,0.00e+00,3972,0),(0,0.00e+00,3972,0),(0,0.00e+00,3962,0),(0,0.00e+00,5716,0),(0,0.00e+00,5768,0),(0,0.00e+00,5744,0),(0,0.00e+00,5754,0),(0,0.00e+00,5750,0),(0,0.00e+00,4878,0),(0,0.00e+00,5722,0),(0,0.00e+00,5732,0),(0,0.00e+00,5728,0),(0,0.00e+00,5724,0),(0,0.00e+00,9914,0),(0,0.00e+00,9998,0),(0,0.00e+00,9962,0),(0,0.00e+00,9972,0),(0,0.00e+00,9954,0),(0,0.00e+00,9920,0),(0,0.00e+00,9922,0),(0,0.00e+00,9938,0),(0,0.00e+00,9922,0),(0,0.00e+00,19846,0),(0,0.00e+00,19986,0),(0,0.00e+00,19926,0),(0,0.00e+00,19956,0),(0,0.00e+00,19926,0),(0,0.00e+00,19836,0),(0,0.00e+00,19852,0),(0,0.00e+00,19864,0),(0,0.00e+00,19832,0),(0,0.00e+00,25940,0),(0,0.00e+00,26118,0),(0,0.00e+00,26050,0),(0,0.00e+00,26082,0),(0,0.00e+00,26038,0),(0,0.00e+00,25906,0),(0,0.00e+00,25940,0),(0,0.00e+00,25974,0),(0,0.00e+00,25914,0),(0,0.00e+00,33208,0),(0,0.00e+00,33460,0),(0,0.00e+00,33422,0),(0,0.00e+00,33354,0),(0,0.00e+00,33194,0),(0,0.00e+00,33234,0),(0,0.00e+00,33280,0),(0,0.00e+00,33184,0),(0,0.00e+00,39680,0),(0,0.00e+00,39632,0),(0,0.00e+00,39558,0),(0,0.00e+00,39368,0),(0,0.00e+00,39402,0),(0,0.00e+00,39462,0),(0,0.00e+00,39366,0),(0,0.00e+00,39978,0),(0,0.00e+00,39858,0),(0,0.00e+00,39664,0),(0,0.00e+00,39700,0),(0,0.00e+00,39758,0),(0,0.00e+00,39660,0),(0,0.00e+00,44698,0),(0,0.00e+00,44564,0),(0,0.00e+00,44334,0),(0,0.00e+00,44384,0),(0,0.00e+00,44448,0),(0,0.00e+00,44352,0),(0,0.00e+00,53222,0),(0,0.00e+00,52964,0),(0,0.00e+00,53010,0),(0,0.00e+00,53096,0),(0,0.00e+00,52982,0),(0,0.00e+00,59866,0),(0,0.00e+00,59922,0),(0,0.00e+00,60036,0),(0,0.00e+00,59886,0),(0,0.00e+00,85516,0),(0,0.00e+00,85762,0),(0,0.00e+00,85528,0),(0,0.00e+00,99132,0),(0,0.00e+00,99166,0),(0,0.00e+00,198282,0),(0,0.00e+00,198350,0),(1,2.52e-06,396678,0),(1,2.52e-06,396834,0),(1,1.01e-06,991944,0),(1,1.01e-06,992168,0),(1,9.07e-07,1103066,0),(1,9.06e-07,1103268,0),(1,1.59e-06,627050,0),(2,3.18e-06,628784,0),(0,0.00e+00,17650,0),(0,0.00e+00,43726,0),(0,0.00e+00,20970,0),(0,0.00e+00,36054,0),(0,0.00e+00,52946,0),(0,0.00e+00,3278,0),(1,2.86e-06,349920,0),(0,0.00e+00,32974,0),(0,0.00e+00,69532,0),(0,0.00e+00,285344,0),(1,2.93e-06,341706,0),(0,0.00e+00,10264,0),(0,0.00e+00,7386,0),(0,0.00e+00,25032,0),(0,0.00e+00,18694,0),(0,0.00e+00,9832,0),(0,0.00e+00,11138,0),(0,0.00e+00,18288,0),(0,0.00e+00,17766,0),(0,0.00e+00,27290,0),(0,0.00e+00,25656,0),(0,0.00e+00,1434,0),(0,0.00e+00,1844,0),(0,0.00e+00,162128,0),(1,5.33e-06,187792,0),(0,0.00e+00,16698,0),(0,0.00e+00,16276,0),(0,0.00e+00,14378,0),(0,0.00e+00,55154,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,12,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,156,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,998,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,994,0),(0,0.00e+00,792,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,992,0),(0,0.00e+00,1000,0),(0,0.00e+00,1998,0),(0,0.00e+00,2000,0),(0,0.00e+00,1998,0),(0,0.00e+00,1998,0),(0,0.00e+00,1994,0),(0,0.00e+00,1616,0),(0,0.00e+00,2000,0),(0,0.00e+00,1998,0),(0,0.00e+00,1990,0),(0,0.00e+00,1994,0),(0,0.00e+00,3988,0),(0,0.00e+00,4000,0),(0,0.00e+00,3996,0),(0,0.00e+00,3998,0),(0,0.00e+00,3986,0),(0,0.00e+00,3158,0),(0,0.00e+00,4000,0),(0,0.00e+00,3996,0),(0,0.00e+00,3984,0),(0,0.00e+00,3992,0),(0,0.00e+00,4136,0),(0,0.00e+00,4148,0),(0,0.00e+00,4144,0),(0,0.00e+00,4146,0),(0,0.00e+00,4134,0),(0,0.00e+00,3278,0),(0,0.00e+00,4148,0),(0,0.00e+00,4142,0),(0,0.00e+00,4132,0),(0,0.00e+00,4140,0),(0,0.00e+00,9974,0),(0,0.00e+00,9998,0),(0,0.00e+00,9994,0),(0,0.00e+00,9992,0),(0,0.00e+00,9954,0),(0,0.00e+00,10000,0),(0,0.00e+00,9968,0),(0,0.00e+00,9950,0),(0,0.00e+00,9974,0),(0,0.00e+00,17650,0),(0,0.00e+00,17686,0),(0,0.00e+00,17682,0),(0,0.00e+00,17682,0),(0,0.00e+00,17626,0),(0,0.00e+00,17688,0),(0,0.00e+00,17638,0),(0,0.00e+00,17616,0),(0,0.00e+00,17652,0),(0,0.00e+00,19992,0),(0,0.00e+00,19986,0),(0,0.00e+00,19988,0),(0,0.00e+00,19924,0),(0,0.00e+00,19990,0),(0,0.00e+00,19930,0),(0,0.00e+00,19916,0),(0,0.00e+00,19954,0),(0,0.00e+00,20974,0),(0,0.00e+00,20970,0),(0,0.00e+00,20972,0),(0,0.00e+00,20906,0),(0,0.00e+00,20974,0),(0,0.00e+00,20910,0),(0,0.00e+00,20898,0),(0,0.00e+00,20936,0),(0,0.00e+00,33086,0),(0,0.00e+00,33084,0),(0,0.00e+00,32974,0),(0,0.00e+00,33086,0),(0,0.00e+00,32974,0),(0,0.00e+00,32956,0),(0,0.00e+00,33018,0),(0,0.00e+00,36058,0),(0,0.00e+00,36054,0),(0,0.00e+00,35938,0),(0,0.00e+00,36056,0),(0,0.00e+00,35916,0),(0,0.00e+00,35980,0),(0,0.00e+00,39988,0),(0,0.00e+00,39856,0),(0,0.00e+00,39982,0),(0,0.00e+00,39824,0),(0,0.00e+00,39900,0),(0,0.00e+00,43726,0),(0,0.00e+00,43584,0),(0,0.00e+00,43722,0),(0,0.00e+00,43556,0),(0,0.00e+00,43632,0),(0,0.00e+00,52946,0),(0,0.00e+00,53120,0),(0,0.00e+00,52924,0),(0,0.00e+00,53008,0),(0,0.00e+00,69766,0),(0,0.00e+00,69532,0),(0,0.00e+00,69624,0),(1,1.00e-05,99960,0),(0,0.00e+00,99716,0),(1,5.00e-06,199898,0),(1,5.01e-06,199490,0),(1,2.86e-06,349920,0),(1,2.86e-06,349164,0),(1,2.51e-06,398918,0)]19.07e-0711030660"nfe"12.86e-063499200"nfe"[(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]NANANANANANANANA2True{"rs1950760213"}{}0.00e+006.00e+010.00e+0036191.78e+016.74e-01[83,21,79,20]6.91e-012034.82e-166.00e+010.00e+004.53e-0135911.98e+019.51e-01[83,21,77,19]7.15e-01181FalseFalseFalseFalseFalseFalseFalse4.34e+00-1.37e-06["ga4gh:VA.MHTiWiUO_hsQ_FAaIagdomN6DdnpjqRm","ga4gh:VA.D8-MF1xUzSMIKncRc7QFwqQ-l8WgfYlV"][113410659,113410659][113410660,113410660]["A","G"]"A/G"113410660".""chr11\t113410660\t.\tA\tG\t.\t.\tGT"NA"3_prime_UTR_variant"NANA"chr11"1134106601[(1,NA,NA,"protein_coding",NA,"CCDS8362.1",1388,1388,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000346454.7:c.*67T>C",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"ENSP00000278597","Ensembl",-1,"ENST00000346454",1,["P14416-2"],"G"),(1,NA,"P2","protein_coding",1,"CCDS8361.1",1753,1753,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"8/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000362072.8:c.*67T>C",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,"NM_000795.4",NA,NA,NA,NA,"ENSP00000354859","Ensembl",-1,"ENST00000362072",1,["P14416-1"],"G"),(1,NA,NA,"processed_transcript",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],3715,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000535984",3,NA,"G"),(1,NA,"A1","protein_coding",NA,NA,1405,1405,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"8/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000538967.5:c.*67T>C",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"ENSP00000438215","Ensembl",-1,"ENST00000538967",5,["P14416-3"],"G"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],4634,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000539420",3,NA,"G"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],3204,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000540600",1,NA,"G"),(1,NA,"P2","protein_coding",NA,"CCDS8361.1",1720,1720,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000542968.5:c.*67T>C",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"ENSP00000442172","Ensembl",-1,"ENST00000542968",1,["P14416-1"],"G"),(1,NA,"A1","protein_coding",NA,NA,1429,1429,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000544518.5:c.*67T>C",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"ENSP00000441068","Ensembl",-1,"ENST00000544518",1,NA,"G"),(1,NA,NA,"lncRNA",1,NA,NA,NA,NA,NA,NA,["intron_variant","non_coding_transcript_variant"],NA,NA,NA,NA,"ENSG00000256757",NA,NA,NA,NA,"ENST00000546284.1:n.245-887A>G",NA,NA,"MODIFIER","2/3",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",1,"ENST00000546284",3,NA,"G"),(1,NA,NA,"protein_coding",1,NA,1753,1753,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"8/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_000795.4:c.*67T>C",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,"ENST00000362072.8",NA,NA,NA,NA,"NP_000786.1","RefSeq",-1,"NM_000795.4",NA,NA,"G"),(1,NA,NA,"protein_coding",NA,NA,1666,1666,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"7/7",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_016574.4:c.*67T>C",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"NP_057658.2","RefSeq",-1,"NM_016574.4",NA,NA,"G"),(1,NA,NA,"protein_coding",NA,NA,1481,1481,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"8/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","XM_017017296.2:c.*67T>C",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"XP_016872785.1","RefSeq",-1,"XM_017017296.2",NA,NA,"G")]"SNV"4.34e+00"AS_MQ"FalseFalseFalseFalseFalseNATrueFalse"multi-snv"3False"snv"False[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,3304,0,26636,0,351846,0,54948,0,288484,0,0,0,0,0,0,1]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,24253,67281,120581,309738,175490,19882,3222,1041,692,644,582,508,354,258,173,113,79,64]0264[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]01[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][684,0,1637,0,6556,2,26636,0,351846,0,54948,0,288484,0,0,0,0,0,0,1]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][296,4122,24622,67964,120609,309787,175498,19891,3228,1043,694,645,582,508,354,258,173,113,79,64]0264[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]01[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][1,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]001.22e+00-1.85e-02NA0.00e+004.00e-02-1.27e+00NANA
chr11:113410662["G","A"][(2,1.38e-06,1451396,0),(2,1.37e-06,1461538,0),(0,0.00e+00,33252,0),(1,2.24e-05,44696,0),(0,0.00e+00,26064,0),(0,0.00e+00,39622,0),(0,0.00e+00,53232,0),(0,0.00e+00,4926,0),(1,9.06e-07,1103856,0),(0,0.00e+00,59956,0),(0,0.00e+00,85792,0),(1,1.37e-06,728678,0),(1,1.38e-06,722718,0),(0,0.00e+00,19190,0),(0,0.00e+00,14062,0),(1,3.90e-05,25668,0),(0,0.00e+00,19028,0),(0,0.00e+00,12598,0),(0,0.00e+00,13466,0),(0,0.00e+00,20652,0),(0,0.00e+00,18970,0),(0,0.00e+00,27536,0),(0,0.00e+00,25696,0),(0,0.00e+00,2038,0),(0,0.00e+00,2888,0),(0,0.00e+00,567634,0),(1,1.86e-06,536222,0),(0,0.00e+00,31566,0),(0,0.00e+00,28390,0),(0,0.00e+00,21796,0),(0,0.00e+00,63996,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,12,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,166,0),(0,0.00e+00,200,0),(0,0.00e+00,198,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,984,0),(0,0.00e+00,1000,0),(0,0.00e+00,998,0),(0,0.00e+00,1000,0),(0,0.00e+00,994,0),(0,0.00e+00,854,0),(0,0.00e+00,998,0),(0,0.00e+00,990,0),(0,0.00e+00,994,0),(0,0.00e+00,996,0),(0,0.00e+00,1978,0),(0,0.00e+00,2000,0),(0,0.00e+00,1986,0),(0,0.00e+00,1998,0),(0,0.00e+00,1994,0),(0,0.00e+00,1734,0),(0,0.00e+00,1988,0),(0,0.00e+00,1990,0),(0,0.00e+00,1982,0),(0,0.00e+00,1992,0),(0,0.00e+00,3970,0),(0,0.00e+00,4000,0),(0,0.00e+00,3982,0),(0,0.00e+00,3994,0),(0,0.00e+00,3986,0),(0,0.00e+00,3428,0),(0,0.00e+00,3978,0),(0,0.00e+00,3972,0),(0,0.00e+00,3972,0),(0,0.00e+00,3970,0),(0,0.00e+00,5726,0),(0,0.00e+00,5768,0),(0,0.00e+00,5742,0),(0,0.00e+00,5752,0),(0,0.00e+00,5750,0),(0,0.00e+00,4926,0),(0,0.00e+00,5734,0),(0,0.00e+00,5732,0),(0,0.00e+00,5728,0),(0,0.00e+00,5732,0),(0,0.00e+00,9918,0),(0,0.00e+00,10000,0),(0,0.00e+00,9958,0),(0,0.00e+00,9970,0),(0,0.00e+00,9950,0),(0,0.00e+00,9932,0),(0,0.00e+00,9930,0),(0,0.00e+00,9940,0),(0,0.00e+00,9932,0),(0,0.00e+00,19860,0),(1,5.00e-05,19986,0),(0,0.00e+00,19936,0),(0,0.00e+00,19948,0),(0,0.00e+00,19924,0),(0,0.00e+00,19854,0),(0,0.00e+00,19874,0),(0,0.00e+00,19884,0),(0,0.00e+00,19844,0),(0,0.00e+00,25972,0),(1,3.83e-05,26118,0),(0,0.00e+00,26064,0),(0,0.00e+00,26076,0),(0,0.00e+00,26038,0),(0,0.00e+00,25924,0),(0,0.00e+00,25962,0),(0,0.00e+00,25990,0),(0,0.00e+00,25934,0),(0,0.00e+00,33252,0),(1,2.99e-05,33458,0),(0,0.00e+00,33414,0),(0,0.00e+00,33356,0),(0,0.00e+00,33220,0),(0,0.00e+00,33256,0),(0,0.00e+00,33292,0),(0,0.00e+00,33206,0),(1,2.52e-05,39676,0),(0,0.00e+00,39622,0),(0,0.00e+00,39558,0),(0,0.00e+00,39392,0),(0,0.00e+00,39432,0),(0,0.00e+00,39480,0),(0,0.00e+00,39384,0),(1,2.50e-05,39974,0),(0,0.00e+00,39858,0),(0,0.00e+00,39690,0),(0,0.00e+00,39728,0),(0,0.00e+00,39776,0),(0,0.00e+00,39682,0),(1,2.24e-05,44696,0),(0,0.00e+00,44568,0),(0,0.00e+00,44372,0),(0,0.00e+00,44412,0),(0,0.00e+00,44468,0),(0,0.00e+00,44378,0),(0,0.00e+00,53232,0),(0,0.00e+00,52996,0),(0,0.00e+00,53046,0),(0,0.00e+00,53120,0),(0,0.00e+00,53012,0),(0,0.00e+00,59904,0),(0,0.00e+00,59956,0),(0,0.00e+00,60062,0),(0,0.00e+00,59924,0),(0,0.00e+00,85568,0),(0,0.00e+00,85792,0),(0,0.00e+00,85566,0),(0,0.00e+00,99198,0),(0,0.00e+00,99210,0),(0,0.00e+00,198402,0),(0,0.00e+00,198452,0),(1,2.52e-06,396938,0),(1,2.52e-06,397058,0),(1,1.01e-06,992632,0),(2,2.01e-06,992784,0),(1,9.06e-07,1103856,0),(2,1.81e-06,1103950,0),(1,1.59e-06,627150,0),(1,1.59e-06,628784,0),(0,0.00e+00,17654,0),(1,2.29e-05,43728,0),(0,0.00e+00,20976,0),(0,0.00e+00,36054,0),(0,0.00e+00,52956,0),(0,0.00e+00,3318,0),(0,0.00e+00,349938,0),(0,0.00e+00,32986,0),(0,0.00e+00,69540,0),(1,3.50e-06,285386,0),(0,0.00e+00,341764,0),(0,0.00e+00,10266,0),(0,0.00e+00,7388,0),(1,3.99e-05,25032,0),(0,0.00e+00,18696,0),(0,0.00e+00,9836,0),(0,0.00e+00,11140,0),(0,0.00e+00,18288,0),(0,0.00e+00,17766,0),(0,0.00e+00,27286,0),(0,0.00e+00,25670,0),(0,0.00e+00,1454,0),(0,0.00e+00,1864,0),(0,0.00e+00,162146,0),(0,0.00e+00,187792,0),(0,0.00e+00,16706,0),(0,0.00e+00,16280,0),(0,0.00e+00,14372,0),(0,0.00e+00,55168,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,12,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,156,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,998,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,994,0),(0,0.00e+00,806,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,994,0),(0,0.00e+00,1000,0),(0,0.00e+00,1998,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,1998,0),(0,0.00e+00,1994,0),(0,0.00e+00,1638,0),(0,0.00e+00,2000,0),(0,0.00e+00,1998,0),(0,0.00e+00,1990,0),(0,0.00e+00,1994,0),(0,0.00e+00,3988,0),(0,0.00e+00,4000,0),(0,0.00e+00,3998,0),(0,0.00e+00,3998,0),(0,0.00e+00,3986,0),(0,0.00e+00,3196,0),(0,0.00e+00,4000,0),(0,0.00e+00,3996,0),(0,0.00e+00,3984,0),(0,0.00e+00,3992,0),(0,0.00e+00,4136,0),(0,0.00e+00,4148,0),(0,0.00e+00,4146,0),(0,0.00e+00,4146,0),(0,0.00e+00,4134,0),(0,0.00e+00,3318,0),(0,0.00e+00,4148,0),(0,0.00e+00,4142,0),(0,0.00e+00,4132,0),(0,0.00e+00,4140,0),(0,0.00e+00,9974,0),(0,0.00e+00,10000,0),(0,0.00e+00,9996,0),(0,0.00e+00,9992,0),(0,0.00e+00,9950,0),(0,0.00e+00,10000,0),(0,0.00e+00,9976,0),(0,0.00e+00,9952,0),(0,0.00e+00,9976,0),(0,0.00e+00,17654,0),(1,5.65e-05,17690,0),(0,0.00e+00,17688,0),(0,0.00e+00,17682,0),(0,0.00e+00,17626,0),(0,0.00e+00,17688,0),(0,0.00e+00,17644,0),(0,0.00e+00,17624,0),(0,0.00e+00,17652,0),(1,5.00e-05,19996,0),(0,0.00e+00,19992,0),(0,0.00e+00,19988,0),(0,0.00e+00,19922,0),(0,0.00e+00,19988,0),(0,0.00e+00,19938,0),(0,0.00e+00,19924,0),(0,0.00e+00,19954,0),(1,4.77e-05,20978,0),(0,0.00e+00,20976,0),(0,0.00e+00,20972,0),(0,0.00e+00,20904,0),(0,0.00e+00,20972,0),(0,0.00e+00,20918,0),(0,0.00e+00,20906,0),(0,0.00e+00,20936,0),(1,3.02e-05,33088,0),(0,0.00e+00,33084,0),(0,0.00e+00,32976,0),(0,0.00e+00,33084,0),(0,0.00e+00,32986,0),(0,0.00e+00,32964,0),(0,0.00e+00,33016,0),(1,2.77e-05,36060,0),(0,0.00e+00,36054,0),(0,0.00e+00,35940,0),(0,0.00e+00,36054,0),(0,0.00e+00,35922,0),(0,0.00e+00,35978,0),(1,2.50e-05,39988,0),(0,0.00e+00,39858,0),(0,0.00e+00,39982,0),(0,0.00e+00,39834,0),(0,0.00e+00,39898,0),(1,2.29e-05,43728,0),(0,0.00e+00,43588,0),(0,0.00e+00,43722,0),(0,0.00e+00,43566,0),(0,0.00e+00,43630,0),(0,0.00e+00,52956,0),(0,0.00e+00,53120,0),(0,0.00e+00,52934,0),(0,0.00e+00,53010,0),(0,0.00e+00,69764,0),(0,0.00e+00,69540,0),(0,0.00e+00,69628,0),(0,0.00e+00,99958,0),(0,0.00e+00,99732,0),(0,0.00e+00,199906,0),(0,0.00e+00,199516,0),(0,0.00e+00,349938,0),(1,2.86e-06,349218,0),(1,2.51e-06,398984,0)]12.24e-05446960"amr"12.29e-05437280"amr"[(2.30e-07,9.00e-08),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]NANANANANANANANA1TrueNA{}5.51e-016.00e+010.00e+0030709.27e+000.00e+00[174,36,99,22]6.12e-013311.21e+006.00e+010.00e+008.45e-0129721.38e+011.49e+00[174,36,87,20]5.79e-01216FalseNANAFalseFalseFalseFalse5.24e+00-1.37e-06["ga4gh:VA.oDr3967BFZ6uu2LJEc9_RVWIOnNqtSF-","ga4gh:VA.N81rCvIHb-9PjhcHLL1zScmYT6cnOs-Y"][113410661,113410661][113410662,113410662]["G","A"]"G/A"113410662".""chr11\t113410662\t.\tG\tA\t.\t.\tGT"NA"3_prime_UTR_variant"NANA"chr11"1134106621[(1,NA,NA,"protein_coding",NA,"CCDS8362.1",1386,1386,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000346454.7:c.*65C>T",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"ENSP00000278597","Ensembl",-1,"ENST00000346454",1,["P14416-2"],"A"),(1,NA,"P2","protein_coding",1,"CCDS8361.1",1751,1751,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"8/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000362072.8:c.*65C>T",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,"NM_000795.4",NA,NA,NA,NA,"ENSP00000354859","Ensembl",-1,"ENST00000362072",1,["P14416-1"],"A"),(1,NA,NA,"processed_transcript",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],3713,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000535984",3,NA,"A"),(1,NA,"A1","protein_coding",NA,NA,1403,1403,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"8/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000538967.5:c.*65C>T",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"ENSP00000438215","Ensembl",-1,"ENST00000538967",5,["P14416-3"],"A"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],4632,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000539420",3,NA,"A"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],3202,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000540600",1,NA,"A"),(1,NA,"P2","protein_coding",NA,"CCDS8361.1",1718,1718,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000542968.5:c.*65C>T",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"ENSP00000442172","Ensembl",-1,"ENST00000542968",1,["P14416-1"],"A"),(1,NA,"A1","protein_coding",NA,NA,1427,1427,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000544518.5:c.*65C>T",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"ENSP00000441068","Ensembl",-1,"ENST00000544518",1,NA,"A"),(1,NA,NA,"lncRNA",1,NA,NA,NA,NA,NA,NA,["intron_variant","non_coding_transcript_variant"],NA,NA,NA,NA,"ENSG00000256757",NA,NA,NA,NA,"ENST00000546284.1:n.245-885G>A",NA,NA,"MODIFIER","2/3",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",1,"ENST00000546284",3,NA,"A"),(1,NA,NA,"protein_coding",1,NA,1751,1751,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"8/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_000795.4:c.*65C>T",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,"ENST00000362072.8",NA,NA,NA,NA,"NP_000786.1","RefSeq",-1,"NM_000795.4",NA,NA,"A"),(1,NA,NA,"protein_coding",NA,NA,1664,1664,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"7/7",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_016574.4:c.*65C>T",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"NP_057658.2","RefSeq",-1,"NM_016574.4",NA,NA,"A"),(1,NA,NA,"protein_coding",NA,NA,1479,1479,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"8/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","XM_017017296.2:c.*65C>T",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"XP_016872785.1","RefSeq",-1,"XM_017017296.2",NA,NA,"A")]"SNV"5.24e+00"AS_MQ"FalseFalseFalseFalseFalseNATrueFalse"multi-snv"2False"snv"False[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,4139,0,27770,1,353590,0,56800,0,283396,0,0,0,0,0,0,2]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,22477,65025,118275,313361,178106,20388,3276,1054,693,645,582,508,355,259,173,113,79,64]0265[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]01[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][653,0,1690,2,6865,0,27770,1,353590,0,56800,0,283396,0,0,0,0,0,0,2]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][264,3602,22767,65834,118294,313419,178113,20399,3282,1056,696,645,582,508,355,259,173,113,79,64]0265[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]01[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,1,0,1,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]006.25e+004.76e-01NA0.00e+002.10e-011.62e+00NANA

showing top 5 rows

\n" ], "text/plain": [ @@ -4868,11 +4902,11 @@ "+-----------------+------------+\n", "| locus | array |\n", "+-----------------+------------+\n", - "| chr11:113409636 | [\"G\",\"C\"] |\n", - "| chr11:113409693 | [\"G\",\"A\"] |\n", - "| chr11:113409717 | [\"C\",\"T\"] |\n", - "| chr11:113409758 | [\"C\",\"T\"] |\n", - "| chr11:113410002 | [\"C\",\"A\"] |\n", + "| chr11:113410657 | [\"C\",\"T\"] |\n", + "| chr11:113410658 | [\"G\",\"A\"] |\n", + "| chr11:113410658 | [\"G\",\"T\"] |\n", + "| chr11:113410660 | [\"A\",\"G\"] |\n", + "| chr11:113410662 | [\"G\",\"A\"] |\n", "+-----------------+------------+\n", "\n", "+------------------------------------------------------------------------------+\n", @@ -4880,11 +4914,11 @@ "+------------------------------------------------------------------------------+\n", "| array |\n", "+------------------------------------------------------------------------------+\n", - "| [(1,1.87e-03,534,0),(5,7.95e-06,628788,2),(0,0.00e+00,8,0),(0,NA,0,0),(0,... |\n", - "| [(1,1.20e-03,834,0),(16,2.54e-05,628790,3),(0,0.00e+00,6,0),(0,0.00e+00,2... |\n", - "| [(1,1.01e-03,990,0),(5,7.95e-06,628794,2),(0,0.00e+00,10,0),(0,0.00e+00,4... |\n", - "| [(1,1.23e-03,810,0),(4,6.36e-06,628786,1),(0,0.00e+00,12,0),(0,0.00e+00,4... |\n", - "| [(128,1.34e-01,952,15),(18463,2.94e-02,628994,6837),(0,0.00e+00,6,0),(17,... |\n", + "| [(18,1.25e-05,1445518,0),(24,1.64e-05,1461322,0),(1,3.02e-05,33096,0),(0,... |\n", + "| [(23,1.59e-05,1448166,0),(23,1.57e-05,1461456,0),(0,0.00e+00,33180,0),(0,... |\n", + "| [(94,6.49e-05,1448162,0),(105,7.18e-05,1461456,0),(24,7.23e-04,33180,0),(... |\n", + "| [(1,6.89e-07,1450438,0),(2,1.37e-06,1461588,0),(0,0.00e+00,33208,0),(0,0.... |\n", + "| [(2,1.38e-06,1451396,0),(2,1.37e-06,1461538,0),(0,0.00e+00,33252,0),(1,2.... |\n", "+------------------------------------------------------------------------------+\n", "\n", "+------------------+------------------+------------------+\n", @@ -4892,11 +4926,11 @@ "+------------------+------------------+------------------+\n", "| int32 | float64 | int32 |\n", "+------------------+------------------+------------------+\n", - "| NA | NA | NA |\n", - "| 1 | 2.87e-03 | 348 |\n", - "| 1 | 2.17e-03 | 460 |\n", - "| NA | NA | NA |\n", - "| 2 | 5.00e-01 | 4 |\n", + "| 4 | 1.01e-04 | 39606 |\n", + "| 3 | 7.57e-05 | 39630 |\n", + "| 24 | 7.23e-04 | 33180 |\n", + "| 1 | 9.07e-07 | 1103066 |\n", + "| 1 | 2.24e-05 | 44696 |\n", "+------------------+------------------+------------------+\n", "\n", "+--------------------------------+-----------------------+-------------------+\n", @@ -4904,11 +4938,11 @@ "+--------------------------------+-----------------------+-------------------+\n", "| int64 | str | int32 |\n", "+--------------------------------+-----------------------+-------------------+\n", - "| NA | NA | NA |\n", + "| 0 | \"eas\" | 4 |\n", + "| 0 | \"eas\" | 10 |\n", + "| 0 | \"afr\" | 15 |\n", "| 0 | \"nfe\" | 1 |\n", - "| 0 | \"nfe\" | 1 |\n", - "| NA | NA | NA |\n", - "| 0 | \"eas\" | 2 |\n", + "| 0 | \"amr\" | 1 |\n", "+--------------------------------+-----------------------+-------------------+\n", "\n", "+-------------------+-------------------+---------------------------------+\n", @@ -4916,11 +4950,11 @@ "+-------------------+-------------------+---------------------------------+\n", "| float64 | int32 | int64 |\n", "+-------------------+-------------------+---------------------------------+\n", - "| NA | NA | NA |\n", - "| 2.87e-03 | 348 | 0 |\n", - "| 2.17e-03 | 460 | 0 |\n", - "| NA | NA | NA |\n", - "| 5.00e-01 | 4 | 0 |\n", + "| 1.11e-04 | 36050 | 0 |\n", + "| 2.86e-05 | 349848 | 0 |\n", + "| 8.50e-04 | 17650 | 0 |\n", + "| 2.86e-06 | 349920 | 0 |\n", + "| 2.29e-05 | 43728 | 0 |\n", "+-------------------+-------------------+---------------------------------+\n", "\n", "+------------------------+\n", @@ -4928,11 +4962,11 @@ "+------------------------+\n", "| str |\n", "+------------------------+\n", - "| NA |\n", + "| \"eas\" |\n", "| \"nfe\" |\n", + "| \"afr\" |\n", "| \"nfe\" |\n", - "| NA |\n", - "| \"eas\" |\n", + "| \"amr\" |\n", "+------------------------+\n", "\n", "+------------------------------------------------------------------------------+\n", @@ -4940,11 +4974,11 @@ "+------------------------------------------------------------------------------+\n", "| array |\n", "+------------------------------------------------------------------------------+\n", + "| [(7.78e-06,6.42e-06),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(3.35e-05,1.... |\n", + "| [(1.06e-05,8.83e-06),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(2.01e-05,1.... |\n", + "| [(5.41e-05,5.02e-05),(4.99e-04,4.24e-04),(2.99e-05,1.81e-05),(0.00e+00,0.... |\n", "| [(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.... |\n", - "| [(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.... |\n", - "| [(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.... |\n", - "| [(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.... |\n", - "| [(1.16e-01,1.08e-01),(0.00e+00,0.00e+00),(1.23e-01,1.01e-01),(8.88e-02,3.... |\n", + "| [(2.30e-07,9.00e-08),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.... |\n", "+------------------------------------------------------------------------------+\n", "\n", "+-------------------------+---------------------------------+\n", @@ -4952,11 +4986,11 @@ "+-------------------------+---------------------------------+\n", "| float64 | str |\n", "+-------------------------+---------------------------------+\n", + "| 3.35e-05 | \"eas\" |\n", + "| 2.01e-05 | \"eas\" |\n", + "| 4.99e-04 | \"afr\" |\n", "| NA | NA |\n", "| NA | NA |\n", - "| NA | NA |\n", - "| NA | NA |\n", - "| 1.23e-01 | \"amr\" |\n", "+-------------------------+---------------------------------+\n", "\n", "+-------------------------+---------------------------------+\n", @@ -4964,11 +4998,11 @@ "+-------------------------+---------------------------------+\n", "| float64 | str |\n", "+-------------------------+---------------------------------+\n", + "| 1.99e-05 | \"eas\" |\n", + "| 1.06e-05 | \"eas\" |\n", + "| 4.24e-04 | \"afr\" |\n", "| NA | NA |\n", "| NA | NA |\n", - "| NA | NA |\n", - "| NA | NA |\n", - "| 1.02e-01 | \"nfe\" |\n", "+-------------------------+---------------------------------+\n", "\n", "+--------------------------+----------------------------------+\n", @@ -4976,11 +5010,11 @@ "+--------------------------+----------------------------------+\n", "| float64 | str |\n", "+--------------------------+----------------------------------+\n", + "| 3.78e-05 | \"eas\" |\n", + "| 1.54e-05 | \"nfe\" |\n", + "| 5.23e-04 | \"afr\" |\n", "| NA | NA |\n", "| NA | NA |\n", - "| NA | NA |\n", - "| NA | NA |\n", - "| 1.23e-01 | \"amr\" |\n", "+--------------------------+----------------------------------+\n", "\n", "+--------------------------+----------------------------------+---------+\n", @@ -4988,119 +5022,119 @@ "+--------------------------+----------------------------------+---------+\n", "| float64 | str | int32 |\n", "+--------------------------+----------------------------------+---------+\n", - "| NA | NA | 1 |\n", - "| NA | NA | 1 |\n", + "| 2.24e-05 | \"eas\" | 3 |\n", + "| 1.15e-05 | \"nfe\" | 1 |\n", + "| 4.23e-04 | \"afr\" | 2 |\n", "| NA | NA | 2 |\n", - "| NA | NA | 2 |\n", - "| 1.02e-01 | \"nfe\" | 1 |\n", + "| NA | NA | 1 |\n", "+--------------------------+----------------------------------+---------+\n", "\n", - "+-----------+-----------------+----------+----------+----------+\n", - "| was_split | rsid | filters | info.FS | info.MQ |\n", - "+-----------+-----------------+----------+----------+----------+\n", - "| bool | set | set | float64 | float64 |\n", - "+-----------+-----------------+----------+----------+----------+\n", - "| True | {\"rs200733424\"} | {} | 0.00e+00 | 6.00e+01 |\n", - "| True | NA | {} | 5.32e+00 | 6.00e+01 |\n", - "| True | NA | {} | 4.82e-16 | 6.00e+01 |\n", - "| True | {\"rs200557458\"} | {} | 0.00e+00 | 6.00e+01 |\n", - "| True | {\"rs6278\"} | {} | 2.80e+00 | 6.00e+01 |\n", - "+-----------+-----------------+----------+----------+----------+\n", + "+-----------+------------------+----------+----------+----------+\n", + "| was_split | rsid | filters | info.FS | info.MQ |\n", + "+-----------+------------------+----------+----------+----------+\n", + "| bool | set | set | float64 | float64 |\n", + "+-----------+------------------+----------+----------+----------+\n", + "| True | {\"rs200559334\"} | {} | 0.00e+00 | 6.00e+01 |\n", + "| True | {\"rs201475538\"} | {} | 8.65e-01 | 6.00e+01 |\n", + "| True | {\"rs201475538\"} | {} | 8.65e-01 | 6.00e+01 |\n", + "| True | {\"rs1950760213\"} | {} | 0.00e+00 | 6.00e+01 |\n", + "| True | NA | {} | 5.51e-01 | 6.00e+01 |\n", + "+-----------+------------------+----------+----------+----------+\n", "\n", "+----------------+-----------------+----------+---------------------+\n", "| info.MQRankSum | info.QUALapprox | info.QD | info.ReadPosRankSum |\n", "+----------------+-----------------+----------+---------------------+\n", "| float64 | int64 | float64 | float64 |\n", "+----------------+-----------------+----------+---------------------+\n", - "| 0.00e+00 | 582 | 1.94e+01 | -2.11e+00 |\n", - "| 0.00e+00 | 898 | 9.76e+00 | 0.00e+00 |\n", - "| 0.00e+00 | 209 | 9.09e+00 | 8.42e-01 |\n", - "| 0.00e+00 | 947 | 1.26e+01 | -6.74e-01 |\n", - "| 0.00e+00 | 1998239 | 1.99e+01 | 0.00e+00 |\n", + "| 0.00e+00 | 12992 | 1.27e+01 | 0.00e+00 |\n", + "| 0.00e+00 | 142805 | 1.36e+01 | -1.80e-02 |\n", + "| 0.00e+00 | 142805 | 1.36e+01 | -1.80e-02 |\n", + "| 0.00e+00 | 3619 | 1.78e+01 | 6.74e-01 |\n", + "| 0.00e+00 | 3070 | 9.27e+00 | 0.00e+00 |\n", "+----------------+-----------------+----------+---------------------+\n", "\n", - "+---------------------------+----------+------------+------------+------------+\n", - "| info.SB | info.SOR | info.VarDP | info.AS_FS | info.AS_MQ |\n", - "+---------------------------+----------+------------+------------+------------+\n", - "| array | float64 | int32 | float64 | float64 |\n", - "+---------------------------+----------+------------+------------+------------+\n", - "| [8,2,15,5] | 5.82e-01 | 30 | 0.00e+00 | 6.00e+01 |\n", - "| [31,19,21,21] | 3.30e-01 | 92 | 4.52e+00 | 6.00e+01 |\n", - "| [6,7,4,6] | 9.17e-01 | 23 | 0.00e+00 | 6.00e+01 |\n", - "| [16,19,18,22] | 7.22e-01 | 75 | 0.00e+00 | 6.00e+01 |\n", - "| [19752,12842,45058,22649] | 9.83e-01 | 100292 | 2.80e+00 | 6.00e+01 |\n", - "+---------------------------+----------+------------+------------+------------+\n", + "+---------------------+----------+------------+------------+------------+\n", + "| info.SB | info.SOR | info.VarDP | info.AS_FS | info.AS_MQ |\n", + "+---------------------+----------+------------+------------+------------+\n", + "| array | float64 | int32 | float64 | float64 |\n", + "+---------------------+----------+------------+------------+------------+\n", + "| [543,53,386,37] | 7.04e-01 | 1019 | 4.82e-16 | 6.00e+01 |\n", + "| [4798,567,4576,579] | 6.27e-01 | 10518 | 1.55e+00 | 6.00e+01 |\n", + "| [4798,567,4576,579] | 6.27e-01 | 10518 | 0.00e+00 | 6.00e+01 |\n", + "| [83,21,79,20] | 6.91e-01 | 203 | 4.82e-16 | 6.00e+01 |\n", + "| [174,36,99,22] | 6.12e-01 | 331 | 1.21e+00 | 6.00e+01 |\n", + "+---------------------+----------+------------+------------+------------+\n", "\n", "+-------------------+-----------------+--------------------+------------+\n", "| info.AS_MQRankSum | info.AS_pab_max | info.AS_QUALapprox | info.AS_QD |\n", "+-------------------+-----------------+--------------------+------------+\n", "| float64 | float64 | int64 | float64 |\n", "+-------------------+-----------------+--------------------+------------+\n", - "| 0.00e+00 | 5.41e-01 | 582 | 1.94e+01 |\n", - "| 0.00e+00 | 1.00e+00 | 553 | 8.01e+00 |\n", - "| 0.00e+00 | 2.67e-01 | 178 | 1.05e+01 |\n", - "| 0.00e+00 | 1.00e+00 | 703 | 1.12e+01 |\n", - "| 0.00e+00 | 1.00e+00 | 1998092 | 1.99e+01 |\n", + "| 0.00e+00 | 1.00e+00 | 12891 | 1.32e+01 |\n", + "| 0.00e+00 | 1.00e+00 | 19189 | 1.44e+01 |\n", + "| 0.00e+00 | 1.00e+00 | 123616 | 1.35e+01 |\n", + "| 0.00e+00 | 4.53e-01 | 3591 | 1.98e+01 |\n", + "| 0.00e+00 | 8.45e-01 | 2972 | 1.38e+01 |\n", "+-------------------+-----------------+--------------------+------------+\n", "\n", - "+------------------------+---------------------------+-------------+\n", - "| info.AS_ReadPosRankSum | info.AS_SB_TABLE | info.AS_SOR |\n", - "+------------------------+---------------------------+-------------+\n", - "| float64 | array | float64 |\n", - "+------------------------+---------------------------+-------------+\n", - "| -2.11e+00 | [8,2,15,5] | 5.82e-01 |\n", - "| 0.00e+00 | [31,19,15,15] | 3.30e-01 |\n", - "| 7.20e-02 | [6,7,3,5] | 1.00e+00 |\n", - "| -1.13e+00 | [16,19,14,17] | 7.13e-01 |\n", - "| 0.00e+00 | [19752,12842,45055,22646] | 9.83e-01 |\n", - "+------------------------+---------------------------+-------------+\n", + "+------------------------+---------------------+-------------+---------------+\n", + "| info.AS_ReadPosRankSum | info.AS_SB_TABLE | info.AS_SOR | info.AS_VarDP |\n", + "+------------------------+---------------------+-------------+---------------+\n", + "| float64 | array | float64 | int32 |\n", + "+------------------------+---------------------+-------------+---------------+\n", + "| -3.90e-02 | [543,53,379,36] | 7.13e-01 | 976 |\n", + "| 1.34e-01 | [4798,567,588,57] | 8.94e-01 | 1334 |\n", + "| -2.10e-02 | [4798,567,3988,522] | 5.96e-01 | 9184 |\n", + "| 9.51e-01 | [83,21,77,19] | 7.15e-01 | 181 |\n", + "| 1.49e+00 | [174,36,87,20] | 5.79e-01 | 216 |\n", + "+------------------------+---------------------+-------------+---------------+\n", "\n", - "+---------------+----------------+----------------------------+\n", - "| info.AS_VarDP | info.singleton | info.transmitted_singleton |\n", - "+---------------+----------------+----------------------------+\n", - "| int32 | bool | bool |\n", - "+---------------+----------------+----------------------------+\n", - "| 30 | False | False |\n", - "| 69 | False | False |\n", - "| 17 | False | False |\n", - "| 63 | False | False |\n", - "| 100286 | False | NA |\n", - "+---------------+----------------+----------------------------+\n", + "+----------------+----------------------------+------------------------+\n", + "| info.singleton | info.transmitted_singleton | info.sibling_singleton |\n", + "+----------------+----------------------------+------------------------+\n", + "| bool | bool | bool |\n", + "+----------------+----------------------------+------------------------+\n", + "| False | NA | NA |\n", + "| False | NA | NA |\n", + "| False | NA | NA |\n", + "| False | False | False |\n", + "| False | NA | NA |\n", + "+----------------+----------------------------+------------------------+\n", "\n", - "+------------------------+-----------+------------+------------------+\n", - "| info.sibling_singleton | info.omni | info.mills | info.monoallelic |\n", - "+------------------------+-----------+------------+------------------+\n", - "| bool | bool | bool | bool |\n", - "+------------------------+-----------+------------+------------------+\n", - "| False | False | False | False |\n", - "| False | False | False | False |\n", - "| False | False | False | False |\n", - "| False | False | False | False |\n", - "| NA | True | False | False |\n", - "+------------------------+-----------+------------+------------------+\n", + "+-----------+------------+------------------+---------------+----------------+\n", + "| info.omni | info.mills | info.monoallelic | info.only_het | info.AS_VQSLOD |\n", + "+-----------+------------+------------------+---------------+----------------+\n", + "| bool | bool | bool | bool | float64 |\n", + "+-----------+------------+------------------+---------------+----------------+\n", + "| False | False | False | False | 9.14e+00 |\n", + "| False | False | False | False | 6.96e+00 |\n", + "| False | False | False | False | 9.35e+00 |\n", + "| False | False | False | False | 4.34e+00 |\n", + "| False | False | False | False | 5.24e+00 |\n", + "+-----------+------------+------------------+---------------+----------------+\n", "\n", - "+---------------+----------------+-----------------------+\n", - "| info.only_het | info.AS_VQSLOD | info.inbreeding_coeff |\n", - "+---------------+----------------+-----------------------+\n", - "| bool | float64 | float64 |\n", - "+---------------+----------------+-----------------------+\n", - "| False | 4.51e+00 | 8.00e-01 |\n", - "| False | 5.16e+00 | 3.75e-01 |\n", - "| False | 6.19e+00 | 8.00e-01 |\n", - "| False | 6.36e+00 | 5.00e-01 |\n", - "| False | 5.57e+00 | 7.33e-01 |\n", - "+---------------+----------------+-----------------------+\n", + "+-----------------------+\n", + "| info.inbreeding_coeff |\n", + "+-----------------------+\n", + "| float64 |\n", + "+-----------------------+\n", + "| -1.64e-05 |\n", + "| -1.57e-05 |\n", + "| -7.19e-05 |\n", + "| -1.37e-06 |\n", + "| -1.37e-06 |\n", + "+-----------------------+\n", "\n", "+------------------------------------------------------------------------------+\n", "| info.vrs.VRS_Allele_IDs |\n", "+------------------------------------------------------------------------------+\n", "| array |\n", "+------------------------------------------------------------------------------+\n", - "| [\"ga4gh:VA.BlCz08hG7ZEQzvW20V8Kp4xJMx-pMKes\",\"ga4gh:VA.U4eD7PXtXRCClN6FQt... |\n", - "| [\"ga4gh:VA.aXxME51cngsJBnH_3WX01B0Ms-SLay9X\",\"ga4gh:VA.ynryFZCH9dBU67nwPr... |\n", - "| [\"ga4gh:VA.Q6p6okAv6qHSPSV8MOvy8Hhl0kZ6tQ4U\",\"ga4gh:VA.WIfYWxgEc5ICUUByiD... |\n", - "| [\"ga4gh:VA.k_gesWx8TbLs23MHIkc3NaVscBWVDrSE\",\"ga4gh:VA.NJz3hsVBrqbTn17g5T... |\n", - "| [\"ga4gh:VA.HjAJ4gj43VVFJQmV-h5WuPZZPBmNwSFZ\",\"ga4gh:VA.sT14AsCSWlf2AqH0wh... |\n", + "| [\"ga4gh:VA.xwHxL6yO3I874HqhfGar1ZIaOp66ifsx\",\"ga4gh:VA.eglRJIN5-izMH1peMx... |\n", + "| [\"ga4gh:VA.3n-gYs3xsspnxwI91EMCEDsIcrj9bIqO\",\"ga4gh:VA.9Y9GDmOWCTqMks8dsN... |\n", + "| [\"ga4gh:VA.3n-gYs3xsspnxwI91EMCEDsIcrj9bIqO\",\"ga4gh:VA.R13f7bcCv-WGRkCM6W... |\n", + "| [\"ga4gh:VA.MHTiWiUO_hsQ_FAaIagdomN6DdnpjqRm\",\"ga4gh:VA.D8-MF1xUzSMIKncRc7... |\n", + "| [\"ga4gh:VA.oDr3967BFZ6uu2LJEc9_RVWIOnNqtSF-\",\"ga4gh:VA.N81rCvIHb-9PjhcHLL... |\n", "+------------------------------------------------------------------------------+\n", "\n", "+-----------------------+-----------------------+---------------------+\n", @@ -5108,11 +5142,11 @@ "+-----------------------+-----------------------+---------------------+\n", "| array | array | array |\n", "+-----------------------+-----------------------+---------------------+\n", - "| [113409635,113409635] | [113409636,113409636] | [\"G\",\"C\"] |\n", - "| [113409692,113409692] | [113409693,113409693] | [\"G\",\"A\"] |\n", - "| [113409716,113409716] | [113409717,113409717] | [\"C\",\"T\"] |\n", - "| [113409757,113409757] | [113409758,113409758] | [\"C\",\"T\"] |\n", - "| [113410001,113410001] | [113410002,113410002] | [\"C\",\"A\"] |\n", + "| [113410656,113410656] | [113410657,113410657] | [\"C\",\"T\"] |\n", + "| [113410657,113410657] | [113410658,113410658] | [\"G\",\"A\"] |\n", + "| [113410657,113410657] | [113410658,113410658] | [\"G\",\"T\"] |\n", + "| [113410659,113410659] | [113410660,113410660] | [\"A\",\"G\"] |\n", + "| [113410661,113410661] | [113410662,113410662] | [\"G\",\"A\"] |\n", "+-----------------------+-----------------------+---------------------+\n", "\n", "+-------------------+-----------+--------+--------------------------------+\n", @@ -5120,11 +5154,11 @@ "+-------------------+-----------+--------+--------------------------------+\n", "| str | int32 | str | str |\n", "+-------------------+-----------+--------+--------------------------------+\n", - "| \"G/C\" | 113409636 | \".\" | \"chr11\t113409636\t.\tG\tC\t.\t.\tGT\" |\n", - "| \"G/A\" | 113409693 | \".\" | \"chr11\t113409693\t.\tG\tA\t.\t.\tGT\" |\n", - "| \"C/T\" | 113409717 | \".\" | \"chr11\t113409717\t.\tC\tT\t.\t.\tGT\" |\n", - "| \"C/T\" | 113409758 | \".\" | \"chr11\t113409758\t.\tC\tT\t.\t.\tGT\" |\n", - "| \"C/A\" | 113410002 | \".\" | \"chr11\t113410002\t.\tC\tA\t.\t.\tGT\" |\n", + "| \"C/T\" | 113410657 | \".\" | \"chr11\t113410657\t.\tC\tT\t.\t.\tGT\" |\n", + "| \"G/A\" | 113410658 | \".\" | \"chr11\t113410658\t.\tG\tA\t.\t.\tGT\" |\n", + "| \"G/T\" | 113410658 | \".\" | \"chr11\t113410658\t.\tG\tT\t.\t.\tGT\" |\n", + "| \"A/G\" | 113410660 | \".\" | \"chr11\t113410660\t.\tA\tG\t.\t.\tGT\" |\n", + "| \"G/A\" | 113410662 | \".\" | \"chr11\t113410662\t.\tG\tA\t.\t.\tGT\" |\n", "+-------------------+-----------+--------+--------------------------------+\n", "\n", "+------------------------------------------------------------------------------+\n", @@ -5180,11 +5214,11 @@ "+---------------------+-----------+------------+\n", "| str | int32 | int32 |\n", "+---------------------+-----------+------------+\n", - "| \"chr11\" | 113409636 | 1 |\n", - "| \"chr11\" | 113409693 | 1 |\n", - "| \"chr11\" | 113409717 | 1 |\n", - "| \"chr11\" | 113409758 | 1 |\n", - "| \"chr11\" | 113410002 | 1 |\n", + "| \"chr11\" | 113410657 | 1 |\n", + "| \"chr11\" | 113410658 | 1 |\n", + "| \"chr11\" | 113410658 | 1 |\n", + "| \"chr11\" | 113410660 | 1 |\n", + "| \"chr11\" | 113410662 | 1 |\n", "+---------------------+-----------+------------+\n", "\n", "+------------------------------------------------------------------------------+\n", @@ -5192,11 +5226,11 @@ "+------------------------------------------------------------------------------+\n", "| array |\n", - "+-------------------------------------------------+\n", - "| [0,0,0,0,28,0,76,0,162,0,0,0,0,0,0,0,0,0,0,1] |\n", - "| [0,0,0,0,25,0,186,0,206,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,95,0,197,0,202,0,0,0,0,0,0,0,1,0,0,0] |\n", - "| [0,0,0,0,100,0,111,0,193,0,0,0,0,0,1,0,0,0,0,0] |\n", - "| [0,0,0,0,120,1,223,5,34,1,5,0,2,5,7,1,3,2,1,66] |\n", - "+-------------------------------------------------+\n", + "+------------------------------------------------------------------+\n", + "| histograms.qual_hists.gq_hist_all.bin_freq |\n", + "+------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------+\n", + "| [0,0,0,0,4430,0,32721,0,357851,0,60423,0,267316,0,0,0,0,0,0,18] |\n", + "| [0,0,0,0,4183,2,30033,1,354765,0,58262,0,276721,0,0,0,1,0,0,115] |\n", + "| [0,0,0,0,4183,0,30033,1,354765,0,58262,0,276721,0,0,0,1,0,0,115] |\n", + "| [0,0,0,0,3304,0,26636,0,351846,0,54948,0,288484,0,0,0,0,0,0,1] |\n", + "| [0,0,0,0,4139,0,27770,1,353590,0,56800,0,283396,0,0,0,0,0,0,2] |\n", + "+------------------------------------------------------------------+\n", "\n", "+---------------------------------------------+\n", "| histograms.qual_hists.gq_hist_all.n_smaller |\n", @@ -5343,17 +5377,17 @@ "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", "+------------------------------------------------------------------------------+\n", "\n", - "+--------------------------------------------------+\n", - "| histograms.qual_hists.dp_hist_all.bin_freq |\n", - "+--------------------------------------------------+\n", - "| array |\n", - "+--------------------------------------------------+\n", - "| [0,0,101,28,30,82,26,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,211,29,38,105,34,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,286,30,40,105,34,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,200,35,36,102,32,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,438,30,5,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "+--------------------------------------------------+\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.qual_hists.dp_hist_all.bin_freq |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0,0,29987,74977,120278,300405,170342,18935,3117,1021,684,644,577,507,353... |\n", + "| [0,0,26988,70993,120130,305542,173013,19471,3177,1036,688,647,582,509,357... |\n", + "| [0,0,26986,70993,120130,305542,173013,19471,3177,1036,688,647,582,509,357... |\n", + "| [0,0,24253,67281,120581,309738,175490,19882,3222,1041,692,644,582,508,354... |\n", + "| [0,0,22477,65025,118275,313361,178106,20388,3276,1054,693,645,582,508,355... |\n", + "+------------------------------------------------------------------------------+\n", "\n", "+---------------------------------------------+\n", "| histograms.qual_hists.dp_hist_all.n_smaller |\n", @@ -5372,11 +5406,11 @@ "+--------------------------------------------+\n", "| int64 |\n", "+--------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", + "| 252 |\n", + "| 265 |\n", + "| 265 |\n", + "| 264 |\n", + "| 265 |\n", "+--------------------------------------------+\n", "\n", "+------------------------------------------------------------------------------+\n", @@ -5391,17 +5425,17 @@ "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", "+------------------------------------------------------------------------------+\n", "\n", - "+---------------------------------------------+\n", - "| histograms.qual_hists.gq_hist_alt.bin_freq |\n", - "+---------------------------------------------+\n", - "| array |\n", - "+---------------------------------------------+\n", - "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1] |\n", - "| [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0] |\n", - "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0] |\n", - "| [0,0,0,0,1,1,11,5,2,1,5,0,2,5,7,1,3,2,1,66] |\n", - "+---------------------------------------------+\n", + "+--------------------------------------------+\n", + "| histograms.qual_hists.gq_hist_alt.bin_freq |\n", + "+--------------------------------------------+\n", + "| array |\n", + "+--------------------------------------------+\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,18] |\n", + "| [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,21] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,94] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2] |\n", + "+--------------------------------------------+\n", "\n", "+---------------------------------------------+\n", "| histograms.qual_hists.gq_hist_alt.n_smaller |\n", @@ -5439,17 +5473,17 @@ "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", "+------------------------------------------------------------------------------+\n", "\n", - "+---------------------------------------------+\n", - "| histograms.qual_hists.dp_hist_alt.bin_freq |\n", - "+---------------------------------------------+\n", - "| array |\n", - "+---------------------------------------------+\n", - "| [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,108,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "+---------------------------------------------+\n", + "+-----------------------------------------------+\n", + "| histograms.qual_hists.dp_hist_alt.bin_freq |\n", + "+-----------------------------------------------+\n", + "| array |\n", + "+-----------------------------------------------+\n", + "| [0,0,0,2,3,3,2,1,0,1,1,0,1,0,0,1,1,0,0,1] |\n", + "| [0,0,1,2,4,3,4,1,1,0,0,1,0,1,0,0,0,2,0,1] |\n", + "| [0,0,2,3,11,13,14,10,8,9,1,3,2,0,4,0,0,1,1,1] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "+-----------------------------------------------+\n", "\n", "+---------------------------------------------+\n", "| histograms.qual_hists.dp_hist_alt.n_smaller |\n", @@ -5468,11 +5502,11 @@ "+--------------------------------------------+\n", "| int64 |\n", "+--------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", + "| 1 |\n", + "| 2 |\n", + "| 11 |\n", + "| 1 |\n", + "| 1 |\n", "+--------------------------------------------+\n", "\n", "+------------------------------------------------------------------------------+\n", @@ -5487,17 +5521,17 @@ "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", "+------------------------------------------------------------------------------+\n", "\n", - "+---------------------------------------------+\n", - "| histograms.qual_hists.ab_hist_alt.bin_freq |\n", - "+---------------------------------------------+\n", - "| array |\n", - "+---------------------------------------------+\n", - "| [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0] |\n", - "| [0,0,0,0,3,8,0,4,8,6,30,15,8,9,3,1,3,0,0,0] |\n", - "+---------------------------------------------+\n", + "+-----------------------------------------------+\n", + "| histograms.qual_hists.ab_hist_alt.bin_freq |\n", + "+-----------------------------------------------+\n", + "| array |\n", + "+-----------------------------------------------+\n", + "| [0,0,0,0,0,0,2,0,4,4,4,3,1,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,2,0,1,0,3,3,8,5,0,1,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,6,5,19,14,25,17,6,1,1,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0] |\n", + "+-----------------------------------------------+\n", "\n", "+---------------------------------------------+\n", "| histograms.qual_hists.ab_hist_alt.n_smaller |\n", @@ -5535,17 +5569,17 @@ "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", "+------------------------------------------------------------------------------+\n", "\n", - "+------------------------------------------------------------------------------+\n", - "| histograms.raw_qual_hists.gq_hist_all.bin_freq |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [313709,2,2,0,442,0,76,0,162,0,0,0,0,0,0,0,0,0,0,1] |\n", - "| [313080,4,2,0,906,6,189,2,206,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [313071,2,3,0,920,0,198,0,202,0,0,0,0,0,0,0,1,0,0,0] |\n", - "| [313441,3,2,1,640,0,111,1,193,0,0,0,0,0,1,0,0,0,0,0] |\n", - "| [301848,5644,543,415,1889,1584,436,212,123,210,485,568,76,48,44,53,135,57... |\n", - "+------------------------------------------------------------------------------+\n", + "+-----------------------------------------------------------------------+\n", + "| histograms.raw_qual_hists.gq_hist_all.bin_freq |\n", + "+-----------------------------------------------------------------------+\n", + "| array |\n", + "+-----------------------------------------------------------------------+\n", + "| [979,2,2487,1,8860,1,32722,0,357851,0,60423,0,267317,0,0,0,0,0,0,18] |\n", + "| [886,4,2000,0,7936,2,30033,1,354765,1,58262,0,276721,0,0,0,1,0,0,116] |\n", + "| [886,4,2000,0,7936,2,30033,1,354765,1,58262,0,276721,0,0,0,1,0,0,116] |\n", + "| [684,0,1637,0,6556,2,26636,0,351846,0,54948,0,288484,0,0,0,0,0,0,1] |\n", + "| [653,0,1690,2,6865,0,27770,1,353590,0,56800,0,283396,0,0,0,0,0,0,2] |\n", + "+-----------------------------------------------------------------------+\n", "\n", "+-------------------------------------------------+\n", "| histograms.raw_qual_hists.gq_hist_all.n_smaller |\n", @@ -5583,17 +5617,17 @@ "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", "+------------------------------------------------------------------------------+\n", "\n", - "+-----------------------------------------------------------+\n", - "| histograms.raw_qual_hists.dp_hist_all.bin_freq |\n", - "+-----------------------------------------------------------+\n", - "| array |\n", - "+-----------------------------------------------------------+\n", - "| [240827,73298,103,28,30,82,26,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [240299,73676,214,29,38,105,34,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [240226,73668,294,30,40,105,34,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [240307,73671,209,36,36,102,32,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [238198,75776,482,33,5,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "+-----------------------------------------------------------+\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.raw_qual_hists.dp_hist_all.bin_freq |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [415,5663,30415,76214,120310,300505,170348,18947,3122,1023,686,644,577,50... |\n", + "| [362,4790,27388,71922,120182,305624,173020,19481,3184,1039,690,648,582,50... |\n", + "| [362,4790,27388,71922,120182,305624,173020,19481,3184,1039,690,648,582,50... |\n", + "| [296,4122,24622,67964,120609,309787,175498,19891,3228,1043,694,645,582,50... |\n", + "| [264,3602,22767,65834,118294,313419,178113,20399,3282,1056,696,645,582,50... |\n", + "+------------------------------------------------------------------------------+\n", "\n", "+-------------------------------------------------+\n", "| histograms.raw_qual_hists.dp_hist_all.n_smaller |\n", @@ -5612,11 +5646,11 @@ "+------------------------------------------------+\n", "| int64 |\n", "+------------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", + "| 252 |\n", + "| 265 |\n", + "| 265 |\n", + "| 264 |\n", + "| 265 |\n", "+------------------------------------------------+\n", "\n", "+------------------------------------------------------------------------------+\n", @@ -5631,17 +5665,17 @@ "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", "+------------------------------------------------------------------------------+\n", "\n", - "+------------------------------------------------------------------------------+\n", - "| histograms.raw_qual_hists.gq_hist_alt.bin_freq |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1] |\n", - "| [0,3,0,0,1,5,3,1,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0] |\n", - "| [0,1,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0] |\n", - "| [398,5642,541,415,716,1584,224,212,91,210,485,568,76,48,44,53,135,57,19,108] |\n", - "+------------------------------------------------------------------------------+\n", + "+------------------------------------------------+\n", + "| histograms.raw_qual_hists.gq_hist_alt.bin_freq |\n", + "+------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------+\n", + "| [1,2,0,1,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,18] |\n", + "| [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,21] |\n", + "| [2,4,1,0,0,2,0,0,0,1,0,0,0,0,0,0,0,0,0,95] |\n", + "| [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2] |\n", + "+------------------------------------------------+\n", "\n", "+-------------------------------------------------+\n", "| histograms.raw_qual_hists.gq_hist_alt.n_smaller |\n", @@ -5679,17 +5713,17 @@ "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", "+------------------------------------------------------------------------------+\n", "\n", - "+---------------------------------------------------+\n", - "| histograms.raw_qual_hists.dp_hist_alt.bin_freq |\n", - "+---------------------------------------------------+\n", - "| array |\n", - "+---------------------------------------------------+\n", - "| [2,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [8,4,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [2,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [1,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [9330,2176,115,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "+---------------------------------------------------+\n", + "+------------------------------------------------+\n", + "| histograms.raw_qual_hists.dp_hist_alt.bin_freq |\n", + "+------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------+\n", + "| [0,0,1,3,6,4,2,1,0,1,1,0,1,0,0,1,1,0,0,1] |\n", + "| [0,0,1,2,4,3,4,1,1,0,0,1,0,1,0,0,0,2,0,1] |\n", + "| [0,2,4,4,17,13,14,10,8,9,1,3,2,0,4,0,0,1,1,1] |\n", + "| [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "+------------------------------------------------+\n", "\n", "+-------------------------------------------------+\n", "| histograms.raw_qual_hists.dp_hist_alt.n_smaller |\n", @@ -5708,11 +5742,11 @@ "+------------------------------------------------+\n", "| int64 |\n", "+------------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", + "| 1 |\n", + "| 2 |\n", + "| 11 |\n", + "| 1 |\n", + "| 1 |\n", "+------------------------------------------------+\n", "\n", "+------------------------------------------------------------------------------+\n", @@ -5727,17 +5761,17 @@ "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", "+------------------------------------------------------------------------------+\n", "\n", - "+------------------------------------------------------------------+\n", - "| histograms.raw_qual_hists.ab_hist_alt.bin_freq |\n", - "+------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------+\n", - "| [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,1,1,2,0,1,0,1,0,0,4,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0] |\n", - "| [0,0,4,4,27,107,217,41,416,6,1084,414,43,1634,53,495,208,34,2,0] |\n", - "+------------------------------------------------------------------+\n", + "+------------------------------------------------+\n", + "| histograms.raw_qual_hists.ab_hist_alt.bin_freq |\n", + "+------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------+\n", + "| [0,1,3,2,0,0,2,0,4,4,4,3,1,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,2,0,1,0,3,3,8,5,0,1,0,0,0,0,0,0] |\n", + "| [0,2,7,0,0,1,6,5,19,14,26,17,6,1,1,0,0,0,0,0] |\n", + "| [0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0] |\n", + "+------------------------------------------------+\n", "\n", "+-------------------------------------------------+\n", "| histograms.raw_qual_hists.ab_hist_alt.n_smaller |\n", @@ -5780,11 +5814,11 @@ "+--------------------------------------------+\n", "| array |\n", "+--------------------------------------------+\n", - "| [0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,1,1,5,4,3,0,0] |\n", + "| [1,1,0,2,5,2,1,0,0,0] |\n", + "| [0,0,1,1,5,3,2,0,0,0] |\n", + "| [0,1,4,4,2,5,0,1,4,1] |\n", + "| [1,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,1,0,1,0,0,0,0,0] |\n", "+--------------------------------------------+\n", "\n", "+---------------------------------------------+\n", @@ -5792,9 +5826,9 @@ "+---------------------------------------------+\n", "| int64 |\n", "+---------------------------------------------+\n", + "| 2 |\n", "| 0 |\n", - "| 0 |\n", - "| 0 |\n", + "| 1 |\n", "| 0 |\n", "| 0 |\n", "+---------------------------------------------+\n", @@ -5832,7 +5866,7 @@ "| [0,0,0,0,0,0,0,0,0,0] |\n", "| [0,0,0,0,0,0,0,0,0,0] |\n", "| [0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,1,2,2,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0] |\n", "+--------------------------------------------+\n", "\n", "+---------------------------------------------+\n", @@ -5852,11 +5886,11 @@ "+--------------------------------------------+---------------------------------+\n", "| int64 | float32 |\n", "+--------------------------------------------+---------------------------------+\n", - "| 0 | 8.46e+00 |\n", - "| 0 | 9.08e+00 |\n", - "| 0 | 1.51e+01 |\n", - "| 0 | 9.13e+00 |\n", - "| 0 | 2.02e+00 |\n", + "| 0 | 3.61e+00 |\n", + "| 0 | 2.90e+00 |\n", + "| 0 | 2.38e+00 |\n", + "| 0 | 1.22e+00 |\n", + "| 0 | 6.25e+00 |\n", "+--------------------------------------------+---------------------------------+\n", "\n", "+-------------------------------------+--------------------------------+\n", @@ -5864,11 +5898,11 @@ "+-------------------------------------+--------------------------------+\n", "| float32 | float64 |\n", "+-------------------------------------+--------------------------------+\n", - "| 7.01e-01 | NA |\n", - "| 7.68e-01 | NA |\n", - "| 1.40e+00 | NA |\n", - "| 7.73e-01 | NA |\n", - "| 9.23e-02 | NA |\n", + "| 2.42e-01 | NA |\n", + "| 1.80e-01 | NA |\n", + "| 1.31e-01 | NA |\n", + "| -1.85e-02 | NA |\n", + "| 4.76e-01 | NA |\n", "+-------------------------------------+--------------------------------+\n", "\n", "+--------------------------------------+\n", @@ -5879,7 +5913,7 @@ "| 0.00e+00 |\n", "| 0.00e+00 |\n", "| 0.00e+00 |\n", - "| 1.00e-02 |\n", + "| 0.00e+00 |\n", "| 0.00e+00 |\n", "+--------------------------------------+\n", "\n", @@ -5888,11 +5922,11 @@ "+------------------------------------------+-----------------------------+\n", "| float64 | float64 |\n", "+------------------------------------------+-----------------------------+\n", - "| 2.00e-02 | 1.94e+00 |\n", - "| 0.00e+00 | 5.70e-01 |\n", - "| 0.00e+00 | 1.05e+00 |\n", - "| 3.00e-02 | 2.58e+00 |\n", - "| 0.00e+00 | 1.61e+00 |\n", + "| 1.20e-01 | -4.68e-01 |\n", + "| 5.00e-02 | 7.10e-02 |\n", + "| 3.00e-02 | 7.10e-02 |\n", + "| 4.00e-02 | -1.27e+00 |\n", + "| 2.10e-01 | 1.62e+00 |\n", "+------------------------------------------+-----------------------------+\n", "\n", "+-------------------------------+-----------------------------------+\n", @@ -5916,12 +5950,12 @@ "name": "stdout", "output_type": "stream", "text": [ - "The total number of other variants passing filters in DRD2 is: 2075\n" + "The total number of other variants passing filters in DRD2 is: 783\n" ] } ], "source": [ - "var_ht = filter_by_csqs(['other'], ht=drd2_interval_ht)\n", + "var_ht = filter_by_consequence_category(other=True, ht=drd2_ht)\n", "var_ht.show(5)\n", "print(\"The total number of other variants passing filters in DRD2 is: \", var_ht.count())" ] @@ -5938,12 +5972,12 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 11, "id": "a25ddd1b", "metadata": {}, "outputs": [], "source": [ - "drd2_synonymous_ht = filter_by_csqs(['synonymous'], ht=drd2_interval_ht)" + "drd2_synonymous_ht = filter_by_consequence_category(synonymous=True, ht=drd2_interval_ht)" ] }, { @@ -5956,7 +5990,7 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 12, "id": "4f78166f", "metadata": {}, "outputs": [ @@ -6017,7 +6051,7 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 13, "id": "e3a07848", "metadata": {}, "outputs": [ @@ -6152,7 +6186,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 14, "id": "4845be1d-d4c0-4b83-9e92-bd72379b8a99", "metadata": {}, "outputs": [ @@ -6200,10 +6234,17 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 15, "id": "bee28829", "metadata": {}, "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2024-12-20 12:31:16.359 Hail: WARN: No variant found at chr22:15528692 with alleles ['C', 'A']\n" + ] + }, { "data": { "text/html": [ @@ -6252,7 +6293,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.9" + "version": "3.11.5" }, "toc": { "base_numbering": 1, From 80d33beeb4d4dd49922851f760e8a15a2d97810e Mon Sep 17 00:00:00 2001 From: Qin He <44242118+KoalaQin@users.noreply.github.com> Date: Fri, 3 Jan 2025 15:21:56 -0500 Subject: [PATCH 056/121] reformat --- gnomad_toolbox/filtering/vep.py | 7 +++++-- 1 file changed, 5 insertions(+), 2 deletions(-) diff --git a/gnomad_toolbox/filtering/vep.py b/gnomad_toolbox/filtering/vep.py index 3f930da..48ff07e 100644 --- a/gnomad_toolbox/filtering/vep.py +++ b/gnomad_toolbox/filtering/vep.py @@ -1,10 +1,13 @@ """Functions to filter gnomAD sites HT by VEP annotations.""" import hail as hl - from gnomad.resources.grch37.reference_data import gencode as grch37_gencode from gnomad.resources.grch38.reference_data import gencode as grch38_gencode -from gnomad.utils.vep import LOF_CSQ_SET, filter_vep_transcript_csqs, filter_vep_transcript_csqs_expr +from gnomad.utils.vep import ( + LOF_CSQ_SET, + filter_vep_transcript_csqs, + filter_vep_transcript_csqs_expr, +) from gnomad_toolbox.load_data import _get_gnomad_release, gnomad_session From e03253e8fc83bd1fb9ff3bcddc805189da1892e8 Mon Sep 17 00:00:00 2001 From: Qin He <44242118+KoalaQin@users.noreply.github.com> Date: Mon, 6 Jan 2025 13:25:35 -0500 Subject: [PATCH 057/121] Modify the code to use browser tables --- gnomad_toolbox/filtering/variant.py | 44 ++++++++++++++++++++++++++++- 1 file changed, 43 insertions(+), 1 deletion(-) diff --git a/gnomad_toolbox/filtering/variant.py b/gnomad_toolbox/filtering/variant.py index 536c0bd..4d7441a 100644 --- a/gnomad_toolbox/filtering/variant.py +++ b/gnomad_toolbox/filtering/variant.py @@ -3,6 +3,8 @@ from typing import Optional, Union import hail as hl +from gnomad.resources.grch37.gnomad import browser_gene as browser_gene_grch37 +from gnomad.resources.grch38.gnomad import browser_gene as browser_gene_grch38 from gnomad.utils.filtering import filter_to_gencode_cds from gnomad.utils.reference_genome import get_reference_genome @@ -136,6 +138,46 @@ def filter_by_gene_symbol(gene: str, exon_padding_bp: int = 75, **kwargs) -> hl. """ # Load the Hail Table if not provided ht = _get_gnomad_release(dataset="variant", **kwargs) - ht = filter_to_gencode_cds(ht, genes=gene, padding_bp=exon_padding_bp) + if ht.locus.dtype.reference_genome.name == "GRCh37": + gene_ht = browser_gene_grch37().ht() + else: + gene_ht = browser_gene_grch38().ht() + + gene_ht = gene_ht.filter(gene_ht.gencode_symbol.lower() == gene.lower()) + + # Get intervals based on feature type (CDS > UTR > Exons) with padding + def get_intervals(feature_type: str) -> hl.expr.ArrayExpression: + return hl.array( + gene_ht.exons.filter(lambda exon: exon.feature_type == feature_type) + ).map( + lambda exon: hl.locus_interval( + hl.if_else( + gene_ht.interval.start.dtype.reference_genome.name == "GRCh38", + "chr" + gene_ht.chrom, + gene_ht.chrom, + ), + exon.start - exon_padding_bp, + exon.stop + exon_padding_bp, + reference_genome=gene_ht.interval.start.dtype.reference_genome, + includes_end=True, + ) + ) + + cds_intervals = get_intervals("CDS") + utr_intervals = get_intervals("UTR") + exon_intervals = get_intervals("exon") + + # Determine which intervals to use + gene_ht = gene_ht.annotate( + intervals=hl.if_else( + hl.len(cds_intervals) > 0, + cds_intervals, + hl.if_else(hl.len(utr_intervals) > 0, utr_intervals, exon_intervals), + ) + ) + + intervals = gene_ht.intervals.collect()[0] + + ht = hl.filter_intervals(ht, intervals) return ht From 427217c7cc8d921bc53f24d19b188ea56e84baa2 Mon Sep 17 00:00:00 2001 From: Qin He <44242118+KoalaQin@users.noreply.github.com> Date: Tue, 7 Jan 2025 12:52:28 -0500 Subject: [PATCH 058/121] Add extra filter steps to match Browser --- gnomad_toolbox/filtering/variant.py | 46 ++++++++++++++++------------- 1 file changed, 26 insertions(+), 20 deletions(-) diff --git a/gnomad_toolbox/filtering/variant.py b/gnomad_toolbox/filtering/variant.py index 33f2b51..d862219 100644 --- a/gnomad_toolbox/filtering/variant.py +++ b/gnomad_toolbox/filtering/variant.py @@ -8,6 +8,7 @@ from gnomad.utils.filtering import filter_to_gencode_cds from gnomad.utils.parse import parse_variant from gnomad.utils.reference_genome import get_reference_genome +from gnomad.utils.vep import filter_vep_transcript_csqs from gnomad_toolbox.load_data import _get_gnomad_release @@ -102,37 +103,36 @@ def filter_by_intervals( return ht -# TODO: Add a pre-processing step to filter out these genes on chrY to -# match the gnomAD browser. def filter_by_gene_symbol(gene: str, exon_padding_bp: int = 75, **kwargs) -> hl.Table: """ - Filter variants in a gene. + Filter variants in a gene by gene symbol. .. note:: - - This function is to match the number of variants that you will get in the - gnomAD browser, which only focus on variants in "CDS" regions plus - 75bp (default of `exon_padding_bp`) up- and downstream. - - However, gnomAD browser used a preprocessed Gencode file which excluded - 46 genes on chrY that share the same gene id as chrX. For example, - if you use this function to filter "ASMT" gene, you will get more variants - than shown in the gnomAD browser. + This is to match the browser display, which includes variants in the CDS + + 75bp padding for protein-coding genes, and UTR/exons + 75bp padding for + non-protein-coding genes. :param gene: Gene symbol. - :param exon_padding_bp: Number of base pairs to pad the CDS intervals. Default is - 75bp. + :param exon_padding_bp: Number of base pairs to pad the CDS intervals. Default is 75bp. :param kwargs: Arguments to pass to `_get_gnomad_release`. :return: Table with variants in the gene. """ # Load the Hail Table if not provided ht = _get_gnomad_release(dataset="variant", **kwargs) - if ht.locus.dtype.reference_genome.name == "GRCh37": - gene_ht = browser_gene_grch37().ht() - else: - gene_ht = browser_gene_grch38().ht() - gene_ht = gene_ht.filter(gene_ht.gencode_symbol.lower() == gene.lower()) + # Load gene information + gene_ht = ( + browser_gene_grch37().ht() + if ht.locus.dtype.reference_genome.name == "GRCh37" + else browser_gene_grch38().ht() + ) + + # Pre-filter to the specified gene (case-insensitive) + gene = gene.upper() + gene_ht = gene_ht.filter(gene_ht.gencode_symbol == gene) + + # First get the variants in the gene region + ht = hl.filter_intervals(ht, hl.array(gene_ht.interval.take(1))) # Get intervals based on feature type (CDS > UTR > Exons) with padding def get_intervals(feature_type: str) -> hl.expr.ArrayExpression: @@ -148,6 +148,7 @@ def get_intervals(feature_type: str) -> hl.expr.ArrayExpression: exon.start - exon_padding_bp, exon.stop + exon_padding_bp, reference_genome=gene_ht.interval.start.dtype.reference_genome, + includes_start=True, includes_end=True, ) ) @@ -165,8 +166,13 @@ def get_intervals(feature_type: str) -> hl.expr.ArrayExpression: ) ) - intervals = gene_ht.intervals.collect()[0] + intervals = gene_ht.intervals.take(1)[0] ht = hl.filter_intervals(ht, intervals) + # Additional filtering (e.g., with VEP consequences) + ht = filter_vep_transcript_csqs( + ht, genes=[gene], synonymous=False, match_by_gene_symbol=True + ) + return ht From fa0bcfdfeccbf71651121d56ecd43115a1526812 Mon Sep 17 00:00:00 2001 From: Qin He <44242118+KoalaQin@users.noreply.github.com> Date: Tue, 7 Jan 2025 12:55:45 -0500 Subject: [PATCH 059/121] Removed unused imports --- gnomad_toolbox/filtering/variant.py | 1 - 1 file changed, 1 deletion(-) diff --git a/gnomad_toolbox/filtering/variant.py b/gnomad_toolbox/filtering/variant.py index d862219..e32c0a5 100644 --- a/gnomad_toolbox/filtering/variant.py +++ b/gnomad_toolbox/filtering/variant.py @@ -5,7 +5,6 @@ import hail as hl from gnomad.resources.grch37.gnomad import browser_gene as browser_gene_grch37 from gnomad.resources.grch38.gnomad import browser_gene as browser_gene_grch38 -from gnomad.utils.filtering import filter_to_gencode_cds from gnomad.utils.parse import parse_variant from gnomad.utils.reference_genome import get_reference_genome from gnomad.utils.vep import filter_vep_transcript_csqs From 319d9fa571036b625f85b03394aaf56bd144e708 Mon Sep 17 00:00:00 2001 From: Qin He <44242118+KoalaQin@users.noreply.github.com> Date: Wed, 8 Jan 2025 15:42:49 -0500 Subject: [PATCH 060/121] Make the big functions to smaller ones --- gnomad_toolbox/filtering/vep.py | 111 ++++++++++++++++++-------------- gnomad_toolbox/load_data.py | 19 ++++++ 2 files changed, 80 insertions(+), 50 deletions(-) diff --git a/gnomad_toolbox/filtering/vep.py b/gnomad_toolbox/filtering/vep.py index 48ff07e..a7a1505 100644 --- a/gnomad_toolbox/filtering/vep.py +++ b/gnomad_toolbox/filtering/vep.py @@ -1,5 +1,7 @@ """Functions to filter gnomAD sites HT by VEP annotations.""" +from typing import List + import hail as hl from gnomad.resources.grch37.reference_data import gencode as grch37_gencode from gnomad.resources.grch38.reference_data import gencode as grch38_gencode @@ -9,7 +11,11 @@ filter_vep_transcript_csqs_expr, ) -from gnomad_toolbox.load_data import _get_gnomad_release, gnomad_session +from gnomad_toolbox.load_data import ( + _get_gnomad_release, + get_coverage_for_variant, + gnomad_session, +) # TODO: Check these csq sets, the ones in the code don't match what is listed on the @@ -122,46 +128,16 @@ def filter_by_consequence_category( return ht.filter(filter_expr) -def filter_to_plofs( - gene_symbol: str, select_fields: bool = False, **kwargs -) -> hl.Table: +def get_gene_intervals(gene_symbol: str, version: str) -> List[hl.utils.Interval]: """ - Filter to observed pLoF variants that we used to calculate the gene constraint metrics. - - .. note:: - - pLOF variants meets the following requirements: - - High-confidence LOFTEE variants (without any flags), - - Only variants in the MANE Select transcript, - - PASS variants that are SNVs with MAF ≤ 0.1%, - - Exome median depth ≥ 30 (# TODO: This is changing in v4 constraint?) + Get the genomic intervals for a given gene symbol. - **Note: this number should match the number of observed pLOF SNVs on the gene page of gnomAD Browser.** - - :param gene_symbol: Gene symbol. - :param select_fields: Boolean if the output should be limited to specific fields. - :return: Table with pLoF variants. + :param gene_symbol: Gene symbol. + :param version: Dataset version. + :return: List of intervals for the specified gene. """ - var_version = kwargs.pop("version", gnomad_session.version) - var_ht = _get_gnomad_release(dataset="variant", version=var_version, **kwargs) - - # Determine the version of the coverage table - if var_version.startswith("4."): - cov_ht = _get_gnomad_release(dataset="coverage", version="4.0", **kwargs) - elif var_version.startswith("3."): - cov_ht = _get_gnomad_release(dataset="coverage", version="3.0.1", **kwargs) - elif var_version.startswith("2."): - cov_ht = _get_gnomad_release(dataset="coverage", version="2.1", **kwargs) - else: - raise ValueError( - f"Unrecognized version: '{var_version}'. Please specify a valid version." - ) - - # Get the gene interval from gen_ht - gen_ht = ( - grch37_gencode.ht() if var_version.startswith("2.") else grch38_gencode.ht() - ) - interval = ( + gen_ht = grch37_gencode.ht() if version.startswith("2.") else grch38_gencode.ht() + intervals = ( gen_ht.filter( (gen_ht.feature == "gene") & (gen_ht.gene_name.lower() == gene_symbol.lower()) @@ -169,23 +145,24 @@ def filter_to_plofs( .select() .collect() ) - - if not interval: + if not intervals: raise ValueError(f"No interval found for gene: {gene_symbol}") + return [row["interval"] for row in intervals] - # Convert to a list of intervals - interval = [row["interval"] for row in interval] - var_ht = hl.filter_intervals(var_ht, interval) - cov_ht = hl.filter_intervals(cov_ht, interval) - # Filter to high-confidence LOFTEE variants - var_ht = filter_vep_transcript_csqs( +def filter_hc_variants(var_ht: hl.Table, gene_symbol: str, version: str) -> hl.Table: + """ + Filter variants to high-confidence LOFTEE variants with optional transcript selection. + + :param var_ht: Variants Table. + :param gene_symbol: Gene symbol. + :param version: Dataset version. + :return: Filtered variants Hail Table. + """ + return filter_vep_transcript_csqs( var_ht, synonymous=False, - mane_select=True if var_version.startswith("4.") else False, - # TODO: When this function is applied to DRD2 gene in v4.1, it will get 7 pLoF - # variants instead of 8 on the browser and the 4.1 constraint table, - # because one of them is not in mane select, nor in canonical transcript. + mane_select=version.startswith("4."), genes=[gene_symbol.upper()], match_by_gene_symbol=True, additional_filtering_criteria=[ @@ -194,6 +171,38 @@ def filter_to_plofs( ], ) + +def filter_to_plofs( + gene_symbol: str, select_fields: bool = False, **kwargs +) -> hl.Table: + """ + Filter to observed pLoF variants used for gene constraint metrics. + + .. note:: + + pLOF variants meets the following requirements: + - High-confidence LOFTEE variants (without any flags), + - Only variants in the MANE Select transcript, + - PASS variants that are SNVs with MAF ≤ 0.1%, + - Exome median depth ≥ 30 (# TODO: This is changing in v4 constraint?) + + :param gene_symbol: Gene symbol. + :param select_fields: Whether to limit the output to specific fields. + :return: Table with pLoF variants. + """ + var_version = kwargs.pop("version", gnomad_session.version) + var_ht = _get_gnomad_release(dataset="variant", version=var_version, **kwargs) + cov_ht = get_coverage_for_variant(var_version, **kwargs) + + # Get gene intervals and filter tables + intervals = get_gene_intervals(gene_symbol, var_version) + var_ht = hl.filter_intervals(var_ht, intervals) + cov_ht = hl.filter_intervals(cov_ht, intervals) + + # Filter to high-confidence LOFTEE variants + var_ht = filter_hc_variants(var_ht, gene_symbol, var_version) + + # Version-specific expressions if var_version.startswith("2."): allele_type_expr = var_ht.allele_type cov_cut_expr = cov_ht[var_ht.locus].median @@ -201,6 +210,7 @@ def filter_to_plofs( allele_type_expr = var_ht.allele_info.allele_type cov_cut_expr = cov_ht[var_ht.locus].median_approx + # Apply final filters var_ht = var_ht.filter( (hl.len(var_ht.filters) == 0) & (allele_type_expr == "snv") @@ -208,6 +218,7 @@ def filter_to_plofs( & (cov_cut_expr >= 30) ) + # Select specific fields if requested if select_fields: var_ht = var_ht.select( freq=var_ht.freq[0], diff --git a/gnomad_toolbox/load_data.py b/gnomad_toolbox/load_data.py index de29e85..8405dfd 100644 --- a/gnomad_toolbox/load_data.py +++ b/gnomad_toolbox/load_data.py @@ -200,3 +200,22 @@ def get_gnomad_release( :return: Hail Table for requested dataset, data type, and version. """ return _get_gnomad_release(dataset=dataset, data_type=data_type, version=version) + + +def get_coverage_for_variant(variant_version: str, **kwargs) -> hl.Table: + """ + Get the appropriate coverage table based on the provided version. + + :param variant_version: Version of the variant dataset. + :return: Hail Table for the corresponding coverage dataset. + """ + if variant_version.startswith("4."): + return _get_gnomad_release(dataset="coverage", version="4.0", **kwargs) + elif variant_version.startswith("3."): + return _get_gnomad_release(dataset="coverage", version="3.0.1", **kwargs) + elif variant_version.startswith("2."): + return _get_gnomad_release(dataset="coverage", version="2.1", **kwargs) + else: + raise ValueError( + f"Unrecognized version: '{variant_version}'. Please specify a valid version." + ) From 93184af3f2fa3b738d0f4e5df6f4481e8a7a22a2 Mon Sep 17 00:00:00 2001 From: Qin He <44242118+KoalaQin@users.noreply.github.com> Date: Fri, 10 Jan 2025 10:55:11 -0500 Subject: [PATCH 061/121] Move gnomad_methods to setup.py --- gnomad_toolbox/notebooks/needs_a_name.ipynb | 323 +------------------- requirements.txt | 3 - setup.py | 1 + 3 files changed, 12 insertions(+), 315 deletions(-) diff --git a/gnomad_toolbox/notebooks/needs_a_name.ipynb b/gnomad_toolbox/notebooks/needs_a_name.ipynb index c4b688a..d450fcf 100644 --- a/gnomad_toolbox/notebooks/needs_a_name.ipynb +++ b/gnomad_toolbox/notebooks/needs_a_name.ipynb @@ -31,316 +31,15 @@ }, "outputs": [ { - "data": { - "text/html": [ - " \n", - "
\n", - " \n", - " Loading BokehJS ...\n", - "
\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/javascript": [ - "(function(root) {\n", - " function now() {\n", - " return new Date();\n", - " }\n", - "\n", - " const force = true;\n", - "\n", - " if (typeof root._bokeh_onload_callbacks === \"undefined\" || force === true) {\n", - " root._bokeh_onload_callbacks = [];\n", - " root._bokeh_is_loading = undefined;\n", - " }\n", - "\n", - "const JS_MIME_TYPE = 'application/javascript';\n", - " const HTML_MIME_TYPE = 'text/html';\n", - " const EXEC_MIME_TYPE = 'application/vnd.bokehjs_exec.v0+json';\n", - " const CLASS_NAME = 'output_bokeh rendered_html';\n", - "\n", - " /**\n", - " * Render data to the DOM node\n", - " */\n", - " function render(props, node) {\n", - " const script = document.createElement(\"script\");\n", - " node.appendChild(script);\n", - " }\n", - "\n", - " /**\n", - " * Handle when an output is cleared or removed\n", - " */\n", - " function handleClearOutput(event, handle) {\n", - " function drop(id) {\n", - " const view = Bokeh.index.get_by_id(id)\n", - " if (view != null) {\n", - " view.model.document.clear()\n", - " Bokeh.index.delete(view)\n", - " }\n", - " }\n", - "\n", - " const cell = handle.cell;\n", - "\n", - " const id = cell.output_area._bokeh_element_id;\n", - " const server_id = cell.output_area._bokeh_server_id;\n", - "\n", - " // Clean up Bokeh references\n", - " if (id != null) {\n", - " drop(id)\n", - " }\n", - "\n", - " if (server_id !== undefined) {\n", - " // Clean up Bokeh references\n", - " const cmd_clean = \"from bokeh.io.state import curstate; print(curstate().uuid_to_server['\" + server_id + \"'].get_sessions()[0].document.roots[0]._id)\";\n", - " cell.notebook.kernel.execute(cmd_clean, {\n", - " iopub: {\n", - " output: function(msg) {\n", - " const id = msg.content.text.trim()\n", - " drop(id)\n", - " }\n", - " }\n", - " });\n", - " // Destroy server and session\n", - " const cmd_destroy = \"import bokeh.io.notebook as ion; ion.destroy_server('\" + server_id + \"')\";\n", - " cell.notebook.kernel.execute(cmd_destroy);\n", - " }\n", - " }\n", - "\n", - " /**\n", - " * Handle when a new output is added\n", - " */\n", - " function handleAddOutput(event, handle) {\n", - " const output_area = handle.output_area;\n", - " const output = handle.output;\n", - "\n", - " // limit handleAddOutput to display_data with EXEC_MIME_TYPE content only\n", - " if ((output.output_type != \"display_data\") || (!Object.prototype.hasOwnProperty.call(output.data, EXEC_MIME_TYPE))) {\n", - " return\n", - " }\n", - "\n", - " const toinsert = output_area.element.find(\".\" + CLASS_NAME.split(' ')[0]);\n", - "\n", - " if (output.metadata[EXEC_MIME_TYPE][\"id\"] !== undefined) {\n", - " toinsert[toinsert.length - 1].firstChild.textContent = output.data[JS_MIME_TYPE];\n", - " // store reference to embed id on output_area\n", - " output_area._bokeh_element_id = output.metadata[EXEC_MIME_TYPE][\"id\"];\n", - " }\n", - " if (output.metadata[EXEC_MIME_TYPE][\"server_id\"] !== undefined) {\n", - " const bk_div = document.createElement(\"div\");\n", - " bk_div.innerHTML = output.data[HTML_MIME_TYPE];\n", - " const script_attrs = bk_div.children[0].attributes;\n", - " for (let i = 0; i < script_attrs.length; i++) {\n", - " toinsert[toinsert.length - 1].firstChild.setAttribute(script_attrs[i].name, script_attrs[i].value);\n", - " toinsert[toinsert.length - 1].firstChild.textContent = bk_div.children[0].textContent\n", - " }\n", - " // store reference to server id on output_area\n", - " output_area._bokeh_server_id = output.metadata[EXEC_MIME_TYPE][\"server_id\"];\n", - " }\n", - " }\n", - "\n", - " function register_renderer(events, OutputArea) {\n", - "\n", - " function append_mime(data, metadata, element) {\n", - " // create a DOM node to render to\n", - " const toinsert = this.create_output_subarea(\n", - " metadata,\n", - " CLASS_NAME,\n", - " EXEC_MIME_TYPE\n", - " );\n", - " this.keyboard_manager.register_events(toinsert);\n", - " // Render to node\n", - " const props = {data: data, metadata: metadata[EXEC_MIME_TYPE]};\n", - " render(props, toinsert[toinsert.length - 1]);\n", - " element.append(toinsert);\n", - " return toinsert\n", - " }\n", - "\n", - " /* Handle when an output is cleared or removed */\n", - " events.on('clear_output.CodeCell', handleClearOutput);\n", - " events.on('delete.Cell', handleClearOutput);\n", - "\n", - " /* Handle when a new output is added */\n", - " events.on('output_added.OutputArea', handleAddOutput);\n", - "\n", - " /**\n", - " * Register the mime type and append_mime function with output_area\n", - " */\n", - " OutputArea.prototype.register_mime_type(EXEC_MIME_TYPE, append_mime, {\n", - " /* Is output safe? */\n", - " safe: true,\n", - " /* Index of renderer in `output_area.display_order` */\n", - " index: 0\n", - " });\n", - " }\n", - "\n", - " // register the mime type if in Jupyter Notebook environment and previously unregistered\n", - " if (root.Jupyter !== undefined) {\n", - " const events = require('base/js/events');\n", - " const OutputArea = require('notebook/js/outputarea').OutputArea;\n", - "\n", - " if (OutputArea.prototype.mime_types().indexOf(EXEC_MIME_TYPE) == -1) {\n", - " register_renderer(events, OutputArea);\n", - " }\n", - " }\n", - " if (typeof (root._bokeh_timeout) === \"undefined\" || force === true) {\n", - " root._bokeh_timeout = Date.now() + 5000;\n", - " root._bokeh_failed_load = false;\n", - " }\n", - "\n", - " const NB_LOAD_WARNING = {'data': {'text/html':\n", - " \"
\\n\"+\n", - " \"

\\n\"+\n", - " \"BokehJS does not appear to have successfully loaded. If loading BokehJS from CDN, this \\n\"+\n", - " \"may be due to a slow or bad network connection. Possible fixes:\\n\"+\n", - " \"

\\n\"+\n", - " \"
    \\n\"+\n", - " \"
  • re-rerun `output_notebook()` to attempt to load from CDN again, or
  • \\n\"+\n", - " \"
  • use INLINE resources instead, as so:
  • \\n\"+\n", - " \"
\\n\"+\n", - " \"\\n\"+\n", - " \"from bokeh.resources import INLINE\\n\"+\n", - " \"output_notebook(resources=INLINE)\\n\"+\n", - " \"\\n\"+\n", - " \"
\"}};\n", - "\n", - " function display_loaded() {\n", - " const el = document.getElementById(\"eb2ddde4-530e-4ce3-9772-cc3703c8cf6d\");\n", - " if (el != null) {\n", - " el.textContent = \"BokehJS is loading...\";\n", - " }\n", - " if (root.Bokeh !== undefined) {\n", - " if (el != null) {\n", - " el.textContent = \"BokehJS \" + root.Bokeh.version + \" successfully loaded.\";\n", - " }\n", - " } else if (Date.now() < root._bokeh_timeout) {\n", - " setTimeout(display_loaded, 100)\n", - " }\n", - " }\n", - "\n", - " function run_callbacks() {\n", - " try {\n", - " root._bokeh_onload_callbacks.forEach(function(callback) {\n", - " if (callback != null)\n", - " callback();\n", - " });\n", - " } finally {\n", - " delete root._bokeh_onload_callbacks\n", - " }\n", - " console.debug(\"Bokeh: all callbacks have finished\");\n", - " }\n", - "\n", - " function load_libs(css_urls, js_urls, callback) {\n", - " if (css_urls == null) css_urls = [];\n", - " if (js_urls == null) js_urls = [];\n", - "\n", - " root._bokeh_onload_callbacks.push(callback);\n", - " if (root._bokeh_is_loading > 0) {\n", - " console.debug(\"Bokeh: BokehJS is being loaded, scheduling callback at\", now());\n", - " return null;\n", - " }\n", - " if (js_urls == null || js_urls.length === 0) {\n", - " run_callbacks();\n", - " return null;\n", - " }\n", - " console.debug(\"Bokeh: BokehJS not loaded, scheduling load and callback at\", now());\n", - " root._bokeh_is_loading = css_urls.length + js_urls.length;\n", - "\n", - " function on_load() {\n", - " root._bokeh_is_loading--;\n", - " if (root._bokeh_is_loading === 0) {\n", - " console.debug(\"Bokeh: all BokehJS libraries/stylesheets loaded\");\n", - " run_callbacks()\n", - " }\n", - " }\n", - "\n", - " function on_error(url) {\n", - " console.error(\"failed to load \" + url);\n", - " }\n", - "\n", - " for (let i = 0; i < css_urls.length; i++) {\n", - " const url = css_urls[i];\n", - " const element = document.createElement(\"link\");\n", - " element.onload = on_load;\n", - " element.onerror = on_error.bind(null, url);\n", - " element.rel = \"stylesheet\";\n", - " element.type = \"text/css\";\n", - " element.href = url;\n", - " console.debug(\"Bokeh: injecting link tag for BokehJS stylesheet: \", url);\n", - " document.body.appendChild(element);\n", - " }\n", - "\n", - " for (let i = 0; i < js_urls.length; i++) {\n", - " const url = js_urls[i];\n", - " const element = document.createElement('script');\n", - " element.onload = on_load;\n", - " element.onerror = on_error.bind(null, url);\n", - " element.async = false;\n", - " element.src = url;\n", - " console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n", - " document.head.appendChild(element);\n", - " }\n", - " };\n", - "\n", - " function inject_raw_css(css) {\n", - " const element = document.createElement(\"style\");\n", - " element.appendChild(document.createTextNode(css));\n", - " document.body.appendChild(element);\n", - " }\n", - "\n", - " const js_urls = [\"https://cdn.bokeh.org/bokeh/release/bokeh-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-gl-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-widgets-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-tables-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-mathjax-3.3.4.min.js\"];\n", - " const css_urls = [];\n", - "\n", - " const inline_js = [ function(Bokeh) {\n", - " Bokeh.set_log_level(\"info\");\n", - " },\n", - "function(Bokeh) {\n", - " }\n", - " ];\n", - "\n", - " function run_inline_js() {\n", - " if (root.Bokeh !== undefined || force === true) {\n", - " for (let i = 0; i < inline_js.length; i++) {\n", - " inline_js[i].call(root, root.Bokeh);\n", - " }\n", - "if (force === true) {\n", - " display_loaded();\n", - " }} else if (Date.now() < root._bokeh_timeout) {\n", - " setTimeout(run_inline_js, 100);\n", - " } else if (!root._bokeh_failed_load) {\n", - " console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n", - " root._bokeh_failed_load = true;\n", - " } else if (force !== true) {\n", - " const cell = $(document.getElementById(\"eb2ddde4-530e-4ce3-9772-cc3703c8cf6d\")).parents('.cell').data().cell;\n", - " cell.output_area.append_execute_result(NB_LOAD_WARNING)\n", - " }\n", - " }\n", - "\n", - " if (root._bokeh_is_loading === 0) {\n", - " console.debug(\"Bokeh: BokehJS loaded, going straight to plotting\");\n", - " run_inline_js();\n", - " } else {\n", - " load_libs(css_urls, js_urls, function() {\n", - " console.debug(\"Bokeh: BokehJS plotting callback run at\", now());\n", - " run_inline_js();\n", - " });\n", - " }\n", - "}(window));" - ], - "application/vnd.bokehjs_load.v0+json": "(function(root) {\n function now() {\n return new Date();\n }\n\n const force = true;\n\n if (typeof root._bokeh_onload_callbacks === \"undefined\" || force === true) {\n root._bokeh_onload_callbacks = [];\n root._bokeh_is_loading = undefined;\n }\n\n\n if (typeof (root._bokeh_timeout) === \"undefined\" || force === true) {\n root._bokeh_timeout = Date.now() + 5000;\n root._bokeh_failed_load = false;\n }\n\n const NB_LOAD_WARNING = {'data': {'text/html':\n \"
\\n\"+\n \"

\\n\"+\n \"BokehJS does not appear to have successfully loaded. If loading BokehJS from CDN, this \\n\"+\n \"may be due to a slow or bad network connection. Possible fixes:\\n\"+\n \"

\\n\"+\n \"
    \\n\"+\n \"
  • re-rerun `output_notebook()` to attempt to load from CDN again, or
  • \\n\"+\n \"
  • use INLINE resources instead, as so:
  • \\n\"+\n \"
\\n\"+\n \"\\n\"+\n \"from bokeh.resources import INLINE\\n\"+\n \"output_notebook(resources=INLINE)\\n\"+\n \"\\n\"+\n \"
\"}};\n\n function display_loaded() {\n const el = document.getElementById(\"eb2ddde4-530e-4ce3-9772-cc3703c8cf6d\");\n if (el != null) {\n el.textContent = \"BokehJS is loading...\";\n }\n if (root.Bokeh !== undefined) {\n if (el != null) {\n el.textContent = \"BokehJS \" + root.Bokeh.version + \" successfully loaded.\";\n }\n } else if (Date.now() < root._bokeh_timeout) {\n setTimeout(display_loaded, 100)\n }\n }\n\n function run_callbacks() {\n try {\n root._bokeh_onload_callbacks.forEach(function(callback) {\n if (callback != null)\n callback();\n });\n } finally {\n delete root._bokeh_onload_callbacks\n }\n console.debug(\"Bokeh: all callbacks have finished\");\n }\n\n function load_libs(css_urls, js_urls, callback) {\n if (css_urls == null) css_urls = [];\n if (js_urls == null) js_urls = [];\n\n root._bokeh_onload_callbacks.push(callback);\n if (root._bokeh_is_loading > 0) {\n console.debug(\"Bokeh: BokehJS is being loaded, scheduling callback at\", now());\n return null;\n }\n if (js_urls == null || js_urls.length === 0) {\n run_callbacks();\n return null;\n }\n console.debug(\"Bokeh: BokehJS not loaded, scheduling load and callback at\", now());\n root._bokeh_is_loading = css_urls.length + js_urls.length;\n\n function on_load() {\n root._bokeh_is_loading--;\n if (root._bokeh_is_loading === 0) {\n console.debug(\"Bokeh: all BokehJS libraries/stylesheets loaded\");\n run_callbacks()\n }\n }\n\n function on_error(url) {\n console.error(\"failed to load \" + url);\n }\n\n for (let i = 0; i < css_urls.length; i++) {\n const url = css_urls[i];\n const element = document.createElement(\"link\");\n element.onload = on_load;\n element.onerror = on_error.bind(null, url);\n element.rel = \"stylesheet\";\n element.type = \"text/css\";\n element.href = url;\n console.debug(\"Bokeh: injecting link tag for BokehJS stylesheet: \", url);\n document.body.appendChild(element);\n }\n\n for (let i = 0; i < js_urls.length; i++) {\n const url = js_urls[i];\n const element = document.createElement('script');\n element.onload = on_load;\n element.onerror = on_error.bind(null, url);\n element.async = false;\n element.src = url;\n console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n document.head.appendChild(element);\n }\n };\n\n function inject_raw_css(css) {\n const element = document.createElement(\"style\");\n element.appendChild(document.createTextNode(css));\n document.body.appendChild(element);\n }\n\n const js_urls = [\"https://cdn.bokeh.org/bokeh/release/bokeh-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-gl-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-widgets-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-tables-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-mathjax-3.3.4.min.js\"];\n const css_urls = [];\n\n const inline_js = [ function(Bokeh) {\n Bokeh.set_log_level(\"info\");\n },\nfunction(Bokeh) {\n }\n ];\n\n function run_inline_js() {\n if (root.Bokeh !== undefined || force === true) {\n for (let i = 0; i < inline_js.length; i++) {\n inline_js[i].call(root, root.Bokeh);\n }\nif (force === true) {\n display_loaded();\n }} else if (Date.now() < root._bokeh_timeout) {\n setTimeout(run_inline_js, 100);\n } else if (!root._bokeh_failed_load) {\n console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n root._bokeh_failed_load = true;\n } else if (force !== true) {\n const cell = $(document.getElementById(\"eb2ddde4-530e-4ce3-9772-cc3703c8cf6d\")).parents('.cell').data().cell;\n cell.output_area.append_execute_result(NB_LOAD_WARNING)\n }\n }\n\n if (root._bokeh_is_loading === 0) {\n console.debug(\"Bokeh: BokehJS loaded, going straight to plotting\");\n run_inline_js();\n } else {\n load_libs(css_urls, js_urls, function() {\n console.debug(\"Bokeh: BokehJS plotting callback run at\", now());\n run_inline_js();\n });\n }\n}(window));" - }, - "metadata": {}, - "output_type": "display_data" + "ename": "ImportError", + "evalue": "cannot import name 'filter_to_plofs' from 'gnomad_toolbox.filtering.vep' (/Users/heqin/miniconda3/envs/hail2132/lib/python3.11/site-packages/gnomad_toolbox/filtering/vep.py)", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mImportError\u001b[0m Traceback (most recent call last)", + "Cell \u001b[0;32mIn[1], line 5\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mgnomad_toolbox\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01manalysis\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mgeneral\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m get_variant_count_by_freq_bin\n\u001b[1;32m 4\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mgnomad_toolbox\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mfiltering\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mvariant\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m filter_by_intervals\n\u001b[0;32m----> 5\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mgnomad_toolbox\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mfiltering\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mvep\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m filter_by_csqs, filter_to_plofs\n\u001b[1;32m 6\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mgnomad_toolbox\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mload_data\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m get_gnomad_release\n", + "\u001b[0;31mImportError\u001b[0m: cannot import name 'filter_to_plofs' from 'gnomad_toolbox.filtering.vep' (/Users/heqin/miniconda3/envs/hail2132/lib/python3.11/site-packages/gnomad_toolbox/filtering/vep.py)" + ] } ], "source": [ @@ -348,7 +47,7 @@ "\n", "from gnomad_toolbox.analysis.general import get_variant_count_by_freq_bin\n", "from gnomad_toolbox.filtering.variant import filter_by_intervals\n", - "from gnomad_toolbox.filtering.vep import filter_by_csqs\n", + "from gnomad_toolbox.filtering.vep import filter_by_csqs, filter_to_plofs\n", "from gnomad_toolbox.load_data import get_gnomad_release" ] }, @@ -566,7 +265,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.12.2" + "version": "3.11.9" }, "toc": { "base_numbering": 1, diff --git a/requirements.txt b/requirements.txt index 702bdab..49daf5d 100644 --- a/requirements.txt +++ b/requirements.txt @@ -1,6 +1,3 @@ -# We're using the main branch of gnomad_method on github rather than the pip version -# TODO: Decide on how to handle this. We might just need to have more releases of gnomad_methods. -git+https://github.com/broadinstitute/gnomad_methods@main hail jupyter jupyter_contrib_nbextensions diff --git a/setup.py b/setup.py index 78ab1cb..705b7c6 100644 --- a/setup.py +++ b/setup.py @@ -37,4 +37,5 @@ ], python_requires=">=3.9", install_requires=install_requires, + depencency_links=['git+https://github.com/broadinstitute/gnomad_methods@main#egg=gnomad_methods'], ) From b271529fbef7b79281ae6381e79a4ea007077d2b Mon Sep 17 00:00:00 2001 From: Qin He <44242118+KoalaQin@users.noreply.github.com> Date: Fri, 10 Jan 2025 11:00:26 -0500 Subject: [PATCH 062/121] update notebook --- gnomad_toolbox/notebooks/needs_a_name.ipynb | 374 ++++++++++++++++++-- 1 file changed, 336 insertions(+), 38 deletions(-) diff --git a/gnomad_toolbox/notebooks/needs_a_name.ipynb b/gnomad_toolbox/notebooks/needs_a_name.ipynb index d450fcf..b37f8e5 100644 --- a/gnomad_toolbox/notebooks/needs_a_name.ipynb +++ b/gnomad_toolbox/notebooks/needs_a_name.ipynb @@ -31,15 +31,316 @@ }, "outputs": [ { - "ename": "ImportError", - "evalue": "cannot import name 'filter_to_plofs' from 'gnomad_toolbox.filtering.vep' (/Users/heqin/miniconda3/envs/hail2132/lib/python3.11/site-packages/gnomad_toolbox/filtering/vep.py)", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mImportError\u001b[0m Traceback (most recent call last)", - "Cell \u001b[0;32mIn[1], line 5\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mgnomad_toolbox\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01manalysis\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mgeneral\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m get_variant_count_by_freq_bin\n\u001b[1;32m 4\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mgnomad_toolbox\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mfiltering\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mvariant\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m filter_by_intervals\n\u001b[0;32m----> 5\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mgnomad_toolbox\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mfiltering\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mvep\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m filter_by_csqs, filter_to_plofs\n\u001b[1;32m 6\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mgnomad_toolbox\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mload_data\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m get_gnomad_release\n", - "\u001b[0;31mImportError\u001b[0m: cannot import name 'filter_to_plofs' from 'gnomad_toolbox.filtering.vep' (/Users/heqin/miniconda3/envs/hail2132/lib/python3.11/site-packages/gnomad_toolbox/filtering/vep.py)" - ] + "data": { + "text/html": [ + " \n", + "
\n", + " \n", + " Loading BokehJS ...\n", + "
\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/javascript": [ + "(function(root) {\n", + " function now() {\n", + " return new Date();\n", + " }\n", + "\n", + " const force = true;\n", + "\n", + " if (typeof root._bokeh_onload_callbacks === \"undefined\" || force === true) {\n", + " root._bokeh_onload_callbacks = [];\n", + " root._bokeh_is_loading = undefined;\n", + " }\n", + "\n", + "const JS_MIME_TYPE = 'application/javascript';\n", + " const HTML_MIME_TYPE = 'text/html';\n", + " const EXEC_MIME_TYPE = 'application/vnd.bokehjs_exec.v0+json';\n", + " const CLASS_NAME = 'output_bokeh rendered_html';\n", + "\n", + " /**\n", + " * Render data to the DOM node\n", + " */\n", + " function render(props, node) {\n", + " const script = document.createElement(\"script\");\n", + " node.appendChild(script);\n", + " }\n", + "\n", + " /**\n", + " * Handle when an output is cleared or removed\n", + " */\n", + " function handleClearOutput(event, handle) {\n", + " function drop(id) {\n", + " const view = Bokeh.index.get_by_id(id)\n", + " if (view != null) {\n", + " view.model.document.clear()\n", + " Bokeh.index.delete(view)\n", + " }\n", + " }\n", + "\n", + " const cell = handle.cell;\n", + "\n", + " const id = cell.output_area._bokeh_element_id;\n", + " const server_id = cell.output_area._bokeh_server_id;\n", + "\n", + " // Clean up Bokeh references\n", + " if (id != null) {\n", + " drop(id)\n", + " }\n", + "\n", + " if (server_id !== undefined) {\n", + " // Clean up Bokeh references\n", + " const cmd_clean = \"from bokeh.io.state import curstate; print(curstate().uuid_to_server['\" + server_id + \"'].get_sessions()[0].document.roots[0]._id)\";\n", + " cell.notebook.kernel.execute(cmd_clean, {\n", + " iopub: {\n", + " output: function(msg) {\n", + " const id = msg.content.text.trim()\n", + " drop(id)\n", + " }\n", + " }\n", + " });\n", + " // Destroy server and session\n", + " const cmd_destroy = \"import bokeh.io.notebook as ion; ion.destroy_server('\" + server_id + \"')\";\n", + " cell.notebook.kernel.execute(cmd_destroy);\n", + " }\n", + " }\n", + "\n", + " /**\n", + " * Handle when a new output is added\n", + " */\n", + " function handleAddOutput(event, handle) {\n", + " const output_area = handle.output_area;\n", + " const output = handle.output;\n", + "\n", + " // limit handleAddOutput to display_data with EXEC_MIME_TYPE content only\n", + " if ((output.output_type != \"display_data\") || (!Object.prototype.hasOwnProperty.call(output.data, EXEC_MIME_TYPE))) {\n", + " return\n", + " }\n", + "\n", + " const toinsert = output_area.element.find(\".\" + CLASS_NAME.split(' ')[0]);\n", + "\n", + " if (output.metadata[EXEC_MIME_TYPE][\"id\"] !== undefined) {\n", + " toinsert[toinsert.length - 1].firstChild.textContent = output.data[JS_MIME_TYPE];\n", + " // store reference to embed id on output_area\n", + " output_area._bokeh_element_id = output.metadata[EXEC_MIME_TYPE][\"id\"];\n", + " }\n", + " if (output.metadata[EXEC_MIME_TYPE][\"server_id\"] !== undefined) {\n", + " const bk_div = document.createElement(\"div\");\n", + " bk_div.innerHTML = output.data[HTML_MIME_TYPE];\n", + " const script_attrs = bk_div.children[0].attributes;\n", + " for (let i = 0; i < script_attrs.length; i++) {\n", + " toinsert[toinsert.length - 1].firstChild.setAttribute(script_attrs[i].name, script_attrs[i].value);\n", + " toinsert[toinsert.length - 1].firstChild.textContent = bk_div.children[0].textContent\n", + " }\n", + " // store reference to server id on output_area\n", + " output_area._bokeh_server_id = output.metadata[EXEC_MIME_TYPE][\"server_id\"];\n", + " }\n", + " }\n", + "\n", + " function register_renderer(events, OutputArea) {\n", + "\n", + " function append_mime(data, metadata, element) {\n", + " // create a DOM node to render to\n", + " const toinsert = this.create_output_subarea(\n", + " metadata,\n", + " CLASS_NAME,\n", + " EXEC_MIME_TYPE\n", + " );\n", + " this.keyboard_manager.register_events(toinsert);\n", + " // Render to node\n", + " const props = {data: data, metadata: metadata[EXEC_MIME_TYPE]};\n", + " render(props, toinsert[toinsert.length - 1]);\n", + " element.append(toinsert);\n", + " return toinsert\n", + " }\n", + "\n", + " /* Handle when an output is cleared or removed */\n", + " events.on('clear_output.CodeCell', handleClearOutput);\n", + " events.on('delete.Cell', handleClearOutput);\n", + "\n", + " /* Handle when a new output is added */\n", + " events.on('output_added.OutputArea', handleAddOutput);\n", + "\n", + " /**\n", + " * Register the mime type and append_mime function with output_area\n", + " */\n", + " OutputArea.prototype.register_mime_type(EXEC_MIME_TYPE, append_mime, {\n", + " /* Is output safe? */\n", + " safe: true,\n", + " /* Index of renderer in `output_area.display_order` */\n", + " index: 0\n", + " });\n", + " }\n", + "\n", + " // register the mime type if in Jupyter Notebook environment and previously unregistered\n", + " if (root.Jupyter !== undefined) {\n", + " const events = require('base/js/events');\n", + " const OutputArea = require('notebook/js/outputarea').OutputArea;\n", + "\n", + " if (OutputArea.prototype.mime_types().indexOf(EXEC_MIME_TYPE) == -1) {\n", + " register_renderer(events, OutputArea);\n", + " }\n", + " }\n", + " if (typeof (root._bokeh_timeout) === \"undefined\" || force === true) {\n", + " root._bokeh_timeout = Date.now() + 5000;\n", + " root._bokeh_failed_load = false;\n", + " }\n", + "\n", + " const NB_LOAD_WARNING = {'data': {'text/html':\n", + " \"
\\n\"+\n", + " \"

\\n\"+\n", + " \"BokehJS does not appear to have successfully loaded. If loading BokehJS from CDN, this \\n\"+\n", + " \"may be due to a slow or bad network connection. Possible fixes:\\n\"+\n", + " \"

\\n\"+\n", + " \"
    \\n\"+\n", + " \"
  • re-rerun `output_notebook()` to attempt to load from CDN again, or
  • \\n\"+\n", + " \"
  • use INLINE resources instead, as so:
  • \\n\"+\n", + " \"
\\n\"+\n", + " \"\\n\"+\n", + " \"from bokeh.resources import INLINE\\n\"+\n", + " \"output_notebook(resources=INLINE)\\n\"+\n", + " \"\\n\"+\n", + " \"
\"}};\n", + "\n", + " function display_loaded() {\n", + " const el = document.getElementById(\"d7751d80-c376-4274-999c-135812562683\");\n", + " if (el != null) {\n", + " el.textContent = \"BokehJS is loading...\";\n", + " }\n", + " if (root.Bokeh !== undefined) {\n", + " if (el != null) {\n", + " el.textContent = \"BokehJS \" + root.Bokeh.version + \" successfully loaded.\";\n", + " }\n", + " } else if (Date.now() < root._bokeh_timeout) {\n", + " setTimeout(display_loaded, 100)\n", + " }\n", + " }\n", + "\n", + " function run_callbacks() {\n", + " try {\n", + " root._bokeh_onload_callbacks.forEach(function(callback) {\n", + " if (callback != null)\n", + " callback();\n", + " });\n", + " } finally {\n", + " delete root._bokeh_onload_callbacks\n", + " }\n", + " console.debug(\"Bokeh: all callbacks have finished\");\n", + " }\n", + "\n", + " function load_libs(css_urls, js_urls, callback) {\n", + " if (css_urls == null) css_urls = [];\n", + " if (js_urls == null) js_urls = [];\n", + "\n", + " root._bokeh_onload_callbacks.push(callback);\n", + " if (root._bokeh_is_loading > 0) {\n", + " console.debug(\"Bokeh: BokehJS is being loaded, scheduling callback at\", now());\n", + " return null;\n", + " }\n", + " if (js_urls == null || js_urls.length === 0) {\n", + " run_callbacks();\n", + " return null;\n", + " }\n", + " console.debug(\"Bokeh: BokehJS not loaded, scheduling load and callback at\", now());\n", + " root._bokeh_is_loading = css_urls.length + js_urls.length;\n", + "\n", + " function on_load() {\n", + " root._bokeh_is_loading--;\n", + " if (root._bokeh_is_loading === 0) {\n", + " console.debug(\"Bokeh: all BokehJS libraries/stylesheets loaded\");\n", + " run_callbacks()\n", + " }\n", + " }\n", + "\n", + " function on_error(url) {\n", + " console.error(\"failed to load \" + url);\n", + " }\n", + "\n", + " for (let i = 0; i < css_urls.length; i++) {\n", + " const url = css_urls[i];\n", + " const element = document.createElement(\"link\");\n", + " element.onload = on_load;\n", + " element.onerror = on_error.bind(null, url);\n", + " element.rel = \"stylesheet\";\n", + " element.type = \"text/css\";\n", + " element.href = url;\n", + " console.debug(\"Bokeh: injecting link tag for BokehJS stylesheet: \", url);\n", + " document.body.appendChild(element);\n", + " }\n", + "\n", + " for (let i = 0; i < js_urls.length; i++) {\n", + " const url = js_urls[i];\n", + " const element = document.createElement('script');\n", + " element.onload = on_load;\n", + " element.onerror = on_error.bind(null, url);\n", + " element.async = false;\n", + " element.src = url;\n", + " console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n", + " document.head.appendChild(element);\n", + " }\n", + " };\n", + "\n", + " function inject_raw_css(css) {\n", + " const element = document.createElement(\"style\");\n", + " element.appendChild(document.createTextNode(css));\n", + " document.body.appendChild(element);\n", + " }\n", + "\n", + " const js_urls = [\"https://cdn.bokeh.org/bokeh/release/bokeh-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-gl-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-widgets-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-tables-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-mathjax-3.3.4.min.js\"];\n", + " const css_urls = [];\n", + "\n", + " const inline_js = [ function(Bokeh) {\n", + " Bokeh.set_log_level(\"info\");\n", + " },\n", + "function(Bokeh) {\n", + " }\n", + " ];\n", + "\n", + " function run_inline_js() {\n", + " if (root.Bokeh !== undefined || force === true) {\n", + " for (let i = 0; i < inline_js.length; i++) {\n", + " inline_js[i].call(root, root.Bokeh);\n", + " }\n", + "if (force === true) {\n", + " display_loaded();\n", + " }} else if (Date.now() < root._bokeh_timeout) {\n", + " setTimeout(run_inline_js, 100);\n", + " } else if (!root._bokeh_failed_load) {\n", + " console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n", + " root._bokeh_failed_load = true;\n", + " } else if (force !== true) {\n", + " const cell = $(document.getElementById(\"d7751d80-c376-4274-999c-135812562683\")).parents('.cell').data().cell;\n", + " cell.output_area.append_execute_result(NB_LOAD_WARNING)\n", + " }\n", + " }\n", + "\n", + " if (root._bokeh_is_loading === 0) {\n", + " console.debug(\"Bokeh: BokehJS loaded, going straight to plotting\");\n", + " run_inline_js();\n", + " } else {\n", + " load_libs(css_urls, js_urls, function() {\n", + " console.debug(\"Bokeh: BokehJS plotting callback run at\", now());\n", + " run_inline_js();\n", + " });\n", + " }\n", + "}(window));" + ], + "application/vnd.bokehjs_load.v0+json": "(function(root) {\n function now() {\n return new Date();\n }\n\n const force = true;\n\n if (typeof root._bokeh_onload_callbacks === \"undefined\" || force === true) {\n root._bokeh_onload_callbacks = [];\n root._bokeh_is_loading = undefined;\n }\n\n\n if (typeof (root._bokeh_timeout) === \"undefined\" || force === true) {\n root._bokeh_timeout = Date.now() + 5000;\n root._bokeh_failed_load = false;\n }\n\n const NB_LOAD_WARNING = {'data': {'text/html':\n \"
\\n\"+\n \"

\\n\"+\n \"BokehJS does not appear to have successfully loaded. If loading BokehJS from CDN, this \\n\"+\n \"may be due to a slow or bad network connection. Possible fixes:\\n\"+\n \"

\\n\"+\n \"
    \\n\"+\n \"
  • re-rerun `output_notebook()` to attempt to load from CDN again, or
  • \\n\"+\n \"
  • use INLINE resources instead, as so:
  • \\n\"+\n \"
\\n\"+\n \"\\n\"+\n \"from bokeh.resources import INLINE\\n\"+\n \"output_notebook(resources=INLINE)\\n\"+\n \"\\n\"+\n \"
\"}};\n\n function display_loaded() {\n const el = document.getElementById(\"d7751d80-c376-4274-999c-135812562683\");\n if (el != null) {\n el.textContent = \"BokehJS is loading...\";\n }\n if (root.Bokeh !== undefined) {\n if (el != null) {\n el.textContent = \"BokehJS \" + root.Bokeh.version + \" successfully loaded.\";\n }\n } else if (Date.now() < root._bokeh_timeout) {\n setTimeout(display_loaded, 100)\n }\n }\n\n function run_callbacks() {\n try {\n root._bokeh_onload_callbacks.forEach(function(callback) {\n if (callback != null)\n callback();\n });\n } finally {\n delete root._bokeh_onload_callbacks\n }\n console.debug(\"Bokeh: all callbacks have finished\");\n }\n\n function load_libs(css_urls, js_urls, callback) {\n if (css_urls == null) css_urls = [];\n if (js_urls == null) js_urls = [];\n\n root._bokeh_onload_callbacks.push(callback);\n if (root._bokeh_is_loading > 0) {\n console.debug(\"Bokeh: BokehJS is being loaded, scheduling callback at\", now());\n return null;\n }\n if (js_urls == null || js_urls.length === 0) {\n run_callbacks();\n return null;\n }\n console.debug(\"Bokeh: BokehJS not loaded, scheduling load and callback at\", now());\n root._bokeh_is_loading = css_urls.length + js_urls.length;\n\n function on_load() {\n root._bokeh_is_loading--;\n if (root._bokeh_is_loading === 0) {\n console.debug(\"Bokeh: all BokehJS libraries/stylesheets loaded\");\n run_callbacks()\n }\n }\n\n function on_error(url) {\n console.error(\"failed to load \" + url);\n }\n\n for (let i = 0; i < css_urls.length; i++) {\n const url = css_urls[i];\n const element = document.createElement(\"link\");\n element.onload = on_load;\n element.onerror = on_error.bind(null, url);\n element.rel = \"stylesheet\";\n element.type = \"text/css\";\n element.href = url;\n console.debug(\"Bokeh: injecting link tag for BokehJS stylesheet: \", url);\n document.body.appendChild(element);\n }\n\n for (let i = 0; i < js_urls.length; i++) {\n const url = js_urls[i];\n const element = document.createElement('script');\n element.onload = on_load;\n element.onerror = on_error.bind(null, url);\n element.async = false;\n element.src = url;\n console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n document.head.appendChild(element);\n }\n };\n\n function inject_raw_css(css) {\n const element = document.createElement(\"style\");\n element.appendChild(document.createTextNode(css));\n document.body.appendChild(element);\n }\n\n const js_urls = [\"https://cdn.bokeh.org/bokeh/release/bokeh-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-gl-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-widgets-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-tables-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-mathjax-3.3.4.min.js\"];\n const css_urls = [];\n\n const inline_js = [ function(Bokeh) {\n Bokeh.set_log_level(\"info\");\n },\nfunction(Bokeh) {\n }\n ];\n\n function run_inline_js() {\n if (root.Bokeh !== undefined || force === true) {\n for (let i = 0; i < inline_js.length; i++) {\n inline_js[i].call(root, root.Bokeh);\n }\nif (force === true) {\n display_loaded();\n }} else if (Date.now() < root._bokeh_timeout) {\n setTimeout(run_inline_js, 100);\n } else if (!root._bokeh_failed_load) {\n console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n root._bokeh_failed_load = true;\n } else if (force !== true) {\n const cell = $(document.getElementById(\"d7751d80-c376-4274-999c-135812562683\")).parents('.cell').data().cell;\n cell.output_area.append_execute_result(NB_LOAD_WARNING)\n }\n }\n\n if (root._bokeh_is_loading === 0) {\n console.debug(\"Bokeh: BokehJS loaded, going straight to plotting\");\n run_inline_js();\n } else {\n load_libs(css_urls, js_urls, function() {\n console.debug(\"Bokeh: BokehJS plotting callback run at\", now());\n run_inline_js();\n });\n }\n}(window));" + }, + "metadata": {}, + "output_type": "display_data" } ], "source": [ @@ -47,7 +348,7 @@ "\n", "from gnomad_toolbox.analysis.general import get_variant_count_by_freq_bin\n", "from gnomad_toolbox.filtering.variant import filter_by_intervals\n", - "from gnomad_toolbox.filtering.vep import filter_by_csqs, filter_to_plofs\n", + "from gnomad_toolbox.filtering.vep import filter_by_consequence_category, filter_to_plofs\n", "from gnomad_toolbox.load_data import get_gnomad_release" ] }, @@ -210,43 +511,40 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": null, "id": "6ce87a77", "metadata": {}, "outputs": [ { - "ename": "NameError", - "evalue": "name 'coverage' is not defined", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", - "Cell \u001b[0;32mIn[7], line 3\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[38;5;66;03m# TODO: add function for this\u001b[39;00m\n\u001b[0;32m----> 3\u001b[0m coverage_ht \u001b[38;5;241m=\u001b[39m coverage(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mexomes\u001b[39m\u001b[38;5;124m\"\u001b[39m)\u001b[38;5;241m.\u001b[39mht()\n\u001b[1;32m 5\u001b[0m \u001b[38;5;66;03m#Filter to PASS SNVs with AF <= 0.1% and median exome depth ≥ 30.\u001b[39;00m\n\u001b[1;32m 6\u001b[0m ht \u001b[38;5;241m=\u001b[39m ht\u001b[38;5;241m.\u001b[39mfilter(\n\u001b[1;32m 7\u001b[0m (hl\u001b[38;5;241m.\u001b[39mlen(ht\u001b[38;5;241m.\u001b[39mfilters) \u001b[38;5;241m==\u001b[39m \u001b[38;5;241m0\u001b[39m) \n\u001b[1;32m 8\u001b[0m \u001b[38;5;241m&\u001b[39m (ht\u001b[38;5;241m.\u001b[39mallele_info\u001b[38;5;241m.\u001b[39mallele_type \u001b[38;5;241m==\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124msnv\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m 9\u001b[0m \u001b[38;5;241m&\u001b[39m (ht\u001b[38;5;241m.\u001b[39mfreq[\u001b[38;5;241m0\u001b[39m]\u001b[38;5;241m.\u001b[39mAF \u001b[38;5;241m<\u001b[39m\u001b[38;5;241m=\u001b[39m \u001b[38;5;241m0.001\u001b[39m)\n\u001b[1;32m 10\u001b[0m \u001b[38;5;241m&\u001b[39m (coverage_ht[ht\u001b[38;5;241m.\u001b[39mlocus]\u001b[38;5;241m.\u001b[39mmedian_approx \u001b[38;5;241m>\u001b[39m\u001b[38;5;241m=\u001b[39m \u001b[38;5;241m30\u001b[39m)\n\u001b[1;32m 11\u001b[0m )\n", - "\u001b[0;31mNameError\u001b[0m: name 'coverage' is not defined" + "name": "stderr", + "output_type": "stream", + "text": [ + "Initializing Hail with default parameters...\n", + "Welcome to\n", + " __ __ <>__\n", + " / /_/ /__ __/ /\n", + " / __ / _ `/ / /\n", + " /_/ /_/\\_,_/_/_/ version 0.2.132-678e1f52b999\n", + "LOGGING: writing to /Users/heqin/PycharmProjects/gnomad-toolbox/gnomad_toolbox/notebooks/hail-20250110-1057-0.2.132-678e1f52b999.log\n", + "INFO (gnomad.utils.vep 947): Filtering to canonical transcripts\n", + "INFO (gnomad.utils.vep 950): Filtering to MANE Select transcripts...\n", + "INFO (gnomad.utils.vep 953): Filtering to Ensembl transcripts...\n", + "INFO (gnomad.utils.vep 959): Filtering to genes of interest...\n", + "INFO (gnomad.utils.vep 967): Filtering to variants with additional criteria...\n" ] } ], "source": [ - "# TODO: add function for this\n", - "\n", - "coverage_ht = coverage(\"exomes\").ht()\n", - "\n", - "#Filter to PASS SNVs with AF <= 0.1% and median exome depth ≥ 30.\n", - "ht = ht.filter(\n", - " (hl.len(ht.filters) == 0) \n", - " & (ht.allele_info.allele_type == \"snv\")\n", - " & (ht.freq[0].AF <= 0.001)\n", - " & (coverage_ht[ht.locus].median_approx >= 30)\n", - ")\n", - "\n", - "\n", - "print(f\"Number of variants: {ht.count()}\")\n", - "ht.select(\n", - " freq=ht.freq[0],\n", - " csq=ht.vep.transcript_consequences[0].consequence_terms,\n", - " coverage=coverage_ht[ht.locus],\n", - ").show(-1)" + "filter_to_plofs('ash1l').show(-1)" ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "3c2212f4-a7cf-45bc-930d-aa18cebff7a3", + "metadata": {}, + "outputs": [], + "source": [] } ], "metadata": { From bdb41d21113d939cb2331ded8ecce2d0ad01d328 Mon Sep 17 00:00:00 2001 From: Qin He <44242118+KoalaQin@users.noreply.github.com> Date: Fri, 10 Jan 2025 12:07:47 -0500 Subject: [PATCH 063/121] Move modified gnomad_methods back to requirements.txt --- gnomad_toolbox/notebooks/needs_a_name.ipynb | 167 ++++++++++++++++++-- requirements.txt | 1 + setup.py | 1 - 3 files changed, 158 insertions(+), 11 deletions(-) diff --git a/gnomad_toolbox/notebooks/needs_a_name.ipynb b/gnomad_toolbox/notebooks/needs_a_name.ipynb index b37f8e5..c63ea3a 100644 --- a/gnomad_toolbox/notebooks/needs_a_name.ipynb +++ b/gnomad_toolbox/notebooks/needs_a_name.ipynb @@ -497,7 +497,7 @@ "tags": [] }, "source": [ - "## Filter to pLOF variants that we used to compute constraint metrics\n", + "## Filter to pLoF variants that we used to compute constraint metrics\n", "pLOF variants meets the following requirements:\n", "* High-confidence LOFTEE variants (without any flags),\n", "* Only variants in the MANE Select transcript,\n", @@ -511,7 +511,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 3, "id": "6ce87a77", "metadata": {}, "outputs": [ @@ -519,23 +519,170 @@ "name": "stderr", "output_type": "stream", "text": [ - "Initializing Hail with default parameters...\n", - "Welcome to\n", - " __ __ <>__\n", - " / /_/ /__ __/ /\n", - " / __ / _ `/ / /\n", - " /_/ /_/\\_,_/_/_/ version 0.2.132-678e1f52b999\n", - "LOGGING: writing to /Users/heqin/PycharmProjects/gnomad-toolbox/gnomad_toolbox/notebooks/hail-20250110-1057-0.2.132-678e1f52b999.log\n", "INFO (gnomad.utils.vep 947): Filtering to canonical transcripts\n", "INFO (gnomad.utils.vep 950): Filtering to MANE Select transcripts...\n", "INFO (gnomad.utils.vep 953): Filtering to Ensembl transcripts...\n", "INFO (gnomad.utils.vep 959): Filtering to genes of interest...\n", "INFO (gnomad.utils.vep 967): Filtering to variants with additional criteria...\n" ] + }, + { + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
freq
coverage
locus
alleles
AC
AF
AN
homozygote_count
csq
mean
median_approx
total_DP
over_1
over_5
over_10
over_15
over_20
over_25
over_30
over_50
over_100
locus<GRCh38>array<str>int32float64int32int64array<str>float64int32int64float64float64float64float64float64float64float64float64float64
chr1:155337668["G","A"]4593.14e-0414612700["stop_gained"]2.99e+0130218875281.00e+001.00e+001.00e+009.97e-019.86e-019.32e-016.07e-018.96e-046.02e-05
chr1:155337704["G","A"]64.10e-0614617140["stop_gained"]3.02e+0130220423721.00e+001.00e+001.00e+009.99e-019.94e-019.48e-016.21e-018.39e-044.93e-05
chr1:155337735["G","C"]16.84e-0714616940["stop_gained"]3.00e+0130219569141.00e+001.00e+001.00e+009.99e-019.92e-019.37e-016.12e-018.29e-044.51e-05
chr1:155338087["A","T"]16.85e-0714596480["splice_donor_variant"]3.16e+0131231113191.00e+001.00e+009.99e-019.95e-019.89e-019.59e-017.28e-011.35e-027.59e-04
chr1:155338161["G","A"]16.84e-0714618840["stop_gained"]3.19e+0131233084341.00e+001.00e+001.00e+001.00e+001.00e+009.76e-017.42e-011.35e-027.59e-04
chr1:155349380["T","A"]16.84e-0714617680["stop_gained"]3.21e+0132234449991.00e+001.00e+001.00e+001.00e+009.99e-019.76e-017.69e-015.01e-031.85e-04
chr1:155354631["C","T"]16.88e-0714534160["splice_acceptor_variant"]3.04e+0131222097141.00e+001.00e+009.95e-019.83e-019.70e-019.28e-016.53e-014.38e-044.93e-05
chr1:155357583["A","T"]16.84e-0714616800["splice_donor_variant"]3.13e+0131228588871.00e+001.00e+001.00e+009.99e-019.97e-019.79e-017.47e-018.14e-046.29e-05
chr1:155370984["C","T"]32.06e-0614557260["splice_acceptor_variant"]3.12e+0131228021811.00e+001.00e+001.00e+009.99e-019.97e-019.54e-016.97e-011.14e-033.69e-05
chr1:155415924["C","A"]21.48e-0613520320["splice_acceptor_variant"]2.73e+0130199323751.00e+009.84e-019.41e-018.72e-018.17e-017.64e-015.70e-011.35e-031.76e-04
chr1:155478020["G","C"]16.84e-0714618880["stop_gained"]3.26e+0133238300811.00e+001.00e+001.00e+001.00e+001.00e+009.72e-017.53e-013.11e-031.40e-03
chr1:155478203["C","T"]16.84e-0714618740["stop_gained"]3.27e+0133239248711.00e+001.00e+001.00e+001.00e+001.00e+009.72e-017.55e-014.07e-032.20e-03
chr1:155478439["C","T"]16.84e-0714618900["stop_gained"]3.28e+0133239948001.00e+001.00e+001.00e+001.00e+001.00e+009.73e-017.59e-014.64e-032.58e-03
chr1:155478528["G","A"]16.84e-0714618760["stop_gained"]3.28e+0133239977761.00e+001.00e+001.00e+001.00e+001.00e+009.73e-017.59e-014.67e-032.60e-03
chr1:155479767["G","A"]16.84e-0714618580["stop_gained"]3.30e+0133241434591.00e+001.00e+001.00e+001.00e+001.00e+009.74e-017.66e-016.55e-033.89e-03
chr1:155479862["G","T"]16.84e-0714611600["stop_gained"]3.24e+0132236512031.00e+001.00e+001.00e+009.98e-019.91e-019.42e-017.13e-016.42e-033.91e-03
chr1:155521291["C","A"]16.84e-0714618620["stop_gained"]3.30e+0132241144561.00e+001.00e+001.00e+001.00e+001.00e+009.81e-017.72e-011.94e-023.68e-03
chr1:155521474["C","A"]16.84e-0714617240["stop_gained"]3.29e+0132240775511.00e+001.00e+001.00e+009.99e-019.98e-019.79e-017.69e-011.94e-023.67e-03
" + ], + "text/plain": [ + "+----------------+------------+---------+----------+---------+\n", + "| locus | alleles | freq.AC | freq.AF | freq.AN |\n", + "+----------------+------------+---------+----------+---------+\n", + "| locus | array | int32 | float64 | int32 |\n", + "+----------------+------------+---------+----------+---------+\n", + "| chr1:155337668 | [\"G\",\"A\"] | 459 | 3.14e-04 | 1461270 |\n", + "| chr1:155337704 | [\"G\",\"A\"] | 6 | 4.10e-06 | 1461714 |\n", + "| chr1:155337735 | [\"G\",\"C\"] | 1 | 6.84e-07 | 1461694 |\n", + "| chr1:155338087 | [\"A\",\"T\"] | 1 | 6.85e-07 | 1459648 |\n", + "| chr1:155338161 | [\"G\",\"A\"] | 1 | 6.84e-07 | 1461884 |\n", + "| chr1:155349380 | [\"T\",\"A\"] | 1 | 6.84e-07 | 1461768 |\n", + "| chr1:155354631 | [\"C\",\"T\"] | 1 | 6.88e-07 | 1453416 |\n", + "| chr1:155357583 | [\"A\",\"T\"] | 1 | 6.84e-07 | 1461680 |\n", + "| chr1:155370984 | [\"C\",\"T\"] | 3 | 2.06e-06 | 1455726 |\n", + "| chr1:155415924 | [\"C\",\"A\"] | 2 | 1.48e-06 | 1352032 |\n", + "| chr1:155478020 | [\"G\",\"C\"] | 1 | 6.84e-07 | 1461888 |\n", + "| chr1:155478203 | [\"C\",\"T\"] | 1 | 6.84e-07 | 1461874 |\n", + "| chr1:155478439 | [\"C\",\"T\"] | 1 | 6.84e-07 | 1461890 |\n", + "| chr1:155478528 | [\"G\",\"A\"] | 1 | 6.84e-07 | 1461876 |\n", + "| chr1:155479767 | [\"G\",\"A\"] | 1 | 6.84e-07 | 1461858 |\n", + "| chr1:155479862 | [\"G\",\"T\"] | 1 | 6.84e-07 | 1461160 |\n", + "| chr1:155521291 | [\"C\",\"A\"] | 1 | 6.84e-07 | 1461862 |\n", + "| chr1:155521474 | [\"C\",\"A\"] | 1 | 6.84e-07 | 1461724 |\n", + "+----------------+------------+---------+----------+---------+\n", + "\n", + "+-----------------------+-----------------------------+---------------+\n", + "| freq.homozygote_count | csq | coverage.mean |\n", + "+-----------------------+-----------------------------+---------------+\n", + "| int64 | array | float64 |\n", + "+-----------------------+-----------------------------+---------------+\n", + "| 0 | [\"stop_gained\"] | 2.99e+01 |\n", + "| 0 | [\"stop_gained\"] | 3.02e+01 |\n", + "| 0 | [\"stop_gained\"] | 3.00e+01 |\n", + "| 0 | [\"splice_donor_variant\"] | 3.16e+01 |\n", + "| 0 | [\"stop_gained\"] | 3.19e+01 |\n", + "| 0 | [\"stop_gained\"] | 3.21e+01 |\n", + "| 0 | [\"splice_acceptor_variant\"] | 3.04e+01 |\n", + "| 0 | [\"splice_donor_variant\"] | 3.13e+01 |\n", + "| 0 | [\"splice_acceptor_variant\"] | 3.12e+01 |\n", + "| 0 | [\"splice_acceptor_variant\"] | 2.73e+01 |\n", + "| 0 | [\"stop_gained\"] | 3.26e+01 |\n", + "| 0 | [\"stop_gained\"] | 3.27e+01 |\n", + "| 0 | [\"stop_gained\"] | 3.28e+01 |\n", + "| 0 | [\"stop_gained\"] | 3.28e+01 |\n", + "| 0 | [\"stop_gained\"] | 3.30e+01 |\n", + "| 0 | [\"stop_gained\"] | 3.24e+01 |\n", + "| 0 | [\"stop_gained\"] | 3.30e+01 |\n", + "| 0 | [\"stop_gained\"] | 3.29e+01 |\n", + "+-----------------------+-----------------------------+---------------+\n", + "\n", + "+------------------------+-------------------+-----------------+\n", + "| coverage.median_approx | coverage.total_DP | coverage.over_1 |\n", + "+------------------------+-------------------+-----------------+\n", + "| int32 | int64 | float64 |\n", + "+------------------------+-------------------+-----------------+\n", + "| 30 | 21887528 | 1.00e+00 |\n", + "| 30 | 22042372 | 1.00e+00 |\n", + "| 30 | 21956914 | 1.00e+00 |\n", + "| 31 | 23111319 | 1.00e+00 |\n", + "| 31 | 23308434 | 1.00e+00 |\n", + "| 32 | 23444999 | 1.00e+00 |\n", + "| 31 | 22209714 | 1.00e+00 |\n", + "| 31 | 22858887 | 1.00e+00 |\n", + "| 31 | 22802181 | 1.00e+00 |\n", + "| 30 | 19932375 | 1.00e+00 |\n", + "| 33 | 23830081 | 1.00e+00 |\n", + "| 33 | 23924871 | 1.00e+00 |\n", + "| 33 | 23994800 | 1.00e+00 |\n", + "| 33 | 23997776 | 1.00e+00 |\n", + "| 33 | 24143459 | 1.00e+00 |\n", + "| 32 | 23651203 | 1.00e+00 |\n", + "| 32 | 24114456 | 1.00e+00 |\n", + "| 32 | 24077551 | 1.00e+00 |\n", + "+------------------------+-------------------+-----------------+\n", + "\n", + "+-----------------+------------------+------------------+------------------+\n", + "| coverage.over_5 | coverage.over_10 | coverage.over_15 | coverage.over_20 |\n", + "+-----------------+------------------+------------------+------------------+\n", + "| float64 | float64 | float64 | float64 |\n", + "+-----------------+------------------+------------------+------------------+\n", + "| 1.00e+00 | 1.00e+00 | 9.97e-01 | 9.86e-01 |\n", + "| 1.00e+00 | 1.00e+00 | 9.99e-01 | 9.94e-01 |\n", + "| 1.00e+00 | 1.00e+00 | 9.99e-01 | 9.92e-01 |\n", + "| 1.00e+00 | 9.99e-01 | 9.95e-01 | 9.89e-01 |\n", + "| 1.00e+00 | 1.00e+00 | 1.00e+00 | 1.00e+00 |\n", + "| 1.00e+00 | 1.00e+00 | 1.00e+00 | 9.99e-01 |\n", + "| 1.00e+00 | 9.95e-01 | 9.83e-01 | 9.70e-01 |\n", + "| 1.00e+00 | 1.00e+00 | 9.99e-01 | 9.97e-01 |\n", + "| 1.00e+00 | 1.00e+00 | 9.99e-01 | 9.97e-01 |\n", + "| 9.84e-01 | 9.41e-01 | 8.72e-01 | 8.17e-01 |\n", + "| 1.00e+00 | 1.00e+00 | 1.00e+00 | 1.00e+00 |\n", + "| 1.00e+00 | 1.00e+00 | 1.00e+00 | 1.00e+00 |\n", + "| 1.00e+00 | 1.00e+00 | 1.00e+00 | 1.00e+00 |\n", + "| 1.00e+00 | 1.00e+00 | 1.00e+00 | 1.00e+00 |\n", + "| 1.00e+00 | 1.00e+00 | 1.00e+00 | 1.00e+00 |\n", + "| 1.00e+00 | 1.00e+00 | 9.98e-01 | 9.91e-01 |\n", + "| 1.00e+00 | 1.00e+00 | 1.00e+00 | 1.00e+00 |\n", + "| 1.00e+00 | 1.00e+00 | 9.99e-01 | 9.98e-01 |\n", + "+-----------------+------------------+------------------+------------------+\n", + "\n", + "+------------------+------------------+------------------+-------------------+\n", + "| coverage.over_25 | coverage.over_30 | coverage.over_50 | coverage.over_100 |\n", + "+------------------+------------------+------------------+-------------------+\n", + "| float64 | float64 | float64 | float64 |\n", + "+------------------+------------------+------------------+-------------------+\n", + "| 9.32e-01 | 6.07e-01 | 8.96e-04 | 6.02e-05 |\n", + "| 9.48e-01 | 6.21e-01 | 8.39e-04 | 4.93e-05 |\n", + "| 9.37e-01 | 6.12e-01 | 8.29e-04 | 4.51e-05 |\n", + "| 9.59e-01 | 7.28e-01 | 1.35e-02 | 7.59e-04 |\n", + "| 9.76e-01 | 7.42e-01 | 1.35e-02 | 7.59e-04 |\n", + "| 9.76e-01 | 7.69e-01 | 5.01e-03 | 1.85e-04 |\n", + "| 9.28e-01 | 6.53e-01 | 4.38e-04 | 4.93e-05 |\n", + "| 9.79e-01 | 7.47e-01 | 8.14e-04 | 6.29e-05 |\n", + "| 9.54e-01 | 6.97e-01 | 1.14e-03 | 3.69e-05 |\n", + "| 7.64e-01 | 5.70e-01 | 1.35e-03 | 1.76e-04 |\n", + "| 9.72e-01 | 7.53e-01 | 3.11e-03 | 1.40e-03 |\n", + "| 9.72e-01 | 7.55e-01 | 4.07e-03 | 2.20e-03 |\n", + "| 9.73e-01 | 7.59e-01 | 4.64e-03 | 2.58e-03 |\n", + "| 9.73e-01 | 7.59e-01 | 4.67e-03 | 2.60e-03 |\n", + "| 9.74e-01 | 7.66e-01 | 6.55e-03 | 3.89e-03 |\n", + "| 9.42e-01 | 7.13e-01 | 6.42e-03 | 3.91e-03 |\n", + "| 9.81e-01 | 7.72e-01 | 1.94e-02 | 3.68e-03 |\n", + "| 9.79e-01 | 7.69e-01 | 1.94e-02 | 3.67e-03 |\n", + "+------------------+------------------+------------------+-------------------+" + ] + }, + "metadata": {}, + "output_type": "display_data" } ], "source": [ - "filter_to_plofs('ash1l').show(-1)" + "filter_to_plofs('ash1l', select_fields=True).show(-1)" ] }, { diff --git a/requirements.txt b/requirements.txt index 49daf5d..c61664c 100644 --- a/requirements.txt +++ b/requirements.txt @@ -1,3 +1,4 @@ +gnomad_methods @ git+https://github.com/broadinstitute/gnomad_methods@main hail jupyter jupyter_contrib_nbextensions diff --git a/setup.py b/setup.py index 705b7c6..78ab1cb 100644 --- a/setup.py +++ b/setup.py @@ -37,5 +37,4 @@ ], python_requires=">=3.9", install_requires=install_requires, - depencency_links=['git+https://github.com/broadinstitute/gnomad_methods@main#egg=gnomad_methods'], ) From bf593fc0bfc85f8c25bfd9a73468452541f960df Mon Sep 17 00:00:00 2001 From: Qin He <44242118+KoalaQin@users.noreply.github.com> Date: Fri, 10 Jan 2025 12:10:16 -0500 Subject: [PATCH 064/121] rename to gnomad --- requirements.txt | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/requirements.txt b/requirements.txt index c61664c..b0183e0 100644 --- a/requirements.txt +++ b/requirements.txt @@ -1,4 +1,4 @@ -gnomad_methods @ git+https://github.com/broadinstitute/gnomad_methods@main +gnomad @ git+https://github.com/broadinstitute/gnomad_methods@main hail jupyter jupyter_contrib_nbextensions From 04903621338431ec8b516a4233699a0c1e52e2a8 Mon Sep 17 00:00:00 2001 From: jkgoodrich <33063077+jkgoodrich@users.noreply.github.com> Date: Fri, 10 Jan 2025 10:12:05 -0700 Subject: [PATCH 065/121] Update filter_by_intervals and filter_by_gene_symbol to use more gnomad_methods functions --- gnomad_toolbox/filtering/variant.py | 118 +++++++++++----------------- 1 file changed, 46 insertions(+), 72 deletions(-) diff --git a/gnomad_toolbox/filtering/variant.py b/gnomad_toolbox/filtering/variant.py index e32c0a5..9bb4ddf 100644 --- a/gnomad_toolbox/filtering/variant.py +++ b/gnomad_toolbox/filtering/variant.py @@ -3,11 +3,10 @@ from typing import Optional, Union import hail as hl -from gnomad.resources.grch37.gnomad import browser_gene as browser_gene_grch37 -from gnomad.resources.grch38.gnomad import browser_gene as browser_gene_grch38 +from gnomad.utils.filtering import filter_by_intervals as interval_filter +from gnomad.utils.filtering import filter_gencode_ht from gnomad.utils.parse import parse_variant from gnomad.utils.reference_genome import get_reference_genome -from gnomad.utils.vep import filter_vep_transcript_csqs from gnomad_toolbox.load_data import _get_gnomad_release @@ -83,95 +82,70 @@ def filter_by_intervals( :param kwargs: Arguments to pass to `_get_gnomad_release`. :return: Table with variants in the interval(s). """ - # Load the Hail Table if not provided + # Load the Hail Table if not provided. ht = _get_gnomad_release(dataset="variant", **kwargs) - # Determine the reference genome build for the ht. - build = get_reference_genome(ht.locus).name - - if isinstance(intervals, str): - intervals = [intervals] - - if build == "GRCh38" and any([not i.startswith("chr") for i in intervals]): - raise ValueError("Interval must start with 'chr' for GRCh38 reference genome.") - - ht = hl.filter_intervals( - ht, [hl.parse_locus_interval(i, reference_genome=build) for i in intervals] + return interval_filter( + ht, intervals, reference_genome=get_reference_genome(ht.locus).name ) - return ht - def filter_by_gene_symbol(gene: str, exon_padding_bp: int = 75, **kwargs) -> hl.Table: """ - Filter variants in a gene by gene symbol. + Filter variants by gene symbol. .. note:: - This is to match the browser display, which includes variants in the CDS + - 75bp padding for protein-coding genes, and UTR/exons + 75bp padding for - non-protein-coding genes. - :param gene: Gene symbol. - :param exon_padding_bp: Number of base pairs to pad the CDS intervals. Default is 75bp. + This function is to match the number of variants that you will get in the + gnomAD browser when you search for a gene symbol. The gnomAD browser + filters to only variants located in or within 75 base pairs of a coding exon. + + :param gene: Gencode gene symbol. + :param exon_padding_bp: Number of base pairs to pad the intervals. Default is 75bp. :param kwargs: Arguments to pass to `_get_gnomad_release`. - :return: Table with variants in the gene. + :return: Table with variants in the specified gene. """ - # Load the Hail Table if not provided + # Load the Hail Table if not provided. ht = _get_gnomad_release(dataset="variant", **kwargs) - # Load gene information - gene_ht = ( - browser_gene_grch37().ht() - if ht.locus.dtype.reference_genome.name == "GRCh37" - else browser_gene_grch38().ht() + # The gnomAD browser will display variants in CDS regions if present, otherwise UTR, + # and finally exons. + feature_order = ["CDS", "UTR", "exon"] + gencode_ht = filter_gencode_ht( + reference_genome=get_reference_genome(ht.locus).name, + feature=feature_order + ["gene"], + genes=gene, ) - # Pre-filter to the specified gene (case-insensitive) - gene = gene.upper() - gene_ht = gene_ht.filter(gene_ht.gencode_symbol == gene) - - # First get the variants in the gene region - ht = hl.filter_intervals(ht, hl.array(gene_ht.interval.take(1))) - - # Get intervals based on feature type (CDS > UTR > Exons) with padding - def get_intervals(feature_type: str) -> hl.expr.ArrayExpression: - return hl.array( - gene_ht.exons.filter(lambda exon: exon.feature_type == feature_type) - ).map( - lambda exon: hl.locus_interval( - hl.if_else( - gene_ht.interval.start.dtype.reference_genome.name == "GRCh38", - "chr" + gene_ht.chrom, - gene_ht.chrom, - ), - exon.start - exon_padding_bp, - exon.stop + exon_padding_bp, - reference_genome=gene_ht.interval.start.dtype.reference_genome, - includes_start=True, - includes_end=True, - ) - ) - - cds_intervals = get_intervals("CDS") - utr_intervals = get_intervals("UTR") - exon_intervals = get_intervals("exon") - - # Determine which intervals to use - gene_ht = gene_ht.annotate( - intervals=hl.if_else( - hl.len(cds_intervals) > 0, - cds_intervals, - hl.if_else(hl.len(utr_intervals) > 0, utr_intervals, exon_intervals), - ) + # The 75bp padding only applies to variants in the specified gene interval + # (without padding), so we need to filter the gencode HT to only include the gene + # of interest first. + ht = filter_by_intervals( + ht, gencode_ht.filter(gencode_ht.feature == "gene").interval ) - intervals = gene_ht.intervals.take(1)[0] + for f in feature_order: + filtered_gencode_ht = gencode_ht.filter(gencode_ht.feature == f) + filter_count = filtered_gencode_ht.count() + if filter_count > 0: + break - ht = hl.filter_intervals(ht, intervals) + if filter_count == 0: + raise ValueError(f"No intervals match the gene symbol {gene}") - # Additional filtering (e.g., with VEP consequences) - ht = filter_vep_transcript_csqs( - ht, genes=[gene], synonymous=False, match_by_gene_symbol=True + ht = filter_by_intervals( + ht, filtered_gencode_ht.interval, padding_bp=exon_padding_bp ) + contigs = filtered_gencode_ht.aggregate( + hl.agg.collect_as_set(filtered_gencode_ht.interval.start.contig) + ) + if len(contigs) > 1: + hl.utils.warning( + "The gnomAD browser excludes genes on chrY that share the same gene symbol " + "as chrX. For example, if you use this function to filter 'ASMT' gene, you " + "may get more variants than shown in the gnomAD browser because it includes " + "both chrX and chrY variants." + ) + return ht From 19ace51e73ee435b2cdf8b4dd28355fbdef8c58d Mon Sep 17 00:00:00 2001 From: jkgoodrich <33063077+jkgoodrich@users.noreply.github.com> Date: Fri, 10 Jan 2025 10:32:31 -0700 Subject: [PATCH 066/121] Fix use of filter_by_intervals --- gnomad_toolbox/filtering/variant.py | 11 ++++++++--- 1 file changed, 8 insertions(+), 3 deletions(-) diff --git a/gnomad_toolbox/filtering/variant.py b/gnomad_toolbox/filtering/variant.py index 9bb4ddf..410ba18 100644 --- a/gnomad_toolbox/filtering/variant.py +++ b/gnomad_toolbox/filtering/variant.py @@ -71,6 +71,7 @@ def get_single_variant( def filter_by_intervals( intervals: Union[str, list[str]], + padding_bp: int = 0, **kwargs, ) -> hl.Table: """ @@ -79,6 +80,7 @@ def filter_by_intervals( :param intervals: Interval string or list of interval strings. The interval string format has to be "contig:start-end", e.g.,"1:1000-2000" (GRCh37) or "chr1:1000-2000" (GRCh38). + :param padding_bp: Number of base pairs to pad the intervals. Default is 0bp. :param kwargs: Arguments to pass to `_get_gnomad_release`. :return: Table with variants in the interval(s). """ @@ -86,7 +88,10 @@ def filter_by_intervals( ht = _get_gnomad_release(dataset="variant", **kwargs) return interval_filter( - ht, intervals, reference_genome=get_reference_genome(ht.locus).name + ht, + intervals, + padding_bp=padding_bp, + reference_genome=get_reference_genome(ht.locus).name, ) @@ -121,7 +126,7 @@ def filter_by_gene_symbol(gene: str, exon_padding_bp: int = 75, **kwargs) -> hl. # (without padding), so we need to filter the gencode HT to only include the gene # of interest first. ht = filter_by_intervals( - ht, gencode_ht.filter(gencode_ht.feature == "gene").interval + gencode_ht.filter(gencode_ht.feature == "gene").interval, ht=ht ) for f in feature_order: @@ -134,7 +139,7 @@ def filter_by_gene_symbol(gene: str, exon_padding_bp: int = 75, **kwargs) -> hl. raise ValueError(f"No intervals match the gene symbol {gene}") ht = filter_by_intervals( - ht, filtered_gencode_ht.interval, padding_bp=exon_padding_bp + filtered_gencode_ht.interval, ht=ht, padding_bp=exon_padding_bp ) contigs = filtered_gencode_ht.aggregate( From f44a79f8455460652f896eaa1e0ee0db436a7e27 Mon Sep 17 00:00:00 2001 From: Qin He <44242118+KoalaQin@users.noreply.github.com> Date: Fri, 10 Jan 2025 12:49:24 -0500 Subject: [PATCH 067/121] Add a name for the gnomad_methods main branch so it can be used to set up a cluster --- requirements.txt | 4 +--- 1 file changed, 1 insertion(+), 3 deletions(-) diff --git a/requirements.txt b/requirements.txt index 702bdab..b0183e0 100644 --- a/requirements.txt +++ b/requirements.txt @@ -1,6 +1,4 @@ -# We're using the main branch of gnomad_method on github rather than the pip version -# TODO: Decide on how to handle this. We might just need to have more releases of gnomad_methods. -git+https://github.com/broadinstitute/gnomad_methods@main +gnomad @ git+https://github.com/broadinstitute/gnomad_methods@main hail jupyter jupyter_contrib_nbextensions From ae2acbcc0a40704c6a0f2c7570655e95643defb2 Mon Sep 17 00:00:00 2001 From: jkgoodrich <33063077+jkgoodrich@users.noreply.github.com> Date: Mon, 13 Jan 2025 17:23:25 -0700 Subject: [PATCH 068/121] Updates to loading data to support more data types and inclusion of compatible dataset versions and constraint parameters. Also, added vep and gencode as supported reference datasets Reduced the toolbox supported versions to only v2.1.1 and 4.1, since the others are outdated and/or have bugs --- gnomad_toolbox/analysis/general.py | 8 +- gnomad_toolbox/filtering/frequency.py | 6 +- gnomad_toolbox/filtering/variant.py | 32 +- gnomad_toolbox/filtering/vep.py | 206 +++++++---- gnomad_toolbox/load_data.py | 344 ++++++++++++------ .../notebooks/explore_release_data.ipynb | 132 +++---- 6 files changed, 427 insertions(+), 301 deletions(-) diff --git a/gnomad_toolbox/analysis/general.py b/gnomad_toolbox/analysis/general.py index be9fb7e..923b47e 100644 --- a/gnomad_toolbox/analysis/general.py +++ b/gnomad_toolbox/analysis/general.py @@ -5,7 +5,7 @@ import hail as hl from gnomad.assessment.summary_stats import freq_bin_expr -from gnomad_toolbox.load_data import _get_gnomad_release +from gnomad_toolbox.load_data import _get_dataset def get_variant_count_by_freq_bin( @@ -33,12 +33,12 @@ def get_variant_count_by_freq_bin( :param singletons: Include singletons. :param doubletons: Include doubletons. :param pass_only: Include only PASS variants. - :param kwargs: Keyword arguments to pass to _get_gnomad_release. Includes - 'ht', 'data_type', and 'version'. + :param kwargs: Keyword arguments to pass to `_get_dataset`. Includes 'ht', + 'data_type', and 'version'. :return: Dictionary with counts. """ # Load the Hail Table if not provided - ht = _get_gnomad_release(dataset="variant", **kwargs) + ht = _get_dataset(dataset="variant", **kwargs) # Filter to PASS variants. if pass_only: diff --git a/gnomad_toolbox/filtering/frequency.py b/gnomad_toolbox/filtering/frequency.py index c5a008b..d08e253 100644 --- a/gnomad_toolbox/filtering/frequency.py +++ b/gnomad_toolbox/filtering/frequency.py @@ -6,7 +6,7 @@ from gnomad.utils.filtering import filter_arrays_by_meta from gnomad_toolbox.filtering.variant import get_single_variant -from gnomad_toolbox.load_data import _get_gnomad_release +from gnomad_toolbox.load_data import _get_dataset def get_ancestry_callstats( @@ -19,11 +19,11 @@ def get_ancestry_callstats( :param gen_ancs: Genetic ancestry group(s) (e.g., 'afr', 'amr', 'asj', 'eas', 'fin', 'nfe', 'oth', 'sas'). Can be a single ancestry group or a list of ancestry groups. - :param kwargs: Keyword arguments to pass to _get_gnomad_release. + :param kwargs: Keyword arguments to pass to _get_dataset. :return: Table with callstats for the given ancestry groups and variant. """ # Load the Hail Table if not provided - ht = _get_gnomad_release(dataset="variant", **kwargs) + ht = _get_dataset(dataset="variant", **kwargs) # Check if gen_ancs is a single ancestry group. one_anc = isinstance(gen_ancs, str) diff --git a/gnomad_toolbox/filtering/variant.py b/gnomad_toolbox/filtering/variant.py index 7359106..8a90020 100644 --- a/gnomad_toolbox/filtering/variant.py +++ b/gnomad_toolbox/filtering/variant.py @@ -3,11 +3,12 @@ from typing import Optional, Union import hail as hl +from gnomad.utils.filtering import filter_by_intervals as interval_filter from gnomad.utils.filtering import filter_to_gencode_cds from gnomad.utils.parse import parse_variant from gnomad.utils.reference_genome import get_reference_genome -from gnomad_toolbox.load_data import _get_gnomad_release +from gnomad_toolbox.load_data import _get_dataset def get_single_variant( @@ -34,7 +35,7 @@ def get_single_variant( :param position: Variant position. Required if `variant` is not provided. :param ref: Reference allele. Required if `variant` is not provided. :param alt: Alternate allele. Required if `variant` is not provided. - :param kwargs: Additional arguments to pass to `_get_gnomad_release`. + :param kwargs: Additional arguments to pass to `_get_dataset`. :return: Table with the single variant. """ if not variant and not all([contig, position, ref, alt]): @@ -44,7 +45,7 @@ def get_single_variant( ) # Load the Hail Table if not provided - ht = _get_gnomad_release(dataset="variant", **kwargs) + ht = _get_dataset(dataset="variant", **kwargs) # Determine the reference genome build for the ht. build = get_reference_genome(ht.locus).name @@ -78,27 +79,18 @@ def filter_by_intervals( :param intervals: Interval string or list of interval strings. The interval string format has to be "contig:start-end", e.g.,"1:1000-2000" (GRCh37) or "chr1:1000-2000" (GRCh38). - :param kwargs: Arguments to pass to `_get_gnomad_release`. + :param kwargs: Arguments to pass to `_get_dataset`. :return: Table with variants in the interval(s). """ # Load the Hail Table if not provided - ht = _get_gnomad_release(dataset="variant", **kwargs) + ht = _get_dataset(dataset="variant", **kwargs) - # Determine the reference genome build for the ht. - build = get_reference_genome(ht.locus).name - - if isinstance(intervals, str): - intervals = [intervals] - - if build == "GRCh38" and any([not i.startswith("chr") for i in intervals]): - raise ValueError("Interval must start with 'chr' for GRCh38 reference genome.") - - ht = hl.filter_intervals( - ht, [hl.parse_locus_interval(i, reference_genome=build) for i in intervals] + return interval_filter( + ht, + intervals, + reference_genome=get_reference_genome(ht.locus).name, ) - return ht - # TODO: Add a pre-processing step to filter out these genes on chrY to # match the gnomAD browser. @@ -120,11 +112,11 @@ def filter_by_gene_symbol(gene: str, exon_padding_bp: int = 75, **kwargs) -> hl. :param gene: Gene symbol. :param exon_padding_bp: Number of base pairs to pad the CDS intervals. Default is 75bp. - :param kwargs: Arguments to pass to `_get_gnomad_release`. + :param kwargs: Arguments to pass to `_get_dataset`. :return: Table with variants in the gene. """ # Load the Hail Table if not provided - ht = _get_gnomad_release(dataset="variant", **kwargs) + ht = _get_dataset(dataset="variant", **kwargs) ht = filter_to_gencode_cds(ht, genes=gene, padding_bp=exon_padding_bp) return ht diff --git a/gnomad_toolbox/filtering/vep.py b/gnomad_toolbox/filtering/vep.py index a7a1505..6e5519d 100644 --- a/gnomad_toolbox/filtering/vep.py +++ b/gnomad_toolbox/filtering/vep.py @@ -1,10 +1,9 @@ """Functions to filter gnomAD sites HT by VEP annotations.""" -from typing import List +from typing import List, Optional import hail as hl -from gnomad.resources.grch37.reference_data import gencode as grch37_gencode -from gnomad.resources.grch38.reference_data import gencode as grch38_gencode +from gnomad.utils.filtering import filter_gencode_ht from gnomad.utils.vep import ( LOF_CSQ_SET, filter_vep_transcript_csqs, @@ -12,9 +11,9 @@ ) from gnomad_toolbox.load_data import ( - _get_gnomad_release, - get_coverage_for_variant, - gnomad_session, + CONSTRAINT_DATA, + _get_dataset, + get_compatible_dataset_versions, ) @@ -88,7 +87,7 @@ def filter_by_consequence_category( :param synonymous: Whether to include synonymous variants. :param other: Whether to include other variants. :param pass_filters: Boolean if the variants pass the filters. - :param kwargs: Arguments to pass to _get_gnomad_release. + :param kwargs: Arguments to pass to `_get_dataset`. :return: Table with variants with the specified consequences. """ if not any([plof, missense, synonymous, other]): @@ -97,7 +96,7 @@ def filter_by_consequence_category( ) # Load the Hail Table if not provided - ht = _get_gnomad_release(dataset="variant", **kwargs) + ht = _get_dataset(dataset="variant", **kwargs) lof_csqs = list(LOF_CSQ_SET) missense_csqs = ["missense_variant", "inframe_insertion", "inframe_deletion"] @@ -128,102 +127,155 @@ def filter_by_consequence_category( return ht.filter(filter_expr) -def get_gene_intervals(gene_symbol: str, version: str) -> List[hl.utils.Interval]: +def get_gene_intervals( + gene_symbol: str, version: Optional[str] = None +) -> List[hl.utils.Interval]: """ - Get the genomic intervals for a given gene symbol. + Get the GENCODE genomic intervals for a given gene symbol. :param gene_symbol: Gene symbol. - :param version: Dataset version. - :return: List of intervals for the specified gene. + :param version: Optional gnomAD dataset version. If not provided, uses the gnomAD + session version. + :return: List of GENCODE intervals for the specified gene. """ - gen_ht = grch37_gencode.ht() if version.startswith("2.") else grch38_gencode.ht() - intervals = ( - gen_ht.filter( - (gen_ht.feature == "gene") - & (gen_ht.gene_name.lower() == gene_symbol.lower()) - ) - .select() - .collect() - ) + # Load the Hail Table if not provided. + ht = _get_dataset(dataset="gencode", version=version) + gene_symbol = gene_symbol.upper() + + intervals = filter_gencode_ht(gencode_ht=ht, feature="gene", genes=gene_symbol) + intervals = intervals.interval.collect() + if not intervals: raise ValueError(f"No interval found for gene: {gene_symbol}") - return [row["interval"] for row in intervals] + return intervals -def filter_hc_variants(var_ht: hl.Table, gene_symbol: str, version: str) -> hl.Table: - """ - Filter variants to high-confidence LOFTEE variants with optional transcript selection. - :param var_ht: Variants Table. - :param gene_symbol: Gene symbol. - :param version: Dataset version. - :return: Filtered variants Hail Table. +def filter_to_high_confidence_loftee( + gene_symbol: Optional[str] = None, + no_lof_flags: bool = False, + mane_select_only: bool = False, + canonical_only: bool = False, + **kwargs, +) -> hl.Table: + """ + Filter gnomAD variants to high-confidence LOFTEE variants for a gene. + + :param gene_symbol: Optional gene symbol to filter by. + :param no_lof_flags: Whether to exclude variants with LOFTEE flags. Default is + False. + :param mane_select_only: Whether to include only MANE Select transcripts. Default + is False. + :param canonical_only: Whether to include only canonical transcripts. Default is + False. + :param kwargs: Additional arguments to pass to `_get_dataset`. + :return: Table with high-confidence LOFTEE variants. """ + # Load the Hail Table if not provided. + ht = _get_dataset(dataset="variant", **kwargs) + gene_symbol = gene_symbol.upper() if gene_symbol else None + + if gene_symbol: + ht = hl.filter_intervals(ht, get_gene_intervals(gene_symbol)) + return filter_vep_transcript_csqs( - var_ht, + ht, synonymous=False, - mane_select=version.startswith("4."), - genes=[gene_symbol.upper()], + canonical=canonical_only, + mane_select=mane_select_only, + genes=[gene_symbol], match_by_gene_symbol=True, - additional_filtering_criteria=[ - lambda x: (x.lof == "HC") - & (hl.is_missing(x.lof_flags) | (x.lof_flags == "")) - ], + loftee_labels=["HC"], + no_lof_flags=no_lof_flags, ) +# TODO: Let's move this function to constraint.py and change the name to something more +# descriptive, like maybe get_observed_plofs_for_gene_constraint. def filter_to_plofs( - gene_symbol: str, select_fields: bool = False, **kwargs + gene_symbol: str, + version: str = None, + variant_ht: hl.Table = None, + coverage_ht: hl.Table = None, ) -> hl.Table: """ Filter to observed pLoF variants used for gene constraint metrics. .. note:: - pLOF variants meets the following requirements: - - High-confidence LOFTEE variants (without any flags), - - Only variants in the MANE Select transcript, - - PASS variants that are SNVs with MAF ≤ 0.1%, - - Exome median depth ≥ 30 (# TODO: This is changing in v4 constraint?) + pLOF variants meets the following requirements: + + - PASS variant QC + - SNV + - Allele frequency ≤ 0.1% + - High-confidence LOFTEE in the Canonical or MANE Select transcript (depends + on the version) + - ≥ a specified coverage threshold (depends on the version) :param gene_symbol: Gene symbol. - :param select_fields: Whether to limit the output to specific fields. + :param version: Optional gnomAD dataset version. If not provided, uses the gnomAD + session version. + :param variant_ht: Optional Hail Table with variants. If not provided, uses the + exome variant Table for the gnomAD session version. + :param coverage_ht: Optional Hail Table with coverage data. If not provided, uses + the exome coverage Table for the gnomAD session version. :return: Table with pLoF variants. """ - var_version = kwargs.pop("version", gnomad_session.version) - var_ht = _get_gnomad_release(dataset="variant", version=var_version, **kwargs) - cov_ht = get_coverage_for_variant(var_version, **kwargs) - - # Get gene intervals and filter tables - intervals = get_gene_intervals(gene_symbol, var_version) - var_ht = hl.filter_intervals(var_ht, intervals) - cov_ht = hl.filter_intervals(cov_ht, intervals) - - # Filter to high-confidence LOFTEE variants - var_ht = filter_hc_variants(var_ht, gene_symbol, var_version) - - # Version-specific expressions - if var_version.startswith("2."): - allele_type_expr = var_ht.allele_type - cov_cut_expr = cov_ht[var_ht.locus].median - else: - allele_type_expr = var_ht.allele_info.allele_type - cov_cut_expr = cov_ht[var_ht.locus].median_approx - - # Apply final filters - var_ht = var_ht.filter( - (hl.len(var_ht.filters) == 0) - & (allele_type_expr == "snv") - & (var_ht.freq[0].AF <= 0.001) - & (cov_cut_expr >= 30) + if variant_ht is not None and coverage_ht is None: + raise ValueError("Variant Hail Table provided without coverage Hail Table.") + + if coverage_ht is not None and variant_ht is None: + raise ValueError("Coverage Hail Table provided without variant Hail Table.") + + # Load the variant exomes Hail Table if not provided. + variant_ht = _get_dataset( + dataset="variant", + ht=variant_ht, + data_type="exomes", + version=version, ) - # Select specific fields if requested - if select_fields: - var_ht = var_ht.select( - freq=var_ht.freq[0], - csq=var_ht.vep.transcript_consequences[0].consequence_terms, - coverage=cov_ht[var_ht.locus], - ) + # Determine the coverage version compatible with the variant version. + coverage_version = get_compatible_dataset_versions("coverage", version, "exomes") + + # Load the coverage Hail Table if not provided. + coverage_ht = _get_dataset( + dataset="coverage", + ht=coverage_ht, + data_type="exomes", + version=coverage_version, + ) + + # Get gene intervals and filter tables. + gencode_version = get_compatible_dataset_versions("gencode", version) + intervals = get_gene_intervals(gene_symbol, version=gencode_version) + variant_ht = hl.filter_intervals(variant_ht, intervals) + coverage_ht = hl.filter_intervals(coverage_ht, intervals) + + # Determine constraint filters. + constraint_version = get_compatible_dataset_versions("constraint", version) + constraint_info = CONSTRAINT_DATA[constraint_version] + cov_field = constraint_info["exome_coverage_field"] + cov_cutoff = constraint_info["exome_coverage_cutoff"] + af_cutoff = constraint_info["af_cutoff"] + + # Annotate the exome coverage. + variant_ht = variant_ht.annotate( + exome_coverage=coverage_ht[variant_ht.locus][cov_field] + ) + + # Apply constraint filters. + variant_ht = variant_ht.filter( + (hl.len(variant_ht.filters) == 0) + & (hl.is_snp(*variant_ht.alleles)) + & (variant_ht.freq[0].AF <= af_cutoff) + & (variant_ht.exome_coverage >= cov_cutoff) + ) + + # Filter to high-confidence LOFTEE variants. + variant_ht = filter_to_high_confidence_loftee( + gene_symbol=gene_symbol, + ht=variant_ht, + ) - return var_ht + return variant_ht diff --git a/gnomad_toolbox/load_data.py b/gnomad_toolbox/load_data.py index 8405dfd..11685bf 100644 --- a/gnomad_toolbox/load_data.py +++ b/gnomad_toolbox/load_data.py @@ -1,50 +1,115 @@ """Functions to import gnomAD data.""" -import functools -from typing import Optional +from typing import Callable, Optional, Union -import gnomad.resources.grch37.gnomad as grch37_gnomad -import gnomad.resources.grch38.gnomad as grch38_gnomad +import gnomad.resources.grch37 as grch37_res +import gnomad.resources.grch38 as grch38_res import hail as hl +from gnomad.resources.resource_utils import VersionedTableResource -GNOMAD_BY_BUILD = { - "GRCh37": grch37_gnomad, - "GRCh38": grch38_gnomad, +DATA_TYPES = ["exomes", "genomes", "joint"] +PEXT_DATA_TYPES = ["base_level", "annotation_level"] +RESOURCES_BY_BUILD = { + "GRCh37": grch37_res, + "GRCh38": grch38_res, } -DATASETS = { - "variant": "public_release", - "all_sites_an": "all_sites_an", - "coverage": "coverage", +VARIANT_DATA = { + "2.1.1": { + "reference_genome": "GRCh37", + "data_types": ["exomes", "genomes"], + "dataset_versions": { + "vep": "85", + "gencode": "v19", + "coverage": { + "exomes": "2.1", + "genomes": "2.1", + }, + "constraint": "2.1.1", + "pext": "v7", + "liftover": "2.1.1", + }, + }, + "4.1": { + "reference_genome": "GRCh38", + "data_types": ["exomes", "genomes", "joint"], + "dataset_versions": { + "vep": "105", + "gencode": "v39", + "coverage": {"exomes": "4.0", "genomes": "3.0.1"}, + "all_sites_an": "4.1", + "constraint": "4.1", + "pext": "v7", + "browser": "4.1", + }, + }, } -DATA_TYPES = ["exomes", "genomes", "joint"] -RELEASES_GLOBAL = { - "variant": { - "exomes": "EXOME_RELEASES", - "genomes": "GENOME_RELEASES", - "joint": "JOINT_RELEASES", +COVERAGE_DATA = { + "2.1": {"reference_genome": "GRCh37", "data_types": ["exomes", "genomes"]}, + "3.0.1": {"reference_genome": "GRCh38", "data_types": ["genomes"]}, + "4.0": { + "reference_genome": "GRCh38", + "data_types": ["exomes"], }, - "all_sites_an": { - "exomes": "EXOME_AN_RELEASES", - "genomes": "GENOME_AN_RELEASES", +} +ALL_SITES_AN_DATA = { + "4.1": { + "reference_genome": "GRCh38", + "data_types": ["exomes", "genomes"], + } +} +CONSTRAINT_DATA = { + "2.1.1": { + "reference_genome": "GRCh37", + "exome_coverage_field": "median", + "exome_coverage_cutoff": 30, + "af_cutoff": 0.001, + "mane_select": False, + "canonical": True, }, - "coverage": { - "exomes": "EXOME_COVERAGE_RELEASES", - "genomes": "GENOME_COVERAGE_RELEASES", + "4.1": { + "reference_genome": "GRCh38", + "exome_coverage_field": "median_approx", + "exome_coverage_cutoff": 30, + "af_cutoff": 0.001, + "mane_select": True, + "canonical": False, }, } -RELEASES = { - dataset: { - data_type: { - build: ( - None - if release_global.get(data_type) is None - else getattr(res, release_global.get(data_type), None) - ) - for build, res in GNOMAD_BY_BUILD.items() - } - for data_type in DATA_TYPES +LIFTOVER_DATA = { + "2.1.1": { + "reference_genome": "GRCh37", + "data_types": ["exomes", "genomes"], } - for dataset, release_global in RELEASES_GLOBAL.items() +} +PEXT_DATA = { + "v7": {"reference_genome": "GRCh37", "data_types": PEXT_DATA_TYPES}, + "v10": {"reference_genome": "GRCh38", "data_types": PEXT_DATA_TYPES}, +} +BROWSER_DATA = {"4.1": {"reference_genome": "GRCh38"}} +SUPPORTED_DATASETS = { + "variant": {"resource": "public_release", "versions": VARIANT_DATA}, + "coverage": {"resource": "coverage", "versions": COVERAGE_DATA}, + "all_sites_an": {"resource": "all_sites_an", "versions": ALL_SITES_AN_DATA}, + "constraint": {"resource": "constraint", "versions": CONSTRAINT_DATA}, + "liftover": {"resource": "liftover", "versions": LIFTOVER_DATA}, + "pext": {"resource": "pext", "versions": PEXT_DATA}, + "browser": {"resource": "browser", "versions": BROWSER_DATA}, +} +SUPPORTED_REFERENCE_DATA = { + "vep": { + "resource": "vep_context", + "versions": { + "85": {"reference_genome": "GRCh37"}, + "105": {"reference_genome": "GRCh38"}, + }, + }, + "gencode": { + "resource": "gencode", + "versions": { + "v19": {"reference_genome": "GRCh37"}, + "v39": {"reference_genome": "GRCh38"}, + }, + }, } @@ -62,8 +127,10 @@ def __init__(self) -> None: :return: None. """ - self.data_type = "exomes" - self.version = grch38_gnomad.CURRENT_EXOME_RELEASE + self.set_default_data( + data_type="exomes", + version="4.1", + ) def set_default_data( self, @@ -80,36 +147,26 @@ def set_default_data( data_type = data_type or self.data_type version = version or self.version - # Validate data type. - if data_type and data_type not in DATA_TYPES: - raise ValueError( - f"Data type {data_type} is invalid. Choose from {DATA_TYPES}" - ) - - # Get all possible versions. - possible_versions = functools.reduce( - lambda x, y: (x or []) + (y or []), - [ - ds[dt][r] - for ds in RELEASES.values() - for dt in ([data_type] if data_type else DATA_TYPES) - for r in GNOMAD_BY_BUILD - ], - ) + # Validate version. + if version not in VARIANT_DATA: + raise ValueError(f"Version {version} is not a supported gnomAD version.") - # Check version availability. - if version not in possible_versions: + # Validate data type for the version. + version_info = VARIANT_DATA[version] + if data_type not in version_info["data_types"]: raise ValueError(f"Version {version} for {data_type} is not available.") self.data_type = data_type self.version = version + self.reference_genome = version_info["reference_genome"] + self.compatible_datasets = version_info["dataset_versions"] # Global gnomad session object gnomad_session = GnomADSession() -def _get_gnomad_release( +def _get_dataset( ht: hl.Table = None, dataset: str = "variant", data_type: str = None, @@ -119,8 +176,8 @@ def _get_gnomad_release( Get gnomAD HT using a Hail Table, specific parameters, or session defaults. :param ht: Pre-loaded Hail Table. If provided, other parameters are ignored. - :param dataset: Dataset type. One of "variant", "all_sites_an", "coverage". Default - is variant. + :param dataset: Dataset type. One of "variant", "all_sites_an", "coverage", + "gencode". Default is variant. :param data_type: Data type (exomes, genomes, or joint). Default is session value. :param version: gnomAD version. Default is session value. :return: Hail Table for requested dataset, data type, and version. @@ -133,36 +190,54 @@ def _get_gnomad_release( data_type = data_type or gnomad_session.data_type version = version or gnomad_session.version - # Get all releases for the given dataset. - releases = RELEASES.get(dataset) - # Validate dataset. - if releases is None: - raise ValueError(f"{dataset} is invalid. Choose from {list(RELEASES.keys())}") + dataset_info = SUPPORTED_DATASETS.get(dataset) + if dataset_info is None: + dataset_info = SUPPORTED_REFERENCE_DATA.get(dataset) - # Get all releases for the given dataset and data_type. - data_type_releases = releases.get(data_type) - - # Validate data type. - if data_type_releases is None: - raise ValueError(f"Invalid data_type '{data_type}' for dataset '{dataset}'.") + if dataset_info is None: + raise ValueError( + f"{dataset} is invalid. Choose from:\n" + f"\tgnomAD datasets:{list(SUPPORTED_DATASETS.keys())}\n" + f"\treference datasets: {list(SUPPORTED_REFERENCE_DATA.keys())}" + ) - # Check version availability for GRCh38 and GRCh37. - if data_type_releases["GRCh38"] and version in data_type_releases["GRCh38"]: - return ( - getattr(grch38_gnomad, DATASETS[dataset])(data_type).versions[version].ht() + # Validate version. + versions = dataset_info["versions"] + version_info = versions.get(version) + if version_info is None: + version_format = "\t".join( + f"{v} ({versions[v]['reference_genome']})" for v in versions ) - elif data_type_releases["GRCh37"] and version in data_type_releases["GRCh37"]: - return ( - getattr(grch37_gnomad, DATASETS[dataset])(data_type).versions[version].ht() + raise ValueError( + f"Version {version} is not in the supported versions for {dataset}. " + f"Supported versions: {version_format}" ) - else: + + # Validate data type. + data_types = version_info.get("data_types") + if data_types and data_type and data_type not in data_types: raise ValueError( - f"Version {version} is not available for {data_type} in the {dataset} dataset. " - f"Available versions: GRCh38 - {data_type_releases['GRCh38']}, " - f"GRCh37 - {data_type_releases['GRCh37']}." + f"Version {version} is not available for {data_type} in the {dataset} " + f"dataset. Available data types: {data_types}." ) + # Get the resource for the given build. + build = version_info["reference_genome"] + res_build = RESOURCES_BY_BUILD[build] + res_name = dataset_info["resource"] + res = getattr(res_build.gnomad, res_name, None) or getattr( + res_build.reference_data, res_name + ) + + if isinstance(res, Callable): + res = res(data_type) if data_type else res() + + if isinstance(res, VersionedTableResource): + res = res.versions[version] + + return res.ht() + def get_gnomad_release( dataset: str = "variant", @@ -170,52 +245,89 @@ def get_gnomad_release( version: Optional[str] = None, ) -> hl.Table: """ - Get gnomAD HT by dataset, data type, and version. + Get gnomAD HT by dataset, data type, and version. + + Not all combinations of dataset, data type, and version are available and/or + supported by the toolbox. The table below shows what is supported. - .. table:: Available versions for each dataset and data type are (as of 2024-10-29) + .. table:: Available versions for each dataset and data type are (as of 2025-1-13) :widths: auto - +--------------+-----------------+----------------------------------+----------------------+ - | Dataset | Data Type | GRCh38 Versions | GRCh37 Versions | - +==============+=================+==================================+======================+ - | variant | exomes | 4.0, 4.1 | 2.1, 2.1.1 | - | +-----------------+----------------------------------+----------------------+ - | | genomes | 3.0, 3.1, 3.1.1, 3.1.2, 4.0, 4.1 | 2.1, 2.1.1 | - | +-----------------+----------------------------------+----------------------+ - | | joint | 4.1 | N/A | - +--------------+-----------------+----------------------------------+----------------------+ - | coverage | exomes | 4.0 | 2.1 | - | +-----------------+----------------------------------+----------------------+ - | | genomes | 3.0.1 | 2.1 | - +--------------+-----------------+----------------------------------+----------------------+ - | all_sites_an | exomes | 4.1 | N/A | - | +-----------------+----------------------------------+----------------------+ - | | genomes | 4.1 | N/A | - +--------------+-----------------+----------------------------------+----------------------+ - - :param data_type: Data type (exomes, genomes, or joint). Default is "exomes". - :param version: gnomAD version. Default is the current exome release. - :param dataset: Dataset type. One of "variant", "all_sites_an", "coverage". Default - is "variant". + +--------------+--------------+---------+------------------------------+ + | Dataset | Genome Build | Version | Data Types | + +==============+==============+=========+==============================+ + | variant | GRCh37 | 2.1.1 | exomes, genomes | + | +--------------+---------+------------------------------+ + | | GRCh38 | 4.1 | exomes, genomes, joint | + |--------------+--------------+---------+------------------------------+ + | coverage | GRCh37 | 2.1 | exomes, genomes | + | +--------------+---------+------------------------------+ + | | GRCh38 | 3.0.1 | genomes | + | | +---------+------------------------------+ + | | | 4.0 | exomes | + +--------------+--------------+---------+------------------------------+ + | all_sites_an | GRCh38 | 4.1 | exomes, genomes | + +--------------+--------------+---------+------------------------------+ + | constraint | GRCh37 | 2.1.1 | N/A | + | +--------------+---------+------------------------------+ + | | GRCh38 | 4.1 | N/A | + |--------------|--------------+---------+------------------------------+ + | liftover | GRCh37 | 2.1.1 | exomes, genomes | + +--------------+--------------+---------+------------------------------+ + | pext | GRCh37 | v7 | base_level, annotation_level | + | +--------------+---------+------------------------------+ + | | GRCh38 | v10 | base_level, annotation_level | + +--------------+--------------+---------+------------------------------+ + | browser | GRCh38 | 4.1 | N/A (joint, but doesn't need | + | | | | to be specified) | + +--------------+--------------+---------+------------------------------+ + + :param dataset: Dataset type. One of "variant", "coverage", "all_sites_an", + "constraint", "liftover", "pext", "browser". Default is "variant". + :param data_type: Data type. One of "exomes", "genomes", "joint" for all datasets + except "pext" where it is one of "base_level", "annotation_level". Default is + the current session data type. + :param version: gnomAD dataset version. Default is the current session version. :return: Hail Table for requested dataset, data type, and version. """ - return _get_gnomad_release(dataset=dataset, data_type=data_type, version=version) + return _get_dataset(dataset=dataset, data_type=data_type, version=version) -def get_coverage_for_variant(variant_version: str, **kwargs) -> hl.Table: +def get_compatible_dataset_versions( + dataset: str, variant_version: Optional[str] = None, data_type: Optional[str] = None +) -> Union[str, dict]: """ - Get the appropriate coverage table based on the provided version. + Get the compatible version of another datasets for a given gnomAD variant data version. - :param variant_version: Version of the variant dataset. - :return: Hail Table for the corresponding coverage dataset. + :param dataset: Dataset to get the compatible version for. + :param variant_version: Optional gnomAD variant data version. If not provided, the + current session version is used. + :param data_type: Optional data type for the dataset if applicable. + :return: Compatible version of the dataset for the given variant version. """ - if variant_version.startswith("4."): - return _get_gnomad_release(dataset="coverage", version="4.0", **kwargs) - elif variant_version.startswith("3."): - return _get_gnomad_release(dataset="coverage", version="3.0.1", **kwargs) - elif variant_version.startswith("2."): - return _get_gnomad_release(dataset="coverage", version="2.1", **kwargs) + # Get the dictionary of compatible versions for the given variant version or + # the current session version. + if variant_version is None: + versions = VARIANT_DATA[variant_version]["dataset_versions"] else: + versions = gnomad_session.compatible_datasets + + # Validate dataset. + if dataset not in versions: raise ValueError( - f"Unrecognized version: '{variant_version}'. Please specify a valid version." + f"{dataset} is not available for {variant_version}." + f"Available datasets: {list(versions.keys())}" ) + + # If the dataset has multiple data types and a data type is provided, return the + # version for the data type. + dataset_version = versions[dataset] + if data_type and isinstance(dataset_version, dict): + if data_type not in dataset_version: + raise ValueError( + f"{data_type} is not available for {variant_version} {dataset}." + f"Available data types: {list(dataset_version.keys())}" + ) + return dataset_version[data_type] + + return dataset_version diff --git a/gnomad_toolbox/notebooks/explore_release_data.ipynb b/gnomad_toolbox/notebooks/explore_release_data.ipynb index 1801596..a0959a7 100644 --- a/gnomad_toolbox/notebooks/explore_release_data.ipynb +++ b/gnomad_toolbox/notebooks/explore_release_data.ipynb @@ -76,7 +76,7 @@ { "data": { "text/html": [ - " \n", "
\n", " \n", - " Loading BokehJS ...\n", + " Loading BokehJS ...\n", "
\n" ] }, @@ -125,22 +125,14 @@ " * Handle when an output is cleared or removed\n", " */\n", " function handleClearOutput(event, handle) {\n", - " function drop(id) {\n", - " const view = Bokeh.index.get_by_id(id)\n", - " if (view != null) {\n", - " view.model.document.clear()\n", - " Bokeh.index.delete(view)\n", - " }\n", - " }\n", - "\n", " const cell = handle.cell;\n", "\n", " const id = cell.output_area._bokeh_element_id;\n", " const server_id = cell.output_area._bokeh_server_id;\n", - "\n", " // Clean up Bokeh references\n", - " if (id != null) {\n", - " drop(id)\n", + " if (id != null && id in Bokeh.index) {\n", + " Bokeh.index[id].model.document.clear();\n", + " delete Bokeh.index[id];\n", " }\n", "\n", " if (server_id !== undefined) {\n", @@ -149,8 +141,11 @@ " cell.notebook.kernel.execute(cmd_clean, {\n", " iopub: {\n", " output: function(msg) {\n", - " const id = msg.content.text.trim()\n", - " drop(id)\n", + " const id = msg.content.text.trim();\n", + " if (id in Bokeh.index) {\n", + " Bokeh.index[id].model.document.clear();\n", + " delete Bokeh.index[id];\n", + " }\n", " }\n", " }\n", " });\n", @@ -258,7 +253,7 @@ " \"\"}};\n", "\n", " function display_loaded() {\n", - " const el = document.getElementById(\"ac1134fa-55fa-4b47-b5c7-344dfbc63734\");\n", + " const el = document.getElementById(\"d187bdb8-34f9-433d-91a7-1276eafc4685\");\n", " if (el != null) {\n", " el.textContent = \"BokehJS is loading...\";\n", " }\n", @@ -341,7 +336,7 @@ " document.body.appendChild(element);\n", " }\n", "\n", - " const js_urls = [\"https://cdn.bokeh.org/bokeh/release/bokeh-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-gl-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-widgets-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-tables-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-mathjax-3.3.4.min.js\"];\n", + " const js_urls = [\"https://cdn.bokeh.org/bokeh/release/bokeh-3.2.2.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-gl-3.2.2.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-widgets-3.2.2.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-tables-3.2.2.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-mathjax-3.2.2.min.js\"];\n", " const css_urls = [];\n", "\n", " const inline_js = [ function(Bokeh) {\n", @@ -364,7 +359,7 @@ " console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n", " root._bokeh_failed_load = true;\n", " } else if (force !== true) {\n", - " const cell = $(document.getElementById(\"ac1134fa-55fa-4b47-b5c7-344dfbc63734\")).parents('.cell').data().cell;\n", + " const cell = $(document.getElementById(\"d187bdb8-34f9-433d-91a7-1276eafc4685\")).parents('.cell').data().cell;\n", " cell.output_area.append_execute_result(NB_LOAD_WARNING)\n", " }\n", " }\n", @@ -380,7 +375,7 @@ " }\n", "}(window));" ], - "application/vnd.bokehjs_load.v0+json": "(function(root) {\n function now() {\n return new Date();\n }\n\n const force = true;\n\n if (typeof root._bokeh_onload_callbacks === \"undefined\" || force === true) {\n root._bokeh_onload_callbacks = [];\n root._bokeh_is_loading = undefined;\n }\n\n\n if (typeof (root._bokeh_timeout) === \"undefined\" || force === true) {\n root._bokeh_timeout = Date.now() + 5000;\n root._bokeh_failed_load = false;\n }\n\n const NB_LOAD_WARNING = {'data': {'text/html':\n \"
\\n\"+\n \"

\\n\"+\n \"BokehJS does not appear to have successfully loaded. If loading BokehJS from CDN, this \\n\"+\n \"may be due to a slow or bad network connection. Possible fixes:\\n\"+\n \"

\\n\"+\n \"
    \\n\"+\n \"
  • re-rerun `output_notebook()` to attempt to load from CDN again, or
  • \\n\"+\n \"
  • use INLINE resources instead, as so:
  • \\n\"+\n \"
\\n\"+\n \"\\n\"+\n \"from bokeh.resources import INLINE\\n\"+\n \"output_notebook(resources=INLINE)\\n\"+\n \"\\n\"+\n \"
\"}};\n\n function display_loaded() {\n const el = document.getElementById(\"ac1134fa-55fa-4b47-b5c7-344dfbc63734\");\n if (el != null) {\n el.textContent = \"BokehJS is loading...\";\n }\n if (root.Bokeh !== undefined) {\n if (el != null) {\n el.textContent = \"BokehJS \" + root.Bokeh.version + \" successfully loaded.\";\n }\n } else if (Date.now() < root._bokeh_timeout) {\n setTimeout(display_loaded, 100)\n }\n }\n\n function run_callbacks() {\n try {\n root._bokeh_onload_callbacks.forEach(function(callback) {\n if (callback != null)\n callback();\n });\n } finally {\n delete root._bokeh_onload_callbacks\n }\n console.debug(\"Bokeh: all callbacks have finished\");\n }\n\n function load_libs(css_urls, js_urls, callback) {\n if (css_urls == null) css_urls = [];\n if (js_urls == null) js_urls = [];\n\n root._bokeh_onload_callbacks.push(callback);\n if (root._bokeh_is_loading > 0) {\n console.debug(\"Bokeh: BokehJS is being loaded, scheduling callback at\", now());\n return null;\n }\n if (js_urls == null || js_urls.length === 0) {\n run_callbacks();\n return null;\n }\n console.debug(\"Bokeh: BokehJS not loaded, scheduling load and callback at\", now());\n root._bokeh_is_loading = css_urls.length + js_urls.length;\n\n function on_load() {\n root._bokeh_is_loading--;\n if (root._bokeh_is_loading === 0) {\n console.debug(\"Bokeh: all BokehJS libraries/stylesheets loaded\");\n run_callbacks()\n }\n }\n\n function on_error(url) {\n console.error(\"failed to load \" + url);\n }\n\n for (let i = 0; i < css_urls.length; i++) {\n const url = css_urls[i];\n const element = document.createElement(\"link\");\n element.onload = on_load;\n element.onerror = on_error.bind(null, url);\n element.rel = \"stylesheet\";\n element.type = \"text/css\";\n element.href = url;\n console.debug(\"Bokeh: injecting link tag for BokehJS stylesheet: \", url);\n document.body.appendChild(element);\n }\n\n for (let i = 0; i < js_urls.length; i++) {\n const url = js_urls[i];\n const element = document.createElement('script');\n element.onload = on_load;\n element.onerror = on_error.bind(null, url);\n element.async = false;\n element.src = url;\n console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n document.head.appendChild(element);\n }\n };\n\n function inject_raw_css(css) {\n const element = document.createElement(\"style\");\n element.appendChild(document.createTextNode(css));\n document.body.appendChild(element);\n }\n\n const js_urls = [\"https://cdn.bokeh.org/bokeh/release/bokeh-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-gl-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-widgets-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-tables-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-mathjax-3.3.4.min.js\"];\n const css_urls = [];\n\n const inline_js = [ function(Bokeh) {\n Bokeh.set_log_level(\"info\");\n },\nfunction(Bokeh) {\n }\n ];\n\n function run_inline_js() {\n if (root.Bokeh !== undefined || force === true) {\n for (let i = 0; i < inline_js.length; i++) {\n inline_js[i].call(root, root.Bokeh);\n }\nif (force === true) {\n display_loaded();\n }} else if (Date.now() < root._bokeh_timeout) {\n setTimeout(run_inline_js, 100);\n } else if (!root._bokeh_failed_load) {\n console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n root._bokeh_failed_load = true;\n } else if (force !== true) {\n const cell = $(document.getElementById(\"ac1134fa-55fa-4b47-b5c7-344dfbc63734\")).parents('.cell').data().cell;\n cell.output_area.append_execute_result(NB_LOAD_WARNING)\n }\n }\n\n if (root._bokeh_is_loading === 0) {\n console.debug(\"Bokeh: BokehJS loaded, going straight to plotting\");\n run_inline_js();\n } else {\n load_libs(css_urls, js_urls, function() {\n console.debug(\"Bokeh: BokehJS plotting callback run at\", now());\n run_inline_js();\n });\n }\n}(window));" + "application/vnd.bokehjs_load.v0+json": "(function(root) {\n function now() {\n return new Date();\n }\n\n const force = true;\n\n if (typeof root._bokeh_onload_callbacks === \"undefined\" || force === true) {\n root._bokeh_onload_callbacks = [];\n root._bokeh_is_loading = undefined;\n }\n\n\n if (typeof (root._bokeh_timeout) === \"undefined\" || force === true) {\n root._bokeh_timeout = Date.now() + 5000;\n root._bokeh_failed_load = false;\n }\n\n const NB_LOAD_WARNING = {'data': {'text/html':\n \"
\\n\"+\n \"

\\n\"+\n \"BokehJS does not appear to have successfully loaded. If loading BokehJS from CDN, this \\n\"+\n \"may be due to a slow or bad network connection. Possible fixes:\\n\"+\n \"

\\n\"+\n \"
    \\n\"+\n \"
  • re-rerun `output_notebook()` to attempt to load from CDN again, or
  • \\n\"+\n \"
  • use INLINE resources instead, as so:
  • \\n\"+\n \"
\\n\"+\n \"\\n\"+\n \"from bokeh.resources import INLINE\\n\"+\n \"output_notebook(resources=INLINE)\\n\"+\n \"\\n\"+\n \"
\"}};\n\n function display_loaded() {\n const el = document.getElementById(\"d187bdb8-34f9-433d-91a7-1276eafc4685\");\n if (el != null) {\n el.textContent = \"BokehJS is loading...\";\n }\n if (root.Bokeh !== undefined) {\n if (el != null) {\n el.textContent = \"BokehJS \" + root.Bokeh.version + \" successfully loaded.\";\n }\n } else if (Date.now() < root._bokeh_timeout) {\n setTimeout(display_loaded, 100)\n }\n }\n\n function run_callbacks() {\n try {\n root._bokeh_onload_callbacks.forEach(function(callback) {\n if (callback != null)\n callback();\n });\n } finally {\n delete root._bokeh_onload_callbacks\n }\n console.debug(\"Bokeh: all callbacks have finished\");\n }\n\n function load_libs(css_urls, js_urls, callback) {\n if (css_urls == null) css_urls = [];\n if (js_urls == null) js_urls = [];\n\n root._bokeh_onload_callbacks.push(callback);\n if (root._bokeh_is_loading > 0) {\n console.debug(\"Bokeh: BokehJS is being loaded, scheduling callback at\", now());\n return null;\n }\n if (js_urls == null || js_urls.length === 0) {\n run_callbacks();\n return null;\n }\n console.debug(\"Bokeh: BokehJS not loaded, scheduling load and callback at\", now());\n root._bokeh_is_loading = css_urls.length + js_urls.length;\n\n function on_load() {\n root._bokeh_is_loading--;\n if (root._bokeh_is_loading === 0) {\n console.debug(\"Bokeh: all BokehJS libraries/stylesheets loaded\");\n run_callbacks()\n }\n }\n\n function on_error(url) {\n console.error(\"failed to load \" + url);\n }\n\n for (let i = 0; i < css_urls.length; i++) {\n const url = css_urls[i];\n const element = document.createElement(\"link\");\n element.onload = on_load;\n element.onerror = on_error.bind(null, url);\n element.rel = \"stylesheet\";\n element.type = \"text/css\";\n element.href = url;\n console.debug(\"Bokeh: injecting link tag for BokehJS stylesheet: \", url);\n document.body.appendChild(element);\n }\n\n for (let i = 0; i < js_urls.length; i++) {\n const url = js_urls[i];\n const element = document.createElement('script');\n element.onload = on_load;\n element.onerror = on_error.bind(null, url);\n element.async = false;\n element.src = url;\n console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n document.head.appendChild(element);\n }\n };\n\n function inject_raw_css(css) {\n const element = document.createElement(\"style\");\n element.appendChild(document.createTextNode(css));\n document.body.appendChild(element);\n }\n\n const js_urls = [\"https://cdn.bokeh.org/bokeh/release/bokeh-3.2.2.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-gl-3.2.2.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-widgets-3.2.2.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-tables-3.2.2.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-mathjax-3.2.2.min.js\"];\n const css_urls = [];\n\n const inline_js = [ function(Bokeh) {\n Bokeh.set_log_level(\"info\");\n },\nfunction(Bokeh) {\n }\n ];\n\n function run_inline_js() {\n if (root.Bokeh !== undefined || force === true) {\n for (let i = 0; i < inline_js.length; i++) {\n inline_js[i].call(root, root.Bokeh);\n }\nif (force === true) {\n display_loaded();\n }} else if (Date.now() < root._bokeh_timeout) {\n setTimeout(run_inline_js, 100);\n } else if (!root._bokeh_failed_load) {\n console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n root._bokeh_failed_load = true;\n } else if (force !== true) {\n const cell = $(document.getElementById(\"d187bdb8-34f9-433d-91a7-1276eafc4685\")).parents('.cell').data().cell;\n cell.output_area.append_execute_result(NB_LOAD_WARNING)\n }\n }\n\n if (root._bokeh_is_loading === 0) {\n console.debug(\"Bokeh: BokehJS loaded, going straight to plotting\");\n run_inline_js();\n } else {\n load_libs(css_urls, js_urls, function() {\n console.debug(\"Bokeh: BokehJS plotting callback run at\", now());\n run_inline_js();\n });\n }\n}(window));" }, "metadata": {}, "output_type": "display_data" @@ -405,8 +400,8 @@ " __ __ <>__\n", " / /_/ /__ __/ /\n", " / __ / _ `/ / /\n", - " /_/ /_/\\_,_/_/_/ version 0.2.132-678e1f52b999\n", - "LOGGING: writing to /Users/jgoodric/PycharmProjects/gnomad-toolbox/gnomad_toolbox/notebooks/hail-20241210-1438-0.2.132-678e1f52b999.log\n" + " /_/ /_/\\_,_/_/_/ version 0.2.133-4c60fddb171a\n", + "LOGGING: writing to /Users/jgoodric/PycharmProjects/gnomad-toolbox/gnomad_toolbox/notebooks/hail-20250113-1435-0.2.133-4c60fddb171a.log\n" ] } ], @@ -423,13 +418,12 @@ "source": [ "## Variant data\n", "\n", - "Available versions for each data type and reference build are (as of 2024-10-29):\n", + "Supported versions for each data type and reference build are (as of 2025-1-13):\n", "\n", - "| Data Type | GRCh38 Versions | GRCh37 Versions |\n", - "|-----------------|----------------------------------|----------------------|\n", - "| exomes | 4.0, 4.1 | 2.1, 2.1.1 |\n", - "| genomes | 3.0, 3.1, 3.1.1, 3.1.2, 4.0, 4.1 | 2.1, 2.1.1 |\n", - "| joint | 4.1 | N/A |\n", + "| Genome Build | Version | Data Types |\n", + "|-----------------|----------|------------------------|\n", + "| GRCh37 | 2.1.1 | exomes, genomes |\n", + "| GRCh38 | 4.1 | exomes, genomes, joint |\n", "\n", "For a description of all fields the the HT, see the [Help/FAQ](https://gnomad.broadinstitute.org/help/v4-hts) page." ] @@ -6407,7 +6401,7 @@ }, { "cell_type": "code", - "execution_count": 21, + "execution_count": 22, "id": "a8d0be07-c35d-425a-b554-c86034e367fc", "metadata": { "ExecuteTime": { @@ -6418,7 +6412,7 @@ }, "outputs": [], "source": [ - "ht = get_gnomad_release(data_type='genomes', version='3.0', dataset=\"coverage\")" + "ht = get_gnomad_release(data_type='genomes', version='3.0.1', dataset=\"coverage\")" ] }, { @@ -6431,7 +6425,7 @@ }, { "cell_type": "code", - "execution_count": 22, + "execution_count": 23, "id": "18afb20f-7429-4fe2-a6c5-73a22dcbdb76", "metadata": { "ExecuteTime": { @@ -6452,8 +6446,8 @@ "Row fields:\n", " 'locus': locus \n", " 'mean': float64 \n", - " 'median': int32 \n", - " 'count_array': array \n", + " 'median_approx': int32 \n", + " 'total_DP': int64 \n", " 'over_1': float32 \n", " 'over_5': float32 \n", " 'over_10': float32 \n", @@ -6485,7 +6479,7 @@ }, { "cell_type": "code", - "execution_count": 23, + "execution_count": 24, "id": "b27cb655-3abb-4501-bcc9-3f634db64591", "metadata": { "ExecuteTime": { @@ -6498,62 +6492,38 @@ { "data": { "text/html": [ - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", + "
locus
mean
median
count_array
over_1
over_5
over_10
over_15
over_20
over_25
over_30
over_50
over_100
locus<GRCh38>float64int32array<int32>float32float32float32float32float32float32float32float32float32
chr1:100011.93e+0116[0,20,65,141,226,328,386,442,415,385,292,198,362,367,337,273,289,266,241,226,191,169,168,151,227,194,179,190,177,166,143,131,150,130,125,121,136,94,93,83,67,60,68,68,59,33,39,39,39,38,20,18,21,25,10,9,16,8,7,6,2,3,2,4,1,2,2,2,0,0,2,1,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]1.25e-011.19e-019.12e-026.95e-025.15e-023.88e-022.62e-022.27e-030.00e+00
chr1:100022.10e+0118[0,10,41,108,209,339,482,570,581,575,483,390,702,689,639,556,587,534,516,435,417,366,346,320,437,415,405,359,333,308,283,266,272,248,218,231,241,184,176,162,138,119,127,137,118,63,82,87,66,66,46,33,39,43,22,25,26,19,19,11,7,6,7,5,3,5,2,4,2,6,2,3,2,0,1,1,1,0,0,0,1,0,0,2,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2]2.20e-012.15e-011.79e-011.39e-011.02e-017.60e-025.06e-024.83e-032.79e-05
chr1:100032.44e+0123[0,6,16,62,100,162,233,289,294,346,342,310,537,612,664,649,661,711,723,658,649,590,548,486,679,656,640,571,533,491,439,398,412,404,349,383,360,298,263,242,207,182,186,194,159,118,123,116,96,96,67,59,61,64,34,33,34,31,30,15,12,11,13,10,7,7,3,7,5,10,3,3,5,0,2,2,1,0,0,2,1,1,1,4,0,2,1,0,0,1,0,0,0,0,0,0,0,0,0,0,4]2.62e-012.59e-012.41e-012.07e-011.59e-011.18e-017.77e-027.61e-035.58e-05
chr1:100042.43e+0123[0,4,21,70,101,178,270,396,417,515,550,486,864,1003,1098,1138,1183,1270,1242,1181,1162,1083,966,845,1149,1088,1047,922,857,804,725,645,633,658,525,610,537,451,411,369,343,285,290,260,235,184,190,174,151,152,96,83,96,91,52,52,56,43,47,30,20,19,22,16,13,9,9,10,10,14,8,7,8,0,5,3,3,2,1,2,1,1,1,5,3,3,2,1,0,2,0,0,1,0,1,0,1,1,0,0,12]4.27e-014.24e-013.99e-013.43e-012.60e-011.87e-011.21e-011.20e-021.67e-04
chr1:100052.45e+0123[0,4,22,67,98,177,257,381,423,511,580,560,1013,1158,1257,1314,1338,1472,1401,1341,1300,1266,1105,966,1288,1243,1198,1068,976,905,842,725,728,740,600,678,613,515,464,414,396,338,324,300,268,213,210,198,175,165,113,100,108,102,61,58,61,50,53,35,22,22,27,22,15,11,12,10,13,14,10,8,9,1,6,4,6,5,3,3,4,2,2,5,3,7,3,1,0,2,0,1,2,2,2,0,1,1,0,0,17]4.83e-014.80e-014.56e-013.92e-012.96e-012.14e-011.38e-011.42e-022.37e-04
\n", + "\n", + "\n", + "\n", + "\n", + "\n", "
locus
mean
median_approx
total_DP
over_1
over_5
over_10
over_15
over_20
over_25
over_30
over_50
over_100
locus<GRCh38>float64int32int64float32float32float32float32float32float32float32float32float32
chr1:100012.41e+0001729261.25e-011.19e-019.12e-026.95e-025.15e-023.88e-022.62e-022.27e-030.00e+00
chr1:100024.61e+0003307602.20e-012.15e-011.79e-011.39e-011.02e-017.60e-025.06e-024.83e-032.79e-05
chr1:100036.38e+0004576112.62e-012.59e-012.41e-012.07e-011.59e-011.18e-017.77e-027.61e-035.58e-05
chr1:100041.04e+0107448404.27e-014.24e-013.99e-013.43e-012.60e-011.87e-011.21e-011.20e-021.67e-04
chr1:100051.18e+0108494414.83e-014.80e-014.56e-013.92e-012.96e-012.14e-011.38e-011.42e-022.37e-04

showing top 5 rows

\n" ], "text/plain": [ - "+---------------+----------+--------+\n", - "| locus | mean | median |\n", - "+---------------+----------+--------+\n", - "| locus | float64 | int32 |\n", - "+---------------+----------+--------+\n", - "| chr1:10001 | 1.93e+01 | 16 |\n", - "| chr1:10002 | 2.10e+01 | 18 |\n", - "| chr1:10003 | 2.44e+01 | 23 |\n", - "| chr1:10004 | 2.43e+01 | 23 |\n", - "| chr1:10005 | 2.45e+01 | 23 |\n", - "+---------------+----------+--------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| count_array |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [0,20,65,141,226,328,386,442,415,385,292,198,362,367,337,273,289,266,241,... |\n", - "| [0,10,41,108,209,339,482,570,581,575,483,390,702,689,639,556,587,534,516,... |\n", - "| [0,6,16,62,100,162,233,289,294,346,342,310,537,612,664,649,661,711,723,65... |\n", - "| [0,4,21,70,101,178,270,396,417,515,550,486,864,1003,1098,1138,1183,1270,1... |\n", - "| [0,4,22,67,98,177,257,381,423,511,580,560,1013,1158,1257,1314,1338,1472,1... |\n", - "+------------------------------------------------------------------------------+\n", + "+---------------+----------+---------------+----------+----------+----------+\n", + "| locus | mean | median_approx | total_DP | over_1 | over_5 |\n", + "+---------------+----------+---------------+----------+----------+----------+\n", + "| locus | float64 | int32 | int64 | float32 | float32 |\n", + "+---------------+----------+---------------+----------+----------+----------+\n", + "| chr1:10001 | 2.41e+00 | 0 | 172926 | 1.25e-01 | 1.19e-01 |\n", + "| chr1:10002 | 4.61e+00 | 0 | 330760 | 2.20e-01 | 2.15e-01 |\n", + "| chr1:10003 | 6.38e+00 | 0 | 457611 | 2.62e-01 | 2.59e-01 |\n", + "| chr1:10004 | 1.04e+01 | 0 | 744840 | 4.27e-01 | 4.24e-01 |\n", + "| chr1:10005 | 1.18e+01 | 0 | 849441 | 4.83e-01 | 4.80e-01 |\n", + "+---------------+----------+---------------+----------+----------+----------+\n", "\n", "+----------+----------+----------+----------+----------+----------+----------+\n", - "| over_1 | over_5 | over_10 | over_15 | over_20 | over_25 | over_30 |\n", + "| over_10 | over_15 | over_20 | over_25 | over_30 | over_50 | over_100 |\n", "+----------+----------+----------+----------+----------+----------+----------+\n", "| float32 | float32 | float32 | float32 | float32 | float32 | float32 |\n", "+----------+----------+----------+----------+----------+----------+----------+\n", - "| 1.25e-01 | 1.19e-01 | 9.12e-02 | 6.95e-02 | 5.15e-02 | 3.88e-02 | 2.62e-02 |\n", - "| 2.20e-01 | 2.15e-01 | 1.79e-01 | 1.39e-01 | 1.02e-01 | 7.60e-02 | 5.06e-02 |\n", - "| 2.62e-01 | 2.59e-01 | 2.41e-01 | 2.07e-01 | 1.59e-01 | 1.18e-01 | 7.77e-02 |\n", - "| 4.27e-01 | 4.24e-01 | 3.99e-01 | 3.43e-01 | 2.60e-01 | 1.87e-01 | 1.21e-01 |\n", - "| 4.83e-01 | 4.80e-01 | 4.56e-01 | 3.92e-01 | 2.96e-01 | 2.14e-01 | 1.38e-01 |\n", + "| 9.12e-02 | 6.95e-02 | 5.15e-02 | 3.88e-02 | 2.62e-02 | 2.27e-03 | 0.00e+00 |\n", + "| 1.79e-01 | 1.39e-01 | 1.02e-01 | 7.60e-02 | 5.06e-02 | 4.83e-03 | 2.79e-05 |\n", + "| 2.41e-01 | 2.07e-01 | 1.59e-01 | 1.18e-01 | 7.77e-02 | 7.61e-03 | 5.58e-05 |\n", + "| 3.99e-01 | 3.43e-01 | 2.60e-01 | 1.87e-01 | 1.21e-01 | 1.20e-02 | 1.67e-04 |\n", + "| 4.56e-01 | 3.92e-01 | 2.96e-01 | 2.14e-01 | 1.38e-01 | 1.42e-02 | 2.37e-04 |\n", "+----------+----------+----------+----------+----------+----------+----------+\n", - "\n", - "+----------+----------+\n", - "| over_50 | over_100 |\n", - "+----------+----------+\n", - "| float32 | float32 |\n", - "+----------+----------+\n", - "| 2.27e-03 | 0.00e+00 |\n", - "| 4.83e-03 | 2.79e-05 |\n", - "| 7.61e-03 | 5.58e-05 |\n", - "| 1.20e-02 | 1.67e-04 |\n", - "| 1.42e-02 | 2.37e-04 |\n", - "+----------+----------+\n", "showing top 5 rows" ] }, @@ -6582,7 +6552,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.12.2" + "version": "3.11.5" }, "toc": { "base_numbering": 1, From 8eb7296089acad1d0efd340b2cf3ecd0f3c25b09 Mon Sep 17 00:00:00 2001 From: jkgoodrich <33063077+jkgoodrich@users.noreply.github.com> Date: Mon, 13 Jan 2025 22:39:33 -0700 Subject: [PATCH 069/121] Fixes during testing --- gnomad_toolbox/filtering/vep.py | 22 ++++++++++++++-------- gnomad_toolbox/load_data.py | 15 +++++++++------ 2 files changed, 23 insertions(+), 14 deletions(-) diff --git a/gnomad_toolbox/filtering/vep.py b/gnomad_toolbox/filtering/vep.py index 6e5519d..36cdbfa 100644 --- a/gnomad_toolbox/filtering/vep.py +++ b/gnomad_toolbox/filtering/vep.py @@ -128,18 +128,18 @@ def filter_by_consequence_category( def get_gene_intervals( - gene_symbol: str, version: Optional[str] = None + gene_symbol: str, gencode_version: Optional[str] = None ) -> List[hl.utils.Interval]: """ Get the GENCODE genomic intervals for a given gene symbol. :param gene_symbol: Gene symbol. - :param version: Optional gnomAD dataset version. If not provided, uses the gnomAD - session version. + :param gencode_version: Optional GENCODE version. If not provided, uses the gencode + version associated with the gnomAD session. :return: List of GENCODE intervals for the specified gene. """ # Load the Hail Table if not provided. - ht = _get_dataset(dataset="gencode", version=version) + ht = _get_dataset(dataset="gencode", version=gencode_version) gene_symbol = gene_symbol.upper() intervals = filter_gencode_ht(gencode_ht=ht, feature="gene", genes=gene_symbol) @@ -156,6 +156,7 @@ def filter_to_high_confidence_loftee( no_lof_flags: bool = False, mane_select_only: bool = False, canonical_only: bool = False, + version: Optional[str] = None, **kwargs, ) -> hl.Table: """ @@ -172,11 +173,14 @@ def filter_to_high_confidence_loftee( :return: Table with high-confidence LOFTEE variants. """ # Load the Hail Table if not provided. - ht = _get_dataset(dataset="variant", **kwargs) + ht = _get_dataset(dataset="variant", version=version, **kwargs) gene_symbol = gene_symbol.upper() if gene_symbol else None if gene_symbol: - ht = hl.filter_intervals(ht, get_gene_intervals(gene_symbol)) + gencode_version = get_compatible_dataset_versions("gencode", version) + ht = hl.filter_intervals( + ht, get_gene_intervals(gene_symbol, gencode_version=gencode_version) + ) return filter_vep_transcript_csqs( ht, @@ -248,7 +252,7 @@ def filter_to_plofs( # Get gene intervals and filter tables. gencode_version = get_compatible_dataset_versions("gencode", version) - intervals = get_gene_intervals(gene_symbol, version=gencode_version) + intervals = get_gene_intervals(gene_symbol, gencode_version=gencode_version) variant_ht = hl.filter_intervals(variant_ht, intervals) coverage_ht = hl.filter_intervals(coverage_ht, intervals) @@ -267,7 +271,7 @@ def filter_to_plofs( # Apply constraint filters. variant_ht = variant_ht.filter( (hl.len(variant_ht.filters) == 0) - & (hl.is_snp(*variant_ht.alleles)) + & (hl.is_snp(variant_ht.alleles[0], variant_ht.alleles[1])) & (variant_ht.freq[0].AF <= af_cutoff) & (variant_ht.exome_coverage >= cov_cutoff) ) @@ -276,6 +280,8 @@ def filter_to_plofs( variant_ht = filter_to_high_confidence_loftee( gene_symbol=gene_symbol, ht=variant_ht, + mane_select_only=constraint_info["mane_select"], + canonical_only=constraint_info["canonical"], ) return variant_ht diff --git a/gnomad_toolbox/load_data.py b/gnomad_toolbox/load_data.py index 11685bf..564a33c 100644 --- a/gnomad_toolbox/load_data.py +++ b/gnomad_toolbox/load_data.py @@ -186,10 +186,6 @@ def _get_dataset( if ht is not None: return ht - # Use session defaults if parameters are not provided. - data_type = data_type or gnomad_session.data_type - version = version or gnomad_session.version - # Validate dataset. dataset_info = SUPPORTED_DATASETS.get(dataset) if dataset_info is None: @@ -202,6 +198,13 @@ def _get_dataset( f"\treference datasets: {list(SUPPORTED_REFERENCE_DATA.keys())}" ) + # If version or data_type are not provided, use the session information. + data_type = data_type or gnomad_session.data_type + if dataset == "variant": + version = version or gnomad_session.version + else: + version = version or gnomad_session.compatible_datasets[dataset] + # Validate version. versions = dataset_info["versions"] version_info = versions.get(version) @@ -308,9 +311,9 @@ def get_compatible_dataset_versions( # Get the dictionary of compatible versions for the given variant version or # the current session version. if variant_version is None: - versions = VARIANT_DATA[variant_version]["dataset_versions"] - else: versions = gnomad_session.compatible_datasets + else: + versions = VARIANT_DATA[variant_version]["dataset_versions"] # Validate dataset. if dataset not in versions: From 87906ee2267beb970aef5aad1e6b5bc72bedda3d Mon Sep 17 00:00:00 2001 From: jkgoodrich <33063077+jkgoodrich@users.noreply.github.com> Date: Tue, 14 Jan 2025 08:21:06 -0700 Subject: [PATCH 070/121] Fix GnomADSession init --- gnomad_toolbox/load_data.py | 7 +++---- 1 file changed, 3 insertions(+), 4 deletions(-) diff --git a/gnomad_toolbox/load_data.py b/gnomad_toolbox/load_data.py index 564a33c..4532c01 100644 --- a/gnomad_toolbox/load_data.py +++ b/gnomad_toolbox/load_data.py @@ -127,10 +127,9 @@ def __init__(self) -> None: :return: None. """ - self.set_default_data( - data_type="exomes", - version="4.1", - ) + self.data_type = "exomes" + self.version = "4.1" + self.set_default_data() def set_default_data( self, From 95daf522756d6e8f0eb6eb26b3040641b8d8fbab Mon Sep 17 00:00:00 2001 From: jkgoodrich <33063077+jkgoodrich@users.noreply.github.com> Date: Tue, 14 Jan 2025 08:26:55 -0700 Subject: [PATCH 071/121] Fix table in `get_gnomad_release` docstring --- gnomad_toolbox/load_data.py | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/gnomad_toolbox/load_data.py b/gnomad_toolbox/load_data.py index 4532c01..a0b23eb 100644 --- a/gnomad_toolbox/load_data.py +++ b/gnomad_toolbox/load_data.py @@ -261,7 +261,7 @@ def get_gnomad_release( | variant | GRCh37 | 2.1.1 | exomes, genomes | | +--------------+---------+------------------------------+ | | GRCh38 | 4.1 | exomes, genomes, joint | - |--------------+--------------+---------+------------------------------+ + +--------------+--------------+---------+------------------------------+ | coverage | GRCh37 | 2.1 | exomes, genomes | | +--------------+---------+------------------------------+ | | GRCh38 | 3.0.1 | genomes | @@ -273,7 +273,7 @@ def get_gnomad_release( | constraint | GRCh37 | 2.1.1 | N/A | | +--------------+---------+------------------------------+ | | GRCh38 | 4.1 | N/A | - |--------------|--------------+---------+------------------------------+ + +--------------+--------------+---------+------------------------------+ | liftover | GRCh37 | 2.1.1 | exomes, genomes | +--------------+--------------+---------+------------------------------+ | pext | GRCh37 | v7 | base_level, annotation_level | From 2853978aa068a793c229b160f0c17f156c2b4a4a Mon Sep 17 00:00:00 2001 From: jkgoodrich <33063077+jkgoodrich@users.noreply.github.com> Date: Tue, 14 Jan 2025 10:14:06 -0700 Subject: [PATCH 072/121] Fix use of `data_type` in `_get_dataset` --- gnomad_toolbox/load_data.py | 15 ++++++++------- 1 file changed, 8 insertions(+), 7 deletions(-) diff --git a/gnomad_toolbox/load_data.py b/gnomad_toolbox/load_data.py index a0b23eb..108d5a4 100644 --- a/gnomad_toolbox/load_data.py +++ b/gnomad_toolbox/load_data.py @@ -197,8 +197,7 @@ def _get_dataset( f"\treference datasets: {list(SUPPORTED_REFERENCE_DATA.keys())}" ) - # If version or data_type are not provided, use the session information. - data_type = data_type or gnomad_session.data_type + # If version is not provided, use the session information. if dataset == "variant": version = version or gnomad_session.version else: @@ -218,11 +217,13 @@ def _get_dataset( # Validate data type. data_types = version_info.get("data_types") - if data_types and data_type and data_type not in data_types: - raise ValueError( - f"Version {version} is not available for {data_type} in the {dataset} " - f"dataset. Available data types: {data_types}." - ) + if data_types: + data_type = data_type or gnomad_session.data_type + if data_type and data_type not in data_types: + raise ValueError( + f"Version {version} is not available for {data_type} in the {dataset} " + f"dataset. Available data types: {data_types}." + ) # Get the resource for the given build. build = version_info["reference_genome"] From 23e0fe25bd0ccec55e89cdee9e628ebc5fe14d42 Mon Sep 17 00:00:00 2001 From: jkgoodrich <33063077+jkgoodrich@users.noreply.github.com> Date: Tue, 14 Jan 2025 10:17:50 -0700 Subject: [PATCH 073/121] split with comma instead of tab --- gnomad_toolbox/load_data.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/gnomad_toolbox/load_data.py b/gnomad_toolbox/load_data.py index 108d5a4..96e8501 100644 --- a/gnomad_toolbox/load_data.py +++ b/gnomad_toolbox/load_data.py @@ -207,7 +207,7 @@ def _get_dataset( versions = dataset_info["versions"] version_info = versions.get(version) if version_info is None: - version_format = "\t".join( + version_format = ", ".join( f"{v} ({versions[v]['reference_genome']})" for v in versions ) raise ValueError( From 41c6739122967ea054ecdb20b1d54ad5a66ba603 Mon Sep 17 00:00:00 2001 From: jkgoodrich <33063077+jkgoodrich@users.noreply.github.com> Date: Tue, 14 Jan 2025 11:39:55 -0700 Subject: [PATCH 074/121] Use correct browser resource, browser_variant --- gnomad_toolbox/load_data.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/gnomad_toolbox/load_data.py b/gnomad_toolbox/load_data.py index 96e8501..70c718b 100644 --- a/gnomad_toolbox/load_data.py +++ b/gnomad_toolbox/load_data.py @@ -93,7 +93,7 @@ "constraint": {"resource": "constraint", "versions": CONSTRAINT_DATA}, "liftover": {"resource": "liftover", "versions": LIFTOVER_DATA}, "pext": {"resource": "pext", "versions": PEXT_DATA}, - "browser": {"resource": "browser", "versions": BROWSER_DATA}, + "browser": {"resource": "browser_variant", "versions": BROWSER_DATA}, } SUPPORTED_REFERENCE_DATA = { "vep": { From 93cc5cd42dc8438d67341a67746d44c8ff7140ba Mon Sep 17 00:00:00 2001 From: jkgoodrich <33063077+jkgoodrich@users.noreply.github.com> Date: Tue, 14 Jan 2025 12:08:05 -0700 Subject: [PATCH 075/121] Add additional datasets to the data exploration --- .../notebooks/explore_release_data.ipynb | 6016 ++++++++++++++++- 1 file changed, 5986 insertions(+), 30 deletions(-) diff --git a/gnomad_toolbox/notebooks/explore_release_data.ipynb b/gnomad_toolbox/notebooks/explore_release_data.ipynb index a0959a7..3017c9f 100644 --- a/gnomad_toolbox/notebooks/explore_release_data.ipynb +++ b/gnomad_toolbox/notebooks/explore_release_data.ipynb @@ -51,15 +51,28 @@ }, "source": [ "

Table of Contents

\n", - "" + "
" ] }, { + "attachments": { + "53765947-f8a0-4821-aed7-99c4b6de5c25.png": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABmAAAAHqCAYAAAATcYFxAAAMPmlDQ1BJQ0MgUHJvZmlsZQAASImVVwdYU8kWnluSkEBoAQSkhN4EESkBpITQQu9NVEISIJQYA0HFXhYVXAsqImBDV0UUrDQ7YmdR7H2xoKKsiwW78iYFdN1Xvne+b+797z9n/nPm3LllAFA7zhGJclF1APKEBeKYID96UnIKndQLEEACVICC0RxuvogZFRUGoA2d/27vrkNvaFfspVr/7P+vpsHj53MBQKIgTuflc/MgPgAAXs0ViQsAIEp5s6kFIimGDWiJYYIQL5biTDmuluJ0Od4j84mLYUHcDoCSCocjzgRA9RLk6YXcTKih2g+xo5AnEAKgRofYOy9vMg/iNIitoY8IYqk+I/0Hncy/aaYPa3I4mcNYPheZKfkL8kW5nOn/Zzn+t+XlSoZiWMKmkiUOjpHOGdbtZs7kUClWgbhPmB4RCbEmxB8EPJk/xCglSxIcL/dHDbj5LFgzoAOxI4/jHwqxAcSBwtyIMAWfniEIZEMMVwg6TVDAjoNYF+LF/PyAWIXPJvHkGEUstDFDzGIq+LMcsSyuNNZ9SU48U6H/OovPVuhjqkVZcYkQUyA2LxQkRECsCrFDfk5sqMJnXFEWK2LIRyyJkeZvDnEMXxjkJ9fHCjPEgTEK/5K8/KH5YpuyBOwIBd5XkBUXLK8P1s7lyPKHc8Eu8YXM+CEdfn5S2NBceHz/APncsWd8YXysQueDqMAvRj4Wp4hyoxT+uCk/N0jKm0LsnF8YqxiLJxTABSnXxzNEBVFx8jzxomxOSJQ8H3wFCAMs4A/oQAJbOpgMsoGgs6+pD17JewIBB4hBJuADewUzNCJR1iOEx1hQBP6EiA/yh8f5yXr5oBDyX4dZ+dEeZMh6C2UjcsATiPNAKMiF1xLZKOFwtATwGDKCf0TnwMaF+ebCJu3/9/wQ+51hQiZMwUiGItLVhjyJAUR/YjAxkGiD6+PeuCceBo++sDnhDNx9aB7f/QlPCF2Eh4RrhG7CrUmC+eKfsgwH3VA/UFGL9B9rgVtCTRfcD/eC6lAZ18H1gT3uDOMwcR8Y2QWyLEXe0qrQf9L+2wx+uBsKP7IjGSWPIPuSrX8eqWqr6jKsIq31j/WR55o+XG/WcM/P8Vk/VJ8Hz6E/e2KLsf3YGewEdg47jDUBOnYMa8Y6sCNSPLy6HstW11C0GFk+OVBH8I94Q3dWWsl8xzrHXscv8r4C/jTpOxqwJoumiwWZWQV0Jvwi8OlsIddhFN3J0ckFAOn3Rf76ehMt+24gOh3fuQV/AOB1bHBw8NB3LuQYAHvd4OPf8p2zZsBPhzIAZ1u4EnGhnMOlBwJ8S6jBJ00PGAEzYA3n4wRcgSfwBQEgBESCOJAMJsLss+A6F4OpYCaYB4pBKVgB1oBKsBFsATvAbrAPNIHD4AQ4DS6AS+AauANXTw94AfrBO/AZQRASQkVoiB5ijFggdogTwkC8kQAkDIlBkpE0JBMRIhJkJrIAKUXKkEpkM1KL7EVakBPIOaQLuYU8QHqR18gnFENVUC3UELVER6MMlImGonHoBDQTnYIWoQvRZWgFWoPuQhvRE+gF9Brajb5ABzCAKWM6mAlmjzEwFhaJpWAZmBibjZVg5VgNVo+1wvt8BevG+rCPOBGn4XTcHq7gYDwe5+JT8Nn4UrwS34E34u34FfwB3o9/I1AJBgQ7ggeBTUgiZBKmEooJ5YRthIOEU/BZ6iG8IxKJOkQroht8FpOJ2cQZxKXE9cQG4nFiF/ERcYBEIumR7EhepEgSh1RAKiatI+0iHSNdJvWQPigpKxkrOSkFKqUoCZXmK5Ur7VQ6qnRZ6anSZ7I62YLsQY4k88jTycvJW8mt5IvkHvJnigbFiuJFiaNkU+ZRKij1lFOUu5Q3ysrKpsruytHKAuW5yhXKe5TPKj9Q/qiiqWKrwlJJVZGoLFPZrnJc5ZbKGyqVakn1paZQC6jLqLXUk9T71A+qNFUHVbYqT3WOapVqo+pl1ZdqZDULNabaRLUitXK1/WoX1frUyeqW6ix1jvps9Sr1FvUb6gMaNI0xGpEaeRpLNXZqnNN4pknStNQM0ORpLtTconlS8xENo5nRWDQubQFtK+0UrUeLqGWlxdbK1irV2q3VqdWvrantrJ2gPU27SvuIdrcOpmOpw9bJ1Vmus0/nus6nEYYjmCP4I5aMqB9xecR73ZG6vrp83RLdBt1rup/06HoBejl6K/Wa9O7p4/q2+tH6U/U36J/S7xupNdJzJHdkych9I28boAa2BjEGMwy2GHQYDBgaGQYZigzXGZ407DPSMfI1yjZabXTUqNeYZuxtLDBebXzM+Dldm86k59Ir6O30fhMDk2ATiclmk06Tz6ZWpvGm800bTO+ZUcwYZhlmq83azPrNjc3DzWea15nftiBbMCyyLNZanLF4b2llmWi5yLLJ8pmVrhXbqsiqzuquNdXax3qKdY31VRuiDcMmx2a9zSVb1NbFNsu2yvaiHWrnaiewW2/XNYowyn2UcFTNqBv2KvZM+0L7OvsHDjoOYQ7zHZocXo42H50yeuXoM6O/Obo45jpudbwzRnNMyJj5Y1rHvHaydeI6VTldHUsdGzh2ztjmsa+c7Zz5zhucb7rQXMJdFrm0uXx1dXMVu9a79rqZu6W5VbvdYGgxohhLGWfdCe5+7nPcD7t/9HD1KPDY5/GXp71njudOz2fjrMbxx20d98jL1Ivjtdmr25vunea9ybvbx8SH41Pj89DXzJfnu833KdOGmc3cxXzp5+gn9jvo957lwZrFOu6P+Qf5l/h3BmgGxAdUBtwPNA3MDKwL7A9yCZoRdDyYEBwavDL4BtuQzWXXsvtD3EJmhbSHqoTGhlaGPgyzDROHtYaj4SHhq8LvRlhECCOaIkEkO3JV5L0oq6gpUYeiidFR0VXRT2LGxMyMORNLi50UuzP2XZxf3PK4O/HW8ZL4tgS1hNSE2oT3if6JZYndSaOTZiVdSNZPFiQ3p5BSElK2pQyMDxi/ZnxPqktqcer1CVYTpk04N1F/Yu7EI5PUJnEm7U8jpCWm7Uz7wonk1HAG0tnp1en9XBZ3LfcFz5e3mtfL9+KX8Z9meGWUZTzL9Mpcldmb5ZNVntUnYAkqBa+yg7M3Zr/PiczZnjOYm5jbkKeUl5bXItQU5gjbJxtNnja5S2QnKhZ1T/GYsmZKvzhUvC0fyZ+Q31ygBX/kOyTWkl8kDwq9C6sKP0xNmLp/msY04bSO6bbTl0x/WhRY9NsMfAZ3RttMk5nzZj6YxZy1eTYyO3122xyzOQvn9MwNmrtjHmVezrzf5zvOL5v/dkHigtaFhgvnLnz0S9AvdcWqxeLiG4s8F21cjC8WLO5cMnbJuiXfSngl50sdS8tLvyzlLj3/65hfK34dXJaxrHO56/INK4grhCuur/RZuaNMo6yo7NGq8FWNq+mrS1a/XTNpzbly5/KNaylrJWu7K8IqmteZr1ux7ktlVuW1Kr+qhmqD6iXV79fz1l/e4LuhfqPhxtKNnzYJNt3cHLS5scaypnwLcUvhlidbE7ae+Y3xW+02/W2l275uF27v3hGzo73WrbZ2p8HO5XVonaSud1fqrku7/Xc319vXb27QaSjdA/ZI9jzfm7b3+r7QfW37GfvrD1gcqD5IO1jSiDROb+xvymrqbk5u7moJaWlr9Ww9eMjh0PbDJoerjmgfWX6UcnTh0cFjRccGjouO953IPPGobVLbnZNJJ6+2R7d3ngo9dfZ04OmTZ5hnjp31Onv4nMe5lvOM800XXC80drh0HPzd5feDna6djRfdLjZfcr/U2jWu6+hln8snrvhfOX2VffXCtYhrXdfjr9+8kXqj+ybv5rNbubde3S68/fnO3LuEuyX31O+V3ze4X/OHzR8N3a7dRx74P+h4GPvwziPuoxeP8x9/6Vn4hPqk/Knx09pnTs8O9wb2Xno+/nnPC9GLz33Ff2r8Wf3S+uWBv3z/6uhP6u95JX41+HrpG7032986v20biBq4/y7v3ef3JR/0Puz4yPh45lPip6efp34hfan4avO19Vvot7uDeYODIo6YI/sVwGBDMzIAeL0dAGoyADS4P6OMl+//ZIbI96wyBP4Tlu8RZeYKQD38f4/ug383NwDYsxVuv6C+WioAUVQA4twBOnbscBvaq8n2lVIjwn3Apsiv6Xnp4N+YfM/5Q94/n4FU1Rn8fP4X6t18U4TdPeAAAACKZVhJZk1NACoAAAAIAAQBGgAFAAAAAQAAAD4BGwAFAAAAAQAAAEYBKAADAAAAAQACAACHaQAEAAAAAQAAAE4AAAAAAAAAkAAAAAEAAACQAAAAAQADkoYABwAAABIAAAB4oAIABAAAAAEAAAZgoAMABAAAAAEAAAHqAAAAAEFTQ0lJAAAAU2NyZWVuc2hvdA9zYpUAAAAJcEhZcwAAFiUAABYlAUlSJPAAAAHXaVRYdFhNTDpjb20uYWRvYmUueG1wAAAAAAA8eDp4bXBtZXRhIHhtbG5zOng9ImFkb2JlOm5zOm1ldGEvIiB4OnhtcHRrPSJYTVAgQ29yZSA2LjAuMCI+CiAgIDxyZGY6UkRGIHhtbG5zOnJkZj0iaHR0cDovL3d3dy53My5vcmcvMTk5OS8wMi8yMi1yZGYtc3ludGF4LW5zIyI+CiAgICAgIDxyZGY6RGVzY3JpcHRpb24gcmRmOmFib3V0PSIiCiAgICAgICAgICAgIHhtbG5zOmV4aWY9Imh0dHA6Ly9ucy5hZG9iZS5jb20vZXhpZi8xLjAvIj4KICAgICAgICAgPGV4aWY6UGl4ZWxZRGltZW5zaW9uPjQ5MDwvZXhpZjpQaXhlbFlEaW1lbnNpb24+CiAgICAgICAgIDxleGlmOlBpeGVsWERpbWVuc2lvbj4xNjMyPC9leGlmOlBpeGVsWERpbWVuc2lvbj4KICAgICAgICAgPGV4aWY6VXNlckNvbW1lbnQ+U2NyZWVuc2hvdDwvZXhpZjpVc2VyQ29tbWVudD4KICAgICAgPC9yZGY6RGVzY3JpcHRpb24+CiAgIDwvcmRmOlJERj4KPC94OnhtcG1ldGE+Cp5odtYAAAAcaURPVAAAAAIAAAAAAAAA9QAAACgAAAD1AAAA9QABIsUAUB3SAABAAElEQVR4AeydCdxtU/nHV0Wk+pcrXFeGMksiY6jMpYRIKSVzk0pdylBUKhqIBiGi0kRIiVJJpIsGZZ4qMkckFCn973ddz+l51117nz2d95z3fX/P5/O++5x91l577d9e4/N7nmc94d///vd/g0QICAEhIASEgBAQAkJACAgBISAEhIAQEAJCQAgIASEgBISAEBACQqAzBJ4gAqYzLJWREBACQkAICAEhIASEgBAQAkJACAgBISAEhIAQEAJCQAgIASEgBCICImBUEYSAEBACQkAICAEhIASEgBAQAkJACAgBISAEhIAQEAJCQAgIASHQMQIiYDoGVNkJASEgBISAEBACQkAICAEhIASEgBAQAkJACAgBISAEhIAQEAJCQASM6oAQEAJCQAgIASEgBISAEBACQkAICAEhIASEgBAQAkJACAgBISAEOkZABEzHgCo7ISAEhIAQEAJCQAgIASEgBISAEBACQkAICAEhIASEgBAQAkJACIiAUR0QAkJACAgBISAEhIAQEAJCQAgIASEgBISAEBACQkAICAEhIASEQMcIiIDpGFBlJwSEgBAQAkJACAgBISAEhIAQEAJCQAgIASEgBISAEBACQkAICAERMKoDQkAICAEhIASEgBAQAkJACAgBISAEhIAQEAJCQAgIASEgBISAEOgYAREwHQOq7ISAEBACQkAICAEhIASEgBAQAkJACAgBISAEhIAQEAJCQAgIASEgAkZ1QAgIASEgBISAEBACQkAICAEhIASEgBAQAkJACAgBISAEhIAQEAIdIyACpmNAlZ0QEAJCQAgIASEgBISAEBACQkAICAEhIASEgBAQAkJACAgBISAERMCoDggBISAEhIAQEAJCQAgIASEgBISAEBACQkAICAEhIASEgBAQAkKgYwREwHQMqLITAkJACAgBISAEhIAQEAJCQAgIASEgBISAEBACQkAICAEhIASEgAgY1QEhIASEgBAQAkJACAgBISAEhIAQEAJCQAgIASEgBISAEBACQkAIdIyACJiOAVV2QkAICAEhIASEgBAQAkJACAgBISAEhIAQEAJCQAgIASEgBISAEBABozogBISAEBACQkAICAEhIASEgBAQAkJACAgBISAEhIAQEAJCQAgIgY4REAHTMaDKTggIASEgBISAEBACQkAICAEhIASEgBAQAkJACAgBISAEhIAQEAIiYFQHhIAQEAJCQAgIASEgBISAEBACQkAICAEhIASEgBAQAkJACAgBIdAxAiJgOgZU2QkBISAEhIAQEAJCQAgIASEgBISAEBACQkAICAEhIASEgBAQAkJABIzqgBAQAkJACAiBKYTA7XfeNYWetv+jzpi+aP9ESiEEhIAQEAJCQAgIASEgBISAEBACQkAICIEGCIiAaQCaLhECQkAICAEhMFEREAEz9s2JgBmLh74JASEgBISAEBACQkAICAEhIASEgBAQAt0hIAKmOyyVkxAQAkJACAiBkUTg7rvvDgsvvHAsmxEwSyw+YyTLOl6FuuW22+OtIGD+/e9/hwcffDA885nPHK/b6z5CQAgIASEgBISAEBACQkAICAEhIASEwBRAQATMFHjJekQhIASEwCAQ+Mtf/hIeeeSRXtYLLbRQWGCBBXrf9WE0EIBYeO1rXxuWWmqp8PGPfzz885F/xYKJgJlDwDxw/9/CgQceGP7v//4vfPnLXx6Nl6ZSCAEhIAQmGQKzZs0K3/zmN8MHPvCBsMgii8SnO+OMM8JvfvObcMABB2j+MELv++qrrw7f+c534rzhzW9+cyzZpZdeGs9tvPHG4eUvf3nr0h5//PHhr3/9a5g5c2aYZ555Yn4f/ehHw/Tp08Puu+/eOn9lMLERuOuuu8Lpp58ebrrppvCJT3wiPszNN98cTj311PCEJzwh1pu2T6g+qS2Cun6QCKgfHiS6ynuQCPz3v/8NF1xwQTjttNPCm970prDWWmuFRx99NJx77rnhzDPPjPPAJZdccpBFGNm8RcCM7KtpXjAq90knnRSo+EXylKc8JSyxxBJh6aWXDs9+9rN7E9+i9DovBISAEEgReMUrXhH+9a85ynx+e+c73xm23nrrNJm+DxmBz3/+8+G73/1uLMV73vOesPoaa8bPImDmEDDHHfPF8Itf/CJighIQ5dKoy3/+859wySWXlI7zKCie/vSnhwUXXDAqtEzBNerPpvIJgS4RuP3228Pll18e7rnnnvC3v/0tzDvvvAFjgRkzZoTVV189MB+WVEPglltuiWTJn/70p/DPf/4zriE222yznndlWS633npr2G233QJ919577x223HLLcMUVVwTGJOTTn/50WG211cqyGNnfUBCfeOKJUbmAscNEfQ4D+L777gvbb799/PrkJz85nHXWWeGaa64J7373u+M51o2sM9vIeeedFw1CyOOrX/1qbI9f+9rXwle+8pWY7TnnnBPbapt76NqJjcDrXve6SNDxFJB1KOs233zz3kNB3jLHaSrj2ScxXzvooINiUSGfqete9txzzwC5hOy3335ho4028j+P++fJ1qeNO4Ad3FD9cAcgTqEsWMd+73vfC894xjPiXAtDhmGKH+PXWGONSKIzvlvf9+pXvzq84x3vGGYRh3ZvETBDg35wN8Yq/Q1veEOtG7CAYvBHUSMRAkJACFRB4GUve1lUplhaETCGxOgc77zzzvDGN76xV6Cvf/3r4T+Pc/MiYOYQMH+88YbwoQ99KGKEF8wpp5wy8kYJv/3tb8P73ve+3nut8uH5z39+JEg33HDDKsmVRghMaAR+/OMfR6UdFvZlsuqqq4Z99tknKoDL0k3l3wjRiAIUj4hUPvKRj4T11lsvPT3Xdxba1113XXjqU58aLdhR7G+77bbh73//e1SsTlTvQ4zdttpqq0hI2UN/+9vfjiSffZ9oR55pm222CQ899FAsOt4Hyy+/fEBhYoISZbHFFrOvtY4Y7rzqVa+K88e11147EjF+rrLddtuFt73tbbXyVOLJhwCechdffHF8sNe85jXhrW99a9h1113Dn//853gO8vaVr3xl4wcfzz7JKyMh/b///e+PKbcnmyA6aR/DksnYpw0Lyzb3VT/cBr2pdS19In2jCSTvN77xDfs6lCME984779y7N4YcGENh6IgwF8QTZiqKCJhJ+NabEDDA8KQnPSk2XiYBkvFF4Prrr48LEBYlz33ucwMu+BIhMOoIjBcB84Mf/CB861vfiot1rGbrEsyjjqMvX9fP+uEPfzhceOGF8RYo3lnQag+YOYjf4vaAoU4xdiIs8lnsj7I0IWDsebDO3n///QeuICRczeGHHx7bLe13snrg3HvvvdEyHI8ALFxR6LcRLMRQzqDwJGSgpB4CeLkceuih0VOj6pXMf2n3XsFc9dqpkA7yhTacCiTKF7/4xRimKv3Nf+edWJ+KQQCLcsgYs37E4nvTTTf1l0yYz+yv9vrXv35MeT/1qU9F76oxJ0fkS9X+5bjjjovGCBSb8WKTTTaJ8wdTiH/hC18IK6ywQqOnOv/883vrnM985jMB44CTTz6551Uz0QmsRqDoorkQ8PMcDEXf//73R4Xd5z73uZiWfsQbGM2VQcmJ8e6TJhIBU7VPmypzvJJqNPCf1A8PHOJGN8BoBy8xjEhGQSfxwx/+MHoR+4f50Y9+FHW7/lxXn6s+/x577BHwmEYIHck+q95g5Sc/+UlXRZpQ+YiAmVCvq1phmxIwljuWTriKScYPAR8iaCozwuOHuO7UBQLjRcAQf/y2226LRd5ggw163gpdPMOo5dHls/7jH/+IEx17RgvzIQJmDiKegPn5z38eDjnkkPjDKFgO2TsrOnrFBGmWW265GA7Ip4cQ+MMf/hDuuOMOfzp+RuH8rne9q5X16FyZJidQkph109lnnx1Q1k5G+eUvf9kLLYLxxLrrrtvqMa0P6CLMT6uCTMCLCfMC6exDY9pjgOeyyy4bHnjggXDDDTdEzwv7zY4olD/2sY/FRaKdm+pH9mHYcccdezCAEYpQwhgT5rCKYFiAoh2xNcaxxx4bF+Scs7GJzxNNctbi7HOz8MILj+SjVO1fCGdinqEoW9jzhec64YQT4nMdeeSRYZVVVmn0jN4wBMUR5LwparQGagTppLzIz2HNgOjGG2+MZDkPzL4C1OcmMt590kQiYKr2aVNljtekfnV1jfrhrpDsLh/WVuahNiphtAhfSIhXE+YfjNeDkDrPz7yPvhaxedF73/ve6AnDOREwoCCZFAjkCBisi8ydm1ACKGSuvfbaGCuQeMxecI3Fba1NXFWfnz73R8DcoEmpxUd/vJRiNBAYDwLmscceGxPzeTITMF0/K/u+QO4i7HWAVS4iAibCEDwBk7r6H3PMMVFZOyfl6P1PCZjPfvazYeWVV84WlHqF0oL3b5ZIlhAPC0LADEJQ0rK5NjKZCRjCMlFfkC4IGNtbSwRMhLTyP0KNYYno57TMp/BKeuELXzgXWcAikpCMqWeHhUSqfONJntBbVkKiEqLxaU97Wq2n9m3kk5/8ZHwfRx11VC8MD94Pw45XXuuBksT0q4RQY31FFIFR3gOmav/ijRI++MEPhpe+9KVjvFSwzMZjv4n4sYFQgRB5KNNZm2oN1ATRyXkNZLl5JW6xxRZh5syZYzznCJ3OnktNZLz7pIlEwIBnlT7Nt+PJPMdrUr+6ukb9cFdIdpcPbQODAWRUCBjKwob3eM+zB8zuu+8+sDlVnednbz/mkMjpp58eCPNNiMWrrroqeufgpTMVRR4wk/Ct5wgYm7ikj8sGXzCmxGD2wqCKu69kfBCwBRF30+JjfDDXXdojMB4ETBrXdDITMF0/q4+V7TeXFwEzp+57AoYz3pqvaMxs32q6yaEOAWN3hGRC4ew3T2a8IdzL/PPPb8k6O5pCjQwn8+IcS3BiGyNtCRhv8SsCJkJa+R99HCFRTF7ykpfEvV0WWGABO5U9srk4CmZC0pgMkpi0e0yUI+Si7f1iG6nWLbs3BsBinb6BEFZsoo0ceOCBQ990uu4zTcT0dfoXPx6i1ME4j33HGHvarlP83h5mPEA4KWLGIwpBNhFrV/dl9t6l5jlHGBu855A2+xCNd5800QiYKm9zqszxqmAxqDTqhweFbPN8vVfSKBEwzZ+o3pV1nt88bp/znOeEL33pS4F1KPt24aX+4he/OBx88MH1bj5JUouAmSQv0j9GHQKG6wjZwOLHS78O5dFHHw389VvY+jxzn7FAJBRKv9AkXd0PS2AaP/csE6zY2sSrr3M9Vpt+352mC5s69yx7diyOsG4sCy2BhekTn/jE0jRl99BvEw8B6hcDpm/zTQkYCF887MrqmCGEdSQLL5MmBEyd+9l97Ni2rtdpl108q5Xbx7fmHApiU7IPk4CB9KffR+iHF1100fh5GP9SAsbvSdC0Hx6v52hCwFjZUFqwD4AJ8XgJR9a1+P5hMhMw++67b7jssssifG0JGELGveUtb4l5iYCpXiPTeSwh+dibpKrccsstYZddduklx0oPz5h+c9PeBZP4gw8XtfXWW4d3vvOdtZ/WW/ESAxxCB097vEaQ5z3veQGPGMlgEajav7AOYF3CnG+ttdaKeyr5DXX7rRH7PQV7g51zzjkxGXvLsMcMG6pfccUV8RxkTNO9PfrdW79PHASI3EG4SPph5rCs4XfYYYdIli+55JK9/qPJE413nzQZCZipMsdrUr+6uEb9cBcodp8HBgKQCUjbsbD70g0+x6rPf/nllwfCjSH05dttt100xjviiCPiuals6CQCJlaByfWvLgHzyCOPzBUHPl0MMQjgOkbYsj/+8Y8B0gBBSbXMMstELxquSYWwJxZXH2UbobawoDt/9gaMhMYxi0MWy0cffXRPIdvF/VDw4smz2GKLxYU0FlxW7oUWWii655mXD4sMwiqgJAI/hGdbeumlY3xZwleUCQpF8MGl7vrrr4/PxfOiQFlppZXCTjvtFNhXwMuvfvWr6EqNIo1OyksaQx4vJdhjL7fffnt0NeSdgDNlwEJtqaWWiuEdiNk933zz+UviZyaxWBAhKNNRGE2bNi2ceOKJcVEMFpQdpZxtkEpaGO/TTjstoKiw9wa2bBS88cYbh/XXX59kY4R0KKa4D++9Dak1JmN9GRcEaC8oSX73u98F4ositAtiwO+1117RBdeHe0Exg4ImFayScY2lbZCPXUP7eNGLXhTw1Jh33nl7l1EHqW/0NSyS/B4W3J+Qil7oYzyZU/d+Pi8+N6nrlkfddtn2We2+6XHWrFnRqpvzbApuEx6+D5OAQblMPTD52c9+Zh/H/ZgSMBSAuL5GEKEkRFk4itKGgIEUJGyH93yl/2dPh1Ror9yLcQZFyEMPPRTHfMY1NtVmzPGCgQMbuLI5JR4JJowzvo3jIs9+HF4g51CkUz8gw9h7gjLR3/BeFl98cZ98rs8o71By0G8wjjM+Mbegv4C4LRO8zwiXhjcE90bhw7U8J3sf+LJbPoxv9E0YsBiWWHv5UHAYKhD+r5/wTsiL8kOQIcxTsDj3AgYoLsEYWXPNNeP469PkPhN7mbEboY8GU/r1c889N/bplBvDCyzkf/3rX0cseO/MBdjngfF7o402ymU95hzPwSbd4Hj11VePeYe8A+YLgxDqos1LyJ/FcTpn6ndf78lEWvPUsOtyeHFP5o3UW94J9ZpnxPsGzPoJ14MX7Yt6B/6EdaLubb755uFZz3pWvyz6/v7ggw8GLMlpv7wXvs+YMSPWAeoqCvac/P73v48htegbKB/C3BSFgxfySPsB/zufMaLacsste2M/McFpM7Z5PdczRyed7RVDm+O95volnz8Y0mbot2lvLPg5mvDebG4OBuRL30PboW37uYNdc88990TlLvlQ73mX4MZ9aB/0VWAI+cqcm/m8jWWshbDwzEnd/tTyYL1E3VhvvfV6fRn9FX0BedIvU99XXHHF+H7SEHF1+hdCwRk5Rj/I/jzUQwslQmx5iLN+79zKnjvSNxjpb4p0b4DCvNDWjun11sdQJ/ljzkW/SLujr+LaImF8Ym5k7Y0xZsEFF4xtgetZx6TrJuagtG+Etkmd7Cf049QThH6P9+alabtnTzX6CebBb33rW2P/TD2ALGYMo7/edNNN45za7keb4pm5jrGV8DGs+RgDIL/6hcsDM56HeTX3uPfee+P1tEvaNPPLKsI6lz/6IMpAnaIM3D+3fvR7vZiijjbGHl08J555dft4X86qfZK/hs9N8QRDngOx/i5+efwfhKfpKAjRY3tM+DRtPtedHxX1aW3meJS/ad3nWu5NP4FegTnm/fffH+sAbZexifo0CGkyhnQxXxjlfpj3SJ9Av0J/zvhI/8i7YE7BsUiazknIrwtcfbnqtAvG4DvvvDN64Fl4ZULWQix4Yd2A3qvuPMLyaDpPQEeHkQVCZB2/R5svy/bbbx/nLfRl9Kn8MY4ivDf6ZK5P50Z1n9/2emE+yxyGfps5H3Plqez9As4iYEBhkkldAobJLIsQL0zibe8AFugsTFEUlgkKHeKxeqFjw6rJhI4KxT7u515olBYHsMv7MTmj3LaBt78nn7GsZ/HEQsCIlzQN3+lcbQ+d9Pcrr7wyxhg3BUz6O995PuJF+om7V/TlrvHnzPXazrFQ5f2YItvO+yMWnCiGUiUAi2nC0Ji8/e1vj4ofCwVh51FasRB++OGH4ztk4VomKJkgvExhwCBA3lZGlGHHH3/8XIubsjz12xwEWPRAEKKoYdKDUpjJJm2OxesghEUSyj9TRle5R0rAsJhg0c5EvkxQNLI/hT2Lt7Qsu85+o89AUdL0fpZP07pu1zdpl02f1e5ZdKSt2d4GkLHeulsEzBzUcgSMTRhJgQKoTJlThP14nG9DwFA+b/3Jd0hQ9s8wYWJOjP90XLDfOTLGoAxhsWFiFqv2vejo5xikIUYw442NF+l1jKGM0znFJkYkbBZd1s+wAIAQSpW5LOjxBmIPiiKhvyV/v5hBAcniuIpU2WQSpVkVIeQHBiqETzHpF64HZQWKYhPb8NxbsZEvezyg+EGZmxMUicwpcmQU6Vk0YsleNpdi/gcJmyo5c/erei71XjGL+qrXWzqUAsz1rA4yN7QNx0nj8YKcQRFdVmepq9RZ6m5OIPpRyBXNrbmOMRUlZ1NBSUDdLRvHIQzYJ4dx2AQSM53P22/psep+WYxJzF/A2BSnhx56aFSAb7PNNr145TvP9n6wUFQ2D03v6b/zDmyTVxTx5t3HfID+KTVw8tfSL5AGhbQX7ylCX8X8hDZC+b185CMficp1vK1QfiC5MjftT+1e3tKcuSBeSZBKOUE5zz47XhlZp3+hbkNMUDeJI8/zICjE8Vxh/daPDM+VKz3HegHyjj4BEoR2wHoRwgvlj/e2tmtp61xX1sfwvghrQvv0goKJUIP0U0VCX0998Nil3nUYC5YpF6kjfq1ndcTu2abde29LPMYgVAjl58W3AZSjtG1T7Pt09rmsn4Iooc8vwzvt3zDI4x2ZMF7RzlHWFgn1gHrlDRWpD9Q3lLoWJQKFO+thyOkNN9ywKLvK56v2SZZhGzyHRcA0nR8V9WlN53hg2Kbu0/aZw3mDPHsvdmTsZ8xMCWj7ve6xzRjSxXxhVPthDDowqiqau4AzOi7qSupF3HROYu+uC1zJq267wCCFPaiqCH0z86q684i28wQfdpw1P2t/k7QstBP69nROY+mZGzEHYGxGmjw/aw/6WMZUM2ZkPcR6jzGhaC1hZZjMRxEwk/DtMlHyihQesSyePRMK7+lAeibELBxZTJcpNUjrJZ1opgSMTdRsgWvXosjBg6Tr+1n+RUcWKiw6UXD3EyzIU0sfb7HV73p+33vvvXuLaaxQixQdaV6egGFhhcK5qqAoMsU216QEDNjnyCOUMSxWeKd4L1QRLLJs4cGin8mWFwYv6qKkOgJ4izHRKRIWLV0sRHz+kIrU1briCRiUAyiz07ZelCeLxpNOOilaXDDBRtlRVWgPEEZN72f3aVrXub5pu2zyrN6618qeHn04D+qP96oTATMHrRwB4xXrjKNMaEdR2hIwkI1esesJEZSf9NWp0garTRZcvk1zDo9KC2/HvAFruH5iSkry22+//eZSkjJX4C9d4OWUvRBlEEomjOt412Gl7hVHGCMwlprwHHjyeeMCFovMCbg3bdM/K4ouU8ylYdwsz/RIPmZckv7mv1dVkLKoIq1fWKGcsg1BfZ722c+rvDecX8iyOEJR5p+Xsvvv5Ic3MH1dKhdddNFcsZxRgEK0ML/wcwxfhjSfJt/9ZspcbxuGN8mL+mDeHlwPqW6W/h6vHDa5c8ytU48R8vX7qvCdazFSAW/ana/3KTlK+ioCEWHeVD497SOde1Lv2YvDvNJoO4T6Sd+/z8c+59qk/dbkiEeR99jEkMAMe9L8UFh4zxqbY6MggqRIy8+7TMkojIcgWLx4ZQXvBU//dD5LelPGFykrSdOmP+V6xBMwvCtfP9LvpOcdQwiZ13md/sX3LeQ1KuK9en2Z6LuwzPWY8Px4i5ig9EN5m9aHXFvgGuZPRvZD0kMaWh/Wj+D1YwP5Q5abJXHbdu8JGObIufZt/aufyxgOHHNtgPHDSA5LCyFN9AZ7bs4z/kFWYtRYtG72IXkgvVDC+v6GNScRKmi7fnymXPSxOeLNyjTMY1s8h0XANJ0fFfVpded49s7a1H2U5TvPJubN85c8mV9QF5mn+Trq9RB27ybHtmNIl/OFJuUf1DXeuM/fg3kzynzfx6ZeDm3mJHavrnCt2y7QMaDjqCK2Vqgzj6Dfa7rusjJVJWBIn85Xc/MIjObNa6/J81u5dJwbAREwc2My4c/UIWCYWOKl4BUQALDPPvtEr5h0wKSB0qHS0Z4/WzHsJ09cx8SKSb9NNlMChjQ5wRqOkBGDuh/lwgUcC4oiqzHKhYUnE8Of/vSnYybz/IYVDhbBJigrmLD6ST/4MGFFmYWbNlhAcJnQ4TF4sGDA5Q98UHZjbWhCGpv4cw5lK7GQuQZLPpTMXrAY4p6EDeD5IFj8ZARsKbe9k5SA8Xn5z3hXYJWYknmw4lgfsXcDWH7ve9+LC1rKwWKA8iO2WafPs6kiwecxlT6zwKmiAE5JtrYYsRjD8s0LJB4LTxRqWDVYSAafxhMwTMRoH34yRt15wQteEPsNFHb+N/KhbmP5iFCXUALRz/j6TN/jwxXQtneePTFve79cv1m1rrdtl3WfNQLU5x+LcxYmCH0OuJm0JWCwIEWpzOIaZSHWZiyE8IQgrAt9kQmLbJSYJkzA/ftMJ7TUD5RdXlC82LPQv0BeUwYsKs0NHMUAirjU6tXnk37OETAo2SCPkX6KlphoSP/aEjAU2xsBML7YRtu8V8YUBLxR+mOUwQKBOQPvE2WtifewYlxkkUx4CJu4k46NRL3XA/WRcE30AfQTZoUFQU/dNUtYxkgUZ6Y0pU2iGDDxZeUc3hUYAdh4R7vG45PFA++VsEEmFt7BvtPXonQ2gpNn4RnMCIUy4SnD73gOM96CBwom68voi3y4GTDz7cHulR4pJwovlM/m3YLyDut+LxBLzDM8qcJ3xmFTtvr0tE+vWIM8sZCqfiFr16CM5n3i7cO7x8Kae/k2y3yC+ZAJ74b5gr0jxgqw9oYftCsWvIZTG5LE7mtH6iLPb9Ik/Jhda2GW7LsfW3N4EaqB+Rl4gT/zOawKTeGIUhHjIm/plxo9YewCccDcE6FOYYxgnsq8B8YIaxNWtrJjOndgnAR/+mjqL+8KK0RvPc/7wuPH2g7virYMaUk7ROhnUytQq5Nl5anzG3NqrGetrpQR4TwD7wwBJ+oB/Yw/z5iAUo75PWnIn3aFAZUJ383Tg3NecWJpOK6zzjoxvAoYofQnlAfvvUhZyTW+j+L+dfpTrkc8AcN38uGZmAtRL1BQ4hVv+6qQBg8m2iVSt3+JF43QP94ZWFu7omiQJIzRRv7joUN9pq5C6hvpxByEPtD6MLCjDhMmkGupZ4S1oc+yPow0EH9m/Uv7M88qfoPcsft6mGi7nqxhLMOjCOmi3XsCxu5LH8M9GWfo7+mTsL7G8Ib5M0Ldpr7guUPdpV0zrto8n2fC29WTH349zlhE/fIepMy9vKcLxAveS9zDxiLm9OaBRjm5p/cqTr0micaB/mEUpS2ewyBgfN8DpnXmR0V9Wt05HvdtW/eZc9oeYdRVCHNvEMv8jjGT3zCks/rHvZtK2zGkq/lC0/IP4jr6C2/sQ78A3vQvzCvo/yCu6CvQgUHWWJ/RxZyEZ+oC16btgmdg7k/9M70phl20KxNwYPsCpM48gjG66bor3mz2vzoEDNewDsNIiDUB63jGBTwm7dlIwzhghjl1n5/rJXkERMDkcZnQZ2nEqdI89YBhss6AyICWumMzgNliDytZXLlRNLAAQDnhlShMQlGseLHwFpxjIswkORWs3ZkMcsSlmAUECv1B3I/JHh2KLYDTiYCVjYkhrtMIE3KUKikx4i1ZWZT6BRy4sWD2lnoMRiwETElI3iwifGedKoEY0LzlFtcgbD6IYoQO0gRyhc6Re5uwKCTGol+oeA+aIgIGnFik0AmjDGMSjZId10ET7oNyiIm0CYMRShoGWVMg8BuLFwZfL8cee+xcylX/uz6PRSBVBo399X/fuly0EOYsDRGI4gKFma9nfjFhJfEEDOewSuedo/TcbfY+Rj5UEQtdFqemeCU9ygSsVr34BRznKQsL5Zy0uZ/FlrZ8q9b1rtol963zrFbOouO2227bUzjQb/l315SAoT877LDD+nrggaUJJBplqSoop2wSatfQF3urdBSJ1MdUMA5gMVBVcgQMpDJhmBBv/VM1z/FK1wUBw8Sb8RChfvjxDXKLSTiEqCmh/LPhPo6hApIaJ3DOx2/nO8QCREFOmNTjlo7yhjEtFX6j3pn4+oz3m3lk+NArlrbomFr4FxkHUOcZd5lXIV6xZ3l75WjqbWZpqh7Zq8XCXqHYRqmQk9RLEUWY7Wnn03urXRTR5G+SLmTBn3mQKeAtHVgxbzHBm47nNEHpaaHqmBtwj1wIEN/HesLP8ml6ZDzw3gkooW2+VzfP1JuGEDiQwkiKF/MlQjSleJWFLKI+MRZS5xHzBItfkn9+/K9LBntPHrCmHuXeCe2cd26CYjr1UmZMvvDCC2MS84y29IM6+rBizIm9F4G/pzcWSedB1EkUcTxPqpDjPbCeQWGN8C69YimnODHDNH9/+1ykrLTf2/anvo/hfeIh5AlOu8/OswlgC99mnhD2G8eq/Yu/ZhQ+ewKE8kC6ErYqJ6xJ/PtOra5TAtnyoC6wdjbiz9d15qnm3U967yFj13NMx2W8Qxk/u2r3KQHD2pnxwq/JrDysBQlXh0Gg94C23wlvxNhmglLR71fGvMsUcX59bOk5sv639SpzN59f2g8WvbNUZ1Hm8ebvPd6f2+Lp10y8L2+YxLPQB1l/1NUeME3nR5SnX59WdY7XRd3HEAb8EAyHUsOt+MMA/rUZQ7qYLwzgkVpl6b2fGJfR92FIlRP6Ub/u7GpO0gWubdoFz+rX6t7jL8Wh7jyi7TyhDgHD/IB5vCfdKT9jHX2RjYO5tVHV50/x0Pf/ISAC5n9YTJpP6WSGB6MTNGsdrIG810b64HSwWLtWEQZWFj3WULkGBZhZgOYIGJQAKAVyE8Z+92xyP5sA+7yZZJtChfOwwHTqXnIEAmnMktwviLgOUsUrKSwvFtp0YCbpoqgqAZNOdsivyNITi0tCI5j4DjRHwGAJBkmVyllnnRX3//HnLeSCP5f7jGKaRRNKcd41mHvPhdw1OjcWARZ8nqAY++v/vnWpzIJ8gYTxgidXbpKVtoGUgPF55D6ni+qcAtUP9ORRRsDk7uHPld2vaV3vql1Szi6f1d5NqljnPk0JGPpS36+QV04GTcDk7sm5LggY31/7sFxF9xzW+VTRU6TcKCufV+bk6knZtZ6ozSkT0nZRRsCU3YffMBjxXqGMYWZVx94P5iUCwcMY7Q0BivL2ivYyBS/X+8VabrFlbY2040XAcC8sq21/O5SxzKu8MAajrDCrbhbAeLWa+IVsbg5k6Th6BUj6viHpbE7ZT3HkiWH6XJuX+nvV/ey9bevW4/Reafgrr5T0eKH4LNsDyNcJr7zEMwzSxsQbLNk5O7JpKiQBUkbGWXo7skksXjkm/d6JJzHSfW/IYxgEjO+HKQP1D0LcS5oGRTTlryqeOExJxVRxkv6e3qOfsjJNn37v15/6+gThyDwoJ349kWvTE5WA8d6adQ0j/LU5Ix+PI+QMpIWJJ3P93DjX33INbR0lGuLL2VW792M29/AeenyvK56wS8cH369DYjE/T8WH4U7n5hgFmPFhP9wx9LN5Y9sxNC3jeH4vw3MYBEzT+RGY9evTqs7xuqj7fgzCCxMPi9TwYTzfs92rbAzpYr5g9xmFY+o1QvScqsZ1Xc5JusC1TbvgXfi1em5NYO+r7jzCris69psn1CFg8BZOyRe7r38+It4wx/bify97fn+NPo9FQATMWDwmxbccAVP1wfyEseo13mqDa7CawR0ayREwWC97F+SYsMa/uvfLETBYL1E2k1wM6NTVkrRGPuQwxkKRRXIqRkTYeUJBQJCY+AUT54o8YLw7rF1rru323Y5YNXslurfkyhEwKKNQ4qdS5C1EGAbC/ay11lpjLM3S6/W9HQIWQqFKLlU2eq6Sj1fqkZ537b2gfB5eKcD5ugQMFvRY0pugQEUB5sUP9JxPF3k+bb/PZfdrWte7apeUvctntbqTU0g2JWCoGyi9TCgvhDIWp/SX9GuEArCFNOlQnnvFMBNf751nIVIsTxbq5Okl9YDhN56LsD94X2DJibUlxH9bDxjft9dRelImnpUFOEYOdQQvMSP2q17XBQHjJ+u5tldWlnR8RBHjF8RVF+dl9/C/eWWQD6OVloPxk9A7PjSNz8c+kwfECoLStsyiknuw0EZyHgu+H2yrPKqjIPXEEGWz+QmfEYwfmG8htBcLzxRPzP5XZyHrQ/NxPf0eVuapZTgeQt4L2O5lR3A345e0vJam7tEr77gWb4mct0eVfFOS3hObdfDCC9m8lfF44TvilXB8t/BZfM6JhePJ9eO59JxLLc/tXRWl98qI3H288svPJYvy6+q8t8BP92/iHkceeWSAxENyXnjxh5J/noS1MMiWPFWc+DAclsYf+ykrfdrc57QfS/tT38eUETBpm/dejdy3Tv+SK+cwzqX7lfn+v195UvLeE6q5a1NFoTdySzchxsPfQs2QV9oX+nt11e49AZMa8+Wep985T5IwF2PsNPEesv5Z7HeOhOQ0L02M7LyxoV+rY6hpc1J/vX2G6DKPWm8waL9PlGMZnr4OpEYMPJ/Hqx9pXhWPtF+pOj8i/359WtU5nn9u8m0y5qHHYZ5sQn+NIQM6Kz/vtN/H61g2hnQxXxiv56hyn3QPLk9O97u+yzlJF7i2aRc8q1+rlxEQdecR/XBMy53OE/yaLvVITMtSRsB47+vcOFP1+fs9z1T+XQTMJHz7XoFU9fFQvuP5gidEkeDlgpKSEC24uGOdR4xHc1G26wgtZq7aOQImR4jYtf44yPv5SSz3zBFPKdtPOlMYeBaa83XFd5pVCRhvaVH3fn5xmhIwOSs5yx/FKi7l5hZt5+3IYh1FF9aWPra+/a5jOwSG4QHjF/qUnjLQpnOSpi0jYOgvCJtDuDoUU3ynjfm6lVMC+4GeMlQlYOrer2ld76pd8mxNn5VrU7HFbg7TpgQMlqQ+jjru+am3AeEqzTshLRPf8RSkDph4ssbOpceUgIHEBndPeFMuxiIUdVUlF4LMK2B8v1klT0JUVPUe9fkxBmBRX0e6IGB8+03DU6VlYTym3UJ28QfWFnaKtH5M43vVxTlpU8HTlbkFcxneB/dj3DJPWx9Sk7SM58TwT4W4xnjOQOr5kDSk88rd9Lqy77nx0uM4ngQMfRaLP/NwST1ZvQINzxcsnL3UWcimBLV5boC7kQQ+7yqfvWdIlfRFabyiiDSeNCm6pug8hBVKbBN7Tr7XwcsbMniFYtEGtna/smORoUx6jffeLjLo8dekiuXU43VYBEyquPPPD8mNEZD1CUUh+Pxzooz3fcoFF1wQQ0aRph8BU6as4HpfB3MkLWm81O1PfR9TRsAQf9+82XNk2kQkYNKxpM54mV5LmGjCXRcJ44kP5ch+ToRmNPFKcsYWH2KbvBmnkNQrvat279eu6f2tjGVH9u+gDTCmsq8ebZ3vSBoe25PRGCmgAPfjKIQTpIt5P3ovNeo3dbaJgD/teSJIHTx9fzZeBEzT+RHY9+vT0rZV5OXcRd0HZ/QM3niLMrK+wSiAsYB9jwYtdcaQLuYLg36eOvn7sSM1JO6XT5dzki5wbdMueFa/Vq9DwPSbR6Q41p0ndEXA+NCSuflM1edPn0ff/4eACJj/YTFpPjGZYlKUCh2mCUoEXKj5w4IHpSaT9ZwQ/5vOE6tCW+zk0tm5tgTMeNzPT2Ipd10CJrU8tWevckwVolUJmNTKs8q9LI33YqhDwHA9jDsbxKYTH8vbjqRhEiTpDgFvhVCWaxr7vCxt2W9McplMeCkKrUcarxTge46AwWqGOuf3UyJtTtK2QRo/0PO9HwHT5n5N6npX7bLJs3JNkbCJsSlmU++opgRMSoQwZhD2C7IHL8Iid2Zfxi4IGDC3MJc+77qfcwSMX1TmLH/K7oFCHKtsU0iUpfW/0W5SIsv/nvvcloBh7zXzVCX/XIgdFCxYmEOSpXvFpWVqS8CAHXlgBZsjU/z9PAHDeYgv9urwinOfHiU0Yz59h0lKbtP3VBG8d9P9h3w/OJ4EDOVN9zcwJTVEKBZwJjnFY52FrCcmydM2LU/356mKI3u08M5sc08rZ5Mj9YY6YZLbx8R+63fEW8XqOv0bSiWbG9fBq4iA8XsnUZaqeBEClHfIBq/9xM8bciHF0usJY0d5TVICa1gEDH0ChLb1pzvP9i600Gp+Dg6GKDa8ctiehfA3ePhAtnhjD/vdjuNBwLTpT30fM9UImPNnbyRPv2qSjjV2Pnf0HkH87vcPy6XnnJ870S7Yq9DEW+LTLzA+2n5TfkzBOt/CB3JtV+3er12rEjC/+tWv4nNDzllbsufxx5SAgaChP7RrIJUwwsG7ED0De7/Yb2lYKAwovHczWFk/6u+Z+4wOoYkhSy6vQZxriucwCBiev8n8iOu6ImC6qvvMafBwZ52WE/pwjDo4dilNx5Au5gtdPkfbvPy8Ih0v++Xtr207J+kK16btgmf1eomuCZg28wQRMP1q4uj8LgJmdN5FZyXJETBsQsmitK5cfvnlUXFRhXixvNsQMON1Pz+Jpdx1CZjUGpQ8CL2BoqefMHBNnz69l6wqAeNdvbmYySwLsX6Cey6KRFOO1iVgyJ+BivuzaaApdXP3xSqdibikGwTSGOdFubaNA2355qzW0gWopeXolQJ89wQMyhOsiS+66CJ+qiQoUpqGIOvqfnXrelftEoD8pI7v/cgm0hSJt9Sk3WJxZ9KUgEHxgZVjkay55prRIrTMG64LAgZlW13CIlfmHAFz2WWXxTGP9G3wz92vy3NtCRhv3Uq5qHuE+TJBYVkUzg1jDpROXqGZKsU8kUWeRdaR/MbCmpAb5l3FORPq7bRp03p7nXA+JWAsLf0ldR0SJ5eX35/ObyaKl6cnKyy/qkffD443AZMSaSgL6bN9eCY8gQjbk0qdhSxea8T8NiHsDB5oV199dfSetvMoxquQBJa+iyMLVpSfJnU91+y6NFZ9SsDWwYt3YPvzeA8Y3+6WW265qOSy+3d1JGwSZUX6ebaRpujd8hsyLAKGexP6C1IR8V4FhEoyo44iBYhXIMYMHv/H3Jnxg7HeFMipQqlOuA6y9ffKWYy27U99HzPVCJjUyy7neevfr//c5FqPtZ/Tku+DDz44Zh8tYuMTI7/ffbpq937t2o+AYa1G+muvvdZDEj8z14bUtTCJnEwJGM7Rh9F/lekAGAcYb2ifJqknkRH29vtEPLbFc1gEjGFdZ37ENf36tKpzvK7qPmWiXtHWmOextkzrJfUaHUeZlxv5VBWPgb+myhjSxXzB33PYn+vOK3x5615bNifpGte67YLn8mv1ovkH6erOI9rOE0TAgPrEEBEwE+M91SplVwQMyhU8afwAx6CDpSwhPWCxifVNWAs/iWtKwIzn/fwkFnDrEjBMxLCS8lIUI9enyX2uSsD40AKWT7/Y3pbOH5sQMHY9kx9IMqzIUHL5ukGaXJgTu1bHZgik1n9pLmwMuuGGG6anG3/3G5aSSRl56xeqpPWLVe/Cym/IYostFsM5vOAFL4iKIZR3WMaYtCFgurqflaVqXe+qXXJfP6njexsCwFtyp/HrmxIwlInFlN/ThXNeGCOKNmwlXRcEDH1PF0reHAGDVSd1Cemn4IiJhvSvDQGTjrW0OxY1Rmp563IeD09ZsMDriDaMpB4WTQkYrBkJlWWKUIwYGEeYY6Cgtvje3iq5iICJBXv8Hws4nsl7xbCJMHUTQSGEZTyS8/6JP1T85/vB8SZgKKK3MAU/PJbB0MZn+tjVVlttrqeps5BN94AxS/JUIWnEzFw3G/AJT6hxqzR0UJXb+5BtuTzq4FVEwHgcc2FoqpSzXxrvlUR/nO4Dkl7vy8RvKYk2TAIm9byiLuPB7wlTHybOno0+gj7JhDk+4XI5Wj+HVz+bOSODJGC66E99HzPVCBjGKwxKTCwUtH0vO6aeGOlcKL0WUs57XxxxxBFz7UnnwxQaico83PbdxCv44IMPHpO1b2Nt2r1fu5bNT1ijshY3EpjCkJ45JWOBee34cucIGMhPMENod+zHwx9kC/MCvO9pVzlBf4A+AvFrg1zaUT/XBZ7DJmA8xv3mR6T15EOOVK5KwHRV9335+cz8hr1FmHMYGc951rDUt7bSdgzpYr7Q9hm6vJ7xFEyQKvMKf+8u5ySDxLVKu+C5/Fq9KwKmi3mCCBhf60b7swiY0X4/jUrXFQGDkg1ywIRJIwOyj7vPb36SxfemBMx43s9PYilzXQKGa1JFdW7STbp+UpWAwR3cu8KTL/GHmVTXkTYEjL8PVqdYLfsJPjFYjzrqKJ9MnztAAAuNU045JS7wwJ3FD0pDXPxZBHUpe+yxxxgX79yeB9yPyS8W86bk45wtsjiHwsALkxQsqE2hym+ptUdTAqbL+/ky2+eyut5Vu+ReflLH9zYEjFfKpht6tiFgKBeh6lhMXnrppQGPERanXugLi7wnuiBgquwb48tT9DlHwHjcrD4XXT/M800JGIhFQmiZsohnYA8PFCkm3nsKApZ66dst6boiYPwiFyUoCi9TkFp5ONYlYOxar0DinBEHWFHjsYkwtyEWPv1PE/HK0WEQMITMgnA1IUwaoRgR9hby8zhLw7HOQtaHkEjjfzMOGIFG+0aRN97CPATSwwQiipjl5vlr54uOaaiiFVdcsaect2vq4FVEwDCWs0g2Oe644+IG8va9i2OqGOunsCYUHBvqIrnxfpgEDGVinst+kghjC4Zftv/UyiuvHPf8iT8+/i9VuheRceNFwHTRn/o+ZqoRMLxW//y0rXQt5N9/+tlfS9vLhei2a9J+wEI62u8c0wgIEBSse03SEH6c76rd+7VrGQGDkQpzGYRxjT6AcOOplBEwGEewHkAgbTAyTOcBaX7+O+GgmCMiRV6YPv0of+4Cz1EiYAzrovkRv3dFwHRV963M6ZE5LXWN0HCIkaJpujrfuxhDupgv1CnzoNOm84pcP1dUhvTaNnOS8cC1rF3wjH6t3hUB08U8QQRMUQ0cvfMiYEbvnbQuUVcEDBY8PnxQbgJ16623BkIB2OKbwjclYMbzfn4SS5mbEDCE9ICx9sJCFcvdVK666qq4wAXDjTfeeMzPfmMz+yENGcR5JhksHLy3ERNrNrhLQ/6QFiUlExIGh+WXX96yju65xBI3yS247TeOKFsJc5ISb/yWxp/3myeyWR0TdjwEsLZiweTDhHC9ZPQQ8Io2K126WTIKdzbJxIPFiymsb7/99rDTTjv5nwIuyChYTaijTOCo6yZVCJhc/Niu7tekrnfVLsHAT+r4nntWzlcR78nh2yXXtiVg0vv/5je/GbMRN2FvIAxzku4jg+Jv/vnnzyXtnUuvGSQB4xWn/axlewUcwocmBAzW5IxRN9xwQ6/EhIw0IoKTqbUx75EQYKmkIQL6ecAUhY3xcfMtnEt6L8ILomwyshfSZo011kiTZb/7+RBWe3iNokRKCSQL3ZXNpM9Jr+CD3GJT2Kbi5wNVwkfZffBEzoWaSclXS8/RL2Qh9dnfIKdgS0N8pXuO+bkbfTiL16rEhy8P90F8KBv/e7/PWMISEtIEoghlNaHEioQ6hVEKXkNecl4VHq8yYot8fD/ilb7cb9ttt+3tqZcjenw5mnxmPo4HlM3Lc/Nbyzfd9y0dK0g3bALGe5lSv6hbVldyZIS3JKUuUR9z4o2fBuUB01V/6vuY3DPb83msclbKTfsXyz89sjbgPuwLMkjx/Rt14PTTT+87b7Dy+HkVZDtjUW6/INJ7BVbZ2si3b+qO7UtR1C901e792rWMgCFULAp/hDUnc/iceHIz9YDxSkjGIvbeI7xjVWFu7w3y+DyIjdJZa+KJyfsalHSB5ygSMEXzI3CsS8AUzfG6qvtl75Z1BIYESBeGoF2MIV3MF8qe2f82Hv0w7QzvQN4nUgfnLuck44FrWbvg2f2Yks6H+d2kagiyruYJfvzCS5jwyiZVy0J6H1Ek5/1W9fnt3v2O6DUXXHDBwnG53/UT8XcRMBPxrfUps+84LGlZGCFLkx5RypiVmf1mCikWP0z0mVBZZ2xpmhIw43k/P4ml3LkFak6p61l7Fq4w1rbItefHQo9QLSitUPJgcesVXuniCWUiE1svEDUomJhUYPlrmyVjBciEORWUWKusskrsvLA0YOJLh46wOEIxYaFj6njAUJdQTPGOmXhj3Ur4KBYvkErse+Ot31kksfBHIIZSpcZkiAMcH24S/4NU3Xn2ZrepMPFaZpllAvULK8HcHgtGwDBRSz2zCFOAMhBlO4tV2jvh7LzkCJgcIQSpSFraDhZ8lKvt/drU9S7aJThUeVYsfquItzhKFblNCRiUmyg1mXCCvwkkFO3e6gTW52xOmxOUtXg+mbBZLQt/n5/9ZsfxImDScErmLWHlGKVjVQKGcYDxB7KUhYsfrxkbGA88gU9/7sNr5qzcCPfAOPTQQw/1IEkJmNQzDMIW5S6Cxwaeeyj7vSKLz6llMwtLlEdYHZt4AoZ3BrmLIpt6mRIIjEGMRUhKaPowZPxOCCr6llSY66CMQJgDpB463huWfm7//fePaelTUEzWISMIi0a5TCg/Fv+PPfZYoG8u8njEo4m+0AttCiv/orblF7Jcx5yD8Do+PZageEhhxWrCdV7ZxeKJzdGtbqGQZE6DMtIL80beBYooLKs91swljYwvW9D6/NLPEHUsOG3uY78z/8WbEMtY5mVgyfNAIqKEB1cvRWScx6tI0Wr5+HrtCRh+9yFZ+E672HvvvcN8883H154wTrIQpv1i8LPSSiv1fuv3Ia1HzFXpa3374N0yF6Y9IvQHPGNKgA2bgLHxxfc3lBdlOoYGaTjKlIQgTUrye4t28hoUAdNVf9oVAZPWi6r9Cxilgrff+eefH0/7dV+arovvfj5DfhgOHHbYYWP6YuoJBgMYhr3+9a/vjSUp2Q4hS9l9v0zfgQLXh61D6c7aMCfsQ8fYmErRGEK6Ltq9X7uWETBegZbzEqOvZj3v1/gpAYMBn41l9pz0EYx/jGvM85hbMn9g/z+8ZHxb5H1giMVcACE940tKiD/66KORUKMvZu3LHLGqML4xNvM8uXV81Xz6pesCz2EQMG3mR/0ImKpzPLBtW/dRHlNX2W8prT/kzxyFvWEQ9CHeIy2erPmvizGkq/lCv6KPZz9M/4rXrglzONZnvt0z5rEn1IUXXhjbuxlLpWNP0zlJF7i2aRc8O3o86jTijTwIYUneNvetSnp0NU8YLwKm6vNHgEr+gRf1Bw92xhbWPlV1HCXZToifRMBMiNdUr5BdETA5YoCS0EhsoZ0rmZ+I5xSTWFnCdKYynvfzk1jKkZu49SNguM5bSfC9iqST4XRxkMvDW2N6S5xc2tw5r9iqQ8BgkYyir4qkIT9SjMlj59mKfRQ1ktFGAIWnhQ6oU1IjYLiGBbD31qqSD4o/Nuv24j05/Hn7zAIQYoB61eZ+beo6ZWnbLsmj6rPSB/cT+mgfIu6EE06ICmiua0rAoESnXnB/CF+UVigzIdLYwNqkLAQZ5fBW6naNKX2NkLHzHMeLgKHuEQIL6SKMQcxoQP9SAgb80nqBcUDRWM3z4a3hyRcrqvdKgXCjXRO+5J577gnEckZ5mUpKwKB8McKFtJQNBQ1KVDw1WLihrErbDR61KHOYmBNGi0V3auTgCRgU/cwdEBY9KJGol8Sphyj2CrU01Br34Fl9/uwTwwKfvO66665e2Md4g9n/WDRaWBY7R/30RhYokRgPWYBCmFDnveLbrssd0zkT+FMeCCj6N553nXXWmetS8ObZzTOABBhuULYi8QtZS8Nicq211opEK++bd+DxKcrTb7RLXrxvFt7LLrtsQLkJPoQr9ALhghKdMvMevPg5jz/f7zOkAgqJlNy36yhXUZsgDe+W0J659+XxakPAcB9v0c936gv1nnYGHpTfrOr5HQMYr/jgXJlQH7CA9OQSRji0QeoUC176cv9ueXbqdyrDJmAoT+rdxLkddtghkkp89kK95TcT+jr6FTYdZ5xCaZt67w6KgKEMXfSnXREwTfsXw9KOaci/3NzN0nZ19H09edJ3EG6Rd0e7x7DDk6/ee5O9fnjvJtbepk+fHu67776AF6+/OEtNqQAAQABJREFUdvXVV48e/JY+PTK+QLz7voS+hXtQriJp2+79uqqMgEnXppDaGFbQr2E8BzbpfDklYOi3MZryxg9Fz8V5MEWB5r1kuBd5eMFyHoMJcIIITzdTr7Ofqg9Nyj1ST3t/3zafu8BzGASMbzN150f9CJiqczzDvWndTw0rmA9RnxnPaLN4annvX8LZFxmqWFn6HbsYQ7qcLxSVd7z7Yfo7IrH4vpJ6xZyUI+Whntu8whv/dTUn6QLXNu2Cd5Hq0TDuIkoMpDUY4WmKsU9VAoY8u5gnjBcBU/X5ea4ySb0kWTOwvpsKIgJmEr7lrggYOks8HvzmZilcTDhf8pKX9BQg/N6UgBnP+/lJLGVuSsBwLRMz2H4bcDhXJLjyoXBKJ+ieTc5d6y1CmYxgRVoUViG9PlUYpR1nmZv9scceG8OSpHmm36kHKXPt91Kw9GkoKzuv42ghwIJ05syZY6ye0xKiZKceU/9NPAGTs56zdHaEjIToNKVhbhFPfUeZYmnsWn/E8pvFX2qt59Pwuex+beo6ebdtl5ZHlWfdcMMNSd5XmMiYAhqlIkoopC0BU3Zj+gImyN5C3qc3ZatXXPjfURqm4evGi4DxG3ljkb7lllv6oo3U55SAqVo43g/Eh99oOL0Wq2aU2GXCmEQZmG8gKQHDOcYErN6KBC8pFGe886L6wLUo2JZYYome55QnYNIwmEX3IiwYhFMqGEBw3iuq0zT2ncUBexulngrpXlaW3o54tqH4riLMg7zVcHpNmSLeL0y5DotiFsVFkqYvSmfnUdDRh+TICcrN/Zhf9BPqIJbQZl1ufYK/rq0SBTI156Ht7+E/s4BmHkY9KxKPF7jyvEVS5gHDNZB/1AvvDViUF30pc0zzYi5Kl57HewwvAcbifsK8HXIt925HgYBB4ZOSQ+a9kXu2nDdpmo5nxgsAGSQB00V/2hUB06Z/8fhRt8wz387nxgD7rYsjVsK8V4j1fpKS7YwvjBVlbdbyxIuR8T9dp9nvdkzrWC58n6W1Y9t279euZQQM81HGVfM+sfv7I8+HIYRhkhIwEC/MAywPiEzeO0YUEFC5MZs5POO6t4jHOxOFJ++vnxR5HxZdR3orH2nqkDdFeebOd4HnMAiYNvOjfgQMOFWZ45n3YdO6T0QFxqAqRoFdztvT9p2rF2VjSJfzhdy9OTeMfpj2xr5q3is6Vz76F+YtRKgw6WJO0gWubdoFzwJ5jZFpkZjerQ4B08U8YbwImKrPX4SPnU8948rWN3bNZDmKgJksb9I9R46AMWtTl6zSRzpLFiimxLOLWEATZgvFGCwvVsumwPAEDBM4lD1eijxgSDNe9/OTWO6LMjl1e67iAcO1CAoELKxwgU0VxWCF4hcLfXPFnHPV//4zMSUkE/HpvTCAYW3AxDiNWYxLPtdwTCe2XIdFAoqc1BKkDgFDWSDgsG695JJL5iKZmGyzWOH9Y13ohf0G2HTdwhJhtcKExk/MfXp9Hi0EIBSZXLPY9eQiizCUr1j/YaELUWPvOF30YtlGHmmbwCqGukk+WK+jUGUxlyNgQIUJHwvB1BIPJRh1jPAySNv7Na3r8eaP/2vaLi2Pqs9q6cuOWPlCKiBYPUPa0v6aEjB4I9B/+wWvvz/vA2tHxoYyIeQNE2CsvKkbfiHPBDINQ8U7vuaaa3pZmsdD70TDD7fcdnu8csb0RaN3h7eaNuv8hlkP/LKqBAzjDyFDUDCyPxlERM4DNS0wYxHjSzq2mDU5FsLe6yGnfONaPIrS90X4GDzOUHoj1FPGhnRBRz/BQoa+Bstt4g4jLOrwwDJh7kFZr7zyyrnKSx7MQayPsGv8ES8u9kXDuwcLPi/gR9hNxuEyEsXvrWDXoziv0h4svR0pA2SA94DgN8ZanoW2nBNv5Y0Xi23CnEvLuXQhi7Kevpg+zNokz48XC+8BY5t+QtumHIT3SkNG0T9suummcT6ThnFjQc8cA+lnfd6vDPY7i0QsvVnkpdbelgZrbMoE2ZojHywdR6zbeTakDgHDPDlVVsdMZv+jbNQ9xh7D3H5jMUrdZ5zkPTQV2iZ7ZqT3oB7RFulfy4gnT+RTFsb5YQgemHgqIP3qCGGNmOvy/lNZd9114zPj/Uf7xEo/3Qsr9Uwn5JQPWZXm2U9Z2bY/9Zb+9A1F/ZkPnVM0n2rav6TPjCcrnkkIaw4LIRhPDPAf4wn3ttB5diueF1yYQ+DZkhP6Jda0KMZ8/8S1jJHMS3Mehrm86J+9NyQeat77I3eNnWva7jE2gtBAyggYfseKn7HS0nMO4Vm5FoKGsQ9FImO1Jz8wwmLdifBumcczDnihjdGn0Ld4r1jCdaXhEgnZTfhO5i3eep78MJ5izsgaGQ/UOsKzUTbLs6nnZJV7tsGT/IdBwHDfpvOjfn0aeVed45HWpGndx5AAw4x0HCNfPKqYH1Ztf1aWsmPbMWQQ84VceYfRD9Nv0Pczt0jnVnhRE32BfoW+Iydt5iRd4dq0XdjzUB/RS6TjCP0Y82XmbHXnEW3nCWUETJ2y+JCLRWuJKs9vWBUdmfNijEWfgLBGhWydCiICZiq85Q6ekYEIQoJJGcobFi5srD4oGe/7dfkcWGuwMKBjgZRgIVCVdOC56SQZ3FAcpaRGUTlRgHMd74T3w7VdC5ZzKF6Z6DKBpw6kSpT0nlgNgQWDcC7UTZpe30cTAd47CygsWZoogrByp//gWhRXRd4R/Z6e2KoQewjuvmZZlV7X9n5N6npaBr63aZdVnzV3X3+OiaAtTo0ga0rAWL5YsqHEAWcmn7xP3mtdC23Lb1hHT8AQ/509txCUOCi5prrQDjDooM2hJFl00UX79vk5zKgvtH/GQRS9RXMHyDgWRW36CfopwgwxNtFHpIYLufL5czwzYymKBRtL+ynm7XrGO65l7Gfcb7sxNe0LpQ/jJ89SVg4wxtDGlPgopfC4LZOUgDFLaDDgPXDkfZXdtyx/3gX5UHcw1OmHBwpN7okitOk9i8rD+6QfpI4xf+HdUqYm41nRPdqep63xvpn3MYejnF0LyhLqFe+1jFDo+r7Dyo82Sd/DM/O+aZeDwLXK81G3u+hPq9yrSpo6/UtRfkY854zYiq7p6jx4Qtqz5kLpR5up02/QP1E3uI66MSwZdLun72NcAifmaszT+uHEWICyG9ltt91Krb1J48PnlBGEpMWgi/dGGawf5nxTwWAAw0/GGZSz/Z6t6X3suiZ42rXDPradHxWVv+ocL72+ad3nOtaltN0q9Tm9b53vozSGFJV7mP0w7Zk5t+mf6IvryCjMSZq2C8Yg04/Qt7JfY1sZtXlC2fN09fyQpxhksrcoxgFTQUTATIW3rGcUAkJACAiBKYmA3/iQiXH0YLlrTtioJRafMSUxsYc2Ama+eecZE96GcHTebd7S6ygERhUB742EQoLv/aSIgOl3nX4XAkJACKC0wsADBRwb0uPpL5kcCBDO10IX9gvrBCGBh595yp922mmVjQe7QMtCx/q9TrvIV3kIgYmAgPrhifCWVMYiBIhcwBiDYQzelEWGtUXXT9TzImAm6ptTuYWAEBACQkAI9EEAC5Udd9yxt1cH1onPXXa5eJUImDkhyM484/SA0gAp2isk/qh/QmAEEcBCE+8XFGEI1mSEgOgnImD6IaTfhYAQyCHAvII9/9j8eqONNop7AuTS6dzERID9ldhrFMFLkBCReAan0RwIC8y+pha6ExIOMm68xPZywPqcUI51PV7Hq5xt7oN3Q5W9wvw9IKXSMHD+96nwmQgEEIlEFKkqGF4NK8Rm1TL6dOqHPRr6PNEQwAsX4py1C2GpN99884n2CI3LKwKmMXS6UAgIASEgBITA6CNA3Hzi5yPEV33OMnNieYuAmUPAnHHadwL72yAopVnMS4TAREHAe7lhRXbmmWcWhnnzzyQCxqOhz0JACFRFAIUJ+9IQLpB48VPFarUqPhM9HaEa2duTowljC/u2ETYM5Tbh2zia4GHNvkv9QlNb+i6O7MED+YPXctk+Vl3ca1h5+H1/qpbhgAMOCBtvvHHV5JMyHWH32OeojjD3Z140UUT98ER5UypnDgHTTbAHI14wU0lEwEylt61nFQJCQAgIgSmJAJuUs9Epmxe33QNmsgBoIcgWW3SRcPbZZ8cQGngSSITAREEAC8gddtiht88TIYH8xtBlzyECpgwd/SYEhEAZAuy9wd6OU2EvoTIcJutv7M2AxzReLv1kk002CXvuuee4G6+wr9fDDz8cFl988X5FnLC/szH3NddcU6v8kKPLLjvH0KrWhZMoMeQhhGAdYQ+PN73pTXUuGXpa9cNDfwUqQAsE2Ptl1VVXbZHDxLxUBMzEfG8qtRAQAkJACAiBRgiIgJkDmxEwM6Yv2ghHXSQEho0Am98SLgZhk/utt946zDfffJWKhVJn1qxZMS2Wn1wrEQJCQAgIASFgCNx8880BEoCNtvF6gfCYNm1aWHLJJaNHDJ4W06dPt+Q6CgEhIASEgBAQAiUIiIApAUc/CQEhIASEgBCYbAiIgJnzRkXATLaarecRAkJACAgBISAEhIAQEAJCQAgIASEwegiIgBm9d6ISCQEhIASEgBAYGAIiYOZAKwJmYFVMGQsBISAEhIAQEAJCQAgIASEgBISAEBACjyMgAkZVQQgIASEgBITAFEJABMycly0CZgpVej2qEBACQkAICAEhIASEgBAQAkJACAiBISEgAmZIwOu2QkAICAEhIASGgYAImDmoi4AZRu3TPYWAEBACQkAICAEhIASEgBAQAkJACEwtBETATK33racVAkJACAiBKY6AETBTHIbe48+Yvmjvsz4IASEgBISAEBACQkAICAEhIASEgBAQAkKgSwREwHSJpvISAkJACAgBITDiCIiAGfuCRMCMxUPfhIAQEAJCQAgIASEgBISAEBACQkAICIHuEBAB0x2WykkICAEhIASEgBAQAkJACAgBISAEhIAQEAJCQAgIASEgBISAEBACEQERMKoIQkAICAEhIASEgBAQAkJACAgBISAEhIAQEAJCQAgIASEgBISAEOgYAREwHQOq7ISAEBACQkAICAEhIASEgBAQAkJACAgBISAEhIAQEAJCQAgIASEgAkZ1QAgIASEgBISAEBACQkAICAEhIASEgBAQAkJACAgBISAEhIAQEAIdIyACpmNAlZ0QEAJCQAgIASEgBISAEBACQkAICAEhIASEgBAQAkJACAgBISAERMCoDggBISAEhIAQEAJCQAgIASEgBISAEBACQkAICAEhIASEgBAQAkKgYwREwHQMqLITAkJACAgBISAEhIAQEAJCQAgIASEgBISAEBACQkAICAEhIASEgAgY1QEhIASEgBAQAkJACAgBISAEhIAQEAJCQAgIASEgBISAEBACQkAIdIyACJiOAVV2QkAICAEhIASEgBAQAkJACAgBISAEhIAQEAJCQAgIASEgBISAEBABozogBISAEBACQkAICAEhIASEgBAQAkJACAgBISAEhIAQEAJCQAgIgY4REAHTMaDKTggIASEgBISAEBACQkAICAEhIASEgBAQAkJACAgBISAEhIAQEAIiYFQHhIAQEAJCQAgIASEgBISAEBACQkAICAEhIASEgBAQAkJACAgBIdAxAiJgOgZU2QkBISAEhIAQEAJCQAgIASEgBISAEBACQkAICAEhIASEgBAQAkJABIzqgBAQAkJACAgBISAEhIAQEAJCQAgIASEgBISAEBACQkAICAEhIAQ6RkAETMeAKjshIASEgBAQAkJACAgBISAEhIAQEAJCQAgIASEgBISAEBACQkAIiIBRHRACQkAICIG5EJg1a1b45je/GT7wgQ+ERRZZJP5+xhlnhN/85jfhgAMOCAsssMBc1+jE8BG4+uqrw3e+852w1FJLhTe/+c2xQJdeemk8t/HGG4eXv/zlrQt5/PHHh7/+9a9h5syZYZ555on5ffSjHw3Tp08Pu+++e+v8J3oG//jHP8LZZ58dzjnnnHDkkUeGpz/96eFvf/tbOPPMM8PFF18cjj766PCEJzyh1WP+5S9/iW3zHe94R3jBC14Q87r++uvDZz7zmfD+978/LL300q3y18Wjh8Bdd90VTj/99HDTTTeFT3ziE7GAN998czj11FNjfaI9SoTAsBDQnGFYyNe/73jME+qXSlcIASEgBISAEBACQmByIyACZnK/Xz2dEBACQqA2ArfeemvYbbfdwn/+85+w9957hy233DJcccUV4T3veU/M69Of/nRYbbXV4meUza9+9at79/jGN74RFlpood53lIUnnnhiePTRR8NrX/va3nW9BMkH7nPVVVeFP/3pT+HJT35yeM5znhO22mqrnqI/Sa6vDoH77rsvbL/99vEM2J111lnhmmuuCe9+97vjuWc/+9nhpJNOclfU/3jeeeeFj3/84/HCr371q2HGjBnha1/7WvjKV74Sz0E6zDvvvPUznkRXoBz/8Y9/HJ/orW99a3jNa14T9tprr3DttdfGcx/72MfCOuus0/iJ//Wvf4U99tgj3HbbbWGDDTYIH/rQhyLBA+H20EMPhR122GEMEbb11luHhx9+ON7vsMMOC6uvvnrje+vC4SHwute9LhKflAASdMkllwybb755r0AQ5JB9beTyyy8PDzzwQGkWkO8LLrhgJOaHTcRPhPFizz33DBBlyH777Rc22mijUnzb/Fh3vG1zL39tnTmDv24ifB4WpoPCZjzmCYMqu/IVAkJACAgBISAEhMBERkAEzER+eyq7EBACQmAACGBVf91114WnPvWp0boaZf62224b/v73v0el35e//OXeXbHsR8FsYkp5vv/3v/+N5Mk///lP+zl8+9vfHkPQ2A/33ntvOPTQQ8Nll11mp3rH73//++EpT3lK77s+5BEA72222SYq4UkBEbD88suPIcggSxZbbLF8Bn3Oovh/1ateFYm5tddeOxIxd955Z3jjG98Yr9xuu+3C2972tj65TP6f8XT53Oc+Fx8UT6QTTjghfOELXwgoyBEjTeKXBv8gu3iPyJe+9KVIUh5yyCHh5z//eXjSk54U29gzn/nMXs4ve9nL4jvjBGQN95dMPATwRsSDCqHPhdzbddddw5///Od4DoL8la98Zfzc5B/9x2abbVbrUur3JptsEsl184arlUHDxBNpvPDEGWQ4feggpM542/X968wZur73IPMbJqaDeq5BzxMGVW7lKwSEgBAQAkJACAiBiY6ACJiJ/gZVfiEgBIRAhwh4QgXF+s477xzJGBQsCBa8m266ae+OPj0nPQFz9913h9e//vW9tHz41Kc+lbXAR3F/ww03jEmLMnnatGkBrxoL2YRiG0UzVsRWpjEXTfEvxx13XDjllFMiCvvvv39UjnrFLUTACius0Ail888/PxBqDCHU1fOf//xw8skn97xqisi1RjcbwYtQ+qJAhVA86KCDwqqrrpotJV5heG0heIOByy233BJ22WWXeO55z3teOOqoo+LnJv9oU7Qt3iPv89///ndUvOOxhjKc9+5FBIxHY+J+/u1vfxve9773xQeAKCHUnCf76KuNDG3ylE0IGLvPwgsvHNvESiutZKcGeqw6Xgy0EBUzr0LAQKpiaABhbh6GFbPvJasz3vYu6uCDnwNUmTN0cMtxy2JYmDZ9wKr1aJDzhKZl13VCQAgIASEgBISAEJjsCIiAmexvWM8nBISAEKiBwA9+8IOoXOcSPCjWWGONcOyxx0ZPGM55goXvXvmS/p6zHmVfGZR1Xn76059G7xc7R8gzlIneit9+I5wSYZZWXnnl8NnPftZO6/g4Ar/4xS+ilwNf99lnn7jnC5jjhYGwJ8kqq6wSP9f99+EPfzhceOGF8bIf/vCHMSwcobAIF4e3FMrgySy//OUvo5KZZ4SIWnfddQsfl/pLWJ7/+7//i/t2kNCIECNOCi8u+eGOO+4Ib3rTm2IK84JgXyaU8YiFDIxfHv9n9+WrPGA8MhPrsyf2Ntxww7gH0I033hg9YXgS6oXt+9TkyVIChv53rbXWGpMVZB8hmfC6gfBLhf4ZcmSQ3jB1xou0fMP4XoWA4b0RUrBNmMiq423XGNSdM3R9/0HmNyxMmz5T1Xo0yHlC07LrOiEgBISAEBACQkAITHYERMBM9jes5xMCQkAI1ECADdyPOeaYeMUnP/nJ8MIXvjBa62Odi+DxwGbrJmUEDGlQzhOyDMUdiijbO8au54gyG+8KpEw5/dhjj/X2PBABE+Ga6x/eQYSjQj74wQ+Gl770pWO8VLB8fe5znzvXdVVOoORH2Y+wxwleSSh9IQWmAgHj20Y/AsZwWWSRRaIHF4q8l7/85VFpzR4seII1EZTfu+++e7yUPZXYX+Kiiy4KBx98cDyXC0MlAqYJ0qN3DXuz2H5bW2yxRZg5c+YY70TqAnWiqaQEDMpcI/tyed51112xb4cQ8TLoUIRVxwtfpmF+rkLAvOIVrwiEeGxDwPCMVcbbrrHw/WKVOUPX9x90fsPAtOkzVa1Hg5wnNC27rhMCQkAICAEhIASEwGRHQATMZH/Dej4hIASEQA0Evvvd74bPf/7z8QpTwPn9Kw488MAxmwj3I2Cq3Hq33XbrbVJsm5bnrvPW/yJgcgiFuPeIeaLY3jmELSJ8UVuSxIcyw/uId2CeHpRmsocgw3vorLPOisCXETDeU2H77bcPb3nLW6JiFG8hJEeSxB8q/POhzKwNsC8I7waB5MHzyYsIGI/GxP3sPbDMO/HUU0+NHoo8VZv9nbi+LgHDNcisWbMi6QuBYNKG6LU8io5Vx4ui68f7fD8CxvcXbQmY8X427ld3zjCMMk6Fe9apR4RyHdQ8YSpgrWcUAkJACAgBISAEhEATBETANEFN1wgBISAEJikC3jKSEDRYt7IHC14sSLp/RRcEjIUVI/+PfOQjYb311uPjXHLZZZeFfffdN5435fNciabwCSzkUfahCCV00KGHHhrDYEGSIFjPt9k35/DDDw/nnHNOzMv2GoFMuOKKK+I57tNmD4qYyQj/o+5RB5EyAubEE08MX//612O6448/Piy99NKxXl9wwQXxHArLpz3tafFz3X/3339/wMPA5Fvf+lZgb5q3v/3t8RT7JkESzTvvvJakF/qMEwpB1oNlwn2wfU+e/OQnx3eMR+AOO+wQw0AuueSSvT666YM1JWC439VXXx3e9a539W4NkUA7sL27ej908KHqeNHBrTrJoh8B84c//CGStNxsIhIwdecMnYCqTOZCoGo9GvQ8Ya6C6YQQEAJCQAgIASEgBIRAREAEjCqCEBACQkAI9BB49NFHA3uwWHx/4rv//e9/D2z8jTzlKU+JmwXbBf0ImF/96lfhZz/7WUwOefPKV74yfmYjc5R2CKGyzHoaJX7RRs5Y+p9xxhnxmsUXX3yMwo+TKLrZ9DwV7vP73/8+XH/99XHvApTUhDpbccUVwzrrrBOe9axnjbmEkCNYliPs4UGZ5p9//jFp0i/k/b3vfS+gFEUZimLUCyHYKP8111wTn5vwPUsssUQsxwYbbBA3X/bp7fPvfve7cO6554YnPvGJ4Q1veEOYMWNG3ND9pJNOis8Dbsstt1z0gDj99NOjEhYFLXv18Fyf/vSnA/u1sO8OJBrvr6l4JaspfAlFhjU+8qIXvagX/ozvVnY8b/CmgnTASvfXv/51DGWGVw7vgj1p2Gtoo4024rJSqYvjeeedF+9Hptxrp512mmsPIrvhI488EiBM2GMIIZwLZaOO432F9xdtAeF5IAFNeD+EFkPM48S8X3wbaeP9YvdC0W1thw2711577cB+MNwHYSNm2oeJlYfvRsD88Y9/7L0HvGoIS/f85z8/bLrpptk2xLV4xvH+ll122bDtttvGuo4V9U9+8pOID4QtuBD2zsvtt98e6AduuOGGGDKL35ZaaqlY9wlxuMwyy/jk8TNhEMGad7bNNttk05Dw4YcfDl/84hfDgw8+GNt/Wcgs9j3AiwRhDxVwM6E/ghi77rrr4h4nnOc5aVvUS0LJlcnll18e+KN903/Q9uhjCLm4/vrrZy+19lGlbbOfEN6BiL1z+tWPfexjESPwes5znpO9T9WTbQgY7kHdAmOT3H5E9ht1lf7w2muvjZhTr6iD4L355pvP1SdXHS+oL2mYy/vuuy9ccsklsb/k/fq+91WvetWYtmLlozzmCTrffPNF7DnmhLCMFoaNuuwJUtIXETD0ZfQr9FF4LyGMX3gseqEt+7Cf/rf0c9F469O1res+Lz5XnTMMYlylDV111VXx3dK/QDzTbtdcc83oDZgjAO+55544FtLuaNuMPfQfvAPGJuoL4yyEO/1UFUzB4eabb46eptRpysI4Qn1gPkP/nBt7fVkYL7gfeNK2+aPvRJZffvlYrxmT0meqW4/MoGZQ84RYYP0TAkJACAgBISAEhIAQmAsBETBzQaITQkAICIGpjQBKaBRkKJJMqYc3xYILLhiVoV4Z5JXLoIbiH+WFCcrR0047LX5FwfuZz3wmfj7llFMCYWq6lHe/+90BhZoJiqYjjjiiRwDZeX9EYYdSnNBNJn6vBc7tuuuukfyw33NHyJG//OUv8ScstN/5znf2kqGY2X///Xu/935wH7baaqtoBZ0q+Qjr9aUvfSmmRLkMWUNIq1TwesA7AuUse4SANcIm3XiuEKLKK+XT66t+Zx8YiAfKS32AAAI/FFkohxZYYIFeVmnZUczzjozg6CV8/APPBsnhvTd8miY4+pBd5IWClzqZE4gkCCWEeoEXC6QaCqsqAhGBQN6hFGRfFpRlKLaPPvro+FsbD6SYwex/kAiEl8OjyUgEiMkrr7wytllPDHGNJ2AgOyFvrE1annZEKcc+DhBPqfh8eFYfks7S+rrPc9POrf5amvTIc1Cn/cbt3tuobF8ocDjqqKN6WRaFvoJQpn4asWz7I3Ehe+hAZBgJ3Mvs8Q/UBfoA9ldJlZ/0FfSNl156aXpZ7zvvA6xSEidtH2VtG2Ux7RiSAoU+QnunzkJYQCi1lbYEzF//+tde2SiL7+992SBp6KfK8Kb/xBDApOp4wbv60Y9+ZJdF8pkxx95774fHP5AeQtMMA+x3lPAoxE3Scc3Oc6SfwNsHMWI6fnn8XxEBA9lZRej3ITarSNF4a9e2qeuWR+5YZc7Q5bhKXaPNQnoWCX09aaZNmzYmifcUwQiD/bjA2AhsS2zeuP0whTCh3zHjELveHzHkoCypcUlaFuo9Y2BaFsuLZ6LtMPaa1K1HEJCDnidY2XQUAkJACAgBISAEhIAQ+B8CImD+h4U+CQEhIASEQE0EmhIwfj+DmrcsTO69C1DQsOeGeSzYRVihovhLFXKQAyhlTVC+WMgorJJRlhYJVu+ecPEeCH6DdLsebxSIFsrmy7fqqqtGwsjScfRKWsJ+YfHLs3lJlY7+t2F+9mXHOwIFnMedcvvvlBWPCAiAVNrgCNngSRfeFUSBF6ycIclMbK8jrKJ5n/1kVN8B5fbESfocEC45RTiEEVbXXnw+tK0csWJkJcp8yDbz1LF8wIm/9J6QEyeccELPShyvL18PIMI8uWf5eW8gzuF5BgGZCt5W3rMAzz7a4J///OdIrvj0KNEhg/A68eXkeY2QJj3W6YQF84QiitanP/3p0YrdCFnS0u/QHvwz+PYxCm27LQHDc+4821sQ3BDeMyELIY9M8NQhrKUJaRZbbLHYD9CvebytLpG26nhBfhAw5LPffvvNpaDnd/78fcifcuE5YTJKBMwuu+wSdtxxRyta6bGMLGhT10tvWuPHLsZV6sKHP/zhucYO2hhGF17wSoRg8eJJD+oeXirec8vSWh9Yhil1febMmXONybl5Bucg5703rS8L96Vu+jEx1z9DukOgmFQlYOrUI8tbRyEgBISAEBACQkAICIHuEBAB0x2WykkICAEhMOUQaErAABQhn1BSYv1uCjGs4bfYYossjigsLdQLoTpQkntBmYKSA8H7AKW9CSFACKP2jGc8I57CM4KQOXhVmGChSkgyxIfb4jueNBAkOWE/kPPPPz/+5K31UQZhNW9KIRS73JOjCYqfQw45pKd08Zb5pPFKWruGI54+WMMSKgdyo6oSxucx6M+5sqMQQ5mIhwXKJkK3QXx4Iir1YugCx7322iuGO+KZue/JJ5/cC0VG+Bnqhr2nF7/4xbH+kJbwLtQVlNMo2005tvNsRbPfqwjFuvcM49pREU+cUCaeH0+cddddN3plUIew4PcW3DkyMM2HvKjLnId0uPvuu6PXAoRl6plC+EG8p8w7jn7j2GOP7XkckZffo4gy4WVlggdJ6uXBeyM8mReInJzHEl4QkC4IIYcsbJ7vJ7j2yCOP7HmqEE4QEpZ6TL/AO/fy3ve+t6fgp9854IADYhg+S5N6bOFlt88++9jPI9e2uyBg6N+8MhvsLCwk4b+8BxikN2HKqDsI9ye0ou2fRD2FADXPoSrjBWQPoShpp3iemCcBYwpeDpYX+1bxvqzNp55x40HAMPZRh88+++wY/g4MCNdoXqJ8R9gXBkV8FSkjC9rU9Sr3rpKmi3GVkJqE1kQwZiA0H95j1BfmEeBnnoyk4bt5hPI9JT04h9DG2TsNLzf6HzygIGLLMIWEJawlwv0hOei3GA+oz/SDn/3sZ+Pv/GPsI41Jriy0F9oJxgiE7aRfPeigg2JYM7vOE4aDqEd2Hx2FgBAQAkJACAgBISAEukNABEx3WConISAEhMCUQ6ANAWNg+U2VUVD6cGCWhiOKeULRIIT18YqNePLxfyjX8IYxQXGexuXnN5TrbF7OfhgIRAabmlsoJB9WDAUPysVUUNSgODbFvCdQvvCFL/SU2ihov/nNb2Y3X7e9HMibMngL8ZTEQMmD4hol46hLWnbClKH0TMM4pcpOiAFILZMucCTWPsove08+PJJXGuPBADnjPRWsHJ6AoHyUcyKILzeKXNqNt/a3Z2DPC/ZBMUmJMJ8PaYreJ0pliEcjVbHYhtxM3zt5+HfLdxTwKJwR793iSbH44+x/XhFr5zjmwkWxZ42RfHhGGGHp986xkEM+r6LP7CniCWAwTUO/cS3KUfoRE/oX23MqbR/DbttdEDC8P9qPCX0VHgbkvdtuu0WPI37z7c/S2tH2reI7nkHeM41zVccLPD4IlUc99Z5L5IHw22GHHTbny+z/eM7wDpC0T8rVqZhw9r+mIcjsesYFvL8Q6j4YNpUysqBpXW9alqLr2o6r5AtZzDgNsWbjtd2PuoYnnHmKQsThsWeSIz3K5h1lmJIn4QfZ84UQhz40mN2PEIVmOEIIQfpVk7QsEN+MLen4wzyL57Dxy3uHWV5d1iPLU0chIASEgBAQAkJACAiB7hAQAdMdlspJCAgBITDlEBhFAobwJBdeeGF8F1gUo6zxYXD8S0pDE6EswQoWQRltGzHbdyxSvZA3SmQEkoVrTImHQsaU0On+ND4PPnsFMfu5WJiSVEmLJ0dq9Z/mNSrffdn7hXEjpAqbUSPgiOWwSRc4khdKMN6vCUo3FF0o3k3wgMjtf8LvnoCYqASMJx/sme2IwhIln0lKXPrnp10R2i1VfnItnibeih/vmiWWWMKyHXOErIEcNcUiSmLbbN570UAcka8ncbwHCt4x5z/uhZaG2rnpppvGhCUjX+oY4pX5KIZRbFYRvHnYfB1Zf/31Y0ikousgnyBZEV9vfPvgt2G37S4ImPSZLIxT+g7KCA3IUhToSI6Q8O+sTHEeMyj5h0eN3/vF19PJSMB43OrU9RIIG/3UdlytclNP7KaEfkp6pL+n+fcjYNL06feLL7447gHF+XRsS8tSFGqRa31/x75PPqQiv4uAAQWJEBACQkAICAEhIARGFwERMKP7blQyISAEhMDIIzCKBMzOs0MF2T4EqfVrDlCvmCIcmm2+THgayA5TDqMYRkHshbA2d9xxRzzl75XiguLbLN/99faZ/S6wlkdMaclnr9BECY2CJqf0Ju2oiS97UWgoKzNhi/BEMcG7gefsCkfL128cb0SZvV/eO++/SDwB4RXpRelH5bwvNxjjzVUkbPZ92223xZ9pF35vI58P3gyEbcuJV36mFt+59J4w9XsAscm891zzXia0TcLwIYQehOQw8oTwhOZRwO/s4UMoKyT1vECJCQlrQlgslNN4bZQJbd0s7PHYM4+a3DXsg2IW8N5y3bePUWjbXRAwXlkNFl/+8pdjmDrIVb9vhYWQyuHFOYgVhDaKZ4oX31+3IWDI05O79MHUP2QyEjBN63oEpMN/bcbVqsXAi5QwXQjeT36/qpT08OG8cvn7Op32H7n06bk//elPYzxwCI9mRHJaljICxnuG5UJEioBJkdd3ISAEhIAQEAJCQAiMFgIiYEbrfag0QkAICIEJhUCqIE8tm6soL6oq1KqGIPOKYqxGUbKVCZb+hBBB0n0a2CvC4smnJEK6pwEKEGLSI7/73e96SsR4osY/wnRtvPHG8QqvpE3vXyPLoSStU/YUS6tHXeFoADzwwANRwW57P9j5xRdfPCqLjZSx8/7o69VkJWD23XffcNlll8XH9nulcMI/fxmRg1Kc94a85CUvifsXxC8F/1DS274ttB/akYlvm947xoePggSFOIIQYr8EhLpne49AehCOCiE0ofd6SPekiIlm/+NaSBXS2r419huEHVg0kc022yzuhcO1ddpHk3vVvaYLAiZV8p9++umBsH7HH398DO9Yt0ykR5lOaEaTquOFpbcjz3fvvfdGovvOO+8Md911V9z7yAhY+nrqPDIZCZgmdd2w6/rYdFwtKoftD2Tvlb2bjFjtR8CUkR7cr8ocxpeL+kQ/RP3ij7mF31+rKQHzuc99Lpx55pnxVjkiSASMfwv6LASEgBAQAkJACAiB0UNABMzovROVSAgIASEwYRAYNQKGfR4I52XiQ4rZufTIvi2zZs2Kp9O9ZdgfZs899+xdgnX/CiusEL/7sFmrrbZab2NgfvQKYr5j4V5F5p133nD44Yf39ugYNSVtlWewNHXKjuLsjW98o13a2zi5Kxx7Gc/+gDcEXhFe0nBb/jf77AmIyUrAeG8U6rmF1wMD//xlBIwnQjxpYjimRxSgfj8n3rkJYc5QgCKegPQhwNgzg1BVWLlT5xA2sWZvplSRjiLUNn2PCWf/I0QQ/cRDDz1kp8Yc8YohhCBEAoISnz1uTCDtyog7S8cRLzo26UbqtI94wYD/dUHA+Hfvwy2Br3kB8RhV+8NnPOMZcY8VH0KyDgHDPl8ovLm3kYJFME52AobnrlvXi7Bqe77puOrvS1g7whJCtpg3mv/dPo8HAcM8iNChhBq8+eab7dbZowiYLCw6KQSEgBAQAkJACAiBSY+ACJhJ/4r1gEJACAiBwSEwagRMap0OuYICtUx8bPVcPHjCLZlSBc8UPFTSMCqEQFpnnXV6t0mtjc8999zCfWh6F2U+jJqSNlPEwlN1yn799deHt7/97b28TKneFY6WcZEHDAphypsq5+06jp6AmKwEjN/4nn1VCNlm4p+/jICBsETBiqQeZZaXP+L9ghcM4pX2fE/3pSEtSnnzYvGkjFfqGnmEUpR9fRA7F78k/9ir6ec//3lUol511VXJr3PCGEEEERYvJSrY7waL9LpSp33UzbtJ+vS58CrCu6iqgBtElYn3fvKk53LLLdcj1SxtnWNVAuaWW26J5YGUT4V6Nm3atF64PX6fCgQMz1mnrpN+UNJkXLWyeK8UO8cRIpQ+/B//+Edv/7VBEzAQQH4fMV8eSFuMKjxBJALGI6TPQkAICAEhIASEgBCYOgiIgJk671pPKgSEgBDoHIFRI2B4QKzuKRey++679zZ0jicy/9jzwfZfyW1OzH4ktmcBCh42EWZfgs9//vMxN5QsWOpbXHdOsrk4+8eYGKFg36seR01JW7XcpKtT9nQPGPAF665wtHIffPDB4aKLLrKv8R4WgihHvvUSzv7gCYjJSsB4DwYL7WUY+OcvI2C8t0PqGWZ5+SMEBpbsSE457xW1eLagOD/kkENi+rSMvu3j7YJHj3k+mFdMvLDkH8pbCFPC4HnlPUrW9dZbL17p+wz2yYEUqCt12kfdvJukb0PAcO3Os/fesv2DuD99Ju8f8e07Jdlighr/qhAw7LvB+4ZsQJ761KfG/nj99dePdcz6avYRsnCEU4WA8VBXqes+fZefm4yr3N+HL+P72muvHTbZZJN4NAKdMdrG50ESMPQT7B1ksuSSS0ZymH6CvakQiMBddtnFkkSPLKt/dfaAUQiyHoT6IASEgBAQAkJACAiBCYmACJgJ+dpUaCEgBITAaCAwigSM34MiFyvdI5eGE/L7r1i6Rx99NGy55ZbBFPXsI3HqqaeGW2+9NSYpshT3GzyzuTubvNeVUVPS1il/nbL7DYYhtNg7wqQLHMkLDwdT3PMdEoEQVUcddRRfoxx00EFx3xL77o+egJiMBAwkJMSCyX777Tdmc3n//GUEzLe+9a245wf54FmEMrQs5JQnMzbffPPAPiJe/N4GbD69wAILxFBKpEmJTUKm2X4Le++9d8/7hbS02QUXXJCPlQTyb6edduqRMDvssEMkdLmYfuLSSy+N+bBxu1fCVsp8dqI67aNqnm3StSFgwNyHq8PrEO9DE/bgYS8eE/bzeu5zn2tfax2rEDBeSY8C/ogjjsh6txURMA8//HDs861geFGtssoq9nXM8etf/3rcS4aTSy21VDjhhBPG/P66172u5wGBhxD39OLrN6H0qNNNxXuG9Bv7/D3K6rpP1+XnJuNqOl4feOCBYaONNpqrWONFwPh3u8UWWwS8aY1csUKJgDEkdBQCQkAICAEhIASEwNRGQATM1H7/enohIASEQCsEhkXAoLxDiZcTr9DidxRiKMZy4hW2/E6II8IapcIeFexVgZCXhSTje7pJNOcQ722BApp0KI/ryCCUtPfff3/0/Hja055Wpyi10/qys4k2CvBUOUWmaR1Kw1Z1gSP3QNFvFvE+PJLf6J33RP0hzFUqnoCoEtouvd5/R9kN4UFdy2Hi07b97MsNuQHJkRNfx/k9rdc+nzICJg0nR2g5vy+TvzckBmSGSY4AZSPrHXfcMSbh/UCE8ufDj9n1/t4QeebBUtZf2LW5I4QdxB2Ch4ftU/T9739/DHEHife85z0vl0XhOd8+cs9SeGHJD3hzEGYv14eVXBZ/akLAQFTgaYA3gwnviGczbwTO876oA7bPzoorrtjzULDrqh6rEDDeE6qozrM/DKHsjFj3HjCUxRO/hNXz+/5YWclj//33D5dddlk8hQeEhdOzNF5J34+AWXjhhWP/Y9fWPTYlYLhPUV2vW4Y66X2fU2Vc9R4njCn0UTnxYQ0H5QGThkc85ZRTondeWh7fJ/HbeIQga1uPKCdjJgLOEiEgBISAEBACQkAICIH2CIiAaY+hchACQkAITFkEUuU5YXtmzJjRw6OKQqiKQo0MvVKF7xAiEBoowQh9YyQL37FW9woELKBRjnlJlahlG4anVqyWD/u+sP9LTu6+++6osDUFH4og0qbKUcp5/PHHh/POOy/ssccecfNwy69rJS2eG+eff37Mng3BeeZBiS8791hjjTWikg8FrQkWzXgsYSFvwnULLbSQfQ1d4Ljvvvv2lKSEI4JkMTKMuoMXkwkhbT7+8Y/b197R11NC3qB4RSBSILMsv94FBR/Y14ZrUUbznLx7r6wuuKzxaU+cENaNZ+NdeKEtoQw14VkJreXF51NGwHANvxN2CuGeEFYbbLBB/G7/wOH9739/LwQU7Tf1HrC0vB8f3orzkCGQIqn492S/FSnQIVd+//vfR+80Cxlk1xCeiZBsRhp4BT1kBd4xd9xxR0xOnUKBjYeOF6z88eai78JTBjLRxLePLggY+g+rt3hS0PcS7quqVCVgwOXGG28MKJZ5LiO57D45Eo3ffBgyvm+22WYBL6X55puPrz0hfBjhlm644YboWbTSSiv1fuODf7/0HRC2qfj6kvNQhISmnNddd13vUv9+OemJWXDEM8X3S3jPQe5QXpMmBAzh9wjDZ4IH2bOe9azw2GOPRS/LdNyydLlj2XjbtK7n7tPVubrj6i9/+cuAlyJCv3LmmWeG+eeff0xxfvrTnwbCIJoMioCB7PTeTPSfK6+8st02HtmXCo9Z60M4OSgCpst6BKHM/AhJDSLiSf0TAkJACAgBISAEhIAQqI2ACJjakOkCISAEhIAQMATGk4Bh7w6vwEQZxr4dF154YVQCegXIrFmzxoTAQVmD0hllFoTIlVdeGRV89hwo2LBgLVNYsqeAV9hxrd/nwPLyR7/5NOetHMsuu2wkjlAymvW0XYfiw8rRpZI2JRogQs4++2y7bedHX3bLHGvatdZaK+CdcM899wTek3mlkGa77baLik9Lb8c2OJ5zzjnh8MMPt6yiUhdluJc0/1xoG6+Q5VryQPFO/aNeQR5U8WbxHj3kM2gizBMn3A+BKFhmmWWikhcihHpoQh3l3aWWzz6ffgQMxBrkhZGP5I1ycoUVVghPfOITA4rJtN4fffTRYfnll7dijDl+5StfCbwjLyeeeGJYYokl/Kn42VvV248QBSnxmbYHPIPoTwhTdtNNNwXuaSQufQ339+Rhuuk898ILBu8O2i+kIn2Wx+BTn/pUWH311WOxfPvogoDx+/dwg5y3Rbxxwb+UgKEe+OflMp7Ft1efFW0aos2ez/9mn/faa69w7bXX2tfYftZcc82w9NJLR6wvv/zyMYRGznOpCgEDEQUhZQIBx30gj+hzCJmWPkdKwKRjCFhAGkG2sq9QOhZwryYEzBVXXBGV9FZWcKR9kj/kM6Q9RH8VKSJg2tb1KvdumqbOuMqYgXGFCXtG8W7xWKTNEnqM/szLoAgY7uE9rXhvkNbUZcr5k5/8JEAGpTIoAqarepTO6Sh/aliTPpO+CwEhIASEgBAQAkJACPRHQARMf4yUQggIASEgBAoQSBfr6UK9SCHks6uiUCM9ni2EgUktri0vFH8oOE2w+EWplira7Hc7oqBhg+3UAt5+tyOeI3iQmKCURYlaJig1Uf6iLO4nKDyxoscDw6RLJS1W3xAcXrwyyJ/v4rMve5X82CMHZVqOxGiKI94pbNRuSvAia16szbGUN48GlK28N09CXHDBBbGeFD1LPzLOrmM/ibPOOsu+BkIU4fk0KPHECXXL9i7J3Q8lImQVbSIVn08/AoZr8QyAyOIdlAkkFvmVKe5TS/kywiIlRor21SBPvCDsnReVkXZJP5bbs+Tiiy+OCnLbyL0oD85TD6ljJr59lD2Ppe939KGuSIti+9WvfnW/y3q/pwRM74cKH/AEgEhMvVnSSyFAaCe0pX5C/0pbSfvlKuPF7bffHjc+t3afuxd1HALPypISMFzjPedyedBeeG7bA6gJAQPu3psqvU+OhErT2Pei8baLum736PpYd1z1+4UVlYV3cswxx8SfB0nApGXPlYcx57e//W2vH/Rj7h/+8IfA/nAm5tVr3/0RrzA8fpDc/j5d1aN0Tsf9CKtH3ZYIASEgBISAEBACQkAINEdABExz7HSlEBACQmDKI5Au1psQMF5xmPM88CCj1EVZ68MRoSBFyYEiIw0DRZgY9nnBOpSY7SZcs/jii0eLZixqc0p/S2tHlHnbbLNNL2RSUVgjS++P7BnDXgmE7fHhSEiD8nXTTTeNYZDSUFR+M+EulLQnn3xyb5NnrPQtzIgva1efUwXzYYcdFgkxwheZYpT3gDcQdYB9WfpJXRw/8IEP9DZs532zb1CRkhhlGPuVWNmwdidElpd0fyF+Q1GMt8F6663nkxZ+pu5C5JnXSV1PhcKMC36wjcZ5fohAQmKhyPPEA0QTBMi73vWuwnBolg+3oQ2mIcVyt4c0pU+ADPVtlrTsU4BXAp5FabvN5eU9PGbOnBnY9DonKCJ32WWXGL6J33MhqOw60p522mlz4cHv1M0NN9wwls8TcXatHdlzBe8dlKy+j+F3yCXqBeHSwN9L122b50ABj0AM8K5zexn5MvjPYEGd7yfgwnMtuuii8dle+tKX1lbOEo6MzevxhLL2ZveFcIBkoU/nXqlUHS/whEBZ78Mbkhf1jjy4B+MCG6cjkD2rrLJK/Gz/wIQ+k3bviXzaPJ58jDnzzjtv2HXXXaOCvQkBw71oG7QpH86M84Q6hEjjfVaRIgKGa7uo61XKUDdN3XGVsH7UbTxWU8GDjT6cMKj0q5CxeN0xBzBJydwy0oNryjDld/Y/Iv+UhDXvHPpV72HpCZg6ZfEEDHXPh1mjHEhX9Yh52CWXXBLzTA1b4kn9EwJCQAgIASEgBISAEKiNgAiY2pDpAiEgBISAEBg2AoT4wMqZWPlYSFchUFDcoMCHeEBBU+WaQTwnCttbb701KjGnTZsWQ9oM4j5FeRqJ8OIXv3hMSLei9E3PpwQMHiUIikCenyMW6E3fw7BwhFRAcYbicPr06Y3eH3lstdVWUambkpZN8a57HRuo0x5oCynxVzevKuntvdMOUVTPM888VS4btzS25waeYpAltM26gpIehT91mlBmTfKoe0+f/q677gqEf4PUhBiYCIKHFP05ZBHkSBr2rO0zYCRAfwOZA4kNedJEINdQcBNiqiohUvc+vDuwYIzCc6tp39jvvl3U9X73GPTv9KHMAcCMdkZf3HXdqfoM9G3U4zvvvLNHTo5Hn1pUvi7qEWQgz4UH0aDqYVH5dV4ICAEhIASEgBAQApMRgf9n70zgtaumP35K/g0ypFRKqRQKaVD0kkIyTyEhvImiMqRISERJGUpIyDwkypQpJCVvaKBBA6KSEkm8hkT+fXfW07rrPec8Z9jPcO/9rc/n3vM85zlnn71/Z4/rt9baImDm4ltVmYSAEBACQkAIlCAAaYH1N4piv2dOyaW9T1URML0TngMJmEU0+6LwHiRCQAgIASEgBISAEBACQkAICAEhIASEwNxEQATM3HyvKpUQEAJCQAgIgRkIYM3KJsFsgv2IRzwi7c8x44LMX0TAlAPKBt777rtv+pGN3mNoqvK7dFYICAEhIASEgBAQAkJACAgBISAEhIAQmI0IiICZjW9NeRYCQkAICAEh0BIBYtSzjwchRYgnv9xyy7VMod3lImDK8TrmmGOKz3/+88UBBxxQsH+GRAgIASEgBISAEBACQkAICAEhIASEgBCYuwiIgJm771YlEwJCQAgIASEwA4Ff/vKXac+PJpuez7ixwxcRMOWgsXfBpZdeWhB+TCIEhIAQEAJCQAgIASEgBISAEBACQkAIzG0ERMDM7fer0gkBISAEhIAQmAgCF110UbFo0aL0bDa+fspTnjKRfOihQkAICAEhIASEgBAQAkJACAgBISAEhIAQmBQCImAmhbyeKwSEgBAQAkJACAgBISAEhIAQEAJCQAgIASEgBISAEBACQkAIzFkERMDM2VerggkBISAEhIAQEAJCQAgIASEgBISAEBACQkAICAEhIASEgBAQApNCQATMpJDXc4WAEBACQkAICAEhIASEgBAQAkJACAgBISAEhIAQEAJCQAgIgTmLgAiYOftqVTAhIASEgBAQAkJACAgBISAEhIAQEAJCQAgIASEgBISAEBACQmBSCIiAmRTyeq4QEAJCQAgIASEgBISAEBACQkAICAEhIASEgBAQAkJACAgBITBnERABM2dfrQomBISAEBACQkAICAEhIASEgBAQAkJACAgBISAEhIAQEAJCQAhMCgERMJNCXs8VAkJACAgBISAEhIAQEAJCQAgIASEgBISAEBACQkAICAEhIATmLAIiYObsq1XBhIAQEAJCQAgIASEgBISAEBACQkAICAEhIASEgBAQAkJACAiBSSEgAmZSyOu5QkAICAEhIASEgBAQAkJACAgBISAEhIAQEAJCQAgIASEgBITAnEVABMycfSLONjUAAEAASURBVLUqmBAQAkJACAgBISAEhIAQEAJCQAgIASEgBISAEBACQkAICAEhMCkERMBMCnk9VwgIASEgBISAEBACQkAICAEhIASEgBAQAkJACAgBISAEhIAQmLMIiICZs69WBRMCQkAICAEhIASEgBAQAkJACAgBISAEhIAQEAJCQAgIASEgBCaFgAiYSSGv5woBISAEhIAQEAJCQAgIASEgBISAEBACQkAICAEhIASEgBAQAnMWAREwc/bVqmBCQAgIASEgBISAEBACQkAICAEhIASEgBAQAkJACAgBISAEhMCkEBABMynk9VwhIASEgBAQAkKg+N01vxcKQqAxAmusvlqja1WvboOpKWa33aFPQkAICAEhIASEgBAQAkJACAgBIZALAREwuZBUOkJACAgBISAEhEBrBKQobw3ZvL6hKZmgenVbNWmK2W136JMQEAJCQAgIASEgBISAEBACQkAI5EJABEwuJJWOEBACQkAICAEh0AiBP/zhD8Xd7na3dK0pytdac41G9+qi+YnAlVf9LhW8KZmgelUUbTGzmuXbp53TUQgIASEgBISAEBACQkAICAEhIAS6ISACphtuuksICAEhMO8RuPbaa4sbb7xxgMPKK69crLDCCoPv+iAEyhBYvHhxseOOOxb3vOc9i0MOOaT4x43/SpeJgClDS+cMgUgm/OpXvype+cpXFv/5z3/sknS83e1uV3z1q18dhLabz/XKMFu6+G/x4he/eAmsAOz4448vVlxxxYTd9ddfXxx44IHFJZdcUnzuc58r7nKXu6Tz+icEhIAQmA0ILFq0qPjsZz9bvOENbyhWXXXVlOUvfvGLxdlnn1287nWv0xx1NrzEkMf//ve/xWmnnVaccMIJxfOe97xiiy22KG666abi5JNPLr785S+nd7322muHu9p9/fe//13sv//+xVZbbVXssMMO6Wbmqq9+9auLZz/72cXDH/7wdgnq6jmHwO9///vixBNPLH7zm98Ub3/721P5Lr/88uLzn/98sdRSSxX77LNP7zKr/xoO4Tjew/Bc6Aoh0B0BETDdsdOdQkAICIF5jcDjH//44l//ulV5DhAve9nLiqc85SnzGhMVfjgC733ve4svfelL6cK999672HTzB6XP81lRPhw1XWFkgnnA/PjHP04KtYgMBMy3vvUtETC3AGOY3XTjP4tdd901QpW+o5y84x3vmD5DXB155JHp8/bbb1+85jWvKb1n2k6ed955xV//+tfabGEcsNJKKyWlrAwFaqHSjy0R+Mtf/lKcc845BYqhP/3pT8XNN988qGubbrppgXGKpBkCV155ZSJLfv3rXxf/+Mc/inXWWad49KMfPfCYrUvlt7/9bernIOUh55/4xCcW559/fsE8A3nHO95RbLLJJnVJ6LcpROCUU04pMNZBNt9886T8/vjHP1588pOfTOee9rSnFXvuuWf63PUfdeOb3/xmcYc73CGROpA+1KELL7yw2GCDDYqjjz66a9K6b44g8KxnPau47rrrUmk+/OEPF5B+zJNM/FzKzrU5tum/qJ8QzWeddVZxn/vcp1i4cGGx7LLLtnlco2uZV1FW+uVtttlmKtb4o34PjBm0e8ag//u//yvWXXfd4slPfnKxzDLLNMJsNl3097//vaD/NPnMZz4zY77yox/9qHjjG9+Yfsagwfpcu17HbgiIgOmGm+4SAkJACMx7BB7zmMfMsKgWATPvq8RQAK655ppi5513Hlz36U9/uvjPf2/9KgJmAIs+lCBgZEIZAYNSZrvttkt3sShmQaoQZLcRMGAGYXXDDTckjD760Y8WeDAiXmmA8hjvNJOPfOQjSclg36fxiCICBW0bwfvuUY96VCrrXFxUt8FC13ZH4NJLL01K/csuu6w2kTXXXLN4xSteUWy22Wa1183nH/FAQNH3hS98YQkYDjrooGLBggVLnI8nUMLjvYcSHat0lGd4M0CQMS7Qn0lmHwIoplEwm5x00kkFpDseTYiRJvZ72+MFF1yQyBbu22OPPVKdgYyBlEEgf7bccsv0Wf/mLwJ41Z155pkJgGc84xnFS17ykuKFL3xhccUVV6RzEL1PeMITOgPUpv/C8+uoo44aPAuC4OUvf/nge64PvsykiTJ+0t5gPk853wPz37e97W3FueeeuwR8GCctv/zyS5yf7Sf+/Oc/F2Bo8olPfKJYY4017GvhyW/KDw6S/giIgOmPoVIQAkJACMxLBMZFwHzta18rjjvuuET2YNH4nOc8Z2rxnk15nQSIb37zm4vTTz89PXrbbbdNoSOkKJ/Em5h9z6wjYLCII8SWF9WrmQSMxwZlMBZ+iCdg+P7ud7+7oB9DzNo4fZnSf10IGCsK+1ChUNhwww3t1MiO++67bwpdgkJ40mMYZNw73/nONKYytoqEavfa8bBAmU+Yvjby2Mc+tthrr72K5ZZbrs1t8+JayBfqYhRIFLwPIE3rxCuSMPJAYQ8ZY54Rr33tawckfV06+m06EWB8xyIdgVwjPCZKZ7ykkO985zvp2OWfeb9wL8QL/aGNkTynjBTs8hzdM7sRwMvRvIIx+thvv/2St5QRIfQ53sCsTWnb9l9vfetbi1NPPXXwiFF5aRmBbQ8qm2vbb32PTeclo3oPL33pS4tf/OIXM4qBR/1d73rXAs8QwszNNfH1jrKJgBnPGxYBMx6c9RQhIASEwJxDYFwEzAte8ILiqquuSvg97GEPK970pjdNLZazKa/jBhFXZxbMJjbRk6LcENGxDgERMHXolP8WMbOrTLnE90jAEGKDRbYJyqdp3gsmEjDklT0CvGBdT9x2LFXjnkFcR+hMFt+jIiJQEj7pSU9KWcoRLseXrctnFEZY0CJf//rXk6dAl3Tm4z3MRVDmX3311UsUH0LvXve6V6pHeMeYl5m/8E53ulNx6KGHFve+97396Xn9mdBtz33ucwcY4MGIcnOttdZqrPSCNIY8RtifAfL4mGOOScp6ztl8g8+S2YeANwwg9BJt7VWvelXyhKE0fQgY+v+//e1vieQ79thjU2hlQiwj077mSJnUv7Eg4NcwZkD2y1/+MnnCkAH2J2IN2EXa9l/M2973vvcNHoVxIiHzcsvrX//6gjBUJnifUPZRSNN5ySjew3e/+93k/WLlAk8ItWme+1pe+xxFwPRBr/u9ImC6Y6c7hYAQEALzGoFxEDDEUvcxdqd5MTSb8jqJisu+L+z/ghAX//DDD0+f5yMBw2SfMFAmhNLYaKON7KuOJQhEMsHvAVNmlTcf61WELWJmv9cRMFwDyf2DH/wgXc7eMWxCPK0SCRgUIChCqgRlL94LtEEvT3/60xMJ48/l+ozltnloTQMBg3KbTckRETDN3zJ1bZdddikIieQFLwsUNre//e396QLij83DsbD3++VBwqBEHkXM/hkZmCVffLgnPF6OP/74YsUVV2yVe4jiD3zgA+meww47LIV7Yz8rC5nyqU99qlh99dVbpamLpwcB76XCRui0IRvHbN+3rrm1/SzZ6+FDH/pQ8qoxwnzrrbcuDjzwwK5J6745hAD7odh+GY973OOKffbZZ4aX3W677TYjhGuborftvxiLCOHMOA5hzbg0ivGEMn/wgx9MRpCEHnvqU5/aplitrm06LxnFe/AeReDpya1WhZhlF4uAmcwLEwEzGdz1VCEgBITArEdgHAQMFsvE2DWZZgJmNuXV8Bzn0cdKhnB45CMfmR6fU1HOxNw2FB9n2do+C+UbixoTLKIf/OAH29dZeTzjjDOKn/3sZ6V5f8ADHlCgyOgjkUwQATMczYiZ3WGKK75HDxjO/fCHP5yx8SbhF6ZV2hIwVo5FixYVb3nLW2YoxmmT6623nl2S7QiZBamFTAMBA0FlHhwiYNJrafQPxe/73//+wbX3uMc9ChQ3HOsErzLCb/785z8fXDYN9WCQmQl/gDixME9dwx56Aw8jYVGi0b8hWHI/4hGPmHBJ9fiuCJh3uZEk9PvstwGx2ZckgWzBSxEih/1lSNs8YPC0Yb4mEQJ+XmRedoTDw9MOYYPyu9/97p2AUv91qwdRk3nJKN4DhkaXX355enfs7eP3Ren0QmfJTSJgJvOiRMBMBnc9VQgIASEwqxDAkpOFzgorrDDId1cChg1RUZI3iaf67W9/O4WTsId2IWDaPM+e0+WYI69dnlt1Dx45//znP2e8s6prq87z3nOE5YmTPBa5Fge/LwGDJftXvvKV4uKLL051FAva+93vfknR2VfpX4eLDy+Dm7pvG1X32fm5SMCweeXJJ59sRZxxRPHFXht9JJIJ00rAEB6B+m6y6qqrZmlDll6bY8TM7h1GwNDuUW5ZuK5pth7vSsCABQpxv3EtinQ805qMTYZlkyN7hWBZjUyD4t2P3SJgmrzBomCDXjzBrE0wzvBemxL+tKkdd9wxbQhvT2Tfk3XWWce+ztuj3xuOcFAve9nLWmPx/e9/PxGq3Mh4DKEDcYy3G8KcAI8YyexD4Lzzzkvhxsg5oSLxVqTfete73pUKc8ghhxRbbrll54KxJ5fN5wgv+KhHPapgvyZr6xB5WMVL5jcCtkcIfT9rGNZYO+20U5rvrb322oO+pgtK6r+Koum8ZBTvwcIQ8u4OOuigYsGCBV1e46y7J67NY6jOU045paB/RZZffvmBR+msK+iUZVgEzJS9EGVHCAgBITAtCGC1yQL2pz/96cAy5A53uENaiLCRLCFVbIFCnlk0M4mJgqKUMBzERMfCxO5B2bXVVlslDxcfugOiB4vhyy67rGBSahYxpMvzsab3ghWzV5i1fZ5Pq+3ntnndeOONBxtc8yw299t///0LlLRlgnKRzZLPP//8wc8ogVgc4lEClljtvehFL0oTxhtuuCHFPD/33HMLYhPzO8qIBz7wgcXuu+9e+RxL/He/+12aYEFmcD9WgUy62AB3s802S3Hau7i5Y21+wAEHpMeAgS2cOdGHgEFZyoSxSrBk8vtZVF3X9jyeHj7e8vOf//wUAqBpOiJgmiJ123WRTJhWAgalKqEhTN7znvcs0WfZb6M+RszsecMIGK4j1veZZ56ZbvEea5bGtBz7EDCUAc8UC7fGd9o14aSiXH/99SkWOuMYm3sTyow9KlDMYUG95pprxlsKyLhrrrkmWchayC8UhSgQvWy44YYzCNybbrqpoM/kOTyPEGaMFTwL5eAmm2zib2/0GZz+8Ic/pL1weJ8meHD48ffOd75zGqctv6uttlpB/+bHWLvXH7FKNRwJMckmxX/84x+TUmrppZcunvnMZ6ZxhDGJ8ewnP/lJ+sNrkXIxroP7sPEFIoN6edFFFyUCzb8HDDRGtbcKBLMPW7fHHnsUbFDcRrwnFPcRdpL+wYS5FiQ28xws/gnDhYIEZTNx+Hl/vB/KSDgYvEWGyTjwom5RX5k3WNtYaaWV0nslrw996ENL3yvjKPljHOde5CEPecggzI+VDZyYh9QJbYb6Y/NL9lTA+MbCJw5THqHk5496RXtbZZVVUv5pa+TfC4YthFNFAYuQv7I+w+5hrDr1fxtm8/6Yi0WBDAYP2jve1MzraBf3ve99k3cs+SmTsjZGPaGu8U4Il0ffRF1lvm0C4YDVPc+EXGQOyrtinz76tWFCvaQd2junr8N7kM3ACRtclV/Spb5gsMQ8lb25mLfi2cLzef+U24vt9ULa4A42vFfK2df7hefgufDxj388PdIIct/eIen9/oWWN+bH7KUFBpTjxhtvLFZeeeWC/pxQTWVjgt1rx67tcxR9xeLFi5P3KxuR0w74vsYaa6T3QR2Pe6tZGTiW5edXv/pVSo+xgfrB/lgLb9lXA7LChPqOlxrrDfbhgZDm/TNeNDFqatNu7Zl25P3RBuizeH/I+uuvn+owRkN+Xeb3ejHC73vf+15x8MEHp/qIFx91uKu07b9oQxDKrEERwp9V7VfStX8mXeYvtsYi7B9rKi/Uf/Cjz4CMYp5A/4VR3IUXXpjGL0I/0o8Rts2/e9Ihb03nJbybnO+B929eqaxPDUvqKG3YhP4mzrn6YOr7bOoZ4zhtjX7orLPOKphr0u5e/epXpzmT5WPYEf3KOeeck/oj2jDtiTZHWfDoKRtDRcAMQ3U0v4uAGQ2uSlUICAEhkA0BJjPExGaxw2DJJItFCtaUcTKT66FMvl/zmtckBXzTNCMBA4FD3GYULXXCgoX9QKwsLBiZADUVFBYoeLo+r+lzyq5rm1fCl6C48UIoLq8Q8795V2s7zyahECLbbbednUoLAKz0iEnMpKtMsNpiI9O4uLVriZXO4tYUGHbeH5mAE8qjieLH34dS+rjjjkun2GyXeMUmXQkYlFK2j4ylVXYkfnfuTSP7EjAs2CElTVDgdg1dYGlM+ohSlUk/gkLFFm18n08eMHOFgIEkpK9BUCZBuk+jsBBG2W9i4Yfs+7Aj44YnaSECbDNvu5c9KjhX1TeyQEdJh9eQCX0E/XETQZGChT6CMgNvMfJVJTyH5/HcpmJWo8OuR1FCH22EOdcP23gX5RqKS8MHhSkhfFDAmbKZdAm1SJx3ylgm9IEYHHjFl78OBQMGC2at7n+zzyhKeeYwIseub3q0fSK4njkL7YN5R1uJ74Fx1xQj3lOKekz4o7p6N6wejAMvjDaoKzyrSpizoqj0cw8MbFAaNhGUmyjfhgl9L3NkCE5ThqJIhwyiDyvbAwYCkGsgSaoE5TNtwNdLyoMC1oS5blTS8Rv4MN+xtmEKfrsPJSAGKT4t+82OtPO99947Gd7YOTvGNoZhDm3EnmfXcbR26a3t/e/2GYLe9kCxc/4IuYMS2hSW/jc+k1/WA2Wk1JVXXpnmu96wKt4Pycz9tg8QRA3vFsxNyfyd73ynoF/m3XkCOabV5Dt9LX0ubZyxhLkyfRT1jnoDyRPbOoQaew1VYcBzY//MeOD3tOzTPnP3FRDuGCNQH6uEMQqc6P+ixPyAl9/n0F/PeQzwCN1loQf973yGhObd0vbKpGu7tbQImUt9qnp/vDvaEutsSAWuY2yCZLT5AvNcQpHxTnOsMdr0XxB3GOKZVHlpde2fLV1v6AQm3/rWt+yndIQkoH0ijFW0C0iZKrE+yH6P46Gdj0fmD6xPc74H9Co+FHR8pn2P5e6LaeyzWccSFpaxy0tTTxzIO8ph4TZ9GvaZtTv13RNL/CYCxhAa71EEzHjx1tOEgBAQAq0QYDKDhWqVDFOMVN1Xd/6CCy6YYd1fd63/zRMwWL4w0SpbBPp77DOWYh/72MfSRJeFWd0mynaPHSFgIIy6Ps/S6XLsklcsiFA+eMFaqMzay09uuR4FBhNtxBMw6USDf0wkmaTFZ7GQrAofVZYsYT2MMCv7PZ5DeWBePNRnCESTrgTMzjvvnDaGtHSYWGIBjcs0E1wTrCotRrOd63vsS8D0ff6034+FFxaMJiJgZnrtGS6jPvbxgPEEApbHRx999Kiz2yn9vgQMD114C+EPmY7QR37jG99ICjcW+4SkwcrWC9fwF5U3XlHMmMSY2ERMeUK/WrbfDgr6qBjDA9UUQU2eAWFj1p5110NAoRCm/ZpCAKVTnaLihBNOGNQPlJeMZ4Su9IoG8EJ56oklro0YUlaUcpFAQWEWN8OGoOA6PB34M4lelna+6xHraLxMTVB87bvvvva11RFLeyxdTVCK2P5fXokJXnH+VHZuzz33XMJjhLTHgRdKW4xHYj5RnpYZgjAPMJISK18spuO9hos/+nblz/f9jCINBaDPK4oqwsqh1PJEH/WS92NzJ9ojRKXVO+6DlPP1lr4JkgmPGgSCEeWzhXWlLdCOLQ0rD8+iXURsttlmmxnEKNf7Nmb32zG2L76j1PbEMHUKic8yQx9Ly468C680537Kxf2Ux7dnFNiE9zLBQ2ThLX0tFu8mtGG8+5hLexymeR8GyBnanQm4oiAmrC4eHdZv2u92RNGKdyDSt33m7Ctin2T5LWvHlBWvvUiI+vzY/XaM9RBSBQ8+6pJJ2RjH86lrkWDr0255Xtyvk3OsZ2iXzAN8HSZ0qJG5XDct0oSA6dM/WznbEDBxfIrfLU2IJjydkDbzkmgYkxLo8a/MwLEsOcphxFMOTH2fTd+Jl4p5D/vnY7DJ+rVOqK/0535exfVlYwjn2LPIwn9znQgYUBi/iIAZP+Z6ohAQAkKgEQJlk8SyG9sqw8vS8OdYENqC0c4zOcUqjcUl1i6Ew4jiCRgGdZRDflGHEo9QWCxqWXz430jLW8agoGCBfuotBJRflGF55cNBsOhlQdf3ebEsbb63zWuZ9WHZYpPyeyU2ecJCDZIBqSJgILMIF8YEnZApfjHBfZBbWNeaoFwEey9YehJ2BotRLBZRGvj3wIIEhdywsDSWpt/0mYWat6DrQsCwAPau8CziUVyygCI8CHXP55cFphFG1F9fv7GYJr3TTz89LZ6Z8ILx/e9/f8t+OoIT7u8ICjksl01Q+KEcMWHBGC1IqcuE+igTFqN1ITu4hzyzGMJ7hrKxAIZ0wjqTBUIUQkJ4oo9yolSn7ZF/7se6E1f3MmGRwALlqquuSpN7FFLUB67nmXWL0tlOwNB2jNhlsU9fhZKIsuP9Rd3wSgHaGdaQCJbMkNgm4I7HmglpeAKS8/RfEIcmKMGpr4QjwIOQdw/21BNiUzdtd30IGLwayDuC4twr3Syf03DMQcDQr/oFsPVRvHf6Et4PQggN+jKzhIdURgFt5EgkqhjDqUso3sw7jPpjXiGkiaWwKSMgp+knEOoAfRz9Ee8bpSXPsr6LNl9GpqebS/5hMWyhPiymN5cdddRRM5TG9M2ESfKkCtfVKaIsHBDXYTFsng1e0cBvCOnjBcoYhaIbxUHcoB58/NgHvqRrONM2eGfWp5Mu749wpDavwCvD98lc01WioqZsvG6adhz/fSizMiUmXhUYG9DnML7Rt+CFaqQBSpUTTzxxRn80DrwYD/w4S31EEUQfhYKH98AYxHuy98Y1eMLikYJwDXUSK3Iz0MDIxBMEXIe1PErc3MK8x8hVcKR9+TBd0UMhEm/kGVLJhDEf7xETvwcN5+JcHUKR8diEMDG0JdofwtwL/Lx3kSfsuKasjTFXp58CN/ouPGKs/+EehLkz7Y5+hj6UkGAY4phAFEQP40g80L4I2Wj7IJEOhlQWgpP3zfzY+kvmTLYPD7+RPnMnE0hr7uc3rL+NqLLfp+W4q9uwGzKBd+IxwPvXk6zUK+Zb1l/laJ+5+oq4zqRe0I8yt2RsIq94GpnhF++AckDQ+XlIWX4YB/AOYf7A3Jl2bf2WvUvaO+2AOsJYiaGH96AoMzTo2259u+O5RxxxxKCOElYQ73TKAzG+8Jb15TQKWNV5wOTonyl3GwLGcMLLj7mSrRGIVuDJE9+3tJ2X2DNyHSGF0Ukw57C1suXfnmFztFyYlvXZPIv6Rpg/2hXzb+ZAw/pA1ies1RH6TbwtmbdjKEB/TJ/rw5zGCBSMD4w7JvRdfk2oPWAMmbxHETB58VRqQkAICIFsCBDSgInvMImLwmHX1/1OmDO8arygjEaZweBu4gdlO+cJGM6haMDzgMGcBYt3fWVSzwLRFFtcD7HCgtCLn2hznrywIC2THM8rS7fpuaZ5ZVJEiAxPEEAgYD3phY2vWYyasDBCKWaLnjIChrBxPsQBkzMsd21iSVooMsxCmcUGEzJvkcikGcs0/76ZDKIY8IsnlCZNQ5ERf9zKiyWRT7sLAQOh4rGhLmFtaYJSEaWUCUouU+gRQgGyxYR6y/VRCLnk92rAcrSNl1AMKYIlaFXYDULzmBV0zIcpNXxIL38NShbehZ808zuLTB/mjPcX6xjvwazvfZpYd2PpVSdsmIl3QJnMZgIGRQFWeaY0LCsfWJqSmd9ZwEQLtLL7OEcYD0IpeEEJ6BV31FXw9wSaXY9SD6u5JtKHgCF962PoM1hET6PQPvqEIKNM9CX0tyaMW1glIiioCHeDF5cpFOw6jvxG+zWJ/Rvn/dgQQxDZfRzpZwmLgTV1JOn4nf1O6K9NvEW1nRt29DHUuZb3Wqbcpv5D0BqhgVIXRW4U7ynFbyiujGCPigaMA+hrGcu88A4X3qLoguxFsHyGXELxgdBHWXgNFOX0YxaeKF3wv3/0uShDkZykIfuJeAUSY0Hdfgj/y07pAfLbe9MwLtjYFZWYEBxca2O+JYgBDCSMSbSUHQde0Woegww8paLQL1JGq0dlXhzM+2xMLvs9ppnje8QQJVVZuCOUc96LAwLJG0t4rMmXpQNpwrzXJJJ2kbzBE8fPN+w+FK3MX2wsoF6TB1PMxTbmCVBLg/EYbyMvsc7wmy9L7PNpo5SH/hCBuPFtIp383z+/dvH9BsSvGRqwX2RTD0Gf9qQ/R8U3/TXGGVEwcrL+DFx9+D2Pc9f+LFdfwTwXox6EusVYWNa3ekU810KmoGQ3ifkpC5+EcYGP6EDZwY+jF/pDq2esMZjfmuRot8zXbO1Zlk971jQfYz2MdSxX/+zfO+sF8wQxbHyUBn5HV2BGgnYNR1/ny9JpOi/xaeb8TH9k61vWP57csufkwjT22aRf9Ux7dt2RdwTBTghFM27w1zNfsf3rojezCBiP1Pg+i4AZH9Z6khAQAkKgFQJ+klh3Y05FA+QLJIwXlP5mkefPo4C1RTXnIwHjry37jIUYExoTlDP+O+e94orvdQQMv9dJk+fV3T/stzZ5RYFk+ytYusQXxkPIJL7/GM7BlKN2fVzg2/mysDZ4tLBpYpz0ck+VpTOEBot2k5gfO192tLpSNvHuQsCgePQKYULmWGgHno81NAsBExTaKDGQSMDYNWVHFOW2N8OkCBgsRtkotE5QluChYFaYXBsJmKr7sUA1q1S7BmswQmkME7BEMR1lthIwWLihILeFWCyXfUeZ5b0YchMw9pyy4zgJGL/vBUTDNEoOAiYqj8qUk1Vlx4LSwipxjfWt/no/NtQRMP6eqs8QFRYuDeUZJEkbiX1+FQFDmvR/vu+BBPF9DNdg3Y0CAIE08gq2qGioUlZyL+S2t8BHEQi5jPh6OGx/Ck/2n3TSSTPCbaTEOvwjbIcPY+kJurbJRYUHJAtW3oivh1hm09arxMZUfucdsJecyTjw8gqrMuMZywtHyBnevQkh/rwH4SQIGPYiMiODYfmH1DODihhCFUUoFsgWrgzykXks44Mp4CF2vBUyOPgyR8LRcLIjGytjXGPiCcDYxqrC2fp+o2yuTdrRw4W2b8r4SBxGS2nLG0dP+NCGacuILzOEBP1LJBfThVP8z3uMQBx4T2ifba/0xEvI74eTo33m6CvYYB3vOpNhfauPjoBXr1/DNMkPhmCU3YSxq2xvOW98FvvBHO3W912eALd8zYbjMALGl3FY/1bXP7chYJgHeY9AjyPrCVuDcZ71CroLkzbzErsn59HjVUWG+Gv6YBr77Dhvylku0vKGtbHPivOR2K97Y9t4b+58zqf0RMDMp7etsgoBITCrEIgK9rrM51KOeastnodVvlmUxud7BQC/tSVgsMhgkWISLe447xVXfO9DwDR5Hs/oKm3yiqUzijhPYPlJWLSOJE9R+RXrB9bJWBtGIWSNKXjsNywRt9xyy+RhhbWiFx+ezJ9nce7JuTaWqpbXXAQMVleEZzKBZPLW6exB5Bd2bJAJIYGUETCQLIR6QeHgle+EI7FwPYQKsXAlKEAJS2OCtbz3BqIue+tXroPAwoIdITSLJziqPGBQ4PgFMvfi4YTHFFbZZsXHeRa24GJSRsBARLHQsU0z7Vrahlmbcw7lEYsEyBXqCQobFN0sxrwnDsoVH2rD0putBEysN3jt4emy2mqrJe8lFGEoY1HyegKGc5QZoV6atTLfCdfmPVawQKPv9BI9YOw3lA8QZNQn9u9ACTZOAsYvOKPS1PJYdcRCnz6jjeB5RAijNpKDgCHsCYYGJjFUkJ2vOnqFGiQC4bW8+LGhLwHjFVBl1u7+uWWf2yg6ovV/JN1jmEyz/rfnRkVDlXKY6xkTLeQd383DMioI8LrzHghc6wX8TRnehkjzacTPkRxiDGlbTy3NuDcQ4y0enEgTJaalgxeeea4y1vAdGQdekXQc5okVFb3RyMMr5tvMKwyLLkeIL/NaxNrZ5ihladH3mQVxbANcH+dYeHiZxy99Nwrl6CXhCRFPwpU9n3O+L2bsMY/epm3M9xtV8+jYnv178oo48hPnjZzzghIT8XO+SGQyZ8PDiznGbCFiouK7alyEzGA+gXjjqlztM0dfEb1JiLhgnlUp4+Gf9wT075XLmubHj5WRmLLH+bVaXBfmaLeQmczlTOhzIGLM69XOT/Mx1kPvAZOzf85FwBBqjLmPSdzXq828xNLIefT9axkBkxPT2GdHLHKWi7Ti+ES4SetvY38kAiY3+uXpiYApx0VnhYAQEAITRyB6QFRlKKcHTCRVyAOeFWUSr60jYFBOErscpTNKA74THssWwKQfJ9qc84orvlctHPnNS9fn+TTafm6bVxZlLN68mFUQbvE+fJQP42DXR4VBFQGDIgCFsRd7V94t3P/e5HN0Za67x/Ja9o67eMAQ5xZltAnWtZASJoT/QMFh4sM+RQKGfRuwaGZCSogwH26E+yM5wTnC7rB4NMECljw1FTygsDozqSJgotcNyh9T1jFxZjHqw8uxQLZNgiMBw+IHBTcCOWXKAb6zeEbZbwIhQMxyS8vOc/T3sggvI39pf6Yg4h6IHHDvIzGcll8YlimwutQrwiv4cFIx1Bj5ZyHGfi8eL18uNhi1GPicRylNuJY6KSNgopcN90OA4iUXQ3ZUpR0xs+u8cigSu3YNR78o9Ys2f03VZ9qRKcKrronnY1iT+HvZ9xwETFTIQJbGMFn2bJ7HXk6UDcUypCpeL0amG3Fg13P0Y0NbAgbFBc/iOfRPEEWGK23ME4H+mVWf2yo6GFfYhwiJYTCxbLfQbd7S3Z4dFQ11BAz3+DmFWWNDVpsy19JteoyeIU3vi9f5vobfPGkSrx32HSWnV15bObmvqRKTa72xjCcFxoFXrEP0d5DUVRLbKOSs95wcNwFDW40keFXe43nCHUJmRPFW+/43QuYyb43i6zr9g/cMiNfynRBlto+LDzvctI157/ay+STPWLx48QyPOk/AMK4R+qyL2LyWvgyDEm/kQnrMC1GC4yViHsddnjOue5gDWdguxkjm015iG8RLxsbs+Ju/b9hn35/l6Ct4n7xXBC8sv/dKWV5iuEkfHaFpftgnycK7Qqbb2sA/j7UPayDEEz252i3GLDYX9s/Fe4384MkRQ/r666bhcx0Bk7N/9mOffxeGgQ9BVucBw96c3gssGkfEPNd55tqzcx79XLeMgIn56zPmNe2zu5aPdoKehTkjf4wbFsKVNP1cXgRMV5T73ScCph9+ulsICAEhMDIEfBzluof4xVjddcN+ixYqXO8t7eL9fgHJb6bU99ctWrQoKae8Rbj/3X8uU857xRXXDiNg+j7P56ft57Z5xbshepvwnTjg3hKYfPiFsOUrLlyqCJio/OB+FsEQFD60hqXb9FjnHRXT8IuuqLDvoiiPBAwLfNt3gGezea1tTMh3NrK2EDKRgCFUmQ/fghLYW8dhtRktrsdFwGAdymTdhEWJLeQ5R+g1HwIDSyqLNR4JGEKn4DaPxLBmLMK99R91hoUXClOUzBAqLKAQT/jwHRKRTZe9zFYCpowIwfsH5RgeamV7HPhy8zkHAcMzTbEd02/zvS8BY3182cJ7WD7w1PEk6bDr+Z1FcFsFXOzfuijHvTdBWZgFlB0sWiFjUaDVSQ4CBsIDMhAvu9je/LPHQcBA1EISmFjMfPYPg0wyZWqZ0qKtosErQWyzWMYLT4oyT2gihLjCyAEiua9gKALJa9LHS4M+mvHKxHsNNVVicm8VATMOvNhvj426Tcr2PbLf7OjnALGNjpuAgUDFe8yE/o2/JoJBUpyfcR9KL8YJjib0JSi1vXcpv0WjGB9SzO6NR+YpzG8RH9KsaRvrS8D4kFrkoWk7JHwxykrDgLkZfQhW2WWCVwxEg/doLrtukufol71BCUY8zCEx4kHZad5S5NH6MctvrvaZo6/wa8wYUszy649xzdKl7/L9QFsCJme7xZiFOm3jly8nn+njGfeqDDHi9eP+XkfA5OyfRcDc+mZzYtq0z25TpyBSCLlKqEwMEOtEBEwdOuP5TQTMeHDWU4SAEBACrRHwsYbrbm4bLqUqrTLrorhQ9veacs7OeQKGySELdMI2NZU+BEyu5zXNa9l1bQkY0oj3MNmHOPCbdLO4I0ROlKYETFy02HNRFkSrTZQQWGwOExaahEYq85Aou9eHDfDWgFzbhYDB+wQSxISY62uvvbZ9TdaJWIyaLFiwYBBKLxIwWHGz+DTBMgvSxcTvA2PnxkXA8I7MWhAPHx9Hn7zg8eKtqVFc2IbkkYDBWtHCoEBGeWtWvHGoZwhtCeK1CWnK9SgCojfIbCVg6AO9Mp7yecHbEM8O793jf+dzDgKGzW19zP/4jKbf+xAwnthoYh3bNE+5r/P5JO26Mavs2ZFgILSUV66hMEQRYyGFfBooWGlTttcDv/UhYGjrWJSadbV/FuMjykwLO8Vv4yBgeM7CW8h623fmvve9bxqf2GfLxgryBlkbw9e0VTT4OYXNJ6K1MuHATJlL3sYlvl9gnGSMaKucY48pxkKrS6SDR4yFA8mhVB0HXtGKv86Lzt5P2bu138ZNwMQ+g83kh3kpWl6rjpAMeMJFwWOVPslLnGtDrqDwrRM/V/Thapu2sb4EjN9DsWpOWpd//xv4U4eYC7JG8KQV19GfgGWdV5VPbxKfyTdzrDrhnYK7tW+uzdU+c/QVGHaRDsL8Es/sOon7eDB3tn26muanDwGTu91i3IBiHcW19wg3DCABWXvFcc1+n+SxjoDJ2T+LgLn1LefEtGmf3bR+eY+xeA9zFIxRfLQRETARpfF/FwEzfsz1RCEgBIRAYwROPfXUGZvaxhuZ3LO/RS7xFqikiSIQj4Ay8QtqfjeFCZ+POuqoJdzZ2QeBsBOE0GGyz0LEK4/7EDC5nkfeu4pfIJPGMG8drmEvDr9vB+dQyvgFKcrAsnjzTQmYuODjGUcccURx//vfP1lYe2Ujvw2LA801bYUY9WaVE+PddiFg8NzxnjSRJGHR4MOEsNmnWXFHAoaFoycQogIdhSoxyr2Mi4DhHVtdWGeddZZQ8NA/oLwyYZNLIwciAYOC1DbQriNgUEZxbRTaJ4QbnnKWJ65h0b766qvPuHy2EjAUgtCIeJNBgFdJHUES60+XEGRYZ3sCsSofw873IWBQuC+8RfGO0D7qNgRPF03oX1TKtCFguJcyegKFMYn9oBCstPfcc8+BFwpEFH0JnmQoIU2x5pVKXQkYyBes631eCOnBOEJ+bNNyr0gdFwHDgp1ymaAc5bsRRYTLw1svShtFQ9wDxt5DDIvklX7xeaP87hXQPKeL5zGGAn7PrJhGUyUmz6eeW13xIcjGgVc06ohjOvnzEt8tnpsYcJiMm4DhuT5Eop+7Wp7aHPH08/WfsdJ7rpV5MPsQw9xLG6oTn18+886Rpm3M9xtdQpB5wrXMS7Au73W/MZdgLxLatTf6YC3Ce5lGYdyANLM9EVnboOCkLMyFUNxD2Jo3si9DrvaZo6/w3jisO/BkqxNfB7jOk+FN8+PHyrYeMDzTt4O+7Zb0TOijKA97YBhBzm/m8WnXTcuxjoDJ2T+LgLn1jefEtGmf3aSuxf3pMERk3ojRoe09iRGRD5EtAqYJsqO9RgTMaPFV6kJACAiB3gigCMTynck+bqZYYWMBh5LOW/33ftAtCbBZuw8NQFgnJtZRWGjEcAs2GeY3yBkvhCpBOWwKK36LVhtdCZicz/N5bvu5CwHDM/yCIj4ThR8bw3vc7JqmBAwKdTwlvFhMbvYUsD1F7Pe99947TeDse46jD18BEcIizKQLAYPHhrfW88QD6aLoYkFvgoKDUBBIJGCwcMOq24SwNVjEmRx77LFLhJ4aFwGDksYsl7BkijG68Wrx3lIQU0y8ka4EjH8m6dDXELN/xRVX5GsKD2KhUPheRsDQT9HmTVAi+5A1dr7NMZIJfmGYaw8Ynx+Uy2w8TDioslBaWDyXxQnPQcAQIhDSsq9EzCw92qBZfFZZr3vljLe4tjSm5diHgKHs7INlEkNLQTKwWEVQqqE4NhLT7uHolUpdCZi48TCeeJCuUbwidVwEDGMsxJN541EfTPlI/pifmHedz28bRQOhM+i/TOhXbF8v5hqm0K4Li2r3juKIwosxxPpjnjGMePD5IBY73q1giTDfATfrVznXVInJtVUEDL+NAy9vgOMJIJ4fJYZvsfmHXTcJAgZvUcYQZLPNNisOO+wwy06rI+8TEpe5FEL4SOoFdcUUuZzDUx0ltwkh+7CqRvC+YZ5WJVH55/cCadrGfL/RhYCJHvnMwZqE5KwqUzxPP065bL+pvl42Mf2c39kjjP4ZYZyGbGkjOdpnjr4i7msR9+WIZfL7Vsa1YdP8+LGyCwGTq93Gstl3CDL6aWu7VcYFdv2kjnUEDHnK1T/7eXYZSTdf9oDJiWnTPrtJ3fLRJTAMQw8R9QUiYJogOd5rRMCMF289TQgIASEw1QhgdYoHhBe/2OM8Shi8C/Cs8GIEDBbkfv8NrokWgCy2sAz3+1c0IWDK4hTnfJ4vT9vPkYApy2tZmij78Ugpkzpr7kjAEHqKsEV+8sWiGVLNlD48A9IOZQDCe4AA8mFteA8okaNymWtRkrFARrnOvipNBeIALyUkbmLbhYAh/AMKBZMNN9xwsCDmXNwjBsXppptumi6PBAwElFmTckEkILznSErgln/nn3/+jE08d9hhh1bWmigXUWCYsMcBe+pEiaHWsM5ba621BpfF37GutpAQXQgY6kmsV4SpQ4FkAvHr60sZAcP+ECh5TNhfhjrVRyKZ4BeGoyBgfF5ZjB9yyCHJUtfOg2+Z9yHeAbwnE8hHFNZ1EveemQYCxnsVNrHQrivfKH+jX7Kwezynrs+0fLCfEcSlH+vo91AieYLFW6nTt26//faWxOCIIgSLQ+tjhxEw0evBEqJ+Qfgh7CfAuFsmEOT0P0gOAqaKgIvPjt4b9jveQN4Lz85zjIoG8PV7dflrPaEQPa5oaxbOlPeEAr9p+Ev/DOYuePB5j0f/+7DPtFPGeRMUUniqQU7Vyam3eCqi4DcSiWuZQ/l6y7mmSkyu9XhFAiQXXjynSvx8B48I6lFVqB7yZx6FUXFL+pMgYJh7sheaCZ/b7j/FvT6ME98tJHAMWRP3AmHcxLjDhM8+FKqd5whJDL4meCNaHY5tjPlKWdvoS8DQvzHPsT0zLBSh5SnHkf3kUPIjvAv/fpqkz7xkpZVWqqyHTdJocg1t9+yzz06XMrbTJ1f1a2Xp5WifOfoK+iP6LuuX8PRmHCqTuEdonMc3zU9fAiZXuy0ro53DWAjSGIFcZT7WVG688cYCEqdNfWiatr9uGAGTq3/28+xxEjBN5yUekz6fffSPsv3sSDsXpk377GHlwRiEtY9JlSFMDB0oDxhDbHJHETCTw15PFgJCQAhMHQI+7IzPHJuOokTFYoqJqVkH+WuMgGECikLKC8pYrK7ZrBsPGxaUKDO8lBEwZYQQyn+uhQxgUUm+cj3P56ft5yZ5ZfPUKMSFZ/JniyD/e90kNCrKuY9FMfiwafxFF12UQlaZYtDSPfzwwwdkBOdQ5rGAjILykTBlKFV47yx8zPqXiTgeJubiHO+N372lXYw13YWAQenKQs6UATwPSzUWhRBaXlnBQshvehwJGOoSZAjKD+L6m2UjaaJYYuP7KGxM760e8UqjTkfSKt5n35sSMHhZeOKC94tSgjyfeotSzys+8ZZC+WL7I7DIx8vMxBNJdSHIqFe+zqBgso2s8XyJiuEyAoZnYuVpFvN8p3/AQgtMu8g4CBgUOODNoiZa91IPaDsmhCkrU8hT/0yJxLUQa1zL/h1VMo0EDIoH2/cjxx4JVWXve74pAUOIEfohFqMoMOMYFg0NyJdXcpcROzfccENqD5dccsmgGGUEDHulEL4Foa+w/og8oaxBmeoJL7/JtiVMm8Sy3vdtXQiY6PXoiQDCRELQexLfng9eKGCj0O+VhdrhuqhooC/G8MLv7YAiiXblN64GL7zmTGiXKMGsX8IbCW8ZU0LbdXje0X4hsjA88F54nDPlIiQ1no9d+qK3vvWtqe+1Z3LkfYENVvuMAeCHxwsbchPWx3sMcj14gVuUpkpM7vN1MxIwOfCKeYvfo1UtIcXAxiv/ebf0heZFRhq8gxjScxIEDP0GhkLmucL4ieLVh0Yjv8zP8Higz8BThnHVhHZPiEKTSFRTR5mnmnivEbBhzkKdRegXMBSJXu1R4cy8jFCFJrGNjYqA4XkxBBXzLYxAll12WctOOjLHpz+j/kM8YiCDkFf6L8bNiDO/e6+gWE5+rxL6UYhQQvIxN2W8KptrV93f9jz9sPXhdi9zMsZ46j91iVBkGMvQj9FfecnRPnP1FXjHe+8r5j7UYz8G4IGFp4OFEQZjnk+dNWman74ETI52yxoWL3bGz7iGoS4xt7e1Rdl4bmWOR6IVMK4wTtWRWfG+Lt+HETC5+udxETBd5yVdsCu7pwkBkwvTpn12WT79OdZXtCcT5lax3yOsI+t7q89cKwLGEJvcUQTM5LDXk4WAEBACU4kAiigmXW3FCBjuYwLLIqONsICJym7vOVGWFsp8LPRRzuR4Xtkzmp5rmlcWL1FYmGO94oX9cgj9VCVlBEzVtXa+ymrRW1/btcOOZQrJqntYkKCQNwWat/bsQsDwHNLg3Q8TQtb4+OqRgLH7qX+RBMNqlcVoFMpRhj/vlj/2a/BhzGhTZjFJWvE5dp89h4Uhz0X5gxLRT565Fit9U9zYPYRz8KH/uhIwPJcFggmLbAhYFMUooqJUETDx+XYfOCMoSFGyNJVxEDCEGrNYyXj9oFBFkYL1NnHqrf6SZyydo2KF85FM4Rxi5d58880HiuBbf1nynkl7wEAweqtPlDRRyWZ5n/QxEjC0D8Pa8sZ7i23OfiO0H/H8zUPOznOM/eJuu+1WPOhBDypQ0qBUR5kY0y1T2OAVBZlqAtkLCYA3IXmjDZ111lkzwiDhKcPiGkUY4eIYH+IY14WAKcOLPWboYwi7R3/jlcqWZ44+lCTfvTcl36NERQO/82622GKLRJ6AHXMNX66qNOMeLLxn2hLkMMoolL3sqeYF5bWRLHFOEkNh+vvqPvMsCGxPhPnryRfi+wr/O95NKK09UWG/N1Vicn0dAcPvffEijWGCFxlKRxMUz7QP+szrr78+jXlmtME1tDFPYtt9kyBgeDbtinrgBc8L5knUG/r9uEm8GbBQd/GetfIxVmC84RXXjJnUOzNEgDDkvVgdoQ+h7zGxOk0boP5ccMEFqV7b7+SJfsDqNOdjGxslAcPz9tprr8HeT3y3d064ROYkjH8+jDGGDMxvaTc+hB8EDH2c7Z8CoWF7SpGueRLxeZhEkop+gX54VILXPfNKe6/DnkPdgIjy3pV922euvoLxgDmPGVtQFt4JYwJjI6QWfbQf55i7ect77mman74EDM/q024pD32nCWQgXkx4TjH/w9PT5tYYDPCe4nzC7o1HXzZ+i5Ef4vV9vg8jYEg7R/88LgKmz7ykD452bxMCJhemTftsy1vdkTWU1VfaK3oY+mL24SSMsDdssXREwBgSkzuKgJkc9nqyEBACQmAqEWDhvM8++wxCRpRlcuutt06LQDaAM/EEDIolrL7rBEsNFjI2eWCSGwkYJpneSrAsPbxgWATmeF5Z+k3PNc1rWdiiaFnDM721ZFkeygiAsuvsHEovlOJ4IUUh71gOR6u+eJ19Z/HFIqyNsCA2S1jCWKHMRLoSMIQRwioPJUWVoAxCiWobWHNdJGBQZpQtpKmPLCq9lZ9/DsoWPGaqxFu+orSwPTeqrvfnCQthiiEU/xBxVQo97qOcUbEVCZCmHjBVBILPn/9cRcBgLbnwFi+KKmHRH0MVVl3L+XETMHV5wTMMazOvbPPXxxB4/jcUfH7fHn6LmE+agPHKISx48UiYVokL9zb5RGGCNXkVucT4xLusa3uQcFg6m7dZGQEDwYAitkroT3kOf2aRX3YtfRUECdb4SBcChvuweI77gnHeBPK4bJxAQeUJ6aoY/pZOVDTQp3pFnl1nR/bCwAvB74tiv/GeKTdk1jBBkU063tMCjE1Zzv2QTN5DZlia8XdCsDKW2Pwl/h6/8+5Qtvs8xWuaKjG5bxgB0xevmLey77QLFJZWH8uusXN4QUM8efLAfpsUAcPz2csIT5WyOYDlz44QLqa8xRMVxT9CfQMHiKcocf8b5rO+DfE7fUZduyBN+hk2BI8W+7GNjZqAgXzG29v6u1he/x0FNuF1yTOe8bznJsZd1JMnPvGJPqnaz9Ezx0if2pt6/Mg8Fgyo//RpEOp4iYBNVT2K5GPf9pmzr8CTkzC4tv9OHTSMl09/+tOXmPs0zY8nKarGD78/KG0LL8IoXdstay0MourGWZ7Fc/FmiZ7QMR/+O/2DT9fIWn9Nrs9NCJgc/fO4CBhw6TovyYFpUwImB6ZN++wm5Tr1lkgIeJ7WCUT3OeecU1x77bXpMhEwdWiN5zcRMOPBWU8RAkJACMwqBFgMMhlicegXhlhyMZgzWcHKDaLGQrnEuKlYDpJGVFDgtYLilXRQUrP4tIVMJGAAjQktEwwf5oXzWBOy+bqFKsn1PNLuKk3zGtP3Ck9+a7KAjAQMFnlYAONpAZ4mWFrjGVGnALRrCdFDaBSOcSGJ4oRwSry7GCbD7q87orB6+ctfni7BUgeyh3BZXQkYEqKcLHKw9PFlZvHEAh4SIyrJIwGDlRoLQa+co27FUDmxbCyAiFmOBTDhZryXCtd6AgZyso4oimnHPWWwTkR5hwLUC+Ws2pQaZQeTcxMUrmZ1DdnmLfJ9mDGu5z4UDLFMeMJQbt9OWXjHUED2TEgYyAbC4cW02LzWe1nYPVXHcRAwkM/0Nbwr3+/5PGExCaHmrVn973ymTzzuuOMSjtQrnxbkje2HZPfxPOqICW0MZXxfiZhZerQLIwSx5PdlQTHk94XCcpfQO9Mq5DfupVGWV9oKRD3hrxYsWFBss802jfox+i3agu1hYWkzjqHUZywkjKPtDYLCkXccBeUWdcu3A5R3tAHSIX9YLXK/3+CedLiOMJvUCfZXMqt6rxCOz6v7Tt9OuCPfR3E9obHY66ZqLwpvsc94QN9HvqskKhpQ1BO+h/L5NsEYhYIeLGJ/HdO2PoVQch5LrqMfYlyEmPJ1mt9OOOGEpFDjM+MPRE5dWECuGyaUgXHs1Fv6S0J9lAllo66RpzJiyd8DnkbOUpY6YsMTMIRfQilaJl3xKkur6hzvgvfK+/bvhHoLcUB/VrbHmaXnjTOYFzKXHKewvwUGFSip/DyAPNBn0F9QN20vNPoCv29c1f5QVga/pwTnMFqg/zBh3GHeRT/in0/b4pn0bxA3ZW0jGu80IWDoS8rCzuKx4/czqrPgh/RgDkG993MvysT8lX6Rdxn7B/pBvFvK7sPziH60jdKb5/F8MLYwj3X7UnF9H/GEGushvAKjkQ44MucBP+sXwIH5ooWItTx0bZ+j6CtQzOLlHN8N/SVjA+stvwehlYFj0/x4AiaGmrT0mhAwXNu23Vr6zBkYD4ha4AkTfuc9YSRHnxrfq91fdWRcY81rbZi9AJuGJa5Ks+p8EwLG7u3TPw8jYPzeUlX9CvnAYM6Tqj4KguWz67zE7u9z9AYaGLwRgaJO+mDatM+ue77/jb0MGT/imp3+CUNHyF+vYxAB49GbzGcRMJPBXU8VAkJACMwaBJigMtFlr5W4mGpSCCzDsCTmXpQKWMV1ERY1hMZBUGqUWejyW67nkVZXaZrt3/QDAABAAElEQVRX0i/bA4ZJLYuAOokEDB5AKLFYXIA3eWAh670/6tKLv6FEZqLI/bjne4VBvLbpdz/JNcKuDwFjz6XMLGT5M4v0MmUF10cCxjxDUKpwPwvNKkLBnjepIxaWkGNYLBJ6J1rD5swXCzyIH+oAC1GUI13rUo58RTLBLwypV9Ejq0+9oj7R76EQpz+h3NQJlGFGYuUo06jTiJjZ8+oIGK9gQvmIYqWqLVl68+GIIQHtoc84ZvWK8ZRxkL26yoSFNO0Oq3Guo52P4h3QnzBWoBREsTasfbOYN4Vi3FS8rByRgPHKYWtb9NfDnluWNufAkXdCPb3rXe86lOCAKKc903d2fWZVXhjHSZt6gkKYMZM8VXlXVaUzyvNt8eqSF55BnWK+QPlnm0CqMRegvdk7HGcZqEfMQyA4bT+hcT6/y7OwrKY9Q2jy3iHemgj3Mc5yT44+zjbJhlyK+0I2yU+Ta+wZXAvpaPvjld3LHNwTWoyldSTsONpnWT7LzuG1SX/GuDAb5jxd2y0GDYwhzKmZ3/Xts5if4yU06rlTGwLGv9/Z0D+3nZf48k3i8zRgytyS/hQdCXUPQ6NohDIJbPTMcgREwJTjorNCQAgIASEwjxBgoUFs4DbCgrFKgdYmHW85xn1MnrBKj5ZyMc0qAiZeN03f/YafKPUJ4XX17291i15rzTXGktUqAmYsD9dDOiMQyYRREjCdMzllN0bMLHt1BAzeLxaqoMq7ytLRcf4ggEW399LC82OYhXAdATN/kFNJhYAQGDUCeJESugzyBy+OKgOtvvlgL0Pz3sOqvM4Ixu9VAsmE55NkbiOAlz9es3go4qE6KonjcZs9k0aVJ6UrBIRAMwREwDTDSVcJASEgBITAHEYA992qTXWrik0ICpSVfQSrFUKHWBg30mo6cZ+NBAzlxXLaFLyEIFhv/Q0ShCJg+tSkuX9vJBM8AYNy4973vncCAYtUFr59PGDmCpqG2aqrrFywZ4H1M4TasXAFPgSZxxTlOuHlung9zhX8VI7bENhvv/1SeEvOPPzhD0+ehLf9Wv5JBEw5LjorBIRAPgQwoGLezJg2LBxc36fiuf3Tn/40JcO8g9Bn0QsGr4of/vCHBfsPGlnTdF7fN3+6f3IIsA8UpBxeq4TnW2aZZUaSGeoUIZIJPWXC51E9z56hoxAQAnkQEAGTB0elIgSEgBAQArMYgUkRMMTgZwNYL8QmbhKbfjYSMJSTPWpQ5iHsU7LuvdZPn0XAJBj0rwIBIxPWWH21dIUnC+It7AkkAqYoDLO/L/5rCosRceK7J2D8Hh9V8dnL0tC5uY0A3qEoEE2Ghd6x60TAGBI6CgEhMCoEbE7JHhN4wYxSzNPGPwNjhdVXXz2F/CEEISHkjHjhui233DLN80cRRtLnQ58niwBhcBkrjznmmMq9cvrksGrfJfboY68+iRAQArMDAREws+M9KZdCQAgIASEwQgQIjXXyySe3egIbIm+yySat7okXo9Tyoc/abEA7WwkYMIDwYmNbNgcct6I8bk7/1a9+tTYud3xn+j4ZBIxMMALm17/+dcEmp1EI3XfAAQeMvV7FfEzDd8PsdkvdGq++LE+QoT5cCxtBn3LKKQVhyiRCAAT8JunsK/bBD36wETAiYBrBpIuEgBDoicB5551XbLzxxj1TaXb7ueeeWxx66KGDzdar7sJ7dOeddy522mmn7HtOVT1T5yeHwHXXXZc2m2cvmVFImaHgne50p+K9731v2i9qFM9UmkJACORHQARMfkyVohAQAkJACAiBRgicccYZaSNhLmbDvC222KLxBqYQRoQ6MIEMwgpvtsm4CZjZho/yeysCRiYYATMMF9Wr2zxgmmI2DFP9Pj8RYK8uNppl4/pHP/rRjceZ66+/fkZoT0IDkoZECAgBITDbEcDz5rTTTiuuuOKKtPk15WEOfs973rNYd911i+23375YfvnlZ3sxlf8pQQDDmOOOO65YvHhx8rDZaKONih133FF1bErej7IhBJoiIAKmKVK6TggIASEgBISAEMiOgBTl2SGdkwmKgGn/Wtti1v4JukMICAEhIASEgBAQAkJACAgBISAEhiEgAmYYQvpdCAgBISAEhIAQGBkCImBGBu2cSrgtmaB6JQ+YOdUAVBghIASEgBAQAkJACAgBISAEZi0CImBm7atTxoWAEBACQkAIzH4EpCif/e9wHCUQAdMe5baYtX+C7hACQkAICAEhIASEgBAQAkJACAiBYQiIgBmGkH4XAkJACAgBISAERoaACJiRQTunEm5LJqheyQNmTjUAFUYICAEhIASEgBAQAkJACAiBWYuACJhZ++qUcSEgBISAEBACsx8BU5TP/pKoBONAoOmG8qpXt72Nppjddoc+CQEhIASEgBAQAkJACAgBISAEhEAuBETA5EJS6QgBISAEhIAQEAKtEZCivDVk8/qGpmSC6tVt1aQpZrfdoU9CQAgIASEgBISAEBACQkAICAEhkAsBETC5kFQ6QkAICAEhIASEgBAQAkJACAgBISAEhIAQEAJCQAgIASEgBISAEPgfAiJgVBWEgBAQAkJACAgBISAEhIAQEAJCQAgIASEgBISAEBACQkAICAEhkBkBETCZAVVyQkAICAEhIASEgBAQAkJACAgBISAEhIAQEAJCQAgIASEgBISAEBABozogBISAEBACQkAICAEhIASEgBAQAkJACAgBISAEhIAQEAJCQAgIgcwIiIDJDKiSEwJCQAgIASEgBISAEBACQkAICAEhIASEgBAQAkJACAgBISAEhIAIGNUBISAEhIAQEAJCQAgIASEgBISAEBACQkAICAEhIASEgBAQAkJACGRGQARMZkCVnBAQAkJACAgBISAEhIAQEAJCQAgIASEgBISAEBACQkAICAEhIAREwKgOCAEhIASEgBAQAkJACAgBISAEhIAQEAJCQAgIASEgBISAEBACQiAzAiJgMgOq5ISAEBACQkAICAEhIASEgBAQAkJACAgBISAEhIAQEAJCQAgIASEgAkZ1QAgIASEgBISAEBACQkAICAEhIASEgBAQAkJACAgBISAEhIAQEAKZERABkxlQJScEhIAQEAJCQAgIASEgBISAEBACQkAICAEhIASEgBAQAkJACAgBETCqA0JACAgBISAEhIAQEAJCQAgIASEgBISAEBACQkAICAEhIASEgBDIjIAImMyAKjkhIASEgBAQAkJACAgBISAEhIAQEAJCQAgIASEgBISAEBACQkAIiIBRHRACQkAICAEhIASEgBAQAkJACAgBISAEhIAQEAJCQAgIASEgBIRAZgREwGQGVMkJASEgBISAEBACQkAICAEhIASEgBAQAkJACAgBISAEhIAQEAJCQASM6oAQEAJCQAgIASEgBKYQgX//+9/F/vvvX2y11VbFDjvskHK4ePHi4tWvfnXx7Gc/u3j4wx8+hbkeb5Z+//vfFyeeeGLxm9/8pnj729+eHn755ZcXn//854ulllqq2GeffcabIT1NCAiBWYHAokWLis9+9rPFG97whmLVVVdNef7iF79YnH322cXrXve6YoUVVpgV5VAmpxuBv//978XXv/714hvf+EZxxBFHFHe84x2LP//5z8WXv/zl4swzzyze//73p7GqTymuvfbaVI/33HPP4oEPfGBK6tJLLy3e/e53F/vtt1+xzjrr9Ele9woBITAGBP773/8Wp512WnHCCScUz3ve84otttiiuOmmm4qTTz459ReMVWuvvfYYcqJHCAEhMCoERMCMClmlKwSEgBCY4wh8//vfLw455JBUynvc4x7FscceO8dLrOIJgfEi8I53vKP45je/WdzhDndIiy8WZ6985SuLCy+8sNhggw2Ko48+erwZmsKnPetZzyquu+66lLMPf/jDaXG6/fbbD3KKQhWF17TIAQccUPz4xz9O2SHvL3zhC6claxPPByTaRz/60aRw2HHHHYtNNtlkZHn661//WlBfrrzyymKbbbYpnvKUp4zsWUp4NAjw7iBLfv3rXxf/+Mc/kpL50Y9+dHG3u91t6AN/+9vfFrvuumvxn//8J/WpT3ziE4vzzz+/2HvvvdO99L1W/0j/JS95STp/u9vdLhG+yy233NBn6IJbEdhtt90KSHHkta99bfGIRzzi1h/m0P+6MmIY8O1vfzuVlnr0jGc8o9hrr72Kiy++OJ07+OCDiwc/+MGd0fjXv/5VvPjFLy6uuuqq4mEPe1jxpje9KRE8L3jBC4q//e1vxU477VS86EUv6py+bpw8Ah/72MeK7373u8Xqq69evOpVryrufve7Tz5TI8jBBz7wgYI5G8I8bi4a0NSV8ZRTThmsqzfffPNkVPTxj3+8+OQnP5kwedrTnlZAsvYRyF/WEHWy9NJLF3e5y12Ku971rsk4AWOmSQmGaBDVv/zlL9N8jTw94AEPmCoDtB/96EfFG9/4xgQRxhz2vkaBGetADEfOOuus4t73vnexcOHCYhrnI8yp//nPfyYIDj300GLTTTcdBRyzMk0RMLPytSnTQkAICIHJI4BF37ve9a6UESZqX/jCFyafKeVACMwRBC644IKkGKQ4e+yxR/KAgYxBMYhAfm655Zbp83z+h0UgizMExRYKLkiNK664Ip1DofqEJzwhfZ6Gf3gvnXvuuSkr5MsUvtOQt0nmgUXlk5/85KRIt3x87nOfK1ZeeWX7mvXo6w0Js3iWR1lWiEeWGAoZyLOyOcdBBx1ULFiwYOizUWJdcsklidzGW+7//u//Uh/7l7/8JZG4H/nIRwZp/OpXvyp23333wfevfOUr8o4ZoDH8gyfJX/GKVxRPetKTht80y66oKyOeLkcddVQq0T3vec9krPS+971voGg20qRrkb2C9kMf+lCx7rrrFm95y1sKjKQgDOlHmaNLZicCP/zhDwfKXUowl41vPFn50Ic+tHjzm988O19aTa7ryohhAAp1k5NOOqk477zzkkcm58wYy37vcvzgBz9YHH/88Y1vZWxkrfGc5zwnKfwb35jhQsZoCOU//OEPM1Jbc801C/q9aRFPnC2//PLFV7/61ZFlzY8nPGRa1xGPecxjkoELeeQdMs5JbkVABIxqghAQAkJACHRCYBwEDJbi73znO9MgftxxxxXLLLNMp7xO+03zpZzT/h5y5O9Pf/pTgZIJi2yUuhtvvHGnZM37hZshXqj7pIvl2nwgPJu2iXPOOad4zWtekzDG+p1wK36BwmJ255137vQORnGTCJhyVFlgE1bPy+GHH76E1VzTeuHTKftMSD+U7SYoULEil0w/ApAvzAeioCjCKxAld51gAQxZi9A30Eeg6DHLYrw0tttuu0ESImAGUHT6UEdOdEpwCm+qKyMhyCCXEQhlCBG8t3bZZZd07n73u19x5JFHps9d/tFv0n/e5z73KSB2IChRyuHd9ahHPSqFMe2S7ny8B6UuylMsy83Df1Q4NB3LsKb3yuYcSvhRlalvunXkRN+0p+X+YWVkHoLXJYJxAPN9b5zyne98p1dR2hIw/mFPf/rTkzfd7W9/e396JJ9vuOGGNCfEw88LpDLGMq9//ev96Yl+bkLA5FobvvWtby1OPfXUQXnXW2+9gnc6LmnaR4qAqX4jImCqsdEvQkAICAEhUIPAOAgYrAZRpiI8DwXLXJT5Us65+O5imby1IhPlhzzkIfGSRt9x3yZ8iFnMsgh5/OMfn+7tazHbKAMTvqhpm/DKrW233TbFwSdUgYUMIo42oVimRUTAlL+JMg8YwizEcFJN60X5U247y+KdsBEmeMRQfyTTjQB7Pj33uc8dZBKlM6TrWmut1Xgfja997WtpbwwSQRlGqJdjjjkmKbs494lPfKJYY401+JhEBIwh0e1YR050S3H67hpWRkg+rNvvdKc7pRB2lMAUVEacdCnV1VdfnfaK4F7zACUsH20CIWQp4fUkzRBgrkAoN8IqE/ZrlNJ0LLvooouKl73sZYOsMKdkbjkXZRg5MRfKPKyM7NvEGIXYHIiwc3jCILkJGAyXokAWMO5hrBAFEvnAAw8sNtpoo/hT1u8eJxJ++ctfXpBXPEymTZoQMLnWhoTog2g3eexjH1vsu+++9nXkx6Z9pI1vZEgeMDNfiwiYmXjomxAQAkJACDREYBwEDItIFpPIXCZg5ks5G1atWX0ZYXGI8Yz0IWAgWyBdCCdCWBE8aix0y9Zbb50WQLMaqCGZb9om2MuDuNjI4x73uBQz3FuzE5uf/USmRUTAVL8JrD4J/YQFNwpN24PD39G0Xvh7yj5Tb7AaRNmGNeVTn/rUsst0bsoQ8GEYMcgglMqKK67YKpe+jz7ssMOKzTbbLHkgWNiQT33qU2mvBUtUBIwh0e04jJzolup03TWsjBgCQJawP8BnPvOZAsIZxRleKsTGx9uvi7Bvlu3vwjjHeHfGGWcM5gfTFoKzSxnHeY/Nu8ZBwOC5iwcvMmx9w3Xf+9730t4vEG1z1RjNK93nYwgy6oL3fj/xxBMTaWve73h/fOtb3+KyzhI9YOoInRtvvDGtwXkvGISZkA/IIfZjGZV4L+VpM6SKZW5CwPh5R5+1IWPHpz/96fReIO8h98e5B0zTPlIETKwlt30XAXMbFvokBISAEBACLRAYBwFji1ayNWyB0iLrU3fpfCnn1AE/ggwdccQRBXGbkT6TbMgWSBcWOqTHpNs8YPAKYPEzl6Vpm/BWZSwSsWYnbAMW7QjhO6Zpw1oRMP1qbdN60e8puntaEYDctr1fbJPitnn90pe+VLz3ve9Nt2HNSZ3ye3LgHeU3ihcB0xbhmdcPIydmXj07v9WV0XtpPvOZz0z7CUE2W8jDPiSJD2WGRfp73vOetCcaHn3IuK2jZ+fbuzXX/j2Ng4DRWLZkbREBUySPbQxDzPiKuT8hBTHIymF81YaAsTe0ePHiRAz94Ac/sFNpX5hRhem76aabkkGVPYywo+uss459nbpjEwIm19pwkoVv00eKgKl+UyJgqrHRL0JACAgBIVCDwDgIGD+Az2UCZr6Us6Y6zZmfvIK9DwHDhpfXXnttwoU9CYjlbhaznERhiPXTXJWmbeKlL31p8Ytf/CJZhEJU3XzzzcVOO+2UQiesvfbayaNimjDy9WNaN8+cJrxiXprWi3ifvs8NBNiU+fTTT0+FIUyjD83TtIRsTs4m5Yjtp4VXAt5XSNyTQwRMgqXzvzpyonOiU3ZjXRk/+tGPJotlsmyKxIMOOqg47bTTUikgBNt6cVnx2SeBfRlM2BuJ8EF77LFHOmUGHOPYs8HyMFuPvp2Pg4DRWLZkTZnvBAxhxgg3hjC3pW37tTaEx5ZbbrkkcC3OdCFgLHnCgP385z+3rwX92IIFCwbfc3245pprZuzdyNx+nF4ebcvRhIDxc/8+a8O2ect5fZs+0vdvCkE28y2IgJmJh74JASEgBISAQwC3d/5++tOfFkyIsMjByo6BlXPvete70tWmxHC3Dj5efvnlKY2LL744KUpxY77Xve5VbLjhhilmdYznirUPG4oSWuF1r3vdIB0mLH4Reec737lYf/31B7/z4frrr09x/S+99NK0qS7x4okNj6Iaj4I111xzxvXxy/nnn18wkbrsssuS8hvL+Q022KB4wAMeULDvRp1cccUVySWYeM2EQCJEAPdSThTnPu+k06ecffJZVwZ+I+bvmWeeWfC+KAcWL2zyR1m23377YpVVVpmRBHidddZZ6RyL/ec///lL7NtgN+DOjgLCXNnx6Lj//e9vP6cjz2dzUp7NRB/LK57PpqhbbLFFOs64wX1pm3e7lX2GeB51BeX9Ukstleog+aBs5ANX+4033rjYZpttSmMf82xCjGA9bZt7Y13t4yQvvfTSS2wqbnmIR7/xKiG22CD6bW97W/Hd7343XcpCyDb25USOMsQ8tMWTzRlpcwh9wq677po8eGK6fCcePpsRE4IFXAijQptu0/b9Xi+2MCVMx8EHH5yei7U8fdYwoT194xvfSJex9wMbc1cJHje8g2WWWSbVlar0qbfgQV2n7ROLn3rlF2FGwIAFdY3FN33XaqutVtz3vvdNFoCQSMOk7Xuy9PACoH3TjxLuAfKKekRICuoy75A6TJ330rav8/fWff7JT36SwqxwDUpw8EH69JUpgZJ/jGfs9YGwL4PtGRQvHWVfSx2hPkEgMm7wnfrHeEW/QX9XJYy/J598csGGzLwjFLjUA5Q17G1DO6I90W8SYg1vkWHStR4NS9f/3rXMP/vZz1JoOpTZjE0IeyFY+EF7BrjFOYX9Zkesa9kXg74HId4+fTabmSPcb+HI+O6VDnz/yle+kq7hHZx77rlp3KdcPJvxjHEyjvfcZ8LzFy1alMYc2jveEIwvvHeI9rLQe3YvR+oueSBfeEDYXIj7iZG/7LLL+stnfB7HO57xwFu+1JET/lpCDzL3oC0w5vr5G/Mv6rIXxkj6KcYP6vgwxST9CG3exijeN2O+l659W10ZTRFl3i+8A8JIIX28XyzfXilq4yDp8xyEcahs7tt2bk5af/zjHxNRCeaUhz3qqM+Mu/z97ne/47L0rqjHzPEY96LkSseny/ulXdnclfe80korpXZF3SGkVVnboN5Rj5jLUqcQ9rkgRJgXMFx99dX9qaIthuQRwxravHkpkWBc38x4SPhCO68i7LpiwCNG8U5C1od+bUPAMF/ij/4CPFmbgA31jnftBdLd9nxjPWHtz18TP/u1Df1PJBq69qV1ZbS9XlhvMT9jTUU/xXiew/uFMvYhYOgfX/jCFw6gYv4BgVzWxrmobX9K22BMox858sgjB8+hXwMLE9o179EL4/GFF16Y5tDMqRiDmds+6EEPSmvwsjwy/pJ/hLHA5gA+XfvM3iuki+Ah6+dn1BXyiMT5A/Uk59qQNg42eEQhhJ1krh6lzzwhptWlj7Rxj7SMgLngggvSnIl5k+mUWOswj6vq03xe2rR5f9+0fRYBM21vRPkRAkJACEwBAgy2KHuZtJYJEyEGTSY7SBkBw6KMiR6TlipB8YWyFJLCxCza7XvVkedbGBGuITY8mxeaUiXeR55ZqJpSz/8OMcAEAQVglTAhhhCKC3YmQyxwiRtfJeBD+p5s6FLOPvmsyps/j3s5k0ib2Pnf+AyGWBz7TV19CAyuAaejjz6aj0uIX3iQFnFsPaGDMpKFaNXzSRAiDexiDOwuebcMeqU4E1sWAdTLKon7imA5jQV1E6mLt+zvv+6664o3vvGNSYGBUo3yQhJBKrBfBYsxlCAmfctg6dixC54ohNlTwQQvHr9Ys/P0LxB15uGDEod9biCZbIFj15Ydre1TT975znemhRgKMASLYOoZStBtt902nRv2D8KVd2pCPwLpWiZY3RuBWBe7n7qNshixuP989u+JvghLWwuXxu9RWJBb6Ln4G9+7vCdLxy+QqJcohFCAevFeBl37Op9e3Wf6jRNOOCFdAv68B6RLX5lurPkH4WUEP31RjKs+6r6Wvc0YEwgzWCWQUPQBKAOjQF7SZhAIGMIS1o1/1DXGP8paJn3qUVl6Zee6ljm2z7K07Rz9YzTMsN/8EUMAFCNYGBuJypwHxQ79q1e0RgKGto0HjRFBPl0+06bpl8reG30475T+vUrq3pX3pii7nzkVHpNlZMQ43nFZnurICbseRfb+++8/GBPsvD9icLD77rsPlOg+bBzjI6QUxHiV4HGCxbaJ7a/A9759W10ZCYnJXJmNq1EC8qz3v//9KRuMeX2FeROEIUose+/Mu1F2Ub+9EQjP6jo3517fFhiHmQ9idGJkD9d4YT7InJJ25SVXOpYmCtsDDjggESJ2Lh6ZhzOvQ0nvZbvttvNfKz8TMoy+FumKYdOxrDITt/xQNT/pgwHPy/1O6spQ9ZtfI1TtAcP+bfTVjOFVQp1nPsPcC4F8oZ6a0P4ioWu/caQ+e5Imenr06UvryohimrGJempKdeZmrG8pcx2x7/Nf97kPAUO6jG1msMT3Miy79qd+fkzaVYIxnBmAMpaCF8r5KqEf4pq4Zw3GVOCKQCZhgFQlkOUY5CD0q7RlkyoCZhRrQ9ZPGHWalEVD6DNPsHT9sUsf6dcXzEkgx6t0SmDP2jH2zZaHLm3e7p3GowiYaXwrypMQEAJCYIIIsLBgkYvlihcGSMSUj/63SMBg0b3PPvssoWTAMgSlqSdJOMcC1dyLvTWff0b8bAo60mNwj5MvFE38RWV+mYIGZYqfGFBWlCh41JiSmOfHmPOUY6+99pqhNEYRgOKFZ2P14svqJ0pty8nzu+aTe4cJuFhsfa4l/3gAkX8muB5HlOoo101QmnrShUU5ilsvkFsoWExinH0WHYTPiAKWLIY8jtESrE/eeZ6f9GPlSPxlE3Dwz7bztBEsQBHvrWK/lx1JKyp6y67rcq5vGfwz++DJO/ZEJkpiU3DaM3z6YMJiAcv/Lm3C0ux79Bt+msdRTBNLyxjyCOv5Mqta4vtjlYl4Isq/p5h+VV2jbaxTEv/a40ha3N+0zXK9XyCRX1Po85uJtXXaQNe+ztIadqwiYEZRL4YRMKPsayHszdLaY8K4E8dXxhP2dYikgidgyupN2TmUvdFjhOf3rUe+DFWf+5SZcRjPxLJ+OD6PskSs4jVtv3vFJPfyTvx4WIZ1nNdwX5UyhmsjEUd7NFKZexGUcGzQbMJzsQKGLPTzNfJHv+Qtfsfxji1f8VhHTnCt3zTe7oVQpF/FM8k8SvnNK95QOEPkmzAPrFMU+X4Ei3YIUCRH3zasjOlBU/Cvz9yc7Me2EOt+bBvcAylk1uF8R3KlQ1oQu5DpsX8o60+5Pnod1dUZrjfZZZddiuc+97nJe3fU6xt7ZtmxjIDpiwHPyflOyvLd5FwdOcH9tHkU336chHS+4x3vmEgxv16jX2WcXGGFFRLpidLc+hI8Df16JObNz+mpR97Lo29fOqyMMS+5v/clYDDS8d5bkJKQkyZ9+lM/B7T0yo42DkA+E5Y0tv2yMbXMYGrUBIyvR2XlsHP0o03XhsMImD7zBMtPPLbtI7nfry9iemXjBO0MHUQkGbu2+fjMafouAmaa3obyIgSEgBCYAgRQgqPwM4HowHLPrHGwMD/00ENnKFkjAeMXxkwsWLhgvWgTYaz1UCqZsKjhGgRLBwtD5BdtRx111AxFJ4p5Qm8w8WLxaxZ4j3vc49Jk0CyfsFhhcWYKjuih4fPK81GsY/lkygsm9Fi8onxlwY6i2MTHjeccykoUReaZQFkogymkyROeMvzetpx98mn5rTpilestMQk5RMgkFjUI1kwf+9jHBnHMeadMLA1jrkE5axbB/E45UaIghGfBtdveQSRQUFTbhrRcz0QMizPqHljxfCbaeDwR35z6aZ5IOfJephRnsYYXBQou6hgEHRY6NtFngo+VKRa3TIjxBCKfLA7tmoULF84IW0D995bVlDWX9C2D5aMvnixwac/2riG0IFisTRBaBkWYiVeGtG0TlkaOo7empt5+9rOfXSJZ6p+FK7AfsbqNIbpiXH5PoJS9J5Ti9FtGVBFGyrw/eE7ZwrHveyLdsgUSIc84T9unH8bbjb62T1/Hs5qIX3wbwc59o6gXdQTMKPvaGMID5RFkD16gtBHaDQto6qMJ7+TYY48djEmc9wSMXUfoFcLn4WlJv4QFPES3Kavos7D69wvcHPXInl91zFFm+lTqI8ors0LFWhJFqBcMJ1jc55SomCRt+gjGzM022yzNa5gnMGbZGMg1hGD0IU3w7jz11FP5KY1thL3DCpu5BmVjnmKkLWMo4wtjhgnen9avYh0O4cA7RQglSN+EtTRj6VZbbWW3Jc/JvuP7ILEOH+rICcqz4447DspFXWee5UMvYm1OG7Fx1fe5nlSJczufVcJRMS6ZsCGyeSTn6NvqymjPnIaj79vazs3Jf1lbYHywtkAYGeoyXl7emzUSo7nSwWAM7E2xTpnoEwhJh1EXdYbQRNQpaztcwzrHvHJou8xRGXdtfGcO6sdgym59Sx8Mm45lPM9LnYduDgx4Vq534vPd9vMwcsJCdJEufR99pu/roicdngL77rtvyoZXhlMH8HYwwz+fT+bxnqzxnk85xsthZfR5GcXnvgSMr//kL5JZfftT2gjrbd6tCf0/oXlNbC3lyQbGZMZUyHXeL0YStOFvf/vbdtsS3mOjJmBGsTYcRsB0nScMQCr50LaPJIm4vuCd8H6Yu6A7wHCENZX3porRJUinT5vn/mkUETDT+FaUJyEgBITAhBD45z//mfYCMOtOFDqHH374DMUPWWOCijuvKRMiAcM1KLhYgBE+xxY6nDfB7ZfJD4KSm0mhF7+/A+dZHFUpVlDwoHggLqspMX1a/AZpZIKlCZMBxIdNQlmMpW4TiVa5Zike7wUrFv5MYJBopdm0nF3zGfMTv5M/FEVmQesVn/FarG+Z8CJx0k38aMppShKfDotflCgICkfIGa9Y8koUFr7EaYdcKxPSt3eXK+9RKe5JAZ+HaKlb5unjJ50o3NinYBySowy58IwWcgtvIaJQDNOv4A1iZGn0KDOcmrYJuz7HMXq3UEcjWea9ZOyZ3pLazrGgIEwDEvtG/56oxygTSSOKJ4S4zlvH5XpPvq7yfPpPFr1GPluecvV1ll7VsYqAsetz1os6AmZUfS3l8EQ1dQNiuyz2tc8f96FUhKQziQQMSkj2UYrvri70Sq56ZHmqOuYqM+lj7Xr66aenR0F80n5GLVExyTwBxYEZKNjzI57MV3xYLEiS448/PoVvLRsXIknA3AvyFcELlXds0nRT4pgnPy5bWnasG9/tmi7HOnLC93MoVCG+y9qD7e3F832fyryC+YUJcwdvJGPnvdIR5Q9KQiRX31ZXRsvDtBz7zM1jW8ASnXmOn89RTsZ4MLH5YJwf50onetbxnuPeEOSH9sPcw/JT1ndQ9yC6EcgW+uYq6YMhabYdy7wFevSAyYVBrndShVmT83XkRBzLMOKL4fV4Bmst76EP2UaoY+qkDytWNc9n31O//w8RGljD5upL68rYBKO+1/i+kLRYH7cRcCAssok3EMrVn7I/iN+Lkf7aG/zZszmaIRzzoxiCkrxiFEn7R+iTvLHfqAmY9ND//fPz7T5rwzoCpus8weez7nObPtKXlzGbkHHesMKew/oQz0zEPJvst75t3tKZtqMImGl7I8qPEBACQmCCCHhrErIRrdZ81iBELAarXxD7a+o+eyUtC2+/6S33tV2g1D0LSwu/9wsW+eZBQagOs3RDYYJiKypWytLGVRZ8EEgD76Ier/cKvRjeqGk5u+Yz5iV+/81vfpMUd3a+SoHB75AsTGaRsgWqn8xyDZZnLMx93HVveco10Zpqjz32SCQgvw2TXHn3SvFILPk8MJkn7JgRCCjRmEh78ZPOPpNsn2aTzznKkAtP8usXmXynzdFmqMcIbR7PMgi5KE3bRLyv73e/vwuWWn6x7vNESBVCfhgZSF9opCB52G+//dLvfCYN0jLx74k+CSVAmbA5KG3BBOzoZ5Fc78nXVfowQgnGBSzPy9XXkVadTAsBM6q+NioVXvGKV6Q9raowQVFgHhHsk2TKQa73BIxXKJel5d8zBNsjH/nIdFmuelT2TDuXs8ykOQ0EDCRKjCVv5cVTEmtdE94Z766peGUExBX70SARR+ZeKCuGyTje8bA81JETGOiYwc+w9uAJcCOgbr755hTu1LwbYmx+8hav8XOMXH1bXRmH4TNtv9fNzaOSHoIxki9WHm+5jDexV2rnSseP2VV7hlh+ouIZQwnvDdhGuWhpVh3rMOQeP5/ge52BGb/XETC5MMj1TshvV/Hzxvg+/bwq/hafh4EgpC3i5+F+nzuUwYSFjMIYCcGG+PB5ufrSujLGvIzie2wHbQkY8uTnFF5pnqs/jeNdHQEzDCNP8sc1m1+zMgfOvQeMz5vHzNdJf02Tz3UETMSt6TyhyXO5pk0f6cuLkUSZoRlpeo8pvCmZ25rkaPOW1jQdRcBM09tQXoSAEBACE0aAzaCx9kHYSwCX7SrpS8DEsFO4CXvr3bYLlKp82nm/0CeUFKFDkJgPJmG4waKIL3NPt/RIA2IFQcES94aw6zjyDAspEy1Qm5azaz59Pso++80D+d3HmC+73tz5o1W+XesXOKaUNqtDyAtCvHlhYz5vxRwXxf7a+DlX3psqxXk+ZJ2RCFEpyu9+0tlnkk1abSRHGXLhSb7xpsMK0UKD0K4sFBK/swjFA6ZMmraJsnv7nPPvlg2GsXI38XG/WUzQ/9kiHW++LbbYIl3K4ghixep83KC06XsiDIPfr8OT4bnek6+rMVySlZtjrr7Op1n2eVoImFH1tdGaD4OHMsLLsPFEUOxv2xAwhMEiLBDi33OuemT5LTvmLDPpTwMBU6d0jsYecfPmMoz8Oa9wIDSXDz3k2yv30L+ifEVpUSXjeMdVz7bzVeREtEjHOxhL9SqhHzJPYt+v+r11MKLBmMfmHqTlvWQ470O75erbqspYVZZpPh/7Pz83b6Ok9x5VXklL2XOkE9ua9xgrwzcqJ+P+dG2Ui2Xp+3N1GHJd2zlOFQGTE4Mc78Rj0OVzHTnh2xihxTwm8VmsIyzCgve++tnPfjYjbKUPD0sasU/ydSpXX1pXxliOUXzvS8BAmLOeNvEkVa7+NLbVPgSMJ4WIkOH3OpxrBAzvpMs8wd7lsGObPtLno46A8UYrcZ6bo80PK9MkfhcBMwnU9UwhIASEwJQi4C1/ICiYTFVJWwIGhSRKIMJs8Ed4MhbCJn6Rx7m2CxRLhyOeCuwVwmKdiRzPwwLflKJe+cu1KEWJEx0FDFCmYm0VFWXs9eFjXMd7q75HC4+m5eyaz6p82HkWILjodxEmtmaVb/ejOEYxZBapdp6wLShKvGKE3/yEDm8I9ihoKrny3lQpTr7w2qAuIWWeW37SOa0ETFUZcuGZwLnl34UXXlhg1RyFfUXYY6hKmraJqvu7nj/vvPNSvGG7H0Ue7xjBk4XFOfUX62uUelhZIoRjQHGKQMrQjyJlFnVN6xoEFjiZeIVjrvfk62rdAilXX2dlqTpOCwEzqr7W769WVjciLlFZhIeShWZsQ8CwSe5VV12VkvfKqFz1KObbf89ZZtKddgKGPPp2FT3p+N0L4yXzFOYoV199dfJCM5IhGiz4sdKngVKJ8Cv0Q9F7dxzv2Oel7LNXongvF+ZcZtBRdl/dOe/J5T1zuYf9R9gDxAQvQ9s3KHq45urbqspoeZjmY5u5eRslPfs2mkV5NDzKkU6cJzCv8ftERMzp133oJPbHIuymiW9fZR7edl3ZsQ2G3B/z3tUDJqbTB4Mc76QMmzbnqsgJ8KVf7SJ+fsb9vq1GL2Q/N46RHXL1pVVl7FK2Lvf0JWAiuej32cnVn/YhYCAl/dr/tNNOKwgrh8wHAsb3Y75+1M0T/HV1n33aw/pIPw+qW1+wvytjNuIJmJxtvq5Mk/hNBMwkUNczhYAQEAJTioBX1PhJVVl2mxAwKCxRVuIKzuaIddKXgMHynDSwaCkjU/yzPQHDeWKzs2cDlhhlgrIMxal3oTWFrF1ftT+N/W5HNoz0Hh9xAVW3EOuST3tu1dHvxcM1TcuBIpDFim2u7tP3m13aeSbmhAeJ4q0k4+Q4Xhu/58p7U6U4z/dW6XyP7vt+0jmtBExVGXLhCS4mfn8fO0fMcgi5KmnTJqrS6HIeBQ0LcguJY4o8H3qC9kuIIU+QQNJgFY8Hn6/PbIYZCaimdc2nT1k8AZPrPfm6WrdAytXXDXsn00LAkM9R9LW+bpR5z0V8IE0Yk018zPscBEyuemT5KzvmLDPpzwYCxocE8hs4Gz4/+clP0p5OKB6sr7Hf/DESMPzmFYT+WvtMfSF2vnkTj+Md27Orjl7h6QmYuDdf07kHYaOYr62//vqDRxLeypRs97vf/Yojjzwy/YYizu8H4T0JuSBX31ZVxkEGp+xD17l5LiV9jnS85TTw+r0dq+D2G1TTVmifJm2Ui9zTFUPubTvH8d4efg+YnBjkeCeUrY9UkRMY1OERaIKiNhpz2W/xCAn+5Cc/eXCaKA9Ee0DMoMZC0fn+gD3VLOQy1+bqS6vKyDPGIX0JGL8fF/n1oTI9fvzWtE+P6+K2BAxzdNY1kC223wvPjxLXmHPRA4Yyt50nRJyqvrfpI5uuL6oImJxtvqo8kzovAmZSyOu5QkAICIEpRMBbrxAn3iy5y7I6jIBhIuT3/vBp4OnAhNdPlPoQMFdeeWVSdFq4I/8slKPEazcLYH6LBIxdz0b0WL0zKStLy4cT8YplNp/fZZddLJlWx7YLMRJvk89hmfFkyQYbbFCgBO0jVR4wTMRRGkYLXdzBOY/c7W53Sx4xTZ+fK+9NleLky8erna0eMFVlyIWnvb+f//znBe0kSgzvFX/v0iZiGl2/+8XxtttuWxBSz1s+eqLC1xvb28grX+2cz4u/J1pf+uvqCJhc76npAilXX+fLV/Z5mggYy1/OvrZtXxf3AWJTaKwOkRwETK56ZFiVHXOWmfRnAwHjlaV4eGDMguAVSvu/+OKL03f/j/ERowYLFcdvZQQM51H8EmKHEHZ+XsNviN9nbhzv+NanVv+vIifi+EBI1zKDjuqUb/sFUmv//fcfnLCQNb7+lVns5urbqso4yNAUfegzN8+lpM+RTvSgwqM+zi8j7H7MI2ww47VJG+ViHwx5Xts5ju9TPAGTE4Mc78Sw7Hr08y+/z0v0XvIYtH3W4sWLB3trcS/kLXsUDcMyV19aVca25eh6fV8CBsLFj2Gf+tSnitVXXz1lJ1d/2oaA8fNGjwnkGv0BxjRm6DBfCBhwaDNP8LjVfW7TR/q+1q+bYvpVBEzONh+fOenvImAm/Qb0fCEgBITAFCHglRsxZEDMZh0B4zed5z42O0TZuGDBgrS3DOcgTTxp0ZWAwR16zz33HEyw8FZh41om7xAKZgnqLd+qCBjyZYLyCyWX94rBah/rfcTvFxE39rM0mhzbLsRimsPyGa+P33189DJCIV4/7PuBBx5YnHHGGYPLmATjSoyU4cR7530gXIsVY1PJlfemSnHy5d/7euutV7CY8eInndPqAVNVhlx4ggdhACAmWQQgKBhtEcT3qPzgnEnfNmHpdDmeffbZg3Bi5BmrOiyoUYxGa0nfz6HIIQwQ1paI94rx+Wha1+oImFzvydfVugWSry9lbdiXr89nv5AuG39y1gsfKq5pv9O3r/UW/02e6d8zuHoFdQ4Cxqefo+8ve/c5y0z6fo6yzTbbzPAmLXt+jnNtFJNx7yYjYSFf6Bs8YcKcCK/aTTbZJBmkkFe/h1oVAePLhIcHYZ4IB2rjLL/bPjXjeMc+P2Wfq8iJqAj1BGNZOnXnUNbgYWuGM1iuE26PftnCoRKKDMy95OrbqsronzUNn/2YRX7azs3btIVRhyCLFtLRuynijSLWe0LEDaqbKhf7Yki+2o5lVQRMTgxyvduIe5vvdeQE8zALz1g3f2zyPLyYbW1nhme+7916660L1jJecvWldWX0zxvV5z4EDGs7j4thZ3nN1Z82JWA8luSB/WgIM8nRyNgvfelLg/0c6wiYYXMgH8qSsQaDVRO/P1BVOn6+3WdtSLQPM+rg+ewve5/73MeyUnocNk8ovankZNM+klt9eevWF1UEDGnkbPOkNy0iAmZa3oTyIQSEgBCYAgS8tSBEBhMXIzBi9uoIGL8YRSn5qle9aol0chEwfgLG5IpFlU28fJ7bEjB2r9/Aj3MW5gBrOyY+CBMu4vOjsG0rbRdiVelX5bPqejuPhTeKChMm5xALXSSGQ2DSdf311w/CgZCmhXWy9GP5fZgdu6bqmCvvTZXi5MNvaG0eEj5/ftLZZ5Lt02zyOUcZcuFJfn3oIZTNWA/SXoyc49wnPvGJ0pjtsU7UheVrgk2ba1BissGoKTPxAjzkkENSEpF88AodvPpQ7mANiFSFcGz6nuoImFzvydfVugVSrr4uAVPzb9oJGMt617421msfVs7S9kfCLOHpgMS9w3IQMLnqkc9z/JyzzKQ97QSMJ5zI7/HHH588cH2oE+YJvPt11lmHS2aIVwI2IWDs5ssuu6zYbbfd7GvqfyF2xvGOBw+t+ODngz4EGZfT1xoxv/vuuyevn4pkhp72YVeYv+IRA54I4w3ezXGOlqtvqyvj0IyP8QKfzy5z81xK+lzp+DHM729VBmmcn9KP+z0MmyoX+2JI3mK/OGyOU0XAkFYuDHK9E/LUVfx6znvAkB5zMQwnkGF7lKaLav5dcsklyXDPLoG8M+MZzpWtQ3L1pXVltPyM8tiVgGG+S3hLI7nJI/thrrXWWoPs5upPmxAwkXyMezpZpuoImEWLFs0w4oiGoJYGR0/AEGrN15dpJ2CsHFXzBPt92LFpH0k6vl+qW1/UETA52/ywso3zdxEw40RbzxICQkAITDkCUXmAsoNJcBQmYmyizWCO+M0KCSvGAsXEFBD23Y4xvEqc+MQFChO7MmLFx5w1V3J7hh2xGMHy0ZSqTIA333xz+7n26GOIs4gn7AekVCSQymK91yb8vx+blnNYWlX5HHYfmOywww7F3/72t3TpsPBQVenh6YC1iilT2ATXNtbzoe1QgDCJs82k8ZRAcW3vxsdvr3qWnc+Vd68Urwu95yeK5IG9fLDC9uInnWW/+2tzfs5Rhlx4EouftmgCAYui7YYbbkgEltURrLaMxLRrOeZqEz7NNp8JNUiIEQTFt4VKjOQhv/tFGSSMLU4PP/zwYtNNN+WSGeLfE30S95dJHQGT6z35ulq3QMrV15WV059rS8BUjQk+zarPXTxgLK2ufS31Hu9Mq/9YaRq5Z2nbMXpSxI2EcxAwueqR5bnsmLPMpD8NBAzY0y+Uid9Hz3vM8p5R0iB1Y4zvT9oQMKTLOG79j1nFjuMd8+w68QrrSMB4j1nmBijFV1hhhbrkKn9jfPH7zGGQg4c0UtXX5urb6spYmWH3Ax489CurrrrqEsZK7rJeH3PMzXMp6XOlw9zivPPOS7hgCMWYsMwyy5TiBEGDEh2JhDbnvHKxKhxuDgx5Vts5Th0BkwuDXO+E8nWVOnICAtX2diJ9PrNe6Cq+r/Z9BW2QEIZRcvWldWWMz6z6Tl/Bepg631a6EDCEZ6OvtnUizyxb8+bqT5sQMN4TzesgIh4+5HL0gIn5rTJApN2/+MUvHoyvfT1g+qwNu3jAeEzK5gn+97rPTfpIu7/p+sKvq9Gx+CgYudu85W3SRxEwk34Der4QEAJCYIoQYGAnfriFbEChSAgNwhSYoGhnEe1DafjJD/fibWJSZkkEcYOiwU/mIgFz9dVXz9ggc7/99itQQiGXX355yhNEiJ9Ex001uZZFOVYUWDyZeAKGMBh4/kA8YLUePX6OO+64tAcE98aNk727Nb8TCg38ojDBQLmIYPnqiaSm5eyTz5if+N271vMbOEOwLbvssjMuRZlBWIlf/OIXxWGHHVZsuOGGg9+9YhnrUyZqpkihrvBuTKLiEZKOia8JGELa+Hjw1Cvq4umnn542QTcCLXfeycPChQuTpZflhyPx6qmD1jbufve7J68Ofw2f/R4guMJbXHoWTCuuuOIAk3hf3+8ef9LqWoa+eELO4iVkbRsrbLxhTPyiiXNlbaZpm7A0cx/9gsDSrrKgJkQZ/YAXFIknnXTSjPprv/v3VKUU5No6Aobf+74n0mi6QOLaHH0d6dTJMAImZ72oI2BG2dfG+oLils1+/biDZSf1hHEOoe6h9PfW2jkIGNLOUY9Ip05ylZlnTAMBg/KWec1qq602KDZzJ0hXPF1M/J5xPhzTRhttlO636zii3MMKGwWySSRg8CK8+eab02bUUfEWLbrxnLKNpcfxji3PZcc6coLQjlhVU34EBdnBBx+ciAifFvNO9uKCxEIRVjbP4noUW1g1R/nIRz4yYx7rf8/Rt9WV0T+r7DNzC+YJjJnULcrp54hl93Q5l2NunktJnyudqEDdeOONCzyPbe4JTrRNvAlZY5hAiDIP9RL7Keb+q6yySmpzv/3tb1P9yYEhz2w7ltURMLkwyPVOPKZtP9eRE5CUz3/+8xN2pMs6g1BivHMvN910U3HiiScmEgVPGR8yy19HmEb68Shlc1K7JkdfWldGe07VEYMG1kY2N/B7jFXdE883IWDAmjoPUXjmmWfOGNdID5KK8Yi5SZQc/WkTAsbP08kHoTiXW265Gdnxnqf8EAmYSGYwNhNFw5O4jK3gbGs/0ulCwORaG8Y8m7EF+UK6zhNuvbv+f5M+0lJour6I79ETMLnbvOVt0kcRMJN+A3q+EBACQmDKEPCEA1ljYoMSlQnX+eef///snQnYZmMZx59EiyUxIhLKWGOisoTLKFFNE9MohgnTMtKIKJFlLIlRGoUpY5nKiMaSJZRSM1OhsTWkydI2khnKOlSEan5P3ee63+c77/ue873nO9/y/u/r+r6zPedZfmd5z3n+576f+FCWVtkLMGzzXimIOMTrJdzGo48+GvCy8Z0UllcqwPDDa4ILaawevKQyACAv4Dwo+y9LSUcYjre97W1x4D1exOnQsC+O2Y55AYaX/Tlz5sT1tJFODx7S6AAlZIF/aUsfdulspq0+f7565YWAvB555JH48GrjYFAIL+p0IJgVbWcn9bSyWk3TgRV5uYEjx43685WhfU1KPn78Ezp7eME1Q5zhxccbD4U2fg7rvbs4nS94z5inAdvht80228QpAg4dL8Y5/Tqxk7pTlu8UZxlDbKMNdHgtWrQoMMivN44H9UvNe/uwjTxgiXCEkDljxoyGztZ0/94uV9mGTnj62NoIEYSFWWWVVRqa5Qfq5Lom9j+CllnRa8LSVz3lBcd7zJF/Gn7Mykw9FVifF5rO0vvj1IkAQ36dHCf2L/qCRNoq7nXk08raCTBVnhetBJi+vNfSBsY+o3PDjHOf31h+K7nXUTe715GG3wt+N7xVJcCQZ6fnka9X3nxVbSbvgSDAUA/ubVtttVX8feJZ4fbbb4/jRLEN415Pp79ZKjzzsQcfqiC8LViwIIYqQ4zw5gUYvz/iC1+x8vU3Igu/zXzlayJG3tg4fX2Mfb3T+XbiRPpswG8CH1gMHz48dp7zwcf8+fMbsuXL2FSEIgHPqKlXYTpOQUNGSxequLe1a2Napl/2XkCsJ7QNz5V9YZ0+m1fVSV9VPjCaNm1aDJdsvOzZlYHBCYHLuG7+2RLPVMTS1NJzh/sxz/J0wHJt2jNfpwwpt+xvWSsBhvyqYFDlMaFOvbF24gT3Sj4A9MZ9kA/ouB/g4USYW7sXkq6ZNzL3bTrFfVruPYSsyru3WJmd3kvbtdHKyZvyrsp5aEY9uReWsVSAyWurFxvSvPnt4t07bz/SVnE/LSLA0J/AWF9m3Od5/ye6wsKFC+NxRNz2lgowbEuvHd4vieDAewC/6/5jU8urNwJMVe+GrQSYTp8TrH3NpkXvkexf9P2ilQBDPlVe8+Q3EEwCzEA4CqqDCIiACAwgAnw9xBdkNlZDXtUQGehAnzRpUtycCjBz586NeeTta+t4iCNUEZ4BWCrAsC79koZ13vjKnK+F6dDyD9E+DfM8dBGn1sIKeQEGUYAOgHaW16nBPnx9xleXvkOtWV50KvBVbOpZUqSddLh1Us9mdbL1PDTjqWCMbH3elK808Uah45Djhyu68ee4IlSlhpCBFwxf/mF0YNFpZF91s55zykJEpPvbMg/9lL3++uvbqvjA35u6Wwa+U5wXMGuLbfdTtuNRlYYeszTw4xg3M+pJZ2vVVmUbensupAN0NnOzR5jkS0bjzIsTnmHeC6DINZF+7VYlUz8WA/k2awvb0hfyVmP/+OPUqQDT2+NEnbGiL0j/S13Nvc7yypu2E2DYp6rzopUA0+lvQl7b/Dq8Mk899dQeoq5PY/N0xvKy768NtlUpwHR6HlldW02rSdSASAAAImFJREFUaDP597cAw+/W2muvnYVfzWsznYFTpkxp8GKg04TnFPv9y9uP3zY+LLHwN16AoZOC+4oX5vLyoPMI4SftHKvjGOfVh3XtxAk6o2kz4wm0M35/EflT7wW/nx+njfX8XhP2rZV1+hzXro2tyuZ5hmdZM/LyH+nY+iqmnT6bV9VJX1U+MOE5gnu2XTetOOGVjHd3en2wD+eh97BI87GPjjplaPmW+S1rJ8BUwaDKY2JtLDstIk7gkYEI0UoksHLzwmTZNqY8jxNW2iwN9Wnr/bTTe2mRNvry/Lwfa4T1/B4xflAZSwWYovvyroZYvPnmm7fdpdP7aREBhkqkxy+vYjxD4V2K5QkwfETFu6mF78zLA88Y2s1zF9YbAaaqd8NWAkynzwl5bffrit4j2afo+wV1tnDl/L57Dxgru8pr3vLsz6kEmP6kr7JFQAREYAATIIQUXwL5L8f4qpMvwXlY4cGP0Cm4QqcCDM3ioRbX2PQh2b5S4Ss0/+VjngDDvrgDm4eK4WLsCMaYwEsB4ysXHsTSzns6I3iZ5SsnvtwgVjLGC+9mm20W5/mHeEJdf/Ob3/SoL3nwtc8OO+yQpU9nEBf40h/vnvRrGR4o3vzmN0cPj2Yd70Xb2Wk903rnLeNiT1sIE2cd5JaOF1BYIrLQLsx3VCPM8XCfCky2Py94iHaWb/qyA0e8ITgX0q+BOccYR4TOlbyXZ8ooW3erV9opzpfNCAImDpKOMnkI5ysmvIJamY+Ta+kQrfhyb7vttrNVlU6rbgOVK8OTB3PG8rHrvZkQZ41OY/sSgoXOEbOi14Slr3rqO1m4B9DBwz0vz7zwxHWBm74PYeD38ddLGQEGzym73/n8mC9znPy+fIFvx6vVGDB+n07vdT6vdL6IAFPVedFKgKFeddxruc8RKiW91/LlNb9x3Cv9ALeelx9YFm/BVp2P/F7b7xL3LzoP8qy351FeXs3WddJm8vSdV+3uMc3qUHa9D/EzevTo+DxA6Bque99pw+8f3m8TJkzoIZhRJl/s8uxBZ4I37ivcCxBouL74jeM8TzsPCY1HeCqOk/eqJS9+n/gamOedZvce0tVxjCnHW1FxgmdJvkZmfEALYWn5cI7TCY0o1S48F+PIWIcbbAk11IqJldHJva1oG60sP+XaRFzD0wdLx8nxaauY7+TZ3F8L1AW2PtyXr58Pu8czFaKkWVX5WH5MOW847jxn+vOHc4COV8SVPK9lnwfHgt9C7+3Ndp5NeA/g3ox1wjBmsPRfmd8yL8DkhXW2PDth0BfHxOpVdOrv74w/iuCeZ3Sa84zOR3z+HZW0eEDxnE1oQ+7JrYzj7MVO3l94zylivb2XFm1jXh34DeD3xe7/jGtE9IAyVlSA4brBmwQPI44Ff6wrap3cT1MBhnu6fazny+eDUYR7wlinRl8Fz1BrrbVWvKfiSdFs3ElENTylEAPs/ZT86PNAvB8/fny8J/CxFR9B9EaAIb8q3g1bCTCUUcVzAvk0s6L3yKLvF16A4fxqJihWdc03a1ed6yXA1ElbZYmACIjAICTAgwkP5nT+lf3inE5ZOrF5mOKhmJjp7V6e8xBRB8JAMSYIHVIW2zxNy0MpHWd0gvLCTqd3WeNHHvdl6smXrkVe3H0ZtBlevFwReonO2/TrZZ/ezxdtJ/t0Wk9fbrN5jh2dRjyE044yD9/N8iy6nodcjgPHGo55D9+t8ipT91S8sBAmPOhSB166OZ/KGPtyHvAwTygMxn/pS+uLNvj6luHp9+t0vsw10WlZQ2H/Oo9TJ/e6TlnXeV7Uca9FcMabk9+3Zh2anTIrs38d59FAa3MZPpaWZw5YIcoX/X3k2YDfhueeey4+o+BJWvQZwcplX36bsN6eM3Uc41jBXvzjmuNZjufGVVddtc9/P9Mq1n1v43mBDxh47pk5c2bsNEzrVOVyVc/mVdapyrw4f3hn4LmV86escS/m2Rdhk/eAvOuzKob8lnE/oAyEombvN2Xb0CmDsuX1V3quGT6+gx/vCr053p3Wvc57KaIDY7PQVt4tBoP19f2U+yfXO9ctxx8uRX+PPT/qye8OH1bwsWhv8vD55c3X+W5YxXNCXhtYV+Qe2WzfTtcPhGu+kzZIgOmEnvYVAREQAREQAREY9ASaiReDqWFDoQ2DibfqKgIiIAIiIAJVEDBvcLxs8wYGr6IM5SECIiACIiACItC/BCTA9C9/lS4CIiACIiACItDPBIaCeDEU2tDPp4GKFwEREAERSAgwplmrsWuS5NEDeerUqU1Dkabpu335zjvvzMbNI9Rlu7BJ3c5L7R+4BAixVGQcSd+CQw45JGyyySZ+leZFQAREYMgSkAAzZA+tGiYCIiACIiACIlCEwFAQL4ZCG4ocK6URAREQARGoj4CP5V601GYx+4vu303pzjnnnHDZZZeFyZMnh5EjR3ZT09XWIUbAj3FXtGlHH310HGejaHqlEwEREIHBTEACzGA+eqq7CIiACIiACIhAxwSGgngxFNrQ8YFUBiIgAiIgApUSOO+88+LAvmUyPfDAA+P4GWX26da0jAnA4OmEH5OJwGAmcP3114d77rmnVBMQeIcPH15qHyUWAREQgcFKQALMYD1yqrcIiIAIiIAIiEAlBGbPnp0NaLzZZpuFrbfeupJ868xkKLShTl4qSwREQAREQAREQAREQAREQAREQATqICABpg7KKkMEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAERKCrCEiA6arDrcaKgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAjUQUACTB2UVYYIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiEBXEZAA01WHW40VAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQARGog4AEmDooqwwREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREIGuIiABpqsOtxorAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiJQBwEJMHVQVhkiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAJdRUACTFcdbjVWBERABERABERABERABERABERABERABERABERABERABESgDgISYOqgrDJEQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAS6ioAEmK463GqsCIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIhAHQQkwNRBWWWIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAh0FQEJMF11uNVYERABERABERABERABERABERABERABERABERABERABERCBOghIgKmDssoQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQARHoKgISYLrqcKuxIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACdRCQAFMHZZUhAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiLQVQQkwHTV4VZjRUAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAE6iAgAaYOyipDBERABERABERABERABERABERABERABERABERABERABESgqwhIgOmqw63GioAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAI1EFAAkwdlFWGCIiACIiACIhAJQSefvrpcP7554cHH3wwjBw5Muy+++6V5DvQM3nyySfDXnvtlVXz8ssvDyuttFK2rBkREAEREAEREAEREAEREAEREAEREIGBR0ACzMA7JqqRCIiACIiACIhAEwLHHntsmDdvXrb1uOOOCzvuuGO2PFRnHnnkkTB+/PiseZdcckkYNmxYtqwZERABERABERABERABERABERABERCBgUdAAszAOyaqkQiIgAiIQBcROPzww8PChQvD2LFjwz777NNFLe9dU+G0ZMmSbGe8QiZOnJgtD9WZOgSYxx9/PHz6058O//znPwPC1ogRI/oV56233hqmTp0aXnzxxTBr1qyw7LLL9mt9VLgIiIAIiIAIiIAIiIAIiIAIiIAIlCUgAaYsMaUXAREQAREQgYoI0NH9/ve/P+b2gQ98IBx00EEV5Tx0sznmmGPCLbfckjUQj5iddtopWx6qM3UIMDfffHMUXmD4xS9+MWy77bb9ivOss84KV199dazDD37wg/Cyl72sX+ujwkVABERABERABERABERABERABESgLAEJMGWJKb0IiIAIiIAIVETgT3/6U+a9IQGmGFTGgDn33HPDQw89FEOPjRkzptiOgzxVHQIM48pMnz49khoIAsyRRx4Z7rjjjlgfCTCD/ARW9UVABERABERABERABERABESgSwlIgOnSA69mi4AIiIAI9D+BG2+8MZxwwgmxIhJg+v94DOQa1CHAfO1rXwvXXnttxDAQBJh99903LF68ONZHAsxAPjtVNxEQAREQAREQAREQAREQAREQgWYEJMA0I6P1IiACIiACItDHBBhI/bzzzoulSIDpY9iDPPs6BJjPfe5zYf78+ZHUQBBg3v3ud8fxX6iQBJhBfgKr+iIgAiIgAiIgAiIgAiIgAiLQpQQkwHTpgVezRUAERKAIgT//+c8xBNC9994bfve734WXvOQlYcMNN4x/O+ywQ3jNa17TkM03v/nN8Oijj8Z1e++9d3j961/fsN0W/vrXv4Zvf/vbcZFxHRj4m7zNpk2bFv7xj3+E4cOHx8Hp//3vf8exIH7yk5/EL+Jf/epXh/333z+MHDkylke5yyyzTHjHO94R3vrWt4ZnnnkmXHjhheH2228PTzzxRFhrrbUCncvrrruuFRGnv/71rwN/99xzTyAc2GqrrRY22mijsMUWW4Ttt9++Ia0t0D4r70Mf+lDM8/nnnw9z5syJf4sWLYpJ4UQ+o0aNamgbG2nbww8/HM4555wsxNLWW28d9thjDysmTjfZZJOw/PLLN6xrtfCf//wn3HDDDbETfeHCheGpp54Kb3jDG+LxYjwP2tbKesPD8mM8m6uuuircd999gbIxjt8GG2wQj8vqq68e16X/4PD9738//OEPfwgPPvhgWHnlleN+1HWXXXYJL3/5yxt2If3MmTPjule96lXhwAMPbNjuFzgWt912Wzx3qRfGOUDeb3nLW8L666/vkzfMM/YI+3AOjxs3Lh5DrgfqumDBgvDkk0+G1772tWHjjTcO733ve8M666zTsH9vFjgH582bF89Jrrc11lgjbLrppjHUGvzGjx+fZYt4N2zYsGzZZjjfGSPn/vvvj/VHuKENtJnxhl73utdZ0mxKW/A0YXydJUuWxPVcX5RtxvW15ZZb2mKcct7/8pe/jOVQHvVfddVVY1k777xzPP8bdiiwwDn8t7/9LZ5DRx99dLYHgtByyy2XLXOePPDAA9n1A6v99tuvx7WW7fD/Gca5wfMMoz2cY3nX9IsvvhjuvvvueP5wDhH6Doabb755GD16dI/z8v/ZZ5MXXnghHkvuLb/97W+DPw7cO7k/yERABERABERABERABERABERABIY+AQkwQ/8Yq4UiIAIiUJoAnaB0ciNiNLOXvvSl4eCDD46dkZZmr732Co899lhcPPTQQxu2WRqmdGz7Aeevv/76sOyyy2ZJ/JfviC4MtE7HtLfdd989lk/H/Sc+8Ym4ic7w0047LRC6iE5lb1/4whfCdtttF1fRmTplypRw6623+iQN83Q+U24qHKTlwYCO67Q8ywwB4pRTTgmrrLJKXHXXXXeFz372s7a55fSMM84Ib3rTm1qmsY2IF3RYW8gmW++ndIpT3xVXXNGvjp3LveVBRjfddFM4+eSTw7/+9a+GfG2Bc+WjH/1o2HPPPRs6yL/1rW+Fiy66yJL1mCKwfP7znw+IU2YcM+uYJ98f/ehHtimbcv5eeumlmXdRtiGZweuIc8efe5bEe4N89atfDXPnzs0GhLc0fvqZz3wmim1+XZn5733ve+Hss89uusvb3/72KHZYgjwBhuuIuiIe5Bm8DjnkkPC+970v24yYePHFF2fLrWa4Fs24ho877rjserf1fko5lEe5Re2Tn/xkFMzapedaR5CaPHlylpTrdaeddsqW0xmET4658bFjll7Tp556amD8GRPt0nzWXHPNMHXq1B73BkuHMHTUUUcFhOZmtttuu8VzLxUYm6XXehEQAREQAREQAREQAREQAREQgcFJQALM4DxuqrUIiIAI9BkBvE3opE87H+lEXWmllXoIDYcddljWodsXAszEiRNzO9Lp0N9nn32i54QJMHSM4tVgX7h7SN/4xjfiV+d4RdDJ+/e//z3bTEc/beOLft9p+spXvjLQ0e29UHxnLRnAxTp0WcajJxUiEBAQYTC+iIdvEfv6178ev7pvl/a5554LEyZMiJ4DlhbvJLwREGTMq4FteIx88IMftGShUx54hXAsvOENgqjxl7/8pYEF4dbwyMEQC77yla9ku8HxjW98Y6At5GkGz+uuuy4TbtoJMIgveFThdeCN/PlLjw0C24wZMwLH2psXYNJjnC7bfueff35Yb731bLHwFNGENnqj3ZyTJmj6bcx7AYY2IVThweStWZunT58evYxIi8h6wQUX+N1y58nLxK5mog0M8YTyxvXLfaGoIdikxy5vXzxRTj/99IAXmomfnD/nnntuXvK4zotc8MWbifPUX9O0Ew87zz3vmqatl19+eQ9PGMTI448/vqEOXIsILVyH/locMWJEbENDYi2IgAiIgAiIgAiIgAiIgAiIgAgMKQISYIbU4VRjREAERKBzAldccUVArDDDg4Mvyy100bPPPhuuueaagPcCIZDovKaDEusLAcbqQac+njF0ShOiiDBAlO87Ty0t02222SZstdVWseOeL9/pqKWzla/eraOaTlS8KfAuMEu/Xn/Pe94TDj/8cNucWx71wKOHsFZ4l1A/vAMII2XmO70RGAhRhLeOpSF0mglJ7EPIp6Kd+RwPvGUwOpDJl85dM0QfQr6xDU8g7/HRKQ86m+l0xhAzGMjdvIYQ837+859HsYDjMWGpSGRGOCzrrCfcGwKCiSAcL8KZ4XFBB74/Pu0EGM+CsvAgwpuBMHQYnfWEfiNUm1ne+DtegPHpCDdmIhLjkiCemBHSCvZl7Pe//31DGDU6/7/0pS9l4dEQpPDmSUUSL8AgAHLtmRBBHfECs+NAKC3Oc+PNNW3eNpyHeE8hXCFMmpjIsTKPMdqDCEnINYxwYHOXegRhCCGIeoTUIowg5z5lEY4M45y78sorG0TMuKHJP7zTLASZiZYkPeussxrEDq45wpB5UYV0XuRj2RthEckbwxvrgAMOiPN59xDynzRpUrymTQg78cQTG8QhrlfuK2bwJV/jzD3rhBNOaAhPhzh80kknZZzx4CGUokwEREAEREAEREAEREAEREAERGBoEpAAMzSPq1olAiIgAr0iQMc33hHmJcAYJl/+8pejGJBmSOc6Ha5+7Ja+EmAY24VOXV+W1Sev8xTBBOEkNcbGIFyY2ZlnntkwzoWtxwsG7xqzWbNmxfFhWE7LQ+igQ9p7yZCOznB4WIe2eeywzcyLH3kigKVrN6Wjevbs2TGZhWZrtw/bq+DB+WId/z7MW6vy8S6Ajdm1114bXvGKV9hiy2krAYaxf+gAt/MXzyNCo+WdN3gXIQyYIVCtvfbathjHDLIB6RER6Chn7I7UfD6kMy+RNF2zZTzIEEiwFVZYIXznO9+JImOaPvUY8gIMaRH1EKy4Vkwg8nmwjdBaZtST+nrzof84pxk3KM+4TyAKEQYsLw3jnfjxahCl0vFj8vL161JhCrHLhF6fDrFjzJgx2XVGmD3Cf6WWhv7z/NJrGrEZwQfPOG+IVBOWClMPPfRQXM3x4hxCLMX8uYCY+N3vfrdHuD/SMV4U5yWG4IYnjUwEREAEREAEREAEREAEREAERGBoEpAAMzSPq1olAiIgAr0iQEc4HgxmZUMq9YUAQycnX7l7rw2rH9O085QOYTqP8wxPiDvuuCNuwuuCL9qbGR2kdJRivjM6LY8wRqn4Ynl6gWXXXXcNRxxxhG2KU7+9EwGGdvziF7+IeTJQ+LRp03JFh4bCly5UwQPBx8K5IVql4cjSMll++OGHw4c//OFsE6GkvMdOtiFnppUAQxgv75GClxYD0OcZYs0ee+yRddwjJOHJYeY9YBjLBKEkzxh8Hk8JMzrT6VQvYnhj4JVh9vGPfzyMGzfOFhumqajhBYSGhE0W8KTxY7/ksSkqwDQpomE1QgUh6LBPfepTUSRpSNBmoagAQzac73hMmSGK4LXiDQGXcwdL7xHpNY24RPi+PPvxj38cRWnb5oW7UaNGZeIfYfDw8mpmY8eOzcKRlREgm+Wn9SIgAiIgAiIgAiIgAiIgAiIgAgOTgASYgXlcVCsREAER6BcCviOTr+gJ51PG+kKA+djHPtbQSZ3WJ+089aG+0rS+fnjIvOtd70qTZMs//OEPw09/+tO47L1X0vJaCTCMcYLnApY33kNVAsxll10Ww2rFgpb+49jRmY8HSJ73h6Wrggei0q9+9SvLMoZTQohhLJ5W5jv7Scc+iDmEfmplrQQY74HQbjwQyvDCFeHj8PYyKyrAEDIL8cys1flnaWyKGIgIZtbqXOpUgKEMLxDQVtrszR8TLzr6NEXnvbjnw30V3b+MAJN6rPnrlfKeeOKJhlBhqedbmWsa75/ddtstawbh4ggfiBeYH1uJkHqrrbZali6dgb+NN2XjU6VptCwCIiACIiACIiACIiACIiACIjD4CUiAGfzHUC0QAREQgcoIeEGAcQkIu1TGfIf+oYceGsdpydv/vvvui2Om2DZECu/h4juCGUMhL/ST7Vu085RQYOTbG9tll12yjvKi5VEOYYyuvvrqWCRjZXjvDFZ63p14wCAC4FFiniixwKX/CNnEcWS8HMZC8VYVDwZMZ+D01BBSELjwurDxV3wawjMxflBqiEeMYQLz1IuBtK0EGELP3XnnnTHLHXfcMY7Dk+bvl/1g8gyUTp3MigowjIkEX7Mynel4aiAaYe3Cl5UVYAiX9fjjj8dOfjyO2B+vFwuJZ8KB1Zupv+7KCjCcgwgKlLN48eLotWYCA+Ok+PGNfJnN5ssIMORB2LHbbrstZkfoMLzmTHzES4XQbhhh5lj2VuaaZj/PyTxdOO/8WFE+/3bzeOe8853vbJdM20VABERABERABERABERABERABAYhAQkwg/CgqcoiIAIi0FcEmg1SXbS8gSzA0BnNl/hmdHinY2DYtnRKaCr76r1MZ21dAgz1ZSB1xmCxwc/TNiBs0NHLFKuKB3nNmzcvTJkypYcAxDYMEYiO6nRMjYsuuiiKAv9L1fP//vvvH4Ul60gnRSsBxp+/aUixnrmHgMcJ3hBmjJNiVocA4z3OUgHI6mHTIgLMCy+8EG644YbouWVClO2fTqsQYBA8GEvm5ptvzkJvpeWwXIcAs2DBgniOWfk2HhFjVSFumjiZNz5UmWua/H3YPca6+chHPhLH3/Fj7OSNV2N189PlllsuTJ06NQwfPtyv1rwIiIAIiIAIiIAIiIAIiIAIiMAQISABZogcSDVDBERABKogcMABB4Q//vGPMStCdJX9onsgCzB4BOBVYYY3Cl4pZa1MZ22dAgztoI10vF9zzTXhpptuyrwdrI10CuMFscYaa8S0VfCwvBn4/mc/+1lgPAs6w1ND+Dn77LMbPJ1IQ+gmwr3hBWWDm/t9U8+gVgJM2fP34osvDnjBYAyaDjezOgQYxliaNWtWLLLdYOztBBgEOESuJUuWWBOyKW1jTBPPtxMBhoHv4XPvvfdmZdgM59jKK68cGN/GrA4BhrL8uDMbb7xxHBvmxhtvDHjRYdQN0c1727G+zDVNeu8Bc/DBB0dBJvUEY6yYZZZZhuQyERABERABERABERABERABERCBLiYgAaaLD76aLgIiIAIpAbwYbNyTvJBZafp02QswFponTcNyf4Qgo1zGGbGwSNZxyvoyVqaztm4BxreDUFO33HJLDLdkohrb+XqftmNV8IgZJf8YJ4MO6JkzZzYIAuaVkCTPFjk2hGxjIHsLlcVGPzZKKwHGn79bbLFFYAyeVoYId91118UkG2ywQRSILH0dAgxlW1i6TkKQ4fV00EEHZV4oK6ywQhz0fvvttw+0yzyIGBQe8QTrrQDD/niEeTGHMHOECYQ5Hh3YscceGz2jmK9LgMH7h3aZITaybELRuHHj4thItt2mZa7pdAwYzjHa/cwzz0Tmlidhzgh3JhMBERABERABERABERABERABEehuAhJguvv4q/UiIAIi0EDAj8vB1+KMo8DX80WNkFHWMbvvvvsGlvMsFWAIY+TDgfkvzKsaA4Z6EIKLDnwsHXQ9rizwr0xnbX8KMNYUvGJot42P4YWGKnhYOXlTOqX322+/TIRp1gGe7otghDeLmXVys9xKgMGbBK8SjPP3qquuitO4IuefF6B23XXXcMQRR2Sp6hBg5s+fHz1JrFAEq7zxctjeygMGkQHxAcPT6PTTT88dP6cKAQaBFqELgzFj3qy33npx2f/rDwEG0W7MmDGZyLTttttmIhB1u/TSS6MnkK8n82Wu6Tlz5oSTTz45y4J7JuHjsFGjRmUiGGPeIDzJREAEREAEREAEREAEREAEREAEupuABJjuPv5qvQiIgAg0EEjD6BDSh8Hdi9oxxxwTvS5Iv+WWW4bTTjstd9d07A/CT/mwQH0lwBBi6owzzsjqxHw6OH22sclMmc7aMgJMb0K+Nalij9WE+GKcCYz2GoMqePQoLFlx0kknxdBkrC5zPo0dOzYTbhiofqONNoo5txJg7r///jBp0qSsBsyTT575fNiOGOUHQq9DgHnssccCXmNmCCR4juUZx8yHSLvkkkvCsGHDYlLGuyGUG4aIhJiUGuPD4KlinkXtPGAmT54cx+5J8znllFPC7Nmz42p4wS3PDjvssHD33XfHTVV4wFx55ZW5olJa9gUXXBAuvPDCdHXAG+jEE0/ssZ4V6TXt2aY7eJF59dVXD4SxMzv++ONj6D+WEafw5Fp++eVtc+EpXkZPP/10IH+ZCIiACIiACIiACIiACIiACIjA4CYgAWZwHz/VXgREQAQqJ+A7nsn8qKOOCjvvvHNDOYsWLQp0rDOQO1/AW0cw42n4DknvuUAGdP4iBBCeyltdAgzeIHhkLF68OBZPqCbaMWLECF+d8Pzzz4crrrgitgVPGTpWzdLOWh8ey9LYtJ0Ag3cPY1RgfgwQwhzhPVK0A5Y60UFNx3vaFvJmLB8blN0PTl8FD8Z9ueuuu+LX/muuuSbFZUY79t5772wAdN/pTyc5A6TvueeePbysUg8pBCQLbeWFk7ywXZ4p2xESCI/lDaHxyCOPzDwl1l133TBjxgyfJHqm4KGCIVwgKOTZs88+G0aPHp1t4nrYcMMNs+V2M1xf5p1E2tTjC+EEbnheePMigRcFmMf7zNtTTz0VhRK4mvljYev84PJc89QNIzTciiuuGMUEf05vuumm4cwzz7Td45RrfPr06fF8tA29EWC4Rn07OF42ZtEDDzwQ1llnnSy0mpXDlDFw8kQ3L+L59Myn1zT3M9rFWElmHAcEZQvRyPr0WDHuDYK1iVx4I+Etk17HiGV4aiFkTZw4MTDOkRnrELkwQpgxblIZL0TLR1MREAEREAEREAEREAEREAEREIGBQeC/AAAA///yLs9NAABAAElEQVTsnQWYJcXVhmtxX9wXd10g4YdAgAT3sBBgcdegCS4BgkOAYMFdgyzuDgGCswQI7i6LLA7Lz1vkdM6t7b63r8zMnTvfeZ6Z297Vb3dXd5+vzql+33///Y9BJgIiIAIiIAL/JfD222+HjTbaqILHHHPMEeaff/4w1lhjheeeey48+OCD2fwVVlgh/OlPf4rjw4YNC+uuu2744Ycfsvm//vWvw3TTTReef/758OSTT4Zvv/02m2cDN910UxhttNFsNCy//PLZNg444ICw+OKLZ/PSgZdeeilsvfXW2eRrrrkmjDPOONl4OvD000+HnXbaqWLy3HPPHTjGscceO7z++uvhn//8Z7Z/FjzqqKPCAgssENepZ38nnHBCuPrqq+N68847bzj22GPjsP07++yzw4UXXmijYfrppw/TTjttePjhh+P+L7744jDxxBNn8/MGfnqOh/XXXz989NFHcfZ8880XOCdTTTVVnHb55ZeH//znP9mqZ511VjwfNqEZHm+99VbYeOONbVNhueWWC4ssskiYaKKJwquvvhrOPffc8Mknn8T5k0wySTj//PPDGGOMEW655ZZw5JFHxukwHzRoUOAcjD766GHo0KHhoosuyvgvueSSYb/99sv28dBDD4W99947jo866qjh5ptvzuYx8PHHH4fBgwdn6zNtrrnmCrPPPnsYZZRRwssvvxwef/xxJmd28sknh9lmmy0bZ2C33XbLllt55ZXDLrvsUjHfRr7++uuwyiqr2GjI21Y2M2fgxRdfDNtss03FHK7FmWeeObzyyivxfvP3ky146aWXBphihx56aLjjjjtsVthqq63CL37xi/Dll1+GBx54IAwZMmSk++6II44ICy20ULYOA9tuu2144YUXsmkLLrhgGHfcccO9994br5kzzzwz3Hrrrdm5Y0GutVVXXTX069cvcC394x//CB988EG2DQZ+//vfV9yjFTMLRn788cew7LLLZnM51wMHDgxffPFFvJ7XWGONsP3222fz/cBhhx0Wbr/99mwS9Q/XfZGl9zTLcZ3+8pe/DJNPPnlkx3Xnj6tom1zjXPdmlBvOs8wyS+BehW96/V177bWx7mEdrl2/H+oq+MpEQAREQAREQAREQAREQAREQAR6J4F+EmB654lTqUVABESgKwk8+uijAeHjq6++qrobBIPjjjsujD/++Nlyl1xySTjjjDOy8XQAh+See+4ZDj/88MxJ3p0CDOVBQDrkkENqHh/LbrjhhhUiQ+qsrSb41BJgcLTicC2yddZZJ2y55ZZFs+P0b775Jhx44IEBB3Et23nnnSvEAlu+UR5vvPFGFEPeeecd21TuL+f873//e5hpppni/Pvvvz8cfPDBI4kC6cqTTTZZdJwj0pjVEmBYDuFin332Ce+//76tlvuLuMB1buKaX6i7BBj2iZhy+umn+91XDCMGIAIiRH322WdxnhdgEE033XTT7H6qWPm/IzPOOGMYMGBAuOeee+KUPAGGeQcddFDe6nHa0UcfHeaZZ564r2rnnPOFQIKQhjUiwLAeguX111/PYK5dd911URROZyL+bbHFFtlk6ptlllkmG08H0nsa3nlCsa2HmPqXv/wljDfeeDYp+0U44rgRV2sZ9wXbWXjhhbNFuedNTGUiIhMsZSIgAiIgAiIgAiIgAiIgAiIgAr2TgASY3nneVGoREAER6HICn376aTj++OPDI488Elud+x3S+hunKq3fafmeGg59nLUW/cB8nLI4LmmdP8MMM1S02k8FGFp8m/iDg7xaBAwiAM5ns2qCiC3D7+effx6jFR577LEKhyfzcMz/6le/ChtssEGYZpppmJRZPfvzAgyt6WmZnxrRLogRtOw3wwHMvnHG4qQtY2yHVv5EeKQRE0RU7LrrrpkAkre9RnngcL7iiitipE/qlKfsSy21VIysmHDCCSt2O3z48CjU3XfffRXXCQtxrRBJxfH7yCjmlRFgWI5og/POOy/cfffdgUgdbwg7RIgQ8VEULbXvvvtmkV71RMAQJYIwWa8henK/+bIS4UIUChFpRDQhYsEa8wIM488880y854jg8saxwnH11VcPTz31VLwOmI9wipiSGlFXHIM3ykEkBvcE9uGHH8b1fSQc07luYcX9OGLEiCguch+nIibLljHWPeaYY8Kdd95ZsTjRTLvvvnshZ6J+LGqKa+mqq66qeh+lAgwCyimnnBLPvxdiiE5beuml472ZV+/5Qr722mvhxBNPjJF//t5mGaJqEISoQ714zTzOL+cZm2CCCaKQ079//ziufyIgAiIgAiIgAiIgAiIgAiIgAr2PgASY3nfOVGIREAER6HYCOOfffPPNKEzg0MWpWcZIgYQggAMXB3K7Gk5WHNc4VUmfVSvtV6uPAxED8QLOsJp00kmb2gWRH2yPcwX3Ws7idGeN8sDpznWCeIdwVZYjUTxELWBEaRSJInGBBv7Bl3J99913MZVWKuo0sMkuWwXhCBZcB1yL9RqiJ8eK+IWjn+3Ua5QBoREhb8opp8yN9GCbCCQsx/mze7zea61M2ahHiPIhhRzXB6nqqhkiL/UORno+L9DmrZcKMF7ERWwirR0RRLX2m7dtpvn6k3siL3LGr/vee+/FfZK2rNF9+u1pWAREQAREQAREQAREQAREQAREoOcISIDpOfbaswiIgAiIgAiIgAiIQAsJPPvss2GHHXbItkgfSGn0VTbzvwPVBJh0WY2LgAiIgAiIgAiIgAiIgAiIgAiIQD0EJMDUQ0vLioAIiIAIiIAIiIAItC2BPfbYI5DODVtiiSXC/vvvX7OsEmBqItICIiACIiACIiACIiACIiACIiACDRKQANMgOK0mAiIgAiIgAiIgAiLQPgToP2fjjTfOCkQ/LqTxqmUSYGoR0nwREAEREAEREAEREAEREAEREIFGCUiAaZSc1hMBERABERABERABEWgbAkcccUS49dZbY3lmmmmmcNppp5UqmwSYUpi0kAiIgAiIgAiIgAiIgAiIgAiIQAMEJMA0AE2riIAIiIAIiIAIiIAItBeByy67LHZ4T8f1yy67bJhyyilLFXDYsGFhyJAh2bIbbrhhYBsyERABERABERABERABERABERABEWiWgASYZglqfREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQARFICEiASYBoVAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQASaJSABplmCWl8EREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEEgISYBIgGhUBERABERABERABERABERABERABERABERABERABERABERCBZglIgGmWoNYXAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQgYSABJgEiEZFQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREoFkCEmCaJaj1RUAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAERCAhIAEmAaJRERABERABERABERABERABERABERABERABERABERABERABEWiWgASYZglqfREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQARFICEiASYBoVAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQASaJSABplmCWl8EREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEEgISYBIgGhUBERABERABERABERABERABERABERABERABERABERABERCBZglIgGmWoNYXAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQgYSABJgEiEZFQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREoFkCEmCaJaj1RUAEREAERKCXEHj73fd6SUlVzJ4mMPWUU5Qqgq6p/2Eqy+x/a2hIBERABERABERABERABERABESg0wlIgOn0M6zjEwEREAEREIH/EpCzXJdCWQJlxQRdU/8jWpbZ/9bQkAiIgAiIgAiIgAiIgAiIgAiIQKcTkADT6WdYxycCIiACItBnCXz33Xfhiy++CBNOOGFkYM7yAdNM3WeZ6MCrE3jjrbfjAmXFBF1TIdTLzM7AZ599FsYcc8z4Z9P0KwIiIAIiIAIiIAIiIAIiIAIi0FkEJMB01vnU0YiACIiACDRA4JNPPgn9+/cP/fr1a2Dt9l3lnHPOCRdffHHYcccdw8orrxzkLG/fc9UuJUvFhBEjRoTBgweHzz//fKQiHn300WHCiSeJ0/uyqOeZHXvsseHWW28didXqq68ett5662z6jTfeGI477rjwu9/9Lmy77bbZdA2IgAiIgAiIgAiIgAiIgAiIgAh0FgEJMJ11PnU0IiACIiACdRB4/PHHw/777x+++uqrMMYYY4Tdd989LLXUUnVsoX0XHTZsWFh33XXDDz/8EMYdd9xw9dVXS4Bp39PVNiXzYgKF+v7778MKK6yQW76TTjopjN//5+gqCTAhEDW01157hYcffngkXiuuuGL44x//mE1HkCE6DbvooovC5JNPns3TQN8hgLA5dOjQ7IBnmWWWMMUU5fpfYqXXXnstvPnmm9n6eQOjjz56mHjiicOkk06aRUPmLdeV0+6+++5w6KGHxl1MO+204cwzz+zK3WnbIpARuO+++8I111wTG9lsvvnmYcopp8zmdeJAb6kTjP0bb7wRHn300fDKK6/Ed/EZZpghLLvssmGyySazRXr895RTTglDhgyJ5VhuueUqnuWtLtyrr74azj777EAE+9prrx0GDhzY6l00vT1YwATjmcW7oEwERKAxAn3tGdUYpc5ZSwJM55xLHYkIiIAIiEAdBH788ccYFfLtt99WrHXFFVfED/WKib1w5LDDDgu33357LPnSSy8dHcOKgOmFJ7Kbi1xNgJlkkknCFltsEUs03njjhUUWWSS88977cVwCzM8CzAcffBCefPLJQP3y1ltvhQsuuCDySQUYImWuv/76OG+xxRYLBx54YBzWv75F4IwzzgiXXHJJdtALL7xwJlRkE6sMbLnlltFxWWWRilncw7/61a/CRhttFCaaaKKKeV05csMNN4Rjjjkm7oKUmJdffnlX7k7bFoFI4PXXXw+bbbZZRgOhG8G7k6231Ak07qD+y6sLDjrooFhPtct5OuKII7LI1q58XvPesNpqq0Uhyo790ksvDdTb7WSU6fTTT49F6gv3VDuxV1k6i0BffEZ11hms/2gkwNTPTGuIgAiIgAh0AIF33nknbLjhhiMdyd/+9rcw99xzjzS9N03A8bvxxhtnRT7//PPDVFNNpQiYjIgGighUE2BmmmmmcNppp1WsKlGvuA+Y5557Lmy//faRVyrAfPTRR2GdddbJWOLMmHHGGbNxDXQ+AZxtpKCzSCg7YhyS1m+XTSv6rdfZatsZddRRwy677FIY3WbLteq3OwSYhx56KPz1r3+NUZ+IWqONNlqrit9W2+krx9kK6DfddFMgVaa3m2++OXD9d6r1ljohFZ/tfBCN/ve//z1MP/30NqnHf8sIMK24L2nAQcpXb0cddVRYYIEF/KQuG/7444/DTjvtFAUgsgPMN998ufuSAJOLRRN/ItCK+6AvgeyLz6i+dH7zjlUCTB4VTRMBERABEeh4AoT34xRN7cILL6wrBUy6fjuM8/FKJA+25JJLhv322y8Oy1keMehfFQISYKrAKZiVMrPFqgkwLINjkI8vLBVo4kT962gC999/f0yBmR7kJptsEjbYYIN0cu64d7biVP7tb3870nII8pbeJ51JYwMcbV3dwro7BJgTTjghptrkGNkfjtxOtL5ynK04d6TjIu2YGWmt6Bevk6031AnvvfdeWH/99bPTMPvss4c99tgjDBgwoC37YiwjwLTivsyLgOF67a50bP6ZdPDBB8co5+wkuQEJMA6GBisItOI+qNhgh4/0xWdUh5/SmocnAaYmIi0gAiIgAiLQqQSuvfbaQMSLGRExPnLEpvem3/QDjogFIhewvibA4Hjko95s0KBBgT9ZMYFUTPB9wCgCJp9bysyWqiXAvP322zEVFMvjLKafgk5ttW9M9Ps/ArvuumtF/y82h+iXyy67rJQj0jtb55hjjnDiiSfaZkb6/eyzz8KNN96YpY6xBWhpTmv0fv362aSW/3aHAENdT18SWCcLMH3lOFt1Ed5zzz2Bd73+/fvHFJqd3gdMb6gTfKtvnn3/+Mc/AmlN29XKCDCtui8Ry88666zY/x5Rst3ZBwzRl9a3iwSYdr0a27tcrboP2vsoW1u6vvaMai293rc1CTC975ypxCIgAiIgAi0kQCogOr2k5V0ndIRN+Pfee+8dCdGqmZZqZq0SYOg3B2cdnTu3s73wwgthq622yoqI+LLDDjtk471x4Jtvvokf5whtebbpppuGscceO29WqWmpmCABpja2lJmtUUuAYTkEX4RCjEg1ItZknU8gTTVD1Ms555yTHfiRRx4ZFlxwwWy8aKAeZ6ttg06v99133+y6Y/p2223XpeJ0dwgwNKAgtSjWyQJMXznOeCL1r24CvaFOwMlvfb8stNBCAYGjna2MANMJ9+Vxxx0XrrvuungqJMC08xXZvmXrhPugfemqZJ1AQAJMJ5xFHYMIiIAI9BICOHObbeGN43n48OFh/PHHr3rUrdhXtR20evukRGuFoOHTGq277rpZp+kcSzMCzKeffhrzcg8dOjRzck0zzTQxN/W2224bxhlnnGq4Gp43bNiwrENSUuxMMcUUpbfViQLMJ598EtZYY41CBrQkbSZdRSomtLMAQxqTH374IbLg+ivbb0YhvAZnpMxsM2UEGFIenn322XGVX//61+HPf/6zra7fDiZAC2frDJx67frrrw+IpyYgLLzwwuHQQw+tSaARZysb/fLLL8Naa60VENMxysC1OOmkk8bxVv/rDgFm+eWXz+qDThZg+spxtvoa7Cvb6w11woEHHhjuvffeeEpWX331tm8YU0aA6YT7crfddguPP/54PC8SYPpKjdHa4+yE+6C1RLQ1EagkIAGmkofGREAERKBPEsCJSaQAzlYMkYT8zHn55A0QkRZ0HG0OHNI6pK3YSLFD6of//Oc/4cUXX4yOdFrnk/KE1r3sY8wxx7RNZr+ICE899VQcn2666cJf/vKXgOOZdGH20TbuuOOGHXfcMSy99NJxOcpO2hZCed988824L5xK7Gu22WYLa6655kidXOMAo0NWM1risc08Y/9sH6fqyy+/HEjnwvYp36yzzhrLwfp5xrFzDBjCESHaRNw88MADMfXCM888Ex1HbI80T8suu2zDrZF9i3paGc4yyyxZkRoVYHAK0kIaBnmGw//kk0/uEufd1ltvHZ5//vlst3feeWc2XGtAAkwtQiPPT8WEdhZgfvOb32QHQPol+j7qCUuZWRnKCDBEI+B4x9KINdtOu/0+/fTT4ZZbbon9iiCCURdPNdVU8XlBBE+RyP7EE0/E9VieeoqUM9QpOMv/9a9/BaJCSBNEfb3EEkuEovrU80CMJ2899/qzzz4bxfmpp5460KfAXHPNFX75y1/6xSuG88rz0ksvxe2xTUSKmWeeOWzyU3QK9bwZ9dGQIUPiM+2LL74IM8wwQ9zf73//+1JCNI0Ifve73wXWxVZYYYXwpz/9KbYIt/QvTKeFeC1RsVFnK9unpTMtns0WX3zxcMABB9ho3b+PPfZY4A+u7777bnzecg5wyDDtmGOOidvkmKz1e7oTluP6gjHnlEYJPMN+8YtfRE5pmjRYct0QxWqRn2wT56Fv0MB15Z+FLIO4z3XHvrhXuZZ5LnPtrLrqqoEGBkXGfm+99dborGTfNFCYccYZ47W7yCKLxG0Urcv0119/PaZL45pl36Rh4j1izjnnjMfpy87yzRwn65vR0OPYY4+No+wDEY5jrmbco+eff358pxpllFECqfP49UbDDP44HlIoIeTBkfRJiy22mF80G7b7j22tt956gfuW+pBIMM4J75YwIVprrLHGytbj3fCOO+6I72Hvv/9+rHtYbt555w1cw6nRHx73NbbSSiuFeeaZJ10kG+dd7Mknn4z75xzxTsZx8Hz5v//7v8J3nA8//DBGpnIs1AO8d8Ka9xX+eBfGqNtgQjnSazkrRJMD3VUn8G7w4IMPxnMON3//cB441tRgy3o0OuC7AON+SRuVUG/4SF5Y8r7MvcK1wTU28cQTx3PDN0BRmi6Ebs4NRuf2Rdc61xHXHca9SEf0/vwUCTCtui/jjv/77+GHH47XDKP00bXyyiv72XG42fon3SD3OO/5++yzT/y2YT7PaM6DGdf2AgssEEfz+oChDqQ+pR7gHqVRTD3P8kauJytb2V/bB9cef9yX1POUk3ph0UUXrdgU19pVV10Vp3HtcA0VGe8EPLMw3k39u4evH5jHuw3vLtSrjzzySHwWUf8hgFF3XH311fFa511pm222ifUQ6TUvueSS+OygXlpmmWXCZpttVlEcziP3JMfGvcI7DN+U1I/LLbdcYf1l++MYabjHtU/9R1pcnsdsl2986kH6K/TvQxSgK+4DOzDeJSgHdTjPB3uWUy/zrZznQ7B1G+Vh69f7rGG9Ru7Nss8otk09aOeXOneiiSaK9SDXMM/aIh7+GuzpZ5Tx7au/EmD66pnXcYuACPQaArwE0aqdlypeJnBe8MGy9tprj/QS1MxB+ZZPbIePEMQTXvTyjA93ymNmTiQbZ13y0VsLdZvufyeYYIL4wp862oiosBdZlqcfk8MOOyx+dPn1efnkwx0HCE4BRJFqRplZh2PDcNLcddddcZh/vKTmOXFxNuKoMrEpWyEZwPm4yy67jJTLmpc4ppvxUYMQw8dKkc0333zh8MMPz8patJyfzscF58EMccmfv0YEGF74cBbWYkv6Np/uzMrQ7G8zAgzXJ/eOGU68Mml9bPl2/OUc8zFixocTdYRZX4qA6QQBhvuLe9bqSepN73iy89oOv3zM46DHyV7NfJ2Dk8w6vfZOG5w7CLc4g+3Y023ieEIQ99vzy+CQoDxfffWVn1wxXK2T+bQ8OJgsGqliIz+NMH3aaacNp556aqF4gLOE55R3WqXbYRxxh47vzdgmQs/nn39e4YhE+Nlggw1ssdzfZpytXHs0gsD5iMGZPmLgUI9RJ3Hcd999d+5qbBfHDY4cLE+AIRXoIYccktsnjm2U5zPLcE2Zpe8KNj39Zf++fxz6oKh27VFmrr085ydOIMQei1ZK98U4TmHSXab9WsD83HPPDRdccEHeanEafLiuvVDQ6HHm7YTrikYqGKKFCTJ5yzKN+URoYTgrKb8Z1yznngY5Rcb9gIiSpnj19x9pa3Da87xPDaEQAYb0m3DBQV1kXCOcG+9o553PnpGI3b7zd9sOdQgCYbUGHlwTvMf5dyxbH+eglZ1rjXOPM9u/I9uy/FJOItxwnrXauqNOoOPovfbaK6s78o5htdVWi0zMIUjDJZ8SNm8dm+YbD+FIpr6kjiiyomcFfajYejvvvHNYZZVVcjfBPrbffvtsHvWDb0hQJMC08r60nfMNgkMWy7s/m6l/bB/+10dj+ul5w7fddluc7O9d7uvdd9893ndF30hF58f20cj1ZOuW/YUbjd/seZe3HvcuUcgWRX777bfH+o1leb7zvl1k1A1862E0+OPaMEvrh6OOOipQ56X1w0EHHRR+9atfRSHGIpFoeIgQdNJJJ9nm4m9aF993332xTik6B9Rf1Et594D//qe+57u42rHyvY2IbNYV9wHb5r2LyNwiw4ew5557BiKGU2uGR6PPmkbvzTLPKMRC0hRzrxQZ7w68IyFOpZZegz35jErL1tfGJcD0tTOu4xUBEehVBHgJQiQoMj5ql1pqqaLZdU1HDOCD0Zu9DPppDNPaLY0U8Z29k78e0aKs8QHgW9SkL3O8ZOUJALQaxgm70UYbZR9Ztfbpy1lGgOGll5ZNZY2XdByOPiVXKsCU3RZOSl7Syxov6USqYDgLrUWfrd+IAIOz0F8XvMTTegZHEh9h3hCp5p9/fj+p6eFmBJimd94LNkBkFa2BzSTAGInu+20mAoZS+vrur3/9a8vvoVaR8J2rsk3qGBydRBLQIi/PfD3knTbUI6nwkjcNp1jaOpr94ASm9Whq1L8WWWLzENyPP/74kSIgfHlsWftlHe/IwIlMVI6PUEEoS8Uf9k90RxrBYNvlF+cFrYSx1InCM53GFlieUBFnuH/NOFvZTPp8g1MtAcntPrbyp442B7fNgwOWngumpcfFM4aUROn1kMeXFtg4r8x4D+F9pJaZI5NzisPG+Nt6XHv8+XPOPO8IZhzHzCY/CRhE3ZjhrEMUQpDx7ym0XKbRhxnH94c//KGicQnXGZFv7Jv1PQPOjTlS6j1O22fer08Hx3xaVRelniPyAIedlcs7sXEIUXf5c8y7Go1LWM87OjmX3G/+vcjffwhWRMSYs9zKDReLUuZZ50U+rjHqF+ofvy8a9Pho7FrOLfbJfeTPHfunzFwPduxWJhra4Ajz5p1bTKfcfr20PmGZsmkGWbYe6+o64Z///OdIqTK5BxBaYOg50pDIIt84T7Su91yKjsvuuyJxIK9u4LgRXLx1tQDTyvvSyl1NgGmm/rHtp788R72oms63cX8v+nvX5vvf9PpnXtGzvNHrye+v1jBRA+k9yzo8i2hY4ut96hUTH7pCgCFamAYXCASpkUmASAYviPANmPeu4+8t7hcfVQp/9sO9Rv3mj4/6kIaL3vz+0nOXjtt6Z5xxRoz+Zbwr7gNEULJhmFEOonm4B/z7BnUrDQR8xFqzPBp51jRzb9Z6RtHYiIYFad3Jteqfv8YKMTBtPNJOzygrZ1/9lQDTV8+8jlsERKDtCfCCwUO5lqXiRa3li+bjUPdpUViOlAu0pkjNtwZjnney4djAweSNFlKIJIQw00KEVi3+I43UHQgj9gLlHZJ+O+kwQg8huDgtvfGBTCg5Ldh48b7rJyGLF5c0SqeWAEPqMJwoqdFSkxaMH3/8cXQIpK2Y0v0UCTC8UNJCm7QjtGoxx5vtj/l8CPj0GzYv75cXelqIYqSP8ylZmNaIAEMqBu+swnlFShnsyiuvDCeccEIc5h/Mrd8CHJO0pjbjo4LQelLI8cGFg5K0EYTFe6cMjhuiAMz4MPTXCq12vCH48DFjRitrWjPmGY5FWrhVM1pz4+RhG5x/S3PBveBFQtvG119/HVMo2TgOM65zUuEhauIoIBWBby1my/LLxx/nnXLj1MNJgSODlrFE69AvSNqK2q/f2wUYrnscbDjz+FDkWGHOPUHEEizNcFByP5v5a48P6VSsxKlHugJvrG8t17m/yD9PGWjBzUcOxjnE6WitIP36ecPNCjC+hTkiB2kV2s1odU6LZ7NUnOf88RFudSEOb+p80j5Zf115ThvqAKI8aO1Pff3vf/87Cr72Ucn9Qz3jBY302YjTl/uAa4boDeoePt59i1Hu3TPPPDN7xnAceeWhhTZ1EtcT9/8f//jHkT5wuT5oJctzjfoCh5k5bNhuniOQ6Rj3uE9jgmA+aNCgn2f+9J/oIloTm/GMqxa116yzNU1DVu/1h/MeR4wZ5x028MNIS0Mkp49aYJ53FnlHC/ccz1yesdyfOI64P0j3ZcY4+8GIwLAUZPbsYTp1g7W8ZxyRg7qA9wCcsnadkk6FesOiM3hW89w0YY3nvI+K5dlEi2SM8iEG4QgzIwUXDR+Yxz3iW9GT8pT3NTPe73BIW8QRx8IxGCvKRKQM8+s9TttH3i9MSbFmzhyccUXvmv7ccExEXxpXLyRyn8LNp/ChXvVREul7Ud79R3kpG9x5NnKtkGqH+oX6xAzRD3HL3hkRYGgpDX/egUjnY1bLucX1yjuJGdvlHrVnB++sbJPjMeO9mHcCs9S5xXSuOZzO3L8817hOieTw0d0mNNh2WvHblXUC9wXR93Z/UK/Cxr8b8R5KfWzXF45v3skxpsGBbwiLFqA+pZ71xjcFjlX/js49T93AuyTnne1wzZGODOP6pLGUf5/sagGmlfelHX81AaaZ+se2n/7yDOMa5xuQby87b5v8JDQTjWEGV3sfy7t3G3mWN3s9Wdmq/VLf0WjM3ilYFgc174f2bcWznvcFrkm+cahzsK4QYOKG//uPOoTvA65n6jvKyTPDCyK2PHUskTWcA96V4c33Yxq9xb2GUG7vXZxXnkkWScJ9gqBjzzy2n7c/Gr7wfOT7HEO459lr5htDdMV9wHPA6hlSa3FeYIDBitRwRGRR3/nnTrM8Gn3WNHNvVntG8U1MPWbfwZw/6ksaBHH9cr/SeIF62HixDO9mPsKynZ5Rdg311V8JMH31zOu4RUAE2p6A70y9WmHTj9pqy9aal9fajA9u/0HDyzotK+wlnW3ipOdlacSIETG9Ax9GZry88ZHJC4EZL0984PoXYj7ILBVZkQCDo4CXDox1cXwgvuAkMEsdJkxnf6Q/wPnuHSL+447l/Lq8tJKuwlJ1MJ9joDUfL71mvPDgtEpb4VpLJpbLE2Bo+UzqDu8oSFvtsK5vBct4NUPwMDEKJ0IqHjUiwPg0T+wbR5gx5Ni9sMAHs7VW5SXWp/pAEOLF+K233qo4BD4C+OC0tDIIEN4hWbFwzgjnyDtm+EDwKbr8Kmw3FXD8fBwsOD99a1o/H+es5Ue26eQn9g5VBBOcqP7aZlmm45DzRtQA13o1gynn1Kej8cv3VgGG+wvHbK1IOZ8Sho+tPEHY8/DDpBzy9yrz4O2jNeCX1zIy73z5bfvhZgUYH82ROuT9fnpyGCc7H3QYAhF1Xmo+tRbOMv+xzrKp04aPyi222CJzotr20mhMX5eyDFEEdg5x0OJcyBMpEdW8CM1HKw4Fs7Q8qajEcnclUag4AIgyM0eAbct/QKct8G0ZftNnLE4EX3buC5ws9rFdq5V8s87W9NnE9jgvZQzxmTrVWtfiEEKQMKe4bYNj4r6FJZYKMEzDccpzhfNjzxemY6xPvYvTCaN8lNNb2lgCZxF1Z54h4FGX8Gwz55JfjnnUTWY+lScCiUUc1tN5eNr6n+slbYXM/jhWnxbOOwOZX89xsnyRcW9aWjFa0XIdpueNdf315d8103u0KHKKZ6k/Th9tk95/vF+Rjm+GGWYYqdg8JxAjsTRqbKSFkwn+3kxTkKXXP88H7r/UeO+lbuY9EuMa5ljsWk2dW7yb8n7p351ZD+GP69fen4uuA5Zt1Pw5453Xp94rs82Uia8TeB+1iHDqQKK9ff1l2+e5bc/qvPudiDfrzzEvosi2w7s79S3HQerl1GiA5d8zqX+snxKWhbXVGz56K91O6rTlm8LOLcv6Rmc4gym/t1bdl2yzmgDTaP3jy1pt2HegzvWbx5z103sXzo08y1t1PVU7pjTCp6iuYhvc5/68d6UAQwYH6tQ8SwURvpNoQJK+d/C82HzzzbOIkLz3Ltu+9ykgPvkGNX5/1MO8E9MIIjV/vljOvvdsuVbdB9yzXFNmlobSxot+W8Gj0WdNM/dmtWeU/z7guH0WD88BZjxr7dmS1qvt9Izy5e6LwxJg+uJZ1zGLgAj0CgI40K2VZrUC533cVFu+2jyEE+9MZtk0lJXoAJyWZryE8fHOi2H68sUyp59+eq6Tg1bNONbM/IdongCT5py19Wj14UO5aXWIkOFbftiy6W81ASZtBcO6OIH4yEgNJ3yaq9/nAE4/aFmfDxjK6s2nELPp9bRI5kOVlzPM87Rt1SvA0KqJPN5mRJr41s5M54XPIgoYN4EmFWCYV2S0XLdroacEGHvht5fXorLyse+vgVSAKVqP6VyXtPY0o0NanAK1jI8vnD15DrLeKsBcdtll2TmvdvxdLcAU7bs7BRgcWnzYYrTGJ/VguxlChvXzQKSLrxesrHYPMe7TeNh877ThmiYioMi8I4h9I+BiaV1r4n/Rdrwzkgg8nBhmZcqDuOBFZqJEEYBSI1IBIQgrOjacAz7KNM+Rx/qpSEO0CM/5PPPH14izlf7TfH2W99zI2y/TfHQE49RvaUf3TMd82qtG3lm84wenIM9ub+m7RzUBxq+XN0wqEZ++g4hd61PEO46py3Fu59XL6XY5h/DBqgkezPcOIFoh+74pWnWcaRQZzqM0j366DPcO9xDGe4lFDBZdx3HBn/7hiLd63Dt1/f3HstxX3B95hlhkgi7CGutaC++85f20as4tfz45L9TFFpHkt8FwGp1GAxrraDt1bqUNl/y2fOQQ0XY+4s0v1+hwV9YJ1IUmuNaqexFnTUhOHaiee+oorPe4N/kpUsMaSqXXUKcJMJ5bPfVPWab+uevv1XR9f+8WPe9sHb9N/yxnfquuJ9tX3i9CuTWIqtWgIV2/qwSYvGeY37cXRJjOO4GPMrNl0+f3eeedV9Goz5bjl07Y+YbFfNYKxv3+ePbx3Z9n6Tdq+m7SqudT+p5Hw0cfaZpXNqa1gkejz5pm7s1qzyh//dZ61vL9jx/AjEaZFj3eTs8oK19f/ZUA01fPvI5bBESg7QlYCHSZgtJis1XmPw7Zpo8KYTyd71vSpA4Zli9yJtLizKfc8h9hqQBTrcWjd3yxPwxRiJa0/HmH989z//e/mgCTl5fYt97831Z+HsJJwjGZ0RrY8tfmCTA4oPNEIv+xwrZo3ZSKYraP9Nc77kjRQTi7t3oFGFI78GJoRkoon3+f6bQKJe2HGR9mfJDlCTCcF4QpBBtr/Wjr4bzEuYPzi+Mw42XYPp6YRvoLb7yQ+hdzWuZaJ+G0vrVW16xTLQKGl2e/LKlwaJ3Gh705j2y/nDvLmZ8nwPChxAcWIekWEs66fPxwXsxMgCFXMxFk5Ddmv3DnQwoHmBnOnrzWiL1VgKFe8MdHvcJ5pAUix49Ay3Xl2fNx5dPa+Q8NnGfeaQo3rpVU5EwjYFiO65III/jTopZriNQbacQSy+ZZsxEwPg1U6nDN25+fRt3CtVuPcY35tEpl1uX+tI7DcWrh5EvNtyJOnxssW4/ThjrPIil9HZi2vE9bKqdl8h/TnGffYrNsebyTqKgVtXfU4CBGAEjNRwgxj+cDz4nU0qiBTX5yMKYCv63TrLM1jRKqJwKLaAXqQow6LC9PvZWzWQHGCxhErdCww1urHD+2TX/OfRo4jpfjNqMsCFg49qoJMWzDov14zlWLxKT+M0E2bdHcyuP071l5UVv06UbdhFE3WuMOxr1jm+dktfdV6mzuD8wLfP7+455BtPCtz+MK//0HE1/nUN8TkerTCPnl/XA15xb3ljnvi+o1vy3vDPPvWPU4t3xLdJ551keK308zw11VJ9AgjIZhZkRn2XuQTfO/XPMWTZxGMXpnpX/39+uXHfZiIM98rgszf50W1d0s659djKfPlXaJgGm0/uGYypj//miVAFP0LG/l9VR0bERp+k7nfV1etI6f7p/r1Dk+1ahfjmFEC97HMN8Aj/G0fqjWWIHlvSBSrY4gGhPx3My+OW08/SXqBkvfhfz+qgkwNMrzffKlx9HK55O/Fikzjf2of9N3euaZtYJHo8+aZu7NomdU2hgkjfCz47bfVLjyDWDTa7BaI4GufkZZefvqrwSYvnrmddwiIAJtT6AnImCAkic8kGYAp136wszy/sPKt1JlXj3mP/C9Y4BtFKW8YR4fz3xEFxkvzbww8mGWpoOoJsCkYetsv5rQ5T/QWNa38q1HgPEf+GzHOywYr2a+zKQf8x/LrFevAPPII4/EDwHbJylbyGHujY9wnKJmlvYpT4AhlZb1ZwB7c8qwbhpZYtvDyUGrKzPvkLdpRb/kWvcf40UCDH35+LQjRHPhHLIWtnxkMG7mt5MnwOD05VojLZ1vvbzUUktVdF5L/whcv2maLPZDnzC+pT33RCo+sVxvFWC4zq11LB+DtDw23hwXRl5ya3n+85TK/z49Hq3/y4gKqQBD/yHUW7QINKNcXDuWEtGmF/02K8B4kaCME9CXw/f75KdXG+aYEbjqMa5lIl8wzhd1DUKrGZFjtIi21GB5QpJ3uNZqNYtAZ+kKfR2ICG5ReLUcIpQNkdP3L3DFFVdkfTuULY/PRZ6mhLLjp88nE+xS54Yt4xsvcA4oS5HT3ndq658lti37bdbZmjoN9t1330A9VcZ8VBT1Os6tIqtXgMHxgPOW+hVRFL4mrLdagCEyiWeA3x9RLxYN6dOj4oBCDPONAjhmBAQcyTj78urz9J2miFM6HWeTf/a00sGVOqt8a2byznMsxsBH4jIN51gj5t/lyt5/7IdzhJOQXPepce3hNKQxRp6AU+TcYjveycf9ifBWzfx59CnZ6nFu0T+ROXJTga3avsvO66o6AfbmwC1bFlsujXxoRoDhHuRepV6gMQ/1qAk9NDryjVw6TYBptP6x81Dr198PrRJgip7lrbyeio4rrS+JuvXvLUXr2fSuEmCqOb/Zd1lBxKeGtTKX/fX1fdn9pYKW//5nvynvZiJR8Tv4iGU7Lp7/NK7kWZJ+M7SCR6PPmmbuzaJnVMqTfnymmGIKQzHSL2WHi9k+++wTU60y3k7PKCtfX/2VANNXz7yOWwREoO0J+BYI1QrrPwKrLVd2Hv244Bz1Lfd5gSY1TuqsSVu9+lQTZfdny9EZoeWM9h+5zPcf7ba8/yXtFU6SaoZTHaY+IqaaAEPEgRcIajn70tBfymKCTXcJMKSCs3zfCBrkO/dWrwBD62gcL2a0cuWFzhsf1r5jdFrNzj///CNFwCDg+YgFXix9i1ZSDOX1xdEdAszjjz8eI7vsuNJIFRzy3BNmtEizjphTAYZoLYsU4GOFDwUzHEXWR49NI+UaDgQ+Rmnxb2kHcXKZ84tlSc2Cgzu13irApEIITmvSfnGNkcM9FUvT42a8FQIMdY7vaDZvP7WmNSvAeFHBR3vU2i/zEamqRR7kbYPIO/jXYzwXuBdpHYhxvkhDRh9WOKMRkSxihbqWCK40wq8eh2uR08Y/F9OUYnnHg4jDtsx8/vey5WmFAJOX3hNOReafvyxT1PKxWWer58l+fLotxquZP0e13kPKCDBEuHEdIbaQzq7IWiHAEGnHewPP+Dynvt+3F2CYzj2H2Gb3gl+WYcrHc5Ffs7RBDYJNGaNzYf9cTB0yzTi4YMA9bCmlNnGRVj4NWhqdgljlGwNQF/BXxmgYYukLy95/tl36A+H5SRrcPOMdDUdi2ndBkXOL5zqNKcx8SjGblv5yLux9Z6655grUJ1g7Obe6qk5I+0Yqew2TAofz5tMT1ivAPPzwwzF6kShCu17Tc8N4pwswHGMj9Q/rlbHuFGBaeT0VHdtdd91Vka6SOr+o0UPeNtpdgEm/U8vek/379w848y3dYjsKMJwPysg7SZHxDkKDCDunreLR6LOm0Xuz6BmVpnz3/dEVMfHvq/DBd4O10zOqqOx9ZboEmL5ypnWcIiACvY5Amn+76ACKcsMWLV9meiom4DynNYp3uLAdWvf7cOQ0HRgf5fTRUst4ecKpbU7XegUYtk8kAS9qRR/nLMMHOsdh+6kmwPh0XqzLsfj0NUzzljqyvGDTXQKMb9GKk8NarFs56xVg0ggSUmDxgusNUWDo0KHZJK4BRIg0AgaBzXdsjPPHt9Sh1bCJR9nGfhroDgEG4coEFfb95z//eaRW4LQGtlbPtEi3jmhTASYVqbxIgDCFQGXG9eSZ2PS83zR6xpbprQIMH8I+dYIdj/2S7o6UDjj4i8yzbTQChpaIaSu6ov0VTW9WgCFNAM5ILO1zq2ifPTEdQREHqqXsySsDogLnlZbdqdXjcPXPGj5OrSNvz8qeS+l+/Hias5xUahbtVLY8/oO20QiY9Hniy1hm2DdQ8Ms342zFyYAwYA5N/8zy+yga9s9pBHREhyKrJcD4jqf9Nnjucn9SVitnswIMThKeWxaB5/fH9TvxxBNn0VfMSwUYptHSFOGGNJNEDXuxnPk4wngfsdaqPqIpr3EE65SxVgow7I/oTlpCYz7SishR63A+jWZLW9nSN0ve/R43WuVf2fsv3QTvxnDHOZp3DhHHvKhe5NxKI3kQV4hiqmY+is3349BOzq2uqhN8FCSMEOnMgVuNWd68sgIMQjTOYYus9NviHsORbMI/8/qCAMNx1lv/sE4Z604BppXXU9GxpVE2eZHWResyvd0FGJ/1IC/ta7Vj8/PaVYChjDRKI40laQEtKtqX3T+fWsXDtl/vs4b1Grk3i55RjVy//h4m1ak1HmynZ5Tx7au/EmD66pnXcYuACPQKAmnrnbTQ9aQLSdetNk5oP04CbwgMPv0AjhFeZk3MYNk0xz3T0lzKTKtl3rHDsrUiYPz2cBKSEouWtJayxM/HYU2rUqyaAEOqK4vIsfWrhY37F1iW960ju0uAoZXgXnvtFYvr+6Cx8tcrwKSpueacc86ROk4nyoaWy2a8KI811lgjCTB5AoJ3oM8wwwy5LZ26Q4ChlZWlNeI4cLilHRLT4tc+9PnwNzEuFWBIYcK1YOaP0QswKVtbnvsKRyjmnUtLLLFEbl8fvVWA4fj4WPL9/TDNGyzOPffcKOj56Tbs2TYqwPCB3agTycrRrABDPW79YZHij3PdjkY9xjMAxyWO6jHHHDOQdoH7nVRxiATcJ0zPs3ocrkUCjG81y/Vh92He/piWpmjzTsOy5WlWgOGDnAg2E3C5v00EKio303kOW0Qc4z5lCONYM85WRGcc2WaIXDgCypp3otZKpVRNgKG+RZA1o+6lbw9+TRz10Z3NCDBErdBwxMQczgXnhvRVOLCsJa0/53kCjJWVX+4H3jkQ90y0YDqOD+vrBZGCdxLMO+7jhDr+tVqA4fnl+xfiPY+0Zz56Nq9jZ64VS/vknTx1HEoUna0vn1opCYu2i8DKfewb3qR9BhY5t9imj0yiLx/rpLpof/64/f3STs6trqoThg8fHu8VY+PFbJtW9tfXHUV9wCC+IPh7pyup5ohw4v3WOpf2z89qAgyiK/d1nvWWPmDyyl6m/slbL2+ad952dQqyVl5PecfCNCIpSUNnlqbMsulFv16A4Z3HPy/TderpA6batyTb9d+T1fpk8e83tcqXltePl91fd6Yg8+WzYZ45pG/kXYjr3sx4toqHbdf/lnnW+OUZLntvFj2j0mjTtM+ddH80VLEIU+bRvxiNW7F2ekbFAvXhfxJg+vDJ16GLgAj0DgK0wCB1Ew46nDG0UuQDHkcXnX13lfkWm+yDD2T74GYchzofPt7Ix2zhrja9kRbdzQgwtl9+cVbgbPEvapu4NBvVBJi8CKQ04sf2hRPSRwIxnQ89SxnVXQKM/9jIexmvV4DBcUjLZjMvPDANrv6DDYeopV1LI2B82i7W5UWRDwszIh5Is5NadwgwlNmLbbvvvntF6jDKxHGa086nGWtUgOEDwjpatmPGIWovy7TS3mijjWxWdMrjtEiNiCTr3Jl5iEnVokbS9dPxVEwgUon0Qpjvp8nWq/easvXsl3uHyC3S3ZEKLk29RFoy61vD1rHfVggw9fQpZPtNf1NmNt87dUhF5/sisWX49U7AZpxafputHuY6oI7j/FC34PT04nuZ/ZUVPNhWkQCTOqBrOVRIfYMojKX9aZQtj3fGNxIBQ8oin0aqTEt7ypt2BotTPG0Y0aizFaHA948FG+qOvD40KEue+WgkhAxEEhMw0uWLBJjUweBzlvtttEqA8WIPQg4OChN5/P78Oa8lwNh6PC+JAqIhBOZbJNNYxep77h/STvI8rdfS67+ZFGS2b+84pL6lY3WL8PQNSWx5fjlO6mysVv8/caGcf2Xvv5xVR5rE8xTnlBnCLO8jWJFzi3kIypaCrpaImF6rMLD3o3ZybnVlnUADE3sP4t0MwaMRKyPAeOc39wp1PQ11UqsmwPjnCN8mjOeZf1Yz318/jPt6A7E2fRdr5X3powFrXZOUzaxa/WPL1Pr17/NdLcBQllZdT9WOyx8T5z/9Rq22bvrsrpbCzNejvNMhHprVUz+wTllBJP1OJXsF7+n1Wtn99bQAY8eVvr/QcABRtlU8bD95v9WeNXnLM63WvVntGeWvX5ZD+C+yNGUZZcVnhNVzDXZ1P2VF5e8r0yXA9JUzreMUAREQgToJpA/ydHWfS9/m8ZLBy4FFCjCdDyeiC1KnMMvi/MRZgWNvttlms83E/glIf2VWKwKGlsI4jnAipUZH5j59AREitK7FqgkwiAt8XPooBDpO5gUXB4UZx4GTj0gfbzjGf/nLX8ZJ3SXAsDPvOPIvX8xrxFlO61jfApE0YdbJcNpHDA4n+MR9vf12hbMQZwgtgK11PB/X8DdLI0dsOmKcP38WYWPzq/2mKdTI924tkv16fHz7jyUipHx6rGrzGxVgcMZxfszSfd71U+5q/5FfFAFz6qmnBvoQMeNaxCHWqKViQlcLMGk5H3300YpIu7TvIL+8F2CIKCjTF0p6PfW0AIOgwT2LlYno8MffncOpGMD9gWhaT/RQPQ5X7zjzH504/4hYMCcgURL+XvVMUmE8fY6ULY+vUxsRYLyTl+chrWjNOezLmzdMgwFL+eZTRNmyjThbr7zyypEiGRtJI+WjkSgP9RXOydQQ23feeecsOsQfh+9rxE9Pt0HnyRYtVyYCpijVjBc7EdqXW265dFeBOo/GAdZwo6wAw4Z4PlEHYzwnLbUlgrqPKqnmDI4rF/xLHb1Fx1mweu5kH7nM9YmwapFXpJBN+1RhI1zDdmyMM2zvBYyXsbL3X5lt0TjIHFPcW7yPmRhYzbmVdvRMp8/0LZVnPLNNmGK+79C7lc4trjuOh0ZPZesJX96urBNIz0rKPYxrhXeYeoV41i0jwFCv0zgDq5bi0Du+0wgYBF2i0zD6lstr5MO8tK+JNHK/XgGmmfuyUQGG4yiqf5hXxryzt1pDgXru3aJnOeVp1fVU7dj8NyDXLM8/onbLWFpvFwkcNH7jvrPvxTXXXLOin7166gfKVVYQoa7gu8aia4kEz0vlXOtYy+6vXgGmmfugVpk5buNN3Uz/rq3iUW3f1Z411dardm9We0b5tJc03oBpUUMZv520wVE916AEmGpnsvl5EmCaZ6gtiIAIiEBHEuBFBseTObr8QVZLF5EnNrAujo955pknvjjgROAD3jra5SOTlt9TTTVV3E09ETA+5JhUBggGtJJDGKEVmzlDrPy+k+FqAgzL8+GWdjrPC9DgwYNj9BEh9OyDY/aWtgjNY3LZZZeN1Ek12yBtib1MM+6dj4zXMu/sS1sTNyLApP2j4CTDKcP1QbokX1ZahFq/LmkEDOUmCoAX/U8//TSQ7sPOP/OIuEqjiJjOBxqdMpuxHh/ZfEjVsrICzDfffFPRGTHbRUAj0gwHOR9wPrWML2ujAgyiCeKJGdeMXas4APmY86ndigQYXsatI2C2hQjGCzsfYo1Ydwkw9BWEoEl0jT+X3Lc42O3Dipb11113Xe6h+H55WID+dYggMsdb3krtJsAQ2WiRhHxAWiv5vLL35DQvFPlycA6JIMAJR91AdBipCumDgbrSW6ucNgi5CAZmpBihXvDnndbq1DWvvfZaXIxnDPunjGZly9OMAPPhhx9WpDXyaamsHNV+SbfBx7AZDkQciWZlnK3fffdd5ICQTMQEv964B3lu1Gs+Kop1uRa4B31kLo58IkG9iO+FFu/85xxxvKlzzLeEZz95AkwafbvHHntkzyKuAcrE9eGdgXmtoXk28RzzjLwAgxODOhfhxqIVKZOZf/6mraB9GjKWL4qohQlOWIxW/z5Cp+xxxpVL/rM61z/LWZX7l/ORJ7KyDhGalAejniYdZsqEaw+HJ2IFzzie52Zl7z+W512LiCuea1yv/l5nPs9TSyOKgIKQYuadUmkUGdcwacdMcOLaJCrKX8NsJxWc0nPbKucWLbi5Lqhv/bxnvAAAQABJREFUeS7yPOB6r8e6sk6gcRXv2Lz/YZSN6GG+CbzBk/OBgEJ50ne7MgKMdwLmRWJRBqKeuB/NUgEm7XvLWsrb8myD9y4fRcy8egWYVt6X1QSYZuofO+Zqv/77g4ZqltIYp/N4442XiW313Lu+zk2/Z1p1PVU7plS05j2Lvhd9vUp9RqYJUt7yfWdRMtQPFgHOPrgOqR+8A5xnBfU+96xZdwkw7M9/AzPONxgNHqyxG9MwGtFwT/FddOSRR8b3tJ/nlBd8agkwrbwPaFA1YsSImO0jfZeEOfWkGeKGpSRslkejz5pm7s1qz6hUBOQZi+/CC99cp9RjPpUrArZPpd2qZ5Qx12/jBCTANM5Oa4qACIhAxxPwHwL+YIkW4AO0yHzLtaJl0uneGVJWgOFlkA8u/+KbbtePp8JILQGGdX2qDb+tomGcSDiXablv1p0CjG8pTAQOQoJZIwKMvXDbB7dtK/3FWYBj1D5M8gQY1oFPui2m4eBIX7JZHkcKPFMzp70JMsxH1DInDOPsJ92Xrcf8mWeeOWsJjpPIOzqZjzOGVvR+G7Qq4kPNnFKNCjCk20Io8Ub6Fz7wEPW8+MIyRQIMjk2fw9+2B1P++CgpEjBsWf/bXQIMDlIiqCgjwiyOHD62hg4dWnHs1VKQpenpOA47boZpCYgg5a3dBBjSq5nA6PsU8GVul2GfcqpMmbwTnOVb5bTBWYIj1SJD2DbiPSkoEAG4J7i2fOMBnIA+F3w95WlGgEkdgIynzl3KUmRpTm/62fHpEr2zlW3k1aFFz0fuFdKQ0ZI0dWgXlSed7h3fzGObnAccsjz3/Dmydb0AkwpU3K+Uic61qQNpAEBnzd7yBBiuCRP/WdbKgahABCUOYBw26bsJ+yKSC86km8GZ668btmUCDE4OUsBZwwEcITjnuPaYRjSAj9ZMzzX74L3Jbx/Bku3Ai0heSzXLfjGuWc6xWdnjtOXL/tIAJn3OIkzwfC2yp59+OkuzassQBYNIwnWImEC0hH9+egGxnvqAa96iFWHFex/XAe8nRGt7xxPOUO80rebcotxpmiGunYUWWijep5T93//+d3Ra2jFybLwD+HutVc4tBAIfTZ2X7srKUfTb1XWC7+iaMhivWWaZJUaP4eDl/cZb+n5XRoDx0XFsi3NKXUxdxbXHOfDR9iyTCjDDhg2LApu/BnmnoA6mT4cnn3yy4n5kG1i9Akwr70v/3eVTkDVb//x8ZNX/p99efDMhrt57772RGe/j8K/n3q0mwFCaVlxP1Y8qxGem1R8sy71L1Dl1CI01eAezep35XFsTTzwxg/E9kueQGd92vI9zPh555JGKxgW2THcKMOzTR/kwzjnjuTbDT40REUN5r0aAMUvTCbcqAqZV94G/9zlXvKPwbOF7hmPhO9fu6bw+pJrh0cizptl7s9Yzim8Zfw3a+Z1yyikDdRyZA/z1mxft16pnlF1D+m2cgASYxtlpTREQARHoeAI40X0/FHbAvAjQGqrIeBnBEe5TLBUty/TUyZB+BKSpY2xbOJZICcPHWC3DcU6ZfKunMgIMzhIcj76VXdG+cKbwYclLr7fuFGB4CfOORv/h24gAw3HgRLFW+v64bJgPcHNS2bRUgGEZe2G2ZewXAWHzzTe30YpfPh5wWhWtiyPWrlE6CybCqaz5vlxw/hPZUu1a4hjSFpSNCjCUcbvttgvPPvtsqeIWCTCszDV3108py4rMf3gWLWPTu1uAsf3m/cKbD/281IIsn6bAS7fh0+XZvHYSYKgnfaqjvM6urdw9/YsQSQt+E4twYHFPMh0nqHcq+7L6TkNb6bQhUoFWrNbfht9nOkyDARwiqchQtjyNCjA4I4jmssiCtGV+Ws6icS/SsQzPVUQMLHW2xokl/iH0UqenLddLrFqxCBEOPEctLVHFzP+OUM8SjUl9h3kBhvHU6cy01DiH1sdHngDD8mmESboNhGicbTwzip4nrMP2BwwYkF3r9mwjUpK6lnqnltECmQi91GjNSmqfPGEqXRYRgHOftmQuc5xpFFG67XQ8fW9gPuKaT7earsM4ghEOqyKRz6+Tpl0re/+xDVqml0kxmeeMq+XcYvuIOJznonqMZTCuDc6JRWv/PLV1+fVpme6jMaqlWLR9p79dXSdQr+EALfOuxTOcyCjfEpvylhFgeD5yr1qUVXqcjOOcRVylPFgqwDAtFYmZ5o0y8h3B88TqhXoFGLbXqvuySIBpRf3jjztvmOc713eR2ftvPfduLQGmFddTUXltOvUTZec+r2WpgMs7DsdgUdl56/M8RSyDC9bdAgziPsdn72d5ZbRpvE8TqerrsFYJMOyjFfcBUaC8V9SqjxHDaOjgxXDK0AyPRp41zd6btZ5R1EuUy+o5jrHIiFzj/SNlIgGmiFj3T5cA0/3MtUcREAER6FUEaDXq03GQD5wUVGWM0G9SKPCbfqDzckBrXpznaYvgsgKMlYGXNT6y0payzKelCK1WaUFj0Rm2XhkBxpbFUU7+X1JRmUONeXy84WDipYfQdYuMsPX4TcOlmVY2BRlOK8pejyEkGAvyY1tn940KMOwbYYL0Ib6VDdNx4OGAofWjt1SAIf0YL/5pK1tePC3c36/vh0khw8snLZ8QZOwjmWX8+jhoeBkva2m/IXwIUj725ffB9miZjSNhiimmqNg8qRm84IXTzXe27vsp8WnG2AjHwsdK+tFEK34cFJw7s6WWWqoifYtN55dy02IPByPOCl92rk/6aihr3SXAIGhyDxQ5V7iuSF1EKqtqRgtEzjutrdNoJRwZaSq2VPSqR5wqKkfKzJbz9z3Xv78uWIb0LLTIx4qcynFmG/wjOodrHcvrBwUBk8gThEDuHzMf2Yhwb/nJOb/VPia904bnAQ6NPKPlO9Fr1Mv+uuceItUI5xtnep6VLY8XYHj25fWJ4R1X3HNEsdFyng9hjGmsS6vbeo2WqzyHzRlB/b7aaqvFzZR1tvK8pUUvUZGUnyiVVhp9acDTPx94rpPGkXNJ5CHRFNTlqQCDiIMzlzosNdbnHNKHHPUBz6GiVH28Y5AeJr2nWZ7+XqxvD56NOKuoM7zhzKEuJw0PjSYsQhFnFVF6Zoh+PGfSa4751DesV60jZO4V+pygXvap2Vif62T++eeP/ZkUnaOyx8n26jEi1mhJi+W1oC3aFvUuqdIee+yxivPP8rx/UYfTyIL3JG9l7z9bB9GK90nuq/R9knPHPZJ3b9Zybtn2aUnM9jn3/jrmnFB2GgIRFZQKuayfpom55pprKlLE2D749am10ihl3jOpM6jL2C8RQ2laN7+tvOHuqhO4l6nPiSTx78SUifp9mWWWiYKIb/Rk5UXssqglIltweucZEXLcfwh93qhPeK9FoOF+4t2bayIV+Wwd1uee553LjDoRpzlRcDSa8tFxjQgwrboviwQYK3ez9Y9tp+g37ReJ5Xh39+9j9dy7ZZ/lzVxPRceSTufZwDs++/LG9UTdQV1BVEFqOPS5F/nW9O8ZPOPon4hvTJ7TRF7wnE4FmHrqB/ZN4wi75rnO/bdAWjY/Tvotni15zyaeSTzbuN+oW7yV3Z9lRLB18/rMatV9QCowGk1yTP6+Zd/cu9TFPK/T73orG7+N8mj0WdPovVn2GUVdS0MUxBRf53L98g2BPwW/Sp7Vcw1We0blbVvT6iMgAaY+XlpaBERABESgQQK0HuIFgBDiiSaaqCJFV4ObHGk1XnyJSOBDGgccH828mLTaeDHEeYMjiVZEeR/krd5nPdvzOfMpI45uytiMAGP759hJs8L26OvB56G1ZfjNE2BwgvEC/8QTT8RIpNlmmy3L2+vX7elhBA3Kz0cM1yqpynjh7yrj44IPQu4RnIU4L3rKUjGBVqiWziVNW0AZm72m+LDFCUnLdD4o+NDn+H3rvJ5iUXa/KTNbr5oAwzXGR7uJGkUt5m1bPfnLRx9OcAxnIE7uauYdWfU4D6pts8w80tFwHSG4FNVLZbajZRonwP3Mcx6xo94oDOoa6l3OIWIRjrBGnt+Uge3QGIJrwXLDp0dFvYujBWcUdQ51T73G/YuIjADQyLsA9QC8cFrZe1HZ94myx1nvMTWzPO9gvBtxDByPpfFpZpt56yL6kKIO5z4NKao54fLWrzXN+k3iuY/4V/ac1NpumfkcGwxx7uaJF2W20d3LUGbuJQQ3znm1CPlGysb9wX1CS3Pu00buNfbLPcN7nW2jkbLUWqc778tm65+iY6EuhjdiA/Vwq89n0X5teldfT9S73GNcT3wjUX+XucdZj+ucd3UaZTXyfLJj7Opfrg0ETNJ5cnzdXdZW3gecJ+p7rNH3u0Z5NPqs6ap7M0L46R/l4j2Hc9tVz1nbl35bS0ACTGt5amsiIAIiIAIi0OME+Hhae+21s5B5hA86DW7WWV7PgfFiiIPZjAgAyiFrbwKpmNDVAkx70yhXupSZrVVNgPEREzj5SCuVphqy7fT07xVXXJF1Ck4rUSI5qpnPv026JdICyURABERABERABERABERABESgrxKQANNXz7yOWwREQAREoKMJkOuYlFkYrXtJ9yMBpqNPeUsOLhUTvABDCzpSpmC0zMXR/vEnn8bxAdNMHX/74j/PjP4hrr/++oiBSDxLBZimIPMpB9Kc4+3GkBSS9MFhRkoR+mVKo8Jo8Uf6FDrsxbheSCvV3a1nrZz6FQEREAEREAEREAEREAEREIF2ICABph3OgsogAiIgAiIgAl1AwHKBk4qNfhkkwHQB5A7bpBcTODQvwKSHSv81k0z2c7o0CTAhTD3lFLH/B/oqSi0VYDbZZJOYyoJUKuedd16p9BfpNrtrnLQb9A9BHw/eSDNFJ92k6yH9V9qfD/0pkFJPJgIiIAIiIAIiIAIiIAIiIAJ9mYAEmL589nXsIiACIiACHU2Avhvo6JTW9rRW704B5r333oudJBrgtHN6m67f9iKQCjB0cGuRVGlJua5GHf3nPpYkwPwswFx66aWxj6SUFZ2vkwbQjL6QEEXpoJqOgNvdEOLohJb+pWoZHZHTUTx9PMlEQAREQAREQAREQAREQAREoK8TkADT168AHb8IiIAIiECfIdCdAkyfgdphB5oKMLUOT9dUCPUyq8W0nefTcfkNN9wQEHfppHf48OExxRgdoxIRs/DCC4e55567nQ9BZRMBERABERABERABERABERCBbiUgAaZbcWtnIiACIiACItBzBOQs7zn2vWXP9YoJuqb6lgDTW65jlVMEREAEREAEREAEREAEREAE2oWABJh2ORMqhwiIgAiIgAh0MQE5y7sYcAdsXgJM/SexXmb170FriIAIiIAIiIAIiIAIiIAIiIAI9FYCEmB665lTuUVABERABESgTgISYOoE1gcXr1dM0DWlCJg+eJvokEVABERABERABERABERABESgNAEJMKVRaUEREAEREAER6N0E5Czv3eevO0ovAaZ+yvUyq38PWkMEREAEREAEREAEREAEREAERKC3EpAA01vPnMotAiIgAiIgAnUSMAGmztW0eB8kMPWUU5Q6al1T/8NUltn/1tCQCIiACIiACIiACIiACIiACIhApxOQANPpZ1jHJwIiIAIiIAL/JSBnuS6FsgTKigm6pv5HtCyz/62hIREQAREQAREQAREQAREQAREQgU4nIAGm08+wjk8EREAEREAEREAEREAEREAEREAEREAEREAEREAEREAERKDbCUiA6Xbk2qEIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiECnE5AA0+lnWMcnAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiLQ7QQkwHQ7cu1QBERABERABERABERABERABERABERABERABERABERABESg0wlIgOn0M6zjEwEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAER6HYCEmC6Hbl2KAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIi0OkEJMB0+hnW8YmACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACHQ7AQkw3Y5cOxQBERABERABERABERABERABERABERABERABERABERABEeh0AhJgOv0M6/hEQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAS6nYAEmG5Hrh2KgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAh0OgEJMJ1+hnV8IiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiAC3U5AAky3I9cORUAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEOp2ABJhOP8M6PhEQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQgW4nIAGm25FrhyIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAp1OQAJMp59hHZ8IiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiEC3E5AA0+3ItUMREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREIFOJyABptPPsI5PBERABEQgl8Crr74azj777PDdd9+FtddeOwwcODB3OU0UAREQAREQAREQAREQAREQAREQAREQAREQgUYISIBphJrWEQEREAER6NUEfvzxx7DaaquFr776KjuOSy+9NEwyySTZuAZEQAREQAREQAREQAREQAREQAREQAREQAREoBkCEmCaoad1RUAEREAEeiWBDz74IAwePLii7EcddVRYYIEFKqZpRAREQAREQAREQAREQAREQAREQAREQAREQAQaJSABplFyWk8EREAERKDXEsiLgLn44ovDZJNN1muPSQUXAREQAREQAREQAREQAREQAREQAREQARFoLwISYNrrfKg0IiACIiAC3UTglVdeCWeddVb4/vvvwzrrrKM+YLqJu3YjAiIgAiIgAiIgAiIgAiIgAiIgAiIgAn2FgASYvnKmdZwiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIALdRkACTLeh1o5EQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAT6CgEJMH3lTOs4RUAERKAGgfPPPz+88847YZRRRglLLLFEWHjhhauuQT8q5513XnjvvfficnRqP2DAgIp1Xn/99fDoo4+GZ599Njz33HNhjDHGCLPOOmuYc845wworrBBGH330iuVt5MQTTwxffvllmGWWWcKgQYPCiBEjwtVXXx1uu+22WMYJJ5wwbLzxxmHJJZe0VcK7774brrnmmvDSSy+FN954I/Tv3z+uP/vss4dll102jDnmmNmyDDz88MPhzjvvjNPmnnvusPLKK1fM9yNvv/12XP6FF16Ix8G86aefPrDtBRdcMMw888x+8Yphys2xw2bdddcN/fr1C3ChrE8//XT45JNPwpRTThnmmGOOsOKKK4bpppuuYn2NiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAI9E4CEmB653lTqUVABESg5QROOumkMGTIkLhdhBIEgtFGG61wP/fcc0846KCDsvlXXnllmGCCCeI44sy5554bLrjggmx+OoCIcsABB4R55pknnRWWX3758MMPP8TpiC777rtvePDBByuWW3311cMOO+wQp5199tnhwgsvrJjvRyjXnnvuWSEq/f3vfw9XXHFFXGzeeecNxx57rF8lDnMc//jHP8Lpp58+0jw/YY011ghbb711Lq/ddtstPP7443Fx9nHXXXdFMcmv74d33XXXsNJKK/lJGhYBERABERABERABERABERABERABERABEeiFBCTA9MKTpiKLgAiIQFcQIMpjo402yjaNYLHMMstk4+nAjjvuGJ555pk4efHFF49iCiMIJ3/4wx8C0SJmCDqTTDJJGHXUUWMEi4krzEf4IZLEmxdgttxyy1wBZLPNNgvrrbdeuOmmm8LRRx+drc4+ZppppvDNN9/ESBObQRmuv/76GIHCtFoCDOLLTjvtlB2jbYft8/ftt9/apPg7+eSThzPPPDOMPfbYFdO9AMN6/tjTcVvxjDPOCDPMMION6lcEREAEREAEREAEREAEREAEREAEREAERKAXEpAA0wtPmoosAiIgAl1FwIsqpApDpMgz0o6tv/762azjjjsui2S56KKLwllnnZXNQygh9RapzbDPP/88HHrooTGlF+MIF0TK2HymeQGGcYzUXEwff/zxwwcffBBWWWWVKOqsuuqq4auvvorLLLbYYjHSxUQQ0phdddVVMXUZQs6iiy4al+NfLQHm2muvDX/729+y5UlTtscee4Spp546TiN12KmnnhpuvfXWbBkiYbbffvtsnAEvwNgMliPd2Iwzzhgn3XDDDRUROAsssEA46qijbHH9ioAIiIAIiIAIiIAIiIAIiIAIiIAIiIAI9EICEmB64UlTkUVABESgqwjcd999WSQL+6CPFxMc/D5PO+20mJqLaQgoiC7YsGHDothiUR4WpRJnun9ElyDgvP/++3FqGm2TCjC/+c1vwt57751Fr9imPvroo7DOOuvYaLjuuuvCWGONlY1XG6gmwAwfPjysvfbaWZQL/eEccsghI+2f7fvUbYyfc845Ydppp2UwmhdgiHjZb7/9AhFDqfntsNzNN9+cLqJxERABERABERABERABERABERABERABERCBXkRAAkwvOlkqqgiIgAh0NQE6u6dvFYsoWXPNNcO2225bsdt0me222y4MGjQoLnP55ZeHU045JQ6PO+64MfqETufz7JZbbglHHnlknJVGjngBhu3QV0tefzTvvvtu2GCDDbLNH3PMMWG++ebLxqsNVBNgSFXm+4Shj5kBAwbkbg6xBk4mOq211lphm222yZb1AszKK68cdtlll2yeH3j++ecDLM1gST85MhEQAREQAREQAREQAREQAREQAREQAREQgd5JQAJM7zxvKrUIiIAIdBkB0odZRAv9ppCKi4gMMx8lw/QhQ4aEccYZJ85GUEFYwaaffvqwww47xOG8f6+88kqMHmHevPPOWyF4eAFm8803D4MHD87bRJzml2UC/cIgItHnTDWrJsD4aBT6kyHip5odeOCB4d57742LLLjggpmwxISyAgyp2RCizBCyZpllFhvVrwiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIQC8jIAGml50wFVcEREAEuprAhx9+GNOI2X7233//sMQSS9hojOB46qmn4vjSSy8d9tprr2we0TIvvPBCNl52ALHk0ksvzRb3osoBBxyQm7LLFr744ovDmWeeaaPZL/2r0M/KsssuG/uNyWb8d6CaAPOnP/0pPPHEE3FJjh0G1cyLVpNNNlmgTGZlBZivv/469mtj65188slhttlms1H9ioAIiIAIiIAIiIAIiIAIiIAIiIAIiIAI9DICEmB62QlTcUVABESgOwjsvvvu4bHHHou7ovN564yePluIMDFLozRIv0Xn9GZE0JSxRRddNPaNYsvWI8CwzoUXXhhIE1ZkG2+8cUxV5tOhVRNgiLj54IMP4ubSlGJ5+7jmmmvC8ccfn8267bbbsmEJMBkKDYiACIiACIiACIiACIiACIiACIiACIhAnyIgAaZPnW4drAiIgAiUI/Dwww9XRLaQkmzyyScPp59+ehapQkfzdDjvbccddwzPPPNMnLT++uuHTTfd1M8uPVyvAMOGEX5uvPHGcNNNN4W33nprpH2l/cxUE2C22mqr8PLLL8dtrLDCCoGImGoGH6JgsLHHHjumbbPlJcAYCf2KgAiIgAiIgAiIgAiIgAiIgAiIgAiIQN8iIAGmb51vHa0IiIAIlCLw448/xo7lP/vss7j8uuuuGzbbbLPYt8pXX30Vp9GZPJ3Ke6PjejqwxxZZZJFw8MEH+9mlhxsRYPzGidS5+uqrAx3Z//DDD9ksIlWsv5pqAsxhhx0Wbr/99rjewIEDw9FHH51tI2/AH/ess84a2LaZBBgjoV8REAEREAEREAEREAEREAEREAEREAER6FsEJMD0rfOtoxUBERCB0gR8Wq9xxx03RsTsu+++cf1RRx01RnmkKcaGDBkS6MAeIxLkiiuuCOkycWaNf80KMLZ5oliIZjFDSEFQwaoJMJdcckk444wz4nKU/6qrrqp6HKRlQ/TBlltuuUAKNzMJMEZCvyIgAiIgAiIgAiIgAiIgAiIgAiIgAiLQtwhIgOlb51tHKwIiIAKlCXz66acxCsZWoFP7V155JY4S+UIETGpvvPFGRdqxDTfcMND/Sr3WKgGG/Q4aNChYJA/i0Oyzzx6LU02Aef7558N2222XFZthtpNnDz30UNh7772zWQz/9re/zcZbKcAg8ow//vhR3Mp2oAEREAEREAEREAEREAEREAEREAEREAEREIG2JCABpi1PiwolAiIgAu1BYL/99gsPPPDASIWhv5PppptupOlM8Om4GN9+++0D/a+kdv/992epuk4++eQoLNgy9Qgw559/fhgxYkRYe+21RxImnnvuubh/2y59xIw++uhxtJoAwwIHHHBAuO++++KyRPzAYvHFF4/j9o/+bvbYY49gadmmn376cOaZZ9rs+NsKAebbb78N2267bXjttdfiNumThr5pZCIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAu1LQAJM+54blUwEREAEepzAU089NVKkS9rHSVrIL7/8Mqy11loB0cBsmmmmCfPNN1+YfPLJw3vvvRcefPDB8Mknn9jssM4664Qtt9wyGy8rwNxyyy3hyCOPjOuR8owolbnnnjuKLEOHDg0XXXRR1gfMkksuGUUU20ktAebjjz8OgwcPztZnvbnmmitG0IwyyiiB9GaPP/64bS7+IiTNNttsFdNaIcDceeed4ZBDDsm2y7Fee+212bgGREAEREAEREAEREAEREAEREAEREAEREAE2o+ABJj2OycqkQiIgAi0FQFEiA8++CArU5piK5vhBkhFRsTIm2++6abmDy600ELhoIMOCmOOOWa2QFkBhiiagw8+uELsyTbiBiabbLJA1A7ChVktAYblSLm2zz77ZP272LrpL33kEDGzwAILpLNCKwSYO+64Ixx66KHZtumX5oYbbsjGNSACIiACIiACIiACIiACIiACIiACIiACItB+BCTAtN85UYlEQAREoK0IXH755eGUU06JZcLxf80114TRRhutZhlJC3bhhReG2267Lbz11lsVy5PSa/755w90Xj9w4MCKeYysuuqqWVovhI009ZdfYfjw4eGMM86I6cJ8VA3LILisu+66McImLXMZAYZtfP/99+G8884Ld99990jHgbDzi1/8IqYHG2eccVh8JNt3331jxA8zivrOYd7XX38dVlllFQajkcqMlGYYx7jJJptkUUObbbZZZBdn6p8IiIAIiIAIiIAIiIAIiIAIiIAIiIAIiEBbEpAA05anRYUSAREQgc4i8OOPPwaiYugrZaKJJgoIF/369Wv5QX7zzTfh1VdfjdsdMGBAKBJFGt0xx0FUz3fffRf7wElFnUa3W2Y99vniiy9GflNOOWWZVbSMCIiACIiACIiACIiACIiACIiACIiACIhADxKQANOD8LVrERABERABERABERABERABERABERABERABERABERABERCBziQgAaYzz6uOSgREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREoAcJSIDpQfjatQiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIQGcSkADTmedVRyUCIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACItCDBCTA9CB87VoEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAERKAzCUiA6czzqqMSAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQARHoQQISYHoQvnYtAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiLQmQQkwHTmedVRiYAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAI9CABCTA9CF+7FgEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAER6EwCEmA687zqqERABERABERABERABERABERABERABERABERABERABERABHqQgASYHoSvXYuACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACHQmAQkwnXledVQiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAI9SEACTA/C165FQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAQ6k4AEmM48rzoqERABERABERABERABERABERABERABERABERABERABERCBHiQgAaYH4WvXIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACnUlAAkxnnlcdlQiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIQA8SkADTg/C1axEQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQgc4kIAGmM8+rjkoEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAERKAHCUiA6UH42rUIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiEBnEpAA05nnVUclAiLQAwTefve9HtirdmkEpp5yChvUrwiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAj0OAEJMD1+ClQAERCBTiEgAaZnz6QEmJ7lr72LgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAhUEpAAU8lDYyIgAiLQMAETYAZMM3XD29CK9RN4462340oSYOpnpzVEQAREQAREQAREQAREQAREQAREQAREQAS6joAEmK5jqy2LgAj0MQISYHrmhEuA6Rnu2qsIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiEB1AhJgqvPplXO///77cOGFF4Zvvvkmt/z9+vULY401VphuuunCjDPOGKaZZpow6qij5i6riSIgAuUJSIApz6qVS0qAaSVNbUsEREAEREAEREAEREAEREAEREAEREAERKBVBCTAtIpkG23n/fffD+utt17pEo0xxhhx+TXXXDOMPfbYpdfTgiIgApUEJMBU8uiuMQkw3UVa+xEBERABERABERABERABERABERABERABEaiHgASYemj1kmXrFWDssBBiDj300DBw4ECb1NLfr776Kuy2227h448/DuzrhBNOCOOPP35L99GbNvb8889H3t9++22YaaaZwsEHH9ybiq+y5hCQAJMDpRsmSYDpBsjahQiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIQN0EJMDUjaz9V2hUgOHIEEYuuOCCMPHEE7f8QB944IGw3377Zds977zzwtRT993Oyk888cRw1VVXRR7jjjtuuPrqqzM2GuidBCTA9Mx5kwDTM9y1VxEQAREQAREQAREQAREQAREQAREQAREQgeoEJMBU59Mr5+YJMPPOO2/Ydttt4/EMHz48vPvuu+G+++4LDz300EjHuNBCC4UjjjhipOnNTjj33HPD+eefn22mrwsw22+/fXjuueciDwkw2WXRqwckwPTM6ZMA0zPctVcREAEREAEREAEREAEREAEREAEREAEREIHqBCTAVOfTK+fmCTArrrhi+OMf/zjS8Tz66KNhjz32qJhOFMwNN9xQMa0VI3vvvXeF4NPXBZiVVlopkH4MkwDTiius57fRWwSYF154Idx6660ZsJVXXjlMP/302XjRwGWXXRY++OCD3NkrrLBCTKWXO7OLJ0qA6WLA2rwIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiEBDBCTANIStvVeqR4DhSA488MBw7733VhzUxRdfHCabbLKKaenIiBEjQr9+/eJfOi9vfK211gqffPJJNqunBRj6pBl11FFj2rWsUDUGvvvuuzD66KPXWKr27I8++iiss8462YLtIMB8/vnnTfXJ8/3334fRRhstO6a+OFCvAPPll19mkWllea2++uph0KBBZRfPXe7aa68NxxxzTDbvz3/+c1hqqaWy8aIB7mGu3TzbfffdA0JvT5gEmJ6grn2KgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAjUIiABphahXji/XgEGseXMM8+sONITTjghzDnnnBXTfvzxx3DzzTeHRx55JKbOeuedd+L8ySefPMw666wB5yypzry99NJL4fHHHw+vvvpquOmmm/ysMN9884Vxxhknm/bb3/428HfPPfdUlId+Yg477LBsORsgemTLLbe00fiLE3juueeOwy+++GL4y1/+EocRWkj5RXq1u+66K9D/iolBlP3kk08O119/faCFPzbLLLPEiKExxxwz9tOCw/rNN9+M8xBLZp555rD++uvH7cWJJf89/PDDkd1jjz0Whg4dWrHWIossUjE+7bTTBvrNMaNfnr322ivAO884P3/961/DU089lc0ePHhwIDLh6KOPzqYvs8wyYYMNNggsTx80//rXv+I8eBL9BD/mzz///Nl28gYQsK688srw9NNPh+effz7yhDPl5trZaKONCssKe64Lzj/npFOEm3oFGDisscYaeXgLpyG+7LDDDoXzy8yQAFOGkpYRAREQAREQAREQAREQAREQAREQAREQAREQgeYISIBpjl9brl2vAHPSSSeFIUOGVBzLFVdcEfr3759NI+3QAQcckPVZks1IBpZbbrnoHB577LHjnH333Tc8+OCDyVL5owg422yzTeyMHgHIDKc+wk9qX3/9dVhllVUqJh988MHBhAyEiF122SWbv/DCC4fVVlstUCZvtv2zzz47XHjhhdkstk0fOfAssvXWWy9sttlmRbNHmr7qqqsGhIsytuOOO4bjjz++YlEEKlK55dn9998f9t9//4pZCGuklqL/H9JOmR155JHh9NNPr5hm8+wXdqSmyrN///vfcV+fffZZ3uw4Da4IZJxXb4hy2223Xfjhhx/i5KmmmiqcccYZAbGrt1unCzB33HFHJlw++eSTUSy1c6YIGCOhXxEQAREQAREQAREQAREQAREQAREQAREQARH4mYAEmA68EuoRYEiBRJTEF198kZFI+4B5/fXXoyPdHObZggUDiy++eBRrmI1oc9999xUsWTm5qwUYBAEsPY4JJpggRnKkAkxl6YrHEEnmmmuu4gXcHNJHedZu1kiDRxxxRDj11FPDyy+/XDHvmmuuqYgcspm77bZbjCqx8dlnnz0grmGpAGPL1PolcmbgwIEVi9F3CGUrazvvvHOFUJZ3TdA/UU+lryp7HGWWq1eA+eabb8Jpp51WsWkvcjBj+eWXj30E2UIIif/3f/9now39NhoB43eGKHr44YdnkyTAZCg0IAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAKRgASYDrwQygow7733XjjkkEPCM888U0GB9FObbLJJNi3PeY+QgBOYfj/oP8Z36M2KOOhJLUVqKhy19BuRCjG/+c1vKvocITUWQsbVV18duiICJjugZGDGGWeM0SBFAgyCFE5vUmuRruuVV16p2MIcc8wRU5pVTCwYufPOO2O6LyJIvLCCOOSjTUYZZZSYBowoA0ujZpskSiiNKhk2bFj4/e9/b4vEX4QOxDAs7xwyHfGJ8zThhBPG85N2sO5FHJannxj6riFdmRl8SDcGh48//jgQPfXcc8/Z7NjPzqWXXhr3wUQc9aRg80YUEdFEvd3qFWDyjpcIJ596Dp6knysyRFSizEgFx/njWiCaaKKJJgoLLrhg+PWvfx3GG2+8itXzBJjZZpst3HbbbeGJJ54I0003XbwuWLfImhFgOP/cA//5z38C/SqR0o9UgPRDY0Jp0X7zpqsPmDwqmiYCIiACIiACIiACIiACIiACIiACIiACItDTBCTA9PQZ6IL95wkwiAeLLbZY3BtO8ld/6pPFp6SyYtC/ySWXXBIshdjtt98+Uv8riDZpC3z6TiFaw8xEDRtHiCHtlLfzzjsv0L9Lal0twEwzzTQx1Rm/n376aeynZIoppgh5AgzM9txzz4wH/aZstdVWFSIMDuO8FGnpcfnxiy66KJx11lnZJLhz3KmxvzXXXDP4VF+TTTZZoN8ebxdccEE455xzskkIKzju+/XrF6flCTD0DUPkiS1DNAbRKul1ccopp8Q+cdgQwpoX2zh20rZNOumk2b4pM8weffTRbBri0NZbbx3Hub5IOeaNawcnfG+37hZgEDA4t9UMgYy+geaZZ55ssVSAoT8jzksaHYYgQsq+PFGkEQEGAY/6AyEzz0hHh+BY77UgASaPpqaJgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAj0NAEJMD19Brpg/3kCTJndTDLJJDGSAwe/2a677lrRWTwt6uk/JLURI0YEomKsf5NUlGgXAYZjQ/gwgckfRyrAEBVy+eWX+0XicCqeMJEID/iVtXQbRQIM20NsoS8XbzjU559//mwSETF06G6WRpSkAgxRL3lpxIYOHRo4597+8Ic/hN/97ndxEumwvJMeUSWNvGFB0tb5vnHmm2++cMwxx8RtcK2cf/754e67747ngcgXEwfjAr34X3cLMERIIZrVssknnzwKLCa2pQJMtfU33XTTGOGULlOvAMN5X3fddWOUTrotP07dgaBLBE9ZkwBTlpSWEwEREAEREAEREAEREAEREAEREAEREAER6E4CEmC6k3Y37ateAQaHJ05wHOnjjDNORSkHDRpUEX1BZMsSSyxRsYyNIBT41FSIDDh+sXYRYGhdv+iii1qRK35TAQZBBWElNVKHEQXjzUeJ+OlFw/UIMKSYWmONNSqEj0UWWSQcfPDBcfNPPfVU2GWXXSp2NWTIkIr0bqkAs+yyy4Y99tijYh0bSUUWInBYP++6WnrppWNqNlvXfk1ksXHrZ8fGO/W3pwQYIkdWXXXVMNNMMwVERtLkEWGGEGZ22GGHBa4bLE+A4RyRBpDolLfeestWiyIZy6dRMPUKMIiZ1icRG0d0XG211UL//v3DDTfcUFFW0hPuv//+WRlqDUiAqUVI80VABERABERABERABERABERABERABERABHqCgASYnqDexfvMc5RX2yUpikgJlaYD+/rrrys6T6+2jbx5vgP3dhFgqrWsLyvAvP322yNFBJx88smBPjTKWj0CDNsk4uXGG2+s2DwObaJ0DjrooHDPPfdk8xBF9tprr2ycgXoEmMGDB1dEKZjYQz8jpKNq1EhdZhEYjW6j3dfrbgGGFHpvvvlmmHvuuUdCQ58wRC+ZcQ2svfbacTQVYBBXLIqL+55+oOi3yezYY48NAwcOtNH4W68As9JKK2URcmyA/ZlAS9o6BKQvvvgi2wfXy2ijjZaNVxuQAFONjuaJgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAj0FAEJMD1Fvgv3myfArLjiirG/D1KEHX744eGf//xnRQloQU8fIr6V+4cffhhTBlUsWMcIgsaAAQPiGhJgKsHVK8AQkbDxxhtXbIRxolOIIvB2+umnByKVvNUjwGy55ZYVfdzMPvvsMXLhlltuyU0/5/dTNIzIR5RDp1t3CzDwHDZsWOzv54knnojCmaWiI1WcTxdHGrmddtopnoJUgCHyZZ999slOD/36+H566NOHyChv9Qgww4cPjwKLrU/0CyIhwgvGL/cEfdqYUR9NP/30Nlr1VwJMVTyaKQIiIAIiIAIiIAIiIAIiIAIiIAIiIAIi0EMEJMD0EPiu3G01AYb90tk6UQ6+Y3em0z/DFltswWA0nKL/3965wO8zlvl/tpUQWbKIHHKI1YkksckhrDbbSVubJKXT0oGIlKjdRcuySW1LOR9TpGKzByVhIxLV8lsU5dSSstRusfX3nl7X87+e+zfPM/Mcvoffz/t6vb7feWbmnnvuec/c9z1zfe4DE7VnJy7rXebrYPiu3CNEASao/m45qgDDUeV8PAwZtfvuu9fz9kTs66+/fvWpT30qVnvLUQSYcj4ZhpxjOKgFCxZUe++9dy9OfuCYx5neZghCq666aluwRX7/bAswpQgyDOA222xTHXrooXWQUoDhvnLfw66++uq+Ieqa5oEpz33AAQdUCL1NhrDCMziKMVzgC1/4wk6HKMB0wmQgCUhAAhKQgAQkIAEJSEACEpCABCQggVkmoAAzy8Bn43RtAgxpYPLu/fbbb6HklENp0csizwfx2te+tqKHxKimANNPbBwB5rrrrqve97739UVEj6UskCGUNM3R01WAQXRjfphsb3jDG+reN/SeYpiobEcddVS1ySab5E2P6d+zKcDcf//9dQ+oEjjPRIhiWWTlufjIRz5SBy8FmFI8oTdNnleI+aH22muvvlONIsDQ427U4euaet30JSCtKMAkGP6UgAQkIAEJSEACEpCABCQgAQlIQAISmDcEFGDmza2YXkK6CDCcjTlaLr744r4TM4H36aef3pt74cMf/nB1+eWX98Iw58g555zT29/b0fJjFAHma1/7WnXYYYf1xdg0yX3THDVMTB8TjTdNTr+ozgETMHbdddeK+9tkON0vuOCCxnlWugowzCXDnDLZPvCBD1TbbbddvenlL3953zwdW221Va9XRT7msfp7NgWYclJ7mB977LHVs5/97Br/j3/84765ioYJMPR8e/3rX9+7bd/4xjfqXk+xAfEFESbbJZdcUpHfwhBsyuHwYt9tt91W0YsmjHIm8mlsK5eIffTo6mIKMF0oGUYCEpCABCQgAQlIQAISkIAEJCABCUhgtgkowMw28Vk4X1cBhh4NDDuWJ74mea985St7Q0199atfrQ4//PC+VOOEZ3LvckJ1znveeedVyyyzTD2Jd55P5pZbbqne8Y539MVzxBFHVJtttlnfNlZuvfXW6u1vf3vfdoSHN7/5zb1tDz/8cMXE4MxLkm1REWDOPvvs6sQTT8xJr+iVsPTSS/dtK1cuvPDC6mMf+1i5uV6ntxK9VZqsFGCe+tSn1kOXLbvssr3gv/zlL2vud999d28b9/Dcc8+tll9++XrbkUceuRBzelU0DUvHJPBf+cpXquc+97k9AYdIGAKPnjNXXnll9fjHP75Ocx7+qnfyRfDHbAown/zkJytEmLAtttiiL69eeumlvR4vhBkmwDzjGc/oG8qO+5Pn7GHoMoYwy/btb3+7rxcdZUmZbyP8I4880tezqjxfhIvlb37zm+pxj3tcrLYuFWBaERlAAhKQgAQkIAEJSEACEpCABCQgAQlIYA4IKMDMAfSZPmVXAYZ0fOtb36onwy7T9PGPf7zaaKON6s2ILXlybDYypwet3VdbbbXqpz/9ae1Mzz1ldt5552qfffbpRfvAAw8sNFzSyiuvXL3qVa+qaG2/4oor9npSNPVsISLEhfXWW6+6+eabK4Y/uvfee3vxx49FRYBp6uWDULHpppvWogWt/3fZZZe4rN4S4QkB7Ne//nVvW/z4whe+UC233HKx2rcsBRh2MofMHnvsUa299trVHXfcUfd8KpmWQ849+OCDFdvK89MTZsstt6zvIz0vuD/cpzB6UsV8HkzuTi+qbIhpz3rWs/KmRfL3bAowMDz++ON7nHh+jj766HodwYOhAul5EjZMgCEMeQchLcTSPLTdaaedVq2xxhoRVb0se9ggHtJbiuegSTzZbbfd+oYzpFcNwlsWcn/wgx/UzyHLU089te98w1YUYIbRcZ8EJCABCUhAAhKQgAQkIAEJSEACEpDAXBFQgJkr8jN43lEEGJKB45XW8tkYauzMM8+snvCEJ1R33XVX31BGOdyg30suuWR1/vnnV0sttVQvCKICvW4GGXM+bL/99vVuhhzLrfsHHVNuX1QEGJzXeUim8jpYx+mNwFXaCSecUPdKydu33Xbb6oMf/GDe1Pe7SYDpC9Cwwj3kHtCjKRu9jugJM4oh5iHqYcxjw3w22RCCcNAv6jabAgwM3/ve9/YhQwiDNQJYFl8I1CbAEAZRLs8bw7anP/3pfUIP2zB6qdBbrgxPr6no/UYvHURT7IYbbqje85731L/jH6LNWmutVQt6iIAh7D3lKU+pmCepqynAdCVlOAlIQAISkIAEJCABCUhAAhKQgAQkIIHZJKAAM5u0Z+lcowowDz30UPW6171uIXHkpS99aW8i7gULFlT0Yih7SDRdEuINPRrKFvMXXXRRvb3pGLYxLwRDc2EMh7XnnnsOPd+aa65Zh/3Rj35UL/m3qAgwpBWeudcQ27LttNNO1f7775831b+bxBtEmXXWWWehsLFhVAGGe0FviiYBiDgRYRgKLRzmcZ6mJT1bGMYuhldj6DnmD8mW55nJ2xe137MpwMCGXiQ33nhjJ0zDBBjEtkH3krmi6JnVZORp9g8yBJjoSUeY4447rhZmB4WP7QowQcKlBCQgAQlIQAISkIAEJCABCUhAAhKQwKJMQAFmUb57A9LeJMDkeV2aDmO+jg996EMLtWZnuCiGqMIY1uj000+vmBcmzxNS73z0H4II53nJS15SLbHEErG5t/ztb39bTxJP75Y8vBGt5XfYYYeKicARb8KYKwQnP+fL4REHmBSeOWFINz1nwnmMM3jjjTeuo0A02nvvvSO6evm5z32uWmGFFfq2xcrJJ59c9/qJ9Sc/+cnVZz/72VjtLZt6BJ100kn19fcCdfhBbyAc1BdffHFfaIQK5rxh0vMmjtyDPDwTwgsCzDArBZitt966WmWVVer7Eew4nmtmXh64hWAyKN6f//zn9bwh3/nOdyp+Z+Oe4ninV0vpvL/nnntq4SB6TjBpPPetadiqHOei8HsaAgz5MAtzDC2X80XmAHfEzssuuyxvrnuyMDfPvvvu29vOHC7M5YIxl1AMV8b6wQcfXM/5wrwuYdzDww47rNp8881jU+PyiiuuqHtrMXdTzqcE/tSnPlVtuOGGfcfRcwcRbpCYu+6669bDGzLEYVezB0xXUoaTgAQkIAEJSEACEpCABCQgAQlIQAISmE0CCjCzSXsxOhfDDzFkEE50hi3Cmc9wZV0MIQYRg543iCEIKnkeiKY4CM9cMwxn1CYMNB0/n7cxrwu9WmAKi5jwvinNTXPA4DwvJ0gvjy0FGASvAw88sA52//3314IaAtqgOWTK+Mp1xLLbb7+9dsCT/lVXXXWooIKYR3ju5aBeNuU5FoX1aQgw41wnQgw8yY8bbLBBxfxK4xhz/Fx//fX1/UMIacuX45wjjkGApPcaefuJT3xitdJKK9XnLYe8i/DDlgoww+i4TwISkIAEJCABCUhAAhKQgAQkIAEJSGCuCCjAzBV5zyuBMQhccMEFda+TOBTHNT0k2nqPDBNgIi6XkxOYKwFm8pQv2jEowCza98/US0ACEpCABCQgAQlIQAISkIAEJCCBxZWAAszieme9rsWOAD2Hdtlll75h4t74xjdWb3jDG1qvVQGmFdFUAijATAXjyJEowIyMzAMkIAEJSEACEpCABCQgAQlIQAISkIAEZoGAAswsQPYUEpgGga997Wv1nBw5rvPOO2/okGURVgEmSMzsUgFmZvkOil0BZhAZt0tAAhKQgAQkIAEJSEACEpCABCQgAQnMJQEFmLmk77klMAIBervceeedvSN22mmnav/99++tD/uhADOMzvT2KcBMj+UoMSnAjELLsBKQgAQkIAEJSEACEpCABCQgAQlIQAKzRUABZrZIex4JTEjgiiuuqJgkHVtuueWqzTbbrFpyySU7xXrttddW9957by/smmuuWW200Ua9dX9Mh4ACzHQ4jhqLAsyoxAwvAQlIQAISkIAEJCABCUhAAhKQgAQkMBsEFGBmg7LnkIAEHhMEFGDm5jYrwMwNd88qAQlIQAISkIAEJCABCUhAAhKQgAQkMJyAApK8rt4AAD8DSURBVMxwPu6VgAQk0JmAAkxnVFMNqAAzVZxGJgEJSEACEpCABCQgAQlIQAISkIAEJDAlAgowUwJpNBKQgAQUYObmGVCAmRvunlUCEpCABCQgAQlIQAISkIAEJCABCUhgOAEFmOF83CsBCUigMwEFmM6ophpQAWaqOI1MAhKQgAQkIAEJSEACEpCABCQgAQlIYEoEFGCmBNJoJCABCYQAI4m5IbDaqqvMzYk9qwQkIAEJSEACEpCABCQgAQlIQAISkIAEGggowDRAcZMEJCCBcQgowIxDbXrHKMBMj6UxSUACEpCABCQgAQlIQAISkIAEJCABCUxOQAFmcobGIAEJSEACEpCABCQgAQlIQAISkIAEJCABCUhAAhKQgAT6CCjA9OFwRQISkIAEJCABCUhAAhKQgAQkIAEJSEACEpCABCQgAQlMTkABZnKGxiABCUhAAhKQgAQkIAEJSEACEpCABCQgAQlIQAISkIAE+ggowPThcEUCEpCABCQgAQlIQAISkIAEJCABCUhAAhKQgAQkIAEJTE5AAWZyhsYgAQlIQAISkIAEJCABCUhAAhKQgAQkIAEJSEACEpCABPoIKMD04XBFAhKQgAQkIAEJSEACEpCABCQgAQlIQAISkIAEJCABCUxOQAFmcobGIAEJSEACEpCABCQgAQlIQAISkIAEJCABCUhAAhKQgAT6CCjA9OFwRQISkIAEJCABCUhAAhKQgAQkIAEJSEACEpCABCQgAQlMTkABZnKGxiABCUhAAhKQgAQkIAEJSEACEpCABCQgAQlIQAISkIAE+ggowPThcEUCEpCABCQgAQlIQAISkIAEJCABCUhAAhKQgAQkIAEJTE5AAWZyhsYgAQlIQAISkIAEJCABCUhAAhKQgAQkIAEJSEACEpCABPoIKMD04XBFAhKQgAQkIAEJSEACEpCABCQgAQlIQAISkIAEJCABCUxOQAFmcobGIAEJSEACEpCABCQgAQlIQAISkIAEJCABCUhAAhKQgAT6CCjA9OFwRQISkIAEJCABCUhAAhKQgAQkIAEJSEACEpCABCQgAQlMTkABZnKGxiABCUhAAhKQgAQkIAEJSEACEpCABCQgAQlIQAISkIAE+ggowPThcEUCEpCABCQgAQlIQAISkIAEJCABCUhAAhKQgAQkIAEJTE5AAWZyhvMuhkceeaQ688wzq1/96leNafu93/u9aqmllqrWXHPN6mlPe1q1+uqrV7//+7/fGNaNEpDA6AT+7//+r7rqqquq3/72t/XBz372s6vllluuc0QLFiyo7rvvvjr8aqutVufTzge3BCRNZ599dnXNNddUT3/606s99tijLg/iMNJ9yCGH1Ksrr7xydfrpp8eugcu77rqr+uEPfzhwf9cdlEubbrpp1+B94b7whS9U//iP/1hvW2+99apPfvKTffu7roxz/V3jHjfcd7/73er73/9+zXjJJZesn4eXvexl1RJLLDFulB4ngVklcOyxx1b/9E//VJ+TZ3fvvfeekfPP1nlmJPFGOpQAddXdd99dhzn00EOrLbfccmh4d0pgvhP4+te/Xh1++OF1Mp/61KdWJ5544nxP8qynr+2dddYT5AklIAEJSEACEpDAmAQUYMYEN58P+6//+q9q11137ZxEHHqE32WXXaqll16683EGlIAEmgl8+9vfrg444IDezo9//OPVRhtt1Ftv+4Gj6Y477qiDId4cc8wxbYd03v/FL36xOu6443rhX/rSl1b77rtvb/2rX/1qzyFAefDlL3+5t2/QjzPOOKM65ZRTBu3uvP2JT3xiRfrGsc9+9rPVpz/96fpQhKOzzjprnGiqca5/rBN1OOj++++vjjjiiOq6665bKDT3xfJ6ISxumKcE/uqv/qq67LLL6tRtt9121Qc+8IEZSelsnWdGEm+kQwm8/OUvr37xi1/UYahfd9xxx6Hh3SmB+U4AUTre7/7gD/6g+vznPz/fkzzr6Wt7Z531BHlCCUhAAhKQgAQkMCYBBZgxwc3nw0YVYOJaEGJoibXxxhvHpqku/+d//qd63/veV+FU5Fw4gUfpFTDVxBiZBGaQwKQCzBvf+MbqzjvvrFM4bQHmb/7mb6pLL720d/XrrLNOdcIJJ/TWxxEgFGB6+Kb64y//8i+rm2++uS9OeiuuuOKKtcBEb0ZNAiWBU089tRZO6eEWravLMLO9PlvCyGyc5+qrr66OPvroip6O55xzzmLbE22+XedsCDDzKe/wrvye97yn4t2ZXqm8C2iLFwEFmPb72fbO2h6DISQgAQlIQAISkMD8IKAAMz/uw1RTMa4AQyIQRnCm4uCbtv37v/979aEPfagX7WmnnVYxvJImgcWNwHwWYBiqKw/PtdNOO1X7779/7xaMI8Bcf/31dbnRiyT9wEl5ww039Lb84R/+YcVQG01GuXPQQQc17Wrdtrj1gLnkkkvq3i9x4TvvvHNFzyhayWoSGEYgBFzy2TR6pg07V9d9syGMkJbZOA+NR6KnHg5U3psWR5tv1zkbAsx8yjtXXnllbzhQnNAveMELFsfH7DF9TQow7be/7Z21PQZDSEACEpCABCQggflBQAFmftyHqaaiSYB51rOeVdGaGnvooYeqe+65p7r88ssrWjiWxhwMf/u3f1tunnidloV5PgkFmImRGsE8JTCfBRjG02aOqGuvvbbaYIMNaqc+c6+EjSPAxLFNSwSYP/mTP+ntevOb3zzSEIm9A1t+LG4CTG71yX3KolkLCnc/xgn86Z/+afXrX/+6FjoVYKY/1NmBBx5Yl588ZouzADPfrnM2BJj5lHcYjirmNVOAWTwLdQWY9vva9s7aHoMhJCABCUhAAhKQwPwgoAAzP+7DVFPRJMC85CUvqfbbb7+FzoMTlo/sbLTm5KNg2saY71nwUYCZNmHjmy8E5rMA08ZIAWb0OXDamI6zf88996xuv/32+tB3vOMd1atf/epxovGYxxiBX/7ylxWT3GP2gJmZuWbe8IY39CaDX5wFmPl2nTMtwMy3vPOxj32suvDCC+u8rABTY1js/inALHa31AuSgAQkIAEJSEACAwkowAxEs+juGEWA4So/8pGPVN/4xjf6Lvjss8+uGCpomP3mN7+pmIOg6zwEOBB//vOf96KcawGGcbWZT2GU4UMefvjh6vGPf3zvGkb5Mcmxo5zHsHNPQAHm/98De8D8fxaj/MrORoZV2nLLLUc53LCPUQK33npr9fa3v72+egWYmRFg6NFHuYYtzgLMfLvOXCYecMAB1Y477ljfg2n9m295hzkTr7vuuvryFGCmdZfnVzwKMPPrfpgaCUhAAhKQgAQkMJMEFGBmku4cxT2qAIPYcuKJJ/allrG//+iP/qhvG93A//mf/7m65pprqgULFvRagK688srV+uuvX7fQZqizbHzQ8gF52223VRdffHHeVU8ouswyy/S2bbfddhV/l112WV96mCfmiCOO6IWLHwyx8ta3vjVW6yUf5c94xjPq37fcckv113/91/VvhJa99967Yni1Sx+dgPwTn/hETwwi7f/wD/9QXXTRRdXnPve5Ovx6661X9xh6whOeUF1wwQX1hMZ33HFHve+JT3xite6661avf/3r6/jqjQ3/EJsYdo35MZhQHYfN0ksvXTHp+UYbbVT9xV/8RbX88sv3HYlIA99f/epX1SabbLLQ/r7ArsxbArMlwNBDgnPddNNN9WTtv/jFL+pnk7yL4MnzVhr5+Nhjj62HKGLf2972tr55Rea6Bwx5gPmiKGP+8z//s/rhD39Yz0nFMFwvfvGLq4033ri8pHq9aQgyWjSTnyiDyIdLLLFEXe5QDmyxxRaN8Yxy/T/60Y/qoYhuvPHGOr2IuZQn8GdunVHFWkTh//iP/6jTxXxZlHHYHo/O/ZLLY8qzJg4cy3XCjbQRDm4bbrhhtfnmm1crrbRSHV/577777qtOOumk6nGPe1y17bbb1uUaQ1UyZCT8fvazn9XzdeEQXGuttcrDF1qnfIU95eirXvWqCrGeOTP+7d/+ra43mMeGuRa23nrrvmOnwZP8wN93vvOdeqhNyupnPvOZdd2y+uqrV//6r/9aPw9PecpTKlr4h8GMsh5bY401qte97nWxa6ElY9LffPPN9XZ4bbbZZguFiQ3Mf8QfzwjPMveAe8L9++M//uMI1rhkqNAvfelLFfXoj3/847o+gCnH77DDDhX1U9gjjzxSs+X5jaE+n/zkJ1fUidlgsOqqq+ZN9e9J0kkE5FsackQ8PMukk7ruz/7sz6qjjjqqrtsJSz1Pj9hxbFrn4fn4/ve/X+cV7iV5FbbPe97z6rxbNiyh3Lz33nvrd5mcdhzjOZ9TpxNPNvLPVVddVZ+Lcu0nP/lJ/YzBBzbck0HGeeOZ5T3qgQceqJ72tKdVT3/60+s5QYhjmI2apya5zmHp6LKPSeevuOKKugyjLKM8pdyjvN5+++2rLgLMOPXHJHlnnDq4jQXvjnfffXf1wQ9+sPrv//7vOjjlJXkpjLKad9Eos3iX3m233frq8giblzxD5513Xv0+SlnEkKBYlNkI/S984QvrbT/4wQ/qXuvUARzHc/fsZz+7Fr5WWWWVOsywf6M+e8PiGnXfuHmOeoo8Sh3AOzrlANdBOUx5wb2h/KROZWSBNddcszVpZZ0ER+4lAifl0DHHHFPHQb3IsHNt9vWvf70uTwjH90SX3rHUC9xHjPtbNuggD3zzm9+s6ynyXi6jCE9502TBi2eRnrq8czCywjnnnNN7ByHvxnNGHNQNPLdw5rnCKDN5d6I+5ZsyW9s7axmW90feiaOsXWGFFeq6iGugzs31Zj6We/Ev//Ivdb4ivy277LL1/UYko/ym/Kd8J54XvehFQ7//crz+loAEJCABCUhAAkFAASZILEbLUQUY5hbAoZSND7QsDvDi+eEPf7h+oc3hyt+0SHzXu97Vc/wefPDB9Ut9Ga5pnY8IXuB5oUcACuOFHuGntP/93/+tmJg6W24l+N3vfrfad999e7uf//zn10OzkKZsEf/JJ59cz40R+4ibIdPgOch23XXXvg+LCMfHDvPoRCvZ2J6XOBfe/e53184etvNRwkcKrDHSdcIJJ3RyeNYH+G/eEOCDOzs+P/7xj/c5T9oSGhMBEw6HR3ygx3E4mXg2ynwb+1k+6UlPqg477LA+xz3b+dBGHAgj/2cn3igCRMQxbDlKDxg+mA855JDqpz/96cAoX/rSl9b5hvyRrRRgDj/88Oq9731vz4GVw/KbD32GX0SUydbl+nEIIK6eccYZ+dC+3zhTKDNx/ne1c889t76vbeGjzIpwlB08I1/72tdi00JLjqE8zPc+AuWW3ziWcJYjTuQei4Tt2hMnt5xHdGmqB3CmUldg0+DJc41Qj3Oqybj+ffbZpzr66KPr3aWz65JLLukJ/TiTqIcGGRypX7BddtmlN79aDv/ggw/W8eVhN/N+fuOEg03pcGJfWR+xLRv5+/3vf39FvYbh5Opi3FfKl7BJ00k8CHgMcUpDgyaDNWIwTmVsXAFmGuehbKFcRCgaZDgCCbPiiiv2gjCHXohuvY0NP8g/OLPDaHjy93//9wPfBXgueQ+gXCsN0Q2xJ7iV+1lHlCYf4SzMNm6eGvc687nH+U1+ojwO0bmMg8Y9OIbjnaqpB8y49cc4eWeSOri8tryOEH7WWWflTQN/855O+RNG2b7//vvHauOSBhcIKxhOZOpbLJfZCH40Shr0fsG7K/VrUyMA4hr32ePYadgkeS73OiLfXvpog61hdQHvGMwb1GRd6iTKC4QdrKyTmuJkG2IA4lwY92qQQEIY6vEs0pT1OCLiQQcdNPRbh2Et6VlZiheZFw17aMhQzleHwMz7EobAStk6KJ9THvId9JrXvKY3ukLbO2sd8aP/7rrrroqGKzF0a2zPSxhz/vzOG/vzOyR1JKNADCu7B72LRnwuJSABCUhAAhKQQElAAaYkshisjyLA0EqZlr60nA/j44oWP2G0/qKnSXz4xvZBS1pL4XjEWF5++eX177Z/My3A8GKPldeBI+v8889vdXgNSn/pXOfln/kbuhisaVmHE5ixvhnzOxstxPmg0BYtAjMpwNATC2dnKVLg4OSjNj/fbKNX11JLLdUD2PYx20WA6EXW4QfpwbkTxsc1wmVpgxxPXAMCQzbKo9e+9rV5U5U/ntlBfs8synXCPPe5z62OPPJIfvas7fqJ853vfGefM5Z8TG8DzoGzNJ+3FLh6J2r4ceWVV/YcYg27e5s4T4jSPAfwiJbSEajpeWBfU5mSBRh6htBrpKncbnP0xLmzM4+0ffrTn45dvWU8B9PgiTMU5xB1VTaEFCzXb7G/dHZNU4DBEYQjO5+Xema55Zare4pkUZ/7xLObe4PiQPy7v/u7SGr9XNHSmZ6R+Rp57ui5SSvtrk7kN73pTXXvTSKfNJ3EQXpoOFE61MgPiDvldo4ZR4CZxnnIXwy5mvMn6WkqY+iBihAZhkiCANBmCAU47bhuBLJS6CHv8ldyYbL13HOGe73Hoz3fokEG58UhiChEGZPzezlH1CR5atTrbOPRZX8uc3N4rjdff95XCjCT1B+j5p1J6+B8HeVveq+Fs7rcl9ejDkAIgR/GNkSTXJbkY+ht8Ja3vKW3KT9zucyml2N2YlPOlM8rkTTVB5M8e72Ejflj0jzHabOgAM9cVpTrkczPfOYz1dprrx2r9XIadVJfhGkFgQvhLcoARFgElEGWn6noNRU9/BBEDj300L5DyXcILcQf5yBAU2OgzAtxP3pf5gjjOMpw6v1s9CDi+4c8lZ8x3hnoKYS1vbMShl43iNX5frGd6831MNswGlGUond+h2y6103bGFnhla985e8i9b8EJCABCUhAAhJoIaAA0wJoUdzdVYChizktgUqnAsMY8OEf1tQiktbLDGnDizHDjtBiLhu9Pxg2gtZQOApxEpYOPVqg45AK4yOYFsEz1QMmzlMuecnnZX9Qi2M+PmllzHj6tDxjGJlsZYtXhj3LrbB5aaf12HOe85zaIQWrcMrQig0OGI7y448/Pkfd+MHTF8CVeUmgFGBwkjS1uBuUeBz80eo5Pl4jLE7T3XffvV7l2cKhyvOF04UP8y9/+csVomAYQ+URJqztYzY7w3BMEt8kxgdxFwGG3muXPtraFMOJiVORVp04CnDC8XEdeY/rLh1N+eO5juTRfwgsXD/DEnIMw0DR4yA7FUonUtv10zoZZ18YDgWGKmFIGAynM/f7W9/6Vr1O7wZ6ysT+euOQfzheKcMRFMIhwQc+w52EEVc4fHCe4EQJQ8hGVI8ejLSiRwjPDjXKfcrvsCzAxDaWhGF4Le4BYv2f//mfL9RjKIeP39mZF9twtLCdMp/7SQ9DnPTT4MlwJzjBwnh+4ILIgtECmDop7gnbZlKAoVV0lPHkIZ7dPOQd9yK3OC5brjMsVYiODJmCI594MO4Dw7fQswhxK+LlmWHYOBpPxLBEOJ8QA7JRj1GnYZOmkzhocc/QLWEIo5RP0VKaayX92ZE+jgAzjfNkYQsnI2UMDUYoG8hrsMrvMqzzLGHka64BJzb5O4zeunGtbOOZJu9R7sEiepGRf3FQRm8nenzwXMR9ptfNpz71qYi2LndpUY6RPsQg6oIwyrJTTjml3keL9tyTb5I8Nep1RnrGXVLeUb5FWce1kjfonUE5x/CFDI1UCmelADNJ/TFq3pm0Dh7GivqZMpu6nHfvcCjv8eg7eR42ivqeobB4HrOoQr1BOd1kiLrkASzeeyNcWWZzHzg/5+SZ5TlFGMpDZDU1YJjk2Yu0jLucNM9x3iwoRDqi/g1BgDI2l6ulWMtxbXUSQwl+9KMfHVonxfmblllU4V7x3ZQb2sQxpViTe0ByT+lpEmUQdTTvCnlYNb7b+KaJ55AGYXno0CZe1FUIRDyffPvRU4p3sPyuwjNFg7MoD8nnDD/NexzvHTzvYW3vrIhdlLXxXgcPGilRhsCEtFNHcW1xrYThHjE8WVjTOyRp55uYnsyUsd/73vfq3kch6nCtNODLw1BGfC4lIAEJSEACEpBASUABpiSyGKw3CTA4XWK8ecbZ5qOtaTgNHDa8lIazJ7cKDjSl847tpXhQftwhxOy1114RRb087bTT6nkF+jY+ujLTAgzd4XG8sOQjiA8AxrNuEmBK5xcfMwzhEI5g0s6LfLRGZx3nZ3Y24ZzNH8iE4R7xsZBbvDYxKlu2cqw2/wmUAswkKS4FGOJiWCPyL0Nf5A/IOA9DMZF3MVrOM1xZWNvHbJsAEfF0XfLx20WAwbHMEFwImi94wQsWih7BGDElDIckjo+w8uOZVqE4fqOlZ4TDIcrHejgUSifSsOtnXHnycxwbvTgi7lhSTpBW8jlGOrq2so448nwHOJ+bhg4rh1nEYZaHpIm4uOeUvzH0DOID5Xw4bZsEmEHnjDiHLUtnHiIzzubyXkyDJ0NRMs9MOHBxmPBslOfinpAvuL/YTAkw5fAwZQ/J4FbW09wP5mTAYcXzGUbPyCbHWuwvl3lON+p9nPRNNmk6iZMhn2gBHDYoPyAM8WyGqDyqADPN8yDc8twjiMTzH+nnGSF/cw8w7gMiVzbmlqNeDsMZG4JWbIslLb4Rynj+w3kb+1iyDydsGO8RvE9guWdDHq4vwg5aTiNPEfco1zkoLV22lw77QT0GeWdFXIiytxRgJq0/SGvXvEPYSepgju9iuRzNw+uWx5IHySMY5Rrv42X5h+P5Fa94RY9fbvzDcflcPM84x5uGtUIUzI0yeG9mvhRsWs9eHdmY/ybJc5wyCwrkRQQHRNrSeE5jiLbyG2CUOonvqWh4UtZJ5TnzejmsWFOPDsKX76I8G/HOmK+Bbz6e/3IoQ+JgaFPSiZVpzLzYz/cUc4rGNyTbwmgcEoJ0OQxahGlatr2zIgzmnje87/LeWxrlOr2vowwpewOX75CU/3y7lXmprDvLRjzleV2XgAQkIAEJSEACQUABJkgsRsvSsdP10mi5ydjltAwNyy1k2VY6KyMcrZdwEuTWRVmUaBIX5kKA4dpovd70cVAKMOWHRlxr6TBgOy/u8MOy45R1WnPRerN09rCvNHrO4IjDmYjTBidu+fJfHuP6/CNQfvROksImAaYtPloMx1xHPOvZYdL2MTtMgGg7b9N+Pna7CDBNx5bb9ni0VSRDVWD0EsKhFJY/nsmLrA8y5gH5yle+Uu/G2ZSHXBx2/bT+ZdgWrBzKo96Y/jGZawxvRgva7KhOwQb+zOXIIDGEcoUeiBjpwSE0qKdN+UwiRsTk8aUAgwCGw29cy8480sVcBU3l3zR45l4NpDcPq1Omn/sc8ymV5XtubECah437P2wOGOaxYDgUDAGfezTIcGrFvD3hYL3nnnvqFrdxDOnNPR9i+6BlVyfypOnk/LnXAfkIZoNaAuNwo4UzNqoAM1vnIW3ZKdmUD6YpTND7Iw+Dk53ZOW/Te5J3sy7vAtPIU3CY5nUS3yBDPI2W64ineei98phcJpYCTBm2aX1Y/UH4rnmnKe5y27A6uAw7aD2Xo1E+NIVl0vE8VC3iXcwNFeGpG3i2saa6Ip9rWIOB8vuC+Ye4L9i0nr06shn6NyzPccosKJA3KeubrPym4dqpU7Bp1UlN583b8txq9FrJPXMjHA0fYh4ynonce48GPNFw4T3veU9Fz8tBlvNpbhSQeXEsacg9aHJ8Of8Omj8zh4/fbe+sOd62OhdxhoY+YbwHRp2V3yERkvjWG2Q5v8CYOk2TgAQkIAEJSEACbQQUYNoILYL7yw+ktkug9RYvwwxbUI4dnV+6iYdWnHTrbjI+XuNlnv28vEb38vJjhf1zIcDQlT6GbCEN2UoBZpATl1bk9ILJlp1+fMjEpJoRhg8zPhJ22GGHult+bHe5eBIond306ogho7pcMSJA5KVxBBh6aOWW2wyrE867to/ZYQJEl7SXYaYpwGSnMUNn5Hw4ysdz6bDKDoVh14+ggrCCMU5+TCJfXjPr3INweMW8EE3hBm3LToVBAkx2KDa11i/jznHmoWpKASaXZ2UcXdazc2LPR+fDoldgk02DJ8M20qoXY/6a3BK2POdsCDDch+hBQa+lYT2fcP5ET7XceyTz4xqon7l3IfKX15XXuzqRp5FOypjoDcqQcvvss09OSt/vSQSY2ToPCc5O5LInL/unLUxkJyj5gUYuWFOvYlpj40SNsrwOWPybRp4iymlfZ5HMerWsixgiqKm3QRyby69xBJhh9Qfn6Jp3Ij3DlsPq4GHH5X25HBgmwNBzi/f36F3QVN9QhvBtgDHBOENRZcvnarsPOa6Yu5G4pvXs5XTNxO9BeY5zZUFhmADDUH00rAjLdea06qSIe9Dy+uuvr4faiv3lXDRlL5nca7jch+hGD8xBxr2N5yf3+Mi82t5VybO8G4fRA4VniTnnhllZTvBeFUP6loJavsamOMsGDnmumVHeIfNIB8PecZrS4DYJSEACEpCABB67BBRgFsN7P6oAQ8tVXtxXW221Php0o8epMq7RkpEWjdh8EWBy9/vyuroKMHn874gjf5Dklu+xPy9pHcZHK0OgDHOk5GP8vWgRKAWYQcMQDboqHCR33nlnvbvto5ZAiBwMe8cwXfwxPFkMj8H+RVWAwclBecY1MXwRPSnCCYDDCREhbJSP51JwyB/hwwQYhlFqGrox0jBoOUjMHRSe7dnZOEiAyU4zeiviWBpmOf153pGSx5e+9KWFxPhh8Zb7crqGOfNyeso4hq1nnrmF76AemhHXTAswpdgY5+2yRJzHQYxlR3A+FkGAeoOwef60HCYfO2gIsmmlMzsys6CX0xO/JxFgZvI8OPAoU3DMUc7QSyechNMWYHCUMwRsPh/vHdwPLObO4zdlH3MPxFwDbMN4X8NxybsZ8yqUNo08RZyzIcCUk3Lncri8LtZzmdhFgBml/iD+LnmHcE02Sh3cdHzTtlyODhNgOJa6Mc8hlBs4lUNVMmfFk570pL5T5nMNK7M5KPcAzD0OpvXs9SVswpVR8hynyoLCMAGm/D7K3wDTqpO6XHoW0sv0nnnmmfXQysRT9vhkThTeK8ax3OOjKy/Ow3yj7373uxc6JfU5DRVIf/kdSuBhAkxZTnHNDCk9yHgeqD/D8lB8o7xD5nf03Hgi4nUpAQlIQAISkIAEmggowDRRWcS38XFPq6JsOG2YlJAhwhhzPE/aTDhaDseErnHcfffdV4+HHuujLvNwGo8lAQZOTNB50UUXDUWGEMM42+WH8NCD3LlIEJgNAYYWjPTcYAijPMF6E6BFSYBhonSGL7zyyit7vYCarmkSAaZsBZkn2x4mwOQxzEkTztAuRq+7PERMl2Oys7FJgGHYHnoohuUhxWJbuSQN9P7BNtpoowphEJsrAWYaPLMjJItK9YUV/2ZagMG5Ts+sMHqX8tfFmFfkZS97WS9odp71NqYfXDcO+lLE7+JEnkY6y5bHPFt5cuaU1PrnuALMTJyH+USonxFbordSmV7WpyHA4Dyk/KWnE07PYZYFGMIxGTvcopdReSzpwxnKMmwaeYq4SscmeadreRdpaVuWPRFpNDBIWCSuXCYOEmDGrT+Iv0veIVzYuHVwHN+2zKJImwCDIACfEPMoS8LZnYeq2mabbXrDk+bz53O1CTB5eLz111+/J/xM69nL6Rrn9yR5rqugMEyAmVad1OXac0856hreCWNIrXw/6D3H/FZh5fxTXfM2cTOEa8xf2ZVXnJeh+XhXKYXl2E8dwigC+btomADDsM2MbBCW59GKbeWSodZiuGzuVfQGU4ApSbkuAQlIQAISkMC0CSjATJvoPIhvmABD8nBo0H06xt2OJJeTxdNSCIdWfNARjnVavLUZLZryBJ6PNQEGPjjhEbVo9TXI2sY8H3Sc2+c3gZkWYHAc4phrMj5c+UjOjsVFQYDhg5iP+Ztuummhy8I5sPzyy9e9fGLnJALMjTfe2Dd8GI63mPtqmACDQyvyM/MzvelNb4rkTH2ZnY1NAgzlMk6zsDYHOOHynF55fou5EmCmwTO3um6bW2SmBZiydW0W9uI+jbLEwcswZcwpED3i8vFNcwt1cSJPI53M+7bjjjv2kjPIIR4BxhVgpn0eegnQW6A0nJc4/5nMPYZ/nFSAQUDBmVi+a3Fu5uZaccUV++5rKcAQjnuFcMM8XjScye9j7KdspLFLtPqeRp4i3tkQYMpW+DhAeXccZLlMLJ+3SesPztkl70TaJqmDI462ZRZF2gQY4srzF/E8MycTQgGO+LBBE5Tnc7UJMIPqkWk9e5HWcZaT5rmugsIwAWZadVKX63/ooYf65sKLfFHmrVLcLHuj0HN/0Pxxw9LRlVeOg/IV4QSxqByumXCUu5TTMW/cMAGm7TrzeeN3ftbzHEYKMEHIpQQkIAEJSEACM0VAAWamyM5hvG0CDEkrxw6O5OZu9GzLLblY7zLPAOFKeywKMMGA1sZ8bOBAYciN0tiOM0ZbfAjMpABTDnFHTyqGbthyyy3rnmxQxAmRxYH5LsDgPKMHQHYyc03MB4BIGS06c0veSQSYstVk5jNMgMk927KAMRNPbnY2NgkwnHNYC9emNOWx+/nN0BnYXAkw0+CZW2M3zX2QOXQVYCiPKZcHWR6CZ5dddqlwuIVlxtm5E/vHXVKv41BljpLshC+Hi+vqRJ5GOvMz2jYMy7gCDLymdR4EDvJ6GPOpvPjFL67nVYmeFxdccEE94T1hJhFg6LWy995798QcJj5/xSteUTdgoddA9FzKrbGbBJhIK0vu+1VXXVU37GAuujD4xHxU08hTxDsbAkzZE7F8/4zri2V+DsLRzL5p1B/E0zXvTFoHc64ulh3FXQSY8t3/ne98Zz2U3amnnlqfLvdWKc+fz9UmwOSyI38TTOvZK9PWdX0aea6roDBMgJlWndT1uukBwjsNFvc4vytttdVW1aGHHtoXXSnc0FiMIStHta68BsWL4E1+Ysi8LFRTX/BOiw0TYMrenHkunqZzcr7c0/SYY46pGOYXU4BpIuY2CUhAAhKQgASmSUABZpo050lc5UcYyYohyHISmaOFlrXZaAXOJMbR8ogPscsvv7wXhHGEzznnnN7+3o6WH6MIMAypdNhhh/XF2PRSXX4AcUD+SC3HvWb/bMwBw3kGGcOe8JGaLU8ombf7e9ElMJMCTB7zm3xNa9Rw5gWxRU2AYXgehqXAaNGNI27ttdeu1/O/7FSYRIDhXDH5eTk2+jABhlak5FcMJz0t6bsO3ZGvo8vv7GwcJMCwnRagWJv4UDoq8jjucyXATIMn80bgOMFwcuNAL/NDvfPRf8MEmHI4pCzKxfGxzAIMIhjiYdgo4//HMaMscby/7W1v6x2S51pjY1cn8jTSSTpCCEAs5X1hkE0iwEzjPOXzn8f+z2melgCTxR6EHBx9IfLk840iwMRx9Irh/jHcFhZOV35PI08Rz2wIMGUvvn322WfovIO5TMwCzDTqD665a96ZtA7mXF0siyL53XbYsTlfr7766rUAE47tYb0k87mGCTDl0MS5bprWszfs+obtm0ae6yoolN8fWTycVp007FrzvgULFtRib2zjeynXSYPmIBxlbq2Iu1x25VUeV64jCO2+++49ESaPyDBMgCGe/Oy2NQQoG9/QoIF3QEwBpsbgPwlIQAISkIAEZpCAAswMwp2rqLsKMLQa5CW3HIs3D2uSnZFxPXwE07KudHJxXhySyyyzTD02fR77vvyYJ65BcxaUzkDC5tbarD/88MO1kEHLqWz5I3WuBBicI/R0WXnllRfq2VIO/ULasyh01lln1R8BXB+t1vi4jdb/+Tr9Pb8JzJQAw7BiOH/Czj333HoYm1iPZSl4Zmdy28dszvNtPQHifMOWpZOt6QP58MMPrzgvNmwYqez4HibA8EFNvirLKOJnWKc8JAvlWbQeZ/+w6y+FLcYOp5fgTFh2NmYnVz5Xdhiy/cQTT6zWWmutHKT3Ow9Pw0bKGsoorCxzy14VdaAR/mWHyDBn3jR4lmPZ0/q4aZhMWr7i4A3BoBTeyrQMGqqHPPjWt7615ygqe8DQc+bYY4/t0eJ302TpvQBj/GDun3CqlgJ+fiZoUMF6k00jndnhyTmyMyufk/qQ3iC8c2DD8ng+Ln5P4zy510J57+M8LMkXJ510Ur2pSw8YnM5NwkrunZbFgnwuymJ6+kWPJq5z0003zUEG/mZoOuZiwHi+4pkrn+Nxy6jynW3QdUYCH3jggXq+o2WXXTY2dVpmTsxFSAOgJrv00kvrBjaxLzOdRv1BvF3yzjTq4LiGtmUuR4eJJzkehnRi2LvS2sTpfK7MtoznuOOOq3vixXYaZK200kr16rSePd6T+Z6gfmqqw+Pc5TI/S4OuoS3PdRUUhgkw06qTyusbtp5HK6DcinmjYEiZ1mT0ion5QGlIQvnN99so1pVXlzhzT5499tij/o7kuLZ31jwkHu+slFXRiLA8L++fMRIBwx1G4w3CTVOAoa578MEHe+9YZTpcl4AEJCABCUjgsUlAAWYxvO9dBRgunRaUBx100EIUcospxJZyXgZe8OnGvdpqq9VzTTBhdu4ps/POO9fOroiYj3McVdn4MMCR9I1vfKN2IkcX+fLDJo7BkcDEjzfffHM9Sfe9994bu3rL+SDAwA4HJgIUznIcqbzo80JOyzR6wYRlB3c5ljFhxnWeRPwu54bATAkwPEO0mA7L+TS24WBGqMjC6nwXYLJTJ08OH9eEg5K8w4d12DABhjA4Mvmgzz1UaAWPmBEf4IQrncbDBBjC52FWWMexjGhdGmUi45hjtI5tctKWx+T1LgIMjglEdEQlDMcyLe0Zli5b6WzHUZVbyM6VAEMaJ+UJA/iHc585kD72sY/1MYAPTsk8xF3phC+dPDyHsMyOHFoa8/zEuUh/KcDgPKQl7913383uulcOz2EMc1JvfPQfIvv5559fO8ee+9zn9g0RgxOauU9e85rXLCTil62dccRnkb7sZRkOUuK74447elymkU6cfIhRYTD76Ec/2ufEI72URzGvCmFHFWCmcR7y4yGHHFInNebHWGqppSLp9TL3pGBDkwDDfaVeDjvwwAOrHXbYoV69/fbba744jbNDlN/5GALzTkRvBfiEZQGGPEl5xzw75bNDeJ7D6P1W5udJ8xTxd71OwvLehUCCUa6Qnq5Go50oJzmGcp0eT9nxXpZfhMsO9mnUH8TZJe9Mow7mXF0s1wEMlRfv6rzjI3QNcpbjvCavZ8sO7bw9fmcBhvyBqFWKgeV9QDwkb2eb9NljbhKuk/cX3ps/85nPdK47J81zXEdXQaH8Tsk9YKZVJ2Wubb/55uB9sLRB7yeE4xtqt9126wnAlHeMPhANMyIu6k/uA+9GlPf5facrL+Ki9wnDX5PHEVuz0UCCuUnjvTWXhWXdXDY6KIU/ykvKpJw/iAPBOg9ByTPOMJRh0xJg8jskw7pRvvGtp0lAAhKQgAQkIAEFmMXwGRhFgOHy88dz4MA5deaZZ1ZPeMITqrvuuqt2KMW+LkucnjiXsoMjD7XRFMf73//+avvtt6934WzFMTqqzbUAU7YabUs/jgacbFh++Y/jcsvW2OZy/hOYKQGGK8+tPHE203uD4boYGoSWlzG0VqY03wWY3DqddO+000610IQTjha99PQpBdc2AYZ4KMc222yzCk7wYZip7AjOvf0Ij+WP5yyQ/m5vVU/SzT3I8TDUCx/9OC5+8pOfVN/85jd7ogjHIcRmR3XENWyZnW+DesBwfDl0Fs4zHGeIMAhX3/ve92rROs7FNcEzOwTmUoDB8TIpT0QGHERhMGDuIO4HPSFLZyThSgGGbZ/4xCfqIcz4jdGD5EUvelHdAveaa67pE3B+F2JhAYbtTa3QKcs33HDDmjsCYDmh+lFHHVVtsskm9Xj4Rx55ZB0994hGChyLyHLDDTfUgk30mNh6660rWsZnK3t+8uzzbOLoJw/hYNt8883rQyZJZ5wzCwFso6U9zx/pvfbaa/vyQRwzqgDDcZOepxw6iWG7qH+XX3756rbbbqvvO87fbE0CTNmLNZ41HIc0VIkyJffKIE7O9bznPa8uP8iziCu5DCFMOB1xFr7+9a+vG7ewnftHmYjTkh4YvBvlRjH02Mmi6zTyVNfrRNTE8R3Gux9D/XU1GDA3TmbBdTKkIiLVdddd17cv4s0CzDTqD+LtmncmrYPjGtqWeTJ3wiLUkr9otMT9psdjFqoiPup7nqVsPG/DGgFkASaOowwlD1De3HjjjX31CM8976yUo9kmffZyrwziHUXQmyTPxTV0FRSGCTDENa06KdLVtiQ9vDNE3UB47hFDKua6vowHsT/mCIpjKL9p7EY5RIM38mA2hLiIsyuvspxAWGYevRVWWKEuf0lDNCRBeCNd0XimTYAhbWXdTT6hvF111VWrn/3sZ3VdRNkZRl1LnZstf4Px7jCo5xDHZLGv7NWNkJTfV2n8kRtO5XP6WwISkIAEJCCBxxYBBZjF8H6PKsAw9i4vjLlVL1hy6zacNwwlk18qB6Hjg4xWcGussUZfkLJ1Yd/OR1fycCl8xO25555DzxcOh9yafa4FGNJCd/j4kCivMa/jBMtz3TR9NPORgqNBW7QIzKQAQ0tjnvNhhrOONFAWYPNdgOED+01velOv10DTtfHBj3MzPoqHCTCUDZRVZZmW4yWuvfbaayEHVpsAQxy0uMTx3eTYz+fgN84M5r9AzB7FugowxEnLUhxu2YnZdC6caaSlbH06lwIM6ZyUJ71JyBMxnErTtSOS4fiPIY6aBBiGDMGxEsN7NcVDLw+cwzhrsLIHTByDCEf5PuwZjLC5pyM9NbiWtntJfYnjPRxhEVfZsyW2x3KdddapGF4tbNx0xvGUMfvtt9/QvItQhPOY9wJsHAFmGudpmvcuriOWOHxpAII1CTBsL1v5sy3bhRdeWNHbjjItO0RzGH4TP+9Jl112Wb0rBJhf/epXFUPpXX311eUhC60Pmjdl0jzFibpcJ2ktezfn+mahBDdsoCcPvYGGPfO05EcgY45ALAsw06g/iLNr3pm0DuZcXYzngvJ6kJXzP0U4njkcvsEz956JMOUyCzA47oc9t5Sd9CYYNNzlJM8evRfJP2GjNF6gsdi4eS7O11VQaBNgutZJzEXFewjWVCdFurosy/KNnnn00BtmPPO8U5188snDgtX7eC7ozZl7jXTlxTNBHo+eoYNOxjnoMUI9FdZFgOF5RcSJ98M4tmlJfqDcLOvOaQkwPLNZ7BnWC6kpfW6TgAQkIAEJSGDxJaAAsxje2yYBJlplDrpcWsLiUCwdT7QqpnU9xkswzisclE0v0Tg9OQ8Tg+dhW+qDH/3Hiz6tsXBu5I87Xrj5UHjLW97S15qOD3s+xjhfDo/jCQcOrY5INz1n4kMzf5AiGvHimy3Pt5K385sPEHr9hJXjA8f2ph5BuQUqaeED8otf/GJji2kcgW9/+9urLbfcMqKsl1wjwzlEK1w+xvgQ4Xq1RYtAKcAcf/zx1brrrtv5InLrOlo/MxRStosvvrieDL507karblr35ZaN2SHW9jHbRYDIaWn7Tb6PIXoIi7OBVv2l0UKd/I5DOButIBGDcawwjFKIxdlpTfg8efbBBx9c4SinhSNlRJQPlDV82CPeUIY0WdfrJy2UF/Q6ykNbESfnec5znlPPXUUr4nEsf8QPmjA8x0srT4bmoBV3/vgnLZQ53AOGK2tqMY1zBL5hk84Bk3s7DpsDJs7Hcho8mcOB5yBfP0OAbLHFFvX1ca8iLw1ydiH+89wghOR6h/qNZ4aeCQyJxdCcPFeDBBiuCUGHoWkoD3Ka2EcLXeoAhoDh/mSjUQR1L8N6lmI+TiPuI89HUz1LPDyPcI95ACJuHE/UifSKyTZuOiMO6mq4wizKJJ67DTbYoO7VynClvDPQC4T94wgwnGvS8+AUpZ6nB1hptMambGJYVVosU26QfvJUaVwD1xtiQOwnPMJAOKapy3knyY1ECEudzv1DZCW/0mgDo/x75jOfWf/mH0PE8m7BsJL5WWQfvak4Ljsq2Z5t0jzV9TrPOOOM6pRTTqlPzfNJC/lRjeeDeQF5b4trJS7KUfIYdRoCawxVmwUYzjVp/RHp7Zp3JqmD41xdlnlemgjPuynPaPkOGfvLIX/ze3yEKZdZgOFbgF5hvMPmbwLOi5BKGdI218+4zx78EaDpeYGN2ntg0jzHu0O8g+RGaCWvUoAZNP9aU51EXUJ5w3se7zd8+zB84aA6qTz3oPVyqMZB85g1Hc/56UXC/IExDFiEozcIoxPw3lT2ourKi7h4F2TIQZ6r8huS+mKbbbap6PUFh2xt76w5LOnnG5NGJfk64IzgzfCg0QM0H8fv/A45Sg8Y0pxF6DysInUtdQ49LTUJSEACEpCABCSgAOMzMBYBPq5o/c3HGS+Yq6yySucW3ryEI2LgZKL7Oc6IJqdgThjhcWDRLb5stZTDzbffOLYQxFjyQk93+Mc97nFDkwlXHHs4cfgo0STQRIB8xLN1zz331M5c8mD5cdx03HzfhtMPQQBnKw4femu0lQ9t10T5EXlq0riazsW9IM2kvWuZ1hTPtLbhaMahQlmJQ3kmrnlaaW2KZ1KeiCjcDxxdub5gaKQ2ASbSQxqijkPYjOFQYv+oS54/HPHcC56RFVdcsVMU5AOcoRi9JfK49vXGIf/ohYFjGgYIUV2eg3HTGcngfIhGCANtdV0cM85ykvPg0KNMgA/3gXp5nPvLc0Y8XCf3Js/Fk68JHjxL1Oe8B1CujWqU9TgteV8ap0ycJE91uc4QCrbaaqueSDLqNRI+0glTntlRbVr1R5e8Q1pnow7meaU8Q5jiWW0TPz796U/3euhRduU5dgbxzAJMFs2jLKUeGff9Iu5p1/qR60W0pSw67bTT6jpsULoHbZ9GnhsU9zjbgyPv9Xlo5nHimulj+F6hvKKRAOVj2/M2TnriGxKxkAYIXevDUc7FdVA+U2bORPzD0sJQtJQhfLMOqheGHe8+CUhAAhKQgAQWTwIKMIvnffWqJCABCUhAAhJIBEYRYNJh/pSABIYQwNFJjx4c5kwETu9DbW4IINjSE517gWUxZViKBgkww46ZqX3Re5fnqGli+Zk6r/FKQAISkIAEJCABCUhgJgkowMwkXeOWgAQkIAEJSGBeEFCAmRe3wUQsRgTo3fCud72ruummm6ptt922YrhEbe4IfP7zn+/NYUTvdIZD6tLzbb4IMMwHtP/++9cAmdOjHJ5x7sh6ZglIQAISkIAEJCABCUxGQAFmMn4eLQEJSEACEpDAIkBAAWYRuEkmcZEiwLBSzPnE/ArHHXfcvB9eaZGCO2JiGdbp1a9+dW/elj333LOeM61LNPNFgGG+POZqZB6arbfeukvSDSMBCUhAAhKQgAQkIIFFgoACzCJxm0ykBCQgAQlIQAKTEFCAmYSex0qgmcAtt9xSz9MxyvxEzTG5dRICl1xySXXEEUfUUTDfEL1fus7fMV8EGOZ/YSJ1h7Gb5EnwWAlIQAISkIAEJCCB+UhAAWY+3hXTJAEJSEACEpDAVAnceuut1de//vU6TobnobW4JgEJSGBxIHDFFVdUCxYsqC/l+c9/fvXMZz6z82WdccYZvXljdthhh2qNNdbofKwBJSABCUhAAhKQgAQkIIF2Agow7YwMIQEJSEACEpCABCQgAQlIQAISkIAEJCABCUhAAhKQgARGIqAAMxIuA0tAAhKQgAQkIAEJSEACEpCABCQgAQlIQAISkIAEJCCBdgIKMO2MDCEBCUhAAhKQgAQkIAEJSEACEpCABCQgAQlIQAISkIAERiKgADMSLgNLQAISkIAEJCABCUhAAhKQgAQkIAEJSEACEpCABCQggXYCCjDtjAwhAQlIQAISkIAEJCABCUhAAhKQgAQkIAEJSEACEpCABEYioAAzEi4DS0ACEpCABCQgAQlIQAISkIAEJCABCUhAAhKQgAQkIIF2Agow7YwMIQEJSEACEpCABCQgAQlIQAISkIAEJCABCUhAAhKQgARGIqAAMxIuA0tAAhKQgAQkIAEJSEACEpCABCQgAQlIQAISkIAEJCCBdgIKMO2MDCEBCUhAAhKQgAQkIAEJSEACEpCABCQgAQlIQAISkIAERiKgADMSLgNLQAISkIAEJCABCUhAAhKQgAQkIAEJSEACEpCABCQggXYCCjDtjAwhAQlIQAISkIAEJCABCUhAAhKQgAQkIAEJSEACEpCABEYioAAzEi4DS0ACEpCABCQgAQlIQAISkIAEJCABCUhAAhKQgAQkIIF2Agow7YwMIQEJSEACEpCABCQgAQlIQAISkIAEJCABCUhAAhKQgARGIqAAMxIuA0tAAhKQgAQkIAEJSEACEpCABCQgAQlIQAISkIAEJCCBdgIKMO2MDCEBCUhAAhKQgAQkIAEJSEACEpCABCQgAQlIQAISkIAERiKgADMSLgNLQAISkIAEJCABCUhAAhKQgAQkIAEJSEACEpCABCQggXYCCjDtjAwhAQlIQAISkIAEJCABCUhAAhKQgAQkIAEJSEACEpCABEYioAAzEi4DS0ACEpCABCQgAQlIQAISkIAEJCABCUhAAhKQgAQkIIF2Agow7YwMIQEJSEACEpCABCQgAQlIQAISkIAEJCABCUhAAhKQgARGIqAAMxIuA0tAAhKQgAQkIAEJSEACEpCABCQgAQlIQAISkIAEJCCBdgIKMO2MDCEBCUhAAhKQgAQkIAEJSEACEpCABCQgAQlIQAISkIAERiKgADMSLgNLQAISkIAEJCABCUhAAhKQgAQkIAEJSEACEpCABCQggXYCCjDtjAwhAQlIQAISkIAEJCABCUhAAhKQgAQkIAEJSEACEpCABEYioAAzEi4DS0ACEpCABCQgAQlIQAISkIAEJCABCUhAAhKQgAQkIIF2Agow7YwMIQEJSEACEpCABCQgAQlIQAISkIAEJCABCUhAAhKQgARGIqAAMxIuA0tAAhKQgAQkIAEJSEACEpCABCQgAQlIQAISkIAEJCCBdgIKMO2MDCEBCUhAAhKQgAQkIAEJSEACEpCABCQgAQlIQAISkIAERiKgADMSLgNLQAISkIAEJCABCUhAAhKQgAQkIAEJSEACEpCABCQggXYCCjDtjAwhAQlIQAISkIAEJCABCUhAAhKQgAQkIAEJSEACEpCABEYioAAzEi4DS0ACEpCABCQgAQlIQAISkIAEJCABCUhAAhKQgAQkIIF2Agow7YwMIQEJSEACEpCABCQgAQlIQAISkIAEJCABCUhAAhKQgARGIqAAMxIuA0tAAhKQgAQkIAEJSEACEpCABCQgAQlIQAISkIAEJCCBdgIKMO2MDCEBCUhAAhKQgAQkIAEJSEACEpCABCQgAQlIQAISkIAERiKgADMSLgNLQAISkIAEJCABCUhAAhKQgAQkIAEJSEACEpCABCQggXYCCjDtjAwhAQlIQAISkIAEJCABCUhAAhKQgAQkIAEJSEACEpCABEYioAAzEi4DS0ACEpCABCQgAQlIQAISkIAEJCABCUhAAhKQgAQkIIF2Av8P0Zc5fa1nRgQAAAAASUVORK5CYII=" + }, + "8fbdba40-9387-4520-a2d0-370aaeed6f00.png": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABbQAAACmCAYAAAAChAngAAAMPmlDQ1BJQ0MgUHJvZmlsZQAASImVVwdYU8kWnluSkEBoAQSkhN4EESkBpITQQu9NVEISIJQYA0HFXhYVXAsqImBDV0UUrDQ7YmdR7H2xoKKsiwW78iYFdN1Xvne+b+797z9n/nPm3LllAFA7zhGJclF1APKEBeKYID96UnIKndQLEEACVICC0RxuvogZFRUGoA2d/27vrkNvaFfspVr/7P+vpsHj53MBQKIgTuflc/MgPgAAXs0ViQsAIEp5s6kFIimGDWiJYYIQL5biTDmuluJ0Od4j84mLYUHcDoCSCocjzgRA9RLk6YXcTKih2g+xo5AnEAKgRofYOy9vMg/iNIitoY8IYqk+I/0Hncy/aaYPa3I4mcNYPheZKfkL8kW5nOn/Zzn+t+XlSoZiWMKmkiUOjpHOGdbtZs7kUClWgbhPmB4RCbEmxB8EPJk/xCglSxIcL/dHDbj5LFgzoAOxI4/jHwqxAcSBwtyIMAWfniEIZEMMVwg6TVDAjoNYF+LF/PyAWIXPJvHkGEUstDFDzGIq+LMcsSyuNNZ9SU48U6H/OovPVuhjqkVZcYkQUyA2LxQkRECsCrFDfk5sqMJnXFEWK2LIRyyJkeZvDnEMXxjkJ9fHCjPEgTEK/5K8/KH5YpuyBOwIBd5XkBUXLK8P1s7lyPKHc8Eu8YXM+CEdfn5S2NBceHz/APncsWd8YXysQueDqMAvRj4Wp4hyoxT+uCk/N0jKm0LsnF8YqxiLJxTABSnXxzNEBVFx8jzxomxOSJQ8H3wFCAMs4A/oQAJbOpgMsoGgs6+pD17JewIBB4hBJuADewUzNCJR1iOEx1hQBP6EiA/yh8f5yXr5oBDyX4dZ+dEeZMh6C2UjcsATiPNAKMiF1xLZKOFwtATwGDKCf0TnwMaF+ebCJu3/9/wQ+51hQiZMwUiGItLVhjyJAUR/YjAxkGiD6+PeuCceBo++sDnhDNx9aB7f/QlPCF2Eh4RrhG7CrUmC+eKfsgwH3VA/UFGL9B9rgVtCTRfcD/eC6lAZ18H1gT3uDOMwcR8Y2QWyLEXe0qrQf9L+2wx+uBsKP7IjGSWPIPuSrX8eqWqr6jKsIq31j/WR55o+XG/WcM/P8Vk/VJ8Hz6E/e2KLsf3YGewEdg47jDUBOnYMa8Y6sCNSPLy6HstW11C0GFk+OVBH8I94Q3dWWsl8xzrHXscv8r4C/jTpOxqwJoumiwWZWQV0Jvwi8OlsIddhFN3J0ckFAOn3Rf76ehMt+24gOh3fuQV/AOB1bHBw8NB3LuQYAHvd4OPf8p2zZsBPhzIAZ1u4EnGhnMOlBwJ8S6jBJ00PGAEzYA3n4wRcgSfwBQEgBESCOJAMJsLss+A6F4OpYCaYB4pBKVgB1oBKsBFsATvAbrAPNIHD4AQ4DS6AS+AauANXTw94AfrBO/AZQRASQkVoiB5ijFggdogTwkC8kQAkDIlBkpE0JBMRIhJkJrIAKUXKkEpkM1KL7EVakBPIOaQLuYU8QHqR18gnFENVUC3UELVER6MMlImGonHoBDQTnYIWoQvRZWgFWoPuQhvRE+gF9Brajb5ABzCAKWM6mAlmjzEwFhaJpWAZmBibjZVg5VgNVo+1wvt8BevG+rCPOBGn4XTcHq7gYDwe5+JT8Nn4UrwS34E34u34FfwB3o9/I1AJBgQ7ggeBTUgiZBKmEooJ5YRthIOEU/BZ6iG8IxKJOkQroht8FpOJ2cQZxKXE9cQG4nFiF/ERcYBEIumR7EhepEgSh1RAKiatI+0iHSNdJvWQPigpKxkrOSkFKqUoCZXmK5Ur7VQ6qnRZ6anSZ7I62YLsQY4k88jTycvJW8mt5IvkHvJnigbFiuJFiaNkU+ZRKij1lFOUu5Q3ysrKpsruytHKAuW5yhXKe5TPKj9Q/qiiqWKrwlJJVZGoLFPZrnJc5ZbKGyqVakn1paZQC6jLqLXUk9T71A+qNFUHVbYqT3WOapVqo+pl1ZdqZDULNabaRLUitXK1/WoX1frUyeqW6ix1jvps9Sr1FvUb6gMaNI0xGpEaeRpLNXZqnNN4pknStNQM0ORpLtTconlS8xENo5nRWDQubQFtK+0UrUeLqGWlxdbK1irV2q3VqdWvrantrJ2gPU27SvuIdrcOpmOpw9bJ1Vmus0/nus6nEYYjmCP4I5aMqB9xecR73ZG6vrp83RLdBt1rup/06HoBejl6K/Wa9O7p4/q2+tH6U/U36J/S7xupNdJzJHdkych9I28boAa2BjEGMwy2GHQYDBgaGQYZigzXGZ407DPSMfI1yjZabXTUqNeYZuxtLDBebXzM+Dldm86k59Ir6O30fhMDk2ATiclmk06Tz6ZWpvGm800bTO+ZUcwYZhlmq83azPrNjc3DzWea15nftiBbMCyyLNZanLF4b2llmWi5yLLJ8pmVrhXbqsiqzuquNdXax3qKdY31VRuiDcMmx2a9zSVb1NbFNsu2yvaiHWrnaiewW2/XNYowyn2UcFTNqBv2KvZM+0L7OvsHDjoOYQ7zHZocXo42H50yeuXoM6O/Obo45jpudbwzRnNMyJj5Y1rHvHaydeI6VTldHUsdGzh2ztjmsa+c7Zz5zhucb7rQXMJdFrm0uXx1dXMVu9a79rqZu6W5VbvdYGgxohhLGWfdCe5+7nPcD7t/9HD1KPDY5/GXp71njudOz2fjrMbxx20d98jL1Ivjtdmr25vunea9ybvbx8SH41Pj89DXzJfnu833KdOGmc3cxXzp5+gn9jvo957lwZrFOu6P+Qf5l/h3BmgGxAdUBtwPNA3MDKwL7A9yCZoRdDyYEBwavDL4BtuQzWXXsvtD3EJmhbSHqoTGhlaGPgyzDROHtYaj4SHhq8LvRlhECCOaIkEkO3JV5L0oq6gpUYeiidFR0VXRT2LGxMyMORNLi50UuzP2XZxf3PK4O/HW8ZL4tgS1hNSE2oT3if6JZYndSaOTZiVdSNZPFiQ3p5BSElK2pQyMDxi/ZnxPqktqcer1CVYTpk04N1F/Yu7EI5PUJnEm7U8jpCWm7Uz7wonk1HAG0tnp1en9XBZ3LfcFz5e3mtfL9+KX8Z9meGWUZTzL9Mpcldmb5ZNVntUnYAkqBa+yg7M3Zr/PiczZnjOYm5jbkKeUl5bXItQU5gjbJxtNnja5S2QnKhZ1T/GYsmZKvzhUvC0fyZ+Q31ygBX/kOyTWkl8kDwq9C6sKP0xNmLp/msY04bSO6bbTl0x/WhRY9NsMfAZ3RttMk5nzZj6YxZy1eTYyO3122xyzOQvn9MwNmrtjHmVezrzf5zvOL5v/dkHigtaFhgvnLnz0S9AvdcWqxeLiG4s8F21cjC8WLO5cMnbJuiXfSngl50sdS8tLvyzlLj3/65hfK34dXJaxrHO56/INK4grhCuur/RZuaNMo6yo7NGq8FWNq+mrS1a/XTNpzbly5/KNaylrJWu7K8IqmteZr1ux7ktlVuW1Kr+qhmqD6iXV79fz1l/e4LuhfqPhxtKNnzYJNt3cHLS5scaypnwLcUvhlidbE7ae+Y3xW+02/W2l275uF27v3hGzo73WrbZ2p8HO5XVonaSud1fqrku7/Xc319vXb27QaSjdA/ZI9jzfm7b3+r7QfW37GfvrD1gcqD5IO1jSiDROb+xvymrqbk5u7moJaWlr9Ww9eMjh0PbDJoerjmgfWX6UcnTh0cFjRccGjouO953IPPGobVLbnZNJJ6+2R7d3ngo9dfZ04OmTZ5hnjp31Onv4nMe5lvOM800XXC80drh0HPzd5feDna6djRfdLjZfcr/U2jWu6+hln8snrvhfOX2VffXCtYhrXdfjr9+8kXqj+ybv5rNbubde3S68/fnO3LuEuyX31O+V3ze4X/OHzR8N3a7dRx74P+h4GPvwziPuoxeP8x9/6Vn4hPqk/Knx09pnTs8O9wb2Xno+/nnPC9GLz33Ff2r8Wf3S+uWBv3z/6uhP6u95JX41+HrpG7032986v20biBq4/y7v3ef3JR/0Puz4yPh45lPip6efp34hfan4avO19Vvot7uDeYODIo6YI/sVwGBDMzIAeL0dAGoyADS4P6OMl+//ZIbI96wyBP4Tlu8RZeYKQD38f4/ug383NwDYsxVuv6C+WioAUVQA4twBOnbscBvaq8n2lVIjwn3Apsiv6Xnp4N+YfM/5Q94/n4FU1Rn8fP4X6t18U4TdPeAAAACKZVhJZk1NACoAAAAIAAQBGgAFAAAAAQAAAD4BGwAFAAAAAQAAAEYBKAADAAAAAQACAACHaQAEAAAAAQAAAE4AAAAAAAAAkAAAAAEAAACQAAAAAQADkoYABwAAABIAAAB4oAIABAAAAAEAAAW0oAMABAAAAAEAAACmAAAAAEFTQ0lJAAAAU2NyZWVuc2hvdN4gr9YAAAAJcEhZcwAAFiUAABYlAUlSJPAAAAHXaVRYdFhNTDpjb20uYWRvYmUueG1wAAAAAAA8eDp4bXBtZXRhIHhtbG5zOng9ImFkb2JlOm5zOm1ldGEvIiB4OnhtcHRrPSJYTVAgQ29yZSA2LjAuMCI+CiAgIDxyZGY6UkRGIHhtbG5zOnJkZj0iaHR0cDovL3d3dy53My5vcmcvMTk5OS8wMi8yMi1yZGYtc3ludGF4LW5zIyI+CiAgICAgIDxyZGY6RGVzY3JpcHRpb24gcmRmOmFib3V0PSIiCiAgICAgICAgICAgIHhtbG5zOmV4aWY9Imh0dHA6Ly9ucy5hZG9iZS5jb20vZXhpZi8xLjAvIj4KICAgICAgICAgPGV4aWY6UGl4ZWxZRGltZW5zaW9uPjE2NjwvZXhpZjpQaXhlbFlEaW1lbnNpb24+CiAgICAgICAgIDxleGlmOlBpeGVsWERpbWVuc2lvbj4xNDYwPC9leGlmOlBpeGVsWERpbWVuc2lvbj4KICAgICAgICAgPGV4aWY6VXNlckNvbW1lbnQ+U2NyZWVuc2hvdDwvZXhpZjpVc2VyQ29tbWVudD4KICAgICAgPC9yZGY6RGVzY3JpcHRpb24+CiAgIDwvcmRmOlJERj4KPC94OnhtcG1ldGE+ChoSKmAAAAAcaURPVAAAAAIAAAAAAAAAUwAAACgAAABTAAAAUwAAYsmjn6uBAABAAElEQVR4AexdB5gURbetZwAzCIKKJImiJBUUDIiIOWFGRJEgoqD8oKJixgBGxIQKioo55yxRkJxzRpCkKGAgmF6dXm7P7Zqe2dmZ3mUGz/2+3U7V1VWnq6unT9069//++uuvfw2NCBABIkAEiAARIAJEgAgQASJABIgAESACRIAIEAEiQASIQJYj8H8ktLP8DrF4RIAIEAEiQASIABEgAkSACBABIkAEiAARIAJEgAgQASLgIUBCmw2BCBABIkAEiAARIAJEgAgQASJABIgAESACRIAIEAEiQARyAgES2jlxm1hIIkAEiAARIAJEgAgQASJABIgAESACRIAIEAEiQASIABEgoc02QASIABEgAkSACBABIkAEiAARIAJEgAgQASJABIgAESACOYEACe2cuE0sJBEgAkSACBABIkAEiAARIAJEgAgQASJABIgAESACRIAIkNBmGyACRIAIEAEiQASIABEgAkSACBABIkAEiAARIAJEgAgQgZxAgIR2TtwmFpIIEAEiQASIABEgAkSACBABIkAEiAARIAJEgAgQASJABEhosw0QASJABIgAESACRIAIEAEiQASIABEgAkSACBABIkAEiEBOIEBCOyduEwtJBIgAESACRIAIEAEiQASIABEgAkSACBABIkAEiAARIAIktNkGiAARIAJEgAgQASJABIgAESACRIAIEAEiQASIABEgAkQgJxAgoZ0Tt4mFJAJEgAgQASJABIgAESACRIAIEAEiQASIABEgAkSACBABEtpsA0SACBABIkAEiAARIAJEgAgQASJABIgAESACRIAIEAEikBMIkNDOidvEQhIBIkAEiAARIAJEgAgQASJABIgAESACRIAIEAEiQASIAAlttgEiQASIABEgAkSACBABIkAEiAARIAJEgAgQASJABIgAEcgJBEho58RtYiGJABEgAkSACBABIkAEiAARIAJEgAgQASJABIgAESACRICENtsAESACRIAIEAEiQASIABEgAkSACBABIkAEiAARIAJEgAjkBAIktHPiNrGQRIAIEAEiQASIABEgAkSACBABIkAEiAARIAJEgAgQASJAQpttgAgQASJABIgAESACRIAIEAEiQASIABEgAkSACBABIkAEcgIBEto5cZtYSCJABIgAESACRIAIEAEiQASIABEgAkSACBABIkAEiAARIKHNNkAEiAARIAJEgAgQASJABIgAESACRIAIEAEiQASIABEgAjmBAAntnLhNLCQRIAJEgAgQASJABIgAESACRIAIEAEiQASIABEgAkSACJDQZhsgAkSACBABIkAEiAARIAJEgAgQASJABIgAESACRIAIEIGcQGCbEdq3f7goJwBiIYkAESACRIAIEAEiQASIABEgAkSACBABIkAEiAARIAJEIDsQIKGdHfeBpSACRIAIEAEiQASIABEgAkSACBABIkAEiAARIAJEgAgQgXwQIKGdD0A8TASIABEgAkSACBABIkAEiAARIAJEgAgQASJABIgAESAC2YEACe3suA8sBREgAkSACBABIkAEiAARIAJEgAgQASJABIgAESACRIAI5IMACe18AOJhIkAEiAARIAJEgAgQASJABIgAESACRIAIEAEiQASIABHIDgRIaGfHfWApiAARIAJEgAgQASJABIgAESACRIAIEAEiQASIABEgAkQgHwS2GaG99o+/8ykaDxMBIkAEiAARIAJEgAgQASJABIgAESACRIAIEAEiQASIABGIIUBCO4YF14gAESACRIAIEAEiQASIABEgAkSACBABIkAEiAARIAJEIIsRIKGdxTeHRSMCRIAIEAEiQASIABEgAkSACBABIkAEiAARIAJEgAgQgRgCJLRjWHCNCBABIkAEiAARIAJEgAgQASJABIgAESACRIAIEAEiQASyGAES2ll8c1g0IkAEiAARIAJEgAgQASJABIgAESACRIAIEAEiQASIABGIIUBCO4YF14gAESACRIAIEAEiQASIABEgAkSACBABIkAEiAARIAJEIIsRIKGdxTeHRSMCRIAIEAEiQASIABEgAkSACBABIkAEiAARIAJEgAgQgRgCJLRjWHCNCBABIkAEiAARIAJEgAgQASJABIgAESACRIAIEAEiQASyGAES2ll8c1g0IkAEiAARIAJEgAgQASJABIgAESACRIAIEAEiQASIABGIIUBCO4YF14gAESACRIAIEAEiQASIABEgAkSACBABIkAEiAARIAJEIIsRIKGdxTeHRSMCRIAIEAEiQASIABEgAkSACBABIkAEiAARIAJEgAgQgRgCJLRjWHCNCBABIkAEiAARIAJEgAgQASJABIgAESACRIAIEAEiQASyGAES2ll8c1g0IkAEiAARIAJEgAgQASJABIgAESACRIAIEAEiQASIABGIIUBCO4YF14gAESACRIAIEAEiQASIABEgAkSACBABIkAEiAARIAJEIIsRIKGdxTeHRSMCRIAIEAEiQASIABEgAkSACBABIkAEiAARIAJEgAgQgRgCJLRjWHCNCBABIkAEiAARIAJEgAgQASJABIgAESACRIAIEAEiQASyGAES2ll8c1g0IkAEiAARIAJEgAgQASJABIgAESACRIAIEAEiQASIABGIIUBCO4YF1/JBYOWKFeanH9f4qfYuVcqUr1DR3+ZKPAJzZs00f/75Z/yBrXv22HNPc2CVqgmPy4EF8+eZjX/8IZumVOnS5oDyFfzt/9rKls2bzdw5s5NWe7/9y5kyZcsmTZNrB//++28za8b0QLFrHlTLFCtePLCvKDbYHxQFyrwGESh8BObPm2s2bdzoX6hCxYqm5N6l/O3taeWXn9ea5cuWJa1StRo1zK677pY0DQ8mR2DZT7+ZPm9PMm2bH2QaVNu+3sPJa86jRIAIEAEiQASIABHIHgR+/nWTGfjlbFO25K7m8hMOyp6CRVQSEtoRAflfyObMk44348aM9qva6rK2pu8TT/vbXIlH4JCq5e0gwI/xB7buOenU083gN95NeFwOnNz0aDNl0gTZNG3adzQP9H3c3/6vrSxdstgcUTd5h9yr94Pmys7XblfQfDt8mDnvzJMDdRo/fa6pWKlyYF9RbLA/KAqUeQ0iULgIgMiutG/JwEWeHDDInH9Rq8C+7WXjrddfMV06tktanS+Gjzb1Dz08aRoeTI5Ar9cnmDnLf/ESdTiplmlWt3zyE9TRpWt+Nc9+Mcvfc8zB+5tTD6fzhA9IEa/8uvFP89umPMeMXYvtZEruXqyIS1Dwy837YZ35ZMJSU2znHc05jQ405UrtXvBMttEZ/9rrrvol5sBStsSuZscd/q9QSzNs+g/mqynL/WtcenwNc1D5vf1trvy3EPhh7e9ehXfacQezryXAUjE5B2n32q2Y2XPXnVM5jWmyDIE///7HvD9msVm0aoOpW7m0OeWwCub//q9w+5+igmDzn3+bnzZs8i63+y54l+XvDKbPwYll9trFe68UVZmjuM4mW+8rHh9q/v4Hbxdj+nY4JuXnOorrF0UeJLSLAuXt5BrbgsAaMXSI+XbkMB/BUqVKm05duvrb2b5CQrtw7tB/ldDG83DB2acGQP0vEdq53h8EblyWbQweNNAsW/a9X6pDD2tgTj3jLH+bK9snAhs3/mEq7xskLkhok9DOpLXP+P5nc9+bE/0s2lhvoJMPTX1G2YiZK8zTn830zz+jYWXT6rjq/jZXihaBfh9OM2PnrfYuWr1cSXNXq4ZFW4ACXm31uo2m28Bv/bN23mkH0/+q48xuxXfy92XzCgiXa58d6RfxrlZHmOrlSvjbhbHy+MfTzXdzVvlZ97zgcFO70vY5S8evJFdCEcAA1pVPDvOPnX90VXNu4yr+dtjK+j+2mKueGu4fOq52OXPlKYf421zJHQSe/HSGGTVrpV9g3Hu0ge3B0MehrxO74+KGpuYBQYcOOSbLUbNXmic/mSGb5poz6pjGB+3nb+fCCkj5tv2G+EWtf+A+psd5h/rb28MKCe3t4S4WUR22BaF95y03mv6PP+rXsFLlA824aXP87WxfIaFdOHeIhHYM1/8SoZ3r/UHsrmXf2vFHNQjI2bS9opPp83C/7CsoSxQpAiS04+Gkh3Y8JgXZ0+OF78xyKzki9mznpmaPAnjrvTVqoXnvu0Vyuml3Yi3TvF7qHt7+iSEr8FAaPHSu+eW3zaaM9Xxt3bRGSKrc2FVUdbn5pTEGXvOwo2vtbzqfXjurAfpi8jLz4jfB74SeF1qCtmJ2ELQo3yw76AOv6ytOPtjA613bTHvsXjUg9GSnJmbvPfL3JNR5FHT9tpfHmYWr1vunRenBV1Tt1C98iivZWq4Ui19oyRauXG9ue2Wcnz/a6WMdj03aBhfYc25X56RCgvsX4EpWIdDm0W/Mn3/945epUtk9Te/LGvnbubwCz/M3v13gV2G/vXczD7c/2iTzP8dvEfwmESuKAUa5VpTLh9+fYiYuiCkG9GnT2FQss0eUl9imeZHQ3qbw59bFSWgX/H6NH/ud2bJ5i3/ivXfdZiaOH+tvU3LEh6JAKyBhJo0fHzjn3DNOCmxvj5Ij/3UPbRLagSYe6QYJ7UjhzJnM/muE9qqVK81CG5NCbMH8uaZHt2tk01uS0A7AUaCNlT//bq57PiZNV896At1YQE8g11v05vMPM3Xs1OcobNLCH81D703xstrHTh0GUZOrVlR16WCnKv+x+S8Pplzw1hs/f43p+8HUwG3Nlo/3jVv+Mu0fG+qXbeA1x8d5jg+ZttzTOpVEr1x/YlLCRdJlsoRHLjxzxQZ3bx6ZzElRtVMpe6rLbC1XquUvrHTfzVltvVinBbI/ssa+putZdQP79Mbo2avME5/EPF8x6IXBL1ruIYDZISLLgdLXrlTa9LzgsNyrSEiJIWUGeSVtGFQ8vs4Beldgvb+dLTbSzhoT63/1caaEldTJNZux1M6ceys2cw5OAnAW2F6MhPb2cieLoB4ktDMH+dKLzjVffvaJnxEJbR+KjFf23SvowUJCO2NIk2bA/iApPDl3kIR2zt2ySAr8XyO0XdCmTplkTmrSOLCbhHYAjgJtvDJsnqddLCfdcO6h5tAq+8hmSsvC9BZ95vOZZviMvI/TWhX2Nrdd1CClMmVjoqKoC7xYL33ka7/6nU49xDQ5pJy/nY0r//77r3ng3Slm6uKfvOKd3qCSuSRLPPH1lHd4voI4du3V4fPNx+OXeLtBnIBAKUyDquolD33lX2KXYjua569t5m9nulIU7TSdMmZrudKpS5TnfDB2sXljZMyLVfK+p/WRpsp+e8lmYPme9Xx9S3m+3mlliWpYeSJa7iGA2SO9bUBn9P3QQb/TSh7tbz2ZtwfTsT2kPujvnrKSVLvYeAthdtdr481cG5NB7FU7wJiLhn4eOtoyOA0prkFdm5kdthN99JwltBHIaOaMaWbq5MmmfIUK5ojGR5mSJfe23rCbzR9/5AUzQIPbYccdzV57BbXHfv11g/n7rzxvA6TZbbfdTbHixc0///xjZk6f5gXfK1e+gqldp57Zd7/UdHJwzXlzZps5s2eZ4javmgcdbKpVr+Hli2u4ho/IzZs2ebuljLNmTDeTJ443hzc80hx0cJ721Pr168zY0aPM2rU/mUPq1PXKtMMOO7jZedv4EbdwwXyzasUKG4hwjfnll5/NLrvuavbeu5SpVqOmV57QE52dP65ZY6ZNnWxWr1xhGjY6ylS358KKgsACjriHYn3uucsMGvC0bBpIjnxpAzYFzD6MuPfJrKD3Jyyvv2ybWWTxnT1zhvn9999MzVoHmxoH1TJ77hn+gg/LI2pCG212+rQpZtrkSaZK1eqmdr16pkSJ1H5EpFOfdetskCfbzrTtYeu/007BKZNh6fay5UrUdnV+6a5HRWj/bJ+1ObNmGXjuld13P+9ZRNDFVMsOD8ClSxZ5wUDX/vSjd14J2z4rVKxoatetH4dVWH3//PNPW4aZZsb0qWafMmXN0cc28fqpbeGhHUV/IPX50fZLwOTXDb+avUrsZfa2mvh16x1qypQtGwaD15dH3R9EcX9CC5vGzh+WL7MzNsaZX35eaxoe2dhra2hn6Pf/tc+22O6772F2LpbYIwDvkwXz5pm5c2YZPNfos6va90+yftG9xpknN/PeYXLNVpdebu64p7dsesuddt7Z7LHHnoF9UW9k8m5fZ9952qTPwbt2/NgxZvGiBaZ6zYO8d2mq/XZB+4PCeLen+/xoLPD7YMniRd674p9//7F9SlPbv+1riprQ/nPLFu/9KWX7P9ve5Z2F9xl+R02yv4OK2fZ+YJWq5tDDGybte3HP59pzFsyb67VN3N8Dq1Y1u+6a2gdYVIQ28F1pf3vNmzvbLLU4lzugvPcM4t3hvh+l7noZ1e835LncauEvXbzYrFix3Pz+22+mVOl9DOKPoE/Yv1xqZGS69dHevPhQfM56oBY0oFRheovq8sErC95ZuWpFUZffbTDIK54Y5kOUjNTyE2XJyrrfN5tiO+0Y5wG9LYun9cgTzRAYYL0Ih271IkRgxttbFu6gy89WfqfL0yN8WDANHR7tUVlRtNN0ypqt5UqnLlGeE+bFivyTtQvEPEDsAzEQhLkQPFbKy2UQgb9sYEjIcu1jZbmSyXEEz8r+rS7PjDQ//5rHvenSJhv07Gz7RmABK4oBRl2uqNdfHzHffDhuiZ9tD+twUL+ADgf+yVm2kpOE9ofvvWOuaNMqDsoOV17tkQJXtrs0cGzu96sCH/YtzznDDP0mNhrd6rK25tTTzzRXtW9jfvstTydOMnig7+OmTfuOshm3xMfudddebT796IO4Y9hxRafO5ta77vWIZZ2g30P3m/t63e7tAqFTsXJl8/EH7/lJzr+olenctbuB15y2lpdcZh5+vH/gAwkEzRN9HzSffPS+WfFDcCqFPrfcAQeYu+570Jx1znl6t7+OugMD7UGMg1WrVTdvvP+JubrD5WbcmBiZDNz6PhEjm/2MMli55YZuZuAzTxU4hy9HfGfq1Y+fEpPu/dEFAJnQ98He5uE+9+rd/vpxx59gHn1qgP2ATTxlRRJHSWhf1Kq1ufDs0+PabPuOV5lefR4KtBG5PpaZ1MctP/K74ebbzPU334pVzzAo1OzoYNAgkGBjpsxKSFzKuZksMyW0MaDUuWPbgI6wlAfl79X7AXNJm3ayK7D8+++/DZ7pzz7+0BsMChxUG8jn6mu7mWu735CQoPzq809N6wvPUWflrfboebvXvxVVUMgo+oNJE8aZAf2f9PoUt2/VFTzCDpzd92BfU6defb3bRNUfRHl/AgVMcwNkcrvWF5lvhw8L5LBPmTLmnY++MJe1PM8Oiiz2j13T7XrvPeLv2LqCwQHIJeh3h06DwdF+/Qf4g5L62FGH1fYGQPW+VNZXrd9UYIIqlXyRJtN3u9sHILjh4kULzUO97wkUATgPeuVNg3aXyNLtD6J8t2f6/EjdFliJjVbnnRVoUziGGUKPP/OcqVlxP0nqLQszKORXX3xmWl/QInC96fO/N2+8Otg8+mCfuPcZ3qvDx06Oc0zAe6bLle1C+2tkjt9Kd9k+O9mgDtJFQWij3XbrfGVc2ZE/7M577zdXXNUl9J0c1e83XAd1QVt3f8PhmBicAnre3su0OP9C2RW3TLc+a+2H4jX2g1HsNOsZm59G9VobAG/xmg1mj112Ngfuu5cpZr2kCuotusnKOKz6ZaP5ccNGs/OOO5i9rFdrBUvKYV0bdL2h7y3Wskl1c9YRlWUz6RIf+Ag2uHrdH96YPjzXypXaPaE2OAYEVv3yh1m+9nfr5VbMBl7dM6EHmL4wPrZ/sOf8n/XerbDPHgmnNmdSF329/NY32WBS7bYGk4JH8UvdTjDr//jTcwDCucXt/drd3rtEtu73LX5a3GPcX9eA1dpfNxvI1eB6yK+sJVJA+GoDqYD7gOCO+poIeLXy5z/M/qV288qDPP6wRLzYnrY9uG1Bjslygw1qt9Ler3X2Gsi7xO7FTHmLvyZzfrN5brTSK/BsK7l7cTnVWy6zbWuFLT/2V7VerDs5bQ+J4ApyudKnTTRD4PmvZpuvpy738r3wmGqmRaMDvfUo/v1jsUb7wh+8LlHH+SvWm16vxyT8Dq9WxlzXIvhbzL12Nj5zbhmTbef3/EBD+NeNW/wsStj7ivYfZltse0PbgO1g06ANJGsrwH752t/ss13c9nl7em02LF+9D/nhPHhXot8pW7LwiMa735hgZi+zzksh1sUGxDsqJCCe6/maTCYHz/DCVRs8fCuV2TMhaYp+QaQvgCmeOzEMtC2xuv7AA17jpfcM9hWSTi/R9lfbZxzvCsR0qLDP7mYXR79ep091HeUUwhPnJOrncMxNC218d8AX7WmFLSfejbjPeE7D+pNU+0NcVwyDV4iHgKaM9y3ela4hX5QThuuGpZFzUr2XSJ+ovMhj8epf7Ttgkzmg9O5x/a5cK4olZhvB8zzMID/mvnOQTp9Tbf8SptclR4Sd7u1De5xnvbnRV0B7PBF2uMcIpIp7X9q+53TPAhy+//E37x4hCHMqwYxTbTM/rt9oug741i9/Kr/R/MRZvpJzhPYLA58xN3a/NiGsIIxc4iQ/QhuE8qKFC+LOk4u89u5Hplnzk2TTX479bpRHSvz0Y0xk3T+oVuDFi49neGyL6Y9e2Zfq8r1PvjJHWY9NsVEjhhtXP1iOhS3xAXvhxa0Dh+BRe8GZpyYk40Bqw5NLE+bZRGh//NUwj+zTlcrk/kg+qG+Hyy4O6F7LMb1Eu3t60GBz4smn6t1x6y4hnK7kSP3DGngeaW5blwsiX7Q51zMs0/qsXrXKgAhzrzt5NjzS8gj9C88+zQwf+o0UxVs+NfAFc96FFwf2Rb3hklkFkRzJr1+RsmIwqO+Tz8R5qcKLuEKZ1D31QbaAaHTt9VdeMl2vusLd7W8ff8KJgcE4HCiMoJBR9QcYBHrgvl5++fNbGTVxeqCfTJfQdvuDqO5PfuVP5TjeF+ecfmLAG1qfB7LVfadgcPP2u3vrZB4ZfmW71nFpA4m2bjz82FOm9eXtA4eyjdDO7xlM5d3u9gHHHNc0btBAgzB78Q+e96reh/X8yiLpw/qDKN/tmT4/KOf0qVNMi1Obx/XZUge8s0AyaytqQhsDNo/3fUgXIbA+Y8GywGDos089bm676fpAmrANPEsvvf6ON+st7Dj2ZUJo4zfRTd27GvTb+RkGl1549S3PK16njeL3G/LD752z7CyLVAyOFvc88Ehc0kzrM3buatPvo5j26u0tG5qDyofPGJuzfJ156tPpPmEhhTnB6jp+s5XMwz4Qbg9cHu8tio/SkTNXmvfHLDJr7EdamIkHNsjBTycs9QjmsHTYB4L6GRu80rUZdvo1gkIlIngQVOoRG1RKDOV6Z/RCW67YgKQcg4djl9PreHWSfVj+aT/ov7SBAnHepi1/60MemdHZniNT/TOpSyDjFDdQH5EcqV2plNVSPdzc9OJ33ge3ZAEPYngSuzbwy1lmyLSYkw00eKHFKwYC+/2xS8zo2StDSQbck1utJAyIfZj2qL32TJtXzX0NJG6+mPS9d754PL9mvdA+Ul5oV55yiDmudvzMhN+sZvTn9txPJy6Nwx3XA4HWrnkt/1zockOfG3bSoRXM5Scc5MmaDPhydsDrD2TGLRcCk7y2P2/FOvPC13PMD7a+Otial5H61++KY7xApVpypHebRgakX6YGCmeovRcvDpkTKAPqCJ37CVvrheskIjmy9ZkrCDapPj8g9O+0UgNi7nMu+0EQdX9ulN9+pR/Rnvjo09pbrdollrSDzjQGPsTQVtCWG1YPn6U4YcEag/aAwTFtmP2CPAtDp9rVUNbXBbkGCRx3gEh7vibyYp288Cfz2sj5gYDByBttsNMptU3jg2J9A/ZjALHbwDzyDTg9YYOjYgANz5L2BkfaBha/rhZHpHMNxOE7NqifDBLp4xi8aX/iwRl5k+OZRiBFMZRhgJ2Z5EpYgCTuNnBU4H2l9ZiX/vir7c/mmxlL10pW/vLsIw805x1VJUBsp9ofIhNIHQ2w/bH7fkF7xSylBtXy2h9I/9YPf+1fV9qzv2PrSkHvJU7T5e12dj2vzaOfftu+93S/iH4cpLE7aOiWoaDb7mwj93xIo0EiTRveER1tfAGxow+2QZFPqy2b3hJ96wf2fY/25Xp/o99AuwS5rQ2/cZ6zA5cw6VswWP7UpzPtAOM6ndRzCkCfHGYFbTPIQ3uc50fQh10zW/flFKENb7SDq5QvMJb5Edr5ZQjyGCSyNhB6R9arlRKZgPNAQH42ZKQ/dTaTj97uN/Y0N95yh1+cgn4Q4SNv4oz5Aa9xfEzec8ctfp6prGQzoZ3p/ZH6uwS07E+0hKcZpnEnMje/dAntRPnr/fiQP/m0M/Qu414/cDBkI6w+YR7EQtCGed/BE+yZ5weH5B7tLpfMSpXQnjJpgjm5aeyDNL9ShXnLFpQwxTWGjp5gDq5dx78cZHHqVKuUkHjyEzorhUFoR9UfFJSQA0E44MVX/RpuK0IbBXDvj1+oDFfQzyYj78KydwltSJQ0qF2zQG3FHSzIJkI7qne72weEYan33XTrnaZbj5v1Lk9yLJP+IMp3e6bPDyrmzkgLVDbBRlET2gmK4e/WhPbokSO8ASH/YD4r8Ej+dvzUhPJvmRDaBb0/8p7URY7i9xvyO/aI+qGDZGEDQYkI7UzrM3joXPPZxO/96j1pCQh4oLkG8vaFb+a4u0O3w7xF4al4j/UiBFGRzA6rWsZcf059LxASAiIlM5c4hwfqgzZ4ZCIiW/LSesMgA3q+NCZA9ko6vXy43VHWm3h3bxcC8d3x6rg4wkqnB0HyQFt7jv04RlCngtRlkCV/Ji9K7nSjr4X1i63nemPlhQkJgrnLfzFCrLs66SBbLjq2WiAbeOPhw1kM7eCJK4/1PNJAAGDqsyadJZ27FKw0sY40+MDHNUDUiElb0WQijoGEBxmvDcT0Y3bwBfkmM5DWIK9hN9t7C+9GGAgKeKqCPA8zTWqhnonS6XPh/Q6PSBCfj3wwxdS3RHMUQbtQw0cVGa+vGbbetvlB5sT6eXWW49n6zEn5Ul2m+vz0sQMJbfp+E2gfmnyU6z356QwzatZK2TQdLTnY1EoZoR+ABzEMfQsGsm4ZPCaQn3+SXXnYDoppnWKQnwiOO8YOEiazzqcHgy+ijYK4K4ghjkAZOyNCTHuk1jygpJ0VYeVMV62XwyYsMKw+p+p+JczdrWNerKjLayMW+LrwfkbOyplHVPb6HtmNwcT73pwom+ZqSyTiOcJzH2Zh/dDClXb2gX1XaMLUPRcEKvB3SXo3XbJtd5APA3EH2xgN2rR+PvZrchRkKGZmJLNjLZl61VYytSD94UtD5noDd8nylnYLj3gMaIi5MjPp3suw8q6w7/EpW+McyPVkWdn2r/dd1kg2vZlR96q24B9IsoKZUfdeeqSfAv1qT/sMiuEd8tWUZYG2ccfFDQ3avNgiO5Pg1pfHymZc28ez9ojtW/P7nYDA2Bg4FNODltiH9tLbvtsTvY/C2lNB24xcW2uCYzDpxf+dIIdyeplThHbYj20QQl279zDQxb7zlptCP/BTIbThXXrH3X08PeInHn047qZiZF17u8LrEOXRBuL7EivDAR1ITJ2FnrU2kHoyzdP96AU53LpN2zgJCRDXDY5oZLTMADyqXn7rfT9r+SDCh1sH63nT6OhjTPnyFUxJq50Nz/P33n4jbso1SCORHoEERf2DDowj53FcPEIxBdW1wiC0x4/9LoDbu2++HuftG+bZ2qz5yQEiOdP7g7qOGDokgDv2oZ1AYgO662+/8WqcZxvkaSBTk8hcQjlTQhvyIhXtff/is48NPvS1uQMxUdbnpuu6BrTNcd3Ph35rOl/RNnD/MHgCIi2/ad+63Omuu2RWKoQ2Xs7watNSOrg+vFmbNmtuNVF/CPUEHDdtjqfnLmUVQhvkQZv2V5hTrIRRhYqVvTYJb9sxo0aajm2DsyLaXtHJ9Hm4n2RhBg8aaK7v2tnfxgryg5wLyon+xvWMR5qoCe0o+wPpsxsddYy5vENHc/AhdcwBFSrYOAO72HgFU02/hx+Ik2uaOneJ2W///VE1q3scTX8Qxf3xCpThP3i+u/IOyLLr9Teaw6xW8LtvvW4+ePftuKu4hDa8U+Glqq3rdT0MpKqgtT1y2BBz1603B9qL+9745MP3vfem5HH37T0D7wC8W6/sfK0c9pcg5aI2aSc633Te7W4fgPwgCYXn+eMP3o3DFh7ckHgRi6I/iPLdLrik+/xAjxpEp2sYlIO28+BBz4XOytpWhDbqeUSjxl7Zln2/1Hz2yUceSSuENvThT2zSKCAzgj7y7j4PmqObNDV//P67J13S//FHA1W+454+ntRTYOfWjXQJ7RXLl5tDD64ayBIz2eD5XNPOyltlY5Dg/n3zVax9ITEcGw5rEPvYz/T3G/KErE6j+kEt6I5XX2O6/O96Lw4M+r+lS5eYT6ysHQbTLm59WZyHdhT16WMDSU1bshZF8ixs2vnYedaL+8OYF7ekBakAosL9oHO9RUHm3v9OXsAqORdLkCgwTbycclhFc1mzmh5R8K31Ana900BGizWsvq+5ygY8hGHK7+2v2NgGDnECTypMiZ64IEYQY/r/Q5aghr1rPbnftp6AYvBUrF25tFlvtZyFhNYyE5DGuM56d+rrwAOyrj0HHplCiCE/eGKCvALpUZC6IH9IaRTExHsu0TnT7T1G0DCxQyqWsh7Jh8umt3QHNySYJO7v/e9MjvNCBFbABkSzbgMvWpIXRJM7VRr3wvVaBakOUkuTiShM3w7HmH3t1H0xeM+/qQLYYT8+7GtZL3NIh+j7oTVGtYeh5JVs2eGkWqZZ3fIJvSNxTfEohUwBprwXhmkJE8kf18Ugg0g6yH4sbzzvMEu+lPZ3ZfMz5xcyxZWCPD8u+X3NGXUDXsRoJ4kGbXQcAHi54llPRqpqchNVedT2keNsXymG+1WnUmlP0mTSwlj/o72hXU9hOTe/5fPXWm/irdIbkExAOxc71gaAhb4wCFsxlOVxOzglHrSQQ+n4xDA57PdVsgPEvB54wn70vXjOXUzut7NxZEYGdOShJ5+qoe8caD2jxTD4BDJS9yfoN6pb2Qi8p/SAqPRPcm5Bl+4gHwYFQdBru/750QHvfJG4GDJtuRloZ3log9QE5EbG2AE7XX4ZJE61P0SfpmcaoM8BsbqjlbqA9z/yxr143PY9kFqaZaVmMFgsBs/37tabWizde+kS5ZJfsqXutycv+sk8+O7kZMnjjkG26lE760XM/e2BQaYNVlYIhL8Y2gcGN8TPHwNKGPgU0+0EUimQ79DvC6TD847nSN837Hviyia+bI476Ir74j4Lck0sj7Azm/5nZziJpdNm5Nz+Vu9+pNK7H9ClaUDCS9Ll2jKnCO1DqpYPfHDjQ2bctNmm9D5lPNyhN3lqs/gfBKkQ2u9/9rVpfHTeuU8/0c/c0bNH4F5OmbPYD6aDgIBV9o+97JEQHtgf2DwQhBEGEuu4RocGygvCGUQYzP3ofe9TKyNyTBPT5uLzzef2I05MyJ0j6h7k619C9/OjL2MvHARFmjZlisHHeVjgOnwEwhtPa7Le1us++7FznXcZ6Lied+bJcklvefa555tnBr3seVOAoO9kdcldoqUwCO1AIezGnbfcaPTHqcbQTSvbUdwf5HX2KSeYMaNjWkPYN2HGPEtUVsKqF3ztsovOjftg1W3FS6j+RUlog+gEuQ5DIDUE7UQwT226LFHWB1OTTzj6iAB5ra8r6+9+/KUlGo6TzUJdumRWKoR2mLcfiIC7rQa5WNhUbpeMBhEG3dImxzdLGIysW5dO5tWXBkm23mDR6+997G+7QVdxYMio8V4AO6xDOqD5sbHRZuyDRU1oR9kfILAlTILcehvqH/ok9G3aPv1mREKJgHT6A+Qdxf3RZUx3/c3XXjbXXNk+cPrNt91l/nfDTd4+aH1f3uqCOA1cTWhD9qdujbw+SDI67cyzPYkh2cbywd53xw1kJmsriNcA3Wgxt43L/sJYRvVud/sAlHXJ6l/8ZxLazVpew32fRNEfRPluz/T5gZ4y2oG2+x95zA4uXentwgDLSU0aB34b4MC2ILTvuf9hT2dalxW/XTBwjN8jCPKIWCVtL7lQJzG9H+pn2nXsFNjn9qUYiIYsVpilS2iHDSrp/hrXgqNFtQPyfp/Ktd3fTZn+fkO+CCZ+yvGxDzfsg9NDmAQaZgItW7rUC2qNdGJR1OeWwWOtFuYGL8uwqcogda7uPzxALEOCor0l/kDogRiBF5Z4wSIj7SGL6bz4gNQfipAVgRcrSBZIg7ylCOU21rv25K3etcgL08LloxHpB3dvjt0Bg5f1TS+OCUyLhzfuzecf5ulhLrAefyC7xfQ0ZT2VF+f0Vh5mICDwUX50rf38j0eXaASRDTIZ0+r/tRe4whJL+DCGuZ5yqdQF5xWUhMU5KLc7RRr7xaDXeflWXW3sc4kkaFrjunKfQLo9dVUT73viRUseQCJEDGTKrVaeQyRVWj30lRzyPv7Fe2yW9da8x7aNMIMnM9pWyybVTA1LBGkyEelxn3G/YZgq/+B7wd/J4p2I43e8Oj4w5RuDFRi0wG+IS9RUfKSFofxdz6znaSE/Zb119YAOZE4gdyL2gCXytUdiUQTYdD0MUZZLj69pPbDLe97gIPBB+slzgePaWzjbnzmUNx1L5fmBHI0mu5rVPcB0OCk2cIjZD/DwFBN96URtBc8JvKFBmj1vz9WkksjlIC8QjY+8P1Wy9QYe7rSeo+JF/fD7UwKDatK+XZLTzyDJitsPYhANA0Ji5x9d1fNKdT3RG1m5H0ilwFzP13MaVzEX2PNg0BPWhCquh0GiOravQ18LYk9kfJAe7wNIE8HeGLnAfDB2sbeu/4Fkb3Vcde+6GNzUJgNguAfXWQJZD3pdYPXoz9mqRw95B8h/iCULCihpki3dQT5IyKAvF3NxwAyYa86o40lU6Hca8MGAkswoQftCOxPDewjYpdoffjNluRm5dQYB8n7Wkpe7bh282GhnIX03Z7XnkYyBWtjwGSvMM5/nfbdhWw8ou3UoyL10iXLkDcPsBUhyWH7de/drchjyH3i/wgo6uIFzRCIL6zB3psxdrY4wVfffy3qkfxuQCul48iF2lkWeRBUCKGI2kZiWUXtn9CJPJkyOYYAQxzF4iplXmC2hJUgg7YLfKzB30FXyQN+M9wZmukGCTAyzN9Avw9w+OdU2I3m5v5NE6kqO5+oyZwjtzZs2mYplSwRwxlRhTBnWBmLWDbSVCqG9dPU6n4z+btRIT3NS5zvCBiWqWSvvRYaPfjdY48CXXjNntjhXn2L6PtDb9LnnzsA++bh2P3q/HjnWC4gG/VytxyjpTzy2kU9WQpN75LgpgXyxgWnoQ77+0nqVrjCrV600a9asNv9YggQ2+tsRAXIdnr33PZTnxRRGsnwxfLSpf+jh3rn4N2XyRHPycXleKLLT/TCT/VEu0yGworg/qEPVcvsEPBw1ZlLHsLby1gefecSmpNHLKAntuUtXel74kv87b77mBe6UbSw1ORh1fRIRrHJ9DJhg4KSozCWzUiG0n3/2aXPz9V0DRZRBJL0TmsfaA94dVJK08IRDwFkQtXgGEfBry5bN3uElixb5zzB2wJtv9KQZcqpxSb0w7323/eDkZCSln3kBVgqjP0BQunFW4xV4rLK4oK8Sc2d/6NkjkkaW6fQHci6WmdwfnU+662EEo/t+wiAaBp+0aUI7jHRF0F7MKNAW1g++/eHn5timMQ8WnX5bEdpRvtvdPsCdpeK+kzEovnDFTz4MUfQHhfFuT/f5cX9PoL6zFi03xXfZxa/zM08+Zm6/+QZ/GytFTWiHvVsDBdq6IR7r+pj7/ODYoAFPG8wi0ia/pfQ+rKdLaLsDxNDIxvvWNQQw131condHur/fcD30q/VqVg5cGvf60rbtvVmBCJjtBp4KJLYbUdQHWrJCICDglJ7ui+vhwxAfiGLwqr6zVUOfbMT+Jz+xU/itN7WY9hZ1PwLFI1fSup5H2rsWhJ3WOS1lg4hBAsM1l0Spbb0iMV0YH42w0bNXeTq4cp54gYPEbatIXpCsPex5icwlnzAAAI89kNmwmZbA1VOsxUMbx1KtC9KCtNBkJfblZyhLfu3FnWIP/XGcB8PHODy0xYQgcOuE9PDIFE9PBGbs9NRwOc0jksX7fZj11oT0iTYQCDguBA2OYSAgUVBR5H+NnU6v8XCnmOtBCeQHQh3ec27AUxxDm4AHoASkczXkNemH9K63PMglDOQUprnPTJgsw1UWc+2tKtInKJd7fjY9c+nilurzozWccS0Q0aKXD23dq+zgnAzagJDuZ59f9BIIvNdFye3gXLQVnCukNCRcbhg0Goc8w3EZYHMHZPq0sbOWrP4+DGQWAtvKQJf20MZxEGkgc1O1HSyTiACJYiCXoRUvBpmPY6zUBZ4dPBtSXxyXARm33YsXaxipDAkoSEGJuc+Vxhiesa7kysl21k0bO+tGzNX7fqFrMy/w7LDpK2x/ESNm9cAjzsVMGsyoEZMyy3ZBl+4gn/t+cWcvifexW0c9CAsP4PvemmTmWLknMfHQTrU/1H0OBt8GdDnef5dJnnqJAWEQnmIyoJzpvXTvB/JHm7730kZ+eeCND+JaTLcVDH7gmSuIFbP9tsw8wHnQrNbxOZ666jhPO32KHWh+QHl/A6f+9hjexW6ZoONeyr538Ix3te8SeR7cdwGu59ZZ4i7gmPuMY5+ur6v3ney5SLXN4Bow/L7C7yyx++w9QNDqXLecIbSXLF7kaVZrwMM+4t0PVqR3P3hcTUn3AyOMCNAEb5iXkEsu4roTx481p53QBKu+CTHufvQOHzPJ82KE5ACkB8SW//SrN4Uc+SA/mOtt9PPanyxxfpd58bln5bR8l/B4evaFV7x0blmwc/WGPBJOZ+SSBdlKaEdxf+BhD4JR2+A33jUgGbXBe31/NZURxx589AlzWbsrdDJ/3SUkw0hLP7FagaYrtJ7F3DaL/RjIgHSMNgSGhPdmYdUH3vMgGV2DXMDnQ74NECdumqi33faZCqHteqWh3NBOdu3Jfo+YXrfd7O92iTC0A6R5+olHAwNH/gkhKzoPeCIesFVTU5JiwAlEj7Ywwi1qQjvK/mDm9Gmmd6/bA16xuj5h65DsgXRPmKVLaGd6f8LKks4+l2DEzJ4vho0KZAXJl/Kl8z5e5IAmtOHlD2//dOyhfk9akqtD6KnbitCO8t3u9gF6FgsqHfb86HddFP2B+/xk8m7P9PlxB/jDPPnDfu8UNaEN2RfMMMvPIGkFj+10DE4AcAZwLV1C2x0gdvNNtK37faTJ9Pcb8sDHJmK66Fl42C8G6a8TTjzFI7ebNG0WkM+TNFHUR3+kiX615I+lPo7tsIB3t708LiAbIhrKCKx3p/WeFcN04r6WTMyjmfP2ut61D1rdafE8cwkkBDFEMENtICXaK89iHBMCQdK5siLyMekSGkiPa1xovQIlOKDkgaVLqLRuWsPUt95o81es97zkNImB9DecY73VquZ5q6VSF5xTmOZOsReNULRFkNIg1mAgraE9DOIMnu3wcBdzpU1Qd+iJi+lBAUiEuIE2NdEn57gyEFoSxvWok2B9ci6WiTzEEcS01+ux9oe04pGLdRgCYCIQphh0qKFHLZaKV7CkjWLpTvMHMf/8tc18AgnXSDYAkO3PXLoYFeT5cfus5y1himB/7uBc9xb1/MB6YW3lEvt8wwtYDLhf9sjXPiGG/a9eb4OFOx7NkIeAZ+diq+U72spPQIZESDScIwNqWI/CXC9WeIbX2Kop7Hp2yiwU9xwJEuvioL3QdVm1/rYm9t13Ac4HEYw0Yu4MFBmAcvsakHYgRaF1/I2V+JCBV+SD/DCYiAGyTMwd5JOyuIOX4oWOYMDt7CCo3E88n09aWQoE+sNsHpDWMnCBcum+LNX+0JU5QR3RFlEGjaPU2x1QlkHhTO+lS5Tjeq5nsCuzo995Ur5Mlq6EkJZEc387nNGwsjcLAIPKGIgVk3Pc+oS9S9zZMdDmxgCq2+ci7yZ21gEGVcTcNiMe2pm0Gcnb1aa/1cqFHWxlw3LdcobQDpv2L17N+iaEfbDmR2ife0FL0/+5F/1sZs+cYZo2jnkn44AmtKFdig9fbavWb4rzaIAGZIPaNXQy8/Kb75kTTzktTnKkIB+9+DiZuXC5ly+kH1qcemKA7AxcMMEGtLFF7qDn9f8zzz3b30/pTsOWA24QsWwltKO4P6EfuZZ4AgHl2qG1qpgVP8RGFTX55KaNitB2g+fhOn9u2WKn7wRH2WQ6dmHVBxIJDWpXD9QfZSlKqRFcD+aSWakQ2u79cHWG83K2H5+WRAGZok33K9DM7333HfpwSutCpoV52GnNfcnsY6uB2v7SlrLpLaMmtKPqD+BVilkdYbrfgQo4G1oOyTmUlgQR8sj0/rjlSHfbJRihtf7ia2/HZee2Zd2npBNUUi4Ane2ed9wtm4HltiK0o3y3u7g98nh/c0mbdn49Xxj4jLmx+7X+NlbkGcR6FP1BJoS2frdH8fy47+ywGA9rVq82dapXRPV9K2pCO9UArHqmml/YFFdee/cj06z5SXGpQ9+Nzgw196QNG9ab6uXLurtT3sasABDbUfx+k4uOCIn5Icf0sm69Q83Awa8FYkBEVR/t3arJSFzfncouH2i6bFh3vUVlCrmrORn2sRt37lbvWuTremEhcBukJrS505pdb0CkdT/49bRo7aGu8wX5Dk83ENZiLtEg+8OWQprLsVTqgrQgx1yvZskj0RIkFabC52fuFHuRJnB1SkVHOtEHur7OCKvr+bTV9xTT+LvarVqLXNJj6ZKw0g5BInR6cphPtCOt9irHtkuG6zbqls31jMX5LsmpdXRT9QpGPlGZSzRqPOUabp01aZYLz5zUoyDLVJ8f5NnfysiIZAO2MXBT0w5UQQ5IiEiNGdK4bSXMMxYDP1rCBmQmCNBUAvjhGjAEQYW+scymwMwI7YGalyr5fxBxpx4ee/+7Xqx6QA8ew+jjZbAKOUNXfOb3dna4HcwRw8wXeCh/YYP/vqiC/7a0utJnHVFZkvlLTWhjp5CGbn/uelGDoG6tZICEDIf8EIjiVAzngLSvanW1MzV3kA+SFtXLlfAGuTQ+fTscbWUpdot7JyW7PvDsY6WgxJs+1f4QwZcRhNk1tMnzjqrqSYrEhgdM3KCjDApnei/d96aecSRlc2eDICgkgkPCUF8tRSbnJFt2POVgT4JK0vzPypWtsdJfMLf/dge5kAY68QigKHEGMDiLdwbMlY8K83JGQNLblDwZdNHvsjPS3D4X+eFaMtMH266kjMSpcPsupE1kbpuRdO67252lJOlybZkzhHbYR8eHXwwxRzbO05QR4MPITE08IZ3roV1YhHaYPqzoGkb10RsmD4A64mMJHk+lSu9jdt9tN/PeO28GPEdJaBvPm8nV75X7E9beEPTwUBu4zTVXKiKZ1IZLmKTroZ0qoY2gg9DCLaz6IOBVq/POciHxAo5COqIozSWzoiS033r9FdOlY4wYQ72kX0Hg1caHxkZWdZ3xnJXddz+z5557mgnjx8UNPAmZFqaLnOuEtuuNLLhAauWQOnXN3qVK26mBO5sBTz8ph7xl1IR2FPcnUMAMNtzn3w1KiKzxobNfiZgkBPZpQhvBG8MCFyNdfpasb9pWhHZY35Tuu93tAwqL0E7WH0T1bo/i+ckVQjvVQblMCG15t7vPSFj70w4MbnpsJwruGpY2bJ+8O6L4/abzh5b27Tf3iAtyrNNgHU4L346faooVz/NIi6o+mAq/3GrywjQZiG0QLSBLxECiQC9S20obfB26p2L46IZHKazdY0MC2tvi/SZp3Q9SIYjkuPtBDs/pFlv1VCXNQ+9NMTrgmninyXH0zfDg1sEl5YMfafDBfZf14tXH5VwstVaz9tbVaWQdRAsCQcGrU/Sl5VgqdUFaN52cn2zp6o4mSut6pAtxrL0UQQBgWjfqAlIF5IpYmGcpgn7BM1EMAT2RDuZ6a151am1z7CH7S1J/6U6nlmneCIyJ6fdiLgmJ/S5eUiccc727QQadd1QVHPLNlQ+AxjBkR2ArbNvGIIZY2AwBORbVEtIRWp9YvOh1/u590TMrcuGZ03VJdd29z2F9geTlymnAc3P3XXby9J0ljegay7Y7+yJMnzmR1AYCpk5dHHsGJE+9xGAO2jW8bLW5JJs+lmhdD7ogTTIvVhyH5vLjH8eC5OEZx7M01w6eib1yXXOPZIcWMzSZxfTgn+yDB7IOQqmlFfRsCfQh8I5HgFgxF0OR+cA7CO+iZIZyS8DLTD2z5TouUYj+C5638PKXwQ+tre1KM0k+eon3KAYdMNsD7zSxVPvDTVZy6lY76wn9T5iJlrcc04PS2CcSLpneS9djHlJjiHegzZ0NoSWZ8ntf6nxk3Y0FoQdOIHd2d+sjJKm3xOAvvOLF0BfiWZR7p2XUujwzMqCP7f4eQR7u4K68i9xB12p2MKXXJcGyuHIlMgCfSZuRerm67A9Y2S9omee65QyhHSaZ0K//ANPykssC96BHt2vipDfk40ESZkpoI2gjgjdqm734B4881vvGj/3OnHFiU73L+4ioXvOgyDy03SCSuNh1N91iuvfoGZhW6gZJ0oT2Y488aO6989ZAOYVo0zvdKanZ6qEdxf3BNOBaBx6gq+95UsKjUhs8lMvZF462hx97yrS+vL3e5a8joBUkUcTCCC05ppfpSo688Opb5tQzzvKmNUddHzyTmOacyAP38WeeMxde3FpXo1DXXTJLB9tLdGFox0JDViyRPv3jfR8y8IwV09PGP3jnLdOxbbCexx1/gnn+lTe8gSU5J0w/WZ6zbJIciaI/CCNlgYNLKiGYaaV9gz9qoia0o7g/cg8zXbqSFvDInT7/+0AwX8z2wKwPbZrQfvmF58x1116tDxsE1Nthxzzt1cABZ6ORHQDGYEKYbStCO8p3u9sHFJTQjqI/iILQjur5ufDs08zwod/4tztbJUcmz1poypUPSnz5hVYrV7VvY95963V/D/rhnneGzzjwE21daWFl1iSAuD4GWZdmRwcHqj/4/BvT6KhjdLK4dff3EDS0z7vo4rh07o5dLIncsnUbs6N9XqP4/ebmj214948cNsSMsXELvv78s9B3tOuFH0V94M0kxIZLKLtTpEWbU5ffDbImpCOm2bbpG2vH2lNKzn952Dzz6YSlshlHqLuej/BCxse8Ntdr2vWacgkLnCsf/JIPtC8/n7TMfG2DeWldYhwXgh4fyPi41obpyKgvglRVsR/bFewHJkicMEulLjjv1eHzzcfjl4RlkXBf2NTpRIk1eQ2PN+id9xw8xk8OuQ0QMTBoauNjXEx0tWUbWt/tHxsqm95Se+G73poi/RA4wW64sggYNMHgCYgJkIVirr419usBGWxrj2bXU/e6FvU9D1mkE3NJprstSSGen65nnRswUvKIcqmDtCJfHexRruPOKpCBhlx65qQuqS5TfX6Qn9su4TG6ygYUlEErbMOTVJsbQLGnndJf25nS75LqQli5bRD572/7BQxqVbFxCQ60S0iehJl+HsOOh+1zZX+0F2tYP4s8kl1Hn+N63EIvH/2aNldXX55L9J145sU00S37XBkMGSSaunitfdYnSTKv3622f0l7bfSvJUxViyE8pKM2d5DvaKs9jvrqoIISZBbXdt9ZIORxv/EHwrWKfRegXw2zVPtDnAtP9hEzVtr30lLz/Y95A846T9Hzxj49iKDf4ZncS+TrEuWD7OCExIvAcVeGA+8+0ZQPe1/inPzsuWuP9+MruF770s50Hph5gKDVQmDrY1iXX7MIXAAAIolJREFUc9yZARonfc5rNmYIZsmIyTsv0aCrpMPSlTSRQbdM2ozk784kEF1wOZ6ry5whtMM+8PDBgQ8PMURvr1OtUtyP96gJ7TBJkjBvygfu62UQxEibBJ+M4qMX+YZ5LInutlwXZFnNivsFcNGEdpi3meuhFObFVBSEtuuNqKdkS/3cZRT3B3m6H3hh07VHhEzzTaYHmqqcg1snl9DGcVe3PSwo5GdDRprDGuSN/EVZHzyPl7U8z3z52SduUQPb46bNCUxtDhxUGwiuOWlCUJ8QbRSa1qma6414eYcrzf2PxMjqsHzCJAgmzpxvyleITcHDee6AkNYw73PPnV4AWJ1/mIdpx8svMR+8+7ZOFpA7cD39w7z3XQ9fZJaqd2Pgwkk2ougP1q9fZ2pUCHqPhA3ezJk10xzX6LBAaZIR2un0B1Hdn0Ah7QaCGQ6yEhYY1BLbzc6GwYyIRBYWgM+V53EHT5CXJrRHjRhuzj3jpMAlxkyZZQ6sUjWwr6Ab7rsEg8UYNC5si/LdnimhHUV/EMW7Parnp1vnK82rg1/wbyEIYDcoZNisNpfs9DOIYOWrLz4zrS9oEcgpVULbDQqJeCITZy4IDAgFMk5hI2x2zLODXjZnn3dB0rPdIIrpPC/uM4cLFvT3W9JC2oP4/ffFpx+bdq0vCiS9ptv15ta7Yr9Po6iP6xGqvZbc4EqujIYrSYHCSiCv1ZZA6jYw5l3ren+HfYhq71rk5Xpfa7IRx2FxHqndbEBA5RHokk2JPmTzcjNm8sKfzKMfTQ0EIQRJjqBSWm7Anf4s5ydaplIXnAuZiw0btyTKJnT/7sV3CgTSCk20daf7YQxSTjzcdrP5YHq2kPIPvz/FTFzwo5+dJqux0/1Qxz7t/a6JFhkYQBrXXE9CIZ5drzRNViOPsMEK7SHuaqyG6b+7JNPTVjt8r62ElOsJfYGdIXCOM0PArUum227APE2mIe/vrCYzpvJrk+cyV585XZdE66k+P3K++9zLfixvb9kwTiPfbSuaMJRzNXGMfUJ6u4MiT13VxA+aKucmWsLbGQR8QQx9z06qj9NerGFkPfJ2tYH19fQ5eoATae4LCT7nvjNEaxxa+/DqFQubOTJy5krT/7MZksTzuL7K6hC7RDeI5c42uGVRmCb74dH7q+1/RbJCz35AWVzSMtGsk7Byp9ofuufCex1a1dpjW4hWvEfhJS2mBxEyuZfIT5dXk9VyrXW/b7Zk8gjZ9PTMIXcjhgEOSN6kahgKxgCBGIh83BuxsOC4OIag1XoAQtJjKeeAfNf692H1QRrIEmkNdIn54A66XnKc1ddvWAmX8M0dFOtyeh1zVK39Mmozkrn7zOnfaZImF5c5Q2gDXEgbQOJA2y133mMwjXrL5s2mc8e2BhqzrkVNaEP3sPK+ewcuA+Ltoy+H+h6Z8LI7tmG9AImsvT+j+OhFAVxNVuybOneJ2W//2FS8Tz58P+5jRhPaIBNbnNocp/qGoJHP2I86aHMhoFqndpfGkXFFQWg//UQ/c0fPHn65sDLsu4mm1iGJX05R3B9cx/Vuw75RE6ebatVrYNVrcxede4YZPTLWCWP/tHlLzb77BT1/sB8W5v366TcjDLy7klkYoa0DnsHT9Wx7D3XgSOSnyxJlfV56foC54X9dAkWGXjc8/bXHNojf9z79KjBbIHDS1o1be3SPk54Im4ERdq7sc+sH8mbynIVmr70Sa6ONGzPaI6slDyzhXY/geaJLN2zI1+aiFqfrJKbj1deYu/s85O0L02ce+NJr5swW5/rnhAXsxEHx0Mb6OaefGNeWhowa73vUTp86xTQ/Nr6dRE1oR9EfhOm5Q2pk9KTYj0/UOey+JyO00+kPoro/KK+2H9esMbWr5Xmfyf78BtzCAgVj+v+7n3zpDaKgL0E7cE0T2mF66/C8fW7w66HEHoj3D95723z28YcGQWITGUhGkI1ieH7w7txpp51kV6Eto3q3Z0poR9EfRPFuj+r5CQuSjUE+DPbBIDVxUpPGccEEs5XQ/vC9d8wVbVoF2iH6YfTHYbb2px9tkO3nPFIX78swC5sdg1gKL9kg0DvssEPYKd4+d3AaOxPJkuHYvDmzzcBnnrLBGU82J592BnZF8vvNy8j+e+3lF713Dp7bMHPfLxe1utQ89vRAP2kU9XE/BjWB5npoi7cTCgCPKAR8XLgqFjAQ+8Vb1PXWA5Gsg9u5H2g4V6b3Yh3mklIIVOh6v7leZFrD82srmfK8kkxBnvqDH9th9t6YxeYtG9BQTDyL3SnLCEqGoGfa1v2+xU7Z/8Hz7hRPXxxPpS46n8JaDyOB5VpCjMq26+GspQ5cskHOEe939/6L576k08ter0+whNYv/i4hnl2vONEkRUKQgPDOh7aptuvPqW9AQsHc+6Wnw8s5mrTBPgT5E3MJ+86n1zbQkU3V4BUI+YsfN2wydSuVtt+g4c+5zs/10BbiCmlAIHW1mrIY9NAmMjsu5rn0zOn6hK0X9PlxtdElT9HElW1Zuv0IPE1lYAdpPrEzSTAYJIZ+6ElLXCNwqit74OpG4xx4z0PKY/fiO9tZJvtKNhkvXS9WCV4YlrEbwE/S6H7d1W9ud2It09zKZ4gtWf1rYEYH2hgGweCB7g62iAe7nItlIhmg3+wsmY5PDPOTAl8MDMg3nRxAXAdIHB1fp1xg0ADyRJPs4BukZfCMolypmjvIp89zpR3G2OcZMkViYbrSOIaBQAwwYRAO7ch9NpP1h5K3XrraztLPuQMVehAhk3vpEuUiDaPLlIoMh05f0HVgiEFVMQRaPd4OwLqG3yLw0kaZXdOSYe7MFnfQyp2BIbMHkKc76KqlqeSaiSRa0m0zki+WN780xtcjh9yOHjjQ6XJtPacI7TCiBYDjB7wm0dybEDWhjfz7PfyAue+u2wKXQsDANu06mE2bNpvH+z4QFygPZAKIB+/8h+439/W63T8/3aCQ7hR2ZHhFp87mhltuNyVKlDQIuNXqvLPj8NGENj7oGtapEVde6DQj3dBvvjL4kHStKAjtj95/13S47OLApUEaNT/pVAPpFhheUpe0aWtKlowNMmR6f5BvWLAyXPva7j1MiZIlzRuvDo4jIDXRiTxcA6l0eat4zy94f1eoWMl/4R7WoKE56pgm/ulhhDYOtu94lUd4vv3ma3Fl0fcYaaOqz/x5c80xDYKyBZgt8f5nX5tBA54xN1/fFZfzDUHoEIwumYURmwUltF25AFwPZCGeuX3KlPUvD6IZ+8VcIhz7MaAD0mHJokUGMy1c0x6FkJCBlIw24PHEs8979xSDWzjuDjYgvSa0X3/lJQPdXG1ob13+d723C5IlYf1c1IR2VP3BsUfU90gcXR9g0uK8C73p9oMHDTSQiHItGaGdTn8Q1f1xy5kOoY08XGJJ8sW9hvxGmGlCG8cR2BDexNowqIq+v/KBeZ7aSxYvNPPmzjHwuEe+yF+CCevzZD2M0MIgRHNL7kEHHgYtePRVUVtU7/ZMCW3UK9P+IApCG+WI4vlZvGihaVT/YGQXMHjnVqxU2SN7p02dHDiGjWwltP/8809PHgTksDZIgZ134cVm/3LlzIYNG8zSxYvNdFsv8U6/oOUlXn+sz9HrYVhjMPbYpseb3Xbb3U96Zedrzc5W9x8WFiMF+/Eb4JgmTb3nDd7fuAejRgzznTEefepZc7GVHIFF8fvNy8j+k7aPMgKPA6tU8wbW0U/h3e8OBLge2lHUB0QiCEWxrmfV9XVe4bmrAxSCJLjWBhSrWGYP62U3M0BCyvmaFHXJQuhLn9agovnCynuA/HBNpCZkv+utirJh2jlIlaaW0IC5XmggCi63shmLV20wmD7sWr0D9/GCxGH/GyMX2OBoP5uWx1YzB2+VF3CJev0h7xJCCMZ4vZWxKG1J7c02qBkIK8h0IA+QGPDuOqB0XltMpS5uWQtj251iL9eAB/WzlpjSnp8usY807ZrX8qadP/HJ9DhiFe0DnmMw11tTPPflenrpEs8y7dwlcXAOAlmCaMBAhfZYlPw0AaU9V3Fck9XY3mA9CDspiQSQaBg0EXOD7YHYa9G4ihlj266rjyvn6KUbBO5WK2Mh7Uyn0+uupjdmNnQ9q57Xvh56b3IoaZPIKx75Ztszp+takPWCPj8IrnqnlVNy7Z7WR8bp2yON21chMOrxdctbmZK/vOCJmsxG+u4t6pkG1fK+URA8cOCXs7DbMzwnPc49zPMCx2w2yGkMtO315183ecfDCO+tpxZ4scx6796otKfPPKKywcBTmP1sB3+62ACRriHoI4I/wtzgmJAj6XXJkaaMjREzc+nP5iFLMOoBFT3g8sHYxQGd8rAZDXhvjLSBZMW0hzN0ubV3LAhxzLgAWY7BnA/GLrHvju+9UzGQiHYPCQxXaz9Ma1muF7ZMNMjnzhjCuavXbbQzj74NZNPhpIO99xEGNzDQ9+KQOWb2srwBOvE0T7U/hIbzB3ZAFXU/0Wqui4CVO0AjM0lcslTLT2VyL12iHPJaCESobfTsVQbvATGpq2xnuoQcGQYVxW6x/ScGNcMMcQcwSO6a7nPd/hjvkR42YCwM724dDBX7tNyTO+gaNlvMHRSTmRrpthmUAQbP8csf/cZ/7hpUL+sFlvUO5vi/nCK0gXXYx2Z+96AwCG14ATeoXSMhAeGWSQg/GSGM6qN3yNdfmovPPdO9nLedjCBxyc6wqfChmaqdRUFo/7B8mTns4GrqquGrH381zDQ8srF/MNP7IxnhIzCMzJfjeomBlQkz5nrB7vR+vY4P8iPq1owbPNBpsN6tx83mplvv9HcnIrT9BCErr77zoecNpg9lWh/MhDi9+XHGJUHEkxhkKLR4XcLhyxHfmXr1D9NFCaxHQWgnC/6nL/bG+5+Yps2a+7tmzZjuldnfkc/KDTffZrS335rVq72gkGFkc7JnEJfRhDbabO2qFUNJ62RFiprQxrWi6A8w4IeBJdfEgzAML6RNRmin0x9EdX/ceqRLaCcib9389bZLaK/75Wdz+CE1CtRW8iO0wwYLdBlkfdX6Tf7Am+yLYhnFu11IPSlPQTW0cV6m/UFU7/aonp9LLzo3X2kowUuW2Upoo3xjRn9rII9REMuP0A4bTAzLf/GqnwMEt3uvw85x92lCO6rfb7iG2/bd67rbGIBufPSxgd2Z1gdEbNt+Q/w861YubW46P++9H/Yh5ifcugJiQaZnY5cOIuZ6LLnngizRXlXidSbpXA1Q2Y+lEJeux59Og3UQ0kIkYVu8wCcsWGMeeT/2AYwAS5DuAEmqy3S1nfZ+jJ3+DkuEB8hrkNjasA/SBtXLlfB2p1IXfX5hrusp9nIddzAB+10PPEkrSxB3okuMfdr7fbQlfZ9Q0hiuXIjkgaUmnoGb6LCibYLkcrHV50ImRZNgovMa5vGpyWrk4RLmLhGGAQ+QdGGmpU3CjmOfGxQtkTenPt8dRNLHZB0eetozXU8/z+ZnTsqfzrKgzw+846Hhr9uO9l7VZXAHNuRY2HONYxgk+J8dXBPDNUC463uCY4nO14N+kke6S9eLFUR8M0vEJ7KwNq09X1EXzALQfWaivBAY7y6rOS+kq+uprslqycMlBrX8i0vAyjlhOKJf72N10Pew7xDXsxbnwYM11cCRiQb5RG5CyiFLlxiV/WHlFMmSVPpDYA7spc1igK2sHcCFBMoq64Eupoljd4aVnkWTyb10iXJ9TSnH+5Z4xywusXPsYN8FdsAxKnM9zPtdcYwdWNk1YfZhfYSeRRUmkZYos3NtXTB4KuYOugpZLcex1O8xbL9iZ/vIs5FOm0EeMHfARd/jvBS5+z/nCG2QPtd26hBKMuKDvW2HTubB3ncH7khhENq4AHSlr7isVdx03cDF7QbkJJ594eWALq/74ZCuhzau1aVjO88Lz71usm2X0P711w2eJzemXIcZvM+3bNnsfezL8aIgtHEtVzdTrq+XLqGNY5ncH8kbno1Xd2gTCKwlx/QSbW/AC6+ao46NeVXr43odepbQn05m+RHamLaM+iXy6Dz3gpaeRxoCT2nLtD4IjAiNX22uVvW3w4d5U6l1Gnh6fjNqnNl11930bn89CkIbmSUigfwL2RWX0Maxt9941XS+oq1OFrre6tLLzX0P9Y2rBzwBoVdbUNOENs4Nm1Kv88Qz9+pLg/SuyDW0kXkU/QH66uOOPCxp/wgNXHiwa0tGaCNdOv1BVPdHlzNdQht5jLDa+/DaDyP1IaEFchkek2IuoY39IMbRN7n4yTnuMj9CG94/0OZ2JZTcfAqL0I7i3e6SeukQ2qhvJv1BVO/2qJ6fubNnefc10bsCEksINKotmwltlDNM61yX313Pj9DGQO0FNoAmyPJk5hLakPO53UqiubMlkuWhCW2ki+L3G/Jx2z72JTL8PsA9diVVoqiPqwELT10QBbBHrNfTBOv9FGbwBkMALXx4imlv0fkr1ps7Xh0nhwJLkHs1y5cMSIK4AcjcD2adgXiiYco9NES116CkK2s/fv93dj2DD10xIW5dORU5rpdhU+Zd6QGdXtZBREBfVwdTS6Uucn5hL90p9iCmIRugtcelDK4HvOwHeQN5FxwXQlkPhrj1TUQAuwH8MEACEkLM9RKX/VheecohZtLCHw2882DaQxzSBPq+Qxv33kuP9NLJP5e00dILSON6Vcp5WLrl1Mdk/brnRnneo7KdimcdSKhE0+eRD2RPvpuz2qs3tnWdsZ3NzxzKl6657UnnI32B3od1V77F7V8kvTuwIfvDlrWtdMxN5x/qSY3o49CAvvfNCT4ZqY/JOp6Zq+wA2VFOYFs5ns4SQVsxK0Ss5wU2mGWlcC9WpAF528nKM+iBKNfzFW2o1+vjk9YFsxVAzKNOYve+OdGb8SLbt7ds4M2mkG0sXWLQDeL7gA0CO8UGg01m8BbGwCkGs2CQIHnw3eCsNVdOIll+OOYO8uE+97wg3KELA55I7w5guNdAYNvWNsAtEHLbb1h/OMN6wN/31kQ3m8A2Zmz0tv1uMeuZDnNnkXQ9086wqrmvf0669xKBEfUMpxY2dgCCHGpzBzC0t75Ol+56n7cnmWlL1vqnuzJA/oGtK26fj90vX9c88Ky6z4ubB7bDZlAkI6txjjuAqgOt4ng6bQbnwdz4AX07HF0oAVLzrla0/3OO0AY80HT+6vNPzYRxY7xo7pgS2vDIRt7UaOy/6bquARR/sF4SWgfUjSyPH/f9n3vRPwcR4o8+vI6/jRU3SKIcBPFza4/rDDx8XIMnYsfO15juPXr601QlTaKP3ltu6ObpLEo6Kbuepg65BATbE8PHGLQZ77r1JtnlL5H2mUGDzUvPD/Sn3+KgS2hjXyJCAYQ85FIg/aEJ76IitFE2XPfF5wZ493v5sqVxRG4YoY3z0r0/OFcM7Q3avSDSwggoSLP0ebifKb1PntaenJdsCdkOeMFCUxcega7deMsdpvuNPf3dbsAmTPu/1BIRV7ZtbRYuCE6F7dSlq7n97t6erIOfgVpJtz5hGs5o4+OmzY6re5gnOOqDeoUZdNKBsbann3/JnHP+RXpXSuvQ2X/ztZfNODvNOozsg6a3lnORTOHhDVI6jNQAGQiNcNzrRPb5Jx95civuNYHR3fc/5PUBIC+0uYQ2jkGzu33rloG2hjxuuu1OU/Oggy3xcqrOolAIbVwgiv4AJFrvu++II8yQP4JE9h/4kvWOPzzwPOdHaOPcdPqDqO4Prg/7ee1PptaBQQ02EPSTZy/KS5DPfxDW33z5hdcHIKBx9Ro1TUMrc9D8pFNMtQPKBO4/grdBIsA13KO+D/Yxzz39VCC9Toe2c8bZ55jTz2phEGg0mWGGxceWTH/nrdfN8mXfm++XLInLt7AIbZQr03e7S+q5hHbYwEbYM4iypNsfRPluj+r5QVtrfeE5cTNnoKN874OPeO0NdRYrTEIbgzluH6YlnKQM+S1XLF9u7rilR6hzg5yL3z9o+3iP1KlXX3aHLtH28TtpyFef28Gib+PaPU76fs16U3yXoM4x9uM93vOG7qGyUjgOg1MAygJyXcc4ier3Gxw5gK3+jZZ35dh/9E/XdOthWluJtmLFi8cOOGuZ1GfY9BVWWmSmn6MOeASi+KlPZxhMhRYDYdv6+BqeVunSH3/1SE0hSLS3KNLDExreSUI4gwA5rUElT+Zj+drfPdJRPNJEq1quAy/L/p/ONNBS1gYC6yIrE7LHLnmkO7yq8fGrPcVBHnaw+q8g5q95JuY9KQEHkR/yhceiPg/74WncptlBpt6BpbEZZ3OtnMGzn88MkJVIBK9BlO1MGyxKS3fgWKp1QdrCtoJ4fEFyAVIrmliAN/vVp9b2NKG155l4v6P8rned630vdXTlArRuKdL8a/+gZw5CSAxEFqRPEHBLyz1oD/GplhS735JjYmHawq5np5ZekPM+txIHGACQNor9tSrs7V1f5GQkrbsEUdrP6u1K+wojhdxzsI30aM9aUgWEfDsrpQNd9qFWCggBW2FusFXsy+ZnDuVLxwr6/LizKcRTNuzaGCB4/ONp/qGGtu+AFv78Fev8fSCoWtlAcMfVzpM68g+oFXjYPm37BchN6PaCQQcM4KHPQt8Zpb06fL75ePwSP8tUiFwEvn3kgyl+GcM8X6UuIFnFUA94ZeM5x/PkGjTtdZvV3rGS1p218IolHGUWvKRB7AM883qmDI4heCUkVRo7AwLoI/A8SHBbpM2P/EQabe4gn47FoNPJOt5nGEgYbuVT5N0mxyBrdZElf7Vmfqr9IfqMl4bOC7Q95Iv216JRFRujwsqQWGkTMZfsDJPUSedeom4gf8W0F7/scwcftLyHpMlkqXWjMeiKGBz5mZZmwXti4DXHx50COSI8p9rrHfjWtBIk8DDXA9E4Gfr3mO0hFpbvD/a3zA2DYs6lOtCqnFfQNoPzMFiMWUpiePdidtr2YjlJaCcDHxq0mlwOC0SW7Px0j+FjCFqJ8IYqbj8UatY6OKCJnG6+BTkPpMjihQvNksWLPPKsrpV40B9Oqea1YcN6M23yZKtFud4c2fioOLIy1XyyKV1U9wcf0bNnzzS///abJRdrmSrW81g0NbdVfSHDMGHsGFOufHlTp259s8uuu6ZclGysT8qFL6SEIAkx4LBo/nxTpuy+3rMMQjsVg6QMyCP0BRv/+MNA17hK1WpxnnD55QViD4TazGlTTaUqVbz76nrb55dHVMej6A9A/gKTZUuXenrMtevVSxqsM6qyu/lEdX/cfKPcRv99ZL1agSzdIKOBg1s34DEO3ex1v/ziBcFDm4V2PLT59YBu2Lm5sG9bvdsz6Q+iwjWq5wcBRadOnujNMGnYqFHcTJOoyluU+fz999924HK599sH92qHHXe0/XZZU7bsfgYEblEaPJy//36pjb2w0Lts8eK7eFra0Pbeu1Q4oSnli+r3GzDA78Cf164169ev8wa29ypRwv4WLOfpphekL0inPvByvkJJO4R5n+JjDB9te+1ezJSykgcFMRAO+Hj8x3qfgnTUXn2p5PO7DRiG8/fYFVOwd/Wn8brnQmd13W9bzH6ldvN0V93jibYRsOun9Rs9Pdb9rQZ3quUDaQVMwC/svXtx36s90XWwP9W6JMtjWxwDsb3i5z88z+S9IiblUqkPsF5u9YJBJuxjPe9jlE4qZ2eWBm0fxDusnG1b7mBFstxnWXLznjfyNOpFJidZen3sN+sJusa2SzwzqHdBLNufuYLURadN9flxyTath6vzw7qr/Xy59TwGaQtvZrT5UnsWNwVp88B+jQ0IuHHz36aE7S9L2v6yKNurW79MtqUu0IdOJveQyTUSnSt9zq6WzNzbDhZCSzuZieSEjpOQLH1UxzD4sXbDRq+NQOakIP1DojKg7qvts//33/96cRigFZ6pbct7mWnZC+P8vyxRjf5112I7pSxPE1U5Um0zGFB9aUhsBkaUckVR1SWTfHKO0O51280GHi3wDgZZpC1MygEeaYNttHoaESACRIAIEIFtjQAGoDq1u8xcZgMIw2NTy/BAG/vqDpf7AeSkrPlp0Eu6XF7y3Z7Ld49lJwIxBJ62wbqgYSoW5uklx7gkAkQgfwQgp9J94CiDARN4dd92UYP8T9qOUyDQHAaAUrEG1ct4RFMqad00ruwKPHqvOSPIPehzXOmEG887LOHsDH0e17MHgS8nL/Olr8IC9mVPSVkSIpA6At2tbJV4kmOg/dkuTdPuF1O/atGlzDlCu1uXTr6GLDzQqlStbkruvbfnlewGogOM/foPMC0vuazoEP0PXumVF583Y7+LTY9IBwJMf32o35PpnMpziMB/HoG1P/1oJYduzhiHcy9sGQiYmXGGzCAOgWXWgxMBhcUwiwhe/Bs3bTRTJk6MkzqAbMK346cmlQiQvIpqWRjtje/2orp7qV+H7/bUsWLKGAIg3bo8PcKfhu4GRYql5BoRIAKpIACplnFWqgdSDZB1KGm9+P/LBp1j6B2nYokC8qVyrquH/LjVZC9ttdkT2d3Wgx4yIWIPtzvKYKYGLTcQ0LJFkLNq3TT2Wz03asBSEoF4BNxgtS2bVDeQxdqeLKcJ7fxuBDQLP/1mREIt4fzO5/HUEEgnqFFYzoWpzRp2Pe4jAtsLApAnaXzoIRlX55Y77zHXdr8h43yYQWIEXEI7ccq8Iy+/+Z458ZTT8ktWpMcLo71pQju/yvDdnh9C0Rznuz0aHP+LuUigROhJIqhhpTJ7/hdhYJ2JQCQIQIP29ZHzTa9LjuCzZBF1NZaTgezq6SdLq49B67+fHUgQCwvsKsdkee2zI32dc+x7sdsJoQFSJT2X2YUA5Dm6DvjW1K9Sxgvol6vyLtmFKkuzrRH418YQ6Wv7MgTlxm+yJzs1iUTOZlvXS19/uyW0EXDswUef9DzfdIW5Hj0C/OiNHlPmSAQKgkBhEIwFuT7Tpo5AQQjtu+57wCDIa7ZZYbS3VAltvtuLrjXw3V50WG9vV9psNWOh2Xja4ZU8r9LtrX6sDxEoagSgw1wsAv3boi53YVwPAWQ3b/k736wR9K56uRL5pgtL0N9KJ838Pi+QYVmrtd69RT0/eGxYeuzr9foET0sX6yCOel/WCKu0HEKAz1kO3SwWtUAIIIgz+sTalUoV6LxcSJxzhPaC+fPMt8OHmvE2CB7W16zOi1i+887FPPK60oFVTPOTTsk6j7ZcaAzplnHE0CFm1szp6Z7un5eNxI1fOK4QgSxG4LfffjWvvDjIYBQ2E2t4ZCNzeMMjM8mC5+aDwJ9btpih33xlJowbYyZOGGdW/vCDWb1qlQ2+u48XOK6yDQJao8ZBpk37jl5AuXyy2yaHC6O98d2+TW5l0ovy3Z4UHh4kAkSACBABIkAEiAARIAJEYBsikHOE9jbEipcmAkSACBABIkAEiAARIAJEgAgQASJABIgAESACRIAIEIFtiAAJ7W0IPi9NBIgAESACRIAIEAEiQASIABEgAkSACBABIkAEiAARIAKpI0BCO3WsmJIIEAEiQASIABEgAkSACBABIkAEiAARIAJEgAgQASJABLYhAiS0tyH4vDQRIAJEgAgQASJABIgAESACRIAIEAEiQASIABEgAkSACKSOAAnt1LFiSiJABIgAESACRIAIEAEiQASIABEgAkSACBABIkAEiAAR2IYIkNDehuDz0kSACBABIkAEiAARIAJEgAgQASJABIgAESACRIAIEAEikDoCJLRTx4opiQARIAJEgAgQASJABIgAESACRIAIEAEiQASIABEgAkRgGyJAQnsbgs9LEwEiQASIABEgAkSACBABIkAEiAARIAJEgAgQASJABIhA6gj8PwAAAP//yzNNxQAAN1RJREFU7Z0L3DXV2IenT5RERSpJRQdRKhKJpCREQiRFoogihZJjlBIppURIhUJyFpJDBxWREp1IznKITnLq4Ouar3t/97Pemb337L3f99nv+1737/c8e+85rFlzzZo1s/7rXvda5NZbb/1vNQv213/cNgtH9ZASkIAEJCABCUhAAhKQgAQkIAEJSEACEpCABCQwvxJYREF7fr105lsCEpCABCQgAQlIQAISkIAEJCABCUhAAhKQwMJFQEF74brenq0EJCABCUhAAhKQgAQkIAEJSEACEpCABCQggfmWgIL2fHvpzLgEJCABCUhAAhKQgAQkIAEJSEACEpCABCQggYWLgIL2wnW9PVsJSEACEpCABCQgAQlIQAISkIAEJCABCUhAAvMtgVkTtOdbYmZcAhKQgAQkIAEJSEACEpCABCQgAQlIQAISkIAEZoWAgvasYPegEpCABCQgAQlIQAISkIAEJCABCUhAAhKQgAQk0JWAgnZXYm4vAQlIQAISkIAEJCABCUhAAhKQgAQkIAEJSEACs0JAQXtWsHtQCUhAAhKQgAQkIAEJSEACEpCABCQgAQlIQAIS6EpAQbsrMbeXgAQkIAEJSEACEpCABCQgAQlIQAISkIAEJCCBWSGgoD0r2D2oBCQgAQlIQAISkIAEJCABCUhAAhKQgAQkIAEJdCWgoN2VmNtLQAISkIAEJCABCUhAAhKQgAQkIAEJSEACEpDArBBQ0J4V7B5UAhKQgAQkIAEJSEACEpCABCQgAQlIQAISkIAEuhJQ0O5KzO0lIAEJSEACEpCABCQgAQlIQAISkIAEJCABCUhgVggoaM8Kdg8qAQlIQAISkIAEJCABCUhAAhKQgAQkIAEJSEACXQkoaHcl5vYSkIAEJCABCUhAAhKQgAQkIAEJSEACEpCABCQwKwQUtGcFuweVgAQkIAEJSEACEpCABCQgAQlIQAISkIAEJCCBrgQUtLsSc3sJSEACEpCABCQgAQlIQAISkIAEJCABCUhAAhKYFQIK2rOC3YNKQAISkIAEJCABCUhAAhKQgAQkIAEJSEACEpBAVwIK2l2Jub0EJCABCUhAAhKQgAQkIAEJSEACEpCABCQgAQnMCgEF7VnB7kElIAEJSEACEpCABCQgAQlIQAISkIAEJCABCUigKwEF7a7E3F4CEpCABCQgAQlIQAISkIAEJCABCUhAAhKQgARmhYCC9qxg96ASkIAEJCABCUhAAhKQgAQkIAEJSEACEpCABCTQlYCCdldibi8BCUhAAhKQgAQkIAEJSEACEpCABCQgAQlIQAKzQkBBe1awe1AJSEACEpCABCQgAQlIQAISkIAEJCABCUhAAhLoSkBBuysxt5eABCQgAQlIQAISkIAEJCABCUhAAhKQgAQkIIFZIaCgPSvYPagEJCABCUhAAhKQgAQkIAEJSEACEpCABCQgAQl0JaCg3ZWY20tAAhKQgAQkIAEJSEACEpCABCQgAQlIQAISkMCsEFDQnhXsHlQCEpCABCQgAQlIQAISkIAEJCABCUhAAhKQgAS6ElDQ7kpsyO3/+9//VldccUV11VVXVX/729+qG2+8sbrb3e5WLb300tXyyy9frb/++vX3IZNzswWYwKWXXlpdf/319RlSRjbccMOhz5b92L+f/c///E9d1u5973tXyy23XLXIIov027zzuksuuaS66aab6v1WXXXV6v73v//QaVxzzTXV1VdfXW9/j3vco74vYufzzz+/uv322+PnyJ9rrLFGfd6DEthmm22qf/3rX/VmhxxySPXwhz980C5Tu55y8bznPa+Xv1NPPbW65z3v2fvtl/mXwFlnnVUdfPDB9QmstNJK1XHHHTf/now5l8CdBHbeeeeK5wG2//77VxtvvPGda/wIAr/61a+q448/vrrllluq7bbbbsbzMrbxUwISkIAEJCABCUhAAgsLAQXtCV/pf/zjH9UxxxxTnXHGGdVtt93WN3WEv5122qnafPPNJy4y9j2wK6eGwD//+c/qmc985oyy8tGPfrRaeeWVh8rjhz70oeqUU04Zals2QjB/1KMeVe2www7VmmuuOfR+bRvScfOkJz2pt/pFL3pR9cIXvrD3e9CX97///dXnP//5erO73OUu1emnn97bZYsttuh9H+fLa17zmmqrrbYamMSTn/zk3nV429veVj3ucY8buM+0bvCnP/2p2nHHHXvZ+/SnP13d5z736f32y/xL4Ktf/Wp1+OGH1ydABymdFZoE5ncCdCjefPPN9Wnsu+++1ZZbbjm/n9JE88+z9hnPeEbFO0OY9XqQ8FMCEpCABCQgAQlIYGEkoKA9wat+3nnnVe985ztnNDiGSR5hm/1WXHHFYTbvvM2JJ55YffnLX64FzPDs65yIO8wVAl/84hero446akbaT3va06q99957xrK2H10F7ZzOtttuW+26667VXe9617y40/dxBe2jjz66+sIXvlAfU0G7E/q+G88LQZuRJ69+9avr+u6tb31rte666/bN0/y88nWve12Fd+Szn/3sujNoNs9lXgja03ZtfYbNZombN8dW0O7P+S9/+Uv1/Oc/f8ZGhx566Hw9kmjGyfhDAhKQgAQkIAEJSEACHQkoaHcE1rT5v//97+rAAw+svve9782xGpHuQQ96UPXABz6wuvXWWysaJZdddlnPEzR2wHP2K1/5SkV4iEkbXrO///3vK4ann3DCCZNO3vTGIBDXJidBmaEsDCM0l4J29paONBGnfvGLX/TCmsRyPvHaZXj3Qx/60Lx46O9zU9B+97vfXd8vTZkhzMp//vOf3qp+4UHwRu+3PhLRQztIDPdJBx5CNvaOd7yj2mijjYbbcT7bCo/Irbfeus71s571rGqPPfaY1TOYF4L2tF3bqCd9hs1q0ZurB1fQ7o+3yUP7k5/8ZHXf+963/46ulYAEJCABCUhAAhKQwAJKQEF7Ahc2h02I5PBW3Geffar73e9+saj3SVzgH/7wh9Wxxx5b/frXv66XE3bila98ZW+bSX4h3ALin2LAJKmOn9bPfvazavfdd29MCI/QpzzlKY3r8sJS0P7mN7+ZV8/4TsfLhRdeWL3rXe/qDe1mAwR0GsbE2O5qc1PQ7peXD37wg71QC6Vnd7/9+q1T0O5HZ851hLrgOmALsqD9y1/+snrpS19an+fCImhP27X1GVYXvwX6n4L24MtLXURIMpwjmCOBuVg0CUhAAhKQgAQkIAEJLKwEFLTHvPJ4vu622269VBDX9tprr+qpT31qb1m/L9/+9rfrSfGIO7zYYov123SkdcT0Ju4ipqA9EsK5thNhZr71rW/V6RN2hr8LLrig/o1H/4c//OGBx+4iaEdif//736v3vOc91Xe/+91YVMfVHiUcjYJ2D+FUfZkXIUeOOOKIeiQBJ74gC9rcJ8RUxxYWQXuarq3PsLroLfD/FLQX+EvsCUpAAhKQgAQkIAEJSGCiBBS0x8CJmLfzzjvX4Twimbe85S3VpptuGj9n/TML7gras345ehkoJ4OkHCFiE/4jbJjJIUcRtCP9Pffcsw5/E78POOCAauONN46fQ30qaA+FaZ5vNC8EbUagXHTRRfW5LciCNhOvRefSwiJoT9O19Rk2z6uPWTmggvasYPegEpCABCQgAQlIQAISmG8JKGiPcem+/vWv156ukcRaa61VMcnd3LBLLrmk4u/yyy+vGHa67LLLVg9+8IPrIaePfexj5zgkQ1KvueaaCg/wj3/84/V64iXvu+++M7bFK3iFFVaYsWzQD8RYJjO84oor6onSCGVB2g95yEMqQqeQZpNde+219XBZ4oQ/97nPrVZZZZXqlltuqb7zne/Uf3/4wx/q3dZcc836vBhmvsgiizQlNWMZMcl//OMfV4Tw+M1vflOH0IAN1+PRj350zWrGDnf+aMoPMc7xyDz//POr3/3ud/W5MBHcYx7zmF4Sf/7zn+uJDDkm8amXW265esJNPOEf8IAH9Lbr96WcDPIzn/lMtdRSS1VPf/rTe7Ghh5kcchxBG1YveclLetm8xz3uUZ/XMMxjpwVd0L766qvr8ECEavntb39bx8N/2MMeVm2xxRZ1mQ8OlL2Y3HKJJZaoXvCCF1RLL710rG78ZJLBz372s3U8fe7nfC0adygWUg8Qt5964ec//3m1/PLL17HQH//4x9dlcscdd+ztgSjLPVraddddV33/+9+v750rr7yyQginDHP/EDe66V6+/vrr67rlTW96U3XjjTfWSRLjOMdh5x4v45Zzr3NfcRx4kX/C3HCsJz7xiQOHz//xj3+svvSlL9Xx4LkW3C+rr756vT+x4/uNcCHPsKLO4vh4/TK3wRprrFFtueWWjXUE23BMQkNx/bFHPepRFZOpZqPe45pP0n70ox9V/F188cV1Hujsgi9hcVh2+OGH14ejjBEepMkIZ0UanDPl4+abb65WW221up5+znOeU9397nefY7dRr+0o5WiOgxcLujzDvva1r/Xi7T/ykY+sNt988yK1OX8SZolyhCGmUg5h+41vfKOiLqRML7nkknVZIUQYZQCejMJaZ511qg022KDabLPN5ky4WDJK2SuSGOsn58ScA9xzlAPmZuC+gRNhrZrq+yYOnAfx26kveE5y//Gspr6BxSDjWXnuuefWz2qe2cwbwr3DvtSnXQVt6pP3vve99WE5J8r0oOcv58D7EO8w1FGvec1r5pi3hOci15p3LeoK8kk9QV7h1TS3RX6XoExwToyE4liUHe4PJv2mo4j3nrCf/OQn9TsazxneKwhRx7F4xjzucY+LzXqfP/jBD+p3JRasvfbaFe8IbTbqexHp8R5L/UcHd+QDJtxn1CvUJdRJvGPRycd9oklAAhKQgAQkIAEJSGBeE1DQHoP4G9/4xl6ICJI5/vjjBzaouh7upptuqghNEaEomvZH6Hjzm99ci1ixngbiMEaoExruw9qZZ55ZMVlfnpCv3JcGf7bXvva1tWiUPe1oCL3qVa+qEMVoZDYZDTvCYCyzzDJNq+tGKcIOgnibkZe99967MR51mR8ExTe84Q1zTNhJ2jR8EdjPOuusegLQtuO9+tWv7k0g17YNy2OSM74j/B166KF8rXI8dvI+aHLIcQRtjnfYYYfVjVS+Y8ccc0wtUvzfr8H/F1RBm5EWCAIIzk2GyMF9gLCF3XDDDTOEToQP4qD3s5e97GV1uCG2QRSKCRb77RPryNcHPvCB+DnHJx0wiMdhTYI2HXIIQrfddltsNuOT8ocXfxZNGDVw8sknz9iu7UeO544wxPn99a9/bdu8Pg7HK+sPdqBuPemkk1r3vde97lXtt99+teBcbkQHFfVIW53F8aiL6EwKo7OKemsYO/LII2txaZhtB22DiEt9Tz3TZOSVuhOBEmsStBH6qBc+//nPNyVRL4PXQQcdVIt0sdGo13aUchTH7PfZ5RnGczI6lEizqbznYzGyAHEx7GMf+1gtOGZvfJ6NjLaiTkfAazLEPp5hTSIn249S9pqOM8oy7jWuMR1ebcYzlm3K+RMyB55VTDzYr66gjmi7dzk2wu3rX//61nsQAZf6NuoiOt7paBpkO98xsomOZ4w0QuBu24/1p512Wr2azroTTzyxtynPMn5/4hOf6C0rv3C/EX4o6v1YX75L8Dyn/JTvNjEKCicA0kGgbjOuDe+YWaSnzo9nUtv5ItaP815EfvJ8Eqecckr19re/vVfnlPml84dnIR1CmgQkIAEJSEACEpCABOYlAQXtMWjHRFUkgfcjjcBJGh7Lr3jFK2Y0phEi7nnPe9aezXj0hOFtx/HDU3BYMeDFL35xlT05I72mT0SpPfbYo7cKUQ9xZfHFF6+9v8rGW2xI4w7RNjf6WIc4Ew1YfpNeKTrhEdkU25nGOhO1hYco+2NwII2cLssRJhAps5X5yevKvPAboSmLXCG8lcc67rjjZnhh5XT5jqdcngwyGrmsw2OQaxI2qGE/rqCN1yqdIWGIFzTEh7UFVdAuz78sD7E+dwBQThkRgVE2EBTjfozt4xPv7F133TV+1pMr4jU5jGVRJrYnf9QLbYIxdUN4aHN/IP6WQhd55q+8B5n4MfKGx2EWgeL45SfpnH766fXiNqGUexXxJRv3NJOdZStHwpA23tWIQnhThsEAsSp7nObJQ9mOffGC5J6FVT5XOrR22GGHOjm8MxG5hzE6oSYh5iBEMx9DPieOj2CENYmqpaCNuEcdVZaDpnqRZYwMof7Gul7bccpRfcAB/7o8w9g2P8coQzGRZ9Nh6LgMMZEJnMPjPQu5sEUoz/U75Sf/Ju1HPOIRtaBXHmfUslemM8rv8847rxYhy7w23XO5QzWOlTk0nXPTMt4N8NYtjTqx6RmOSI6nd5MNeu7FPniMx7Vj2ac+9anG0Ras4/6i0yqYMNdJdGKxjEm58WAPoz6hzuRcGe0W+7G+vOfzuwT1CyMh6MwoLZ4XBx544IxOK+5xQsLhyZ3f6/D0ZhLnsEGC9iTeizhWFrTLZ1/5m+3JP0L7oosuyk9NAhKQgAQkIAEJSEAC84SAgvaImBFiGJIf1tQojHWjfuIVHKITDVG8dXLoC4Z+0jCPBlD2CmUZQ15p8IXnGo2O0oOJRhQNlGFsl112qYebsi1e4Xh2IaJhCJt4uSGKhJFfhLCVV165XpQbfbENDUYawogCDFulgYsnZ25YZkEt9iPWNMOXwxhu/PznP78eBs0yhGE8oGAURn4JQRLWlB9CHyDowgWBHr45L+xLpwIeS3hIcd5nnHHGDEFjUFnIk0FyXQk/wvDnMIQYwjFggyaHHFfQptNkp512ikPXoR8452GtFLS32267OQTJfmkRmxjBEkM4CBG03z6sy2JRl/36pZsb8WxHupTNjTbaqB79wBBsPIWz52sWw0qRGnGS0DpNxqSccd6DrnHe/6qrrqpe/vKX9xYhuiF4IKBgiLx41JWicxa0EWYQ/KIDiglsKfOEzsHwpuTeDbEZT8HwBseDmHuL605nW4g8O9/hKZnjryPkRygj4mufecfIDox7hvwTqgDhmfudY0V5h3nZEUA9G3khvBJiPPcNxjWhfsMbnPsm149lBxydWohYuc464YQTep7fHJv6KzggLHO+dMhFHYDAlCcB5r5dddVV67yM+w8x7iMf+UgvGVhRz3GNMUYBHHLIIT0hlmWloJ3vZ86HzjFCIXE9uGZf/vKXq/e9733sWhsicHSgdb2245SjOH6/z67PsCxS80wjPE2TwIbolztN8C7l+YNlITfyRn0OJ7xyYUqHJMfKnanUw3SyhI1b9iKdUT9zJxDCMfcc3uTkn44I3gN4boXxm/IW1sRh/fXXr0MpwQGuP/3pT2vv9Oho4Z783Oc+N8NbnfoIkTs6jjg+7BiRwr1z++2316GAeJ5GXUIehhW0SZf6IfalQ6otdFNmQj4oHxGmiFEndLyFkcb222/fey7TsYEoH50g1BF4csdzu+ldgrR439hwww3ruo66iucB5To/c6lPeH+JjjjWMxqFTjXeYQhVEjZI0J7EexHHanoWUoaofzl3rithSQhBEsaII57/mgQkIAEJSEACEpCABOYVAQXtEUnjsZM9WYmrisAzKSNOJUOZwxAhcozaWE7jJ7wKWVZ6KBEnFI9hbJxJIRE7EMzDEM3KYcqsy6E0+nkxsS1iIGJX6cWK0IbgEI3U7DnJfghuhBEJg3sZ15Z15BlPaOJTYog/8AmRo2yE0hijUZaN2Jg0bLOFl1VelkOFIKbQkdBkCHPEGY9zayo3eJnmjgca2tEpUKY5rqBdCtKDxPjy+OX+5fouvxEZpkXQ5hpyz4Vncj4PGvLRScTyLGYhgCNmYZQ3PGBDqKgX3vGvLAPc58PE4mV/yj3lH6ODClElBNp64Z3/snjDoixo8xuxFhGY4yKol8Y6xNMwrgvXJ1sWPfpNComQQ33BaA46B0orJ7CMER1sV4qPhOAJj+IynfybckkHXHg7I9bleypvmzsX6NAqO3Ryx+LcmhTyX//6V0Ws/hD+EA/hUJYdzouOuTPv7CAoBW3Oi/BUCPCMIGoK15Q71BBhKb+lDXttJ1GOymOXv4d9hiGw0mERRogLYquXlkcMIPaSflgp5HJ/0OFSXgc8aXNnFeWaewCbZNmLfI3ySccQzzo6rOKZF+mQR55r4clferSXHFjPiJKSQ/meUj4bS6G4fCeI/NAZiLAbz8VhBW32576OMCLUidTNZT7ZLncU585/riUs4tjl+wb7YjCjY4N3LoyOtRhFUL5LsJ6QU/mdiWUYMdrpRMHKsCf1wj7/+gnak3ov4vD5/qeOwQu+6R1k5zs6MiPkS+7c7XMKrpKABCQgAQlIQAISkMDECChoj4gSj8I8pJnGXil8lknj5fOtb32rXNz7vckmm/TCAtAYj4nI8IrBg6nNEDgijnQpLA0rBrSlHcsRLsLzCU8sPP2aLIsleUgv25aNPjykSjE70swiErE0aeCGweKcc86pf9KApeEenlKxTXwyiVfel/zhMYUNm5/caGtrgJYeeTSqmyZK4pyzhySetOXEe4hbTJAVDWyGRWehJs6Nz3EFbdLIjdeujVIa+U2iEel2tWkStLNYUZ5HKbLmDhXiVufQNnj1ETYnG+UVYQcbVH7zfngzMwohrF+dU4rEpaAdabR94oGXY2c3zQ+Qy01Z77Sl27Y832MM/afTB2NSRibYDENYoYwOstJbPmIkN+2XO62aOv1yXTS3BO2yA6JpVErkPYdZaBK0Y7u2zxxmqK0un9S1HaYcteUzlnd5huUOVQS47HVLengEU7eGx38ua6zPQu6gMGI5xFDmOMmyR57mluVO2CzIc7zMAY/cfnHzc1lB/M8TctJJE57sdNLQedRmXSeFjHTyuwnLmurccpscFoxJVbnfsH6COOuzGJ3rgvJdouTJvmG5w5qOU1g3dUrG9vmzn6A9qfcijpevKV7iMTFkzgvfc4fFoPul3NffEpCABCQgAQlIQAISGJeAgvaIBEtRK3v8tCVZiuDldlmswSMqvKdIOzyByn34zbDPEMpL76IuYkBT2rGs9NDmmE0TYTGBVkxYxoSD6623XiQxtIDMDtlrshRZs/hVepb1Dpa+5IZyDgNRNkLbBPbcuUDDjgZeaaXHHqE0mjxfs+DS5h1J2lksQehtmxxyXEEbj1A8OcPaYpbH+vKzFLRp1EaHQblt028m32O0AzZNgna/Rjx5zdeR8hXxluGB52aE82jyDGZERXj5kU4e6UHabUYHF2UxrK28sn5cQZs08hwBOSwD67AseowraOd7rBwpkY/DceEHc8pam5Vxe/sJaaQRE3g2lcF5IWgfe+yxtTc/eSEGbw7dxLJs4wra5XOI0BOlR2tmPu61HVSO8rk1fe/yDMuCI2mVHsN5Ul+uNfdQhJ1g+y5CLjGS87OATgk8oSdZ9sjT3LIs5JZhj7pwoJMtYmEzKiI63cp3Bli1CaOcY35Od/HQZl86FXNYoBx3mvVHHHFE/Qzle/ncpW6j3GCrrLJKry6vFxT/uHeiMzLX7eW7RL8OqfL+Q0RnZBijQwaNPuknaE/qvYhTzvd/v+tW3k/DjrAqsPpTAhKQgAQkIAEJSEACIxFQ0B4J2/+Fs8jDSZkULBo6bUmWXkLldiFo45lLg2IUw1s2i15dxIBBx8Ob7Yorrqg3yyJe7HfxxRf3hCGW4cWN51pY2ejrJ8gdddRRdWxp9s0NR37nxhZiUxZkWV9abuzmjodh88OkiXg1Yk0hCVhOvPLwKuV3k6BdTgbZNiSZ/S+77LJqzz335GttbQ38cQXtsnGd+cSx+32WgnYXgZZ0c/iOJjGx7dhzO4Z2v0Y8edpnn32qiy66qM5eOXEXk2MhPIRl7+ByWDgxZ4nJPoxlz+5BrLoK2lzHv/3tb7XQjlc0++OVHaMEEIg4z2z5PuwqejJaBVGf49ChAbMQ+ekQyHGqcx2Wj48IRzgF6rzSw5FY1IQXGsUQ+vB8DpsXgjaerYQKwdomGYz8dBW0uYYIjrDmD+GPshQ2SUF7lHIU+Wj7zNe/yYM+74eIiudseGATq5k5GcJySCDqa55p2boIueWonLjPJ1n2ct7G/Y63PPdY3N9nn312xQgmbBxBO3fu5Q718n2n6ZmYz2kcQbvsRMj3cDkZJO9HeVRRfj/I+Rn0PXskD/suQZrcIzw/eF8qjXufkTGMyivDxLBtP0E718fjvBdxnJxWv2chk4/G/TXomUS6mgQkIAEJSEACEpCABCZJQEF7DJrZizoPOW5LkoYMDQBiyoZlT6IQtBGW8uQ6NBT4G8aYuIdJwMK6iAGxT9tnbrywDZPFMbwY7z5EkvASZ12ebIzfWJdGX5ugzfBlhjGH5RAisaz8JAQEoSAw4pBHyI9h8zMpQZtrnSfiYrhxv+saogz5Lr3KWIaNK2gTqoaQNWHlEPxY3vZJmc7iwMIiaOfh3WVnVhkyhvsxOidyWXrCE55Q8XtYy+J/Gfu3TAPhknswDKGu9GhG/KM8ct82iSuxL5+TELSZUA0PPuqRiBWdjxHfS0Gb5UyShsDeZpQ7QpOEp3EOfcQ+3GvD2FJLLVUfK4cwmheCdhYFB3UqDSNoM0KAUR3c33li3CYG4wra45ajpjzlZV2fYYRxyh7uIW4ymWlMgEn6lKnll18+H6qTh3YZDicmVpxk2ZuRuRF+EP6EEBeI1zHiqymZuSFol+GX6EQpO55yXsYRtCmD1LNRr+CtHKGKstc+9QAd6VksZkLGGFFDfoatK5iANsJLDfsuEefLOyAj2PBwbjK8thG9S4/2NkF7ku9F5EdBu+mquEwCEpCABCQgAQlIYNoIKGiPcUXyZEQk0zQsf1DyueEQgnYpEkZDeVBaTeu7igFNaeRl5557brX//vvnRXN833TTTWuhLsSl2KBLo69N0C6912lQcrx+lgWpHNty2PxkEXJUD+1yIsB++W1b1zQ55LiCdva657hMMrjCCiu0ZWGO5WVZXVgEbQRqvOixJmE6x6el0+KLX/xihdCNeBLGtaOjYljLnp+DYicPErQR9wgPFPFtcx7onGPC19///ve9xeMI2pR9xJkY3dFL9I4viEeIyBGygHVNgjbLEZ0IdURoh5w31mE5pi2CJsImRsdb9pivF3b4l+uPfIwOSQzcNHuJ0kmIx3abDRK0ES8POOCAxt0ZDUCoqCxujiNoT6IcNWY0Lez6DLvhhhtmTBJMSB/qpRx2os0LvouHdjni5oQTTqgnXp5k2UsYOn/N4mfemfoIYRlRNQTguSFolyO2mjrVcr7GEbRJJ4/ayfUj4TxiYuim+zfX5U0d8TmPbd+HfZco98eLnZFsdCo21cXcxxtvvHFvt3xN88i1Sb4XcbD8XqqHdg+/XyQgAQlIQAISkIAEpoyAgvYYF6Rs0NKIYph79v4ZlHxuOISgzT45zi7xeWnsjWJdxYB+x0C8RECO8BvEekUYoTGFCEqjmPiZeKw2WZdGX5ugTbrZo6rfxHiRh8yS7zG55bD5mYSgjVdYeIaTL0S27AUaeS0/GdYe1jQ55DiCdtk5MYrwt7AK2jlubAhmcZ34ZGg/ZS2MjgPCbIwjsubJxBCl+sUr7SdoE2aG0AshZuENSPgFhrlTBqIjauutt+6FbhhV0EbMZtRIFqAZUo/nIZPERRz+fI+1CdrBkk/40kmA9y31T1iEMcrxjYcZPRP7N33OC0E7e/xnoaopP/0E7eyNyr5MjAhvRDHqa6z0VB5V0J5UOaoz1effKM+w7CVN+ea5TBmPskJMdcpfaV0E7VzGSIf7kfsyLx+37JX5G/Z3ORqIuRHojOUzvKSZuJhRH9jcELRLD/Yynnl5LuMK2uXxuMaMSsle+REWJh87OybkDu+8zaDvw75L9EuH90nKX/baLiehbhO0SXdS70Wkld9LFbQhoklAAhKQgAQkIAEJTCMBBe0xrwoiJSJKWJO4FeuaPnPDIQvaXWKqNqUby0YRA2Lf8pN4vzRKsTz5U7ld2+8ujb5+gjaxpyNEwiDxpwzfAlc8ILFh85PFtlE9tHNIgeWWW646+eST2zDNWJ4ny8ObFREvREA2HFXQxjuPIdnZK4yQDg94wANmHH/Qj4VR0C7F6v32269x0tZ8DyNMIGgH72FGFpTsidmNp3NYkzgT6/oJ2lnsQsii3gmRK/bncxKCNp6HiIsY5Zf6Y9VVV61/53/5HhtG0I598bzEAzMshMoyfm9Xb/hIj895IWgTXxgxC0OARWyMjoV6YfrXT9DOYbCIL07ey3QmJWhPqhylU2v8OsozjDArPKPCCA8RYaf61b9dBG3KGqMFMDzfeT5ikyx7dYId/5XPvDe96U3VZpttNkcqc1vQLr2G99prr4pO2TYbV9Am3b333rtingJsk002qZZddtlevPgcbqze4M5/eW4COiCI5z9s2JFIZ9h3idi+3yeddHibh0VHCb/7CdqTei/iOPm9VEEbIpoEJCABCUhAAhKQwDQSUNAe86ow0RLemiFUkRxCwu677z5jQsS2w+SGQxa0GYZ65JFH9nbj+9prr937PeyXLAYMirs7KM0sruLJROOxjMvbL40ujb5+gnY+J4533HHHVausskrjoXPoBzZASEbQwIbNTxbbRhG0r7rqqtpLtT7oHf8Q4HKM9Fje9Ik3PMcPKyeHHEXQpjOAsDE333xzJFt17YiJHRdUQbvkHOfLZ9mJFTF68zZ8v/TSS+uwHuXyQYJluX38ZjQEgmUYgjNhQ5qM+oI6JAyhLu7V7MnXdp7EpMWzNzxaB3lotwn0Bx98cMWEbVi/UBpZiOoiaJMuMfWj/uV+Z4QI+WZ5lPG11lqr543KPl0sC9qD4lvzPGCC2GA97HG++c1vVoccckhvczy28ZgvjY4ohMEIoZBDK5Tl45RTTqlDx5RplCOLBnlot13bSZWjMn/l71zfd3mGleGUIl3uGe6dJsuCNmw/85nPzNEhwH6Ev+H8w3K5mGTZI3wKXt9LLrlkHGrgZ/bSz+Wj3JFnIWGssLnhoU26uYwwQiDHNmd92JlnnlkxsWxYW70U69s+z0uTFCJKL7HEEr342G3CbNnBM8qzcNh3ibZ85+W5w5RrT6dJdEr1E7TzfUJ6o74XsW9+L23jxnaZd9OoIe4Fzod3LtZrEpCABCQgAQlIQAISmCQBBe0J0CxjRZIkohVCyHrrrVfRqMyGWEQDDsEhhAnWZ0EboXCnnXaqrrnmmnpX0jvwwAOrddddNydV3XLLLbVnGI1T4oKW8a1zmAJ2ZOg1Xku333579bvf/a4ekj4jwT4/cozK2IxGIzFwaTiSR0KP4OVLSAEaydm6NPr6Cdrw23777XsNVfjCjuH12cpOARrXhD8IGzY/4wra2ZORY+PJh0ffMEY5YLKrmCCynBxyGEGbNLjWCOsI5HnyTvJAYxOhYZQG54IqaMMCMXaDDTaYcZnK0DF4FRISqM12vmNyMthnY1lMWJaXD/P9DW94Q8XkimGl2MC9QXljMsBsWdDOowWaYp4jouFdnsPdNAna2aMyd/QgYCDAUSfk+7jJQxLBg3oFL8mwUtCmbFJf0QmEB2U28kj4lDBibMcIhhz6gfVMXooYvNhii8Xm9SehM8gnE9syD8JDHvKQGethTFpYFggRlxGvo4MMj1cEJ86J0A6Un2GN60Z837jPqR+I+ZzrNERUxNgcviXnh32zUEvHC8yz8byh8yCEftY1CdrDXNtJlaOcv6bvoz7Dys5A0uZ5xXVq88DNgjbbc//z3M3b4wGNNyye2GH5/mLZJMoeAi/vCRjPrSyg1wtb/pUiI6N6Fl988Rlb55ETrJhbgjbeztwTYdzbdOiGQMvy8jnNslEFbZ5HhJbJ5Zv0qDfg0BbmK4cdYXvqFO7H0mAb58NokxjZMuy7BOlRZzAig042OkIyC9bzjsZ8CRgd9QjTYf0E7Um9F3GsSQja3B9wpF7i/qGzsXwnjPPyUwISkIAEJCABCUhAAqMQUNAehVrDPhdeeGF10EEH9TwF8ya8zNMwQSQjziPCRJOVMSabPDzx0qYhRAONBgNxkBFQwg499NDq4Q9/ePysh98iYIQhlCCKIwQxERt5fvSjHx2r+37+4Q9/qHbbbbee6NJ34ztWEo8XgWiURl8WwprCijB8HM/BMNgiPiAAweOnP/1pLVDFenjRgZAFsWEboeMI2jTmcuzWrkIX+S9F6zw5ZLkun1+ce4hk8Tt/0qCm0dm0X96u7fuCKmjH+XKvrLbaarWgyiSQiJ5hlDmErLLDKtbziViIGJwN8Tbuibx8mO+ltz/7UB+QR4RZ7utcH0SaWXDLXtOsR2B65CMfWU8Sx31F/iK+duzfJGjniQzZjg41OrXOOeec+j5EiOH8qQPCKG+Irog41G/ck3lCSLbLgnb2NqWM4nVNHYhofckll9QjLuJ8mRw21wmkVXrpkj/OlbAn1MOkAbewssOI5YTiOemkk2KTui5faaWV6o4Fjo1nJJNocl75XkO06iLgZCGLg1G+iPOMYE4YhbJjhG2yoM3v7BFLXU9nC+d67bXXVniBl51Z7NMkaA9zbQklE973pDNqOWLffsa5j/IMo26iLOXn7bbbbltxbm1WCtpsB+MNN9yw7oSEI/dIvj/a0hyn7NFpQYdBGO8QhJoZxsgjHb5hPIe5NnQ8/+pXv6oF/ZjQNraZW4I2nHj+ZV54avNMp+OMMEp5XeRnVEGb/Zmck8mNs8GD+TbajM4p7p2cF8JEUf9z/xHCiQ6SXJYYLfPSl760TnLYdwk25p0rOhxJmzIKfyYNJn4292MYHSfUmWH9BG22mcR7EelMQtDOIXlIkxEnjDzRJCABCUhAAhKQgAQkMCkCCtqTInlHOjSGEHHwSupiiJx4YGVvvNifRhQNoCyUxLrys2moLI367Old7tMk4JTbxG8aWjRSEHFCpMdbjcZgW/4Q1xHZsS6NvkGCNunR+ENoy41QlpdGY/GAAw7oTYoW64fNzziCdul9hgiEONLF8NLn2oYhnEWoiVLQjm0GfSLS4M2PsDCOLaiCNvfkBRdc0IoGsfCwww4bKFhyr3C9ooxmT+bWxAesaBLd8i7cm9xziLsRiiML2nRMMVFaCMF53/jOPcNIi7PPPrte1CRos477qs2oK9ZZZ536WDHSpGlbhGq8ISOufBa08YjEUzX4Ne3PMkJR0NFTdsxQN5GPOI+2/VlOmBC8omPyxNgWwZ2wUm0Wwhb3aD7PsnOxbf9YzmgbzpVOyjZDZCMmMiGtsFLQPrMI3dCUDgLZj370ozoUAOubBO1hri1i3CTKUVMe87JxnmHlvZJDTuVjxPdy+1je9klZLT2OY9txyh5iL0J5tqbrlNfn76WYmNfFd945Ilbz3BK0ORYj2Bjx0e8eplMVkT2E3nEE7TL0DnmIkWl8bzNCj1BnNnUclfvQeU7dF6M9hn2XIB0mBm4LvZKP09RBN0jQZv9x34tIYxKCNh2ZdEiGjdKZH/v6KQEJSEACEpCABCQggSYCCtpNVMZchscfYSUQxGhclYbnHaE5Vl999Tr0AI3JfsZkcnhvI0KU6eFxuPHGG9fpIHY0Gd5eDJvPnohsh7hGQxJxbpDRSGLoNYbHF8IsYko2htJefvnl9XDaCKXCuRIGgKG+ZaxKwjcQlqDJsqCNABwTy5XbXnfddfVQVrz4MhuOCw/CDOCdVQ7rJZ1h85MFbeIKZ2/ByA/njidaWHhnwjdCNxDb9+ijj27MS+zX9sn5h3clol3ERx5W0EbkxEMP71Y8pfhj2bhWCtp4rOU4z4PShwchADCuGRNgDWPZa5bzGNZ7sV/a4WFLuSF97mGGqWeRkjJPJ82ee+45lJd1KUwxlByP2XGNESGElMjhJxBk8ZKmAwtRNosfWdDm2IhHiF45bALLEYa5foSc4J4ibBKG0Is4XVoZt5X15IMOF+olDI9R9qdzLhvXjfsJUZSQIojGdIyVHXPcW3AjjEP2kCQt7gXub/K86KKL5uRnfGdfvKypl0ohn049zhehlzLYZIR5QWzOoQzIP6FjODb7cX6ELoh6qN+knU3HiGUw5Z6IdFhOZyfzFuC1y3HxNmXiw1LQZlti7jK8v+xkDE9dyi+CGsIa1iaUDnNtJ1WO6oz0+TfqMyzXL/2eI3HoLGgj2BPXnM4cRkZEueFa8+zmuj/+8Y+PXVs/Ry17eBnjbYzlOr9eMOAfnSPUYYyAKI1yRIfIiiuuWN+njJTg2USZCaP8wQ6DQ3Q2xfr8mUPP4P1eCvFsSx3KMyyPIOGcCMnG9pRJOnIiZNo4gjbHy/N95E511vUz6iHqCUYz5LqVfbju5HeHHXaoR07kdIZ9l4h9EM3hzUiy8j6lDua9gbBtpeU6vWnkWmw/znsRacSzkO+8OzblhXU5vE35HOZdkBBP3Dewo4OvDJlHGpoEJCABCUhAAhKQgARGJaCgPSq5IffDSwsvZoQYRF3EMoTFUQ0vJ0QoBNplllmmcdKvtrTJB+ISDUmGzDeJvG375onR8OqiQd9mpbhL47jLpFZt6Q5aTiMekYfzo7He5fwGpe36hZcAQ8EpV5SprqFC6NhAJMMQFBEkJmnETSWMACIy9UFXo15CXEFwQLgina5GHhB0EC7oqGu71xFu2I6JEzkOonvXe5R9OV8MD/K2DrF6g5Z/xPimHqQeRjxCiBnG6LxBmKODkfwzF0FpERKGjkbqva7nl9Pj2QEvwlWVMZDzdk3fySvnSYgr8rL88st3LrukO+y1nUQ5ajqPclmXZxj88PwPIZrOhkEjUkpBO4RceHKf8Em5G/W6di170amwySab9MTekkm/31w/RmTAjbA43J/Dlvd+6Y66Dn6Uad6FeAeZZou8Um9Rt1JXjHrd+50n9Ql1Gs8WmPTrmOuXTtu62Xwv4tx4X6VDruuzs+18XC4BCUhAAhKQgAQkIIEgoKAdJPzsS2CrrbbqDRnGu68clp93zrG/aQTSKNcksLARQHxFUIuh9v083RY2Ngvq+eK5j9cyXqs5TNCCer7TfF7ZC53n1TBhHtoE7dk4T8RAvMCpP5om+JyNPHlMCUhAAhKQgAQkIAEJSEAC00JAQXtarsSU54PJiYiFiSFSE36k9NJmuC5DUJl0LkQ8hZ0pv7Bmb64ROPXUU3sxagnrQ2z9ueHhN9dOwIQ7EYjYuHhvE7Zg0p6WnTKzkG+MZzKdSRHOgRFGdMoOsmkRtPEOZkLPK664otpss83quOmD8u56CUhAAhKQgAQkIAEJSEACCxMBBe2F6WqPca7EeiQeYjbitzKEmaGkDDknLEMI2WzHJEBMaKmIl6n5fWEgQOfOc57znN6kjLvsskvfiQUXBiYL+jkSP564u8cee2wdlmJBP99pPr/TTjutjmdOHgmxQSz8u971rgOzPC2CNkI8cYyZX4P5JLqGnBl4om4gAQlIQAISkIAEJCABCUhgPiegoD2fX8B5mf2LLrqoniQrT1bWdHzi8TJZGpO1DSMiNKXhMgnMzwSYwDMmMuV+wDu7Lbb0/Hye5v3/CVAvEm+9bXLe/9/Sb3OTAN7NPHviOUXYDjobhrFpEbTJK/HYids/Spz4Yc7VbSQgAQlIQAISkIAEJCABCczPBBS05+erN0t5v/DCC6uzzz67nuyHSccwPLWZvAyPsi233LKemHGWsudhJTDrBM4999zqyiuvrPPBSIV11lln1vNkBiSwMBBgMshPfepT9anSibTNNttUiy222FCnfvnll1fnn39+vS2hY9hXk4AEJCABCUhAAhKQgAQkIIHpI6CgPX3XxBxJQAISkIAEJCABCUhAAhKQgAQkIAEJSEACEpBAAwEF7QYoLpKABCQgAQlIQAISkIAEJCABCUhAAhKQgAQkIIHpI6CgPX3XxBxJQAISkIAEJCABCUhAAhKQgAQkIAEJSEACEpBAAwEF7QYoLpKABCQgAQlIQAISkIAEJCABCUhAAhKQgAQkIIHpI6CgPX3XxBxJQAISkIAEJCABCUhAAhKQgAQkIAEJSEACEpBAAwEF7QYoLpKABCQgAQlIQAISkIAEJCABCUhAAhKQgAQkIIHpI6CgPX3XxBxJQAISkIAEJCABCUhAAhKQgAQkIAEJSEACEpBAAwEF7QYoLpKABCQgAQlIQAISkIAEJCABCUhAAhKQgAQkIIHpI6CgPX3XxBxJQAISkIAEJCABCUhAAhKQgAQkIAEJSEACEpBAAwEF7QYoLpKABCQgAQlIQAISkIAEJCABCUhAAhKQgAQkIIHpI6CgPX3XxBxJQAISkIAEJCABCUhAAhKQgAQkIAEJSEACEpBAAwEF7QYoLpKABCQgAQlIQAISkIAEJCABCUhAAhKQgAQkIIHpI6CgPX3XxBxJQAISkIAEJCABCUhAAhKQgAQkIAEJSEACEpBAAwEF7QYoLpKABCQgAQlIQAISkIAEJCABCUhAAhKQgAQkIIHpI6CgPX3XxBxJQAISkIAEJCABCUhAAhKQgAQkIAEJSEACEpBAAwEF7QYoLpKABCQgAQlIQAISkIAEJCABCUhAAhKQgAQkIIHpI6CgPX3XxBxJQAISkIAEJCABCUhAAhKQgAQkIAEJSEACEpBAAwEF7QYoLpKABCQgAQlIQAISkIAEJCABCUhAAhKQgAQkIIHpI6CgPX3XxBxJQAISkIAEJCABCUhAAhKQgAQkIAEJSEACEpBAAwEF7QYoLpKABCQgAQlIQAISkIAEJCABCUhAAhKQgAQkIIHpI6CgPX3XxBxJQAISkIAEJCABCUhAAhKQgAQkIAEJSEACEpBAAwEF7QYoLpKABCQgAQlIQAISkIAEJCABCUhAAhKQgAQkIIHpI6CgPX3XxBxJQAISkIAEJCABCUhAAhKQgAQkIAEJSEACEpBAAwEF7QYoLpKABCQgAQlIQAISkIAEJCABCUhAAhKQgAQkIIHpI/C/tJmVr5u4G+EAAAAASUVORK5CYII=" + } + }, "cell_type": "markdown", "id": "8e713032", "metadata": {}, "source": [ - "## Import modules" + "## Import the loading function `get_gnomad_release`\n", + "\n", + "The main toolbox function that loads gnomAD release data is `get_gnomad_release`.\n", + "\n", + "![Screenshot 2025-01-14 at 11.02.35 AM.png](attachment:8fbdba40-9387-4520-a2d0-370aaeed6f00.png)\n", + "![Screenshot 2025-01-14 at 11.07.19 AM.png](attachment:53765947-f8a0-4821-aed7-99c4b6de5c25.png)" ] }, { @@ -76,7 +89,7 @@ { "data": { "text/html": [ - "\n", "
\n", " \n", - " Loading BokehJS ...\n", + " Loading BokehJS ...\n", "
\n" ] }, @@ -125,14 +138,22 @@ " * Handle when an output is cleared or removed\n", " */\n", " function handleClearOutput(event, handle) {\n", + " function drop(id) {\n", + " const view = Bokeh.index.get_by_id(id)\n", + " if (view != null) {\n", + " view.model.document.clear()\n", + " Bokeh.index.delete(view)\n", + " }\n", + " }\n", + "\n", " const cell = handle.cell;\n", "\n", " const id = cell.output_area._bokeh_element_id;\n", " const server_id = cell.output_area._bokeh_server_id;\n", + "\n", " // Clean up Bokeh references\n", - " if (id != null && id in Bokeh.index) {\n", - " Bokeh.index[id].model.document.clear();\n", - " delete Bokeh.index[id];\n", + " if (id != null) {\n", + " drop(id)\n", " }\n", "\n", " if (server_id !== undefined) {\n", @@ -141,11 +162,8 @@ " cell.notebook.kernel.execute(cmd_clean, {\n", " iopub: {\n", " output: function(msg) {\n", - " const id = msg.content.text.trim();\n", - " if (id in Bokeh.index) {\n", - " Bokeh.index[id].model.document.clear();\n", - " delete Bokeh.index[id];\n", - " }\n", + " const id = msg.content.text.trim()\n", + " drop(id)\n", " }\n", " }\n", " });\n", @@ -253,7 +271,7 @@ " \"\"}};\n", "\n", " function display_loaded() {\n", - " const el = document.getElementById(\"d187bdb8-34f9-433d-91a7-1276eafc4685\");\n", + " const el = document.getElementById(\"da0da3b0-b5fd-4d97-96c0-ec7eae06d97a\");\n", " if (el != null) {\n", " el.textContent = \"BokehJS is loading...\";\n", " }\n", @@ -336,7 +354,7 @@ " document.body.appendChild(element);\n", " }\n", "\n", - " const js_urls = [\"https://cdn.bokeh.org/bokeh/release/bokeh-3.2.2.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-gl-3.2.2.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-widgets-3.2.2.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-tables-3.2.2.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-mathjax-3.2.2.min.js\"];\n", + " const js_urls = [\"https://cdn.bokeh.org/bokeh/release/bokeh-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-gl-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-widgets-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-tables-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-mathjax-3.3.4.min.js\"];\n", " const css_urls = [];\n", "\n", " const inline_js = [ function(Bokeh) {\n", @@ -359,7 +377,7 @@ " console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n", " root._bokeh_failed_load = true;\n", " } else if (force !== true) {\n", - " const cell = $(document.getElementById(\"d187bdb8-34f9-433d-91a7-1276eafc4685\")).parents('.cell').data().cell;\n", + " const cell = $(document.getElementById(\"da0da3b0-b5fd-4d97-96c0-ec7eae06d97a\")).parents('.cell').data().cell;\n", " cell.output_area.append_execute_result(NB_LOAD_WARNING)\n", " }\n", " }\n", @@ -375,7 +393,7 @@ " }\n", "}(window));" ], - "application/vnd.bokehjs_load.v0+json": "(function(root) {\n function now() {\n return new Date();\n }\n\n const force = true;\n\n if (typeof root._bokeh_onload_callbacks === \"undefined\" || force === true) {\n root._bokeh_onload_callbacks = [];\n root._bokeh_is_loading = undefined;\n }\n\n\n if (typeof (root._bokeh_timeout) === \"undefined\" || force === true) {\n root._bokeh_timeout = Date.now() + 5000;\n root._bokeh_failed_load = false;\n }\n\n const NB_LOAD_WARNING = {'data': {'text/html':\n \"
\\n\"+\n \"

\\n\"+\n \"BokehJS does not appear to have successfully loaded. If loading BokehJS from CDN, this \\n\"+\n \"may be due to a slow or bad network connection. Possible fixes:\\n\"+\n \"

\\n\"+\n \"
    \\n\"+\n \"
  • re-rerun `output_notebook()` to attempt to load from CDN again, or
  • \\n\"+\n \"
  • use INLINE resources instead, as so:
  • \\n\"+\n \"
\\n\"+\n \"\\n\"+\n \"from bokeh.resources import INLINE\\n\"+\n \"output_notebook(resources=INLINE)\\n\"+\n \"\\n\"+\n \"
\"}};\n\n function display_loaded() {\n const el = document.getElementById(\"d187bdb8-34f9-433d-91a7-1276eafc4685\");\n if (el != null) {\n el.textContent = \"BokehJS is loading...\";\n }\n if (root.Bokeh !== undefined) {\n if (el != null) {\n el.textContent = \"BokehJS \" + root.Bokeh.version + \" successfully loaded.\";\n }\n } else if (Date.now() < root._bokeh_timeout) {\n setTimeout(display_loaded, 100)\n }\n }\n\n function run_callbacks() {\n try {\n root._bokeh_onload_callbacks.forEach(function(callback) {\n if (callback != null)\n callback();\n });\n } finally {\n delete root._bokeh_onload_callbacks\n }\n console.debug(\"Bokeh: all callbacks have finished\");\n }\n\n function load_libs(css_urls, js_urls, callback) {\n if (css_urls == null) css_urls = [];\n if (js_urls == null) js_urls = [];\n\n root._bokeh_onload_callbacks.push(callback);\n if (root._bokeh_is_loading > 0) {\n console.debug(\"Bokeh: BokehJS is being loaded, scheduling callback at\", now());\n return null;\n }\n if (js_urls == null || js_urls.length === 0) {\n run_callbacks();\n return null;\n }\n console.debug(\"Bokeh: BokehJS not loaded, scheduling load and callback at\", now());\n root._bokeh_is_loading = css_urls.length + js_urls.length;\n\n function on_load() {\n root._bokeh_is_loading--;\n if (root._bokeh_is_loading === 0) {\n console.debug(\"Bokeh: all BokehJS libraries/stylesheets loaded\");\n run_callbacks()\n }\n }\n\n function on_error(url) {\n console.error(\"failed to load \" + url);\n }\n\n for (let i = 0; i < css_urls.length; i++) {\n const url = css_urls[i];\n const element = document.createElement(\"link\");\n element.onload = on_load;\n element.onerror = on_error.bind(null, url);\n element.rel = \"stylesheet\";\n element.type = \"text/css\";\n element.href = url;\n console.debug(\"Bokeh: injecting link tag for BokehJS stylesheet: \", url);\n document.body.appendChild(element);\n }\n\n for (let i = 0; i < js_urls.length; i++) {\n const url = js_urls[i];\n const element = document.createElement('script');\n element.onload = on_load;\n element.onerror = on_error.bind(null, url);\n element.async = false;\n element.src = url;\n console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n document.head.appendChild(element);\n }\n };\n\n function inject_raw_css(css) {\n const element = document.createElement(\"style\");\n element.appendChild(document.createTextNode(css));\n document.body.appendChild(element);\n }\n\n const js_urls = [\"https://cdn.bokeh.org/bokeh/release/bokeh-3.2.2.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-gl-3.2.2.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-widgets-3.2.2.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-tables-3.2.2.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-mathjax-3.2.2.min.js\"];\n const css_urls = [];\n\n const inline_js = [ function(Bokeh) {\n Bokeh.set_log_level(\"info\");\n },\nfunction(Bokeh) {\n }\n ];\n\n function run_inline_js() {\n if (root.Bokeh !== undefined || force === true) {\n for (let i = 0; i < inline_js.length; i++) {\n inline_js[i].call(root, root.Bokeh);\n }\nif (force === true) {\n display_loaded();\n }} else if (Date.now() < root._bokeh_timeout) {\n setTimeout(run_inline_js, 100);\n } else if (!root._bokeh_failed_load) {\n console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n root._bokeh_failed_load = true;\n } else if (force !== true) {\n const cell = $(document.getElementById(\"d187bdb8-34f9-433d-91a7-1276eafc4685\")).parents('.cell').data().cell;\n cell.output_area.append_execute_result(NB_LOAD_WARNING)\n }\n }\n\n if (root._bokeh_is_loading === 0) {\n console.debug(\"Bokeh: BokehJS loaded, going straight to plotting\");\n run_inline_js();\n } else {\n load_libs(css_urls, js_urls, function() {\n console.debug(\"Bokeh: BokehJS plotting callback run at\", now());\n run_inline_js();\n });\n }\n}(window));" + "application/vnd.bokehjs_load.v0+json": "(function(root) {\n function now() {\n return new Date();\n }\n\n const force = true;\n\n if (typeof root._bokeh_onload_callbacks === \"undefined\" || force === true) {\n root._bokeh_onload_callbacks = [];\n root._bokeh_is_loading = undefined;\n }\n\n\n if (typeof (root._bokeh_timeout) === \"undefined\" || force === true) {\n root._bokeh_timeout = Date.now() + 5000;\n root._bokeh_failed_load = false;\n }\n\n const NB_LOAD_WARNING = {'data': {'text/html':\n \"
\\n\"+\n \"

\\n\"+\n \"BokehJS does not appear to have successfully loaded. If loading BokehJS from CDN, this \\n\"+\n \"may be due to a slow or bad network connection. Possible fixes:\\n\"+\n \"

\\n\"+\n \"
    \\n\"+\n \"
  • re-rerun `output_notebook()` to attempt to load from CDN again, or
  • \\n\"+\n \"
  • use INLINE resources instead, as so:
  • \\n\"+\n \"
\\n\"+\n \"\\n\"+\n \"from bokeh.resources import INLINE\\n\"+\n \"output_notebook(resources=INLINE)\\n\"+\n \"\\n\"+\n \"
\"}};\n\n function display_loaded() {\n const el = document.getElementById(\"da0da3b0-b5fd-4d97-96c0-ec7eae06d97a\");\n if (el != null) {\n el.textContent = \"BokehJS is loading...\";\n }\n if (root.Bokeh !== undefined) {\n if (el != null) {\n el.textContent = \"BokehJS \" + root.Bokeh.version + \" successfully loaded.\";\n }\n } else if (Date.now() < root._bokeh_timeout) {\n setTimeout(display_loaded, 100)\n }\n }\n\n function run_callbacks() {\n try {\n root._bokeh_onload_callbacks.forEach(function(callback) {\n if (callback != null)\n callback();\n });\n } finally {\n delete root._bokeh_onload_callbacks\n }\n console.debug(\"Bokeh: all callbacks have finished\");\n }\n\n function load_libs(css_urls, js_urls, callback) {\n if (css_urls == null) css_urls = [];\n if (js_urls == null) js_urls = [];\n\n root._bokeh_onload_callbacks.push(callback);\n if (root._bokeh_is_loading > 0) {\n console.debug(\"Bokeh: BokehJS is being loaded, scheduling callback at\", now());\n return null;\n }\n if (js_urls == null || js_urls.length === 0) {\n run_callbacks();\n return null;\n }\n console.debug(\"Bokeh: BokehJS not loaded, scheduling load and callback at\", now());\n root._bokeh_is_loading = css_urls.length + js_urls.length;\n\n function on_load() {\n root._bokeh_is_loading--;\n if (root._bokeh_is_loading === 0) {\n console.debug(\"Bokeh: all BokehJS libraries/stylesheets loaded\");\n run_callbacks()\n }\n }\n\n function on_error(url) {\n console.error(\"failed to load \" + url);\n }\n\n for (let i = 0; i < css_urls.length; i++) {\n const url = css_urls[i];\n const element = document.createElement(\"link\");\n element.onload = on_load;\n element.onerror = on_error.bind(null, url);\n element.rel = \"stylesheet\";\n element.type = \"text/css\";\n element.href = url;\n console.debug(\"Bokeh: injecting link tag for BokehJS stylesheet: \", url);\n document.body.appendChild(element);\n }\n\n for (let i = 0; i < js_urls.length; i++) {\n const url = js_urls[i];\n const element = document.createElement('script');\n element.onload = on_load;\n element.onerror = on_error.bind(null, url);\n element.async = false;\n element.src = url;\n console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n document.head.appendChild(element);\n }\n };\n\n function inject_raw_css(css) {\n const element = document.createElement(\"style\");\n element.appendChild(document.createTextNode(css));\n document.body.appendChild(element);\n }\n\n const js_urls = [\"https://cdn.bokeh.org/bokeh/release/bokeh-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-gl-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-widgets-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-tables-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-mathjax-3.3.4.min.js\"];\n const css_urls = [];\n\n const inline_js = [ function(Bokeh) {\n Bokeh.set_log_level(\"info\");\n },\nfunction(Bokeh) {\n }\n ];\n\n function run_inline_js() {\n if (root.Bokeh !== undefined || force === true) {\n for (let i = 0; i < inline_js.length; i++) {\n inline_js[i].call(root, root.Bokeh);\n }\nif (force === true) {\n display_loaded();\n }} else if (Date.now() < root._bokeh_timeout) {\n setTimeout(run_inline_js, 100);\n } else if (!root._bokeh_failed_load) {\n console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n root._bokeh_failed_load = true;\n } else if (force !== true) {\n const cell = $(document.getElementById(\"da0da3b0-b5fd-4d97-96c0-ec7eae06d97a\")).parents('.cell').data().cell;\n cell.output_area.append_execute_result(NB_LOAD_WARNING)\n }\n }\n\n if (root._bokeh_is_loading === 0) {\n console.debug(\"Bokeh: BokehJS loaded, going straight to plotting\");\n run_inline_js();\n } else {\n load_libs(css_urls, js_urls, function() {\n console.debug(\"Bokeh: BokehJS plotting callback run at\", now());\n run_inline_js();\n });\n }\n}(window));" }, "metadata": {}, "output_type": "display_data" @@ -400,8 +418,8 @@ " __ __ <>__\n", " / /_/ /__ __/ /\n", " / __ / _ `/ / /\n", - " /_/ /_/\\_,_/_/_/ version 0.2.133-4c60fddb171a\n", - "LOGGING: writing to /Users/jgoodric/PycharmProjects/gnomad-toolbox/gnomad_toolbox/notebooks/hail-20250113-1435-0.2.133-4c60fddb171a.log\n" + " /_/ /_/\\_,_/_/_/ version 0.2.132-678e1f52b999\n", + "LOGGING: writing to /Users/jgoodric/PycharmProjects/gnomad-toolbox/gnomad_toolbox/notebooks/hail-20250114-1205-0.2.132-678e1f52b999.log\n" ] } ], @@ -409,6 +427,38 @@ "hl.init(backend=\"local\")" ] }, + { + "cell_type": "markdown", + "id": "3347caa3-1656-4cec-87a3-727a30185f13", + "metadata": {}, + "source": [ + "## Table of all currently supported gnomAD release datasets\n", + "\n", + "The following are the datasets, reference genome build, version, and data type combinations are currently supported for loading in the gnomAD toolbox with the `get_gnomad_release` function.\n" + ] + }, + { + "cell_type": "markdown", + "id": "b4b633dd-9b92-4e3f-b6c7-1100fa813885", + "metadata": {}, + "source": [ + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Genome BuildDataset (dataset)Version (version)Data Type (data_type)
GRCh37variant2.1.1exomes, genomes
coverage2.1exomes, genomes
constraint2.1.1N/A
liftover2.1.1exomes, genomes
pextv7base_level, annotation_level
GRCh38variant4.1exomes, genomes, joint
coverage3.0.1genomes
4.0exomes
all_sites_an4.1exomes, genomes
constraint4.1N/A
pextv10base_level, annotation_level
browser_variant4.1N/A (This includes information for the joint, exomes, and genomes, but doesn't need to be specified)
\n" + ] + }, { "cell_type": "markdown", "id": "5335a135", @@ -418,13 +468,6 @@ "source": [ "## Variant data\n", "\n", - "Supported versions for each data type and reference build are (as of 2025-1-13):\n", - "\n", - "| Genome Build | Version | Data Types |\n", - "|-----------------|----------|------------------------|\n", - "| GRCh37 | 2.1.1 | exomes, genomes |\n", - "| GRCh38 | 4.1 | exomes, genomes, joint |\n", - "\n", "For a description of all fields the the HT, see the [Help/FAQ](https://gnomad.broadinstitute.org/help/v4-hts) page." ] }, @@ -6401,7 +6444,7 @@ }, { "cell_type": "code", - "execution_count": 22, + "execution_count": 21, "id": "a8d0be07-c35d-425a-b554-c86034e367fc", "metadata": { "ExecuteTime": { @@ -6425,7 +6468,7 @@ }, { "cell_type": "code", - "execution_count": 23, + "execution_count": 22, "id": "18afb20f-7429-4fe2-a6c5-73a22dcbdb76", "metadata": { "ExecuteTime": { @@ -6479,7 +6522,7 @@ }, { "cell_type": "code", - "execution_count": 24, + "execution_count": 23, "id": "b27cb655-3abb-4501-bcc9-3f634db64591", "metadata": { "ExecuteTime": { @@ -6534,6 +6577,5919 @@ "source": [ "ht.show(5)" ] + }, + { + "cell_type": "markdown", + "id": "c4ae4713-f542-46e3-979f-0bcfb44ec56c", + "metadata": { + "tags": [] + }, + "source": [ + "## Constraint\n" + ] + }, + { + "cell_type": "markdown", + "id": "4ed92af6-aacc-4cb2-890d-7ff76a00196d", + "metadata": {}, + "source": [ + "### Load the Hail Table\n" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "id": "3de343dc-37ae-4b17-a056-9d30e71e217c", + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-06T20:08:59.197890Z", + "start_time": "2024-12-06T20:08:50.859108Z" + } + }, + "outputs": [], + "source": [ + "ht = get_gnomad_release(version='4.1', dataset=\"constraint\")" + ] + }, + { + "cell_type": "markdown", + "id": "5b59b2f6-aadd-408d-8663-b676d41565bf", + "metadata": {}, + "source": [ + "### Print the schema of the Hail Table\n" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "id": "c401dc94-0db0-4902-933d-e46c8aa447ce", + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-06T20:09:00.032524Z", + "start_time": "2024-12-06T20:09:00.029271Z" + }, + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "----------------------------------------\n", + "Global fields:\n", + " 'version': str \n", + " 'apply_model_params': struct {\n", + " max_af: float64, \n", + " pops: tuple (\n", + " ), \n", + " plateau_models: struct {\n", + " total: dict>\n", + " }, \n", + " coverage_model: str\n", + " } \n", + " 'sd_raw_z': struct {\n", + " lof: float64, \n", + " mis: float64, \n", + " syn: float64\n", + " } \n", + "----------------------------------------\n", + "Row fields:\n", + " 'gene': str \n", + " 'gene_id': str \n", + " 'transcript': str \n", + " 'canonical': bool \n", + " 'mane_select': bool \n", + " 'lof_hc_lc': struct {\n", + " obs: int64, \n", + " exp: float64, \n", + " possible: int64, \n", + " oe: float64, \n", + " mu: float64, \n", + " pLI: float64, \n", + " pNull: float64, \n", + " pRec: float64\n", + " } \n", + " 'lof': struct {\n", + " obs: int64, \n", + " exp: float64, \n", + " possible: int64, \n", + " oe: float64, \n", + " mu: float64, \n", + " pLI: float64, \n", + " pNull: float64, \n", + " pRec: float64, \n", + " oe_ci: struct {\n", + " lower: float64, \n", + " upper: float64, \n", + " upper_rank: int64, \n", + " upper_bin_decile: int32\n", + " }, \n", + " z_raw: float64, \n", + " z_score: float64\n", + " } \n", + " 'mis': struct {\n", + " obs: int64, \n", + " exp: float64, \n", + " possible: int64, \n", + " oe: float64, \n", + " mu: float64, \n", + " oe_ci: struct {\n", + " lower: float64, \n", + " upper: float64\n", + " }, \n", + " z_raw: float64, \n", + " z_score: float64\n", + " } \n", + " 'mis_pphen': struct {\n", + " obs: int64, \n", + " exp: float64, \n", + " possible: int64, \n", + " oe: float64\n", + " } \n", + " 'syn': struct {\n", + " obs: int64, \n", + " exp: float64, \n", + " possible: int64, \n", + " oe: float64, \n", + " mu: float64, \n", + " oe_ci: struct {\n", + " lower: float64, \n", + " upper: float64\n", + " }, \n", + " z_raw: float64, \n", + " z_score: float64\n", + " } \n", + " 'constraint_flags': set \n", + " 'level': str \n", + " 'transcript_type': str \n", + " 'chromosome': str \n", + " 'cds_length': int64 \n", + " 'num_coding_exons': int64 \n", + "----------------------------------------\n", + "Key: ['gene', 'gene_id', 'transcript', 'canonical', 'mane_select']\n", + "----------------------------------------\n" + ] + } + ], + "source": [ + "ht.describe()" + ] + }, + { + "cell_type": "markdown", + "id": "5b0e64c9-744c-4ed7-a832-9d68c548540b", + "metadata": { + "tags": [] + }, + "source": [ + "### Show the first 5 variants in the Hail Table\n" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "id": "262cbbf1-9fc7-4819-9b2a-d1a1e27c10bf", + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-06T20:09:20.949958Z", + "start_time": "2024-12-06T20:09:05.622171Z" + }, + "tags": [] + }, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
lof
mis
syn
lof_hc_lc
oe_ci
oe_ci
mis_pphen
oe_ci
gene
gene_id
transcript
canonical
mane_select
obs
exp
possible
oe
mu
pLI
pNull
pRec
obs
exp
possible
oe
mu
pLI
pNull
pRec
lower
upper
upper_rank
upper_bin_decile
z_raw
z_score
obs
exp
possible
oe
mu
lower
upper
z_raw
z_score
obs
exp
possible
oe
obs
exp
possible
oe
mu
lower
upper
z_raw
z_score
constraint_flags
level
transcript_type
chromosome
cds_length
num_coding_exons
strstrstrboolboolint64float64int64float64float64float64float64float64int64float64int64float64float64float64float64float64float64float64int64int32float64float64int64float64int64float64float64float64float64float64float64int64float64int64float64int64float64int64float64float64float64float64float64float64set<str>strstrstrint64int64
"A1BG""1""NM_130786.4"TrueTrue454.30e+011931.05e+007.06e-071.63e-168.49e-011.51e-01454.30e+011931.05e+007.06e-071.77e-168.43e-011.57e-018.22e-011.34e+00NANA-2.98e-01-2.52e-017076.47e+0228701.09e+007.67e-061.03e+001.16e+00-2.36e+00-8.61e-012201.91e+028901.15e+003162.96e+029941.07e+003.02e-069.73e-011.17e+00-1.17e+00-6.35e-01{}NANANANANA
"A1BG""ENSG00000121410""ENST00000263100"TrueTrue454.30e+011931.05e+007.06e-071.63e-168.49e-011.51e-01454.30e+011931.05e+007.06e-071.77e-168.43e-011.57e-018.22e-011.34e+00140577-2.98e-01-2.52e-017076.47e+0228701.09e+007.67e-061.03e+001.16e+00-2.36e+00-8.61e-012201.91e+028901.15e+003162.96e+029941.07e+003.02e-069.73e-011.17e+00-1.17e+00-6.35e-01{}"2""protein_coding""chr19"14858
"A1BG""ENSG00000121410""ENST00000600966"FalseFalse242.63e+011239.14e-014.20e-072.53e-083.43e-016.57e-01222.50e+011198.80e-013.96e-071.84e-072.65e-017.35e-016.28e-011.26e+00NANA6.01e-015.09e-013994.06e+0218589.84e-014.91e-069.06e-011.07e+003.24e-011.18e-011031.10e+025129.40e-011661.79e+026379.28e-011.91e-068.17e-011.06e+009.64e-015.26e-01{}"1""protein_coding""chr19"9175
"A1CF""29974""NM_001198818.2"FalseFalse457.00e+013526.43e-019.55e-077.32e-102.06e-039.98e-01457.00e+013526.43e-019.55e-077.66e-101.96e-039.98e-015.06e-018.25e-01NANA2.98e+002.53e+006537.46e+0237208.76e-014.38e-068.21e-019.34e-013.39e+001.24e+002362.77e+0213998.53e-012722.73e+0211579.98e-012.01e-069.03e-011.10e+003.27e-021.78e-02{}NANANANANA
"A1CF""29974""NM_001198819.2"FalseFalse487.28e+013676.59e-011.02e-067.64e-112.53e-039.97e-01477.03e+013556.69e-019.72e-077.70e-113.58e-039.96e-015.28e-018.53e-01NANA2.78e+002.35e+006707.62e+0238378.80e-014.43e-068.25e-019.38e-013.33e+001.21e+003093.65e+0218418.47e-012712.76e+0211889.82e-011.91e-068.88e-011.09e+003.00e-011.64e-01{}NANANANANA

showing top 5 rows

\n" + ], + "text/plain": [ + "+--------+-------------------+-------------------+-----------+-------------+\n", + "| gene | gene_id | transcript | canonical | mane_select |\n", + "+--------+-------------------+-------------------+-----------+-------------+\n", + "| str | str | str | bool | bool |\n", + "+--------+-------------------+-------------------+-----------+-------------+\n", + "| \"A1BG\" | \"1\" | \"NM_130786.4\" | True | True |\n", + "| \"A1BG\" | \"ENSG00000121410\" | \"ENST00000263100\" | True | True |\n", + "| \"A1BG\" | \"ENSG00000121410\" | \"ENST00000600966\" | False | False |\n", + "| \"A1CF\" | \"29974\" | \"NM_001198818.2\" | False | False |\n", + "| \"A1CF\" | \"29974\" | \"NM_001198819.2\" | False | False |\n", + "+--------+-------------------+-------------------+-----------+-------------+\n", + "\n", + "+---------------+---------------+--------------------+--------------+\n", + "| lof_hc_lc.obs | lof_hc_lc.exp | lof_hc_lc.possible | lof_hc_lc.oe |\n", + "+---------------+---------------+--------------------+--------------+\n", + "| int64 | float64 | int64 | float64 |\n", + "+---------------+---------------+--------------------+--------------+\n", + "| 45 | 4.30e+01 | 193 | 1.05e+00 |\n", + "| 45 | 4.30e+01 | 193 | 1.05e+00 |\n", + "| 24 | 2.63e+01 | 123 | 9.14e-01 |\n", + "| 45 | 7.00e+01 | 352 | 6.43e-01 |\n", + "| 48 | 7.28e+01 | 367 | 6.59e-01 |\n", + "+---------------+---------------+--------------------+--------------+\n", + "\n", + "+--------------+---------------+-----------------+----------------+---------+\n", + "| lof_hc_lc.mu | lof_hc_lc.pLI | lof_hc_lc.pNull | lof_hc_lc.pRec | lof.obs |\n", + "+--------------+---------------+-----------------+----------------+---------+\n", + "| float64 | float64 | float64 | float64 | int64 |\n", + "+--------------+---------------+-----------------+----------------+---------+\n", + "| 7.06e-07 | 1.63e-16 | 8.49e-01 | 1.51e-01 | 45 |\n", + "| 7.06e-07 | 1.63e-16 | 8.49e-01 | 1.51e-01 | 45 |\n", + "| 4.20e-07 | 2.53e-08 | 3.43e-01 | 6.57e-01 | 22 |\n", + "| 9.55e-07 | 7.32e-10 | 2.06e-03 | 9.98e-01 | 45 |\n", + "| 1.02e-06 | 7.64e-11 | 2.53e-03 | 9.97e-01 | 47 |\n", + "+--------------+---------------+-----------------+----------------+---------+\n", + "\n", + "+----------+--------------+----------+----------+----------+-----------+\n", + "| lof.exp | lof.possible | lof.oe | lof.mu | lof.pLI | lof.pNull |\n", + "+----------+--------------+----------+----------+----------+-----------+\n", + "| float64 | int64 | float64 | float64 | float64 | float64 |\n", + "+----------+--------------+----------+----------+----------+-----------+\n", + "| 4.30e+01 | 193 | 1.05e+00 | 7.06e-07 | 1.77e-16 | 8.43e-01 |\n", + "| 4.30e+01 | 193 | 1.05e+00 | 7.06e-07 | 1.77e-16 | 8.43e-01 |\n", + "| 2.50e+01 | 119 | 8.80e-01 | 3.96e-07 | 1.84e-07 | 2.65e-01 |\n", + "| 7.00e+01 | 352 | 6.43e-01 | 9.55e-07 | 7.66e-10 | 1.96e-03 |\n", + "| 7.03e+01 | 355 | 6.69e-01 | 9.72e-07 | 7.70e-11 | 3.58e-03 |\n", + "+----------+--------------+----------+----------+----------+-----------+\n", + "\n", + "+----------+-----------------+-----------------+----------------------+\n", + "| lof.pRec | lof.oe_ci.lower | lof.oe_ci.upper | lof.oe_ci.upper_rank |\n", + "+----------+-----------------+-----------------+----------------------+\n", + "| float64 | float64 | float64 | int64 |\n", + "+----------+-----------------+-----------------+----------------------+\n", + "| 1.57e-01 | 8.22e-01 | 1.34e+00 | NA |\n", + "| 1.57e-01 | 8.22e-01 | 1.34e+00 | 14057 |\n", + "| 7.35e-01 | 6.28e-01 | 1.26e+00 | NA |\n", + "| 9.98e-01 | 5.06e-01 | 8.25e-01 | NA |\n", + "| 9.96e-01 | 5.28e-01 | 8.53e-01 | NA |\n", + "+----------+-----------------+-----------------+----------------------+\n", + "\n", + "+----------------------------+-----------+-------------+---------+----------+\n", + "| lof.oe_ci.upper_bin_decile | lof.z_raw | lof.z_score | mis.obs | mis.exp |\n", + "+----------------------------+-----------+-------------+---------+----------+\n", + "| int32 | float64 | float64 | int64 | float64 |\n", + "+----------------------------+-----------+-------------+---------+----------+\n", + "| NA | -2.98e-01 | -2.52e-01 | 707 | 6.47e+02 |\n", + "| 7 | -2.98e-01 | -2.52e-01 | 707 | 6.47e+02 |\n", + "| NA | 6.01e-01 | 5.09e-01 | 399 | 4.06e+02 |\n", + "| NA | 2.98e+00 | 2.53e+00 | 653 | 7.46e+02 |\n", + "| NA | 2.78e+00 | 2.35e+00 | 670 | 7.62e+02 |\n", + "+----------------------------+-----------+-------------+---------+----------+\n", + "\n", + "+--------------+----------+----------+-----------------+-----------------+\n", + "| mis.possible | mis.oe | mis.mu | mis.oe_ci.lower | mis.oe_ci.upper |\n", + "+--------------+----------+----------+-----------------+-----------------+\n", + "| int64 | float64 | float64 | float64 | float64 |\n", + "+--------------+----------+----------+-----------------+-----------------+\n", + "| 2870 | 1.09e+00 | 7.67e-06 | 1.03e+00 | 1.16e+00 |\n", + "| 2870 | 1.09e+00 | 7.67e-06 | 1.03e+00 | 1.16e+00 |\n", + "| 1858 | 9.84e-01 | 4.91e-06 | 9.06e-01 | 1.07e+00 |\n", + "| 3720 | 8.76e-01 | 4.38e-06 | 8.21e-01 | 9.34e-01 |\n", + "| 3837 | 8.80e-01 | 4.43e-06 | 8.25e-01 | 9.38e-01 |\n", + "+--------------+----------+----------+-----------------+-----------------+\n", + "\n", + "+-----------+-------------+---------------+---------------+--------------------+\n", + "| mis.z_raw | mis.z_score | mis_pphen.obs | mis_pphen.exp | mis_pphen.possible |\n", + "+-----------+-------------+---------------+---------------+--------------------+\n", + "| float64 | float64 | int64 | float64 | int64 |\n", + "+-----------+-------------+---------------+---------------+--------------------+\n", + "| -2.36e+00 | -8.61e-01 | 220 | 1.91e+02 | 890 |\n", + "| -2.36e+00 | -8.61e-01 | 220 | 1.91e+02 | 890 |\n", + "| 3.24e-01 | 1.18e-01 | 103 | 1.10e+02 | 512 |\n", + "| 3.39e+00 | 1.24e+00 | 236 | 2.77e+02 | 1399 |\n", + "| 3.33e+00 | 1.21e+00 | 309 | 3.65e+02 | 1841 |\n", + "+-----------+-------------+---------------+---------------+--------------------+\n", + "\n", + "+--------------+---------+----------+--------------+----------+----------+\n", + "| mis_pphen.oe | syn.obs | syn.exp | syn.possible | syn.oe | syn.mu |\n", + "+--------------+---------+----------+--------------+----------+----------+\n", + "| float64 | int64 | float64 | int64 | float64 | float64 |\n", + "+--------------+---------+----------+--------------+----------+----------+\n", + "| 1.15e+00 | 316 | 2.96e+02 | 994 | 1.07e+00 | 3.02e-06 |\n", + "| 1.15e+00 | 316 | 2.96e+02 | 994 | 1.07e+00 | 3.02e-06 |\n", + "| 9.40e-01 | 166 | 1.79e+02 | 637 | 9.28e-01 | 1.91e-06 |\n", + "| 8.53e-01 | 272 | 2.73e+02 | 1157 | 9.98e-01 | 2.01e-06 |\n", + "| 8.47e-01 | 271 | 2.76e+02 | 1188 | 9.82e-01 | 1.91e-06 |\n", + "+--------------+---------+----------+--------------+----------+----------+\n", + "\n", + "+-----------------+-----------------+-----------+-------------+\n", + "| syn.oe_ci.lower | syn.oe_ci.upper | syn.z_raw | syn.z_score |\n", + "+-----------------+-----------------+-----------+-------------+\n", + "| float64 | float64 | float64 | float64 |\n", + "+-----------------+-----------------+-----------+-------------+\n", + "| 9.73e-01 | 1.17e+00 | -1.17e+00 | -6.35e-01 |\n", + "| 9.73e-01 | 1.17e+00 | -1.17e+00 | -6.35e-01 |\n", + "| 8.17e-01 | 1.06e+00 | 9.64e-01 | 5.26e-01 |\n", + "| 9.03e-01 | 1.10e+00 | 3.27e-02 | 1.78e-02 |\n", + "| 8.88e-01 | 1.09e+00 | 3.00e-01 | 1.64e-01 |\n", + "+-----------------+-----------------+-----------+-------------+\n", + "\n", + "+------------------+-------+------------------+------------+------------+\n", + "| constraint_flags | level | transcript_type | chromosome | cds_length |\n", + "+------------------+-------+------------------+------------+------------+\n", + "| set | str | str | str | int64 |\n", + "+------------------+-------+------------------+------------+------------+\n", + "| {} | NA | NA | NA | NA |\n", + "| {} | \"2\" | \"protein_coding\" | \"chr19\" | 1485 |\n", + "| {} | \"1\" | \"protein_coding\" | \"chr19\" | 917 |\n", + "| {} | NA | NA | NA | NA |\n", + "| {} | NA | NA | NA | NA |\n", + "+------------------+-------+------------------+------------+------------+\n", + "\n", + "+------------------+\n", + "| num_coding_exons |\n", + "+------------------+\n", + "| int64 |\n", + "+------------------+\n", + "| NA |\n", + "| 8 |\n", + "| 5 |\n", + "| NA |\n", + "| NA |\n", + "+------------------+\n", + "showing top 5 rows" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "ht.show(5)" + ] + }, + { + "cell_type": "markdown", + "id": "72ce8dac-994f-42ae-a6a0-948f5517e427", + "metadata": { + "tags": [] + }, + "source": [ + "## Proportion expressed across transcripts (pext) score\n" + ] + }, + { + "cell_type": "markdown", + "id": "ea178a83-1bb6-4f9b-8334-0ca1f6096021", + "metadata": {}, + "source": [ + "### Base level pext\n" + ] + }, + { + "cell_type": "markdown", + "id": "eeb8bb32-d258-4b3a-ab5e-edc76502fa5b", + "metadata": {}, + "source": [ + "#### Load the Hail Table\n" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "id": "1f448e05-7f99-4c63-b101-b33143d9d58b", + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-06T20:08:59.197890Z", + "start_time": "2024-12-06T20:08:50.859108Z" + } + }, + "outputs": [], + "source": [ + "ht = get_gnomad_release(version='v10', data_type=\"base_level\", dataset=\"pext\")" + ] + }, + { + "cell_type": "markdown", + "id": "0773d5d3-21f1-4892-b16b-dc31eb2a7bf5", + "metadata": {}, + "source": [ + "#### Print the schema of the Hail Table\n" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "id": "b9f99311-91e6-454e-b940-3d036bddf3a5", + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-06T20:09:00.032524Z", + "start_time": "2024-12-06T20:09:00.029271Z" + }, + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "----------------------------------------\n", + "Global fields:\n", + " 'tissues': array \n", + " 'exp_prop_mean_tissues': array \n", + "----------------------------------------\n", + "Row fields:\n", + " 'locus': locus \n", + " 'gene_id': str \n", + " 'gene_symbol': str \n", + " 'exp_prop_mean': float64 \n", + " 'Adipose_Subcutaneous': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'Adipose_Visceral_Omentum': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'AdrenalGland': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'Artery_Aorta': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'Artery_Coronary': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'Artery_Tibial': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'Bladder': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'Brain_Amygdala': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'Brain_Anteriorcingulatecortex_BA24': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'Brain_Caudate_basalganglia': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'Brain_CerebellarHemisphere': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'Brain_Cerebellum': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'Brain_Cortex': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'Brain_FrontalCortex_BA9': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'Brain_Hippocampus': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'Brain_Hypothalamus': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'Brain_Nucleusaccumbens_basalganglia': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'Brain_Putamen_basalganglia': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'Brain_Spinalcord_cervicalc_1': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'Brain_Substantianigra': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'Breast_MammaryTissue': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'Cells_Culturedfibroblasts': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'Cells_EBV_transformedlymphocytes': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'Colon_Sigmoid': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'Colon_Transverse': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'Esophagus_GastroesophagealJunction': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'Esophagus_Mucosa': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'Esophagus_Muscularis': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'Heart_AtrialAppendage': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'Heart_LeftVentricle': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'Kidney_Cortex': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'Liver': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'Lung': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'MinorSalivaryGland': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'Muscle_Skeletal': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'Nerve_Tibial': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'Ovary': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'Pancreas': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'Pituitary': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'Prostate': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'Skin_NotSunExposed_Suprapubic': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'Skin_SunExposed_Lowerleg': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'SmallIntestine_TerminalIleum': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'Spleen': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'Stomach': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'Testis': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'Thyroid': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'Uterus': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'Vagina': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'WholeBlood': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + "----------------------------------------\n", + "Key: ['locus']\n", + "----------------------------------------\n" + ] + } + ], + "source": [ + "ht.describe()" + ] + }, + { + "cell_type": "markdown", + "id": "a39f9dca-5db4-4ca3-8eac-e6c76db7c7bc", + "metadata": { + "tags": [] + }, + "source": [ + "#### Show the first 5 variants in the Hail Table\n" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "id": "a6ac695f-cfb2-4aa7-877c-b204351a77da", + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-06T20:09:20.949958Z", + "start_time": "2024-12-06T20:09:05.622171Z" + }, + "tags": [] + }, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
Adipose_Subcutaneous
Adipose_Visceral_Omentum
AdrenalGland
Artery_Aorta
Artery_Coronary
Artery_Tibial
Bladder
Brain_Amygdala
Brain_Anteriorcingulatecortex_BA24
Brain_Caudate_basalganglia
Brain_CerebellarHemisphere
Brain_Cerebellum
Brain_Cortex
Brain_FrontalCortex_BA9
Brain_Hippocampus
Brain_Hypothalamus
Brain_Nucleusaccumbens_basalganglia
Brain_Putamen_basalganglia
Brain_Spinalcord_cervicalc_1
Brain_Substantianigra
Breast_MammaryTissue
Cells_Culturedfibroblasts
Cells_EBV_transformedlymphocytes
Colon_Sigmoid
Colon_Transverse
Esophagus_GastroesophagealJunction
Esophagus_Mucosa
Esophagus_Muscularis
Heart_AtrialAppendage
Heart_LeftVentricle
Kidney_Cortex
Liver
Lung
MinorSalivaryGland
Muscle_Skeletal
Nerve_Tibial
Ovary
Pancreas
Pituitary
Prostate
Skin_NotSunExposed_Suprapubic
Skin_SunExposed_Lowerleg
SmallIntestine_TerminalIleum
Spleen
Stomach
Testis
Thyroid
Uterus
Vagina
WholeBlood
locus
gene_id
gene_symbol
exp_prop_mean
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
locus<GRCh38>strstrfloat64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64
chr1:65565"ENSG00000186092""OR4F5"NaN0.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+00
chr1:65566"ENSG00000186092""OR4F5"NaN0.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+00
chr1:65567"ENSG00000186092""OR4F5"NaN0.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+00
chr1:65568"ENSG00000186092""OR4F5"NaN0.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+00
chr1:65569"ENSG00000186092""OR4F5"NaN0.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+00

showing top 5 rows

\n" + ], + "text/plain": [ + "+---------------+-------------------+-------------+---------------+\n", + "| locus | gene_id | gene_symbol | exp_prop_mean |\n", + "+---------------+-------------------+-------------+---------------+\n", + "| locus | str | str | float64 |\n", + "+---------------+-------------------+-------------+---------------+\n", + "| chr1:65565 | \"ENSG00000186092\" | \"OR4F5\" | NaN |\n", + "| chr1:65566 | \"ENSG00000186092\" | \"OR4F5\" | NaN |\n", + "| chr1:65567 | \"ENSG00000186092\" | \"OR4F5\" | NaN |\n", + "| chr1:65568 | \"ENSG00000186092\" | \"OR4F5\" | NaN |\n", + "| chr1:65569 | \"ENSG00000186092\" | \"OR4F5\" | NaN |\n", + "+---------------+-------------------+-------------+---------------+\n", + "\n", + "+--------------------------------------------+\n", + "| Adipose_Subcutaneous.transcript_expression |\n", + "+--------------------------------------------+\n", + "| float64 |\n", + "+--------------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+--------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| Adipose_Subcutaneous.expression_proportion |\n", + "+--------------------------------------------+\n", + "| float64 |\n", + "+--------------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+--------------------------------------------+\n", + "\n", + "+------------------------------------------------+\n", + "| Adipose_Visceral_Omentum.transcript_expression |\n", + "+------------------------------------------------+\n", + "| float64 |\n", + "+------------------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+------------------------------------------------+\n", + "\n", + "+------------------------------------------------+\n", + "| Adipose_Visceral_Omentum.expression_proportion |\n", + "+------------------------------------------------+\n", + "| float64 |\n", + "+------------------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+------------------------------------------------+\n", + "\n", + "+------------------------------------+------------------------------------+\n", + "| AdrenalGland.transcript_expression | AdrenalGland.expression_proportion |\n", + "+------------------------------------+------------------------------------+\n", + "| float64 | float64 |\n", + "+------------------------------------+------------------------------------+\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "+------------------------------------+------------------------------------+\n", + "\n", + "+------------------------------------+------------------------------------+\n", + "| Artery_Aorta.transcript_expression | Artery_Aorta.expression_proportion |\n", + "+------------------------------------+------------------------------------+\n", + "| float64 | float64 |\n", + "+------------------------------------+------------------------------------+\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "+------------------------------------+------------------------------------+\n", + "\n", + "+---------------------------------------+\n", + "| Artery_Coronary.transcript_expression |\n", + "+---------------------------------------+\n", + "| float64 |\n", + "+---------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+---------------------------------------+\n", + "\n", + "+---------------------------------------+-------------------------------------+\n", + "| Artery_Coronary.expression_proportion | Artery_Tibial.transcript_expression |\n", + "+---------------------------------------+-------------------------------------+\n", + "| float64 | float64 |\n", + "+---------------------------------------+-------------------------------------+\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "+---------------------------------------+-------------------------------------+\n", + "\n", + "+-------------------------------------+-------------------------------+\n", + "| Artery_Tibial.expression_proportion | Bladder.transcript_expression |\n", + "+-------------------------------------+-------------------------------+\n", + "| float64 | float64 |\n", + "+-------------------------------------+-------------------------------+\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "+-------------------------------------+-------------------------------+\n", + "\n", + "+-------------------------------+--------------------------------------+\n", + "| Bladder.expression_proportion | Brain_Amygdala.transcript_expression |\n", + "+-------------------------------+--------------------------------------+\n", + "| float64 | float64 |\n", + "+-------------------------------+--------------------------------------+\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "+-------------------------------+--------------------------------------+\n", + "\n", + "+--------------------------------------+\n", + "| Brain_Amygdala.expression_proportion |\n", + "+--------------------------------------+\n", + "| float64 |\n", + "+--------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+--------------------------------------+\n", + "\n", + "+----------------------------------------------------------+\n", + "| Brain_Anteriorcingulatecortex_BA24.transcript_expression |\n", + "+----------------------------------------------------------+\n", + "| float64 |\n", + "+----------------------------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+----------------------------------------------------------+\n", + "\n", + "+----------------------------------------------------------+\n", + "| Brain_Anteriorcingulatecortex_BA24.expression_proportion |\n", + "+----------------------------------------------------------+\n", + "| float64 |\n", + "+----------------------------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+----------------------------------------------------------+\n", + "\n", + "+--------------------------------------------------+\n", + "| Brain_Caudate_basalganglia.transcript_expression |\n", + "+--------------------------------------------------+\n", + "| float64 |\n", + "+--------------------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+--------------------------------------------------+\n", + "\n", + "+--------------------------------------------------+\n", + "| Brain_Caudate_basalganglia.expression_proportion |\n", + "+--------------------------------------------------+\n", + "| float64 |\n", + "+--------------------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+--------------------------------------------------+\n", + "\n", + "+--------------------------------------------------+\n", + "| Brain_CerebellarHemisphere.transcript_expression |\n", + "+--------------------------------------------------+\n", + "| float64 |\n", + "+--------------------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+--------------------------------------------------+\n", + "\n", + "+--------------------------------------------------+\n", + "| Brain_CerebellarHemisphere.expression_proportion |\n", + "+--------------------------------------------------+\n", + "| float64 |\n", + "+--------------------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+--------------------------------------------------+\n", + "\n", + "+----------------------------------------+\n", + "| Brain_Cerebellum.transcript_expression |\n", + "+----------------------------------------+\n", + "| float64 |\n", + "+----------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+----------------------------------------+\n", + "\n", + "+----------------------------------------+------------------------------------+\n", + "| Brain_Cerebellum.expression_proportion | Brain_Cortex.transcript_expression |\n", + "+----------------------------------------+------------------------------------+\n", + "| float64 | float64 |\n", + "+----------------------------------------+------------------------------------+\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "+----------------------------------------+------------------------------------+\n", + "\n", + "+------------------------------------+\n", + "| Brain_Cortex.expression_proportion |\n", + "+------------------------------------+\n", + "| float64 |\n", + "+------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+------------------------------------+\n", + "\n", + "+-----------------------------------------------+\n", + "| Brain_FrontalCortex_BA9.transcript_expression |\n", + "+-----------------------------------------------+\n", + "| float64 |\n", + "+-----------------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+-----------------------------------------------+\n", + "\n", + "+-----------------------------------------------+\n", + "| Brain_FrontalCortex_BA9.expression_proportion |\n", + "+-----------------------------------------------+\n", + "| float64 |\n", + "+-----------------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+-----------------------------------------------+\n", + "\n", + "+-----------------------------------------+\n", + "| Brain_Hippocampus.transcript_expression |\n", + "+-----------------------------------------+\n", + "| float64 |\n", + "+-----------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+-----------------------------------------+\n", + "\n", + "+-----------------------------------------+\n", + "| Brain_Hippocampus.expression_proportion |\n", + "+-----------------------------------------+\n", + "| float64 |\n", + "+-----------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+-----------------------------------------+\n", + "\n", + "+------------------------------------------+\n", + "| Brain_Hypothalamus.transcript_expression |\n", + "+------------------------------------------+\n", + "| float64 |\n", + "+------------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+------------------------------------------+\n", + "\n", + "+------------------------------------------+\n", + "| Brain_Hypothalamus.expression_proportion |\n", + "+------------------------------------------+\n", + "| float64 |\n", + "+------------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+------------------------------------------+\n", + "\n", + "+-----------------------------------------------------------+\n", + "| Brain_Nucleusaccumbens_basalganglia.transcript_expression |\n", + "+-----------------------------------------------------------+\n", + "| float64 |\n", + "+-----------------------------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+-----------------------------------------------------------+\n", + "\n", + "+-----------------------------------------------------------+\n", + "| Brain_Nucleusaccumbens_basalganglia.expression_proportion |\n", + "+-----------------------------------------------------------+\n", + "| float64 |\n", + "+-----------------------------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+-----------------------------------------------------------+\n", + "\n", + "+--------------------------------------------------+\n", + "| Brain_Putamen_basalganglia.transcript_expression |\n", + "+--------------------------------------------------+\n", + "| float64 |\n", + "+--------------------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+--------------------------------------------------+\n", + "\n", + "+--------------------------------------------------+\n", + "| Brain_Putamen_basalganglia.expression_proportion |\n", + "+--------------------------------------------------+\n", + "| float64 |\n", + "+--------------------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+--------------------------------------------------+\n", + "\n", + "+----------------------------------------------------+\n", + "| Brain_Spinalcord_cervicalc_1.transcript_expression |\n", + "+----------------------------------------------------+\n", + "| float64 |\n", + "+----------------------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+----------------------------------------------------+\n", + "\n", + "+----------------------------------------------------+\n", + "| Brain_Spinalcord_cervicalc_1.expression_proportion |\n", + "+----------------------------------------------------+\n", + "| float64 |\n", + "+----------------------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+----------------------------------------------------+\n", + "\n", + "+---------------------------------------------+\n", + "| Brain_Substantianigra.transcript_expression |\n", + "+---------------------------------------------+\n", + "| float64 |\n", + "+---------------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+---------------------------------------------+\n", + "\n", + "+---------------------------------------------+\n", + "| Brain_Substantianigra.expression_proportion |\n", + "+---------------------------------------------+\n", + "| float64 |\n", + "+---------------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+---------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| Breast_MammaryTissue.transcript_expression |\n", + "+--------------------------------------------+\n", + "| float64 |\n", + "+--------------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+--------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| Breast_MammaryTissue.expression_proportion |\n", + "+--------------------------------------------+\n", + "| float64 |\n", + "+--------------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+--------------------------------------------+\n", + "\n", + "+-------------------------------------------------+\n", + "| Cells_Culturedfibroblasts.transcript_expression |\n", + "+-------------------------------------------------+\n", + "| float64 |\n", + "+-------------------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+-------------------------------------------------+\n", + "\n", + "+-------------------------------------------------+\n", + "| Cells_Culturedfibroblasts.expression_proportion |\n", + "+-------------------------------------------------+\n", + "| float64 |\n", + "+-------------------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+-------------------------------------------------+\n", + "\n", + "+--------------------------------------------------------+\n", + "| Cells_EBV_transformedlymphocytes.transcript_expression |\n", + "+--------------------------------------------------------+\n", + "| float64 |\n", + "+--------------------------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+--------------------------------------------------------+\n", + "\n", + "+--------------------------------------------------------+\n", + "| Cells_EBV_transformedlymphocytes.expression_proportion |\n", + "+--------------------------------------------------------+\n", + "| float64 |\n", + "+--------------------------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+--------------------------------------------------------+\n", + "\n", + "+-------------------------------------+-------------------------------------+\n", + "| Colon_Sigmoid.transcript_expression | Colon_Sigmoid.expression_proportion |\n", + "+-------------------------------------+-------------------------------------+\n", + "| float64 | float64 |\n", + "+-------------------------------------+-------------------------------------+\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "+-------------------------------------+-------------------------------------+\n", + "\n", + "+----------------------------------------+\n", + "| Colon_Transverse.transcript_expression |\n", + "+----------------------------------------+\n", + "| float64 |\n", + "+----------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+----------------------------------------+\n", + "\n", + "+----------------------------------------+\n", + "| Colon_Transverse.expression_proportion |\n", + "+----------------------------------------+\n", + "| float64 |\n", + "+----------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+----------------------------------------+\n", + "\n", + "+----------------------------------------------------------+\n", + "| Esophagus_GastroesophagealJunction.transcript_expression |\n", + "+----------------------------------------------------------+\n", + "| float64 |\n", + "+----------------------------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+----------------------------------------------------------+\n", + "\n", + "+----------------------------------------------------------+\n", + "| Esophagus_GastroesophagealJunction.expression_proportion |\n", + "+----------------------------------------------------------+\n", + "| float64 |\n", + "+----------------------------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+----------------------------------------------------------+\n", + "\n", + "+----------------------------------------+\n", + "| Esophagus_Mucosa.transcript_expression |\n", + "+----------------------------------------+\n", + "| float64 |\n", + "+----------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+----------------------------------------+\n", + "\n", + "+----------------------------------------+\n", + "| Esophagus_Mucosa.expression_proportion |\n", + "+----------------------------------------+\n", + "| float64 |\n", + "+----------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+----------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| Esophagus_Muscularis.transcript_expression |\n", + "+--------------------------------------------+\n", + "| float64 |\n", + "+--------------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+--------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| Esophagus_Muscularis.expression_proportion |\n", + "+--------------------------------------------+\n", + "| float64 |\n", + "+--------------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+--------------------------------------------+\n", + "\n", + "+---------------------------------------------+\n", + "| Heart_AtrialAppendage.transcript_expression |\n", + "+---------------------------------------------+\n", + "| float64 |\n", + "+---------------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+---------------------------------------------+\n", + "\n", + "+---------------------------------------------+\n", + "| Heart_AtrialAppendage.expression_proportion |\n", + "+---------------------------------------------+\n", + "| float64 |\n", + "+---------------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+---------------------------------------------+\n", + "\n", + "+-------------------------------------------+\n", + "| Heart_LeftVentricle.transcript_expression |\n", + "+-------------------------------------------+\n", + "| float64 |\n", + "+-------------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+-------------------------------------------+\n", + "\n", + "+-------------------------------------------+\n", + "| Heart_LeftVentricle.expression_proportion |\n", + "+-------------------------------------------+\n", + "| float64 |\n", + "+-------------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+-------------------------------------------+\n", + "\n", + "+-------------------------------------+-------------------------------------+\n", + "| Kidney_Cortex.transcript_expression | Kidney_Cortex.expression_proportion |\n", + "+-------------------------------------+-------------------------------------+\n", + "| float64 | float64 |\n", + "+-------------------------------------+-------------------------------------+\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "+-------------------------------------+-------------------------------------+\n", + "\n", + "+-----------------------------+-----------------------------+\n", + "| Liver.transcript_expression | Liver.expression_proportion |\n", + "+-----------------------------+-----------------------------+\n", + "| float64 | float64 |\n", + "+-----------------------------+-----------------------------+\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "+-----------------------------+-----------------------------+\n", + "\n", + "+----------------------------+----------------------------+\n", + "| Lung.transcript_expression | Lung.expression_proportion |\n", + "+----------------------------+----------------------------+\n", + "| float64 | float64 |\n", + "+----------------------------+----------------------------+\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "+----------------------------+----------------------------+\n", + "\n", + "+------------------------------------------+\n", + "| MinorSalivaryGland.transcript_expression |\n", + "+------------------------------------------+\n", + "| float64 |\n", + "+------------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+------------------------------------------+\n", + "\n", + "+------------------------------------------+\n", + "| MinorSalivaryGland.expression_proportion |\n", + "+------------------------------------------+\n", + "| float64 |\n", + "+------------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+------------------------------------------+\n", + "\n", + "+---------------------------------------+\n", + "| Muscle_Skeletal.transcript_expression |\n", + "+---------------------------------------+\n", + "| float64 |\n", + "+---------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+---------------------------------------+\n", + "\n", + "+---------------------------------------+------------------------------------+\n", + "| Muscle_Skeletal.expression_proportion | Nerve_Tibial.transcript_expression |\n", + "+---------------------------------------+------------------------------------+\n", + "| float64 | float64 |\n", + "+---------------------------------------+------------------------------------+\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "+---------------------------------------+------------------------------------+\n", + "\n", + "+------------------------------------+-----------------------------+\n", + "| Nerve_Tibial.expression_proportion | Ovary.transcript_expression |\n", + "+------------------------------------+-----------------------------+\n", + "| float64 | float64 |\n", + "+------------------------------------+-----------------------------+\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "+------------------------------------+-----------------------------+\n", + "\n", + "+-----------------------------+--------------------------------+\n", + "| Ovary.expression_proportion | Pancreas.transcript_expression |\n", + "+-----------------------------+--------------------------------+\n", + "| float64 | float64 |\n", + "+-----------------------------+--------------------------------+\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "+-----------------------------+--------------------------------+\n", + "\n", + "+--------------------------------+---------------------------------+\n", + "| Pancreas.expression_proportion | Pituitary.transcript_expression |\n", + "+--------------------------------+---------------------------------+\n", + "| float64 | float64 |\n", + "+--------------------------------+---------------------------------+\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "+--------------------------------+---------------------------------+\n", + "\n", + "+---------------------------------+--------------------------------+\n", + "| Pituitary.expression_proportion | Prostate.transcript_expression |\n", + "+---------------------------------+--------------------------------+\n", + "| float64 | float64 |\n", + "+---------------------------------+--------------------------------+\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "+---------------------------------+--------------------------------+\n", + "\n", + "+--------------------------------+\n", + "| Prostate.expression_proportion |\n", + "+--------------------------------+\n", + "| float64 |\n", + "+--------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+--------------------------------+\n", + "\n", + "+-----------------------------------------------------+\n", + "| Skin_NotSunExposed_Suprapubic.transcript_expression |\n", + "+-----------------------------------------------------+\n", + "| float64 |\n", + "+-----------------------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+-----------------------------------------------------+\n", + "\n", + "+-----------------------------------------------------+\n", + "| Skin_NotSunExposed_Suprapubic.expression_proportion |\n", + "+-----------------------------------------------------+\n", + "| float64 |\n", + "+-----------------------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+-----------------------------------------------------+\n", + "\n", + "+------------------------------------------------+\n", + "| Skin_SunExposed_Lowerleg.transcript_expression |\n", + "+------------------------------------------------+\n", + "| float64 |\n", + "+------------------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+------------------------------------------------+\n", + "\n", + "+------------------------------------------------+\n", + "| Skin_SunExposed_Lowerleg.expression_proportion |\n", + "+------------------------------------------------+\n", + "| float64 |\n", + "+------------------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+------------------------------------------------+\n", + "\n", + "+----------------------------------------------------+\n", + "| SmallIntestine_TerminalIleum.transcript_expression |\n", + "+----------------------------------------------------+\n", + "| float64 |\n", + "+----------------------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+----------------------------------------------------+\n", + "\n", + "+----------------------------------------------------+\n", + "| SmallIntestine_TerminalIleum.expression_proportion |\n", + "+----------------------------------------------------+\n", + "| float64 |\n", + "+----------------------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+----------------------------------------------------+\n", + "\n", + "+------------------------------+------------------------------+\n", + "| Spleen.transcript_expression | Spleen.expression_proportion |\n", + "+------------------------------+------------------------------+\n", + "| float64 | float64 |\n", + "+------------------------------+------------------------------+\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "+------------------------------+------------------------------+\n", + "\n", + "+-------------------------------+-------------------------------+\n", + "| Stomach.transcript_expression | Stomach.expression_proportion |\n", + "+-------------------------------+-------------------------------+\n", + "| float64 | float64 |\n", + "+-------------------------------+-------------------------------+\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "+-------------------------------+-------------------------------+\n", + "\n", + "+------------------------------+------------------------------+\n", + "| Testis.transcript_expression | Testis.expression_proportion |\n", + "+------------------------------+------------------------------+\n", + "| float64 | float64 |\n", + "+------------------------------+------------------------------+\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "+------------------------------+------------------------------+\n", + "\n", + "+-------------------------------+-------------------------------+\n", + "| Thyroid.transcript_expression | Thyroid.expression_proportion |\n", + "+-------------------------------+-------------------------------+\n", + "| float64 | float64 |\n", + "+-------------------------------+-------------------------------+\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "+-------------------------------+-------------------------------+\n", + "\n", + "+------------------------------+------------------------------+\n", + "| Uterus.transcript_expression | Uterus.expression_proportion |\n", + "+------------------------------+------------------------------+\n", + "| float64 | float64 |\n", + "+------------------------------+------------------------------+\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "+------------------------------+------------------------------+\n", + "\n", + "+------------------------------+------------------------------+\n", + "| Vagina.transcript_expression | Vagina.expression_proportion |\n", + "+------------------------------+------------------------------+\n", + "| float64 | float64 |\n", + "+------------------------------+------------------------------+\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "+------------------------------+------------------------------+\n", + "\n", + "+----------------------------------+----------------------------------+\n", + "| WholeBlood.transcript_expression | WholeBlood.expression_proportion |\n", + "+----------------------------------+----------------------------------+\n", + "| float64 | float64 |\n", + "+----------------------------------+----------------------------------+\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "+----------------------------------+----------------------------------+\n", + "showing top 5 rows" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "ht.show(5)" + ] + }, + { + "cell_type": "markdown", + "id": "32528515-1021-40e4-8f4c-3ca06792e0be", + "metadata": {}, + "source": [ + "### Annotation level pext\n" + ] + }, + { + "cell_type": "markdown", + "id": "afac2ca3-f3dc-4174-aa98-d9eb70bf343f", + "metadata": {}, + "source": [ + "#### Load the Hail Table\n" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "id": "ce25b9e0-9118-4bf6-ba3c-eca75468b9f1", + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-06T20:08:59.197890Z", + "start_time": "2024-12-06T20:08:50.859108Z" + } + }, + "outputs": [], + "source": [ + "ht = get_gnomad_release(version='v10', data_type=\"annotation_level\", dataset=\"pext\")" + ] + }, + { + "cell_type": "markdown", + "id": "c9265ccc-0048-40f0-8f1c-d62e0d3f98ab", + "metadata": {}, + "source": [ + "#### Print the schema of the Hail Table\n" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "id": "818f3fc2-09fa-479c-91e1-e19f5991a22d", + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-06T20:09:00.032524Z", + "start_time": "2024-12-06T20:09:00.029271Z" + }, + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "----------------------------------------\n", + "Global fields:\n", + " 'tissues': array \n", + " 'exp_prop_mean_tissues': array \n", + "----------------------------------------\n", + "Row fields:\n", + " 'locus': locus \n", + " 'gene_id': str \n", + " 'alleles': array \n", + " 'gene_symbol': str \n", + " 'most_severe_consequence': str \n", + " 'lof': str \n", + " 'lof_flags': str \n", + " 'exp_prop_mean': float64 \n", + " 'Adipose_Subcutaneous': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'Adipose_Visceral_Omentum': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'AdrenalGland': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'Artery_Aorta': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'Artery_Coronary': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'Artery_Tibial': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'Bladder': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'Brain_Amygdala': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'Brain_Anteriorcingulatecortex_BA24': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'Brain_Caudate_basalganglia': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'Brain_CerebellarHemisphere': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'Brain_Cerebellum': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'Brain_Cortex': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'Brain_FrontalCortex_BA9': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'Brain_Hippocampus': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'Brain_Hypothalamus': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'Brain_Nucleusaccumbens_basalganglia': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'Brain_Putamen_basalganglia': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'Brain_Spinalcord_cervicalc_1': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'Brain_Substantianigra': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'Breast_MammaryTissue': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'Cells_Culturedfibroblasts': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'Cells_EBV_transformedlymphocytes': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'Colon_Sigmoid': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'Colon_Transverse': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'Esophagus_GastroesophagealJunction': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'Esophagus_Mucosa': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'Esophagus_Muscularis': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'Heart_AtrialAppendage': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'Heart_LeftVentricle': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'Kidney_Cortex': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'Liver': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'Lung': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'MinorSalivaryGland': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'Muscle_Skeletal': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'Nerve_Tibial': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'Ovary': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'Pancreas': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'Pituitary': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'Prostate': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'Skin_NotSunExposed_Suprapubic': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'Skin_SunExposed_Lowerleg': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'SmallIntestine_TerminalIleum': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'Spleen': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'Stomach': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'Testis': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'Thyroid': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'Uterus': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'Vagina': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'WholeBlood': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + "----------------------------------------\n", + "Key: ['locus', 'alleles']\n", + "----------------------------------------\n" + ] + } + ], + "source": [ + "ht.describe()" + ] + }, + { + "cell_type": "markdown", + "id": "77d8e1eb-d07d-4338-a401-ae9191ad2901", + "metadata": { + "tags": [] + }, + "source": [ + "#### Show the first 5 variants in the Hail Table\n" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "id": "35371de7-9332-4aa6-a3b9-c573fb2e144f", + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-06T20:09:20.949958Z", + "start_time": "2024-12-06T20:09:05.622171Z" + }, + "tags": [] + }, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
Adipose_Subcutaneous
Adipose_Visceral_Omentum
AdrenalGland
Artery_Aorta
Artery_Coronary
Artery_Tibial
Bladder
Brain_Amygdala
Brain_Anteriorcingulatecortex_BA24
Brain_Caudate_basalganglia
Brain_CerebellarHemisphere
Brain_Cerebellum
Brain_Cortex
Brain_FrontalCortex_BA9
Brain_Hippocampus
Brain_Hypothalamus
Brain_Nucleusaccumbens_basalganglia
Brain_Putamen_basalganglia
Brain_Spinalcord_cervicalc_1
Brain_Substantianigra
Breast_MammaryTissue
Cells_Culturedfibroblasts
Cells_EBV_transformedlymphocytes
Colon_Sigmoid
Colon_Transverse
Esophagus_GastroesophagealJunction
Esophagus_Mucosa
Esophagus_Muscularis
Heart_AtrialAppendage
Heart_LeftVentricle
Kidney_Cortex
Liver
Lung
MinorSalivaryGland
Muscle_Skeletal
Nerve_Tibial
Ovary
Pancreas
Pituitary
Prostate
Skin_NotSunExposed_Suprapubic
Skin_SunExposed_Lowerleg
SmallIntestine_TerminalIleum
Spleen
Stomach
Testis
Thyroid
Uterus
Vagina
WholeBlood
locus
gene_id
alleles
gene_symbol
most_severe_consequence
lof
lof_flags
exp_prop_mean
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
locus<GRCh38>strarray<str>strstrstrstrfloat64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64
chr1:65565"ENSG00000186092"["A","C"]"OR4F5""start_lost"NANANaN0.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+00
chr1:65565"ENSG00000186092"["A","G"]"OR4F5""start_lost"NANANaN0.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+00
chr1:65565"ENSG00000186092"["A","T"]"OR4F5""start_lost"NANANaN0.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+00
chr1:65566"ENSG00000186092"["T","A"]"OR4F5""start_lost"NANANaN0.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+00
chr1:65566"ENSG00000186092"["T","C"]"OR4F5""start_lost"NANANaN0.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+00

showing top 5 rows

\n" + ], + "text/plain": [ + "+---------------+-------------------+------------+-------------+\n", + "| locus | gene_id | alleles | gene_symbol |\n", + "+---------------+-------------------+------------+-------------+\n", + "| locus | str | array | str |\n", + "+---------------+-------------------+------------+-------------+\n", + "| chr1:65565 | \"ENSG00000186092\" | [\"A\",\"C\"] | \"OR4F5\" |\n", + "| chr1:65565 | \"ENSG00000186092\" | [\"A\",\"G\"] | \"OR4F5\" |\n", + "| chr1:65565 | \"ENSG00000186092\" | [\"A\",\"T\"] | \"OR4F5\" |\n", + "| chr1:65566 | \"ENSG00000186092\" | [\"T\",\"A\"] | \"OR4F5\" |\n", + "| chr1:65566 | \"ENSG00000186092\" | [\"T\",\"C\"] | \"OR4F5\" |\n", + "+---------------+-------------------+------------+-------------+\n", + "\n", + "+-------------------------+-----+-----------+---------------+\n", + "| most_severe_consequence | lof | lof_flags | exp_prop_mean |\n", + "+-------------------------+-----+-----------+---------------+\n", + "| str | str | str | float64 |\n", + "+-------------------------+-----+-----------+---------------+\n", + "| \"start_lost\" | NA | NA | NaN |\n", + "| \"start_lost\" | NA | NA | NaN |\n", + "| \"start_lost\" | NA | NA | NaN |\n", + "| \"start_lost\" | NA | NA | NaN |\n", + "| \"start_lost\" | NA | NA | NaN |\n", + "+-------------------------+-----+-----------+---------------+\n", + "\n", + "+--------------------------------------------+\n", + "| Adipose_Subcutaneous.transcript_expression |\n", + "+--------------------------------------------+\n", + "| float64 |\n", + "+--------------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+--------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| Adipose_Subcutaneous.expression_proportion |\n", + "+--------------------------------------------+\n", + "| float64 |\n", + "+--------------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+--------------------------------------------+\n", + "\n", + "+------------------------------------------------+\n", + "| Adipose_Visceral_Omentum.transcript_expression |\n", + "+------------------------------------------------+\n", + "| float64 |\n", + "+------------------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+------------------------------------------------+\n", + "\n", + "+------------------------------------------------+\n", + "| Adipose_Visceral_Omentum.expression_proportion |\n", + "+------------------------------------------------+\n", + "| float64 |\n", + "+------------------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+------------------------------------------------+\n", + "\n", + "+------------------------------------+------------------------------------+\n", + "| AdrenalGland.transcript_expression | AdrenalGland.expression_proportion |\n", + "+------------------------------------+------------------------------------+\n", + "| float64 | float64 |\n", + "+------------------------------------+------------------------------------+\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "+------------------------------------+------------------------------------+\n", + "\n", + "+------------------------------------+------------------------------------+\n", + "| Artery_Aorta.transcript_expression | Artery_Aorta.expression_proportion |\n", + "+------------------------------------+------------------------------------+\n", + "| float64 | float64 |\n", + "+------------------------------------+------------------------------------+\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "+------------------------------------+------------------------------------+\n", + "\n", + "+---------------------------------------+\n", + "| Artery_Coronary.transcript_expression |\n", + "+---------------------------------------+\n", + "| float64 |\n", + "+---------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+---------------------------------------+\n", + "\n", + "+---------------------------------------+-------------------------------------+\n", + "| Artery_Coronary.expression_proportion | Artery_Tibial.transcript_expression |\n", + "+---------------------------------------+-------------------------------------+\n", + "| float64 | float64 |\n", + "+---------------------------------------+-------------------------------------+\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "+---------------------------------------+-------------------------------------+\n", + "\n", + "+-------------------------------------+-------------------------------+\n", + "| Artery_Tibial.expression_proportion | Bladder.transcript_expression |\n", + "+-------------------------------------+-------------------------------+\n", + "| float64 | float64 |\n", + "+-------------------------------------+-------------------------------+\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "+-------------------------------------+-------------------------------+\n", + "\n", + "+-------------------------------+--------------------------------------+\n", + "| Bladder.expression_proportion | Brain_Amygdala.transcript_expression |\n", + "+-------------------------------+--------------------------------------+\n", + "| float64 | float64 |\n", + "+-------------------------------+--------------------------------------+\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "+-------------------------------+--------------------------------------+\n", + "\n", + "+--------------------------------------+\n", + "| Brain_Amygdala.expression_proportion |\n", + "+--------------------------------------+\n", + "| float64 |\n", + "+--------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+--------------------------------------+\n", + "\n", + "+----------------------------------------------------------+\n", + "| Brain_Anteriorcingulatecortex_BA24.transcript_expression |\n", + "+----------------------------------------------------------+\n", + "| float64 |\n", + "+----------------------------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+----------------------------------------------------------+\n", + "\n", + "+----------------------------------------------------------+\n", + "| Brain_Anteriorcingulatecortex_BA24.expression_proportion |\n", + "+----------------------------------------------------------+\n", + "| float64 |\n", + "+----------------------------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+----------------------------------------------------------+\n", + "\n", + "+--------------------------------------------------+\n", + "| Brain_Caudate_basalganglia.transcript_expression |\n", + "+--------------------------------------------------+\n", + "| float64 |\n", + "+--------------------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+--------------------------------------------------+\n", + "\n", + "+--------------------------------------------------+\n", + "| Brain_Caudate_basalganglia.expression_proportion |\n", + "+--------------------------------------------------+\n", + "| float64 |\n", + "+--------------------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+--------------------------------------------------+\n", + "\n", + "+--------------------------------------------------+\n", + "| Brain_CerebellarHemisphere.transcript_expression |\n", + "+--------------------------------------------------+\n", + "| float64 |\n", + "+--------------------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+--------------------------------------------------+\n", + "\n", + "+--------------------------------------------------+\n", + "| Brain_CerebellarHemisphere.expression_proportion |\n", + "+--------------------------------------------------+\n", + "| float64 |\n", + "+--------------------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+--------------------------------------------------+\n", + "\n", + "+----------------------------------------+\n", + "| Brain_Cerebellum.transcript_expression |\n", + "+----------------------------------------+\n", + "| float64 |\n", + "+----------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+----------------------------------------+\n", + "\n", + "+----------------------------------------+------------------------------------+\n", + "| Brain_Cerebellum.expression_proportion | Brain_Cortex.transcript_expression |\n", + "+----------------------------------------+------------------------------------+\n", + "| float64 | float64 |\n", + "+----------------------------------------+------------------------------------+\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "+----------------------------------------+------------------------------------+\n", + "\n", + "+------------------------------------+\n", + "| Brain_Cortex.expression_proportion |\n", + "+------------------------------------+\n", + "| float64 |\n", + "+------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+------------------------------------+\n", + "\n", + "+-----------------------------------------------+\n", + "| Brain_FrontalCortex_BA9.transcript_expression |\n", + "+-----------------------------------------------+\n", + "| float64 |\n", + "+-----------------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+-----------------------------------------------+\n", + "\n", + "+-----------------------------------------------+\n", + "| Brain_FrontalCortex_BA9.expression_proportion |\n", + "+-----------------------------------------------+\n", + "| float64 |\n", + "+-----------------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+-----------------------------------------------+\n", + "\n", + "+-----------------------------------------+\n", + "| Brain_Hippocampus.transcript_expression |\n", + "+-----------------------------------------+\n", + "| float64 |\n", + "+-----------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+-----------------------------------------+\n", + "\n", + "+-----------------------------------------+\n", + "| Brain_Hippocampus.expression_proportion |\n", + "+-----------------------------------------+\n", + "| float64 |\n", + "+-----------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+-----------------------------------------+\n", + "\n", + "+------------------------------------------+\n", + "| Brain_Hypothalamus.transcript_expression |\n", + "+------------------------------------------+\n", + "| float64 |\n", + "+------------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+------------------------------------------+\n", + "\n", + "+------------------------------------------+\n", + "| Brain_Hypothalamus.expression_proportion |\n", + "+------------------------------------------+\n", + "| float64 |\n", + "+------------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+------------------------------------------+\n", + "\n", + "+-----------------------------------------------------------+\n", + "| Brain_Nucleusaccumbens_basalganglia.transcript_expression |\n", + "+-----------------------------------------------------------+\n", + "| float64 |\n", + "+-----------------------------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+-----------------------------------------------------------+\n", + "\n", + "+-----------------------------------------------------------+\n", + "| Brain_Nucleusaccumbens_basalganglia.expression_proportion |\n", + "+-----------------------------------------------------------+\n", + "| float64 |\n", + "+-----------------------------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+-----------------------------------------------------------+\n", + "\n", + "+--------------------------------------------------+\n", + "| Brain_Putamen_basalganglia.transcript_expression |\n", + "+--------------------------------------------------+\n", + "| float64 |\n", + "+--------------------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+--------------------------------------------------+\n", + "\n", + "+--------------------------------------------------+\n", + "| Brain_Putamen_basalganglia.expression_proportion |\n", + "+--------------------------------------------------+\n", + "| float64 |\n", + "+--------------------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+--------------------------------------------------+\n", + "\n", + "+----------------------------------------------------+\n", + "| Brain_Spinalcord_cervicalc_1.transcript_expression |\n", + "+----------------------------------------------------+\n", + "| float64 |\n", + "+----------------------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+----------------------------------------------------+\n", + "\n", + "+----------------------------------------------------+\n", + "| Brain_Spinalcord_cervicalc_1.expression_proportion |\n", + "+----------------------------------------------------+\n", + "| float64 |\n", + "+----------------------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+----------------------------------------------------+\n", + "\n", + "+---------------------------------------------+\n", + "| Brain_Substantianigra.transcript_expression |\n", + "+---------------------------------------------+\n", + "| float64 |\n", + "+---------------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+---------------------------------------------+\n", + "\n", + "+---------------------------------------------+\n", + "| Brain_Substantianigra.expression_proportion |\n", + "+---------------------------------------------+\n", + "| float64 |\n", + "+---------------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+---------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| Breast_MammaryTissue.transcript_expression |\n", + "+--------------------------------------------+\n", + "| float64 |\n", + "+--------------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+--------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| Breast_MammaryTissue.expression_proportion |\n", + "+--------------------------------------------+\n", + "| float64 |\n", + "+--------------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+--------------------------------------------+\n", + "\n", + "+-------------------------------------------------+\n", + "| Cells_Culturedfibroblasts.transcript_expression |\n", + "+-------------------------------------------------+\n", + "| float64 |\n", + "+-------------------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+-------------------------------------------------+\n", + "\n", + "+-------------------------------------------------+\n", + "| Cells_Culturedfibroblasts.expression_proportion |\n", + "+-------------------------------------------------+\n", + "| float64 |\n", + "+-------------------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+-------------------------------------------------+\n", + "\n", + "+--------------------------------------------------------+\n", + "| Cells_EBV_transformedlymphocytes.transcript_expression |\n", + "+--------------------------------------------------------+\n", + "| float64 |\n", + "+--------------------------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+--------------------------------------------------------+\n", + "\n", + "+--------------------------------------------------------+\n", + "| Cells_EBV_transformedlymphocytes.expression_proportion |\n", + "+--------------------------------------------------------+\n", + "| float64 |\n", + "+--------------------------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+--------------------------------------------------------+\n", + "\n", + "+-------------------------------------+-------------------------------------+\n", + "| Colon_Sigmoid.transcript_expression | Colon_Sigmoid.expression_proportion |\n", + "+-------------------------------------+-------------------------------------+\n", + "| float64 | float64 |\n", + "+-------------------------------------+-------------------------------------+\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "+-------------------------------------+-------------------------------------+\n", + "\n", + "+----------------------------------------+\n", + "| Colon_Transverse.transcript_expression |\n", + "+----------------------------------------+\n", + "| float64 |\n", + "+----------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+----------------------------------------+\n", + "\n", + "+----------------------------------------+\n", + "| Colon_Transverse.expression_proportion |\n", + "+----------------------------------------+\n", + "| float64 |\n", + "+----------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+----------------------------------------+\n", + "\n", + "+----------------------------------------------------------+\n", + "| Esophagus_GastroesophagealJunction.transcript_expression |\n", + "+----------------------------------------------------------+\n", + "| float64 |\n", + "+----------------------------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+----------------------------------------------------------+\n", + "\n", + "+----------------------------------------------------------+\n", + "| Esophagus_GastroesophagealJunction.expression_proportion |\n", + "+----------------------------------------------------------+\n", + "| float64 |\n", + "+----------------------------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+----------------------------------------------------------+\n", + "\n", + "+----------------------------------------+\n", + "| Esophagus_Mucosa.transcript_expression |\n", + "+----------------------------------------+\n", + "| float64 |\n", + "+----------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+----------------------------------------+\n", + "\n", + "+----------------------------------------+\n", + "| Esophagus_Mucosa.expression_proportion |\n", + "+----------------------------------------+\n", + "| float64 |\n", + "+----------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+----------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| Esophagus_Muscularis.transcript_expression |\n", + "+--------------------------------------------+\n", + "| float64 |\n", + "+--------------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+--------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| Esophagus_Muscularis.expression_proportion |\n", + "+--------------------------------------------+\n", + "| float64 |\n", + "+--------------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+--------------------------------------------+\n", + "\n", + "+---------------------------------------------+\n", + "| Heart_AtrialAppendage.transcript_expression |\n", + "+---------------------------------------------+\n", + "| float64 |\n", + "+---------------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+---------------------------------------------+\n", + "\n", + "+---------------------------------------------+\n", + "| Heart_AtrialAppendage.expression_proportion |\n", + "+---------------------------------------------+\n", + "| float64 |\n", + "+---------------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+---------------------------------------------+\n", + "\n", + "+-------------------------------------------+\n", + "| Heart_LeftVentricle.transcript_expression |\n", + "+-------------------------------------------+\n", + "| float64 |\n", + "+-------------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+-------------------------------------------+\n", + "\n", + "+-------------------------------------------+\n", + "| Heart_LeftVentricle.expression_proportion |\n", + "+-------------------------------------------+\n", + "| float64 |\n", + "+-------------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+-------------------------------------------+\n", + "\n", + "+-------------------------------------+-------------------------------------+\n", + "| Kidney_Cortex.transcript_expression | Kidney_Cortex.expression_proportion |\n", + "+-------------------------------------+-------------------------------------+\n", + "| float64 | float64 |\n", + "+-------------------------------------+-------------------------------------+\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "+-------------------------------------+-------------------------------------+\n", + "\n", + "+-----------------------------+-----------------------------+\n", + "| Liver.transcript_expression | Liver.expression_proportion |\n", + "+-----------------------------+-----------------------------+\n", + "| float64 | float64 |\n", + "+-----------------------------+-----------------------------+\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "+-----------------------------+-----------------------------+\n", + "\n", + "+----------------------------+----------------------------+\n", + "| Lung.transcript_expression | Lung.expression_proportion |\n", + "+----------------------------+----------------------------+\n", + "| float64 | float64 |\n", + "+----------------------------+----------------------------+\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "+----------------------------+----------------------------+\n", + "\n", + "+------------------------------------------+\n", + "| MinorSalivaryGland.transcript_expression |\n", + "+------------------------------------------+\n", + "| float64 |\n", + "+------------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+------------------------------------------+\n", + "\n", + "+------------------------------------------+\n", + "| MinorSalivaryGland.expression_proportion |\n", + "+------------------------------------------+\n", + "| float64 |\n", + "+------------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+------------------------------------------+\n", + "\n", + "+---------------------------------------+\n", + "| Muscle_Skeletal.transcript_expression |\n", + "+---------------------------------------+\n", + "| float64 |\n", + "+---------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+---------------------------------------+\n", + "\n", + "+---------------------------------------+------------------------------------+\n", + "| Muscle_Skeletal.expression_proportion | Nerve_Tibial.transcript_expression |\n", + "+---------------------------------------+------------------------------------+\n", + "| float64 | float64 |\n", + "+---------------------------------------+------------------------------------+\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "+---------------------------------------+------------------------------------+\n", + "\n", + "+------------------------------------+-----------------------------+\n", + "| Nerve_Tibial.expression_proportion | Ovary.transcript_expression |\n", + "+------------------------------------+-----------------------------+\n", + "| float64 | float64 |\n", + "+------------------------------------+-----------------------------+\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "+------------------------------------+-----------------------------+\n", + "\n", + "+-----------------------------+--------------------------------+\n", + "| Ovary.expression_proportion | Pancreas.transcript_expression |\n", + "+-----------------------------+--------------------------------+\n", + "| float64 | float64 |\n", + "+-----------------------------+--------------------------------+\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "+-----------------------------+--------------------------------+\n", + "\n", + "+--------------------------------+---------------------------------+\n", + "| Pancreas.expression_proportion | Pituitary.transcript_expression |\n", + "+--------------------------------+---------------------------------+\n", + "| float64 | float64 |\n", + "+--------------------------------+---------------------------------+\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "+--------------------------------+---------------------------------+\n", + "\n", + "+---------------------------------+--------------------------------+\n", + "| Pituitary.expression_proportion | Prostate.transcript_expression |\n", + "+---------------------------------+--------------------------------+\n", + "| float64 | float64 |\n", + "+---------------------------------+--------------------------------+\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "+---------------------------------+--------------------------------+\n", + "\n", + "+--------------------------------+\n", + "| Prostate.expression_proportion |\n", + "+--------------------------------+\n", + "| float64 |\n", + "+--------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+--------------------------------+\n", + "\n", + "+-----------------------------------------------------+\n", + "| Skin_NotSunExposed_Suprapubic.transcript_expression |\n", + "+-----------------------------------------------------+\n", + "| float64 |\n", + "+-----------------------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+-----------------------------------------------------+\n", + "\n", + "+-----------------------------------------------------+\n", + "| Skin_NotSunExposed_Suprapubic.expression_proportion |\n", + "+-----------------------------------------------------+\n", + "| float64 |\n", + "+-----------------------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+-----------------------------------------------------+\n", + "\n", + "+------------------------------------------------+\n", + "| Skin_SunExposed_Lowerleg.transcript_expression |\n", + "+------------------------------------------------+\n", + "| float64 |\n", + "+------------------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+------------------------------------------------+\n", + "\n", + "+------------------------------------------------+\n", + "| Skin_SunExposed_Lowerleg.expression_proportion |\n", + "+------------------------------------------------+\n", + "| float64 |\n", + "+------------------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+------------------------------------------------+\n", + "\n", + "+----------------------------------------------------+\n", + "| SmallIntestine_TerminalIleum.transcript_expression |\n", + "+----------------------------------------------------+\n", + "| float64 |\n", + "+----------------------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+----------------------------------------------------+\n", + "\n", + "+----------------------------------------------------+\n", + "| SmallIntestine_TerminalIleum.expression_proportion |\n", + "+----------------------------------------------------+\n", + "| float64 |\n", + "+----------------------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+----------------------------------------------------+\n", + "\n", + "+------------------------------+------------------------------+\n", + "| Spleen.transcript_expression | Spleen.expression_proportion |\n", + "+------------------------------+------------------------------+\n", + "| float64 | float64 |\n", + "+------------------------------+------------------------------+\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "+------------------------------+------------------------------+\n", + "\n", + "+-------------------------------+-------------------------------+\n", + "| Stomach.transcript_expression | Stomach.expression_proportion |\n", + "+-------------------------------+-------------------------------+\n", + "| float64 | float64 |\n", + "+-------------------------------+-------------------------------+\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "+-------------------------------+-------------------------------+\n", + "\n", + "+------------------------------+------------------------------+\n", + "| Testis.transcript_expression | Testis.expression_proportion |\n", + "+------------------------------+------------------------------+\n", + "| float64 | float64 |\n", + "+------------------------------+------------------------------+\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "+------------------------------+------------------------------+\n", + "\n", + "+-------------------------------+-------------------------------+\n", + "| Thyroid.transcript_expression | Thyroid.expression_proportion |\n", + "+-------------------------------+-------------------------------+\n", + "| float64 | float64 |\n", + "+-------------------------------+-------------------------------+\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "+-------------------------------+-------------------------------+\n", + "\n", + "+------------------------------+------------------------------+\n", + "| Uterus.transcript_expression | Uterus.expression_proportion |\n", + "+------------------------------+------------------------------+\n", + "| float64 | float64 |\n", + "+------------------------------+------------------------------+\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "+------------------------------+------------------------------+\n", + "\n", + "+------------------------------+------------------------------+\n", + "| Vagina.transcript_expression | Vagina.expression_proportion |\n", + "+------------------------------+------------------------------+\n", + "| float64 | float64 |\n", + "+------------------------------+------------------------------+\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "+------------------------------+------------------------------+\n", + "\n", + "+----------------------------------+----------------------------------+\n", + "| WholeBlood.transcript_expression | WholeBlood.expression_proportion |\n", + "+----------------------------------+----------------------------------+\n", + "| float64 | float64 |\n", + "+----------------------------------+----------------------------------+\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "+----------------------------------+----------------------------------+\n", + "showing top 5 rows" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "ht.show(5)" + ] + }, + { + "cell_type": "markdown", + "id": "ae3e5ba8-075a-455c-8e5c-e244970d5217", + "metadata": { + "tags": [] + }, + "source": [ + "## Browser variant data\n" + ] + }, + { + "cell_type": "markdown", + "id": "d7c13865-814a-46e8-a4f3-c823a910cfa3", + "metadata": {}, + "source": [ + "### Load the Hail Table\n" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "id": "329f08ef-6dbf-42cd-bbbc-d3f5396708ac", + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-06T20:08:59.197890Z", + "start_time": "2024-12-06T20:08:50.859108Z" + } + }, + "outputs": [], + "source": [ + "ht = get_gnomad_release(version='4.1', dataset=\"browser\")" + ] + }, + { + "cell_type": "markdown", + "id": "6ec344e0-4951-44d8-8f7b-1283a427914d", + "metadata": {}, + "source": [ + "### Print the schema of the Hail Table\n" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "id": "17efacb6-84c4-4345-9bf9-1dca259dd7fa", + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-06T20:09:00.032524Z", + "start_time": "2024-12-06T20:09:00.029271Z" + }, + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "----------------------------------------\n", + "Global fields:\n", + " 'mane_select_version': str \n", + "----------------------------------------\n", + "Row fields:\n", + " 'locus': locus \n", + " 'alleles': array \n", + " 'exome': struct {\n", + " colocated_variants: struct {\n", + " all: array, \n", + " non_ukb: array\n", + " }, \n", + " subsets: set, \n", + " flags: set, \n", + " freq: struct {\n", + " all: struct {\n", + " ac: int32, \n", + " ac_raw: int32, \n", + " an: int32, \n", + " hemizygote_count: int32, \n", + " homozygote_count: int64, \n", + " ancestry_groups: array\n", + " }, \n", + " non_ukb: struct {\n", + " ac: int32, \n", + " ac_raw: int32, \n", + " an: int32, \n", + " hemizygote_count: int32, \n", + " homozygote_count: int64, \n", + " ancestry_groups: array\n", + " }\n", + " }, \n", + " fafmax: struct {\n", + " gnomad: struct {\n", + " faf95_max: float64, \n", + " faf95_max_gen_anc: str, \n", + " faf99_max: float64, \n", + " faf99_max_gen_anc: str\n", + " }, \n", + " non_ukb: struct {\n", + " faf95_max: float64, \n", + " faf95_max_gen_anc: str, \n", + " faf99_max: float64, \n", + " faf99_max_gen_anc: str\n", + " }\n", + " }, \n", + " age_distribution: struct {\n", + " het: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }, \n", + " hom: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }\n", + " }, \n", + " filters: set, \n", + " quality_metrics: struct {\n", + " allele_balance: struct {\n", + " alt_adj: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }, \n", + " alt_raw: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }\n", + " }, \n", + " genotype_depth: struct {\n", + " all_adj: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }, \n", + " all_raw: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }, \n", + " alt_adj: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }, \n", + " alt_raw: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }\n", + " }, \n", + " genotype_quality: struct {\n", + " all_adj: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }, \n", + " all_raw: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }, \n", + " alt_adj: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }, \n", + " alt_raw: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }\n", + " }, \n", + " site_quality_metrics: array\n", + " }\n", + " } \n", + " 'genome': struct {\n", + " colocated_variants: struct {\n", + " hgdp: array, \n", + " tgp: array, \n", + " all: array\n", + " }, \n", + " subsets: set, \n", + " flags: set, \n", + " freq: struct {\n", + " hgdp: struct {\n", + " ac: int32, \n", + " ac_raw: int32, \n", + " an: int32, \n", + " hemizygote_count: int32, \n", + " homozygote_count: int32, \n", + " ancestry_groups: array\n", + " }, \n", + " tgp: struct {\n", + " ac: int32, \n", + " ac_raw: int32, \n", + " an: int32, \n", + " hemizygote_count: int32, \n", + " homozygote_count: int32, \n", + " ancestry_groups: array\n", + " }, \n", + " all: struct {\n", + " ac: int32, \n", + " ac_raw: int32, \n", + " an: int32, \n", + " hemizygote_count: int32, \n", + " homozygote_count: int32, \n", + " ancestry_groups: array\n", + " }\n", + " }, \n", + " fafmax: struct {\n", + " faf95_max: float64, \n", + " faf95_max_gen_anc: str, \n", + " faf99_max: float64, \n", + " faf99_max_gen_anc: str\n", + " }, \n", + " age_distribution: struct {\n", + " het: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }, \n", + " hom: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }\n", + " }, \n", + " filters: set, \n", + " quality_metrics: struct {\n", + " allele_balance: struct {\n", + " alt_adj: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }, \n", + " alt_raw: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }\n", + " }, \n", + " genotype_depth: struct {\n", + " all_adj: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }, \n", + " all_raw: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }, \n", + " alt_adj: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }, \n", + " alt_raw: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }\n", + " }, \n", + " genotype_quality: struct {\n", + " all_adj: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }, \n", + " all_raw: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }, \n", + " alt_adj: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }, \n", + " alt_raw: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }\n", + " }, \n", + " site_quality_metrics: array\n", + " }\n", + " } \n", + " 'rsids': set \n", + " 'in_silico_predictors': struct {\n", + " cadd: struct {\n", + " phred: float32, \n", + " raw_score: float32\n", + " }, \n", + " revel_max: float64, \n", + " spliceai_ds_max: float32, \n", + " pangolin_largest_ds: float64, \n", + " phylop: float64, \n", + " sift_max: float64, \n", + " polyphen_max: float64\n", + " } \n", + " 'variant_id': str \n", + " 'colocated_variants': struct {\n", + " all: array, \n", + " non_ukb: array, \n", + " hgdp: array, \n", + " tgp: array\n", + " } \n", + " 'joint': struct {\n", + " freq: struct {\n", + " all: struct {\n", + " ac: int32, \n", + " ac_raw: int32, \n", + " an: int32, \n", + " hemizygote_count: int32, \n", + " homozygote_count: int32, \n", + " ancestry_groups: array\n", + " }\n", + " }, \n", + " faf: array, \n", + " fafmax: struct {\n", + " faf95_max: float64, \n", + " faf95_max_gen_anc: str, \n", + " faf99_max: float64, \n", + " faf99_max_gen_anc: str\n", + " }, \n", + " grpmax: struct {\n", + " AC: int32, \n", + " AF: float64, \n", + " AN: int32, \n", + " homozygote_count: int32, \n", + " gen_anc: str\n", + " }, \n", + " histograms: struct {\n", + " qual_hists: struct {\n", + " gq_hist_all: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }, \n", + " dp_hist_all: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }, \n", + " gq_hist_alt: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }, \n", + " dp_hist_alt: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }, \n", + " ab_hist_alt: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }\n", + " }, \n", + " raw_qual_hists: struct {\n", + " gq_hist_all: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }, \n", + " dp_hist_all: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }, \n", + " gq_hist_alt: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }, \n", + " dp_hist_alt: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }, \n", + " ab_hist_alt: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }\n", + " }, \n", + " age_hists: struct {\n", + " age_hist_het: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }, \n", + " age_hist_hom: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }\n", + " }\n", + " }, \n", + " flags: set, \n", + " freq_comparison_stats: struct {\n", + " contingency_table_test: array, \n", + " cochran_mantel_haenszel_test: struct {\n", + " p_value: float64, \n", + " chisq: float64\n", + " }, \n", + " stat_union: struct {\n", + " p_value: float64, \n", + " stat_test_name: str, \n", + " gen_ancs: array\n", + " }\n", + " }\n", + " } \n", + " 'coverage': struct {\n", + " exome: struct {\n", + " mean: float64, \n", + " median_approx: int32, \n", + " total_DP: int64, \n", + " over_1: float64, \n", + " over_5: float64, \n", + " over_10: float64, \n", + " over_15: float64, \n", + " over_20: float64, \n", + " over_25: float64, \n", + " over_30: float64, \n", + " over_50: float64, \n", + " over_100: float64\n", + " }, \n", + " genome: struct {\n", + " mean: float64, \n", + " median_approx: int32, \n", + " total_DP: int64, \n", + " over_1: float32, \n", + " over_5: float32, \n", + " over_10: float32, \n", + " over_15: float32, \n", + " over_20: float32, \n", + " over_25: float32, \n", + " over_30: float32, \n", + " over_50: float32, \n", + " over_100: float32\n", + " }\n", + " } \n", + " 'transcript_consequences': array, \n", + " domains: set, \n", + " gene_id: str, \n", + " gene_symbol: str, \n", + " hgvsc: str, \n", + " hgvsp: str, \n", + " is_canonical: bool, \n", + " lof_filter: str, \n", + " lof_flags: str, \n", + " lof: str, \n", + " major_consequence: str, \n", + " transcript_id: str, \n", + " transcript_version: str, \n", + " gene_version: str, \n", + " is_mane_select: bool, \n", + " is_mane_select_version: bool, \n", + " refseq_id: str, \n", + " refseq_version: str\n", + " }> \n", + " 'caid': str \n", + " 'vrs': struct {\n", + " ref: struct {\n", + " allele_id: str, \n", + " start: int32, \n", + " end: int32, \n", + " state: str\n", + " }, \n", + " alt: struct {\n", + " allele_id: str, \n", + " start: int32, \n", + " end: int32, \n", + " state: str\n", + " }\n", + " } \n", + "----------------------------------------\n", + "Key: ['locus', 'alleles']\n", + "----------------------------------------\n" + ] + } + ], + "source": [ + "ht.describe()" + ] + }, + { + "cell_type": "markdown", + "id": "e113c4a2-25c2-4f55-bbb9-382c87cd770c", + "metadata": { + "tags": [] + }, + "source": [ + "### Show the first 5 variants in the Hail Table\n" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "id": "d03dd50b-37ac-49ec-b766-a86870ee6573", + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-06T20:09:20.949958Z", + "start_time": "2024-12-06T20:09:05.622171Z" + }, + "tags": [] + }, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
exome
genome
joint
quality_metrics
quality_metrics
histograms
freq
fafmax
age_distribution
allele_balance
genotype_depth
genotype_quality
freq
age_distribution
allele_balance
genotype_depth
genotype_quality
in_silico_predictors
freq
qual_hists
raw_qual_hists
age_hists
freq_comparison_stats
coverage
vrs
colocated_variants
all
non_ukb
gnomad
non_ukb
het
hom
alt_adj
alt_raw
all_adj
all_raw
alt_adj
alt_raw
all_adj
all_raw
alt_adj
alt_raw
colocated_variants
hgdp
tgp
all
fafmax
het
hom
alt_adj
alt_raw
all_adj
all_raw
alt_adj
alt_raw
all_adj
all_raw
alt_adj
alt_raw
cadd
colocated_variants
all
fafmax
grpmax
gq_hist_all
dp_hist_all
gq_hist_alt
dp_hist_alt
ab_hist_alt
gq_hist_all
dp_hist_all
gq_hist_alt
dp_hist_alt
ab_hist_alt
age_hist_het
age_hist_hom
cochran_mantel_haenszel_test
stat_union
exome
genome
ref
alt
locus
alleles
all
non_ukb
subsets
flags
ac
ac_raw
an
hemizygote_count
homozygote_count
ancestry_groups
ac
ac_raw
an
hemizygote_count
homozygote_count
ancestry_groups
faf95_max
faf95_max_gen_anc
faf99_max
faf99_max_gen_anc
faf95_max
faf95_max_gen_anc
faf99_max
faf99_max_gen_anc
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
filters
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
site_quality_metrics
hgdp
tgp
all
subsets
flags
ac
ac_raw
an
hemizygote_count
homozygote_count
ancestry_groups
ac
ac_raw
an
hemizygote_count
homozygote_count
ancestry_groups
ac
ac_raw
an
hemizygote_count
homozygote_count
ancestry_groups
faf95_max
faf95_max_gen_anc
faf99_max
faf99_max_gen_anc
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
filters
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
site_quality_metrics
rsids
phred
raw_score
revel_max
spliceai_ds_max
pangolin_largest_ds
phylop
sift_max
polyphen_max
variant_id
all
non_ukb
hgdp
tgp
ac
ac_raw
an
hemizygote_count
homozygote_count
ancestry_groups
faf
faf95_max
faf95_max_gen_anc
faf99_max
faf99_max_gen_anc
AC
AF
AN
homozygote_count
gen_anc
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
flags
contingency_table_test
p_value
chisq
p_value
stat_test_name
gen_ancs
mean
median_approx
total_DP
over_1
over_5
over_10
over_15
over_20
over_25
over_30
over_50
over_100
mean
median_approx
total_DP
over_1
over_5
over_10
over_15
over_20
over_25
over_30
over_50
over_100
transcript_consequences
caid
allele_id
start
end
state
allele_id
start
end
state
locus<GRCh38>array<str>array<str>array<str>set<str>set<str>int32int32int32int32int64array<struct{id: str, ac: int32, an: int32, hemizygote_count: int32, homozygote_count: int64}>int32int32int32int32int64array<struct{id: str, ac: int32, an: int32, hemizygote_count: int32, homozygote_count: int64}>float64strfloat64strfloat64strfloat64strarray<float64>array<int64>int64int64array<float64>array<int64>int64int64set<str>array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<struct{metric: str, value: float64}>array<str>array<str>array<str>set<str>set<str>int32int32int32int32int32array<struct{id: str, ac: int32, an: int32, hemizygote_count: int32, homozygote_count: int32}>int32int32int32int32int32array<struct{id: str, ac: int32, an: int32, hemizygote_count: int32, homozygote_count: int32}>int32int32int32int32int32array<struct{id: str, ac: int32, an: int32, hemizygote_count: int32, homozygote_count: int32}>float64strfloat64strarray<float64>array<int64>int64int64array<float64>array<int64>int64int64set<str>array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<struct{metric: str, value: float64}>set<str>float32float32float64float32float64float64float64float64strarray<str>array<str>array<str>array<str>int32int32int32int32int32array<struct{id: str, ac: int32, an: int32, hemizygote_count: int32, homozygote_count: int32}>array<struct{faf95: float64, faf99: float64}>float64strfloat64strint32float64int32int32strarray<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64set<str>array<struct{p_value: float64, odds_ratio: float64}>float64float64float64strarray<str>float64int32int64float64float64float64float64float64float64float64float64float64float64int32int64float32float32float32float32float32float32float32float32float32array<struct{biotype: str, consequence_terms: array<str>, domains: set<str>, gene_id: str, gene_symbol: str, hgvsc: str, hgvsp: str, is_canonical: bool, lof_filter: str, lof_flags: str, lof: str, major_consequence: str, transcript_id: str, transcript_version: str, gene_version: str, is_mane_select: bool, is_mane_select_version: bool, refseq_id: str, refseq_version: str}>strstrint32int32strstrint32int32str
chr1:10031["T","C"]NANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANA[][][]{}{"lcr","segdup"}0081200[]00107800[]025664200[("remaining",0,782,0,0),("remaining_XX",0,402,0,0),("remaining_XY",0,380,0,0),("amr",0,6420,0,0),("amr_XX",0,2770,0,0),("amr_XY",0,3650,0,0),("fin",0,4326,0,0),("fin_XX",0,1060,0,0),("fin_XY",0,3266,0,0),("ami",0,352,0,0),("ami_XX",0,154,0,0),("ami_XY",0,198,0,0),("eas",0,1712,0,0),("eas_XX",0,770,0,0),("eas_XY",0,942,0,0),("mid",0,192,0,0),("mid_XX",0,102,0,0),("mid_XY",0,90,0,0),("sas",0,1120,0,0),("sas_XX",0,260,0,0),("sas_XY",0,860,0,0),("asj",0,1550,0,0),("asj_XX",0,814,0,0),("asj_XY",0,736,0,0),("afr",0,14642,0,0),("afr_XX",0,7978,0,0),("afr_XY",0,6664,0,0),("nfe",0,25546,0,0),("nfe_XX",0,14998,0,0),("nfe_XY",0,10548,0,0),("XX",0,29308,0,0),("XY",0,27334,0,0)]NANANANA[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]00{"AC0","AS_VQSR"}[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,16,121,475,973,1736,2409,2950,3134,2995,2803,2514,2194,1773,1335,911,665,439,351]0527[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][10,66,471,1445,2990,5808,6940,7906,7262,6236,4943,3919,3129,2527,1993,1476,1023,741,500,418]0744[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,23215,2435,1647,594,176,118,49,29,19,9,11,6,5,2,4,2]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][14149,7330,6840,3904,23217,2436,1647,594,176,118,49,29,19,9,11,6,5,2,4,2]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[("SiteQuality",9.60e+01),("inbreeding_coeff",-1.65e-05),("AS_MQ",3.51e+01),("AS_FS",5.10e+00),("AS_MQRankSum",-5.72e-01),("AS_pab_max",6.87e-01),("AS_QUALapprox",7.70e+01),("AS_QD",2.96e+00),("AS_ReadPosRankSum",-1.38e+00),("AS_SOR",9.64e-02),("AS_VarDP",2.60e+01),("AS_VQSLOD",-4.57e+00)]{"rs1639542312"}8.97e+007.57e-01NANANANANANA"1-10031-T-C"[][][][]025664200[("remaining",0,782,0,0),("remaining_XX",0,402,0,0),("remaining_XY",0,380,0,0),("amr",0,6420,0,0),("amr_XX",0,2770,0,0),("amr_XY",0,3650,0,0),("fin",0,4326,0,0),("fin_XX",0,1060,0,0),("fin_XY",0,3266,0,0),("ami",0,352,0,0),("ami_XX",0,154,0,0),("ami_XY",0,198,0,0),("eas",0,1712,0,0),("eas_XX",0,770,0,0),("eas_XY",0,942,0,0),("mid",0,192,0,0),("mid_XX",0,102,0,0),("mid_XY",0,90,0,0),("sas",0,1120,0,0),("sas_XX",0,260,0,0),("sas_XY",0,860,0,0),("asj",0,1550,0,0),("asj_XX",0,814,0,0),("asj_XY",0,736,0,0),("afr",0,14642,0,0),("afr_XX",0,7978,0,0),("afr_XY",0,6664,0,0),("nfe",0,25546,0,0),("nfe_XX",0,14998,0,0),("nfe_XY",0,10548,0,0),("",0,56642,0,0),("XX",0,29308,0,0),("XY",0,27334,0,0),("XX",0,29308,0,0),("XY",0,27334,0,0)][(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]NANANANANANANANANA[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,23215,2435,1647,594,176,118,49,29,19,9,11,6,5,2,4,2]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,16,121,475,973,1736,2409,2950,3134,2995,2803,2514,2194,1773,1335,911,665,439,351]0527[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][14149,7330,6840,3904,23217,2436,1647,594,176,118,49,29,19,9,11,6,5,2,4,2]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][10,66,471,1445,2990,5808,6940,7906,7262,6236,4943,3919,3129,2527,1993,1476,1023,741,500,418]0744[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]00{"not_called_in_exomes"}[NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]NANANANANANANANANANANANANANANANANA3.74e+013826844368.08e-018.08e-018.07e-018.01e-017.82e-017.43e-016.67e-012.89e-011.13e-02[]"CA997563811""ga4gh:VA.oTAtTrgYxm81O9fu6Mrhfo1t3eHsgg4L"1003010031"T""ga4gh:VA.Y283OnlLjyi1T1IT_JzvW255rC6YJsW6"1003010031"C"
chr1:10037["T","C"]NANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANA[][][]{}{"lcr","segdup"}00102800[]00162800[]247688200[("remaining",0,998,0,0),("remaining_XX",0,528,0,0),("remaining_XY",0,470,0,0),("amr",0,8296,0,0),("amr_XX",0,3698,0,0),("amr_XY",0,4598,0,0),("fin",1,5568,0,0),("fin_XX",0,1316,0,0),("fin_XY",1,4252,0,0),("ami",0,494,0,0),("ami_XX",0,238,0,0),("ami_XY",0,256,0,0),("eas",1,2456,0,0),("eas_XX",1,1114,0,0),("eas_XY",0,1342,0,0),("mid",0,234,0,0),("mid_XX",0,122,0,0),("mid_XY",0,112,0,0),("sas",0,1706,0,0),("sas_XX",0,420,0,0),("sas_XY",0,1286,0,0),("asj",0,2066,0,0),("asj_XX",0,1106,0,0),("asj_XY",0,960,0,0),("afr",0,20394,0,0),("afr_XX",0,11132,0,0),("afr_XY",0,9262,0,0),("nfe",0,34670,0,0),("nfe_XX",0,20498,0,0),("nfe_XY",0,14172,0,0),("XX",1,40172,0,0),("XY",1,36710,0,0)]NANANANA[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,1,0,0,1,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]00{"AS_VQSR"}[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,9,69,387,913,1737,2859,3749,4216,4302,4223,3745,3280,2661,1954,1380,943,607,519]0888[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][7,37,269,903,1948,4127,5519,7075,7322,6972,6095,5249,4374,3624,2893,2106,1501,1031,679,590]01130[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,2,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,29394,3741,2868,1281,401,358,163,63,69,31,18,20,10,4,5,15]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][10121,5441,5610,3838,29394,3741,2868,1281,401,358,163,63,69,31,18,20,10,4,5,15]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,2,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[("SiteQuality",1.80e+02),("inbreeding_coeff",-3.15e-05),("AS_MQ",3.83e+01),("AS_FS",8.58e+00),("AS_MQRankSum",1.37e+00),("AS_pab_max",1.00e+00),("AS_QUALapprox",1.80e+02),("AS_QD",2.20e+00),("AS_ReadPosRankSum",-4.80e-01),("AS_SOR",1.51e-01),("AS_VarDP",8.20e+01),("AS_VQSLOD",-3.18e+00)]{"rs1639542418"}8.90e+007.49e-01NANANANANANA"1-10037-T-C"[][][][]247688200[("remaining",0,998,0,0),("remaining_XX",0,528,0,0),("remaining_XY",0,470,0,0),("amr",0,8296,0,0),("amr_XX",0,3698,0,0),("amr_XY",0,4598,0,0),("fin",1,5568,0,0),("fin_XX",0,1316,0,0),("fin_XY",1,4252,0,0),("ami",0,494,0,0),("ami_XX",0,238,0,0),("ami_XY",0,256,0,0),("eas",1,2456,0,0),("eas_XX",1,1114,0,0),("eas_XY",0,1342,0,0),("mid",0,234,0,0),("mid_XX",0,122,0,0),("mid_XY",0,112,0,0),("sas",0,1706,0,0),("sas_XX",0,420,0,0),("sas_XY",0,1286,0,0),("asj",0,2066,0,0),("asj_XX",0,1106,0,0),("asj_XY",0,960,0,0),("afr",0,20394,0,0),("afr_XX",0,11132,0,0),("afr_XY",0,9262,0,0),("nfe",0,34670,0,0),("nfe_XX",0,20498,0,0),("nfe_XY",0,14172,0,0),("",2,76882,0,0),("XX",1,40172,0,0),("XY",1,36710,0,0),("XX",1,40172,0,0),("XY",1,36710,0,0)][(4.32e-06,1.62e-06),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]NANANANA14.07e-0424560"eas"[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,29394,3741,2868,1281,401,358,163,63,69,31,18,20,10,4,5,15]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,9,69,387,913,1737,2859,3749,4216,4302,4223,3745,3280,2661,1954,1380,943,607,519]0888[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][10121,5441,5610,3838,29394,3741,2868,1281,401,358,163,63,69,31,18,20,10,4,5,15]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][7,37,269,903,1948,4127,5519,7075,7322,6972,6095,5249,4374,3624,2893,2106,1501,1031,679,590]01130[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,2,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,2,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,1,0,0,1,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]00{"not_called_in_exomes"}[NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]NANANANANANANANANANANANANANANANANA4.29e+014430779558.43e-018.43e-018.42e-018.39e-018.27e-018.02e-017.48e-013.93e-011.66e-02[]"CA997563812""ga4gh:VA.6pIoPAYDsphCprRcyrititenuEWlZaxV"1003610037"T""ga4gh:VA.iHyQ1mh_iQX6WcqXcx5vvZF9_jPYDePo"1003610037"C"
chr1:10043["T","C"]NANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANA[][][]{}{"lcr","segdup"}00115400[]00178800[]118563400[("remaining",0,1148,0,0),("remaining_XX",0,594,0,0),("remaining_XY",0,554,0,0),("amr",0,8502,0,0),("amr_XX",0,3888,0,0),("amr_XY",0,4614,0,0),("fin",0,5820,0,0),("fin_XX",0,1280,0,0),("fin_XY",0,4540,0,0),("ami",0,568,0,0),("ami_XX",0,284,0,0),("ami_XY",0,284,0,0),("eas",0,2912,0,0),("eas_XX",0,1296,0,0),("eas_XY",0,1616,0,0),("mid",0,254,0,0),("mid_XX",0,136,0,0),("mid_XY",0,118,0,0),("sas",0,2158,0,0),("sas_XX",0,502,0,0),("sas_XY",0,1656,0,0),("asj",0,2276,0,0),("asj_XX",0,1234,0,0),("asj_XY",0,1042,0,0),("afr",1,22760,0,0),("afr_XX",1,12446,0,0),("afr_XY",0,10314,0,0),("nfe",0,39236,0,0),("nfe_XX",0,23244,0,0),("nfe_XY",0,15992,0,0),("XX",1,44904,0,0),("XY",0,40730,0,0)]NANANANA[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,1,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]00{"AS_VQSR"}[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,8,40,264,690,1525,2691,3754,4574,4813,4940,4490,3907,3242,2387,1704,1158,760,638]01232[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][2,24,149,466,1201,2614,4035,5568,6331,6725,6267,5855,5101,4268,3465,2554,1836,1244,831,692]01487[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,31093,4532,3696,1752,595,585,261,88,82,59,17,26,14,5,3,9]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][6578,3782,4202,3336,31093,4532,3696,1752,595,585,261,88,82,59,17,26,14,5,3,9]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0]00[("SiteQuality",9.70e+01),("inbreeding_coeff",-8.24e-06),("AS_MQ",3.52e+01),("AS_FS",3.11e+01),("AS_MQRankSum",1.23e+00),("AS_pab_max",1.00e+00),("AS_QUALapprox",9.70e+01),("AS_QD",2.77e+00),("AS_ReadPosRankSum",-8.96e-01),("AS_SOR",1.48e-03),("AS_VarDP",3.50e+01),("AS_VQSLOD",-5.79e+00)]NA8.90e+007.48e-01NANANANANANA"1-10043-T-C"[][][][]118563400[("remaining",0,1148,0,0),("remaining_XX",0,594,0,0),("remaining_XY",0,554,0,0),("amr",0,8502,0,0),("amr_XX",0,3888,0,0),("amr_XY",0,4614,0,0),("fin",0,5820,0,0),("fin_XX",0,1280,0,0),("fin_XY",0,4540,0,0),("ami",0,568,0,0),("ami_XX",0,284,0,0),("ami_XY",0,284,0,0),("eas",0,2912,0,0),("eas_XX",0,1296,0,0),("eas_XY",0,1616,0,0),("mid",0,254,0,0),("mid_XX",0,136,0,0),("mid_XY",0,118,0,0),("sas",0,2158,0,0),("sas_XX",0,502,0,0),("sas_XY",0,1656,0,0),("asj",0,2276,0,0),("asj_XX",0,1234,0,0),("asj_XY",0,1042,0,0),("afr",1,22760,0,0),("afr_XX",1,12446,0,0),("afr_XY",0,10314,0,0),("nfe",0,39236,0,0),("nfe_XX",0,23244,0,0),("nfe_XY",0,15992,0,0),("",1,85634,0,0),("XX",1,44904,0,0),("XY",0,40730,0,0),("XX",1,44904,0,0),("XY",0,40730,0,0)][(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]NANANANA14.39e-05227600"afr"[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,31093,4532,3696,1752,595,585,261,88,82,59,17,26,14,5,3,9]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,8,40,264,690,1525,2691,3754,4574,4813,4940,4490,3907,3242,2387,1704,1158,760,638]01232[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][6578,3782,4202,3336,31093,4532,3696,1752,595,585,261,88,82,59,17,26,14,5,3,9]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][2,24,149,466,1201,2614,4035,5568,6331,6725,6267,5855,5101,4268,3465,2554,1836,1244,831,692]01487[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,1,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]00{"not_called_in_exomes"}[NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]NANANANANANANANANANANANANANANANANA4.42e+014731658238.06e-018.06e-018.05e-018.03e-017.97e-017.82e-017.48e-014.50e-012.14e-02[]"CA997563813""ga4gh:VA.HdrkFJS16zwJPcGSKX9___fJcdqSATlQ"1004210043"T""ga4gh:VA.LSHuFx03sqw8WJGN2-n782ME4o04Vl4U"1004210043"C"
chr1:10055["T","C"]NANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANA[][][]{"hgdp"}{"lcr","segdup"}01131200[("japanese",0,50,0,0),("japanese_XX",0,12,0,0),("japanese_XY",0,38,0,0),("adygei",0,22,0,0),("adygei_XX",0,16,0,0),("adygei_XY",0,6,0,0),("orcadian",0,26,0,0),("orcadian_XX",0,14,0,0),("orcadian_XY",0,12,0,0),("bantusouthafrica",0,8,0,0),("bantusouthafrica_XX",0,0,0,0),("bantusouthafrica_XY",0,8,0,0),("yakut",0,36,0,0),("yakut_XX",0,14,0,0),("yakut_XY",0,22,0,0),("han",0,58,0,0),("han_XX",0,32,0,0),("han_XY",0,26,0,0),("uygur",0,10,0,0),("uygur_XX",0,4,0,0),("uygur_XY",0,6,0,0),("balochi",0,40,0,0),("balochi_XX",0,0,0,0),("balochi_XY",0,40,0,0),("bedouin",0,72,0,0),("bedouin_XX",0,28,0,0),("bedouin_XY",0,44,0,0),("russian",0,48,0,0),("russian_XX",0,18,0,0),("russian_XY",0,30,0,0),("daur",0,10,0,0),("daur_XX",0,2,0,0),("daur_XY",0,8,0,0),("pima",0,16,0,0),("pima_XX",0,6,0,0),("pima_XY",0,10,0,0),("hezhen",0,14,0,0),("hezhen_XX",0,4,0,0),("hezhen_XY",0,10,0,0),("biaka",0,20,0,0),("biaka_XX",0,0,0,0),("biaka_XY",0,20,0,0),("miao",0,8,0,0),("miao_XX",0,2,0,0),("miao_XY",0,6,0,0),("sindhi",0,40,0,0),("sindhi_XX",0,8,0,0),("sindhi_XY",0,32,0,0),("northernhan",0,14,0,0),("northernhan_XX",0,2,0,0),("northernhan_XY",0,12,0,0),("oroqen",0,14,0,0),("oroqen_XX",0,6,0,0),("oroqen_XY",0,8,0,0),("san",0,12,0,0),("san_XX",0,0,0,0),("san_XY",0,12,0,0),("tu",0,18,0,0),("tu_XX",0,4,0,0),("tu_XY",0,14,0,0),("tuscan",0,12,0,0),("tuscan_XX",0,4,0,0),("tuscan_XY",0,8,0,0),("mbuti",0,16,0,0),("mbuti_XX",0,4,0,0),("mbuti_XY",0,12,0,0),("palestinian",0,58,0,0),("palestinian_XX",0,38,0,0),("palestinian_XY",0,20,0,0),("tujia",0,16,0,0),("tujia_XX",0,2,0,0),("tujia_XY",0,14,0,0),("druze",0,58,0,0),("druze_XX",0,42,0,0),("druze_XY",0,16,0,0),("pathan",0,34,0,0),("pathan_XX",0,4,0,0),("pathan_XY",0,30,0,0),("basque",0,38,0,0),("basque_XX",0,12,0,0),("basque_XY",0,26,0,0),("makrani",0,38,0,0),("makrani_XX",0,6,0,0),("makrani_XY",0,32,0,0),("burusho",0,40,0,0),("burusho_XX",0,6,0,0),("burusho_XY",0,34,0,0),("mongolian",0,10,0,0),("mongolian_XX",0,4,0,0),("mongolian_XY",0,6,0,0),("bougainville",0,10,0,0),("bougainville_XX",0,10,0,0),("bougainville_XY",0,0,0,0),("papuansepik",0,2,0,0),("papuansepik_XX",0,2,0,0),("papuansepik_XY",0,0,0,0),("yi",0,18,0,0),("yi_XX",0,2,0,0),("yi_XY",0,16,0,0),("naxi",0,8,0,0),("naxi_XX",0,2,0,0),("naxi_XY",0,6,0,0),("lahu",0,8,0,0),("lahu_XX",0,0,0,0),("lahu_XY",0,8,0,0),("sardinian",0,52,0,0),("sardinian_XX",0,24,0,0),("sardinian_XY",0,28,0,0),("karitiana",0,14,0,0),("karitiana_XX",0,12,0,0),("karitiana_XY",0,2,0,0),("mozabite",0,36,0,0),("mozabite_XX",0,12,0,0),("mozabite_XY",0,24,0,0),("yoruba",0,20,0,0),("yoruba_XX",0,10,0,0),("yoruba_XY",0,10,0,0),("dai",0,12,0,0),("dai_XX",0,6,0,0),("dai_XY",0,6,0,0),("bergamoitalian",0,14,0,0),("bergamoitalian_XX",0,8,0,0),("bergamoitalian_XY",0,6,0,0),("cambodian",0,14,0,0),("cambodian_XX",0,8,0,0),("cambodian_XY",0,6,0,0),("french",0,48,0,0),("french_XX",0,26,0,0),("french_XY",0,22,0,0),("mandenka",0,26,0,0),("mandenka_XX",0,10,0,0),("mandenka_XY",0,16,0,0),("surui",0,12,0,0),("surui_XX",0,8,0,0),("surui_XY",0,4,0,0),("brahui",0,30,0,0),("brahui_XX",0,0,0,0),("brahui_XY",0,30,0,0),("hazara",0,22,0,0),("hazara_XX",0,0,0,0),("hazara_XY",0,22,0,0),("kalash",0,28,0,0),("kalash_XX",0,6,0,0),("kalash_XY",0,22,0,0),("papuanhighlands",0,4,0,0),("papuanhighlands_XX",0,2,0,0),("papuanhighlands_XY",0,2,0,0),("xibo",0,10,0,0),("xibo_XX",0,0,0,0),("xibo_XY",0,10,0,0),("colombian",0,6,0,0),("colombian_XX",0,4,0,0),("colombian_XY",0,2,0,0),("bantukenya",0,10,0,0),("bantukenya_XX",0,2,0,0),("bantukenya_XY",0,8,0,0),("she",0,18,0,0),("she_XX",0,6,0,0),("she_XY",0,12,0,0),("maya",0,34,0,0),("maya_XX",0,30,0,0),("maya_XY",0,4,0,0),("XX",0,484,0,0),("XY",0,828,0,0)]00147800[]159422400[("remaining",0,1228,0,0),("remaining_XX",0,624,0,0),("remaining_XY",0,604,0,0),("amr",0,8056,0,0),("amr_XX",0,3902,0,0),("amr_XY",0,4154,0,0),("fin",1,5570,0,0),("fin_XX",1,1034,0,0),("fin_XY",0,4536,0,0),("ami",0,682,0,0),("ami_XX",0,344,0,0),("ami_XY",0,338,0,0),("eas",0,3020,0,0),("eas_XX",0,1256,0,0),("eas_XY",0,1764,0,0),("mid",0,216,0,0),("mid_XX",0,110,0,0),("mid_XY",0,106,0,0),("sas",0,2668,0,0),("sas_XX",0,600,0,0),("sas_XY",0,2068,0,0),("asj",0,2370,0,0),("asj_XX",0,1246,0,0),("asj_XY",0,1124,0,0),("afr",0,26032,0,0),("afr_XX",0,14152,0,0),("afr_XY",0,11880,0,0),("nfe",0,44382,0,0),("nfe_XX",0,26312,0,0),("nfe_XY",0,18070,0,0),("XX",1,49580,0,0),("XY",0,44644,0,0)]NANANANA[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]00{"AS_VQSR"}[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,3,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,4,22,120,354,999,1950,3037,4168,4734,5196,5380,4766,4238,3206,2398,1776,1236,1052]02440[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][1,9,42,122,294,787,1537,2717,3751,4972,5404,5762,5875,5161,4526,3415,2525,1883,1294,1116]02622[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,3,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,25677,6107,5433,3528,1753,1702,1130,485,518,282,119,125,77,35,29,76]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][1429,1382,1901,2026,25677,6108,5433,3528,1753,1702,1130,485,518,282,119,125,77,35,29,76]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,1,2,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[("SiteQuality",2.20e+02),("inbreeding_coeff",-4.64e-05),("AS_MQ",3.48e+01),("AS_FS",5.94e+00),("AS_MQRankSum",7.15e-01),("AS_pab_max",2.27e-01),("AS_QUALapprox",9.10e+01),("AS_QD",1.21e+00),("AS_ReadPosRankSum",-1.16e+00),("AS_SOR",4.69e-01),("AS_VarDP",7.50e+01),("AS_VQSLOD",-3.72e+00)]{"rs892501864"}8.88e+007.46e-01NANANANANANA"1-10055-T-C"[][][][]159422400[("remaining",0,1228,0,0),("remaining_XX",0,624,0,0),("remaining_XY",0,604,0,0),("amr",0,8056,0,0),("amr_XX",0,3902,0,0),("amr_XY",0,4154,0,0),("fin",1,5570,0,0),("fin_XX",1,1034,0,0),("fin_XY",0,4536,0,0),("ami",0,682,0,0),("ami_XX",0,344,0,0),("ami_XY",0,338,0,0),("eas",0,3020,0,0),("eas_XX",0,1256,0,0),("eas_XY",0,1764,0,0),("mid",0,216,0,0),("mid_XX",0,110,0,0),("mid_XY",0,106,0,0),("sas",0,2668,0,0),("sas_XX",0,600,0,0),("sas_XY",0,2068,0,0),("asj",0,2370,0,0),("asj_XX",0,1246,0,0),("asj_XY",0,1124,0,0),("afr",0,26032,0,0),("afr_XX",0,14152,0,0),("afr_XY",0,11880,0,0),("nfe",0,44382,0,0),("nfe_XX",0,26312,0,0),("nfe_XY",0,18070,0,0),("",1,94224,0,0),("XX",1,49580,0,0),("XY",0,44644,0,0),("XX",1,49580,0,0),("XY",0,44644,0,0)][(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]NANANANANANANANANA[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,25677,6107,5433,3528,1753,1702,1130,485,518,282,119,125,77,35,29,76]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,4,22,120,354,999,1950,3037,4168,4734,5196,5380,4766,4238,3206,2398,1776,1236,1052]02440[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][1429,1382,1901,2026,25677,6108,5433,3528,1753,1702,1130,485,518,282,119,125,77,35,29,76]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][1,9,42,122,294,787,1537,2717,3751,4972,5404,5762,5875,5161,4526,3415,2525,1883,1294,1116]02622[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,1,2,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,3,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,3,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]00{"not_called_in_exomes"}[NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]NANANANANANANANANANANANANANANANANA4.54e+015132522827.16e-017.16e-017.15e-017.15e-017.13e-017.10e-017.00e-015.30e-013.76e-02[]"CA997563814""ga4gh:VA.xis4Nhtveh7q75mtkipQAUqZfWUfboWB"1005410055"T""ga4gh:VA.Ciou33oFTNEilAEegbFai_K0nu3F18A7"1005410055"C"
chr1:10057["A","C"]NANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANA[][][]{}{"lcr","segdup"}00130000[]00281000[]3311353600[("remaining",0,1504,0,0),("remaining_XX",0,764,0,0),("remaining_XY",0,740,0,0),("amr",0,10448,0,0),("amr_XX",0,4944,0,0),("amr_XY",0,5504,0,0),("fin",0,6886,0,0),("fin_XX",0,1472,0,0),("fin_XY",0,5414,0,0),("ami",0,742,0,0),("ami_XX",0,378,0,0),("ami_XY",0,364,0,0),("eas",0,3850,0,0),("eas_XX",0,1670,0,0),("eas_XY",0,2180,0,0),("mid",0,266,0,0),("mid_XX",0,132,0,0),("mid_XY",0,134,0,0),("sas",0,3424,0,0),("sas_XX",0,784,0,0),("sas_XY",0,2640,0,0),("asj",0,2768,0,0),("asj_XX",0,1532,0,0),("asj_XY",0,1236,0,0),("afr",1,30736,0,0),("afr_XX",0,16598,0,0),("afr_XY",1,14138,0,0),("nfe",2,52912,0,0),("nfe_XX",2,31106,0,0),("nfe_XY",0,21806,0,0),("XX",2,59380,0,0),("XY",1,54156,0,0)]6.27e-06"nfe"2.35e-06"nfe"[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,1,0,1,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]00{"AS_VQSR"}[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,2,23,108,320,888,1844,3110,4447,5361,6012,6379,5879,5289,4273,3400,2503,1787,1521]03622[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][2,6,39,104,247,638,1325,2417,3685,5047,5927,6484,6763,6192,5525,4439,3518,2603,1850,1572]03743[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,1,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,1,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,25460,7448,6933,4978,2881,2833,2048,1038,1129,685,321,364,212,90,117,231]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][995,1036,1539,1788,25460,7448,6933,4978,2881,2833,2048,1038,1129,685,321,364,212,90,117,231]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0]00[("SiteQuality",2.92e+02),("inbreeding_coeff",-2.41e-05),("AS_MQ",3.61e+01),("AS_FS",3.79e+01),("AS_MQRankSum",7.88e-01),("AS_pab_max",1.00e+00),("AS_QUALapprox",2.64e+02),("AS_QD",2.06e+00),("AS_ReadPosRankSum",-6.84e-01),("AS_SOR",7.58e-01),("AS_VarDP",1.28e+02),("AS_VQSLOD",-3.31e+00)]{"rs1570391741"}8.53e+007.09e-01NANANANANANA"1-10057-A-C"[][][][]3311353600[("remaining",0,1504,0,0),("remaining_XX",0,764,0,0),("remaining_XY",0,740,0,0),("amr",0,10448,0,0),("amr_XX",0,4944,0,0),("amr_XY",0,5504,0,0),("fin",0,6886,0,0),("fin_XX",0,1472,0,0),("fin_XY",0,5414,0,0),("ami",0,742,0,0),("ami_XX",0,378,0,0),("ami_XY",0,364,0,0),("eas",0,3850,0,0),("eas_XX",0,1670,0,0),("eas_XY",0,2180,0,0),("mid",0,266,0,0),("mid_XX",0,132,0,0),("mid_XY",0,134,0,0),("sas",0,3424,0,0),("sas_XX",0,784,0,0),("sas_XY",0,2640,0,0),("asj",0,2768,0,0),("asj_XX",0,1532,0,0),("asj_XY",0,1236,0,0),("afr",1,30736,0,0),("afr_XX",0,16598,0,0),("afr_XY",1,14138,0,0),("nfe",2,52912,0,0),("nfe_XX",2,31106,0,0),("nfe_XY",0,21806,0,0),("",3,113536,0,0),("XX",2,59380,0,0),("XY",1,54156,0,0),("XX",2,59380,0,0),("XY",1,54156,0,0)][(7.02e-06,2.95e-06),(6.27e-06,2.35e-06),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]6.27e-06"nfe"2.35e-06"nfe"23.78e-05529120"nfe"[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,25460,7448,6933,4978,2881,2833,2048,1038,1129,685,321,364,212,90,117,231]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,2,23,108,320,888,1844,3110,4447,5361,6012,6379,5879,5289,4273,3400,2503,1787,1521]03622[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,1,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][995,1036,1539,1788,25460,7448,6933,4978,2881,2833,2048,1038,1129,685,321,364,212,90,117,231]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][2,6,39,104,247,638,1325,2417,3685,5047,5927,6484,6763,6192,5525,4439,3518,2603,1850,1572]03743[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,1,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,1,0,1,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]00{"not_called_in_exomes"}[NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]NANANANANANANANANANANANANANANANANA5.43e+015838917008.20e-018.20e-018.20e-018.20e-018.18e-018.15e-018.07e-016.45e-015.38e-02[]"CA997563815""ga4gh:VA.TV0UyS-jCvsVkEOMbipUnzTc4hYuVNTg"1005610057"A""ga4gh:VA.33zGTKcHyj5wWpTfc3OfD8-UlPQ-YOfx"1005610057"C"

showing top 5 rows

\n" + ], + "text/plain": [ + "+---------------+------------+------------------------------+\n", + "| locus | alleles | exome.colocated_variants.all |\n", + "+---------------+------------+------------------------------+\n", + "| locus | array | array |\n", + "+---------------+------------+------------------------------+\n", + "| chr1:10031 | [\"T\",\"C\"] | NA |\n", + "| chr1:10037 | [\"T\",\"C\"] | NA |\n", + "| chr1:10043 | [\"T\",\"C\"] | NA |\n", + "| chr1:10055 | [\"T\",\"C\"] | NA |\n", + "| chr1:10057 | [\"A\",\"C\"] | NA |\n", + "+---------------+------------+------------------------------+\n", + "\n", + "+----------------------------------+---------------+-------------+\n", + "| exome.colocated_variants.non_ukb | exome.subsets | exome.flags |\n", + "+----------------------------------+---------------+-------------+\n", + "| array | set | set |\n", + "+----------------------------------+---------------+-------------+\n", + "| NA | NA | NA |\n", + "| NA | NA | NA |\n", + "| NA | NA | NA |\n", + "| NA | NA | NA |\n", + "| NA | NA | NA |\n", + "+----------------------------------+---------------+-------------+\n", + "\n", + "+-------------------+-----------------------+-------------------+\n", + "| exome.freq.all.ac | exome.freq.all.ac_raw | exome.freq.all.an |\n", + "+-------------------+-----------------------+-------------------+\n", + "| int32 | int32 | int32 |\n", + "+-------------------+-----------------------+-------------------+\n", + "| NA | NA | NA |\n", + "| NA | NA | NA |\n", + "| NA | NA | NA |\n", + "| NA | NA | NA |\n", + "| NA | NA | NA |\n", + "+-------------------+-----------------------+-------------------+\n", + "\n", + "+---------------------------------+---------------------------------+\n", + "| exome.freq.all.hemizygote_count | exome.freq.all.homozygote_count |\n", + "+---------------------------------+---------------------------------+\n", + "| int32 | int64 |\n", + "+---------------------------------+---------------------------------+\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "+---------------------------------+---------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| exome.freq.all.ancestry_groups |\n", + "+------------------------------------------------------------------------------+\n", + "| array | array |\n", + "+--------------------------------------+-------------------------------------+\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "+--------------------------------------+-------------------------------------+\n", + "\n", + "+--------------------------------------+-------------------------------------+\n", + "| exome.age_distribution.het.n_smaller | exome.age_distribution.het.n_larger |\n", + "+--------------------------------------+-------------------------------------+\n", + "| int64 | int64 |\n", + "+--------------------------------------+-------------------------------------+\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "+--------------------------------------+-------------------------------------+\n", + "\n", + "+--------------------------------------+-------------------------------------+\n", + "| exome.age_distribution.hom.bin_edges | exome.age_distribution.hom.bin_freq |\n", + "+--------------------------------------+-------------------------------------+\n", + "| array | array |\n", + "+--------------------------------------+-------------------------------------+\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "+--------------------------------------+-------------------------------------+\n", + "\n", + "+--------------------------------------+-------------------------------------+\n", + "| exome.age_distribution.hom.n_smaller | exome.age_distribution.hom.n_larger |\n", + "+--------------------------------------+-------------------------------------+\n", + "| int64 | int64 |\n", + "+--------------------------------------+-------------------------------------+\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "+--------------------------------------+-------------------------------------+\n", + "\n", + "+---------------+--------------------------------------------------------+\n", + "| exome.filters | exome.quality_metrics.allele_balance.alt_adj.bin_edges |\n", + "+---------------+--------------------------------------------------------+\n", + "| set | array |\n", + "+---------------+--------------------------------------------------------+\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "+---------------+--------------------------------------------------------+\n", + "\n", + "+-------------------------------------------------------+\n", + "| exome.quality_metrics.allele_balance.alt_adj.bin_freq |\n", + "+-------------------------------------------------------+\n", + "| array |\n", + "+-------------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+-------------------------------------------------------+\n", + "\n", + "+--------------------------------------------------------+\n", + "| exome.quality_metrics.allele_balance.alt_adj.n_smaller |\n", + "+--------------------------------------------------------+\n", + "| int64 |\n", + "+--------------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+--------------------------------------------------------+\n", + "\n", + "+-------------------------------------------------------+\n", + "| exome.quality_metrics.allele_balance.alt_adj.n_larger |\n", + "+-------------------------------------------------------+\n", + "| int64 |\n", + "+-------------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+-------------------------------------------------------+\n", + "\n", + "+--------------------------------------------------------+\n", + "| exome.quality_metrics.allele_balance.alt_raw.bin_edges |\n", + "+--------------------------------------------------------+\n", + "| array |\n", + "+--------------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+--------------------------------------------------------+\n", + "\n", + "+-------------------------------------------------------+\n", + "| exome.quality_metrics.allele_balance.alt_raw.bin_freq |\n", + "+-------------------------------------------------------+\n", + "| array |\n", + "+-------------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+-------------------------------------------------------+\n", + "\n", + "+--------------------------------------------------------+\n", + "| exome.quality_metrics.allele_balance.alt_raw.n_smaller |\n", + "+--------------------------------------------------------+\n", + "| int64 |\n", + "+--------------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+--------------------------------------------------------+\n", + "\n", + "+-------------------------------------------------------+\n", + "| exome.quality_metrics.allele_balance.alt_raw.n_larger |\n", + "+-------------------------------------------------------+\n", + "| int64 |\n", + "+-------------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+-------------------------------------------------------+\n", + "\n", + "+--------------------------------------------------------+\n", + "| exome.quality_metrics.genotype_depth.all_adj.bin_edges |\n", + "+--------------------------------------------------------+\n", + "| array |\n", + "+--------------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+--------------------------------------------------------+\n", + "\n", + "+-------------------------------------------------------+\n", + "| exome.quality_metrics.genotype_depth.all_adj.bin_freq |\n", + "+-------------------------------------------------------+\n", + "| array |\n", + "+-------------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+-------------------------------------------------------+\n", + "\n", + "+--------------------------------------------------------+\n", + "| exome.quality_metrics.genotype_depth.all_adj.n_smaller |\n", + "+--------------------------------------------------------+\n", + "| int64 |\n", + "+--------------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+--------------------------------------------------------+\n", + "\n", + "+-------------------------------------------------------+\n", + "| exome.quality_metrics.genotype_depth.all_adj.n_larger |\n", + "+-------------------------------------------------------+\n", + "| int64 |\n", + "+-------------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+-------------------------------------------------------+\n", + "\n", + "+--------------------------------------------------------+\n", + "| exome.quality_metrics.genotype_depth.all_raw.bin_edges |\n", + "+--------------------------------------------------------+\n", + "| array |\n", + "+--------------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+--------------------------------------------------------+\n", + "\n", + "+-------------------------------------------------------+\n", + "| exome.quality_metrics.genotype_depth.all_raw.bin_freq |\n", + "+-------------------------------------------------------+\n", + "| array |\n", + "+-------------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+-------------------------------------------------------+\n", + "\n", + "+--------------------------------------------------------+\n", + "| exome.quality_metrics.genotype_depth.all_raw.n_smaller |\n", + "+--------------------------------------------------------+\n", + "| int64 |\n", + "+--------------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+--------------------------------------------------------+\n", + "\n", + "+-------------------------------------------------------+\n", + "| exome.quality_metrics.genotype_depth.all_raw.n_larger |\n", + "+-------------------------------------------------------+\n", + "| int64 |\n", + "+-------------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+-------------------------------------------------------+\n", + "\n", + "+--------------------------------------------------------+\n", + "| exome.quality_metrics.genotype_depth.alt_adj.bin_edges |\n", + "+--------------------------------------------------------+\n", + "| array |\n", + "+--------------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+--------------------------------------------------------+\n", + "\n", + "+-------------------------------------------------------+\n", + "| exome.quality_metrics.genotype_depth.alt_adj.bin_freq |\n", + "+-------------------------------------------------------+\n", + "| array |\n", + "+-------------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+-------------------------------------------------------+\n", + "\n", + "+--------------------------------------------------------+\n", + "| exome.quality_metrics.genotype_depth.alt_adj.n_smaller |\n", + "+--------------------------------------------------------+\n", + "| int64 |\n", + "+--------------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+--------------------------------------------------------+\n", + "\n", + "+-------------------------------------------------------+\n", + "| exome.quality_metrics.genotype_depth.alt_adj.n_larger |\n", + "+-------------------------------------------------------+\n", + "| int64 |\n", + "+-------------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+-------------------------------------------------------+\n", + "\n", + "+--------------------------------------------------------+\n", + "| exome.quality_metrics.genotype_depth.alt_raw.bin_edges |\n", + "+--------------------------------------------------------+\n", + "| array |\n", + "+--------------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+--------------------------------------------------------+\n", + "\n", + "+-------------------------------------------------------+\n", + "| exome.quality_metrics.genotype_depth.alt_raw.bin_freq |\n", + "+-------------------------------------------------------+\n", + "| array |\n", + "+-------------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+-------------------------------------------------------+\n", + "\n", + "+--------------------------------------------------------+\n", + "| exome.quality_metrics.genotype_depth.alt_raw.n_smaller |\n", + "+--------------------------------------------------------+\n", + "| int64 |\n", + "+--------------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+--------------------------------------------------------+\n", + "\n", + "+-------------------------------------------------------+\n", + "| exome.quality_metrics.genotype_depth.alt_raw.n_larger |\n", + "+-------------------------------------------------------+\n", + "| int64 |\n", + "+-------------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+-------------------------------------------------------+\n", + "\n", + "+----------------------------------------------------------+\n", + "| exome.quality_metrics.genotype_quality.all_adj.bin_edges |\n", + "+----------------------------------------------------------+\n", + "| array |\n", + "+----------------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+----------------------------------------------------------+\n", + "\n", + "+---------------------------------------------------------+\n", + "| exome.quality_metrics.genotype_quality.all_adj.bin_freq |\n", + "+---------------------------------------------------------+\n", + "| array |\n", + "+---------------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+---------------------------------------------------------+\n", + "\n", + "+----------------------------------------------------------+\n", + "| exome.quality_metrics.genotype_quality.all_adj.n_smaller |\n", + "+----------------------------------------------------------+\n", + "| int64 |\n", + "+----------------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+----------------------------------------------------------+\n", + "\n", + "+---------------------------------------------------------+\n", + "| exome.quality_metrics.genotype_quality.all_adj.n_larger |\n", + "+---------------------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+---------------------------------------------------------+\n", + "\n", + "+----------------------------------------------------------+\n", + "| exome.quality_metrics.genotype_quality.all_raw.bin_edges |\n", + "+----------------------------------------------------------+\n", + "| array |\n", + "+----------------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+----------------------------------------------------------+\n", + "\n", + "+---------------------------------------------------------+\n", + "| exome.quality_metrics.genotype_quality.all_raw.bin_freq |\n", + "+---------------------------------------------------------+\n", + "| array |\n", + "+---------------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+---------------------------------------------------------+\n", + "\n", + "+----------------------------------------------------------+\n", + "| exome.quality_metrics.genotype_quality.all_raw.n_smaller |\n", + "+----------------------------------------------------------+\n", + "| int64 |\n", + "+----------------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+----------------------------------------------------------+\n", + "\n", + "+---------------------------------------------------------+\n", + "| exome.quality_metrics.genotype_quality.all_raw.n_larger |\n", + "+---------------------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+---------------------------------------------------------+\n", + "\n", + "+----------------------------------------------------------+\n", + "| exome.quality_metrics.genotype_quality.alt_adj.bin_edges |\n", + "+----------------------------------------------------------+\n", + "| array |\n", + "+----------------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+----------------------------------------------------------+\n", + "\n", + "+---------------------------------------------------------+\n", + "| exome.quality_metrics.genotype_quality.alt_adj.bin_freq |\n", + "+---------------------------------------------------------+\n", + "| array |\n", + "+---------------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+---------------------------------------------------------+\n", + "\n", + "+----------------------------------------------------------+\n", + "| exome.quality_metrics.genotype_quality.alt_adj.n_smaller |\n", + "+----------------------------------------------------------+\n", + "| int64 |\n", + "+----------------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+----------------------------------------------------------+\n", + "\n", + "+---------------------------------------------------------+\n", + "| exome.quality_metrics.genotype_quality.alt_adj.n_larger |\n", + "+---------------------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+---------------------------------------------------------+\n", + "\n", + "+----------------------------------------------------------+\n", + "| exome.quality_metrics.genotype_quality.alt_raw.bin_edges |\n", + "+----------------------------------------------------------+\n", + "| array |\n", + "+----------------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+----------------------------------------------------------+\n", + "\n", + "+---------------------------------------------------------+\n", + "| exome.quality_metrics.genotype_quality.alt_raw.bin_freq |\n", + "+---------------------------------------------------------+\n", + "| array |\n", + "+---------------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+---------------------------------------------------------+\n", + "\n", + "+----------------------------------------------------------+\n", + "| exome.quality_metrics.genotype_quality.alt_raw.n_smaller |\n", + "+----------------------------------------------------------+\n", + "| int64 |\n", + "+----------------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+----------------------------------------------------------+\n", + "\n", + "+---------------------------------------------------------+\n", + "| exome.quality_metrics.genotype_quality.alt_raw.n_larger |\n", + "+---------------------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+---------------------------------------------------------+\n", + "\n", + "+--------------------------------------------+--------------------------------+\n", + "| exome.quality_metrics.site_quality_metrics | genome.colocated_variants.hgdp |\n", + "+--------------------------------------------+--------------------------------+\n", + "| array | array |\n", + "+--------------------------------------------+--------------------------------+\n", + "| NA | [] |\n", + "| NA | [] |\n", + "| NA | [] |\n", + "| NA | [] |\n", + "| NA | [] |\n", + "+--------------------------------------------+--------------------------------+\n", + "\n", + "+-------------------------------+-------------------------------+\n", + "| genome.colocated_variants.tgp | genome.colocated_variants.all |\n", + "+-------------------------------+-------------------------------+\n", + "| array | array |\n", + "+-------------------------------+-------------------------------+\n", + "| [] | [] |\n", + "| [] | [] |\n", + "| [] | [] |\n", + "| [] | [] |\n", + "| [] | [] |\n", + "+-------------------------------+-------------------------------+\n", + "\n", + "+----------------+------------------+---------------------+\n", + "| genome.subsets | genome.flags | genome.freq.hgdp.ac |\n", + "+----------------+------------------+---------------------+\n", + "| set | set | int32 |\n", + "+----------------+------------------+---------------------+\n", + "| {} | {\"lcr\",\"segdup\"} | 0 |\n", + "| {} | {\"lcr\",\"segdup\"} | 0 |\n", + "| {} | {\"lcr\",\"segdup\"} | 0 |\n", + "| {\"hgdp\"} | {\"lcr\",\"segdup\"} | 0 |\n", + "| {} | {\"lcr\",\"segdup\"} | 0 |\n", + "+----------------+------------------+---------------------+\n", + "\n", + "+-------------------------+---------------------+\n", + "| genome.freq.hgdp.ac_raw | genome.freq.hgdp.an |\n", + "+-------------------------+---------------------+\n", + "| int32 | int32 |\n", + "+-------------------------+---------------------+\n", + "| 0 | 812 |\n", + "| 0 | 1028 |\n", + "| 0 | 1154 |\n", + "| 1 | 1312 |\n", + "| 0 | 1300 |\n", + "+-------------------------+---------------------+\n", + "\n", + "+-----------------------------------+-----------------------------------+\n", + "| genome.freq.hgdp.hemizygote_count | genome.freq.hgdp.homozygote_count |\n", + "+-----------------------------------+-----------------------------------+\n", + "| int32 | int32 |\n", + "+-----------------------------------+-----------------------------------+\n", + "| 0 | 0 |\n", + "| 0 | 0 |\n", + "| 0 | 0 |\n", + "| 0 | 0 |\n", + "| 0 | 0 |\n", + "+-----------------------------------+-----------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| genome.freq.hgdp.ancestry_groups |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+--------------------------------------+---------------------------------------+\n", + "| genome.age_distribution.het.bin_freq | genome.age_distribution.het.n_smaller |\n", + "+--------------------------------------+---------------------------------------+\n", + "| array | int64 |\n", + "+--------------------------------------+---------------------------------------+\n", + "| [0,0,0,0,0,0,0,0,0,0] | 0 |\n", + "| [0,1,0,0,1,0,0,0,0,0] | 0 |\n", + "| [0,0,1,0,0,0,0,0,0,0] | 0 |\n", + "| [0,0,0,0,0,0,0,0,0,0] | 0 |\n", + "| [0,0,1,0,1,0,0,0,0,0] | 0 |\n", + "+--------------------------------------+---------------------------------------+\n", + "\n", + "+--------------------------------------+\n", + "| genome.age_distribution.het.n_larger |\n", + "+--------------------------------------+\n", + "| int64 |\n", + "+--------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+--------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| genome.age_distribution.hom.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+--------------------------------------+---------------------------------------+\n", + "| genome.age_distribution.hom.bin_freq | genome.age_distribution.hom.n_smaller |\n", + "+--------------------------------------+---------------------------------------+\n", + "| array | int64 |\n", + "+--------------------------------------+---------------------------------------+\n", + "| [0,0,0,0,0,0,0,0,0,0] | 0 |\n", + "| [0,0,0,0,0,0,0,0,0,0] | 0 |\n", + "| [0,0,0,0,0,0,0,0,0,0] | 0 |\n", + "| [0,0,0,0,0,0,0,0,0,0] | 0 |\n", + "| [0,0,0,0,0,0,0,0,0,0] | 0 |\n", + "+--------------------------------------+---------------------------------------+\n", + "\n", + "+--------------------------------------+-------------------+\n", + "| genome.age_distribution.hom.n_larger | genome.filters |\n", + "+--------------------------------------+-------------------+\n", + "| int64 | set |\n", + "+--------------------------------------+-------------------+\n", + "| 0 | {\"AC0\",\"AS_VQSR\"} |\n", + "| 0 | {\"AS_VQSR\"} |\n", + "| 0 | {\"AS_VQSR\"} |\n", + "| 0 | {\"AS_VQSR\"} |\n", + "| 0 | {\"AS_VQSR\"} |\n", + "+--------------------------------------+-------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| genome.quality_metrics.allele_balance.alt_adj.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+--------------------------------------------------------+\n", + "| genome.quality_metrics.allele_balance.alt_adj.bin_freq |\n", + "+--------------------------------------------------------+\n", + "| array |\n", + "+--------------------------------------------------------+\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "+--------------------------------------------------------+\n", + "\n", + "+---------------------------------------------------------+\n", + "| genome.quality_metrics.allele_balance.alt_adj.n_smaller |\n", + "+---------------------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+---------------------------------------------------------+\n", + "\n", + "+--------------------------------------------------------+\n", + "| genome.quality_metrics.allele_balance.alt_adj.n_larger |\n", + "+--------------------------------------------------------+\n", + "| int64 |\n", + "+--------------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+--------------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| genome.quality_metrics.allele_balance.alt_raw.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+--------------------------------------------------------+\n", + "| genome.quality_metrics.allele_balance.alt_raw.bin_freq |\n", + "+--------------------------------------------------------+\n", + "| array |\n", + "+--------------------------------------------------------+\n", + "| [0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,3,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "+--------------------------------------------------------+\n", + "\n", + "+---------------------------------------------------------+\n", + "| genome.quality_metrics.allele_balance.alt_raw.n_smaller |\n", + "+---------------------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+---------------------------------------------------------+\n", + "\n", + "+--------------------------------------------------------+\n", + "| genome.quality_metrics.allele_balance.alt_raw.n_larger |\n", + "+--------------------------------------------------------+\n", + "| int64 |\n", + "+--------------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+--------------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| genome.quality_metrics.genotype_depth.all_adj.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| genome.quality_metrics.genotype_depth.all_adj.bin_freq |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0,0,16,121,475,973,1736,2409,2950,3134,2995,2803,2514,2194,1773,1335,911... |\n", + "| [0,0,9,69,387,913,1737,2859,3749,4216,4302,4223,3745,3280,2661,1954,1380,... |\n", + "| [0,0,8,40,264,690,1525,2691,3754,4574,4813,4940,4490,3907,3242,2387,1704,... |\n", + "| [0,0,4,22,120,354,999,1950,3037,4168,4734,5196,5380,4766,4238,3206,2398,1... |\n", + "| [0,0,2,23,108,320,888,1844,3110,4447,5361,6012,6379,5879,5289,4273,3400,2... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+---------------------------------------------------------+\n", + "| genome.quality_metrics.genotype_depth.all_adj.n_smaller |\n", + "+---------------------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+---------------------------------------------------------+\n", + "\n", + "+--------------------------------------------------------+\n", + "| genome.quality_metrics.genotype_depth.all_adj.n_larger |\n", + "+--------------------------------------------------------+\n", + "| int64 |\n", + "+--------------------------------------------------------+\n", + "| 527 |\n", + "| 888 |\n", + "| 1232 |\n", + "| 2440 |\n", + "| 3622 |\n", + "+--------------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| genome.quality_metrics.genotype_depth.all_raw.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| genome.quality_metrics.genotype_depth.all_raw.bin_freq |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [10,66,471,1445,2990,5808,6940,7906,7262,6236,4943,3919,3129,2527,1993,14... |\n", + "| [7,37,269,903,1948,4127,5519,7075,7322,6972,6095,5249,4374,3624,2893,2106... |\n", + "| [2,24,149,466,1201,2614,4035,5568,6331,6725,6267,5855,5101,4268,3465,2554... |\n", + "| [1,9,42,122,294,787,1537,2717,3751,4972,5404,5762,5875,5161,4526,3415,252... |\n", + "| [2,6,39,104,247,638,1325,2417,3685,5047,5927,6484,6763,6192,5525,4439,351... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+---------------------------------------------------------+\n", + "| genome.quality_metrics.genotype_depth.all_raw.n_smaller |\n", + "+---------------------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+---------------------------------------------------------+\n", + "\n", + "+--------------------------------------------------------+\n", + "| genome.quality_metrics.genotype_depth.all_raw.n_larger |\n", + "+--------------------------------------------------------+\n", + "| int64 |\n", + "+--------------------------------------------------------+\n", + "| 744 |\n", + "| 1130 |\n", + "| 1487 |\n", + "| 2622 |\n", + "| 3743 |\n", + "+--------------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| genome.quality_metrics.genotype_depth.alt_adj.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+--------------------------------------------------------+\n", + "| genome.quality_metrics.genotype_depth.alt_adj.bin_freq |\n", + "+--------------------------------------------------------+\n", + "| array |\n", + "+--------------------------------------------------------+\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,1,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "+--------------------------------------------------------+\n", + "\n", + "+---------------------------------------------------------+\n", + "| genome.quality_metrics.genotype_depth.alt_adj.n_smaller |\n", + "+---------------------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+---------------------------------------------------------+\n", + "\n", + "+--------------------------------------------------------+\n", + "| genome.quality_metrics.genotype_depth.alt_adj.n_larger |\n", + "+--------------------------------------------------------+\n", + "| int64 |\n", + "+--------------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+--------------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| genome.quality_metrics.genotype_depth.alt_raw.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+--------------------------------------------------------+\n", + "| genome.quality_metrics.genotype_depth.alt_raw.bin_freq |\n", + "+--------------------------------------------------------+\n", + "| array |\n", + "+--------------------------------------------------------+\n", + "| [0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,2,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,3,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,1,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "+--------------------------------------------------------+\n", + "\n", + "+---------------------------------------------------------+\n", + "| genome.quality_metrics.genotype_depth.alt_raw.n_smaller |\n", + "+---------------------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+---------------------------------------------------------+\n", + "\n", + "+--------------------------------------------------------+\n", + "| genome.quality_metrics.genotype_depth.alt_raw.n_larger |\n", + "+--------------------------------------------------------+\n", + "| int64 |\n", + "+--------------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+--------------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| genome.quality_metrics.genotype_quality.all_adj.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| genome.quality_metrics.genotype_quality.all_adj.bin_freq |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0,0,0,0,23215,2435,1647,594,176,118,49,29,19,9,11,6,5,2,4,2] |\n", + "| [0,0,0,0,29394,3741,2868,1281,401,358,163,63,69,31,18,20,10,4,5,15] |\n", + "| [0,0,0,0,31093,4532,3696,1752,595,585,261,88,82,59,17,26,14,5,3,9] |\n", + "| [0,0,0,0,25677,6107,5433,3528,1753,1702,1130,485,518,282,119,125,77,35,29... |\n", + "| [0,0,0,0,25460,7448,6933,4978,2881,2833,2048,1038,1129,685,321,364,212,90... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+-----------------------------------------------------------+\n", + "| genome.quality_metrics.genotype_quality.all_adj.n_smaller |\n", + "+-----------------------------------------------------------+\n", + "| int64 |\n", + "+-----------------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+-----------------------------------------------------------+\n", + "\n", + "+----------------------------------------------------------+\n", + "| genome.quality_metrics.genotype_quality.all_adj.n_larger |\n", + "+----------------------------------------------------------+\n", + "| int64 |\n", + "+----------------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+----------------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| genome.quality_metrics.genotype_quality.all_raw.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| genome.quality_metrics.genotype_quality.all_raw.bin_freq |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [14149,7330,6840,3904,23217,2436,1647,594,176,118,49,29,19,9,11,6,5,2,4,2] |\n", + "| [10121,5441,5610,3838,29394,3741,2868,1281,401,358,163,63,69,31,18,20,10,... |\n", + "| [6578,3782,4202,3336,31093,4532,3696,1752,595,585,261,88,82,59,17,26,14,5... |\n", + "| [1429,1382,1901,2026,25677,6108,5433,3528,1753,1702,1130,485,518,282,119,... |\n", + "| [995,1036,1539,1788,25460,7448,6933,4978,2881,2833,2048,1038,1129,685,321... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+-----------------------------------------------------------+\n", + "| genome.quality_metrics.genotype_quality.all_raw.n_smaller |\n", + "+-----------------------------------------------------------+\n", + "| int64 |\n", + "+-----------------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+-----------------------------------------------------------+\n", + "\n", + "+----------------------------------------------------------+\n", + "| genome.quality_metrics.genotype_quality.all_raw.n_larger |\n", + "+----------------------------------------------------------+\n", + "| int64 |\n", + "+----------------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+----------------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| genome.quality_metrics.genotype_quality.alt_adj.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+----------------------------------------------------------+\n", + "| genome.quality_metrics.genotype_quality.alt_adj.bin_freq |\n", + "+----------------------------------------------------------+\n", + "| array |\n", + "+----------------------------------------------------------+\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0] |\n", + "+----------------------------------------------------------+\n", + "\n", + "+-----------------------------------------------------------+\n", + "| genome.quality_metrics.genotype_quality.alt_adj.n_smaller |\n", + "+-----------------------------------------------------------+\n", + "| int64 |\n", + "+-----------------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+-----------------------------------------------------------+\n", + "\n", + "+----------------------------------------------------------+\n", + "| genome.quality_metrics.genotype_quality.alt_adj.n_larger |\n", + "+----------------------------------------------------------+\n", + "| int64 |\n", + "+----------------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+----------------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| genome.quality_metrics.genotype_quality.alt_raw.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+----------------------------------------------------------+\n", + "| genome.quality_metrics.genotype_quality.alt_raw.bin_freq |\n", + "+----------------------------------------------------------+\n", + "| array |\n", + "+----------------------------------------------------------+\n", + "| [0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,2,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,1,2,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0] |\n", + "+----------------------------------------------------------+\n", + "\n", + "+-----------------------------------------------------------+\n", + "| genome.quality_metrics.genotype_quality.alt_raw.n_smaller |\n", + "+-----------------------------------------------------------+\n", + "| int64 |\n", + "+-----------------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+-----------------------------------------------------------+\n", + "\n", + "+----------------------------------------------------------+\n", + "| genome.quality_metrics.genotype_quality.alt_raw.n_larger |\n", + "+----------------------------------------------------------+\n", + "| int64 |\n", + "+----------------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+----------------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| genome.quality_metrics.site_quality_metrics |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [(\"SiteQuality\",9.60e+01),(\"inbreeding_coeff\",-1.65e-05),(\"AS_MQ\",3.51e+0... |\n", + "| [(\"SiteQuality\",1.80e+02),(\"inbreeding_coeff\",-3.15e-05),(\"AS_MQ\",3.83e+0... |\n", + "| [(\"SiteQuality\",9.70e+01),(\"inbreeding_coeff\",-8.24e-06),(\"AS_MQ\",3.52e+0... |\n", + "| [(\"SiteQuality\",2.20e+02),(\"inbreeding_coeff\",-4.64e-05),(\"AS_MQ\",3.48e+0... |\n", + "| [(\"SiteQuality\",2.92e+02),(\"inbreeding_coeff\",-2.41e-05),(\"AS_MQ\",3.61e+0... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+------------------+---------------------------------+\n", + "| rsids | in_silico_predictors.cadd.phred |\n", + "+------------------+---------------------------------+\n", + "| set | float32 |\n", + "+------------------+---------------------------------+\n", + "| {\"rs1639542312\"} | 8.97e+00 |\n", + "| {\"rs1639542418\"} | 8.90e+00 |\n", + "| NA | 8.90e+00 |\n", + "| {\"rs892501864\"} | 8.88e+00 |\n", + "| {\"rs1570391741\"} | 8.53e+00 |\n", + "+------------------+---------------------------------+\n", + "\n", + "+-------------------------------------+--------------------------------+\n", + "| in_silico_predictors.cadd.raw_score | in_silico_predictors.revel_max |\n", + "+-------------------------------------+--------------------------------+\n", + "| float32 | float64 |\n", + "+-------------------------------------+--------------------------------+\n", + "| 7.57e-01 | NA |\n", + "| 7.49e-01 | NA |\n", + "| 7.48e-01 | NA |\n", + "| 7.46e-01 | NA |\n", + "| 7.09e-01 | NA |\n", + "+-------------------------------------+--------------------------------+\n", + "\n", + "+--------------------------------------+\n", + "| in_silico_predictors.spliceai_ds_max |\n", + "+--------------------------------------+\n", + "| float32 |\n", + "+--------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+--------------------------------------+\n", + "\n", + "+------------------------------------------+-----------------------------+\n", + "| in_silico_predictors.pangolin_largest_ds | in_silico_predictors.phylop |\n", + "+------------------------------------------+-----------------------------+\n", + "| float64 | float64 |\n", + "+------------------------------------------+-----------------------------+\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "+------------------------------------------+-----------------------------+\n", + "\n", + "+-------------------------------+-----------------------------------+\n", + "| in_silico_predictors.sift_max | in_silico_predictors.polyphen_max |\n", + "+-------------------------------+-----------------------------------+\n", + "| float64 | float64 |\n", + "+-------------------------------+-----------------------------------+\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "+-------------------------------+-----------------------------------+\n", + "\n", + "+---------------+------------------------+----------------------------+\n", + "| variant_id | colocated_variants.all | colocated_variants.non_ukb |\n", + "+---------------+------------------------+----------------------------+\n", + "| str | array | array |\n", + "+---------------+------------------------+----------------------------+\n", + "| \"1-10031-T-C\" | [] | [] |\n", + "| \"1-10037-T-C\" | [] | [] |\n", + "| \"1-10043-T-C\" | [] | [] |\n", + "| \"1-10055-T-C\" | [] | [] |\n", + "| \"1-10057-A-C\" | [] | [] |\n", + "+---------------+------------------------+----------------------------+\n", + "\n", + "+-------------------------+------------------------+-------------------+\n", + "| colocated_variants.hgdp | colocated_variants.tgp | joint.freq.all.ac |\n", + "+-------------------------+------------------------+-------------------+\n", + "| array | array | int32 |\n", + "+-------------------------+------------------------+-------------------+\n", + "| [] | [] | 0 |\n", + "| [] | [] | 2 |\n", + "| [] | [] | 1 |\n", + "| [] | [] | 1 |\n", + "| [] | [] | 3 |\n", + "+-------------------------+------------------------+-------------------+\n", + "\n", + "+-----------------------+-------------------+---------------------------------+\n", + "| joint.freq.all.ac_raw | joint.freq.all.an | joint.freq.all.hemizygote_count |\n", + "+-----------------------+-------------------+---------------------------------+\n", + "| int32 | int32 | int32 |\n", + "+-----------------------+-------------------+---------------------------------+\n", + "| 2 | 56642 | 0 |\n", + "| 4 | 76882 | 0 |\n", + "| 1 | 85634 | 0 |\n", + "| 5 | 94224 | 0 |\n", + "| 3 | 113536 | 0 |\n", + "+-----------------------+-------------------+---------------------------------+\n", + "\n", + "+---------------------------------+\n", + "| joint.freq.all.homozygote_count |\n", + "+---------------------------------+\n", + "| int32 |\n", + "+---------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+---------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| joint.freq.all.ancestry_groups |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.... |\n", + "| [(4.32e-06,1.62e-06),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.... |\n", + "| [(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.... |\n", + "| [(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.... |\n", + "| [(7.02e-06,2.95e-06),(6.27e-06,2.35e-06),(0.00e+00,0.00e+00),(0.00e+00,0.... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+------------------------+--------------------------------+\n", + "| joint.fafmax.faf95_max | joint.fafmax.faf95_max_gen_anc |\n", + "+------------------------+--------------------------------+\n", + "| float64 | str |\n", + "+------------------------+--------------------------------+\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| 6.27e-06 | \"nfe\" |\n", + "+------------------------+--------------------------------+\n", + "\n", + "+------------------------+--------------------------------+-----------------+\n", + "| joint.fafmax.faf99_max | joint.fafmax.faf99_max_gen_anc | joint.grpmax.AC |\n", + "+------------------------+--------------------------------+-----------------+\n", + "| float64 | str | int32 |\n", + "+------------------------+--------------------------------+-----------------+\n", + "| NA | NA | NA |\n", + "| NA | NA | 1 |\n", + "| NA | NA | 1 |\n", + "| NA | NA | NA |\n", + "| 2.35e-06 | \"nfe\" | 2 |\n", + "+------------------------+--------------------------------+-----------------+\n", + "\n", + "+-----------------+-----------------+-------------------------------+\n", + "| joint.grpmax.AF | joint.grpmax.AN | joint.grpmax.homozygote_count |\n", + "+-----------------+-----------------+-------------------------------+\n", + "| float64 | int32 | int32 |\n", + "+-----------------+-----------------+-------------------------------+\n", + "| NA | NA | NA |\n", + "| 4.07e-04 | 2456 | 0 |\n", + "| 4.39e-05 | 22760 | 0 |\n", + "| NA | NA | NA |\n", + "| 3.78e-05 | 52912 | 0 |\n", + "+-----------------+-----------------+-------------------------------+\n", + "\n", + "+----------------------+\n", + "| joint.grpmax.gen_anc |\n", + "+----------------------+\n", + "| str |\n", + "+----------------------+\n", + "| NA |\n", + "| \"eas\" |\n", + "| \"afr\" |\n", + "| NA |\n", + "| \"nfe\" |\n", + "+----------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| joint.histograms.qual_hists.gq_hist_all.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| joint.histograms.qual_hists.gq_hist_all.bin_freq |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0,0,0,0,23215,2435,1647,594,176,118,49,29,19,9,11,6,5,2,4,2] |\n", + "| [0,0,0,0,29394,3741,2868,1281,401,358,163,63,69,31,18,20,10,4,5,15] |\n", + "| [0,0,0,0,31093,4532,3696,1752,595,585,261,88,82,59,17,26,14,5,3,9] |\n", + "| [0,0,0,0,25677,6107,5433,3528,1753,1702,1130,485,518,282,119,125,77,35,29... |\n", + "| [0,0,0,0,25460,7448,6933,4978,2881,2833,2048,1038,1129,685,321,364,212,90... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+---------------------------------------------------+\n", + "| joint.histograms.qual_hists.gq_hist_all.n_smaller |\n", + "+---------------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+---------------------------------------------------+\n", + "\n", + "+--------------------------------------------------+\n", + "| joint.histograms.qual_hists.gq_hist_all.n_larger |\n", + "+--------------------------------------------------+\n", + "| int64 |\n", + "+--------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+--------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| joint.histograms.qual_hists.dp_hist_all.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| joint.histograms.qual_hists.dp_hist_all.bin_freq |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0,0,16,121,475,973,1736,2409,2950,3134,2995,2803,2514,2194,1773,1335,911... |\n", + "| [0,0,9,69,387,913,1737,2859,3749,4216,4302,4223,3745,3280,2661,1954,1380,... |\n", + "| [0,0,8,40,264,690,1525,2691,3754,4574,4813,4940,4490,3907,3242,2387,1704,... |\n", + "| [0,0,4,22,120,354,999,1950,3037,4168,4734,5196,5380,4766,4238,3206,2398,1... |\n", + "| [0,0,2,23,108,320,888,1844,3110,4447,5361,6012,6379,5879,5289,4273,3400,2... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+---------------------------------------------------+\n", + "| joint.histograms.qual_hists.dp_hist_all.n_smaller |\n", + "+---------------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+---------------------------------------------------+\n", + "\n", + "+--------------------------------------------------+\n", + "| joint.histograms.qual_hists.dp_hist_all.n_larger |\n", + "+--------------------------------------------------+\n", + "| int64 |\n", + "+--------------------------------------------------+\n", + "| 527 |\n", + "| 888 |\n", + "| 1232 |\n", + "| 2440 |\n", + "| 3622 |\n", + "+--------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| joint.histograms.qual_hists.gq_hist_alt.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+--------------------------------------------------+\n", + "| joint.histograms.qual_hists.gq_hist_alt.bin_freq |\n", + "+--------------------------------------------------+\n", + "| array |\n", + "+--------------------------------------------------+\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0] |\n", + "+--------------------------------------------------+\n", + "\n", + "+---------------------------------------------------+\n", + "| joint.histograms.qual_hists.gq_hist_alt.n_smaller |\n", + "+---------------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+---------------------------------------------------+\n", + "\n", + "+--------------------------------------------------+\n", + "| joint.histograms.qual_hists.gq_hist_alt.n_larger |\n", + "+--------------------------------------------------+\n", + "| int64 |\n", + "+--------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+--------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| joint.histograms.qual_hists.dp_hist_alt.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+--------------------------------------------------+\n", + "| joint.histograms.qual_hists.dp_hist_alt.bin_freq |\n", + "+--------------------------------------------------+\n", + "| array |\n", + "+--------------------------------------------------+\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,1,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "+--------------------------------------------------+\n", + "\n", + "+---------------------------------------------------+\n", + "| joint.histograms.qual_hists.dp_hist_alt.n_smaller |\n", + "+---------------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+---------------------------------------------------+\n", + "\n", + "+--------------------------------------------------+\n", + "| joint.histograms.qual_hists.dp_hist_alt.n_larger |\n", + "+--------------------------------------------------+\n", + "| int64 |\n", + "+--------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+--------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| joint.histograms.qual_hists.ab_hist_alt.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+--------------------------------------------------+\n", + "| joint.histograms.qual_hists.ab_hist_alt.bin_freq |\n", + "+--------------------------------------------------+\n", + "| array |\n", + "+--------------------------------------------------+\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "+--------------------------------------------------+\n", + "\n", + "+---------------------------------------------------+\n", + "| joint.histograms.qual_hists.ab_hist_alt.n_smaller |\n", + "+---------------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+---------------------------------------------------+\n", + "\n", + "+--------------------------------------------------+\n", + "| joint.histograms.qual_hists.ab_hist_alt.n_larger |\n", + "+--------------------------------------------------+\n", + "| int64 |\n", + "+--------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+--------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| joint.histograms.raw_qual_hists.gq_hist_all.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| joint.histograms.raw_qual_hists.gq_hist_all.bin_freq |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [14149,7330,6840,3904,23217,2436,1647,594,176,118,49,29,19,9,11,6,5,2,4,2] |\n", + "| [10121,5441,5610,3838,29394,3741,2868,1281,401,358,163,63,69,31,18,20,10,... |\n", + "| [6578,3782,4202,3336,31093,4532,3696,1752,595,585,261,88,82,59,17,26,14,5... |\n", + "| [1429,1382,1901,2026,25677,6108,5433,3528,1753,1702,1130,485,518,282,119,... |\n", + "| [995,1036,1539,1788,25460,7448,6933,4978,2881,2833,2048,1038,1129,685,321... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+-------------------------------------------------------+\n", + "| joint.histograms.raw_qual_hists.gq_hist_all.n_smaller |\n", + "+-------------------------------------------------------+\n", + "| int64 |\n", + "+-------------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+-------------------------------------------------------+\n", + "\n", + "+------------------------------------------------------+\n", + "| joint.histograms.raw_qual_hists.gq_hist_all.n_larger |\n", + "+------------------------------------------------------+\n", + "| int64 |\n", + "+------------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+------------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| joint.histograms.raw_qual_hists.dp_hist_all.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| joint.histograms.raw_qual_hists.dp_hist_all.bin_freq |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [10,66,471,1445,2990,5808,6940,7906,7262,6236,4943,3919,3129,2527,1993,14... |\n", + "| [7,37,269,903,1948,4127,5519,7075,7322,6972,6095,5249,4374,3624,2893,2106... |\n", + "| [2,24,149,466,1201,2614,4035,5568,6331,6725,6267,5855,5101,4268,3465,2554... |\n", + "| [1,9,42,122,294,787,1537,2717,3751,4972,5404,5762,5875,5161,4526,3415,252... |\n", + "| [2,6,39,104,247,638,1325,2417,3685,5047,5927,6484,6763,6192,5525,4439,351... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+-------------------------------------------------------+\n", + "| joint.histograms.raw_qual_hists.dp_hist_all.n_smaller |\n", + "+-------------------------------------------------------+\n", + "| int64 |\n", + "+-------------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+-------------------------------------------------------+\n", + "\n", + "+------------------------------------------------------+\n", + "| joint.histograms.raw_qual_hists.dp_hist_all.n_larger |\n", + "+------------------------------------------------------+\n", + "| int64 |\n", + "+------------------------------------------------------+\n", + "| 744 |\n", + "| 1130 |\n", + "| 1487 |\n", + "| 2622 |\n", + "| 3743 |\n", + "+------------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| joint.histograms.raw_qual_hists.gq_hist_alt.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+------------------------------------------------------+\n", + "| joint.histograms.raw_qual_hists.gq_hist_alt.bin_freq |\n", + "+------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------+\n", + "| [0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,2,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,1,2,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0] |\n", + "+------------------------------------------------------+\n", + "\n", + "+-------------------------------------------------------+\n", + "| joint.histograms.raw_qual_hists.gq_hist_alt.n_smaller |\n", + "+-------------------------------------------------------+\n", + "| int64 |\n", + "+-------------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+-------------------------------------------------------+\n", + "\n", + "+------------------------------------------------------+\n", + "| joint.histograms.raw_qual_hists.gq_hist_alt.n_larger |\n", + "+------------------------------------------------------+\n", + "| int64 |\n", + "+------------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+------------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| joint.histograms.raw_qual_hists.dp_hist_alt.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+------------------------------------------------------+\n", + "| joint.histograms.raw_qual_hists.dp_hist_alt.bin_freq |\n", + "+------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------+\n", + "| [0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,2,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,3,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,1,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "+------------------------------------------------------+\n", + "\n", + "+-------------------------------------------------------+\n", + "| joint.histograms.raw_qual_hists.dp_hist_alt.n_smaller |\n", + "+-------------------------------------------------------+\n", + "| int64 |\n", + "+-------------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+-------------------------------------------------------+\n", + "\n", + "+------------------------------------------------------+\n", + "| joint.histograms.raw_qual_hists.dp_hist_alt.n_larger |\n", + "+------------------------------------------------------+\n", + "| int64 |\n", + "+------------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+------------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| joint.histograms.raw_qual_hists.ab_hist_alt.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+------------------------------------------------------+\n", + "| joint.histograms.raw_qual_hists.ab_hist_alt.bin_freq |\n", + "+------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------+\n", + "| [0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,3,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "+------------------------------------------------------+\n", + "\n", + "+-------------------------------------------------------+\n", + "| joint.histograms.raw_qual_hists.ab_hist_alt.n_smaller |\n", + "+-------------------------------------------------------+\n", + "| int64 |\n", + "+-------------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+-------------------------------------------------------+\n", + "\n", + "+------------------------------------------------------+\n", + "| joint.histograms.raw_qual_hists.ab_hist_alt.n_larger |\n", + "+------------------------------------------------------+\n", + "| int64 |\n", + "+------------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+------------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| joint.histograms.age_hists.age_hist_het.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+--------------------------------------------------+\n", + "| joint.histograms.age_hists.age_hist_het.bin_freq |\n", + "+--------------------------------------------------+\n", + "| array |\n", + "+--------------------------------------------------+\n", + "| [0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,1,0,0,1,0,0,0,0,0] |\n", + "| [0,0,1,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,1,0,1,0,0,0,0,0] |\n", + "+--------------------------------------------------+\n", + "\n", + "+---------------------------------------------------+\n", + "| joint.histograms.age_hists.age_hist_het.n_smaller |\n", + "+---------------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+---------------------------------------------------+\n", + "\n", + "+--------------------------------------------------+\n", + "| joint.histograms.age_hists.age_hist_het.n_larger |\n", + "+--------------------------------------------------+\n", + "| int64 |\n", + "+--------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+--------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| joint.histograms.age_hists.age_hist_hom.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+--------------------------------------------------+\n", + "| joint.histograms.age_hists.age_hist_hom.bin_freq |\n", + "+--------------------------------------------------+\n", + "| array |\n", + "+--------------------------------------------------+\n", + "| [0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0] |\n", + "+--------------------------------------------------+\n", + "\n", + "+---------------------------------------------------+\n", + "| joint.histograms.age_hists.age_hist_hom.n_smaller |\n", + "+---------------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+---------------------------------------------------+\n", + "\n", + "+--------------------------------------------------+--------------------------+\n", + "| joint.histograms.age_hists.age_hist_hom.n_larger | joint.flags |\n", + "+--------------------------------------------------+--------------------------+\n", + "| int64 | set |\n", + "+--------------------------------------------------+--------------------------+\n", + "| 0 | {\"not_called_in_exomes\"} |\n", + "| 0 | {\"not_called_in_exomes\"} |\n", + "| 0 | {\"not_called_in_exomes\"} |\n", + "| 0 | {\"not_called_in_exomes\"} |\n", + "| 0 | {\"not_called_in_exomes\"} |\n", + "+--------------------------------------------------+--------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| joint.freq_comparison_stats.contingency_table_test |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,... |\n", + "| [NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,... |\n", + "| [NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,... |\n", + "| [NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,... |\n", + "| [NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------+\n", + "| joint.freq_comparison_stats.cochran_mantel_haenszel_test.p_value |\n", + "+------------------------------------------------------------------+\n", + "| float64 |\n", + "+------------------------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+------------------------------------------------------------------+\n", + "\n", + "+----------------------------------------------------------------+\n", + "| joint.freq_comparison_stats.cochran_mantel_haenszel_test.chisq |\n", + "+----------------------------------------------------------------+\n", + "| float64 |\n", + "+----------------------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+----------------------------------------------------------------+\n", + "\n", + "+------------------------------------------------+\n", + "| joint.freq_comparison_stats.stat_union.p_value |\n", + "+------------------------------------------------+\n", + "| float64 |\n", + "+------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+------------------------------------------------+\n", + "\n", + "+-------------------------------------------------------+\n", + "| joint.freq_comparison_stats.stat_union.stat_test_name |\n", + "+-------------------------------------------------------+\n", + "| str |\n", + "+-------------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+-------------------------------------------------------+\n", + "\n", + "+-------------------------------------------------+---------------------+\n", + "| joint.freq_comparison_stats.stat_union.gen_ancs | coverage.exome.mean |\n", + "+-------------------------------------------------+---------------------+\n", + "| array | float64 |\n", + "+-------------------------------------------------+---------------------+\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "+-------------------------------------------------+---------------------+\n", + "\n", + "+------------------------------+-------------------------+\n", + "| coverage.exome.median_approx | coverage.exome.total_DP |\n", + "+------------------------------+-------------------------+\n", + "| int32 | int64 |\n", + "+------------------------------+-------------------------+\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "+------------------------------+-------------------------+\n", + "\n", + "+-----------------------+-----------------------+------------------------+\n", + "| coverage.exome.over_1 | coverage.exome.over_5 | coverage.exome.over_10 |\n", + "+-----------------------+-----------------------+------------------------+\n", + "| float64 | float64 | float64 |\n", + "+-----------------------+-----------------------+------------------------+\n", + "| NA | NA | NA |\n", + "| NA | NA | NA |\n", + "| NA | NA | NA |\n", + "| NA | NA | NA |\n", + "| NA | NA | NA |\n", + "+-----------------------+-----------------------+------------------------+\n", + "\n", + "+------------------------+------------------------+------------------------+\n", + "| coverage.exome.over_15 | coverage.exome.over_20 | coverage.exome.over_25 |\n", + "+------------------------+------------------------+------------------------+\n", + "| float64 | float64 | float64 |\n", + "+------------------------+------------------------+------------------------+\n", + "| NA | NA | NA |\n", + "| NA | NA | NA |\n", + "| NA | NA | NA |\n", + "| NA | NA | NA |\n", + "| NA | NA | NA |\n", + "+------------------------+------------------------+------------------------+\n", + "\n", + "+------------------------+------------------------+-------------------------+\n", + "| coverage.exome.over_30 | coverage.exome.over_50 | coverage.exome.over_100 |\n", + "+------------------------+------------------------+-------------------------+\n", + "| float64 | float64 | float64 |\n", + "+------------------------+------------------------+-------------------------+\n", + "| NA | NA | NA |\n", + "| NA | NA | NA |\n", + "| NA | NA | NA |\n", + "| NA | NA | NA |\n", + "| NA | NA | NA |\n", + "+------------------------+------------------------+-------------------------+\n", + "\n", + "+----------------------+-------------------------------+\n", + "| coverage.genome.mean | coverage.genome.median_approx |\n", + "+----------------------+-------------------------------+\n", + "| float64 | int32 |\n", + "+----------------------+-------------------------------+\n", + "| 3.74e+01 | 38 |\n", + "| 4.29e+01 | 44 |\n", + "| 4.42e+01 | 47 |\n", + "| 4.54e+01 | 51 |\n", + "| 5.43e+01 | 58 |\n", + "+----------------------+-------------------------------+\n", + "\n", + "+--------------------------+------------------------+------------------------+\n", + "| coverage.genome.total_DP | coverage.genome.over_1 | coverage.genome.over_5 |\n", + "+--------------------------+------------------------+------------------------+\n", + "| int64 | float32 | float32 |\n", + "+--------------------------+------------------------+------------------------+\n", + "| 2684436 | 8.08e-01 | 8.08e-01 |\n", + "| 3077955 | 8.43e-01 | 8.43e-01 |\n", + "| 3165823 | 8.06e-01 | 8.06e-01 |\n", + "| 3252282 | 7.16e-01 | 7.16e-01 |\n", + "| 3891700 | 8.20e-01 | 8.20e-01 |\n", + "+--------------------------+------------------------+------------------------+\n", + "\n", + "+-------------------------+-------------------------+-------------------------+\n", + "| coverage.genome.over_10 | coverage.genome.over_15 | coverage.genome.over_20 |\n", + "+-------------------------+-------------------------+-------------------------+\n", + "| float32 | float32 | float32 |\n", + "+-------------------------+-------------------------+-------------------------+\n", + "| 8.07e-01 | 8.01e-01 | 7.82e-01 |\n", + "| 8.42e-01 | 8.39e-01 | 8.27e-01 |\n", + "| 8.05e-01 | 8.03e-01 | 7.97e-01 |\n", + "| 7.15e-01 | 7.15e-01 | 7.13e-01 |\n", + "| 8.20e-01 | 8.20e-01 | 8.18e-01 |\n", + "+-------------------------+-------------------------+-------------------------+\n", + "\n", + "+-------------------------+-------------------------+-------------------------+\n", + "| coverage.genome.over_25 | coverage.genome.over_30 | coverage.genome.over_50 |\n", + "+-------------------------+-------------------------+-------------------------+\n", + "| float32 | float32 | float32 |\n", + "+-------------------------+-------------------------+-------------------------+\n", + "| 7.43e-01 | 6.67e-01 | 2.89e-01 |\n", + "| 8.02e-01 | 7.48e-01 | 3.93e-01 |\n", + "| 7.82e-01 | 7.48e-01 | 4.50e-01 |\n", + "| 7.10e-01 | 7.00e-01 | 5.30e-01 |\n", + "| 8.15e-01 | 8.07e-01 | 6.45e-01 |\n", + "+-------------------------+-------------------------+-------------------------+\n", + "\n", + "+--------------------------+\n", + "| coverage.genome.over_100 |\n", + "+--------------------------+\n", + "| float32 |\n", + "+--------------------------+\n", + "| 1.13e-02 |\n", + "| 1.66e-02 |\n", + "| 2.14e-02 |\n", + "| 3.76e-02 |\n", + "| 5.38e-02 |\n", + "+--------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| transcript_consequences |\n", + "+------------------------------------------------------------------------------+\n", + "| array, domains: set Date: Tue, 14 Jan 2025 14:21:44 -0700 Subject: [PATCH 076/121] Update gnomad_toolbox/load_data.py --- gnomad_toolbox/load_data.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/gnomad_toolbox/load_data.py b/gnomad_toolbox/load_data.py index 70c718b..1a29ea2 100644 --- a/gnomad_toolbox/load_data.py +++ b/gnomad_toolbox/load_data.py @@ -38,7 +38,7 @@ "coverage": {"exomes": "4.0", "genomes": "3.0.1"}, "all_sites_an": "4.1", "constraint": "4.1", - "pext": "v7", + "pext": "v10", "browser": "4.1", }, }, From 82b9dbb1c38267f7840a7c708804cccea1494006 Mon Sep 17 00:00:00 2001 From: jkgoodrich <33063077+jkgoodrich@users.noreply.github.com> Date: Tue, 14 Jan 2025 15:02:56 -0700 Subject: [PATCH 077/121] Add links for data download to notebook summary table --- .../notebooks/explore_release_data.ipynb | 38 +++++++++---------- 1 file changed, 19 insertions(+), 19 deletions(-) diff --git a/gnomad_toolbox/notebooks/explore_release_data.ipynb b/gnomad_toolbox/notebooks/explore_release_data.ipynb index 3017c9f..a36b06d 100644 --- a/gnomad_toolbox/notebooks/explore_release_data.ipynb +++ b/gnomad_toolbox/notebooks/explore_release_data.ipynb @@ -99,7 +99,7 @@ " \n", "
\n", " \n", - " Loading BokehJS ...\n", + " Loading BokehJS ...\n", "
\n" ] }, @@ -271,7 +271,7 @@ " \"\"}};\n", "\n", " function display_loaded() {\n", - " const el = document.getElementById(\"da0da3b0-b5fd-4d97-96c0-ec7eae06d97a\");\n", + " const el = document.getElementById(\"edebb21b-b3fc-4e55-b6bd-7218f358f8ee\");\n", " if (el != null) {\n", " el.textContent = \"BokehJS is loading...\";\n", " }\n", @@ -377,7 +377,7 @@ " console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n", " root._bokeh_failed_load = true;\n", " } else if (force !== true) {\n", - " const cell = $(document.getElementById(\"da0da3b0-b5fd-4d97-96c0-ec7eae06d97a\")).parents('.cell').data().cell;\n", + " const cell = $(document.getElementById(\"edebb21b-b3fc-4e55-b6bd-7218f358f8ee\")).parents('.cell').data().cell;\n", " cell.output_area.append_execute_result(NB_LOAD_WARNING)\n", " }\n", " }\n", @@ -393,7 +393,7 @@ " }\n", "}(window));" ], - "application/vnd.bokehjs_load.v0+json": "(function(root) {\n function now() {\n return new Date();\n }\n\n const force = true;\n\n if (typeof root._bokeh_onload_callbacks === \"undefined\" || force === true) {\n root._bokeh_onload_callbacks = [];\n root._bokeh_is_loading = undefined;\n }\n\n\n if (typeof (root._bokeh_timeout) === \"undefined\" || force === true) {\n root._bokeh_timeout = Date.now() + 5000;\n root._bokeh_failed_load = false;\n }\n\n const NB_LOAD_WARNING = {'data': {'text/html':\n \"
\\n\"+\n \"

\\n\"+\n \"BokehJS does not appear to have successfully loaded. If loading BokehJS from CDN, this \\n\"+\n \"may be due to a slow or bad network connection. Possible fixes:\\n\"+\n \"

\\n\"+\n \"
    \\n\"+\n \"
  • re-rerun `output_notebook()` to attempt to load from CDN again, or
  • \\n\"+\n \"
  • use INLINE resources instead, as so:
  • \\n\"+\n \"
\\n\"+\n \"\\n\"+\n \"from bokeh.resources import INLINE\\n\"+\n \"output_notebook(resources=INLINE)\\n\"+\n \"\\n\"+\n \"
\"}};\n\n function display_loaded() {\n const el = document.getElementById(\"da0da3b0-b5fd-4d97-96c0-ec7eae06d97a\");\n if (el != null) {\n el.textContent = \"BokehJS is loading...\";\n }\n if (root.Bokeh !== undefined) {\n if (el != null) {\n el.textContent = \"BokehJS \" + root.Bokeh.version + \" successfully loaded.\";\n }\n } else if (Date.now() < root._bokeh_timeout) {\n setTimeout(display_loaded, 100)\n }\n }\n\n function run_callbacks() {\n try {\n root._bokeh_onload_callbacks.forEach(function(callback) {\n if (callback != null)\n callback();\n });\n } finally {\n delete root._bokeh_onload_callbacks\n }\n console.debug(\"Bokeh: all callbacks have finished\");\n }\n\n function load_libs(css_urls, js_urls, callback) {\n if (css_urls == null) css_urls = [];\n if (js_urls == null) js_urls = [];\n\n root._bokeh_onload_callbacks.push(callback);\n if (root._bokeh_is_loading > 0) {\n console.debug(\"Bokeh: BokehJS is being loaded, scheduling callback at\", now());\n return null;\n }\n if (js_urls == null || js_urls.length === 0) {\n run_callbacks();\n return null;\n }\n console.debug(\"Bokeh: BokehJS not loaded, scheduling load and callback at\", now());\n root._bokeh_is_loading = css_urls.length + js_urls.length;\n\n function on_load() {\n root._bokeh_is_loading--;\n if (root._bokeh_is_loading === 0) {\n console.debug(\"Bokeh: all BokehJS libraries/stylesheets loaded\");\n run_callbacks()\n }\n }\n\n function on_error(url) {\n console.error(\"failed to load \" + url);\n }\n\n for (let i = 0; i < css_urls.length; i++) {\n const url = css_urls[i];\n const element = document.createElement(\"link\");\n element.onload = on_load;\n element.onerror = on_error.bind(null, url);\n element.rel = \"stylesheet\";\n element.type = \"text/css\";\n element.href = url;\n console.debug(\"Bokeh: injecting link tag for BokehJS stylesheet: \", url);\n document.body.appendChild(element);\n }\n\n for (let i = 0; i < js_urls.length; i++) {\n const url = js_urls[i];\n const element = document.createElement('script');\n element.onload = on_load;\n element.onerror = on_error.bind(null, url);\n element.async = false;\n element.src = url;\n console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n document.head.appendChild(element);\n }\n };\n\n function inject_raw_css(css) {\n const element = document.createElement(\"style\");\n element.appendChild(document.createTextNode(css));\n document.body.appendChild(element);\n }\n\n const js_urls = [\"https://cdn.bokeh.org/bokeh/release/bokeh-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-gl-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-widgets-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-tables-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-mathjax-3.3.4.min.js\"];\n const css_urls = [];\n\n const inline_js = [ function(Bokeh) {\n Bokeh.set_log_level(\"info\");\n },\nfunction(Bokeh) {\n }\n ];\n\n function run_inline_js() {\n if (root.Bokeh !== undefined || force === true) {\n for (let i = 0; i < inline_js.length; i++) {\n inline_js[i].call(root, root.Bokeh);\n }\nif (force === true) {\n display_loaded();\n }} else if (Date.now() < root._bokeh_timeout) {\n setTimeout(run_inline_js, 100);\n } else if (!root._bokeh_failed_load) {\n console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n root._bokeh_failed_load = true;\n } else if (force !== true) {\n const cell = $(document.getElementById(\"da0da3b0-b5fd-4d97-96c0-ec7eae06d97a\")).parents('.cell').data().cell;\n cell.output_area.append_execute_result(NB_LOAD_WARNING)\n }\n }\n\n if (root._bokeh_is_loading === 0) {\n console.debug(\"Bokeh: BokehJS loaded, going straight to plotting\");\n run_inline_js();\n } else {\n load_libs(css_urls, js_urls, function() {\n console.debug(\"Bokeh: BokehJS plotting callback run at\", now());\n run_inline_js();\n });\n }\n}(window));" + "application/vnd.bokehjs_load.v0+json": "(function(root) {\n function now() {\n return new Date();\n }\n\n const force = true;\n\n if (typeof root._bokeh_onload_callbacks === \"undefined\" || force === true) {\n root._bokeh_onload_callbacks = [];\n root._bokeh_is_loading = undefined;\n }\n\n\n if (typeof (root._bokeh_timeout) === \"undefined\" || force === true) {\n root._bokeh_timeout = Date.now() + 5000;\n root._bokeh_failed_load = false;\n }\n\n const NB_LOAD_WARNING = {'data': {'text/html':\n \"
\\n\"+\n \"

\\n\"+\n \"BokehJS does not appear to have successfully loaded. If loading BokehJS from CDN, this \\n\"+\n \"may be due to a slow or bad network connection. Possible fixes:\\n\"+\n \"

\\n\"+\n \"
    \\n\"+\n \"
  • re-rerun `output_notebook()` to attempt to load from CDN again, or
  • \\n\"+\n \"
  • use INLINE resources instead, as so:
  • \\n\"+\n \"
\\n\"+\n \"\\n\"+\n \"from bokeh.resources import INLINE\\n\"+\n \"output_notebook(resources=INLINE)\\n\"+\n \"\\n\"+\n \"
\"}};\n\n function display_loaded() {\n const el = document.getElementById(\"edebb21b-b3fc-4e55-b6bd-7218f358f8ee\");\n if (el != null) {\n el.textContent = \"BokehJS is loading...\";\n }\n if (root.Bokeh !== undefined) {\n if (el != null) {\n el.textContent = \"BokehJS \" + root.Bokeh.version + \" successfully loaded.\";\n }\n } else if (Date.now() < root._bokeh_timeout) {\n setTimeout(display_loaded, 100)\n }\n }\n\n function run_callbacks() {\n try {\n root._bokeh_onload_callbacks.forEach(function(callback) {\n if (callback != null)\n callback();\n });\n } finally {\n delete root._bokeh_onload_callbacks\n }\n console.debug(\"Bokeh: all callbacks have finished\");\n }\n\n function load_libs(css_urls, js_urls, callback) {\n if (css_urls == null) css_urls = [];\n if (js_urls == null) js_urls = [];\n\n root._bokeh_onload_callbacks.push(callback);\n if (root._bokeh_is_loading > 0) {\n console.debug(\"Bokeh: BokehJS is being loaded, scheduling callback at\", now());\n return null;\n }\n if (js_urls == null || js_urls.length === 0) {\n run_callbacks();\n return null;\n }\n console.debug(\"Bokeh: BokehJS not loaded, scheduling load and callback at\", now());\n root._bokeh_is_loading = css_urls.length + js_urls.length;\n\n function on_load() {\n root._bokeh_is_loading--;\n if (root._bokeh_is_loading === 0) {\n console.debug(\"Bokeh: all BokehJS libraries/stylesheets loaded\");\n run_callbacks()\n }\n }\n\n function on_error(url) {\n console.error(\"failed to load \" + url);\n }\n\n for (let i = 0; i < css_urls.length; i++) {\n const url = css_urls[i];\n const element = document.createElement(\"link\");\n element.onload = on_load;\n element.onerror = on_error.bind(null, url);\n element.rel = \"stylesheet\";\n element.type = \"text/css\";\n element.href = url;\n console.debug(\"Bokeh: injecting link tag for BokehJS stylesheet: \", url);\n document.body.appendChild(element);\n }\n\n for (let i = 0; i < js_urls.length; i++) {\n const url = js_urls[i];\n const element = document.createElement('script');\n element.onload = on_load;\n element.onerror = on_error.bind(null, url);\n element.async = false;\n element.src = url;\n console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n document.head.appendChild(element);\n }\n };\n\n function inject_raw_css(css) {\n const element = document.createElement(\"style\");\n element.appendChild(document.createTextNode(css));\n document.body.appendChild(element);\n }\n\n const js_urls = [\"https://cdn.bokeh.org/bokeh/release/bokeh-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-gl-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-widgets-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-tables-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-mathjax-3.3.4.min.js\"];\n const css_urls = [];\n\n const inline_js = [ function(Bokeh) {\n Bokeh.set_log_level(\"info\");\n },\nfunction(Bokeh) {\n }\n ];\n\n function run_inline_js() {\n if (root.Bokeh !== undefined || force === true) {\n for (let i = 0; i < inline_js.length; i++) {\n inline_js[i].call(root, root.Bokeh);\n }\nif (force === true) {\n display_loaded();\n }} else if (Date.now() < root._bokeh_timeout) {\n setTimeout(run_inline_js, 100);\n } else if (!root._bokeh_failed_load) {\n console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n root._bokeh_failed_load = true;\n } else if (force !== true) {\n const cell = $(document.getElementById(\"edebb21b-b3fc-4e55-b6bd-7218f358f8ee\")).parents('.cell').data().cell;\n cell.output_area.append_execute_result(NB_LOAD_WARNING)\n }\n }\n\n if (root._bokeh_is_loading === 0) {\n console.debug(\"Bokeh: BokehJS loaded, going straight to plotting\");\n run_inline_js();\n } else {\n load_libs(css_urls, js_urls, function() {\n console.debug(\"Bokeh: BokehJS plotting callback run at\", now());\n run_inline_js();\n });\n }\n}(window));" }, "metadata": {}, "output_type": "display_data" @@ -419,7 +419,7 @@ " / /_/ /__ __/ /\n", " / __ / _ `/ / /\n", " /_/ /_/\\_,_/_/_/ version 0.2.132-678e1f52b999\n", - "LOGGING: writing to /Users/jgoodric/PycharmProjects/gnomad-toolbox/gnomad_toolbox/notebooks/hail-20250114-1205-0.2.132-678e1f52b999.log\n" + "LOGGING: writing to /Users/jgoodric/PycharmProjects/gnomad-toolbox/gnomad_toolbox/notebooks/hail-20250114-1427-0.2.132-678e1f52b999.log\n" ] } ], @@ -442,20 +442,20 @@ "id": "b4b633dd-9b92-4e3f-b6c7-1100fa813885", "metadata": {}, "source": [ - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + "
Genome BuildDataset (dataset)Version (version)Data Type (data_type)
GRCh37variant2.1.1exomes, genomes
coverage2.1exomes, genomes
constraint2.1.1N/A
liftover2.1.1exomes, genomes
pextv7base_level, annotation_level
GRCh38variant4.1exomes, genomes, joint
coverage3.0.1genomes
4.0exomes
all_sites_an4.1exomes, genomes
constraint4.1N/A
pextv10base_level, annotation_level
browser_variant4.1N/A (This includes information for the joint, exomes, and genomes, but doesn't need to be specified)
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", "
Genome BuildDataset (dataset)Version (version)Data Type (data_type)
GRCh37variant2.1.1exomes, genomes
coverage2.1exomes, genomes
constraint2.1.1N/A
pextv7base_level, annotation_level
liftover2.1.1exomes, genomes
GRCh38variant4.1exomes, genomes, joint
all_sites_an4.1exomes, genomes
browser_variant4.1N/A
(This includes information for the joint, exomes, and
genomes, but doesn't need to be specified)
coverage3.0.1genomes
4.0exomes
constraint4.1N/A
pextv10base_level, annotation_level
\n" ] }, From 1d081eaa663bfa2a117791a4acb7968d8f2fb0ef Mon Sep 17 00:00:00 2001 From: jkgoodrich <33063077+jkgoodrich@users.noreply.github.com> Date: Tue, 14 Jan 2025 15:08:40 -0700 Subject: [PATCH 078/121] browser_variant -> browser in notebook table --- gnomad_toolbox/notebooks/explore_release_data.ipynb | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/gnomad_toolbox/notebooks/explore_release_data.ipynb b/gnomad_toolbox/notebooks/explore_release_data.ipynb index a36b06d..f04b9c0 100644 --- a/gnomad_toolbox/notebooks/explore_release_data.ipynb +++ b/gnomad_toolbox/notebooks/explore_release_data.ipynb @@ -451,7 +451,7 @@ " liftover2.1.1exomes, genomes\n", " GRCh38variant4.1exomes, genomes, joint\n", " all_sites_an4.1exomes, genomes\n", - " browser_variant4.1N/A
(This includes information for the joint, exomes, and
genomes, but doesn't need to be specified)\n", + " browser4.1N/A
(This includes information for the joint, exomes, and
genomes, but doesn't need to be specified)\n", " coverage3.0.1genomes\n", " 4.0exomes\n", " constraint4.1N/A\n", @@ -12526,7 +12526,7 @@ "height": "calc(100% - 180px)", "left": "10px", "top": "150px", - "width": "202.432px" + "width": "418.428px" }, "toc_section_display": true, "toc_window_display": true From 8700831aebcb60477bc1de45f2b4d3f127cc4e06 Mon Sep 17 00:00:00 2001 From: jkgoodrich <33063077+jkgoodrich@users.noreply.github.com> Date: Wed, 15 Jan 2025 07:27:14 -0700 Subject: [PATCH 079/121] Changes to some headers and added links to the notebook --- .../notebooks/explore_release_data.ipynb | 72 ++++++++++++------- 1 file changed, 46 insertions(+), 26 deletions(-) diff --git a/gnomad_toolbox/notebooks/explore_release_data.ipynb b/gnomad_toolbox/notebooks/explore_release_data.ipynb index f04b9c0..f93e1ca 100644 --- a/gnomad_toolbox/notebooks/explore_release_data.ipynb +++ b/gnomad_toolbox/notebooks/explore_release_data.ipynb @@ -51,7 +51,7 @@ }, "source": [ "

Table of Contents

\n", - "
" + "
" ] }, { @@ -443,19 +443,19 @@ "metadata": {}, "source": [ "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", "
Genome BuildDataset (dataset)Version (version)Data Type (data_type)
GRCh37variant2.1.1exomes, genomes
coverage2.1exomes, genomes
constraint2.1.1N/A
pextv7base_level, annotation_level
liftover2.1.1exomes, genomes
GRCh38variant4.1exomes, genomes, joint
all_sites_an4.1exomes, genomes
browser4.1N/A
(This includes information for the joint, exomes, and
genomes, but doesn't need to be specified)
coverage3.0.1genomes
4.0exomes
constraint4.1N/A
pextv10base_level, annotation_level
Genome BuildDataset (dataset)Version (version)Data Type (data_type)
GRCh37variant2.1.1exomes, genomes
coverage2.1exomes, genomes
constraint2.1.1N/A
pextv7base_level, annotation_level
liftover2.1.1exomes, genomes
GRCh38variant4.1exomes, genomes, joint
all_sites_an4.1exomes, genomes
browser4.1N/A
Note: This includes information for
the joint, exomes, and genomes,
but doesn't need to be specified
coverage3.0.1genomes
4.0exomes
constraint4.1N/A
pextv10base_level, annotation_level
\n" ] }, @@ -478,7 +478,9 @@ "tags": [] }, "source": [ - "### v4.1 exomes Hail Table" + "### Exomes Hail Table\n", + "\n", + "Showing gnomAD **v4.1** exomes frequency. " ] }, { @@ -1978,7 +1980,9 @@ "tags": [] }, "source": [ - "### v4.1 genomes Hail Table" + "### Genomes Hail Table\n", + "\n", + "Showing gnomAD **v4.1** genomes frequency. " ] }, { @@ -3349,7 +3353,7 @@ "tags": [] }, "source": [ - "### v4.1 Joint Frequency Hail Table" + "### Joint Frequency Hail Table" ] }, { @@ -3357,7 +3361,7 @@ "id": "0a569b77-d3d2-45a4-803a-1214c77e46f2", "metadata": {}, "source": [ - "The joint frequency Hail table includes frequency for the exomes, genomes, and the exomes+genomes. We have also added statistics for the combined exomes and genomes frequencies, more details on these stats can be found on our [Help](https://gnomad.broadinstitute.org/help/combined-freq-stats) page." + "Showing gnomAD **v4.1** joint frequency. The joint frequency Hail table includes frequency for the exomes, genomes, and the exomes+genomes. We have also added statistics for the combined exomes and genomes frequencies, more details on these stats can be found on our [Help](https://gnomad.broadinstitute.org/help/combined-freq-stats) page." ] }, { @@ -5953,7 +5957,9 @@ "tags": [] }, "source": [ - "### Exomes all sites allele number Hail Table" + "### Exomes all sites allele number Hail Table\n", + "\n", + "Showing gnomAD **v4.1** exomes all sites allele numbers." ] }, { @@ -6124,7 +6130,9 @@ "tags": [] }, "source": [ - "### Genomes all sites allele number Hail Table" + "### Genomes all sites allele number Hail Table\n", + "\n", + "Showing gnomAD **v4.1** genomes all sites allele numbers." ] }, { @@ -6268,7 +6276,9 @@ "tags": [] }, "source": [ - "## Coverage\n" + "## Coverage\n", + "\n", + "For details on how coverage was calculated see the [Help/FAQ](https://gnomad.broadinstitute.org/help#coverage) pages." ] }, { @@ -6278,7 +6288,9 @@ "tags": [] }, "source": [ - "### Exomes coverage Hail Table" + "### Exomes coverage Hail Table\n", + "\n", + "Showing gnomAD **v4.0** coverage." ] }, { @@ -6431,7 +6443,9 @@ "tags": [] }, "source": [ - "### Genomes coverage Hail Table" + "### Genomes coverage Hail Table\n", + "\n", + "Showing gnomAD **v3.0.1** coverage." ] }, { @@ -6585,7 +6599,9 @@ "tags": [] }, "source": [ - "## Constraint\n" + "## Gene constraint\n", + "\n", + "For details on gene constraint see the [Help](https://gnomad.broadinstitute.org/help/constraint) and [FAQ](https://gnomad.broadinstitute.org/help#constraint)." ] }, { @@ -6930,7 +6946,9 @@ "tags": [] }, "source": [ - "## Proportion expressed across transcripts (pext) score\n" + "## Proportion expressed across transcripts (pext) score\n", + "\n", + "For more information about the pext score see the [Help](https://gnomad.broadinstitute.org/help/pext) page." ] }, { @@ -9490,7 +9508,9 @@ "tags": [] }, "source": [ - "## Browser variant data\n" + "## Browser variant data\n", + "\n", + "For more information about these files, see the [changelog entry](https://gnomad.broadinstitute.org/new/2024-08-release-gnomad-browser-tables) on the browser tables, and the [Help](https://gnomad.broadinstitute.org/help/v4-browser-hts) page." ] }, { From 883377109afdb638b541c4462dded024e4f41478 Mon Sep 17 00:00:00 2001 From: jkgoodrich <33063077+jkgoodrich@users.noreply.github.com> Date: Wed, 15 Jan 2025 10:17:50 -0700 Subject: [PATCH 080/121] Add liftover and internal links to the notebook --- .../notebooks/explore_release_data.ipynb | 13392 +++++++++------- 1 file changed, 7754 insertions(+), 5638 deletions(-) diff --git a/gnomad_toolbox/notebooks/explore_release_data.ipynb b/gnomad_toolbox/notebooks/explore_release_data.ipynb index f93e1ca..bc5c022 100644 --- a/gnomad_toolbox/notebooks/explore_release_data.ipynb +++ b/gnomad_toolbox/notebooks/explore_release_data.ipynb @@ -51,7 +51,7 @@ }, "source": [ "

Table of Contents

\n", - "
" + "
" ] }, { @@ -443,19 +443,84 @@ "metadata": {}, "source": [ "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", "
Genome BuildDataset (dataset)Version (version)Data Type (data_type)
GRCh37variant2.1.1exomes, genomes
coverage2.1exomes, genomes
constraint2.1.1N/A
pextv7base_level, annotation_level
liftover2.1.1exomes, genomes
GRCh38variant4.1exomes, genomes, joint
all_sites_an4.1exomes, genomes
browser4.1N/A
Note: This includes information for
the joint, exomes, and genomes,
but doesn't need to be specified
coverage3.0.1genomes
4.0exomes
constraint4.1N/A
pextv10base_level, annotation_level
Genome BuildDatasetdatasetversiondata_type
GRCh37Variant datavariant2.1.1exomes, genomes
Coveragecoverage2.1exomes, genomes
Gene constraintconstraint2.1.1N/A
Proportion expressed
across transcripts score
pextv7base_level, annotation_level
Lifted over variant data
(GRCh37 --> GRCh38)
liftover2.1.1exomes, genomes
GRCh38Variant datavariant4.1exomes, genomes, joint
All sites allele numbersall_sites_an4.1exomes, genomes
Browser variant databrowser4.1N/A
Note: This includes information for
the joint, exomes, and genomes,
but doesn't need to be specified
Coveragecoverage3.0.1genomes
4.0exomes
Gene constraintconstraint4.1N/A
Proportion expressed
across transcripts score
pextv10base_level, annotation_level
\n" ] }, @@ -6271,40 +6336,28 @@ }, { "cell_type": "markdown", - "id": "1bf9f31f-34ff-4385-a80e-985cbb0acfe8", - "metadata": { - "tags": [] - }, - "source": [ - "## Coverage\n", - "\n", - "For details on how coverage was calculated see the [Help/FAQ](https://gnomad.broadinstitute.org/help#coverage) pages." - ] - }, - { - "cell_type": "markdown", - "id": "de70c319-787b-4d6c-9058-255a1137d81f", + "id": "ae3e5ba8-075a-455c-8e5c-e244970d5217", "metadata": { "tags": [] }, "source": [ - "### Exomes coverage Hail Table\n", + "## Browser variant data\n", "\n", - "Showing gnomAD **v4.0** coverage." + "For more information about these files, see the [changelog entry](https://gnomad.broadinstitute.org/new/2024-08-release-gnomad-browser-tables) on the browser tables, and the [Help](https://gnomad.broadinstitute.org/help/v4-browser-hts) page." ] }, { "cell_type": "markdown", - "id": "3278430c-4279-4d89-85e7-276184ec42b8", + "id": "d7c13865-814a-46e8-a4f3-c823a910cfa3", "metadata": {}, "source": [ - "#### Load the Hail Table\n" + "### Load the Hail Table\n" ] }, { "cell_type": "code", - "execution_count": 18, - "id": "7f005af0-df6d-4a0a-a2e0-9cb4ff6782c2", + "execution_count": 33, + "id": "329f08ef-6dbf-42cd-bbbc-d3f5396708ac", "metadata": { "ExecuteTime": { "end_time": "2024-12-06T20:08:59.197890Z", @@ -6313,177 +6366,21 @@ }, "outputs": [], "source": [ - "ht = get_gnomad_release(data_type='exomes', version='4.0', dataset=\"coverage\")" - ] - }, - { - "cell_type": "markdown", - "id": "128e58ce-c219-472a-88be-6babc2ba5a15", - "metadata": {}, - "source": [ - "#### Print the schema of the Hail Table\n" - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "id": "6058bf38-4ce9-4d37-89a7-d11af0e4d9f1", - "metadata": { - "ExecuteTime": { - "end_time": "2024-12-06T20:09:00.032524Z", - "start_time": "2024-12-06T20:09:00.029271Z" - }, - "tags": [] - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "----------------------------------------\n", - "Global fields:\n", - " None\n", - "----------------------------------------\n", - "Row fields:\n", - " 'locus': locus \n", - " 'mean': float64 \n", - " 'median_approx': int32 \n", - " 'total_DP': int64 \n", - " 'over_1': float64 \n", - " 'over_5': float64 \n", - " 'over_10': float64 \n", - " 'over_15': float64 \n", - " 'over_20': float64 \n", - " 'over_25': float64 \n", - " 'over_30': float64 \n", - " 'over_50': float64 \n", - " 'over_100': float64 \n", - "----------------------------------------\n", - "Key: ['locus']\n", - "----------------------------------------\n" - ] - } - ], - "source": [ - "ht.describe()" - ] - }, - { - "cell_type": "markdown", - "id": "5969ab0c-7cee-4061-8740-8b82366ae806", - "metadata": { - "tags": [] - }, - "source": [ - "#### Show the first 5 variants in the Hail Table\n" - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "id": "49fcf64b-1a91-4052-bb98-b329a0e8031b", - "metadata": { - "ExecuteTime": { - "end_time": "2024-12-06T20:09:20.949958Z", - "start_time": "2024-12-06T20:09:05.622171Z" - }, - "tags": [] - }, - "outputs": [ - { - "data": { - "text/html": [ - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "
locus
mean
median_approx
total_DP
over_1
over_5
over_10
over_15
over_20
over_25
over_30
over_50
over_100
locus<GRCh38>float64int32int64float64float64float64float64float64float64float64float64float64
chr1:118191.12e-010816952.79e-027.59e-030.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+00
chr1:118201.12e-010816952.79e-027.59e-030.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+00
chr1:118211.12e-010816952.79e-027.59e-030.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+00
chr1:118221.12e-010816952.79e-027.59e-030.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+00
chr1:118231.12e-010816952.79e-027.59e-030.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+00

showing top 5 rows

\n" - ], - "text/plain": [ - "+---------------+----------+---------------+----------+----------+----------+\n", - "| locus | mean | median_approx | total_DP | over_1 | over_5 |\n", - "+---------------+----------+---------------+----------+----------+----------+\n", - "| locus | float64 | int32 | int64 | float64 | float64 |\n", - "+---------------+----------+---------------+----------+----------+----------+\n", - "| chr1:11819 | 1.12e-01 | 0 | 81695 | 2.79e-02 | 7.59e-03 |\n", - "| chr1:11820 | 1.12e-01 | 0 | 81695 | 2.79e-02 | 7.59e-03 |\n", - "| chr1:11821 | 1.12e-01 | 0 | 81695 | 2.79e-02 | 7.59e-03 |\n", - "| chr1:11822 | 1.12e-01 | 0 | 81695 | 2.79e-02 | 7.59e-03 |\n", - "| chr1:11823 | 1.12e-01 | 0 | 81695 | 2.79e-02 | 7.59e-03 |\n", - "+---------------+----------+---------------+----------+----------+----------+\n", - "\n", - "+----------+----------+----------+----------+----------+----------+----------+\n", - "| over_10 | over_15 | over_20 | over_25 | over_30 | over_50 | over_100 |\n", - "+----------+----------+----------+----------+----------+----------+----------+\n", - "| float64 | float64 | float64 | float64 | float64 | float64 | float64 |\n", - "+----------+----------+----------+----------+----------+----------+----------+\n", - "| 0.00e+00 | 0.00e+00 | 0.00e+00 | 0.00e+00 | 0.00e+00 | 0.00e+00 | 0.00e+00 |\n", - "| 0.00e+00 | 0.00e+00 | 0.00e+00 | 0.00e+00 | 0.00e+00 | 0.00e+00 | 0.00e+00 |\n", - "| 0.00e+00 | 0.00e+00 | 0.00e+00 | 0.00e+00 | 0.00e+00 | 0.00e+00 | 0.00e+00 |\n", - "| 0.00e+00 | 0.00e+00 | 0.00e+00 | 0.00e+00 | 0.00e+00 | 0.00e+00 | 0.00e+00 |\n", - "| 0.00e+00 | 0.00e+00 | 0.00e+00 | 0.00e+00 | 0.00e+00 | 0.00e+00 | 0.00e+00 |\n", - "+----------+----------+----------+----------+----------+----------+----------+\n", - "showing top 5 rows" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "ht.show(5)" - ] - }, - { - "cell_type": "markdown", - "id": "19b2e9be-48fd-4859-af3d-a0775656d24c", - "metadata": { - "tags": [] - }, - "source": [ - "### Genomes coverage Hail Table\n", - "\n", - "Showing gnomAD **v3.0.1** coverage." - ] - }, - { - "cell_type": "markdown", - "id": "5918f8e0-a723-439a-a11f-558d5ed13be8", - "metadata": {}, - "source": [ - "#### Load the Hail Table\n" - ] - }, - { - "cell_type": "code", - "execution_count": 21, - "id": "a8d0be07-c35d-425a-b554-c86034e367fc", - "metadata": { - "ExecuteTime": { - "end_time": "2024-12-06T20:08:59.197890Z", - "start_time": "2024-12-06T20:08:50.859108Z" - }, - "tags": [] - }, - "outputs": [], - "source": [ - "ht = get_gnomad_release(data_type='genomes', version='3.0.1', dataset=\"coverage\")" + "ht = get_gnomad_release(version='4.1', dataset=\"browser\")" ] }, { "cell_type": "markdown", - "id": "d129b898-d642-44d1-8243-66a9cca8d1b1", + "id": "6ec344e0-4951-44d8-8f7b-1283a427914d", "metadata": {}, "source": [ - "#### Print the schema of the Hail Table\n" + "### Print the schema of the Hail Table\n" ] }, { "cell_type": "code", - "execution_count": 22, - "id": "18afb20f-7429-4fe2-a6c5-73a22dcbdb76", + "execution_count": 34, + "id": "17efacb6-84c4-4345-9bf9-1dca259dd7fa", "metadata": { "ExecuteTime": { "end_time": "2024-12-06T20:09:00.032524Z", @@ -6498,1994 +6395,512 @@ "text": [ "----------------------------------------\n", "Global fields:\n", - " None\n", + " 'mane_select_version': str \n", "----------------------------------------\n", "Row fields:\n", " 'locus': locus \n", - " 'mean': float64 \n", - " 'median_approx': int32 \n", - " 'total_DP': int64 \n", - " 'over_1': float32 \n", - " 'over_5': float32 \n", - " 'over_10': float32 \n", - " 'over_15': float32 \n", - " 'over_20': float32 \n", - " 'over_25': float32 \n", - " 'over_30': float32 \n", - " 'over_50': float32 \n", - " 'over_100': float32 \n", - "----------------------------------------\n", - "Key: ['locus']\n", - "----------------------------------------\n" - ] - } - ], - "source": [ - "ht.describe()" - ] - }, - { - "cell_type": "markdown", - "id": "05d8e22c-93d6-4ecf-b9e7-711945268c82", - "metadata": { - "tags": [] - }, - "source": [ - "#### Show the first 5 variants in the Hail Table\n" - ] - }, - { - "cell_type": "code", - "execution_count": 23, - "id": "b27cb655-3abb-4501-bcc9-3f634db64591", - "metadata": { - "ExecuteTime": { - "end_time": "2024-12-06T20:09:20.949958Z", - "start_time": "2024-12-06T20:09:05.622171Z" - }, - "tags": [] - }, - "outputs": [ - { - "data": { - "text/html": [ - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "
locus
mean
median_approx
total_DP
over_1
over_5
over_10
over_15
over_20
over_25
over_30
over_50
over_100
locus<GRCh38>float64int32int64float32float32float32float32float32float32float32float32float32
chr1:100012.41e+0001729261.25e-011.19e-019.12e-026.95e-025.15e-023.88e-022.62e-022.27e-030.00e+00
chr1:100024.61e+0003307602.20e-012.15e-011.79e-011.39e-011.02e-017.60e-025.06e-024.83e-032.79e-05
chr1:100036.38e+0004576112.62e-012.59e-012.41e-012.07e-011.59e-011.18e-017.77e-027.61e-035.58e-05
chr1:100041.04e+0107448404.27e-014.24e-013.99e-013.43e-012.60e-011.87e-011.21e-011.20e-021.67e-04
chr1:100051.18e+0108494414.83e-014.80e-014.56e-013.92e-012.96e-012.14e-011.38e-011.42e-022.37e-04

showing top 5 rows

\n" - ], - "text/plain": [ - "+---------------+----------+---------------+----------+----------+----------+\n", - "| locus | mean | median_approx | total_DP | over_1 | over_5 |\n", - "+---------------+----------+---------------+----------+----------+----------+\n", - "| locus | float64 | int32 | int64 | float32 | float32 |\n", - "+---------------+----------+---------------+----------+----------+----------+\n", - "| chr1:10001 | 2.41e+00 | 0 | 172926 | 1.25e-01 | 1.19e-01 |\n", - "| chr1:10002 | 4.61e+00 | 0 | 330760 | 2.20e-01 | 2.15e-01 |\n", - "| chr1:10003 | 6.38e+00 | 0 | 457611 | 2.62e-01 | 2.59e-01 |\n", - "| chr1:10004 | 1.04e+01 | 0 | 744840 | 4.27e-01 | 4.24e-01 |\n", - "| chr1:10005 | 1.18e+01 | 0 | 849441 | 4.83e-01 | 4.80e-01 |\n", - "+---------------+----------+---------------+----------+----------+----------+\n", - "\n", - "+----------+----------+----------+----------+----------+----------+----------+\n", - "| over_10 | over_15 | over_20 | over_25 | over_30 | over_50 | over_100 |\n", - "+----------+----------+----------+----------+----------+----------+----------+\n", - "| float32 | float32 | float32 | float32 | float32 | float32 | float32 |\n", - "+----------+----------+----------+----------+----------+----------+----------+\n", - "| 9.12e-02 | 6.95e-02 | 5.15e-02 | 3.88e-02 | 2.62e-02 | 2.27e-03 | 0.00e+00 |\n", - "| 1.79e-01 | 1.39e-01 | 1.02e-01 | 7.60e-02 | 5.06e-02 | 4.83e-03 | 2.79e-05 |\n", - "| 2.41e-01 | 2.07e-01 | 1.59e-01 | 1.18e-01 | 7.77e-02 | 7.61e-03 | 5.58e-05 |\n", - "| 3.99e-01 | 3.43e-01 | 2.60e-01 | 1.87e-01 | 1.21e-01 | 1.20e-02 | 1.67e-04 |\n", - "| 4.56e-01 | 3.92e-01 | 2.96e-01 | 2.14e-01 | 1.38e-01 | 1.42e-02 | 2.37e-04 |\n", - "+----------+----------+----------+----------+----------+----------+----------+\n", - "showing top 5 rows" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "ht.show(5)" - ] - }, - { - "cell_type": "markdown", - "id": "c4ae4713-f542-46e3-979f-0bcfb44ec56c", - "metadata": { - "tags": [] - }, - "source": [ - "## Gene constraint\n", - "\n", - "For details on gene constraint see the [Help](https://gnomad.broadinstitute.org/help/constraint) and [FAQ](https://gnomad.broadinstitute.org/help#constraint)." - ] - }, - { - "cell_type": "markdown", - "id": "4ed92af6-aacc-4cb2-890d-7ff76a00196d", - "metadata": {}, - "source": [ - "### Load the Hail Table\n" - ] - }, - { - "cell_type": "code", - "execution_count": 24, - "id": "3de343dc-37ae-4b17-a056-9d30e71e217c", - "metadata": { - "ExecuteTime": { - "end_time": "2024-12-06T20:08:59.197890Z", - "start_time": "2024-12-06T20:08:50.859108Z" - } - }, - "outputs": [], - "source": [ - "ht = get_gnomad_release(version='4.1', dataset=\"constraint\")" - ] - }, - { - "cell_type": "markdown", - "id": "5b59b2f6-aadd-408d-8663-b676d41565bf", - "metadata": {}, - "source": [ - "### Print the schema of the Hail Table\n" - ] - }, - { - "cell_type": "code", - "execution_count": 25, - "id": "c401dc94-0db0-4902-933d-e46c8aa447ce", - "metadata": { - "ExecuteTime": { - "end_time": "2024-12-06T20:09:00.032524Z", - "start_time": "2024-12-06T20:09:00.029271Z" - }, - "tags": [] - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "----------------------------------------\n", - "Global fields:\n", - " 'version': str \n", - " 'apply_model_params': struct {\n", - " max_af: float64, \n", - " pops: tuple (\n", - " ), \n", - " plateau_models: struct {\n", - " total: dict>\n", + " 'alleles': array \n", + " 'exome': struct {\n", + " colocated_variants: struct {\n", + " all: array, \n", + " non_ukb: array\n", " }, \n", - " coverage_model: str\n", - " } \n", - " 'sd_raw_z': struct {\n", - " lof: float64, \n", - " mis: float64, \n", - " syn: float64\n", - " } \n", - "----------------------------------------\n", - "Row fields:\n", - " 'gene': str \n", - " 'gene_id': str \n", - " 'transcript': str \n", - " 'canonical': bool \n", - " 'mane_select': bool \n", - " 'lof_hc_lc': struct {\n", - " obs: int64, \n", - " exp: float64, \n", - " possible: int64, \n", - " oe: float64, \n", - " mu: float64, \n", - " pLI: float64, \n", - " pNull: float64, \n", - " pRec: float64\n", - " } \n", - " 'lof': struct {\n", - " obs: int64, \n", - " exp: float64, \n", - " possible: int64, \n", - " oe: float64, \n", - " mu: float64, \n", - " pLI: float64, \n", - " pNull: float64, \n", - " pRec: float64, \n", - " oe_ci: struct {\n", - " lower: float64, \n", - " upper: float64, \n", - " upper_rank: int64, \n", - " upper_bin_decile: int32\n", + " subsets: set, \n", + " flags: set, \n", + " freq: struct {\n", + " all: struct {\n", + " ac: int32, \n", + " ac_raw: int32, \n", + " an: int32, \n", + " hemizygote_count: int32, \n", + " homozygote_count: int64, \n", + " ancestry_groups: array\n", + " }, \n", + " non_ukb: struct {\n", + " ac: int32, \n", + " ac_raw: int32, \n", + " an: int32, \n", + " hemizygote_count: int32, \n", + " homozygote_count: int64, \n", + " ancestry_groups: array\n", + " }\n", " }, \n", - " z_raw: float64, \n", - " z_score: float64\n", - " } \n", - " 'mis': struct {\n", - " obs: int64, \n", - " exp: float64, \n", - " possible: int64, \n", - " oe: float64, \n", - " mu: float64, \n", - " oe_ci: struct {\n", - " lower: float64, \n", - " upper: float64\n", + " fafmax: struct {\n", + " gnomad: struct {\n", + " faf95_max: float64, \n", + " faf95_max_gen_anc: str, \n", + " faf99_max: float64, \n", + " faf99_max_gen_anc: str\n", + " }, \n", + " non_ukb: struct {\n", + " faf95_max: float64, \n", + " faf95_max_gen_anc: str, \n", + " faf99_max: float64, \n", + " faf99_max_gen_anc: str\n", + " }\n", " }, \n", - " z_raw: float64, \n", - " z_score: float64\n", - " } \n", - " 'mis_pphen': struct {\n", - " obs: int64, \n", - " exp: float64, \n", - " possible: int64, \n", - " oe: float64\n", - " } \n", - " 'syn': struct {\n", - " obs: int64, \n", - " exp: float64, \n", - " possible: int64, \n", - " oe: float64, \n", - " mu: float64, \n", - " oe_ci: struct {\n", - " lower: float64, \n", - " upper: float64\n", + " age_distribution: struct {\n", + " het: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }, \n", + " hom: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }\n", " }, \n", - " z_raw: float64, \n", - " z_score: float64\n", - " } \n", - " 'constraint_flags': set \n", - " 'level': str \n", - " 'transcript_type': str \n", - " 'chromosome': str \n", - " 'cds_length': int64 \n", - " 'num_coding_exons': int64 \n", - "----------------------------------------\n", - "Key: ['gene', 'gene_id', 'transcript', 'canonical', 'mane_select']\n", - "----------------------------------------\n" - ] - } - ], - "source": [ - "ht.describe()" - ] - }, - { - "cell_type": "markdown", - "id": "5b0e64c9-744c-4ed7-a832-9d68c548540b", - "metadata": { - "tags": [] - }, - "source": [ - "### Show the first 5 variants in the Hail Table\n" - ] - }, - { - "cell_type": "code", - "execution_count": 26, - "id": "262cbbf1-9fc7-4819-9b2a-d1a1e27c10bf", - "metadata": { - "ExecuteTime": { - "end_time": "2024-12-06T20:09:20.949958Z", - "start_time": "2024-12-06T20:09:05.622171Z" - }, - "tags": [] - }, - "outputs": [ - { - "data": { - "text/html": [ - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "
lof
mis
syn
lof_hc_lc
oe_ci
oe_ci
mis_pphen
oe_ci
gene
gene_id
transcript
canonical
mane_select
obs
exp
possible
oe
mu
pLI
pNull
pRec
obs
exp
possible
oe
mu
pLI
pNull
pRec
lower
upper
upper_rank
upper_bin_decile
z_raw
z_score
obs
exp
possible
oe
mu
lower
upper
z_raw
z_score
obs
exp
possible
oe
obs
exp
possible
oe
mu
lower
upper
z_raw
z_score
constraint_flags
level
transcript_type
chromosome
cds_length
num_coding_exons
strstrstrboolboolint64float64int64float64float64float64float64float64int64float64int64float64float64float64float64float64float64float64int64int32float64float64int64float64int64float64float64float64float64float64float64int64float64int64float64int64float64int64float64float64float64float64float64float64set<str>strstrstrint64int64
"A1BG""1""NM_130786.4"TrueTrue454.30e+011931.05e+007.06e-071.63e-168.49e-011.51e-01454.30e+011931.05e+007.06e-071.77e-168.43e-011.57e-018.22e-011.34e+00NANA-2.98e-01-2.52e-017076.47e+0228701.09e+007.67e-061.03e+001.16e+00-2.36e+00-8.61e-012201.91e+028901.15e+003162.96e+029941.07e+003.02e-069.73e-011.17e+00-1.17e+00-6.35e-01{}NANANANANA
"A1BG""ENSG00000121410""ENST00000263100"TrueTrue454.30e+011931.05e+007.06e-071.63e-168.49e-011.51e-01454.30e+011931.05e+007.06e-071.77e-168.43e-011.57e-018.22e-011.34e+00140577-2.98e-01-2.52e-017076.47e+0228701.09e+007.67e-061.03e+001.16e+00-2.36e+00-8.61e-012201.91e+028901.15e+003162.96e+029941.07e+003.02e-069.73e-011.17e+00-1.17e+00-6.35e-01{}"2""protein_coding""chr19"14858
"A1BG""ENSG00000121410""ENST00000600966"FalseFalse242.63e+011239.14e-014.20e-072.53e-083.43e-016.57e-01222.50e+011198.80e-013.96e-071.84e-072.65e-017.35e-016.28e-011.26e+00NANA6.01e-015.09e-013994.06e+0218589.84e-014.91e-069.06e-011.07e+003.24e-011.18e-011031.10e+025129.40e-011661.79e+026379.28e-011.91e-068.17e-011.06e+009.64e-015.26e-01{}"1""protein_coding""chr19"9175
"A1CF""29974""NM_001198818.2"FalseFalse457.00e+013526.43e-019.55e-077.32e-102.06e-039.98e-01457.00e+013526.43e-019.55e-077.66e-101.96e-039.98e-015.06e-018.25e-01NANA2.98e+002.53e+006537.46e+0237208.76e-014.38e-068.21e-019.34e-013.39e+001.24e+002362.77e+0213998.53e-012722.73e+0211579.98e-012.01e-069.03e-011.10e+003.27e-021.78e-02{}NANANANANA
"A1CF""29974""NM_001198819.2"FalseFalse487.28e+013676.59e-011.02e-067.64e-112.53e-039.97e-01477.03e+013556.69e-019.72e-077.70e-113.58e-039.96e-015.28e-018.53e-01NANA2.78e+002.35e+006707.62e+0238378.80e-014.43e-068.25e-019.38e-013.33e+001.21e+003093.65e+0218418.47e-012712.76e+0211889.82e-011.91e-068.88e-011.09e+003.00e-011.64e-01{}NANANANANA

showing top 5 rows

\n" - ], - "text/plain": [ - "+--------+-------------------+-------------------+-----------+-------------+\n", - "| gene | gene_id | transcript | canonical | mane_select |\n", - "+--------+-------------------+-------------------+-----------+-------------+\n", - "| str | str | str | bool | bool |\n", - "+--------+-------------------+-------------------+-----------+-------------+\n", - "| \"A1BG\" | \"1\" | \"NM_130786.4\" | True | True |\n", - "| \"A1BG\" | \"ENSG00000121410\" | \"ENST00000263100\" | True | True |\n", - "| \"A1BG\" | \"ENSG00000121410\" | \"ENST00000600966\" | False | False |\n", - "| \"A1CF\" | \"29974\" | \"NM_001198818.2\" | False | False |\n", - "| \"A1CF\" | \"29974\" | \"NM_001198819.2\" | False | False |\n", - "+--------+-------------------+-------------------+-----------+-------------+\n", - "\n", - "+---------------+---------------+--------------------+--------------+\n", - "| lof_hc_lc.obs | lof_hc_lc.exp | lof_hc_lc.possible | lof_hc_lc.oe |\n", - "+---------------+---------------+--------------------+--------------+\n", - "| int64 | float64 | int64 | float64 |\n", - "+---------------+---------------+--------------------+--------------+\n", - "| 45 | 4.30e+01 | 193 | 1.05e+00 |\n", - "| 45 | 4.30e+01 | 193 | 1.05e+00 |\n", - "| 24 | 2.63e+01 | 123 | 9.14e-01 |\n", - "| 45 | 7.00e+01 | 352 | 6.43e-01 |\n", - "| 48 | 7.28e+01 | 367 | 6.59e-01 |\n", - "+---------------+---------------+--------------------+--------------+\n", - "\n", - "+--------------+---------------+-----------------+----------------+---------+\n", - "| lof_hc_lc.mu | lof_hc_lc.pLI | lof_hc_lc.pNull | lof_hc_lc.pRec | lof.obs |\n", - "+--------------+---------------+-----------------+----------------+---------+\n", - "| float64 | float64 | float64 | float64 | int64 |\n", - "+--------------+---------------+-----------------+----------------+---------+\n", - "| 7.06e-07 | 1.63e-16 | 8.49e-01 | 1.51e-01 | 45 |\n", - "| 7.06e-07 | 1.63e-16 | 8.49e-01 | 1.51e-01 | 45 |\n", - "| 4.20e-07 | 2.53e-08 | 3.43e-01 | 6.57e-01 | 22 |\n", - "| 9.55e-07 | 7.32e-10 | 2.06e-03 | 9.98e-01 | 45 |\n", - "| 1.02e-06 | 7.64e-11 | 2.53e-03 | 9.97e-01 | 47 |\n", - "+--------------+---------------+-----------------+----------------+---------+\n", - "\n", - "+----------+--------------+----------+----------+----------+-----------+\n", - "| lof.exp | lof.possible | lof.oe | lof.mu | lof.pLI | lof.pNull |\n", - "+----------+--------------+----------+----------+----------+-----------+\n", - "| float64 | int64 | float64 | float64 | float64 | float64 |\n", - "+----------+--------------+----------+----------+----------+-----------+\n", - "| 4.30e+01 | 193 | 1.05e+00 | 7.06e-07 | 1.77e-16 | 8.43e-01 |\n", - "| 4.30e+01 | 193 | 1.05e+00 | 7.06e-07 | 1.77e-16 | 8.43e-01 |\n", - "| 2.50e+01 | 119 | 8.80e-01 | 3.96e-07 | 1.84e-07 | 2.65e-01 |\n", - "| 7.00e+01 | 352 | 6.43e-01 | 9.55e-07 | 7.66e-10 | 1.96e-03 |\n", - "| 7.03e+01 | 355 | 6.69e-01 | 9.72e-07 | 7.70e-11 | 3.58e-03 |\n", - "+----------+--------------+----------+----------+----------+-----------+\n", - "\n", - "+----------+-----------------+-----------------+----------------------+\n", - "| lof.pRec | lof.oe_ci.lower | lof.oe_ci.upper | lof.oe_ci.upper_rank |\n", - "+----------+-----------------+-----------------+----------------------+\n", - "| float64 | float64 | float64 | int64 |\n", - "+----------+-----------------+-----------------+----------------------+\n", - "| 1.57e-01 | 8.22e-01 | 1.34e+00 | NA |\n", - "| 1.57e-01 | 8.22e-01 | 1.34e+00 | 14057 |\n", - "| 7.35e-01 | 6.28e-01 | 1.26e+00 | NA |\n", - "| 9.98e-01 | 5.06e-01 | 8.25e-01 | NA |\n", - "| 9.96e-01 | 5.28e-01 | 8.53e-01 | NA |\n", - "+----------+-----------------+-----------------+----------------------+\n", - "\n", - "+----------------------------+-----------+-------------+---------+----------+\n", - "| lof.oe_ci.upper_bin_decile | lof.z_raw | lof.z_score | mis.obs | mis.exp |\n", - "+----------------------------+-----------+-------------+---------+----------+\n", - "| int32 | float64 | float64 | int64 | float64 |\n", - "+----------------------------+-----------+-------------+---------+----------+\n", - "| NA | -2.98e-01 | -2.52e-01 | 707 | 6.47e+02 |\n", - "| 7 | -2.98e-01 | -2.52e-01 | 707 | 6.47e+02 |\n", - "| NA | 6.01e-01 | 5.09e-01 | 399 | 4.06e+02 |\n", - "| NA | 2.98e+00 | 2.53e+00 | 653 | 7.46e+02 |\n", - "| NA | 2.78e+00 | 2.35e+00 | 670 | 7.62e+02 |\n", - "+----------------------------+-----------+-------------+---------+----------+\n", - "\n", - "+--------------+----------+----------+-----------------+-----------------+\n", - "| mis.possible | mis.oe | mis.mu | mis.oe_ci.lower | mis.oe_ci.upper |\n", - "+--------------+----------+----------+-----------------+-----------------+\n", - "| int64 | float64 | float64 | float64 | float64 |\n", - "+--------------+----------+----------+-----------------+-----------------+\n", - "| 2870 | 1.09e+00 | 7.67e-06 | 1.03e+00 | 1.16e+00 |\n", - "| 2870 | 1.09e+00 | 7.67e-06 | 1.03e+00 | 1.16e+00 |\n", - "| 1858 | 9.84e-01 | 4.91e-06 | 9.06e-01 | 1.07e+00 |\n", - "| 3720 | 8.76e-01 | 4.38e-06 | 8.21e-01 | 9.34e-01 |\n", - "| 3837 | 8.80e-01 | 4.43e-06 | 8.25e-01 | 9.38e-01 |\n", - "+--------------+----------+----------+-----------------+-----------------+\n", - "\n", - "+-----------+-------------+---------------+---------------+--------------------+\n", - "| mis.z_raw | mis.z_score | mis_pphen.obs | mis_pphen.exp | mis_pphen.possible |\n", - "+-----------+-------------+---------------+---------------+--------------------+\n", - "| float64 | float64 | int64 | float64 | int64 |\n", - "+-----------+-------------+---------------+---------------+--------------------+\n", - "| -2.36e+00 | -8.61e-01 | 220 | 1.91e+02 | 890 |\n", - "| -2.36e+00 | -8.61e-01 | 220 | 1.91e+02 | 890 |\n", - "| 3.24e-01 | 1.18e-01 | 103 | 1.10e+02 | 512 |\n", - "| 3.39e+00 | 1.24e+00 | 236 | 2.77e+02 | 1399 |\n", - "| 3.33e+00 | 1.21e+00 | 309 | 3.65e+02 | 1841 |\n", - "+-----------+-------------+---------------+---------------+--------------------+\n", - "\n", - "+--------------+---------+----------+--------------+----------+----------+\n", - "| mis_pphen.oe | syn.obs | syn.exp | syn.possible | syn.oe | syn.mu |\n", - "+--------------+---------+----------+--------------+----------+----------+\n", - "| float64 | int64 | float64 | int64 | float64 | float64 |\n", - "+--------------+---------+----------+--------------+----------+----------+\n", - "| 1.15e+00 | 316 | 2.96e+02 | 994 | 1.07e+00 | 3.02e-06 |\n", - "| 1.15e+00 | 316 | 2.96e+02 | 994 | 1.07e+00 | 3.02e-06 |\n", - "| 9.40e-01 | 166 | 1.79e+02 | 637 | 9.28e-01 | 1.91e-06 |\n", - "| 8.53e-01 | 272 | 2.73e+02 | 1157 | 9.98e-01 | 2.01e-06 |\n", - "| 8.47e-01 | 271 | 2.76e+02 | 1188 | 9.82e-01 | 1.91e-06 |\n", - "+--------------+---------+----------+--------------+----------+----------+\n", - "\n", - "+-----------------+-----------------+-----------+-------------+\n", - "| syn.oe_ci.lower | syn.oe_ci.upper | syn.z_raw | syn.z_score |\n", - "+-----------------+-----------------+-----------+-------------+\n", - "| float64 | float64 | float64 | float64 |\n", - "+-----------------+-----------------+-----------+-------------+\n", - "| 9.73e-01 | 1.17e+00 | -1.17e+00 | -6.35e-01 |\n", - "| 9.73e-01 | 1.17e+00 | -1.17e+00 | -6.35e-01 |\n", - "| 8.17e-01 | 1.06e+00 | 9.64e-01 | 5.26e-01 |\n", - "| 9.03e-01 | 1.10e+00 | 3.27e-02 | 1.78e-02 |\n", - "| 8.88e-01 | 1.09e+00 | 3.00e-01 | 1.64e-01 |\n", - "+-----------------+-----------------+-----------+-------------+\n", - "\n", - "+------------------+-------+------------------+------------+------------+\n", - "| constraint_flags | level | transcript_type | chromosome | cds_length |\n", - "+------------------+-------+------------------+------------+------------+\n", - "| set | str | str | str | int64 |\n", - "+------------------+-------+------------------+------------+------------+\n", - "| {} | NA | NA | NA | NA |\n", - "| {} | \"2\" | \"protein_coding\" | \"chr19\" | 1485 |\n", - "| {} | \"1\" | \"protein_coding\" | \"chr19\" | 917 |\n", - "| {} | NA | NA | NA | NA |\n", - "| {} | NA | NA | NA | NA |\n", - "+------------------+-------+------------------+------------+------------+\n", - "\n", - "+------------------+\n", - "| num_coding_exons |\n", - "+------------------+\n", - "| int64 |\n", - "+------------------+\n", - "| NA |\n", - "| 8 |\n", - "| 5 |\n", - "| NA |\n", - "| NA |\n", - "+------------------+\n", - "showing top 5 rows" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "ht.show(5)" - ] - }, - { - "cell_type": "markdown", - "id": "72ce8dac-994f-42ae-a6a0-948f5517e427", - "metadata": { - "tags": [] - }, - "source": [ - "## Proportion expressed across transcripts (pext) score\n", - "\n", - "For more information about the pext score see the [Help](https://gnomad.broadinstitute.org/help/pext) page." - ] - }, - { - "cell_type": "markdown", - "id": "ea178a83-1bb6-4f9b-8334-0ca1f6096021", - "metadata": {}, - "source": [ - "### Base level pext\n" - ] - }, - { - "cell_type": "markdown", - "id": "eeb8bb32-d258-4b3a-ab5e-edc76502fa5b", - "metadata": {}, - "source": [ - "#### Load the Hail Table\n" - ] - }, - { - "cell_type": "code", - "execution_count": 27, - "id": "1f448e05-7f99-4c63-b101-b33143d9d58b", - "metadata": { - "ExecuteTime": { - "end_time": "2024-12-06T20:08:59.197890Z", - "start_time": "2024-12-06T20:08:50.859108Z" - } - }, - "outputs": [], - "source": [ - "ht = get_gnomad_release(version='v10', data_type=\"base_level\", dataset=\"pext\")" - ] - }, - { - "cell_type": "markdown", - "id": "0773d5d3-21f1-4892-b16b-dc31eb2a7bf5", - "metadata": {}, - "source": [ - "#### Print the schema of the Hail Table\n" - ] - }, - { - "cell_type": "code", - "execution_count": 28, - "id": "b9f99311-91e6-454e-b940-3d036bddf3a5", - "metadata": { - "ExecuteTime": { - "end_time": "2024-12-06T20:09:00.032524Z", - "start_time": "2024-12-06T20:09:00.029271Z" - }, - "tags": [] - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "----------------------------------------\n", - "Global fields:\n", - " 'tissues': array \n", - " 'exp_prop_mean_tissues': array \n", - "----------------------------------------\n", - "Row fields:\n", - " 'locus': locus \n", - " 'gene_id': str \n", - " 'gene_symbol': str \n", - " 'exp_prop_mean': float64 \n", - " 'Adipose_Subcutaneous': struct {\n", - " transcript_expression: float64, \n", - " expression_proportion: float64\n", - " } \n", - " 'Adipose_Visceral_Omentum': struct {\n", - " transcript_expression: float64, \n", - " expression_proportion: float64\n", - " } \n", - " 'AdrenalGland': struct {\n", - " transcript_expression: float64, \n", - " expression_proportion: float64\n", - " } \n", - " 'Artery_Aorta': struct {\n", - " transcript_expression: float64, \n", - " expression_proportion: float64\n", - " } \n", - " 'Artery_Coronary': struct {\n", - " transcript_expression: float64, \n", - " expression_proportion: float64\n", - " } \n", - " 'Artery_Tibial': struct {\n", - " transcript_expression: float64, \n", - " expression_proportion: float64\n", - " } \n", - " 'Bladder': struct {\n", - " transcript_expression: float64, \n", - " expression_proportion: float64\n", - " } \n", - " 'Brain_Amygdala': struct {\n", - " transcript_expression: float64, \n", - " expression_proportion: float64\n", - " } \n", - " 'Brain_Anteriorcingulatecortex_BA24': struct {\n", - " transcript_expression: float64, \n", - " expression_proportion: float64\n", - " } \n", - " 'Brain_Caudate_basalganglia': struct {\n", - " transcript_expression: float64, \n", - " expression_proportion: float64\n", - " } \n", - " 'Brain_CerebellarHemisphere': struct {\n", - " transcript_expression: float64, \n", - " expression_proportion: float64\n", - " } \n", - " 'Brain_Cerebellum': struct {\n", - " transcript_expression: float64, \n", - " expression_proportion: float64\n", - " } \n", - " 'Brain_Cortex': struct {\n", - " transcript_expression: float64, \n", - " expression_proportion: float64\n", - " } \n", - " 'Brain_FrontalCortex_BA9': struct {\n", - " transcript_expression: float64, \n", - " expression_proportion: float64\n", - " } \n", - " 'Brain_Hippocampus': struct {\n", - " transcript_expression: float64, \n", - " expression_proportion: float64\n", - " } \n", - " 'Brain_Hypothalamus': struct {\n", - " transcript_expression: float64, \n", - " expression_proportion: float64\n", - " } \n", - " 'Brain_Nucleusaccumbens_basalganglia': struct {\n", - " transcript_expression: float64, \n", - " expression_proportion: float64\n", - " } \n", - " 'Brain_Putamen_basalganglia': struct {\n", - " transcript_expression: float64, \n", - " expression_proportion: float64\n", - " } \n", - " 'Brain_Spinalcord_cervicalc_1': struct {\n", - " transcript_expression: float64, \n", - " expression_proportion: float64\n", - " } \n", - " 'Brain_Substantianigra': struct {\n", - " transcript_expression: float64, \n", - " expression_proportion: float64\n", - " } \n", - " 'Breast_MammaryTissue': struct {\n", - " transcript_expression: float64, \n", - " expression_proportion: float64\n", - " } \n", - " 'Cells_Culturedfibroblasts': struct {\n", - " transcript_expression: float64, \n", - " expression_proportion: float64\n", - " } \n", - " 'Cells_EBV_transformedlymphocytes': struct {\n", - " transcript_expression: float64, \n", - " expression_proportion: float64\n", - " } \n", - " 'Colon_Sigmoid': struct {\n", - " transcript_expression: float64, \n", - " expression_proportion: float64\n", - " } \n", - " 'Colon_Transverse': struct {\n", - " transcript_expression: float64, \n", - " expression_proportion: float64\n", - " } \n", - " 'Esophagus_GastroesophagealJunction': struct {\n", - " transcript_expression: float64, \n", - " expression_proportion: float64\n", - " } \n", - " 'Esophagus_Mucosa': struct {\n", - " transcript_expression: float64, \n", - " expression_proportion: float64\n", - " } \n", - " 'Esophagus_Muscularis': struct {\n", - " transcript_expression: float64, \n", - " expression_proportion: float64\n", - " } \n", - " 'Heart_AtrialAppendage': struct {\n", - " transcript_expression: float64, \n", - " expression_proportion: float64\n", - " } \n", - " 'Heart_LeftVentricle': struct {\n", - " transcript_expression: float64, \n", - " expression_proportion: float64\n", - " } \n", - " 'Kidney_Cortex': struct {\n", - " transcript_expression: float64, \n", - " expression_proportion: float64\n", - " } \n", - " 'Liver': struct {\n", - " transcript_expression: float64, \n", - " expression_proportion: float64\n", - " } \n", - " 'Lung': struct {\n", - " transcript_expression: float64, \n", - " expression_proportion: float64\n", - " } \n", - " 'MinorSalivaryGland': struct {\n", - " transcript_expression: float64, \n", - " expression_proportion: float64\n", - " } \n", - " 'Muscle_Skeletal': struct {\n", - " transcript_expression: float64, \n", - " expression_proportion: float64\n", - " } \n", - " 'Nerve_Tibial': struct {\n", - " transcript_expression: float64, \n", - " expression_proportion: float64\n", - " } \n", - " 'Ovary': struct {\n", - " transcript_expression: float64, \n", - " expression_proportion: float64\n", - " } \n", - " 'Pancreas': struct {\n", - " transcript_expression: float64, \n", - " expression_proportion: float64\n", - " } \n", - " 'Pituitary': struct {\n", - " transcript_expression: float64, \n", - " expression_proportion: float64\n", - " } \n", - " 'Prostate': struct {\n", - " transcript_expression: float64, \n", - " expression_proportion: float64\n", - " } \n", - " 'Skin_NotSunExposed_Suprapubic': struct {\n", - " transcript_expression: float64, \n", - " expression_proportion: float64\n", - " } \n", - " 'Skin_SunExposed_Lowerleg': struct {\n", - " transcript_expression: float64, \n", - " expression_proportion: float64\n", - " } \n", - " 'SmallIntestine_TerminalIleum': struct {\n", - " transcript_expression: float64, \n", - " expression_proportion: float64\n", - " } \n", - " 'Spleen': struct {\n", - " transcript_expression: float64, \n", - " expression_proportion: float64\n", - " } \n", - " 'Stomach': struct {\n", - " transcript_expression: float64, \n", - " expression_proportion: float64\n", - " } \n", - " 'Testis': struct {\n", - " transcript_expression: float64, \n", - " expression_proportion: float64\n", - " } \n", - " 'Thyroid': struct {\n", - " transcript_expression: float64, \n", - " expression_proportion: float64\n", - " } \n", - " 'Uterus': struct {\n", - " transcript_expression: float64, \n", - " expression_proportion: float64\n", - " } \n", - " 'Vagina': struct {\n", - " transcript_expression: float64, \n", - " expression_proportion: float64\n", - " } \n", - " 'WholeBlood': struct {\n", - " transcript_expression: float64, \n", - " expression_proportion: float64\n", - " } \n", - "----------------------------------------\n", - "Key: ['locus']\n", - "----------------------------------------\n" - ] - } - ], - "source": [ - "ht.describe()" - ] - }, - { - "cell_type": "markdown", - "id": "a39f9dca-5db4-4ca3-8eac-e6c76db7c7bc", - "metadata": { - "tags": [] - }, - "source": [ - "#### Show the first 5 variants in the Hail Table\n" - ] - }, - { - "cell_type": "code", - "execution_count": 29, - "id": "a6ac695f-cfb2-4aa7-877c-b204351a77da", - "metadata": { - "ExecuteTime": { - "end_time": "2024-12-06T20:09:20.949958Z", - "start_time": "2024-12-06T20:09:05.622171Z" - }, - "tags": [] - }, - "outputs": [ - { - "data": { - "text/html": [ - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "
Adipose_Subcutaneous
Adipose_Visceral_Omentum
AdrenalGland
Artery_Aorta
Artery_Coronary
Artery_Tibial
Bladder
Brain_Amygdala
Brain_Anteriorcingulatecortex_BA24
Brain_Caudate_basalganglia
Brain_CerebellarHemisphere
Brain_Cerebellum
Brain_Cortex
Brain_FrontalCortex_BA9
Brain_Hippocampus
Brain_Hypothalamus
Brain_Nucleusaccumbens_basalganglia
Brain_Putamen_basalganglia
Brain_Spinalcord_cervicalc_1
Brain_Substantianigra
Breast_MammaryTissue
Cells_Culturedfibroblasts
Cells_EBV_transformedlymphocytes
Colon_Sigmoid
Colon_Transverse
Esophagus_GastroesophagealJunction
Esophagus_Mucosa
Esophagus_Muscularis
Heart_AtrialAppendage
Heart_LeftVentricle
Kidney_Cortex
Liver
Lung
MinorSalivaryGland
Muscle_Skeletal
Nerve_Tibial
Ovary
Pancreas
Pituitary
Prostate
Skin_NotSunExposed_Suprapubic
Skin_SunExposed_Lowerleg
SmallIntestine_TerminalIleum
Spleen
Stomach
Testis
Thyroid
Uterus
Vagina
WholeBlood
locus
gene_id
gene_symbol
exp_prop_mean
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
locus<GRCh38>strstrfloat64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64
chr1:65565"ENSG00000186092""OR4F5"NaN0.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+00
chr1:65566"ENSG00000186092""OR4F5"NaN0.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+00
chr1:65567"ENSG00000186092""OR4F5"NaN0.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+00
chr1:65568"ENSG00000186092""OR4F5"NaN0.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+00
chr1:65569"ENSG00000186092""OR4F5"NaN0.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+00

showing top 5 rows

\n" - ], - "text/plain": [ - "+---------------+-------------------+-------------+---------------+\n", - "| locus | gene_id | gene_symbol | exp_prop_mean |\n", - "+---------------+-------------------+-------------+---------------+\n", - "| locus | str | str | float64 |\n", - "+---------------+-------------------+-------------+---------------+\n", - "| chr1:65565 | \"ENSG00000186092\" | \"OR4F5\" | NaN |\n", - "| chr1:65566 | \"ENSG00000186092\" | \"OR4F5\" | NaN |\n", - "| chr1:65567 | \"ENSG00000186092\" | \"OR4F5\" | NaN |\n", - "| chr1:65568 | \"ENSG00000186092\" | \"OR4F5\" | NaN |\n", - "| chr1:65569 | \"ENSG00000186092\" | \"OR4F5\" | NaN |\n", - "+---------------+-------------------+-------------+---------------+\n", - "\n", - "+--------------------------------------------+\n", - "| Adipose_Subcutaneous.transcript_expression |\n", - "+--------------------------------------------+\n", - "| float64 |\n", - "+--------------------------------------------+\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "+--------------------------------------------+\n", - "\n", - "+--------------------------------------------+\n", - "| Adipose_Subcutaneous.expression_proportion |\n", - "+--------------------------------------------+\n", - "| float64 |\n", - "+--------------------------------------------+\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "+--------------------------------------------+\n", - "\n", - "+------------------------------------------------+\n", - "| Adipose_Visceral_Omentum.transcript_expression |\n", - "+------------------------------------------------+\n", - "| float64 |\n", - "+------------------------------------------------+\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "+------------------------------------------------+\n", - "\n", - "+------------------------------------------------+\n", - "| Adipose_Visceral_Omentum.expression_proportion |\n", - "+------------------------------------------------+\n", - "| float64 |\n", - "+------------------------------------------------+\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "+------------------------------------------------+\n", - "\n", - "+------------------------------------+------------------------------------+\n", - "| AdrenalGland.transcript_expression | AdrenalGland.expression_proportion |\n", - "+------------------------------------+------------------------------------+\n", - "| float64 | float64 |\n", - "+------------------------------------+------------------------------------+\n", - "| 0.00e+00 | 0.00e+00 |\n", - "| 0.00e+00 | 0.00e+00 |\n", - "| 0.00e+00 | 0.00e+00 |\n", - "| 0.00e+00 | 0.00e+00 |\n", - "| 0.00e+00 | 0.00e+00 |\n", - "+------------------------------------+------------------------------------+\n", - "\n", - "+------------------------------------+------------------------------------+\n", - "| Artery_Aorta.transcript_expression | Artery_Aorta.expression_proportion |\n", - "+------------------------------------+------------------------------------+\n", - "| float64 | float64 |\n", - "+------------------------------------+------------------------------------+\n", - "| 0.00e+00 | 0.00e+00 |\n", - "| 0.00e+00 | 0.00e+00 |\n", - "| 0.00e+00 | 0.00e+00 |\n", - "| 0.00e+00 | 0.00e+00 |\n", - "| 0.00e+00 | 0.00e+00 |\n", - "+------------------------------------+------------------------------------+\n", - "\n", - "+---------------------------------------+\n", - "| Artery_Coronary.transcript_expression |\n", - "+---------------------------------------+\n", - "| float64 |\n", - "+---------------------------------------+\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "+---------------------------------------+\n", - "\n", - "+---------------------------------------+-------------------------------------+\n", - "| Artery_Coronary.expression_proportion | Artery_Tibial.transcript_expression |\n", - "+---------------------------------------+-------------------------------------+\n", - "| float64 | float64 |\n", - "+---------------------------------------+-------------------------------------+\n", - "| 0.00e+00 | 0.00e+00 |\n", - "| 0.00e+00 | 0.00e+00 |\n", - "| 0.00e+00 | 0.00e+00 |\n", - "| 0.00e+00 | 0.00e+00 |\n", - "| 0.00e+00 | 0.00e+00 |\n", - "+---------------------------------------+-------------------------------------+\n", - "\n", - "+-------------------------------------+-------------------------------+\n", - "| Artery_Tibial.expression_proportion | Bladder.transcript_expression |\n", - "+-------------------------------------+-------------------------------+\n", - "| float64 | float64 |\n", - "+-------------------------------------+-------------------------------+\n", - "| 0.00e+00 | 0.00e+00 |\n", - "| 0.00e+00 | 0.00e+00 |\n", - "| 0.00e+00 | 0.00e+00 |\n", - "| 0.00e+00 | 0.00e+00 |\n", - "| 0.00e+00 | 0.00e+00 |\n", - "+-------------------------------------+-------------------------------+\n", - "\n", - "+-------------------------------+--------------------------------------+\n", - "| Bladder.expression_proportion | Brain_Amygdala.transcript_expression |\n", - "+-------------------------------+--------------------------------------+\n", - "| float64 | float64 |\n", - "+-------------------------------+--------------------------------------+\n", - "| 0.00e+00 | 0.00e+00 |\n", - "| 0.00e+00 | 0.00e+00 |\n", - "| 0.00e+00 | 0.00e+00 |\n", - "| 0.00e+00 | 0.00e+00 |\n", - "| 0.00e+00 | 0.00e+00 |\n", - "+-------------------------------+--------------------------------------+\n", - "\n", - "+--------------------------------------+\n", - "| Brain_Amygdala.expression_proportion |\n", - "+--------------------------------------+\n", - "| float64 |\n", - "+--------------------------------------+\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "+--------------------------------------+\n", - "\n", - "+----------------------------------------------------------+\n", - "| Brain_Anteriorcingulatecortex_BA24.transcript_expression |\n", - "+----------------------------------------------------------+\n", - "| float64 |\n", - "+----------------------------------------------------------+\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "+----------------------------------------------------------+\n", - "\n", - "+----------------------------------------------------------+\n", - "| Brain_Anteriorcingulatecortex_BA24.expression_proportion |\n", - "+----------------------------------------------------------+\n", - "| float64 |\n", - "+----------------------------------------------------------+\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "+----------------------------------------------------------+\n", - "\n", - "+--------------------------------------------------+\n", - "| Brain_Caudate_basalganglia.transcript_expression |\n", - "+--------------------------------------------------+\n", - "| float64 |\n", - "+--------------------------------------------------+\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "+--------------------------------------------------+\n", - "\n", - "+--------------------------------------------------+\n", - "| Brain_Caudate_basalganglia.expression_proportion |\n", - "+--------------------------------------------------+\n", - "| float64 |\n", - "+--------------------------------------------------+\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "+--------------------------------------------------+\n", - "\n", - "+--------------------------------------------------+\n", - "| Brain_CerebellarHemisphere.transcript_expression |\n", - "+--------------------------------------------------+\n", - "| float64 |\n", - "+--------------------------------------------------+\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "+--------------------------------------------------+\n", - "\n", - "+--------------------------------------------------+\n", - "| Brain_CerebellarHemisphere.expression_proportion |\n", - "+--------------------------------------------------+\n", - "| float64 |\n", - "+--------------------------------------------------+\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "+--------------------------------------------------+\n", - "\n", - "+----------------------------------------+\n", - "| Brain_Cerebellum.transcript_expression |\n", - "+----------------------------------------+\n", - "| float64 |\n", - "+----------------------------------------+\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "+----------------------------------------+\n", - "\n", - "+----------------------------------------+------------------------------------+\n", - "| Brain_Cerebellum.expression_proportion | Brain_Cortex.transcript_expression |\n", - "+----------------------------------------+------------------------------------+\n", - "| float64 | float64 |\n", - "+----------------------------------------+------------------------------------+\n", - "| 0.00e+00 | 0.00e+00 |\n", - "| 0.00e+00 | 0.00e+00 |\n", - "| 0.00e+00 | 0.00e+00 |\n", - "| 0.00e+00 | 0.00e+00 |\n", - "| 0.00e+00 | 0.00e+00 |\n", - "+----------------------------------------+------------------------------------+\n", - "\n", - "+------------------------------------+\n", - "| Brain_Cortex.expression_proportion |\n", - "+------------------------------------+\n", - "| float64 |\n", - "+------------------------------------+\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "+------------------------------------+\n", - "\n", - "+-----------------------------------------------+\n", - "| Brain_FrontalCortex_BA9.transcript_expression |\n", - "+-----------------------------------------------+\n", - "| float64 |\n", - "+-----------------------------------------------+\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "+-----------------------------------------------+\n", - "\n", - "+-----------------------------------------------+\n", - "| Brain_FrontalCortex_BA9.expression_proportion |\n", - "+-----------------------------------------------+\n", - "| float64 |\n", - "+-----------------------------------------------+\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "+-----------------------------------------------+\n", - "\n", - "+-----------------------------------------+\n", - "| Brain_Hippocampus.transcript_expression |\n", - "+-----------------------------------------+\n", - "| float64 |\n", - "+-----------------------------------------+\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "+-----------------------------------------+\n", - "\n", - "+-----------------------------------------+\n", - "| Brain_Hippocampus.expression_proportion |\n", - "+-----------------------------------------+\n", - "| float64 |\n", - "+-----------------------------------------+\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "+-----------------------------------------+\n", - "\n", - "+------------------------------------------+\n", - "| Brain_Hypothalamus.transcript_expression |\n", - "+------------------------------------------+\n", - "| float64 |\n", - "+------------------------------------------+\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "+------------------------------------------+\n", - "\n", - "+------------------------------------------+\n", - "| Brain_Hypothalamus.expression_proportion |\n", - "+------------------------------------------+\n", - "| float64 |\n", - "+------------------------------------------+\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "+------------------------------------------+\n", - "\n", - "+-----------------------------------------------------------+\n", - "| Brain_Nucleusaccumbens_basalganglia.transcript_expression |\n", - "+-----------------------------------------------------------+\n", - "| float64 |\n", - "+-----------------------------------------------------------+\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "+-----------------------------------------------------------+\n", - "\n", - "+-----------------------------------------------------------+\n", - "| Brain_Nucleusaccumbens_basalganglia.expression_proportion |\n", - "+-----------------------------------------------------------+\n", - "| float64 |\n", - "+-----------------------------------------------------------+\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "+-----------------------------------------------------------+\n", - "\n", - "+--------------------------------------------------+\n", - "| Brain_Putamen_basalganglia.transcript_expression |\n", - "+--------------------------------------------------+\n", - "| float64 |\n", - "+--------------------------------------------------+\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "+--------------------------------------------------+\n", - "\n", - "+--------------------------------------------------+\n", - "| Brain_Putamen_basalganglia.expression_proportion |\n", - "+--------------------------------------------------+\n", - "| float64 |\n", - "+--------------------------------------------------+\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "+--------------------------------------------------+\n", - "\n", - "+----------------------------------------------------+\n", - "| Brain_Spinalcord_cervicalc_1.transcript_expression |\n", - "+----------------------------------------------------+\n", - "| float64 |\n", - "+----------------------------------------------------+\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "+----------------------------------------------------+\n", - "\n", - "+----------------------------------------------------+\n", - "| Brain_Spinalcord_cervicalc_1.expression_proportion |\n", - "+----------------------------------------------------+\n", - "| float64 |\n", - "+----------------------------------------------------+\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "+----------------------------------------------------+\n", - "\n", - "+---------------------------------------------+\n", - "| Brain_Substantianigra.transcript_expression |\n", - "+---------------------------------------------+\n", - "| float64 |\n", - "+---------------------------------------------+\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "+---------------------------------------------+\n", - "\n", - "+---------------------------------------------+\n", - "| Brain_Substantianigra.expression_proportion |\n", - "+---------------------------------------------+\n", - "| float64 |\n", - "+---------------------------------------------+\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "+---------------------------------------------+\n", - "\n", - "+--------------------------------------------+\n", - "| Breast_MammaryTissue.transcript_expression |\n", - "+--------------------------------------------+\n", - "| float64 |\n", - "+--------------------------------------------+\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "+--------------------------------------------+\n", - "\n", - "+--------------------------------------------+\n", - "| Breast_MammaryTissue.expression_proportion |\n", - "+--------------------------------------------+\n", - "| float64 |\n", - "+--------------------------------------------+\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "+--------------------------------------------+\n", - "\n", - "+-------------------------------------------------+\n", - "| Cells_Culturedfibroblasts.transcript_expression |\n", - "+-------------------------------------------------+\n", - "| float64 |\n", - "+-------------------------------------------------+\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "+-------------------------------------------------+\n", - "\n", - "+-------------------------------------------------+\n", - "| Cells_Culturedfibroblasts.expression_proportion |\n", - "+-------------------------------------------------+\n", - "| float64 |\n", - "+-------------------------------------------------+\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "+-------------------------------------------------+\n", - "\n", - "+--------------------------------------------------------+\n", - "| Cells_EBV_transformedlymphocytes.transcript_expression |\n", - "+--------------------------------------------------------+\n", - "| float64 |\n", - "+--------------------------------------------------------+\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "+--------------------------------------------------------+\n", - "\n", - "+--------------------------------------------------------+\n", - "| Cells_EBV_transformedlymphocytes.expression_proportion |\n", - "+--------------------------------------------------------+\n", - "| float64 |\n", - "+--------------------------------------------------------+\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "+--------------------------------------------------------+\n", - "\n", - "+-------------------------------------+-------------------------------------+\n", - "| Colon_Sigmoid.transcript_expression | Colon_Sigmoid.expression_proportion |\n", - "+-------------------------------------+-------------------------------------+\n", - "| float64 | float64 |\n", - "+-------------------------------------+-------------------------------------+\n", - "| 0.00e+00 | 0.00e+00 |\n", - "| 0.00e+00 | 0.00e+00 |\n", - "| 0.00e+00 | 0.00e+00 |\n", - "| 0.00e+00 | 0.00e+00 |\n", - "| 0.00e+00 | 0.00e+00 |\n", - "+-------------------------------------+-------------------------------------+\n", - "\n", - "+----------------------------------------+\n", - "| Colon_Transverse.transcript_expression |\n", - "+----------------------------------------+\n", - "| float64 |\n", - "+----------------------------------------+\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "+----------------------------------------+\n", - "\n", - "+----------------------------------------+\n", - "| Colon_Transverse.expression_proportion |\n", - "+----------------------------------------+\n", - "| float64 |\n", - "+----------------------------------------+\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "+----------------------------------------+\n", - "\n", - "+----------------------------------------------------------+\n", - "| Esophagus_GastroesophagealJunction.transcript_expression |\n", - "+----------------------------------------------------------+\n", - "| float64 |\n", - "+----------------------------------------------------------+\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "+----------------------------------------------------------+\n", - "\n", - "+----------------------------------------------------------+\n", - "| Esophagus_GastroesophagealJunction.expression_proportion |\n", - "+----------------------------------------------------------+\n", - "| float64 |\n", - "+----------------------------------------------------------+\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "+----------------------------------------------------------+\n", - "\n", - "+----------------------------------------+\n", - "| Esophagus_Mucosa.transcript_expression |\n", - "+----------------------------------------+\n", - "| float64 |\n", - "+----------------------------------------+\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "+----------------------------------------+\n", - "\n", - "+----------------------------------------+\n", - "| Esophagus_Mucosa.expression_proportion |\n", - "+----------------------------------------+\n", - "| float64 |\n", - "+----------------------------------------+\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "+----------------------------------------+\n", - "\n", - "+--------------------------------------------+\n", - "| Esophagus_Muscularis.transcript_expression |\n", - "+--------------------------------------------+\n", - "| float64 |\n", - "+--------------------------------------------+\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "+--------------------------------------------+\n", - "\n", - "+--------------------------------------------+\n", - "| Esophagus_Muscularis.expression_proportion |\n", - "+--------------------------------------------+\n", - "| float64 |\n", - "+--------------------------------------------+\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "+--------------------------------------------+\n", - "\n", - "+---------------------------------------------+\n", - "| Heart_AtrialAppendage.transcript_expression |\n", - "+---------------------------------------------+\n", - "| float64 |\n", - "+---------------------------------------------+\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "+---------------------------------------------+\n", - "\n", - "+---------------------------------------------+\n", - "| Heart_AtrialAppendage.expression_proportion |\n", - "+---------------------------------------------+\n", - "| float64 |\n", - "+---------------------------------------------+\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "+---------------------------------------------+\n", - "\n", - "+-------------------------------------------+\n", - "| Heart_LeftVentricle.transcript_expression |\n", - "+-------------------------------------------+\n", - "| float64 |\n", - "+-------------------------------------------+\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "+-------------------------------------------+\n", - "\n", - "+-------------------------------------------+\n", - "| Heart_LeftVentricle.expression_proportion |\n", - "+-------------------------------------------+\n", - "| float64 |\n", - "+-------------------------------------------+\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "+-------------------------------------------+\n", - "\n", - "+-------------------------------------+-------------------------------------+\n", - "| Kidney_Cortex.transcript_expression | Kidney_Cortex.expression_proportion |\n", - "+-------------------------------------+-------------------------------------+\n", - "| float64 | float64 |\n", - "+-------------------------------------+-------------------------------------+\n", - "| 0.00e+00 | 0.00e+00 |\n", - "| 0.00e+00 | 0.00e+00 |\n", - "| 0.00e+00 | 0.00e+00 |\n", - "| 0.00e+00 | 0.00e+00 |\n", - "| 0.00e+00 | 0.00e+00 |\n", - "+-------------------------------------+-------------------------------------+\n", - "\n", - "+-----------------------------+-----------------------------+\n", - "| Liver.transcript_expression | Liver.expression_proportion |\n", - "+-----------------------------+-----------------------------+\n", - "| float64 | float64 |\n", - "+-----------------------------+-----------------------------+\n", - "| 0.00e+00 | 0.00e+00 |\n", - "| 0.00e+00 | 0.00e+00 |\n", - "| 0.00e+00 | 0.00e+00 |\n", - "| 0.00e+00 | 0.00e+00 |\n", - "| 0.00e+00 | 0.00e+00 |\n", - "+-----------------------------+-----------------------------+\n", - "\n", - "+----------------------------+----------------------------+\n", - "| Lung.transcript_expression | Lung.expression_proportion |\n", - "+----------------------------+----------------------------+\n", - "| float64 | float64 |\n", - "+----------------------------+----------------------------+\n", - "| 0.00e+00 | 0.00e+00 |\n", - "| 0.00e+00 | 0.00e+00 |\n", - "| 0.00e+00 | 0.00e+00 |\n", - "| 0.00e+00 | 0.00e+00 |\n", - "| 0.00e+00 | 0.00e+00 |\n", - "+----------------------------+----------------------------+\n", - "\n", - "+------------------------------------------+\n", - "| MinorSalivaryGland.transcript_expression |\n", - "+------------------------------------------+\n", - "| float64 |\n", - "+------------------------------------------+\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "+------------------------------------------+\n", - "\n", - "+------------------------------------------+\n", - "| MinorSalivaryGland.expression_proportion |\n", - "+------------------------------------------+\n", - "| float64 |\n", - "+------------------------------------------+\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "+------------------------------------------+\n", - "\n", - "+---------------------------------------+\n", - "| Muscle_Skeletal.transcript_expression |\n", - "+---------------------------------------+\n", - "| float64 |\n", - "+---------------------------------------+\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "+---------------------------------------+\n", - "\n", - "+---------------------------------------+------------------------------------+\n", - "| Muscle_Skeletal.expression_proportion | Nerve_Tibial.transcript_expression |\n", - "+---------------------------------------+------------------------------------+\n", - "| float64 | float64 |\n", - "+---------------------------------------+------------------------------------+\n", - "| 0.00e+00 | 0.00e+00 |\n", - "| 0.00e+00 | 0.00e+00 |\n", - "| 0.00e+00 | 0.00e+00 |\n", - "| 0.00e+00 | 0.00e+00 |\n", - "| 0.00e+00 | 0.00e+00 |\n", - "+---------------------------------------+------------------------------------+\n", - "\n", - "+------------------------------------+-----------------------------+\n", - "| Nerve_Tibial.expression_proportion | Ovary.transcript_expression |\n", - "+------------------------------------+-----------------------------+\n", - "| float64 | float64 |\n", - "+------------------------------------+-----------------------------+\n", - "| 0.00e+00 | 0.00e+00 |\n", - "| 0.00e+00 | 0.00e+00 |\n", - "| 0.00e+00 | 0.00e+00 |\n", - "| 0.00e+00 | 0.00e+00 |\n", - "| 0.00e+00 | 0.00e+00 |\n", - "+------------------------------------+-----------------------------+\n", - "\n", - "+-----------------------------+--------------------------------+\n", - "| Ovary.expression_proportion | Pancreas.transcript_expression |\n", - "+-----------------------------+--------------------------------+\n", - "| float64 | float64 |\n", - "+-----------------------------+--------------------------------+\n", - "| 0.00e+00 | 0.00e+00 |\n", - "| 0.00e+00 | 0.00e+00 |\n", - "| 0.00e+00 | 0.00e+00 |\n", - "| 0.00e+00 | 0.00e+00 |\n", - "| 0.00e+00 | 0.00e+00 |\n", - "+-----------------------------+--------------------------------+\n", - "\n", - "+--------------------------------+---------------------------------+\n", - "| Pancreas.expression_proportion | Pituitary.transcript_expression |\n", - "+--------------------------------+---------------------------------+\n", - "| float64 | float64 |\n", - "+--------------------------------+---------------------------------+\n", - "| 0.00e+00 | 0.00e+00 |\n", - "| 0.00e+00 | 0.00e+00 |\n", - "| 0.00e+00 | 0.00e+00 |\n", - "| 0.00e+00 | 0.00e+00 |\n", - "| 0.00e+00 | 0.00e+00 |\n", - "+--------------------------------+---------------------------------+\n", - "\n", - "+---------------------------------+--------------------------------+\n", - "| Pituitary.expression_proportion | Prostate.transcript_expression |\n", - "+---------------------------------+--------------------------------+\n", - "| float64 | float64 |\n", - "+---------------------------------+--------------------------------+\n", - "| 0.00e+00 | 0.00e+00 |\n", - "| 0.00e+00 | 0.00e+00 |\n", - "| 0.00e+00 | 0.00e+00 |\n", - "| 0.00e+00 | 0.00e+00 |\n", - "| 0.00e+00 | 0.00e+00 |\n", - "+---------------------------------+--------------------------------+\n", - "\n", - "+--------------------------------+\n", - "| Prostate.expression_proportion |\n", - "+--------------------------------+\n", - "| float64 |\n", - "+--------------------------------+\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "+--------------------------------+\n", - "\n", - "+-----------------------------------------------------+\n", - "| Skin_NotSunExposed_Suprapubic.transcript_expression |\n", - "+-----------------------------------------------------+\n", - "| float64 |\n", - "+-----------------------------------------------------+\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "+-----------------------------------------------------+\n", - "\n", - "+-----------------------------------------------------+\n", - "| Skin_NotSunExposed_Suprapubic.expression_proportion |\n", - "+-----------------------------------------------------+\n", - "| float64 |\n", - "+-----------------------------------------------------+\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "+-----------------------------------------------------+\n", - "\n", - "+------------------------------------------------+\n", - "| Skin_SunExposed_Lowerleg.transcript_expression |\n", - "+------------------------------------------------+\n", - "| float64 |\n", - "+------------------------------------------------+\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "+------------------------------------------------+\n", - "\n", - "+------------------------------------------------+\n", - "| Skin_SunExposed_Lowerleg.expression_proportion |\n", - "+------------------------------------------------+\n", - "| float64 |\n", - "+------------------------------------------------+\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "+------------------------------------------------+\n", - "\n", - "+----------------------------------------------------+\n", - "| SmallIntestine_TerminalIleum.transcript_expression |\n", - "+----------------------------------------------------+\n", - "| float64 |\n", - "+----------------------------------------------------+\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "+----------------------------------------------------+\n", - "\n", - "+----------------------------------------------------+\n", - "| SmallIntestine_TerminalIleum.expression_proportion |\n", - "+----------------------------------------------------+\n", - "| float64 |\n", - "+----------------------------------------------------+\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "+----------------------------------------------------+\n", - "\n", - "+------------------------------+------------------------------+\n", - "| Spleen.transcript_expression | Spleen.expression_proportion |\n", - "+------------------------------+------------------------------+\n", - "| float64 | float64 |\n", - "+------------------------------+------------------------------+\n", - "| 0.00e+00 | 0.00e+00 |\n", - "| 0.00e+00 | 0.00e+00 |\n", - "| 0.00e+00 | 0.00e+00 |\n", - "| 0.00e+00 | 0.00e+00 |\n", - "| 0.00e+00 | 0.00e+00 |\n", - "+------------------------------+------------------------------+\n", - "\n", - "+-------------------------------+-------------------------------+\n", - "| Stomach.transcript_expression | Stomach.expression_proportion |\n", - "+-------------------------------+-------------------------------+\n", - "| float64 | float64 |\n", - "+-------------------------------+-------------------------------+\n", - "| 0.00e+00 | 0.00e+00 |\n", - "| 0.00e+00 | 0.00e+00 |\n", - "| 0.00e+00 | 0.00e+00 |\n", - "| 0.00e+00 | 0.00e+00 |\n", - "| 0.00e+00 | 0.00e+00 |\n", - "+-------------------------------+-------------------------------+\n", - "\n", - "+------------------------------+------------------------------+\n", - "| Testis.transcript_expression | Testis.expression_proportion |\n", - "+------------------------------+------------------------------+\n", - "| float64 | float64 |\n", - "+------------------------------+------------------------------+\n", - "| 0.00e+00 | 0.00e+00 |\n", - "| 0.00e+00 | 0.00e+00 |\n", - "| 0.00e+00 | 0.00e+00 |\n", - "| 0.00e+00 | 0.00e+00 |\n", - "| 0.00e+00 | 0.00e+00 |\n", - "+------------------------------+------------------------------+\n", - "\n", - "+-------------------------------+-------------------------------+\n", - "| Thyroid.transcript_expression | Thyroid.expression_proportion |\n", - "+-------------------------------+-------------------------------+\n", - "| float64 | float64 |\n", - "+-------------------------------+-------------------------------+\n", - "| 0.00e+00 | 0.00e+00 |\n", - "| 0.00e+00 | 0.00e+00 |\n", - "| 0.00e+00 | 0.00e+00 |\n", - "| 0.00e+00 | 0.00e+00 |\n", - "| 0.00e+00 | 0.00e+00 |\n", - "+-------------------------------+-------------------------------+\n", - "\n", - "+------------------------------+------------------------------+\n", - "| Uterus.transcript_expression | Uterus.expression_proportion |\n", - "+------------------------------+------------------------------+\n", - "| float64 | float64 |\n", - "+------------------------------+------------------------------+\n", - "| 0.00e+00 | 0.00e+00 |\n", - "| 0.00e+00 | 0.00e+00 |\n", - "| 0.00e+00 | 0.00e+00 |\n", - "| 0.00e+00 | 0.00e+00 |\n", - "| 0.00e+00 | 0.00e+00 |\n", - "+------------------------------+------------------------------+\n", - "\n", - "+------------------------------+------------------------------+\n", - "| Vagina.transcript_expression | Vagina.expression_proportion |\n", - "+------------------------------+------------------------------+\n", - "| float64 | float64 |\n", - "+------------------------------+------------------------------+\n", - "| 0.00e+00 | 0.00e+00 |\n", - "| 0.00e+00 | 0.00e+00 |\n", - "| 0.00e+00 | 0.00e+00 |\n", - "| 0.00e+00 | 0.00e+00 |\n", - "| 0.00e+00 | 0.00e+00 |\n", - "+------------------------------+------------------------------+\n", - "\n", - "+----------------------------------+----------------------------------+\n", - "| WholeBlood.transcript_expression | WholeBlood.expression_proportion |\n", - "+----------------------------------+----------------------------------+\n", - "| float64 | float64 |\n", - "+----------------------------------+----------------------------------+\n", - "| 0.00e+00 | 0.00e+00 |\n", - "| 0.00e+00 | 0.00e+00 |\n", - "| 0.00e+00 | 0.00e+00 |\n", - "| 0.00e+00 | 0.00e+00 |\n", - "| 0.00e+00 | 0.00e+00 |\n", - "+----------------------------------+----------------------------------+\n", - "showing top 5 rows" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "ht.show(5)" - ] - }, - { - "cell_type": "markdown", - "id": "32528515-1021-40e4-8f4c-3ca06792e0be", - "metadata": {}, - "source": [ - "### Annotation level pext\n" - ] - }, - { - "cell_type": "markdown", - "id": "afac2ca3-f3dc-4174-aa98-d9eb70bf343f", - "metadata": {}, - "source": [ - "#### Load the Hail Table\n" - ] - }, - { - "cell_type": "code", - "execution_count": 30, - "id": "ce25b9e0-9118-4bf6-ba3c-eca75468b9f1", - "metadata": { - "ExecuteTime": { - "end_time": "2024-12-06T20:08:59.197890Z", - "start_time": "2024-12-06T20:08:50.859108Z" - } - }, - "outputs": [], - "source": [ - "ht = get_gnomad_release(version='v10', data_type=\"annotation_level\", dataset=\"pext\")" - ] - }, - { - "cell_type": "markdown", - "id": "c9265ccc-0048-40f0-8f1c-d62e0d3f98ab", - "metadata": {}, - "source": [ - "#### Print the schema of the Hail Table\n" - ] - }, - { - "cell_type": "code", - "execution_count": 31, - "id": "818f3fc2-09fa-479c-91e1-e19f5991a22d", - "metadata": { - "ExecuteTime": { - "end_time": "2024-12-06T20:09:00.032524Z", - "start_time": "2024-12-06T20:09:00.029271Z" - }, - "tags": [] - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "----------------------------------------\n", - "Global fields:\n", - " 'tissues': array \n", - " 'exp_prop_mean_tissues': array \n", - "----------------------------------------\n", - "Row fields:\n", - " 'locus': locus \n", - " 'gene_id': str \n", - " 'alleles': array \n", - " 'gene_symbol': str \n", - " 'most_severe_consequence': str \n", - " 'lof': str \n", - " 'lof_flags': str \n", - " 'exp_prop_mean': float64 \n", - " 'Adipose_Subcutaneous': struct {\n", - " transcript_expression: float64, \n", - " expression_proportion: float64\n", - " } \n", - " 'Adipose_Visceral_Omentum': struct {\n", - " transcript_expression: float64, \n", - " expression_proportion: float64\n", - " } \n", - " 'AdrenalGland': struct {\n", - " transcript_expression: float64, \n", - " expression_proportion: float64\n", - " } \n", - " 'Artery_Aorta': struct {\n", - " transcript_expression: float64, \n", - " expression_proportion: float64\n", - " } \n", - " 'Artery_Coronary': struct {\n", - " transcript_expression: float64, \n", - " expression_proportion: float64\n", - " } \n", - " 'Artery_Tibial': struct {\n", - " transcript_expression: float64, \n", - " expression_proportion: float64\n", - " } \n", - " 'Bladder': struct {\n", - " transcript_expression: float64, \n", - " expression_proportion: float64\n", - " } \n", - " 'Brain_Amygdala': struct {\n", - " transcript_expression: float64, \n", - " expression_proportion: float64\n", - " } \n", - " 'Brain_Anteriorcingulatecortex_BA24': struct {\n", - " transcript_expression: float64, \n", - " expression_proportion: float64\n", - " } \n", - " 'Brain_Caudate_basalganglia': struct {\n", - " transcript_expression: float64, \n", - " expression_proportion: float64\n", - " } \n", - " 'Brain_CerebellarHemisphere': struct {\n", - " transcript_expression: float64, \n", - " expression_proportion: float64\n", - " } \n", - " 'Brain_Cerebellum': struct {\n", - " transcript_expression: float64, \n", - " expression_proportion: float64\n", - " } \n", - " 'Brain_Cortex': struct {\n", - " transcript_expression: float64, \n", - " expression_proportion: float64\n", - " } \n", - " 'Brain_FrontalCortex_BA9': struct {\n", - " transcript_expression: float64, \n", - " expression_proportion: float64\n", - " } \n", - " 'Brain_Hippocampus': struct {\n", - " transcript_expression: float64, \n", - " expression_proportion: float64\n", - " } \n", - " 'Brain_Hypothalamus': struct {\n", - " transcript_expression: float64, \n", - " expression_proportion: float64\n", - " } \n", - " 'Brain_Nucleusaccumbens_basalganglia': struct {\n", - " transcript_expression: float64, \n", - " expression_proportion: float64\n", - " } \n", - " 'Brain_Putamen_basalganglia': struct {\n", - " transcript_expression: float64, \n", - " expression_proportion: float64\n", - " } \n", - " 'Brain_Spinalcord_cervicalc_1': struct {\n", - " transcript_expression: float64, \n", - " expression_proportion: float64\n", - " } \n", - " 'Brain_Substantianigra': struct {\n", - " transcript_expression: float64, \n", - " expression_proportion: float64\n", - " } \n", - " 'Breast_MammaryTissue': struct {\n", - " transcript_expression: float64, \n", - " expression_proportion: float64\n", - " } \n", - " 'Cells_Culturedfibroblasts': struct {\n", - " transcript_expression: float64, \n", - " expression_proportion: float64\n", - " } \n", - " 'Cells_EBV_transformedlymphocytes': struct {\n", - " transcript_expression: float64, \n", - " expression_proportion: float64\n", - " } \n", - " 'Colon_Sigmoid': struct {\n", - " transcript_expression: float64, \n", - " expression_proportion: float64\n", - " } \n", - " 'Colon_Transverse': struct {\n", - " transcript_expression: float64, \n", - " expression_proportion: float64\n", - " } \n", - " 'Esophagus_GastroesophagealJunction': struct {\n", - " transcript_expression: float64, \n", - " expression_proportion: float64\n", - " } \n", - " 'Esophagus_Mucosa': struct {\n", - " transcript_expression: float64, \n", - " expression_proportion: float64\n", - " } \n", - " 'Esophagus_Muscularis': struct {\n", - " transcript_expression: float64, \n", - " expression_proportion: float64\n", - " } \n", - " 'Heart_AtrialAppendage': struct {\n", - " transcript_expression: float64, \n", - " expression_proportion: float64\n", - " } \n", - " 'Heart_LeftVentricle': struct {\n", - " transcript_expression: float64, \n", - " expression_proportion: float64\n", - " } \n", - " 'Kidney_Cortex': struct {\n", - " transcript_expression: float64, \n", - " expression_proportion: float64\n", - " } \n", - " 'Liver': struct {\n", - " transcript_expression: float64, \n", - " expression_proportion: float64\n", - " } \n", - " 'Lung': struct {\n", - " transcript_expression: float64, \n", - " expression_proportion: float64\n", - " } \n", - " 'MinorSalivaryGland': struct {\n", - " transcript_expression: float64, \n", - " expression_proportion: float64\n", - " } \n", - " 'Muscle_Skeletal': struct {\n", - " transcript_expression: float64, \n", - " expression_proportion: float64\n", - " } \n", - " 'Nerve_Tibial': struct {\n", - " transcript_expression: float64, \n", - " expression_proportion: float64\n", - " } \n", - " 'Ovary': struct {\n", - " transcript_expression: float64, \n", - " expression_proportion: float64\n", - " } \n", - " 'Pancreas': struct {\n", - " transcript_expression: float64, \n", - " expression_proportion: float64\n", - " } \n", - " 'Pituitary': struct {\n", - " transcript_expression: float64, \n", - " expression_proportion: float64\n", - " } \n", - " 'Prostate': struct {\n", - " transcript_expression: float64, \n", - " expression_proportion: float64\n", - " } \n", - " 'Skin_NotSunExposed_Suprapubic': struct {\n", - " transcript_expression: float64, \n", - " expression_proportion: float64\n", - " } \n", - " 'Skin_SunExposed_Lowerleg': struct {\n", - " transcript_expression: float64, \n", - " expression_proportion: float64\n", - " } \n", - " 'SmallIntestine_TerminalIleum': struct {\n", - " transcript_expression: float64, \n", - " expression_proportion: float64\n", - " } \n", - " 'Spleen': struct {\n", - " transcript_expression: float64, \n", - " expression_proportion: float64\n", + " filters: set, \n", + " quality_metrics: struct {\n", + " allele_balance: struct {\n", + " alt_adj: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }, \n", + " alt_raw: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }\n", + " }, \n", + " genotype_depth: struct {\n", + " all_adj: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }, \n", + " all_raw: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }, \n", + " alt_adj: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }, \n", + " alt_raw: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }\n", + " }, \n", + " genotype_quality: struct {\n", + " all_adj: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }, \n", + " all_raw: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }, \n", + " alt_adj: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }, \n", + " alt_raw: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }\n", + " }, \n", + " site_quality_metrics: array\n", + " }\n", " } \n", - " 'Stomach': struct {\n", - " transcript_expression: float64, \n", - " expression_proportion: float64\n", + " 'genome': struct {\n", + " colocated_variants: struct {\n", + " hgdp: array, \n", + " tgp: array, \n", + " all: array\n", + " }, \n", + " subsets: set, \n", + " flags: set, \n", + " freq: struct {\n", + " hgdp: struct {\n", + " ac: int32, \n", + " ac_raw: int32, \n", + " an: int32, \n", + " hemizygote_count: int32, \n", + " homozygote_count: int32, \n", + " ancestry_groups: array\n", + " }, \n", + " tgp: struct {\n", + " ac: int32, \n", + " ac_raw: int32, \n", + " an: int32, \n", + " hemizygote_count: int32, \n", + " homozygote_count: int32, \n", + " ancestry_groups: array\n", + " }, \n", + " all: struct {\n", + " ac: int32, \n", + " ac_raw: int32, \n", + " an: int32, \n", + " hemizygote_count: int32, \n", + " homozygote_count: int32, \n", + " ancestry_groups: array\n", + " }\n", + " }, \n", + " fafmax: struct {\n", + " faf95_max: float64, \n", + " faf95_max_gen_anc: str, \n", + " faf99_max: float64, \n", + " faf99_max_gen_anc: str\n", + " }, \n", + " age_distribution: struct {\n", + " het: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }, \n", + " hom: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }\n", + " }, \n", + " filters: set, \n", + " quality_metrics: struct {\n", + " allele_balance: struct {\n", + " alt_adj: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }, \n", + " alt_raw: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }\n", + " }, \n", + " genotype_depth: struct {\n", + " all_adj: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }, \n", + " all_raw: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }, \n", + " alt_adj: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }, \n", + " alt_raw: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }\n", + " }, \n", + " genotype_quality: struct {\n", + " all_adj: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }, \n", + " all_raw: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }, \n", + " alt_adj: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }, \n", + " alt_raw: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }\n", + " }, \n", + " site_quality_metrics: array\n", + " }\n", " } \n", - " 'Testis': struct {\n", - " transcript_expression: float64, \n", - " expression_proportion: float64\n", + " 'rsids': set \n", + " 'in_silico_predictors': struct {\n", + " cadd: struct {\n", + " phred: float32, \n", + " raw_score: float32\n", + " }, \n", + " revel_max: float64, \n", + " spliceai_ds_max: float32, \n", + " pangolin_largest_ds: float64, \n", + " phylop: float64, \n", + " sift_max: float64, \n", + " polyphen_max: float64\n", " } \n", - " 'Thyroid': struct {\n", - " transcript_expression: float64, \n", - " expression_proportion: float64\n", + " 'variant_id': str \n", + " 'colocated_variants': struct {\n", + " all: array, \n", + " non_ukb: array, \n", + " hgdp: array, \n", + " tgp: array\n", " } \n", - " 'Uterus': struct {\n", - " transcript_expression: float64, \n", - " expression_proportion: float64\n", + " 'joint': struct {\n", + " freq: struct {\n", + " all: struct {\n", + " ac: int32, \n", + " ac_raw: int32, \n", + " an: int32, \n", + " hemizygote_count: int32, \n", + " homozygote_count: int32, \n", + " ancestry_groups: array\n", + " }\n", + " }, \n", + " faf: array, \n", + " fafmax: struct {\n", + " faf95_max: float64, \n", + " faf95_max_gen_anc: str, \n", + " faf99_max: float64, \n", + " faf99_max_gen_anc: str\n", + " }, \n", + " grpmax: struct {\n", + " AC: int32, \n", + " AF: float64, \n", + " AN: int32, \n", + " homozygote_count: int32, \n", + " gen_anc: str\n", + " }, \n", + " histograms: struct {\n", + " qual_hists: struct {\n", + " gq_hist_all: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }, \n", + " dp_hist_all: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }, \n", + " gq_hist_alt: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }, \n", + " dp_hist_alt: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }, \n", + " ab_hist_alt: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }\n", + " }, \n", + " raw_qual_hists: struct {\n", + " gq_hist_all: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }, \n", + " dp_hist_all: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }, \n", + " gq_hist_alt: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }, \n", + " dp_hist_alt: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }, \n", + " ab_hist_alt: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }\n", + " }, \n", + " age_hists: struct {\n", + " age_hist_het: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }, \n", + " age_hist_hom: struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }\n", + " }\n", + " }, \n", + " flags: set, \n", + " freq_comparison_stats: struct {\n", + " contingency_table_test: array, \n", + " cochran_mantel_haenszel_test: struct {\n", + " p_value: float64, \n", + " chisq: float64\n", + " }, \n", + " stat_union: struct {\n", + " p_value: float64, \n", + " stat_test_name: str, \n", + " gen_ancs: array\n", + " }\n", + " }\n", " } \n", - " 'Vagina': struct {\n", - " transcript_expression: float64, \n", - " expression_proportion: float64\n", + " 'coverage': struct {\n", + " exome: struct {\n", + " mean: float64, \n", + " median_approx: int32, \n", + " total_DP: int64, \n", + " over_1: float64, \n", + " over_5: float64, \n", + " over_10: float64, \n", + " over_15: float64, \n", + " over_20: float64, \n", + " over_25: float64, \n", + " over_30: float64, \n", + " over_50: float64, \n", + " over_100: float64\n", + " }, \n", + " genome: struct {\n", + " mean: float64, \n", + " median_approx: int32, \n", + " total_DP: int64, \n", + " over_1: float32, \n", + " over_5: float32, \n", + " over_10: float32, \n", + " over_15: float32, \n", + " over_20: float32, \n", + " over_25: float32, \n", + " over_30: float32, \n", + " over_50: float32, \n", + " over_100: float32\n", + " }\n", " } \n", - " 'WholeBlood': struct {\n", - " transcript_expression: float64, \n", - " expression_proportion: float64\n", + " 'transcript_consequences': array, \n", + " domains: set, \n", + " gene_id: str, \n", + " gene_symbol: str, \n", + " hgvsc: str, \n", + " hgvsp: str, \n", + " is_canonical: bool, \n", + " lof_filter: str, \n", + " lof_flags: str, \n", + " lof: str, \n", + " major_consequence: str, \n", + " transcript_id: str, \n", + " transcript_version: str, \n", + " gene_version: str, \n", + " is_mane_select: bool, \n", + " is_mane_select_version: bool, \n", + " refseq_id: str, \n", + " refseq_version: str\n", + " }> \n", + " 'caid': str \n", + " 'vrs': struct {\n", + " ref: struct {\n", + " allele_id: str, \n", + " start: int32, \n", + " end: int32, \n", + " state: str\n", + " }, \n", + " alt: struct {\n", + " allele_id: str, \n", + " start: int32, \n", + " end: int32, \n", + " state: str\n", + " }\n", " } \n", "----------------------------------------\n", "Key: ['locus', 'alleles']\n", @@ -8499,18 +6914,18 @@ }, { "cell_type": "markdown", - "id": "77d8e1eb-d07d-4338-a401-ae9191ad2901", + "id": "e113c4a2-25c2-4f55-bbb9-382c87cd770c", "metadata": { "tags": [] }, "source": [ - "#### Show the first 5 variants in the Hail Table\n" + "### Show the first 5 variants in the Hail Table\n" ] }, { "cell_type": "code", - "execution_count": 32, - "id": "35371de7-9332-4aa6-a3b9-c573fb2e144f", + "execution_count": 35, + "id": "d03dd50b-37ac-49ec-b766-a86870ee6573", "metadata": { "ExecuteTime": { "end_time": "2024-12-06T20:09:20.949958Z", @@ -8522,974 +6937,3073 @@ { "data": { "text/html": [ - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", + "
Adipose_Subcutaneous
Adipose_Visceral_Omentum
AdrenalGland
Artery_Aorta
Artery_Coronary
Artery_Tibial
Bladder
Brain_Amygdala
Brain_Anteriorcingulatecortex_BA24
Brain_Caudate_basalganglia
Brain_CerebellarHemisphere
Brain_Cerebellum
Brain_Cortex
Brain_FrontalCortex_BA9
Brain_Hippocampus
Brain_Hypothalamus
Brain_Nucleusaccumbens_basalganglia
Brain_Putamen_basalganglia
Brain_Spinalcord_cervicalc_1
Brain_Substantianigra
Breast_MammaryTissue
Cells_Culturedfibroblasts
Cells_EBV_transformedlymphocytes
Colon_Sigmoid
Colon_Transverse
Esophagus_GastroesophagealJunction
Esophagus_Mucosa
Esophagus_Muscularis
Heart_AtrialAppendage
Heart_LeftVentricle
Kidney_Cortex
Liver
Lung
MinorSalivaryGland
Muscle_Skeletal
Nerve_Tibial
Ovary
Pancreas
Pituitary
Prostate
Skin_NotSunExposed_Suprapubic
Skin_SunExposed_Lowerleg
SmallIntestine_TerminalIleum
Spleen
Stomach
Testis
Thyroid
Uterus
Vagina
WholeBlood
locus
gene_id
alleles
gene_symbol
most_severe_consequence
lof
lof_flags
exp_prop_mean
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
locus<GRCh38>strarray<str>strstrstrstrfloat64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64
chr1:65565"ENSG00000186092"["A","C"]"OR4F5""start_lost"NANANaN0.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+00
chr1:65565"ENSG00000186092"["A","G"]"OR4F5""start_lost"NANANaN0.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+00
chr1:65565"ENSG00000186092"["A","T"]"OR4F5""start_lost"NANANaN0.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+00
chr1:65566"ENSG00000186092"["T","A"]"OR4F5""start_lost"NANANaN0.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+00
chr1:65566"ENSG00000186092"["T","C"]"OR4F5""start_lost"NANANaN0.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+00
\n", + "\n", + "\n", + "\n", + "\n", + "\n", "
exome
genome
joint
quality_metrics
quality_metrics
histograms
freq
fafmax
age_distribution
allele_balance
genotype_depth
genotype_quality
freq
age_distribution
allele_balance
genotype_depth
genotype_quality
in_silico_predictors
freq
qual_hists
raw_qual_hists
age_hists
freq_comparison_stats
coverage
vrs
colocated_variants
all
non_ukb
gnomad
non_ukb
het
hom
alt_adj
alt_raw
all_adj
all_raw
alt_adj
alt_raw
all_adj
all_raw
alt_adj
alt_raw
colocated_variants
hgdp
tgp
all
fafmax
het
hom
alt_adj
alt_raw
all_adj
all_raw
alt_adj
alt_raw
all_adj
all_raw
alt_adj
alt_raw
cadd
colocated_variants
all
fafmax
grpmax
gq_hist_all
dp_hist_all
gq_hist_alt
dp_hist_alt
ab_hist_alt
gq_hist_all
dp_hist_all
gq_hist_alt
dp_hist_alt
ab_hist_alt
age_hist_het
age_hist_hom
cochran_mantel_haenszel_test
stat_union
exome
genome
ref
alt
locus
alleles
all
non_ukb
subsets
flags
ac
ac_raw
an
hemizygote_count
homozygote_count
ancestry_groups
ac
ac_raw
an
hemizygote_count
homozygote_count
ancestry_groups
faf95_max
faf95_max_gen_anc
faf99_max
faf99_max_gen_anc
faf95_max
faf95_max_gen_anc
faf99_max
faf99_max_gen_anc
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
filters
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
site_quality_metrics
hgdp
tgp
all
subsets
flags
ac
ac_raw
an
hemizygote_count
homozygote_count
ancestry_groups
ac
ac_raw
an
hemizygote_count
homozygote_count
ancestry_groups
ac
ac_raw
an
hemizygote_count
homozygote_count
ancestry_groups
faf95_max
faf95_max_gen_anc
faf99_max
faf99_max_gen_anc
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
filters
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
site_quality_metrics
rsids
phred
raw_score
revel_max
spliceai_ds_max
pangolin_largest_ds
phylop
sift_max
polyphen_max
variant_id
all
non_ukb
hgdp
tgp
ac
ac_raw
an
hemizygote_count
homozygote_count
ancestry_groups
faf
faf95_max
faf95_max_gen_anc
faf99_max
faf99_max_gen_anc
AC
AF
AN
homozygote_count
gen_anc
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
flags
contingency_table_test
p_value
chisq
p_value
stat_test_name
gen_ancs
mean
median_approx
total_DP
over_1
over_5
over_10
over_15
over_20
over_25
over_30
over_50
over_100
mean
median_approx
total_DP
over_1
over_5
over_10
over_15
over_20
over_25
over_30
over_50
over_100
transcript_consequences
caid
allele_id
start
end
state
allele_id
start
end
state
locus<GRCh38>array<str>array<str>array<str>set<str>set<str>int32int32int32int32int64array<struct{id: str, ac: int32, an: int32, hemizygote_count: int32, homozygote_count: int64}>int32int32int32int32int64array<struct{id: str, ac: int32, an: int32, hemizygote_count: int32, homozygote_count: int64}>float64strfloat64strfloat64strfloat64strarray<float64>array<int64>int64int64array<float64>array<int64>int64int64set<str>array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<struct{metric: str, value: float64}>array<str>array<str>array<str>set<str>set<str>int32int32int32int32int32array<struct{id: str, ac: int32, an: int32, hemizygote_count: int32, homozygote_count: int32}>int32int32int32int32int32array<struct{id: str, ac: int32, an: int32, hemizygote_count: int32, homozygote_count: int32}>int32int32int32int32int32array<struct{id: str, ac: int32, an: int32, hemizygote_count: int32, homozygote_count: int32}>float64strfloat64strarray<float64>array<int64>int64int64array<float64>array<int64>int64int64set<str>array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<struct{metric: str, value: float64}>set<str>float32float32float64float32float64float64float64float64strarray<str>array<str>array<str>array<str>int32int32int32int32int32array<struct{id: str, ac: int32, an: int32, hemizygote_count: int32, homozygote_count: int32}>array<struct{faf95: float64, faf99: float64}>float64strfloat64strint32float64int32int32strarray<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64set<str>array<struct{p_value: float64, odds_ratio: float64}>float64float64float64strarray<str>float64int32int64float64float64float64float64float64float64float64float64float64float64int32int64float32float32float32float32float32float32float32float32float32array<struct{biotype: str, consequence_terms: array<str>, domains: set<str>, gene_id: str, gene_symbol: str, hgvsc: str, hgvsp: str, is_canonical: bool, lof_filter: str, lof_flags: str, lof: str, major_consequence: str, transcript_id: str, transcript_version: str, gene_version: str, is_mane_select: bool, is_mane_select_version: bool, refseq_id: str, refseq_version: str}>strstrint32int32strstrint32int32str
chr1:10031["T","C"]NANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANA[][][]{}{"lcr","segdup"}0081200[]00107800[]025664200[("remaining",0,782,0,0),("remaining_XX",0,402,0,0),("remaining_XY",0,380,0,0),("amr",0,6420,0,0),("amr_XX",0,2770,0,0),("amr_XY",0,3650,0,0),("fin",0,4326,0,0),("fin_XX",0,1060,0,0),("fin_XY",0,3266,0,0),("ami",0,352,0,0),("ami_XX",0,154,0,0),("ami_XY",0,198,0,0),("eas",0,1712,0,0),("eas_XX",0,770,0,0),("eas_XY",0,942,0,0),("mid",0,192,0,0),("mid_XX",0,102,0,0),("mid_XY",0,90,0,0),("sas",0,1120,0,0),("sas_XX",0,260,0,0),("sas_XY",0,860,0,0),("asj",0,1550,0,0),("asj_XX",0,814,0,0),("asj_XY",0,736,0,0),("afr",0,14642,0,0),("afr_XX",0,7978,0,0),("afr_XY",0,6664,0,0),("nfe",0,25546,0,0),("nfe_XX",0,14998,0,0),("nfe_XY",0,10548,0,0),("XX",0,29308,0,0),("XY",0,27334,0,0)]NANANANA[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]00{"AC0","AS_VQSR"}[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,16,121,475,973,1736,2409,2950,3134,2995,2803,2514,2194,1773,1335,911,665,439,351]0527[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][10,66,471,1445,2990,5808,6940,7906,7262,6236,4943,3919,3129,2527,1993,1476,1023,741,500,418]0744[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,23215,2435,1647,594,176,118,49,29,19,9,11,6,5,2,4,2]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][14149,7330,6840,3904,23217,2436,1647,594,176,118,49,29,19,9,11,6,5,2,4,2]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[("SiteQuality",9.60e+01),("inbreeding_coeff",-1.65e-05),("AS_MQ",3.51e+01),("AS_FS",5.10e+00),("AS_MQRankSum",-5.72e-01),("AS_pab_max",6.87e-01),("AS_QUALapprox",7.70e+01),("AS_QD",2.96e+00),("AS_ReadPosRankSum",-1.38e+00),("AS_SOR",9.64e-02),("AS_VarDP",2.60e+01),("AS_VQSLOD",-4.57e+00)]{"rs1639542312"}8.97e+007.57e-01NANANANANANA"1-10031-T-C"[][][][]025664200[("remaining",0,782,0,0),("remaining_XX",0,402,0,0),("remaining_XY",0,380,0,0),("amr",0,6420,0,0),("amr_XX",0,2770,0,0),("amr_XY",0,3650,0,0),("fin",0,4326,0,0),("fin_XX",0,1060,0,0),("fin_XY",0,3266,0,0),("ami",0,352,0,0),("ami_XX",0,154,0,0),("ami_XY",0,198,0,0),("eas",0,1712,0,0),("eas_XX",0,770,0,0),("eas_XY",0,942,0,0),("mid",0,192,0,0),("mid_XX",0,102,0,0),("mid_XY",0,90,0,0),("sas",0,1120,0,0),("sas_XX",0,260,0,0),("sas_XY",0,860,0,0),("asj",0,1550,0,0),("asj_XX",0,814,0,0),("asj_XY",0,736,0,0),("afr",0,14642,0,0),("afr_XX",0,7978,0,0),("afr_XY",0,6664,0,0),("nfe",0,25546,0,0),("nfe_XX",0,14998,0,0),("nfe_XY",0,10548,0,0),("",0,56642,0,0),("XX",0,29308,0,0),("XY",0,27334,0,0),("XX",0,29308,0,0),("XY",0,27334,0,0)][(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]NANANANANANANANANA[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,23215,2435,1647,594,176,118,49,29,19,9,11,6,5,2,4,2]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,16,121,475,973,1736,2409,2950,3134,2995,2803,2514,2194,1773,1335,911,665,439,351]0527[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][14149,7330,6840,3904,23217,2436,1647,594,176,118,49,29,19,9,11,6,5,2,4,2]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][10,66,471,1445,2990,5808,6940,7906,7262,6236,4943,3919,3129,2527,1993,1476,1023,741,500,418]0744[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]00{"not_called_in_exomes"}[NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]NANANANANANANANANANANANANANANANANA3.74e+013826844368.08e-018.08e-018.07e-018.01e-017.82e-017.43e-016.67e-012.89e-011.13e-02[]"CA997563811""ga4gh:VA.oTAtTrgYxm81O9fu6Mrhfo1t3eHsgg4L"1003010031"T""ga4gh:VA.Y283OnlLjyi1T1IT_JzvW255rC6YJsW6"1003010031"C"
chr1:10037["T","C"]NANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANA[][][]{}{"lcr","segdup"}00102800[]00162800[]247688200[("remaining",0,998,0,0),("remaining_XX",0,528,0,0),("remaining_XY",0,470,0,0),("amr",0,8296,0,0),("amr_XX",0,3698,0,0),("amr_XY",0,4598,0,0),("fin",1,5568,0,0),("fin_XX",0,1316,0,0),("fin_XY",1,4252,0,0),("ami",0,494,0,0),("ami_XX",0,238,0,0),("ami_XY",0,256,0,0),("eas",1,2456,0,0),("eas_XX",1,1114,0,0),("eas_XY",0,1342,0,0),("mid",0,234,0,0),("mid_XX",0,122,0,0),("mid_XY",0,112,0,0),("sas",0,1706,0,0),("sas_XX",0,420,0,0),("sas_XY",0,1286,0,0),("asj",0,2066,0,0),("asj_XX",0,1106,0,0),("asj_XY",0,960,0,0),("afr",0,20394,0,0),("afr_XX",0,11132,0,0),("afr_XY",0,9262,0,0),("nfe",0,34670,0,0),("nfe_XX",0,20498,0,0),("nfe_XY",0,14172,0,0),("XX",1,40172,0,0),("XY",1,36710,0,0)]NANANANA[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,1,0,0,1,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]00{"AS_VQSR"}[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,9,69,387,913,1737,2859,3749,4216,4302,4223,3745,3280,2661,1954,1380,943,607,519]0888[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][7,37,269,903,1948,4127,5519,7075,7322,6972,6095,5249,4374,3624,2893,2106,1501,1031,679,590]01130[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,2,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,29394,3741,2868,1281,401,358,163,63,69,31,18,20,10,4,5,15]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][10121,5441,5610,3838,29394,3741,2868,1281,401,358,163,63,69,31,18,20,10,4,5,15]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,2,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[("SiteQuality",1.80e+02),("inbreeding_coeff",-3.15e-05),("AS_MQ",3.83e+01),("AS_FS",8.58e+00),("AS_MQRankSum",1.37e+00),("AS_pab_max",1.00e+00),("AS_QUALapprox",1.80e+02),("AS_QD",2.20e+00),("AS_ReadPosRankSum",-4.80e-01),("AS_SOR",1.51e-01),("AS_VarDP",8.20e+01),("AS_VQSLOD",-3.18e+00)]{"rs1639542418"}8.90e+007.49e-01NANANANANANA"1-10037-T-C"[][][][]247688200[("remaining",0,998,0,0),("remaining_XX",0,528,0,0),("remaining_XY",0,470,0,0),("amr",0,8296,0,0),("amr_XX",0,3698,0,0),("amr_XY",0,4598,0,0),("fin",1,5568,0,0),("fin_XX",0,1316,0,0),("fin_XY",1,4252,0,0),("ami",0,494,0,0),("ami_XX",0,238,0,0),("ami_XY",0,256,0,0),("eas",1,2456,0,0),("eas_XX",1,1114,0,0),("eas_XY",0,1342,0,0),("mid",0,234,0,0),("mid_XX",0,122,0,0),("mid_XY",0,112,0,0),("sas",0,1706,0,0),("sas_XX",0,420,0,0),("sas_XY",0,1286,0,0),("asj",0,2066,0,0),("asj_XX",0,1106,0,0),("asj_XY",0,960,0,0),("afr",0,20394,0,0),("afr_XX",0,11132,0,0),("afr_XY",0,9262,0,0),("nfe",0,34670,0,0),("nfe_XX",0,20498,0,0),("nfe_XY",0,14172,0,0),("",2,76882,0,0),("XX",1,40172,0,0),("XY",1,36710,0,0),("XX",1,40172,0,0),("XY",1,36710,0,0)][(4.32e-06,1.62e-06),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]NANANANA14.07e-0424560"eas"[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,29394,3741,2868,1281,401,358,163,63,69,31,18,20,10,4,5,15]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,9,69,387,913,1737,2859,3749,4216,4302,4223,3745,3280,2661,1954,1380,943,607,519]0888[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][10121,5441,5610,3838,29394,3741,2868,1281,401,358,163,63,69,31,18,20,10,4,5,15]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][7,37,269,903,1948,4127,5519,7075,7322,6972,6095,5249,4374,3624,2893,2106,1501,1031,679,590]01130[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,2,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,2,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,1,0,0,1,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]00{"not_called_in_exomes"}[NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]NANANANANANANANANANANANANANANANANA4.29e+014430779558.43e-018.43e-018.42e-018.39e-018.27e-018.02e-017.48e-013.93e-011.66e-02[]"CA997563812""ga4gh:VA.6pIoPAYDsphCprRcyrititenuEWlZaxV"1003610037"T""ga4gh:VA.iHyQ1mh_iQX6WcqXcx5vvZF9_jPYDePo"1003610037"C"
chr1:10043["T","C"]NANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANA[][][]{}{"lcr","segdup"}00115400[]00178800[]118563400[("remaining",0,1148,0,0),("remaining_XX",0,594,0,0),("remaining_XY",0,554,0,0),("amr",0,8502,0,0),("amr_XX",0,3888,0,0),("amr_XY",0,4614,0,0),("fin",0,5820,0,0),("fin_XX",0,1280,0,0),("fin_XY",0,4540,0,0),("ami",0,568,0,0),("ami_XX",0,284,0,0),("ami_XY",0,284,0,0),("eas",0,2912,0,0),("eas_XX",0,1296,0,0),("eas_XY",0,1616,0,0),("mid",0,254,0,0),("mid_XX",0,136,0,0),("mid_XY",0,118,0,0),("sas",0,2158,0,0),("sas_XX",0,502,0,0),("sas_XY",0,1656,0,0),("asj",0,2276,0,0),("asj_XX",0,1234,0,0),("asj_XY",0,1042,0,0),("afr",1,22760,0,0),("afr_XX",1,12446,0,0),("afr_XY",0,10314,0,0),("nfe",0,39236,0,0),("nfe_XX",0,23244,0,0),("nfe_XY",0,15992,0,0),("XX",1,44904,0,0),("XY",0,40730,0,0)]NANANANA[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,1,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]00{"AS_VQSR"}[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,8,40,264,690,1525,2691,3754,4574,4813,4940,4490,3907,3242,2387,1704,1158,760,638]01232[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][2,24,149,466,1201,2614,4035,5568,6331,6725,6267,5855,5101,4268,3465,2554,1836,1244,831,692]01487[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,31093,4532,3696,1752,595,585,261,88,82,59,17,26,14,5,3,9]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][6578,3782,4202,3336,31093,4532,3696,1752,595,585,261,88,82,59,17,26,14,5,3,9]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0]00[("SiteQuality",9.70e+01),("inbreeding_coeff",-8.24e-06),("AS_MQ",3.52e+01),("AS_FS",3.11e+01),("AS_MQRankSum",1.23e+00),("AS_pab_max",1.00e+00),("AS_QUALapprox",9.70e+01),("AS_QD",2.77e+00),("AS_ReadPosRankSum",-8.96e-01),("AS_SOR",1.48e-03),("AS_VarDP",3.50e+01),("AS_VQSLOD",-5.79e+00)]NA8.90e+007.48e-01NANANANANANA"1-10043-T-C"[][][][]118563400[("remaining",0,1148,0,0),("remaining_XX",0,594,0,0),("remaining_XY",0,554,0,0),("amr",0,8502,0,0),("amr_XX",0,3888,0,0),("amr_XY",0,4614,0,0),("fin",0,5820,0,0),("fin_XX",0,1280,0,0),("fin_XY",0,4540,0,0),("ami",0,568,0,0),("ami_XX",0,284,0,0),("ami_XY",0,284,0,0),("eas",0,2912,0,0),("eas_XX",0,1296,0,0),("eas_XY",0,1616,0,0),("mid",0,254,0,0),("mid_XX",0,136,0,0),("mid_XY",0,118,0,0),("sas",0,2158,0,0),("sas_XX",0,502,0,0),("sas_XY",0,1656,0,0),("asj",0,2276,0,0),("asj_XX",0,1234,0,0),("asj_XY",0,1042,0,0),("afr",1,22760,0,0),("afr_XX",1,12446,0,0),("afr_XY",0,10314,0,0),("nfe",0,39236,0,0),("nfe_XX",0,23244,0,0),("nfe_XY",0,15992,0,0),("",1,85634,0,0),("XX",1,44904,0,0),("XY",0,40730,0,0),("XX",1,44904,0,0),("XY",0,40730,0,0)][(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]NANANANA14.39e-05227600"afr"[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,31093,4532,3696,1752,595,585,261,88,82,59,17,26,14,5,3,9]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,8,40,264,690,1525,2691,3754,4574,4813,4940,4490,3907,3242,2387,1704,1158,760,638]01232[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][6578,3782,4202,3336,31093,4532,3696,1752,595,585,261,88,82,59,17,26,14,5,3,9]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][2,24,149,466,1201,2614,4035,5568,6331,6725,6267,5855,5101,4268,3465,2554,1836,1244,831,692]01487[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,1,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]00{"not_called_in_exomes"}[NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]NANANANANANANANANANANANANANANANANA4.42e+014731658238.06e-018.06e-018.05e-018.03e-017.97e-017.82e-017.48e-014.50e-012.14e-02[]"CA997563813""ga4gh:VA.HdrkFJS16zwJPcGSKX9___fJcdqSATlQ"1004210043"T""ga4gh:VA.LSHuFx03sqw8WJGN2-n782ME4o04Vl4U"1004210043"C"
chr1:10055["T","C"]NANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANA[][][]{"hgdp"}{"lcr","segdup"}01131200[("japanese",0,50,0,0),("japanese_XX",0,12,0,0),("japanese_XY",0,38,0,0),("adygei",0,22,0,0),("adygei_XX",0,16,0,0),("adygei_XY",0,6,0,0),("orcadian",0,26,0,0),("orcadian_XX",0,14,0,0),("orcadian_XY",0,12,0,0),("bantusouthafrica",0,8,0,0),("bantusouthafrica_XX",0,0,0,0),("bantusouthafrica_XY",0,8,0,0),("yakut",0,36,0,0),("yakut_XX",0,14,0,0),("yakut_XY",0,22,0,0),("han",0,58,0,0),("han_XX",0,32,0,0),("han_XY",0,26,0,0),("uygur",0,10,0,0),("uygur_XX",0,4,0,0),("uygur_XY",0,6,0,0),("balochi",0,40,0,0),("balochi_XX",0,0,0,0),("balochi_XY",0,40,0,0),("bedouin",0,72,0,0),("bedouin_XX",0,28,0,0),("bedouin_XY",0,44,0,0),("russian",0,48,0,0),("russian_XX",0,18,0,0),("russian_XY",0,30,0,0),("daur",0,10,0,0),("daur_XX",0,2,0,0),("daur_XY",0,8,0,0),("pima",0,16,0,0),("pima_XX",0,6,0,0),("pima_XY",0,10,0,0),("hezhen",0,14,0,0),("hezhen_XX",0,4,0,0),("hezhen_XY",0,10,0,0),("biaka",0,20,0,0),("biaka_XX",0,0,0,0),("biaka_XY",0,20,0,0),("miao",0,8,0,0),("miao_XX",0,2,0,0),("miao_XY",0,6,0,0),("sindhi",0,40,0,0),("sindhi_XX",0,8,0,0),("sindhi_XY",0,32,0,0),("northernhan",0,14,0,0),("northernhan_XX",0,2,0,0),("northernhan_XY",0,12,0,0),("oroqen",0,14,0,0),("oroqen_XX",0,6,0,0),("oroqen_XY",0,8,0,0),("san",0,12,0,0),("san_XX",0,0,0,0),("san_XY",0,12,0,0),("tu",0,18,0,0),("tu_XX",0,4,0,0),("tu_XY",0,14,0,0),("tuscan",0,12,0,0),("tuscan_XX",0,4,0,0),("tuscan_XY",0,8,0,0),("mbuti",0,16,0,0),("mbuti_XX",0,4,0,0),("mbuti_XY",0,12,0,0),("palestinian",0,58,0,0),("palestinian_XX",0,38,0,0),("palestinian_XY",0,20,0,0),("tujia",0,16,0,0),("tujia_XX",0,2,0,0),("tujia_XY",0,14,0,0),("druze",0,58,0,0),("druze_XX",0,42,0,0),("druze_XY",0,16,0,0),("pathan",0,34,0,0),("pathan_XX",0,4,0,0),("pathan_XY",0,30,0,0),("basque",0,38,0,0),("basque_XX",0,12,0,0),("basque_XY",0,26,0,0),("makrani",0,38,0,0),("makrani_XX",0,6,0,0),("makrani_XY",0,32,0,0),("burusho",0,40,0,0),("burusho_XX",0,6,0,0),("burusho_XY",0,34,0,0),("mongolian",0,10,0,0),("mongolian_XX",0,4,0,0),("mongolian_XY",0,6,0,0),("bougainville",0,10,0,0),("bougainville_XX",0,10,0,0),("bougainville_XY",0,0,0,0),("papuansepik",0,2,0,0),("papuansepik_XX",0,2,0,0),("papuansepik_XY",0,0,0,0),("yi",0,18,0,0),("yi_XX",0,2,0,0),("yi_XY",0,16,0,0),("naxi",0,8,0,0),("naxi_XX",0,2,0,0),("naxi_XY",0,6,0,0),("lahu",0,8,0,0),("lahu_XX",0,0,0,0),("lahu_XY",0,8,0,0),("sardinian",0,52,0,0),("sardinian_XX",0,24,0,0),("sardinian_XY",0,28,0,0),("karitiana",0,14,0,0),("karitiana_XX",0,12,0,0),("karitiana_XY",0,2,0,0),("mozabite",0,36,0,0),("mozabite_XX",0,12,0,0),("mozabite_XY",0,24,0,0),("yoruba",0,20,0,0),("yoruba_XX",0,10,0,0),("yoruba_XY",0,10,0,0),("dai",0,12,0,0),("dai_XX",0,6,0,0),("dai_XY",0,6,0,0),("bergamoitalian",0,14,0,0),("bergamoitalian_XX",0,8,0,0),("bergamoitalian_XY",0,6,0,0),("cambodian",0,14,0,0),("cambodian_XX",0,8,0,0),("cambodian_XY",0,6,0,0),("french",0,48,0,0),("french_XX",0,26,0,0),("french_XY",0,22,0,0),("mandenka",0,26,0,0),("mandenka_XX",0,10,0,0),("mandenka_XY",0,16,0,0),("surui",0,12,0,0),("surui_XX",0,8,0,0),("surui_XY",0,4,0,0),("brahui",0,30,0,0),("brahui_XX",0,0,0,0),("brahui_XY",0,30,0,0),("hazara",0,22,0,0),("hazara_XX",0,0,0,0),("hazara_XY",0,22,0,0),("kalash",0,28,0,0),("kalash_XX",0,6,0,0),("kalash_XY",0,22,0,0),("papuanhighlands",0,4,0,0),("papuanhighlands_XX",0,2,0,0),("papuanhighlands_XY",0,2,0,0),("xibo",0,10,0,0),("xibo_XX",0,0,0,0),("xibo_XY",0,10,0,0),("colombian",0,6,0,0),("colombian_XX",0,4,0,0),("colombian_XY",0,2,0,0),("bantukenya",0,10,0,0),("bantukenya_XX",0,2,0,0),("bantukenya_XY",0,8,0,0),("she",0,18,0,0),("she_XX",0,6,0,0),("she_XY",0,12,0,0),("maya",0,34,0,0),("maya_XX",0,30,0,0),("maya_XY",0,4,0,0),("XX",0,484,0,0),("XY",0,828,0,0)]00147800[]159422400[("remaining",0,1228,0,0),("remaining_XX",0,624,0,0),("remaining_XY",0,604,0,0),("amr",0,8056,0,0),("amr_XX",0,3902,0,0),("amr_XY",0,4154,0,0),("fin",1,5570,0,0),("fin_XX",1,1034,0,0),("fin_XY",0,4536,0,0),("ami",0,682,0,0),("ami_XX",0,344,0,0),("ami_XY",0,338,0,0),("eas",0,3020,0,0),("eas_XX",0,1256,0,0),("eas_XY",0,1764,0,0),("mid",0,216,0,0),("mid_XX",0,110,0,0),("mid_XY",0,106,0,0),("sas",0,2668,0,0),("sas_XX",0,600,0,0),("sas_XY",0,2068,0,0),("asj",0,2370,0,0),("asj_XX",0,1246,0,0),("asj_XY",0,1124,0,0),("afr",0,26032,0,0),("afr_XX",0,14152,0,0),("afr_XY",0,11880,0,0),("nfe",0,44382,0,0),("nfe_XX",0,26312,0,0),("nfe_XY",0,18070,0,0),("XX",1,49580,0,0),("XY",0,44644,0,0)]NANANANA[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]00{"AS_VQSR"}[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,3,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,4,22,120,354,999,1950,3037,4168,4734,5196,5380,4766,4238,3206,2398,1776,1236,1052]02440[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][1,9,42,122,294,787,1537,2717,3751,4972,5404,5762,5875,5161,4526,3415,2525,1883,1294,1116]02622[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,3,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,25677,6107,5433,3528,1753,1702,1130,485,518,282,119,125,77,35,29,76]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][1429,1382,1901,2026,25677,6108,5433,3528,1753,1702,1130,485,518,282,119,125,77,35,29,76]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,1,2,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[("SiteQuality",2.20e+02),("inbreeding_coeff",-4.64e-05),("AS_MQ",3.48e+01),("AS_FS",5.94e+00),("AS_MQRankSum",7.15e-01),("AS_pab_max",2.27e-01),("AS_QUALapprox",9.10e+01),("AS_QD",1.21e+00),("AS_ReadPosRankSum",-1.16e+00),("AS_SOR",4.69e-01),("AS_VarDP",7.50e+01),("AS_VQSLOD",-3.72e+00)]{"rs892501864"}8.88e+007.46e-01NANANANANANA"1-10055-T-C"[][][][]159422400[("remaining",0,1228,0,0),("remaining_XX",0,624,0,0),("remaining_XY",0,604,0,0),("amr",0,8056,0,0),("amr_XX",0,3902,0,0),("amr_XY",0,4154,0,0),("fin",1,5570,0,0),("fin_XX",1,1034,0,0),("fin_XY",0,4536,0,0),("ami",0,682,0,0),("ami_XX",0,344,0,0),("ami_XY",0,338,0,0),("eas",0,3020,0,0),("eas_XX",0,1256,0,0),("eas_XY",0,1764,0,0),("mid",0,216,0,0),("mid_XX",0,110,0,0),("mid_XY",0,106,0,0),("sas",0,2668,0,0),("sas_XX",0,600,0,0),("sas_XY",0,2068,0,0),("asj",0,2370,0,0),("asj_XX",0,1246,0,0),("asj_XY",0,1124,0,0),("afr",0,26032,0,0),("afr_XX",0,14152,0,0),("afr_XY",0,11880,0,0),("nfe",0,44382,0,0),("nfe_XX",0,26312,0,0),("nfe_XY",0,18070,0,0),("",1,94224,0,0),("XX",1,49580,0,0),("XY",0,44644,0,0),("XX",1,49580,0,0),("XY",0,44644,0,0)][(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]NANANANANANANANANA[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,25677,6107,5433,3528,1753,1702,1130,485,518,282,119,125,77,35,29,76]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,4,22,120,354,999,1950,3037,4168,4734,5196,5380,4766,4238,3206,2398,1776,1236,1052]02440[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][1429,1382,1901,2026,25677,6108,5433,3528,1753,1702,1130,485,518,282,119,125,77,35,29,76]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][1,9,42,122,294,787,1537,2717,3751,4972,5404,5762,5875,5161,4526,3415,2525,1883,1294,1116]02622[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,1,2,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,3,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,3,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]00{"not_called_in_exomes"}[NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]NANANANANANANANANANANANANANANANANA4.54e+015132522827.16e-017.16e-017.15e-017.15e-017.13e-017.10e-017.00e-015.30e-013.76e-02[]"CA997563814""ga4gh:VA.xis4Nhtveh7q75mtkipQAUqZfWUfboWB"1005410055"T""ga4gh:VA.Ciou33oFTNEilAEegbFai_K0nu3F18A7"1005410055"C"
chr1:10057["A","C"]NANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANA[][][]{}{"lcr","segdup"}00130000[]00281000[]3311353600[("remaining",0,1504,0,0),("remaining_XX",0,764,0,0),("remaining_XY",0,740,0,0),("amr",0,10448,0,0),("amr_XX",0,4944,0,0),("amr_XY",0,5504,0,0),("fin",0,6886,0,0),("fin_XX",0,1472,0,0),("fin_XY",0,5414,0,0),("ami",0,742,0,0),("ami_XX",0,378,0,0),("ami_XY",0,364,0,0),("eas",0,3850,0,0),("eas_XX",0,1670,0,0),("eas_XY",0,2180,0,0),("mid",0,266,0,0),("mid_XX",0,132,0,0),("mid_XY",0,134,0,0),("sas",0,3424,0,0),("sas_XX",0,784,0,0),("sas_XY",0,2640,0,0),("asj",0,2768,0,0),("asj_XX",0,1532,0,0),("asj_XY",0,1236,0,0),("afr",1,30736,0,0),("afr_XX",0,16598,0,0),("afr_XY",1,14138,0,0),("nfe",2,52912,0,0),("nfe_XX",2,31106,0,0),("nfe_XY",0,21806,0,0),("XX",2,59380,0,0),("XY",1,54156,0,0)]6.27e-06"nfe"2.35e-06"nfe"[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,1,0,1,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]00{"AS_VQSR"}[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,2,23,108,320,888,1844,3110,4447,5361,6012,6379,5879,5289,4273,3400,2503,1787,1521]03622[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][2,6,39,104,247,638,1325,2417,3685,5047,5927,6484,6763,6192,5525,4439,3518,2603,1850,1572]03743[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,1,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,1,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,25460,7448,6933,4978,2881,2833,2048,1038,1129,685,321,364,212,90,117,231]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][995,1036,1539,1788,25460,7448,6933,4978,2881,2833,2048,1038,1129,685,321,364,212,90,117,231]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0]00[("SiteQuality",2.92e+02),("inbreeding_coeff",-2.41e-05),("AS_MQ",3.61e+01),("AS_FS",3.79e+01),("AS_MQRankSum",7.88e-01),("AS_pab_max",1.00e+00),("AS_QUALapprox",2.64e+02),("AS_QD",2.06e+00),("AS_ReadPosRankSum",-6.84e-01),("AS_SOR",7.58e-01),("AS_VarDP",1.28e+02),("AS_VQSLOD",-3.31e+00)]{"rs1570391741"}8.53e+007.09e-01NANANANANANA"1-10057-A-C"[][][][]3311353600[("remaining",0,1504,0,0),("remaining_XX",0,764,0,0),("remaining_XY",0,740,0,0),("amr",0,10448,0,0),("amr_XX",0,4944,0,0),("amr_XY",0,5504,0,0),("fin",0,6886,0,0),("fin_XX",0,1472,0,0),("fin_XY",0,5414,0,0),("ami",0,742,0,0),("ami_XX",0,378,0,0),("ami_XY",0,364,0,0),("eas",0,3850,0,0),("eas_XX",0,1670,0,0),("eas_XY",0,2180,0,0),("mid",0,266,0,0),("mid_XX",0,132,0,0),("mid_XY",0,134,0,0),("sas",0,3424,0,0),("sas_XX",0,784,0,0),("sas_XY",0,2640,0,0),("asj",0,2768,0,0),("asj_XX",0,1532,0,0),("asj_XY",0,1236,0,0),("afr",1,30736,0,0),("afr_XX",0,16598,0,0),("afr_XY",1,14138,0,0),("nfe",2,52912,0,0),("nfe_XX",2,31106,0,0),("nfe_XY",0,21806,0,0),("",3,113536,0,0),("XX",2,59380,0,0),("XY",1,54156,0,0),("XX",2,59380,0,0),("XY",1,54156,0,0)][(7.02e-06,2.95e-06),(6.27e-06,2.35e-06),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]6.27e-06"nfe"2.35e-06"nfe"23.78e-05529120"nfe"[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,25460,7448,6933,4978,2881,2833,2048,1038,1129,685,321,364,212,90,117,231]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,2,23,108,320,888,1844,3110,4447,5361,6012,6379,5879,5289,4273,3400,2503,1787,1521]03622[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,1,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][995,1036,1539,1788,25460,7448,6933,4978,2881,2833,2048,1038,1129,685,321,364,212,90,117,231]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][2,6,39,104,247,638,1325,2417,3685,5047,5927,6484,6763,6192,5525,4439,3518,2603,1850,1572]03743[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,1,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,1,0,1,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]00{"not_called_in_exomes"}[NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]NANANANANANANANANANANANANANANANANA5.43e+015838917008.20e-018.20e-018.20e-018.20e-018.18e-018.15e-018.07e-016.45e-015.38e-02[]"CA997563815""ga4gh:VA.TV0UyS-jCvsVkEOMbipUnzTc4hYuVNTg"1005610057"A""ga4gh:VA.33zGTKcHyj5wWpTfc3OfD8-UlPQ-YOfx"1005610057"C"

showing top 5 rows

\n" ], "text/plain": [ - "+---------------+-------------------+------------+-------------+\n", - "| locus | gene_id | alleles | gene_symbol |\n", - "+---------------+-------------------+------------+-------------+\n", - "| locus | str | array | str |\n", - "+---------------+-------------------+------------+-------------+\n", - "| chr1:65565 | \"ENSG00000186092\" | [\"A\",\"C\"] | \"OR4F5\" |\n", - "| chr1:65565 | \"ENSG00000186092\" | [\"A\",\"G\"] | \"OR4F5\" |\n", - "| chr1:65565 | \"ENSG00000186092\" | [\"A\",\"T\"] | \"OR4F5\" |\n", - "| chr1:65566 | \"ENSG00000186092\" | [\"T\",\"A\"] | \"OR4F5\" |\n", - "| chr1:65566 | \"ENSG00000186092\" | [\"T\",\"C\"] | \"OR4F5\" |\n", - "+---------------+-------------------+------------+-------------+\n", + "+---------------+------------+------------------------------+\n", + "| locus | alleles | exome.colocated_variants.all |\n", + "+---------------+------------+------------------------------+\n", + "| locus | array | array |\n", + "+---------------+------------+------------------------------+\n", + "| chr1:10031 | [\"T\",\"C\"] | NA |\n", + "| chr1:10037 | [\"T\",\"C\"] | NA |\n", + "| chr1:10043 | [\"T\",\"C\"] | NA |\n", + "| chr1:10055 | [\"T\",\"C\"] | NA |\n", + "| chr1:10057 | [\"A\",\"C\"] | NA |\n", + "+---------------+------------+------------------------------+\n", + "\n", + "+----------------------------------+---------------+-------------+\n", + "| exome.colocated_variants.non_ukb | exome.subsets | exome.flags |\n", + "+----------------------------------+---------------+-------------+\n", + "| array | set | set |\n", + "+----------------------------------+---------------+-------------+\n", + "| NA | NA | NA |\n", + "| NA | NA | NA |\n", + "| NA | NA | NA |\n", + "| NA | NA | NA |\n", + "| NA | NA | NA |\n", + "+----------------------------------+---------------+-------------+\n", + "\n", + "+-------------------+-----------------------+-------------------+\n", + "| exome.freq.all.ac | exome.freq.all.ac_raw | exome.freq.all.an |\n", + "+-------------------+-----------------------+-------------------+\n", + "| int32 | int32 | int32 |\n", + "+-------------------+-----------------------+-------------------+\n", + "| NA | NA | NA |\n", + "| NA | NA | NA |\n", + "| NA | NA | NA |\n", + "| NA | NA | NA |\n", + "| NA | NA | NA |\n", + "+-------------------+-----------------------+-------------------+\n", + "\n", + "+---------------------------------+---------------------------------+\n", + "| exome.freq.all.hemizygote_count | exome.freq.all.homozygote_count |\n", + "+---------------------------------+---------------------------------+\n", + "| int32 | int64 |\n", + "+---------------------------------+---------------------------------+\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "+---------------------------------+---------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| exome.freq.all.ancestry_groups |\n", + "+------------------------------------------------------------------------------+\n", + "| array | array |\n", + "+--------------------------------------+-------------------------------------+\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "+--------------------------------------+-------------------------------------+\n", + "\n", + "+--------------------------------------+-------------------------------------+\n", + "| exome.age_distribution.het.n_smaller | exome.age_distribution.het.n_larger |\n", + "+--------------------------------------+-------------------------------------+\n", + "| int64 | int64 |\n", + "+--------------------------------------+-------------------------------------+\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "+--------------------------------------+-------------------------------------+\n", + "\n", + "+--------------------------------------+-------------------------------------+\n", + "| exome.age_distribution.hom.bin_edges | exome.age_distribution.hom.bin_freq |\n", + "+--------------------------------------+-------------------------------------+\n", + "| array | array |\n", + "+--------------------------------------+-------------------------------------+\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "+--------------------------------------+-------------------------------------+\n", + "\n", + "+--------------------------------------+-------------------------------------+\n", + "| exome.age_distribution.hom.n_smaller | exome.age_distribution.hom.n_larger |\n", + "+--------------------------------------+-------------------------------------+\n", + "| int64 | int64 |\n", + "+--------------------------------------+-------------------------------------+\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "+--------------------------------------+-------------------------------------+\n", + "\n", + "+---------------+--------------------------------------------------------+\n", + "| exome.filters | exome.quality_metrics.allele_balance.alt_adj.bin_edges |\n", + "+---------------+--------------------------------------------------------+\n", + "| set | array |\n", + "+---------------+--------------------------------------------------------+\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "+---------------+--------------------------------------------------------+\n", + "\n", + "+-------------------------------------------------------+\n", + "| exome.quality_metrics.allele_balance.alt_adj.bin_freq |\n", + "+-------------------------------------------------------+\n", + "| array |\n", + "+-------------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+-------------------------------------------------------+\n", + "\n", + "+--------------------------------------------------------+\n", + "| exome.quality_metrics.allele_balance.alt_adj.n_smaller |\n", + "+--------------------------------------------------------+\n", + "| int64 |\n", + "+--------------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+--------------------------------------------------------+\n", + "\n", + "+-------------------------------------------------------+\n", + "| exome.quality_metrics.allele_balance.alt_adj.n_larger |\n", + "+-------------------------------------------------------+\n", + "| int64 |\n", + "+-------------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+-------------------------------------------------------+\n", + "\n", + "+--------------------------------------------------------+\n", + "| exome.quality_metrics.allele_balance.alt_raw.bin_edges |\n", + "+--------------------------------------------------------+\n", + "| array |\n", + "+--------------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+--------------------------------------------------------+\n", + "\n", + "+-------------------------------------------------------+\n", + "| exome.quality_metrics.allele_balance.alt_raw.bin_freq |\n", + "+-------------------------------------------------------+\n", + "| array |\n", + "+-------------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+-------------------------------------------------------+\n", + "\n", + "+--------------------------------------------------------+\n", + "| exome.quality_metrics.allele_balance.alt_raw.n_smaller |\n", + "+--------------------------------------------------------+\n", + "| int64 |\n", + "+--------------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+--------------------------------------------------------+\n", + "\n", + "+-------------------------------------------------------+\n", + "| exome.quality_metrics.allele_balance.alt_raw.n_larger |\n", + "+-------------------------------------------------------+\n", + "| int64 |\n", + "+-------------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+-------------------------------------------------------+\n", + "\n", + "+--------------------------------------------------------+\n", + "| exome.quality_metrics.genotype_depth.all_adj.bin_edges |\n", + "+--------------------------------------------------------+\n", + "| array |\n", + "+--------------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+--------------------------------------------------------+\n", + "\n", + "+-------------------------------------------------------+\n", + "| exome.quality_metrics.genotype_depth.all_adj.bin_freq |\n", + "+-------------------------------------------------------+\n", + "| array |\n", + "+-------------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+-------------------------------------------------------+\n", + "\n", + "+--------------------------------------------------------+\n", + "| exome.quality_metrics.genotype_depth.all_adj.n_smaller |\n", + "+--------------------------------------------------------+\n", + "| int64 |\n", + "+--------------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+--------------------------------------------------------+\n", + "\n", + "+-------------------------------------------------------+\n", + "| exome.quality_metrics.genotype_depth.all_adj.n_larger |\n", + "+-------------------------------------------------------+\n", + "| int64 |\n", + "+-------------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+-------------------------------------------------------+\n", + "\n", + "+--------------------------------------------------------+\n", + "| exome.quality_metrics.genotype_depth.all_raw.bin_edges |\n", + "+--------------------------------------------------------+\n", + "| array |\n", + "+--------------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+--------------------------------------------------------+\n", + "\n", + "+-------------------------------------------------------+\n", + "| exome.quality_metrics.genotype_depth.all_raw.bin_freq |\n", + "+-------------------------------------------------------+\n", + "| array |\n", + "+-------------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+-------------------------------------------------------+\n", + "\n", + "+--------------------------------------------------------+\n", + "| exome.quality_metrics.genotype_depth.all_raw.n_smaller |\n", + "+--------------------------------------------------------+\n", + "| int64 |\n", + "+--------------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+--------------------------------------------------------+\n", + "\n", + "+-------------------------------------------------------+\n", + "| exome.quality_metrics.genotype_depth.all_raw.n_larger |\n", + "+-------------------------------------------------------+\n", + "| int64 |\n", + "+-------------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+-------------------------------------------------------+\n", + "\n", + "+--------------------------------------------------------+\n", + "| exome.quality_metrics.genotype_depth.alt_adj.bin_edges |\n", + "+--------------------------------------------------------+\n", + "| array |\n", + "+--------------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+--------------------------------------------------------+\n", + "\n", + "+-------------------------------------------------------+\n", + "| exome.quality_metrics.genotype_depth.alt_adj.bin_freq |\n", + "+-------------------------------------------------------+\n", + "| array |\n", + "+-------------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+-------------------------------------------------------+\n", + "\n", + "+--------------------------------------------------------+\n", + "| exome.quality_metrics.genotype_depth.alt_adj.n_smaller |\n", + "+--------------------------------------------------------+\n", + "| int64 |\n", + "+--------------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+--------------------------------------------------------+\n", + "\n", + "+-------------------------------------------------------+\n", + "| exome.quality_metrics.genotype_depth.alt_adj.n_larger |\n", + "+-------------------------------------------------------+\n", + "| int64 |\n", + "+-------------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+-------------------------------------------------------+\n", + "\n", + "+--------------------------------------------------------+\n", + "| exome.quality_metrics.genotype_depth.alt_raw.bin_edges |\n", + "+--------------------------------------------------------+\n", + "| array |\n", + "+--------------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+--------------------------------------------------------+\n", + "\n", + "+-------------------------------------------------------+\n", + "| exome.quality_metrics.genotype_depth.alt_raw.bin_freq |\n", + "+-------------------------------------------------------+\n", + "| array |\n", + "+-------------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+-------------------------------------------------------+\n", + "\n", + "+--------------------------------------------------------+\n", + "| exome.quality_metrics.genotype_depth.alt_raw.n_smaller |\n", + "+--------------------------------------------------------+\n", + "| int64 |\n", + "+--------------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+--------------------------------------------------------+\n", + "\n", + "+-------------------------------------------------------+\n", + "| exome.quality_metrics.genotype_depth.alt_raw.n_larger |\n", + "+-------------------------------------------------------+\n", + "| int64 |\n", + "+-------------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+-------------------------------------------------------+\n", + "\n", + "+----------------------------------------------------------+\n", + "| exome.quality_metrics.genotype_quality.all_adj.bin_edges |\n", + "+----------------------------------------------------------+\n", + "| array |\n", + "+----------------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+----------------------------------------------------------+\n", + "\n", + "+---------------------------------------------------------+\n", + "| exome.quality_metrics.genotype_quality.all_adj.bin_freq |\n", + "+---------------------------------------------------------+\n", + "| array |\n", + "+---------------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+---------------------------------------------------------+\n", + "\n", + "+----------------------------------------------------------+\n", + "| exome.quality_metrics.genotype_quality.all_adj.n_smaller |\n", + "+----------------------------------------------------------+\n", + "| int64 |\n", + "+----------------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+----------------------------------------------------------+\n", + "\n", + "+---------------------------------------------------------+\n", + "| exome.quality_metrics.genotype_quality.all_adj.n_larger |\n", + "+---------------------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+---------------------------------------------------------+\n", + "\n", + "+----------------------------------------------------------+\n", + "| exome.quality_metrics.genotype_quality.all_raw.bin_edges |\n", + "+----------------------------------------------------------+\n", + "| array |\n", + "+----------------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+----------------------------------------------------------+\n", + "\n", + "+---------------------------------------------------------+\n", + "| exome.quality_metrics.genotype_quality.all_raw.bin_freq |\n", + "+---------------------------------------------------------+\n", + "| array |\n", + "+---------------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+---------------------------------------------------------+\n", + "\n", + "+----------------------------------------------------------+\n", + "| exome.quality_metrics.genotype_quality.all_raw.n_smaller |\n", + "+----------------------------------------------------------+\n", + "| int64 |\n", + "+----------------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+----------------------------------------------------------+\n", + "\n", + "+---------------------------------------------------------+\n", + "| exome.quality_metrics.genotype_quality.all_raw.n_larger |\n", + "+---------------------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+---------------------------------------------------------+\n", + "\n", + "+----------------------------------------------------------+\n", + "| exome.quality_metrics.genotype_quality.alt_adj.bin_edges |\n", + "+----------------------------------------------------------+\n", + "| array |\n", + "+----------------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+----------------------------------------------------------+\n", + "\n", + "+---------------------------------------------------------+\n", + "| exome.quality_metrics.genotype_quality.alt_adj.bin_freq |\n", + "+---------------------------------------------------------+\n", + "| array |\n", + "+---------------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+---------------------------------------------------------+\n", + "\n", + "+----------------------------------------------------------+\n", + "| exome.quality_metrics.genotype_quality.alt_adj.n_smaller |\n", + "+----------------------------------------------------------+\n", + "| int64 |\n", + "+----------------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+----------------------------------------------------------+\n", + "\n", + "+---------------------------------------------------------+\n", + "| exome.quality_metrics.genotype_quality.alt_adj.n_larger |\n", + "+---------------------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+---------------------------------------------------------+\n", + "\n", + "+----------------------------------------------------------+\n", + "| exome.quality_metrics.genotype_quality.alt_raw.bin_edges |\n", + "+----------------------------------------------------------+\n", + "| array |\n", + "+----------------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+----------------------------------------------------------+\n", + "\n", + "+---------------------------------------------------------+\n", + "| exome.quality_metrics.genotype_quality.alt_raw.bin_freq |\n", + "+---------------------------------------------------------+\n", + "| array |\n", + "+---------------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+---------------------------------------------------------+\n", + "\n", + "+----------------------------------------------------------+\n", + "| exome.quality_metrics.genotype_quality.alt_raw.n_smaller |\n", + "+----------------------------------------------------------+\n", + "| int64 |\n", + "+----------------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+----------------------------------------------------------+\n", + "\n", + "+---------------------------------------------------------+\n", + "| exome.quality_metrics.genotype_quality.alt_raw.n_larger |\n", + "+---------------------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+---------------------------------------------------------+\n", + "\n", + "+--------------------------------------------+--------------------------------+\n", + "| exome.quality_metrics.site_quality_metrics | genome.colocated_variants.hgdp |\n", + "+--------------------------------------------+--------------------------------+\n", + "| array | array |\n", + "+--------------------------------------------+--------------------------------+\n", + "| NA | [] |\n", + "| NA | [] |\n", + "| NA | [] |\n", + "| NA | [] |\n", + "| NA | [] |\n", + "+--------------------------------------------+--------------------------------+\n", + "\n", + "+-------------------------------+-------------------------------+\n", + "| genome.colocated_variants.tgp | genome.colocated_variants.all |\n", + "+-------------------------------+-------------------------------+\n", + "| array | array |\n", + "+-------------------------------+-------------------------------+\n", + "| [] | [] |\n", + "| [] | [] |\n", + "| [] | [] |\n", + "| [] | [] |\n", + "| [] | [] |\n", + "+-------------------------------+-------------------------------+\n", + "\n", + "+----------------+------------------+---------------------+\n", + "| genome.subsets | genome.flags | genome.freq.hgdp.ac |\n", + "+----------------+------------------+---------------------+\n", + "| set | set | int32 |\n", + "+----------------+------------------+---------------------+\n", + "| {} | {\"lcr\",\"segdup\"} | 0 |\n", + "| {} | {\"lcr\",\"segdup\"} | 0 |\n", + "| {} | {\"lcr\",\"segdup\"} | 0 |\n", + "| {\"hgdp\"} | {\"lcr\",\"segdup\"} | 0 |\n", + "| {} | {\"lcr\",\"segdup\"} | 0 |\n", + "+----------------+------------------+---------------------+\n", + "\n", + "+-------------------------+---------------------+\n", + "| genome.freq.hgdp.ac_raw | genome.freq.hgdp.an |\n", + "+-------------------------+---------------------+\n", + "| int32 | int32 |\n", + "+-------------------------+---------------------+\n", + "| 0 | 812 |\n", + "| 0 | 1028 |\n", + "| 0 | 1154 |\n", + "| 1 | 1312 |\n", + "| 0 | 1300 |\n", + "+-------------------------+---------------------+\n", + "\n", + "+-----------------------------------+-----------------------------------+\n", + "| genome.freq.hgdp.hemizygote_count | genome.freq.hgdp.homozygote_count |\n", + "+-----------------------------------+-----------------------------------+\n", + "| int32 | int32 |\n", + "+-----------------------------------+-----------------------------------+\n", + "| 0 | 0 |\n", + "| 0 | 0 |\n", + "| 0 | 0 |\n", + "| 0 | 0 |\n", + "| 0 | 0 |\n", + "+-----------------------------------+-----------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| genome.freq.hgdp.ancestry_groups |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+--------------------------------------+---------------------------------------+\n", + "| genome.age_distribution.het.bin_freq | genome.age_distribution.het.n_smaller |\n", + "+--------------------------------------+---------------------------------------+\n", + "| array | int64 |\n", + "+--------------------------------------+---------------------------------------+\n", + "| [0,0,0,0,0,0,0,0,0,0] | 0 |\n", + "| [0,1,0,0,1,0,0,0,0,0] | 0 |\n", + "| [0,0,1,0,0,0,0,0,0,0] | 0 |\n", + "| [0,0,0,0,0,0,0,0,0,0] | 0 |\n", + "| [0,0,1,0,1,0,0,0,0,0] | 0 |\n", + "+--------------------------------------+---------------------------------------+\n", + "\n", + "+--------------------------------------+\n", + "| genome.age_distribution.het.n_larger |\n", + "+--------------------------------------+\n", + "| int64 |\n", + "+--------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+--------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| genome.age_distribution.hom.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+--------------------------------------+---------------------------------------+\n", + "| genome.age_distribution.hom.bin_freq | genome.age_distribution.hom.n_smaller |\n", + "+--------------------------------------+---------------------------------------+\n", + "| array | int64 |\n", + "+--------------------------------------+---------------------------------------+\n", + "| [0,0,0,0,0,0,0,0,0,0] | 0 |\n", + "| [0,0,0,0,0,0,0,0,0,0] | 0 |\n", + "| [0,0,0,0,0,0,0,0,0,0] | 0 |\n", + "| [0,0,0,0,0,0,0,0,0,0] | 0 |\n", + "| [0,0,0,0,0,0,0,0,0,0] | 0 |\n", + "+--------------------------------------+---------------------------------------+\n", + "\n", + "+--------------------------------------+-------------------+\n", + "| genome.age_distribution.hom.n_larger | genome.filters |\n", + "+--------------------------------------+-------------------+\n", + "| int64 | set |\n", + "+--------------------------------------+-------------------+\n", + "| 0 | {\"AC0\",\"AS_VQSR\"} |\n", + "| 0 | {\"AS_VQSR\"} |\n", + "| 0 | {\"AS_VQSR\"} |\n", + "| 0 | {\"AS_VQSR\"} |\n", + "| 0 | {\"AS_VQSR\"} |\n", + "+--------------------------------------+-------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| genome.quality_metrics.allele_balance.alt_adj.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+--------------------------------------------------------+\n", + "| genome.quality_metrics.allele_balance.alt_adj.bin_freq |\n", + "+--------------------------------------------------------+\n", + "| array |\n", + "+--------------------------------------------------------+\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "+--------------------------------------------------------+\n", + "\n", + "+---------------------------------------------------------+\n", + "| genome.quality_metrics.allele_balance.alt_adj.n_smaller |\n", + "+---------------------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+---------------------------------------------------------+\n", + "\n", + "+--------------------------------------------------------+\n", + "| genome.quality_metrics.allele_balance.alt_adj.n_larger |\n", + "+--------------------------------------------------------+\n", + "| int64 |\n", + "+--------------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+--------------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| genome.quality_metrics.allele_balance.alt_raw.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+--------------------------------------------------------+\n", + "| genome.quality_metrics.allele_balance.alt_raw.bin_freq |\n", + "+--------------------------------------------------------+\n", + "| array |\n", + "+--------------------------------------------------------+\n", + "| [0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,3,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "+--------------------------------------------------------+\n", + "\n", + "+---------------------------------------------------------+\n", + "| genome.quality_metrics.allele_balance.alt_raw.n_smaller |\n", + "+---------------------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+---------------------------------------------------------+\n", + "\n", + "+--------------------------------------------------------+\n", + "| genome.quality_metrics.allele_balance.alt_raw.n_larger |\n", + "+--------------------------------------------------------+\n", + "| int64 |\n", + "+--------------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+--------------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| genome.quality_metrics.genotype_depth.all_adj.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| genome.quality_metrics.genotype_depth.all_adj.bin_freq |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0,0,16,121,475,973,1736,2409,2950,3134,2995,2803,2514,2194,1773,1335,911... |\n", + "| [0,0,9,69,387,913,1737,2859,3749,4216,4302,4223,3745,3280,2661,1954,1380,... |\n", + "| [0,0,8,40,264,690,1525,2691,3754,4574,4813,4940,4490,3907,3242,2387,1704,... |\n", + "| [0,0,4,22,120,354,999,1950,3037,4168,4734,5196,5380,4766,4238,3206,2398,1... |\n", + "| [0,0,2,23,108,320,888,1844,3110,4447,5361,6012,6379,5879,5289,4273,3400,2... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+---------------------------------------------------------+\n", + "| genome.quality_metrics.genotype_depth.all_adj.n_smaller |\n", + "+---------------------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+---------------------------------------------------------+\n", + "\n", + "+--------------------------------------------------------+\n", + "| genome.quality_metrics.genotype_depth.all_adj.n_larger |\n", + "+--------------------------------------------------------+\n", + "| int64 |\n", + "+--------------------------------------------------------+\n", + "| 527 |\n", + "| 888 |\n", + "| 1232 |\n", + "| 2440 |\n", + "| 3622 |\n", + "+--------------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| genome.quality_metrics.genotype_depth.all_raw.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| genome.quality_metrics.genotype_depth.all_raw.bin_freq |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [10,66,471,1445,2990,5808,6940,7906,7262,6236,4943,3919,3129,2527,1993,14... |\n", + "| [7,37,269,903,1948,4127,5519,7075,7322,6972,6095,5249,4374,3624,2893,2106... |\n", + "| [2,24,149,466,1201,2614,4035,5568,6331,6725,6267,5855,5101,4268,3465,2554... |\n", + "| [1,9,42,122,294,787,1537,2717,3751,4972,5404,5762,5875,5161,4526,3415,252... |\n", + "| [2,6,39,104,247,638,1325,2417,3685,5047,5927,6484,6763,6192,5525,4439,351... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+---------------------------------------------------------+\n", + "| genome.quality_metrics.genotype_depth.all_raw.n_smaller |\n", + "+---------------------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+---------------------------------------------------------+\n", + "\n", + "+--------------------------------------------------------+\n", + "| genome.quality_metrics.genotype_depth.all_raw.n_larger |\n", + "+--------------------------------------------------------+\n", + "| int64 |\n", + "+--------------------------------------------------------+\n", + "| 744 |\n", + "| 1130 |\n", + "| 1487 |\n", + "| 2622 |\n", + "| 3743 |\n", + "+--------------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| genome.quality_metrics.genotype_depth.alt_adj.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+--------------------------------------------------------+\n", + "| genome.quality_metrics.genotype_depth.alt_adj.bin_freq |\n", + "+--------------------------------------------------------+\n", + "| array |\n", + "+--------------------------------------------------------+\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,1,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "+--------------------------------------------------------+\n", + "\n", + "+---------------------------------------------------------+\n", + "| genome.quality_metrics.genotype_depth.alt_adj.n_smaller |\n", + "+---------------------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+---------------------------------------------------------+\n", + "\n", + "+--------------------------------------------------------+\n", + "| genome.quality_metrics.genotype_depth.alt_adj.n_larger |\n", + "+--------------------------------------------------------+\n", + "| int64 |\n", + "+--------------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+--------------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| genome.quality_metrics.genotype_depth.alt_raw.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+--------------------------------------------------------+\n", + "| genome.quality_metrics.genotype_depth.alt_raw.bin_freq |\n", + "+--------------------------------------------------------+\n", + "| array |\n", + "+--------------------------------------------------------+\n", + "| [0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,2,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,3,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,1,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "+--------------------------------------------------------+\n", + "\n", + "+---------------------------------------------------------+\n", + "| genome.quality_metrics.genotype_depth.alt_raw.n_smaller |\n", + "+---------------------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+---------------------------------------------------------+\n", + "\n", + "+--------------------------------------------------------+\n", + "| genome.quality_metrics.genotype_depth.alt_raw.n_larger |\n", + "+--------------------------------------------------------+\n", + "| int64 |\n", + "+--------------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+--------------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| genome.quality_metrics.genotype_quality.all_adj.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| genome.quality_metrics.genotype_quality.all_adj.bin_freq |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0,0,0,0,23215,2435,1647,594,176,118,49,29,19,9,11,6,5,2,4,2] |\n", + "| [0,0,0,0,29394,3741,2868,1281,401,358,163,63,69,31,18,20,10,4,5,15] |\n", + "| [0,0,0,0,31093,4532,3696,1752,595,585,261,88,82,59,17,26,14,5,3,9] |\n", + "| [0,0,0,0,25677,6107,5433,3528,1753,1702,1130,485,518,282,119,125,77,35,29... |\n", + "| [0,0,0,0,25460,7448,6933,4978,2881,2833,2048,1038,1129,685,321,364,212,90... |\n", + "+------------------------------------------------------------------------------+\n", "\n", - "+-------------------------+-----+-----------+---------------+\n", - "| most_severe_consequence | lof | lof_flags | exp_prop_mean |\n", - "+-------------------------+-----+-----------+---------------+\n", - "| str | str | str | float64 |\n", - "+-------------------------+-----+-----------+---------------+\n", - "| \"start_lost\" | NA | NA | NaN |\n", - "| \"start_lost\" | NA | NA | NaN |\n", - "| \"start_lost\" | NA | NA | NaN |\n", - "| \"start_lost\" | NA | NA | NaN |\n", - "| \"start_lost\" | NA | NA | NaN |\n", - "+-------------------------+-----+-----------+---------------+\n", + "+-----------------------------------------------------------+\n", + "| genome.quality_metrics.genotype_quality.all_adj.n_smaller |\n", + "+-----------------------------------------------------------+\n", + "| int64 |\n", + "+-----------------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+-----------------------------------------------------------+\n", "\n", - "+--------------------------------------------+\n", - "| Adipose_Subcutaneous.transcript_expression |\n", - "+--------------------------------------------+\n", - "| float64 |\n", - "+--------------------------------------------+\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "+--------------------------------------------+\n", + "+----------------------------------------------------------+\n", + "| genome.quality_metrics.genotype_quality.all_adj.n_larger |\n", + "+----------------------------------------------------------+\n", + "| int64 |\n", + "+----------------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+----------------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| genome.quality_metrics.genotype_quality.all_raw.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| genome.quality_metrics.genotype_quality.all_raw.bin_freq |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [14149,7330,6840,3904,23217,2436,1647,594,176,118,49,29,19,9,11,6,5,2,4,2] |\n", + "| [10121,5441,5610,3838,29394,3741,2868,1281,401,358,163,63,69,31,18,20,10,... |\n", + "| [6578,3782,4202,3336,31093,4532,3696,1752,595,585,261,88,82,59,17,26,14,5... |\n", + "| [1429,1382,1901,2026,25677,6108,5433,3528,1753,1702,1130,485,518,282,119,... |\n", + "| [995,1036,1539,1788,25460,7448,6933,4978,2881,2833,2048,1038,1129,685,321... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+-----------------------------------------------------------+\n", + "| genome.quality_metrics.genotype_quality.all_raw.n_smaller |\n", + "+-----------------------------------------------------------+\n", + "| int64 |\n", + "+-----------------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+-----------------------------------------------------------+\n", + "\n", + "+----------------------------------------------------------+\n", + "| genome.quality_metrics.genotype_quality.all_raw.n_larger |\n", + "+----------------------------------------------------------+\n", + "| int64 |\n", + "+----------------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+----------------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| genome.quality_metrics.genotype_quality.alt_adj.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+----------------------------------------------------------+\n", + "| genome.quality_metrics.genotype_quality.alt_adj.bin_freq |\n", + "+----------------------------------------------------------+\n", + "| array |\n", + "+----------------------------------------------------------+\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0] |\n", + "+----------------------------------------------------------+\n", + "\n", + "+-----------------------------------------------------------+\n", + "| genome.quality_metrics.genotype_quality.alt_adj.n_smaller |\n", + "+-----------------------------------------------------------+\n", + "| int64 |\n", + "+-----------------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+-----------------------------------------------------------+\n", + "\n", + "+----------------------------------------------------------+\n", + "| genome.quality_metrics.genotype_quality.alt_adj.n_larger |\n", + "+----------------------------------------------------------+\n", + "| int64 |\n", + "+----------------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+----------------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| genome.quality_metrics.genotype_quality.alt_raw.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+----------------------------------------------------------+\n", + "| genome.quality_metrics.genotype_quality.alt_raw.bin_freq |\n", + "+----------------------------------------------------------+\n", + "| array |\n", + "+----------------------------------------------------------+\n", + "| [0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,2,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,1,2,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0] |\n", + "+----------------------------------------------------------+\n", + "\n", + "+-----------------------------------------------------------+\n", + "| genome.quality_metrics.genotype_quality.alt_raw.n_smaller |\n", + "+-----------------------------------------------------------+\n", + "| int64 |\n", + "+-----------------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+-----------------------------------------------------------+\n", + "\n", + "+----------------------------------------------------------+\n", + "| genome.quality_metrics.genotype_quality.alt_raw.n_larger |\n", + "+----------------------------------------------------------+\n", + "| int64 |\n", + "+----------------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+----------------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| genome.quality_metrics.site_quality_metrics |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [(\"SiteQuality\",9.60e+01),(\"inbreeding_coeff\",-1.65e-05),(\"AS_MQ\",3.51e+0... |\n", + "| [(\"SiteQuality\",1.80e+02),(\"inbreeding_coeff\",-3.15e-05),(\"AS_MQ\",3.83e+0... |\n", + "| [(\"SiteQuality\",9.70e+01),(\"inbreeding_coeff\",-8.24e-06),(\"AS_MQ\",3.52e+0... |\n", + "| [(\"SiteQuality\",2.20e+02),(\"inbreeding_coeff\",-4.64e-05),(\"AS_MQ\",3.48e+0... |\n", + "| [(\"SiteQuality\",2.92e+02),(\"inbreeding_coeff\",-2.41e-05),(\"AS_MQ\",3.61e+0... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+------------------+---------------------------------+\n", + "| rsids | in_silico_predictors.cadd.phred |\n", + "+------------------+---------------------------------+\n", + "| set | float32 |\n", + "+------------------+---------------------------------+\n", + "| {\"rs1639542312\"} | 8.97e+00 |\n", + "| {\"rs1639542418\"} | 8.90e+00 |\n", + "| NA | 8.90e+00 |\n", + "| {\"rs892501864\"} | 8.88e+00 |\n", + "| {\"rs1570391741\"} | 8.53e+00 |\n", + "+------------------+---------------------------------+\n", + "\n", + "+-------------------------------------+--------------------------------+\n", + "| in_silico_predictors.cadd.raw_score | in_silico_predictors.revel_max |\n", + "+-------------------------------------+--------------------------------+\n", + "| float32 | float64 |\n", + "+-------------------------------------+--------------------------------+\n", + "| 7.57e-01 | NA |\n", + "| 7.49e-01 | NA |\n", + "| 7.48e-01 | NA |\n", + "| 7.46e-01 | NA |\n", + "| 7.09e-01 | NA |\n", + "+-------------------------------------+--------------------------------+\n", + "\n", + "+--------------------------------------+\n", + "| in_silico_predictors.spliceai_ds_max |\n", + "+--------------------------------------+\n", + "| float32 |\n", + "+--------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+--------------------------------------+\n", + "\n", + "+------------------------------------------+-----------------------------+\n", + "| in_silico_predictors.pangolin_largest_ds | in_silico_predictors.phylop |\n", + "+------------------------------------------+-----------------------------+\n", + "| float64 | float64 |\n", + "+------------------------------------------+-----------------------------+\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "+------------------------------------------+-----------------------------+\n", + "\n", + "+-------------------------------+-----------------------------------+\n", + "| in_silico_predictors.sift_max | in_silico_predictors.polyphen_max |\n", + "+-------------------------------+-----------------------------------+\n", + "| float64 | float64 |\n", + "+-------------------------------+-----------------------------------+\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "+-------------------------------+-----------------------------------+\n", "\n", - "+--------------------------------------------+\n", - "| Adipose_Subcutaneous.expression_proportion |\n", - "+--------------------------------------------+\n", - "| float64 |\n", - "+--------------------------------------------+\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "+--------------------------------------------+\n", + "+---------------+------------------------+----------------------------+\n", + "| variant_id | colocated_variants.all | colocated_variants.non_ukb |\n", + "+---------------+------------------------+----------------------------+\n", + "| str | array | array |\n", + "+---------------+------------------------+----------------------------+\n", + "| \"1-10031-T-C\" | [] | [] |\n", + "| \"1-10037-T-C\" | [] | [] |\n", + "| \"1-10043-T-C\" | [] | [] |\n", + "| \"1-10055-T-C\" | [] | [] |\n", + "| \"1-10057-A-C\" | [] | [] |\n", + "+---------------+------------------------+----------------------------+\n", "\n", - "+------------------------------------------------+\n", - "| Adipose_Visceral_Omentum.transcript_expression |\n", - "+------------------------------------------------+\n", - "| float64 |\n", - "+------------------------------------------------+\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "+------------------------------------------------+\n", + "+-------------------------+------------------------+-------------------+\n", + "| colocated_variants.hgdp | colocated_variants.tgp | joint.freq.all.ac |\n", + "+-------------------------+------------------------+-------------------+\n", + "| array | array | int32 |\n", + "+-------------------------+------------------------+-------------------+\n", + "| [] | [] | 0 |\n", + "| [] | [] | 2 |\n", + "| [] | [] | 1 |\n", + "| [] | [] | 1 |\n", + "| [] | [] | 3 |\n", + "+-------------------------+------------------------+-------------------+\n", "\n", - "+------------------------------------------------+\n", - "| Adipose_Visceral_Omentum.expression_proportion |\n", - "+------------------------------------------------+\n", - "| float64 |\n", - "+------------------------------------------------+\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "+------------------------------------------------+\n", + "+-----------------------+-------------------+---------------------------------+\n", + "| joint.freq.all.ac_raw | joint.freq.all.an | joint.freq.all.hemizygote_count |\n", + "+-----------------------+-------------------+---------------------------------+\n", + "| int32 | int32 | int32 |\n", + "+-----------------------+-------------------+---------------------------------+\n", + "| 2 | 56642 | 0 |\n", + "| 4 | 76882 | 0 |\n", + "| 1 | 85634 | 0 |\n", + "| 5 | 94224 | 0 |\n", + "| 3 | 113536 | 0 |\n", + "+-----------------------+-------------------+---------------------------------+\n", "\n", - "+------------------------------------+------------------------------------+\n", - "| AdrenalGland.transcript_expression | AdrenalGland.expression_proportion |\n", - "+------------------------------------+------------------------------------+\n", - "| float64 | float64 |\n", - "+------------------------------------+------------------------------------+\n", - "| 0.00e+00 | 0.00e+00 |\n", - "| 0.00e+00 | 0.00e+00 |\n", - "| 0.00e+00 | 0.00e+00 |\n", - "| 0.00e+00 | 0.00e+00 |\n", - "| 0.00e+00 | 0.00e+00 |\n", - "+------------------------------------+------------------------------------+\n", + "+---------------------------------+\n", + "| joint.freq.all.homozygote_count |\n", + "+---------------------------------+\n", + "| int32 |\n", + "+---------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+---------------------------------+\n", "\n", - "+------------------------------------+------------------------------------+\n", - "| Artery_Aorta.transcript_expression | Artery_Aorta.expression_proportion |\n", - "+------------------------------------+------------------------------------+\n", - "| float64 | float64 |\n", - "+------------------------------------+------------------------------------+\n", - "| 0.00e+00 | 0.00e+00 |\n", - "| 0.00e+00 | 0.00e+00 |\n", - "| 0.00e+00 | 0.00e+00 |\n", - "| 0.00e+00 | 0.00e+00 |\n", - "| 0.00e+00 | 0.00e+00 |\n", - "+------------------------------------+------------------------------------+\n", + "+------------------------------------------------------------------------------+\n", + "| joint.freq.all.ancestry_groups |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.... |\n", + "| [(4.32e-06,1.62e-06),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.... |\n", + "| [(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.... |\n", + "| [(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.... |\n", + "| [(7.02e-06,2.95e-06),(6.27e-06,2.35e-06),(0.00e+00,0.00e+00),(0.00e+00,0.... |\n", + "+------------------------------------------------------------------------------+\n", "\n", - "+---------------------------------------+-------------------------------------+\n", - "| Artery_Coronary.expression_proportion | Artery_Tibial.transcript_expression |\n", - "+---------------------------------------+-------------------------------------+\n", - "| float64 | float64 |\n", - "+---------------------------------------+-------------------------------------+\n", - "| 0.00e+00 | 0.00e+00 |\n", - "| 0.00e+00 | 0.00e+00 |\n", - "| 0.00e+00 | 0.00e+00 |\n", - "| 0.00e+00 | 0.00e+00 |\n", - "| 0.00e+00 | 0.00e+00 |\n", - "+---------------------------------------+-------------------------------------+\n", + "+------------------------+--------------------------------+\n", + "| joint.fafmax.faf95_max | joint.fafmax.faf95_max_gen_anc |\n", + "+------------------------+--------------------------------+\n", + "| float64 | str |\n", + "+------------------------+--------------------------------+\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| 6.27e-06 | \"nfe\" |\n", + "+------------------------+--------------------------------+\n", "\n", - "+-------------------------------------+-------------------------------+\n", - "| Artery_Tibial.expression_proportion | Bladder.transcript_expression |\n", - "+-------------------------------------+-------------------------------+\n", - "| float64 | float64 |\n", - "+-------------------------------------+-------------------------------+\n", - "| 0.00e+00 | 0.00e+00 |\n", - "| 0.00e+00 | 0.00e+00 |\n", - "| 0.00e+00 | 0.00e+00 |\n", - "| 0.00e+00 | 0.00e+00 |\n", - "| 0.00e+00 | 0.00e+00 |\n", - "+-------------------------------------+-------------------------------+\n", + "+------------------------+--------------------------------+-----------------+\n", + "| joint.fafmax.faf99_max | joint.fafmax.faf99_max_gen_anc | joint.grpmax.AC |\n", + "+------------------------+--------------------------------+-----------------+\n", + "| float64 | str | int32 |\n", + "+------------------------+--------------------------------+-----------------+\n", + "| NA | NA | NA |\n", + "| NA | NA | 1 |\n", + "| NA | NA | 1 |\n", + "| NA | NA | NA |\n", + "| 2.35e-06 | \"nfe\" | 2 |\n", + "+------------------------+--------------------------------+-----------------+\n", "\n", - "+-------------------------------+--------------------------------------+\n", - "| Bladder.expression_proportion | Brain_Amygdala.transcript_expression |\n", - "+-------------------------------+--------------------------------------+\n", - "| float64 | float64 |\n", - "+-------------------------------+--------------------------------------+\n", - "| 0.00e+00 | 0.00e+00 |\n", - "| 0.00e+00 | 0.00e+00 |\n", - "| 0.00e+00 | 0.00e+00 |\n", - "| 0.00e+00 | 0.00e+00 |\n", - "| 0.00e+00 | 0.00e+00 |\n", - "+-------------------------------+--------------------------------------+\n", + "+-----------------+-----------------+-------------------------------+\n", + "| joint.grpmax.AF | joint.grpmax.AN | joint.grpmax.homozygote_count |\n", + "+-----------------+-----------------+-------------------------------+\n", + "| float64 | int32 | int32 |\n", + "+-----------------+-----------------+-------------------------------+\n", + "| NA | NA | NA |\n", + "| 4.07e-04 | 2456 | 0 |\n", + "| 4.39e-05 | 22760 | 0 |\n", + "| NA | NA | NA |\n", + "| 3.78e-05 | 52912 | 0 |\n", + "+-----------------+-----------------+-------------------------------+\n", "\n", - "+--------------------------------------+\n", - "| Brain_Amygdala.expression_proportion |\n", - "+--------------------------------------+\n", - "| float64 |\n", - "+--------------------------------------+\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "+--------------------------------------+\n", + "+----------------------+\n", + "| joint.grpmax.gen_anc |\n", + "+----------------------+\n", + "| str |\n", + "+----------------------+\n", + "| NA |\n", + "| \"eas\" |\n", + "| \"afr\" |\n", + "| NA |\n", + "| \"nfe\" |\n", + "+----------------------+\n", "\n", - "+----------------------------------------------------------+\n", - "| Brain_Anteriorcingulatecortex_BA24.transcript_expression |\n", - "+----------------------------------------------------------+\n", - "| float64 |\n", - "+----------------------------------------------------------+\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "+----------------------------------------------------------+\n", + "+------------------------------------------------------------------------------+\n", + "| joint.histograms.qual_hists.gq_hist_all.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| joint.histograms.qual_hists.gq_hist_all.bin_freq |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0,0,0,0,23215,2435,1647,594,176,118,49,29,19,9,11,6,5,2,4,2] |\n", + "| [0,0,0,0,29394,3741,2868,1281,401,358,163,63,69,31,18,20,10,4,5,15] |\n", + "| [0,0,0,0,31093,4532,3696,1752,595,585,261,88,82,59,17,26,14,5,3,9] |\n", + "| [0,0,0,0,25677,6107,5433,3528,1753,1702,1130,485,518,282,119,125,77,35,29... |\n", + "| [0,0,0,0,25460,7448,6933,4978,2881,2833,2048,1038,1129,685,321,364,212,90... |\n", + "+------------------------------------------------------------------------------+\n", "\n", - "+----------------------------------------------------------+\n", - "| Brain_Anteriorcingulatecortex_BA24.expression_proportion |\n", - "+----------------------------------------------------------+\n", - "| float64 |\n", - "+----------------------------------------------------------+\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "+----------------------------------------------------------+\n", + "+---------------------------------------------------+\n", + "| joint.histograms.qual_hists.gq_hist_all.n_smaller |\n", + "+---------------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+---------------------------------------------------+\n", "\n", "+--------------------------------------------------+\n", - "| Brain_Caudate_basalganglia.transcript_expression |\n", + "| joint.histograms.qual_hists.gq_hist_all.n_larger |\n", "+--------------------------------------------------+\n", - "| float64 |\n", + "| int64 |\n", "+--------------------------------------------------+\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", "+--------------------------------------------------+\n", "\n", + "+------------------------------------------------------------------------------+\n", + "| joint.histograms.qual_hists.dp_hist_all.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| joint.histograms.qual_hists.dp_hist_all.bin_freq |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0,0,16,121,475,973,1736,2409,2950,3134,2995,2803,2514,2194,1773,1335,911... |\n", + "| [0,0,9,69,387,913,1737,2859,3749,4216,4302,4223,3745,3280,2661,1954,1380,... |\n", + "| [0,0,8,40,264,690,1525,2691,3754,4574,4813,4940,4490,3907,3242,2387,1704,... |\n", + "| [0,0,4,22,120,354,999,1950,3037,4168,4734,5196,5380,4766,4238,3206,2398,1... |\n", + "| [0,0,2,23,108,320,888,1844,3110,4447,5361,6012,6379,5879,5289,4273,3400,2... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+---------------------------------------------------+\n", + "| joint.histograms.qual_hists.dp_hist_all.n_smaller |\n", + "+---------------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+---------------------------------------------------+\n", + "\n", "+--------------------------------------------------+\n", - "| Brain_Caudate_basalganglia.expression_proportion |\n", + "| joint.histograms.qual_hists.dp_hist_all.n_larger |\n", "+--------------------------------------------------+\n", - "| float64 |\n", + "| int64 |\n", "+--------------------------------------------------+\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", + "| 527 |\n", + "| 888 |\n", + "| 1232 |\n", + "| 2440 |\n", + "| 3622 |\n", "+--------------------------------------------------+\n", "\n", + "+------------------------------------------------------------------------------+\n", + "| joint.histograms.qual_hists.gq_hist_alt.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", "+--------------------------------------------------+\n", - "| Brain_CerebellarHemisphere.transcript_expression |\n", + "| joint.histograms.qual_hists.gq_hist_alt.bin_freq |\n", "+--------------------------------------------------+\n", - "| float64 |\n", + "| array |\n", "+--------------------------------------------------+\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0] |\n", "+--------------------------------------------------+\n", "\n", + "+---------------------------------------------------+\n", + "| joint.histograms.qual_hists.gq_hist_alt.n_smaller |\n", + "+---------------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+---------------------------------------------------+\n", + "\n", "+--------------------------------------------------+\n", - "| Brain_CerebellarHemisphere.expression_proportion |\n", + "| joint.histograms.qual_hists.gq_hist_alt.n_larger |\n", "+--------------------------------------------------+\n", - "| float64 |\n", + "| int64 |\n", "+--------------------------------------------------+\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", "+--------------------------------------------------+\n", "\n", - "+----------------------------------------+\n", - "| Brain_Cerebellum.transcript_expression |\n", - "+----------------------------------------+\n", - "| float64 |\n", - "+----------------------------------------+\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "+----------------------------------------+\n", - "\n", - "+----------------------------------------+------------------------------------+\n", - "| Brain_Cerebellum.expression_proportion | Brain_Cortex.transcript_expression |\n", - "+----------------------------------------+------------------------------------+\n", - "| float64 | float64 |\n", - "+----------------------------------------+------------------------------------+\n", - "| 0.00e+00 | 0.00e+00 |\n", - "| 0.00e+00 | 0.00e+00 |\n", - "| 0.00e+00 | 0.00e+00 |\n", - "| 0.00e+00 | 0.00e+00 |\n", - "| 0.00e+00 | 0.00e+00 |\n", - "+----------------------------------------+------------------------------------+\n", - "\n", - "+------------------------------------+\n", - "| Brain_Cortex.expression_proportion |\n", - "+------------------------------------+\n", - "| float64 |\n", - "+------------------------------------+\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "+------------------------------------+\n", - "\n", - "+-----------------------------------------------+\n", - "| Brain_FrontalCortex_BA9.transcript_expression |\n", - "+-----------------------------------------------+\n", - "| float64 |\n", - "+-----------------------------------------------+\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "+-----------------------------------------------+\n", - "\n", - "+-----------------------------------------------+\n", - "| Brain_FrontalCortex_BA9.expression_proportion |\n", - "+-----------------------------------------------+\n", - "| float64 |\n", - "+-----------------------------------------------+\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "+-----------------------------------------------+\n", - "\n", - "+-----------------------------------------+\n", - "| Brain_Hippocampus.transcript_expression |\n", - "+-----------------------------------------+\n", - "| float64 |\n", - "+-----------------------------------------+\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "+-----------------------------------------+\n", - "\n", - "+-----------------------------------------+\n", - "| Brain_Hippocampus.expression_proportion |\n", - "+-----------------------------------------+\n", - "| float64 |\n", - "+-----------------------------------------+\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "+-----------------------------------------+\n", + "+------------------------------------------------------------------------------+\n", + "| joint.histograms.qual_hists.dp_hist_alt.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", "\n", - "+------------------------------------------+\n", - "| Brain_Hypothalamus.transcript_expression |\n", - "+------------------------------------------+\n", - "| float64 |\n", - "+------------------------------------------+\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "+------------------------------------------+\n", + "+--------------------------------------------------+\n", + "| joint.histograms.qual_hists.dp_hist_alt.bin_freq |\n", + "+--------------------------------------------------+\n", + "| array |\n", + "+--------------------------------------------------+\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,1,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "+--------------------------------------------------+\n", "\n", - "+------------------------------------------+\n", - "| Brain_Hypothalamus.expression_proportion |\n", - "+------------------------------------------+\n", - "| float64 |\n", - "+------------------------------------------+\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "+------------------------------------------+\n", + "+---------------------------------------------------+\n", + "| joint.histograms.qual_hists.dp_hist_alt.n_smaller |\n", + "+---------------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+---------------------------------------------------+\n", "\n", - "+-----------------------------------------------------------+\n", - "| Brain_Nucleusaccumbens_basalganglia.transcript_expression |\n", - "+-----------------------------------------------------------+\n", - "| float64 |\n", - "+-----------------------------------------------------------+\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "+-----------------------------------------------------------+\n", + "+--------------------------------------------------+\n", + "| joint.histograms.qual_hists.dp_hist_alt.n_larger |\n", + "+--------------------------------------------------+\n", + "| int64 |\n", + "+--------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+--------------------------------------------------+\n", "\n", - "+-----------------------------------------------------------+\n", - "| Brain_Nucleusaccumbens_basalganglia.expression_proportion |\n", - "+-----------------------------------------------------------+\n", - "| float64 |\n", - "+-----------------------------------------------------------+\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "+-----------------------------------------------------------+\n", + "+------------------------------------------------------------------------------+\n", + "| joint.histograms.qual_hists.ab_hist_alt.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "+------------------------------------------------------------------------------+\n", "\n", "+--------------------------------------------------+\n", - "| Brain_Putamen_basalganglia.transcript_expression |\n", + "| joint.histograms.qual_hists.ab_hist_alt.bin_freq |\n", "+--------------------------------------------------+\n", - "| float64 |\n", + "| array |\n", "+--------------------------------------------------+\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", "+--------------------------------------------------+\n", "\n", + "+---------------------------------------------------+\n", + "| joint.histograms.qual_hists.ab_hist_alt.n_smaller |\n", + "+---------------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+---------------------------------------------------+\n", + "\n", "+--------------------------------------------------+\n", - "| Brain_Putamen_basalganglia.expression_proportion |\n", + "| joint.histograms.qual_hists.ab_hist_alt.n_larger |\n", "+--------------------------------------------------+\n", - "| float64 |\n", + "| int64 |\n", "+--------------------------------------------------+\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", "+--------------------------------------------------+\n", "\n", - "+----------------------------------------------------+\n", - "| Brain_Spinalcord_cervicalc_1.transcript_expression |\n", - "+----------------------------------------------------+\n", - "| float64 |\n", - "+----------------------------------------------------+\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "+----------------------------------------------------+\n", + "+------------------------------------------------------------------------------+\n", + "| joint.histograms.raw_qual_hists.gq_hist_all.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", "\n", - "+----------------------------------------------------+\n", - "| Brain_Spinalcord_cervicalc_1.expression_proportion |\n", - "+----------------------------------------------------+\n", - "| float64 |\n", - "+----------------------------------------------------+\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "+----------------------------------------------------+\n", + "+------------------------------------------------------------------------------+\n", + "| joint.histograms.raw_qual_hists.gq_hist_all.bin_freq |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [14149,7330,6840,3904,23217,2436,1647,594,176,118,49,29,19,9,11,6,5,2,4,2] |\n", + "| [10121,5441,5610,3838,29394,3741,2868,1281,401,358,163,63,69,31,18,20,10,... |\n", + "| [6578,3782,4202,3336,31093,4532,3696,1752,595,585,261,88,82,59,17,26,14,5... |\n", + "| [1429,1382,1901,2026,25677,6108,5433,3528,1753,1702,1130,485,518,282,119,... |\n", + "| [995,1036,1539,1788,25460,7448,6933,4978,2881,2833,2048,1038,1129,685,321... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+-------------------------------------------------------+\n", + "| joint.histograms.raw_qual_hists.gq_hist_all.n_smaller |\n", + "+-------------------------------------------------------+\n", + "| int64 |\n", + "+-------------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+-------------------------------------------------------+\n", + "\n", + "+------------------------------------------------------+\n", + "| joint.histograms.raw_qual_hists.gq_hist_all.n_larger |\n", + "+------------------------------------------------------+\n", + "| int64 |\n", + "+------------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+------------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| joint.histograms.raw_qual_hists.dp_hist_all.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| joint.histograms.raw_qual_hists.dp_hist_all.bin_freq |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [10,66,471,1445,2990,5808,6940,7906,7262,6236,4943,3919,3129,2527,1993,14... |\n", + "| [7,37,269,903,1948,4127,5519,7075,7322,6972,6095,5249,4374,3624,2893,2106... |\n", + "| [2,24,149,466,1201,2614,4035,5568,6331,6725,6267,5855,5101,4268,3465,2554... |\n", + "| [1,9,42,122,294,787,1537,2717,3751,4972,5404,5762,5875,5161,4526,3415,252... |\n", + "| [2,6,39,104,247,638,1325,2417,3685,5047,5927,6484,6763,6192,5525,4439,351... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+-------------------------------------------------------+\n", + "| joint.histograms.raw_qual_hists.dp_hist_all.n_smaller |\n", + "+-------------------------------------------------------+\n", + "| int64 |\n", + "+-------------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+-------------------------------------------------------+\n", + "\n", + "+------------------------------------------------------+\n", + "| joint.histograms.raw_qual_hists.dp_hist_all.n_larger |\n", + "+------------------------------------------------------+\n", + "| int64 |\n", + "+------------------------------------------------------+\n", + "| 744 |\n", + "| 1130 |\n", + "| 1487 |\n", + "| 2622 |\n", + "| 3743 |\n", + "+------------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| joint.histograms.raw_qual_hists.gq_hist_alt.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+------------------------------------------------------+\n", + "| joint.histograms.raw_qual_hists.gq_hist_alt.bin_freq |\n", + "+------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------+\n", + "| [0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,2,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,1,2,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0] |\n", + "+------------------------------------------------------+\n", + "\n", + "+-------------------------------------------------------+\n", + "| joint.histograms.raw_qual_hists.gq_hist_alt.n_smaller |\n", + "+-------------------------------------------------------+\n", + "| int64 |\n", + "+-------------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+-------------------------------------------------------+\n", "\n", - "+---------------------------------------------+\n", - "| Brain_Substantianigra.transcript_expression |\n", - "+---------------------------------------------+\n", - "| float64 |\n", - "+---------------------------------------------+\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "+---------------------------------------------+\n", + "+------------------------------------------------------+\n", + "| joint.histograms.raw_qual_hists.gq_hist_alt.n_larger |\n", + "+------------------------------------------------------+\n", + "| int64 |\n", + "+------------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+------------------------------------------------------+\n", "\n", - "+---------------------------------------------+\n", - "| Brain_Substantianigra.expression_proportion |\n", - "+---------------------------------------------+\n", - "| float64 |\n", - "+---------------------------------------------+\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "+---------------------------------------------+\n", + "+------------------------------------------------------------------------------+\n", + "| joint.histograms.raw_qual_hists.dp_hist_alt.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", "\n", - "+--------------------------------------------+\n", - "| Breast_MammaryTissue.transcript_expression |\n", - "+--------------------------------------------+\n", - "| float64 |\n", - "+--------------------------------------------+\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "+--------------------------------------------+\n", + "+------------------------------------------------------+\n", + "| joint.histograms.raw_qual_hists.dp_hist_alt.bin_freq |\n", + "+------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------+\n", + "| [0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,2,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,3,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,1,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "+------------------------------------------------------+\n", "\n", - "+--------------------------------------------+\n", - "| Breast_MammaryTissue.expression_proportion |\n", - "+--------------------------------------------+\n", - "| float64 |\n", - "+--------------------------------------------+\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "+--------------------------------------------+\n", + "+-------------------------------------------------------+\n", + "| joint.histograms.raw_qual_hists.dp_hist_alt.n_smaller |\n", + "+-------------------------------------------------------+\n", + "| int64 |\n", + "+-------------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+-------------------------------------------------------+\n", "\n", - "+-------------------------------------------------+\n", - "| Cells_Culturedfibroblasts.transcript_expression |\n", - "+-------------------------------------------------+\n", - "| float64 |\n", - "+-------------------------------------------------+\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "+-------------------------------------------------+\n", + "+------------------------------------------------------+\n", + "| joint.histograms.raw_qual_hists.dp_hist_alt.n_larger |\n", + "+------------------------------------------------------+\n", + "| int64 |\n", + "+------------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+------------------------------------------------------+\n", "\n", - "+-------------------------------------------------+\n", - "| Cells_Culturedfibroblasts.expression_proportion |\n", - "+-------------------------------------------------+\n", - "| float64 |\n", - "+-------------------------------------------------+\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "+-------------------------------------------------+\n", + "+------------------------------------------------------------------------------+\n", + "| joint.histograms.raw_qual_hists.ab_hist_alt.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "+------------------------------------------------------------------------------+\n", "\n", - "+--------------------------------------------------------+\n", - "| Cells_EBV_transformedlymphocytes.transcript_expression |\n", - "+--------------------------------------------------------+\n", - "| float64 |\n", - "+--------------------------------------------------------+\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "+--------------------------------------------------------+\n", + "+------------------------------------------------------+\n", + "| joint.histograms.raw_qual_hists.ab_hist_alt.bin_freq |\n", + "+------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------+\n", + "| [0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,3,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "+------------------------------------------------------+\n", "\n", - "+--------------------------------------------------------+\n", - "| Cells_EBV_transformedlymphocytes.expression_proportion |\n", - "+--------------------------------------------------------+\n", - "| float64 |\n", - "+--------------------------------------------------------+\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "+--------------------------------------------------------+\n", + "+-------------------------------------------------------+\n", + "| joint.histograms.raw_qual_hists.ab_hist_alt.n_smaller |\n", + "+-------------------------------------------------------+\n", + "| int64 |\n", + "+-------------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+-------------------------------------------------------+\n", "\n", - "+-------------------------------------+-------------------------------------+\n", - "| Colon_Sigmoid.transcript_expression | Colon_Sigmoid.expression_proportion |\n", - "+-------------------------------------+-------------------------------------+\n", - "| float64 | float64 |\n", - "+-------------------------------------+-------------------------------------+\n", - "| 0.00e+00 | 0.00e+00 |\n", - "| 0.00e+00 | 0.00e+00 |\n", - "| 0.00e+00 | 0.00e+00 |\n", - "| 0.00e+00 | 0.00e+00 |\n", - "| 0.00e+00 | 0.00e+00 |\n", - "+-------------------------------------+-------------------------------------+\n", + "+------------------------------------------------------+\n", + "| joint.histograms.raw_qual_hists.ab_hist_alt.n_larger |\n", + "+------------------------------------------------------+\n", + "| int64 |\n", + "+------------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+------------------------------------------------------+\n", "\n", - "+----------------------------------------+\n", - "| Colon_Transverse.transcript_expression |\n", - "+----------------------------------------+\n", - "| float64 |\n", - "+----------------------------------------+\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "+----------------------------------------+\n", + "+------------------------------------------------------------------------------+\n", + "| joint.histograms.age_hists.age_hist_het.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", "\n", - "+----------------------------------------+\n", - "| Colon_Transverse.expression_proportion |\n", - "+----------------------------------------+\n", - "| float64 |\n", - "+----------------------------------------+\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "+----------------------------------------+\n", + "+--------------------------------------------------+\n", + "| joint.histograms.age_hists.age_hist_het.bin_freq |\n", + "+--------------------------------------------------+\n", + "| array |\n", + "+--------------------------------------------------+\n", + "| [0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,1,0,0,1,0,0,0,0,0] |\n", + "| [0,0,1,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,1,0,1,0,0,0,0,0] |\n", + "+--------------------------------------------------+\n", + "\n", + "+---------------------------------------------------+\n", + "| joint.histograms.age_hists.age_hist_het.n_smaller |\n", + "+---------------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+---------------------------------------------------+\n", "\n", - "+----------------------------------------------------------+\n", - "| Esophagus_GastroesophagealJunction.transcript_expression |\n", - "+----------------------------------------------------------+\n", - "| float64 |\n", - "+----------------------------------------------------------+\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "+----------------------------------------------------------+\n", + "+--------------------------------------------------+\n", + "| joint.histograms.age_hists.age_hist_het.n_larger |\n", + "+--------------------------------------------------+\n", + "| int64 |\n", + "+--------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+--------------------------------------------------+\n", "\n", - "+----------------------------------------------------------+\n", - "| Esophagus_GastroesophagealJunction.expression_proportion |\n", - "+----------------------------------------------------------+\n", - "| float64 |\n", - "+----------------------------------------------------------+\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "+----------------------------------------------------------+\n", + "+------------------------------------------------------------------------------+\n", + "| joint.histograms.age_hists.age_hist_hom.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", "\n", - "+----------------------------------------+\n", - "| Esophagus_Mucosa.transcript_expression |\n", - "+----------------------------------------+\n", - "| float64 |\n", - "+----------------------------------------+\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "+----------------------------------------+\n", + "+--------------------------------------------------+\n", + "| joint.histograms.age_hists.age_hist_hom.bin_freq |\n", + "+--------------------------------------------------+\n", + "| array |\n", + "+--------------------------------------------------+\n", + "| [0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0] |\n", + "+--------------------------------------------------+\n", "\n", - "+----------------------------------------+\n", - "| Esophagus_Mucosa.expression_proportion |\n", - "+----------------------------------------+\n", - "| float64 |\n", - "+----------------------------------------+\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "+----------------------------------------+\n", + "+---------------------------------------------------+\n", + "| joint.histograms.age_hists.age_hist_hom.n_smaller |\n", + "+---------------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+---------------------------------------------------+\n", "\n", - "+--------------------------------------------+\n", - "| Esophagus_Muscularis.transcript_expression |\n", - "+--------------------------------------------+\n", - "| float64 |\n", - "+--------------------------------------------+\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "+--------------------------------------------+\n", + "+--------------------------------------------------+--------------------------+\n", + "| joint.histograms.age_hists.age_hist_hom.n_larger | joint.flags |\n", + "+--------------------------------------------------+--------------------------+\n", + "| int64 | set |\n", + "+--------------------------------------------------+--------------------------+\n", + "| 0 | {\"not_called_in_exomes\"} |\n", + "| 0 | {\"not_called_in_exomes\"} |\n", + "| 0 | {\"not_called_in_exomes\"} |\n", + "| 0 | {\"not_called_in_exomes\"} |\n", + "| 0 | {\"not_called_in_exomes\"} |\n", + "+--------------------------------------------------+--------------------------+\n", "\n", - "+--------------------------------------------+\n", - "| Esophagus_Muscularis.expression_proportion |\n", - "+--------------------------------------------+\n", - "| float64 |\n", - "+--------------------------------------------+\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "+--------------------------------------------+\n", + "+------------------------------------------------------------------------------+\n", + "| joint.freq_comparison_stats.contingency_table_test |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,... |\n", + "| [NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,... |\n", + "| [NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,... |\n", + "| [NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,... |\n", + "| [NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,... |\n", + "+------------------------------------------------------------------------------+\n", "\n", - "+---------------------------------------------+\n", - "| Heart_AtrialAppendage.transcript_expression |\n", - "+---------------------------------------------+\n", - "| float64 |\n", - "+---------------------------------------------+\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "+---------------------------------------------+\n", + "+------------------------------------------------------------------+\n", + "| joint.freq_comparison_stats.cochran_mantel_haenszel_test.p_value |\n", + "+------------------------------------------------------------------+\n", + "| float64 |\n", + "+------------------------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+------------------------------------------------------------------+\n", "\n", - "+---------------------------------------------+\n", - "| Heart_AtrialAppendage.expression_proportion |\n", - "+---------------------------------------------+\n", - "| float64 |\n", - "+---------------------------------------------+\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "+---------------------------------------------+\n", + "+----------------------------------------------------------------+\n", + "| joint.freq_comparison_stats.cochran_mantel_haenszel_test.chisq |\n", + "+----------------------------------------------------------------+\n", + "| float64 |\n", + "+----------------------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+----------------------------------------------------------------+\n", "\n", - "+-------------------------------------------+\n", - "| Heart_LeftVentricle.transcript_expression |\n", - "+-------------------------------------------+\n", - "| float64 |\n", - "+-------------------------------------------+\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "+-------------------------------------------+\n", + "+------------------------------------------------+\n", + "| joint.freq_comparison_stats.stat_union.p_value |\n", + "+------------------------------------------------+\n", + "| float64 |\n", + "+------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+------------------------------------------------+\n", "\n", - "+-------------------------------------------+\n", - "| Heart_LeftVentricle.expression_proportion |\n", - "+-------------------------------------------+\n", - "| float64 |\n", - "+-------------------------------------------+\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "+-------------------------------------------+\n", + "+-------------------------------------------------------+\n", + "| joint.freq_comparison_stats.stat_union.stat_test_name |\n", + "+-------------------------------------------------------+\n", + "| str |\n", + "+-------------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+-------------------------------------------------------+\n", "\n", - "+-------------------------------------+-------------------------------------+\n", - "| Kidney_Cortex.transcript_expression | Kidney_Cortex.expression_proportion |\n", - "+-------------------------------------+-------------------------------------+\n", - "| float64 | float64 |\n", - "+-------------------------------------+-------------------------------------+\n", - "| 0.00e+00 | 0.00e+00 |\n", - "| 0.00e+00 | 0.00e+00 |\n", - "| 0.00e+00 | 0.00e+00 |\n", - "| 0.00e+00 | 0.00e+00 |\n", - "| 0.00e+00 | 0.00e+00 |\n", - "+-------------------------------------+-------------------------------------+\n", + "+-------------------------------------------------+---------------------+\n", + "| joint.freq_comparison_stats.stat_union.gen_ancs | coverage.exome.mean |\n", + "+-------------------------------------------------+---------------------+\n", + "| array | float64 |\n", + "+-------------------------------------------------+---------------------+\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "+-------------------------------------------------+---------------------+\n", + "\n", + "+------------------------------+-------------------------+\n", + "| coverage.exome.median_approx | coverage.exome.total_DP |\n", + "+------------------------------+-------------------------+\n", + "| int32 | int64 |\n", + "+------------------------------+-------------------------+\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "+------------------------------+-------------------------+\n", "\n", - "+-----------------------------+-----------------------------+\n", - "| Liver.transcript_expression | Liver.expression_proportion |\n", - "+-----------------------------+-----------------------------+\n", - "| float64 | float64 |\n", - "+-----------------------------+-----------------------------+\n", - "| 0.00e+00 | 0.00e+00 |\n", - "| 0.00e+00 | 0.00e+00 |\n", - "| 0.00e+00 | 0.00e+00 |\n", - "| 0.00e+00 | 0.00e+00 |\n", - "| 0.00e+00 | 0.00e+00 |\n", - "+-----------------------------+-----------------------------+\n", + "+-----------------------+-----------------------+------------------------+\n", + "| coverage.exome.over_1 | coverage.exome.over_5 | coverage.exome.over_10 |\n", + "+-----------------------+-----------------------+------------------------+\n", + "| float64 | float64 | float64 |\n", + "+-----------------------+-----------------------+------------------------+\n", + "| NA | NA | NA |\n", + "| NA | NA | NA |\n", + "| NA | NA | NA |\n", + "| NA | NA | NA |\n", + "| NA | NA | NA |\n", + "+-----------------------+-----------------------+------------------------+\n", "\n", - "+----------------------------+----------------------------+\n", - "| Lung.transcript_expression | Lung.expression_proportion |\n", - "+----------------------------+----------------------------+\n", - "| float64 | float64 |\n", - "+----------------------------+----------------------------+\n", - "| 0.00e+00 | 0.00e+00 |\n", - "| 0.00e+00 | 0.00e+00 |\n", - "| 0.00e+00 | 0.00e+00 |\n", - "| 0.00e+00 | 0.00e+00 |\n", - "| 0.00e+00 | 0.00e+00 |\n", - "+----------------------------+----------------------------+\n", + "+------------------------+------------------------+------------------------+\n", + "| coverage.exome.over_15 | coverage.exome.over_20 | coverage.exome.over_25 |\n", + "+------------------------+------------------------+------------------------+\n", + "| float64 | float64 | float64 |\n", + "+------------------------+------------------------+------------------------+\n", + "| NA | NA | NA |\n", + "| NA | NA | NA |\n", + "| NA | NA | NA |\n", + "| NA | NA | NA |\n", + "| NA | NA | NA |\n", + "+------------------------+------------------------+------------------------+\n", "\n", - "+------------------------------------------+\n", - "| MinorSalivaryGland.transcript_expression |\n", - "+------------------------------------------+\n", - "| float64 |\n", - "+------------------------------------------+\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "+------------------------------------------+\n", + "+------------------------+------------------------+-------------------------+\n", + "| coverage.exome.over_30 | coverage.exome.over_50 | coverage.exome.over_100 |\n", + "+------------------------+------------------------+-------------------------+\n", + "| float64 | float64 | float64 |\n", + "+------------------------+------------------------+-------------------------+\n", + "| NA | NA | NA |\n", + "| NA | NA | NA |\n", + "| NA | NA | NA |\n", + "| NA | NA | NA |\n", + "| NA | NA | NA |\n", + "+------------------------+------------------------+-------------------------+\n", "\n", - "+------------------------------------------+\n", - "| MinorSalivaryGland.expression_proportion |\n", - "+------------------------------------------+\n", - "| float64 |\n", - "+------------------------------------------+\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "+------------------------------------------+\n", + "+----------------------+-------------------------------+\n", + "| coverage.genome.mean | coverage.genome.median_approx |\n", + "+----------------------+-------------------------------+\n", + "| float64 | int32 |\n", + "+----------------------+-------------------------------+\n", + "| 3.74e+01 | 38 |\n", + "| 4.29e+01 | 44 |\n", + "| 4.42e+01 | 47 |\n", + "| 4.54e+01 | 51 |\n", + "| 5.43e+01 | 58 |\n", + "+----------------------+-------------------------------+\n", "\n", - "+---------------------------------------+\n", - "| Muscle_Skeletal.transcript_expression |\n", - "+---------------------------------------+\n", - "| float64 |\n", - "+---------------------------------------+\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "+---------------------------------------+\n", + "+--------------------------+------------------------+------------------------+\n", + "| coverage.genome.total_DP | coverage.genome.over_1 | coverage.genome.over_5 |\n", + "+--------------------------+------------------------+------------------------+\n", + "| int64 | float32 | float32 |\n", + "+--------------------------+------------------------+------------------------+\n", + "| 2684436 | 8.08e-01 | 8.08e-01 |\n", + "| 3077955 | 8.43e-01 | 8.43e-01 |\n", + "| 3165823 | 8.06e-01 | 8.06e-01 |\n", + "| 3252282 | 7.16e-01 | 7.16e-01 |\n", + "| 3891700 | 8.20e-01 | 8.20e-01 |\n", + "+--------------------------+------------------------+------------------------+\n", "\n", - "+---------------------------------------+------------------------------------+\n", - "| Muscle_Skeletal.expression_proportion | Nerve_Tibial.transcript_expression |\n", - "+---------------------------------------+------------------------------------+\n", - "| float64 | float64 |\n", - "+---------------------------------------+------------------------------------+\n", - "| 0.00e+00 | 0.00e+00 |\n", - "| 0.00e+00 | 0.00e+00 |\n", - "| 0.00e+00 | 0.00e+00 |\n", - "| 0.00e+00 | 0.00e+00 |\n", - "| 0.00e+00 | 0.00e+00 |\n", - "+---------------------------------------+------------------------------------+\n", + "+-------------------------+-------------------------+-------------------------+\n", + "| coverage.genome.over_10 | coverage.genome.over_15 | coverage.genome.over_20 |\n", + "+-------------------------+-------------------------+-------------------------+\n", + "| float32 | float32 | float32 |\n", + "+-------------------------+-------------------------+-------------------------+\n", + "| 8.07e-01 | 8.01e-01 | 7.82e-01 |\n", + "| 8.42e-01 | 8.39e-01 | 8.27e-01 |\n", + "| 8.05e-01 | 8.03e-01 | 7.97e-01 |\n", + "| 7.15e-01 | 7.15e-01 | 7.13e-01 |\n", + "| 8.20e-01 | 8.20e-01 | 8.18e-01 |\n", + "+-------------------------+-------------------------+-------------------------+\n", "\n", - "+------------------------------------+-----------------------------+\n", - "| Nerve_Tibial.expression_proportion | Ovary.transcript_expression |\n", - "+------------------------------------+-----------------------------+\n", - "| float64 | float64 |\n", - "+------------------------------------+-----------------------------+\n", - "| 0.00e+00 | 0.00e+00 |\n", - "| 0.00e+00 | 0.00e+00 |\n", - "| 0.00e+00 | 0.00e+00 |\n", - "| 0.00e+00 | 0.00e+00 |\n", - "| 0.00e+00 | 0.00e+00 |\n", - "+------------------------------------+-----------------------------+\n", + "+-------------------------+-------------------------+-------------------------+\n", + "| coverage.genome.over_25 | coverage.genome.over_30 | coverage.genome.over_50 |\n", + "+-------------------------+-------------------------+-------------------------+\n", + "| float32 | float32 | float32 |\n", + "+-------------------------+-------------------------+-------------------------+\n", + "| 7.43e-01 | 6.67e-01 | 2.89e-01 |\n", + "| 8.02e-01 | 7.48e-01 | 3.93e-01 |\n", + "| 7.82e-01 | 7.48e-01 | 4.50e-01 |\n", + "| 7.10e-01 | 7.00e-01 | 5.30e-01 |\n", + "| 8.15e-01 | 8.07e-01 | 6.45e-01 |\n", + "+-------------------------+-------------------------+-------------------------+\n", "\n", - "+-----------------------------+--------------------------------+\n", - "| Ovary.expression_proportion | Pancreas.transcript_expression |\n", - "+-----------------------------+--------------------------------+\n", - "| float64 | float64 |\n", - "+-----------------------------+--------------------------------+\n", - "| 0.00e+00 | 0.00e+00 |\n", - "| 0.00e+00 | 0.00e+00 |\n", - "| 0.00e+00 | 0.00e+00 |\n", - "| 0.00e+00 | 0.00e+00 |\n", - "| 0.00e+00 | 0.00e+00 |\n", - "+-----------------------------+--------------------------------+\n", + "+--------------------------+\n", + "| coverage.genome.over_100 |\n", + "+--------------------------+\n", + "| float32 |\n", + "+--------------------------+\n", + "| 1.13e-02 |\n", + "| 1.66e-02 |\n", + "| 2.14e-02 |\n", + "| 3.76e-02 |\n", + "| 5.38e-02 |\n", + "+--------------------------+\n", "\n", - "+--------------------------------+---------------------------------+\n", - "| Pancreas.expression_proportion | Pituitary.transcript_expression |\n", - "+--------------------------------+---------------------------------+\n", - "| float64 | float64 |\n", - "+--------------------------------+---------------------------------+\n", - "| 0.00e+00 | 0.00e+00 |\n", - "| 0.00e+00 | 0.00e+00 |\n", - "| 0.00e+00 | 0.00e+00 |\n", - "| 0.00e+00 | 0.00e+00 |\n", - "| 0.00e+00 | 0.00e+00 |\n", - "+--------------------------------+---------------------------------+\n", + "+------------------------------------------------------------------------------+\n", + "| transcript_consequences |\n", + "+------------------------------------------------------------------------------+\n", + "| array, domains: set \n", + " 'mean': float64 \n", + " 'median_approx': int32 \n", + " 'total_DP': int64 \n", + " 'over_1': float64 \n", + " 'over_5': float64 \n", + " 'over_10': float64 \n", + " 'over_15': float64 \n", + " 'over_20': float64 \n", + " 'over_25': float64 \n", + " 'over_30': float64 \n", + " 'over_50': float64 \n", + " 'over_100': float64 \n", + "----------------------------------------\n", + "Key: ['locus']\n", + "----------------------------------------\n" + ] + } + ], + "source": [ + "ht.describe()" + ] + }, + { + "cell_type": "markdown", + "id": "5969ab0c-7cee-4061-8740-8b82366ae806", + "metadata": { + "tags": [] + }, + "source": [ + "#### Show the first 5 variants in the Hail Table\n" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "id": "49fcf64b-1a91-4052-bb98-b329a0e8031b", + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-06T20:09:20.949958Z", + "start_time": "2024-12-06T20:09:05.622171Z" + }, + "tags": [] + }, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
locus
mean
median_approx
total_DP
over_1
over_5
over_10
over_15
over_20
over_25
over_30
over_50
over_100
locus<GRCh38>float64int32int64float64float64float64float64float64float64float64float64float64
chr1:118191.12e-010816952.79e-027.59e-030.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+00
chr1:118201.12e-010816952.79e-027.59e-030.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+00
chr1:118211.12e-010816952.79e-027.59e-030.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+00
chr1:118221.12e-010816952.79e-027.59e-030.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+00
chr1:118231.12e-010816952.79e-027.59e-030.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+00

showing top 5 rows

\n" + ], + "text/plain": [ + "+---------------+----------+---------------+----------+----------+----------+\n", + "| locus | mean | median_approx | total_DP | over_1 | over_5 |\n", + "+---------------+----------+---------------+----------+----------+----------+\n", + "| locus | float64 | int32 | int64 | float64 | float64 |\n", + "+---------------+----------+---------------+----------+----------+----------+\n", + "| chr1:11819 | 1.12e-01 | 0 | 81695 | 2.79e-02 | 7.59e-03 |\n", + "| chr1:11820 | 1.12e-01 | 0 | 81695 | 2.79e-02 | 7.59e-03 |\n", + "| chr1:11821 | 1.12e-01 | 0 | 81695 | 2.79e-02 | 7.59e-03 |\n", + "| chr1:11822 | 1.12e-01 | 0 | 81695 | 2.79e-02 | 7.59e-03 |\n", + "| chr1:11823 | 1.12e-01 | 0 | 81695 | 2.79e-02 | 7.59e-03 |\n", + "+---------------+----------+---------------+----------+----------+----------+\n", "\n", - "+-----------------------------------------------------+\n", - "| Skin_NotSunExposed_Suprapubic.transcript_expression |\n", - "+-----------------------------------------------------+\n", - "| float64 |\n", - "+-----------------------------------------------------+\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "+-----------------------------------------------------+\n", + "+----------+----------+----------+----------+----------+----------+----------+\n", + "| over_10 | over_15 | over_20 | over_25 | over_30 | over_50 | over_100 |\n", + "+----------+----------+----------+----------+----------+----------+----------+\n", + "| float64 | float64 | float64 | float64 | float64 | float64 | float64 |\n", + "+----------+----------+----------+----------+----------+----------+----------+\n", + "| 0.00e+00 | 0.00e+00 | 0.00e+00 | 0.00e+00 | 0.00e+00 | 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 | 0.00e+00 | 0.00e+00 | 0.00e+00 | 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 | 0.00e+00 | 0.00e+00 | 0.00e+00 | 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 | 0.00e+00 | 0.00e+00 | 0.00e+00 | 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 | 0.00e+00 | 0.00e+00 | 0.00e+00 | 0.00e+00 | 0.00e+00 |\n", + "+----------+----------+----------+----------+----------+----------+----------+\n", + "showing top 5 rows" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "ht.show(5)" + ] + }, + { + "cell_type": "markdown", + "id": "19b2e9be-48fd-4859-af3d-a0775656d24c", + "metadata": { + "tags": [] + }, + "source": [ + "### Genomes coverage Hail Table\n", + "\n", + "Showing gnomAD **v3.0.1** coverage." + ] + }, + { + "cell_type": "markdown", + "id": "5918f8e0-a723-439a-a11f-558d5ed13be8", + "metadata": {}, + "source": [ + "#### Load the Hail Table\n" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "id": "a8d0be07-c35d-425a-b554-c86034e367fc", + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-06T20:08:59.197890Z", + "start_time": "2024-12-06T20:08:50.859108Z" + }, + "tags": [] + }, + "outputs": [], + "source": [ + "ht = get_gnomad_release(data_type='genomes', version='3.0.1', dataset=\"coverage\")" + ] + }, + { + "cell_type": "markdown", + "id": "d129b898-d642-44d1-8243-66a9cca8d1b1", + "metadata": {}, + "source": [ + "#### Print the schema of the Hail Table\n" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "id": "18afb20f-7429-4fe2-a6c5-73a22dcbdb76", + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-06T20:09:00.032524Z", + "start_time": "2024-12-06T20:09:00.029271Z" + }, + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "----------------------------------------\n", + "Global fields:\n", + " None\n", + "----------------------------------------\n", + "Row fields:\n", + " 'locus': locus \n", + " 'mean': float64 \n", + " 'median_approx': int32 \n", + " 'total_DP': int64 \n", + " 'over_1': float32 \n", + " 'over_5': float32 \n", + " 'over_10': float32 \n", + " 'over_15': float32 \n", + " 'over_20': float32 \n", + " 'over_25': float32 \n", + " 'over_30': float32 \n", + " 'over_50': float32 \n", + " 'over_100': float32 \n", + "----------------------------------------\n", + "Key: ['locus']\n", + "----------------------------------------\n" + ] + } + ], + "source": [ + "ht.describe()" + ] + }, + { + "cell_type": "markdown", + "id": "05d8e22c-93d6-4ecf-b9e7-711945268c82", + "metadata": { + "tags": [] + }, + "source": [ + "#### Show the first 5 variants in the Hail Table\n" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "id": "b27cb655-3abb-4501-bcc9-3f634db64591", + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-06T20:09:20.949958Z", + "start_time": "2024-12-06T20:09:05.622171Z" + }, + "tags": [] + }, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
locus
mean
median_approx
total_DP
over_1
over_5
over_10
over_15
over_20
over_25
over_30
over_50
over_100
locus<GRCh38>float64int32int64float32float32float32float32float32float32float32float32float32
chr1:100012.41e+0001729261.25e-011.19e-019.12e-026.95e-025.15e-023.88e-022.62e-022.27e-030.00e+00
chr1:100024.61e+0003307602.20e-012.15e-011.79e-011.39e-011.02e-017.60e-025.06e-024.83e-032.79e-05
chr1:100036.38e+0004576112.62e-012.59e-012.41e-012.07e-011.59e-011.18e-017.77e-027.61e-035.58e-05
chr1:100041.04e+0107448404.27e-014.24e-013.99e-013.43e-012.60e-011.87e-011.21e-011.20e-021.67e-04
chr1:100051.18e+0108494414.83e-014.80e-014.56e-013.92e-012.96e-012.14e-011.38e-011.42e-022.37e-04

showing top 5 rows

\n" + ], + "text/plain": [ + "+---------------+----------+---------------+----------+----------+----------+\n", + "| locus | mean | median_approx | total_DP | over_1 | over_5 |\n", + "+---------------+----------+---------------+----------+----------+----------+\n", + "| locus | float64 | int32 | int64 | float32 | float32 |\n", + "+---------------+----------+---------------+----------+----------+----------+\n", + "| chr1:10001 | 2.41e+00 | 0 | 172926 | 1.25e-01 | 1.19e-01 |\n", + "| chr1:10002 | 4.61e+00 | 0 | 330760 | 2.20e-01 | 2.15e-01 |\n", + "| chr1:10003 | 6.38e+00 | 0 | 457611 | 2.62e-01 | 2.59e-01 |\n", + "| chr1:10004 | 1.04e+01 | 0 | 744840 | 4.27e-01 | 4.24e-01 |\n", + "| chr1:10005 | 1.18e+01 | 0 | 849441 | 4.83e-01 | 4.80e-01 |\n", + "+---------------+----------+---------------+----------+----------+----------+\n", "\n", - "+-----------------------------------------------------+\n", - "| Skin_NotSunExposed_Suprapubic.expression_proportion |\n", - "+-----------------------------------------------------+\n", - "| float64 |\n", - "+-----------------------------------------------------+\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "+-----------------------------------------------------+\n", + "+----------+----------+----------+----------+----------+----------+----------+\n", + "| over_10 | over_15 | over_20 | over_25 | over_30 | over_50 | over_100 |\n", + "+----------+----------+----------+----------+----------+----------+----------+\n", + "| float32 | float32 | float32 | float32 | float32 | float32 | float32 |\n", + "+----------+----------+----------+----------+----------+----------+----------+\n", + "| 9.12e-02 | 6.95e-02 | 5.15e-02 | 3.88e-02 | 2.62e-02 | 2.27e-03 | 0.00e+00 |\n", + "| 1.79e-01 | 1.39e-01 | 1.02e-01 | 7.60e-02 | 5.06e-02 | 4.83e-03 | 2.79e-05 |\n", + "| 2.41e-01 | 2.07e-01 | 1.59e-01 | 1.18e-01 | 7.77e-02 | 7.61e-03 | 5.58e-05 |\n", + "| 3.99e-01 | 3.43e-01 | 2.60e-01 | 1.87e-01 | 1.21e-01 | 1.20e-02 | 1.67e-04 |\n", + "| 4.56e-01 | 3.92e-01 | 2.96e-01 | 2.14e-01 | 1.38e-01 | 1.42e-02 | 2.37e-04 |\n", + "+----------+----------+----------+----------+----------+----------+----------+\n", + "showing top 5 rows" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "ht.show(5)" + ] + }, + { + "cell_type": "markdown", + "id": "c4ae4713-f542-46e3-979f-0bcfb44ec56c", + "metadata": { + "tags": [] + }, + "source": [ + "## Gene constraint\n", + "\n", + "For details on gene constraint see the [Help](https://gnomad.broadinstitute.org/help/constraint) and [FAQ](https://gnomad.broadinstitute.org/help#constraint)." + ] + }, + { + "cell_type": "markdown", + "id": "4ed92af6-aacc-4cb2-890d-7ff76a00196d", + "metadata": {}, + "source": [ + "### Load the Hail Table\n" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "id": "3de343dc-37ae-4b17-a056-9d30e71e217c", + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-06T20:08:59.197890Z", + "start_time": "2024-12-06T20:08:50.859108Z" + } + }, + "outputs": [], + "source": [ + "ht = get_gnomad_release(version='4.1', dataset=\"constraint\")" + ] + }, + { + "cell_type": "markdown", + "id": "5b59b2f6-aadd-408d-8663-b676d41565bf", + "metadata": {}, + "source": [ + "### Print the schema of the Hail Table\n" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "id": "c401dc94-0db0-4902-933d-e46c8aa447ce", + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-06T20:09:00.032524Z", + "start_time": "2024-12-06T20:09:00.029271Z" + }, + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "----------------------------------------\n", + "Global fields:\n", + " 'version': str \n", + " 'apply_model_params': struct {\n", + " max_af: float64, \n", + " pops: tuple (\n", + " ), \n", + " plateau_models: struct {\n", + " total: dict>\n", + " }, \n", + " coverage_model: str\n", + " } \n", + " 'sd_raw_z': struct {\n", + " lof: float64, \n", + " mis: float64, \n", + " syn: float64\n", + " } \n", + "----------------------------------------\n", + "Row fields:\n", + " 'gene': str \n", + " 'gene_id': str \n", + " 'transcript': str \n", + " 'canonical': bool \n", + " 'mane_select': bool \n", + " 'lof_hc_lc': struct {\n", + " obs: int64, \n", + " exp: float64, \n", + " possible: int64, \n", + " oe: float64, \n", + " mu: float64, \n", + " pLI: float64, \n", + " pNull: float64, \n", + " pRec: float64\n", + " } \n", + " 'lof': struct {\n", + " obs: int64, \n", + " exp: float64, \n", + " possible: int64, \n", + " oe: float64, \n", + " mu: float64, \n", + " pLI: float64, \n", + " pNull: float64, \n", + " pRec: float64, \n", + " oe_ci: struct {\n", + " lower: float64, \n", + " upper: float64, \n", + " upper_rank: int64, \n", + " upper_bin_decile: int32\n", + " }, \n", + " z_raw: float64, \n", + " z_score: float64\n", + " } \n", + " 'mis': struct {\n", + " obs: int64, \n", + " exp: float64, \n", + " possible: int64, \n", + " oe: float64, \n", + " mu: float64, \n", + " oe_ci: struct {\n", + " lower: float64, \n", + " upper: float64\n", + " }, \n", + " z_raw: float64, \n", + " z_score: float64\n", + " } \n", + " 'mis_pphen': struct {\n", + " obs: int64, \n", + " exp: float64, \n", + " possible: int64, \n", + " oe: float64\n", + " } \n", + " 'syn': struct {\n", + " obs: int64, \n", + " exp: float64, \n", + " possible: int64, \n", + " oe: float64, \n", + " mu: float64, \n", + " oe_ci: struct {\n", + " lower: float64, \n", + " upper: float64\n", + " }, \n", + " z_raw: float64, \n", + " z_score: float64\n", + " } \n", + " 'constraint_flags': set \n", + " 'level': str \n", + " 'transcript_type': str \n", + " 'chromosome': str \n", + " 'cds_length': int64 \n", + " 'num_coding_exons': int64 \n", + "----------------------------------------\n", + "Key: ['gene', 'gene_id', 'transcript', 'canonical', 'mane_select']\n", + "----------------------------------------\n" + ] + } + ], + "source": [ + "ht.describe()" + ] + }, + { + "cell_type": "markdown", + "id": "5b0e64c9-744c-4ed7-a832-9d68c548540b", + "metadata": { + "tags": [] + }, + "source": [ + "### Show the first 5 variants in the Hail Table\n" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "id": "262cbbf1-9fc7-4819-9b2a-d1a1e27c10bf", + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-06T20:09:20.949958Z", + "start_time": "2024-12-06T20:09:05.622171Z" + }, + "tags": [] + }, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
lof
mis
syn
lof_hc_lc
oe_ci
oe_ci
mis_pphen
oe_ci
gene
gene_id
transcript
canonical
mane_select
obs
exp
possible
oe
mu
pLI
pNull
pRec
obs
exp
possible
oe
mu
pLI
pNull
pRec
lower
upper
upper_rank
upper_bin_decile
z_raw
z_score
obs
exp
possible
oe
mu
lower
upper
z_raw
z_score
obs
exp
possible
oe
obs
exp
possible
oe
mu
lower
upper
z_raw
z_score
constraint_flags
level
transcript_type
chromosome
cds_length
num_coding_exons
strstrstrboolboolint64float64int64float64float64float64float64float64int64float64int64float64float64float64float64float64float64float64int64int32float64float64int64float64int64float64float64float64float64float64float64int64float64int64float64int64float64int64float64float64float64float64float64float64set<str>strstrstrint64int64
"A1BG""1""NM_130786.4"TrueTrue454.30e+011931.05e+007.06e-071.63e-168.49e-011.51e-01454.30e+011931.05e+007.06e-071.77e-168.43e-011.57e-018.22e-011.34e+00NANA-2.98e-01-2.52e-017076.47e+0228701.09e+007.67e-061.03e+001.16e+00-2.36e+00-8.61e-012201.91e+028901.15e+003162.96e+029941.07e+003.02e-069.73e-011.17e+00-1.17e+00-6.35e-01{}NANANANANA
"A1BG""ENSG00000121410""ENST00000263100"TrueTrue454.30e+011931.05e+007.06e-071.63e-168.49e-011.51e-01454.30e+011931.05e+007.06e-071.77e-168.43e-011.57e-018.22e-011.34e+00140577-2.98e-01-2.52e-017076.47e+0228701.09e+007.67e-061.03e+001.16e+00-2.36e+00-8.61e-012201.91e+028901.15e+003162.96e+029941.07e+003.02e-069.73e-011.17e+00-1.17e+00-6.35e-01{}"2""protein_coding""chr19"14858
"A1BG""ENSG00000121410""ENST00000600966"FalseFalse242.63e+011239.14e-014.20e-072.53e-083.43e-016.57e-01222.50e+011198.80e-013.96e-071.84e-072.65e-017.35e-016.28e-011.26e+00NANA6.01e-015.09e-013994.06e+0218589.84e-014.91e-069.06e-011.07e+003.24e-011.18e-011031.10e+025129.40e-011661.79e+026379.28e-011.91e-068.17e-011.06e+009.64e-015.26e-01{}"1""protein_coding""chr19"9175
"A1CF""29974""NM_001198818.2"FalseFalse457.00e+013526.43e-019.55e-077.32e-102.06e-039.98e-01457.00e+013526.43e-019.55e-077.66e-101.96e-039.98e-015.06e-018.25e-01NANA2.98e+002.53e+006537.46e+0237208.76e-014.38e-068.21e-019.34e-013.39e+001.24e+002362.77e+0213998.53e-012722.73e+0211579.98e-012.01e-069.03e-011.10e+003.27e-021.78e-02{}NANANANANA
"A1CF""29974""NM_001198819.2"FalseFalse487.28e+013676.59e-011.02e-067.64e-112.53e-039.97e-01477.03e+013556.69e-019.72e-077.70e-113.58e-039.96e-015.28e-018.53e-01NANA2.78e+002.35e+006707.62e+0238378.80e-014.43e-068.25e-019.38e-013.33e+001.21e+003093.65e+0218418.47e-012712.76e+0211889.82e-011.91e-068.88e-011.09e+003.00e-011.64e-01{}NANANANANA

showing top 5 rows

\n" + ], + "text/plain": [ + "+--------+-------------------+-------------------+-----------+-------------+\n", + "| gene | gene_id | transcript | canonical | mane_select |\n", + "+--------+-------------------+-------------------+-----------+-------------+\n", + "| str | str | str | bool | bool |\n", + "+--------+-------------------+-------------------+-----------+-------------+\n", + "| \"A1BG\" | \"1\" | \"NM_130786.4\" | True | True |\n", + "| \"A1BG\" | \"ENSG00000121410\" | \"ENST00000263100\" | True | True |\n", + "| \"A1BG\" | \"ENSG00000121410\" | \"ENST00000600966\" | False | False |\n", + "| \"A1CF\" | \"29974\" | \"NM_001198818.2\" | False | False |\n", + "| \"A1CF\" | \"29974\" | \"NM_001198819.2\" | False | False |\n", + "+--------+-------------------+-------------------+-----------+-------------+\n", "\n", - "+------------------------------------------------+\n", - "| Skin_SunExposed_Lowerleg.transcript_expression |\n", - "+------------------------------------------------+\n", - "| float64 |\n", - "+------------------------------------------------+\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "+------------------------------------------------+\n", + "+---------------+---------------+--------------------+--------------+\n", + "| lof_hc_lc.obs | lof_hc_lc.exp | lof_hc_lc.possible | lof_hc_lc.oe |\n", + "+---------------+---------------+--------------------+--------------+\n", + "| int64 | float64 | int64 | float64 |\n", + "+---------------+---------------+--------------------+--------------+\n", + "| 45 | 4.30e+01 | 193 | 1.05e+00 |\n", + "| 45 | 4.30e+01 | 193 | 1.05e+00 |\n", + "| 24 | 2.63e+01 | 123 | 9.14e-01 |\n", + "| 45 | 7.00e+01 | 352 | 6.43e-01 |\n", + "| 48 | 7.28e+01 | 367 | 6.59e-01 |\n", + "+---------------+---------------+--------------------+--------------+\n", "\n", - "+------------------------------------------------+\n", - "| Skin_SunExposed_Lowerleg.expression_proportion |\n", - "+------------------------------------------------+\n", - "| float64 |\n", - "+------------------------------------------------+\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "+------------------------------------------------+\n", + "+--------------+---------------+-----------------+----------------+---------+\n", + "| lof_hc_lc.mu | lof_hc_lc.pLI | lof_hc_lc.pNull | lof_hc_lc.pRec | lof.obs |\n", + "+--------------+---------------+-----------------+----------------+---------+\n", + "| float64 | float64 | float64 | float64 | int64 |\n", + "+--------------+---------------+-----------------+----------------+---------+\n", + "| 7.06e-07 | 1.63e-16 | 8.49e-01 | 1.51e-01 | 45 |\n", + "| 7.06e-07 | 1.63e-16 | 8.49e-01 | 1.51e-01 | 45 |\n", + "| 4.20e-07 | 2.53e-08 | 3.43e-01 | 6.57e-01 | 22 |\n", + "| 9.55e-07 | 7.32e-10 | 2.06e-03 | 9.98e-01 | 45 |\n", + "| 1.02e-06 | 7.64e-11 | 2.53e-03 | 9.97e-01 | 47 |\n", + "+--------------+---------------+-----------------+----------------+---------+\n", "\n", - "+----------------------------------------------------+\n", - "| SmallIntestine_TerminalIleum.transcript_expression |\n", - "+----------------------------------------------------+\n", - "| float64 |\n", - "+----------------------------------------------------+\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "+----------------------------------------------------+\n", + "+----------+--------------+----------+----------+----------+-----------+\n", + "| lof.exp | lof.possible | lof.oe | lof.mu | lof.pLI | lof.pNull |\n", + "+----------+--------------+----------+----------+----------+-----------+\n", + "| float64 | int64 | float64 | float64 | float64 | float64 |\n", + "+----------+--------------+----------+----------+----------+-----------+\n", + "| 4.30e+01 | 193 | 1.05e+00 | 7.06e-07 | 1.77e-16 | 8.43e-01 |\n", + "| 4.30e+01 | 193 | 1.05e+00 | 7.06e-07 | 1.77e-16 | 8.43e-01 |\n", + "| 2.50e+01 | 119 | 8.80e-01 | 3.96e-07 | 1.84e-07 | 2.65e-01 |\n", + "| 7.00e+01 | 352 | 6.43e-01 | 9.55e-07 | 7.66e-10 | 1.96e-03 |\n", + "| 7.03e+01 | 355 | 6.69e-01 | 9.72e-07 | 7.70e-11 | 3.58e-03 |\n", + "+----------+--------------+----------+----------+----------+-----------+\n", "\n", - "+----------------------------------------------------+\n", - "| SmallIntestine_TerminalIleum.expression_proportion |\n", - "+----------------------------------------------------+\n", - "| float64 |\n", - "+----------------------------------------------------+\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "+----------------------------------------------------+\n", + "+----------+-----------------+-----------------+----------------------+\n", + "| lof.pRec | lof.oe_ci.lower | lof.oe_ci.upper | lof.oe_ci.upper_rank |\n", + "+----------+-----------------+-----------------+----------------------+\n", + "| float64 | float64 | float64 | int64 |\n", + "+----------+-----------------+-----------------+----------------------+\n", + "| 1.57e-01 | 8.22e-01 | 1.34e+00 | NA |\n", + "| 1.57e-01 | 8.22e-01 | 1.34e+00 | 14057 |\n", + "| 7.35e-01 | 6.28e-01 | 1.26e+00 | NA |\n", + "| 9.98e-01 | 5.06e-01 | 8.25e-01 | NA |\n", + "| 9.96e-01 | 5.28e-01 | 8.53e-01 | NA |\n", + "+----------+-----------------+-----------------+----------------------+\n", "\n", - "+------------------------------+------------------------------+\n", - "| Spleen.transcript_expression | Spleen.expression_proportion |\n", - "+------------------------------+------------------------------+\n", - "| float64 | float64 |\n", - "+------------------------------+------------------------------+\n", - "| 0.00e+00 | 0.00e+00 |\n", - "| 0.00e+00 | 0.00e+00 |\n", - "| 0.00e+00 | 0.00e+00 |\n", - "| 0.00e+00 | 0.00e+00 |\n", - "| 0.00e+00 | 0.00e+00 |\n", - "+------------------------------+------------------------------+\n", + "+----------------------------+-----------+-------------+---------+----------+\n", + "| lof.oe_ci.upper_bin_decile | lof.z_raw | lof.z_score | mis.obs | mis.exp |\n", + "+----------------------------+-----------+-------------+---------+----------+\n", + "| int32 | float64 | float64 | int64 | float64 |\n", + "+----------------------------+-----------+-------------+---------+----------+\n", + "| NA | -2.98e-01 | -2.52e-01 | 707 | 6.47e+02 |\n", + "| 7 | -2.98e-01 | -2.52e-01 | 707 | 6.47e+02 |\n", + "| NA | 6.01e-01 | 5.09e-01 | 399 | 4.06e+02 |\n", + "| NA | 2.98e+00 | 2.53e+00 | 653 | 7.46e+02 |\n", + "| NA | 2.78e+00 | 2.35e+00 | 670 | 7.62e+02 |\n", + "+----------------------------+-----------+-------------+---------+----------+\n", "\n", - "+-------------------------------+-------------------------------+\n", - "| Stomach.transcript_expression | Stomach.expression_proportion |\n", - "+-------------------------------+-------------------------------+\n", - "| float64 | float64 |\n", - "+-------------------------------+-------------------------------+\n", - "| 0.00e+00 | 0.00e+00 |\n", - "| 0.00e+00 | 0.00e+00 |\n", - "| 0.00e+00 | 0.00e+00 |\n", - "| 0.00e+00 | 0.00e+00 |\n", - "| 0.00e+00 | 0.00e+00 |\n", - "+-------------------------------+-------------------------------+\n", + "+--------------+----------+----------+-----------------+-----------------+\n", + "| mis.possible | mis.oe | mis.mu | mis.oe_ci.lower | mis.oe_ci.upper |\n", + "+--------------+----------+----------+-----------------+-----------------+\n", + "| int64 | float64 | float64 | float64 | float64 |\n", + "+--------------+----------+----------+-----------------+-----------------+\n", + "| 2870 | 1.09e+00 | 7.67e-06 | 1.03e+00 | 1.16e+00 |\n", + "| 2870 | 1.09e+00 | 7.67e-06 | 1.03e+00 | 1.16e+00 |\n", + "| 1858 | 9.84e-01 | 4.91e-06 | 9.06e-01 | 1.07e+00 |\n", + "| 3720 | 8.76e-01 | 4.38e-06 | 8.21e-01 | 9.34e-01 |\n", + "| 3837 | 8.80e-01 | 4.43e-06 | 8.25e-01 | 9.38e-01 |\n", + "+--------------+----------+----------+-----------------+-----------------+\n", "\n", - "+------------------------------+------------------------------+\n", - "| Testis.transcript_expression | Testis.expression_proportion |\n", - "+------------------------------+------------------------------+\n", - "| float64 | float64 |\n", - "+------------------------------+------------------------------+\n", - "| 0.00e+00 | 0.00e+00 |\n", - "| 0.00e+00 | 0.00e+00 |\n", - "| 0.00e+00 | 0.00e+00 |\n", - "| 0.00e+00 | 0.00e+00 |\n", - "| 0.00e+00 | 0.00e+00 |\n", - "+------------------------------+------------------------------+\n", + "+-----------+-------------+---------------+---------------+--------------------+\n", + "| mis.z_raw | mis.z_score | mis_pphen.obs | mis_pphen.exp | mis_pphen.possible |\n", + "+-----------+-------------+---------------+---------------+--------------------+\n", + "| float64 | float64 | int64 | float64 | int64 |\n", + "+-----------+-------------+---------------+---------------+--------------------+\n", + "| -2.36e+00 | -8.61e-01 | 220 | 1.91e+02 | 890 |\n", + "| -2.36e+00 | -8.61e-01 | 220 | 1.91e+02 | 890 |\n", + "| 3.24e-01 | 1.18e-01 | 103 | 1.10e+02 | 512 |\n", + "| 3.39e+00 | 1.24e+00 | 236 | 2.77e+02 | 1399 |\n", + "| 3.33e+00 | 1.21e+00 | 309 | 3.65e+02 | 1841 |\n", + "+-----------+-------------+---------------+---------------+--------------------+\n", "\n", - "+-------------------------------+-------------------------------+\n", - "| Thyroid.transcript_expression | Thyroid.expression_proportion |\n", - "+-------------------------------+-------------------------------+\n", - "| float64 | float64 |\n", - "+-------------------------------+-------------------------------+\n", - "| 0.00e+00 | 0.00e+00 |\n", - "| 0.00e+00 | 0.00e+00 |\n", - "| 0.00e+00 | 0.00e+00 |\n", - "| 0.00e+00 | 0.00e+00 |\n", - "| 0.00e+00 | 0.00e+00 |\n", - "+-------------------------------+-------------------------------+\n", + "+--------------+---------+----------+--------------+----------+----------+\n", + "| mis_pphen.oe | syn.obs | syn.exp | syn.possible | syn.oe | syn.mu |\n", + "+--------------+---------+----------+--------------+----------+----------+\n", + "| float64 | int64 | float64 | int64 | float64 | float64 |\n", + "+--------------+---------+----------+--------------+----------+----------+\n", + "| 1.15e+00 | 316 | 2.96e+02 | 994 | 1.07e+00 | 3.02e-06 |\n", + "| 1.15e+00 | 316 | 2.96e+02 | 994 | 1.07e+00 | 3.02e-06 |\n", + "| 9.40e-01 | 166 | 1.79e+02 | 637 | 9.28e-01 | 1.91e-06 |\n", + "| 8.53e-01 | 272 | 2.73e+02 | 1157 | 9.98e-01 | 2.01e-06 |\n", + "| 8.47e-01 | 271 | 2.76e+02 | 1188 | 9.82e-01 | 1.91e-06 |\n", + "+--------------+---------+----------+--------------+----------+----------+\n", "\n", - "+------------------------------+------------------------------+\n", - "| Uterus.transcript_expression | Uterus.expression_proportion |\n", - "+------------------------------+------------------------------+\n", - "| float64 | float64 |\n", - "+------------------------------+------------------------------+\n", - "| 0.00e+00 | 0.00e+00 |\n", - "| 0.00e+00 | 0.00e+00 |\n", - "| 0.00e+00 | 0.00e+00 |\n", - "| 0.00e+00 | 0.00e+00 |\n", - "| 0.00e+00 | 0.00e+00 |\n", - "+------------------------------+------------------------------+\n", + "+-----------------+-----------------+-----------+-------------+\n", + "| syn.oe_ci.lower | syn.oe_ci.upper | syn.z_raw | syn.z_score |\n", + "+-----------------+-----------------+-----------+-------------+\n", + "| float64 | float64 | float64 | float64 |\n", + "+-----------------+-----------------+-----------+-------------+\n", + "| 9.73e-01 | 1.17e+00 | -1.17e+00 | -6.35e-01 |\n", + "| 9.73e-01 | 1.17e+00 | -1.17e+00 | -6.35e-01 |\n", + "| 8.17e-01 | 1.06e+00 | 9.64e-01 | 5.26e-01 |\n", + "| 9.03e-01 | 1.10e+00 | 3.27e-02 | 1.78e-02 |\n", + "| 8.88e-01 | 1.09e+00 | 3.00e-01 | 1.64e-01 |\n", + "+-----------------+-----------------+-----------+-------------+\n", "\n", - "+------------------------------+------------------------------+\n", - "| Vagina.transcript_expression | Vagina.expression_proportion |\n", - "+------------------------------+------------------------------+\n", - "| float64 | float64 |\n", - "+------------------------------+------------------------------+\n", - "| 0.00e+00 | 0.00e+00 |\n", - "| 0.00e+00 | 0.00e+00 |\n", - "| 0.00e+00 | 0.00e+00 |\n", - "| 0.00e+00 | 0.00e+00 |\n", - "| 0.00e+00 | 0.00e+00 |\n", - "+------------------------------+------------------------------+\n", + "+------------------+-------+------------------+------------+------------+\n", + "| constraint_flags | level | transcript_type | chromosome | cds_length |\n", + "+------------------+-------+------------------+------------+------------+\n", + "| set | str | str | str | int64 |\n", + "+------------------+-------+------------------+------------+------------+\n", + "| {} | NA | NA | NA | NA |\n", + "| {} | \"2\" | \"protein_coding\" | \"chr19\" | 1485 |\n", + "| {} | \"1\" | \"protein_coding\" | \"chr19\" | 917 |\n", + "| {} | NA | NA | NA | NA |\n", + "| {} | NA | NA | NA | NA |\n", + "+------------------+-------+------------------+------------+------------+\n", "\n", - "+----------------------------------+----------------------------------+\n", - "| WholeBlood.transcript_expression | WholeBlood.expression_proportion |\n", - "+----------------------------------+----------------------------------+\n", - "| float64 | float64 |\n", - "+----------------------------------+----------------------------------+\n", - "| 0.00e+00 | 0.00e+00 |\n", - "| 0.00e+00 | 0.00e+00 |\n", - "| 0.00e+00 | 0.00e+00 |\n", - "| 0.00e+00 | 0.00e+00 |\n", - "| 0.00e+00 | 0.00e+00 |\n", - "+----------------------------------+----------------------------------+\n", + "+------------------+\n", + "| num_coding_exons |\n", + "+------------------+\n", + "| int64 |\n", + "+------------------+\n", + "| NA |\n", + "| 8 |\n", + "| 5 |\n", + "| NA |\n", + "| NA |\n", + "+------------------+\n", "showing top 5 rows" ] }, @@ -9503,28 +10017,36 @@ }, { "cell_type": "markdown", - "id": "ae3e5ba8-075a-455c-8e5c-e244970d5217", + "id": "72ce8dac-994f-42ae-a6a0-948f5517e427", "metadata": { "tags": [] }, "source": [ - "## Browser variant data\n", + "## Proportion expressed across transcripts (pext) score\n", "\n", - "For more information about these files, see the [changelog entry](https://gnomad.broadinstitute.org/new/2024-08-release-gnomad-browser-tables) on the browser tables, and the [Help](https://gnomad.broadinstitute.org/help/v4-browser-hts) page." + "For more information about the pext score see the [Help](https://gnomad.broadinstitute.org/help/pext) page." ] }, { "cell_type": "markdown", - "id": "d7c13865-814a-46e8-a4f3-c823a910cfa3", + "id": "ea178a83-1bb6-4f9b-8334-0ca1f6096021", "metadata": {}, "source": [ - "### Load the Hail Table\n" + "### Base level pext\n" + ] + }, + { + "cell_type": "markdown", + "id": "eeb8bb32-d258-4b3a-ab5e-edc76502fa5b", + "metadata": {}, + "source": [ + "#### Load the Hail Table\n" ] }, { "cell_type": "code", - "execution_count": 33, - "id": "329f08ef-6dbf-42cd-bbbc-d3f5396708ac", + "execution_count": 27, + "id": "1f448e05-7f99-4c63-b101-b33143d9d58b", "metadata": { "ExecuteTime": { "end_time": "2024-12-06T20:08:59.197890Z", @@ -9533,21 +10055,21 @@ }, "outputs": [], "source": [ - "ht = get_gnomad_release(version='4.1', dataset=\"browser\")" + "ht = get_gnomad_release(version='v10', data_type=\"base_level\", dataset=\"pext\")" ] }, { "cell_type": "markdown", - "id": "6ec344e0-4951-44d8-8f7b-1283a427914d", + "id": "0773d5d3-21f1-4892-b16b-dc31eb2a7bf5", "metadata": {}, "source": [ - "### Print the schema of the Hail Table\n" + "#### Print the schema of the Hail Table\n" ] }, { "cell_type": "code", - "execution_count": 34, - "id": "17efacb6-84c4-4345-9bf9-1dca259dd7fa", + "execution_count": 28, + "id": "b9f99311-91e6-454e-b940-3d036bddf3a5", "metadata": { "ExecuteTime": { "end_time": "2024-12-06T20:09:00.032524Z", @@ -9562,515 +10084,216 @@ "text": [ "----------------------------------------\n", "Global fields:\n", - " 'mane_select_version': str \n", + " 'tissues': array \n", + " 'exp_prop_mean_tissues': array \n", "----------------------------------------\n", "Row fields:\n", " 'locus': locus \n", - " 'alleles': array \n", - " 'exome': struct {\n", - " colocated_variants: struct {\n", - " all: array, \n", - " non_ukb: array\n", - " }, \n", - " subsets: set, \n", - " flags: set, \n", - " freq: struct {\n", - " all: struct {\n", - " ac: int32, \n", - " ac_raw: int32, \n", - " an: int32, \n", - " hemizygote_count: int32, \n", - " homozygote_count: int64, \n", - " ancestry_groups: array\n", - " }, \n", - " non_ukb: struct {\n", - " ac: int32, \n", - " ac_raw: int32, \n", - " an: int32, \n", - " hemizygote_count: int32, \n", - " homozygote_count: int64, \n", - " ancestry_groups: array\n", - " }\n", - " }, \n", - " fafmax: struct {\n", - " gnomad: struct {\n", - " faf95_max: float64, \n", - " faf95_max_gen_anc: str, \n", - " faf99_max: float64, \n", - " faf99_max_gen_anc: str\n", - " }, \n", - " non_ukb: struct {\n", - " faf95_max: float64, \n", - " faf95_max_gen_anc: str, \n", - " faf99_max: float64, \n", - " faf99_max_gen_anc: str\n", - " }\n", - " }, \n", - " age_distribution: struct {\n", - " het: struct {\n", - " bin_edges: array, \n", - " bin_freq: array, \n", - " n_smaller: int64, \n", - " n_larger: int64\n", - " }, \n", - " hom: struct {\n", - " bin_edges: array, \n", - " bin_freq: array, \n", - " n_smaller: int64, \n", - " n_larger: int64\n", - " }\n", - " }, \n", - " filters: set, \n", - " quality_metrics: struct {\n", - " allele_balance: struct {\n", - " alt_adj: struct {\n", - " bin_edges: array, \n", - " bin_freq: array, \n", - " n_smaller: int64, \n", - " n_larger: int64\n", - " }, \n", - " alt_raw: struct {\n", - " bin_edges: array, \n", - " bin_freq: array, \n", - " n_smaller: int64, \n", - " n_larger: int64\n", - " }\n", - " }, \n", - " genotype_depth: struct {\n", - " all_adj: struct {\n", - " bin_edges: array, \n", - " bin_freq: array, \n", - " n_smaller: int64, \n", - " n_larger: int64\n", - " }, \n", - " all_raw: struct {\n", - " bin_edges: array, \n", - " bin_freq: array, \n", - " n_smaller: int64, \n", - " n_larger: int64\n", - " }, \n", - " alt_adj: struct {\n", - " bin_edges: array, \n", - " bin_freq: array, \n", - " n_smaller: int64, \n", - " n_larger: int64\n", - " }, \n", - " alt_raw: struct {\n", - " bin_edges: array, \n", - " bin_freq: array, \n", - " n_smaller: int64, \n", - " n_larger: int64\n", - " }\n", - " }, \n", - " genotype_quality: struct {\n", - " all_adj: struct {\n", - " bin_edges: array, \n", - " bin_freq: array, \n", - " n_smaller: int64, \n", - " n_larger: int64\n", - " }, \n", - " all_raw: struct {\n", - " bin_edges: array, \n", - " bin_freq: array, \n", - " n_smaller: int64, \n", - " n_larger: int64\n", - " }, \n", - " alt_adj: struct {\n", - " bin_edges: array, \n", - " bin_freq: array, \n", - " n_smaller: int64, \n", - " n_larger: int64\n", - " }, \n", - " alt_raw: struct {\n", - " bin_edges: array, \n", - " bin_freq: array, \n", - " n_smaller: int64, \n", - " n_larger: int64\n", - " }\n", - " }, \n", - " site_quality_metrics: array\n", - " }\n", + " 'gene_id': str \n", + " 'gene_symbol': str \n", + " 'exp_prop_mean': float64 \n", + " 'Adipose_Subcutaneous': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'Adipose_Visceral_Omentum': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'AdrenalGland': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'Artery_Aorta': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'Artery_Coronary': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'Artery_Tibial': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'Bladder': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'Brain_Amygdala': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'Brain_Anteriorcingulatecortex_BA24': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'Brain_Caudate_basalganglia': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'Brain_CerebellarHemisphere': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'Brain_Cerebellum': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'Brain_Cortex': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", " } \n", - " 'genome': struct {\n", - " colocated_variants: struct {\n", - " hgdp: array, \n", - " tgp: array, \n", - " all: array\n", - " }, \n", - " subsets: set, \n", - " flags: set, \n", - " freq: struct {\n", - " hgdp: struct {\n", - " ac: int32, \n", - " ac_raw: int32, \n", - " an: int32, \n", - " hemizygote_count: int32, \n", - " homozygote_count: int32, \n", - " ancestry_groups: array\n", - " }, \n", - " tgp: struct {\n", - " ac: int32, \n", - " ac_raw: int32, \n", - " an: int32, \n", - " hemizygote_count: int32, \n", - " homozygote_count: int32, \n", - " ancestry_groups: array\n", - " }, \n", - " all: struct {\n", - " ac: int32, \n", - " ac_raw: int32, \n", - " an: int32, \n", - " hemizygote_count: int32, \n", - " homozygote_count: int32, \n", - " ancestry_groups: array\n", - " }\n", - " }, \n", - " fafmax: struct {\n", - " faf95_max: float64, \n", - " faf95_max_gen_anc: str, \n", - " faf99_max: float64, \n", - " faf99_max_gen_anc: str\n", - " }, \n", - " age_distribution: struct {\n", - " het: struct {\n", - " bin_edges: array, \n", - " bin_freq: array, \n", - " n_smaller: int64, \n", - " n_larger: int64\n", - " }, \n", - " hom: struct {\n", - " bin_edges: array, \n", - " bin_freq: array, \n", - " n_smaller: int64, \n", - " n_larger: int64\n", - " }\n", - " }, \n", - " filters: set, \n", - " quality_metrics: struct {\n", - " allele_balance: struct {\n", - " alt_adj: struct {\n", - " bin_edges: array, \n", - " bin_freq: array, \n", - " n_smaller: int64, \n", - " n_larger: int64\n", - " }, \n", - " alt_raw: struct {\n", - " bin_edges: array, \n", - " bin_freq: array, \n", - " n_smaller: int64, \n", - " n_larger: int64\n", - " }\n", - " }, \n", - " genotype_depth: struct {\n", - " all_adj: struct {\n", - " bin_edges: array, \n", - " bin_freq: array, \n", - " n_smaller: int64, \n", - " n_larger: int64\n", - " }, \n", - " all_raw: struct {\n", - " bin_edges: array, \n", - " bin_freq: array, \n", - " n_smaller: int64, \n", - " n_larger: int64\n", - " }, \n", - " alt_adj: struct {\n", - " bin_edges: array, \n", - " bin_freq: array, \n", - " n_smaller: int64, \n", - " n_larger: int64\n", - " }, \n", - " alt_raw: struct {\n", - " bin_edges: array, \n", - " bin_freq: array, \n", - " n_smaller: int64, \n", - " n_larger: int64\n", - " }\n", - " }, \n", - " genotype_quality: struct {\n", - " all_adj: struct {\n", - " bin_edges: array, \n", - " bin_freq: array, \n", - " n_smaller: int64, \n", - " n_larger: int64\n", - " }, \n", - " all_raw: struct {\n", - " bin_edges: array, \n", - " bin_freq: array, \n", - " n_smaller: int64, \n", - " n_larger: int64\n", - " }, \n", - " alt_adj: struct {\n", - " bin_edges: array, \n", - " bin_freq: array, \n", - " n_smaller: int64, \n", - " n_larger: int64\n", - " }, \n", - " alt_raw: struct {\n", - " bin_edges: array, \n", - " bin_freq: array, \n", - " n_smaller: int64, \n", - " n_larger: int64\n", - " }\n", - " }, \n", - " site_quality_metrics: array\n", - " }\n", + " 'Brain_FrontalCortex_BA9': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'Brain_Hippocampus': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'Brain_Hypothalamus': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'Brain_Nucleusaccumbens_basalganglia': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'Brain_Putamen_basalganglia': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'Brain_Spinalcord_cervicalc_1': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'Brain_Substantianigra': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'Breast_MammaryTissue': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'Cells_Culturedfibroblasts': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'Cells_EBV_transformedlymphocytes': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'Colon_Sigmoid': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'Colon_Transverse': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'Esophagus_GastroesophagealJunction': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'Esophagus_Mucosa': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'Esophagus_Muscularis': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'Heart_AtrialAppendage': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'Heart_LeftVentricle': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'Kidney_Cortex': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'Liver': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'Lung': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'MinorSalivaryGland': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'Muscle_Skeletal': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'Nerve_Tibial': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'Ovary': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'Pancreas': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'Pituitary': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'Prostate': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'Skin_NotSunExposed_Suprapubic': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", " } \n", - " 'rsids': set \n", - " 'in_silico_predictors': struct {\n", - " cadd: struct {\n", - " phred: float32, \n", - " raw_score: float32\n", - " }, \n", - " revel_max: float64, \n", - " spliceai_ds_max: float32, \n", - " pangolin_largest_ds: float64, \n", - " phylop: float64, \n", - " sift_max: float64, \n", - " polyphen_max: float64\n", + " 'Skin_SunExposed_Lowerleg': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", " } \n", - " 'variant_id': str \n", - " 'colocated_variants': struct {\n", - " all: array, \n", - " non_ukb: array, \n", - " hgdp: array, \n", - " tgp: array\n", + " 'SmallIntestine_TerminalIleum': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", " } \n", - " 'joint': struct {\n", - " freq: struct {\n", - " all: struct {\n", - " ac: int32, \n", - " ac_raw: int32, \n", - " an: int32, \n", - " hemizygote_count: int32, \n", - " homozygote_count: int32, \n", - " ancestry_groups: array\n", - " }\n", - " }, \n", - " faf: array, \n", - " fafmax: struct {\n", - " faf95_max: float64, \n", - " faf95_max_gen_anc: str, \n", - " faf99_max: float64, \n", - " faf99_max_gen_anc: str\n", - " }, \n", - " grpmax: struct {\n", - " AC: int32, \n", - " AF: float64, \n", - " AN: int32, \n", - " homozygote_count: int32, \n", - " gen_anc: str\n", - " }, \n", - " histograms: struct {\n", - " qual_hists: struct {\n", - " gq_hist_all: struct {\n", - " bin_edges: array, \n", - " bin_freq: array, \n", - " n_smaller: int64, \n", - " n_larger: int64\n", - " }, \n", - " dp_hist_all: struct {\n", - " bin_edges: array, \n", - " bin_freq: array, \n", - " n_smaller: int64, \n", - " n_larger: int64\n", - " }, \n", - " gq_hist_alt: struct {\n", - " bin_edges: array, \n", - " bin_freq: array, \n", - " n_smaller: int64, \n", - " n_larger: int64\n", - " }, \n", - " dp_hist_alt: struct {\n", - " bin_edges: array, \n", - " bin_freq: array, \n", - " n_smaller: int64, \n", - " n_larger: int64\n", - " }, \n", - " ab_hist_alt: struct {\n", - " bin_edges: array, \n", - " bin_freq: array, \n", - " n_smaller: int64, \n", - " n_larger: int64\n", - " }\n", - " }, \n", - " raw_qual_hists: struct {\n", - " gq_hist_all: struct {\n", - " bin_edges: array, \n", - " bin_freq: array, \n", - " n_smaller: int64, \n", - " n_larger: int64\n", - " }, \n", - " dp_hist_all: struct {\n", - " bin_edges: array, \n", - " bin_freq: array, \n", - " n_smaller: int64, \n", - " n_larger: int64\n", - " }, \n", - " gq_hist_alt: struct {\n", - " bin_edges: array, \n", - " bin_freq: array, \n", - " n_smaller: int64, \n", - " n_larger: int64\n", - " }, \n", - " dp_hist_alt: struct {\n", - " bin_edges: array, \n", - " bin_freq: array, \n", - " n_smaller: int64, \n", - " n_larger: int64\n", - " }, \n", - " ab_hist_alt: struct {\n", - " bin_edges: array, \n", - " bin_freq: array, \n", - " n_smaller: int64, \n", - " n_larger: int64\n", - " }\n", - " }, \n", - " age_hists: struct {\n", - " age_hist_het: struct {\n", - " bin_edges: array, \n", - " bin_freq: array, \n", - " n_smaller: int64, \n", - " n_larger: int64\n", - " }, \n", - " age_hist_hom: struct {\n", - " bin_edges: array, \n", - " bin_freq: array, \n", - " n_smaller: int64, \n", - " n_larger: int64\n", - " }\n", - " }\n", - " }, \n", - " flags: set, \n", - " freq_comparison_stats: struct {\n", - " contingency_table_test: array, \n", - " cochran_mantel_haenszel_test: struct {\n", - " p_value: float64, \n", - " chisq: float64\n", - " }, \n", - " stat_union: struct {\n", - " p_value: float64, \n", - " stat_test_name: str, \n", - " gen_ancs: array\n", - " }\n", - " }\n", + " 'Spleen': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", " } \n", - " 'coverage': struct {\n", - " exome: struct {\n", - " mean: float64, \n", - " median_approx: int32, \n", - " total_DP: int64, \n", - " over_1: float64, \n", - " over_5: float64, \n", - " over_10: float64, \n", - " over_15: float64, \n", - " over_20: float64, \n", - " over_25: float64, \n", - " over_30: float64, \n", - " over_50: float64, \n", - " over_100: float64\n", - " }, \n", - " genome: struct {\n", - " mean: float64, \n", - " median_approx: int32, \n", - " total_DP: int64, \n", - " over_1: float32, \n", - " over_5: float32, \n", - " over_10: float32, \n", - " over_15: float32, \n", - " over_20: float32, \n", - " over_25: float32, \n", - " over_30: float32, \n", - " over_50: float32, \n", - " over_100: float32\n", - " }\n", + " 'Stomach': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", " } \n", - " 'transcript_consequences': array, \n", - " domains: set, \n", - " gene_id: str, \n", - " gene_symbol: str, \n", - " hgvsc: str, \n", - " hgvsp: str, \n", - " is_canonical: bool, \n", - " lof_filter: str, \n", - " lof_flags: str, \n", - " lof: str, \n", - " major_consequence: str, \n", - " transcript_id: str, \n", - " transcript_version: str, \n", - " gene_version: str, \n", - " is_mane_select: bool, \n", - " is_mane_select_version: bool, \n", - " refseq_id: str, \n", - " refseq_version: str\n", - " }> \n", - " 'caid': str \n", - " 'vrs': struct {\n", - " ref: struct {\n", - " allele_id: str, \n", - " start: int32, \n", - " end: int32, \n", - " state: str\n", - " }, \n", - " alt: struct {\n", - " allele_id: str, \n", - " start: int32, \n", - " end: int32, \n", - " state: str\n", - " }\n", + " 'Testis': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'Thyroid': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'Uterus': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'Vagina': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'WholeBlood': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", " } \n", "----------------------------------------\n", - "Key: ['locus', 'alleles']\n", + "Key: ['locus']\n", "----------------------------------------\n" ] } @@ -10081,18 +10304,18 @@ }, { "cell_type": "markdown", - "id": "e113c4a2-25c2-4f55-bbb9-382c87cd770c", + "id": "a39f9dca-5db4-4ca3-8eac-e6c76db7c7bc", "metadata": { "tags": [] }, "source": [ - "### Show the first 5 variants in the Hail Table\n" + "#### Show the first 5 variants in the Hail Table\n" ] }, { "cell_type": "code", - "execution_count": 35, - "id": "d03dd50b-37ac-49ec-b766-a86870ee6573", + "execution_count": 29, + "id": "a6ac695f-cfb2-4aa7-877c-b204351a77da", "metadata": { "ExecuteTime": { "end_time": "2024-12-06T20:09:20.949958Z", @@ -10104,1649 +10327,2874 @@ { "data": { "text/html": [ - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", + "
exome
genome
joint
quality_metrics
quality_metrics
histograms
freq
fafmax
age_distribution
allele_balance
genotype_depth
genotype_quality
freq
age_distribution
allele_balance
genotype_depth
genotype_quality
in_silico_predictors
freq
qual_hists
raw_qual_hists
age_hists
freq_comparison_stats
coverage
vrs
colocated_variants
all
non_ukb
gnomad
non_ukb
het
hom
alt_adj
alt_raw
all_adj
all_raw
alt_adj
alt_raw
all_adj
all_raw
alt_adj
alt_raw
colocated_variants
hgdp
tgp
all
fafmax
het
hom
alt_adj
alt_raw
all_adj
all_raw
alt_adj
alt_raw
all_adj
all_raw
alt_adj
alt_raw
cadd
colocated_variants
all
fafmax
grpmax
gq_hist_all
dp_hist_all
gq_hist_alt
dp_hist_alt
ab_hist_alt
gq_hist_all
dp_hist_all
gq_hist_alt
dp_hist_alt
ab_hist_alt
age_hist_het
age_hist_hom
cochran_mantel_haenszel_test
stat_union
exome
genome
ref
alt
locus
alleles
all
non_ukb
subsets
flags
ac
ac_raw
an
hemizygote_count
homozygote_count
ancestry_groups
ac
ac_raw
an
hemizygote_count
homozygote_count
ancestry_groups
faf95_max
faf95_max_gen_anc
faf99_max
faf99_max_gen_anc
faf95_max
faf95_max_gen_anc
faf99_max
faf99_max_gen_anc
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
filters
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
site_quality_metrics
hgdp
tgp
all
subsets
flags
ac
ac_raw
an
hemizygote_count
homozygote_count
ancestry_groups
ac
ac_raw
an
hemizygote_count
homozygote_count
ancestry_groups
ac
ac_raw
an
hemizygote_count
homozygote_count
ancestry_groups
faf95_max
faf95_max_gen_anc
faf99_max
faf99_max_gen_anc
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
filters
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
site_quality_metrics
rsids
phred
raw_score
revel_max
spliceai_ds_max
pangolin_largest_ds
phylop
sift_max
polyphen_max
variant_id
all
non_ukb
hgdp
tgp
ac
ac_raw
an
hemizygote_count
homozygote_count
ancestry_groups
faf
faf95_max
faf95_max_gen_anc
faf99_max
faf99_max_gen_anc
AC
AF
AN
homozygote_count
gen_anc
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
flags
contingency_table_test
p_value
chisq
p_value
stat_test_name
gen_ancs
mean
median_approx
total_DP
over_1
over_5
over_10
over_15
over_20
over_25
over_30
over_50
over_100
mean
median_approx
total_DP
over_1
over_5
over_10
over_15
over_20
over_25
over_30
over_50
over_100
transcript_consequences
caid
allele_id
start
end
state
allele_id
start
end
state
locus<GRCh38>array<str>array<str>array<str>set<str>set<str>int32int32int32int32int64array<struct{id: str, ac: int32, an: int32, hemizygote_count: int32, homozygote_count: int64}>int32int32int32int32int64array<struct{id: str, ac: int32, an: int32, hemizygote_count: int32, homozygote_count: int64}>float64strfloat64strfloat64strfloat64strarray<float64>array<int64>int64int64array<float64>array<int64>int64int64set<str>array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<struct{metric: str, value: float64}>array<str>array<str>array<str>set<str>set<str>int32int32int32int32int32array<struct{id: str, ac: int32, an: int32, hemizygote_count: int32, homozygote_count: int32}>int32int32int32int32int32array<struct{id: str, ac: int32, an: int32, hemizygote_count: int32, homozygote_count: int32}>int32int32int32int32int32array<struct{id: str, ac: int32, an: int32, hemizygote_count: int32, homozygote_count: int32}>float64strfloat64strarray<float64>array<int64>int64int64array<float64>array<int64>int64int64set<str>array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<struct{metric: str, value: float64}>set<str>float32float32float64float32float64float64float64float64strarray<str>array<str>array<str>array<str>int32int32int32int32int32array<struct{id: str, ac: int32, an: int32, hemizygote_count: int32, homozygote_count: int32}>array<struct{faf95: float64, faf99: float64}>float64strfloat64strint32float64int32int32strarray<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64set<str>array<struct{p_value: float64, odds_ratio: float64}>float64float64float64strarray<str>float64int32int64float64float64float64float64float64float64float64float64float64float64int32int64float32float32float32float32float32float32float32float32float32array<struct{biotype: str, consequence_terms: array<str>, domains: set<str>, gene_id: str, gene_symbol: str, hgvsc: str, hgvsp: str, is_canonical: bool, lof_filter: str, lof_flags: str, lof: str, major_consequence: str, transcript_id: str, transcript_version: str, gene_version: str, is_mane_select: bool, is_mane_select_version: bool, refseq_id: str, refseq_version: str}>strstrint32int32strstrint32int32str
chr1:10031["T","C"]NANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANA[][][]{}{"lcr","segdup"}0081200[]00107800[]025664200[("remaining",0,782,0,0),("remaining_XX",0,402,0,0),("remaining_XY",0,380,0,0),("amr",0,6420,0,0),("amr_XX",0,2770,0,0),("amr_XY",0,3650,0,0),("fin",0,4326,0,0),("fin_XX",0,1060,0,0),("fin_XY",0,3266,0,0),("ami",0,352,0,0),("ami_XX",0,154,0,0),("ami_XY",0,198,0,0),("eas",0,1712,0,0),("eas_XX",0,770,0,0),("eas_XY",0,942,0,0),("mid",0,192,0,0),("mid_XX",0,102,0,0),("mid_XY",0,90,0,0),("sas",0,1120,0,0),("sas_XX",0,260,0,0),("sas_XY",0,860,0,0),("asj",0,1550,0,0),("asj_XX",0,814,0,0),("asj_XY",0,736,0,0),("afr",0,14642,0,0),("afr_XX",0,7978,0,0),("afr_XY",0,6664,0,0),("nfe",0,25546,0,0),("nfe_XX",0,14998,0,0),("nfe_XY",0,10548,0,0),("XX",0,29308,0,0),("XY",0,27334,0,0)]NANANANA[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]00{"AC0","AS_VQSR"}[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,16,121,475,973,1736,2409,2950,3134,2995,2803,2514,2194,1773,1335,911,665,439,351]0527[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][10,66,471,1445,2990,5808,6940,7906,7262,6236,4943,3919,3129,2527,1993,1476,1023,741,500,418]0744[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,23215,2435,1647,594,176,118,49,29,19,9,11,6,5,2,4,2]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][14149,7330,6840,3904,23217,2436,1647,594,176,118,49,29,19,9,11,6,5,2,4,2]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[("SiteQuality",9.60e+01),("inbreeding_coeff",-1.65e-05),("AS_MQ",3.51e+01),("AS_FS",5.10e+00),("AS_MQRankSum",-5.72e-01),("AS_pab_max",6.87e-01),("AS_QUALapprox",7.70e+01),("AS_QD",2.96e+00),("AS_ReadPosRankSum",-1.38e+00),("AS_SOR",9.64e-02),("AS_VarDP",2.60e+01),("AS_VQSLOD",-4.57e+00)]{"rs1639542312"}8.97e+007.57e-01NANANANANANA"1-10031-T-C"[][][][]025664200[("remaining",0,782,0,0),("remaining_XX",0,402,0,0),("remaining_XY",0,380,0,0),("amr",0,6420,0,0),("amr_XX",0,2770,0,0),("amr_XY",0,3650,0,0),("fin",0,4326,0,0),("fin_XX",0,1060,0,0),("fin_XY",0,3266,0,0),("ami",0,352,0,0),("ami_XX",0,154,0,0),("ami_XY",0,198,0,0),("eas",0,1712,0,0),("eas_XX",0,770,0,0),("eas_XY",0,942,0,0),("mid",0,192,0,0),("mid_XX",0,102,0,0),("mid_XY",0,90,0,0),("sas",0,1120,0,0),("sas_XX",0,260,0,0),("sas_XY",0,860,0,0),("asj",0,1550,0,0),("asj_XX",0,814,0,0),("asj_XY",0,736,0,0),("afr",0,14642,0,0),("afr_XX",0,7978,0,0),("afr_XY",0,6664,0,0),("nfe",0,25546,0,0),("nfe_XX",0,14998,0,0),("nfe_XY",0,10548,0,0),("",0,56642,0,0),("XX",0,29308,0,0),("XY",0,27334,0,0),("XX",0,29308,0,0),("XY",0,27334,0,0)][(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]NANANANANANANANANA[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,23215,2435,1647,594,176,118,49,29,19,9,11,6,5,2,4,2]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,16,121,475,973,1736,2409,2950,3134,2995,2803,2514,2194,1773,1335,911,665,439,351]0527[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][14149,7330,6840,3904,23217,2436,1647,594,176,118,49,29,19,9,11,6,5,2,4,2]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][10,66,471,1445,2990,5808,6940,7906,7262,6236,4943,3919,3129,2527,1993,1476,1023,741,500,418]0744[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]00{"not_called_in_exomes"}[NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]NANANANANANANANANANANANANANANANANA3.74e+013826844368.08e-018.08e-018.07e-018.01e-017.82e-017.43e-016.67e-012.89e-011.13e-02[]"CA997563811""ga4gh:VA.oTAtTrgYxm81O9fu6Mrhfo1t3eHsgg4L"1003010031"T""ga4gh:VA.Y283OnlLjyi1T1IT_JzvW255rC6YJsW6"1003010031"C"
chr1:10037["T","C"]NANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANA[][][]{}{"lcr","segdup"}00102800[]00162800[]247688200[("remaining",0,998,0,0),("remaining_XX",0,528,0,0),("remaining_XY",0,470,0,0),("amr",0,8296,0,0),("amr_XX",0,3698,0,0),("amr_XY",0,4598,0,0),("fin",1,5568,0,0),("fin_XX",0,1316,0,0),("fin_XY",1,4252,0,0),("ami",0,494,0,0),("ami_XX",0,238,0,0),("ami_XY",0,256,0,0),("eas",1,2456,0,0),("eas_XX",1,1114,0,0),("eas_XY",0,1342,0,0),("mid",0,234,0,0),("mid_XX",0,122,0,0),("mid_XY",0,112,0,0),("sas",0,1706,0,0),("sas_XX",0,420,0,0),("sas_XY",0,1286,0,0),("asj",0,2066,0,0),("asj_XX",0,1106,0,0),("asj_XY",0,960,0,0),("afr",0,20394,0,0),("afr_XX",0,11132,0,0),("afr_XY",0,9262,0,0),("nfe",0,34670,0,0),("nfe_XX",0,20498,0,0),("nfe_XY",0,14172,0,0),("XX",1,40172,0,0),("XY",1,36710,0,0)]NANANANA[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,1,0,0,1,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]00{"AS_VQSR"}[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,9,69,387,913,1737,2859,3749,4216,4302,4223,3745,3280,2661,1954,1380,943,607,519]0888[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][7,37,269,903,1948,4127,5519,7075,7322,6972,6095,5249,4374,3624,2893,2106,1501,1031,679,590]01130[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,2,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,29394,3741,2868,1281,401,358,163,63,69,31,18,20,10,4,5,15]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][10121,5441,5610,3838,29394,3741,2868,1281,401,358,163,63,69,31,18,20,10,4,5,15]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,2,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[("SiteQuality",1.80e+02),("inbreeding_coeff",-3.15e-05),("AS_MQ",3.83e+01),("AS_FS",8.58e+00),("AS_MQRankSum",1.37e+00),("AS_pab_max",1.00e+00),("AS_QUALapprox",1.80e+02),("AS_QD",2.20e+00),("AS_ReadPosRankSum",-4.80e-01),("AS_SOR",1.51e-01),("AS_VarDP",8.20e+01),("AS_VQSLOD",-3.18e+00)]{"rs1639542418"}8.90e+007.49e-01NANANANANANA"1-10037-T-C"[][][][]247688200[("remaining",0,998,0,0),("remaining_XX",0,528,0,0),("remaining_XY",0,470,0,0),("amr",0,8296,0,0),("amr_XX",0,3698,0,0),("amr_XY",0,4598,0,0),("fin",1,5568,0,0),("fin_XX",0,1316,0,0),("fin_XY",1,4252,0,0),("ami",0,494,0,0),("ami_XX",0,238,0,0),("ami_XY",0,256,0,0),("eas",1,2456,0,0),("eas_XX",1,1114,0,0),("eas_XY",0,1342,0,0),("mid",0,234,0,0),("mid_XX",0,122,0,0),("mid_XY",0,112,0,0),("sas",0,1706,0,0),("sas_XX",0,420,0,0),("sas_XY",0,1286,0,0),("asj",0,2066,0,0),("asj_XX",0,1106,0,0),("asj_XY",0,960,0,0),("afr",0,20394,0,0),("afr_XX",0,11132,0,0),("afr_XY",0,9262,0,0),("nfe",0,34670,0,0),("nfe_XX",0,20498,0,0),("nfe_XY",0,14172,0,0),("",2,76882,0,0),("XX",1,40172,0,0),("XY",1,36710,0,0),("XX",1,40172,0,0),("XY",1,36710,0,0)][(4.32e-06,1.62e-06),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]NANANANA14.07e-0424560"eas"[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,29394,3741,2868,1281,401,358,163,63,69,31,18,20,10,4,5,15]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,9,69,387,913,1737,2859,3749,4216,4302,4223,3745,3280,2661,1954,1380,943,607,519]0888[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][10121,5441,5610,3838,29394,3741,2868,1281,401,358,163,63,69,31,18,20,10,4,5,15]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][7,37,269,903,1948,4127,5519,7075,7322,6972,6095,5249,4374,3624,2893,2106,1501,1031,679,590]01130[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,2,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,2,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,1,0,0,1,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]00{"not_called_in_exomes"}[NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]NANANANANANANANANANANANANANANANANA4.29e+014430779558.43e-018.43e-018.42e-018.39e-018.27e-018.02e-017.48e-013.93e-011.66e-02[]"CA997563812""ga4gh:VA.6pIoPAYDsphCprRcyrititenuEWlZaxV"1003610037"T""ga4gh:VA.iHyQ1mh_iQX6WcqXcx5vvZF9_jPYDePo"1003610037"C"
chr1:10043["T","C"]NANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANA[][][]{}{"lcr","segdup"}00115400[]00178800[]118563400[("remaining",0,1148,0,0),("remaining_XX",0,594,0,0),("remaining_XY",0,554,0,0),("amr",0,8502,0,0),("amr_XX",0,3888,0,0),("amr_XY",0,4614,0,0),("fin",0,5820,0,0),("fin_XX",0,1280,0,0),("fin_XY",0,4540,0,0),("ami",0,568,0,0),("ami_XX",0,284,0,0),("ami_XY",0,284,0,0),("eas",0,2912,0,0),("eas_XX",0,1296,0,0),("eas_XY",0,1616,0,0),("mid",0,254,0,0),("mid_XX",0,136,0,0),("mid_XY",0,118,0,0),("sas",0,2158,0,0),("sas_XX",0,502,0,0),("sas_XY",0,1656,0,0),("asj",0,2276,0,0),("asj_XX",0,1234,0,0),("asj_XY",0,1042,0,0),("afr",1,22760,0,0),("afr_XX",1,12446,0,0),("afr_XY",0,10314,0,0),("nfe",0,39236,0,0),("nfe_XX",0,23244,0,0),("nfe_XY",0,15992,0,0),("XX",1,44904,0,0),("XY",0,40730,0,0)]NANANANA[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,1,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]00{"AS_VQSR"}[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,8,40,264,690,1525,2691,3754,4574,4813,4940,4490,3907,3242,2387,1704,1158,760,638]01232[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][2,24,149,466,1201,2614,4035,5568,6331,6725,6267,5855,5101,4268,3465,2554,1836,1244,831,692]01487[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,31093,4532,3696,1752,595,585,261,88,82,59,17,26,14,5,3,9]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][6578,3782,4202,3336,31093,4532,3696,1752,595,585,261,88,82,59,17,26,14,5,3,9]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0]00[("SiteQuality",9.70e+01),("inbreeding_coeff",-8.24e-06),("AS_MQ",3.52e+01),("AS_FS",3.11e+01),("AS_MQRankSum",1.23e+00),("AS_pab_max",1.00e+00),("AS_QUALapprox",9.70e+01),("AS_QD",2.77e+00),("AS_ReadPosRankSum",-8.96e-01),("AS_SOR",1.48e-03),("AS_VarDP",3.50e+01),("AS_VQSLOD",-5.79e+00)]NA8.90e+007.48e-01NANANANANANA"1-10043-T-C"[][][][]118563400[("remaining",0,1148,0,0),("remaining_XX",0,594,0,0),("remaining_XY",0,554,0,0),("amr",0,8502,0,0),("amr_XX",0,3888,0,0),("amr_XY",0,4614,0,0),("fin",0,5820,0,0),("fin_XX",0,1280,0,0),("fin_XY",0,4540,0,0),("ami",0,568,0,0),("ami_XX",0,284,0,0),("ami_XY",0,284,0,0),("eas",0,2912,0,0),("eas_XX",0,1296,0,0),("eas_XY",0,1616,0,0),("mid",0,254,0,0),("mid_XX",0,136,0,0),("mid_XY",0,118,0,0),("sas",0,2158,0,0),("sas_XX",0,502,0,0),("sas_XY",0,1656,0,0),("asj",0,2276,0,0),("asj_XX",0,1234,0,0),("asj_XY",0,1042,0,0),("afr",1,22760,0,0),("afr_XX",1,12446,0,0),("afr_XY",0,10314,0,0),("nfe",0,39236,0,0),("nfe_XX",0,23244,0,0),("nfe_XY",0,15992,0,0),("",1,85634,0,0),("XX",1,44904,0,0),("XY",0,40730,0,0),("XX",1,44904,0,0),("XY",0,40730,0,0)][(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]NANANANA14.39e-05227600"afr"[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,31093,4532,3696,1752,595,585,261,88,82,59,17,26,14,5,3,9]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,8,40,264,690,1525,2691,3754,4574,4813,4940,4490,3907,3242,2387,1704,1158,760,638]01232[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][6578,3782,4202,3336,31093,4532,3696,1752,595,585,261,88,82,59,17,26,14,5,3,9]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][2,24,149,466,1201,2614,4035,5568,6331,6725,6267,5855,5101,4268,3465,2554,1836,1244,831,692]01487[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,1,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]00{"not_called_in_exomes"}[NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]NANANANANANANANANANANANANANANANANA4.42e+014731658238.06e-018.06e-018.05e-018.03e-017.97e-017.82e-017.48e-014.50e-012.14e-02[]"CA997563813""ga4gh:VA.HdrkFJS16zwJPcGSKX9___fJcdqSATlQ"1004210043"T""ga4gh:VA.LSHuFx03sqw8WJGN2-n782ME4o04Vl4U"1004210043"C"
chr1:10055["T","C"]NANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANA[][][]{"hgdp"}{"lcr","segdup"}01131200[("japanese",0,50,0,0),("japanese_XX",0,12,0,0),("japanese_XY",0,38,0,0),("adygei",0,22,0,0),("adygei_XX",0,16,0,0),("adygei_XY",0,6,0,0),("orcadian",0,26,0,0),("orcadian_XX",0,14,0,0),("orcadian_XY",0,12,0,0),("bantusouthafrica",0,8,0,0),("bantusouthafrica_XX",0,0,0,0),("bantusouthafrica_XY",0,8,0,0),("yakut",0,36,0,0),("yakut_XX",0,14,0,0),("yakut_XY",0,22,0,0),("han",0,58,0,0),("han_XX",0,32,0,0),("han_XY",0,26,0,0),("uygur",0,10,0,0),("uygur_XX",0,4,0,0),("uygur_XY",0,6,0,0),("balochi",0,40,0,0),("balochi_XX",0,0,0,0),("balochi_XY",0,40,0,0),("bedouin",0,72,0,0),("bedouin_XX",0,28,0,0),("bedouin_XY",0,44,0,0),("russian",0,48,0,0),("russian_XX",0,18,0,0),("russian_XY",0,30,0,0),("daur",0,10,0,0),("daur_XX",0,2,0,0),("daur_XY",0,8,0,0),("pima",0,16,0,0),("pima_XX",0,6,0,0),("pima_XY",0,10,0,0),("hezhen",0,14,0,0),("hezhen_XX",0,4,0,0),("hezhen_XY",0,10,0,0),("biaka",0,20,0,0),("biaka_XX",0,0,0,0),("biaka_XY",0,20,0,0),("miao",0,8,0,0),("miao_XX",0,2,0,0),("miao_XY",0,6,0,0),("sindhi",0,40,0,0),("sindhi_XX",0,8,0,0),("sindhi_XY",0,32,0,0),("northernhan",0,14,0,0),("northernhan_XX",0,2,0,0),("northernhan_XY",0,12,0,0),("oroqen",0,14,0,0),("oroqen_XX",0,6,0,0),("oroqen_XY",0,8,0,0),("san",0,12,0,0),("san_XX",0,0,0,0),("san_XY",0,12,0,0),("tu",0,18,0,0),("tu_XX",0,4,0,0),("tu_XY",0,14,0,0),("tuscan",0,12,0,0),("tuscan_XX",0,4,0,0),("tuscan_XY",0,8,0,0),("mbuti",0,16,0,0),("mbuti_XX",0,4,0,0),("mbuti_XY",0,12,0,0),("palestinian",0,58,0,0),("palestinian_XX",0,38,0,0),("palestinian_XY",0,20,0,0),("tujia",0,16,0,0),("tujia_XX",0,2,0,0),("tujia_XY",0,14,0,0),("druze",0,58,0,0),("druze_XX",0,42,0,0),("druze_XY",0,16,0,0),("pathan",0,34,0,0),("pathan_XX",0,4,0,0),("pathan_XY",0,30,0,0),("basque",0,38,0,0),("basque_XX",0,12,0,0),("basque_XY",0,26,0,0),("makrani",0,38,0,0),("makrani_XX",0,6,0,0),("makrani_XY",0,32,0,0),("burusho",0,40,0,0),("burusho_XX",0,6,0,0),("burusho_XY",0,34,0,0),("mongolian",0,10,0,0),("mongolian_XX",0,4,0,0),("mongolian_XY",0,6,0,0),("bougainville",0,10,0,0),("bougainville_XX",0,10,0,0),("bougainville_XY",0,0,0,0),("papuansepik",0,2,0,0),("papuansepik_XX",0,2,0,0),("papuansepik_XY",0,0,0,0),("yi",0,18,0,0),("yi_XX",0,2,0,0),("yi_XY",0,16,0,0),("naxi",0,8,0,0),("naxi_XX",0,2,0,0),("naxi_XY",0,6,0,0),("lahu",0,8,0,0),("lahu_XX",0,0,0,0),("lahu_XY",0,8,0,0),("sardinian",0,52,0,0),("sardinian_XX",0,24,0,0),("sardinian_XY",0,28,0,0),("karitiana",0,14,0,0),("karitiana_XX",0,12,0,0),("karitiana_XY",0,2,0,0),("mozabite",0,36,0,0),("mozabite_XX",0,12,0,0),("mozabite_XY",0,24,0,0),("yoruba",0,20,0,0),("yoruba_XX",0,10,0,0),("yoruba_XY",0,10,0,0),("dai",0,12,0,0),("dai_XX",0,6,0,0),("dai_XY",0,6,0,0),("bergamoitalian",0,14,0,0),("bergamoitalian_XX",0,8,0,0),("bergamoitalian_XY",0,6,0,0),("cambodian",0,14,0,0),("cambodian_XX",0,8,0,0),("cambodian_XY",0,6,0,0),("french",0,48,0,0),("french_XX",0,26,0,0),("french_XY",0,22,0,0),("mandenka",0,26,0,0),("mandenka_XX",0,10,0,0),("mandenka_XY",0,16,0,0),("surui",0,12,0,0),("surui_XX",0,8,0,0),("surui_XY",0,4,0,0),("brahui",0,30,0,0),("brahui_XX",0,0,0,0),("brahui_XY",0,30,0,0),("hazara",0,22,0,0),("hazara_XX",0,0,0,0),("hazara_XY",0,22,0,0),("kalash",0,28,0,0),("kalash_XX",0,6,0,0),("kalash_XY",0,22,0,0),("papuanhighlands",0,4,0,0),("papuanhighlands_XX",0,2,0,0),("papuanhighlands_XY",0,2,0,0),("xibo",0,10,0,0),("xibo_XX",0,0,0,0),("xibo_XY",0,10,0,0),("colombian",0,6,0,0),("colombian_XX",0,4,0,0),("colombian_XY",0,2,0,0),("bantukenya",0,10,0,0),("bantukenya_XX",0,2,0,0),("bantukenya_XY",0,8,0,0),("she",0,18,0,0),("she_XX",0,6,0,0),("she_XY",0,12,0,0),("maya",0,34,0,0),("maya_XX",0,30,0,0),("maya_XY",0,4,0,0),("XX",0,484,0,0),("XY",0,828,0,0)]00147800[]159422400[("remaining",0,1228,0,0),("remaining_XX",0,624,0,0),("remaining_XY",0,604,0,0),("amr",0,8056,0,0),("amr_XX",0,3902,0,0),("amr_XY",0,4154,0,0),("fin",1,5570,0,0),("fin_XX",1,1034,0,0),("fin_XY",0,4536,0,0),("ami",0,682,0,0),("ami_XX",0,344,0,0),("ami_XY",0,338,0,0),("eas",0,3020,0,0),("eas_XX",0,1256,0,0),("eas_XY",0,1764,0,0),("mid",0,216,0,0),("mid_XX",0,110,0,0),("mid_XY",0,106,0,0),("sas",0,2668,0,0),("sas_XX",0,600,0,0),("sas_XY",0,2068,0,0),("asj",0,2370,0,0),("asj_XX",0,1246,0,0),("asj_XY",0,1124,0,0),("afr",0,26032,0,0),("afr_XX",0,14152,0,0),("afr_XY",0,11880,0,0),("nfe",0,44382,0,0),("nfe_XX",0,26312,0,0),("nfe_XY",0,18070,0,0),("XX",1,49580,0,0),("XY",0,44644,0,0)]NANANANA[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]00{"AS_VQSR"}[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,3,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,4,22,120,354,999,1950,3037,4168,4734,5196,5380,4766,4238,3206,2398,1776,1236,1052]02440[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][1,9,42,122,294,787,1537,2717,3751,4972,5404,5762,5875,5161,4526,3415,2525,1883,1294,1116]02622[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,3,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,25677,6107,5433,3528,1753,1702,1130,485,518,282,119,125,77,35,29,76]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][1429,1382,1901,2026,25677,6108,5433,3528,1753,1702,1130,485,518,282,119,125,77,35,29,76]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,1,2,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[("SiteQuality",2.20e+02),("inbreeding_coeff",-4.64e-05),("AS_MQ",3.48e+01),("AS_FS",5.94e+00),("AS_MQRankSum",7.15e-01),("AS_pab_max",2.27e-01),("AS_QUALapprox",9.10e+01),("AS_QD",1.21e+00),("AS_ReadPosRankSum",-1.16e+00),("AS_SOR",4.69e-01),("AS_VarDP",7.50e+01),("AS_VQSLOD",-3.72e+00)]{"rs892501864"}8.88e+007.46e-01NANANANANANA"1-10055-T-C"[][][][]159422400[("remaining",0,1228,0,0),("remaining_XX",0,624,0,0),("remaining_XY",0,604,0,0),("amr",0,8056,0,0),("amr_XX",0,3902,0,0),("amr_XY",0,4154,0,0),("fin",1,5570,0,0),("fin_XX",1,1034,0,0),("fin_XY",0,4536,0,0),("ami",0,682,0,0),("ami_XX",0,344,0,0),("ami_XY",0,338,0,0),("eas",0,3020,0,0),("eas_XX",0,1256,0,0),("eas_XY",0,1764,0,0),("mid",0,216,0,0),("mid_XX",0,110,0,0),("mid_XY",0,106,0,0),("sas",0,2668,0,0),("sas_XX",0,600,0,0),("sas_XY",0,2068,0,0),("asj",0,2370,0,0),("asj_XX",0,1246,0,0),("asj_XY",0,1124,0,0),("afr",0,26032,0,0),("afr_XX",0,14152,0,0),("afr_XY",0,11880,0,0),("nfe",0,44382,0,0),("nfe_XX",0,26312,0,0),("nfe_XY",0,18070,0,0),("",1,94224,0,0),("XX",1,49580,0,0),("XY",0,44644,0,0),("XX",1,49580,0,0),("XY",0,44644,0,0)][(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]NANANANANANANANANA[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,25677,6107,5433,3528,1753,1702,1130,485,518,282,119,125,77,35,29,76]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,4,22,120,354,999,1950,3037,4168,4734,5196,5380,4766,4238,3206,2398,1776,1236,1052]02440[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][1429,1382,1901,2026,25677,6108,5433,3528,1753,1702,1130,485,518,282,119,125,77,35,29,76]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][1,9,42,122,294,787,1537,2717,3751,4972,5404,5762,5875,5161,4526,3415,2525,1883,1294,1116]02622[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,1,2,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,3,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,3,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]00{"not_called_in_exomes"}[NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]NANANANANANANANANANANANANANANANANA4.54e+015132522827.16e-017.16e-017.15e-017.15e-017.13e-017.10e-017.00e-015.30e-013.76e-02[]"CA997563814""ga4gh:VA.xis4Nhtveh7q75mtkipQAUqZfWUfboWB"1005410055"T""ga4gh:VA.Ciou33oFTNEilAEegbFai_K0nu3F18A7"1005410055"C"
chr1:10057["A","C"]NANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANANA[][][]{}{"lcr","segdup"}00130000[]00281000[]3311353600[("remaining",0,1504,0,0),("remaining_XX",0,764,0,0),("remaining_XY",0,740,0,0),("amr",0,10448,0,0),("amr_XX",0,4944,0,0),("amr_XY",0,5504,0,0),("fin",0,6886,0,0),("fin_XX",0,1472,0,0),("fin_XY",0,5414,0,0),("ami",0,742,0,0),("ami_XX",0,378,0,0),("ami_XY",0,364,0,0),("eas",0,3850,0,0),("eas_XX",0,1670,0,0),("eas_XY",0,2180,0,0),("mid",0,266,0,0),("mid_XX",0,132,0,0),("mid_XY",0,134,0,0),("sas",0,3424,0,0),("sas_XX",0,784,0,0),("sas_XY",0,2640,0,0),("asj",0,2768,0,0),("asj_XX",0,1532,0,0),("asj_XY",0,1236,0,0),("afr",1,30736,0,0),("afr_XX",0,16598,0,0),("afr_XY",1,14138,0,0),("nfe",2,52912,0,0),("nfe_XX",2,31106,0,0),("nfe_XY",0,21806,0,0),("XX",2,59380,0,0),("XY",1,54156,0,0)]6.27e-06"nfe"2.35e-06"nfe"[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,1,0,1,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]00{"AS_VQSR"}[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,2,23,108,320,888,1844,3110,4447,5361,6012,6379,5879,5289,4273,3400,2503,1787,1521]03622[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][2,6,39,104,247,638,1325,2417,3685,5047,5927,6484,6763,6192,5525,4439,3518,2603,1850,1572]03743[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,1,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,1,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,25460,7448,6933,4978,2881,2833,2048,1038,1129,685,321,364,212,90,117,231]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][995,1036,1539,1788,25460,7448,6933,4978,2881,2833,2048,1038,1129,685,321,364,212,90,117,231]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0]00[("SiteQuality",2.92e+02),("inbreeding_coeff",-2.41e-05),("AS_MQ",3.61e+01),("AS_FS",3.79e+01),("AS_MQRankSum",7.88e-01),("AS_pab_max",1.00e+00),("AS_QUALapprox",2.64e+02),("AS_QD",2.06e+00),("AS_ReadPosRankSum",-6.84e-01),("AS_SOR",7.58e-01),("AS_VarDP",1.28e+02),("AS_VQSLOD",-3.31e+00)]{"rs1570391741"}8.53e+007.09e-01NANANANANANA"1-10057-A-C"[][][][]3311353600[("remaining",0,1504,0,0),("remaining_XX",0,764,0,0),("remaining_XY",0,740,0,0),("amr",0,10448,0,0),("amr_XX",0,4944,0,0),("amr_XY",0,5504,0,0),("fin",0,6886,0,0),("fin_XX",0,1472,0,0),("fin_XY",0,5414,0,0),("ami",0,742,0,0),("ami_XX",0,378,0,0),("ami_XY",0,364,0,0),("eas",0,3850,0,0),("eas_XX",0,1670,0,0),("eas_XY",0,2180,0,0),("mid",0,266,0,0),("mid_XX",0,132,0,0),("mid_XY",0,134,0,0),("sas",0,3424,0,0),("sas_XX",0,784,0,0),("sas_XY",0,2640,0,0),("asj",0,2768,0,0),("asj_XX",0,1532,0,0),("asj_XY",0,1236,0,0),("afr",1,30736,0,0),("afr_XX",0,16598,0,0),("afr_XY",1,14138,0,0),("nfe",2,52912,0,0),("nfe_XX",2,31106,0,0),("nfe_XY",0,21806,0,0),("",3,113536,0,0),("XX",2,59380,0,0),("XY",1,54156,0,0),("XX",2,59380,0,0),("XY",1,54156,0,0)][(7.02e-06,2.95e-06),(6.27e-06,2.35e-06),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]6.27e-06"nfe"2.35e-06"nfe"23.78e-05529120"nfe"[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,25460,7448,6933,4978,2881,2833,2048,1038,1129,685,321,364,212,90,117,231]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,2,23,108,320,888,1844,3110,4447,5361,6012,6379,5879,5289,4273,3400,2503,1787,1521]03622[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,1,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][995,1036,1539,1788,25460,7448,6933,4978,2881,2833,2048,1038,1129,685,321,364,212,90,117,231]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][2,6,39,104,247,638,1325,2417,3685,5047,5927,6484,6763,6192,5525,4439,3518,2603,1850,1572]03743[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,1,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,1,0,1,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]00{"not_called_in_exomes"}[NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]NANANANANANANANANANANANANANANANANA5.43e+015838917008.20e-018.20e-018.20e-018.20e-018.18e-018.15e-018.07e-016.45e-015.38e-02[]"CA997563815""ga4gh:VA.TV0UyS-jCvsVkEOMbipUnzTc4hYuVNTg"1005610057"A""ga4gh:VA.33zGTKcHyj5wWpTfc3OfD8-UlPQ-YOfx"1005610057"C"
\n", + "\n", + "\n", + "\n", + "\n", + "\n", "
Adipose_Subcutaneous
Adipose_Visceral_Omentum
AdrenalGland
Artery_Aorta
Artery_Coronary
Artery_Tibial
Bladder
Brain_Amygdala
Brain_Anteriorcingulatecortex_BA24
Brain_Caudate_basalganglia
Brain_CerebellarHemisphere
Brain_Cerebellum
Brain_Cortex
Brain_FrontalCortex_BA9
Brain_Hippocampus
Brain_Hypothalamus
Brain_Nucleusaccumbens_basalganglia
Brain_Putamen_basalganglia
Brain_Spinalcord_cervicalc_1
Brain_Substantianigra
Breast_MammaryTissue
Cells_Culturedfibroblasts
Cells_EBV_transformedlymphocytes
Colon_Sigmoid
Colon_Transverse
Esophagus_GastroesophagealJunction
Esophagus_Mucosa
Esophagus_Muscularis
Heart_AtrialAppendage
Heart_LeftVentricle
Kidney_Cortex
Liver
Lung
MinorSalivaryGland
Muscle_Skeletal
Nerve_Tibial
Ovary
Pancreas
Pituitary
Prostate
Skin_NotSunExposed_Suprapubic
Skin_SunExposed_Lowerleg
SmallIntestine_TerminalIleum
Spleen
Stomach
Testis
Thyroid
Uterus
Vagina
WholeBlood
locus
gene_id
gene_symbol
exp_prop_mean
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
locus<GRCh38>strstrfloat64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64
chr1:65565"ENSG00000186092""OR4F5"NaN0.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+00
chr1:65566"ENSG00000186092""OR4F5"NaN0.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+00
chr1:65567"ENSG00000186092""OR4F5"NaN0.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+00
chr1:65568"ENSG00000186092""OR4F5"NaN0.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+00
chr1:65569"ENSG00000186092""OR4F5"NaN0.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+00

showing top 5 rows

\n" ], "text/plain": [ - "+---------------+------------+------------------------------+\n", - "| locus | alleles | exome.colocated_variants.all |\n", - "+---------------+------------+------------------------------+\n", - "| locus | array | array |\n", - "+---------------+------------+------------------------------+\n", - "| chr1:10031 | [\"T\",\"C\"] | NA |\n", - "| chr1:10037 | [\"T\",\"C\"] | NA |\n", - "| chr1:10043 | [\"T\",\"C\"] | NA |\n", - "| chr1:10055 | [\"T\",\"C\"] | NA |\n", - "| chr1:10057 | [\"A\",\"C\"] | NA |\n", - "+---------------+------------+------------------------------+\n", + "+---------------+-------------------+-------------+---------------+\n", + "| locus | gene_id | gene_symbol | exp_prop_mean |\n", + "+---------------+-------------------+-------------+---------------+\n", + "| locus | str | str | float64 |\n", + "+---------------+-------------------+-------------+---------------+\n", + "| chr1:65565 | \"ENSG00000186092\" | \"OR4F5\" | NaN |\n", + "| chr1:65566 | \"ENSG00000186092\" | \"OR4F5\" | NaN |\n", + "| chr1:65567 | \"ENSG00000186092\" | \"OR4F5\" | NaN |\n", + "| chr1:65568 | \"ENSG00000186092\" | \"OR4F5\" | NaN |\n", + "| chr1:65569 | \"ENSG00000186092\" | \"OR4F5\" | NaN |\n", + "+---------------+-------------------+-------------+---------------+\n", "\n", - "+----------------------------------+---------------+-------------+\n", - "| exome.colocated_variants.non_ukb | exome.subsets | exome.flags |\n", - "+----------------------------------+---------------+-------------+\n", - "| array | set | set |\n", - "+----------------------------------+---------------+-------------+\n", - "| NA | NA | NA |\n", - "| NA | NA | NA |\n", - "| NA | NA | NA |\n", - "| NA | NA | NA |\n", - "| NA | NA | NA |\n", - "+----------------------------------+---------------+-------------+\n", + "+--------------------------------------------+\n", + "| Adipose_Subcutaneous.transcript_expression |\n", + "+--------------------------------------------+\n", + "| float64 |\n", + "+--------------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+--------------------------------------------+\n", "\n", - "+-------------------+-----------------------+-------------------+\n", - "| exome.freq.all.ac | exome.freq.all.ac_raw | exome.freq.all.an |\n", - "+-------------------+-----------------------+-------------------+\n", - "| int32 | int32 | int32 |\n", - "+-------------------+-----------------------+-------------------+\n", - "| NA | NA | NA |\n", - "| NA | NA | NA |\n", - "| NA | NA | NA |\n", - "| NA | NA | NA |\n", - "| NA | NA | NA |\n", - "+-------------------+-----------------------+-------------------+\n", + "+--------------------------------------------+\n", + "| Adipose_Subcutaneous.expression_proportion |\n", + "+--------------------------------------------+\n", + "| float64 |\n", + "+--------------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+--------------------------------------------+\n", "\n", - "+---------------------------------+---------------------------------+\n", - "| exome.freq.all.hemizygote_count | exome.freq.all.homozygote_count |\n", - "+---------------------------------+---------------------------------+\n", - "| int32 | int64 |\n", - "+---------------------------------+---------------------------------+\n", - "| NA | NA |\n", - "| NA | NA |\n", - "| NA | NA |\n", - "| NA | NA |\n", - "| NA | NA |\n", - "+---------------------------------+---------------------------------+\n", + "+------------------------------------------------+\n", + "| Adipose_Visceral_Omentum.transcript_expression |\n", + "+------------------------------------------------+\n", + "| float64 |\n", + "+------------------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+------------------------------------------------+\n", "\n", - "+------------------------------------------------------------------------------+\n", - "| exome.freq.all.ancestry_groups |\n", - "+------------------------------------------------------------------------------+\n", - "| array | array |\n", - "+--------------------------------------+-------------------------------------+\n", - "| NA | NA |\n", - "| NA | NA |\n", - "| NA | NA |\n", - "| NA | NA |\n", - "| NA | NA |\n", - "+--------------------------------------+-------------------------------------+\n", + "+----------------------------------------+\n", + "| Brain_Cerebellum.transcript_expression |\n", + "+----------------------------------------+\n", + "| float64 |\n", + "+----------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+----------------------------------------+\n", "\n", - "+--------------------------------------+-------------------------------------+\n", - "| exome.age_distribution.het.n_smaller | exome.age_distribution.het.n_larger |\n", - "+--------------------------------------+-------------------------------------+\n", - "| int64 | int64 |\n", - "+--------------------------------------+-------------------------------------+\n", - "| NA | NA |\n", - "| NA | NA |\n", - "| NA | NA |\n", - "| NA | NA |\n", - "| NA | NA |\n", - "+--------------------------------------+-------------------------------------+\n", + "+----------------------------------------+------------------------------------+\n", + "| Brain_Cerebellum.expression_proportion | Brain_Cortex.transcript_expression |\n", + "+----------------------------------------+------------------------------------+\n", + "| float64 | float64 |\n", + "+----------------------------------------+------------------------------------+\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "+----------------------------------------+------------------------------------+\n", "\n", - "+--------------------------------------+-------------------------------------+\n", - "| exome.age_distribution.hom.bin_edges | exome.age_distribution.hom.bin_freq |\n", - "+--------------------------------------+-------------------------------------+\n", - "| array | array |\n", - "+--------------------------------------+-------------------------------------+\n", - "| NA | NA |\n", - "| NA | NA |\n", - "| NA | NA |\n", - "| NA | NA |\n", - "| NA | NA |\n", - "+--------------------------------------+-------------------------------------+\n", + "+------------------------------------+\n", + "| Brain_Cortex.expression_proportion |\n", + "+------------------------------------+\n", + "| float64 |\n", + "+------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+------------------------------------+\n", "\n", - "+--------------------------------------+-------------------------------------+\n", - "| exome.age_distribution.hom.n_smaller | exome.age_distribution.hom.n_larger |\n", - "+--------------------------------------+-------------------------------------+\n", - "| int64 | int64 |\n", - "+--------------------------------------+-------------------------------------+\n", - "| NA | NA |\n", - "| NA | NA |\n", - "| NA | NA |\n", - "| NA | NA |\n", - "| NA | NA |\n", - "+--------------------------------------+-------------------------------------+\n", + "+-----------------------------------------------+\n", + "| Brain_FrontalCortex_BA9.transcript_expression |\n", + "+-----------------------------------------------+\n", + "| float64 |\n", + "+-----------------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+-----------------------------------------------+\n", "\n", - "+---------------+--------------------------------------------------------+\n", - "| exome.filters | exome.quality_metrics.allele_balance.alt_adj.bin_edges |\n", - "+---------------+--------------------------------------------------------+\n", - "| set | array |\n", - "+---------------+--------------------------------------------------------+\n", - "| NA | NA |\n", - "| NA | NA |\n", - "| NA | NA |\n", - "| NA | NA |\n", - "| NA | NA |\n", - "+---------------+--------------------------------------------------------+\n", + "+-----------------------------------------------+\n", + "| Brain_FrontalCortex_BA9.expression_proportion |\n", + "+-----------------------------------------------+\n", + "| float64 |\n", + "+-----------------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+-----------------------------------------------+\n", "\n", - "+-------------------------------------------------------+\n", - "| exome.quality_metrics.allele_balance.alt_adj.bin_freq |\n", - "+-------------------------------------------------------+\n", - "| array |\n", - "+-------------------------------------------------------+\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "+-------------------------------------------------------+\n", + "+-----------------------------------------+\n", + "| Brain_Hippocampus.transcript_expression |\n", + "+-----------------------------------------+\n", + "| float64 |\n", + "+-----------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+-----------------------------------------+\n", "\n", - "+--------------------------------------------------------+\n", - "| exome.quality_metrics.allele_balance.alt_adj.n_smaller |\n", - "+--------------------------------------------------------+\n", - "| int64 |\n", - "+--------------------------------------------------------+\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "+--------------------------------------------------------+\n", + "+-----------------------------------------+\n", + "| Brain_Hippocampus.expression_proportion |\n", + "+-----------------------------------------+\n", + "| float64 |\n", + "+-----------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+-----------------------------------------+\n", + "\n", + "+------------------------------------------+\n", + "| Brain_Hypothalamus.transcript_expression |\n", + "+------------------------------------------+\n", + "| float64 |\n", + "+------------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+------------------------------------------+\n", "\n", - "+-------------------------------------------------------+\n", - "| exome.quality_metrics.allele_balance.alt_adj.n_larger |\n", - "+-------------------------------------------------------+\n", - "| int64 |\n", - "+-------------------------------------------------------+\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "+-------------------------------------------------------+\n", + "+------------------------------------------+\n", + "| Brain_Hypothalamus.expression_proportion |\n", + "+------------------------------------------+\n", + "| float64 |\n", + "+------------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+------------------------------------------+\n", "\n", - "+--------------------------------------------------------+\n", - "| exome.quality_metrics.allele_balance.alt_raw.bin_edges |\n", - "+--------------------------------------------------------+\n", - "| array |\n", - "+--------------------------------------------------------+\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "+--------------------------------------------------------+\n", + "+-----------------------------------------------------------+\n", + "| Brain_Nucleusaccumbens_basalganglia.transcript_expression |\n", + "+-----------------------------------------------------------+\n", + "| float64 |\n", + "+-----------------------------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+-----------------------------------------------------------+\n", "\n", - "+-------------------------------------------------------+\n", - "| exome.quality_metrics.allele_balance.alt_raw.bin_freq |\n", - "+-------------------------------------------------------+\n", - "| array |\n", - "+-------------------------------------------------------+\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "+-------------------------------------------------------+\n", + "+-----------------------------------------------------------+\n", + "| Brain_Nucleusaccumbens_basalganglia.expression_proportion |\n", + "+-----------------------------------------------------------+\n", + "| float64 |\n", + "+-----------------------------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+-----------------------------------------------------------+\n", "\n", - "+--------------------------------------------------------+\n", - "| exome.quality_metrics.allele_balance.alt_raw.n_smaller |\n", - "+--------------------------------------------------------+\n", - "| int64 |\n", - "+--------------------------------------------------------+\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "+--------------------------------------------------------+\n", + "+--------------------------------------------------+\n", + "| Brain_Putamen_basalganglia.transcript_expression |\n", + "+--------------------------------------------------+\n", + "| float64 |\n", + "+--------------------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+--------------------------------------------------+\n", "\n", - "+-------------------------------------------------------+\n", - "| exome.quality_metrics.allele_balance.alt_raw.n_larger |\n", - "+-------------------------------------------------------+\n", - "| int64 |\n", - "+-------------------------------------------------------+\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "+-------------------------------------------------------+\n", + "+--------------------------------------------------+\n", + "| Brain_Putamen_basalganglia.expression_proportion |\n", + "+--------------------------------------------------+\n", + "| float64 |\n", + "+--------------------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+--------------------------------------------------+\n", "\n", - "+--------------------------------------------------------+\n", - "| exome.quality_metrics.genotype_depth.all_adj.bin_edges |\n", - "+--------------------------------------------------------+\n", - "| array |\n", - "+--------------------------------------------------------+\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "+--------------------------------------------------------+\n", + "+----------------------------------------------------+\n", + "| Brain_Spinalcord_cervicalc_1.transcript_expression |\n", + "+----------------------------------------------------+\n", + "| float64 |\n", + "+----------------------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+----------------------------------------------------+\n", "\n", - "+-------------------------------------------------------+\n", - "| exome.quality_metrics.genotype_depth.all_adj.bin_freq |\n", - "+-------------------------------------------------------+\n", - "| array |\n", - "+-------------------------------------------------------+\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "+-------------------------------------------------------+\n", + "+----------------------------------------------------+\n", + "| Brain_Spinalcord_cervicalc_1.expression_proportion |\n", + "+----------------------------------------------------+\n", + "| float64 |\n", + "+----------------------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+----------------------------------------------------+\n", "\n", - "+--------------------------------------------------------+\n", - "| exome.quality_metrics.genotype_depth.all_adj.n_smaller |\n", - "+--------------------------------------------------------+\n", - "| int64 |\n", - "+--------------------------------------------------------+\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "+--------------------------------------------------------+\n", + "+---------------------------------------------+\n", + "| Brain_Substantianigra.transcript_expression |\n", + "+---------------------------------------------+\n", + "| float64 |\n", + "+---------------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+---------------------------------------------+\n", "\n", - "+-------------------------------------------------------+\n", - "| exome.quality_metrics.genotype_depth.all_adj.n_larger |\n", - "+-------------------------------------------------------+\n", - "| int64 |\n", - "+-------------------------------------------------------+\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "+-------------------------------------------------------+\n", + "+---------------------------------------------+\n", + "| Brain_Substantianigra.expression_proportion |\n", + "+---------------------------------------------+\n", + "| float64 |\n", + "+---------------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+---------------------------------------------+\n", "\n", - "+--------------------------------------------------------+\n", - "| exome.quality_metrics.genotype_depth.all_raw.bin_edges |\n", - "+--------------------------------------------------------+\n", - "| array |\n", - "+--------------------------------------------------------+\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "+--------------------------------------------------------+\n", + "+--------------------------------------------+\n", + "| Breast_MammaryTissue.transcript_expression |\n", + "+--------------------------------------------+\n", + "| float64 |\n", + "+--------------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+--------------------------------------------+\n", "\n", - "+-------------------------------------------------------+\n", - "| exome.quality_metrics.genotype_depth.all_raw.bin_freq |\n", - "+-------------------------------------------------------+\n", - "| array |\n", - "+-------------------------------------------------------+\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "+-------------------------------------------------------+\n", + "+--------------------------------------------+\n", + "| Breast_MammaryTissue.expression_proportion |\n", + "+--------------------------------------------+\n", + "| float64 |\n", + "+--------------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+--------------------------------------------+\n", + "\n", + "+-------------------------------------------------+\n", + "| Cells_Culturedfibroblasts.transcript_expression |\n", + "+-------------------------------------------------+\n", + "| float64 |\n", + "+-------------------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+-------------------------------------------------+\n", + "\n", + "+-------------------------------------------------+\n", + "| Cells_Culturedfibroblasts.expression_proportion |\n", + "+-------------------------------------------------+\n", + "| float64 |\n", + "+-------------------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+-------------------------------------------------+\n", "\n", "+--------------------------------------------------------+\n", - "| exome.quality_metrics.genotype_depth.all_raw.n_smaller |\n", + "| Cells_EBV_transformedlymphocytes.transcript_expression |\n", "+--------------------------------------------------------+\n", - "| int64 |\n", + "| float64 |\n", "+--------------------------------------------------------+\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", "+--------------------------------------------------------+\n", "\n", - "+-------------------------------------------------------+\n", - "| exome.quality_metrics.genotype_depth.all_raw.n_larger |\n", - "+-------------------------------------------------------+\n", - "| int64 |\n", - "+-------------------------------------------------------+\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "+-------------------------------------------------------+\n", - "\n", "+--------------------------------------------------------+\n", - "| exome.quality_metrics.genotype_depth.alt_adj.bin_edges |\n", + "| Cells_EBV_transformedlymphocytes.expression_proportion |\n", "+--------------------------------------------------------+\n", - "| array |\n", + "| float64 |\n", "+--------------------------------------------------------+\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", "+--------------------------------------------------------+\n", "\n", - "+-------------------------------------------------------+\n", - "| exome.quality_metrics.genotype_depth.alt_adj.bin_freq |\n", - "+-------------------------------------------------------+\n", - "| array |\n", - "+-------------------------------------------------------+\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "+-------------------------------------------------------+\n", + "+-------------------------------------+-------------------------------------+\n", + "| Colon_Sigmoid.transcript_expression | Colon_Sigmoid.expression_proportion |\n", + "+-------------------------------------+-------------------------------------+\n", + "| float64 | float64 |\n", + "+-------------------------------------+-------------------------------------+\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "+-------------------------------------+-------------------------------------+\n", "\n", - "+--------------------------------------------------------+\n", - "| exome.quality_metrics.genotype_depth.alt_adj.n_smaller |\n", - "+--------------------------------------------------------+\n", - "| int64 |\n", - "+--------------------------------------------------------+\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "+--------------------------------------------------------+\n", + "+----------------------------------------+\n", + "| Colon_Transverse.transcript_expression |\n", + "+----------------------------------------+\n", + "| float64 |\n", + "+----------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+----------------------------------------+\n", "\n", - "+-------------------------------------------------------+\n", - "| exome.quality_metrics.genotype_depth.alt_adj.n_larger |\n", - "+-------------------------------------------------------+\n", - "| int64 |\n", - "+-------------------------------------------------------+\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "+-------------------------------------------------------+\n", + "+----------------------------------------+\n", + "| Colon_Transverse.expression_proportion |\n", + "+----------------------------------------+\n", + "| float64 |\n", + "+----------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+----------------------------------------+\n", "\n", - "+--------------------------------------------------------+\n", - "| exome.quality_metrics.genotype_depth.alt_raw.bin_edges |\n", - "+--------------------------------------------------------+\n", - "| array |\n", - "+--------------------------------------------------------+\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "+--------------------------------------------------------+\n", + "+----------------------------------------------------------+\n", + "| Esophagus_GastroesophagealJunction.transcript_expression |\n", + "+----------------------------------------------------------+\n", + "| float64 |\n", + "+----------------------------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+----------------------------------------------------------+\n", "\n", - "+-------------------------------------------------------+\n", - "| exome.quality_metrics.genotype_depth.alt_raw.bin_freq |\n", - "+-------------------------------------------------------+\n", - "| array |\n", - "+-------------------------------------------------------+\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "+-------------------------------------------------------+\n", + "+----------------------------------------------------------+\n", + "| Esophagus_GastroesophagealJunction.expression_proportion |\n", + "+----------------------------------------------------------+\n", + "| float64 |\n", + "+----------------------------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+----------------------------------------------------------+\n", + "\n", + "+----------------------------------------+\n", + "| Esophagus_Mucosa.transcript_expression |\n", + "+----------------------------------------+\n", + "| float64 |\n", + "+----------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+----------------------------------------+\n", + "\n", + "+----------------------------------------+\n", + "| Esophagus_Mucosa.expression_proportion |\n", + "+----------------------------------------+\n", + "| float64 |\n", + "+----------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+----------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| Esophagus_Muscularis.transcript_expression |\n", + "+--------------------------------------------+\n", + "| float64 |\n", + "+--------------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+--------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| Esophagus_Muscularis.expression_proportion |\n", + "+--------------------------------------------+\n", + "| float64 |\n", + "+--------------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+--------------------------------------------+\n", + "\n", + "+---------------------------------------------+\n", + "| Heart_AtrialAppendage.transcript_expression |\n", + "+---------------------------------------------+\n", + "| float64 |\n", + "+---------------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+---------------------------------------------+\n", + "\n", + "+---------------------------------------------+\n", + "| Heart_AtrialAppendage.expression_proportion |\n", + "+---------------------------------------------+\n", + "| float64 |\n", + "+---------------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+---------------------------------------------+\n", + "\n", + "+-------------------------------------------+\n", + "| Heart_LeftVentricle.transcript_expression |\n", + "+-------------------------------------------+\n", + "| float64 |\n", + "+-------------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+-------------------------------------------+\n", + "\n", + "+-------------------------------------------+\n", + "| Heart_LeftVentricle.expression_proportion |\n", + "+-------------------------------------------+\n", + "| float64 |\n", + "+-------------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+-------------------------------------------+\n", "\n", - "+--------------------------------------------------------+\n", - "| exome.quality_metrics.genotype_depth.alt_raw.n_smaller |\n", - "+--------------------------------------------------------+\n", - "| int64 |\n", - "+--------------------------------------------------------+\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "+--------------------------------------------------------+\n", + "+-------------------------------------+-------------------------------------+\n", + "| Kidney_Cortex.transcript_expression | Kidney_Cortex.expression_proportion |\n", + "+-------------------------------------+-------------------------------------+\n", + "| float64 | float64 |\n", + "+-------------------------------------+-------------------------------------+\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "+-------------------------------------+-------------------------------------+\n", "\n", - "+-------------------------------------------------------+\n", - "| exome.quality_metrics.genotype_depth.alt_raw.n_larger |\n", - "+-------------------------------------------------------+\n", - "| int64 |\n", - "+-------------------------------------------------------+\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "+-------------------------------------------------------+\n", + "+-----------------------------+-----------------------------+\n", + "| Liver.transcript_expression | Liver.expression_proportion |\n", + "+-----------------------------+-----------------------------+\n", + "| float64 | float64 |\n", + "+-----------------------------+-----------------------------+\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "+-----------------------------+-----------------------------+\n", "\n", - "+----------------------------------------------------------+\n", - "| exome.quality_metrics.genotype_quality.all_adj.bin_edges |\n", - "+----------------------------------------------------------+\n", - "| array |\n", - "+----------------------------------------------------------+\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "+----------------------------------------------------------+\n", + "+----------------------------+----------------------------+\n", + "| Lung.transcript_expression | Lung.expression_proportion |\n", + "+----------------------------+----------------------------+\n", + "| float64 | float64 |\n", + "+----------------------------+----------------------------+\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "+----------------------------+----------------------------+\n", "\n", - "+---------------------------------------------------------+\n", - "| exome.quality_metrics.genotype_quality.all_adj.bin_freq |\n", - "+---------------------------------------------------------+\n", - "| array |\n", - "+---------------------------------------------------------+\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "+---------------------------------------------------------+\n", + "+------------------------------------------+\n", + "| MinorSalivaryGland.transcript_expression |\n", + "+------------------------------------------+\n", + "| float64 |\n", + "+------------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+------------------------------------------+\n", "\n", - "+----------------------------------------------------------+\n", - "| exome.quality_metrics.genotype_quality.all_adj.n_smaller |\n", - "+----------------------------------------------------------+\n", - "| int64 |\n", - "+----------------------------------------------------------+\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "+----------------------------------------------------------+\n", + "+------------------------------------------+\n", + "| MinorSalivaryGland.expression_proportion |\n", + "+------------------------------------------+\n", + "| float64 |\n", + "+------------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+------------------------------------------+\n", "\n", - "+---------------------------------------------------------+\n", - "| exome.quality_metrics.genotype_quality.all_adj.n_larger |\n", - "+---------------------------------------------------------+\n", - "| int64 |\n", - "+---------------------------------------------------------+\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "+---------------------------------------------------------+\n", + "+---------------------------------------+\n", + "| Muscle_Skeletal.transcript_expression |\n", + "+---------------------------------------+\n", + "| float64 |\n", + "+---------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+---------------------------------------+\n", "\n", - "+----------------------------------------------------------+\n", - "| exome.quality_metrics.genotype_quality.all_raw.bin_edges |\n", - "+----------------------------------------------------------+\n", - "| array |\n", - "+----------------------------------------------------------+\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "+----------------------------------------------------------+\n", + "+---------------------------------------+------------------------------------+\n", + "| Muscle_Skeletal.expression_proportion | Nerve_Tibial.transcript_expression |\n", + "+---------------------------------------+------------------------------------+\n", + "| float64 | float64 |\n", + "+---------------------------------------+------------------------------------+\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "+---------------------------------------+------------------------------------+\n", "\n", - "+---------------------------------------------------------+\n", - "| exome.quality_metrics.genotype_quality.all_raw.bin_freq |\n", - "+---------------------------------------------------------+\n", - "| array |\n", - "+---------------------------------------------------------+\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "+---------------------------------------------------------+\n", + "+------------------------------------+-----------------------------+\n", + "| Nerve_Tibial.expression_proportion | Ovary.transcript_expression |\n", + "+------------------------------------+-----------------------------+\n", + "| float64 | float64 |\n", + "+------------------------------------+-----------------------------+\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "+------------------------------------+-----------------------------+\n", "\n", - "+----------------------------------------------------------+\n", - "| exome.quality_metrics.genotype_quality.all_raw.n_smaller |\n", - "+----------------------------------------------------------+\n", - "| int64 |\n", - "+----------------------------------------------------------+\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "+----------------------------------------------------------+\n", + "+-----------------------------+--------------------------------+\n", + "| Ovary.expression_proportion | Pancreas.transcript_expression |\n", + "+-----------------------------+--------------------------------+\n", + "| float64 | float64 |\n", + "+-----------------------------+--------------------------------+\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "+-----------------------------+--------------------------------+\n", "\n", - "+---------------------------------------------------------+\n", - "| exome.quality_metrics.genotype_quality.all_raw.n_larger |\n", - "+---------------------------------------------------------+\n", - "| int64 |\n", - "+---------------------------------------------------------+\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "+---------------------------------------------------------+\n", + "+--------------------------------+---------------------------------+\n", + "| Pancreas.expression_proportion | Pituitary.transcript_expression |\n", + "+--------------------------------+---------------------------------+\n", + "| float64 | float64 |\n", + "+--------------------------------+---------------------------------+\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "+--------------------------------+---------------------------------+\n", "\n", - "+----------------------------------------------------------+\n", - "| exome.quality_metrics.genotype_quality.alt_adj.bin_edges |\n", - "+----------------------------------------------------------+\n", - "| array |\n", - "+----------------------------------------------------------+\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "+----------------------------------------------------------+\n", + "+---------------------------------+--------------------------------+\n", + "| Pituitary.expression_proportion | Prostate.transcript_expression |\n", + "+---------------------------------+--------------------------------+\n", + "| float64 | float64 |\n", + "+---------------------------------+--------------------------------+\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "+---------------------------------+--------------------------------+\n", "\n", - "+---------------------------------------------------------+\n", - "| exome.quality_metrics.genotype_quality.alt_adj.bin_freq |\n", - "+---------------------------------------------------------+\n", - "| array |\n", - "+---------------------------------------------------------+\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "+---------------------------------------------------------+\n", + "+--------------------------------+\n", + "| Prostate.expression_proportion |\n", + "+--------------------------------+\n", + "| float64 |\n", + "+--------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+--------------------------------+\n", "\n", - "+----------------------------------------------------------+\n", - "| exome.quality_metrics.genotype_quality.alt_adj.n_smaller |\n", - "+----------------------------------------------------------+\n", - "| int64 |\n", - "+----------------------------------------------------------+\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "+----------------------------------------------------------+\n", + "+-----------------------------------------------------+\n", + "| Skin_NotSunExposed_Suprapubic.transcript_expression |\n", + "+-----------------------------------------------------+\n", + "| float64 |\n", + "+-----------------------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+-----------------------------------------------------+\n", "\n", - "+---------------------------------------------------------+\n", - "| exome.quality_metrics.genotype_quality.alt_adj.n_larger |\n", - "+---------------------------------------------------------+\n", - "| int64 |\n", - "+---------------------------------------------------------+\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "+---------------------------------------------------------+\n", + "+-----------------------------------------------------+\n", + "| Skin_NotSunExposed_Suprapubic.expression_proportion |\n", + "+-----------------------------------------------------+\n", + "| float64 |\n", + "+-----------------------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+-----------------------------------------------------+\n", "\n", - "+----------------------------------------------------------+\n", - "| exome.quality_metrics.genotype_quality.alt_raw.bin_edges |\n", - "+----------------------------------------------------------+\n", - "| array |\n", - "+----------------------------------------------------------+\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "+----------------------------------------------------------+\n", + "+------------------------------------------------+\n", + "| Skin_SunExposed_Lowerleg.transcript_expression |\n", + "+------------------------------------------------+\n", + "| float64 |\n", + "+------------------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+------------------------------------------------+\n", "\n", - "+---------------------------------------------------------+\n", - "| exome.quality_metrics.genotype_quality.alt_raw.bin_freq |\n", - "+---------------------------------------------------------+\n", - "| array |\n", - "+---------------------------------------------------------+\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "+---------------------------------------------------------+\n", + "+------------------------------------------------+\n", + "| Skin_SunExposed_Lowerleg.expression_proportion |\n", + "+------------------------------------------------+\n", + "| float64 |\n", + "+------------------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+------------------------------------------------+\n", "\n", - "+----------------------------------------------------------+\n", - "| exome.quality_metrics.genotype_quality.alt_raw.n_smaller |\n", - "+----------------------------------------------------------+\n", - "| int64 |\n", - "+----------------------------------------------------------+\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "+----------------------------------------------------------+\n", + "+----------------------------------------------------+\n", + "| SmallIntestine_TerminalIleum.transcript_expression |\n", + "+----------------------------------------------------+\n", + "| float64 |\n", + "+----------------------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+----------------------------------------------------+\n", "\n", - "+---------------------------------------------------------+\n", - "| exome.quality_metrics.genotype_quality.alt_raw.n_larger |\n", - "+---------------------------------------------------------+\n", - "| int64 |\n", - "+---------------------------------------------------------+\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "+---------------------------------------------------------+\n", + "+----------------------------------------------------+\n", + "| SmallIntestine_TerminalIleum.expression_proportion |\n", + "+----------------------------------------------------+\n", + "| float64 |\n", + "+----------------------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+----------------------------------------------------+\n", "\n", - "+--------------------------------------------+--------------------------------+\n", - "| exome.quality_metrics.site_quality_metrics | genome.colocated_variants.hgdp |\n", - "+--------------------------------------------+--------------------------------+\n", - "| array | array |\n", - "+--------------------------------------------+--------------------------------+\n", - "| NA | [] |\n", - "| NA | [] |\n", - "| NA | [] |\n", - "| NA | [] |\n", - "| NA | [] |\n", - "+--------------------------------------------+--------------------------------+\n", + "+------------------------------+------------------------------+\n", + "| Spleen.transcript_expression | Spleen.expression_proportion |\n", + "+------------------------------+------------------------------+\n", + "| float64 | float64 |\n", + "+------------------------------+------------------------------+\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "+------------------------------+------------------------------+\n", "\n", "+-------------------------------+-------------------------------+\n", - "| genome.colocated_variants.tgp | genome.colocated_variants.all |\n", + "| Stomach.transcript_expression | Stomach.expression_proportion |\n", "+-------------------------------+-------------------------------+\n", - "| array | array |\n", + "| float64 | float64 |\n", "+-------------------------------+-------------------------------+\n", - "| [] | [] |\n", - "| [] | [] |\n", - "| [] | [] |\n", - "| [] | [] |\n", - "| [] | [] |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", "+-------------------------------+-------------------------------+\n", "\n", - "+----------------+------------------+---------------------+\n", - "| genome.subsets | genome.flags | genome.freq.hgdp.ac |\n", - "+----------------+------------------+---------------------+\n", - "| set | set | int32 |\n", - "+----------------+------------------+---------------------+\n", - "| {} | {\"lcr\",\"segdup\"} | 0 |\n", - "| {} | {\"lcr\",\"segdup\"} | 0 |\n", - "| {} | {\"lcr\",\"segdup\"} | 0 |\n", - "| {\"hgdp\"} | {\"lcr\",\"segdup\"} | 0 |\n", - "| {} | {\"lcr\",\"segdup\"} | 0 |\n", - "+----------------+------------------+---------------------+\n", + "+------------------------------+------------------------------+\n", + "| Testis.transcript_expression | Testis.expression_proportion |\n", + "+------------------------------+------------------------------+\n", + "| float64 | float64 |\n", + "+------------------------------+------------------------------+\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "+------------------------------+------------------------------+\n", "\n", - "+-------------------------+---------------------+\n", - "| genome.freq.hgdp.ac_raw | genome.freq.hgdp.an |\n", - "+-------------------------+---------------------+\n", - "| int32 | int32 |\n", - "+-------------------------+---------------------+\n", - "| 0 | 812 |\n", - "| 0 | 1028 |\n", - "| 0 | 1154 |\n", - "| 1 | 1312 |\n", - "| 0 | 1300 |\n", - "+-------------------------+---------------------+\n", + "+-------------------------------+-------------------------------+\n", + "| Thyroid.transcript_expression | Thyroid.expression_proportion |\n", + "+-------------------------------+-------------------------------+\n", + "| float64 | float64 |\n", + "+-------------------------------+-------------------------------+\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "+-------------------------------+-------------------------------+\n", "\n", - "+-----------------------------------+-----------------------------------+\n", - "| genome.freq.hgdp.hemizygote_count | genome.freq.hgdp.homozygote_count |\n", - "+-----------------------------------+-----------------------------------+\n", - "| int32 | int32 |\n", - "+-----------------------------------+-----------------------------------+\n", - "| 0 | 0 |\n", - "| 0 | 0 |\n", - "| 0 | 0 |\n", - "| 0 | 0 |\n", - "| 0 | 0 |\n", - "+-----------------------------------+-----------------------------------+\n", + "+------------------------------+------------------------------+\n", + "| Uterus.transcript_expression | Uterus.expression_proportion |\n", + "+------------------------------+------------------------------+\n", + "| float64 | float64 |\n", + "+------------------------------+------------------------------+\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "+------------------------------+------------------------------+\n", + "\n", + "+------------------------------+------------------------------+\n", + "| Vagina.transcript_expression | Vagina.expression_proportion |\n", + "+------------------------------+------------------------------+\n", + "| float64 | float64 |\n", + "+------------------------------+------------------------------+\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "+------------------------------+------------------------------+\n", + "\n", + "+----------------------------------+----------------------------------+\n", + "| WholeBlood.transcript_expression | WholeBlood.expression_proportion |\n", + "+----------------------------------+----------------------------------+\n", + "| float64 | float64 |\n", + "+----------------------------------+----------------------------------+\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "+----------------------------------+----------------------------------+\n", + "showing top 5 rows" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "ht.show(5)" + ] + }, + { + "cell_type": "markdown", + "id": "32528515-1021-40e4-8f4c-3ca06792e0be", + "metadata": {}, + "source": [ + "### Annotation level pext\n" + ] + }, + { + "cell_type": "markdown", + "id": "afac2ca3-f3dc-4174-aa98-d9eb70bf343f", + "metadata": {}, + "source": [ + "#### Load the Hail Table\n" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "id": "ce25b9e0-9118-4bf6-ba3c-eca75468b9f1", + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-06T20:08:59.197890Z", + "start_time": "2024-12-06T20:08:50.859108Z" + } + }, + "outputs": [], + "source": [ + "ht = get_gnomad_release(version='v10', data_type=\"annotation_level\", dataset=\"pext\")" + ] + }, + { + "cell_type": "markdown", + "id": "c9265ccc-0048-40f0-8f1c-d62e0d3f98ab", + "metadata": {}, + "source": [ + "#### Print the schema of the Hail Table\n" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "id": "818f3fc2-09fa-479c-91e1-e19f5991a22d", + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-06T20:09:00.032524Z", + "start_time": "2024-12-06T20:09:00.029271Z" + }, + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "----------------------------------------\n", + "Global fields:\n", + " 'tissues': array \n", + " 'exp_prop_mean_tissues': array \n", + "----------------------------------------\n", + "Row fields:\n", + " 'locus': locus \n", + " 'gene_id': str \n", + " 'alleles': array \n", + " 'gene_symbol': str \n", + " 'most_severe_consequence': str \n", + " 'lof': str \n", + " 'lof_flags': str \n", + " 'exp_prop_mean': float64 \n", + " 'Adipose_Subcutaneous': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'Adipose_Visceral_Omentum': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'AdrenalGland': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'Artery_Aorta': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'Artery_Coronary': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'Artery_Tibial': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'Bladder': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'Brain_Amygdala': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'Brain_Anteriorcingulatecortex_BA24': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'Brain_Caudate_basalganglia': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'Brain_CerebellarHemisphere': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'Brain_Cerebellum': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'Brain_Cortex': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'Brain_FrontalCortex_BA9': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'Brain_Hippocampus': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'Brain_Hypothalamus': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'Brain_Nucleusaccumbens_basalganglia': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'Brain_Putamen_basalganglia': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'Brain_Spinalcord_cervicalc_1': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'Brain_Substantianigra': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'Breast_MammaryTissue': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'Cells_Culturedfibroblasts': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'Cells_EBV_transformedlymphocytes': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'Colon_Sigmoid': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'Colon_Transverse': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'Esophagus_GastroesophagealJunction': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'Esophagus_Mucosa': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'Esophagus_Muscularis': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'Heart_AtrialAppendage': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'Heart_LeftVentricle': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'Kidney_Cortex': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'Liver': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'Lung': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'MinorSalivaryGland': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'Muscle_Skeletal': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'Nerve_Tibial': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'Ovary': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'Pancreas': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'Pituitary': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'Prostate': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'Skin_NotSunExposed_Suprapubic': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'Skin_SunExposed_Lowerleg': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'SmallIntestine_TerminalIleum': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'Spleen': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'Stomach': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'Testis': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'Thyroid': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'Uterus': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'Vagina': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + " 'WholeBlood': struct {\n", + " transcript_expression: float64, \n", + " expression_proportion: float64\n", + " } \n", + "----------------------------------------\n", + "Key: ['locus', 'alleles']\n", + "----------------------------------------\n" + ] + } + ], + "source": [ + "ht.describe()" + ] + }, + { + "cell_type": "markdown", + "id": "77d8e1eb-d07d-4338-a401-ae9191ad2901", + "metadata": { + "tags": [] + }, + "source": [ + "#### Show the first 5 variants in the Hail Table\n" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "id": "35371de7-9332-4aa6-a3b9-c573fb2e144f", + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-06T20:09:20.949958Z", + "start_time": "2024-12-06T20:09:05.622171Z" + }, + "tags": [] + }, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
Adipose_Subcutaneous
Adipose_Visceral_Omentum
AdrenalGland
Artery_Aorta
Artery_Coronary
Artery_Tibial
Bladder
Brain_Amygdala
Brain_Anteriorcingulatecortex_BA24
Brain_Caudate_basalganglia
Brain_CerebellarHemisphere
Brain_Cerebellum
Brain_Cortex
Brain_FrontalCortex_BA9
Brain_Hippocampus
Brain_Hypothalamus
Brain_Nucleusaccumbens_basalganglia
Brain_Putamen_basalganglia
Brain_Spinalcord_cervicalc_1
Brain_Substantianigra
Breast_MammaryTissue
Cells_Culturedfibroblasts
Cells_EBV_transformedlymphocytes
Colon_Sigmoid
Colon_Transverse
Esophagus_GastroesophagealJunction
Esophagus_Mucosa
Esophagus_Muscularis
Heart_AtrialAppendage
Heart_LeftVentricle
Kidney_Cortex
Liver
Lung
MinorSalivaryGland
Muscle_Skeletal
Nerve_Tibial
Ovary
Pancreas
Pituitary
Prostate
Skin_NotSunExposed_Suprapubic
Skin_SunExposed_Lowerleg
SmallIntestine_TerminalIleum
Spleen
Stomach
Testis
Thyroid
Uterus
Vagina
WholeBlood
locus
gene_id
alleles
gene_symbol
most_severe_consequence
lof
lof_flags
exp_prop_mean
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
transcript_expression
expression_proportion
locus<GRCh38>strarray<str>strstrstrstrfloat64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64
chr1:65565"ENSG00000186092"["A","C"]"OR4F5""start_lost"NANANaN0.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+00
chr1:65565"ENSG00000186092"["A","G"]"OR4F5""start_lost"NANANaN0.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+00
chr1:65565"ENSG00000186092"["A","T"]"OR4F5""start_lost"NANANaN0.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+00
chr1:65566"ENSG00000186092"["T","A"]"OR4F5""start_lost"NANANaN0.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+00
chr1:65566"ENSG00000186092"["T","C"]"OR4F5""start_lost"NANANaN0.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+000.00e+00

showing top 5 rows

\n" + ], + "text/plain": [ + "+---------------+-------------------+------------+-------------+\n", + "| locus | gene_id | alleles | gene_symbol |\n", + "+---------------+-------------------+------------+-------------+\n", + "| locus | str | array | str |\n", + "+---------------+-------------------+------------+-------------+\n", + "| chr1:65565 | \"ENSG00000186092\" | [\"A\",\"C\"] | \"OR4F5\" |\n", + "| chr1:65565 | \"ENSG00000186092\" | [\"A\",\"G\"] | \"OR4F5\" |\n", + "| chr1:65565 | \"ENSG00000186092\" | [\"A\",\"T\"] | \"OR4F5\" |\n", + "| chr1:65566 | \"ENSG00000186092\" | [\"T\",\"A\"] | \"OR4F5\" |\n", + "| chr1:65566 | \"ENSG00000186092\" | [\"T\",\"C\"] | \"OR4F5\" |\n", + "+---------------+-------------------+------------+-------------+\n", "\n", - "+------------------------------------------------------------------------------+\n", - "| genome.freq.hgdp.ancestry_groups |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", - "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", - "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", - "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", - "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", - "+------------------------------------------------------------------------------+\n", + "+-------------------------------------+-------------------------------+\n", + "| Artery_Tibial.expression_proportion | Bladder.transcript_expression |\n", + "+-------------------------------------+-------------------------------+\n", + "| float64 | float64 |\n", + "+-------------------------------------+-------------------------------+\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "+-------------------------------------+-------------------------------+\n", "\n", - "+--------------------------------------+---------------------------------------+\n", - "| genome.age_distribution.het.bin_freq | genome.age_distribution.het.n_smaller |\n", - "+--------------------------------------+---------------------------------------+\n", - "| array | int64 |\n", - "+--------------------------------------+---------------------------------------+\n", - "| [0,0,0,0,0,0,0,0,0,0] | 0 |\n", - "| [0,1,0,0,1,0,0,0,0,0] | 0 |\n", - "| [0,0,1,0,0,0,0,0,0,0] | 0 |\n", - "| [0,0,0,0,0,0,0,0,0,0] | 0 |\n", - "| [0,0,1,0,1,0,0,0,0,0] | 0 |\n", - "+--------------------------------------+---------------------------------------+\n", + "+-------------------------------+--------------------------------------+\n", + "| Bladder.expression_proportion | Brain_Amygdala.transcript_expression |\n", + "+-------------------------------+--------------------------------------+\n", + "| float64 | float64 |\n", + "+-------------------------------+--------------------------------------+\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "+-------------------------------+--------------------------------------+\n", "\n", "+--------------------------------------+\n", - "| genome.age_distribution.het.n_larger |\n", + "| Brain_Amygdala.expression_proportion |\n", "+--------------------------------------+\n", - "| int64 |\n", + "| float64 |\n", "+--------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", "+--------------------------------------+\n", "\n", - "+------------------------------------------------------------------------------+\n", - "| genome.age_distribution.hom.bin_edges |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", - "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", - "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", - "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", - "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", - "+------------------------------------------------------------------------------+\n", + "+----------------------------------------------------------+\n", + "| Brain_Anteriorcingulatecortex_BA24.transcript_expression |\n", + "+----------------------------------------------------------+\n", + "| float64 |\n", + "+----------------------------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+----------------------------------------------------------+\n", "\n", - "+--------------------------------------+---------------------------------------+\n", - "| genome.age_distribution.hom.bin_freq | genome.age_distribution.hom.n_smaller |\n", - "+--------------------------------------+---------------------------------------+\n", - "| array | int64 |\n", - "+--------------------------------------+---------------------------------------+\n", - "| [0,0,0,0,0,0,0,0,0,0] | 0 |\n", - "| [0,0,0,0,0,0,0,0,0,0] | 0 |\n", - "| [0,0,0,0,0,0,0,0,0,0] | 0 |\n", - "| [0,0,0,0,0,0,0,0,0,0] | 0 |\n", - "| [0,0,0,0,0,0,0,0,0,0] | 0 |\n", - "+--------------------------------------+---------------------------------------+\n", + "+----------------------------------------------------------+\n", + "| Brain_Anteriorcingulatecortex_BA24.expression_proportion |\n", + "+----------------------------------------------------------+\n", + "| float64 |\n", + "+----------------------------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+----------------------------------------------------------+\n", "\n", - "+--------------------------------------+-------------------+\n", - "| genome.age_distribution.hom.n_larger | genome.filters |\n", - "+--------------------------------------+-------------------+\n", - "| int64 | set |\n", - "+--------------------------------------+-------------------+\n", - "| 0 | {\"AC0\",\"AS_VQSR\"} |\n", - "| 0 | {\"AS_VQSR\"} |\n", - "| 0 | {\"AS_VQSR\"} |\n", - "| 0 | {\"AS_VQSR\"} |\n", - "| 0 | {\"AS_VQSR\"} |\n", - "+--------------------------------------+-------------------+\n", + "+--------------------------------------------------+\n", + "| Brain_Caudate_basalganglia.transcript_expression |\n", + "+--------------------------------------------------+\n", + "| float64 |\n", + "+--------------------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+--------------------------------------------------+\n", "\n", - "+------------------------------------------------------------------------------+\n", - "| genome.quality_metrics.allele_balance.alt_adj.bin_edges |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", - "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", - "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", - "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", - "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", - "+------------------------------------------------------------------------------+\n", + "+--------------------------------------------------+\n", + "| Brain_Caudate_basalganglia.expression_proportion |\n", + "+--------------------------------------------------+\n", + "| float64 |\n", + "+--------------------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+--------------------------------------------------+\n", "\n", - "+--------------------------------------------------------+\n", - "| genome.quality_metrics.allele_balance.alt_adj.bin_freq |\n", - "+--------------------------------------------------------+\n", - "| array |\n", - "+--------------------------------------------------------+\n", - "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "+--------------------------------------------------------+\n", + "+--------------------------------------------------+\n", + "| Brain_CerebellarHemisphere.transcript_expression |\n", + "+--------------------------------------------------+\n", + "| float64 |\n", + "+--------------------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+--------------------------------------------------+\n", "\n", - "+---------------------------------------------------------+\n", - "| genome.quality_metrics.allele_balance.alt_adj.n_smaller |\n", - "+---------------------------------------------------------+\n", - "| int64 |\n", - "+---------------------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+---------------------------------------------------------+\n", + "+--------------------------------------------------+\n", + "| Brain_CerebellarHemisphere.expression_proportion |\n", + "+--------------------------------------------------+\n", + "| float64 |\n", + "+--------------------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+--------------------------------------------------+\n", + "\n", + "+----------------------------------------+\n", + "| Brain_Cerebellum.transcript_expression |\n", + "+----------------------------------------+\n", + "| float64 |\n", + "+----------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+----------------------------------------+\n", + "\n", + "+----------------------------------------+------------------------------------+\n", + "| Brain_Cerebellum.expression_proportion | Brain_Cortex.transcript_expression |\n", + "+----------------------------------------+------------------------------------+\n", + "| float64 | float64 |\n", + "+----------------------------------------+------------------------------------+\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "+----------------------------------------+------------------------------------+\n", + "\n", + "+------------------------------------+\n", + "| Brain_Cortex.expression_proportion |\n", + "+------------------------------------+\n", + "| float64 |\n", + "+------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+------------------------------------+\n", "\n", - "+--------------------------------------------------------+\n", - "| genome.quality_metrics.allele_balance.alt_adj.n_larger |\n", - "+--------------------------------------------------------+\n", - "| int64 |\n", - "+--------------------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+--------------------------------------------------------+\n", + "+-----------------------------------------------+\n", + "| Brain_FrontalCortex_BA9.transcript_expression |\n", + "+-----------------------------------------------+\n", + "| float64 |\n", + "+-----------------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+-----------------------------------------------+\n", "\n", - "+------------------------------------------------------------------------------+\n", - "| genome.quality_metrics.allele_balance.alt_raw.bin_edges |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", - "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", - "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", - "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", - "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", - "+------------------------------------------------------------------------------+\n", + "+-----------------------------------------------+\n", + "| Brain_FrontalCortex_BA9.expression_proportion |\n", + "+-----------------------------------------------+\n", + "| float64 |\n", + "+-----------------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+-----------------------------------------------+\n", "\n", - "+--------------------------------------------------------+\n", - "| genome.quality_metrics.allele_balance.alt_raw.bin_freq |\n", - "+--------------------------------------------------------+\n", - "| array |\n", - "+--------------------------------------------------------+\n", - "| [0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,3,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "+--------------------------------------------------------+\n", + "+-----------------------------------------+\n", + "| Brain_Hippocampus.transcript_expression |\n", + "+-----------------------------------------+\n", + "| float64 |\n", + "+-----------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+-----------------------------------------+\n", "\n", - "+---------------------------------------------------------+\n", - "| genome.quality_metrics.allele_balance.alt_raw.n_smaller |\n", - "+---------------------------------------------------------+\n", - "| int64 |\n", - "+---------------------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+---------------------------------------------------------+\n", + "+-----------------------------------------+\n", + "| Brain_Hippocampus.expression_proportion |\n", + "+-----------------------------------------+\n", + "| float64 |\n", + "+-----------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+-----------------------------------------+\n", "\n", - "+--------------------------------------------------------+\n", - "| genome.quality_metrics.allele_balance.alt_raw.n_larger |\n", - "+--------------------------------------------------------+\n", - "| int64 |\n", - "+--------------------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+--------------------------------------------------------+\n", + "+------------------------------------------+\n", + "| Brain_Hypothalamus.transcript_expression |\n", + "+------------------------------------------+\n", + "| float64 |\n", + "+------------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+------------------------------------------+\n", "\n", - "+------------------------------------------------------------------------------+\n", - "| genome.quality_metrics.genotype_depth.all_adj.bin_edges |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "+------------------------------------------------------------------------------+\n", + "+------------------------------------------+\n", + "| Brain_Hypothalamus.expression_proportion |\n", + "+------------------------------------------+\n", + "| float64 |\n", + "+------------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+------------------------------------------+\n", "\n", - "+------------------------------------------------------------------------------+\n", - "| genome.quality_metrics.genotype_depth.all_adj.bin_freq |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [0,0,16,121,475,973,1736,2409,2950,3134,2995,2803,2514,2194,1773,1335,911... |\n", - "| [0,0,9,69,387,913,1737,2859,3749,4216,4302,4223,3745,3280,2661,1954,1380,... |\n", - "| [0,0,8,40,264,690,1525,2691,3754,4574,4813,4940,4490,3907,3242,2387,1704,... |\n", - "| [0,0,4,22,120,354,999,1950,3037,4168,4734,5196,5380,4766,4238,3206,2398,1... |\n", - "| [0,0,2,23,108,320,888,1844,3110,4447,5361,6012,6379,5879,5289,4273,3400,2... |\n", - "+------------------------------------------------------------------------------+\n", + "+-----------------------------------------------------------+\n", + "| Brain_Nucleusaccumbens_basalganglia.transcript_expression |\n", + "+-----------------------------------------------------------+\n", + "| float64 |\n", + "+-----------------------------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+-----------------------------------------------------------+\n", "\n", - "+---------------------------------------------------------+\n", - "| genome.quality_metrics.genotype_depth.all_adj.n_smaller |\n", - "+---------------------------------------------------------+\n", - "| int64 |\n", - "+---------------------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+---------------------------------------------------------+\n", + "+-----------------------------------------------------------+\n", + "| Brain_Nucleusaccumbens_basalganglia.expression_proportion |\n", + "+-----------------------------------------------------------+\n", + "| float64 |\n", + "+-----------------------------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+-----------------------------------------------------------+\n", "\n", - "+--------------------------------------------------------+\n", - "| genome.quality_metrics.genotype_depth.all_adj.n_larger |\n", - "+--------------------------------------------------------+\n", - "| int64 |\n", - "+--------------------------------------------------------+\n", - "| 527 |\n", - "| 888 |\n", - "| 1232 |\n", - "| 2440 |\n", - "| 3622 |\n", - "+--------------------------------------------------------+\n", + "+--------------------------------------------------+\n", + "| Brain_Putamen_basalganglia.transcript_expression |\n", + "+--------------------------------------------------+\n", + "| float64 |\n", + "+--------------------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+--------------------------------------------------+\n", "\n", - "+------------------------------------------------------------------------------+\n", - "| genome.quality_metrics.genotype_depth.all_raw.bin_edges |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "+------------------------------------------------------------------------------+\n", + "+--------------------------------------------------+\n", + "| Brain_Putamen_basalganglia.expression_proportion |\n", + "+--------------------------------------------------+\n", + "| float64 |\n", + "+--------------------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+--------------------------------------------------+\n", "\n", - "+------------------------------------------------------------------------------+\n", - "| genome.quality_metrics.genotype_depth.all_raw.bin_freq |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [10,66,471,1445,2990,5808,6940,7906,7262,6236,4943,3919,3129,2527,1993,14... |\n", - "| [7,37,269,903,1948,4127,5519,7075,7322,6972,6095,5249,4374,3624,2893,2106... |\n", - "| [2,24,149,466,1201,2614,4035,5568,6331,6725,6267,5855,5101,4268,3465,2554... |\n", - "| [1,9,42,122,294,787,1537,2717,3751,4972,5404,5762,5875,5161,4526,3415,252... |\n", - "| [2,6,39,104,247,638,1325,2417,3685,5047,5927,6484,6763,6192,5525,4439,351... |\n", - "+------------------------------------------------------------------------------+\n", + "+----------------------------------------------------+\n", + "| Brain_Spinalcord_cervicalc_1.transcript_expression |\n", + "+----------------------------------------------------+\n", + "| float64 |\n", + "+----------------------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+----------------------------------------------------+\n", "\n", - "+---------------------------------------------------------+\n", - "| genome.quality_metrics.genotype_depth.all_raw.n_smaller |\n", - "+---------------------------------------------------------+\n", - "| int64 |\n", - "+---------------------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+---------------------------------------------------------+\n", + "+----------------------------------------------------+\n", + "| Brain_Spinalcord_cervicalc_1.expression_proportion |\n", + "+----------------------------------------------------+\n", + "| float64 |\n", + "+----------------------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+----------------------------------------------------+\n", "\n", - "+--------------------------------------------------------+\n", - "| genome.quality_metrics.genotype_depth.all_raw.n_larger |\n", - "+--------------------------------------------------------+\n", - "| int64 |\n", - "+--------------------------------------------------------+\n", - "| 744 |\n", - "| 1130 |\n", - "| 1487 |\n", - "| 2622 |\n", - "| 3743 |\n", - "+--------------------------------------------------------+\n", + "+---------------------------------------------+\n", + "| Brain_Substantianigra.transcript_expression |\n", + "+---------------------------------------------+\n", + "| float64 |\n", + "+---------------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+---------------------------------------------+\n", "\n", - "+------------------------------------------------------------------------------+\n", - "| genome.quality_metrics.genotype_depth.alt_adj.bin_edges |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "+------------------------------------------------------------------------------+\n", + "+---------------------------------------------+\n", + "| Brain_Substantianigra.expression_proportion |\n", + "+---------------------------------------------+\n", + "| float64 |\n", + "+---------------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+---------------------------------------------+\n", "\n", - "+--------------------------------------------------------+\n", - "| genome.quality_metrics.genotype_depth.alt_adj.bin_freq |\n", - "+--------------------------------------------------------+\n", - "| array |\n", - "+--------------------------------------------------------+\n", - "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,1,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "+--------------------------------------------------------+\n", + "+--------------------------------------------+\n", + "| Breast_MammaryTissue.transcript_expression |\n", + "+--------------------------------------------+\n", + "| float64 |\n", + "+--------------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+--------------------------------------------+\n", "\n", - "+---------------------------------------------------------+\n", - "| genome.quality_metrics.genotype_depth.alt_adj.n_smaller |\n", - "+---------------------------------------------------------+\n", - "| int64 |\n", - "+---------------------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+---------------------------------------------------------+\n", + "+--------------------------------------------+\n", + "| Breast_MammaryTissue.expression_proportion |\n", + "+--------------------------------------------+\n", + "| float64 |\n", + "+--------------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+--------------------------------------------+\n", "\n", - "+--------------------------------------------------------+\n", - "| genome.quality_metrics.genotype_depth.alt_adj.n_larger |\n", - "+--------------------------------------------------------+\n", - "| int64 |\n", - "+--------------------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+--------------------------------------------------------+\n", + "+-------------------------------------------------+\n", + "| Cells_Culturedfibroblasts.transcript_expression |\n", + "+-------------------------------------------------+\n", + "| float64 |\n", + "+-------------------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+-------------------------------------------------+\n", "\n", - "+------------------------------------------------------------------------------+\n", - "| genome.quality_metrics.genotype_depth.alt_raw.bin_edges |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "+------------------------------------------------------------------------------+\n", + "+-------------------------------------------------+\n", + "| Cells_Culturedfibroblasts.expression_proportion |\n", + "+-------------------------------------------------+\n", + "| float64 |\n", + "+-------------------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+-------------------------------------------------+\n", "\n", "+--------------------------------------------------------+\n", - "| genome.quality_metrics.genotype_depth.alt_raw.bin_freq |\n", + "| Cells_EBV_transformedlymphocytes.transcript_expression |\n", "+--------------------------------------------------------+\n", - "| array |\n", + "| float64 |\n", "+--------------------------------------------------------+\n", - "| [0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,2,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,3,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,1,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", "+--------------------------------------------------------+\n", "\n", - "+---------------------------------------------------------+\n", - "| genome.quality_metrics.genotype_depth.alt_raw.n_smaller |\n", - "+---------------------------------------------------------+\n", - "| int64 |\n", - "+---------------------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+---------------------------------------------------------+\n", - "\n", "+--------------------------------------------------------+\n", - "| genome.quality_metrics.genotype_depth.alt_raw.n_larger |\n", + "| Cells_EBV_transformedlymphocytes.expression_proportion |\n", "+--------------------------------------------------------+\n", - "| int64 |\n", + "| float64 |\n", "+--------------------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", "+--------------------------------------------------------+\n", "\n", - "+------------------------------------------------------------------------------+\n", - "| genome.quality_metrics.genotype_quality.all_adj.bin_edges |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| genome.quality_metrics.genotype_quality.all_adj.bin_freq |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [0,0,0,0,23215,2435,1647,594,176,118,49,29,19,9,11,6,5,2,4,2] |\n", - "| [0,0,0,0,29394,3741,2868,1281,401,358,163,63,69,31,18,20,10,4,5,15] |\n", - "| [0,0,0,0,31093,4532,3696,1752,595,585,261,88,82,59,17,26,14,5,3,9] |\n", - "| [0,0,0,0,25677,6107,5433,3528,1753,1702,1130,485,518,282,119,125,77,35,29... |\n", - "| [0,0,0,0,25460,7448,6933,4978,2881,2833,2048,1038,1129,685,321,364,212,90... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+-----------------------------------------------------------+\n", - "| genome.quality_metrics.genotype_quality.all_adj.n_smaller |\n", - "+-----------------------------------------------------------+\n", - "| int64 |\n", - "+-----------------------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+-----------------------------------------------------------+\n", - "\n", - "+----------------------------------------------------------+\n", - "| genome.quality_metrics.genotype_quality.all_adj.n_larger |\n", - "+----------------------------------------------------------+\n", - "| int64 |\n", - "+----------------------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+----------------------------------------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| genome.quality_metrics.genotype_quality.all_raw.bin_edges |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| genome.quality_metrics.genotype_quality.all_raw.bin_freq |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [14149,7330,6840,3904,23217,2436,1647,594,176,118,49,29,19,9,11,6,5,2,4,2] |\n", - "| [10121,5441,5610,3838,29394,3741,2868,1281,401,358,163,63,69,31,18,20,10,... |\n", - "| [6578,3782,4202,3336,31093,4532,3696,1752,595,585,261,88,82,59,17,26,14,5... |\n", - "| [1429,1382,1901,2026,25677,6108,5433,3528,1753,1702,1130,485,518,282,119,... |\n", - "| [995,1036,1539,1788,25460,7448,6933,4978,2881,2833,2048,1038,1129,685,321... |\n", - "+------------------------------------------------------------------------------+\n", + "+-------------------------------------+-------------------------------------+\n", + "| Colon_Sigmoid.transcript_expression | Colon_Sigmoid.expression_proportion |\n", + "+-------------------------------------+-------------------------------------+\n", + "| float64 | float64 |\n", + "+-------------------------------------+-------------------------------------+\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "+-------------------------------------+-------------------------------------+\n", "\n", - "+-----------------------------------------------------------+\n", - "| genome.quality_metrics.genotype_quality.all_raw.n_smaller |\n", - "+-----------------------------------------------------------+\n", - "| int64 |\n", - "+-----------------------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+-----------------------------------------------------------+\n", + "+----------------------------------------+\n", + "| Colon_Transverse.transcript_expression |\n", + "+----------------------------------------+\n", + "| float64 |\n", + "+----------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+----------------------------------------+\n", + "\n", + "+----------------------------------------+\n", + "| Colon_Transverse.expression_proportion |\n", + "+----------------------------------------+\n", + "| float64 |\n", + "+----------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+----------------------------------------+\n", "\n", "+----------------------------------------------------------+\n", - "| genome.quality_metrics.genotype_quality.all_raw.n_larger |\n", + "| Esophagus_GastroesophagealJunction.transcript_expression |\n", "+----------------------------------------------------------+\n", - "| int64 |\n", + "| float64 |\n", "+----------------------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", "+----------------------------------------------------------+\n", "\n", - "+------------------------------------------------------------------------------+\n", - "| genome.quality_metrics.genotype_quality.alt_adj.bin_edges |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", "+----------------------------------------------------------+\n", - "| genome.quality_metrics.genotype_quality.alt_adj.bin_freq |\n", + "| Esophagus_GastroesophagealJunction.expression_proportion |\n", "+----------------------------------------------------------+\n", - "| array |\n", + "| float64 |\n", "+----------------------------------------------------------+\n", - "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0] |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", "+----------------------------------------------------------+\n", "\n", - "+-----------------------------------------------------------+\n", - "| genome.quality_metrics.genotype_quality.alt_adj.n_smaller |\n", - "+-----------------------------------------------------------+\n", - "| int64 |\n", - "+-----------------------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+-----------------------------------------------------------+\n", + "+----------------------------------------+\n", + "| Esophagus_Mucosa.transcript_expression |\n", + "+----------------------------------------+\n", + "| float64 |\n", + "+----------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+----------------------------------------+\n", + "\n", + "+----------------------------------------+\n", + "| Esophagus_Mucosa.expression_proportion |\n", + "+----------------------------------------+\n", + "| float64 |\n", + "+----------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+----------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| Esophagus_Muscularis.transcript_expression |\n", + "+--------------------------------------------+\n", + "| float64 |\n", + "+--------------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+--------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| Esophagus_Muscularis.expression_proportion |\n", + "+--------------------------------------------+\n", + "| float64 |\n", + "+--------------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+--------------------------------------------+\n", + "\n", + "+---------------------------------------------+\n", + "| Heart_AtrialAppendage.transcript_expression |\n", + "+---------------------------------------------+\n", + "| float64 |\n", + "+---------------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+---------------------------------------------+\n", + "\n", + "+---------------------------------------------+\n", + "| Heart_AtrialAppendage.expression_proportion |\n", + "+---------------------------------------------+\n", + "| float64 |\n", + "+---------------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+---------------------------------------------+\n", + "\n", + "+-------------------------------------------+\n", + "| Heart_LeftVentricle.transcript_expression |\n", + "+-------------------------------------------+\n", + "| float64 |\n", + "+-------------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+-------------------------------------------+\n", + "\n", + "+-------------------------------------------+\n", + "| Heart_LeftVentricle.expression_proportion |\n", + "+-------------------------------------------+\n", + "| float64 |\n", + "+-------------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+-------------------------------------------+\n", + "\n", + "+-------------------------------------+-------------------------------------+\n", + "| Kidney_Cortex.transcript_expression | Kidney_Cortex.expression_proportion |\n", + "+-------------------------------------+-------------------------------------+\n", + "| float64 | float64 |\n", + "+-------------------------------------+-------------------------------------+\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "+-------------------------------------+-------------------------------------+\n", + "\n", + "+-----------------------------+-----------------------------+\n", + "| Liver.transcript_expression | Liver.expression_proportion |\n", + "+-----------------------------+-----------------------------+\n", + "| float64 | float64 |\n", + "+-----------------------------+-----------------------------+\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "+-----------------------------+-----------------------------+\n", + "\n", + "+----------------------------+----------------------------+\n", + "| Lung.transcript_expression | Lung.expression_proportion |\n", + "+----------------------------+----------------------------+\n", + "| float64 | float64 |\n", + "+----------------------------+----------------------------+\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "+----------------------------+----------------------------+\n", + "\n", + "+------------------------------------------+\n", + "| MinorSalivaryGland.transcript_expression |\n", + "+------------------------------------------+\n", + "| float64 |\n", + "+------------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+------------------------------------------+\n", + "\n", + "+------------------------------------------+\n", + "| MinorSalivaryGland.expression_proportion |\n", + "+------------------------------------------+\n", + "| float64 |\n", + "+------------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+------------------------------------------+\n", + "\n", + "+---------------------------------------+\n", + "| Muscle_Skeletal.transcript_expression |\n", + "+---------------------------------------+\n", + "| float64 |\n", + "+---------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+---------------------------------------+\n", + "\n", + "+---------------------------------------+------------------------------------+\n", + "| Muscle_Skeletal.expression_proportion | Nerve_Tibial.transcript_expression |\n", + "+---------------------------------------+------------------------------------+\n", + "| float64 | float64 |\n", + "+---------------------------------------+------------------------------------+\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "+---------------------------------------+------------------------------------+\n", + "\n", + "+------------------------------------+-----------------------------+\n", + "| Nerve_Tibial.expression_proportion | Ovary.transcript_expression |\n", + "+------------------------------------+-----------------------------+\n", + "| float64 | float64 |\n", + "+------------------------------------+-----------------------------+\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "+------------------------------------+-----------------------------+\n", "\n", - "+----------------------------------------------------------+\n", - "| genome.quality_metrics.genotype_quality.alt_adj.n_larger |\n", - "+----------------------------------------------------------+\n", - "| int64 |\n", - "+----------------------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+----------------------------------------------------------+\n", + "+-----------------------------+--------------------------------+\n", + "| Ovary.expression_proportion | Pancreas.transcript_expression |\n", + "+-----------------------------+--------------------------------+\n", + "| float64 | float64 |\n", + "+-----------------------------+--------------------------------+\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "+-----------------------------+--------------------------------+\n", "\n", - "+------------------------------------------------------------------------------+\n", - "| genome.quality_metrics.genotype_quality.alt_raw.bin_edges |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "+------------------------------------------------------------------------------+\n", + "+--------------------------------+---------------------------------+\n", + "| Pancreas.expression_proportion | Pituitary.transcript_expression |\n", + "+--------------------------------+---------------------------------+\n", + "| float64 | float64 |\n", + "+--------------------------------+---------------------------------+\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "+--------------------------------+---------------------------------+\n", "\n", - "+----------------------------------------------------------+\n", - "| genome.quality_metrics.genotype_quality.alt_raw.bin_freq |\n", - "+----------------------------------------------------------+\n", - "| array |\n", - "+----------------------------------------------------------+\n", - "| [0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,2,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,1,2,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0] |\n", - "+----------------------------------------------------------+\n", + "+---------------------------------+--------------------------------+\n", + "| Pituitary.expression_proportion | Prostate.transcript_expression |\n", + "+---------------------------------+--------------------------------+\n", + "| float64 | float64 |\n", + "+---------------------------------+--------------------------------+\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "+---------------------------------+--------------------------------+\n", "\n", - "+-----------------------------------------------------------+\n", - "| genome.quality_metrics.genotype_quality.alt_raw.n_smaller |\n", - "+-----------------------------------------------------------+\n", - "| int64 |\n", - "+-----------------------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+-----------------------------------------------------------+\n", + "+--------------------------------+\n", + "| Prostate.expression_proportion |\n", + "+--------------------------------+\n", + "| float64 |\n", + "+--------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+--------------------------------+\n", "\n", - "+----------------------------------------------------------+\n", - "| genome.quality_metrics.genotype_quality.alt_raw.n_larger |\n", - "+----------------------------------------------------------+\n", - "| int64 |\n", - "+----------------------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+----------------------------------------------------------+\n", + "+-----------------------------------------------------+\n", + "| Skin_NotSunExposed_Suprapubic.transcript_expression |\n", + "+-----------------------------------------------------+\n", + "| float64 |\n", + "+-----------------------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+-----------------------------------------------------+\n", "\n", - "+------------------------------------------------------------------------------+\n", - "| genome.quality_metrics.site_quality_metrics |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [(\"SiteQuality\",9.60e+01),(\"inbreeding_coeff\",-1.65e-05),(\"AS_MQ\",3.51e+0... |\n", - "| [(\"SiteQuality\",1.80e+02),(\"inbreeding_coeff\",-3.15e-05),(\"AS_MQ\",3.83e+0... |\n", - "| [(\"SiteQuality\",9.70e+01),(\"inbreeding_coeff\",-8.24e-06),(\"AS_MQ\",3.52e+0... |\n", - "| [(\"SiteQuality\",2.20e+02),(\"inbreeding_coeff\",-4.64e-05),(\"AS_MQ\",3.48e+0... |\n", - "| [(\"SiteQuality\",2.92e+02),(\"inbreeding_coeff\",-2.41e-05),(\"AS_MQ\",3.61e+0... |\n", - "+------------------------------------------------------------------------------+\n", + "+-----------------------------------------------------+\n", + "| Skin_NotSunExposed_Suprapubic.expression_proportion |\n", + "+-----------------------------------------------------+\n", + "| float64 |\n", + "+-----------------------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+-----------------------------------------------------+\n", "\n", - "+------------------+---------------------------------+\n", - "| rsids | in_silico_predictors.cadd.phred |\n", - "+------------------+---------------------------------+\n", - "| set | float32 |\n", - "+------------------+---------------------------------+\n", - "| {\"rs1639542312\"} | 8.97e+00 |\n", - "| {\"rs1639542418\"} | 8.90e+00 |\n", - "| NA | 8.90e+00 |\n", - "| {\"rs892501864\"} | 8.88e+00 |\n", - "| {\"rs1570391741\"} | 8.53e+00 |\n", - "+------------------+---------------------------------+\n", + "+------------------------------------------------+\n", + "| Skin_SunExposed_Lowerleg.transcript_expression |\n", + "+------------------------------------------------+\n", + "| float64 |\n", + "+------------------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+------------------------------------------------+\n", "\n", - "+-------------------------------------+--------------------------------+\n", - "| in_silico_predictors.cadd.raw_score | in_silico_predictors.revel_max |\n", - "+-------------------------------------+--------------------------------+\n", - "| float32 | float64 |\n", - "+-------------------------------------+--------------------------------+\n", - "| 7.57e-01 | NA |\n", - "| 7.49e-01 | NA |\n", - "| 7.48e-01 | NA |\n", - "| 7.46e-01 | NA |\n", - "| 7.09e-01 | NA |\n", - "+-------------------------------------+--------------------------------+\n", + "+------------------------------------------------+\n", + "| Skin_SunExposed_Lowerleg.expression_proportion |\n", + "+------------------------------------------------+\n", + "| float64 |\n", + "+------------------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+------------------------------------------------+\n", "\n", - "+--------------------------------------+\n", - "| in_silico_predictors.spliceai_ds_max |\n", - "+--------------------------------------+\n", - "| float32 |\n", - "+--------------------------------------+\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "+--------------------------------------+\n", + "+----------------------------------------------------+\n", + "| SmallIntestine_TerminalIleum.transcript_expression |\n", + "+----------------------------------------------------+\n", + "| float64 |\n", + "+----------------------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+----------------------------------------------------+\n", "\n", - "+------------------------------------------+-----------------------------+\n", - "| in_silico_predictors.pangolin_largest_ds | in_silico_predictors.phylop |\n", - "+------------------------------------------+-----------------------------+\n", - "| float64 | float64 |\n", - "+------------------------------------------+-----------------------------+\n", - "| NA | NA |\n", - "| NA | NA |\n", - "| NA | NA |\n", - "| NA | NA |\n", - "| NA | NA |\n", - "+------------------------------------------+-----------------------------+\n", + "+----------------------------------------------------+\n", + "| SmallIntestine_TerminalIleum.expression_proportion |\n", + "+----------------------------------------------------+\n", + "| float64 |\n", + "+----------------------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+----------------------------------------------------+\n", + "\n", + "+------------------------------+------------------------------+\n", + "| Spleen.transcript_expression | Spleen.expression_proportion |\n", + "+------------------------------+------------------------------+\n", + "| float64 | float64 |\n", + "+------------------------------+------------------------------+\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "+------------------------------+------------------------------+\n", "\n", - "+-------------------------------+-----------------------------------+\n", - "| in_silico_predictors.sift_max | in_silico_predictors.polyphen_max |\n", - "+-------------------------------+-----------------------------------+\n", - "| float64 | float64 |\n", - "+-------------------------------+-----------------------------------+\n", - "| NA | NA |\n", - "| NA | NA |\n", - "| NA | NA |\n", - "| NA | NA |\n", - "| NA | NA |\n", - "+-------------------------------+-----------------------------------+\n", + "+-------------------------------+-------------------------------+\n", + "| Stomach.transcript_expression | Stomach.expression_proportion |\n", + "+-------------------------------+-------------------------------+\n", + "| float64 | float64 |\n", + "+-------------------------------+-------------------------------+\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "+-------------------------------+-------------------------------+\n", "\n", - "+---------------+------------------------+----------------------------+\n", - "| variant_id | colocated_variants.all | colocated_variants.non_ukb |\n", - "+---------------+------------------------+----------------------------+\n", - "| str | array | array |\n", - "+---------------+------------------------+----------------------------+\n", - "| \"1-10031-T-C\" | [] | [] |\n", - "| \"1-10037-T-C\" | [] | [] |\n", - "| \"1-10043-T-C\" | [] | [] |\n", - "| \"1-10055-T-C\" | [] | [] |\n", - "| \"1-10057-A-C\" | [] | [] |\n", - "+---------------+------------------------+----------------------------+\n", + "+------------------------------+------------------------------+\n", + "| Testis.transcript_expression | Testis.expression_proportion |\n", + "+------------------------------+------------------------------+\n", + "| float64 | float64 |\n", + "+------------------------------+------------------------------+\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "+------------------------------+------------------------------+\n", "\n", - "+-------------------------+------------------------+-------------------+\n", - "| colocated_variants.hgdp | colocated_variants.tgp | joint.freq.all.ac |\n", - "+-------------------------+------------------------+-------------------+\n", - "| array | array | int32 |\n", - "+-------------------------+------------------------+-------------------+\n", - "| [] | [] | 0 |\n", - "| [] | [] | 2 |\n", - "| [] | [] | 1 |\n", - "| [] | [] | 1 |\n", - "| [] | [] | 3 |\n", - "+-------------------------+------------------------+-------------------+\n", + "+-------------------------------+-------------------------------+\n", + "| Thyroid.transcript_expression | Thyroid.expression_proportion |\n", + "+-------------------------------+-------------------------------+\n", + "| float64 | float64 |\n", + "+-------------------------------+-------------------------------+\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "+-------------------------------+-------------------------------+\n", "\n", - "+-----------------------+-------------------+---------------------------------+\n", - "| joint.freq.all.ac_raw | joint.freq.all.an | joint.freq.all.hemizygote_count |\n", - "+-----------------------+-------------------+---------------------------------+\n", - "| int32 | int32 | int32 |\n", - "+-----------------------+-------------------+---------------------------------+\n", - "| 2 | 56642 | 0 |\n", - "| 4 | 76882 | 0 |\n", - "| 1 | 85634 | 0 |\n", - "| 5 | 94224 | 0 |\n", - "| 3 | 113536 | 0 |\n", - "+-----------------------+-------------------+---------------------------------+\n", + "+------------------------------+------------------------------+\n", + "| Uterus.transcript_expression | Uterus.expression_proportion |\n", + "+------------------------------+------------------------------+\n", + "| float64 | float64 |\n", + "+------------------------------+------------------------------+\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "+------------------------------+------------------------------+\n", "\n", - "+---------------------------------+\n", - "| joint.freq.all.homozygote_count |\n", - "+---------------------------------+\n", - "| int32 |\n", - "+---------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+---------------------------------+\n", + "+------------------------------+------------------------------+\n", + "| Vagina.transcript_expression | Vagina.expression_proportion |\n", + "+------------------------------+------------------------------+\n", + "| float64 | float64 |\n", + "+------------------------------+------------------------------+\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "+------------------------------+------------------------------+\n", + "\n", + "+----------------------------------+----------------------------------+\n", + "| WholeBlood.transcript_expression | WholeBlood.expression_proportion |\n", + "+----------------------------------+----------------------------------+\n", + "| float64 | float64 |\n", + "+----------------------------------+----------------------------------+\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "| 0.00e+00 | 0.00e+00 |\n", + "+----------------------------------+----------------------------------+\n", + "showing top 5 rows" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "ht.show(5)" + ] + }, + { + "cell_type": "markdown", + "id": "0d1780f9", + "metadata": { + "tags": [] + }, + "source": [ + "## Lifted over variant data (GRCh37 --> GRCh38)" + ] + }, + { + "cell_type": "markdown", + "id": "93ba18a4", + "metadata": { + "tags": [] + }, + "source": [ + "### Exomes liftover Hail Table" + ] + }, + { + "cell_type": "markdown", + "id": "207b8b4a", + "metadata": {}, + "source": [ + "#### Load the Hail Table\n" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "id": "4a29c79d", + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-06T20:08:59.197890Z", + "start_time": "2024-12-06T20:08:50.859108Z" + } + }, + "outputs": [], + "source": [ + "ht = get_gnomad_release(data_type='exomes', version='2.1.1', dataset=\"liftover\")" + ] + }, + { + "cell_type": "markdown", + "id": "5d9872f9", + "metadata": {}, + "source": [ + "#### Print the schema of the Hail Table\n" + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "id": "dcd9ad6e", + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-06T20:09:00.032524Z", + "start_time": "2024-12-06T20:09:00.029271Z" + }, + "scrolled": true, + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "----------------------------------------\n", + "Global fields:\n", + " 'rf': struct {\n", + " variants_by_type: dict, \n", + " feature_medians: dict, \n", + " test_intervals: array>>, \n", + " test_results: array, \n", + " features_importance: dict, \n", + " features: array, \n", + " vqsr_training: bool, \n", + " no_transmitted_singletons: bool, \n", + " adj: bool, \n", + " rf_hash: str, \n", + " rf_snv_cutoff: struct {\n", + " bin: int32, \n", + " min_score: float64\n", + " }, \n", + " rf_indel_cutoff: struct {\n", + " bin: int32, \n", + " min_score: float64\n", + " }\n", + " } \n", + " 'freq_meta': array> \n", + " 'freq_index_dict': dict \n", + " 'popmax_index_dict': dict \n", + " 'age_index_dict': dict \n", + " 'faf_index_dict': dict \n", + " 'age_distribution': array \n", + "----------------------------------------\n", + "Row fields:\n", + " 'locus': locus \n", + " 'alleles': array \n", + " 'ReverseComplementedAlleles': bool \n", + " 'SwappedAlleles': bool \n", + " 'original_locus': locus \n", + " 'freq': array \n", + " 'age_hist_het': array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }> \n", + " 'age_hist_hom': array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }> \n", + " 'popmax': array \n", + " 'faf': array, \n", + " faf95: float64, \n", + " faf99: float64\n", + " }> \n", + " 'lcr': bool \n", + " 'decoy': bool \n", + " 'segdup': bool \n", + " 'nonpar': bool \n", + " 'variant_type': str \n", + " 'allele_type': str \n", + " 'n_alt_alleles': int32 \n", + " 'was_mixed': bool \n", + " 'has_star': bool \n", + " 'qd': float64 \n", + " 'pab_max': float64 \n", + " 'info_MQRankSum': float64 \n", + " 'info_SOR': float64 \n", + " 'info_InbreedingCoeff': float64 \n", + " 'info_ReadPosRankSum': float64 \n", + " 'info_FS': float64 \n", + " 'info_QD': float64 \n", + " 'info_MQ': float64 \n", + " 'info_DP': int32 \n", + " 'transmitted_singleton': bool \n", + " 'fail_hard_filters': bool \n", + " 'info_POSITIVE_TRAIN_SITE': bool \n", + " 'info_NEGATIVE_TRAIN_SITE': bool \n", + " 'omni': bool \n", + " 'mills': bool \n", + " 'n_nonref': int32 \n", + " 'tp': bool \n", + " 'rf_train': bool \n", + " 'rf_label': str \n", + " 'rf_probability': float64 \n", + " 'singleton': bool \n", + " 'was_split': bool \n", + " 'score': float64 \n", + " 'rank': int64 \n", + " 'singleton_rank': int64 \n", + " 'biallelic_rank': int64 \n", + " 'adj_biallelic_singleton_rank': int64 \n", + " 'adj_rank': int64 \n", + " 'adj_biallelic_rank': int64 \n", + " 'adj_singleton_rank': int64 \n", + " 'biallelic_singleton_rank': int64 \n", + " 'filters': set \n", + " 'gq_hist_alt': struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " } \n", + " 'gq_hist_all': struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " } \n", + " 'dp_hist_alt': struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " } \n", + " 'dp_hist_all': struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " } \n", + " 'ab_hist_alt': struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " } \n", + " 'qual': float64 \n", + " 'vep': struct {\n", + " assembly_name: str, \n", + " allele_string: str, \n", + " ancestral: str, \n", + " colocated_variants: array, \n", + " end: int32, \n", + " eas_allele: str, \n", + " eas_maf: float64, \n", + " ea_allele: str, \n", + " ea_maf: float64, \n", + " eur_allele: str, \n", + " eur_maf: float64, \n", + " exac_adj_allele: str, \n", + " exac_adj_maf: float64, \n", + " exac_allele: str, \n", + " exac_afr_allele: str, \n", + " exac_afr_maf: float64, \n", + " exac_amr_allele: str, \n", + " exac_amr_maf: float64, \n", + " exac_eas_allele: str, \n", + " exac_eas_maf: float64, \n", + " exac_fin_allele: str, \n", + " exac_fin_maf: float64, \n", + " exac_maf: float64, \n", + " exac_nfe_allele: str, \n", + " exac_nfe_maf: float64, \n", + " exac_oth_allele: str, \n", + " exac_oth_maf: float64, \n", + " exac_sas_allele: str, \n", + " exac_sas_maf: float64, \n", + " id: str, \n", + " minor_allele: str, \n", + " minor_allele_freq: float64, \n", + " phenotype_or_disease: int32, \n", + " pubmed: array, \n", + " sas_allele: str, \n", + " sas_maf: float64, \n", + " somatic: int32, \n", + " start: int32, \n", + " strand: int32\n", + " }>, \n", + " context: str, \n", + " end: int32, \n", + " id: str, \n", + " input: str, \n", + " intergenic_consequences: array, \n", + " impact: str, \n", + " minimised: int32, \n", + " variant_allele: str\n", + " }>, \n", + " most_severe_consequence: str, \n", + " motif_feature_consequences: array, \n", + " high_inf_pos: str, \n", + " impact: str, \n", + " minimised: int32, \n", + " motif_feature_id: str, \n", + " motif_name: str, \n", + " motif_pos: int32, \n", + " motif_score_change: float64, \n", + " strand: int32, \n", + " variant_allele: str\n", + " }>, \n", + " regulatory_feature_consequences: array, \n", + " impact: str, \n", + " minimised: int32, \n", + " regulatory_feature_id: str, \n", + " variant_allele: str\n", + " }>, \n", + " seq_region_name: str, \n", + " start: int32, \n", + " strand: int32, \n", + " transcript_consequences: array, \n", + " distance: int32, \n", + " domains: array, \n", + " exon: str, \n", + " gene_id: str, \n", + " gene_pheno: int32, \n", + " gene_symbol: str, \n", + " gene_symbol_source: str, \n", + " hgnc_id: str, \n", + " hgvsc: str, \n", + " hgvsp: str, \n", + " hgvs_offset: int32, \n", + " impact: str, \n", + " intron: str, \n", + " lof: str, \n", + " lof_flags: str, \n", + " lof_filter: str, \n", + " lof_info: str, \n", + " minimised: int32, \n", + " polyphen_prediction: str, \n", + " polyphen_score: float64, \n", + " protein_end: int32, \n", + " protein_start: int32, \n", + " protein_id: str, \n", + " sift_prediction: str, \n", + " sift_score: float64, \n", + " strand: int32, \n", + " swissprot: str, \n", + " transcript_id: str, \n", + " trembl: str, \n", + " uniparc: str, \n", + " variant_allele: str\n", + " }>, \n", + " variant_class: str\n", + " } \n", + " 'allele_info': struct {\n", + " BaseQRankSum: float64, \n", + " ClippingRankSum: float64, \n", + " DB: bool, \n", + " DP: int32, \n", + " DS: bool, \n", + " END: int32, \n", + " FS: float64, \n", + " HaplotypeScore: float64, \n", + " InbreedingCoeff: float64, \n", + " MQ: float64, \n", + " MQRankSum: float64, \n", + " NEGATIVE_TRAIN_SITE: bool, \n", + " POSITIVE_TRAIN_SITE: bool, \n", + " QD: float64, \n", + " ReadPosRankSum: float64, \n", + " SOR: float64, \n", + " VQSLOD: float64, \n", + " culprit: str\n", + " } \n", + " 'rsid': str \n", + " 'original_alleles': array \n", + "----------------------------------------\n", + "Key: ['locus', 'alleles']\n", + "----------------------------------------\n" + ] + } + ], + "source": [ + "ht.describe()" + ] + }, + { + "cell_type": "markdown", + "id": "7305a806", + "metadata": { + "tags": [] + }, + "source": [ + "#### Show the first 5 variants in the Hail Table\n" + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "id": "04b6da53", + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-06T20:09:20.949958Z", + "start_time": "2024-12-06T20:09:05.622171Z" + }, + "tags": [] + }, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
gq_hist_alt
gq_hist_all
dp_hist_alt
dp_hist_all
ab_hist_alt
vep
allele_info
locus
alleles
ReverseComplementedAlleles
SwappedAlleles
original_locus
freq
age_hist_het
age_hist_hom
popmax
faf
lcr
decoy
segdup
nonpar
variant_type
allele_type
n_alt_alleles
was_mixed
has_star
qd
pab_max
info_MQRankSum
info_SOR
info_InbreedingCoeff
info_ReadPosRankSum
info_FS
info_QD
info_MQ
info_DP
transmitted_singleton
fail_hard_filters
info_POSITIVE_TRAIN_SITE
info_NEGATIVE_TRAIN_SITE
omni
mills
n_nonref
tp
rf_train
rf_label
rf_probability
singleton
was_split
score
rank
singleton_rank
biallelic_rank
adj_biallelic_singleton_rank
adj_rank
adj_biallelic_rank
adj_singleton_rank
biallelic_singleton_rank
filters
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
qual
assembly_name
allele_string
ancestral
colocated_variants
context
end
id
input
intergenic_consequences
most_severe_consequence
motif_feature_consequences
regulatory_feature_consequences
seq_region_name
start
strand
transcript_consequences
variant_class
BaseQRankSum
ClippingRankSum
DB
DP
DS
END
FS
HaplotypeScore
InbreedingCoeff
MQ
MQRankSum
NEGATIVE_TRAIN_SITE
POSITIVE_TRAIN_SITE
QD
ReadPosRankSum
SOR
VQSLOD
culprit
rsid
original_alleles
locus<GRCh38>array<str>boolboollocus<GRCh37>array<struct{AC: int32, AF: float64, AN: int32, homozygote_count: int32}>array<struct{bin_edges: array<float64>, bin_freq: array<int64>, n_smaller: int64, n_larger: int64}>array<struct{bin_edges: array<float64>, bin_freq: array<int64>, n_smaller: int64, n_larger: int64}>array<struct{AC: int32, AF: float64, AN: int32, homozygote_count: int32, pop: str}>array<struct{meta: dict<str, str>, faf95: float64, faf99: float64}>boolboolboolboolstrstrint32boolboolfloat64float64float64float64float64float64float64float64float64int32boolboolboolboolboolboolint32boolboolstrfloat64boolboolfloat64int64int64int64int64int64int64int64int64set<str>array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64float64strstrstrarray<struct{aa_allele: str, aa_maf: float64, afr_allele: str, afr_maf: float64, allele_string: str, amr_allele: str, amr_maf: float64, clin_sig: array<str>, end: int32, eas_allele: str, eas_maf: float64, ea_allele: str, ea_maf: float64, eur_allele: str, eur_maf: float64, exac_adj_allele: str, exac_adj_maf: float64, exac_allele: str, exac_afr_allele: str, exac_afr_maf: float64, exac_amr_allele: str, exac_amr_maf: float64, exac_eas_allele: str, exac_eas_maf: float64, exac_fin_allele: str, exac_fin_maf: float64, exac_maf: float64, exac_nfe_allele: str, exac_nfe_maf: float64, exac_oth_allele: str, exac_oth_maf: float64, exac_sas_allele: str, exac_sas_maf: float64, id: str, minor_allele: str, minor_allele_freq: float64, phenotype_or_disease: int32, pubmed: array<int32>, sas_allele: str, sas_maf: float64, somatic: int32, start: int32, strand: int32}>strint32strstrarray<struct{allele_num: int32, consequence_terms: array<str>, impact: str, minimised: int32, variant_allele: str}>strarray<struct{allele_num: int32, consequence_terms: array<str>, high_inf_pos: str, impact: str, minimised: int32, motif_feature_id: str, motif_name: str, motif_pos: int32, motif_score_change: float64, strand: int32, variant_allele: str}>array<struct{allele_num: int32, biotype: str, consequence_terms: array<str>, impact: str, minimised: int32, regulatory_feature_id: str, variant_allele: str}>strint32int32array<struct{allele_num: int32, amino_acids: str, biotype: str, canonical: int32, ccds: str, cdna_start: int32, cdna_end: int32, cds_end: int32, cds_start: int32, codons: str, consequence_terms: array<str>, distance: int32, domains: array<struct{db: str, name: str}>, exon: str, gene_id: str, gene_pheno: int32, gene_symbol: str, gene_symbol_source: str, hgnc_id: str, hgvsc: str, hgvsp: str, hgvs_offset: int32, impact: str, intron: str, lof: str, lof_flags: str, lof_filter: str, lof_info: str, minimised: int32, polyphen_prediction: str, polyphen_score: float64, protein_end: int32, protein_start: int32, protein_id: str, sift_prediction: str, sift_score: float64, strand: int32, swissprot: str, transcript_id: str, trembl: str, uniparc: str, variant_allele: str}>strfloat64float64boolint32boolint32float64float64float64float64float64boolboolfloat64float64float64float64strstrarray<str>
chr1:12198["G","C"]FalseFalse1:12198[(0,NA,0,0),(227,4.57e-02,4966,90),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(109,4.67e-02,2336,44),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(227,4.57e-02,4964,90),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(225,4.71e-02,4778,89),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(218,4.59e-02,4746,87),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0)][([3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01],[0,0,0,0,0,0,0,0,0,0],0,0),([3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01],[0,0,0,0,0,0,0,0,0,0],0,0),([3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01],[0,0,0,0,0,0,0,0,0,0],0,0),([3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01],[0,0,0,0,0,0,0,0,0,0],0,0),([3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01],[0,0,0,0,0,0,0,0,0,0],0,0)][([3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01],[0,0,0,0,0,0,0,0,0,0],0,0),([3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01],[0,0,0,0,0,0,0,0,0,0],0,0),([3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01],[0,0,0,0,0,0,0,0,0,0],0,0),([3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01],[0,0,0,0,0,0,0,0,0,0],0,0),([3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01],[0,0,0,0,0,0,0,0,0,0],0,0)][NA,NA,NA,NA,NA][({"group":"adj"},0.00e+00,0.00e+00),({"group":"adj","pop":"nfe"},0.00e+00,0.00e+00),({"group":"adj","pop":"afr"},0.00e+00,0.00e+00),({"group":"adj","pop":"eas"},0.00e+00,0.00e+00),({"group":"adj","pop":"sas"},0.00e+00,0.00e+00),({"group":"adj","pop":"amr"},0.00e+00,0.00e+00),({"group":"adj"},0.00e+00,0.00e+00),({"group":"adj","pop":"nfe"},0.00e+00,0.00e+00),({"group":"adj","pop":"afr"},0.00e+00,0.00e+00),({"group":"adj","pop":"eas"},0.00e+00,0.00e+00),({"group":"adj","pop":"sas"},0.00e+00,0.00e+00),({"group":"adj","pop":"amr"},0.00e+00,0.00e+00),({"group":"adj"},0.00e+00,0.00e+00),({"group":"adj","pop":"nfe"},0.00e+00,0.00e+00),({"group":"adj","pop":"afr"},0.00e+00,0.00e+00),({"group":"adj","pop":"eas"},0.00e+00,0.00e+00),({"group":"adj","pop":"sas"},0.00e+00,0.00e+00),({"group":"adj","pop":"amr"},0.00e+00,0.00e+00),({"group":"adj"},0.00e+00,0.00e+00),({"group":"adj","pop":"nfe"},0.00e+00,0.00e+00),({"group":"adj","pop":"afr"},0.00e+00,0.00e+00),({"group":"adj","pop":"eas"},0.00e+00,0.00e+00),({"group":"adj","pop":"sas"},0.00e+00,0.00e+00),({"group":"adj","pop":"amr"},0.00e+00,0.00e+00),({"group":"adj"},0.00e+00,0.00e+00),({"group":"adj","pop":"nfe"},0.00e+00,0.00e+00),({"group":"adj","pop":"afr"},0.00e+00,0.00e+00),({"group":"adj","pop":"eas"},0.00e+00,0.00e+00),({"group":"adj","pop":"sas"},0.00e+00,0.00e+00),({"group":"adj","pop":"amr"},0.00e+00,0.00e+00)]FalseFalseTrueFalse"snv""snv"1FalseFalse2.03e+011.00e+007.36e-013.02e-019.80e-037.36e-010.00e+001.40e+012.30e+019204NATrueNANAFalseFalse231FalseTrue"FP"8.37e-01FalseFalse8.37e-016571357NA4342152NANANANANA{"AC0"}[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][14,78,1,25,7,4,0,5,2,0,0,0,1,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][1898,511,26,28,8,4,0,5,2,0,0,0,1,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][130,7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][125724,24,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,1,0,2,0,2,0,10,0,1,28,0,3,0,0,0,0]009.88e+03"GRCh37""G/C"NA[(NA,NA,NA,NA,"G/C",NA,NA,NA,12198,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"rs62635282",NA,NA,NA,NA,NA,NA,NA,12198,1)]NA12198"1_12198_G/C""1\t12198\t.\tG\tC\t.\t.\tGT"NA"non_coding_transcript_exon_variant"NA[(1,"CTCF_binding_site",["regulatory_region_variant"],"MODIFIER",1,"ENSR00001576075","C")]"1"121981[(1,NA,"unprocessed_pseudogene",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],2165,NA,NA,"ENSG00000227232",NA,"WASH7P","HGNC","38034",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,1,NA,NA,NA,NA,NA,NA,NA,-1,NA,"ENST00000423562",NA,NA,"C"),(1,NA,"unprocessed_pseudogene",1,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],2165,NA,NA,"ENSG00000227232",NA,"WASH7P","HGNC","38034",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,1,NA,NA,NA,NA,NA,NA,NA,-1,NA,"ENST00000438504",NA,NA,"C"),(1,NA,"transcribed_unprocessed_pseudogene",NA,NA,68,68,NA,NA,NA,["non_coding_transcript_exon_variant","non_coding_transcript_variant"],NA,NA,"2/6","ENSG00000223972",NA,"DDX11L1","HGNC","37102","ENST00000450305.2:n.68G>C",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,1,NA,NA,NA,NA,NA,NA,NA,1,NA,"ENST00000450305",NA,NA,"C"),(1,NA,"processed_transcript",1,NA,330,330,NA,NA,NA,["non_coding_transcript_exon_variant","non_coding_transcript_variant"],NA,NA,"1/3","ENSG00000223972",NA,"DDX11L1","HGNC","37102","ENST00000456328.2:n.330G>C",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,1,NA,NA,NA,NA,NA,NA,NA,1,NA,"ENST00000456328",NA,NA,"C"),(1,NA,"unprocessed_pseudogene",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],2206,NA,NA,"ENSG00000227232",NA,"WASH7P","HGNC","38034",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,1,NA,NA,NA,NA,NA,NA,NA,-1,NA,"ENST00000488147",NA,NA,"C"),(1,NA,"transcribed_unprocessed_pseudogene",NA,NA,327,327,NA,NA,NA,["non_coding_transcript_exon_variant","non_coding_transcript_variant"],NA,NA,"1/3","ENSG00000223972",NA,"DDX11L1","HGNC","37102","ENST00000515242.2:n.327G>C",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,1,NA,NA,NA,NA,NA,NA,NA,1,NA,"ENST00000515242",NA,NA,"C"),(1,NA,"transcribed_unprocessed_pseudogene",NA,NA,325,325,NA,NA,NA,["non_coding_transcript_exon_variant","non_coding_transcript_variant"],NA,NA,"1/4","ENSG00000223972",NA,"DDX11L1","HGNC","37102","ENST00000518655.2:n.325G>C",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,1,NA,NA,NA,NA,NA,NA,NA,1,NA,"ENST00000518655",NA,NA,"C"),(1,NA,"unprocessed_pseudogene",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],2213,NA,NA,"ENSG00000227232",NA,"WASH7P","HGNC","38034",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,1,NA,NA,NA,NA,NA,NA,NA,-1,NA,"ENST00000538476",NA,NA,"C"),(1,NA,"unprocessed_pseudogene",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],2165,NA,NA,"ENSG00000227232",NA,"WASH7P","HGNC","38034",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,1,NA,NA,NA,NA,NA,NA,NA,-1,NA,"ENST00000541675",NA,NA,"C")]"SNV"0.00e+003.58e-01NA9204NANA0.00e+00NA9.80e-032.30e+017.36e-01NANA1.40e+017.36e-013.02e-011.01e+00"MQ""rs62635282"["G","C"]
chr1:12237["G","A"]FalseFalse1:12237[(0,NA,0,0),(5,4.41e-04,11338,1),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(3,5.81e-04,5160,1),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(5,4.41e-04,11336,1),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(5,4.72e-04,10602,1),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(5,4.61e-04,10850,1),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0)][([3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01],[0,0,0,0,0,0,0,0,0,0],0,0),([3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01],[0,0,0,0,0,0,0,0,0,0],0,0),([3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01],[0,0,0,0,0,0,0,0,0,0],0,0),([3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01],[0,0,0,0,0,0,0,0,0,0],0,0),([3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01],[0,0,0,0,0,0,0,0,0,0],0,0)][([3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01],[0,0,0,0,0,0,0,0,0,0],0,0),([3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01],[0,0,0,0,0,0,0,0,0,0],0,0),([3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01],[0,0,0,0,0,0,0,0,0,0],0,0),([3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01],[0,0,0,0,0,0,0,0,0,0],0,0),([3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01],[0,0,0,0,0,0,0,0,0,0],0,0)][NA,NA,NA,NA,NA][({"group":"adj"},0.00e+00,0.00e+00),({"group":"adj","pop":"nfe"},0.00e+00,0.00e+00),({"group":"adj","pop":"afr"},0.00e+00,0.00e+00),({"group":"adj","pop":"eas"},0.00e+00,0.00e+00),({"group":"adj","pop":"sas"},0.00e+00,0.00e+00),({"group":"adj","pop":"amr"},0.00e+00,0.00e+00),({"group":"adj"},0.00e+00,0.00e+00),({"group":"adj","pop":"nfe"},0.00e+00,0.00e+00),({"group":"adj","pop":"afr"},0.00e+00,0.00e+00),({"group":"adj","pop":"eas"},0.00e+00,0.00e+00),({"group":"adj","pop":"sas"},0.00e+00,0.00e+00),({"group":"adj","pop":"amr"},0.00e+00,0.00e+00),({"group":"adj"},0.00e+00,0.00e+00),({"group":"adj","pop":"nfe"},0.00e+00,0.00e+00),({"group":"adj","pop":"afr"},0.00e+00,0.00e+00),({"group":"adj","pop":"eas"},0.00e+00,0.00e+00),({"group":"adj","pop":"sas"},0.00e+00,0.00e+00),({"group":"adj","pop":"amr"},0.00e+00,0.00e+00),({"group":"adj"},0.00e+00,0.00e+00),({"group":"adj","pop":"nfe"},0.00e+00,0.00e+00),({"group":"adj","pop":"afr"},0.00e+00,0.00e+00),({"group":"adj","pop":"eas"},0.00e+00,0.00e+00),({"group":"adj","pop":"sas"},0.00e+00,0.00e+00),({"group":"adj","pop":"amr"},0.00e+00,0.00e+00),({"group":"adj"},0.00e+00,0.00e+00),({"group":"adj","pop":"nfe"},0.00e+00,0.00e+00),({"group":"adj","pop":"afr"},0.00e+00,0.00e+00),({"group":"adj","pop":"eas"},0.00e+00,0.00e+00),({"group":"adj","pop":"sas"},0.00e+00,0.00e+00),({"group":"adj","pop":"amr"},0.00e+00,0.00e+00)]FalseFalseTrueFalse"snv""snv"1FalseFalse1.55e+011.00e+00-3.58e-011.29e+00-1.44e-013.58e-010.00e+004.31e+002.20e+0116096NATrueNANAFalseFalse5FalseTrue"FP"4.33e-01FalseFalse4.33e-0113350857NA9360383NANANANANA{"AC0"}[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,1,0,1,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][3635,1739,178,101,14,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][125622,126,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,0,0,0,0,0,0,2,1,0,0,0,0,0,0]008.20e+01"GRCh37""G/A"NANANA12237"1_12237_G/A""1\t12237\t.\tG\tA\t.\t.\tGT"NA"intron_variant"NA[(1,"CTCF_binding_site",["regulatory_region_variant"],"MODIFIER",1,"ENSR00001576075","A")]"1"122371[(1,NA,"unprocessed_pseudogene",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],2126,NA,NA,"ENSG00000227232",NA,"WASH7P","HGNC","38034",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,1,NA,NA,NA,NA,NA,NA,NA,-1,NA,"ENST00000423562",NA,NA,"A"),(1,NA,"unprocessed_pseudogene",1,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],2126,NA,NA,"ENSG00000227232",NA,"WASH7P","HGNC","38034",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,1,NA,NA,NA,NA,NA,NA,NA,-1,NA,"ENST00000438504",NA,NA,"A"),(1,NA,"transcribed_unprocessed_pseudogene",NA,NA,NA,NA,NA,NA,NA,["intron_variant","non_coding_transcript_variant"],NA,NA,NA,"ENSG00000223972",NA,"DDX11L1","HGNC","37102","ENST00000450305.2:n.97+10G>A",NA,NA,"MODIFIER","2/5",NA,NA,NA,NA,1,NA,NA,NA,NA,NA,NA,NA,1,NA,"ENST00000450305",NA,NA,"A"),(1,NA,"processed_transcript",1,NA,NA,NA,NA,NA,NA,["intron_variant","non_coding_transcript_variant"],NA,NA,NA,"ENSG00000223972",NA,"DDX11L1","HGNC","37102","ENST00000456328.2:n.359+10G>A",NA,NA,"MODIFIER","1/2",NA,NA,NA,NA,1,NA,NA,NA,NA,NA,NA,NA,1,NA,"ENST00000456328",NA,NA,"A"),(1,NA,"unprocessed_pseudogene",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],2167,NA,NA,"ENSG00000227232",NA,"WASH7P","HGNC","38034",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,1,NA,NA,NA,NA,NA,NA,NA,-1,NA,"ENST00000488147",NA,NA,"A"),(1,NA,"transcribed_unprocessed_pseudogene",NA,NA,NA,NA,NA,NA,NA,["intron_variant","non_coding_transcript_variant"],NA,NA,NA,"ENSG00000223972",NA,"DDX11L1","HGNC","37102","ENST00000515242.2:n.356+10G>A",NA,NA,"MODIFIER","1/2",NA,NA,NA,NA,1,NA,NA,NA,NA,NA,NA,NA,1,NA,"ENST00000515242",NA,NA,"A"),(1,NA,"transcribed_unprocessed_pseudogene",NA,NA,NA,NA,NA,NA,NA,["intron_variant","non_coding_transcript_variant"],NA,NA,NA,"ENSG00000223972",NA,"DDX11L1","HGNC","37102","ENST00000518655.2:n.354+10G>A",NA,NA,"MODIFIER","1/3",NA,NA,NA,NA,1,NA,NA,NA,NA,NA,NA,NA,1,NA,"ENST00000518655",NA,NA,"A"),(1,NA,"unprocessed_pseudogene",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],2174,NA,NA,"ENSG00000227232",NA,"WASH7P","HGNC","38034",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,1,NA,NA,NA,NA,NA,NA,NA,-1,NA,"ENST00000538476",NA,NA,"A"),(1,NA,"unprocessed_pseudogene",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],2126,NA,NA,"ENSG00000227232",NA,"WASH7P","HGNC","38034",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,1,NA,NA,NA,NA,NA,NA,NA,-1,NA,"ENST00000541675",NA,NA,"A")]"SNV"7.36e-01-3.58e-01NA16096NANA0.00e+00NA-1.44e-012.20e+01-3.58e-01NANA4.31e+003.58e-011.29e+001.57e+00"QD""rs1324090652"["G","A"]
chr1:12259["G","C"]FalseFalse1:12259[(0,0.00e+00,2,0),(2,1.56e-04,12838,1),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(2,3.46e-04,5786,1),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(2,1.56e-04,12836,1),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(2,1.68e-04,11930,1),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(2,1.63e-04,12286,1),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0)][([3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01],[0,0,0,0,0,0,0,0,0,0],0,0),([3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01],[0,0,0,0,0,0,0,0,0,0],0,0),([3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01],[0,0,0,0,0,0,0,0,0,0],0,0),([3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01],[0,0,0,0,0,0,0,0,0,0],0,0),([3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01],[0,0,0,0,0,0,0,0,0,0],0,0)][([3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01],[0,0,0,0,0,0,0,0,0,0],0,0),([3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01],[0,0,0,0,0,0,0,0,0,0],0,0),([3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01],[0,0,0,0,0,0,0,0,0,0],0,0),([3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01],[0,0,0,0,0,0,0,0,0,0],0,0),([3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01],[0,0,0,0,0,0,0,0,0,0],0,0)][NA,NA,NA,NA,NA][({"group":"adj"},0.00e+00,0.00e+00),({"group":"adj","pop":"nfe"},0.00e+00,0.00e+00),({"group":"adj","pop":"afr"},0.00e+00,0.00e+00),({"group":"adj","pop":"eas"},0.00e+00,0.00e+00),({"group":"adj","pop":"sas"},0.00e+00,0.00e+00),({"group":"adj","pop":"amr"},0.00e+00,0.00e+00),({"group":"adj"},0.00e+00,0.00e+00),({"group":"adj","pop":"nfe"},0.00e+00,0.00e+00),({"group":"adj","pop":"afr"},0.00e+00,0.00e+00),({"group":"adj","pop":"eas"},0.00e+00,0.00e+00),({"group":"adj","pop":"sas"},0.00e+00,0.00e+00),({"group":"adj","pop":"amr"},0.00e+00,0.00e+00),({"group":"adj"},0.00e+00,0.00e+00),({"group":"adj","pop":"nfe"},0.00e+00,0.00e+00),({"group":"adj","pop":"afr"},0.00e+00,0.00e+00),({"group":"adj","pop":"eas"},0.00e+00,0.00e+00),({"group":"adj","pop":"sas"},0.00e+00,0.00e+00),({"group":"adj","pop":"amr"},0.00e+00,0.00e+00),({"group":"adj"},0.00e+00,0.00e+00),({"group":"adj","pop":"nfe"},0.00e+00,0.00e+00),({"group":"adj","pop":"afr"},0.00e+00,0.00e+00),({"group":"adj","pop":"eas"},0.00e+00,0.00e+00),({"group":"adj","pop":"sas"},0.00e+00,0.00e+00),({"group":"adj","pop":"amr"},0.00e+00,0.00e+00),({"group":"adj"},0.00e+00,0.00e+00),({"group":"adj","pop":"nfe"},0.00e+00,0.00e+00),({"group":"adj","pop":"afr"},0.00e+00,0.00e+00),({"group":"adj","pop":"eas"},0.00e+00,0.00e+00),({"group":"adj","pop":"sas"},0.00e+00,0.00e+00),({"group":"adj","pop":"amr"},0.00e+00,0.00e+00)]FalseFalseTrueFalse"snv""snv"1FalseFalse2.50e+01NANA6.93e-01-1.42e-01NA0.00e+009.36e+002.00e+0118814NATrueNANAFalseFalse2FalseTrue"FP"3.76e-01FalseFalse3.76e-0113704393NA9608904NANANANANA{"AC0"}[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][3978,2020,252,143,22,3,1,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][125566,181,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]003.74e+01"GRCh37""G/C"NANANA12259"1_12259_G/C""1\t12259\t.\tG\tC\t.\t.\tGT"NA"intron_variant"NA[(1,"CTCF_binding_site",["regulatory_region_variant"],"MODIFIER",1,"ENSR00001576075","C")]"1"122591[(1,NA,"unprocessed_pseudogene",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],2104,NA,NA,"ENSG00000227232",NA,"WASH7P","HGNC","38034",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,1,NA,NA,NA,NA,NA,NA,NA,-1,NA,"ENST00000423562",NA,NA,"C"),(1,NA,"unprocessed_pseudogene",1,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],2104,NA,NA,"ENSG00000227232",NA,"WASH7P","HGNC","38034",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,1,NA,NA,NA,NA,NA,NA,NA,-1,NA,"ENST00000438504",NA,NA,"C"),(1,NA,"transcribed_unprocessed_pseudogene",NA,NA,NA,NA,NA,NA,NA,["intron_variant","non_coding_transcript_variant"],NA,NA,NA,"ENSG00000223972",NA,"DDX11L1","HGNC","37102","ENST00000450305.2:n.97+32G>C",NA,NA,"MODIFIER","2/5",NA,NA,NA,NA,1,NA,NA,NA,NA,NA,NA,NA,1,NA,"ENST00000450305",NA,NA,"C"),(1,NA,"processed_transcript",1,NA,NA,NA,NA,NA,NA,["intron_variant","non_coding_transcript_variant"],NA,NA,NA,"ENSG00000223972",NA,"DDX11L1","HGNC","37102","ENST00000456328.2:n.359+32G>C",NA,NA,"MODIFIER","1/2",NA,NA,NA,NA,1,NA,NA,NA,NA,NA,NA,NA,1,NA,"ENST00000456328",NA,NA,"C"),(1,NA,"unprocessed_pseudogene",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],2145,NA,NA,"ENSG00000227232",NA,"WASH7P","HGNC","38034",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,1,NA,NA,NA,NA,NA,NA,NA,-1,NA,"ENST00000488147",NA,NA,"C"),(1,NA,"transcribed_unprocessed_pseudogene",NA,NA,NA,NA,NA,NA,NA,["intron_variant","non_coding_transcript_variant"],NA,NA,NA,"ENSG00000223972",NA,"DDX11L1","HGNC","37102","ENST00000515242.2:n.356+32G>C",NA,NA,"MODIFIER","1/2",NA,NA,NA,NA,1,NA,NA,NA,NA,NA,NA,NA,1,NA,"ENST00000515242",NA,NA,"C"),(1,NA,"transcribed_unprocessed_pseudogene",NA,NA,NA,NA,NA,NA,NA,["intron_variant","non_coding_transcript_variant"],NA,NA,NA,"ENSG00000223972",NA,"DDX11L1","HGNC","37102","ENST00000518655.2:n.354+32G>C",NA,NA,"MODIFIER","1/3",NA,NA,NA,NA,1,NA,NA,NA,NA,NA,NA,NA,1,NA,"ENST00000518655",NA,NA,"C"),(1,NA,"unprocessed_pseudogene",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],2152,NA,NA,"ENSG00000227232",NA,"WASH7P","HGNC","38034",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,1,NA,NA,NA,NA,NA,NA,NA,-1,NA,"ENST00000538476",NA,NA,"C"),(1,NA,"unprocessed_pseudogene",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],2104,NA,NA,"ENSG00000227232",NA,"WASH7P","HGNC","38034",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,1,NA,NA,NA,NA,NA,NA,NA,-1,NA,"ENST00000541675",NA,NA,"C")]"SNV"NANANA18814NANA0.00e+00NA-1.42e-012.00e+01NANANA9.36e+00NA6.93e-012.24e+00"MQ""rs1330604035"["G","C"]
chr1:12266["G","A"]FalseFalse1:12266[(0,NA,0,0),(51,4.35e-03,11732,15),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(26,4.89e-03,5312,8),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(51,4.35e-03,11730,15),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(49,4.49e-03,10922,15),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(49,4.36e-03,11236,14),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0)][([3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01],[0,0,0,0,0,0,0,0,0,0],0,0),([3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01],[0,0,0,0,0,0,0,0,0,0],0,0),([3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01],[0,0,0,0,0,0,0,0,0,0],0,0),([3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01],[0,0,0,0,0,0,0,0,0,0],0,0),([3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01],[0,0,0,0,0,0,0,0,0,0],0,0)][([3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01],[0,0,0,0,0,0,0,0,0,0],0,0),([3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01],[0,0,0,0,0,0,0,0,0,0],0,0),([3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01],[0,0,0,0,0,0,0,0,0,0],0,0),([3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01],[0,0,0,0,0,0,0,0,0,0],0,0),([3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01],[0,0,0,0,0,0,0,0,0,0],0,0)][NA,NA,NA,NA,NA][({"group":"adj"},0.00e+00,0.00e+00),({"group":"adj","pop":"nfe"},0.00e+00,0.00e+00),({"group":"adj","pop":"afr"},0.00e+00,0.00e+00),({"group":"adj","pop":"eas"},0.00e+00,0.00e+00),({"group":"adj","pop":"sas"},0.00e+00,0.00e+00),({"group":"adj","pop":"amr"},0.00e+00,0.00e+00),({"group":"adj"},0.00e+00,0.00e+00),({"group":"adj","pop":"nfe"},0.00e+00,0.00e+00),({"group":"adj","pop":"afr"},0.00e+00,0.00e+00),({"group":"adj","pop":"eas"},0.00e+00,0.00e+00),({"group":"adj","pop":"sas"},0.00e+00,0.00e+00),({"group":"adj","pop":"amr"},0.00e+00,0.00e+00),({"group":"adj"},0.00e+00,0.00e+00),({"group":"adj","pop":"nfe"},0.00e+00,0.00e+00),({"group":"adj","pop":"afr"},0.00e+00,0.00e+00),({"group":"adj","pop":"eas"},0.00e+00,0.00e+00),({"group":"adj","pop":"sas"},0.00e+00,0.00e+00),({"group":"adj","pop":"amr"},0.00e+00,0.00e+00),({"group":"adj"},0.00e+00,0.00e+00),({"group":"adj","pop":"nfe"},0.00e+00,0.00e+00),({"group":"adj","pop":"afr"},0.00e+00,0.00e+00),({"group":"adj","pop":"eas"},0.00e+00,0.00e+00),({"group":"adj","pop":"sas"},0.00e+00,0.00e+00),({"group":"adj","pop":"amr"},0.00e+00,0.00e+00),({"group":"adj"},0.00e+00,0.00e+00),({"group":"adj","pop":"nfe"},0.00e+00,0.00e+00),({"group":"adj","pop":"afr"},0.00e+00,0.00e+00),({"group":"adj","pop":"eas"},0.00e+00,0.00e+00),({"group":"adj","pop":"sas"},0.00e+00,0.00e+00),({"group":"adj","pop":"amr"},0.00e+00,0.00e+00)]FalseFalseTrueFalse"snv""snv"1FalseFalse2.57e+011.00e+00-7.27e-012.03e-01-1.38e-014.06e-010.00e+001.61e+012.23e+0118372NATrueNANAFalseFalse51FalseTrue"FP"3.75e-01FalseFalse3.75e-0113712337NA9614461NANANANANA{"AC0"}[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,15,0,0,0,2,0,2,5,0,1,1,1,3,0,6,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][3833,1709,188,102,11,4,0,2,5,0,1,1,1,3,0,6,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][33,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][125584,163,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,2,0,0,2,0,9,0,0,8,0,0,0,0,0,0]002.72e+03"GRCh37""G/A"NANANA12266"1_12266_G/A""1\t12266\t.\tG\tA\t.\t.\tGT"NA"intron_variant"NA[(1,"CTCF_binding_site",["regulatory_region_variant"],"MODIFIER",1,"ENSR00001576075","A")]"1"122661[(1,NA,"unprocessed_pseudogene",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],2097,NA,NA,"ENSG00000227232",NA,"WASH7P","HGNC","38034",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,1,NA,NA,NA,NA,NA,NA,NA,-1,NA,"ENST00000423562",NA,NA,"A"),(1,NA,"unprocessed_pseudogene",1,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],2097,NA,NA,"ENSG00000227232",NA,"WASH7P","HGNC","38034",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,1,NA,NA,NA,NA,NA,NA,NA,-1,NA,"ENST00000438504",NA,NA,"A"),(1,NA,"transcribed_unprocessed_pseudogene",NA,NA,NA,NA,NA,NA,NA,["intron_variant","non_coding_transcript_variant"],NA,NA,NA,"ENSG00000223972",NA,"DDX11L1","HGNC","37102","ENST00000450305.2:n.97+39G>A",NA,NA,"MODIFIER","2/5",NA,NA,NA,NA,1,NA,NA,NA,NA,NA,NA,NA,1,NA,"ENST00000450305",NA,NA,"A"),(1,NA,"processed_transcript",1,NA,NA,NA,NA,NA,NA,["intron_variant","non_coding_transcript_variant"],NA,NA,NA,"ENSG00000223972",NA,"DDX11L1","HGNC","37102","ENST00000456328.2:n.359+39G>A",NA,NA,"MODIFIER","1/2",NA,NA,NA,NA,1,NA,NA,NA,NA,NA,NA,NA,1,NA,"ENST00000456328",NA,NA,"A"),(1,NA,"unprocessed_pseudogene",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],2138,NA,NA,"ENSG00000227232",NA,"WASH7P","HGNC","38034",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,1,NA,NA,NA,NA,NA,NA,NA,-1,NA,"ENST00000488147",NA,NA,"A"),(1,NA,"transcribed_unprocessed_pseudogene",NA,NA,NA,NA,NA,NA,NA,["intron_variant","non_coding_transcript_variant"],NA,NA,NA,"ENSG00000223972",NA,"DDX11L1","HGNC","37102","ENST00000515242.2:n.356+39G>A",NA,NA,"MODIFIER","1/2",NA,NA,NA,NA,1,NA,NA,NA,NA,NA,NA,NA,1,NA,"ENST00000515242",NA,NA,"A"),(1,NA,"transcribed_unprocessed_pseudogene",NA,NA,NA,NA,NA,NA,NA,["intron_variant","non_coding_transcript_variant"],NA,NA,NA,"ENSG00000223972",NA,"DDX11L1","HGNC","37102","ENST00000518655.2:n.354+39G>A",NA,NA,"MODIFIER","1/3",NA,NA,NA,NA,1,NA,NA,NA,NA,NA,NA,NA,1,NA,"ENST00000518655",NA,NA,"A"),(1,NA,"unprocessed_pseudogene",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],2145,NA,NA,"ENSG00000227232",NA,"WASH7P","HGNC","38034",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,1,NA,NA,NA,NA,NA,NA,NA,-1,NA,"ENST00000538476",NA,NA,"A"),(1,NA,"unprocessed_pseudogene",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],2097,NA,NA,"ENSG00000227232",NA,"WASH7P","HGNC","38034",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,1,NA,NA,NA,NA,NA,NA,NA,-1,NA,"ENST00000541675",NA,NA,"A")]"SNV"8.04e-010.00e+00NA18372NANA0.00e+00NA-1.38e-012.23e+01-7.27e-01NANA1.61e+014.06e-012.03e-011.27e+00"MQ""rs1442951560"["G","A"]
chr1:12272["G","A"]FalseFalse1:12272[(0,0.00e+00,2,0),(49,4.30e-03,11392,14),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(24,4.67e-03,5136,7),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(49,4.30e-03,11390,14),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(47,4.43e-03,10620,14),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(47,4.30e-03,10918,13),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0)][([3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01],[0,0,0,0,0,0,0,0,0,0],0,0),([3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01],[0,0,0,0,0,0,0,0,0,0],0,0),([3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01],[0,0,0,0,0,0,0,0,0,0],0,0),([3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01],[0,0,0,0,0,0,0,0,0,0],0,0),([3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01],[0,0,0,0,0,0,0,0,0,0],0,0)][([3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01],[0,0,0,0,0,0,0,0,0,0],0,0),([3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01],[0,0,0,0,0,0,0,0,0,0],0,0),([3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01],[0,0,0,0,0,0,0,0,0,0],0,0),([3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01],[0,0,0,0,0,0,0,0,0,0],0,0),([3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01],[0,0,0,0,0,0,0,0,0,0],0,0)][NA,NA,NA,NA,NA][({"group":"adj"},0.00e+00,0.00e+00),({"group":"adj","pop":"nfe"},0.00e+00,0.00e+00),({"group":"adj","pop":"afr"},0.00e+00,0.00e+00),({"group":"adj","pop":"eas"},0.00e+00,0.00e+00),({"group":"adj","pop":"sas"},0.00e+00,0.00e+00),({"group":"adj","pop":"amr"},0.00e+00,0.00e+00),({"group":"adj"},0.00e+00,0.00e+00),({"group":"adj","pop":"nfe"},0.00e+00,0.00e+00),({"group":"adj","pop":"afr"},0.00e+00,0.00e+00),({"group":"adj","pop":"eas"},0.00e+00,0.00e+00),({"group":"adj","pop":"sas"},0.00e+00,0.00e+00),({"group":"adj","pop":"amr"},0.00e+00,0.00e+00),({"group":"adj"},0.00e+00,0.00e+00),({"group":"adj","pop":"nfe"},0.00e+00,0.00e+00),({"group":"adj","pop":"afr"},0.00e+00,0.00e+00),({"group":"adj","pop":"eas"},0.00e+00,0.00e+00),({"group":"adj","pop":"sas"},0.00e+00,0.00e+00),({"group":"adj","pop":"amr"},0.00e+00,0.00e+00),({"group":"adj"},0.00e+00,0.00e+00),({"group":"adj","pop":"nfe"},0.00e+00,0.00e+00),({"group":"adj","pop":"afr"},0.00e+00,0.00e+00),({"group":"adj","pop":"eas"},0.00e+00,0.00e+00),({"group":"adj","pop":"sas"},0.00e+00,0.00e+00),({"group":"adj","pop":"amr"},0.00e+00,0.00e+00),({"group":"adj"},0.00e+00,0.00e+00),({"group":"adj","pop":"nfe"},0.00e+00,0.00e+00),({"group":"adj","pop":"afr"},0.00e+00,0.00e+00),({"group":"adj","pop":"eas"},0.00e+00,0.00e+00),({"group":"adj","pop":"sas"},0.00e+00,0.00e+00),({"group":"adj","pop":"amr"},0.00e+00,0.00e+00)]FalseFalseTrueFalse"snv""snv"1FalseFalse2.65e+011.00e+000.00e+001.96e-01-1.34e-010.00e+000.00e+001.69e+012.23e+0117685NATrueNANAFalseFalse49FalseTrue"FP"3.69e-01FalseFalse3.69e-0113743987NA9634223NANANANANA{"AC0"}[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,14,0,0,0,2,0,2,5,0,1,1,1,3,0,6,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][3792,1624,162,87,9,2,1,2,5,0,1,1,1,3,0,6,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][31,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][125601,146,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,1,0,3,0,10,0,0,7,0,0,0,0,0,0]002.71e+03"GRCh37""G/A"NANANA12272"1_12272_G/A""1\t12272\t.\tG\tA\t.\t.\tGT"NA"intron_variant"NA[(1,"CTCF_binding_site",["regulatory_region_variant"],"MODIFIER",1,"ENSR00001576075","A")]"1"122721[(1,NA,"unprocessed_pseudogene",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],2091,NA,NA,"ENSG00000227232",NA,"WASH7P","HGNC","38034",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,1,NA,NA,NA,NA,NA,NA,NA,-1,NA,"ENST00000423562",NA,NA,"A"),(1,NA,"unprocessed_pseudogene",1,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],2091,NA,NA,"ENSG00000227232",NA,"WASH7P","HGNC","38034",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,1,NA,NA,NA,NA,NA,NA,NA,-1,NA,"ENST00000438504",NA,NA,"A"),(1,NA,"transcribed_unprocessed_pseudogene",NA,NA,NA,NA,NA,NA,NA,["intron_variant","non_coding_transcript_variant"],NA,NA,NA,"ENSG00000223972",NA,"DDX11L1","HGNC","37102","ENST00000450305.2:n.97+45G>A",NA,NA,"MODIFIER","2/5",NA,NA,NA,NA,1,NA,NA,NA,NA,NA,NA,NA,1,NA,"ENST00000450305",NA,NA,"A"),(1,NA,"processed_transcript",1,NA,NA,NA,NA,NA,NA,["intron_variant","non_coding_transcript_variant"],NA,NA,NA,"ENSG00000223972",NA,"DDX11L1","HGNC","37102","ENST00000456328.2:n.359+45G>A",NA,NA,"MODIFIER","1/2",NA,NA,NA,NA,1,NA,NA,NA,NA,NA,NA,NA,1,NA,"ENST00000456328",NA,NA,"A"),(1,NA,"unprocessed_pseudogene",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],2132,NA,NA,"ENSG00000227232",NA,"WASH7P","HGNC","38034",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,1,NA,NA,NA,NA,NA,NA,NA,-1,NA,"ENST00000488147",NA,NA,"A"),(1,NA,"transcribed_unprocessed_pseudogene",NA,NA,NA,NA,NA,NA,NA,["intron_variant","non_coding_transcript_variant"],NA,NA,NA,"ENSG00000223972",NA,"DDX11L1","HGNC","37102","ENST00000515242.2:n.356+45G>A",NA,NA,"MODIFIER","1/2",NA,NA,NA,NA,1,NA,NA,NA,NA,NA,NA,NA,1,NA,"ENST00000515242",NA,NA,"A"),(1,NA,"transcribed_unprocessed_pseudogene",NA,NA,NA,NA,NA,NA,NA,["intron_variant","non_coding_transcript_variant"],NA,NA,NA,"ENSG00000223972",NA,"DDX11L1","HGNC","37102","ENST00000518655.2:n.354+45G>A",NA,NA,"MODIFIER","1/3",NA,NA,NA,NA,1,NA,NA,NA,NA,NA,NA,NA,1,NA,"ENST00000518655",NA,NA,"A"),(1,NA,"unprocessed_pseudogene",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],2139,NA,NA,"ENSG00000227232",NA,"WASH7P","HGNC","38034",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,1,NA,NA,NA,NA,NA,NA,NA,-1,NA,"ENST00000538476",NA,NA,"A"),(1,NA,"unprocessed_pseudogene",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],2091,NA,NA,"ENSG00000227232",NA,"WASH7P","HGNC","38034",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,1,NA,NA,NA,NA,NA,NA,NA,-1,NA,"ENST00000541675",NA,NA,"A")]"SNV"8.04e-013.58e-01NA17685NANA0.00e+00NA-1.34e-012.23e+010.00e+00NANA1.69e+010.00e+001.96e-013.60e-02"MQ""rs1281272113"["G","A"]

showing top 5 rows

\n" + ], + "text/plain": [ + "+---------------+------------+----------------------------+----------------+\n", + "| locus | alleles | ReverseComplementedAlleles | SwappedAlleles |\n", + "+---------------+------------+----------------------------+----------------+\n", + "| locus | array | bool | bool |\n", + "+---------------+------------+----------------------------+----------------+\n", + "| chr1:12198 | [\"G\",\"C\"] | False | False |\n", + "| chr1:12237 | [\"G\",\"A\"] | False | False |\n", + "| chr1:12259 | [\"G\",\"C\"] | False | False |\n", + "| chr1:12266 | [\"G\",\"A\"] | False | False |\n", + "| chr1:12272 | [\"G\",\"A\"] | False | False |\n", + "+---------------+------------+----------------------------+----------------+\n", + "\n", + "+----------------+\n", + "| original_locus |\n", + "+----------------+\n", + "| locus |\n", + "+----------------+\n", + "| 1:12198 |\n", + "| 1:12237 |\n", + "| 1:12259 |\n", + "| 1:12266 |\n", + "| 1:12272 |\n", + "+----------------+\n", "\n", "+------------------------------------------------------------------------------+\n", - "| joint.freq.all.ancestry_groups |\n", + "| freq |\n", "+------------------------------------------------------------------------------+\n", - "| array |\n", "+------------------------------------------------------------------------------+\n", - "| [(\"remaining\",0,782,0,0),(\"remaining_XX\",0,402,0,0),(\"remaining_XY\",0,380... |\n", - "| [(\"remaining\",0,998,0,0),(\"remaining_XX\",0,528,0,0),(\"remaining_XY\",0,470... |\n", - "| [(\"remaining\",0,1148,0,0),(\"remaining_XX\",0,594,0,0),(\"remaining_XY\",0,55... |\n", - "| [(\"remaining\",0,1228,0,0),(\"remaining_XX\",0,624,0,0),(\"remaining_XY\",0,60... |\n", - "| [(\"remaining\",0,1504,0,0),(\"remaining_XX\",0,764,0,0),(\"remaining_XY\",0,74... |\n", + "| [(0,NA,0,0),(227,4.57e-02,4966,90),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA... |\n", + "| [(0,NA,0,0),(5,4.41e-04,11338,1),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0... |\n", + "| [(0,0.00e+00,2,0),(2,1.56e-04,12838,1),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(... |\n", + "| [(0,NA,0,0),(51,4.35e-03,11732,15),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA... |\n", + "| [(0,0.00e+00,2,0),(49,4.30e-03,11392,14),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0)... |\n", "+------------------------------------------------------------------------------+\n", "\n", "+------------------------------------------------------------------------------+\n", - "| joint.faf |\n", + "| age_hist_het |\n", "+------------------------------------------------------------------------------+\n", - "| array |\n", + "| array, bin_freq: array, n_smaller... |\n", "+------------------------------------------------------------------------------+\n", - "| [(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.... |\n", - "| [(4.32e-06,1.62e-06),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.... |\n", - "| [(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.... |\n", - "| [(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.... |\n", - "| [(7.02e-06,2.95e-06),(6.27e-06,2.35e-06),(0.00e+00,0.00e+00),(0.00e+00,0.... |\n", + "| [([3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+0... |\n", + "| [([3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+0... |\n", + "| [([3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+0... |\n", + "| [([3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+0... |\n", + "| [([3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+0... |\n", "+------------------------------------------------------------------------------+\n", "\n", - "+------------------------+--------------------------------+\n", - "| joint.fafmax.faf95_max | joint.fafmax.faf95_max_gen_anc |\n", - "+------------------------+--------------------------------+\n", - "| float64 | str |\n", - "+------------------------+--------------------------------+\n", - "| NA | NA |\n", - "| NA | NA |\n", - "| NA | NA |\n", - "| NA | NA |\n", - "| 6.27e-06 | \"nfe\" |\n", - "+------------------------+--------------------------------+\n", - "\n", - "+------------------------+--------------------------------+-----------------+\n", - "| joint.fafmax.faf99_max | joint.fafmax.faf99_max_gen_anc | joint.grpmax.AC |\n", - "+------------------------+--------------------------------+-----------------+\n", - "| float64 | str | int32 |\n", - "+------------------------+--------------------------------+-----------------+\n", - "| NA | NA | NA |\n", - "| NA | NA | 1 |\n", - "| NA | NA | 1 |\n", - "| NA | NA | NA |\n", - "| 2.35e-06 | \"nfe\" | 2 |\n", - "+------------------------+--------------------------------+-----------------+\n", - "\n", - "+-----------------+-----------------+-------------------------------+\n", - "| joint.grpmax.AF | joint.grpmax.AN | joint.grpmax.homozygote_count |\n", - "+-----------------+-----------------+-------------------------------+\n", - "| float64 | int32 | int32 |\n", - "+-----------------+-----------------+-------------------------------+\n", - "| NA | NA | NA |\n", - "| 4.07e-04 | 2456 | 0 |\n", - "| 4.39e-05 | 22760 | 0 |\n", - "| NA | NA | NA |\n", - "| 3.78e-05 | 52912 | 0 |\n", - "+-----------------+-----------------+-------------------------------+\n", - "\n", - "+----------------------+\n", - "| joint.grpmax.gen_anc |\n", - "+----------------------+\n", - "| str |\n", - "+----------------------+\n", - "| NA |\n", - "| \"eas\" |\n", - "| \"afr\" |\n", - "| NA |\n", - "| \"nfe\" |\n", - "+----------------------+\n", - "\n", "+------------------------------------------------------------------------------+\n", - "| joint.histograms.qual_hists.gq_hist_all.bin_edges |\n", + "| age_hist_hom |\n", "+------------------------------------------------------------------------------+\n", - "| array |\n", + "| array, bin_freq: array, n_smaller... |\n", "+------------------------------------------------------------------------------+\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [([3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+0... |\n", + "| [([3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+0... |\n", + "| [([3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+0... |\n", + "| [([3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+0... |\n", + "| [([3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+0... |\n", "+------------------------------------------------------------------------------+\n", "\n", "+------------------------------------------------------------------------------+\n", - "| joint.histograms.qual_hists.gq_hist_all.bin_freq |\n", + "| popmax |\n", "+------------------------------------------------------------------------------+\n", - "| array |\n", + "| array, faf95: float64, faf99: float64}> |\n", + "+------------------------------------------------------------------------------+\n", + "| [({\"group\":\"adj\"},0.00e+00,0.00e+00),({\"group\":\"adj\",\"pop\":\"nfe\"},0.00e+0... |\n", + "| [({\"group\":\"adj\"},0.00e+00,0.00e+00),({\"group\":\"adj\",\"pop\":\"nfe\"},0.00e+0... |\n", + "| [({\"group\":\"adj\"},0.00e+00,0.00e+00),({\"group\":\"adj\",\"pop\":\"nfe\"},0.00e+0... |\n", + "| [({\"group\":\"adj\"},0.00e+00,0.00e+00),({\"group\":\"adj\",\"pop\":\"nfe\"},0.00e+0... |\n", + "| [({\"group\":\"adj\"},0.00e+00,0.00e+00),({\"group\":\"adj\",\"pop\":\"nfe\"},0.00e+0... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+-------+-------+--------+--------+--------------+-------------+---------------+\n", + "| lcr | decoy | segdup | nonpar | variant_type | allele_type | n_alt_alleles |\n", + "+-------+-------+--------+--------+--------------+-------------+---------------+\n", + "| bool | bool | bool | bool | str | str | int32 |\n", + "+-------+-------+--------+--------+--------------+-------------+---------------+\n", + "| False | False | True | False | \"snv\" | \"snv\" | 1 |\n", + "| False | False | True | False | \"snv\" | \"snv\" | 1 |\n", + "| False | False | True | False | \"snv\" | \"snv\" | 1 |\n", + "| False | False | True | False | \"snv\" | \"snv\" | 1 |\n", + "| False | False | True | False | \"snv\" | \"snv\" | 1 |\n", + "+-------+-------+--------+--------+--------------+-------------+---------------+\n", + "\n", + "+-----------+----------+----------+----------+----------------+----------+\n", + "| was_mixed | has_star | qd | pab_max | info_MQRankSum | info_SOR |\n", + "+-----------+----------+----------+----------+----------------+----------+\n", + "| bool | bool | float64 | float64 | float64 | float64 |\n", + "+-----------+----------+----------+----------+----------------+----------+\n", + "| False | False | 2.03e+01 | 1.00e+00 | 7.36e-01 | 3.02e-01 |\n", + "| False | False | 1.55e+01 | 1.00e+00 | -3.58e-01 | 1.29e+00 |\n", + "| False | False | 2.50e+01 | NA | NA | 6.93e-01 |\n", + "| False | False | 2.57e+01 | 1.00e+00 | -7.27e-01 | 2.03e-01 |\n", + "| False | False | 2.65e+01 | 1.00e+00 | 0.00e+00 | 1.96e-01 |\n", + "+-----------+----------+----------+----------+----------------+----------+\n", + "\n", + "+----------------------+---------------------+----------+----------+----------+\n", + "| info_InbreedingCoeff | info_ReadPosRankSum | info_FS | info_QD | info_MQ |\n", + "+----------------------+---------------------+----------+----------+----------+\n", + "| float64 | float64 | float64 | float64 | float64 |\n", + "+----------------------+---------------------+----------+----------+----------+\n", + "| 9.80e-03 | 7.36e-01 | 0.00e+00 | 1.40e+01 | 2.30e+01 |\n", + "| -1.44e-01 | 3.58e-01 | 0.00e+00 | 4.31e+00 | 2.20e+01 |\n", + "| -1.42e-01 | NA | 0.00e+00 | 9.36e+00 | 2.00e+01 |\n", + "| -1.38e-01 | 4.06e-01 | 0.00e+00 | 1.61e+01 | 2.23e+01 |\n", + "| -1.34e-01 | 0.00e+00 | 0.00e+00 | 1.69e+01 | 2.23e+01 |\n", + "+----------------------+---------------------+----------+----------+----------+\n", + "\n", + "+---------+-----------------------+-------------------+\n", + "| info_DP | transmitted_singleton | fail_hard_filters |\n", + "+---------+-----------------------+-------------------+\n", + "| int32 | bool | bool |\n", + "+---------+-----------------------+-------------------+\n", + "| 9204 | NA | True |\n", + "| 16096 | NA | True |\n", + "| 18814 | NA | True |\n", + "| 18372 | NA | True |\n", + "| 17685 | NA | True |\n", + "+---------+-----------------------+-------------------+\n", + "\n", + "+--------------------------+--------------------------+-------+-------+\n", + "| info_POSITIVE_TRAIN_SITE | info_NEGATIVE_TRAIN_SITE | omni | mills |\n", + "+--------------------------+--------------------------+-------+-------+\n", + "| bool | bool | bool | bool |\n", + "+--------------------------+--------------------------+-------+-------+\n", + "| NA | NA | False | False |\n", + "| NA | NA | False | False |\n", + "| NA | NA | False | False |\n", + "| NA | NA | False | False |\n", + "| NA | NA | False | False |\n", + "+--------------------------+--------------------------+-------+-------+\n", + "\n", + "+----------+-------+----------+----------+----------------+-----------+\n", + "| n_nonref | tp | rf_train | rf_label | rf_probability | singleton |\n", + "+----------+-------+----------+----------+----------------+-----------+\n", + "| int32 | bool | bool | str | float64 | bool |\n", + "+----------+-------+----------+----------+----------------+-----------+\n", + "| 231 | False | True | \"FP\" | 8.37e-01 | False |\n", + "| 5 | False | True | \"FP\" | 4.33e-01 | False |\n", + "| 2 | False | True | \"FP\" | 3.76e-01 | False |\n", + "| 51 | False | True | \"FP\" | 3.75e-01 | False |\n", + "| 49 | False | True | \"FP\" | 3.69e-01 | False |\n", + "+----------+-------+----------+----------+----------------+-----------+\n", + "\n", + "+-----------+----------+----------+----------------+----------------+\n", + "| was_split | score | rank | singleton_rank | biallelic_rank |\n", + "+-----------+----------+----------+----------------+----------------+\n", + "| bool | float64 | int64 | int64 | int64 |\n", + "+-----------+----------+----------+----------------+----------------+\n", + "| False | 8.37e-01 | 6571357 | NA | 4342152 |\n", + "| False | 4.33e-01 | 13350857 | NA | 9360383 |\n", + "| False | 3.76e-01 | 13704393 | NA | 9608904 |\n", + "| False | 3.75e-01 | 13712337 | NA | 9614461 |\n", + "| False | 3.69e-01 | 13743987 | NA | 9634223 |\n", + "+-----------+----------+----------+----------------+----------------+\n", + "\n", + "+------------------------------+----------+--------------------+\n", + "| adj_biallelic_singleton_rank | adj_rank | adj_biallelic_rank |\n", + "+------------------------------+----------+--------------------+\n", + "| int64 | int64 | int64 |\n", + "+------------------------------+----------+--------------------+\n", + "| NA | NA | NA |\n", + "| NA | NA | NA |\n", + "| NA | NA | NA |\n", + "| NA | NA | NA |\n", + "| NA | NA | NA |\n", + "+------------------------------+----------+--------------------+\n", + "\n", + "+--------------------+--------------------------+----------+\n", + "| adj_singleton_rank | biallelic_singleton_rank | filters |\n", + "+--------------------+--------------------------+----------+\n", + "| int64 | int64 | set |\n", + "+--------------------+--------------------------+----------+\n", + "| NA | NA | {\"AC0\"} |\n", + "| NA | NA | {\"AC0\"} |\n", + "| NA | NA | {\"AC0\"} |\n", + "| NA | NA | {\"AC0\"} |\n", + "| NA | NA | {\"AC0\"} |\n", + "+--------------------+--------------------------+----------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| gq_hist_alt.bin_edges |\n", "+------------------------------------------------------------------------------+\n", "| array |\n", "+------------------------------------------------------------------------------+\n", @@ -11757,44 +13205,68 @@ "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", "+------------------------------------------------------------------------------+\n", "\n", + "+----------------------------------------------+-----------------------+\n", + "| gq_hist_alt.bin_freq | gq_hist_alt.n_smaller |\n", + "+----------------------------------------------+-----------------------+\n", + "| array | int64 |\n", + "+----------------------------------------------+-----------------------+\n", + "| [14,78,1,25,7,4,0,5,2,0,0,0,1,0,0,0,0,0,0,0] | 0 |\n", + "| [0,1,0,1,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0] | 0 |\n", + "| [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] | 0 |\n", + "| [0,15,0,0,0,2,0,2,5,0,1,1,1,3,0,6,0,0,0,0] | 0 |\n", + "| [0,14,0,0,0,2,0,2,5,0,1,1,1,3,0,6,0,0,0,0] | 0 |\n", + "+----------------------------------------------+-----------------------+\n", + "\n", + "+----------------------+\n", + "| gq_hist_alt.n_larger |\n", + "+----------------------+\n", + "| int64 |\n", + "+----------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+----------------------+\n", + "\n", "+------------------------------------------------------------------------------+\n", - "| joint.histograms.qual_hists.dp_hist_all.bin_freq |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", + "| gq_hist_all.bin_edges |\n", "+------------------------------------------------------------------------------+\n", - "| [0,0,16,121,475,973,1736,2409,2950,3134,2995,2803,2514,2194,1773,1335,911... |\n", - "| [0,0,9,69,387,913,1737,2859,3749,4216,4302,4223,3745,3280,2661,1954,1380,... |\n", - "| [0,0,8,40,264,690,1525,2691,3754,4574,4813,4940,4490,3907,3242,2387,1704,... |\n", - "| [0,0,4,22,120,354,999,1950,3037,4168,4734,5196,5380,4766,4238,3206,2398,1... |\n", - "| [0,0,2,23,108,320,888,1844,3110,4447,5361,6012,6379,5879,5289,4273,3400,2... |\n", + "| array |\n", "+------------------------------------------------------------------------------+\n", - "\n", - "+---------------------------------------------------+\n", - "| joint.histograms.qual_hists.dp_hist_all.n_smaller |\n", - "+---------------------------------------------------+\n", - "| int64 |\n", - "+---------------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+---------------------------------------------------+\n", - "\n", - "+--------------------------------------------------+\n", - "| joint.histograms.qual_hists.dp_hist_all.n_larger |\n", - "+--------------------------------------------------+\n", - "| int64 |\n", - "+--------------------------------------------------+\n", - "| 527 |\n", - "| 888 |\n", - "| 1232 |\n", - "| 2440 |\n", - "| 3622 |\n", - "+--------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+------------------------------------------------------+-----------------------+\n", + "| gq_hist_all.bin_freq | gq_hist_all.n_smaller |\n", + "+------------------------------------------------------+-----------------------+\n", + "| array | int64 |\n", + "+------------------------------------------------------+-----------------------+\n", + "| [1898,511,26,28,8,4,0,5,2,0,0,0,1,0,0,0,0,0,0,0] | 0 |\n", + "| [3635,1739,178,101,14,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0] | 0 |\n", + "| [3978,2020,252,143,22,3,1,0,0,0,0,0,0,0,0,0,0,0,0,0] | 0 |\n", + "| [3833,1709,188,102,11,4,0,2,5,0,1,1,1,3,0,6,0,0,0,0] | 0 |\n", + "| [3792,1624,162,87,9,2,1,2,5,0,1,1,1,3,0,6,0,0,0,0] | 0 |\n", + "+------------------------------------------------------+-----------------------+\n", + "\n", + "+----------------------+\n", + "| gq_hist_all.n_larger |\n", + "+----------------------+\n", + "| int64 |\n", + "+----------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+----------------------+\n", "\n", "+------------------------------------------------------------------------------+\n", - "| joint.histograms.qual_hists.gq_hist_alt.bin_edges |\n", + "| dp_hist_alt.bin_edges |\n", "+------------------------------------------------------------------------------+\n", "| array |\n", "+------------------------------------------------------------------------------+\n", @@ -11805,44 +13277,32 @@ "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", "+------------------------------------------------------------------------------+\n", "\n", - "+--------------------------------------------------+\n", - "| joint.histograms.qual_hists.gq_hist_alt.bin_freq |\n", - "+--------------------------------------------------+\n", - "| array |\n", - "+--------------------------------------------------+\n", - "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0] |\n", - "+--------------------------------------------------+\n", - "\n", - "+---------------------------------------------------+\n", - "| joint.histograms.qual_hists.gq_hist_alt.n_smaller |\n", - "+---------------------------------------------------+\n", - "| int64 |\n", - "+---------------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+---------------------------------------------------+\n", + "+---------------------------------------------+-----------------------+\n", + "| dp_hist_alt.bin_freq | dp_hist_alt.n_smaller |\n", + "+---------------------------------------------+-----------------------+\n", + "| array | int64 |\n", + "+---------------------------------------------+-----------------------+\n", + "| [130,7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] | 0 |\n", + "| [2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] | 0 |\n", + "| [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] | 0 |\n", + "| [33,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] | 0 |\n", + "| [31,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] | 0 |\n", + "+---------------------------------------------+-----------------------+\n", "\n", - "+--------------------------------------------------+\n", - "| joint.histograms.qual_hists.gq_hist_alt.n_larger |\n", - "+--------------------------------------------------+\n", - "| int64 |\n", - "+--------------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+--------------------------------------------------+\n", + "+----------------------+\n", + "| dp_hist_alt.n_larger |\n", + "+----------------------+\n", + "| int64 |\n", + "+----------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+----------------------+\n", "\n", "+------------------------------------------------------------------------------+\n", - "| joint.histograms.qual_hists.dp_hist_alt.bin_edges |\n", + "| dp_hist_all.bin_edges |\n", "+------------------------------------------------------------------------------+\n", "| array |\n", "+------------------------------------------------------------------------------+\n", @@ -11853,44 +13313,32 @@ "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", "+------------------------------------------------------------------------------+\n", "\n", - "+--------------------------------------------------+\n", - "| joint.histograms.qual_hists.dp_hist_alt.bin_freq |\n", - "+--------------------------------------------------+\n", - "| array |\n", - "+--------------------------------------------------+\n", - "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,1,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "+--------------------------------------------------+\n", - "\n", - "+---------------------------------------------------+\n", - "| joint.histograms.qual_hists.dp_hist_alt.n_smaller |\n", - "+---------------------------------------------------+\n", - "| int64 |\n", - "+---------------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+---------------------------------------------------+\n", + "+--------------------------------------------------+-----------------------+\n", + "| dp_hist_all.bin_freq | dp_hist_all.n_smaller |\n", + "+--------------------------------------------------+-----------------------+\n", + "| array | int64 |\n", + "+--------------------------------------------------+-----------------------+\n", + "| [125724,24,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] | 0 |\n", + "| [125622,126,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] | 0 |\n", + "| [125566,181,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] | 0 |\n", + "| [125584,163,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] | 0 |\n", + "| [125601,146,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] | 0 |\n", + "+--------------------------------------------------+-----------------------+\n", "\n", - "+--------------------------------------------------+\n", - "| joint.histograms.qual_hists.dp_hist_alt.n_larger |\n", - "+--------------------------------------------------+\n", - "| int64 |\n", - "+--------------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+--------------------------------------------------+\n", + "+----------------------+\n", + "| dp_hist_all.n_larger |\n", + "+----------------------+\n", + "| int64 |\n", + "+----------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+----------------------+\n", "\n", "+------------------------------------------------------------------------------+\n", - "| joint.histograms.qual_hists.ab_hist_alt.bin_edges |\n", + "| ab_hist_alt.bin_edges |\n", "+------------------------------------------------------------------------------+\n", "| array |\n", "+------------------------------------------------------------------------------+\n", @@ -11901,188 +13349,856 @@ "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", "+------------------------------------------------------------------------------+\n", "\n", - "+--------------------------------------------------+\n", - "| joint.histograms.qual_hists.ab_hist_alt.bin_freq |\n", - "+--------------------------------------------------+\n", - "| array |\n", - "+--------------------------------------------------+\n", - "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "+--------------------------------------------------+\n", - "\n", - "+---------------------------------------------------+\n", - "| joint.histograms.qual_hists.ab_hist_alt.n_smaller |\n", - "+---------------------------------------------------+\n", - "| int64 |\n", - "+---------------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+---------------------------------------------------+\n", + "+---------------------------------------------+-----------------------+\n", + "| ab_hist_alt.bin_freq | ab_hist_alt.n_smaller |\n", + "+---------------------------------------------+-----------------------+\n", + "| array | int64 |\n", + "+---------------------------------------------+-----------------------+\n", + "| [0,0,0,0,1,0,2,0,2,0,10,0,1,28,0,3,0,0,0,0] | 0 |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,2,1,0,0,0,0,0,0] | 0 |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] | 0 |\n", + "| [0,0,0,0,0,2,0,0,2,0,9,0,0,8,0,0,0,0,0,0] | 0 |\n", + "| [0,0,0,0,0,0,1,0,3,0,10,0,0,7,0,0,0,0,0,0] | 0 |\n", + "+---------------------------------------------+-----------------------+\n", + "\n", + "+----------------------+----------+-------------------+-------------------+\n", + "| ab_hist_alt.n_larger | qual | vep.assembly_name | vep.allele_string |\n", + "+----------------------+----------+-------------------+-------------------+\n", + "| int64 | float64 | str | str |\n", + "+----------------------+----------+-------------------+-------------------+\n", + "| 0 | 9.88e+03 | \"GRCh37\" | \"G/C\" |\n", + "| 0 | 8.20e+01 | \"GRCh37\" | \"G/A\" |\n", + "| 0 | 3.74e+01 | \"GRCh37\" | \"G/C\" |\n", + "| 0 | 2.72e+03 | \"GRCh37\" | \"G/A\" |\n", + "| 0 | 2.71e+03 | \"GRCh37\" | \"G/A\" |\n", + "+----------------------+----------+-------------------+-------------------+\n", "\n", - "+--------------------------------------------------+\n", - "| joint.histograms.qual_hists.ab_hist_alt.n_larger |\n", - "+--------------------------------------------------+\n", - "| int64 |\n", - "+--------------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+--------------------------------------------------+\n", + "+---------------+\n", + "| vep.ancestral |\n", + "+---------------+\n", + "| str |\n", + "+---------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+---------------+\n", "\n", "+------------------------------------------------------------------------------+\n", - "| joint.histograms.raw_qual_hists.gq_hist_all.bin_edges |\n", + "| vep.colocated_variants |\n", "+------------------------------------------------------------------------------+\n", - "| array |\n", + "| array |\n", + "| array, impact: st... |\n", "+------------------------------------------------------------------------------+\n", - "| [14149,7330,6840,3904,23217,2436,1647,594,176,118,49,29,19,9,11,6,5,2,4,2] |\n", - "| [10121,5441,5610,3838,29394,3741,2868,1281,401,358,163,63,69,31,18,20,10,... |\n", - "| [6578,3782,4202,3336,31093,4532,3696,1752,595,585,261,88,82,59,17,26,14,5... |\n", - "| [1429,1382,1901,2026,25677,6108,5433,3528,1753,1702,1130,485,518,282,119,... |\n", - "| [995,1036,1539,1788,25460,7448,6933,4978,2881,2833,2048,1038,1129,685,321... |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", "+------------------------------------------------------------------------------+\n", "\n", - "+-------------------------------------------------------+\n", - "| joint.histograms.raw_qual_hists.gq_hist_all.n_smaller |\n", - "+-------------------------------------------------------+\n", - "| int64 |\n", - "+-------------------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+-------------------------------------------------------+\n", + "+--------------------------------------+\n", + "| vep.most_severe_consequence |\n", + "+--------------------------------------+\n", + "| str |\n", + "+--------------------------------------+\n", + "| \"non_coding_transcript_exon_variant\" |\n", + "| \"intron_variant\" |\n", + "| \"intron_variant\" |\n", + "| \"intron_variant\" |\n", + "| \"intron_variant\" |\n", + "+--------------------------------------+\n", "\n", - "+------------------------------------------------------+\n", - "| joint.histograms.raw_qual_hists.gq_hist_all.n_larger |\n", - "+------------------------------------------------------+\n", - "| int64 |\n", - "+------------------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+------------------------------------------------------+\n", + "+------------------------------------------------------------------------------+\n", + "| vep.motif_feature_consequences |\n", + "+------------------------------------------------------------------------------+\n", + "| array, high_inf_p... |\n", + "+------------------------------------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+------------------------------------------------------------------------------+\n", "\n", "+------------------------------------------------------------------------------+\n", - "| joint.histograms.raw_qual_hists.dp_hist_all.bin_edges |\n", + "| vep.regulatory_feature_consequences |\n", "+------------------------------------------------------------------------------+\n", - "| array |\n", + "| array |\n", + "+---------------------+----------------+------------------+\n", + "| \"MQ\" | \"rs62635282\" | [\"G\",\"C\"] |\n", + "| \"QD\" | \"rs1324090652\" | [\"G\",\"A\"] |\n", + "| \"MQ\" | \"rs1330604035\" | [\"G\",\"C\"] |\n", + "| \"MQ\" | \"rs1442951560\" | [\"G\",\"A\"] |\n", + "| \"MQ\" | \"rs1281272113\" | [\"G\",\"A\"] |\n", + "+---------------------+----------------+------------------+\n", + "showing top 5 rows" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "ht.show(5)" + ] + }, + { + "cell_type": "markdown", + "id": "d211d0f0", + "metadata": { + "tags": [] + }, + "source": [ + "### Genomes liftover Hail Table" + ] + }, + { + "cell_type": "markdown", + "id": "fcb791b6", + "metadata": {}, + "source": [ + "#### Load the Hail Table\n" + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "id": "248e904e", + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-06T20:08:59.197890Z", + "start_time": "2024-12-06T20:08:50.859108Z" + }, + "tags": [] + }, + "outputs": [], + "source": [ + "ht = get_gnomad_release(data_type='genomes', version='2.1.1', dataset=\"liftover\")" + ] + }, + { + "cell_type": "markdown", + "id": "620cca6f", + "metadata": {}, + "source": [ + "#### Print the schema of the Hail Table\n" + ] + }, + { + "cell_type": "code", + "execution_count": 43, + "id": "f718adea", + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-06T20:09:00.032524Z", + "start_time": "2024-12-06T20:09:00.029271Z" + }, + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "----------------------------------------\n", + "Global fields:\n", + " 'rf': struct {\n", + " variants_by_type: dict, \n", + " feature_medians: dict, \n", + " test_intervals: array>>, \n", + " test_results: array, \n", + " features_importance: dict, \n", + " features: array, \n", + " vqsr_training: bool, \n", + " no_transmitted_singletons: bool, \n", + " adj: bool, \n", + " rf_hash: str, \n", + " rf_snv_cutoff: struct {\n", + " bin: int32, \n", + " min_score: float64\n", + " }, \n", + " rf_indel_cutoff: struct {\n", + " bin: int32, \n", + " min_score: float64\n", + " }\n", + " } \n", + " 'freq_meta': array> \n", + " 'freq_index_dict': dict \n", + " 'popmax_index_dict': dict \n", + " 'age_index_dict': dict \n", + " 'faf_index_dict': dict \n", + " 'age_distribution': array \n", + "----------------------------------------\n", + "Row fields:\n", + " 'locus': locus \n", + " 'alleles': array \n", + " 'ReverseComplementedAlleles': bool \n", + " 'SwappedAlleles': bool \n", + " 'original_locus': locus \n", + " 'freq': array \n", + " 'age_hist_het': array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }> \n", + " 'age_hist_hom': array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " }> \n", + " 'popmax': array \n", + " 'faf': array, \n", + " faf95: float64, \n", + " faf99: float64\n", + " }> \n", + " 'lcr': bool \n", + " 'decoy': bool \n", + " 'segdup': bool \n", + " 'nonpar': bool \n", + " 'variant_type': str \n", + " 'allele_type': str \n", + " 'n_alt_alleles': int32 \n", + " 'was_mixed': bool \n", + " 'has_star': bool \n", + " 'qd': float64 \n", + " 'pab_max': float64 \n", + " 'info_MQRankSum': float64 \n", + " 'info_SOR': float64 \n", + " 'info_InbreedingCoeff': float64 \n", + " 'info_ReadPosRankSum': float64 \n", + " 'info_FS': float64 \n", + " 'info_QD': float64 \n", + " 'info_MQ': float64 \n", + " 'info_DP': int32 \n", + " 'transmitted_singleton': bool \n", + " 'fail_hard_filters': bool \n", + " 'info_POSITIVE_TRAIN_SITE': bool \n", + " 'info_NEGATIVE_TRAIN_SITE': bool \n", + " 'omni': bool \n", + " 'mills': bool \n", + " 'tp': bool \n", + " 'rf_train': bool \n", + " 'rf_label': str \n", + " 'rf_probability': float64 \n", + " 'rank': int64 \n", + " 'was_split': bool \n", + " 'singleton': bool \n", + " '_score': float64 \n", + " '_singleton': bool \n", + " 'biallelic_rank': int64 \n", + " 'singleton_rank': int64 \n", + " 'n_nonref': int32 \n", + " 'score': float64 \n", + " 'adj_biallelic_singleton_rank': int64 \n", + " 'adj_rank': int64 \n", + " 'adj_biallelic_rank': int64 \n", + " 'adj_singleton_rank': int64 \n", + " 'biallelic_singleton_rank': int64 \n", + " 'filters': set \n", + " 'gq_hist_alt': struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " } \n", + " 'gq_hist_all': struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " } \n", + " 'dp_hist_alt': struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " } \n", + " 'dp_hist_all': struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " } \n", + " 'ab_hist_alt': struct {\n", + " bin_edges: array, \n", + " bin_freq: array, \n", + " n_smaller: int64, \n", + " n_larger: int64\n", + " } \n", + " 'qual': float64 \n", + " 'vep': struct {\n", + " assembly_name: str, \n", + " allele_string: str, \n", + " ancestral: str, \n", + " colocated_variants: array, \n", + " end: int32, \n", + " eas_allele: str, \n", + " eas_maf: float64, \n", + " ea_allele: str, \n", + " ea_maf: float64, \n", + " eur_allele: str, \n", + " eur_maf: float64, \n", + " exac_adj_allele: str, \n", + " exac_adj_maf: float64, \n", + " exac_allele: str, \n", + " exac_afr_allele: str, \n", + " exac_afr_maf: float64, \n", + " exac_amr_allele: str, \n", + " exac_amr_maf: float64, \n", + " exac_eas_allele: str, \n", + " exac_eas_maf: float64, \n", + " exac_fin_allele: str, \n", + " exac_fin_maf: float64, \n", + " exac_maf: float64, \n", + " exac_nfe_allele: str, \n", + " exac_nfe_maf: float64, \n", + " exac_oth_allele: str, \n", + " exac_oth_maf: float64, \n", + " exac_sas_allele: str, \n", + " exac_sas_maf: float64, \n", + " id: str, \n", + " minor_allele: str, \n", + " minor_allele_freq: float64, \n", + " phenotype_or_disease: int32, \n", + " pubmed: array, \n", + " sas_allele: str, \n", + " sas_maf: float64, \n", + " somatic: int32, \n", + " start: int32, \n", + " strand: int32\n", + " }>, \n", + " context: str, \n", + " end: int32, \n", + " id: str, \n", + " input: str, \n", + " intergenic_consequences: array, \n", + " impact: str, \n", + " minimised: int32, \n", + " variant_allele: str\n", + " }>, \n", + " most_severe_consequence: str, \n", + " motif_feature_consequences: array, \n", + " high_inf_pos: str, \n", + " impact: str, \n", + " minimised: int32, \n", + " motif_feature_id: str, \n", + " motif_name: str, \n", + " motif_pos: int32, \n", + " motif_score_change: float64, \n", + " strand: int32, \n", + " variant_allele: str\n", + " }>, \n", + " regulatory_feature_consequences: array, \n", + " impact: str, \n", + " minimised: int32, \n", + " regulatory_feature_id: str, \n", + " variant_allele: str\n", + " }>, \n", + " seq_region_name: str, \n", + " start: int32, \n", + " strand: int32, \n", + " transcript_consequences: array, \n", + " distance: int32, \n", + " domains: array, \n", + " exon: str, \n", + " gene_id: str, \n", + " gene_pheno: int32, \n", + " gene_symbol: str, \n", + " gene_symbol_source: str, \n", + " hgnc_id: str, \n", + " hgvsc: str, \n", + " hgvsp: str, \n", + " hgvs_offset: int32, \n", + " impact: str, \n", + " intron: str, \n", + " lof: str, \n", + " lof_flags: str, \n", + " lof_filter: str, \n", + " lof_info: str, \n", + " minimised: int32, \n", + " polyphen_prediction: str, \n", + " polyphen_score: float64, \n", + " protein_end: int32, \n", + " protein_start: int32, \n", + " protein_id: str, \n", + " sift_prediction: str, \n", + " sift_score: float64, \n", + " strand: int32, \n", + " swissprot: str, \n", + " transcript_id: str, \n", + " trembl: str, \n", + " uniparc: str, \n", + " variant_allele: str\n", + " }>, \n", + " variant_class: str\n", + " } \n", + " 'allele_info': struct {\n", + " BaseQRankSum: float64, \n", + " ClippingRankSum: float64, \n", + " DB: bool, \n", + " DP: int32, \n", + " DS: bool, \n", + " END: int32, \n", + " FS: float64, \n", + " HaplotypeScore: float64, \n", + " InbreedingCoeff: float64, \n", + " MQ: float64, \n", + " MQ0: int32, \n", + " MQRankSum: float64, \n", + " NEGATIVE_TRAIN_SITE: bool, \n", + " POSITIVE_TRAIN_SITE: bool, \n", + " QD: float64, \n", + " RAW_MQ: float64, \n", + " ReadPosRankSum: float64, \n", + " SOR: float64, \n", + " VQSLOD: float64, \n", + " culprit: str\n", + " } \n", + " 'rsid': str \n", + " 'original_alleles': array \n", + "----------------------------------------\n", + "Key: ['locus', 'alleles']\n", + "----------------------------------------\n" + ] + } + ], + "source": [ + "ht.describe()" + ] + }, + { + "cell_type": "markdown", + "id": "ab2f106a", + "metadata": { + "tags": [] + }, + "source": [ + "#### Show the first 5 variants in the Hail Table\n" + ] + }, + { + "cell_type": "code", + "execution_count": 44, + "id": "0a9ac872", + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-06T20:09:20.949958Z", + "start_time": "2024-12-06T20:09:05.622171Z" + }, + "tags": [] + }, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
gq_hist_alt
gq_hist_all
dp_hist_alt
dp_hist_all
ab_hist_alt
vep
allele_info
locus
alleles
ReverseComplementedAlleles
SwappedAlleles
original_locus
freq
age_hist_het
age_hist_hom
popmax
faf
lcr
decoy
segdup
nonpar
variant_type
allele_type
n_alt_alleles
was_mixed
has_star
qd
pab_max
info_MQRankSum
info_SOR
info_InbreedingCoeff
info_ReadPosRankSum
info_FS
info_QD
info_MQ
info_DP
transmitted_singleton
fail_hard_filters
info_POSITIVE_TRAIN_SITE
info_NEGATIVE_TRAIN_SITE
omni
mills
tp
rf_train
rf_label
rf_probability
rank
was_split
singleton
_score
_singleton
biallelic_rank
singleton_rank
n_nonref
score
adj_biallelic_singleton_rank
adj_rank
adj_biallelic_rank
adj_singleton_rank
biallelic_singleton_rank
filters
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
qual
assembly_name
allele_string
ancestral
colocated_variants
context
end
id
input
intergenic_consequences
most_severe_consequence
motif_feature_consequences
regulatory_feature_consequences
seq_region_name
start
strand
transcript_consequences
variant_class
BaseQRankSum
ClippingRankSum
DB
DP
DS
END
FS
HaplotypeScore
InbreedingCoeff
MQ
MQ0
MQRankSum
NEGATIVE_TRAIN_SITE
POSITIVE_TRAIN_SITE
QD
RAW_MQ
ReadPosRankSum
SOR
VQSLOD
culprit
rsid
original_alleles
locus<GRCh38>array<str>boolboollocus<GRCh37>array<struct{AC: int32, AF: float64, AN: int32, homozygote_count: int32}>array<struct{bin_edges: array<float64>, bin_freq: array<int64>, n_smaller: int64, n_larger: int64}>array<struct{bin_edges: array<float64>, bin_freq: array<int64>, n_smaller: int64, n_larger: int64}>array<struct{AC: int32, AF: float64, AN: int32, homozygote_count: int32, pop: str}>array<struct{meta: dict<str, str>, faf95: float64, faf99: float64}>boolboolboolboolstrstrint32boolboolfloat64float64float64float64float64float64float64float64float64int32boolboolboolboolboolboolboolboolstrfloat64int64boolboolfloat64boolint64int64int32float64int64int64int64int64int64set<str>array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64float64strstrstrarray<struct{aa_allele: str, aa_maf: float64, afr_allele: str, afr_maf: float64, allele_string: str, amr_allele: str, amr_maf: float64, clin_sig: array<str>, end: int32, eas_allele: str, eas_maf: float64, ea_allele: str, ea_maf: float64, eur_allele: str, eur_maf: float64, exac_adj_allele: str, exac_adj_maf: float64, exac_allele: str, exac_afr_allele: str, exac_afr_maf: float64, exac_amr_allele: str, exac_amr_maf: float64, exac_eas_allele: str, exac_eas_maf: float64, exac_fin_allele: str, exac_fin_maf: float64, exac_maf: float64, exac_nfe_allele: str, exac_nfe_maf: float64, exac_oth_allele: str, exac_oth_maf: float64, exac_sas_allele: str, exac_sas_maf: float64, id: str, minor_allele: str, minor_allele_freq: float64, phenotype_or_disease: int32, pubmed: array<int32>, sas_allele: str, sas_maf: float64, somatic: int32, start: int32, strand: int32}>strint32strstrarray<struct{allele_num: int32, consequence_terms: array<str>, impact: str, minimised: int32, variant_allele: str}>strarray<struct{allele_num: int32, consequence_terms: array<str>, high_inf_pos: str, impact: str, minimised: int32, motif_feature_id: str, motif_name: str, motif_pos: int32, motif_score_change: float64, strand: int32, variant_allele: str}>array<struct{allele_num: int32, biotype: str, consequence_terms: array<str>, impact: str, minimised: int32, regulatory_feature_id: str, variant_allele: str}>strint32int32array<struct{allele_num: int32, amino_acids: str, biotype: str, canonical: int32, ccds: str, cdna_start: int32, cdna_end: int32, cds_end: int32, cds_start: int32, codons: str, consequence_terms: array<str>, distance: int32, domains: array<struct{db: str, name: str}>, exon: str, gene_id: str, gene_pheno: int32, gene_symbol: str, gene_symbol_source: str, hgnc_id: str, hgvsc: str, hgvsp: str, hgvs_offset: int32, impact: str, intron: str, lof: str, lof_flags: str, lof_filter: str, lof_info: str, minimised: int32, polyphen_prediction: str, polyphen_score: float64, protein_end: int32, protein_start: int32, protein_id: str, sift_prediction: str, sift_score: float64, strand: int32, swissprot: str, transcript_id: str, trembl: str, uniparc: str, variant_allele: str}>strfloat64float64boolint32boolint32float64float64float64float64int32float64boolboolfloat64float64float64float64float64strstrarray<str>
chr1:10067["T","TAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCC"]FalseFalse1:10067[(1,3.80e-05,26342,0),(3,9.55e-05,31414,0),(0,0.00e+00,13124,0),(1,3.75e-04,2664,0),(0,0.00e+00,920,0),(0,0.00e+00,264,0),(0,0.00e+00,7294,0),(0,0.00e+00,1396,0),(0,0.00e+00,680,0),(1,8.55e-05,11692,0),(0,0.00e+00,14650,0),(0,0.00e+00,5790,0),(1,6.96e-04,1436,0),(0,0.00e+00,468,0),(0,0.00e+00,74,0),(0,0.00e+00,3110,0),(0,0.00e+00,486,0),(0,0.00e+00,328,0),(0,0.00e+00,7334,0),(0,0.00e+00,1228,0),(0,0.00e+00,452,0),(0,0.00e+00,190,0),(0,0.00e+00,4184,0),(0,0.00e+00,910,0),(0,0.00e+00,352,0),(0,0.00e+00,1880,0),(0,0.00e+00,106,0),(0,0.00e+00,7294,0),(0,0.00e+00,3844,0),(0,0.00e+00,4374,0),(1,2.49e-04,4010,0),(0,0.00e+00,1248,0),(0,0.00e+00,14834,0),(0,0.00e+00,508,0),(0,0.00e+00,214,0),(0,0.00e+00,1154,0),(0,0.00e+00,20,0),(0,0.00e+00,34,0),(0,0.00e+00,86,0),(0,0.00e+00,166,0),(0,0.00e+00,238,0),(0,0.00e+00,320,0),(0,0.00e+00,682,0),(0,0.00e+00,818,0),(0,0.00e+00,892,0),(0,0.00e+00,1282,0),(0,0.00e+00,1628,0),(0,0.00e+00,2892,0),(0,0.00e+00,3312,0),(0,0.00e+00,7262,0),(0,0.00e+00,8328,0),(0,0.00e+00,12928,0),(1,5.98e-05,16734,0),(1,3.98e-05,25140,0),(0,0.00e+00,18,0),(0,0.00e+00,14,0),(0,0.00e+00,14,0),(0,0.00e+00,20,0),(0,0.00e+00,14,0),(0,0.00e+00,20,0),(0,0.00e+00,16,0),(0,0.00e+00,36,0),(0,0.00e+00,30,0),(0,0.00e+00,32,0),(0,0.00e+00,40,0),(0,0.00e+00,32,0),(0,0.00e+00,32,0),(0,0.00e+00,34,0),(0,0.00e+00,88,0),(0,0.00e+00,80,0),(0,0.00e+00,84,0),(0,0.00e+00,86,0),(0,0.00e+00,78,0),(0,0.00e+00,84,0),(0,0.00e+00,72,0),(0,0.00e+00,168,0),(0,0.00e+00,148,0),(0,0.00e+00,162,0),(0,0.00e+00,182,0),(0,0.00e+00,156,0),(0,0.00e+00,178,0),(0,0.00e+00,150,0),(0,0.00e+00,236,0),(0,0.00e+00,224,0),(0,0.00e+00,230,0),(0,0.00e+00,264,0),(0,0.00e+00,230,0),(0,0.00e+00,262,0),(0,0.00e+00,224,0),(0,0.00e+00,326,0),(0,0.00e+00,304,0),(0,0.00e+00,326,0),(0,0.00e+00,316,0),(0,0.00e+00,362,0),(0,0.00e+00,314,0),(0,0.00e+00,710,0),(0,0.00e+00,640,0),(0,0.00e+00,712,0),(0,0.00e+00,702,0),(0,0.00e+00,766,0),(0,0.00e+00,680,0),(0,0.00e+00,830,0),(0,0.00e+00,754,0),(0,0.00e+00,848,0),(0,0.00e+00,824,0),(0,0.00e+00,898,0),(0,0.00e+00,904,0),(0,0.00e+00,812,0),(0,0.00e+00,920,0),(0,0.00e+00,886,0),(0,0.00e+00,982,0),(0,0.00e+00,1318,0),(0,0.00e+00,1168,0),(0,0.00e+00,1256,0),(0,0.00e+00,1396,0),(0,0.00e+00,1694,0),(0,0.00e+00,1512,0),(0,0.00e+00,1616,0),(0,0.00e+00,2960,0),(1,3.75e-04,2664,0),(0,0.00e+00,2890,0),(0,0.00e+00,3412,0),(0,0.00e+00,3352,0),(0,0.00e+00,7412,0),(0,0.00e+00,7294,0),(0,0.00e+00,8498,0),(0,0.00e+00,13124,0),(0,0.00e+00,9004,0),(1,9.19e-05,10884,0),(0,0.00e+00,4548,0),(0,0.00e+00,920,0),(0,0.00e+00,358,0),(0,0.00e+00,36,0),(0,0.00e+00,2168,0),(0,0.00e+00,804,0),(0,0.00e+00,170,0),(0,0.00e+00,4168,0),(0,0.00e+00,4836,0),(0,0.00e+00,2152,0),(0,0.00e+00,440,0),(0,0.00e+00,190,0),(0,0.00e+00,24,0),(0,0.00e+00,974,0),(0,0.00e+00,304,0),(0,0.00e+00,84,0),(0,0.00e+00,2396,0),(0,0.00e+00,480,0),(0,0.00e+00,168,0),(0,0.00e+00,12,0),(0,0.00e+00,1194,0),(0,0.00e+00,500,0),(0,0.00e+00,86,0),(0,0.00e+00,376,0),(0,0.00e+00,56,0),(0,0.00e+00,674,0),(0,0.00e+00,3442,0),(0,0.00e+00,17940,0),(1,4.70e-05,21270,0),(0,0.00e+00,11468,0),(0,0.00e+00,922,0),(0,0.00e+00,618,0),(0,0.00e+00,220,0),(0,0.00e+00,2868,0),(0,0.00e+00,1396,0),(0,0.00e+00,448,0),(0,0.00e+00,8096,0),(0,0.00e+00,9844,0),(0,0.00e+00,5040,0),(0,0.00e+00,442,0),(0,0.00e+00,306,0),(0,0.00e+00,54,0),(0,0.00e+00,1514,0),(0,0.00e+00,486,0),(0,0.00e+00,254,0),(0,0.00e+00,6428,0),(0,0.00e+00,480,0),(0,0.00e+00,312,0),(0,0.00e+00,166,0),(0,0.00e+00,1354,0),(0,0.00e+00,910,0),(0,0.00e+00,194,0),(0,0.00e+00,1480,0),(0,0.00e+00,54,0),(0,0.00e+00,6456,0),(0,0.00e+00,3478,0),(1,4.50e-05,22212,0),(3,1.13e-04,26608,0),(0,0.00e+00,9404,0),(1,3.75e-04,2664,0),(0,0.00e+00,858,0),(0,0.00e+00,130,0),(0,0.00e+00,7148,0),(0,0.00e+00,1360,0),(0,0.00e+00,648,0),(1,9.48e-05,10550,0),(0,0.00e+00,11662,0),(0,0.00e+00,4774,0),(1,6.96e-04,1436,0),(0,0.00e+00,454,0),(0,0.00e+00,60,0),(0,0.00e+00,3046,0),(0,0.00e+00,468,0),(0,0.00e+00,312,0),(0,0.00e+00,4630,0),(0,0.00e+00,1228,0),(0,0.00e+00,404,0),(0,0.00e+00,70,0),(0,0.00e+00,4102,0),(0,0.00e+00,892,0),(0,0.00e+00,336,0),(0,0.00e+00,1328,0),(0,0.00e+00,106,0),(0,0.00e+00,4146,0),(0,0.00e+00,3824,0)][([3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01],[0,0,0,0,0,0,0,0,0,0],0,0),([3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01],[0,0,0,0,0,0,0,0,0,0],0,0),([3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01],[0,0,0,0,0,0,0,0,0,0],0,0),([3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01],[0,0,0,0,0,0,0,0,0,0],0,0)][([3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01],[0,0,0,0,0,0,0,0,0,0],0,0),([3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01],[0,0,0,0,0,0,0,0,0,0],0,0),([3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01],[0,0,0,0,0,0,0,0,0,0],0,0),([3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01],[0,0,0,0,0,0,0,0,0,0],0,0)][NA,NA,NA,NA][({"group":"adj"},0.00e+00,0.00e+00),({"group":"adj","pop":"nfe"},0.00e+00,0.00e+00),({"group":"adj","pop":"afr"},0.00e+00,0.00e+00),({"group":"adj","pop":"eas"},0.00e+00,0.00e+00),({"group":"adj","pop":"amr"},0.00e+00,0.00e+00),({"group":"adj"},0.00e+00,0.00e+00),({"group":"adj","pop":"nfe"},0.00e+00,0.00e+00),({"group":"adj","pop":"afr"},0.00e+00,0.00e+00),({"group":"adj","pop":"eas"},0.00e+00,0.00e+00),({"group":"adj","pop":"amr"},0.00e+00,0.00e+00),({"group":"adj"},0.00e+00,0.00e+00),({"group":"adj","pop":"nfe"},0.00e+00,0.00e+00),({"group":"adj","pop":"afr"},0.00e+00,0.00e+00),({"group":"adj","pop":"eas"},0.00e+00,0.00e+00),({"group":"adj","pop":"amr"},0.00e+00,0.00e+00),({"group":"adj"},2.00e-06,2.00e-06),({"group":"adj","pop":"nfe"},0.00e+00,0.00e+00),({"group":"adj","pop":"afr"},0.00e+00,0.00e+00),({"group":"adj","pop":"eas"},0.00e+00,0.00e+00),({"group":"adj","pop":"amr"},0.00e+00,0.00e+00)]TrueFalseTrueFalse"indel""ins"1FalseFalse6.43e+001.00e+007.36e-014.21e-01-3.52e-02-7.27e-010.00e+001.38e+003.93e+012040956NATrueNANAFalseFalseFalseTrue"FP"1.49e-0129846037FalseFalse8.51e-01False15142389NA31.49e-01NA2746049613856404NANA{"RF"}[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,1,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][1949,163,179,242,270,286,314,378,357,448,611,483,1069,368,826,491,1015,283,858,5117]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][2,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][3,3,8,18,30,55,95,190,324,554,834,1132,1343,1372,1367,1295,1125,925,766,673]03596[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,1,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0]003.04e+01"GRCh37""-/AACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCC"NANANA10067"1_10068_-/AACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCC""1\t10067\t.\tT\tTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCC\t.\t.\tGT"NA"upstream_gene_variant"NA[(1,"CTCF_binding_site",["regulatory_region_variant"],"MODIFIER",1,"ENSR00001576074","AACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCC")]"1"100681[(1,NA,"unprocessed_pseudogene",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],4295,NA,NA,"ENSG00000227232",NA,"WASH7P","HGNC","38034",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,1,NA,NA,NA,NA,NA,NA,NA,-1,NA,"ENST00000423562",NA,NA,"AACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCC"),(1,NA,"unprocessed_pseudogene",1,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],4295,NA,NA,"ENSG00000227232",NA,"WASH7P","HGNC","38034",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,1,NA,NA,NA,NA,NA,NA,NA,-1,NA,"ENST00000438504",NA,NA,"AACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCC"),(1,NA,"transcribed_unprocessed_pseudogene",NA,NA,NA,NA,NA,NA,NA,["upstream_gene_variant"],1942,NA,NA,"ENSG00000223972",NA,"DDX11L1","HGNC","37102",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,1,NA,NA,NA,NA,NA,NA,NA,1,NA,"ENST00000450305",NA,NA,"AACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCC"),(1,NA,"processed_transcript",1,NA,NA,NA,NA,NA,NA,["upstream_gene_variant"],1801,NA,NA,"ENSG00000223972",NA,"DDX11L1","HGNC","37102",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,1,NA,NA,NA,NA,NA,NA,NA,1,NA,"ENST00000456328",NA,NA,"AACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCC"),(1,NA,"unprocessed_pseudogene",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],4336,NA,NA,"ENSG00000227232",NA,"WASH7P","HGNC","38034",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,1,NA,NA,NA,NA,NA,NA,NA,-1,NA,"ENST00000488147",NA,NA,"AACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCC"),(1,NA,"transcribed_unprocessed_pseudogene",NA,NA,NA,NA,NA,NA,NA,["upstream_gene_variant"],1804,NA,NA,"ENSG00000223972",NA,"DDX11L1","HGNC","37102",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,1,NA,NA,NA,NA,NA,NA,NA,1,NA,"ENST00000515242",NA,NA,"AACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCC"),(1,NA,"transcribed_unprocessed_pseudogene",NA,NA,NA,NA,NA,NA,NA,["upstream_gene_variant"],1806,NA,NA,"ENSG00000223972",NA,"DDX11L1","HGNC","37102",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,1,NA,NA,NA,NA,NA,NA,NA,1,NA,"ENST00000518655",NA,NA,"AACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCC"),(1,NA,"unprocessed_pseudogene",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],4343,NA,NA,"ENSG00000227232",NA,"WASH7P","HGNC","38034",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,1,NA,NA,NA,NA,NA,NA,NA,-1,NA,"ENST00000538476",NA,NA,"AACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCC"),(1,NA,"unprocessed_pseudogene",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],4295,NA,NA,"ENSG00000227232",NA,"WASH7P","HGNC","38034",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,1,NA,NA,NA,NA,NA,NA,NA,-1,NA,"ENST00000541675",NA,NA,"AACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCC")]"insertion"7.27e-01-7.36e-01NA2040956NANA0.00e+00NA-3.52e-023.93e+01NA7.36e-01NANA1.38e+00NA-7.27e-014.21e-01-1.08e+01"DP""rs1489251879"["T","TAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCC"]
chr1:10108["CAACCCT","C"]FalseFalse1:10108[(2,1.01e-03,1982,0),(2,6.49e-05,30832,0),(0,0.00e+00,1452,0),(1,2.27e-02,44,0),(0,0.00e+00,88,0),(0,0.00e+00,32,0),(1,3.55e-03,282,0),(0,0.00e+00,56,0),(0,0.00e+00,28,0),(1,1.12e-03,890,0),(1,9.16e-04,1092,0),(0,0.00e+00,648,0),(1,3.33e-02,30,0),(0,0.00e+00,50,0),(0,0.00e+00,14,0),(0,0.00e+00,116,0),(0,0.00e+00,18,0),(0,0.00e+00,14,0),(0,0.00e+00,804,0),(0,0.00e+00,14,0),(0,0.00e+00,38,0),(0,0.00e+00,18,0),(1,6.02e-03,166,0),(0,0.00e+00,38,0),(0,0.00e+00,14,0),(0,0.00e+00,254,0),(0,0.00e+00,36,0),(0,0.00e+00,612,0),(0,0.00e+00,550,0),(0,0.00e+00,330,0),(2,2.86e-02,70,0),(0,0.00e+00,382,0),(0,0.00e+00,1076,0),(0,0.00e+00,36,0),(0,0.00e+00,68,0),(0,0.00e+00,20,0),(0,0.00e+00,2,0),(0,0.00e+00,4,0),(0,0.00e+00,8,0),(0,0.00e+00,12,0),(0,0.00e+00,22,0),(0,0.00e+00,24,0),(0,0.00e+00,64,0),(0,0.00e+00,74,0),(0,0.00e+00,76,0),(0,0.00e+00,110,0),(0,0.00e+00,146,0),(0,0.00e+00,276,0),(0,0.00e+00,310,0),(0,0.00e+00,572,0),(0,0.00e+00,664,0),(1,1.01e-03,988,0),(1,8.12e-04,1232,0),(2,1.06e-03,1888,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,6,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,0.00e+00,6,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,0.00e+00,8,0),(0,NA,0,0),(0,0.00e+00,6,0),(0,0.00e+00,14,0),(0,0.00e+00,6,0),(0,0.00e+00,4,0),(0,0.00e+00,4,0),(0,0.00e+00,16,0),(0,NA,0,0),(0,0.00e+00,12,0),(0,0.00e+00,26,0),(0,0.00e+00,10,0),(0,0.00e+00,8,0),(0,0.00e+00,4,0),(0,0.00e+00,32,0),(0,NA,0,0),(0,0.00e+00,18,0),(0,0.00e+00,32,0),(0,0.00e+00,12,0),(0,0.00e+00,10,0),(0,0.00e+00,8,0),(0,0.00e+00,48,0),(0,0.00e+00,2,0),(0,0.00e+00,28,0),(0,0.00e+00,16,0),(0,0.00e+00,16,0),(0,0.00e+00,10,0),(0,0.00e+00,90,0),(0,0.00e+00,4,0),(0,0.00e+00,64,0),(0,0.00e+00,48,0),(0,0.00e+00,28,0),(0,0.00e+00,28,0),(0,0.00e+00,112,0),(0,0.00e+00,8,0),(0,0.00e+00,80,0),(0,0.00e+00,58,0),(0,0.00e+00,40,0),(0,0.00e+00,120,0),(0,0.00e+00,8,0),(0,0.00e+00,88,0),(0,0.00e+00,58,0),(0,0.00e+00,42,0),(0,0.00e+00,180,0),(1,4.17e-02,24,0),(0,0.00e+00,66,0),(0,0.00e+00,56,0),(0,0.00e+00,224,0),(1,3.13e-02,32,0),(0,0.00e+00,72,0),(0,0.00e+00,360,0),(1,2.27e-02,44,0),(0,0.00e+00,122,0),(0,0.00e+00,402,0),(0,0.00e+00,140,0),(0,0.00e+00,832,0),(1,3.55e-03,282,0),(0,0.00e+00,912,0),(0,0.00e+00,1452,0),(2,2.41e-03,830,0),(2,1.88e-04,10614,0),(0,0.00e+00,676,0),(1,5.00e-02,20,0),(0,0.00e+00,30,0),(0,0.00e+00,4,0),(1,1.28e-02,78,0),(0,0.00e+00,22,0),(0,NA,0,0),(1,2.48e-03,404,0),(1,2.35e-03,426,0),(0,0.00e+00,330,0),(1,7.14e-02,14,0),(0,0.00e+00,22,0),(0,0.00e+00,4,0),(0,0.00e+00,26,0),(0,0.00e+00,8,0),(0,NA,0,0),(0,0.00e+00,346,0),(0,0.00e+00,6,0),(0,0.00e+00,8,0),(0,NA,0,0),(1,1.92e-02,52,0),(0,0.00e+00,14,0),(0,NA,0,0),(0,0.00e+00,74,0),(0,0.00e+00,20,0),(0,0.00e+00,54,0),(0,0.00e+00,528,0),(2,1.38e-03,1454,0),(2,9.54e-05,20966,0),(0,0.00e+00,1182,0),(1,5.00e-02,20,0),(0,0.00e+00,36,0),(0,0.00e+00,22,0),(1,8.33e-03,120,0),(0,0.00e+00,56,0),(0,0.00e+00,18,0),(1,1.43e-03,698,0),(1,1.32e-03,756,0),(0,0.00e+00,556,0),(1,7.14e-02,14,0),(0,0.00e+00,24,0),(0,0.00e+00,8,0),(0,0.00e+00,64,0),(0,0.00e+00,18,0),(0,0.00e+00,14,0),(0,0.00e+00,626,0),(0,0.00e+00,6,0),(0,0.00e+00,12,0),(0,0.00e+00,14,0),(1,1.79e-02,56,0),(0,0.00e+00,38,0),(0,0.00e+00,4,0),(0,0.00e+00,158,0),(0,0.00e+00,18,0),(0,0.00e+00,474,0),(0,0.00e+00,532,0),(2,1.19e-03,1682,0),(2,7.68e-05,26050,0),(0,0.00e+00,1178,0),(1,2.27e-02,44,0),(0,0.00e+00,88,0),(0,0.00e+00,18,0),(1,3.65e-03,274,0),(0,0.00e+00,56,0),(0,0.00e+00,24,0),(1,1.20e-03,836,0),(1,1.18e-03,846,0),(0,0.00e+00,596,0),(1,3.33e-02,30,0),(0,0.00e+00,50,0),(0,0.00e+00,14,0),(0,0.00e+00,116,0),(0,0.00e+00,18,0),(0,0.00e+00,12,0),(0,0.00e+00,582,0),(0,0.00e+00,14,0),(0,0.00e+00,38,0),(0,0.00e+00,4,0),(1,6.33e-03,158,0),(0,0.00e+00,38,0),(0,0.00e+00,12,0),(0,0.00e+00,216,0),(0,0.00e+00,36,0),(0,0.00e+00,378,0),(0,0.00e+00,548,0)][([3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01],[0,0,1,0,0,0,0,0,0,0],0,0),([3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01],[0,0,1,0,0,0,0,0,0,0],0,0),([3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01],[0,0,1,0,0,0,0,0,0,0],0,0),([3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01],[0,0,1,0,0,0,0,0,0,0],0,0)][([3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01],[0,0,0,0,0,0,0,0,0,0],0,0),([3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01],[0,0,0,0,0,0,0,0,0,0],0,0),([3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01],[0,0,0,0,0,0,0,0,0,0],0,0),([3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01],[0,0,0,0,0,0,0,0,0,0],0,0)][(1,3.55e-03,282,0,"afr"),(1,1.28e-02,78,0,"afr"),(1,8.33e-03,120,0,"afr"),(1,3.65e-03,274,0,"afr")][({"group":"adj"},1.79e-04,1.79e-04),({"group":"adj","pop":"nfe"},0.00e+00,0.00e+00),({"group":"adj","pop":"afr"},0.00e+00,0.00e+00),({"group":"adj","pop":"eas"},0.00e+00,0.00e+00),({"group":"adj","pop":"amr"},0.00e+00,0.00e+00),({"group":"adj"},4.28e-04,4.27e-04),({"group":"adj","pop":"nfe"},0.00e+00,0.00e+00),({"group":"adj","pop":"afr"},6.57e-04,6.57e-04),({"group":"adj","pop":"eas"},0.00e+00,0.00e+00),({"group":"adj","pop":"amr"},0.00e+00,0.00e+00),({"group":"adj"},2.43e-04,2.44e-04),({"group":"adj","pop":"nfe"},0.00e+00,0.00e+00),({"group":"adj","pop":"afr"},4.27e-04,4.27e-04),({"group":"adj","pop":"eas"},0.00e+00,0.00e+00),({"group":"adj","pop":"amr"},0.00e+00,0.00e+00),({"group":"adj"},2.11e-04,2.10e-04),({"group":"adj","pop":"nfe"},0.00e+00,0.00e+00),({"group":"adj","pop":"afr"},1.87e-04,1.87e-04),({"group":"adj","pop":"eas"},0.00e+00,0.00e+00),({"group":"adj","pop":"amr"},0.00e+00,0.00e+00)]TrueFalseTrueFalse"indel""del"1FalseFalse4.66e+001.80e-012.08e-018.55e-01-3.00e-011.27e+001.90e+003.42e+013.96e+012147991NAFalseNANAFalseFalseFalseNANA5.10e-0231936632FalseFalse9.49e-01False15649487NA55.10e-02NA2903678614252110NANA{"RF"}[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][14116,107,108,94,86,90,88,83,56,64,76,43,58,32,33,35,51,27,38,131]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][2,4,17,26,34,58,129,205,329,593,770,987,1155,1239,1324,1204,1051,941,816,720]04104[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]004.65e+04"GRCh37""AACCCT/-"NANANA10114"1_10109_AACCCT/-""1\t10108\t.\tCAACCCT\tC\t.\t.\tGT"NA"upstream_gene_variant"NA[(1,"CTCF_binding_site",["regulatory_region_variant"],"MODIFIER",1,"ENSR00001576074",NA)]"1"101091[(1,NA,"unprocessed_pseudogene",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],4249,NA,NA,"ENSG00000227232",NA,"WASH7P","HGNC","38034",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,1,NA,NA,NA,NA,NA,NA,NA,-1,NA,"ENST00000423562",NA,NA,NA),(1,NA,"unprocessed_pseudogene",1,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],4249,NA,NA,"ENSG00000227232",NA,"WASH7P","HGNC","38034",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,1,NA,NA,NA,NA,NA,NA,NA,-1,NA,"ENST00000438504",NA,NA,NA),(1,NA,"transcribed_unprocessed_pseudogene",NA,NA,NA,NA,NA,NA,NA,["upstream_gene_variant"],1896,NA,NA,"ENSG00000223972",NA,"DDX11L1","HGNC","37102",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,1,NA,NA,NA,NA,NA,NA,NA,1,NA,"ENST00000450305",NA,NA,NA),(1,NA,"processed_transcript",1,NA,NA,NA,NA,NA,NA,["upstream_gene_variant"],1755,NA,NA,"ENSG00000223972",NA,"DDX11L1","HGNC","37102",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,1,NA,NA,NA,NA,NA,NA,NA,1,NA,"ENST00000456328",NA,NA,NA),(1,NA,"unprocessed_pseudogene",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],4290,NA,NA,"ENSG00000227232",NA,"WASH7P","HGNC","38034",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,1,NA,NA,NA,NA,NA,NA,NA,-1,NA,"ENST00000488147",NA,NA,NA),(1,NA,"transcribed_unprocessed_pseudogene",NA,NA,NA,NA,NA,NA,NA,["upstream_gene_variant"],1758,NA,NA,"ENSG00000223972",NA,"DDX11L1","HGNC","37102",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,1,NA,NA,NA,NA,NA,NA,NA,1,NA,"ENST00000515242",NA,NA,NA),(1,NA,"transcribed_unprocessed_pseudogene",NA,NA,NA,NA,NA,NA,NA,["upstream_gene_variant"],1760,NA,NA,"ENSG00000223972",NA,"DDX11L1","HGNC","37102",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,1,NA,NA,NA,NA,NA,NA,NA,1,NA,"ENST00000518655",NA,NA,NA),(1,NA,"unprocessed_pseudogene",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],4297,NA,NA,"ENSG00000227232",NA,"WASH7P","HGNC","38034",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,1,NA,NA,NA,NA,NA,NA,NA,-1,NA,"ENST00000538476",NA,NA,NA),(1,NA,"unprocessed_pseudogene",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],4249,NA,NA,"ENSG00000227232",NA,"WASH7P","HGNC","38034",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,1,NA,NA,NA,NA,NA,NA,NA,-1,NA,"ENST00000541675",NA,NA,NA)]"deletion"-7.62e-01-2.54e-01NA2147991NANA1.90e+00NA-3.00e-013.96e+01NA2.08e-01NANA3.42e+01NA1.27e+008.55e-01-1.27e+01"DP""rs62651026"["CAACCCT","C"]
chr1:10109["AACCCT","A"]FalseFalse1:10109[(19,6.42e-02,296,0),(31,1.01e-03,30766,0),(8,5.13e-02,156,0),(2,5.88e-02,34,0),(2,1.67e-01,12,0),(0,NA,0,0),(6,8.11e-02,74,0),(0,0.00e+00,10,0),(1,1.00e-01,10,0),(9,6.16e-02,146,0),(10,6.67e-02,150,0),(5,6.76e-02,74,0),(1,5.56e-02,18,0),(2,3.33e-01,6,0),(0,NA,0,0),(1,2.94e-02,34,0),(0,0.00e+00,6,0),(0,0.00e+00,8,0),(3,3.66e-02,82,0),(1,6.25e-02,16,0),(0,0.00e+00,6,0),(0,NA,0,0),(5,1.25e-01,40,0),(0,0.00e+00,4,0),(1,5.00e-01,2,0),(2,1.11e-01,18,0),(0,NA,0,0),(4,4.88e-02,82,0),(2,3.57e-02,56,0),(3,5.77e-02,52,0),(4,8.33e-02,48,0),(0,0.00e+00,4,0),(10,5.75e-02,174,0),(1,1.00e-01,10,0),(0,NA,0,0),(1,1.25e-01,8,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(1,1.25e-01,8,0),(1,1.25e-01,8,0),(1,1.25e-01,8,0),(1,8.33e-02,12,0),(2,1.25e-01,16,0),(2,5.00e-02,40,0),(2,4.55e-02,44,0),(7,7.61e-02,92,0),(9,8.33e-02,108,0),(11,7.05e-02,156,0),(14,7.45e-02,188,0),(19,6.64e-02,286,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,NA,0,0),(0,NA,0,0),(0,NA,0,0),(2,3.33e-01,6,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,0.00e+00,4,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(2,3.33e-01,6,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,0.00e+00,4,0),(1,5.00e-01,2,0),(1,5.00e-01,2,0),(0,0.00e+00,4,0),(2,3.33e-01,6,0),(0,0.00e+00,2,0),(0,0.00e+00,4,0),(1,5.00e-01,2,0),(2,2.50e-01,8,0),(0,0.00e+00,10,0),(2,2.00e-01,10,0),(0,0.00e+00,4,0),(0,0.00e+00,6,0),(1,1.00e-01,10,0),(2,2.50e-01,8,0),(1,6.25e-02,16,0),(2,2.00e-01,10,0),(0,0.00e+00,6,0),(0,0.00e+00,6,0),(2,2.00e-01,10,0),(1,6.25e-02,16,0),(2,1.67e-01,12,0),(0,0.00e+00,6,0),(0,0.00e+00,8,0),(2,8.33e-02,24,0),(2,7.69e-02,26,0),(0,0.00e+00,10,0),(0,0.00e+00,10,0),(2,7.14e-02,28,0),(2,7.69e-02,26,0),(0,0.00e+00,12,0),(2,5.56e-02,36,0),(2,5.88e-02,34,0),(2,7.69e-02,26,0),(2,5.00e-02,40,0),(2,6.25e-02,32,0),(4,4.88e-02,82,0),(6,8.11e-02,74,0),(6,6.25e-02,96,0),(8,5.13e-02,156,0),(8,6.35e-02,126,0),(14,1.33e-03,10564,0),(4,5.88e-02,68,0),(0,0.00e+00,12,0),(0,0.00e+00,4,0),(0,NA,0,0),(4,1.25e-01,32,0),(0,0.00e+00,6,0),(0,0.00e+00,4,0),(4,5.56e-02,72,0),(4,7.41e-02,54,0),(3,8.33e-02,36,0),(0,0.00e+00,10,0),(0,0.00e+00,2,0),(0,NA,0,0),(1,7.14e-02,14,0),(0,0.00e+00,6,0),(0,0.00e+00,4,0),(1,3.13e-02,32,0),(0,0.00e+00,2,0),(0,0.00e+00,2,0),(0,NA,0,0),(3,1.67e-01,18,0),(0,NA,0,0),(0,NA,0,0),(0,0.00e+00,2,0),(0,NA,0,0),(2,2.00e-01,10,0),(2,3.57e-02,56,0),(13,5.56e-02,234,0),(23,1.10e-03,20904,0),(7,4.67e-02,150,0),(0,0.00e+00,12,0),(1,1.25e-01,8,0),(0,NA,0,0),(4,9.09e-02,44,0),(0,0.00e+00,10,0),(1,1.00e-01,10,0),(6,4.92e-02,122,0),(7,6.25e-02,112,0),(4,5.88e-02,68,0),(0,0.00e+00,10,0),(1,2.50e-01,4,0),(0,NA,0,0),(1,3.85e-02,26,0),(0,0.00e+00,6,0),(0,0.00e+00,8,0),(3,3.66e-02,82,0),(0,0.00e+00,2,0),(0,0.00e+00,4,0),(0,NA,0,0),(3,1.67e-01,18,0),(0,0.00e+00,4,0),(1,5.00e-01,2,0),(2,1.11e-01,18,0),(0,NA,0,0),(3,3.95e-02,76,0),(2,3.57e-02,56,0),(17,6.85e-02,248,0),(28,1.08e-03,25992,0),(7,6.25e-02,112,0),(2,5.88e-02,34,0),(1,1.00e-01,10,0),(0,NA,0,0),(6,8.33e-02,72,0),(0,0.00e+00,10,0),(1,1.00e-01,10,0),(8,5.80e-02,138,0),(9,8.18e-02,110,0),(5,7.35e-02,68,0),(1,5.56e-02,18,0),(1,2.50e-01,4,0),(0,NA,0,0),(1,2.94e-02,34,0),(0,0.00e+00,6,0),(0,0.00e+00,8,0),(2,4.55e-02,44,0),(1,6.25e-02,16,0),(0,0.00e+00,6,0),(0,NA,0,0),(5,1.32e-01,38,0),(0,0.00e+00,4,0),(1,5.00e-01,2,0),(2,1.25e-01,16,0),(0,NA,0,0),(3,7.50e-02,40,0),(2,3.57e-02,56,0)][([3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01],[0,0,1,2,2,0,0,0,0,0],5,0),([3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01],[0,0,0,0,0,0,0,0,0,0],2,0),([3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01],[0,0,0,2,1,0,0,0,0,0],3,0),([3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01],[0,0,1,1,2,0,0,0,0,0],4,0)][([3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01],[0,0,0,0,0,0,0,0,0,0],0,0),([3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01],[0,0,0,0,0,0,0,0,0,0],0,0),([3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01],[0,0,0,0,0,0,0,0,0,0],0,0),([3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01],[0,0,0,0,0,0,0,0,0,0],0,0)][(1,1.00e-01,10,0,"amr"),(4,1.25e-01,32,0,"afr"),(1,1.00e-01,10,0,"amr"),(1,1.00e-01,10,0,"amr")][({"group":"adj"},4.20e-02,4.20e-02),({"group":"adj","pop":"nfe"},2.55e-02,2.55e-02),({"group":"adj","pop":"afr"},3.53e-02,3.53e-02),({"group":"adj","pop":"eas"},0.00e+00,0.00e+00),({"group":"adj","pop":"amr"},0.00e+00,0.00e+00),({"group":"adj"},3.16e-02,3.16e-02),({"group":"adj","pop":"nfe"},2.01e-02,2.01e-02),({"group":"adj","pop":"afr"},4.27e-02,4.27e-02),({"group":"adj","pop":"eas"},0.00e+00,0.00e+00),({"group":"adj","pop":"amr"},0.00e+00,0.00e+00),({"group":"adj"},3.29e-02,3.29e-02),({"group":"adj","pop":"nfe"},2.19e-02,2.19e-02),({"group":"adj","pop":"afr"},3.11e-02,3.11e-02),({"group":"adj","pop":"eas"},0.00e+00,0.00e+00),({"group":"adj","pop":"amr"},5.13e-03,5.13e-03),({"group":"adj"},4.37e-02,4.37e-02),({"group":"adj","pop":"nfe"},2.93e-02,2.93e-02),({"group":"adj","pop":"afr"},3.63e-02,3.63e-02),({"group":"adj","pop":"eas"},0.00e+00,0.00e+00),({"group":"adj","pop":"amr"},5.13e-03,5.13e-03)]TrueFalseTrueFalse"indel""del"1FalseTrue1.83e+001.00e+00-6.93e-014.88e+001.09e-01-9.31e-015.76e+013.06e+013.70e+012134891NAFalseNANAFalseFalseFalseNANA4.41e-0334836964TrueFalse9.96e-01FalseNANA444.41e-03NA31102141NANANA{"RF"}[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,4,2,1,1,7,2,2,1,1,0,1,1,1,1,0,1,0,0,5]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][14814,196,99,120,70,27,18,7,4,6,3,2,1,2,2,0,1,0,0,11]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,1,1,4,7,7,4,3,2,2,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][2,6,18,34,45,72,136,232,356,629,774,1005,1168,1211,1307,1178,1036,922,801,719]04057[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,6,5,6,5,4,2,1,0,1,1,0,0,0,0,0,0,0]008.98e+04"GRCh37""ACCCT/-"NANANA10114"1_10110_ACCCT/-""1\t10109\t.\tAACCCT\tA\t.\t.\tGT"NA"upstream_gene_variant"NA[(1,"CTCF_binding_site",["regulatory_region_variant"],"MODIFIER",1,"ENSR00001576074",NA)]"1"101101[(1,NA,"unprocessed_pseudogene",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],4249,NA,NA,"ENSG00000227232",NA,"WASH7P","HGNC","38034",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,1,NA,NA,NA,NA,NA,NA,NA,-1,NA,"ENST00000423562",NA,NA,NA),(1,NA,"unprocessed_pseudogene",1,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],4249,NA,NA,"ENSG00000227232",NA,"WASH7P","HGNC","38034",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,1,NA,NA,NA,NA,NA,NA,NA,-1,NA,"ENST00000438504",NA,NA,NA),(1,NA,"transcribed_unprocessed_pseudogene",NA,NA,NA,NA,NA,NA,NA,["upstream_gene_variant"],1896,NA,NA,"ENSG00000223972",NA,"DDX11L1","HGNC","37102",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,1,NA,NA,NA,NA,NA,NA,NA,1,NA,"ENST00000450305",NA,NA,NA),(1,NA,"processed_transcript",1,NA,NA,NA,NA,NA,NA,["upstream_gene_variant"],1755,NA,NA,"ENSG00000223972",NA,"DDX11L1","HGNC","37102",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,1,NA,NA,NA,NA,NA,NA,NA,1,NA,"ENST00000456328",NA,NA,NA),(1,NA,"unprocessed_pseudogene",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],4290,NA,NA,"ENSG00000227232",NA,"WASH7P","HGNC","38034",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,1,NA,NA,NA,NA,NA,NA,NA,-1,NA,"ENST00000488147",NA,NA,NA),(1,NA,"transcribed_unprocessed_pseudogene",NA,NA,NA,NA,NA,NA,NA,["upstream_gene_variant"],1758,NA,NA,"ENSG00000223972",NA,"DDX11L1","HGNC","37102",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,1,NA,NA,NA,NA,NA,NA,NA,1,NA,"ENST00000515242",NA,NA,NA),(1,NA,"transcribed_unprocessed_pseudogene",NA,NA,NA,NA,NA,NA,NA,["upstream_gene_variant"],1760,NA,NA,"ENSG00000223972",NA,"DDX11L1","HGNC","37102",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,1,NA,NA,NA,NA,NA,NA,NA,1,NA,"ENST00000518655",NA,NA,NA),(1,NA,"unprocessed_pseudogene",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],4297,NA,NA,"ENSG00000227232",NA,"WASH7P","HGNC","38034",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,1,NA,NA,NA,NA,NA,NA,NA,-1,NA,"ENST00000538476",NA,NA,NA),(1,NA,"unprocessed_pseudogene",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],4249,NA,NA,"ENSG00000227232",NA,"WASH7P","HGNC","38034",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,1,NA,NA,NA,NA,NA,NA,NA,-1,NA,"ENST00000541675",NA,NA,NA)]"deletion"-2.10e+00-2.75e-01NA2134891NANA5.76e+01NA1.09e-013.70e+01NA-6.93e-01NANA3.06e+01NA-9.31e-014.88e+00-3.15e+01"DP""rs376007522"["AACCCT","A"]
chr1:10114["T","C"]FalseFalse1:10114[(0,0.00e+00,8734,0),(8,2.56e-04,31192,0),(0,0.00e+00,4054,0),(0,0.00e+00,1296,0),(0,0.00e+00,354,0),(0,0.00e+00,100,0),(0,0.00e+00,2168,0),(0,0.00e+00,438,0),(0,0.00e+00,324,0),(0,0.00e+00,3836,0),(0,0.00e+00,4898,0),(0,0.00e+00,1732,0),(0,0.00e+00,700,0),(0,0.00e+00,170,0),(0,0.00e+00,44,0),(0,0.00e+00,918,0),(0,0.00e+00,130,0),(0,0.00e+00,142,0),(0,0.00e+00,2322,0),(0,0.00e+00,596,0),(0,0.00e+00,184,0),(0,0.00e+00,56,0),(0,0.00e+00,1250,0),(0,0.00e+00,308,0),(0,0.00e+00,182,0),(0,0.00e+00,748,0),(0,0.00e+00,72,0),(0,0.00e+00,2370,0),(0,0.00e+00,864,0),(0,0.00e+00,1058,0),(0,0.00e+00,2196,0),(0,0.00e+00,844,0),(0,0.00e+00,3994,0),(0,0.00e+00,142,0),(0,0.00e+00,154,0),(0,0.00e+00,346,0),(0,0.00e+00,6,0),(0,0.00e+00,16,0),(0,0.00e+00,34,0),(0,0.00e+00,60,0),(0,0.00e+00,98,0),(0,0.00e+00,124,0),(0,0.00e+00,246,0),(0,0.00e+00,276,0),(0,0.00e+00,306,0),(0,0.00e+00,418,0),(0,0.00e+00,536,0),(0,0.00e+00,932,0),(0,0.00e+00,1070,0),(0,0.00e+00,2340,0),(0,0.00e+00,2690,0),(0,0.00e+00,4210,0),(0,0.00e+00,5456,0),(0,0.00e+00,8340,0),(0,0.00e+00,10,0),(0,0.00e+00,4,0),(0,0.00e+00,8,0),(0,0.00e+00,6,0),(0,0.00e+00,4,0),(0,0.00e+00,2,0),(0,0.00e+00,6,0),(0,0.00e+00,16,0),(0,0.00e+00,16,0),(0,0.00e+00,12,0),(0,0.00e+00,10,0),(0,0.00e+00,12,0),(0,0.00e+00,6,0),(0,0.00e+00,8,0),(0,0.00e+00,30,0),(0,0.00e+00,36,0),(0,0.00e+00,42,0),(0,0.00e+00,30,0),(0,0.00e+00,38,0),(0,0.00e+00,28,0),(0,0.00e+00,26,0),(0,0.00e+00,58,0),(0,0.00e+00,88,0),(0,0.00e+00,78,0),(0,0.00e+00,56,0),(0,0.00e+00,64,0),(0,0.00e+00,56,0),(0,0.00e+00,58,0),(0,0.00e+00,86,0),(0,0.00e+00,132,0),(0,0.00e+00,104,0),(0,0.00e+00,100,0),(0,0.00e+00,82,0),(0,0.00e+00,82,0),(0,0.00e+00,94,0),(0,0.00e+00,116,0),(0,0.00e+00,172,0),(0,0.00e+00,134,0),(0,0.00e+00,98,0),(0,0.00e+00,120,0),(0,0.00e+00,150,0),(0,0.00e+00,210,0),(0,0.00e+00,326,0),(0,0.00e+00,274,0),(0,0.00e+00,198,0),(0,0.00e+00,240,0),(0,0.00e+00,324,0),(0,0.00e+00,248,0),(0,0.00e+00,384,0),(0,0.00e+00,328,0),(0,0.00e+00,228,0),(0,0.00e+00,284,0),(0,0.00e+00,268,0),(0,0.00e+00,426,0),(0,0.00e+00,354,0),(0,0.00e+00,246,0),(0,0.00e+00,312,0),(0,0.00e+00,386,0),(0,0.00e+00,586,0),(0,0.00e+00,352,0),(0,0.00e+00,438,0),(0,0.00e+00,488,0),(0,0.00e+00,742,0),(0,0.00e+00,454,0),(0,0.00e+00,874,0),(0,0.00e+00,1296,0),(0,0.00e+00,844,0),(0,0.00e+00,982,0),(0,0.00e+00,984,0),(0,0.00e+00,2216,0),(0,0.00e+00,2168,0),(0,0.00e+00,2540,0),(0,0.00e+00,4054,0),(0,0.00e+00,3096,0),(4,3.71e-04,10778,0),(0,0.00e+00,1386,0),(0,0.00e+00,494,0),(0,0.00e+00,112,0),(0,0.00e+00,24,0),(0,0.00e+00,700,0),(0,0.00e+00,264,0),(0,0.00e+00,116,0),(0,0.00e+00,1406,0),(0,0.00e+00,1690,0),(0,0.00e+00,622,0),(0,0.00e+00,258,0),(0,0.00e+00,60,0),(0,0.00e+00,18,0),(0,0.00e+00,320,0),(0,0.00e+00,80,0),(0,0.00e+00,48,0),(0,0.00e+00,764,0),(0,0.00e+00,236,0),(0,0.00e+00,52,0),(0,0.00e+00,6,0),(0,0.00e+00,380,0),(0,0.00e+00,184,0),(0,0.00e+00,68,0),(0,0.00e+00,216,0),(0,0.00e+00,42,0),(0,0.00e+00,398,0),(0,0.00e+00,730,0),(0,0.00e+00,5526,0),(4,1.89e-04,21142,0),(0,0.00e+00,3216,0),(0,0.00e+00,494,0),(0,0.00e+00,194,0),(0,0.00e+00,66,0),(0,0.00e+00,922,0),(0,0.00e+00,438,0),(0,0.00e+00,196,0),(0,0.00e+00,2452,0),(0,0.00e+00,3074,0),(0,0.00e+00,1380,0),(0,0.00e+00,258,0),(0,0.00e+00,86,0),(0,0.00e+00,28,0),(0,0.00e+00,472,0),(0,0.00e+00,130,0),(0,0.00e+00,98,0),(0,0.00e+00,1836,0),(0,0.00e+00,236,0),(0,0.00e+00,108,0),(0,0.00e+00,38,0),(0,0.00e+00,450,0),(0,0.00e+00,308,0),(0,0.00e+00,98,0),(0,0.00e+00,512,0),(0,0.00e+00,40,0),(0,0.00e+00,1928,0),(0,0.00e+00,736,0),(0,0.00e+00,7716,0),(8,3.03e-04,26404,0),(0,0.00e+00,3138,0),(0,0.00e+00,1296,0),(0,0.00e+00,338,0),(0,0.00e+00,72,0),(0,0.00e+00,2126,0),(0,0.00e+00,432,0),(0,0.00e+00,314,0),(0,0.00e+00,3582,0),(0,0.00e+00,4134,0),(0,0.00e+00,1510,0),(0,0.00e+00,700,0),(0,0.00e+00,168,0),(0,0.00e+00,42,0),(0,0.00e+00,898,0),(0,0.00e+00,126,0),(0,0.00e+00,138,0),(0,0.00e+00,1628,0),(0,0.00e+00,596,0),(0,0.00e+00,170,0),(0,0.00e+00,30,0),(0,0.00e+00,1228,0),(0,0.00e+00,306,0),(0,0.00e+00,176,0),(0,0.00e+00,618,0),(0,0.00e+00,72,0),(0,0.00e+00,1588,0),(0,0.00e+00,860,0)][([3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01],[0,0,0,0,0,0,0,0,0,0],0,0),([3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01],[0,0,0,0,0,0,0,0,0,0],0,0),([3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01],[0,0,0,0,0,0,0,0,0,0],0,0),([3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01],[0,0,0,0,0,0,0,0,0,0],0,0)][([3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01],[0,0,0,0,0,0,0,0,0,0],0,0),([3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01],[0,0,0,0,0,0,0,0,0,0],0,0),([3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01],[0,0,0,0,0,0,0,0,0,0],0,0),([3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01],[0,0,0,0,0,0,0,0,0,0],0,0)][NA,NA,NA,NA][({"group":"adj"},0.00e+00,0.00e+00),({"group":"adj","pop":"nfe"},0.00e+00,0.00e+00),({"group":"adj","pop":"afr"},0.00e+00,0.00e+00),({"group":"adj","pop":"eas"},0.00e+00,0.00e+00),({"group":"adj","pop":"amr"},0.00e+00,0.00e+00),({"group":"adj"},0.00e+00,0.00e+00),({"group":"adj","pop":"nfe"},0.00e+00,0.00e+00),({"group":"adj","pop":"afr"},0.00e+00,0.00e+00),({"group":"adj","pop":"eas"},0.00e+00,0.00e+00),({"group":"adj","pop":"amr"},0.00e+00,0.00e+00),({"group":"adj"},0.00e+00,0.00e+00),({"group":"adj","pop":"nfe"},0.00e+00,0.00e+00),({"group":"adj","pop":"afr"},0.00e+00,0.00e+00),({"group":"adj","pop":"eas"},0.00e+00,0.00e+00),({"group":"adj","pop":"amr"},0.00e+00,0.00e+00),({"group":"adj"},0.00e+00,0.00e+00),({"group":"adj","pop":"nfe"},0.00e+00,0.00e+00),({"group":"adj","pop":"afr"},0.00e+00,0.00e+00),({"group":"adj","pop":"eas"},0.00e+00,0.00e+00),({"group":"adj","pop":"amr"},0.00e+00,0.00e+00)]TrueFalseTrueFalse"mixed""snv"2TrueTrue1.15e+002.49e-03-1.23e+002.51e+002.08e-01-9.11e-012.19e+012.01e+013.33e+011908083NAFalseNANAFalseFalseFalseNANA5.81e-03243227706TrueFalse9.94e-01FalseNANA95.81e-03NANANANANA{"AC0","RF"}[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][1,2,0,0,1,1,0,0,0,0,1,0,0,1,0,0,0,0,0,1]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][8661,775,603,1162,1158,559,798,516,193,244,176,93,180,37,65,45,90,12,62,167]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,1,4,1,1,0,1,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][2,9,23,48,90,140,242,440,710,949,1221,1301,1371,1371,1249,981,819,673,519,485]03065[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,3,4,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]003.67e+04"GRCh37""T/C"NANANA10114"1_10114_T/C""1\t10114\t.\tT\tC\t.\t.\tGT"NA"upstream_gene_variant"NA[(1,"CTCF_binding_site",["regulatory_region_variant"],"MODIFIER",1,"ENSR00001576074","C")]"1"101141[(1,NA,"unprocessed_pseudogene",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],4249,NA,NA,"ENSG00000227232",NA,"WASH7P","HGNC","38034",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,1,NA,NA,NA,NA,NA,NA,NA,-1,NA,"ENST00000423562",NA,NA,"C"),(1,NA,"unprocessed_pseudogene",1,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],4249,NA,NA,"ENSG00000227232",NA,"WASH7P","HGNC","38034",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,1,NA,NA,NA,NA,NA,NA,NA,-1,NA,"ENST00000438504",NA,NA,"C"),(1,NA,"transcribed_unprocessed_pseudogene",NA,NA,NA,NA,NA,NA,NA,["upstream_gene_variant"],1896,NA,NA,"ENSG00000223972",NA,"DDX11L1","HGNC","37102",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,1,NA,NA,NA,NA,NA,NA,NA,1,NA,"ENST00000450305",NA,NA,"C"),(1,NA,"processed_transcript",1,NA,NA,NA,NA,NA,NA,["upstream_gene_variant"],1755,NA,NA,"ENSG00000223972",NA,"DDX11L1","HGNC","37102",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,1,NA,NA,NA,NA,NA,NA,NA,1,NA,"ENST00000456328",NA,NA,"C"),(1,NA,"unprocessed_pseudogene",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],4290,NA,NA,"ENSG00000227232",NA,"WASH7P","HGNC","38034",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,1,NA,NA,NA,NA,NA,NA,NA,-1,NA,"ENST00000488147",NA,NA,"C"),(1,NA,"transcribed_unprocessed_pseudogene",NA,NA,NA,NA,NA,NA,NA,["upstream_gene_variant"],1758,NA,NA,"ENSG00000223972",NA,"DDX11L1","HGNC","37102",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,1,NA,NA,NA,NA,NA,NA,NA,1,NA,"ENST00000515242",NA,NA,"C"),(1,NA,"transcribed_unprocessed_pseudogene",NA,NA,NA,NA,NA,NA,NA,["upstream_gene_variant"],1760,NA,NA,"ENSG00000223972",NA,"DDX11L1","HGNC","37102",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,1,NA,NA,NA,NA,NA,NA,NA,1,NA,"ENST00000518655",NA,NA,"C"),(1,NA,"unprocessed_pseudogene",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],4297,NA,NA,"ENSG00000227232",NA,"WASH7P","HGNC","38034",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,1,NA,NA,NA,NA,NA,NA,NA,-1,NA,"ENST00000538476",NA,NA,"C"),(1,NA,"unprocessed_pseudogene",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],4249,NA,NA,"ENSG00000227232",NA,"WASH7P","HGNC","38034",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,1,NA,NA,NA,NA,NA,NA,NA,-1,NA,"ENST00000541675",NA,NA,"C")]"SNV"8.30e-02-2.05e-01NA1908083NANA2.19e+01NA2.08e-013.33e+01NA-1.23e+00NANA2.01e+01NA-9.11e-012.51e+00-1.51e+01"DP"NA["T","C"]
chr1:10114["TAACCCTAACCCTAACCCTAACCCTAACCCTAACCCCTAACCCTAACCCTAACCCTAACCCTAACCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCCTAACCCTAACCCTAAACCCTA","T"]FalseFalse1:10114[(1,1.14e-04,8734,0),(1,3.21e-05,31192,0),(0,0.00e+00,4054,0),(0,0.00e+00,1296,0),(0,0.00e+00,354,0),(0,0.00e+00,100,0),(0,0.00e+00,2168,0),(1,2.28e-03,438,0),(0,0.00e+00,324,0),(1,2.61e-04,3836,0),(0,0.00e+00,4898,0),(0,0.00e+00,1732,0),(0,0.00e+00,700,0),(0,0.00e+00,170,0),(0,0.00e+00,44,0),(0,0.00e+00,918,0),(1,7.69e-03,130,0),(0,0.00e+00,142,0),(0,0.00e+00,2322,0),(0,0.00e+00,596,0),(0,0.00e+00,184,0),(0,0.00e+00,56,0),(0,0.00e+00,1250,0),(0,0.00e+00,308,0),(0,0.00e+00,182,0),(0,0.00e+00,748,0),(0,0.00e+00,72,0),(0,0.00e+00,2370,0),(0,0.00e+00,864,0),(0,0.00e+00,1058,0),(0,0.00e+00,2196,0),(0,0.00e+00,844,0),(1,2.50e-04,3994,0),(0,0.00e+00,142,0),(0,0.00e+00,154,0),(0,0.00e+00,346,0),(0,0.00e+00,6,0),(0,0.00e+00,16,0),(0,0.00e+00,34,0),(0,0.00e+00,60,0),(0,0.00e+00,98,0),(0,0.00e+00,124,0),(0,0.00e+00,246,0),(0,0.00e+00,276,0),(0,0.00e+00,306,0),(0,0.00e+00,418,0),(0,0.00e+00,536,0),(0,0.00e+00,932,0),(0,0.00e+00,1070,0),(1,4.27e-04,2340,0),(1,3.72e-04,2690,0),(1,2.38e-04,4210,0),(1,1.83e-04,5456,0),(1,1.20e-04,8340,0),(0,0.00e+00,10,0),(0,0.00e+00,4,0),(0,0.00e+00,8,0),(0,0.00e+00,6,0),(0,0.00e+00,4,0),(0,0.00e+00,2,0),(0,0.00e+00,6,0),(0,0.00e+00,16,0),(0,0.00e+00,16,0),(0,0.00e+00,12,0),(0,0.00e+00,10,0),(0,0.00e+00,12,0),(0,0.00e+00,6,0),(0,0.00e+00,8,0),(0,0.00e+00,30,0),(0,0.00e+00,36,0),(0,0.00e+00,42,0),(0,0.00e+00,30,0),(0,0.00e+00,38,0),(0,0.00e+00,28,0),(0,0.00e+00,26,0),(0,0.00e+00,58,0),(0,0.00e+00,88,0),(0,0.00e+00,78,0),(0,0.00e+00,56,0),(0,0.00e+00,64,0),(0,0.00e+00,56,0),(0,0.00e+00,58,0),(0,0.00e+00,86,0),(0,0.00e+00,132,0),(0,0.00e+00,104,0),(0,0.00e+00,100,0),(0,0.00e+00,82,0),(0,0.00e+00,82,0),(0,0.00e+00,94,0),(0,0.00e+00,116,0),(0,0.00e+00,172,0),(0,0.00e+00,134,0),(0,0.00e+00,98,0),(1,8.33e-03,120,0),(0,0.00e+00,150,0),(0,0.00e+00,210,0),(0,0.00e+00,326,0),(0,0.00e+00,274,0),(0,0.00e+00,198,0),(1,4.17e-03,240,0),(0,0.00e+00,324,0),(0,0.00e+00,248,0),(0,0.00e+00,384,0),(0,0.00e+00,328,0),(0,0.00e+00,228,0),(1,3.52e-03,284,0),(0,0.00e+00,268,0),(0,0.00e+00,426,0),(0,0.00e+00,354,0),(0,0.00e+00,246,0),(1,3.21e-03,312,0),(0,0.00e+00,386,0),(0,0.00e+00,586,0),(0,0.00e+00,352,0),(1,2.28e-03,438,0),(0,0.00e+00,488,0),(0,0.00e+00,742,0),(0,0.00e+00,454,0),(0,0.00e+00,874,0),(0,0.00e+00,1296,0),(0,0.00e+00,844,0),(0,0.00e+00,982,0),(0,0.00e+00,984,0),(0,0.00e+00,2216,0),(0,0.00e+00,2168,0),(0,0.00e+00,2540,0),(0,0.00e+00,4054,0),(0,0.00e+00,3096,0),(0,0.00e+00,10778,0),(0,0.00e+00,1386,0),(0,0.00e+00,494,0),(0,0.00e+00,112,0),(0,0.00e+00,24,0),(0,0.00e+00,700,0),(0,0.00e+00,264,0),(0,0.00e+00,116,0),(0,0.00e+00,1406,0),(0,0.00e+00,1690,0),(0,0.00e+00,622,0),(0,0.00e+00,258,0),(0,0.00e+00,60,0),(0,0.00e+00,18,0),(0,0.00e+00,320,0),(0,0.00e+00,80,0),(0,0.00e+00,48,0),(0,0.00e+00,764,0),(0,0.00e+00,236,0),(0,0.00e+00,52,0),(0,0.00e+00,6,0),(0,0.00e+00,380,0),(0,0.00e+00,184,0),(0,0.00e+00,68,0),(0,0.00e+00,216,0),(0,0.00e+00,42,0),(0,0.00e+00,398,0),(0,0.00e+00,730,0),(1,1.81e-04,5526,0),(1,4.73e-05,21142,0),(0,0.00e+00,3216,0),(0,0.00e+00,494,0),(0,0.00e+00,194,0),(0,0.00e+00,66,0),(0,0.00e+00,922,0),(1,2.28e-03,438,0),(0,0.00e+00,196,0),(1,4.08e-04,2452,0),(0,0.00e+00,3074,0),(0,0.00e+00,1380,0),(0,0.00e+00,258,0),(0,0.00e+00,86,0),(0,0.00e+00,28,0),(0,0.00e+00,472,0),(1,7.69e-03,130,0),(0,0.00e+00,98,0),(0,0.00e+00,1836,0),(0,0.00e+00,236,0),(0,0.00e+00,108,0),(0,0.00e+00,38,0),(0,0.00e+00,450,0),(0,0.00e+00,308,0),(0,0.00e+00,98,0),(0,0.00e+00,512,0),(0,0.00e+00,40,0),(0,0.00e+00,1928,0),(0,0.00e+00,736,0),(1,1.30e-04,7716,0),(1,3.79e-05,26404,0),(0,0.00e+00,3138,0),(0,0.00e+00,1296,0),(0,0.00e+00,338,0),(0,0.00e+00,72,0),(0,0.00e+00,2126,0),(1,2.31e-03,432,0),(0,0.00e+00,314,0),(1,2.79e-04,3582,0),(0,0.00e+00,4134,0),(0,0.00e+00,1510,0),(0,0.00e+00,700,0),(0,0.00e+00,168,0),(0,0.00e+00,42,0),(0,0.00e+00,898,0),(1,7.94e-03,126,0),(0,0.00e+00,138,0),(0,0.00e+00,1628,0),(0,0.00e+00,596,0),(0,0.00e+00,170,0),(0,0.00e+00,30,0),(0,0.00e+00,1228,0),(0,0.00e+00,306,0),(0,0.00e+00,176,0),(0,0.00e+00,618,0),(0,0.00e+00,72,0),(0,0.00e+00,1588,0),(0,0.00e+00,860,0)][([3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01],[0,0,0,0,0,0,1,0,0,0],0,0),([3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01],[0,0,0,0,0,0,0,0,0,0],0,0),([3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01],[0,0,0,0,0,0,1,0,0,0],0,0),([3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01],[0,0,0,0,0,0,1,0,0,0],0,0)][([3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01],[0,0,0,0,0,0,0,0,0,0],0,0),([3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01],[0,0,0,0,0,0,0,0,0,0],0,0),([3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01],[0,0,0,0,0,0,0,0,0,0],0,0),([3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01],[0,0,0,0,0,0,0,0,0,0],0,0)][(1,2.28e-03,438,0,"eas"),NA,(1,2.28e-03,438,0,"eas"),(1,2.31e-03,432,0,"eas")][({"group":"adj"},0.00e+00,0.00e+00),({"group":"adj","pop":"nfe"},0.00e+00,0.00e+00),({"group":"adj","pop":"afr"},0.00e+00,0.00e+00),({"group":"adj","pop":"eas"},0.00e+00,0.00e+00),({"group":"adj","pop":"amr"},0.00e+00,0.00e+00),({"group":"adj"},0.00e+00,0.00e+00),({"group":"adj","pop":"nfe"},0.00e+00,0.00e+00),({"group":"adj","pop":"afr"},0.00e+00,0.00e+00),({"group":"adj","pop":"eas"},0.00e+00,0.00e+00),({"group":"adj","pop":"amr"},0.00e+00,0.00e+00),({"group":"adj"},9.00e-06,9.00e-06),({"group":"adj","pop":"nfe"},0.00e+00,0.00e+00),({"group":"adj","pop":"afr"},0.00e+00,0.00e+00),({"group":"adj","pop":"eas"},1.17e-04,1.17e-04),({"group":"adj","pop":"amr"},0.00e+00,0.00e+00),({"group":"adj"},6.00e-06,6.00e-06),({"group":"adj","pop":"nfe"},0.00e+00,0.00e+00),({"group":"adj","pop":"afr"},0.00e+00,0.00e+00),({"group":"adj","pop":"eas"},1.18e-04,1.18e-04),({"group":"adj","pop":"amr"},0.00e+00,0.00e+00)]TrueFalseTrueFalse"mixed""del"2TrueTrue5.60e+004.08e-03-1.23e+002.51e+002.08e-01-9.11e-012.19e+012.01e+013.33e+011908083NAFalseNANAFalseFalseFalseNANA7.79e-0334144024TrueTrue9.92e-01TrueNA1098796917.79e-03NA30615843NA9632693NA{"RF"}[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][8659,772,603,1160,1157,557,798,516,193,244,174,92,180,36,64,44,91,10,62,184]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][2,9,23,48,90,140,242,440,710,949,1221,1301,1371,1371,1249,981,819,673,519,485]03065[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0]003.67e+04"GRCh37""AACCCTAACCCTAACCCTAACCCTAACCCTAACCCCTAACCCTAACCCTAACCCTAACCCTAACCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCCTAACCCTAACCCTAAACCCTA/-"NANANA10255"1_10115_AACCCTAACCCTAACCCTAACCCTAACCCTAACCCCTAACCCTAACCCTAACCCTAACCCTAACCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCCTAACCCTAACCCTAAACCCTA/-""1\t10114\t.\tTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCCTAACCCTAACCCTAACCCTAACCCTAACCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCCTAACCCTAACCCTAAACCCTA\tT\t.\t.\tGT"NA"upstream_gene_variant"[(1,["TF_binding_site_variant","TFBS_ablation"],"N","MODERATE",1,"MA0341.1","Egr1:MA0341.1",NA,NA,-1,NA),(1,["TF_binding_site_variant","TFBS_ablation"],"N","MODERATE",1,"MA0366.1","Egr1:MA0366.1",NA,NA,-1,NA),(1,["TF_binding_site_variant","TFBS_ablation"],"N","MODERATE",1,"MA0341.1","Egr1:MA0341.1",NA,NA,-1,NA),(1,["TF_binding_site_variant","TFBS_ablation"],"N","MODERATE",1,"MA0366.1","Egr1:MA0366.1",NA,NA,-1,NA)][(1,"CTCF_binding_site",["regulatory_region_variant"],"MODIFIER",1,"ENSR00001576074",NA)]"1"101151[(1,NA,"unprocessed_pseudogene",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],4108,NA,NA,"ENSG00000227232",NA,"WASH7P","HGNC","38034",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,1,NA,NA,NA,NA,NA,NA,NA,-1,NA,"ENST00000423562",NA,NA,NA),(1,NA,"unprocessed_pseudogene",1,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],4108,NA,NA,"ENSG00000227232",NA,"WASH7P","HGNC","38034",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,1,NA,NA,NA,NA,NA,NA,NA,-1,NA,"ENST00000438504",NA,NA,NA),(1,NA,"transcribed_unprocessed_pseudogene",NA,NA,NA,NA,NA,NA,NA,["upstream_gene_variant"],1755,NA,NA,"ENSG00000223972",NA,"DDX11L1","HGNC","37102",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,1,NA,NA,NA,NA,NA,NA,NA,1,NA,"ENST00000450305",NA,NA,NA),(1,NA,"processed_transcript",1,NA,NA,NA,NA,NA,NA,["upstream_gene_variant"],1614,NA,NA,"ENSG00000223972",NA,"DDX11L1","HGNC","37102",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,1,NA,NA,NA,NA,NA,NA,NA,1,NA,"ENST00000456328",NA,NA,NA),(1,NA,"unprocessed_pseudogene",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],4149,NA,NA,"ENSG00000227232",NA,"WASH7P","HGNC","38034",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,1,NA,NA,NA,NA,NA,NA,NA,-1,NA,"ENST00000488147",NA,NA,NA),(1,NA,"transcribed_unprocessed_pseudogene",NA,NA,NA,NA,NA,NA,NA,["upstream_gene_variant"],1617,NA,NA,"ENSG00000223972",NA,"DDX11L1","HGNC","37102",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,1,NA,NA,NA,NA,NA,NA,NA,1,NA,"ENST00000515242",NA,NA,NA),(1,NA,"transcribed_unprocessed_pseudogene",NA,NA,NA,NA,NA,NA,NA,["upstream_gene_variant"],1619,NA,NA,"ENSG00000223972",NA,"DDX11L1","HGNC","37102",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,1,NA,NA,NA,NA,NA,NA,NA,1,NA,"ENST00000518655",NA,NA,NA),(1,NA,"unprocessed_pseudogene",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],4156,NA,NA,"ENSG00000227232",NA,"WASH7P","HGNC","38034",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,1,NA,NA,NA,NA,NA,NA,NA,-1,NA,"ENST00000538476",NA,NA,NA),(1,NA,"unprocessed_pseudogene",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],4108,NA,NA,"ENSG00000227232",NA,"WASH7P","HGNC","38034",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,1,NA,NA,NA,NA,NA,NA,NA,-1,NA,"ENST00000541675",NA,NA,NA)]"deletion"8.30e-02-2.05e-01NA1908083NANA2.19e+01NA2.08e-013.33e+01NA-1.23e+00NANA2.01e+01NA-9.11e-012.51e+00-1.51e+01"DP"NA["TAACCCTAACCCTAACCCTAACCCTAACCCTAACCCCTAACCCTAACCCTAACCCTAACCCTAACCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCCTAACCCTAACCCTAAACCCTA","T"]

showing top 5 rows

\n" + ], + "text/plain": [ + "+---------------+\n", + "| locus |\n", + "+---------------+\n", + "| locus |\n", + "+---------------+\n", + "| chr1:10067 |\n", + "| chr1:10108 |\n", + "| chr1:10109 |\n", + "| chr1:10114 |\n", + "| chr1:10114 |\n", + "+---------------+\n", "\n", "+------------------------------------------------------------------------------+\n", - "| joint.histograms.raw_qual_hists.dp_hist_all.bin_freq |\n", + "| alleles |\n", "+------------------------------------------------------------------------------+\n", - "| array |\n", + "| array |\n", "+------------------------------------------------------------------------------+\n", - "| [10,66,471,1445,2990,5808,6940,7906,7262,6236,4943,3919,3129,2527,1993,14... |\n", - "| [7,37,269,903,1948,4127,5519,7075,7322,6972,6095,5249,4374,3624,2893,2106... |\n", - "| [2,24,149,466,1201,2614,4035,5568,6331,6725,6267,5855,5101,4268,3465,2554... |\n", - "| [1,9,42,122,294,787,1537,2717,3751,4972,5404,5762,5875,5161,4526,3415,252... |\n", - "| [2,6,39,104,247,638,1325,2417,3685,5047,5927,6484,6763,6192,5525,4439,351... |\n", + "| [\"T\",\"TAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCC\"] |\n", + "| [\"CAACCCT\",\"C\"] |\n", + "| [\"AACCCT\",\"A\"] |\n", + "| [\"T\",\"C\"] |\n", + "| [\"TAACCCTAACCCTAACCCTAACCCTAACCCTAACCCCTAACCCTAACCCTAACCCTAACCCTAACCTAACC... |\n", "+------------------------------------------------------------------------------+\n", "\n", - "+-------------------------------------------------------+\n", - "| joint.histograms.raw_qual_hists.dp_hist_all.n_smaller |\n", - "+-------------------------------------------------------+\n", - "| int64 |\n", - "+-------------------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+-------------------------------------------------------+\n", - "\n", - "+------------------------------------------------------+\n", - "| joint.histograms.raw_qual_hists.dp_hist_all.n_larger |\n", - "+------------------------------------------------------+\n", - "| int64 |\n", - "+------------------------------------------------------+\n", - "| 744 |\n", - "| 1130 |\n", - "| 1487 |\n", - "| 2622 |\n", - "| 3743 |\n", - "+------------------------------------------------------+\n", + "+----------------------------+----------------+----------------+\n", + "| ReverseComplementedAlleles | SwappedAlleles | original_locus |\n", + "+----------------------------+----------------+----------------+\n", + "| bool | bool | locus |\n", + "+----------------------------+----------------+----------------+\n", + "| False | False | 1:10067 |\n", + "| False | False | 1:10108 |\n", + "| False | False | 1:10109 |\n", + "| False | False | 1:10114 |\n", + "| False | False | 1:10114 |\n", + "+----------------------------+----------------+----------------+\n", "\n", "+------------------------------------------------------------------------------+\n", - "| joint.histograms.raw_qual_hists.gq_hist_alt.bin_edges |\n", + "| freq |\n", "+------------------------------------------------------------------------------+\n", - "| array |\n", + "| array |\n", "+------------------------------------------------------------------------------+\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [(1,3.80e-05,26342,0),(3,9.55e-05,31414,0),(0,0.00e+00,13124,0),(1,3.75e-... |\n", + "| [(2,1.01e-03,1982,0),(2,6.49e-05,30832,0),(0,0.00e+00,1452,0),(1,2.27e-02... |\n", + "| [(19,6.42e-02,296,0),(31,1.01e-03,30766,0),(8,5.13e-02,156,0),(2,5.88e-02... |\n", + "| [(0,0.00e+00,8734,0),(8,2.56e-04,31192,0),(0,0.00e+00,4054,0),(0,0.00e+00... |\n", + "| [(1,1.14e-04,8734,0),(1,3.21e-05,31192,0),(0,0.00e+00,4054,0),(0,0.00e+00... |\n", "+------------------------------------------------------------------------------+\n", "\n", - "+------------------------------------------------------+\n", - "| joint.histograms.raw_qual_hists.gq_hist_alt.bin_freq |\n", - "+------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------+\n", - "| [0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,2,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,1,2,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0] |\n", - "+------------------------------------------------------+\n", - "\n", - "+-------------------------------------------------------+\n", - "| joint.histograms.raw_qual_hists.gq_hist_alt.n_smaller |\n", - "+-------------------------------------------------------+\n", - "| int64 |\n", - "+-------------------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+-------------------------------------------------------+\n", + "+------------------------------------------------------------------------------+\n", + "| age_hist_het |\n", + "+------------------------------------------------------------------------------+\n", + "| array, bin_freq: array, n_smaller... |\n", + "+------------------------------------------------------------------------------+\n", + "| [([3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+0... |\n", + "| [([3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+0... |\n", + "| [([3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+0... |\n", + "| [([3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+0... |\n", + "| [([3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+0... |\n", + "+------------------------------------------------------------------------------+\n", "\n", - "+------------------------------------------------------+\n", - "| joint.histograms.raw_qual_hists.gq_hist_alt.n_larger |\n", - "+------------------------------------------------------+\n", - "| int64 |\n", - "+------------------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+------------------------------------------------------+\n", + "+------------------------------------------------------------------------------+\n", + "| age_hist_hom |\n", + "+------------------------------------------------------------------------------+\n", + "| array, bin_freq: array, n_smaller... |\n", + "+------------------------------------------------------------------------------+\n", + "| [([3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+0... |\n", + "| [([3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+0... |\n", + "| [([3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+0... |\n", + "| [([3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+0... |\n", + "| [([3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+0... |\n", + "+------------------------------------------------------------------------------+\n", "\n", "+------------------------------------------------------------------------------+\n", - "| joint.histograms.raw_qual_hists.dp_hist_alt.bin_edges |\n", + "| popmax |\n", + "+------------------------------------------------------------------------------+\n", + "| array, faf95: float64, faf99: float64}> |\n", + "+------------------------------------------------------------------------------+\n", + "| [({\"group\":\"adj\"},0.00e+00,0.00e+00),({\"group\":\"adj\",\"pop\":\"nfe\"},0.00e+0... |\n", + "| [({\"group\":\"adj\"},1.79e-04,1.79e-04),({\"group\":\"adj\",\"pop\":\"nfe\"},0.00e+0... |\n", + "| [({\"group\":\"adj\"},4.20e-02,4.20e-02),({\"group\":\"adj\",\"pop\":\"nfe\"},2.55e-0... |\n", + "| [({\"group\":\"adj\"},0.00e+00,0.00e+00),({\"group\":\"adj\",\"pop\":\"nfe\"},0.00e+0... |\n", + "| [({\"group\":\"adj\"},0.00e+00,0.00e+00),({\"group\":\"adj\",\"pop\":\"nfe\"},0.00e+0... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+------+-------+--------+--------+--------------+-------------+---------------+\n", + "| lcr | decoy | segdup | nonpar | variant_type | allele_type | n_alt_alleles |\n", + "+------+-------+--------+--------+--------------+-------------+---------------+\n", + "| bool | bool | bool | bool | str | str | int32 |\n", + "+------+-------+--------+--------+--------------+-------------+---------------+\n", + "| True | False | True | False | \"indel\" | \"ins\" | 1 |\n", + "| True | False | True | False | \"indel\" | \"del\" | 1 |\n", + "| True | False | True | False | \"indel\" | \"del\" | 1 |\n", + "| True | False | True | False | \"mixed\" | \"snv\" | 2 |\n", + "| True | False | True | False | \"mixed\" | \"del\" | 2 |\n", + "+------+-------+--------+--------+--------------+-------------+---------------+\n", + "\n", + "+-----------+----------+----------+----------+----------------+----------+\n", + "| was_mixed | has_star | qd | pab_max | info_MQRankSum | info_SOR |\n", + "+-----------+----------+----------+----------+----------------+----------+\n", + "| bool | bool | float64 | float64 | float64 | float64 |\n", + "+-----------+----------+----------+----------+----------------+----------+\n", + "| False | False | 6.43e+00 | 1.00e+00 | 7.36e-01 | 4.21e-01 |\n", + "| False | False | 4.66e+00 | 1.80e-01 | 2.08e-01 | 8.55e-01 |\n", + "| False | True | 1.83e+00 | 1.00e+00 | -6.93e-01 | 4.88e+00 |\n", + "| True | True | 1.15e+00 | 2.49e-03 | -1.23e+00 | 2.51e+00 |\n", + "| True | True | 5.60e+00 | 4.08e-03 | -1.23e+00 | 2.51e+00 |\n", + "+-----------+----------+----------+----------+----------------+----------+\n", + "\n", + "+----------------------+---------------------+----------+----------+----------+\n", + "| info_InbreedingCoeff | info_ReadPosRankSum | info_FS | info_QD | info_MQ |\n", + "+----------------------+---------------------+----------+----------+----------+\n", + "| float64 | float64 | float64 | float64 | float64 |\n", + "+----------------------+---------------------+----------+----------+----------+\n", + "| -3.52e-02 | -7.27e-01 | 0.00e+00 | 1.38e+00 | 3.93e+01 |\n", + "| -3.00e-01 | 1.27e+00 | 1.90e+00 | 3.42e+01 | 3.96e+01 |\n", + "| 1.09e-01 | -9.31e-01 | 5.76e+01 | 3.06e+01 | 3.70e+01 |\n", + "| 2.08e-01 | -9.11e-01 | 2.19e+01 | 2.01e+01 | 3.33e+01 |\n", + "| 2.08e-01 | -9.11e-01 | 2.19e+01 | 2.01e+01 | 3.33e+01 |\n", + "+----------------------+---------------------+----------+----------+----------+\n", + "\n", + "+---------+-----------------------+-------------------+\n", + "| info_DP | transmitted_singleton | fail_hard_filters |\n", + "+---------+-----------------------+-------------------+\n", + "| int32 | bool | bool |\n", + "+---------+-----------------------+-------------------+\n", + "| 2040956 | NA | True |\n", + "| 2147991 | NA | False |\n", + "| 2134891 | NA | False |\n", + "| 1908083 | NA | False |\n", + "| 1908083 | NA | False |\n", + "+---------+-----------------------+-------------------+\n", + "\n", + "+--------------------------+--------------------------+-------+-------+-------+\n", + "| info_POSITIVE_TRAIN_SITE | info_NEGATIVE_TRAIN_SITE | omni | mills | tp |\n", + "+--------------------------+--------------------------+-------+-------+-------+\n", + "| bool | bool | bool | bool | bool |\n", + "+--------------------------+--------------------------+-------+-------+-------+\n", + "| NA | NA | False | False | False |\n", + "| NA | NA | False | False | False |\n", + "| NA | NA | False | False | False |\n", + "| NA | NA | False | False | False |\n", + "| NA | NA | False | False | False |\n", + "+--------------------------+--------------------------+-------+-------+-------+\n", + "\n", + "+----------+----------+----------------+-----------+-----------+-----------+\n", + "| rf_train | rf_label | rf_probability | rank | was_split | singleton |\n", + "+----------+----------+----------------+-----------+-----------+-----------+\n", + "| bool | str | float64 | int64 | bool | bool |\n", + "+----------+----------+----------------+-----------+-----------+-----------+\n", + "| True | \"FP\" | 1.49e-01 | 29846037 | False | False |\n", + "| NA | NA | 5.10e-02 | 31936632 | False | False |\n", + "| NA | NA | 4.41e-03 | 34836964 | True | False |\n", + "| NA | NA | 5.81e-03 | 243227706 | True | False |\n", + "| NA | NA | 7.79e-03 | 34144024 | True | True |\n", + "+----------+----------+----------------+-----------+-----------+-----------+\n", + "\n", + "+----------+------------+----------------+----------------+----------+\n", + "| _score | _singleton | biallelic_rank | singleton_rank | n_nonref |\n", + "+----------+------------+----------------+----------------+----------+\n", + "| float64 | bool | int64 | int64 | int32 |\n", + "+----------+------------+----------------+----------------+----------+\n", + "| 8.51e-01 | False | 15142389 | NA | 3 |\n", + "| 9.49e-01 | False | 15649487 | NA | 5 |\n", + "| 9.96e-01 | False | NA | NA | 44 |\n", + "| 9.94e-01 | False | NA | NA | 9 |\n", + "| 9.92e-01 | True | NA | 10987969 | 1 |\n", + "+----------+------------+----------------+----------------+----------+\n", + "\n", + "+----------+------------------------------+----------+--------------------+\n", + "| score | adj_biallelic_singleton_rank | adj_rank | adj_biallelic_rank |\n", + "+----------+------------------------------+----------+--------------------+\n", + "| float64 | int64 | int64 | int64 |\n", + "+----------+------------------------------+----------+--------------------+\n", + "| 1.49e-01 | NA | 27460496 | 13856404 |\n", + "| 5.10e-02 | NA | 29036786 | 14252110 |\n", + "| 4.41e-03 | NA | 31102141 | NA |\n", + "| 5.81e-03 | NA | NA | NA |\n", + "| 7.79e-03 | NA | 30615843 | NA |\n", + "+----------+------------------------------+----------+--------------------+\n", + "\n", + "+--------------------+--------------------------+--------------+\n", + "| adj_singleton_rank | biallelic_singleton_rank | filters |\n", + "+--------------------+--------------------------+--------------+\n", + "| int64 | int64 | set |\n", + "+--------------------+--------------------------+--------------+\n", + "| NA | NA | {\"RF\"} |\n", + "| NA | NA | {\"RF\"} |\n", + "| NA | NA | {\"RF\"} |\n", + "| NA | NA | {\"AC0\",\"RF\"} |\n", + "| 9632693 | NA | {\"RF\"} |\n", + "+--------------------+--------------------------+--------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| gq_hist_alt.bin_edges |\n", "+------------------------------------------------------------------------------+\n", "| array |\n", "+------------------------------------------------------------------------------+\n", @@ -12093,413 +14209,413 @@ "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", "+------------------------------------------------------------------------------+\n", "\n", - "+------------------------------------------------------+\n", - "| joint.histograms.raw_qual_hists.dp_hist_alt.bin_freq |\n", - "+------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------+\n", - "| [0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,2,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,3,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,1,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "+------------------------------------------------------+\n", - "\n", - "+-------------------------------------------------------+\n", - "| joint.histograms.raw_qual_hists.dp_hist_alt.n_smaller |\n", - "+-------------------------------------------------------+\n", - "| int64 |\n", - "+-------------------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+-------------------------------------------------------+\n", + "+-------------------------------------------+-----------------------+\n", + "| gq_hist_alt.bin_freq | gq_hist_alt.n_smaller |\n", + "+-------------------------------------------+-----------------------+\n", + "| array | int64 |\n", + "+-------------------------------------------+-----------------------+\n", + "| [0,0,0,0,1,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0] | 0 |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1] | 0 |\n", + "| [0,4,2,1,1,7,2,2,1,1,0,1,1,1,1,0,1,0,0,5] | 0 |\n", + "| [1,2,0,0,1,1,0,0,0,0,1,0,0,1,0,0,0,0,0,1] | 0 |\n", + "| [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0] | 0 |\n", + "+-------------------------------------------+-----------------------+\n", "\n", - "+------------------------------------------------------+\n", - "| joint.histograms.raw_qual_hists.dp_hist_alt.n_larger |\n", - "+------------------------------------------------------+\n", - "| int64 |\n", - "+------------------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+------------------------------------------------------+\n", + "+----------------------+\n", + "| gq_hist_alt.n_larger |\n", + "+----------------------+\n", + "| int64 |\n", + "+----------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+----------------------+\n", "\n", "+------------------------------------------------------------------------------+\n", - "| joint.histograms.raw_qual_hists.ab_hist_alt.bin_edges |\n", + "| gq_hist_all.bin_edges |\n", "+------------------------------------------------------------------------------+\n", "| array |\n", "+------------------------------------------------------------------------------+\n", - "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", - "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", - "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", - "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", - "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", "+------------------------------------------------------------------------------+\n", "\n", - "+------------------------------------------------------+\n", - "| joint.histograms.raw_qual_hists.ab_hist_alt.bin_freq |\n", - "+------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------+\n", - "| [0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,3,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "+------------------------------------------------------+\n", - "\n", - "+-------------------------------------------------------+\n", - "| joint.histograms.raw_qual_hists.ab_hist_alt.n_smaller |\n", - "+-------------------------------------------------------+\n", - "| int64 |\n", - "+-------------------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+-------------------------------------------------------+\n", - "\n", - "+------------------------------------------------------+\n", - "| joint.histograms.raw_qual_hists.ab_hist_alt.n_larger |\n", - "+------------------------------------------------------+\n", - "| int64 |\n", - "+------------------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+------------------------------------------------------+\n", - "\n", "+------------------------------------------------------------------------------+\n", - "| joint.histograms.age_hists.age_hist_het.bin_edges |\n", + "| gq_hist_all.bin_freq |\n", "+------------------------------------------------------------------------------+\n", - "| array |\n", + "| array |\n", "+------------------------------------------------------------------------------+\n", - "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", - "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", - "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", - "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", - "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [1949,163,179,242,270,286,314,378,357,448,611,483,1069,368,826,491,1015,2... |\n", + "| [14116,107,108,94,86,90,88,83,56,64,76,43,58,32,33,35,51,27,38,131] |\n", + "| [14814,196,99,120,70,27,18,7,4,6,3,2,1,2,2,0,1,0,0,11] |\n", + "| [8661,775,603,1162,1158,559,798,516,193,244,176,93,180,37,65,45,90,12,62,... |\n", + "| [8659,772,603,1160,1157,557,798,516,193,244,174,92,180,36,64,44,91,10,62,... |\n", "+------------------------------------------------------------------------------+\n", "\n", - "+--------------------------------------------------+\n", - "| joint.histograms.age_hists.age_hist_het.bin_freq |\n", - "+--------------------------------------------------+\n", - "| array |\n", - "+--------------------------------------------------+\n", - "| [0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,1,0,0,1,0,0,0,0,0] |\n", - "| [0,0,1,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,1,0,1,0,0,0,0,0] |\n", - "+--------------------------------------------------+\n", - "\n", - "+---------------------------------------------------+\n", - "| joint.histograms.age_hists.age_hist_het.n_smaller |\n", - "+---------------------------------------------------+\n", - "| int64 |\n", - "+---------------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+---------------------------------------------------+\n", - "\n", - "+--------------------------------------------------+\n", - "| joint.histograms.age_hists.age_hist_het.n_larger |\n", - "+--------------------------------------------------+\n", - "| int64 |\n", - "+--------------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+--------------------------------------------------+\n", + "+-----------------------+----------------------+\n", + "| gq_hist_all.n_smaller | gq_hist_all.n_larger |\n", + "+-----------------------+----------------------+\n", + "| int64 | int64 |\n", + "+-----------------------+----------------------+\n", + "| 0 | 0 |\n", + "| 0 | 0 |\n", + "| 0 | 0 |\n", + "| 0 | 0 |\n", + "| 0 | 0 |\n", + "+-----------------------+----------------------+\n", "\n", "+------------------------------------------------------------------------------+\n", - "| joint.histograms.age_hists.age_hist_hom.bin_edges |\n", + "| dp_hist_alt.bin_edges |\n", "+------------------------------------------------------------------------------+\n", "| array |\n", "+------------------------------------------------------------------------------+\n", - "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", - "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", - "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", - "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", - "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", "+------------------------------------------------------------------------------+\n", "\n", - "+--------------------------------------------------+\n", - "| joint.histograms.age_hists.age_hist_hom.bin_freq |\n", - "+--------------------------------------------------+\n", - "| array |\n", - "+--------------------------------------------------+\n", - "| [0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,0,0,0,0,0] |\n", - "+--------------------------------------------------+\n", - "\n", - "+---------------------------------------------------+\n", - "| joint.histograms.age_hists.age_hist_hom.n_smaller |\n", - "+---------------------------------------------------+\n", - "| int64 |\n", - "+---------------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+---------------------------------------------------+\n", + "+-------------------------------------------+-----------------------+\n", + "| dp_hist_alt.bin_freq | dp_hist_alt.n_smaller |\n", + "+-------------------------------------------+-----------------------+\n", + "| array | int64 |\n", + "+-------------------------------------------+-----------------------+\n", + "| [2,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] | 0 |\n", + "| [0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] | 0 |\n", + "| [0,1,1,4,7,7,4,3,2,2,0,0,0,0,0,0,0,0,0,0] | 0 |\n", + "| [0,0,0,0,1,4,1,1,0,1,0,0,0,0,0,0,0,0,0,0] | 0 |\n", + "| [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0] | 0 |\n", + "+-------------------------------------------+-----------------------+\n", "\n", - "+--------------------------------------------------+--------------------------+\n", - "| joint.histograms.age_hists.age_hist_hom.n_larger | joint.flags |\n", - "+--------------------------------------------------+--------------------------+\n", - "| int64 | set |\n", - "+--------------------------------------------------+--------------------------+\n", - "| 0 | {\"not_called_in_exomes\"} |\n", - "| 0 | {\"not_called_in_exomes\"} |\n", - "| 0 | {\"not_called_in_exomes\"} |\n", - "| 0 | {\"not_called_in_exomes\"} |\n", - "| 0 | {\"not_called_in_exomes\"} |\n", - "+--------------------------------------------------+--------------------------+\n", + "+----------------------+\n", + "| dp_hist_alt.n_larger |\n", + "+----------------------+\n", + "| int64 |\n", + "+----------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+----------------------+\n", "\n", "+------------------------------------------------------------------------------+\n", - "| joint.freq_comparison_stats.contingency_table_test |\n", + "| dp_hist_all.bin_edges |\n", "+------------------------------------------------------------------------------+\n", - "| array |\n", + "| array |\n", "+------------------------------------------------------------------------------+\n", - "| [NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,... |\n", - "| [NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,... |\n", - "| [NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,... |\n", - "| [NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,... |\n", - "| [NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", "+------------------------------------------------------------------------------+\n", "\n", - "+------------------------------------------------------------------+\n", - "| joint.freq_comparison_stats.cochran_mantel_haenszel_test.p_value |\n", - "+------------------------------------------------------------------+\n", - "| float64 |\n", - "+------------------------------------------------------------------+\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "+------------------------------------------------------------------+\n", - "\n", - "+----------------------------------------------------------------+\n", - "| joint.freq_comparison_stats.cochran_mantel_haenszel_test.chisq |\n", - "+----------------------------------------------------------------+\n", - "| float64 |\n", - "+----------------------------------------------------------------+\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "+----------------------------------------------------------------+\n", - "\n", - "+------------------------------------------------+\n", - "| joint.freq_comparison_stats.stat_union.p_value |\n", - "+------------------------------------------------+\n", - "| float64 |\n", - "+------------------------------------------------+\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "+------------------------------------------------+\n", + "+------------------------------------------------------------------------------+\n", + "| dp_hist_all.bin_freq |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [3,3,8,18,30,55,95,190,324,554,834,1132,1343,1372,1367,1295,1125,925,766,... |\n", + "| [2,4,17,26,34,58,129,205,329,593,770,987,1155,1239,1324,1204,1051,941,816... |\n", + "| [2,6,18,34,45,72,136,232,356,629,774,1005,1168,1211,1307,1178,1036,922,80... |\n", + "| [2,9,23,48,90,140,242,440,710,949,1221,1301,1371,1371,1249,981,819,673,51... |\n", + "| [2,9,23,48,90,140,242,440,710,949,1221,1301,1371,1371,1249,981,819,673,51... |\n", + "+------------------------------------------------------------------------------+\n", "\n", - "+-------------------------------------------------------+\n", - "| joint.freq_comparison_stats.stat_union.stat_test_name |\n", - "+-------------------------------------------------------+\n", - "| str |\n", - "+-------------------------------------------------------+\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "+-------------------------------------------------------+\n", + "+-----------------------+----------------------+\n", + "| dp_hist_all.n_smaller | dp_hist_all.n_larger |\n", + "+-----------------------+----------------------+\n", + "| int64 | int64 |\n", + "+-----------------------+----------------------+\n", + "| 0 | 3596 |\n", + "| 0 | 4104 |\n", + "| 0 | 4057 |\n", + "| 0 | 3065 |\n", + "| 0 | 3065 |\n", + "+-----------------------+----------------------+\n", "\n", - "+-------------------------------------------------+---------------------+\n", - "| joint.freq_comparison_stats.stat_union.gen_ancs | coverage.exome.mean |\n", - "+-------------------------------------------------+---------------------+\n", - "| array | float64 |\n", - "+-------------------------------------------------+---------------------+\n", - "| NA | NA |\n", - "| NA | NA |\n", - "| NA | NA |\n", - "| NA | NA |\n", - "| NA | NA |\n", - "+-------------------------------------------------+---------------------+\n", + "+------------------------------------------------------------------------------+\n", + "| ab_hist_alt.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "+------------------------------------------------------------------------------+\n", "\n", - "+------------------------------+-------------------------+\n", - "| coverage.exome.median_approx | coverage.exome.total_DP |\n", - "+------------------------------+-------------------------+\n", - "| int32 | int64 |\n", - "+------------------------------+-------------------------+\n", - "| NA | NA |\n", - "| NA | NA |\n", - "| NA | NA |\n", - "| NA | NA |\n", - "| NA | NA |\n", - "+------------------------------+-------------------------+\n", + "+-------------------------------------------+-----------------------+\n", + "| ab_hist_alt.bin_freq | ab_hist_alt.n_smaller |\n", + "+-------------------------------------------+-----------------------+\n", + "| array | int64 |\n", + "+-------------------------------------------+-----------------------+\n", + "| [0,0,0,0,1,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0] | 0 |\n", + "| [0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] | 0 |\n", + "| [0,0,0,6,5,6,5,4,2,1,0,1,1,0,0,0,0,0,0,0] | 0 |\n", + "| [0,3,4,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] | 0 |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0] | 0 |\n", + "+-------------------------------------------+-----------------------+\n", "\n", - "+-----------------------+-----------------------+------------------------+\n", - "| coverage.exome.over_1 | coverage.exome.over_5 | coverage.exome.over_10 |\n", - "+-----------------------+-----------------------+------------------------+\n", - "| float64 | float64 | float64 |\n", - "+-----------------------+-----------------------+------------------------+\n", - "| NA | NA | NA |\n", - "| NA | NA | NA |\n", - "| NA | NA | NA |\n", - "| NA | NA | NA |\n", - "| NA | NA | NA |\n", - "+-----------------------+-----------------------+------------------------+\n", + "+----------------------+----------+-------------------+\n", + "| ab_hist_alt.n_larger | qual | vep.assembly_name |\n", + "+----------------------+----------+-------------------+\n", + "| int64 | float64 | str |\n", + "+----------------------+----------+-------------------+\n", + "| 0 | 3.04e+01 | \"GRCh37\" |\n", + "| 0 | 4.65e+04 | \"GRCh37\" |\n", + "| 0 | 8.98e+04 | \"GRCh37\" |\n", + "| 0 | 3.67e+04 | \"GRCh37\" |\n", + "| 0 | 3.67e+04 | \"GRCh37\" |\n", + "+----------------------+----------+-------------------+\n", "\n", - "+------------------------+------------------------+------------------------+\n", - "| coverage.exome.over_15 | coverage.exome.over_20 | coverage.exome.over_25 |\n", - "+------------------------+------------------------+------------------------+\n", - "| float64 | float64 | float64 |\n", - "+------------------------+------------------------+------------------------+\n", - "| NA | NA | NA |\n", - "| NA | NA | NA |\n", - "| NA | NA | NA |\n", - "| NA | NA | NA |\n", - "| NA | NA | NA |\n", - "+------------------------+------------------------+------------------------+\n", + "+------------------------------------------------------------------------------+\n", + "| vep.allele_string |\n", + "+------------------------------------------------------------------------------+\n", + "| str |\n", + "+------------------------------------------------------------------------------+\n", + "| \"-/AACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCC\" |\n", + "| \"AACCCT/-\" |\n", + "| \"ACCCT/-\" |\n", + "| \"T/C\" |\n", + "| \"AACCCTAACCCTAACCCTAACCCTAACCCTAACCCCTAACCCTAACCCTAACCCTAACCCTAACCTAACCCT... |\n", + "+------------------------------------------------------------------------------+\n", "\n", - "+------------------------+------------------------+-------------------------+\n", - "| coverage.exome.over_30 | coverage.exome.over_50 | coverage.exome.over_100 |\n", - "+------------------------+------------------------+-------------------------+\n", - "| float64 | float64 | float64 |\n", - "+------------------------+------------------------+-------------------------+\n", - "| NA | NA | NA |\n", - "| NA | NA | NA |\n", - "| NA | NA | NA |\n", - "| NA | NA | NA |\n", - "| NA | NA | NA |\n", - "+------------------------+------------------------+-------------------------+\n", + "+---------------+\n", + "| vep.ancestral |\n", + "+---------------+\n", + "| str |\n", + "+---------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+---------------+\n", "\n", - "+----------------------+-------------------------------+\n", - "| coverage.genome.mean | coverage.genome.median_approx |\n", - "+----------------------+-------------------------------+\n", - "| float64 | int32 |\n", - "+----------------------+-------------------------------+\n", - "| 3.74e+01 | 38 |\n", - "| 4.29e+01 | 44 |\n", - "| 4.42e+01 | 47 |\n", - "| 4.54e+01 | 51 |\n", - "| 5.43e+01 | 58 |\n", - "+----------------------+-------------------------------+\n", + "+------------------------------------------------------------------------------+\n", + "| vep.colocated_variants |\n", + "+------------------------------------------------------------------------------+\n", + "| array, impact: st... |\n", + "+------------------------------------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+-----------------------------+\n", + "| vep.most_severe_consequence |\n", + "+-----------------------------+\n", + "| str |\n", + "+-----------------------------+\n", + "| \"upstream_gene_variant\" |\n", + "| \"upstream_gene_variant\" |\n", + "| \"upstream_gene_variant\" |\n", + "| \"upstream_gene_variant\" |\n", + "| \"upstream_gene_variant\" |\n", + "+-----------------------------+\n", "\n", "+------------------------------------------------------------------------------+\n", - "| transcript_consequences |\n", + "| vep.motif_feature_consequences |\n", "+------------------------------------------------------------------------------+\n", - "| array, domains: set, high_inf_p... |\n", "+------------------------------------------------------------------------------+\n", - "| [] |\n", - "| [] |\n", - "| [] |\n", - "| [] |\n", - "| [] |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| [(1,[\"TF_binding_site_variant\",\"TFBS_ablation\"],\"N\",\"MODERATE\",1,\"MA0341.... |\n", "+------------------------------------------------------------------------------+\n", "\n", - "+---------------+---------------------------------------------+---------------+\n", - "| caid | vrs.ref.allele_id | vrs.ref.start |\n", - "+---------------+---------------------------------------------+---------------+\n", - "| str | str | int32 |\n", - "+---------------+---------------------------------------------+---------------+\n", - "| \"CA997563811\" | \"ga4gh:VA.oTAtTrgYxm81O9fu6Mrhfo1t3eHsgg4L\" | 10030 |\n", - "| \"CA997563812\" | \"ga4gh:VA.6pIoPAYDsphCprRcyrititenuEWlZaxV\" | 10036 |\n", - "| \"CA997563813\" | \"ga4gh:VA.HdrkFJS16zwJPcGSKX9___fJcdqSATlQ\" | 10042 |\n", - "| \"CA997563814\" | \"ga4gh:VA.xis4Nhtveh7q75mtkipQAUqZfWUfboWB\" | 10054 |\n", - "| \"CA997563815\" | \"ga4gh:VA.TV0UyS-jCvsVkEOMbipUnzTc4hYuVNTg\" | 10056 |\n", - "+---------------+---------------------------------------------+---------------+\n", + "+------------------------------------------------------------------------------+\n", + "| vep.regulatory_feature_consequences |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [\"T\",\"TAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCC\"] |\n", + "| [\"CAACCCT\",\"C\"] |\n", + "| [\"AACCCT\",\"A\"] |\n", + "| [\"T\",\"C\"] |\n", + "| [\"TAACCCTAACCCTAACCCTAACCCTAACCCTAACCCCTAACCCTAACCCTAACCCTAACCCTAACCTAACC... |\n", + "+------------------------------------------------------------------------------+\n", "showing top 5 rows" ] }, @@ -12546,7 +14662,7 @@ "height": "calc(100% - 180px)", "left": "10px", "top": "150px", - "width": "418.428px" + "width": "220.42px" }, "toc_section_display": true, "toc_window_display": true From 397c14ff92da1954a53c3b236485af3c7ef382d6 Mon Sep 17 00:00:00 2001 From: jkgoodrich <33063077+jkgoodrich@users.noreply.github.com> Date: Wed, 15 Jan 2025 10:19:27 -0700 Subject: [PATCH 081/121] Apply suggestions from code review Co-authored-by: Qin He <44242118+KoalaQin@users.noreply.github.com> --- gnomad_toolbox/filtering/variant.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/gnomad_toolbox/filtering/variant.py b/gnomad_toolbox/filtering/variant.py index 410ba18..cb1842f 100644 --- a/gnomad_toolbox/filtering/variant.py +++ b/gnomad_toolbox/filtering/variant.py @@ -103,7 +103,7 @@ def filter_by_gene_symbol(gene: str, exon_padding_bp: int = 75, **kwargs) -> hl. This function is to match the number of variants that you will get in the gnomAD browser when you search for a gene symbol. The gnomAD browser - filters to only variants located in or within 75 base pairs of a coding exon. + filters to only variants located in or within 75 base pairs of CDS or non-coding exons of a gene. :param gene: Gencode gene symbol. :param exon_padding_bp: Number of base pairs to pad the intervals. Default is 75bp. From b143d277b90d1ee9899f286faefa31c3506b6864 Mon Sep 17 00:00:00 2001 From: jkgoodrich <33063077+jkgoodrich@users.noreply.github.com> Date: Wed, 15 Jan 2025 10:41:01 -0700 Subject: [PATCH 082/121] Add comment explaining why we support a subset of the versions available --- gnomad_toolbox/load_data.py | 6 ++++++ 1 file changed, 6 insertions(+) diff --git a/gnomad_toolbox/load_data.py b/gnomad_toolbox/load_data.py index 1a29ea2..488a177 100644 --- a/gnomad_toolbox/load_data.py +++ b/gnomad_toolbox/load_data.py @@ -13,6 +13,12 @@ "GRCh37": grch37_res, "GRCh38": grch38_res, } +# In the toolbox, for each dataset, we only support loading the most recent versions +# for each reference genome build (GRCh37 and GRCh38) and data type (exomes, genomes, +# joint). Older versions are not supported because they are less complete datasets, and +# some may have errors that have been fixed in newer versions. If other versions are +# actually needed, they can be loaded using `gnomad_methods` or directly loading the +# Table with hl.read_table. VARIANT_DATA = { "2.1.1": { "reference_genome": "GRCh37", From 5a71f8c26e3a3f2c27cf321607d022e31c63690e Mon Sep 17 00:00:00 2001 From: jkgoodrich <33063077+jkgoodrich@users.noreply.github.com> Date: Wed, 15 Jan 2025 11:03:13 -0700 Subject: [PATCH 083/121] Apply suggestions from code review Co-authored-by: Qin He <44242118+KoalaQin@users.noreply.github.com> --- gnomad_toolbox/load_data.py | 6 ++---- 1 file changed, 2 insertions(+), 4 deletions(-) diff --git a/gnomad_toolbox/load_data.py b/gnomad_toolbox/load_data.py index 488a177..9f36c2a 100644 --- a/gnomad_toolbox/load_data.py +++ b/gnomad_toolbox/load_data.py @@ -154,7 +154,7 @@ def set_default_data( # Validate version. if version not in VARIANT_DATA: - raise ValueError(f"Version {version} is not a supported gnomAD version.") + raise ValueError(f"Version {version} is not a supported gnomAD version in the Toolbox.") # Validate data type for the version. version_info = VARIANT_DATA[version] @@ -192,9 +192,7 @@ def _get_dataset( return ht # Validate dataset. - dataset_info = SUPPORTED_DATASETS.get(dataset) - if dataset_info is None: - dataset_info = SUPPORTED_REFERENCE_DATA.get(dataset) + dataset_info = SUPPORTED_DATASETS.get(dataset) or SUPPORTED_REFERENCE_DATA.get(dataset) if dataset_info is None: raise ValueError( From 836994d1b902f4bc75246950695cef42065816f0 Mon Sep 17 00:00:00 2001 From: jkgoodrich <33063077+jkgoodrich@users.noreply.github.com> Date: Wed, 15 Jan 2025 11:04:08 -0700 Subject: [PATCH 084/121] Filter to only canonical in filter_to_plofs --- gnomad_toolbox/filtering/vep.py | 18 +++++++----------- 1 file changed, 7 insertions(+), 11 deletions(-) diff --git a/gnomad_toolbox/filtering/vep.py b/gnomad_toolbox/filtering/vep.py index 36cdbfa..dc78540 100644 --- a/gnomad_toolbox/filtering/vep.py +++ b/gnomad_toolbox/filtering/vep.py @@ -205,16 +205,13 @@ def filter_to_plofs( """ Filter to observed pLoF variants used for gene constraint metrics. - .. note:: + The pLOF variant count displayed on the browser meets the following requirements: - pLOF variants meets the following requirements: - - - PASS variant QC - - SNV - - Allele frequency ≤ 0.1% - - High-confidence LOFTEE in the Canonical or MANE Select transcript (depends - on the version) - - ≥ a specified coverage threshold (depends on the version) + - PASS variant QC + - SNV + - Allele frequency ≤ 0.1% + - High-confidence LOFTEE in the MANE Select or Canonical transcript + - ≥ a specified coverage threshold (depends on the version) :param gene_symbol: Gene symbol. :param version: Optional gnomAD dataset version. If not provided, uses the gnomAD @@ -280,8 +277,7 @@ def filter_to_plofs( variant_ht = filter_to_high_confidence_loftee( gene_symbol=gene_symbol, ht=variant_ht, - mane_select_only=constraint_info["mane_select"], - canonical_only=constraint_info["canonical"], + canonical_only=True, ) return variant_ht From e56464be7334e5beb9402ac459d5e6e421b088a5 Mon Sep 17 00:00:00 2001 From: jkgoodrich <33063077+jkgoodrich@users.noreply.github.com> Date: Wed, 15 Jan 2025 11:04:45 -0700 Subject: [PATCH 085/121] Don't need the MANE and canonical constraint config --- gnomad_toolbox/load_data.py | 4 ---- 1 file changed, 4 deletions(-) diff --git a/gnomad_toolbox/load_data.py b/gnomad_toolbox/load_data.py index 488a177..a9ef582 100644 --- a/gnomad_toolbox/load_data.py +++ b/gnomad_toolbox/load_data.py @@ -69,16 +69,12 @@ "exome_coverage_field": "median", "exome_coverage_cutoff": 30, "af_cutoff": 0.001, - "mane_select": False, - "canonical": True, }, "4.1": { "reference_genome": "GRCh38", "exome_coverage_field": "median_approx", "exome_coverage_cutoff": 30, "af_cutoff": 0.001, - "mane_select": True, - "canonical": False, }, } LIFTOVER_DATA = { From de240b54f15cd09d85178e579df57c6d7077f617 Mon Sep 17 00:00:00 2001 From: jkgoodrich <33063077+jkgoodrich@users.noreply.github.com> Date: Wed, 15 Jan 2025 11:12:42 -0700 Subject: [PATCH 086/121] Fix table in `get_gnomad_release` docstring --- gnomad_toolbox/load_data.py | 44 +++++++++++++++++++------------------ 1 file changed, 23 insertions(+), 21 deletions(-) diff --git a/gnomad_toolbox/load_data.py b/gnomad_toolbox/load_data.py index 6fdac1b..d02af7b 100644 --- a/gnomad_toolbox/load_data.py +++ b/gnomad_toolbox/load_data.py @@ -150,7 +150,9 @@ def set_default_data( # Validate version. if version not in VARIANT_DATA: - raise ValueError(f"Version {version} is not a supported gnomAD version in the Toolbox.") + raise ValueError( + f"Version {version} is not a supported gnomAD version in the Toolbox." + ) # Validate data type for the version. version_info = VARIANT_DATA[version] @@ -188,7 +190,9 @@ def _get_dataset( return ht # Validate dataset. - dataset_info = SUPPORTED_DATASETS.get(dataset) or SUPPORTED_REFERENCE_DATA.get(dataset) + dataset_info = SUPPORTED_DATASETS.get(dataset) or SUPPORTED_REFERENCE_DATA.get( + dataset + ) if dataset_info is None: raise ValueError( @@ -257,32 +261,30 @@ def get_gnomad_release( :widths: auto +--------------+--------------+---------+------------------------------+ - | Dataset | Genome Build | Version | Data Types | + | Genome Build | Dataset | Version | Data Types | +==============+==============+=========+==============================+ - | variant | GRCh37 | 2.1.1 | exomes, genomes | + | GRCh37 | variant | 2.1.1 | exomes, genomes | | +--------------+---------+------------------------------+ - | | GRCh38 | 4.1 | exomes, genomes, joint | - +--------------+--------------+---------+------------------------------+ - | coverage | GRCh37 | 2.1 | exomes, genomes | + | | coverage | 2.1 | exomes, genomes | | +--------------+---------+------------------------------+ - | | GRCh38 | 3.0.1 | genomes | - | | +---------+------------------------------+ - | | | 4.0 | exomes | - +--------------+--------------+---------+------------------------------+ - | all_sites_an | GRCh38 | 4.1 | exomes, genomes | - +--------------+--------------+---------+------------------------------+ - | constraint | GRCh37 | 2.1.1 | N/A | + | | constraint | 2.1.1 | N/A | | +--------------+---------+------------------------------+ - | | GRCh38 | 4.1 | N/A | - +--------------+--------------+---------+------------------------------+ - | liftover | GRCh37 | 2.1.1 | exomes, genomes | - +--------------+--------------+---------+------------------------------+ - | pext | GRCh37 | v7 | base_level, annotation_level | + | + pext | v7 | base_level, annotation_level | | +--------------+---------+------------------------------+ - | | GRCh38 | v10 | base_level, annotation_level | + | | liftover | 2.1.1 | exomes, genomes | +--------------+--------------+---------+------------------------------+ - | browser | GRCh38 | 4.1 | N/A (joint, but doesn't need | + | GRCh38 | variant | 4.1 | exomes, genomes, joint | + | +--------------+---------+------------------------------+ + | | all_sites_an | 4.1 | exomes, genomes | + | +--------------+---------+------------------------------+ + | | browser | 4.1 | N/A (joint, but doesn't need | | | | | to be specified) | + | +--------------+---------+------------------------------+ + | | coverage | 3.0.1 | genomes | + | +--------------+---------+------------------------------+ + | | constraint | 4.1 | N/A | + | +--------------+---------+------------------------------+ + | | pext | v10 | base_level, annotation_level | +--------------+--------------+---------+------------------------------+ :param dataset: Dataset type. One of "variant", "coverage", "all_sites_an", From ffbe8e83c7cd482b0ea1f527ec7f862b0a040f56 Mon Sep 17 00:00:00 2001 From: jkgoodrich <33063077+jkgoodrich@users.noreply.github.com> Date: Wed, 15 Jan 2025 11:22:28 -0700 Subject: [PATCH 087/121] Run explore_release_data.ipynb all the way through --- .../notebooks/explore_release_data.ipynb | 58 +++++++++---------- 1 file changed, 29 insertions(+), 29 deletions(-) diff --git a/gnomad_toolbox/notebooks/explore_release_data.ipynb b/gnomad_toolbox/notebooks/explore_release_data.ipynb index bc5c022..97e95af 100644 --- a/gnomad_toolbox/notebooks/explore_release_data.ipynb +++ b/gnomad_toolbox/notebooks/explore_release_data.ipynb @@ -99,7 +99,7 @@ " \n", "
\n", " \n", - " Loading BokehJS ...\n", + " Loading BokehJS ...\n", "
\n" ] }, @@ -271,7 +271,7 @@ " \"\"}};\n", "\n", " function display_loaded() {\n", - " const el = document.getElementById(\"edebb21b-b3fc-4e55-b6bd-7218f358f8ee\");\n", + " const el = document.getElementById(\"cd7063c9-b52f-4765-977f-209005fd6694\");\n", " if (el != null) {\n", " el.textContent = \"BokehJS is loading...\";\n", " }\n", @@ -377,7 +377,7 @@ " console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n", " root._bokeh_failed_load = true;\n", " } else if (force !== true) {\n", - " const cell = $(document.getElementById(\"edebb21b-b3fc-4e55-b6bd-7218f358f8ee\")).parents('.cell').data().cell;\n", + " const cell = $(document.getElementById(\"cd7063c9-b52f-4765-977f-209005fd6694\")).parents('.cell').data().cell;\n", " cell.output_area.append_execute_result(NB_LOAD_WARNING)\n", " }\n", " }\n", @@ -393,7 +393,7 @@ " }\n", "}(window));" ], - "application/vnd.bokehjs_load.v0+json": "(function(root) {\n function now() {\n return new Date();\n }\n\n const force = true;\n\n if (typeof root._bokeh_onload_callbacks === \"undefined\" || force === true) {\n root._bokeh_onload_callbacks = [];\n root._bokeh_is_loading = undefined;\n }\n\n\n if (typeof (root._bokeh_timeout) === \"undefined\" || force === true) {\n root._bokeh_timeout = Date.now() + 5000;\n root._bokeh_failed_load = false;\n }\n\n const NB_LOAD_WARNING = {'data': {'text/html':\n \"
\\n\"+\n \"

\\n\"+\n \"BokehJS does not appear to have successfully loaded. If loading BokehJS from CDN, this \\n\"+\n \"may be due to a slow or bad network connection. Possible fixes:\\n\"+\n \"

\\n\"+\n \"
    \\n\"+\n \"
  • re-rerun `output_notebook()` to attempt to load from CDN again, or
  • \\n\"+\n \"
  • use INLINE resources instead, as so:
  • \\n\"+\n \"
\\n\"+\n \"\\n\"+\n \"from bokeh.resources import INLINE\\n\"+\n \"output_notebook(resources=INLINE)\\n\"+\n \"\\n\"+\n \"
\"}};\n\n function display_loaded() {\n const el = document.getElementById(\"edebb21b-b3fc-4e55-b6bd-7218f358f8ee\");\n if (el != null) {\n el.textContent = \"BokehJS is loading...\";\n }\n if (root.Bokeh !== undefined) {\n if (el != null) {\n el.textContent = \"BokehJS \" + root.Bokeh.version + \" successfully loaded.\";\n }\n } else if (Date.now() < root._bokeh_timeout) {\n setTimeout(display_loaded, 100)\n }\n }\n\n function run_callbacks() {\n try {\n root._bokeh_onload_callbacks.forEach(function(callback) {\n if (callback != null)\n callback();\n });\n } finally {\n delete root._bokeh_onload_callbacks\n }\n console.debug(\"Bokeh: all callbacks have finished\");\n }\n\n function load_libs(css_urls, js_urls, callback) {\n if (css_urls == null) css_urls = [];\n if (js_urls == null) js_urls = [];\n\n root._bokeh_onload_callbacks.push(callback);\n if (root._bokeh_is_loading > 0) {\n console.debug(\"Bokeh: BokehJS is being loaded, scheduling callback at\", now());\n return null;\n }\n if (js_urls == null || js_urls.length === 0) {\n run_callbacks();\n return null;\n }\n console.debug(\"Bokeh: BokehJS not loaded, scheduling load and callback at\", now());\n root._bokeh_is_loading = css_urls.length + js_urls.length;\n\n function on_load() {\n root._bokeh_is_loading--;\n if (root._bokeh_is_loading === 0) {\n console.debug(\"Bokeh: all BokehJS libraries/stylesheets loaded\");\n run_callbacks()\n }\n }\n\n function on_error(url) {\n console.error(\"failed to load \" + url);\n }\n\n for (let i = 0; i < css_urls.length; i++) {\n const url = css_urls[i];\n const element = document.createElement(\"link\");\n element.onload = on_load;\n element.onerror = on_error.bind(null, url);\n element.rel = \"stylesheet\";\n element.type = \"text/css\";\n element.href = url;\n console.debug(\"Bokeh: injecting link tag for BokehJS stylesheet: \", url);\n document.body.appendChild(element);\n }\n\n for (let i = 0; i < js_urls.length; i++) {\n const url = js_urls[i];\n const element = document.createElement('script');\n element.onload = on_load;\n element.onerror = on_error.bind(null, url);\n element.async = false;\n element.src = url;\n console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n document.head.appendChild(element);\n }\n };\n\n function inject_raw_css(css) {\n const element = document.createElement(\"style\");\n element.appendChild(document.createTextNode(css));\n document.body.appendChild(element);\n }\n\n const js_urls = [\"https://cdn.bokeh.org/bokeh/release/bokeh-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-gl-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-widgets-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-tables-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-mathjax-3.3.4.min.js\"];\n const css_urls = [];\n\n const inline_js = [ function(Bokeh) {\n Bokeh.set_log_level(\"info\");\n },\nfunction(Bokeh) {\n }\n ];\n\n function run_inline_js() {\n if (root.Bokeh !== undefined || force === true) {\n for (let i = 0; i < inline_js.length; i++) {\n inline_js[i].call(root, root.Bokeh);\n }\nif (force === true) {\n display_loaded();\n }} else if (Date.now() < root._bokeh_timeout) {\n setTimeout(run_inline_js, 100);\n } else if (!root._bokeh_failed_load) {\n console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n root._bokeh_failed_load = true;\n } else if (force !== true) {\n const cell = $(document.getElementById(\"edebb21b-b3fc-4e55-b6bd-7218f358f8ee\")).parents('.cell').data().cell;\n cell.output_area.append_execute_result(NB_LOAD_WARNING)\n }\n }\n\n if (root._bokeh_is_loading === 0) {\n console.debug(\"Bokeh: BokehJS loaded, going straight to plotting\");\n run_inline_js();\n } else {\n load_libs(css_urls, js_urls, function() {\n console.debug(\"Bokeh: BokehJS plotting callback run at\", now());\n run_inline_js();\n });\n }\n}(window));" + "application/vnd.bokehjs_load.v0+json": "(function(root) {\n function now() {\n return new Date();\n }\n\n const force = true;\n\n if (typeof root._bokeh_onload_callbacks === \"undefined\" || force === true) {\n root._bokeh_onload_callbacks = [];\n root._bokeh_is_loading = undefined;\n }\n\n\n if (typeof (root._bokeh_timeout) === \"undefined\" || force === true) {\n root._bokeh_timeout = Date.now() + 5000;\n root._bokeh_failed_load = false;\n }\n\n const NB_LOAD_WARNING = {'data': {'text/html':\n \"
\\n\"+\n \"

\\n\"+\n \"BokehJS does not appear to have successfully loaded. If loading BokehJS from CDN, this \\n\"+\n \"may be due to a slow or bad network connection. Possible fixes:\\n\"+\n \"

\\n\"+\n \"
    \\n\"+\n \"
  • re-rerun `output_notebook()` to attempt to load from CDN again, or
  • \\n\"+\n \"
  • use INLINE resources instead, as so:
  • \\n\"+\n \"
\\n\"+\n \"\\n\"+\n \"from bokeh.resources import INLINE\\n\"+\n \"output_notebook(resources=INLINE)\\n\"+\n \"\\n\"+\n \"
\"}};\n\n function display_loaded() {\n const el = document.getElementById(\"cd7063c9-b52f-4765-977f-209005fd6694\");\n if (el != null) {\n el.textContent = \"BokehJS is loading...\";\n }\n if (root.Bokeh !== undefined) {\n if (el != null) {\n el.textContent = \"BokehJS \" + root.Bokeh.version + \" successfully loaded.\";\n }\n } else if (Date.now() < root._bokeh_timeout) {\n setTimeout(display_loaded, 100)\n }\n }\n\n function run_callbacks() {\n try {\n root._bokeh_onload_callbacks.forEach(function(callback) {\n if (callback != null)\n callback();\n });\n } finally {\n delete root._bokeh_onload_callbacks\n }\n console.debug(\"Bokeh: all callbacks have finished\");\n }\n\n function load_libs(css_urls, js_urls, callback) {\n if (css_urls == null) css_urls = [];\n if (js_urls == null) js_urls = [];\n\n root._bokeh_onload_callbacks.push(callback);\n if (root._bokeh_is_loading > 0) {\n console.debug(\"Bokeh: BokehJS is being loaded, scheduling callback at\", now());\n return null;\n }\n if (js_urls == null || js_urls.length === 0) {\n run_callbacks();\n return null;\n }\n console.debug(\"Bokeh: BokehJS not loaded, scheduling load and callback at\", now());\n root._bokeh_is_loading = css_urls.length + js_urls.length;\n\n function on_load() {\n root._bokeh_is_loading--;\n if (root._bokeh_is_loading === 0) {\n console.debug(\"Bokeh: all BokehJS libraries/stylesheets loaded\");\n run_callbacks()\n }\n }\n\n function on_error(url) {\n console.error(\"failed to load \" + url);\n }\n\n for (let i = 0; i < css_urls.length; i++) {\n const url = css_urls[i];\n const element = document.createElement(\"link\");\n element.onload = on_load;\n element.onerror = on_error.bind(null, url);\n element.rel = \"stylesheet\";\n element.type = \"text/css\";\n element.href = url;\n console.debug(\"Bokeh: injecting link tag for BokehJS stylesheet: \", url);\n document.body.appendChild(element);\n }\n\n for (let i = 0; i < js_urls.length; i++) {\n const url = js_urls[i];\n const element = document.createElement('script');\n element.onload = on_load;\n element.onerror = on_error.bind(null, url);\n element.async = false;\n element.src = url;\n console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n document.head.appendChild(element);\n }\n };\n\n function inject_raw_css(css) {\n const element = document.createElement(\"style\");\n element.appendChild(document.createTextNode(css));\n document.body.appendChild(element);\n }\n\n const js_urls = [\"https://cdn.bokeh.org/bokeh/release/bokeh-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-gl-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-widgets-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-tables-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-mathjax-3.3.4.min.js\"];\n const css_urls = [];\n\n const inline_js = [ function(Bokeh) {\n Bokeh.set_log_level(\"info\");\n },\nfunction(Bokeh) {\n }\n ];\n\n function run_inline_js() {\n if (root.Bokeh !== undefined || force === true) {\n for (let i = 0; i < inline_js.length; i++) {\n inline_js[i].call(root, root.Bokeh);\n }\nif (force === true) {\n display_loaded();\n }} else if (Date.now() < root._bokeh_timeout) {\n setTimeout(run_inline_js, 100);\n } else if (!root._bokeh_failed_load) {\n console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n root._bokeh_failed_load = true;\n } else if (force !== true) {\n const cell = $(document.getElementById(\"cd7063c9-b52f-4765-977f-209005fd6694\")).parents('.cell').data().cell;\n cell.output_area.append_execute_result(NB_LOAD_WARNING)\n }\n }\n\n if (root._bokeh_is_loading === 0) {\n console.debug(\"Bokeh: BokehJS loaded, going straight to plotting\");\n run_inline_js();\n } else {\n load_libs(css_urls, js_urls, function() {\n console.debug(\"Bokeh: BokehJS plotting callback run at\", now());\n run_inline_js();\n });\n }\n}(window));" }, "metadata": {}, "output_type": "display_data" @@ -419,7 +419,7 @@ " / /_/ /__ __/ /\n", " / __ / _ `/ / /\n", " /_/ /_/\\_,_/_/_/ version 0.2.132-678e1f52b999\n", - "LOGGING: writing to /Users/jgoodric/PycharmProjects/gnomad-toolbox/gnomad_toolbox/notebooks/hail-20250114-1427-0.2.132-678e1f52b999.log\n" + "LOGGING: writing to /Users/jgoodric/PycharmProjects/gnomad-toolbox/gnomad_toolbox/notebooks/hail-20250115-1114-0.2.132-678e1f52b999.log\n" ] } ], @@ -6356,7 +6356,7 @@ }, { "cell_type": "code", - "execution_count": 33, + "execution_count": 18, "id": "329f08ef-6dbf-42cd-bbbc-d3f5396708ac", "metadata": { "ExecuteTime": { @@ -6379,7 +6379,7 @@ }, { "cell_type": "code", - "execution_count": 34, + "execution_count": 19, "id": "17efacb6-84c4-4345-9bf9-1dca259dd7fa", "metadata": { "ExecuteTime": { @@ -6924,7 +6924,7 @@ }, { "cell_type": "code", - "execution_count": 35, + "execution_count": 20, "id": "d03dd50b-37ac-49ec-b766-a86870ee6573", "metadata": { "ExecuteTime": { @@ -9378,7 +9378,7 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 21, "id": "7f005af0-df6d-4a0a-a2e0-9cb4ff6782c2", "metadata": { "ExecuteTime": { @@ -9401,7 +9401,7 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 22, "id": "6058bf38-4ce9-4d37-89a7-d11af0e4d9f1", "metadata": { "ExecuteTime": { @@ -9456,7 +9456,7 @@ }, { "cell_type": "code", - "execution_count": 20, + "execution_count": 23, "id": "49fcf64b-1a91-4052-bb98-b329a0e8031b", "metadata": { "ExecuteTime": { @@ -9534,7 +9534,7 @@ }, { "cell_type": "code", - "execution_count": 21, + "execution_count": 24, "id": "a8d0be07-c35d-425a-b554-c86034e367fc", "metadata": { "ExecuteTime": { @@ -9558,7 +9558,7 @@ }, { "cell_type": "code", - "execution_count": 22, + "execution_count": 25, "id": "18afb20f-7429-4fe2-a6c5-73a22dcbdb76", "metadata": { "ExecuteTime": { @@ -9612,7 +9612,7 @@ }, { "cell_type": "code", - "execution_count": 23, + "execution_count": 26, "id": "b27cb655-3abb-4501-bcc9-3f634db64591", "metadata": { "ExecuteTime": { @@ -9690,7 +9690,7 @@ }, { "cell_type": "code", - "execution_count": 24, + "execution_count": 27, "id": "3de343dc-37ae-4b17-a056-9d30e71e217c", "metadata": { "ExecuteTime": { @@ -9713,7 +9713,7 @@ }, { "cell_type": "code", - "execution_count": 25, + "execution_count": 28, "id": "c401dc94-0db0-4902-933d-e46c8aa447ce", "metadata": { "ExecuteTime": { @@ -9839,7 +9839,7 @@ }, { "cell_type": "code", - "execution_count": 26, + "execution_count": 29, "id": "262cbbf1-9fc7-4819-9b2a-d1a1e27c10bf", "metadata": { "ExecuteTime": { @@ -10045,7 +10045,7 @@ }, { "cell_type": "code", - "execution_count": 27, + "execution_count": 30, "id": "1f448e05-7f99-4c63-b101-b33143d9d58b", "metadata": { "ExecuteTime": { @@ -10068,7 +10068,7 @@ }, { "cell_type": "code", - "execution_count": 28, + "execution_count": 31, "id": "b9f99311-91e6-454e-b940-3d036bddf3a5", "metadata": { "ExecuteTime": { @@ -10314,7 +10314,7 @@ }, { "cell_type": "code", - "execution_count": 29, + "execution_count": 32, "id": "a6ac695f-cfb2-4aa7-877c-b204351a77da", "metadata": { "ExecuteTime": { @@ -11312,7 +11312,7 @@ }, { "cell_type": "code", - "execution_count": 30, + "execution_count": 33, "id": "ce25b9e0-9118-4bf6-ba3c-eca75468b9f1", "metadata": { "ExecuteTime": { @@ -11335,7 +11335,7 @@ }, { "cell_type": "code", - "execution_count": 31, + "execution_count": 34, "id": "818f3fc2-09fa-479c-91e1-e19f5991a22d", "metadata": { "ExecuteTime": { @@ -11585,7 +11585,7 @@ }, { "cell_type": "code", - "execution_count": 32, + "execution_count": 35, "id": "35371de7-9332-4aa6-a3b9-c573fb2e144f", "metadata": { "ExecuteTime": { @@ -12607,7 +12607,7 @@ }, { "cell_type": "code", - "execution_count": 39, + "execution_count": 36, "id": "4a29c79d", "metadata": { "ExecuteTime": { @@ -12630,7 +12630,7 @@ }, { "cell_type": "code", - "execution_count": 40, + "execution_count": 37, "id": "dcd9ad6e", "metadata": { "ExecuteTime": { @@ -12979,7 +12979,7 @@ }, { "cell_type": "code", - "execution_count": 41, + "execution_count": 38, "id": "04b6da53", "metadata": { "ExecuteTime": { @@ -13595,7 +13595,7 @@ }, { "cell_type": "code", - "execution_count": 42, + "execution_count": 39, "id": "248e904e", "metadata": { "ExecuteTime": { @@ -13619,7 +13619,7 @@ }, { "cell_type": "code", - "execution_count": 43, + "execution_count": 40, "id": "f718adea", "metadata": { "ExecuteTime": { @@ -13971,7 +13971,7 @@ }, { "cell_type": "code", - "execution_count": 44, + "execution_count": 41, "id": "0a9ac872", "metadata": { "ExecuteTime": { From 799e304f1f6b8a63087091d94533080dab9fbe8b Mon Sep 17 00:00:00 2001 From: jkgoodrich <33063077+jkgoodrich@users.noreply.github.com> Date: Wed, 15 Jan 2025 11:24:25 -0700 Subject: [PATCH 088/121] Remove unneeded warning --- gnomad_toolbox/filtering/variant.py | 14 ++------------ 1 file changed, 2 insertions(+), 12 deletions(-) diff --git a/gnomad_toolbox/filtering/variant.py b/gnomad_toolbox/filtering/variant.py index cb1842f..6705546 100644 --- a/gnomad_toolbox/filtering/variant.py +++ b/gnomad_toolbox/filtering/variant.py @@ -103,7 +103,8 @@ def filter_by_gene_symbol(gene: str, exon_padding_bp: int = 75, **kwargs) -> hl. This function is to match the number of variants that you will get in the gnomAD browser when you search for a gene symbol. The gnomAD browser - filters to only variants located in or within 75 base pairs of CDS or non-coding exons of a gene. + filters to only variants located in or within 75 base pairs of CDS or + non-coding exons of a gene. :param gene: Gencode gene symbol. :param exon_padding_bp: Number of base pairs to pad the intervals. Default is 75bp. @@ -142,15 +143,4 @@ def filter_by_gene_symbol(gene: str, exon_padding_bp: int = 75, **kwargs) -> hl. filtered_gencode_ht.interval, ht=ht, padding_bp=exon_padding_bp ) - contigs = filtered_gencode_ht.aggregate( - hl.agg.collect_as_set(filtered_gencode_ht.interval.start.contig) - ) - if len(contigs) > 1: - hl.utils.warning( - "The gnomAD browser excludes genes on chrY that share the same gene symbol " - "as chrX. For example, if you use this function to filter 'ASMT' gene, you " - "may get more variants than shown in the gnomAD browser because it includes " - "both chrX and chrY variants." - ) - return ht From 970b2dcaf9c5c549fffdf492719ad24c24f68d7c Mon Sep 17 00:00:00 2001 From: jkgoodrich <33063077+jkgoodrich@users.noreply.github.com> Date: Wed, 15 Jan 2025 11:37:54 -0700 Subject: [PATCH 089/121] Fix browser change log link --- gnomad_toolbox/notebooks/explore_release_data.ipynb | 4 +++- 1 file changed, 3 insertions(+), 1 deletion(-) diff --git a/gnomad_toolbox/notebooks/explore_release_data.ipynb b/gnomad_toolbox/notebooks/explore_release_data.ipynb index 97e95af..5454f80 100644 --- a/gnomad_toolbox/notebooks/explore_release_data.ipynb +++ b/gnomad_toolbox/notebooks/explore_release_data.ipynb @@ -6343,7 +6343,9 @@ "source": [ "## Browser variant data\n", "\n", - "For more information about these files, see the [changelog entry](https://gnomad.broadinstitute.org/new/2024-08-release-gnomad-browser-tables) on the browser tables, and the [Help](https://gnomad.broadinstitute.org/help/v4-browser-hts) page." + "For more information about these files, see the [changelog entry](https://gnomad.broadinstitute.org/news/2024-08-release-gnomad-browser-tables) on the browser tables, and the [Help](https://gnomad.broadinstitute.org/help/v4-browser-hts) page. \n", + "\n", + "Showing the gnomAD **v4.1** browser variant Hail Table." ] }, { From 4e7b02a65ef77b45b0989b329f177391f4ad4fd6 Mon Sep 17 00:00:00 2001 From: Qin He <44242118+KoalaQin@users.noreply.github.com> Date: Wed, 15 Jan 2025 15:13:56 -0500 Subject: [PATCH 090/121] Move pLOF function to contraint --- gnomad_toolbox/filtering/constraint.py | 102 +++++++++++++++++++++++++ gnomad_toolbox/filtering/vep.py | 95 +---------------------- 2 files changed, 103 insertions(+), 94 deletions(-) diff --git a/gnomad_toolbox/filtering/constraint.py b/gnomad_toolbox/filtering/constraint.py index edbb4ee..c9d3ec7 100644 --- a/gnomad_toolbox/filtering/constraint.py +++ b/gnomad_toolbox/filtering/constraint.py @@ -1 +1,103 @@ +"""Functions to filter gnomAD sites HT by constraint metrics.""" + +import hail as hl + +from gnomad_toolbox.filtering.vep import ( + filter_to_high_confidence_loftee, + get_gene_intervals, +) +from gnomad_toolbox.load_data import ( + CONSTRAINT_DATA, + _get_dataset, + get_compatible_dataset_versions, +) + + +def get_observed_plofs_for_gene_constraint( + gene_symbol: str, + version: str = None, + variant_ht: hl.Table = None, + coverage_ht: hl.Table = None, +) -> hl.Table: + """ + Filter to observed pLoF variants used for gene constraint metrics. + + The pLOF variant count displayed on the browser meets the following requirements: + + - PASS variant QC + - SNV + - Allele frequency ≤ 0.1% + - High-confidence LOFTEE in the MANE Select or Canonical transcript + - ≥ a specified coverage threshold (depends on the version) + + :param gene_symbol: Gene symbol. + :param version: Optional gnomAD dataset version. If not provided, uses the gnomAD + session version. + :param variant_ht: Optional Hail Table with variants. If not provided, uses the + exome variant Table for the gnomAD session version. + :param coverage_ht: Optional Hail Table with coverage data. If not provided, uses + the exome coverage Table for the gnomAD session version. + :return: Table with pLoF variants. + """ + if variant_ht is not None and coverage_ht is None: + raise ValueError("Variant Hail Table provided without coverage Hail Table.") + + if coverage_ht is not None and variant_ht is None: + raise ValueError("Coverage Hail Table provided without variant Hail Table.") + + # Load the variant exomes Hail Table if not provided. + variant_ht = _get_dataset( + dataset="variant", + ht=variant_ht, + data_type="exomes", + version=version, + ) + + # Determine the coverage version compatible with the variant version. + coverage_version = get_compatible_dataset_versions("coverage", version, "exomes") + + # Load the coverage Hail Table if not provided. + coverage_ht = _get_dataset( + dataset="coverage", + ht=coverage_ht, + data_type="exomes", + version=coverage_version, + ) + + # Get gene intervals and filter tables. + gencode_version = get_compatible_dataset_versions("gencode", version) + intervals = get_gene_intervals(gene_symbol, gencode_version=gencode_version) + variant_ht = hl.filter_intervals(variant_ht, intervals) + coverage_ht = hl.filter_intervals(coverage_ht, intervals) + + # Determine constraint filters. + constraint_version = get_compatible_dataset_versions("constraint", version) + constraint_info = CONSTRAINT_DATA[constraint_version] + cov_field = constraint_info["exome_coverage_field"] + cov_cutoff = constraint_info["exome_coverage_cutoff"] + af_cutoff = constraint_info["af_cutoff"] + + # Annotate the exome coverage. + variant_ht = variant_ht.annotate( + exome_coverage=coverage_ht[variant_ht.locus][cov_field] + ) + + # Apply constraint filters. + variant_ht = variant_ht.filter( + (hl.len(variant_ht.filters) == 0) + & (hl.is_snp(variant_ht.alleles[0], variant_ht.alleles[1])) + & (variant_ht.freq[0].AF <= af_cutoff) + & (variant_ht.exome_coverage >= cov_cutoff) + ) + + # Filter to high-confidence LOFTEE variants. + variant_ht = filter_to_high_confidence_loftee( + gene_symbol=gene_symbol, + ht=variant_ht, + canonical_only=True, + ) + + return variant_ht + + # noqa: D104, D100 diff --git a/gnomad_toolbox/filtering/vep.py b/gnomad_toolbox/filtering/vep.py index dc78540..018c43b 100644 --- a/gnomad_toolbox/filtering/vep.py +++ b/gnomad_toolbox/filtering/vep.py @@ -10,11 +10,7 @@ filter_vep_transcript_csqs_expr, ) -from gnomad_toolbox.load_data import ( - CONSTRAINT_DATA, - _get_dataset, - get_compatible_dataset_versions, -) +from gnomad_toolbox.load_data import _get_dataset, get_compatible_dataset_versions # TODO: Check these csq sets, the ones in the code don't match what is listed on the @@ -192,92 +188,3 @@ def filter_to_high_confidence_loftee( loftee_labels=["HC"], no_lof_flags=no_lof_flags, ) - - -# TODO: Let's move this function to constraint.py and change the name to something more -# descriptive, like maybe get_observed_plofs_for_gene_constraint. -def filter_to_plofs( - gene_symbol: str, - version: str = None, - variant_ht: hl.Table = None, - coverage_ht: hl.Table = None, -) -> hl.Table: - """ - Filter to observed pLoF variants used for gene constraint metrics. - - The pLOF variant count displayed on the browser meets the following requirements: - - - PASS variant QC - - SNV - - Allele frequency ≤ 0.1% - - High-confidence LOFTEE in the MANE Select or Canonical transcript - - ≥ a specified coverage threshold (depends on the version) - - :param gene_symbol: Gene symbol. - :param version: Optional gnomAD dataset version. If not provided, uses the gnomAD - session version. - :param variant_ht: Optional Hail Table with variants. If not provided, uses the - exome variant Table for the gnomAD session version. - :param coverage_ht: Optional Hail Table with coverage data. If not provided, uses - the exome coverage Table for the gnomAD session version. - :return: Table with pLoF variants. - """ - if variant_ht is not None and coverage_ht is None: - raise ValueError("Variant Hail Table provided without coverage Hail Table.") - - if coverage_ht is not None and variant_ht is None: - raise ValueError("Coverage Hail Table provided without variant Hail Table.") - - # Load the variant exomes Hail Table if not provided. - variant_ht = _get_dataset( - dataset="variant", - ht=variant_ht, - data_type="exomes", - version=version, - ) - - # Determine the coverage version compatible with the variant version. - coverage_version = get_compatible_dataset_versions("coverage", version, "exomes") - - # Load the coverage Hail Table if not provided. - coverage_ht = _get_dataset( - dataset="coverage", - ht=coverage_ht, - data_type="exomes", - version=coverage_version, - ) - - # Get gene intervals and filter tables. - gencode_version = get_compatible_dataset_versions("gencode", version) - intervals = get_gene_intervals(gene_symbol, gencode_version=gencode_version) - variant_ht = hl.filter_intervals(variant_ht, intervals) - coverage_ht = hl.filter_intervals(coverage_ht, intervals) - - # Determine constraint filters. - constraint_version = get_compatible_dataset_versions("constraint", version) - constraint_info = CONSTRAINT_DATA[constraint_version] - cov_field = constraint_info["exome_coverage_field"] - cov_cutoff = constraint_info["exome_coverage_cutoff"] - af_cutoff = constraint_info["af_cutoff"] - - # Annotate the exome coverage. - variant_ht = variant_ht.annotate( - exome_coverage=coverage_ht[variant_ht.locus][cov_field] - ) - - # Apply constraint filters. - variant_ht = variant_ht.filter( - (hl.len(variant_ht.filters) == 0) - & (hl.is_snp(variant_ht.alleles[0], variant_ht.alleles[1])) - & (variant_ht.freq[0].AF <= af_cutoff) - & (variant_ht.exome_coverage >= cov_cutoff) - ) - - # Filter to high-confidence LOFTEE variants. - variant_ht = filter_to_high_confidence_loftee( - gene_symbol=gene_symbol, - ht=variant_ht, - canonical_only=True, - ) - - return variant_ht From e2f1d539d03a4f4897e8e071e350f43aedfa33db Mon Sep 17 00:00:00 2001 From: Qin He <44242118+KoalaQin@users.noreply.github.com> Date: Wed, 15 Jan 2025 16:45:23 -0500 Subject: [PATCH 091/121] Update notebooks to use new functions --- .../notebooks/explore_release_data.ipynb | 8 +- .../intro_to_filtering_variant_data.ipynb | 5640 +---------------- gnomad_toolbox/notebooks/needs_a_name.ipynb | 746 --- 3 files changed, 62 insertions(+), 6332 deletions(-) delete mode 100644 gnomad_toolbox/notebooks/needs_a_name.ipynb diff --git a/gnomad_toolbox/notebooks/explore_release_data.ipynb b/gnomad_toolbox/notebooks/explore_release_data.ipynb index 5454f80..1b7553e 100644 --- a/gnomad_toolbox/notebooks/explore_release_data.ipynb +++ b/gnomad_toolbox/notebooks/explore_release_data.ipynb @@ -521,7 +521,9 @@ " v10\n", " base_level, annotation_level\n", " \n", - "\n" + "\n", + "\n", + "**NOTE:** In this notebook, we show examples to mainly explore our GRCh38 release datasets, click on the full name of the datasets will take you to the Downloads page on gnomAD Browser, and the abbreviations or the data_type to each section in this notebook (just as if you clink on the Table of Contents)." ] }, { @@ -14646,7 +14648,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.12.2" + "version": "3.11.9" }, "toc": { "base_numbering": 1, @@ -14669,7 +14671,7 @@ "toc_section_display": true, "toc_window_display": true }, - "toc-autonumbering": false, + "toc-autonumbering": true, "toc-showcode": false, "toc-showmarkdowntxt": true, "toc-showtags": false, diff --git a/gnomad_toolbox/notebooks/intro_to_filtering_variant_data.ipynb b/gnomad_toolbox/notebooks/intro_to_filtering_variant_data.ipynb index ae240c0..8d2267c 100644 --- a/gnomad_toolbox/notebooks/intro_to_filtering_variant_data.ipynb +++ b/gnomad_toolbox/notebooks/intro_to_filtering_variant_data.ipynb @@ -41,7 +41,7 @@ { "data": { "text/html": [ - "\n", "
\n", " \n", - " Loading BokehJS ...\n", + " Loading BokehJS ...\n", "
\n" ] }, @@ -90,14 +90,22 @@ " * Handle when an output is cleared or removed\n", " */\n", " function handleClearOutput(event, handle) {\n", + " function drop(id) {\n", + " const view = Bokeh.index.get_by_id(id)\n", + " if (view != null) {\n", + " view.model.document.clear()\n", + " Bokeh.index.delete(view)\n", + " }\n", + " }\n", + "\n", " const cell = handle.cell;\n", "\n", " const id = cell.output_area._bokeh_element_id;\n", " const server_id = cell.output_area._bokeh_server_id;\n", + "\n", " // Clean up Bokeh references\n", - " if (id != null && id in Bokeh.index) {\n", - " Bokeh.index[id].model.document.clear();\n", - " delete Bokeh.index[id];\n", + " if (id != null) {\n", + " drop(id)\n", " }\n", "\n", " if (server_id !== undefined) {\n", @@ -106,11 +114,8 @@ " cell.notebook.kernel.execute(cmd_clean, {\n", " iopub: {\n", " output: function(msg) {\n", - " const id = msg.content.text.trim();\n", - " if (id in Bokeh.index) {\n", - " Bokeh.index[id].model.document.clear();\n", - " delete Bokeh.index[id];\n", - " }\n", + " const id = msg.content.text.trim()\n", + " drop(id)\n", " }\n", " }\n", " });\n", @@ -218,7 +223,7 @@ " \"\"}};\n", "\n", " function display_loaded() {\n", - " const el = document.getElementById(\"d5c4232b-0e66-4b61-983c-ba8423f8e445\");\n", + " const el = document.getElementById(\"be1e6b75-a614-4af7-b778-f8e50b8b7664\");\n", " if (el != null) {\n", " el.textContent = \"BokehJS is loading...\";\n", " }\n", @@ -301,7 +306,7 @@ " document.body.appendChild(element);\n", " }\n", "\n", - " const js_urls = [\"https://cdn.bokeh.org/bokeh/release/bokeh-3.2.2.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-gl-3.2.2.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-widgets-3.2.2.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-tables-3.2.2.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-mathjax-3.2.2.min.js\"];\n", + " const js_urls = [\"https://cdn.bokeh.org/bokeh/release/bokeh-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-gl-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-widgets-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-tables-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-mathjax-3.3.4.min.js\"];\n", " const css_urls = [];\n", "\n", " const inline_js = [ function(Bokeh) {\n", @@ -324,7 +329,7 @@ " console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n", " root._bokeh_failed_load = true;\n", " } else if (force !== true) {\n", - " const cell = $(document.getElementById(\"d5c4232b-0e66-4b61-983c-ba8423f8e445\")).parents('.cell').data().cell;\n", + " const cell = $(document.getElementById(\"be1e6b75-a614-4af7-b778-f8e50b8b7664\")).parents('.cell').data().cell;\n", " cell.output_area.append_execute_result(NB_LOAD_WARNING)\n", " }\n", " }\n", @@ -340,7 +345,7 @@ " }\n", "}(window));" ], - "application/vnd.bokehjs_load.v0+json": "(function(root) {\n function now() {\n return new Date();\n }\n\n const force = true;\n\n if (typeof root._bokeh_onload_callbacks === \"undefined\" || force === true) {\n root._bokeh_onload_callbacks = [];\n root._bokeh_is_loading = undefined;\n }\n\n\n if (typeof (root._bokeh_timeout) === \"undefined\" || force === true) {\n root._bokeh_timeout = Date.now() + 5000;\n root._bokeh_failed_load = false;\n }\n\n const NB_LOAD_WARNING = {'data': {'text/html':\n \"
\\n\"+\n \"

\\n\"+\n \"BokehJS does not appear to have successfully loaded. If loading BokehJS from CDN, this \\n\"+\n \"may be due to a slow or bad network connection. Possible fixes:\\n\"+\n \"

\\n\"+\n \"
    \\n\"+\n \"
  • re-rerun `output_notebook()` to attempt to load from CDN again, or
  • \\n\"+\n \"
  • use INLINE resources instead, as so:
  • \\n\"+\n \"
\\n\"+\n \"\\n\"+\n \"from bokeh.resources import INLINE\\n\"+\n \"output_notebook(resources=INLINE)\\n\"+\n \"\\n\"+\n \"
\"}};\n\n function display_loaded() {\n const el = document.getElementById(\"d5c4232b-0e66-4b61-983c-ba8423f8e445\");\n if (el != null) {\n el.textContent = \"BokehJS is loading...\";\n }\n if (root.Bokeh !== undefined) {\n if (el != null) {\n el.textContent = \"BokehJS \" + root.Bokeh.version + \" successfully loaded.\";\n }\n } else if (Date.now() < root._bokeh_timeout) {\n setTimeout(display_loaded, 100)\n }\n }\n\n function run_callbacks() {\n try {\n root._bokeh_onload_callbacks.forEach(function(callback) {\n if (callback != null)\n callback();\n });\n } finally {\n delete root._bokeh_onload_callbacks\n }\n console.debug(\"Bokeh: all callbacks have finished\");\n }\n\n function load_libs(css_urls, js_urls, callback) {\n if (css_urls == null) css_urls = [];\n if (js_urls == null) js_urls = [];\n\n root._bokeh_onload_callbacks.push(callback);\n if (root._bokeh_is_loading > 0) {\n console.debug(\"Bokeh: BokehJS is being loaded, scheduling callback at\", now());\n return null;\n }\n if (js_urls == null || js_urls.length === 0) {\n run_callbacks();\n return null;\n }\n console.debug(\"Bokeh: BokehJS not loaded, scheduling load and callback at\", now());\n root._bokeh_is_loading = css_urls.length + js_urls.length;\n\n function on_load() {\n root._bokeh_is_loading--;\n if (root._bokeh_is_loading === 0) {\n console.debug(\"Bokeh: all BokehJS libraries/stylesheets loaded\");\n run_callbacks()\n }\n }\n\n function on_error(url) {\n console.error(\"failed to load \" + url);\n }\n\n for (let i = 0; i < css_urls.length; i++) {\n const url = css_urls[i];\n const element = document.createElement(\"link\");\n element.onload = on_load;\n element.onerror = on_error.bind(null, url);\n element.rel = \"stylesheet\";\n element.type = \"text/css\";\n element.href = url;\n console.debug(\"Bokeh: injecting link tag for BokehJS stylesheet: \", url);\n document.body.appendChild(element);\n }\n\n for (let i = 0; i < js_urls.length; i++) {\n const url = js_urls[i];\n const element = document.createElement('script');\n element.onload = on_load;\n element.onerror = on_error.bind(null, url);\n element.async = false;\n element.src = url;\n console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n document.head.appendChild(element);\n }\n };\n\n function inject_raw_css(css) {\n const element = document.createElement(\"style\");\n element.appendChild(document.createTextNode(css));\n document.body.appendChild(element);\n }\n\n const js_urls = [\"https://cdn.bokeh.org/bokeh/release/bokeh-3.2.2.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-gl-3.2.2.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-widgets-3.2.2.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-tables-3.2.2.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-mathjax-3.2.2.min.js\"];\n const css_urls = [];\n\n const inline_js = [ function(Bokeh) {\n Bokeh.set_log_level(\"info\");\n },\nfunction(Bokeh) {\n }\n ];\n\n function run_inline_js() {\n if (root.Bokeh !== undefined || force === true) {\n for (let i = 0; i < inline_js.length; i++) {\n inline_js[i].call(root, root.Bokeh);\n }\nif (force === true) {\n display_loaded();\n }} else if (Date.now() < root._bokeh_timeout) {\n setTimeout(run_inline_js, 100);\n } else if (!root._bokeh_failed_load) {\n console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n root._bokeh_failed_load = true;\n } else if (force !== true) {\n const cell = $(document.getElementById(\"d5c4232b-0e66-4b61-983c-ba8423f8e445\")).parents('.cell').data().cell;\n cell.output_area.append_execute_result(NB_LOAD_WARNING)\n }\n }\n\n if (root._bokeh_is_loading === 0) {\n console.debug(\"Bokeh: BokehJS loaded, going straight to plotting\");\n run_inline_js();\n } else {\n load_libs(css_urls, js_urls, function() {\n console.debug(\"Bokeh: BokehJS plotting callback run at\", now());\n run_inline_js();\n });\n }\n}(window));" + "application/vnd.bokehjs_load.v0+json": "(function(root) {\n function now() {\n return new Date();\n }\n\n const force = true;\n\n if (typeof root._bokeh_onload_callbacks === \"undefined\" || force === true) {\n root._bokeh_onload_callbacks = [];\n root._bokeh_is_loading = undefined;\n }\n\n\n if (typeof (root._bokeh_timeout) === \"undefined\" || force === true) {\n root._bokeh_timeout = Date.now() + 5000;\n root._bokeh_failed_load = false;\n }\n\n const NB_LOAD_WARNING = {'data': {'text/html':\n \"
\\n\"+\n \"

\\n\"+\n \"BokehJS does not appear to have successfully loaded. If loading BokehJS from CDN, this \\n\"+\n \"may be due to a slow or bad network connection. Possible fixes:\\n\"+\n \"

\\n\"+\n \"
    \\n\"+\n \"
  • re-rerun `output_notebook()` to attempt to load from CDN again, or
  • \\n\"+\n \"
  • use INLINE resources instead, as so:
  • \\n\"+\n \"
\\n\"+\n \"\\n\"+\n \"from bokeh.resources import INLINE\\n\"+\n \"output_notebook(resources=INLINE)\\n\"+\n \"\\n\"+\n \"
\"}};\n\n function display_loaded() {\n const el = document.getElementById(\"be1e6b75-a614-4af7-b778-f8e50b8b7664\");\n if (el != null) {\n el.textContent = \"BokehJS is loading...\";\n }\n if (root.Bokeh !== undefined) {\n if (el != null) {\n el.textContent = \"BokehJS \" + root.Bokeh.version + \" successfully loaded.\";\n }\n } else if (Date.now() < root._bokeh_timeout) {\n setTimeout(display_loaded, 100)\n }\n }\n\n function run_callbacks() {\n try {\n root._bokeh_onload_callbacks.forEach(function(callback) {\n if (callback != null)\n callback();\n });\n } finally {\n delete root._bokeh_onload_callbacks\n }\n console.debug(\"Bokeh: all callbacks have finished\");\n }\n\n function load_libs(css_urls, js_urls, callback) {\n if (css_urls == null) css_urls = [];\n if (js_urls == null) js_urls = [];\n\n root._bokeh_onload_callbacks.push(callback);\n if (root._bokeh_is_loading > 0) {\n console.debug(\"Bokeh: BokehJS is being loaded, scheduling callback at\", now());\n return null;\n }\n if (js_urls == null || js_urls.length === 0) {\n run_callbacks();\n return null;\n }\n console.debug(\"Bokeh: BokehJS not loaded, scheduling load and callback at\", now());\n root._bokeh_is_loading = css_urls.length + js_urls.length;\n\n function on_load() {\n root._bokeh_is_loading--;\n if (root._bokeh_is_loading === 0) {\n console.debug(\"Bokeh: all BokehJS libraries/stylesheets loaded\");\n run_callbacks()\n }\n }\n\n function on_error(url) {\n console.error(\"failed to load \" + url);\n }\n\n for (let i = 0; i < css_urls.length; i++) {\n const url = css_urls[i];\n const element = document.createElement(\"link\");\n element.onload = on_load;\n element.onerror = on_error.bind(null, url);\n element.rel = \"stylesheet\";\n element.type = \"text/css\";\n element.href = url;\n console.debug(\"Bokeh: injecting link tag for BokehJS stylesheet: \", url);\n document.body.appendChild(element);\n }\n\n for (let i = 0; i < js_urls.length; i++) {\n const url = js_urls[i];\n const element = document.createElement('script');\n element.onload = on_load;\n element.onerror = on_error.bind(null, url);\n element.async = false;\n element.src = url;\n console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n document.head.appendChild(element);\n }\n };\n\n function inject_raw_css(css) {\n const element = document.createElement(\"style\");\n element.appendChild(document.createTextNode(css));\n document.body.appendChild(element);\n }\n\n const js_urls = [\"https://cdn.bokeh.org/bokeh/release/bokeh-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-gl-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-widgets-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-tables-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-mathjax-3.3.4.min.js\"];\n const css_urls = [];\n\n const inline_js = [ function(Bokeh) {\n Bokeh.set_log_level(\"info\");\n },\nfunction(Bokeh) {\n }\n ];\n\n function run_inline_js() {\n if (root.Bokeh !== undefined || force === true) {\n for (let i = 0; i < inline_js.length; i++) {\n inline_js[i].call(root, root.Bokeh);\n }\nif (force === true) {\n display_loaded();\n }} else if (Date.now() < root._bokeh_timeout) {\n setTimeout(run_inline_js, 100);\n } else if (!root._bokeh_failed_load) {\n console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n root._bokeh_failed_load = true;\n } else if (force !== true) {\n const cell = $(document.getElementById(\"be1e6b75-a614-4af7-b778-f8e50b8b7664\")).parents('.cell').data().cell;\n cell.output_area.append_execute_result(NB_LOAD_WARNING)\n }\n }\n\n if (root._bokeh_is_loading === 0) {\n console.debug(\"Bokeh: BokehJS loaded, going straight to plotting\");\n run_inline_js();\n } else {\n load_libs(css_urls, js_urls, function() {\n console.debug(\"Bokeh: BokehJS plotting callback run at\", now());\n run_inline_js();\n });\n }\n}(window));" }, "metadata": {}, "output_type": "display_data" @@ -372,8 +377,8 @@ " __ __ <>__\n", " / /_/ /__ __/ /\n", " / __ / _ `/ / /\n", - " /_/ /_/\\_,_/_/_/ version 0.2.133-4c60fddb171a\n", - "LOGGING: writing to /Users/jgoodric/PycharmProjects/gnomad-toolbox/gnomad_toolbox/notebooks/hail-20241220-1230-0.2.133-4c60fddb171a.log\n" + " /_/ /_/\\_,_/_/_/ version 0.2.132-678e1f52b999\n", + "LOGGING: writing to /Users/heqin/PycharmProjects/gnomad-toolbox/gnomad_toolbox/notebooks/hail-20250115-1555-0.2.132-678e1f52b999.log\n" ] } ], @@ -465,10 +470,24 @@ "metadata": {}, "outputs": [ { - "name": "stdout", + "name": "stderr", "output_type": "stream", "text": [ - "The total number of variants in DRD2 is: 1764\n" + "01/15/2025 03:56:03 PM (gnomad.utils.filtering 456): No Gencode Table or version was supplied, using Gencode version v39\n", + "01/15/2025 03:56:16 PM (gnomad.utils.filtering 531): Since 1 is less than or equal to 'max_collect_intervals', collecting all intervals...\n" + ] + }, + { + "ename": "TypeError", + "evalue": "_get_dataset() got an unexpected keyword argument 'padding_bp'", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)", + "Cell \u001b[0;32mIn[4], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m drd2_ht \u001b[38;5;241m=\u001b[39m \u001b[43mfilter_by_gene_symbol\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43mdrd2\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m)\u001b[49m\n\u001b[1;32m 2\u001b[0m \u001b[38;5;28mprint\u001b[39m(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mThe total number of variants in DRD2 is: \u001b[39m\u001b[38;5;124m\"\u001b[39m, drd2_ht\u001b[38;5;241m.\u001b[39mcount())\n", + "File \u001b[0;32m~/miniconda3/envs/hail2132/lib/python3.11/site-packages/gnomad_toolbox/filtering/variant.py:139\u001b[0m, in \u001b[0;36mfilter_by_gene_symbol\u001b[0;34m(gene, exon_padding_bp, **kwargs)\u001b[0m\n\u001b[1;32m 136\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m filter_count \u001b[38;5;241m==\u001b[39m \u001b[38;5;241m0\u001b[39m:\n\u001b[1;32m 137\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mNo intervals match the gene symbol \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mgene\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m)\n\u001b[0;32m--> 139\u001b[0m ht \u001b[38;5;241m=\u001b[39m \u001b[43mfilter_by_intervals\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 140\u001b[0m \u001b[43m \u001b[49m\u001b[43mfiltered_gencode_ht\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43minterval\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mht\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mht\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mpadding_bp\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mexon_padding_bp\u001b[49m\n\u001b[1;32m 141\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 143\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m ht\n", + "File \u001b[0;32m~/miniconda3/envs/hail2132/lib/python3.11/site-packages/gnomad_toolbox/filtering/variant.py:86\u001b[0m, in \u001b[0;36mfilter_by_intervals\u001b[0;34m(intervals, **kwargs)\u001b[0m\n\u001b[1;32m 76\u001b[0m \u001b[38;5;250m\u001b[39m\u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m 77\u001b[0m \u001b[38;5;124;03mFilter variants by interval(s).\u001b[39;00m\n\u001b[1;32m 78\u001b[0m \n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 83\u001b[0m \u001b[38;5;124;03m:return: Table with variants in the interval(s).\u001b[39;00m\n\u001b[1;32m 84\u001b[0m \u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m 85\u001b[0m \u001b[38;5;66;03m# Load the Hail Table if not provided\u001b[39;00m\n\u001b[0;32m---> 86\u001b[0m ht \u001b[38;5;241m=\u001b[39m \u001b[43m_get_dataset\u001b[49m\u001b[43m(\u001b[49m\u001b[43mdataset\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mvariant\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 88\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m interval_filter(\n\u001b[1;32m 89\u001b[0m ht,\n\u001b[1;32m 90\u001b[0m intervals,\n\u001b[1;32m 91\u001b[0m reference_genome\u001b[38;5;241m=\u001b[39mget_reference_genome(ht\u001b[38;5;241m.\u001b[39mlocus)\u001b[38;5;241m.\u001b[39mname,\n\u001b[1;32m 92\u001b[0m )\n", + "\u001b[0;31mTypeError\u001b[0m: _get_dataset() got an unexpected keyword argument 'padding_bp'" ] } ], @@ -504,1079 +523,10 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": null, "id": "700582e4", "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "
histograms
grpmax
fafmax
info
qual_hists
raw_qual_hists
age_hists
in_silico_predictors
gnomad
non_ukb
gnomad
non_ukb
vrs
vep
vqsr_results
region_flags
allele_info
gq_hist_all
dp_hist_all
gq_hist_alt
dp_hist_alt
ab_hist_alt
gq_hist_all
dp_hist_all
gq_hist_alt
dp_hist_alt
ab_hist_alt
age_hist_het
age_hist_hom
cadd
locus
alleles
freq
AC
AF
AN
homozygote_count
gen_anc
AC
AF
AN
homozygote_count
gen_anc
faf
faf95_max
faf95_max_gen_anc
faf99_max
faf99_max_gen_anc
faf95_max
faf95_max_gen_anc
faf99_max
faf99_max_gen_anc
a_index
was_split
rsid
filters
FS
MQ
MQRankSum
QUALapprox
QD
ReadPosRankSum
SB
SOR
VarDP
AS_FS
AS_MQ
AS_MQRankSum
AS_pab_max
AS_QUALapprox
AS_QD
AS_ReadPosRankSum
AS_SB_TABLE
AS_SOR
AS_VarDP
singleton
transmitted_singleton
sibling_singleton
omni
mills
monoallelic
only_het
AS_VQSLOD
inbreeding_coeff
VRS_Allele_IDs
VRS_Starts
VRS_Ends
VRS_States
allele_string
end
id
input
intergenic_consequences
most_severe_consequence
motif_feature_consequences
regulatory_feature_consequences
seq_region_name
start
strand
transcript_consequences
variant_class
AS_VQSLOD
AS_culprit
positive_train_site
negative_train_site
non_par
lcr
segdup
fail_interval_qc
outside_ukb_capture_region
outside_broad_capture_region
variant_type
n_alt_alleles
has_star
allele_type
was_mixed
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
phred
raw_score
revel_max
spliceai_ds_max
pangolin_largest_ds
phylop
sift_max
polyphen_max
locus<GRCh38>array<str>array<struct{AC: int32, AF: float64, AN: int32, homozygote_count: int64}>int32float64int32int64strint32float64int32int64strarray<struct{faf95: float64, faf99: float64}>float64strfloat64strfloat64strfloat64strint32boolset<str>set<str>float64float64float64int64float64float64array<int32>float64int32float64float64float64float64int64float64float64array<int32>float64int32boolboolboolboolboolboolboolfloat64float64array<str>array<int32>array<int32>array<str>strint32strstrarray<struct{allele_num: int32, consequence_terms: array<str>, impact: str, variant_allele: str}>strarray<struct{allele_num: int32, consequence_terms: array<str>, high_inf_pos: str, impact: str, motif_feature_id: str, motif_name: str, motif_pos: int32, motif_score_change: float64, transcription_factors: array<str>, strand: int32, variant_allele: str}>array<struct{allele_num: int32, biotype: str, consequence_terms: array<str>, impact: str, regulatory_feature_id: str, variant_allele: str}>strint32int32array<struct{allele_num: int32, amino_acids: str, appris: str, biotype: str, canonical: int32, ccds: str, cdna_start: int32, cdna_end: int32, cds_end: int32, cds_start: int32, codons: str, consequence_terms: array<str>, distance: int32, domains: array<struct{db: str, name: str}>, exon: str, flags: str, gene_id: str, gene_pheno: int32, gene_symbol: str, gene_symbol_source: str, hgnc_id: str, hgvsc: str, hgvsp: str, hgvs_offset: int32, impact: str, intron: str, lof: str, lof_flags: str, lof_filter: str, lof_info: str, mane_select: str, mane_plus_clinical: str, mirna: array<str>, protein_end: int32, protein_start: int32, protein_id: str, source: str, strand: int32, transcript_id: str, tsl: int32, uniprot_isoform: array<str>, variant_allele: str}>strfloat64strboolboolboolboolboolboolboolboolstrint32boolstrboolarray<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64float32float32float64float32float64float64float64float64
chr11:113410731["C","A"][(2,1.37e-06,1461866,0),(2,1.37e-06,1461894,0),(0,0.00e+00,33480,0),(2,4.47e-05,44724,0),(0,0.00e+00,26136,0),(0,0.00e+00,39698,0),(0,0.00e+00,53416,0),(0,0.00e+00,5752,0),(0,0.00e+00,1112010,0),(0,0.00e+00,60394,0),(0,0.00e+00,86256,0),(1,1.36e-06,734628,0),(1,1.38e-06,727238,0),(0,0.00e+00,19326,0),(0,0.00e+00,14154,0),(1,3.89e-05,25690,0),(1,5.25e-05,19034,0),(0,0.00e+00,12636,0),(0,0.00e+00,13500,0),(0,0.00e+00,20710,0),(0,0.00e+00,18988,0),(0,0.00e+00,27646,0),(0,0.00e+00,25770,0),(0,0.00e+00,2494,0),(0,0.00e+00,3258,0),(0,0.00e+00,572288,0),(0,0.00e+00,539722,0),(0,0.00e+00,31800,0),(0,0.00e+00,28594,0),(0,0.00e+00,22038,0),(0,0.00e+00,64218,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,996,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,1994,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,3990,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5752,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,19998,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,26136,0),(1,3.83e-05,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26134,0),(0,0.00e+00,26134,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26134,0),(0,0.00e+00,26136,0),(0,0.00e+00,33480,0),(2,5.97e-05,33480,0),(0,0.00e+00,33478,0),(0,0.00e+00,33476,0),(0,0.00e+00,33480,0),(0,0.00e+00,33478,0),(0,0.00e+00,33478,0),(0,0.00e+00,33480,0),(2,5.04e-05,39700,0),(0,0.00e+00,39698,0),(0,0.00e+00,39696,0),(0,0.00e+00,39700,0),(0,0.00e+00,39698,0),(0,0.00e+00,39698,0),(0,0.00e+00,39700,0),(2,5.00e-05,40000,0),(0,0.00e+00,39996,0),(0,0.00e+00,40000,0),(0,0.00e+00,39998,0),(0,0.00e+00,39998,0),(0,0.00e+00,40000,0),(2,4.47e-05,44724,0),(0,0.00e+00,44720,0),(0,0.00e+00,44724,0),(0,0.00e+00,44722,0),(0,0.00e+00,44722,0),(0,0.00e+00,44724,0),(0,0.00e+00,53416,0),(0,0.00e+00,53420,0),(0,0.00e+00,53418,0),(0,0.00e+00,53418,0),(0,0.00e+00,53420,0),(0,0.00e+00,60396,0),(0,0.00e+00,60394,0),(0,0.00e+00,60394,0),(0,0.00e+00,60396,0),(0,0.00e+00,86258,0),(0,0.00e+00,86256,0),(0,0.00e+00,86256,0),(0,0.00e+00,100000,0),(0,0.00e+00,99998,0),(0,0.00e+00,200000,0),(0,0.00e+00,199998,0),(0,0.00e+00,400000,0),(0,0.00e+00,399996,0),(0,0.00e+00,999998,0),(1,1.00e-06,999978,0),(0,0.00e+00,1112010,0),(2,1.80e-06,1111990,0),(2,3.18e-06,628756,0),(2,3.18e-06,628784,0),(0,0.00e+00,17694,0),(2,4.57e-05,43740,0),(0,0.00e+00,20984,0),(0,0.00e+00,36068,0),(0,0.00e+00,53140,0),(0,0.00e+00,4132,0),(0,0.00e+00,350106,0),(0,0.00e+00,33096,0),(0,0.00e+00,69796,0),(1,3.49e-06,286232,0),(1,2.92e-06,342524,0),(0,0.00e+00,10286,0),(0,0.00e+00,7408,0),(1,3.99e-05,25040,0),(1,5.35e-05,18700,0),(0,0.00e+00,9838,0),(0,0.00e+00,11146,0),(0,0.00e+00,18296,0),(0,0.00e+00,17772,0),(0,0.00e+00,27396,0),(0,0.00e+00,25744,0),(0,0.00e+00,1904,0),(0,0.00e+00,2228,0),(0,0.00e+00,162220,0),(0,0.00e+00,187886,0),(0,0.00e+00,16752,0),(0,0.00e+00,16344,0),(0,0.00e+00,14500,0),(0,0.00e+00,55296,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,198,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,996,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,1990,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,3984,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4132,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17692,0),(0,0.00e+00,17694,0),(0,0.00e+00,17692,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(1,5.00e-05,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,19998,0),(0,0.00e+00,20000,0),(0,0.00e+00,19998,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(1,4.77e-05,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20982,0),(0,0.00e+00,20984,0),(0,0.00e+00,20982,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(2,6.04e-05,33098,0),(0,0.00e+00,33096,0),(0,0.00e+00,33094,0),(0,0.00e+00,33098,0),(0,0.00e+00,33096,0),(0,0.00e+00,33096,0),(0,0.00e+00,33096,0),(2,5.54e-05,36070,0),(0,0.00e+00,36068,0),(0,0.00e+00,36066,0),(0,0.00e+00,36070,0),(0,0.00e+00,36068,0),(0,0.00e+00,36068,0),(2,5.00e-05,40000,0),(0,0.00e+00,39996,0),(0,0.00e+00,40000,0),(0,0.00e+00,39998,0),(0,0.00e+00,39998,0),(2,4.57e-05,43740,0),(0,0.00e+00,43736,0),(0,0.00e+00,43740,0),(0,0.00e+00,43738,0),(0,0.00e+00,43738,0),(0,0.00e+00,53140,0),(0,0.00e+00,53144,0),(0,0.00e+00,53142,0),(0,0.00e+00,53142,0),(0,0.00e+00,69798,0),(0,0.00e+00,69796,0),(0,0.00e+00,69796,0),(0,0.00e+00,100000,0),(0,0.00e+00,99996,0),(0,0.00e+00,199998,0),(0,0.00e+00,199990,0),(0,0.00e+00,350106,0),(1,2.86e-06,350088,0),(1,2.50e-06,399978,0)]24.47e-05447240"amr"24.57e-05437400"amr"[(2.30e-07,9.00e-08),(0.00e+00,0.00e+00),(7.41e-06,2.77e-06),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,(5.30e-07,2.00e-07),(0.00e+00,0.00e+00),(7.58e-06,2.84e-06),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]7.41e-06"amr"2.77e-06"amr"7.58e-06"amr"2.84e-06"amr"1True{"rs140938110"}{}5.56e+006.00e+010.00e+0038621.02e+01-1.98e-01[134,83,109,52]9.81e-013781.31e+016.00e+010.00e+002.94e-0118951.06e+012.52e-01[134,83,56,19]1.42e+00179FalseNANAFalseFalseFalseFalse5.27e+00-1.37e-06["ga4gh:VA.RY2FNHeS0QpJNM9lQpQ_pzX7Q27-MXmI","ga4gh:VA.ZonDIhdwyghm7SuWkXynZVYg2s9ceaeP"][113410730,113410730][113410731,113410731]["C","A"]"C/A"113410731".""chr11\t113410731\t.\tC\tA\t.\t.\tGT"NA"missense_variant"NANA"chr11"1134107311[(1,"C/F",NA,"protein_coding",NA,"CCDS8362.1",1317,1317,1241,1241,"tGc/tTc",["missense_variant"],NA,[("Gene3D","1"),("Superfamily","SSF81321")],"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000346454.7:c.1241G>T","ENSP00000278597.5:p.Cys414Phe",NA,"MODERATE",NA,NA,NA,NA,NA,NA,NA,NA,414,414,"ENSP00000278597","Ensembl",-1,"ENST00000346454",1,["P14416-2"],"A"),(1,"C/F","P2","protein_coding",1,"CCDS8361.1",1682,1682,1328,1328,"tGc/tTc",["missense_variant"],NA,[("Gene3D","1"),("ENSP_mappings","5aer"),("ENSP_mappings","5aer"),("ENSP_mappings","6cm4"),("ENSP_mappings","6luq"),("ENSP_mappings","6vms"),("ENSP_mappings","7dfp"),("ENSP_mappings","7jvr"),("Superfamily","SSF81321")],"8/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000362072.8:c.1328G>T","ENSP00000354859.3:p.Cys443Phe",NA,"MODERATE",NA,NA,NA,NA,NA,"NM_000795.4",NA,NA,443,443,"ENSP00000354859","Ensembl",-1,"ENST00000362072",1,["P14416-1"],"A"),(1,NA,NA,"processed_transcript",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],3644,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000535984",3,NA,"A"),(1,"C/F","A1","protein_coding",NA,NA,1334,1334,1334,1334,"tGc/tTc",["missense_variant"],NA,[("Gene3D","1"),("Superfamily","SSF81321")],"8/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000538967.5:c.1334G>T","ENSP00000438215.1:p.Cys445Phe",NA,"MODERATE",NA,NA,NA,NA,NA,NA,NA,NA,445,445,"ENSP00000438215","Ensembl",-1,"ENST00000538967",5,["P14416-3"],"A"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],4563,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000539420",3,NA,"A"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],3133,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000540600",1,NA,"A"),(1,"C/F","P2","protein_coding",NA,"CCDS8361.1",1649,1649,1328,1328,"tGc/tTc",["missense_variant"],NA,[("Gene3D","1"),("ENSP_mappings","5aer"),("ENSP_mappings","5aer"),("ENSP_mappings","6cm4"),("ENSP_mappings","6luq"),("ENSP_mappings","6vms"),("ENSP_mappings","7dfp"),("ENSP_mappings","7jvr"),("Superfamily","SSF81321")],"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000542968.5:c.1328G>T","ENSP00000442172.1:p.Cys443Phe",NA,"MODERATE",NA,NA,NA,NA,NA,NA,NA,NA,443,443,"ENSP00000442172","Ensembl",-1,"ENST00000542968",1,["P14416-1"],"A"),(1,"C/F","A1","protein_coding",NA,NA,1358,1358,1325,1325,"tGc/tTc",["missense_variant"],NA,[("Gene3D","1"),("Superfamily","SSF81321")],"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000544518.5:c.1325G>T","ENSP00000441068.1:p.Cys442Phe",NA,"MODERATE",NA,NA,NA,NA,NA,NA,NA,NA,442,442,"ENSP00000441068","Ensembl",-1,"ENST00000544518",1,NA,"A"),(1,NA,NA,"lncRNA",1,NA,NA,NA,NA,NA,NA,["intron_variant","non_coding_transcript_variant"],NA,NA,NA,NA,"ENSG00000256757",NA,NA,NA,NA,"ENST00000546284.1:n.245-816C>A",NA,NA,"MODIFIER","2/3",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",1,"ENST00000546284",3,NA,"A"),(1,"C/F",NA,"protein_coding",1,NA,1682,1682,1328,1328,"tGc/tTc",["missense_variant"],NA,NA,"8/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_000795.4:c.1328G>T","NP_000786.1:p.Cys443Phe",NA,"MODERATE",NA,NA,NA,NA,NA,"ENST00000362072.8",NA,NA,443,443,"NP_000786.1","RefSeq",-1,"NM_000795.4",NA,NA,"A"),(1,"C/F",NA,"protein_coding",NA,NA,1595,1595,1241,1241,"tGc/tTc",["missense_variant"],NA,NA,"7/7",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_016574.4:c.1241G>T","NP_057658.2:p.Cys414Phe",NA,"MODERATE",NA,NA,NA,NA,NA,NA,NA,NA,414,414,"NP_057658.2","RefSeq",-1,"NM_016574.4",NA,NA,"A"),(1,"C/F",NA,"protein_coding",NA,NA,1410,1410,1328,1328,"tGc/tTc",["missense_variant"],NA,NA,"8/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","XM_017017296.2:c.1328G>T","XP_016872785.1:p.Cys443Phe",NA,"MODERATE",NA,NA,NA,NA,NA,NA,NA,NA,443,443,"XP_016872785.1","RefSeq",-1,"XM_017017296.2",NA,NA,"A")]"SNV"5.27e+00"AS_MQ"FalseFalseFalseFalseFalseTrueFalseFalse"multi-snv"2False"snv"False[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,21,0,124,0,314262,0,99,0,416424,0,0,0,0,0,0,3]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,98,374,11344,107362,344923,189028,36319,5607,2388,2759,3074,2931,2955,2915,2973,2922,2564,2682]07715[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0]01[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][7,0,0,0,28,0,124,0,314262,0,99,0,416424,0,0,0,0,0,0,3]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,7,98,380,11345,107362,344923,189028,36319,5607,2388,2759,3074,2931,2955,2915,2973,2922,2564,2682]07715[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0]01[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]10[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]002.77e+014.10e+006.02e-010.00e+000.00e+008.78e+000.00e+009.89e-01
chr11:113410731["C","T"][(1,6.84e-07,1461866,0),(1,6.84e-07,1461894,0),(0,0.00e+00,33480,0),(0,0.00e+00,44724,0),(0,0.00e+00,26136,0),(0,0.00e+00,39698,0),(0,0.00e+00,53416,0),(0,0.00e+00,5752,0),(1,8.99e-07,1112010,0),(0,0.00e+00,60394,0),(0,0.00e+00,86256,0),(1,1.36e-06,734628,0),(0,0.00e+00,727238,0),(0,0.00e+00,19326,0),(0,0.00e+00,14154,0),(0,0.00e+00,25690,0),(0,0.00e+00,19034,0),(0,0.00e+00,12636,0),(0,0.00e+00,13500,0),(0,0.00e+00,20710,0),(0,0.00e+00,18988,0),(0,0.00e+00,27646,0),(0,0.00e+00,25770,0),(0,0.00e+00,2494,0),(0,0.00e+00,3258,0),(1,1.75e-06,572288,0),(0,0.00e+00,539722,0),(0,0.00e+00,31800,0),(0,0.00e+00,28594,0),(0,0.00e+00,22038,0),(0,0.00e+00,64218,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,996,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,1994,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,3990,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5752,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,19998,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26134,0),(0,0.00e+00,26134,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26134,0),(0,0.00e+00,26136,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33478,0),(0,0.00e+00,33476,0),(0,0.00e+00,33480,0),(0,0.00e+00,33478,0),(0,0.00e+00,33478,0),(0,0.00e+00,33480,0),(0,0.00e+00,39700,0),(0,0.00e+00,39698,0),(0,0.00e+00,39696,0),(0,0.00e+00,39700,0),(0,0.00e+00,39698,0),(0,0.00e+00,39698,0),(0,0.00e+00,39700,0),(0,0.00e+00,40000,0),(0,0.00e+00,39996,0),(0,0.00e+00,40000,0),(0,0.00e+00,39998,0),(0,0.00e+00,39998,0),(0,0.00e+00,40000,0),(0,0.00e+00,44724,0),(0,0.00e+00,44720,0),(0,0.00e+00,44724,0),(0,0.00e+00,44722,0),(0,0.00e+00,44722,0),(0,0.00e+00,44724,0),(0,0.00e+00,53416,0),(0,0.00e+00,53420,0),(0,0.00e+00,53418,0),(0,0.00e+00,53418,0),(0,0.00e+00,53420,0),(0,0.00e+00,60396,0),(0,0.00e+00,60394,0),(0,0.00e+00,60394,0),(0,0.00e+00,60396,0),(0,0.00e+00,86258,0),(0,0.00e+00,86256,0),(0,0.00e+00,86256,0),(0,0.00e+00,100000,0),(0,0.00e+00,99998,0),(0,0.00e+00,200000,0),(0,0.00e+00,199998,0),(0,0.00e+00,400000,0),(0,0.00e+00,399996,0),(1,1.00e-06,999998,0),(0,0.00e+00,999978,0),(1,8.99e-07,1112010,0),(1,8.99e-07,1111990,0),(0,0.00e+00,628756,0),(0,0.00e+00,628784,0),(0,0.00e+00,17694,0),(0,0.00e+00,43740,0),(0,0.00e+00,20984,0),(0,0.00e+00,36068,0),(0,0.00e+00,53140,0),(0,0.00e+00,4132,0),(0,0.00e+00,350106,0),(0,0.00e+00,33096,0),(0,0.00e+00,69796,0),(0,0.00e+00,286232,0),(0,0.00e+00,342524,0),(0,0.00e+00,10286,0),(0,0.00e+00,7408,0),(0,0.00e+00,25040,0),(0,0.00e+00,18700,0),(0,0.00e+00,9838,0),(0,0.00e+00,11146,0),(0,0.00e+00,18296,0),(0,0.00e+00,17772,0),(0,0.00e+00,27396,0),(0,0.00e+00,25744,0),(0,0.00e+00,1904,0),(0,0.00e+00,2228,0),(0,0.00e+00,162220,0),(0,0.00e+00,187886,0),(0,0.00e+00,16752,0),(0,0.00e+00,16344,0),(0,0.00e+00,14500,0),(0,0.00e+00,55296,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,198,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,996,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,1990,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,3984,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4132,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17692,0),(0,0.00e+00,17694,0),(0,0.00e+00,17692,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,19998,0),(0,0.00e+00,20000,0),(0,0.00e+00,19998,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20982,0),(0,0.00e+00,20984,0),(0,0.00e+00,20982,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,33098,0),(0,0.00e+00,33096,0),(0,0.00e+00,33094,0),(0,0.00e+00,33098,0),(0,0.00e+00,33096,0),(0,0.00e+00,33096,0),(0,0.00e+00,33096,0),(0,0.00e+00,36070,0),(0,0.00e+00,36068,0),(0,0.00e+00,36066,0),(0,0.00e+00,36070,0),(0,0.00e+00,36068,0),(0,0.00e+00,36068,0),(0,0.00e+00,40000,0),(0,0.00e+00,39996,0),(0,0.00e+00,40000,0),(0,0.00e+00,39998,0),(0,0.00e+00,39998,0),(0,0.00e+00,43740,0),(0,0.00e+00,43736,0),(0,0.00e+00,43740,0),(0,0.00e+00,43738,0),(0,0.00e+00,43738,0),(0,0.00e+00,53140,0),(0,0.00e+00,53144,0),(0,0.00e+00,53142,0),(0,0.00e+00,53142,0),(0,0.00e+00,69798,0),(0,0.00e+00,69796,0),(0,0.00e+00,69796,0),(0,0.00e+00,100000,0),(0,0.00e+00,99996,0),(0,0.00e+00,199998,0),(0,0.00e+00,199990,0),(0,0.00e+00,350106,0),(0,0.00e+00,350088,0),(0,0.00e+00,399978,0)]18.99e-0711120100"nfe"NANANANANA[(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]NANANANANANANANA2TrueNA{}5.56e+006.00e+010.00e+0038621.02e+01-1.98e-01[134,83,109,52]9.81e-013780.00e+006.00e+010.00e+009.04e-0119679.88e+00-5.01e-01[134,83,53,33]6.81e-01199TrueFalseFalseFalseFalseFalseFalse5.40e+00-6.84e-07["ga4gh:VA.RY2FNHeS0QpJNM9lQpQ_pzX7Q27-MXmI","ga4gh:VA.Hp20SlFHUdM7jlWmVV27L6utrtRpDmAq"][113410730,113410730][113410731,113410731]["C","T"]"C/T"113410731".""chr11\t113410731\t.\tC\tT\t.\t.\tGT"NA"missense_variant"NANA"chr11"1134107311[(1,"C/Y",NA,"protein_coding",NA,"CCDS8362.1",1317,1317,1241,1241,"tGc/tAc",["missense_variant"],NA,[("Gene3D","1"),("Superfamily","SSF81321")],"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000346454.7:c.1241G>A","ENSP00000278597.5:p.Cys414Tyr",NA,"MODERATE",NA,NA,NA,NA,NA,NA,NA,NA,414,414,"ENSP00000278597","Ensembl",-1,"ENST00000346454",1,["P14416-2"],"T"),(1,"C/Y","P2","protein_coding",1,"CCDS8361.1",1682,1682,1328,1328,"tGc/tAc",["missense_variant"],NA,[("Gene3D","1"),("ENSP_mappings","5aer"),("ENSP_mappings","5aer"),("ENSP_mappings","6cm4"),("ENSP_mappings","6luq"),("ENSP_mappings","6vms"),("ENSP_mappings","7dfp"),("ENSP_mappings","7jvr"),("Superfamily","SSF81321")],"8/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000362072.8:c.1328G>A","ENSP00000354859.3:p.Cys443Tyr",NA,"MODERATE",NA,NA,NA,NA,NA,"NM_000795.4",NA,NA,443,443,"ENSP00000354859","Ensembl",-1,"ENST00000362072",1,["P14416-1"],"T"),(1,NA,NA,"processed_transcript",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],3644,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000535984",3,NA,"T"),(1,"C/Y","A1","protein_coding",NA,NA,1334,1334,1334,1334,"tGc/tAc",["missense_variant"],NA,[("Gene3D","1"),("Superfamily","SSF81321")],"8/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000538967.5:c.1334G>A","ENSP00000438215.1:p.Cys445Tyr",NA,"MODERATE",NA,NA,NA,NA,NA,NA,NA,NA,445,445,"ENSP00000438215","Ensembl",-1,"ENST00000538967",5,["P14416-3"],"T"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],4563,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000539420",3,NA,"T"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],3133,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000540600",1,NA,"T"),(1,"C/Y","P2","protein_coding",NA,"CCDS8361.1",1649,1649,1328,1328,"tGc/tAc",["missense_variant"],NA,[("Gene3D","1"),("ENSP_mappings","5aer"),("ENSP_mappings","5aer"),("ENSP_mappings","6cm4"),("ENSP_mappings","6luq"),("ENSP_mappings","6vms"),("ENSP_mappings","7dfp"),("ENSP_mappings","7jvr"),("Superfamily","SSF81321")],"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000542968.5:c.1328G>A","ENSP00000442172.1:p.Cys443Tyr",NA,"MODERATE",NA,NA,NA,NA,NA,NA,NA,NA,443,443,"ENSP00000442172","Ensembl",-1,"ENST00000542968",1,["P14416-1"],"T"),(1,"C/Y","A1","protein_coding",NA,NA,1358,1358,1325,1325,"tGc/tAc",["missense_variant"],NA,[("Gene3D","1"),("Superfamily","SSF81321")],"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000544518.5:c.1325G>A","ENSP00000441068.1:p.Cys442Tyr",NA,"MODERATE",NA,NA,NA,NA,NA,NA,NA,NA,442,442,"ENSP00000441068","Ensembl",-1,"ENST00000544518",1,NA,"T"),(1,NA,NA,"lncRNA",1,NA,NA,NA,NA,NA,NA,["intron_variant","non_coding_transcript_variant"],NA,NA,NA,NA,"ENSG00000256757",NA,NA,NA,NA,"ENST00000546284.1:n.245-816C>T",NA,NA,"MODIFIER","2/3",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",1,"ENST00000546284",3,NA,"T"),(1,"C/Y",NA,"protein_coding",1,NA,1682,1682,1328,1328,"tGc/tAc",["missense_variant"],NA,NA,"8/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_000795.4:c.1328G>A","NP_000786.1:p.Cys443Tyr",NA,"MODERATE",NA,NA,NA,NA,NA,"ENST00000362072.8",NA,NA,443,443,"NP_000786.1","RefSeq",-1,"NM_000795.4",NA,NA,"T"),(1,"C/Y",NA,"protein_coding",NA,NA,1595,1595,1241,1241,"tGc/tAc",["missense_variant"],NA,NA,"7/7",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_016574.4:c.1241G>A","NP_057658.2:p.Cys414Tyr",NA,"MODERATE",NA,NA,NA,NA,NA,NA,NA,NA,414,414,"NP_057658.2","RefSeq",-1,"NM_016574.4",NA,NA,"T"),(1,"C/Y",NA,"protein_coding",NA,NA,1410,1410,1328,1328,"tGc/tAc",["missense_variant"],NA,NA,"8/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","XM_017017296.2:c.1328G>A","XP_016872785.1:p.Cys443Tyr",NA,"MODERATE",NA,NA,NA,NA,NA,NA,NA,NA,443,443,"XP_016872785.1","RefSeq",-1,"XM_017017296.2",NA,NA,"T")]"SNV"5.40e+00"AS_MQ"FalseFalseFalseFalseFalseTrueFalseFalse"multi-snv"2False"snv"False[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,21,0,124,0,314262,0,99,0,416424,0,0,0,0,0,0,3]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,98,374,11344,107362,344923,189028,36319,5607,2388,2759,3074,2931,2955,2915,2973,2922,2564,2682]07715[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][7,0,0,0,28,0,124,0,314262,0,99,0,416424,0,0,0,0,0,0,3]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,7,98,380,11345,107362,344923,189028,36319,5607,2388,2759,3074,2931,2955,2915,2973,2922,2564,2682]07715[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,1,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]002.75e+014.07e+007.19e-010.00e+002.00e-028.78e+000.00e+009.89e-01
chr11:113410735["G","A"][(75,5.13e-05,1461876,0),(75,5.13e-05,1461894,0),(0,0.00e+00,33480,0),(0,0.00e+00,44724,0),(58,2.22e-03,26136,0),(0,0.00e+00,39700,0),(0,0.00e+00,53418,0),(0,0.00e+00,5762,0),(8,7.19e-06,1112004,0),(9,1.49e-04,60396,0),(0,0.00e+00,86256,0),(39,5.31e-05,734640,0),(36,4.95e-05,727236,0),(0,0.00e+00,19326,0),(0,0.00e+00,14154,0),(0,0.00e+00,25690,0),(0,0.00e+00,19034,0),(29,2.30e-03,12636,0),(29,2.15e-03,13500,0),(0,0.00e+00,20712,0),(0,0.00e+00,18988,0),(0,0.00e+00,27648,0),(0,0.00e+00,25770,0),(0,0.00e+00,2504,0),(0,0.00e+00,3258,0),(5,8.74e-06,572286,0),(3,5.56e-06,539718,0),(5,1.57e-04,31800,0),(4,1.40e-04,28596,0),(0,0.00e+00,22038,0),(0,0.00e+00,64218,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,18,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,198,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(1,1.00e-03,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,998,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(4,2.00e-03,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,1998,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(7,1.75e-03,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,3996,0),(0,0.00e+00,4000,0),(1,2.50e-04,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,3998,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(11,1.91e-03,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5762,0),(0,0.00e+00,5768,0),(1,1.73e-04,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5766,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(22,2.20e-03,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(2,2.00e-04,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,9998,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(46,2.30e-03,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(3,1.50e-04,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,19998,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(58,2.22e-03,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(3,1.15e-04,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26134,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(6,1.79e-04,33480,0),(0,0.00e+00,33480,0),(1,2.99e-05,33478,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(7,1.76e-04,39700,0),(0,0.00e+00,39700,0),(1,2.52e-05,39698,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(7,1.75e-04,40000,0),(0,0.00e+00,39998,0),(1,2.50e-05,39998,0),(0,0.00e+00,44724,0),(0,0.00e+00,44722,0),(0,0.00e+00,44724,0),(7,1.57e-04,44724,0),(0,0.00e+00,44722,0),(1,2.24e-05,44722,0),(0,0.00e+00,53418,0),(0,0.00e+00,53420,0),(9,1.68e-04,53420,0),(0,0.00e+00,53418,0),(1,1.87e-05,53418,0),(0,0.00e+00,60396,0),(9,1.49e-04,60396,0),(0,0.00e+00,60394,0),(2,3.31e-05,60394,0),(0,0.00e+00,86258,0),(0,0.00e+00,86256,0),(4,4.64e-05,86256,0),(0,0.00e+00,100000,0),(5,5.00e-05,99998,0),(0,0.00e+00,200000,0),(9,4.50e-05,199998,0),(3,7.50e-06,399998,0),(21,5.25e-05,399998,0),(6,6.00e-06,999994,0),(50,5.00e-05,999992,0),(8,7.19e-06,1112004,0),(58,5.22e-05,1112000,0),(60,9.54e-05,628768,0),(60,9.54e-05,628784,0),(0,0.00e+00,17694,0),(0,0.00e+00,43740,0),(50,2.38e-03,20984,0),(0,0.00e+00,36070,0),(0,0.00e+00,53142,0),(0,0.00e+00,4142,0),(2,5.71e-06,350102,0),(8,2.42e-04,33098,0),(0,0.00e+00,69796,0),(30,1.05e-04,286244,0),(30,8.76e-05,342524,0),(0,0.00e+00,10286,0),(0,0.00e+00,7408,0),(0,0.00e+00,25040,0),(0,0.00e+00,18700,0),(24,2.44e-03,9838,0),(26,2.33e-03,11146,0),(0,0.00e+00,18298,0),(0,0.00e+00,17772,0),(0,0.00e+00,27398,0),(0,0.00e+00,25744,0),(0,0.00e+00,1914,0),(0,0.00e+00,2228,0),(2,1.23e-05,162218,0),(0,0.00e+00,187884,0),(4,2.39e-04,16752,0),(4,2.45e-04,16346,0),(0,0.00e+00,14500,0),(0,0.00e+00,55296,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,18,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,198,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(1,1.00e-03,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,998,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(4,2.00e-03,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,1998,0),(0,0.00e+00,2000,0),(1,5.00e-04,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,1998,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(6,1.50e-03,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,3994,0),(0,0.00e+00,4000,0),(2,5.00e-04,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,3998,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(7,1.69e-03,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4142,0),(0,0.00e+00,4148,0),(2,4.82e-04,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4146,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(19,1.90e-03,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(3,3.00e-04,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,9998,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(42,2.37e-03,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(6,3.39e-04,17694,0),(0,0.00e+00,17694,0),(1,5.65e-05,17692,0),(0,0.00e+00,20000,0),(49,2.45e-03,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(6,3.00e-04,20000,0),(0,0.00e+00,20000,0),(1,5.00e-05,19998,0),(0,0.00e+00,20984,0),(50,2.38e-03,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(6,2.86e-04,20984,0),(0,0.00e+00,20984,0),(1,4.77e-05,20982,0),(0,0.00e+00,33098,0),(0,0.00e+00,33098,0),(0,0.00e+00,33098,0),(0,0.00e+00,33098,0),(8,2.42e-04,33098,0),(0,0.00e+00,33096,0),(3,9.06e-05,33096,0),(0,0.00e+00,36070,0),(0,0.00e+00,36070,0),(0,0.00e+00,36070,0),(0,0.00e+00,36070,0),(0,0.00e+00,36068,0),(4,1.11e-04,36068,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,39998,0),(5,1.25e-04,39998,0),(0,0.00e+00,43740,0),(0,0.00e+00,43738,0),(0,0.00e+00,43740,0),(0,0.00e+00,43738,0),(5,1.14e-04,43738,0),(0,0.00e+00,53142,0),(0,0.00e+00,53144,0),(0,0.00e+00,53142,0),(5,9.41e-05,53142,0),(0,0.00e+00,69798,0),(0,0.00e+00,69796,0),(6,8.60e-05,69796,0),(1,1.00e-05,100000,0),(8,8.00e-05,99998,0),(1,5.00e-06,199998,0),(21,1.05e-04,199998,0),(2,5.71e-06,350102,0),(31,8.85e-05,350102,0),(37,9.25e-05,399992,0)]87.19e-0611120040"nfe"25.71e-063501020"nfe"[(4.19e-05,3.82e-05),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(3.09e-06,2.24e-06),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,(7.54e-05,6.91e-05),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(9.50e-07,3.60e-07),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]3.09e-06"nfe"2.24e-06"nfe"9.50e-07"nfe"3.60e-07"nfe"1True{"rs201801648"}{}0.00e+006.00e+010.00e+001275011.23e+013.70e-02[3240,2211,2993,1962]7.34e-01104040.00e+006.00e+010.00e+001.00e+001274801.23e+011.60e-02[3240,2211,2991,1961]7.34e-0110383FalseNANAFalseFalseFalseFalse8.85e+00-5.13e-05["ga4gh:VA.SBSoboxxiC0V-mhjjHg2geRlf3I0Ib2d","ga4gh:VA.GzUD_86k_EDbtk-R58BTRVazmjZW2O1U"][113410734,113410734][113410735,113410735]["G","A"]"G/A"113410735".""chr11\t113410735\t.\tG\tA\t.\t.\tGT"NA"missense_variant"NANA"chr11"1134107351[(1,"H/Y",NA,"protein_coding",NA,"CCDS8362.1",1313,1313,1237,1237,"Cac/Tac",["missense_variant"],NA,[("Gene3D","1"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("Superfamily","SSF81321")],"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000346454.7:c.1237C>T","ENSP00000278597.5:p.His413Tyr",NA,"MODERATE",NA,NA,NA,NA,NA,NA,NA,NA,413,413,"ENSP00000278597","Ensembl",-1,"ENST00000346454",1,["P14416-2"],"A"),(1,"H/Y","P2","protein_coding",1,"CCDS8361.1",1678,1678,1324,1324,"Cac/Tac",["missense_variant"],NA,[("Gene3D","1"),("ENSP_mappings","5aer"),("ENSP_mappings","5aer"),("ENSP_mappings","6cm4"),("ENSP_mappings","6luq"),("ENSP_mappings","6vms"),("ENSP_mappings","7dfp"),("ENSP_mappings","7jvr"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("Superfamily","SSF81321")],"8/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000362072.8:c.1324C>T","ENSP00000354859.3:p.His442Tyr",NA,"MODERATE",NA,NA,NA,NA,NA,"NM_000795.4",NA,NA,442,442,"ENSP00000354859","Ensembl",-1,"ENST00000362072",1,["P14416-1"],"A"),(1,NA,NA,"processed_transcript",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],3640,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000535984",3,NA,"A"),(1,"H/Y","A1","protein_coding",NA,NA,1330,1330,1330,1330,"Cac/Tac",["missense_variant"],NA,[("Gene3D","1"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("Superfamily","SSF81321")],"8/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000538967.5:c.1330C>T","ENSP00000438215.1:p.His444Tyr",NA,"MODERATE",NA,NA,NA,NA,NA,NA,NA,NA,444,444,"ENSP00000438215","Ensembl",-1,"ENST00000538967",5,["P14416-3"],"A"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],4559,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000539420",3,NA,"A"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],3129,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000540600",1,NA,"A"),(1,"H/Y","P2","protein_coding",NA,"CCDS8361.1",1645,1645,1324,1324,"Cac/Tac",["missense_variant"],NA,[("Gene3D","1"),("ENSP_mappings","5aer"),("ENSP_mappings","5aer"),("ENSP_mappings","6cm4"),("ENSP_mappings","6luq"),("ENSP_mappings","6vms"),("ENSP_mappings","7dfp"),("ENSP_mappings","7jvr"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("Superfamily","SSF81321")],"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000542968.5:c.1324C>T","ENSP00000442172.1:p.His442Tyr",NA,"MODERATE",NA,NA,NA,NA,NA,NA,NA,NA,442,442,"ENSP00000442172","Ensembl",-1,"ENST00000542968",1,["P14416-1"],"A"),(1,"H/Y","A1","protein_coding",NA,NA,1354,1354,1321,1321,"Cac/Tac",["missense_variant"],NA,[("Gene3D","1"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("Superfamily","SSF81321")],"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000544518.5:c.1321C>T","ENSP00000441068.1:p.His441Tyr",NA,"MODERATE",NA,NA,NA,NA,NA,NA,NA,NA,441,441,"ENSP00000441068","Ensembl",-1,"ENST00000544518",1,NA,"A"),(1,NA,NA,"lncRNA",1,NA,NA,NA,NA,NA,NA,["intron_variant","non_coding_transcript_variant"],NA,NA,NA,NA,"ENSG00000256757",NA,NA,NA,NA,"ENST00000546284.1:n.245-812G>A",NA,NA,"MODIFIER","2/3",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",1,"ENST00000546284",3,NA,"A"),(1,"H/Y",NA,"protein_coding",1,NA,1678,1678,1324,1324,"Cac/Tac",["missense_variant"],NA,NA,"8/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_000795.4:c.1324C>T","NP_000786.1:p.His442Tyr",NA,"MODERATE",NA,NA,NA,NA,NA,"ENST00000362072.8",NA,NA,442,442,"NP_000786.1","RefSeq",-1,"NM_000795.4",NA,NA,"A"),(1,"H/Y",NA,"protein_coding",NA,NA,1591,1591,1237,1237,"Cac/Tac",["missense_variant"],NA,NA,"7/7",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_016574.4:c.1237C>T","NP_057658.2:p.His413Tyr",NA,"MODERATE",NA,NA,NA,NA,NA,NA,NA,NA,413,413,"NP_057658.2","RefSeq",-1,"NM_016574.4",NA,NA,"A"),(1,"H/Y",NA,"protein_coding",NA,NA,1406,1406,1324,1324,"Cac/Tac",["missense_variant"],NA,NA,"8/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","XM_017017296.2:c.1324C>T","XP_016872785.1:p.His442Tyr",NA,"MODERATE",NA,NA,NA,NA,NA,NA,NA,NA,442,442,"XP_016872785.1","RefSeq",-1,"XM_017017296.2",NA,NA,"A")]"SNV"8.85e+00"AS_MQ"FalseFalseFalseFalseFalseTrueFalseFalse"multi-snv"2False"snv"False[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,12,0,76,0,314251,0,32,0,416492,0,0,0,0,0,0,75]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,65,332,11308,107353,344982,189073,36327,5607,2387,2756,3080,2935,2956,2918,2972,2924,2564,2682]07717[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,75]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,1,2,3,4,7,3,7,5,1,4,1,3,0,2]032[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,1,1,6,12,25,24,5,1,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][6,0,1,0,14,0,76,0,314251,0,32,0,416492,0,0,0,0,0,0,75]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,2,67,335,11310,107353,344982,189073,36327,5607,2387,2756,3080,2935,2956,2918,2972,2924,2564,2682]07717[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,75]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,1,2,3,4,7,3,7,5,1,4,1,3,0,2]032[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,1,1,6,12,25,24,5,1,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][1,0,0,2,3,3,8,4,0,0]31[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]002.28e+012.69e+002.67e-010.00e+001.00e-028.67e+001.30e-011.18e-01
chr11:113410736["G","A"][(15,1.03e-05,1461882,0),(15,1.03e-05,1461894,0),(0,0.00e+00,33480,0),(0,0.00e+00,44724,0),(0,0.00e+00,26136,0),(0,0.00e+00,39700,0),(0,0.00e+00,53420,0),(0,0.00e+00,5762,0),(15,1.35e-05,1112010,0),(0,0.00e+00,60396,0),(0,0.00e+00,86254,0),(10,1.36e-05,734642,0),(5,6.88e-06,727240,0),(0,0.00e+00,19326,0),(0,0.00e+00,14154,0),(0,0.00e+00,25690,0),(0,0.00e+00,19034,0),(0,0.00e+00,12636,0),(0,0.00e+00,13500,0),(0,0.00e+00,20712,0),(0,0.00e+00,18988,0),(0,0.00e+00,27648,0),(0,0.00e+00,25772,0),(0,0.00e+00,2506,0),(0,0.00e+00,3256,0),(10,1.75e-05,572288,0),(5,9.26e-06,539722,0),(0,0.00e+00,31800,0),(0,0.00e+00,28596,0),(0,0.00e+00,22036,0),(0,0.00e+00,64218,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,1998,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,3996,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5762,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26134,0),(0,0.00e+00,26136,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33478,0),(0,0.00e+00,33480,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,39698,0),(0,0.00e+00,39700,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,39998,0),(0,0.00e+00,40000,0),(0,0.00e+00,44724,0),(0,0.00e+00,44724,0),(0,0.00e+00,44724,0),(0,0.00e+00,44724,0),(0,0.00e+00,44722,0),(0,0.00e+00,44724,0),(0,0.00e+00,53420,0),(0,0.00e+00,53420,0),(0,0.00e+00,53420,0),(0,0.00e+00,53418,0),(0,0.00e+00,53420,0),(0,0.00e+00,60396,0),(0,0.00e+00,60396,0),(0,0.00e+00,60394,0),(0,0.00e+00,60396,0),(1,1.16e-05,86258,0),(0,0.00e+00,86254,0),(0,0.00e+00,86258,0),(2,2.00e-05,100000,0),(1,1.00e-05,100000,0),(2,1.00e-05,200000,0),(2,1.00e-05,200000,0),(7,1.75e-05,400000,0),(4,1.00e-05,400000,0),(14,1.40e-05,1000000,0),(10,1.00e-05,999994,0),(15,1.35e-05,1112010,0),(12,1.08e-05,1112006,0),(1,1.59e-06,628772,0),(1,1.59e-06,628784,0),(0,0.00e+00,17694,0),(0,0.00e+00,43740,0),(0,0.00e+00,20984,0),(0,0.00e+00,36070,0),(0,0.00e+00,53144,0),(0,0.00e+00,4142,0),(1,2.86e-06,350106,0),(0,0.00e+00,33098,0),(0,0.00e+00,69794,0),(1,3.49e-06,286246,0),(0,0.00e+00,342526,0),(0,0.00e+00,10286,0),(0,0.00e+00,7408,0),(0,0.00e+00,25040,0),(0,0.00e+00,18700,0),(0,0.00e+00,9838,0),(0,0.00e+00,11146,0),(0,0.00e+00,18298,0),(0,0.00e+00,17772,0),(0,0.00e+00,27398,0),(0,0.00e+00,25746,0),(0,0.00e+00,1916,0),(0,0.00e+00,2226,0),(1,6.16e-06,162220,0),(0,0.00e+00,187886,0),(0,0.00e+00,16752,0),(0,0.00e+00,16346,0),(0,0.00e+00,14498,0),(0,0.00e+00,55296,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,1998,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,3994,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4142,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20982,0),(0,0.00e+00,20984,0),(0,0.00e+00,33098,0),(0,0.00e+00,33098,0),(0,0.00e+00,33098,0),(1,3.02e-05,33098,0),(0,0.00e+00,33098,0),(0,0.00e+00,33096,0),(0,0.00e+00,33098,0),(0,0.00e+00,36070,0),(0,0.00e+00,36070,0),(0,0.00e+00,36070,0),(1,2.77e-05,36070,0),(0,0.00e+00,36068,0),(0,0.00e+00,36070,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(1,2.50e-05,40000,0),(0,0.00e+00,39998,0),(0,0.00e+00,40000,0),(0,0.00e+00,43740,0),(0,0.00e+00,43740,0),(1,2.29e-05,43740,0),(0,0.00e+00,43738,0),(1,2.29e-05,43740,0),(0,0.00e+00,53144,0),(1,1.88e-05,53144,0),(0,0.00e+00,53142,0),(1,1.88e-05,53144,0),(1,1.43e-05,69798,0),(0,0.00e+00,69794,0),(1,1.43e-05,69798,0),(1,1.00e-05,100000,0),(1,1.00e-05,100000,0),(1,5.00e-06,200000,0),(1,5.00e-06,199998,0),(1,2.86e-06,350106,0),(1,2.86e-06,350104,0),(1,2.50e-06,399994,0)]151.35e-0511120100"nfe"12.86e-063501060"nfe"[(6.16e-06,4.89e-06),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(8.10e-06,6.42e-06),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]8.10e-06"nfe"6.42e-06"nfe"NANANANA1True{"rs1159504221"}{}5.49e-016.00e+010.00e+00123071.16e+017.40e-02[386,195,316,166]6.55e-0110639.64e-166.00e+010.00e+009.11e-01118991.17e+019.70e-02[386,195,304,161]6.47e-011013FalseNANAFalseFalseFalseFalse7.50e+00-1.03e-05["ga4gh:VA.QVbOetW6APM1_3jfGLLwArt4GfwgT6jE","ga4gh:VA.OXPDvbuulFZ9CSk4XtIFat1UOKdMachQ"][113410735,113410735][113410736,113410736]["G","A"]"G/A"113410736".""chr11\t113410736\t.\tG\tA\t.\t.\tGT"NA"synonymous_variant"NANA"chr11"1134107361[(1,"L",NA,"protein_coding",NA,"CCDS8362.1",1312,1312,1236,1236,"ctC/ctT",["synonymous_variant"],NA,[("Gene3D","1"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321")],"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000346454.7:c.1236C>T","ENSP00000278597.5:p.Leu412=",NA,"LOW",NA,NA,NA,NA,NA,NA,NA,NA,412,412,"ENSP00000278597","Ensembl",-1,"ENST00000346454",1,["P14416-2"],"A"),(1,"L","P2","protein_coding",1,"CCDS8361.1",1677,1677,1323,1323,"ctC/ctT",["synonymous_variant"],NA,[("Gene3D","1"),("ENSP_mappings","5aer"),("ENSP_mappings","5aer"),("ENSP_mappings","6cm4"),("ENSP_mappings","6luq"),("ENSP_mappings","6vms"),("ENSP_mappings","7dfp"),("ENSP_mappings","7jvr"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321")],"8/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000362072.8:c.1323C>T","ENSP00000354859.3:p.Leu441=",NA,"LOW",NA,NA,NA,NA,NA,"NM_000795.4",NA,NA,441,441,"ENSP00000354859","Ensembl",-1,"ENST00000362072",1,["P14416-1"],"A"),(1,NA,NA,"processed_transcript",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],3639,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000535984",3,NA,"A"),(1,"L","A1","protein_coding",NA,NA,1329,1329,1329,1329,"ctC/ctT",["synonymous_variant"],NA,[("Gene3D","1"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321")],"8/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000538967.5:c.1329C>T","ENSP00000438215.1:p.Leu443=",NA,"LOW",NA,NA,NA,NA,NA,NA,NA,NA,443,443,"ENSP00000438215","Ensembl",-1,"ENST00000538967",5,["P14416-3"],"A"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],4558,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000539420",3,NA,"A"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],3128,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000540600",1,NA,"A"),(1,"L","P2","protein_coding",NA,"CCDS8361.1",1644,1644,1323,1323,"ctC/ctT",["synonymous_variant"],NA,[("Gene3D","1"),("ENSP_mappings","5aer"),("ENSP_mappings","5aer"),("ENSP_mappings","6cm4"),("ENSP_mappings","6luq"),("ENSP_mappings","6vms"),("ENSP_mappings","7dfp"),("ENSP_mappings","7jvr"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321")],"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000542968.5:c.1323C>T","ENSP00000442172.1:p.Leu441=",NA,"LOW",NA,NA,NA,NA,NA,NA,NA,NA,441,441,"ENSP00000442172","Ensembl",-1,"ENST00000542968",1,["P14416-1"],"A"),(1,"L","A1","protein_coding",NA,NA,1353,1353,1320,1320,"ctC/ctT",["synonymous_variant"],NA,[("Gene3D","1"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321")],"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000544518.5:c.1320C>T","ENSP00000441068.1:p.Leu440=",NA,"LOW",NA,NA,NA,NA,NA,NA,NA,NA,440,440,"ENSP00000441068","Ensembl",-1,"ENST00000544518",1,NA,"A"),(1,NA,NA,"lncRNA",1,NA,NA,NA,NA,NA,NA,["intron_variant","non_coding_transcript_variant"],NA,NA,NA,NA,"ENSG00000256757",NA,NA,NA,NA,"ENST00000546284.1:n.245-811G>A",NA,NA,"MODIFIER","2/3",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",1,"ENST00000546284",3,NA,"A"),(1,"L",NA,"protein_coding",1,NA,1677,1677,1323,1323,"ctC/ctT",["synonymous_variant"],NA,NA,"8/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_000795.4:c.1323C>T","NP_000786.1:p.Leu441=",NA,"LOW",NA,NA,NA,NA,NA,"ENST00000362072.8",NA,NA,441,441,"NP_000786.1","RefSeq",-1,"NM_000795.4",NA,NA,"A"),(1,"L",NA,"protein_coding",NA,NA,1590,1590,1236,1236,"ctC/ctT",["synonymous_variant"],NA,NA,"7/7",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_016574.4:c.1236C>T","NP_057658.2:p.Leu412=",NA,"LOW",NA,NA,NA,NA,NA,NA,NA,NA,412,412,"NP_057658.2","RefSeq",-1,"NM_016574.4",NA,NA,"A"),(1,"L",NA,"protein_coding",NA,NA,1405,1405,1323,1323,"ctC/ctT",["synonymous_variant"],NA,NA,"8/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","XM_017017296.2:c.1323C>T","XP_016872785.1:p.Leu441=",NA,"LOW",NA,NA,NA,NA,NA,NA,NA,NA,441,441,"XP_016872785.1","RefSeq",-1,"XM_017017296.2",NA,NA,"A")]"SNV"7.50e+00"AS_MQ"FalseFalseFalseFalseFalseTrueFalseFalse"multi-snv"2False"snv"False[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,8,0,71,0,314313,0,37,0,416496,0,0,0,0,0,0,16]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,61,328,11304,107355,345020,189098,36329,5607,2382,2757,3074,2931,2955,2914,2974,2923,2564,2680]07685[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,15]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,1,3,1,2,3,1,0,1,0,1,1,0,0]01[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,1,0,0,1,1,11,1,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][5,0,0,0,9,0,71,0,314313,0,37,0,416496,0,0,0,0,0,0,16]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,1,62,330,11305,107356,345020,189098,36329,5607,2382,2757,3074,2931,2955,2914,2974,2923,2564,2680]07685[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,15]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,1,3,1,2,3,1,0,1,0,1,1,0,0]01[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,1,0,0,1,1,11,1,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,1,2,4,2,4,1,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]003.44e+002.28e-01NA0.00e+001.00e-02-2.55e-01NANA
chr11:113410736["G","T"][(1,6.84e-07,1461882,0),(1,6.84e-07,1461894,0),(0,0.00e+00,33480,0),(0,0.00e+00,44724,0),(0,0.00e+00,26136,0),(0,0.00e+00,39700,0),(0,0.00e+00,53420,0),(0,0.00e+00,5762,0),(1,8.99e-07,1112010,0),(0,0.00e+00,60396,0),(0,0.00e+00,86254,0),(0,0.00e+00,734642,0),(1,1.38e-06,727240,0),(0,0.00e+00,19326,0),(0,0.00e+00,14154,0),(0,0.00e+00,25690,0),(0,0.00e+00,19034,0),(0,0.00e+00,12636,0),(0,0.00e+00,13500,0),(0,0.00e+00,20712,0),(0,0.00e+00,18988,0),(0,0.00e+00,27648,0),(0,0.00e+00,25772,0),(0,0.00e+00,2506,0),(0,0.00e+00,3256,0),(0,0.00e+00,572288,0),(1,1.85e-06,539722,0),(0,0.00e+00,31800,0),(0,0.00e+00,28596,0),(0,0.00e+00,22036,0),(0,0.00e+00,64218,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,1998,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,3996,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5762,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26134,0),(0,0.00e+00,26136,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33478,0),(0,0.00e+00,33480,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,39698,0),(0,0.00e+00,39700,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,39998,0),(0,0.00e+00,40000,0),(0,0.00e+00,44724,0),(0,0.00e+00,44724,0),(0,0.00e+00,44724,0),(0,0.00e+00,44724,0),(0,0.00e+00,44722,0),(0,0.00e+00,44724,0),(0,0.00e+00,53420,0),(0,0.00e+00,53420,0),(0,0.00e+00,53420,0),(0,0.00e+00,53418,0),(0,0.00e+00,53420,0),(0,0.00e+00,60396,0),(0,0.00e+00,60396,0),(0,0.00e+00,60394,0),(0,0.00e+00,60396,0),(0,0.00e+00,86258,0),(0,0.00e+00,86254,0),(0,0.00e+00,86258,0),(0,0.00e+00,100000,0),(0,0.00e+00,100000,0),(0,0.00e+00,200000,0),(0,0.00e+00,200000,0),(1,2.50e-06,400000,0),(1,2.50e-06,400000,0),(1,1.00e-06,1000000,0),(1,1.00e-06,999994,0),(1,8.99e-07,1112010,0),(1,8.99e-07,1112006,0),(0,0.00e+00,628772,0),(0,0.00e+00,628784,0),(0,0.00e+00,17694,0),(0,0.00e+00,43740,0),(0,0.00e+00,20984,0),(0,0.00e+00,36070,0),(0,0.00e+00,53144,0),(0,0.00e+00,4142,0),(0,0.00e+00,350106,0),(0,0.00e+00,33098,0),(0,0.00e+00,69794,0),(0,0.00e+00,286246,0),(0,0.00e+00,342526,0),(0,0.00e+00,10286,0),(0,0.00e+00,7408,0),(0,0.00e+00,25040,0),(0,0.00e+00,18700,0),(0,0.00e+00,9838,0),(0,0.00e+00,11146,0),(0,0.00e+00,18298,0),(0,0.00e+00,17772,0),(0,0.00e+00,27398,0),(0,0.00e+00,25746,0),(0,0.00e+00,1916,0),(0,0.00e+00,2226,0),(0,0.00e+00,162220,0),(0,0.00e+00,187886,0),(0,0.00e+00,16752,0),(0,0.00e+00,16346,0),(0,0.00e+00,14498,0),(0,0.00e+00,55296,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,1998,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,3994,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4142,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20982,0),(0,0.00e+00,20984,0),(0,0.00e+00,33098,0),(0,0.00e+00,33098,0),(0,0.00e+00,33098,0),(0,0.00e+00,33098,0),(0,0.00e+00,33098,0),(0,0.00e+00,33096,0),(0,0.00e+00,33098,0),(0,0.00e+00,36070,0),(0,0.00e+00,36070,0),(0,0.00e+00,36070,0),(0,0.00e+00,36070,0),(0,0.00e+00,36068,0),(0,0.00e+00,36070,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,39998,0),(0,0.00e+00,40000,0),(0,0.00e+00,43740,0),(0,0.00e+00,43740,0),(0,0.00e+00,43740,0),(0,0.00e+00,43738,0),(0,0.00e+00,43740,0),(0,0.00e+00,53144,0),(0,0.00e+00,53144,0),(0,0.00e+00,53142,0),(0,0.00e+00,53144,0),(0,0.00e+00,69798,0),(0,0.00e+00,69794,0),(0,0.00e+00,69798,0),(0,0.00e+00,100000,0),(0,0.00e+00,100000,0),(0,0.00e+00,200000,0),(0,0.00e+00,199998,0),(0,0.00e+00,350106,0),(0,0.00e+00,350104,0),(0,0.00e+00,399994,0)]18.99e-0711120100"nfe"NANANANANA[(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]NANANANANANANANA2TrueNA{}5.49e-016.00e+010.00e+00123071.16e+017.40e-02[386,195,316,166]6.55e-0110639.64e-166.00e+010.00e+003.28e-024088.16e+00-9.23e-01[386,195,12,5]7.90e-0150TrueFalseFalseFalseFalseFalseFalse5.00e+00-6.84e-07["ga4gh:VA.QVbOetW6APM1_3jfGLLwArt4GfwgT6jE","ga4gh:VA.4qhkDG1qrfqiD2TeOA6LYLsi4UGWF19l"][113410735,113410735][113410736,113410736]["G","T"]"G/T"113410736".""chr11\t113410736\t.\tG\tT\t.\t.\tGT"NA"synonymous_variant"NANA"chr11"1134107361[(1,"L",NA,"protein_coding",NA,"CCDS8362.1",1312,1312,1236,1236,"ctC/ctA",["synonymous_variant"],NA,[("Gene3D","1"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321")],"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000346454.7:c.1236C>A","ENSP00000278597.5:p.Leu412=",NA,"LOW",NA,NA,NA,NA,NA,NA,NA,NA,412,412,"ENSP00000278597","Ensembl",-1,"ENST00000346454",1,["P14416-2"],"T"),(1,"L","P2","protein_coding",1,"CCDS8361.1",1677,1677,1323,1323,"ctC/ctA",["synonymous_variant"],NA,[("Gene3D","1"),("ENSP_mappings","5aer"),("ENSP_mappings","5aer"),("ENSP_mappings","6cm4"),("ENSP_mappings","6luq"),("ENSP_mappings","6vms"),("ENSP_mappings","7dfp"),("ENSP_mappings","7jvr"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321")],"8/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000362072.8:c.1323C>A","ENSP00000354859.3:p.Leu441=",NA,"LOW",NA,NA,NA,NA,NA,"NM_000795.4",NA,NA,441,441,"ENSP00000354859","Ensembl",-1,"ENST00000362072",1,["P14416-1"],"T"),(1,NA,NA,"processed_transcript",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],3639,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000535984",3,NA,"T"),(1,"L","A1","protein_coding",NA,NA,1329,1329,1329,1329,"ctC/ctA",["synonymous_variant"],NA,[("Gene3D","1"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321")],"8/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000538967.5:c.1329C>A","ENSP00000438215.1:p.Leu443=",NA,"LOW",NA,NA,NA,NA,NA,NA,NA,NA,443,443,"ENSP00000438215","Ensembl",-1,"ENST00000538967",5,["P14416-3"],"T"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],4558,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000539420",3,NA,"T"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],3128,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000540600",1,NA,"T"),(1,"L","P2","protein_coding",NA,"CCDS8361.1",1644,1644,1323,1323,"ctC/ctA",["synonymous_variant"],NA,[("Gene3D","1"),("ENSP_mappings","5aer"),("ENSP_mappings","5aer"),("ENSP_mappings","6cm4"),("ENSP_mappings","6luq"),("ENSP_mappings","6vms"),("ENSP_mappings","7dfp"),("ENSP_mappings","7jvr"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321")],"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000542968.5:c.1323C>A","ENSP00000442172.1:p.Leu441=",NA,"LOW",NA,NA,NA,NA,NA,NA,NA,NA,441,441,"ENSP00000442172","Ensembl",-1,"ENST00000542968",1,["P14416-1"],"T"),(1,"L","A1","protein_coding",NA,NA,1353,1353,1320,1320,"ctC/ctA",["synonymous_variant"],NA,[("Gene3D","1"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321")],"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000544518.5:c.1320C>A","ENSP00000441068.1:p.Leu440=",NA,"LOW",NA,NA,NA,NA,NA,NA,NA,NA,440,440,"ENSP00000441068","Ensembl",-1,"ENST00000544518",1,NA,"T"),(1,NA,NA,"lncRNA",1,NA,NA,NA,NA,NA,NA,["intron_variant","non_coding_transcript_variant"],NA,NA,NA,NA,"ENSG00000256757",NA,NA,NA,NA,"ENST00000546284.1:n.245-811G>T",NA,NA,"MODIFIER","2/3",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",1,"ENST00000546284",3,NA,"T"),(1,"L",NA,"protein_coding",1,NA,1677,1677,1323,1323,"ctC/ctA",["synonymous_variant"],NA,NA,"8/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_000795.4:c.1323C>A","NP_000786.1:p.Leu441=",NA,"LOW",NA,NA,NA,NA,NA,"ENST00000362072.8",NA,NA,441,441,"NP_000786.1","RefSeq",-1,"NM_000795.4",NA,NA,"T"),(1,"L",NA,"protein_coding",NA,NA,1590,1590,1236,1236,"ctC/ctA",["synonymous_variant"],NA,NA,"7/7",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_016574.4:c.1236C>A","NP_057658.2:p.Leu412=",NA,"LOW",NA,NA,NA,NA,NA,NA,NA,NA,412,412,"NP_057658.2","RefSeq",-1,"NM_016574.4",NA,NA,"T"),(1,"L",NA,"protein_coding",NA,NA,1405,1405,1323,1323,"ctC/ctA",["synonymous_variant"],NA,NA,"8/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","XM_017017296.2:c.1323C>A","XP_016872785.1:p.Leu441=",NA,"LOW",NA,NA,NA,NA,NA,NA,NA,NA,441,441,"XP_016872785.1","RefSeq",-1,"XM_017017296.2",NA,NA,"T")]"SNV"5.00e+00"AS_MQ"FalseFalseFalseFalseFalseTrueFalseFalse"multi-snv"2False"snv"False[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,8,0,71,0,314313,0,37,0,416496,0,0,0,0,0,0,16]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,61,328,11304,107355,345020,189098,36329,5607,2382,2757,3074,2931,2955,2914,2974,2923,2564,2680]07685[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][5,0,0,0,9,0,71,0,314313,0,37,0,416496,0,0,0,0,0,0,16]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,1,62,330,11305,107356,345020,189098,36329,5607,2382,2757,3074,2931,2955,2914,2974,2923,2564,2680]07685[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,1,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]002.96e+001.86e-01NA0.00e+003.00e-02-2.55e-01NANA

showing top 5 rows

\n" - ], - "text/plain": [ - "+-----------------+------------+\n", - "| locus | alleles |\n", - "+-----------------+------------+\n", - "| locus | array |\n", - "+-----------------+------------+\n", - "| chr11:113410731 | [\"C\",\"A\"] |\n", - "| chr11:113410731 | [\"C\",\"T\"] |\n", - "| chr11:113410735 | [\"G\",\"A\"] |\n", - "| chr11:113410736 | [\"G\",\"A\"] |\n", - "| chr11:113410736 | [\"G\",\"T\"] |\n", - "+-----------------+------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| freq |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [(2,1.37e-06,1461866,0),(2,1.37e-06,1461894,0),(0,0.00e+00,33480,0),(2,4.... |\n", - "| [(1,6.84e-07,1461866,0),(1,6.84e-07,1461894,0),(0,0.00e+00,33480,0),(0,0.... |\n", - "| [(75,5.13e-05,1461876,0),(75,5.13e-05,1461894,0),(0,0.00e+00,33480,0),(0,... |\n", - "| [(15,1.03e-05,1461882,0),(15,1.03e-05,1461894,0),(0,0.00e+00,33480,0),(0,... |\n", - "| [(1,6.84e-07,1461882,0),(1,6.84e-07,1461894,0),(0,0.00e+00,33480,0),(0,0.... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+------------------+------------------+------------------+\n", - "| grpmax.gnomad.AC | grpmax.gnomad.AF | grpmax.gnomad.AN |\n", - "+------------------+------------------+------------------+\n", - "| int32 | float64 | int32 |\n", - "+------------------+------------------+------------------+\n", - "| 2 | 4.47e-05 | 44724 |\n", - "| 1 | 8.99e-07 | 1112010 |\n", - "| 8 | 7.19e-06 | 1112004 |\n", - "| 15 | 1.35e-05 | 1112010 |\n", - "| 1 | 8.99e-07 | 1112010 |\n", - "+------------------+------------------+------------------+\n", - "\n", - "+--------------------------------+-----------------------+-------------------+\n", - "| grpmax.gnomad.homozygote_count | grpmax.gnomad.gen_anc | grpmax.non_ukb.AC |\n", - "+--------------------------------+-----------------------+-------------------+\n", - "| int64 | str | int32 |\n", - "+--------------------------------+-----------------------+-------------------+\n", - "| 0 | \"amr\" | 2 |\n", - "| 0 | \"nfe\" | NA |\n", - "| 0 | \"nfe\" | 2 |\n", - "| 0 | \"nfe\" | 1 |\n", - "| 0 | \"nfe\" | NA |\n", - "+--------------------------------+-----------------------+-------------------+\n", - "\n", - "+-------------------+-------------------+---------------------------------+\n", - "| grpmax.non_ukb.AF | grpmax.non_ukb.AN | grpmax.non_ukb.homozygote_count |\n", - "+-------------------+-------------------+---------------------------------+\n", - "| float64 | int32 | int64 |\n", - "+-------------------+-------------------+---------------------------------+\n", - "| 4.57e-05 | 43740 | 0 |\n", - "| NA | NA | NA |\n", - "| 5.71e-06 | 350102 | 0 |\n", - "| 2.86e-06 | 350106 | 0 |\n", - "| NA | NA | NA |\n", - "+-------------------+-------------------+---------------------------------+\n", - "\n", - "+------------------------+\n", - "| grpmax.non_ukb.gen_anc |\n", - "+------------------------+\n", - "| str |\n", - "+------------------------+\n", - "| \"amr\" |\n", - "| NA |\n", - "| \"nfe\" |\n", - "| \"nfe\" |\n", - "| NA |\n", - "+------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| faf |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [(2.30e-07,9.00e-08),(0.00e+00,0.00e+00),(7.41e-06,2.77e-06),(0.00e+00,0.... |\n", - "| [(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.... |\n", - "| [(4.19e-05,3.82e-05),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.... |\n", - "| [(6.16e-06,4.89e-06),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.... |\n", - "| [(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+-------------------------+---------------------------------+\n", - "| fafmax.gnomad.faf95_max | fafmax.gnomad.faf95_max_gen_anc |\n", - "+-------------------------+---------------------------------+\n", - "| float64 | str |\n", - "+-------------------------+---------------------------------+\n", - "| 7.41e-06 | \"amr\" |\n", - "| NA | NA |\n", - "| 3.09e-06 | \"nfe\" |\n", - "| 8.10e-06 | \"nfe\" |\n", - "| NA | NA |\n", - "+-------------------------+---------------------------------+\n", - "\n", - "+-------------------------+---------------------------------+\n", - "| fafmax.gnomad.faf99_max | fafmax.gnomad.faf99_max_gen_anc |\n", - "+-------------------------+---------------------------------+\n", - "| float64 | str |\n", - "+-------------------------+---------------------------------+\n", - "| 2.77e-06 | \"amr\" |\n", - "| NA | NA |\n", - "| 2.24e-06 | \"nfe\" |\n", - "| 6.42e-06 | \"nfe\" |\n", - "| NA | NA |\n", - "+-------------------------+---------------------------------+\n", - "\n", - "+--------------------------+----------------------------------+\n", - "| fafmax.non_ukb.faf95_max | fafmax.non_ukb.faf95_max_gen_anc |\n", - "+--------------------------+----------------------------------+\n", - "| float64 | str |\n", - "+--------------------------+----------------------------------+\n", - "| 7.58e-06 | \"amr\" |\n", - "| NA | NA |\n", - "| 9.50e-07 | \"nfe\" |\n", - "| NA | NA |\n", - "| NA | NA |\n", - "+--------------------------+----------------------------------+\n", - "\n", - "+--------------------------+----------------------------------+---------+\n", - "| fafmax.non_ukb.faf99_max | fafmax.non_ukb.faf99_max_gen_anc | a_index |\n", - "+--------------------------+----------------------------------+---------+\n", - "| float64 | str | int32 |\n", - "+--------------------------+----------------------------------+---------+\n", - "| 2.84e-06 | \"amr\" | 1 |\n", - "| NA | NA | 2 |\n", - "| 3.60e-07 | \"nfe\" | 1 |\n", - "| NA | NA | 1 |\n", - "| NA | NA | 2 |\n", - "+--------------------------+----------------------------------+---------+\n", - "\n", - "+-----------+------------------+----------+----------+----------+\n", - "| was_split | rsid | filters | info.FS | info.MQ |\n", - "+-----------+------------------+----------+----------+----------+\n", - "| bool | set | set | float64 | float64 |\n", - "+-----------+------------------+----------+----------+----------+\n", - "| True | {\"rs140938110\"} | {} | 5.56e+00 | 6.00e+01 |\n", - "| True | NA | {} | 5.56e+00 | 6.00e+01 |\n", - "| True | {\"rs201801648\"} | {} | 0.00e+00 | 6.00e+01 |\n", - "| True | {\"rs1159504221\"} | {} | 5.49e-01 | 6.00e+01 |\n", - "| True | NA | {} | 5.49e-01 | 6.00e+01 |\n", - "+-----------+------------------+----------+----------+----------+\n", - "\n", - "+----------------+-----------------+----------+---------------------+\n", - "| info.MQRankSum | info.QUALapprox | info.QD | info.ReadPosRankSum |\n", - "+----------------+-----------------+----------+---------------------+\n", - "| float64 | int64 | float64 | float64 |\n", - "+----------------+-----------------+----------+---------------------+\n", - "| 0.00e+00 | 3862 | 1.02e+01 | -1.98e-01 |\n", - "| 0.00e+00 | 3862 | 1.02e+01 | -1.98e-01 |\n", - "| 0.00e+00 | 127501 | 1.23e+01 | 3.70e-02 |\n", - "| 0.00e+00 | 12307 | 1.16e+01 | 7.40e-02 |\n", - "| 0.00e+00 | 12307 | 1.16e+01 | 7.40e-02 |\n", - "+----------------+-----------------+----------+---------------------+\n", - "\n", - "+-----------------------+----------+------------+------------+------------+\n", - "| info.SB | info.SOR | info.VarDP | info.AS_FS | info.AS_MQ |\n", - "+-----------------------+----------+------------+------------+------------+\n", - "| array | float64 | int32 | float64 | float64 |\n", - "+-----------------------+----------+------------+------------+------------+\n", - "| [134,83,109,52] | 9.81e-01 | 378 | 1.31e+01 | 6.00e+01 |\n", - "| [134,83,109,52] | 9.81e-01 | 378 | 0.00e+00 | 6.00e+01 |\n", - "| [3240,2211,2993,1962] | 7.34e-01 | 10404 | 0.00e+00 | 6.00e+01 |\n", - "| [386,195,316,166] | 6.55e-01 | 1063 | 9.64e-16 | 6.00e+01 |\n", - "| [386,195,316,166] | 6.55e-01 | 1063 | 9.64e-16 | 6.00e+01 |\n", - "+-----------------------+----------+------------+------------+------------+\n", - "\n", - "+-------------------+-----------------+--------------------+------------+\n", - "| info.AS_MQRankSum | info.AS_pab_max | info.AS_QUALapprox | info.AS_QD |\n", - "+-------------------+-----------------+--------------------+------------+\n", - "| float64 | float64 | int64 | float64 |\n", - "+-------------------+-----------------+--------------------+------------+\n", - "| 0.00e+00 | 2.94e-01 | 1895 | 1.06e+01 |\n", - "| 0.00e+00 | 9.04e-01 | 1967 | 9.88e+00 |\n", - "| 0.00e+00 | 1.00e+00 | 127480 | 1.23e+01 |\n", - "| 0.00e+00 | 9.11e-01 | 11899 | 1.17e+01 |\n", - "| 0.00e+00 | 3.28e-02 | 408 | 8.16e+00 |\n", - "+-------------------+-----------------+--------------------+------------+\n", - "\n", - "+------------------------+-----------------------+-------------+---------------+\n", - "| info.AS_ReadPosRankSum | info.AS_SB_TABLE | info.AS_SOR | info.AS_VarDP |\n", - "+------------------------+-----------------------+-------------+---------------+\n", - "| float64 | array | float64 | int32 |\n", - "+------------------------+-----------------------+-------------+---------------+\n", - "| 2.52e-01 | [134,83,56,19] | 1.42e+00 | 179 |\n", - "| -5.01e-01 | [134,83,53,33] | 6.81e-01 | 199 |\n", - "| 1.60e-02 | [3240,2211,2991,1961] | 7.34e-01 | 10383 |\n", - "| 9.70e-02 | [386,195,304,161] | 6.47e-01 | 1013 |\n", - "| -9.23e-01 | [386,195,12,5] | 7.90e-01 | 50 |\n", - "+------------------------+-----------------------+-------------+---------------+\n", - "\n", - "+----------------+----------------------------+------------------------+\n", - "| info.singleton | info.transmitted_singleton | info.sibling_singleton |\n", - "+----------------+----------------------------+------------------------+\n", - "| bool | bool | bool |\n", - "+----------------+----------------------------+------------------------+\n", - "| False | NA | NA |\n", - "| True | False | False |\n", - "| False | NA | NA |\n", - "| False | NA | NA |\n", - "| True | False | False |\n", - "+----------------+----------------------------+------------------------+\n", - "\n", - "+-----------+------------+------------------+---------------+----------------+\n", - "| info.omni | info.mills | info.monoallelic | info.only_het | info.AS_VQSLOD |\n", - "+-----------+------------+------------------+---------------+----------------+\n", - "| bool | bool | bool | bool | float64 |\n", - "+-----------+------------+------------------+---------------+----------------+\n", - "| False | False | False | False | 5.27e+00 |\n", - "| False | False | False | False | 5.40e+00 |\n", - "| False | False | False | False | 8.85e+00 |\n", - "| False | False | False | False | 7.50e+00 |\n", - "| False | False | False | False | 5.00e+00 |\n", - "+-----------+------------+------------------+---------------+----------------+\n", - "\n", - "+-----------------------+\n", - "| info.inbreeding_coeff |\n", - "+-----------------------+\n", - "| float64 |\n", - "+-----------------------+\n", - "| -1.37e-06 |\n", - "| -6.84e-07 |\n", - "| -5.13e-05 |\n", - "| -1.03e-05 |\n", - "| -6.84e-07 |\n", - "+-----------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| info.vrs.VRS_Allele_IDs |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [\"ga4gh:VA.RY2FNHeS0QpJNM9lQpQ_pzX7Q27-MXmI\",\"ga4gh:VA.ZonDIhdwyghm7SuWkX... |\n", - "| [\"ga4gh:VA.RY2FNHeS0QpJNM9lQpQ_pzX7Q27-MXmI\",\"ga4gh:VA.Hp20SlFHUdM7jlWmVV... |\n", - "| [\"ga4gh:VA.SBSoboxxiC0V-mhjjHg2geRlf3I0Ib2d\",\"ga4gh:VA.GzUD_86k_EDbtk-R58... |\n", - "| [\"ga4gh:VA.QVbOetW6APM1_3jfGLLwArt4GfwgT6jE\",\"ga4gh:VA.OXPDvbuulFZ9CSk4Xt... |\n", - "| [\"ga4gh:VA.QVbOetW6APM1_3jfGLLwArt4GfwgT6jE\",\"ga4gh:VA.4qhkDG1qrfqiD2TeOA... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+-----------------------+-----------------------+---------------------+\n", - "| info.vrs.VRS_Starts | info.vrs.VRS_Ends | info.vrs.VRS_States |\n", - "+-----------------------+-----------------------+---------------------+\n", - "| array | array | array |\n", - "+-----------------------+-----------------------+---------------------+\n", - "| [113410730,113410730] | [113410731,113410731] | [\"C\",\"A\"] |\n", - "| [113410730,113410730] | [113410731,113410731] | [\"C\",\"T\"] |\n", - "| [113410734,113410734] | [113410735,113410735] | [\"G\",\"A\"] |\n", - "| [113410735,113410735] | [113410736,113410736] | [\"G\",\"A\"] |\n", - "| [113410735,113410735] | [113410736,113410736] | [\"G\",\"T\"] |\n", - "+-----------------------+-----------------------+---------------------+\n", - "\n", - "+-------------------+-----------+--------+--------------------------------+\n", - "| vep.allele_string | vep.end | vep.id | vep.input |\n", - "+-------------------+-----------+--------+--------------------------------+\n", - "| str | int32 | str | str |\n", - "+-------------------+-----------+--------+--------------------------------+\n", - "| \"C/A\" | 113410731 | \".\" | \"chr11\t113410731\t.\tC\tA\t.\t.\tGT\" |\n", - "| \"C/T\" | 113410731 | \".\" | \"chr11\t113410731\t.\tC\tT\t.\t.\tGT\" |\n", - "| \"G/A\" | 113410735 | \".\" | \"chr11\t113410735\t.\tG\tA\t.\t.\tGT\" |\n", - "| \"G/A\" | 113410736 | \".\" | \"chr11\t113410736\t.\tG\tA\t.\t.\tGT\" |\n", - "| \"G/T\" | 113410736 | \".\" | \"chr11\t113410736\t.\tG\tT\t.\t.\tGT\" |\n", - "+-------------------+-----------+--------+--------------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| vep.intergenic_consequences |\n", - "+------------------------------------------------------------------------------+\n", - "| array, impact: st... |\n", - "+------------------------------------------------------------------------------+\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+-----------------------------+\n", - "| vep.most_severe_consequence |\n", - "+-----------------------------+\n", - "| str |\n", - "+-----------------------------+\n", - "| \"missense_variant\" |\n", - "| \"missense_variant\" |\n", - "| \"missense_variant\" |\n", - "| \"synonymous_variant\" |\n", - "| \"synonymous_variant\" |\n", - "+-----------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| vep.motif_feature_consequences |\n", - "+------------------------------------------------------------------------------+\n", - "| array, high_inf_p... |\n", - "+------------------------------------------------------------------------------+\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| vep.regulatory_feature_consequences |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+---------------------------------------------------------+\n", - "| histograms.qual_hists.gq_hist_all.bin_freq |\n", - "+---------------------------------------------------------+\n", - "| array |\n", - "+---------------------------------------------------------+\n", - "| [0,0,0,0,21,0,124,0,314262,0,99,0,416424,0,0,0,0,0,0,3] |\n", - "| [0,0,0,0,21,0,124,0,314262,0,99,0,416424,0,0,0,0,0,0,3] |\n", - "| [0,0,0,0,12,0,76,0,314251,0,32,0,416492,0,0,0,0,0,0,75] |\n", - "| [0,0,0,0,8,0,71,0,314313,0,37,0,416496,0,0,0,0,0,0,16] |\n", - "| [0,0,0,0,8,0,71,0,314313,0,37,0,416496,0,0,0,0,0,0,16] |\n", - "+---------------------------------------------------------+\n", - "\n", - "+---------------------------------------------+\n", - "| histograms.qual_hists.gq_hist_all.n_smaller |\n", - "+---------------------------------------------+\n", - "| int64 |\n", - "+---------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+---------------------------------------------+\n", - "\n", - "+--------------------------------------------+\n", - "| histograms.qual_hists.gq_hist_all.n_larger |\n", - "+--------------------------------------------+\n", - "| int64 |\n", - "+--------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+--------------------------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| histograms.qual_hists.dp_hist_all.bin_edges |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| histograms.qual_hists.dp_hist_all.bin_freq |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [0,0,98,374,11344,107362,344923,189028,36319,5607,2388,2759,3074,2931,295... |\n", - "| [0,0,98,374,11344,107362,344923,189028,36319,5607,2388,2759,3074,2931,295... |\n", - "| [0,0,65,332,11308,107353,344982,189073,36327,5607,2387,2756,3080,2935,295... |\n", - "| [0,0,61,328,11304,107355,345020,189098,36329,5607,2382,2757,3074,2931,295... |\n", - "| [0,0,61,328,11304,107355,345020,189098,36329,5607,2382,2757,3074,2931,295... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+---------------------------------------------+\n", - "| histograms.qual_hists.dp_hist_all.n_smaller |\n", - "+---------------------------------------------+\n", - "| int64 |\n", - "+---------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+---------------------------------------------+\n", - "\n", - "+--------------------------------------------+\n", - "| histograms.qual_hists.dp_hist_all.n_larger |\n", - "+--------------------------------------------+\n", - "| int64 |\n", - "+--------------------------------------------+\n", - "| 7715 |\n", - "| 7715 |\n", - "| 7717 |\n", - "| 7685 |\n", - "| 7685 |\n", - "+--------------------------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| histograms.qual_hists.gq_hist_alt.bin_edges |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+--------------------------------------------+\n", - "| histograms.qual_hists.gq_hist_alt.bin_freq |\n", - "+--------------------------------------------+\n", - "| array |\n", - "+--------------------------------------------+\n", - "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2] |\n", - "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1] |\n", - "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,75] |\n", - "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,15] |\n", - "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1] |\n", - "+--------------------------------------------+\n", - "\n", - "+---------------------------------------------+\n", - "| histograms.qual_hists.gq_hist_alt.n_smaller |\n", - "+---------------------------------------------+\n", - "| int64 |\n", - "+---------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+---------------------------------------------+\n", - "\n", - "+--------------------------------------------+\n", - "| histograms.qual_hists.gq_hist_alt.n_larger |\n", - "+--------------------------------------------+\n", - "| int64 |\n", - "+--------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+--------------------------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| histograms.qual_hists.dp_hist_alt.bin_edges |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+--------------------------------------------+\n", - "| histograms.qual_hists.dp_hist_alt.bin_freq |\n", - "+--------------------------------------------+\n", - "| array |\n", - "+--------------------------------------------+\n", - "| [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,0,1,2,3,4,7,3,7,5,1,4,1,3,0,2] |\n", - "| [0,0,0,0,0,0,0,1,3,1,2,3,1,0,1,0,1,1,0,0] |\n", - "| [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0] |\n", - "+--------------------------------------------+\n", - "\n", - "+---------------------------------------------+\n", - "| histograms.qual_hists.dp_hist_alt.n_smaller |\n", - "+---------------------------------------------+\n", - "| int64 |\n", - "+---------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+---------------------------------------------+\n", - "\n", - "+--------------------------------------------+\n", - "| histograms.qual_hists.dp_hist_alt.n_larger |\n", - "+--------------------------------------------+\n", - "| int64 |\n", - "+--------------------------------------------+\n", - "| 1 |\n", - "| 0 |\n", - "| 32 |\n", - "| 1 |\n", - "| 0 |\n", - "+--------------------------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| histograms.qual_hists.ab_hist_alt.bin_edges |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", - "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", - "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", - "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", - "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+----------------------------------------------+\n", - "| histograms.qual_hists.ab_hist_alt.bin_freq |\n", - "+----------------------------------------------+\n", - "| array |\n", - "+----------------------------------------------+\n", - "| [0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,1,1,6,12,25,24,5,1,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,1,0,0,1,1,11,1,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "+----------------------------------------------+\n", - "\n", - "+---------------------------------------------+\n", - "| histograms.qual_hists.ab_hist_alt.n_smaller |\n", - "+---------------------------------------------+\n", - "| int64 |\n", - "+---------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+---------------------------------------------+\n", - "\n", - "+--------------------------------------------+\n", - "| histograms.qual_hists.ab_hist_alt.n_larger |\n", - "+--------------------------------------------+\n", - "| int64 |\n", - "+--------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+--------------------------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| histograms.raw_qual_hists.gq_hist_all.bin_edges |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+---------------------------------------------------------+\n", - "| histograms.raw_qual_hists.gq_hist_all.bin_freq |\n", - "+---------------------------------------------------------+\n", - "| array |\n", - "+---------------------------------------------------------+\n", - "| [7,0,0,0,28,0,124,0,314262,0,99,0,416424,0,0,0,0,0,0,3] |\n", - "| [7,0,0,0,28,0,124,0,314262,0,99,0,416424,0,0,0,0,0,0,3] |\n", - "| [6,0,1,0,14,0,76,0,314251,0,32,0,416492,0,0,0,0,0,0,75] |\n", - "| [5,0,0,0,9,0,71,0,314313,0,37,0,416496,0,0,0,0,0,0,16] |\n", - "| [5,0,0,0,9,0,71,0,314313,0,37,0,416496,0,0,0,0,0,0,16] |\n", - "+---------------------------------------------------------+\n", - "\n", - "+-------------------------------------------------+\n", - "| histograms.raw_qual_hists.gq_hist_all.n_smaller |\n", - "+-------------------------------------------------+\n", - "| int64 |\n", - "+-------------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+-------------------------------------------------+\n", - "\n", - "+------------------------------------------------+\n", - "| histograms.raw_qual_hists.gq_hist_all.n_larger |\n", - "+------------------------------------------------+\n", - "| int64 |\n", - "+------------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+------------------------------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| histograms.raw_qual_hists.dp_hist_all.bin_edges |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| histograms.raw_qual_hists.dp_hist_all.bin_freq |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [0,7,98,380,11345,107362,344923,189028,36319,5607,2388,2759,3074,2931,295... |\n", - "| [0,7,98,380,11345,107362,344923,189028,36319,5607,2388,2759,3074,2931,295... |\n", - "| [0,2,67,335,11310,107353,344982,189073,36327,5607,2387,2756,3080,2935,295... |\n", - "| [0,1,62,330,11305,107356,345020,189098,36329,5607,2382,2757,3074,2931,295... |\n", - "| [0,1,62,330,11305,107356,345020,189098,36329,5607,2382,2757,3074,2931,295... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+-------------------------------------------------+\n", - "| histograms.raw_qual_hists.dp_hist_all.n_smaller |\n", - "+-------------------------------------------------+\n", - "| int64 |\n", - "+-------------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+-------------------------------------------------+\n", - "\n", - "+------------------------------------------------+\n", - "| histograms.raw_qual_hists.dp_hist_all.n_larger |\n", - "+------------------------------------------------+\n", - "| int64 |\n", - "+------------------------------------------------+\n", - "| 7715 |\n", - "| 7715 |\n", - "| 7717 |\n", - "| 7685 |\n", - "| 7685 |\n", - "+------------------------------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| histograms.raw_qual_hists.gq_hist_alt.bin_edges |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+------------------------------------------------+\n", - "| histograms.raw_qual_hists.gq_hist_alt.bin_freq |\n", - "+------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------+\n", - "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2] |\n", - "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1] |\n", - "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,75] |\n", - "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,15] |\n", - "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1] |\n", - "+------------------------------------------------+\n", - "\n", - "+-------------------------------------------------+\n", - "| histograms.raw_qual_hists.gq_hist_alt.n_smaller |\n", - "+-------------------------------------------------+\n", - "| int64 |\n", - "+-------------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+-------------------------------------------------+\n", - "\n", - "+------------------------------------------------+\n", - "| histograms.raw_qual_hists.gq_hist_alt.n_larger |\n", - "+------------------------------------------------+\n", - "| int64 |\n", - "+------------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+------------------------------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| histograms.raw_qual_hists.dp_hist_alt.bin_edges |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+------------------------------------------------+\n", - "| histograms.raw_qual_hists.dp_hist_alt.bin_freq |\n", - "+------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------+\n", - "| [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,0,1,2,3,4,7,3,7,5,1,4,1,3,0,2] |\n", - "| [0,0,0,0,0,0,0,1,3,1,2,3,1,0,1,0,1,1,0,0] |\n", - "| [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0] |\n", - "+------------------------------------------------+\n", - "\n", - "+-------------------------------------------------+\n", - "| histograms.raw_qual_hists.dp_hist_alt.n_smaller |\n", - "+-------------------------------------------------+\n", - "| int64 |\n", - "+-------------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+-------------------------------------------------+\n", - "\n", - "+------------------------------------------------+\n", - "| histograms.raw_qual_hists.dp_hist_alt.n_larger |\n", - "+------------------------------------------------+\n", - "| int64 |\n", - "+------------------------------------------------+\n", - "| 1 |\n", - "| 0 |\n", - "| 32 |\n", - "| 1 |\n", - "| 0 |\n", - "+------------------------------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| histograms.raw_qual_hists.ab_hist_alt.bin_edges |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", - "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", - "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", - "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", - "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+------------------------------------------------+\n", - "| histograms.raw_qual_hists.ab_hist_alt.bin_freq |\n", - "+------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------+\n", - "| [0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,1,1,6,12,25,24,5,1,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,1,0,0,1,1,11,1,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "+------------------------------------------------+\n", - "\n", - "+-------------------------------------------------+\n", - "| histograms.raw_qual_hists.ab_hist_alt.n_smaller |\n", - "+-------------------------------------------------+\n", - "| int64 |\n", - "+-------------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+-------------------------------------------------+\n", - "\n", - "+------------------------------------------------+\n", - "| histograms.raw_qual_hists.ab_hist_alt.n_larger |\n", - "+------------------------------------------------+\n", - "| int64 |\n", - "+------------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+------------------------------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| histograms.age_hists.age_hist_het.bin_edges |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", - "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", - "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", - "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", - "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+--------------------------------------------+\n", - "| histograms.age_hists.age_hist_het.bin_freq |\n", - "+--------------------------------------------+\n", - "| array |\n", - "+--------------------------------------------+\n", - "| [0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,1,0,0,0,0,0] |\n", - "| [1,0,0,2,3,3,8,4,0,0] |\n", - "| [0,0,1,2,4,2,4,1,0,0] |\n", - "| [0,0,0,0,0,1,0,0,0,0] |\n", - "+--------------------------------------------+\n", - "\n", - "+---------------------------------------------+\n", - "| histograms.age_hists.age_hist_het.n_smaller |\n", - "+---------------------------------------------+\n", - "| int64 |\n", - "+---------------------------------------------+\n", - "| 1 |\n", - "| 0 |\n", - "| 3 |\n", - "| 0 |\n", - "| 0 |\n", - "+---------------------------------------------+\n", - "\n", - "+--------------------------------------------+\n", - "| histograms.age_hists.age_hist_het.n_larger |\n", - "+--------------------------------------------+\n", - "| int64 |\n", - "+--------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 1 |\n", - "| 0 |\n", - "| 0 |\n", - "+--------------------------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| histograms.age_hists.age_hist_hom.bin_edges |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", - "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", - "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", - "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", - "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+--------------------------------------------+\n", - "| histograms.age_hists.age_hist_hom.bin_freq |\n", - "+--------------------------------------------+\n", - "| array |\n", - "+--------------------------------------------+\n", - "| [0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,0,0,0,0,0] |\n", - "+--------------------------------------------+\n", - "\n", - "+---------------------------------------------+\n", - "| histograms.age_hists.age_hist_hom.n_smaller |\n", - "+---------------------------------------------+\n", - "| int64 |\n", - "+---------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+---------------------------------------------+\n", - "\n", - "+--------------------------------------------+---------------------------------+\n", - "| histograms.age_hists.age_hist_hom.n_larger | in_silico_predictors.cadd.phred |\n", - "+--------------------------------------------+---------------------------------+\n", - "| int64 | float32 |\n", - "+--------------------------------------------+---------------------------------+\n", - "| 0 | 2.77e+01 |\n", - "| 0 | 2.75e+01 |\n", - "| 0 | 2.28e+01 |\n", - "| 0 | 3.44e+00 |\n", - "| 0 | 2.96e+00 |\n", - "+--------------------------------------------+---------------------------------+\n", - "\n", - "+-------------------------------------+--------------------------------+\n", - "| in_silico_predictors.cadd.raw_score | in_silico_predictors.revel_max |\n", - "+-------------------------------------+--------------------------------+\n", - "| float32 | float64 |\n", - "+-------------------------------------+--------------------------------+\n", - "| 4.10e+00 | 6.02e-01 |\n", - "| 4.07e+00 | 7.19e-01 |\n", - "| 2.69e+00 | 2.67e-01 |\n", - "| 2.28e-01 | NA |\n", - "| 1.86e-01 | NA |\n", - "+-------------------------------------+--------------------------------+\n", - "\n", - "+--------------------------------------+\n", - "| in_silico_predictors.spliceai_ds_max |\n", - "+--------------------------------------+\n", - "| float32 |\n", - "+--------------------------------------+\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "+--------------------------------------+\n", - "\n", - "+------------------------------------------+-----------------------------+\n", - "| in_silico_predictors.pangolin_largest_ds | in_silico_predictors.phylop |\n", - "+------------------------------------------+-----------------------------+\n", - "| float64 | float64 |\n", - "+------------------------------------------+-----------------------------+\n", - "| 0.00e+00 | 8.78e+00 |\n", - "| 2.00e-02 | 8.78e+00 |\n", - "| 1.00e-02 | 8.67e+00 |\n", - "| 1.00e-02 | -2.55e-01 |\n", - "| 3.00e-02 | -2.55e-01 |\n", - "+------------------------------------------+-----------------------------+\n", - "\n", - "+-------------------------------+-----------------------------------+\n", - "| in_silico_predictors.sift_max | in_silico_predictors.polyphen_max |\n", - "+-------------------------------+-----------------------------------+\n", - "| float64 | float64 |\n", - "+-------------------------------+-----------------------------------+\n", - "| 0.00e+00 | 9.89e-01 |\n", - "| 0.00e+00 | 9.89e-01 |\n", - "| 1.30e-01 | 1.18e-01 |\n", - "| NA | NA |\n", - "| NA | NA |\n", - "+-------------------------------+-----------------------------------+\n", - "showing top 5 rows" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "The total number of lof, missense, and synonymous variants passing filters in DRD2 is: 664\n" - ] - } - ], + "outputs": [], "source": [ "var_ht = filter_by_consequence_category(\n", " plof=True, \n", @@ -1605,1067 +555,10 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": null, "id": "9887fdb0", "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "
histograms
grpmax
fafmax
info
qual_hists
raw_qual_hists
age_hists
in_silico_predictors
gnomad
non_ukb
gnomad
non_ukb
vrs
vep
vqsr_results
region_flags
allele_info
gq_hist_all
dp_hist_all
gq_hist_alt
dp_hist_alt
ab_hist_alt
gq_hist_all
dp_hist_all
gq_hist_alt
dp_hist_alt
ab_hist_alt
age_hist_het
age_hist_hom
cadd
locus
alleles
freq
AC
AF
AN
homozygote_count
gen_anc
AC
AF
AN
homozygote_count
gen_anc
faf
faf95_max
faf95_max_gen_anc
faf99_max
faf99_max_gen_anc
faf95_max
faf95_max_gen_anc
faf99_max
faf99_max_gen_anc
a_index
was_split
rsid
filters
FS
MQ
MQRankSum
QUALapprox
QD
ReadPosRankSum
SB
SOR
VarDP
AS_FS
AS_MQ
AS_MQRankSum
AS_pab_max
AS_QUALapprox
AS_QD
AS_ReadPosRankSum
AS_SB_TABLE
AS_SOR
AS_VarDP
singleton
transmitted_singleton
sibling_singleton
omni
mills
monoallelic
only_het
AS_VQSLOD
inbreeding_coeff
VRS_Allele_IDs
VRS_Starts
VRS_Ends
VRS_States
allele_string
end
id
input
intergenic_consequences
most_severe_consequence
motif_feature_consequences
regulatory_feature_consequences
seq_region_name
start
strand
transcript_consequences
variant_class
AS_VQSLOD
AS_culprit
positive_train_site
negative_train_site
non_par
lcr
segdup
fail_interval_qc
outside_ukb_capture_region
outside_broad_capture_region
variant_type
n_alt_alleles
has_star
allele_type
was_mixed
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
phred
raw_score
revel_max
spliceai_ds_max
pangolin_largest_ds
phylop
sift_max
polyphen_max
locus<GRCh38>array<str>array<struct{AC: int32, AF: float64, AN: int32, homozygote_count: int64}>int32float64int32int64strint32float64int32int64strarray<struct{faf95: float64, faf99: float64}>float64strfloat64strfloat64strfloat64strint32boolset<str>set<str>float64float64float64int64float64float64array<int32>float64int32float64float64float64float64int64float64float64array<int32>float64int32boolboolboolboolboolboolboolfloat64float64array<str>array<int32>array<int32>array<str>strint32strstrarray<struct{allele_num: int32, consequence_terms: array<str>, impact: str, variant_allele: str}>strarray<struct{allele_num: int32, consequence_terms: array<str>, high_inf_pos: str, impact: str, motif_feature_id: str, motif_name: str, motif_pos: int32, motif_score_change: float64, transcription_factors: array<str>, strand: int32, variant_allele: str}>array<struct{allele_num: int32, biotype: str, consequence_terms: array<str>, impact: str, regulatory_feature_id: str, variant_allele: str}>strint32int32array<struct{allele_num: int32, amino_acids: str, appris: str, biotype: str, canonical: int32, ccds: str, cdna_start: int32, cdna_end: int32, cds_end: int32, cds_start: int32, codons: str, consequence_terms: array<str>, distance: int32, domains: array<struct{db: str, name: str}>, exon: str, flags: str, gene_id: str, gene_pheno: int32, gene_symbol: str, gene_symbol_source: str, hgnc_id: str, hgvsc: str, hgvsp: str, hgvs_offset: int32, impact: str, intron: str, lof: str, lof_flags: str, lof_filter: str, lof_info: str, mane_select: str, mane_plus_clinical: str, mirna: array<str>, protein_end: int32, protein_start: int32, protein_id: str, source: str, strand: int32, transcript_id: str, tsl: int32, uniprot_isoform: array<str>, variant_allele: str}>strfloat64strboolboolboolboolboolboolboolboolstrint32boolstrboolarray<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64float32float32float64float32float64float64float64float64
chr11:113412554["A","G"][(1,6.85e-07,1459578,0),(1,6.84e-07,1461894,0),(0,0.00e+00,33480,0),(0,0.00e+00,44724,0),(0,0.00e+00,26134,0),(0,0.00e+00,39700,0),(0,0.00e+00,51134,0),(0,0.00e+00,5768,0),(1,8.99e-07,1111998,0),(0,0.00e+00,60388,0),(0,0.00e+00,86252,0),(0,0.00e+00,733478,0),(1,1.38e-06,726100,0),(0,0.00e+00,19326,0),(0,0.00e+00,14154,0),(0,0.00e+00,25690,0),(0,0.00e+00,19034,0),(0,0.00e+00,12634,0),(0,0.00e+00,13500,0),(0,0.00e+00,20712,0),(0,0.00e+00,18988,0),(0,0.00e+00,26490,0),(0,0.00e+00,24644,0),(0,0.00e+00,2506,0),(0,0.00e+00,3262,0),(0,0.00e+00,572284,0),(1,1.85e-06,539714,0),(0,0.00e+00,31796,0),(0,0.00e+00,28592,0),(0,0.00e+00,22040,0),(0,0.00e+00,64212,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,190,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,960,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,1922,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,1998,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,3834,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,3996,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5538,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5760,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,9998,0),(0,0.00e+00,10000,0),(0,0.00e+00,9574,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,9982,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,19998,0),(0,0.00e+00,20000,0),(0,0.00e+00,19154,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,19966,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26134,0),(0,0.00e+00,26136,0),(0,0.00e+00,25036,0),(0,0.00e+00,26136,0),(0,0.00e+00,26132,0),(0,0.00e+00,26136,0),(0,0.00e+00,26098,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,32040,0),(0,0.00e+00,33480,0),(0,0.00e+00,33474,0),(0,0.00e+00,33478,0),(0,0.00e+00,33428,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,37978,0),(0,0.00e+00,39700,0),(0,0.00e+00,39694,0),(0,0.00e+00,39698,0),(0,0.00e+00,39640,0),(0,0.00e+00,40000,0),(0,0.00e+00,38262,0),(0,0.00e+00,40000,0),(0,0.00e+00,39994,0),(0,0.00e+00,39998,0),(0,0.00e+00,39938,0),(0,0.00e+00,44724,0),(0,0.00e+00,42798,0),(0,0.00e+00,44724,0),(0,0.00e+00,44718,0),(0,0.00e+00,44722,0),(0,0.00e+00,44658,0),(0,0.00e+00,51134,0),(0,0.00e+00,53420,0),(0,0.00e+00,53414,0),(0,0.00e+00,53418,0),(0,0.00e+00,53342,0),(0,0.00e+00,60396,0),(0,0.00e+00,60388,0),(0,0.00e+00,60394,0),(0,0.00e+00,60304,0),(0,0.00e+00,86256,0),(0,0.00e+00,86252,0),(0,0.00e+00,86122,0),(0,0.00e+00,99998,0),(0,0.00e+00,99850,0),(0,0.00e+00,199996,0),(0,0.00e+00,199686,0),(1,2.50e-06,399992,0),(1,2.50e-06,399366,0),(1,1.00e-06,999986,0),(1,1.00e-06,998406,0),(1,8.99e-07,1111998,0),(1,9.01e-07,1110224,0),(0,0.00e+00,626468,0),(0,0.00e+00,628784,0),(0,0.00e+00,17694,0),(0,0.00e+00,43740,0),(0,0.00e+00,20982,0),(0,0.00e+00,36070,0),(0,0.00e+00,50858,0),(0,0.00e+00,4148,0),(0,0.00e+00,350094,0),(0,0.00e+00,33090,0),(0,0.00e+00,69792,0),(0,0.00e+00,285082,0),(0,0.00e+00,341386,0),(0,0.00e+00,10286,0),(0,0.00e+00,7408,0),(0,0.00e+00,25040,0),(0,0.00e+00,18700,0),(0,0.00e+00,9836,0),(0,0.00e+00,11146,0),(0,0.00e+00,18298,0),(0,0.00e+00,17772,0),(0,0.00e+00,26240,0),(0,0.00e+00,24618,0),(0,0.00e+00,1916,0),(0,0.00e+00,2232,0),(0,0.00e+00,162216,0),(0,0.00e+00,187878,0),(0,0.00e+00,16748,0),(0,0.00e+00,16342,0),(0,0.00e+00,14502,0),(0,0.00e+00,55290,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,190,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,960,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,998,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,1922,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,1996,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,3834,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,3982,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,3980,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4130,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,9998,0),(0,0.00e+00,10000,0),(0,0.00e+00,9572,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,9964,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17692,0),(0,0.00e+00,17694,0),(0,0.00e+00,16946,0),(0,0.00e+00,17694,0),(0,0.00e+00,17690,0),(0,0.00e+00,17694,0),(0,0.00e+00,17632,0),(0,0.00e+00,20000,0),(0,0.00e+00,19998,0),(0,0.00e+00,20000,0),(0,0.00e+00,19150,0),(0,0.00e+00,20000,0),(0,0.00e+00,19994,0),(0,0.00e+00,20000,0),(0,0.00e+00,19932,0),(0,0.00e+00,20984,0),(0,0.00e+00,20982,0),(0,0.00e+00,20984,0),(0,0.00e+00,20096,0),(0,0.00e+00,20984,0),(0,0.00e+00,20978,0),(0,0.00e+00,20984,0),(0,0.00e+00,20912,0),(0,0.00e+00,33098,0),(0,0.00e+00,33098,0),(0,0.00e+00,31670,0),(0,0.00e+00,33096,0),(0,0.00e+00,33090,0),(0,0.00e+00,33096,0),(0,0.00e+00,32976,0),(0,0.00e+00,36070,0),(0,0.00e+00,36070,0),(0,0.00e+00,34514,0),(0,0.00e+00,36068,0),(0,0.00e+00,36068,0),(0,0.00e+00,35934,0),(0,0.00e+00,40000,0),(0,0.00e+00,38256,0),(0,0.00e+00,39998,0),(0,0.00e+00,39998,0),(0,0.00e+00,39856,0),(0,0.00e+00,43740,0),(0,0.00e+00,41848,0),(0,0.00e+00,43738,0),(0,0.00e+00,43738,0),(0,0.00e+00,43588,0),(0,0.00e+00,50858,0),(0,0.00e+00,53140,0),(0,0.00e+00,53140,0),(0,0.00e+00,52962,0),(0,0.00e+00,69794,0),(0,0.00e+00,69792,0),(0,0.00e+00,69552,0),(0,0.00e+00,99992,0),(0,0.00e+00,99626,0),(0,0.00e+00,199992,0),(0,0.00e+00,199284,0),(0,0.00e+00,350094,0),(0,0.00e+00,348812,0),(0,0.00e+00,398508,0)]18.99e-0711119980"nfe"NANANANANA[(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]NANANANANANANANA2TrueNA{}2.83e+006.00e+010.00e+0014981.05e+01-5.05e-01[63,17,52,10]1.04e+001421.10e+006.00e+010.00e+001.00e+006611.35e+01-1.83e+00[63,17,21,4]9.29e-0149TrueFalseFalseFalseFalseFalseFalse5.30e+00-6.84e-07["ga4gh:VA.mqU9WPvGr3hduyybbeN-AKJ1zN-kclsI","ga4gh:VA.uvlicmv1vZnrBBqm0UQRPcFaAOXA34EK"][113412553,113412553][113412554,113412554]["A","G"]"A/G"113412554".""chr11\t113412554\t.\tA\tG\t.\t.\tGT"NA"splice_donor_variant"NANA"chr11"1134125541[(1,NA,NA,"protein_coding",NA,"CCDS8362.1",NA,NA,NA,NA,NA,["splice_donor_variant"],NA,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000346454.7:c.1051+2T>C",NA,NA,"HIGH","6/6","HC",NA,NA,"INTRON_SIZE:1635",NA,NA,NA,NA,NA,"ENSP00000278597","Ensembl",-1,"ENST00000346454",1,["P14416-2"],"G"),(1,NA,"P2","protein_coding",1,"CCDS8361.1",NA,NA,NA,NA,NA,["splice_donor_variant"],NA,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000362072.8:c.1138+2T>C",NA,NA,"HIGH","7/7","HC",NA,NA,"INTRON_SIZE:1635","NM_000795.4",NA,NA,NA,NA,"ENSP00000354859","Ensembl",-1,"ENST00000362072",1,["P14416-1"],"G"),(1,NA,NA,"processed_transcript",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],1821,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000535984",3,NA,"G"),(1,NA,"A1","protein_coding",NA,NA,NA,NA,NA,NA,NA,["splice_donor_variant"],NA,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000538967.5:c.1144+2T>C",NA,NA,"HIGH","7/7","HC",NA,NA,"INTRON_SIZE:1635",NA,NA,NA,NA,NA,"ENSP00000438215","Ensembl",-1,"ENST00000538967",5,["P14416-3"],"G"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],2740,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000539420",3,NA,"G"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],1310,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000540600",1,NA,"G"),(1,NA,"P2","protein_coding",NA,"CCDS8361.1",NA,NA,NA,NA,NA,["splice_donor_variant"],NA,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000542968.5:c.1138+2T>C",NA,NA,"HIGH","6/6","HC",NA,NA,"INTRON_SIZE:1635",NA,NA,NA,NA,NA,"ENSP00000442172","Ensembl",-1,"ENST00000542968",1,["P14416-1"],"G"),(1,NA,NA,"protein_coding",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],4309,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"ENSP00000438419","Ensembl",-1,"ENST00000543292",5,NA,"G"),(1,NA,"A1","protein_coding",NA,NA,NA,NA,NA,NA,NA,["splice_donor_variant"],NA,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000544518.5:c.1135+2T>C",NA,NA,"HIGH","6/6","HC",NA,NA,"INTRON_SIZE:1635",NA,NA,NA,NA,NA,"ENSP00000441068","Ensembl",-1,"ENST00000544518",1,NA,"G"),(1,NA,NA,"lncRNA",1,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],437,NA,NA,NA,"ENSG00000256757",NA,NA,NA,NA,NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",1,"ENST00000546284",3,NA,"G"),(1,NA,NA,"protein_coding",1,NA,NA,NA,NA,NA,NA,["splice_donor_variant"],NA,NA,NA,NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_000795.4:c.1138+2T>C",NA,NA,"HIGH","7/7","HC",NA,NA,"INTRON_SIZE:1635","ENST00000362072.8",NA,NA,NA,NA,"NP_000786.1","RefSeq",-1,"NM_000795.4",NA,NA,"G"),(1,NA,NA,"protein_coding",NA,NA,NA,NA,NA,NA,NA,["splice_donor_variant"],NA,NA,NA,NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_016574.4:c.1051+2T>C",NA,NA,"HIGH","6/6","HC",NA,NA,"INTRON_SIZE:1635",NA,NA,NA,NA,NA,"NP_057658.2","RefSeq",-1,"NM_016574.4",NA,NA,"G"),(1,NA,NA,"protein_coding",NA,NA,NA,NA,NA,NA,NA,["splice_donor_variant"],NA,NA,NA,NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","XM_017017296.2:c.1138+2T>C",NA,NA,"HIGH","7/7","HC",NA,NA,"INTRON_SIZE:1635",NA,NA,NA,NA,NA,"XP_016872785.1","RefSeq",-1,"XM_017017296.2",NA,NA,"G")]"SNV"5.30e+00"AS_MQ"FalseFalseFalseFalseFalseTrueTrueFalse"multi-snv"3False"snv"False[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,134,0,1469,0,311660,0,82,0,416443,0,0,0,0,0,0,1]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,1555,817,16216,229270,272936,45138,9370,3566,3616,4059,4521,5017,5495,5830,5759,5296,4555,4636]0102137[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][441,0,0,0,850,1,1469,0,311660,0,82,0,416443,0,0,0,0,0,0,1]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][244,858,1593,833,16218,229270,272936,45138,9370,3566,3616,4059,4521,5017,5495,5830,5759,5296,4555,4636]0102137[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,1,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]003.40e+015.66e+00NA9.60e-01-8.30e-016.33e+00NANA
chr11:113412612["CT","C"][(2,1.37e-06,1461892,0),(2,1.37e-06,1461894,0),(0,0.00e+00,33480,0),(0,0.00e+00,44724,0),(0,0.00e+00,26136,0),(0,0.00e+00,39700,0),(0,0.00e+00,53420,0),(0,0.00e+00,5768,0),(2,1.80e-06,1112010,0),(0,0.00e+00,60396,0),(0,0.00e+00,86258,0),(0,0.00e+00,734646,0),(2,2.75e-06,727246,0),(0,0.00e+00,19326,0),(0,0.00e+00,14154,0),(0,0.00e+00,25690,0),(0,0.00e+00,19034,0),(0,0.00e+00,12636,0),(0,0.00e+00,13500,0),(0,0.00e+00,20712,0),(0,0.00e+00,18988,0),(0,0.00e+00,27648,0),(0,0.00e+00,25772,0),(0,0.00e+00,2506,0),(0,0.00e+00,3262,0),(0,0.00e+00,572288,0),(2,3.71e-06,539722,0),(0,0.00e+00,31800,0),(0,0.00e+00,28596,0),(0,0.00e+00,22040,0),(0,0.00e+00,64218,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,44724,0),(0,0.00e+00,44724,0),(0,0.00e+00,44724,0),(0,0.00e+00,44724,0),(0,0.00e+00,44724,0),(0,0.00e+00,44724,0),(0,0.00e+00,53420,0),(0,0.00e+00,53420,0),(0,0.00e+00,53420,0),(0,0.00e+00,53420,0),(0,0.00e+00,53420,0),(0,0.00e+00,60396,0),(0,0.00e+00,60396,0),(0,0.00e+00,60396,0),(0,0.00e+00,60396,0),(0,0.00e+00,86258,0),(0,0.00e+00,86258,0),(0,0.00e+00,86258,0),(0,0.00e+00,100000,0),(0,0.00e+00,100000,0),(0,0.00e+00,200000,0),(0,0.00e+00,200000,0),(1,2.50e-06,400000,0),(1,2.50e-06,400000,0),(2,2.00e-06,999998,0),(2,2.00e-06,1000000,0),(2,1.80e-06,1112010,0),(2,1.80e-06,1112010,0),(2,3.18e-06,628782,0),(2,3.18e-06,628784,0),(0,0.00e+00,17694,0),(0,0.00e+00,43740,0),(0,0.00e+00,20984,0),(0,0.00e+00,36070,0),(0,0.00e+00,53144,0),(0,0.00e+00,4148,0),(2,5.71e-06,350106,0),(0,0.00e+00,33098,0),(0,0.00e+00,69798,0),(0,0.00e+00,286250,0),(2,5.84e-06,342532,0),(0,0.00e+00,10286,0),(0,0.00e+00,7408,0),(0,0.00e+00,25040,0),(0,0.00e+00,18700,0),(0,0.00e+00,9838,0),(0,0.00e+00,11146,0),(0,0.00e+00,18298,0),(0,0.00e+00,17772,0),(0,0.00e+00,27398,0),(0,0.00e+00,25746,0),(0,0.00e+00,1916,0),(0,0.00e+00,2232,0),(0,0.00e+00,162220,0),(2,1.06e-05,187886,0),(0,0.00e+00,16752,0),(0,0.00e+00,16346,0),(0,0.00e+00,14502,0),(0,0.00e+00,55296,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,33098,0),(0,0.00e+00,33098,0),(0,0.00e+00,33098,0),(0,0.00e+00,33098,0),(0,0.00e+00,33098,0),(0,0.00e+00,33098,0),(0,0.00e+00,33098,0),(0,0.00e+00,36070,0),(0,0.00e+00,36070,0),(0,0.00e+00,36070,0),(0,0.00e+00,36070,0),(0,0.00e+00,36070,0),(0,0.00e+00,36070,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,43740,0),(0,0.00e+00,43740,0),(0,0.00e+00,43740,0),(0,0.00e+00,43740,0),(0,0.00e+00,43740,0),(0,0.00e+00,53144,0),(0,0.00e+00,53144,0),(0,0.00e+00,53144,0),(0,0.00e+00,53144,0),(0,0.00e+00,69798,0),(0,0.00e+00,69798,0),(0,0.00e+00,69798,0),(1,1.00e-05,100000,0),(0,0.00e+00,100000,0),(2,1.00e-05,200000,0),(1,5.00e-06,200000,0),(2,5.71e-06,350106,0),(2,5.71e-06,350108,0),(2,5.00e-06,400000,0)]21.80e-0611120100"nfe"25.71e-063501060"nfe"[(2.30e-07,9.00e-08),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(3.00e-07,1.10e-07),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,(5.30e-07,2.00e-07),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(9.50e-07,3.60e-07),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]3.00e-07"nfe"1.10e-07"nfe"9.50e-07"nfe"3.60e-07"nfe"1FalseNA{}5.48e-016.00e+010.00e+0034581.79e+014.32e-01[65,38,58,32]7.50e-011935.48e-016.00e+010.00e+005.90e-0134581.79e+014.32e-01[65,38,58,32]7.50e-01193FalseNANAFalseFalseFalseFalse4.25e+00-1.37e-06["ga4gh:VA.NztLKtEJA7H0h_Tz31YRmTUR4hT2PNxO","ga4gh:VA.5xtydtW8O1beQhV-1c1hQnrSyzR36wKG"][113412611,113412612][113412613,113412613]["CT",""]"T/-"113412613".""chr11\t113412612\t.\tCT\tC\t.\t.\tGT"NA"frameshift_variant"NANA"chr11"1134126131[(1,"R/X",NA,"protein_coding",NA,"CCDS8362.1",1070,1070,994,994,"Agg/gg",["frameshift_variant"],NA,[("Gene3D","1"),("Pfam","PF00001"),("PROSITE_profiles","PS50262"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321"),("CDD","cd15309")],"6/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000346454.7:c.994del","ENSP00000278597.5:p.Arg332GlyfsTer35",NA,"HIGH",NA,"HC",NA,NA,"PERCENTILE:0.798393574297189,GERP_DIST:524.888328552246,BP_DIST:250,DIST_FROM_LAST_EXON:57,50_BP_RULE:PASS,ANN_ORF:1830.61,MAX_ORF:1830.61",NA,NA,NA,332,332,"ENSP00000278597","Ensembl",-1,"ENST00000346454",1,["P14416-2"],"-"),(1,"R/X","P2","protein_coding",1,"CCDS8361.1",1435,1435,1081,1081,"Agg/gg",["frameshift_variant"],NA,[("Gene3D","1"),("ENSP_mappings","6vms"),("ENSP_mappings","7jvr"),("Pfam","PF00001"),("PROSITE_profiles","PS50262"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321"),("CDD","cd15309")],"7/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000362072.8:c.1081del","ENSP00000354859.3:p.Arg361GlyfsTer35",NA,"HIGH",NA,"HC",NA,NA,"PERCENTILE:0.811561561561562,GERP_DIST:524.888328552246,BP_DIST:250,DIST_FROM_LAST_EXON:57,50_BP_RULE:PASS,ANN_ORF:1830.61,MAX_ORF:1830.61","NM_000795.4",NA,NA,361,361,"ENSP00000354859","Ensembl",-1,"ENST00000362072",1,["P14416-1"],"-"),(1,NA,NA,"processed_transcript",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],1762,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000535984",3,NA,"-"),(1,"R/X","A1","protein_coding",NA,NA,1087,1087,1087,1087,"Agg/gg",["frameshift_variant"],NA,[("Gene3D","1"),("Pfam","PF00001"),("PROSITE_profiles","PS50262"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321"),("CDD","cd15309")],"7/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000538967.5:c.1087del","ENSP00000438215.1:p.Arg363GlyfsTer35",NA,"HIGH",NA,"HC",NA,NA,"PERCENTILE:0.812406576980568,GERP_DIST:524.888328552246,BP_DIST:250,DIST_FROM_LAST_EXON:57,50_BP_RULE:PASS,ANN_ORF:1830.61,MAX_ORF:1830.61",NA,NA,NA,363,363,"ENSP00000438215","Ensembl",-1,"ENST00000538967",5,["P14416-3"],"-"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],2681,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000539420",3,NA,"-"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],1251,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000540600",1,NA,"-"),(1,"R/X","P2","protein_coding",NA,"CCDS8361.1",1402,1402,1081,1081,"Agg/gg",["frameshift_variant"],NA,[("Gene3D","1"),("ENSP_mappings","6vms"),("ENSP_mappings","7jvr"),("Pfam","PF00001"),("PROSITE_profiles","PS50262"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321"),("CDD","cd15309")],"6/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000542968.5:c.1081del","ENSP00000442172.1:p.Arg361GlyfsTer35",NA,"HIGH",NA,"HC",NA,NA,"PERCENTILE:0.811561561561562,GERP_DIST:524.888328552246,BP_DIST:250,DIST_FROM_LAST_EXON:57,50_BP_RULE:PASS,ANN_ORF:1830.61,MAX_ORF:1830.61",NA,NA,NA,361,361,"ENSP00000442172","Ensembl",-1,"ENST00000542968",1,["P14416-1"],"-"),(1,NA,NA,"protein_coding",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],4250,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"ENSP00000438419","Ensembl",-1,"ENST00000543292",5,NA,"-"),(1,"R/X","A1","protein_coding",NA,NA,1111,1111,1078,1078,"Agg/gg",["frameshift_variant"],NA,[("Gene3D","1"),("Pfam","PF00001"),("PROSITE_profiles","PS50262"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321"),("CDD","cd15309")],"6/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000544518.5:c.1078del","ENSP00000441068.1:p.Arg360GlyfsTer35",NA,"HIGH",NA,"HC",NA,NA,"PERCENTILE:0.811136192626035,GERP_DIST:524.888328552246,BP_DIST:250,DIST_FROM_LAST_EXON:57,50_BP_RULE:PASS,ANN_ORF:1830.61,MAX_ORF:1830.61",NA,NA,NA,360,360,"ENSP00000441068","Ensembl",-1,"ENST00000544518",1,NA,"-"),(1,NA,NA,"lncRNA",1,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],496,NA,NA,NA,"ENSG00000256757",NA,NA,NA,NA,NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",1,"ENST00000546284",3,NA,"-"),(1,"R/X",NA,"protein_coding",1,NA,1435,1435,1081,1081,"Agg/gg",["frameshift_variant"],NA,NA,"7/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_000795.4:c.1081del","NP_000786.1:p.Arg361GlyfsTer35",NA,"HIGH",NA,"HC",NA,NA,"PERCENTILE:0.811561561561562,GERP_DIST:524.888328552246,BP_DIST:250,DIST_FROM_LAST_EXON:57,50_BP_RULE:PASS,PHYLOCSF_TOO_SHORT","ENST00000362072.8",NA,NA,361,361,"NP_000786.1","RefSeq",-1,"NM_000795.4",NA,NA,"-"),(1,"R/X",NA,"protein_coding",NA,NA,1348,1348,994,994,"Agg/gg",["frameshift_variant"],NA,NA,"6/7",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_016574.4:c.994del","NP_057658.2:p.Arg332GlyfsTer35",NA,"HIGH",NA,"HC",NA,NA,"PERCENTILE:0.798393574297189,GERP_DIST:524.888328552246,BP_DIST:250,DIST_FROM_LAST_EXON:57,50_BP_RULE:PASS,PHYLOCSF_TOO_SHORT",NA,NA,NA,332,332,"NP_057658.2","RefSeq",-1,"NM_016574.4",NA,NA,"-"),(1,"R/X",NA,"protein_coding",NA,NA,1163,1163,1081,1081,"Agg/gg",["frameshift_variant"],NA,NA,"7/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","XM_017017296.2:c.1081del","XP_016872785.1:p.Arg361GlyfsTer35",NA,"HIGH",NA,"HC",NA,NA,"PERCENTILE:0.811561561561562,GERP_DIST:524.888328552246,BP_DIST:250,DIST_FROM_LAST_EXON:57,50_BP_RULE:PASS,PHYLOCSF_TOO_SHORT",NA,NA,NA,361,361,"XP_016872785.1","RefSeq",-1,"XM_017017296.2",NA,NA,"-")]"deletion"4.25e+00"AS_ReadPosRankSum"FalseFalseFalseFalseFalseTrueFalseFalse"indel"1False"del"False[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,1,0,2,0,314386,0,0,0,416555,0,0,0,0,0,0,2]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,1,279,16685,230939,273577,45298,9412,3597,3653,4094,4550,5033,5504,5845,5771,5311,4561,4649]0102187[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0]01[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][1,0,0,0,1,0,2,0,314386,0,0,0,416555,0,0,0,0,0,0,2]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,1,279,16685,230939,273577,45298,9412,3597,3653,4094,4550,5034,5504,5845,5771,5311,4561,4649]0102187[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0]01[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]10[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]003.20e+014.56e+00NA0.00e+00-4.00e-028.89e+00NANA
chr11:113412614["ACG","A"][(2,1.37e-06,1461894,0),(2,1.37e-06,1461894,0),(0,0.00e+00,33480,0),(0,0.00e+00,44724,0),(0,0.00e+00,26136,0),(0,0.00e+00,39700,0),(0,0.00e+00,53420,0),(0,0.00e+00,5768,0),(2,1.80e-06,1112012,0),(0,0.00e+00,60396,0),(0,0.00e+00,86258,0),(0,0.00e+00,734646,0),(2,2.75e-06,727248,0),(0,0.00e+00,19326,0),(0,0.00e+00,14154,0),(0,0.00e+00,25690,0),(0,0.00e+00,19034,0),(0,0.00e+00,12636,0),(0,0.00e+00,13500,0),(0,0.00e+00,20712,0),(0,0.00e+00,18988,0),(0,0.00e+00,27648,0),(0,0.00e+00,25772,0),(0,0.00e+00,2506,0),(0,0.00e+00,3262,0),(0,0.00e+00,572288,0),(2,3.71e-06,539724,0),(0,0.00e+00,31800,0),(0,0.00e+00,28596,0),(0,0.00e+00,22040,0),(0,0.00e+00,64218,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,44724,0),(0,0.00e+00,44724,0),(0,0.00e+00,44724,0),(0,0.00e+00,44724,0),(0,0.00e+00,44724,0),(0,0.00e+00,44724,0),(0,0.00e+00,53420,0),(0,0.00e+00,53420,0),(0,0.00e+00,53420,0),(0,0.00e+00,53420,0),(0,0.00e+00,53420,0),(0,0.00e+00,60396,0),(0,0.00e+00,60396,0),(0,0.00e+00,60396,0),(0,0.00e+00,60396,0),(0,0.00e+00,86258,0),(0,0.00e+00,86258,0),(0,0.00e+00,86258,0),(0,0.00e+00,100000,0),(0,0.00e+00,100000,0),(0,0.00e+00,200000,0),(0,0.00e+00,200000,0),(1,2.50e-06,400000,0),(1,2.50e-06,400000,0),(2,2.00e-06,1000000,0),(2,2.00e-06,1000000,0),(2,1.80e-06,1112012,0),(2,1.80e-06,1112012,0),(2,3.18e-06,628784,0),(2,3.18e-06,628784,0),(0,0.00e+00,17694,0),(0,0.00e+00,43740,0),(0,0.00e+00,20984,0),(0,0.00e+00,36070,0),(0,0.00e+00,53144,0),(0,0.00e+00,4148,0),(2,5.71e-06,350108,0),(0,0.00e+00,33098,0),(0,0.00e+00,69798,0),(0,0.00e+00,286250,0),(2,5.84e-06,342534,0),(0,0.00e+00,10286,0),(0,0.00e+00,7408,0),(0,0.00e+00,25040,0),(0,0.00e+00,18700,0),(0,0.00e+00,9838,0),(0,0.00e+00,11146,0),(0,0.00e+00,18298,0),(0,0.00e+00,17772,0),(0,0.00e+00,27398,0),(0,0.00e+00,25746,0),(0,0.00e+00,1916,0),(0,0.00e+00,2232,0),(0,0.00e+00,162220,0),(2,1.06e-05,187888,0),(0,0.00e+00,16752,0),(0,0.00e+00,16346,0),(0,0.00e+00,14502,0),(0,0.00e+00,55296,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,33098,0),(0,0.00e+00,33098,0),(0,0.00e+00,33098,0),(0,0.00e+00,33098,0),(0,0.00e+00,33098,0),(0,0.00e+00,33098,0),(0,0.00e+00,33098,0),(0,0.00e+00,36070,0),(0,0.00e+00,36070,0),(0,0.00e+00,36070,0),(0,0.00e+00,36070,0),(0,0.00e+00,36070,0),(0,0.00e+00,36070,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,43740,0),(0,0.00e+00,43740,0),(0,0.00e+00,43740,0),(0,0.00e+00,43740,0),(0,0.00e+00,43740,0),(0,0.00e+00,53144,0),(0,0.00e+00,53144,0),(0,0.00e+00,53144,0),(0,0.00e+00,53144,0),(0,0.00e+00,69798,0),(0,0.00e+00,69798,0),(0,0.00e+00,69798,0),(1,1.00e-05,100000,0),(0,0.00e+00,100000,0),(2,1.00e-05,200000,0),(1,5.00e-06,200000,0),(2,5.71e-06,350108,0),(2,5.71e-06,350108,0),(2,5.00e-06,400000,0)]21.80e-0611120120"nfe"25.71e-063501080"nfe"[(2.30e-07,9.00e-08),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(3.00e-07,1.10e-07),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,(5.30e-07,2.00e-07),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(9.50e-07,3.60e-07),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]3.00e-07"nfe"1.10e-07"nfe"9.50e-07"nfe"3.60e-07"nfe"1TrueNA{}2.32e+006.00e+010.00e+0053361.56e+014.62e-01[99,81,94,68]8.22e-013428.20e+006.00e+010.00e+006.65e-0134551.80e+014.62e-01[99,81,58,32]1.15e+00192FalseNANAFalseFalseFalseFalse3.61e+00-1.37e-06["ga4gh:VA.Lx5RcGLe0vnqmstRd134JgqaJUNZIzCF","ga4gh:VA.N3JXRaksYTV6CSLvZ_pZrKhYEcHiky2g"][113412613,113412614][113412616,113412616]["ACG",""]"CG/-"113412616".""chr11\t113412614\t.\tACG\tA\t.\t.\tGT"NA"frameshift_variant"NANA"chr11"1134126151[(1,"R/X",NA,"protein_coding",NA,"CCDS8362.1",1067,1068,992,991,"CGt/t",["frameshift_variant"],NA,[("Gene3D","1"),("Pfam","PF00001"),("PROSITE_profiles","PS50262"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321"),("CDD","cd15309")],"6/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000346454.7:c.991_992del","ENSP00000278597.5:p.Arg331Ter",NA,"HIGH",NA,"HC",NA,NA,"PERCENTILE:0.796787148594377,GERP_DIST:522.578328609467,BP_DIST:252,DIST_FROM_LAST_EXON:59,50_BP_RULE:PASS,ANN_ORF:1830.61,MAX_ORF:1830.61",NA,NA,NA,331,331,"ENSP00000278597","Ensembl",-1,"ENST00000346454",1,["P14416-2"],"-"),(1,"R/X","P2","protein_coding",1,"CCDS8361.1",1432,1433,1079,1078,"CGt/t",["frameshift_variant"],NA,[("Gene3D","1"),("ENSP_mappings","6vms"),("ENSP_mappings","7jvr"),("Pfam","PF00001"),("PROSITE_profiles","PS50262"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321"),("CDD","cd15309")],"7/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000362072.8:c.1078_1079del","ENSP00000354859.3:p.Arg360Ter",NA,"HIGH",NA,"HC",NA,NA,"PERCENTILE:0.81006006006006,GERP_DIST:522.578328609467,BP_DIST:252,DIST_FROM_LAST_EXON:59,50_BP_RULE:PASS,ANN_ORF:1830.61,MAX_ORF:1830.61","NM_000795.4",NA,NA,360,360,"ENSP00000354859","Ensembl",-1,"ENST00000362072",1,["P14416-1"],"-"),(1,NA,NA,"processed_transcript",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],1759,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000535984",3,NA,"-"),(1,"R/X","A1","protein_coding",NA,NA,1084,1085,1085,1084,"CGt/t",["frameshift_variant"],NA,[("Gene3D","1"),("Pfam","PF00001"),("PROSITE_profiles","PS50262"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321"),("CDD","cd15309")],"7/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000538967.5:c.1084_1085del","ENSP00000438215.1:p.Arg362Ter",NA,"HIGH",NA,"HC",NA,NA,"PERCENTILE:0.810911808669656,GERP_DIST:522.578328609467,BP_DIST:252,DIST_FROM_LAST_EXON:59,50_BP_RULE:PASS,ANN_ORF:1830.61,MAX_ORF:1830.61",NA,NA,NA,362,362,"ENSP00000438215","Ensembl",-1,"ENST00000538967",5,["P14416-3"],"-"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],2678,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000539420",3,NA,"-"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],1248,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000540600",1,NA,"-"),(1,"R/X","P2","protein_coding",NA,"CCDS8361.1",1399,1400,1079,1078,"CGt/t",["frameshift_variant"],NA,[("Gene3D","1"),("ENSP_mappings","6vms"),("ENSP_mappings","7jvr"),("Pfam","PF00001"),("PROSITE_profiles","PS50262"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321"),("CDD","cd15309")],"6/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000542968.5:c.1078_1079del","ENSP00000442172.1:p.Arg360Ter",NA,"HIGH",NA,"HC",NA,NA,"PERCENTILE:0.81006006006006,GERP_DIST:522.578328609467,BP_DIST:252,DIST_FROM_LAST_EXON:59,50_BP_RULE:PASS,ANN_ORF:1830.61,MAX_ORF:1830.61",NA,NA,NA,360,360,"ENSP00000442172","Ensembl",-1,"ENST00000542968",1,["P14416-1"],"-"),(1,NA,NA,"protein_coding",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],4247,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"ENSP00000438419","Ensembl",-1,"ENST00000543292",5,NA,"-"),(1,"R/X","A1","protein_coding",NA,NA,1108,1109,1076,1075,"CGt/t",["frameshift_variant"],NA,[("Gene3D","1"),("Pfam","PF00001"),("PROSITE_profiles","PS50262"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321"),("CDD","cd15309")],"6/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000544518.5:c.1075_1076del","ENSP00000441068.1:p.Arg359Ter",NA,"HIGH",NA,"HC",NA,NA,"PERCENTILE:0.809631301730624,GERP_DIST:522.578328609467,BP_DIST:252,DIST_FROM_LAST_EXON:59,50_BP_RULE:PASS,ANN_ORF:1830.61,MAX_ORF:1830.61",NA,NA,NA,359,359,"ENSP00000441068","Ensembl",-1,"ENST00000544518",1,NA,"-"),(1,NA,NA,"lncRNA",1,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],498,NA,NA,NA,"ENSG00000256757",NA,NA,NA,NA,NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",1,"ENST00000546284",3,NA,"-"),(1,"R/X",NA,"protein_coding",1,NA,1432,1433,1079,1078,"CGt/t",["frameshift_variant"],NA,NA,"7/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_000795.4:c.1078_1079del","NP_000786.1:p.Arg360Ter",NA,"HIGH",NA,"HC",NA,NA,"PERCENTILE:0.81006006006006,GERP_DIST:522.578328609467,BP_DIST:252,DIST_FROM_LAST_EXON:59,50_BP_RULE:PASS,PHYLOCSF_TOO_SHORT","ENST00000362072.8",NA,NA,360,360,"NP_000786.1","RefSeq",-1,"NM_000795.4",NA,NA,"-"),(1,"R/X",NA,"protein_coding",NA,NA,1345,1346,992,991,"CGt/t",["frameshift_variant"],NA,NA,"6/7",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_016574.4:c.991_992del","NP_057658.2:p.Arg331Ter",NA,"HIGH",NA,"HC",NA,NA,"PERCENTILE:0.796787148594377,GERP_DIST:522.578328609467,BP_DIST:252,DIST_FROM_LAST_EXON:59,50_BP_RULE:PASS,PHYLOCSF_TOO_SHORT",NA,NA,NA,331,331,"NP_057658.2","RefSeq",-1,"NM_016574.4",NA,NA,"-"),(1,"R/X",NA,"protein_coding",NA,NA,1160,1161,1079,1078,"CGt/t",["frameshift_variant"],NA,NA,"7/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","XM_017017296.2:c.1078_1079del","XP_016872785.1:p.Arg360Ter",NA,"HIGH",NA,"HC",NA,NA,"PERCENTILE:0.81006006006006,GERP_DIST:522.578328609467,BP_DIST:252,DIST_FROM_LAST_EXON:59,50_BP_RULE:PASS,PHYLOCSF_TOO_SHORT",NA,NA,NA,360,360,"XP_016872785.1","RefSeq",-1,"XM_017017296.2",NA,NA,"-")]"deletion"3.61e+00"AS_FS"FalseTrueFalseFalseFalseTrueFalseFalse"mixed"3False"del"True[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,1,0,1,0,314388,0,0,0,416555,0,0,0,0,0,0,2]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,278,16685,230938,273578,45300,9412,3597,3653,4094,4550,5033,5504,5845,5771,5311,4561,4649]0102188[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0]01[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,1,0,1,0,314388,0,0,0,416555,0,0,0,0,0,0,2]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,278,16685,230938,273578,45300,9412,3597,3653,4094,4550,5033,5504,5845,5771,5311,4561,4649]0102188[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0]01[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]10[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]003.30e+014.99e+00NA0.00e+00-1.20e-013.00e-01NANA
chr11:113412865["G","A"][(1,6.85e-07,1459642,0),(1,6.84e-07,1461894,0),(0,0.00e+00,33422,0),(0,0.00e+00,44708,0),(0,0.00e+00,26126,0),(0,0.00e+00,39698,0),(0,0.00e+00,52916,0),(0,0.00e+00,4548,0),(1,8.99e-07,1111812,0),(0,0.00e+00,60232,0),(0,0.00e+00,86180,0),(1,1.36e-06,733504,0),(0,0.00e+00,726138,0),(0,0.00e+00,19298,0),(0,0.00e+00,14124,0),(0,0.00e+00,25682,0),(0,0.00e+00,19026,0),(0,0.00e+00,12626,0),(0,0.00e+00,13500,0),(0,0.00e+00,20710,0),(0,0.00e+00,18988,0),(0,0.00e+00,27382,0),(0,0.00e+00,25534,0),(0,0.00e+00,1860,0),(0,0.00e+00,2688,0),(1,1.75e-06,572194,0),(0,0.00e+00,539618,0),(0,0.00e+00,31732,0),(0,0.00e+00,28500,0),(0,0.00e+00,22020,0),(0,0.00e+00,64160,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,16,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,154,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,998,0),(0,0.00e+00,1000,0),(0,0.00e+00,990,0),(0,0.00e+00,802,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1998,0),(0,0.00e+00,1998,0),(0,0.00e+00,1998,0),(0,0.00e+00,2000,0),(0,0.00e+00,1984,0),(0,0.00e+00,1574,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,1998,0),(0,0.00e+00,2000,0),(0,0.00e+00,3996,0),(0,0.00e+00,3996,0),(0,0.00e+00,3998,0),(0,0.00e+00,4000,0),(0,0.00e+00,3954,0),(0,0.00e+00,3138,0),(0,0.00e+00,4000,0),(0,0.00e+00,3998,0),(0,0.00e+00,3994,0),(0,0.00e+00,3998,0),(0,0.00e+00,5760,0),(0,0.00e+00,5762,0),(0,0.00e+00,5766,0),(0,0.00e+00,5766,0),(0,0.00e+00,5706,0),(0,0.00e+00,4548,0),(0,0.00e+00,5768,0),(0,0.00e+00,5760,0),(0,0.00e+00,5762,0),(0,0.00e+00,5766,0),(0,0.00e+00,9978,0),(0,0.00e+00,9994,0),(0,0.00e+00,9996,0),(0,0.00e+00,9998,0),(0,0.00e+00,9908,0),(0,0.00e+00,10000,0),(0,0.00e+00,9978,0),(0,0.00e+00,9992,0),(0,0.00e+00,9992,0),(0,0.00e+00,19966,0),(0,0.00e+00,19992,0),(0,0.00e+00,19990,0),(0,0.00e+00,19998,0),(0,0.00e+00,19810,0),(0,0.00e+00,20000,0),(0,0.00e+00,19960,0),(0,0.00e+00,19978,0),(0,0.00e+00,19978,0),(0,0.00e+00,26092,0),(0,0.00e+00,26126,0),(0,0.00e+00,26126,0),(0,0.00e+00,26134,0),(0,0.00e+00,25894,0),(0,0.00e+00,26136,0),(0,0.00e+00,26088,0),(0,0.00e+00,26110,0),(0,0.00e+00,26104,0),(0,0.00e+00,33422,0),(0,0.00e+00,33470,0),(0,0.00e+00,33478,0),(0,0.00e+00,33164,0),(0,0.00e+00,33480,0),(0,0.00e+00,33404,0),(0,0.00e+00,33446,0),(0,0.00e+00,33442,0),(0,0.00e+00,39688,0),(0,0.00e+00,39698,0),(0,0.00e+00,39316,0),(0,0.00e+00,39700,0),(0,0.00e+00,39608,0),(0,0.00e+00,39664,0),(0,0.00e+00,39656,0),(0,0.00e+00,39988,0),(0,0.00e+00,39612,0),(0,0.00e+00,40000,0),(0,0.00e+00,39908,0),(0,0.00e+00,39962,0),(0,0.00e+00,39954,0),(0,0.00e+00,44708,0),(0,0.00e+00,44292,0),(0,0.00e+00,44724,0),(0,0.00e+00,44618,0),(0,0.00e+00,44682,0),(0,0.00e+00,44670,0),(0,0.00e+00,52916,0),(0,0.00e+00,53420,0),(0,0.00e+00,53282,0),(0,0.00e+00,53368,0),(0,0.00e+00,53350,0),(0,0.00e+00,60394,0),(0,0.00e+00,60232,0),(0,0.00e+00,60336,0),(0,0.00e+00,60320,0),(1,1.16e-05,86254,0),(0,0.00e+00,86180,0),(1,1.16e-05,86144,0),(1,1.00e-05,99994,0),(1,1.00e-05,99866,0),(1,5.00e-06,199974,0),(1,5.01e-06,199730,0),(1,2.50e-06,399940,0),(1,2.50e-06,399434,0),(1,1.00e-06,999826,0),(1,1.00e-06,998478,0),(1,8.99e-07,1111812,0),(1,9.01e-07,1110292,0),(0,0.00e+00,626532,0),(0,0.00e+00,628784,0),(0,0.00e+00,17636,0),(0,0.00e+00,43724,0),(0,0.00e+00,20974,0),(0,0.00e+00,36068,0),(0,0.00e+00,52640,0),(0,0.00e+00,2928,0),(0,0.00e+00,349908,0),(0,0.00e+00,32934,0),(0,0.00e+00,69720,0),(0,0.00e+00,285108,0),(0,0.00e+00,341424,0),(0,0.00e+00,10258,0),(0,0.00e+00,7378,0),(0,0.00e+00,25032,0),(0,0.00e+00,18692,0),(0,0.00e+00,9828,0),(0,0.00e+00,11146,0),(0,0.00e+00,18296,0),(0,0.00e+00,17772,0),(0,0.00e+00,27132,0),(0,0.00e+00,25508,0),(0,0.00e+00,1270,0),(0,0.00e+00,1658,0),(0,0.00e+00,162126,0),(0,0.00e+00,187782,0),(0,0.00e+00,16684,0),(0,0.00e+00,16250,0),(0,0.00e+00,14482,0),(0,0.00e+00,55238,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,14,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,198,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,142,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,998,0),(0,0.00e+00,1000,0),(0,0.00e+00,998,0),(0,0.00e+00,1000,0),(0,0.00e+00,990,0),(0,0.00e+00,716,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1998,0),(0,0.00e+00,1998,0),(0,0.00e+00,1998,0),(0,0.00e+00,2000,0),(0,0.00e+00,1984,0),(0,0.00e+00,1402,0),(0,0.00e+00,2000,0),(0,0.00e+00,1998,0),(0,0.00e+00,1998,0),(0,0.00e+00,1998,0),(0,0.00e+00,3986,0),(0,0.00e+00,3996,0),(0,0.00e+00,3998,0),(0,0.00e+00,3998,0),(0,0.00e+00,3954,0),(0,0.00e+00,2810,0),(0,0.00e+00,4000,0),(0,0.00e+00,3988,0),(0,0.00e+00,3994,0),(0,0.00e+00,3992,0),(0,0.00e+00,4134,0),(0,0.00e+00,4144,0),(0,0.00e+00,4146,0),(0,0.00e+00,4146,0),(0,0.00e+00,4100,0),(0,0.00e+00,2928,0),(0,0.00e+00,4148,0),(0,0.00e+00,4134,0),(0,0.00e+00,4142,0),(0,0.00e+00,4140,0),(0,0.00e+00,9966,0),(0,0.00e+00,9994,0),(0,0.00e+00,9994,0),(0,0.00e+00,9998,0),(0,0.00e+00,9908,0),(0,0.00e+00,10000,0),(0,0.00e+00,9962,0),(0,0.00e+00,9986,0),(0,0.00e+00,9972,0),(0,0.00e+00,17636,0),(0,0.00e+00,17686,0),(0,0.00e+00,17684,0),(0,0.00e+00,17692,0),(0,0.00e+00,17542,0),(0,0.00e+00,17692,0),(0,0.00e+00,17622,0),(0,0.00e+00,17672,0),(0,0.00e+00,17644,0),(0,0.00e+00,19992,0),(0,0.00e+00,19990,0),(0,0.00e+00,19998,0),(0,0.00e+00,19808,0),(0,0.00e+00,19998,0),(0,0.00e+00,19916,0),(0,0.00e+00,19976,0),(0,0.00e+00,19944,0),(0,0.00e+00,20976,0),(0,0.00e+00,20974,0),(0,0.00e+00,20982,0),(0,0.00e+00,20782,0),(0,0.00e+00,20982,0),(0,0.00e+00,20896,0),(0,0.00e+00,20958,0),(0,0.00e+00,20922,0),(0,0.00e+00,33088,0),(0,0.00e+00,33096,0),(0,0.00e+00,32786,0),(0,0.00e+00,33092,0),(0,0.00e+00,32934,0),(0,0.00e+00,33060,0),(0,0.00e+00,33004,0),(0,0.00e+00,36060,0),(0,0.00e+00,36068,0),(0,0.00e+00,35726,0),(0,0.00e+00,36064,0),(0,0.00e+00,36028,0),(0,0.00e+00,35960,0),(0,0.00e+00,39986,0),(0,0.00e+00,39610,0),(0,0.00e+00,39988,0),(0,0.00e+00,39956,0),(0,0.00e+00,39876,0),(0,0.00e+00,43724,0),(0,0.00e+00,43316,0),(0,0.00e+00,43726,0),(0,0.00e+00,43688,0),(0,0.00e+00,43604,0),(0,0.00e+00,52640,0),(0,0.00e+00,53122,0),(0,0.00e+00,53082,0),(0,0.00e+00,52968,0),(0,0.00e+00,69768,0),(0,0.00e+00,69720,0),(0,0.00e+00,69578,0),(0,0.00e+00,99956,0),(0,0.00e+00,99674,0),(0,0.00e+00,199884,0),(0,0.00e+00,199332,0),(0,0.00e+00,349908,0),(0,0.00e+00,348866,0),(0,0.00e+00,398590,0)]18.99e-0711118120"nfe"NANANANANA[(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]NANANANANANANANA1TrueNA{}1.02e+006.00e+010.00e+005537.79e+002.96e-01[14,32,9,16]4.68e-01711.04e+006.00e+010.00e+003.92e-015318.56e+002.96e-01[14,32,8,15]5.03e-0162TrueFalseFalseFalseFalseFalseFalse5.39e+00-6.84e-07["ga4gh:VA.uAq5BRYMw_lO7PZcOF5TpbGC5hA8JCCE","ga4gh:VA.rN4HBsKxAnhIfQxMXe9zdR_JZUOk90h2"][113412864,113412864][113412865,113412865]["G","A"]"G/A"113412865".""chr11\t113412865\t.\tG\tA\t.\t.\tGT"NA"stop_gained"NANA"chr11"1134128651[(1,"Q/*",NA,"protein_coding",NA,"CCDS8362.1",818,818,742,742,"Cag/Tag",["stop_gained"],NA,[("Gene3D","1"),("Pfam","PF00001"),("PROSITE_profiles","PS50262"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321"),("CDD","cd15309")],"6/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000346454.7:c.742C>T","ENSP00000278597.5:p.Gln248Ter",NA,"HIGH",NA,"HC",NA,NA,"PERCENTILE:0.595983935742972,GERP_DIST:1028.46165180206,BP_DIST:502,DIST_FROM_LAST_EXON:309,50_BP_RULE:PASS,ANN_ORF:1830.61,MAX_ORF:1830.61",NA,NA,NA,248,248,"ENSP00000278597","Ensembl",-1,"ENST00000346454",1,["P14416-2"],"A"),(1,"Q/*","P2","protein_coding",1,"CCDS8361.1",1183,1183,829,829,"Cag/Tag",["stop_gained"],NA,[("ENSP_mappings","6vms"),("ENSP_mappings","7jvr"),("Pfam","PF00001"),("PROSITE_profiles","PS50262"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321"),("CDD","cd15309")],"7/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000362072.8:c.829C>T","ENSP00000354859.3:p.Gln277Ter",NA,"HIGH",NA,"HC",NA,NA,"PERCENTILE:0.622372372372372,GERP_DIST:1028.46165180206,BP_DIST:502,DIST_FROM_LAST_EXON:309,50_BP_RULE:PASS,ANN_ORF:1830.61,MAX_ORF:1830.61","NM_000795.4",NA,NA,277,277,"ENSP00000354859","Ensembl",-1,"ENST00000362072",1,["P14416-1"],"A"),(1,NA,NA,"processed_transcript",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],1510,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000535984",3,NA,"A"),(1,"Q/*","A1","protein_coding",NA,NA,835,835,835,835,"Cag/Tag",["stop_gained"],NA,[("Pfam","PF00001"),("PROSITE_profiles","PS50262"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321"),("CDD","cd15309"),("CDD","cd15309")],"7/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000538967.5:c.835C>T","ENSP00000438215.1:p.Gln279Ter",NA,"HIGH",NA,"HC",NA,NA,"PERCENTILE:0.62406576980568,GERP_DIST:1028.46165180206,BP_DIST:502,DIST_FROM_LAST_EXON:309,50_BP_RULE:PASS,ANN_ORF:1830.61,MAX_ORF:1830.61",NA,NA,NA,279,279,"ENSP00000438215","Ensembl",-1,"ENST00000538967",5,["P14416-3"],"A"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],2429,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000539420",3,NA,"A"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],999,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000540600",1,NA,"A"),(1,"Q/*","P2","protein_coding",NA,"CCDS8361.1",1150,1150,829,829,"Cag/Tag",["stop_gained"],NA,[("ENSP_mappings","6vms"),("ENSP_mappings","7jvr"),("Pfam","PF00001"),("PROSITE_profiles","PS50262"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321"),("CDD","cd15309")],"6/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000542968.5:c.829C>T","ENSP00000442172.1:p.Gln277Ter",NA,"HIGH",NA,"HC",NA,NA,"PERCENTILE:0.622372372372372,GERP_DIST:1028.46165180206,BP_DIST:502,DIST_FROM_LAST_EXON:309,50_BP_RULE:PASS,ANN_ORF:1830.61,MAX_ORF:1830.61",NA,NA,NA,277,277,"ENSP00000442172","Ensembl",-1,"ENST00000542968",1,["P14416-1"],"A"),(1,NA,NA,"protein_coding",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],3998,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"ENSP00000438419","Ensembl",-1,"ENST00000543292",5,NA,"A"),(1,"Q/*","A1","protein_coding",NA,NA,859,859,826,826,"Cag/Tag",["stop_gained"],NA,[("Pfam","PF00001"),("PROSITE_profiles","PS50262"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321"),("CDD","cd15309")],"6/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000544518.5:c.826C>T","ENSP00000441068.1:p.Gln276Ter",NA,"HIGH",NA,"HC",NA,NA,"PERCENTILE:0.621519939804364,GERP_DIST:1028.46165180206,BP_DIST:502,DIST_FROM_LAST_EXON:309,50_BP_RULE:PASS,ANN_ORF:1830.61,MAX_ORF:1830.61",NA,NA,NA,276,276,"ENSP00000441068","Ensembl",-1,"ENST00000544518",1,NA,"A"),(1,NA,NA,"lncRNA",1,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],748,NA,NA,NA,"ENSG00000256757",NA,NA,NA,NA,NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",1,"ENST00000546284",3,NA,"A"),(1,"Q/*",NA,"protein_coding",1,NA,1183,1183,829,829,"Cag/Tag",["stop_gained"],NA,NA,"7/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_000795.4:c.829C>T","NP_000786.1:p.Gln277Ter",NA,"HIGH",NA,"HC",NA,NA,"PERCENTILE:0.622372372372372,GERP_DIST:1028.46165180206,BP_DIST:502,DIST_FROM_LAST_EXON:309,50_BP_RULE:PASS,PHYLOCSF_TOO_SHORT","ENST00000362072.8",NA,NA,277,277,"NP_000786.1","RefSeq",-1,"NM_000795.4",NA,NA,"A"),(1,"Q/*",NA,"protein_coding",NA,NA,1096,1096,742,742,"Cag/Tag",["stop_gained"],NA,NA,"6/7",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_016574.4:c.742C>T","NP_057658.2:p.Gln248Ter",NA,"HIGH",NA,"HC",NA,NA,"PERCENTILE:0.595983935742972,GERP_DIST:1028.46165180206,BP_DIST:502,DIST_FROM_LAST_EXON:309,50_BP_RULE:PASS,PHYLOCSF_TOO_SHORT",NA,NA,NA,248,248,"NP_057658.2","RefSeq",-1,"NM_016574.4",NA,NA,"A"),(1,"Q/*",NA,"protein_coding",NA,NA,911,911,829,829,"Cag/Tag",["stop_gained"],NA,NA,"7/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","XM_017017296.2:c.829C>T","XP_016872785.1:p.Gln277Ter",NA,"HIGH",NA,"HC",NA,NA,"PERCENTILE:0.622372372372372,GERP_DIST:1028.46165180206,BP_DIST:502,DIST_FROM_LAST_EXON:309,50_BP_RULE:PASS,PHYLOCSF_TOO_SHORT",NA,NA,NA,277,277,"XP_016872785.1","RefSeq",-1,"XM_017017296.2",NA,NA,"A")]"SNV"5.39e+00"AS_MQ"FalseFalseFalseFalseFalseTrueFalseFalse"multi-snv"2False"snv"False[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,547,0,1910,0,310815,0,33,0,416515,0,0,0,0,0,0,1]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,1141,1461,3821,36585,211757,225880,49280,7441,3163,3441,5118,7834,11512,15298,17617,18581,18765,20944]070182[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][890,0,0,0,783,0,1910,0,310815,0,33,0,416515,0,0,0,0,0,0,1]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][431,622,1175,1493,3823,36589,211757,225880,49281,7441,3163,3441,5118,7834,11512,15298,17617,18581,18765,20944]070182[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,1,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]004.50e+018.76e+00NA0.00e+00-1.10e-018.79e+00NANA
chr11:113412885["T","C"][(1,6.86e-07,1458160,0),(2,1.37e-06,1461894,0),(0,0.00e+00,33408,0),(0,0.00e+00,44630,0),(0,0.00e+00,26106,0),(0,0.00e+00,39690,0),(0,0.00e+00,52116,0),(0,0.00e+00,4312,0),(1,9.00e-07,1111636,0),(0,0.00e+00,60164,0),(0,0.00e+00,86098,0),(1,1.36e-06,732774,0),(0,0.00e+00,725386,0),(0,0.00e+00,19292,0),(0,0.00e+00,14116,0),(0,0.00e+00,25634,0),(0,0.00e+00,18996,0),(0,0.00e+00,12610,0),(0,0.00e+00,13496,0),(0,0.00e+00,20702,0),(0,0.00e+00,18988,0),(0,0.00e+00,26976,0),(0,0.00e+00,25140,0),(0,0.00e+00,1734,0),(0,0.00e+00,2578,0),(1,1.75e-06,572122,0),(0,0.00e+00,539514,0),(0,0.00e+00,31706,0),(0,0.00e+00,28458,0),(0,0.00e+00,21998,0),(0,0.00e+00,64100,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,12,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,194,0),(0,0.00e+00,148,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,998,0),(0,0.00e+00,998,0),(0,0.00e+00,996,0),(0,0.00e+00,1000,0),(0,0.00e+00,970,0),(0,0.00e+00,756,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1994,0),(0,0.00e+00,1996,0),(0,0.00e+00,1996,0),(0,0.00e+00,2000,0),(0,0.00e+00,1950,0),(0,0.00e+00,1490,0),(0,0.00e+00,1998,0),(0,0.00e+00,2000,0),(0,0.00e+00,1996,0),(0,0.00e+00,2000,0),(0,0.00e+00,3992,0),(0,0.00e+00,3994,0),(0,0.00e+00,3996,0),(0,0.00e+00,4000,0),(0,0.00e+00,3888,0),(0,0.00e+00,2982,0),(0,0.00e+00,3998,0),(0,0.00e+00,3996,0),(0,0.00e+00,3988,0),(0,0.00e+00,3990,0),(0,0.00e+00,5754,0),(0,0.00e+00,5758,0),(0,0.00e+00,5762,0),(0,0.00e+00,5768,0),(0,0.00e+00,5602,0),(0,0.00e+00,4312,0),(0,0.00e+00,5766,0),(0,0.00e+00,5756,0),(0,0.00e+00,5754,0),(0,0.00e+00,5754,0),(0,0.00e+00,9972,0),(0,0.00e+00,9982,0),(0,0.00e+00,9986,0),(0,0.00e+00,10000,0),(0,0.00e+00,9736,0),(0,0.00e+00,9998,0),(0,0.00e+00,9968,0),(0,0.00e+00,9984,0),(0,0.00e+00,9976,0),(0,0.00e+00,19956,0),(0,0.00e+00,19974,0),(0,0.00e+00,19976,0),(0,0.00e+00,19996,0),(0,0.00e+00,19458,0),(0,0.00e+00,19998,0),(0,0.00e+00,19942,0),(0,0.00e+00,19960,0),(0,0.00e+00,19950,0),(0,0.00e+00,26080,0),(0,0.00e+00,26096,0),(0,0.00e+00,26106,0),(0,0.00e+00,26130,0),(0,0.00e+00,25472,0),(0,0.00e+00,26134,0),(0,0.00e+00,26068,0),(0,0.00e+00,26090,0),(0,0.00e+00,26074,0),(0,0.00e+00,33408,0),(0,0.00e+00,33414,0),(0,0.00e+00,33472,0),(0,0.00e+00,32646,0),(0,0.00e+00,33478,0),(0,0.00e+00,33382,0),(0,0.00e+00,33422,0),(0,0.00e+00,33404,0),(0,0.00e+00,39618,0),(0,0.00e+00,39690,0),(0,0.00e+00,38704,0),(0,0.00e+00,39698,0),(0,0.00e+00,39574,0),(0,0.00e+00,39636,0),(0,0.00e+00,39610,0),(0,0.00e+00,39916,0),(0,0.00e+00,38996,0),(0,0.00e+00,39998,0),(0,0.00e+00,39872,0),(0,0.00e+00,39934,0),(0,0.00e+00,39908,0),(0,0.00e+00,44630,0),(0,0.00e+00,43606,0),(0,0.00e+00,44722,0),(0,0.00e+00,44570,0),(0,0.00e+00,44654,0),(0,0.00e+00,44624,0),(0,0.00e+00,52116,0),(0,0.00e+00,53418,0),(0,0.00e+00,53230,0),(0,0.00e+00,53336,0),(0,0.00e+00,53296,0),(0,0.00e+00,60390,0),(0,0.00e+00,60164,0),(0,0.00e+00,60294,0),(0,0.00e+00,60258,0),(0,0.00e+00,86248,0),(0,0.00e+00,86098,0),(0,0.00e+00,86056,0),(0,0.00e+00,99986,0),(0,0.00e+00,99772,0),(0,0.00e+00,199950,0),(0,0.00e+00,199518,0),(0,0.00e+00,399882,0),(0,0.00e+00,399012,0),(1,1.00e-06,999674,0),(1,1.00e-06,997490,0),(1,9.00e-07,1111636,0),(1,9.02e-07,1109188,0),(0,0.00e+00,625052,0),(1,1.59e-06,628784,0),(0,0.00e+00,17622,0),(0,0.00e+00,43646,0),(0,0.00e+00,20954,0),(0,0.00e+00,36060,0),(0,0.00e+00,51840,0),(0,0.00e+00,2692,0),(0,0.00e+00,349734,0),(0,0.00e+00,32866,0),(0,0.00e+00,69638,0),(0,0.00e+00,284380,0),(0,0.00e+00,340672,0),(0,0.00e+00,10252,0),(0,0.00e+00,7370,0),(0,0.00e+00,24984,0),(0,0.00e+00,18662,0),(0,0.00e+00,9812,0),(0,0.00e+00,11142,0),(0,0.00e+00,18288,0),(0,0.00e+00,17772,0),(0,0.00e+00,26726,0),(0,0.00e+00,25114,0),(0,0.00e+00,1144,0),(0,0.00e+00,1548,0),(0,0.00e+00,162056,0),(0,0.00e+00,187678,0),(0,0.00e+00,16658,0),(0,0.00e+00,16208,0),(0,0.00e+00,14460,0),(0,0.00e+00,55178,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,10,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,198,0),(0,0.00e+00,200,0),(0,0.00e+00,194,0),(0,0.00e+00,136,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,994,0),(0,0.00e+00,998,0),(0,0.00e+00,996,0),(0,0.00e+00,1000,0),(0,0.00e+00,970,0),(0,0.00e+00,654,0),(0,0.00e+00,998,0),(0,0.00e+00,1000,0),(0,0.00e+00,998,0),(0,0.00e+00,996,0),(0,0.00e+00,1994,0),(0,0.00e+00,1996,0),(0,0.00e+00,1996,0),(0,0.00e+00,2000,0),(0,0.00e+00,1948,0),(0,0.00e+00,1302,0),(0,0.00e+00,1998,0),(0,0.00e+00,1996,0),(0,0.00e+00,1996,0),(0,0.00e+00,1986,0),(0,0.00e+00,3980,0),(0,0.00e+00,3994,0),(0,0.00e+00,3996,0),(0,0.00e+00,4000,0),(0,0.00e+00,3888,0),(0,0.00e+00,2588,0),(0,0.00e+00,3998,0),(0,0.00e+00,3984,0),(0,0.00e+00,3986,0),(0,0.00e+00,3976,0),(0,0.00e+00,4128,0),(0,0.00e+00,4142,0),(0,0.00e+00,4144,0),(0,0.00e+00,4148,0),(0,0.00e+00,4032,0),(0,0.00e+00,2692,0),(0,0.00e+00,4146,0),(0,0.00e+00,4130,0),(0,0.00e+00,4134,0),(0,0.00e+00,4124,0),(0,0.00e+00,9956,0),(0,0.00e+00,9982,0),(0,0.00e+00,9982,0),(0,0.00e+00,9998,0),(0,0.00e+00,9736,0),(0,0.00e+00,9998,0),(0,0.00e+00,9946,0),(0,0.00e+00,9970,0),(0,0.00e+00,9946,0),(0,0.00e+00,17622,0),(0,0.00e+00,17668,0),(0,0.00e+00,17666,0),(0,0.00e+00,17690,0),(0,0.00e+00,17240,0),(0,0.00e+00,17690,0),(0,0.00e+00,17600,0),(0,0.00e+00,17652,0),(0,0.00e+00,17598,0),(0,0.00e+00,19974,0),(0,0.00e+00,19970,0),(0,0.00e+00,19996,0),(0,0.00e+00,19456,0),(0,0.00e+00,19994,0),(0,0.00e+00,19886,0),(0,0.00e+00,19956,0),(0,0.00e+00,19896,0),(0,0.00e+00,20952,0),(0,0.00e+00,20954,0),(0,0.00e+00,20980,0),(0,0.00e+00,20420,0),(0,0.00e+00,20978,0),(0,0.00e+00,20864,0),(0,0.00e+00,20938,0),(0,0.00e+00,20870,0),(0,0.00e+00,33028,0),(0,0.00e+00,33088,0),(0,0.00e+00,32270,0),(0,0.00e+00,33082,0),(0,0.00e+00,32866,0),(0,0.00e+00,33032,0),(0,0.00e+00,32930,0),(0,0.00e+00,35996,0),(0,0.00e+00,36060,0),(0,0.00e+00,35158,0),(0,0.00e+00,36052,0),(0,0.00e+00,36000,0),(0,0.00e+00,35874,0),(0,0.00e+00,39912,0),(0,0.00e+00,38990,0),(0,0.00e+00,39972,0),(0,0.00e+00,39926,0),(0,0.00e+00,39784,0),(0,0.00e+00,43646,0),(0,0.00e+00,42640,0),(0,0.00e+00,43710,0),(0,0.00e+00,43654,0),(0,0.00e+00,43508,0),(0,0.00e+00,51840,0),(0,0.00e+00,53106,0),(0,0.00e+00,53036,0),(0,0.00e+00,52850,0),(0,0.00e+00,69740,0),(0,0.00e+00,69638,0),(0,0.00e+00,69416,0),(0,0.00e+00,99914,0),(0,0.00e+00,99438,0),(0,0.00e+00,199798,0),(0,0.00e+00,198850,0),(0,0.00e+00,349734,0),(0,0.00e+00,348096,0),(0,0.00e+00,397690,0)]19.00e-0711116360"nfe"NANANANANA[(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]NANANANANANANANA1FalseNA{}2.45e+006.00e+010.00e+008901.11e+011.80e-01[7,37,8,28]3.79e-01802.45e+006.00e+010.00e+004.53e-018901.11e+011.80e-01[7,37,8,28]3.79e-0180FalseFalseFalseFalseFalseFalseFalse5.84e+00-1.37e-06["ga4gh:VA.Hj6Aa_k4TOMxqWIs6lE_cgxiRrPFWp8C","ga4gh:VA.NDTpZX0YUzM19pYVv6I2tV0ypoJhtyrN"][113412884,113412884][113412885,113412885]["T","C"]"T/C"113412885".""chr11\t113412885\t.\tT\tC\t.\t.\tGT"NA"splice_acceptor_variant"NANA"chr11"1134128851[(1,NA,NA,"protein_coding",NA,"CCDS8362.1",NA,NA,NA,NA,NA,["splice_acceptor_variant"],NA,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000346454.7:c.724-2A>G",NA,NA,"HIGH","5/6","HC","NAGNAG_SITE",NA,"INTRON_SIZE:2537",NA,NA,NA,NA,NA,"ENSP00000278597","Ensembl",-1,"ENST00000346454",1,["P14416-2"],"C"),(1,NA,"P2","protein_coding",1,"CCDS8361.1",NA,NA,NA,NA,NA,["splice_acceptor_variant"],NA,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000362072.8:c.811-2A>G",NA,NA,"HIGH","6/7","HC","NAGNAG_SITE",NA,"INTRON_SIZE:1491","NM_000795.4",NA,NA,NA,NA,"ENSP00000354859","Ensembl",-1,"ENST00000362072",1,["P14416-1"],"C"),(1,NA,NA,"processed_transcript",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],1490,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000535984",3,NA,"C"),(1,NA,"A1","protein_coding",NA,NA,NA,NA,NA,NA,NA,["splice_acceptor_variant"],NA,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000538967.5:c.817-2A>G",NA,NA,"HIGH","6/7","HC","NAGNAG_SITE",NA,"INTRON_SIZE:451",NA,NA,NA,NA,NA,"ENSP00000438215","Ensembl",-1,"ENST00000538967",5,["P14416-3"],"C"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],2409,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000539420",3,NA,"C"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],979,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000540600",1,NA,"C"),(1,NA,"P2","protein_coding",NA,"CCDS8361.1",NA,NA,NA,NA,NA,["splice_acceptor_variant"],NA,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000542968.5:c.811-2A>G",NA,NA,"HIGH","5/6","HC","NAGNAG_SITE",NA,"INTRON_SIZE:1491",NA,NA,NA,NA,NA,"ENSP00000442172","Ensembl",-1,"ENST00000542968",1,["P14416-1"],"C"),(1,NA,NA,"protein_coding",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],3978,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"ENSP00000438419","Ensembl",-1,"ENST00000543292",5,NA,"C"),(1,NA,"A1","protein_coding",NA,NA,NA,NA,NA,NA,NA,["splice_acceptor_variant"],NA,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000544518.5:c.808-2A>G",NA,NA,"HIGH","5/6","HC","NAGNAG_SITE",NA,"INTRON_SIZE:1491",NA,NA,NA,NA,NA,"ENSP00000441068","Ensembl",-1,"ENST00000544518",1,NA,"C"),(1,NA,NA,"lncRNA",1,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],768,NA,NA,NA,"ENSG00000256757",NA,NA,NA,NA,NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",1,"ENST00000546284",3,NA,"C"),(1,NA,NA,"protein_coding",1,NA,NA,NA,NA,NA,NA,["splice_acceptor_variant"],NA,NA,NA,NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_000795.4:c.811-2A>G",NA,NA,"HIGH","6/7","HC","NAGNAG_SITE",NA,"INTRON_SIZE:1491","ENST00000362072.8",NA,NA,NA,NA,"NP_000786.1","RefSeq",-1,"NM_000795.4",NA,NA,"C"),(1,NA,NA,"protein_coding",NA,NA,NA,NA,NA,NA,NA,["splice_acceptor_variant"],NA,NA,NA,NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_016574.4:c.724-2A>G",NA,NA,"HIGH","5/6","HC","NAGNAG_SITE",NA,"INTRON_SIZE:2537",NA,NA,NA,NA,NA,"NP_057658.2","RefSeq",-1,"NM_016574.4",NA,NA,"C"),(1,NA,NA,"protein_coding",NA,NA,NA,NA,NA,NA,NA,["splice_acceptor_variant"],NA,NA,NA,NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","XM_017017296.2:c.811-2A>G",NA,NA,"HIGH","6/7","HC","NAGNAG_SITE",NA,"INTRON_SIZE:1491",NA,NA,NA,NA,NA,"XP_016872785.1","RefSeq",-1,"XM_017017296.2",NA,NA,"C")]"SNV"5.84e+00"AS_MQ"FalseFalseFalseFalseFalseTrueTrueFalse"snv"1False"snv"False[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,929,0,3800,0,308036,0,642,0,415672,0,0,0,0,0,0,1]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,2699,3244,4728,36120,209411,224276,48878,7369,3147,3425,5116,7827,11506,15293,17615,18578,18759,20940]070149[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][1313,0,2,0,1481,0,3800,0,308036,0,642,0,415672,0,0,0,0,0,0,1]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][618,1142,2737,3303,4730,36128,209411,224276,48878,7369,3147,3425,5116,7827,11506,15293,17615,18578,18759,20940]070149[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,1,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]003.50e+015.83e+00NA9.80e-01-7.90e-016.35e+00NANA

showing top 5 rows

\n" - ], - "text/plain": [ - "+-----------------+-------------+\n", - "| locus | alleles |\n", - "+-----------------+-------------+\n", - "| locus | array |\n", - "+-----------------+-------------+\n", - "| chr11:113412554 | [\"A\",\"G\"] |\n", - "| chr11:113412612 | [\"CT\",\"C\"] |\n", - "| chr11:113412614 | [\"ACG\",\"A\"] |\n", - "| chr11:113412865 | [\"G\",\"A\"] |\n", - "| chr11:113412885 | [\"T\",\"C\"] |\n", - "+-----------------+-------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| freq |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [(1,6.85e-07,1459578,0),(1,6.84e-07,1461894,0),(0,0.00e+00,33480,0),(0,0.... |\n", - "| [(2,1.37e-06,1461892,0),(2,1.37e-06,1461894,0),(0,0.00e+00,33480,0),(0,0.... |\n", - "| [(2,1.37e-06,1461894,0),(2,1.37e-06,1461894,0),(0,0.00e+00,33480,0),(0,0.... |\n", - "| [(1,6.85e-07,1459642,0),(1,6.84e-07,1461894,0),(0,0.00e+00,33422,0),(0,0.... |\n", - "| [(1,6.86e-07,1458160,0),(2,1.37e-06,1461894,0),(0,0.00e+00,33408,0),(0,0.... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+------------------+------------------+------------------+\n", - "| grpmax.gnomad.AC | grpmax.gnomad.AF | grpmax.gnomad.AN |\n", - "+------------------+------------------+------------------+\n", - "| int32 | float64 | int32 |\n", - "+------------------+------------------+------------------+\n", - "| 1 | 8.99e-07 | 1111998 |\n", - "| 2 | 1.80e-06 | 1112010 |\n", - "| 2 | 1.80e-06 | 1112012 |\n", - "| 1 | 8.99e-07 | 1111812 |\n", - "| 1 | 9.00e-07 | 1111636 |\n", - "+------------------+------------------+------------------+\n", - "\n", - "+--------------------------------+-----------------------+-------------------+\n", - "| grpmax.gnomad.homozygote_count | grpmax.gnomad.gen_anc | grpmax.non_ukb.AC |\n", - "+--------------------------------+-----------------------+-------------------+\n", - "| int64 | str | int32 |\n", - "+--------------------------------+-----------------------+-------------------+\n", - "| 0 | \"nfe\" | NA |\n", - "| 0 | \"nfe\" | 2 |\n", - "| 0 | \"nfe\" | 2 |\n", - "| 0 | \"nfe\" | NA |\n", - "| 0 | \"nfe\" | NA |\n", - "+--------------------------------+-----------------------+-------------------+\n", - "\n", - "+-------------------+-------------------+---------------------------------+\n", - "| grpmax.non_ukb.AF | grpmax.non_ukb.AN | grpmax.non_ukb.homozygote_count |\n", - "+-------------------+-------------------+---------------------------------+\n", - "| float64 | int32 | int64 |\n", - "+-------------------+-------------------+---------------------------------+\n", - "| NA | NA | NA |\n", - "| 5.71e-06 | 350106 | 0 |\n", - "| 5.71e-06 | 350108 | 0 |\n", - "| NA | NA | NA |\n", - "| NA | NA | NA |\n", - "+-------------------+-------------------+---------------------------------+\n", - "\n", - "+------------------------+\n", - "| grpmax.non_ukb.gen_anc |\n", - "+------------------------+\n", - "| str |\n", - "+------------------------+\n", - "| NA |\n", - "| \"nfe\" |\n", - "| \"nfe\" |\n", - "| NA |\n", - "| NA |\n", - "+------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| faf |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.... |\n", - "| [(2.30e-07,9.00e-08),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.... |\n", - "| [(2.30e-07,9.00e-08),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.... |\n", - "| [(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.... |\n", - "| [(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+-------------------------+---------------------------------+\n", - "| fafmax.gnomad.faf95_max | fafmax.gnomad.faf95_max_gen_anc |\n", - "+-------------------------+---------------------------------+\n", - "| float64 | str |\n", - "+-------------------------+---------------------------------+\n", - "| NA | NA |\n", - "| 3.00e-07 | \"nfe\" |\n", - "| 3.00e-07 | \"nfe\" |\n", - "| NA | NA |\n", - "| NA | NA |\n", - "+-------------------------+---------------------------------+\n", - "\n", - "+-------------------------+---------------------------------+\n", - "| fafmax.gnomad.faf99_max | fafmax.gnomad.faf99_max_gen_anc |\n", - "+-------------------------+---------------------------------+\n", - "| float64 | str |\n", - "+-------------------------+---------------------------------+\n", - "| NA | NA |\n", - "| 1.10e-07 | \"nfe\" |\n", - "| 1.10e-07 | \"nfe\" |\n", - "| NA | NA |\n", - "| NA | NA |\n", - "+-------------------------+---------------------------------+\n", - "\n", - "+--------------------------+----------------------------------+\n", - "| fafmax.non_ukb.faf95_max | fafmax.non_ukb.faf95_max_gen_anc |\n", - "+--------------------------+----------------------------------+\n", - "| float64 | str |\n", - "+--------------------------+----------------------------------+\n", - "| NA | NA |\n", - "| 9.50e-07 | \"nfe\" |\n", - "| 9.50e-07 | \"nfe\" |\n", - "| NA | NA |\n", - "| NA | NA |\n", - "+--------------------------+----------------------------------+\n", - "\n", - "+--------------------------+----------------------------------+---------+\n", - "| fafmax.non_ukb.faf99_max | fafmax.non_ukb.faf99_max_gen_anc | a_index |\n", - "+--------------------------+----------------------------------+---------+\n", - "| float64 | str | int32 |\n", - "+--------------------------+----------------------------------+---------+\n", - "| NA | NA | 2 |\n", - "| 3.60e-07 | \"nfe\" | 1 |\n", - "| 3.60e-07 | \"nfe\" | 1 |\n", - "| NA | NA | 1 |\n", - "| NA | NA | 1 |\n", - "+--------------------------+----------------------------------+---------+\n", - "\n", - "+-----------+----------+----------+----------+----------+----------------+\n", - "| was_split | rsid | filters | info.FS | info.MQ | info.MQRankSum |\n", - "+-----------+----------+----------+----------+----------+----------------+\n", - "| bool | set | set | float64 | float64 | float64 |\n", - "+-----------+----------+----------+----------+----------+----------------+\n", - "| True | NA | {} | 2.83e+00 | 6.00e+01 | 0.00e+00 |\n", - "| False | NA | {} | 5.48e-01 | 6.00e+01 | 0.00e+00 |\n", - "| True | NA | {} | 2.32e+00 | 6.00e+01 | 0.00e+00 |\n", - "| True | NA | {} | 1.02e+00 | 6.00e+01 | 0.00e+00 |\n", - "| False | NA | {} | 2.45e+00 | 6.00e+01 | 0.00e+00 |\n", - "+-----------+----------+----------+----------+----------+----------------+\n", - "\n", - "+-----------------+----------+---------------------+---------------+----------+\n", - "| info.QUALapprox | info.QD | info.ReadPosRankSum | info.SB | info.SOR |\n", - "+-----------------+----------+---------------------+---------------+----------+\n", - "| int64 | float64 | float64 | array | float64 |\n", - "+-----------------+----------+---------------------+---------------+----------+\n", - "| 1498 | 1.05e+01 | -5.05e-01 | [63,17,52,10] | 1.04e+00 |\n", - "| 3458 | 1.79e+01 | 4.32e-01 | [65,38,58,32] | 7.50e-01 |\n", - "| 5336 | 1.56e+01 | 4.62e-01 | [99,81,94,68] | 8.22e-01 |\n", - "| 553 | 7.79e+00 | 2.96e-01 | [14,32,9,16] | 4.68e-01 |\n", - "| 890 | 1.11e+01 | 1.80e-01 | [7,37,8,28] | 3.79e-01 |\n", - "+-----------------+----------+---------------------+---------------+----------+\n", - "\n", - "+------------+------------+------------+-------------------+-----------------+\n", - "| info.VarDP | info.AS_FS | info.AS_MQ | info.AS_MQRankSum | info.AS_pab_max |\n", - "+------------+------------+------------+-------------------+-----------------+\n", - "| int32 | float64 | float64 | float64 | float64 |\n", - "+------------+------------+------------+-------------------+-----------------+\n", - "| 142 | 1.10e+00 | 6.00e+01 | 0.00e+00 | 1.00e+00 |\n", - "| 193 | 5.48e-01 | 6.00e+01 | 0.00e+00 | 5.90e-01 |\n", - "| 342 | 8.20e+00 | 6.00e+01 | 0.00e+00 | 6.65e-01 |\n", - "| 71 | 1.04e+00 | 6.00e+01 | 0.00e+00 | 3.92e-01 |\n", - "| 80 | 2.45e+00 | 6.00e+01 | 0.00e+00 | 4.53e-01 |\n", - "+------------+------------+------------+-------------------+-----------------+\n", - "\n", - "+--------------------+------------+------------------------+------------------+\n", - "| info.AS_QUALapprox | info.AS_QD | info.AS_ReadPosRankSum | info.AS_SB_TABLE |\n", - "+--------------------+------------+------------------------+------------------+\n", - "| int64 | float64 | float64 | array |\n", - "+--------------------+------------+------------------------+------------------+\n", - "| 661 | 1.35e+01 | -1.83e+00 | [63,17,21,4] |\n", - "| 3458 | 1.79e+01 | 4.32e-01 | [65,38,58,32] |\n", - "| 3455 | 1.80e+01 | 4.62e-01 | [99,81,58,32] |\n", - "| 531 | 8.56e+00 | 2.96e-01 | [14,32,8,15] |\n", - "| 890 | 1.11e+01 | 1.80e-01 | [7,37,8,28] |\n", - "+--------------------+------------+------------------------+------------------+\n", - "\n", - "+-------------+---------------+----------------+----------------------------+\n", - "| info.AS_SOR | info.AS_VarDP | info.singleton | info.transmitted_singleton |\n", - "+-------------+---------------+----------------+----------------------------+\n", - "| float64 | int32 | bool | bool |\n", - "+-------------+---------------+----------------+----------------------------+\n", - "| 9.29e-01 | 49 | True | False |\n", - "| 7.50e-01 | 193 | False | NA |\n", - "| 1.15e+00 | 192 | False | NA |\n", - "| 5.03e-01 | 62 | True | False |\n", - "| 3.79e-01 | 80 | False | False |\n", - "+-------------+---------------+----------------+----------------------------+\n", - "\n", - "+------------------------+-----------+------------+------------------+\n", - "| info.sibling_singleton | info.omni | info.mills | info.monoallelic |\n", - "+------------------------+-----------+------------+------------------+\n", - "| bool | bool | bool | bool |\n", - "+------------------------+-----------+------------+------------------+\n", - "| False | False | False | False |\n", - "| NA | False | False | False |\n", - "| NA | False | False | False |\n", - "| False | False | False | False |\n", - "| False | False | False | False |\n", - "+------------------------+-----------+------------+------------------+\n", - "\n", - "+---------------+----------------+-----------------------+\n", - "| info.only_het | info.AS_VQSLOD | info.inbreeding_coeff |\n", - "+---------------+----------------+-----------------------+\n", - "| bool | float64 | float64 |\n", - "+---------------+----------------+-----------------------+\n", - "| False | 5.30e+00 | -6.84e-07 |\n", - "| False | 4.25e+00 | -1.37e-06 |\n", - "| False | 3.61e+00 | -1.37e-06 |\n", - "| False | 5.39e+00 | -6.84e-07 |\n", - "| False | 5.84e+00 | -1.37e-06 |\n", - "+---------------+----------------+-----------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| info.vrs.VRS_Allele_IDs |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [\"ga4gh:VA.mqU9WPvGr3hduyybbeN-AKJ1zN-kclsI\",\"ga4gh:VA.uvlicmv1vZnrBBqm0U... |\n", - "| [\"ga4gh:VA.NztLKtEJA7H0h_Tz31YRmTUR4hT2PNxO\",\"ga4gh:VA.5xtydtW8O1beQhV-1c... |\n", - "| [\"ga4gh:VA.Lx5RcGLe0vnqmstRd134JgqaJUNZIzCF\",\"ga4gh:VA.N3JXRaksYTV6CSLvZ_... |\n", - "| [\"ga4gh:VA.uAq5BRYMw_lO7PZcOF5TpbGC5hA8JCCE\",\"ga4gh:VA.rN4HBsKxAnhIfQxMXe... |\n", - "| [\"ga4gh:VA.Hj6Aa_k4TOMxqWIs6lE_cgxiRrPFWp8C\",\"ga4gh:VA.NDTpZX0YUzM19pYVv6... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+-----------------------+-----------------------+---------------------+\n", - "| info.vrs.VRS_Starts | info.vrs.VRS_Ends | info.vrs.VRS_States |\n", - "+-----------------------+-----------------------+---------------------+\n", - "| array | array | array |\n", - "+-----------------------+-----------------------+---------------------+\n", - "| [113412553,113412553] | [113412554,113412554] | [\"A\",\"G\"] |\n", - "| [113412611,113412612] | [113412613,113412613] | [\"CT\",\"\"] |\n", - "| [113412613,113412614] | [113412616,113412616] | [\"ACG\",\"\"] |\n", - "| [113412864,113412864] | [113412865,113412865] | [\"G\",\"A\"] |\n", - "| [113412884,113412884] | [113412885,113412885] | [\"T\",\"C\"] |\n", - "+-----------------------+-----------------------+---------------------+\n", - "\n", - "+-------------------+-----------+--------+----------------------------------+\n", - "| vep.allele_string | vep.end | vep.id | vep.input |\n", - "+-------------------+-----------+--------+----------------------------------+\n", - "| str | int32 | str | str |\n", - "+-------------------+-----------+--------+----------------------------------+\n", - "| \"A/G\" | 113412554 | \".\" | \"chr11\t113412554\t.\tA\tG\t.\t.\tGT\" |\n", - "| \"T/-\" | 113412613 | \".\" | \"chr11\t113412612\t.\tCT\tC\t.\t.\tGT\" |\n", - "| \"CG/-\" | 113412616 | \".\" | \"chr11\t113412614\t.\tACG\tA\t.\t.\tGT\" |\n", - "| \"G/A\" | 113412865 | \".\" | \"chr11\t113412865\t.\tG\tA\t.\t.\tGT\" |\n", - "| \"T/C\" | 113412885 | \".\" | \"chr11\t113412885\t.\tT\tC\t.\t.\tGT\" |\n", - "+-------------------+-----------+--------+----------------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| vep.intergenic_consequences |\n", - "+------------------------------------------------------------------------------+\n", - "| array, impact: st... |\n", - "+------------------------------------------------------------------------------+\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+-----------------------------+\n", - "| vep.most_severe_consequence |\n", - "+-----------------------------+\n", - "| str |\n", - "+-----------------------------+\n", - "| \"splice_donor_variant\" |\n", - "| \"frameshift_variant\" |\n", - "| \"frameshift_variant\" |\n", - "| \"stop_gained\" |\n", - "| \"splice_acceptor_variant\" |\n", - "+-----------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| vep.motif_feature_consequences |\n", - "+------------------------------------------------------------------------------+\n", - "| array, high_inf_p... |\n", - "+------------------------------------------------------------------------------+\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| vep.regulatory_feature_consequences |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+------------------------------------------------------------+\n", - "| histograms.qual_hists.gq_hist_all.bin_freq |\n", - "+------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------+\n", - "| [0,0,0,0,134,0,1469,0,311660,0,82,0,416443,0,0,0,0,0,0,1] |\n", - "| [0,0,0,0,1,0,2,0,314386,0,0,0,416555,0,0,0,0,0,0,2] |\n", - "| [0,0,0,0,1,0,1,0,314388,0,0,0,416555,0,0,0,0,0,0,2] |\n", - "| [0,0,0,0,547,0,1910,0,310815,0,33,0,416515,0,0,0,0,0,0,1] |\n", - "| [0,0,0,0,929,0,3800,0,308036,0,642,0,415672,0,0,0,0,0,0,1] |\n", - "+------------------------------------------------------------+\n", - "\n", - "+---------------------------------------------+\n", - "| histograms.qual_hists.gq_hist_all.n_smaller |\n", - "+---------------------------------------------+\n", - "| int64 |\n", - "+---------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+---------------------------------------------+\n", - "\n", - "+--------------------------------------------+\n", - "| histograms.qual_hists.gq_hist_all.n_larger |\n", - "+--------------------------------------------+\n", - "| int64 |\n", - "+--------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+--------------------------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| histograms.qual_hists.dp_hist_all.bin_edges |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| histograms.qual_hists.dp_hist_all.bin_freq |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [0,0,1555,817,16216,229270,272936,45138,9370,3566,3616,4059,4521,5017,549... |\n", - "| [0,0,1,279,16685,230939,273577,45298,9412,3597,3653,4094,4550,5033,5504,5... |\n", - "| [0,0,0,278,16685,230938,273578,45300,9412,3597,3653,4094,4550,5033,5504,5... |\n", - "| [0,0,1141,1461,3821,36585,211757,225880,49280,7441,3163,3441,5118,7834,11... |\n", - "| [0,0,2699,3244,4728,36120,209411,224276,48878,7369,3147,3425,5116,7827,11... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+---------------------------------------------+\n", - "| histograms.qual_hists.dp_hist_all.n_smaller |\n", - "+---------------------------------------------+\n", - "| int64 |\n", - "+---------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+---------------------------------------------+\n", - "\n", - "+--------------------------------------------+\n", - "| histograms.qual_hists.dp_hist_all.n_larger |\n", - "+--------------------------------------------+\n", - "| int64 |\n", - "+--------------------------------------------+\n", - "| 102137 |\n", - "| 102187 |\n", - "| 102188 |\n", - "| 70182 |\n", - "| 70149 |\n", - "+--------------------------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| histograms.qual_hists.gq_hist_alt.bin_edges |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+--------------------------------------------+\n", - "| histograms.qual_hists.gq_hist_alt.bin_freq |\n", - "+--------------------------------------------+\n", - "| array |\n", - "+--------------------------------------------+\n", - "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1] |\n", - "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2] |\n", - "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2] |\n", - "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1] |\n", - "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1] |\n", - "+--------------------------------------------+\n", - "\n", - "+---------------------------------------------+\n", - "| histograms.qual_hists.gq_hist_alt.n_smaller |\n", - "+---------------------------------------------+\n", - "| int64 |\n", - "+---------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+---------------------------------------------+\n", - "\n", - "+--------------------------------------------+\n", - "| histograms.qual_hists.gq_hist_alt.n_larger |\n", - "+--------------------------------------------+\n", - "| int64 |\n", - "+--------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+--------------------------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| histograms.qual_hists.dp_hist_alt.bin_edges |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+--------------------------------------------+\n", - "| histograms.qual_hists.dp_hist_alt.bin_freq |\n", - "+--------------------------------------------+\n", - "| array |\n", - "+--------------------------------------------+\n", - "| [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0] |\n", - "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0] |\n", - "| [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0] |\n", - "+--------------------------------------------+\n", - "\n", - "+---------------------------------------------+\n", - "| histograms.qual_hists.dp_hist_alt.n_smaller |\n", - "+---------------------------------------------+\n", - "| int64 |\n", - "+---------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+---------------------------------------------+\n", - "\n", - "+--------------------------------------------+\n", - "| histograms.qual_hists.dp_hist_alt.n_larger |\n", - "+--------------------------------------------+\n", - "| int64 |\n", - "+--------------------------------------------+\n", - "| 0 |\n", - "| 1 |\n", - "| 1 |\n", - "| 0 |\n", - "| 0 |\n", - "+--------------------------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| histograms.qual_hists.ab_hist_alt.bin_edges |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", - "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", - "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", - "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", - "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+--------------------------------------------+\n", - "| histograms.qual_hists.ab_hist_alt.bin_freq |\n", - "+--------------------------------------------+\n", - "| array |\n", - "+--------------------------------------------+\n", - "| [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0] |\n", - "+--------------------------------------------+\n", - "\n", - "+---------------------------------------------+\n", - "| histograms.qual_hists.ab_hist_alt.n_smaller |\n", - "+---------------------------------------------+\n", - "| int64 |\n", - "+---------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+---------------------------------------------+\n", - "\n", - "+--------------------------------------------+\n", - "| histograms.qual_hists.ab_hist_alt.n_larger |\n", - "+--------------------------------------------+\n", - "| int64 |\n", - "+--------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+--------------------------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| histograms.raw_qual_hists.gq_hist_all.bin_edges |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+----------------------------------------------------------------+\n", - "| histograms.raw_qual_hists.gq_hist_all.bin_freq |\n", - "+----------------------------------------------------------------+\n", - "| array |\n", - "+----------------------------------------------------------------+\n", - "| [441,0,0,0,850,1,1469,0,311660,0,82,0,416443,0,0,0,0,0,0,1] |\n", - "| [1,0,0,0,1,0,2,0,314386,0,0,0,416555,0,0,0,0,0,0,2] |\n", - "| [0,0,0,0,1,0,1,0,314388,0,0,0,416555,0,0,0,0,0,0,2] |\n", - "| [890,0,0,0,783,0,1910,0,310815,0,33,0,416515,0,0,0,0,0,0,1] |\n", - "| [1313,0,2,0,1481,0,3800,0,308036,0,642,0,415672,0,0,0,0,0,0,1] |\n", - "+----------------------------------------------------------------+\n", - "\n", - "+-------------------------------------------------+\n", - "| histograms.raw_qual_hists.gq_hist_all.n_smaller |\n", - "+-------------------------------------------------+\n", - "| int64 |\n", - "+-------------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+-------------------------------------------------+\n", - "\n", - "+------------------------------------------------+\n", - "| histograms.raw_qual_hists.gq_hist_all.n_larger |\n", - "+------------------------------------------------+\n", - "| int64 |\n", - "+------------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+------------------------------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| histograms.raw_qual_hists.dp_hist_all.bin_edges |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| histograms.raw_qual_hists.dp_hist_all.bin_freq |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [244,858,1593,833,16218,229270,272936,45138,9370,3566,3616,4059,4521,5017... |\n", - "| [0,0,1,279,16685,230939,273577,45298,9412,3597,3653,4094,4550,5034,5504,5... |\n", - "| [0,0,0,278,16685,230938,273578,45300,9412,3597,3653,4094,4550,5033,5504,5... |\n", - "| [431,622,1175,1493,3823,36589,211757,225880,49281,7441,3163,3441,5118,783... |\n", - "| [618,1142,2737,3303,4730,36128,209411,224276,48878,7369,3147,3425,5116,78... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+-------------------------------------------------+\n", - "| histograms.raw_qual_hists.dp_hist_all.n_smaller |\n", - "+-------------------------------------------------+\n", - "| int64 |\n", - "+-------------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+-------------------------------------------------+\n", - "\n", - "+------------------------------------------------+\n", - "| histograms.raw_qual_hists.dp_hist_all.n_larger |\n", - "+------------------------------------------------+\n", - "| int64 |\n", - "+------------------------------------------------+\n", - "| 102137 |\n", - "| 102187 |\n", - "| 102188 |\n", - "| 70182 |\n", - "| 70149 |\n", - "+------------------------------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| histograms.raw_qual_hists.gq_hist_alt.bin_edges |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+------------------------------------------------+\n", - "| histograms.raw_qual_hists.gq_hist_alt.bin_freq |\n", - "+------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------+\n", - "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1] |\n", - "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2] |\n", - "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2] |\n", - "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1] |\n", - "| [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1] |\n", - "+------------------------------------------------+\n", - "\n", - "+-------------------------------------------------+\n", - "| histograms.raw_qual_hists.gq_hist_alt.n_smaller |\n", - "+-------------------------------------------------+\n", - "| int64 |\n", - "+-------------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+-------------------------------------------------+\n", - "\n", - "+------------------------------------------------+\n", - "| histograms.raw_qual_hists.gq_hist_alt.n_larger |\n", - "+------------------------------------------------+\n", - "| int64 |\n", - "+------------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+------------------------------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| histograms.raw_qual_hists.dp_hist_alt.bin_edges |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+------------------------------------------------+\n", - "| histograms.raw_qual_hists.dp_hist_alt.bin_freq |\n", - "+------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------+\n", - "| [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0] |\n", - "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0] |\n", - "| [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0] |\n", - "+------------------------------------------------+\n", - "\n", - "+-------------------------------------------------+\n", - "| histograms.raw_qual_hists.dp_hist_alt.n_smaller |\n", - "+-------------------------------------------------+\n", - "| int64 |\n", - "+-------------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+-------------------------------------------------+\n", - "\n", - "+------------------------------------------------+\n", - "| histograms.raw_qual_hists.dp_hist_alt.n_larger |\n", - "+------------------------------------------------+\n", - "| int64 |\n", - "+------------------------------------------------+\n", - "| 0 |\n", - "| 1 |\n", - "| 1 |\n", - "| 0 |\n", - "| 0 |\n", - "+------------------------------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| histograms.raw_qual_hists.ab_hist_alt.bin_edges |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", - "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", - "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", - "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", - "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+------------------------------------------------+\n", - "| histograms.raw_qual_hists.ab_hist_alt.bin_freq |\n", - "+------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------+\n", - "| [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0] |\n", - "+------------------------------------------------+\n", - "\n", - "+-------------------------------------------------+\n", - "| histograms.raw_qual_hists.ab_hist_alt.n_smaller |\n", - "+-------------------------------------------------+\n", - "| int64 |\n", - "+-------------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+-------------------------------------------------+\n", - "\n", - "+------------------------------------------------+\n", - "| histograms.raw_qual_hists.ab_hist_alt.n_larger |\n", - "+------------------------------------------------+\n", - "| int64 |\n", - "+------------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+------------------------------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| histograms.age_hists.age_hist_het.bin_edges |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", - "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", - "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", - "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", - "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+--------------------------------------------+\n", - "| histograms.age_hists.age_hist_het.bin_freq |\n", - "+--------------------------------------------+\n", - "| array |\n", - "+--------------------------------------------+\n", - "| [0,0,0,0,1,0,0,0,0,0] |\n", - "| [0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,1,0,0,0,0,0,0] |\n", - "| [0,0,0,0,1,0,0,0,0,0] |\n", - "+--------------------------------------------+\n", - "\n", - "+---------------------------------------------+\n", - "| histograms.age_hists.age_hist_het.n_smaller |\n", - "+---------------------------------------------+\n", - "| int64 |\n", - "+---------------------------------------------+\n", - "| 0 |\n", - "| 1 |\n", - "| 1 |\n", - "| 0 |\n", - "| 0 |\n", - "+---------------------------------------------+\n", - "\n", - "+--------------------------------------------+\n", - "| histograms.age_hists.age_hist_het.n_larger |\n", - "+--------------------------------------------+\n", - "| int64 |\n", - "+--------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+--------------------------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| histograms.age_hists.age_hist_hom.bin_edges |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", - "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", - "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", - "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", - "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+--------------------------------------------+\n", - "| histograms.age_hists.age_hist_hom.bin_freq |\n", - "+--------------------------------------------+\n", - "| array |\n", - "+--------------------------------------------+\n", - "| [0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,0,0,0,0,0] |\n", - "+--------------------------------------------+\n", - "\n", - "+---------------------------------------------+\n", - "| histograms.age_hists.age_hist_hom.n_smaller |\n", - "+---------------------------------------------+\n", - "| int64 |\n", - "+---------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+---------------------------------------------+\n", - "\n", - "+--------------------------------------------+---------------------------------+\n", - "| histograms.age_hists.age_hist_hom.n_larger | in_silico_predictors.cadd.phred |\n", - "+--------------------------------------------+---------------------------------+\n", - "| int64 | float32 |\n", - "+--------------------------------------------+---------------------------------+\n", - "| 0 | 3.40e+01 |\n", - "| 0 | 3.20e+01 |\n", - "| 0 | 3.30e+01 |\n", - "| 0 | 4.50e+01 |\n", - "| 0 | 3.50e+01 |\n", - "+--------------------------------------------+---------------------------------+\n", - "\n", - "+-------------------------------------+--------------------------------+\n", - "| in_silico_predictors.cadd.raw_score | in_silico_predictors.revel_max |\n", - "+-------------------------------------+--------------------------------+\n", - "| float32 | float64 |\n", - "+-------------------------------------+--------------------------------+\n", - "| 5.66e+00 | NA |\n", - "| 4.56e+00 | NA |\n", - "| 4.99e+00 | NA |\n", - "| 8.76e+00 | NA |\n", - "| 5.83e+00 | NA |\n", - "+-------------------------------------+--------------------------------+\n", - "\n", - "+--------------------------------------+\n", - "| in_silico_predictors.spliceai_ds_max |\n", - "+--------------------------------------+\n", - "| float32 |\n", - "+--------------------------------------+\n", - "| 9.60e-01 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 9.80e-01 |\n", - "+--------------------------------------+\n", - "\n", - "+------------------------------------------+-----------------------------+\n", - "| in_silico_predictors.pangolin_largest_ds | in_silico_predictors.phylop |\n", - "+------------------------------------------+-----------------------------+\n", - "| float64 | float64 |\n", - "+------------------------------------------+-----------------------------+\n", - "| -8.30e-01 | 6.33e+00 |\n", - "| -4.00e-02 | 8.89e+00 |\n", - "| -1.20e-01 | 3.00e-01 |\n", - "| -1.10e-01 | 8.79e+00 |\n", - "| -7.90e-01 | 6.35e+00 |\n", - "+------------------------------------------+-----------------------------+\n", - "\n", - "+-------------------------------+-----------------------------------+\n", - "| in_silico_predictors.sift_max | in_silico_predictors.polyphen_max |\n", - "+-------------------------------+-----------------------------------+\n", - "| float64 | float64 |\n", - "+-------------------------------+-----------------------------------+\n", - "| NA | NA |\n", - "| NA | NA |\n", - "| NA | NA |\n", - "| NA | NA |\n", - "| NA | NA |\n", - "+-------------------------------+-----------------------------------+\n", - "showing top 5 rows" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "The total number of lof variants passing filters in DRD2 is: 17\n" - ] - } - ], + "outputs": [], "source": [ "var_ht = filter_by_consequence_category(plof=True, ht=drd2_ht)\n", "var_ht.show(5)\n", @@ -2689,1079 +582,10 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": null, "id": "86596aaf", "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "
histograms
grpmax
fafmax
info
qual_hists
raw_qual_hists
age_hists
in_silico_predictors
gnomad
non_ukb
gnomad
non_ukb
vrs
vep
vqsr_results
region_flags
allele_info
gq_hist_all
dp_hist_all
gq_hist_alt
dp_hist_alt
ab_hist_alt
gq_hist_all
dp_hist_all
gq_hist_alt
dp_hist_alt
ab_hist_alt
age_hist_het
age_hist_hom
cadd
locus
alleles
freq
AC
AF
AN
homozygote_count
gen_anc
AC
AF
AN
homozygote_count
gen_anc
faf
faf95_max
faf95_max_gen_anc
faf99_max
faf99_max_gen_anc
faf95_max
faf95_max_gen_anc
faf99_max
faf99_max_gen_anc
a_index
was_split
rsid
filters
FS
MQ
MQRankSum
QUALapprox
QD
ReadPosRankSum
SB
SOR
VarDP
AS_FS
AS_MQ
AS_MQRankSum
AS_pab_max
AS_QUALapprox
AS_QD
AS_ReadPosRankSum
AS_SB_TABLE
AS_SOR
AS_VarDP
singleton
transmitted_singleton
sibling_singleton
omni
mills
monoallelic
only_het
AS_VQSLOD
inbreeding_coeff
VRS_Allele_IDs
VRS_Starts
VRS_Ends
VRS_States
allele_string
end
id
input
intergenic_consequences
most_severe_consequence
motif_feature_consequences
regulatory_feature_consequences
seq_region_name
start
strand
transcript_consequences
variant_class
AS_VQSLOD
AS_culprit
positive_train_site
negative_train_site
non_par
lcr
segdup
fail_interval_qc
outside_ukb_capture_region
outside_broad_capture_region
variant_type
n_alt_alleles
has_star
allele_type
was_mixed
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
phred
raw_score
revel_max
spliceai_ds_max
pangolin_largest_ds
phylop
sift_max
polyphen_max
locus<GRCh38>array<str>array<struct{AC: int32, AF: float64, AN: int32, homozygote_count: int64}>int32float64int32int64strint32float64int32int64strarray<struct{faf95: float64, faf99: float64}>float64strfloat64strfloat64strfloat64strint32boolset<str>set<str>float64float64float64int64float64float64array<int32>float64int32float64float64float64float64int64float64float64array<int32>float64int32boolboolboolboolboolboolboolfloat64float64array<str>array<int32>array<int32>array<str>strint32strstrarray<struct{allele_num: int32, consequence_terms: array<str>, impact: str, variant_allele: str}>strarray<struct{allele_num: int32, consequence_terms: array<str>, high_inf_pos: str, impact: str, motif_feature_id: str, motif_name: str, motif_pos: int32, motif_score_change: float64, transcription_factors: array<str>, strand: int32, variant_allele: str}>array<struct{allele_num: int32, biotype: str, consequence_terms: array<str>, impact: str, regulatory_feature_id: str, variant_allele: str}>strint32int32array<struct{allele_num: int32, amino_acids: str, appris: str, biotype: str, canonical: int32, ccds: str, cdna_start: int32, cdna_end: int32, cds_end: int32, cds_start: int32, codons: str, consequence_terms: array<str>, distance: int32, domains: array<struct{db: str, name: str}>, exon: str, flags: str, gene_id: str, gene_pheno: int32, gene_symbol: str, gene_symbol_source: str, hgnc_id: str, hgvsc: str, hgvsp: str, hgvs_offset: int32, impact: str, intron: str, lof: str, lof_flags: str, lof_filter: str, lof_info: str, mane_select: str, mane_plus_clinical: str, mirna: array<str>, protein_end: int32, protein_start: int32, protein_id: str, source: str, strand: int32, transcript_id: str, tsl: int32, uniprot_isoform: array<str>, variant_allele: str}>strfloat64strboolboolboolboolboolboolboolboolstrint32boolstrboolarray<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64float32float32float64float32float64float64float64float64
chr11:113410731["C","A"][(2,1.37e-06,1461866,0),(2,1.37e-06,1461894,0),(0,0.00e+00,33480,0),(2,4.47e-05,44724,0),(0,0.00e+00,26136,0),(0,0.00e+00,39698,0),(0,0.00e+00,53416,0),(0,0.00e+00,5752,0),(0,0.00e+00,1112010,0),(0,0.00e+00,60394,0),(0,0.00e+00,86256,0),(1,1.36e-06,734628,0),(1,1.38e-06,727238,0),(0,0.00e+00,19326,0),(0,0.00e+00,14154,0),(1,3.89e-05,25690,0),(1,5.25e-05,19034,0),(0,0.00e+00,12636,0),(0,0.00e+00,13500,0),(0,0.00e+00,20710,0),(0,0.00e+00,18988,0),(0,0.00e+00,27646,0),(0,0.00e+00,25770,0),(0,0.00e+00,2494,0),(0,0.00e+00,3258,0),(0,0.00e+00,572288,0),(0,0.00e+00,539722,0),(0,0.00e+00,31800,0),(0,0.00e+00,28594,0),(0,0.00e+00,22038,0),(0,0.00e+00,64218,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,996,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,1994,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,3990,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5752,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,19998,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,26136,0),(1,3.83e-05,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26134,0),(0,0.00e+00,26134,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26134,0),(0,0.00e+00,26136,0),(0,0.00e+00,33480,0),(2,5.97e-05,33480,0),(0,0.00e+00,33478,0),(0,0.00e+00,33476,0),(0,0.00e+00,33480,0),(0,0.00e+00,33478,0),(0,0.00e+00,33478,0),(0,0.00e+00,33480,0),(2,5.04e-05,39700,0),(0,0.00e+00,39698,0),(0,0.00e+00,39696,0),(0,0.00e+00,39700,0),(0,0.00e+00,39698,0),(0,0.00e+00,39698,0),(0,0.00e+00,39700,0),(2,5.00e-05,40000,0),(0,0.00e+00,39996,0),(0,0.00e+00,40000,0),(0,0.00e+00,39998,0),(0,0.00e+00,39998,0),(0,0.00e+00,40000,0),(2,4.47e-05,44724,0),(0,0.00e+00,44720,0),(0,0.00e+00,44724,0),(0,0.00e+00,44722,0),(0,0.00e+00,44722,0),(0,0.00e+00,44724,0),(0,0.00e+00,53416,0),(0,0.00e+00,53420,0),(0,0.00e+00,53418,0),(0,0.00e+00,53418,0),(0,0.00e+00,53420,0),(0,0.00e+00,60396,0),(0,0.00e+00,60394,0),(0,0.00e+00,60394,0),(0,0.00e+00,60396,0),(0,0.00e+00,86258,0),(0,0.00e+00,86256,0),(0,0.00e+00,86256,0),(0,0.00e+00,100000,0),(0,0.00e+00,99998,0),(0,0.00e+00,200000,0),(0,0.00e+00,199998,0),(0,0.00e+00,400000,0),(0,0.00e+00,399996,0),(0,0.00e+00,999998,0),(1,1.00e-06,999978,0),(0,0.00e+00,1112010,0),(2,1.80e-06,1111990,0),(2,3.18e-06,628756,0),(2,3.18e-06,628784,0),(0,0.00e+00,17694,0),(2,4.57e-05,43740,0),(0,0.00e+00,20984,0),(0,0.00e+00,36068,0),(0,0.00e+00,53140,0),(0,0.00e+00,4132,0),(0,0.00e+00,350106,0),(0,0.00e+00,33096,0),(0,0.00e+00,69796,0),(1,3.49e-06,286232,0),(1,2.92e-06,342524,0),(0,0.00e+00,10286,0),(0,0.00e+00,7408,0),(1,3.99e-05,25040,0),(1,5.35e-05,18700,0),(0,0.00e+00,9838,0),(0,0.00e+00,11146,0),(0,0.00e+00,18296,0),(0,0.00e+00,17772,0),(0,0.00e+00,27396,0),(0,0.00e+00,25744,0),(0,0.00e+00,1904,0),(0,0.00e+00,2228,0),(0,0.00e+00,162220,0),(0,0.00e+00,187886,0),(0,0.00e+00,16752,0),(0,0.00e+00,16344,0),(0,0.00e+00,14500,0),(0,0.00e+00,55296,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,198,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,996,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,1990,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,3984,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4132,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17692,0),(0,0.00e+00,17694,0),(0,0.00e+00,17692,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(1,5.00e-05,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,19998,0),(0,0.00e+00,20000,0),(0,0.00e+00,19998,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(1,4.77e-05,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20982,0),(0,0.00e+00,20984,0),(0,0.00e+00,20982,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(2,6.04e-05,33098,0),(0,0.00e+00,33096,0),(0,0.00e+00,33094,0),(0,0.00e+00,33098,0),(0,0.00e+00,33096,0),(0,0.00e+00,33096,0),(0,0.00e+00,33096,0),(2,5.54e-05,36070,0),(0,0.00e+00,36068,0),(0,0.00e+00,36066,0),(0,0.00e+00,36070,0),(0,0.00e+00,36068,0),(0,0.00e+00,36068,0),(2,5.00e-05,40000,0),(0,0.00e+00,39996,0),(0,0.00e+00,40000,0),(0,0.00e+00,39998,0),(0,0.00e+00,39998,0),(2,4.57e-05,43740,0),(0,0.00e+00,43736,0),(0,0.00e+00,43740,0),(0,0.00e+00,43738,0),(0,0.00e+00,43738,0),(0,0.00e+00,53140,0),(0,0.00e+00,53144,0),(0,0.00e+00,53142,0),(0,0.00e+00,53142,0),(0,0.00e+00,69798,0),(0,0.00e+00,69796,0),(0,0.00e+00,69796,0),(0,0.00e+00,100000,0),(0,0.00e+00,99996,0),(0,0.00e+00,199998,0),(0,0.00e+00,199990,0),(0,0.00e+00,350106,0),(1,2.86e-06,350088,0),(1,2.50e-06,399978,0)]24.47e-05447240"amr"24.57e-05437400"amr"[(2.30e-07,9.00e-08),(0.00e+00,0.00e+00),(7.41e-06,2.77e-06),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,(5.30e-07,2.00e-07),(0.00e+00,0.00e+00),(7.58e-06,2.84e-06),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]7.41e-06"amr"2.77e-06"amr"7.58e-06"amr"2.84e-06"amr"1True{"rs140938110"}{}5.56e+006.00e+010.00e+0038621.02e+01-1.98e-01[134,83,109,52]9.81e-013781.31e+016.00e+010.00e+002.94e-0118951.06e+012.52e-01[134,83,56,19]1.42e+00179FalseNANAFalseFalseFalseFalse5.27e+00-1.37e-06["ga4gh:VA.RY2FNHeS0QpJNM9lQpQ_pzX7Q27-MXmI","ga4gh:VA.ZonDIhdwyghm7SuWkXynZVYg2s9ceaeP"][113410730,113410730][113410731,113410731]["C","A"]"C/A"113410731".""chr11\t113410731\t.\tC\tA\t.\t.\tGT"NA"missense_variant"NANA"chr11"1134107311[(1,"C/F",NA,"protein_coding",NA,"CCDS8362.1",1317,1317,1241,1241,"tGc/tTc",["missense_variant"],NA,[("Gene3D","1"),("Superfamily","SSF81321")],"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000346454.7:c.1241G>T","ENSP00000278597.5:p.Cys414Phe",NA,"MODERATE",NA,NA,NA,NA,NA,NA,NA,NA,414,414,"ENSP00000278597","Ensembl",-1,"ENST00000346454",1,["P14416-2"],"A"),(1,"C/F","P2","protein_coding",1,"CCDS8361.1",1682,1682,1328,1328,"tGc/tTc",["missense_variant"],NA,[("Gene3D","1"),("ENSP_mappings","5aer"),("ENSP_mappings","5aer"),("ENSP_mappings","6cm4"),("ENSP_mappings","6luq"),("ENSP_mappings","6vms"),("ENSP_mappings","7dfp"),("ENSP_mappings","7jvr"),("Superfamily","SSF81321")],"8/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000362072.8:c.1328G>T","ENSP00000354859.3:p.Cys443Phe",NA,"MODERATE",NA,NA,NA,NA,NA,"NM_000795.4",NA,NA,443,443,"ENSP00000354859","Ensembl",-1,"ENST00000362072",1,["P14416-1"],"A"),(1,NA,NA,"processed_transcript",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],3644,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000535984",3,NA,"A"),(1,"C/F","A1","protein_coding",NA,NA,1334,1334,1334,1334,"tGc/tTc",["missense_variant"],NA,[("Gene3D","1"),("Superfamily","SSF81321")],"8/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000538967.5:c.1334G>T","ENSP00000438215.1:p.Cys445Phe",NA,"MODERATE",NA,NA,NA,NA,NA,NA,NA,NA,445,445,"ENSP00000438215","Ensembl",-1,"ENST00000538967",5,["P14416-3"],"A"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],4563,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000539420",3,NA,"A"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],3133,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000540600",1,NA,"A"),(1,"C/F","P2","protein_coding",NA,"CCDS8361.1",1649,1649,1328,1328,"tGc/tTc",["missense_variant"],NA,[("Gene3D","1"),("ENSP_mappings","5aer"),("ENSP_mappings","5aer"),("ENSP_mappings","6cm4"),("ENSP_mappings","6luq"),("ENSP_mappings","6vms"),("ENSP_mappings","7dfp"),("ENSP_mappings","7jvr"),("Superfamily","SSF81321")],"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000542968.5:c.1328G>T","ENSP00000442172.1:p.Cys443Phe",NA,"MODERATE",NA,NA,NA,NA,NA,NA,NA,NA,443,443,"ENSP00000442172","Ensembl",-1,"ENST00000542968",1,["P14416-1"],"A"),(1,"C/F","A1","protein_coding",NA,NA,1358,1358,1325,1325,"tGc/tTc",["missense_variant"],NA,[("Gene3D","1"),("Superfamily","SSF81321")],"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000544518.5:c.1325G>T","ENSP00000441068.1:p.Cys442Phe",NA,"MODERATE",NA,NA,NA,NA,NA,NA,NA,NA,442,442,"ENSP00000441068","Ensembl",-1,"ENST00000544518",1,NA,"A"),(1,NA,NA,"lncRNA",1,NA,NA,NA,NA,NA,NA,["intron_variant","non_coding_transcript_variant"],NA,NA,NA,NA,"ENSG00000256757",NA,NA,NA,NA,"ENST00000546284.1:n.245-816C>A",NA,NA,"MODIFIER","2/3",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",1,"ENST00000546284",3,NA,"A"),(1,"C/F",NA,"protein_coding",1,NA,1682,1682,1328,1328,"tGc/tTc",["missense_variant"],NA,NA,"8/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_000795.4:c.1328G>T","NP_000786.1:p.Cys443Phe",NA,"MODERATE",NA,NA,NA,NA,NA,"ENST00000362072.8",NA,NA,443,443,"NP_000786.1","RefSeq",-1,"NM_000795.4",NA,NA,"A"),(1,"C/F",NA,"protein_coding",NA,NA,1595,1595,1241,1241,"tGc/tTc",["missense_variant"],NA,NA,"7/7",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_016574.4:c.1241G>T","NP_057658.2:p.Cys414Phe",NA,"MODERATE",NA,NA,NA,NA,NA,NA,NA,NA,414,414,"NP_057658.2","RefSeq",-1,"NM_016574.4",NA,NA,"A"),(1,"C/F",NA,"protein_coding",NA,NA,1410,1410,1328,1328,"tGc/tTc",["missense_variant"],NA,NA,"8/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","XM_017017296.2:c.1328G>T","XP_016872785.1:p.Cys443Phe",NA,"MODERATE",NA,NA,NA,NA,NA,NA,NA,NA,443,443,"XP_016872785.1","RefSeq",-1,"XM_017017296.2",NA,NA,"A")]"SNV"5.27e+00"AS_MQ"FalseFalseFalseFalseFalseTrueFalseFalse"multi-snv"2False"snv"False[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,21,0,124,0,314262,0,99,0,416424,0,0,0,0,0,0,3]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,98,374,11344,107362,344923,189028,36319,5607,2388,2759,3074,2931,2955,2915,2973,2922,2564,2682]07715[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0]01[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][7,0,0,0,28,0,124,0,314262,0,99,0,416424,0,0,0,0,0,0,3]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,7,98,380,11345,107362,344923,189028,36319,5607,2388,2759,3074,2931,2955,2915,2973,2922,2564,2682]07715[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0]01[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]10[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]002.77e+014.10e+006.02e-010.00e+000.00e+008.78e+000.00e+009.89e-01
chr11:113410731["C","T"][(1,6.84e-07,1461866,0),(1,6.84e-07,1461894,0),(0,0.00e+00,33480,0),(0,0.00e+00,44724,0),(0,0.00e+00,26136,0),(0,0.00e+00,39698,0),(0,0.00e+00,53416,0),(0,0.00e+00,5752,0),(1,8.99e-07,1112010,0),(0,0.00e+00,60394,0),(0,0.00e+00,86256,0),(1,1.36e-06,734628,0),(0,0.00e+00,727238,0),(0,0.00e+00,19326,0),(0,0.00e+00,14154,0),(0,0.00e+00,25690,0),(0,0.00e+00,19034,0),(0,0.00e+00,12636,0),(0,0.00e+00,13500,0),(0,0.00e+00,20710,0),(0,0.00e+00,18988,0),(0,0.00e+00,27646,0),(0,0.00e+00,25770,0),(0,0.00e+00,2494,0),(0,0.00e+00,3258,0),(1,1.75e-06,572288,0),(0,0.00e+00,539722,0),(0,0.00e+00,31800,0),(0,0.00e+00,28594,0),(0,0.00e+00,22038,0),(0,0.00e+00,64218,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,996,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,1994,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,3990,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5752,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,19998,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26134,0),(0,0.00e+00,26134,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26134,0),(0,0.00e+00,26136,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33478,0),(0,0.00e+00,33476,0),(0,0.00e+00,33480,0),(0,0.00e+00,33478,0),(0,0.00e+00,33478,0),(0,0.00e+00,33480,0),(0,0.00e+00,39700,0),(0,0.00e+00,39698,0),(0,0.00e+00,39696,0),(0,0.00e+00,39700,0),(0,0.00e+00,39698,0),(0,0.00e+00,39698,0),(0,0.00e+00,39700,0),(0,0.00e+00,40000,0),(0,0.00e+00,39996,0),(0,0.00e+00,40000,0),(0,0.00e+00,39998,0),(0,0.00e+00,39998,0),(0,0.00e+00,40000,0),(0,0.00e+00,44724,0),(0,0.00e+00,44720,0),(0,0.00e+00,44724,0),(0,0.00e+00,44722,0),(0,0.00e+00,44722,0),(0,0.00e+00,44724,0),(0,0.00e+00,53416,0),(0,0.00e+00,53420,0),(0,0.00e+00,53418,0),(0,0.00e+00,53418,0),(0,0.00e+00,53420,0),(0,0.00e+00,60396,0),(0,0.00e+00,60394,0),(0,0.00e+00,60394,0),(0,0.00e+00,60396,0),(0,0.00e+00,86258,0),(0,0.00e+00,86256,0),(0,0.00e+00,86256,0),(0,0.00e+00,100000,0),(0,0.00e+00,99998,0),(0,0.00e+00,200000,0),(0,0.00e+00,199998,0),(0,0.00e+00,400000,0),(0,0.00e+00,399996,0),(1,1.00e-06,999998,0),(0,0.00e+00,999978,0),(1,8.99e-07,1112010,0),(1,8.99e-07,1111990,0),(0,0.00e+00,628756,0),(0,0.00e+00,628784,0),(0,0.00e+00,17694,0),(0,0.00e+00,43740,0),(0,0.00e+00,20984,0),(0,0.00e+00,36068,0),(0,0.00e+00,53140,0),(0,0.00e+00,4132,0),(0,0.00e+00,350106,0),(0,0.00e+00,33096,0),(0,0.00e+00,69796,0),(0,0.00e+00,286232,0),(0,0.00e+00,342524,0),(0,0.00e+00,10286,0),(0,0.00e+00,7408,0),(0,0.00e+00,25040,0),(0,0.00e+00,18700,0),(0,0.00e+00,9838,0),(0,0.00e+00,11146,0),(0,0.00e+00,18296,0),(0,0.00e+00,17772,0),(0,0.00e+00,27396,0),(0,0.00e+00,25744,0),(0,0.00e+00,1904,0),(0,0.00e+00,2228,0),(0,0.00e+00,162220,0),(0,0.00e+00,187886,0),(0,0.00e+00,16752,0),(0,0.00e+00,16344,0),(0,0.00e+00,14500,0),(0,0.00e+00,55296,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,198,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,996,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,1990,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,3984,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4132,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17692,0),(0,0.00e+00,17694,0),(0,0.00e+00,17692,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,19998,0),(0,0.00e+00,20000,0),(0,0.00e+00,19998,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20982,0),(0,0.00e+00,20984,0),(0,0.00e+00,20982,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,33098,0),(0,0.00e+00,33096,0),(0,0.00e+00,33094,0),(0,0.00e+00,33098,0),(0,0.00e+00,33096,0),(0,0.00e+00,33096,0),(0,0.00e+00,33096,0),(0,0.00e+00,36070,0),(0,0.00e+00,36068,0),(0,0.00e+00,36066,0),(0,0.00e+00,36070,0),(0,0.00e+00,36068,0),(0,0.00e+00,36068,0),(0,0.00e+00,40000,0),(0,0.00e+00,39996,0),(0,0.00e+00,40000,0),(0,0.00e+00,39998,0),(0,0.00e+00,39998,0),(0,0.00e+00,43740,0),(0,0.00e+00,43736,0),(0,0.00e+00,43740,0),(0,0.00e+00,43738,0),(0,0.00e+00,43738,0),(0,0.00e+00,53140,0),(0,0.00e+00,53144,0),(0,0.00e+00,53142,0),(0,0.00e+00,53142,0),(0,0.00e+00,69798,0),(0,0.00e+00,69796,0),(0,0.00e+00,69796,0),(0,0.00e+00,100000,0),(0,0.00e+00,99996,0),(0,0.00e+00,199998,0),(0,0.00e+00,199990,0),(0,0.00e+00,350106,0),(0,0.00e+00,350088,0),(0,0.00e+00,399978,0)]18.99e-0711120100"nfe"NANANANANA[(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]NANANANANANANANA2TrueNA{}5.56e+006.00e+010.00e+0038621.02e+01-1.98e-01[134,83,109,52]9.81e-013780.00e+006.00e+010.00e+009.04e-0119679.88e+00-5.01e-01[134,83,53,33]6.81e-01199TrueFalseFalseFalseFalseFalseFalse5.40e+00-6.84e-07["ga4gh:VA.RY2FNHeS0QpJNM9lQpQ_pzX7Q27-MXmI","ga4gh:VA.Hp20SlFHUdM7jlWmVV27L6utrtRpDmAq"][113410730,113410730][113410731,113410731]["C","T"]"C/T"113410731".""chr11\t113410731\t.\tC\tT\t.\t.\tGT"NA"missense_variant"NANA"chr11"1134107311[(1,"C/Y",NA,"protein_coding",NA,"CCDS8362.1",1317,1317,1241,1241,"tGc/tAc",["missense_variant"],NA,[("Gene3D","1"),("Superfamily","SSF81321")],"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000346454.7:c.1241G>A","ENSP00000278597.5:p.Cys414Tyr",NA,"MODERATE",NA,NA,NA,NA,NA,NA,NA,NA,414,414,"ENSP00000278597","Ensembl",-1,"ENST00000346454",1,["P14416-2"],"T"),(1,"C/Y","P2","protein_coding",1,"CCDS8361.1",1682,1682,1328,1328,"tGc/tAc",["missense_variant"],NA,[("Gene3D","1"),("ENSP_mappings","5aer"),("ENSP_mappings","5aer"),("ENSP_mappings","6cm4"),("ENSP_mappings","6luq"),("ENSP_mappings","6vms"),("ENSP_mappings","7dfp"),("ENSP_mappings","7jvr"),("Superfamily","SSF81321")],"8/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000362072.8:c.1328G>A","ENSP00000354859.3:p.Cys443Tyr",NA,"MODERATE",NA,NA,NA,NA,NA,"NM_000795.4",NA,NA,443,443,"ENSP00000354859","Ensembl",-1,"ENST00000362072",1,["P14416-1"],"T"),(1,NA,NA,"processed_transcript",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],3644,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000535984",3,NA,"T"),(1,"C/Y","A1","protein_coding",NA,NA,1334,1334,1334,1334,"tGc/tAc",["missense_variant"],NA,[("Gene3D","1"),("Superfamily","SSF81321")],"8/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000538967.5:c.1334G>A","ENSP00000438215.1:p.Cys445Tyr",NA,"MODERATE",NA,NA,NA,NA,NA,NA,NA,NA,445,445,"ENSP00000438215","Ensembl",-1,"ENST00000538967",5,["P14416-3"],"T"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],4563,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000539420",3,NA,"T"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],3133,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000540600",1,NA,"T"),(1,"C/Y","P2","protein_coding",NA,"CCDS8361.1",1649,1649,1328,1328,"tGc/tAc",["missense_variant"],NA,[("Gene3D","1"),("ENSP_mappings","5aer"),("ENSP_mappings","5aer"),("ENSP_mappings","6cm4"),("ENSP_mappings","6luq"),("ENSP_mappings","6vms"),("ENSP_mappings","7dfp"),("ENSP_mappings","7jvr"),("Superfamily","SSF81321")],"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000542968.5:c.1328G>A","ENSP00000442172.1:p.Cys443Tyr",NA,"MODERATE",NA,NA,NA,NA,NA,NA,NA,NA,443,443,"ENSP00000442172","Ensembl",-1,"ENST00000542968",1,["P14416-1"],"T"),(1,"C/Y","A1","protein_coding",NA,NA,1358,1358,1325,1325,"tGc/tAc",["missense_variant"],NA,[("Gene3D","1"),("Superfamily","SSF81321")],"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000544518.5:c.1325G>A","ENSP00000441068.1:p.Cys442Tyr",NA,"MODERATE",NA,NA,NA,NA,NA,NA,NA,NA,442,442,"ENSP00000441068","Ensembl",-1,"ENST00000544518",1,NA,"T"),(1,NA,NA,"lncRNA",1,NA,NA,NA,NA,NA,NA,["intron_variant","non_coding_transcript_variant"],NA,NA,NA,NA,"ENSG00000256757",NA,NA,NA,NA,"ENST00000546284.1:n.245-816C>T",NA,NA,"MODIFIER","2/3",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",1,"ENST00000546284",3,NA,"T"),(1,"C/Y",NA,"protein_coding",1,NA,1682,1682,1328,1328,"tGc/tAc",["missense_variant"],NA,NA,"8/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_000795.4:c.1328G>A","NP_000786.1:p.Cys443Tyr",NA,"MODERATE",NA,NA,NA,NA,NA,"ENST00000362072.8",NA,NA,443,443,"NP_000786.1","RefSeq",-1,"NM_000795.4",NA,NA,"T"),(1,"C/Y",NA,"protein_coding",NA,NA,1595,1595,1241,1241,"tGc/tAc",["missense_variant"],NA,NA,"7/7",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_016574.4:c.1241G>A","NP_057658.2:p.Cys414Tyr",NA,"MODERATE",NA,NA,NA,NA,NA,NA,NA,NA,414,414,"NP_057658.2","RefSeq",-1,"NM_016574.4",NA,NA,"T"),(1,"C/Y",NA,"protein_coding",NA,NA,1410,1410,1328,1328,"tGc/tAc",["missense_variant"],NA,NA,"8/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","XM_017017296.2:c.1328G>A","XP_016872785.1:p.Cys443Tyr",NA,"MODERATE",NA,NA,NA,NA,NA,NA,NA,NA,443,443,"XP_016872785.1","RefSeq",-1,"XM_017017296.2",NA,NA,"T")]"SNV"5.40e+00"AS_MQ"FalseFalseFalseFalseFalseTrueFalseFalse"multi-snv"2False"snv"False[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,21,0,124,0,314262,0,99,0,416424,0,0,0,0,0,0,3]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,98,374,11344,107362,344923,189028,36319,5607,2388,2759,3074,2931,2955,2915,2973,2922,2564,2682]07715[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][7,0,0,0,28,0,124,0,314262,0,99,0,416424,0,0,0,0,0,0,3]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,7,98,380,11345,107362,344923,189028,36319,5607,2388,2759,3074,2931,2955,2915,2973,2922,2564,2682]07715[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,1,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]002.75e+014.07e+007.19e-010.00e+002.00e-028.78e+000.00e+009.89e-01
chr11:113410735["G","A"][(75,5.13e-05,1461876,0),(75,5.13e-05,1461894,0),(0,0.00e+00,33480,0),(0,0.00e+00,44724,0),(58,2.22e-03,26136,0),(0,0.00e+00,39700,0),(0,0.00e+00,53418,0),(0,0.00e+00,5762,0),(8,7.19e-06,1112004,0),(9,1.49e-04,60396,0),(0,0.00e+00,86256,0),(39,5.31e-05,734640,0),(36,4.95e-05,727236,0),(0,0.00e+00,19326,0),(0,0.00e+00,14154,0),(0,0.00e+00,25690,0),(0,0.00e+00,19034,0),(29,2.30e-03,12636,0),(29,2.15e-03,13500,0),(0,0.00e+00,20712,0),(0,0.00e+00,18988,0),(0,0.00e+00,27648,0),(0,0.00e+00,25770,0),(0,0.00e+00,2504,0),(0,0.00e+00,3258,0),(5,8.74e-06,572286,0),(3,5.56e-06,539718,0),(5,1.57e-04,31800,0),(4,1.40e-04,28596,0),(0,0.00e+00,22038,0),(0,0.00e+00,64218,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,18,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,198,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(1,1.00e-03,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,998,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(4,2.00e-03,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,1998,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(7,1.75e-03,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,3996,0),(0,0.00e+00,4000,0),(1,2.50e-04,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,3998,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(11,1.91e-03,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5762,0),(0,0.00e+00,5768,0),(1,1.73e-04,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5766,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(22,2.20e-03,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(2,2.00e-04,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,9998,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(46,2.30e-03,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(3,1.50e-04,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,19998,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(58,2.22e-03,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(3,1.15e-04,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26134,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(6,1.79e-04,33480,0),(0,0.00e+00,33480,0),(1,2.99e-05,33478,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(7,1.76e-04,39700,0),(0,0.00e+00,39700,0),(1,2.52e-05,39698,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(7,1.75e-04,40000,0),(0,0.00e+00,39998,0),(1,2.50e-05,39998,0),(0,0.00e+00,44724,0),(0,0.00e+00,44722,0),(0,0.00e+00,44724,0),(7,1.57e-04,44724,0),(0,0.00e+00,44722,0),(1,2.24e-05,44722,0),(0,0.00e+00,53418,0),(0,0.00e+00,53420,0),(9,1.68e-04,53420,0),(0,0.00e+00,53418,0),(1,1.87e-05,53418,0),(0,0.00e+00,60396,0),(9,1.49e-04,60396,0),(0,0.00e+00,60394,0),(2,3.31e-05,60394,0),(0,0.00e+00,86258,0),(0,0.00e+00,86256,0),(4,4.64e-05,86256,0),(0,0.00e+00,100000,0),(5,5.00e-05,99998,0),(0,0.00e+00,200000,0),(9,4.50e-05,199998,0),(3,7.50e-06,399998,0),(21,5.25e-05,399998,0),(6,6.00e-06,999994,0),(50,5.00e-05,999992,0),(8,7.19e-06,1112004,0),(58,5.22e-05,1112000,0),(60,9.54e-05,628768,0),(60,9.54e-05,628784,0),(0,0.00e+00,17694,0),(0,0.00e+00,43740,0),(50,2.38e-03,20984,0),(0,0.00e+00,36070,0),(0,0.00e+00,53142,0),(0,0.00e+00,4142,0),(2,5.71e-06,350102,0),(8,2.42e-04,33098,0),(0,0.00e+00,69796,0),(30,1.05e-04,286244,0),(30,8.76e-05,342524,0),(0,0.00e+00,10286,0),(0,0.00e+00,7408,0),(0,0.00e+00,25040,0),(0,0.00e+00,18700,0),(24,2.44e-03,9838,0),(26,2.33e-03,11146,0),(0,0.00e+00,18298,0),(0,0.00e+00,17772,0),(0,0.00e+00,27398,0),(0,0.00e+00,25744,0),(0,0.00e+00,1914,0),(0,0.00e+00,2228,0),(2,1.23e-05,162218,0),(0,0.00e+00,187884,0),(4,2.39e-04,16752,0),(4,2.45e-04,16346,0),(0,0.00e+00,14500,0),(0,0.00e+00,55296,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,18,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,198,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(1,1.00e-03,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,998,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(4,2.00e-03,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,1998,0),(0,0.00e+00,2000,0),(1,5.00e-04,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,1998,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(6,1.50e-03,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,3994,0),(0,0.00e+00,4000,0),(2,5.00e-04,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,3998,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(7,1.69e-03,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4142,0),(0,0.00e+00,4148,0),(2,4.82e-04,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4146,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(19,1.90e-03,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(3,3.00e-04,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,9998,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(42,2.37e-03,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(6,3.39e-04,17694,0),(0,0.00e+00,17694,0),(1,5.65e-05,17692,0),(0,0.00e+00,20000,0),(49,2.45e-03,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(6,3.00e-04,20000,0),(0,0.00e+00,20000,0),(1,5.00e-05,19998,0),(0,0.00e+00,20984,0),(50,2.38e-03,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(6,2.86e-04,20984,0),(0,0.00e+00,20984,0),(1,4.77e-05,20982,0),(0,0.00e+00,33098,0),(0,0.00e+00,33098,0),(0,0.00e+00,33098,0),(0,0.00e+00,33098,0),(8,2.42e-04,33098,0),(0,0.00e+00,33096,0),(3,9.06e-05,33096,0),(0,0.00e+00,36070,0),(0,0.00e+00,36070,0),(0,0.00e+00,36070,0),(0,0.00e+00,36070,0),(0,0.00e+00,36068,0),(4,1.11e-04,36068,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,39998,0),(5,1.25e-04,39998,0),(0,0.00e+00,43740,0),(0,0.00e+00,43738,0),(0,0.00e+00,43740,0),(0,0.00e+00,43738,0),(5,1.14e-04,43738,0),(0,0.00e+00,53142,0),(0,0.00e+00,53144,0),(0,0.00e+00,53142,0),(5,9.41e-05,53142,0),(0,0.00e+00,69798,0),(0,0.00e+00,69796,0),(6,8.60e-05,69796,0),(1,1.00e-05,100000,0),(8,8.00e-05,99998,0),(1,5.00e-06,199998,0),(21,1.05e-04,199998,0),(2,5.71e-06,350102,0),(31,8.85e-05,350102,0),(37,9.25e-05,399992,0)]87.19e-0611120040"nfe"25.71e-063501020"nfe"[(4.19e-05,3.82e-05),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(3.09e-06,2.24e-06),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,(7.54e-05,6.91e-05),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(9.50e-07,3.60e-07),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]3.09e-06"nfe"2.24e-06"nfe"9.50e-07"nfe"3.60e-07"nfe"1True{"rs201801648"}{}0.00e+006.00e+010.00e+001275011.23e+013.70e-02[3240,2211,2993,1962]7.34e-01104040.00e+006.00e+010.00e+001.00e+001274801.23e+011.60e-02[3240,2211,2991,1961]7.34e-0110383FalseNANAFalseFalseFalseFalse8.85e+00-5.13e-05["ga4gh:VA.SBSoboxxiC0V-mhjjHg2geRlf3I0Ib2d","ga4gh:VA.GzUD_86k_EDbtk-R58BTRVazmjZW2O1U"][113410734,113410734][113410735,113410735]["G","A"]"G/A"113410735".""chr11\t113410735\t.\tG\tA\t.\t.\tGT"NA"missense_variant"NANA"chr11"1134107351[(1,"H/Y",NA,"protein_coding",NA,"CCDS8362.1",1313,1313,1237,1237,"Cac/Tac",["missense_variant"],NA,[("Gene3D","1"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("Superfamily","SSF81321")],"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000346454.7:c.1237C>T","ENSP00000278597.5:p.His413Tyr",NA,"MODERATE",NA,NA,NA,NA,NA,NA,NA,NA,413,413,"ENSP00000278597","Ensembl",-1,"ENST00000346454",1,["P14416-2"],"A"),(1,"H/Y","P2","protein_coding",1,"CCDS8361.1",1678,1678,1324,1324,"Cac/Tac",["missense_variant"],NA,[("Gene3D","1"),("ENSP_mappings","5aer"),("ENSP_mappings","5aer"),("ENSP_mappings","6cm4"),("ENSP_mappings","6luq"),("ENSP_mappings","6vms"),("ENSP_mappings","7dfp"),("ENSP_mappings","7jvr"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("Superfamily","SSF81321")],"8/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000362072.8:c.1324C>T","ENSP00000354859.3:p.His442Tyr",NA,"MODERATE",NA,NA,NA,NA,NA,"NM_000795.4",NA,NA,442,442,"ENSP00000354859","Ensembl",-1,"ENST00000362072",1,["P14416-1"],"A"),(1,NA,NA,"processed_transcript",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],3640,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000535984",3,NA,"A"),(1,"H/Y","A1","protein_coding",NA,NA,1330,1330,1330,1330,"Cac/Tac",["missense_variant"],NA,[("Gene3D","1"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("Superfamily","SSF81321")],"8/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000538967.5:c.1330C>T","ENSP00000438215.1:p.His444Tyr",NA,"MODERATE",NA,NA,NA,NA,NA,NA,NA,NA,444,444,"ENSP00000438215","Ensembl",-1,"ENST00000538967",5,["P14416-3"],"A"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],4559,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000539420",3,NA,"A"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],3129,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000540600",1,NA,"A"),(1,"H/Y","P2","protein_coding",NA,"CCDS8361.1",1645,1645,1324,1324,"Cac/Tac",["missense_variant"],NA,[("Gene3D","1"),("ENSP_mappings","5aer"),("ENSP_mappings","5aer"),("ENSP_mappings","6cm4"),("ENSP_mappings","6luq"),("ENSP_mappings","6vms"),("ENSP_mappings","7dfp"),("ENSP_mappings","7jvr"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("Superfamily","SSF81321")],"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000542968.5:c.1324C>T","ENSP00000442172.1:p.His442Tyr",NA,"MODERATE",NA,NA,NA,NA,NA,NA,NA,NA,442,442,"ENSP00000442172","Ensembl",-1,"ENST00000542968",1,["P14416-1"],"A"),(1,"H/Y","A1","protein_coding",NA,NA,1354,1354,1321,1321,"Cac/Tac",["missense_variant"],NA,[("Gene3D","1"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("Superfamily","SSF81321")],"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000544518.5:c.1321C>T","ENSP00000441068.1:p.His441Tyr",NA,"MODERATE",NA,NA,NA,NA,NA,NA,NA,NA,441,441,"ENSP00000441068","Ensembl",-1,"ENST00000544518",1,NA,"A"),(1,NA,NA,"lncRNA",1,NA,NA,NA,NA,NA,NA,["intron_variant","non_coding_transcript_variant"],NA,NA,NA,NA,"ENSG00000256757",NA,NA,NA,NA,"ENST00000546284.1:n.245-812G>A",NA,NA,"MODIFIER","2/3",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",1,"ENST00000546284",3,NA,"A"),(1,"H/Y",NA,"protein_coding",1,NA,1678,1678,1324,1324,"Cac/Tac",["missense_variant"],NA,NA,"8/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_000795.4:c.1324C>T","NP_000786.1:p.His442Tyr",NA,"MODERATE",NA,NA,NA,NA,NA,"ENST00000362072.8",NA,NA,442,442,"NP_000786.1","RefSeq",-1,"NM_000795.4",NA,NA,"A"),(1,"H/Y",NA,"protein_coding",NA,NA,1591,1591,1237,1237,"Cac/Tac",["missense_variant"],NA,NA,"7/7",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_016574.4:c.1237C>T","NP_057658.2:p.His413Tyr",NA,"MODERATE",NA,NA,NA,NA,NA,NA,NA,NA,413,413,"NP_057658.2","RefSeq",-1,"NM_016574.4",NA,NA,"A"),(1,"H/Y",NA,"protein_coding",NA,NA,1406,1406,1324,1324,"Cac/Tac",["missense_variant"],NA,NA,"8/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","XM_017017296.2:c.1324C>T","XP_016872785.1:p.His442Tyr",NA,"MODERATE",NA,NA,NA,NA,NA,NA,NA,NA,442,442,"XP_016872785.1","RefSeq",-1,"XM_017017296.2",NA,NA,"A")]"SNV"8.85e+00"AS_MQ"FalseFalseFalseFalseFalseTrueFalseFalse"multi-snv"2False"snv"False[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,12,0,76,0,314251,0,32,0,416492,0,0,0,0,0,0,75]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,65,332,11308,107353,344982,189073,36327,5607,2387,2756,3080,2935,2956,2918,2972,2924,2564,2682]07717[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,75]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,1,2,3,4,7,3,7,5,1,4,1,3,0,2]032[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,1,1,6,12,25,24,5,1,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][6,0,1,0,14,0,76,0,314251,0,32,0,416492,0,0,0,0,0,0,75]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,2,67,335,11310,107353,344982,189073,36327,5607,2387,2756,3080,2935,2956,2918,2972,2924,2564,2682]07717[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,75]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,1,2,3,4,7,3,7,5,1,4,1,3,0,2]032[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,1,1,6,12,25,24,5,1,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][1,0,0,2,3,3,8,4,0,0]31[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]002.28e+012.69e+002.67e-010.00e+001.00e-028.67e+001.30e-011.18e-01
chr11:113410738["G","T"][(2,1.37e-06,1461886,0),(2,1.37e-06,1461894,0),(0,0.00e+00,33480,0),(0,0.00e+00,44724,0),(0,0.00e+00,26136,0),(2,5.04e-05,39700,0),(0,0.00e+00,53420,0),(0,0.00e+00,5764,0),(0,0.00e+00,1112008,0),(0,0.00e+00,60396,0),(0,0.00e+00,86258,0),(0,0.00e+00,734644,0),(2,2.75e-06,727242,0),(0,0.00e+00,19326,0),(0,0.00e+00,14154,0),(0,0.00e+00,25690,0),(0,0.00e+00,19034,0),(0,0.00e+00,12636,0),(0,0.00e+00,13500,0),(0,0.00e+00,20712,0),(2,1.05e-04,18988,0),(0,0.00e+00,27648,0),(0,0.00e+00,25772,0),(0,0.00e+00,2506,0),(0,0.00e+00,3258,0),(0,0.00e+00,572286,0),(0,0.00e+00,539722,0),(0,0.00e+00,31800,0),(0,0.00e+00,28596,0),(0,0.00e+00,22040,0),(0,0.00e+00,64218,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,3998,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5764,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(1,5.00e-05,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(1,3.83e-05,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(2,5.97e-05,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,39700,0),(2,5.04e-05,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,44724,0),(0,0.00e+00,44724,0),(0,0.00e+00,44724,0),(0,0.00e+00,44724,0),(0,0.00e+00,44724,0),(0,0.00e+00,44724,0),(0,0.00e+00,53420,0),(0,0.00e+00,53420,0),(0,0.00e+00,53420,0),(0,0.00e+00,53420,0),(0,0.00e+00,53420,0),(0,0.00e+00,60396,0),(0,0.00e+00,60396,0),(0,0.00e+00,60396,0),(0,0.00e+00,60396,0),(0,0.00e+00,86258,0),(0,0.00e+00,86258,0),(0,0.00e+00,86258,0),(0,0.00e+00,100000,0),(0,0.00e+00,100000,0),(0,0.00e+00,200000,0),(0,0.00e+00,200000,0),(0,0.00e+00,400000,0),(0,0.00e+00,400000,0),(0,0.00e+00,999998,0),(1,1.00e-06,999998,0),(0,0.00e+00,1112008,0),(2,1.80e-06,1112008,0),(1,1.59e-06,628776,0),(1,1.59e-06,628784,0),(0,0.00e+00,17694,0),(0,0.00e+00,43740,0),(0,0.00e+00,20984,0),(1,2.77e-05,36070,0),(0,0.00e+00,53144,0),(0,0.00e+00,4144,0),(0,0.00e+00,350104,0),(0,0.00e+00,33098,0),(0,0.00e+00,69798,0),(0,0.00e+00,286248,0),(1,2.92e-06,342528,0),(0,0.00e+00,10286,0),(0,0.00e+00,7408,0),(0,0.00e+00,25040,0),(0,0.00e+00,18700,0),(0,0.00e+00,9838,0),(0,0.00e+00,11146,0),(0,0.00e+00,18298,0),(1,5.63e-05,17772,0),(0,0.00e+00,27398,0),(0,0.00e+00,25746,0),(0,0.00e+00,1916,0),(0,0.00e+00,2228,0),(0,0.00e+00,162218,0),(0,0.00e+00,187886,0),(0,0.00e+00,16752,0),(0,0.00e+00,16346,0),(0,0.00e+00,14502,0),(0,0.00e+00,55296,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,3996,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4144,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,33098,0),(1,3.02e-05,33098,0),(0,0.00e+00,33098,0),(0,0.00e+00,33098,0),(0,0.00e+00,33098,0),(0,0.00e+00,33098,0),(0,0.00e+00,33098,0),(0,0.00e+00,36070,0),(1,2.77e-05,36070,0),(0,0.00e+00,36070,0),(0,0.00e+00,36070,0),(0,0.00e+00,36070,0),(0,0.00e+00,36070,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,43740,0),(0,0.00e+00,43740,0),(0,0.00e+00,43740,0),(0,0.00e+00,43740,0),(0,0.00e+00,43740,0),(0,0.00e+00,53144,0),(0,0.00e+00,53144,0),(0,0.00e+00,53144,0),(0,0.00e+00,53144,0),(0,0.00e+00,69798,0),(0,0.00e+00,69798,0),(0,0.00e+00,69798,0),(0,0.00e+00,100000,0),(0,0.00e+00,100000,0),(0,0.00e+00,199998,0),(0,0.00e+00,200000,0),(0,0.00e+00,350104,0),(0,0.00e+00,350106,0),(0,0.00e+00,399998,0)]25.04e-05397000"eas"12.77e-05360700"eas"[(2.30e-07,9.00e-08),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(8.35e-06,3.12e-06),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]8.35e-06"eas"3.12e-06"eas"NANANANA1False{"rs1223741945"}{}1.38e+016.00e+010.00e+0032531.30e+01-1.33e+00[63,66,76,46]1.28e+002511.38e+016.00e+010.00e+001.00e+0032531.30e+01-1.33e+00[63,66,76,46]1.28e+00251FalseNANAFalseFalseFalseFalse3.73e+00-1.37e-06["ga4gh:VA.cROnHWMnTSTuzMfVIhSezHexCPbFdF3z","ga4gh:VA.WAkJ8ZSeVrsh6ThoH7lWSpSgVueGvuwh"][113410737,113410737][113410738,113410738]["G","T"]"G/T"113410738".""chr11\t113410738\t.\tG\tT\t.\t.\tGT"NA"missense_variant"NANA"chr11"1134107381[(1,"L/I",NA,"protein_coding",NA,"CCDS8362.1",1310,1310,1234,1234,"Ctc/Atc",["missense_variant"],NA,[("Gene3D","1"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321")],"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000346454.7:c.1234C>A","ENSP00000278597.5:p.Leu412Ile",NA,"MODERATE",NA,NA,NA,NA,NA,NA,NA,NA,412,412,"ENSP00000278597","Ensembl",-1,"ENST00000346454",1,["P14416-2"],"T"),(1,"L/I","P2","protein_coding",1,"CCDS8361.1",1675,1675,1321,1321,"Ctc/Atc",["missense_variant"],NA,[("Gene3D","1"),("ENSP_mappings","5aer"),("ENSP_mappings","5aer"),("ENSP_mappings","6cm4"),("ENSP_mappings","6luq"),("ENSP_mappings","6vms"),("ENSP_mappings","7dfp"),("ENSP_mappings","7jvr"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321")],"8/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000362072.8:c.1321C>A","ENSP00000354859.3:p.Leu441Ile",NA,"MODERATE",NA,NA,NA,NA,NA,"NM_000795.4",NA,NA,441,441,"ENSP00000354859","Ensembl",-1,"ENST00000362072",1,["P14416-1"],"T"),(1,NA,NA,"processed_transcript",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],3637,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000535984",3,NA,"T"),(1,"L/I","A1","protein_coding",NA,NA,1327,1327,1327,1327,"Ctc/Atc",["missense_variant"],NA,[("Gene3D","1"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321")],"8/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000538967.5:c.1327C>A","ENSP00000438215.1:p.Leu443Ile",NA,"MODERATE",NA,NA,NA,NA,NA,NA,NA,NA,443,443,"ENSP00000438215","Ensembl",-1,"ENST00000538967",5,["P14416-3"],"T"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],4556,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000539420",3,NA,"T"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],3126,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000540600",1,NA,"T"),(1,"L/I","P2","protein_coding",NA,"CCDS8361.1",1642,1642,1321,1321,"Ctc/Atc",["missense_variant"],NA,[("Gene3D","1"),("ENSP_mappings","5aer"),("ENSP_mappings","5aer"),("ENSP_mappings","6cm4"),("ENSP_mappings","6luq"),("ENSP_mappings","6vms"),("ENSP_mappings","7dfp"),("ENSP_mappings","7jvr"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321")],"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000542968.5:c.1321C>A","ENSP00000442172.1:p.Leu441Ile",NA,"MODERATE",NA,NA,NA,NA,NA,NA,NA,NA,441,441,"ENSP00000442172","Ensembl",-1,"ENST00000542968",1,["P14416-1"],"T"),(1,"L/I","A1","protein_coding",NA,NA,1351,1351,1318,1318,"Ctc/Atc",["missense_variant"],NA,[("Gene3D","1"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321")],"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000544518.5:c.1318C>A","ENSP00000441068.1:p.Leu440Ile",NA,"MODERATE",NA,NA,NA,NA,NA,NA,NA,NA,440,440,"ENSP00000441068","Ensembl",-1,"ENST00000544518",1,NA,"T"),(1,NA,NA,"lncRNA",1,NA,NA,NA,NA,NA,NA,["intron_variant","non_coding_transcript_variant"],NA,NA,NA,NA,"ENSG00000256757",NA,NA,NA,NA,"ENST00000546284.1:n.245-809G>T",NA,NA,"MODIFIER","2/3",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",1,"ENST00000546284",3,NA,"T"),(1,"L/I",NA,"protein_coding",1,NA,1675,1675,1321,1321,"Ctc/Atc",["missense_variant"],NA,NA,"8/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_000795.4:c.1321C>A","NP_000786.1:p.Leu441Ile",NA,"MODERATE",NA,NA,NA,NA,NA,"ENST00000362072.8",NA,NA,441,441,"NP_000786.1","RefSeq",-1,"NM_000795.4",NA,NA,"T"),(1,"L/I",NA,"protein_coding",NA,NA,1588,1588,1234,1234,"Ctc/Atc",["missense_variant"],NA,NA,"7/7",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_016574.4:c.1234C>A","NP_057658.2:p.Leu412Ile",NA,"MODERATE",NA,NA,NA,NA,NA,NA,NA,NA,412,412,"NP_057658.2","RefSeq",-1,"NM_016574.4",NA,NA,"T"),(1,"L/I",NA,"protein_coding",NA,NA,1403,1403,1321,1321,"Ctc/Atc",["missense_variant"],NA,NA,"8/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","XM_017017296.2:c.1321C>A","XP_016872785.1:p.Leu441Ile",NA,"MODERATE",NA,NA,NA,NA,NA,NA,NA,NA,441,441,"XP_016872785.1","RefSeq",-1,"XM_017017296.2",NA,NA,"T")]"SNV"3.73e+00"AS_MQ"FalseFalseFalseFalseFalseTrueFalseFalse"snv"1False"snv"False[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,12,0,66,0,314321,0,31,0,416511,0,0,0,0,0,0,2]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,57,319,11282,107355,345042,189122,36330,5605,2379,2756,3073,2932,2954,2914,2973,2922,2564,2680]07684[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0]01[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][3,0,0,0,13,0,66,0,314321,0,31,0,416511,0,0,0,0,0,0,2]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,1,58,321,11282,107355,345042,189122,36330,5605,2379,2756,3073,2932,2954,2914,2973,2922,2564,2680]07684[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0]01[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,1,0,0,0,1,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]002.53e+013.67e+002.65e-010.00e+001.00e-024.85e+003.00e-029.36e-01
chr11:113410740["A","G"][(1,6.84e-07,1461884,0),(1,6.84e-07,1461894,0),(0,0.00e+00,33480,0),(1,2.24e-05,44724,0),(0,0.00e+00,26136,0),(0,0.00e+00,39700,0),(0,0.00e+00,53420,0),(0,0.00e+00,5764,0),(0,0.00e+00,1112008,0),(0,0.00e+00,60394,0),(0,0.00e+00,86258,0),(0,0.00e+00,734644,0),(1,1.38e-06,727240,0),(0,0.00e+00,19326,0),(0,0.00e+00,14154,0),(0,0.00e+00,25690,0),(1,5.25e-05,19034,0),(0,0.00e+00,12636,0),(0,0.00e+00,13500,0),(0,0.00e+00,20712,0),(0,0.00e+00,18988,0),(0,0.00e+00,27648,0),(0,0.00e+00,25772,0),(0,0.00e+00,2504,0),(0,0.00e+00,3260,0),(0,0.00e+00,572288,0),(0,0.00e+00,539720,0),(0,0.00e+00,31800,0),(0,0.00e+00,28594,0),(0,0.00e+00,22040,0),(0,0.00e+00,64218,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5764,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,20000,0),(1,5.00e-05,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,26136,0),(1,3.83e-05,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,33480,0),(1,2.99e-05,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(1,2.52e-05,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(1,2.50e-05,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(1,2.24e-05,44724,0),(0,0.00e+00,44724,0),(0,0.00e+00,44724,0),(0,0.00e+00,44724,0),(0,0.00e+00,44724,0),(0,0.00e+00,44724,0),(0,0.00e+00,53420,0),(0,0.00e+00,53420,0),(0,0.00e+00,53420,0),(0,0.00e+00,53420,0),(0,0.00e+00,53420,0),(0,0.00e+00,60396,0),(0,0.00e+00,60394,0),(0,0.00e+00,60396,0),(0,0.00e+00,60396,0),(0,0.00e+00,86258,0),(0,0.00e+00,86258,0),(0,0.00e+00,86258,0),(0,0.00e+00,100000,0),(0,0.00e+00,100000,0),(0,0.00e+00,200000,0),(0,0.00e+00,200000,0),(0,0.00e+00,399996,0),(1,2.50e-06,399998,0),(0,0.00e+00,999996,0),(1,1.00e-06,999996,0),(0,0.00e+00,1112008,0),(1,8.99e-07,1112008,0),(1,1.59e-06,628774,0),(1,1.59e-06,628784,0),(0,0.00e+00,17694,0),(1,2.29e-05,43740,0),(0,0.00e+00,20984,0),(0,0.00e+00,36070,0),(0,0.00e+00,53144,0),(0,0.00e+00,4144,0),(0,0.00e+00,350104,0),(0,0.00e+00,33096,0),(0,0.00e+00,69798,0),(0,0.00e+00,286248,0),(1,2.92e-06,342526,0),(0,0.00e+00,10286,0),(0,0.00e+00,7408,0),(0,0.00e+00,25040,0),(1,5.35e-05,18700,0),(0,0.00e+00,9838,0),(0,0.00e+00,11146,0),(0,0.00e+00,18298,0),(0,0.00e+00,17772,0),(0,0.00e+00,27398,0),(0,0.00e+00,25746,0),(0,0.00e+00,1914,0),(0,0.00e+00,2230,0),(0,0.00e+00,162220,0),(0,0.00e+00,187884,0),(0,0.00e+00,16752,0),(0,0.00e+00,16344,0),(0,0.00e+00,14502,0),(0,0.00e+00,55296,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,3996,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4144,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,17694,0),(1,5.65e-05,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(1,5.00e-05,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(1,4.77e-05,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(1,3.02e-05,33098,0),(0,0.00e+00,33098,0),(0,0.00e+00,33098,0),(0,0.00e+00,33098,0),(0,0.00e+00,33096,0),(0,0.00e+00,33098,0),(0,0.00e+00,33098,0),(1,2.77e-05,36070,0),(0,0.00e+00,36070,0),(0,0.00e+00,36070,0),(0,0.00e+00,36070,0),(0,0.00e+00,36070,0),(0,0.00e+00,36070,0),(1,2.50e-05,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(1,2.29e-05,43740,0),(0,0.00e+00,43740,0),(0,0.00e+00,43740,0),(0,0.00e+00,43740,0),(0,0.00e+00,43740,0),(0,0.00e+00,53144,0),(0,0.00e+00,53144,0),(0,0.00e+00,53144,0),(0,0.00e+00,53144,0),(0,0.00e+00,69798,0),(0,0.00e+00,69798,0),(0,0.00e+00,69798,0),(0,0.00e+00,99998,0),(0,0.00e+00,100000,0),(0,0.00e+00,199996,0),(1,5.00e-06,199998,0),(0,0.00e+00,350104,0),(1,2.86e-06,350104,0),(1,2.50e-06,399996,0)]12.24e-05447240"amr"12.29e-05437400"amr"[(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]NANANANANANANANA1FalseNA{}3.13e+006.00e+010.00e+004021.01e+017.13e-01[17,8,12,3]1.29e+00403.13e+006.00e+010.00e+001.54e-014021.01e+017.13e-01[17,8,12,3]1.29e+0040TrueFalseFalseFalseFalseFalseFalse4.72e+00-6.84e-07["ga4gh:VA.gXv9EmAG-Lbw5gSNFxiBHWB_WT8twCnG","ga4gh:VA.S-YUvVERFiE1cgkxu2ZRfZV7mggBv176"][113410739,113410739][113410740,113410740]["A","G"]"A/G"113410740".""chr11\t113410740\t.\tA\tG\t.\t.\tGT"NA"missense_variant"NANA"chr11"1134107401[(1,"I/T",NA,"protein_coding",NA,"CCDS8362.1",1308,1308,1232,1232,"aTc/aCc",["missense_variant"],NA,[("Gene3D","1"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321")],"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000346454.7:c.1232T>C","ENSP00000278597.5:p.Ile411Thr",NA,"MODERATE",NA,NA,NA,NA,NA,NA,NA,NA,411,411,"ENSP00000278597","Ensembl",-1,"ENST00000346454",1,["P14416-2"],"G"),(1,"I/T","P2","protein_coding",1,"CCDS8361.1",1673,1673,1319,1319,"aTc/aCc",["missense_variant"],NA,[("Gene3D","1"),("ENSP_mappings","5aer"),("ENSP_mappings","5aer"),("ENSP_mappings","6cm4"),("ENSP_mappings","6luq"),("ENSP_mappings","6vms"),("ENSP_mappings","7dfp"),("ENSP_mappings","7jvr"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321")],"8/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000362072.8:c.1319T>C","ENSP00000354859.3:p.Ile440Thr",NA,"MODERATE",NA,NA,NA,NA,NA,"NM_000795.4",NA,NA,440,440,"ENSP00000354859","Ensembl",-1,"ENST00000362072",1,["P14416-1"],"G"),(1,NA,NA,"processed_transcript",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],3635,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000535984",3,NA,"G"),(1,"I/T","A1","protein_coding",NA,NA,1325,1325,1325,1325,"aTc/aCc",["missense_variant"],NA,[("Gene3D","1"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321")],"8/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000538967.5:c.1325T>C","ENSP00000438215.1:p.Ile442Thr",NA,"MODERATE",NA,NA,NA,NA,NA,NA,NA,NA,442,442,"ENSP00000438215","Ensembl",-1,"ENST00000538967",5,["P14416-3"],"G"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],4554,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000539420",3,NA,"G"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],3124,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000540600",1,NA,"G"),(1,"I/T","P2","protein_coding",NA,"CCDS8361.1",1640,1640,1319,1319,"aTc/aCc",["missense_variant"],NA,[("Gene3D","1"),("ENSP_mappings","5aer"),("ENSP_mappings","5aer"),("ENSP_mappings","6cm4"),("ENSP_mappings","6luq"),("ENSP_mappings","6vms"),("ENSP_mappings","7dfp"),("ENSP_mappings","7jvr"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321")],"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000542968.5:c.1319T>C","ENSP00000442172.1:p.Ile440Thr",NA,"MODERATE",NA,NA,NA,NA,NA,NA,NA,NA,440,440,"ENSP00000442172","Ensembl",-1,"ENST00000542968",1,["P14416-1"],"G"),(1,"I/T","A1","protein_coding",NA,NA,1349,1349,1316,1316,"aTc/aCc",["missense_variant"],NA,[("Gene3D","1"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321")],"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000544518.5:c.1316T>C","ENSP00000441068.1:p.Ile439Thr",NA,"MODERATE",NA,NA,NA,NA,NA,NA,NA,NA,439,439,"ENSP00000441068","Ensembl",-1,"ENST00000544518",1,NA,"G"),(1,NA,NA,"lncRNA",1,NA,NA,NA,NA,NA,NA,["intron_variant","non_coding_transcript_variant"],NA,NA,NA,NA,"ENSG00000256757",NA,NA,NA,NA,"ENST00000546284.1:n.245-807A>G",NA,NA,"MODIFIER","2/3",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",1,"ENST00000546284",3,NA,"G"),(1,"I/T",NA,"protein_coding",1,NA,1673,1673,1319,1319,"aTc/aCc",["missense_variant"],NA,NA,"8/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_000795.4:c.1319T>C","NP_000786.1:p.Ile440Thr",NA,"MODERATE",NA,NA,NA,NA,NA,"ENST00000362072.8",NA,NA,440,440,"NP_000786.1","RefSeq",-1,"NM_000795.4",NA,NA,"G"),(1,"I/T",NA,"protein_coding",NA,NA,1586,1586,1232,1232,"aTc/aCc",["missense_variant"],NA,NA,"7/7",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_016574.4:c.1232T>C","NP_057658.2:p.Ile411Thr",NA,"MODERATE",NA,NA,NA,NA,NA,NA,NA,NA,411,411,"NP_057658.2","RefSeq",-1,"NM_016574.4",NA,NA,"G"),(1,"I/T",NA,"protein_coding",NA,NA,1401,1401,1319,1319,"aTc/aCc",["missense_variant"],NA,NA,"8/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","XM_017017296.2:c.1319T>C","XP_016872785.1:p.Ile440Thr",NA,"MODERATE",NA,NA,NA,NA,NA,NA,NA,NA,440,440,"XP_016872785.1","RefSeq",-1,"XM_017017296.2",NA,NA,"G")]"SNV"4.72e+00"AS_MQ"FalseFalseFalseFalseFalseTrueFalseFalse"snv"1False"snv"False[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,12,0,49,0,314328,0,18,0,416534,0,0,0,0,0,0,1]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,49,301,11269,107358,345061,189138,36333,5605,2378,2755,3073,2932,2954,2914,2973,2922,2564,2680]07683[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][4,0,0,0,13,0,49,0,314328,0,18,0,416534,0,0,0,0,0,0,1]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,1,50,304,11269,107358,345061,189138,36333,5605,2378,2755,3073,2932,2954,2914,2973,2922,2564,2680]07683[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]002.72e+014.02e+006.41e-010.00e+003.00e-026.25e+000.00e+005.08e-01

showing top 5 rows

\n" - ], - "text/plain": [ - "+-----------------+------------+\n", - "| locus | alleles |\n", - "+-----------------+------------+\n", - "| locus | array |\n", - "+-----------------+------------+\n", - "| chr11:113410731 | [\"C\",\"A\"] |\n", - "| chr11:113410731 | [\"C\",\"T\"] |\n", - "| chr11:113410735 | [\"G\",\"A\"] |\n", - "| chr11:113410738 | [\"G\",\"T\"] |\n", - "| chr11:113410740 | [\"A\",\"G\"] |\n", - "+-----------------+------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| freq |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [(2,1.37e-06,1461866,0),(2,1.37e-06,1461894,0),(0,0.00e+00,33480,0),(2,4.... |\n", - "| [(1,6.84e-07,1461866,0),(1,6.84e-07,1461894,0),(0,0.00e+00,33480,0),(0,0.... |\n", - "| [(75,5.13e-05,1461876,0),(75,5.13e-05,1461894,0),(0,0.00e+00,33480,0),(0,... |\n", - "| [(2,1.37e-06,1461886,0),(2,1.37e-06,1461894,0),(0,0.00e+00,33480,0),(0,0.... |\n", - "| [(1,6.84e-07,1461884,0),(1,6.84e-07,1461894,0),(0,0.00e+00,33480,0),(1,2.... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+------------------+------------------+------------------+\n", - "| grpmax.gnomad.AC | grpmax.gnomad.AF | grpmax.gnomad.AN |\n", - "+------------------+------------------+------------------+\n", - "| int32 | float64 | int32 |\n", - "+------------------+------------------+------------------+\n", - "| 2 | 4.47e-05 | 44724 |\n", - "| 1 | 8.99e-07 | 1112010 |\n", - "| 8 | 7.19e-06 | 1112004 |\n", - "| 2 | 5.04e-05 | 39700 |\n", - "| 1 | 2.24e-05 | 44724 |\n", - "+------------------+------------------+------------------+\n", - "\n", - "+--------------------------------+-----------------------+-------------------+\n", - "| grpmax.gnomad.homozygote_count | grpmax.gnomad.gen_anc | grpmax.non_ukb.AC |\n", - "+--------------------------------+-----------------------+-------------------+\n", - "| int64 | str | int32 |\n", - "+--------------------------------+-----------------------+-------------------+\n", - "| 0 | \"amr\" | 2 |\n", - "| 0 | \"nfe\" | NA |\n", - "| 0 | \"nfe\" | 2 |\n", - "| 0 | \"eas\" | 1 |\n", - "| 0 | \"amr\" | 1 |\n", - "+--------------------------------+-----------------------+-------------------+\n", - "\n", - "+-------------------+-------------------+---------------------------------+\n", - "| grpmax.non_ukb.AF | grpmax.non_ukb.AN | grpmax.non_ukb.homozygote_count |\n", - "+-------------------+-------------------+---------------------------------+\n", - "| float64 | int32 | int64 |\n", - "+-------------------+-------------------+---------------------------------+\n", - "| 4.57e-05 | 43740 | 0 |\n", - "| NA | NA | NA |\n", - "| 5.71e-06 | 350102 | 0 |\n", - "| 2.77e-05 | 36070 | 0 |\n", - "| 2.29e-05 | 43740 | 0 |\n", - "+-------------------+-------------------+---------------------------------+\n", - "\n", - "+------------------------+\n", - "| grpmax.non_ukb.gen_anc |\n", - "+------------------------+\n", - "| str |\n", - "+------------------------+\n", - "| \"amr\" |\n", - "| NA |\n", - "| \"nfe\" |\n", - "| \"eas\" |\n", - "| \"amr\" |\n", - "+------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| faf |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [(2.30e-07,9.00e-08),(0.00e+00,0.00e+00),(7.41e-06,2.77e-06),(0.00e+00,0.... |\n", - "| [(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.... |\n", - "| [(4.19e-05,3.82e-05),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.... |\n", - "| [(2.30e-07,9.00e-08),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(8.35e-06,3.... |\n", - "| [(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+-------------------------+---------------------------------+\n", - "| fafmax.gnomad.faf95_max | fafmax.gnomad.faf95_max_gen_anc |\n", - "+-------------------------+---------------------------------+\n", - "| float64 | str |\n", - "+-------------------------+---------------------------------+\n", - "| 7.41e-06 | \"amr\" |\n", - "| NA | NA |\n", - "| 3.09e-06 | \"nfe\" |\n", - "| 8.35e-06 | \"eas\" |\n", - "| NA | NA |\n", - "+-------------------------+---------------------------------+\n", - "\n", - "+-------------------------+---------------------------------+\n", - "| fafmax.gnomad.faf99_max | fafmax.gnomad.faf99_max_gen_anc |\n", - "+-------------------------+---------------------------------+\n", - "| float64 | str |\n", - "+-------------------------+---------------------------------+\n", - "| 2.77e-06 | \"amr\" |\n", - "| NA | NA |\n", - "| 2.24e-06 | \"nfe\" |\n", - "| 3.12e-06 | \"eas\" |\n", - "| NA | NA |\n", - "+-------------------------+---------------------------------+\n", - "\n", - "+--------------------------+----------------------------------+\n", - "| fafmax.non_ukb.faf95_max | fafmax.non_ukb.faf95_max_gen_anc |\n", - "+--------------------------+----------------------------------+\n", - "| float64 | str |\n", - "+--------------------------+----------------------------------+\n", - "| 7.58e-06 | \"amr\" |\n", - "| NA | NA |\n", - "| 9.50e-07 | \"nfe\" |\n", - "| NA | NA |\n", - "| NA | NA |\n", - "+--------------------------+----------------------------------+\n", - "\n", - "+--------------------------+----------------------------------+---------+\n", - "| fafmax.non_ukb.faf99_max | fafmax.non_ukb.faf99_max_gen_anc | a_index |\n", - "+--------------------------+----------------------------------+---------+\n", - "| float64 | str | int32 |\n", - "+--------------------------+----------------------------------+---------+\n", - "| 2.84e-06 | \"amr\" | 1 |\n", - "| NA | NA | 2 |\n", - "| 3.60e-07 | \"nfe\" | 1 |\n", - "| NA | NA | 1 |\n", - "| NA | NA | 1 |\n", - "+--------------------------+----------------------------------+---------+\n", - "\n", - "+-----------+------------------+----------+----------+----------+\n", - "| was_split | rsid | filters | info.FS | info.MQ |\n", - "+-----------+------------------+----------+----------+----------+\n", - "| bool | set | set | float64 | float64 |\n", - "+-----------+------------------+----------+----------+----------+\n", - "| True | {\"rs140938110\"} | {} | 5.56e+00 | 6.00e+01 |\n", - "| True | NA | {} | 5.56e+00 | 6.00e+01 |\n", - "| True | {\"rs201801648\"} | {} | 0.00e+00 | 6.00e+01 |\n", - "| False | {\"rs1223741945\"} | {} | 1.38e+01 | 6.00e+01 |\n", - "| False | NA | {} | 3.13e+00 | 6.00e+01 |\n", - "+-----------+------------------+----------+----------+----------+\n", - "\n", - "+----------------+-----------------+----------+---------------------+\n", - "| info.MQRankSum | info.QUALapprox | info.QD | info.ReadPosRankSum |\n", - "+----------------+-----------------+----------+---------------------+\n", - "| float64 | int64 | float64 | float64 |\n", - "+----------------+-----------------+----------+---------------------+\n", - "| 0.00e+00 | 3862 | 1.02e+01 | -1.98e-01 |\n", - "| 0.00e+00 | 3862 | 1.02e+01 | -1.98e-01 |\n", - "| 0.00e+00 | 127501 | 1.23e+01 | 3.70e-02 |\n", - "| 0.00e+00 | 3253 | 1.30e+01 | -1.33e+00 |\n", - "| 0.00e+00 | 402 | 1.01e+01 | 7.13e-01 |\n", - "+----------------+-----------------+----------+---------------------+\n", - "\n", - "+-----------------------+----------+------------+------------+------------+\n", - "| info.SB | info.SOR | info.VarDP | info.AS_FS | info.AS_MQ |\n", - "+-----------------------+----------+------------+------------+------------+\n", - "| array | float64 | int32 | float64 | float64 |\n", - "+-----------------------+----------+------------+------------+------------+\n", - "| [134,83,109,52] | 9.81e-01 | 378 | 1.31e+01 | 6.00e+01 |\n", - "| [134,83,109,52] | 9.81e-01 | 378 | 0.00e+00 | 6.00e+01 |\n", - "| [3240,2211,2993,1962] | 7.34e-01 | 10404 | 0.00e+00 | 6.00e+01 |\n", - "| [63,66,76,46] | 1.28e+00 | 251 | 1.38e+01 | 6.00e+01 |\n", - "| [17,8,12,3] | 1.29e+00 | 40 | 3.13e+00 | 6.00e+01 |\n", - "+-----------------------+----------+------------+------------+------------+\n", - "\n", - "+-------------------+-----------------+--------------------+------------+\n", - "| info.AS_MQRankSum | info.AS_pab_max | info.AS_QUALapprox | info.AS_QD |\n", - "+-------------------+-----------------+--------------------+------------+\n", - "| float64 | float64 | int64 | float64 |\n", - "+-------------------+-----------------+--------------------+------------+\n", - "| 0.00e+00 | 2.94e-01 | 1895 | 1.06e+01 |\n", - "| 0.00e+00 | 9.04e-01 | 1967 | 9.88e+00 |\n", - "| 0.00e+00 | 1.00e+00 | 127480 | 1.23e+01 |\n", - "| 0.00e+00 | 1.00e+00 | 3253 | 1.30e+01 |\n", - "| 0.00e+00 | 1.54e-01 | 402 | 1.01e+01 |\n", - "+-------------------+-----------------+--------------------+------------+\n", - "\n", - "+------------------------+-----------------------+-------------+---------------+\n", - "| info.AS_ReadPosRankSum | info.AS_SB_TABLE | info.AS_SOR | info.AS_VarDP |\n", - "+------------------------+-----------------------+-------------+---------------+\n", - "| float64 | array | float64 | int32 |\n", - "+------------------------+-----------------------+-------------+---------------+\n", - "| 2.52e-01 | [134,83,56,19] | 1.42e+00 | 179 |\n", - "| -5.01e-01 | [134,83,53,33] | 6.81e-01 | 199 |\n", - "| 1.60e-02 | [3240,2211,2991,1961] | 7.34e-01 | 10383 |\n", - "| -1.33e+00 | [63,66,76,46] | 1.28e+00 | 251 |\n", - "| 7.13e-01 | [17,8,12,3] | 1.29e+00 | 40 |\n", - "+------------------------+-----------------------+-------------+---------------+\n", - "\n", - "+----------------+----------------------------+------------------------+\n", - "| info.singleton | info.transmitted_singleton | info.sibling_singleton |\n", - "+----------------+----------------------------+------------------------+\n", - "| bool | bool | bool |\n", - "+----------------+----------------------------+------------------------+\n", - "| False | NA | NA |\n", - "| True | False | False |\n", - "| False | NA | NA |\n", - "| False | NA | NA |\n", - "| True | False | False |\n", - "+----------------+----------------------------+------------------------+\n", - "\n", - "+-----------+------------+------------------+---------------+----------------+\n", - "| info.omni | info.mills | info.monoallelic | info.only_het | info.AS_VQSLOD |\n", - "+-----------+------------+------------------+---------------+----------------+\n", - "| bool | bool | bool | bool | float64 |\n", - "+-----------+------------+------------------+---------------+----------------+\n", - "| False | False | False | False | 5.27e+00 |\n", - "| False | False | False | False | 5.40e+00 |\n", - "| False | False | False | False | 8.85e+00 |\n", - "| False | False | False | False | 3.73e+00 |\n", - "| False | False | False | False | 4.72e+00 |\n", - "+-----------+------------+------------------+---------------+----------------+\n", - "\n", - "+-----------------------+\n", - "| info.inbreeding_coeff |\n", - "+-----------------------+\n", - "| float64 |\n", - "+-----------------------+\n", - "| -1.37e-06 |\n", - "| -6.84e-07 |\n", - "| -5.13e-05 |\n", - "| -1.37e-06 |\n", - "| -6.84e-07 |\n", - "+-----------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| info.vrs.VRS_Allele_IDs |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [\"ga4gh:VA.RY2FNHeS0QpJNM9lQpQ_pzX7Q27-MXmI\",\"ga4gh:VA.ZonDIhdwyghm7SuWkX... |\n", - "| [\"ga4gh:VA.RY2FNHeS0QpJNM9lQpQ_pzX7Q27-MXmI\",\"ga4gh:VA.Hp20SlFHUdM7jlWmVV... |\n", - "| [\"ga4gh:VA.SBSoboxxiC0V-mhjjHg2geRlf3I0Ib2d\",\"ga4gh:VA.GzUD_86k_EDbtk-R58... |\n", - "| [\"ga4gh:VA.cROnHWMnTSTuzMfVIhSezHexCPbFdF3z\",\"ga4gh:VA.WAkJ8ZSeVrsh6ThoH7... |\n", - "| [\"ga4gh:VA.gXv9EmAG-Lbw5gSNFxiBHWB_WT8twCnG\",\"ga4gh:VA.S-YUvVERFiE1cgkxu2... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+-----------------------+-----------------------+---------------------+\n", - "| info.vrs.VRS_Starts | info.vrs.VRS_Ends | info.vrs.VRS_States |\n", - "+-----------------------+-----------------------+---------------------+\n", - "| array | array | array |\n", - "+-----------------------+-----------------------+---------------------+\n", - "| [113410730,113410730] | [113410731,113410731] | [\"C\",\"A\"] |\n", - "| [113410730,113410730] | [113410731,113410731] | [\"C\",\"T\"] |\n", - "| [113410734,113410734] | [113410735,113410735] | [\"G\",\"A\"] |\n", - "| [113410737,113410737] | [113410738,113410738] | [\"G\",\"T\"] |\n", - "| [113410739,113410739] | [113410740,113410740] | [\"A\",\"G\"] |\n", - "+-----------------------+-----------------------+---------------------+\n", - "\n", - "+-------------------+-----------+--------+--------------------------------+\n", - "| vep.allele_string | vep.end | vep.id | vep.input |\n", - "+-------------------+-----------+--------+--------------------------------+\n", - "| str | int32 | str | str |\n", - "+-------------------+-----------+--------+--------------------------------+\n", - "| \"C/A\" | 113410731 | \".\" | \"chr11\t113410731\t.\tC\tA\t.\t.\tGT\" |\n", - "| \"C/T\" | 113410731 | \".\" | \"chr11\t113410731\t.\tC\tT\t.\t.\tGT\" |\n", - "| \"G/A\" | 113410735 | \".\" | \"chr11\t113410735\t.\tG\tA\t.\t.\tGT\" |\n", - "| \"G/T\" | 113410738 | \".\" | \"chr11\t113410738\t.\tG\tT\t.\t.\tGT\" |\n", - "| \"A/G\" | 113410740 | \".\" | \"chr11\t113410740\t.\tA\tG\t.\t.\tGT\" |\n", - "+-------------------+-----------+--------+--------------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| vep.intergenic_consequences |\n", - "+------------------------------------------------------------------------------+\n", - "| array, impact: st... |\n", - "+------------------------------------------------------------------------------+\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+-----------------------------+\n", - "| vep.most_severe_consequence |\n", - "+-----------------------------+\n", - "| str |\n", - "+-----------------------------+\n", - "| \"missense_variant\" |\n", - "| \"missense_variant\" |\n", - "| \"missense_variant\" |\n", - "| \"missense_variant\" |\n", - "| \"missense_variant\" |\n", - "+-----------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| vep.motif_feature_consequences |\n", - "+------------------------------------------------------------------------------+\n", - "| array, high_inf_p... |\n", - "+------------------------------------------------------------------------------+\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| vep.regulatory_feature_consequences |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+---------------------------------------------------------+\n", - "| histograms.qual_hists.gq_hist_all.bin_freq |\n", - "+---------------------------------------------------------+\n", - "| array |\n", - "+---------------------------------------------------------+\n", - "| [0,0,0,0,21,0,124,0,314262,0,99,0,416424,0,0,0,0,0,0,3] |\n", - "| [0,0,0,0,21,0,124,0,314262,0,99,0,416424,0,0,0,0,0,0,3] |\n", - "| [0,0,0,0,12,0,76,0,314251,0,32,0,416492,0,0,0,0,0,0,75] |\n", - "| [0,0,0,0,12,0,66,0,314321,0,31,0,416511,0,0,0,0,0,0,2] |\n", - "| [0,0,0,0,12,0,49,0,314328,0,18,0,416534,0,0,0,0,0,0,1] |\n", - "+---------------------------------------------------------+\n", - "\n", - "+---------------------------------------------+\n", - "| histograms.qual_hists.gq_hist_all.n_smaller |\n", - "+---------------------------------------------+\n", - "| int64 |\n", - "+---------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+---------------------------------------------+\n", - "\n", - "+--------------------------------------------+\n", - "| histograms.qual_hists.gq_hist_all.n_larger |\n", - "+--------------------------------------------+\n", - "| int64 |\n", - "+--------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+--------------------------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| histograms.qual_hists.dp_hist_all.bin_edges |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| histograms.qual_hists.dp_hist_all.bin_freq |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [0,0,98,374,11344,107362,344923,189028,36319,5607,2388,2759,3074,2931,295... |\n", - "| [0,0,98,374,11344,107362,344923,189028,36319,5607,2388,2759,3074,2931,295... |\n", - "| [0,0,65,332,11308,107353,344982,189073,36327,5607,2387,2756,3080,2935,295... |\n", - "| [0,0,57,319,11282,107355,345042,189122,36330,5605,2379,2756,3073,2932,295... |\n", - "| [0,0,49,301,11269,107358,345061,189138,36333,5605,2378,2755,3073,2932,295... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+---------------------------------------------+\n", - "| histograms.qual_hists.dp_hist_all.n_smaller |\n", - "+---------------------------------------------+\n", - "| int64 |\n", - "+---------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+---------------------------------------------+\n", - "\n", - "+--------------------------------------------+\n", - "| histograms.qual_hists.dp_hist_all.n_larger |\n", - "+--------------------------------------------+\n", - "| int64 |\n", - "+--------------------------------------------+\n", - "| 7715 |\n", - "| 7715 |\n", - "| 7717 |\n", - "| 7684 |\n", - "| 7683 |\n", - "+--------------------------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| histograms.qual_hists.gq_hist_alt.bin_edges |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+--------------------------------------------+\n", - "| histograms.qual_hists.gq_hist_alt.bin_freq |\n", - "+--------------------------------------------+\n", - "| array |\n", - "+--------------------------------------------+\n", - "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2] |\n", - "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1] |\n", - "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,75] |\n", - "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2] |\n", - "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1] |\n", - "+--------------------------------------------+\n", - "\n", - "+---------------------------------------------+\n", - "| histograms.qual_hists.gq_hist_alt.n_smaller |\n", - "+---------------------------------------------+\n", - "| int64 |\n", - "+---------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+---------------------------------------------+\n", - "\n", - "+--------------------------------------------+\n", - "| histograms.qual_hists.gq_hist_alt.n_larger |\n", - "+--------------------------------------------+\n", - "| int64 |\n", - "+--------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+--------------------------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| histograms.qual_hists.dp_hist_alt.bin_edges |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+--------------------------------------------+\n", - "| histograms.qual_hists.dp_hist_alt.bin_freq |\n", - "+--------------------------------------------+\n", - "| array |\n", - "+--------------------------------------------+\n", - "| [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,0,1,2,3,4,7,3,7,5,1,4,1,3,0,2] |\n", - "| [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0] |\n", - "+--------------------------------------------+\n", - "\n", - "+---------------------------------------------+\n", - "| histograms.qual_hists.dp_hist_alt.n_smaller |\n", - "+---------------------------------------------+\n", - "| int64 |\n", - "+---------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+---------------------------------------------+\n", - "\n", - "+--------------------------------------------+\n", - "| histograms.qual_hists.dp_hist_alt.n_larger |\n", - "+--------------------------------------------+\n", - "| int64 |\n", - "+--------------------------------------------+\n", - "| 1 |\n", - "| 0 |\n", - "| 32 |\n", - "| 1 |\n", - "| 0 |\n", - "+--------------------------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| histograms.qual_hists.ab_hist_alt.bin_edges |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", - "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", - "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", - "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", - "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+----------------------------------------------+\n", - "| histograms.qual_hists.ab_hist_alt.bin_freq |\n", - "+----------------------------------------------+\n", - "| array |\n", - "+----------------------------------------------+\n", - "| [0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,1,1,6,12,25,24,5,1,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "+----------------------------------------------+\n", - "\n", - "+---------------------------------------------+\n", - "| histograms.qual_hists.ab_hist_alt.n_smaller |\n", - "+---------------------------------------------+\n", - "| int64 |\n", - "+---------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+---------------------------------------------+\n", - "\n", - "+--------------------------------------------+\n", - "| histograms.qual_hists.ab_hist_alt.n_larger |\n", - "+--------------------------------------------+\n", - "| int64 |\n", - "+--------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+--------------------------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| histograms.raw_qual_hists.gq_hist_all.bin_edges |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+---------------------------------------------------------+\n", - "| histograms.raw_qual_hists.gq_hist_all.bin_freq |\n", - "+---------------------------------------------------------+\n", - "| array |\n", - "+---------------------------------------------------------+\n", - "| [7,0,0,0,28,0,124,0,314262,0,99,0,416424,0,0,0,0,0,0,3] |\n", - "| [7,0,0,0,28,0,124,0,314262,0,99,0,416424,0,0,0,0,0,0,3] |\n", - "| [6,0,1,0,14,0,76,0,314251,0,32,0,416492,0,0,0,0,0,0,75] |\n", - "| [3,0,0,0,13,0,66,0,314321,0,31,0,416511,0,0,0,0,0,0,2] |\n", - "| [4,0,0,0,13,0,49,0,314328,0,18,0,416534,0,0,0,0,0,0,1] |\n", - "+---------------------------------------------------------+\n", - "\n", - "+-------------------------------------------------+\n", - "| histograms.raw_qual_hists.gq_hist_all.n_smaller |\n", - "+-------------------------------------------------+\n", - "| int64 |\n", - "+-------------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+-------------------------------------------------+\n", - "\n", - "+------------------------------------------------+\n", - "| histograms.raw_qual_hists.gq_hist_all.n_larger |\n", - "+------------------------------------------------+\n", - "| int64 |\n", - "+------------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+------------------------------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| histograms.raw_qual_hists.dp_hist_all.bin_edges |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| histograms.raw_qual_hists.dp_hist_all.bin_freq |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [0,7,98,380,11345,107362,344923,189028,36319,5607,2388,2759,3074,2931,295... |\n", - "| [0,7,98,380,11345,107362,344923,189028,36319,5607,2388,2759,3074,2931,295... |\n", - "| [0,2,67,335,11310,107353,344982,189073,36327,5607,2387,2756,3080,2935,295... |\n", - "| [0,1,58,321,11282,107355,345042,189122,36330,5605,2379,2756,3073,2932,295... |\n", - "| [0,1,50,304,11269,107358,345061,189138,36333,5605,2378,2755,3073,2932,295... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+-------------------------------------------------+\n", - "| histograms.raw_qual_hists.dp_hist_all.n_smaller |\n", - "+-------------------------------------------------+\n", - "| int64 |\n", - "+-------------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+-------------------------------------------------+\n", - "\n", - "+------------------------------------------------+\n", - "| histograms.raw_qual_hists.dp_hist_all.n_larger |\n", - "+------------------------------------------------+\n", - "| int64 |\n", - "+------------------------------------------------+\n", - "| 7715 |\n", - "| 7715 |\n", - "| 7717 |\n", - "| 7684 |\n", - "| 7683 |\n", - "+------------------------------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| histograms.raw_qual_hists.gq_hist_alt.bin_edges |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+------------------------------------------------+\n", - "| histograms.raw_qual_hists.gq_hist_alt.bin_freq |\n", - "+------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------+\n", - "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2] |\n", - "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1] |\n", - "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,75] |\n", - "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2] |\n", - "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1] |\n", - "+------------------------------------------------+\n", - "\n", - "+-------------------------------------------------+\n", - "| histograms.raw_qual_hists.gq_hist_alt.n_smaller |\n", - "+-------------------------------------------------+\n", - "| int64 |\n", - "+-------------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+-------------------------------------------------+\n", - "\n", - "+------------------------------------------------+\n", - "| histograms.raw_qual_hists.gq_hist_alt.n_larger |\n", - "+------------------------------------------------+\n", - "| int64 |\n", - "+------------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+------------------------------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| histograms.raw_qual_hists.dp_hist_alt.bin_edges |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+------------------------------------------------+\n", - "| histograms.raw_qual_hists.dp_hist_alt.bin_freq |\n", - "+------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------+\n", - "| [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,0,1,2,3,4,7,3,7,5,1,4,1,3,0,2] |\n", - "| [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0] |\n", - "+------------------------------------------------+\n", - "\n", - "+-------------------------------------------------+\n", - "| histograms.raw_qual_hists.dp_hist_alt.n_smaller |\n", - "+-------------------------------------------------+\n", - "| int64 |\n", - "+-------------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+-------------------------------------------------+\n", - "\n", - "+------------------------------------------------+\n", - "| histograms.raw_qual_hists.dp_hist_alt.n_larger |\n", - "+------------------------------------------------+\n", - "| int64 |\n", - "+------------------------------------------------+\n", - "| 1 |\n", - "| 0 |\n", - "| 32 |\n", - "| 1 |\n", - "| 0 |\n", - "+------------------------------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| histograms.raw_qual_hists.ab_hist_alt.bin_edges |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", - "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", - "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", - "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", - "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+------------------------------------------------+\n", - "| histograms.raw_qual_hists.ab_hist_alt.bin_freq |\n", - "+------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------+\n", - "| [0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,1,1,6,12,25,24,5,1,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "+------------------------------------------------+\n", - "\n", - "+-------------------------------------------------+\n", - "| histograms.raw_qual_hists.ab_hist_alt.n_smaller |\n", - "+-------------------------------------------------+\n", - "| int64 |\n", - "+-------------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+-------------------------------------------------+\n", - "\n", - "+------------------------------------------------+\n", - "| histograms.raw_qual_hists.ab_hist_alt.n_larger |\n", - "+------------------------------------------------+\n", - "| int64 |\n", - "+------------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+------------------------------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| histograms.age_hists.age_hist_het.bin_edges |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", - "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", - "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", - "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", - "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+--------------------------------------------+\n", - "| histograms.age_hists.age_hist_het.bin_freq |\n", - "+--------------------------------------------+\n", - "| array |\n", - "+--------------------------------------------+\n", - "| [0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,1,0,0,0,0,0] |\n", - "| [1,0,0,2,3,3,8,4,0,0] |\n", - "| [0,0,0,1,0,0,0,1,0,0] |\n", - "| [0,0,0,0,0,0,0,0,0,0] |\n", - "+--------------------------------------------+\n", - "\n", - "+---------------------------------------------+\n", - "| histograms.age_hists.age_hist_het.n_smaller |\n", - "+---------------------------------------------+\n", - "| int64 |\n", - "+---------------------------------------------+\n", - "| 1 |\n", - "| 0 |\n", - "| 3 |\n", - "| 0 |\n", - "| 0 |\n", - "+---------------------------------------------+\n", - "\n", - "+--------------------------------------------+\n", - "| histograms.age_hists.age_hist_het.n_larger |\n", - "+--------------------------------------------+\n", - "| int64 |\n", - "+--------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 1 |\n", - "| 0 |\n", - "| 0 |\n", - "+--------------------------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| histograms.age_hists.age_hist_hom.bin_edges |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", - "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", - "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", - "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", - "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+--------------------------------------------+\n", - "| histograms.age_hists.age_hist_hom.bin_freq |\n", - "+--------------------------------------------+\n", - "| array |\n", - "+--------------------------------------------+\n", - "| [0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,0,0,0,0,0] |\n", - "+--------------------------------------------+\n", - "\n", - "+---------------------------------------------+\n", - "| histograms.age_hists.age_hist_hom.n_smaller |\n", - "+---------------------------------------------+\n", - "| int64 |\n", - "+---------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+---------------------------------------------+\n", - "\n", - "+--------------------------------------------+---------------------------------+\n", - "| histograms.age_hists.age_hist_hom.n_larger | in_silico_predictors.cadd.phred |\n", - "+--------------------------------------------+---------------------------------+\n", - "| int64 | float32 |\n", - "+--------------------------------------------+---------------------------------+\n", - "| 0 | 2.77e+01 |\n", - "| 0 | 2.75e+01 |\n", - "| 0 | 2.28e+01 |\n", - "| 0 | 2.53e+01 |\n", - "| 0 | 2.72e+01 |\n", - "+--------------------------------------------+---------------------------------+\n", - "\n", - "+-------------------------------------+--------------------------------+\n", - "| in_silico_predictors.cadd.raw_score | in_silico_predictors.revel_max |\n", - "+-------------------------------------+--------------------------------+\n", - "| float32 | float64 |\n", - "+-------------------------------------+--------------------------------+\n", - "| 4.10e+00 | 6.02e-01 |\n", - "| 4.07e+00 | 7.19e-01 |\n", - "| 2.69e+00 | 2.67e-01 |\n", - "| 3.67e+00 | 2.65e-01 |\n", - "| 4.02e+00 | 6.41e-01 |\n", - "+-------------------------------------+--------------------------------+\n", - "\n", - "+--------------------------------------+\n", - "| in_silico_predictors.spliceai_ds_max |\n", - "+--------------------------------------+\n", - "| float32 |\n", - "+--------------------------------------+\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "+--------------------------------------+\n", - "\n", - "+------------------------------------------+-----------------------------+\n", - "| in_silico_predictors.pangolin_largest_ds | in_silico_predictors.phylop |\n", - "+------------------------------------------+-----------------------------+\n", - "| float64 | float64 |\n", - "+------------------------------------------+-----------------------------+\n", - "| 0.00e+00 | 8.78e+00 |\n", - "| 2.00e-02 | 8.78e+00 |\n", - "| 1.00e-02 | 8.67e+00 |\n", - "| 1.00e-02 | 4.85e+00 |\n", - "| 3.00e-02 | 6.25e+00 |\n", - "+------------------------------------------+-----------------------------+\n", - "\n", - "+-------------------------------+-----------------------------------+\n", - "| in_silico_predictors.sift_max | in_silico_predictors.polyphen_max |\n", - "+-------------------------------+-----------------------------------+\n", - "| float64 | float64 |\n", - "+-------------------------------+-----------------------------------+\n", - "| 0.00e+00 | 9.89e-01 |\n", - "| 0.00e+00 | 9.89e-01 |\n", - "| 1.30e-01 | 1.18e-01 |\n", - "| 3.00e-02 | 9.36e-01 |\n", - "| 0.00e+00 | 5.08e-01 |\n", - "+-------------------------------+-----------------------------------+\n", - "showing top 5 rows" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "The total number of missense variants passing filters in DRD2 is: 409\n" - ] - } - ], + "outputs": [], "source": [ "var_ht = filter_by_consequence_category(missense=True, ht=drd2_ht)\n", "var_ht.show(5)\n", @@ -3785,1079 +609,10 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": null, "id": "b7e4368b", "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "
histograms
grpmax
fafmax
info
qual_hists
raw_qual_hists
age_hists
in_silico_predictors
gnomad
non_ukb
gnomad
non_ukb
vrs
vep
vqsr_results
region_flags
allele_info
gq_hist_all
dp_hist_all
gq_hist_alt
dp_hist_alt
ab_hist_alt
gq_hist_all
dp_hist_all
gq_hist_alt
dp_hist_alt
ab_hist_alt
age_hist_het
age_hist_hom
cadd
locus
alleles
freq
AC
AF
AN
homozygote_count
gen_anc
AC
AF
AN
homozygote_count
gen_anc
faf
faf95_max
faf95_max_gen_anc
faf99_max
faf99_max_gen_anc
faf95_max
faf95_max_gen_anc
faf99_max
faf99_max_gen_anc
a_index
was_split
rsid
filters
FS
MQ
MQRankSum
QUALapprox
QD
ReadPosRankSum
SB
SOR
VarDP
AS_FS
AS_MQ
AS_MQRankSum
AS_pab_max
AS_QUALapprox
AS_QD
AS_ReadPosRankSum
AS_SB_TABLE
AS_SOR
AS_VarDP
singleton
transmitted_singleton
sibling_singleton
omni
mills
monoallelic
only_het
AS_VQSLOD
inbreeding_coeff
VRS_Allele_IDs
VRS_Starts
VRS_Ends
VRS_States
allele_string
end
id
input
intergenic_consequences
most_severe_consequence
motif_feature_consequences
regulatory_feature_consequences
seq_region_name
start
strand
transcript_consequences
variant_class
AS_VQSLOD
AS_culprit
positive_train_site
negative_train_site
non_par
lcr
segdup
fail_interval_qc
outside_ukb_capture_region
outside_broad_capture_region
variant_type
n_alt_alleles
has_star
allele_type
was_mixed
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
phred
raw_score
revel_max
spliceai_ds_max
pangolin_largest_ds
phylop
sift_max
polyphen_max
locus<GRCh38>array<str>array<struct{AC: int32, AF: float64, AN: int32, homozygote_count: int64}>int32float64int32int64strint32float64int32int64strarray<struct{faf95: float64, faf99: float64}>float64strfloat64strfloat64strfloat64strint32boolset<str>set<str>float64float64float64int64float64float64array<int32>float64int32float64float64float64float64int64float64float64array<int32>float64int32boolboolboolboolboolboolboolfloat64float64array<str>array<int32>array<int32>array<str>strint32strstrarray<struct{allele_num: int32, consequence_terms: array<str>, impact: str, variant_allele: str}>strarray<struct{allele_num: int32, consequence_terms: array<str>, high_inf_pos: str, impact: str, motif_feature_id: str, motif_name: str, motif_pos: int32, motif_score_change: float64, transcription_factors: array<str>, strand: int32, variant_allele: str}>array<struct{allele_num: int32, biotype: str, consequence_terms: array<str>, impact: str, regulatory_feature_id: str, variant_allele: str}>strint32int32array<struct{allele_num: int32, amino_acids: str, appris: str, biotype: str, canonical: int32, ccds: str, cdna_start: int32, cdna_end: int32, cds_end: int32, cds_start: int32, codons: str, consequence_terms: array<str>, distance: int32, domains: array<struct{db: str, name: str}>, exon: str, flags: str, gene_id: str, gene_pheno: int32, gene_symbol: str, gene_symbol_source: str, hgnc_id: str, hgvsc: str, hgvsp: str, hgvs_offset: int32, impact: str, intron: str, lof: str, lof_flags: str, lof_filter: str, lof_info: str, mane_select: str, mane_plus_clinical: str, mirna: array<str>, protein_end: int32, protein_start: int32, protein_id: str, source: str, strand: int32, transcript_id: str, tsl: int32, uniprot_isoform: array<str>, variant_allele: str}>strfloat64strboolboolboolboolboolboolboolboolstrint32boolstrboolarray<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64float32float32float64float32float64float64float64float64
chr11:113410736["G","A"][(15,1.03e-05,1461882,0),(15,1.03e-05,1461894,0),(0,0.00e+00,33480,0),(0,0.00e+00,44724,0),(0,0.00e+00,26136,0),(0,0.00e+00,39700,0),(0,0.00e+00,53420,0),(0,0.00e+00,5762,0),(15,1.35e-05,1112010,0),(0,0.00e+00,60396,0),(0,0.00e+00,86254,0),(10,1.36e-05,734642,0),(5,6.88e-06,727240,0),(0,0.00e+00,19326,0),(0,0.00e+00,14154,0),(0,0.00e+00,25690,0),(0,0.00e+00,19034,0),(0,0.00e+00,12636,0),(0,0.00e+00,13500,0),(0,0.00e+00,20712,0),(0,0.00e+00,18988,0),(0,0.00e+00,27648,0),(0,0.00e+00,25772,0),(0,0.00e+00,2506,0),(0,0.00e+00,3256,0),(10,1.75e-05,572288,0),(5,9.26e-06,539722,0),(0,0.00e+00,31800,0),(0,0.00e+00,28596,0),(0,0.00e+00,22036,0),(0,0.00e+00,64218,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,1998,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,3996,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5762,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26134,0),(0,0.00e+00,26136,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33478,0),(0,0.00e+00,33480,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,39698,0),(0,0.00e+00,39700,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,39998,0),(0,0.00e+00,40000,0),(0,0.00e+00,44724,0),(0,0.00e+00,44724,0),(0,0.00e+00,44724,0),(0,0.00e+00,44724,0),(0,0.00e+00,44722,0),(0,0.00e+00,44724,0),(0,0.00e+00,53420,0),(0,0.00e+00,53420,0),(0,0.00e+00,53420,0),(0,0.00e+00,53418,0),(0,0.00e+00,53420,0),(0,0.00e+00,60396,0),(0,0.00e+00,60396,0),(0,0.00e+00,60394,0),(0,0.00e+00,60396,0),(1,1.16e-05,86258,0),(0,0.00e+00,86254,0),(0,0.00e+00,86258,0),(2,2.00e-05,100000,0),(1,1.00e-05,100000,0),(2,1.00e-05,200000,0),(2,1.00e-05,200000,0),(7,1.75e-05,400000,0),(4,1.00e-05,400000,0),(14,1.40e-05,1000000,0),(10,1.00e-05,999994,0),(15,1.35e-05,1112010,0),(12,1.08e-05,1112006,0),(1,1.59e-06,628772,0),(1,1.59e-06,628784,0),(0,0.00e+00,17694,0),(0,0.00e+00,43740,0),(0,0.00e+00,20984,0),(0,0.00e+00,36070,0),(0,0.00e+00,53144,0),(0,0.00e+00,4142,0),(1,2.86e-06,350106,0),(0,0.00e+00,33098,0),(0,0.00e+00,69794,0),(1,3.49e-06,286246,0),(0,0.00e+00,342526,0),(0,0.00e+00,10286,0),(0,0.00e+00,7408,0),(0,0.00e+00,25040,0),(0,0.00e+00,18700,0),(0,0.00e+00,9838,0),(0,0.00e+00,11146,0),(0,0.00e+00,18298,0),(0,0.00e+00,17772,0),(0,0.00e+00,27398,0),(0,0.00e+00,25746,0),(0,0.00e+00,1916,0),(0,0.00e+00,2226,0),(1,6.16e-06,162220,0),(0,0.00e+00,187886,0),(0,0.00e+00,16752,0),(0,0.00e+00,16346,0),(0,0.00e+00,14498,0),(0,0.00e+00,55296,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,1998,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,3994,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4142,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20982,0),(0,0.00e+00,20984,0),(0,0.00e+00,33098,0),(0,0.00e+00,33098,0),(0,0.00e+00,33098,0),(1,3.02e-05,33098,0),(0,0.00e+00,33098,0),(0,0.00e+00,33096,0),(0,0.00e+00,33098,0),(0,0.00e+00,36070,0),(0,0.00e+00,36070,0),(0,0.00e+00,36070,0),(1,2.77e-05,36070,0),(0,0.00e+00,36068,0),(0,0.00e+00,36070,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(1,2.50e-05,40000,0),(0,0.00e+00,39998,0),(0,0.00e+00,40000,0),(0,0.00e+00,43740,0),(0,0.00e+00,43740,0),(1,2.29e-05,43740,0),(0,0.00e+00,43738,0),(1,2.29e-05,43740,0),(0,0.00e+00,53144,0),(1,1.88e-05,53144,0),(0,0.00e+00,53142,0),(1,1.88e-05,53144,0),(1,1.43e-05,69798,0),(0,0.00e+00,69794,0),(1,1.43e-05,69798,0),(1,1.00e-05,100000,0),(1,1.00e-05,100000,0),(1,5.00e-06,200000,0),(1,5.00e-06,199998,0),(1,2.86e-06,350106,0),(1,2.86e-06,350104,0),(1,2.50e-06,399994,0)]151.35e-0511120100"nfe"12.86e-063501060"nfe"[(6.16e-06,4.89e-06),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(8.10e-06,6.42e-06),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]8.10e-06"nfe"6.42e-06"nfe"NANANANA1True{"rs1159504221"}{}5.49e-016.00e+010.00e+00123071.16e+017.40e-02[386,195,316,166]6.55e-0110639.64e-166.00e+010.00e+009.11e-01118991.17e+019.70e-02[386,195,304,161]6.47e-011013FalseNANAFalseFalseFalseFalse7.50e+00-1.03e-05["ga4gh:VA.QVbOetW6APM1_3jfGLLwArt4GfwgT6jE","ga4gh:VA.OXPDvbuulFZ9CSk4XtIFat1UOKdMachQ"][113410735,113410735][113410736,113410736]["G","A"]"G/A"113410736".""chr11\t113410736\t.\tG\tA\t.\t.\tGT"NA"synonymous_variant"NANA"chr11"1134107361[(1,"L",NA,"protein_coding",NA,"CCDS8362.1",1312,1312,1236,1236,"ctC/ctT",["synonymous_variant"],NA,[("Gene3D","1"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321")],"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000346454.7:c.1236C>T","ENSP00000278597.5:p.Leu412=",NA,"LOW",NA,NA,NA,NA,NA,NA,NA,NA,412,412,"ENSP00000278597","Ensembl",-1,"ENST00000346454",1,["P14416-2"],"A"),(1,"L","P2","protein_coding",1,"CCDS8361.1",1677,1677,1323,1323,"ctC/ctT",["synonymous_variant"],NA,[("Gene3D","1"),("ENSP_mappings","5aer"),("ENSP_mappings","5aer"),("ENSP_mappings","6cm4"),("ENSP_mappings","6luq"),("ENSP_mappings","6vms"),("ENSP_mappings","7dfp"),("ENSP_mappings","7jvr"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321")],"8/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000362072.8:c.1323C>T","ENSP00000354859.3:p.Leu441=",NA,"LOW",NA,NA,NA,NA,NA,"NM_000795.4",NA,NA,441,441,"ENSP00000354859","Ensembl",-1,"ENST00000362072",1,["P14416-1"],"A"),(1,NA,NA,"processed_transcript",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],3639,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000535984",3,NA,"A"),(1,"L","A1","protein_coding",NA,NA,1329,1329,1329,1329,"ctC/ctT",["synonymous_variant"],NA,[("Gene3D","1"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321")],"8/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000538967.5:c.1329C>T","ENSP00000438215.1:p.Leu443=",NA,"LOW",NA,NA,NA,NA,NA,NA,NA,NA,443,443,"ENSP00000438215","Ensembl",-1,"ENST00000538967",5,["P14416-3"],"A"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],4558,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000539420",3,NA,"A"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],3128,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000540600",1,NA,"A"),(1,"L","P2","protein_coding",NA,"CCDS8361.1",1644,1644,1323,1323,"ctC/ctT",["synonymous_variant"],NA,[("Gene3D","1"),("ENSP_mappings","5aer"),("ENSP_mappings","5aer"),("ENSP_mappings","6cm4"),("ENSP_mappings","6luq"),("ENSP_mappings","6vms"),("ENSP_mappings","7dfp"),("ENSP_mappings","7jvr"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321")],"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000542968.5:c.1323C>T","ENSP00000442172.1:p.Leu441=",NA,"LOW",NA,NA,NA,NA,NA,NA,NA,NA,441,441,"ENSP00000442172","Ensembl",-1,"ENST00000542968",1,["P14416-1"],"A"),(1,"L","A1","protein_coding",NA,NA,1353,1353,1320,1320,"ctC/ctT",["synonymous_variant"],NA,[("Gene3D","1"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321")],"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000544518.5:c.1320C>T","ENSP00000441068.1:p.Leu440=",NA,"LOW",NA,NA,NA,NA,NA,NA,NA,NA,440,440,"ENSP00000441068","Ensembl",-1,"ENST00000544518",1,NA,"A"),(1,NA,NA,"lncRNA",1,NA,NA,NA,NA,NA,NA,["intron_variant","non_coding_transcript_variant"],NA,NA,NA,NA,"ENSG00000256757",NA,NA,NA,NA,"ENST00000546284.1:n.245-811G>A",NA,NA,"MODIFIER","2/3",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",1,"ENST00000546284",3,NA,"A"),(1,"L",NA,"protein_coding",1,NA,1677,1677,1323,1323,"ctC/ctT",["synonymous_variant"],NA,NA,"8/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_000795.4:c.1323C>T","NP_000786.1:p.Leu441=",NA,"LOW",NA,NA,NA,NA,NA,"ENST00000362072.8",NA,NA,441,441,"NP_000786.1","RefSeq",-1,"NM_000795.4",NA,NA,"A"),(1,"L",NA,"protein_coding",NA,NA,1590,1590,1236,1236,"ctC/ctT",["synonymous_variant"],NA,NA,"7/7",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_016574.4:c.1236C>T","NP_057658.2:p.Leu412=",NA,"LOW",NA,NA,NA,NA,NA,NA,NA,NA,412,412,"NP_057658.2","RefSeq",-1,"NM_016574.4",NA,NA,"A"),(1,"L",NA,"protein_coding",NA,NA,1405,1405,1323,1323,"ctC/ctT",["synonymous_variant"],NA,NA,"8/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","XM_017017296.2:c.1323C>T","XP_016872785.1:p.Leu441=",NA,"LOW",NA,NA,NA,NA,NA,NA,NA,NA,441,441,"XP_016872785.1","RefSeq",-1,"XM_017017296.2",NA,NA,"A")]"SNV"7.50e+00"AS_MQ"FalseFalseFalseFalseFalseTrueFalseFalse"multi-snv"2False"snv"False[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,8,0,71,0,314313,0,37,0,416496,0,0,0,0,0,0,16]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,61,328,11304,107355,345020,189098,36329,5607,2382,2757,3074,2931,2955,2914,2974,2923,2564,2680]07685[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,15]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,1,3,1,2,3,1,0,1,0,1,1,0,0]01[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,1,0,0,1,1,11,1,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][5,0,0,0,9,0,71,0,314313,0,37,0,416496,0,0,0,0,0,0,16]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,1,62,330,11305,107356,345020,189098,36329,5607,2382,2757,3074,2931,2955,2914,2974,2923,2564,2680]07685[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,15]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,1,3,1,2,3,1,0,1,0,1,1,0,0]01[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,1,0,0,1,1,11,1,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,1,2,4,2,4,1,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]003.44e+002.28e-01NA0.00e+001.00e-02-2.55e-01NANA
chr11:113410736["G","T"][(1,6.84e-07,1461882,0),(1,6.84e-07,1461894,0),(0,0.00e+00,33480,0),(0,0.00e+00,44724,0),(0,0.00e+00,26136,0),(0,0.00e+00,39700,0),(0,0.00e+00,53420,0),(0,0.00e+00,5762,0),(1,8.99e-07,1112010,0),(0,0.00e+00,60396,0),(0,0.00e+00,86254,0),(0,0.00e+00,734642,0),(1,1.38e-06,727240,0),(0,0.00e+00,19326,0),(0,0.00e+00,14154,0),(0,0.00e+00,25690,0),(0,0.00e+00,19034,0),(0,0.00e+00,12636,0),(0,0.00e+00,13500,0),(0,0.00e+00,20712,0),(0,0.00e+00,18988,0),(0,0.00e+00,27648,0),(0,0.00e+00,25772,0),(0,0.00e+00,2506,0),(0,0.00e+00,3256,0),(0,0.00e+00,572288,0),(1,1.85e-06,539722,0),(0,0.00e+00,31800,0),(0,0.00e+00,28596,0),(0,0.00e+00,22036,0),(0,0.00e+00,64218,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,1998,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,3996,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5762,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26134,0),(0,0.00e+00,26136,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33478,0),(0,0.00e+00,33480,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,39698,0),(0,0.00e+00,39700,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,39998,0),(0,0.00e+00,40000,0),(0,0.00e+00,44724,0),(0,0.00e+00,44724,0),(0,0.00e+00,44724,0),(0,0.00e+00,44724,0),(0,0.00e+00,44722,0),(0,0.00e+00,44724,0),(0,0.00e+00,53420,0),(0,0.00e+00,53420,0),(0,0.00e+00,53420,0),(0,0.00e+00,53418,0),(0,0.00e+00,53420,0),(0,0.00e+00,60396,0),(0,0.00e+00,60396,0),(0,0.00e+00,60394,0),(0,0.00e+00,60396,0),(0,0.00e+00,86258,0),(0,0.00e+00,86254,0),(0,0.00e+00,86258,0),(0,0.00e+00,100000,0),(0,0.00e+00,100000,0),(0,0.00e+00,200000,0),(0,0.00e+00,200000,0),(1,2.50e-06,400000,0),(1,2.50e-06,400000,0),(1,1.00e-06,1000000,0),(1,1.00e-06,999994,0),(1,8.99e-07,1112010,0),(1,8.99e-07,1112006,0),(0,0.00e+00,628772,0),(0,0.00e+00,628784,0),(0,0.00e+00,17694,0),(0,0.00e+00,43740,0),(0,0.00e+00,20984,0),(0,0.00e+00,36070,0),(0,0.00e+00,53144,0),(0,0.00e+00,4142,0),(0,0.00e+00,350106,0),(0,0.00e+00,33098,0),(0,0.00e+00,69794,0),(0,0.00e+00,286246,0),(0,0.00e+00,342526,0),(0,0.00e+00,10286,0),(0,0.00e+00,7408,0),(0,0.00e+00,25040,0),(0,0.00e+00,18700,0),(0,0.00e+00,9838,0),(0,0.00e+00,11146,0),(0,0.00e+00,18298,0),(0,0.00e+00,17772,0),(0,0.00e+00,27398,0),(0,0.00e+00,25746,0),(0,0.00e+00,1916,0),(0,0.00e+00,2226,0),(0,0.00e+00,162220,0),(0,0.00e+00,187886,0),(0,0.00e+00,16752,0),(0,0.00e+00,16346,0),(0,0.00e+00,14498,0),(0,0.00e+00,55296,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,1998,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,3994,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4142,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20982,0),(0,0.00e+00,20984,0),(0,0.00e+00,33098,0),(0,0.00e+00,33098,0),(0,0.00e+00,33098,0),(0,0.00e+00,33098,0),(0,0.00e+00,33098,0),(0,0.00e+00,33096,0),(0,0.00e+00,33098,0),(0,0.00e+00,36070,0),(0,0.00e+00,36070,0),(0,0.00e+00,36070,0),(0,0.00e+00,36070,0),(0,0.00e+00,36068,0),(0,0.00e+00,36070,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,39998,0),(0,0.00e+00,40000,0),(0,0.00e+00,43740,0),(0,0.00e+00,43740,0),(0,0.00e+00,43740,0),(0,0.00e+00,43738,0),(0,0.00e+00,43740,0),(0,0.00e+00,53144,0),(0,0.00e+00,53144,0),(0,0.00e+00,53142,0),(0,0.00e+00,53144,0),(0,0.00e+00,69798,0),(0,0.00e+00,69794,0),(0,0.00e+00,69798,0),(0,0.00e+00,100000,0),(0,0.00e+00,100000,0),(0,0.00e+00,200000,0),(0,0.00e+00,199998,0),(0,0.00e+00,350106,0),(0,0.00e+00,350104,0),(0,0.00e+00,399994,0)]18.99e-0711120100"nfe"NANANANANA[(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]NANANANANANANANA2TrueNA{}5.49e-016.00e+010.00e+00123071.16e+017.40e-02[386,195,316,166]6.55e-0110639.64e-166.00e+010.00e+003.28e-024088.16e+00-9.23e-01[386,195,12,5]7.90e-0150TrueFalseFalseFalseFalseFalseFalse5.00e+00-6.84e-07["ga4gh:VA.QVbOetW6APM1_3jfGLLwArt4GfwgT6jE","ga4gh:VA.4qhkDG1qrfqiD2TeOA6LYLsi4UGWF19l"][113410735,113410735][113410736,113410736]["G","T"]"G/T"113410736".""chr11\t113410736\t.\tG\tT\t.\t.\tGT"NA"synonymous_variant"NANA"chr11"1134107361[(1,"L",NA,"protein_coding",NA,"CCDS8362.1",1312,1312,1236,1236,"ctC/ctA",["synonymous_variant"],NA,[("Gene3D","1"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321")],"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000346454.7:c.1236C>A","ENSP00000278597.5:p.Leu412=",NA,"LOW",NA,NA,NA,NA,NA,NA,NA,NA,412,412,"ENSP00000278597","Ensembl",-1,"ENST00000346454",1,["P14416-2"],"T"),(1,"L","P2","protein_coding",1,"CCDS8361.1",1677,1677,1323,1323,"ctC/ctA",["synonymous_variant"],NA,[("Gene3D","1"),("ENSP_mappings","5aer"),("ENSP_mappings","5aer"),("ENSP_mappings","6cm4"),("ENSP_mappings","6luq"),("ENSP_mappings","6vms"),("ENSP_mappings","7dfp"),("ENSP_mappings","7jvr"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321")],"8/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000362072.8:c.1323C>A","ENSP00000354859.3:p.Leu441=",NA,"LOW",NA,NA,NA,NA,NA,"NM_000795.4",NA,NA,441,441,"ENSP00000354859","Ensembl",-1,"ENST00000362072",1,["P14416-1"],"T"),(1,NA,NA,"processed_transcript",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],3639,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000535984",3,NA,"T"),(1,"L","A1","protein_coding",NA,NA,1329,1329,1329,1329,"ctC/ctA",["synonymous_variant"],NA,[("Gene3D","1"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321")],"8/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000538967.5:c.1329C>A","ENSP00000438215.1:p.Leu443=",NA,"LOW",NA,NA,NA,NA,NA,NA,NA,NA,443,443,"ENSP00000438215","Ensembl",-1,"ENST00000538967",5,["P14416-3"],"T"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],4558,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000539420",3,NA,"T"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],3128,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000540600",1,NA,"T"),(1,"L","P2","protein_coding",NA,"CCDS8361.1",1644,1644,1323,1323,"ctC/ctA",["synonymous_variant"],NA,[("Gene3D","1"),("ENSP_mappings","5aer"),("ENSP_mappings","5aer"),("ENSP_mappings","6cm4"),("ENSP_mappings","6luq"),("ENSP_mappings","6vms"),("ENSP_mappings","7dfp"),("ENSP_mappings","7jvr"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321")],"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000542968.5:c.1323C>A","ENSP00000442172.1:p.Leu441=",NA,"LOW",NA,NA,NA,NA,NA,NA,NA,NA,441,441,"ENSP00000442172","Ensembl",-1,"ENST00000542968",1,["P14416-1"],"T"),(1,"L","A1","protein_coding",NA,NA,1353,1353,1320,1320,"ctC/ctA",["synonymous_variant"],NA,[("Gene3D","1"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321")],"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000544518.5:c.1320C>A","ENSP00000441068.1:p.Leu440=",NA,"LOW",NA,NA,NA,NA,NA,NA,NA,NA,440,440,"ENSP00000441068","Ensembl",-1,"ENST00000544518",1,NA,"T"),(1,NA,NA,"lncRNA",1,NA,NA,NA,NA,NA,NA,["intron_variant","non_coding_transcript_variant"],NA,NA,NA,NA,"ENSG00000256757",NA,NA,NA,NA,"ENST00000546284.1:n.245-811G>T",NA,NA,"MODIFIER","2/3",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",1,"ENST00000546284",3,NA,"T"),(1,"L",NA,"protein_coding",1,NA,1677,1677,1323,1323,"ctC/ctA",["synonymous_variant"],NA,NA,"8/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_000795.4:c.1323C>A","NP_000786.1:p.Leu441=",NA,"LOW",NA,NA,NA,NA,NA,"ENST00000362072.8",NA,NA,441,441,"NP_000786.1","RefSeq",-1,"NM_000795.4",NA,NA,"T"),(1,"L",NA,"protein_coding",NA,NA,1590,1590,1236,1236,"ctC/ctA",["synonymous_variant"],NA,NA,"7/7",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_016574.4:c.1236C>A","NP_057658.2:p.Leu412=",NA,"LOW",NA,NA,NA,NA,NA,NA,NA,NA,412,412,"NP_057658.2","RefSeq",-1,"NM_016574.4",NA,NA,"T"),(1,"L",NA,"protein_coding",NA,NA,1405,1405,1323,1323,"ctC/ctA",["synonymous_variant"],NA,NA,"8/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","XM_017017296.2:c.1323C>A","XP_016872785.1:p.Leu441=",NA,"LOW",NA,NA,NA,NA,NA,NA,NA,NA,441,441,"XP_016872785.1","RefSeq",-1,"XM_017017296.2",NA,NA,"T")]"SNV"5.00e+00"AS_MQ"FalseFalseFalseFalseFalseTrueFalseFalse"multi-snv"2False"snv"False[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,8,0,71,0,314313,0,37,0,416496,0,0,0,0,0,0,16]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,61,328,11304,107355,345020,189098,36329,5607,2382,2757,3074,2931,2955,2914,2974,2923,2564,2680]07685[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][5,0,0,0,9,0,71,0,314313,0,37,0,416496,0,0,0,0,0,0,16]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,1,62,330,11305,107356,345020,189098,36329,5607,2382,2757,3074,2931,2955,2914,2974,2923,2564,2680]07685[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,1,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]002.96e+001.86e-01NA0.00e+003.00e-02-2.55e-01NANA
chr11:113410739["G","A"][(1,6.84e-07,1461882,0),(1,6.84e-07,1461894,0),(0,0.00e+00,33478,0),(0,0.00e+00,44724,0),(0,0.00e+00,26136,0),(0,0.00e+00,39700,0),(0,0.00e+00,53418,0),(0,0.00e+00,5764,0),(0,0.00e+00,1112010,0),(1,1.66e-05,60396,0),(0,0.00e+00,86256,0),(1,1.36e-06,734642,0),(0,0.00e+00,727240,0),(0,0.00e+00,19326,0),(0,0.00e+00,14152,0),(0,0.00e+00,25690,0),(0,0.00e+00,19034,0),(0,0.00e+00,12636,0),(0,0.00e+00,13500,0),(0,0.00e+00,20712,0),(0,0.00e+00,18988,0),(0,0.00e+00,27646,0),(0,0.00e+00,25772,0),(0,0.00e+00,2504,0),(0,0.00e+00,3260,0),(0,0.00e+00,572288,0),(0,0.00e+00,539722,0),(1,3.14e-05,31800,0),(0,0.00e+00,28596,0),(0,0.00e+00,22040,0),(0,0.00e+00,64216,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,3998,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5764,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,19998,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,26134,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,33478,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33478,0),(0,0.00e+00,33480,0),(1,2.99e-05,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,39698,0),(0,0.00e+00,39700,0),(1,2.52e-05,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,40000,0),(0,0.00e+00,39998,0),(0,0.00e+00,40000,0),(1,2.50e-05,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,44724,0),(0,0.00e+00,44722,0),(0,0.00e+00,44724,0),(1,2.24e-05,44724,0),(0,0.00e+00,44724,0),(0,0.00e+00,44724,0),(0,0.00e+00,53418,0),(0,0.00e+00,53420,0),(1,1.87e-05,53420,0),(0,0.00e+00,53420,0),(0,0.00e+00,53420,0),(0,0.00e+00,60396,0),(1,1.66e-05,60396,0),(0,0.00e+00,60396,0),(0,0.00e+00,60396,0),(0,0.00e+00,86258,0),(0,0.00e+00,86256,0),(0,0.00e+00,86258,0),(0,0.00e+00,100000,0),(0,0.00e+00,100000,0),(0,0.00e+00,200000,0),(0,0.00e+00,200000,0),(0,0.00e+00,400000,0),(0,0.00e+00,400000,0),(0,0.00e+00,1000000,0),(1,1.00e-06,999994,0),(0,0.00e+00,1112010,0),(1,8.99e-07,1112006,0),(1,1.59e-06,628772,0),(1,1.59e-06,628784,0),(0,0.00e+00,17692,0),(0,0.00e+00,43740,0),(0,0.00e+00,20984,0),(0,0.00e+00,36070,0),(0,0.00e+00,53142,0),(0,0.00e+00,4144,0),(0,0.00e+00,350106,0),(1,3.02e-05,33098,0),(0,0.00e+00,69796,0),(1,3.49e-06,286246,0),(0,0.00e+00,342526,0),(0,0.00e+00,10286,0),(0,0.00e+00,7406,0),(0,0.00e+00,25040,0),(0,0.00e+00,18700,0),(0,0.00e+00,9838,0),(0,0.00e+00,11146,0),(0,0.00e+00,18298,0),(0,0.00e+00,17772,0),(0,0.00e+00,27396,0),(0,0.00e+00,25746,0),(0,0.00e+00,1914,0),(0,0.00e+00,2230,0),(0,0.00e+00,162220,0),(0,0.00e+00,187886,0),(1,5.97e-05,16752,0),(0,0.00e+00,16346,0),(0,0.00e+00,14502,0),(0,0.00e+00,55294,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,1998,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,3996,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4144,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,9998,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,17692,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(1,5.00e-05,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(1,4.77e-05,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,33098,0),(0,0.00e+00,33098,0),(0,0.00e+00,33096,0),(0,0.00e+00,33098,0),(1,3.02e-05,33098,0),(0,0.00e+00,33098,0),(0,0.00e+00,33098,0),(0,0.00e+00,36070,0),(0,0.00e+00,36070,0),(0,0.00e+00,36068,0),(0,0.00e+00,36070,0),(0,0.00e+00,36070,0),(0,0.00e+00,36070,0),(0,0.00e+00,40000,0),(0,0.00e+00,39998,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,43740,0),(0,0.00e+00,43738,0),(0,0.00e+00,43740,0),(0,0.00e+00,43740,0),(0,0.00e+00,43740,0),(0,0.00e+00,53142,0),(0,0.00e+00,53144,0),(0,0.00e+00,53144,0),(0,0.00e+00,53144,0),(0,0.00e+00,69798,0),(0,0.00e+00,69796,0),(0,0.00e+00,69798,0),(0,0.00e+00,100000,0),(0,0.00e+00,100000,0),(0,0.00e+00,200000,0),(0,0.00e+00,200000,0),(0,0.00e+00,350106,0),(0,0.00e+00,350102,0),(1,2.50e-06,399994,0)]NANANANANANANANANANA[(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]NANANANANANANANA1FalseNA{}4.26e+006.00e+010.00e+005741.10e+015.32e-01[23,8,13,8]2.93e-01524.26e+006.00e+010.00e+002.12e-015741.10e+015.32e-01[23,8,13,8]2.93e-0152TrueFalseFalseFalseFalseFalseFalse5.73e+00-6.84e-07["ga4gh:VA.uv4czuJ2nBK7lcR9wkK2XxHxMSui2-ME","ga4gh:VA.bA0gzyCzudiyDon8QV-8d84fdAMj_fHU"][113410738,113410738][113410739,113410739]["G","A"]"G/A"113410739".""chr11\t113410739\t.\tG\tA\t.\t.\tGT"NA"synonymous_variant"NANA"chr11"1134107391[(1,"I",NA,"protein_coding",NA,"CCDS8362.1",1309,1309,1233,1233,"atC/atT",["synonymous_variant"],NA,[("Gene3D","1"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321")],"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000346454.7:c.1233C>T","ENSP00000278597.5:p.Ile411=",NA,"LOW",NA,NA,NA,NA,NA,NA,NA,NA,411,411,"ENSP00000278597","Ensembl",-1,"ENST00000346454",1,["P14416-2"],"A"),(1,"I","P2","protein_coding",1,"CCDS8361.1",1674,1674,1320,1320,"atC/atT",["synonymous_variant"],NA,[("Gene3D","1"),("ENSP_mappings","5aer"),("ENSP_mappings","5aer"),("ENSP_mappings","6cm4"),("ENSP_mappings","6luq"),("ENSP_mappings","6vms"),("ENSP_mappings","7dfp"),("ENSP_mappings","7jvr"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321")],"8/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000362072.8:c.1320C>T","ENSP00000354859.3:p.Ile440=",NA,"LOW",NA,NA,NA,NA,NA,"NM_000795.4",NA,NA,440,440,"ENSP00000354859","Ensembl",-1,"ENST00000362072",1,["P14416-1"],"A"),(1,NA,NA,"processed_transcript",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],3636,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000535984",3,NA,"A"),(1,"I","A1","protein_coding",NA,NA,1326,1326,1326,1326,"atC/atT",["synonymous_variant"],NA,[("Gene3D","1"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321")],"8/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000538967.5:c.1326C>T","ENSP00000438215.1:p.Ile442=",NA,"LOW",NA,NA,NA,NA,NA,NA,NA,NA,442,442,"ENSP00000438215","Ensembl",-1,"ENST00000538967",5,["P14416-3"],"A"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],4555,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000539420",3,NA,"A"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],3125,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000540600",1,NA,"A"),(1,"I","P2","protein_coding",NA,"CCDS8361.1",1641,1641,1320,1320,"atC/atT",["synonymous_variant"],NA,[("Gene3D","1"),("ENSP_mappings","5aer"),("ENSP_mappings","5aer"),("ENSP_mappings","6cm4"),("ENSP_mappings","6luq"),("ENSP_mappings","6vms"),("ENSP_mappings","7dfp"),("ENSP_mappings","7jvr"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321")],"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000542968.5:c.1320C>T","ENSP00000442172.1:p.Ile440=",NA,"LOW",NA,NA,NA,NA,NA,NA,NA,NA,440,440,"ENSP00000442172","Ensembl",-1,"ENST00000542968",1,["P14416-1"],"A"),(1,"I","A1","protein_coding",NA,NA,1350,1350,1317,1317,"atC/atT",["synonymous_variant"],NA,[("Gene3D","1"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321")],"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000544518.5:c.1317C>T","ENSP00000441068.1:p.Ile439=",NA,"LOW",NA,NA,NA,NA,NA,NA,NA,NA,439,439,"ENSP00000441068","Ensembl",-1,"ENST00000544518",1,NA,"A"),(1,NA,NA,"lncRNA",1,NA,NA,NA,NA,NA,NA,["intron_variant","non_coding_transcript_variant"],NA,NA,NA,NA,"ENSG00000256757",NA,NA,NA,NA,"ENST00000546284.1:n.245-808G>A",NA,NA,"MODIFIER","2/3",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",1,"ENST00000546284",3,NA,"A"),(1,"I",NA,"protein_coding",1,NA,1674,1674,1320,1320,"atC/atT",["synonymous_variant"],NA,NA,"8/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_000795.4:c.1320C>T","NP_000786.1:p.Ile440=",NA,"LOW",NA,NA,NA,NA,NA,"ENST00000362072.8",NA,NA,440,440,"NP_000786.1","RefSeq",-1,"NM_000795.4",NA,NA,"A"),(1,"I",NA,"protein_coding",NA,NA,1587,1587,1233,1233,"atC/atT",["synonymous_variant"],NA,NA,"7/7",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_016574.4:c.1233C>T","NP_057658.2:p.Ile411=",NA,"LOW",NA,NA,NA,NA,NA,NA,NA,NA,411,411,"NP_057658.2","RefSeq",-1,"NM_016574.4",NA,NA,"A"),(1,"I",NA,"protein_coding",NA,NA,1402,1402,1320,1320,"atC/atT",["synonymous_variant"],NA,NA,"8/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","XM_017017296.2:c.1320C>T","XP_016872785.1:p.Ile440=",NA,"LOW",NA,NA,NA,NA,NA,NA,NA,NA,440,440,"XP_016872785.1","RefSeq",-1,"XM_017017296.2",NA,NA,"A")]"SNV"5.73e+00"AS_MQ"FalseFalseFalseFalseFalseTrueFalseFalse"snv"1False"snv"False[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,9,0,68,0,314320,0,24,0,416519,0,0,0,0,0,0,1]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,55,309,11275,107353,345050,189133,36332,5605,2379,2755,3073,2932,2954,2914,2973,2922,2564,2680]07683[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][5,0,0,0,10,0,68,0,314320,0,24,0,416519,0,0,0,0,0,0,1]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,1,56,312,11275,107353,345051,189133,36332,5605,2379,2755,3073,2932,2954,2914,2973,2922,2564,2680]07683[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]001.03e+018.89e-01NA0.00e+000.00e+003.26e+00NANA
chr11:113410751["G","A"][(1,6.84e-07,1461894,0),(1,6.84e-07,1461894,0),(0,0.00e+00,33480,0),(0,0.00e+00,44724,0),(0,0.00e+00,26136,0),(0,0.00e+00,39700,0),(0,0.00e+00,53420,0),(0,0.00e+00,5768,0),(1,8.99e-07,1112012,0),(0,0.00e+00,60396,0),(0,0.00e+00,86258,0),(1,1.36e-06,734646,0),(0,0.00e+00,727248,0),(0,0.00e+00,19326,0),(0,0.00e+00,14154,0),(0,0.00e+00,25690,0),(0,0.00e+00,19034,0),(0,0.00e+00,12636,0),(0,0.00e+00,13500,0),(0,0.00e+00,20712,0),(0,0.00e+00,18988,0),(0,0.00e+00,27648,0),(0,0.00e+00,25772,0),(0,0.00e+00,2506,0),(0,0.00e+00,3262,0),(1,1.75e-06,572288,0),(0,0.00e+00,539724,0),(0,0.00e+00,31800,0),(0,0.00e+00,28596,0),(0,0.00e+00,22040,0),(0,0.00e+00,64218,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,44724,0),(0,0.00e+00,44724,0),(0,0.00e+00,44724,0),(0,0.00e+00,44724,0),(0,0.00e+00,44724,0),(0,0.00e+00,44724,0),(0,0.00e+00,53420,0),(0,0.00e+00,53420,0),(0,0.00e+00,53420,0),(0,0.00e+00,53420,0),(0,0.00e+00,53420,0),(0,0.00e+00,60396,0),(0,0.00e+00,60396,0),(0,0.00e+00,60396,0),(0,0.00e+00,60396,0),(0,0.00e+00,86258,0),(0,0.00e+00,86258,0),(0,0.00e+00,86258,0),(0,0.00e+00,100000,0),(0,0.00e+00,100000,0),(1,5.00e-06,200000,0),(1,5.00e-06,200000,0),(1,2.50e-06,400000,0),(1,2.50e-06,400000,0),(1,1.00e-06,1000000,0),(1,1.00e-06,1000000,0),(1,8.99e-07,1112012,0),(1,8.99e-07,1112012,0),(1,1.59e-06,628784,0),(1,1.59e-06,628784,0),(0,0.00e+00,17694,0),(0,0.00e+00,43740,0),(0,0.00e+00,20984,0),(0,0.00e+00,36070,0),(0,0.00e+00,53144,0),(0,0.00e+00,4148,0),(1,2.86e-06,350108,0),(0,0.00e+00,33098,0),(0,0.00e+00,69798,0),(1,3.49e-06,286250,0),(0,0.00e+00,342534,0),(0,0.00e+00,10286,0),(0,0.00e+00,7408,0),(0,0.00e+00,25040,0),(0,0.00e+00,18700,0),(0,0.00e+00,9838,0),(0,0.00e+00,11146,0),(0,0.00e+00,18298,0),(0,0.00e+00,17772,0),(0,0.00e+00,27398,0),(0,0.00e+00,25746,0),(0,0.00e+00,1916,0),(0,0.00e+00,2232,0),(1,6.16e-06,162220,0),(0,0.00e+00,187888,0),(0,0.00e+00,16752,0),(0,0.00e+00,16346,0),(0,0.00e+00,14502,0),(0,0.00e+00,55296,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,33098,0),(0,0.00e+00,33098,0),(0,0.00e+00,33098,0),(1,3.02e-05,33098,0),(0,0.00e+00,33098,0),(0,0.00e+00,33098,0),(0,0.00e+00,33098,0),(0,0.00e+00,36070,0),(0,0.00e+00,36070,0),(0,0.00e+00,36070,0),(1,2.77e-05,36070,0),(0,0.00e+00,36070,0),(0,0.00e+00,36070,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(1,2.50e-05,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,43740,0),(0,0.00e+00,43740,0),(1,2.29e-05,43740,0),(0,0.00e+00,43740,0),(0,0.00e+00,43740,0),(0,0.00e+00,53144,0),(1,1.88e-05,53144,0),(0,0.00e+00,53144,0),(0,0.00e+00,53144,0),(1,1.43e-05,69798,0),(0,0.00e+00,69798,0),(1,1.43e-05,69798,0),(1,1.00e-05,100000,0),(1,1.00e-05,100000,0),(1,5.00e-06,200000,0),(1,5.00e-06,200000,0),(1,2.86e-06,350108,0),(1,2.86e-06,350108,0),(1,2.50e-06,400000,0)]18.99e-0711120120"nfe"12.86e-063501080"nfe"[(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]NANANANANANANANA1FalseNA{}8.26e+006.00e+010.00e+0010982.03e+01-7.69e-01[5,11,21,18]4.64e-01548.26e+006.00e+010.00e+003.84e-0310982.03e+01-7.69e-01[5,11,21,18]4.64e-0154TrueFalseFalseFalseFalseFalseFalse2.35e+00-6.84e-07["ga4gh:VA.euCgAx3O0dYWO86rUZqEKUoRwnhnhr-k","ga4gh:VA.XQ_C7TKjlSKQw_ABwxZ_ZFkA_UwtEjVw"][113410750,113410750][113410751,113410751]["G","A"]"G/A"113410751".""chr11\t113410751\t.\tG\tA\t.\t.\tGT"NA"synonymous_variant"NANA"chr11"1134107511[(1,"A",NA,"protein_coding",NA,"CCDS8362.1",1297,1297,1221,1221,"gcC/gcT",["synonymous_variant"],NA,[("Gene3D","1"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321"),("CDD","cd15309")],"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000346454.7:c.1221C>T","ENSP00000278597.5:p.Ala407=",NA,"LOW",NA,NA,NA,NA,NA,NA,NA,NA,407,407,"ENSP00000278597","Ensembl",-1,"ENST00000346454",1,["P14416-2"],"A"),(1,"A","P2","protein_coding",1,"CCDS8361.1",1662,1662,1308,1308,"gcC/gcT",["synonymous_variant"],NA,[("Gene3D","1"),("ENSP_mappings","5aer"),("ENSP_mappings","5aer"),("ENSP_mappings","6cm4"),("ENSP_mappings","6luq"),("ENSP_mappings","6vms"),("ENSP_mappings","7dfp"),("ENSP_mappings","7jvr"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321"),("CDD","cd15309")],"8/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000362072.8:c.1308C>T","ENSP00000354859.3:p.Ala436=",NA,"LOW",NA,NA,NA,NA,NA,"NM_000795.4",NA,NA,436,436,"ENSP00000354859","Ensembl",-1,"ENST00000362072",1,["P14416-1"],"A"),(1,NA,NA,"processed_transcript",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],3624,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000535984",3,NA,"A"),(1,"A","A1","protein_coding",NA,NA,1314,1314,1314,1314,"gcC/gcT",["synonymous_variant"],NA,[("Gene3D","1"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321"),("CDD","cd15309")],"8/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000538967.5:c.1314C>T","ENSP00000438215.1:p.Ala438=",NA,"LOW",NA,NA,NA,NA,NA,NA,NA,NA,438,438,"ENSP00000438215","Ensembl",-1,"ENST00000538967",5,["P14416-3"],"A"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],4543,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000539420",3,NA,"A"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],3113,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000540600",1,NA,"A"),(1,"A","P2","protein_coding",NA,"CCDS8361.1",1629,1629,1308,1308,"gcC/gcT",["synonymous_variant"],NA,[("Gene3D","1"),("ENSP_mappings","5aer"),("ENSP_mappings","5aer"),("ENSP_mappings","6cm4"),("ENSP_mappings","6luq"),("ENSP_mappings","6vms"),("ENSP_mappings","7dfp"),("ENSP_mappings","7jvr"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321"),("CDD","cd15309")],"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000542968.5:c.1308C>T","ENSP00000442172.1:p.Ala436=",NA,"LOW",NA,NA,NA,NA,NA,NA,NA,NA,436,436,"ENSP00000442172","Ensembl",-1,"ENST00000542968",1,["P14416-1"],"A"),(1,"A","A1","protein_coding",NA,NA,1338,1338,1305,1305,"gcC/gcT",["synonymous_variant"],NA,[("Gene3D","1"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321"),("CDD","cd15309")],"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000544518.5:c.1305C>T","ENSP00000441068.1:p.Ala435=",NA,"LOW",NA,NA,NA,NA,NA,NA,NA,NA,435,435,"ENSP00000441068","Ensembl",-1,"ENST00000544518",1,NA,"A"),(1,NA,NA,"lncRNA",1,NA,NA,NA,NA,NA,NA,["intron_variant","non_coding_transcript_variant"],NA,NA,NA,NA,"ENSG00000256757",NA,NA,NA,NA,"ENST00000546284.1:n.245-796G>A",NA,NA,"MODIFIER","2/3",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",1,"ENST00000546284",3,NA,"A"),(1,"A",NA,"protein_coding",1,NA,1662,1662,1308,1308,"gcC/gcT",["synonymous_variant"],NA,NA,"8/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_000795.4:c.1308C>T","NP_000786.1:p.Ala436=",NA,"LOW",NA,NA,NA,NA,NA,"ENST00000362072.8",NA,NA,436,436,"NP_000786.1","RefSeq",-1,"NM_000795.4",NA,NA,"A"),(1,"A",NA,"protein_coding",NA,NA,1575,1575,1221,1221,"gcC/gcT",["synonymous_variant"],NA,NA,"7/7",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_016574.4:c.1221C>T","NP_057658.2:p.Ala407=",NA,"LOW",NA,NA,NA,NA,NA,NA,NA,NA,407,407,"NP_057658.2","RefSeq",-1,"NM_016574.4",NA,NA,"A"),(1,"A",NA,"protein_coding",NA,NA,1390,1390,1308,1308,"gcC/gcT",["synonymous_variant"],NA,NA,"8/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","XM_017017296.2:c.1308C>T","XP_016872785.1:p.Ala436=",NA,"LOW",NA,NA,NA,NA,NA,NA,NA,NA,436,436,"XP_016872785.1","RefSeq",-1,"XM_017017296.2",NA,NA,"A")]"SNV"2.35e+00"AS_MQ"FalseFalseFalseFalseFalseTrueFalseFalse"snv"1False"snv"False[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,1,0,28,0,314363,0,2,0,416552,0,0,0,0,0,0,1]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,18,272,11233,107401,345096,189157,36337,5604,2379,2755,3073,2932,2954,2914,2973,2922,2564,2680]07683[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,1,0,28,0,314363,0,2,0,416552,0,0,0,0,0,0,1]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,18,272,11233,107401,345096,189157,36337,5604,2379,2755,3073,2932,2954,2914,2973,2922,2564,2680]07683[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]001.20e+011.03e+00NA0.00e+000.00e+008.67e+00NANA
chr11:113410754["C","T"][(576,3.94e-04,1461892,2),(576,3.94e-04,1461894,2),(12,3.58e-04,33480,1),(43,9.61e-04,44724,0),(144,5.51e-03,26136,0),(0,0.00e+00,39700,0),(0,0.00e+00,53418,0),(8,1.39e-03,5768,0),(328,2.95e-04,1112012,0),(41,6.79e-04,60396,1),(0,0.00e+00,86258,0),(291,3.96e-04,734646,0),(285,3.92e-04,727246,2),(3,1.55e-04,19326,0),(9,6.36e-04,14154,1),(25,9.73e-04,25690,0),(18,9.46e-04,19034,0),(73,5.78e-03,12636,0),(71,5.26e-03,13500,0),(0,0.00e+00,20712,0),(0,0.00e+00,18988,0),(0,0.00e+00,27648,0),(0,0.00e+00,25770,0),(1,3.99e-04,2506,0),(7,2.15e-03,3262,0),(169,2.95e-04,572288,0),(159,2.95e-04,539724,0),(20,6.29e-04,31800,0),(21,7.34e-04,28596,1),(0,0.00e+00,22040,0),(0,0.00e+00,64218,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(3,1.50e-02,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(5,5.00e-03,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(11,5.50e-03,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(2,1.00e-03,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(2,5.00e-04,4000,0),(6,1.50e-03,4000,0),(22,5.50e-03,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(3,7.50e-04,4000,0),(1,2.50e-04,4000,0),(2,5.00e-04,4000,0),(0,0.00e+00,4000,0),(1,2.50e-04,4000,0),(4,6.93e-04,5768,0),(7,1.21e-03,5768,0),(30,5.20e-03,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(8,1.39e-03,5768,0),(1,1.73e-04,5768,0),(2,3.47e-04,5768,0),(0,0.00e+00,5768,0),(2,3.47e-04,5768,0),(6,6.00e-04,10000,0),(11,1.10e-03,10000,0),(54,5.40e-03,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(1,1.00e-04,10000,0),(6,6.00e-04,10000,0),(0,0.00e+00,10000,0),(2,2.00e-04,10000,0),(8,4.00e-04,20000,0),(20,1.00e-03,20000,0),(115,5.75e-03,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(5,2.50e-04,20000,0),(11,5.50e-04,20000,1),(0,0.00e+00,20000,0),(6,3.00e-04,20000,0),(9,3.44e-04,26136,0),(23,8.80e-04,26136,0),(144,5.51e-03,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(8,3.06e-04,26136,0),(13,4.97e-04,26136,1),(0,0.00e+00,26136,0),(8,3.06e-04,26136,0),(12,3.58e-04,33480,1),(28,8.36e-04,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(11,3.29e-04,33480,0),(16,4.78e-04,33480,1),(0,0.00e+00,33480,0),(12,3.58e-04,33480,0),(37,9.32e-04,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(13,3.27e-04,39700,0),(23,5.79e-04,39700,1),(0,0.00e+00,39700,0),(13,3.27e-04,39700,0),(38,9.50e-04,40000,0),(0,0.00e+00,40000,0),(13,3.25e-04,40000,0),(23,5.75e-04,40000,1),(0,0.00e+00,40000,0),(13,3.25e-04,40000,0),(43,9.61e-04,44724,0),(0,0.00e+00,44724,0),(16,3.58e-04,44724,0),(29,6.48e-04,44724,1),(0,0.00e+00,44724,0),(17,3.80e-04,44724,0),(0,0.00e+00,53418,0),(18,3.37e-04,53420,0),(35,6.55e-04,53420,1),(0,0.00e+00,53420,0),(19,3.56e-04,53420,0),(18,2.98e-04,60396,0),(41,6.79e-04,60396,1),(0,0.00e+00,60396,0),(23,3.81e-04,60396,0),(31,3.59e-04,86258,0),(0,0.00e+00,86258,0),(32,3.71e-04,86258,0),(34,3.40e-04,100000,0),(42,4.20e-04,100000,0),(57,2.85e-04,200000,0),(82,4.10e-04,200000,0),(116,2.90e-04,400000,0),(156,3.90e-04,400000,1),(293,2.93e-04,1000000,0),(378,3.78e-04,1000000,1),(328,2.95e-04,1112012,0),(435,3.91e-04,1112012,1),(283,4.50e-04,628782,0),(283,4.50e-04,628784,0),(8,4.52e-04,17694,0),(40,9.14e-04,43740,0),(116,5.53e-03,20984,0),(0,0.00e+00,36070,0),(0,0.00e+00,53142,0),(4,9.64e-04,4148,0),(90,2.57e-04,350108,0),(25,7.55e-04,33098,0),(0,0.00e+00,69798,0),(140,4.89e-04,286250,0),(143,4.17e-04,342532,0),(1,9.72e-05,10286,0),(7,9.45e-04,7408,0),(23,9.19e-04,25040,0),(17,9.09e-04,18700,0),(60,6.10e-03,9838,0),(56,5.02e-03,11146,0),(0,0.00e+00,18298,0),(0,0.00e+00,17772,0),(0,0.00e+00,27398,0),(0,0.00e+00,25744,0),(1,5.22e-04,1916,0),(3,1.34e-03,2232,0),(43,2.65e-04,162220,0),(47,2.50e-04,187888,0),(12,7.16e-04,16752,0),(13,7.95e-04,16346,0),(0,0.00e+00,14502,0),(0,0.00e+00,55296,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(3,1.50e-02,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(6,6.00e-03,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(1,1.00e-03,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(2,1.00e-03,2000,0),(0,0.00e+00,2000,0),(13,6.50e-03,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(2,1.00e-03,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(3,7.50e-04,4000,0),(4,1.00e-03,4000,0),(21,5.25e-03,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(4,1.00e-03,4000,0),(1,2.50e-04,4000,0),(3,7.50e-04,4000,0),(0,0.00e+00,4000,0),(1,2.50e-04,4000,0),(3,7.23e-04,4148,0),(4,9.64e-04,4148,0),(24,5.79e-03,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(4,9.64e-04,4148,0),(1,2.41e-04,4148,0),(3,7.23e-04,4148,0),(0,0.00e+00,4148,0),(1,2.41e-04,4148,0),(6,6.00e-04,10000,0),(9,9.00e-04,10000,0),(54,5.40e-03,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(2,2.00e-04,10000,0),(6,6.00e-04,10000,0),(0,0.00e+00,10000,0),(5,5.00e-04,10000,0),(8,4.52e-04,17694,0),(15,8.48e-04,17694,0),(99,5.60e-03,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(4,2.26e-04,17694,0),(10,5.65e-04,17694,0),(0,0.00e+00,17694,0),(6,3.39e-04,17694,0),(18,9.00e-04,20000,0),(111,5.55e-03,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(4,2.00e-04,20000,0),(13,6.50e-04,20000,0),(0,0.00e+00,20000,0),(8,4.00e-04,20000,0),(19,9.05e-04,20984,0),(116,5.53e-03,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(4,1.91e-04,20984,0),(13,6.20e-04,20984,0),(0,0.00e+00,20984,0),(9,4.29e-04,20984,0),(26,7.86e-04,33098,0),(0,0.00e+00,33098,0),(0,0.00e+00,33098,0),(7,2.11e-04,33098,0),(25,7.55e-04,33098,0),(0,0.00e+00,33098,0),(15,4.53e-04,33098,0),(31,8.59e-04,36070,0),(0,0.00e+00,36070,0),(0,0.00e+00,36070,0),(7,1.94e-04,36070,0),(0,0.00e+00,36070,0),(15,4.16e-04,36070,0),(37,9.25e-04,40000,0),(0,0.00e+00,40000,0),(7,1.75e-04,40000,0),(0,0.00e+00,40000,0),(16,4.00e-04,40000,0),(40,9.14e-04,43740,0),(0,0.00e+00,43740,0),(7,1.60e-04,43740,0),(0,0.00e+00,43740,0),(21,4.80e-04,43740,0),(0,0.00e+00,53142,0),(7,1.32e-04,53144,0),(0,0.00e+00,53144,0),(22,4.14e-04,53144,0),(13,1.86e-04,69798,0),(0,0.00e+00,69798,0),(30,4.30e-04,69798,0),(24,2.40e-04,100000,0),(40,4.00e-04,100000,0),(50,2.50e-04,200000,0),(90,4.50e-04,200000,0),(90,2.57e-04,350108,0),(147,4.20e-04,350108,0),(176,4.40e-04,400000,0)]81.39e-0357680"mid"49.64e-0441480"mid"[(3.67e-04,3.57e-04),(2.06e-04,1.62e-04),(7.33e-04,6.53e-04),(0.00e+00,0.00e+00),(6.90e-04,5.04e-04),(2.68e-04,2.58e-04),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,(4.07e-04,3.90e-04),(2.24e-04,1.64e-04),(6.90e-04,6.12e-04),(0.00e+00,0.00e+00),(3.29e-04,1.98e-04),(2.13e-04,1.98e-04),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]7.33e-04"amr"6.53e-04"amr"6.90e-04"amr"6.12e-04"amr"1False{"rs77930100"}{}1.45e-156.00e+010.00e+009476781.23e+01-7.00e-03[20804,19237,19605,17401]7.35e-01770271.45e-156.00e+010.00e+001.00e+009476781.23e+017.00e-03[20804,19237,19605,17401]7.35e-0177027FalseNANAFalseFalseFalseFalse8.87e+006.55e-03["ga4gh:VA.8tDWBt70tPv5g5-MDqwnSl1-pElrIl1E","ga4gh:VA.f3fUPUzazutlUq0GulwJsX0XJSbepMoo"][113410753,113410753][113410754,113410754]["C","T"]"C/T"113410754".""chr11\t113410754\t.\tC\tT\t.\t.\tGT"NA"synonymous_variant"NANA"chr11"1134107541[(1,"K",NA,"protein_coding",NA,"CCDS8362.1",1294,1294,1218,1218,"aaG/aaA",["synonymous_variant"],NA,[("Gene3D","1"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321"),("CDD","cd15309")],"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000346454.7:c.1218G>A","ENSP00000278597.5:p.Lys406=",NA,"LOW",NA,NA,NA,NA,NA,NA,NA,NA,406,406,"ENSP00000278597","Ensembl",-1,"ENST00000346454",1,["P14416-2"],"T"),(1,"K","P2","protein_coding",1,"CCDS8361.1",1659,1659,1305,1305,"aaG/aaA",["synonymous_variant"],NA,[("Gene3D","1"),("ENSP_mappings","5aer"),("ENSP_mappings","5aer"),("ENSP_mappings","6cm4"),("ENSP_mappings","6luq"),("ENSP_mappings","6vms"),("ENSP_mappings","7dfp"),("ENSP_mappings","7jvr"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321"),("CDD","cd15309")],"8/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000362072.8:c.1305G>A","ENSP00000354859.3:p.Lys435=",NA,"LOW",NA,NA,NA,NA,NA,"NM_000795.4",NA,NA,435,435,"ENSP00000354859","Ensembl",-1,"ENST00000362072",1,["P14416-1"],"T"),(1,NA,NA,"processed_transcript",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],3621,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000535984",3,NA,"T"),(1,"K","A1","protein_coding",NA,NA,1311,1311,1311,1311,"aaG/aaA",["synonymous_variant"],NA,[("Gene3D","1"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321"),("CDD","cd15309")],"8/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000538967.5:c.1311G>A","ENSP00000438215.1:p.Lys437=",NA,"LOW",NA,NA,NA,NA,NA,NA,NA,NA,437,437,"ENSP00000438215","Ensembl",-1,"ENST00000538967",5,["P14416-3"],"T"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],4540,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000539420",3,NA,"T"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],3110,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000540600",1,NA,"T"),(1,"K","P2","protein_coding",NA,"CCDS8361.1",1626,1626,1305,1305,"aaG/aaA",["synonymous_variant"],NA,[("Gene3D","1"),("ENSP_mappings","5aer"),("ENSP_mappings","5aer"),("ENSP_mappings","6cm4"),("ENSP_mappings","6luq"),("ENSP_mappings","6vms"),("ENSP_mappings","7dfp"),("ENSP_mappings","7jvr"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321"),("CDD","cd15309")],"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000542968.5:c.1305G>A","ENSP00000442172.1:p.Lys435=",NA,"LOW",NA,NA,NA,NA,NA,NA,NA,NA,435,435,"ENSP00000442172","Ensembl",-1,"ENST00000542968",1,["P14416-1"],"T"),(1,"K","A1","protein_coding",NA,NA,1335,1335,1302,1302,"aaG/aaA",["synonymous_variant"],NA,[("Gene3D","1"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321"),("CDD","cd15309")],"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000544518.5:c.1302G>A","ENSP00000441068.1:p.Lys434=",NA,"LOW",NA,NA,NA,NA,NA,NA,NA,NA,434,434,"ENSP00000441068","Ensembl",-1,"ENST00000544518",1,NA,"T"),(1,NA,NA,"lncRNA",1,NA,NA,NA,NA,NA,NA,["intron_variant","non_coding_transcript_variant"],NA,NA,NA,NA,"ENSG00000256757",NA,NA,NA,NA,"ENST00000546284.1:n.245-793C>T",NA,NA,"MODIFIER","2/3",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",1,"ENST00000546284",3,NA,"T"),(1,"K",NA,"protein_coding",1,NA,1659,1659,1305,1305,"aaG/aaA",["synonymous_variant"],NA,NA,"8/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_000795.4:c.1305G>A","NP_000786.1:p.Lys435=",NA,"LOW",NA,NA,NA,NA,NA,"ENST00000362072.8",NA,NA,435,435,"NP_000786.1","RefSeq",-1,"NM_000795.4",NA,NA,"T"),(1,"K",NA,"protein_coding",NA,NA,1572,1572,1218,1218,"aaG/aaA",["synonymous_variant"],NA,NA,"7/7",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_016574.4:c.1218G>A","NP_057658.2:p.Lys406=",NA,"LOW",NA,NA,NA,NA,NA,NA,NA,NA,406,406,"NP_057658.2","RefSeq",-1,"NM_016574.4",NA,NA,"T"),(1,"K",NA,"protein_coding",NA,NA,1387,1387,1305,1305,"aaG/aaA",["synonymous_variant"],NA,NA,"8/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","XM_017017296.2:c.1305G>A","XP_016872785.1:p.Lys435=",NA,"LOW",NA,NA,NA,NA,NA,NA,NA,NA,435,435,"XP_016872785.1","RefSeq",-1,"XM_017017296.2",NA,NA,"T")]"SNV"8.87e+00"AS_MQ"FalseFalseFalseFalseFalseTrueFalseFalse"snv"1False"snv"False[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,3,0,24,0,314081,0,0,0,416264,0,0,0,0,0,0,574]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,16,266,11219,107342,344994,189134,36335,5603,2386,2754,3071,2938,2971,2945,3008,2939,2587,2701]07737[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,574]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,1,1,4,13,22,21,26,25,30,25,35,40,41,25,31,27]0207[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,3,1,13,43,101,196,147,52,11,5,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][1,0,0,0,3,0,24,0,314081,0,0,0,416264,0,0,0,0,0,0,574]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,16,267,11219,107342,344994,189134,36335,5603,2386,2754,3071,2938,2971,2945,3008,2939,2587,2701]07737[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,574]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,1,1,4,13,22,21,26,25,30,25,35,40,41,25,31,27]0207[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,3,1,13,43,101,196,147,52,11,5,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][3,2,30,42,65,52,79,55,7,3]153[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,1,0,0,0,1,0]009.48e+008.09e-01NA0.00e+001.00e-025.82e+00NANA

showing top 5 rows

\n" - ], - "text/plain": [ - "+-----------------+------------+\n", - "| locus | alleles |\n", - "+-----------------+------------+\n", - "| locus | array |\n", - "+-----------------+------------+\n", - "| chr11:113410736 | [\"G\",\"A\"] |\n", - "| chr11:113410736 | [\"G\",\"T\"] |\n", - "| chr11:113410739 | [\"G\",\"A\"] |\n", - "| chr11:113410751 | [\"G\",\"A\"] |\n", - "| chr11:113410754 | [\"C\",\"T\"] |\n", - "+-----------------+------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| freq |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [(15,1.03e-05,1461882,0),(15,1.03e-05,1461894,0),(0,0.00e+00,33480,0),(0,... |\n", - "| [(1,6.84e-07,1461882,0),(1,6.84e-07,1461894,0),(0,0.00e+00,33480,0),(0,0.... |\n", - "| [(1,6.84e-07,1461882,0),(1,6.84e-07,1461894,0),(0,0.00e+00,33478,0),(0,0.... |\n", - "| [(1,6.84e-07,1461894,0),(1,6.84e-07,1461894,0),(0,0.00e+00,33480,0),(0,0.... |\n", - "| [(576,3.94e-04,1461892,2),(576,3.94e-04,1461894,2),(12,3.58e-04,33480,1),... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+------------------+------------------+------------------+\n", - "| grpmax.gnomad.AC | grpmax.gnomad.AF | grpmax.gnomad.AN |\n", - "+------------------+------------------+------------------+\n", - "| int32 | float64 | int32 |\n", - "+------------------+------------------+------------------+\n", - "| 15 | 1.35e-05 | 1112010 |\n", - "| 1 | 8.99e-07 | 1112010 |\n", - "| NA | NA | NA |\n", - "| 1 | 8.99e-07 | 1112012 |\n", - "| 8 | 1.39e-03 | 5768 |\n", - "+------------------+------------------+------------------+\n", - "\n", - "+--------------------------------+-----------------------+-------------------+\n", - "| grpmax.gnomad.homozygote_count | grpmax.gnomad.gen_anc | grpmax.non_ukb.AC |\n", - "+--------------------------------+-----------------------+-------------------+\n", - "| int64 | str | int32 |\n", - "+--------------------------------+-----------------------+-------------------+\n", - "| 0 | \"nfe\" | 1 |\n", - "| 0 | \"nfe\" | NA |\n", - "| NA | NA | NA |\n", - "| 0 | \"nfe\" | 1 |\n", - "| 0 | \"mid\" | 4 |\n", - "+--------------------------------+-----------------------+-------------------+\n", - "\n", - "+-------------------+-------------------+---------------------------------+\n", - "| grpmax.non_ukb.AF | grpmax.non_ukb.AN | grpmax.non_ukb.homozygote_count |\n", - "+-------------------+-------------------+---------------------------------+\n", - "| float64 | int32 | int64 |\n", - "+-------------------+-------------------+---------------------------------+\n", - "| 2.86e-06 | 350106 | 0 |\n", - "| NA | NA | NA |\n", - "| NA | NA | NA |\n", - "| 2.86e-06 | 350108 | 0 |\n", - "| 9.64e-04 | 4148 | 0 |\n", - "+-------------------+-------------------+---------------------------------+\n", - "\n", - "+------------------------+\n", - "| grpmax.non_ukb.gen_anc |\n", - "+------------------------+\n", - "| str |\n", - "+------------------------+\n", - "| \"nfe\" |\n", - "| NA |\n", - "| NA |\n", - "| \"nfe\" |\n", - "| \"mid\" |\n", - "+------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| faf |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [(6.16e-06,4.89e-06),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.... |\n", - "| [(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.... |\n", - "| [(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.... |\n", - "| [(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.... |\n", - "| [(3.67e-04,3.57e-04),(2.06e-04,1.62e-04),(7.33e-04,6.53e-04),(0.00e+00,0.... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+-------------------------+---------------------------------+\n", - "| fafmax.gnomad.faf95_max | fafmax.gnomad.faf95_max_gen_anc |\n", - "+-------------------------+---------------------------------+\n", - "| float64 | str |\n", - "+-------------------------+---------------------------------+\n", - "| 8.10e-06 | \"nfe\" |\n", - "| NA | NA |\n", - "| NA | NA |\n", - "| NA | NA |\n", - "| 7.33e-04 | \"amr\" |\n", - "+-------------------------+---------------------------------+\n", - "\n", - "+-------------------------+---------------------------------+\n", - "| fafmax.gnomad.faf99_max | fafmax.gnomad.faf99_max_gen_anc |\n", - "+-------------------------+---------------------------------+\n", - "| float64 | str |\n", - "+-------------------------+---------------------------------+\n", - "| 6.42e-06 | \"nfe\" |\n", - "| NA | NA |\n", - "| NA | NA |\n", - "| NA | NA |\n", - "| 6.53e-04 | \"amr\" |\n", - "+-------------------------+---------------------------------+\n", - "\n", - "+--------------------------+----------------------------------+\n", - "| fafmax.non_ukb.faf95_max | fafmax.non_ukb.faf95_max_gen_anc |\n", - "+--------------------------+----------------------------------+\n", - "| float64 | str |\n", - "+--------------------------+----------------------------------+\n", - "| NA | NA |\n", - "| NA | NA |\n", - "| NA | NA |\n", - "| NA | NA |\n", - "| 6.90e-04 | \"amr\" |\n", - "+--------------------------+----------------------------------+\n", - "\n", - "+--------------------------+----------------------------------+---------+\n", - "| fafmax.non_ukb.faf99_max | fafmax.non_ukb.faf99_max_gen_anc | a_index |\n", - "+--------------------------+----------------------------------+---------+\n", - "| float64 | str | int32 |\n", - "+--------------------------+----------------------------------+---------+\n", - "| NA | NA | 1 |\n", - "| NA | NA | 2 |\n", - "| NA | NA | 1 |\n", - "| NA | NA | 1 |\n", - "| 6.12e-04 | \"amr\" | 1 |\n", - "+--------------------------+----------------------------------+---------+\n", - "\n", - "+-----------+------------------+----------+----------+----------+\n", - "| was_split | rsid | filters | info.FS | info.MQ |\n", - "+-----------+------------------+----------+----------+----------+\n", - "| bool | set | set | float64 | float64 |\n", - "+-----------+------------------+----------+----------+----------+\n", - "| True | {\"rs1159504221\"} | {} | 5.49e-01 | 6.00e+01 |\n", - "| True | NA | {} | 5.49e-01 | 6.00e+01 |\n", - "| False | NA | {} | 4.26e+00 | 6.00e+01 |\n", - "| False | NA | {} | 8.26e+00 | 6.00e+01 |\n", - "| False | {\"rs77930100\"} | {} | 1.45e-15 | 6.00e+01 |\n", - "+-----------+------------------+----------+----------+----------+\n", - "\n", - "+----------------+-----------------+----------+---------------------+\n", - "| info.MQRankSum | info.QUALapprox | info.QD | info.ReadPosRankSum |\n", - "+----------------+-----------------+----------+---------------------+\n", - "| float64 | int64 | float64 | float64 |\n", - "+----------------+-----------------+----------+---------------------+\n", - "| 0.00e+00 | 12307 | 1.16e+01 | 7.40e-02 |\n", - "| 0.00e+00 | 12307 | 1.16e+01 | 7.40e-02 |\n", - "| 0.00e+00 | 574 | 1.10e+01 | 5.32e-01 |\n", - "| 0.00e+00 | 1098 | 2.03e+01 | -7.69e-01 |\n", - "| 0.00e+00 | 947678 | 1.23e+01 | -7.00e-03 |\n", - "+----------------+-----------------+----------+---------------------+\n", - "\n", - "+---------------------------+----------+------------+------------+------------+\n", - "| info.SB | info.SOR | info.VarDP | info.AS_FS | info.AS_MQ |\n", - "+---------------------------+----------+------------+------------+------------+\n", - "| array | float64 | int32 | float64 | float64 |\n", - "+---------------------------+----------+------------+------------+------------+\n", - "| [386,195,316,166] | 6.55e-01 | 1063 | 9.64e-16 | 6.00e+01 |\n", - "| [386,195,316,166] | 6.55e-01 | 1063 | 9.64e-16 | 6.00e+01 |\n", - "| [23,8,13,8] | 2.93e-01 | 52 | 4.26e+00 | 6.00e+01 |\n", - "| [5,11,21,18] | 4.64e-01 | 54 | 8.26e+00 | 6.00e+01 |\n", - "| [20804,19237,19605,17401] | 7.35e-01 | 77027 | 1.45e-15 | 6.00e+01 |\n", - "+---------------------------+----------+------------+------------+------------+\n", - "\n", - "+-------------------+-----------------+--------------------+------------+\n", - "| info.AS_MQRankSum | info.AS_pab_max | info.AS_QUALapprox | info.AS_QD |\n", - "+-------------------+-----------------+--------------------+------------+\n", - "| float64 | float64 | int64 | float64 |\n", - "+-------------------+-----------------+--------------------+------------+\n", - "| 0.00e+00 | 9.11e-01 | 11899 | 1.17e+01 |\n", - "| 0.00e+00 | 3.28e-02 | 408 | 8.16e+00 |\n", - "| 0.00e+00 | 2.12e-01 | 574 | 1.10e+01 |\n", - "| 0.00e+00 | 3.84e-03 | 1098 | 2.03e+01 |\n", - "| 0.00e+00 | 1.00e+00 | 947678 | 1.23e+01 |\n", - "+-------------------+-----------------+--------------------+------------+\n", - "\n", - "+------------------------+---------------------------+-------------+\n", - "| info.AS_ReadPosRankSum | info.AS_SB_TABLE | info.AS_SOR |\n", - "+------------------------+---------------------------+-------------+\n", - "| float64 | array | float64 |\n", - "+------------------------+---------------------------+-------------+\n", - "| 9.70e-02 | [386,195,304,161] | 6.47e-01 |\n", - "| -9.23e-01 | [386,195,12,5] | 7.90e-01 |\n", - "| 5.32e-01 | [23,8,13,8] | 2.93e-01 |\n", - "| -7.69e-01 | [5,11,21,18] | 4.64e-01 |\n", - "| 7.00e-03 | [20804,19237,19605,17401] | 7.35e-01 |\n", - "+------------------------+---------------------------+-------------+\n", - "\n", - "+---------------+----------------+----------------------------+\n", - "| info.AS_VarDP | info.singleton | info.transmitted_singleton |\n", - "+---------------+----------------+----------------------------+\n", - "| int32 | bool | bool |\n", - "+---------------+----------------+----------------------------+\n", - "| 1013 | False | NA |\n", - "| 50 | True | False |\n", - "| 52 | True | False |\n", - "| 54 | True | False |\n", - "| 77027 | False | NA |\n", - "+---------------+----------------+----------------------------+\n", - "\n", - "+------------------------+-----------+------------+------------------+\n", - "| info.sibling_singleton | info.omni | info.mills | info.monoallelic |\n", - "+------------------------+-----------+------------+------------------+\n", - "| bool | bool | bool | bool |\n", - "+------------------------+-----------+------------+------------------+\n", - "| NA | False | False | False |\n", - "| False | False | False | False |\n", - "| False | False | False | False |\n", - "| False | False | False | False |\n", - "| NA | False | False | False |\n", - "+------------------------+-----------+------------+------------------+\n", - "\n", - "+---------------+----------------+-----------------------+\n", - "| info.only_het | info.AS_VQSLOD | info.inbreeding_coeff |\n", - "+---------------+----------------+-----------------------+\n", - "| bool | float64 | float64 |\n", - "+---------------+----------------+-----------------------+\n", - "| False | 7.50e+00 | -1.03e-05 |\n", - "| False | 5.00e+00 | -6.84e-07 |\n", - "| False | 5.73e+00 | -6.84e-07 |\n", - "| False | 2.35e+00 | -6.84e-07 |\n", - "| False | 8.87e+00 | 6.55e-03 |\n", - "+---------------+----------------+-----------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| info.vrs.VRS_Allele_IDs |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [\"ga4gh:VA.QVbOetW6APM1_3jfGLLwArt4GfwgT6jE\",\"ga4gh:VA.OXPDvbuulFZ9CSk4Xt... |\n", - "| [\"ga4gh:VA.QVbOetW6APM1_3jfGLLwArt4GfwgT6jE\",\"ga4gh:VA.4qhkDG1qrfqiD2TeOA... |\n", - "| [\"ga4gh:VA.uv4czuJ2nBK7lcR9wkK2XxHxMSui2-ME\",\"ga4gh:VA.bA0gzyCzudiyDon8QV... |\n", - "| [\"ga4gh:VA.euCgAx3O0dYWO86rUZqEKUoRwnhnhr-k\",\"ga4gh:VA.XQ_C7TKjlSKQw_ABwx... |\n", - "| [\"ga4gh:VA.8tDWBt70tPv5g5-MDqwnSl1-pElrIl1E\",\"ga4gh:VA.f3fUPUzazutlUq0Gul... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+-----------------------+-----------------------+---------------------+\n", - "| info.vrs.VRS_Starts | info.vrs.VRS_Ends | info.vrs.VRS_States |\n", - "+-----------------------+-----------------------+---------------------+\n", - "| array | array | array |\n", - "+-----------------------+-----------------------+---------------------+\n", - "| [113410735,113410735] | [113410736,113410736] | [\"G\",\"A\"] |\n", - "| [113410735,113410735] | [113410736,113410736] | [\"G\",\"T\"] |\n", - "| [113410738,113410738] | [113410739,113410739] | [\"G\",\"A\"] |\n", - "| [113410750,113410750] | [113410751,113410751] | [\"G\",\"A\"] |\n", - "| [113410753,113410753] | [113410754,113410754] | [\"C\",\"T\"] |\n", - "+-----------------------+-----------------------+---------------------+\n", - "\n", - "+-------------------+-----------+--------+--------------------------------+\n", - "| vep.allele_string | vep.end | vep.id | vep.input |\n", - "+-------------------+-----------+--------+--------------------------------+\n", - "| str | int32 | str | str |\n", - "+-------------------+-----------+--------+--------------------------------+\n", - "| \"G/A\" | 113410736 | \".\" | \"chr11\t113410736\t.\tG\tA\t.\t.\tGT\" |\n", - "| \"G/T\" | 113410736 | \".\" | \"chr11\t113410736\t.\tG\tT\t.\t.\tGT\" |\n", - "| \"G/A\" | 113410739 | \".\" | \"chr11\t113410739\t.\tG\tA\t.\t.\tGT\" |\n", - "| \"G/A\" | 113410751 | \".\" | \"chr11\t113410751\t.\tG\tA\t.\t.\tGT\" |\n", - "| \"C/T\" | 113410754 | \".\" | \"chr11\t113410754\t.\tC\tT\t.\t.\tGT\" |\n", - "+-------------------+-----------+--------+--------------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| vep.intergenic_consequences |\n", - "+------------------------------------------------------------------------------+\n", - "| array, impact: st... |\n", - "+------------------------------------------------------------------------------+\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+-----------------------------+\n", - "| vep.most_severe_consequence |\n", - "+-----------------------------+\n", - "| str |\n", - "+-----------------------------+\n", - "| \"synonymous_variant\" |\n", - "| \"synonymous_variant\" |\n", - "| \"synonymous_variant\" |\n", - "| \"synonymous_variant\" |\n", - "| \"synonymous_variant\" |\n", - "+-----------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| vep.motif_feature_consequences |\n", - "+------------------------------------------------------------------------------+\n", - "| array, high_inf_p... |\n", - "+------------------------------------------------------------------------------+\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| vep.regulatory_feature_consequences |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+--------------------------------------------------------+\n", - "| histograms.qual_hists.gq_hist_all.bin_freq |\n", - "+--------------------------------------------------------+\n", - "| array |\n", - "+--------------------------------------------------------+\n", - "| [0,0,0,0,8,0,71,0,314313,0,37,0,416496,0,0,0,0,0,0,16] |\n", - "| [0,0,0,0,8,0,71,0,314313,0,37,0,416496,0,0,0,0,0,0,16] |\n", - "| [0,0,0,0,9,0,68,0,314320,0,24,0,416519,0,0,0,0,0,0,1] |\n", - "| [0,0,0,0,1,0,28,0,314363,0,2,0,416552,0,0,0,0,0,0,1] |\n", - "| [0,0,0,0,3,0,24,0,314081,0,0,0,416264,0,0,0,0,0,0,574] |\n", - "+--------------------------------------------------------+\n", - "\n", - "+---------------------------------------------+\n", - "| histograms.qual_hists.gq_hist_all.n_smaller |\n", - "+---------------------------------------------+\n", - "| int64 |\n", - "+---------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+---------------------------------------------+\n", - "\n", - "+--------------------------------------------+\n", - "| histograms.qual_hists.gq_hist_all.n_larger |\n", - "+--------------------------------------------+\n", - "| int64 |\n", - "+--------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+--------------------------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| histograms.qual_hists.dp_hist_all.bin_edges |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| histograms.qual_hists.dp_hist_all.bin_freq |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [0,0,61,328,11304,107355,345020,189098,36329,5607,2382,2757,3074,2931,295... |\n", - "| [0,0,61,328,11304,107355,345020,189098,36329,5607,2382,2757,3074,2931,295... |\n", - "| [0,0,55,309,11275,107353,345050,189133,36332,5605,2379,2755,3073,2932,295... |\n", - "| [0,0,18,272,11233,107401,345096,189157,36337,5604,2379,2755,3073,2932,295... |\n", - "| [0,0,16,266,11219,107342,344994,189134,36335,5603,2386,2754,3071,2938,297... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+---------------------------------------------+\n", - "| histograms.qual_hists.dp_hist_all.n_smaller |\n", - "+---------------------------------------------+\n", - "| int64 |\n", - "+---------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+---------------------------------------------+\n", - "\n", - "+--------------------------------------------+\n", - "| histograms.qual_hists.dp_hist_all.n_larger |\n", - "+--------------------------------------------+\n", - "| int64 |\n", - "+--------------------------------------------+\n", - "| 7685 |\n", - "| 7685 |\n", - "| 7683 |\n", - "| 7683 |\n", - "| 7737 |\n", - "+--------------------------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| histograms.qual_hists.gq_hist_alt.bin_edges |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+---------------------------------------------+\n", - "| histograms.qual_hists.gq_hist_alt.bin_freq |\n", - "+---------------------------------------------+\n", - "| array |\n", - "+---------------------------------------------+\n", - "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,15] |\n", - "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1] |\n", - "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1] |\n", - "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1] |\n", - "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,574] |\n", - "+---------------------------------------------+\n", - "\n", - "+---------------------------------------------+\n", - "| histograms.qual_hists.gq_hist_alt.n_smaller |\n", - "+---------------------------------------------+\n", - "| int64 |\n", - "+---------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+---------------------------------------------+\n", - "\n", - "+--------------------------------------------+\n", - "| histograms.qual_hists.gq_hist_alt.n_larger |\n", - "+--------------------------------------------+\n", - "| int64 |\n", - "+--------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+--------------------------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| histograms.qual_hists.dp_hist_alt.bin_edges |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+--------------------------------------------------------+\n", - "| histograms.qual_hists.dp_hist_alt.bin_freq |\n", - "+--------------------------------------------------------+\n", - "| array |\n", - "+--------------------------------------------------------+\n", - "| [0,0,0,0,0,0,0,1,3,1,2,3,1,0,1,0,1,1,0,0] |\n", - "| [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,1,1,4,13,22,21,26,25,30,25,35,40,41,25,31,27] |\n", - "+--------------------------------------------------------+\n", - "\n", - "+---------------------------------------------+\n", - "| histograms.qual_hists.dp_hist_alt.n_smaller |\n", - "+---------------------------------------------+\n", - "| int64 |\n", - "+---------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+---------------------------------------------+\n", - "\n", - "+--------------------------------------------+\n", - "| histograms.qual_hists.dp_hist_alt.n_larger |\n", - "+--------------------------------------------+\n", - "| int64 |\n", - "+--------------------------------------------+\n", - "| 1 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 207 |\n", - "+--------------------------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| histograms.qual_hists.ab_hist_alt.bin_edges |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", - "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", - "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", - "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", - "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+-----------------------------------------------------+\n", - "| histograms.qual_hists.ab_hist_alt.bin_freq |\n", - "+-----------------------------------------------------+\n", - "| array |\n", - "+-----------------------------------------------------+\n", - "| [0,0,0,0,1,0,0,1,1,11,1,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0] |\n", - "| [0,0,0,0,3,1,13,43,101,196,147,52,11,5,0,0,0,0,0,0] |\n", - "+-----------------------------------------------------+\n", - "\n", - "+---------------------------------------------+\n", - "| histograms.qual_hists.ab_hist_alt.n_smaller |\n", - "+---------------------------------------------+\n", - "| int64 |\n", - "+---------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+---------------------------------------------+\n", - "\n", - "+--------------------------------------------+\n", - "| histograms.qual_hists.ab_hist_alt.n_larger |\n", - "+--------------------------------------------+\n", - "| int64 |\n", - "+--------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+--------------------------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| histograms.raw_qual_hists.gq_hist_all.bin_edges |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+--------------------------------------------------------+\n", - "| histograms.raw_qual_hists.gq_hist_all.bin_freq |\n", - "+--------------------------------------------------------+\n", - "| array |\n", - "+--------------------------------------------------------+\n", - "| [5,0,0,0,9,0,71,0,314313,0,37,0,416496,0,0,0,0,0,0,16] |\n", - "| [5,0,0,0,9,0,71,0,314313,0,37,0,416496,0,0,0,0,0,0,16] |\n", - "| [5,0,0,0,10,0,68,0,314320,0,24,0,416519,0,0,0,0,0,0,1] |\n", - "| [0,0,0,0,1,0,28,0,314363,0,2,0,416552,0,0,0,0,0,0,1] |\n", - "| [1,0,0,0,3,0,24,0,314081,0,0,0,416264,0,0,0,0,0,0,574] |\n", - "+--------------------------------------------------------+\n", - "\n", - "+-------------------------------------------------+\n", - "| histograms.raw_qual_hists.gq_hist_all.n_smaller |\n", - "+-------------------------------------------------+\n", - "| int64 |\n", - "+-------------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+-------------------------------------------------+\n", - "\n", - "+------------------------------------------------+\n", - "| histograms.raw_qual_hists.gq_hist_all.n_larger |\n", - "+------------------------------------------------+\n", - "| int64 |\n", - "+------------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+------------------------------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| histograms.raw_qual_hists.dp_hist_all.bin_edges |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| histograms.raw_qual_hists.dp_hist_all.bin_freq |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [0,1,62,330,11305,107356,345020,189098,36329,5607,2382,2757,3074,2931,295... |\n", - "| [0,1,62,330,11305,107356,345020,189098,36329,5607,2382,2757,3074,2931,295... |\n", - "| [0,1,56,312,11275,107353,345051,189133,36332,5605,2379,2755,3073,2932,295... |\n", - "| [0,0,18,272,11233,107401,345096,189157,36337,5604,2379,2755,3073,2932,295... |\n", - "| [0,0,16,267,11219,107342,344994,189134,36335,5603,2386,2754,3071,2938,297... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+-------------------------------------------------+\n", - "| histograms.raw_qual_hists.dp_hist_all.n_smaller |\n", - "+-------------------------------------------------+\n", - "| int64 |\n", - "+-------------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+-------------------------------------------------+\n", - "\n", - "+------------------------------------------------+\n", - "| histograms.raw_qual_hists.dp_hist_all.n_larger |\n", - "+------------------------------------------------+\n", - "| int64 |\n", - "+------------------------------------------------+\n", - "| 7685 |\n", - "| 7685 |\n", - "| 7683 |\n", - "| 7683 |\n", - "| 7737 |\n", - "+------------------------------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| histograms.raw_qual_hists.gq_hist_alt.bin_edges |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+------------------------------------------------+\n", - "| histograms.raw_qual_hists.gq_hist_alt.bin_freq |\n", - "+------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------+\n", - "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,15] |\n", - "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1] |\n", - "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1] |\n", - "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1] |\n", - "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,574] |\n", - "+------------------------------------------------+\n", - "\n", - "+-------------------------------------------------+\n", - "| histograms.raw_qual_hists.gq_hist_alt.n_smaller |\n", - "+-------------------------------------------------+\n", - "| int64 |\n", - "+-------------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+-------------------------------------------------+\n", - "\n", - "+------------------------------------------------+\n", - "| histograms.raw_qual_hists.gq_hist_alt.n_larger |\n", - "+------------------------------------------------+\n", - "| int64 |\n", - "+------------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+------------------------------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| histograms.raw_qual_hists.dp_hist_alt.bin_edges |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+--------------------------------------------------------+\n", - "| histograms.raw_qual_hists.dp_hist_alt.bin_freq |\n", - "+--------------------------------------------------------+\n", - "| array |\n", - "+--------------------------------------------------------+\n", - "| [0,0,0,0,0,0,0,1,3,1,2,3,1,0,1,0,1,1,0,0] |\n", - "| [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,1,1,4,13,22,21,26,25,30,25,35,40,41,25,31,27] |\n", - "+--------------------------------------------------------+\n", - "\n", - "+-------------------------------------------------+\n", - "| histograms.raw_qual_hists.dp_hist_alt.n_smaller |\n", - "+-------------------------------------------------+\n", - "| int64 |\n", - "+-------------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+-------------------------------------------------+\n", - "\n", - "+------------------------------------------------+\n", - "| histograms.raw_qual_hists.dp_hist_alt.n_larger |\n", - "+------------------------------------------------+\n", - "| int64 |\n", - "+------------------------------------------------+\n", - "| 1 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 207 |\n", - "+------------------------------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| histograms.raw_qual_hists.ab_hist_alt.bin_edges |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", - "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", - "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", - "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", - "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+-----------------------------------------------------+\n", - "| histograms.raw_qual_hists.ab_hist_alt.bin_freq |\n", - "+-----------------------------------------------------+\n", - "| array |\n", - "+-----------------------------------------------------+\n", - "| [0,0,0,0,1,0,0,1,1,11,1,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0] |\n", - "| [0,0,0,0,3,1,13,43,101,196,147,52,11,5,0,0,0,0,0,0] |\n", - "+-----------------------------------------------------+\n", - "\n", - "+-------------------------------------------------+\n", - "| histograms.raw_qual_hists.ab_hist_alt.n_smaller |\n", - "+-------------------------------------------------+\n", - "| int64 |\n", - "+-------------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+-------------------------------------------------+\n", - "\n", - "+------------------------------------------------+\n", - "| histograms.raw_qual_hists.ab_hist_alt.n_larger |\n", - "+------------------------------------------------+\n", - "| int64 |\n", - "+------------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+------------------------------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| histograms.age_hists.age_hist_het.bin_edges |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", - "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", - "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", - "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", - "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+--------------------------------------------+\n", - "| histograms.age_hists.age_hist_het.bin_freq |\n", - "+--------------------------------------------+\n", - "| array |\n", - "+--------------------------------------------+\n", - "| [0,0,1,2,4,2,4,1,0,0] |\n", - "| [0,0,0,0,0,1,0,0,0,0] |\n", - "| [0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,0,0,0,0,0] |\n", - "| [3,2,30,42,65,52,79,55,7,3] |\n", - "+--------------------------------------------+\n", - "\n", - "+---------------------------------------------+\n", - "| histograms.age_hists.age_hist_het.n_smaller |\n", - "+---------------------------------------------+\n", - "| int64 |\n", - "+---------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 15 |\n", - "+---------------------------------------------+\n", - "\n", - "+--------------------------------------------+\n", - "| histograms.age_hists.age_hist_het.n_larger |\n", - "+--------------------------------------------+\n", - "| int64 |\n", - "+--------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 3 |\n", - "+--------------------------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| histograms.age_hists.age_hist_hom.bin_edges |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", - "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", - "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", - "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", - "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+--------------------------------------------+\n", - "| histograms.age_hists.age_hist_hom.bin_freq |\n", - "+--------------------------------------------+\n", - "| array |\n", - "+--------------------------------------------+\n", - "| [0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,1,0,0,0,1,0] |\n", - "+--------------------------------------------+\n", - "\n", - "+---------------------------------------------+\n", - "| histograms.age_hists.age_hist_hom.n_smaller |\n", - "+---------------------------------------------+\n", - "| int64 |\n", - "+---------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+---------------------------------------------+\n", - "\n", - "+--------------------------------------------+---------------------------------+\n", - "| histograms.age_hists.age_hist_hom.n_larger | in_silico_predictors.cadd.phred |\n", - "+--------------------------------------------+---------------------------------+\n", - "| int64 | float32 |\n", - "+--------------------------------------------+---------------------------------+\n", - "| 0 | 3.44e+00 |\n", - "| 0 | 2.96e+00 |\n", - "| 0 | 1.03e+01 |\n", - "| 0 | 1.20e+01 |\n", - "| 0 | 9.48e+00 |\n", - "+--------------------------------------------+---------------------------------+\n", - "\n", - "+-------------------------------------+--------------------------------+\n", - "| in_silico_predictors.cadd.raw_score | in_silico_predictors.revel_max |\n", - "+-------------------------------------+--------------------------------+\n", - "| float32 | float64 |\n", - "+-------------------------------------+--------------------------------+\n", - "| 2.28e-01 | NA |\n", - "| 1.86e-01 | NA |\n", - "| 8.89e-01 | NA |\n", - "| 1.03e+00 | NA |\n", - "| 8.09e-01 | NA |\n", - "+-------------------------------------+--------------------------------+\n", - "\n", - "+--------------------------------------+\n", - "| in_silico_predictors.spliceai_ds_max |\n", - "+--------------------------------------+\n", - "| float32 |\n", - "+--------------------------------------+\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "+--------------------------------------+\n", - "\n", - "+------------------------------------------+-----------------------------+\n", - "| in_silico_predictors.pangolin_largest_ds | in_silico_predictors.phylop |\n", - "+------------------------------------------+-----------------------------+\n", - "| float64 | float64 |\n", - "+------------------------------------------+-----------------------------+\n", - "| 1.00e-02 | -2.55e-01 |\n", - "| 3.00e-02 | -2.55e-01 |\n", - "| 0.00e+00 | 3.26e+00 |\n", - "| 0.00e+00 | 8.67e+00 |\n", - "| 1.00e-02 | 5.82e+00 |\n", - "+------------------------------------------+-----------------------------+\n", - "\n", - "+-------------------------------+-----------------------------------+\n", - "| in_silico_predictors.sift_max | in_silico_predictors.polyphen_max |\n", - "+-------------------------------+-----------------------------------+\n", - "| float64 | float64 |\n", - "+-------------------------------+-----------------------------------+\n", - "| NA | NA |\n", - "| NA | NA |\n", - "| NA | NA |\n", - "| NA | NA |\n", - "| NA | NA |\n", - "+-------------------------------+-----------------------------------+\n", - "showing top 5 rows" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "The total number of synonymous variants passing filters in DRD2 is: 238\n" - ] - } - ], + "outputs": [], "source": [ "var_ht = filter_by_consequence_category(synonymous=True, ht=drd2_ht)\n", "var_ht.show(5)\n", @@ -4881,1079 +636,10 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": null, "id": "4141ccb3", "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "
histograms
grpmax
fafmax
info
qual_hists
raw_qual_hists
age_hists
in_silico_predictors
gnomad
non_ukb
gnomad
non_ukb
vrs
vep
vqsr_results
region_flags
allele_info
gq_hist_all
dp_hist_all
gq_hist_alt
dp_hist_alt
ab_hist_alt
gq_hist_all
dp_hist_all
gq_hist_alt
dp_hist_alt
ab_hist_alt
age_hist_het
age_hist_hom
cadd
locus
alleles
freq
AC
AF
AN
homozygote_count
gen_anc
AC
AF
AN
homozygote_count
gen_anc
faf
faf95_max
faf95_max_gen_anc
faf99_max
faf99_max_gen_anc
faf95_max
faf95_max_gen_anc
faf99_max
faf99_max_gen_anc
a_index
was_split
rsid
filters
FS
MQ
MQRankSum
QUALapprox
QD
ReadPosRankSum
SB
SOR
VarDP
AS_FS
AS_MQ
AS_MQRankSum
AS_pab_max
AS_QUALapprox
AS_QD
AS_ReadPosRankSum
AS_SB_TABLE
AS_SOR
AS_VarDP
singleton
transmitted_singleton
sibling_singleton
omni
mills
monoallelic
only_het
AS_VQSLOD
inbreeding_coeff
VRS_Allele_IDs
VRS_Starts
VRS_Ends
VRS_States
allele_string
end
id
input
intergenic_consequences
most_severe_consequence
motif_feature_consequences
regulatory_feature_consequences
seq_region_name
start
strand
transcript_consequences
variant_class
AS_VQSLOD
AS_culprit
positive_train_site
negative_train_site
non_par
lcr
segdup
fail_interval_qc
outside_ukb_capture_region
outside_broad_capture_region
variant_type
n_alt_alleles
has_star
allele_type
was_mixed
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
phred
raw_score
revel_max
spliceai_ds_max
pangolin_largest_ds
phylop
sift_max
polyphen_max
locus<GRCh38>array<str>array<struct{AC: int32, AF: float64, AN: int32, homozygote_count: int64}>int32float64int32int64strint32float64int32int64strarray<struct{faf95: float64, faf99: float64}>float64strfloat64strfloat64strfloat64strint32boolset<str>set<str>float64float64float64int64float64float64array<int32>float64int32float64float64float64float64int64float64float64array<int32>float64int32boolboolboolboolboolboolboolfloat64float64array<str>array<int32>array<int32>array<str>strint32strstrarray<struct{allele_num: int32, consequence_terms: array<str>, impact: str, variant_allele: str}>strarray<struct{allele_num: int32, consequence_terms: array<str>, high_inf_pos: str, impact: str, motif_feature_id: str, motif_name: str, motif_pos: int32, motif_score_change: float64, transcription_factors: array<str>, strand: int32, variant_allele: str}>array<struct{allele_num: int32, biotype: str, consequence_terms: array<str>, impact: str, regulatory_feature_id: str, variant_allele: str}>strint32int32array<struct{allele_num: int32, amino_acids: str, appris: str, biotype: str, canonical: int32, ccds: str, cdna_start: int32, cdna_end: int32, cds_end: int32, cds_start: int32, codons: str, consequence_terms: array<str>, distance: int32, domains: array<struct{db: str, name: str}>, exon: str, flags: str, gene_id: str, gene_pheno: int32, gene_symbol: str, gene_symbol_source: str, hgnc_id: str, hgvsc: str, hgvsp: str, hgvs_offset: int32, impact: str, intron: str, lof: str, lof_flags: str, lof_filter: str, lof_info: str, mane_select: str, mane_plus_clinical: str, mirna: array<str>, protein_end: int32, protein_start: int32, protein_id: str, source: str, strand: int32, transcript_id: str, tsl: int32, uniprot_isoform: array<str>, variant_allele: str}>strfloat64strboolboolboolboolboolboolboolboolstrint32boolstrboolarray<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64float32float32float64float32float64float64float64float64
chr11:113410657["C","T"][(18,1.25e-05,1445518,0),(24,1.64e-05,1461322,0),(1,3.02e-05,33096,0),(0,0.00e+00,44684,0),(0,0.00e+00,26010,0),(4,1.01e-04,39606,0),(0,0.00e+00,53166,0),(0,0.00e+00,4742,0),(10,9.10e-06,1098860,0),(1,1.67e-05,59762,0),(2,2.34e-05,85592,0),(12,1.65e-05,725392,0),(6,8.33e-06,720126,0),(1,5.24e-05,19098,0),(0,0.00e+00,13998,0),(0,0.00e+00,25658,0),(0,0.00e+00,19026,0),(0,0.00e+00,12572,0),(0,0.00e+00,13438,0),(4,1.94e-04,20642,0),(0,0.00e+00,18964,0),(0,0.00e+00,27516,0),(0,0.00e+00,25650,0),(0,0.00e+00,1942,0),(0,0.00e+00,2800,0),(6,1.06e-05,564798,0),(4,7.49e-06,534062,0),(1,3.18e-05,31454,0),(0,0.00e+00,28308,0),(0,0.00e+00,21712,0),(2,3.13e-05,63880,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,12,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,162,0),(0,0.00e+00,198,0),(0,0.00e+00,198,0),(0,0.00e+00,200,0),(0,0.00e+00,198,0),(0,0.00e+00,984,0),(0,0.00e+00,1000,0),(0,0.00e+00,994,0),(0,0.00e+00,1000,0),(0,0.00e+00,994,0),(0,0.00e+00,828,0),(0,0.00e+00,996,0),(0,0.00e+00,986,0),(0,0.00e+00,992,0),(0,0.00e+00,994,0),(0,0.00e+00,1976,0),(0,0.00e+00,2000,0),(0,0.00e+00,1984,0),(0,0.00e+00,1998,0),(0,0.00e+00,1992,0),(0,0.00e+00,1656,0),(0,0.00e+00,1988,0),(0,0.00e+00,1984,0),(0,0.00e+00,1976,0),(0,0.00e+00,1990,0),(0,0.00e+00,3952,0),(0,0.00e+00,4000,0),(0,0.00e+00,3978,0),(0,0.00e+00,3986,0),(0,0.00e+00,3984,0),(0,0.00e+00,3280,0),(0,0.00e+00,3970,0),(0,0.00e+00,3964,0),(0,0.00e+00,3962,0),(0,0.00e+00,3966,0),(0,0.00e+00,5692,0),(0,0.00e+00,5766,0),(0,0.00e+00,5732,0),(0,0.00e+00,5744,0),(0,0.00e+00,5740,0),(0,0.00e+00,4742,0),(0,0.00e+00,5714,0),(0,0.00e+00,5718,0),(0,0.00e+00,5716,0),(0,0.00e+00,5722,0),(0,0.00e+00,9872,0),(0,0.00e+00,9994,0),(0,0.00e+00,9944,0),(1,1.00e-04,9960,0),(0,0.00e+00,9938,0),(0,0.00e+00,9900,0),(0,0.00e+00,9894,0),(0,0.00e+00,9918,0),(0,0.00e+00,9912,0),(0,0.00e+00,19778,0),(0,0.00e+00,19982,0),(0,0.00e+00,19900,0),(1,5.02e-05,19940,0),(0,0.00e+00,19894,0),(0,0.00e+00,19780,0),(0,0.00e+00,19800,0),(0,0.00e+00,19830,0),(0,0.00e+00,19784,0),(0,0.00e+00,25850,0),(0,0.00e+00,26110,0),(0,0.00e+00,26010,0),(3,1.15e-04,26064,0),(0,0.00e+00,26006,0),(0,0.00e+00,25842,0),(0,0.00e+00,25870,0),(0,0.00e+00,25918,0),(0,0.00e+00,25850,0),(1,3.02e-05,33096,0),(0,0.00e+00,33450,0),(4,1.20e-04,33404,0),(0,0.00e+00,33316,0),(0,0.00e+00,33110,0),(0,0.00e+00,33158,0),(0,0.00e+00,33202,0),(0,0.00e+00,33108,0),(0,0.00e+00,39666,0),(4,1.01e-04,39606,0),(0,0.00e+00,39508,0),(0,0.00e+00,39258,0),(0,0.00e+00,39300,0),(1,2.54e-05,39374,0),(0,0.00e+00,39266,0),(0,0.00e+00,39964,0),(0,0.00e+00,39808,0),(0,0.00e+00,39554,0),(0,0.00e+00,39598,0),(1,2.52e-05,39670,0),(0,0.00e+00,39562,0),(0,0.00e+00,44684,0),(0,0.00e+00,44514,0),(0,0.00e+00,44226,0),(0,0.00e+00,44266,0),(1,2.25e-05,44352,0),(0,0.00e+00,44244,0),(0,0.00e+00,53166,0),(0,0.00e+00,52822,0),(1,1.89e-05,52870,0),(1,1.89e-05,52986,0),(0,0.00e+00,52850,0),(0,0.00e+00,59694,0),(1,1.67e-05,59762,0),(1,1.67e-05,59908,0),(0,0.00e+00,59748,0),(0,0.00e+00,85258,0),(2,2.34e-05,85592,0),(0,0.00e+00,85300,0),(0,0.00e+00,98824,0),(0,0.00e+00,98906,0),(1,5.06e-06,197618,0),(1,5.06e-06,197732,0),(4,1.01e-05,395192,0),(4,1.01e-05,395514,0),(7,7.08e-06,988108,0),(11,1.11e-05,988718,0),(10,9.10e-06,1098860,0),(13,1.18e-05,1099436,0),(11,1.76e-05,626724,0),(11,1.75e-05,628782,0),(1,5.67e-05,17648,0),(0,0.00e+00,43726,0),(0,0.00e+00,20972,0),(4,1.11e-04,36050,0),(0,0.00e+00,52892,0),(0,0.00e+00,3150,0),(4,1.14e-05,349876,0),(0,0.00e+00,32960,0),(2,2.88e-05,69450,0),(7,2.45e-05,285192,0),(4,1.17e-05,341532,0),(1,9.74e-05,10264,0),(0,0.00e+00,7384,0),(0,0.00e+00,25030,0),(0,0.00e+00,18696,0),(0,0.00e+00,9834,0),(0,0.00e+00,11138,0),(4,2.19e-04,18284,0),(0,0.00e+00,17766,0),(0,0.00e+00,27268,0),(0,0.00e+00,25624,0),(0,0.00e+00,1368,0),(0,0.00e+00,1782,0),(2,1.23e-05,162102,0),(2,1.07e-05,187774,0),(0,0.00e+00,16698,0),(0,0.00e+00,16262,0),(0,0.00e+00,14344,0),(2,3.63e-05,55106,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,12,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,152,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,998,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,994,0),(0,0.00e+00,764,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,992,0),(0,0.00e+00,1000,0),(0,0.00e+00,1998,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,1998,0),(0,0.00e+00,1992,0),(0,0.00e+00,1552,0),(0,0.00e+00,2000,0),(0,0.00e+00,1998,0),(0,0.00e+00,1986,0),(0,0.00e+00,1994,0),(0,0.00e+00,3988,0),(0,0.00e+00,4000,0),(0,0.00e+00,3998,0),(0,0.00e+00,3996,0),(0,0.00e+00,3984,0),(0,0.00e+00,3034,0),(0,0.00e+00,4000,0),(0,0.00e+00,3996,0),(0,0.00e+00,3976,0),(0,0.00e+00,3992,0),(0,0.00e+00,4136,0),(0,0.00e+00,4148,0),(0,0.00e+00,4146,0),(0,0.00e+00,4144,0),(0,0.00e+00,4130,0),(0,0.00e+00,3150,0),(0,0.00e+00,4148,0),(0,0.00e+00,4142,0),(0,0.00e+00,4124,0),(0,0.00e+00,4140,0),(0,0.00e+00,9974,0),(0,0.00e+00,9998,0),(0,0.00e+00,9994,0),(1,1.00e-04,9990,0),(0,0.00e+00,9938,0),(0,0.00e+00,10000,0),(0,0.00e+00,9966,0),(0,0.00e+00,9932,0),(0,0.00e+00,9974,0),(1,5.67e-05,17648,0),(0,0.00e+00,17688,0),(0,0.00e+00,17682,0),(1,5.66e-05,17680,0),(0,0.00e+00,17598,0),(0,0.00e+00,17684,0),(0,0.00e+00,17634,0),(0,0.00e+00,17590,0),(0,0.00e+00,17642,0),(0,0.00e+00,19994,0),(0,0.00e+00,19988,0),(1,5.00e-05,19986,0),(0,0.00e+00,19894,0),(0,0.00e+00,19986,0),(0,0.00e+00,19926,0),(0,0.00e+00,19888,0),(0,0.00e+00,19942,0),(0,0.00e+00,20976,0),(0,0.00e+00,20972,0),(1,4.77e-05,20970,0),(0,0.00e+00,20874,0),(0,0.00e+00,20970,0),(0,0.00e+00,20906,0),(0,0.00e+00,20866,0),(0,0.00e+00,20924,0),(0,0.00e+00,33088,0),(4,1.21e-04,33082,0),(0,0.00e+00,32938,0),(0,0.00e+00,33078,0),(0,0.00e+00,32960,0),(1,3.04e-05,32912,0),(0,0.00e+00,33000,0),(0,0.00e+00,36060,0),(4,1.11e-04,36050,0),(0,0.00e+00,35892,0),(0,0.00e+00,36046,0),(1,2.79e-05,35868,0),(0,0.00e+00,35962,0),(0,0.00e+00,39988,0),(0,0.00e+00,39810,0),(0,0.00e+00,39974,0),(1,2.51e-05,39776,0),(0,0.00e+00,39878,0),(0,0.00e+00,43726,0),(0,0.00e+00,43536,0),(0,0.00e+00,43712,0),(1,2.30e-05,43498,0),(0,0.00e+00,43608,0),(0,0.00e+00,52892,0),(0,0.00e+00,53106,0),(2,3.78e-05,52854,0),(0,0.00e+00,52980,0),(0,0.00e+00,69750,0),(2,2.88e-05,69450,0),(0,0.00e+00,69582,0),(1,1.00e-05,99946,0),(0,0.00e+00,99660,0),(3,1.50e-05,199866,0),(3,1.50e-05,199362,0),(4,1.14e-05,349876,0),(5,1.43e-05,348968,0),(6,1.50e-05,398694,0)]41.01e-04396060"eas"41.11e-04360500"eas"[(7.78e-06,6.42e-06),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(3.35e-05,1.99e-05),(0.00e+00,0.00e+00),(4.60e-06,3.36e-06),(3.88e-06,1.45e-06),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,(9.41e-06,6.88e-06),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(3.78e-05,2.24e-05),(0.00e+00,0.00e+00),(3.67e-06,1.80e-06),(4.78e-06,1.79e-06),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]3.35e-05"eas"1.99e-05"eas"3.78e-05"eas"2.24e-05"eas"3True{"rs200559334"}{}0.00e+006.00e+010.00e+00129921.27e+010.00e+00[543,53,386,37]7.04e-0110194.82e-166.00e+010.00e+001.00e+00128911.32e+01-3.90e-02[543,53,379,36]7.13e-01976FalseNANAFalseFalseFalseFalse9.14e+00-1.64e-05["ga4gh:VA.xwHxL6yO3I874HqhfGar1ZIaOp66ifsx","ga4gh:VA.eglRJIN5-izMH1peMx_9JvpakP8TCBXX"][113410656,113410656][113410657,113410657]["C","T"]"C/T"113410657".""chr11\t113410657\t.\tC\tT\t.\t.\tGT"NA"3_prime_UTR_variant"NANA"chr11"1134106571[(1,NA,NA,"protein_coding",NA,"CCDS8362.1",1391,1391,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000346454.7:c.*70G>A",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"ENSP00000278597","Ensembl",-1,"ENST00000346454",1,["P14416-2"],"T"),(1,NA,"P2","protein_coding",1,"CCDS8361.1",1756,1756,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"8/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000362072.8:c.*70G>A",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,"NM_000795.4",NA,NA,NA,NA,"ENSP00000354859","Ensembl",-1,"ENST00000362072",1,["P14416-1"],"T"),(1,NA,NA,"processed_transcript",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],3718,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000535984",3,NA,"T"),(1,NA,"A1","protein_coding",NA,NA,1408,1408,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"8/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000538967.5:c.*70G>A",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"ENSP00000438215","Ensembl",-1,"ENST00000538967",5,["P14416-3"],"T"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],4637,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000539420",3,NA,"T"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],3207,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000540600",1,NA,"T"),(1,NA,"P2","protein_coding",NA,"CCDS8361.1",1723,1723,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000542968.5:c.*70G>A",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"ENSP00000442172","Ensembl",-1,"ENST00000542968",1,["P14416-1"],"T"),(1,NA,"A1","protein_coding",NA,NA,1432,1432,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000544518.5:c.*70G>A",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"ENSP00000441068","Ensembl",-1,"ENST00000544518",1,NA,"T"),(1,NA,NA,"lncRNA",1,NA,NA,NA,NA,NA,NA,["intron_variant","non_coding_transcript_variant"],NA,NA,NA,NA,"ENSG00000256757",NA,NA,NA,NA,"ENST00000546284.1:n.245-890C>T",NA,NA,"MODIFIER","2/3",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",1,"ENST00000546284",3,NA,"T"),(1,NA,NA,"protein_coding",1,NA,1756,1756,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"8/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_000795.4:c.*70G>A",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,"ENST00000362072.8",NA,NA,NA,NA,"NP_000786.1","RefSeq",-1,"NM_000795.4",NA,NA,"T"),(1,NA,NA,"protein_coding",NA,NA,1669,1669,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"7/7",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_016574.4:c.*70G>A",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"NP_057658.2","RefSeq",-1,"NM_016574.4",NA,NA,"T"),(1,NA,NA,"protein_coding",NA,NA,1484,1484,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"8/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","XM_017017296.2:c.*70G>A",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"XP_016872785.1","RefSeq",-1,"XM_017017296.2",NA,NA,"T")]"SNV"9.14e+00"AS_MQ"FalseFalseFalseFalseFalseNATrueFalse"multi-snv"3False"snv"False[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,4430,0,32721,0,357851,0,60423,0,267316,0,0,0,0,0,0,18]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,29987,74977,120278,300405,170342,18935,3117,1021,684,644,577,507,353,258,173,112,77,60]0252[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,18]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,2,3,3,2,1,0,1,1,0,1,0,0,1,1,0,0,1]01[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,2,0,4,4,4,3,1,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][979,2,2487,1,8860,1,32722,0,357851,0,60423,0,267317,0,0,0,0,0,0,18]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][415,5663,30415,76214,120310,300505,170348,18947,3122,1023,686,644,577,507,353,258,173,112,77,60]0252[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][1,2,0,1,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,18]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,1,3,6,4,2,1,0,1,1,0,1,0,0,1,1,0,0,1]01[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,1,3,2,0,0,2,0,4,4,4,3,1,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][1,1,0,2,5,2,1,0,0,0]20[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]003.61e+002.42e-01NA0.00e+001.20e-01-4.68e-01NANA
chr11:113410658["G","A"][(23,1.59e-05,1448166,0),(23,1.57e-05,1461456,0),(0,0.00e+00,33180,0),(0,0.00e+00,44684,0),(1,3.84e-05,26038,0),(3,7.57e-05,39630,0),(0,0.00e+00,53152,0),(0,0.00e+00,4770,0),(17,1.54e-05,1101160,0),(1,1.67e-05,59860,0),(1,1.17e-05,85692,0),(14,1.93e-05,726896,0),(9,1.25e-05,721270,0),(0,0.00e+00,19144,0),(0,0.00e+00,14036,0),(0,0.00e+00,25658,0),(0,0.00e+00,19026,0),(1,7.95e-05,12586,0),(0,0.00e+00,13452,0),(2,9.68e-05,20662,0),(1,5.27e-05,18968,0),(0,0.00e+00,27504,0),(0,0.00e+00,25648,0),(0,0.00e+00,1952,0),(0,0.00e+00,2818,0),(10,1.77e-05,566134,0),(7,1.31e-05,535026,0),(0,0.00e+00,31512,0),(1,3.53e-05,28348,0),(1,4.60e-05,21744,0),(0,0.00e+00,63948,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,12,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,162,0),(0,0.00e+00,198,0),(0,0.00e+00,198,0),(0,0.00e+00,200,0),(0,0.00e+00,198,0),(0,0.00e+00,988,0),(0,0.00e+00,1000,0),(0,0.00e+00,996,0),(0,0.00e+00,1000,0),(0,0.00e+00,992,0),(0,0.00e+00,834,0),(0,0.00e+00,994,0),(0,0.00e+00,986,0),(0,0.00e+00,992,0),(0,0.00e+00,992,0),(0,0.00e+00,1980,0),(0,0.00e+00,1998,0),(0,0.00e+00,1988,0),(0,0.00e+00,1998,0),(0,0.00e+00,1990,0),(0,0.00e+00,1672,0),(0,0.00e+00,1986,0),(0,0.00e+00,1982,0),(0,0.00e+00,1980,0),(0,0.00e+00,1988,0),(0,0.00e+00,3964,0),(0,0.00e+00,3998,0),(0,0.00e+00,3980,0),(0,0.00e+00,3994,0),(0,0.00e+00,3980,0),(0,0.00e+00,3304,0),(0,0.00e+00,3972,0),(0,0.00e+00,3964,0),(0,0.00e+00,3972,0),(0,0.00e+00,3964,0),(0,0.00e+00,5712,0),(0,0.00e+00,5766,0),(0,0.00e+00,5738,0),(0,0.00e+00,5752,0),(0,0.00e+00,5740,0),(0,0.00e+00,4770,0),(0,0.00e+00,5718,0),(0,0.00e+00,5720,0),(0,0.00e+00,5728,0),(0,0.00e+00,5724,0),(0,0.00e+00,9908,0),(0,0.00e+00,9994,0),(0,0.00e+00,9950,0),(1,1.00e-04,9972,0),(0,0.00e+00,9942,0),(0,0.00e+00,9912,0),(0,0.00e+00,9904,0),(0,0.00e+00,9932,0),(0,0.00e+00,9920,0),(0,0.00e+00,19832,0),(0,0.00e+00,19980,0),(1,5.02e-05,19918,0),(2,1.00e-04,19956,0),(0,0.00e+00,19896,0),(1,5.05e-05,19818,0),(0,0.00e+00,19830,0),(0,0.00e+00,19858,0),(0,0.00e+00,19820,0),(0,0.00e+00,25916,0),(0,0.00e+00,26110,0),(1,3.84e-05,26038,0),(3,1.15e-04,26082,0),(0,0.00e+00,25998,0),(1,3.86e-05,25884,0),(0,0.00e+00,25910,0),(0,0.00e+00,25962,0),(1,3.86e-05,25892,0),(0,0.00e+00,33180,0),(0,0.00e+00,33452,0),(3,8.98e-05,33420,0),(0,0.00e+00,33304,0),(1,3.02e-05,33160,0),(0,0.00e+00,33206,0),(0,0.00e+00,33254,0),(1,3.02e-05,33158,0),(0,0.00e+00,39670,0),(3,7.57e-05,39630,0),(0,0.00e+00,39492,0),(1,2.54e-05,39322,0),(0,0.00e+00,39360,0),(1,2.54e-05,39426,0),(1,2.54e-05,39326,0),(0,0.00e+00,39968,0),(0,0.00e+00,39792,0),(1,2.52e-05,39622,0),(0,0.00e+00,39658,0),(1,2.52e-05,39722,0),(1,2.52e-05,39620,0),(0,0.00e+00,44684,0),(0,0.00e+00,44492,0),(1,2.26e-05,44294,0),(0,0.00e+00,44340,0),(1,2.25e-05,44416,0),(1,2.26e-05,44306,0),(0,0.00e+00,53152,0),(1,1.89e-05,52914,0),(0,0.00e+00,52958,0),(1,1.88e-05,53060,0),(1,1.89e-05,52926,0),(1,1.67e-05,59796,0),(1,1.67e-05,59860,0),(1,1.67e-05,59994,0),(1,1.67e-05,59832,0),(1,1.17e-05,85402,0),(1,1.17e-05,85692,0),(1,1.17e-05,85434,0),(2,2.02e-05,99006,0),(1,1.01e-05,99072,0),(4,2.02e-05,198028,0),(4,2.02e-05,198104,0),(9,2.27e-05,396076,0),(5,1.26e-05,396306,0),(15,1.51e-05,990236,0),(15,1.51e-05,990630,0),(17,1.54e-05,1101160,0),(19,1.72e-05,1101514,0),(14,2.23e-05,626744,0),(14,2.23e-05,628782,0),(0,0.00e+00,17650,0),(0,0.00e+00,43720,0),(1,4.77e-05,20968,0),(1,2.77e-05,36050,0),(0,0.00e+00,52878,0),(0,0.00e+00,3172,0),(10,2.86e-05,349848,0),(1,3.03e-05,32968,0),(1,1.44e-05,69490,0),(8,2.81e-05,285194,0),(6,1.76e-05,341550,0),(0,0.00e+00,10264,0),(0,0.00e+00,7386,0),(0,0.00e+00,25026,0),(0,0.00e+00,18694,0),(1,1.02e-04,9832,0),(0,0.00e+00,11136,0),(0,0.00e+00,18284,0),(1,5.63e-05,17766,0),(0,0.00e+00,27256,0),(0,0.00e+00,25622,0),(0,0.00e+00,1376,0),(0,0.00e+00,1796,0),(6,3.70e-05,162104,0),(4,2.13e-05,187744,0),(0,0.00e+00,16698,0),(1,6.15e-05,16270,0),(1,6.97e-05,14354,0),(0,0.00e+00,55136,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,12,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,152,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,998,0),(0,0.00e+00,1000,0),(0,0.00e+00,998,0),(0,0.00e+00,1000,0),(0,0.00e+00,992,0),(0,0.00e+00,766,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,992,0),(0,0.00e+00,1000,0),(0,0.00e+00,1998,0),(0,0.00e+00,1998,0),(0,0.00e+00,1996,0),(0,0.00e+00,1998,0),(0,0.00e+00,1990,0),(0,0.00e+00,1568,0),(0,0.00e+00,2000,0),(0,0.00e+00,1998,0),(0,0.00e+00,1988,0),(0,0.00e+00,1994,0),(0,0.00e+00,3986,0),(0,0.00e+00,3998,0),(0,0.00e+00,3994,0),(0,0.00e+00,3996,0),(0,0.00e+00,3980,0),(0,0.00e+00,3054,0),(0,0.00e+00,4000,0),(0,0.00e+00,3996,0),(0,0.00e+00,3982,0),(0,0.00e+00,3992,0),(0,0.00e+00,4134,0),(0,0.00e+00,4146,0),(0,0.00e+00,4142,0),(0,0.00e+00,4144,0),(0,0.00e+00,4126,0),(0,0.00e+00,3172,0),(0,0.00e+00,4148,0),(0,0.00e+00,4142,0),(0,0.00e+00,4130,0),(0,0.00e+00,4140,0),(0,0.00e+00,9972,0),(0,0.00e+00,9996,0),(0,0.00e+00,9990,0),(0,0.00e+00,9990,0),(0,0.00e+00,9944,0),(0,0.00e+00,9998,0),(0,0.00e+00,9968,0),(0,0.00e+00,9946,0),(0,0.00e+00,9974,0),(0,0.00e+00,17650,0),(0,0.00e+00,17686,0),(1,5.66e-05,17680,0),(1,5.66e-05,17678,0),(0,0.00e+00,17600,0),(0,0.00e+00,17686,0),(0,0.00e+00,17636,0),(0,0.00e+00,17610,0),(0,0.00e+00,17638,0),(0,0.00e+00,19990,0),(1,5.00e-05,19984,0),(1,5.00e-05,19984,0),(0,0.00e+00,19898,0),(0,0.00e+00,19986,0),(0,0.00e+00,19930,0),(0,0.00e+00,19912,0),(0,0.00e+00,19940,0),(0,0.00e+00,20970,0),(1,4.77e-05,20968,0),(1,4.77e-05,20968,0),(0,0.00e+00,20880,0),(0,0.00e+00,20970,0),(0,0.00e+00,20908,0),(0,0.00e+00,20890,0),(0,0.00e+00,20922,0),(0,0.00e+00,33082,0),(1,3.02e-05,33080,0),(0,0.00e+00,32926,0),(0,0.00e+00,33078,0),(1,3.03e-05,32968,0),(1,3.04e-05,32938,0),(0,0.00e+00,33000,0),(0,0.00e+00,36054,0),(1,2.77e-05,36050,0),(0,0.00e+00,35882,0),(0,0.00e+00,36048,0),(1,2.79e-05,35896,0),(0,0.00e+00,35960,0),(0,0.00e+00,39982,0),(0,0.00e+00,39794,0),(0,0.00e+00,39976,0),(1,2.51e-05,39804,0),(0,0.00e+00,39878,0),(0,0.00e+00,43720,0),(0,0.00e+00,43514,0),(0,0.00e+00,43712,0),(1,2.30e-05,43532,0),(0,0.00e+00,43608,0),(0,0.00e+00,52878,0),(0,0.00e+00,53108,0),(1,1.89e-05,52890,0),(0,0.00e+00,52980,0),(0,0.00e+00,69748,0),(1,1.44e-05,69490,0),(0,0.00e+00,69590,0),(1,1.00e-05,99940,0),(0,0.00e+00,99680,0),(4,2.00e-05,199860,0),(1,5.02e-06,199386,0),(10,2.86e-05,349848,0),(7,2.01e-05,348992,0),(7,1.76e-05,398714,0)]37.57e-05396300"eas"102.86e-053498480"nfe"[(1.06e-05,8.83e-06),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(2.01e-05,1.06e-05),(0.00e+00,0.00e+00),(9.40e-06,7.69e-06),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,(1.30e-05,1.01e-05),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(1.54e-05,1.15e-05),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]2.01e-05"eas"1.06e-05"eas"1.54e-05"nfe"1.15e-05"nfe"1True{"rs201475538"}{}8.65e-016.00e+010.00e+001428051.36e+01-1.80e-02[4798,567,4576,579]6.27e-01105181.55e+006.00e+010.00e+001.00e+00191891.44e+011.34e-01[4798,567,588,57]8.94e-011334FalseNANAFalseFalseFalseFalse6.96e+00-1.57e-05["ga4gh:VA.3n-gYs3xsspnxwI91EMCEDsIcrj9bIqO","ga4gh:VA.9Y9GDmOWCTqMks8dsNx1IJY-TlI1AbW8"][113410657,113410657][113410658,113410658]["G","A"]"G/A"113410658".""chr11\t113410658\t.\tG\tA\t.\t.\tGT"NA"3_prime_UTR_variant"NANA"chr11"1134106581[(1,NA,NA,"protein_coding",NA,"CCDS8362.1",1390,1390,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000346454.7:c.*69C>T",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"ENSP00000278597","Ensembl",-1,"ENST00000346454",1,["P14416-2"],"A"),(1,NA,"P2","protein_coding",1,"CCDS8361.1",1755,1755,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"8/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000362072.8:c.*69C>T",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,"NM_000795.4",NA,NA,NA,NA,"ENSP00000354859","Ensembl",-1,"ENST00000362072",1,["P14416-1"],"A"),(1,NA,NA,"processed_transcript",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],3717,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000535984",3,NA,"A"),(1,NA,"A1","protein_coding",NA,NA,1407,1407,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"8/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000538967.5:c.*69C>T",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"ENSP00000438215","Ensembl",-1,"ENST00000538967",5,["P14416-3"],"A"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],4636,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000539420",3,NA,"A"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],3206,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000540600",1,NA,"A"),(1,NA,"P2","protein_coding",NA,"CCDS8361.1",1722,1722,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000542968.5:c.*69C>T",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"ENSP00000442172","Ensembl",-1,"ENST00000542968",1,["P14416-1"],"A"),(1,NA,"A1","protein_coding",NA,NA,1431,1431,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000544518.5:c.*69C>T",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"ENSP00000441068","Ensembl",-1,"ENST00000544518",1,NA,"A"),(1,NA,NA,"lncRNA",1,NA,NA,NA,NA,NA,NA,["intron_variant","non_coding_transcript_variant"],NA,NA,NA,NA,"ENSG00000256757",NA,NA,NA,NA,"ENST00000546284.1:n.245-889G>A",NA,NA,"MODIFIER","2/3",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",1,"ENST00000546284",3,NA,"A"),(1,NA,NA,"protein_coding",1,NA,1755,1755,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"8/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_000795.4:c.*69C>T",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,"ENST00000362072.8",NA,NA,NA,NA,"NP_000786.1","RefSeq",-1,"NM_000795.4",NA,NA,"A"),(1,NA,NA,"protein_coding",NA,NA,1668,1668,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"7/7",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_016574.4:c.*69C>T",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"NP_057658.2","RefSeq",-1,"NM_016574.4",NA,NA,"A"),(1,NA,NA,"protein_coding",NA,NA,1483,1483,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"8/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","XM_017017296.2:c.*69C>T",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"XP_016872785.1","RefSeq",-1,"XM_017017296.2",NA,NA,"A")]"SNV"6.96e+00"AS_MQ"FalseFalseFalseFalseFalseNATrueFalse"multi-snv"2False"snv"False[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,4183,2,30033,1,354765,0,58262,0,276721,0,0,0,1,0,0,115]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,26988,70993,120130,305542,173013,19471,3177,1036,688,647,582,509,357,257,172,116,78,62]0265[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,21]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,1,2,4,3,4,1,1,0,0,1,0,1,0,0,0,2,0,1]02[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,2,0,1,0,3,3,8,5,0,1,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][886,4,2000,0,7936,2,30033,1,354765,1,58262,0,276721,0,0,0,1,0,0,116]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][362,4790,27388,71922,120182,305624,173020,19481,3184,1039,690,648,582,509,357,257,172,116,78,62]0265[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,21]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,1,2,4,3,4,1,1,0,0,1,0,1,0,0,0,2,0,1]02[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,2,0,1,0,3,3,8,5,0,1,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,1,1,5,3,2,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]002.90e+001.80e-01NA0.00e+005.00e-027.10e-02NANA
chr11:113410658["G","T"][(94,6.49e-05,1448162,0),(105,7.18e-05,1461456,0),(24,7.23e-04,33180,0),(4,8.95e-05,44684,0),(0,0.00e+00,26038,0),(0,0.00e+00,39630,0),(58,1.09e-03,53152,0),(2,4.19e-04,4770,0),(0,0.00e+00,1101156,0),(6,1.00e-04,59860,0),(0,0.00e+00,85692,0),(44,6.05e-05,726894,0),(50,6.93e-05,721268,0),(11,5.75e-04,19144,0),(13,9.26e-04,14036,0),(2,7.79e-05,25658,0),(2,1.05e-04,19026,0),(0,0.00e+00,12586,0),(0,0.00e+00,13452,0),(0,0.00e+00,20662,0),(0,0.00e+00,18968,0),(27,9.82e-04,27504,0),(31,1.21e-03,25648,0),(0,0.00e+00,1952,0),(2,7.10e-04,2818,0),(0,0.00e+00,566132,0),(0,0.00e+00,535024,0),(4,1.27e-04,31512,0),(2,7.06e-05,28348,0),(0,0.00e+00,21744,0),(0,0.00e+00,63948,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,12,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,162,0),(0,0.00e+00,198,0),(0,0.00e+00,198,0),(0,0.00e+00,200,0),(0,0.00e+00,198,0),(1,1.01e-03,988,0),(0,0.00e+00,1000,0),(0,0.00e+00,996,0),(0,0.00e+00,1000,0),(4,4.03e-03,992,0),(2,2.40e-03,834,0),(0,0.00e+00,994,0),(0,0.00e+00,986,0),(0,0.00e+00,992,0),(0,0.00e+00,992,0),(2,1.01e-03,1980,0),(0,0.00e+00,1998,0),(0,0.00e+00,1988,0),(0,0.00e+00,1998,0),(6,3.02e-03,1990,0),(2,1.20e-03,1672,0),(0,0.00e+00,1986,0),(0,0.00e+00,1982,0),(0,0.00e+00,1980,0),(0,0.00e+00,1988,0),(4,1.01e-03,3964,0),(0,0.00e+00,3998,0),(0,0.00e+00,3980,0),(0,0.00e+00,3994,0),(8,2.01e-03,3980,0),(2,6.05e-04,3304,0),(0,0.00e+00,3972,0),(0,0.00e+00,3964,0),(0,0.00e+00,3972,0),(0,0.00e+00,3964,0),(6,1.05e-03,5712,0),(0,0.00e+00,5766,0),(0,0.00e+00,5738,0),(0,0.00e+00,5752,0),(9,1.57e-03,5740,0),(2,4.19e-04,4770,0),(0,0.00e+00,5718,0),(0,0.00e+00,5720,0),(0,0.00e+00,5728,0),(0,0.00e+00,5724,0),(9,9.08e-04,9908,0),(0,0.00e+00,9994,0),(0,0.00e+00,9950,0),(0,0.00e+00,9972,0),(13,1.31e-03,9942,0),(0,0.00e+00,9912,0),(3,3.03e-04,9904,0),(0,0.00e+00,9932,0),(1,1.01e-04,9920,0),(18,9.08e-04,19832,0),(0,0.00e+00,19980,0),(0,0.00e+00,19918,0),(0,0.00e+00,19956,0),(23,1.16e-03,19896,0),(0,0.00e+00,19818,0),(3,1.51e-04,19830,0),(0,0.00e+00,19858,0),(3,1.51e-04,19820,0),(22,8.49e-04,25916,0),(2,7.66e-05,26110,0),(0,0.00e+00,26038,0),(0,0.00e+00,26082,0),(29,1.12e-03,25998,0),(0,0.00e+00,25884,0),(3,1.16e-04,25910,0),(0,0.00e+00,25962,0),(5,1.93e-04,25892,0),(24,7.23e-04,33180,0),(2,5.98e-05,33452,0),(0,0.00e+00,33420,0),(35,1.05e-03,33304,0),(0,0.00e+00,33160,0),(4,1.20e-04,33206,0),(0,0.00e+00,33254,0),(6,1.81e-04,33158,0),(4,1.01e-04,39670,0),(0,0.00e+00,39630,0),(44,1.11e-03,39492,0),(0,0.00e+00,39322,0),(4,1.02e-04,39360,0),(0,0.00e+00,39426,0),(7,1.78e-04,39326,0),(4,1.00e-04,39968,0),(44,1.11e-03,39792,0),(0,0.00e+00,39622,0),(4,1.01e-04,39658,0),(0,0.00e+00,39722,0),(7,1.77e-04,39620,0),(4,8.95e-05,44684,0),(48,1.08e-03,44492,0),(0,0.00e+00,44294,0),(4,9.02e-05,44340,0),(0,0.00e+00,44416,0),(7,1.58e-04,44306,0),(58,1.09e-03,53152,0),(0,0.00e+00,52914,0),(4,7.55e-05,52958,0),(0,0.00e+00,53060,0),(7,1.32e-04,52926,0),(0,0.00e+00,59796,0),(6,1.00e-04,59860,0),(0,0.00e+00,59994,0),(7,1.17e-04,59832,0),(0,0.00e+00,85402,0),(0,0.00e+00,85692,0),(10,1.17e-04,85434,0),(0,0.00e+00,99006,0),(10,1.01e-04,99072,0),(0,0.00e+00,198028,0),(21,1.06e-04,198104,0),(0,0.00e+00,396074,0),(31,7.82e-05,396304,0),(0,0.00e+00,990232,0),(70,7.07e-05,990628,0),(0,0.00e+00,1101156,0),(75,6.81e-05,1101512,0),(85,1.36e-04,626744,0),(87,1.38e-04,628782,0),(15,8.50e-04,17650,0),(4,9.15e-05,43720,0),(0,0.00e+00,20968,0),(0,0.00e+00,36050,0),(58,1.10e-03,52878,0),(2,6.31e-04,3172,0),(0,0.00e+00,349848,0),(6,1.82e-04,32968,0),(0,0.00e+00,69490,0),(39,1.37e-04,285194,0),(46,1.35e-04,341550,0),(6,5.85e-04,10264,0),(9,1.22e-03,7386,0),(2,7.99e-05,25026,0),(2,1.07e-04,18694,0),(0,0.00e+00,9832,0),(0,0.00e+00,11136,0),(0,0.00e+00,18284,0),(0,0.00e+00,17766,0),(27,9.91e-04,27256,0),(31,1.21e-03,25622,0),(0,0.00e+00,1376,0),(2,1.11e-03,1796,0),(0,0.00e+00,162104,0),(0,0.00e+00,187744,0),(4,2.40e-04,16698,0),(2,1.23e-04,16270,0),(0,0.00e+00,14354,0),(0,0.00e+00,55136,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,12,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(1,6.58e-03,152,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(1,1.00e-03,998,0),(0,0.00e+00,1000,0),(0,0.00e+00,998,0),(0,0.00e+00,1000,0),(4,4.03e-03,992,0),(2,2.61e-03,766,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,992,0),(0,0.00e+00,1000,0),(3,1.50e-03,1998,0),(0,0.00e+00,1998,0),(0,0.00e+00,1996,0),(0,0.00e+00,1998,0),(6,3.02e-03,1990,0),(2,1.28e-03,1568,0),(0,0.00e+00,2000,0),(0,0.00e+00,1998,0),(0,0.00e+00,1988,0),(0,0.00e+00,1994,0),(4,1.00e-03,3986,0),(0,0.00e+00,3998,0),(0,0.00e+00,3994,0),(0,0.00e+00,3996,0),(8,2.01e-03,3980,0),(2,6.55e-04,3054,0),(0,0.00e+00,4000,0),(1,2.50e-04,3996,0),(0,0.00e+00,3982,0),(0,0.00e+00,3992,0),(4,9.68e-04,4134,0),(0,0.00e+00,4146,0),(0,0.00e+00,4142,0),(0,0.00e+00,4144,0),(8,1.94e-03,4126,0),(2,6.31e-04,3172,0),(0,0.00e+00,4148,0),(1,2.41e-04,4142,0),(0,0.00e+00,4130,0),(0,0.00e+00,4140,0),(10,1.00e-03,9972,0),(0,0.00e+00,9996,0),(0,0.00e+00,9990,0),(0,0.00e+00,9990,0),(13,1.31e-03,9944,0),(0,0.00e+00,9998,0),(3,3.01e-04,9968,0),(0,0.00e+00,9946,0),(4,4.01e-04,9974,0),(15,8.50e-04,17650,0),(0,0.00e+00,17686,0),(0,0.00e+00,17680,0),(0,0.00e+00,17678,0),(20,1.14e-03,17600,0),(0,0.00e+00,17686,0),(4,2.27e-04,17636,0),(0,0.00e+00,17610,0),(6,3.40e-04,17638,0),(0,0.00e+00,19990,0),(0,0.00e+00,19984,0),(0,0.00e+00,19984,0),(23,1.16e-03,19898,0),(0,0.00e+00,19986,0),(4,2.01e-04,19930,0),(0,0.00e+00,19912,0),(6,3.01e-04,19940,0),(1,4.77e-05,20970,0),(0,0.00e+00,20968,0),(0,0.00e+00,20968,0),(24,1.15e-03,20880,0),(0,0.00e+00,20970,0),(4,1.91e-04,20908,0),(0,0.00e+00,20890,0),(6,2.87e-04,20922,0),(2,6.05e-05,33082,0),(0,0.00e+00,33080,0),(35,1.06e-03,32926,0),(0,0.00e+00,33078,0),(6,1.82e-04,32968,0),(0,0.00e+00,32938,0),(7,2.12e-04,33000,0),(2,5.55e-05,36054,0),(0,0.00e+00,36050,0),(41,1.14e-03,35882,0),(0,0.00e+00,36048,0),(0,0.00e+00,35896,0),(7,1.95e-04,35960,0),(4,1.00e-04,39982,0),(44,1.11e-03,39794,0),(0,0.00e+00,39976,0),(0,0.00e+00,39804,0),(9,2.26e-04,39878,0),(4,9.15e-05,43720,0),(48,1.10e-03,43514,0),(0,0.00e+00,43712,0),(0,0.00e+00,43532,0),(10,2.29e-04,43608,0),(58,1.10e-03,52878,0),(0,0.00e+00,53108,0),(0,0.00e+00,52890,0),(11,2.08e-04,52980,0),(0,0.00e+00,69748,0),(0,0.00e+00,69490,0),(15,2.16e-04,69590,0),(0,0.00e+00,99940,0),(21,2.11e-04,99680,0),(0,0.00e+00,199860,0),(29,1.45e-04,199386,0),(0,0.00e+00,349848,0),(50,1.43e-04,348992,0),(56,1.40e-04,398714,0)]247.23e-04331800"afr"158.50e-04176500"afr"[(5.41e-05,5.02e-05),(4.99e-04,4.24e-04),(2.99e-05,1.81e-05),(0.00e+00,0.00e+00),(7.37e-05,3.06e-05),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,(1.12e-04,1.03e-04),(5.23e-04,4.23e-04),(3.03e-05,1.84e-05),(0.00e+00,0.00e+00),(1.12e-04,4.63e-05),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]4.99e-04"afr"4.24e-04"afr"5.23e-04"afr"4.23e-04"afr"2True{"rs201475538"}{}8.65e-016.00e+010.00e+001428051.36e+01-1.80e-02[4798,567,4576,579]6.27e-01105180.00e+006.00e+010.00e+001.00e+001236161.35e+01-2.10e-02[4798,567,3988,522]5.96e-019184FalseNANAFalseFalseFalseFalse9.35e+00-7.19e-05["ga4gh:VA.3n-gYs3xsspnxwI91EMCEDsIcrj9bIqO","ga4gh:VA.R13f7bcCv-WGRkCM6W3Y_O-jy_2slTPt"][113410657,113410657][113410658,113410658]["G","T"]"G/T"113410658".""chr11\t113410658\t.\tG\tT\t.\t.\tGT"NA"3_prime_UTR_variant"NANA"chr11"1134106581[(1,NA,NA,"protein_coding",NA,"CCDS8362.1",1390,1390,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000346454.7:c.*69C>A",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"ENSP00000278597","Ensembl",-1,"ENST00000346454",1,["P14416-2"],"T"),(1,NA,"P2","protein_coding",1,"CCDS8361.1",1755,1755,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"8/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000362072.8:c.*69C>A",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,"NM_000795.4",NA,NA,NA,NA,"ENSP00000354859","Ensembl",-1,"ENST00000362072",1,["P14416-1"],"T"),(1,NA,NA,"processed_transcript",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],3717,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000535984",3,NA,"T"),(1,NA,"A1","protein_coding",NA,NA,1407,1407,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"8/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000538967.5:c.*69C>A",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"ENSP00000438215","Ensembl",-1,"ENST00000538967",5,["P14416-3"],"T"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],4636,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000539420",3,NA,"T"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],3206,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000540600",1,NA,"T"),(1,NA,"P2","protein_coding",NA,"CCDS8361.1",1722,1722,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000542968.5:c.*69C>A",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"ENSP00000442172","Ensembl",-1,"ENST00000542968",1,["P14416-1"],"T"),(1,NA,"A1","protein_coding",NA,NA,1431,1431,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000544518.5:c.*69C>A",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"ENSP00000441068","Ensembl",-1,"ENST00000544518",1,NA,"T"),(1,NA,NA,"lncRNA",1,NA,NA,NA,NA,NA,NA,["intron_variant","non_coding_transcript_variant"],NA,NA,NA,NA,"ENSG00000256757",NA,NA,NA,NA,"ENST00000546284.1:n.245-889G>T",NA,NA,"MODIFIER","2/3",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",1,"ENST00000546284",3,NA,"T"),(1,NA,NA,"protein_coding",1,NA,1755,1755,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"8/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_000795.4:c.*69C>A",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,"ENST00000362072.8",NA,NA,NA,NA,"NP_000786.1","RefSeq",-1,"NM_000795.4",NA,NA,"T"),(1,NA,NA,"protein_coding",NA,NA,1668,1668,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"7/7",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_016574.4:c.*69C>A",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"NP_057658.2","RefSeq",-1,"NM_016574.4",NA,NA,"T"),(1,NA,NA,"protein_coding",NA,NA,1483,1483,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"8/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","XM_017017296.2:c.*69C>A",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"XP_016872785.1","RefSeq",-1,"XM_017017296.2",NA,NA,"T")]"SNV"9.35e+00"AS_FS"FalseFalseFalseFalseFalseNATrueFalse"multi-snv"2False"snv"False[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,4183,0,30033,1,354765,0,58262,0,276721,0,0,0,1,0,0,115]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,26986,70993,120130,305542,173013,19471,3177,1036,688,647,582,509,357,257,172,116,78,62]0265[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,94]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,2,3,11,13,14,10,8,9,1,3,2,0,4,0,0,1,1,1]011[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,6,5,19,14,25,17,6,1,1,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][886,4,2000,0,7936,2,30033,1,354765,1,58262,0,276721,0,0,0,1,0,0,116]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][362,4790,27388,71922,120182,305624,173020,19481,3184,1039,690,648,582,509,357,257,172,116,78,62]0265[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][2,4,1,0,0,2,0,0,0,1,0,0,0,0,0,0,0,0,0,95]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,2,4,4,17,13,14,10,8,9,1,3,2,0,4,0,0,1,1,1]011[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,2,7,0,0,1,6,5,19,14,26,17,6,1,1,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,1,4,4,2,5,0,1,4,1]10[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]002.38e+001.31e-01NA0.00e+003.00e-027.10e-02NANA
chr11:113410660["A","G"][(1,6.89e-07,1450438,0),(2,1.37e-06,1461588,0),(0,0.00e+00,33208,0),(0,0.00e+00,44698,0),(0,0.00e+00,26050,0),(0,0.00e+00,39632,0),(0,0.00e+00,53222,0),(0,0.00e+00,4878,0),(1,9.07e-07,1103066,0),(0,0.00e+00,59922,0),(0,0.00e+00,85762,0),(0,0.00e+00,728116,0),(1,1.38e-06,722322,0),(0,0.00e+00,19158,0),(0,0.00e+00,14050,0),(0,0.00e+00,25670,0),(0,0.00e+00,19028,0),(0,0.00e+00,12590,0),(0,0.00e+00,13460,0),(0,0.00e+00,20660,0),(0,0.00e+00,18972,0),(0,0.00e+00,27540,0),(0,0.00e+00,25682,0),(0,0.00e+00,2012,0),(0,0.00e+00,2866,0),(0,0.00e+00,567156,0),(1,1.87e-06,535910,0),(0,0.00e+00,31542,0),(0,0.00e+00,28380,0),(0,0.00e+00,21788,0),(0,0.00e+00,63974,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,12,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,166,0),(0,0.00e+00,200,0),(0,0.00e+00,198,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,980,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,994,0),(0,0.00e+00,846,0),(0,0.00e+00,996,0),(0,0.00e+00,992,0),(0,0.00e+00,992,0),(0,0.00e+00,994,0),(0,0.00e+00,1974,0),(0,0.00e+00,2000,0),(0,0.00e+00,1990,0),(0,0.00e+00,1998,0),(0,0.00e+00,1994,0),(0,0.00e+00,1716,0),(0,0.00e+00,1984,0),(0,0.00e+00,1992,0),(0,0.00e+00,1980,0),(0,0.00e+00,1990,0),(0,0.00e+00,3960,0),(0,0.00e+00,4000,0),(0,0.00e+00,3984,0),(0,0.00e+00,3994,0),(0,0.00e+00,3986,0),(0,0.00e+00,3394,0),(0,0.00e+00,3970,0),(0,0.00e+00,3972,0),(0,0.00e+00,3972,0),(0,0.00e+00,3962,0),(0,0.00e+00,5716,0),(0,0.00e+00,5768,0),(0,0.00e+00,5744,0),(0,0.00e+00,5754,0),(0,0.00e+00,5750,0),(0,0.00e+00,4878,0),(0,0.00e+00,5722,0),(0,0.00e+00,5732,0),(0,0.00e+00,5728,0),(0,0.00e+00,5724,0),(0,0.00e+00,9914,0),(0,0.00e+00,9998,0),(0,0.00e+00,9962,0),(0,0.00e+00,9972,0),(0,0.00e+00,9954,0),(0,0.00e+00,9920,0),(0,0.00e+00,9922,0),(0,0.00e+00,9938,0),(0,0.00e+00,9922,0),(0,0.00e+00,19846,0),(0,0.00e+00,19986,0),(0,0.00e+00,19926,0),(0,0.00e+00,19956,0),(0,0.00e+00,19926,0),(0,0.00e+00,19836,0),(0,0.00e+00,19852,0),(0,0.00e+00,19864,0),(0,0.00e+00,19832,0),(0,0.00e+00,25940,0),(0,0.00e+00,26118,0),(0,0.00e+00,26050,0),(0,0.00e+00,26082,0),(0,0.00e+00,26038,0),(0,0.00e+00,25906,0),(0,0.00e+00,25940,0),(0,0.00e+00,25974,0),(0,0.00e+00,25914,0),(0,0.00e+00,33208,0),(0,0.00e+00,33460,0),(0,0.00e+00,33422,0),(0,0.00e+00,33354,0),(0,0.00e+00,33194,0),(0,0.00e+00,33234,0),(0,0.00e+00,33280,0),(0,0.00e+00,33184,0),(0,0.00e+00,39680,0),(0,0.00e+00,39632,0),(0,0.00e+00,39558,0),(0,0.00e+00,39368,0),(0,0.00e+00,39402,0),(0,0.00e+00,39462,0),(0,0.00e+00,39366,0),(0,0.00e+00,39978,0),(0,0.00e+00,39858,0),(0,0.00e+00,39664,0),(0,0.00e+00,39700,0),(0,0.00e+00,39758,0),(0,0.00e+00,39660,0),(0,0.00e+00,44698,0),(0,0.00e+00,44564,0),(0,0.00e+00,44334,0),(0,0.00e+00,44384,0),(0,0.00e+00,44448,0),(0,0.00e+00,44352,0),(0,0.00e+00,53222,0),(0,0.00e+00,52964,0),(0,0.00e+00,53010,0),(0,0.00e+00,53096,0),(0,0.00e+00,52982,0),(0,0.00e+00,59866,0),(0,0.00e+00,59922,0),(0,0.00e+00,60036,0),(0,0.00e+00,59886,0),(0,0.00e+00,85516,0),(0,0.00e+00,85762,0),(0,0.00e+00,85528,0),(0,0.00e+00,99132,0),(0,0.00e+00,99166,0),(0,0.00e+00,198282,0),(0,0.00e+00,198350,0),(1,2.52e-06,396678,0),(1,2.52e-06,396834,0),(1,1.01e-06,991944,0),(1,1.01e-06,992168,0),(1,9.07e-07,1103066,0),(1,9.06e-07,1103268,0),(1,1.59e-06,627050,0),(2,3.18e-06,628784,0),(0,0.00e+00,17650,0),(0,0.00e+00,43726,0),(0,0.00e+00,20970,0),(0,0.00e+00,36054,0),(0,0.00e+00,52946,0),(0,0.00e+00,3278,0),(1,2.86e-06,349920,0),(0,0.00e+00,32974,0),(0,0.00e+00,69532,0),(0,0.00e+00,285344,0),(1,2.93e-06,341706,0),(0,0.00e+00,10264,0),(0,0.00e+00,7386,0),(0,0.00e+00,25032,0),(0,0.00e+00,18694,0),(0,0.00e+00,9832,0),(0,0.00e+00,11138,0),(0,0.00e+00,18288,0),(0,0.00e+00,17766,0),(0,0.00e+00,27290,0),(0,0.00e+00,25656,0),(0,0.00e+00,1434,0),(0,0.00e+00,1844,0),(0,0.00e+00,162128,0),(1,5.33e-06,187792,0),(0,0.00e+00,16698,0),(0,0.00e+00,16276,0),(0,0.00e+00,14378,0),(0,0.00e+00,55154,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,12,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,156,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,998,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,994,0),(0,0.00e+00,792,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,992,0),(0,0.00e+00,1000,0),(0,0.00e+00,1998,0),(0,0.00e+00,2000,0),(0,0.00e+00,1998,0),(0,0.00e+00,1998,0),(0,0.00e+00,1994,0),(0,0.00e+00,1616,0),(0,0.00e+00,2000,0),(0,0.00e+00,1998,0),(0,0.00e+00,1990,0),(0,0.00e+00,1994,0),(0,0.00e+00,3988,0),(0,0.00e+00,4000,0),(0,0.00e+00,3996,0),(0,0.00e+00,3998,0),(0,0.00e+00,3986,0),(0,0.00e+00,3158,0),(0,0.00e+00,4000,0),(0,0.00e+00,3996,0),(0,0.00e+00,3984,0),(0,0.00e+00,3992,0),(0,0.00e+00,4136,0),(0,0.00e+00,4148,0),(0,0.00e+00,4144,0),(0,0.00e+00,4146,0),(0,0.00e+00,4134,0),(0,0.00e+00,3278,0),(0,0.00e+00,4148,0),(0,0.00e+00,4142,0),(0,0.00e+00,4132,0),(0,0.00e+00,4140,0),(0,0.00e+00,9974,0),(0,0.00e+00,9998,0),(0,0.00e+00,9994,0),(0,0.00e+00,9992,0),(0,0.00e+00,9954,0),(0,0.00e+00,10000,0),(0,0.00e+00,9968,0),(0,0.00e+00,9950,0),(0,0.00e+00,9974,0),(0,0.00e+00,17650,0),(0,0.00e+00,17686,0),(0,0.00e+00,17682,0),(0,0.00e+00,17682,0),(0,0.00e+00,17626,0),(0,0.00e+00,17688,0),(0,0.00e+00,17638,0),(0,0.00e+00,17616,0),(0,0.00e+00,17652,0),(0,0.00e+00,19992,0),(0,0.00e+00,19986,0),(0,0.00e+00,19988,0),(0,0.00e+00,19924,0),(0,0.00e+00,19990,0),(0,0.00e+00,19930,0),(0,0.00e+00,19916,0),(0,0.00e+00,19954,0),(0,0.00e+00,20974,0),(0,0.00e+00,20970,0),(0,0.00e+00,20972,0),(0,0.00e+00,20906,0),(0,0.00e+00,20974,0),(0,0.00e+00,20910,0),(0,0.00e+00,20898,0),(0,0.00e+00,20936,0),(0,0.00e+00,33086,0),(0,0.00e+00,33084,0),(0,0.00e+00,32974,0),(0,0.00e+00,33086,0),(0,0.00e+00,32974,0),(0,0.00e+00,32956,0),(0,0.00e+00,33018,0),(0,0.00e+00,36058,0),(0,0.00e+00,36054,0),(0,0.00e+00,35938,0),(0,0.00e+00,36056,0),(0,0.00e+00,35916,0),(0,0.00e+00,35980,0),(0,0.00e+00,39988,0),(0,0.00e+00,39856,0),(0,0.00e+00,39982,0),(0,0.00e+00,39824,0),(0,0.00e+00,39900,0),(0,0.00e+00,43726,0),(0,0.00e+00,43584,0),(0,0.00e+00,43722,0),(0,0.00e+00,43556,0),(0,0.00e+00,43632,0),(0,0.00e+00,52946,0),(0,0.00e+00,53120,0),(0,0.00e+00,52924,0),(0,0.00e+00,53008,0),(0,0.00e+00,69766,0),(0,0.00e+00,69532,0),(0,0.00e+00,69624,0),(1,1.00e-05,99960,0),(0,0.00e+00,99716,0),(1,5.00e-06,199898,0),(1,5.01e-06,199490,0),(1,2.86e-06,349920,0),(1,2.86e-06,349164,0),(1,2.51e-06,398918,0)]19.07e-0711030660"nfe"12.86e-063499200"nfe"[(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]NANANANANANANANA2True{"rs1950760213"}{}0.00e+006.00e+010.00e+0036191.78e+016.74e-01[83,21,79,20]6.91e-012034.82e-166.00e+010.00e+004.53e-0135911.98e+019.51e-01[83,21,77,19]7.15e-01181FalseFalseFalseFalseFalseFalseFalse4.34e+00-1.37e-06["ga4gh:VA.MHTiWiUO_hsQ_FAaIagdomN6DdnpjqRm","ga4gh:VA.D8-MF1xUzSMIKncRc7QFwqQ-l8WgfYlV"][113410659,113410659][113410660,113410660]["A","G"]"A/G"113410660".""chr11\t113410660\t.\tA\tG\t.\t.\tGT"NA"3_prime_UTR_variant"NANA"chr11"1134106601[(1,NA,NA,"protein_coding",NA,"CCDS8362.1",1388,1388,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000346454.7:c.*67T>C",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"ENSP00000278597","Ensembl",-1,"ENST00000346454",1,["P14416-2"],"G"),(1,NA,"P2","protein_coding",1,"CCDS8361.1",1753,1753,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"8/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000362072.8:c.*67T>C",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,"NM_000795.4",NA,NA,NA,NA,"ENSP00000354859","Ensembl",-1,"ENST00000362072",1,["P14416-1"],"G"),(1,NA,NA,"processed_transcript",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],3715,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000535984",3,NA,"G"),(1,NA,"A1","protein_coding",NA,NA,1405,1405,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"8/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000538967.5:c.*67T>C",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"ENSP00000438215","Ensembl",-1,"ENST00000538967",5,["P14416-3"],"G"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],4634,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000539420",3,NA,"G"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],3204,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000540600",1,NA,"G"),(1,NA,"P2","protein_coding",NA,"CCDS8361.1",1720,1720,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000542968.5:c.*67T>C",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"ENSP00000442172","Ensembl",-1,"ENST00000542968",1,["P14416-1"],"G"),(1,NA,"A1","protein_coding",NA,NA,1429,1429,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000544518.5:c.*67T>C",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"ENSP00000441068","Ensembl",-1,"ENST00000544518",1,NA,"G"),(1,NA,NA,"lncRNA",1,NA,NA,NA,NA,NA,NA,["intron_variant","non_coding_transcript_variant"],NA,NA,NA,NA,"ENSG00000256757",NA,NA,NA,NA,"ENST00000546284.1:n.245-887A>G",NA,NA,"MODIFIER","2/3",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",1,"ENST00000546284",3,NA,"G"),(1,NA,NA,"protein_coding",1,NA,1753,1753,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"8/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_000795.4:c.*67T>C",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,"ENST00000362072.8",NA,NA,NA,NA,"NP_000786.1","RefSeq",-1,"NM_000795.4",NA,NA,"G"),(1,NA,NA,"protein_coding",NA,NA,1666,1666,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"7/7",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_016574.4:c.*67T>C",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"NP_057658.2","RefSeq",-1,"NM_016574.4",NA,NA,"G"),(1,NA,NA,"protein_coding",NA,NA,1481,1481,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"8/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","XM_017017296.2:c.*67T>C",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"XP_016872785.1","RefSeq",-1,"XM_017017296.2",NA,NA,"G")]"SNV"4.34e+00"AS_MQ"FalseFalseFalseFalseFalseNATrueFalse"multi-snv"3False"snv"False[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,3304,0,26636,0,351846,0,54948,0,288484,0,0,0,0,0,0,1]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,24253,67281,120581,309738,175490,19882,3222,1041,692,644,582,508,354,258,173,113,79,64]0264[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]01[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][684,0,1637,0,6556,2,26636,0,351846,0,54948,0,288484,0,0,0,0,0,0,1]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][296,4122,24622,67964,120609,309787,175498,19891,3228,1043,694,645,582,508,354,258,173,113,79,64]0264[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]01[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][1,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]001.22e+00-1.85e-02NA0.00e+004.00e-02-1.27e+00NANA
chr11:113410662["G","A"][(2,1.38e-06,1451396,0),(2,1.37e-06,1461538,0),(0,0.00e+00,33252,0),(1,2.24e-05,44696,0),(0,0.00e+00,26064,0),(0,0.00e+00,39622,0),(0,0.00e+00,53232,0),(0,0.00e+00,4926,0),(1,9.06e-07,1103856,0),(0,0.00e+00,59956,0),(0,0.00e+00,85792,0),(1,1.37e-06,728678,0),(1,1.38e-06,722718,0),(0,0.00e+00,19190,0),(0,0.00e+00,14062,0),(1,3.90e-05,25668,0),(0,0.00e+00,19028,0),(0,0.00e+00,12598,0),(0,0.00e+00,13466,0),(0,0.00e+00,20652,0),(0,0.00e+00,18970,0),(0,0.00e+00,27536,0),(0,0.00e+00,25696,0),(0,0.00e+00,2038,0),(0,0.00e+00,2888,0),(0,0.00e+00,567634,0),(1,1.86e-06,536222,0),(0,0.00e+00,31566,0),(0,0.00e+00,28390,0),(0,0.00e+00,21796,0),(0,0.00e+00,63996,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,12,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,166,0),(0,0.00e+00,200,0),(0,0.00e+00,198,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,984,0),(0,0.00e+00,1000,0),(0,0.00e+00,998,0),(0,0.00e+00,1000,0),(0,0.00e+00,994,0),(0,0.00e+00,854,0),(0,0.00e+00,998,0),(0,0.00e+00,990,0),(0,0.00e+00,994,0),(0,0.00e+00,996,0),(0,0.00e+00,1978,0),(0,0.00e+00,2000,0),(0,0.00e+00,1986,0),(0,0.00e+00,1998,0),(0,0.00e+00,1994,0),(0,0.00e+00,1734,0),(0,0.00e+00,1988,0),(0,0.00e+00,1990,0),(0,0.00e+00,1982,0),(0,0.00e+00,1992,0),(0,0.00e+00,3970,0),(0,0.00e+00,4000,0),(0,0.00e+00,3982,0),(0,0.00e+00,3994,0),(0,0.00e+00,3986,0),(0,0.00e+00,3428,0),(0,0.00e+00,3978,0),(0,0.00e+00,3972,0),(0,0.00e+00,3972,0),(0,0.00e+00,3970,0),(0,0.00e+00,5726,0),(0,0.00e+00,5768,0),(0,0.00e+00,5742,0),(0,0.00e+00,5752,0),(0,0.00e+00,5750,0),(0,0.00e+00,4926,0),(0,0.00e+00,5734,0),(0,0.00e+00,5732,0),(0,0.00e+00,5728,0),(0,0.00e+00,5732,0),(0,0.00e+00,9918,0),(0,0.00e+00,10000,0),(0,0.00e+00,9958,0),(0,0.00e+00,9970,0),(0,0.00e+00,9950,0),(0,0.00e+00,9932,0),(0,0.00e+00,9930,0),(0,0.00e+00,9940,0),(0,0.00e+00,9932,0),(0,0.00e+00,19860,0),(1,5.00e-05,19986,0),(0,0.00e+00,19936,0),(0,0.00e+00,19948,0),(0,0.00e+00,19924,0),(0,0.00e+00,19854,0),(0,0.00e+00,19874,0),(0,0.00e+00,19884,0),(0,0.00e+00,19844,0),(0,0.00e+00,25972,0),(1,3.83e-05,26118,0),(0,0.00e+00,26064,0),(0,0.00e+00,26076,0),(0,0.00e+00,26038,0),(0,0.00e+00,25924,0),(0,0.00e+00,25962,0),(0,0.00e+00,25990,0),(0,0.00e+00,25934,0),(0,0.00e+00,33252,0),(1,2.99e-05,33458,0),(0,0.00e+00,33414,0),(0,0.00e+00,33356,0),(0,0.00e+00,33220,0),(0,0.00e+00,33256,0),(0,0.00e+00,33292,0),(0,0.00e+00,33206,0),(1,2.52e-05,39676,0),(0,0.00e+00,39622,0),(0,0.00e+00,39558,0),(0,0.00e+00,39392,0),(0,0.00e+00,39432,0),(0,0.00e+00,39480,0),(0,0.00e+00,39384,0),(1,2.50e-05,39974,0),(0,0.00e+00,39858,0),(0,0.00e+00,39690,0),(0,0.00e+00,39728,0),(0,0.00e+00,39776,0),(0,0.00e+00,39682,0),(1,2.24e-05,44696,0),(0,0.00e+00,44568,0),(0,0.00e+00,44372,0),(0,0.00e+00,44412,0),(0,0.00e+00,44468,0),(0,0.00e+00,44378,0),(0,0.00e+00,53232,0),(0,0.00e+00,52996,0),(0,0.00e+00,53046,0),(0,0.00e+00,53120,0),(0,0.00e+00,53012,0),(0,0.00e+00,59904,0),(0,0.00e+00,59956,0),(0,0.00e+00,60062,0),(0,0.00e+00,59924,0),(0,0.00e+00,85568,0),(0,0.00e+00,85792,0),(0,0.00e+00,85566,0),(0,0.00e+00,99198,0),(0,0.00e+00,99210,0),(0,0.00e+00,198402,0),(0,0.00e+00,198452,0),(1,2.52e-06,396938,0),(1,2.52e-06,397058,0),(1,1.01e-06,992632,0),(2,2.01e-06,992784,0),(1,9.06e-07,1103856,0),(2,1.81e-06,1103950,0),(1,1.59e-06,627150,0),(1,1.59e-06,628784,0),(0,0.00e+00,17654,0),(1,2.29e-05,43728,0),(0,0.00e+00,20976,0),(0,0.00e+00,36054,0),(0,0.00e+00,52956,0),(0,0.00e+00,3318,0),(0,0.00e+00,349938,0),(0,0.00e+00,32986,0),(0,0.00e+00,69540,0),(1,3.50e-06,285386,0),(0,0.00e+00,341764,0),(0,0.00e+00,10266,0),(0,0.00e+00,7388,0),(1,3.99e-05,25032,0),(0,0.00e+00,18696,0),(0,0.00e+00,9836,0),(0,0.00e+00,11140,0),(0,0.00e+00,18288,0),(0,0.00e+00,17766,0),(0,0.00e+00,27286,0),(0,0.00e+00,25670,0),(0,0.00e+00,1454,0),(0,0.00e+00,1864,0),(0,0.00e+00,162146,0),(0,0.00e+00,187792,0),(0,0.00e+00,16706,0),(0,0.00e+00,16280,0),(0,0.00e+00,14372,0),(0,0.00e+00,55168,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,12,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,156,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,998,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,994,0),(0,0.00e+00,806,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,994,0),(0,0.00e+00,1000,0),(0,0.00e+00,1998,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,1998,0),(0,0.00e+00,1994,0),(0,0.00e+00,1638,0),(0,0.00e+00,2000,0),(0,0.00e+00,1998,0),(0,0.00e+00,1990,0),(0,0.00e+00,1994,0),(0,0.00e+00,3988,0),(0,0.00e+00,4000,0),(0,0.00e+00,3998,0),(0,0.00e+00,3998,0),(0,0.00e+00,3986,0),(0,0.00e+00,3196,0),(0,0.00e+00,4000,0),(0,0.00e+00,3996,0),(0,0.00e+00,3984,0),(0,0.00e+00,3992,0),(0,0.00e+00,4136,0),(0,0.00e+00,4148,0),(0,0.00e+00,4146,0),(0,0.00e+00,4146,0),(0,0.00e+00,4134,0),(0,0.00e+00,3318,0),(0,0.00e+00,4148,0),(0,0.00e+00,4142,0),(0,0.00e+00,4132,0),(0,0.00e+00,4140,0),(0,0.00e+00,9974,0),(0,0.00e+00,10000,0),(0,0.00e+00,9996,0),(0,0.00e+00,9992,0),(0,0.00e+00,9950,0),(0,0.00e+00,10000,0),(0,0.00e+00,9976,0),(0,0.00e+00,9952,0),(0,0.00e+00,9976,0),(0,0.00e+00,17654,0),(1,5.65e-05,17690,0),(0,0.00e+00,17688,0),(0,0.00e+00,17682,0),(0,0.00e+00,17626,0),(0,0.00e+00,17688,0),(0,0.00e+00,17644,0),(0,0.00e+00,17624,0),(0,0.00e+00,17652,0),(1,5.00e-05,19996,0),(0,0.00e+00,19992,0),(0,0.00e+00,19988,0),(0,0.00e+00,19922,0),(0,0.00e+00,19988,0),(0,0.00e+00,19938,0),(0,0.00e+00,19924,0),(0,0.00e+00,19954,0),(1,4.77e-05,20978,0),(0,0.00e+00,20976,0),(0,0.00e+00,20972,0),(0,0.00e+00,20904,0),(0,0.00e+00,20972,0),(0,0.00e+00,20918,0),(0,0.00e+00,20906,0),(0,0.00e+00,20936,0),(1,3.02e-05,33088,0),(0,0.00e+00,33084,0),(0,0.00e+00,32976,0),(0,0.00e+00,33084,0),(0,0.00e+00,32986,0),(0,0.00e+00,32964,0),(0,0.00e+00,33016,0),(1,2.77e-05,36060,0),(0,0.00e+00,36054,0),(0,0.00e+00,35940,0),(0,0.00e+00,36054,0),(0,0.00e+00,35922,0),(0,0.00e+00,35978,0),(1,2.50e-05,39988,0),(0,0.00e+00,39858,0),(0,0.00e+00,39982,0),(0,0.00e+00,39834,0),(0,0.00e+00,39898,0),(1,2.29e-05,43728,0),(0,0.00e+00,43588,0),(0,0.00e+00,43722,0),(0,0.00e+00,43566,0),(0,0.00e+00,43630,0),(0,0.00e+00,52956,0),(0,0.00e+00,53120,0),(0,0.00e+00,52934,0),(0,0.00e+00,53010,0),(0,0.00e+00,69764,0),(0,0.00e+00,69540,0),(0,0.00e+00,69628,0),(0,0.00e+00,99958,0),(0,0.00e+00,99732,0),(0,0.00e+00,199906,0),(0,0.00e+00,199516,0),(0,0.00e+00,349938,0),(1,2.86e-06,349218,0),(1,2.51e-06,398984,0)]12.24e-05446960"amr"12.29e-05437280"amr"[(2.30e-07,9.00e-08),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]NANANANANANANANA1TrueNA{}5.51e-016.00e+010.00e+0030709.27e+000.00e+00[174,36,99,22]6.12e-013311.21e+006.00e+010.00e+008.45e-0129721.38e+011.49e+00[174,36,87,20]5.79e-01216FalseNANAFalseFalseFalseFalse5.24e+00-1.37e-06["ga4gh:VA.oDr3967BFZ6uu2LJEc9_RVWIOnNqtSF-","ga4gh:VA.N81rCvIHb-9PjhcHLL1zScmYT6cnOs-Y"][113410661,113410661][113410662,113410662]["G","A"]"G/A"113410662".""chr11\t113410662\t.\tG\tA\t.\t.\tGT"NA"3_prime_UTR_variant"NANA"chr11"1134106621[(1,NA,NA,"protein_coding",NA,"CCDS8362.1",1386,1386,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000346454.7:c.*65C>T",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"ENSP00000278597","Ensembl",-1,"ENST00000346454",1,["P14416-2"],"A"),(1,NA,"P2","protein_coding",1,"CCDS8361.1",1751,1751,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"8/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000362072.8:c.*65C>T",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,"NM_000795.4",NA,NA,NA,NA,"ENSP00000354859","Ensembl",-1,"ENST00000362072",1,["P14416-1"],"A"),(1,NA,NA,"processed_transcript",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],3713,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000535984",3,NA,"A"),(1,NA,"A1","protein_coding",NA,NA,1403,1403,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"8/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000538967.5:c.*65C>T",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"ENSP00000438215","Ensembl",-1,"ENST00000538967",5,["P14416-3"],"A"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],4632,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000539420",3,NA,"A"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],3202,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000540600",1,NA,"A"),(1,NA,"P2","protein_coding",NA,"CCDS8361.1",1718,1718,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000542968.5:c.*65C>T",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"ENSP00000442172","Ensembl",-1,"ENST00000542968",1,["P14416-1"],"A"),(1,NA,"A1","protein_coding",NA,NA,1427,1427,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000544518.5:c.*65C>T",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"ENSP00000441068","Ensembl",-1,"ENST00000544518",1,NA,"A"),(1,NA,NA,"lncRNA",1,NA,NA,NA,NA,NA,NA,["intron_variant","non_coding_transcript_variant"],NA,NA,NA,NA,"ENSG00000256757",NA,NA,NA,NA,"ENST00000546284.1:n.245-885G>A",NA,NA,"MODIFIER","2/3",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",1,"ENST00000546284",3,NA,"A"),(1,NA,NA,"protein_coding",1,NA,1751,1751,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"8/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_000795.4:c.*65C>T",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,"ENST00000362072.8",NA,NA,NA,NA,"NP_000786.1","RefSeq",-1,"NM_000795.4",NA,NA,"A"),(1,NA,NA,"protein_coding",NA,NA,1664,1664,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"7/7",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_016574.4:c.*65C>T",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"NP_057658.2","RefSeq",-1,"NM_016574.4",NA,NA,"A"),(1,NA,NA,"protein_coding",NA,NA,1479,1479,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"8/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","XM_017017296.2:c.*65C>T",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"XP_016872785.1","RefSeq",-1,"XM_017017296.2",NA,NA,"A")]"SNV"5.24e+00"AS_MQ"FalseFalseFalseFalseFalseNATrueFalse"multi-snv"2False"snv"False[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,4139,0,27770,1,353590,0,56800,0,283396,0,0,0,0,0,0,2]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,22477,65025,118275,313361,178106,20388,3276,1054,693,645,582,508,355,259,173,113,79,64]0265[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]01[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][653,0,1690,2,6865,0,27770,1,353590,0,56800,0,283396,0,0,0,0,0,0,2]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][264,3602,22767,65834,118294,313419,178113,20399,3282,1056,696,645,582,508,355,259,173,113,79,64]0265[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]01[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,1,0,1,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]006.25e+004.76e-01NA0.00e+002.10e-011.62e+00NANA

showing top 5 rows

\n" - ], - "text/plain": [ - "+-----------------+------------+\n", - "| locus | alleles |\n", - "+-----------------+------------+\n", - "| locus | array |\n", - "+-----------------+------------+\n", - "| chr11:113410657 | [\"C\",\"T\"] |\n", - "| chr11:113410658 | [\"G\",\"A\"] |\n", - "| chr11:113410658 | [\"G\",\"T\"] |\n", - "| chr11:113410660 | [\"A\",\"G\"] |\n", - "| chr11:113410662 | [\"G\",\"A\"] |\n", - "+-----------------+------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| freq |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [(18,1.25e-05,1445518,0),(24,1.64e-05,1461322,0),(1,3.02e-05,33096,0),(0,... |\n", - "| [(23,1.59e-05,1448166,0),(23,1.57e-05,1461456,0),(0,0.00e+00,33180,0),(0,... |\n", - "| [(94,6.49e-05,1448162,0),(105,7.18e-05,1461456,0),(24,7.23e-04,33180,0),(... |\n", - "| [(1,6.89e-07,1450438,0),(2,1.37e-06,1461588,0),(0,0.00e+00,33208,0),(0,0.... |\n", - "| [(2,1.38e-06,1451396,0),(2,1.37e-06,1461538,0),(0,0.00e+00,33252,0),(1,2.... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+------------------+------------------+------------------+\n", - "| grpmax.gnomad.AC | grpmax.gnomad.AF | grpmax.gnomad.AN |\n", - "+------------------+------------------+------------------+\n", - "| int32 | float64 | int32 |\n", - "+------------------+------------------+------------------+\n", - "| 4 | 1.01e-04 | 39606 |\n", - "| 3 | 7.57e-05 | 39630 |\n", - "| 24 | 7.23e-04 | 33180 |\n", - "| 1 | 9.07e-07 | 1103066 |\n", - "| 1 | 2.24e-05 | 44696 |\n", - "+------------------+------------------+------------------+\n", - "\n", - "+--------------------------------+-----------------------+-------------------+\n", - "| grpmax.gnomad.homozygote_count | grpmax.gnomad.gen_anc | grpmax.non_ukb.AC |\n", - "+--------------------------------+-----------------------+-------------------+\n", - "| int64 | str | int32 |\n", - "+--------------------------------+-----------------------+-------------------+\n", - "| 0 | \"eas\" | 4 |\n", - "| 0 | \"eas\" | 10 |\n", - "| 0 | \"afr\" | 15 |\n", - "| 0 | \"nfe\" | 1 |\n", - "| 0 | \"amr\" | 1 |\n", - "+--------------------------------+-----------------------+-------------------+\n", - "\n", - "+-------------------+-------------------+---------------------------------+\n", - "| grpmax.non_ukb.AF | grpmax.non_ukb.AN | grpmax.non_ukb.homozygote_count |\n", - "+-------------------+-------------------+---------------------------------+\n", - "| float64 | int32 | int64 |\n", - "+-------------------+-------------------+---------------------------------+\n", - "| 1.11e-04 | 36050 | 0 |\n", - "| 2.86e-05 | 349848 | 0 |\n", - "| 8.50e-04 | 17650 | 0 |\n", - "| 2.86e-06 | 349920 | 0 |\n", - "| 2.29e-05 | 43728 | 0 |\n", - "+-------------------+-------------------+---------------------------------+\n", - "\n", - "+------------------------+\n", - "| grpmax.non_ukb.gen_anc |\n", - "+------------------------+\n", - "| str |\n", - "+------------------------+\n", - "| \"eas\" |\n", - "| \"nfe\" |\n", - "| \"afr\" |\n", - "| \"nfe\" |\n", - "| \"amr\" |\n", - "+------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| faf |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [(7.78e-06,6.42e-06),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(3.35e-05,1.... |\n", - "| [(1.06e-05,8.83e-06),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(2.01e-05,1.... |\n", - "| [(5.41e-05,5.02e-05),(4.99e-04,4.24e-04),(2.99e-05,1.81e-05),(0.00e+00,0.... |\n", - "| [(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.... |\n", - "| [(2.30e-07,9.00e-08),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+-------------------------+---------------------------------+\n", - "| fafmax.gnomad.faf95_max | fafmax.gnomad.faf95_max_gen_anc |\n", - "+-------------------------+---------------------------------+\n", - "| float64 | str |\n", - "+-------------------------+---------------------------------+\n", - "| 3.35e-05 | \"eas\" |\n", - "| 2.01e-05 | \"eas\" |\n", - "| 4.99e-04 | \"afr\" |\n", - "| NA | NA |\n", - "| NA | NA |\n", - "+-------------------------+---------------------------------+\n", - "\n", - "+-------------------------+---------------------------------+\n", - "| fafmax.gnomad.faf99_max | fafmax.gnomad.faf99_max_gen_anc |\n", - "+-------------------------+---------------------------------+\n", - "| float64 | str |\n", - "+-------------------------+---------------------------------+\n", - "| 1.99e-05 | \"eas\" |\n", - "| 1.06e-05 | \"eas\" |\n", - "| 4.24e-04 | \"afr\" |\n", - "| NA | NA |\n", - "| NA | NA |\n", - "+-------------------------+---------------------------------+\n", - "\n", - "+--------------------------+----------------------------------+\n", - "| fafmax.non_ukb.faf95_max | fafmax.non_ukb.faf95_max_gen_anc |\n", - "+--------------------------+----------------------------------+\n", - "| float64 | str |\n", - "+--------------------------+----------------------------------+\n", - "| 3.78e-05 | \"eas\" |\n", - "| 1.54e-05 | \"nfe\" |\n", - "| 5.23e-04 | \"afr\" |\n", - "| NA | NA |\n", - "| NA | NA |\n", - "+--------------------------+----------------------------------+\n", - "\n", - "+--------------------------+----------------------------------+---------+\n", - "| fafmax.non_ukb.faf99_max | fafmax.non_ukb.faf99_max_gen_anc | a_index |\n", - "+--------------------------+----------------------------------+---------+\n", - "| float64 | str | int32 |\n", - "+--------------------------+----------------------------------+---------+\n", - "| 2.24e-05 | \"eas\" | 3 |\n", - "| 1.15e-05 | \"nfe\" | 1 |\n", - "| 4.23e-04 | \"afr\" | 2 |\n", - "| NA | NA | 2 |\n", - "| NA | NA | 1 |\n", - "+--------------------------+----------------------------------+---------+\n", - "\n", - "+-----------+------------------+----------+----------+----------+\n", - "| was_split | rsid | filters | info.FS | info.MQ |\n", - "+-----------+------------------+----------+----------+----------+\n", - "| bool | set | set | float64 | float64 |\n", - "+-----------+------------------+----------+----------+----------+\n", - "| True | {\"rs200559334\"} | {} | 0.00e+00 | 6.00e+01 |\n", - "| True | {\"rs201475538\"} | {} | 8.65e-01 | 6.00e+01 |\n", - "| True | {\"rs201475538\"} | {} | 8.65e-01 | 6.00e+01 |\n", - "| True | {\"rs1950760213\"} | {} | 0.00e+00 | 6.00e+01 |\n", - "| True | NA | {} | 5.51e-01 | 6.00e+01 |\n", - "+-----------+------------------+----------+----------+----------+\n", - "\n", - "+----------------+-----------------+----------+---------------------+\n", - "| info.MQRankSum | info.QUALapprox | info.QD | info.ReadPosRankSum |\n", - "+----------------+-----------------+----------+---------------------+\n", - "| float64 | int64 | float64 | float64 |\n", - "+----------------+-----------------+----------+---------------------+\n", - "| 0.00e+00 | 12992 | 1.27e+01 | 0.00e+00 |\n", - "| 0.00e+00 | 142805 | 1.36e+01 | -1.80e-02 |\n", - "| 0.00e+00 | 142805 | 1.36e+01 | -1.80e-02 |\n", - "| 0.00e+00 | 3619 | 1.78e+01 | 6.74e-01 |\n", - "| 0.00e+00 | 3070 | 9.27e+00 | 0.00e+00 |\n", - "+----------------+-----------------+----------+---------------------+\n", - "\n", - "+---------------------+----------+------------+------------+------------+\n", - "| info.SB | info.SOR | info.VarDP | info.AS_FS | info.AS_MQ |\n", - "+---------------------+----------+------------+------------+------------+\n", - "| array | float64 | int32 | float64 | float64 |\n", - "+---------------------+----------+------------+------------+------------+\n", - "| [543,53,386,37] | 7.04e-01 | 1019 | 4.82e-16 | 6.00e+01 |\n", - "| [4798,567,4576,579] | 6.27e-01 | 10518 | 1.55e+00 | 6.00e+01 |\n", - "| [4798,567,4576,579] | 6.27e-01 | 10518 | 0.00e+00 | 6.00e+01 |\n", - "| [83,21,79,20] | 6.91e-01 | 203 | 4.82e-16 | 6.00e+01 |\n", - "| [174,36,99,22] | 6.12e-01 | 331 | 1.21e+00 | 6.00e+01 |\n", - "+---------------------+----------+------------+------------+------------+\n", - "\n", - "+-------------------+-----------------+--------------------+------------+\n", - "| info.AS_MQRankSum | info.AS_pab_max | info.AS_QUALapprox | info.AS_QD |\n", - "+-------------------+-----------------+--------------------+------------+\n", - "| float64 | float64 | int64 | float64 |\n", - "+-------------------+-----------------+--------------------+------------+\n", - "| 0.00e+00 | 1.00e+00 | 12891 | 1.32e+01 |\n", - "| 0.00e+00 | 1.00e+00 | 19189 | 1.44e+01 |\n", - "| 0.00e+00 | 1.00e+00 | 123616 | 1.35e+01 |\n", - "| 0.00e+00 | 4.53e-01 | 3591 | 1.98e+01 |\n", - "| 0.00e+00 | 8.45e-01 | 2972 | 1.38e+01 |\n", - "+-------------------+-----------------+--------------------+------------+\n", - "\n", - "+------------------------+---------------------+-------------+---------------+\n", - "| info.AS_ReadPosRankSum | info.AS_SB_TABLE | info.AS_SOR | info.AS_VarDP |\n", - "+------------------------+---------------------+-------------+---------------+\n", - "| float64 | array | float64 | int32 |\n", - "+------------------------+---------------------+-------------+---------------+\n", - "| -3.90e-02 | [543,53,379,36] | 7.13e-01 | 976 |\n", - "| 1.34e-01 | [4798,567,588,57] | 8.94e-01 | 1334 |\n", - "| -2.10e-02 | [4798,567,3988,522] | 5.96e-01 | 9184 |\n", - "| 9.51e-01 | [83,21,77,19] | 7.15e-01 | 181 |\n", - "| 1.49e+00 | [174,36,87,20] | 5.79e-01 | 216 |\n", - "+------------------------+---------------------+-------------+---------------+\n", - "\n", - "+----------------+----------------------------+------------------------+\n", - "| info.singleton | info.transmitted_singleton | info.sibling_singleton |\n", - "+----------------+----------------------------+------------------------+\n", - "| bool | bool | bool |\n", - "+----------------+----------------------------+------------------------+\n", - "| False | NA | NA |\n", - "| False | NA | NA |\n", - "| False | NA | NA |\n", - "| False | False | False |\n", - "| False | NA | NA |\n", - "+----------------+----------------------------+------------------------+\n", - "\n", - "+-----------+------------+------------------+---------------+----------------+\n", - "| info.omni | info.mills | info.monoallelic | info.only_het | info.AS_VQSLOD |\n", - "+-----------+------------+------------------+---------------+----------------+\n", - "| bool | bool | bool | bool | float64 |\n", - "+-----------+------------+------------------+---------------+----------------+\n", - "| False | False | False | False | 9.14e+00 |\n", - "| False | False | False | False | 6.96e+00 |\n", - "| False | False | False | False | 9.35e+00 |\n", - "| False | False | False | False | 4.34e+00 |\n", - "| False | False | False | False | 5.24e+00 |\n", - "+-----------+------------+------------------+---------------+----------------+\n", - "\n", - "+-----------------------+\n", - "| info.inbreeding_coeff |\n", - "+-----------------------+\n", - "| float64 |\n", - "+-----------------------+\n", - "| -1.64e-05 |\n", - "| -1.57e-05 |\n", - "| -7.19e-05 |\n", - "| -1.37e-06 |\n", - "| -1.37e-06 |\n", - "+-----------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| info.vrs.VRS_Allele_IDs |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [\"ga4gh:VA.xwHxL6yO3I874HqhfGar1ZIaOp66ifsx\",\"ga4gh:VA.eglRJIN5-izMH1peMx... |\n", - "| [\"ga4gh:VA.3n-gYs3xsspnxwI91EMCEDsIcrj9bIqO\",\"ga4gh:VA.9Y9GDmOWCTqMks8dsN... |\n", - "| [\"ga4gh:VA.3n-gYs3xsspnxwI91EMCEDsIcrj9bIqO\",\"ga4gh:VA.R13f7bcCv-WGRkCM6W... |\n", - "| [\"ga4gh:VA.MHTiWiUO_hsQ_FAaIagdomN6DdnpjqRm\",\"ga4gh:VA.D8-MF1xUzSMIKncRc7... |\n", - "| [\"ga4gh:VA.oDr3967BFZ6uu2LJEc9_RVWIOnNqtSF-\",\"ga4gh:VA.N81rCvIHb-9PjhcHLL... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+-----------------------+-----------------------+---------------------+\n", - "| info.vrs.VRS_Starts | info.vrs.VRS_Ends | info.vrs.VRS_States |\n", - "+-----------------------+-----------------------+---------------------+\n", - "| array | array | array |\n", - "+-----------------------+-----------------------+---------------------+\n", - "| [113410656,113410656] | [113410657,113410657] | [\"C\",\"T\"] |\n", - "| [113410657,113410657] | [113410658,113410658] | [\"G\",\"A\"] |\n", - "| [113410657,113410657] | [113410658,113410658] | [\"G\",\"T\"] |\n", - "| [113410659,113410659] | [113410660,113410660] | [\"A\",\"G\"] |\n", - "| [113410661,113410661] | [113410662,113410662] | [\"G\",\"A\"] |\n", - "+-----------------------+-----------------------+---------------------+\n", - "\n", - "+-------------------+-----------+--------+--------------------------------+\n", - "| vep.allele_string | vep.end | vep.id | vep.input |\n", - "+-------------------+-----------+--------+--------------------------------+\n", - "| str | int32 | str | str |\n", - "+-------------------+-----------+--------+--------------------------------+\n", - "| \"C/T\" | 113410657 | \".\" | \"chr11\t113410657\t.\tC\tT\t.\t.\tGT\" |\n", - "| \"G/A\" | 113410658 | \".\" | \"chr11\t113410658\t.\tG\tA\t.\t.\tGT\" |\n", - "| \"G/T\" | 113410658 | \".\" | \"chr11\t113410658\t.\tG\tT\t.\t.\tGT\" |\n", - "| \"A/G\" | 113410660 | \".\" | \"chr11\t113410660\t.\tA\tG\t.\t.\tGT\" |\n", - "| \"G/A\" | 113410662 | \".\" | \"chr11\t113410662\t.\tG\tA\t.\t.\tGT\" |\n", - "+-------------------+-----------+--------+--------------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| vep.intergenic_consequences |\n", - "+------------------------------------------------------------------------------+\n", - "| array, impact: st... |\n", - "+------------------------------------------------------------------------------+\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+-----------------------------+\n", - "| vep.most_severe_consequence |\n", - "+-----------------------------+\n", - "| str |\n", - "+-----------------------------+\n", - "| \"3_prime_UTR_variant\" |\n", - "| \"3_prime_UTR_variant\" |\n", - "| \"3_prime_UTR_variant\" |\n", - "| \"3_prime_UTR_variant\" |\n", - "| \"3_prime_UTR_variant\" |\n", - "+-----------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| vep.motif_feature_consequences |\n", - "+------------------------------------------------------------------------------+\n", - "| array, high_inf_p... |\n", - "+------------------------------------------------------------------------------+\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "| NA |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| vep.regulatory_feature_consequences |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+------------------------------------------------------------------+\n", - "| histograms.qual_hists.gq_hist_all.bin_freq |\n", - "+------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------+\n", - "| [0,0,0,0,4430,0,32721,0,357851,0,60423,0,267316,0,0,0,0,0,0,18] |\n", - "| [0,0,0,0,4183,2,30033,1,354765,0,58262,0,276721,0,0,0,1,0,0,115] |\n", - "| [0,0,0,0,4183,0,30033,1,354765,0,58262,0,276721,0,0,0,1,0,0,115] |\n", - "| [0,0,0,0,3304,0,26636,0,351846,0,54948,0,288484,0,0,0,0,0,0,1] |\n", - "| [0,0,0,0,4139,0,27770,1,353590,0,56800,0,283396,0,0,0,0,0,0,2] |\n", - "+------------------------------------------------------------------+\n", - "\n", - "+---------------------------------------------+\n", - "| histograms.qual_hists.gq_hist_all.n_smaller |\n", - "+---------------------------------------------+\n", - "| int64 |\n", - "+---------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+---------------------------------------------+\n", - "\n", - "+--------------------------------------------+\n", - "| histograms.qual_hists.gq_hist_all.n_larger |\n", - "+--------------------------------------------+\n", - "| int64 |\n", - "+--------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+--------------------------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| histograms.qual_hists.dp_hist_all.bin_edges |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| histograms.qual_hists.dp_hist_all.bin_freq |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [0,0,29987,74977,120278,300405,170342,18935,3117,1021,684,644,577,507,353... |\n", - "| [0,0,26988,70993,120130,305542,173013,19471,3177,1036,688,647,582,509,357... |\n", - "| [0,0,26986,70993,120130,305542,173013,19471,3177,1036,688,647,582,509,357... |\n", - "| [0,0,24253,67281,120581,309738,175490,19882,3222,1041,692,644,582,508,354... |\n", - "| [0,0,22477,65025,118275,313361,178106,20388,3276,1054,693,645,582,508,355... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+---------------------------------------------+\n", - "| histograms.qual_hists.dp_hist_all.n_smaller |\n", - "+---------------------------------------------+\n", - "| int64 |\n", - "+---------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+---------------------------------------------+\n", - "\n", - "+--------------------------------------------+\n", - "| histograms.qual_hists.dp_hist_all.n_larger |\n", - "+--------------------------------------------+\n", - "| int64 |\n", - "+--------------------------------------------+\n", - "| 252 |\n", - "| 265 |\n", - "| 265 |\n", - "| 264 |\n", - "| 265 |\n", - "+--------------------------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| histograms.qual_hists.gq_hist_alt.bin_edges |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+--------------------------------------------+\n", - "| histograms.qual_hists.gq_hist_alt.bin_freq |\n", - "+--------------------------------------------+\n", - "| array |\n", - "+--------------------------------------------+\n", - "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,18] |\n", - "| [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,21] |\n", - "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,94] |\n", - "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1] |\n", - "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2] |\n", - "+--------------------------------------------+\n", - "\n", - "+---------------------------------------------+\n", - "| histograms.qual_hists.gq_hist_alt.n_smaller |\n", - "+---------------------------------------------+\n", - "| int64 |\n", - "+---------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+---------------------------------------------+\n", - "\n", - "+--------------------------------------------+\n", - "| histograms.qual_hists.gq_hist_alt.n_larger |\n", - "+--------------------------------------------+\n", - "| int64 |\n", - "+--------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+--------------------------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| histograms.qual_hists.dp_hist_alt.bin_edges |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+-----------------------------------------------+\n", - "| histograms.qual_hists.dp_hist_alt.bin_freq |\n", - "+-----------------------------------------------+\n", - "| array |\n", - "+-----------------------------------------------+\n", - "| [0,0,0,2,3,3,2,1,0,1,1,0,1,0,0,1,1,0,0,1] |\n", - "| [0,0,1,2,4,3,4,1,1,0,0,1,0,1,0,0,0,2,0,1] |\n", - "| [0,0,2,3,11,13,14,10,8,9,1,3,2,0,4,0,0,1,1,1] |\n", - "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "+-----------------------------------------------+\n", - "\n", - "+---------------------------------------------+\n", - "| histograms.qual_hists.dp_hist_alt.n_smaller |\n", - "+---------------------------------------------+\n", - "| int64 |\n", - "+---------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+---------------------------------------------+\n", - "\n", - "+--------------------------------------------+\n", - "| histograms.qual_hists.dp_hist_alt.n_larger |\n", - "+--------------------------------------------+\n", - "| int64 |\n", - "+--------------------------------------------+\n", - "| 1 |\n", - "| 2 |\n", - "| 11 |\n", - "| 1 |\n", - "| 1 |\n", - "+--------------------------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| histograms.qual_hists.ab_hist_alt.bin_edges |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", - "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", - "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", - "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", - "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+-----------------------------------------------+\n", - "| histograms.qual_hists.ab_hist_alt.bin_freq |\n", - "+-----------------------------------------------+\n", - "| array |\n", - "+-----------------------------------------------+\n", - "| [0,0,0,0,0,0,2,0,4,4,4,3,1,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,2,0,1,0,3,3,8,5,0,1,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,0,6,5,19,14,25,17,6,1,1,0,0,0,0,0] |\n", - "| [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0] |\n", - "+-----------------------------------------------+\n", - "\n", - "+---------------------------------------------+\n", - "| histograms.qual_hists.ab_hist_alt.n_smaller |\n", - "+---------------------------------------------+\n", - "| int64 |\n", - "+---------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+---------------------------------------------+\n", - "\n", - "+--------------------------------------------+\n", - "| histograms.qual_hists.ab_hist_alt.n_larger |\n", - "+--------------------------------------------+\n", - "| int64 |\n", - "+--------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+--------------------------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| histograms.raw_qual_hists.gq_hist_all.bin_edges |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+-----------------------------------------------------------------------+\n", - "| histograms.raw_qual_hists.gq_hist_all.bin_freq |\n", - "+-----------------------------------------------------------------------+\n", - "| array |\n", - "+-----------------------------------------------------------------------+\n", - "| [979,2,2487,1,8860,1,32722,0,357851,0,60423,0,267317,0,0,0,0,0,0,18] |\n", - "| [886,4,2000,0,7936,2,30033,1,354765,1,58262,0,276721,0,0,0,1,0,0,116] |\n", - "| [886,4,2000,0,7936,2,30033,1,354765,1,58262,0,276721,0,0,0,1,0,0,116] |\n", - "| [684,0,1637,0,6556,2,26636,0,351846,0,54948,0,288484,0,0,0,0,0,0,1] |\n", - "| [653,0,1690,2,6865,0,27770,1,353590,0,56800,0,283396,0,0,0,0,0,0,2] |\n", - "+-----------------------------------------------------------------------+\n", - "\n", - "+-------------------------------------------------+\n", - "| histograms.raw_qual_hists.gq_hist_all.n_smaller |\n", - "+-------------------------------------------------+\n", - "| int64 |\n", - "+-------------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+-------------------------------------------------+\n", - "\n", - "+------------------------------------------------+\n", - "| histograms.raw_qual_hists.gq_hist_all.n_larger |\n", - "+------------------------------------------------+\n", - "| int64 |\n", - "+------------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+------------------------------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| histograms.raw_qual_hists.dp_hist_all.bin_edges |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| histograms.raw_qual_hists.dp_hist_all.bin_freq |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [415,5663,30415,76214,120310,300505,170348,18947,3122,1023,686,644,577,50... |\n", - "| [362,4790,27388,71922,120182,305624,173020,19481,3184,1039,690,648,582,50... |\n", - "| [362,4790,27388,71922,120182,305624,173020,19481,3184,1039,690,648,582,50... |\n", - "| [296,4122,24622,67964,120609,309787,175498,19891,3228,1043,694,645,582,50... |\n", - "| [264,3602,22767,65834,118294,313419,178113,20399,3282,1056,696,645,582,50... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+-------------------------------------------------+\n", - "| histograms.raw_qual_hists.dp_hist_all.n_smaller |\n", - "+-------------------------------------------------+\n", - "| int64 |\n", - "+-------------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+-------------------------------------------------+\n", - "\n", - "+------------------------------------------------+\n", - "| histograms.raw_qual_hists.dp_hist_all.n_larger |\n", - "+------------------------------------------------+\n", - "| int64 |\n", - "+------------------------------------------------+\n", - "| 252 |\n", - "| 265 |\n", - "| 265 |\n", - "| 264 |\n", - "| 265 |\n", - "+------------------------------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| histograms.raw_qual_hists.gq_hist_alt.bin_edges |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+------------------------------------------------+\n", - "| histograms.raw_qual_hists.gq_hist_alt.bin_freq |\n", - "+------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------+\n", - "| [1,2,0,1,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,18] |\n", - "| [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,21] |\n", - "| [2,4,1,0,0,2,0,0,0,1,0,0,0,0,0,0,0,0,0,95] |\n", - "| [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1] |\n", - "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2] |\n", - "+------------------------------------------------+\n", - "\n", - "+-------------------------------------------------+\n", - "| histograms.raw_qual_hists.gq_hist_alt.n_smaller |\n", - "+-------------------------------------------------+\n", - "| int64 |\n", - "+-------------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+-------------------------------------------------+\n", - "\n", - "+------------------------------------------------+\n", - "| histograms.raw_qual_hists.gq_hist_alt.n_larger |\n", - "+------------------------------------------------+\n", - "| int64 |\n", - "+------------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+------------------------------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| histograms.raw_qual_hists.dp_hist_alt.bin_edges |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+------------------------------------------------+\n", - "| histograms.raw_qual_hists.dp_hist_alt.bin_freq |\n", - "+------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------+\n", - "| [0,0,1,3,6,4,2,1,0,1,1,0,1,0,0,1,1,0,0,1] |\n", - "| [0,0,1,2,4,3,4,1,1,0,0,1,0,1,0,0,0,2,0,1] |\n", - "| [0,2,4,4,17,13,14,10,8,9,1,3,2,0,4,0,0,1,1,1] |\n", - "| [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", - "+------------------------------------------------+\n", - "\n", - "+-------------------------------------------------+\n", - "| histograms.raw_qual_hists.dp_hist_alt.n_smaller |\n", - "+-------------------------------------------------+\n", - "| int64 |\n", - "+-------------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+-------------------------------------------------+\n", - "\n", - "+------------------------------------------------+\n", - "| histograms.raw_qual_hists.dp_hist_alt.n_larger |\n", - "+------------------------------------------------+\n", - "| int64 |\n", - "+------------------------------------------------+\n", - "| 1 |\n", - "| 2 |\n", - "| 11 |\n", - "| 1 |\n", - "| 1 |\n", - "+------------------------------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| histograms.raw_qual_hists.ab_hist_alt.bin_edges |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", - "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", - "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", - "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", - "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+------------------------------------------------+\n", - "| histograms.raw_qual_hists.ab_hist_alt.bin_freq |\n", - "+------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------+\n", - "| [0,1,3,2,0,0,2,0,4,4,4,3,1,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,2,0,1,0,3,3,8,5,0,1,0,0,0,0,0,0] |\n", - "| [0,2,7,0,0,1,6,5,19,14,26,17,6,1,1,0,0,0,0,0] |\n", - "| [0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0] |\n", - "+------------------------------------------------+\n", - "\n", - "+-------------------------------------------------+\n", - "| histograms.raw_qual_hists.ab_hist_alt.n_smaller |\n", - "+-------------------------------------------------+\n", - "| int64 |\n", - "+-------------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+-------------------------------------------------+\n", - "\n", - "+------------------------------------------------+\n", - "| histograms.raw_qual_hists.ab_hist_alt.n_larger |\n", - "+------------------------------------------------+\n", - "| int64 |\n", - "+------------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+------------------------------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| histograms.age_hists.age_hist_het.bin_edges |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", - "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", - "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", - "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", - "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+--------------------------------------------+\n", - "| histograms.age_hists.age_hist_het.bin_freq |\n", - "+--------------------------------------------+\n", - "| array |\n", - "+--------------------------------------------+\n", - "| [1,1,0,2,5,2,1,0,0,0] |\n", - "| [0,0,1,1,5,3,2,0,0,0] |\n", - "| [0,1,4,4,2,5,0,1,4,1] |\n", - "| [1,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,1,0,1,0,0,0,0,0] |\n", - "+--------------------------------------------+\n", - "\n", - "+---------------------------------------------+\n", - "| histograms.age_hists.age_hist_het.n_smaller |\n", - "+---------------------------------------------+\n", - "| int64 |\n", - "+---------------------------------------------+\n", - "| 2 |\n", - "| 0 |\n", - "| 1 |\n", - "| 0 |\n", - "| 0 |\n", - "+---------------------------------------------+\n", - "\n", - "+--------------------------------------------+\n", - "| histograms.age_hists.age_hist_het.n_larger |\n", - "+--------------------------------------------+\n", - "| int64 |\n", - "+--------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+--------------------------------------------+\n", - "\n", - "+------------------------------------------------------------------------------+\n", - "| histograms.age_hists.age_hist_hom.bin_edges |\n", - "+------------------------------------------------------------------------------+\n", - "| array |\n", - "+------------------------------------------------------------------------------+\n", - "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", - "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", - "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", - "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", - "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", - "+------------------------------------------------------------------------------+\n", - "\n", - "+--------------------------------------------+\n", - "| histograms.age_hists.age_hist_hom.bin_freq |\n", - "+--------------------------------------------+\n", - "| array |\n", - "+--------------------------------------------+\n", - "| [0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,0,0,0,0,0] |\n", - "| [0,0,0,0,0,0,0,0,0,0] |\n", - "+--------------------------------------------+\n", - "\n", - "+---------------------------------------------+\n", - "| histograms.age_hists.age_hist_hom.n_smaller |\n", - "+---------------------------------------------+\n", - "| int64 |\n", - "+---------------------------------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "+---------------------------------------------+\n", - "\n", - "+--------------------------------------------+---------------------------------+\n", - "| histograms.age_hists.age_hist_hom.n_larger | in_silico_predictors.cadd.phred |\n", - "+--------------------------------------------+---------------------------------+\n", - "| int64 | float32 |\n", - "+--------------------------------------------+---------------------------------+\n", - "| 0 | 3.61e+00 |\n", - "| 0 | 2.90e+00 |\n", - "| 0 | 2.38e+00 |\n", - "| 0 | 1.22e+00 |\n", - "| 0 | 6.25e+00 |\n", - "+--------------------------------------------+---------------------------------+\n", - "\n", - "+-------------------------------------+--------------------------------+\n", - "| in_silico_predictors.cadd.raw_score | in_silico_predictors.revel_max |\n", - "+-------------------------------------+--------------------------------+\n", - "| float32 | float64 |\n", - "+-------------------------------------+--------------------------------+\n", - "| 2.42e-01 | NA |\n", - "| 1.80e-01 | NA |\n", - "| 1.31e-01 | NA |\n", - "| -1.85e-02 | NA |\n", - "| 4.76e-01 | NA |\n", - "+-------------------------------------+--------------------------------+\n", - "\n", - "+--------------------------------------+\n", - "| in_silico_predictors.spliceai_ds_max |\n", - "+--------------------------------------+\n", - "| float32 |\n", - "+--------------------------------------+\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "| 0.00e+00 |\n", - "+--------------------------------------+\n", - "\n", - "+------------------------------------------+-----------------------------+\n", - "| in_silico_predictors.pangolin_largest_ds | in_silico_predictors.phylop |\n", - "+------------------------------------------+-----------------------------+\n", - "| float64 | float64 |\n", - "+------------------------------------------+-----------------------------+\n", - "| 1.20e-01 | -4.68e-01 |\n", - "| 5.00e-02 | 7.10e-02 |\n", - "| 3.00e-02 | 7.10e-02 |\n", - "| 4.00e-02 | -1.27e+00 |\n", - "| 2.10e-01 | 1.62e+00 |\n", - "+------------------------------------------+-----------------------------+\n", - "\n", - "+-------------------------------+-----------------------------------+\n", - "| in_silico_predictors.sift_max | in_silico_predictors.polyphen_max |\n", - "+-------------------------------+-----------------------------------+\n", - "| float64 | float64 |\n", - "+-------------------------------+-----------------------------------+\n", - "| NA | NA |\n", - "| NA | NA |\n", - "| NA | NA |\n", - "| NA | NA |\n", - "| NA | NA |\n", - "+-------------------------------+-----------------------------------+\n", - "showing top 5 rows" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "The total number of other variants passing filters in DRD2 is: 783\n" - ] - } - ], + "outputs": [], "source": [ "var_ht = filter_by_consequence_category(other=True, ht=drd2_ht)\n", "var_ht.show(5)\n", @@ -5972,7 +658,7 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": null, "id": "a25ddd1b", "metadata": {}, "outputs": [], @@ -5990,52 +676,10 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": null, "id": "4f78166f", "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "
afr
locus
alleles
filters
AC
AF
AN
homozygote_count
locus<GRCh38>array<str>set<str>int32float64int32int64
chr11:113410736["G","A"]{}00.00e+00334800
chr11:113410736["G","T"]{}00.00e+00334800
chr11:113410739["G","A"]{}00.00e+00334780
chr11:113410751["G","A"]{}00.00e+00334800
chr11:113410754["C","T"]{}123.58e-04334801

showing top 5 rows

\n" - ], - "text/plain": [ - "+-----------------+------------+----------+--------+----------+--------+\n", - "| locus | alleles | filters | afr.AC | afr.AF | afr.AN |\n", - "+-----------------+------------+----------+--------+----------+--------+\n", - "| locus | array | set | int32 | float64 | int32 |\n", - "+-----------------+------------+----------+--------+----------+--------+\n", - "| chr11:113410736 | [\"G\",\"A\"] | {} | 0 | 0.00e+00 | 33480 |\n", - "| chr11:113410736 | [\"G\",\"T\"] | {} | 0 | 0.00e+00 | 33480 |\n", - "| chr11:113410739 | [\"G\",\"A\"] | {} | 0 | 0.00e+00 | 33478 |\n", - "| chr11:113410751 | [\"G\",\"A\"] | {} | 0 | 0.00e+00 | 33480 |\n", - "| chr11:113410754 | [\"C\",\"T\"] | {} | 12 | 3.58e-04 | 33480 |\n", - "+-----------------+------------+----------+--------+----------+--------+\n", - "\n", - "+----------------------+\n", - "| afr.homozygote_count |\n", - "+----------------------+\n", - "| int64 |\n", - "+----------------------+\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 0 |\n", - "| 1 |\n", - "+----------------------+\n", - "showing top 5 rows" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "var_ht = get_ancestry_callstats(gen_ancs='afr', ht=drd2_synonymous_ht)\n", "var_ht.show(5)" @@ -6051,118 +695,10 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": null, "id": "e3a07848", "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "
afr
amr
eas
mid
nfe
sas
locus
alleles
filters
AC
AF
AN
homozygote_count
AC
AF
AN
homozygote_count
AC
AF
AN
homozygote_count
AC
AF
AN
homozygote_count
AC
AF
AN
homozygote_count
AC
AF
AN
homozygote_count
locus<GRCh38>array<str>set<str>int32float64int32int64int32float64int32int64int32float64int32int64int32float64int32int64int32float64int32int64int32float64int32int64
chr11:113410736["G","A"]{}00.00e+0033480000.00e+0044724000.00e+0039700000.00e+0057620151.35e-051112010000.00e+00862540
chr11:113410736["G","T"]{}00.00e+0033480000.00e+0044724000.00e+0039700000.00e+005762018.99e-071112010000.00e+00862540
chr11:113410739["G","A"]{}00.00e+0033478000.00e+0044724000.00e+0039700000.00e+005764000.00e+001112010000.00e+00862560
chr11:113410751["G","A"]{}00.00e+0033480000.00e+0044724000.00e+0039700000.00e+005768018.99e-071112012000.00e+00862580
chr11:113410754["C","T"]{}123.58e-04334801439.61e-0444724000.00e+0039700081.39e-03576803282.95e-041112012000.00e+00862580
chr11:113410757["G","A"]{}00.00e+0033480000.00e+0044724012.52e-0539700000.00e+005766000.00e+001112012000.00e+00862580
chr11:113410757["G","T"]{}00.00e+0033480000.00e+0044724000.00e+0039700000.00e+005766000.00e+001112012033.48e-05862580
chr11:113410763["C","T"]{}00.00e+0033480000.00e+0044724000.00e+0039700000.00e+005768000.00e+001112010011.16e-05862580
chr11:113410769["G","A"]{}00.00e+0033480000.00e+0044724000.00e+0039700000.00e+005768021.80e-061112012000.00e+00862580
chr11:113410775["G","A"]{}00.00e+0033480000.00e+0044724012.52e-0539700000.00e+005768018.99e-071112010000.00e+00862580

showing top 10 rows

\n" - ], - "text/plain": [ - "+-----------------+------------+----------+--------+----------+--------+\n", - "| locus | alleles | filters | afr.AC | afr.AF | afr.AN |\n", - "+-----------------+------------+----------+--------+----------+--------+\n", - "| locus | array | set | int32 | float64 | int32 |\n", - "+-----------------+------------+----------+--------+----------+--------+\n", - "| chr11:113410736 | [\"G\",\"A\"] | {} | 0 | 0.00e+00 | 33480 |\n", - "| chr11:113410736 | [\"G\",\"T\"] | {} | 0 | 0.00e+00 | 33480 |\n", - "| chr11:113410739 | [\"G\",\"A\"] | {} | 0 | 0.00e+00 | 33478 |\n", - "| chr11:113410751 | [\"G\",\"A\"] | {} | 0 | 0.00e+00 | 33480 |\n", - "| chr11:113410754 | [\"C\",\"T\"] | {} | 12 | 3.58e-04 | 33480 |\n", - "| chr11:113410757 | [\"G\",\"A\"] | {} | 0 | 0.00e+00 | 33480 |\n", - "| chr11:113410757 | [\"G\",\"T\"] | {} | 0 | 0.00e+00 | 33480 |\n", - "| chr11:113410763 | [\"C\",\"T\"] | {} | 0 | 0.00e+00 | 33480 |\n", - "| chr11:113410769 | [\"G\",\"A\"] | {} | 0 | 0.00e+00 | 33480 |\n", - "| chr11:113410775 | [\"G\",\"A\"] | {} | 0 | 0.00e+00 | 33480 |\n", - "+-----------------+------------+----------+--------+----------+--------+\n", - "\n", - "+----------------------+--------+----------+--------+----------------------+\n", - "| afr.homozygote_count | amr.AC | amr.AF | amr.AN | amr.homozygote_count |\n", - "+----------------------+--------+----------+--------+----------------------+\n", - "| int64 | int32 | float64 | int32 | int64 |\n", - "+----------------------+--------+----------+--------+----------------------+\n", - "| 0 | 0 | 0.00e+00 | 44724 | 0 |\n", - "| 0 | 0 | 0.00e+00 | 44724 | 0 |\n", - "| 0 | 0 | 0.00e+00 | 44724 | 0 |\n", - "| 0 | 0 | 0.00e+00 | 44724 | 0 |\n", - "| 1 | 43 | 9.61e-04 | 44724 | 0 |\n", - "| 0 | 0 | 0.00e+00 | 44724 | 0 |\n", - "| 0 | 0 | 0.00e+00 | 44724 | 0 |\n", - "| 0 | 0 | 0.00e+00 | 44724 | 0 |\n", - "| 0 | 0 | 0.00e+00 | 44724 | 0 |\n", - "| 0 | 0 | 0.00e+00 | 44724 | 0 |\n", - "+----------------------+--------+----------+--------+----------------------+\n", - "\n", - "+--------+----------+--------+----------------------+--------+----------+\n", - "| eas.AC | eas.AF | eas.AN | eas.homozygote_count | mid.AC | mid.AF |\n", - "+--------+----------+--------+----------------------+--------+----------+\n", - "| int32 | float64 | int32 | int64 | int32 | float64 |\n", - "+--------+----------+--------+----------------------+--------+----------+\n", - "| 0 | 0.00e+00 | 39700 | 0 | 0 | 0.00e+00 |\n", - "| 0 | 0.00e+00 | 39700 | 0 | 0 | 0.00e+00 |\n", - "| 0 | 0.00e+00 | 39700 | 0 | 0 | 0.00e+00 |\n", - "| 0 | 0.00e+00 | 39700 | 0 | 0 | 0.00e+00 |\n", - "| 0 | 0.00e+00 | 39700 | 0 | 8 | 1.39e-03 |\n", - "| 1 | 2.52e-05 | 39700 | 0 | 0 | 0.00e+00 |\n", - "| 0 | 0.00e+00 | 39700 | 0 | 0 | 0.00e+00 |\n", - "| 0 | 0.00e+00 | 39700 | 0 | 0 | 0.00e+00 |\n", - "| 0 | 0.00e+00 | 39700 | 0 | 0 | 0.00e+00 |\n", - "| 1 | 2.52e-05 | 39700 | 0 | 0 | 0.00e+00 |\n", - "+--------+----------+--------+----------------------+--------+----------+\n", - "\n", - "+--------+----------------------+--------+----------+---------+\n", - "| mid.AN | mid.homozygote_count | nfe.AC | nfe.AF | nfe.AN |\n", - "+--------+----------------------+--------+----------+---------+\n", - "| int32 | int64 | int32 | float64 | int32 |\n", - "+--------+----------------------+--------+----------+---------+\n", - "| 5762 | 0 | 15 | 1.35e-05 | 1112010 |\n", - "| 5762 | 0 | 1 | 8.99e-07 | 1112010 |\n", - "| 5764 | 0 | 0 | 0.00e+00 | 1112010 |\n", - "| 5768 | 0 | 1 | 8.99e-07 | 1112012 |\n", - "| 5768 | 0 | 328 | 2.95e-04 | 1112012 |\n", - "| 5766 | 0 | 0 | 0.00e+00 | 1112012 |\n", - "| 5766 | 0 | 0 | 0.00e+00 | 1112012 |\n", - "| 5768 | 0 | 0 | 0.00e+00 | 1112010 |\n", - "| 5768 | 0 | 2 | 1.80e-06 | 1112012 |\n", - "| 5768 | 0 | 1 | 8.99e-07 | 1112010 |\n", - "+--------+----------------------+--------+----------+---------+\n", - "\n", - "+----------------------+--------+----------+--------+----------------------+\n", - "| nfe.homozygote_count | sas.AC | sas.AF | sas.AN | sas.homozygote_count |\n", - "+----------------------+--------+----------+--------+----------------------+\n", - "| int64 | int32 | float64 | int32 | int64 |\n", - "+----------------------+--------+----------+--------+----------------------+\n", - "| 0 | 0 | 0.00e+00 | 86254 | 0 |\n", - "| 0 | 0 | 0.00e+00 | 86254 | 0 |\n", - "| 0 | 0 | 0.00e+00 | 86256 | 0 |\n", - "| 0 | 0 | 0.00e+00 | 86258 | 0 |\n", - "| 0 | 0 | 0.00e+00 | 86258 | 0 |\n", - "| 0 | 0 | 0.00e+00 | 86258 | 0 |\n", - "| 0 | 3 | 3.48e-05 | 86258 | 0 |\n", - "| 0 | 1 | 1.16e-05 | 86258 | 0 |\n", - "| 0 | 0 | 0.00e+00 | 86258 | 0 |\n", - "| 0 | 0 | 0.00e+00 | 86258 | 0 |\n", - "+----------------------+--------+----------+--------+----------------------+\n", - "showing top 10 rows" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "var_ht = get_ancestry_callstats(gen_ancs=['afr', 'amr', 'eas', 'mid', 'nfe', 'sas'], ht=drd2_synonymous_ht)\n", "var_ht.show()" @@ -6186,39 +722,10 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": null, "id": "4845be1d-d4c0-4b83-9e92-bd72379b8a99", "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "\n", - "\n", - "
afr
locus
alleles
filters
AC
AF
AN
homozygote_count
locus<GRCh38>array<str>set<str>int32float64int32int64
chr22:15528692["C","G"]{}6351.90e-02333806
" - ], - "text/plain": [ - "+----------------+------------+----------+--------+----------+--------+\n", - "| locus | alleles | filters | afr.AC | afr.AF | afr.AN |\n", - "+----------------+------------+----------+--------+----------+--------+\n", - "| locus | array | set | int32 | float64 | int32 |\n", - "+----------------+------------+----------+--------+----------+--------+\n", - "| chr22:15528692 | [\"C\",\"G\"] | {} | 635 | 1.90e-02 | 33380 |\n", - "+----------------+------------+----------+--------+----------+--------+\n", - "\n", - "+----------------------+\n", - "| afr.homozygote_count |\n", - "+----------------------+\n", - "| int64 |\n", - "+----------------------+\n", - "| 6 |\n", - "+----------------------+" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "var_ht = get_single_variant_ancestry_callstats(gen_ancs='AFR', contig='chr22', position=15528692, ref='C', alt='G')\n", "var_ht.show(5)" @@ -6234,43 +741,10 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": null, "id": "bee28829", "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2024-12-20 12:31:16.359 Hail: WARN: No variant found at chr22:15528692 with alleles ['C', 'A']\n" - ] - }, - { - "data": { - "text/html": [ - "\n", - "
afr
locus
alleles
filters
AC
AF
AN
homozygote_count
locus<GRCh38>array<str>set<str>int32float64int32int64
" - ], - "text/plain": [ - "+---------------+------------+----------+--------+---------+--------+\n", - "| locus | alleles | filters | afr.AC | afr.AF | afr.AN |\n", - "+---------------+------------+----------+--------+---------+--------+\n", - "| locus | array | set | int32 | float64 | int32 |\n", - "+---------------+------------+----------+--------+---------+--------+\n", - "+---------------+------------+----------+--------+---------+--------+\n", - "\n", - "+----------------------+\n", - "| afr.homozygote_count |\n", - "+----------------------+\n", - "| int64 |\n", - "+----------------------+\n", - "+----------------------+" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "var_ht = get_single_variant_ancestry_callstats(gen_ancs='AFR', contig='chr22', position=15528692, ref='C', alt='A')\n", "var_ht.show(5)" @@ -6293,7 +767,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.5" + "version": "3.11.9" }, "toc": { "base_numbering": 1, diff --git a/gnomad_toolbox/notebooks/needs_a_name.ipynb b/gnomad_toolbox/notebooks/needs_a_name.ipynb deleted file mode 100644 index c63ea3a..0000000 --- a/gnomad_toolbox/notebooks/needs_a_name.ipynb +++ /dev/null @@ -1,746 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "id": "8e609a46", - "metadata": { - "toc": true - }, - "source": [ - "

Table of Contents

\n", - "" - ] - }, - { - "cell_type": "markdown", - "id": "8e713032", - "metadata": {}, - "source": [ - "## Import modules" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "id": "e69953f7", - "metadata": { - "ExecuteTime": { - "end_time": "2024-12-06T18:04:56.165634Z", - "start_time": "2024-12-06T18:04:55.603516Z" - } - }, - "outputs": [ - { - "data": { - "text/html": [ - " \n", - "
\n", - " \n", - " Loading BokehJS ...\n", - "
\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/javascript": [ - "(function(root) {\n", - " function now() {\n", - " return new Date();\n", - " }\n", - "\n", - " const force = true;\n", - "\n", - " if (typeof root._bokeh_onload_callbacks === \"undefined\" || force === true) {\n", - " root._bokeh_onload_callbacks = [];\n", - " root._bokeh_is_loading = undefined;\n", - " }\n", - "\n", - "const JS_MIME_TYPE = 'application/javascript';\n", - " const HTML_MIME_TYPE = 'text/html';\n", - " const EXEC_MIME_TYPE = 'application/vnd.bokehjs_exec.v0+json';\n", - " const CLASS_NAME = 'output_bokeh rendered_html';\n", - "\n", - " /**\n", - " * Render data to the DOM node\n", - " */\n", - " function render(props, node) {\n", - " const script = document.createElement(\"script\");\n", - " node.appendChild(script);\n", - " }\n", - "\n", - " /**\n", - " * Handle when an output is cleared or removed\n", - " */\n", - " function handleClearOutput(event, handle) {\n", - " function drop(id) {\n", - " const view = Bokeh.index.get_by_id(id)\n", - " if (view != null) {\n", - " view.model.document.clear()\n", - " Bokeh.index.delete(view)\n", - " }\n", - " }\n", - "\n", - " const cell = handle.cell;\n", - "\n", - " const id = cell.output_area._bokeh_element_id;\n", - " const server_id = cell.output_area._bokeh_server_id;\n", - "\n", - " // Clean up Bokeh references\n", - " if (id != null) {\n", - " drop(id)\n", - " }\n", - "\n", - " if (server_id !== undefined) {\n", - " // Clean up Bokeh references\n", - " const cmd_clean = \"from bokeh.io.state import curstate; print(curstate().uuid_to_server['\" + server_id + \"'].get_sessions()[0].document.roots[0]._id)\";\n", - " cell.notebook.kernel.execute(cmd_clean, {\n", - " iopub: {\n", - " output: function(msg) {\n", - " const id = msg.content.text.trim()\n", - " drop(id)\n", - " }\n", - " }\n", - " });\n", - " // Destroy server and session\n", - " const cmd_destroy = \"import bokeh.io.notebook as ion; ion.destroy_server('\" + server_id + \"')\";\n", - " cell.notebook.kernel.execute(cmd_destroy);\n", - " }\n", - " }\n", - "\n", - " /**\n", - " * Handle when a new output is added\n", - " */\n", - " function handleAddOutput(event, handle) {\n", - " const output_area = handle.output_area;\n", - " const output = handle.output;\n", - "\n", - " // limit handleAddOutput to display_data with EXEC_MIME_TYPE content only\n", - " if ((output.output_type != \"display_data\") || (!Object.prototype.hasOwnProperty.call(output.data, EXEC_MIME_TYPE))) {\n", - " return\n", - " }\n", - "\n", - " const toinsert = output_area.element.find(\".\" + CLASS_NAME.split(' ')[0]);\n", - "\n", - " if (output.metadata[EXEC_MIME_TYPE][\"id\"] !== undefined) {\n", - " toinsert[toinsert.length - 1].firstChild.textContent = output.data[JS_MIME_TYPE];\n", - " // store reference to embed id on output_area\n", - " output_area._bokeh_element_id = output.metadata[EXEC_MIME_TYPE][\"id\"];\n", - " }\n", - " if (output.metadata[EXEC_MIME_TYPE][\"server_id\"] !== undefined) {\n", - " const bk_div = document.createElement(\"div\");\n", - " bk_div.innerHTML = output.data[HTML_MIME_TYPE];\n", - " const script_attrs = bk_div.children[0].attributes;\n", - " for (let i = 0; i < script_attrs.length; i++) {\n", - " toinsert[toinsert.length - 1].firstChild.setAttribute(script_attrs[i].name, script_attrs[i].value);\n", - " toinsert[toinsert.length - 1].firstChild.textContent = bk_div.children[0].textContent\n", - " }\n", - " // store reference to server id on output_area\n", - " output_area._bokeh_server_id = output.metadata[EXEC_MIME_TYPE][\"server_id\"];\n", - " }\n", - " }\n", - "\n", - " function register_renderer(events, OutputArea) {\n", - "\n", - " function append_mime(data, metadata, element) {\n", - " // create a DOM node to render to\n", - " const toinsert = this.create_output_subarea(\n", - " metadata,\n", - " CLASS_NAME,\n", - " EXEC_MIME_TYPE\n", - " );\n", - " this.keyboard_manager.register_events(toinsert);\n", - " // Render to node\n", - " const props = {data: data, metadata: metadata[EXEC_MIME_TYPE]};\n", - " render(props, toinsert[toinsert.length - 1]);\n", - " element.append(toinsert);\n", - " return toinsert\n", - " }\n", - "\n", - " /* Handle when an output is cleared or removed */\n", - " events.on('clear_output.CodeCell', handleClearOutput);\n", - " events.on('delete.Cell', handleClearOutput);\n", - "\n", - " /* Handle when a new output is added */\n", - " events.on('output_added.OutputArea', handleAddOutput);\n", - "\n", - " /**\n", - " * Register the mime type and append_mime function with output_area\n", - " */\n", - " OutputArea.prototype.register_mime_type(EXEC_MIME_TYPE, append_mime, {\n", - " /* Is output safe? */\n", - " safe: true,\n", - " /* Index of renderer in `output_area.display_order` */\n", - " index: 0\n", - " });\n", - " }\n", - "\n", - " // register the mime type if in Jupyter Notebook environment and previously unregistered\n", - " if (root.Jupyter !== undefined) {\n", - " const events = require('base/js/events');\n", - " const OutputArea = require('notebook/js/outputarea').OutputArea;\n", - "\n", - " if (OutputArea.prototype.mime_types().indexOf(EXEC_MIME_TYPE) == -1) {\n", - " register_renderer(events, OutputArea);\n", - " }\n", - " }\n", - " if (typeof (root._bokeh_timeout) === \"undefined\" || force === true) {\n", - " root._bokeh_timeout = Date.now() + 5000;\n", - " root._bokeh_failed_load = false;\n", - " }\n", - "\n", - " const NB_LOAD_WARNING = {'data': {'text/html':\n", - " \"
\\n\"+\n", - " \"

\\n\"+\n", - " \"BokehJS does not appear to have successfully loaded. If loading BokehJS from CDN, this \\n\"+\n", - " \"may be due to a slow or bad network connection. Possible fixes:\\n\"+\n", - " \"

\\n\"+\n", - " \"
    \\n\"+\n", - " \"
  • re-rerun `output_notebook()` to attempt to load from CDN again, or
  • \\n\"+\n", - " \"
  • use INLINE resources instead, as so:
  • \\n\"+\n", - " \"
\\n\"+\n", - " \"\\n\"+\n", - " \"from bokeh.resources import INLINE\\n\"+\n", - " \"output_notebook(resources=INLINE)\\n\"+\n", - " \"\\n\"+\n", - " \"
\"}};\n", - "\n", - " function display_loaded() {\n", - " const el = document.getElementById(\"d7751d80-c376-4274-999c-135812562683\");\n", - " if (el != null) {\n", - " el.textContent = \"BokehJS is loading...\";\n", - " }\n", - " if (root.Bokeh !== undefined) {\n", - " if (el != null) {\n", - " el.textContent = \"BokehJS \" + root.Bokeh.version + \" successfully loaded.\";\n", - " }\n", - " } else if (Date.now() < root._bokeh_timeout) {\n", - " setTimeout(display_loaded, 100)\n", - " }\n", - " }\n", - "\n", - " function run_callbacks() {\n", - " try {\n", - " root._bokeh_onload_callbacks.forEach(function(callback) {\n", - " if (callback != null)\n", - " callback();\n", - " });\n", - " } finally {\n", - " delete root._bokeh_onload_callbacks\n", - " }\n", - " console.debug(\"Bokeh: all callbacks have finished\");\n", - " }\n", - "\n", - " function load_libs(css_urls, js_urls, callback) {\n", - " if (css_urls == null) css_urls = [];\n", - " if (js_urls == null) js_urls = [];\n", - "\n", - " root._bokeh_onload_callbacks.push(callback);\n", - " if (root._bokeh_is_loading > 0) {\n", - " console.debug(\"Bokeh: BokehJS is being loaded, scheduling callback at\", now());\n", - " return null;\n", - " }\n", - " if (js_urls == null || js_urls.length === 0) {\n", - " run_callbacks();\n", - " return null;\n", - " }\n", - " console.debug(\"Bokeh: BokehJS not loaded, scheduling load and callback at\", now());\n", - " root._bokeh_is_loading = css_urls.length + js_urls.length;\n", - "\n", - " function on_load() {\n", - " root._bokeh_is_loading--;\n", - " if (root._bokeh_is_loading === 0) {\n", - " console.debug(\"Bokeh: all BokehJS libraries/stylesheets loaded\");\n", - " run_callbacks()\n", - " }\n", - " }\n", - "\n", - " function on_error(url) {\n", - " console.error(\"failed to load \" + url);\n", - " }\n", - "\n", - " for (let i = 0; i < css_urls.length; i++) {\n", - " const url = css_urls[i];\n", - " const element = document.createElement(\"link\");\n", - " element.onload = on_load;\n", - " element.onerror = on_error.bind(null, url);\n", - " element.rel = \"stylesheet\";\n", - " element.type = \"text/css\";\n", - " element.href = url;\n", - " console.debug(\"Bokeh: injecting link tag for BokehJS stylesheet: \", url);\n", - " document.body.appendChild(element);\n", - " }\n", - "\n", - " for (let i = 0; i < js_urls.length; i++) {\n", - " const url = js_urls[i];\n", - " const element = document.createElement('script');\n", - " element.onload = on_load;\n", - " element.onerror = on_error.bind(null, url);\n", - " element.async = false;\n", - " element.src = url;\n", - " console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n", - " document.head.appendChild(element);\n", - " }\n", - " };\n", - "\n", - " function inject_raw_css(css) {\n", - " const element = document.createElement(\"style\");\n", - " element.appendChild(document.createTextNode(css));\n", - " document.body.appendChild(element);\n", - " }\n", - "\n", - " const js_urls = [\"https://cdn.bokeh.org/bokeh/release/bokeh-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-gl-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-widgets-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-tables-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-mathjax-3.3.4.min.js\"];\n", - " const css_urls = [];\n", - "\n", - " const inline_js = [ function(Bokeh) {\n", - " Bokeh.set_log_level(\"info\");\n", - " },\n", - "function(Bokeh) {\n", - " }\n", - " ];\n", - "\n", - " function run_inline_js() {\n", - " if (root.Bokeh !== undefined || force === true) {\n", - " for (let i = 0; i < inline_js.length; i++) {\n", - " inline_js[i].call(root, root.Bokeh);\n", - " }\n", - "if (force === true) {\n", - " display_loaded();\n", - " }} else if (Date.now() < root._bokeh_timeout) {\n", - " setTimeout(run_inline_js, 100);\n", - " } else if (!root._bokeh_failed_load) {\n", - " console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n", - " root._bokeh_failed_load = true;\n", - " } else if (force !== true) {\n", - " const cell = $(document.getElementById(\"d7751d80-c376-4274-999c-135812562683\")).parents('.cell').data().cell;\n", - " cell.output_area.append_execute_result(NB_LOAD_WARNING)\n", - " }\n", - " }\n", - "\n", - " if (root._bokeh_is_loading === 0) {\n", - " console.debug(\"Bokeh: BokehJS loaded, going straight to plotting\");\n", - " run_inline_js();\n", - " } else {\n", - " load_libs(css_urls, js_urls, function() {\n", - " console.debug(\"Bokeh: BokehJS plotting callback run at\", now());\n", - " run_inline_js();\n", - " });\n", - " }\n", - "}(window));" - ], - "application/vnd.bokehjs_load.v0+json": "(function(root) {\n function now() {\n return new Date();\n }\n\n const force = true;\n\n if (typeof root._bokeh_onload_callbacks === \"undefined\" || force === true) {\n root._bokeh_onload_callbacks = [];\n root._bokeh_is_loading = undefined;\n }\n\n\n if (typeof (root._bokeh_timeout) === \"undefined\" || force === true) {\n root._bokeh_timeout = Date.now() + 5000;\n root._bokeh_failed_load = false;\n }\n\n const NB_LOAD_WARNING = {'data': {'text/html':\n \"
\\n\"+\n \"

\\n\"+\n \"BokehJS does not appear to have successfully loaded. If loading BokehJS from CDN, this \\n\"+\n \"may be due to a slow or bad network connection. Possible fixes:\\n\"+\n \"

\\n\"+\n \"
    \\n\"+\n \"
  • re-rerun `output_notebook()` to attempt to load from CDN again, or
  • \\n\"+\n \"
  • use INLINE resources instead, as so:
  • \\n\"+\n \"
\\n\"+\n \"\\n\"+\n \"from bokeh.resources import INLINE\\n\"+\n \"output_notebook(resources=INLINE)\\n\"+\n \"\\n\"+\n \"
\"}};\n\n function display_loaded() {\n const el = document.getElementById(\"d7751d80-c376-4274-999c-135812562683\");\n if (el != null) {\n el.textContent = \"BokehJS is loading...\";\n }\n if (root.Bokeh !== undefined) {\n if (el != null) {\n el.textContent = \"BokehJS \" + root.Bokeh.version + \" successfully loaded.\";\n }\n } else if (Date.now() < root._bokeh_timeout) {\n setTimeout(display_loaded, 100)\n }\n }\n\n function run_callbacks() {\n try {\n root._bokeh_onload_callbacks.forEach(function(callback) {\n if (callback != null)\n callback();\n });\n } finally {\n delete root._bokeh_onload_callbacks\n }\n console.debug(\"Bokeh: all callbacks have finished\");\n }\n\n function load_libs(css_urls, js_urls, callback) {\n if (css_urls == null) css_urls = [];\n if (js_urls == null) js_urls = [];\n\n root._bokeh_onload_callbacks.push(callback);\n if (root._bokeh_is_loading > 0) {\n console.debug(\"Bokeh: BokehJS is being loaded, scheduling callback at\", now());\n return null;\n }\n if (js_urls == null || js_urls.length === 0) {\n run_callbacks();\n return null;\n }\n console.debug(\"Bokeh: BokehJS not loaded, scheduling load and callback at\", now());\n root._bokeh_is_loading = css_urls.length + js_urls.length;\n\n function on_load() {\n root._bokeh_is_loading--;\n if (root._bokeh_is_loading === 0) {\n console.debug(\"Bokeh: all BokehJS libraries/stylesheets loaded\");\n run_callbacks()\n }\n }\n\n function on_error(url) {\n console.error(\"failed to load \" + url);\n }\n\n for (let i = 0; i < css_urls.length; i++) {\n const url = css_urls[i];\n const element = document.createElement(\"link\");\n element.onload = on_load;\n element.onerror = on_error.bind(null, url);\n element.rel = \"stylesheet\";\n element.type = \"text/css\";\n element.href = url;\n console.debug(\"Bokeh: injecting link tag for BokehJS stylesheet: \", url);\n document.body.appendChild(element);\n }\n\n for (let i = 0; i < js_urls.length; i++) {\n const url = js_urls[i];\n const element = document.createElement('script');\n element.onload = on_load;\n element.onerror = on_error.bind(null, url);\n element.async = false;\n element.src = url;\n console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n document.head.appendChild(element);\n }\n };\n\n function inject_raw_css(css) {\n const element = document.createElement(\"style\");\n element.appendChild(document.createTextNode(css));\n document.body.appendChild(element);\n }\n\n const js_urls = [\"https://cdn.bokeh.org/bokeh/release/bokeh-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-gl-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-widgets-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-tables-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-mathjax-3.3.4.min.js\"];\n const css_urls = [];\n\n const inline_js = [ function(Bokeh) {\n Bokeh.set_log_level(\"info\");\n },\nfunction(Bokeh) {\n }\n ];\n\n function run_inline_js() {\n if (root.Bokeh !== undefined || force === true) {\n for (let i = 0; i < inline_js.length; i++) {\n inline_js[i].call(root, root.Bokeh);\n }\nif (force === true) {\n display_loaded();\n }} else if (Date.now() < root._bokeh_timeout) {\n setTimeout(run_inline_js, 100);\n } else if (!root._bokeh_failed_load) {\n console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n root._bokeh_failed_load = true;\n } else if (force !== true) {\n const cell = $(document.getElementById(\"d7751d80-c376-4274-999c-135812562683\")).parents('.cell').data().cell;\n cell.output_area.append_execute_result(NB_LOAD_WARNING)\n }\n }\n\n if (root._bokeh_is_loading === 0) {\n console.debug(\"Bokeh: BokehJS loaded, going straight to plotting\");\n run_inline_js();\n } else {\n load_libs(css_urls, js_urls, function() {\n console.debug(\"Bokeh: BokehJS plotting callback run at\", now());\n run_inline_js();\n });\n }\n}(window));" - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "import hail as hl\n", - "\n", - "from gnomad_toolbox.analysis.general import get_variant_count_by_freq_bin\n", - "from gnomad_toolbox.filtering.variant import filter_by_intervals\n", - "from gnomad_toolbox.filtering.vep import filter_by_consequence_category, filter_to_plofs\n", - "from gnomad_toolbox.load_data import get_gnomad_release" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "id": "b3c44396-5ee1-4263-91f8-78bdb9417bab", - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Welcome to\n", - " __ __ <>__\n", - " / /_/ /__ __/ /\n", - " / __ / _ `/ / /\n", - " /_/ /_/\\_,_/_/_/ version 0.2.132-678e1f52b999\n", - "LOGGING: writing to /Users/jgoodric/PycharmProjects/gnomad-toolbox/gnomad_toolbox/notebooks/hail-20241210-2229-0.2.132-678e1f52b999.log\n" - ] - } - ], - "source": [ - "hl.init(backend=\"local\")" - ] - }, - { - "cell_type": "markdown", - "id": "d36c12aa-d395-4f6c-891c-77caa4779e47", - "metadata": {}, - "source": [ - "## Get variant count by allele frequency bin\n", - "\n", - "The examples below show variant counts using the Table filtered to DRD2." - ] - }, - { - "cell_type": "markdown", - "id": "dec1dc9c-f145-46cb-8d33-ca43d24dd06a", - "metadata": {}, - "source": [ - "### Counts for AF bins: *0.1% - 1%* and *>1.0%*" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "id": "261a3380-8dba-41cb-b51b-033b23c963d0", - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "{'0.1% - 1.0%': 49, '>1.0%': 28, 'AC0 - 0.1%': 2662}\n" - ] - } - ], - "source": [ - "drd_interval_ht = filter_by_intervals(\"chr11:113409605-113475691\")\n", - "af_bin_ht = get_variant_count_by_freq_bin(ht=drd_interval_ht)\n", - "print(af_bin_ht)" - ] - }, - { - "cell_type": "markdown", - "id": "d05fb1c6-91a9-42cf-87bf-eccb50f6e9b4", - "metadata": {}, - "source": [ - "### Counts for *singletons*, *doubletons*, and AF bins: *doubletons - 0.05%*, *0.05% - 0.1%*, *0.1% - 1%*, and *>1%*" - ] - }, - { - "cell_type": "markdown", - "id": "a0a07a84-584e-4b08-b356-9d38767a9c50", - "metadata": {}, - "source": [ - "#### All DRD2 variants" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "id": "aaa8dfac-f7b3-4ce2-b13d-b86a1648b7b7", - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "{'0.05% - 0.1%': 11, '0.1% - 1.0%': 34, '>1.0%': 26, 'doubletons': 384, 'doubletons - 0.05%': 894, 'singletons': 1390}\n" - ] - } - ], - "source": [ - "af_bin_ht = get_variant_count_by_freq_bin(\n", - " af_cutoffs=[0.0005, 0.001, 0.01], \n", - " singletons=True, \n", - " doubletons=True, \n", - " ht=drd_interval_ht,\n", - ")\n", - "print(af_bin_ht)" - ] - }, - { - "cell_type": "markdown", - "id": "5fcabb6e-12b5-4a51-aa06-da280ec8a654", - "metadata": {}, - "source": [ - "#### All DRD2 coding variants" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "id": "a0fd192a-b1f3-4726-96cd-e88c0d8baf08", - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "{'0.05% - 0.1%': 4, '0.1% - 1.0%': 8, '>1.0%': 4, 'doubletons': 111, 'doubletons - 0.05%': 291, 'singletons': 365}\n" - ] - } - ], - "source": [ - "af_bin_ht = get_variant_count_by_freq_bin(\n", - " af_cutoffs=[0.0005, 0.001, 0.01], \n", - " singletons=True, \n", - " doubletons=True, \n", - " ht=filter_by_csqs(['coding'], ht=drd_interval_ht),\n", - ")\n", - "print(af_bin_ht)" - ] - }, - { - "attachments": { - "Screenshot%202024-10-01%20at%2010.20.53%E2%80%AFAM.png": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABokAAAFWCAYAAAC1jnTEAAAKrGlDQ1BJQ0MgUHJvZmlsZQAASImVlwdUU+kSgP9700NCS6hSQm+CdAJICT303myEJEAoIQaCgqioLK7giiIiAsqCLIoouCpF7FiwLQpKUdEFWRTUdbEgKirvAofg7jvvvfPmnjnz3cn8M/Pf8//nTAAgU1kCQTIsDUAKP10Y7OlCi4yKpuFGAR4oADKgA0sWO03ACAz0BYjM27/Lh14Azdh7xjO5/v33/yoyHG4aGwAoEOFYTho7BeFTiI6zBcJ0AFA1iF9rTbpghq8jTBUiDSI8MMPxczw+w7GzjEbPxoQGuyKsCACexGIJ4wEgaSN+WgY7HslDckPYlM/h8RFG3oFjSkoqB2GkLtBHYgQIz+Snx36XJ/5vOWPFOVmseDHP7WVW8G68NEEyK/P//Bz/W1KSRfM1dBElJQi9ghGL9AX1J6X6iJkf6x8wzzzObPwsJ4i8wuaZneYaPc8clpuPeG2yv+88x/E8mOI86czQeeamuYfMszA1WFwrTujKmGeWcKGuKClM7E/gMsX5sxJCI+Y5gxfuP89pSSE+CzGuYr9QFCzun8v3dFmo6yHee0rad/vlMcVr0xNCvcR7Zy30z+UzFnKmRYp743Dd3BdiwsTxgnQXcS1BcqA4npvsKfanZYSI16YjB3JhbaD4GyayvAPnGbgBd+CLPDQQCMyBJaIWM7507tqZMwpcUwWZQl58QjqNgdwyLo3JZ5ssppmbmlsCMHNn547Eu/7ZuwjJ4xd8fB4AljcRaFnwcU4DcGYZABT1BZ9WEwBSDwG4EMEWCTPmfDPXCWAAEUgBKlACakAL6ANjpDdrYA+ckY69QQAIBVFgJWCDBJAChGANyAabQB4oADvBHlAGKsFBcBgcAydACzgLLoFr4Ba4C3rAIzAIRsBLMA4+gCkIgnAQGaJASpA6pAMZQeYQHXKE3CFfKBiKgmKgeIgPiaBsaAtUABVBZVAVVAf9Cp2GLkE3oC7oATQEjUFvoc8wCibBVFgV1oWXwHSYAfvAofAKOB5eDWfBufAOuBSuho/CzfAl+BbcAw/CL+EJFEBJoORRGihjFB3ligpARaPiUELUBlQ+qgRVjWpAtaE6UPdQg6hXqE9oLJqCpqGN0fZoL3QYmo1ejd6A3o4uQx9GN6OvoO+hh9Dj6G8YMkYFY4SxwzAxkZh4zBpMHqYEU4tpwlzF9GBGMB+wWKw8Vg9rg/XCRmETseuw27H7sY3Yi9gu7DB2AofDKeGMcA64ABwLl47Lw+3DHcVdwHXjRnAf8RJ4dbw53gMfjefjN+NL8Efw5/Hd+Of4KYI0QYdgRwggcAiZhEJCDaGNcIcwQpgiyhD1iA7EUGIicROxlNhAvEocIL6TkJDQlLCVCJLgSeRIlEocl7guMSTxiSRLMiS5kpaTRKQdpEOki6QHpHdkMlmX7EyOJqeTd5DryJfJT8gfJSmSJpJMSY7kRslyyWbJbsnXUgQpHSmG1EqpLKkSqZNSd6ReSROkdaVdpVnSG6TLpU9L90lPyFBkzGQCZFJktssckbkhMyqLk9WVdZflyObKHpS9LDtMQVG0KK4UNmULpYZylTJCxVL1qExqIrWAeozaSR2Xk5WzlAuXWytXLndOblAeJa8rz5RPli+UPyHfK/9ZQVWBocBV2KbQoNCtMKm4SNFZkauYr9io2KP4WYmm5K6UpLRLqUXpsTJa2VA5SHmN8gHlq8qvFlEX2S9iL8pfdGLRQxVYxVAlWGWdykGV2yoTqmqqnqoC1X2ql1VfqcmrOaslqhWrnVcbU6eoO6rz1IvVL6i/oMnRGLRkWintCm1cQ0XDS0OkUaXRqTGlqacZprlZs1HzsRZRi64Vp1Ws1a41rq2u7aedrV2v/VCHoEPXSdDZq9OhM6mrpxuhu1W3RXdUT1GPqZelV683oE/Wd9JfrV+tf98Aa0A3SDLYb3DXEDa0MkwwLDe8YwQbWRvxjPYbdS3GLLZdzF9cvbjPmGTMMM4wrjceMpE38TXZbNJi8nqJ9pLoJbuWdCz5ZmplmmxaY/rITNbM22yzWZvZW3NDc7Z5ufl9C7KFh8VGi1aLN5ZGllzLA5b9VhQrP6utVu1WX61trIXWDdZjNto2MTYVNn10Kj2Qvp1+3RZj62K70fas7Sc7a7t0uxN2f9kb2yfZH7EfXaq3lLu0Zumwg6YDy6HKYdCR5hjj+LPjoJOGE8up2umps5Yzx7nW+TnDgJHIOMp47WLqInRpcpl0tXNd73rRDeXm6Zbv1uku6x7mXub+xEPTI96j3mPc08pznedFL4yXj9curz6mKpPNrGOOe9t4r/e+4kPyCfEp83nqa+gr9G3zg/28/Xb7Dfjr+PP9WwJAADNgd8DjQL3A1YFngrBBgUHlQc+CzYKzgztCKCGrQo6EfAh1CS0MfRSmHyYKaw+XCl8eXhc+GeEWURQxGLkkcn3krSjlKF5UazQuOjy6NnpimfuyPctGllstz1veu0JvxdoVN1Yqr0xeeW6V1CrWqpMxmJiImCMxX1gBrGrWRCwztiJ2nO3K3st+yXHmFHPGuA7cIu7zOIe4orjReIf43fFjCU4JJQmveK68Mt6bRK/EysTJpICkQ0nTyRHJjSn4lJiU03xZfhL/Sqpa6trULoGRIE8wuNpu9Z7V40IfYW0alLYirTWdigxHt0X6oh9EQxmOGeUZH9eErzm5VmYtf+3tTMPMbZnPszyyflmHXsde156tkb0pe2g9Y33VBmhD7Ib2jVobczeO5HjmHN5E3JS06bfNppuLNr/fErGlLVc1Nyd3+AfPH+rzJPOEeX1b7bdW/oj+kfdj5zaLbfu2fcvn5N8sMC0oKfiynb395k9mP5X+NL0jbkdnoXXhgZ3Ynfydvbucdh0ukinKKhre7be7uZhWnF/8fs+qPTdKLEsq9xL3ivYOlvqWtu7T3rdz35eyhLKecpfyxgqVim0Vk/s5+7sPOB9oqFStLKj8/DPv5/4qz6rmat3qkoPYgxkHn9WE13T8Qv+lrla5tqD26yH+ocHDwYev1NnU1R1ROVJYD9eL6seOLj9695jbsdYG44aqRvnGguPguOj4i19jfu094XOi/ST9ZMMpnVMVTZSm/GaoObN5vCWhZbA1qrXrtPfp9jb7tqYzJmcOndU4W35O7lzheeL53PPTF7IuTFwUXHx1Kf7ScPuq9keXIy/fvxJ0pfOqz9Xr1zyuXe5gdFy47nD97A27G6dv0m+23LK+1Xzb6nbTb1a/NXVadzbfsbnTetf2blvX0q7z3U7dl+653bt2n3n/Vo9/T1dvWG9/3/K+wX5O/+iD5AdvHmY8nHqUM4AZyH8s/bjkicqT6t8Nfm8ctB48N+Q2dPtpyNNHw+zhl3+k/fFlJPcZ+VnJc/XndaPmo2fHPMbuvlj2YuSl4OXUq7w/Zf6seK3/+tRfzn/dHo8cH3kjfDP9dvs7pXeH3lu+b58InHjyIeXD1GT+R6WPhz/RP3V8jvj8fGrNF9yX0q8GX9u++XwbmE6ZnhawhKzZUQCFKBwXB8DbQwCQo5DZ4S4AxGVzM/WsQHP/A2YJ/Ceem7tnxRqA+hwAghGdGR/3XwRAG1EpZwACEQ11BrCFhVjn59/ZWX1GpI8C0MU0DbX2fWI1nAP+IXNz/Hd9/9MCcda/2X8BEaoHZfbhPqoAAABiZVhJZk1NACoAAAAIAAIBEgADAAAAAQABAACHaQAEAAAAAQAAACYAAAAAAAOShgAHAAAAEgAAAFCgAgAEAAAAAQAABomgAwAEAAAAAQAAAVYAAAAAQVNDSUkAAABTY3JlZW5zaG90uT88RwAAAj5pVFh0WE1MOmNvbS5hZG9iZS54bXAAAAAAADx4OnhtcG1ldGEgeG1sbnM6eD0iYWRvYmU6bnM6bWV0YS8iIHg6eG1wdGs9IlhNUCBDb3JlIDYuMC4wIj4KICAgPHJkZjpSREYgeG1sbnM6cmRmPSJodHRwOi8vd3d3LnczLm9yZy8xOTk5LzAyLzIyLXJkZi1zeW50YXgtbnMjIj4KICAgICAgPHJkZjpEZXNjcmlwdGlvbiByZGY6YWJvdXQ9IiIKICAgICAgICAgICAgeG1sbnM6ZXhpZj0iaHR0cDovL25zLmFkb2JlLmNvbS9leGlmLzEuMC8iCiAgICAgICAgICAgIHhtbG5zOnRpZmY9Imh0dHA6Ly9ucy5hZG9iZS5jb20vdGlmZi8xLjAvIj4KICAgICAgICAgPGV4aWY6UGl4ZWxZRGltZW5zaW9uPjM0MjwvZXhpZjpQaXhlbFlEaW1lbnNpb24+CiAgICAgICAgIDxleGlmOlVzZXJDb21tZW50PlNjcmVlbnNob3Q8L2V4aWY6VXNlckNvbW1lbnQ+CiAgICAgICAgIDxleGlmOlBpeGVsWERpbWVuc2lvbj4xNjczPC9leGlmOlBpeGVsWERpbWVuc2lvbj4KICAgICAgICAgPHRpZmY6T3JpZW50YXRpb24+MTwvdGlmZjpPcmllbnRhdGlvbj4KICAgICAgPC9yZGY6RGVzY3JpcHRpb24+CiAgIDwvcmRmOlJERj4KPC94OnhtcG1ldGE+ChwqqdIAAEAASURBVHgB7J0JvE5V98e3ookG0kBJg1ApRcO/gUqakUoypFGJQrMGQpKhwRsNmlSiSC+lQWiek1QSDRo1qaRB8/S/3+VdT+eee57p3su9+K3P57nnPOfsvc8+373PUfv3rLUq/P777/8EmQiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIwCpFYLVV6m51syIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAkZAIpEmggiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAisggQkEq2Cg65bFgEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAGJRJoDIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIrAKEpBItAoOum5ZBERABERABERABERABERABERABERABERABERABERABERABCQSaQ6IgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIwCpIQCLRKjjoumUREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAERkEikOSACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACqyABiUSr4KDrlkVABERABERABERABERABERABERABERABERABERABERABERAIpHmgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAisggQkEq2Cg65bFgEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAGJRJoDIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIrAKEpBItAoOum5ZBERABERABERABERABERABERABERABERABERABERABERABCouKwS//vpr+Ouvv8I///wTlixZEtZZZ52w1lprhTXWWCPvSy5evDi89dZbYeHChWGbbbYJ9erVC2uvvXbGdn7++We7thdac801Q8WKmW833zp//vln+O233/wSoUKFCnafqQMFO9w/7UatcuXK0a/aFwEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREIHlTmCZeRLtscceoWrVqqFatWphiy22CNWrVw/HHntszjf4xRdfhJNOOskEoU022SQ0a9YstG/fPuy+++5h/fXXDw0bNgyXXHJJQIyKG+LNBhtsYNenD3xGjx4dL1boO2JOvM6oUaMKlYl+ef7558O2225b6BrU//7776PFAuW8D7595513CpXRFxEQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQARFY3gQyu9YUszdz584N8+bNK1L74YcfDosWLQobbrhhkXPRAy+88EJo27Zt+Oqrr6KHC+3TPp8nn3wyjBs3zoSoQgViXxCB8rWkOngODRgwIAwdOjSxuXid+HcqJR1LbEwHRUAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAERGAZEVgmnkT//e9/03Z38uTJac9xgvP77bdfRoEo2sDMmTPDLrvsEhYsWBA9vEz258yZE/baa6+0AtEyuagaFQEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREIFlQKDURSK8ZMaMGZO2q3fffXfac3/88Ufo2bNnkfOHHHJIGD58eLjnnnvMi2ezzTYrVObHH38MV155ZaFjpf1l+vTpoVGjRuHNN98s7abVngiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAgsdwKlLhLh2fPhhx+mvZGnn346fPbZZ4nnydUTP3feeeeZd9Hpp58ejj766NCrVy8Tavbdd99CbTz44IOFvpf2l/fff79QkxtvvHHo1KlToWNl+QWBDbGMfEy5GGHzZs+eHR599NHwySefpA2BR7lffvkla5PZytEv2snWP87feuut4Y477khd87vvvgs33nhjeP3111PHHnrooXDLLbfk7HGWqpjnDp5tXOebb77JWvOvv/4KiKDLei5m7chyLJAPn+J265lnngm33XZbTvOwuNdYUerxfmQ+Tp06tVS7vKzaLdVO5tkYgj7vDXLXPfvss3nWVnEREAEREAEREAEREAEREAEREAEREAEREAERWDUIlLpINGHChELkTjvttIAnUNQmTpwY/Zra//jjj1P7vnPkkUf6bmpbpUqVcNFFF4V111039fnhhx/C77//niqzLHfatGljgkVS35bldTO1jWhGrqeTTz45U7GwcOHC0Lp1a+O26667hlatWoU6deqE6tWrm7dWPF/SNttsE9Zff/2AgJfJatasaeU++uijIsUef/zxsOWWW9r5Cy+8sMj56AHEpm7dugXmjdt1111nHmYtWrTwQ+Gaa64JZ5xxRkZBMlW4BDt4qHEdhLRsxkL0iSeeaGLmBx98kK14kfMIZNlEtCKVyvhAPnyK01WEz+bNm4euXbuGTGEsi9N2ea7Dc8hc+Pvvvwt1k3xvzMeRI0cWOl7SL+napQ+InyuaPfLII6Fx48b23mCOPvfccyvaLai/IiACIiACIiACIiACIiACIiACIiACIiACIrBcCJSqSMSCYjycHAv7RxxxRKGbSReOLh5Gjkpjx45NXKRs1qxZWLRoUaHPGmusUeg6pf0FUYqQd9wjokp5sXnz5gU8uLBx48aZR1FS3xB6WDhlAZV7Oeigg0LHjh3DjjvuaHXw2konMsXFo6T2ORYth+CDmHfooYeWyOOHnFMYY16eDbENrltttVXYdNNN8+oqC/HrrLOOffCcki0lULlyZcsDBtfttttulcEydOhQmwt9+vQps3t+4YUXrA/kYVvR7Nprr7Uut2vXLrz44osBT1SZCIiACIiACIiACIiACIiACIiACIiACIiACIhAUQIVix4q/hF+rf3VV18VaqBp06Zh8eLFhY699tpr4d133w1169YtdByxgsVgvAfcbrjhBlvk69ChQzjggANC/fr1Q8WK+XcbLyNEi3QW/8V+vByeOnPmzAk1atSInyrz7+PHjy/UB8KdwStuhHFjfFj0ReyK3sukSZPCsccea6LcueeeGxo0aBCvntd3vMLatm0bGGvGdM899wzTpk3Lqw0vfPjhh4effvopVKpUyQ+Vy+3mm2+emv+rr756sfsYFdqK3chKUnG11VYLTz75pAnFxXnuV1QMPgd8Wxb3UZbXLun9umjet2/fgDekTAREQAREQAREQAREQAREQAREQAREQAREQAREIJlAqXoS3XvvvYWuQg4hvCPwECK0WdSSQkexsJ4kbiA0nH/++aFRo0bWHh4liEfx/EXR9uP7PXv2NLECwSLpQ0i1TIYXQ1RUyVR2eZ7DewvxByMsG3bnnXfaNv7nvvvus0Pk6IjfC6HzPMcSglFJjdBrjBveSohrhx12WLGbJJfRp59+Gr7++uusbSAEkhOLD3maoobn2fTp062t6PF89gk7Rz6YpLnHovqCBQvC559/XqRJ+kVOJeoioEUX4LmvaJg+9un/zz//XKQdONDGF198UeQcBxDTqPvtt9/aeQRX8oA9//zzqWOJFQsOEiKP0IDF9WRinLh20v1zTe/bl19+WagL33//vfWPfiaNMeXhylyPtlOceyzOHGCsuS+EZDy+Zs2aFZ544gnzYvQbYTzx1CPHFwJ4dHy9jG9pg2cDT524cM09ci36ibHle7rxhjntvPzyy0Xa8nmUFC6OY7SbFOKT6zLPfI4vWbLEytIe9+V1fZwZP54rPBqjxo8D6BusCHMZN58P+Y5jpvnC/OG+/IcG/j7gHqIGN+Yb76akHwjE+waLhx9+uMh9wIBnBv7xa0Svl+n5j5ZjP9P8iJfVdxEQAREQAREQAREQAREQAREQAREQAREQAREoKYFSE4l+/fXXEPdoId+NWzx/T7qQc8OGDUuJFV43vsVj6ayzzrKwXghGxcn/Em9zRf3+zDPPpLyDCBWHAIbnRaYcOiyQJtlNN91kAgEh4kpqhAm76qqrwuTJk4sIUvm2zSJzvXr1LL9IprrcF8IkZU866aTUojnhpvCeQhjDK2nrrbcOO+ywQ0iXGyvpGggVDRs2tPxNLVu2tLlH6L7o4jeL4njH7bzzzqkmWFQfPny4jcvuu+8eqLvtttuap9abb75p5c4+++xCodT22GMPu4fHHnss1c6oUaPsGH2njdq1a9s9xHOAIfBx/5deemm44IILLE/VgQceGPbff38LgYe4GrfbbrvN6uClR2jAjTfeOOy3335FFv3j9eLfeQ65NvmnWGSPG3mkOI93B4YIdsopp4SNNtrI+kc/EZR5V7hIQjlCVlLP82IV5x5LMgd8PKZMmWJs/u///s/yrDGfCD3J3CDvGp6QvPPwwoMlQkvUEIAYa/jSJox5Xtu3b58SGN577z27Vw+Xdvvtt9v3eF432h0xYoTl+aKdJk2aWFvXX3+9XZJrMT/hhlATNwQSzlE3SdBirh933HFWzfvE3P7mm29MWKIuc4r5xPjxXDFHMZ4DxP5NNtnE2qfvtWrVsmcwKnblO465zBe8IOmbG88i3wnDifG8Mr/4UQDzjR8ebLHFFqF///5exbbRvnEvhJCk3owZM+w8ghh8mes8M/CvVq1a6Ny5c+q9Q8Fcnn9rsOBPLvPDy2orAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAqVFIP+4bWmuzK+p/dfbXgQvEjc8SfBgcWPhEc+K6II65wgpdfPNN9sCHIvXvpDu9eJbBCNC2uFdwcL/qmbkbMLILQQ7hCIWmFkURSSIGuH6Ro8ebQIKi88s3kbzOFG/tEJ6xUXBpIXoaN9Kuo9ISbg8QtqxeI2nWpUqVcL7779vIgNzE2+2ffbZx7wHEGDIV4Kgtvfee2e9PF5Wa6+9dujSpYstkuMxwtxEFECAICxakrFwTq4nrFevXmGDDTYwbxMW6VlkZtEd0YdF9KuvvtrKdevWLSCykeMIw0PPc6rQ/9122808F1j8Z9zXW2+9cPDBB1tZ/8MzhHnbd911lz2fiKvkeCL8H3b//feHrl272j7PKAIWDGmb7y+99JIt9luBLH94/mgbLxk8S1q3bl2ohgvD7i3IPTFPEYa4Z0Q+hGY8Nhgb2shkud5jac0B5jT317x5cxtz3j0nnnhi6p7ZZ87hyYc3C+EWowLNhRdeGBBxEIYYN+YTIipzlfmL4Lfhhhua1yTiL94pfj2EpahxHk68Yxkz6hJKEhEKARFhjbmKUIvggYgRNY5hiHQVKlSInrJ92pk7d27A+5D++vxjXvp7nntkPuFliXCG4IIh1MKGPjP/8NShHULAIdYyHtHnJddxzGW+cN88S1deeaX1pUePHmHNNdcMO+20k4mSbdq0Ma7MOXLlwYy+DRw40MYOkSlq3jf6zX1SD087RDQMYdB/qECYT96veMQiuGO5PP88v1gu86O03s92Qf0RAREQAREQAREQAREQAREQAREQAREQAREQgQICpSYSxb2IoEsoHg9JlESbxbm4SEQ5FtlYNObDL7ZZyGbBlBBmvkAZbY+FPhYHWbRMZyzmRX9hHi+HiJEUAi9erjx9/+GHHwKL/xgLnhiLoIhECGyE6IsuAF922WXGEE6UY/GXRWYWkF1MsEYS/vTp08d+KZ9wyg4ljUu6sqV9nAV2RAWEG+4HUYUwhxiCBH0788wzA54sbnisIdogLBHKLMrJy0S31atXN3a+WI8QgjcI2/nz5xfJr+V1PQQjAgmiAcYCPN4HCFT0mT4wHi4S4WlTtWpVK4vnhXt03HjjjbaobycK/rAQjvDK2OG9wQJ+1Mg7xYI9Rlk8JxAteFYRifCq8D5xzIW9QYMGWZ9Y9GbhGkExV0MogQnPdlQkQlBj3rHIjtCFV4h7dyAocBxDCEBsQERjXFjwz2TZ7pG6pTUHEM24LxbqET5gi1DD/XIPeIpheJPwXkMUITQaXiuPPPJIyqOMd5kLgP369bN5RDvMEfghWAwePNjeeQi7fI8bcxoBCBEEY3wRMnmH8eF9iIcSZZiDnPc8WXis4AGFUSbJevfubSEAuV/6mtQH6iGAXnHFFakm8PZygYj79HFlTm266aYWwu6tt94ycSVVqWAn2zjmOl+Yz3y4XwwPIX8ueFboE2IxIrG/I3g34FGFByXPUjxXHh6H8HS74447bJc8dYyr50pD1MSjCmZ4WME7l+ef/uYzP7wf2oqACIiACIiACIiACIiACIiACIiACIiACIhAaRBIdn/Is2UWLH3BN1oVT4noJ3qOfRbbkvJBRMvx620W7xCK8LogHwgLmHEjZ0S6/BqURXBiYTTTJ95mef/OIj7G4rWLFyxUszDLgryHRvL7qFmzpi2+42FEecaNBWW8AUjuzi/i8e5KsgceeMDEAgSDpE9SneVxjFwfLHSzyAoHPCp88Zdf/LOAjxg2dOjQQt1BqIETAmOm0HxeCUbOmGN4eODBgb3xxhu2TfrjeZE8VBpl8KLA8+33339PiTRJdTlG/zG8o/D6iBoL9Iif2OzZs6OnzOvBBSJOsJDtog2iFvbqq6/aloVxF4g4gAiCiIY99dRTts31j1+TxXEW9t14fjE83Vys8HNRNjAmTBtssglEvBv8erSVdI+lOQe6d++e8rRjDJ0ZXiYuENGP7bff3sKTse/CNTmhMIRaF4j4zv26yIJHWq7GnEbccGPMEBox915ibvBhjkfbdrGdfvPcl8QQEaOGEM/YMYYuEHGeUGw+VuQBilou4xgtX9z54uEbEXD8HUG7cPBnC2EvaghKUYGIcwh53COikAtEHOf9ybjwXvV8Trk+/6U9P+iPTAREQAREQAREQAREQAREQAREQAREQAREQARyIVAqnkTk6iiOsXhJOCsW6XIxvD3I98GHX+fjKRM1fiVOqKVVxfwX7SzyRxfkjznmmPCf//zHfp2Pt0vU+DX/5ZdfHvoVeDAgIvEhvBgLqHgA4LlA6MC4hxdhk8jLkc4QMcrCCP3lhjcMoaXcXDhh0TY+VyjjC7mUyzZvPLyUt80WzxzCJn777bfRw4X28QKC64ABA0xIRajBcwte0b4WqhT5giiKxceRYzwPeAThpYO45yHkOEdIuri5kOFzxQUoxEZEs6h5eEAYIc7iSZWLIXowH2mTRXT3cPNQc3hNYSzS4/2FuEzYQ7yL2OKdQT+zeXbRRi73WJpzIO6JSGg5LOm5IGwcApFzdBGA/FQu0lnlgj+8tzDehbka8yEaso16/h5lvNwQ5RhbRDoYYx5q7oQTTvBixdoiAnmotHgD5Kdi3iPc4/GIp5t7ajoTr5PLOJZ0vhDK0Oc7oeDWWmstv7xt8bzEKOPhEPkefw9yDPvrr79MmGXM8MhDjMRrjHcN5j9+yPX5L+35YZ3QHxEQAREQAREQAREQAREQAREQAREQAREQARHIgUCpiESECiqu4XHgi5uIG3isuJ100kmp3A5+zLeE64ov/BN2bFWxjz76yLyCuF9yynhemej984t5wlbFF0Qpg+cB3PngJfPuu+/aL+ER7m699dZw3XXXRZuyEE3169cvdCz6xX9BHz22vPcRugj35OZeHHwnF0w6I6xZNktiSE6ZbMYiPXUJJYeYQxgsPvAi/NU555yTsQnyt2Cbb755Yjn31mBRPmpJ/Y178ETFikx88ArJVSSiD4gPiESIAohEHmoOr4xoKC/mGd5YLNojKPDBEF2Yf4hwmSyXeyzNOZCLcJWuvzDA6E861oTWzNWSBMYkHnjvIBIhxg0ZMsREK89j5p5luV4zXi6az8zP4Tlz8cUXW8hLP5Ztm9Tv+FyljZLMFxeEaccFIfbjxns1anEhjnOIQscff7yFi4yWTdrP9fkv7fmR1BcdEwEREAEREAEREAEREAEREAEREAEREAEREIEkAiUON8ev1smnETU8AtxLJb71EF1enpw6HpInuoDMecKaxdvmODk1PKE439223HJL313pt9EcUHilxD8OgJw3GN4jiALpckTB3pO2E45qRTHmE55RGOG/ELvcfK4RGo5f+qf7nHbaaV5lmWzxTCC0GyIAcxpvGTwOCNUVHceki++www522MWieBk/ToizfM1FP8LWpWPD8SQvqkzXIi8UIhjCBPPOhV9E36ghMpDrioV53hOIZwhECCmIfXHhK1o31/3yMgfcEwyPnnSs8UQpbcNzEJbutYkQx9wjNJ3nvSrNa5KPh5xojD8hHpn3X375pc2D+Pjne92SzJctttgidTnyfKUbAxfQUoUTdvDCJJ8YYfIQrt5+++3w9ddfB36k4KJttFouz39ZzY9oP7UvAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiKwahIosSfR5MmTi5Aj70a6MD0sHHouDyqyYEneE7wGDj744FTCcW+UsohOe++9d6hRo4bljyH/TDx3BGGuPJyW1y2v29NPPz3jAi2Lj56nJOkeCNdE+DeMRWdy8cSNnDK9evUKd955p+WiIQ8I4aZYvMVzJpqTw+v6L/q33nprP1Tut3Bg3Am3xgI184X8K4TB8nw9hJCCmSew95vCQ+ann36y3Dd4VpW2IWYSbguvCARM8r/w6dixY+jRo0cYOXJkeOKJJ4KHYPPrE8rKDYEL4xnheNTDgnxMLuh5Oa+Xy7ZRo0ZWjIX8pPmA4Aa3eJi1bG0zj/C0wGOGkHPuaXjUUUelqi5ZssQ8MhgThAzeF3zIs7PTTjtZGD/GsaRzsazngN8wXlR4uhH+Lv68EgqNvFiMQTwPkwvo3k5xtowFYjvvCm+PMGi5Wj4emoSqxMgBh4di1JjDxbWSzhcEJsaAfzcQdfj3JGqEjEToIUxgNq85zwXHv2X8m+WGAB/1WMrn+S/u/PBraysCIiACIiACIiACIiACIiACIiACIiACIiACxSVQYk8iXwD2DiDWZPI82G+//bxoauveFE2bNk0lX0+dLNjBGwaPg86dO1vi97hARFlEFRc5onXL4z6J5Vm0TffJtphKHgy8LRB8yCGUZJ4knmsQHom8H3hVIMohUi1atKhQNfKiDBw40I7FF7ELFSyHXwgDhmcZ4ho5gkhCT04Q+HgoQxbFSTbv9sorr5gAgYiAZ8GyMBb/6RNeWoyDG31DnMJcBImKP9H5jZDDfSB04cHguU4QjPAAYh7wzHGdfM3bxisCL56oIWCR+wuBlsXufM3zuhBCkjFBvGMB3g1Rjz7jKRUN94cg4ddLyvXj9XPdlvUc8H76e+/SSy8NzzzzjB827xMEFeZh//79U8fpN+a5alInirHDGNIeHj6EoGQ/Wyg/LuOiKh5w5BTKxTbZZBMr5vl/vM6gQYNsrvr3fLelMV8IUYrxLog+83g64YnJGPADhGzm3kIeIo7yeMx17969UNV8nv9850ehC+mLCIiACIiACIiACIiACIiACIiACIiACIiACJSAQIlEIjwxnn766UKXb9++fcak8yw8ktg+aqNHj7ZFNo4Rfs7FimiZdPsseLIAz6/lVxW7++677VZZiE/KTcJJwit5onpywyCk8Mt3jDBgeGU1adIkMF6IeuwTkgpRxQUmK7yC/KlSpUqYOHGiLYAT3szvFRGTRV3mCGXIw9KsWbOUJwHeDnj3LAtjbnoIP0QSvA64HuPCPOc8Yb/cfLxatWplosqsWbPM4+yhhx6yIuSUYVxbtGhhwhC5fLApU6aknQdWIM0fRBuYYeRHIu8Rog7zAU8nDGGhOF5WLkpaIwV/OnXq5Lu2xZMD7ydESzyImId4ESFMIXwhIHkIrkIVi/GlLOeAd5c5N2DAAPvavHlzYwzrOnXqBEKcMRcuuugiL24c+IJgiJDWu3fv1Ll8d8idFeWPiFqpUqWszbiASUEEFN43ePRkMuYmNm3aNAsdSB080fr27WtzNlPdTOdKY74Q3hEBHG+f2rVr23uA9wHPFEIY861t27aZumHnGDeM3EvU4TseYHFxP5/nP9/5YR3QHxEQAREQAREQAREQAREQAREQAREQAREQAREoBQIlEommTp1apAu5eKGwYB43D5uFR8X5559vv6BHTPJfbcfLE56nS5cugTBqufwqPuqpEW8r3fdsdZKSmsePZWsj6dpJCeG9HF4WLhJlW9AkrBk2ZswY25KbhF+/uxiB9xACEgukLGgiDDCm1apVs/LRP/H7ip6L7qcr58cRqzJZ0nk/5m1Q37lGjyH2OBv32EAMwxMNFnjc4ClAXhb2hw8fHgYPHpypO4nX8Qrxfvl3P88WwfOqq66y6+GxgycHC/8IBXgzRQWqESNGpELkIWohwmJ77rmnCUGeW4YFeIznCJGWBXw35+FbP8426Rj5kQgZyXOLSIjAxnxAwEF8QrDKZEnj4OVPOOEE22VuxZ9RWBF+De9AjHmIN9gPP/xgx/Cg8bZdpPL+x7fWwP/++LnosZLOARdU4m37d+9n9Jp+LDonCP/IXEBYgDGsYc44ElovOhcYF+YO8xRPLA9x5tf0bfSamfajIQ0R5OLm7fmW84RsxMuTPtBPwjniHRMtE2+HuTpp0iR7byPGUIe8dXfccYfdZ7S8t+PbpHN+LJ/54nXYRvkzjrwLe/bsaV6VvAfccwgxF8bujep98m20TcryfmFe4zHFOG5ZEE6Sd6d7v/l183n+85kf0f5oXwREQAREQAREQAREQAREQAREQAREQAREQARKQqBCQQiuf0rSwPKoi7cB+VFI7M6vvlmQ84Xj5XH9lfEaiE0sPpOLA48BFtJXdiO/DqHNWAhm4Xt5GyH+mMt47GSav3hrEL4KsS5ejpwyLL5na6M490Y4PvjAhgXwkhrh8BDiWJSPh7OLts24EP6LhfVlPQ/Leg74fSOGMR9q1qyZ0QuMsILkysFjsGrVql497y1CBh4veGi98cYbedf/7rvvLJ8R+XpcAMnWCGHceM8wpi6aZauTy/nSmi8IX8z54vaPfiDkIup7mL1M/c/1+aeNXOdHpuvpnAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAjkQmCFEIlyuRGVEQERKB8EELKmT59uof3o0fz5803cLR+9W7V6gZAxd+5cC1GIuEhoOw+XtmqR0N2KgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAgkEaiYdFDHREAERKA4BAjhRX4Vtz59+kggchjLeYtYRw44N0LYHXXUUf5VWxEQAREQAREQAREQAREQAREQAREQAREQAREQAREIEok0CURABEqNwPrrrx8OOeQQC+FF3iV5rZQa2rwbIiwcuaaqVKkSGjduHLp161aqYd/y7pAqiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIlDsCCjdX7oZEHRIBERABERABERABERABERABERABERABERABERABERABERCBZU9gtWV/CV1BBERABERABERABERABERABERABERABERABERABERABERABESgvBGQSFTeRkT9EQEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREIHlQEAi0XKArEuIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIQHkjIJGovI2I+iMCIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACy4GARKLlAFmXEAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREIHyRkAiUXkbEfVHBERABERABERABERABERABERABERABERABERABERABERABJYDAYlEywGyLiECIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiAC5Y2ARKLyNiLqjwiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAgsBwISiZYDZF1CBERABERABERABERABERABERABERABERABERABERABERABMobAYlE5W1E1B8REAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAERWA4EJBItB8i6hAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiUNwIVS9Kh2bNnl6S66oqACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACJQRgQq///77P2V0bV1WBERABERABERABERABERABERABERABERABERABERABERABESgjAgo3FwZgddlRUAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAERKAsCUgkKkv6urYIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIlBEBiURlBF6XFQEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREIGyJCCRqCzp69oiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiUEYEJBKVEXhdVgREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQATKkoBEorKkr2uLgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIQBkRkEhURuB1WREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREoSwISicqSvq4tAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAmVEQCJRGYHXZUVABERABERABERABERABERABERABERABERABERABERABESgLAlULMuL69oiIAIiIAIiIAIiIAIiIAIiIAIiIAIikI7AggULwg033hgefujhMH/+/PDnn3+kK6rjJSBQsWKlUKdOnXB4i8NDt65dQ61atfJujbG6sWCspkyZEt59993wxx8aq7whqsIyIVCpUqVQt27dcOihh4auxZzfy6RjalQEREAEygkBiUTlZCDUDREQAREQAREQAREQAREQAREQAREQgX8JjBo1Kpx5ZvfQ4fgTwiX9B4Y629YLLPbKSp8Ags78994J06c+EurVqx+uu25EOPnkk3O+EGPVvXv30KNHj3DbbbeFBg0ahDXWWCPn+iooAsuSwO+//x7mzJkTJkyYEOrXrx9GjMhvfi/LvqltERABESgPBCQSlYdRUB9EQAREQAREQAREQAREQAREQAREQARSBBAdrhg0KNw+dnzYbvsGqePaWTYEEN/gzOfAgw8Ll1xwtl0oF6GIsRo6dGh49tlnQ6NGjZZNB9WqCJSAAIIlc5PPMcccEzp06GCt5TK/S3BZVRUBERCBFYZAhQI1/Z8VprfqqAiIgAiIgAiIgAiIgAiIgAiIgAiIwEpNgLBleLNIICq7YZ43d044qeOx4Z133s4Yeo6xwjNDAlHZjZWunD+BWbNmhSZNmoS33848v/NvWTVEQAREYMUksHqfPn36rZhdV69FQAREQAREQAREQAREQAREQAREQARWNgKDhwwJ29StH1q0OnJlu7UV5n422mjj8PMvP4W5b80JzQ84IG2/hxSM1R577BE6deqUtoxOiEB5I1CjRo2wZMmSMHPmzHBAhvld3vqt/oiACIjAsiKw2rJqWO2KgAiIgAiIgAiIgAiIgAiIgAiIgAiIQL4EHn7oYQt5lm89lS9dAoSdYywy2ZQpUyx8V6YyOicC5ZEAYeeYvzIREAEREIEQFG5Os0AEREAEREAEREAEREAEREAEREAERKDcEFhnncrh2RmvB/LkyIpP4LNPF4QXnnsmPPn49NCo8W5h/Q02CHvt0zRstnmtnBr9448/QpPddw4///xT2vKVK1cOixcvDuR8kYnA8iTwwQcfhGnTpoX777/fQsdtuOGG4aCDDgpbb711Tt0oSL8RqlatGn76Kf38zqkhFRIBERCBlYCARKKVYBB1CyIgAiIgAiIgAiIgAiIgAiIgAiKwshBAcJj55rtpbwfx4pOPPzSxY6211k5brjye+Oeff8K4saPDHv+3V9i6zrbLrIvdTj0xzHjphcT2Tz+jZ+h8+hmJ5+IHd92xbmAxPZ0xVpnOp6uX7/E333wzPPfcc6Fr1675VlX5lZDAIYccEp544onEO+vbt2+45JJLEs/FDy6v+Ru/rr6LgAiIQHkjoHBz5W1E1B8REAEREAEREAEREAEREAEREAEREIEiBD7//LNwbo9uYc9GO4Rjj2wR9tmtYTjrjNPCV18tLFJ2WRz4dtE34cEHJoZffvml2M3/8P334eohA8P0qbmFuSrONRF2XCBqvNsegc9pXbvblo6PvP7aQJllYcOHDzevIvK9xO2CCy4Im2++eUAoy9fGjRsXevbsGX744Yd8qxYpv3DhwjB69Gh5kBQhs2IcQNhxgWjfffcNfAryrduWO+jfv78821aMoVQvRUAEyhEBiUTlaDDUFREQAREQAREQAREQAREQAREQAREQgaIEPv/s09D5+Pbhh++/C6PuGheeevHVcPd9k8Pff/8d2rQ6JPy8HEJGLfjkk9C/94Xh++8WF+1gjkcI+fb0i7PCqV3PzKlGvte8deT1qXYRhm4adZd9Tuu2dJ9jbngblba1adPGmnzkkUcKNf3nn3+G2267LZx66qmhQoUKhc7l8mXAgAHhm2++Ceutt14uxTOWef/990Pnzp3Dt99+m7GcTpY/AgMHDkx1CmFo+vTp9vF9tm54G8lEQAREQARyIyCRKDdOKiUCIiACIiACIiACIiACIiACIiACIlBGBB68f2L4syDM3NXDbww77dwoVKmybqhbr364fMjVYdu69cLL/wuthhhx/bVXh7atDwsH7buniToLv/wi1evBl/ez82w5f1jzpmHSffemzv/44w9Wh3N8KPfzzz+Hx6c9Gs4/a2mItpM7tQsD+i4NZ8X5EcOuCpdedH5o+n+7hBkvv1ggXP0Vxo6+PRzV4iA7duoJHcJbb85OXaPLyZ3C008+bt8z9SfdNVMNxXbIQYSXkBvCEPbqKy+Hm28YYfscw7MIw9uIOqVpNWvWDCzO33PPPYWaffrpp8OPP/4Y2rVrZ8enTp0a9tprr0AemcaNG5tnj1fo3r27hQs78cQT7TxeIxMmTAitW7f2IiFbfcQC2sFzaauttjKBisoTJ04Mbdu2tXaaNm0aunTpkmozusM86tevX2jYsKG10b59+/DFF//OI/ZPO+00O0cZwpvlGnYPL6ZmzZrZvR199NHh2WefjV46vPjii+GYY46x83vssUe49dZbU+cz9Yt69erVs/nqFe6+++5w4IEH2te5c+fa+TvuuMPuiz5g9P/666+3PuGlw3z36+ywww5W57zzzivULnXoV6tWrVL95PpuXj8TP9gzPswDrp/NyEGEl5CbC0LMLUREjGN4FmHMG+rIREAEREAEshOQSJSdkUqIgAiIgAiIgAiIgAiIgAiIgAiIgAiUIYF5c+eERrvuHtZbf/1CvVhvvfXDbaPHhf0PWLoQftXgy8Ptt94UWh91TOh5bq/w1pzZFpKOhW/sq4Vf2vnffv01nNvrkrBNQV6ggf17pxbAh105OMx69ZXQb+CQcN6FvcMjDz0QRt18Y9i+wY6hfacTrQ28cVoffYzt096do24uCEH3c+h1cd8CQWKb8Ni0qWHYlYPC4S1bh959Lw+rrb566HrqCbbwTqVPPvko5fmUqT/prmkXTvjzwnPPFDpKSDkEKT4337hUJCpUoOBLvE78fHG+H3fcceHhhx8OX3/9dar6+PHjw6677mqCw4IFC0LLli1tH6GB43j2zJo1y8p/+umn4corr7RwcNdee23YbrvtwnfffRfefXdpnqpc6g8ZMsTCAl599dUBoYNcRoTA41qIRxiCwsknn2z78T+IIldccUVAqEKAQGDZb7/9wl9//WVzBcHq+eeftzL0feTIkal2421FvyN2UR5hjDrYAQccYO2zP3/+/NCiRYvw22+/hRtvvDEgZHXr1i3ce+9SITNTvwiD+OGHH1ofaQv7viC8IW1ivxbMec6fe+654fjjjw+9evWy4/PmzQtnn3122G233QICEkLRRRddFEaMGBHOPPPMQJjA22+/PZxxxr95rKhDvxB4GCvYRvMAZeon/UAcmzlzZhg6dGg4/PDD7fpcO5NNmzat0Gn6iQDGx0WiQgUKvsTrxM/ruwiIgAiIwFICFQVCBERABERABERABERABERABERABERABMozgblz3gxtju2QsYuEnLtv/N2h7+WDQ8sjjrKyuzTeNbQ6pFmYNXNG2KfpfnZs623qhEsHDLKwZwhPhx6wj3nV7NeseZgz+/XQqPFuYa99mlrZBg13Dr8XLNjXqLmZHefg/+21d9i0Rk07zx88mYZcMyKsttrS3+HuuFPDMG7iQ6HOtkvz/tTecqvQsW3r8OEH71vZVMX/7WTqD33B4tf8X9VCm+8LhJS44UW0NCfRmXaK73zcnnx8ejimXUf/WipbRA7s/vvvt/ByCHQIAO4tUqVKFRNYdtlll1CxYkUTRe67774wY8aM0KhRI6u74447BoQlZ2oH//cnl/oIS7fccouNMUJL7dq1zbMEz5cmTZpYS4gLtWrVijZt+3g83XDDDSbiuIiEGDJ48ODw2WefhXfeeSe89tprJuzUqVPH6uARhaBEmapVqxZp0w8MGzYsdOrUyYQVjtEf7nnMmDEmOOFlREg9cjCts8465vVUvXr18OWXX5onVqZ++TWybRkLRLqoke8JYQ1D8EGco0/udbXpppuGI488MlxzzTWp++vRo0e48MILrc76BeIt3lZfffVVWHvttTPye++990wgIuyf8yfXFKIUDNPZokWLipzCiwjPod69e9s5vvNxYw6efvrp/lVbERABERCBNAQkEqUBo8MiIAIiIAIiIAIiIAIiIAIiIAIiIALlg8AGBQvv3xfkI8pk77//np1uXCD8uNXcbPOw2ea1wjvz5qZEogY77ZzKi7PRxhuHatU2NA8j6hza4ggLR0dbTfdrFpo1Pzgg4mSyHQvai4oZCEozZ7wURl53bVi06OvwztvzrDreS0mWqT9J5dMdwwMqychLhCEO4VUUNRehosdKuo+4gbfM2LFjTSQiNBx21FFLhTtElHXXXTcgmHxSkOdp8eLFJoC4txdlCbMWZcoxt1zre+6jGjVqhI0LxhkPpVxszpw5VszDsfGFMG5402B49Wy22WbBBSKO4WWEUZdQay4u2cGCPwgwiCx4z+Cd47bmmmtamLdXXlk6dnhTHXTQQSYQeRn3+PFwbun65R5DXi/ddueddy5yCg8rt7feest2ySH1+ONLwyIuXLjQjnF/LrIh8rn5/ueff24eXBxP10+8qbDLL7/ctvxxtnhQwSTJ4mH5vAx5iTDEIQ+t5+e8r/5dWxEQAREQgWQCEomSueioCIiACIiACIiACIiACIiACIiACIhAOSGwQ4Odwvz3loYbi3eJRfnVVqsQ/vj9dztVqdIahYqw6PxHQT4jt0qVKvmubStGvp/UuUvYuVHj8NjUKWHihPEm9Fxw8aWhbfvjCtWJfqnwPw8iPzbmzlHhP1cNDnvu3STQ750bVQ54QqWzTP1JVyfpOCH3yDMUN89HlBRybv0NNogXL5XvHTp0MJHgo48+CuTFIbwY3jYYYdr233//gLBAqDW8fDycml88nUCUa31CkUUtzjh6Lr7PfMLS1UHIiLePRxRGXiLEI/ewsYMFfxo0aJAKNxgXQfhOCDaMttNdN1u/rIGCP//884/vFuTH+ju17ztJbF1Qo4z3BW+sjTbayKrh8bPJJpvYx9uJ9nP11Vf3w6n7jJ5PnSzYISwetsUWW9iWP+R34lqE80tnhPgjz1DcPNScb6Pnfc5Fj2lfBERABESgKAGJREWZ6IgIiIAIiIAIiIAIiIAIiIAIiIAIiEA5IkB+ngcfmBhemzUz7NLoX6+HTxd8Elof1jxcNujKsPc+SxPWz31rdth34+bW+x8KcrJ88P78cPoZPXO6m28K8ugg7HCNcy64OPTudW4YN3Z0IZEoKjglNTp50n3hiIKcSH36D7TTs1+fFe4evdQLJal8LseyXZM2PERevL3Gu+1e4EU0I37Yvqerk1g4j4OEZ8Pbhrw6DzzwQJg0aVKqNiHAOPfSSy+ZRxeixMUXX5w6n22npPW9fQSdJEPQwegf4hZGfqV77rknHHvssQFPnP79+9sxF1E8nxL5jwjN1qVLF6sX/0MYvWi7CDovvPCCeU5RlrxA5HNCEHLhie+IPfvss481F60f7VflypXtPB5FHraPHET5GveAkSvIPXPoD15C3Fs2y8avYcOG1gQeVYSpw34qCBX57bffFvKgshORP3hYJRnhBJ955pmkU+aVlXhCB0VABERABAoRWBowt9AhfREBERABERABERABERABERABERABERCB8kOg9dFtTbjpdXb3gAjz8UcfhueeeSqccdpJFi6u+YGHBLxiCBE3sF+f8MJzzwTEmUt6nWPnyT2UzfBi6NCmVTivZ7fw0YcfhAWffFyQg2ZB2KbOtlaVsHXYpP/eGz77dIHtJ/0hX9FrBaHf8B5647VZ4fJ+S/OlJJXNdizXa9IOZXf/v70KNUk+IstJ1K27baMnEc68/ejx0tjHW+WUU06xkHKElnOxgbYRGsjtM2XKlPDmm2+aF0k+1yxp/a222souRzi1JBGFcHZHHHGE9QuB5uWXX7Z7GTp0aNigYI7tueeeJnIdd9xxgRBwhNPr2rWrCRLZRJTjjz/e8v1w7ddffz0QSo4QdG3atLE+EZJv3rx54ayzzrLz5CgiTB28svWrbt261sagQYPCq6++Gv773/+G4cOH54PWypID6bDDDrP7594IMUdeHzykyFeUzbL1c++997bwfx07djS2MGR+4H2WybbeeutCIewoSz4iPn369LFttH7fvn0DdWQiIAIiIALZCUgkys5IJURABERABERABERABERABERABERABMqQAKGrhlwzPDTcpVG47NKLw9EtDw5nnXFaqFngkTLm3klhjYKQXdiAQVeFnRvvGnp07RxO7tQuLPnxxzBi5G2BnEZYhQrplkEqBEJmDRk2wgSoNq0OCXzwzji31yVWt3pBOCzCzo0edUsYfHk/O5bUXvezz7ewWce3Pzqccny7cHir1v8rW8G20T9J9ZeeX1o26ZrR+vH9G265o9Ah8hARbo4tn6h1Pv2M6NdS32/fvr21SX6eaHg2vjdv3jwQPqxx48YmGGy77bapPFHZwqEVpz4d8ZBq5Cjq1q1buOqqq0L37t0T75scOXiuINCQ1+b9998PkydPtnw51apVCw8++GAghxICRcuWLc1zZ8yYMYltRQ/27NnTQtEhYOy+++7mNXTnnXcGhBOM3EDjx48PTz75pJ0ntxN1ENywTP1CnLnpppssJBtCFt5Z1Hfz+/fvmbb0ib74vZEPaNq0aQWCa7XEat62j12mftIGAuH3BV5+sIUhzxlhCbPZo48+WqgIeYgIM8eWT9QuuWTpcxs9pn0REAEREIFkAhUK3Gv/DVaaXEZHRUAEREAEREAEREAEREAEREAEREAERGC5EEBQmPnmu2mvReg1vHzw2FlnnXUSyxEei3Jrr7124vlsB5cs+dFyw6y55lpFitI2i+LRPCxFChUcINTdOgWL3x42LKlMrsdyvaa3d+vI68PI66/1r4W2eBvFxaRCBSJfdt2xruXZiRwqtMtYpQvbVqhgwpcfCwQ8GKYbw4QqhQ6VtD7zg3HMND6UIYfOeuutV+ja/oUwaQiYURHMz2XaEmbuu+++M++gdOUWL15s102aZ5n6hUccdcnH4+JNumtkO87Yco8IUMWxTP2kPdrGPFSefcnhz8CBAy3kX1LRZs2ahbiYlFSOYyWZv+na1HEREAERWBEJSCRaEUdNfRYBERABERABERABERABERABERCBlZTAOutUDs/OeN0W31fSW1wut0VIPMLufV8gRsx69ZWw/wEHWt6iXEPMscDfZPedCzxmli7kJ3WaxX0EiXxFkqS2dEwE8iHwwQcfmHfTokWLAp5OeKbh/ZVriDkEMMQvF6ryubbKioAIiMDKRqDiynZDuh8REAEREAEREAEREAEREAEREAEREIEVlwC5T+a/907YbvsGK+5NlIOeIwYd065jsXvCGDAWmYw8OOSsadSoUaZiOicCpU4AMYhcScU15q3ncSpuG6onAiIgAisLgXTBeFeW+9N9iIAIiIAIiIAIiIAIiIAIiIAIiIAIrEAEDm9xeJg+9ZEVqMcrZ1cZA8Yikx166KFhwoQJmYronAiUSwLMW+avTAREQAREoCBvn3ISlc00IP4sVtL4sGXTe11VBERABERABERABERABERABERABJYNgQULFoR69eqH28eOlzfRskGctdV5c+eEkzoeG9555+1Qq1attOUZq/r161u4L3kTpcWkE+WMwKxZs0KTJk3C229nnt/lrNvqjgiIgAgsMwKl6klEHM/XX389/PDDD8usw2Xd8NNPPx0uu+yy8MADDxS7K7/99lvYeeedQ4MGDSwBIoLRgAEDrF1i+SYZiQe5Lp/vC5JfZjOSWs6dO9cSIWYrm+08/Xv33XfDt99+W6Qox0ePHl3keNIB4sSSmDGTffHFF+HXX3/NVCR1jrK33nqrJSNNHSzYYf5xPKm/0XK57HPvn3/+ecY+/fzzz4G+yERABERABERABERABERABERABEpOAFHiuutGhEsuODsgVsiWLwGYw54xyCQQ0SvOjxgxInTo0CGw8C4TgfJOgHnKfGXeZpvf5f1e1D8REAERKC0CpSISkSCuWbNmlvBt9913D9WrVw977LFHmD17dmn1s9y08+KLL4bLL788PPJI8V3flyxZEubNmxfee+89E3z+/vtvE4loN53ARhnOZyoDpIULF4bjjz8+bLLJJiZEbbzxxqFx48bh5ZdfTjGk7ySVjH74BcXtt9+eKsPOL7/8Es466yz7RxNBa9NNNw0NGzYMMHCbMWNGOPvss/1r4hZhrV69eqFGjRqB/tDGa6+9liqLEMM/zhtuuGGoXbt2WG+99UKrVq1MnEkVSth58MEHw8CBA4skM/3mm29Ct27dstZPaDJ1iD7dcMMNNpe33HJL69ORRx4Zvvrqq1SZDz/8MBx88MFhgw02sH5vvvnmYdSoUanz2hEBERABERABERABERABERABESgegZNPPjlcfNFF5s0yfNhQE4v++OOP4jWmWlkJwBZxCNZ4EMGeMcjFKHfBBReYZ8ZFBfVYhC+IWpNLVZURgeVCgPnIvGR+sv7FfM11fi+XDuoiIiACIlDGBCqW9PrPPPNMaN68uTWz4447hl133TW89NJLJgKwj4iA14zsXwKIIQgMCBEIL3gJlYbh8XLggQeGKlWqhPvvv988lT7++OMwceJE+0fwueeeC4h4bozN+uuvb949U6ZMCV26dDHhqGPHjiYQHXPMMSYI3XXXXSb6IW6NHDky7LvvvuZKjhCYzT777DPr0xVXXBFOOeUU8/rp1atXaNmyZfjoo49CxYoVw6RJk8K5554b/vvf/4b999/fhBj6cuyxx9p10l3jqaeeCgcccEC60yU6DjMEssmTJ4d99tnHBKf27dvbsbvvvtvGrkWLFmHbbbcN8+fPN4EU8a1Tp04mqjEOMhEQAREQAREQAREQAREQAREQgeITYBGX/7e64cYbw8C+l9j/e/35p4Si4hNNX7NixUqhTp06loMoW4i5pFZ8rG4sGCv+35+oIxL1kkjpWFkQqFSpUqhbt67lIFKIubIYAV1TBESgvBMosUjUvXt3u0e8LMaNG2c5dvB6YQH9scceC9dee23KQwUPlOHDh4dp06aZZ8lhhx0WLrzwQhMKEJvwSNluu+1M0LjmmmtM7Dj11FND586drQwXYoGeD20hSh1++OEmMKy22moh2sbee+8dhg4dav9RgvfNTjvtFM4888yCeLrvBM7bLUbVAABAAElEQVTddNNN5tlCm4QKI9wbQgneNfxH6KWXXmpeL5xPMg//hvcNHjIIK2eccYYVpS1EGticeOKJdox7wHuGPiGu4CmDPf7442Hddde1/eifL7/80kLL0Sfap81sRl+oh5cSHjtY1apVTaRD4IF7VCTaaqutTCSi3C677BLGjx8fHn74YbuXF154wcrjJeZiEOLWoEGD7Br0y49TnzHBq4dQeMwFxo9/hAmth8jUtm3bVP4l5sbYsWMDfcILB7GI/iIcYYhc7Pfv3z8wlxjbuCGwTZ06NQwbNix+KvX91VdftTF/8803i4w5jAjdBxP+Q7hv3742/2CAqFmzZk2bDy5C8R8T/NoEYQ3jVyh4gvHrky222MKOtWnTxkSiTz75xL7rjwiIgAiIgAiIgAiIgAiIgAiIQMkIEA5qUMGPDvnIyjcBxoofiPKRiYAIiIAIiIAIrDgESiQS/fjjjyZIcLuIKhUqVLA7Z1H/vvvuC+SgQSjAWKjHAwXDw4iFdBbpCY9GqDHaogyfe++918rxp0ePHhaebM8997TcN4gtGAIHQgYfQoBdeeWVads47bTTTIQgfBrXefTRR8M555wT7rnnHhM1DjnkELsPvEKwm2++ObzyyivhiSeeCJUrV7Zj8T/RPDx4y8ycOdPEHkK9kbiR+4iGJsPbhGPk5EFgYh9L8iIinxAeKYRpw2j/0EMPtf1Mf3CdxavLBaJoWUSbTEYeoE8//TQcffTRVoz+IV5FhSCvHw9LB1PEQOYAOamuvvrqsPXWW5vowpYPYg/CCiId/8GIaIRAhLVu3doEpt69ewe8deCHmMa4JQlE1OFXSVx3r7324muiMcZDhgwxMQqRrWvXribeMQZcEzEK0ZJxgjftMUcw5hvGWCB0MRaIXbSHrbnmmiYKci+EmSO832233WbnED9lIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIlDeCRR10cijx3Pm/JtAEm8MDA8NvE0QDcaMGWNCDMevu+46NuY5hLCDlwciBB49ixcvtnP+h3Ms5BPmC8O7BcPbA8N7BLEBsQfjWniwRA33UXLTuJcOuWMQrRCAMDxkMNqmz4gNb7zxhn24Ll4/hDPLZLRBDiG8iDBCsZWG0XcXiAjF9vPPP4fzzjsva9PkHcK7yg0PKTx2/EPotKgR3g1BDndwvKcQSVzgQCSKthWtl7SPgEJ4OMYeloxx1MjVw1ggECKo+DhQBhGJMUUYwqMJL6vNNtssEJYundE+Ytg222yTroiJVYiKhI3r2bOnjTkeSLAl3B/eXowdHmzpRDQ8wfDGQlSinIuUXLRPnz4mNCHgNWrUKFx//fXhzjvvTHmope2YToiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIhAOSBQIk+iqJcHi+8YgouLOXxHGGBxnTxF2ODBgy0sHPuIEhjeJ25487g4gbBDHh28jvD2wKMGI6wX1qxZM2ufdhB43AhZh/CAsXiPKOBhwzw/knuM4H2DITp4biUXODhHOLskw/vIvWwIM4cQgzcRniclNQQwjPvw6xO67qqrrsrYNPmF/L4o+MEHH6SEFvjhfeVh7jh//vnns0mNA6HXEHGwatWqpcbMDmT5Qzg2N0LawSJqXJeQfzBFlCJ0G95azCGEKsQX8hLBlZB5hCFEmJk+fXrKGy3aHqEFGX/3Xoue830fa74zD5gnxESePXu2scAV3m2//fbz3UJbQt6dfvrpJhgiZCEKImYh3CGs4YGFRxqh+BCdTjjhBAvh52Jbocb0RQREQAREQAREQAREQAREQAREQAREQAREQAREQAREQATKEYESiUSIDm543hCiC6GFRXgW91n0JxQXxuI6Rh33OsLTBbGAsF8sumPsu6299tq+ayG//At5g9wow+J/VBxZa621/HRqu/rqq9t+VNjiwE8//ZQq4/36+uuvQ+PGja2vqZOxHcKNuUX3CavmFhWMCLWWqxHeDIveh4fty9QGQk1ULCP3EiHkMEK3EaItaohICEsTJkwwj5qKFf+dDg0bNjQPLUSQaD+o7/fl5d1by9tO6iteP3wQkPAWYtyff/552xKeDo8evJDcGAvmE0JSUkg55hcCTibz/lEmOu7rrbeeeZlF6/r8jB5jH08lPniXMdcuuugiC6uHeIm3Fd50LpAhNH388cfmNSeRKE5S30VABERABERABERABERABERABERABERABERABERABMobgRKFm2PR3z1PWDwnRBwL8LVr1w5Tp061e8WDA0MUwAj9deutt9qHHC5HHXVUxpBhVqngD14fLkZ4GDi8ljzvD6JGccz7f8QRR6T6RT6ldu3apfLSJLVLviJELoyQcBiePwhYnsdoxowZdhwu7h1kB7L8qV+/vpVAeOMeMbxUslnLli0D3kBRzyzqcP1HHnnEvGmS2mAM6Dtj6B5hzpNQflFDINphhx0sH0/0eLr9G264IeARFjUX4/AYwpYsWZJi5uVcIIyKf37u/ffft3H3vEF+PNctIhXCYpSph0P0Nsgt1a9fP/9q23r16tkWQQnxDPOxti8Ff1y09O/aioAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiEB5JfCv60gxe4gXyL777mvh2vC4IAQbnkQu3iA8YHiKjBs3znLDvPXWW5YfiJw4CD/z58/P6eqEdSNcHblvjj766FReIbw2Nt1005zaiBdCwKAPDzzwgLWJGIWwgT3++ONpBSxEhgYNGpinlAs57du3t3qEVcMQZvBI+vbbb1Mh3exElj/bb799IOzee++9FxBrCL+H10o269Spk+XhIbQeId0Q6GB72WWX2Xgg0CUZXlZXXHFFOPLIIy1HU4sWLeyaF1xwgeXdQTgi7B3eXnj7kM8H76NcDA8crktOpZNPPjngUeUeQPvvv781gSA3YMCAgAhDCLeFCxeGc845x8YlyYuI0IWMmYtpufQjWgbBskOHDqFt27bmIcT1ol5HlEWAIo9RzZo1LVQhIQ/xjENU5BhzHqPvQ4YMsbxFDz74YEBgJBydTAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQATKO4ESeRJxcyymk/MHUQPh5LHHHjNBAs+UJ598MhWKCzHmjjvusHI333xzQCBC/MDjqGrVqjlxwrMDsQEPJurjZcIi/d133521vueu8a1XIBweYhDiFov8CES0T1/d+8nLRrfkReK8C0SEc/McPwgQnksIcQdGnr8ofv1om75PeDfuz+vQRtSjJ10bhHnzXD3HHXdcQGwiFxAh9Z599tmwxRZb+CVsG20HoQ0BpFevXilvIngjlOBlg9jl94snlwthhRqMfPHwfpTD04r7IUcQ4eYIc4fQU716dauBkEgOIq5HeYQiRKAXX3zRPHMizdou93jQQQcVCiEXL8P36P1Fw81xfOTIkdYvxubMM88MEydOLNREly5drD/0jbnM/GWLmIgxZ1999VUTvQgzh5iHWIQA1qNHj0Jt6YsIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIlEcCFQo8O/4prY4tWrQoLFiwINSoUSNssskmaZv95ptvzHNjgw02SFsm2wlCvSHmuBiRrXwu5wl7hrcM7eZq1CEnUVIenu+//97y92y44Ya5NlekHMIbIczini5FCsYOcB94/HAvG220Uexsfl/xJCLEG6EE82ETvwoeVYwXeZCSjOsQgo554eHmksqR1wovp65duyadznrss88+M+ELjzSEKwzPKwSxzz//PCVecdz7VK1aNRtnjsUN1oSgK643W7w9fRcBERABERABERABERABERABERABERABERCBVYHAX3/9Varru+WF2cp6X+WFr/pRugRKVSQq3a6pNREoSgARkrCGM2fOzOrNVLT20iN///13aNasmYXwa9q0qQlD5H9CJLryyivTVdNxERABERABERABERABERABERCBMiDAj0TJtUsEk3x/QFkG3dUlVxACRJAhtDyh94l0k874wevHH38cttxyy5wj4aRrqyyOf/TRR/YDWH5wGzciA/EhOgq5uld0I/IN0WfIRU3e7nTGj33fffdd+yE0KQVWNOOHykTpqVu3blhnnXVWtO4X6i/RoU488cRA1Cm2K4uRaoU1R9KlcG8yESjvBEocbq6836D6t/IRIPTeDjvsUOwbI/QcYRF5SZO36ZhjjgnTpk2TQFRsoqooAiIgAiIgAiIgAiIgAiIgAqVPYPjw4fb/frVr17ZFbBZDu3fvbqHnc73ajBkzLHIEYeZl6Qnce++9YY011kj8kCagvBi/zCcSCB8WyktiY8eODZdffnmYO3duYjMcJ/Q+UUNIB0DEHLaIC27kVoYbIfajdtVVV9nxbt26pSLMUI58zFG75ZZbUswXL14cPVWi/T/++MPSCSAMISTQT9ItkCaBXNFuhPmHATm1VwZ7/vnn7X6mTJmSeDswJp84EWxIh4DwB5fo/ZOSgLGK5/V++eWX7biLbSz+U44UBFFj3nCcz6OPPho9VeJ93mNcj/QN9J/7IH3Ep59+WuK282mgNN+r/vwhquRqpXn9XK9JOSIT8e4ZPXp01mr8yJ3oUMwbmQisCAQqrgidVB9FwAnUqlWr2GHmvA22/PqMf9D5yERABERABERABERABERABERABMoXgSuuuMLyxNIrctLya38W4m+66SaLCkEO5Gge2nS95weBl112WTjppJPCAQcckK7YKn+cUOtuLDpHzfMJR4+V1f6ff/5pUUC4/qGHHmph8ZdFX/A08fD0zD/Eoeeee85yb5PbmFD1pB5wwYU81QhKiA6Y82TL+gN5rW+//fbw0EMPhT59+lgZ/rg4ccghh5SalxJ9OuGEE1LClXsIkWOZH93iWYRAhoixqlmnTp3sR8LknD7qqKNSLFq3bh0QHhhzos9g5Czff//9Ux5WftyZsZ5EbvMXXngh4G1GmgJs+vTpXqSIgJQ6UYwdBCLmPIanFPMNLzB+BI0n2Jw5cyz9RzGazrtKab5X+xXkJ+f5yOfH4KV5/Xxu/r333rP3z2abbRaOP/74jFV5pl9//fVAWZkIrAgE5Em0IoyS+igCIiACIiACIiACIiACIiACIiACqwgBwsuxcIjhTcTCOpEgCBOOsSjLgi5GuDAW6/h1P/mADz744IB3BHbJJZeEYcOG2f59991ni6rz58+375TBo4A6e+21l3kfIEC48etv8tjiZUA4MjxtWJSN/tCQfuJ1wOIm5RCi3nzzTW8idOjQweogDiC8cK3JkyfbMUSH3377zcriEUPbfN55551U/bLYYfH8/vvvL/ShX+5Vw76PA7+o5zscycnMPh+8J2AKky5dutiv7/1e8HDp37+/iS7wgBHh5KN266232jhyHk6MIWILuZLxnnA7/PDDw0UXXWRfs7XL2OLFw2I6XjWIjZns2WeftdPrrruuCQEIO9wXYhCiEX2JGh4DCBD0I8kQJDDYMW8whKiHH37Y9lkkxxAd8BTh3plXeLOQCzsfw/PLPZsQUydMmGAfBAUMsciv6+3ioYWYynPE2F1//fV+yjyhhg4damOLsMSYjBgxIiWEURDPCp/jbMePH5+q/5///MfqDhkyxJ4R5gXnfb6QTxujD02aNLHj7n2RqV3q3HPPPZZOgDZh9euvv3I40ZijiAvYXXfdFfr27WvCHf3juY6PKeVOPvlky73OftxcsOE4nN14X2G8l9Zaay17dniH0Ec+RLMhVFy+1qNHD6tCX+GDiMWzs+uuu5rHCmHbMJ/rjCPzCAGMMXcjHB/sjzvuOHsOeB74PnLkSKtLOTyu8ILjHG2QssG9MdO9V6PtksqBucQzx7M7atQom1fMH+Z1r169Uu8/3iOnnHKKzSmu7fMFbzzuGWatWrVKeWWluz51o+bvX+ZaixYt7D7Y8vzx3uC+4u+CTO8Rnine8RgeRTDj2Yq++/zfiQMPPDDg1cY74fTTT091i7CVvEO4rs+F6Lwrjec/dTHtiECeBORJlCcwFRcBERABERABERABERABERABERABEVh2BGbPnm2Ns0CPyOC2xRZbmMjy5ZdfWh4OftnPYhyLzCxI4vHCYi0fFvHcy4P6LOKzgEwdhJx9993XmmWBFaGJBfKFCxfaQiVhgljopg7GgrovqvsiNDmSWHCkLfq59tprm3cGIhACFrl0EXw4H72HBg0apISkV155Jeyzzz7moUK5jTfe2PIu2UXL6A8LzD/99FOhq1euXDlsv/32AQGJRVAEExbZe/fubYyuvvpqW+DnHjAWdN0QyBCYWGBmgbhr164mKMCMNhHvEDVYUK1fv74tfHuYL8YUUYUPi7csjjt/2kdkcaEtW7uDBg0qFOqNsIWZjNByGHOAhWoW1Hfaaadw3XXXpa3Gwj0CGOHb4obwwz3THixoz4UoyiJ4cZ8uQrZt2zYwPxACWISGY6726quvWlE8iPbee+9UNTygaJ/F7lmzZpn46Sej4bN4dhAf6C9CB4IaY838bNeunT0L5557rp0nhwx1O3fubE0hTODZwgdPP+6DRXnmhs8PCnoeHY7xvDLWb7zxRio0F6yztQtHPKbcYJXJqlSpkhoDwu6dffbZJnghhvBJMsaLhX7uJ25Vq1a1cePdQHg72PJecDEOYZB5i/BFO4iLCH4INojUeHTlmmMNIRkvFoyxcOO9g7jDeLrHCqKEjydc8Vbjw7PGs0lffDx4nt2Y54iozBPGE8GCXF28s9hHFMNbKd17Nald+s01XCjhfcvcQvjl3gcOHBh4n9MftljSfEGg5cOzkO76fh++9fcv4+fPHiLhbrvtFr766is7xr8dvAuYt9xrpvcIImZUBOZdxPuS4z63ea4x2nIe3p9vvvnG5gDXpD8Yc+GJJ54wgZLjpfH8+/W0FYF8CciTKF9iKi8CIiACIiACIiACIiACIiACIiACIrDMCBCiB2PBMh5SjhA+LEyzCMeCIZ48LNyTz+Ltt9+2xWbqItTwa3YWgjF+AU4Z8rP4Qv+FF15oXkksqrNox2I4v6CfNGmSLfCx6IpgxEJn8+bNrR0WBTEWhVkYpAy/BGfBF+GJhcH4gj6eFywAImpsvfXWqYVA9z7wbceOHQM5dMvSWIhm8Tv64Z4weGIstNJXjiMiIIBEjQV3FsPdawPxhDHlV/QsXsOaxWZEEhea7rzzTmuCMIMY3gUs8npuGb4jvLmASBm4XXPNNTm1i3cCxpgzDngAZDLmly/YMi9Y6F9//fXN88nnZ7S+eybhceMeF9HzhKZzbyEXHD0sGXMar4aXXnrJqhDi7I477jDhjPtGCM3H3MuO5ydu3BfmZaLnGQ/mOmOLIT5gTz31lG1dfOA7/SJXGIZHDsZ9cc7HDM+hqDHuiIG//PKLCQ54emDOwa/DnEL8yNYuHmcYzx3h3hAjffHdTsT+rL766iYGc5i5g2CCGIiXDN5zcWNuIoziuejzMl4GryCMdwZigQtE9IN2582bZ88JZcaMGWOCAF41iIn5eIjxvLjxHEQNQY13IvMEwdsFIoQoniEPbzh48OBoNdvn3YewhViN+dxEFMIQgBEVOc6Y4xWU7r1qFf73h/nL/cGNvEm0A0c+cMAQfTIZAtfXX39tz7eXg28u1/fybPHcWbRoUfD7RyCCJ3mcuAaGyJbt/YTg6X3nvc+/J3hRRo13H2KQP8vRcwh1/DvANbkW/YA771GEcq9T0uc/ek3ti0A+BMr2vz7y6anKioAIiIAIiIAIiIAIiIAIiIAIiIAIrPQE3Msg6jWSdNMIGSy8s+jMAjb7LMJhcW+YaH1fjGPREIGDsHIuhCAAuBDBIjaLyISMOvXUU6NNBPfWIIwUi6D8Kt4XDD1Ulldg4ZBFRfcaYLER88V0z0vjIcm8Xllt8aKKfrzfNWrUsJw29AvPChbC8dCJG/eL1xBsEcgwFvBdXIE1rDjvXjcsaONBwMIpBleMPFLMg2hIJjsR+ZNLuz6+iIrcD142vkAcaSq1i6DAYjveF4hFLj7wnZB38f7gBcUiOoZ3CzmL4ubjy6I7HlBsMZ8PeDhgCBjMuzPOOCNUqlTJwoXZiRz/ILBgSc+PH/NnzJtEqGKsmOtcF8PjA1EUgQzD244wWYiszGfGj/HC88jPc6xfv372HREVQc6N++QeYcsYOA/ERK7j3jo8x7m0y8I+xpjiJVSnTp2UwOXXjG+5N8Qw3hc+/uSaom8+Hl4Hji4KME+TxD8POcf8oj8ufDB/YYmg43MHTyy8D/FY5PnivZGr+ZhSPurNEq+PNxq27bbbWjg09n1+MZ68K90og2jIXCBMJ4bIhOHZhuH9hJcNAh5jx/hnM+YG707eAcxf2uZaeM1w3L1tsolkMEKY5b2DcIL5XMvWh+h5vze8mDD6x48FYIrAhsEl23vECmb5c84551ieNO47bj5fCf/HfOU5YE7xTPqzQZ2SPv/x6+q7CORKoGKuBVVOBERABERABERABERABERABERABERABJY1AZLHYyxqsoDGYqvb2LFjbSET8YDFQ8qyQMsiJOHLcjG8JTAWiVlYxhAoWAxn8c6vF13g9sV1F0z8nJelDRZFsbhAxUJn1HzRkvtjURfvHRaQXSSIll3e+56TKN11fWGd8yyy4iETt+gx54Mo4swo79wpSwhAhBf30uJ8dJE1m3dVtnY9JB3t+hix731jP8noA94mfPASYaHcRQEEjbhHB/lrEPzwwojm9PG2WehGMGC+4k3iC94shmMsYuNVgwcPwgneKXwI7efeNt5Wpi0s6UNcrKSOH4vPteiYRfcZG8JxMYcRTPDkQIjFWw5PH0J5ubHw7p5/iDw8T1H2iLpRYy55+DGEGxce4YSQ4pauXQ87Fp0r0b57/fgWMczFS7xB8FxC0HJBMFoeEQUvGMLrIZLFjXtCUMHTBoHIPXBcACNUI15b5HBCJOEe+eBhg3DqYQ3j7ca/81y64QVDSDg32CF0wcmfId5jblE+UYEpWiYqQlEPzz7EQPL58J7igwcPHi8u2Hj78S3vsqiRQ8i9EPHI9GcgWiZpP9qnuKiZVD7dMcSYXCzbeySXNlwQTCqbNF95XvyZKa3nP+naOiYCuRBYLZdCKiMCIiACIiACIiACIiACIiACIiACIiACy4MAOTDcCPlEiCOMhUrCxrE4zWI/i60suPNLdxZ7SWLPr8STjBBAbu4ZQe4bQlbxue2228yzgYX/XXbZxYqy0I8wwAKye7z4IixJyzEWTf2Yh1fzBWgrkPCHBU8P6UX4M4zF9mxiSEJTy/UQi6g9e/a0ayLKIQQ4l2hH3CMDMcHDb+Fp41xZRB4+fLhxZzGakIAIMSRy90VWr8dCOmG78PaKG6EBsWztksvKjYV6jIV2QoGlM7yCCAGHRwgCEQvNTZs2TeWM8n5G67PYi8ATXyT3MsxZ9+rwvDIIRNWqVbMihEukDbyzCLPFfMZg4fdqB7L8cQGIeh56jCqIPHgpYPE5Sl4UhFIMYQpDmKDPeN4h6JBbhhCPHsKR/FuwdRbMDZ4l2F177bXm2ZfNW8afg0svvdSuCR+EnlzadTHZQwfyLqBP6QxBljHlXghPh+2www4mULK/3nrrsSlieB/hUZPOfEwJacgzAQ/mLAZTxMATC8LB8Tzgpch5+ureiOnajR5H0HRPGAQr9wjienhF8U4kp4+HGOReCaeG+ZjzzKa7x+i1eM7xquE96e14Dre4WBl9r0bbiO572ELelYiozI3Sslyun+u1sr1Hou3wQwN/70ePZ9r39mHodS+++GKbKwiMpfX8Z+qDzolAJgISiTLR0TkREAEREAEREAEREAEREAEREAEREIHlSoBf53teH8SEWrVq2UIaYhDGgiULxHgSYeS5IOQUv1J37ww7UfCnUaNGtssv/PHgIZySL0yzqE09Qp+xqItQwyJ9u3btLAwTFVkcRhBicTxqtMViLwIS4gGL/ePGjbMivmgcLR/f91wmvoBLCKLyYAgnLKJHP88884x1DW8AFrpbtmyZyunDwriHafL+I3zBzENTIdwxDixSM4YsbOON0KtXL/OI4N4RKWDfuXNna4aQbYSmgj9eEi70ICD4YiveGnh5ZGsX8Q1xESNsIH3zeWEHE/5wXRby8RCh7CmnnGJzDq8vLJ03xUYbbZSauwnNpkKs0TbmeYrYZy4wh8lTglDkghb3F/fCoXw6Yy4T8g+DJ0IIHzydMM7hiRc1+oM4i8jgwp+HT2SM6Rch6RBO8VzB9t57b9viaYTxDJx//vn2LCH6DRs2LOUlYQUS/hD2D3MPpyiPbO36M4R3Ife35ZZbpsJNJlzK7g2RhHdENI8PAjFGKLgkY/7ccsstKTEsXgYumI+ph5rjGCIG7PDuuuCCCwJ99XLZ5iD1o3bzzTdbHxDL8eziHYSQ556IhEX0Z4F6iDww6tq1qzUTD5kZbTu6jyDKPTBHEGcRcl1Q5T4w73v0vRptI7rv7wHeCz169EjNw2iZfPfzuX6ubTu7dO8n2vEfMDCGzH8PL5jLNXin8G8Gwhv/ZvCMXHXVVfZ+47krrec/l76ojAgkEZBIlERFx0RABERABERABERABERABERABERABMqMAEIOAhELdyzaIRRgLPa7twCLryQlx1hAxWsh7iFBMndfiGYRjsU9FlfvKEisTtvUw/OFsFL80p3FeEJEsfh3ww03mDjAYreHD/Nwc3i90B7XY9EWryYWbCdOnFgoFJR1LuEPC7AsGGLlIdQcAo0bi+jRD14L7777bhg4cKAVIVQWof26dOli330x3+sTWuujjz6yrwg68OVeWXzGSwWRiYVSuHIdhAU+GG0j3GGE/2LsCQfWv39/O8YfvE4QnqiLN0Yu7V5zzTWpPEcIe8wjxBgseu92oOAPHmX84p/rsEBOyDcW45kziJIuUEbD13ld5px7XMXbRuD0cae8h5pjnz7hpcM9c7+IjswvOORrHiKN/tNvPuzTPgvTcUOcQVRwMYDnyscEkYh+MmZ4PjDfEVL79OljzTAe5513nu3jJYLgwxi7F5N7yMVZUIHnyMVfuLB47patXUREPLKox/1F56Rf09tiyzG8qxh3GN999932nfp4QNFnL2c7kT+MN++MJOOd4XU5HxW6eK/QNteA45AhQ2wceE9suummSc2lPYZAwfPjvPx9xv3g7UV70WeB5wOhkfcLnkZ4TuZiCLF4/PA+oz7h4ngHMCddSEt6r6ZrmznB3GP+IJL5s5GuvI9d0nzxY/lc36/jdaPPbPRaUXbp3k/Vq1e3nFuMJ2UWLFhQ6P3h1/BrRre1a9e2f1d4J/IM8W8MXPBAZX6V5vMfva72RSBXAhUKYiIu9dvOtYbKiYAIiIAIiIAIiIAIiIAIiIAIiIAIiMByIkDIJjx5yGPjIk300uQLInxPNMdG9Dz7hKzj44uCfp5f+tNmNCwWnjMebszzkCBcsFhP2CiEpaiRg4h8E7l6exC+DO8bzysyePDgQMLzFdkI3+WL3uSTwWMDQS7KNXp/5EaBPZ43SWPKWBE+K9152vIwcPm0y1whz04+OU4QFD7//PPAIm+uYxztU7779A+GeIvk08901/n4449t7uNpk82WLFli4d6ieWy8DvmFCIPHOGcaM8Y8mk/G6xd363MhXbvMA/odz/2V6XqU/+CDDwKL/jVr1sxUtNTOMY/gWhpziGcLIRYxM90c4Z3IM+bPZXFuhPcu4edoI0kASfdeTboWIRN5LyDGlJblc/18rpnt/URbSe+fXK/B+HENDzUZrVfaz3+0be2LQCYCEoky0dE5ERABERABERABERABERABERABERCBVYoAC6OEVSK0WtT4Rf5DDz1kYceix/PdJwSYe1nwa/3nn38+o8CVb/tlUT4uEpXGQnhZ3IeuKQIiIAIiIAKrIoGKq+JNozQTY5UtbtFJ//GSS5lVkV1J7hmm/NIB4xcsSb9C4By/dsCVnV9zpPvVEeX4JQ+/TkkaP85jtMOvfXCXTTKSzfE/AMS4TmelcZ10bWc6Tr/45RS/DEn6lU6mun6OX3zQjrvC+3HfMib8eoZfnqQr42W1FQEREAEREAEREAEREAEREIFVgQAeCYQSmjBhQpgzZ479+p9QVoSpw7OlpEYuC/5ft27duuG4445L6wlQ0uvkUz8aggmvqHy/R70V+P/LfOur/Bqp4UrHn+O5mFhmZ+kc07Fenuf9WtqKgAiIQFkSKHFOIhKQ8Q9Q/OMxMsvy5tJdG9e9AQMGmFCESJBkuZRJqlfWx3w8+HUThkt8fGyIIUqc33T37vdA7Nt4Xb7fdNNNVoS4pHxHiIkbcWWJ3+zGr6Rw46V/fNi/5557/LRtcacm1vAmm2xiv8ziV1oklPQEhl74nXfeCfvtt58JTZQlEd93333np21L8jyuQ8xWxCb6iiDiRjgA/mOcfiDCMF/jyTZL6zrOiW3UiGNMckUYRvv/6aefWgI7/ueD+LXcIzGc3XAVTxqXfv36eRFLxsr/wPA/HohkjAfxdqM2fvx4E8f45RplSG5J2+ksXX+9PO7afj/xsfUy2oqACIiACIiACIiACIiACIjAikAAoeOEE04IV155pf3/M///WBoCEfdO7gnywpD3JV2oqOXNiMVy/3Bt32eb73d+pFmS+vleb1UpbwORwx+xL725vDzmVg5DqiIiIAIisMwJlFgk8v9gYDGbRHb+4ZcxsuVPwMfDBRHELoxkaIwNSRZJioagcMghh4RFixZl7CT/8Uriwujn2GOPLVQHMYJYmumMxIC40/MfwQhBfEh4yX9wP/vss1YNbx1ECoSZ+++/38rMmDEjHH744ZY8kX0Mr5ijjjrK/uMcQYOEk4hUxIX2e0XsOfroo619rkXcaP7DnsSNbiTYxKV/1qxZlmgOQQnxjBixWGlch34gUpHAFMHLx4T2SRaJ0LXVVlvxNXWOuKQkVSVG6+zZs008GjRoUGjfvn145ZVXrCz3hM2dO7fQuPTo0cOOw+HQQw8NG264oXkJEYMWgQpGb731lpV54oknQqdOnew4c4AwCpRnjuB9FLd0/Y2WwysvnxjA0braFwEREAEREAEREAEREAEREAEREAEREAEREAEREAERWP4ESiwSeZcRHVjc9w+L8th//vMf8wZBIGARG4+GVq1ahUcffdSr2mL3kUceaec4j2cIIbDcECD69+8f8GxhIbtDhw5h5syZftq+43GCZwQL/ZRhS3LLiy66yL4jArgHTKpiwc4bb7wRDjzwQLs2gkiSV0y0fHQfzwyve9ZZZ4Vhw4bZvQ4ZMiRVDA8aFt59AZ4+uuXChrKZ2vC2sm3btGljY4NI4IILDBmXTOaeNnjb+CcaAg7xCY8kPJPSmYsbiBKEhuNz+umnm3hCfez222+30Gp4ADVp0sTK7LzzzoEkoXhDIWxhzz33XHjvvffCiBEjLDwa4wrHRx55JOUFgxcLouWFF15o7ey///6hT58+Vo42iJV877332ndEHDx1GDsEounTp1OkVK7D3EKMos9+n9Z4wR/EsFdffdXuzY+xffLJJ034IhFq/fr17Vdl/LoMYYh7wkgUSXskbfUxYesJ73755RcTf6699lqb1yQGbN26tdVdsGCBbeG8yy67hK5du4Z1113X2hs6dKixnTp1qpWJ/knXXy8zZsyYMHbs2CLeYX5eWxEQAREQAREQAREQAREQAREQAREQAREQAREQAREQgfJHoNRyErEwTQgvN8JhVapUyYQavD34uCEQ8cFbg1wriAJ4UBx00EGBkFUPPPBAePHFF8NHBflrOM9CNkIJi9nEAcYzhIVsPEFYSGcBm/YRIShDW4gKu+22my38cwxPCTwdCCtGG26IJ24sciOg8FlrrbX8cOIWUQLPDLdoaDXuB6PPeNBgXBePEj7k4mnbtm1WNuTbydaGNZ7nH8QXRD0+8VBuSU1FPWA4H80lRB6bG2+80YQ/BLOkMIN+DG+YCy64IDRq1Mg8ZZo2bZq6HB49zZs3N4+b1MH/7VxzzTWpQwhEeOVE4x03bNjQziMs4pnDfEA0XG21fzVQrokIxBx1AXKnnXZKtYvwhQgzf/58O1Ya18FTKp0xf7DPPvusUBFEyl133dXmNp5P9PmAAw4wsdNzLyEYwb13795h0qRJds+w7dixo7VVuXJlE075gsCKWHrppZdaOffw47niWYuae4PFk7NSJl1/Obd48eLQs2fPMHjwYAtbxzGZCIiACIiACIiACIiACIiACIiACIiACIiACIiACIhA+Sfw7yp6CftKfF73EmGLB0jUWLzHAyKa84QwZIQxQ9TB8EYgDNaoUaPMc4hFbMq7QETCSMKTsThOnTvvvDN6CYvnS+gsFqsxFtipQ44XD+uFGBG1du3amScM+VYwxAEPgRYtF9+/5ZZb7FDLli1tsR3hAfEC87Bnffv2te8PP/xweOqpp8KUKVPse9TTiAPp2HAu1zYom48hFGF4uXh/k+rjEUY84ejHQ5Z5ecLWnXLKKSZSIPzFDZHouuuus7FFpIAT4hmJQN0Qq9xThmMIG4h2/pk8ebIVff/9982DxuuxdQ8azmHMqVq1atm+/yEvEYbw6CIIQkvUtvx/9s4DTIri6cMlOeecBckIgggGFEE/MYCoGFAURQUDqIiCiooJUYyYUYLCXxEREUHMIEkFJOecJecc9Zu3j1pm53bv9u5WglQ9z96knu6ed3bndvvXVVWmjBOY2BePdvx1x7qOSISHFzwRTfEi4n0DY8QYbN26da4M4egQPrl+vOD43PgNDghGeBzxWUPoQTDF6tev797reHAhAhJiTnMmwT4lRuhARDs8vsyMgBEwAkbACBgBI2AEjIARMAJGwAgYASNgBIyAETACRuDkIRA3TyJCV/kH3cl94zdCrpGvhBfhvwirhRcFXjfq/YN4gDcJnhOElMO7g8FtDFEIbwlMBR28jfxGbhwMTwyMkFwVKlRw63iNIA7g8eQ3BrbxGuIc+shAOrle8IpJyjSEGoP5eE1pmLz33nvPnYZApV4iCGYMpB8+fNgdw+vJn/clGptY6khtkkvlAHO/x03wmsmPwzX6rVSpUv5Nt47whXdYhw4dpE+fPomOI3bg6YUISEg3PK8Q/xDkCCPI+0L7xMmIbo899pirBw4IaYQppJyKitqIesBwDCO0X7CMerkRek2FEvb5PcYQJQk9h8WjHVdRCv+ol9bAgQND70FCxVWuXNlxwwONEHuEXySUIkboPrzO8Dy68847Qy0ievFZ4X2P2FanTh2Xg6l06dIu1xPnEQ7v0Ucfdbz4DNCOMghVlMQKguHbb78tCKF8DsyMgBEwAkbACBgBI2AEjIARMAJGwAgYASNgBIyAETACRuDkIRA3kQjvHrxqohmD2Gp+YQNPB8K7kWOGMHMako0cN4g1fjEFjwgMrxa8Xxj09lv69On9mzGt+0UC6sX279+f7Ln0O1h23759bh+ii66zA6FKB/8RPBDG/G1EYxNLHX6WrvEY/6jARki+pIy+48WSnCG+fPLJJ07YQPSKZFznVVdd5V4IQIgV5A9CJKIdcvio4XGEBxiGwKS5ongP4A3kN/V8KVu2rNuNiOL3WGOn5uLBo0jFqDVr1jhBSeuiDb3WeLSj9aZkibCDIaSqkW8I0XX69OkuTGGzZs30UGgJV7yCEMdUBIM3wg8vjuNdhVjUuXNn934kZ1Hr1q1dyEG4IM5yblDgDTUSYaVr167OM2zlypVh4iCf4xw5ciT5TIhQne0yAkbACBgBI2AEjIARMAJGwAgYASNgBIyAETACRsAIGIFjSCBuIlFq+8wAPx435Pfp0aOHzJ8/XxAIGOyeMmWK4KGE4fGCxwKiCOG2CBuHx0habciQIYKXEf1gYBurVq1astUibOChQWg7RAlECPWgQcDC20Y9pMjXQht4vIwcOdLVjZdUchaPOoJtILqR0wmWWL169YJFUr1NCDOuVT2+tCI8VfDaIXeRGl5neK2oITDi2YIQoqHwOLZt2zbn3YUHDYaYxHuD8H0XX3yx24e4iCGmYOSpeuWVV1x4Ns3jwzXzXkJIRJzCOE9D3BH6jvch9xKLRzuuohT+0f6QG4nrwGBHGEQVSdu3b+/283lR03CHvOcI3deyZUvHSL37+NwgQKmghoce4uwjjzwSYqAc/fdF64+2RPwk9xhikd+GDh3qBN6khGN/eVs3AkbACBgBI2AEjIARMAJGwAgoAYtSoCRsaQSMgBEwAkbACJzIBA4cOHAidy/mvsVNJELkwZtErVatWvLVV1/pZtTlpk2bXIg5CjD4jTePhgqjjoIFCwo5bQibhXcFwsCgQYPcgD4htxBr0mJ4LH399dfOa0W9MM4777xkqyR/CyG2EBdU1EDIwlNIjXwx1I9nDcLJhAkT3AA+16EeK1o22jIedVA3XiMIJRoCj314lzz44IOsRjXEB8LD+Q0RgfB6kYx7Qv4gzftDGTy+yFmFYIEXDJ5W5J8iZw58MELRES4NbxbEJO49Qgmh+mCqwgj3hlw9iBuErCNPz7PPPisdO3YM5SbCOwaRCMEKrxlCGw4fPtz1i7Z4jyFq4P1Wo0YNF5aQsryXNGRhPNqhrZTaFVdc4cSzFi1aCHmv8HTTXEENGzZ01cGTz1vVqlXdPUQw7dSpk9x///3uOGIYnyvKvPDCCy5sIx5bhDlU3uQxol74Ic6RBwmmhJ9DIEPQJOQi713qjmYDBgxIdIgfdOSgCoqFiQraDiNgBIyAETACRsAIGAEjYASMQAQC/5UBlwiXZruMgBEwAkbACBgBI3DCEUizSKQzfBBYVNzhKtWDQfPdaLg1PwH24TnRu3dvefjhh50nEcfJJUT4uSJFirjiiDh33323G+hHlMEQBXhFMm1L+0aZaP1ATGAgnb7TFzxsChQoEMofFKl+9uFxgnCF9wWhthB+8IIhN4+GvevSpYvw5ZbcO4g0GJ4ViBtYtD5xTK8huToo6ze9Zj1f26CMCkSILHgQIRDhBZKUIfQFxT7uDWICpteqdeCxwvUSUk/thhtukPXr1zsRQj1O8HihHoQqjH6MHTvWCRYISmoIUuQt0jxIXBcCBAKItkHeJBVSOA8BBPGC68ODi7YQhPzCHO+32bNnO9GKcwjJhieYXk+82qFujHr1niTsCf+rxygHb0Sic8891xVCfCSXU5kjoegQX5YsWSJt27Z1LwqRw4v3MsZ7gHCCMFJPMero27dvSATjvc42OYxee+01d961114rL730kltHJEKk05B/bqfvj/bXt8tWjYARMAJGwAgYASNgBIyAETACRsAIGAEjYASMgBEwAkbgJCNwmidi/HOi9BmPEcQCDREW7BcD13hI4F2UIUOa9a1Q9YcPH3YiUSwh4PSknj17CiG78HjB24cQeHih4EFDbhgG+dX++ecfd5z6/fmH9Hgsy3jUEUs7/2YZwvCRKwiBAdHHL2D52yUkHhwRNrjX0YzQaXjaRHu/cB5iCrl4VDwL1rVjxw537xEmo1k82olWd1L7CWHIfVeBLFiWvFZ4ehE+L1puKlgigBYuXDh4uts+dOiQY4RnmObZ0oJ8LlQ00322NAJGwAgYASNgBIyAETACRsAIGAEjYASMgBEwAkbACBiB/w6BE0okOpmw/vnnny53UrDPhCwj3FpSwkXwHNs2AkbACBgBI2AEjIARMAJGwAgYASNgBIyAETACRsAIGAEjYASMwLEmYCJRGogTvm3o0KGyaNEiyZ8/v1SrVk0aN26cbAi3NDRppxoBI2AEjIARMAJGwAgYASNgBIyAETACRsAIGAEjYASMgBEwAkYgLgRMJIoLRqvECBgBI2AEjIARMAJGwAgYASNgBIyAETACRsAIGAEjYASMgBEwAicXgXQnV3ett0bACBgBI2AEjIARMAJGwAgYASNgBIyAETACRsAIGAEjYASMgBEwAvEgYCJRPChaHUbACBgBI2AEjIARMAJGwAgYASNgBIyAETACRsAIGAEjYASMgBE4yQiYSHSS3TDrrhEwAkbACBgBI2AEjIARMAJGwAgYASNgBIyAETACRsAIGAEjYATiQcBEonhQtDqMgBEwAkbACBgBI2AEjIARMAJGwAgYASNgBIyAETACJzmBffv2yZw5c2TPnj1pupJ41ZOmTtjJRsAIxETARKKYMFkhI2AEjIARMAJGwAgYASNgBIyAETACRsAIGAEjYASMwLEnUKJECcmUKVPE16RJk+LSoUOHDsmjjz4quXLlkpo1a0qePHnkscceE/ZHsr///lv69+8v+fPnl7p164aKpLSe0Im2YgSMwHEjkOG4tWwNGwEjYASMgBEwAkbACBgBI2AEjIARMAJGwAgYASNgBIxAkgTGjx8vhw8fDpVBiLnuuuskS5YsUr169dD+tKy8/fbbMnDgQEF0qlatmowbN04aNWokVapUkdtvvz2s6q1bt0qzZs1kxowZUrFixbC+paSesEptwwgYgeNGwDyJjht6a9gIGAEjYASMgBEwAkbACBgBI2AEjIARMAJGwAgYASOQNIEyZcpIuXLlQq/hw4fLokWL5NNPP3VCUdJnx3Y0a9as8uqrr8pZZ50lGTJkkAYNGsiZZ54p06ZNS1TB+vXrBe+mBQsWuHL+Aimpx3+erRsBI3D8CJgn0fFjby0bASNgBIyAETACRsAIGAEjYASMgBEwAkbACBgBI2AEYiYwdepU6dy5s7z77rtSuXLliOd99dVX8sorr0Q8ds4557hzgwfvu+++sF0rVqyQWbNmycMPPxy2n41KlSq5UHOJDng7UlJPpPNtnxEwAseegIlEx565tXiEAG6y6dOnPyY8li5dKj/99JMMHTpULrzwQhcv9bLLLpOyZcsek/atESNgBIyAETACRsAIGAEjYASMgBEwAkbACBgBI5AWArt27ZKbb75ZmjRpIq1bt45a1emnn+7C0UUqUKpUqUi7w/bt37/fhZhDhLrpppvCjqVkI171pKRNK2sEjEDKCZzSIhHxO5csWSKnnXaac9dMiWCBmt6vXz+XzK19+/YpJ3+Kn9GuXTv5/PPPZeTIkc6N9d/Ecfnll8uoUaNCTfjXn3nmGXnyySdDx47Hyp4Dh2XV5r1SMn9WyZYpdaLZocP/yKote6VMgWze+znyVezad0h2eq+iebJELuDtXbZxjxTPm0UyZYgciTIe7fzzj8iGHfslT/aMkjlKO7v3H5Z12/ZJCY9JtDIc9y7b9TfqBSVzIDkmsfTV38Thv/+Rjd61FcyVWdKni3IjfCcw+2fVqlXStGlT394TY3XhwoVSunRpyZw5c4o7tHbtWsmbN2+aXN737Nkj27dvl6JFi0Ztn3Yoh9t9LM/vzZs3u3Ik3zQzAkbACBgBI2AEjIARMAJGwAgYASNwshHo2LGj7N69W3r27OnGM6P1v1atWsIrNfaPNxhy7733Oi+iP//8UzJmzJiaaiRe9aSqcTvJCBiBFBGIPBKcgipITpYpUyY5++yzE52FkMIxXpEG4jlHj69bty7s/EGDBoXq3bdvX9gxPYfBVQzBQfcFlzt37gw7lw3EoRdeeEGyZcvmYmuSjI14mS+99FJYorVEJ/p2rF69Wrp27SpvvfWWb2/aVv/66y/54IMPorprUnssZdLWi2NzNoPj3Bu9h7G0SuI8+CAsxWq8H1QUql+/vvB6+umn3ZI6nnvuOffeibW+MfM3S5XHRiV6ndNljKti595D7tgzX81PVOXXk9e6Y3oAoaRNn+lS++kxcm2PSW7Z9pOZsnnXAVfk0QFzErXjbxshBXv/l2Vy3nNj5arXJkjDl36TEdPXu/36Z68nQlFXnWfGyiUv/S43vjNZ5q0J/1yMmrtJGnX/w9VxwfPj5I3vl3j/zLWGhGVa26G+z35f7fVjjDTo9pvUfHK0cL1bjlwvrWzfc1Du+3iGwLPJGxNdmc//+CusI3P+2un62tC7lv97+Xe3vmDtrrAyuvH4F3Mj3o/kmMTSV22DJfU9O2S+nPnEr949+N0tuw1bKPsO/u0vlmj9tddekxEjRiTa/91337n3JUJq0O666y654YYb3O5t27a5ctdee22wmNtGQNFnYsQCEXYS15jnOs/FYsWKuWc3X+zU+DLK85x6/c91yrzzzjvOSw9xKVeuXHL11VfLmjVr9NSw5SeffOLqYHaT35YtW+YSYyLkUA8xjvv27esvIjNnzpQaNWq448xqOuOMM2Ts2LFhZfwbY8aMcdeE4FSoUCF3bqSYyv5zbN0IGAEjYASMgBEwAkbACBgBI2AEjMCJRIDoOH369HGT1gsWLPivdY2xss8++0wYm0hLBJ541fOvXahVbASMQIhAmkWiAwcSBrSJUTl9+vRQxazwQFHzDzKyb+7cuU6R1uPffPONrrqllqfep556KuyYbmiZv/9OGIgtXry4XHnllWGvSLPLe/To4USinDlzyiOPPCIPPfSQsI5XyUcffaTVH/MlCefoC/2IZrGUiXbuibT/hx9+cInvcI+N1QgXBx8ExFjsxRdfDBVDGPr555/dS9dZquFtlBL78sFz5IdO54VeQx6qE3b6l5PWyMg5G8P2BTce8YQbvIiGd6grU7vWl6/b15GNOw/II5/NcUUfa1I+VP/tF5aUfDkyhbZpO2umdDJo4hp59+dl8tot1WTicxfJnReVko6fz5Gpy7eFmnt68HyZ4m0PfbiOjHu6npQtlE1a95kREmcQjNr1mynX1i4qE569SN69vbr0Hr1C+o5dEaojHu38NGuDvPjNQnmjRTWZ/EJ9GfHoubLG8wbq6u1Ta+v1Y/OugzLsCBP68sLQBYLAhiG63PHhVLnszEKuDvpbuXgOuav3dMGLx29D/lzr7gHeVUFLjkksffXXiaiGgMj7gnv5edva8t2MDfLRr8v9xcLWeW79+OOPctFFF4Xt92/cfvvtgtjuN33e+fchNC1fvty/y60PHjzYLcuXL5/oWKQdPMObNWvmXMpJQsn5JK18/fXXXXGOIx798ssvTmzRZzAHv/76a/c8RfzZsmWLzJ8/X/bu3RvRLZ3neps2beT8888P6wb1NW7c2In2ixcvFjx/aJsZTHx+MequXbu21K1bV1auXCkbNmyQe+65Ry699FKZN29eWH1sIKz/3//9n3PD55oQ+JlNxbOHCQNmRsAIGAEjYASMgBEwAkbACBgBI2AETnQC/LZl0ij5gS655JJku8tkS500Glxec801Uc/v3bu3dOvWTZhAyu/u1Fq86klt+3aeETACKSOQZpHI3xzh19QYyHz22Wd1M9GSBGrYVVdd5ZaRZsy7A96ft99+O+Jsez2uy+uvv97lnEFZ1xfeQkEbMmSI24UnEN5DDIIyGMrg6KZNm0LF//jjDxfnM3/+/G4wk/JJDSoS+uj+++8XZsYzEx8PJwYw1fCIYuY9D1nqZOASsQSDR6tWrdw6D368rL788ku3rX+ilWEGPeVvvfVWdy20j6cUNn78eCea0R4z8olbSj8x/3kffvih6zP14LKq18mSRHfq9UXf8RbwDw7z4G/UqJG7Jo6/+eaboeO33HKLO/fjjz8O9WPr1q2OTcuWLYUZ/oSUon5e8GDgmL4y8AsLDG7Ui3GvKMsgcjQjBxEzFtRUEKI9ZcM+PIswvI04J1Yr5YVB878IFee3KsVzCl4seAtFMgSNKcu2ySVVC0q5wtklS8b0UrFoDnmn5ZnSukFp58VTMGemUBt5s2eSjOlPC23Tdjovrtznf6yWlvVKSv1K+SVnlgxym7d+9ul5ZMgRUQXPnO9mrJcnr64gFYrkkPye0MQ63jvjF25xXft22nrXdpuGnvdH1gxSt1xeaft/p8vHYxM89SgUj3YK5c4sfe4+Sy6smN+F1Tu9YDap7fV19ZYET8FNnkA2dfl27oC8FAAAQABJREFU1/YZR5g0rFJAePX6NUEo2bhzv1zjiVl3X1zK1UF/m9Yq6q5ny+6DIdRLvbB5Tw2eJy/eUNmJYqED3kosTJLrq78+1ld64QLhVtW779zLGqVySY2SuWS1tz+aEc4Nb7rzzjsvWhEnhvBc0M9j1ILeAcSZoL333ntuV+7cuYOHIm7zHD7zzDPl8ccfd+HiGjRo4DzvENaxGTNmuM8lzxVEeb8hUuGlg/iSI0cON9uIdSYE+IUtnoM8q3lW8sz1G5MOEMLxjCJGMuI9ZTEEIYzPMNa9e3cpUqSI4HFEf7FIIj/xj//3v/85AYsQePQRIYpnM7GczYyAETACRsAIGAEjYASMgBEwAkbACJzIBMjpfeedd7oukmdbJ0HrkgmRQWNCKpP3I72ipc3Ac4jf6owFpEuXLtTOxIkTXfWMSxLVQ8cVg23qdnL1aDlbGgEjcOIQiGtOIgYkEV2yZMmSZOgfBIZPP/3UUXj++eeF+Ja///67mwlPbolIhqBAiKHgwKS/7MGDB11cTt3HA40wckHTHBeIHwye8uDkAchLjZnuKiAwa50BSvrKgxeRJGgIHXijMJNdZ+0zYMm1IUDQD7wCmG2PcR0MdvL69ddfXZg7+q/GQGpwYJh/CpHKMNBMf3mpl82OHTucB0LDhg1dlTVr1nSiCg90xBAe8JHOo/CDDz7oHvoMXiMe4cnFwGrz5s2dWIf3FYO3d9xxh7z//vui/1wQpwjhxIt+durUSRYsWOD6heCjxnXofvrANn3HCE+lhrDEADPh5dRjjWOcAx//wLOeo0u8jvzGrAnupw4wq2jkL8M5eCzEZJ7Tii8CV6I8QA9cVlZ6jlwmeKx80Kq6E3T89ZKv5vzy+VyouNxZM0rDqgUkT7aMUtgTUnjFYn97HSDMWivPe8hv1T1xQj2JyFOEVSyWI1QkpyesIEit2LTH7Vu6YbdULZEzrI+IXAhJhFHLnDFdXNqpWTpBqEAgO3Dob5m01PNumrJWOl6V4OWiOXw45jdC4WFcb8l8WZ3I5T8+bsFmx6yAJ4CpdfO8kxCj8DgaNjU8lGUsTJLrq7ajy2bnFJX2n852QhEC0WRPAPx13iZ5/47qWiTRkmcen6ty5colOqY7+AwgmiKQEnc4mrVo0cI9lxBLeP5ikydPdp9FjvF5i8UohwDLs1MNrxsEFcLM8QyLZsxEwnuP5wViNKEkecbiMeSvjxCd1MUkAsQbv5H/qG3btm7WEkJx4cKFnSs9ZfASxTJkSPi35X8mqGhNjrmg4RrPi+cF53CNzIq68cYbncAULG/bRsAIGAEjYASMgBEwAkbACBgBI2AETiQCRNRg7BC77rrrEnXtiy++cJMt/QcIy84rJdarVy9XnLa0PXYwLsoYBmOijHsS2t5v5Hr3W3L1+MvauhEwAicGgaMjgWnsz6OPPupq+P77791SB/8QFII2ZcoUIe8EQgmz1tXNEQEjaJdddplzp0QYQJQICif+8ggWzBTXVzT3S+0rXirUyQAinj/kB9H63333XVc1g648COkzwgiiCZ4wQSPcEw9KBnSZbc+rXr16bpB29OjR7npVICIfD9ev+TxQ9RmwVOEMLnPmzHEDrf52YimDNwGz4xkEZUmoJjySEIUQ2TBEHP7B+I3rI78JfcY0Twp9xxBP+vfvL2yTF4hcIRjtYOxj8FXvP9t+w8OIa+YfSYECBfyHwtaZsUC/VeSh34S4wtsLl1oMzwr4VKhQIexc/wZhqoKGQIRQpGGrVKTTcnifxWp1nx0rVR8fFXp1+Gx22KkZPBGo241VBAFj4IQEb6iwAt7GyzdV8TxPcjmPl/OfG+fyEpGzZ39AJAmep9sbdxxwq4VyhYtKRTyRafH63e7YqiOeLMEyxfNmkWWetw22dMMeKZo7QVhwO7w/hY/UiZdPvNrRuh8bOFfO9vIwkXsIgevGusXcobzZMzrxitxH6hU0ccnRz9o2n6eQ1jXaE2Lg+3jj8iGh7pfZG+X3RVvkyaaR3x+xMNH6o/VVj+sSj7Bm53j5e76cJ41fn+jlJ1ogN51b3AlVWia4xJMPb8KkjGcBzyKeFTw3ohlehDwj/WE7+VLG87NKlSrRTku0n2dYyZIlw/aTlwjDUygp4zmKmIUwhCiN4Ev/H3vssdBphHpDoOXzjAdQJOM4nkhXXHGFCwvH5AO8VFXcr1MnIbQj5RB9EJk1HF4wNJ+/flzteYbz5RbxKZLXkb+8rRsBI2AEjIARMAJGwAicGASYsMT3VP+EyROjZ6deLxgLIay0jptEIoCHAZM6zf7bBOw+H9v7S/4hfv9Ge0XLU5zSXjJuGakNxkUxxuwY1wtOdiXyknobUS65eihjZgSMwIlFIG4iEQIGxsx3xAZEIgbkIw3kqxjEMUIuqeCACBHJGFDES4VBfUIMRTMGJP05iS644IKIRfGQQdDo0qWLG8ykEAJG586dRQWkCRMmuHNffvllufjii11eDQZhsWDuJfbpAC4PTnJj8CIkkx5DNMIQxcjpgZF7iC9PKki5nWn4w/UT3g2vmYwZM0rVqlUFN1TEIcQwZuirkStEDc8n+kVoPsLGYRraifMxvKgQ0ugr7cCELwUaTk//ISHMcU3BGf38I+E89QJwlUb4Qzn6T/0ISxjeRCm1cePGRTwFgUg9ioID9HqtEU8M7HzTy6vz4Z01Qi9CxAWNcGpPXVNBug5dGBJt/GUKeOHkPrmnpsvN8/Q1FQVPGnL2PBIQnPzn+NezZU7vNvH28Rt5jnJ4oecwXQbL7N5/2IWWo0xuz4OJbb9p+RxZ0ku82tH6H2xUVv53by1p50LarZRXvj0aNvC1m6t64ef2Sr3nx0m9F8ZLq4+mydW1irhT6affyKV0/yczndDUqHohd4icRS8OWyj3XlLGhebzl9f1WJho2aT6qmVYklfpqz/XuPvNtT3miVZfeOLVWz9GD2FIXp9Y3nN45fD5uu222xLN1tE+5MqVy3kA6rMEkZRnccyecUcqIiylPue0brx+MNpIyvBivPvuu11YNz5n/A/g+cAkAP1BzzMWIR2vxEjGl00+lzxDCH2HWMwzAQ8m3NUxBB4EdQRxxCS8sfBgJXRpUODyt4FoxTOZ8KVMEIB9Ut6I/nNt3QgYASNgBIyAETACRuDYE5g0aZL7TYuHOeGNsmfP7iZPMYBp9u8QIBoAvz34Ta7fv2lp48aNbqyF7+LVq1d338nxXFDDs5+IK/yeYHyH3w58/16zZo0rwqQv6oz08v92Z0JopDLsS0qY0n7Y8iiBaPeS30CMvXGvdMzl6FkJa7Nnzw7dBx0b4khy9zlYj23/NwkkN67337xqu6qThQBjWpqChsheZrETSBhJjr181JJ8WeDLBGqx5q/gHzz5IPzGP3adwY3rogomlGF2EIJAcOY7A4F42zC46M8z46+XdXJXICjFYohOhEXihdjBkkFNXsyGJ1wbRjl1z6QcA4v0J/jFVAdSOUfL80WK0E3UoYOkhFPymz8Mk39/atYZLPUb3kAq3vDP3z+AquGZKM/1qAXD8z3wwAMuJB+Dsoh0iGkMPiNwEQJQDVFKLdI1xZoTxc9Hw2YF30PaTlJLBqYjPQw0H5Eu/XXwJSlWO79CPpcDKLnyzT1vkp9nbZSOn8/xPGbCc7jouYhJvG4+r7i88f0S6T16hctlFPT+0fK6JAdRPi/E2trt4bO01mzdJ5W8cHJYCS88G7Z++34Xzs5teH+We6HmLvLyGGFlC2WTNduOiobsW7stoU76gHgVj3aoF9NcTuROIn/Pa98tlnaXne5yDJGfadQTF7hwbVs9z6GzT88t4xdskTl/7XT9SKhBhGts3WeGIA51uKKc7nbh67hW2Hw5KeEHyQrPm2qzFzpv0MQ1nrdP0ZiYaIVJ9VXL7Nx7yAlCXa+vLNd59WNcG9b920VODMuUIZ3b1j+IqAgoPNNiMX5wVa5cOZR7J9I5JLBEAEHExkuJ54GGwIxUPtI+hOCgNw4/LjD1KIp0Hvvw5iG0HYKNGs9CRHnCbvJDceDAgU5IwqsHQ1TnWYvXEyIPgjahJ/lRohMMEIzpEwKYhpxjUgLseCbx7EGcJqxdpUqVtOlES3jwwhMJTyee5b/99ltMQl2iymyHETACRsAIGAEjYASMwL9KgO+IRLngOx6Tq/AIZ5Y63wMRi5h8ZBZfAgMGDHCTS/U7t792fmvgwc/3ciK34O3PJDbGO/jOzzgQUWSYEEwYf37rEHL+pptuEkQgxiU0aonWO3z4cBeinogEakzSZWzGb0QQYNJt+vQJkyT9x2w9MoFo9xJPMPLCwpPfftzToDHAyn3j95Z6j2iZ5O6zlrPlyUkAMVaNMc9/e1vbsqURMAInBoHwkcs09knzVWgIMn9+Ga2aQTmdqd6uXTuXZ8Ofa0O9jLS8LgkRFGlgX4/HukSsYSYSggADqRhhjPD8wRjIJJamzvAn307v3r3dq0+fPi72Z9CtkvPoH9a0adNQ+cGDB7sZ8wyS4qmDkScEsQlj5j05g4LeUXwhTm6WTCxlCDOH8aWKL2a4f6oF44Xq/uASjypELvpK3iUN+TZs2DDHkS/rGIO1GCIf18SXitSY3n/EKK0zOPC7aVNCjpqk6ifMViQj/1Q0i3ZOtPKx7E/nvZe63lDZ5fR5YejRvDCEemvyxkTBG8Zv5LNJiSEGfT9jQ+iUfQcPy0gvh88ZhRNEIsLKYSPnbAyVmesJLggpZQtld/tY/rZwi+zwxA61H2ZuEPISaZ6geLTTyRPK3v5pqTbhlohjGEILuYoINbfUY9OgSgEnuCByDfY8dKoUS3ifUZZ+3t17uhPCCNmnfeTY4cP/uPxE/cevcnVR3xIv9N6MlTvkg5HLXBuxMEmur7SlpuEBs2QKf5xmPbJ90OtT0HgO8tnhi3kshriBONuzZ08nmEc6BxEJLzlCYvKjjdxiKZ3hw2eNH+H+kJo8xxBVkvtRRphIfrD7TUVnPBcR0vEmJCQlzyJeeArx/4D/Gfzg1LAUkerR/xuEveNc+oMoxUAB9fMjE+/JoBGGVD0k9ZgK+evWrdNdtjQCRsAIGAEjYASMgBE4gQgwgRRjjIHf60xsZGIQvxH53cZEQryLGAz3G2KE/u7lOL/lGZdQr4k//vgjVJyxAX4rU44xArziCY+sltT5lNXcvFqesMuNGzd2m0y2ROxA5KJtBtwJ00aIe9riFRzfwLuD39KUZyDf72HD93siDPiN9snzieEdwmQtvg9zPpMmyUWcEmNiF2MIeP34DSGB3y1w5V4wmfOOO+5wRTSkPd/R+c3SpEkTd68QflhnfIC+Mc7COIq+GGNggi6RD/iNoMbkYy3Dkt8T/B4hskmsYxha16m8jHYvySfDe4/IOv6c3H5WjPlwj4PjVJRJ7j7767H1k4+AP8wcvf+3t08+QtZjI/DfJhA+qpnGayVMkIoGeBH5PVS0ahUu8Pp54403XKJzkp1rDhs8VvxeLnoeS2amBGef+I+TEJ0vG/6X38OHssw6Z2YMA44IQ4gZvFTgol8Yg4/YQw89JIhZfCHjCxuzZSJ9OWEQkmsnJwhf6PjCxpdKvpzhYs2seBWS+IJIfeQRIfwRg7uYelXRN0Ll/fDDD26//08sZbQ8//wxBo35R+/P0RSNsZ6rS7zC4IRHAl9M9Ysq/YMDX44x+BHqji/sXFOpUqW0ihQtyQHFbCQdPOcLY61atVwdumQwGN5+t+dgI3wp5X75jQF0XvwQYOk3PKP8M5j8xyKtT1i81QkriCu8/LlzguURJV70hCK/lSmQTQ54odE6efl5OJ8Qa+O9/EWEXqvoCT/JeRFpXfdferpMWbZNeo1e4XIMvfjNItnvCUW31Uu493iwPOx52rz78zIZ5YlHeOQgViFG1fO8obCbjuQE6urtX7phtwz4Y7Ur+5AXFk4tHu2cVSa39By53HndrPS8e2D28vBFUq1ELifsIPYs8gSd9p/OctdEXiXC7y1Yu0vaeqHpMASZtv1mOk8ochlNXrotdB/wPGpxQQn5tfMFYa8GlQvIDXWKuX3wiIVJcn1FyLry1Qnyh5f7iLCBtbxr6zZskRPjEAC/n7FeXh2xWOp73lrZj4QFVJYs+YzwHo70LPGX86/z41afS/79/nVCsyFmI7L6Pf38ZZJab926tTvMc48fsTyX+bwl5cGp9RFCDi9RvJ44lx/wPC95LvLM07xk9E1ffO74jLONmK6fS+pi1hqDA/zY5ochz1WsSJEiTixjNiM/bmDJ/xuEeJ5B/NjH+4jzMP5n4LVKKFF+pOJppc+taD+M3In2xwgYASNgBIyAETACRuC4EdDJP3xvI+yZhkvn9zC/q4lAQRm/SITAQzQNvldifJfk+zHfRYk4wqQmzQvM8Q4dOriB8DvvvFPwYGFgnUmflMOSOh/vdCYjab8oz/dwzZ9JX/g+Skh3viMz4ZLf0IyHMG5xww03OJGIyWMY+7lWfgszMQzj9zvfXzFyCgc9/gmhrBNQCdXMd2vygRKFBU8exhtSYkRU4fqDxuQs+J1zzjmhQxq1gzEPjHEPWCCMkT+YsQyuH5EsUqQRxk2IIKDh/kMVB1Zol/D41G8WO4Fo95JJgYiR0fJE8xuM47y3/V4k2nJK77OeZ0sjYASMwLEigFMFKRAYR9JUMseq7ZO9nQxpvQD/Pw4EGGaC8I88OEDJYCjeMXx5wXSGjbavM70ZLJw2bVrEwVNmxTObHrEAIUUHWP1fOvii5LdIOScQPqiLWUW4y6oxMIpghdGfTz75xG1reDwGIRFccK8OGoLMyJEjhRlDDKpizKThi5F6JeF9o19y8Zhh8JS8SOpxxT9qZgIRtgkGGubJ31akMtHCQNEX/skziIrAwxc2nVWl7Px1R1qHFbO0+GJOnzAGcBFaMDwAGJRlthEfQIx7H8ugsisc+MMAs4YOwHuBQWoVHhEh+dLKF0oGfdWzIFBFaJMvpv73J4PWzNbCm0i9lLSw/8eC7ktq+dD/ZoUdRgj48/lw4clf4Jqzi8pPszbImPmb3W7v4yB929SUxwbO8cKmTQ8VJUzZ67ck9oagfKb0iTVdxIlHriznxJc3vVB1hXNnlm43VgkTmVpdWEoWeUJLO09cwRBlXrqxcsgDh1w/5Fh6wcud1Pj1iU7UQBS6sGL+UL/i0Q6h93bsOeTCy2kOJESUF73+qj3VtII8OmCO3NZzqttV0vMkom+EfcMWrdvtBCTW2386m0XIyBHl73PoQISV5Jgk19fd+w45oWrrnoOu9vdury7PDJkvD/Q/+r5ofFZh6XJtxQiti/uHhSCanAU/pwjr/LOLZjxXee4gkCKmYME6op3L/nz58rkf2nghEWuczx7PDUTioPFj0V/3E0884Z4FPMMQ9DF+kDNbUz2KgnUEt3m2TpkyxT0nEXow+sDzhD5hzGrjGYCgrx6atMMziMEC8hotXrw4NAuU6+A5j9hPOD4MYZ4vC9F+HLlC9scIGAEjYASMgBEwAkbguBFgwuno0aPdZCAVCJiQiOigv5+ZIHTdddc5AYXvsQhEfBfWiUd0nu+Q+r2bEOhM1kRA4fspv+0ZE9CxCyYXMbmTiCMaci3a+fSJ75f8LqUs4ZIZy9CJTbSNmKWh+PHGQbRhjIHvovSb3+ich3jEoD4TrBhLwbhGxj2YRKuRWtyBKH+YCMVkWX6r8xsYsSqYJzjKqSnejTcJ4z688PbBmHDJNTDeoZO1+D2PaBU0WPCbgXB0SU0uZTwERoheyUU1CLZh2yknwHgdY0hMxmOCn47/+GtKyX32n2frRsAIGIFjQYCJF0zCYBye/y+Mw/MsU4eVY9GHk7mN0zz3wcSxkE7mK0pB33Gd5IscA538s4sWmonwZhzLkychz0hyTTDziIFKvqBGMkQV6mQQ1z/I6i/LF6fkvgjFUoY6EVMQ8DTHj7+dWNcRisixRJ8jccIzidBNBQsWjHg8qXaYFaUD2rg/44pOn6Pxpi1efnEwqfoR/qKJVgymR/LYSqq+eB/b5QkOa7ftl2Kex1Ekr5NY2iNU219enh5EFQSlSEY7iDMISdEMD5+ieTJLxgiCFOfEox3v1snGnQk5kvDqiWRbPK8ghJiSR8ShSGXisS85Jkn1FRb+UHf0h32bdh5w3kXBY9pfPOAId4YYoiKHHvs3l4SbUAE7Ujs8i1SI4Tg/Kslj5hdaI50X3KfPAj6/sYpDwTrY5hnKDBB9NgTL0A4sea4RlsJv0Z6NPGt4rsaaI81fp60bASNgBIyAETACRsAIHHsCTPokFxGeK0wgROBhUiWD2YQqxiud3JWIP0z0xLNFRQq+xzLJVL3x+T6MJ8WkSZPcREgGkRYuXChlypQJXRgRLYiSwcTFpM4/66yznHcL4dfoF55IDELxHR8j7B3H8MjAmOhFDs5t27Y57yL20Vbbtm3lvvvuc2GbEZAQvtS4Rjz0OZfJjoRtZhKoGgNhiGOIXUT8wPMIHuxHuGJyZKy/mbVOlng98buexN8qlulxwlIzmYvJXfRHv+8Tnh4RjMliTDBjbABxrnTp0q7/jEeoMWGW+7Vo0SJ3XPcHl/w2YSIuIe2SGxsJnmvbCQSSupdMlCXUOJ8vDE+4Tp06OQ86xrIYWEUsYgKeinkpuc8JPbC/RsAI/FcJbN682Y2tRBojPl7XzOQMJivo5BL6wf8SvHQjTVo4Xv08UdtNsyfRiXphsfSLL30a1iyp8imdbc6sp0ih9rQNviDxhTEpi+VLUCxlaEM9cZJqL7ljzNDX8HWRyjLAnNw1RTov0j6uK5pARHnaiiauRaqPLz98CSX/CQ8xvkDzwGAmWkpCzEWqOx77cmTJIOWLpO2jiCCh3jbR+kQ7vJKy5OqIRzve7QvzdIrUn3zZMwqvf9uSY5JUXyOJQOxLSoTjevCs4TNZpcpRD6p/+zqpnx9qfs/JSG36RSKdFRipXFL74vUsIDQHr2hGO/zojGTRno38iDYzAkbACBgBI2AEjIAROHkIIHIQPo4XockQggjHhoDCZCF+5yFm8NsOrx6NnKFX6Bcn/N8RmQSJ8TvXb9TJpE61aOdzHEEHgYdoGAhEwfBusQo0mo842Be2NWen9se/9EdNQfAiNN3AgQPdxDA8mIjCEc/Z0zDDU4k+Ua8KRPQJ4Q4xjrxIakyM474Rxg/Pf4xrJZoKHmHRvstTjtB63Gc8qfz3jWNm8SfAfUEgQmTViYV4jGHcAz5fDL7Gep/difbHCBiB/yQBxlWZjEDUKsa2eKYTmet4G+kIcNrwC0T0if9N5AOMRSQiihb/n6iDCSinmiU9Ynyq0bDrPS4EGAjWL5NJDQqnpXOIQbjDmxmB402AWVi9evU65j92+GE22gvZYWYEjIARMAJGwAgYASNgBE50Al988YXL3YMniYoRiCbkxWEQR+3GG290OXSJEEG4NQayYzHNeTR58mRp0qSJOwWvc/IQEa44FrviiitcBAwG0cmvo/mNYznXX4brI8IA4ZA1XB1e83gN4cmBUYa+Mpivs7bx8NAJrQza4V1PqGheeDcxaEfOonhM5kSQIjwc+YboF55GfmNgLnv27P5dofvmz9uEFxEeRP57GHbSkY3u3bu7XESE5TP79wnwfiOiC5F2VGhVsRRvOO4tn61Y7/O/32NrwQgYgeNFgJz3+fPnd56x/M/UiRyak+949Sut7RKBihQFiOX+SRhprfdkOt9EopPpbv1H+8psLc1h8h+9RLssIxAiwD9QMyNgBIyAETACRsAIGAEjYASiE+A7Mzl6yBeEhwMDUuSVfeutt8J+O5LPh9BYeBYxmznWiBPUR/g3PIHwFiIcMWHKqUtzCkfvXcIRZlDjTcSsY/IZEao5tcZ1duzY0YXDIyzOgAEDnCikOYqqVavmqiY/EUIS3lMMzp177rluP15WhKVDhKEf5Ciif0ExJ7X9gy19QrxhtjYvDGEOjyE8jAiJR6QWcgkTRr5Dhw6uD8l5EdHn559/3oWBR9AiLCC5ohDfVBBLbb/tvNgI8BlAIPLb1KlT3fsLUVDDzcVyn/112LoRMAL/LQKIx3isElqVSf78v2rVqpXLG328RSL+/xDVi/+Pfm8i8tqRvzs5QywnTyCTLEgRcyqaiUSn4l23azYCRsAIGAEjYASMgBEwAkbACBgBI3CCEmBQmnDhhHBDCFIj18Czzz6rm847nxxCiCmEv0nKVEDSMHD9+vWT1q1by9VXX+1Ow2vn22+/DXnnBOsKns9xPJkQT2INNad1aN26jdcP3kDPPPOMy7tUvnx5oX967YT74trx8uB16aWXuhBgei0INGvWrAkJXIg3DJSlRmTRPmkfWWqep2C4HgQ8+vPEE0+4MH3cG50AijhEqG31BEMMQohA0PIbghKCFzlJMcICcf3mReSnlLr1SPdSa0rqmJYJLmO5z8FzbNsIGIH/DgHyQmM8o9VIpTB27FjdPK5LJpLwXYDws3yPIN0IEyeC/7siddL/3SLS8VNh32kHDhzw0sibGQEjYASMgBEwAkbACBgBI2AEjIARMAJG4MQiQG7Nbdu2uXyy5BUOGrOYCb3GYFBqjJnR3rhIonBpsdSlQhN9jEf+S2Yyc6158+aN2Dz5gHhFy+FLaDeuBc+o42H0Hxb0T8WhWPrhD6MXS3krc3wJpPY+H99eW+tGwAiklQDCf/369d3/Ga0LT5333nvPhSLVfcdz+ddffwlet9u3b3e5wDt37pyi7uA5iycRoTZPNUt3ql2wXa8RMAJGwAgYASNgBIyAETACRsAIGAEjcHIQKFKkiAvDFhSICKmGBw8DVAzqpNYItRXMp5NcXQw+tWvXzoVUYwAqHgIRbeLdEU0g4jih2qMJRBxHmDleAhHt039CxqVEIOK81Hg8cZ7Z8SGQ2vt8fHp7arVKLpU+ffrI6tWrj+mFL1y4UPbv3x9Tm3gNki8tKeP4kiVL5PDhw0kVCx2j7Jdffhna1hU8LLdu3aqbSS4Rq+EWa5tJVpaKgynp686dO50HJpMGUmojRoxwefRSeh7lixcv7k7bvXt36HQmBpQuXTq0fbxXyK9G2FPyBGpI1uPdp5OlfROJTpY7Zf00AkbACBgBI2AEjIARMAJGwAgYASNgBBwBQq2Rg+CXX35xA0LHGgvC0LvvvpsmgepY9zmp9hDh9EU5XVdx7kTYTqr/dswIGAFxwgG51vCQPBY2fPhw9xwmb1qxYsXkySefFDzNIhnhJhs1auSEbkSFEiVKSN++fcOKzpw5U2rUqOFEh8qVK7ucZ8mFMkPcIYcdYoUaedMuvvhiKVOmjBQuXNiFIMNLM5IheNx///0ux07ZsmWdyE1ONTwz1e65556wZ6I+D/1iiZZN6TIlfd2yZYvLt0NePTghiPTs2TNqk3ja0lfeE2qIdAgoGuJT98ey5B5j5O5RIz8R/4vNTn4ClpPo5L+HdgVGwAgYASNgBIyAETACRsAIGAEjYAROKQLVq1cXXsfD8NZ5/vnnj0fT/1qbhKnz24m+7e+rrRsBI5BA4Pfff5dChQoJecn+bcObs1mzZi5PHCIE24hAeEMGc48hHDVu3NjlsiE8KGW+++47J+6QMwbPDwSQ2rVryx133CE//vij85xEACEH24wZMwTRKJLhQYTQQt42DE9PcpqRK2fFihWyY8cOlz+OeocMGSKay03rQtj6/vvvZcKECc5rddasWe66EGA0Tw2eTR07dpQ777xTT3PLbNmyhW2ndCOlfeW6eDbDGgFs5MiRrq/0o2XLlmHNf/LJJzJs2LCw/EEU0Hv20UcfSfv27cPOSW4Dr882bdrIc88957x4uS+DBw+WadOmRT0Vz7ZjaenTpw953OJFpu3fddddx7IbJ2Vb5kl0Ut4267QRMAJGwAgYASNgBIyAETACRsAIGAEjYASMgBEwAqcCAbyDnn76aedBghcOokgwrBy52RBqMDxsEDmqVq3qPD0QblLjPRKN7eeffy5nnnmmPP744070adCggetfjx49Ep2CsLFo0SK59tprpVSpUpIzZ07nzULBlStXuvJjxoxxy+7duwthRgmtSd0YgkY0GzRokNxyyy2hMJfjx493bb3zzjsu/CVeLvQJUQrRKGhLly51Xke1atVy3kR169aVc845R9ivRp4bOJYrVy7sRejFtFhK+oqnFCLgU0895QQwhKEmTZq4F8z8hmiGmNOrVy8nfPmPIZLBi/uXGnvhhRfc+wgPLQSnN99807GJVhcC4bF88b4npxAvRCJtO1r/bP9RAuZJdJSFrRkBI2AEjIARMAJGwAgYASNgBIyAETACRsAIGAEjYAROKAKEQPvwww/l1VdfFcKNsWzatKkgruTIkcMNhpNv5o033nD9fuKJJ1w4t65du7qQY506dZLNmzfLxx9/nOi6vvrqK3nllVcS7WcHggmhNYOGEHH22WeHeeYgtGzYsEEIw+bP9ZY5c2Zp27atdOvWzYWZQ2BQD48rr7zSVa25yfxejAzwY+QcimQc55rhooYYhTcVQpMaodkwhJ+glxUeRs2bNxdErjp16ghCG3V+/fXXerosX75cNFwewhyeT3gWaY6eUMEUrqSkr5H40Bwh/zDyUamX1MMPPyyXX36586gib1/QzjrrLOcNhIiSVB684HlsU3706NEurxRhV7m3SZl6eCVV5kQ69l/zEk4JWxOJUkLLyhoBI2AEjIARMAJGwAgYASNgBIyAETACRsAIGAEjYASOEYGdO3c6IaR3796hsGL16tWTChUqCDl7EFoQHCh33nnnya5du+Stt96STz/91IVao5uIJnjyICIFhQGEE0KZRTI8fyLZvHnznEjkP6Y5axBV8LzxG15Q9PWKK64I7e7Xr5/z9mEHAg1GOUQpwobhpYJF8gBiv+YZ8vcRQemMM87gcMgQMzCOXXLJJaH9rFx99dVC7h6/mIEXDiILhgcXXAmx9swzz0jGjBnlgw8+kJ9//ll+++23UGgzVziFf1LS1wIFCjjPLTx5LrjgAilYsKD8+uuvoRbxnEEc++abb1yuPu5PNCMnFLZx48ZE74Vo5wT3Fy1aNLjLtk9yAiYSneQ30Lr/3yDAbIaffvpJhg4dKhdeeKGbFXLZZZcJSfPMjIARMAJGwAgYASNgBIyAETACRsAIGAEjYAROTQJz5851F37RRReFAJCTBnGH/DSIRH/88YcTCcqXLy+TJk1y5fDWIW8Ntn79erecPXu2G3dyG0f+4AHEKyWGNxPiid/wIMLI5+M3wtzhfbNv3z4X5oxzGf+6/fbbhRxv9B/vIkStW2+9VcinQ0g67KqrrnJCjb8+XccTBiM0nRr1BfuF0INxLGjk5cG7ClGN8HlTpkxxXkKUffHFF2X//v0udNs999zjjnP+9ddf78K4jRo1KqK4hhjHfVFDvJk4caJuhpYp7St8EAfxYKJOvLZatGjh8gMhhO3du9flGercubMLixdqKLCivJRf4LBtnqIETCQ6BW784cOHnQJ/Clxq3C5RXVrTGl80lg4xO4F/LGr+dWYpkETPzAgYASNgBIyAETACRsAIGAEjYASMgBEwAkbg1COAUIEFQ3tlyZIlJKDgpdOwYUNhHAsxBqtcubLzOGG9ZMmSTohBjImHkesn6OGzatUqV7V6FGk79G3WrFmCQIX3E3bxxRe78/Ea0pBzN954o5x//vkuhB4eO3j94NVTqVIlrSpsmSlTJrdNHho1vIjwZPLb2rVr3WZwIjaeSOQ74kXYOQwRBiOcXJcuXVwov2C4PeqB7bRp0yKKRAhd6olEXVmzZmWRyFLSV06mTbyPyGWE5xB9/fHHH2Xq1KlCODpEQfInIdJpOL/Fixc7MQkvNDym8NBS0QzGZkZACZySIhECADE5WT7wwAMRXetiKaMQT+TlgAED3IPO/8BLS3+JdcqLeJ7EPv0vGv98cXPln8zkyZOjPszjce36D4266tev76pkZgj/QOGMOysvf0zWeLQbax2Ef129da8rXiJvVu/LRqxnhpfbte+Q7PReRfNkCT/g21q2cY8Uz5tFMmVI59t7dPXQ4X9k1Za9UqZAtqj9iEc7h//+Rzbu2C8Fc2WW9OkiX/DGnQdk74HDrr+RyvztgVu+aa/ky55R8mRL/T/d5JjE0tejBEX2HTwsO/YekkLetZkZASNgBIyAETACRsAIGAEjYASMgBEwAic+AQ3dxhhVkyZNXIe3bNkihBSrXr2620YsYKIxpuXxwsGDB2OMa82aNWG5etwB70/fvn3l3nvv1c2wJQIOXj9BQ7ghj5E/r83gwYOlZs2aiSaqq2jlz1NEfYgniB0Ywg6eMnfddZfzjmEf+X/IuePPOcR+NQ0jR64lNUQoPInIm4MQhRGCDStXrpxb6h/tV7Zs2XSXW+o2Y3H0i5B0w4YNE4QxjP2wJ/dPJGvWrFmk3Yn2paSv3L+XX37Z3c/GjRu7utjHvYM5xjZeRu+8847b5g+iEQbL2267zd0b9SDCo8vMCCiBNItEfEBI3hW02rVry++//x7cfUJsk8yLGI4Yro3BWJzsj6UM5U50U5fUOXPmxKWruK8isKE+RxKJcGnFNZMHXTDOZ1w6cAwqIXarxu7cvn17zCIRSe3WrVvnZm7oP46kuovbqhoxV3n5jfeovk+ZgfDDDz/4D0dcf+P7JdJ79IpExxpVLyRvtqgmenzEo+fK6QXD/wnWe2G83HdJGWlxfgl3/teT10q3YQtl9/7Dbjt75vTyzLUVpXHNIrJk/W5p8kZiV1ltuE2D0tL+8nJOSHl68Hz5bkaCW3O1ErnkuWYVpXKxBLdhyo+au0m6D1/kBCDauPm8EvKwd65fkHr/l2Xy8diVri+Fc2eWR688Q6466+jsFwSbtLaDgNL928XyxYSEf6D07a76peWhRmUlQ/oEsWjB2l3y6Odz3PVznL680ryqnFP2qGvzN1PWSddvFoS41auQT165uWoisWiP1+fr3/rTE5P2eHVUcVypE0uOSSx9Tagp4S/iWhfvPkxckuCKnS9HJmnvXdf1dYr5i9m6ETACRsAIGAEjYASMgBEwAkbACBgBI3CCEWAwH8HnvvvuczlxNBQaIcdIWcC4LKHH8MLByF+DuIMXTs+ePZ1w0KNHD+nfv78bt1JxRS+TycqfffaZboYtyX0TyVq3bu1EooceekgIb0Z+HAQdxBTsq6++kueff96NZemk6ObNm0v37t3dOCxlEZUQmjByJtFXxpLJRUS+HCZNEwLulltucWWCfxBzCEu3YMGCkDcSOZlI3/DII4/I+++/70SsZ5991nkGcd2UJf/S22+/7cYtYdahQwfBKwvha8aMGfL444+7+qib8U1EIcLNIb7gzcW4KKYiVLBfsW6ntK+M7eIh9L///U+4FnIj4aE1aNAg12Tbtm2Fl98IfQdbyqrNnz/frfL+MTMCSiDNIpF6OPChxXVRjRiYZsefAA9CYmXqLIJ/u0fk1eGfACLSySoS8c+Xf7B4k/EgjdX4Z4HLJ7FTkxOJyEHEPzs1FYjwHsKLSEUj9SgiBB3nBF1j9Xz/Ek+bnnfW8O+SrJnSh23f2Wua/PzY+SHxI+ygtzFp6VZ58st58sL1leT/qiX80xgxfb10GjhXinjeQDVK5ZIfOp3nTsOb5arXJkjHq86QS6omfHnIlTXh0YJwM2X5Nhn6cB3J7wkTr45YLK37zJBh3jZCxbw1O6Vdv5ny4GVl5RZPnGK71UfTJHe2DE6goYFBE9fIuz8vkw9a1ZBaZXLLUE+86ugJNUXzZPa2E8SZeLTz+ndLZPKybfJ1+zpSKn9WmfPXTmnZc6qUyJdFbjq3uGzfc1Cu7TFJrjunqHzcuqZk9jyePv9jtdz+4VQZ3qGulCucXWau3CFPDJorPW49UxpUyS9rtu6T+z6eKS97ItjLN1VxvPTP818vkBxZEj+CY2GSXF+1DZZ4g93jMS9dIKv88vj5HtuMMnrepiMMs8gFnohlZgSMgBEwAkbACBgBI2AEjIARMAJGwAicuAT69esnCDN4tWB169aVb7/91glCjMUhaBCOTI3yd999d8jziPxFlAsKRJQn7BmvlBj1EL3owQcfdN5MtP/UU0+FwqyRA4kJ2OQjKlq0qJtQTn9UWKE842KcjyHS4PHDGCZjzBgCDtcRDLPnDh75g9eO5mBiF+H2CA9H+DgENIxJ7prKYceOHbJo0SJR76MhQ4Y48Y121RCzNMQc9f38889CO2effbYrgrjCvjJlyugpqVqmtK8IfS1btnST02mQe/r5558n8pBKrjN4pCGkRQuDl9z5dvy/SSByXKdUXCtiBO6H+nr11VddLbyB+RC99tpr7oNfokQJ90Dze0Xg7YKyyTFeN9xwgxsQ124QK5EHBw9ABvBRkHlDq7FNG1988YXgckcZlsScfOKJJ9w2g/aR3BNRiHG9pF2EjYULF2q1yS5xXbzppptC9fNgwwsFQ2DA5Y8HGiHFEGkee+wxl/CM4wz+02fiVNIv+sc2qjnugWo8cPWaeJDCFS8nLJY6UIpx1fS7GhKHslGjRq7fMEWhp79Ycv12haL84YFLXRizAbgeYl/qe4DZAjCGNQ9TEtpxDqHrYAQrmKnpeWl57+A6Shv63uFe63sPLyH6yAvVnSXHuYf80+WfCPFJ/ZxR7LmXvIhNqnE8ifuKQIR16tQp9E9PryW45B+z37h+2ual3kP+46wHzwke1+1snjcOIof/VTBnQpxWyuD9Qli2D0Ym9gDUOmat2uFWrzm7qCD48Lr5vOLS755aUtgLVZYxfbpQ/YgPGCHMtE1CrCGq4EH05NUVpEKRHE4kYn3LrgMyfuEWd86309ZLxaI5pE3D0q6NuuXyStv/O93zGlrljvMHIaZlvZJSv1J+yemJKrd562efnkeGeGIRFq92aPuNW6q5/iCq1fbaQHBD6MEmLtnmlp2uKi8FPJ45PSZtGpZx+wZOTPA+IqRe20tPl8vOLOgYlfbOv7hyASceuYJH/uBtNGzqOnnz1mr+3W49FibJ9dVf6cHDfztvpcvOLCTFvHB+eGtd7nmWYWu2JVybv7ytGwEjYASMgBEwAkbACBgBI2AEjIARMAInFgHyzDDuyVga4cLGjRsnZ511lusk65deeqmkS3d0mBdvoy+//NKNcSHY4EHDuGI8jbFF6kUMYgyWcTK1+++/3wlEGuIN4WfixIlunG3lypVOpGHM1t9nxuWYII2IQ36j0d64a7VqicdNtA2WjN3htaTjsexDvOFcciZx7XDQEHLnnHOO6xf5jzDELrgiZhFabu/evc7jCt5qCGiMH1MffSN0m3pHaZnULlPSV/JJEVaQEHJ4A8E+udB2RD3yexGRt54xUMbhzYyAn0Diaez+oylY50PEg0qNQW8SYPGQwPWNlxqD9LwYpCexFsou8SJRMflQoxwT1owPJ8dxp8QlEpW5SpUqToDgQ/Hbb785V0A+FNRPbEXKUBcD6nzwcbdkH54h5B9CiKAONb9SjGsl6jMvFOykjAcb/cWI90j9CDyIIt999537wGk8T0LvIWohoHA9hBmjj8pF3QKpC6EJ0QSXQ64ZlR1DHcblkhfXhFgUSx2EP6Mdlhiulu3bt3fr1EmSNV6IHYgb9CWpfrsTo/xRrzIO0zcEGgStSO8BjpEEDsGK+0P8TBjxwnsHt9hI56XkvcM/GsIJ8kDEuE+aUwk3WGZY6PsSsQ7jnxYPTN3PejTOxAKF20svvRRKCkgdfBZ4JWU6Y8Ffhr7xT4aZF5j2VcsgwOq90X3Rlkc0v9Dh0xKipbntgjkzy/PNKsk9fWd4XiT5nXdOqOCRlZqlEzx0Hv5strS+uLRUKZ7T5efxh1ULnhPcJsQZVrFYjtAhhBVEoRVeiDVs6YbdUrVETknn6yBtISQRQi5zxnRCiLdWF5UK1cFK9ZK5ZKrnoYTFox1EoUurJXhB4RmF2DN0ylonrlxeI0FQ0ZBziC5qynmll38IwyvH75lDXeMWbpaangeUGjmBCEeH5xU5mIKWHJNY+uqvM5Pn8dTighLSc+RyKeIJhPk9gevLSWtcEQQsMyNgBIyAETACRsAIGAEjYASMgBEwAkbg5CDAWCsvvzFWxpheJGN8lte/aSoEBdtgDDRoiDUq2ASPsY13TenSpSMdiriP8UPGehlDRZjyGx5MkSxSv9hXrFixSMVD+6LVFyqQhpVodUfqKyEAo4UBTK4LjC0iIDKGbmYE/ASOSsz+valYZ5Cd3D76IuSY3xAkiCeJ6qrGIDhqM4PwGAnKCKuFNwmeQwhGlFeBaPbs2U4pZxCdc3A59BuxNhl8Z/AeQ0zhHBRe2semTp3qlvoHF0JcDTV/EoowCnxy1qtXL1eE8xGIaAOx45dffhEU8Tx58sjrr78eEna4NowHd9DI4YPHSr169dyhESNGuKUmnENcQgjTc9966y0nsPnriVaHvwzr3bp1c7tQkanz+++/D22zkpJ+uxN9fxCuNGkbHkPEyiR2pxp8EPYQUK644gpBPIMR9wjRjfuHBfmn9r3DfVGBiPvOtrqXBmOt8o+EZHkTJkzQ7kZc8p5jdoHGH6X/eH7x/tH7h9cW15OUBa9Ry+JhhVDEZwOvIr+pm6x/X6T1uV6YtKqPjwp7+fPscM6FFfPLDV4+mkcGzHaCSLAewrqRf+iPRVvkpncny7nPjnXh56g7Vlu1OUE4wcPIbwgjyzaqSOS5HecOF0rwVMJWb9knG3cccOvBOhA7Fnt5kbB4tOMqOvKHaz3/uXHyipefiBB3mj+JEHvYmz8sEYQiBKC+YxOeZ9E8cnr8sNTlL7r3kjLuXP6QXwmh7lZPuIlkSzckzcR/TrS++suw3s7zbsLD7K7e0+WaNyfJZ7+tdnmQ/B5mwXNs2wgYASNgBIyAETACRsAIGAEjYASMgBE4sQkwJoVA1KRJk2PWURWeVHw6FtvRLg5RiQnojGcei35oG/RHrz9a35Lar/VoHcdqG9GJMVFtN6k+2rFTi0BiSTeV148niF/1DOYkQtlFqeTVoEEDl9AM9zgGvhEPEH2I6Yh7JLlsCCHHB5zBcozjN998s1tXQQdvI7/h5oghPmB4jqhIUb16dScSBD082rVr57yGOIc+4gVE+LvgAL2r0PdH2ybcHEbfEcEwPFhKlSrlQrfhFfXGG2847yeO+d0f2YaTxtqk/4QsQ2RC4IIPpt5OhDRTVrg5qkWrQ4/rEs8c6sXUrRDWePWo0QdCziXXby2fkiWunHh3qXE/cfnEswpxD/dQTEVDLZfa9w6CIwZfdU9FeNP8PwhzaiSp87uS6n7/knus70ESwanHD66w+j7zl09q/ZprrnGCaLCMhprTpf84YRRjsZL5sspT1xwV5zinXKHsiU7Fk2Xsgs3y0rBF0u3Go3FrtSB5eJp64eYmLN4iv3nh4T77fbV87YV4+7xtbZeTSMtFW2q+HecR5HmzqO3ef9iFa2Ob/Dhs+43yWI4s6Z2wwbruYx3b45XR+nWZlnYSak342//eWrJ55wEZM3+zl09ohrx125leXqaCLlzea7dUlUcHzJEhf651Yds4o4HnjeP3LtK6vvpzjfQZs0Leu726cE+wRet2S//xq6TXXWe5cHRa1r9Mjom/bLS++svsO3hY7vDyPO0/+Le82aKa5MmeUX6ZvdHll8qZNaML4+cvb+tGwAgYASNgBIyAETACRsAIGAEjYASMwMlBgEF/IjAdS/NHEqLdY70dvFbNqcRYst+Od7/8fQmuH+u+BdsL9se2jUDcRCIGzJNSrf3JsPxuhdmzZ3fh3fC+QJjAE4cXHi+INXhtqGkSNRKWEcasTp06esgt06dPH7Ydy4Y/rJwmQtu/f3+yp2q//G3642jisaJ5mRC+VNwJVpwjx9FQXH5G/j741V3KIKL4xa5odQTb8uc68rumpqbfwbpj2cbLTA0hiliohLqDzUUXXaSHEi39XFLy3tF8QXpftWL/9eo++pCc+Zn53T1T86DVUIXBNuFADqRIFu2cYFlCuuEplJwhrnRvXkXu+HBaVKEgixfujZBkvMi/U7/rePl22rqYRKISR4SR9dv3CzmK1JZ7oeYu8vILYWULeTl/tiV4HOnxtUfy5OA9lD7daZIvRyZZu/2okEk58gRV8sLWYfFox1V05I96DtXzGK70vKHwukEkwq6sUVhqlc4tk5ZuE8LPnV8+nzz15TzvOsJFuHGe+Pb04PkuH1ODKkdDur3v5YHievA80pBv1Pv7oq2eIJZBGnplk2NCebWk+qpl/vT6Ssi+EY+eK6cXzOZ2k9MIhv/zBCtyPZkZASNgBIyAETACRsAIGAEjYASMgBEwAkbACBgBI3BqEjg6vf84XT/eLXjM3HHHHc7TZ+bMmSFBhRBqeChheHG8/fbbzoWQkF+ENbv66qvT3OshQ4a4OugH4hSmXiduI8ofcgZh6q2CaIN3CN4+1EV+IozcSXgnESIuJVayZEnHgXNGjx7tTiU0n3oCkbcopVaiRIlQneqhhRBHn9UjKq391j4Rui0pI6wfAhGG5xRh4Vq2bJnUKYmOJffeUQ8t8hxRFiPnEtfbvXv3RPUlt4P3KfmqsG+//TZUXMVL3REp35Ae02XZsmVdP3SbJWHmeOHpxNJveEBxTrytTtm8cvuFJYXcQ+QBUnt5+CJ55qv5uumWhCYrVzhcDAkrENjQfDsj5yR42HGYcHWIRiqqsMRLiTw9aj/M3BDKgcQ+xKDvZyR4wLGNZ8zIuZvkjMIJIlE82tnnedlc+eoEGT0v/H2LB5aKVqu9HEuEikufPp1cXcvLm+UJRvs8j6ZRXl/KFznKhWsk39P9Xog3cgH57TRvI6MnLlGPvjj+8+wNMtwT37DkmMTSV1fRkT+Ux7J5eZf8Rr6n3fuPcvcfs3UjYASMgBEwAkbACBgBI2AEjIARMAJGwAgYASNgBE4NAnHzJELk8YfrqlWrVih8WFIoERPwtMHat28veH1ouDHqIBEXCcgIMUeYOrxPGOhnwJ68RXXr1k2q+mSP4bGEQEFOIdrFo0QFoKROxoVx8ODB0qNHD1myZIksX75cZs2aJZUrV3Zh9ypWrCiIE48//rjro4ovSdUZPEZIM/IrIeA0a9YslKuH8GtFihQJFk92mzidd999t5Dj6PbbbxdCy+G1gvD00EMPufPT2m/uGTZ8+HBXv+Zucjt9fxD91Hjv4KUDz5RYcu+dAgUKuNCD3AfeQ+eee27oPcl7LTVG3iHEJ+41Rtg+9UajfsIFPvvss0I4wgEDBiTZBDmm/F5iCHeEmcObSEU8rUBzKel2UsudnuCC8OK3Ap7AU/GI541/P+sPNSoro+ZsklWeCKJW3cu/Q1i1gp43T6MzC4nn0CPfTF3n8us8ckU5LZbkMpMXYu5hr+yb3y+RSsVySmEvj1DXoQucF1K9CvncuTfVLSa9fl3u9pO3Z8KSrU50+fDOoyIoYsutH0yRXqNXyKVVC0rfMSu90GmH5bZ6CQJMPNrBY6pC0ezy3NcLXJLEsp7HzfSV2+WTcSulTYOEhImwGPDHXzJ1+Xbp3LSCbPVEtXd+Wua4NqmZ8HlESLr9w6nu2mp6Hkf++3DuGXnlDS/cW9CqPDbK5X9qfKSO5JjE0tcfPaHtXU+I6tu6puA1hLX/dJZ0vKq85PY8zUZ5YhhiXKfGZwS7Y9tGwAgYASNgBIyAETACRsAIGAEjYASMgBEwAkbACJxCBNIsEukgNwKLijvw0/xEGtoLgSJo7GPAnQRjeAYhuGDkEiL8nAohiDiIGwgP6n3SsWNH4RXJtC3tG2Wi9eOVV15xA/P0nb7grYS4cPhweJ6UYDuNGzeWjz76SF566SXXL44jRPTv398VxXOIHDz0d/HixU6ESak3EWIDIeKok3w9CFjNmzcPeSkF+xTLNqIYYdjwxlJRBg8eBDcs1n4rz2Cb5Fpj8msAAEAASURBVHJq2rSpCx3466+/uveEltX7wjnkm/rggw9ccj3CDJJXqUWLFi55mtYZ6Tw9Fut7Z9iwYe69gzeXMuzSpYvzQtu6datW54SB0EaUFbza8EJ6/fXXXQnEOr/4d9dddzmvL0QpPMhiMULVkZNJ+QdzEdEeYlJKDLGndZ/pYac0ql7I5aNhp+cIE2ZZMqaXV26uKje/Nzm0/4rqhV1enpc8jyI8XrDsmdNLl2srutBzoYK+lQgfcWl1YSlZ5IU6a9dvpitZrUQuecnLf0QYOYz8O+TJeWHoQmn8+kTXBqKQP1xerTK55ZEry0nPkcud4ITY1O3GKkI4OrV4tNP1+sry7JAFLg8R9XK9eFk9cFlZ10xmT/Tq2aqGPNB/pjR+bYLbR98I2YdQhY30xDbNsRS8B5OeuyiUR8kVjvInFibJ9XWTJ2AtWb/b5XLCA+zr9nXkSS8sHmIbxrUhDrasVzJKL2y3ETACRsAIGAEjYASMgBEwAkbACBgBI2AEjIARMAKnAoHTvEHqf06UC8WjBY8Sf+4af98QN/AewbvInxPGXyY16whCiEQIF6kx+kSuHH++HK0HIQIPK3/uIj2WkiXh0vC+SWs92iY5gdatWxeVZVr7Tf28VOjRdoNL2O/YsSPqPQ+Wj7Yd63sH4dEvVkWrz79/xIgRzmMIkWjixImyb98+lxMr0v3mPK4bS0k7S5culZ9++kkIVTdu3DgXupAcRP9GiDnXuRj//O1dy19e7hoknWJ5s3geRYnF3liq2rXvkBNPEHiiGfl/iubJ7IVjC6hYR044/HdCX0p6uY6idSNe7WzaecDzosoU8Xq5veQUwqMnv5df6N+0WJhE6yu8VIzTPhKqb9e+w4JnmZkRMAJGwAgYASNgBIyAETACRsAIGAEjYASMgBEwAkbghBKJ7HYYgRORQFAkOhH7aH0yAkbACBgBI2AEjIARMAJGwAgYASNgBIyAETACRsAIGAEjkFICaQ43l9IGrbwRONkIVKpUyYUVLFy48MnWdeuvETACRsAIGAEjYASMgBEwAkbgpCMwc2ZCuOqTruPWYSNgBIyAETACRuCUIlC9evX/xPWaJ9F/4jbaRRgBI2AEjIARMAJGwAgYASNgBIyAETACRsAIGAEjYASMgBEwAkYgZQQiJ/9IWR1W2ggYASNgBIyAETACRsAIGAEjYASMgBEwAkbACBgBI2AEjIARMAJG4CQjYCLRSXbDrLtGwAgYASNgBIyAETACRsAIGAEjYASMgBEwAkbACBgBI2AEjIARiAcBE4niQdHqMAJGwAgYASNgBIyAETACRsAIGAEjYASMgBEwAkbACBgBI2AEjMBJRsBEopPshll3jYARMAJGwAgYASNgBIyAETACRsAIGAEjYASMgBEwAkbACBgBIxAPAiYSxYOi1WEEjIARMAJGwAgYASNgBIyAETACRsAIGAEjYASMgBEwAkbACBiBk4yAiUQn2Q2z7hoBI2AEjIARMAJGwAgYASNgBIyAETACRsAIGAEjYASMgBEwAkYgHgRMJIoHRavDCBgBI2AEjIARMAJGwAgYASNgBIyAETACRsAIGAEjcJISWLlypdzV8mYpVCCPZMqU6Zi8aIs2advMCBiB40fgtAMHDvxz/Jq3lo2AETACRsAIGAEjYASMgBEwAkbACBgBI2AEjIARMAJG4HgRQKRpeOG5ctc5p0mbC/NIoZwZjklXNuw8JB+N2yZ9/vxHRo2bIKVKlTom7VojRsAIhBMwkSicx0mxdfjwYUmfPv1J0VfrpBEwAkbACBgBI2AEjIARMAJGwAgYASNgBIyAETACJy4BvHnO2DNWnrqywHHpZNfvNsnibBdJn/6fH5f2rVEjcKoTiGu4uT179sj06dOFZaw2ZswYef755+Wbb76J9ZRTutycOXOkUKFC0qZNm/8Ehy27DsiS9bvl0OHUO7Tt2ndI1m7blySP9dv3y469h6KWof1lG/fIP0l0Ix7tRO2A78Du/Ycdk/2H/vbtDV9d513vX1ujX3Msdew7eFg27NgfXnEqt5LrTyqrTfFpew4clgVrdwnL1Nqxei/Eq53UXqf/vHi8F/js8Bnavuegv+qw9YOH/5ZF63bLvoPR39thJxzHDT5/k5ZsT9N76Th235o2AkbACBgBI2AEjIARMAJGwAgYASMQM4Hh333vPIhiPiHOBfFeog9mRsAIHB8CcfEd/OOPP6RLly6C4KNWv359eeaZZ6RevXq6S77++mtZt26dNGzYUCpWrOj2c27Xrl2lVatW0rRp01DZf2MlUvv/Rjv/Zp2rVq2SnTt3ysSJE2NuBs+jjz76yJVv0aKF5MqVK+Zz/QXf+H6J9B69wr/LrTeqXkjebFFNxszfLPd9PENeaV5FGtcsElau86B5smv/IXn7tjPd/pkrd8jjX8yV5ZuOCop3X1xaHrjsdMmYPp2c02WMIHREsmolcsmgB2rLXk8IeHrwfPluxnpXjP3PNasolYvlDJ221Bu07jJ4nkxdvt3tu7RaQXnx+sqSM+vRt/77vyyTj8eudO0Vzp1ZHr3yDLnqrMKhOuLVjlY45M+18pTXJ9r6tfMFutsNrsMEjmpPX1NRbj6vuG7KnL92SodPZ8uqLXvdvpL5ssrbLc+UikVzuG0G6JOrg3O7eNwmLtnqzsmXI5O0b1RWrq9TzG3Xe2G8IN4FrU7ZvPLJPTXDdifXn7DCgQ19vwR2S/bM6eXP5+vLTk/Uq/vsWLnB69dzzSqFFft68lp58st5Mrd7Q7cfsespb3v8wi2hcg0qF5Dnr68k+b3re3TAnND7JFTAt0J7tHus3gvxaKdBt98E8dNvNUrlks/b1vbvcuvR3nPJvRc4OZZ2Pvt9tXs2aH9g3/WGypI3e0bXPuJQt2GL5Ntp60Kf6zYNy8gD/3e6pE93mivj/8Nn7oORy12dPBc6XFHOf/iYrK/dtt/r8xLvPVReqpc8+kwJNv7+Lytl9qqd8n6rqsFDbvuAJzbd1Wu25MmeQd5pWSViGdtpBIyAETACRsAIGAEjYASMgBEwAkbgeBLYtmPPMQsxF+k6CW9HH8yMgBE4PgSOjpSnsv3x48c70YfTy5cv70ShCRMmOMEIMejnn38WBCPsnXfeEcp/8sknIZHIHThGf453+/G4zMsvv9x5axUvflQ4SK7eQ4cOyUMPPeSKXXHFFakWiaigTIFs0vPOGmFNZs0UHvqu08C5UrNMHimeN0uo3N8+Fx08cpq/N1luOre4Ex1yZMkgM1Zslwf/N0uyeXXde0kZGdK+Tsir57GBc6RInizy8OUJA8WZ0icMKiMQTVm+TYY+XMcJAa+OWCyt+8yQYd42wsdOr512n8yUM4pkl9FPXuCJVIflIa+NTl59791RXdKddpoMmrhG3v15mXzQqobUKpNbhnriQ8fP50jRPJm97Tyu//FoR0Hg5YJARFtBT6C2/WbKgUP/yLAOdaVEvizy+6Kt0s7blyVjOrm2dlHnfXHHh1Ol+bkl5L5Lyzjvqy5fzZO7ek+XMd71MdieXB3chns8RqULZJVfHj9fcmfLKKPnbTpyzVnkggr55It2teXw30ddqv7xTrrjo2lSvmh2vQy3xBskuf6EnRBl48sHz5Gc3ntALSgZfDlpjVxUKb9cUrWgFkm0fMQTgejncI9dcY/dik17nYD4yGdz3HvssSbl5UFPCMM+/2O1DJ+2Xgbcf3aonqyZ0h2z90I83nPcRwQZxNnKxY8KGJkzJHYOjfaei+W9EEs7w6aukxe/Wej6wvtnsycwdvx8rnQeNNd9roD83NcL5DdPwPvorrOciDt79Q4nKOfJlkHuuDA83vC8NTvlfu9zi7jH55g+nIj23YyNMvevXTJ+wVbJ5ROdg319efhS9yzKmSX8ORksZ9tGwAgYASNgBIyAETACRsAIGAEjYASMgBEwAkbgeBBIPKKYwl60bdvWnYF4MXPmTPnwww9l2rRpctVVV7n9999/v1siGCEQYZ06dZKLL77YresfBng7d+4sJUqUkKpVq0rfvn31kBw8eFCee+45qVu3ruTPn19uueUWmTx5cuh4jx495Oyzz5bu3bs7jyTqQJzyW7T2o527e/duefLJJ6VGjRqSKVMmOf/888P6RB9oc9CgQXLNNde4ft1zzz1CODi1uXPnyrXXXuuuiT7dcMMNsnTpUj0sK1ascGHj8KrS40uWLHHHx44d6+q/9dZb5dVXX5XTTz9dXnjhBfntt9/ktttuk3vvvdeV0/6/8sor0qFDB1cPbPv37++OU1+dOnVCbXJfnnjiCbedXP9CJ/lWsnneFqXyZw17FcyZyVdCBI8evFn8QoO/wJINCTMDrvOEj0K5Mjth6Lzy+eQzb9C+XsV8rigeMtpO9swZJLc3CKvbCEZ4zOBB9OTVFaRCkRxuQJl1PGDUm2Tysm3OU6mL541DO2ULZpOnmlZwnjoq0CAYtKxXUup7IgRCxW3e+tmn55EhnliExasd6iJ81YP9Z0mL80tIozMLsStkm3YecN5ObT3PijMKZ/eEofTSsEoB9+r1a4L31sad++Uaj9ndF5dyzBiYblqrqLvmLbsPSix14NGB99ZlXvvFPBEP75nLPU8wbM2RkH2Ie8qaJeHBECTuvCh8MD+5/oQuLpkVf1usl/RefqviiSC8n6KFxuN9NsW714hI5Y6ww7PqHc/DqnWD0k5k4D2q7eTNnsnzVjsttM1+BMNj9V6IRzs79h50iKqWyBl2HXin+S2p91ws74VY2unleRe28TjjUYjgW9oTkj+9r5Z0b57gWcN7E0+mFzxvsJqlczvRs7b3GRvzVD25sW5isXv+ml1ysycgD/Q8oooErsd/bZHWe/26Su7sNUuavTXNE4TnyZh5Rz3LXh2xTF7/bpm85r1ueme6NH93ulBeDe+lLoMXuWN3954tv8w+6tGnZfzLLyaslZkrd4r31olqP3hC0gyvTFIiEiff03eO9B2z2hPXFsj1b0+Thz+dJzwnHxuYsN2y50zvPZ7gDUn51Vv2eQKy9/+lx1RX/sVvljjPSo7Rb+r73mv7lvdnhK6D/a0+SmDT9pO5rl+UNzMCRsAIGAEjYASMgBEwAkbACBgBI2AEjIAROLUJHJ2+nwoOu3btknnz5rkzCRmXPn3CTOl06dI5QWPEiBGyaNEi2bFjh+zbdzR/yt69e4WX3/AuUtuwYYMTQWrXri3Vq1eX++67z4keOXPmlCpVqsjgwYPlxx9/dIJJpUqVZO3atTJr1iz30jr87bHPv+1vP9q5HTt2lN69ewtt1qxZ04lSCFNFihSRK6+8UhYsWODaQ8RR+/jjj4VwcN99950Tti688EIXGu6yyy4TWJF3ifB6y5cvl23btgn7ly1b5tqgDo6PGjVKEHYIKafXhBCFwVH3ux3en0j9h9/vv//uhCv4+K+dfFH79+9Ptn8ZMkR/awRn9gcHSV/2ws3d9M6fLoQboaKCVt7z7ME6e+HBCO1Wt1xeN3CM2BOrabi1isWOnkMIOcSBFUdC2LHEE6GAT8SqdCQs2+rNe52nE14WrQLiR/WSuTzBZpvrSjzaQfDC+o1bJbu9gegHLysrQ6ckiFDugPdHQ24Rmspvo+Zucpt4YlEPQpjfxi3Y7MLWFfCuc9uRXDBJ1ZHJ8zRpcUEJ6emF8mIAPr/HBk8d7GIvRFjQEGDe+mmp571U3POuOuoZRrnk+hOsK+q25ynif08F308PeLx6jlzmPIM+aJXgAeavC3bneyIjIdxyZ80oDasWkDyehxSCSVA08Z/nX4fvsXgvIMDFo53NnvCC4W02aOJsJ3JdXDm/E8UI16iW1HsulvdCcu3w/iCnWGvvc/7MV/NlrPd+LJ0/mzQ9u4jzfqMfq7zPGobATDjK+d5n7ixPLLrVE0sRZIOG11xqbPCkdTJi+kapWjyHJ8IWkJ89UeSdn1fIueXzCB5WCCt4mOGZd2m1/E48ofz55fNK1RI5PA/DBV5f98npBT3R0HtPfTttQ5Ld6HdPdXf8gf5zPTE5cb4z2vvQE6HuaVDS81zb6DzdolWIADps6gb3fiW03dTlO+SRz+Y7ZvUq5PXu8zZB5BrY7iznUdjeE5EyeH1sfm5R2egJzAhAXb5aLK/eXNGJxYi6H45a5YnnGZ1X5Ki5mz2PyRXe8zCjF0qzoCekb/Xu1yJXXp/H0fpm+42AETACRsAIGAEjYASMgBEwAkbACKSWwJ4Df8u2vX9LsdzRxxlTW7edZwSMQPwIHB1NTEWdiBhqFSqED14Tek6NcogWmp+IsG/BnDqFChWSv/76S9asWRMSTRBl8LbBKwaxZvbs2TJu3Dh56qmnnFjSr18/bcItKYOnDSIQYdX8llz7wXMRqF5//XXXJn1t06aNq472/da8eXMnwpDvCPvll19k69atTjxD0ME+/fRTJ/7gHYVHFIIRQhICER5CXCPCDnw4BwHMbwhonNOtWzf/7rB1+o8HF+KTenHh1VWuXDnn4aWFf/31V3njjTeS7Z+WDy7nejlxqj4+Kuz1xYS/woohPjxzbUUhhxE5a4JGSLlP7ztbDnjhyhg0rvXUaGnTZ7qMnLMxWDTqtg484yHkNwbhl3l5iLCV3oBwGS+smt8Ir4at9AauN+5IyLsTrIP+L/YGvrF4tEM96zwvnR4/LJHHG58Rlg+JYxi5WxC4EDrwvMA0ZxDr247sY12NMHEDPfaPNy7vvBliraPdpae7wWfC1F3z5iT57LfVLo9U0COMdn6ZvdGJAJHEPu2HLoP90f3JLck75H9PdfhsdtgpDIZ3u7GKIIhxvZHs5ZuqeOJALhfK7//ZOw/4KKouit8EQq+hQ+gQQu+9Swfp0pEiHREQBT5FAaWooIAUqdJFqoWOdAHpvXcINZQkEFoSkv3euctbJsu2kKXfy293ZmfevPfmP5MAc/bcW+abLcphoc5L1cmBk8aVeFn3grvG0TWjZqpaWg2LpqNSOZJz2sQBqvaXDmf3HNo5uxecjaPdZ0P+OsnpEztXzqJSQ8blelH6WmnRtsv0gyyCwN11U4kiH07aR0cuP/v7Qc8/ukuklyyWLSkNa+qrUlmmo+5VM3FKxgMX71q6ggA5+aN8SkzLSOPbmesDHVfOpTMBD1ggqpzHm0a3zk0/tfRT4nVSy3HRXYF49rVyJfkqQbxmQftpEo39pkoSR80tLw1smIOFHez7Uc2jd80sLHohvSPcTn/sDuDz+rJ+dj7PHtUyU7V8Kdnxd+PJ7zQc27BYGvq1U34WwGb+e4WQFnS6+vxRRR+a0DYP/85AXxJCQAgIASEgBISAEBACQkAICAEh8PoTQAYiZDqy9dq1a9dLPYG2M65SrK7HqcvcqF+ANk7i3K1wqjranxL3PEkZ+5+mdH1P069bzV/INraTdSEgBF4PAjGScePHf/oAPiwsjOLFe+o0wGcdxnZ6m/US6eBSpTI/TKtRowa7hW7fvs31d9AW4kmLFi34MAg+CLhyjNG0aVMqXry4cZPL69bHYqxFixbRsGHDCPNYsmQJ96WFH90x0snBOQVXkI6AgAAWZyDcoD0EsKpVq1KVKlU4VV6yZMlo37593Byp6hIlMrth1q9fz98291BPMiEiIVB7CKntnEW9evU4TR/a9ejRg+Di0mPYOhbikaP52ToG2+Ae+aqBb5Td2VObnUHGje8XTkvrlOjTV9WK+aP3s9cENXlW9SulUh7dpR1ngviB/icqFdsXqnYMUr45C6S1QuChqbEOy31Vd0g7h5A+Dp+N8TjCXOAEx8PZgEAfxnigPuv+9TIm46BvCGY45zqF0hqHirL+Y4u8XKup3Ldb2AGFB/T1iqRVDoPrXDvI2FjXbYELCmm+dDjr41F4BNcXClUPnFHPJpkSpyAEoY5UYuXCQdo9HewiWnOOa0chNZ2jsDcfR8fofZiHvhbYpq+f3o9lVqQKVPfd0L9OUYlsyY27eB3HzOxSmAVC3E9Ldl/lOjnbTwfS+LZmx8czBxk26PFf9L3grnGQJhBpC3upOkv6HoUjpL+6jn2VaAjBz9k958q94GwcnWkNP2eTVa0yuLpalM5AsVU6vxmb/dmBpp1hqEEG5yCiUbH01EgJebhO+XxyGa7E86+2r+CjhMQg+mH5OboWFEqXlJMHofQaS3ir+z2pqoOE0KJosHIBabGq/JN0l9gPh9HOs09TvGGbqzFq1QWuQzS2TW5XDyE/Q80vpKfDvNIrwQ2RIrFZ3MY3sE6p9I9gmk+5n3QUyZpEOaducYo6va1B0TS8ip/juw8fs0g05C9zOlPsQIpFzUgfI0shIASEgBAQAkJACAgBISAEhIAQeD0JoIRHRMTT51eoP96oUSN+FossTC8rZvwXTH8fDCHfNHHsDolsMXXG+VOO1HHo3PAc5J0gFq04fI9a/XqFMnl7UbU8zz5HtNuZ7BACQuClEIiRSJQ799MHYAcPHiSkV9OB+kQ6kCLOWRiFpAQJEliaIz2ajhw5zA8Y48aNS5GRkVFq7aBN8uTPPjzWxzpbGo9FfSTU9YEzB0JKhQoV7B6OuSC8vMwP8XTDhAkTEpR8uKaQRg4OI7zgBkItIC2iGY+DOISXMSAwuRL4JoEOvW6d0k/vx9LZ/NKkMT9gNB6DdaR0K5/rqZBgvd/4GbWAaozYrtIknTFutqzjISVqlODVoWImVUtkv6oLc8UlkcjnSQo3pFVCajEdqLdT4YnQgdool1XNIWPoujaoQwMRCenort15mgoRba8GPVIPbM0PYN0xzqnr92j5gQBVfyU9LVYPxRH7Lt6he8r5sHDnFSXMpGSHBerpbPiiLKGWUpByDhXNmpS2ngxkN5ZOR4djMb9Ovx5kcahPrezYZAlnfSBtFdKdrfi8FAsvOBDp/tDnnK2XoohEaw7f4PpFUzsWsvRva8XRfGy1t95Wxtebr4X1duvPSHm39rASHn8/arOWDdpDTMILQgVEkmmqXg6uubVbzLrvl3UvuGuc3OkT04D6iaOcRllf88/lyashFKTccM7uOdyXzu4FZ+OUymGuIYa0ccZ7tLyaC+oQQZxI/yRNYYGMT505SPlWVl33/ernwF0xcb0/rTl0i0UgCGa+SnT557A5XaMewygo621Yhjw0/0PbWANJi0nGdq6ub1Pp3MCjt6qLhNDuwA6qXtLQJr4Wp5CxP9wbxogTO+rfBXoffm/gPPD7U0fEE/FbDWkJPX8tfKK5XkejXIoPUutJCAEhIASEgBAQAkJACAgBISAEhMDrTyBLlixRJvnjjz9yiQ88jzV+aT9KIzd/OHE9jDrOvkYLO2eguTufZu2wHiZM/R/1VEAY9a+RgjIrUQjRpGgSFokuBpqz51gfI5+FgBB4tQRilG4OAkmZMmX4DOBeQc0cBJbdu3fn9ZIlSz7zywrOHFcD9YAQEEvGjh3LdYKQZu7TTz8luGeeJ5yNjzpKEIgQ/v7+hFRybdq0idZQqBWE9Hnt2rXjtHIQzbRzZ+/evVznCB2uXbuWoP4jvvzyS4KjavXq1fw5Om9wDgUGBvIh2vVUsGDBZ7pAKjyEs/k9c+BzbIAAgzRgEH7ghtGxAoLJuD1cW0NvQ32U/KoWkKuBtHIIY4o6pMKDaJTtibMpixIL4HAwpm3T7SESISAGrTp4g9fxBnfFelUHKEcas0jkjnEeqm//ozbO5hO3OZ0cUsptVanTMLeJ6y8QUnbh2/7Yfk6lyqucJyU1Kp6OIFBBVMqjBAEdeOjeUaWJw7zB1vhg3pU+kLIKgZR/xoirHtrfD31aVwV9jf/nPLuINANje73uaD66jbuWeCg+tEluFjaQ3kwH0gvWHbWT4GYyRsFMrt9POO5l3AvuGmfZ/uv8M4TrpONq0ENezaDuG1fuOVfuBWfjwDGENInp1P1tDNzHcCFB+MDPIeLOw6j/EDytHDHZnuwzHvs866Cw8Vgg1xlDraCvVCq2gpme/tw46zODt3n+e88/Fa12n3u67ux46/0V/LxVCsBk5KdqpuEVR9WJQq0orEMgi0kgnR+u3e17T3keumS+9/XvNWP/cJpBIEJ9ouEqFZ9+QSDK6O3YIWjsR9aFgBAQAkJACAgBISAEhIAQEAJC4PUggMxBeIY4fvx4Mn6B3zg7PBvEM1lbLzzDfZ7oteA61cyXiBoXcfy8Ja760mOPyt40bOUtWn/8Ph2+Ekp9FgXwkHXym5+3Pc/4cowQEAIvjkDUry4/xzhTpkyh0qVLc42blClTsmik08FBFJk6daql11KlShHskYMHD+ZUcfPmzbPss7eC2kYQotBn5cqV2eGzcOFCFmBQ3we/7FwNV8c3uncg8sDts3jxYleH4Xa3bt3iFHP40Lt3b4KgplPVFSlShFPDgQ/EKDiVwE6LQ7/99pvDVHG2JoKaRmCVNm1a/iYB2jRp0oSbYmyIbRgLVlT8ZYD0eEiBh7A1P95h4y1EiRTbTpnFKL0bqb7woNhWVMmbypIyTe+HcwhukH7zj3LBeziBdp0LollbLql6GZl0M4dLiEqfKhfNaOUW8VMiCkSYoUo4gDBQTjkUEBgH698vO02DG/kpV0M4jf3nHKG+jq5N1F3V52k9cS9NVY6Tqmqu01WKrFAlFH1Yzof7cMc4BTN50cYvy3J/+m22cu3M+Nc/yvbTqg7Sol1XCSnjML95qqYOnB4/f5ifD0N9nY9nHWJ3T++a2WjPuae5XPNkSMx1jZz1AdcQovfcw9S3Tk5KqpxhG1Rto9WHblA/VS9Jx8qDATzOlA5RhcYRy8+olG73aWL7glzvx9l8BgwYwA7DmjVr6q6fWSI9nFG0gvCg52ndGILVMCUUDVhkdmhgfxblGEN9K6TMQ32mzKoO1QUlUmCuuC+duYj0GC/jXsBY7hinkLq3kVpu2N+n+GcGqcm+UPWIwAIviALO7jkIfAhH94KzcXB8typZuY88Pomper7UdMD/Do1TP2etyvo8ESfi8PqI5ac5xVsO5Zj7c881/pkf09p8bxvvK/RpL+zdT+p0OcUdRN6bIWF0RaWam7DOn7vB7yxnUVoJOhPW+qufv+tUMHMSrkm29shtZ4fZ3d+nVpYo+3opR1G4+vntWydrlO3P86GWqnG0VaXVG/fPRfqsdhblAgylTccD+Xdguifp6az7LazOad+FuzR321XlBE2uHIzX1e/xIOryXkbrpvJZCAgBISAEhIAQEAJCQAgIASEgBF5jAqhZjhIZdevWpU6dOtmdKWqg4xmgrciUybVnb8Zj/zoQQuuU4HNySNSMNsY2xvVB76ekf0/dp+o/m/9vjn1zPkqvvmQa40fRxmFkXQgIATcRiPFPpq+vL61atYrw8G7z5s0s5mBuFStWpKFDh5Kfn59lqh06dKBNmzbRnj17aM2aNZbtWEFdH+tA6rVYsWKxk6djx460bNkyi8Onb9++hBdCH2udqs26P1vj2zoWNYMmTpxI/fr141RxEF9atWpFEG9cCcwjf/787HqC42nMmDF8GOoLIf0chBwERCEINuCBwP4ZM2ZQunTp+HN03tq3b0+XLl3ilHYQnz766CPq2rWrpYuBAwfyWHA3wcn02WefOZ2f5WDDyqXAhyrV2QHDFuK0Z6growMPbI3xZT1f2moQllDfZkbnwvSZqlfUbLz53NEe6dh6Vs9mPNSybuvati+fiU4rEaWHEk4Q+XyS0HdNc1vcNXhQPrBhLvrfgmPUYoJ5nKr5UqmH9Fm4Pd5QJ+iz2tlpknL0QHCC2DS8aZ4owoI7xrEM6GDlq/q+9Lli8uGkfdwK9Z/AVbsD4LzYq1LRIXrPPcJL/YZ6MEgD6KwP1Dr5s3cJFlkgjiHg+EBtmzblzA+MI1W6RbiIcD10uj09zmXlVrl466Gq82IiZ/Px846kkSNHEsRZR9FrzuEouzGf3d9WjLLN+KFB0XQqjdgNdmZhO67zdHU/9YfoaLg3kQLtp5Z5jYfyOtrD2WEdL+tecMc4uDd+aVeAxdb5O67wqeD+H9chP/OwPjdbn125F1wZp2q+lFxrCEIPXghco/5KhNTRS/1c31VCVveZ5p9VXOMB6vdC9fypuInxvjKmUcM6rhfi5s2bDu+nFqXTKZH3MnWaZv7ZeC9vCvpPCSG/KLEIrh57ge7jK2cdhJ0fV56nnrOPcdN8SvRCrSJjCjdbfeB4PUdb+/U2W7/D9D5bSyMHRYGbYC55MySi+kVT0997b9CHE808E8WLRV83ePIPdXPTKF32rpmF/jf/JC1WIhheiBLZkxIEJwkhIASEgBAQAkJACAgBISAEhIAQeHMI4Fno/fv3adKkSer/ojb+A/jkVPAFdbzcEQ/DTdRrQQANqJ2ScqR6Wu7CXt+op1tl1EV69NhECzploJSJYtMf++/Sh9OvUrL4sai2uInsoZPtQuCVEfBQtXGe5iuK4TRQP+js2bOUPXt2MtYVsu4WNX8Qjn6ZWR+Dz+Hh4QSHTqpUqSh27OfXt1wdHwXhkDrPWK/I1rycbYPLB24ke/3AYYRz8/b2dtbVM/v79+9Po0ePps8//5zrHd25c4frDdnjg3OC8GYMZ/MztnX3+i31rX84fDKq9G9Ix/Q8gRodSN0GgcdeoC5NPK9YhAfjtgJpu66oujx4KG7v71h3jGNrbOttqF9yX50TmDxvuNIHXBf3HkUQnGCuBn50TeqP8QG2vWN37tzJLqKAgAC79769Y593O67RteBQghAJIeJ54mXdC+4YB2LdZeWaQUox74Rez3O6fIyze8GVcdAH5uKjUpjhZ81WBD8I5/o8mdW9bUyV6Mp95cr9FKbcOqeUmOqrahLBBQjGuB8wJ1cCadxOXL3HP3tIz/Y6R4i6109du0+pksRV8433REZyPGNcn+sqJSfqdr3u5+f4TGSvEBACQkAICAEhIASEgBAQAkLg3SPw119/UdOmTfnL+lWqVHErANQ3j5iU22afkzYH0ce/X6cRjVOrjDTm/+//vD6QksTzpHZlktFHZVGn+Omhq4/cozrjL9Gxb7JTrjRPnznV/+WSSp9uojW9bDuZYnU9bqnh/rQ3WRMCQuBlELD9xPw5R4YwBAeNs4iuOKT7g9DyPC4bfbxeujo+xBR7wo7uy5WlMX2drfZw/rgrkiZN6rAra4EIjZ3Nz2GHMdwJgSI6IoWt4fCAHC9H4SzlGB5Ya8eOvX7cMY69vo3b8bA/Jg/80ZcrfeBBvr2H+cb5GNchoGlXg3G7rXUIxkgV6Y6fIVv929qGa5QzreN7wdZxxm0v615wxzgQ65zdt8Zzs7fu7F5wZRz0gVRyjgKpJfGyDlfuK1fuJwhDcADpAGNXBSIcg3pBhVRqtjchUO+paFbHv++tzwMsosPD+nj5LASEgBAQAkJACAgBISAEhIAQEAKvhgAyAyFDEjIWuSIQTZ8+PUqGIeOsa9euTRCcXI3H6guYPsm9aOwGc51zHHc5yFwn93LwY2pTOmmUL4LCeYRIGCeq0ym++j/3rZCn9XW5kbwJASHwWhCI2dPU1+IU3u1JoNYLRJ6iRYu+2yDk7F87AllV/tuvv/76tZuXTOjNJCD305t53WTWQkAICAEhIASEgBAQAkJACAgBIRAzAsgKhLISiPLly9PatWujdFigQAFKkyZNlG2of26vbAYyNEUnelT2JryMAVdQ2iSxaXJrc8mMxXvv0jfLb9E/vTNRpVwJuGmzKVdoxAdpKHkCT1p28B4tUm1+VJ8lhIAQeP0IuDXd3Ot3ejIjISAEhIAQEAJCQAgIASEgBISAEBACQkAICAEhIASEwJtJADV6UcfcXixYsIAaNmxob7dL2x2lm7PVgbVINGFTEPWcf51ODsnOdYsOXQmlDrOu0j7/R3x4YpWarl+NFPS/mint1v6VdHO2SMs2IfByCIhI9HI4yyhCQAgIASEgBISAEBACQkAICAEhIASEwAsgcPv2bZoxYwanYnqZ6a5fwKm8Fl2CJ1LVJ0uWzO58kPoK9Z59fHxstgkKCiLUp82RI4fdmtLXrl3j9OTx4jmvIfro0SOugY0MA45qYNuczDu6MTIykk6fPk0pU6akFClS2KTw+PFjun79Opd2sFWeAAeh/jjqXzsq/+DsfrA5uGx8rQhEVySyNXmkpYut0r4b40FYJN19FMmuI+N2W+siEtmiItuEwMshYCgr9nIGlFGEgBAQAkJACAgBISAEhIAQEAJCQAgIASFgj0BwcDDhgaW9b8bjoTX244XYuXMnffnll7Rv3z57Xcp2Fwhs3ryZcuXKxWIA0toXLFiQ9u/fH+XIjRs3UsmSJQliTbZs2Shv3rx0+PBhSxs4HlDvBKmvdAosuBx0QFgaN24cixaZM2emJEmSUL169ejq1au6SZQlRIzPP/+c2xUuXJiFq/79+xO2S9gnMHfuXEJKMdQNh7jz/vvvE8Q/Hffv36fu3buz4IbrGD9+fOrTpw89fPhQNyF/f3+qUaMGM8e1giA4b948y36sOLsfojSWD289AWuBCCecII6nSwLRWw9HTvCFEcDfO6ixdeHChRc2xrvQsYhE78JVlnMUAkJACAgBISAEhIAQEAJCQAgIASHwhhFYsWKFzYc+ixcv5jPJmTMnLyFKwLXiSjH3NwzBS5sunCDVqlWjTp06McvLly9TkSJFqG7duhZB5siRIywa1KpViy5evEhwApUrV47w+e7duzzXDh06EOqnYD+2Qbz78MMP6cyZM7z/zz//pM8++4xmzpxJgYGBdOLECRYmmjVrZvNcx44dS/Pnz6ddu3axo2XNmjU0evRou7VWbHbyjm0EK9SvmTZtGt27d4+OHTtG58+fZ7FNoxgwYACtWrWKduzYQRBlt2zZQgsXLqQffviBm8CFhOsKB9K5c+fo1q1bhGPatWtHR48e5Tau3A96PFkKASEgBITA601ARKLX+/rI7ISAEBACQkAICAEhIASEgBAQAkJACLyzBCAmWMeECRN4U9KkSXkJAaJUqVIEYQMB4QHCER5ww+kCoQEOFmf7sB8OjPfee4+PbdOmDac44wPV2yeffEJff/01L+GqgJvm119/1bv5YXvHjh3ZcYH9aI+H9Doc9a3bvKplaGgozZkzhwUcpOyDkwjukxs3bljOYdasWewiGjhwILtTwPeXX35hJ1HChAlZHIITaejQobwfaeQgKiAOHTrES3zTG31DfEqUKBG7kbAOIQPChHXA4TJy5EgqVKgQp62rXLkyu2OsHU7Wx73Ln5EaDvcpnHhw2yHlX506dVho01wg/FSqVImFQKTvgzusePHiLAihDRxFEIV+/vlnvp/h+GrQoAEffunSJV46ux+4kby9MQSSJUlAN0JenUMPY2MOEkJACLwaAiISvRruMqoQEAJCQAgIASEgBISAEBACQkAICAEh4IBAq1atODUZ6tHo2LNnD6dAwz4d2A+nRFhYGItBcEDg4fiSJUtYpEC6MjhQIBTZ24e+li5dyg6M0qVLs/gB8Qmp0EJCQngoiFBwWuAB+k8//cQCVLdu3SwiSr9+/diRAQfHqFGjODXX999/z8c665sbvcI3pByDmweMIBhB1Bk+fDg1bdrUUpvo+PHj7BwaMWIEp6IrWrQoC0IQGVDPBi8IOhAbdGzYsIFXkboOAaEB/L766it2pKxevZrQX+fOncnT89lHVODbokULPhZvcCghvV2xYsUs22QlKgE4wiAS6UBqPtz/uK91QLz77bffaPbs2SyqTp06leDc044uiH4tW7bklHXh4eGceu6LL75gYbRs2bLcjbP7QY8lyzeDQN3atWjKluBXNlmMjTlICIHoEsDfr4sWLeK/82192SC6/b2r7T3UP6LMX6d5VwnIeQsBISAEhIAQEAJCQAgIASEgBISAEBACrw0BpL+C2wTpsCDqwOGiH1536dKFkBqtYsWKhNRl//33HyHtFVKjwUEEx0P69Olp+vTp1Lp1az4niAopU6YkLy8vu/tQt6V8+fIsfowfP56PQ52DDBky8DhwYsCZAQfGgQMHyMPDg9OtoVYL0t9BTIIQAoEEIhECggYELLhrnPXNB7wGb5g7atUgqlatyucGEQgBdxScRUjzB1EHKcggmjVu3Jh+//13bmN8g2sIQhIEPbi5dECYgONKB2oNQcRIliyZ3mRzCfEKNXKCgoIIYiGup4RzAkj59+OPP9LJkydZ5MEREI4+/vhjmjFjhqUDXFM4hyD26YAQpAU+/CysW7eOsmfPzrujez/oPmX5ehJADar3ypeiDsU9qHP5ZJQ6ceyXMlE4iCAQ/brbRBu27KBMmTK9lHFlkDefAL5wAMcrvmCAfwOcPn2af8/h3wa+vr5v/gm+5DN4OT/xL/mkZDghIASEgBAQAkJACAgBISAEhIAQEAJC4M0mAMGnZ8+eBNEGItHt27f5ofYff/xBeHhtKyAGQdxATRY4iSAqQNxJkyYNN7e3Dw/Nd+7cyS84J4xx8OBBTteFbUjLBYEIAWEJYpZOcwfnBRwcSJ0GUalRo0aUO3dufiDvSt/c6St+g9hVoEAB2rdvH02cOJHFrd27d/NDOC3KwB2keUIAA2sIdxARdEDIqV+/PqeG03VusA91byAQoS5RzZo16fr16/S///2PHUZr1661K/zA4dS1a1d2EWE+ei56PFnaJgARCAIRfmaQHlFH7969+WcJolD+/Plp79691LdvX0IKx2HDhulmlCVLFhZi4dSD86hEiRJ8b0Ac1dfAlfvB0qGsvLYEIM5ApPnmq/6Ue8gqCr774KXMFSnm4CDasOUHEYheCnH3DIK/j/H7InbsVyct4O8OiEGDBg2ynBRSwPbp04eWL19u2SYrrhF41svr2nHSSggIASEgBISAEBACQkAICAEhIASEgBAQAi+UQIcOHVi4gXsHD6khykBccBT4FjGcLXCmQGTKmDEj94Fj7O3TwhBcMnhYql9Iy2VMn4Y0dsbQD8qxrX///oQH5hCS4MiBAwM1e1zt29jvq1oHXwgBEGSmTJnCosy2bdt4Ovqb2VogwsYqVarwPghpOuD4ad68ObuokAIIdYV0IE0fnEXfffcdu8Eg/sGJBUcYxB978c033/D1X7lyJdcxstdOtj8lgFR+cN6NHj2av22v98Cph2uLF9L5lStXjnr16sWpApEuENdPB64dUvs1adKE0ydiO34OEa7eD9xY3t4IAvi99+vs3+nGrWBO34kUni/6hbEwJsaWeP0JQBxC3T58SQJ/F0BoflWxbNkywt/RxsC/Gf79919LGljjPmfr+PsFDskePXo4a/pW7n91ct9biVNOSggIASEgBISAEBACQkAICAEhIASEgBBwFwE4cZBabvLkySzAQPRx9M1lPNCEiwUuHqRBGzNmDBUqVIgfbCOtmb19EHYwFlxHAwYMsEz/6tWrlChRIstnRyvXrl1jQQkP3fGwvU2bNjRhwgRO3xbTvh2N6459ELP+/vtvTvum+8uRIwevwu2DgOh19OhRdkbpa4D0Pgidggz1ICBMoB2En1SpUvF+/Xbv3j1CvRtjaBEJqYNsBQQ31EfCA0FcJwnnBPbv388pEFH7CWnljKFrfOk0gnqf/oyfIYiyuH83bdrED4PRBvvhLMJ9jnDlfuCG8iYEhMBbQ+DTTz+lFClSEMRmOHpR6wwvfLngZYd29bpjXHwRAWlR8XvtXa1r9EY5iSIiItxx3aUPISAEhIAQEAJCQAgIASEgBISAEBACQuANIYAaOUghg5RXeHDtKFAHB99IHzhwIKeBg8Pl7t27LAA52oc+8Y1kiBEzZ87kh194YISH4o4cLnouSFcHxxEcF6j9cvbsWcJ4efLk4SYx6VuP8SKXELY2btxIn3/+OafLg0ig6wZVrlyZh4ZAh5pEnTp1olOnTtH27dt5HQKYdpWA+7x58zidHDgghRxeZ86c4T7gMIKDZdy4cVxDavPmzfThhx9S4sSJqUyZMswub968tH79em6Pb3bj+mMOqDuh+0P6PgnbBHDfIa0iAg9vNTMscZ+mTZuWWSMlEwq+41rC8YXUTbVr1+ZrAUEVNadw3+7atYvb4CEq6nuhBgjClfuBG8qbEBACbwUBuGLnz5/Pf79CNEbNufbt2/MXDF7FCeJ3Ef6+Ngb+rVChQgWXv9yhj0VKU9Q3xN+F72q8MU4i/CMDfznhHxNYvisR/CCcYnl4UOL4ti+Vuofpxt1QSpbQi+LGfj7NL/RxJPnfekgZU8SjeF6xbKINefSYboaEUeYU8SmWp4fNNnfUXKHiJrEzV5sHvSYbnZ1fTDkH3Akl/MJJmyyezTO++/Ax3QoJpcwpE9jla/NA2SgEhIAQEAJCQAgIASEgBISAEHjLCeBBENKgIcUNHnAjjN8gNq5DrIAA8eWXX5KuhdO5c2dq27YtOyHs7UOfqNOCB+OolxMSEsIPy5FKR6dUg0hhKzA+nDV4eIZUN6jxgoCwMWrUKF531jc3eoVvqEOEVHxIswNxDAHxZ8eOHYQ6Twik4YGogHRxOuUYnD2oM6SvwYgRI7gtUu8Zo1+/fjR06FD64osvOP3e4MGDmTPaQByC4ARHEQQ9uJOQ0ggxdepUXkLAwksHUqDBqSTxLAE4wnD/IlAbyxi4v1HrCzWKkGrugw8+sOyGgIf6XwikVcQ1wfM3/dAUP4PTp0/nOl9o48r9gHYSQkAIvB0E/P39+USQllUHvgiB9G6vIr7//nsWrfFFgyJFivDfHfhyAn6/RTfwd9K7Hh7KRqpkhucPFCnEt3mMgb9A8O0ed4o5sMjiHxs6T6pxPHeuPwyLoInrL9C0TRepY6XM1KdWdrvd77twh75adJwu3HpAOwdXsAg5lYdvI4gCxiiYKQn9/nEx3rRs/3XqP/+YcTevT+1QiMr6evP6rnNB9PWiE3Qp0Gy3zp4mIf3QLA/lyZCY90O0mLf9Mo1ZfZbuh5odVpVzp6QhH/iRdyJzjuSvF5+gJbuvPjPO3iEVKX6cWBQRaaKRK87Q7K2XLG3aV8jE56yFoOvBj2jQHydpy0nzP9ASxo1FQz/ITTUKpLYcs+NMEA1aEnWu3zb2o8KZk1ra2Fuxx9sVRu7g7Oz8XOFs7xxwzjvPBjHjY1fM/0DLokSg0a3zUa505nQFgffDqd/vyoZ/OpARge/gRn5Up1Aae8hkuxAQAkJACAgBISAEhIAQEAJCQAi4QMBRYW1H+/AFP+z39vZm94oLQ0VpcufOHX7IrtOoGXfGtG9jXy9qPTAwkGLFisVFyW2NATfKuXPnmI8WkGy1c7QNHJDGDnWjrDmhf53OzlEfsi/mBMAa7jDUFsE1txUPHjxg0clYi8rYzh33g7E/WRcCQuD1JADhGOlfkZJSB74wgLSqr1K0h3sI9QAhFCEdnr0vdOg5O1rCDQsxHSlY37WwbU+JBgV9Y0AYypo1K1uztm7dSnghnyy+meCOgKKHbzjAdvyi4vjVEOo+8xClUCILhBYIBDq2nQqkpfuUuFM3J3kr186wpafot22XqZwSdSAS6aY4BgLR6Fb5KPcTQQd9GF0+t5Qjp2jWZDSsSW7dPS9TJzGLOzi+3eT99Fnt7NSkRAZ6HBFJI5SY03n6Qdo8oCw7Tf45fIOG/X2KJn9UkPvCMX1+O0JD1bZRamwEHEYQuj4okZ4/6zftFoI4tPxAAC3pVZx80yaiPeeDqf2U/ZRDCVINi6Vj8amb4pFeuV+Wf1aS0iePR3/vvU6fqnEWJC9G+TMm4TE+mrqfulfNSh+W9aEIdf5TN16gVr/spR1KOHPkKnLE2xkjd3CGuObs/JxxdnQOp67fY55dq2ShX9oVoDjK6fXTyrPUYdoBWt23FCWKF5u+WHCMxbpN6romTeDF91RfJRrl80nMriJ9zWQpBISAEBACQkAICAEhIASEgBAQAtEjgLoJ9sLRPrhinlf8wHhJk9r/wmRM+7Z3Pu7cDnHMUUDA0enlHLVztA8cUPjcVohAZIvKi9kG1unTR31mZD0S0krpekXW+/DZHfeDrX5lmxAQAq8XgQwZMvCE7t+/b6ktB7E/c+bMr3Si9erV4zpJqD8YE4HolZ7EazC4ba/0c0wMSh2UO+SFhZUbsWDBAktPs2fP5tym+IcYcpwa96ER0slVq1aN7aqwYY8ePZpzG2p7+MSJE9m2DWu4DhwD2zn6rFSpEheG1MWlYHVDbsTWrVtzgUs4nvB50qRJnINV92Fcnrh6j1qUykDzleMnbdK4xl0s/GxTbo/QcLNr5/yNB/Rn7xL0YbmMUdrdfRjOn/Oqh/yZVGo2/Upj6A8CCBwlep9eavEmTKV/G9kiL31UITOLLBCs4BIKvBdGD564hlKr/n7tWIjK50pBCZQrKGuqBFRMCU+XAx9Z5gORKGfahM+Mo/4txhHXy5P+934Oyp0+MQtPJbMnZ4eLdr3sOBNIJ6/doyFKzMqWOiGnomum+ED88X3ihLkebHZM1S2chkUOCGjvFzbb/5E+zVE44u2MkTs4u3J+zjg7Ooc/91wjOMh6VMtKqZPEpWRKBBrcKBet/LyUxcmVLXUCdm5hP4TERsXN/0gGdwkhIASEgBAQAkJACAgBISAEhIAQEAIvgwDSi+kXxtPrWL7On3ly8iYEhIAQEAIvnIAWlFG7R8fevXsJz9wl3nwCMXYS2UKgLahwEiEgEOmCh8g1u27dOn7hmyNNmzYlFCJsp/Kc6jBausqXL8+boUyiQB6WCGOfcDDB1oYXbLIjR45kKyza44X8uDpQWK9gwYJcvE9v00u4Z+wFHt7rB/hoM00JNAgIMca4rdKHIf47HUQLdx4hT3WOlXKnoE6VM5NXLLMmd1MdE0cJNEgzdtD/LgsJLcr4WNKzZVTiEl6Ryi4T/thE528+oEkbLlDtgmksKe10KjekjIOotOtcMP219xr1rfM0L+RllaoOohHcQXAaIZUdnEVasGpZ2sc4dboS9IhFoXblM/F2OKTy+SShvcphNH3zRSVShVPpnMmpy3tZlHhlrq2TL2NiQiq84UtP0yfVs3HdHbiekBYPwpKjcMTbGSN3cHbl/JxxdnQOZwPus8tr2saLtEw5tmKrWk7v5UnJ/HQ6v/7vP71eYLX9Sdo5PyXcSQgBISAEhIAQEAJCQAgIASEgBISAEHgZBHSWGD3Wm/ZZz1uWQkAICAEh8GIIwDUIY8g333zDdekOHjxIixcvpv3799sdEIaSFx1eXl5ca23btm20fv16m8OhXqCEYwJucxJt2bKFlixZQt9++y2NGTOGR61VqxYvBw0axMsVK1bQpk2baNWqVfxZu4R0IcK6devSvXv3OLctCuIhtDOIPxjedJ9wHKEo1erVq3kvikoi/68xoGoGBwdbiu1hHi8q4PZBzPzXnxoWTUelciSn8WvP04CFxy1D3rgbRn/svsaCTxvlRLqq6v4gPRtSlxlj8a5rVGjAJmo4ZhenwBvaxM+4m9dR26jo15up24yDhHpCTUuabcKPVd43pFMb9885KqEcQg2VyLXu6E0WjEIePn6mHwhN/ecfZcFH18OBOHXk8l36cuExKqccS3ARbT5xmzpMPUB3n/QBEexH5XpCzaKm43ZTs/F76IQ6j+FNo6bSe2ZAJxucMXIHZ1fOT0/THme939bymHKmTd/sr8S76/RB8fRU0S8F17vqr1LM2QqIegNVbacWpTOw+8tWG9kmBISAEBACQkAICAEhIASEgBAQAkJACAgBISAEhIAQeNkEhgwZQqhTBoNI48aNOROYo9IwqD/3ol/4UgPqCMGsYm+sl83pTRzPbU4iLQxpCHXq1CGkjYOz58qVK7wZAtKwYcMoIiKCP8Plgxtr9+7d/BmqHqzMPj4+1KRJEy58pfszLo19ok4R4r333qPEiROzgwhKpo6cOXNS/vz5+WONGjW4VpK/v7/e7fZlwrixqJVyBfWqkY1rzmAApHyDyNBXuUZSJY5DJZVw1LJMBqqemBquAABAAElEQVSe3yyENVY1gxopIQjC0YD6Tx0kVfOmJL90xejolRCat/0ytZiwl+sHQZjR0VONA1Fh59kgmqGEqXuPIqifSiEXpuoYQdRprl65nqSGq6nGqzFiO21XaeT02OgH9X0gTiDF2R+9SlDsWOb+Pci8HNM6P7uQ0LZqvlRUU/Wx9dRtdjZBaIGIhXR4zdU8lLGJBTKIXkv7lKR0qp7Rx6qu0TGDAIaaT4t7Fkd3dsMZI3dwduX89ATtcdb7bS29nnCc060Ii3xokzVVQvpCiW4B74daHF3YDtEN9ZFwrYxuMOyTEAJCQAgIASEgBISAEBACQkAICAEhIASEgBAQAo4I4Iv2M2bMIDz/xLPVlxWnTp3iujRx40Yt3fE84wcGBhIyTyVPntylw2FaQB2asmXLRmnvzjnBjIDMVtmzZ+caXFEGiuGH6Mzz8ePHPA/Uc4sVK5bTkfH8fdasWQRTRqpUqZy2d6UBrgsMINeuXSPUr3N2zXVmMVf6fh3aQLt4V8NtTqJ+/frRokWLLByrVq1KyZIlo0ePntbIQWHDHDlycK5CpIhr06YNhYaGWopdYV2HPs5WwSljO50fF8fFjx+fD9dp7vAhUaJEvA1ver9lQzRWkFZuhUoZhvRujgL1fQbU97UIRGhb1tdcLPPkE6GkW5UsUUSaeCr1XEWVkg6p54yBWkQFVE0biEBDP8jNIs6+C1FdUqhnVFTVIupeNSt1q5KVZm7xpwdhEVynaFDDXBaBCP0ihR1Sw+maQ3qscWvP0dJ911UKvcLcRm/38TanlIMbSgfGQz2l41fMNXNQdwfzHNsmP9dHgltm8kcFufmy/QG8rFckLadYQ5o6vCCiOQtnjNzB2ZXz0/O0x1nvt7UEJwREMR1I14c4Yag5BBdXrzmHKSw8UnEsoGo/ue3HUg8rSyEgBISAEBACQkAICAEhIASEgBAQAkJACAiBt5jA8ePHqVu3bhQebi6F8aJPddmyZfyMN1++fIR6NQMGDGAnh/W47du3j1LnDM9y9QvCB2LDhg3cV9q0admlglIh27dvt+4qyuerV69SgwYNojzvdXVOEE/0HKyXEJ4Qly9fpnr16rHAAgMC3DPIouWOcHWeGOv+/fvUvXt3SpAgAWXLlo3Pt0+fPuyc0XNBG/DHuWCJgJCEVHB9+/bVzdy2hFDlTCBy22DS0Ush4Lan0SVLlqT69etbbsSBAweyqydTpkzs8MHZ9OrVi6ZNm0YTJ04kpIWDCwhCEo5FfP/993Ts2DFas2YN6ZyFttLNZcyY0dIn1EsEfhHCYYTALxJ3x9xtl6mvqiF0XKUQcxTL9l9Xadf2RBGTrgaZazNl8I7Prp0Pxu4mtDPGBeXIyZbaLCr89t9lTgtn3J85pVkAQ60eBOoZjVWp5IyRNZX5eKSTO6f6q/HDdl7qNuHKXYQ6OZlSmNth+8KdV2nS+gs0RQk7BZUgZQzftGaB7aKqTaTjoRKgUMtHz+dReAQljBOLdI0dtNProWofokaB1OxogqsJL0d1fNAeziZnjNzB2ZXzc8YZ87UXELIgoBmFxYu3zPcCBDsE6k59vfgEnVbXZUbnwuSd0Mted7JdCAgBISAEhIAQEAJCQAgIASEgBISAEBACQkAI2CSAWu0o34Ev5r/oOHDgAKcba9u2LQUEBHBtGtSI/+mnn54ZGs978dzW+MIzYWR/gpABV0rNmjWpVatW7JRBRqrq1atTxYoVKSgo6Jn+9AakPqtUqRIVKVKEN0VnTg0bNowyH8xtxIgR3A+EmJCQEH7OjfkdOnSIy5h899131KJFC0tGLD2P6C6jM0/0DdEHpVt27NjB84CItXDhQtJlXNAfhLp169bx9UfKNR0wdcybN4/27NmjN8lSCNgk4DaRSPfeo0cPXsUP0y+//MLrn3zyCS9r167N6iVSw0GJRT0hWAhxsyNVHNTNQoUKsQ1O1yTS/VovP/74Y97UrFkz/gGtVq2aZQyozu6OJiolHBxCudIldNh1ocxJuY7PsL9PEWrMHLkcotKLHWf3DZwlyBQH8eCH5Wdo26lAuq7qEaFuDWr9vJcnJfddTDmDkD7u+2Wn6YwSD1CrSNc0KpXDm9sUypKUxZ0FO66Q/+2Hlvb5fJJwGrOsaiyknBu4+Dg7kJAWTvdRInsy7gNjDv7jBJVUNYtwHTAfvLSjqYJyBcF59Nm8o5zyDnP5XK0jtLvovTyp6JI6T/SDecKl9KU6X9RDqqRS0D1PuMLIHZxdOT9nnB2dX5tyPoTaSQMWHSfw33/xDn2l1sEU1wfx8+pzLBh2qJiJ2+hrYBTmHI0h+4SAEBACQkAICAEhIASEgBAQAkJACAgBISAE3m4CcAd9/fXX/MV4pJJDGi84XYwB8QCp5hBw6AwePJhQLyZXrlz0+eefc8kPY/uYrP/+++9c3uN///sfp4arXLkyz8+6HAnGgAMHqdr0C5meFi9ezHXt8Tzy0qVLPJWWLVtyCjOkRoMYg4AAZStQhwZCSfPmzS27ozOnJEmSWOaDeUFYmzNnDnXt2pUyZMhAGzduJJRJmTJlCvn5+bGLp3PnzjwfXdbEMnA0V6IzT3R97tw5ixgGNxHMFsWLF+ft2I+yK126dOESK5i7MWC0gNj2559/GjfLuhB4hkCMaxLBxobADzUiRYoULPqg9hAUWPxwwVWEH97Zs2ezgwjtkA9Ri0j4ZQW1+++//ybUC8IvFqigUETt5VjELzr8wkOfsPpBZMIvhkmTJqH7GAfq/jw5Je4Lzg9HadLMZ69Suim30C/tCrDraL4ScBAQbsZ1yG/p7391c9Kdh+HU6dcDvB9vqCOk6wShLg36+ObPkzR7q/kXJYSFRaqOT/InThM4cu4+eEw/rjzDggz6QKq3YU3zYJXHmqmcKT1mH+aaQdgGV8vMLoXJR80RsfDJ/CBI4aUD8134STF2BI1XaeQgEjVR7icE+pjTtYilD4hFo1vlo++Xn2ZXEtqAwcT2BSl/xqjOJOyzF9a8nTFyB2c4npydnzPOxvOxPoe0qh4TUu/1+e0Ip/NDW7i1fv7w6b0wddNF7mLkijPGrqhTpcz0aa3sUbbJByEgBISAEBACQkAICAEhIASEgBAQAkJACAiBd48A0otNnjyZ4NbBs1cskdFp8+bNXGoD7pEVK1bQqFGjGM4XX3xB06dPp6FDh3IKMjhKbt++zTWLrOnhuap20Vjvgxgxfvx468108uRJKlq0KNcD0jvh6EGWJ6Q+S5jQ/pfsMXe4iJAqDlGsWDHKnTs34RwHDRpEyCrVv39/Kly4MAs0un/jEsIIDArGbFIxmROeSUMU0mIKagVhXtu2bWN3FM6rSpUqBK6u1ksyzte4Ht15tmvXjp9543l5iRIlCGIgrrWeK9xcjgLnsXr1asKzegkhYI+AhxJvnnrQ7LVy03b8wkKhL6SYM9YHgrCDX2r4ZQLXEdpA+T5//jz/8oLd0FHAlgjnkT1BydGxL2of0ohdDnzEtYnspRALefSYboaEUWYlQOkUbdbzufMgXP3C9aDE8WzreXAQ3gwJpWQJvChObNvGMNRTCo8wUYbk5hpD1mO48vmacjxhrPQO+rir0twhksS3PVdXxrFu44yRuzg7Oz9XOFvPXX9Gujm4vXCNtMin98lSCAgBISAEhIAQEAJCQAgIASEgBISAEBACQkAI2CMAMQTCEEp4oL474sKFC4Ta73/99RchcxNEDaQcO3LkCNcH8vb2prlz51LTpk25PUQFpFiDM8da5Ni3bx+tXbuW21m/oYyIdvUY9+EL/61bt2b3kN6ODFFwuWAJB5OtgGsIzp3ffvuNmjRpYmmClG4QM3TADIBnxTgnW7Fy5UoWmYKDg9nlgzbPO6eIiAh+Jl2hQgUaN24cDwfX0MyZM9mU0Lt3bx4DYhmcPFu3bn2Goa052tsW3XnCJIGMWjNmzLB0ifmhlIv1s3Dwh5g1fPhwS1uIi0jNZ+08szSQFSGgCLjvab4LOOE2QmEr64Dy3LNnT3YE6eJaaIMbG7/onIWtPp0d86L3w1WS6UndGXtjQfixJ/7oY5IqYcFRwO2UOklcR02c7nd48JOd6ZQrxlm4UxzSYzlj5C7Ozs7PFc56ztZLCIC6XpT1PvksBISAEBACQkAICAEhIASEgBAQAkJACAgBISAE7BFA/XYERAwdWbJk4RRpyMSEZ6fbt2/nL9DDobNr1y5uhnrv69ev53Wdtg0iUvny5XU3vMSX9nVdnyg7HHyAaAXxyhhwECGQys1eaBdRo0aNLE20a6dOnTqcNg1OIgggSJOG80PKNOsIDAzkTRBtdDzvnCC0oSbR0qVLdVcqQ5M5Z9T8+fNJlziB8wmOJwhqWnzTB9y9ezeKqwnbGzduTD/++KNuYllGd54QqSAQgQlS3e3du5fLuSRNmtQldxBEQTihwNXT07bBwDI5WXlnCbxUkcgeZVgX4RrCD+Xp06dZHYdS/P7775OXl2ORxF6fsl0ICAEhIASEgBAQAkJACAgBISAEhIAQEAJCQAgIASHwJhMIDQ3l6ceNG/VL4vHixSPUKkL8+++/hBrwEDcePXrE2yBooL4PAkILagPh5Y6AG+biRXMJBd2fri2UPn16vSnKEu2RTQoOJ6MDZtasWSxwoU6R3g43DPqZN28ep56L0pH6oMufIGuVFnSeZ05w6aBMCpw5mTNntgwDEQ6BFG864ICCCAfhylokwrVAfSZj5MiRw/jRsh6decIphbpIeCHtHKJcuXK87Nu3L8/d+r7gnYY3fY+IQGSAIqvPEHgtRCLMCoW1YJ2TEAJCQAgIASEgBISAEBACQkAICAEhIASEgBAQAkJACAgBsqRu27NnD9d4BxM4aeB+KVCgACNas2YN1/PBB53qDc4c7YKBGHL16lVKmzYttze+oXYRasrbCriU8KV+6/Dz8+M6RkFBQZbUaxB5UEdICz3Wx6D2PEQWo4sIbR4+fMg1jIzHxY5tfmStBS/rvuDGQdy5c4fLmmD9eeaEekwwLCB9nTHg2EGcOXPGUhcJTim0tSX+QLTq0qWLsQu769GZpz5/o2MKHevPqowMOROJUIsKz90lhIAjAuIxc0RH9gkBISAEhIAQEAJCQAgIASEgBISAEBACQkAICAEhIAReEQEIIhB8unXrRqtXr+bUcqhNhPrsSB2H7ExIJ1amTBmeYcqUKTkFHdwxEI+QYg4iEMSNe/fuPXMWSGOHGkG2Xkh1Zis6derEm3v16kUnTpygiRMn0rJly+ibb77h7RBfChYsSKgjjzh37hzXVBo0aBBpAYh3qDdkksI5dO/enV06qGnUoUMHTmdnrwyJj48PHw7RRoezOZ08eZIFNJ2Cz56LCP3VqlWLU8u1atWKULMJKf9QgwkBx1ZMIjrzhKiH69qnTx9Oh4fUfIsWLWLXEtigdpOzOHr0qE1hy9lxsv/dIvDaOIneLexytkJACAgBISAEhIAQEAJCQAgIASEgBISAEBACQkAICAHnBJCSDeJCvXr1uDHquC9fvpwgCP3zzz8sFiC9nA6079ixo8V5lDVrVm7n7e2tm1iWEI9suWMsDWysoB+kgkONebiZIFZ89dVXVLNmTW6NGkhwOj148IA/ozaPLRcRdkJ0+f333+nzzz9nIQnbMF84mFCixFb4+vqyOwYCjm7jbE6oGwRRCc4aBIQsiFMY1zrgasJ+iESlSpXi3RDlNmzYQDoVnfUxrn6O7jz/+OMPFgg/+OADyxDNmzen8ePHWz7rFcxbp9/T27Zu3Urt27fXH2UpBGwS8FC2NJPNPbJRCAgBISAEhIAQEAJCQAgIASEgBISAEBACQkAICAEhIAReCwKoL4MUYwkTJrTMBw4jpJ9bsGCBZZteQVukSUuePLne5Pbl2bNnueaRrhOkB4BTx9o1pPfZWyJ9HcKV+X7xxReEFHxr1659pjt3zgm1llD7KFOmTM+ME9MN0ZkneMIxhrpSxtR8juYA9xRS5x06dMiSNs9Re9n37hIQkejdvfZy5kJACAgBISAEhIAQEAJCQAgIASEgBISAEBACQkAIvMEE4Lrp168fu03e4NOI9tQhmMA9hfRxhQoVivbx78IBcHqFhobS5MmT34XTlXOMAQFJNxcDeHKoEBACQkAICAEhIASEgBAQAkJACAgBISAEhIAQEAJC4FUQgLsEAlHdunVf2vBGxxCcSi/6s70TQ/o3pIS7c+fOC5+D9Tnam5Oz7db9vMjPDx8+pDx58lCjRo2cTUv2CwESJ5HcBEJACAgBISAEhIAQEAJCQAgIASEgBISAEBACQkAICAEhIASEgBB4Bwl4voPnLKcsBISAEBACQkAICAEhIASEgBAQAkJACAgBISAEhIAQEAJCQAgIgXeegIhE7/wtIACEgBAQAkJACAgBISAEhIAQEAJCQAgIASEgBISAEBACQkAICIF3kYCIRO/iVZdzFgJCQAgIASEgBISAEBACQkAICAEhIASEgBAQAkJACAgBISAE3nkCIhJZ3QImk4mGDBlC3377LQUFBVntlY9vI4Hl+6/TmYD7dk/t/M0H9Oeea3b3u2NHwJ1Quhr0yGFXgffC6Kya5+MIk9126vYlzPfOg3C7bWRHzAmEPo6kXWfv0IOwiJh3Jj0IASEgBISAEBACQkAICAEhIASEgBAQAkJACAgBISAEXhEBj7CwMPtPnF2YVK5cuej8+fPPtCxWrBj9999/z2y33hAREUFTpkzhza1ataIkSZJYN3mpnzGf+PHj85inT5+mzJkzv9Tx34bBQh4+ppKD/7V5Kn99WoJ80yayue9VbSw3ZCv1qJaVmpfKYHMKf++9TkP/Pkm7v61oc79xI8SZ0t9soakdClFZX2/jLpq5xZ+mbfKnrV+Xs2z/7b/L9Nu2y3Th1gPe5p0oDn1aMxs1Lp7e0uaQ/13634JjljbY0bFSZvqkelbyimXWeR+FR9JPK8/QqkM3CGISInuahPRtYz8qnDkpf7Z+G7XqrJrPxSibi2ZNRr1rZCMsJewTuHDrIfWec5y+/SAnFciY2H5D2SMEhIAQEAJCQAgIASEgBISAEBACQkAICAEhIASEgBB4jQnEjunclMjEXeTPn58yZsxo6S5nzpyWdUcrjx8/pl69enGTWrVqvXKRyNFcZV/0CHyjBIqS2ZNHOShdsrhRPr9tH6KjuE5Ye54mrDtPAxvmoop+KShubE/adPw2fbX4OIU8ekztymeie2rZfMIeaqYErJldClOieLHp4MU71HPOYUoQJxZ1rZKFIBD1nH2I9qvtP7bMRwUzJaH7oRH0+/bL1OqXvfT7x8V4mz3W//QvzbuuBYfSLCVkfThpH20bWJ6SJ/Syd4hsFwJCQAgIASEgBISAEBACQkAICAEhIASEgBAQAkJACAiBt4BAjEUizWDw4MFUt25d/ZGXjx49otq1a9OdO3eoe/fu1KFDB9q5cyevx40bl8aOHcvb9EF16tShevXq0XfffUfh4eE0fPhwWrlyJZ05c4Zq1KhBffr0ITiUEC1btqSTJ09Sjx49aNGiRdwv2n388ce8vX///jRv3jzasmULffDBB9SzZ0/KmzcvH+vv709fffUV77t79y73ifmXLm1+WM6N7LyNGTOG5syZQ02bNqUTJ07Q2rVracaMGVStWjWaPXs2zZ8/n+dSsmRJatu2LTVr1ox7ghg2atQoWrBgAR0+fJgKFy5MrVu35vl7eHhwG8wXr+3btxNEN/D47LPPyNPTk1asWEEDBw7kOY4fP57bT5o0iaZOncpzwfk6mtu0adOY0549eyhHjhzUvHlz6t27N+mxYzp3W7jSJo1LmVKYXVnW++uO2kkfls1I64/epH0XgilzygQ0oL6vxfVy7sZ9Gr70NB30v0OpEsel5qUzcPsnqAjunsW7r9KJqyFUOXdK6lE9m2Us9N2qjA+tUa6aI5fvsqPny3q+9POac/TP4RuUNlk8dstUyZvKMq3g++HU7/ejtPH4LcqVLhG1VMfXLpjGst/dKw9VmjIIRJ/Vzh7FwdSoeDrCvn9P3qY25TLS2Rtmh1GjYukodRKzwFY6pzf91r0ohamUZ4j9it/WU4FRxKBkCbzo89o56FZIGG0+ccuuSJQnQ2Ly8TZfIywjVb66Dcdu0bXgRywSffvnSRamkA5vw7GbNK5NASqVIzmn3/tDpeADfwiB7SpkomLKfQRn1H9qLhPaFeC57TgTRIOWnKCpHQvx9YmINFGDMbt4buVzedPUjRf5Wt4MCeXjcZ0yPrlnbtwNpXH/nOdrkl5ds/pF0lKrsj7cL9L/rTgQwHOZueUStVT3R/eqWXmfvbd/Dt+ipftuqHMLJe9EXlQmZ3JqX8HsHhu54jx5qh9DiHy7VRo53GdV8qagTpXNwjeuyXdLz9HJa/cpcfzYalz7TquLymU0cMlpqls4Na09cpuC1L2VX7mNmpdKSxjn9r1wSpMkDg1p4ksp1DwQ208H06QN/nRXufDiecWi9wunUvdgesJvhp/XXKBQJQRCFNx0IpCmdcxHsdVkf1h+nk6p+Xiq9WJZk1DvmlkoFk5CQggIASEgBISAEBACQkAIvOEEDh069IafgUxfCAgBISAEhIAQeBcIFChgfgb6pp+r20Sihw8f0v37T+u6xIkTh+LFi8diDgSifv36UZMmTVicgUgCwSN58uQEIUnHgwcPKDQ0lD9269aNRZfEiRNTnjx5aPHixbRmzRratm0b+fn5sRCEfrp06aIPJ6SKg3CE7RBgdEDEuXTpEgtOkZGRLOggRV7WrFkpZcqUtHHjRn5duXKFvL2jpgjTfejltWvXuH+MoQPnAJGlY8eOvKlMmTK0bt06fkGEgaA0efJkPvfUqVOzQAPRBwIQzq9du3ZRjse8kKoPrxs3btDIkSMpODiYx02T5qlwgX2YR/ny5Xlce3P75ZdfWBBCI/S9f/9+fkGIw3WJ6dx5cBtvSg8g1MjRoQUefEZtncF/nGCxplq+VDR9sz8h/dmcrkX4mA7TDpCfEmvGty1Ahy/dpe+XnaasqRJQ+VwpWFj6YuExQso1pIibpUSCrtMP0qKexSlh3FjcN8SNAUpwqKWEHoyzTQkXEJOGN81DC3ZcoU9mH6b9wyqxewfzGfvPOXq/UBpOz7ZRiSSfzzvKogyEjxcRZ5UIhsD5WAeEEC2G5EybkHd/ueg4CysQZOJ5eUZJ2Xfy+j0+bziIrOP7ZnmsN0X5jNo6qHH0WF2sU9fu8XWASKZTAkIcmq94VVXX6Kv6uShb6gS06mAADVDzaVs+I4szEGvaKPfR0j4lKZu6RsP+PsUOKLietiix61LgQ4JYBMEQtZ9w7XOqVHjL9wewcDesSW5KmTgOC0KfKe4LPylGmFePWYcpPCKS+r+fgy4HPqJhS09RfCWUQEiD0+q/04FKcAmjnirtXv6Mz5678UTPKbHtl3X+6prGoSYl09Jh/xAlTimRKXtSyp0hEfcPcQdsq+ZLQeuUuLPiwE0WkvL6JKJ+80/SpduP1D0Yn0WZ5ftvGLuPsv4wLFLVhHpMc7ddpdzpE1Gc2B609/wdfqVXTrrSOZPR1pNB9PPqC5yu7uiVe0rwOUfY16BoGtpz7g4t2nmdBZ/mpdKpuYXS6evm+yVzyvjkpRxn3WccZUGpZPZkqn9P+leJR7dCwum7Zr5R5iIfhIAQEAJCQAgIASEgBITAm0jgbXng8iaylzkLASEgBISAEBAC7x4Bt4lERlEGGOFsGTJkCLVv356mT59OcLDAvbJ582YWKiCQoPYPviEEoQQBsSZLlix08eJFi0B05MgRSpcuHX377bc0dOhQmjVrFjuN+AD1BscO3DsQT2LHfno6GGvmzJm0atUqatiwIQs2QUFBfBjcR3AyffTRRxQrViwWnSAa7dq1i2rWrKm7drjEnFevXk1FikDUMJFOrwfxB66i9evXE9Ln/fDDDywSbdq0ifvr2rWrRSjDeLrm0aBBg3j/6NGj2Q21YcMGnsvPP//M7R1Oxmqn9dzAFDFx4kR2bum54TNEIj32886dO7fx1m3GwShbIeAY6/rAKdP5vSzcJrESFD797QjX04GwBnGid43s7FKBMAIxRac/Qx0dpF/rUys7HwtnTblvt9Duc0FUSQlBiE5KQNJCy3Hldlm+/7p6gJ6HH7z7eMej/34OpIuqDpAWQ4pkSWrZXz1/ahY2Fu28yu4W7tDNb/qhf6YUCRz2DPfI3G5F6QtVk0jzLKdqHeH8tRMKbhIIO88TEGwKfLnRciiu0dgP81PsWE8dKeh7TOt8ymlj3jbj30tKzEinxBtzSknMo8HoXewI+rhaFu7ryOUQdvlAcIN4tf1MIDUtmZ4OqJR4GZVjKX3yeHR8Wwivv184DddWKqCEHv/bD/n4feeD2QW2/osylE65iBBIvTdn2yUWiXiDevu1U2HydiEtXsCdMBZhRrXOzULQB8XTUpNx+9npA5EIgdOb/FE+SpogNjUoloY6TTtCx6/eo7hKOIJAVDmPN/WqkYXbfrf0LO1UjiNH8Z5yIvWsnpndSQ1H72NB8pf2ZjfjhZsP6eKTc52++TKPPbZNHubeUI3dZfpR+mtPgBJB01mGgAAE0WnD0dssQnWs5KMcR6l5P8QtOKUgTmH+EkJACAgBISAEhIAQEAJCQAgIASHw7hGIpEgKV38eqz8RT/7wmilC7YlU/z999o/63/AzfzzJk2J5qJf6E5vfsYxNXuoPtkkIASEgBITA20XAbU8TkT4NYo4OLZpAhIGTpUSJEizUYD/SpEEgshcHDhzgXSEhIdSiRQteh6sGgVRsxoBLKUMGc8oo43YIQ0jTVr16dcvmgIAAFoSQfm7hwoUEwQbCEQQihNEJZTnIzgrcQcWLF+e9cPTAhYSAmDVs2DB2NeEznD5wSMHt8/fff/N+pKurVKkSi1dYGo/H3BDvvfcei2dgcPBgVLGFGzh4M84N7iL0jwATRJUqVSwOLuPYzzN37tDO28fVshIe/OtAiixjINWZDr0eoFKM5U6fWDk4vAluIaSHK6cEour5U6nUXHEI6coO+t/lFxwwxjihHuhrkcjXIJokVanXIHToVFzeCePwYeGG4zGe3o9lWd8UtFI5ZF5UYE4ICB/xvMzzsTcWBKxV/UrxOcORg5RucEJ9UTcnfaiENogCgRfD7R3udDtS1yGQcm+TSrcHF9d0Jb4grRwCIo8WiMAcKfw+LGdO+4b9cLKgLRxfSJUGlqiPBNfRBSXEwR3WVQmGuHZ7lfhTOY9ZyIO4BBdY9R+2U60Caahi7hRUPJvZuQVxBvHLugu8xNsSlV4QodPspVHpDF0RiHAM3DspE3vRlA2XlAD4iJ1DcLnhn8c60JcWWFIpZxMiWIkuELwQSI+nA6nqnIlERTKb733c9RDd4EjSgXSASDuHuBoUShmUaGYU5vJkSEgbjwUyM7RJoMQ7CESIY8p5hMD4+y+a5wZRFQHXVtIET3+ueKO8CQEhIASEgBAQAkJACAgBISAEhMBbRQDCTxiF0iP1CjOFqXVIQ+F0l0LoGl2nANNNCqRgCqI7anmHbpuC1ad79JCPeqyOwytcvSKU7ONJ8ZUAFFe94qlPcdUrCSWgFB5JyJuSqlcy9ScppfZIQekpHX+Oy628KI5HHLVm/uOljofcJCEEhIAQEAJvHgG3iUSo8WNdk0jjSJs2rV7lZZIkT4WDKDuefICoogP1cxBw/iBVHMQmYyRNmtT40bKO9ggvL/PDeL0DaecKFSpEEF8gZCGV3fMEUuXpMKbM8/X1Va4A81+KEGAgDiGF3ieffEKY69y5c9lNBWEKafDg4mnTpo3uipCmTweENMwTqfx0IEWcDtQ5shXGuRnbGFlAQEPEdO4DBgywNQXeBoHIVjo1fYDxoTjqqhjjF1XTBi4U1Aga8tdJfv3+cTGLYyaLqmEEN4oOpCAzphx7cgn0bqdLpPAyBgQtiBrRDQgmiDsPn14n3QfqzSRUziAE0q0hzt98wKnW+MOTN9QFwthesZ7OCSJN4cxJ+dWhYib6aOp++n37FRaJ/NIlZrEFKdriWp2HPgctgBnHwTrEOfSrAwLOKZW+7g8lyGiRSN/PaIO0dIg4hrnxZzVu6OMI3ldWOZ2Q3g/p5eACK6xELsSxKyH0nxK5hnzgx5+Rym9V31JcWwh1kGZu8ee0dnAyPQo392W8xnBPQcgBH4T1HHijnbftZ4Lph2XnmI9vuoSq3lQq+mPP9SitrdnpnSEPzXNBjS0dWkzSn20tE8WL+u0qpMqzFRC9rMUuawEUjjIdd5WwiECbiEjz3JKoOkl5lCMqYVy3/UrXw8lSCAgBISAEhIAQEAJCQAgIASEgBF4hAXy5UUlBSuBRf0wPWRi6QTfotOk8naAzdEItTyth6ISSg0iJPm4L60cils8elJYSU25KTb4emdQyB+Wi7OTjkUFJS/Epvod68Z94Sn56+lzDbfOSjoSAEBACQsDtBF7KE0WkNENAlDl9+jTB/YPaQsb0cNgPV0+WLFkIriQE6veMHTuWEiRIQNevX6d9+/ZRihTP1nDhxi6+oVYQhBfUDUIKOIgomJd2ArnYTZRmmTJlsrh+evXqRcifDDEHad0QyZIlox07dnCaPTiYUKtp8ODBhNRyS5cuJQgtSBGHeWFOcPwcP37c4gAqWLCgxUEFBmFhYSx+7dy5M8o8bH3w8fGx9I1Uf++//z4dO3aMkHIvVapUtGDBAsv+5527rXFjsg11aCCoIO1bjQKpaUB9X6o3aict3XeNvm6g/umhBBbUMepWJYtlGDgpkCrteQPpzUilqNMBJ0wen+g7MvAwH/NDvZzaqh6SDog1W08GWgSTDCrlHeY7deMFKpq1oMWpg/aDlpykXWeD2D206uANFoBmKzcOUoohIERBENt8/DZ/9nviMIErp3Plp+eAMWuP3EEllFCjhRk+wMEbjrmuWGZIbtvphznAlXXA/w5fG3QFzWbfhTtU8IlzBuONXHGGhY8Kfin43HAtF6r0fYGqhlCxLGa3UPCDcCWQxaXuVbPya972yzT0r1N0Q7nJ/JSbDNFa1WdCKkLEw7AI5ewJZ7cSb4jG2/zt19gpNrNLfq5rhL6W7I4qEtnrLoO3WRxCXaH0yc3p3XarukHuCgg8pwOeCuPo99T1Byxo2RL3kC5xl3IRtS6XnvI+SZV39PI9Jbbd4JpL7pqX9CMEhIAQEAJCQAgIASEgBISAEBACr4YAEsbdV38emB4ob9A9OqXEoN2mA7TDdIQ2kb+aVNirmRiPqp4bKM8SXhtNZ9SWDea5mNSzCkpFpT3yUAkqRAXU0puSU0KPhKS+0khx1B9xGr3CyyZDCwEhIAQcEHCbpN+uXTsWQbJmzcrLxo0b87AQSlAzCIIPBBCkhtu/fz9NnTqV98Pxo0WhRo0a0U8//cSiDUQcOHEqV67M9Y1Kly5NDRo0INTqiUnolHj/qfR1EEqqVq0aI4FIzwVOIUTt2rWpb9++nC6uXr16LATBiTFmzBgeCzWPJkyYQFu2bOH2ZcuW5eXHH3/My2bNmnGKPdQ1QqA/OLHy5jXXMoGQlC1bNipVqhTXcOJGDt4wdseOHblF27ZtqWXLlpyCb+vWrQRxCxHTuXMnNt6QfgyOEuPrgXo47ywuq3RgFYZupZ/XnKXrwY8IaeSQlg3iC6JRsXQ0af0F5Xa5RqipM3vrJao8fBunO3PWt739m0/cVqnNzqsaNCG83HLytkqBZhYErI+BqId6VPYC88Pcxqw5Ryev3eM0cQMWHec0bbWeCEdwBo1qlY+2Kj5fLz6hRJZgbjtq1VlOq9ZeuYW0ewjp3frNP8rnd0nVsUHaNQhC7+U1p22DaIMaTGNWn1Xp1C5Yxuwx6xCnH4PQYi/g7tmlajnhtUzVbfps3hGuB4XUb/YC9Ygw/qJdV5kXBCHMUfPyU/OBALZcpevTbiS4izBvpM5LrEQRxPfLTlONEduZD0S+4yqNGo5DWsGiqp23Wn6m6lQhvSBEu7aT91Mf9dleOLouKRKZHUjXgkNVCryH9NXi09zNg1CVl/mJM8lev6VzJGOBadGu66pm0iPacOw21zKy1z662yv4JWcB7I/dAYSfD9QWAo+KuZ+mtzP2WTWf+bqPXXORU+GhRtHQv88q4S4kRkKpcQxZFwJCQAgIASEgBISAEBACQkAICIGXSwAp44JUUrhLpsu007SbJkZOp48i+1L+yLbUOHIwfW/6SwlEEGVepUDkiEkkHaYAmmLaSB1No6lEZCeqH9mdhkWMpn8iN9AZ0zm6SbeUH+pRlNTvjnqUfUJACAgBIfByCJif1sZgLJ0eDeIFXjogxsDxAtcQAnV64FwZMWIEtWrViuBagSiUJk0aGjhwIAs2cPPs3buXUMfozz//ZHFj2bJlLCqhD4gveD1vQDCBKNS5c2eaMmUKvyDClCxZklxx5WBcnaYNfRkD54DznT17Nv3888+8C+n3UI8JAZEIaedWrlxpOZ/mzZvT119/zfvhLIKrCccvWbKE3T3Yj/pNCKSxQ2q6b775hsUzOKogzM2cOZP3483e3IYPH87OplmzZtHixYu5PVLcoS9ETOfOndh4G7/2/DNb//q0BPmmfVqbRTfQNCGMZE2VgAY2zEU/rTxDUzZe5CZINQbxBdGufCYKUvVzvlt2iu6rh/wQFr5q4Kvqzth+qM4H2XjTY2JXRyWyIOUZ5oz+elbPxk4m68Nu3rxJI0eOZJHOep/+3L5CJq6bM23TRRZtsB2Cx48t81JF5azRgVR8cPj8usmf/txzjTdj7EHq3HG+CKRbm9G5sBJvjlKz8Xt4G96alkzPc9QbetbIRmHKgTV722UWp7A9o3d8mtutqCVFn25rvWynxBcdqD/0bWM/qlvYnCLS6jbnZm3LZ6Qg5ej5WYlgcAYh9d+I5nmUAGR2CMH9UtEvJW0+ccsydols5vSMqFeko7eaM8SQFhPM54X5TmxfkAUZ1Gz6tWMhGvzHCct+9PFds9x8uPHaYYOz69KyTHqC26bPbyf4+Kyp4ivRMQHX9Vl3xOzI4h1WbxgHaeL61MpCP648Tz1nH+MW+ZTLDLWKrLIkWh0d9aORpXG9lZrb8SsQO6/wC0dhbh9VfCruGdunTxaXOlXOSNM2XaKvFpnFLqTKG9w4R9QB5ZMQEAJCQAgIASEgBISAEBACQkAIvNYEIikSfiG6Y7rLbqHNpv/ob9M2OqbSyb0NcVSdx1H6h8ab/qEEpgTUjIpSNY/yVNAjr6p5lELVPkqsKhnF+NHk24BKzkEICAEh8EoJeChhQyWLej0iIiKCBSLjbJC27datWywwWaenM7aL7jpq8UCUSZToWcEiun0Z25uUKwGp8ZBiDjWFrANCER5owx1k73yuXbvGziuIZdaB4wMDA/l4a6HKuq31Zz03iHW2xtb7YzJ36zFj+hnpxZBuzFbaLRhAsB/1YSAuuSO4bpASamyNh/4hJqLOVEBAABlrP9kaG/O7HPSQa+ekMdSzsdUWKdbCVY2Z9MniqZpWtloQ3QoJU2n4wimjqvVjrFdkbI0x/W8/YGYQpl5kYKwQ5fBCurSYxKPwSHXukZa0ctZ9ITUcwl5NH+xz9bocV640MNY1ha4GhXKKNmN9LPRnKzBPuNrAH84kd0fAnTB2fkEkdaV/cDl57T6npcuVPqHbfgbcfV7SnxAQAkJACAgBISAEhIAQEAJCQAhEJRCuXEN3VLq2G6abtMm0leaZVtMuuhS1UbQ/4WECXkgaFEtVBcLLk+Kql5d6JVDviVTKt7hqGdfDi+KYYqu12KqKUQSFeTxWdY/CKdT0WElWYUq4UuvYrkQsLEPU0lzvCEu81AOBGEQqJQ6186hEdTyqUWbKRN4eySmempmko4sBVDlUCAgBIRADAq+VSBSD85BDhcBLITBv3jx2oCF1osTrQ0Cuy+tzLWQmQkAICAEhIASEgBAQAkJACAgBIWCbAFLKBas/p1QtnwWRS2kybVENw203drjVLATFUyKPtxJ+MlJSykZpKaNHOvJRy/QeaSm1qg+UTG2HWyepRxIlEiVwWYQJVdLQXVOIkrHusph1iwLpmuk6XVGViC6p5XmPq3TBdJtuq3Z3eP74cqfz8gK2Tqkm5aa2Ho2oqEchSu2RSglb6suzLHbZai3bhIAQEAJC4EUQEJHoRVCVPt9aAtu3b6cHDx5QlSpV3tpzfBNPTK7Lm3jVZM5CQAgIASEgBISAEBACQkAICIF3g8BjekyBpiCVeu0EzYlcQnNppzpxOHJcDYhCXkr+iUt+Sv4p6uGnljkop5KGcnhkU6nbvJVvKJarnbmlXYgSkc7TRa41dIrO0T7TMTpCl5Uf6oGSjiB8PY7WOGUpC3X2aEKlPIpROiVyxRVnUbT4SWMhIASEQEwIiEgUE3pyrBAQAkJACAgBISAEhIAQEAJCQAgIASEgBISAELBBwKTSsiGt3EnTaZocOeeJOORqqrbYlFwJJQWUNFTeo7Cq5lOACnnkp7QeaV66IGTj1GxuCjYFsxC233SYtpj20H4lIl1QyevMbinXzrukSj/3mUdbKuFRlJ1FUrPIJupnNg4YMIDWrVtnt+Y66rGjTjtqxrsjIiMjae7cufTpp59Sjhw57I7rjrGkDyEgBF48gZgVE3nx85MRhIAQEAJCQAgIASEgBISAEBACQkAICAEhIASEwBtF4JHy01w2XaH5pj/pW9Nfau5hLsw/lkofF58qKpdQZY9SShwqRTk9cqiEcu6vi+vCZKLdJJlHMipLpaismncP6kRXTFdphxKLNpr+o010mE4pwcwZh53kT01NQ6ilqSR18WxNeZRrKrGqpuSp/ki8HgSCgoKocePGdPDgQcqVKxehxryEEBACbzYB+Q37Zl8/mb0QEAJCQAgIASEgBISAEBACQkAICAEhIASEwGtCAO6hIFV3aH3kJvogspcSiBaqmTkSiDyU/BGPylFW+sGjNW32nERzY02grp7tKa9H7jdGILKFP4NHemrsWY/Gx/qe1nvOoNkevamxckWlU5WSyInoM0+l5KsY2YdmR85XdZCuqOR10UtfZ2s+b/K2ggUL0syZM6lJkyaUIkUKqlatGq1YseKVnFJAQAD5+PjQyZMnqXLlyq9kDjKoEBAC7iUgTiL38pTehIAQEAJCQAgIASEgBISAEBACQkAICAEhIATeQQIRFEFXTddphmkeDVUOIlKf7YencsjEp/oeBaglNaCyniXVp/j2m7/he9J4pKbmHo2pGTWio6bjtMi0lP4wbaWTSlKzX78onD4z/arkooPUmzoq0cxPyWnxyEP9edfi+PHj1LlzZ+rQoQNNmjSJ5s+fTw0bNqRdu3ZRoUKFYoRDp6qz1UnXrl2pffv2UXb5+fnR7Nmzo2yTD0JACLzZBEQkerOvn8xeCAgBISAEhIAQEAJCQAgIASEgBISAEBACQuAVEwhTbqHjppP0ZeRIWqukD/vhQckoAbVR3qFWnh+88W4h++dpew8EnnweefjVSTmE/jAtp9mmlXSIbqoDbItqC1XKun9Np2icx6dUybOs8iEleSeFotq1a9PEiRMZbP369alw4cIs1sRUJCpevDglSQJ317OBdHISQkAIvP0ERCR6+6+xnKEQEAJCQAgIASEgBISAEBACQkAICAEhIASEwAsiEKrqD+0w7aZPIr+nEyx22B7IQ7lg2ngUpW4ebZRIkveNTiVn+wyjt9XHIwP19OhCjU11aZZpPs01raMzFKg6MT3T0XVVz6iJaShNjOxG9T1rq9pN3iph3bvlKKpevbqFS5w4cTjl3L59+yzbnnelQYMGz3uoHCcEhMBbQkBEorfkQsppCAEhIASEgBAQAkJACAgBISAEhIAQEAJCQAi8XAKhykG02bSNOkV+R9eUkGE7YinfUCb6n0dnquBZhlOm2W73bm5F7aIvPfpQQ1MdGmWaTHNMeymSHtmAEUHdTBPoYeQjau7ZiFIooehdSj0HYcgYXl5eFBbmqN6VsbWsCwEhIATsE/C0v0v2CAEhIASEgBAQAkJACAgBISAEhIAQEAJCQAgIASFgi8Bjekz/mXZSRwcCUSwlCX3l0ZDmxRpL1Twri0BkC+STbbk9ctEEz+/pV88eVIDS2mlpoj6mabQkcikF0x3lOXrWdWTnwDd+87Zt2yznYDKZCJ9jmmoOHaLmEAQoW6+ffvrJMqasCAEh8PYSECfR23tt5cyEgBAQAkJACAgBISAEhIAQEAJCQAgIASEgBF4AAYgTR0zHOMUcUqHZilyUkkZ49KbKnuVFHLIFyMY2JVVQK48mVNgzPw2KHEV/02HVKvKZlp+YppB3ZDKq7VmDEqoaT+9C/Pbbb1SwYEGqVKkSLViwgPbs2UNDhgyxnHpwcDCtXbvW8hkrmTNnJl9f3yjbrD906tSJUO/IVuTNm9fWZtkmBITAW0ZARKK37ILK6QgBISAEhIAQEAJCQAgIASEgBISAEBACQkAIvFgCAXTj/+2dB3gUVReGz24IkNBbAOm9o9Kb0hUFRLCigoiK7VdAaQoizYYFRBTBgiCIqAhIExCVJggKUqT3EjqBUAKk7H+/G+4yW7IbAgm7yXf22d2ZuXdueWdm4blfzjnyasJ7sk2Oe+2ouZSTd+z9pIqtomRSL9rVEaisuI2xvy3FHCNltON3dXKsWwMJ8qTjI5nvKCK1bLdKqHqld3vttddk/Pjx0qdPH4mIiJARI0ZI8+bNndPevXu3tG7d2rmPjV69eslbb73lcsx9p0GDBu6Hkr1vs2WsvFDJBsOKJBBkBGwqdmXG8csMsovD4ZIACZAACZAACZAACZAACZAACZAACZAACQQWgYtyUYbGfyDDZZYamKeXSyupJCPsb0gpWwmxqxct5QRiJEaGJLwvHzjmq0bchSKR1lJFsR4kJWzF0nV+IoSCmzRpkjz44INy/PhxyZs3r9jtvLdSfmfxTBIgASsB/ppYaXCbBEiABEiABEiABEiABEiABEiABEiABEiABHwQWOX4R0bJAlXDUyBqKRXkQ/tACkQ++F1NUZiEyev2XtJTWqrTQjxOnSP/yQLlaXROvTKK5c+fnwJRRrnYnCcJpBEBikRpBJrdkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJBDeBGLkgoxMmqM8Yj4lUlALyrgoxRw8iDzTXdCBcCUX97S9LR1tN1Y5neLO3HZPlgCNSSXaeot01dRxAJ3/88cdyyy23BMSI4NVk3hiQdTsgBshBkAAJXDUBhpu7amQ8gQRIgARIgARIgARIgARIgARIgARIgARIICMS+C1hibR2vC7xSiZytRCZocKeNbc1lizqRbv+BLY7dkjHhFdkvRz2aHyE7WnpbH9Yckh2jzIeIAESIAES8E2AnkS++bCUBEiABEiABEiABEiABEiABEiABEiABEiABLSnyo8yWwlEFz1ovCQtpK6tFgUiDzLX70A5W1l53vaAajDUo9FvHHMlyhHlcZwHSIAESIAE/BOgSOSfEWuQAAmQAAmQAAmQAAmQAAmQAAmQAAmQQLonkJCQIFu3bpUTJ06k2Vzj4uLkwIEDEh8fn2Z9prSjkxIlixzr1ekOtyYyyWP2+yW35HI7Hpi7wcTcneADtnbSQG5yPyxr5KAckEiJUy8aCZAACZDA1RGgSHR1vFibBEiABEiABEiABEiABEiABEiABEjgBhOoW7eu9O/fP0WjOHXqlDOHhsmlYb6jojKuJ8KkSZOkQIECUq1aNSlcuLC0adPGRSz69ttvvXJbuHCh8zqUKlXKo85tt93mLLdunDt3Tp5//nkJDw+X0qVLS1hYmLz88ssSE+OZ68d63o3cXutYJ3u85CJ6QupLESVchKhXINj+/fulffv2+lrMnTvXOaRgZO4c/OWNHLYccp+thdrL5F4kfzv+lfNero9HRR4gARJIMwL4PZoxY4b8999/adYnO7p6AhSJrp4ZzyABEiABEiABEiABEiABEiABEiABEghyAmPGjJHNmze7vHPlCg5PkOuNftWqVdK1a1f54osv5OzZs7Jp0ybZvXu39OrVy9nV4cOHpVGjRi68wK9hw4a6jsPhkIMHD8qUKVNc6nz33XfONqwbEPnmzZsnK1euFAh3S5cule+//17effdda7WA2v7PsU35EHl6qrSwNZLstmwBMVaIeWXKlBFcD3cLRubuc8B+E1tD5bXlmfdpvWxRmaLcc0V5a4HHSIAESIAErAQoEllpcJsESIAESIAESIAESIAESIAESIAESOCGEoBAUaFCBZkzZ440aNBA8uXLJx07dtTCQ3IH9ueff8p9992nz23WrJl89dVXHqcWKVJEL6ZjQd287faMuUxy+vRpef31153eJ2XLlpXWrVsLxCNjR44ckXLlyjlZGWbwBIIZL6yaNWu61AFnb7Zr1y5p0qSJ1KhRQ3sTwTusdu3aguOBavtUSDNRGYncrZKtvGRVr0Cw1atXyw8//CATJkzwGE4wMveYhDpQ3lZOCkqYR9FOR6TEOmI9jvMACZAACZCAbwIZ838/vpmwlARIgARIgARIgARIgARIgARIgARI4AYRuHDhgvZi6dy5s9x7773y0UcfybZt2/R2dHS031Ghbtu2bXWOm88++0wgPjz77LMCDwuadwItW7bUIpEpRc6a+fPnS/369c0hOXTokPZOwXWBiIfvFStWOMuPHTumt3/99VfNHALfsGHD5NKlS8461o0uXbrI5MmTZeLEibJlyxb5/PPPtTD40EMPWasF1PYJxykv48ks4eplU69AsBEjRki7du28DiUYmXubSBbJLEVseTyKjsgZJeF5ingeFXmABEggTQjAMxUeoj9+P1V+Vf+m0AKXgGcAz8AdK0dGAiRAAiRAAiRAAiRAAiRAAiRAAiSQQQggNBZy1MAQ5qx8+fLy22+/abHIFwLk1smfP78gzFnWrFnlgQcekJMnT2qx6ZFHHnGe2rdvX8GCurHbb789xXmOTBvp5XvgwIHacwt5JIxBJFq8eLEW3F566SXtrdK4cWPtbXTLLbfI0aNHdVUwRa6hyMhIGTJkiBb4IAS52z333CNPPPGEPPXUU86ibt26SatWrZz7gbYRq0PNuYZxC1e5cewBIhD54xWMzJOaU1ZHZo+iC+r6uF4djyo8QAIBQWDfvn0yuF8fmTXvFzl17nyqjSl3tnBpe1creeOd4VK8ePFU68dbw+vWrZMOre6U+jkyS9mQBJm3arnMnTpFfvrtD8mWLTDCc3obd0Y9RpEoo155zpsESIAESIAESIAESIAESIAESIAEApgAwsQZK1mypA51tmHDBr8i0Zo1a3QYMwhExlq0aCHjx48XeCkZq1y5slSsWNHsahHKuZOBN8Dp/fffl59++klKlSrlJIHQcM8995x06NBBH0MOo1q1asnXX38tI0eOlBw5cmhxCMJQzpw5dZ0qVaoIvFeQZ6hw4cLOtrDRo0cPfU3gKVatWjX5559/pHfv3oK8UG+++aZL3UDZCdch5eAxdEWKOC+XlDQRHN4rwcjc27V3KP6n5ZxHUU6VpyhYBDuPwfNAhiEAgahZ/XryZHisbK6aRyJC86fa3I/Gxsu41Yt0f7+tWHndhKITJ07o3+pMmZKWFno987T0zWuX5wpeEXT/t2evDOn5krw77stUmzMbThmBpK9kytrjWSRAAiRAAiRAAiRAAiRAAiRAAiRAAiRwzQSyZHFNTI/FqIsXL/ptF3Xcz82cOXGRKj7+ymL+448/HtBeK34nmgoVfvnlF3nmmWe0h1WbNm1ceoBnl9XCwsLk7rvvluXLl+vD8CaCWGQ1hLGDrV+/3kUkOnXqlIwbN06/ISLB4C0Gg1AETyb3a6gLb/BHQVs+pQ+5ikSiJKKTEqXDnIVIyA0eYdLdBytzbzOKlmjZL56h/4pKi0OCMAAAP0hJREFUXuXXxaVOb8x4LHAIwIMIAtGAYrlSfVARoSGJ/ew/rT2Xvvz2u2vqE+IQvHOXLVum/zAAv9Xdu3f3aPPw4cOydccOea56XpeynoXCpeXcefKuy9HA2Jk7d67AmxVhbkePHh0Yg0rDUTAnURrCZlckQAIkQAIkQAIkQAIkQAIkQAIkQALJI7Bq1SpnxaioKB3+DB4n/qxGjRpauEhISHBWRVvlypVjiBsnEc+NtWvXCsKRDRgwQF544QWXCg6HQ+cZcs/rtH37dp2fCJVRhjxEyGdkbO/evXrT6pGEA8ajKzw83FTV32Y/qTxGLpVvwE5pKaF69RSC/nGsk/MScwNGlPwug5W5txmuTdggkeIpGJe3FZfMtiteC97O5TESuNEEEGKuW6HsaToM9Id+r9V69uwp+fLlE4jOCxYs0KK+9d/qa23/Rp0/ePBg6dSpk/Yotv7f4UaN50b0S3n9RlBnnyRAAiRAAiRAAiRAAiRAAiRAAiRAAj4JIB9Rnjx5pGDBgjr8GMKZIW+QsV27dsnChQvNrv6GNwvCoSEvTp8+feTRRx8V5EV47733AjaEmcsEbtDOnj17BCH5YPXr13fh2rRpU4EXF9iCaYECBaRSpUoydepUwV9eI/eTOQ9eQVhEfOWVVwR/cf7kk09qcQ4C3datW/W1GTVqlDRv3lwLSrjGCAuIsH+4Tv369dPeSbjWgWjVbZUlhyNUzkisy/BmO/6Qto47Jbstm8pOBE+jwLNChQoFJXN3kvHKZ2uB43flv+UpEt0qVVRAwCthJt3P5T4JBAIB5CBKzRBz3uYIj6JrzX0UGxurf+8RGhSCfs2aNXVeuZkzZ0qdOnVcusXvTYWyZWXMkQMq3NyVPwYYcfi8dLi7rUvdQNjBH0Js3LhRxowZI8ePHw+EIaX5GCgSpTlydkgCJEACJEACJEACJEACJEACJEACJOCPwKBBg/QC1JkzZ7QoMW3aNJeQZdjH22ozZszQIsOUKVN0yDIIEhAcevXqpd/Wuty+QgCLfOAMa9269ZUCtYUFM+QYQp6ikydPupQPHz7cmaMI3kLTp0+Xzp07y9ixY3UbyFn0448/is1mk+joaIHnEcQjGHIeIcfR/fffr/fx8fDDDwd0mJ8qSiSqIHnkb+U3ZLWFslU2ObZKhK2AZFavQDAwd7dgZO4+h/2OAzJNEOLwiqdgYh273GKrJmEUidyRcZ8ErgsB5FKCQfQ3htx+S5YsMbsu3++P/Vw6tLpTlsRekrIhCbIy1i6OAsXlpxGjXOoFwg7+v5HRzaZceK9k28voNDh/EiABEiABEiABEiABEiABEiABEiCBG0pgzZo1Uq9ePdm9e7fgr5ER1gbhbVJiCFOXO3duLVKk5Hye40ng9OnTgnwTZcqU0R5G7jUQqgfXDsISvI6shlB07onOcezo0aPaYywkxDOUm/X8QNh+M+EDGeyAOHklvxXGdbfyYhlpf0OKq5Bn9gD1JjL8go25GfdF5T00NP4DGS6z1CFXkaiD3CojQ4ZIIYkw1flNAgFJADny4hsVT/OxhSzbJ9cSynPFihXSuHFjlzYmT54sn3zyifz5559e53P27Fn9RwP4d7127drSo0cPr/UC5SByLOEPIz799NNAGVKajYM5idIMNTsiARIgARIgARIgARIgARIgARIgARK4GgIQDVIqEKEfhKvz5lFxNWNgXVcCuXLl0nmI3MUeU8tut2sByV0gQrm3c3DspptukmAQiDCHe213q8xEObHpYnPlP5njWCjR6uVQr0C2YGMOlggzt8yxQkbKArXnKhCh/CFba8nl5bqgLKMYBNovv/xSDhw4kKZT3rZtm1y86Bn+z9sg4FG4f/9+b0UpOvb999/Lzp07Xc5FWDSMCSHEkmORkZGCPygINDt4KV6i4jzv9WsZ56FDh2TixImSkrw7RYoU0V2fO3fOOQT8wUCJEsjV5t2yZ88uDz74oDzwwAPSsmVL75V4NCAIUCQKiMvAQZAACZAACZAACZAACZAACZAACZAACYBA0aJF5aOPPhKIEbS0IYC/bDdv9Gi28X2j9nXHAfhRxVZJOkh9NTLPJbWejvGyPGGlxMiFABx58A4pQYlC2x075bWEj+SSoutuTaWs1LXVyvCh5jZv3qxDOEIkSQubNWuWFoyrVq2qhd7+/fsnKcxAWHjsscckf/78WkRu0KCB/Pvvv3qYO3bscPnNsf7+vPXWW0lOZc6cOYK8ZhERV7zHhg0bpj1QMabSpUvr3GlJNYA8aU2aNJGSJUtqT0YIGfBcNbZ3716v40rt0GRbYmLl9vVHpPiqg5J/5QG5b/NxOeVDLFoefVEq/RMp8BTyVQ/zAv8PPvhAJkyYYKaZ7G+I+TDk7jGG/EQVKlQwu/wOYgLMSRTEF49DJwESIAESIAESIAESIAESIAESIIH0RgALfshVQ0s7Au4hiAJtP+1IJK+np+2d5NeENbJBDrudECfdHO/JREcWaWCrl+FFCzc4KdqFQLTbsUd6J7wpayXSSxt26Wl/QvLZ8nopy1iHEPILv5/ID5baBoHnvvvuEwgm+L3G/p133qm9N5EDzt2eeeYZWb58uSDsGLwM+/XrJ23atNH78ESBwGW1gwcPSosWLXQ+Outxsw0vIQhEffv21XnncPyLL76QIUOGCHLTNWzYUHvMdOrUSf/hAfathrCZHTp0EOTUgRgEDyd4vHTp0kXnS4NH5JEjR/QpmzZtcvFIhYdqatlpJQa133RMKodnlv11ikh0fII8oESiTttOyMzKBTyk6e67omR05Bm5I09W2RYT59eHMTQ0VAYMGCDPPvuszgEXFhaW7KnAA7Fbt24yePBgQZi5devW6Zxza9euTbINeLZlyZJF4FG0fv16WblyZZJ1kypIrkdYUufj+FNPPeWrmGWKgOefPRALCZAACZAACZAACZAACZAACZAACZAACZAACZCAVwJlbaXlRdtDalEtq0f5MTkjTyhB40/HSjmnXoEees5jAgF0IE7iZJcSiHomDJH5ssXryHpKK6ltqyFZ1Cs9G7yDXn/9dbn55pu16IFFb/ewckuXLtVCDTgg7xQEnCpVqmhPDwg358+fv26IpkyZItWqVdNiD0STpk2b6vGNHDnSo4+TJ08KwsKhDB4+BQsWlBEjRuhcZAsXLhQIF8hxZn3//PPPUq5cObnnnns82sMBiE3IfQahytiYMWPkpZdekrvvvlt7or744ovSqFEjr14zy5Ytk+3bt8vHH38shQsX1owwvrlz52rRCG0eO3ZMEGKtbNmyLmPLmzf1BMmlyisIYs8nZfLITZlDpGJYqIwqnUfmnoyRPRfizFSd31vOx8raWwtL95tyOI/524A4d+bMGfn999/9VfUoHzp0qL6PcA3BHtcR91hSBoHnwoULOs8PvMmwfzVvtIuQsdf6Tmp8PH6FAD2JrrDgFgmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAn4JfCo/QH5N+E/+dTxm6rrmjfksMpL9JASNj6zdZdm9tslt8qWY+ffaftlaq1wQYXs2+jYLK8mvCeLxTXnjKnXSErJs/YukldSz7PD9HWjv+E1M3bsWHnvvfd0njZ8t2vXThYvXqy9NLDwjvBrH374oR7qq6++Kl999ZUg/BrCt/Xp00dOnDgh48eP95jKtGnTZPjw4R7HcaB27doyevRojzKEaqtZs6bA48ZYjRo1tPADMSBbtmzmsOzatUtvV69e3Xksd+7cWmRCqDl3gxfRqFGjtLdKUrnKlixZoj2ITAg05NjZsGGD9i6ytofxw8PK3SAQweuqUKFCziIIcDCMF95Y8CSCgATPm+nTp+tjHTt2lEcffdR5zvXe2K4EoojQECmkBCJjN2dPDPu5W4lEpbO6LuXPr5oYai/ykqeAZM53/4b3EAQ+iIoQ1K7GIAj+8ccfgtxGEMvgJeTLgs2DB55oGdVc76yMSoHzJgESIAESIAESIAESIAESIAESIAESIAESIIFkEgiVUOlv6ymHHMdluqxTZzlczoxWXkSPON6RdxMOSntbayliK6LO4DKcCyQvO/C8ipJTsixhhfR0fCT71bY3K6mEoeH2PlJMcVV+Bt6qpJtj8PqAQIRwap07d9bzgodM+fLlBWIJFvoheqBe/fr15ezZszqv26RJk3QINZwAMaR9+/ZaRHIPlwZBBKHXvFnx4sW9Hdbh4SASWc0INnv27HHxLoHHDwyCi9WQCwhik7tBAIMXUVJjQn14+UDoMHb4cGLoR/c+kOMO4eLcbefOndpDyHrceAihrHnz5oI2//77b53HB15JEJueeOIJuXjxonTt2tV66nXb3nEhVsqFuf5O5M2UKMTtUCJR8+vUE+4dwywlTbpzTkkbPCewCLjedYE1No6GBEiABEiABEiABEiABEiABEiABEiABEiABAKSQAFbfnnb3k/OJwxS4dCw2O0qFMHDqK9jgqyQf6WHPClVbJUkh2SnV1ESVxPeQwcdh2S841sZ7pijasV7rRmhKH5mf1Wq2aoq2S39L20akeP222938oDAAnEHuYAgEq1YsUJ7xkBcWbVqla6HfDCLFi3S2ya/zsaNG+W2225ztoMNeADhfTWWL18+LUpZz4EHESxnzpzWw86cQSjPmvVKiEaIWQhbZrV9+/bJp59+KhC4kvIiQv2jR4/q/EfmXOO55B5SD324jwfn5MqVy2P8COlnyvBdoUIFnX8HXlkw5PGBF84HH3zgVSSCNxZC3lkN/EuXLm095HM7V4hdzqg8RFaLVV5iMJRdL8P1g5hHIwFDIP3/kpqZ8psESIAESIAESIAESIAESIAESIAESIAESIAEriOB0rZS8qH9deml8hDNk82qZXehSGSGY51695L3bY/JXbYWyquosISpV3r3gEku5ksSq7yHomRlwt8y1DFW1kuiV4i384uq0H2fKWGuoa2eykKUGIbLW730dAyeKzD30F4QXIywAY+iZs2a6dwtyAEDq1SpkhQoUEBvFytWTAsy7qKMLkzBBwSUvXv3upy5f/9+vW88ikyhEUkiIyN1qDxzfNu2bdKqVSuzq78htPjzIkJF69yxD9EH4ePMGHAMBtHJhJFLPJL4iTxD7iIJQqjBzHit+Y4SzxJp3bq1DtkHr60cOVzzAEF8wzis5u61ZS3ztg0vok8PuYqjkZcS991DzXk7P7nHLl26pHNBJbc+66V/AhSJ0v815gxJgARIgARIgARIgARIgARIgARIgARIgARSiUA5W1kZZR8sAxzDZapjjerFdZE3sdtL0svxlXzjmCc9bY9KA1sdibBFKKkoa4YViyAOnVav/1TuobGOyTLN8a9C5SmymctWXQrJCHtfqWurpeShjCEQYe5VqlTRCBD6rG3btnr75MmTOuSbyfMzf/58eeONN3SZqQ9Bo2XLlvpYXFycQKSx5uDRBeoDuYvgJePN4KU0Y8YMj6KKFSvqPEZRUVFOj54ff/xRbr31Vg8PoBIlSujzZ86c6QwRt3btWkHuIYhNxhCWbty4cdqLKFMm30vWEIRWr15tTtXfYPHDDz/Ic889p/fhVTRr1ixniD5rZYRbg9CD/DpNmjTRRRgfrEyZMvq7R48e+nvkyJH6Gx/IV4S+3QUilCHUH97XYuXDQrUn0R+nL0iTXIleVzNPxOgmy7qFobuWfhCuD/OgkYAh4PuJM7X4TQIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIk4JVACVtxGSXDpKjjYxkrv8lZOe+13jo5JF0c70tjRxnpausgdWw1lViUX7Kpl129MoLFqLByp9Rri2ObTEmYKV/Ln2rariG2XDmESBupJMPsvaWCrZyEqFdGMoQGg+AD8SM0NFR7q7z55pt6kR/eKxBXEH6tQYMGGkv+/Pl1CLpu3brJZ599JkWKFBEIHRMnTtR5aEzuHcMQYewmT55sdl2+jSeSy0G18/TTT2uRqHv37vLaa6/J77//rgWZn3/+WVedNm2aDBkyRH755Redi2jYsGEyYMAA7dWD8eC8unXryp133uls+p133kmWFxFOQK4hCE0Qv4yghPYh+MAb6d5779Vh4WJiYgT5hGB9+vQReC9B9IKYc8cdd8grr7yiw9tB7Bo0aJD07t1bDJ86depIly5dtEgH/mvWrNFtPP/887q91PhokDOL3JEnq/TcFSVjyuaVU3EJMnDvaelTNKcgN9GWmFhpv+mYjC6TV5rnThSRUjIOhCl86qmnUnIqz0mnBCgSpdMLy2mRAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmkHYE8ttwyLOQ1qZFQVd5TuYj+1WHTvHvGLJadstjxnlR2RMiTtrbS1NZIiUUFJKd6IYxaegtFFytxSjg7K6cd0fKPY63yqJopc2WTujje+ZirFqp8rQbY2snT9s6ST/KmOy5mnv6+J0yYoIWZe+65R1eFwDJ79myBILRgwQLt2YLwcsZQHyKA8TxC/iLUMwKIqYdvhF7D+2oM7Xz77bfy0ksvCTx44FkDkcaEj0MOpM2bN4vJEdSzZ09BPiQTwq1WrVqCnEkm7xBCv40fP16++eYbp+jjazxNmzbVxVu2bJGqVavqbYhkb731lrz99tt6LBCj0EfhwoV1OcS07du3S0JCgtjtdhk9erQWgUyOpnbt2kn//v2d3Xbs2FF27twpL7zwgn6j4JFHHtEilLPSdd6wqfY+VQLQ49tOSMN1R3Tr9+YLl9eLJ4axi45zyLaYODke611Uxfn+DNcGXlwtWrTwV5XlGYiATcUg9P1rnIFgcKokQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkcK0E4CUz3PGJfKfyEcVJYrgo322GymMqjFo7uUOq2CpKblsu7V2UVUlGwSoYIZzcefU66zgre2SfLHD8IRMdv0ukCjHn30KknhSV123PyW32+iooX8q9Jvz3FTw1kIMI+WSyZcvmHDQ8jBB+burUqc5jZgN1z5075wwJZ45fz28IKch5lDmzawhAq5eP6S86OlqHeYOAc61Ws2ZN6dChg4uwgzbRL/IlIbeQzXZFNnE4HII3BCKrIRcRchwllT8IOaEQZg5h88LDw62npmgbnOIbFfd7LnIRhdltkkd5EFlN6USS6cq0rEU+t0OW7dP3DsILDhw4UOdkMl5YPk9kYYYgQJEoQ1xmTpIESIAESIAESIAESIAESIAESIAESIAESCAtCVySSzIr4Rf5xPGtLJP9quu4ZHVfWHkT3SO1pImtfqJgJLkkzBamfGrCJFQyBaxoFK9yMSGUXIwjRotDO5U09KdjlcxzrJDVciBZcxc1u6Jq/s/b7pHO9oekgOQP2Pkmc0KpXg1eQgilZnLxpHqHAdLBokWL5PHHHxd4E2XPnj1ARuV/GMkVify3dHU1IBLBswviWt++fbVX1NW1wNrpmQBFovR8dTk3EiABEiABEiABEiABEiABEiABEiABEiCBG0rguOOE8qD5ToVYmy//yQk1luSJRYmDDlWCUSWpZ7tZakg1KWYrqjyMwiWrDT5GmdU7i87Rk9beRhCEIIJdxNtxUUlDF+SIHJMNjk3yt2O9zNHB9qKvgrtNSWHh8rCtrjxne1zK28oqOYxZMvwBhNfM559/rsPKIU9PWpjVYwieSqm972tOCHmH0HvWUHtpMSbMGf2kxG6kSAQPqzlz5kjXrl09PKpSMheek34IUCRKP9eSMyEBEiABEiABEiABEiABEiABEiABEiABEghQAgccB+UHlYtnshKL1stxNcqrEYvMpDJLCymp5KKyUsFWRspJaSloi1DB2LIoLyP1suET8komLR6FXP60i2vIKtOat28VlEtJQFdecWo7Vr3iHHH6G2HkotRrl2OvbFO5lTY5VH4ltXVUznhrzs8xu8o1FC4P2erJ47YHledUZSV9hfo5h8UkELwEIvLkls1V80hEaEiaTeJobLxU2hglR6NOpVmf7Ci4CFAkCq7rxdGSAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAkEMYHDjiMy0zFXCUYL5C85pLxxLqjZXEvKcLuUkdxKMCooxW2FpJgUlggVpi2POpZbhW7LZcupZJhwp8cRvI4SX4kQIQqZV4LagleQyhyjMgdFyynHaeUfdEIOymHZ5zgsu5W/0FotcKXMi+LKZcssFdTY2kkD6WjvoD2HIG/RSCC9E3jykYel7OpFMqBYrjSb6rD9p2VH7eby5bffpVmf7Ci4CFAkCq7rxdGSAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmkAwIQY5CzZ3rCPFkk62SH9sSJVTO7FsHIFxhku4f3gl3JMSEqbJ1dBYtzqPxB8eoY3gmX3+orVSyTEq2yyO1K0mpvbyl32JopL6K8ahTJ93JKlWGxURJIQwL79u2TZvXryZPhsdKtUPZU9SiCB9G4w2fly/Oh8tuKlVK8ePE0nCm7CiYCFImC6WpxrCRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAumOAELRLXf8JQsdS+VP2aoEo7NqjhCMINwEq0GUyqSEoCxSR4pLC1t9aWprpLyGyjGkXLBeUo77uhCAUDS4Xx+ZNe8XOXXu/HVp01sjubOFS9u7Wskb7wynQOQNEI85CVAkcqLgBgmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAncWAJHHEdlpWO1LJe/ZYVjo+xS+X+OqaB0iTmMAlk0SvRUClcSUHHlp1RbiUENpIbcpsShUraSynsp040Fy95JgARIgAS8EqBI5BULD5IACZAACZAACZAACZAACZAACZAACZAACZDAjSUQp8LA7XTskrWO9bJGNsg6x3aVF+iEFo3OaU8jhIlDeLrUClGX1PwRIs6ugtZlkgJKFCqq8gtVtZWUW6WK1LTdLFVsFXUeJOQ+opEACZAACQQ2AYpEgX19ODoSIAESIAESIAESIAESIAESIAESIAESIAEScBI46YiSnUoq2ubYocLS7ZE9KlTdbjmsXtHqFasC1cWrbEdGPILnkRGRrEKSddsq5JhtiEDYtisZyC45dA6jECUIZZOSEiElbIWltJSQCrYyUk7lGCpkK6TqId8RjQRIgARIINgIUCQKtivG8ZIACZAACZAACZAACZAACZAACZAACZAACZCAG4Gzck4Qqu6o8jOKklNyynFafZ9WW6fV66wKWHdJLjnUW+LUO1a94pSsY9f5gTKrYHCZbeqtvnMoISi38gzKI7kkt0291Xd+lVmosBKCsG1XLxoJkAAJkED6IUCRKP1cS86EBEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABJJNgNJ/slGxIgmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmkHwIUidLPteRMSIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESCDZBDIluyYrkgAJkAAJkAAJkAAJkAAJkAAJkAAJkEAqE1i/fn0q98DmSYAESIAESIAESODaCVSvXv3aGwmAFpiTKAAuAodAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAmlNgOHm0po4+yMBEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiCBACBAkSgALgKHQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAJpTYAiUVoTZ38kQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkEAAEKBIFwEXgEEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEggrQlQJEpr4uyPBEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABAKAAEWiALgIHAIJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJpDUBikRpTZz9kQAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkEAAEKBIFAAXgUMgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIggbQmQJEorYmzPxIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIIAAIUiQLgInAIJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJJDWBCgSpTVx9kcCJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACAUCAIlEAXAQOgQRIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgATSmgBForQmzv5IgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIIAAIUCQKgIvAIZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZBAWhOgSJTWxNkfCZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACQQAAYpEAXAROAQSIAESIAESIAESIAESIAESIAESIAHvBA4ePCj79u3zXhjgRzds2CBjxowJ8FH6H15qzWPbtm0yceJE/wNIoxp79uyRL7/8Mo16C85uYmNjZfPmzXL06NGrnsCUKVNk06ZNV31eRjohtZ41MFy6dKksX748VXA6HCL7T8boN7ZTakdOX5TomDifp+8+dl4uxSUkWScu3iGo42sc16Of+ASHHD51QfDtzdD/vhMxcjT6ordifeyimsf2w+fkQmx8knWSU+CPib+xuveB8Xgb95w5cwT3KC39EbBdunTJ+52c/ubKGZEACZAACZAACZAACZAACZAACZAACQQJgU8//VQ++eQT2b59ux5xRESEDB06VJ544ok0mcH8+fMlR44c0qBBgxT3179/f3nvvffk+PHjkjNnTr/tXI8+/XbiVgEiTaNGjaR06dJuJVd2r3YeV870vTVp0iTp3r27nDhxwnfFNCr9+eef5f7775eLFy+KzWZL1V5PnToluKdbt24t06dP9+jr/Pnzkjt3bn1crd25lOOaPfXUUzJt2jRp27atS1ndunXlwoULsnLlSgkLC3OW7dy5UypVqiSrVq2SW265Rcw1dVa4vHHfffcJxBx3A5MBAwbIRx995CxCe+PHj5caNWo4j/naKFq0qLz++uvyzDPP+KqWrDIsVOO3oUOHDknWvxHPU5KDSWaBuS7J/c04cuSIYJ64btmyZUuyl8jISKlWrZosXLhQX6/7R62WTQfPeNQf2L6CPFyviHw4b6d88cdemdOrnpQqEO5Sr9HQZfJc85LyaIOi+vj0vw/JWz9vk3MXE4WObFlC5A3VTptbC8nOI+ek7Yd/uZxv3enWtIT0aFVGdilRZ+CPm2XNntO6uEXVAvLm/ZUkR1gmZ/XfNh2Xd2dt10IU+uhYv6j0VOdaH9VPf90t45fs02MpmCuL9Lq7rLS+paCzjevRDwSUd2fvkKkrDzrbfbJxCel+Z2nJFJL4uzHn3yPythrrybOJz27NUrnlnYcqS5E8WfU5EG3em7NDJi7b72zjiduLy8t3lZEQu+tvz/lL8XL/R6tlz/HzMvzhypqrOckfk+SM1bSFbwh9A3/cIn/tjNKH82bPLD3UvO6vc5Pe/+GHH/TvwNq1ayU83PW+0BX4EbQE7EE7cg6cBEiABEiABEiABEiABEiABEiABEggXRKAGNSjRw956aWXBIvbBw4ckGHDhunF5ZEjR6bJnLEYDhHjWgzzSO5iL/q5Hn1ezXgTEhK02LB69Wqfp13tPHw2xkIXAvjLfHgwuduPP/6oD5UrV869SL7++mt9LCkvLHj6vPrqqy7nOby4VaBt1LW+P/zwQ5fzzA7Ezq+++kqLDFFRUbJ7926pV6+etGzZUiB4pbXNnTtXXnnlFZ/dpvXz5HMwySy82mcNv48QDE+ePOmzB7TbpEkTF0Hvvto3yS996ru8W998RVBBg10/XyvwzEnKVu2Kkv4/bJZ+bcvJykG36/fLd5WVPt9tkr93n5Li+cOc7UNwgvVuXdZ5rIsSRs5ciJP/fb1eIEj80b+hzFb14BnT57v/JOHyfbs58oz8b8J6aV+rsO5j9OPVtYj11ZK9zqF9/1ekjF64W95/pKr8Nfh26ara7j3lPyU8Jd6f16ufD+bu1HOb3qOO/DO0sUx8toZ8uXivTFsdqceyckeU7vf5FiVl9ZDG8vtrDSVPtlB5+ot/nR5DEIdmKyFpWvfasuHtpjK+261a3Pp5zWHnfMzGkOlbJXvWK2KZOZ4cJv7GatrCN1A/8+U6yRpql1/7NdBjf1Vd14HTtsjybYn3F8TITJkyybhx46yncjsdEKBIlA4uIqdAAiRAAiRAAiRAAiRAAiRAAiRAAumFwLlz57TH0FtvvaVFoWLFimmPiy5dusiIESPkt99+E4gbsD///FP/BX2+fPmkWbNmehHbcEBYqwoVKgj+8hneQKhz7733yqFDh0wVmTVrlsDzAmWos2jRIl2GxdRff/1VvvjiC93Gv//+q8NkoT0s0N988826P1TesWOHbhdtoLxv374SF5cYLgl9o0+Yv/F461OfaPmAKHD33XfLxx9/LKVKldJveL/Ak6BKlSp6Ho888oiAobEVK1bIAw88oMvuuecevciPMggT8ASBPf/88/p8bL/44ovaywS8MSfwts4DdcAQ3iDwDMGc+/Tpo71vUIZr8/bbbzvHg/nv2rULRUka5oDxo71u3bppYc1U9sXXX1/WceL6wjPNar/88ovceeedep7t27fXYqS13H0b7WF8GCfuAXh9WL18cAz3DDiDHe4t8PdnRvSx1jNjzZUrl/WwFmeWLVum78OZM2fKsWPHXMqxc+uttwo88eA14suyZ88uZcqUcXkXLlzY6ynwTLrtttukcePG2mOlSJEi+nn87rvv1OJyooiA+37QoEH6WuK+6NWrl8AjKimDCIvnFqw6d+6sBWFrXZRDhEI5vvG8wyCADR8+XBCKEv1AvHI3b8+TeQbdn2E8P+Y3ombNmi4hEM0zN3bsWN0XxgIB2zzj/u5B6/OH+wH3hzF/z5oZL4REM76OHTtqUQ9t/PTTT/Lggw/q5m6//fYkPbRwj37//ffy8MMPm671N4SL4vnCXN5Wzx144pxVAs6YRbtdzrPubNgfrXfvrVlYciqvH7w71i8iE56pIQVzZpHQELuz/RJKMIJFqOOm39zhoVpwgZfMwHsr6LLSynNpQLvysnjLCTkYdUGfM3vtEalQOLt0a1ZC91G3TB55oWUpJaxc8cSZsuKAdG5UTBpXzCc5lKjSSW3Dg+cn5ekEg2h1PfpB3x8qIQrjCcscIrVUHyXzh0vk5bEu2nRMKhfJIY8oTyd4PIEjhDH0vWRLotiSRQkx/dqUlUo35dCeQ2gT7bl7d83857BAOBrxWFU9B+tHcpj4G6u1vdj4BD3GO6pFyE3K4wljb1U9QleJVGH1YHa7XfBvjDdvQ12BH0FLgCJR0F46DpwESIAESIAESIAESIAESIAESIAE0h8BeDXAWrVq5TG5F154QSAoYKEK+WwQais+Pl4+++wzvSD/7LPPyrfffqvPQ8gteDv07NlTL55CyEBODpNzBsIF/iq6RYsWAq8NCCZ33XWXDn2GxX/sowyeFSVKlNAhvNAevBewoA0xCAvE7dq10/lZMAb8RT+ELCzQw+BhgXHC/I3HW5/6RMsH2oN4NW/ePPnggw902DCER3vyySf1eOBthblARIJhjm3atNHbGB8WuBHeDKG6ChQoIO+//74u69q1q150xw68tuA1AqEJnhjgYJ0HFv0h/ECoePPNN7VoAqbGqwOLh2+88YYez+TJkzWbxx57TPfj7ePMmTNapILXGEKRwUMEAhXY+uPrqy/wxvX9+++/9dwwb9wLRpD577//tJiDkGzIGwXhB4v/SZmZN3K6QMDEtQZTLPQbw70LwQ0L+mB49uxZLSSZcm/fjz76qL5eGK8xjBnhnFDmbhBlIAJBLIBQg5Bz7gbhq3fv3jo0IzzZfBkEHus7qboQiHBtIALBewWGcFMQb/LkyaP3Id7g3vvf//6nhUOEosMz683wHOO+q1+/vn5eIAZCXMP9AMO8UI4Qabg+CKUG4QfPIIQRXE+Eg8TzCeHK3bw9T+YZtD7D+/fv178jEJsg4NSqVUtf2zVr1ugmzTOHew3eOJ06ddLjxf0P83UPYk54/hCqD3OAkIP7A4INzN+zZsaL3xs8c3ge8XuC7ejoaD1Wc//h2QEvb7Zu3TrNFSKmu0Hfs76t5QVyZJEPH62qRKI9zjBw1nJs31oitz7Uc/JGgWBk8vPULp1biikBKjm2V4kn8CLKnyOzs3pFJZjADqicPrBdR89JlaI5xG6JLQchBuHcYlQ4NngcbT10Vosz+oTLH9WL5dQh77B7PfpBOwiFV65QNj3XU+dj5eul+7S40urmREElkwoXd/5y6D3UhxlvrINRifOBgIRwfMYghmH8VYvmNId0bqZhM7dqgcmEqXMWqg1/TFDX31it7WXOZJdHGxaVz9T1XrH9pGw7fFbemZ0Y7rVJpfzOqghXid8neBTS0g8BT1+19DM3zoQESIAESIAESIAESIAESIAESIAESCDICOCv52HwcPBl8DLInz+/YNE8a9as2lsGIZewkIq/dDYGjwwIOTB4gpicChAJYFjsh1dOw4YNBSJT5syZ9cI3FuBLliypF6NRD4vTMIgMJg8MvAmwX7ZsWedCOTwu4D0A0cObJTUeLLa79+ntfByDEIZ8NXXq1BF4GWDhHgvJMHj+YFEY9s0330ihQoV0/dDQUJ2/BXxxPrx9sNAOw8K42cY+FuanTp2qxTjsWw0iCRYI169fLxUrVtRFCFsG4QoGryvwhNcCWGKMRlTQFbx8QGSCsAGDIAexAAvsyJPki6+vvjBOiC3oG95oMCysQ8SACAUGGCcW+SEUQXg4fPiwwDvHm5l5gx+uNwyiG9p65513nNcf171fv366HF5AEHOOHj2qveH0QbcPCGgQ09DvQw89pEs///xzueOOO6Ry5cqydetW5xkQc8ADQgNyJiE/F4QY3LfuBtFg9uzZWqTBtfRmuI5ZsmRxKRo9erQW/lwOqh0IKxBUIJDhjXsV/T/99NMC7yMIYia8m/Fuwb0HDy0IOUZIMu1CRINXFoRGGDyK0OaSJUv0vQgRFPeQCX+HZ+7ll1/W9wWeFXieQfS13rembXx7e568PcNY6Ma1hfCGMFoQdSC0IneTNdcSGBYsWFDfJ/DQwnMH0crXPQgvJOQiw28UBDVwwW8W7jNjvp41UweCF+YOQ/6w8uXL6+ccYhHEOxjma+5zfcDyYbzNIIRaDTmH8LbazJ51tQBijt1WIZ88oPLRvPLtRvn55braQ8eU4btGyVw6/9D7c3fIrxuPae8TeKI82qCoh2BjPc+6ve94jPLEcRWUcikPI9g+JRLVLwdB5LyLgIIyeCrBDpy8oL2LsA0vJasVUl48O1ReJNj16AfikLF6g5Y48zCNeeJm7RWEsjql88iEpft1+LkOtW6Si3HxMuKXRGH1aPRFc7rz+1JcgvRVofXKFMzmkj8J+ZUg1D2mhBtv5o9Jcsbq3u7/WpSSv3edkidVaDxjyINUwCLg4TcahvvK/bk25/A7+AhQJAq+a8YRkwAJkAAJkAAJkAAJkAAJkAAJkEC6JWAWnU6fPq0X75OaKP7SH4u0EIiMwfMHi+ZWr4zq1aubYi2GGC8fhH6KiIjQx7CQDZECC87+knHjr6iNYVEZQhKEpy1btui/rEYIOxPGzdSzfic1HmsdX9tYSIdABDPfEDuMYSEbYbhgEBSwDc8OYxAGwAciUVIGNvDW8mZYFMcYjECEOhB18DbbEAvgmYEwdwiPBw8KX2b1BDF1IcZgMdwXX/SZVF8YJwzeVcZwb8Dg2QEOuH8gEBmD91pSIhGEN8zbCEQ4B+fDNm7c6Fysh9hgzGxHRkYmKRJBRICwBHEGItGJEyf0PYxQYsarzrQHARJCBwRU9IlvzAOsIChZDc8Frj+uJcQKeDe5G+4b8LOaezumDPc6xggvMYgk06dP12zBFGIcRD0YBD8TtvHIkSP6mJUPDkBc/euvv/Q7NjZW1zEf4AyBDG1a71vj8WXqXcu39RnG7w08kuABuG/fPv0Mw5vJGiYPvxN4rozB+wnhGmG+7kH8RmEu1t8UeCBazdezZupBQDOG5wGiLLwBIRIlx0y+Ius4cB68TCAAWQ1hxtwNodKWbD0hb/+8Xd56sJJ7sTxUr4i0U+HmVu44qXPXTP7zgExXId6mvFBLbi5+xTPG48TLBxAa7lwSnjcmFw9EI/c68CCCZc8aIuEqNBrMHNM76uO8qmPauB79mHbxjVxEJ85c0mHxnhu/Tj7qVE1aKqbwukHIvdd/3CLvzNquxw0PIYhAVm8ptAEvLuT8gRfRT93rSKYQGw7L9sPnBHmLPn/yFh2yTx90+/DHxFo9qbFa61yIjZcu49bKxdgEGaE8yHKrcIQQ/pBfKkdYqA7jh/rm3x16ElnpBf82RaLgv4acAQmQAAmQAAmQAAmQAAmQAAmQAAmkGwLwEIAhrBI8EayG8GNYYIaHChb63b0gcByGEHTGzDHsW4UPLPxiQRqhn+AFg9BeWDRH3hN4iCRl1jawoG+EgA4dOmhhBOdh4T8pS2o8SdV3P249370sqf3ixYs7i+D5Urt2bee+tw3rHN3LsajvawzwbIBoAe8JCGYjR47UnlwQ0pIyCBDGQkISF3uRR8UfX199xcTE6Catc4fnCsLs4f6AUOY+D3hbJWW439zrm3Fb8xJZ2zBzSapNcxzhAkeNGqW9UuBJg3sTgpW7SGS8anCvWQ1h73C+u+HehKgDb7kZM2a4F+vFXm9hHT0qWg6AHzz18Eb4OQgVf/zxh/aQQTUIpKgDg2cLxBWrwILjRhiC2GG9PubeNM+v4YtzrqdZ7294ETVt2lQ/x82bN9eebCYcnOkToe6sZr2uvu5B3DPW+8Hahtm2jsUcc/92/50DF7SdXDP3LTzR4IFmDHl04CnkzyCyvKu8SbqMXesUCtzPyapy7EAcwbtbs5LSeNgymb32cLJEohJqHAdUPiGrGY8b5C6ClY5QOX9OJT7Tpt6hy3ly4D0UokK8IWTdodNXwjaiHvIEmdB116Mf0ze+kU8I1kgxhMfT5OUHtEgExAPaVZAH6xaRdfuidU6i+mXzyC39/5AS+cL1Oebj44W7dM4hCGrW8HyfLtqt54NcQD+sijTV5c/tUUoQyyTNKuf3y8R5ktpIaqzWOquVBxHEqjm96kkplRcKhpxGYPiNEqyQ6wlmnl9/97auzI+gIXDlX+GgGTIHSgIkQAIkQAIkQAIkQAIkQAIkQAIkkF4J4C/l8Zf9SEyP0ErWRdTnnntOL0hj8RyhoJCfB8KRqYMQUVh4dl/U9cYK4bFgaBNvhE9D2DUseCOXDczfQiwWmBFKDF4UZrEbi/zXsrjtr089sGR+IF8RvE8QrsoYhBezCG+OXU2f8MIYNGiQDt2HMGMweO0gxB44on2IAgMGDNBv5GLp3r27S33Tr/nG+WAPMx5AEBv88fXVl8m/Am8UhH2DIc8SvCrgUYF5LF682OX+AaukDPUHDx6sQywZEcTkrTHCZlLn+juOucKbauzYsTqMGDyL3O8heLbAywnsrXl+EK4NofMgILmfg36Riwv5f5LrdeJtrHjGMD6El7PmvUEoQWOGAbzxEPoMBkEXXlTuYi+8gjBnePBZ703UzZ49u/YOhMAFwdaErsMY4KVUs2ZNZxg4s1htxuDt29+9DfEMHmK49hBQIB6+9tpr3pryeszXPQgxFmHpwMFcG+xjLiZkpddG3Q7idw28YPDewO+f+xitQqXb6U7RG96ZxgvEvY6/fYRQe/y2YoLcQ1aDpwy8dwbfV9F5GKHJ4DWTXCupBAl4Cf21M0qLEjhv0X/H9OlXRKJs8vnve3SenpxhicvZv6w/qkPaQSCCQQyat+6oIN8PDJ4xizYdl/bKywl2Pfq5oLxsOoxcJX3alNWCmG5YfZSJyOYc86pdUbJeiUNdGxeXCpdzK8EjB2bl8v1fkTr/z7iuN3uIaZhRqPIqQsg5qy3ceFRi1LwSRSLfTJIzVmvbqA8Lz5wo1JuyLEoAPHnuktl15iLy9ccUzsrcCBoC3n2Hg2b4HCgJkAAJkAAJkAAJkAAJkAAJkAAJkEB6IgDBBzlaFixYoHOWQChAaCUsJiO0FXJzoA68KXAci+AIuYXQWshzAm+E5BjyjkDkgIcLchVhIRYGkQmGcGrz58/XQoI19JQuvPxhPCTgNYPcMRC2IFyl1JLT59W0DUYI64UQV2AFzx6EcINwAwNHzBeeE//880+ymkbYMiyqw/MKwhBCj2GxH+IYrFevXnpBG/1i0R+iD0Q/I6x46wSeNL///rt+w9sHeVrAwh9fX30hxxQ8cjBOjAVjhXhh8lVhzGCCNnD/gMkXX3zhbXj6GEKMYd7IIYS2cG9AFEM4MXcRJMlGfBQgzxBEEISTM/mlrNVNzicINRC9zBvsIFRC8PJm+Gt/E2bPvfzUqVP6+uEamjfEUnfDfQLRrXfv3jp0HfI8IRycEYzgTYNcOwgtiOsHNggxh1xJCM9nBFlru3hOkdsIzy1ED3hCQSBevXq1roZyhIbEdcGY8PxDHDPeCwhniHnj3jU5d6ztYzs5zxOuHUIygi/uB4z/aszXPYjnD3Pr0aOHfg4Q9g/3nQkHmdx+8JsHoQ/38eOPP66fJxOW0YSaNPeOtzZNLqLt27e7FO8/GaPDwy3flhgmDt+HL3vnuFS8vNP9ztJSLG+iZ48pr67CycHTZfTC3TpE2k6V/+fDeTsF3w3L5zXVfH7fWiKXNFJ1ITjB82apCm03asEueapJCTG5iR6qmxgWb9iMrSo/0Tn5Vnke/aYEIIzJ2PMqn84/u0/J5yrP0u5j5+XNmdtV6LR46dQoUTS6Hv3AY6p84WwyePpWHWZuv/IgmqU8pr5euk/uujlCDyWXCs0GBiPm7dJeOAs2HJU3f94mD6uwfMZDZ/GWEzLopy1aFIM4aa4B5g/7UIV7+/21hi5vHH+jfQUdCg7b/pgkZ6zDZ+8QhMqDwWsI1mPSBlmz57S+hmAJMe7O6olzQzlCq8Lw+wrDv30QiU2YSX2QH0FHgJ5EQXfJOGASIAESIAESIAESIAESIAESIAESSN8EEAILXhXvv/++XpTGbCE0ICeKWcRFLo8pU6bIwIED9QIzyrFgizfMGlZJH3A7hvwvEEYgIsBwPvKzmJxBnTp10l4AEBaWLl3qEWoM58D7BV4yxmsG3hbwfDCL4tYxWLdxLsz9mHufmKPV3OubMvfjWNSHQdiYNGmS9oBBzhUYQo9Z86K8+uqreg6oC28Ec66ufPnD2j48ERBmDAKJySWE62Vy2wwdOlSLQxAOYFjEhreG8aS43KTzC9whdCAnFAxzhnAAMcAfX1995c2bVy/8Q3wxY8F4v/rqK90Pjn3yySeaDe4riGW4l4YMGaLL3T/QHkQ267zhDYLF+aTMcPPG1P2cNm3a6EVX5J8xopM5H3VxHREWzXhvmfMhlkBUw7OAcGkw9/6QZ+jdd991ue6oB0EKnj9Wgxcd2nI3CKC4P3D/GINoBnHKLBZPmDBBlxsvGVx7iL1gZ8zMCcLJ8ePH5ZVXXhHkADLPn5kDOEP8gacUxCCU49phrjDkH4NgCdEOYpN57k0/+HZ/nkzYNWsdCF1Y3DaeVvDiwr1gxmm+redY+fq6B3H/Tp06Vf8+jBs3TjeB3wvc7zBrO/qA+vDWH7zHIA6CEzyKpk2b5rwPcD/gHsdvJcS02bNnm6ac3xCGca3g+WYNNTlfLf7jbbWBSoSAmAELSfwZcRZnDQ2R4R2rSMdP/nYeu6t6QZ2X520l8Bivl2wqPxDaQeg5b6Y0ERfDPur3m7rJ2TbyJT3foqSzHsQi5MkZOmObtPngL0EfEIWs4fJqlMwlr9xdRnvnjFAiTcFcWVQOpcqCcHSw69XPsPsrKYFnq1NcwVjgZfXiHYmCFbyH3lb9vvr9Jvly8V7d9x3VCkgvldvJ2PcrD+pNeE/hbQy5i75/sZbZ9fmdHCb+xnogKkb2Ho+RBBWKEB5a03vUkf4/bJbHxiT+0QDmBiGuc6NizrFAIIY4bvK5RUdHCwRIeNXRgpeATf3AqxRZNBIgARIgARIgARIgARIgARIgARIgARIIPALw8sHiNMK5eVtAxYgRggniRVLlvmaFUFAIw+QtdA5yeCBcVdasnsncrW2iDryN8uRJ/Etsa9nVbie3z6ttF4wQyst4YljPR/g5vL0tolvruW8jfBvys3jjg5xAuG4m1Jv7ue77qItQX97yOfnj668vjBPmLQwheIONVchwH5v7PtoDx6vl5d5OMO7jWkBcwr1uPL3c54FrCUbJeR7AH4vL4O9NNPF3fUxuKW/nYlzJfZ4gwOBeRijClJi/exD3GO5taz4jf/1A1KlXr57mDeEQnl/efqfQDkLv4fcvKTEWYjAW9+ExlhoGkeGgyl0D/eemPFnF7q4EJbNT5CKCGGVCynk7Dfl/CufOosKxualYlyvHJySOBV5PSQ3jevVz/MwlKZAzs9f5Yhx7MVYlVoW5hXDzNq9rOZYcJt7Gqi6bONTL/XohVN/ZC/GSX4UOtBr+nShRooQW143YiXJrSEVrfW4HDwGKRMFzrThSEiABEiABEiABEiABEiABEiABEiABEiABEiCBDEDAKhLBE+haDN5Y8EKC1xTya9FIICUE4MUGj0uE6MyIInlKmAXLOd4l12AZPcdJAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAumMAHIJIYxjcr3xfE0fIQGxwA+vSRoJpJQAPNWQM5ACUUoJBu559CQK3GvDkZEACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZBAqhGgJ1GqoWXDJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJBC4BCgSBe614chIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIINUIUCRKNbRsmARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgAQClwBFosC9NhwZCZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACaQaAYpEqYaWDZMACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZBA4BKgSBS414YjIwESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIIFUI0CRKNXQsmESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESCFwCFIkC99pwZCRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiSQagQoEqUaWjZMAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAoFLgCJR4F4bjowESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAEUo0ARaJUQ8uGSYAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESCBwCVAkCtxrw5GRAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQQKoR+D8RE209v9CoYAAAAABJRU5ErkJggg==" - } - }, - "cell_type": "markdown", - "id": "f9b2d921", - "metadata": { - "tags": [] - }, - "source": [ - "## Filter to pLoF variants that we used to compute constraint metrics\n", - "pLOF variants meets the following requirements:\n", - "* High-confidence LOFTEE variants (without any flags),\n", - "* Only variants in the MANE Select transcript,\n", - "* PASS variants that are SNVs with MAF ≤ 0.1%, and\n", - "* Exome median depth ≥ 30 (**This is changing in v4 constraint?**)\n", - "\n", - "**Note: this number should match the number of observed pLOF SNVs on the gene page of gnomAD Browser.**\n", - "\n", - "![Screenshot%202024-10-01%20at%2010.20.53%E2%80%AFAM.png](attachment:Screenshot%202024-10-01%20at%2010.20.53%E2%80%AFAM.png)" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "id": "6ce87a77", - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "INFO (gnomad.utils.vep 947): Filtering to canonical transcripts\n", - "INFO (gnomad.utils.vep 950): Filtering to MANE Select transcripts...\n", - "INFO (gnomad.utils.vep 953): Filtering to Ensembl transcripts...\n", - "INFO (gnomad.utils.vep 959): Filtering to genes of interest...\n", - "INFO (gnomad.utils.vep 967): Filtering to variants with additional criteria...\n" - ] - }, - { - "data": { - "text/html": [ - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "
freq
coverage
locus
alleles
AC
AF
AN
homozygote_count
csq
mean
median_approx
total_DP
over_1
over_5
over_10
over_15
over_20
over_25
over_30
over_50
over_100
locus<GRCh38>array<str>int32float64int32int64array<str>float64int32int64float64float64float64float64float64float64float64float64float64
chr1:155337668["G","A"]4593.14e-0414612700["stop_gained"]2.99e+0130218875281.00e+001.00e+001.00e+009.97e-019.86e-019.32e-016.07e-018.96e-046.02e-05
chr1:155337704["G","A"]64.10e-0614617140["stop_gained"]3.02e+0130220423721.00e+001.00e+001.00e+009.99e-019.94e-019.48e-016.21e-018.39e-044.93e-05
chr1:155337735["G","C"]16.84e-0714616940["stop_gained"]3.00e+0130219569141.00e+001.00e+001.00e+009.99e-019.92e-019.37e-016.12e-018.29e-044.51e-05
chr1:155338087["A","T"]16.85e-0714596480["splice_donor_variant"]3.16e+0131231113191.00e+001.00e+009.99e-019.95e-019.89e-019.59e-017.28e-011.35e-027.59e-04
chr1:155338161["G","A"]16.84e-0714618840["stop_gained"]3.19e+0131233084341.00e+001.00e+001.00e+001.00e+001.00e+009.76e-017.42e-011.35e-027.59e-04
chr1:155349380["T","A"]16.84e-0714617680["stop_gained"]3.21e+0132234449991.00e+001.00e+001.00e+001.00e+009.99e-019.76e-017.69e-015.01e-031.85e-04
chr1:155354631["C","T"]16.88e-0714534160["splice_acceptor_variant"]3.04e+0131222097141.00e+001.00e+009.95e-019.83e-019.70e-019.28e-016.53e-014.38e-044.93e-05
chr1:155357583["A","T"]16.84e-0714616800["splice_donor_variant"]3.13e+0131228588871.00e+001.00e+001.00e+009.99e-019.97e-019.79e-017.47e-018.14e-046.29e-05
chr1:155370984["C","T"]32.06e-0614557260["splice_acceptor_variant"]3.12e+0131228021811.00e+001.00e+001.00e+009.99e-019.97e-019.54e-016.97e-011.14e-033.69e-05
chr1:155415924["C","A"]21.48e-0613520320["splice_acceptor_variant"]2.73e+0130199323751.00e+009.84e-019.41e-018.72e-018.17e-017.64e-015.70e-011.35e-031.76e-04
chr1:155478020["G","C"]16.84e-0714618880["stop_gained"]3.26e+0133238300811.00e+001.00e+001.00e+001.00e+001.00e+009.72e-017.53e-013.11e-031.40e-03
chr1:155478203["C","T"]16.84e-0714618740["stop_gained"]3.27e+0133239248711.00e+001.00e+001.00e+001.00e+001.00e+009.72e-017.55e-014.07e-032.20e-03
chr1:155478439["C","T"]16.84e-0714618900["stop_gained"]3.28e+0133239948001.00e+001.00e+001.00e+001.00e+001.00e+009.73e-017.59e-014.64e-032.58e-03
chr1:155478528["G","A"]16.84e-0714618760["stop_gained"]3.28e+0133239977761.00e+001.00e+001.00e+001.00e+001.00e+009.73e-017.59e-014.67e-032.60e-03
chr1:155479767["G","A"]16.84e-0714618580["stop_gained"]3.30e+0133241434591.00e+001.00e+001.00e+001.00e+001.00e+009.74e-017.66e-016.55e-033.89e-03
chr1:155479862["G","T"]16.84e-0714611600["stop_gained"]3.24e+0132236512031.00e+001.00e+001.00e+009.98e-019.91e-019.42e-017.13e-016.42e-033.91e-03
chr1:155521291["C","A"]16.84e-0714618620["stop_gained"]3.30e+0132241144561.00e+001.00e+001.00e+001.00e+001.00e+009.81e-017.72e-011.94e-023.68e-03
chr1:155521474["C","A"]16.84e-0714617240["stop_gained"]3.29e+0132240775511.00e+001.00e+001.00e+009.99e-019.98e-019.79e-017.69e-011.94e-023.67e-03
" - ], - "text/plain": [ - "+----------------+------------+---------+----------+---------+\n", - "| locus | alleles | freq.AC | freq.AF | freq.AN |\n", - "+----------------+------------+---------+----------+---------+\n", - "| locus | array | int32 | float64 | int32 |\n", - "+----------------+------------+---------+----------+---------+\n", - "| chr1:155337668 | [\"G\",\"A\"] | 459 | 3.14e-04 | 1461270 |\n", - "| chr1:155337704 | [\"G\",\"A\"] | 6 | 4.10e-06 | 1461714 |\n", - "| chr1:155337735 | [\"G\",\"C\"] | 1 | 6.84e-07 | 1461694 |\n", - "| chr1:155338087 | [\"A\",\"T\"] | 1 | 6.85e-07 | 1459648 |\n", - "| chr1:155338161 | [\"G\",\"A\"] | 1 | 6.84e-07 | 1461884 |\n", - "| chr1:155349380 | [\"T\",\"A\"] | 1 | 6.84e-07 | 1461768 |\n", - "| chr1:155354631 | [\"C\",\"T\"] | 1 | 6.88e-07 | 1453416 |\n", - "| chr1:155357583 | [\"A\",\"T\"] | 1 | 6.84e-07 | 1461680 |\n", - "| chr1:155370984 | [\"C\",\"T\"] | 3 | 2.06e-06 | 1455726 |\n", - "| chr1:155415924 | [\"C\",\"A\"] | 2 | 1.48e-06 | 1352032 |\n", - "| chr1:155478020 | [\"G\",\"C\"] | 1 | 6.84e-07 | 1461888 |\n", - "| chr1:155478203 | [\"C\",\"T\"] | 1 | 6.84e-07 | 1461874 |\n", - "| chr1:155478439 | [\"C\",\"T\"] | 1 | 6.84e-07 | 1461890 |\n", - "| chr1:155478528 | [\"G\",\"A\"] | 1 | 6.84e-07 | 1461876 |\n", - "| chr1:155479767 | [\"G\",\"A\"] | 1 | 6.84e-07 | 1461858 |\n", - "| chr1:155479862 | [\"G\",\"T\"] | 1 | 6.84e-07 | 1461160 |\n", - "| chr1:155521291 | [\"C\",\"A\"] | 1 | 6.84e-07 | 1461862 |\n", - "| chr1:155521474 | [\"C\",\"A\"] | 1 | 6.84e-07 | 1461724 |\n", - "+----------------+------------+---------+----------+---------+\n", - "\n", - "+-----------------------+-----------------------------+---------------+\n", - "| freq.homozygote_count | csq | coverage.mean |\n", - "+-----------------------+-----------------------------+---------------+\n", - "| int64 | array | float64 |\n", - "+-----------------------+-----------------------------+---------------+\n", - "| 0 | [\"stop_gained\"] | 2.99e+01 |\n", - "| 0 | [\"stop_gained\"] | 3.02e+01 |\n", - "| 0 | [\"stop_gained\"] | 3.00e+01 |\n", - "| 0 | [\"splice_donor_variant\"] | 3.16e+01 |\n", - "| 0 | [\"stop_gained\"] | 3.19e+01 |\n", - "| 0 | [\"stop_gained\"] | 3.21e+01 |\n", - "| 0 | [\"splice_acceptor_variant\"] | 3.04e+01 |\n", - "| 0 | [\"splice_donor_variant\"] | 3.13e+01 |\n", - "| 0 | [\"splice_acceptor_variant\"] | 3.12e+01 |\n", - "| 0 | [\"splice_acceptor_variant\"] | 2.73e+01 |\n", - "| 0 | [\"stop_gained\"] | 3.26e+01 |\n", - "| 0 | [\"stop_gained\"] | 3.27e+01 |\n", - "| 0 | [\"stop_gained\"] | 3.28e+01 |\n", - "| 0 | [\"stop_gained\"] | 3.28e+01 |\n", - "| 0 | [\"stop_gained\"] | 3.30e+01 |\n", - "| 0 | [\"stop_gained\"] | 3.24e+01 |\n", - "| 0 | [\"stop_gained\"] | 3.30e+01 |\n", - "| 0 | [\"stop_gained\"] | 3.29e+01 |\n", - "+-----------------------+-----------------------------+---------------+\n", - "\n", - "+------------------------+-------------------+-----------------+\n", - "| coverage.median_approx | coverage.total_DP | coverage.over_1 |\n", - "+------------------------+-------------------+-----------------+\n", - "| int32 | int64 | float64 |\n", - "+------------------------+-------------------+-----------------+\n", - "| 30 | 21887528 | 1.00e+00 |\n", - "| 30 | 22042372 | 1.00e+00 |\n", - "| 30 | 21956914 | 1.00e+00 |\n", - "| 31 | 23111319 | 1.00e+00 |\n", - "| 31 | 23308434 | 1.00e+00 |\n", - "| 32 | 23444999 | 1.00e+00 |\n", - "| 31 | 22209714 | 1.00e+00 |\n", - "| 31 | 22858887 | 1.00e+00 |\n", - "| 31 | 22802181 | 1.00e+00 |\n", - "| 30 | 19932375 | 1.00e+00 |\n", - "| 33 | 23830081 | 1.00e+00 |\n", - "| 33 | 23924871 | 1.00e+00 |\n", - "| 33 | 23994800 | 1.00e+00 |\n", - "| 33 | 23997776 | 1.00e+00 |\n", - "| 33 | 24143459 | 1.00e+00 |\n", - "| 32 | 23651203 | 1.00e+00 |\n", - "| 32 | 24114456 | 1.00e+00 |\n", - "| 32 | 24077551 | 1.00e+00 |\n", - "+------------------------+-------------------+-----------------+\n", - "\n", - "+-----------------+------------------+------------------+------------------+\n", - "| coverage.over_5 | coverage.over_10 | coverage.over_15 | coverage.over_20 |\n", - "+-----------------+------------------+------------------+------------------+\n", - "| float64 | float64 | float64 | float64 |\n", - "+-----------------+------------------+------------------+------------------+\n", - "| 1.00e+00 | 1.00e+00 | 9.97e-01 | 9.86e-01 |\n", - "| 1.00e+00 | 1.00e+00 | 9.99e-01 | 9.94e-01 |\n", - "| 1.00e+00 | 1.00e+00 | 9.99e-01 | 9.92e-01 |\n", - "| 1.00e+00 | 9.99e-01 | 9.95e-01 | 9.89e-01 |\n", - "| 1.00e+00 | 1.00e+00 | 1.00e+00 | 1.00e+00 |\n", - "| 1.00e+00 | 1.00e+00 | 1.00e+00 | 9.99e-01 |\n", - "| 1.00e+00 | 9.95e-01 | 9.83e-01 | 9.70e-01 |\n", - "| 1.00e+00 | 1.00e+00 | 9.99e-01 | 9.97e-01 |\n", - "| 1.00e+00 | 1.00e+00 | 9.99e-01 | 9.97e-01 |\n", - "| 9.84e-01 | 9.41e-01 | 8.72e-01 | 8.17e-01 |\n", - "| 1.00e+00 | 1.00e+00 | 1.00e+00 | 1.00e+00 |\n", - "| 1.00e+00 | 1.00e+00 | 1.00e+00 | 1.00e+00 |\n", - "| 1.00e+00 | 1.00e+00 | 1.00e+00 | 1.00e+00 |\n", - "| 1.00e+00 | 1.00e+00 | 1.00e+00 | 1.00e+00 |\n", - "| 1.00e+00 | 1.00e+00 | 1.00e+00 | 1.00e+00 |\n", - "| 1.00e+00 | 1.00e+00 | 9.98e-01 | 9.91e-01 |\n", - "| 1.00e+00 | 1.00e+00 | 1.00e+00 | 1.00e+00 |\n", - "| 1.00e+00 | 1.00e+00 | 9.99e-01 | 9.98e-01 |\n", - "+-----------------+------------------+------------------+------------------+\n", - "\n", - "+------------------+------------------+------------------+-------------------+\n", - "| coverage.over_25 | coverage.over_30 | coverage.over_50 | coverage.over_100 |\n", - "+------------------+------------------+------------------+-------------------+\n", - "| float64 | float64 | float64 | float64 |\n", - "+------------------+------------------+------------------+-------------------+\n", - "| 9.32e-01 | 6.07e-01 | 8.96e-04 | 6.02e-05 |\n", - "| 9.48e-01 | 6.21e-01 | 8.39e-04 | 4.93e-05 |\n", - "| 9.37e-01 | 6.12e-01 | 8.29e-04 | 4.51e-05 |\n", - "| 9.59e-01 | 7.28e-01 | 1.35e-02 | 7.59e-04 |\n", - "| 9.76e-01 | 7.42e-01 | 1.35e-02 | 7.59e-04 |\n", - "| 9.76e-01 | 7.69e-01 | 5.01e-03 | 1.85e-04 |\n", - "| 9.28e-01 | 6.53e-01 | 4.38e-04 | 4.93e-05 |\n", - "| 9.79e-01 | 7.47e-01 | 8.14e-04 | 6.29e-05 |\n", - "| 9.54e-01 | 6.97e-01 | 1.14e-03 | 3.69e-05 |\n", - "| 7.64e-01 | 5.70e-01 | 1.35e-03 | 1.76e-04 |\n", - "| 9.72e-01 | 7.53e-01 | 3.11e-03 | 1.40e-03 |\n", - "| 9.72e-01 | 7.55e-01 | 4.07e-03 | 2.20e-03 |\n", - "| 9.73e-01 | 7.59e-01 | 4.64e-03 | 2.58e-03 |\n", - "| 9.73e-01 | 7.59e-01 | 4.67e-03 | 2.60e-03 |\n", - "| 9.74e-01 | 7.66e-01 | 6.55e-03 | 3.89e-03 |\n", - "| 9.42e-01 | 7.13e-01 | 6.42e-03 | 3.91e-03 |\n", - "| 9.81e-01 | 7.72e-01 | 1.94e-02 | 3.68e-03 |\n", - "| 9.79e-01 | 7.69e-01 | 1.94e-02 | 3.67e-03 |\n", - "+------------------+------------------+------------------+-------------------+" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "filter_to_plofs('ash1l', select_fields=True).show(-1)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "3c2212f4-a7cf-45bc-930d-aa18cebff7a3", - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.11.9" - }, - "toc": { - "base_numbering": 1, - "nav_menu": { - "height": "613.99px", - "width": "526.312px" - }, - "number_sections": false, - "sideBar": true, - "skip_h1_title": false, - "title_cell": "Table of Contents", - "title_sidebar": "Contents", - "toc_cell": true, - "toc_position": { - "height": "calc(100% - 180px)", - "left": "10px", - "top": "150px", - "width": "219.438px" - }, - "toc_section_display": true, - "toc_window_display": true - }, - "widgets": { - "application/vnd.jupyter.widget-state+json": { - "state": {}, - "version_major": 2, - "version_minor": 0 - } - } - }, - "nbformat": 4, - "nbformat_minor": 5 -} From 4455bd54019db9d70b024bf582e34e21ac3f8c69 Mon Sep 17 00:00:00 2001 From: Qin He <44242118+KoalaQin@users.noreply.github.com> Date: Wed, 15 Jan 2025 16:48:16 -0500 Subject: [PATCH 092/121] Rename the notebook --- .../dive_into_secondary_analyses.ipynb | 1937 +++++++++++++++++ 1 file changed, 1937 insertions(+) create mode 100644 gnomad_toolbox/notebooks/dive_into_secondary_analyses.ipynb diff --git a/gnomad_toolbox/notebooks/dive_into_secondary_analyses.ipynb b/gnomad_toolbox/notebooks/dive_into_secondary_analyses.ipynb new file mode 100644 index 0000000..9f9fe61 --- /dev/null +++ b/gnomad_toolbox/notebooks/dive_into_secondary_analyses.ipynb @@ -0,0 +1,1937 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "8e609a46", + "metadata": { + "toc": true + }, + "source": [ + "

Table of Contents

\n", + "" + ] + }, + { + "cell_type": "markdown", + "id": "8e713032", + "metadata": {}, + "source": [ + "## Import modules" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "e69953f7", + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-06T18:04:56.165634Z", + "start_time": "2024-12-06T18:04:55.603516Z" + } + }, + "outputs": [ + { + "data": { + "text/html": [ + " \n", + "
\n", + " \n", + " Loading BokehJS ...\n", + "
\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/javascript": [ + "(function(root) {\n", + " function now() {\n", + " return new Date();\n", + " }\n", + "\n", + " const force = true;\n", + "\n", + " if (typeof root._bokeh_onload_callbacks === \"undefined\" || force === true) {\n", + " root._bokeh_onload_callbacks = [];\n", + " root._bokeh_is_loading = undefined;\n", + " }\n", + "\n", + "const JS_MIME_TYPE = 'application/javascript';\n", + " const HTML_MIME_TYPE = 'text/html';\n", + " const EXEC_MIME_TYPE = 'application/vnd.bokehjs_exec.v0+json';\n", + " const CLASS_NAME = 'output_bokeh rendered_html';\n", + "\n", + " /**\n", + " * Render data to the DOM node\n", + " */\n", + " function render(props, node) {\n", + " const script = document.createElement(\"script\");\n", + " node.appendChild(script);\n", + " }\n", + "\n", + " /**\n", + " * Handle when an output is cleared or removed\n", + " */\n", + " function handleClearOutput(event, handle) {\n", + " function drop(id) {\n", + " const view = Bokeh.index.get_by_id(id)\n", + " if (view != null) {\n", + " view.model.document.clear()\n", + " Bokeh.index.delete(view)\n", + " }\n", + " }\n", + "\n", + " const cell = handle.cell;\n", + "\n", + " const id = cell.output_area._bokeh_element_id;\n", + " const server_id = cell.output_area._bokeh_server_id;\n", + "\n", + " // Clean up Bokeh references\n", + " if (id != null) {\n", + " drop(id)\n", + " }\n", + "\n", + " if (server_id !== undefined) {\n", + " // Clean up Bokeh references\n", + " const cmd_clean = \"from bokeh.io.state import curstate; print(curstate().uuid_to_server['\" + server_id + \"'].get_sessions()[0].document.roots[0]._id)\";\n", + " cell.notebook.kernel.execute(cmd_clean, {\n", + " iopub: {\n", + " output: function(msg) {\n", + " const id = msg.content.text.trim()\n", + " drop(id)\n", + " }\n", + " }\n", + " });\n", + " // Destroy server and session\n", + " const cmd_destroy = \"import bokeh.io.notebook as ion; ion.destroy_server('\" + server_id + \"')\";\n", + " cell.notebook.kernel.execute(cmd_destroy);\n", + " }\n", + " }\n", + "\n", + " /**\n", + " * Handle when a new output is added\n", + " */\n", + " function handleAddOutput(event, handle) {\n", + " const output_area = handle.output_area;\n", + " const output = handle.output;\n", + "\n", + " // limit handleAddOutput to display_data with EXEC_MIME_TYPE content only\n", + " if ((output.output_type != \"display_data\") || (!Object.prototype.hasOwnProperty.call(output.data, EXEC_MIME_TYPE))) {\n", + " return\n", + " }\n", + "\n", + " const toinsert = output_area.element.find(\".\" + CLASS_NAME.split(' ')[0]);\n", + "\n", + " if (output.metadata[EXEC_MIME_TYPE][\"id\"] !== undefined) {\n", + " toinsert[toinsert.length - 1].firstChild.textContent = output.data[JS_MIME_TYPE];\n", + " // store reference to embed id on output_area\n", + " output_area._bokeh_element_id = output.metadata[EXEC_MIME_TYPE][\"id\"];\n", + " }\n", + " if (output.metadata[EXEC_MIME_TYPE][\"server_id\"] !== undefined) {\n", + " const bk_div = document.createElement(\"div\");\n", + " bk_div.innerHTML = output.data[HTML_MIME_TYPE];\n", + " const script_attrs = bk_div.children[0].attributes;\n", + " for (let i = 0; i < script_attrs.length; i++) {\n", + " toinsert[toinsert.length - 1].firstChild.setAttribute(script_attrs[i].name, script_attrs[i].value);\n", + " toinsert[toinsert.length - 1].firstChild.textContent = bk_div.children[0].textContent\n", + " }\n", + " // store reference to server id on output_area\n", + " output_area._bokeh_server_id = output.metadata[EXEC_MIME_TYPE][\"server_id\"];\n", + " }\n", + " }\n", + "\n", + " function register_renderer(events, OutputArea) {\n", + "\n", + " function append_mime(data, metadata, element) {\n", + " // create a DOM node to render to\n", + " const toinsert = this.create_output_subarea(\n", + " metadata,\n", + " CLASS_NAME,\n", + " EXEC_MIME_TYPE\n", + " );\n", + " this.keyboard_manager.register_events(toinsert);\n", + " // Render to node\n", + " const props = {data: data, metadata: metadata[EXEC_MIME_TYPE]};\n", + " render(props, toinsert[toinsert.length - 1]);\n", + " element.append(toinsert);\n", + " return toinsert\n", + " }\n", + "\n", + " /* Handle when an output is cleared or removed */\n", + " events.on('clear_output.CodeCell', handleClearOutput);\n", + " events.on('delete.Cell', handleClearOutput);\n", + "\n", + " /* Handle when a new output is added */\n", + " events.on('output_added.OutputArea', handleAddOutput);\n", + "\n", + " /**\n", + " * Register the mime type and append_mime function with output_area\n", + " */\n", + " OutputArea.prototype.register_mime_type(EXEC_MIME_TYPE, append_mime, {\n", + " /* Is output safe? */\n", + " safe: true,\n", + " /* Index of renderer in `output_area.display_order` */\n", + " index: 0\n", + " });\n", + " }\n", + "\n", + " // register the mime type if in Jupyter Notebook environment and previously unregistered\n", + " if (root.Jupyter !== undefined) {\n", + " const events = require('base/js/events');\n", + " const OutputArea = require('notebook/js/outputarea').OutputArea;\n", + "\n", + " if (OutputArea.prototype.mime_types().indexOf(EXEC_MIME_TYPE) == -1) {\n", + " register_renderer(events, OutputArea);\n", + " }\n", + " }\n", + " if (typeof (root._bokeh_timeout) === \"undefined\" || force === true) {\n", + " root._bokeh_timeout = Date.now() + 5000;\n", + " root._bokeh_failed_load = false;\n", + " }\n", + "\n", + " const NB_LOAD_WARNING = {'data': {'text/html':\n", + " \"
\\n\"+\n", + " \"

\\n\"+\n", + " \"BokehJS does not appear to have successfully loaded. If loading BokehJS from CDN, this \\n\"+\n", + " \"may be due to a slow or bad network connection. Possible fixes:\\n\"+\n", + " \"

\\n\"+\n", + " \"
    \\n\"+\n", + " \"
  • re-rerun `output_notebook()` to attempt to load from CDN again, or
  • \\n\"+\n", + " \"
  • use INLINE resources instead, as so:
  • \\n\"+\n", + " \"
\\n\"+\n", + " \"\\n\"+\n", + " \"from bokeh.resources import INLINE\\n\"+\n", + " \"output_notebook(resources=INLINE)\\n\"+\n", + " \"\\n\"+\n", + " \"
\"}};\n", + "\n", + " function display_loaded() {\n", + " const el = document.getElementById(\"fa775294-04ee-41da-8a2d-4ece189fbd0f\");\n", + " if (el != null) {\n", + " el.textContent = \"BokehJS is loading...\";\n", + " }\n", + " if (root.Bokeh !== undefined) {\n", + " if (el != null) {\n", + " el.textContent = \"BokehJS \" + root.Bokeh.version + \" successfully loaded.\";\n", + " }\n", + " } else if (Date.now() < root._bokeh_timeout) {\n", + " setTimeout(display_loaded, 100)\n", + " }\n", + " }\n", + "\n", + " function run_callbacks() {\n", + " try {\n", + " root._bokeh_onload_callbacks.forEach(function(callback) {\n", + " if (callback != null)\n", + " callback();\n", + " });\n", + " } finally {\n", + " delete root._bokeh_onload_callbacks\n", + " }\n", + " console.debug(\"Bokeh: all callbacks have finished\");\n", + " }\n", + "\n", + " function load_libs(css_urls, js_urls, callback) {\n", + " if (css_urls == null) css_urls = [];\n", + " if (js_urls == null) js_urls = [];\n", + "\n", + " root._bokeh_onload_callbacks.push(callback);\n", + " if (root._bokeh_is_loading > 0) {\n", + " console.debug(\"Bokeh: BokehJS is being loaded, scheduling callback at\", now());\n", + " return null;\n", + " }\n", + " if (js_urls == null || js_urls.length === 0) {\n", + " run_callbacks();\n", + " return null;\n", + " }\n", + " console.debug(\"Bokeh: BokehJS not loaded, scheduling load and callback at\", now());\n", + " root._bokeh_is_loading = css_urls.length + js_urls.length;\n", + "\n", + " function on_load() {\n", + " root._bokeh_is_loading--;\n", + " if (root._bokeh_is_loading === 0) {\n", + " console.debug(\"Bokeh: all BokehJS libraries/stylesheets loaded\");\n", + " run_callbacks()\n", + " }\n", + " }\n", + "\n", + " function on_error(url) {\n", + " console.error(\"failed to load \" + url);\n", + " }\n", + "\n", + " for (let i = 0; i < css_urls.length; i++) {\n", + " const url = css_urls[i];\n", + " const element = document.createElement(\"link\");\n", + " element.onload = on_load;\n", + " element.onerror = on_error.bind(null, url);\n", + " element.rel = \"stylesheet\";\n", + " element.type = \"text/css\";\n", + " element.href = url;\n", + " console.debug(\"Bokeh: injecting link tag for BokehJS stylesheet: \", url);\n", + " document.body.appendChild(element);\n", + " }\n", + "\n", + " for (let i = 0; i < js_urls.length; i++) {\n", + " const url = js_urls[i];\n", + " const element = document.createElement('script');\n", + " element.onload = on_load;\n", + " element.onerror = on_error.bind(null, url);\n", + " element.async = false;\n", + " element.src = url;\n", + " console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n", + " document.head.appendChild(element);\n", + " }\n", + " };\n", + "\n", + " function inject_raw_css(css) {\n", + " const element = document.createElement(\"style\");\n", + " element.appendChild(document.createTextNode(css));\n", + " document.body.appendChild(element);\n", + " }\n", + "\n", + " const js_urls = [\"https://cdn.bokeh.org/bokeh/release/bokeh-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-gl-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-widgets-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-tables-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-mathjax-3.3.4.min.js\"];\n", + " const css_urls = [];\n", + "\n", + " const inline_js = [ function(Bokeh) {\n", + " Bokeh.set_log_level(\"info\");\n", + " },\n", + "function(Bokeh) {\n", + " }\n", + " ];\n", + "\n", + " function run_inline_js() {\n", + " if (root.Bokeh !== undefined || force === true) {\n", + " for (let i = 0; i < inline_js.length; i++) {\n", + " inline_js[i].call(root, root.Bokeh);\n", + " }\n", + "if (force === true) {\n", + " display_loaded();\n", + " }} else if (Date.now() < root._bokeh_timeout) {\n", + " setTimeout(run_inline_js, 100);\n", + " } else if (!root._bokeh_failed_load) {\n", + " console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n", + " root._bokeh_failed_load = true;\n", + " } else if (force !== true) {\n", + " const cell = $(document.getElementById(\"fa775294-04ee-41da-8a2d-4ece189fbd0f\")).parents('.cell').data().cell;\n", + " cell.output_area.append_execute_result(NB_LOAD_WARNING)\n", + " }\n", + " }\n", + "\n", + " if (root._bokeh_is_loading === 0) {\n", + " console.debug(\"Bokeh: BokehJS loaded, going straight to plotting\");\n", + " run_inline_js();\n", + " } else {\n", + " load_libs(css_urls, js_urls, function() {\n", + " console.debug(\"Bokeh: BokehJS plotting callback run at\", now());\n", + " run_inline_js();\n", + " });\n", + " }\n", + "}(window));" + ], + "application/vnd.bokehjs_load.v0+json": "(function(root) {\n function now() {\n return new Date();\n }\n\n const force = true;\n\n if (typeof root._bokeh_onload_callbacks === \"undefined\" || force === true) {\n root._bokeh_onload_callbacks = [];\n root._bokeh_is_loading = undefined;\n }\n\n\n if (typeof (root._bokeh_timeout) === \"undefined\" || force === true) {\n root._bokeh_timeout = Date.now() + 5000;\n root._bokeh_failed_load = false;\n }\n\n const NB_LOAD_WARNING = {'data': {'text/html':\n \"
\\n\"+\n \"

\\n\"+\n \"BokehJS does not appear to have successfully loaded. If loading BokehJS from CDN, this \\n\"+\n \"may be due to a slow or bad network connection. Possible fixes:\\n\"+\n \"

\\n\"+\n \"
    \\n\"+\n \"
  • re-rerun `output_notebook()` to attempt to load from CDN again, or
  • \\n\"+\n \"
  • use INLINE resources instead, as so:
  • \\n\"+\n \"
\\n\"+\n \"\\n\"+\n \"from bokeh.resources import INLINE\\n\"+\n \"output_notebook(resources=INLINE)\\n\"+\n \"\\n\"+\n \"
\"}};\n\n function display_loaded() {\n const el = document.getElementById(\"fa775294-04ee-41da-8a2d-4ece189fbd0f\");\n if (el != null) {\n el.textContent = \"BokehJS is loading...\";\n }\n if (root.Bokeh !== undefined) {\n if (el != null) {\n el.textContent = \"BokehJS \" + root.Bokeh.version + \" successfully loaded.\";\n }\n } else if (Date.now() < root._bokeh_timeout) {\n setTimeout(display_loaded, 100)\n }\n }\n\n function run_callbacks() {\n try {\n root._bokeh_onload_callbacks.forEach(function(callback) {\n if (callback != null)\n callback();\n });\n } finally {\n delete root._bokeh_onload_callbacks\n }\n console.debug(\"Bokeh: all callbacks have finished\");\n }\n\n function load_libs(css_urls, js_urls, callback) {\n if (css_urls == null) css_urls = [];\n if (js_urls == null) js_urls = [];\n\n root._bokeh_onload_callbacks.push(callback);\n if (root._bokeh_is_loading > 0) {\n console.debug(\"Bokeh: BokehJS is being loaded, scheduling callback at\", now());\n return null;\n }\n if (js_urls == null || js_urls.length === 0) {\n run_callbacks();\n return null;\n }\n console.debug(\"Bokeh: BokehJS not loaded, scheduling load and callback at\", now());\n root._bokeh_is_loading = css_urls.length + js_urls.length;\n\n function on_load() {\n root._bokeh_is_loading--;\n if (root._bokeh_is_loading === 0) {\n console.debug(\"Bokeh: all BokehJS libraries/stylesheets loaded\");\n run_callbacks()\n }\n }\n\n function on_error(url) {\n console.error(\"failed to load \" + url);\n }\n\n for (let i = 0; i < css_urls.length; i++) {\n const url = css_urls[i];\n const element = document.createElement(\"link\");\n element.onload = on_load;\n element.onerror = on_error.bind(null, url);\n element.rel = \"stylesheet\";\n element.type = \"text/css\";\n element.href = url;\n console.debug(\"Bokeh: injecting link tag for BokehJS stylesheet: \", url);\n document.body.appendChild(element);\n }\n\n for (let i = 0; i < js_urls.length; i++) {\n const url = js_urls[i];\n const element = document.createElement('script');\n element.onload = on_load;\n element.onerror = on_error.bind(null, url);\n element.async = false;\n element.src = url;\n console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n document.head.appendChild(element);\n }\n };\n\n function inject_raw_css(css) {\n const element = document.createElement(\"style\");\n element.appendChild(document.createTextNode(css));\n document.body.appendChild(element);\n }\n\n const js_urls = [\"https://cdn.bokeh.org/bokeh/release/bokeh-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-gl-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-widgets-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-tables-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-mathjax-3.3.4.min.js\"];\n const css_urls = [];\n\n const inline_js = [ function(Bokeh) {\n Bokeh.set_log_level(\"info\");\n },\nfunction(Bokeh) {\n }\n ];\n\n function run_inline_js() {\n if (root.Bokeh !== undefined || force === true) {\n for (let i = 0; i < inline_js.length; i++) {\n inline_js[i].call(root, root.Bokeh);\n }\nif (force === true) {\n display_loaded();\n }} else if (Date.now() < root._bokeh_timeout) {\n setTimeout(run_inline_js, 100);\n } else if (!root._bokeh_failed_load) {\n console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n root._bokeh_failed_load = true;\n } else if (force !== true) {\n const cell = $(document.getElementById(\"fa775294-04ee-41da-8a2d-4ece189fbd0f\")).parents('.cell').data().cell;\n cell.output_area.append_execute_result(NB_LOAD_WARNING)\n }\n }\n\n if (root._bokeh_is_loading === 0) {\n console.debug(\"Bokeh: BokehJS loaded, going straight to plotting\");\n run_inline_js();\n } else {\n load_libs(css_urls, js_urls, function() {\n console.debug(\"Bokeh: BokehJS plotting callback run at\", now());\n run_inline_js();\n });\n }\n}(window));" + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import hail as hl\n", + "\n", + "from gnomad_toolbox.analysis.general import get_variant_count_by_freq_bin\n", + "from gnomad_toolbox.filtering.variant import filter_by_intervals\n", + "from gnomad_toolbox.filtering.vep import filter_by_consequence_category\n", + "from gnomad_toolbox.filtering.constraint import get_observed_plofs_for_gene_constraint\n", + "from gnomad_toolbox.load_data import get_gnomad_release" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "b3c44396-5ee1-4263-91f8-78bdb9417bab", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Welcome to\n", + " __ __ <>__\n", + " / /_/ /__ __/ /\n", + " / __ / _ `/ / /\n", + " /_/ /_/\\_,_/_/_/ version 0.2.132-678e1f52b999\n", + "LOGGING: writing to /Users/heqin/PycharmProjects/gnomad-toolbox/gnomad_toolbox/notebooks/hail-20250115-1629-0.2.132-678e1f52b999.log\n" + ] + } + ], + "source": [ + "hl.init(backend=\"local\")" + ] + }, + { + "cell_type": "markdown", + "id": "d36c12aa-d395-4f6c-891c-77caa4779e47", + "metadata": {}, + "source": [ + "## Get variant count by allele frequency bin\n", + "\n", + "The examples below show variant counts using the Table filtered to DRD2." + ] + }, + { + "cell_type": "markdown", + "id": "dec1dc9c-f145-46cb-8d33-ca43d24dd06a", + "metadata": {}, + "source": [ + "### Counts for AF bins: *0.1% - 1%* and *>1.0%*" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "261a3380-8dba-41cb-b51b-033b23c963d0", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{'0.1% - 1.0%': 49, '>1.0%': 28, 'AC0 - 0.1%': 2662}\n" + ] + } + ], + "source": [ + "drd_interval_ht = filter_by_intervals(\"chr11:113409605-113475691\")\n", + "af_bin_ht = get_variant_count_by_freq_bin(ht=drd_interval_ht)\n", + "print(af_bin_ht)" + ] + }, + { + "cell_type": "markdown", + "id": "d05fb1c6-91a9-42cf-87bf-eccb50f6e9b4", + "metadata": {}, + "source": [ + "### Counts for *singletons*, *doubletons*, and AF bins: *doubletons - 0.05%*, *0.05% - 0.1%*, *0.1% - 1%*, and *>1%*" + ] + }, + { + "cell_type": "markdown", + "id": "a0a07a84-584e-4b08-b356-9d38767a9c50", + "metadata": {}, + "source": [ + "#### All DRD2 variants" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "aaa8dfac-f7b3-4ce2-b13d-b86a1648b7b7", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{'0.05% - 0.1%': 11, '0.1% - 1.0%': 34, '>1.0%': 26, 'doubletons': 384, 'doubletons - 0.05%': 894, 'singletons': 1390}\n" + ] + } + ], + "source": [ + "af_bin_ht = get_variant_count_by_freq_bin(\n", + " af_cutoffs=[0.0005, 0.001, 0.01], \n", + " singletons=True, \n", + " doubletons=True, \n", + " ht=drd_interval_ht,\n", + ")\n", + "print(af_bin_ht)" + ] + }, + { + "cell_type": "markdown", + "id": "5fcabb6e-12b5-4a51-aa06-da280ec8a654", + "metadata": {}, + "source": [ + "#### All DRD2 coding variants" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "a0fd192a-b1f3-4726-96cd-e88c0d8baf08", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{'doubletons': 5, 'doubletons - 0.05%': 3, 'singletons': 9}\n" + ] + } + ], + "source": [ + "af_bin_ht = get_variant_count_by_freq_bin(\n", + " af_cutoffs=[0.0005, 0.001, 0.01], \n", + " singletons=True, \n", + " doubletons=True, \n", + " ht=filter_by_consequence_category(['coding'], ht=drd_interval_ht),\n", + ")\n", + "print(af_bin_ht)" + ] + }, + { + "attachments": { + "909c85bb-7920-49fc-9025-93d1bcc2d3ce.png": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABmgAAAFOCAYAAACCK5J9AAAKqWlDQ1BJQ0MgUHJvZmlsZQAASImVlwdQk9kWx+/3pYeEloB0Qu9IJ4CU0EOR0IuohCRAKDEEQrMjiyuwFlREQF3QVQEFV6XasWBhEWxgXZBFQFkXCzYs7wOG4O6b9968kzlzf/nn3HPO/ea7MycAkKlsoTAVlgUgTZApCvFxp0VFx9BwYwACMJADmsCUzckQMlisAIDY3Pp3e3cPiUbsttl0rn///b+aHJeXwQEAYiEcz83gpCF8EvEJjlCUCQDqAKLrZGcKp/kqwlQR0iDCj6Y5cZYnpjl+htHomZiwEA+ElQDAk9hsUSIAJF1Ep2VxEpE8JE+ELQRcvgBh5DtwSUtbwUUYqQsMkRghwtP56fHf5Un8W854SU42O1HCs2eZMbwnP0OYys79Px/H/7a0VPFcDX3ESUki3xBkRfqC+lNW+EtYEL84aI753Jn4GU4S+4bPMSfDI2aOuWxPf8ne1MUBc5zA92ZK8mQyw+aYl+EVOseiFSGSWgkiD8Ycs0XzdcUp4RI9iceU5M9LCouc4yx+xOI5zkgJ9Z+P8ZDoInGIpH+ewMd9vq635OxpGd+dl8+U7M1MCvOVnJ093z9PwJjPmREl6Y3L8/SajwmXxAsz3SW1hKksSTwv1UeiZ2SFSvZmIi/k/F6W5Bkms/1Ycww8gRcIQD40wAJWwAZx62ktk5cz/Y4CjxXCXBE/MSmTxkBuGY/GFHDMTWlWFla2AEzf2dlX4k3/zF2EFPHzmoAPgM11BFrmNW4bAKeWAEDRnNd0mgCQeQDAuUiOWJQ1q01fJ4ABRCADqEAZaAAdYAjMkN7sgBNwQzr2A0EgDESDZYADkkAaEIFssAqsB4WgGGwFO0EF2Af2g8PgKDgOWsBpcAFcATdAD7gLHoIBMAxegAnwDkxBEISDyBAFUoY0IT3IBLKC6JAL5AUFQCFQNBQHJUICSAytgjZAxVApVAFVQ7XQr1AbdAG6BvVC96FBaAx6DX2CUTAJpsLqsD68EKbDDNgfDoOXwolwOpwHF8Cb4XK4Bj4CN8MX4BvwXXgAfgFPogBKCqWI0kKZoegoD1QQKgaVgBKh1qCKUGWoGlQDqh3VibqNGkCNoz6isWgKmoY2QzuhfdHhaA46Hb0GXYKuQB9GN6MvoW+jB9ET6K8YMkYNY4JxxDAxUZhETDamEFOGOYhpwlzG3MUMY95hsVhFrAHWHuuLjcYmY1diS7B7sI3Y89he7BB2EofDKeNMcM64IBwbl4krxO3GHcGdw93CDeM+4KXwmngrvDc+Bi/A5+PL8HX4s/hb+BH8FEGWoEdwJAQRuIRcwhbCAUI74SZhmDBFlCMaEJ2JYcRk4npiObGBeJn4iPhGSkpKW8pBKliKL7VOqlzqmNRVqUGpjyR5kjHJgxRLEpM2kw6RzpPuk96QyWR9shs5hpxJ3kyuJV8kPyF/kKZIm0szpbnSa6UrpZulb0m/lCHI6MkwZJbJ5MmUyZyQuSkzLkuQ1Zf1kGXLrpGtlG2T7ZOdlKPIWcoFyaXJlcjVyV2TG5XHyevLe8lz5Qvk98tflB+ioCg6FA8Kh7KBcoBymTJMxVINqExqMrWYepTaTZ1QkFewUYhQyFGoVDijMKCIUtRXZCqmKm5RPK54T/HTAvUFjAW8BZsWNCy4teC9kqqSmxJPqUipUemu0idlmrKXcoryNuUW5ccqaBVjlWCVbJW9KpdVxlWpqk6qHNUi1eOqD9RgNWO1ELWVavvVutQm1TXUfdSF6rvVL6qPayhquGkka+zQOKsxpknRdNHka+7QPKf5nKZAY9BSaeW0S7QJLTUtXy2xVrVWt9aUtoF2uHa+dqP2Yx2iDl0nQWeHTofOhK6mbqDuKt163Qd6BD26XpLeLr1Ovff6BvqR+hv1W/RHDZQMmAZ5BvUGjwzJhq6G6YY1hneMsEZ0oxSjPUY9xrCxrXGScaXxTRPYxM6Eb7LHpNcUY+pgKjCtMe0zI5kxzLLM6s0GzRXNA8zzzVvMXy7UXRizcNvCzoVfLWwtUi0OWDy0lLf0s8y3bLd8bWVsxbGqtLpjTbb2tl5r3Wr9ysbEhmez16bflmIbaLvRtsP2i529nciuwW7MXtc+zr7Kvo9OpbPoJfSrDhgHd4e1DqcdPjraOWY6Hnf8y8nMKcWpzml0kcEi3qIDi4actZ3ZztXOAy40lziXn10GXLVc2a41rk/ddNy4bgfdRhhGjGTGEcZLdwt3kXuT+3sPR4/VHuc9UZ4+nkWe3V7yXuFeFV5PvLW9E73rvSd8bH1W+pz3xfj6+27z7WOqMznMWuaEn73far9L/iT/UP8K/6cBxgGigPZAONAvcHvgo8V6iwWLW4JAEDNoe9BjlgErnXUqGBvMCq4MfhZiGbIqpDOUEro8tC70XZh72Jawh+GG4eLwjgiZiNiI2oj3kZ6RpZEDUQujVkfdiFaJ5ke3xuBiImIOxkwu8Vqyc8lwrG1sYey9pQZLc5ZeW6ayLHXZmeUyy9nLT8Rh4iLj6uI+s4PYNezJeGZ8VfwEx4Ozi/OC68bdwR3jOfNKeSMJzgmlCaOJzonbE8eSXJPKksb5HvwK/qtk3+R9ye9TglIOpXxLjUxtTMOnxaW1CeQFKYJLKzRW5KzoFZoIC4UD6Y7pO9MnRP6igxlQxtKM1kwqMhx1iQ3FP4gHs1yyKrM+ZEdkn8iRyxHkdOUa527KHcnzzvtlJXolZ2XHKq1V61cNrmasrl4DrYlf07FWZ23B2uF1PusOryeuT1n/W75Ffmn+2w2RG9oL1AvWFQz94PNDfaF0oaiwb6PTxn0/on/k/9i9yXrT7k1fi7hF14stisuKP5dwSq7/ZPlT+U/fNids7t5it2XvVuxWwdZ721y3HS6VK80rHdoeuL15B21H0Y63O5fvvFZmU7ZvF3GXeNdAeUB5627d3Vt3f65Iqrhb6V7ZWKVWtanq/R7unlt73fY27FPfV7zv08/8n/urfaqba/RryvZj92ftf3Yg4kDnL/Rfag+qHCw++OWQ4NDA4ZDDl2rta2vr1Oq21MP14vqxI7FHeo56Hm1tMGuoblRsLD4GjomPPf817td7x/2Pd5ygn2g4qXeyqonSVNQMNec2T7QktQy0Rrf2tvm1dbQ7tTedMj916LTW6cozCme2nCWeLTj77VzeucnzwvPjFxIvDHUs73h4MerinUvBl7ov+1++esX7ysVORue5q85XT19zvNZ2nX695YbdjeYu266m32x/a+q2626+aX+ztcehp713Ue/ZW663Ltz2vH3lDvPOjbuL7/beC7/X3xfbN9DP7R+9n3r/1YOsB1MP1z3CPCp6LPu47Inak5rfjX5vHLAbODPoOdj1NPTpwyHO0Is/Mv74PFzwjPysbERzpHbUavT0mPdYz/Mlz4dfCF9MjRf+Kfdn1UvDlyf/cvurayJqYviV6NW31yVvlN8cemvztmOSNfnkXdq7qfdFH5Q/HP5I/9j5KfLTyFT2Z9zn8i9GX9q/+n999C3t2zchW8SeGQVQiMMJCQC8PgQAORqZHXoAIC6ZnalnDJr9HzBD4D/x7Nw9Y3YA1K8DIATx6fFxz3kAdBGXcQOAhXiYG4CtrSU+N//OzOrTJnsEgF6mpRUr4Int0DrwD5ud47/r+58rkGT92/ovQwQHJ51SEfIAAABiZVhJZk1NACoAAAAIAAIBEgADAAAAAQABAACHaQAEAAAAAQAAACYAAAAAAAOShgAHAAAAEgAAAFCgAgAEAAAAAQAABmigAwAEAAAAAQAAAU4AAAAAQVNDSUkAAABTY3JlZW5zaG90HkdZhQAAAj5pVFh0WE1MOmNvbS5hZG9iZS54bXAAAAAAADx4OnhtcG1ldGEgeG1sbnM6eD0iYWRvYmU6bnM6bWV0YS8iIHg6eG1wdGs9IlhNUCBDb3JlIDYuMC4wIj4KICAgPHJkZjpSREYgeG1sbnM6cmRmPSJodHRwOi8vd3d3LnczLm9yZy8xOTk5LzAyLzIyLXJkZi1zeW50YXgtbnMjIj4KICAgICAgPHJkZjpEZXNjcmlwdGlvbiByZGY6YWJvdXQ9IiIKICAgICAgICAgICAgeG1sbnM6ZXhpZj0iaHR0cDovL25zLmFkb2JlLmNvbS9leGlmLzEuMC8iCiAgICAgICAgICAgIHhtbG5zOnRpZmY9Imh0dHA6Ly9ucy5hZG9iZS5jb20vdGlmZi8xLjAvIj4KICAgICAgICAgPGV4aWY6UGl4ZWxZRGltZW5zaW9uPjMzNDwvZXhpZjpQaXhlbFlEaW1lbnNpb24+CiAgICAgICAgIDxleGlmOlVzZXJDb21tZW50PlNjcmVlbnNob3Q8L2V4aWY6VXNlckNvbW1lbnQ+CiAgICAgICAgIDxleGlmOlBpeGVsWERpbWVuc2lvbj4xNjQwPC9leGlmOlBpeGVsWERpbWVuc2lvbj4KICAgICAgICAgPHRpZmY6T3JpZW50YXRpb24+MTwvdGlmZjpPcmllbnRhdGlvbj4KICAgICAgPC9yZGY6RGVzY3JpcHRpb24+CiAgIDwvcmRmOlJERj4KPC94OnhtcG1ldGE+ClAnpjAAAEAASURBVHgB7J0JvFVj98efKLOQsUikEqLJ8KKBypCUCqFkKKSoJIRQUa8iogwZM0SjZEyZp5AKiVCGpP4imefpf7+rd5133333Ge7tvNXNb30+5549PM+zn/199jmxfmetVea33377O8hEQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQARWGYF1VtmVdCEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEjIIFGD4IIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIrGICEmhWMXBdTgREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAQk0OgZEAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREIFVTEACzSoGrsuJgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIQNl0CP7+++/w008/pTsdypQpEzbaaKO05+Mnso1H+/XXXz+ULZt2SqkhmRfjpTPmxfxKal988UX44IMPwtKlS8Mmm2wS9tprr1CxYsWSDqd+IiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIlCIQFo15OWXXw5NmjQp1Dhpp3r16qF27dqhffv24ZBDDjGRJaldruMdcMABYZ999gl169YNrVu3LiIC/fHHH2HzzTdPukShYzvvvHPYZZddwtFHHx3atGkTKlSoUOh80s57770XzjvvvDBt2rQip7fZZpvQqFGjcNVVV4UddtihyHkdEAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREIFcCZT57bffEkNRXnzxxdC0adNcx7F2iBj33XdfaNy4cZF+JRlvv/32C5MnTw5bbrllajwEmuJE7njH6667LnTt2jVtZM1zzz1nYs7333/vXRLfuccHHnggMDeZCIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACJSEQF5r0JAajCiakSNHlmQuRfq89tprFrWyaNGiIueKe+Ccc84JHTt2DH/99VeRrpMmTQqHHnpoyCbO0JF7bNiwYZg+fXqRcXRABERABERABERABERABERABERABERABERABERABERABERABHIhUKwIGkQMUoURxfLWW2+F+fPnp73GSy+9FPbdd9/U+aQImrPOOitV26Ugkie8++67YeLEiak+vtGhQ4cwatQo202KoNlzzz3DHnvsYec//fTTjOLJ1VdfHXr27OlDh19++SVUq1bNhJfUwYKNvn37mjjEvIgKGjt2bPR0aNasWXj88ccLHdOOCIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACORCoFgCzZw5c0LNmjVT43755Zfh1VdftdRhRJZEjRow8+bNC+ussyJIJ0mgiY9H/3feeceEkXg0yzfffGOpzZIEmptvvjl07tw5dfmffvopzJo1K/Tr1y8gFMXtgw8+CDvttJMdfvLJJ0OLFi0KNSGFWcuWLVPH/v77b4u+GT9+fOoYG1ynbNm0ZXwKtU3aeeihh0wYatu2baE0bkltS+OxDz/80ESsY445JiXElcb70JxD+Pnnn4tgWG+99cK6665b5Hi6A4zx5ptvhj///NNqTG288cbpmuq4CIiACIiACIiACIiACIiACIiACIiACIiACIiACKz1BFYqxdnWW29tQsajjz5aBNTHH38cSFFWXCMS5vzzzy/S7bPPPityLN0BatSQhgyhZbfddivSLCq0MM+oISxFxRnOlSlTJhx77LHRZrb91VdfFTlWnANDhgwJRBHlI4Vbca67qtqefvrpoXfv3uHSSy9dVZdc66+DQMlrVdpHH30UNttssyKvDTfcMPB5OfHEEwNCZzrjc9K6dWvrT32qJk2ahC222MKOff311+m66bgIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIrNUEVkqgcTJ16tQJ1HGJGwJJSax69epFupXEkYsTeMqUKUXGImWZ20EHHRTGjBmTet11111+qtA70TJxQ6CSpSfQoEEDO7nffvulb6QzORMg8gTxkRcRZavKiCBz47PJC2EGW7x4cUDwJArtqquu8map9//7v/+ziDjSAW6zzTbh1FNPDSeddFLYdNNNLbqKz19JPtupC2hDBERABERABERABERABERABERABERABERABERABEopgZLn54rdcNOmTWNHQpg9e3aRY7kcoBZN3CpWrBg/lNN+pUqVAkJBNNUZqdeoLUOKpho1atgr02BELIwYMaJQEyIBPH1boRPaSRG4/PLLLXqmXLlyqWPayA+BqGiSnxGzj4KoQgpCtx9++MFSCRJBd/3114dLLrnEhJeuXbt6k3DHHXdYraoDDjggkNKPSByM9IONGjWyNIhPPPFEOOGEE1J9tCECIiACIiACIiACIiACIiACIiACIiACIiACIiAC/wQCeYmgARTpjvbcc89CzPh1fXGNtGhXXHFFoW44hhFaSmp77713ka7Uz8nVBg8eHGbOnFmo+QUXXFBoP9sOETjPPvuspX378ccfszUPf/31V5g7d2545plnQrwej3detmxZIEWbR/d8+umnlmrq/fff9yaJ7whOCxYsCDjGucbvv/9epB1rx9jMg8gNxDbmEk3rhkjAtRiHuj5x0YDICFLT+fwZhzGXLFli1+O61Ap6+umns6Z5o37J888/b/NlTrkYnLne8uXLrTn39Nhjj4WlS5cW6s49kaIrlzR6v/76a5g+fXp45ZVXQrZ1zDbn4qwfz+snn3ySmjfb0bVPnSjY4D6mTp0aiF5Jsly5JPWNHttkk00CQuXVV19t4gznevbsGZ577rlUMyJnMMQ6F2fYr1y5cqpu1LRp0zgkEwEREAEREAEREAEREAEREAEREAEREAEREAEREIF/FIG8CTRQq1u3biF4OJAz2cCBA8N5551nr+7du4dDDjnEasfE+/To0SOULVvyYJ+99torPmTIVaAZNmyYOZejA5xyyik21+ixdNtEGRAdsPnmm4fDDjvM7m/HHXe0aIKkPognvXr1CqRPq1evXjj88MPDlltuGUgF9fbbbxfqcuGFF4Zdd901TJw40Zzd1apVs1RTCGWkoBo9enSh9uwQ7bDtttuG3XffPbRq1cquQbH2m2++uVBb0pIxNiniSE31r3/9y+ZCJNP9998fPv/8c9vnWoxTq1atULNmzUIiB8IWY5BCDlu4cKHtH3zwwVYfiOvuv//+oXnz5mGXXXYJZ5xxRvjll18KzQMxpU2bNubc5/mACfwGDBhQqF3SzoMPPmjXu+yyy0L79u2NCWPNmDHDmiOyENnBPZGiq2rVqoEaSEnp+nhe6ItYyFogTJBCj7V1AcrnkOuci7N+PBPRekq+Pk899ZRfNtx55512v9wHdZSqVKli9zNhwoRUGzaycSnUOMcd6gx57aZ777031evMM88Mt956a9h3331Tx3yjQoUKvql3ERABERABERABERABERABERABERABERABERABEfjHESi56pGAirRhUcOZncmoXZHNcOYj0KyMEfUQt3XXXTd+qMj+ddddF/r06VPoOA79a665ptCxdDtEepx++ukmRtDm6KOPDltttZU5yI899tjEbueee24YOXKknTvqqKPCDjvsYLU6iNpAyOAdgSJqOO8RCUjlVr9+/fDCCy+EN954I3Tq1MkiFRATMCJQ2rZta9vNmjULtWvXtkgQxiTygQgHhIyoIUogvNEeQYNUcQhUHOMabBNJcffdd1tER7t27WyO0THi2wh3CBuIDAg/RFnMnz8/UP8Hkcmjk4gMOuaYYyzqaPvttw/w+OKLL0yQGjRokF23d+/e8eGL7CMQYKwdIgdjffjhh+HII480bkRYwY5oIgSP448/3qKdDjzwQOtHxAnXJoqKZ5o5wRthjDpLRA8R+YWIWJI557J+iB9Enfiz161bt4DABS+MzxJiCMa97LPPPjYn1rZDhw6hfPnyJhBag//8SeISPV+c7TJlyphg98gjj4TJkydbajP6U28myfhs+Oc/SbxJ6qNjIiACIiACIiACIiACIiACIiACIiACIiACIiACIrA2EcirQEO6qqhtt9120d1ib+O4xhG/MtEzXDQeecIxokIyGWnW4qnWcPA//PDD5qTP1NfPuQOffdh4CrghQ4YEhCcEjqjh3HZxBjHAI3+GDh1q4g5CBoIP6auihlhABEznzp1Th2F34403miCDqIEghQCC9e3b12qA2E7BHyJMiHbh+nGB5ogjjjAhgjXAqY7IRJow5o5Y48710047LdSpU8dEjG+//bZQOiu/TvQdgQEBDPMUWRSZR+hxgYa1R/hAQEE42Wijjaz92WefbVEsF110kUVtUEcomxEVgyDjhjgEN8a69tpr/XAgYgpR7rjjjrO0awgPROuwHkQlvfrqqxY5Q4fhw4dbxArPF2tCFE5J5pzL+jEfhCEXaKjhQgQPRiqzE0880bbjzwFsWW8EHlLOIepELc4leq642/68cj9e4yndGLfccosJeYhlJ598crpmOi4CIiACIiACIiACIiACIiACIiACIiACIiACIiACay2BvKU4I8qAKIiokWIpk+GcrV69ur2S2l188cUrLc4w7ptvvllkeNKGJRkiBFEscXEGhz7iDJEIuZqn0urfv39KnKEvQgPF0+NGhAqGIODObvYRV26//XY2LbIjXjOG6JaoOEM7RCCiPXCWe6q5UaNGmeMc537UiHrBEB/iRuo5F8jWWWcdS/NFG8QqF2fYJ2UaAgbm17OdNH9Y26i1bt3adnmGqFWDefqum266KSXOcJxr+/3GawNxPm4IPFFx5ptvvjGBCT6IQlFD2OK5RNSipg9G5BGGeOaiCPtEQ1H4nmdlgw024FCJ5pzr+tkFEv640Ifo51y8GSkEXRicM2eOH7b3OJdCJ0uw4+tP1++++y7tCAiNRGxhfA5ceEvbQSdEQAREQAREQAREQAREQAREQAREQAREQAREQAREYC0kkLcIGqIq4oYjPZNR34S6JZj/0j/anggFalusjJHKijRPUSMFlIsO0ePUf+nSpUuI1tDgPHVgqKMSjz6I9k3advGAdFNxQ9CImwskOM7jhhiAAxzxY968eYUEnCTO6623XiBF1xNPPGERRJ4Ki8L1CFY49ZcsWRIQK2bPnm2Xiws/HKSGTNRIZ4ZFnfF+HtGL+f39999+KPGd6KV4BFO0fhHrQASGCw9EW7gA4gO6wEWbeNSPt/F3Inui5kIF4tX5558fPWXbixcvtnfaUQvI50H6uLjxLPHCYOttizPn4qxf/Prs+/ohIsaNCCDq/BDlw7qz7Rbn4sdL+h4V5kiXl2SIkC7GUTOnSZMmSc10TAREQAREQAREQAREQAREQAREQAREQAREQAREQATWegJ5EWhIQ+UplqLEvN5J9Fi6bepnkGYLp7kbkQmk9CppqjQKu5OiK27UP4kbxek7duxoERHRczj/qdWB4FFcW7BggXWpVKlSka5EoxA9FI06opYJltSe4zvttJMJIAsXLiwk0FCbJMm8Vg3tMZz0rVq1Ci5AJPWJH8PBn29LErriNYGic3QxJmken3zySdLhQsdgHbWokEAauHS2aNEiE7E4T7RNtuipks451/VLN09ESIx6RUlGRBD20UcfFTod51LoZAl23nrrLeuF+FauXLkiIyB4eSQTqeCSvjOKdNIBERABERABERABERABERABERABERABERABERABEVhLCayUQINznOgU0mDFjaiApCiReDvfxwFO6i1SMkUN0cZrlUSPZ9petmxZIL3YwIEDi6Tb4jr+C34fA1GI+h7PPvusH7J30jCRKqykjuw99tjDUmXBie2oESUSFWc4R0TDtGnTQlJ7zr/zzju8FYlqiY9jjQr++HGEIMzFGWqlkAqLiBBEB9J5ESmT5FS3jqvhj4tLXJoaKxtuuGHiLJIioRIbRg46D6J24mseaVZIlOMZQfAjoiadlXTOvk7xcf24zzd+3vf92XKhxo/7ux8vzufR++b6TmpAUpdhPF9xQ3wkBRscqYmTFLkU76N9ERABERABERABERABERABERABERABERABERABEVibCRRLoCGahTRWOGNJq4RjP51linpI14dC89QEiY5L/REEoF122SVdNyvyToF7zFOApWtMEfWok50UX0TZeDqyaD9ElN69e0cPFdomAiAp7ZU3IlUZAgA1TOJOa6KO4kZNFwSapPY42Z1LnMUzzzwTmGtUrKAgvN8T9Wzo7xEepJaK1lLxFFnx+azOfSKW4Mc9vPfee5auLTqf5cuXm2DC80j6t+KY12QhHRnp2OIRPZ999lmgphKRLdRHQWxEiHzhhRfC0UcfXehSkydPtrozhx56qAlgJZlzLutX6KIFO16nh+OeHu65556z49FopF9//TW8+OKL1t3b2U6e/5CK0AWak08+udDoRCKRygxxBgE2XgOpUGPtiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiMA/hEDh3E9ZbhpRAScsdU1cLEjqMmHChIyCSlIfjuEMT6o5M2DAgHRd7DiRBsyLF/VZ0hm/2m/Xrl2h03Pnzk0JGYVOFOyQ/irTC+EgkzVq1MhOEwEEMzciQpLSOxFhgNHend3s49j2OisIBFEHPOcRMWCEcIZRSwaxi37UiiH1VYUKFewcf6LzJlrn4osvTp1bkzaaN29u04EVzNw+//xzi8ZAaIly8vPZ3omi8rovjE29G7fXX389VK1aNTC2X9PnccYZZwRPW0d7OPI8kQLP+Xrb4sw5l/XjetF1d/GN4/Xq1bMUbAhO/fv3Tz0HiDgIIoiWpB3bbbfdaJ43QyTjuT777LOthhQD33bbbSm27C9dujQ0a9bMvi9oR2ozmQiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIQAjFEmiyASMV06xZs8JRRx2VrWna8/z6Pl5AfuzYsVbgPG2nLCdwyDPGqnYOH3bYYaFXr142O9KL1a5dOxx00EGhSpUq4bvvvjOnenTqDRs2TDm6ScNG6qpDDjnEopZwviMaEAEUN0QYUrGRYotoIGr2eETRpEmTAnVkiJghygNr3LixtaNtjRo1LFokPuaasH/hhRfaPIn8gRlRGHDhPhHi9ttvvyKCW67zHjNmTKA2y2OPPRY22WQTG5fxDzzwQBvinHPOSYmMiBwIYwhepAljDRF4iEzC4NigQQPbLsmcc1k/G7zgj1+H56lNmzYWycbaPvroo9bEnwNqvfA5uuWWW+z4lClTwvrrr+/DlOid+0fs8xfPGfNAoMKGDh0a4tEz1Hvymj/jx4838Yv7jb9KNCF1EgEREAEREAEREAEREAEREAEREAEREAEREAEREIFSTCCtQBP9tX66+8MBjKOayAJSeRGN4umj4n2Sxkuq7bLBBhtY7Zh4fxzPuRqCDOmcqCszbtw4S+3Vtm3bxO5J80psmHAwmlIs4bQdQhQiQgXxClGBVFkwIpWZ1wSJcqDuzfDhw40rkUGkO0NIOPXUU80Jv/nmmxe5FFETRNAQ1fTUU0+ZkHD44YeHqVOnFqp9gygBE4x2vBDTHnrooSJjej2a6Nxo5PtJ3PwYghDm+97H3+1kDn+Yw+jRowNM4PfSSy+lImZIPYcIxfOSzvx6/h5tV7FiRYv+6NChgwkZROIwPs80/Kl95MZ9kBYOoYYoFNaQCBbaIshMnDjRm1odn+LOOdf14yIjRoxIfcYQl0jHhu2///4BEYZUejwHPF8YIg7PUPRz6Tz83Rpm+BNtx9j+ogvrcsoppwTStPXo0aPIKC7OcIJ+iG1JryIddUAEREAEREAEREAEREAEREAEREAEREAEREAEREAE1nICZQrSO/29lt/jGnN7S5YsMQd+tAZOpskRsUCkDQJNkpHG7J577jERg1Rb1KFZuHChRdDE66pE+5PSi7ogzKN8+fLRU2v0Ng5+5o644uJPPiZMHRp4IPYgumSzL7/80mq9EEGSzTLNuaTrxzV/+OGH8NNPP1lqtbhQSIo7RBAiXeLnss1X50VABERABERABERABERABERABERABERABERABERABFYNgbKr5jK6CgQqVapULBBEAvHK1XDG77LLLlmbr7feejm1yzrQKm6Qi3hSkikR8UPatFwtV4GN8Yoz51zXj3FJy8YryYg82mmnnZJO6ZgIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiMAaQiBtirM1ZH6ahgiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAisdQQUQVOKl5SC8dQHoeC6rPQR0PqVvjXTjEVABERABERABERABERABERABERABERABERABEQgXwRUgyZfJDWOCIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACORIQCnOcgSlZiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiKQLwISaPJFUuOIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIQI4EJNDkCErNREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAERCBfBCTQ5IukxhEBERABERABERABERABERABERABERABERABERABERABERCBHAlIoMkRlJqJgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIQL4ISKDJF0mNIwIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAI5EpBAkyMoNRMBERABERABERABERABERABERABERABERABERABERABERCBfBGQQJMvkhpHBERABERABERABERABERABERABERABERABERABERABERABHIkIIEmR1BqJgIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAL5IiCBJl8kNY4IiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAI5EhAAk2OoNRMBERABERABERABERABERABERABERABERABERABERABERABPJFoGzSQHPmzEk6rGMiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAJ5IFDmt99++zsP42gIERABERABERABERABERABERABERABERABERABERABERABERCBHAkoxVmOoNRMBERABERABERABERABERABERABERABERABERABERABERABPJFQAJNvkhqHBEQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQARHIkYAEmhxBqZkIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAI5IuABJp8kdQ4IiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIpAjAQk0OYJSMxEQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQARHIFwEJNPkiqXFEQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREIEcCEmhyBKVmIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIpAvAhJo8kVS44iACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIhAjgQk0OQISs1EQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREIF8EyuZrII0jAiIgAiIgAiIgAiIgAiIgAiIgAiIgArkQWLRoUbjp5pvDY48+FhYsWBD++OP3XLqpTTEJlC1bLlSrVi20OLJF6Na1a6hcuXIxRwiBtbq5YK2mTJkSPvjgg/D771qrYkNUh/8JgXLlyoUaNWqE5s2bh64lfL7/JxPToCIgAiJQDAISaIoBS01FQAREQAREQAREQAREQAREQAREQARWjsCdd94Zzj67e2h/0smh74BBoVr1XQOOVln+CSCmLJj/fnhy6uNh111rhhtuGBE6deqU84VYq+7du4cePXqEO+64I9SqVSust956OfdXQxH4XxL47bffwty5c8OECRNCzZo1w4gRxXu+/5dz09giIAIikCsBCTS5klI7ERABERABERABERABERABERABERCBlSKAw//fV14ZRt03Luy2e62VGkudsxNA+IIzr0MOOyL0vaCXdcpFpGGtrrrqqvDiiy+GevXqZb+YWojAKiaAWMizyevYY48N7du3txnk8nyv4qnqciIgAiKQlkCZArX577RndUIEREAEREAEREAEREAEREAEREAEREAE8kCAVFlEcUicyQPMEg4x79254dQOx4X3338vY7oz1oqIBIkzJQStbquFwOzZs0PDhg3De+9lfr5Xy+R0UREQARFIQ2DdSy+9tH+aczosAiIgAiIgAiIgAiIgAiIgAiIgAiIgAnkhMHjIkLBLjZrhyFZt8jKeBik+ga233ib89POP4d135oZmTZumHWBIwVrtt99+oWPHjmnb6IQIrGkEKlasGH744Ycwc+bM0DTD872mzVvzEQER+GcTWOefffu6exEQAREQAREQAREQAREQAREQAREQgVVB4LFHH7M0W6viWrpGegKkOmMtMtmUKVMsZVSmNjonAmsiAVKd8fzKREAERKC0EFCKs9KyUpqnCIiACIiACIiACIiACIiACIiACJRiAhtttHF4ccabgboospITWPzZojD9pRfCs08/GerV3ydstvnm4YAGjcL2O1TOadDff/89NNy3Tvjppx/Ttt94443D119/HajxIROBVUngo48+CtOmTQuTJ0+2dGVbbrllOPTQQ0PVqlVzmkZBKYewxRZbhB9/TP985zSQGomACIjAKiIggWYVgdZlREAEREAEREAEREAEREAEREAEROCfTABn/8y3P0iLAOHg04Ufm9CwwQYbpm23Jp74+++/w9j77gn7/euAULVa9f/ZFLudfkqY8er0xPHPPKtnOO3MsxLPxQ/uvWeNgCM7nbFWmc6n61fc42+//XZ46aWXQteuXYvbVe3XQgKHH354eOaZZxLvrF+/fqFv376J5+IHV9XzG7+u9kVABESgJASU4qwk1NRHBERABERABERABERABERABERABEQgLwSWLFkcevfoFvavt0c4rs2RocE+tcM5Z50RvvhiaV7GzzbI8q+WhUcemhR+/vnnbE3Tnv/u22/DNUMGhSen5pZaqSTXRFRxcab+PvsFXmd07W7vTGzkjdcH2vwvbPjw4RZNQ32PuF1wwQVhhx12CIhUxbWxY8eGnj17hu+++664XYu0X7p0abjnnnsUOVGETOk4gKji4kzjxo0Dr4K62fbOHQwYMEARXaVjKTVLERCBYhKQQFNMYGouAiIgAiIgAiIgAiIgAiIgAiIgAiKQHwJLFn8WTjvphPDdt9+EO+8dG557ZVa4f+LD4a+//grHtDo8/LQK0hQt+vTTMOCSC8O333xd4psizdjzr8wOp3c9O6cxinvN20femBoXUeaWO++11xndVmxzzI0om3zbMcccY0M+/vjjhYb+448/wh133BFOP/30UKZMmULnctm54oorwrJly0L58uVzaZ6xzYcffhhOO+20sHz58oztdHLNIzBo0KDUpBBlnnzySXv5Nu9uRNnIREAERGBtIiCBZm1aTd2LCIiACIiACIiACIiACIiACIiACJQiAo9MnhT+KEhtds3wm8NedeqFTTbZNNTYtWYYOOSaUL3GruG1/6TzQgi48fprQrvWR4RDG+9vgsrSz/8vdaeDB/a387xz/ohmjcKDE8enzn///XfWh3O8aPfTTz+Fp6c9Ec4/Z0VasE4djw9X9FuRQonzI4YNDZdddH5o9K+6YcZrrxSIRn+G++4ZFdoeeagdO/3k9uGdt+ekrtGlU8fw/LNP236m+aS7Zmqg2AY1Z4iOcUOUwWa9/lq49aYRts0xImowomzok0+rVKlSwDE+ZsyYQsM+//zz4fvvvw/HH3+8HZ86dWo44IADAnVD6tevbxEt3qF79+6WouqUU06x80RLTJgwIbRu3dqbhGz9cdQzDhE7O++8s4lDdJ40aVJo166djdOoUaPQpUuX1JjRDZ6j/v37h9q1a9sYJ5xwQvi///vvc8T2GWecYedoQ0qtXFO9Eb3TpEkTu7ejjz46vPjii9FLh1deeSVQwB42++23X7j99ttT5zPNi3677rqrPa/e4f777w+HHHKI7b777rt2/q677rL7Yg4Y87/xxhttTkSn8Lz7dfbYYw/rc9555xUalz7Mq1WrVql5cn0375+JH+xZH54Drp/NqDlDdIybizE8Wwh4GMeIqMF4bugjEwEREIG1hYAEmrVlJXUfIiACIiACIiACIiACIiACIiACIlDKCMx7d26ot/e+ofxmmxWaefnym4U77hkbDm66wgk9dPDAMOr2W0LrtseGnr37hHfmzrE0aDidsS+Wfm7nf/3ll9C7T9+wS0EdmEEDLkk5n4ddPTjMnvV66D9oSDjvwkvC448+FO689eawe609wwkdT7ExiEJpffSxts14d995a0Has59Cn4v7FYgBu4Snpk0Nw66+MrRo2Tpc0m9gWGfddUPX0082pzedPv30k1TET6b5pLumXTjhz/SXXih0lDRmiEG8br15hUBTqEHBTrxP/HxJ9k888cTw2GOPhS+//DLVfdy4cWHvvfc2Z/+iRYtCy5YtbRsnP8eJaJk9e7a1/+yzz8LVV19tKciuv/76sNtuu4VvvvkmfPDBirpEufQfMmSIpaK75pprAiIDtWtIu8a1EG4wnPmdOnWy7fgfBIl///vfAZEI5z/ixkEHHRT+/PNPe1YQi15++WVrw9xHjhyZGjc+VnQfoYn2iFL0wZo2bWrjs71gwYJw5JFHhl9//TXcfPPNARGpW7duYfz4FSJipnmReu/jjz+2OTIW9m1BSj3GxH4peOY537t373DSSSeFPn362PF58+aFXr16hX322Scg3iDSXHTRRWHEiBHh7LPPDqSmGzVqVDjrrP/WLaIP80JcYa1gG637kmmezANhaubMmeGqq64KLVq0sOtz7Uw2bdq0QqeZJ+ITLxdoCjUo2In3iZ/XvgiIgAiUJgJlS9NkNVcREAEREAEREAEREAEREAEREAEREIG1h8C7c98OxxzXPuMNkeZs4rj7Q7+Bg0PLo9pa27r19w6tDm8SZs+cERo0OsiOVd2lWrjsiist1RaiT/OmDSya5KAmzcLcOW+GevX3CQc0aGRta9WuE34rcJZXrLS9Hefgvw44MGxXsZKd5w8RPEOuHRHWWWfFb1v33Kt2GDvp0VCt+oo6L1V22jl0aNc6fPzRh9Y21fE/G5nmw1yw+DX/07XQ27cFIkbciJ5ZUYPmbDvFPi+3Z59+Mhx7fAffzcs7AgM2efJkS2mGOIbz3aMkNtlkExM36tatG8qWLWuCxMSJE8OMGTNCvXr1rO+ee+4ZEHWcqR38z59c+iPq3HbbbbbGiBxVqlSxiAoiPho2bGgj4divXLlydGjbJtLnpptuMgHFBRyEiMGDB4fFixeH999/P7zxxhsmqlSrVs36EO2CmEObLbbYosiYfmDYsGGhY8eOJmpwjPlwz6NHjzaxh+ga0rhRc2ejjTayaJ+tttoqfP755xaBlGlefo1s76wFAlnUqO+DqIUhtiCMMSePNtpuu+1CmzZtwrXXXpu6vx49eoQLL7zQ+mxWIJwSZfTFF1+EDTfcMCO/+fPnmzhDqjnnT20hBCEYprOvvvqqyCmiZ4iYueSSS+wc+7zceAbPPPNM39W7CIiACJRqAhJoSvXyafIiIAIiIAIiIAIiIAIiIAIiIAIiUHoJbF7g9P62oP5MJvvww/l2un6B6OJWafsdwvY7VA7vz3s3JdDU2qtOqg7K1ttsEypU2NIia+jT/MijLAUaYzU6qElo0uywgICSyfYsGC8qJCDmzJzxahh5w/Xhq6++DO+/N8+6E7WTZJnmk9Q+3TEif5KMOjQYwgzRNFFzASh6bGW3ERaIErnvvvtMoCEdGda27QrRDAFj0003DYgVnxbU9fn6669NfPAoJ9qS2ivKlGNuufb3WjcVK1YM2xSsM5E5udjcuXOtmacAY4fUYUSRYESzbL/99sHFGY4RXYPRl/ReLuzYwYI/iB8IHESNEJXitv7661tqsddfX7F2RBEdeuihJs54G4908RRi6eblkTLeL917nTp1ipwissjtnXfesU1qBj399IpUfEuXLrVj3J8LXAhsbr69ZMkSi1zieLp5EkWEDRw40N7542yJHIJJksVTwXkb6tBgCDOezs3P+Vx9X+8iIAIiUJoJSKApzaunuYuACIiACIiACIiACIiACIiACIhAKSawR629woL5K1JcxW8Dh/g665QJv//2m50qV269Qk1w+P5eUL/GrVy5cr5p72Uj+6ee1iXUqVc/PDV1Spg0YZyJLBdcfFlod8KJhfpEd8r8J3LGj42++85w3dDBYf8DGwbmXafexoEIoHSWaT7p+iQdJ80bdWXi5vVnktKcbbb55vHmedlv3769Oeg/+eSTQB0UUloRZYKRGuzggw8OOPVJ70V0i6fw8ounE2dy7U/6q6jFGUfPxbd5nrB0fRAR4uMTCYRRhwbhxiNL7GDBn1q1aqVS3MUFCPZJ+4UxdrrrZpuXDVDw5++///bNgnpIf6W2fSOJrYtZtPG5EIW09dZbWzciXbbddlt7+TjRea677rp+OHWf0fOpkwUbpGLDdtxxR3vnD/V8uBYp5NIZaeWoKxM3T2/m79Hz/sxFj2lbBERABEorAQk0pXXlNG8REAEREAEREAEREAEREAEREAERKOUEqMfyyEOTwhuzZ4a69f77a//PFn0aWh/RLFx+5dXhwAYrioO/+86c0HibZnbH3xXU4PjowwXhzLN65kRgWUHdFEQVrnHuBReHS/r0DmPvu6eQQBMVe5IGffjBieGogho4lw4YZKfnvDk73H/PiuiLpPa5HMt2TcbwtGzx8ervs29B9MyM+GHbT9cnsXExDpISjCgT6qg89NBD4cEHH0z1Ju0U51599VWLZEIQuPjii1Pns22sbH8fHzElyRBTMOaHsIRRT2fMmDHhuOOOC0SgUKyeYy5geP0c6t2QDqxLly7WL/6H1G3RcRFTpk+fbhFDtKUODPV7EGNc9GEfoaVBgwY2XLR/dF4bb7yxnSeSxlPFUXOmuMY9YNSG8YgU5kN0DPeWzbLxq127tg1BJBGp0bAfC9ITLl++vFDkkJ2I/CGyKMlIYffCCy8knbJopMQTOigCIiACpZDAikSqpXDimrIIiIAIiIAIiIAIiIAIiIAIiIAIiEDpJtD66HYmmvTp1T0ggCz85OPw0gvPhbPOONVSlDU75PBANAhpyQb1vzRMf+mFgDDSt8+5dp5aM9mMX++3P6ZVOK9nt/DJxx+FRZ8uLKg5sijsUq26dSVVGvbgA+PD4s8W2XbSH+rTvFGQboyombfemB0G9l9RHyOpbbZjuV6TcWi7778OKDQk9WesBk237vYePYlo5eNHj+djmyiNzp07Wxoz0pm5o5+xcfJTy2XKlCnh7bfftuiJ4lxzZfvvvPPOdjlSeCUJGKRQO+qoo2xeiCOvvfaa3QsF7TcveMb2339/E5hOPPHEQNoxUrh17drVxIBsAsZJJ51k9V249ptvvhlIX0bas2OOOcbmRBq4efPmhXPOOcfOU5OG1GjwyjavGjVq2BhXXnllmDVrVnjggQfC8OHDi4PW2lLz5ogjjrD7595Ia0YdFyKDqE+TzbLN88ADD7SUcx06dDC2MOT5IOoqk1WtWrVQ2jTaUn+G16WXXmrv0f79+vUL9JGJgAiIwNpCQALN2rKSug8REAEREAEREAEREAEREAEREAERKGUESJc05NrhoXbdeuHyyy4OR7c8LJxz1hmhUkEkxujxD4b1CtJEYVdcOTTUqb936NH1tNCp4/Hhh4KC7yNG3hGoYYOVKZPOvVEmkKZpyLARJv4c0+rwwIuohN59+lrfrQpSMJHq7J47bwuDB/a3Y0njde91vqVqOumEo0Pnk44PLVq1/k/bMvYe/ZPUf8X5FW2TrhntH9++6ba7Ch2i7gwpznjnFbXTzjwrupv3bYrGY9RjiaYEY79Zs2aBlFX169c3Z3316tVTdYGypeAqSX/m4Wm8qEnTrVu3MHTo0NC9e3dOFTFqohCxgThCHRMK2j/88MNWH6VChQrhkUceCdTMQRxo2bKlRayMHj26yDjxAz179rT0Z4gH++67r0XL3H333QHRAqMWzLhx48Kzzz5r56nlQx/ELizTvBBGbrnlFksDhohEVBL93fz+fT/TO3NiLn5v1H+ZNm1agdhZIbGbj+1rl2mejIE4921BdBtsYcjnjFR42eyJJ54o1IS6M6Q2451X1Pr2XfG5jR7TtgiIgAiUZgJlCkI//5vEsjTfieYuAiIgAiIgAiIgAiIgAiIgAiIgAiKwxhLAmT/z7Q/Szo90X0S3EKlCQfokIyUT7TbccMOk01mP/fDD91YLZP31NyjSlrFxSEfrbhRpVHCA9GobFTiePVVVUptcj+V6TR/v9pE3hpE3Xu+7hd6JsokLOYUaRHb23rOG1VWJHCq0yVqlSxVWqGHCzvcF4hkM061hQpdCh1a2P88H65hpfWhDzZTy5csXurbvkJoL8TAqQPm5TO+kNvvmm28sKiZdu6+//tqum/ScZZoXkWD0pf6KCyfprpHtOGvLPSL+lMQyzZPxGBvz9Gy2k8OfQYMGWZq5pKZNmjQJcSEnqR3HVub5TTemjouACIjA/4qABJr/FVmNKwIiIAIiIAIiIAIiIAIiIAIiIAIikCKw0UYbhxdnvJm2WHqqoTYyEiANG6nevi0QAmbPej0c3PQQq1OTa1oznOsN961TECmywomedDEc64gBxRUoksbSMREoDoGPPvrIonq++uqrQIQPEVlEPeWa1gzxCeHJRaLiXFttRUAERGB1ECi7Oi6qa4qACIiACIiACIiACIiACIiACIiACPyzCFDrYsH898Nuu68o1v7Puvv83S1CzLHHdyjxgKwBa5HJqHtCjRIvSp+prc6JQD4JIMRQG6ekxnPrdXtKOob6iYAIiMCqJJAuSeuqnIOuJQIiIAIiIAIiIAIiIAIiIAIiIAIisJYTaHFki/Dk1MfX8rtc82+PNWAtMlnz5s3DhAkTMjXRORFYIwnw3PL8ykRABESgtBBQirM8rxT5RrGVzQea52lpOBEQAREQAREQAREQAREQAREQARFYrQQWLVoUdt21Zhh13zhF0aymlZj37txwaofjwvvvvxcqV66cdhasVc2aNS3FlKJo0mLSiTWMwOzZs0PDhg3De+9lfr7XsGlrOiIgAv9wAjlF0JC38c033wzffffdWovr+eefD5dffnl46KGHSnyPv/76a6hTp06oVauWFZtDrLniiitsXHK3JhlF3rgur28LCg1mMwoIvvvuu1Z0LlvbbOeZ3wcffBCWL19epCnH77nnniLHkw6QF5QieJns//7v/8Ivv/ySqUnqHG1vv/12K/yYOliwwfPH8aT5Rtvlss29L1myJOOcfvrpp8BcZCIgAiIgAiIgAiIgAiIgAiIgAitPAEHghhtGhL4X9AoIBbJVSwDmsGcNMokzzIrzI0aMCO3btw84vWUisKYT4DnleeW5zfZ8r+n3ovmJgAj8swhkFGgoxtWkSRMrrrXvvvuGrbbaKuy3335hzpw5ax2lV155JQwcODA8/njJw61/+OGHMG/evDB//nwTW/766y8TaBg3nbhFG85nagPspUuXhpNOOilsu+22JgJts802oX79+uG1115LrQVzp4Bf9MUvB0aNGpVqw8bPP/8czjnnHPsHCzFpu+22C7Vr1w4wcJsxY0bo1auX7ya+I2rtuuuuoWLFioH5MMYbb7yRaosIwj+MW265ZahSpUooX758aNWqlQkjqUYJG4888kgYNGhQkcKRy5YtC926dcvaP2HI1CHmdNNNN9mzvNNOO9mc2rRpE7744otUm48//jgcdthhYfPNN7d577DDDuHOO+9MndeGCIiACIiACIiACIiACIiACIhAyQh06tQpXHzRRRbFMXzYVSbUULRe9r8hAFuEGVgTOQN71iAXo90FF1xgEQkXFfTDAU4BdpkIrCkEeB55Lnk+8X/xvOb6fK8p96B5iIAIiEDZdAheeOGF0KxZMzu95557hr333ju8+uqr5oBnGwc+0SKy/xJAiMC5jwiA6EF0TD6MSI9DDjkkbLLJJmHy5MkWobNw4cIwadIk+wfopZdeCghobqzNZpttZlEtU6ZMCV26dDHRpkOHDibOHHvssSbG3HvvvSa4ISyNHDkyNG7c2MKXEeGy2eLFi21O//73v0Pnzp0t2qVPnz6hZcuW4ZNPPglly5YNDz74YOjdu3d44IEHwsEHH2wiCHM57rjj7DrprvHcc8+Fpk2bpju9Usdhhjj18MMPhwYNGpjYc8IJJ9ix+++/39buyCOPDNWrVw8LFiwwcRLhq2PHjiZosQ4yERABERABERABERABERABERCBkhPAgcr/W910881hUL++9v9ef/whkabkRNP3LFu2XKhWrZrVnMmW1ixpFF+rmwvWiv/3J9uGBLUkUjq2OgiUK1cu1KhRw2rOKK3Z6lgBXVMERCAfBNIKNN27d7fxiS4YO3as1VQh2gPn9VNPPRWuv/76VGQGkRfDhw8P06ZNs4iKI444Ilx44YXmpEfoIRJjt912MzHh2muvNaHh9NNPD6eddpq14UI4x3kxFoJQixYtzLm/zjrrhOgYBx54YLjqqqvsPwiIOtlrr73C2WefXZA/9f3AuVtuucUiOhiT9FSkGEOkIKqE/wC87LLLLNqD80nmKceIOiEyBFHjrLPOsqaMhUACm1NOOcWOcQ9EjTAnhA0iRLCnn346bLrpprYd/fP5559bOjPmxPiMmc2YC/2IziFSBdtiiy1MIENcgXtUoNl5551NoKFd3bp1w7hx48Jjjz1m9zJ9+nRrT3SUCzEIS1deeaVdg3n5cfqzJkSzkH6NZ4H14x9A0rkh8LRr1y5Vb4dn47777gvMiegThBrmi2iDITCxPWDAgMCzxNrGDXFr6tSpYdiwYfFTqf1Zs2bZmr/99ttF1hxGpIuDCf8R2q9fP3v+YICgWKlSJXseXADiH3J+ZYGohfHrCyKg+NXFjjvuaMeOOeYYE2g+/fRT29cfERABERABERABERABERABERCBlSNACqIrC37wx0u2ZhNgrfhxJi+ZCIiACIiACIhAfgkkCjTff/+9iQFcCkHDC97jUJ84cWKg5ghOegwnOZEXGJE1OLFxkJOSi/RWjEUbXuPHj7d2/OnRo4elxNp///2t1glCB4a4gIjAi7RTV199ddoxzjjjDBMASNnFdZ544olw7rnnhjFjxpigcPjhh9t9EA2B3XrrreH1118PzzzzTNh4443tWPxPtO4KUSIzZ840oYX0YhTJ4z6i6bCIsuAYNVgQd9jGkqJnqB9DJAapwTDGb968uW1n+kO4JtFMLs5E2yKYZDLqvnz22Wfh6KOPtmbMD+EoKsJ4/3gqNJgixPEMUIPommuuCVWrVjXBg3deCC2IGghk/Mcagg3iDNa6dWsTdy655JJAlAr8ELJYtyRxhj78GofrHnDAAewmGms8ZMgQE4IQuLp27WrCGWvANRGCEAxZJ3gzHs8IxvOGsRaITKwFQhPjYeuvv74JctwLqc1IKXfHHXfYOYRHmQiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAjkg0DREIaCUefO/W+xPqIQMCITiLLAYT969GgTQTh+ww038GYRM4gqRDcgABDJ8vXXX9s5/8M5nOiklsKI6sCIcsCImsDRj9CCcS0iN6JGyCK1SDw6hVohCEaILxiRIRhjM2cc/W+99Za9uC7RLqTQymSMQc0Yomcw0n/lw5i7izOk/6II/XnnnZd1aOrMEFXkRmQQkSr+Il1X1EgphhhGCDJRQwgULi4g0ETHivZL2ka8ICUZaw9L1jhq1GZhLRDnEDN8HWiDgMOaIsoQyUN00fbbbx9IhZbOGB8hapdddknXxIQiBD1SlfXs2dPWnMgb2JJijign1o7IrXQCFhFQRCEh6NDOBUIueumll5rIg3hWr169cOONN4a77747FZmVdmI6IQIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAI5EkiMoIlGN+D4xhA7XEhhH6c8jm3q0mCDBw+2VGRsIwhgRF24EcXiwgCiCnVTiLYhyoFIEoxUUliTJk1sfMZBXHEjTRpOfwzHOQ55T1Xl9XA8UoKoEwyHv9fScXGBc6RQSzKibjy6hNRmiCBE0RBxsbKG+IRxH3590qUNHTo049DUk/H7ouFHH32UEjngR9SRp1bj/Pnnn89bah1I94WAglWoUCG1ZnYgyx9SgLmRRg0WUeO6pJmDKYIQ6cKIUuIZQiRC+KAODVxJ00bqO0SRJ598MhWFFR2PdHasv0dtRc/5tq81+zwHPCfkwJ0zZ46xIPza7aCDDvLNQu+kWTvzzDNNrENEQpBDSEI0Q9Qi8ohILNK/IficfPLJljbOha5Cg2lHBERABERABERABERABERABERABERABERABERABERABIpJIFGgweHvRsQJaaEQOXCA41jH4U76JwzHNkYfj7YhwgNHPammcHhjbLttuOGGvmlppnyHOjFutMHxHhUmNthgAz+del933XVtOyoqceDHH39MtfF5ffnll6F+/fo219TJ2AYprtyi26TycouKNaT3ytVIqYVF78NTxWUaA5EkKlRRa4e0ZRjpwkgLFjUEHESdCRMmWCRJ2bL/XebatWtbZBICRHQe9Pf78vYepeRjJ82VaBdeiDdEybDuL7/8sr2TEo1IFqJv3FgLnidEnKQ0ZjxfiCeZzOdHm+i6ly9f3qKron39+YweY5sIHV5EVfGsXXTRRZbKDeGQKCOiyFycQuRZuHChRYtJoImT1L4IiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiEBJCCSmOMPh7hEXOK5JS4bzu0qVKlbAnQsRuYDhkMdIN3X77bfbi5odbdu2zZimyjoV/CHawYUATz1GtI7XeUFQKIn5/I866qjUvKifc/zxx6fqkCSNS30aBCaMNGQYES+IR163xgvKw8WjYqxhlj81a9a0Fohe3CNGdEY2a9mypRW9j0Yk0YfrP/7446m1iI/DGjB31tAjoZwn6eOihjizxx57WP2V6PF02zfddFMgEipqLoQRKYP98MMPKWbezsW5qPDm5z788ENbd68T48dzfUcgQtSLMvUUfD4GtYT69+/vu/a+66672jtiDsIV5mttOwV/XDD0fb2LgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIwMoQ+G9oRWwUoh8aN25sKcKINCDtFxE0Lpzg9MeIkBg7dqzVAnnnnXesHgw1UBBdFixYEBs1eZdUYqRIo9YJxey9jgzRCtttt11ypyxHEQ+Yw0MPPWRjIgQhKmBPP/10WvEIB3+tWrUsQshFFArcY6TywhBFiMRZvnx5Ko2YncjyZ/fddw+keps/f35AKCHlG9Ea2YxC96wH6dxII4Y4BtvLL7/c1gNxLMmILqLYfZs2bawmz5FHHmnXvOCCC6zOCqINqdaIciLKhfotRN3kYkSecF1q6HTq1CkQSeSRLwcffLANgRh2xRVXBAQQ0oYtXbo0nHvuubYuSdEzpMtjzVzIymUe0TaIhe3btw/t2rWzyBiuF422oS3iD3VrKlWqZDxJs0eJk3DZAABAAElEQVREGIIex3jmMeY+ZMgQq1PzyCOPBMQ9UqDJREAEREAEREAEREAEREAEREAEREAEREAEREAEREAERCAfBBIjaBgYRzY1XhAUEC2eeuopEwOIyHj22WdT6Z8QQu666y5rR4F4xBmEh6lTp5pzO5dJEtGAo5/IHfoTXYGD/P7778/a3WuV+Lt3IAUbQgzCEg52xBnGZ64e9eNto+/UweG8izOkEPOaLjj/vXYMwgqMvF5N/PrRMX2blGLcn/dhjGgkS7oxSC3mtVlOPPHEgNBD7RfSuCFm7bjjjn4Je4+Og8iF+NCnT59UFA28ESmILkFo8vslgslFqEIDRnY8pRztiDDifqgJQ4ozUqshsmy11VbWAxGPmjNcj/aINAgwr7zyikWkRIa1Te7x0EMPLZS2LN6G/ej9RVOccXzkyJE2L9bm7LPPDpMmTSo0RJcuXWw+zI1nmeeXd4Q8bIsttgizZs0ywYnUZghpCDWITz169Cg0lnZEQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREoKQEyhREPvydrfNXX30VFi1aFCpWrBi23XbbtM2XLVtmEQubb7552jbZTpBeDCHFhYBs7XM5T6otokQYN1ejDzVokuqufPvtt1avhQLyJTVEL9JmxSM8so3HfRDpwr1svfXW2ZpnPE8EDWnFSF9XHDbxQYkkYr2oe5NkXIe0ZzwXnuIsqR11jIju6dq1a9LprMcWL15sohORWIhGGBFHiFFLlixJCUcc9zlVqFDB1pljcYM1ac9KGsUVH0/7IiACIiACIiACIiACIiACIiACIiACIiACIvBPIPDnn3/m1b+7pjBbW+9rTeH7T5xHTgLNPxGM7nnVEkAAJJXezJkzs0bxpJvZX3/9FZo0aWJp4xo1amSiDPV+EGiuvvrqdN10XAREQAREQAREQAREQAREQAREYDUQ4Aea1FYlc0dxf7y4GqarS5YSAmROIZ056d7J8JLO+LHpwoULw0477ZRzBph0Y62O45988on9+JQfu8aNjDi8yApCbebSbmR8IesKtYep05zO+KHtBx98YD9CJo19aTN+JEx2mho1aoSNNtqotE2/0HzJinTKKacEsi3xvrYY5T3wOVKig3uTiUA+CKRNcZaPwTWGCBSHAOne9thjj+J0KdSWdGek4uMLkjo9xx57bJg2bZrEmUKUtCMCIiACIiACIiACIiACIiACq5fA8OHD7f/9qlSpYg5kHJHdu3e3dOe5zmzGjBmWMYHU5rL0BMaPHx/WW2+9xBep6dcU4xfpZMDghZN6Zey+++4LAwcODO+++27iMBwn3TvZMkhBT6YY3nHsu1FLF26kdY/a0KFD7Xi3bt1SmVVoR/3dqN12220p5l9//XX01Ept//7775bCHlEGJz7zJMU/qfmpDexGankYUEN5bbCXX37Z7mfKlCmJtwNj6keTuYUU/IhucIneP2nwWat4HefXXnvNjrvQheOddqS9jxrPDcd5PfHEE9FTK73N9xjXo2QA8+c+KFnw2WefrfTYxRkgn9+r/vlD0MjV8nn9XK9JOzLy8N1zzz33ZO3GD8zJisRzIxOBfBEom6+BNI4IrAyBypUrlzi1WfS6/OqKf0x5yURABERABERABERABERABERABNYsAv/+97+tLiizogYpv3LHCX7LLbdYNgRq3kbrjqabPT/Gu/zyy8Opp54amjZtmq7ZP/446b3dcPhGzevHRo+tru0//vjDsl9w/ebNm1sq9v/FXIiw8JToPH8IMy+99JLVWqaWLenRSXfvYgd1iRFzcPhjzpN3/A/UMR41alR49NFHw6WXXmpt+OPCwOGHH5636BzmdPLJJ6dEI4+MoaYuP3glogZxCgHhn2YdO3a0H+hSY7ht27YpFq1btw44/Vlzsq5g1Kg++OCDU5FFftyZ4U+ilvX06dMDUVakxseefPJJb1JEvEmdKMEG4gzPPEaEEM8b0U/8AJkIqLlz51rJiRIMXewu+fxe7V9Qj5rPR3F+iJ3P6xfn5ufPn2/fP9tvv3046aSTMnblM/3mm28G2spEIF8EFEGTL5IaRwREQAREQAREQAREQAREQAREQAREIC0BUprhtMOIosGpTQYEUlNjOERxpmKkqMJRxq/aqf962GGHBaICsL59+4Zhw4bZ9sSJE82huWDBAtunDb+kp88BBxxgv7rH+e/Gr56pW8qv60mBRYQJDtHoj/yYJ7+2x7FIO0Sgt99+24cI7du3tz445hE9uNbDDz9sx3D4//rrr9aWSBDG5vX++++n+q+ODRzXkydPLvRiXh5NwravA78kZx+O1OBlmxdRAzCFSZcuXexX534vRHYMGDDABA94wIgU5lG7/fbbbR05DyfWEKGD2rhEDbi1aNEiXHTRRbabbVzWlugVHNlEkyD0ZbIXX3zRTm+66abmhEdU4b4QYhBsmEvU+KU8zn/mkWSIARjseG4wRKDHHnvMtnFQYzj8iZDg3nmuiOKg9nFxjIgnj+hByJwwYYK9cOZjCDV+XR+XyCSETD5HrN2NN97opywC6KqrrrK1RdRhTUaMGJESoWhIRIE/47yPGzcu1f+6666zvkOGDLHPCM8F5/15oX4yxhwaNmxoxz3qINO49BkzZoylsGdMWP3yyy8cTjSeURz72L333hv69etnohnz43MdX1PaderUyWptsx03F0s4Dmc3vq8wvpc22GAD++zwHcIceZHFhfRkxbUePXpYF+YKHwQkPjt77723RWqQKgzzZ5115DlCfGLN3UgBB/sTTzzRPgd8HtgfOXKk9aUdkUZEf3GOMSgT4FGI6b5Xo+NSPoBnic8cn90777zTniueH57rPn36pL7/+B7p3LmzPVNc258XotC4Z5i1atUqFY2U7vr0jZp///KsHXnkkXYfvPP543uD+4p/F2T6HuEzxXc8RiQNzPhsRb/7/N+JQw45JBDNxXfCmWeemZoWqRL5DuG6/ixEn7t8fP5TF9PGWklAETRr5bLqpkRABERABERABERABERABERABERgzSIwZ84cmxDOcRz8bjvuuKMJHJ9//rnVXeAX7TjCcPDiDCTSA0cpLxxoHt1AfxzoOG/pg4jSuHFjGxbnJiIPzumlS5eak5DUNDiZ6YPhzHaHtjuAqYmDs4+xmOeGG25oUQkIMIhH1E5FbOF89B5q1aqVEnFef/310KBBA4vMoN0222xjdXbsoqvpD87dH3/8sdDVN95447D77rsHxBsckIgVOLgvueQSY3TNNdeYc517wHCmuiFOIe7g3MU527VrV3Pmw4wxEc4QFHBm1qxZ05zOnlqKNUXQ4IXjFMe082d8BA4XubKNe+WVVxZKL0aqvExGOjOMZwAnMc7svfbaK9xwww1pu+E0R3wiZVjcEF24Z8aDBeO5CERbxCbu0wXAdu3aBZ4PnPA4gOGYq82aNcuaEjlz4IEHproR+cP4OJpnz55twqOfjKZs4rOD45/5IjIgZrHWPJ/HH3+8fRZ69+5t56kZQt/TTjvNhkIUIKKDFxFu3AcOcZ4Nfz5o6HVTOMbnlbV+6623UumgYJ1tXDgSKeQGq0y2ySabpNaAVG+9evUysQkhgleSsV442bmfuG2xxRa2bnw3kFINtnwvuBCGKMdzi+jEOAh7iG2IJQjERDLlWlMLEZfoDYy1cON7B2GF9fRIDQQBX0+4EqXFi88an03m4uvB59mN5xwBk+eE9UQsoDYT31lsI0gRpZPuezVpXObNNVyk4PuWZwvRlXsfNGhQ4Puc+fCOJT0viKO8+Cyku77fh7/79y/r5589BLp99tknfPHFF3aMfzv4LuC55V4zfY8gIEYFWL6L+L7kuD/bfK4xxnIePp9ly5bZM8A1mQ/Gs/DMM8+YOMjxfHz+/Xp6XzsJKIJm7VxX3ZUIiIAIiIAIiIAIiIAIiIAIiIAIrFEESAuD4SyMpzEjbQxOYRxgOOuIYMFpTv2C9957zxy99EUk4VfcOGExfvlMG+pxuJP9wgsvtGgcHNo4zHBE88vxBx980JxrODwRa3AyNmvWzMbBIYfhkMUpRxt+AY2zFdEHp1zcmU7EAc43BIWqVaumnHD+q3t/79ChQ6Bm6uo0nMA4nqMv7gmDJ4aTk7lyHAc+4kPUcHbjiPZoBYQL1pRfj+M4hjWOXgQKF3nuvvtuG4LUdhi/qsfB6rVE2Ef0cvGONnC79tprcxqXX+VjrDnrwC/fMxnPlztLeS5wsm+22WYW8ePPZ7S/R+QQaeKRBtHzpEPzKBkX+zwVFs80v+Z/9dVXrQtpte666y4TrbhvRMjimEeX8fmJG/eFeZvoedaDZ521xXD8Y88995y9u+OffeZFbSiMSBSM++KcrxkRM1Fj3RHifv75Z3P2E+GAOQe/Ds8UwkO2cYm0wvjckWIMIdAd33Yi9mfdddc1IZbDPDuIFQhxRIcQNRY3nk1ESSL2/LmMtyEaBuM7A0e9izPMg3HnzZtnnxPajB492pzxRJMg5BUnMorPixufg6ghZvGdyHOC2OziDCIQnyFPqTd48OBoN9vmuw9RCaEY82cTQQZDfEXQ4zhrTjRMuu9V6/CfPzy/3B/cqJPDOHDkBQcMwSWTIS59+eWX9vn2dvDN5frennciVr766qvg9484A0/q9nANDIEr2/cTYqPPne99/j0hejBqfPchxPhnOXoOkYx/B7gm12IecOd7FJHa+6zs5z96TW2vfQRW738hrH08dUciIAIiIAIiIAIiIAIiIAIiIAIiIAIJBPzX9dFoiYRmJiLg9Mbhi/OYbRxgWDwKJNrfHWE47BAXSGXmIgTOdxcBcCDjwCVN0emnnx4dIniUAqmLcEDya3B31nl6Ju+A0w6Hnv9aHkcf5o5sr0PiabC83+p6J3oo+vJ5V6xY0WqYMC8iCnBCE5kSN+6XaBnYIk5hOM9d2IA1rDjv0SY4k/nlPE5LDK4YdYN4DqJpgOxE5E8u4/r6IuhxP0SXuHM2MlRqE2c+jm6iDhBq3PHPPmnW4vMh+gcHNkZUBzVq4ubri8ObyB/eMX8e+GU/hnjAc3fWWWeFcuXKWYoqO5HjH8QNLOnz48f8M+ZDIhKxVjzrXBcj0gFBEnEKI8qM1EwInDzPrB/rRcSNn+dY//79bR8BEzHMjfvkHmHLGjgPhDyu41EqfI5zGRenOsaaEh1TrVq1lLjk14y/c28IUXxf+PpTW4i5+Xp4Hzi6Q57nNEl48zRnPF/Mx0UHnl9YIqb4s0MEElF3ROrx+eJ7I1fzNaV9NIoj3p8oLKx69eqWgottf75YT74r3WiDYMezQGpIDIEHI6ILI+qH6BLEM9aO9c9mPBt8d/IdwPPL2FyLaBGOe5RJNoEKRoiifO8gWmD+rGWbQ/S83xvROxjzQ6iHKeIWBpds3yPWMMufc8891+picd9x8+eVlHM8r3wOeKb4TPpngz4r+/mPX1f7axeBsmvX7ehuREAEREAEREAEREAEREAEREAEREAE1kQCXpwdhyLOKxydbhQ3x4mI4x7HHW1xjuIAJGVWLkaUAIaDFqcuhjiAIxrHmV8v6lx2x7aLFX7O2zIGDkksLg7hZIyaOwy5PxyqRK3gvHUHfbTtqt72GjTprutObc7j4CQyJG7RY84HQcKZ0d6505a0c4geHp3E+aiDM1tUUbZxPQ0a4/oase1zYzvJmANRFryIjsBJ7Q55xIR4JAP1ShDbiD6I1nDxsXEy46zneSWKwp3NOKIxHMhEkxC5gmhBVAYv0sl5lImPlekdlswhLhTSx4/Fn7XomkW3WRtSQPEMI1YQwYAISpQYES6kj3LD6e0RbwgsfJ6i7InKihrPkqe8QjRx0Q9OiBhu6cb1VFfRZyU6d+8ff0eIcuGQKAgidhCTXIyLtkfAIPqDlG4IVHGLpjlDnPHIExefSA9ItBI1exAouEdeRJYgWnoqvfi48X0+l25Ef5CGzA12iExw8s8Q32NuUT5RcSfaJioA0Y+INoQ46rfwPcWLyBUiPVws8fHj73yXRY2aMR59RySifwaibZK2o3OKC4pJ7dMdQwjJxbJ9j+QyhotxSW2Tnlc+L/6ZydfnP+naOrb2EFhn7bkV3YkIiIAIiIAIiIAIiIAIiIAIiIAIiMCaSoCaB26kGSKtDoaTkFRlOIZxtOPoxNnNL7xxtFIwnF9HJxlpZ9w8IoBaJ6RJ4nXHHXfYL/pxutetW9ea4mTHKY/z1iM93AFKgWgMh6Uf85Re7vy1Bgl/cDZ6GilSbmE4urMJEQlDrdJDODB79uxp10QQwwnvXKIT8UgEHPme8okIE+eKA3f48OHGHUcwaegQQSia7Q5O74cTm1RRRDnFjXR0WLZxqV3khpMcw8lN+ql0RjQMaceIhECcwcnbqFGjVI0gn2e0P45WxJW4g9rb8Mx6NIPXEUGcqVChgjUhRR9jEJVEaieeZwwWfq92IMsfF1/o5+mu6ILAwq/zsfgzSh0MREoMUQhDFGDORJwhplBLhLSCnjaQekuwdRY8G3yWYHf99ddbRFu2KBH/HFx22WV2TfggsuQyrgu5nq6O7wLmlM4QQ1lT7oWUaBgF6xG0sPLly9t7/A9RN0SSpDNfU9Lo8ZmAB88sBlOEuFMKUpDxeSA6j/PM1aPw0o0bPY6Y6BEgiEUeCcP1iAbiO5EaLp7WjnslhRfma85nNt09Rq/F55xoEr4nfRyv2RUXCqPfq9ExotueKo/vSgRMno18WS7Xz/Va2b5HouMg8vv3fvR4pm0fH4be9+KLL7ZnBXEvX5//THPQudJPQAJN6V9D3YEIiIAIiIAIiIAIiIAIiIAIiIAIrPEE+FW613HBkV+5cmVzYiHEYDgLcc4SQYNR14A0R/w626MS7ETBn3r16tkmv2wncoXoG3cK41CmH+m2cKgikuAgpxC61+rAMYsYg2M6aoyFoxXxBsc9jvaxY8daE3fYRtvHt712hTtPSXuzJhiiBQ7s6OuFF16wqfEreJzMLVu2TNVwwSntqYF8/ohOMPN0SIhmrAMOYtYQpzK/wu/Tp49FAnDvCASw92LzpAkjHRL8iQ5wkQXnvTs6iVIguiHbuAhfCHsYqeqYmz8XPuf4O9fFiU7tDdp27tzZnjkv1J4uimDrrbdOPbvxMdn3yArGxrwuDds8CzzD1KVApHExifuLR5/QPp3xLJNmDoMnIgQvInwwzhGBFjXmgzCKg99FN0/ZxxozL9KgIVoSsYEdeOCB9k6EDcZn4Pzzz7fPEoIbheBZ00xGqjnMI3uiPLKN658houq4v5122imV4jDpmtwbAgXfEdG6LYizGOnHkozn57bbbksJUfE2cMF8TT29GccQEGCHCHTBBRcE5urtsj2D9I/arbfeanNAqCaiie8gRDSPwCMVn38W6IfAAiMK32PxNI12MOEPYiT3wDOCMIqI6mKmi1k+9+j3asJQdsi/B/he6NGjR+o5TNc+l+PFuX4u49HG2aX7fqKN/3iANeT595R2nMtmfKfwbwaiF/9m8BkZOnSofb/xbObr859tHjpfuglIoCnd66fZi4AIiIAIiIAIiIAIiIAIiIAIiECpIYCIgjiD0wyHGU56DEe7/0oexycFoDGcl/xaPx4ZQOFsdwLjAMOxhmPzroIi1oxNPyI+EGT4hTeOcNIS4Xi76aabzDGPo9lTVnmKM6I9GI/r4TAlmgdn6aRJkwqlH7LJJfzB+YmzDlsT0ptFHek4sKMvfq3/wQcfhEGDBtl8Sc9EOrkuXbrYvjvSbafgD+mcPvnkE9tFTIEv94rjl+gMBB6clHDlOjj1eWGMjWiGkXKKtScFFUXV3Yi2QPShL1EIuYx77bXXpuraIKrxHHlh9Oi9+zWIpOKX7lwH5zRpxnCE88wgCLo4GE2Z5n155jzSKD424qKvO+09vRnbzInoFO6Z+0Xw4/mCQ3HN03Ixf+bNi23GxykcN4QRHPruiOdz5WuCQMM8WTN+8c/zjojpxedZj/POO8+GJDoCsYU19ugdjwyLs6ADnyMXXuGC49ot27gIeEQi0Y/7iz6Tfk0fi3eOEVXEusP4/vvvt336E/nDnL2dbUT+sN58ZyQZ3xnel/NRkYnvFcbmGnAcMmSIrQPfE9ttt13ScGmPIQ7w+XFe/n3G/RDlxHjRzwKfD0Q+vl+IsCFiMBdDBCXShe8z+pOijO8AnkkXsZK+V9ONzTPBs8fzg0Dln4107X3tkp4XP1ac6/t1vG/0Mxu9VpRduu+nrbbaymossZ60WbRoUSER0q/h14y+V6lSxf5d4TuRzxD/xsCFyEuer3x+/qPX1fbaRaBMQa68FTHFa9d96W5EQAREQAREQAREQAREQAREQAREQATWYAKkCSKChbolLpBEp0t9GFLGRGsqRM+zTZo0Xu6Q8/P8wp0xo6mYiBjxFFdedwLRAEc5qYoQdaJGzRnqC+Qa5UDKLKJOvI7E4MGDA8WlS7ORMsodztQPIVIBMSzKNXp/1MKAPREnSWvKWpGyKd15xvLUY8UZl2eFuirFqWmBM3/JkiUBB2uuaxydU3G3mR8MiZIozjzTXWfhwoX27BNhks0o3I6DPlq3xPtQT4bUa6xzpjVjzaP1Q7x/Sd/9WUg3Ls8B847Xesp0Pdp/9NFHAYd7pUqVMjXN2zmeI7jm4xnis4UIipCY7hnhO5HPmH8uS3IjfO+S8owxksSHdN+rSdciTR/fCwgh+bLiXL8418z2/cRYSd8/uV6D9eMant4w2i/fn//o2Nou/QQk0JT+NdQdiIAIiIAIiIAIiIAIiIAIiIAIiIAIZCGAU5JUPqTzihq/RH/00Uct1VX0eHG3STvl0QX8Sv3ll1/OKC4Vd/zV0T4u0OTDCb067kPXFAEREAEREIE1lUDZNXViJZkXCis5NXknFDfpPxxyaVOSa/+T+8AUhR/jlxtJ6jvnUPkJn+ZXDOl+bUM7fsHCrzKS1o/zGOPwKxd+AZJkFPbiP77JaZzO8nGddGPnchxlneJu5ACmMFyScR71nntNMpT5BQsWWNhkJqZJfXVMBERABERABERABERABERABP5JBPglPulrKD5OMXl+9U76JFKjEdGxskbtAv6/rEaNGuHEE09M+wv4lb1OcfpH0/4QDVTc/eiv9PlFf3H7q/16qeVKx5/juZhYZmfpHNOxXpXn/Vp6FwEREIFsBNLWoKHYE1/+8ZfnRMw28Oo4T7jYFVdcYSINDvoky6VNUr/VfczXg1/1YIRhx9eGnJHkdU13734P5DqN92X/lltusSbkoWQfESRu5BElX68bvw4idJT58WJ7zJgxftreCeElt+y2225rv0ji10kU7/Nicd74/fffDwcddJCJPLSl6Nk333zjp+2dQmVchxydCD3MFYHIjRB0/kOYeRASyvMaL2yYr+s4J96TjP/gd84UrHTjF0gUS9xyyy2tUB+hoCNHjvTT9j579my7z6pVq1ouXO55zpw5qTaIXRdddJHlUKboGEx5JghRdSPvql8/+k6+3SQjxyYF42hLXtIkIzcr5xGVZCIgAiIgAiIgAiIgAiIgAiJQ2gggMlCo/uqrr7b/f+b/H/MhzsCBWgPUAaHOR7r0RKuaF45qf3Ft3+a9uPv8QHJl+hf3ev+U9rYQOfwR+/w9y6vi2cphSdVEBERABIxAWoHG/7Gm8BVFw/zFL0Jkq56Ar4eLEQhNGIWnWBsK2lGAqn///uHwww8PX331VcZJ8h+OFImLvo477rhCffgVEREa6YwibIRw8x+giDC8KC7If+y++OKL1o0olSZNmgREkcmTJ1ubGTNmhBYtWlihOrYxol3atm1r/2FMHlWK+yEQkQfY7xWh5eijj7bxuRZ5gvmPaorkuVHMkDByBA4EB4QNhCtygmL5uA7zQCCiWCTCiK+Jz4F3omPgmSRocp/Mh3EQoCis2KNHj1QoPEXaKIzGvSLmcK916tSxdSaaBrvyyistP/Jjjz1m9wRHCskxjht5fSkqF11jtpM+w4g5CFpJ9+LjsSb8j0bSPXkbvYuACIiACIiACIiACIiACIiACIiACIiACIiACIiACORGIK1A491x+ONY9xcOcey6666zKAic8ziFiaxo1apVeOKJJ7xrePfdd+0X+ZzjRUQExbrccP4PGDAgENFBNEH79u3DzJkz/bTtE2kxbtw4c7LTBmc7hQSJHmAfB7xHfqQ6Fmy89dZb5uTmuogRSdEg0fbRbZzVOMjpe84554Rhw4bZvQ4ZMiTVjMgRhBHmwDtzdMuFDW0zjeFjZXs/5phjbG3eeeed4GIHDFmXTOYRJjjl/RVNkYXwQyQOETnp7PXXX7dTHTt2tHRkpCQ788wzTbigPzZq1CgrAEjkS8OGDa0dYgMFGYn4QFTCXnrppTB//vwwYsQIS9fFusKRSA4EG4zIHATDCy+80MY5+OCDw6WXXmrtOI+YMX78eNtHQCEKh7VDDPGokXxch2cLIYix/D65ftR69eplacuizwznEU2mT58eLrnkEgul51dVLVu2tJe3pQ0RR+edd57lK4YrjLkPF5rGjh1rc+A5JR0cTLkmzxT9MYQdhDtfX39P+iUXa0mY/9133219438ouMiz1q1bNxOO4ue1LwIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiUDwCWWvQ8Gt+0ka5kd6IPK2IJPyinpcb4gwvohTKli1rDnkiCQ499NDwww8/hIceeii88sor4ZOCeiWc79q1qzmUN910U3NWExExdepUi4CoWbOmRV0wPs5p2jAWDv199tnHHNUco7gf9Wb4VT+5Y91wJrvdd999Jl4gYKSr9eFtEQSI2nCLpvNCYMBwghM5gnFdIil4UXulXbt2WdngUM82hg1ezD846RHUeMXThyUNFY+WiNaOqVixYrj55ptNdEMESIqa8GMnnHBCuOCCC0K9evXCuuuuGxo1apS6HJEszZo1s0iT1MH/bFx77bWpQ4gzRKNE89uSugtD1COlFlE4CHbrrPNfXZFrIlrwjLr4t9dee6XGRXRC1KFOC5aP6xAhlMkQYFhfooj4vESN5x7ziCg/h4CFES3EvSIsRY3PBWKQ82EcRJOovffee7ZLOjXa8RnleUfs4XlACOUzt//++0e72bZfj89ukl1//fXGmGfr3nvvTWqiYyIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAsUg8F9Pd5pO5GPlF/z+IvIhajiTv/zyy1SUA+dIfUUqJQQVbPTo0eGZZ54Jd955p0XMINYQFYETG5GFWh04s4kqoE/8V/ykVSJl1+DBg208HPL08QLrHEQIiNrxxx9vESA4yzEc8552K9ouvn3bbbfZIaIamCdOf4QDzFNt9evXz/ZJL/Xcc8+FKVOm2L5HQNhOwZ90bDif6xg+Vq7viDQY0R0+36S+REKRPzb6IgonaqRK69y5c+jQoYOJbtFzbCPQ3HDDDba2pM2CE8IVRRfdEAYQSNwQDRDM/PXwww/bqQ8//DBUq1bNm9l7hQoVUufY4JmqXLmyHfM/1KHBEP0Q6zDEpajttNNOJu5wLB/XiY4d36Y2DIIh3BBE4kbkEjyolcTnBiM1mduyZct8M/XOc0aUGFFRLqKRfo7PyaxZs6wd6dyIqsE8ggbW1IxBpCLKDeGmcePGRWryWKcMf/icEanEMxONssrQRadEQAREQAREQAREQAREQAREQAREQAREQAREQAREQASyEMgq0NStW9dSeHkNGlImRY3jm222mTnFSTmFLV682NIqIb5gOO5JTUbKJdrj5PXC7QgyRGBQHH7gwIHWniibqOGMxvbee297J5KgRo0altrJoyWI9Ika6bOIHqAP18RIuZbNPG0XDnaiHzw1m/dDHOL+MMQq5k1UAUa0T7RIezo2xRnDBi7GH+cA82ikSXyIo446KiCORF877rhjvFlw0encc88tco4DiGc48B988EGLdEJ0Q5jwCB6eDZ8T7RG8+vTpYy9Sz51//vkctmfIBT07UPDH698wBkY6uXgbj+4qX768iX2082NsYwhtLiwwVnyM4l5nxajJfxFNEItI3ZfOECxpw3PM88XzjQiGuSjlffmctGnTxtKXUZPGDcGENHBEwzAG6csQ1DBSu2E8m4g2w4cPD2eddZYJiXx+EW2KYxdffLGJcYieMhEQAREQAREQAREQAREQAREQAREQAREQAREQAREQgfwQKJttGKJaiCZJZ6TrcovWtth4440trRg1RUht5mnAqGmCUBIVMjxygmgOoj723XdfH9LeSZtVXIumMmNc7Ndff806DPOOt/VUUggevk0bRCKPaEB0IQVa9Brp2OQyRpSlTSjHPy5ukQYukzF3d+hnaofwgUOfNGcudMXbc58tWrSwF+JLlSpVrF4MQg3XoWaLG5E2CDoY4o7XBuIZQLSIGhEgWNWqVe0dQcLr0diBgj9EjmBE0rgQtGTJEhNz7ETBH67h95qP6/i48XeiZ0j1Rmo2T1nm94QoQ6o/BMPddtvNInmIciJipkGDBpbajygwT4HG2ES8IGwizMRrASF+EnlD2j4ii4jK8dR5RG5hffv2tXf/w3nW8OWXX/ZDWd+JVEPkITKKCDiMqDTqExFtxrp7FFPWwdRABERABERABERABERABERABERABERABERABERABEQgRSCrQJNqWcwNnOtEmlDPhWLv1MfAOU/0AmmZiMzBiPTgF/4IEqRmwklNpMTK2qRJkwLRNcwDcQijcHw2Q1QgVRbp1BAEEADuuOMO64Z4RJQJznHuo2fPnnYNIjCefvppa+ORGpmuk48x4uMjeFHDB5YYTv98GWmxuFcinaJGEXuiVahV40Z6MQQIN8S9M8880yKmPP0a57755ptAvR9q9mAIOTAlZRyRHxjCHkZ0CEZdoquuuip8/fXXlnKPY9wzzxIiHsIQRj9Pq0a6NZ5D1hLLx3VsoIQ/1PRB0OL58Wgwj86hlhHiHwx4thC8EF8whB3ED/9McIx7bN68uT1fo0aNsvvjuBuRSoiQ8PPaSKwHzyafKebyr3/9y9atffv23s1S/TmL1MEMG6wvkT6k8fNUfogzrBWiEZ8pCTQZAOqUCIiACIiACIiACIiACIhAikC8RmfqhDZEQAREQAREQAREoJQQiNcWX9lpZxVoEFhwOrtRlP2BBx7w3bTvRAZQHB4755xzrNYJTl2MMbbeemtLm8Sv8UmNhlN+/Pjx5kwnPVRS/Q7rnOMfnMek3SJag+viuE4qjh4fjqgDan7g2HdBAYc3ETJu1BhhfKIREC1effVVS+nFfXikhrdN956PMRib4u2IFJ52jWNENVBzJJORauzJJ58s1ARhhXRZScaakA7N67zQhkgnahQhyhDlQYQRkSJEdHjER8eOHcM111wTmjZtakIOa79gwQJLDwdTng2MtSHCpHfv3gExA4GC1HGkQPO0X6effroJNIhFpN0igoRIFa9jQ6QUwghRX0SxICzQlmfJ0+Tl4zo24YQ/5cqVK8SHJgiOCCU8555Cjlo/iH733nuv3RsCF+nxeP4xIqzgSd0katVEaych4lDHBkGOqBbEHWoBIXYhzlHbByOyi+eXiB4+a6ztuHHjrJ3XquEc0UWTJ0+2Pkl/XLCMnuM6w4YNK3Kv0TbaFgEREAEREAEREAEREAEREIE4gXw7NOLja18EREAEREAEREAEShuBtAKN/7IFccOFFW7OC7B7fRNP8RW9cY4RwXD77bdb7QwiaDAc5qQ822677WwfAQUnM052LyyPQ97rklijyB+/ls+NU+nmQaQFzm3mzlxwKuPY/vPPPyMjFt0kugBnOlEYpJhCdKEOCLVYPNXaZZddFvgPS6IYEEgwIkUQFrB0c+Kc30O2MWgbNb9n7+/XoI2LMwgcRM4gziAWZDJEtrjQxtp06dLFuvm9+hhEOHG/Hq3B8WOPPdbqCiGqeMQIQhjjIBJhzOOFF16wKBrEHDcEA4QHFy24rxtuuMEirvwa1MmJpulCqLn//vvt/oiO4lqIMVFRrFevXoG0XF6vhZRiiCF+P/m6jt8H4/qa+LFs73weTjrppNCkSRNrSkqyMWPGpCKFEHBIf4bF674gRnG/nTp1MqELARWDBaIVa+I2dOjQsHz58tRacJzPRdu2ba0JYhsiEJFh/jwV9178WnoXAREQAREQAREQAREQAREQAREQAREQAREQAREQAREoHoEyBULD38XrUvzWRErgqN9iiy0SO5MGiogbfukfrcGR2LgYBxFjEGhySTvmw44cOTI8//zzFuVDlAtp14i+wJlNqikv5k570khxnvGj9WZ8rFze8zFGLtf5X7bBwU9tGJz7CC7u7I9fk6gPOBKRxFr/P3tnAW5F1YXhJd3dLSAtSCOihJ2oKAY2iGIXoOKPYqFYKBaKgYUiipIGIqmChIAg3dLd7b/ffVmHucM5954LF7joWs9zzszs2TXfzJkzs7/9rRXLcEuH+65Y1wvl5s2bJyVLlhQlrsJ1qRsuSMFYlhrtxKo7nvTVq1f761Nj7MRTJpwHF2S44SO2TqzfzsaNG/11iqu4YB6uPT6xzle4Lds2BAwBQ8AQMAQMAUPAEDAEDAFDwBAwBAwBQ8AQMAQMAUPAEEg9BI4KQZN63T3yNf3+++8+Vk64JVw9oV5IijQIl7FtQ8AQMAQMAUPAEDAEDAFDwBAwBAwBQ8AQMAQMAUPAEDAEDAFDwBAwBKIhYARNFFRwGUZcDtw/5c+f3wdCJ6B7cm7DolRlSYaAIWAIGAKGgCFgCBgChoAhYAgYAoaAIWAIGAKGgCFgCBgChoAhYAgchIARNAdBYgmGgCFgCBgChoAhYAgYAoaAIWAIGAKGgCFgCBgChoAhYAgYAoaAIWAIHFkE0h3Z6q12Q8AQMAQMAUPAEDAEDAFDwBAwBAwBQ8AQMAQMAUPAEDAEDAFDwBAwBAyBMAJG0IQRsW1DwBAwBAwBQ8AQMAQMAUPAEDAEDAFDwBAwBAwBQ8AQMAQMAUPAEDAEjjACRtAcYYCtekPAEDAEDAFDwBAwBAwBQ8AQMAQMAUPAEDAEDAFDwBAwBAwBQ8AQMATCCBhBE0bEtg0BQ8AQMAQMAUPAEDAEDAFDwBAwBAwBQ8AQMAQMAUPAEPiXITB79mzZuXNnXEe1a9cumT59umzfvj1m/o0bN8qsWbNkz549MfPYDkPAEEgaASNoksbH9hoChoAhYAgYAoaAIWAIGAKGgCFgCBgChoAhYAgYAoaAIZDqCJQoUUIyZcoU9TN+/PhUa2/gwIFSsWJFqVatmhQrVkw6deok//zzT9T6IWbuuusuKVq0qNSsWVNy584tnTt3TkTCLF26VC655BIpWLCgnHzyyVK4cGH56quvotZniYaAIZA0AhmS3m17DQFDwBAwBAwBQ8AQMAQMAUPAEDAEDAFDwBAwBAwBQ8AQMARSG4ExY8bI3r17I9WiRLn88sslS5YsUr169Uj64az88ccf0qJFC3niiSekXbt2wva5554refPmlYceeuigqiFnfvzxRxk0aJCccsopMmHCBLn00kslX758ct9998nmzZulefPmUqpUKZk6dapffvLJJ3LNNdfI2LFjpW7dugfVaQmGgCEQG4ETHCsanS6NXcb2GAKGgCFgCBgChoAhYAgYAoaAIWAIGAKGgCFgCBgChoAhYAikIgIvvviiPProozJlyhSpXLlyqtTcsWNHGTZsmPz++++SLl2CM6WnnnpKevbsKShhgrZ69WopXry4oLiBxFHbsmWLX82RI4cMGDBArrjiCvn777+9gkbzrF+/XrJmzerJJU2zpSFgCCSPgLk4Sx4jy2EIGAKGgCFgCBgChoAhYAgYAoaAIWAIGAKGgCFgCBgChsARQ2DSpEmenHn99ddjkjO4Eatfv37UD8qXaEaMmNq1a0fIGfLUqlVLVq1aJVu3bk1UZP78+X4bIgbVzIknnuiVMahuSMOIY1OnTh2vljn99NO967Q77rhDIHFQ/pgZAoZAyhAwF2cpw8tyx4EA0sz06dPHkfPws/DH8cMPP8g333wj/Cnkz59fzjnnHClbtuzhV241GAKGgCFgCBgChoAhYAgYAoaAIWAIGAKGgCFgCBgCRxgByA1chF188cVy6623xmwNwgQXaNEMl2PR7K+//vIETXAfcWiwhQsXStWqVSO75s6d69eJL3PVVVd5Fc0XX3whzZo1k19//dXXA0GD27PWrVt7l2fZsmUTSKWRI0cKLttwnWZmCBgC8SPwryRo8Nc4b948OeGEE6RcuXIpIgsWLVokvXv3lly5cvmbTPxQWk4QgK3v06eP/PTTT95P5ZFE5bzzzpPhw4dHmgiuP/744z7gWWTnMVjZtmuvLFm7XUrmzyrZMh0aYbVn7z+yZN12KVMgm7ueox/Elh17ZLP7FM0Te5bCgtXbpHjeLJIpQ3TRXGq0Q2y5VZt2Sp7sGSVzjHbIs3DNNsnn8uTOljHqAa3YsEPcYfv+RssQT1+jldO0nXv2yeI1nJcskiVj8udlx+69smn7HimUK7NWkeSSGS9Llizx/liTzHiUd+7evVsWLFggJ510kr83Rmt+06ZNsnHjRilZsmS03T6NB7HSpUtL5szx4RGsiACEkKo8vBFs0MwQMAQMAUPAEDAEDAFDwBAwBAwBQ8AQMARE2rdv79Usb7/9dsx3dnBC+cInJcZkZuLGBE2VM4x/Bo2xVKxt27bStWtXv37TTTd5xcwHH3zgCRrN8/nnn8vZZ5/t86C2wSUbsWtatmzp0+zLEDAE4kMg+mitK1uxYkXJlCnTQQwr1UJisI9Pp06dDmoJ2ZzuX7FiRaL9ffv2jdS7Y8eORPu0DIObGIP9mhZehm8s5IeYwYcig38nn3yyVKtWzfs+5IYSDLhF3liG78Wnn35aXn311VhZUpyOT8a33npLPvroo5hl48kTs3Aa2sHgNOdGz2E8XRs/frzHB1InXuN6UEKmcePGwud///ufX1JHly5d/LUTb30jZ66VKh2HH/Sp23mkr2KzG6Bn/+NfzTyoyv4Tlvt9ugOSou17f0id/42Uy7qP98s7P5wqa7fs8lke+mz6Qe0E2966MyE43JvDFsipXUbJhS/+Js26jpXBf6zUJvxyuyOAqKve46PkzK6/SMseE+SvZYn/cIfPWCPnPv+rr+O0J0fLy0PnCSRJ0A63Her79Jelrh8jpemzY6VmpxHC8a7bf7zaFnk4Do7n1C6jfZ71W3frbpn+92bf12buWM5+7he/Pmt5go9TzZRUXxs9NSYqrjf1nOyL7933jzw3cI7vX/NXxkmtx0bKC4PnCunRDGLs5ncm+3xNnhkr1N9v/LJoWROl4S928ODBidLY4F7JdQvBEbYSJUrIm2++6ZOHDBni87322mvhbH6b3wv13HPPPVH3R0vknlakSBF/T0RdxuyXoPFgdt1110mBAgU8qd2wYUMfNDCYB/+z/C9wX2WmDccD4YLdfPPNvk/h+zTb3Jcx2oT44YENgofZN/yXqAX/V4L1EMQwOdP2CXZoZggYAoaAIWAIGAKGgCFgCBgChoAhYAgcTwjgFea9997zE8YLFiyY6l3nXT74/k0DOm6nShptVFU49erV0yQ/tgoRQwwbrEyZMn7ZtGlTv+SLCfJMCMUVmpkhYAikDIGYCppduxIGk6dNm+Z/XKecckqk5k8//TSyrgN0mjBjxgyhjNq3334rt912m25GBvTI89hjjwmDmWHTOvft2+d3EZyqRo0aibJFc6HVvXt3T9DkzJnTM70MDL7//vuCmiJPnjxyrAbv5syZI/fee68PsnXDDTckOg7diCeP5k3Ly++++87f5IPyyOT6i4uyJ5980g/ynnnmmclll2eeeSaSB1KGT9Ag6fhgqGzoU7z25T11JWeWAz+LE0IFv3QD9GdUyi9nVo39h/mgI024hgc+UF+K58sii5xa43/9ZsqDn06XD2+rKR0vPknuOTfBBVufX5fKwMkr5bM7akdaypopnfQdt0xe/3GBvHVzDalVJrd840ig9n2mO5VMZredx+elzokLN8g399eT/DkyebLh1vemyAC3nc9tQ9bc1Xuq3HNOWbm2YQm/DeGQO1sGad24tK8jNdr5Ydoqeebb2dLzlhpS+8Q8snLjTnng0z/laZf2cqtqvp0Bk1b4PK+47dMq5PNkVfs+M+TRvjP8Me7YvU9u6jlJrm5QQtqdVUZQyXT+6i9p3esPGdnpNEmf7oRkMfnirjqJyBbOwU3ueE8qmt334aMxS2SQI7m+ureuVCiSQyYs2OAJmPKFs8tldRKrOeAdbnNYli6QVYY93NCrfUb8tWb/Ocjij8FXGvrinvX9998nSfASZA+SJmPGjKHSiTcfeughT1JrAD/d++yzz/rV3Llza1KSy169evnfFw98p512mieKr7/+eoEUYhvjHj127FiBYOVh8OGHH5aLLrrIbxcqVMj/B7Ro0UIgS7iP8sDFcSBbpp/PPfecv58HO8LvkqCG3KshU2kT4hsiCKXOfffdJxdccIF/wINUX7kygYDkP0Rn41BfctLoDz/80Aco5EHQzBAwBAwBQ8AQMAQMAUPAEDAEDAFDwBA4nhBgwjauwu6//36JZ0yMcc7bb7896iHyjs27f9gqVaok3bp1k/Xr10fesfv16yc1a9Y8yOuQvluvW7cuUTXTp0/3kzZJZFI8hjs06saY+MnYZvny5f22fRkChkD8CMRU0ASrwOWXGgOQSc1oJlgVduGFF/ol7q5iGTPEo800D+e/4oor/A2Gm4x+GNAL29dff+2TmC2OauaFF14QbjgMLK5ZsyaSHZ+J+HVE4sdMcfLrLO9IpsDK8uXLhWBX+HmEdUbZQyAtNZRAzCYnSBd1wiorKQAezO7GuOmiLvryyy+1qF/GyjNq1CifnwFNjoX2lXjApyM3XtpjoJXjoZ9YsFzPnj19n2kXmaQeJ0tuzqp2ou89evSIEGjUw8Aug7C0wf5XXnklsv/aa6/1ZZE3aj+40YMNJBR+J3GVRP18wAOs6SuDwWCBgRv1Ypwr8qq/S58Y+sI9EuoYNSVnaE+xIQ1FDcbAsAY40zJJLUs5d2TBD+7JglaleE55+IsZ3pVXMF3XUWNMdAP/EDjl3MA/LrQqFs0hPW44WW5tWtrhJ1IwZ6ZIG3mzZ5KM6U+IbNN2Oicnhbi5oVFJaezIIAij69065MfXjqjBNm7bLUOmrJROl1TwZAMEDeuoVsbMTvgTHeSIH9pu26y05MqaQeqXyyt3nn2ifDAqQaFGPanRTqHcmeW9NqfI6RXze1duJxbMJnVcX5euO6CQe3fEImnrjv/c6oUkhzue0s5l2yftasnzV1elG7J680651JEkbZqU8nXQ3+a1ivrjWbdfZZNcX3HhFjx3c1Zs9WTRLWck+GDNnDGdPHxRealcLKcnfMADfGY45U7Ydu/d512xnXNyISnm6s2eOb2c5/qOLXMu2GIZxAsKslNPPTVqFshmyAklWaJmCiSGVWXcx1DYpMRQ76G24XcKqXP33XdLo0aN/Mwc6uGhC2UjBDfqmMKFC/vfJPc4pMkY93EewCBuIEyYJcPvjDIYZZgto5+sWbP63zPEK2QL6hse/CB3INDBgfsPD28QWtjq1at9Og9zWg/LfPny+f3Rvgh0iOz63XffjTwURstnaYaAIWAIGAKGgCFgCBgChoAhYAgYAoZAWkMAbz+33HKL7xZxlXkHD350ImOw32eccYYwcT7ah4mQ0Uxj2jB5fObMmd6LDe/pOr7GuCQT4xlX5P3+zjvvlA4dOvgxW2LUkI9xt8suu8xXf/7553vvGK1atfITO5loydglhrcMM0PAEEgZAgekAkmUe+ONNzzhkSVLFj/4HysrM9Y/+eQTv5uBOaRvv/zyiw84pfK3cFkG86dOneoH5sL7dJvYCeobkTRmlDMAGDaNacDAHwOR3LQYSAxK7lDu6OB9nTp1ZPHixX52OTc9CIqwQTKgwiCglrLI77zzjj82Bv/px4033ij9+/f3RRl45KbF5+eff/au1ei/GmSOkiSaxg05Wh4GeukvHwZQMQZ3kSXqDY9BTwgNbqYQEePGjfMDxOFylGWQlhsug8cQNyiYmB1/9dVX+5vugw8+6AdP8S2JuyW9sUMMTZ482X/oJzdpBkZpI6iO4jg0nb6zTR6M4GJqkDrcvBl8VqUW+ygDPqqc0vzBJWqboOEKifMJ3pgSNsE8lIk1uyCYz687AgUSRc2NLSeyu50a5e2fFnhFzFs3V/dkSjADSo+GJ+UTXHHlzppRmlUtIHlcrJXCjsTgE4/tcx3AtdfN+4kFLVO9ZC6Z5BQzGO63sIrFcvglXzkdqQHhsMjFeMHmr9oqVUvkTNRHCCZIHNyjQVikRjs1SycoOSCndrn4LuPnO1XPRKf4uTBB0UD6vJVb5dYmpb2LuFGz1krp/Nmkee0iEeVKyXxZPcHkO77/a7TLB2YFHPkUDybBsrT56g/znSKneCQ2z7Wnlghmkb/X7/DHf9PpCQROcCexelqdVsKd64VSxPUhvyPVUE9hTSoXCGZNtM79jt8UxEI04x4FYcLvASIX0jKW8buEVCWfGvdX6sdNWDzGb4nf4AMPPJAoe926df29mUQlMKtXrx7Jg+IQQkbJUn7XkKdBNQ8+byFxuDdnz56gUtIKIJS5X+KDFsuQIYMQ8DBoes8jLg7GPRh8uC9xP+W+A/HMA18sY4YR92cCJAaVnbHyW7ohYAgYAoaAIWAIGAKGgCFgCBgChoAhkFYQYMIkY4cY77Vhw1W4kiK6j0mNKVWpMPHxs88+8+OCvPszcZJ3b96nMd7HGffcti1hPAlChknY2jb5mVyt23jKYByS9/UGDRr4OhirYJw01vivz2RfhoAhEBWBZBU0uK/Bhg4d6pcff/yxXzKYH7aJEyf6INSQFAzu6eAcP9qwnXPOOV7Cx6A8hECYtAjmhyxg1rZ+Ykn+tK+oM6iTWAsoXnCjpvW//vrrvmpmgjOYSp+50UBYcPMJGwofblIMpOKuhw+zzyEsRowY4Y9XyRncAzHYiCoEY8CQwFhKWoELkkAGHYMWTx7c+DDAycx7li+99JJX4kDIQHBh9CksQeT4NmzY4PtMHlUs0XcM4oLYOGwzcExsCExn+JPG4Kyef7aDhrKGY+YmTvyKWIYCiX4rwUK/cZPEQC6DrBhKI/CpUKFCrGpk7dq1B+2DnIGk0dn+SpBpxmjyTt0XXtZ/YpRUfXh45IOrrqBlcATMsy2rCOTB578lqICC+1l/7qoqUrV4Lnmsn7tuXKwV4tAQf4Xg9PHY6k0J7gXDQekhCuY6ogNbsjaBoAnnQUWyYLUSNNukaO4siZosvD/QPeqW1GpHG+j4+Qyp7eLutPtgiieXWtYv5nep4uSpb2Z5UqRt0zJSxLlq6/TlXzExxJ0Y+D58EQHtnboiDky0HyyH/bnak0JtHCkUzSCSOn4+3aucLjylcLQsctdZJ0o2p5zBzdqlr7hzOHapdLu6ildARS3gElGvBQmVaPl4AEK+zIMMBHAsg/xkRgskMgbhiYswZrxkzhwf2acxwJS81rZQskGSYkqQhPPwUMVvH+MeSPyYoKmfWmbTBA0/tpD6KC3VFSW/T9QykLMQ+dwv9D6pyj/6OmHCBH8/Q+XDAyT3BOTb0Qz3mcOGDYso8KLlsTRDwBAwBAwBQ8AQMAQMgbSLAJN9eM7UiTtpt6f/jp4xeYvn+2jv1PEeIc/y8+bNi3jviLec5UtdBOI5l4yBEWOZ98hYtmzZsqjjYLHyW3rqI4CLcSYux/ooIZIaLeMhh3sA913ewzt37hypljE73tN1smmuXLmEcUjyMemT+zWqmqBBEjG2xz2ByZ1cb4yXmhkChkDKEUiWoIE8wBhYY6AfgobBtmiD6ErEsA9XksA1iQAAQABJREFUPzrYDwEQzdRtFwPqzz//fLQsPg1iA/c8+tG4CeECKEO42XCTQVmCMfj46KOP+jgJbP/2228sfMyEJk2ayFVXXeWVG6RFC2QF6YJB5px11ln+g3sxjH0QNhiEFO6BMGLeoARRMsgnHsYXx49LMdQixK0gvgvSR4gZiKjgTXL79oSBe5pjBjv9wh0cN2JMB3spj6F0gsSir7QDJtyAufli+mcAKcYxceMNGjdxyjFDPikjH/2nfkgdTAeIkyoX3jd69Ohwkt+GnFElTXiAXI81asFQIjFSiKWiH9yShQ0XXo9dWkGe/mZ2hDAJ5ing1BbEmhn8UAP536UVvTstYrQ8GCJ7gmWC65ACGCqXoG1z27gHw3QZzrN1517vzow8uZ1yh+2gaf4cWdJ78oF9mqb5UtqOliOuzse315K7vBu1xdJt0Fy/S0VI9AVcrzm1uCexLq9bVD4YuViLR5bEzrnjw6me5MElGhYPJlqBV898P1+ucuoZ3JOFDYVU569mevXMmzdWlwzOxVzYduze6+PX7HSxcbgmPmhbU1q5OD4dHAk1cubBJKGWhzCI53rT+11Y2aL1sIQURinDvRejbsjnWHGsfKbQlypbdBaM7oYs5YELg6DGgipFtsmDkgbDzSFketA0v9aj+1Q9E5z9g8tLyGBIJ4hc6uVYOD7k0xj3IWbpDBgwIEIcQ9BARoeN+xwKP+7t+gAZzmPbhoAhYAgYAoaAIWAIGAJpE4Hx48f7d1omDeHhgWdWJu8EvSukzZ4fv71i0igDwYwPMDGLeJOxiBqewXl3D8fwZSY/k7Z4hmesB68e4aDjQYQYQ2HsgroYSzJLHQSSO5e8++F6nnEgJi3j9YX3piARyrgZYzNMyuN97Morr7RzlDqn57iohXdofpdhizaux1gA7+o6+TJchm3uC6VKHeyZJFpeSzMEjgQCjJdpSJTg8ki0daTqTJdcxdysGaQnhojGG+APO2yw87j+wpDnQVboDGnY2WiD8Tly5Ii4pVG/h+F62Q7HoGEAMJbhFgeZHiwuDwsEpsYglpjtgYswjHwqC2SdQU/6EzYdhCRd80N84H6IcvonF57RjiugoDugcL0p2UYmGDRUMPXq1fMxVyBMgvF4OEa14PGEXcIxQ524DZAakFgMAuN2CeWMqo2oJxjIPNoxxRuoPIgPrvKwnTt3+mVKvlSVFS5D/Bk+YXKGfPyhxGsNXQB7Yqnoh3gl0QzXWcQwad9nuhDgPppB5EBG9LunroutUlqGz1gTM3ZNsDwxZ/I5t17LNyaOdbLMueSq5FyYYSWcSzBs5cbEGC507s2I74KVLZTNxUs5QNiRtnx//BSUN6nVDvVixH8hTs4dTnnS7swT5cPRiwWyp8h+FQ/7cAGndnqF/N5V26btezRJOMZb35viY9U8cH65SHo8fdXM309b5ePHxFLP9PhxvgyYtEJ6takp4RhDWsfvzk0b7t/euKm67wvnulPzCtLUuTf7eMwSzZZoyW8RYjMpt2VaQGejcF9SYlv36ZLYLfxOidXFbwV3ZxC1SmhovqSW/D65f6BqCRpELS/DGA/tGLOnggbJrm4deSALv3xpnaqkoSx56CckdfABjmNB/YOiD3KKP0z+J/hv0DaIFfbII48Eu+BjmaG8CZNDkP4QPOD43nvv+Q8zdv78808fOyupWWKJGrANQ8AQMAQMAUPAEDAEDIGjigDv48ywxg05z454gMBbA8+QeL4wS30EIMSIcUGMWSZhMTbDGIB6IAm2yIx5JkzpM7ruw20RYyuM8UDsUJ73bCbRhieDUQYvGRAAjJlgwXEKn2Bfh4RAPOcSMoaJrXgnwEsMruX5benEP7w4MJkOwo7fIOoI3v2Y/JuUu/lD6rAVShMIQMbohw7pupI0R2I7TRy4dcIQOI4QSJag4ViIsYKp26tgPBG/w32NHTs2MogGW9++fXv/0f2xBiGJA6PB3TXvoSwhSpiBw0MCboYwZoagesEYyGOQUGe3M/uaBxQ+DPDxBxVtJjb9w5o3bx7JTzB7CBoUO8xAwfjzU1c9xIthNonOkvcZ3BcPo0HyQ9ODy3jyfPnll74I8Vb443366acjVXCM8RhKIh6W6Ct/0OpmjIcxcNRZ9aibMB7iOCYUR4diev55kNM6K1WqlKgqAqAnZ7jGi2bEG4plscrEyh9PejqH89NXVvaD+LjuUsO92MUvjxNUIEGrUSpBrRBMS2odImbolAQVE/lQdPzkCJ7yhRMIGlyZYT9NX+2XfBHsHsKmbKHsPo3l2NnrJEiAfDd1lRCHRomS1GingyOpXnPxXoIGOYVtduQLChVi4xQNxeCZ77DK7tRCkC8Y/Wzj3InRJ9zEaR/9TveVXF/Jh3rm9R8WePWMYqTlWfYdt8zHlXnHKXmSOidKumXLlD5Y3Mft2brzAKEU3Mk9kN8NZEY8BjmKuzJcHqpiLVwOBSPkBCoSiNlgzKdw3ljb+JfVewZ5eIHCdVqVKlV8EVU64jJMDXeJECB6LPxWmZEQdAPJfRClYpCI4Z7Hy1xQPUOd/OZ5KWAGXZs2bfyLHKQ/pvF0uCdr3Cu/w30RHweCSe9Hms59FOUeccO4//GB7IGYf+aZZ5K9z2o9tjQEDAFDwBAwBAwBQ8AQOLoI8MyGMcbA+zqTCvHWwPMi721MTGIiEbESgsakUX3vZT/v8YxL8P6Ph4Zff/01kp2xAd6Vyce7Lc+fuN5RS6o8ecPPpMS4RXGCMYGKCaFt27b1bTM5i4DbPOvSFp/w+AaTi3iXpq9MSgp6hcA1cNgFOu3jLhhjwLxr167+OZryTFjUGJI+QxxfvO+DBxgyEMvEUxTuDPYHDVUFx8VEzvC7Ou8PPPujquHZnGdxcGEy1ffffx+sxq9TF5OzGBsySz0E4jmXkJ/8fngPRJ3GGBjvaOpNBY8wnDfepfgN8s7HZOwhQ4YcNCkv9XpuNR1LBILu0+jH0dg+lsdrbRsCxyMCcRE0qBJ0gAz1TFCZoQetA4CoXV5++WU/SMZAmcYsQYYZa9YE8WyS8lPIzGvIhOAnqGyhDyg9mL3BYCakDEQCHyWX6BemAacZGOVhgYchHpaYDRKN3MA1GMfO4CUPUzws8UDHgxEzznHnpiQOD2fUd9111wl/ejrwqK7P6Bvu2XRg0ndo/1c8eTQ/D30YcXMgVoIxeWJhrGV1yR8wOBEPg4dCfUikf+DAgykGfsza52GZYzpU2SIxfwgyrgO+PNARZBzTJQ994K0PDn5n6IvZ/pyvoDHQzYeHTpZBYya/KgSC6bHWf5u73pMaEBt8xs07OC6RloUAeMaRNEEr49Qru5yiBldYlF+6bruMcfFqcPcFSRGOGRMsG1xHhTJxwQZ5d8QiH1PmmW/nyE5H0lzfKOHcE8T+fqcwef3HBV6ZM92RMxBFkA6NnAoIu2p/DJinXfr8VVvls1+X+rz3OldkaqnRzillcnvS4wsXM2axi40DZs8NnCPVSuSSwvtJGRQ1g/5Y6VU1qGSGTFkpPRypc2mdou56c2oqFxPmzt5TvfKF2DUTnIJFz8H6rbt9d5PrK5moFxVR68YHy2txTfbE1zO98olrXOufsjhBVfe9I68g11Zv3uXzUN99n0yTSQs3+ng2nAsILnW7xv6g8fvg+o12HwnmC66jHNRZZcF0XYdYxoUhL2iQwZDCKTVeIOkbL1DMjOKegYswXi4x1G287OLukN8grhvvuece/6KrrhFvvfVWn5f7Ji+g3NfJG1Q+8qLIizK/ubA0mngyzLajL/y+v/76a38vhXBSd5moAok3xgsh99ZBgwZJhw4dvIKSxiF5ufdChIMJZG/ww0smsX1ICyr2fMftyxAwBAwBQ8AQMAQMAUMgTSDAhB2M900GhNVFN+/DvFfzHEeeIEEDucJkJX0WhuTBhTbv33jXQBWi3juoGzfCTBxCNfLcc8/J77//7idckg9Lqrw+k2q/yM+ETtIx+sJzNV4s8CDCgDnv0IyHMG6BqygIGiZvYaRzrLwLoxLCeH9XDyMoiMJKdSZK6eTPPn36+Ofrjh07eu8jTOxivCElxngO78pqTHaCVFE8NZ33BMYHwpOt2M/zveKn+dWbCM/fYePc6mTW8D7bPnQE4jmXTC7mN8R5Ru3E2A+EjI6Jsc4kuCJFikQ6wnsWllLyL1KBrRgChoAhcIwR4J6H2pP/XQ1vcoy7lKLmM8TKrVI39kN+ED+Ah59w/AMGIwGBBwdMZ5b4DfelA3z8aTMrO9rgJX/2yC0ZqIfE0DxBF2E8pAQtmvSSPx7qYpCwf//+kewMKkIWYfQH2S7b6pKNBwfIjrx580bK6ApkCJJQBjMZkMT4M+OhTNU4qE70AZNBRAgd4uCo0oiYC0+4AVZmwYOBugbSNlhGyxN0HRTMS1/w58qgK+QKg546m0ixC+aPtg5WzE7iwYk+YaiC9MENtRQPXL179xZmymOc++CArE+M84vZGUhtMWbeMMCrpB8PGTxEQILh9ohrICmD4Apen8y24iEYFY2qc7R88EFd05Ja3vvxtES7UXj8/mRi0ieY4dLaReUH51JL45JANrzv4pUQgP7W9/6IZMW910vXJryMRBLdCvkzpT+YJ63lSI8HLyjniY9Xhs7zRMezLaskInhuPr2UzHFuuO5yxAYGIdK1ZeWI8oQYNMRPecrFyrnopXFerQLJgfs2tdRoB3dvm7btkReHzI3EvGlcKb884/qrdla1AvLQBeU9UaWxacCu44Un+SxzVmz1hBQb933ypxbzS+LW0Ofk+rrPufdDPQPBoy7gghX1dQQSBoEUJN7Are/ddWTNll2eiCEmT0EXR6j/ffWk05d/yXVvTfTluBYgt25oVNJvh7+IgwQRmZQF1Sbk48WOGXV6L4lWlnsLv/NgrCnyxftb58WV3zMz77hXQI7ykslsKTVexnAPBgmN8XJMHu0vBAsvyRA3zMTit0tdvMCpMWswmnqG/dxj33//ff+STD6MGXz0SQ1yGzdxHKceK+Qw91ps5cqV/mU6mgsFrcOWhoAhYAgYAoaAIWAIGAJpGwEme44YMUKY+Knuq5kMiHJD3595BoQkgLzgORRyhnfw4GQ8nkv12Ru3vjxLQl7g2pt3e8YEdOyCyaBMCsLTBpM6sVjl6RMTOXkvJS/PyIxl6HMyZXlW5n0aw7UuhAljDEzQpN88u1MO4uaVV17xk0HVTTvHyLgHE1jVQ4mvKMYXcXKZ0MW7Ou/AEEXhuLAxisZMZqwCkgq3w2q8i6OYV4WTpusS7CGgGLfBFRYElr5rK5mkeW159BCIdi61dVxj69gK5/qUU07xu7h+UFEFjd8Zxr7gBOBgHls3BAwBQyCtIrBw4UI/Ls54M//3jJnzrMF/bpBbSKv9p18nOGnbP2m5g4fSN+R6PEQxgIl6IjybW+vEpRb7NBC2psdaMmOEwUEeDqMZhAZ1MhMh1uApD3A66BmtDtLiyUM+/mwhzzSmC2kpNUia1atX+z5HwwlFzooVK7x/0mj7k2qPB2qdlcHgKmoA+hwLb9riE++PB5ItFmGEyiaaUimp/qb2vi079riYLzt9oHoG9w/FcNn1t1OclHQxZyBzohntbN25N6JWiZYHZUvRPJklYxQyiPyp0Y47dU59slPyOGIIhU80w1Xb0nU7HIGSRbJkPHKYRGs7njRwCLtWo89bduyVAo60iWWoQnjIRcZ/NGeKMcNJieNofeM+xMsnBpHO7DzuibHuT7hY5DcKiRPLeGgnCGCQJI2VN5xOHygP8Y3cPppxT+K4cL0WjK9FXsqn9D4UrQ1LMwQMAUPAEDAEDAFDwBA4tggw4RL3tMx2ZfIe5AoTGpmMuGPHDv88+vrrr3vihUmWzPDXiTs8h0IUqHcMnh1xyYXLLp4lmfyEcrxMmTKRg8STA94hmDSYVHkGsSFpmMxEv1DgMBuX53yMSUbsQ/mNMUkLJfeGDRsiz660xYQj3IHxzAt5A+mkxjGiSqcsEw2JwcNgkhoqHAbMIZrwdMGAOc/npEMaMTEx3ndmrVOX4IaKHUW7Tq6FbMH9MfgwsRSDkGLcAwww3tOZ+IoKiMlavDNAVOHZBG8k0eLZUI53cgbIGA+INiGWPGaHhkC0cxmsCXIP3Lm+uF5xb8+1zUQ70vSapgxjWVyrxEg9VLf2wbZt3RAwBP6dCKDKY1JEWhuXadCggf/f0jj0oE+MY/7HwuFH0uqZiamgSasdjqdfPHCpK62k8qNaSYkx2yeaezetA7IkOCtd04PL5MgZ8saTh3yqQGH9UA0JubpMi1YHA7nJHVO0ctHSOK5Y5Az5aSvWwHG0+pixw0ypH374wUt3eXjlgYMZWClxaxat7tRIy+Fiq5xU5PB+YpAFpfJnTbI7tMMnKUuujtRox52+RAqfaP2BlClfOPrAfLT80dLi6Wu0cvGkhckZytDn5MgkfF7ze9S4LvG0lRp5IE+DasFodSpBwx9otDhbwTKQqHySsuTqSKosfUju3sw9Sd1DhutKaw8B4f7ZtiFgCBgChoAhYAgYAoZAfAhAMOBiiw+D+5AwDP5DXjABkfc8Zv3zboeaRT1GaO28e6sF358haLCwy1vqVJdc7I9Vnn2QKZAreIGAnAm7FIuXHGFyERbuC9uQULEs6C0Esgl3aJ9//rmfmIVyB+8T9CulBlkCOYOqR8kZ6kDRj8cS3gNQ0WNz5871pBlKJNROYIyCBtfHEGt4+4A44h0IFb3Z0UUg1rkM9kIVM/y2IDFRdjFewsTChW62edBUBZUWxlGC/bJ1Q8AQSBsIQMwwSQBPTtz3Ue9B2qcFo2/8ZwXJGfrFfxfewJIjaPAshYqX+yMTQ46VJT2qe6x6Ze3+KxBg9ru6MArPhE+tA+QBgh+cmSFwLBEgNhOxU4Ivh0ejP7gvQ7ZpZggYAoaAIWAIGAKGgCFgCBwPCHzxxRd+oB834rgjwyAs6tat691v6zG0bNnSx0zFMwIuvlBrxGMa42bChAly8cUX+yJ4dsB1F65647Hzzz/fK0RwQzZt2rRI7I54ygbzcHyo6/GFry7SUKKglqlfv77PSh76GlSKM9Ckk0kZeMJVFaoHPihaGBRjQD0lEylxa46ShTrUnbD2lbZR6EBIqamLeWLuMOjFoBwKJeIHq8cA3KJhsSZXaV22TF0EkjqXqKH4raA2Q9mlhsJMzxfuf1BA8R7ZpEkTn0X3Hc5kPG3LloaAIfDvQwC3+Pnz5/dqUf5PdYKFxmc7Xo8Yr0yvvfaaV+kGJ0cci+MxguZYoP4faZNZSjzAmRkC/3YEwgE2/+3Ha8dnCBgChoAhYAgYAoaAIWAIHAoCPDcz4E98mA4dOvgBH+KIos4IvjsSvwXXJChqmKkbr6cFBpAYmEYBg0oGVyy4xqaupOI+Bo+F2cGoaJhRS/wa3PseqnGc7du39y7Yateu7eM6QshoTJpq1ar5qolHA4mDaojBL9y1YKiLcIVGrFv6gdsq+lewYEG/P54v1BJnnXWWzwr+1KfWtGnTRDEgNR1XbrgrVxdnuFzDg8X69ev9BEmOgfOFIocBf9RJxJbFBRvn1ezIIJDcuYTw45oijhK/GYgZCEKUVx07dvSd4hpAmcb5w/UZ5xTXdlynGovmyPTeajUEDIHjEQHu76g4cYvI5Hv+y1CnQOymBYKG/32UgbhoDKpocAOpEzVi4c6kCWLG8V9HyJJjaUbQHEv0rW1DwBAwBAwBQ8AQMAQMAUPAEDAEDAFD4D+CAMpzXFTjNgwSRq1NmzZ+kFi3UaYTEwUiA7cqSZmSN+p6rHfv3t4VF4oRDLXKoEGDIqqUcF3h8uxHwfPZZ5/F7d5M69C6dRu1CyqYxx9/3LsMwx0Y/dNjZ6CcY8eFGx+IFNL0WIhRs2zZsgi5hJoIEiclrn8ZREMxgQVVFWwzIJWci2PyoZp5//335ZZbbpEXX3yRJB+PRz1mMICH8gfFTTRTPKLts7T4EYjnXOLZ4Y477vDueqgZQo/rkGsQ41zgxuemm26KXFe4zYOAMzMEDAFDIIwAMZexoDtL3PuPGjUqnPWYbev/KApVJg0QhoD49Oq2M1bHIKfTip3gOuxCe5sZAoaAIWAIGAKGgCFgCBgChoAhYAgYAoaAIXB0ECCe4oYNG3z8UOLIho0Zugz6E2v0UAzSgAEagp+n1JTkoY+poSpgli7Hmjdv3qhdISYNn1gxW3FdxbGgCDqWhju0efPm+Ti2YVz37t171F0+H0ss0nrbnKtVq1Z5JZQSfuE+4yoPzyexrstwfts2BAyB/x4CkB2NGzf2/0F69J9++qmPawUhkhZs2LBh/j8W0ohJEShOUaISVyYeQ6nLhAVUhcfK0h2rhq1dQ8AQMAQMAUPAEDAEDAFDwBAwBAwBQ8AQ+G8igAstXDCFyRnceKGwYQCIQZNDNVychUmE5OrauHGjdw/1wAMPyKOPPpoq5AxtolpIahCcQfJY5AzlcV11rMkZ+oFyp2LFilFxPdrxOOmPWWwEOFfFihWLqLGi5SSOUVLXZbQylnZsECA+BmqAWCq1I9Wr2bNny86dO+OqHsIPAheyNppxDLNmzfID6NH2R0vr27evrzO4b9OmTbJkyZJgUpLrxCHDlV8sg0BHqQhJfqyM9pPqI4Qr5z6M7aRJk+S77747ot0mRhm2devWSDtMXihdunRkOy2scM8jbh2qW3UTmhb6FW8fjKCJFynLZwgYAoaAIWAIGAKGgCFgCBgChoAhYAgYAkcUAWb7QwIwI5a4JkfbUMzgAupwyKGj3eek2oMA0w/5dF2JsaO9nVRfbZ8hYAhER4DYVMTWQhl4NGzgwIH+PkxMI4g+XOBBZESzqVOn+iDrDNhXrlzZxwMJu7/65JNPfOws3CVCDF500UXJEjWDBw8WyHJiiGEQBJD3BQoUkHLlyknDhg19XK5ofSJt+PDh/hiYDFC4cGHfR9QgahwPignqK1OmjHf3SPwtlGeHa5BRH330kY+zhpvNWAZh1aRJE98+fYRcQG2ptm3bNj9pgNgvZcuW9WQ9kwf0OoBgxZ3njBkztEiqLzn/GLFa1IhHw/+0WeohYDFoUg9Lq8kQMAQMAUPAEDAEDAFDwBAwBAwBQ8AQMAQOA4Hq1asLn2NhqFSefPLJY9H0EWsT12hBO9bbwb7YuiFgCMSHAK6kICqIQ3WkDRVjixYt5AkXnwNSiO1zzz3Xq60eeuihRM2jTqlTp46PafT99997l3lvv/22j6c1ZcoUT9iMHz/ex6/64osvfBwsYpoQ94i6COQezSBPIGc6duzo4yiR57bbbpOxY8cKqpGCBQvKww8/7IketpXE0bpQ85x33nny2GOPeYID5Um3bt28q66VK1f6Y/n666/lvvvukwEDBkijRo28iuaaa67xacQgO1RDCQN+HD8kRlj1ovWi2Lz88suFeC6LFi0SlEHEPyM+FH1jsgJkDG4+J0yY4EkpjvXMM8/0hE7btm399QAu5CM+2ZEwlCm01aVLF69s5bj69esnkydPjtlccrFfYhY8xB0oUI93FacpaA7x5FsxQ8AQMAQMAUPAEDAEDAFDwBAwBAwBQ8AQMAQMAUPAEDAEDhUB1BD/+9//vMKjRIkSQsDzsCszBukhSTDcXUGeVK1a1RMAEB0oLVLL+vTpIyhdIEBQaDRt2tT3r3v37gc1MXLkSJ/2/PPP+3hHDJRTDnvnnXf8EiKC40OdgmKvfPnynqiBuIllEBELFizwRAd5IIJwd0YfUPWgNnnllVe82uXHH388qBp1gXbttdd6V5UQOpAvGAQNhjJk6NChnsjJkSOHDy5/+umny8KFC/3+Q/2ifs4j6hiwi2VjxoyROXPmSI8ePbyqCDKH4xsyZIgnbChHecgiJi3gspP+nXTSSQLJpYbqhjJgdKTsqaee8tcYuEM+gT3XXyyDYDuaH0gxYsiEP7H6lxbTTUGTFs+K9ckQMAQMAUPAEDAEDAFDwBAwBAwBQ8AQMAQMAUPAEDAE/tUIoBTp2bOnvPDCC94lFksUJpAfEAcMdOPu6+WXX/Y4PPLII/L+++/L008/7QmPDh06eHdh0dQoX331lVeORAOwbt263p1jeB/EQu3atRPFL6pVq5YnQ3AzFozthboCCyrz6C9GPBoMV5VBd5UQTKhtTj31VL8/2hcu0nLmzOlJFPbPnz/fZwuqKyGDIJLmzp17UBWoenC3BraPP/644HIMNU7NmjV97DMKaPv0hzg74P3xxx8LZNPhGLHVcG+WnEHOoPzBBZtajRo1/CrHi1qK6wCjjxBd9I9yV1xxhU/nCwww3LddeOGFfj21vyDqRowYISiTcAOaOXPmJJuAZDyeLC0oZ42gOZ6uGOurIWAIGAKGgCFgCBgChoAhYAgYAoaAIWAIGAKGgCFgCBz3CGzevNmTM7169ZIbbrjBHw/utipUqCCQFBdccIEfkCcfhMKWLVvk1VdfFWK64A4LY4AfdQoEDgPpQWOQHzda0axUqVLRkoV4NxA0QdM4JKhLgsqJevXq+WwoZIjdhZsp1BUYbruiGfG9aCMpl1yrV6+OEA/UgZoGI35N0IgdA6EUNtyDQWZA1Hz33Xd+N4SPKn6C+XEphjoHo29Hi1yAwEJNFDTID4x9uDJTQ7nCNYCB2ymnnKK7/Dnn2MDsSFsY/yPd3n+pfiNo/ktn2471qCMA6/3DDz/4GyhSxPz588s555zjg3sd9c5Yg4aAIWAIGAKGgCFgCBgChoAhYAgYAoaAIWAIGAJpAgEN7n7GGWdE+gPpALFC7BcIGpQRKC1wbaVuwYjx8dNPP/ky6rKLIO6MOwUN5QuflBjjVkoGaDmUM1iuXLk0yS8hDiCLrrvuOvnwww8j8WJQcmgg+2ABVD4vvviij7GSVDydVatWJSKbICAw+pElS5ZIlRBW9CFss2fP9uQM/SBGCwoaiK3GjRt7XEuWLBkpQmyV22+/3StEIJeIBUO8mrD9/PPPPpZOMB21jRJlwfR41ol5FsZZMWNf0DjXnGdcsl166aWeUGKpVqBAAe/eS7dtefwhYATN8XfOIj0m0NTxHgQpcjBHaUWllieccMIRb5GAZMOHD4+0E1xHYtmpU6fIPlsxBAwBQ8AQMAQMAUPAEDAEDAFDwBAwBAwBQ8AQ+O8ggGstLOwyChJCB+tR0jRr1kwYx9qxY4fPj/su4qpgkA2QFNGICp8hhV/EQgmrXzSmiyppglVCUDRs2NCrUzJmzOiVHwSVx9VX0FCyQJZAglx00UXBXQetB4+fnWXLlvV5li1b5ic+awGIGMbewta7d29PahHMXsdNUaTQf2K64O5MrVy5csIH5VLWrFkFF3IoaXAvFzT6oPF1NJ14OIdqqGfC8W5wIYbp8WrdqpghDhETwd944w1P1Oh+iCvi+5gdvwikO367fnDPGXwncBG+4wgQFM3iyROtXFpL44bCjQOGOjUMmR+4ffvtt6lRXZqsgz8+bmrcQLdv335E+8iNUQkZGHo+SD5ZYjD0x/LmiUvQJeu2+89+96CHhMeWHXtk+YaEB4RYFSxYvU127dkXa7fs2fuPkCepfqRGO3v3/SMrXF9ZxrLde/fJnBVbZcfu6P3d5zo53/V1w7bdsaqQePoas7DbsWn7Hpm/amuS/QyW3+j6QhkzQ8AQMAQMAUPAEDAEDAFDwBAwBAwBQ8AQOH4QUHdhEyZMiHSaYO+4ANN4K8RrUWWM5kcZwqRfPpAGLFHehI1YNYw9RfsEFRjBchArw4YNSzSuCtFB/BYlOzQ/BAOxcEhv1aqVV5Mw3jZw4MBErtAmT54sl1xyiTz22GNy5513avGYSxRDQZddpUuX9nmDY5bU+ffffwuEUtjoA7Fygv3VeDlKcuFS7oknnkhUVOtCRRM2+gDBFPxUqVIlnC3ubdzYoaAZ4WK7qOnxQRhxDJxv4g8FjfOzePHiSBLj3CiOUNGYHb8IxFTQcFGqj7/g4eG/75dffgkmpZl1JGsQNNiNN96YSA6nnYwnj+ZNy0uVQU6fPj1VuolkkpvqzTffHAlCFawYGeXEiRO9H8ygH8RgnrS+jvSRPzmM4FoQXPFY//79ZcWKFX7Ggt6skyr3zDPPRHZDyvAJGteoXqcw/eoPM5gnvP7y0HnSa8SicLKcW72QvNKqmuj+wQ81kBMLZkuUr9FTY6TdmWWkVcMSPr3/hOXy7IDZsnXnXr+dPXN6efyyinJRzSIyb+VWufjlcYnKBzfaNi0t953n/ih27ZX/9ZspQ6as9LurlcglXVpUlMrFEmSnJA6fsUaeHzjHk0C0cc2pJeR+VzYoXnpz2AL5YNRi35fCuTPLQxeUlwtPOSBPTY12duzeK88Pmitf/PZ35FBaNy4t955bVjKkT1BSQcw8O2CODJq8IoJL22Zl5O6zT5T06RLyfDtxhTz97azI/kYV8km3a6pKnmwZfb1J9RXMO32ZcO1FOrF/5aPba0mdE/PIuq27pUOf6fLLnHV+D5g9cXmlRHgEy/42d708/tVMjy/p5QpnlydbVJKapRNLYYNlbN0QMAQMAUPAEDAEDAFDwBAwBAwBQ8AQMATSBgK4E4NsadeunaA+wbUVY0oQFJAyjMsy+I5CBWMQHrdnKFTefvttKV68uHTv3t0HpWfcSmOY6NHhOu3TTz/VzURLVeAkSnQbt956q3fxde+998qjjz4quPaCcBkwYIDP+tVXX/kJ3oxlEf+GfjBOjDIGUoUJyQSuv/baa31+SJyzzjrLrxNH58cff/TrfDVt2lSUOIkkupUSJUoIBMyePXv8fhRGjFlC8NSoUcMfN/2rX7++oCrBOnToIChqiNGCQoeYOHfccYfHChIDF2cQIuCH0RfqQFXDOCekx4MPPuhdo0VTCvlCh/kV7CPtEwKBNt98801PiEEYtW/fPnIemWB+1113efUUxMxvv/3mz3dQAaRkDZiZHb8IxCRodu3a5Y+KH1XQNx8+D82OPQL8aK+44opEjPSR7BVxVFDYQOAcrwQNf3z8uXFj5k8kXuvRo4eMGTPGq5WSI2iQGvJnpKbkDAolZKlK2LBOGiobyoTli1o+uCxTIJu8fUuNYJJkzZQ+0fYt706WHzs2jBAPiXa6jfHz13ui4KkrKsnZ1Qr53YP/WCkdPp8hRfJkkRqlcsl3HU716ShNLnzxN2l/YXk5s2qCdDZX1oRbBuTMxIUb5Jv760n+HJnkhcFz5db3psgAt53Pbf+1bLPc1Xuq3HNOWbnWEUNs3/zOZMmdLYNAjmB9xy2T139cIG/dXENqlckt3zgSo70jKIrmyey28/g8qdHOS0PmyYQFG6T/ffWkVP6sMv3vzXLD25OkRL4sclWD4r6dLv1nydjZ6+Sd1qd4kunPpZuk3QdTHPmSQW46vZRMXbxJHuk7Q7pfd7I0rZJflq3f4fZPleccAfXcVQkzJpLq69nVCkptR8IEbfiM1dLNEUcl8yUQhY98McOrZkZ0Os3hlFE+HbvU41GtRE4p7c590FZt2imc6zvOOlGuP62EOBGSvPvzQmn15kT57YkzRM9TsIytGwKGgCFgCBgChoAhYAgYAoaAIWAIGAKGQNpCAHdckCIoTDBIh0GDBnkyhrE44q/g0kyN/ASyv/jii30SsVzIFyZn2IkbrXAgeq0n1pJ68Npzzz33eBUP7UOMqCsxYqEw+Xnbtm1C0HhUH4xPMn6MQSbRR3Xbxn6NtQIZFbQ1a9YcFNeG/RA32MyZM70XHNbvv/9+Ic5OixYt2PRECrF4VCXDeN+cOXN8vBlcwvXp00ceeugh6dWrl88PTpA3devW9dsoYfC+hEsz7R/kzbvvvuv3p8ZXOLxCsI/p0qXzJNJNN90UUUg1b948UTgE+gLJpGonzgWkEmET1CCysHr16mmSLY9DBJJ1cQYRwAWsnxdeeMEfJgxt7dq1fXAnfrQwddxMgmoAVB6XXXaZ38f+K6+80g9GK074U2Qwm5sPg+ewq0FZH9u08cUXX3j2kzywoPjk4wfENgPmPXv21CojyylTpsjZZ5/t24ZUgEWN15CXXXXVVZH6OT7UFxiD+0gEueEgEURuBnOpfiMZeKfPBMiiX/SPbRhlmF81bnYcC8fQpEkTAVfUPVg8dbz11lvSunVrgTxQ46YDc0ydYAp7TX+x5PqtdURbIpWkLgxZI8czd+5cz9qyTlAsMOYcw4Tj+5AysNpgBFZgppYa1w6SRNrQa4dzrdce6hj6xadv375+yX7OIdcoN7wNGzYkwpmbOueSD74m1dcnN3XIGQymm3OVlPGnGDSOn7b5qGomuJ/1cJnwft3O5hQVEAzBT8GcB3xMokDBvdZbPy3QIgctpy1JkGleWruoH8RnIP+aU4tL79tqSeFcmSVj+nSR+ksXSCAOCrl0bRO1CC61UM50uqSCVCiSwxM0rK/bskvGOJIDGzR5pVQsmkPaNivt26lfLq/c6dQoH4xaEulTn1+Xyg2NSkrjSvklZ5YMcr1bh8T42hE1WGq1Q9svX1vN9wdCC7UKZBckC4Zy5evfl8tT+9UnWTKm83lGPtZIWtZPIHA2O1zvdGTIOScX9BhBmDSpXMATN9SRXF9zuONTDFlCDqHIAXvOG2RY2ULZ5IHzywl4Z86QTi6vW5SqZdbyhHuP39j/tWJDgp/ai2sW9mROvuwZvQKK3Ws2J+wL5rd1Q8AQMAQMAUPAEDAEDAFDwBAwBAwBQ8AQSHsI5MqVy497MpYGYTB69Gjvnp+eso76hMF8NVQ2X375pR/jgiyZNWtWsmNVWjbeJWOL1AsRwxgs42RqEAaQM7jhwhh7Y+Ix5Aixaka4MdVgbBYIBUQA0T4cezSDTIHwUZdf5EFh9NFHHwmkDkQHqp0gccX437Rp0yJYQeSQD4wUJ1XPUB+YohCiPmLuQNIw9h1LWUSZlBqqn3HjxkWKhfuIWzrwon36yHnNlu3ABF3w+eSTTzzeKJFQKDF+HFQdff3113L11VcLcXvMjl8EEqbDJ9F/fN5xk1BjwJkfBT9QLnw+agyQ82GAnIsFOR4XOJItBsf5YeFKi4uK/Uj4+HHBAOK3j8F/fCuOHTvWB5PiZkD9119/vc9DXQxmw3Yi8aMcP7a7777bkwBB33+wt2rI+XDRxSe5C5YfDv3FkApSP+QKhMSQIUP8gP/tt9/u9+PuDUIJ8oLjQYZIHxUXfnhqkDwQFkjYOGbYboybDjcVPhwTP7R46kC6SDssMeRw9913n1+nThhUPhANEAv0Jal++4IxvlRNxW76BjkCmRTtGmAfcjzIIs4PPirBiA+qFW6G0cql5NrhJooLO1yPYZwn1Ch8kF5yg9brEqIM48a+d+/eSDrrsXB+7rnnPG5du3aNBGCjDn4LfJKytWvXHrSbfhF7hhkHmPZVM/IHoOdG02It9/Ntkd1Bd2EFc2b2Lq5ue3+KnFYhv1elRDLuX6lZOkHFcf+nf8qtTUpLleI5vQuvumUTqzvC5YLbxK7BKhY7EDAtpyN6IGQWrdnm9xFDpapTfqQLdJC2IHFwBZbZkSAQDzefUcrn16/qJXPJJKfMwVKjHQiZs5x6BYMEgWj5ZuJyWej6eV6NBAXRkrUJxwMBhmpmpuvXKc5N2HVO+aOql9OcOzM+atQ1evZaqemUP1g8fdWyLIf9ucYf/xs3VvfJuFHreFFideKv+12dVQq4jdM6qpXM6V2a4ZbtbqdSgoDt5lRMYFy2UHbNZktDwBAwBAwBQ8AQMAQMAUPAEDAEDAFDwBA4DhBgrJVP0BgrY0wvmjE+y+dImpIw4TaCBAH7UIponJhw3kPd7tatmx/7g+DJkePA+BOkRTRihz6EFSu0nTdv3iS7QBmUQEfDYvUxufbBO5rbNYidzz//PBLO4Wgcg7VxZBA4QMHGqJ8Bbi5m/eDmKmiQATB4XBRqDEDDsjIAjsH24coJFQWKGcga8is5g0QNVpgBbMoghQsavhUZ+GbgHIPIoMzSpUs9wUHapEmTWEQM9pCgThAfGEwubSRnKmWjPOQMbUA0ECALv3558uSRl156KUKqcGwYN82wEbMFpUajRo38Lg3spFI0iB1IKC2LP0TIraDFqiOYh/Vnn33WJ6Gsoc6hQ4dGtllJSb99wcAXpBFSQgylDHFvCGalBj6QapAX559/vpcZghHnCMKL84eF8T/Ua4fzouQM551t1DRY2LcmzD5sOH4akzKuOWYAwG5j9B/FE9ePnj/USkHmO1p94WPUPCiLIGn4baCmCZoGewumRVuf4VxzVX14eKJPMK4KZU6vmF+urFdMHvzsT09GhOvBlRjxZhj8v+r1CdLgiVHe5Rl1x2tKaKD0CFrxvFlkwWolaJzUNXeW4G6v0CFh6bodsnpTggvFcB1FnJpkrouDg6VGO76i/V8ca8Muo71bMdyqabwcJZUgtlCz3Ori7Kx2LsSud27Q/lwaHZfu38338XpuP7OMrz2evmpfIHd6/Dhfrm5QXIo5zKLZUkeCdXbxZVDYoLgJG8TXiy7+zehZa6Vlj9/9uZzp3Mg92/KA7DlcxrYNAUPAEDAEDAFDwBAwBAwBQ8AQMAQMAUPg+ECAMSnIGXVldjR6raSPEj9HYzvWcRFeAZIGZcnR6Ie2QX/0+GP1Lal0rUfrOJLbjI8zPhqLSEuqn7YvbSGQrIIGBUSQyQvHoEERgbyODz4CUTD8/fffXj3DwD2EC8GtkOTx48JtGWQBA9UY+6+55hq/rmQKKpugacAnFCsYigklCKpXr+4H6MPKBoIooZahDH1E/YLLtfDgeLAd1rVtXJxh9B0CCkO5UapUKT9bHTXQyy+/7FU/7FMXaKxj4KT+F+k/brIgePjxgA+mKh/caClWuGZTi1WH7tclihTqxXAph4E1ahY1+sAs++T6rflTsmzZsmXEhyPlOJ/I8lAUQawRQAxTws5vuK9DvXYg+zDwVdkkpJfGe4EUU3vggQeiMuu6nyXnWK/BO++8M6J0QaKp11kwf1Lr+IXU/gXzqXszXQb34ZIuHiNWyWOXHiDGKFMuilqCmDGj3MB9V6euiDZgT9yV5s7F2W9z1/m4K5/+slQIYt/nzjo+Bk1yfcFdF+aVMM4Vl9rWnXulwH6Xa8RQYTto5MdyZEkvqFUwTfMb7muby6P16/Jw2tF6WX50ey1Zu3mXjJy51itlXr3+ZBeHp6CbYZGQC1weuqC837i8TjG5vPt4+er3ZVKtRMWEDPu/SXtv5CJB/aLxY+Lpq1Yy7M/Vntx525FE0WzT9j3S7sOpXpHU/sLEqhrNDxF2metfU+dm7WpH4jjORz4ctdjHoBnwQH0Xxyc68aPlbWkIGAKGgCFgCBgChoAhYAgYAoaAIWAIGAJpFwH1PHQ0exj0oEO7R3s7fKyMIR+LfoSPO9yvpLbDZY/0dlJ9sX3HDwLJEjSoWpJia7NmPTC7O+gnL3v27N6lGKoDSAEUKHxQekCUoFZQ04BVBJDCdVY4sJEGfNL88SyDrsw0MJXGiUmqvPYr2GbQ1yNKDRQlGKSTEivhOoPyuyBGwT4om0pZ8kBgBImmWHWE2wrGtgnKIQ+l3+G649kOygUhgZo0aeLdq4HNGWecEbOKIC4puXY0PoyeV20geLyaRh+SsyBmQZlm+CaaXD3sV/d44bzgQGyhaBarTDgvbsRQyCRnkAXPX11Fbuo52cd3iZafOCvEUOHTtlkZafz0GBc3ZkVcBE2J/UHtV27cKcSkUcNt2BkungxGPJVlGxJch+n+5RsSCENUM7j0ypcjkyzfeIBEJB9xYSo5V2lYarTjK9r/pYqZRg7Dxc6t2adjl3qCpth+MqN6yQR3ZWQHH1yaTV6UWNGGYuV//Wb6+DtNqxSIVB9PX8mMeubV7+cLZBCKo7Dt2rNP7v14muzavU9eu62670c4D9sQauD32g0neyxJO7V8XjntydEy0MX/aetUQGaGgCFgCBgChoAhYAgYAoaAIWAIGAKGgCFgCBgChoAhkLYRODD9PZX7iaoDpchNN93kFS5Tp06NkBm47UKZg6FeeO2113zMEtxM4UqLQO6HawRJwugHxBCmagu/EeOLGDGYqiAgTFBFoHKhLuLRYMTKQZWDW7KUWMmSJT0OlBkxYoQvijs4VcAQpyalVqJEiUidqkyCBKPPqgQ63H5rn3AXlpThSo7YNxiKIaR2N9xwQ1JFDtqX3LWjyiTi2pAXI8YOx/v8888fVF9yCVynxCfCBg0aFMmuxKEmRIsvo/t0WbZsWd8P3WaJazM+KHxYBg3lD2VS2+qVzSs3nl5SiDVD3Be15wbOkced66ygFXSql3KF449bosTCT9MTlGXUhYs0CBuNf8Jy7Ox1ghpE7bupqyIxb0iDiBk6JUH5xfaO3XvlpxlrpHzhBIImNdrZ4YiOC174TUb8lfi6RXmkhFGZgtloXjZu3+2X+jVnxVYpu38faRwjbtDuOOtEaXVaCc3ml/H0lYxgAJHVxsX/Cds+R25C/sxxLt4+aFtT8mU/QH6F84JVdhdfB6JLTdd3un1mhoAhYAgYAoaAIWAIGAKGgCFgCBgChoAhYAgYAoaAIZD2EUiWoIFgIVaIflq0aBHXUTGQj8IENQw+E4kNoi6uatWq5V2ANWzY0BMTuEbr2LGjQI7EchEVV6OBTCh1IDsgZWgXJYWSL4FsB62qfK579+7CsRJ/BCKGwXlcvVWsmODu6OGHH5Z77rlHbrnlloPqSC4BN1oY5AmutdTtGi6/ihQpklzxg/YTZKpNmzY+/cYbb/Ru5FBl4FYNl2zY4fabc4YNHDhQcJcG+RLNINzUuHbAk1hDKbHkrh3cjqm7O64hMCRWEsdbufKhxeDgPNeuXTvi6gxXcarCatCgge/+E0884Y8nuWPRmEKaD9IM12YslUDTfRo7R7eTWm52ZAekR/AzywW0j2X3nls24oJL81QvlUu+HL9MXv9xgUBAzHNkwMtD5/klipF4LJNza3b/+eV8HcMdoTLdERdPfTPLq28a7a/jqvrFfFVPu/T5q7bKZ78uFfLSJzWIjokLNsi7Ixb52DXPfDtHIBeub5RAfqRGOyhhKhTNLl36z/KuzYgVM9AphT4cvVjOr5FwreZ3ShQIl26D5ngih/gvPX6YL+Pnr5ezqiXkIe3GnglxrmqWzp3oHKCKiaev5HstCfXMqy6uDX1r3biUx0PPs8bI6TZornfNBn7NqhSUJa5PT3w9U/5ysWcgjx7t+5d3K4cqyswQMAQMAUPAEDAEDAFDwBAwBAwBQ8AQMAQMAUPAEDAE0j4CMV2cqfstyA0lVjgcjUej7qQgB8JGGiqHXr16eUUMZAdG7BhcnikJgboCYoFBf1VdtG/fXvhEM21L+0aeWP0gkBSD4vSdvqDSKVCggOzdm/Ts8osuukjeeecd6dq1q+8XbUACKMmAYoaYK/R37ty5cu+996ZYRcNAP27JqJP4LJBHV199dUSdQ5spNQgpXH+hQurXr58vjnKlS5cufj3efiue4fYhkZo3b+7d1RFnCFw1r54XyhBf6K233vKkHK7tiKPTqlUrT9BpndHK6b54r50BAwb4awfyTDHs3LmzV1+tX79eq3PxRQ6+PiM796+g5kJ989JLL/kUiDJVHJHQunVrr3ZCsYNyKh7DPRoxeBT/cOwZ2gsTOcnVy4D8re/9kSjbudULySutqvm09OkS7XLusdJLNxdI/po3JkR2nF+9sI/D0tUpad4ctsCnZ3fxYDpfVtG7O4tkDKxEg/Dm00vJHEcO3dV7qs9ZrUQu6eoC1KuKgxg09Oupb2bLRS+NE9qAkAm6aKtVJrc8eEE5efunhfKKI4kK587sYuZUEVygqaVGO09fUdkRGbMi5AZ9QV109zkHyKJ73fqmbXvkDhf7BSNPp0sqyDknF/TbP01fE4mpEz4H47uc4ePmJNdX1DOcQwiYaAZRhb0weG6i3bc6tQ2E2NL122XRmu0u3sw/0sC5MwPf5xyp1HfcMp+feDhvubg2J5fMlai8bRgChoAhYAgYAoaAIWAIGAKGgCFgCBgChoAhYAgYAoZA2kTgBDeQ/M+R7hruu4jzEYxVEmwTYgHVRMGCBSUYAySY51DWIWMgEiANDsXoE7FRgvFRtB5IgFy5ckkwVo3uS8kSF12oTg63Hm2TGDArVqyIieXh9pv6+SjJou2Gl2C/adOmmOc8nD/WdrzXDqRfPGRMsJ3BgwcLShkImnHjxsmOHTt8DKRo55tyHDeWknbmz58vP/zwg1dgjR492ivEUDcdCbdmvnNxfjHI/7eL9wJ9VczFQkkXjYWJo64tO/Z44gJyJZYR76VonsySMcwg7S+AsoS+QDDE6kZqtbNm8y4pmCtTzOPdsG23rNu6W0rnzxohm2IdV6z0ePoaq2xS6Vx+7td3UN/VjVwuF6PIzBAwBAwBQ8AQMAQMAUPAEDAEDAFDwBAwBAwBQ8AQMASOHwSOCkFz/MBhPf0vIRAmaP5Lx27HaggYAoaAIWAIGAKGgCFgCBgChoAhYAgYAoaAIWAIGAKGgCFwbBGwKdfHFn9r/RgiUKlSJe/KrnDhwsewF9a0IWAIGAKGgCFgCBgChoAhYAgYAv8NBKZOTXAp/N84WjtKQ8AQMAQMAUPAEPg3IlC9evVUPSxT0KQqnFaZIWAIGAKGgCFgCBgChoAhYAgYAoaAIWAIGAKGgCFgCBgChoAhYAgYAskjEAornnwBy2EIGAKGgCFgCBgChoAhYAgYAoaAIWAIGAKGgCFgCBgChoAhYAgYAoaAIXB4CBhBc3j4WWlDwBAwBAwBQ8AQMAQMAUPAEDAEDAFDwBAwBAwBQ8AQMAQMAUPAEDAEUoyAETQphswKGAKGgCFgCBgChoAhYAgYAoaAIWAIGAKGgCFgCBgChoAhYAgYAoaAIXB4CBhBc3j4WWlDwBAwBAwBQ8AQMAQMAUPAEDAEDAFDwBAwBAwBQ8AQMAQMAUPAEDAEUoyAETQphswKGAKGgCFgCBgChoAhYAgYAoaAIWAIGAKGgCFgCBgChoAhYAgYAoaAIXB4CBhBc3j4WWlDwBAwBAwBQ8AQMAQMAUPAEDAEDAFDwBAwBAwBQ8AQMAQMAUPAEDAEUoxAhhSXsAKGgCFgCBgChoAhYAgYAoaAIWAIGAKGgCFgCBgChoAhYAgYAmkegcWLF0uXxzrKwCFDZcOmbWmmv3lyZZOLLzhfHn/6eSlVqlSa6Zd1xBA42gicsGvXrn+OdqPWniFgCBgChoAhYAgYAoaAIWAIGAKGgCFgCBgChoAhYAgYAobAkUMAcqbZ6Q2kdd0TpO3peaRQzrQzV3/V5j3yzugN8t7v/8jw0b8ZSXPkLgOrOY0jYARNGjpBe/fulfTp06ehHllXDAFDwBAwBAwBQ8AQMAQMAUPAEDAEDAFDwBAwBAwBQ+B4RKD1DddI+W2j5LELCqTZ7j89ZI3MzXaGvPdRnzTbR+uYIXAkEYgrBs22bdvkjz/+EJbx2siRI+XJJ5+Ub7/9Nt4i/+l806dPl0KFCknbtm3/FTis27JL5q3cKnv2HrpAa8uOPbJ8w44k8Vi5cads2r4nZh7aX7B6m/yTRDdSo52YHQjs2LF7r6zevCuQkniVvoLZ5iSOJ3GJ6FvgMX/VVtm7L/ZBg8muPfuiV5DGUhUXrqnDseSOOZ5rJbnrjf6lRjuHc5xaNp7rgONZkcxvTOsLLw+nbLiuI709f9U2mbNi65Fuxuo3BAwBQ8AQMAQMAUPAEDAEDAFDwBAwBNIUArg1QzmTlo3+0U8zQ+C/ikCSurZff/1VOnfuLJAtao0bN5bHH39cGjVqpEnSv39/WbFihTRr1kwqVqzo0yn79NNPy8033yzNmzeP5D0SK9HaPxLtHMk6lyxZIps3b5Zx48bF3QyKm3feecfnb9WqleTKlSvussGMLw+dJ71GLAom+fVzqxeSV1pVk5Ez142MjYsAAEAASURBVEq7D6ZIt6uryEU1iyTK92jfv2TLzj3y2vUn+/SpizfJw1/MkIVrDpB5bZqUlrvPOVEypk8ndTuPlK079yaqQzeqlcglfe+uI9t37ZX/9ZspQ6as9LtI79KiolQullOzynxHMHTu95dMWrjRp51VraA8c0VlyZn1wCX95rAF8sGoxb69wrkzy0MXlJcLTykcqSM12hk4eYV0/HxGpE5debf1KXJahXx+c9n6HdLpy79k3Lz1fjtfjkzS8aLycvF+LCFSXvlunrw/crEWl6saFPd5smQ8WFH19e/L5TF37BzTz4+eFimzbutu6dBnuvwyZ51Py545vTxxeaVExzx8xhp5fuAcWbJuu7D/mlNLyP3nlZMTTohUE1nZ51itbyeukGcHzJbSBbJJv3vqRvbFWoFcqv/EqKi7v7m/nlQokkOueO132enIoS/vritZMh7giBev3S7ndftVvrq3rj/XEEjg0nv0kkh95Qpnl+euqiJVi+eUvuOWyRNfz4zsC6+8c0sNaVQxv8RzzMldK/Fcb6nRTtNnxwrER9BqlMolfe6sE0zy64dzHXAtvjB4rsz4e7Ovq4w7v69cV00qFs3ht5M698mVDXeU3+hj7vrnnjDuiTMS/UbDeY/U9ls/LfH3lddvrJKoCe5F7T6YnihNN3K438ebN1fVTVsaAoaAIWAIGAKGgCFgCBgChoAhYAgYAscdAsScSUtuzaIBSP/SUmycaH20NEPgSCJwYDQ71MqYMWM84ULySSed5AmZ3377zZM1EDE//vijQNZgPXr0EPJ/+OGHEYLG7zhKX8e6/dQ4zPPOO8+rlIoXLx53dXv27JF7773X5z///PMPmaChAgZo33YD2kHLmikxOdDBERE1y+SR4nmzRLIxkKuGEuXqNyZ4cuHD22pKjiwZZMqijXLPx9Mkm6vr9jPLyNf31YuoWTp+Pl2K5MniCQLqyJQ+gSWAnJm4cIMwoJ/fkRkMJN/63hQZ4LYhNza7du76cKqUL5JdRnQ6zRFEe+Ve10YHV98bN1WXdI5tYPD+9R8XyFs315BaZXLLNxOWS3tHXhTNk9ltJ8wcSI121jhFTO0T88gzV1ZWGPyyUK5Mfgk+bXr9IZWK5ZDhjzT0mAzYT+pUKppTTnLH8PZPC+WL3/4WSB3qWrB6qzz46XR56pvZB9U7a/kWT85wTH874idojzhiDLIHTHJnyyifjl3qj7laiZyeYPlr2Wa5q/dUueecsnJtwxLC9s3vTHZ5M0jrxqWDVXlV0p0u70yX58SC2SV4nhNljLHRpUUlqV8ub6K9YK+GUuilIXOlU/MKmuSuiwPXEomQhv3GLxOupZMdSYcihHN6U89JDsvT5PwahaRB+YQ2pi3Z5I+19221PHFFec5BPMec3LUSz/WWGu1w+JAzkKKVHQGlljnDARJL0w7nOpi9Yos/7/we33S/l0yu/peGzJPW7jr9rn0Dd65FYp375Mrymw/aM47c4zps5MhKCJrEZziY89isZ3T3nCaVE4hU7cGO3fvkh2lrpOD+37Cm29IQMAQMAUPAEDAEDAFDwBAwBAwBQ8AQMAQMAUPAEEhtBA4e+dvfwp133unXIA6mTp0qPXv2lMmTJ8uFF17o0++44w6/hKyBnME6dOggTZo08ev6xaDro48+KiVKlJCqVavK+++/r7tk9+7d0qVLF6lfv77kz59frr32WpkwYUJkf/fu3aV27dry/PPPeyUOdUAMBS1W+7HKbt26VTp16iQ1atSQTJkyScOGDRP1iT7QZt++feXSSy/1/brtttsEF2RqM2bMkMsuu8wfE3268sorZf78+bpbFi1a5F2VoSbS/fPmzfP7R40a5eu/7rrr5IUXXpATTzxRnnrqKRk7dqxcf/31cvvtt/t82v9u3brJAw884OsB248++sjvp7569epF2uS8PPLII347uf5FCgVWsrnZ4qXyZ030KZgzgWTQbChZUMfEcp01z7kRwi6vU9QNjmf2pMypJ+WTT++o7ZQMCYOgJfMdaCN75gyS2yletF3Imo3bdnvlTKdLKni1BQQN67i3GjM7QRkyYcEGP9jb+dKKvp2yBbPJY26gH6WPkhZ9fl0qNzQqKY0r5ZecbtD4ercO+fG1I2qw1GoHggZyS49Bl6p82ekGe9udVUYec33l+BjAPqtqQd+HFRsTCJbBf6yUqxuU8IobFCUohW46o5T0d32lfjVUJ/d8NE1aOXLl3JMLabJfck7KFsomD5xfzmPCoP7ldYv6fQzmY4Mmr/QKibbNSksuhzsEyp1nn+hURgcUKj6j+1qzeacUdQqdHzo2jJAgui+eZRFXVrHQJQoqtSqOgPj0l6Uydv851fTg8g9H7tVx56xe2bwCWYhiqFPzk6T7dSf7gX7Oq9Zd1GGLlciXJZLGOYjnmJO7VuK53lKjnU3bd/tjqOoINT0ulhx30A73OuC6QpVzlzv3/E7zODLvicsrypCHGnickzr3yZUN9pP1Be6e0N+Rsvz+UmIbt+1xyq15cs0bU+SqHn/II1/Mdm77Eu4vi9Zslxt7TvUkSptef0qLVydL2/f+lKXrDhCWw2esldbvTvNlO/ebI7gXjGaQU7c0LpHos3D1duF++MyVB8hDLatt9xu/Qm57f7q0dH176pt53n0afaAvdzhFztotCeeScr/O2eD7e1n3Sf54Pv1lWYSoevX7hdJt0Hx5/YdFTlk2WTa4+x8k1tvDl8i1b07x9T/8xaxE9WlfbGkIGAKGgCFgCBgChoAhYAgYAoaAIWAIGAKGgCFw/COQeLrz/uPZsmWL/PXXX34LN2UauD5dunSeTBg8eLDMmTNHNm3aJDt2HBgU2759u/AJGqoatVWrVnkCok6dOlK9enVp166dJxxy5swpVapUkX79+sn333/vyYpKlSrJ8uXLZdq0af6jdQTbIy24HWw/Vtn27dtLr169hDZr1qzpCSFIoSJFisgFF1wgs2bN8u1BoKh98MEHgguyIUOGeFLp9NNP9+7IzjnnHAEr4uzg0m3hwoWyYcMGIX3BggW+Depg//DhwwVSBTdmekyQQBg4arpPcF/R+g9+v/zyiyeNwCd47MQH2rlzZ7L9y5Ah6in3zYYEDAe5vXrOuTi7qsfv3m0YbsvChhoEe9S5M8KdGAQAhANureI1XG9hFZ3iRA23ZbheWrTfbRpLlDQFAgRSpf2umZY6N1kofCAlbnYkR9Cql8zlXKJt8Emp0Q5k0+pNOyWTO0Zci01x7t0Y+L7GESg1S+f27UAsqCszYpyscvlf/X6+UFaVPOndLP6dexIPIBNDBsM9mh4nrr62OvdvKGC+mZhANPlM7it9uhOcS7STdNMvf93v6qzSftdw1MngPwojNYgSyC/cvQUVU2ULZZdu1xy6eydUGMHrKdCkbxrXYw0dedfREX4DH6gvebNn1C5FlnUcMdPduTh77Yf5cmntop60gHRR13GRjEmsJHfMmd25S+5aSe5641ymRjtrnYs67Jc5650C7E9/nppUzi+3Ni3t3QPqYR7udYB6CbKy18+LZKAjBzO4a6dZlQJyW7My/jpK6twnV1b7qMtebU7xq1z3KbHnBs6Xme433KhCXq9kGTR5tfvdLJJXr6/srtV9jmDdI28OW+x+Q7nc7z2z++1tlucd0dHjhip+/TWXN4P7XdUtm1smLtjk4y1B3iVnEDuzXayajheXTeR+T8tp25+MXeaI1BxOfXSCq3+j/xRzCrFTT8ojY2atl1e/WyhPXnGSTP97i+8X+y6tXVgmzN8oX45b4XG+ukFRRyrtjMTGKV0gq1czvTh4gSMu10u5wtl8G99NXe1Jn0/vqOGPSftiS0PAEDAEDAFDwBAwBAwBQ8AQMAQMAUMgtRDYxrv29n1usm7sccNgW2u37hUc4eTJltj7TjDPso17JJ/bnyXjgXGo4H5bNwQMgQQEov7qIBDUKlRIPIsYd2dq5IMwUBULrsZQoASNwPcob05wI7QoSiAiIERy584dIWf+/PNPKVq0qDz55JM+bk3v3r2la9eukWogU7777jupVavWQW6Qkms/XHb16tVSuXJlueKKK3ybd911l4/jMnr0aE/QaKNXX321d9k2dOhQr5YZNmyYrF+/3hM1HAP2ySefeLdin332mSdHIGsgcSBnUMZMnDhRsmbNKmeffbZXGUE+5chxgHiAvKIfYPPTTz9p04mW9B/VDfURZwZyDDXTgAEDvLKJ/djPP/8sZcqU8WlJ9S9PnuiBwYhFUfXh4Ynafvyyit5dmSaiiiANV2coY4gDEjTcmH3Srrab7T7Dx6xhH66NiKdy5n7VSDB/tPUljmDBmNkfNEgXgq9ji90M+jJuMDNouPTCiGPCADMWroP+z3WD01hqtHOq+yms2rRLxs9f72K5FPeKnaFTV0qrNydG4qj4xtwXA9sXv5wQXwhFBK64iAGDnV4hv3w5/m+5pFZRwR3Zche0fZAbOMdWOyULRiB3yAriAAXj7PidUb6WOqKr81czfb9QYWAoEFBBBa3wfpxRHyjBFtx/qOvELAoax/r7k42DSV698/Nfa6RL/5leFZNop9to3biUxwIXcHzArUXdYtKyfrGDzm24rG4nd8woibCkrpXkrjeug9RoB6IM+3DUYq+SWulIDVy6LXTXvZJlqXEdzFi2xavRUH7x21y/dZe85fAlzg7u1ZKywymbVL3hfY4zctcu57qI30WsmO+nrkmUDddk951Xxqc9/tUc584u4bf90Zi/fdrHt1f3pCOu8W54e2qisrE2eo1YKp5oKR/9PqnlmlXN74jS0l7tctkrkwTFmsarQYGzaP997P2RSz3R/ZojjiCMLqtT2CtvvpmAai5B4UadXa+q4MmY9Y6kg5w5pXQup2oq75urWTqnV+mMmrlOaNfMEDAEDAFDwBAwBAwBQ8AQMAQMAUPg34MAnneYkB3N8FgU9J4TLc/hpi1at1ta914uP89KeKcmHsyLVxSSVvUTJh6H6x85e5u0+WiZzF+TMMm0SlE3xnVzMalVKmFSJJN1e/y8TjoPWO1CFOzzxc+rlkPeua6oFM8TdRg63IRtGwL/OQSi/jIgFdR27dolWbIcmHnMtlown6aFl5A3BQsW9MnnnnuuV8msXbvWx1shETLhmmuu8fshWzDUKEFr2bKl1K1bN5gU93q4LG19+eWX8swzzwj9+Oqrr3xdSmpoxbgwQzGEGkZt5cqVUq5cOa+MIT/k01lnnSVnnnmmJ6YgPyZNmuSz4x5NyRjIF1y9QcRA4GDEmgmTWX5H6OuSSy7xruFIhkyCoNE2Qln9ZnL9i1aGNFQAj12amIwrt5/oCJa5yAW2HzZ9tbT/bLqLJ3PwOSE2ytAODbya5Le5670bq7udW65HLj4pLjdHGsMCRUcw9gYDtKokwbUV20FDnYJRHvdEGHUEbZvb1vp1eTjtUHd9FwPl2obF5Zz9Lsda1Csml3cfLwRw79T8AIFV3OHb9+46nhgaMGmFc4U03sXYqe/VPrgZw41WS6dOQhnEQP1lzk0c7qQK5Ewgql4eOs+pBXLLhackDFgHjyu8zoB0uw+netVR+wsde7DfILHCuClGObLEnvGg5VOy5JhQLKmh0ggb5/f5q6o4106/+2Pl+IKGKghC8G6nGBo7e638+Odqp5pYIF/9vsy7zcI1V3KW3DHHc60kd73Rh9RoBxIL93X3nls2cp1CmnV0hGh7p47C5WBqXAfEXcE+blfLx3hinThDj/SdISsv2nmQSzX2qx1OWa0jnmWXFic5ldhKebL/XBeXZ1fEdWGwbP1yB0iUoo7AnbokgThfunaHPwZVhEHCEWcpORv51zrZ5u4rDzv1THJWyxEoGEhCvFQtcYB457pUF2fL1u/0v3HyqFUpnl1+nrEu4iqSaxA1DjZnRQIJTSwiXKdh6lJygSN+zAwBQ8AQMAQMAUPAEDAEDAFDwBAwBP5dCEDC7N17YPyKeNOXX365H4vF+9CRNLyfnPfqYqlRIoss7FrehSFwE69/2yg3fLBMapTMItWKJZ48vXT9bmn28iJ57vJC0qZRHtntxuLa91slF/ZYIkueL+89dHw9eZPc33el9G9XQppVyi4rN+2RWz9eLi17Ojf3HcscycOxug2B4xaBA0EhAoeAwkRtypTEM+GJR6OGW7LkLEjiZMuWLZIdl1xq5cuXFz5NmzaVxo0by2mnnaa7/DJv3sTBxhPtTGYjWBaShDgubdq0kT59+iRyERauJnPmhJtQxoyJB4GzZ88u48ePF2LwQLKgrCH2S7Vq1QQCRwmsYDmIGcgelmqQO/EYcXLUdD3sRk73s0yuf8G8wXVUGac7t1PBTzE36BnNiP2CsuOFwXOj7faumXDx1e7MMi6Ye0NPLPT5NWFWe9QCgcQSjsjAGKAMGgHGS7sZ/xhLFCJBUxdKqEUYUIfoWL4/xovmw12YukJLjXaol2NUcoZtXLo1dm6pcHcWNNJRr5xfo7C8cl2CSmGgI2qw/7N3HuBRVF0YPgm999577yBdQQQBpYmAiqAoKKBiQfBXUFERxIaIggoColIUBUFARSkCUgWpofdeQ0+AJP/5zjLLZtlNpyR853lmZ+beO3fufWcTyP3mnIOF+e90sXx896rynAobyNnzaN38VldAwzIhMTs8aornSidTVJz4cfkBWaX5Wc6GXNZQWPsjsbqoeWqe/3adXNTcN592rhgpTBNy1BwIjswN3jowbw8SK4zHB8QZz+8SPK58GUKsQYDpp2HxdqlnlC/LquHPECbu004VZGSXSjbfZSr+xcSim3NMvivRfd8wjoS4D3IP9dNcSo54iH7rqncVbPOBMwn2PYDnDAz5nRyrXcL1OxZhxaKy+FwbVb/edT3GbRCEETsUHKps06i33lUBxGmbJuXVf76uHolc1v9h4jvjafDui86QGwZiScUCV4VVf9d4C5qOGOTdHj+P3mNxxGSnrefYIK7C8J9kiKfY0EdZnT9CoNFIgARIgARIgARIgARIgARIgASSFgFEw8HL1s42Y8YMSyuBqD2eL8xfj1kjjHf/5tll+EO5pUCWFJIxdaC0ruL6m3ifetZ4W+jlCPn+yXzycuNskkVDl8HbpkXF9HLkzGVdo3J5y+w6fsnKW1bKIOlTBUqxHCmllR5vOBhqf+t698lzEiABEc91LTcPiBN16tSxc3htIEcKDHsIE7CaNWte84sCHikxNeR/gUGo+PTTTy0vDEKbvfjiiwKvkbhYdPdH3hyEW4Pt2bNHpk6dKp07d47VrZAbZv/+/fL4449bKDMIVggzBo8ahDRz5jVnzhyB6g177bXXLAwcwrTF1uAxc+LECbvM8fapVKnSNd0g/BosuvFdc2EcCiB+vKeeDxBd4A3iGJLdtx++UhNyu34poxxJuCt4eFI4bf3tEcoM9pd66TiG8GsQbJzQZYVzpDVPkGXbry7SO+2dcF4QYmavOeJ0YUnC/9p4TEUO10JvQtwHbpvw/pix+ioD3BAhqbBgD4NQc++QJZZ7xgr0A3lUIBA5ohI8ZeCVVF3zgiDkFMStX/49ZMINWOMfTIT3WrDpuHmQwItk0ebjxgChqQ5cEVnCdUCvT9kkWzWc2tinqlyzMAx+i7ecEGcRGOP5be0RXfzNYDkxnPHd6H03zWeEMXiGRcNcHv58pUxRMcrTPL1yPMv9HcdkztF9V2LyfUuI++B7hJ8fx2MCczpw0iVawQMrob4HEILwvfK8z+4r4liBK+Hw/PGMz7X++vQuD9IQbEc1dOB9lXNY2LDezYtINo98U97tvc8heDrhEFGHeR7yEny9r0FoMYQrbKhh0xLS4L2z9fDVlxHQ9xb1koH3GDzEvK1ANtfvv5rFMsmg9iVte61lUY3pm1zyaK4dGgmQAAmQAAmQAAmQAAmQAAmQQNIlgIg5WEP87LPPLD2Dr5libRBrsr42rOHGxtKpgIJQZjkyJDNvGIQ7+9/PR6Ro9hRSt7hrXcuzP4gtD9XIaOG+Idas2Rci7846Jh2qZ3TnomldOYNc0HXB16YdkfUHQuW39Wflvd+Oy9N3ZtEXuj174zEJkIBDwG/cl6+++kpq164tQUFBkj17dhNsnBBkECRGjRrl9CG1atWyHCsDBgyw8GTIyRKdIZcNRCD0Cc8ZeLb88MMPJn689dZb9osmuj6c+pje39NrBQILvFymTJnidBOj/bFjxyysGRq/8MILAjHLCY+GHDnlypUzwQZC0J133mnsHGHm+++/jzI8ma8BIA4lWOXOndsUdLRp166dNcW9IQjhXnB/xC9ihGRD2DWYr/FZhY+PM/rmNhbvPQ0hxUqp0OHLkFOmZdXckQQaCAt9Jm7QHDUbBIvuCPWD/CxIav6E5hOJiUHQebFZMRmqIb2Q3B7CxMBpm6VSwYyWzwZ94D7IbfPejK2ap6G0Cg6XLJF8V72nk4um5z1F5NGR/8qo+bvlHh3rmAV7JPRSmIZZc3mmJNR9sGA95NdtKoaklGIqysxSUQhCyidXvGTw5vsJzfGBMFUvNtXweLpg+6suxCMxfW+dJwyCFjxIsJCMueH68Yv2ykePlLN6zH3ea5G9ylA/VnOVeJYP+22HiUV97ituC9TOIjWSo8MLpIPmbhk1b5fx7N6osCxVgWuuilZfPuES/H5XseYzFX/GdKti4bTs5j4+xowZI/DieuaZZ3zUuorW7T1tnlSeDapoCDNPbwGnDuGfIPi1vJKjB+WB6m2G5z/k1622kI2k9njOw//YaZfVKHo1vJXTj699dHPGNdF9V2LyfUuI+1TWZ4/vybu/bLGfl+DzlzXsWJDmW0prGxzwPJ83xh6X70Fn/RkYt3CPfeeevruwBJ+/JP31+1dMPbSKXPGuQd++LLpr4R3y+Fer1Issu/0O8NUHyhYsWGDhGhFq0tPbEHWOZ8+xMxdtbEu3BsvCza7fTZ7iItr6srtUZJmx6ohMWnpQ7iqdVb6cu1dDTPpqebVsybZgO6lfKmEFmjtLZ1Gx9YiGPDwsTStlV2H1pInNTSpkv3pzj6MSudOqB1Uyy7cDsTlP5lSaH2iPegyG6O+ufB4teUgCJEACJEACJEACJEACJEACJJCUCCCvNdIytGjRQrp16+Z3ashRjTVAX1awYMzW3ryv3ajeLRXe2mHF+dWT5q+XCmp0Gp/v9FubrxcFS/fvD9rxPWXSyejOV3OsQsQZ1iG3PPHNARmiwgwM+WlebcqcqgaDHyTgg4BfgaZkyZIye/Zs6devny2mOeIMQpANHDhQSpcu7e7uySeflPnz58vKlSvl999/d5fjAKG9vA2hvpIlS2YeLAg3Bvc9x7OlT58+gg3mXOsZGsy7L5z7ur+va5EjZuTIkdK3b1/55ZdfTPjo2LGjQDiJiWEcFSpUMG8fePp88skndhlCnQ0fPtxEFBRAkIFYAh4w1I8dO1by5Ln6C8sqYvDRpUsX2bt3r4VSgzD2xBNPSPfu3d1XvvHGG3YvePXAg6d3797Rjs99scfBXg0Z1u3r/zxKRO6tmDNS0nBvofu1liUt2bhzEUKiwXOjt+an6fCZa+6oQ1L3XhrGypf5erZd6heUrSpgPPvNWrsEocEGty/jfuMcC9VvaG6S/03eaF4WaHRP+Ry60F7Y2uMD+Ux6Ny9myeUh9kDoGdS+bKRQXglxn/9pbp1TKhx4sut7f3F32LMUyQI190wNW3h/SD1CYPBeGKxjqach5WAP3pFHdmsINyzOw+ABAAEF4dBiYxCjYN6h5yCWQfSCeIUk8O9M2yL3f7TM7gNxAqHIYMc098129b5x8tJYoX54P/dhw4ZFys3ktPPcI7m9t0178Q4pmdsl+Hm/NYHwbRCWPMf+inK8FOYSr5y+8BwRAg4MPQ3fCZj3WKObM66J7rsSk+9bQtwHeaBGPF7RRM5JS/djaBYWb/iTFSzRvBXE4CO670HuzKlNlHvp+/VugRUi4DANIedwdG7jzTO6ay+Hh1uoulJXvLqcfpy909+vv/4qf/zxh7z//vtOlXufM2NKqV08s0A0WbZ9nf3c31c5p8z874j01NBn/VsVd7d1DjzH3aluXtmw76xMWnLQNgiAEDqispU7TtncS+a59g2hqK5z6jzv73ncsU5eCdp/ToW0/bahfbFcaVWAcwnFOPdsD2Hy9dbF5c2ftspnc3aj2uq73Jk/2jlYY36QAAmQAAmQAAmQAAmQAAmQAAkkSgJYCz137px88cUX+neg89fztVPBy+HYEtKKZE8pS/9XWHYeuyTfLjsl1d/dKf+9XlQKZ0vh8zatKqeXivkLy6o9ITJi/kmpO2SX/Nu/qHnITF552sSZl5tkk+bl02v6gcvyinrltPx8rwo/hcTJbeuzYxaSwG1KIEBzpkTzbrEI8sVs377d4iF65pHxZoYcL7CofpF4X4PzS5cuCTxTcuTIIcmT+9WMfF0aqSym90fyLYRr88xPE6mjGJ7AuwVvf/vrB541mFvWrLF/K/uVV16RoUOHyssvvyyDBg2SU6dOWX4Zf3wwJ4henhbd+DzbJvQx3n6HxwNCJkGkiIshxwqS2mNR3p8hTBhChiGUkC+DV8p+zT2DxW9//74lxH3O6FiP6pwL6Xx9hS7C2ELUgwfzcTwEvMcLYQQ5YeDt4q8P72vier7n+AVb8PV+NuAV1b0Rtg+/A6ZPny5NmzaN6+1jdR1ycCDnEEQQf+xi0qG/OTvXxuS7Et33DX3F9z4I7waPCeSi8c5f4ow1IfaYL8YKT7csXjlbous/qmuj+w6hb4SxhNgNDxp/Bs8ehB0rkTudCW/n9WfnnP6M5IhhuLM9x0MEnoGl86aL8jvt7/4JWX741EWBCF5EwzNmS+/7P7ie9wPDbYfPm1haKk868ZfjxvMaHpMACZAACZAACZAACZAACZAACSROAtOmTZP27dvbi/KNGjVK0Ekgn3XYF1dzjUfX+XkNs5+371bpowJLP81PE50t3XnBBJp5vQvJnSXSSo1BO6VsnlTyTZe87ktX7g6RmoN3yt99CkvdYr7zqybrHuTO6+2+kAckcJsQ8L2q7TV5LMhiMS06i60w4/QHkSMu3iXO9c4+pveHkOFPVHH6isneM2Sar/bweEkoy5QpU5RdeYszaBzd+KLsMJ6VCI+GLT6GBWrPhOm++oouuT3EBicvja/rUZYQ90GyeWxRGYQkbP4Mi7BOnh1/bRKq3B+TqMQZ3Hvfvn02hLp1I4dcS6hx+eoH4egSgou/OTv3jMl3JbrvG/qK733gRRFdH86Y47PHfCEYxMWiuja67xDut27dOnn++eejvDWEI2yOpVXPMmwxtYJX8rnEtP31bJcrU0oVmmP++xAMIczQSIAESIAESIAESIAESIAESIAEkjYBRMRBZCBE6omJOIOw856RdTzpNG/eXCD2xNQgrnT6er8sUOEkbybXmlbalIFSRD1nDqjni7d9rt4yU1efkT9fvBpKrURO19+6h660PxsarhFbIr+onSaFyyMoRMUfGgmQwLUEol5RvrY9S24QAXgnQGCpVq3aDbojb0MC0RPAmxdwt01I8TH6u7JFUiPQs2dPy3GW1ObF+ZAACZAACZAACZAACZAACZAACZBATAkgGg5SGcDq168vc+bMiXRpxYoVJVeuyOHvke/aX6oGRCaKjVUtkFqOng2TzmMOyLutc+hLkslkwvJTsnZ/qLz3QE7r6uUph2Xz4Ysy45kCUq94Guk16ZC89ONhebJuZrmoeWgHzDhq7e4u7XrJ8KEaGeXtX49J6dwppXHZdBoZI0xemHzIctrUKR63l0RjMye2JYHESCBGIc4S48Q4ZhIgARIgARIgARIgARIgARIgARIgARIgARIgARK4FQkcPXrU8lb7G9vkyZOlTZs2/qpjVB5diDOIL4+NPSArdl2w/nJmSC7vt80pnWq5Ivm0/WKfbDwYKhsGFLMcMzPXnZWeEw7JvpOXrD3CmY3TcGbVCqa288sasnvAjGPy2bwTcibE5TGDsGajOueVUrn8R5ZgiLMYPU42SqIEKNAk0QfLaZEACZAACZAACZAACZAACZAACZBAYiZw/PhxGTt2rIX/SYgw5YmZRUKMHbltDx06ZPmFfeW3RV7fgwcPWh7d1Kldi63e90WbrVu3Svbs2WOUbxc5jXHfhAhr7z0WnkdN4MCBA5ImTRq/If5j8ryjvgNrEwOB6AQaZw7IPQNBJVfGyMGWkG4cGcc1EnckO3FOc2FrYaY0kcOZOY1w3cHTlyWLeuU4Ic6cOl97CjS+qLDsdiHg+6fodpk950kCJEACJEACJEACJEACJEACJEACJHBDCAQHBwsWC/29EY7FfNRjgy1btkxee+01WbVq1Q0ZX1K9CXKJtmzZUhD+CPmFETLpp59+ck8XC/UjRoww0aVw4cKSMWNGe0ZHjhxxt8EB2hQtWlTKly8vuXPntjbHjh2L1MY52bNnj9x7772SOXNmKVSokOTPn18mTJjgVHMfTwJnz56VcuXK2c/KxIkTI/W2efNmadCggeBZ4lm3a9dO8LPnWEyft9Oe+9uDAHLPeIszmLmmyb1GnEF51nTJ/IozznXIaxMTcQbtaSTgi8Dp06ctrxJyK2HbvXu3r2aJvowCTaJ/hJwACZAACZAACZAACZAACZAACZAACSQeAjNnzpRdu3ZdM+ApU6ZYWYkSJWyPhNeHDx+OUeLsazpjgRE4c+aMtGrVSpIlSyZr1661hfrBgwfLww8/LCtWrLA2P//8s7zwwguW1+LEiROyfv16gcCCMseQ8wLnH374oUCU2bhxoz2brl27Ok3c+/DwcGnWrJlky5ZNduzYYe379esnjz/+uGzYsMHdjgdxJ/Dcc89JpkyuEFSevcBb6YEHHjAxDguZ69atky1bthh7PBdYTJ63Z588JgESIAESuL4EKNBcX77snQRIgARIgARIgARIgARIgARIgARIwIvAuHHjvEpEPv/8cytzFp63bdsmtWrVEniAwDZt2iQQbbDwD++BTz/9VOANEF0d6r/77ju5++677drOnTvL9u3b7Tp8YLH79ddftz08PYoUKSJff/21ux7eBxAiUIcN7eHB4FhUfTttbtZ+3rx5tkj/1VdfSenSpSVt2rTy1FNPmbgCbxpY3rx5Zfbs2dK0aVNJnz69lCxZ0hKWe4po77//vrzyyivStm1b87ApXry4oG+EoPO2CxcuCASZYcOGGS945LRu3dqa7d2717s5z2NJAN83CGbenjPoZtGiRRaCbvjw4RZWrlSpUvLJJ5/IrFmz3G+ex+R5x3JIbH4LE8icMa0cOXP5Fh6h2PgwThoJ3K4EKNDcrk+e8yYBEiABEiABEiABEiABEiABEiCBm0CgY8eOggXkkJAQ991Xrlwpq1evFtQ5hvqdO3fKxYsXTYiBVwbCnyE8F7wxXn75Zfn999+jrENf06dPlyeeeEJq165tYbog/CDkF7xLYBCAhgwZIhAWPvroIxN/evTo4RZh+vbtKwsXLpTRo0fLxx9/bKG63nvvPbs2ur6t0U38gPdE9erVZfHixSa6YMG+Z8+eNjcnzwy4NGrUSC5fviznzp2zxfxvv/3WmGHoKA8KCjKBB1wgYDVu3FgmTZrkM79JunTp5JFHHjEvjkuXLpk3zquvvmrX1a1b9ybSSPy3PnnypDz//POC7x9Cx3kb8gPlzJnTQtA5dZUqVbJDeDPBonve1ogfSYZAi+bN5KuFV0Pc3YoTw/gwThoJ+CIA4fnHH3+UBQsW+KpOEmUUaJLEY+QkSIAESIAESIAESIAESIAESIAESCBxEHj00UdNHPnll1/cAx41apQ0adJEypYt6y7zPDh+/Ljs379fHnzwQcuv0adPH/n3338Fi89R1aGPDz74wLxG3n33XenQoYPgvljI/vvvv923KFOmjGAMqMceNnfuXNsjF079+vXNw6R9+/aWE6dTp05WF5O+reFN+oBAA/HrySefNL7wnnG8ZbDY72kQvbJkyWLeLi+++KJ5DaHe8Xrp1auXeWHAkwaeRN26dZMvv/zSs4tIxxB1INbA2wYLa/DiyJAhQ6Q2PIkdAXyHkf/n2Wef9XkhPMPA29OyZs1qp55eYyjw97w9r+Vx4ifw5sAh8vWKCBk469gt50kDzx6MC+PDOGkk4EkAITfh2blmzRr7Nwf/nrVo0cJEf892SeE4eVKYBOdAAiRAAiRAAiRAAiRAAiRAAiRAAiSQOAgg5BUW+z/77DMTRCCwIFQWcmNgUd+XZc+eXe655x7z6oAHDRLQt2nTxpKgo72/Onh/QGDBBm8OT8Oiz3333WdFNWvW1GTYmg1bLU+ePOaF4IRWgzcIQqAh7wraI8cHBJ2Y9m2d3qQPZ07wdoHXCwzhxjD+OXPmCAQnx9566y3p3r27zJ8/X4YOHSpIzozQZk4f8DiCx1Dy5MmtXYoUKcyj6Omnn3a6iLRHkvp//vnHvKAQkuuOO+4wccuX50ekC3nikwDy9yCsH3I4wZPMlyE8oOMZ5tQ733sndKBT7u95O/XcJw0CBQsWlLkLl8pb/V+RMu/MluDT52+ZiSGsGTxn5i4cIhgn7dYmgH+r8XsE/wbcCMPLAPi3GXvHEAoV3rM//PCDU5Qk9vSgSRKPkZMgARIgARIgARIgARIgARIgARIggcRDAB4dEE3+++8/y6eBsEx4UzYqmzp1quXdyJw5swk8BQoUsD5wjb86Z3G6RIkStgCIRUBs8B6oUaOG+3beC94QHxzD4hC8abBQhDBn8NoZMWKEW/CJrm+nn5uxh0gCa9iwoe3xUaxYMcGYwd7TUF6vXj3p37+/vPbaa5a7BLl28uXLZ81Q57kwB5EMIei8PXGcPtOkSWPh1dq1a2dh4VAOoYYWNwIDBw404XDPnj2WI8nJk/Tnn3/KjBkzrFN4z3jmDkLhwYMHra5o0aK2dz78PW+nnvukQwC/874eP1GOHAu2kJEIG3krbBgPxkVx5tb+rkGYQQ43vLyQK1cuyy92I0aM32sIT+ppyAeHFwUSyuDZCY9Qf16JCXWf6Pq5MZJXdKNgPQmQAAmQAAmQAAmQAAmQAAmQAAmQwG1DAB4cd911l4XIgvgBjxrPxX9vEFhMhBAA7xUkqkfi88qVK9uCf5UqVfzWQVTBveBtg8T1jh04cEDSp0/vnEa5xwI3xBwIFAhp1rlzZ8FbvMjlEt++o7xxAlRWqFDBekHendKlS9sx8swgxJsTCgvzweL9gAED3HdErhoYvGiQVB79YBHL0zZt2mQhyyCYeRqEN/QJTxws6MHSpk0rEIscscCzPY9jRgCeTBAOIdR42rRp0+T8+fMW+qdkyZLmQQP2DRo0sGZOKEEIMrDonndMfy6sM36QAAkkeQIIeZktWzYJDg42L1fkscIGr8jEbPAihFciXroIDw+/qVO5JTxowsLCbioE3pwESIAESIAESIAESIAESIAESIAESODGEoDAAS8AeGFg0Tgqg1cA3rJ+4403BKHHEJ4M4gEEkqjq0Ce8ZQYNGiTjxo2zxSUsyEAsWLFiRVS3tDqEMYM4Ay+QzZs3C/J44H5Orpz49B3tzROgQbNmzYxRx44dLbwYwrQhBxAMb0TDsNAGPl999ZXNb968edK7d2/zfoE4A4NXDcKkQRiDBwfCy2BxC88NwgHCzmGRCwIMBLNjx44Z9+XLlwvyBqDtunXr5P7777f++BF7AhMmTLCfFfy8OBt6QajAiRMnWod4lsjlhOcHoey3334z4Q05m5xcNDF53rEfHa8gARJIigTghYrf/fi3F0J7tWrVpEuXLpbL7XrPF/lmxowZE+k28GJt2bJlpLK4nkRERMj69evt5Yu49pFQ1910Dxr8A4P/0OA/AtgnRdPnLUdOh0rmdCkkVfK4a2JnQy7LGd3yZE7tExPus/fEBUmdIlByZkzlsw0KD58KFXwJc/vp53JYhPVTOHta/Y+W325uWEVC8YvvgDGOXcfOS1Z9jpnSXnV39+z36JmLcuFimOTLklqSBd4C8DwHx2MSIAESIAESIAESIAESIAESuIUIYLEeoc0gFCDxOczJd+J9DM+A4cOHW+itIUNcyaSR8P6xxx6zRSN/dejnhRdeMMEAi9bIz4FE9cOGDZNGjRqhWgIDff+djrHAqweLUwjJ5nijIFzYxx9/bNdG17c1uokfyZIlM/EEAk2tWrVsJGAOr6XCKlLBkEMG3kmvvvqqO39J8+bNZdSoUVaPj1atWsngwYOlb9++tqGsU6dOlqMGx4cPHzbxC54c8JpZsmSJrfHA6wiGe2KhDWHRaNePAL6zEGywvla/fn27EZ6dp/dYTJ739RsheyYBEkhMBCDIwxAW0zG8oPD33387p9dtj3/r8f8E/FtTtWpVE1P27t0rv/76a4Lc09NrNEE6jEcnAeomrMvO1xrcWaHIexr+YcXbEfhFn1CGtzCQdO755583V+GE6te7Hyyaj/xrl4yev1u6NigkLzUr5m6yatcp6f9jkC2+Lxtwp2RI41u3OhgcIgOnbZF5QcdkZJdKclfpbNZHuK7c//LvIRk0fYsUUlFjSi9XHFss6E9Ysk8++W27nAt1eQk1LJNd3nmwtGRNf21Ct/9N3ijTVx2SdnfklbfaulyPcQOM/fUpm2TWmsN2v/L5M2p9KSmTN4Od42Pmf4dl8IytcuLsRSurViSzvNehrAkFTqNl20/KBzO3ycb9Z6wIAszQR8tLqTxX3bpH/LlTxv69x8abK1Mqebl5cbmvci6nC2k4aLEJPO4CPahUMKNMfKa6Z5HP45vBz2Hqa0DrBjc0ESUmc/r+n3323YG4BcNzHNiujGRRsQa2+eBZeXniBtl++Jydg937D5WTGkWvunr7m79dwA8SIAESIAESIAESIAESIAESIIEYEYgqUXFUdXhREfXwJPAnykQ1gFOnTllyduRW8bb49u3d3/U4x8IWxukv3wPqDh06ZHxSpfL90icEGHgQQdzB29SeBm8j7zB1aA9RDHkLaDeWALyZUqdOLVmyZPF545g8b58XspAESOC2IQCxHeFIEWbUMeQSQ5jPf/75xym6bnt4yr799tvmnQmhHy9FFCpUKEHvB+8geH0it9zNMt9KhI7GAQ9RpkiRIqZSLVq0SLBduHBBevTokSBjhlr14IMPSrly5RKkP1+dBB04Iz3HrZVsKopAGIFw4ti7Kqp8v3if1CuZ1QQapwqeKMN/3yEd6xYwAWLG6kPyyqSNblHGuf70hcvyzDdrZZPeo0iOdAKxxrE/1h2Rd3/ZIl8+UUkgmGBx/6Xv18tALfu4Y3mnme1/XnFQ/tpwVCCaeBvEmX93Bcu0F++wOUBk6fb1Gpmu55jP0m0npY+KA/1bl5RWVfMIPG0wr26j/5OfX6ihHjXJZMuhs9Llq9XSvVFhGfF4RUmpnjwfzdouT2qb3/rUkvSpk8sPyw7IZ3N2mvhUtXAmmbbyoPWbJ3MqqVo4s3HDHIbq2MvkuyoOxcQr6Gbx63Nfcel5T5FISCGYbTpwVgL1zRI8rujmBNEMzxHzrqvfk+MqgvWZuFFe+2GjsTp1/pK0+WS5PFAjj4ztVsW8pCaqMPfYl6tkxks1pViudOJv/pEGxhMSIAESIAESIAESIAESIAESIIFoCSAWvj+Lqg7eBdmzZ/d3abTlmTJl8tsmvn377TgBKwoUKBBlb5iDkzPGX0OIMk54N+823uIM6tHeW8jxvo7n14dAdM8yJs/7+oyMvZIACSQWAvny5bOhIndZunTp7BhCfkKLJFHxcDwxo2qT2Ot8+/F6zAqJgBATFrEr4T4Mmzx5srvF+PHjBa6v+E8Q9p51aIQQZo0bN7ZkclC5hg4davHqHJfkkSNHmqsw3JEdwzVwYUKfSGqGJHxOsh64UCHeHWKmfvnllwJPH5x/8cUXgrc1fBkW4x+ulU8mqZdHbvVs8LSdR87L1BfukE71Iv9H5bx6vMBTxvFIWbv3tHzaqYK8/3BkIenYmVDJo33+8UodqVU88lsJObX8666VpX6pbJI2ZTIVcNJKdRVq9p0I8RyC7Dh6XvpPCZJ31SOjaM7IAg0W/+E5069lSSmZO70JNDjGuBZtOWH9/LXxqJRVweSR2vklXapkAu8NCBMIx/X3JlebqSq2wNPl2cZFLPxZZg3RNeCBUjLr5VqSRscGg6jQWTnAMyiDCjZgAmHpZ70WdvrCJduXy59BCmZL495wv+jsZvGDKOc5VohJv609Is/fW9TCt8VkTqPU6+qphoXk3oo5TciCl9R3ParKEPWQgS3bHmz7vveVkOwZUpoH1lN3F7ayScv2297f/K2SHyRAAiRAAiRAAiRAAiRAAiRAAiRwHQikTJnSvH6wh90q59dhquySBEiABEgggQk4eciQq8Wxf//919bjnXPu40/ArweNr64dl1R40MAgznTt2tWO69SpI3/++adtUOHbt28vs2bNihQOzdNVyImFCdUNieKw9+4Tnjtwl8J25MgRE2rgGov22JCUzrFevXpZQjokO/O2NtXzeBe5z0ergAJDjhhPQ9ivFW/f5S6CKAJDDhhPK5oz3TWijVNfpZDr7Zqw8Ai5eDlclu9QL5h/1StFF/I9bZB6Z0DEaVIhp4U486yDJw+sVN6rYcgQgg3j260CDCy55jqBoORpyCMD23/SdT1Cb0FsGT1vt8zQcGi45u6y2eVpFRKQKwWePwjT1eXOgp7dSMUCGWWVeu/Ajp9zCTT/bD2p3jbrzQOlQZls0k3FixTJotb6bha/SJPRk9ELdpuX0j3lc1hVdHPCswO7bhoW782fNsnfm49LoWxppVW13OJ8r5Inc+WauRQW7r6d40i155iLv7/5uy/gAQmQAAmQAAmQAAmQAAmQAAmQAAkkMAEnOorT7a127oyLexIgARIggVuPADwj4bDx1ltvCUKbrVmzRqZMmSKrV6/2O1g4eiSUIY9a5sxX00csXLjQtIeY9I/ccYnFol5V11lg4j/99JPFe/vkk09sXs2aNbP9m2++afuZM2fK/PnzZfbs2XbueMc4CeVatGghZ8+elR07dlhiODRyPGLsAo8Pp0942mzevFl+++03q0UCP8R79TQodsHBweK4OmEct6IhNFq11xdIj7FrTABpXzOve5h/rj8q/2w9If1auQQgd8WVg73HXQv8OTNG9lJBEvqd6nkDu6NoFvOW+WnFAQvZFXIpTIZqGC+YIzxtVC+iMQv2qEB0SB6skde8ZJCT5xXNewM7etoVS9D7PvA42nYlr4rjTTROc9S0qZbHPIYQEq3fD0HWx/X6iA8/zzEhBwzC2T3XpIiJUqiLbk4H9BrYO9M2q9gVop40hSW3hnzrpzmLJi11ecfAMwkG5hBpIOqM+Xu3lTnX2wk/SIAESIAESIAESIAESIAESIAESIAESIAESIAESCCREHjnnXcE+cTguNG2bVuLjhVVqhLkt0qoDdGykB/G2UJCQmLcdyLBa8OM1oPGEWWcSd13332WkAceLfv3uxaokazn3XfflbAwlxcHvFvw4FasWGGXQbGCG23+/PmlXbt2lkjI6c9z79kn8tLA7r77bsmQIYMllYNK51iJEiWkQoUKdnrvvfdabpw9e/Y41bfUvpeG03q4dj4NhXVSxqq4cTYkTPreX1xCLoVbrhjkhUEYLl+G3DCwCxfDLLeJ0+aceswgnBasgSasR//IVfPejK2CuvL5M1ruE6dNiiteHt9qaC6E/YIhZ86rmkfl8P2hklZDo8FwH087r+fOGBA+rWOd/BYezCkrkTud5ebpc38JSZMiUFp8vMzzcrlXvYL+1yKyx1CkBjE4iQ8/z+5Ha6gy5PiBp5Jj0c3J5RsjxhS5hOBtBNbwmhmrgtdDGjoPPD98pJy8PGGDIJcQ+oQ11Ofi6VXj3JN7EiABEiABEiABEiABEiABEiABEiABEiABEogJAbzkPnbsWMH6J9ZWb5Rt2bLFco2kShX5pXFf94d33tatW6Vo0aKSJo3vNc7jx4+Lt0eEr76cMjgNBAYGSt26dZ0i28dmXJEu9HNy4sQJTYMQIFmyRE5d4ad5rIpjM9boGEL0gPMD8np55pjCevw333wjcJDIkcMVMShWg4ymMbjAMePgwYOSNWtWie774ETbiqbbW6YausbNtmg9aPr27Ss//vije5z33HOPuRZBsXKsZMmSUrx4cYs/h7BknTt3ltDQUHfyIBw75lyHHzBv82znxEdFG+cH2wmthrL06a+G/HLqUZ5QFqohyZDYHTlg4msQXxBeDMnqezQqIuMW7hEIHwh3hgT1yPfy4/IDtu1Wj5kth85qCLED5omRP6vrlxraeRryyyAXCkx/h0j/VqUslw7Cp43sUslypCA0F8JxwSBMwBxxBse1S7h+8WzS0GYYQ1YVGg6euvpc0eaAeo2U1nBqsDJ5M5injyPOoKxuSVdyxs0HzkgqFWgQMs1zQz6b+Fp8+Dn3hvfLxCX75VkP7xnURTen3JlSWxd4fhBnHKuv80b4udMXXCHvmlfKJXNfrSPvdSgrb7UtLXP+V8eeC0Lg0UiABEiABEiABEiABEiABEiABEiABEiABEggLgSCgoKkR48eculS/NcoY3L/GTNm2Bpv+fLlBTlI+vXrZ14Lvq6FqPDss8+aYFClShXJlCmTvPHGG5HyhC9YsMD6g6iQM2dOS1ERVYgs3OfAgQPSunVr95owymIzrqeffjpSzi0n/xaS3Ts2d+5cG1fu3LnNO6RSpUqyZMkSpzpe+9iMNSYMkfO9QIECUqZMGRPN4NCwe7creg9EL/Ds06dPvMYc3cV4ftGJM9H1wXrfBK5VSbza1axZU1q1amU/jKjCDxnywBQsWNA8W1D2/PPPy+jRo2XkyJGCUGTwfkF8OFwLe++992Tjxo3y+++/ixOHzleIM3zR4C0DgzIHwy8heNbA8INyo2zptpPmGYKQYHG1vhM3yKd/7Ih0eZEcLqHkjC7sh2memFwaQmz8or0y4s+dtkFUWbPntIz8a6cJNAhlBvtrw1F3Pxv3nzFhx1n8X77jpHytuVXgzYLwaRBF/t503NoXy+USCCBEQIBB+C3Hdl/Jj1LgivcOhJjZa1ys0Qah0v7aeEyK53IJNBCs2g9fGamPA1dy3ORTIQl5aOBR4rnVLpHVuV2s9wnBz7npqHm7TKSCR4+nRTcneMog308efU6etkPDy8FTBsLWPhVq8PyS6fxbVs0tEGtCVICbq+zwTGgkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkEBcCyM0NYQMvxV9v+++//yyM1WOPPSaHDx+2fCMffPCBfPTRRz5vDXEGKSd+/fVXS03x119/WeSkzz77zNoj+lLjxo2lW7du1t++ffukatWq5u2B8FX+DGG1GjRoYG3RJrbjgrcHBAusK3tu8D6Bob5p06bSsWNHy4uOcTZp0kTuuusuOXnypLWJ60dsxxodQwhJnTp1srV5eCHt3LlTsmXLJs2bN7cIVhgnHCwmTJggK1eujOuwed1NJBCtQOOMDV8WGMSZESNG2PFzzz1ne3wh8KWHeteyZUuLRQfXMCisEFyg4lWuXNl++PALJSp75plnrLpDhw7y8MMP2w8xCnAPKJo3ymoUzWyhuZpVinq8UY2ncuFM8oXmeZmsuUr2qGcMQpwhBBnCj0GY6Vg3v8x7rW6kDWGx2t2R18pSJg8UbC82KybI9YIF/w0qziAfCvKe1CvpEj8ypUkhH8/eLkNn7zCPlz/WHbHQaRBKHEGoc738lm8FuVOQu2b17lPSX48h4BS54l0DD59/dwbLKA0Fhjbv/rJVQlWk6aTXwioXyiTr953W8i0mSqzfd0ZDpAWZ8OF46ETFI7Z1CcEP90QeH3gkeXvPoC4mc4LX06//HTbPJ3gUzVpzWIar8Na6eh7zksmh+YGjNkUVAABAAElEQVQmqHfOq5rPB8INGP5vcpAJOy2q3LjvLOZDIwESIAESIAESIAESIAESIAESIAESIAESSBwE4BXz+uuv20vpCF+G8FAQMTwNob4Q3gwGUWPAgAGCHCClSpWSl19+2b1I73lNXI8nTpxoKSX+97//Wcivhg0b2vi8U2Cg/6NHj8q4cePkiy++kNq1a5u3S/369c2zwwlzhWhJ3377rfTu3dv6w7rw/fffby/jI1+5L4NHyQ8//CAPPfSQuzo248JFEFzAqFixYpE2rFfD9u7da/tHHnnEwnYhNBjWoWEQpuJjsRlrTBjCGwfeSfCiwjp7vnz55P3337eQcnCGgMHpAeLS1KlT4zN0XnuTCPjNQeOEGHO+uFDmILgg1wy+BN27dzdvGvzQjB8/3jxnMAfEu3MEHPyigMr7yy+/CPLD4IcaKuKQIUMs5qCvOeOXDH7ZoM+ffvrJvnj4gcQPe0JYoP4gXvlZ9NmdE8Qqbcpk0rlegWvaOPXXVGiBdx0EktPnL8uHs7ZZDhNcA++Wd9uX9XW537Iu9QvKVg1D9uw3a60NBJ7B7cu4Q27Bw2Ow9ol8MvCkgTWpkENevq+4HeMjd+bUghwqL32/XqavcnkFQeQZ1qmCm0dVFZR6Ny9motJQFXwgIg3SfnOqAAEroF4yIx6vKH3UM2iSik4wjGX4k1f7sMIoPrwZeTb1rksofmACAcnbewb3jsmc7imfXV5uXlze/3WbbbiudbU88oqGk4OlUhHtCw0r99z4tXL/h0utDCyHPFTWBDYruPLhPUfPOh6TAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAncPgReeukl+fLLLwVeKlh7xR6RjBAWDOkdkHcEHioff/yxQXn11VdlzJgxMnDgQAvhBc8JeFUgR423YV0Va7i+rEaNGuJ4uXjWb968WapVq2a5X5xyeLwguhHCg6VLdzVSDPKhwDBOhCND7vBatWoJXr6vV6+e1SEnDTZEUsIaMvofNGiQtG/f3qIvWSOvD/QDBwHPSEqxGRe627Vrl3maQNiC4AUvHjgXQNyAVa9e3cKFgf+bb75p43vllVdMCCldurS1ietHbMYaE4bJkycXbzHLCXcHbxrHMKfffvvN1u6dMu4TB4EA/eG4GvMqjmPGL4tDhw7ZD5ZnPhiIKviFgh9keNugDX4w8OXBLw64kUVlcDeDsopYeonZFI8cPRMqmdOmuGbBPjbzOhty2YQeCCe+DOHLkMMG4bjSqMDky9AG3jwYS5Z0KXw1sRBmyNkC8cKXmBWuE9p3IkSQiyarnz58dhzHwoTiF9XtYzInhHzDvPNnTS2pU1zLF+M8EByidYGRcv1EdV/WkQAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJ3H4EIEJAlEHaCOTzhkFYQK7vadOmWTQhJJlHLpj169dbPhgkaf/uu+9M4EB7iDdt2rQxrw/vJPerVq2SOXPmoNk1htQVjseIZyVetn/00UfNa8YpR2QkpLHAHl4pjn3//ffSpUsXe7kekZAqVKggyJWCl/WRywVCj2OYY8+ePe0U+c2nTJliye6des/9rFmzTPAJDg52t4nNuCBeOEISxJcUKVJYWg6EN1u8eLFbGFq7dq0JNc694Z2CdWzwjo/FZqwxYYjwcQ888IAJeY8//rggRztC0MEhAmlHIOrBIPQhNJy3B1Z85sJrbwwBvx40sbk9vGyQKMjb8IPYq1cv84SB941j+KFGyLLozFef0V1zK9ZD5HC8UOIzPggi2PwZktgXvZLjJqo2TtizqNoUvJKXxlcbeCFFVe/rmviUJRS/qMYQkzlBlCl+JaePr74wTidnkK96lpEACZAACZAACZAACZAACZAACZAACZAACZAACCBfN+zOO++0PT4KFy5suWYQgQhrpxA68PJ6iRIlZPny5dYO+b2R6wXmhOOCgIPwYp6GF+axxcYgGEE48jR4zsAyZszoWawvdbvixDz11FMyePBgq4OAAE8OvJjvKdAgJUbFihUFohFymGOsK1asiOSp43R+4sQJO3TyxeAkNuNCWDWM6emnnzbRCNcjXzo8Y5DPBWIHhC+M87777rN28PBBXnWECQN7hAzztNOnT0fy6EFd27Zt5cMPP/RsZsexGWtMGGKMiGSF+SCkHZ6P4wGUK1cu9/0h0MHTCXMJDIxxVhP39Ty4eQT8r/YnwJjgLgdvGai+W7dutR8mqJCINQj1kkYCJEACJEACJEACJEACJEACJEACJEACJEACJEACtxsBCAmwVKkiR8pJnTq1OCGs/v77b8v5jYX8kJAQa1+mTBlBzhQYhAQs0nsu1FtFHD/g/bF79+5IVzv5WvLmzRupHF44sDvuuMNdjshKCCcGYcnTIDJhQ1vkU4FAA28Wb1EJ1zhpNxCxyREwYjMuhFzzDt+GMGvgBi8gCDTffPONjQeePE7kpkaNGpmX0oQJEwThzjwNzwR5eTytePGrqSU8y2Mz1pgwBAOIR926dZNly5bZGDFWePxAuHPM+c5QnHGIJJ79dRVogAGx/RB7kEYCJEACJEACJEACJEACJEACJEACJEACJEACJEACJCDucGErV660nN5gAu+RoKAg8zbBOZLAI0wXzAkvBo8KiCAw5PE+cOCA5M6d2849P5CrBp4XvgzeOXih3tvgZYK8NSdPnhQnZBpEDIgqjpDhXOOIA47Hi1O+YcMGgUgBQ55yhOJyktmjzBE2kArDl8EDBXbq1Cl3OLLYjAs5YOCxM336dPc4kP8GXF988UXrG2HCEAbNc07I9QJzhDA7ufIB0QgeLDGx2Iw1JgwRdg3eU71793Z7BIEpDKKTY8hF5OTYccq4TxwE6O+UOJ4TR0kCJEACJEACJEACJEACJEACJEACJEACJEACJJBECECIgNjSo0cPS+4OrxPkooGnCTxLEJUIIavq1KljM86ePbuFPUP4LggeCGsGAQaCh3cSeVyA0GnIceJre+GFF3xShJcGDLlNNm3aZOHIZsyYIW+99ZaV//TTTxbqC3nD4bWDl/L79u1ruXCQPwftICggLw6sXr16Mm/ePAvNhZBuCB/WtWtXq2vYsKHtvT/y589vRYjG5FhsxoUcPhBkIKisW7fOwpk592zQoIF1iehO4Iu8OBgTPGuefPJJCx8Wk7Qczrh87WMz1pgwRN4hpA7p37+/7NmzR37++WfB88P8MFfHIIw54pdTxn3iIHDdPWgSBwaOkgRIgARIgARIgARIgARIgARIgARIgARIgARIgARuHAGE2sKCPjw+YMjbjaTwEGP++OMPC2Pl6SWB9hAbWrRoYe2LFCli7bCI721YrI/tgj36QYgv5BRHzhiE0YIw0LRpU+seOW/giXL+/Hk7hyADbxtHkEH7oUOHus/Rx9SpU+XZZ5+VTz/91K7BfJYuXWpz9B4zziE6wBME+WqQPgMWm3EhJNicOXMsR4yTBweiF8oKFy5s/d19990yceJEE45Gjx5tZWAJryLnnlYYh4/YjBXdR8ewQoUKAm+oJ554wp3zBrydvD/OEBctWiRdunRxTrlPRAQCVFGMSETj5VBJgARIgARIgARIgARIgARIgARIgARIgARIgARIIMkQQP4QeH0g7JZj8KxB+LDJkyc7Re492p47d84dhsxdkYAH27dvtxw3Tk4Yp2uEVXPCgTllCK917NgxE4Q8w4Y59dhjLqjLlCmTZ7HP41dffVUQ+g2iirfFZlzw9AGrQoUKeXfjPofABHNCurkrEuAgNmONjiG4oz94GHl+TzBMhHWDkLN27VpBiDVa4iJAgSZxPS+OlgRIgARIgARIgARIgARIgARIgARIgARIgARIIIkTgEcHwodBqLndDKHd4Gnz119/SeXKlW+36cd6vvB4Cg0NlS+//DLW1/KCm0+AIc5u/jPgCEiABEiABEiABEiABEiABEiABEiABEiABEiABEjACMBbAuKME8rsRmDx9JSB18mNOMd9fBlCkiHfzalTp27IOJwxOPP2Ny6nnb/9jWDm3NsZ64ULF6Rs2bLywAMPOFXcJzIC9KBJZA+MwyUBEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEkj8BAIT/xQ4AxIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARJIXAQo0CSu58XRkgAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJJAECFGiSwEPkFEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABBIXgeSJa7hxH21ERIQMHDhQsH/uueckS5Ysce+MVyYKAr+uPiSl82aQ4rnS+RzvzqPn5b/dp6RN9Tw+6xOi8PCpUAkLj5C8WVL77e7E2Yty8twlKZQ9rSRPFuCznX5tZdex85I1XQrJlDaFzzYsjD+B0Mvhsmb3GSlfIL2kTZks/h2yBxIgARIgARIgARIgARIgARIgARKIDYFwbRx2ZbssEuAcY486XR+4ZtMiMywpYMPr2M4x/rS9skU4x1gNdNroIY0ESIAESODmEQi4ePEifrVfY6VKlZKdO3deU169enX5559/rin3LggLC5OvvvrKijt27CgZM2b0bnJDzzGeNGnS2D23bt0qhQoVuqH3Two3O3PhstQc8LfPqUx78Q4pmTu9z7qbVVjvnUXybOMi8lCtfD6H8Mu/h2TgL5tlxdt3+az3LDx1/pLUfmuhjHqystQtmdWzSsYt3COj5++RRa/Xc5d//88++X7xPhNVUJg1fUp5sWlRaVsjr7vN2j2n5X+TN7rboKJrg0LyXJMikiKZy7kt5FK4fDRrm8xee0Qg5MCKqeD0dtvSUqVQJjv3/vh49nYdz+5IxdWKZJYX7i0q2NP8E9h17IK88G2QvP1gCalYIIP/hqwhARIgARIgARIgARIgARIgARIggbgSwErcJdVQ8Gc+Nj22TY8DzuvxWd3rhr2cu3J8LkACQvVcRRvbcA2OIdygP0d8wTudEGB0i8BxWq3U5ZoIvLuKPZZurmwRKfUYG9rpZuep9Ni1JKEHNBIgARIggetNwK8HjQo3du8KFSpIgQIF3OMoUaKE+ziqg8uXL8vzzz9vTZo1a3bTBZqoxsq62BF4S8WBmsUieyDlyYx/wZOu4f86MbXP5+yUz//cKW+0KSV3lc4mqZIHyvyg49J/SpCcCbksj9cvKGd1/9DnK6WDikfjnq4i6VMnV8+NU9Lr23XmudG9UWGBONNr/FpZreUfPlJeKhXMKOdCw2Tikn3SccS/MvGZ6lbmb1x/vFLbqg4Gh8o3KiJ1+mKVLH6jvmRRLxwaCZAACZAACZAACZAACZAACZAACZDADSIA4QXiSohuujcR5ojusR3T7bi6u+jetrN6DE+ZBDA40WjvHp926PpIpSsdeP80uwoz2LLpeQ7d59YN71gjEIgu9URc2VO0cWHjJwmQAAkkNAG/Ao1zowEDBkiLFi2cU9uHhIRI8+bN5dSpU9KzZ0958sknZdmyZXacKlUq+fTTT63Muei+++6Tli1byuDBg+XSpUsyaNAgmTVrlmzbtk3uvfdeeemllwSeObBHHnlENm/eLM8++6z8+OOP1i/aPfPMM1b+yiuvyIQJE2ThwoXy4IMPSq9evaRcuXJ27Z49e6R///5Wd/r0aesT469d27VQbY38fHzyySfy7bffSvv27WXTpk0yZ84cGTt2rDRu3FjGjx8vkyZNsrHUrFlTHnvsMenQoYP1BCHq448/lsmTJ8u6deukSpUq8uijj9r4AwJc/whivNiWLFkiELzAo3fv3hIYGCgzZ86UN954w8b42WefWZ9ffPGFjBo1ysaC+UY1ttGjRxunlStXSvHixeWhhx6SF154QZx7x3fsvnDlzpRKCmZzeSN517f4eJl0qltA/tpwVFbtCrawXf1alXR7e+w4ck4GTd8qa/ackhwZUslDtfNZ+yuoBF4tU1YckE0HzkjDMtnl2SZF3fdC3x3r5Jff1Ztk/b7T5snyWsuSMuz3HfLHuiOSO3Nq8xJpVE7/R3HFgjV0WN+JG2Re0DEplSe9PKLXN6+Uy6lO8P2Fi2EmzvRuXiyS584DNfII6v7efFw61ysg24/glRiRBzS8Ws6MLnGrdoms8n3PanJRw2zBViu/RVtORBJiMmt4s5ebF5djZy7Kgk3H/Ao0ZfNlkPxZXc8I+3CNkTZ34zE5GBxiAs3bUzebKIQQbHM3HpXhnStKreJZZOrKg/KzbuAPEe7xOwtKdfW6gUfQPzqWzx+vaGNbuu2kvPnTJhnVtbI9H4Rxa/3Jchtb/VJZZdS83fYsj54JtevxnApc+c4cOR0qw//Yac8krz6zVlVzS8e6+a1f3H/mf4dtLOMW7pVH9PvR854iVufv4491x2T6qiM6t1D1VEohdUpkkS53urymPpi5UwL1xxAC24rtp/TnQqRRuWzSraFLdMYzGTx9h2w+eE4ypEmu9/XvYbRbvWve+GmrtKiSU+asP25h6Sqol81DtXIL7nP87CXJlTGlvNOupGTTccCWbA2WL+bukdPqfZY6RTK5v0oO/Q7mtf8eD/t9l4SqCIdQavM3nZDRXctLch3skF93yhYdT6AeVy+SUV5oWliSYRI0EiABEiABEiABEiABEkjkBNauXZvIZ8Dhk0DMCAReDpDAi8kkeUgySaZbqhMpJc2x1JL6aCpJrXucB1yEm8pN/FsvVO99UIegG0ah/jmuyQVEyKWMlyQke6iE5AjRPbZQuZT+soSlCpOw1Lql0HWLmzh010D5SQIkQAI3h0DFiq710YS6e7QCzYULF+TcOfWnvGIpU6aU1KlTm5ACcaZv377Srl07E0YgUEBsQH4XiDiOnT9/XkJD8aqASI8ePUzwyJAhg5QtW1amTJkiv//+uyxevFhKly5tIgz6efrpp53LBeHJINqgHOKHYxBQ9u7da2JPeHi4iSkIy1akSBHJnj27zJs3z7b9+/dL1qyRw1I5fTj7gwcPWv+4h2OYAwSOrl27WlGdOnXkzz//tA0CCMScL7/80uaeM2dOE0cguEB8wfwef/zxSNdjXAgPh+3IkSPywQcfSHBwsN03V66rogHqMI769evbff2NbcSIESbGoBH6Xr16tW0QwfBc4jt2u7mPD12L11w+VysccQUl2w+fkwE/bzKhpHH5HDJmwR5ByK1vu1e1a54c/Z+UVqHks8cqyrq9p+W9GVulSI60Ur9UNhN1Xv1hoyDMF8KSfaML9N3HrJEfe9WQdKmSWd8QFvrpYn8zFVlwn8UqGkDIGdS+rExeul+eG79OVr/bwLxWMJ5P/9gh91fOZSHB5qlA8fKEDSaIQHS4HrZdBSgY5uNtECEcIaJEbldenNd+DDJRA2JI6hSBkcLEbT501uYNzxlve69DWe+iSOfIpXI5LEIu68PacvCsPQcIVE4YOggzk5TXPfqM+rcqJUVzppXZaw5LPx3PY/ULmDACoaSzet1Mf6mmFNVn9O4vW8zzB94+C1Vo2nvigkCogVi3TZ87nn0JDb/26+rDJpq9266MZM+Q0sSY3sr9h+eqC8b17Dfr5FJYuLxyf3HZdyJE3p2+RdKoSAERCx5G/2w9oWLHRemlod4qFLh27p4T3aFC14g/9+gzTSntauaWdXvOqDCkAk+xTFImX3rrH8IK2N5TPpv8qcLKzP+OmohTLn966Ttps+w9HqLfwTQmiPy6Wl9f8mMXLobLqfOX5bvFB6RM3vSSMnmA/LvzlG151YOsdonMsmjzSRn22y4LkbZh/1kVW3YI6lpXyyUrd5ySH5cdMrHloVp5dGyhsvWQ6/tSKHsaSaGeVj3HbjAxp2axzNp/oPytws2xM5dkcIeSfkbFYhIgARIgARIgARIgARJIPAQSekEj8cycI03yBLBGAs+Ys7rXP/PMM2a3RgrbqirGNi07o/sE8oq57iwjAiTFqZS2Zdh+JfR3Sp2gvucYUTxCIjSwToS+Y2leNhoqLSKtjgjh1WgkQAIkQAJxIhCtQOMpiOAO8Oh45513pEuXLjJmzBiB5wa8NhYsWGAiAcQJ5HrBmzEQKWAQSgoXLiy7d+92izPr16+XPHnyyNtvvy0DBw6Ub775xjxs7AL9gKcKvFYgXCRPfnWYuNe4ceNk9uzZ0qZNGxNLTp48aZfB6wYePE888YQkS5bMBB8INsuXL5emTZs6XUe5x5h/++03qVoVgkKEOCHdILzAm+avv/4ShGwbMmSICTTz58+3/rp37+4WqXA/J8fNm2++afVDhw41L6C5c+faWIYNG2btoxyMV6X32MAUNnLkSPNYcsaGcwg0zr3jOnbr3MdHj7FrIpVCPPHM4wIPkafuLmxtMuhi/ovfr7f8KRC1IAy8cG8x886AKAEhwwm5hbwpCPn1UrNidi08Suq9vVBW7DgpDVSEgXVT8cYROYLUy+PX1Yd08bqsLXrnz5pa/hl2QnYfO+8WIqoWzuSub1Ihp4kKPy47YF4d1mECfzgL7gWz4X8o/g1eE9/1qCavag4ah2c9zW2D+TseQPCigKgSF4NYUvG1ee5L8Yw+7VRBkifT/xReMfT9yaPl1cPEVTb2770qJORR4UT/t6WGcbQeutw8YZ5pXNjK1u87Y94tELsgHC3ZdkLa18wr/2kYtgLqqZM3S2oJWnzGju+vksty6VRUkWXP8Qt2/aqdweb99NerdSSPes/AEO7t28V7TaCxAv34ulsVyRqDUGyHT100AeTjR8uYCPNgjdzSbvhq83CBQAPD9L58orxkSptcWlfPJd1Gr5egA2cllYo2EGcals0qz99b2NoOnr5dlqmnTVR2t3rg9GpSyLxy2gxdZWLgiC4uL75dRy/I7itzHbNgn937085ljXsbvffTYzbItJWHVYDM474FxBcIPnM3HDcBqGuD/Oppk9PqISzBQwjCEMZPIwESIAESIAESIAESIAESIAESuIUI6LvJJsqcVjFmpx6vVz+UIB3fMf1DNOw6jBNON4EqluDPeM8Nt9LiyJs2gCiE8vjaRe1ru95yu87vd+0snXZaVLsvr4JNab0Flmx0CZBiTXxB83oSIIHbkUC0K34I2QUhxTFHsIAAAg+OO+64w0QS1CM0F8QZf/bff/9Z1ZkzZ+Thhx+2Y3iTwBD+y9PgnZMvnytMkWc5RBmEBmvSpIm7+PDhwybGIOTZDz/8IBBLINpAnIF5egC5L/JzAK+YGjVqWC08WeB9A4OQ9O6775o3D87h4QLPIHi5/PLLL1aPEGkNGjQw4Qh7z+sxNtjdd99twhUYrFkTWeiwBlF8eI4NXjXoHwYmsEaNGrk9lzzvHZexW4d+Pp5pXEQTqF/1bEBYJk9DeC3HnOPDGtaqTN4M6rmQVeAlg5Bk9VScaVIhh4aDSikIkbVmz2nb4PnhaZt0Md0RaEp6CBaZNNwXRAYn/FPWdCntskse1+N+Tj32dUtmk1nqGXK9DGOCQXRIncI1Hn/3gng0u28tmzM8URBGDB5Ar7YoIZ1U5MKC/IndyPoXN0O4NBjCvM3XEG/wXhqjwgdCmcEgsDjiDJgjbFyneq5QY6iHBwfawtMJ4bnAEvlw4G2zS0UweEV1V7EOz+5fFV4alnWJaBB24P3UZMgSaVYxl9xVJpvUKOryWIIwAhvx5y7b4+MnDWkHc0K75dIQejERZ3ANvFayZ0ghX83dq+JbiHnMwLtL/4uIajP05YgbOdSjBxasggfEJhhCsjmG8GjRCTRVC7m++/jWQ/CCJ45jCEGHUGewAydDJZ8KVp6iWNl86WTexhPGDG3SqnAGcQa2UT1uYLj/6t2usUHQhMFbKVPaqz9XVsgPEiABEiABEiABEiABEiABEiCBG09AhZcA/MkWrFrJDj1ep6LFOj0/eUUQicuI8AdmCv07FksK+LMVe6zYYYN3irPHe45aFxGpTq/D9WH6cRl73XQfcFnLEdwGf6JeKXPvUYYN6acv6XWoj42d02t0zoE6d0EumxIq1lS8Itbo+4YRmbSzVLppNY0ESIAESCBqAviVHqUhp4t3Dhrngty5NXOYh2XMeHXR3qPYfQhBwzHkS4HB4wXhySD0eFqmTPhtfq2hPSxFCvxrddUQ6qxy5coC4QMiEsKnxcUQns0xzzBtJUuW1LfhXf+yQPyAMIOwbc8995xgrN999515EUEUQug1eK907tzZ6UoQGs4xiFgYJ8LHOYawZI4hr40v8xybZxtPFhCvYPEde79+/XwNwcogzvgK4eVc4LkgjTwanjZCc5jA+wI5Yd6Zttk2JLt3PEUKZ09rXhjONQh75Rnm6sojcKqj3SNslKdBTIKgEFuDWAE7deHqc3L6QH6RdOoRA0OIL9jOo+ctvJedXPlAHhjcO0Wyq2OCQFKlUCbbnryroDwxarVMXLLfBJrSeTKY0IGwYKm85uHMwRGfPO+DYwhj6NcxiCdbNGTazyqGOAKN831GG4RCg6X0GJud631DL7v+p1ZXPXwQUg4hzeD9VEUFJtjG/WfkHxWY3nlQX5tRQ/i42X1qWS4Z5L0Zt3CPhVKDB0/IJVdf8LRxDF5DEFHAB+Y9Bqedr/2SbcEyZMYO41MyTzrNL5RDc+gcitTUm51TeeaCayzIqeSYI+Q457726VO7nrVTh/BsvgyCk7fQ5C0+wpPKsdMq6sHQJizcNbaMmhenrHoCpUsV7a9qpxvuSYAESIAESIAESIAESIAESIAErgcBeMuop0yA/skZuEr3y3S944husQ1dllz/9sWfxM6GP0n1XecILEdlU5FD332MwHuE8EjBEoNutsf70FeXE/TE23ysdaBIRZgALMch9BqibOu7gQEqLslx3R/T7YSrzMQcCDrOBq8ZH11qi8iGXDbrdWjqPSRp9IIKiqRWhIQX0WY6jwi8kxjluCN3xzMSIAESuN0IxGvVD2G0YBBEtm7dKvB6QS4Zz5BkqIc3S+HChQXeODDka/n0008lbdq0cujQIVm1apVky5bN6uL6gdwwED2QJwZhxyBgYFyOB0xc+i1YsKDb2+X5558XxMuFkIJQYrDMmTPL0qVLLbQbPHeQm2fAgAGCcGbTp08XiBwIS4ZxYUzwdAkKCnJ7vlSqVMntOQQGFy9eNOFp2bJl0Q43f/787r4RXu7++++XjRs3CsK85ciRQyZPnuyuj+vYox1ELBsg7wjEDIQau7diTunXqqS0/HiZJng/KK+3LiXFVNxA3poejQq7e4YHAcJzxdUQUks0LJpj8AApmz/2nghYSMf4kB+luea/cQxCyaLNJ9xiRT4Ns4bxjpq3S6oVqeT2UEH7N3/aLMu3nzSvmdlrjpj4Ml69UBDGCgYRCGLUgiD9X5Ja6SueFfBGearh1Tngns0/WCp3qEjiiCJ2QRQfuOaQssyXBf+ju9YwBohk/+05Zc8GLaCXrNp1Sipd8RjB/T6Yuc1EhztLZ7O54Vn+oCHjTmjOmOqFXV4ywecvqTiVSnreU8S2CUv2ycBpW+SIelGVVi8q2KOajwfh72AXLoapR8sl89Kxglh8TFpy0Dykxj1dwfLYoK+fVkQWaPx1ly+rS5hBHpm8WXJasxWaJyahDOLK1sP4X/BV23LovIlJvoQ1hOhbrt4zj9bLK+WuhGfbsO+sCl1HLMfO1V54RAIkQAIkQAIkQAIkQAIkQAIkcMMI6J91ASdVY9ii++XqLbNW73xexYiYGvK3IAo6xBbdR2D5K68KMXn1OJ9uusRg+VzivvThfyQYpv7pG4E/f1UA0pH4MC3V94cDjup2ULcDuu3XeR7W8jPaHH/WYrugnUUnRqHNcmWlnAKLqEhTU+dZUe+b+zrO0ceMWEQCJEACiYlAtBo2Et0XKVLEvbVt29bmB5ECOWIgtkB8QDgyJKkfNWqU1cPTxRFkHnjgAfnoo49MMIGAAg+Uhg0bWj6b2rVrS+vWrQW5WeJjThi2fzRkGkSKe+65J17ijDMWeMjAmjdvLn369LEQZS1btjQRBh4In3zyid0LOW4+//xzWbhwobWvW7eu7Z955hnbd+jQwcK6IY8NDP3BA6lcuXJ2DhGnaNGiUqtWLcvZY4VRfODeXbt2tRaPPfaYPPLIIxb2bdGiRQJhCRbfsVsnPj4Q8gqeFJ7beV0Yj86QEP7OgYs0gfx2ORQcIghdhlBgED5gD1TPI1/8tUu9PA5awvnxi/ZKw0GLLcRWdH37q1+w6biG09qpOUfO2B7J7ZupOOTLIKgh/5A/w/gwtk9+3yGbD5610GT9fgyy0GDNrog28Ij5uGN5WaR8Xp+ySQWOYGv78eztFsqri3rJOF4zCCnWd9IGm99ezVuCUF8QY+4up6/LqEEwQc6dT37briG8drnv+ew3ay3kFUQOfwavluWauwfbDM3T03vCesv/g3Bj/gz5Z3D/H5cfMF4QYzBGh1dpHQ/Ep181RJzjhQOvGowb4doyqCABe2/GVrn3/SXGBwJbkIbuwnUIZVdN22XVfW/NS4SQdhDMHvtytbyk5/4squeSLb3L8+ZgcKiGXbsg/adstW7Oh4a5PXL89Vu7eGYTd35cfkhz5ITI3I3HLXeNv/axLb+zdBYTn35ecVjw84FcMuBxVxm8CnWt3VPe9dw//X23hV9DTpqBv2xX0exMvETKa+/EEhIgARIgARIgARIgARIgARIggWgJQLTYrxHGdJkn+XAVHEaqaLFUBYjoxBkILRlU3MijWwkVKGqrrtFGIyX0iJDLr+vWR7dOGlWskZaXVuECnjO45mYaPHh0KSm8po6rjUZ2eDZCLr2h4+yt435U59BI56L5ZqSQburlIxCdIP5EZTuV2aRASfZhgCSbpqLNZr0EnjvRLx9F1SvrSIAESCDJEXCtqPqYlhOSC8IBNscghMDTA94yMORlgcfG+++/Lx07dhR4a0CQyZUrl7zxxhsmlsCL5d9//xXkrZk6daoJCzNmzDBBB31A+MAWV4NYAUHmqaeekq+++so2CCA1a9aUmHij4L5OaDD05WmYA+Y7fvx4GTZsmFUh5Bvy78Ag0CDU2axZs9zzeeihh+T111+3enjUwJsH1//000/m1YJ65OuBIXQawqG99dZbJlzBkwii2Lhx46weH/7GNmjQIPPo+eabb2TKlCnWHmHV0BcsvmO3Tnx8fDZn5zWl0168Q0rmduXS8Kx0aEKUKJIjrbzRppR8NGubfDVvtzVDeCsIH7DH6xeUk5ovZfCMLXJOF9ixqN+/dUnNM+J7Qdsu8vHh3BNVXVXgQJgtjBn99WpS1Dx4vC87evSofPDBByaQedc5513uLGh5UkbP322CCcohNnz4SDm5Sz1KHEP4N3i2fD1/j0xdqa+fqOHeb+rcMV8YQnyNfaqKCicbpMNnK60MH+1r5rUxOgW97i0qF9XzaPzifSYMobxA1jTyXY9q7rBwTlvv/eMqfDiGfDNvty0tLaroaytqXl9zK3usfgE5qZ4sw1SAgkcMws29/1BZFV9cnjHw+rirdHZZsOmY+953FMX/JMXy09iBfrygY4YQ8fDnrnlhvCO7VDIxBDl6vu5aWQb8vMldjz4Gdyhjl3s+OxRE91weqZNX4GXy0veb7PoiOdKo4JfW8rj8ud7liWQVXh+4D0KTvdSssHw4a6f0Gr/RWpRX7yrkpvGKzOd1deRTT5aexx11bEH7z8n4Rfttw1UY2xN3XRXWPNvnzZxKujUsIKPn75X+P7qEJoRnG9C2eOQb8owESIAESIAESIAESIAESIAESOD6EQjVv5n1z8nADbrN078et+mtkKclKkumggWWRBA0Qt+9Cy+poob+mRtRVDeUR/t6dFSd36Q6zSwQUcC1hd+pY7gUYYKVeRJtULFqv875lJZjyTCqcGgntO10FWkWK5N66lVzh/apfxYnWi436XHwtiRAAkmXQICKD/ob9fpaWFiYiTOed0GosGPHjpm44x0SzbNdbI+RewWCSPr0+Bcw4SxC4z0hHBvCmiGHjLdBpMFiMrxi/M3n4MGD5nEEocrbcP2JEyfsem+RyLut97kzNghlvu7t1Mdn7N73jO85QlohxJWvUE8IrYV65AOBsJMQZnliVCTxdT/0DyEPeYUOHz4snrl+fN0b49t38oLlSkFC+6gMYb0uaU6RvJlT+xRFcO2xMxc19NslKaC5XTzz03j2i3vuOX7emEEUup6Ge51RzyaE6IqPhVwK17mHu0OZefeFcGQwfzlcUBfT5xKk3lhg7OSQOXAy1MKCeeZDQn++DOOENxf4wyMnoe3wqYvm8QSBMib9g8vmg+csFFqpvOkS7GcgoefF/kiABEiABEiABEiABEiABEggSRHQP1ERyixAPT2S/a5rEbo34cHfJLFcgZwrSM+q752Gl1EBorzui+h51EsF/npMVOWWi0fflQxYpwLMbh06ctmcViiuP/X9zyWHijTqkRNeQ0UaDfNmrMCSRgIkQAK3KYEbItDcpmw57UREYMKECeZ5hXB9tFuHAJ/LrfMsOBISIAESIAESIAESIAESIAESSLIEzqmTyz7d5iCMmc7yXBSKAd65zaTCjAb7iCitQkN1FWVKaVnqJEsn2okFgJ0G8Qj8T7khkIgKXRKqx4rJr6mXUXgz3TTyfwQCp1z7LrPfS1lBAiRAAkmJAAWapPQ0OZc4E1iyZImcP39eGjVqFOc+eGHCE+BzSXim7JEESIAESIAESIAESIAESIAESOAKgXD1AFHPj0Aktp8FcUE3LfNpyVVtQARwDc8VXsMlzEQglWhiDF/mc4IJUBiiOIJ0+0e5blWWR7XPC1EINanU6+guZXm3Mi2sbREwRJvTSIAESOB2IkCB5nZ62pwrCZAACZAACZAACZAACZAACZAACZAACZCAhi9TLUA9P5L9ql4zyxTIeT/KAIQZpF8tpCJCnSvCDKLq+2lOtEpARS7kqglcqJiCFNRhLYtKqCkWIWGtVKypqN40yOND0cv9NerXr5/8+eeffnNsI/828nIjR3hCWHh4uHz33Xfy4osvSvHixf3eNyHuxT5IgARcBOKXZIIUSYAESIAESIAESIAESIAESIAESIAESIAESCAxETivGsBGFWd+VPFguw48zIfagqLMKs4U1uqGKsxU1fN0utGiJ6ACS3hp3TT0W8D2CEk2T/fr9DIINRd9sN4eIMm+0vYq0oTXU5Emh7ZjyLPoOSdwi5MnT0rbtm1lzZo1UqpUKUFOcRoJkMD1J0BN+voz5h1IgARIgARIgARIgARIgARIgARIgARIgARuAQIBp3XtXz07ko1WoQBhuHyJM+lUmFGvjvDWEXK5l0s0oDgTh4eneCOKi1x+QjF3UQ8Zzdcj2ZWtL/HlbIAETgqUZFNVzNmj7S7H4X6J8JJKlSrJuHHjpF27dpItWzZp3LixzJw586bM5PDhw5I/f37ZvHmzNGzY8KaMgTclgduRAD1obsenzjmTAAmQAAmQAAmQAAmQAAmQAAmQAAmQwG1GICBYPWf+1G2mKgfBunkbhINsKiRojpmwe1VcyKvnvsQE7+t4HjUBZRheBR416k2zWPnP1+Y7dQuBguNxqTpsBPyhIs1pFcXa6FZU65L4ymVQUJA89dRT8uSTT8oXX3whkyZNkjZt2sjy5culcuXKHnBif+iER/N1Zffu3aVLly6RqkqXLi3jx4+PVMYTEiCB608gif+au/4AeQcSIAESIAESIAESIAESIAESIAESIAESIIFbm0DAKRUGZun2u4oCp32IM6lVKSiinh73qzCgYoKkubXnkyhHl1b5NlahpqQKNeokErBKZ3FSn4XmrPG0gKUa8kxzBEl7fRbFdJ/EVy+bN28uI0eONAStWrWSKlWqmFASX4GmRo0akjFjRk+07mOEMKORAAncGgSS+K+4WwMyR0ECJEACJEACJEACJEACJEACJEACJEACJHBzCAScUWFmdhTiTEb1mqmm4oGGNIvIp2Ok18x1fVARhTSCWRfFnD9CAufprfbpdtlLNFulIo0WRXTQZ1JE65PwCmaTJk3cvFOmTGlhzlatgnoVP2vdunX8OuDVJEACN4RAEv71dkP48SYkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAK3KoEQFWbm6/aHrvb78pzRkGbh9+jWVMWAzLfqJJLguNRDKaylMs+l3jTT9dlsUw+mi7r3tH9VpIHXTbsrwlmgZ2XSOYYo42kpUqSQixfhQkQjARK4HQgk0V9tt8Oj4xxJgARIgARIgARIgARIgARIgARIgARIgAT8EtCcJoHqiGA5ZxBKy9tyqjCji/9hLSjOeKO5UefhNVWA6aziTHm9Yyrde1nAQhVp/tJwaCe14tpqr9aJ83TxYk3Mc8UiIiIE5/ENb4bukGMG4o+v7aOPPnJuyT0JkMBNJkAPmpv8AHh7EiABEiABEiABEiABEiABEiABEiABEiCBhCcQsEfDaE1TYeaoH3HmYRVnVCBgvpmEZx+bHsM1HUpEpwhJPkGf05prPWkCfguQwLz6rOppr+pRk9Ts+++/l0qVKkmDBg1k8uTJsnLlSnnnnXfc0wwODpY5c+a4z3FQqFAhKVmyZKQy75Nu3boJ8tv4snLlyvkqZhkJkMBNIECB5iZA5y1JgARIgARIgARIgARIgARIgARIgARIgASuI4GzKs4gdNZevYdXEnrJqp4zmoA+7A6t01BbtJtPIKKwpqF5SEWaS/rMNqhIg71joSrQTFcRR3PWQMxJajmCXnvtNRk7dqz07dtXcubMKUOHDpVGjRo5s5edO3fKfffd5z7HwcsvvyyDBg2KVOZ9UqdOHe+iGJ8HBHjwj/FVbEgCJBAXAgEa0zCJOgjGBQevIQESIAESIAESIAESIAESIAESIAESIAESSNQEVJBJNldDm03SRebjXgvN6XSRv61u9+iCf4ZEPcskOfjAdfrsvtVntkM3DVHnaRGNwyWsvT637J6lifsY4ce+++47ad++vRw7dkyyZs0qgYHMSJG4nypHTwKxI8Cf+NjxYmsSIAESIAESIAESIAESIAESIAESIAESIIFbmADylQTO1wV+77wzyTXZfB0VZ+6kOHOrPr7wCurw1ETfJc+um5e2hnw0Adt15Bdv1dHHb1zZs2enOBM/hLyaBBIlAQo0ifKxcdAkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQALXENB1/UDkXN+vm3rSRLJC6pTRTMWZLJFKeXKLEQi7S59RNX2QaXTztBANdbZARRoV4JKKDR8+XCpXrnxLTAfePM6GAXke3xID5CBIIIkSYIizJPpgOS0SIAESIAESIAESIAESIAESIAESIAESuN0IBJwWSf6+ul4E6eYp0KRWz5mnNO9MbSWS+najkvjmG6C5g5KP0Ge4xes5ptJn+Io+S/W0EWbWTnwPliMmARK4hgA9aK5BwgISIAESIAESIAESIAESIAESIAESIAESIIHESCBgvY76qG6e4gwmgtBZZXVPcQY0bnmLKKDPq4Z60GTw8qIJVS+a/zT62dlbfgocIAmQAAnEiAAFmhhhYiMSIAESIAESIAESIAESIAESIAESIAESSLwEjh8/LsHBwVFO4ODBgxISEhJlG6fy8uXLsm/fPgkL88rk7jS4GXtdyw9cqzc+43XzFOp1UV/zz2T2Kk+kpydOnJCTJ5NQnC8/zyG8jlbk0k2daDwtYI0WqKcUjQRIgASSAgEKNEnhKXIOJEACJEACJEACJEACJEACJEACJJAECNSsWVP69esXp5lAfHByJnjvb4fFbH/QFixYIKVKlZI8efJIzpw5pVKlSrJ69Wp384iICEEejGzZskmhQoUkY8aM0rJlSzlw4IC7jefBuXPnpGfPnpI2bVopWrSopEmTRl566SW5cOGCZ7ObchxwTtfyd+niveYqiWQFNadJES1JFak00Z3MnTvXnmXu3LklV65c9iyXLFmS6OYR0wFH5NbnVkJVN+9cNHs1D81x7eUW0gZjOie2I4HbjcCsWbNk2rRpfreVK1febkiumS8FmmuQsIAESIAESIAESIAESIAESIAESIAESCCxEhg5cqQEBQVF2jJlypRYpxOvce/fv18aN24s3bp1k8OHD5vHS9WqVaVFixYCDxjY1KlTpXfv3jJu3DiBZ8amTZtMbOnQoYPPe0NAmz17tixdutQ8chYuXCg//PCDDBkyxGf7G1kYsE/vpiKNeEXFiqioBelv5EgS/l7wbmratKl07NhRDh06JHi2TZo0kbvuuitJe9NYrpkMXjw1fF3AHi2LmbOX18U8JQESIIFbiwAFmlvreXA0JEACJEACJEACJEACJEACJEACJJAkCWzcuNHe/p85c6bUqVPHPDYefvhhE1JiOuF//vlH2rZta9fefffdMmbMmGsuzZcvnxQrVizSFhh4ey5/hIaGyrfffmsCTJYsWcyD5v7775cjR47I2bOuJB67du2ycog26dOnN68YHON5hYd7J3IR2bFjhzRo0EAg9MCLBl5PNWrUsPJrHsYNLgiA04+PRfvwoqrZpL3Bg0ng2+3du9d6fOSRRyRr1qySI0cOwc8PDOJbUjXzfEp37ezwrANCry1nCQmQAAkkNgK35/9QEttT4nhJgARIgARIgARIgARIgARIgARIIJETQG6TnTt3SufOnaV169YybNj/2zsP8Ciqr42fTeglhBZAehVQQJqAAgqKIMWC3b/YQMTyCSoiKiIINuy9YQEFRUFpdrAASlFEkd4NHUIxoad9573JXWYnu5sNKRvIe3wm0+7c8puZxee+c855WdasWWO24+MzTyiBshAOkPPkrbfeMsLAgAEDZOLEiSc5mdzrPkKQwRMGYcwg1ixdulSefPJJufrqqyU6Oi0hC+4FwpMNGzZMli9fLt9++62MGTNG+vfvL/6ErZtvvlkmTJgg48ePN9427777rkB0C+Rxk3uj81PzXj2W6DpeRL1nYvRYYdfxk2y3VatW0qhRIxNObvHixfL777/L4MGDpXnz5tKwYcOTbDShdze1gpaFQOOawfTs1TB27nsderUsSQIkkIcE8CHAtGnTzIL/D6D5Eijku8s9EiABEiABEiABEiABEiABEiABEiABEsg9AgiRhZwlsPbt20uDBg0EuTUgFASzjz/+WCpUqCCffvqpFCtWTK666ioTkgtCD7wKrD344IPy4osv2l3p2LHjCee18VZykm/A0wh5Y2AXXnihvPPOO94RQcQBr379+hlhBicw6Q+O/gz5aW655RZT3p6HmIPwW+E2D5yC0iK3He9KlHrPFNFdV1qa4wVOji2IZfCGglADEQ1WunRpQY6hU9pUmEnVCIWeQiq0HXPcxAQdtften9IgOLj8SCA2NlZGDntQZnz9jeyPP5QvuhgdVUJ6db9YHhv9jNSooQm4wmwIoznji0lyY9u0WIVjnpgi3XpdIZdeemmYe5Z/mqdAk3/uBXtCAiRAAiRAAiRAAiRAAiRAAiRAAqc8AYQms1arVi2pX7++/PPPP5kKNH/++acJrQVxxhrEhg8++EDgnWOtcePGPh4FEIAKukFUadq0qYAhcvR06NDBeGBg0h/5YyDOIA8NRBbkNxk6dKi5Hz/88IMULuzrejJo0CDDHMJYkyZNBN4cDzzwgCDPzxNPPBFe1PCocEdlK6rHXN4X4e3kibUODzKIMz169JDbb7/dhJ/DPUAOmr/++kuqV69+YhWfDFcVVXEmwiHOoM+413qYRgLhIgBxpnOHttK3tUdWPlpVYkrnj2n2XQlJ8s7cOaZvP85dkGMizZ49e8zvfKFCoY/z77//NuLMH0OrSc3yaf+WDOxURlo9PcX8m1S7du1w3b581W7oRPNVt9kZEiABEiABEiABEiABEiABEiABEiCBk5FA0aKYMT9umOxB+K3MDGXc1xYpAtcIMWHP7PU33XRTvvDmsP3JD+uYmBiTZ+bss8823jEQaH799Vcj1Dz//PMm8fxTTz3l7Wq9evWkXbt2RsRBviBr+/fvN9438MBBqDMYvKBgEGmGDx+e4R6Zk3n1B3P4rnl8I9icAhP548aNM/dw8uTJEhkZaYhecMEFctppp5kwf4E8nvIKfa62k6I31X0P3fc5VzvAykkgIwF4zkCcGdYdcfjyj0EoSutTnPHueW/8J9nqHIQZeKzOmzfPeO3hd37gwIEh1Tlr1izp06a0V5zBRTXKFTbeNBBvwi3QfP311yacJzx4X3vttZDGlBuFToFvCHIDC+skARIgARIgARIgARIgARIgARIgARLIDQKLFi3yVrtv3z5ZuXKl8cTwHgywgaT0EBWcietRFzxwSpb0k0U8QD0F6fAbb7whXbt29RkyxBcYPGVgBw4cyMCvePHi5hxy0zjNeiqVKFHCeVjs/rFjx3yO5/kOnKvcM12IOpSc5z3J8QZxL/CcW3EGDdgv2e19yfFG80OFEGb83UM8ou57nR/6yz4UGAIIa9a/Q1our/w4aPQNfcyu3XvvvVK+fHmBQP/9998bMd7573h26w/X9SNHjpQ+ffqYMKvO/68IR3/4UxYO6myTBEiABEiABEiABEiABEiABEiABAooAeSfmT59uixcuFDg7YI8GsgTY23Dhg2C0FrOZffu3dK7d28TCm3IkCGyZMkS+fDDD+XZZ5/1enLY67k+TgDeLT/99JNJJr9ixQoTCgvhzGCdOnUy62uvvdZ4xbz66quyatUqk9MEk1a4L/CeWb16tZxxxhkye/ZsqVy5sjlm7yHCbn3++ecmJFr37t3NNabSMP1JxVypb0Q2kQSPeA7qcXfoszD18USb7dmzpyC5NnIJIaQZ3oG+fftKQkKCgP0pa+pc59mvo0vydZlBXpoM9/qUhcCB5UcCyDmTX8Ka+eODvmU3L05iYqLJ+wavGQjxLVu2NDnIpk2b5q/JDMcQhvSjhQny7x7EJEyz2L2JMn5BgjRr1sweCss6NTVVli1b5vUCDUsn0htliLNw0mfbJEACJEACJEACJEACJEACJEACJFDACIwYMcJM8GBiuVGjRjJlyhSpUqWKlwL2sTht6tSpZhL6k08+MWG0XnnlFSMGDB482IgPzrLcPk4AeWeQoPnuu+8WMIOB+YIFC6RChbSwPA899JBgEg73BXloYBBm5s+fL/CkiY+Pl7Vr1wrC3MC++OILueOOO+TKK680+/gDkSec4WFsR1Ir6lZa1Dt7yAgzns26W1cXX8ef42VOgq3OmrsJzz+e+bFjx5oeIzwQ3o3WrVufBCM4sS56tup1/nKvx6hrjVuMO7EmeBUJkEAAAsizA4OnqjXkeZszZ47dDbqGCNOr9zWac2aSCWuGwhBsuvW6IuzhzfBvXn4xj7qfuqM45pe+sR8kQAIkQAIkQAIkQAIkQAIkQAIkQAKnCAEkqG/btq3xAoAnBsKlIGzKiRhCo0VHR4vH4/tV/YnUVVCu2bt3rwmPVaYMXA8yGr4mRtgzcLUhzmyppKQkbzgt57Fdu3ZJpUqVfMJu2fPhWHu2aNiv5/WZ2OT7XKR2TJXkG1LFCDjh6FgOt4nnH1a2bNkcrjn/VRf5tUYym6z3c5/jnupmyt0pkoz0SAhrRyOBMBBADrTktxqFoeXQm4wcsFKyE3oSQv15553nU8eECRPk9ddfl99++y2kjiDPC7wtkXMGhg8HnLlnqlWrJq1atQqprtwoBO+guLg4QUjQcBlDnIWLPNslARIgARIgARIgARIgARIgARIggQJKAHk0TlScATJMTFOcydrDU65cOQkkzqAm8IQnk1ucwTmb6wTb1nAMCeqdOVHsuXCtUytpy+V0ifTtgWe5jm+vHjvJw5zZUeH5LwjijCC82TJVYw7YkaevS6jYVlW3i7qOn6K7yI/x3nvvyZYtqkDmoWFS/ehRvQkhGERDhEiEmJsdO3jwoPEQO3TI120KnnybN8MVLnsGhv/++2/2Ksni1fFH/BC83gAAO/9JREFUUgRhvUK1PQeTZf+hnEuc9dVXX5nwoKG27yxXtSpeNBHcF2sQ8mvWrGl3Q1rXqlVLLr30UrM4xZmQLi4AhSjQFICbzCGSAAmQAAmQAAmQAAmQAAmQAAmQQLgJ4CvZl19+OahIEO4+nmrt4wtvu2Bsdhvr3No3FYfrj4a8SmmogWJKuoLF7NE8NP/oZP/xOcZw9ZDtZoFAxGq9Z5hLT1SRxmkNRUwOGtdhZ5FTaXvlypUmrCBCEeaFzZgxQ04//XQ588wzjQj7yCOPCDzs/BnygyEHEjzp4BmB9aRJk3yKwtMCeazwuwPPyWA2evRo+eabb0y+E5SDMHDDDTeYkIx169Y14ReRgymQQcS5/PLLTVvw3LAGD06MqU6dOiZcF7aXLl1qT+fK+uDRFLl+7FYpO2i11H54nbR9epMs2XwkYFu/rDkk9Yetk5j710j5+9ZIk5Eb5M/YtPIf/rZf4A3jb5mz1lfMcjcAsQshKd2il7ucv32I8DDkarG2ePFiw9Luc519AoWyXwVrIAESIAESIAESIAESIAESIAESIAESIIHgBGJiYswkY/BSPJuTBNyhbfJ6PyfHEmpdqcg7PU+XeN8rIuZ6JLWpel6U1OP8XNkXTn7c03npCKS5gOeT0/TepZyl97G08+CpvQ2BA7+feeF5APHjiiuuMDmpkGsK+127djUeW8h/5La+fftKcnKy8UqBVxdCX/Xp08ckk69Xr57ce++95thFF11kclkFEnpQ76ZNm+T555+XhQsXepu5/fbb5ddffxUILBUrVpShQ4dKz549zT6YOG3ixIly8803G8HIefzw4cPSpUsXQV0PP/ywybk1YMAAUw7eNLnlBXjbR9vl1/WH5a9H60hM6UgZMmWXdH9ls/w9vLbu+07Jb9mXKJ1f+Fee7h0j/dpHS2JyqjwweZf0eHWzbH6mnvRuESXt6/sm0Zrx9wEZPHmn1KkQPBmTvZ/vvPOODBo0yIkm0214Svbv319GjhwpCG2GMGWTJ0+WJUuWBLwW3l5Og/dmMI/X9evXe8Of2euCPSe2TGbrfv36ZVYk35znP0n55lawIyRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAtkhkFJXvStqaQ1FXF/8x3okYoF6ZPyXndp5bZ4Q0FB0EeokYcKbHXG5yVRMlZTG2gvfueo86VZuNAKvmEcffVSQTB1ehphUdocymzt3rhFJ0D5CiI0YMcJ4pMALBKLJiXhGBBrLJ598Ik2aNDFCCASXTp06mf699NJLGS6BMIM+wOsF4RGLFStmBBIUtN4pq1evFnhc3H333Rmudx+YNm2aEaGaN29uTiFv1meffSZoG9488M558cUXBbmvfvjhB/fl8vvvv8vnn38u48aN8zmHkFw33nijYVWqVCkjNkFEQj1YcsP2apiySX/Ey8vXVJImVYtKpahCZntXQpJ8vyKjK9/RpFSZ0LeqDO5SXsqWiDQCTq+mpQTlD2iItKhiEVKvYhHvUqdCERk/f7/ccV5ZqVY2uEATEREh119/veDenoiNGjXKPGPgD7EH9wAeUYEM4opz2bNnj8nxgjwv/paEhASf8qgXgk52l0D9y4/HfeW6/NhD9okESIAESIAESIAESIAESIAESIAESIAESIAEQiGg+WdSOqRK5Hqd2N+mFzh0Gs8snfSrp5OHLfV4AclfEgqy/FbGo3PmkV/r/Ytz9QzeMx31hpbX4y7dxlXypNm977775O2335Znn33W5OXCGrk6fvnlF4GYgIlu5BB54YUXzJgeeughef/9940ogpBhQ4YMEUyAf/DBBxnGPGXKFBkzZkyG4zjQunVree211zKcg6DSsmVLwaS+tRYtWhghA+HGSpaEC1qawfME/XXajz/+aHYhOMFsmLGtW7ea/WB/fvrpJ2nXrp23yIYNG8w2QqdZi46ONgLSunXr7CHvGsIB7L//fFXY2rVrG1HBW1A3vvvuO0F+lcqVKzsP59j2+t3HTF1NqxXz1hmtwktTFWvW7ko75z2hG3VVfMGSoo/3MRVrVu04Kk98HSfXtIoSXOe2qX8lyNKtR2XqXdXdp/zun3XWWcYLBrmCspq/CuV//vln2b59u8AbpmjR4D+eJ5PnCmA9/vjjfpnl5UEKNHlJm22RAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAnkKoEUnRuOOF3n8PfobKfTAyPBI5HTtOly6oVRT9ecFcvV+3AilXsSVJyZoVdibj7ZpcJU0fvWRjW3UyS8GTwHIM6MHTvWeHiAV/v27aVBgwYyZ84cE4Jr7dq1gnIQLg4cOGDyeH388cdy9dVXo7gRGJBzBQKOe+IdwkTv3r1NOfefGjVquA+ZfeS7gUDjNJuHBCHIgnlO4DxCh2FBvpisGgQAiEHWNm7caDbhneM0JJyHkHSiBsEL3OFREiz01onWj+s2xqXlCzqtjO+PTC31fFm9I6NAY9t6b95+GTBhu9m9sFFJGXuj79hxIjlF5LHpu2WAes/ULBfce8bWW7NmTbOJnEHu58SWyWztvg+Zlef50An4PiWhX8eSJEACJEACJEACJEACJEACJEACJEACJEACJJD/COicZUoX9aLRsGZmol8nNL22RkOdae7w1CvUk6aaHs34cbq3KDfymIDmOo/4SYW1+XrfDrrEmWIqznTTewaHh+POHXncwZxtbsWKFabCjh07eiuG+ABhBblfunfvLvPnzzf5Z+rXry+LFi0y5ZDjY/bs2WZ7586dZo0k7h06dPDWgw2IHU7Bw+dkgJ3y5csbQch5Gp4zsKioKOdhn214ZsDzB+HRnnnmGZ9zoe7Ay6ZMmTLe4qVLpylxaB/h06xBqEK4rRMxcIWghdw4CNflz+DJc+utt/qcwpisKOZzIsAOQpLBDh5LkWKFj//IJGi4skoxgUWVS88qJU2r1ZI/Y4/IGz/vk3Of2SSLh9WRCMfr8OWSeFmx/ajMuDs07xn0A55HMNwnWv4jQIEm/90T9ogESIAESIAESIAESIAESIAESIAESIAESCAbBFLgQXNOqkTs0Ur2OWY3ddczVz1pSqVKcg8VajDhf3z+NBst8tJsETist0FzBEXM1Hvlul8QZFLPUtGttbZwPMJWtprLDxcfPXrUdMMdMgpiBHLTwOBJ07lzZ+PpceTIEXOsUaNGUrFiRbNdvXp1I1acqGBhKnH8QU6Zf//913FEZPPmzWbfetL4nNQdjOPaa68V9A85YIoXL+4uEtI+wqfZceOCOnXqmOu2bdtmwr/ZStasWSPdunWzuyGvY2NjpWfPnkaYefLJJwNeh3aHDh3qcx45cLJitTVcGWzr/iQpX/L4DwzCm3U/s1TAqmJKFzL5Z9rULi7NaxQzAs28dYekY/0S5pokjYH2qHrP3N6xrNQqH1jocTdguRYuHPo17jq4n3sEKNDkHlvWTAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkEA4COs+f3EXFmC26/OYKdab98XwXIZERKZLcVSf/T9MDx+dQw9Hbgt2mOmhEqnNIxGd603br4raq6j1ziXrPVHCfOLn3bbiwP/74Q3r16mUGs3fvXkGYMZt3BblSHnvsMXPOlu/Ro4d06aIPt1pSUpJAwPCXSwW5ahBuzJ/BO2fq1KkZTjVs2NDkrXHmKpk8ebI0b95ckHPGbSkpKXL77bfL8uXL5bfffvMKR+5yoewjhJbTw8OG5Zo2bZrxzEEdS5YsEXjaQEjKiqHeiy++2HBFvh5/Y7H1oV2MKTtmxZNpmisGeWdg8IrZsi9RGlZOE2+c9b+u3jJfLkmQWfceDz1XPyat3I7/krxFJy9OkDU7j8k39xwv5z0ZZMNyhYcULf8RoECT/+4Je0QCJEACJEACJEACJEACJEACJEACJEACJJBdAvqhevJlqVIIHhnLVKRJdEz+a9gzz9cq0mjIoeSLVaTBfCc/Ls8u8Sxf79mvwsxvunyp9ybOcX9sTZovKPlKFWhq64GM+oAtdVKuMVkOseWOO+4QeDYgvNcTTzxhQpohXBlysOzatUvOOeccM74KFSqYsGf9+/eXt956yyS5f+mll2T8+PGyY8cOk8DdCQKh0yZMmOA85N22HjjeA+kbt912mxFoBg4cKA8//LAg3NeMGTNk+vTppsSUKVNMUvVvv/1WIKgMHz5cJk6caMKaIS+MzQ1TW8O01atXz1190H3kxYHQYw2eRaNHj5Zhw4ZJs2bNzHjRrzZt2kjXrl2Ntw2EKohNQ4YMsZdlWMOzB+HMkM9n1KhRMnfuXG8ZCE/gmtNWtJBHnrwsRh6eukuaVSsqVcsWlns+2SFt1TOm6xmlJDE5VS544V/p0aS0PNitvLSvV1zu+XSH3Pf5Tul7brQc0/MjZuw23ercMM1tzHjPTNuVZe8ZVLJq1SpTV0xMjFnzT/4iQIEmf90P9oYESIAESIAESIAESIAESIAESIAESIAESCCHCKRqmobkyzUfzRGd/F+rIk2SQwTQXc/sCBVwVAS4VEWA+tooUl04iuRQN1iNm0CyYtbwc5Hf6/oHBR7vB3qU3pNe6jnTXC/GfTkFbdy4cQJR5JJLLjGjg/gwc+ZMIxp8//33gjwsCGlmDeX79evn9biprUIIypUrV84W8a4hkGRVJEE9EFzuuece422C9iGQ2JBiyHkDD59DhzRhkNqYMWPM+sEHHzRr+weCCcQVt3k8fu5zeiGILmg3OTnZ6+GCXDHIr2PzxbRq1UqQgwceMAittm7dOtmyZYtPM+42IPrMmzfPlEEoNqdBeLJjcx7Pie37upSTf7YdkcvfTOtf61rF5f2bqqjnnoaFO5Yqa3clymb1qIE1q1ZMpt9VXe6cuENenr3XHGtcpagseri2VCiVpkzCe2ZDXKI8cFHWvWDgpXXRRRedcPg50yH+yTUCnmPH9ImgkQAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkMApSiBCQ2hFTtHJ4Q06QKdIY8dbQ8UAiDTN1JumrB5My/Ftz3KdkwQ030zEZl2me8SzWCuGeOY2iDPddOmu9+N43nh3qVNmHzlCdI5WkIfFGjxrEPJs0qRJ9pB3jbIHDx6UsmXxsOaOrV+/XpDjpkgR35BcCKtWqFChHG8U4g/amzVrlsD7x2nx8fGSkJBgvGicx51ijvN4XmyDS/Jbx8WzQG3Gq5de/OFkqaZeNE5LVi8+iDVu23tQBaoIj5Qp7ueku3Am+5EDVsrhw4cFYdtGjhwpffv2zeQKng4Hgezf6XD0mm2SAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQQIgEUs5WT5re+o1yXb2gkJ9vlWM9EjHWI5EayckDEQf52P0UC7E5FvNHAF4zcTopPV+XN1ScWaDCjD9xJjpdnEHouQIgzgAVQpw5xRkcQxix888/H5sZDOJAboozaLBu3boZxBkczw1xBvVWqlRJHnnkEXn11Vex62NRUVEZxBkUCJZLxqeCMO5EFYvIIM6YvgeYlS9XMjJHxBk7ZOQaQvi8Pn362ENc5zMCOS935rMBsjskQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkkNJGGRTWcGdTVRhYrerLMZfnxmEVDdSro9AqFQi66qIfx5vE9L4fvhNkVgkoak+CLhrpKeJHXUOYOehijzpxqHy6ONNF2UdltaFTpzy8VBAmrFevXnk2KKenDDx0cnvf38Duv/9++eijj0wItejoaG+R3OwP6j6VDYIachE57+epPN6TcWwMcXYy3jX2mQRIgARIgARIgARIgARIgARIgARIgARI4IQIeNbql/ealN6zVC8/pKqAP08ZFXJS1esmpbOua6V7cqSlgjihNgvsRZqqxKO5ziMW6DJbWccF4B2pN+E05a1h5pLbKa0SBZYYB36SEIipEC0rH60qMaXzp//DroQkaTRqq+yK23+SEC243QzgTFVwgXDkJEACJEACJEACJEACJEACJEACJEACJEACpy6B1Poa7uwWFV7OV1Ggoi7+hJdEFXB+1ZBnL+vyhYoLK1Ro0KT2knTqcsmxkUHwOqi8NivaXzQk1isaPm6yCjO7A4gzJfSCxnpP+qo400GvpTiTY7eCFeUegV7dL5Z35uZf8QN9Qx9p+Z8APWjy/z1iD0mABEiABEiABEiABEiABEiABEiABEiABHKawFEVEH5S8eUnFQ7+1cqP6jqQlVFBp42G31LvjtSq6R41CH0W5JJAVZ2yxzXpueeAjm6vMlXvpIhfFE6s7icFgITPxssp11YqzGgkr9TKus9PyRUC7WQgEBsbK507tJW+rT3Sv0N0vvGkgecMxJn3fk+VH+cukBo1apwMOAt0HynQFOjbz8GTAAmQAAmQAAmQAAmQAAmQAAmQAAmQQMEmELFGdYFv1GNmuXLYq2KCJrMPaKVUUGihobjO1nV1LVVWhYWSui7IwsIRFWbiddFQZp5/FMVvynBbJhxLqtdMNeV4kYozyA0EhjQSOMkIQKQZOexBmfH1N7I/XuP55QOLjiphPGceG/0MxZl8cD9C6QIFmlAosQwJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkMCpS+CwetPMVXFhjgoL8PpAEnv1CAloEGTqqEdNaxVqzlSRppwupfVYcV0Kglij3kceDWMmCTrcDbq9WAWuv3Uf3BDiLJAV0ZPltUgLFWa66bqKFvQXYi7Q9TxOAiRAAqcYAQo0p9gN5XBIgARIgARIgARIgARIgARIgARIgARIgAROjIBnhwoOs3X5S4WG7VrHoUwEBzSjXjVyuuo5TVSs0fw2qepVI6V0DbEmf+YPR6+zZhCrrCijYcyQX8bk5VmqfHbquWRdB7PCyggiVl3l1EWFrUZauGiwC3iOBEiABAoGAQo0BeM+c5QkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAKhEFAtwbNJHTvm6PofFR5UtAlJqEHdxfXiBipCNFaxRsUIeNaY8F2a+D61mG6fLIINBJljOn71LBKN3GRCmKko41mtnjLL9Nge5RIsFJwWMQZhBmHg6iiTjirMNNOjyoJGAiRAAiSQRoACDZ8EEiABEiABEiABEiABEiABEiABEiABEiABEnATgFCzMV2oWaGChOZYkYQQhQnUpUUlJl2oqavrmipUROsxeNao94gRbIroNkQblA2XQWhJ1C6oh4xoPhnrKePZpscQvmytdk7FGTmShU5CqNKxYswp7VWYaa7XU5hRCDQSIAES8CVAgcaXB/dIgARIgARIgARIgARIgARIgARIgARIgARI4DgB1Ro8WzWk1x+6LFGRAiG99utyTLf1XJYsWi84TS+rqoJNVV0jB0sZXSPcF8SawulLpB6DcKNrsyCvTRb0ES2dZvCEgQCTvnjSxRgIMnbxIGTZLl0gyGzVRrboOYhRiVlsEH0sreODx0xDFWXOVnEGoczgOUQjARIgARLwS4ACjV8sPEgCJEACJEACJEACJEACJEACJEACJEACJEACvgSMmPGPCjWLNNRXrJ6DUJOgS1bFDGe1CAMGz5ryKmxUwFrFm9K6Rh6bkrrGol43qRBvoJn4WyAUORcVZjwQZ+AVc1C3dREVYrB4tM+eOK1kj+5jCSXPjhbzaxBlSmjDUbrWvqeclSbMpFbWfYhLNBIgARIggaAEKNAExcOTJEACJEACJEACJEACJEACJEACJEACJEACJOAiAAEEXjXLdb1MxRr1PpH/dIEIArEGYklOGkSZolopRBrrWYM1FpyDZ0ySa4E4k4yTOWwQXiDKqIBkRKXTVZRpquJMPRzP4bZYHQmQAAmc4gQo0JziN5jDIwESIAESIAESIAESIAESIAESIIH8QGDp0qX5oRvsAwnkOAFPikeKxxWV0ptKScnYklJ0bxEpdLiQRB6JlMij6mJiRJJcEEpyfCQBKvSoAFMkRVKKJktSsWRJjEqUQ1UOS0KtA3Kg2iFJ1mM0EiABEigoBJo2VUU6B40CTQ7CZFUkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIFm4AJIbZRHVvW6bJevWvilMfh9OWIro+qWIPwY/nRoCMh5BryxthFw5el1tCwa+ohAy8ZE74Mnjw0EiABEiCBbBOgQJNthKyABEiABEiABEiABEiABEiABEiABEiABEiABPwQQCg0zfOCEGgIiebZost2VUHitSxCkB1zLIm6nZRHnjbIHQMhpgjWumCNRUOUpcboUlUFmapY61JFjxfVhUYCJEACJJDjBCjQ5DhSVkgCJEACJEACJEACJEACJEACJEACJEACJEACAQhoRDAj2uzW8+pdY7Yh4sSlCzcQbWxOGaztNrxuVFPxWawnDnQd9wIRBvliCqWvndsltZpyulTQCsvrGksFXSppWXjO5JFOpC3RSIAESKBAE6BAU6BvPwdPAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiSQbwioV43noPbmQPpatz26LTgGj5uktMWTvjbiDUQbiC9Y1Bsm1Qox8IyBR0wpXUOQ0cWssa/HBQIOjQRIgARIIKwEKNCEFT8bJwESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESKIgEqJUXxLvOMZMACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACYSVAAWasOJn4yRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAgWRAAWagnjXOWYSIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIIGwEqBAE1b8bJwESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESKAgEqBAUxDvOsdMAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiQQVgIUaMKKn42TAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAkURAIUaAriXeeYSYAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAEwkqAAk1Y8bNxEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiCBgkiAAk1BvOscMwmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQQFgJUKAJK342TgIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkUBAJUKApiHedYyYBEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEggrAQo0YcXPxkmABEiABEiABEiABEiABEiABEigYBLYunWrxMbGnpSD/+eff+TNN988Kfvu7HRujWPNmjUyfvx4Z1Nh3d60aZO89957Ye1Dfm88MTFRVq5cKbt27cpyVz/55BNZsWJFlq8rSBfk1rsGhnPnzpVff/01V3Cmpops3nvYLNg+Udv531GJP5wU9PKNuw/JsaSUgGWSklMFZYL1IyfaSU5JlR37jwjWgSzhSJJs0L4EKnNUx7F2x0E5kpgcqAoJpa8BL9YT6OPWfUeCFfE599+hxAz3IDk5Wd5//33ZvXu3T1nu5C0Bz7FjxwI/bXnbF7ZGAiRAAiRAAiRAAiRAAiRAAiRAAiRwihN444035PXXX5e1a9eakcbExMioUaPklltuyZORf/fdd1K6dGk555xzTri9Rx55RJ599lmJi4uTqKioTOvJiTYzbcRVAAJJ+/btpU6dOq4zx3ezOo7jVwbf+vjjj2XgwIGyZ8+e4AXz6Oz06dPlyiuvlKNHj4rH48nVVvfv3y94pnv06CFffvllhrYOHTok0dHR5rjOyfmcxz3r16+fTJkyRXr16uVzrk2bNnLkyBFZsGCBFC9e3Htu/fr10qhRI1m0aJGcddZZYu+pt0D6xhVXXCEQUtwGJsOGDZOXX37Zewr1ffDBB9KiRQvvsWAb1apVk0cffVRuv/32YMVCOgchA78NvXv3Dlg+HO9TwM6EeMLel1B/M3bu3CkYJ+5byZIlA7aybds2adKkifzwww/mfl35yu+yYmtChvLDLz9drm1bVV74Zr2M/flf+WpwW6ldsYRPufaj5skdF9SS/51TzRz/8o/t8uT0NXLwaJrIULJopDym9fRsXlnW7zwovV5Y6HO9c6d/p5oyqFtdI2IMn7xS/tz0nzl94ZkV5YkrG0np4oW8xX9cESfPzFhrRCC0cV27anKvXut8Vd+YtVE+mBNr+lKpTFEZ3L2e9DirkrcOiCXZbQdiyjMz18mkBVu99fY9r6YM7FpHCkWm/W5AFHnsi9Uyd3Xabxv6O1rH07VpjLkGgs2zX62T8fM2e+u4pWMNue/iuhIZkVZHsL6C+SOfr/Re69wYP6CFtKodLcv1/t738TLDC+erlysur9zYRE6vUspZ3Lu9YN0+eWzKKm/5upVKyuNXNJTmNcuYMv/3f/8nCQkJ8uGHH3qv4UbeEjj+NuRtu2yNBEiABEiABEiABEiABEiABEiABEiggBGAEIPl1Vdfle7du0vRokXl66+/lv79+8t///0ngwYNynUimIiuVatWtgQajOHBBx8MSZzBgHKizayASUlJMRP9H330UVCBJqvjyEofCnrZr776SuC5g2fNaZMnTza79evXdx4223aCFEKNW6BBAXi4PPTQQ/LSSy95r031406AuiFKOa1ECd/JeHsOQiO+oMcEf6tWrQQC0+OPPy5dunQRiD9WTLLlc3uN34O33norqECT1+9TTow5q+8a2EOs69SpU1CBBvWef/75PmLaFa1Pk9tUIHFa2RKFnbty67tL5IcHz/EKDz4ndWfRhn1GKBh1ZUPpcmaa+PDVXztlyKcrpHJ0MWlWI0q+HdLOXAZRosdzC+SBHvXkgjMqmmNRKsDAy+TuD5dKvcol5edHzpUDKvQM/OgfrWO5vH5zU4nweGTltgS5e9xSueeiOnK9CkPYv+WdJVKmRCGBOAL7bOE2ee2HjfLmLc2kRa0yMlVFjAc+WS5VoovqfnSOtfP81+vlj4375ctBZ0uN8sWNEHLjW39KtXLF5BoVtyBU3aHjOU3HP/P+NnJa2WIybfEOuXfCMplUtpU0qR5lhJmZymnKwNbSoHIpUx/GU09FkctbVcm0r11UwGqpIozTflyxW8aocAQh5khiitz89p8qtlWTOy6sJfAqGj5lpfQd+5f8ooytCGSv3xV/1NzrOy+sLX3OrSZaXN79aZP8743FsmBER8F9GjJkiNStW1fuvvtu8xtgr+U67whE5F1TbIkESIAESIAESIAESIAESIAESIAESKCgEjh48KARZ5588knzpX316tWNp8HNN98sL774ovz4448CYQH222+/mS/Hy5cvL507dzYTyJYbQimdfvrp8vnnnxuRBWUuu+wy2b59uy0iM2bMEHgc4Bw8ZWbPnm3OYSJz1qxZMnbsWFPHX3/9ZUIzoT5Mjjdr1sy0h8Lr1q0z9aIOnIcgk5SUFqIHbaNNWGb98demudDxBxPyEKwgXNWuXdssmGDHF/RnnHGGGcf1118vYGht/vz5ctVVV5lzl1xyiZlgxzmIAvCAgN15553memzjK2l8xQ/eGBN4O8eBMmAILwh4RGDMmLiDhwUM9+app57y9gfj37BhgzkX6A/GgP6jPohw8B6wFoxvZm05+4n7C48sp3377bfStWtXM87LL79ctmzZ4jydYRv1oX/oJ54BcHJ6t+AYnhlwBjs8W+CfmVnBxVnO9rVMmbSv1+25jRs3yrx588xzOG3aNL8hh5o3by7wQIOYEsxKlSplJlwx6WqXKlWq+L0EHjkdOnSQ8847zwgBVatWNe/jp59+qqGk0oLu4LkfMWKEuZd4LgYPHizwBApk8KDCewtWN954oxF6nGVxHgIQzmON9x0G8WnMmDGC8IdoB8KR2/y9T/YddL/DeH/wfKCdli1b+oTds+/c22+/bdpCGQjE9h3P7Bl0vn94HvB8WMvsXbP9hYhn+3fdddcZAQ51fPHFF3L11Veb6jp27BjQMwnP6GeffSbXXnutbdqsy5YsbAQGiAx2cXqswAPlgIonb87e6HOdc+efzfFm97KWVcwkPibyr2tXVcbd3kIqRRWVwpER3rprVkjz6IrR47a9aBWEIHZsilPPlstOF5yrox47wy5tIL+s2uMNzTVzyU7j+dG/c03TTpu6ZeWuLrXVW+a4B8on87fIje2ry3kNy0vpYoWkj25DxPhChRpYTrWDtl+4/kzTn+JFIo23Sq0KJWRbehixBev2yurtB2TUVY2kTkxJKVY40gg3EDoapHuvFC0cIUN71pNGp5U2YgnqhGeL9WrKrK+ldHyWIdYQhyACgT3u2+6Eo3KZCj39zq8hJbSPuC+Xtqgiew8ck70HEw0P558d+9N+v3s1r6SiV2Epp88GPKBgcVoXDP8W4/335/FnCvBPrhOgQJPriNkACZAACZAACZAACZAACZAACZAACZAAvv6HdevWLQOMu+66y3zxHxERIchfAu8BxMbHl/SY/BwwYIBMnDjRXIcwT5jMvvfee83EJUQE5GCwOUYgGiAs0IUXXijwVoBYcfHFF5twW5h4xz7OvfDCC1KzZk0TNgr13X///WYyGUIMJmcvvfRSk48DfcCX7BCRMDkOg5cB+gnLrD/+2jQXOv6gPghH33zzjTz//PMmVBVCcvXt29cIQ6NHjzZjgYADwxh79uxpttE/TC4jpBbCQ1WsWFGee+45c+7WW281E97YgUgBbwmIPPBAAAfnODDhDtEFIsETTzxhBAswBRcYwmM99thjpj8TJkwwbG644QZzzt8fhMyBQHTPPfeY8FfwjIA4BLaZ8Q3WFnjj/v7xxx9mbBg3ngUrhixfvtwIKQgDhjxBEF2CeWbZcSOHB8RD3GswxSS7NTy7GAsm08HwwIEDRsSx5/2t//e//xnBDf21hj4vWbJEcM5tEEQgwGCiHiIJwpy5DaLTAw88YMIBOsUudznsQ1xxLv7K4BjEGdwbCDDw2oDB2wbCSdmyZc0+hBM8e/jCHu8bwp/hnfVnEOXw3LVr1868LxDiIGzheYBhXDiPsFy4PwjfBdEF7yBECdxPhCDE+4lJY7f5e5/sO+h8hzdv3mx+RyD0QDyBdxDu7Z9//mmqtO8cnjV4ofTp08f0F88/LNgziDHh/YN4iTFARMHzAbEEltm7ZvsL8QrvHN5H/J5gOz4+3vTVPn8IHQde/uzvv/82XCEgug3amnNxnq9Yuqi88L8zVaDZ5A095jyP7eY107w44B0CscbmWmldJ1qqq3AQiv2r4ky5UkWkQuki3uIN04WMLXsOm2Mbdh2UM6qVNt40tlDjqqWN4HD4WLKk6CAgiuCY05qqtwrCrMFyoh3Ug/Br9dXbB2Pdr/laPpwbawSmbs3SPIggNp1ZLUoWq/B03et/SNdn5suIL1apZ02SFC2UNsV+vYZnswII6kSOGPQf18FC6aspmP5n1rI4c731JoIXzSOXNDBiiy2HcGsQbyooa7edWb20IKTZk9PXyrItCeZePq3h5MATIpM1vB8QtmnhIVAoPM2yVRIgARIgARIgARIgARIgARIgARIggYJEAF+Nw/BFfzDD1/UVKlQQTFgXK1bMeIns3bvXTGLCi8QaPBEgosDgAQFvEOTSwAQ9DJOx8EY599xzjcBTpEgRM+mMyW+EncJEMAwTwzBM8NuwUviKHvv16tXzTlLD0wBfzUNw8GeB+oOJbneb/q7HMYhQCCl19tlnC76ux6Q5JnFh8HjBhCwMocsqV65syhcuXNiEgwJfXA8vFzs2TLrZbVyHSfFJkyYJhDC3QaCAeLB06VJp2LChOY1QWRCNYPA2Ak98rQ+W6KOd0DcF/PyBwANRAQYxDBP1mNxGXpxgfIO1hX5C6EDb+PIbhkltCAgQgMAA/cQEO0QaTPrv2LFD4JXiz+y4wQ/3GwbBC3U9/fTT3vuP+z506FBzHt4vEFJ27dplvMDMQdcfiFcQstDuNddcY86+++67ctFFF0njxo1l9erV3isgpIAHJvmRIwf5mCCCQJh0GybsZ86caQQS3Et/hvuI8IFOe+2114zo5jyGbYgaEDMgTmHBs4r2b7vtNoHXDcQoCAh4L61XB549eCZBRLEijq0XAha8kSDyweBJgzrnzJljnkUIkHiGcC0M79x9991nngu8K/C4guDqfG5NwfQ//t4nf+/wvn37BPcWolehQoWMoALBFrl6nLl1wLBSpUpmbPBMwnsHwSjYMwjvG+Sewm8UxCxwwW8WnjNrwd41WwZiE8YOQ76oBg0amPccQg2EMxjGa59zc8DxxyZ2hwjpNOSYweK0afe2MeKDPdbh9PJy1dmnyf0Tl8n0+9oYzxR7DmuEEkO+mee+Xiezlu0W5Fq5qEmMyU/jFkuc1zm3Y+MOS6107xp7HF4csFgVaNrVV7F5V5roYc9jDQ8d2Ja9R4yHCLbhgeO0yipIrEsXaHKiHQgz1tqOmOPNu4OwavCGgW3UPDfLtsTLw5+tkJs1r0xx9aD56NfNsmj9fvn07lbevtp6jiWlyIMazg0Cic2XE0pf7fUQil79YYPJHYRwav7s55Vx8qnmzHlRBTf96chgCCP33HVnyOUvLfLJmzPhzpY+ZfFvIvIe0cJDgAJNeLizVRIgARIgARIgARIgARIgARIgARIoUATsRC5yzTiTnLsh4At3TJBCnLEGjxdMWDu9EZo2bWpPmy/OrXcLPG6QpB3iBCaRIRBgsjdQDg5bCRKsW8OELiasIPqsWrVKMNmLsGk2dJgt51wH6o+zTLBtTGLbfB92DaHBGiaREfoJhsl8bMOjwRom5cEHAk0gAxt/4gzKY0IafbDiDI5BUMFitzFRD48EhFZDSDZ4DgQzpweELQshBBPRwfiizUBtoZ8weBVZw7MBg0cDOOD5cT5j8NoKJNBA9MK4rTiDenA9bNmyZd6Jckz0W7PbSNCOZ82fYQIfog6EEQg0e/bsMc8wwldZbzJ7HcQ/iAwQL9Em1hgHWEHMcRreC9x/3EsIBfDqcRueG/Bzmrseew7POvoI7ygIFAhzBLZgCiEMghoMYpsNFWgncp18UAbC5sKFC82SmOgbbgmcIU6hTudzaz2dcH12zfkO4/cGnjjwfIuNjTXvMLx4nKHZcO/wXlmD1w9CBMKCPYP4jcJYnL8p8LxzWrB3zZaDeGUN7wMEUXjBQaAJxSBcw5z9wD48QSC+OM3fBD9yxsxR74un1LviyasbOYubbeRduVRDnCG0169r9sqE37YIkth/clcrk4MmwwWuAwhHhrwtTkPOFBhCecEg2LjLwHMGVqpYpJRQYQhmj5kd/XNIy9g6cqIdWy/W4we0kD0Jx0wotjs++Fte7tNE8/BUFI/+B3vphiZyboNyZhusu42ZL/PW7JHuzY4/S/BeGj5llfF++WLg2d5cP6H01VSsfyCMwUvoLRWJ/Bny9dypOXFuUbGoa1P/v0MQlSDOdGpUQa7VMGmq+ciHc2JNDhoIc1U0nw4M7wsEZ3g3Bvo3wl8feCxnCFCgyRmOrIUESIAESIAESIAESIAESIAESIAESCAIAXwZD0MoH3yB7zRMCmFyF54ZmGR3f/2P4zCEPbNmj2HfOaGESVdMBiPcELw/EE4KE9bIcwHPiEDmrAOT6XYSvnfv3kaUwHWYdA9kgfoTqLz7uPN697lA+zVq1PCegsdH69atvfv+NpxjdJ/HhHqwPuCLfggG8BqAWIVE9fBggogVyDD5by0yMm2iFXkzMuMbrK3Dhw+bKp1jh8cGQrvh+YBI5R4HvIwCGZ43d3nbb2ceGmcddiyB6rTHEaLulVdeMeIXPEjwbEIscgs01psEz5rTEGoN17sNzyYEFXiJTZ061X3aCH3+QglmKOg4AH7wUMOCkGcQCX7++WfjGYJiECdRBgaPDggbTnEDx60oA6HBeX/ss2nfX8sX1+SkOZ9veM906tTJvMcXXHCB8eCyIchsmwiv5jTnfQ32DOKZcT4PzjrstrMv9ph77f6dAxfUHarZ5xYeWPC8soa8KfCQycwgcDxzbWNNOr/E5HfxV76Y5lQ5Xyf3sfTvXEvOGz1PZi7ZEZJAU1P7sUXzxzgNSethyK8CqxOjOV72p73T5oD+2b4/LSwgvGaQ9B5h0rb/l3bMlkFeGBsuLSfasfVibT1m2itDePpM+HWLEWiQDwbWtl5Zs8YfjAO8V2494CPQwPNl+p87jJjlDAkXSl9RL7xnXv5ug8lxU9WP9wzGf9t7fxth5r6L6+ISvwZBDfxeubGJYYlC7bT/5z4+V2Ys2Sn9O9U019l3N5Tn1m9DPJgtAsf/pcxWNbyYBEiABEiABEiABEiABEiABEiABEiABAITwBfi+KIdScARzsc5EXTHHXeYyWBMXCP8EPKxOL/kRVgiTPq6J1T9tYaQTDDUiQUhu+BNg8lm5C6BZTYJisldfE0M7wE70YwJ9uxMLGfWpulYiH+QnwZeFwiRZA2ih50At8ey0ia8D0aMGGHCxdmE8vBWQVg3cET9mJBHGDksyL0xcOBAn/K2XbvG9WAPs54vmOjPjG+wtmy+DXhhINQYDHl14E0ATwKM45dffvF5fsAqkKH8yJEjBeGirABh85RYUTHQtZkdx1jhRYRE9AhRB48a9zMEjw5494C9M68LQoQhXBvEG/c1aBe5YJDvJVRvC399xTuG/iGkmTPPCcLXWbMM4IWGcFswiKnwHnILrfCGwZjhueZ8NlG2VKlSxisO4hLEUhsuDX2Ad07Lli29ocfsZLHtg791Zs82hCt4RuHeQ7yAcPfwww/7q8rvsWDPIIRQhEIDB3tvsI+x2DCJfit1HcTvGnjB4KWH3z93H50ioetyr+AMr0Trdecuk9n+2XXKyk0dqgtyzTgNeUrgtTLyiobewxU1lwzCdYVqtSqWMN4xC9fvkzZ100SN2ct3m8uPCzQl5d2fNkn84SRviLBvl+4yOVIgzsAgxHzz9y5BfhfYkcRkmb0iTi5X7x5YTrRzJDFFequnyZCe9YwYZSrWP3U1T4vtc4PKpcxh5JGx+VvACLlpajpCuX22cJu8NXuTvHNrswxCVih9RSNggHrf7Xfcs9M0rn/Aqt/YvwyXp69p7BVe7HnnGqxKFon0KWO5HtVz1vC8432hhYdARHiaZaskQAIkQAIkQAIkQAIkQAIkQAIkQAIFiQAEGeTk+P77702OCkzSI5wPJnIRTgm5GFAGXgQ4jglohHlCOCfktcBX+KEY8kxAYIBnB3LTYBIUBoEHhhBe3333nZnEd4Y7MifT/1jPAHiLIFcIRCWIRidqobSZlbrBCKGkEFYJrODRgrBhEE1g4IjxwmNg8eLFIVWNUFmYoIPHEUQZhLvCRDuEKdjgwYPNZDLaxYQ7BBcIblbU8NcIPEh++ukns8DLBXk5wCIzvsHaQk4heKKgn+gL+grhwOYnQp/BBHXg+QETJIkPZAhrhXEjZwzqwrMBQQohrNwCRKA6gh1HXhkIEAhhZvMJOcvbHD8QSSA42QXsIBJCbPJn8OCwod3c5/fv32/uH+6hXSBUug3PCQSvBx54wIRLQ14fhCCzYg28SJBbBeHscP/ABmHNkBsHIeGsGOqsF+8pctngvYXgAA8giLO///67KYbzCEeI+4I+4f2HMGU9UhBCD+PGs2tzrDjrx3Yo7xPuHcIAgi+eB/Q/KxbsGcT7h7ENGjTIvAcINYfnzoYgDLUd/OZBZMNzfNNNN5n3yYYCtOEN7bPjr06be2bt2rU+pzfvPWxCkiEsmV12pHul+BRM3xnYtY4g+bzTmtaIks8XbZPXftgoa3ccNKG2XvhmvVnb8F7O8v62m9csI+01FBjEnr9j400OlFe+3yD9zq/pTXJ/TZu0UGyjp67WfDQHZaJ63Pyo4gv6ZO3OC2vL4o375V3Nq4OQXU9MWysQF/q0TxNscqIdeAo1qFJSRn652oQ226yeMzPUU+jDubFycbO08GEdG5Y3AtX9E5fL8q0JJgfOYN2GWa+aX1btkRFfrDKCFIRByx/jh4XSV3jPvBLAe+ao5rW5a9xSI95crez+2LDf28a+g2lhBcfMXCcIzQbr3Lii4HlAnxASbYX2++HPVhrhDF5R1pC7zRnmEf/uQZy1YQ1tOa5zhwA9aHKHK2slARIgARIgARIgARIgARIgARIgARJwEUDYJXgTPPfcc2ZCGKcxye9MYI7cDUjwPnz4cDO5i/OYLMUCc4byMQdcx5DvA6IEJvBhuB75OGyOmD59+piv3zGpj2TkNkyQKZz+B14f8A6x3iLwMsAX/3ZC2tkH57atw33M3SbG6DR3eXvOfRwT6jCICkjaDs8P5NiAIdyVMw/GQw89ZMaAsvgK315rCqf/cdaPL/AR2grihM0dg/tlc5mMGjXKCDOYtIdhAhleCtaDIL1K7wrcITIgBxAMY8akPSbiM+MbrK1y5cqZSXcIH7Yv6O/7779v2sGx119/3bDBcwWhCs/S448/bs67/6A+CFzOccMLAhPjgcxy88fUfU3Pnj2NoIR8I1bwsdejLO4jQnFZryV7PYQKCFp4FxCiC+ZuD3llnnnmGZ/7jnIQg+Dx4jR4j6Eut0F8xPOB58caBCsIQxDCYOPGjTPnrXcI7j2EVrCzZscE0SIuLk7uv/9+Qc4X+/7ZMYAzhBd4CEGIwXncO4wVhnxTEAshmEHose+9bQdr9/vk7x2GyITJZethBO8lPAu2n3btrNfJN9gziOd30qRJ5vfhnXfeMVXg9wLPO8xZjzmgf/y1B68pCHPgBE+aKVOmeJ8DPA94xvFbCSFr5syZtirvGqIs7hU8vpzhDb9T7wssTht++ekm2TyORab9jHhPF9Nk92M0kfx1r//hPXZx00omD8tTKq68MWujOV5S88GgHufEvvcC3VA9wsewj/JDJ63w1o2cLXdeWMtbDjlokOB+1NQ10vP5hYI2IMg4Q7S1qFVG7u9e13ilvKgiUaUyRTVnTmNBCDRYTrUz+spGKmSs9oob6Au8i/7vojSxCJ4nr2moMAg0V72SJjgifNhHmrOmWrrA9dmCraZP8BrCYu3MalHy2f+1Cqmv8J6BqNL3vOMhLG09EMsgVsEGfezr9fS2euyA25Z9h+XfuMOabybVCEfg+/TMtQLPHhjEuDc1r02T6sdDds6bN888i6aA/omPjxcIf/CsoeU+AY/+CGt6IBoJkAAJkAAJkAAJkAAJkAAJkAAJkAAJ5B0BeLdgYhghxPxNXqInCPsD4SDQ+WC9RfghhP7xl3cGORsQIgkJ14MZysDLBgmUs2uhtpnVdsAI4aOsB4LzeoQ8w+JvAttZzr2NkGHIx+GPD3LA4L7Z8GLua937KIvwUv7y92TGN7O20E+Yv9B34A02ThHB3Tf3PuoDx6zyctdzMu7jXkDYwbNuPZzc48C9BKNQ3gfwx+Qu+PsTLDK7PzaXkL9r0a9Q3yeIH3iWEf7uRCyzZxDPGJ5tZ/6azNqBoNK2bVvDG6IdPJ78/U6hHoR7w+9fICEUQiy8nuAplRuGSf6tmu8E2stpmgslwq3ChNgocs9ACIoqHthXAPleqkQXlcJuBSm9DXiWoC8QGAJ1I6faiUs4JhWjigQcL/LkKBrDJEQEGYqF0tcMF4VwAP1K1f/c9wqh0WDuewBvGQikEALhnWbNGcLPHuM6dwhQoMkdrqyVBEiABEiABEiABEiABEiABEiABEiABEiABEiABHwIOAUaeMBkx+CFBO8beAshnxKNBLJKAN5lEGjh3UoLD4HAsmV4+sNWSYAESIAESIAESIAESIAESIAESIAESIAESIAESOCUJIDcMQgdGKoXWjAICEOH0GjwFqSRQFYJwMMSoRKRV4kWPgL0oAkfe7ZMAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRQQAm40kIVUAocNgmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAnkIQEKNHkIm02RAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAhQoOFzQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAJ5TIACTR4DZ3MkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQIGGzwAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJ5DEBCjR5DJzNkQAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAFGj4DJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJJDHBCjQ5DFwNkcCJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACFGj4DJAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZBAHhOgQJPHwNkcCZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACVCg4TNAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAnlMgAJNHgNncyRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiTw/5EPv89ihIHFAAAAAElFTkSuQmCC" + } + }, + "cell_type": "markdown", + "id": "f9b2d921", + "metadata": { + "tags": [] + }, + "source": [ + "## Get the pLoF variants that we used to compute constraint metrics\n", + "\n", + "The pLOF variant count displayed on the browser meets the following requirements:\n", + "\n", + " - PASS variant QC\n", + " - SNV\n", + " - Allele frequency ≤ 0.1%\n", + " - High-confidence LOFTEE in the MANE Select or Canonical transcript\n", + " - ≥ a specified coverage threshold (depends on the version)\n", + "\n", + "**Note: this number should match the number of observed pLOF SNVs on the gene page of gnomAD Browser.**\n", + "\n", + "![Screenshot 2025-01-15 at 3.48.07 PM.png](attachment:909c85bb-7920-49fc-9025-93d1bcc2d3ce.png)" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "6ce87a77", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "INFO (gnomad.utils.vep 953): Filtering to canonical transcripts\n", + "INFO (gnomad.utils.vep 959): Filtering to Ensembl transcripts...\n", + "INFO (gnomad.utils.vep 965): Filtering to consequences with LOFTEE labels: ['HC']...\n", + "INFO (gnomad.utils.vep 973): Filtering to genes of interest...\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
histograms
grpmax
fafmax
info
qual_hists
raw_qual_hists
age_hists
in_silico_predictors
gnomad
non_ukb
gnomad
non_ukb
vrs
vep
vqsr_results
region_flags
allele_info
gq_hist_all
dp_hist_all
gq_hist_alt
dp_hist_alt
ab_hist_alt
gq_hist_all
dp_hist_all
gq_hist_alt
dp_hist_alt
ab_hist_alt
age_hist_het
age_hist_hom
cadd
locus
alleles
freq
AC
AF
AN
homozygote_count
gen_anc
AC
AF
AN
homozygote_count
gen_anc
faf
faf95_max
faf95_max_gen_anc
faf99_max
faf99_max_gen_anc
faf95_max
faf95_max_gen_anc
faf99_max
faf99_max_gen_anc
a_index
was_split
rsid
filters
FS
MQ
MQRankSum
QUALapprox
QD
ReadPosRankSum
SB
SOR
VarDP
AS_FS
AS_MQ
AS_MQRankSum
AS_pab_max
AS_QUALapprox
AS_QD
AS_ReadPosRankSum
AS_SB_TABLE
AS_SOR
AS_VarDP
singleton
transmitted_singleton
sibling_singleton
omni
mills
monoallelic
only_het
AS_VQSLOD
inbreeding_coeff
VRS_Allele_IDs
VRS_Starts
VRS_Ends
VRS_States
allele_string
end
id
input
intergenic_consequences
most_severe_consequence
motif_feature_consequences
regulatory_feature_consequences
seq_region_name
start
strand
transcript_consequences
variant_class
AS_VQSLOD
AS_culprit
positive_train_site
negative_train_site
non_par
lcr
segdup
fail_interval_qc
outside_ukb_capture_region
outside_broad_capture_region
variant_type
n_alt_alleles
has_star
allele_type
was_mixed
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
phred
raw_score
revel_max
spliceai_ds_max
pangolin_largest_ds
phylop
sift_max
polyphen_max
exome_coverage
locus<GRCh38>array<str>array<struct{AC: int32, AF: float64, AN: int32, homozygote_count: int64}>int32float64int32int64strint32float64int32int64strarray<struct{faf95: float64, faf99: float64}>float64strfloat64strfloat64strfloat64strint32boolset<str>set<str>float64float64float64int64float64float64array<int32>float64int32float64float64float64float64int64float64float64array<int32>float64int32boolboolboolboolboolboolboolfloat64float64array<str>array<int32>array<int32>array<str>strint32strstrarray<struct{allele_num: int32, consequence_terms: array<str>, impact: str, variant_allele: str}>strarray<struct{allele_num: int32, consequence_terms: array<str>, high_inf_pos: str, impact: str, motif_feature_id: str, motif_name: str, motif_pos: int32, motif_score_change: float64, transcription_factors: array<str>, strand: int32, variant_allele: str}>array<struct{allele_num: int32, biotype: str, consequence_terms: array<str>, impact: str, regulatory_feature_id: str, variant_allele: str}>strint32int32array<struct{allele_num: int32, amino_acids: str, appris: str, biotype: str, canonical: int32, ccds: str, cdna_start: int32, cdna_end: int32, cds_end: int32, cds_start: int32, codons: str, consequence_terms: array<str>, distance: int32, domains: array<struct{db: str, name: str}>, exon: str, flags: str, gene_id: str, gene_pheno: int32, gene_symbol: str, gene_symbol_source: str, hgnc_id: str, hgvsc: str, hgvsp: str, hgvs_offset: int32, impact: str, intron: str, lof: str, lof_flags: str, lof_filter: str, lof_info: str, mane_select: str, mane_plus_clinical: str, mirna: array<str>, protein_end: int32, protein_start: int32, protein_id: str, source: str, strand: int32, transcript_id: str, tsl: int32, uniprot_isoform: array<str>, variant_allele: str}>strfloat64strboolboolboolboolboolboolboolboolstrint32boolstrboolarray<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64float32float32float64float32float64float64float64float64int32
chr11:113412554["A","G"][(1,6.85e-07,1459578,0),(1,6.84e-07,1461894,0),(0,0.00e+00,33480,0),(0,0.00e+00,44724,0),(0,0.00e+00,26134,0),(0,0.00e+00,39700,0),(0,0.00e+00,51134,0),(0,0.00e+00,5768,0),(1,8.99e-07,1111998,0),(0,0.00e+00,60388,0),(0,0.00e+00,86252,0),(0,0.00e+00,733478,0),(1,1.38e-06,726100,0),(0,0.00e+00,19326,0),(0,0.00e+00,14154,0),(0,0.00e+00,25690,0),(0,0.00e+00,19034,0),(0,0.00e+00,12634,0),(0,0.00e+00,13500,0),(0,0.00e+00,20712,0),(0,0.00e+00,18988,0),(0,0.00e+00,26490,0),(0,0.00e+00,24644,0),(0,0.00e+00,2506,0),(0,0.00e+00,3262,0),(0,0.00e+00,572284,0),(1,1.85e-06,539714,0),(0,0.00e+00,31796,0),(0,0.00e+00,28592,0),(0,0.00e+00,22040,0),(0,0.00e+00,64212,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,190,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,960,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,1922,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,1998,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,3834,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,3996,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5538,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5760,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,9998,0),(0,0.00e+00,10000,0),(0,0.00e+00,9574,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,9982,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,19998,0),(0,0.00e+00,20000,0),(0,0.00e+00,19154,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,19966,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26134,0),(0,0.00e+00,26136,0),(0,0.00e+00,25036,0),(0,0.00e+00,26136,0),(0,0.00e+00,26132,0),(0,0.00e+00,26136,0),(0,0.00e+00,26098,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,32040,0),(0,0.00e+00,33480,0),(0,0.00e+00,33474,0),(0,0.00e+00,33478,0),(0,0.00e+00,33428,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,37978,0),(0,0.00e+00,39700,0),(0,0.00e+00,39694,0),(0,0.00e+00,39698,0),(0,0.00e+00,39640,0),(0,0.00e+00,40000,0),(0,0.00e+00,38262,0),(0,0.00e+00,40000,0),(0,0.00e+00,39994,0),(0,0.00e+00,39998,0),(0,0.00e+00,39938,0),(0,0.00e+00,44724,0),(0,0.00e+00,42798,0),(0,0.00e+00,44724,0),(0,0.00e+00,44718,0),(0,0.00e+00,44722,0),(0,0.00e+00,44658,0),(0,0.00e+00,51134,0),(0,0.00e+00,53420,0),(0,0.00e+00,53414,0),(0,0.00e+00,53418,0),(0,0.00e+00,53342,0),(0,0.00e+00,60396,0),(0,0.00e+00,60388,0),(0,0.00e+00,60394,0),(0,0.00e+00,60304,0),(0,0.00e+00,86256,0),(0,0.00e+00,86252,0),(0,0.00e+00,86122,0),(0,0.00e+00,99998,0),(0,0.00e+00,99850,0),(0,0.00e+00,199996,0),(0,0.00e+00,199686,0),(1,2.50e-06,399992,0),(1,2.50e-06,399366,0),(1,1.00e-06,999986,0),(1,1.00e-06,998406,0),(1,8.99e-07,1111998,0),(1,9.01e-07,1110224,0),(0,0.00e+00,626468,0),(0,0.00e+00,628784,0),(0,0.00e+00,17694,0),(0,0.00e+00,43740,0),(0,0.00e+00,20982,0),(0,0.00e+00,36070,0),(0,0.00e+00,50858,0),(0,0.00e+00,4148,0),(0,0.00e+00,350094,0),(0,0.00e+00,33090,0),(0,0.00e+00,69792,0),(0,0.00e+00,285082,0),(0,0.00e+00,341386,0),(0,0.00e+00,10286,0),(0,0.00e+00,7408,0),(0,0.00e+00,25040,0),(0,0.00e+00,18700,0),(0,0.00e+00,9836,0),(0,0.00e+00,11146,0),(0,0.00e+00,18298,0),(0,0.00e+00,17772,0),(0,0.00e+00,26240,0),(0,0.00e+00,24618,0),(0,0.00e+00,1916,0),(0,0.00e+00,2232,0),(0,0.00e+00,162216,0),(0,0.00e+00,187878,0),(0,0.00e+00,16748,0),(0,0.00e+00,16342,0),(0,0.00e+00,14502,0),(0,0.00e+00,55290,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,190,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,960,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,998,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,1922,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,1996,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,3834,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,3982,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,3980,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4130,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,9998,0),(0,0.00e+00,10000,0),(0,0.00e+00,9572,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,9964,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17692,0),(0,0.00e+00,17694,0),(0,0.00e+00,16946,0),(0,0.00e+00,17694,0),(0,0.00e+00,17690,0),(0,0.00e+00,17694,0),(0,0.00e+00,17632,0),(0,0.00e+00,20000,0),(0,0.00e+00,19998,0),(0,0.00e+00,20000,0),(0,0.00e+00,19150,0),(0,0.00e+00,20000,0),(0,0.00e+00,19994,0),(0,0.00e+00,20000,0),(0,0.00e+00,19932,0),(0,0.00e+00,20984,0),(0,0.00e+00,20982,0),(0,0.00e+00,20984,0),(0,0.00e+00,20096,0),(0,0.00e+00,20984,0),(0,0.00e+00,20978,0),(0,0.00e+00,20984,0),(0,0.00e+00,20912,0),(0,0.00e+00,33098,0),(0,0.00e+00,33098,0),(0,0.00e+00,31670,0),(0,0.00e+00,33096,0),(0,0.00e+00,33090,0),(0,0.00e+00,33096,0),(0,0.00e+00,32976,0),(0,0.00e+00,36070,0),(0,0.00e+00,36070,0),(0,0.00e+00,34514,0),(0,0.00e+00,36068,0),(0,0.00e+00,36068,0),(0,0.00e+00,35934,0),(0,0.00e+00,40000,0),(0,0.00e+00,38256,0),(0,0.00e+00,39998,0),(0,0.00e+00,39998,0),(0,0.00e+00,39856,0),(0,0.00e+00,43740,0),(0,0.00e+00,41848,0),(0,0.00e+00,43738,0),(0,0.00e+00,43738,0),(0,0.00e+00,43588,0),(0,0.00e+00,50858,0),(0,0.00e+00,53140,0),(0,0.00e+00,53140,0),(0,0.00e+00,52962,0),(0,0.00e+00,69794,0),(0,0.00e+00,69792,0),(0,0.00e+00,69552,0),(0,0.00e+00,99992,0),(0,0.00e+00,99626,0),(0,0.00e+00,199992,0),(0,0.00e+00,199284,0),(0,0.00e+00,350094,0),(0,0.00e+00,348812,0),(0,0.00e+00,398508,0)]18.99e-0711119980"nfe"NANANANANA[(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]NANANANANANANANA2TrueNA{}2.83e+006.00e+010.00e+0014981.05e+01-5.05e-01[63,17,52,10]1.04e+001421.10e+006.00e+010.00e+001.00e+006611.35e+01-1.83e+00[63,17,21,4]9.29e-0149TrueFalseFalseFalseFalseFalseFalse5.30e+00-6.84e-07["ga4gh:VA.mqU9WPvGr3hduyybbeN-AKJ1zN-kclsI","ga4gh:VA.uvlicmv1vZnrBBqm0UQRPcFaAOXA34EK"][113412553,113412553][113412554,113412554]["A","G"]"A/G"113412554".""chr11\t113412554\t.\tA\tG\t.\t.\tGT"NA"splice_donor_variant"NANA"chr11"1134125541[(1,NA,"P2","protein_coding",1,"CCDS8361.1",NA,NA,NA,NA,NA,["splice_donor_variant"],NA,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000362072.8:c.1138+2T>C",NA,NA,"HIGH","7/7","HC",NA,NA,"INTRON_SIZE:1635","NM_000795.4",NA,NA,NA,NA,"ENSP00000354859","Ensembl",-1,"ENST00000362072",1,["P14416-1"],"G")]"SNV"5.30e+00"AS_MQ"FalseFalseFalseFalseFalseTrueTrueFalse"multi-snv"3False"snv"False[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,134,0,1469,0,311660,0,82,0,416443,0,0,0,0,0,0,1]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,1555,817,16216,229270,272936,45138,9370,3566,3616,4059,4521,5017,5495,5830,5759,5296,4555,4636]0102137[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][441,0,0,0,850,1,1469,0,311660,0,82,0,416443,0,0,0,0,0,0,1]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][244,858,1593,833,16218,229270,272936,45138,9370,3566,3616,4059,4521,5017,5495,5830,5759,5296,4555,4636]0102137[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,1,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]003.40e+015.66e+00NA9.60e-01-8.30e-016.33e+00NANA31
chr11:113412865["G","A"][(1,6.85e-07,1459642,0),(1,6.84e-07,1461894,0),(0,0.00e+00,33422,0),(0,0.00e+00,44708,0),(0,0.00e+00,26126,0),(0,0.00e+00,39698,0),(0,0.00e+00,52916,0),(0,0.00e+00,4548,0),(1,8.99e-07,1111812,0),(0,0.00e+00,60232,0),(0,0.00e+00,86180,0),(1,1.36e-06,733504,0),(0,0.00e+00,726138,0),(0,0.00e+00,19298,0),(0,0.00e+00,14124,0),(0,0.00e+00,25682,0),(0,0.00e+00,19026,0),(0,0.00e+00,12626,0),(0,0.00e+00,13500,0),(0,0.00e+00,20710,0),(0,0.00e+00,18988,0),(0,0.00e+00,27382,0),(0,0.00e+00,25534,0),(0,0.00e+00,1860,0),(0,0.00e+00,2688,0),(1,1.75e-06,572194,0),(0,0.00e+00,539618,0),(0,0.00e+00,31732,0),(0,0.00e+00,28500,0),(0,0.00e+00,22020,0),(0,0.00e+00,64160,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,16,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,154,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,998,0),(0,0.00e+00,1000,0),(0,0.00e+00,990,0),(0,0.00e+00,802,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1998,0),(0,0.00e+00,1998,0),(0,0.00e+00,1998,0),(0,0.00e+00,2000,0),(0,0.00e+00,1984,0),(0,0.00e+00,1574,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,1998,0),(0,0.00e+00,2000,0),(0,0.00e+00,3996,0),(0,0.00e+00,3996,0),(0,0.00e+00,3998,0),(0,0.00e+00,4000,0),(0,0.00e+00,3954,0),(0,0.00e+00,3138,0),(0,0.00e+00,4000,0),(0,0.00e+00,3998,0),(0,0.00e+00,3994,0),(0,0.00e+00,3998,0),(0,0.00e+00,5760,0),(0,0.00e+00,5762,0),(0,0.00e+00,5766,0),(0,0.00e+00,5766,0),(0,0.00e+00,5706,0),(0,0.00e+00,4548,0),(0,0.00e+00,5768,0),(0,0.00e+00,5760,0),(0,0.00e+00,5762,0),(0,0.00e+00,5766,0),(0,0.00e+00,9978,0),(0,0.00e+00,9994,0),(0,0.00e+00,9996,0),(0,0.00e+00,9998,0),(0,0.00e+00,9908,0),(0,0.00e+00,10000,0),(0,0.00e+00,9978,0),(0,0.00e+00,9992,0),(0,0.00e+00,9992,0),(0,0.00e+00,19966,0),(0,0.00e+00,19992,0),(0,0.00e+00,19990,0),(0,0.00e+00,19998,0),(0,0.00e+00,19810,0),(0,0.00e+00,20000,0),(0,0.00e+00,19960,0),(0,0.00e+00,19978,0),(0,0.00e+00,19978,0),(0,0.00e+00,26092,0),(0,0.00e+00,26126,0),(0,0.00e+00,26126,0),(0,0.00e+00,26134,0),(0,0.00e+00,25894,0),(0,0.00e+00,26136,0),(0,0.00e+00,26088,0),(0,0.00e+00,26110,0),(0,0.00e+00,26104,0),(0,0.00e+00,33422,0),(0,0.00e+00,33470,0),(0,0.00e+00,33478,0),(0,0.00e+00,33164,0),(0,0.00e+00,33480,0),(0,0.00e+00,33404,0),(0,0.00e+00,33446,0),(0,0.00e+00,33442,0),(0,0.00e+00,39688,0),(0,0.00e+00,39698,0),(0,0.00e+00,39316,0),(0,0.00e+00,39700,0),(0,0.00e+00,39608,0),(0,0.00e+00,39664,0),(0,0.00e+00,39656,0),(0,0.00e+00,39988,0),(0,0.00e+00,39612,0),(0,0.00e+00,40000,0),(0,0.00e+00,39908,0),(0,0.00e+00,39962,0),(0,0.00e+00,39954,0),(0,0.00e+00,44708,0),(0,0.00e+00,44292,0),(0,0.00e+00,44724,0),(0,0.00e+00,44618,0),(0,0.00e+00,44682,0),(0,0.00e+00,44670,0),(0,0.00e+00,52916,0),(0,0.00e+00,53420,0),(0,0.00e+00,53282,0),(0,0.00e+00,53368,0),(0,0.00e+00,53350,0),(0,0.00e+00,60394,0),(0,0.00e+00,60232,0),(0,0.00e+00,60336,0),(0,0.00e+00,60320,0),(1,1.16e-05,86254,0),(0,0.00e+00,86180,0),(1,1.16e-05,86144,0),(1,1.00e-05,99994,0),(1,1.00e-05,99866,0),(1,5.00e-06,199974,0),(1,5.01e-06,199730,0),(1,2.50e-06,399940,0),(1,2.50e-06,399434,0),(1,1.00e-06,999826,0),(1,1.00e-06,998478,0),(1,8.99e-07,1111812,0),(1,9.01e-07,1110292,0),(0,0.00e+00,626532,0),(0,0.00e+00,628784,0),(0,0.00e+00,17636,0),(0,0.00e+00,43724,0),(0,0.00e+00,20974,0),(0,0.00e+00,36068,0),(0,0.00e+00,52640,0),(0,0.00e+00,2928,0),(0,0.00e+00,349908,0),(0,0.00e+00,32934,0),(0,0.00e+00,69720,0),(0,0.00e+00,285108,0),(0,0.00e+00,341424,0),(0,0.00e+00,10258,0),(0,0.00e+00,7378,0),(0,0.00e+00,25032,0),(0,0.00e+00,18692,0),(0,0.00e+00,9828,0),(0,0.00e+00,11146,0),(0,0.00e+00,18296,0),(0,0.00e+00,17772,0),(0,0.00e+00,27132,0),(0,0.00e+00,25508,0),(0,0.00e+00,1270,0),(0,0.00e+00,1658,0),(0,0.00e+00,162126,0),(0,0.00e+00,187782,0),(0,0.00e+00,16684,0),(0,0.00e+00,16250,0),(0,0.00e+00,14482,0),(0,0.00e+00,55238,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,14,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,198,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,142,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,998,0),(0,0.00e+00,1000,0),(0,0.00e+00,998,0),(0,0.00e+00,1000,0),(0,0.00e+00,990,0),(0,0.00e+00,716,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1998,0),(0,0.00e+00,1998,0),(0,0.00e+00,1998,0),(0,0.00e+00,2000,0),(0,0.00e+00,1984,0),(0,0.00e+00,1402,0),(0,0.00e+00,2000,0),(0,0.00e+00,1998,0),(0,0.00e+00,1998,0),(0,0.00e+00,1998,0),(0,0.00e+00,3986,0),(0,0.00e+00,3996,0),(0,0.00e+00,3998,0),(0,0.00e+00,3998,0),(0,0.00e+00,3954,0),(0,0.00e+00,2810,0),(0,0.00e+00,4000,0),(0,0.00e+00,3988,0),(0,0.00e+00,3994,0),(0,0.00e+00,3992,0),(0,0.00e+00,4134,0),(0,0.00e+00,4144,0),(0,0.00e+00,4146,0),(0,0.00e+00,4146,0),(0,0.00e+00,4100,0),(0,0.00e+00,2928,0),(0,0.00e+00,4148,0),(0,0.00e+00,4134,0),(0,0.00e+00,4142,0),(0,0.00e+00,4140,0),(0,0.00e+00,9966,0),(0,0.00e+00,9994,0),(0,0.00e+00,9994,0),(0,0.00e+00,9998,0),(0,0.00e+00,9908,0),(0,0.00e+00,10000,0),(0,0.00e+00,9962,0),(0,0.00e+00,9986,0),(0,0.00e+00,9972,0),(0,0.00e+00,17636,0),(0,0.00e+00,17686,0),(0,0.00e+00,17684,0),(0,0.00e+00,17692,0),(0,0.00e+00,17542,0),(0,0.00e+00,17692,0),(0,0.00e+00,17622,0),(0,0.00e+00,17672,0),(0,0.00e+00,17644,0),(0,0.00e+00,19992,0),(0,0.00e+00,19990,0),(0,0.00e+00,19998,0),(0,0.00e+00,19808,0),(0,0.00e+00,19998,0),(0,0.00e+00,19916,0),(0,0.00e+00,19976,0),(0,0.00e+00,19944,0),(0,0.00e+00,20976,0),(0,0.00e+00,20974,0),(0,0.00e+00,20982,0),(0,0.00e+00,20782,0),(0,0.00e+00,20982,0),(0,0.00e+00,20896,0),(0,0.00e+00,20958,0),(0,0.00e+00,20922,0),(0,0.00e+00,33088,0),(0,0.00e+00,33096,0),(0,0.00e+00,32786,0),(0,0.00e+00,33092,0),(0,0.00e+00,32934,0),(0,0.00e+00,33060,0),(0,0.00e+00,33004,0),(0,0.00e+00,36060,0),(0,0.00e+00,36068,0),(0,0.00e+00,35726,0),(0,0.00e+00,36064,0),(0,0.00e+00,36028,0),(0,0.00e+00,35960,0),(0,0.00e+00,39986,0),(0,0.00e+00,39610,0),(0,0.00e+00,39988,0),(0,0.00e+00,39956,0),(0,0.00e+00,39876,0),(0,0.00e+00,43724,0),(0,0.00e+00,43316,0),(0,0.00e+00,43726,0),(0,0.00e+00,43688,0),(0,0.00e+00,43604,0),(0,0.00e+00,52640,0),(0,0.00e+00,53122,0),(0,0.00e+00,53082,0),(0,0.00e+00,52968,0),(0,0.00e+00,69768,0),(0,0.00e+00,69720,0),(0,0.00e+00,69578,0),(0,0.00e+00,99956,0),(0,0.00e+00,99674,0),(0,0.00e+00,199884,0),(0,0.00e+00,199332,0),(0,0.00e+00,349908,0),(0,0.00e+00,348866,0),(0,0.00e+00,398590,0)]18.99e-0711118120"nfe"NANANANANA[(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]NANANANANANANANA1TrueNA{}1.02e+006.00e+010.00e+005537.79e+002.96e-01[14,32,9,16]4.68e-01711.04e+006.00e+010.00e+003.92e-015318.56e+002.96e-01[14,32,8,15]5.03e-0162TrueFalseFalseFalseFalseFalseFalse5.39e+00-6.84e-07["ga4gh:VA.uAq5BRYMw_lO7PZcOF5TpbGC5hA8JCCE","ga4gh:VA.rN4HBsKxAnhIfQxMXe9zdR_JZUOk90h2"][113412864,113412864][113412865,113412865]["G","A"]"G/A"113412865".""chr11\t113412865\t.\tG\tA\t.\t.\tGT"NA"stop_gained"NANA"chr11"1134128651[(1,"Q/*","P2","protein_coding",1,"CCDS8361.1",1183,1183,829,829,"Cag/Tag",["stop_gained"],NA,[("ENSP_mappings","6vms"),("ENSP_mappings","7jvr"),("Pfam","PF00001"),("PROSITE_profiles","PS50262"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321"),("CDD","cd15309")],"7/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000362072.8:c.829C>T","ENSP00000354859.3:p.Gln277Ter",NA,"HIGH",NA,"HC",NA,NA,"PERCENTILE:0.622372372372372,GERP_DIST:1028.46165180206,BP_DIST:502,DIST_FROM_LAST_EXON:309,50_BP_RULE:PASS,ANN_ORF:1830.61,MAX_ORF:1830.61","NM_000795.4",NA,NA,277,277,"ENSP00000354859","Ensembl",-1,"ENST00000362072",1,["P14416-1"],"A")]"SNV"5.39e+00"AS_MQ"FalseFalseFalseFalseFalseTrueFalseFalse"multi-snv"2False"snv"False[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,547,0,1910,0,310815,0,33,0,416515,0,0,0,0,0,0,1]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,1141,1461,3821,36585,211757,225880,49280,7441,3163,3441,5118,7834,11512,15298,17617,18581,18765,20944]070182[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][890,0,0,0,783,0,1910,0,310815,0,33,0,416515,0,0,0,0,0,0,1]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][431,622,1175,1493,3823,36589,211757,225880,49281,7441,3163,3441,5118,7834,11512,15298,17617,18581,18765,20944]070182[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,1,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]004.50e+018.76e+00NA0.00e+00-1.10e-018.79e+00NANA36
chr11:113412885["T","C"][(1,6.86e-07,1458160,0),(2,1.37e-06,1461894,0),(0,0.00e+00,33408,0),(0,0.00e+00,44630,0),(0,0.00e+00,26106,0),(0,0.00e+00,39690,0),(0,0.00e+00,52116,0),(0,0.00e+00,4312,0),(1,9.00e-07,1111636,0),(0,0.00e+00,60164,0),(0,0.00e+00,86098,0),(1,1.36e-06,732774,0),(0,0.00e+00,725386,0),(0,0.00e+00,19292,0),(0,0.00e+00,14116,0),(0,0.00e+00,25634,0),(0,0.00e+00,18996,0),(0,0.00e+00,12610,0),(0,0.00e+00,13496,0),(0,0.00e+00,20702,0),(0,0.00e+00,18988,0),(0,0.00e+00,26976,0),(0,0.00e+00,25140,0),(0,0.00e+00,1734,0),(0,0.00e+00,2578,0),(1,1.75e-06,572122,0),(0,0.00e+00,539514,0),(0,0.00e+00,31706,0),(0,0.00e+00,28458,0),(0,0.00e+00,21998,0),(0,0.00e+00,64100,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,12,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,194,0),(0,0.00e+00,148,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,998,0),(0,0.00e+00,998,0),(0,0.00e+00,996,0),(0,0.00e+00,1000,0),(0,0.00e+00,970,0),(0,0.00e+00,756,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1994,0),(0,0.00e+00,1996,0),(0,0.00e+00,1996,0),(0,0.00e+00,2000,0),(0,0.00e+00,1950,0),(0,0.00e+00,1490,0),(0,0.00e+00,1998,0),(0,0.00e+00,2000,0),(0,0.00e+00,1996,0),(0,0.00e+00,2000,0),(0,0.00e+00,3992,0),(0,0.00e+00,3994,0),(0,0.00e+00,3996,0),(0,0.00e+00,4000,0),(0,0.00e+00,3888,0),(0,0.00e+00,2982,0),(0,0.00e+00,3998,0),(0,0.00e+00,3996,0),(0,0.00e+00,3988,0),(0,0.00e+00,3990,0),(0,0.00e+00,5754,0),(0,0.00e+00,5758,0),(0,0.00e+00,5762,0),(0,0.00e+00,5768,0),(0,0.00e+00,5602,0),(0,0.00e+00,4312,0),(0,0.00e+00,5766,0),(0,0.00e+00,5756,0),(0,0.00e+00,5754,0),(0,0.00e+00,5754,0),(0,0.00e+00,9972,0),(0,0.00e+00,9982,0),(0,0.00e+00,9986,0),(0,0.00e+00,10000,0),(0,0.00e+00,9736,0),(0,0.00e+00,9998,0),(0,0.00e+00,9968,0),(0,0.00e+00,9984,0),(0,0.00e+00,9976,0),(0,0.00e+00,19956,0),(0,0.00e+00,19974,0),(0,0.00e+00,19976,0),(0,0.00e+00,19996,0),(0,0.00e+00,19458,0),(0,0.00e+00,19998,0),(0,0.00e+00,19942,0),(0,0.00e+00,19960,0),(0,0.00e+00,19950,0),(0,0.00e+00,26080,0),(0,0.00e+00,26096,0),(0,0.00e+00,26106,0),(0,0.00e+00,26130,0),(0,0.00e+00,25472,0),(0,0.00e+00,26134,0),(0,0.00e+00,26068,0),(0,0.00e+00,26090,0),(0,0.00e+00,26074,0),(0,0.00e+00,33408,0),(0,0.00e+00,33414,0),(0,0.00e+00,33472,0),(0,0.00e+00,32646,0),(0,0.00e+00,33478,0),(0,0.00e+00,33382,0),(0,0.00e+00,33422,0),(0,0.00e+00,33404,0),(0,0.00e+00,39618,0),(0,0.00e+00,39690,0),(0,0.00e+00,38704,0),(0,0.00e+00,39698,0),(0,0.00e+00,39574,0),(0,0.00e+00,39636,0),(0,0.00e+00,39610,0),(0,0.00e+00,39916,0),(0,0.00e+00,38996,0),(0,0.00e+00,39998,0),(0,0.00e+00,39872,0),(0,0.00e+00,39934,0),(0,0.00e+00,39908,0),(0,0.00e+00,44630,0),(0,0.00e+00,43606,0),(0,0.00e+00,44722,0),(0,0.00e+00,44570,0),(0,0.00e+00,44654,0),(0,0.00e+00,44624,0),(0,0.00e+00,52116,0),(0,0.00e+00,53418,0),(0,0.00e+00,53230,0),(0,0.00e+00,53336,0),(0,0.00e+00,53296,0),(0,0.00e+00,60390,0),(0,0.00e+00,60164,0),(0,0.00e+00,60294,0),(0,0.00e+00,60258,0),(0,0.00e+00,86248,0),(0,0.00e+00,86098,0),(0,0.00e+00,86056,0),(0,0.00e+00,99986,0),(0,0.00e+00,99772,0),(0,0.00e+00,199950,0),(0,0.00e+00,199518,0),(0,0.00e+00,399882,0),(0,0.00e+00,399012,0),(1,1.00e-06,999674,0),(1,1.00e-06,997490,0),(1,9.00e-07,1111636,0),(1,9.02e-07,1109188,0),(0,0.00e+00,625052,0),(1,1.59e-06,628784,0),(0,0.00e+00,17622,0),(0,0.00e+00,43646,0),(0,0.00e+00,20954,0),(0,0.00e+00,36060,0),(0,0.00e+00,51840,0),(0,0.00e+00,2692,0),(0,0.00e+00,349734,0),(0,0.00e+00,32866,0),(0,0.00e+00,69638,0),(0,0.00e+00,284380,0),(0,0.00e+00,340672,0),(0,0.00e+00,10252,0),(0,0.00e+00,7370,0),(0,0.00e+00,24984,0),(0,0.00e+00,18662,0),(0,0.00e+00,9812,0),(0,0.00e+00,11142,0),(0,0.00e+00,18288,0),(0,0.00e+00,17772,0),(0,0.00e+00,26726,0),(0,0.00e+00,25114,0),(0,0.00e+00,1144,0),(0,0.00e+00,1548,0),(0,0.00e+00,162056,0),(0,0.00e+00,187678,0),(0,0.00e+00,16658,0),(0,0.00e+00,16208,0),(0,0.00e+00,14460,0),(0,0.00e+00,55178,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,10,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,198,0),(0,0.00e+00,200,0),(0,0.00e+00,194,0),(0,0.00e+00,136,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,994,0),(0,0.00e+00,998,0),(0,0.00e+00,996,0),(0,0.00e+00,1000,0),(0,0.00e+00,970,0),(0,0.00e+00,654,0),(0,0.00e+00,998,0),(0,0.00e+00,1000,0),(0,0.00e+00,998,0),(0,0.00e+00,996,0),(0,0.00e+00,1994,0),(0,0.00e+00,1996,0),(0,0.00e+00,1996,0),(0,0.00e+00,2000,0),(0,0.00e+00,1948,0),(0,0.00e+00,1302,0),(0,0.00e+00,1998,0),(0,0.00e+00,1996,0),(0,0.00e+00,1996,0),(0,0.00e+00,1986,0),(0,0.00e+00,3980,0),(0,0.00e+00,3994,0),(0,0.00e+00,3996,0),(0,0.00e+00,4000,0),(0,0.00e+00,3888,0),(0,0.00e+00,2588,0),(0,0.00e+00,3998,0),(0,0.00e+00,3984,0),(0,0.00e+00,3986,0),(0,0.00e+00,3976,0),(0,0.00e+00,4128,0),(0,0.00e+00,4142,0),(0,0.00e+00,4144,0),(0,0.00e+00,4148,0),(0,0.00e+00,4032,0),(0,0.00e+00,2692,0),(0,0.00e+00,4146,0),(0,0.00e+00,4130,0),(0,0.00e+00,4134,0),(0,0.00e+00,4124,0),(0,0.00e+00,9956,0),(0,0.00e+00,9982,0),(0,0.00e+00,9982,0),(0,0.00e+00,9998,0),(0,0.00e+00,9736,0),(0,0.00e+00,9998,0),(0,0.00e+00,9946,0),(0,0.00e+00,9970,0),(0,0.00e+00,9946,0),(0,0.00e+00,17622,0),(0,0.00e+00,17668,0),(0,0.00e+00,17666,0),(0,0.00e+00,17690,0),(0,0.00e+00,17240,0),(0,0.00e+00,17690,0),(0,0.00e+00,17600,0),(0,0.00e+00,17652,0),(0,0.00e+00,17598,0),(0,0.00e+00,19974,0),(0,0.00e+00,19970,0),(0,0.00e+00,19996,0),(0,0.00e+00,19456,0),(0,0.00e+00,19994,0),(0,0.00e+00,19886,0),(0,0.00e+00,19956,0),(0,0.00e+00,19896,0),(0,0.00e+00,20952,0),(0,0.00e+00,20954,0),(0,0.00e+00,20980,0),(0,0.00e+00,20420,0),(0,0.00e+00,20978,0),(0,0.00e+00,20864,0),(0,0.00e+00,20938,0),(0,0.00e+00,20870,0),(0,0.00e+00,33028,0),(0,0.00e+00,33088,0),(0,0.00e+00,32270,0),(0,0.00e+00,33082,0),(0,0.00e+00,32866,0),(0,0.00e+00,33032,0),(0,0.00e+00,32930,0),(0,0.00e+00,35996,0),(0,0.00e+00,36060,0),(0,0.00e+00,35158,0),(0,0.00e+00,36052,0),(0,0.00e+00,36000,0),(0,0.00e+00,35874,0),(0,0.00e+00,39912,0),(0,0.00e+00,38990,0),(0,0.00e+00,39972,0),(0,0.00e+00,39926,0),(0,0.00e+00,39784,0),(0,0.00e+00,43646,0),(0,0.00e+00,42640,0),(0,0.00e+00,43710,0),(0,0.00e+00,43654,0),(0,0.00e+00,43508,0),(0,0.00e+00,51840,0),(0,0.00e+00,53106,0),(0,0.00e+00,53036,0),(0,0.00e+00,52850,0),(0,0.00e+00,69740,0),(0,0.00e+00,69638,0),(0,0.00e+00,69416,0),(0,0.00e+00,99914,0),(0,0.00e+00,99438,0),(0,0.00e+00,199798,0),(0,0.00e+00,198850,0),(0,0.00e+00,349734,0),(0,0.00e+00,348096,0),(0,0.00e+00,397690,0)]19.00e-0711116360"nfe"NANANANANA[(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]NANANANANANANANA1FalseNA{}2.45e+006.00e+010.00e+008901.11e+011.80e-01[7,37,8,28]3.79e-01802.45e+006.00e+010.00e+004.53e-018901.11e+011.80e-01[7,37,8,28]3.79e-0180FalseFalseFalseFalseFalseFalseFalse5.84e+00-1.37e-06["ga4gh:VA.Hj6Aa_k4TOMxqWIs6lE_cgxiRrPFWp8C","ga4gh:VA.NDTpZX0YUzM19pYVv6I2tV0ypoJhtyrN"][113412884,113412884][113412885,113412885]["T","C"]"T/C"113412885".""chr11\t113412885\t.\tT\tC\t.\t.\tGT"NA"splice_acceptor_variant"NANA"chr11"1134128851[(1,NA,"P2","protein_coding",1,"CCDS8361.1",NA,NA,NA,NA,NA,["splice_acceptor_variant"],NA,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000362072.8:c.811-2A>G",NA,NA,"HIGH","6/7","HC","NAGNAG_SITE",NA,"INTRON_SIZE:1491","NM_000795.4",NA,NA,NA,NA,"ENSP00000354859","Ensembl",-1,"ENST00000362072",1,["P14416-1"],"C")]"SNV"5.84e+00"AS_MQ"FalseFalseFalseFalseFalseTrueTrueFalse"snv"1False"snv"False[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,929,0,3800,0,308036,0,642,0,415672,0,0,0,0,0,0,1]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,2699,3244,4728,36120,209411,224276,48878,7369,3147,3425,5116,7827,11506,15293,17615,18578,18759,20940]070149[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][1313,0,2,0,1481,0,3800,0,308036,0,642,0,415672,0,0,0,0,0,0,1]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][618,1142,2737,3303,4730,36128,209411,224276,48878,7369,3147,3425,5116,7827,11506,15293,17615,18578,18759,20940]070149[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,1,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]003.50e+015.83e+00NA9.80e-01-7.90e-016.35e+00NANA36
chr11:113414463["T","G"][(3,2.05e-06,1461878,0),(3,2.05e-06,1461894,0),(0,0.00e+00,33480,0),(0,0.00e+00,44724,0),(0,0.00e+00,26134,0),(0,0.00e+00,39700,0),(0,0.00e+00,53420,0),(0,0.00e+00,5768,0),(3,2.70e-06,1111998,0),(0,0.00e+00,60396,0),(0,0.00e+00,86258,0),(1,1.36e-06,734634,0),(2,2.75e-06,727244,0),(0,0.00e+00,19326,0),(0,0.00e+00,14154,0),(0,0.00e+00,25690,0),(0,0.00e+00,19034,0),(0,0.00e+00,12634,0),(0,0.00e+00,13500,0),(0,0.00e+00,20712,0),(0,0.00e+00,18988,0),(0,0.00e+00,27648,0),(0,0.00e+00,25772,0),(0,0.00e+00,2506,0),(0,0.00e+00,3262,0),(1,1.75e-06,572278,0),(2,3.71e-06,539720,0),(0,0.00e+00,31800,0),(0,0.00e+00,28596,0),(0,0.00e+00,22040,0),(0,0.00e+00,64218,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26134,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,39698,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,39998,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,44724,0),(0,0.00e+00,44724,0),(0,0.00e+00,44722,0),(0,0.00e+00,44724,0),(0,0.00e+00,44724,0),(0,0.00e+00,44724,0),(0,0.00e+00,53420,0),(0,0.00e+00,53418,0),(0,0.00e+00,53420,0),(0,0.00e+00,53420,0),(0,0.00e+00,53418,0),(0,0.00e+00,60394,0),(0,0.00e+00,60396,0),(0,0.00e+00,60396,0),(0,0.00e+00,60394,0),(0,0.00e+00,86256,0),(0,0.00e+00,86258,0),(0,0.00e+00,86256,0),(0,0.00e+00,99998,0),(0,0.00e+00,99998,0),(0,0.00e+00,199998,0),(0,0.00e+00,199998,0),(0,0.00e+00,399994,0),(0,0.00e+00,399996,0),(2,2.00e-06,999988,0),(1,1.00e-06,999992,0),(3,2.70e-06,1111998,0),(1,8.99e-07,1112004,0),(0,0.00e+00,628772,0),(0,0.00e+00,628784,0),(0,0.00e+00,17694,0),(0,0.00e+00,43740,0),(0,0.00e+00,20984,0),(0,0.00e+00,36070,0),(0,0.00e+00,53144,0),(0,0.00e+00,4148,0),(0,0.00e+00,350096,0),(0,0.00e+00,33098,0),(0,0.00e+00,69798,0),(0,0.00e+00,286242,0),(0,0.00e+00,342530,0),(0,0.00e+00,10286,0),(0,0.00e+00,7408,0),(0,0.00e+00,25040,0),(0,0.00e+00,18700,0),(0,0.00e+00,9838,0),(0,0.00e+00,11146,0),(0,0.00e+00,18298,0),(0,0.00e+00,17772,0),(0,0.00e+00,27398,0),(0,0.00e+00,25746,0),(0,0.00e+00,1916,0),(0,0.00e+00,2232,0),(0,0.00e+00,162212,0),(0,0.00e+00,187884,0),(0,0.00e+00,16752,0),(0,0.00e+00,16346,0),(0,0.00e+00,14502,0),(0,0.00e+00,55296,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17692,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,19998,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20982,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20982,0),(0,0.00e+00,33098,0),(0,0.00e+00,33098,0),(0,0.00e+00,33098,0),(0,0.00e+00,33096,0),(0,0.00e+00,33098,0),(0,0.00e+00,33098,0),(0,0.00e+00,33096,0),(0,0.00e+00,36070,0),(0,0.00e+00,36070,0),(0,0.00e+00,36070,0),(0,0.00e+00,36068,0),(0,0.00e+00,36070,0),(0,0.00e+00,36068,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,39998,0),(0,0.00e+00,40000,0),(0,0.00e+00,39998,0),(0,0.00e+00,43740,0),(0,0.00e+00,43740,0),(0,0.00e+00,43738,0),(0,0.00e+00,43740,0),(0,0.00e+00,43738,0),(0,0.00e+00,53144,0),(0,0.00e+00,53142,0),(0,0.00e+00,53144,0),(0,0.00e+00,53142,0),(0,0.00e+00,69794,0),(0,0.00e+00,69798,0),(0,0.00e+00,69796,0),(0,0.00e+00,99996,0),(0,0.00e+00,99998,0),(0,0.00e+00,199992,0),(0,0.00e+00,199996,0),(0,0.00e+00,350096,0),(0,0.00e+00,350100,0),(0,0.00e+00,399992,0)]32.70e-0611119980"nfe"NANANANANA[(5.50e-07,1.50e-07),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(7.20e-07,2.00e-07),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]7.20e-07"nfe"2.00e-07"nfe"NANANANA1FalseNA{}4.96e+006.00e+010.00e+0015671.20e+012.08e-01[21,49,13,48]1.22e+001314.96e+006.00e+010.00e+001.00e+0015671.20e+012.08e-01[21,49,13,48]1.22e+00131FalseNANAFalseFalseFalseFalse5.68e+00-2.05e-06["ga4gh:VA.YID7VSJVf3ww5ocPtHOFB_frOCeJZjbJ","ga4gh:VA.l93VoU51AVnxcbBPtRQ3leNKnPyaOYW5"][113414462,113414462][113414463,113414463]["T","G"]"T/G"113414463".""chr11\t113414463\t.\tT\tG\t.\t.\tGT"NA"splice_acceptor_variant"NANA"chr11"1134144631[(1,NA,"P2","protein_coding",1,"CCDS8361.1",NA,NA,NA,NA,NA,["splice_acceptor_variant"],NA,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000362072.8:c.724-2A>C",NA,NA,"HIGH","5/7","HC",NA,NA,"INTRON_SIZE:959","NM_000795.4",NA,NA,NA,NA,"ENSP00000354859","Ensembl",-1,"ENST00000362072",1,["P14416-1"],"G")]"SNV"5.68e+00"AS_MQ"FalseFalseFalseFalseFalseFalseTrueFalse"snv"1False"snv"False[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,21,0,157,0,314583,0,1063,0,415112,0,0,0,0,0,0,3]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,87,765,26853,226717,412769,58256,3889,491,150,93,69,55,68,71,66,81,58,68]0333[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,1,0,0,0,0,2,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][5,0,2,0,22,0,157,0,314583,0,1063,0,415112,0,0,0,0,0,0,3]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,1,88,768,26854,226717,412771,58256,3889,491,150,93,69,55,68,71,66,81,58,68]0333[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,1,0,0,0,0,2,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,1,1,0,0,1,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]003.40e+015.38e+00NA9.40e-01-8.10e-016.34e+00NANA31
chr11:113415420["C","G"][(1,6.85e-07,1459072,0),(1,6.84e-07,1461894,0),(0,0.00e+00,33442,0),(0,0.00e+00,44650,0),(0,0.00e+00,25986,0),(0,0.00e+00,39650,0),(0,0.00e+00,53356,0),(0,0.00e+00,5584,0),(0,0.00e+00,1110234,0),(0,0.00e+00,60280,0),(1,1.16e-05,85890,0),(1,1.36e-06,733614,0),(0,0.00e+00,725458,0),(0,0.00e+00,19306,0),(0,0.00e+00,14136,0),(0,0.00e+00,25654,0),(0,0.00e+00,18996,0),(0,0.00e+00,12572,0),(0,0.00e+00,13414,0),(0,0.00e+00,20694,0),(0,0.00e+00,18956,0),(0,0.00e+00,27614,0),(0,0.00e+00,25742,0),(0,0.00e+00,2422,0),(0,0.00e+00,3162,0),(0,0.00e+00,571642,0),(0,0.00e+00,538592,0),(0,0.00e+00,31750,0),(0,0.00e+00,28530,0),(1,4.55e-05,21960,0),(0,0.00e+00,63930,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,198,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,192,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,198,0),(0,0.00e+00,200,0),(0,0.00e+00,996,0),(0,0.00e+00,1000,0),(0,0.00e+00,994,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,980,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,998,0),(0,0.00e+00,998,0),(0,0.00e+00,1994,0),(0,0.00e+00,1998,0),(0,0.00e+00,1990,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,1948,0),(0,0.00e+00,1998,0),(0,0.00e+00,1996,0),(0,0.00e+00,1996,0),(0,0.00e+00,1998,0),(0,0.00e+00,3994,0),(0,0.00e+00,3998,0),(0,0.00e+00,3986,0),(0,0.00e+00,4000,0),(0,0.00e+00,3996,0),(0,0.00e+00,3884,0),(0,0.00e+00,3992,0),(0,0.00e+00,3994,0),(0,0.00e+00,3984,0),(0,0.00e+00,3996,0),(0,0.00e+00,5760,0),(0,0.00e+00,5758,0),(0,0.00e+00,5750,0),(0,0.00e+00,5764,0),(0,0.00e+00,5762,0),(0,0.00e+00,5584,0),(0,0.00e+00,5758,0),(0,0.00e+00,5762,0),(0,0.00e+00,5732,0),(0,0.00e+00,5756,0),(0,0.00e+00,9986,0),(0,0.00e+00,9978,0),(0,0.00e+00,9956,0),(0,0.00e+00,9992,0),(0,0.00e+00,9988,0),(0,0.00e+00,9982,0),(0,0.00e+00,9980,0),(0,0.00e+00,9954,0),(0,0.00e+00,9984,0),(0,0.00e+00,19980,0),(0,0.00e+00,19964,0),(0,0.00e+00,19890,0),(0,0.00e+00,19972,0),(0,0.00e+00,19968,0),(0,0.00e+00,19972,0),(0,0.00e+00,19970,0),(0,0.00e+00,19906,0),(0,0.00e+00,19974,0),(0,0.00e+00,26110,0),(0,0.00e+00,26094,0),(0,0.00e+00,25986,0),(0,0.00e+00,26102,0),(0,0.00e+00,26096,0),(0,0.00e+00,26098,0),(0,0.00e+00,26100,0),(1,3.84e-05,26016,0),(0,0.00e+00,26102,0),(0,0.00e+00,33442,0),(0,0.00e+00,33428,0),(0,0.00e+00,33438,0),(0,0.00e+00,33428,0),(0,0.00e+00,33440,0),(0,0.00e+00,33428,0),(1,3.00e-05,33320,0),(0,0.00e+00,33428,0),(0,0.00e+00,39630,0),(0,0.00e+00,39650,0),(0,0.00e+00,39644,0),(0,0.00e+00,39644,0),(0,0.00e+00,39638,0),(1,2.53e-05,39514,0),(0,0.00e+00,39644,0),(0,0.00e+00,39930,0),(0,0.00e+00,39944,0),(0,0.00e+00,39944,0),(0,0.00e+00,39936,0),(1,2.51e-05,39814,0),(0,0.00e+00,39944,0),(0,0.00e+00,44650,0),(0,0.00e+00,44664,0),(0,0.00e+00,44666,0),(0,0.00e+00,44638,0),(1,2.25e-05,44524,0),(0,0.00e+00,44656,0),(0,0.00e+00,53356,0),(0,0.00e+00,53348,0),(0,0.00e+00,53318,0),(1,1.88e-05,53188,0),(0,0.00e+00,53336,0),(0,0.00e+00,60316,0),(0,0.00e+00,60280,0),(1,1.66e-05,60136,0),(0,0.00e+00,60300,0),(0,0.00e+00,86142,0),(1,1.16e-05,85890,0),(0,0.00e+00,86114,0),(0,0.00e+00,99862,0),(0,0.00e+00,99824,0),(0,0.00e+00,199722,0),(0,0.00e+00,199654,0),(0,0.00e+00,399392,0),(1,2.50e-06,399266,0),(0,0.00e+00,998394,0),(1,1.00e-06,998124,0),(0,0.00e+00,1110234,0),(1,9.01e-07,1109872,0),(1,1.60e-06,625962,0),(1,1.59e-06,628784,0),(0,0.00e+00,17656,0),(0,0.00e+00,43666,0),(0,0.00e+00,20834,0),(0,0.00e+00,36020,0),(0,0.00e+00,53080,0),(0,0.00e+00,3964,0),(0,0.00e+00,348330,0),(0,0.00e+00,32982,0),(1,1.44e-05,69430,0),(1,3.51e-06,285218,0),(0,0.00e+00,340744,0),(0,0.00e+00,10266,0),(0,0.00e+00,7390,0),(0,0.00e+00,25004,0),(0,0.00e+00,18662,0),(0,0.00e+00,9774,0),(0,0.00e+00,11060,0),(0,0.00e+00,18280,0),(0,0.00e+00,17740,0),(0,0.00e+00,27364,0),(0,0.00e+00,25716,0),(0,0.00e+00,1832,0),(0,0.00e+00,2132,0),(0,0.00e+00,161574,0),(0,0.00e+00,186756,0),(0,0.00e+00,16702,0),(0,0.00e+00,16280,0),(1,6.93e-05,14422,0),(0,0.00e+00,55008,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,198,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,192,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,198,0),(0,0.00e+00,200,0),(0,0.00e+00,994,0),(0,0.00e+00,1000,0),(0,0.00e+00,992,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,956,0),(0,0.00e+00,992,0),(0,0.00e+00,996,0),(0,0.00e+00,998,0),(0,0.00e+00,996,0),(0,0.00e+00,1994,0),(0,0.00e+00,1998,0),(0,0.00e+00,1990,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,1928,0),(0,0.00e+00,1990,0),(0,0.00e+00,1994,0),(0,0.00e+00,1992,0),(0,0.00e+00,1990,0),(0,0.00e+00,3990,0),(0,0.00e+00,3998,0),(0,0.00e+00,3984,0),(0,0.00e+00,4000,0),(0,0.00e+00,3996,0),(0,0.00e+00,3826,0),(0,0.00e+00,3980,0),(0,0.00e+00,3988,0),(0,0.00e+00,3978,0),(0,0.00e+00,3986,0),(0,0.00e+00,4138,0),(0,0.00e+00,4146,0),(0,0.00e+00,4132,0),(0,0.00e+00,4148,0),(0,0.00e+00,4144,0),(0,0.00e+00,3964,0),(0,0.00e+00,4128,0),(0,0.00e+00,4134,0),(0,0.00e+00,4120,0),(0,0.00e+00,4132,0),(0,0.00e+00,9980,0),(0,0.00e+00,9976,0),(0,0.00e+00,9942,0),(0,0.00e+00,9990,0),(0,0.00e+00,9988,0),(0,0.00e+00,9962,0),(0,0.00e+00,9970,0),(0,0.00e+00,9930,0),(0,0.00e+00,9966,0),(0,0.00e+00,17656,0),(0,0.00e+00,17660,0),(0,0.00e+00,17574,0),(0,0.00e+00,17666,0),(0,0.00e+00,17664,0),(0,0.00e+00,17620,0),(0,0.00e+00,17646,0),(1,5.68e-05,17592,0),(0,0.00e+00,17638,0),(0,0.00e+00,19964,0),(0,0.00e+00,19860,0),(0,0.00e+00,19972,0),(0,0.00e+00,19968,0),(0,0.00e+00,19918,0),(0,0.00e+00,19942,0),(1,5.03e-05,19884,0),(0,0.00e+00,19928,0),(0,0.00e+00,20948,0),(0,0.00e+00,20834,0),(0,0.00e+00,20954,0),(0,0.00e+00,20946,0),(0,0.00e+00,20898,0),(0,0.00e+00,20924,0),(1,4.79e-05,20864,0),(0,0.00e+00,20908,0),(0,0.00e+00,33046,0),(0,0.00e+00,33052,0),(0,0.00e+00,33046,0),(0,0.00e+00,32946,0),(0,0.00e+00,32982,0),(1,3.04e-05,32912,0),(0,0.00e+00,32972,0),(0,0.00e+00,36008,0),(0,0.00e+00,36020,0),(0,0.00e+00,36016,0),(0,0.00e+00,35912,0),(1,2.79e-05,35870,0),(0,0.00e+00,35934,0),(0,0.00e+00,39930,0),(0,0.00e+00,39944,0),(0,0.00e+00,39816,0),(1,2.51e-05,39786,0),(0,0.00e+00,39838,0),(0,0.00e+00,43666,0),(0,0.00e+00,43680,0),(0,0.00e+00,43548,0),(1,2.30e-05,43506,0),(0,0.00e+00,43562,0),(0,0.00e+00,53080,0),(0,0.00e+00,52908,0),(1,1.89e-05,52858,0),(0,0.00e+00,52930,0),(0,0.00e+00,69488,0),(1,1.44e-05,69430,0),(0,0.00e+00,69520,0),(0,0.00e+00,99532,0),(0,0.00e+00,99590,0),(0,0.00e+00,199010,0),(1,5.02e-06,199134,0),(0,0.00e+00,348330,0),(1,2.87e-06,348580,0),(1,2.51e-06,398272,0)]11.16e-05858900"sas"11.44e-05694300"sas"[(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]NANANANANANANANA1False{"rs770234535"}{}0.00e+006.00e+010.00e+002591.44e+011.41e+00[9,0,8,1]1.84e-01180.00e+006.00e+010.00e+001.00e+002591.44e+011.41e+00[9,0,8,1]1.84e-0118TrueFalseFalseFalseFalseFalseFalse5.88e+00-6.84e-07["ga4gh:VA.wHqNt4w2xDKyEM7D_6m3p8RHFffZrM4Y","ga4gh:VA.a3bz-IwYbVym7BJ1kJRDEaRNrZzp-kC1"][113415419,113415419][113415420,113415420]["C","G"]"C/G"113415420".""chr11\t113415420\t.\tC\tG\t.\t.\tGT"NA"splice_donor_variant"NANA"chr11"1134154201[(1,NA,"P2","protein_coding",1,"CCDS8361.1",NA,NA,NA,NA,NA,["splice_donor_variant"],NA,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000362072.8:c.723+1G>C",NA,NA,"HIGH","5/7","HC",NA,NA,"INTRON_SIZE:959","NM_000795.4",NA,NA,NA,NA,"ENSP00000354859","Ensembl",-1,"ENST00000362072",1,["P14416-1"],"G")]"SNV"5.88e+00"AS_MQ"FalseFalseFalseFalseFalseTrueTrueFalse"snv"1False"snv"False[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,692,0,5013,0,307280,0,33,0,416517,0,0,0,0,0,0,1]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,4589,5130,19240,219783,394259,72552,10630,1692,409,297,247,148,95,85,69,55,40,40]0176[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][650,0,0,0,1453,0,5013,0,307280,0,33,0,416517,0,0,0,0,0,0,1]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][157,923,4727,5278,19256,219808,394263,72552,10630,1692,409,297,247,148,95,85,69,55,40,40]0176[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]002.96e+014.30e+00NA8.90e-01-6.80e-018.80e+00NANA31
chr11:113415480["G","A"][(2,1.37e-06,1461866,0),(2,1.37e-06,1461894,0),(0,0.00e+00,33480,0),(0,0.00e+00,44720,0),(0,0.00e+00,26136,0),(0,0.00e+00,39700,0),(0,0.00e+00,53420,0),(0,0.00e+00,5768,0),(2,1.80e-06,1111994,0),(0,0.00e+00,60394,0),(0,0.00e+00,86254,0),(1,1.36e-06,734634,0),(1,1.38e-06,727232,0),(0,0.00e+00,19326,0),(0,0.00e+00,14154,0),(0,0.00e+00,25686,0),(0,0.00e+00,19034,0),(0,0.00e+00,12636,0),(0,0.00e+00,13500,0),(0,0.00e+00,20712,0),(0,0.00e+00,18988,0),(0,0.00e+00,27648,0),(0,0.00e+00,25772,0),(0,0.00e+00,2506,0),(0,0.00e+00,3262,0),(1,1.75e-06,572286,0),(1,1.85e-06,539708,0),(0,0.00e+00,31798,0),(0,0.00e+00,28596,0),(0,0.00e+00,22036,0),(0,0.00e+00,64218,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,1998,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,3998,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5766,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,9998,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,20000,0),(0,0.00e+00,19998,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,19998,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,26136,0),(0,0.00e+00,26134,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26134,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,33480,0),(0,0.00e+00,33478,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33478,0),(0,0.00e+00,33478,0),(0,0.00e+00,33478,0),(0,0.00e+00,39698,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,39698,0),(0,0.00e+00,39698,0),(0,0.00e+00,39698,0),(0,0.00e+00,39998,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,39998,0),(0,0.00e+00,39998,0),(0,0.00e+00,39998,0),(0,0.00e+00,44720,0),(0,0.00e+00,44724,0),(0,0.00e+00,44724,0),(0,0.00e+00,44722,0),(0,0.00e+00,44722,0),(0,0.00e+00,44722,0),(0,0.00e+00,53420,0),(0,0.00e+00,53420,0),(0,0.00e+00,53418,0),(0,0.00e+00,53418,0),(0,0.00e+00,53418,0),(0,0.00e+00,60396,0),(0,0.00e+00,60394,0),(0,0.00e+00,60394,0),(0,0.00e+00,60394,0),(0,0.00e+00,86258,0),(0,0.00e+00,86254,0),(0,0.00e+00,86256,0),(0,0.00e+00,100000,0),(0,0.00e+00,99998,0),(0,0.00e+00,200000,0),(0,0.00e+00,199998,0),(1,2.50e-06,399996,0),(0,0.00e+00,399998,0),(2,2.00e-06,999984,0),(1,1.00e-06,999980,0),(2,1.80e-06,1111994,0),(1,8.99e-07,1111988,0),(0,0.00e+00,628756,0),(0,0.00e+00,628784,0),(0,0.00e+00,17694,0),(0,0.00e+00,43736,0),(0,0.00e+00,20984,0),(0,0.00e+00,36070,0),(0,0.00e+00,53144,0),(0,0.00e+00,4148,0),(0,0.00e+00,350090,0),(0,0.00e+00,33096,0),(0,0.00e+00,69794,0),(0,0.00e+00,286238,0),(0,0.00e+00,342518,0),(0,0.00e+00,10286,0),(0,0.00e+00,7408,0),(0,0.00e+00,25036,0),(0,0.00e+00,18700,0),(0,0.00e+00,9838,0),(0,0.00e+00,11146,0),(0,0.00e+00,18298,0),(0,0.00e+00,17772,0),(0,0.00e+00,27398,0),(0,0.00e+00,25746,0),(0,0.00e+00,1916,0),(0,0.00e+00,2232,0),(0,0.00e+00,162218,0),(0,0.00e+00,187872,0),(0,0.00e+00,16750,0),(0,0.00e+00,16346,0),(0,0.00e+00,14498,0),(0,0.00e+00,55296,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,998,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,1998,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,3998,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4146,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,9998,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,17694,0),(0,0.00e+00,17692,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17692,0),(0,0.00e+00,17694,0),(0,0.00e+00,17692,0),(0,0.00e+00,19998,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,19998,0),(0,0.00e+00,20000,0),(0,0.00e+00,19998,0),(0,0.00e+00,20982,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20982,0),(0,0.00e+00,20984,0),(0,0.00e+00,20982,0),(0,0.00e+00,33096,0),(0,0.00e+00,33098,0),(0,0.00e+00,33098,0),(0,0.00e+00,33098,0),(0,0.00e+00,33096,0),(0,0.00e+00,33096,0),(0,0.00e+00,33096,0),(0,0.00e+00,36068,0),(0,0.00e+00,36070,0),(0,0.00e+00,36070,0),(0,0.00e+00,36070,0),(0,0.00e+00,36068,0),(0,0.00e+00,36068,0),(0,0.00e+00,39998,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,39998,0),(0,0.00e+00,39998,0),(0,0.00e+00,43736,0),(0,0.00e+00,43740,0),(0,0.00e+00,43740,0),(0,0.00e+00,43738,0),(0,0.00e+00,43738,0),(0,0.00e+00,53144,0),(0,0.00e+00,53144,0),(0,0.00e+00,53140,0),(0,0.00e+00,53142,0),(0,0.00e+00,69798,0),(0,0.00e+00,69794,0),(0,0.00e+00,69796,0),(0,0.00e+00,100000,0),(0,0.00e+00,99998,0),(0,0.00e+00,199994,0),(0,0.00e+00,199996,0),(0,0.00e+00,350090,0),(0,0.00e+00,350096,0),(0,0.00e+00,399986,0)]21.80e-0611119940"nfe"NANANANANA[(2.30e-07,9.00e-08),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(3.00e-07,1.10e-07),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]3.00e-07"nfe"1.10e-07"nfe"NANANANA1TrueNA{}5.21e-016.00e+010.00e+0089331.24e+011.75e-01[191,186,167,175]7.16e-017192.44e+006.00e+010.00e+001.84e-0118861.17e+011.75e-01[191,186,43,33]9.51e-01161FalseNANAFalseFalseFalseFalse5.90e+00-1.37e-06["ga4gh:VA.gpSj8DCEFoC32K8p1WSplOzLfjobiNF2","ga4gh:VA.-nqY9CAkzVrWBF_qv9AMV85d0BaZfZn-"][113415479,113415479][113415480,113415480]["G","A"]"G/A"113415480".""chr11\t113415480\t.\tG\tA\t.\t.\tGT"NA"stop_gained"NANA"chr11"1134154801[(1,"R/*","P2","protein_coding",1,"CCDS8361.1",1018,1018,664,664,"Cga/Tga",["stop_gained"],NA,[("Gene3D","1"),("ENSP_mappings","6cm4"),("ENSP_mappings","6luq"),("ENSP_mappings","6vms"),("ENSP_mappings","7dfp"),("ENSP_mappings","7jvr"),("Pfam","PF00001"),("PROSITE_profiles","PS50262"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321"),("CDD","cd15309"),("CDD","cd15309")],"5/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000362072.8:c.664C>T","ENSP00000354859.3:p.Arg222Ter",NA,"HIGH",NA,"HC",NA,NA,"PERCENTILE:0.498498498498498,GERP_DIST:1126.27514945865,BP_DIST:665,DIST_FROM_LAST_EXON:472,50_BP_RULE:PASS,ANN_ORF:1291.3,MAX_ORF:1291.3","NM_000795.4",NA,NA,222,222,"ENSP00000354859","Ensembl",-1,"ENST00000362072",1,["P14416-1"],"A")]"SNV"5.90e+00"AS_MQ"FalseFalseFalseFalseFalseTrueFalseFalse"multi-snv"3False"snv"False[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,29,0,103,0,314241,0,0,0,416552,0,0,0,0,0,0,8]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,43,280,16751,227129,399638,73028,10691,1700,414,295,249,152,94,85,69,55,40,41]0179[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][10,0,0,0,33,0,103,0,314241,0,0,0,416552,0,0,0,0,0,0,8]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,5,44,284,16751,227131,399638,73029,10692,1700,414,295,249,152,94,85,69,55,40,41]0179[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,1,0,0,1,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]003.70e+017.23e+00NA9.50e-018.10e-011.80e+00NANA31
chr11:113416861["A","G"][(1,6.84e-07,1461444,0),(1,6.84e-07,1461894,0),(0,0.00e+00,33468,0),(0,0.00e+00,44690,0),(0,0.00e+00,26118,0),(0,0.00e+00,39690,0),(0,0.00e+00,53404,0),(0,0.00e+00,5768,0),(1,8.99e-07,1111804,0),(0,0.00e+00,60376,0),(0,0.00e+00,86126,0),(1,1.36e-06,734494,0),(0,0.00e+00,726950,0),(0,0.00e+00,19314,0),(0,0.00e+00,14154,0),(0,0.00e+00,25674,0),(0,0.00e+00,19016,0),(0,0.00e+00,12626,0),(0,0.00e+00,13492,0),(0,0.00e+00,20710,0),(0,0.00e+00,18980,0),(0,0.00e+00,27644,0),(0,0.00e+00,25760,0),(0,0.00e+00,2506,0),(0,0.00e+00,3262,0),(1,1.75e-06,572214,0),(0,0.00e+00,539590,0),(0,0.00e+00,31788,0),(0,0.00e+00,28588,0),(0,0.00e+00,22018,0),(0,0.00e+00,64108,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,998,0),(0,0.00e+00,998,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,998,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,998,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1998,0),(0,0.00e+00,1998,0),(0,0.00e+00,1996,0),(0,0.00e+00,2000,0),(0,0.00e+00,1998,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,1998,0),(0,0.00e+00,1994,0),(0,0.00e+00,2000,0),(0,0.00e+00,3996,0),(0,0.00e+00,3996,0),(0,0.00e+00,3994,0),(0,0.00e+00,3998,0),(0,0.00e+00,3998,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,3996,0),(0,0.00e+00,3992,0),(0,0.00e+00,4000,0),(0,0.00e+00,5764,0),(0,0.00e+00,5760,0),(0,0.00e+00,5760,0),(0,0.00e+00,5766,0),(0,0.00e+00,5766,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5764,0),(0,0.00e+00,5758,0),(0,0.00e+00,5768,0),(0,0.00e+00,9994,0),(0,0.00e+00,9988,0),(0,0.00e+00,9988,0),(0,0.00e+00,9996,0),(0,0.00e+00,9998,0),(0,0.00e+00,10000,0),(0,0.00e+00,9990,0),(0,0.00e+00,9982,0),(0,0.00e+00,9998,0),(0,0.00e+00,19992,0),(0,0.00e+00,19982,0),(0,0.00e+00,19986,0),(0,0.00e+00,19994,0),(0,0.00e+00,19996,0),(0,0.00e+00,19996,0),(0,0.00e+00,19988,0),(0,0.00e+00,19964,0),(0,0.00e+00,19992,0),(0,0.00e+00,26128,0),(0,0.00e+00,26110,0),(0,0.00e+00,26118,0),(0,0.00e+00,26128,0),(0,0.00e+00,26130,0),(0,0.00e+00,26132,0),(0,0.00e+00,26124,0),(0,0.00e+00,26092,0),(0,0.00e+00,26124,0),(0,0.00e+00,33468,0),(0,0.00e+00,33454,0),(0,0.00e+00,33472,0),(0,0.00e+00,33470,0),(0,0.00e+00,33474,0),(0,0.00e+00,33466,0),(0,0.00e+00,33422,0),(0,0.00e+00,33464,0),(0,0.00e+00,39666,0),(0,0.00e+00,39690,0),(0,0.00e+00,39688,0),(0,0.00e+00,39692,0),(0,0.00e+00,39682,0),(0,0.00e+00,39634,0),(0,0.00e+00,39682,0),(0,0.00e+00,39966,0),(0,0.00e+00,39988,0),(0,0.00e+00,39992,0),(0,0.00e+00,39980,0),(0,0.00e+00,39934,0),(0,0.00e+00,39982,0),(0,0.00e+00,44690,0),(0,0.00e+00,44710,0),(0,0.00e+00,44716,0),(0,0.00e+00,44704,0),(0,0.00e+00,44652,0),(0,0.00e+00,44704,0),(0,0.00e+00,53404,0),(0,0.00e+00,53410,0),(0,0.00e+00,53400,0),(0,0.00e+00,53334,0),(0,0.00e+00,53394,0),(0,0.00e+00,60382,0),(0,0.00e+00,60376,0),(0,0.00e+00,60306,0),(0,0.00e+00,60370,0),(1,1.16e-05,86238,0),(0,0.00e+00,86126,0),(0,0.00e+00,86220,0),(1,1.00e-05,99978,0),(0,0.00e+00,99958,0),(1,5.00e-06,199968,0),(1,5.00e-06,199928,0),(1,2.50e-06,399930,0),(1,2.50e-06,399862,0),(1,1.00e-06,999814,0),(1,1.00e-06,999680,0),(1,8.99e-07,1111804,0),(1,9.00e-07,1111670,0),(1,1.59e-06,628334,0),(1,1.59e-06,628784,0),(0,0.00e+00,17682,0),(0,0.00e+00,43706,0),(0,0.00e+00,20966,0),(0,0.00e+00,36060,0),(0,0.00e+00,53128,0),(0,0.00e+00,4148,0),(1,2.86e-06,349900,0),(0,0.00e+00,33078,0),(0,0.00e+00,69666,0),(1,3.50e-06,286098,0),(0,0.00e+00,342236,0),(0,0.00e+00,10274,0),(0,0.00e+00,7408,0),(0,0.00e+00,25024,0),(0,0.00e+00,18682,0),(0,0.00e+00,9828,0),(0,0.00e+00,11138,0),(0,0.00e+00,18296,0),(0,0.00e+00,17764,0),(0,0.00e+00,27394,0),(0,0.00e+00,25734,0),(0,0.00e+00,1916,0),(0,0.00e+00,2232,0),(1,6.17e-06,162146,0),(0,0.00e+00,187754,0),(0,0.00e+00,16740,0),(0,0.00e+00,16338,0),(0,0.00e+00,14480,0),(0,0.00e+00,55186,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,198,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,998,0),(0,0.00e+00,998,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,998,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,998,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1996,0),(0,0.00e+00,1998,0),(0,0.00e+00,1996,0),(0,0.00e+00,2000,0),(0,0.00e+00,1998,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,1996,0),(0,0.00e+00,1994,0),(0,0.00e+00,2000,0),(0,0.00e+00,3994,0),(0,0.00e+00,3996,0),(0,0.00e+00,3992,0),(0,0.00e+00,3998,0),(0,0.00e+00,3998,0),(0,0.00e+00,4000,0),(0,0.00e+00,3998,0),(0,0.00e+00,3996,0),(0,0.00e+00,3990,0),(0,0.00e+00,3998,0),(0,0.00e+00,4142,0),(0,0.00e+00,4144,0),(0,0.00e+00,4140,0),(0,0.00e+00,4146,0),(0,0.00e+00,4146,0),(0,0.00e+00,4148,0),(0,0.00e+00,4146,0),(0,0.00e+00,4144,0),(0,0.00e+00,4138,0),(0,0.00e+00,4146,0),(0,0.00e+00,9992,0),(0,0.00e+00,9988,0),(0,0.00e+00,9986,0),(0,0.00e+00,9996,0),(0,0.00e+00,9998,0),(0,0.00e+00,9996,0),(0,0.00e+00,9990,0),(0,0.00e+00,9978,0),(0,0.00e+00,9992,0),(0,0.00e+00,17682,0),(0,0.00e+00,17676,0),(0,0.00e+00,17680,0),(0,0.00e+00,17688,0),(0,0.00e+00,17690,0),(0,0.00e+00,17682,0),(0,0.00e+00,17680,0),(0,0.00e+00,17658,0),(0,0.00e+00,17676,0),(0,0.00e+00,19982,0),(0,0.00e+00,19982,0),(0,0.00e+00,19994,0),(0,0.00e+00,19994,0),(0,0.00e+00,19986,0),(0,0.00e+00,19984,0),(0,0.00e+00,19958,0),(0,0.00e+00,19978,0),(0,0.00e+00,20964,0),(0,0.00e+00,20966,0),(0,0.00e+00,20978,0),(0,0.00e+00,20978,0),(0,0.00e+00,20970,0),(0,0.00e+00,20966,0),(0,0.00e+00,20940,0),(0,0.00e+00,20960,0),(0,0.00e+00,33072,0),(0,0.00e+00,33088,0),(0,0.00e+00,33088,0),(1,3.02e-05,33076,0),(0,0.00e+00,33078,0),(0,0.00e+00,33032,0),(0,0.00e+00,33066,0),(0,0.00e+00,36042,0),(0,0.00e+00,36060,0),(0,0.00e+00,36060,0),(1,2.77e-05,36048,0),(0,0.00e+00,35998,0),(0,0.00e+00,36032,0),(0,0.00e+00,39966,0),(0,0.00e+00,39988,0),(1,2.50e-05,39978,0),(0,0.00e+00,39918,0),(0,0.00e+00,39960,0),(0,0.00e+00,43706,0),(0,0.00e+00,43726,0),(1,2.29e-05,43718,0),(0,0.00e+00,43652,0),(0,0.00e+00,43698,0),(0,0.00e+00,53128,0),(1,1.88e-05,53116,0),(0,0.00e+00,53052,0),(1,1.88e-05,53088,0),(1,1.43e-05,69764,0),(0,0.00e+00,69666,0),(1,1.43e-05,69738,0),(1,1.00e-05,99942,0),(1,1.00e-05,99910,0),(1,5.00e-06,199884,0),(1,5.00e-06,199838,0),(1,2.86e-06,349900,0),(1,2.86e-06,349834,0),(1,2.50e-06,399694,0)]18.99e-0711118040"nfe"12.86e-063499000"nfe"[(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]NANANANANANANANA1FalseNA{}1.62e+006.00e+010.00e+0011771.12e+013.00e-03[34,22,32,17]8.97e-011051.62e+006.00e+010.00e+005.58e-0111771.12e+013.00e-03[34,22,32,17]8.97e-01105TrueFalseFalseFalseFalseFalseFalse6.28e+00-6.84e-07["ga4gh:VA.rcxeySbGcgI3UI4PHmXE0-eOiGuPAbc7","ga4gh:VA.aAET-0HX1tW01GWSMqwRpt25pm5YmI7c"][113416860,113416860][113416861,113416861]["A","G"]"A/G"113416861".""chr11\t113416861\t.\tA\tG\t.\t.\tGT"NA"splice_donor_variant"NANA"chr11"1134168611[(1,NA,"P2","protein_coding",1,"CCDS8361.1",NA,NA,NA,NA,NA,["splice_donor_variant"],NA,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000362072.8:c.532+2T>C",NA,NA,"HIGH","4/7","HC",NA,NA,"INTRON_SIZE:1251","NM_000795.4",NA,NA,NA,NA,"ENSP00000354859","Ensembl",-1,"ENST00000362072",1,["P14416-1"],"G")]"SNV"6.28e+00"AS_MQ"FalseFalseFalseFalseFalseTrueTrueFalse"snv"1False"snv"False[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,225,0,1535,0,312406,0,2,0,416553,0,0,0,0,0,0,1]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,1267,2040,25889,200725,371864,92888,14543,2881,1075,788,744,786,1105,1530,1748,1893,1766,1817]05373[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]01[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][100,0,0,0,350,0,1535,0,312406,0,2,0,416553,0,0,0,0,0,0,1]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][7,158,1289,2075,25891,200726,371864,92888,14543,2881,1075,788,744,786,1105,1530,1748,1893,1766,1817]05373[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]01[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]002.71e+014.02e+00NA7.70e-01-7.00e-014.85e+00NANA31
chr11:113424628["C","T"][(1,6.84e-07,1461858,0),(1,6.84e-07,1461894,0),(0,0.00e+00,33480,0),(0,0.00e+00,44724,0),(0,0.00e+00,26136,0),(0,0.00e+00,39700,0),(0,0.00e+00,53384,0),(0,0.00e+00,5768,0),(1,8.99e-07,1112012,0),(0,0.00e+00,60396,0),(0,0.00e+00,86258,0),(0,0.00e+00,734626,0),(1,1.38e-06,727232,0),(0,0.00e+00,19326,0),(0,0.00e+00,14154,0),(0,0.00e+00,25690,0),(0,0.00e+00,19034,0),(0,0.00e+00,12636,0),(0,0.00e+00,13500,0),(0,0.00e+00,20712,0),(0,0.00e+00,18988,0),(0,0.00e+00,27628,0),(0,0.00e+00,25756,0),(0,0.00e+00,2506,0),(0,0.00e+00,3262,0),(0,0.00e+00,572288,0),(1,1.85e-06,539724,0),(0,0.00e+00,31800,0),(0,0.00e+00,28596,0),(0,0.00e+00,22040,0),(0,0.00e+00,64218,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,3996,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5764,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,9994,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,19982,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26112,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33450,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,39668,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,40000,0),(0,0.00e+00,39968,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,44724,0),(0,0.00e+00,44692,0),(0,0.00e+00,44724,0),(0,0.00e+00,44724,0),(0,0.00e+00,44724,0),(0,0.00e+00,44724,0),(0,0.00e+00,53384,0),(0,0.00e+00,53420,0),(0,0.00e+00,53420,0),(0,0.00e+00,53420,0),(0,0.00e+00,53420,0),(0,0.00e+00,60396,0),(0,0.00e+00,60396,0),(0,0.00e+00,60396,0),(0,0.00e+00,60396,0),(0,0.00e+00,86258,0),(0,0.00e+00,86258,0),(0,0.00e+00,86256,0),(0,0.00e+00,100000,0),(0,0.00e+00,99996,0),(0,0.00e+00,200000,0),(0,0.00e+00,199996,0),(0,0.00e+00,400000,0),(0,0.00e+00,399988,0),(1,1.00e-06,1000000,0),(0,0.00e+00,999970,0),(1,8.99e-07,1112012,0),(0,0.00e+00,1111980,0),(0,0.00e+00,628748,0),(0,0.00e+00,628784,0),(0,0.00e+00,17694,0),(0,0.00e+00,43740,0),(0,0.00e+00,20984,0),(0,0.00e+00,36070,0),(0,0.00e+00,53108,0),(0,0.00e+00,4148,0),(0,0.00e+00,350108,0),(0,0.00e+00,33098,0),(0,0.00e+00,69798,0),(0,0.00e+00,286230,0),(0,0.00e+00,342518,0),(0,0.00e+00,10286,0),(0,0.00e+00,7408,0),(0,0.00e+00,25040,0),(0,0.00e+00,18700,0),(0,0.00e+00,9838,0),(0,0.00e+00,11146,0),(0,0.00e+00,18298,0),(0,0.00e+00,17772,0),(0,0.00e+00,27378,0),(0,0.00e+00,25730,0),(0,0.00e+00,1916,0),(0,0.00e+00,2232,0),(0,0.00e+00,162220,0),(0,0.00e+00,187888,0),(0,0.00e+00,16752,0),(0,0.00e+00,16346,0),(0,0.00e+00,14502,0),(0,0.00e+00,55296,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,3996,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4144,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,9994,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17678,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,19982,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20966,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,33098,0),(0,0.00e+00,33098,0),(0,0.00e+00,33068,0),(0,0.00e+00,33098,0),(0,0.00e+00,33098,0),(0,0.00e+00,33098,0),(0,0.00e+00,33096,0),(0,0.00e+00,36070,0),(0,0.00e+00,36070,0),(0,0.00e+00,36040,0),(0,0.00e+00,36070,0),(0,0.00e+00,36070,0),(0,0.00e+00,36068,0),(0,0.00e+00,40000,0),(0,0.00e+00,39968,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,39998,0),(0,0.00e+00,43740,0),(0,0.00e+00,43708,0),(0,0.00e+00,43740,0),(0,0.00e+00,43740,0),(0,0.00e+00,43736,0),(0,0.00e+00,53108,0),(0,0.00e+00,53144,0),(0,0.00e+00,53144,0),(0,0.00e+00,53140,0),(0,0.00e+00,69798,0),(0,0.00e+00,69798,0),(0,0.00e+00,69794,0),(0,0.00e+00,100000,0),(0,0.00e+00,99996,0),(0,0.00e+00,200000,0),(0,0.00e+00,199986,0),(0,0.00e+00,350108,0),(0,0.00e+00,350080,0),(0,0.00e+00,399970,0)]18.99e-0711120120"nfe"NANANANANA[(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]NANANANANANANANA2TrueNA{}9.48e+006.00e+010.00e+0013759.96e+00-3.30e-02[27,53,28,30]2.68e-011388.73e+006.00e+010.00e+005.98e-027809.51e+00-8.52e-01[27,53,16,16]2.38e-0182TrueFalseFalseFalseFalseFalseFalse4.76e+00-6.84e-07["ga4gh:VA.8sGHUAS0hRa-H2y4rXi6-6Bsy4-qPPE-","ga4gh:VA.mP-pOESIi9_OSLJHsWU8AL_PdTd37rJE"][113424627,113424627][113424628,113424628]["C","T"]"C/T"113424628".""chr11\t113424628\t.\tC\tT\t.\t.\tGT"NA"stop_gained"NANA"chr11"1134246281[(1,"W/*","P2","protein_coding",1,"CCDS8361.1",378,378,24,24,"tgG/tgA",["stop_gained"],NA,[("ENSP_mappings","7jvr"),("Prints","PR00567"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248")],"2/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000362072.8:c.24G>A","ENSP00000354859.3:p.Trp8Ter",NA,"HIGH",NA,"HC",NA,NA,"PERCENTILE:0.018018018018018,GERP_DIST:1981.78638923168,BP_DIST:1302,DIST_FROM_LAST_EXON:1109,50_BP_RULE:PASS,ANN_ORF:1815.43,MAX_ORF:1815.43","NM_000795.4",NA,NA,8,8,"ENSP00000354859","Ensembl",-1,"ENST00000362072",1,["P14416-1"],"T")]"SNV"4.76e+00"AS_MQ"FalseFalseFalseFalseFalseTrueFalseFalse"multi-snv"2False"snv"False[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,19,0,104,0,314255,0,1,0,416548,0,0,0,0,0,0,2]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,72,311,19701,184811,422719,92484,8754,911,187,104,83,87,80,57,58,52,55,65]0338[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][10,0,0,0,27,0,104,0,314255,0,1,0,416548,0,0,0,0,0,0,2]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][3,9,76,312,19702,184811,422719,92484,8754,911,187,104,83,87,80,57,58,52,55,65]0338[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,1,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]003.70e+017.06e+00NA0.00e+00-5.00e-028.90e+00NANA31
" + ], + "text/plain": [ + "+-----------------+------------+\n", + "| locus | alleles |\n", + "+-----------------+------------+\n", + "| locus | array |\n", + "+-----------------+------------+\n", + "| chr11:113412554 | [\"A\",\"G\"] |\n", + "| chr11:113412865 | [\"G\",\"A\"] |\n", + "| chr11:113412885 | [\"T\",\"C\"] |\n", + "| chr11:113414463 | [\"T\",\"G\"] |\n", + "| chr11:113415420 | [\"C\",\"G\"] |\n", + "| chr11:113415480 | [\"G\",\"A\"] |\n", + "| chr11:113416861 | [\"A\",\"G\"] |\n", + "| chr11:113424628 | [\"C\",\"T\"] |\n", + "+-----------------+------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| freq |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [(1,6.85e-07,1459578,0),(1,6.84e-07,1461894,0),(0,0.00e+00,33480,0),(0,0.... |\n", + "| [(1,6.85e-07,1459642,0),(1,6.84e-07,1461894,0),(0,0.00e+00,33422,0),(0,0.... |\n", + "| [(1,6.86e-07,1458160,0),(2,1.37e-06,1461894,0),(0,0.00e+00,33408,0),(0,0.... |\n", + "| [(3,2.05e-06,1461878,0),(3,2.05e-06,1461894,0),(0,0.00e+00,33480,0),(0,0.... |\n", + "| [(1,6.85e-07,1459072,0),(1,6.84e-07,1461894,0),(0,0.00e+00,33442,0),(0,0.... |\n", + "| [(2,1.37e-06,1461866,0),(2,1.37e-06,1461894,0),(0,0.00e+00,33480,0),(0,0.... |\n", + "| [(1,6.84e-07,1461444,0),(1,6.84e-07,1461894,0),(0,0.00e+00,33468,0),(0,0.... |\n", + "| [(1,6.84e-07,1461858,0),(1,6.84e-07,1461894,0),(0,0.00e+00,33480,0),(0,0.... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+------------------+------------------+------------------+\n", + "| grpmax.gnomad.AC | grpmax.gnomad.AF | grpmax.gnomad.AN |\n", + "+------------------+------------------+------------------+\n", + "| int32 | float64 | int32 |\n", + "+------------------+------------------+------------------+\n", + "| 1 | 8.99e-07 | 1111998 |\n", + "| 1 | 8.99e-07 | 1111812 |\n", + "| 1 | 9.00e-07 | 1111636 |\n", + "| 3 | 2.70e-06 | 1111998 |\n", + "| 1 | 1.16e-05 | 85890 |\n", + "| 2 | 1.80e-06 | 1111994 |\n", + "| 1 | 8.99e-07 | 1111804 |\n", + "| 1 | 8.99e-07 | 1112012 |\n", + "+------------------+------------------+------------------+\n", + "\n", + "+--------------------------------+-----------------------+-------------------+\n", + "| grpmax.gnomad.homozygote_count | grpmax.gnomad.gen_anc | grpmax.non_ukb.AC |\n", + "+--------------------------------+-----------------------+-------------------+\n", + "| int64 | str | int32 |\n", + "+--------------------------------+-----------------------+-------------------+\n", + "| 0 | \"nfe\" | NA |\n", + "| 0 | \"nfe\" | NA |\n", + "| 0 | \"nfe\" | NA |\n", + "| 0 | \"nfe\" | NA |\n", + "| 0 | \"sas\" | 1 |\n", + "| 0 | \"nfe\" | NA |\n", + "| 0 | \"nfe\" | 1 |\n", + "| 0 | \"nfe\" | NA |\n", + "+--------------------------------+-----------------------+-------------------+\n", + "\n", + "+-------------------+-------------------+---------------------------------+\n", + "| grpmax.non_ukb.AF | grpmax.non_ukb.AN | grpmax.non_ukb.homozygote_count |\n", + "+-------------------+-------------------+---------------------------------+\n", + "| float64 | int32 | int64 |\n", + "+-------------------+-------------------+---------------------------------+\n", + "| NA | NA | NA |\n", + "| NA | NA | NA |\n", + "| NA | NA | NA |\n", + "| NA | NA | NA |\n", + "| 1.44e-05 | 69430 | 0 |\n", + "| NA | NA | NA |\n", + "| 2.86e-06 | 349900 | 0 |\n", + "| NA | NA | NA |\n", + "+-------------------+-------------------+---------------------------------+\n", + "\n", + "+------------------------+\n", + "| grpmax.non_ukb.gen_anc |\n", + "+------------------------+\n", + "| str |\n", + "+------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| \"sas\" |\n", + "| NA |\n", + "| \"nfe\" |\n", + "| NA |\n", + "+------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| faf |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.... |\n", + "| [(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.... |\n", + "| [(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.... |\n", + "| [(5.50e-07,1.50e-07),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.... |\n", + "| [(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.... |\n", + "| [(2.30e-07,9.00e-08),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.... |\n", + "| [(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.... |\n", + "| [(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+-------------------------+---------------------------------+\n", + "| fafmax.gnomad.faf95_max | fafmax.gnomad.faf95_max_gen_anc |\n", + "+-------------------------+---------------------------------+\n", + "| float64 | str |\n", + "+-------------------------+---------------------------------+\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| 7.20e-07 | \"nfe\" |\n", + "| NA | NA |\n", + "| 3.00e-07 | \"nfe\" |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "+-------------------------+---------------------------------+\n", + "\n", + "+-------------------------+---------------------------------+\n", + "| fafmax.gnomad.faf99_max | fafmax.gnomad.faf99_max_gen_anc |\n", + "+-------------------------+---------------------------------+\n", + "| float64 | str |\n", + "+-------------------------+---------------------------------+\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| 2.00e-07 | \"nfe\" |\n", + "| NA | NA |\n", + "| 1.10e-07 | \"nfe\" |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "+-------------------------+---------------------------------+\n", + "\n", + "+--------------------------+----------------------------------+\n", + "| fafmax.non_ukb.faf95_max | fafmax.non_ukb.faf95_max_gen_anc |\n", + "+--------------------------+----------------------------------+\n", + "| float64 | str |\n", + "+--------------------------+----------------------------------+\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "+--------------------------+----------------------------------+\n", + "\n", + "+--------------------------+----------------------------------+---------+\n", + "| fafmax.non_ukb.faf99_max | fafmax.non_ukb.faf99_max_gen_anc | a_index |\n", + "+--------------------------+----------------------------------+---------+\n", + "| float64 | str | int32 |\n", + "+--------------------------+----------------------------------+---------+\n", + "| NA | NA | 2 |\n", + "| NA | NA | 1 |\n", + "| NA | NA | 1 |\n", + "| NA | NA | 1 |\n", + "| NA | NA | 1 |\n", + "| NA | NA | 1 |\n", + "| NA | NA | 1 |\n", + "| NA | NA | 2 |\n", + "+--------------------------+----------------------------------+---------+\n", + "\n", + "+-----------+-----------------+----------+----------+----------+\n", + "| was_split | rsid | filters | info.FS | info.MQ |\n", + "+-----------+-----------------+----------+----------+----------+\n", + "| bool | set | set | float64 | float64 |\n", + "+-----------+-----------------+----------+----------+----------+\n", + "| True | NA | {} | 2.83e+00 | 6.00e+01 |\n", + "| True | NA | {} | 1.02e+00 | 6.00e+01 |\n", + "| False | NA | {} | 2.45e+00 | 6.00e+01 |\n", + "| False | NA | {} | 4.96e+00 | 6.00e+01 |\n", + "| False | {\"rs770234535\"} | {} | 0.00e+00 | 6.00e+01 |\n", + "| True | NA | {} | 5.21e-01 | 6.00e+01 |\n", + "| False | NA | {} | 1.62e+00 | 6.00e+01 |\n", + "| True | NA | {} | 9.48e+00 | 6.00e+01 |\n", + "+-----------+-----------------+----------+----------+----------+\n", + "\n", + "+----------------+-----------------+----------+---------------------+\n", + "| info.MQRankSum | info.QUALapprox | info.QD | info.ReadPosRankSum |\n", + "+----------------+-----------------+----------+---------------------+\n", + "| float64 | int64 | float64 | float64 |\n", + "+----------------+-----------------+----------+---------------------+\n", + "| 0.00e+00 | 1498 | 1.05e+01 | -5.05e-01 |\n", + "| 0.00e+00 | 553 | 7.79e+00 | 2.96e-01 |\n", + "| 0.00e+00 | 890 | 1.11e+01 | 1.80e-01 |\n", + "| 0.00e+00 | 1567 | 1.20e+01 | 2.08e-01 |\n", + "| 0.00e+00 | 259 | 1.44e+01 | 1.41e+00 |\n", + "| 0.00e+00 | 8933 | 1.24e+01 | 1.75e-01 |\n", + "| 0.00e+00 | 1177 | 1.12e+01 | 3.00e-03 |\n", + "| 0.00e+00 | 1375 | 9.96e+00 | -3.30e-02 |\n", + "+----------------+-----------------+----------+---------------------+\n", + "\n", + "+-------------------+----------+------------+------------+------------+\n", + "| info.SB | info.SOR | info.VarDP | info.AS_FS | info.AS_MQ |\n", + "+-------------------+----------+------------+------------+------------+\n", + "| array | float64 | int32 | float64 | float64 |\n", + "+-------------------+----------+------------+------------+------------+\n", + "| [63,17,52,10] | 1.04e+00 | 142 | 1.10e+00 | 6.00e+01 |\n", + "| [14,32,9,16] | 4.68e-01 | 71 | 1.04e+00 | 6.00e+01 |\n", + "| [7,37,8,28] | 3.79e-01 | 80 | 2.45e+00 | 6.00e+01 |\n", + "| [21,49,13,48] | 1.22e+00 | 131 | 4.96e+00 | 6.00e+01 |\n", + "| [9,0,8,1] | 1.84e-01 | 18 | 0.00e+00 | 6.00e+01 |\n", + "| [191,186,167,175] | 7.16e-01 | 719 | 2.44e+00 | 6.00e+01 |\n", + "| [34,22,32,17] | 8.97e-01 | 105 | 1.62e+00 | 6.00e+01 |\n", + "| [27,53,28,30] | 2.68e-01 | 138 | 8.73e+00 | 6.00e+01 |\n", + "+-------------------+----------+------------+------------+------------+\n", + "\n", + "+-------------------+-----------------+--------------------+------------+\n", + "| info.AS_MQRankSum | info.AS_pab_max | info.AS_QUALapprox | info.AS_QD |\n", + "+-------------------+-----------------+--------------------+------------+\n", + "| float64 | float64 | int64 | float64 |\n", + "+-------------------+-----------------+--------------------+------------+\n", + "| 0.00e+00 | 1.00e+00 | 661 | 1.35e+01 |\n", + "| 0.00e+00 | 3.92e-01 | 531 | 8.56e+00 |\n", + "| 0.00e+00 | 4.53e-01 | 890 | 1.11e+01 |\n", + "| 0.00e+00 | 1.00e+00 | 1567 | 1.20e+01 |\n", + "| 0.00e+00 | 1.00e+00 | 259 | 1.44e+01 |\n", + "| 0.00e+00 | 1.84e-01 | 1886 | 1.17e+01 |\n", + "| 0.00e+00 | 5.58e-01 | 1177 | 1.12e+01 |\n", + "| 0.00e+00 | 5.98e-02 | 780 | 9.51e+00 |\n", + "+-------------------+-----------------+--------------------+------------+\n", + "\n", + "+------------------------+------------------+-------------+---------------+\n", + "| info.AS_ReadPosRankSum | info.AS_SB_TABLE | info.AS_SOR | info.AS_VarDP |\n", + "+------------------------+------------------+-------------+---------------+\n", + "| float64 | array | float64 | int32 |\n", + "+------------------------+------------------+-------------+---------------+\n", + "| -1.83e+00 | [63,17,21,4] | 9.29e-01 | 49 |\n", + "| 2.96e-01 | [14,32,8,15] | 5.03e-01 | 62 |\n", + "| 1.80e-01 | [7,37,8,28] | 3.79e-01 | 80 |\n", + "| 2.08e-01 | [21,49,13,48] | 1.22e+00 | 131 |\n", + "| 1.41e+00 | [9,0,8,1] | 1.84e-01 | 18 |\n", + "| 1.75e-01 | [191,186,43,33] | 9.51e-01 | 161 |\n", + "| 3.00e-03 | [34,22,32,17] | 8.97e-01 | 105 |\n", + "| -8.52e-01 | [27,53,16,16] | 2.38e-01 | 82 |\n", + "+------------------------+------------------+-------------+---------------+\n", + "\n", + "+----------------+----------------------------+------------------------+\n", + "| info.singleton | info.transmitted_singleton | info.sibling_singleton |\n", + "+----------------+----------------------------+------------------------+\n", + "| bool | bool | bool |\n", + "+----------------+----------------------------+------------------------+\n", + "| True | False | False |\n", + "| True | False | False |\n", + "| False | False | False |\n", + "| False | NA | NA |\n", + "| True | False | False |\n", + "| False | NA | NA |\n", + "| True | False | False |\n", + "| True | False | False |\n", + "+----------------+----------------------------+------------------------+\n", + "\n", + "+-----------+------------+------------------+---------------+----------------+\n", + "| info.omni | info.mills | info.monoallelic | info.only_het | info.AS_VQSLOD |\n", + "+-----------+------------+------------------+---------------+----------------+\n", + "| bool | bool | bool | bool | float64 |\n", + "+-----------+------------+------------------+---------------+----------------+\n", + "| False | False | False | False | 5.30e+00 |\n", + "| False | False | False | False | 5.39e+00 |\n", + "| False | False | False | False | 5.84e+00 |\n", + "| False | False | False | False | 5.68e+00 |\n", + "| False | False | False | False | 5.88e+00 |\n", + "| False | False | False | False | 5.90e+00 |\n", + "| False | False | False | False | 6.28e+00 |\n", + "| False | False | False | False | 4.76e+00 |\n", + "+-----------+------------+------------------+---------------+----------------+\n", + "\n", + "+-----------------------+\n", + "| info.inbreeding_coeff |\n", + "+-----------------------+\n", + "| float64 |\n", + "+-----------------------+\n", + "| -6.84e-07 |\n", + "| -6.84e-07 |\n", + "| -1.37e-06 |\n", + "| -2.05e-06 |\n", + "| -6.84e-07 |\n", + "| -1.37e-06 |\n", + "| -6.84e-07 |\n", + "| -6.84e-07 |\n", + "+-----------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| info.vrs.VRS_Allele_IDs |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [\"ga4gh:VA.mqU9WPvGr3hduyybbeN-AKJ1zN-kclsI\",\"ga4gh:VA.uvlicmv1vZnrBBqm0U... |\n", + "| [\"ga4gh:VA.uAq5BRYMw_lO7PZcOF5TpbGC5hA8JCCE\",\"ga4gh:VA.rN4HBsKxAnhIfQxMXe... |\n", + "| [\"ga4gh:VA.Hj6Aa_k4TOMxqWIs6lE_cgxiRrPFWp8C\",\"ga4gh:VA.NDTpZX0YUzM19pYVv6... |\n", + "| [\"ga4gh:VA.YID7VSJVf3ww5ocPtHOFB_frOCeJZjbJ\",\"ga4gh:VA.l93VoU51AVnxcbBPtR... |\n", + "| [\"ga4gh:VA.wHqNt4w2xDKyEM7D_6m3p8RHFffZrM4Y\",\"ga4gh:VA.a3bz-IwYbVym7BJ1kJ... |\n", + "| [\"ga4gh:VA.gpSj8DCEFoC32K8p1WSplOzLfjobiNF2\",\"ga4gh:VA.-nqY9CAkzVrWBF_qv9... |\n", + "| [\"ga4gh:VA.rcxeySbGcgI3UI4PHmXE0-eOiGuPAbc7\",\"ga4gh:VA.aAET-0HX1tW01GWSMq... |\n", + "| [\"ga4gh:VA.8sGHUAS0hRa-H2y4rXi6-6Bsy4-qPPE-\",\"ga4gh:VA.mP-pOESIi9_OSLJHsW... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+-----------------------+-----------------------+---------------------+\n", + "| info.vrs.VRS_Starts | info.vrs.VRS_Ends | info.vrs.VRS_States |\n", + "+-----------------------+-----------------------+---------------------+\n", + "| array | array | array |\n", + "+-----------------------+-----------------------+---------------------+\n", + "| [113412553,113412553] | [113412554,113412554] | [\"A\",\"G\"] |\n", + "| [113412864,113412864] | [113412865,113412865] | [\"G\",\"A\"] |\n", + "| [113412884,113412884] | [113412885,113412885] | [\"T\",\"C\"] |\n", + "| [113414462,113414462] | [113414463,113414463] | [\"T\",\"G\"] |\n", + "| [113415419,113415419] | [113415420,113415420] | [\"C\",\"G\"] |\n", + "| [113415479,113415479] | [113415480,113415480] | [\"G\",\"A\"] |\n", + "| [113416860,113416860] | [113416861,113416861] | [\"A\",\"G\"] |\n", + "| [113424627,113424627] | [113424628,113424628] | [\"C\",\"T\"] |\n", + "+-----------------------+-----------------------+---------------------+\n", + "\n", + "+-------------------+-----------+--------+--------------------------------+\n", + "| vep.allele_string | vep.end | vep.id | vep.input |\n", + "+-------------------+-----------+--------+--------------------------------+\n", + "| str | int32 | str | str |\n", + "+-------------------+-----------+--------+--------------------------------+\n", + "| \"A/G\" | 113412554 | \".\" | \"chr11\t113412554\t.\tA\tG\t.\t.\tGT\" |\n", + "| \"G/A\" | 113412865 | \".\" | \"chr11\t113412865\t.\tG\tA\t.\t.\tGT\" |\n", + "| \"T/C\" | 113412885 | \".\" | \"chr11\t113412885\t.\tT\tC\t.\t.\tGT\" |\n", + "| \"T/G\" | 113414463 | \".\" | \"chr11\t113414463\t.\tT\tG\t.\t.\tGT\" |\n", + "| \"C/G\" | 113415420 | \".\" | \"chr11\t113415420\t.\tC\tG\t.\t.\tGT\" |\n", + "| \"G/A\" | 113415480 | \".\" | \"chr11\t113415480\t.\tG\tA\t.\t.\tGT\" |\n", + "| \"A/G\" | 113416861 | \".\" | \"chr11\t113416861\t.\tA\tG\t.\t.\tGT\" |\n", + "| \"C/T\" | 113424628 | \".\" | \"chr11\t113424628\t.\tC\tT\t.\t.\tGT\" |\n", + "+-------------------+-----------+--------+--------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| vep.intergenic_consequences |\n", + "+------------------------------------------------------------------------------+\n", + "| array, impact: st... |\n", + "+------------------------------------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+-----------------------------+\n", + "| vep.most_severe_consequence |\n", + "+-----------------------------+\n", + "| str |\n", + "+-----------------------------+\n", + "| \"splice_donor_variant\" |\n", + "| \"stop_gained\" |\n", + "| \"splice_acceptor_variant\" |\n", + "| \"splice_acceptor_variant\" |\n", + "| \"splice_donor_variant\" |\n", + "| \"stop_gained\" |\n", + "| \"splice_donor_variant\" |\n", + "| \"stop_gained\" |\n", + "+-----------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| vep.motif_feature_consequences |\n", + "+------------------------------------------------------------------------------+\n", + "| array, high_inf_p... |\n", + "+------------------------------------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| vep.regulatory_feature_consequences |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------+\n", + "| histograms.qual_hists.gq_hist_all.bin_freq |\n", + "+------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------+\n", + "| [0,0,0,0,134,0,1469,0,311660,0,82,0,416443,0,0,0,0,0,0,1] |\n", + "| [0,0,0,0,547,0,1910,0,310815,0,33,0,416515,0,0,0,0,0,0,1] |\n", + "| [0,0,0,0,929,0,3800,0,308036,0,642,0,415672,0,0,0,0,0,0,1] |\n", + "| [0,0,0,0,21,0,157,0,314583,0,1063,0,415112,0,0,0,0,0,0,3] |\n", + "| [0,0,0,0,692,0,5013,0,307280,0,33,0,416517,0,0,0,0,0,0,1] |\n", + "| [0,0,0,0,29,0,103,0,314241,0,0,0,416552,0,0,0,0,0,0,8] |\n", + "| [0,0,0,0,225,0,1535,0,312406,0,2,0,416553,0,0,0,0,0,0,1] |\n", + "| [0,0,0,0,19,0,104,0,314255,0,1,0,416548,0,0,0,0,0,0,2] |\n", + "+------------------------------------------------------------+\n", + "\n", + "+---------------------------------------------+\n", + "| histograms.qual_hists.gq_hist_all.n_smaller |\n", + "+---------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+---------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.qual_hists.gq_hist_all.n_larger |\n", + "+--------------------------------------------+\n", + "| int64 |\n", + "+--------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+--------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.qual_hists.dp_hist_all.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.qual_hists.dp_hist_all.bin_freq |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0,0,1555,817,16216,229270,272936,45138,9370,3566,3616,4059,4521,5017,549... |\n", + "| [0,0,1141,1461,3821,36585,211757,225880,49280,7441,3163,3441,5118,7834,11... |\n", + "| [0,0,2699,3244,4728,36120,209411,224276,48878,7369,3147,3425,5116,7827,11... |\n", + "| [0,0,87,765,26853,226717,412769,58256,3889,491,150,93,69,55,68,71,66,81,5... |\n", + "| [0,0,4589,5130,19240,219783,394259,72552,10630,1692,409,297,247,148,95,85... |\n", + "| [0,0,43,280,16751,227129,399638,73028,10691,1700,414,295,249,152,94,85,69... |\n", + "| [0,0,1267,2040,25889,200725,371864,92888,14543,2881,1075,788,744,786,1105... |\n", + "| [0,0,72,311,19701,184811,422719,92484,8754,911,187,104,83,87,80,57,58,52,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+---------------------------------------------+\n", + "| histograms.qual_hists.dp_hist_all.n_smaller |\n", + "+---------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+---------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.qual_hists.dp_hist_all.n_larger |\n", + "+--------------------------------------------+\n", + "| int64 |\n", + "+--------------------------------------------+\n", + "| 102137 |\n", + "| 70182 |\n", + "| 70149 |\n", + "| 333 |\n", + "| 176 |\n", + "| 179 |\n", + "| 5373 |\n", + "| 338 |\n", + "+--------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.qual_hists.gq_hist_alt.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.qual_hists.gq_hist_alt.bin_freq |\n", + "+--------------------------------------------+\n", + "| array |\n", + "+--------------------------------------------+\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1] |\n", + "+--------------------------------------------+\n", + "\n", + "+---------------------------------------------+\n", + "| histograms.qual_hists.gq_hist_alt.n_smaller |\n", + "+---------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+---------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.qual_hists.gq_hist_alt.n_larger |\n", + "+--------------------------------------------+\n", + "| int64 |\n", + "+--------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+--------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.qual_hists.dp_hist_alt.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.qual_hists.dp_hist_alt.bin_freq |\n", + "+--------------------------------------------+\n", + "| array |\n", + "+--------------------------------------------+\n", + "| [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0] |\n", + "| [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0] |\n", + "+--------------------------------------------+\n", + "\n", + "+---------------------------------------------+\n", + "| histograms.qual_hists.dp_hist_alt.n_smaller |\n", + "+---------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+---------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.qual_hists.dp_hist_alt.n_larger |\n", + "+--------------------------------------------+\n", + "| int64 |\n", + "+--------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 1 |\n", + "| 0 |\n", + "+--------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.qual_hists.ab_hist_alt.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.qual_hists.ab_hist_alt.bin_freq |\n", + "+--------------------------------------------+\n", + "| array |\n", + "+--------------------------------------------+\n", + "| [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,1,0,0,0,0,2,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "+--------------------------------------------+\n", + "\n", + "+---------------------------------------------+\n", + "| histograms.qual_hists.ab_hist_alt.n_smaller |\n", + "+---------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+---------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.qual_hists.ab_hist_alt.n_larger |\n", + "+--------------------------------------------+\n", + "| int64 |\n", + "+--------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+--------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.raw_qual_hists.gq_hist_all.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+----------------------------------------------------------------+\n", + "| histograms.raw_qual_hists.gq_hist_all.bin_freq |\n", + "+----------------------------------------------------------------+\n", + "| array |\n", + "+----------------------------------------------------------------+\n", + "| [441,0,0,0,850,1,1469,0,311660,0,82,0,416443,0,0,0,0,0,0,1] |\n", + "| [890,0,0,0,783,0,1910,0,310815,0,33,0,416515,0,0,0,0,0,0,1] |\n", + "| [1313,0,2,0,1481,0,3800,0,308036,0,642,0,415672,0,0,0,0,0,0,1] |\n", + "| [5,0,2,0,22,0,157,0,314583,0,1063,0,415112,0,0,0,0,0,0,3] |\n", + "| [650,0,0,0,1453,0,5013,0,307280,0,33,0,416517,0,0,0,0,0,0,1] |\n", + "| [10,0,0,0,33,0,103,0,314241,0,0,0,416552,0,0,0,0,0,0,8] |\n", + "| [100,0,0,0,350,0,1535,0,312406,0,2,0,416553,0,0,0,0,0,0,1] |\n", + "| [10,0,0,0,27,0,104,0,314255,0,1,0,416548,0,0,0,0,0,0,2] |\n", + "+----------------------------------------------------------------+\n", + "\n", + "+-------------------------------------------------+\n", + "| histograms.raw_qual_hists.gq_hist_all.n_smaller |\n", + "+-------------------------------------------------+\n", + "| int64 |\n", + "+-------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+-------------------------------------------------+\n", + "\n", + "+------------------------------------------------+\n", + "| histograms.raw_qual_hists.gq_hist_all.n_larger |\n", + "+------------------------------------------------+\n", + "| int64 |\n", + "+------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.raw_qual_hists.dp_hist_all.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.raw_qual_hists.dp_hist_all.bin_freq |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [244,858,1593,833,16218,229270,272936,45138,9370,3566,3616,4059,4521,5017... |\n", + "| [431,622,1175,1493,3823,36589,211757,225880,49281,7441,3163,3441,5118,783... |\n", + "| [618,1142,2737,3303,4730,36128,209411,224276,48878,7369,3147,3425,5116,78... |\n", + "| [0,1,88,768,26854,226717,412771,58256,3889,491,150,93,69,55,68,71,66,81,5... |\n", + "| [157,923,4727,5278,19256,219808,394263,72552,10630,1692,409,297,247,148,9... |\n", + "| [0,5,44,284,16751,227131,399638,73029,10692,1700,414,295,249,152,94,85,69... |\n", + "| [7,158,1289,2075,25891,200726,371864,92888,14543,2881,1075,788,744,786,11... |\n", + "| [3,9,76,312,19702,184811,422719,92484,8754,911,187,104,83,87,80,57,58,52,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+-------------------------------------------------+\n", + "| histograms.raw_qual_hists.dp_hist_all.n_smaller |\n", + "+-------------------------------------------------+\n", + "| int64 |\n", + "+-------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+-------------------------------------------------+\n", + "\n", + "+------------------------------------------------+\n", + "| histograms.raw_qual_hists.dp_hist_all.n_larger |\n", + "+------------------------------------------------+\n", + "| int64 |\n", + "+------------------------------------------------+\n", + "| 102137 |\n", + "| 70182 |\n", + "| 70149 |\n", + "| 333 |\n", + "| 176 |\n", + "| 179 |\n", + "| 5373 |\n", + "| 338 |\n", + "+------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.raw_qual_hists.gq_hist_alt.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+------------------------------------------------+\n", + "| histograms.raw_qual_hists.gq_hist_alt.bin_freq |\n", + "+------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------+\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1] |\n", + "| [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1] |\n", + "+------------------------------------------------+\n", + "\n", + "+-------------------------------------------------+\n", + "| histograms.raw_qual_hists.gq_hist_alt.n_smaller |\n", + "+-------------------------------------------------+\n", + "| int64 |\n", + "+-------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+-------------------------------------------------+\n", + "\n", + "+------------------------------------------------+\n", + "| histograms.raw_qual_hists.gq_hist_alt.n_larger |\n", + "+------------------------------------------------+\n", + "| int64 |\n", + "+------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.raw_qual_hists.dp_hist_alt.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+------------------------------------------------+\n", + "| histograms.raw_qual_hists.dp_hist_alt.bin_freq |\n", + "+------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------+\n", + "| [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0] |\n", + "| [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0] |\n", + "+------------------------------------------------+\n", + "\n", + "+-------------------------------------------------+\n", + "| histograms.raw_qual_hists.dp_hist_alt.n_smaller |\n", + "+-------------------------------------------------+\n", + "| int64 |\n", + "+-------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+-------------------------------------------------+\n", + "\n", + "+------------------------------------------------+\n", + "| histograms.raw_qual_hists.dp_hist_alt.n_larger |\n", + "+------------------------------------------------+\n", + "| int64 |\n", + "+------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 1 |\n", + "| 0 |\n", + "+------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.raw_qual_hists.ab_hist_alt.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+------------------------------------------------+\n", + "| histograms.raw_qual_hists.ab_hist_alt.bin_freq |\n", + "+------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------+\n", + "| [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,1,0,0,0,0,2,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "+------------------------------------------------+\n", + "\n", + "+-------------------------------------------------+\n", + "| histograms.raw_qual_hists.ab_hist_alt.n_smaller |\n", + "+-------------------------------------------------+\n", + "| int64 |\n", + "+-------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+-------------------------------------------------+\n", + "\n", + "+------------------------------------------------+\n", + "| histograms.raw_qual_hists.ab_hist_alt.n_larger |\n", + "+------------------------------------------------+\n", + "| int64 |\n", + "+------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.age_hists.age_hist_het.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.age_hists.age_hist_het.bin_freq |\n", + "+--------------------------------------------+\n", + "| array |\n", + "+--------------------------------------------+\n", + "| [0,0,0,0,1,0,0,0,0,0] |\n", + "| [0,0,0,1,0,0,0,0,0,0] |\n", + "| [0,0,0,0,1,0,0,0,0,0] |\n", + "| [0,0,0,1,1,0,0,1,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,1,0,0,1,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,1,0,0,0,0] |\n", + "+--------------------------------------------+\n", + "\n", + "+---------------------------------------------+\n", + "| histograms.age_hists.age_hist_het.n_smaller |\n", + "+---------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+---------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.age_hists.age_hist_het.n_larger |\n", + "+--------------------------------------------+\n", + "| int64 |\n", + "+--------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+--------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.age_hists.age_hist_hom.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.age_hists.age_hist_hom.bin_freq |\n", + "+--------------------------------------------+\n", + "| array |\n", + "+--------------------------------------------+\n", + "| [0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0] |\n", + "+--------------------------------------------+\n", + "\n", + "+---------------------------------------------+\n", + "| histograms.age_hists.age_hist_hom.n_smaller |\n", + "+---------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+---------------------------------------------+\n", + "\n", + "+--------------------------------------------+---------------------------------+\n", + "| histograms.age_hists.age_hist_hom.n_larger | in_silico_predictors.cadd.phred |\n", + "+--------------------------------------------+---------------------------------+\n", + "| int64 | float32 |\n", + "+--------------------------------------------+---------------------------------+\n", + "| 0 | 3.40e+01 |\n", + "| 0 | 4.50e+01 |\n", + "| 0 | 3.50e+01 |\n", + "| 0 | 3.40e+01 |\n", + "| 0 | 2.96e+01 |\n", + "| 0 | 3.70e+01 |\n", + "| 0 | 2.71e+01 |\n", + "| 0 | 3.70e+01 |\n", + "+--------------------------------------------+---------------------------------+\n", + "\n", + "+-------------------------------------+--------------------------------+\n", + "| in_silico_predictors.cadd.raw_score | in_silico_predictors.revel_max |\n", + "+-------------------------------------+--------------------------------+\n", + "| float32 | float64 |\n", + "+-------------------------------------+--------------------------------+\n", + "| 5.66e+00 | NA |\n", + "| 8.76e+00 | NA |\n", + "| 5.83e+00 | NA |\n", + "| 5.38e+00 | NA |\n", + "| 4.30e+00 | NA |\n", + "| 7.23e+00 | NA |\n", + "| 4.02e+00 | NA |\n", + "| 7.06e+00 | NA |\n", + "+-------------------------------------+--------------------------------+\n", + "\n", + "+--------------------------------------+\n", + "| in_silico_predictors.spliceai_ds_max |\n", + "+--------------------------------------+\n", + "| float32 |\n", + "+--------------------------------------+\n", + "| 9.60e-01 |\n", + "| 0.00e+00 |\n", + "| 9.80e-01 |\n", + "| 9.40e-01 |\n", + "| 8.90e-01 |\n", + "| 9.50e-01 |\n", + "| 7.70e-01 |\n", + "| 0.00e+00 |\n", + "+--------------------------------------+\n", + "\n", + "+------------------------------------------+-----------------------------+\n", + "| in_silico_predictors.pangolin_largest_ds | in_silico_predictors.phylop |\n", + "+------------------------------------------+-----------------------------+\n", + "| float64 | float64 |\n", + "+------------------------------------------+-----------------------------+\n", + "| -8.30e-01 | 6.33e+00 |\n", + "| -1.10e-01 | 8.79e+00 |\n", + "| -7.90e-01 | 6.35e+00 |\n", + "| -8.10e-01 | 6.34e+00 |\n", + "| -6.80e-01 | 8.80e+00 |\n", + "| 8.10e-01 | 1.80e+00 |\n", + "| -7.00e-01 | 4.85e+00 |\n", + "| -5.00e-02 | 8.90e+00 |\n", + "+------------------------------------------+-----------------------------+\n", + "\n", + "+-------------------------------+-----------------------------------+\n", + "| in_silico_predictors.sift_max | in_silico_predictors.polyphen_max |\n", + "+-------------------------------+-----------------------------------+\n", + "| float64 | float64 |\n", + "+-------------------------------+-----------------------------------+\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "+-------------------------------+-----------------------------------+\n", + "\n", + "+----------------+\n", + "| exome_coverage |\n", + "+----------------+\n", + "| int32 |\n", + "+----------------+\n", + "| 31 |\n", + "| 36 |\n", + "| 36 |\n", + "| 31 |\n", + "| 31 |\n", + "| 31 |\n", + "| 31 |\n", + "| 31 |\n", + "+----------------+" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "get_observed_plofs_for_gene_constraint('drd2').show(-1)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "3c2212f4-a7cf-45bc-930d-aa18cebff7a3", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.9" + }, + "toc": { + "base_numbering": 1, + "nav_menu": { + "height": "613.99px", + "width": "526.312px" + }, + "number_sections": false, + "sideBar": true, + "skip_h1_title": false, + "title_cell": "Table of Contents", + "title_sidebar": "Contents", + "toc_cell": true, + "toc_position": { + "height": "calc(100% - 180px)", + "left": "10px", + "top": "150px", + "width": "219.438px" + }, + "toc_section_display": true, + "toc_window_display": true + }, + "toc-autonumbering": false, + "toc-showcode": false, + "toc-showmarkdowntxt": true, + "widgets": { + "application/vnd.jupyter.widget-state+json": { + "state": {}, + "version_major": 2, + "version_minor": 0 + } + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} From 119e4cd06196c36f482e3c62506a9aaa67745a5d Mon Sep 17 00:00:00 2001 From: Qin He <44242118+KoalaQin@users.noreply.github.com> Date: Wed, 15 Jan 2025 17:41:03 -0500 Subject: [PATCH 093/121] Correct interval function in variant.py --- gnomad_toolbox/filtering/variant.py | 5 ++++- .../dive_into_secondary_analyses.ipynb | 17 ++++++-------- .../notebooks/explore_release_data.ipynb | 2 +- .../intro_to_filtering_variant_data.ipynb | 22 +++++++++---------- 4 files changed, 23 insertions(+), 23 deletions(-) diff --git a/gnomad_toolbox/filtering/variant.py b/gnomad_toolbox/filtering/variant.py index db1f5e3..3b063d2 100644 --- a/gnomad_toolbox/filtering/variant.py +++ b/gnomad_toolbox/filtering/variant.py @@ -71,6 +71,7 @@ def get_single_variant( def filter_by_intervals( intervals: Union[str, list[str]], + padding_bp: int = 0, **kwargs, ) -> hl.Table: """ @@ -79,15 +80,17 @@ def filter_by_intervals( :param intervals: Interval string or list of interval strings. The interval string format has to be "contig:start-end", e.g.,"1:1000-2000" (GRCh37) or "chr1:1000-2000" (GRCh38). + :param padding_bp: Number of base pairs to pad the intervals. Default is 0bp. :param kwargs: Arguments to pass to `_get_dataset`. :return: Table with variants in the interval(s). """ - # Load the Hail Table if not provided + # Load the Hail Table if not provided. ht = _get_dataset(dataset="variant", **kwargs) return interval_filter( ht, intervals, + padding_bp=padding_bp, reference_genome=get_reference_genome(ht.locus).name, ) diff --git a/gnomad_toolbox/notebooks/dive_into_secondary_analyses.ipynb b/gnomad_toolbox/notebooks/dive_into_secondary_analyses.ipynb index 9f9fe61..2263683 100644 --- a/gnomad_toolbox/notebooks/dive_into_secondary_analyses.ipynb +++ b/gnomad_toolbox/notebooks/dive_into_secondary_analyses.ipynb @@ -8,7 +8,7 @@ }, "source": [ "

Table of Contents

\n", - "" + "" ] }, { @@ -43,7 +43,7 @@ " \n", "
\n", " \n", - " Loading BokehJS ...\n", + " Loading BokehJS ...\n", "
\n" ] }, @@ -215,7 +215,7 @@ " \"\"}};\n", "\n", " function display_loaded() {\n", - " const el = document.getElementById(\"fa775294-04ee-41da-8a2d-4ece189fbd0f\");\n", + " const el = document.getElementById(\"c4a512b6-e00b-4120-bf26-b79fc276c184\");\n", " if (el != null) {\n", " el.textContent = \"BokehJS is loading...\";\n", " }\n", @@ -321,7 +321,7 @@ " console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n", " root._bokeh_failed_load = true;\n", " } else if (force !== true) {\n", - " const cell = $(document.getElementById(\"fa775294-04ee-41da-8a2d-4ece189fbd0f\")).parents('.cell').data().cell;\n", + " const cell = $(document.getElementById(\"c4a512b6-e00b-4120-bf26-b79fc276c184\")).parents('.cell').data().cell;\n", " cell.output_area.append_execute_result(NB_LOAD_WARNING)\n", " }\n", " }\n", @@ -337,7 +337,7 @@ " }\n", "}(window));" ], - "application/vnd.bokehjs_load.v0+json": "(function(root) {\n function now() {\n return new Date();\n }\n\n const force = true;\n\n if (typeof root._bokeh_onload_callbacks === \"undefined\" || force === true) {\n root._bokeh_onload_callbacks = [];\n root._bokeh_is_loading = undefined;\n }\n\n\n if (typeof (root._bokeh_timeout) === \"undefined\" || force === true) {\n root._bokeh_timeout = Date.now() + 5000;\n root._bokeh_failed_load = false;\n }\n\n const NB_LOAD_WARNING = {'data': {'text/html':\n \"
\\n\"+\n \"

\\n\"+\n \"BokehJS does not appear to have successfully loaded. If loading BokehJS from CDN, this \\n\"+\n \"may be due to a slow or bad network connection. Possible fixes:\\n\"+\n \"

\\n\"+\n \"
    \\n\"+\n \"
  • re-rerun `output_notebook()` to attempt to load from CDN again, or
  • \\n\"+\n \"
  • use INLINE resources instead, as so:
  • \\n\"+\n \"
\\n\"+\n \"\\n\"+\n \"from bokeh.resources import INLINE\\n\"+\n \"output_notebook(resources=INLINE)\\n\"+\n \"\\n\"+\n \"
\"}};\n\n function display_loaded() {\n const el = document.getElementById(\"fa775294-04ee-41da-8a2d-4ece189fbd0f\");\n if (el != null) {\n el.textContent = \"BokehJS is loading...\";\n }\n if (root.Bokeh !== undefined) {\n if (el != null) {\n el.textContent = \"BokehJS \" + root.Bokeh.version + \" successfully loaded.\";\n }\n } else if (Date.now() < root._bokeh_timeout) {\n setTimeout(display_loaded, 100)\n }\n }\n\n function run_callbacks() {\n try {\n root._bokeh_onload_callbacks.forEach(function(callback) {\n if (callback != null)\n callback();\n });\n } finally {\n delete root._bokeh_onload_callbacks\n }\n console.debug(\"Bokeh: all callbacks have finished\");\n }\n\n function load_libs(css_urls, js_urls, callback) {\n if (css_urls == null) css_urls = [];\n if (js_urls == null) js_urls = [];\n\n root._bokeh_onload_callbacks.push(callback);\n if (root._bokeh_is_loading > 0) {\n console.debug(\"Bokeh: BokehJS is being loaded, scheduling callback at\", now());\n return null;\n }\n if (js_urls == null || js_urls.length === 0) {\n run_callbacks();\n return null;\n }\n console.debug(\"Bokeh: BokehJS not loaded, scheduling load and callback at\", now());\n root._bokeh_is_loading = css_urls.length + js_urls.length;\n\n function on_load() {\n root._bokeh_is_loading--;\n if (root._bokeh_is_loading === 0) {\n console.debug(\"Bokeh: all BokehJS libraries/stylesheets loaded\");\n run_callbacks()\n }\n }\n\n function on_error(url) {\n console.error(\"failed to load \" + url);\n }\n\n for (let i = 0; i < css_urls.length; i++) {\n const url = css_urls[i];\n const element = document.createElement(\"link\");\n element.onload = on_load;\n element.onerror = on_error.bind(null, url);\n element.rel = \"stylesheet\";\n element.type = \"text/css\";\n element.href = url;\n console.debug(\"Bokeh: injecting link tag for BokehJS stylesheet: \", url);\n document.body.appendChild(element);\n }\n\n for (let i = 0; i < js_urls.length; i++) {\n const url = js_urls[i];\n const element = document.createElement('script');\n element.onload = on_load;\n element.onerror = on_error.bind(null, url);\n element.async = false;\n element.src = url;\n console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n document.head.appendChild(element);\n }\n };\n\n function inject_raw_css(css) {\n const element = document.createElement(\"style\");\n element.appendChild(document.createTextNode(css));\n document.body.appendChild(element);\n }\n\n const js_urls = [\"https://cdn.bokeh.org/bokeh/release/bokeh-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-gl-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-widgets-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-tables-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-mathjax-3.3.4.min.js\"];\n const css_urls = [];\n\n const inline_js = [ function(Bokeh) {\n Bokeh.set_log_level(\"info\");\n },\nfunction(Bokeh) {\n }\n ];\n\n function run_inline_js() {\n if (root.Bokeh !== undefined || force === true) {\n for (let i = 0; i < inline_js.length; i++) {\n inline_js[i].call(root, root.Bokeh);\n }\nif (force === true) {\n display_loaded();\n }} else if (Date.now() < root._bokeh_timeout) {\n setTimeout(run_inline_js, 100);\n } else if (!root._bokeh_failed_load) {\n console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n root._bokeh_failed_load = true;\n } else if (force !== true) {\n const cell = $(document.getElementById(\"fa775294-04ee-41da-8a2d-4ece189fbd0f\")).parents('.cell').data().cell;\n cell.output_area.append_execute_result(NB_LOAD_WARNING)\n }\n }\n\n if (root._bokeh_is_loading === 0) {\n console.debug(\"Bokeh: BokehJS loaded, going straight to plotting\");\n run_inline_js();\n } else {\n load_libs(css_urls, js_urls, function() {\n console.debug(\"Bokeh: BokehJS plotting callback run at\", now());\n run_inline_js();\n });\n }\n}(window));" + "application/vnd.bokehjs_load.v0+json": "(function(root) {\n function now() {\n return new Date();\n }\n\n const force = true;\n\n if (typeof root._bokeh_onload_callbacks === \"undefined\" || force === true) {\n root._bokeh_onload_callbacks = [];\n root._bokeh_is_loading = undefined;\n }\n\n\n if (typeof (root._bokeh_timeout) === \"undefined\" || force === true) {\n root._bokeh_timeout = Date.now() + 5000;\n root._bokeh_failed_load = false;\n }\n\n const NB_LOAD_WARNING = {'data': {'text/html':\n \"
\\n\"+\n \"

\\n\"+\n \"BokehJS does not appear to have successfully loaded. If loading BokehJS from CDN, this \\n\"+\n \"may be due to a slow or bad network connection. Possible fixes:\\n\"+\n \"

\\n\"+\n \"
    \\n\"+\n \"
  • re-rerun `output_notebook()` to attempt to load from CDN again, or
  • \\n\"+\n \"
  • use INLINE resources instead, as so:
  • \\n\"+\n \"
\\n\"+\n \"\\n\"+\n \"from bokeh.resources import INLINE\\n\"+\n \"output_notebook(resources=INLINE)\\n\"+\n \"\\n\"+\n \"
\"}};\n\n function display_loaded() {\n const el = document.getElementById(\"c4a512b6-e00b-4120-bf26-b79fc276c184\");\n if (el != null) {\n el.textContent = \"BokehJS is loading...\";\n }\n if (root.Bokeh !== undefined) {\n if (el != null) {\n el.textContent = \"BokehJS \" + root.Bokeh.version + \" successfully loaded.\";\n }\n } else if (Date.now() < root._bokeh_timeout) {\n setTimeout(display_loaded, 100)\n }\n }\n\n function run_callbacks() {\n try {\n root._bokeh_onload_callbacks.forEach(function(callback) {\n if (callback != null)\n callback();\n });\n } finally {\n delete root._bokeh_onload_callbacks\n }\n console.debug(\"Bokeh: all callbacks have finished\");\n }\n\n function load_libs(css_urls, js_urls, callback) {\n if (css_urls == null) css_urls = [];\n if (js_urls == null) js_urls = [];\n\n root._bokeh_onload_callbacks.push(callback);\n if (root._bokeh_is_loading > 0) {\n console.debug(\"Bokeh: BokehJS is being loaded, scheduling callback at\", now());\n return null;\n }\n if (js_urls == null || js_urls.length === 0) {\n run_callbacks();\n return null;\n }\n console.debug(\"Bokeh: BokehJS not loaded, scheduling load and callback at\", now());\n root._bokeh_is_loading = css_urls.length + js_urls.length;\n\n function on_load() {\n root._bokeh_is_loading--;\n if (root._bokeh_is_loading === 0) {\n console.debug(\"Bokeh: all BokehJS libraries/stylesheets loaded\");\n run_callbacks()\n }\n }\n\n function on_error(url) {\n console.error(\"failed to load \" + url);\n }\n\n for (let i = 0; i < css_urls.length; i++) {\n const url = css_urls[i];\n const element = document.createElement(\"link\");\n element.onload = on_load;\n element.onerror = on_error.bind(null, url);\n element.rel = \"stylesheet\";\n element.type = \"text/css\";\n element.href = url;\n console.debug(\"Bokeh: injecting link tag for BokehJS stylesheet: \", url);\n document.body.appendChild(element);\n }\n\n for (let i = 0; i < js_urls.length; i++) {\n const url = js_urls[i];\n const element = document.createElement('script');\n element.onload = on_load;\n element.onerror = on_error.bind(null, url);\n element.async = false;\n element.src = url;\n console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n document.head.appendChild(element);\n }\n };\n\n function inject_raw_css(css) {\n const element = document.createElement(\"style\");\n element.appendChild(document.createTextNode(css));\n document.body.appendChild(element);\n }\n\n const js_urls = [\"https://cdn.bokeh.org/bokeh/release/bokeh-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-gl-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-widgets-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-tables-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-mathjax-3.3.4.min.js\"];\n const css_urls = [];\n\n const inline_js = [ function(Bokeh) {\n Bokeh.set_log_level(\"info\");\n },\nfunction(Bokeh) {\n }\n ];\n\n function run_inline_js() {\n if (root.Bokeh !== undefined || force === true) {\n for (let i = 0; i < inline_js.length; i++) {\n inline_js[i].call(root, root.Bokeh);\n }\nif (force === true) {\n display_loaded();\n }} else if (Date.now() < root._bokeh_timeout) {\n setTimeout(run_inline_js, 100);\n } else if (!root._bokeh_failed_load) {\n console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n root._bokeh_failed_load = true;\n } else if (force !== true) {\n const cell = $(document.getElementById(\"c4a512b6-e00b-4120-bf26-b79fc276c184\")).parents('.cell').data().cell;\n cell.output_area.append_execute_result(NB_LOAD_WARNING)\n }\n }\n\n if (root._bokeh_is_loading === 0) {\n console.debug(\"Bokeh: BokehJS loaded, going straight to plotting\");\n run_inline_js();\n } else {\n load_libs(css_urls, js_urls, function() {\n console.debug(\"Bokeh: BokehJS plotting callback run at\", now());\n run_inline_js();\n });\n }\n}(window));" }, "metadata": {}, "output_type": "display_data" @@ -368,7 +368,7 @@ " / /_/ /__ __/ /\n", " / __ / _ `/ / /\n", " /_/ /_/\\_,_/_/_/ version 0.2.132-678e1f52b999\n", - "LOGGING: writing to /Users/heqin/PycharmProjects/gnomad-toolbox/gnomad_toolbox/notebooks/hail-20250115-1629-0.2.132-678e1f52b999.log\n" + "LOGGING: writing to /Users/heqin/PycharmProjects/gnomad-toolbox/gnomad_toolbox/notebooks/hail-20250115-1729-0.2.132-678e1f52b999.log\n" ] } ], @@ -1898,7 +1898,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.9" + "version": "3.9.6" }, "toc": { "base_numbering": 1, @@ -1921,9 +1921,6 @@ "toc_section_display": true, "toc_window_display": true }, - "toc-autonumbering": false, - "toc-showcode": false, - "toc-showmarkdowntxt": true, "widgets": { "application/vnd.jupyter.widget-state+json": { "state": {}, diff --git a/gnomad_toolbox/notebooks/explore_release_data.ipynb b/gnomad_toolbox/notebooks/explore_release_data.ipynb index 1b7553e..18cc006 100644 --- a/gnomad_toolbox/notebooks/explore_release_data.ipynb +++ b/gnomad_toolbox/notebooks/explore_release_data.ipynb @@ -14648,7 +14648,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.9" + "version": "3.9.6" }, "toc": { "base_numbering": 1, diff --git a/gnomad_toolbox/notebooks/intro_to_filtering_variant_data.ipynb b/gnomad_toolbox/notebooks/intro_to_filtering_variant_data.ipynb index 8d2267c..3fdaf0e 100644 --- a/gnomad_toolbox/notebooks/intro_to_filtering_variant_data.ipynb +++ b/gnomad_toolbox/notebooks/intro_to_filtering_variant_data.ipynb @@ -16,7 +16,7 @@ }, "source": [ "

Table of Contents

\n", - "" + "" ] }, { @@ -51,7 +51,7 @@ " \n", "
\n", " \n", - " Loading BokehJS ...\n", + " Loading BokehJS ...\n", "
\n" ] }, @@ -223,7 +223,7 @@ " \"\"}};\n", "\n", " function display_loaded() {\n", - " const el = document.getElementById(\"be1e6b75-a614-4af7-b778-f8e50b8b7664\");\n", + " const el = document.getElementById(\"f22fcf70-de15-4a16-9b8f-9c5dcbf3db35\");\n", " if (el != null) {\n", " el.textContent = \"BokehJS is loading...\";\n", " }\n", @@ -329,7 +329,7 @@ " console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n", " root._bokeh_failed_load = true;\n", " } else if (force !== true) {\n", - " const cell = $(document.getElementById(\"be1e6b75-a614-4af7-b778-f8e50b8b7664\")).parents('.cell').data().cell;\n", + " const cell = $(document.getElementById(\"f22fcf70-de15-4a16-9b8f-9c5dcbf3db35\")).parents('.cell').data().cell;\n", " cell.output_area.append_execute_result(NB_LOAD_WARNING)\n", " }\n", " }\n", @@ -345,7 +345,7 @@ " }\n", "}(window));" ], - "application/vnd.bokehjs_load.v0+json": "(function(root) {\n function now() {\n return new Date();\n }\n\n const force = true;\n\n if (typeof root._bokeh_onload_callbacks === \"undefined\" || force === true) {\n root._bokeh_onload_callbacks = [];\n root._bokeh_is_loading = undefined;\n }\n\n\n if (typeof (root._bokeh_timeout) === \"undefined\" || force === true) {\n root._bokeh_timeout = Date.now() + 5000;\n root._bokeh_failed_load = false;\n }\n\n const NB_LOAD_WARNING = {'data': {'text/html':\n \"
\\n\"+\n \"

\\n\"+\n \"BokehJS does not appear to have successfully loaded. If loading BokehJS from CDN, this \\n\"+\n \"may be due to a slow or bad network connection. Possible fixes:\\n\"+\n \"

\\n\"+\n \"
    \\n\"+\n \"
  • re-rerun `output_notebook()` to attempt to load from CDN again, or
  • \\n\"+\n \"
  • use INLINE resources instead, as so:
  • \\n\"+\n \"
\\n\"+\n \"\\n\"+\n \"from bokeh.resources import INLINE\\n\"+\n \"output_notebook(resources=INLINE)\\n\"+\n \"\\n\"+\n \"
\"}};\n\n function display_loaded() {\n const el = document.getElementById(\"be1e6b75-a614-4af7-b778-f8e50b8b7664\");\n if (el != null) {\n el.textContent = \"BokehJS is loading...\";\n }\n if (root.Bokeh !== undefined) {\n if (el != null) {\n el.textContent = \"BokehJS \" + root.Bokeh.version + \" successfully loaded.\";\n }\n } else if (Date.now() < root._bokeh_timeout) {\n setTimeout(display_loaded, 100)\n }\n }\n\n function run_callbacks() {\n try {\n root._bokeh_onload_callbacks.forEach(function(callback) {\n if (callback != null)\n callback();\n });\n } finally {\n delete root._bokeh_onload_callbacks\n }\n console.debug(\"Bokeh: all callbacks have finished\");\n }\n\n function load_libs(css_urls, js_urls, callback) {\n if (css_urls == null) css_urls = [];\n if (js_urls == null) js_urls = [];\n\n root._bokeh_onload_callbacks.push(callback);\n if (root._bokeh_is_loading > 0) {\n console.debug(\"Bokeh: BokehJS is being loaded, scheduling callback at\", now());\n return null;\n }\n if (js_urls == null || js_urls.length === 0) {\n run_callbacks();\n return null;\n }\n console.debug(\"Bokeh: BokehJS not loaded, scheduling load and callback at\", now());\n root._bokeh_is_loading = css_urls.length + js_urls.length;\n\n function on_load() {\n root._bokeh_is_loading--;\n if (root._bokeh_is_loading === 0) {\n console.debug(\"Bokeh: all BokehJS libraries/stylesheets loaded\");\n run_callbacks()\n }\n }\n\n function on_error(url) {\n console.error(\"failed to load \" + url);\n }\n\n for (let i = 0; i < css_urls.length; i++) {\n const url = css_urls[i];\n const element = document.createElement(\"link\");\n element.onload = on_load;\n element.onerror = on_error.bind(null, url);\n element.rel = \"stylesheet\";\n element.type = \"text/css\";\n element.href = url;\n console.debug(\"Bokeh: injecting link tag for BokehJS stylesheet: \", url);\n document.body.appendChild(element);\n }\n\n for (let i = 0; i < js_urls.length; i++) {\n const url = js_urls[i];\n const element = document.createElement('script');\n element.onload = on_load;\n element.onerror = on_error.bind(null, url);\n element.async = false;\n element.src = url;\n console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n document.head.appendChild(element);\n }\n };\n\n function inject_raw_css(css) {\n const element = document.createElement(\"style\");\n element.appendChild(document.createTextNode(css));\n document.body.appendChild(element);\n }\n\n const js_urls = [\"https://cdn.bokeh.org/bokeh/release/bokeh-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-gl-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-widgets-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-tables-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-mathjax-3.3.4.min.js\"];\n const css_urls = [];\n\n const inline_js = [ function(Bokeh) {\n Bokeh.set_log_level(\"info\");\n },\nfunction(Bokeh) {\n }\n ];\n\n function run_inline_js() {\n if (root.Bokeh !== undefined || force === true) {\n for (let i = 0; i < inline_js.length; i++) {\n inline_js[i].call(root, root.Bokeh);\n }\nif (force === true) {\n display_loaded();\n }} else if (Date.now() < root._bokeh_timeout) {\n setTimeout(run_inline_js, 100);\n } else if (!root._bokeh_failed_load) {\n console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n root._bokeh_failed_load = true;\n } else if (force !== true) {\n const cell = $(document.getElementById(\"be1e6b75-a614-4af7-b778-f8e50b8b7664\")).parents('.cell').data().cell;\n cell.output_area.append_execute_result(NB_LOAD_WARNING)\n }\n }\n\n if (root._bokeh_is_loading === 0) {\n console.debug(\"Bokeh: BokehJS loaded, going straight to plotting\");\n run_inline_js();\n } else {\n load_libs(css_urls, js_urls, function() {\n console.debug(\"Bokeh: BokehJS plotting callback run at\", now());\n run_inline_js();\n });\n }\n}(window));" + "application/vnd.bokehjs_load.v0+json": "(function(root) {\n function now() {\n return new Date();\n }\n\n const force = true;\n\n if (typeof root._bokeh_onload_callbacks === \"undefined\" || force === true) {\n root._bokeh_onload_callbacks = [];\n root._bokeh_is_loading = undefined;\n }\n\n\n if (typeof (root._bokeh_timeout) === \"undefined\" || force === true) {\n root._bokeh_timeout = Date.now() + 5000;\n root._bokeh_failed_load = false;\n }\n\n const NB_LOAD_WARNING = {'data': {'text/html':\n \"
\\n\"+\n \"

\\n\"+\n \"BokehJS does not appear to have successfully loaded. If loading BokehJS from CDN, this \\n\"+\n \"may be due to a slow or bad network connection. Possible fixes:\\n\"+\n \"

\\n\"+\n \"
    \\n\"+\n \"
  • re-rerun `output_notebook()` to attempt to load from CDN again, or
  • \\n\"+\n \"
  • use INLINE resources instead, as so:
  • \\n\"+\n \"
\\n\"+\n \"\\n\"+\n \"from bokeh.resources import INLINE\\n\"+\n \"output_notebook(resources=INLINE)\\n\"+\n \"\\n\"+\n \"
\"}};\n\n function display_loaded() {\n const el = document.getElementById(\"f22fcf70-de15-4a16-9b8f-9c5dcbf3db35\");\n if (el != null) {\n el.textContent = \"BokehJS is loading...\";\n }\n if (root.Bokeh !== undefined) {\n if (el != null) {\n el.textContent = \"BokehJS \" + root.Bokeh.version + \" successfully loaded.\";\n }\n } else if (Date.now() < root._bokeh_timeout) {\n setTimeout(display_loaded, 100)\n }\n }\n\n function run_callbacks() {\n try {\n root._bokeh_onload_callbacks.forEach(function(callback) {\n if (callback != null)\n callback();\n });\n } finally {\n delete root._bokeh_onload_callbacks\n }\n console.debug(\"Bokeh: all callbacks have finished\");\n }\n\n function load_libs(css_urls, js_urls, callback) {\n if (css_urls == null) css_urls = [];\n if (js_urls == null) js_urls = [];\n\n root._bokeh_onload_callbacks.push(callback);\n if (root._bokeh_is_loading > 0) {\n console.debug(\"Bokeh: BokehJS is being loaded, scheduling callback at\", now());\n return null;\n }\n if (js_urls == null || js_urls.length === 0) {\n run_callbacks();\n return null;\n }\n console.debug(\"Bokeh: BokehJS not loaded, scheduling load and callback at\", now());\n root._bokeh_is_loading = css_urls.length + js_urls.length;\n\n function on_load() {\n root._bokeh_is_loading--;\n if (root._bokeh_is_loading === 0) {\n console.debug(\"Bokeh: all BokehJS libraries/stylesheets loaded\");\n run_callbacks()\n }\n }\n\n function on_error(url) {\n console.error(\"failed to load \" + url);\n }\n\n for (let i = 0; i < css_urls.length; i++) {\n const url = css_urls[i];\n const element = document.createElement(\"link\");\n element.onload = on_load;\n element.onerror = on_error.bind(null, url);\n element.rel = \"stylesheet\";\n element.type = \"text/css\";\n element.href = url;\n console.debug(\"Bokeh: injecting link tag for BokehJS stylesheet: \", url);\n document.body.appendChild(element);\n }\n\n for (let i = 0; i < js_urls.length; i++) {\n const url = js_urls[i];\n const element = document.createElement('script');\n element.onload = on_load;\n element.onerror = on_error.bind(null, url);\n element.async = false;\n element.src = url;\n console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n document.head.appendChild(element);\n }\n };\n\n function inject_raw_css(css) {\n const element = document.createElement(\"style\");\n element.appendChild(document.createTextNode(css));\n document.body.appendChild(element);\n }\n\n const js_urls = [\"https://cdn.bokeh.org/bokeh/release/bokeh-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-gl-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-widgets-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-tables-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-mathjax-3.3.4.min.js\"];\n const css_urls = [];\n\n const inline_js = [ function(Bokeh) {\n Bokeh.set_log_level(\"info\");\n },\nfunction(Bokeh) {\n }\n ];\n\n function run_inline_js() {\n if (root.Bokeh !== undefined || force === true) {\n for (let i = 0; i < inline_js.length; i++) {\n inline_js[i].call(root, root.Bokeh);\n }\nif (force === true) {\n display_loaded();\n }} else if (Date.now() < root._bokeh_timeout) {\n setTimeout(run_inline_js, 100);\n } else if (!root._bokeh_failed_load) {\n console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n root._bokeh_failed_load = true;\n } else if (force !== true) {\n const cell = $(document.getElementById(\"f22fcf70-de15-4a16-9b8f-9c5dcbf3db35\")).parents('.cell').data().cell;\n cell.output_area.append_execute_result(NB_LOAD_WARNING)\n }\n }\n\n if (root._bokeh_is_loading === 0) {\n console.debug(\"Bokeh: BokehJS loaded, going straight to plotting\");\n run_inline_js();\n } else {\n load_libs(css_urls, js_urls, function() {\n console.debug(\"Bokeh: BokehJS plotting callback run at\", now());\n run_inline_js();\n });\n }\n}(window));" }, "metadata": {}, "output_type": "display_data" @@ -378,7 +378,7 @@ " / /_/ /__ __/ /\n", " / __ / _ `/ / /\n", " /_/ /_/\\_,_/_/_/ version 0.2.132-678e1f52b999\n", - "LOGGING: writing to /Users/heqin/PycharmProjects/gnomad-toolbox/gnomad_toolbox/notebooks/hail-20250115-1555-0.2.132-678e1f52b999.log\n" + "LOGGING: writing to /Users/heqin/PycharmProjects/gnomad-toolbox/gnomad_toolbox/notebooks/hail-20250115-1733-0.2.132-678e1f52b999.log\n" ] } ], @@ -473,8 +473,8 @@ "name": "stderr", "output_type": "stream", "text": [ - "01/15/2025 03:56:03 PM (gnomad.utils.filtering 456): No Gencode Table or version was supplied, using Gencode version v39\n", - "01/15/2025 03:56:16 PM (gnomad.utils.filtering 531): Since 1 is less than or equal to 'max_collect_intervals', collecting all intervals...\n" + "01/15/2025 05:33:59 PM (gnomad.utils.filtering 456): No Gencode Table or version was supplied, using Gencode version v39\n", + "01/15/2025 05:34:04 PM (gnomad.utils.filtering 531): Since 1 is less than or equal to 'max_collect_intervals', collecting all intervals...\n" ] }, { @@ -485,8 +485,8 @@ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)", "Cell \u001b[0;32mIn[4], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m drd2_ht \u001b[38;5;241m=\u001b[39m \u001b[43mfilter_by_gene_symbol\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43mdrd2\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m)\u001b[49m\n\u001b[1;32m 2\u001b[0m \u001b[38;5;28mprint\u001b[39m(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mThe total number of variants in DRD2 is: \u001b[39m\u001b[38;5;124m\"\u001b[39m, drd2_ht\u001b[38;5;241m.\u001b[39mcount())\n", - "File \u001b[0;32m~/miniconda3/envs/hail2132/lib/python3.11/site-packages/gnomad_toolbox/filtering/variant.py:139\u001b[0m, in \u001b[0;36mfilter_by_gene_symbol\u001b[0;34m(gene, exon_padding_bp, **kwargs)\u001b[0m\n\u001b[1;32m 136\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m filter_count \u001b[38;5;241m==\u001b[39m \u001b[38;5;241m0\u001b[39m:\n\u001b[1;32m 137\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mNo intervals match the gene symbol \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mgene\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m)\n\u001b[0;32m--> 139\u001b[0m ht \u001b[38;5;241m=\u001b[39m \u001b[43mfilter_by_intervals\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 140\u001b[0m \u001b[43m \u001b[49m\u001b[43mfiltered_gencode_ht\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43minterval\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mht\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mht\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mpadding_bp\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mexon_padding_bp\u001b[49m\n\u001b[1;32m 141\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 143\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m ht\n", - "File \u001b[0;32m~/miniconda3/envs/hail2132/lib/python3.11/site-packages/gnomad_toolbox/filtering/variant.py:86\u001b[0m, in \u001b[0;36mfilter_by_intervals\u001b[0;34m(intervals, **kwargs)\u001b[0m\n\u001b[1;32m 76\u001b[0m \u001b[38;5;250m\u001b[39m\u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m 77\u001b[0m \u001b[38;5;124;03mFilter variants by interval(s).\u001b[39;00m\n\u001b[1;32m 78\u001b[0m \n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 83\u001b[0m \u001b[38;5;124;03m:return: Table with variants in the interval(s).\u001b[39;00m\n\u001b[1;32m 84\u001b[0m \u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m 85\u001b[0m \u001b[38;5;66;03m# Load the Hail Table if not provided\u001b[39;00m\n\u001b[0;32m---> 86\u001b[0m ht \u001b[38;5;241m=\u001b[39m \u001b[43m_get_dataset\u001b[49m\u001b[43m(\u001b[49m\u001b[43mdataset\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mvariant\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 88\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m interval_filter(\n\u001b[1;32m 89\u001b[0m ht,\n\u001b[1;32m 90\u001b[0m intervals,\n\u001b[1;32m 91\u001b[0m reference_genome\u001b[38;5;241m=\u001b[39mget_reference_genome(ht\u001b[38;5;241m.\u001b[39mlocus)\u001b[38;5;241m.\u001b[39mname,\n\u001b[1;32m 92\u001b[0m )\n", + "File \u001b[0;32m~/miniconda3/envs/gnomad-toolbox/lib/python3.9/site-packages/gnomad_toolbox/filtering/variant.py:139\u001b[0m, in \u001b[0;36mfilter_by_gene_symbol\u001b[0;34m(gene, exon_padding_bp, **kwargs)\u001b[0m\n\u001b[1;32m 136\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m filter_count \u001b[38;5;241m==\u001b[39m \u001b[38;5;241m0\u001b[39m:\n\u001b[1;32m 137\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mNo intervals match the gene symbol \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mgene\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m)\n\u001b[0;32m--> 139\u001b[0m ht \u001b[38;5;241m=\u001b[39m \u001b[43mfilter_by_intervals\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 140\u001b[0m \u001b[43m \u001b[49m\u001b[43mfiltered_gencode_ht\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43minterval\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mht\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mht\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mpadding_bp\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mexon_padding_bp\u001b[49m\n\u001b[1;32m 141\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 143\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m ht\n", + "File \u001b[0;32m~/miniconda3/envs/gnomad-toolbox/lib/python3.9/site-packages/gnomad_toolbox/filtering/variant.py:86\u001b[0m, in \u001b[0;36mfilter_by_intervals\u001b[0;34m(intervals, **kwargs)\u001b[0m\n\u001b[1;32m 76\u001b[0m \u001b[38;5;250m\u001b[39m\u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m 77\u001b[0m \u001b[38;5;124;03mFilter variants by interval(s).\u001b[39;00m\n\u001b[1;32m 78\u001b[0m \n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 83\u001b[0m \u001b[38;5;124;03m:return: Table with variants in the interval(s).\u001b[39;00m\n\u001b[1;32m 84\u001b[0m \u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m 85\u001b[0m \u001b[38;5;66;03m# Load the Hail Table if not provided\u001b[39;00m\n\u001b[0;32m---> 86\u001b[0m ht \u001b[38;5;241m=\u001b[39m \u001b[43m_get_dataset\u001b[49m\u001b[43m(\u001b[49m\u001b[43mdataset\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mvariant\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 88\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m interval_filter(\n\u001b[1;32m 89\u001b[0m ht,\n\u001b[1;32m 90\u001b[0m intervals,\n\u001b[1;32m 91\u001b[0m reference_genome\u001b[38;5;241m=\u001b[39mget_reference_genome(ht\u001b[38;5;241m.\u001b[39mlocus)\u001b[38;5;241m.\u001b[39mname,\n\u001b[1;32m 92\u001b[0m )\n", "\u001b[0;31mTypeError\u001b[0m: _get_dataset() got an unexpected keyword argument 'padding_bp'" ] } @@ -767,7 +767,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.9" + "version": "3.9.6" }, "toc": { "base_numbering": 1, From 6f41221efd3733d7773bd7f58e06605c24706cd8 Mon Sep 17 00:00:00 2001 From: Qin He <44242118+KoalaQin@users.noreply.github.com> Date: Wed, 15 Jan 2025 17:45:18 -0500 Subject: [PATCH 094/121] Rerun the filtering notebook with updated function --- .../intro_to_filtering_variant_data.ipynb | 5634 ++++++++++++++++- 1 file changed, 5584 insertions(+), 50 deletions(-) diff --git a/gnomad_toolbox/notebooks/intro_to_filtering_variant_data.ipynb b/gnomad_toolbox/notebooks/intro_to_filtering_variant_data.ipynb index 3fdaf0e..aefc979 100644 --- a/gnomad_toolbox/notebooks/intro_to_filtering_variant_data.ipynb +++ b/gnomad_toolbox/notebooks/intro_to_filtering_variant_data.ipynb @@ -51,7 +51,7 @@ " \n", "
\n", " \n", - " Loading BokehJS ...\n", + " Loading BokehJS ...\n", "
\n" ] }, @@ -223,7 +223,7 @@ " \"\"}};\n", "\n", " function display_loaded() {\n", - " const el = document.getElementById(\"f22fcf70-de15-4a16-9b8f-9c5dcbf3db35\");\n", + " const el = document.getElementById(\"aa9e9329-0c6a-47d2-b48b-1f41e5353249\");\n", " if (el != null) {\n", " el.textContent = \"BokehJS is loading...\";\n", " }\n", @@ -329,7 +329,7 @@ " console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n", " root._bokeh_failed_load = true;\n", " } else if (force !== true) {\n", - " const cell = $(document.getElementById(\"f22fcf70-de15-4a16-9b8f-9c5dcbf3db35\")).parents('.cell').data().cell;\n", + " const cell = $(document.getElementById(\"aa9e9329-0c6a-47d2-b48b-1f41e5353249\")).parents('.cell').data().cell;\n", " cell.output_area.append_execute_result(NB_LOAD_WARNING)\n", " }\n", " }\n", @@ -345,7 +345,7 @@ " }\n", "}(window));" ], - "application/vnd.bokehjs_load.v0+json": "(function(root) {\n function now() {\n return new Date();\n }\n\n const force = true;\n\n if (typeof root._bokeh_onload_callbacks === \"undefined\" || force === true) {\n root._bokeh_onload_callbacks = [];\n root._bokeh_is_loading = undefined;\n }\n\n\n if (typeof (root._bokeh_timeout) === \"undefined\" || force === true) {\n root._bokeh_timeout = Date.now() + 5000;\n root._bokeh_failed_load = false;\n }\n\n const NB_LOAD_WARNING = {'data': {'text/html':\n \"
\\n\"+\n \"

\\n\"+\n \"BokehJS does not appear to have successfully loaded. If loading BokehJS from CDN, this \\n\"+\n \"may be due to a slow or bad network connection. Possible fixes:\\n\"+\n \"

\\n\"+\n \"
    \\n\"+\n \"
  • re-rerun `output_notebook()` to attempt to load from CDN again, or
  • \\n\"+\n \"
  • use INLINE resources instead, as so:
  • \\n\"+\n \"
\\n\"+\n \"\\n\"+\n \"from bokeh.resources import INLINE\\n\"+\n \"output_notebook(resources=INLINE)\\n\"+\n \"\\n\"+\n \"
\"}};\n\n function display_loaded() {\n const el = document.getElementById(\"f22fcf70-de15-4a16-9b8f-9c5dcbf3db35\");\n if (el != null) {\n el.textContent = \"BokehJS is loading...\";\n }\n if (root.Bokeh !== undefined) {\n if (el != null) {\n el.textContent = \"BokehJS \" + root.Bokeh.version + \" successfully loaded.\";\n }\n } else if (Date.now() < root._bokeh_timeout) {\n setTimeout(display_loaded, 100)\n }\n }\n\n function run_callbacks() {\n try {\n root._bokeh_onload_callbacks.forEach(function(callback) {\n if (callback != null)\n callback();\n });\n } finally {\n delete root._bokeh_onload_callbacks\n }\n console.debug(\"Bokeh: all callbacks have finished\");\n }\n\n function load_libs(css_urls, js_urls, callback) {\n if (css_urls == null) css_urls = [];\n if (js_urls == null) js_urls = [];\n\n root._bokeh_onload_callbacks.push(callback);\n if (root._bokeh_is_loading > 0) {\n console.debug(\"Bokeh: BokehJS is being loaded, scheduling callback at\", now());\n return null;\n }\n if (js_urls == null || js_urls.length === 0) {\n run_callbacks();\n return null;\n }\n console.debug(\"Bokeh: BokehJS not loaded, scheduling load and callback at\", now());\n root._bokeh_is_loading = css_urls.length + js_urls.length;\n\n function on_load() {\n root._bokeh_is_loading--;\n if (root._bokeh_is_loading === 0) {\n console.debug(\"Bokeh: all BokehJS libraries/stylesheets loaded\");\n run_callbacks()\n }\n }\n\n function on_error(url) {\n console.error(\"failed to load \" + url);\n }\n\n for (let i = 0; i < css_urls.length; i++) {\n const url = css_urls[i];\n const element = document.createElement(\"link\");\n element.onload = on_load;\n element.onerror = on_error.bind(null, url);\n element.rel = \"stylesheet\";\n element.type = \"text/css\";\n element.href = url;\n console.debug(\"Bokeh: injecting link tag for BokehJS stylesheet: \", url);\n document.body.appendChild(element);\n }\n\n for (let i = 0; i < js_urls.length; i++) {\n const url = js_urls[i];\n const element = document.createElement('script');\n element.onload = on_load;\n element.onerror = on_error.bind(null, url);\n element.async = false;\n element.src = url;\n console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n document.head.appendChild(element);\n }\n };\n\n function inject_raw_css(css) {\n const element = document.createElement(\"style\");\n element.appendChild(document.createTextNode(css));\n document.body.appendChild(element);\n }\n\n const js_urls = [\"https://cdn.bokeh.org/bokeh/release/bokeh-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-gl-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-widgets-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-tables-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-mathjax-3.3.4.min.js\"];\n const css_urls = [];\n\n const inline_js = [ function(Bokeh) {\n Bokeh.set_log_level(\"info\");\n },\nfunction(Bokeh) {\n }\n ];\n\n function run_inline_js() {\n if (root.Bokeh !== undefined || force === true) {\n for (let i = 0; i < inline_js.length; i++) {\n inline_js[i].call(root, root.Bokeh);\n }\nif (force === true) {\n display_loaded();\n }} else if (Date.now() < root._bokeh_timeout) {\n setTimeout(run_inline_js, 100);\n } else if (!root._bokeh_failed_load) {\n console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n root._bokeh_failed_load = true;\n } else if (force !== true) {\n const cell = $(document.getElementById(\"f22fcf70-de15-4a16-9b8f-9c5dcbf3db35\")).parents('.cell').data().cell;\n cell.output_area.append_execute_result(NB_LOAD_WARNING)\n }\n }\n\n if (root._bokeh_is_loading === 0) {\n console.debug(\"Bokeh: BokehJS loaded, going straight to plotting\");\n run_inline_js();\n } else {\n load_libs(css_urls, js_urls, function() {\n console.debug(\"Bokeh: BokehJS plotting callback run at\", now());\n run_inline_js();\n });\n }\n}(window));" + "application/vnd.bokehjs_load.v0+json": "(function(root) {\n function now() {\n return new Date();\n }\n\n const force = true;\n\n if (typeof root._bokeh_onload_callbacks === \"undefined\" || force === true) {\n root._bokeh_onload_callbacks = [];\n root._bokeh_is_loading = undefined;\n }\n\n\n if (typeof (root._bokeh_timeout) === \"undefined\" || force === true) {\n root._bokeh_timeout = Date.now() + 5000;\n root._bokeh_failed_load = false;\n }\n\n const NB_LOAD_WARNING = {'data': {'text/html':\n \"
\\n\"+\n \"

\\n\"+\n \"BokehJS does not appear to have successfully loaded. If loading BokehJS from CDN, this \\n\"+\n \"may be due to a slow or bad network connection. Possible fixes:\\n\"+\n \"

\\n\"+\n \"
    \\n\"+\n \"
  • re-rerun `output_notebook()` to attempt to load from CDN again, or
  • \\n\"+\n \"
  • use INLINE resources instead, as so:
  • \\n\"+\n \"
\\n\"+\n \"\\n\"+\n \"from bokeh.resources import INLINE\\n\"+\n \"output_notebook(resources=INLINE)\\n\"+\n \"\\n\"+\n \"
\"}};\n\n function display_loaded() {\n const el = document.getElementById(\"aa9e9329-0c6a-47d2-b48b-1f41e5353249\");\n if (el != null) {\n el.textContent = \"BokehJS is loading...\";\n }\n if (root.Bokeh !== undefined) {\n if (el != null) {\n el.textContent = \"BokehJS \" + root.Bokeh.version + \" successfully loaded.\";\n }\n } else if (Date.now() < root._bokeh_timeout) {\n setTimeout(display_loaded, 100)\n }\n }\n\n function run_callbacks() {\n try {\n root._bokeh_onload_callbacks.forEach(function(callback) {\n if (callback != null)\n callback();\n });\n } finally {\n delete root._bokeh_onload_callbacks\n }\n console.debug(\"Bokeh: all callbacks have finished\");\n }\n\n function load_libs(css_urls, js_urls, callback) {\n if (css_urls == null) css_urls = [];\n if (js_urls == null) js_urls = [];\n\n root._bokeh_onload_callbacks.push(callback);\n if (root._bokeh_is_loading > 0) {\n console.debug(\"Bokeh: BokehJS is being loaded, scheduling callback at\", now());\n return null;\n }\n if (js_urls == null || js_urls.length === 0) {\n run_callbacks();\n return null;\n }\n console.debug(\"Bokeh: BokehJS not loaded, scheduling load and callback at\", now());\n root._bokeh_is_loading = css_urls.length + js_urls.length;\n\n function on_load() {\n root._bokeh_is_loading--;\n if (root._bokeh_is_loading === 0) {\n console.debug(\"Bokeh: all BokehJS libraries/stylesheets loaded\");\n run_callbacks()\n }\n }\n\n function on_error(url) {\n console.error(\"failed to load \" + url);\n }\n\n for (let i = 0; i < css_urls.length; i++) {\n const url = css_urls[i];\n const element = document.createElement(\"link\");\n element.onload = on_load;\n element.onerror = on_error.bind(null, url);\n element.rel = \"stylesheet\";\n element.type = \"text/css\";\n element.href = url;\n console.debug(\"Bokeh: injecting link tag for BokehJS stylesheet: \", url);\n document.body.appendChild(element);\n }\n\n for (let i = 0; i < js_urls.length; i++) {\n const url = js_urls[i];\n const element = document.createElement('script');\n element.onload = on_load;\n element.onerror = on_error.bind(null, url);\n element.async = false;\n element.src = url;\n console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n document.head.appendChild(element);\n }\n };\n\n function inject_raw_css(css) {\n const element = document.createElement(\"style\");\n element.appendChild(document.createTextNode(css));\n document.body.appendChild(element);\n }\n\n const js_urls = [\"https://cdn.bokeh.org/bokeh/release/bokeh-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-gl-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-widgets-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-tables-3.3.4.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-mathjax-3.3.4.min.js\"];\n const css_urls = [];\n\n const inline_js = [ function(Bokeh) {\n Bokeh.set_log_level(\"info\");\n },\nfunction(Bokeh) {\n }\n ];\n\n function run_inline_js() {\n if (root.Bokeh !== undefined || force === true) {\n for (let i = 0; i < inline_js.length; i++) {\n inline_js[i].call(root, root.Bokeh);\n }\nif (force === true) {\n display_loaded();\n }} else if (Date.now() < root._bokeh_timeout) {\n setTimeout(run_inline_js, 100);\n } else if (!root._bokeh_failed_load) {\n console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n root._bokeh_failed_load = true;\n } else if (force !== true) {\n const cell = $(document.getElementById(\"aa9e9329-0c6a-47d2-b48b-1f41e5353249\")).parents('.cell').data().cell;\n cell.output_area.append_execute_result(NB_LOAD_WARNING)\n }\n }\n\n if (root._bokeh_is_loading === 0) {\n console.debug(\"Bokeh: BokehJS loaded, going straight to plotting\");\n run_inline_js();\n } else {\n load_libs(css_urls, js_urls, function() {\n console.debug(\"Bokeh: BokehJS plotting callback run at\", now());\n run_inline_js();\n });\n }\n}(window));" }, "metadata": {}, "output_type": "display_data" @@ -378,7 +378,8 @@ " / /_/ /__ __/ /\n", " / __ / _ `/ / /\n", " /_/ /_/\\_,_/_/_/ version 0.2.132-678e1f52b999\n", - "LOGGING: writing to /Users/heqin/PycharmProjects/gnomad-toolbox/gnomad_toolbox/notebooks/hail-20250115-1733-0.2.132-678e1f52b999.log\n" + "LOGGING: writing to /Users/heqin/PycharmProjects/gnomad-toolbox/gnomad_toolbox/notebooks/hail-20250115-1742-0.2.132-678e1f52b999.log\n", + "2025-01-15 17:44:17.708 Hail: WARN: No variant found at chr22:15528692 with alleles ['C', 'A']\n" ] } ], @@ -473,21 +474,16 @@ "name": "stderr", "output_type": "stream", "text": [ - "01/15/2025 05:33:59 PM (gnomad.utils.filtering 456): No Gencode Table or version was supplied, using Gencode version v39\n", - "01/15/2025 05:34:04 PM (gnomad.utils.filtering 531): Since 1 is less than or equal to 'max_collect_intervals', collecting all intervals...\n" + "01/15/2025 05:43:04 PM (gnomad.utils.filtering 456): No Gencode Table or version was supplied, using Gencode version v39\n", + "01/15/2025 05:43:12 PM (gnomad.utils.filtering 531): Since 1 is less than or equal to 'max_collect_intervals', collecting all intervals...\n", + "01/15/2025 05:43:25 PM (gnomad.utils.filtering 531): Since 39 is less than or equal to 'max_collect_intervals', collecting all intervals...\n" ] }, { - "ename": "TypeError", - "evalue": "_get_dataset() got an unexpected keyword argument 'padding_bp'", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)", - "Cell \u001b[0;32mIn[4], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m drd2_ht \u001b[38;5;241m=\u001b[39m \u001b[43mfilter_by_gene_symbol\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43mdrd2\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m)\u001b[49m\n\u001b[1;32m 2\u001b[0m \u001b[38;5;28mprint\u001b[39m(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mThe total number of variants in DRD2 is: \u001b[39m\u001b[38;5;124m\"\u001b[39m, drd2_ht\u001b[38;5;241m.\u001b[39mcount())\n", - "File \u001b[0;32m~/miniconda3/envs/gnomad-toolbox/lib/python3.9/site-packages/gnomad_toolbox/filtering/variant.py:139\u001b[0m, in \u001b[0;36mfilter_by_gene_symbol\u001b[0;34m(gene, exon_padding_bp, **kwargs)\u001b[0m\n\u001b[1;32m 136\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m filter_count \u001b[38;5;241m==\u001b[39m \u001b[38;5;241m0\u001b[39m:\n\u001b[1;32m 137\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mNo intervals match the gene symbol \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mgene\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m)\n\u001b[0;32m--> 139\u001b[0m ht \u001b[38;5;241m=\u001b[39m \u001b[43mfilter_by_intervals\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 140\u001b[0m \u001b[43m \u001b[49m\u001b[43mfiltered_gencode_ht\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43minterval\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mht\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mht\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mpadding_bp\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mexon_padding_bp\u001b[49m\n\u001b[1;32m 141\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 143\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m ht\n", - "File \u001b[0;32m~/miniconda3/envs/gnomad-toolbox/lib/python3.9/site-packages/gnomad_toolbox/filtering/variant.py:86\u001b[0m, in \u001b[0;36mfilter_by_intervals\u001b[0;34m(intervals, **kwargs)\u001b[0m\n\u001b[1;32m 76\u001b[0m \u001b[38;5;250m\u001b[39m\u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m 77\u001b[0m \u001b[38;5;124;03mFilter variants by interval(s).\u001b[39;00m\n\u001b[1;32m 78\u001b[0m \n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 83\u001b[0m \u001b[38;5;124;03m:return: Table with variants in the interval(s).\u001b[39;00m\n\u001b[1;32m 84\u001b[0m \u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m 85\u001b[0m \u001b[38;5;66;03m# Load the Hail Table if not provided\u001b[39;00m\n\u001b[0;32m---> 86\u001b[0m ht \u001b[38;5;241m=\u001b[39m \u001b[43m_get_dataset\u001b[49m\u001b[43m(\u001b[49m\u001b[43mdataset\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mvariant\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 88\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m interval_filter(\n\u001b[1;32m 89\u001b[0m ht,\n\u001b[1;32m 90\u001b[0m intervals,\n\u001b[1;32m 91\u001b[0m reference_genome\u001b[38;5;241m=\u001b[39mget_reference_genome(ht\u001b[38;5;241m.\u001b[39mlocus)\u001b[38;5;241m.\u001b[39mname,\n\u001b[1;32m 92\u001b[0m )\n", - "\u001b[0;31mTypeError\u001b[0m: _get_dataset() got an unexpected keyword argument 'padding_bp'" + "name": "stdout", + "output_type": "stream", + "text": [ + "The total number of variants in DRD2 is: 1764\n" ] } ], @@ -523,10 +519,1079 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 5, "id": "700582e4", "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
histograms
grpmax
fafmax
info
qual_hists
raw_qual_hists
age_hists
in_silico_predictors
gnomad
non_ukb
gnomad
non_ukb
vrs
vep
vqsr_results
region_flags
allele_info
gq_hist_all
dp_hist_all
gq_hist_alt
dp_hist_alt
ab_hist_alt
gq_hist_all
dp_hist_all
gq_hist_alt
dp_hist_alt
ab_hist_alt
age_hist_het
age_hist_hom
cadd
locus
alleles
freq
AC
AF
AN
homozygote_count
gen_anc
AC
AF
AN
homozygote_count
gen_anc
faf
faf95_max
faf95_max_gen_anc
faf99_max
faf99_max_gen_anc
faf95_max
faf95_max_gen_anc
faf99_max
faf99_max_gen_anc
a_index
was_split
rsid
filters
FS
MQ
MQRankSum
QUALapprox
QD
ReadPosRankSum
SB
SOR
VarDP
AS_FS
AS_MQ
AS_MQRankSum
AS_pab_max
AS_QUALapprox
AS_QD
AS_ReadPosRankSum
AS_SB_TABLE
AS_SOR
AS_VarDP
singleton
transmitted_singleton
sibling_singleton
omni
mills
monoallelic
only_het
AS_VQSLOD
inbreeding_coeff
VRS_Allele_IDs
VRS_Starts
VRS_Ends
VRS_States
allele_string
end
id
input
intergenic_consequences
most_severe_consequence
motif_feature_consequences
regulatory_feature_consequences
seq_region_name
start
strand
transcript_consequences
variant_class
AS_VQSLOD
AS_culprit
positive_train_site
negative_train_site
non_par
lcr
segdup
fail_interval_qc
outside_ukb_capture_region
outside_broad_capture_region
variant_type
n_alt_alleles
has_star
allele_type
was_mixed
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
phred
raw_score
revel_max
spliceai_ds_max
pangolin_largest_ds
phylop
sift_max
polyphen_max
locus<GRCh38>array<str>array<struct{AC: int32, AF: float64, AN: int32, homozygote_count: int64}>int32float64int32int64strint32float64int32int64strarray<struct{faf95: float64, faf99: float64}>float64strfloat64strfloat64strfloat64strint32boolset<str>set<str>float64float64float64int64float64float64array<int32>float64int32float64float64float64float64int64float64float64array<int32>float64int32boolboolboolboolboolboolboolfloat64float64array<str>array<int32>array<int32>array<str>strint32strstrarray<struct{allele_num: int32, consequence_terms: array<str>, impact: str, variant_allele: str}>strarray<struct{allele_num: int32, consequence_terms: array<str>, high_inf_pos: str, impact: str, motif_feature_id: str, motif_name: str, motif_pos: int32, motif_score_change: float64, transcription_factors: array<str>, strand: int32, variant_allele: str}>array<struct{allele_num: int32, biotype: str, consequence_terms: array<str>, impact: str, regulatory_feature_id: str, variant_allele: str}>strint32int32array<struct{allele_num: int32, amino_acids: str, appris: str, biotype: str, canonical: int32, ccds: str, cdna_start: int32, cdna_end: int32, cds_end: int32, cds_start: int32, codons: str, consequence_terms: array<str>, distance: int32, domains: array<struct{db: str, name: str}>, exon: str, flags: str, gene_id: str, gene_pheno: int32, gene_symbol: str, gene_symbol_source: str, hgnc_id: str, hgvsc: str, hgvsp: str, hgvs_offset: int32, impact: str, intron: str, lof: str, lof_flags: str, lof_filter: str, lof_info: str, mane_select: str, mane_plus_clinical: str, mirna: array<str>, protein_end: int32, protein_start: int32, protein_id: str, source: str, strand: int32, transcript_id: str, tsl: int32, uniprot_isoform: array<str>, variant_allele: str}>strfloat64strboolboolboolboolboolboolboolboolstrint32boolstrboolarray<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64float32float32float64float32float64float64float64float64
chr11:113410731["C","A"][(2,1.37e-06,1461866,0),(2,1.37e-06,1461894,0),(0,0.00e+00,33480,0),(2,4.47e-05,44724,0),(0,0.00e+00,26136,0),(0,0.00e+00,39698,0),(0,0.00e+00,53416,0),(0,0.00e+00,5752,0),(0,0.00e+00,1112010,0),(0,0.00e+00,60394,0),(0,0.00e+00,86256,0),(1,1.36e-06,734628,0),(1,1.38e-06,727238,0),(0,0.00e+00,19326,0),(0,0.00e+00,14154,0),(1,3.89e-05,25690,0),(1,5.25e-05,19034,0),(0,0.00e+00,12636,0),(0,0.00e+00,13500,0),(0,0.00e+00,20710,0),(0,0.00e+00,18988,0),(0,0.00e+00,27646,0),(0,0.00e+00,25770,0),(0,0.00e+00,2494,0),(0,0.00e+00,3258,0),(0,0.00e+00,572288,0),(0,0.00e+00,539722,0),(0,0.00e+00,31800,0),(0,0.00e+00,28594,0),(0,0.00e+00,22038,0),(0,0.00e+00,64218,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,996,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,1994,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,3990,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5752,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,19998,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,26136,0),(1,3.83e-05,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26134,0),(0,0.00e+00,26134,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26134,0),(0,0.00e+00,26136,0),(0,0.00e+00,33480,0),(2,5.97e-05,33480,0),(0,0.00e+00,33478,0),(0,0.00e+00,33476,0),(0,0.00e+00,33480,0),(0,0.00e+00,33478,0),(0,0.00e+00,33478,0),(0,0.00e+00,33480,0),(2,5.04e-05,39700,0),(0,0.00e+00,39698,0),(0,0.00e+00,39696,0),(0,0.00e+00,39700,0),(0,0.00e+00,39698,0),(0,0.00e+00,39698,0),(0,0.00e+00,39700,0),(2,5.00e-05,40000,0),(0,0.00e+00,39996,0),(0,0.00e+00,40000,0),(0,0.00e+00,39998,0),(0,0.00e+00,39998,0),(0,0.00e+00,40000,0),(2,4.47e-05,44724,0),(0,0.00e+00,44720,0),(0,0.00e+00,44724,0),(0,0.00e+00,44722,0),(0,0.00e+00,44722,0),(0,0.00e+00,44724,0),(0,0.00e+00,53416,0),(0,0.00e+00,53420,0),(0,0.00e+00,53418,0),(0,0.00e+00,53418,0),(0,0.00e+00,53420,0),(0,0.00e+00,60396,0),(0,0.00e+00,60394,0),(0,0.00e+00,60394,0),(0,0.00e+00,60396,0),(0,0.00e+00,86258,0),(0,0.00e+00,86256,0),(0,0.00e+00,86256,0),(0,0.00e+00,100000,0),(0,0.00e+00,99998,0),(0,0.00e+00,200000,0),(0,0.00e+00,199998,0),(0,0.00e+00,400000,0),(0,0.00e+00,399996,0),(0,0.00e+00,999998,0),(1,1.00e-06,999978,0),(0,0.00e+00,1112010,0),(2,1.80e-06,1111990,0),(2,3.18e-06,628756,0),(2,3.18e-06,628784,0),(0,0.00e+00,17694,0),(2,4.57e-05,43740,0),(0,0.00e+00,20984,0),(0,0.00e+00,36068,0),(0,0.00e+00,53140,0),(0,0.00e+00,4132,0),(0,0.00e+00,350106,0),(0,0.00e+00,33096,0),(0,0.00e+00,69796,0),(1,3.49e-06,286232,0),(1,2.92e-06,342524,0),(0,0.00e+00,10286,0),(0,0.00e+00,7408,0),(1,3.99e-05,25040,0),(1,5.35e-05,18700,0),(0,0.00e+00,9838,0),(0,0.00e+00,11146,0),(0,0.00e+00,18296,0),(0,0.00e+00,17772,0),(0,0.00e+00,27396,0),(0,0.00e+00,25744,0),(0,0.00e+00,1904,0),(0,0.00e+00,2228,0),(0,0.00e+00,162220,0),(0,0.00e+00,187886,0),(0,0.00e+00,16752,0),(0,0.00e+00,16344,0),(0,0.00e+00,14500,0),(0,0.00e+00,55296,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,198,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,996,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,1990,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,3984,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4132,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17692,0),(0,0.00e+00,17694,0),(0,0.00e+00,17692,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(1,5.00e-05,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,19998,0),(0,0.00e+00,20000,0),(0,0.00e+00,19998,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(1,4.77e-05,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20982,0),(0,0.00e+00,20984,0),(0,0.00e+00,20982,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(2,6.04e-05,33098,0),(0,0.00e+00,33096,0),(0,0.00e+00,33094,0),(0,0.00e+00,33098,0),(0,0.00e+00,33096,0),(0,0.00e+00,33096,0),(0,0.00e+00,33096,0),(2,5.54e-05,36070,0),(0,0.00e+00,36068,0),(0,0.00e+00,36066,0),(0,0.00e+00,36070,0),(0,0.00e+00,36068,0),(0,0.00e+00,36068,0),(2,5.00e-05,40000,0),(0,0.00e+00,39996,0),(0,0.00e+00,40000,0),(0,0.00e+00,39998,0),(0,0.00e+00,39998,0),(2,4.57e-05,43740,0),(0,0.00e+00,43736,0),(0,0.00e+00,43740,0),(0,0.00e+00,43738,0),(0,0.00e+00,43738,0),(0,0.00e+00,53140,0),(0,0.00e+00,53144,0),(0,0.00e+00,53142,0),(0,0.00e+00,53142,0),(0,0.00e+00,69798,0),(0,0.00e+00,69796,0),(0,0.00e+00,69796,0),(0,0.00e+00,100000,0),(0,0.00e+00,99996,0),(0,0.00e+00,199998,0),(0,0.00e+00,199990,0),(0,0.00e+00,350106,0),(1,2.86e-06,350088,0),(1,2.50e-06,399978,0)]24.47e-05447240"amr"24.57e-05437400"amr"[(2.30e-07,9.00e-08),(0.00e+00,0.00e+00),(7.41e-06,2.77e-06),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,(5.30e-07,2.00e-07),(0.00e+00,0.00e+00),(7.58e-06,2.84e-06),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]7.41e-06"amr"2.77e-06"amr"7.58e-06"amr"2.84e-06"amr"1True{"rs140938110"}{}5.56e+006.00e+010.00e+0038621.02e+01-1.98e-01[134,83,109,52]9.81e-013781.31e+016.00e+010.00e+002.94e-0118951.06e+012.52e-01[134,83,56,19]1.42e+00179FalseNANAFalseFalseFalseFalse5.27e+00-1.37e-06["ga4gh:VA.RY2FNHeS0QpJNM9lQpQ_pzX7Q27-MXmI","ga4gh:VA.ZonDIhdwyghm7SuWkXynZVYg2s9ceaeP"][113410730,113410730][113410731,113410731]["C","A"]"C/A"113410731".""chr11\t113410731\t.\tC\tA\t.\t.\tGT"NA"missense_variant"NANA"chr11"1134107311[(1,"C/F",NA,"protein_coding",NA,"CCDS8362.1",1317,1317,1241,1241,"tGc/tTc",["missense_variant"],NA,[("Gene3D","1"),("Superfamily","SSF81321")],"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000346454.7:c.1241G>T","ENSP00000278597.5:p.Cys414Phe",NA,"MODERATE",NA,NA,NA,NA,NA,NA,NA,NA,414,414,"ENSP00000278597","Ensembl",-1,"ENST00000346454",1,["P14416-2"],"A"),(1,"C/F","P2","protein_coding",1,"CCDS8361.1",1682,1682,1328,1328,"tGc/tTc",["missense_variant"],NA,[("Gene3D","1"),("ENSP_mappings","5aer"),("ENSP_mappings","5aer"),("ENSP_mappings","6cm4"),("ENSP_mappings","6luq"),("ENSP_mappings","6vms"),("ENSP_mappings","7dfp"),("ENSP_mappings","7jvr"),("Superfamily","SSF81321")],"8/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000362072.8:c.1328G>T","ENSP00000354859.3:p.Cys443Phe",NA,"MODERATE",NA,NA,NA,NA,NA,"NM_000795.4",NA,NA,443,443,"ENSP00000354859","Ensembl",-1,"ENST00000362072",1,["P14416-1"],"A"),(1,NA,NA,"processed_transcript",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],3644,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000535984",3,NA,"A"),(1,"C/F","A1","protein_coding",NA,NA,1334,1334,1334,1334,"tGc/tTc",["missense_variant"],NA,[("Gene3D","1"),("Superfamily","SSF81321")],"8/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000538967.5:c.1334G>T","ENSP00000438215.1:p.Cys445Phe",NA,"MODERATE",NA,NA,NA,NA,NA,NA,NA,NA,445,445,"ENSP00000438215","Ensembl",-1,"ENST00000538967",5,["P14416-3"],"A"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],4563,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000539420",3,NA,"A"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],3133,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000540600",1,NA,"A"),(1,"C/F","P2","protein_coding",NA,"CCDS8361.1",1649,1649,1328,1328,"tGc/tTc",["missense_variant"],NA,[("Gene3D","1"),("ENSP_mappings","5aer"),("ENSP_mappings","5aer"),("ENSP_mappings","6cm4"),("ENSP_mappings","6luq"),("ENSP_mappings","6vms"),("ENSP_mappings","7dfp"),("ENSP_mappings","7jvr"),("Superfamily","SSF81321")],"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000542968.5:c.1328G>T","ENSP00000442172.1:p.Cys443Phe",NA,"MODERATE",NA,NA,NA,NA,NA,NA,NA,NA,443,443,"ENSP00000442172","Ensembl",-1,"ENST00000542968",1,["P14416-1"],"A"),(1,"C/F","A1","protein_coding",NA,NA,1358,1358,1325,1325,"tGc/tTc",["missense_variant"],NA,[("Gene3D","1"),("Superfamily","SSF81321")],"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000544518.5:c.1325G>T","ENSP00000441068.1:p.Cys442Phe",NA,"MODERATE",NA,NA,NA,NA,NA,NA,NA,NA,442,442,"ENSP00000441068","Ensembl",-1,"ENST00000544518",1,NA,"A"),(1,NA,NA,"lncRNA",1,NA,NA,NA,NA,NA,NA,["intron_variant","non_coding_transcript_variant"],NA,NA,NA,NA,"ENSG00000256757",NA,NA,NA,NA,"ENST00000546284.1:n.245-816C>A",NA,NA,"MODIFIER","2/3",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",1,"ENST00000546284",3,NA,"A"),(1,"C/F",NA,"protein_coding",1,NA,1682,1682,1328,1328,"tGc/tTc",["missense_variant"],NA,NA,"8/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_000795.4:c.1328G>T","NP_000786.1:p.Cys443Phe",NA,"MODERATE",NA,NA,NA,NA,NA,"ENST00000362072.8",NA,NA,443,443,"NP_000786.1","RefSeq",-1,"NM_000795.4",NA,NA,"A"),(1,"C/F",NA,"protein_coding",NA,NA,1595,1595,1241,1241,"tGc/tTc",["missense_variant"],NA,NA,"7/7",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_016574.4:c.1241G>T","NP_057658.2:p.Cys414Phe",NA,"MODERATE",NA,NA,NA,NA,NA,NA,NA,NA,414,414,"NP_057658.2","RefSeq",-1,"NM_016574.4",NA,NA,"A"),(1,"C/F",NA,"protein_coding",NA,NA,1410,1410,1328,1328,"tGc/tTc",["missense_variant"],NA,NA,"8/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","XM_017017296.2:c.1328G>T","XP_016872785.1:p.Cys443Phe",NA,"MODERATE",NA,NA,NA,NA,NA,NA,NA,NA,443,443,"XP_016872785.1","RefSeq",-1,"XM_017017296.2",NA,NA,"A")]"SNV"5.27e+00"AS_MQ"FalseFalseFalseFalseFalseTrueFalseFalse"multi-snv"2False"snv"False[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,21,0,124,0,314262,0,99,0,416424,0,0,0,0,0,0,3]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,98,374,11344,107362,344923,189028,36319,5607,2388,2759,3074,2931,2955,2915,2973,2922,2564,2682]07715[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0]01[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][7,0,0,0,28,0,124,0,314262,0,99,0,416424,0,0,0,0,0,0,3]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,7,98,380,11345,107362,344923,189028,36319,5607,2388,2759,3074,2931,2955,2915,2973,2922,2564,2682]07715[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0]01[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]10[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]002.77e+014.10e+006.02e-010.00e+000.00e+008.78e+000.00e+009.89e-01
chr11:113410731["C","T"][(1,6.84e-07,1461866,0),(1,6.84e-07,1461894,0),(0,0.00e+00,33480,0),(0,0.00e+00,44724,0),(0,0.00e+00,26136,0),(0,0.00e+00,39698,0),(0,0.00e+00,53416,0),(0,0.00e+00,5752,0),(1,8.99e-07,1112010,0),(0,0.00e+00,60394,0),(0,0.00e+00,86256,0),(1,1.36e-06,734628,0),(0,0.00e+00,727238,0),(0,0.00e+00,19326,0),(0,0.00e+00,14154,0),(0,0.00e+00,25690,0),(0,0.00e+00,19034,0),(0,0.00e+00,12636,0),(0,0.00e+00,13500,0),(0,0.00e+00,20710,0),(0,0.00e+00,18988,0),(0,0.00e+00,27646,0),(0,0.00e+00,25770,0),(0,0.00e+00,2494,0),(0,0.00e+00,3258,0),(1,1.75e-06,572288,0),(0,0.00e+00,539722,0),(0,0.00e+00,31800,0),(0,0.00e+00,28594,0),(0,0.00e+00,22038,0),(0,0.00e+00,64218,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,996,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,1994,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,3990,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5752,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,19998,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26134,0),(0,0.00e+00,26134,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26134,0),(0,0.00e+00,26136,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33478,0),(0,0.00e+00,33476,0),(0,0.00e+00,33480,0),(0,0.00e+00,33478,0),(0,0.00e+00,33478,0),(0,0.00e+00,33480,0),(0,0.00e+00,39700,0),(0,0.00e+00,39698,0),(0,0.00e+00,39696,0),(0,0.00e+00,39700,0),(0,0.00e+00,39698,0),(0,0.00e+00,39698,0),(0,0.00e+00,39700,0),(0,0.00e+00,40000,0),(0,0.00e+00,39996,0),(0,0.00e+00,40000,0),(0,0.00e+00,39998,0),(0,0.00e+00,39998,0),(0,0.00e+00,40000,0),(0,0.00e+00,44724,0),(0,0.00e+00,44720,0),(0,0.00e+00,44724,0),(0,0.00e+00,44722,0),(0,0.00e+00,44722,0),(0,0.00e+00,44724,0),(0,0.00e+00,53416,0),(0,0.00e+00,53420,0),(0,0.00e+00,53418,0),(0,0.00e+00,53418,0),(0,0.00e+00,53420,0),(0,0.00e+00,60396,0),(0,0.00e+00,60394,0),(0,0.00e+00,60394,0),(0,0.00e+00,60396,0),(0,0.00e+00,86258,0),(0,0.00e+00,86256,0),(0,0.00e+00,86256,0),(0,0.00e+00,100000,0),(0,0.00e+00,99998,0),(0,0.00e+00,200000,0),(0,0.00e+00,199998,0),(0,0.00e+00,400000,0),(0,0.00e+00,399996,0),(1,1.00e-06,999998,0),(0,0.00e+00,999978,0),(1,8.99e-07,1112010,0),(1,8.99e-07,1111990,0),(0,0.00e+00,628756,0),(0,0.00e+00,628784,0),(0,0.00e+00,17694,0),(0,0.00e+00,43740,0),(0,0.00e+00,20984,0),(0,0.00e+00,36068,0),(0,0.00e+00,53140,0),(0,0.00e+00,4132,0),(0,0.00e+00,350106,0),(0,0.00e+00,33096,0),(0,0.00e+00,69796,0),(0,0.00e+00,286232,0),(0,0.00e+00,342524,0),(0,0.00e+00,10286,0),(0,0.00e+00,7408,0),(0,0.00e+00,25040,0),(0,0.00e+00,18700,0),(0,0.00e+00,9838,0),(0,0.00e+00,11146,0),(0,0.00e+00,18296,0),(0,0.00e+00,17772,0),(0,0.00e+00,27396,0),(0,0.00e+00,25744,0),(0,0.00e+00,1904,0),(0,0.00e+00,2228,0),(0,0.00e+00,162220,0),(0,0.00e+00,187886,0),(0,0.00e+00,16752,0),(0,0.00e+00,16344,0),(0,0.00e+00,14500,0),(0,0.00e+00,55296,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,198,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,996,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,1990,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,3984,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4132,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17692,0),(0,0.00e+00,17694,0),(0,0.00e+00,17692,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,19998,0),(0,0.00e+00,20000,0),(0,0.00e+00,19998,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20982,0),(0,0.00e+00,20984,0),(0,0.00e+00,20982,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,33098,0),(0,0.00e+00,33096,0),(0,0.00e+00,33094,0),(0,0.00e+00,33098,0),(0,0.00e+00,33096,0),(0,0.00e+00,33096,0),(0,0.00e+00,33096,0),(0,0.00e+00,36070,0),(0,0.00e+00,36068,0),(0,0.00e+00,36066,0),(0,0.00e+00,36070,0),(0,0.00e+00,36068,0),(0,0.00e+00,36068,0),(0,0.00e+00,40000,0),(0,0.00e+00,39996,0),(0,0.00e+00,40000,0),(0,0.00e+00,39998,0),(0,0.00e+00,39998,0),(0,0.00e+00,43740,0),(0,0.00e+00,43736,0),(0,0.00e+00,43740,0),(0,0.00e+00,43738,0),(0,0.00e+00,43738,0),(0,0.00e+00,53140,0),(0,0.00e+00,53144,0),(0,0.00e+00,53142,0),(0,0.00e+00,53142,0),(0,0.00e+00,69798,0),(0,0.00e+00,69796,0),(0,0.00e+00,69796,0),(0,0.00e+00,100000,0),(0,0.00e+00,99996,0),(0,0.00e+00,199998,0),(0,0.00e+00,199990,0),(0,0.00e+00,350106,0),(0,0.00e+00,350088,0),(0,0.00e+00,399978,0)]18.99e-0711120100"nfe"NANANANANA[(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]NANANANANANANANA2TrueNA{}5.56e+006.00e+010.00e+0038621.02e+01-1.98e-01[134,83,109,52]9.81e-013780.00e+006.00e+010.00e+009.04e-0119679.88e+00-5.01e-01[134,83,53,33]6.81e-01199TrueFalseFalseFalseFalseFalseFalse5.40e+00-6.84e-07["ga4gh:VA.RY2FNHeS0QpJNM9lQpQ_pzX7Q27-MXmI","ga4gh:VA.Hp20SlFHUdM7jlWmVV27L6utrtRpDmAq"][113410730,113410730][113410731,113410731]["C","T"]"C/T"113410731".""chr11\t113410731\t.\tC\tT\t.\t.\tGT"NA"missense_variant"NANA"chr11"1134107311[(1,"C/Y",NA,"protein_coding",NA,"CCDS8362.1",1317,1317,1241,1241,"tGc/tAc",["missense_variant"],NA,[("Gene3D","1"),("Superfamily","SSF81321")],"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000346454.7:c.1241G>A","ENSP00000278597.5:p.Cys414Tyr",NA,"MODERATE",NA,NA,NA,NA,NA,NA,NA,NA,414,414,"ENSP00000278597","Ensembl",-1,"ENST00000346454",1,["P14416-2"],"T"),(1,"C/Y","P2","protein_coding",1,"CCDS8361.1",1682,1682,1328,1328,"tGc/tAc",["missense_variant"],NA,[("Gene3D","1"),("ENSP_mappings","5aer"),("ENSP_mappings","5aer"),("ENSP_mappings","6cm4"),("ENSP_mappings","6luq"),("ENSP_mappings","6vms"),("ENSP_mappings","7dfp"),("ENSP_mappings","7jvr"),("Superfamily","SSF81321")],"8/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000362072.8:c.1328G>A","ENSP00000354859.3:p.Cys443Tyr",NA,"MODERATE",NA,NA,NA,NA,NA,"NM_000795.4",NA,NA,443,443,"ENSP00000354859","Ensembl",-1,"ENST00000362072",1,["P14416-1"],"T"),(1,NA,NA,"processed_transcript",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],3644,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000535984",3,NA,"T"),(1,"C/Y","A1","protein_coding",NA,NA,1334,1334,1334,1334,"tGc/tAc",["missense_variant"],NA,[("Gene3D","1"),("Superfamily","SSF81321")],"8/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000538967.5:c.1334G>A","ENSP00000438215.1:p.Cys445Tyr",NA,"MODERATE",NA,NA,NA,NA,NA,NA,NA,NA,445,445,"ENSP00000438215","Ensembl",-1,"ENST00000538967",5,["P14416-3"],"T"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],4563,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000539420",3,NA,"T"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],3133,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000540600",1,NA,"T"),(1,"C/Y","P2","protein_coding",NA,"CCDS8361.1",1649,1649,1328,1328,"tGc/tAc",["missense_variant"],NA,[("Gene3D","1"),("ENSP_mappings","5aer"),("ENSP_mappings","5aer"),("ENSP_mappings","6cm4"),("ENSP_mappings","6luq"),("ENSP_mappings","6vms"),("ENSP_mappings","7dfp"),("ENSP_mappings","7jvr"),("Superfamily","SSF81321")],"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000542968.5:c.1328G>A","ENSP00000442172.1:p.Cys443Tyr",NA,"MODERATE",NA,NA,NA,NA,NA,NA,NA,NA,443,443,"ENSP00000442172","Ensembl",-1,"ENST00000542968",1,["P14416-1"],"T"),(1,"C/Y","A1","protein_coding",NA,NA,1358,1358,1325,1325,"tGc/tAc",["missense_variant"],NA,[("Gene3D","1"),("Superfamily","SSF81321")],"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000544518.5:c.1325G>A","ENSP00000441068.1:p.Cys442Tyr",NA,"MODERATE",NA,NA,NA,NA,NA,NA,NA,NA,442,442,"ENSP00000441068","Ensembl",-1,"ENST00000544518",1,NA,"T"),(1,NA,NA,"lncRNA",1,NA,NA,NA,NA,NA,NA,["intron_variant","non_coding_transcript_variant"],NA,NA,NA,NA,"ENSG00000256757",NA,NA,NA,NA,"ENST00000546284.1:n.245-816C>T",NA,NA,"MODIFIER","2/3",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",1,"ENST00000546284",3,NA,"T"),(1,"C/Y",NA,"protein_coding",1,NA,1682,1682,1328,1328,"tGc/tAc",["missense_variant"],NA,NA,"8/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_000795.4:c.1328G>A","NP_000786.1:p.Cys443Tyr",NA,"MODERATE",NA,NA,NA,NA,NA,"ENST00000362072.8",NA,NA,443,443,"NP_000786.1","RefSeq",-1,"NM_000795.4",NA,NA,"T"),(1,"C/Y",NA,"protein_coding",NA,NA,1595,1595,1241,1241,"tGc/tAc",["missense_variant"],NA,NA,"7/7",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_016574.4:c.1241G>A","NP_057658.2:p.Cys414Tyr",NA,"MODERATE",NA,NA,NA,NA,NA,NA,NA,NA,414,414,"NP_057658.2","RefSeq",-1,"NM_016574.4",NA,NA,"T"),(1,"C/Y",NA,"protein_coding",NA,NA,1410,1410,1328,1328,"tGc/tAc",["missense_variant"],NA,NA,"8/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","XM_017017296.2:c.1328G>A","XP_016872785.1:p.Cys443Tyr",NA,"MODERATE",NA,NA,NA,NA,NA,NA,NA,NA,443,443,"XP_016872785.1","RefSeq",-1,"XM_017017296.2",NA,NA,"T")]"SNV"5.40e+00"AS_MQ"FalseFalseFalseFalseFalseTrueFalseFalse"multi-snv"2False"snv"False[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,21,0,124,0,314262,0,99,0,416424,0,0,0,0,0,0,3]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,98,374,11344,107362,344923,189028,36319,5607,2388,2759,3074,2931,2955,2915,2973,2922,2564,2682]07715[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][7,0,0,0,28,0,124,0,314262,0,99,0,416424,0,0,0,0,0,0,3]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,7,98,380,11345,107362,344923,189028,36319,5607,2388,2759,3074,2931,2955,2915,2973,2922,2564,2682]07715[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,1,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]002.75e+014.07e+007.19e-010.00e+002.00e-028.78e+000.00e+009.89e-01
chr11:113410735["G","A"][(75,5.13e-05,1461876,0),(75,5.13e-05,1461894,0),(0,0.00e+00,33480,0),(0,0.00e+00,44724,0),(58,2.22e-03,26136,0),(0,0.00e+00,39700,0),(0,0.00e+00,53418,0),(0,0.00e+00,5762,0),(8,7.19e-06,1112004,0),(9,1.49e-04,60396,0),(0,0.00e+00,86256,0),(39,5.31e-05,734640,0),(36,4.95e-05,727236,0),(0,0.00e+00,19326,0),(0,0.00e+00,14154,0),(0,0.00e+00,25690,0),(0,0.00e+00,19034,0),(29,2.30e-03,12636,0),(29,2.15e-03,13500,0),(0,0.00e+00,20712,0),(0,0.00e+00,18988,0),(0,0.00e+00,27648,0),(0,0.00e+00,25770,0),(0,0.00e+00,2504,0),(0,0.00e+00,3258,0),(5,8.74e-06,572286,0),(3,5.56e-06,539718,0),(5,1.57e-04,31800,0),(4,1.40e-04,28596,0),(0,0.00e+00,22038,0),(0,0.00e+00,64218,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,18,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,198,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(1,1.00e-03,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,998,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(4,2.00e-03,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,1998,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(7,1.75e-03,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,3996,0),(0,0.00e+00,4000,0),(1,2.50e-04,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,3998,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(11,1.91e-03,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5762,0),(0,0.00e+00,5768,0),(1,1.73e-04,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5766,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(22,2.20e-03,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(2,2.00e-04,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,9998,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(46,2.30e-03,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(3,1.50e-04,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,19998,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(58,2.22e-03,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(3,1.15e-04,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26134,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(6,1.79e-04,33480,0),(0,0.00e+00,33480,0),(1,2.99e-05,33478,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(7,1.76e-04,39700,0),(0,0.00e+00,39700,0),(1,2.52e-05,39698,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(7,1.75e-04,40000,0),(0,0.00e+00,39998,0),(1,2.50e-05,39998,0),(0,0.00e+00,44724,0),(0,0.00e+00,44722,0),(0,0.00e+00,44724,0),(7,1.57e-04,44724,0),(0,0.00e+00,44722,0),(1,2.24e-05,44722,0),(0,0.00e+00,53418,0),(0,0.00e+00,53420,0),(9,1.68e-04,53420,0),(0,0.00e+00,53418,0),(1,1.87e-05,53418,0),(0,0.00e+00,60396,0),(9,1.49e-04,60396,0),(0,0.00e+00,60394,0),(2,3.31e-05,60394,0),(0,0.00e+00,86258,0),(0,0.00e+00,86256,0),(4,4.64e-05,86256,0),(0,0.00e+00,100000,0),(5,5.00e-05,99998,0),(0,0.00e+00,200000,0),(9,4.50e-05,199998,0),(3,7.50e-06,399998,0),(21,5.25e-05,399998,0),(6,6.00e-06,999994,0),(50,5.00e-05,999992,0),(8,7.19e-06,1112004,0),(58,5.22e-05,1112000,0),(60,9.54e-05,628768,0),(60,9.54e-05,628784,0),(0,0.00e+00,17694,0),(0,0.00e+00,43740,0),(50,2.38e-03,20984,0),(0,0.00e+00,36070,0),(0,0.00e+00,53142,0),(0,0.00e+00,4142,0),(2,5.71e-06,350102,0),(8,2.42e-04,33098,0),(0,0.00e+00,69796,0),(30,1.05e-04,286244,0),(30,8.76e-05,342524,0),(0,0.00e+00,10286,0),(0,0.00e+00,7408,0),(0,0.00e+00,25040,0),(0,0.00e+00,18700,0),(24,2.44e-03,9838,0),(26,2.33e-03,11146,0),(0,0.00e+00,18298,0),(0,0.00e+00,17772,0),(0,0.00e+00,27398,0),(0,0.00e+00,25744,0),(0,0.00e+00,1914,0),(0,0.00e+00,2228,0),(2,1.23e-05,162218,0),(0,0.00e+00,187884,0),(4,2.39e-04,16752,0),(4,2.45e-04,16346,0),(0,0.00e+00,14500,0),(0,0.00e+00,55296,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,18,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,198,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(1,1.00e-03,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,998,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(4,2.00e-03,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,1998,0),(0,0.00e+00,2000,0),(1,5.00e-04,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,1998,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(6,1.50e-03,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,3994,0),(0,0.00e+00,4000,0),(2,5.00e-04,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,3998,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(7,1.69e-03,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4142,0),(0,0.00e+00,4148,0),(2,4.82e-04,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4146,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(19,1.90e-03,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(3,3.00e-04,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,9998,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(42,2.37e-03,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(6,3.39e-04,17694,0),(0,0.00e+00,17694,0),(1,5.65e-05,17692,0),(0,0.00e+00,20000,0),(49,2.45e-03,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(6,3.00e-04,20000,0),(0,0.00e+00,20000,0),(1,5.00e-05,19998,0),(0,0.00e+00,20984,0),(50,2.38e-03,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(6,2.86e-04,20984,0),(0,0.00e+00,20984,0),(1,4.77e-05,20982,0),(0,0.00e+00,33098,0),(0,0.00e+00,33098,0),(0,0.00e+00,33098,0),(0,0.00e+00,33098,0),(8,2.42e-04,33098,0),(0,0.00e+00,33096,0),(3,9.06e-05,33096,0),(0,0.00e+00,36070,0),(0,0.00e+00,36070,0),(0,0.00e+00,36070,0),(0,0.00e+00,36070,0),(0,0.00e+00,36068,0),(4,1.11e-04,36068,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,39998,0),(5,1.25e-04,39998,0),(0,0.00e+00,43740,0),(0,0.00e+00,43738,0),(0,0.00e+00,43740,0),(0,0.00e+00,43738,0),(5,1.14e-04,43738,0),(0,0.00e+00,53142,0),(0,0.00e+00,53144,0),(0,0.00e+00,53142,0),(5,9.41e-05,53142,0),(0,0.00e+00,69798,0),(0,0.00e+00,69796,0),(6,8.60e-05,69796,0),(1,1.00e-05,100000,0),(8,8.00e-05,99998,0),(1,5.00e-06,199998,0),(21,1.05e-04,199998,0),(2,5.71e-06,350102,0),(31,8.85e-05,350102,0),(37,9.25e-05,399992,0)]87.19e-0611120040"nfe"25.71e-063501020"nfe"[(4.19e-05,3.82e-05),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(3.09e-06,2.24e-06),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,(7.54e-05,6.91e-05),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(9.50e-07,3.60e-07),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]3.09e-06"nfe"2.24e-06"nfe"9.50e-07"nfe"3.60e-07"nfe"1True{"rs201801648"}{}0.00e+006.00e+010.00e+001275011.23e+013.70e-02[3240,2211,2993,1962]7.34e-01104040.00e+006.00e+010.00e+001.00e+001274801.23e+011.60e-02[3240,2211,2991,1961]7.34e-0110383FalseNANAFalseFalseFalseFalse8.85e+00-5.13e-05["ga4gh:VA.SBSoboxxiC0V-mhjjHg2geRlf3I0Ib2d","ga4gh:VA.GzUD_86k_EDbtk-R58BTRVazmjZW2O1U"][113410734,113410734][113410735,113410735]["G","A"]"G/A"113410735".""chr11\t113410735\t.\tG\tA\t.\t.\tGT"NA"missense_variant"NANA"chr11"1134107351[(1,"H/Y",NA,"protein_coding",NA,"CCDS8362.1",1313,1313,1237,1237,"Cac/Tac",["missense_variant"],NA,[("Gene3D","1"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("Superfamily","SSF81321")],"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000346454.7:c.1237C>T","ENSP00000278597.5:p.His413Tyr",NA,"MODERATE",NA,NA,NA,NA,NA,NA,NA,NA,413,413,"ENSP00000278597","Ensembl",-1,"ENST00000346454",1,["P14416-2"],"A"),(1,"H/Y","P2","protein_coding",1,"CCDS8361.1",1678,1678,1324,1324,"Cac/Tac",["missense_variant"],NA,[("Gene3D","1"),("ENSP_mappings","5aer"),("ENSP_mappings","5aer"),("ENSP_mappings","6cm4"),("ENSP_mappings","6luq"),("ENSP_mappings","6vms"),("ENSP_mappings","7dfp"),("ENSP_mappings","7jvr"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("Superfamily","SSF81321")],"8/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000362072.8:c.1324C>T","ENSP00000354859.3:p.His442Tyr",NA,"MODERATE",NA,NA,NA,NA,NA,"NM_000795.4",NA,NA,442,442,"ENSP00000354859","Ensembl",-1,"ENST00000362072",1,["P14416-1"],"A"),(1,NA,NA,"processed_transcript",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],3640,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000535984",3,NA,"A"),(1,"H/Y","A1","protein_coding",NA,NA,1330,1330,1330,1330,"Cac/Tac",["missense_variant"],NA,[("Gene3D","1"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("Superfamily","SSF81321")],"8/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000538967.5:c.1330C>T","ENSP00000438215.1:p.His444Tyr",NA,"MODERATE",NA,NA,NA,NA,NA,NA,NA,NA,444,444,"ENSP00000438215","Ensembl",-1,"ENST00000538967",5,["P14416-3"],"A"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],4559,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000539420",3,NA,"A"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],3129,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000540600",1,NA,"A"),(1,"H/Y","P2","protein_coding",NA,"CCDS8361.1",1645,1645,1324,1324,"Cac/Tac",["missense_variant"],NA,[("Gene3D","1"),("ENSP_mappings","5aer"),("ENSP_mappings","5aer"),("ENSP_mappings","6cm4"),("ENSP_mappings","6luq"),("ENSP_mappings","6vms"),("ENSP_mappings","7dfp"),("ENSP_mappings","7jvr"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("Superfamily","SSF81321")],"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000542968.5:c.1324C>T","ENSP00000442172.1:p.His442Tyr",NA,"MODERATE",NA,NA,NA,NA,NA,NA,NA,NA,442,442,"ENSP00000442172","Ensembl",-1,"ENST00000542968",1,["P14416-1"],"A"),(1,"H/Y","A1","protein_coding",NA,NA,1354,1354,1321,1321,"Cac/Tac",["missense_variant"],NA,[("Gene3D","1"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("Superfamily","SSF81321")],"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000544518.5:c.1321C>T","ENSP00000441068.1:p.His441Tyr",NA,"MODERATE",NA,NA,NA,NA,NA,NA,NA,NA,441,441,"ENSP00000441068","Ensembl",-1,"ENST00000544518",1,NA,"A"),(1,NA,NA,"lncRNA",1,NA,NA,NA,NA,NA,NA,["intron_variant","non_coding_transcript_variant"],NA,NA,NA,NA,"ENSG00000256757",NA,NA,NA,NA,"ENST00000546284.1:n.245-812G>A",NA,NA,"MODIFIER","2/3",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",1,"ENST00000546284",3,NA,"A"),(1,"H/Y",NA,"protein_coding",1,NA,1678,1678,1324,1324,"Cac/Tac",["missense_variant"],NA,NA,"8/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_000795.4:c.1324C>T","NP_000786.1:p.His442Tyr",NA,"MODERATE",NA,NA,NA,NA,NA,"ENST00000362072.8",NA,NA,442,442,"NP_000786.1","RefSeq",-1,"NM_000795.4",NA,NA,"A"),(1,"H/Y",NA,"protein_coding",NA,NA,1591,1591,1237,1237,"Cac/Tac",["missense_variant"],NA,NA,"7/7",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_016574.4:c.1237C>T","NP_057658.2:p.His413Tyr",NA,"MODERATE",NA,NA,NA,NA,NA,NA,NA,NA,413,413,"NP_057658.2","RefSeq",-1,"NM_016574.4",NA,NA,"A"),(1,"H/Y",NA,"protein_coding",NA,NA,1406,1406,1324,1324,"Cac/Tac",["missense_variant"],NA,NA,"8/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","XM_017017296.2:c.1324C>T","XP_016872785.1:p.His442Tyr",NA,"MODERATE",NA,NA,NA,NA,NA,NA,NA,NA,442,442,"XP_016872785.1","RefSeq",-1,"XM_017017296.2",NA,NA,"A")]"SNV"8.85e+00"AS_MQ"FalseFalseFalseFalseFalseTrueFalseFalse"multi-snv"2False"snv"False[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,12,0,76,0,314251,0,32,0,416492,0,0,0,0,0,0,75]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,65,332,11308,107353,344982,189073,36327,5607,2387,2756,3080,2935,2956,2918,2972,2924,2564,2682]07717[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,75]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,1,2,3,4,7,3,7,5,1,4,1,3,0,2]032[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,1,1,6,12,25,24,5,1,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][6,0,1,0,14,0,76,0,314251,0,32,0,416492,0,0,0,0,0,0,75]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,2,67,335,11310,107353,344982,189073,36327,5607,2387,2756,3080,2935,2956,2918,2972,2924,2564,2682]07717[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,75]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,1,2,3,4,7,3,7,5,1,4,1,3,0,2]032[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,1,1,6,12,25,24,5,1,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][1,0,0,2,3,3,8,4,0,0]31[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]002.28e+012.69e+002.67e-010.00e+001.00e-028.67e+001.30e-011.18e-01
chr11:113410736["G","A"][(15,1.03e-05,1461882,0),(15,1.03e-05,1461894,0),(0,0.00e+00,33480,0),(0,0.00e+00,44724,0),(0,0.00e+00,26136,0),(0,0.00e+00,39700,0),(0,0.00e+00,53420,0),(0,0.00e+00,5762,0),(15,1.35e-05,1112010,0),(0,0.00e+00,60396,0),(0,0.00e+00,86254,0),(10,1.36e-05,734642,0),(5,6.88e-06,727240,0),(0,0.00e+00,19326,0),(0,0.00e+00,14154,0),(0,0.00e+00,25690,0),(0,0.00e+00,19034,0),(0,0.00e+00,12636,0),(0,0.00e+00,13500,0),(0,0.00e+00,20712,0),(0,0.00e+00,18988,0),(0,0.00e+00,27648,0),(0,0.00e+00,25772,0),(0,0.00e+00,2506,0),(0,0.00e+00,3256,0),(10,1.75e-05,572288,0),(5,9.26e-06,539722,0),(0,0.00e+00,31800,0),(0,0.00e+00,28596,0),(0,0.00e+00,22036,0),(0,0.00e+00,64218,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,1998,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,3996,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5762,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26134,0),(0,0.00e+00,26136,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33478,0),(0,0.00e+00,33480,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,39698,0),(0,0.00e+00,39700,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,39998,0),(0,0.00e+00,40000,0),(0,0.00e+00,44724,0),(0,0.00e+00,44724,0),(0,0.00e+00,44724,0),(0,0.00e+00,44724,0),(0,0.00e+00,44722,0),(0,0.00e+00,44724,0),(0,0.00e+00,53420,0),(0,0.00e+00,53420,0),(0,0.00e+00,53420,0),(0,0.00e+00,53418,0),(0,0.00e+00,53420,0),(0,0.00e+00,60396,0),(0,0.00e+00,60396,0),(0,0.00e+00,60394,0),(0,0.00e+00,60396,0),(1,1.16e-05,86258,0),(0,0.00e+00,86254,0),(0,0.00e+00,86258,0),(2,2.00e-05,100000,0),(1,1.00e-05,100000,0),(2,1.00e-05,200000,0),(2,1.00e-05,200000,0),(7,1.75e-05,400000,0),(4,1.00e-05,400000,0),(14,1.40e-05,1000000,0),(10,1.00e-05,999994,0),(15,1.35e-05,1112010,0),(12,1.08e-05,1112006,0),(1,1.59e-06,628772,0),(1,1.59e-06,628784,0),(0,0.00e+00,17694,0),(0,0.00e+00,43740,0),(0,0.00e+00,20984,0),(0,0.00e+00,36070,0),(0,0.00e+00,53144,0),(0,0.00e+00,4142,0),(1,2.86e-06,350106,0),(0,0.00e+00,33098,0),(0,0.00e+00,69794,0),(1,3.49e-06,286246,0),(0,0.00e+00,342526,0),(0,0.00e+00,10286,0),(0,0.00e+00,7408,0),(0,0.00e+00,25040,0),(0,0.00e+00,18700,0),(0,0.00e+00,9838,0),(0,0.00e+00,11146,0),(0,0.00e+00,18298,0),(0,0.00e+00,17772,0),(0,0.00e+00,27398,0),(0,0.00e+00,25746,0),(0,0.00e+00,1916,0),(0,0.00e+00,2226,0),(1,6.16e-06,162220,0),(0,0.00e+00,187886,0),(0,0.00e+00,16752,0),(0,0.00e+00,16346,0),(0,0.00e+00,14498,0),(0,0.00e+00,55296,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,1998,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,3994,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4142,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20982,0),(0,0.00e+00,20984,0),(0,0.00e+00,33098,0),(0,0.00e+00,33098,0),(0,0.00e+00,33098,0),(1,3.02e-05,33098,0),(0,0.00e+00,33098,0),(0,0.00e+00,33096,0),(0,0.00e+00,33098,0),(0,0.00e+00,36070,0),(0,0.00e+00,36070,0),(0,0.00e+00,36070,0),(1,2.77e-05,36070,0),(0,0.00e+00,36068,0),(0,0.00e+00,36070,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(1,2.50e-05,40000,0),(0,0.00e+00,39998,0),(0,0.00e+00,40000,0),(0,0.00e+00,43740,0),(0,0.00e+00,43740,0),(1,2.29e-05,43740,0),(0,0.00e+00,43738,0),(1,2.29e-05,43740,0),(0,0.00e+00,53144,0),(1,1.88e-05,53144,0),(0,0.00e+00,53142,0),(1,1.88e-05,53144,0),(1,1.43e-05,69798,0),(0,0.00e+00,69794,0),(1,1.43e-05,69798,0),(1,1.00e-05,100000,0),(1,1.00e-05,100000,0),(1,5.00e-06,200000,0),(1,5.00e-06,199998,0),(1,2.86e-06,350106,0),(1,2.86e-06,350104,0),(1,2.50e-06,399994,0)]151.35e-0511120100"nfe"12.86e-063501060"nfe"[(6.16e-06,4.89e-06),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(8.10e-06,6.42e-06),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]8.10e-06"nfe"6.42e-06"nfe"NANANANA1True{"rs1159504221"}{}5.49e-016.00e+010.00e+00123071.16e+017.40e-02[386,195,316,166]6.55e-0110639.64e-166.00e+010.00e+009.11e-01118991.17e+019.70e-02[386,195,304,161]6.47e-011013FalseNANAFalseFalseFalseFalse7.50e+00-1.03e-05["ga4gh:VA.QVbOetW6APM1_3jfGLLwArt4GfwgT6jE","ga4gh:VA.OXPDvbuulFZ9CSk4XtIFat1UOKdMachQ"][113410735,113410735][113410736,113410736]["G","A"]"G/A"113410736".""chr11\t113410736\t.\tG\tA\t.\t.\tGT"NA"synonymous_variant"NANA"chr11"1134107361[(1,"L",NA,"protein_coding",NA,"CCDS8362.1",1312,1312,1236,1236,"ctC/ctT",["synonymous_variant"],NA,[("Gene3D","1"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321")],"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000346454.7:c.1236C>T","ENSP00000278597.5:p.Leu412=",NA,"LOW",NA,NA,NA,NA,NA,NA,NA,NA,412,412,"ENSP00000278597","Ensembl",-1,"ENST00000346454",1,["P14416-2"],"A"),(1,"L","P2","protein_coding",1,"CCDS8361.1",1677,1677,1323,1323,"ctC/ctT",["synonymous_variant"],NA,[("Gene3D","1"),("ENSP_mappings","5aer"),("ENSP_mappings","5aer"),("ENSP_mappings","6cm4"),("ENSP_mappings","6luq"),("ENSP_mappings","6vms"),("ENSP_mappings","7dfp"),("ENSP_mappings","7jvr"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321")],"8/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000362072.8:c.1323C>T","ENSP00000354859.3:p.Leu441=",NA,"LOW",NA,NA,NA,NA,NA,"NM_000795.4",NA,NA,441,441,"ENSP00000354859","Ensembl",-1,"ENST00000362072",1,["P14416-1"],"A"),(1,NA,NA,"processed_transcript",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],3639,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000535984",3,NA,"A"),(1,"L","A1","protein_coding",NA,NA,1329,1329,1329,1329,"ctC/ctT",["synonymous_variant"],NA,[("Gene3D","1"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321")],"8/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000538967.5:c.1329C>T","ENSP00000438215.1:p.Leu443=",NA,"LOW",NA,NA,NA,NA,NA,NA,NA,NA,443,443,"ENSP00000438215","Ensembl",-1,"ENST00000538967",5,["P14416-3"],"A"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],4558,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000539420",3,NA,"A"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],3128,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000540600",1,NA,"A"),(1,"L","P2","protein_coding",NA,"CCDS8361.1",1644,1644,1323,1323,"ctC/ctT",["synonymous_variant"],NA,[("Gene3D","1"),("ENSP_mappings","5aer"),("ENSP_mappings","5aer"),("ENSP_mappings","6cm4"),("ENSP_mappings","6luq"),("ENSP_mappings","6vms"),("ENSP_mappings","7dfp"),("ENSP_mappings","7jvr"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321")],"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000542968.5:c.1323C>T","ENSP00000442172.1:p.Leu441=",NA,"LOW",NA,NA,NA,NA,NA,NA,NA,NA,441,441,"ENSP00000442172","Ensembl",-1,"ENST00000542968",1,["P14416-1"],"A"),(1,"L","A1","protein_coding",NA,NA,1353,1353,1320,1320,"ctC/ctT",["synonymous_variant"],NA,[("Gene3D","1"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321")],"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000544518.5:c.1320C>T","ENSP00000441068.1:p.Leu440=",NA,"LOW",NA,NA,NA,NA,NA,NA,NA,NA,440,440,"ENSP00000441068","Ensembl",-1,"ENST00000544518",1,NA,"A"),(1,NA,NA,"lncRNA",1,NA,NA,NA,NA,NA,NA,["intron_variant","non_coding_transcript_variant"],NA,NA,NA,NA,"ENSG00000256757",NA,NA,NA,NA,"ENST00000546284.1:n.245-811G>A",NA,NA,"MODIFIER","2/3",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",1,"ENST00000546284",3,NA,"A"),(1,"L",NA,"protein_coding",1,NA,1677,1677,1323,1323,"ctC/ctT",["synonymous_variant"],NA,NA,"8/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_000795.4:c.1323C>T","NP_000786.1:p.Leu441=",NA,"LOW",NA,NA,NA,NA,NA,"ENST00000362072.8",NA,NA,441,441,"NP_000786.1","RefSeq",-1,"NM_000795.4",NA,NA,"A"),(1,"L",NA,"protein_coding",NA,NA,1590,1590,1236,1236,"ctC/ctT",["synonymous_variant"],NA,NA,"7/7",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_016574.4:c.1236C>T","NP_057658.2:p.Leu412=",NA,"LOW",NA,NA,NA,NA,NA,NA,NA,NA,412,412,"NP_057658.2","RefSeq",-1,"NM_016574.4",NA,NA,"A"),(1,"L",NA,"protein_coding",NA,NA,1405,1405,1323,1323,"ctC/ctT",["synonymous_variant"],NA,NA,"8/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","XM_017017296.2:c.1323C>T","XP_016872785.1:p.Leu441=",NA,"LOW",NA,NA,NA,NA,NA,NA,NA,NA,441,441,"XP_016872785.1","RefSeq",-1,"XM_017017296.2",NA,NA,"A")]"SNV"7.50e+00"AS_MQ"FalseFalseFalseFalseFalseTrueFalseFalse"multi-snv"2False"snv"False[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,8,0,71,0,314313,0,37,0,416496,0,0,0,0,0,0,16]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,61,328,11304,107355,345020,189098,36329,5607,2382,2757,3074,2931,2955,2914,2974,2923,2564,2680]07685[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,15]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,1,3,1,2,3,1,0,1,0,1,1,0,0]01[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,1,0,0,1,1,11,1,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][5,0,0,0,9,0,71,0,314313,0,37,0,416496,0,0,0,0,0,0,16]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,1,62,330,11305,107356,345020,189098,36329,5607,2382,2757,3074,2931,2955,2914,2974,2923,2564,2680]07685[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,15]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,1,3,1,2,3,1,0,1,0,1,1,0,0]01[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,1,0,0,1,1,11,1,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,1,2,4,2,4,1,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]003.44e+002.28e-01NA0.00e+001.00e-02-2.55e-01NANA
chr11:113410736["G","T"][(1,6.84e-07,1461882,0),(1,6.84e-07,1461894,0),(0,0.00e+00,33480,0),(0,0.00e+00,44724,0),(0,0.00e+00,26136,0),(0,0.00e+00,39700,0),(0,0.00e+00,53420,0),(0,0.00e+00,5762,0),(1,8.99e-07,1112010,0),(0,0.00e+00,60396,0),(0,0.00e+00,86254,0),(0,0.00e+00,734642,0),(1,1.38e-06,727240,0),(0,0.00e+00,19326,0),(0,0.00e+00,14154,0),(0,0.00e+00,25690,0),(0,0.00e+00,19034,0),(0,0.00e+00,12636,0),(0,0.00e+00,13500,0),(0,0.00e+00,20712,0),(0,0.00e+00,18988,0),(0,0.00e+00,27648,0),(0,0.00e+00,25772,0),(0,0.00e+00,2506,0),(0,0.00e+00,3256,0),(0,0.00e+00,572288,0),(1,1.85e-06,539722,0),(0,0.00e+00,31800,0),(0,0.00e+00,28596,0),(0,0.00e+00,22036,0),(0,0.00e+00,64218,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,1998,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,3996,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5762,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26134,0),(0,0.00e+00,26136,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33478,0),(0,0.00e+00,33480,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,39698,0),(0,0.00e+00,39700,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,39998,0),(0,0.00e+00,40000,0),(0,0.00e+00,44724,0),(0,0.00e+00,44724,0),(0,0.00e+00,44724,0),(0,0.00e+00,44724,0),(0,0.00e+00,44722,0),(0,0.00e+00,44724,0),(0,0.00e+00,53420,0),(0,0.00e+00,53420,0),(0,0.00e+00,53420,0),(0,0.00e+00,53418,0),(0,0.00e+00,53420,0),(0,0.00e+00,60396,0),(0,0.00e+00,60396,0),(0,0.00e+00,60394,0),(0,0.00e+00,60396,0),(0,0.00e+00,86258,0),(0,0.00e+00,86254,0),(0,0.00e+00,86258,0),(0,0.00e+00,100000,0),(0,0.00e+00,100000,0),(0,0.00e+00,200000,0),(0,0.00e+00,200000,0),(1,2.50e-06,400000,0),(1,2.50e-06,400000,0),(1,1.00e-06,1000000,0),(1,1.00e-06,999994,0),(1,8.99e-07,1112010,0),(1,8.99e-07,1112006,0),(0,0.00e+00,628772,0),(0,0.00e+00,628784,0),(0,0.00e+00,17694,0),(0,0.00e+00,43740,0),(0,0.00e+00,20984,0),(0,0.00e+00,36070,0),(0,0.00e+00,53144,0),(0,0.00e+00,4142,0),(0,0.00e+00,350106,0),(0,0.00e+00,33098,0),(0,0.00e+00,69794,0),(0,0.00e+00,286246,0),(0,0.00e+00,342526,0),(0,0.00e+00,10286,0),(0,0.00e+00,7408,0),(0,0.00e+00,25040,0),(0,0.00e+00,18700,0),(0,0.00e+00,9838,0),(0,0.00e+00,11146,0),(0,0.00e+00,18298,0),(0,0.00e+00,17772,0),(0,0.00e+00,27398,0),(0,0.00e+00,25746,0),(0,0.00e+00,1916,0),(0,0.00e+00,2226,0),(0,0.00e+00,162220,0),(0,0.00e+00,187886,0),(0,0.00e+00,16752,0),(0,0.00e+00,16346,0),(0,0.00e+00,14498,0),(0,0.00e+00,55296,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,1998,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,3994,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4142,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20982,0),(0,0.00e+00,20984,0),(0,0.00e+00,33098,0),(0,0.00e+00,33098,0),(0,0.00e+00,33098,0),(0,0.00e+00,33098,0),(0,0.00e+00,33098,0),(0,0.00e+00,33096,0),(0,0.00e+00,33098,0),(0,0.00e+00,36070,0),(0,0.00e+00,36070,0),(0,0.00e+00,36070,0),(0,0.00e+00,36070,0),(0,0.00e+00,36068,0),(0,0.00e+00,36070,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,39998,0),(0,0.00e+00,40000,0),(0,0.00e+00,43740,0),(0,0.00e+00,43740,0),(0,0.00e+00,43740,0),(0,0.00e+00,43738,0),(0,0.00e+00,43740,0),(0,0.00e+00,53144,0),(0,0.00e+00,53144,0),(0,0.00e+00,53142,0),(0,0.00e+00,53144,0),(0,0.00e+00,69798,0),(0,0.00e+00,69794,0),(0,0.00e+00,69798,0),(0,0.00e+00,100000,0),(0,0.00e+00,100000,0),(0,0.00e+00,200000,0),(0,0.00e+00,199998,0),(0,0.00e+00,350106,0),(0,0.00e+00,350104,0),(0,0.00e+00,399994,0)]18.99e-0711120100"nfe"NANANANANA[(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]NANANANANANANANA2TrueNA{}5.49e-016.00e+010.00e+00123071.16e+017.40e-02[386,195,316,166]6.55e-0110639.64e-166.00e+010.00e+003.28e-024088.16e+00-9.23e-01[386,195,12,5]7.90e-0150TrueFalseFalseFalseFalseFalseFalse5.00e+00-6.84e-07["ga4gh:VA.QVbOetW6APM1_3jfGLLwArt4GfwgT6jE","ga4gh:VA.4qhkDG1qrfqiD2TeOA6LYLsi4UGWF19l"][113410735,113410735][113410736,113410736]["G","T"]"G/T"113410736".""chr11\t113410736\t.\tG\tT\t.\t.\tGT"NA"synonymous_variant"NANA"chr11"1134107361[(1,"L",NA,"protein_coding",NA,"CCDS8362.1",1312,1312,1236,1236,"ctC/ctA",["synonymous_variant"],NA,[("Gene3D","1"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321")],"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000346454.7:c.1236C>A","ENSP00000278597.5:p.Leu412=",NA,"LOW",NA,NA,NA,NA,NA,NA,NA,NA,412,412,"ENSP00000278597","Ensembl",-1,"ENST00000346454",1,["P14416-2"],"T"),(1,"L","P2","protein_coding",1,"CCDS8361.1",1677,1677,1323,1323,"ctC/ctA",["synonymous_variant"],NA,[("Gene3D","1"),("ENSP_mappings","5aer"),("ENSP_mappings","5aer"),("ENSP_mappings","6cm4"),("ENSP_mappings","6luq"),("ENSP_mappings","6vms"),("ENSP_mappings","7dfp"),("ENSP_mappings","7jvr"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321")],"8/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000362072.8:c.1323C>A","ENSP00000354859.3:p.Leu441=",NA,"LOW",NA,NA,NA,NA,NA,"NM_000795.4",NA,NA,441,441,"ENSP00000354859","Ensembl",-1,"ENST00000362072",1,["P14416-1"],"T"),(1,NA,NA,"processed_transcript",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],3639,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000535984",3,NA,"T"),(1,"L","A1","protein_coding",NA,NA,1329,1329,1329,1329,"ctC/ctA",["synonymous_variant"],NA,[("Gene3D","1"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321")],"8/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000538967.5:c.1329C>A","ENSP00000438215.1:p.Leu443=",NA,"LOW",NA,NA,NA,NA,NA,NA,NA,NA,443,443,"ENSP00000438215","Ensembl",-1,"ENST00000538967",5,["P14416-3"],"T"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],4558,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000539420",3,NA,"T"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],3128,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000540600",1,NA,"T"),(1,"L","P2","protein_coding",NA,"CCDS8361.1",1644,1644,1323,1323,"ctC/ctA",["synonymous_variant"],NA,[("Gene3D","1"),("ENSP_mappings","5aer"),("ENSP_mappings","5aer"),("ENSP_mappings","6cm4"),("ENSP_mappings","6luq"),("ENSP_mappings","6vms"),("ENSP_mappings","7dfp"),("ENSP_mappings","7jvr"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321")],"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000542968.5:c.1323C>A","ENSP00000442172.1:p.Leu441=",NA,"LOW",NA,NA,NA,NA,NA,NA,NA,NA,441,441,"ENSP00000442172","Ensembl",-1,"ENST00000542968",1,["P14416-1"],"T"),(1,"L","A1","protein_coding",NA,NA,1353,1353,1320,1320,"ctC/ctA",["synonymous_variant"],NA,[("Gene3D","1"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321")],"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000544518.5:c.1320C>A","ENSP00000441068.1:p.Leu440=",NA,"LOW",NA,NA,NA,NA,NA,NA,NA,NA,440,440,"ENSP00000441068","Ensembl",-1,"ENST00000544518",1,NA,"T"),(1,NA,NA,"lncRNA",1,NA,NA,NA,NA,NA,NA,["intron_variant","non_coding_transcript_variant"],NA,NA,NA,NA,"ENSG00000256757",NA,NA,NA,NA,"ENST00000546284.1:n.245-811G>T",NA,NA,"MODIFIER","2/3",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",1,"ENST00000546284",3,NA,"T"),(1,"L",NA,"protein_coding",1,NA,1677,1677,1323,1323,"ctC/ctA",["synonymous_variant"],NA,NA,"8/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_000795.4:c.1323C>A","NP_000786.1:p.Leu441=",NA,"LOW",NA,NA,NA,NA,NA,"ENST00000362072.8",NA,NA,441,441,"NP_000786.1","RefSeq",-1,"NM_000795.4",NA,NA,"T"),(1,"L",NA,"protein_coding",NA,NA,1590,1590,1236,1236,"ctC/ctA",["synonymous_variant"],NA,NA,"7/7",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_016574.4:c.1236C>A","NP_057658.2:p.Leu412=",NA,"LOW",NA,NA,NA,NA,NA,NA,NA,NA,412,412,"NP_057658.2","RefSeq",-1,"NM_016574.4",NA,NA,"T"),(1,"L",NA,"protein_coding",NA,NA,1405,1405,1323,1323,"ctC/ctA",["synonymous_variant"],NA,NA,"8/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","XM_017017296.2:c.1323C>A","XP_016872785.1:p.Leu441=",NA,"LOW",NA,NA,NA,NA,NA,NA,NA,NA,441,441,"XP_016872785.1","RefSeq",-1,"XM_017017296.2",NA,NA,"T")]"SNV"5.00e+00"AS_MQ"FalseFalseFalseFalseFalseTrueFalseFalse"multi-snv"2False"snv"False[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,8,0,71,0,314313,0,37,0,416496,0,0,0,0,0,0,16]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,61,328,11304,107355,345020,189098,36329,5607,2382,2757,3074,2931,2955,2914,2974,2923,2564,2680]07685[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][5,0,0,0,9,0,71,0,314313,0,37,0,416496,0,0,0,0,0,0,16]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,1,62,330,11305,107356,345020,189098,36329,5607,2382,2757,3074,2931,2955,2914,2974,2923,2564,2680]07685[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,1,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]002.96e+001.86e-01NA0.00e+003.00e-02-2.55e-01NANA

showing top 5 rows

\n" + ], + "text/plain": [ + "+-----------------+------------+\n", + "| locus | alleles |\n", + "+-----------------+------------+\n", + "| locus | array |\n", + "+-----------------+------------+\n", + "| chr11:113410731 | [\"C\",\"A\"] |\n", + "| chr11:113410731 | [\"C\",\"T\"] |\n", + "| chr11:113410735 | [\"G\",\"A\"] |\n", + "| chr11:113410736 | [\"G\",\"A\"] |\n", + "| chr11:113410736 | [\"G\",\"T\"] |\n", + "+-----------------+------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| freq |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [(2,1.37e-06,1461866,0),(2,1.37e-06,1461894,0),(0,0.00e+00,33480,0),(2,4.... |\n", + "| [(1,6.84e-07,1461866,0),(1,6.84e-07,1461894,0),(0,0.00e+00,33480,0),(0,0.... |\n", + "| [(75,5.13e-05,1461876,0),(75,5.13e-05,1461894,0),(0,0.00e+00,33480,0),(0,... |\n", + "| [(15,1.03e-05,1461882,0),(15,1.03e-05,1461894,0),(0,0.00e+00,33480,0),(0,... |\n", + "| [(1,6.84e-07,1461882,0),(1,6.84e-07,1461894,0),(0,0.00e+00,33480,0),(0,0.... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+------------------+------------------+------------------+\n", + "| grpmax.gnomad.AC | grpmax.gnomad.AF | grpmax.gnomad.AN |\n", + "+------------------+------------------+------------------+\n", + "| int32 | float64 | int32 |\n", + "+------------------+------------------+------------------+\n", + "| 2 | 4.47e-05 | 44724 |\n", + "| 1 | 8.99e-07 | 1112010 |\n", + "| 8 | 7.19e-06 | 1112004 |\n", + "| 15 | 1.35e-05 | 1112010 |\n", + "| 1 | 8.99e-07 | 1112010 |\n", + "+------------------+------------------+------------------+\n", + "\n", + "+--------------------------------+-----------------------+-------------------+\n", + "| grpmax.gnomad.homozygote_count | grpmax.gnomad.gen_anc | grpmax.non_ukb.AC |\n", + "+--------------------------------+-----------------------+-------------------+\n", + "| int64 | str | int32 |\n", + "+--------------------------------+-----------------------+-------------------+\n", + "| 0 | \"amr\" | 2 |\n", + "| 0 | \"nfe\" | NA |\n", + "| 0 | \"nfe\" | 2 |\n", + "| 0 | \"nfe\" | 1 |\n", + "| 0 | \"nfe\" | NA |\n", + "+--------------------------------+-----------------------+-------------------+\n", + "\n", + "+-------------------+-------------------+---------------------------------+\n", + "| grpmax.non_ukb.AF | grpmax.non_ukb.AN | grpmax.non_ukb.homozygote_count |\n", + "+-------------------+-------------------+---------------------------------+\n", + "| float64 | int32 | int64 |\n", + "+-------------------+-------------------+---------------------------------+\n", + "| 4.57e-05 | 43740 | 0 |\n", + "| NA | NA | NA |\n", + "| 5.71e-06 | 350102 | 0 |\n", + "| 2.86e-06 | 350106 | 0 |\n", + "| NA | NA | NA |\n", + "+-------------------+-------------------+---------------------------------+\n", + "\n", + "+------------------------+\n", + "| grpmax.non_ukb.gen_anc |\n", + "+------------------------+\n", + "| str |\n", + "+------------------------+\n", + "| \"amr\" |\n", + "| NA |\n", + "| \"nfe\" |\n", + "| \"nfe\" |\n", + "| NA |\n", + "+------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| faf |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [(2.30e-07,9.00e-08),(0.00e+00,0.00e+00),(7.41e-06,2.77e-06),(0.00e+00,0.... |\n", + "| [(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.... |\n", + "| [(4.19e-05,3.82e-05),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.... |\n", + "| [(6.16e-06,4.89e-06),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.... |\n", + "| [(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+-------------------------+---------------------------------+\n", + "| fafmax.gnomad.faf95_max | fafmax.gnomad.faf95_max_gen_anc |\n", + "+-------------------------+---------------------------------+\n", + "| float64 | str |\n", + "+-------------------------+---------------------------------+\n", + "| 7.41e-06 | \"amr\" |\n", + "| NA | NA |\n", + "| 3.09e-06 | \"nfe\" |\n", + "| 8.10e-06 | \"nfe\" |\n", + "| NA | NA |\n", + "+-------------------------+---------------------------------+\n", + "\n", + "+-------------------------+---------------------------------+\n", + "| fafmax.gnomad.faf99_max | fafmax.gnomad.faf99_max_gen_anc |\n", + "+-------------------------+---------------------------------+\n", + "| float64 | str |\n", + "+-------------------------+---------------------------------+\n", + "| 2.77e-06 | \"amr\" |\n", + "| NA | NA |\n", + "| 2.24e-06 | \"nfe\" |\n", + "| 6.42e-06 | \"nfe\" |\n", + "| NA | NA |\n", + "+-------------------------+---------------------------------+\n", + "\n", + "+--------------------------+----------------------------------+\n", + "| fafmax.non_ukb.faf95_max | fafmax.non_ukb.faf95_max_gen_anc |\n", + "+--------------------------+----------------------------------+\n", + "| float64 | str |\n", + "+--------------------------+----------------------------------+\n", + "| 7.58e-06 | \"amr\" |\n", + "| NA | NA |\n", + "| 9.50e-07 | \"nfe\" |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "+--------------------------+----------------------------------+\n", + "\n", + "+--------------------------+----------------------------------+---------+\n", + "| fafmax.non_ukb.faf99_max | fafmax.non_ukb.faf99_max_gen_anc | a_index |\n", + "+--------------------------+----------------------------------+---------+\n", + "| float64 | str | int32 |\n", + "+--------------------------+----------------------------------+---------+\n", + "| 2.84e-06 | \"amr\" | 1 |\n", + "| NA | NA | 2 |\n", + "| 3.60e-07 | \"nfe\" | 1 |\n", + "| NA | NA | 1 |\n", + "| NA | NA | 2 |\n", + "+--------------------------+----------------------------------+---------+\n", + "\n", + "+-----------+------------------+----------+----------+----------+\n", + "| was_split | rsid | filters | info.FS | info.MQ |\n", + "+-----------+------------------+----------+----------+----------+\n", + "| bool | set | set | float64 | float64 |\n", + "+-----------+------------------+----------+----------+----------+\n", + "| True | {\"rs140938110\"} | {} | 5.56e+00 | 6.00e+01 |\n", + "| True | NA | {} | 5.56e+00 | 6.00e+01 |\n", + "| True | {\"rs201801648\"} | {} | 0.00e+00 | 6.00e+01 |\n", + "| True | {\"rs1159504221\"} | {} | 5.49e-01 | 6.00e+01 |\n", + "| True | NA | {} | 5.49e-01 | 6.00e+01 |\n", + "+-----------+------------------+----------+----------+----------+\n", + "\n", + "+----------------+-----------------+----------+---------------------+\n", + "| info.MQRankSum | info.QUALapprox | info.QD | info.ReadPosRankSum |\n", + "+----------------+-----------------+----------+---------------------+\n", + "| float64 | int64 | float64 | float64 |\n", + "+----------------+-----------------+----------+---------------------+\n", + "| 0.00e+00 | 3862 | 1.02e+01 | -1.98e-01 |\n", + "| 0.00e+00 | 3862 | 1.02e+01 | -1.98e-01 |\n", + "| 0.00e+00 | 127501 | 1.23e+01 | 3.70e-02 |\n", + "| 0.00e+00 | 12307 | 1.16e+01 | 7.40e-02 |\n", + "| 0.00e+00 | 12307 | 1.16e+01 | 7.40e-02 |\n", + "+----------------+-----------------+----------+---------------------+\n", + "\n", + "+-----------------------+----------+------------+------------+------------+\n", + "| info.SB | info.SOR | info.VarDP | info.AS_FS | info.AS_MQ |\n", + "+-----------------------+----------+------------+------------+------------+\n", + "| array | float64 | int32 | float64 | float64 |\n", + "+-----------------------+----------+------------+------------+------------+\n", + "| [134,83,109,52] | 9.81e-01 | 378 | 1.31e+01 | 6.00e+01 |\n", + "| [134,83,109,52] | 9.81e-01 | 378 | 0.00e+00 | 6.00e+01 |\n", + "| [3240,2211,2993,1962] | 7.34e-01 | 10404 | 0.00e+00 | 6.00e+01 |\n", + "| [386,195,316,166] | 6.55e-01 | 1063 | 9.64e-16 | 6.00e+01 |\n", + "| [386,195,316,166] | 6.55e-01 | 1063 | 9.64e-16 | 6.00e+01 |\n", + "+-----------------------+----------+------------+------------+------------+\n", + "\n", + "+-------------------+-----------------+--------------------+------------+\n", + "| info.AS_MQRankSum | info.AS_pab_max | info.AS_QUALapprox | info.AS_QD |\n", + "+-------------------+-----------------+--------------------+------------+\n", + "| float64 | float64 | int64 | float64 |\n", + "+-------------------+-----------------+--------------------+------------+\n", + "| 0.00e+00 | 2.94e-01 | 1895 | 1.06e+01 |\n", + "| 0.00e+00 | 9.04e-01 | 1967 | 9.88e+00 |\n", + "| 0.00e+00 | 1.00e+00 | 127480 | 1.23e+01 |\n", + "| 0.00e+00 | 9.11e-01 | 11899 | 1.17e+01 |\n", + "| 0.00e+00 | 3.28e-02 | 408 | 8.16e+00 |\n", + "+-------------------+-----------------+--------------------+------------+\n", + "\n", + "+------------------------+-----------------------+-------------+---------------+\n", + "| info.AS_ReadPosRankSum | info.AS_SB_TABLE | info.AS_SOR | info.AS_VarDP |\n", + "+------------------------+-----------------------+-------------+---------------+\n", + "| float64 | array | float64 | int32 |\n", + "+------------------------+-----------------------+-------------+---------------+\n", + "| 2.52e-01 | [134,83,56,19] | 1.42e+00 | 179 |\n", + "| -5.01e-01 | [134,83,53,33] | 6.81e-01 | 199 |\n", + "| 1.60e-02 | [3240,2211,2991,1961] | 7.34e-01 | 10383 |\n", + "| 9.70e-02 | [386,195,304,161] | 6.47e-01 | 1013 |\n", + "| -9.23e-01 | [386,195,12,5] | 7.90e-01 | 50 |\n", + "+------------------------+-----------------------+-------------+---------------+\n", + "\n", + "+----------------+----------------------------+------------------------+\n", + "| info.singleton | info.transmitted_singleton | info.sibling_singleton |\n", + "+----------------+----------------------------+------------------------+\n", + "| bool | bool | bool |\n", + "+----------------+----------------------------+------------------------+\n", + "| False | NA | NA |\n", + "| True | False | False |\n", + "| False | NA | NA |\n", + "| False | NA | NA |\n", + "| True | False | False |\n", + "+----------------+----------------------------+------------------------+\n", + "\n", + "+-----------+------------+------------------+---------------+----------------+\n", + "| info.omni | info.mills | info.monoallelic | info.only_het | info.AS_VQSLOD |\n", + "+-----------+------------+------------------+---------------+----------------+\n", + "| bool | bool | bool | bool | float64 |\n", + "+-----------+------------+------------------+---------------+----------------+\n", + "| False | False | False | False | 5.27e+00 |\n", + "| False | False | False | False | 5.40e+00 |\n", + "| False | False | False | False | 8.85e+00 |\n", + "| False | False | False | False | 7.50e+00 |\n", + "| False | False | False | False | 5.00e+00 |\n", + "+-----------+------------+------------------+---------------+----------------+\n", + "\n", + "+-----------------------+\n", + "| info.inbreeding_coeff |\n", + "+-----------------------+\n", + "| float64 |\n", + "+-----------------------+\n", + "| -1.37e-06 |\n", + "| -6.84e-07 |\n", + "| -5.13e-05 |\n", + "| -1.03e-05 |\n", + "| -6.84e-07 |\n", + "+-----------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| info.vrs.VRS_Allele_IDs |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [\"ga4gh:VA.RY2FNHeS0QpJNM9lQpQ_pzX7Q27-MXmI\",\"ga4gh:VA.ZonDIhdwyghm7SuWkX... |\n", + "| [\"ga4gh:VA.RY2FNHeS0QpJNM9lQpQ_pzX7Q27-MXmI\",\"ga4gh:VA.Hp20SlFHUdM7jlWmVV... |\n", + "| [\"ga4gh:VA.SBSoboxxiC0V-mhjjHg2geRlf3I0Ib2d\",\"ga4gh:VA.GzUD_86k_EDbtk-R58... |\n", + "| [\"ga4gh:VA.QVbOetW6APM1_3jfGLLwArt4GfwgT6jE\",\"ga4gh:VA.OXPDvbuulFZ9CSk4Xt... |\n", + "| [\"ga4gh:VA.QVbOetW6APM1_3jfGLLwArt4GfwgT6jE\",\"ga4gh:VA.4qhkDG1qrfqiD2TeOA... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+-----------------------+-----------------------+---------------------+\n", + "| info.vrs.VRS_Starts | info.vrs.VRS_Ends | info.vrs.VRS_States |\n", + "+-----------------------+-----------------------+---------------------+\n", + "| array | array | array |\n", + "+-----------------------+-----------------------+---------------------+\n", + "| [113410730,113410730] | [113410731,113410731] | [\"C\",\"A\"] |\n", + "| [113410730,113410730] | [113410731,113410731] | [\"C\",\"T\"] |\n", + "| [113410734,113410734] | [113410735,113410735] | [\"G\",\"A\"] |\n", + "| [113410735,113410735] | [113410736,113410736] | [\"G\",\"A\"] |\n", + "| [113410735,113410735] | [113410736,113410736] | [\"G\",\"T\"] |\n", + "+-----------------------+-----------------------+---------------------+\n", + "\n", + "+-------------------+-----------+--------+--------------------------------+\n", + "| vep.allele_string | vep.end | vep.id | vep.input |\n", + "+-------------------+-----------+--------+--------------------------------+\n", + "| str | int32 | str | str |\n", + "+-------------------+-----------+--------+--------------------------------+\n", + "| \"C/A\" | 113410731 | \".\" | \"chr11\t113410731\t.\tC\tA\t.\t.\tGT\" |\n", + "| \"C/T\" | 113410731 | \".\" | \"chr11\t113410731\t.\tC\tT\t.\t.\tGT\" |\n", + "| \"G/A\" | 113410735 | \".\" | \"chr11\t113410735\t.\tG\tA\t.\t.\tGT\" |\n", + "| \"G/A\" | 113410736 | \".\" | \"chr11\t113410736\t.\tG\tA\t.\t.\tGT\" |\n", + "| \"G/T\" | 113410736 | \".\" | \"chr11\t113410736\t.\tG\tT\t.\t.\tGT\" |\n", + "+-------------------+-----------+--------+--------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| vep.intergenic_consequences |\n", + "+------------------------------------------------------------------------------+\n", + "| array, impact: st... |\n", + "+------------------------------------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+-----------------------------+\n", + "| vep.most_severe_consequence |\n", + "+-----------------------------+\n", + "| str |\n", + "+-----------------------------+\n", + "| \"missense_variant\" |\n", + "| \"missense_variant\" |\n", + "| \"missense_variant\" |\n", + "| \"synonymous_variant\" |\n", + "| \"synonymous_variant\" |\n", + "+-----------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| vep.motif_feature_consequences |\n", + "+------------------------------------------------------------------------------+\n", + "| array, high_inf_p... |\n", + "+------------------------------------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| vep.regulatory_feature_consequences |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+---------------------------------------------------------+\n", + "| histograms.qual_hists.gq_hist_all.bin_freq |\n", + "+---------------------------------------------------------+\n", + "| array |\n", + "+---------------------------------------------------------+\n", + "| [0,0,0,0,21,0,124,0,314262,0,99,0,416424,0,0,0,0,0,0,3] |\n", + "| [0,0,0,0,21,0,124,0,314262,0,99,0,416424,0,0,0,0,0,0,3] |\n", + "| [0,0,0,0,12,0,76,0,314251,0,32,0,416492,0,0,0,0,0,0,75] |\n", + "| [0,0,0,0,8,0,71,0,314313,0,37,0,416496,0,0,0,0,0,0,16] |\n", + "| [0,0,0,0,8,0,71,0,314313,0,37,0,416496,0,0,0,0,0,0,16] |\n", + "+---------------------------------------------------------+\n", + "\n", + "+---------------------------------------------+\n", + "| histograms.qual_hists.gq_hist_all.n_smaller |\n", + "+---------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+---------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.qual_hists.gq_hist_all.n_larger |\n", + "+--------------------------------------------+\n", + "| int64 |\n", + "+--------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+--------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.qual_hists.dp_hist_all.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.qual_hists.dp_hist_all.bin_freq |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0,0,98,374,11344,107362,344923,189028,36319,5607,2388,2759,3074,2931,295... |\n", + "| [0,0,98,374,11344,107362,344923,189028,36319,5607,2388,2759,3074,2931,295... |\n", + "| [0,0,65,332,11308,107353,344982,189073,36327,5607,2387,2756,3080,2935,295... |\n", + "| [0,0,61,328,11304,107355,345020,189098,36329,5607,2382,2757,3074,2931,295... |\n", + "| [0,0,61,328,11304,107355,345020,189098,36329,5607,2382,2757,3074,2931,295... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+---------------------------------------------+\n", + "| histograms.qual_hists.dp_hist_all.n_smaller |\n", + "+---------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+---------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.qual_hists.dp_hist_all.n_larger |\n", + "+--------------------------------------------+\n", + "| int64 |\n", + "+--------------------------------------------+\n", + "| 7715 |\n", + "| 7715 |\n", + "| 7717 |\n", + "| 7685 |\n", + "| 7685 |\n", + "+--------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.qual_hists.gq_hist_alt.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.qual_hists.gq_hist_alt.bin_freq |\n", + "+--------------------------------------------+\n", + "| array |\n", + "+--------------------------------------------+\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,75] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,15] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1] |\n", + "+--------------------------------------------+\n", + "\n", + "+---------------------------------------------+\n", + "| histograms.qual_hists.gq_hist_alt.n_smaller |\n", + "+---------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+---------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.qual_hists.gq_hist_alt.n_larger |\n", + "+--------------------------------------------+\n", + "| int64 |\n", + "+--------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+--------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.qual_hists.dp_hist_alt.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.qual_hists.dp_hist_alt.bin_freq |\n", + "+--------------------------------------------+\n", + "| array |\n", + "+--------------------------------------------+\n", + "| [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,1,2,3,4,7,3,7,5,1,4,1,3,0,2] |\n", + "| [0,0,0,0,0,0,0,1,3,1,2,3,1,0,1,0,1,1,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0] |\n", + "+--------------------------------------------+\n", + "\n", + "+---------------------------------------------+\n", + "| histograms.qual_hists.dp_hist_alt.n_smaller |\n", + "+---------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+---------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.qual_hists.dp_hist_alt.n_larger |\n", + "+--------------------------------------------+\n", + "| int64 |\n", + "+--------------------------------------------+\n", + "| 1 |\n", + "| 0 |\n", + "| 32 |\n", + "| 1 |\n", + "| 0 |\n", + "+--------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.qual_hists.ab_hist_alt.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+----------------------------------------------+\n", + "| histograms.qual_hists.ab_hist_alt.bin_freq |\n", + "+----------------------------------------------+\n", + "| array |\n", + "+----------------------------------------------+\n", + "| [0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,1,1,6,12,25,24,5,1,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,1,0,0,1,1,11,1,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "+----------------------------------------------+\n", + "\n", + "+---------------------------------------------+\n", + "| histograms.qual_hists.ab_hist_alt.n_smaller |\n", + "+---------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+---------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.qual_hists.ab_hist_alt.n_larger |\n", + "+--------------------------------------------+\n", + "| int64 |\n", + "+--------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+--------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.raw_qual_hists.gq_hist_all.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+---------------------------------------------------------+\n", + "| histograms.raw_qual_hists.gq_hist_all.bin_freq |\n", + "+---------------------------------------------------------+\n", + "| array |\n", + "+---------------------------------------------------------+\n", + "| [7,0,0,0,28,0,124,0,314262,0,99,0,416424,0,0,0,0,0,0,3] |\n", + "| [7,0,0,0,28,0,124,0,314262,0,99,0,416424,0,0,0,0,0,0,3] |\n", + "| [6,0,1,0,14,0,76,0,314251,0,32,0,416492,0,0,0,0,0,0,75] |\n", + "| [5,0,0,0,9,0,71,0,314313,0,37,0,416496,0,0,0,0,0,0,16] |\n", + "| [5,0,0,0,9,0,71,0,314313,0,37,0,416496,0,0,0,0,0,0,16] |\n", + "+---------------------------------------------------------+\n", + "\n", + "+-------------------------------------------------+\n", + "| histograms.raw_qual_hists.gq_hist_all.n_smaller |\n", + "+-------------------------------------------------+\n", + "| int64 |\n", + "+-------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+-------------------------------------------------+\n", + "\n", + "+------------------------------------------------+\n", + "| histograms.raw_qual_hists.gq_hist_all.n_larger |\n", + "+------------------------------------------------+\n", + "| int64 |\n", + "+------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.raw_qual_hists.dp_hist_all.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.raw_qual_hists.dp_hist_all.bin_freq |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0,7,98,380,11345,107362,344923,189028,36319,5607,2388,2759,3074,2931,295... |\n", + "| [0,7,98,380,11345,107362,344923,189028,36319,5607,2388,2759,3074,2931,295... |\n", + "| [0,2,67,335,11310,107353,344982,189073,36327,5607,2387,2756,3080,2935,295... |\n", + "| [0,1,62,330,11305,107356,345020,189098,36329,5607,2382,2757,3074,2931,295... |\n", + "| [0,1,62,330,11305,107356,345020,189098,36329,5607,2382,2757,3074,2931,295... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+-------------------------------------------------+\n", + "| histograms.raw_qual_hists.dp_hist_all.n_smaller |\n", + "+-------------------------------------------------+\n", + "| int64 |\n", + "+-------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+-------------------------------------------------+\n", + "\n", + "+------------------------------------------------+\n", + "| histograms.raw_qual_hists.dp_hist_all.n_larger |\n", + "+------------------------------------------------+\n", + "| int64 |\n", + "+------------------------------------------------+\n", + "| 7715 |\n", + "| 7715 |\n", + "| 7717 |\n", + "| 7685 |\n", + "| 7685 |\n", + "+------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.raw_qual_hists.gq_hist_alt.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+------------------------------------------------+\n", + "| histograms.raw_qual_hists.gq_hist_alt.bin_freq |\n", + "+------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------+\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,75] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,15] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1] |\n", + "+------------------------------------------------+\n", + "\n", + "+-------------------------------------------------+\n", + "| histograms.raw_qual_hists.gq_hist_alt.n_smaller |\n", + "+-------------------------------------------------+\n", + "| int64 |\n", + "+-------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+-------------------------------------------------+\n", + "\n", + "+------------------------------------------------+\n", + "| histograms.raw_qual_hists.gq_hist_alt.n_larger |\n", + "+------------------------------------------------+\n", + "| int64 |\n", + "+------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.raw_qual_hists.dp_hist_alt.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+------------------------------------------------+\n", + "| histograms.raw_qual_hists.dp_hist_alt.bin_freq |\n", + "+------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------+\n", + "| [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,1,2,3,4,7,3,7,5,1,4,1,3,0,2] |\n", + "| [0,0,0,0,0,0,0,1,3,1,2,3,1,0,1,0,1,1,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0] |\n", + "+------------------------------------------------+\n", + "\n", + "+-------------------------------------------------+\n", + "| histograms.raw_qual_hists.dp_hist_alt.n_smaller |\n", + "+-------------------------------------------------+\n", + "| int64 |\n", + "+-------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+-------------------------------------------------+\n", + "\n", + "+------------------------------------------------+\n", + "| histograms.raw_qual_hists.dp_hist_alt.n_larger |\n", + "+------------------------------------------------+\n", + "| int64 |\n", + "+------------------------------------------------+\n", + "| 1 |\n", + "| 0 |\n", + "| 32 |\n", + "| 1 |\n", + "| 0 |\n", + "+------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.raw_qual_hists.ab_hist_alt.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+------------------------------------------------+\n", + "| histograms.raw_qual_hists.ab_hist_alt.bin_freq |\n", + "+------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------+\n", + "| [0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,1,1,6,12,25,24,5,1,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,1,0,0,1,1,11,1,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "+------------------------------------------------+\n", + "\n", + "+-------------------------------------------------+\n", + "| histograms.raw_qual_hists.ab_hist_alt.n_smaller |\n", + "+-------------------------------------------------+\n", + "| int64 |\n", + "+-------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+-------------------------------------------------+\n", + "\n", + "+------------------------------------------------+\n", + "| histograms.raw_qual_hists.ab_hist_alt.n_larger |\n", + "+------------------------------------------------+\n", + "| int64 |\n", + "+------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.age_hists.age_hist_het.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.age_hists.age_hist_het.bin_freq |\n", + "+--------------------------------------------+\n", + "| array |\n", + "+--------------------------------------------+\n", + "| [0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,1,0,0,0,0,0] |\n", + "| [1,0,0,2,3,3,8,4,0,0] |\n", + "| [0,0,1,2,4,2,4,1,0,0] |\n", + "| [0,0,0,0,0,1,0,0,0,0] |\n", + "+--------------------------------------------+\n", + "\n", + "+---------------------------------------------+\n", + "| histograms.age_hists.age_hist_het.n_smaller |\n", + "+---------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------+\n", + "| 1 |\n", + "| 0 |\n", + "| 3 |\n", + "| 0 |\n", + "| 0 |\n", + "+---------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.age_hists.age_hist_het.n_larger |\n", + "+--------------------------------------------+\n", + "| int64 |\n", + "+--------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 1 |\n", + "| 0 |\n", + "| 0 |\n", + "+--------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.age_hists.age_hist_hom.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.age_hists.age_hist_hom.bin_freq |\n", + "+--------------------------------------------+\n", + "| array |\n", + "+--------------------------------------------+\n", + "| [0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0] |\n", + "+--------------------------------------------+\n", + "\n", + "+---------------------------------------------+\n", + "| histograms.age_hists.age_hist_hom.n_smaller |\n", + "+---------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+---------------------------------------------+\n", + "\n", + "+--------------------------------------------+---------------------------------+\n", + "| histograms.age_hists.age_hist_hom.n_larger | in_silico_predictors.cadd.phred |\n", + "+--------------------------------------------+---------------------------------+\n", + "| int64 | float32 |\n", + "+--------------------------------------------+---------------------------------+\n", + "| 0 | 2.77e+01 |\n", + "| 0 | 2.75e+01 |\n", + "| 0 | 2.28e+01 |\n", + "| 0 | 3.44e+00 |\n", + "| 0 | 2.96e+00 |\n", + "+--------------------------------------------+---------------------------------+\n", + "\n", + "+-------------------------------------+--------------------------------+\n", + "| in_silico_predictors.cadd.raw_score | in_silico_predictors.revel_max |\n", + "+-------------------------------------+--------------------------------+\n", + "| float32 | float64 |\n", + "+-------------------------------------+--------------------------------+\n", + "| 4.10e+00 | 6.02e-01 |\n", + "| 4.07e+00 | 7.19e-01 |\n", + "| 2.69e+00 | 2.67e-01 |\n", + "| 2.28e-01 | NA |\n", + "| 1.86e-01 | NA |\n", + "+-------------------------------------+--------------------------------+\n", + "\n", + "+--------------------------------------+\n", + "| in_silico_predictors.spliceai_ds_max |\n", + "+--------------------------------------+\n", + "| float32 |\n", + "+--------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+--------------------------------------+\n", + "\n", + "+------------------------------------------+-----------------------------+\n", + "| in_silico_predictors.pangolin_largest_ds | in_silico_predictors.phylop |\n", + "+------------------------------------------+-----------------------------+\n", + "| float64 | float64 |\n", + "+------------------------------------------+-----------------------------+\n", + "| 0.00e+00 | 8.78e+00 |\n", + "| 2.00e-02 | 8.78e+00 |\n", + "| 1.00e-02 | 8.67e+00 |\n", + "| 1.00e-02 | -2.55e-01 |\n", + "| 3.00e-02 | -2.55e-01 |\n", + "+------------------------------------------+-----------------------------+\n", + "\n", + "+-------------------------------+-----------------------------------+\n", + "| in_silico_predictors.sift_max | in_silico_predictors.polyphen_max |\n", + "+-------------------------------+-----------------------------------+\n", + "| float64 | float64 |\n", + "+-------------------------------+-----------------------------------+\n", + "| 0.00e+00 | 9.89e-01 |\n", + "| 0.00e+00 | 9.89e-01 |\n", + "| 1.30e-01 | 1.18e-01 |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "+-------------------------------+-----------------------------------+\n", + "showing top 5 rows" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The total number of lof, missense, and synonymous variants passing filters in DRD2 is: 664\n" + ] + } + ], "source": [ "var_ht = filter_by_consequence_category(\n", " plof=True, \n", @@ -555,10 +1620,1067 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 6, "id": "9887fdb0", "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
histograms
grpmax
fafmax
info
qual_hists
raw_qual_hists
age_hists
in_silico_predictors
gnomad
non_ukb
gnomad
non_ukb
vrs
vep
vqsr_results
region_flags
allele_info
gq_hist_all
dp_hist_all
gq_hist_alt
dp_hist_alt
ab_hist_alt
gq_hist_all
dp_hist_all
gq_hist_alt
dp_hist_alt
ab_hist_alt
age_hist_het
age_hist_hom
cadd
locus
alleles
freq
AC
AF
AN
homozygote_count
gen_anc
AC
AF
AN
homozygote_count
gen_anc
faf
faf95_max
faf95_max_gen_anc
faf99_max
faf99_max_gen_anc
faf95_max
faf95_max_gen_anc
faf99_max
faf99_max_gen_anc
a_index
was_split
rsid
filters
FS
MQ
MQRankSum
QUALapprox
QD
ReadPosRankSum
SB
SOR
VarDP
AS_FS
AS_MQ
AS_MQRankSum
AS_pab_max
AS_QUALapprox
AS_QD
AS_ReadPosRankSum
AS_SB_TABLE
AS_SOR
AS_VarDP
singleton
transmitted_singleton
sibling_singleton
omni
mills
monoallelic
only_het
AS_VQSLOD
inbreeding_coeff
VRS_Allele_IDs
VRS_Starts
VRS_Ends
VRS_States
allele_string
end
id
input
intergenic_consequences
most_severe_consequence
motif_feature_consequences
regulatory_feature_consequences
seq_region_name
start
strand
transcript_consequences
variant_class
AS_VQSLOD
AS_culprit
positive_train_site
negative_train_site
non_par
lcr
segdup
fail_interval_qc
outside_ukb_capture_region
outside_broad_capture_region
variant_type
n_alt_alleles
has_star
allele_type
was_mixed
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
phred
raw_score
revel_max
spliceai_ds_max
pangolin_largest_ds
phylop
sift_max
polyphen_max
locus<GRCh38>array<str>array<struct{AC: int32, AF: float64, AN: int32, homozygote_count: int64}>int32float64int32int64strint32float64int32int64strarray<struct{faf95: float64, faf99: float64}>float64strfloat64strfloat64strfloat64strint32boolset<str>set<str>float64float64float64int64float64float64array<int32>float64int32float64float64float64float64int64float64float64array<int32>float64int32boolboolboolboolboolboolboolfloat64float64array<str>array<int32>array<int32>array<str>strint32strstrarray<struct{allele_num: int32, consequence_terms: array<str>, impact: str, variant_allele: str}>strarray<struct{allele_num: int32, consequence_terms: array<str>, high_inf_pos: str, impact: str, motif_feature_id: str, motif_name: str, motif_pos: int32, motif_score_change: float64, transcription_factors: array<str>, strand: int32, variant_allele: str}>array<struct{allele_num: int32, biotype: str, consequence_terms: array<str>, impact: str, regulatory_feature_id: str, variant_allele: str}>strint32int32array<struct{allele_num: int32, amino_acids: str, appris: str, biotype: str, canonical: int32, ccds: str, cdna_start: int32, cdna_end: int32, cds_end: int32, cds_start: int32, codons: str, consequence_terms: array<str>, distance: int32, domains: array<struct{db: str, name: str}>, exon: str, flags: str, gene_id: str, gene_pheno: int32, gene_symbol: str, gene_symbol_source: str, hgnc_id: str, hgvsc: str, hgvsp: str, hgvs_offset: int32, impact: str, intron: str, lof: str, lof_flags: str, lof_filter: str, lof_info: str, mane_select: str, mane_plus_clinical: str, mirna: array<str>, protein_end: int32, protein_start: int32, protein_id: str, source: str, strand: int32, transcript_id: str, tsl: int32, uniprot_isoform: array<str>, variant_allele: str}>strfloat64strboolboolboolboolboolboolboolboolstrint32boolstrboolarray<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64float32float32float64float32float64float64float64float64
chr11:113412554["A","G"][(1,6.85e-07,1459578,0),(1,6.84e-07,1461894,0),(0,0.00e+00,33480,0),(0,0.00e+00,44724,0),(0,0.00e+00,26134,0),(0,0.00e+00,39700,0),(0,0.00e+00,51134,0),(0,0.00e+00,5768,0),(1,8.99e-07,1111998,0),(0,0.00e+00,60388,0),(0,0.00e+00,86252,0),(0,0.00e+00,733478,0),(1,1.38e-06,726100,0),(0,0.00e+00,19326,0),(0,0.00e+00,14154,0),(0,0.00e+00,25690,0),(0,0.00e+00,19034,0),(0,0.00e+00,12634,0),(0,0.00e+00,13500,0),(0,0.00e+00,20712,0),(0,0.00e+00,18988,0),(0,0.00e+00,26490,0),(0,0.00e+00,24644,0),(0,0.00e+00,2506,0),(0,0.00e+00,3262,0),(0,0.00e+00,572284,0),(1,1.85e-06,539714,0),(0,0.00e+00,31796,0),(0,0.00e+00,28592,0),(0,0.00e+00,22040,0),(0,0.00e+00,64212,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,190,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,960,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,1922,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,1998,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,3834,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,3996,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5538,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5760,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,9998,0),(0,0.00e+00,10000,0),(0,0.00e+00,9574,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,9982,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,19998,0),(0,0.00e+00,20000,0),(0,0.00e+00,19154,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,19966,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26134,0),(0,0.00e+00,26136,0),(0,0.00e+00,25036,0),(0,0.00e+00,26136,0),(0,0.00e+00,26132,0),(0,0.00e+00,26136,0),(0,0.00e+00,26098,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,32040,0),(0,0.00e+00,33480,0),(0,0.00e+00,33474,0),(0,0.00e+00,33478,0),(0,0.00e+00,33428,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,37978,0),(0,0.00e+00,39700,0),(0,0.00e+00,39694,0),(0,0.00e+00,39698,0),(0,0.00e+00,39640,0),(0,0.00e+00,40000,0),(0,0.00e+00,38262,0),(0,0.00e+00,40000,0),(0,0.00e+00,39994,0),(0,0.00e+00,39998,0),(0,0.00e+00,39938,0),(0,0.00e+00,44724,0),(0,0.00e+00,42798,0),(0,0.00e+00,44724,0),(0,0.00e+00,44718,0),(0,0.00e+00,44722,0),(0,0.00e+00,44658,0),(0,0.00e+00,51134,0),(0,0.00e+00,53420,0),(0,0.00e+00,53414,0),(0,0.00e+00,53418,0),(0,0.00e+00,53342,0),(0,0.00e+00,60396,0),(0,0.00e+00,60388,0),(0,0.00e+00,60394,0),(0,0.00e+00,60304,0),(0,0.00e+00,86256,0),(0,0.00e+00,86252,0),(0,0.00e+00,86122,0),(0,0.00e+00,99998,0),(0,0.00e+00,99850,0),(0,0.00e+00,199996,0),(0,0.00e+00,199686,0),(1,2.50e-06,399992,0),(1,2.50e-06,399366,0),(1,1.00e-06,999986,0),(1,1.00e-06,998406,0),(1,8.99e-07,1111998,0),(1,9.01e-07,1110224,0),(0,0.00e+00,626468,0),(0,0.00e+00,628784,0),(0,0.00e+00,17694,0),(0,0.00e+00,43740,0),(0,0.00e+00,20982,0),(0,0.00e+00,36070,0),(0,0.00e+00,50858,0),(0,0.00e+00,4148,0),(0,0.00e+00,350094,0),(0,0.00e+00,33090,0),(0,0.00e+00,69792,0),(0,0.00e+00,285082,0),(0,0.00e+00,341386,0),(0,0.00e+00,10286,0),(0,0.00e+00,7408,0),(0,0.00e+00,25040,0),(0,0.00e+00,18700,0),(0,0.00e+00,9836,0),(0,0.00e+00,11146,0),(0,0.00e+00,18298,0),(0,0.00e+00,17772,0),(0,0.00e+00,26240,0),(0,0.00e+00,24618,0),(0,0.00e+00,1916,0),(0,0.00e+00,2232,0),(0,0.00e+00,162216,0),(0,0.00e+00,187878,0),(0,0.00e+00,16748,0),(0,0.00e+00,16342,0),(0,0.00e+00,14502,0),(0,0.00e+00,55290,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,190,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,960,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,998,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,1922,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,1996,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,3834,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,3982,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,3980,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4130,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,9998,0),(0,0.00e+00,10000,0),(0,0.00e+00,9572,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,9964,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17692,0),(0,0.00e+00,17694,0),(0,0.00e+00,16946,0),(0,0.00e+00,17694,0),(0,0.00e+00,17690,0),(0,0.00e+00,17694,0),(0,0.00e+00,17632,0),(0,0.00e+00,20000,0),(0,0.00e+00,19998,0),(0,0.00e+00,20000,0),(0,0.00e+00,19150,0),(0,0.00e+00,20000,0),(0,0.00e+00,19994,0),(0,0.00e+00,20000,0),(0,0.00e+00,19932,0),(0,0.00e+00,20984,0),(0,0.00e+00,20982,0),(0,0.00e+00,20984,0),(0,0.00e+00,20096,0),(0,0.00e+00,20984,0),(0,0.00e+00,20978,0),(0,0.00e+00,20984,0),(0,0.00e+00,20912,0),(0,0.00e+00,33098,0),(0,0.00e+00,33098,0),(0,0.00e+00,31670,0),(0,0.00e+00,33096,0),(0,0.00e+00,33090,0),(0,0.00e+00,33096,0),(0,0.00e+00,32976,0),(0,0.00e+00,36070,0),(0,0.00e+00,36070,0),(0,0.00e+00,34514,0),(0,0.00e+00,36068,0),(0,0.00e+00,36068,0),(0,0.00e+00,35934,0),(0,0.00e+00,40000,0),(0,0.00e+00,38256,0),(0,0.00e+00,39998,0),(0,0.00e+00,39998,0),(0,0.00e+00,39856,0),(0,0.00e+00,43740,0),(0,0.00e+00,41848,0),(0,0.00e+00,43738,0),(0,0.00e+00,43738,0),(0,0.00e+00,43588,0),(0,0.00e+00,50858,0),(0,0.00e+00,53140,0),(0,0.00e+00,53140,0),(0,0.00e+00,52962,0),(0,0.00e+00,69794,0),(0,0.00e+00,69792,0),(0,0.00e+00,69552,0),(0,0.00e+00,99992,0),(0,0.00e+00,99626,0),(0,0.00e+00,199992,0),(0,0.00e+00,199284,0),(0,0.00e+00,350094,0),(0,0.00e+00,348812,0),(0,0.00e+00,398508,0)]18.99e-0711119980"nfe"NANANANANA[(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]NANANANANANANANA2TrueNA{}2.83e+006.00e+010.00e+0014981.05e+01-5.05e-01[63,17,52,10]1.04e+001421.10e+006.00e+010.00e+001.00e+006611.35e+01-1.83e+00[63,17,21,4]9.29e-0149TrueFalseFalseFalseFalseFalseFalse5.30e+00-6.84e-07["ga4gh:VA.mqU9WPvGr3hduyybbeN-AKJ1zN-kclsI","ga4gh:VA.uvlicmv1vZnrBBqm0UQRPcFaAOXA34EK"][113412553,113412553][113412554,113412554]["A","G"]"A/G"113412554".""chr11\t113412554\t.\tA\tG\t.\t.\tGT"NA"splice_donor_variant"NANA"chr11"1134125541[(1,NA,NA,"protein_coding",NA,"CCDS8362.1",NA,NA,NA,NA,NA,["splice_donor_variant"],NA,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000346454.7:c.1051+2T>C",NA,NA,"HIGH","6/6","HC",NA,NA,"INTRON_SIZE:1635",NA,NA,NA,NA,NA,"ENSP00000278597","Ensembl",-1,"ENST00000346454",1,["P14416-2"],"G"),(1,NA,"P2","protein_coding",1,"CCDS8361.1",NA,NA,NA,NA,NA,["splice_donor_variant"],NA,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000362072.8:c.1138+2T>C",NA,NA,"HIGH","7/7","HC",NA,NA,"INTRON_SIZE:1635","NM_000795.4",NA,NA,NA,NA,"ENSP00000354859","Ensembl",-1,"ENST00000362072",1,["P14416-1"],"G"),(1,NA,NA,"processed_transcript",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],1821,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000535984",3,NA,"G"),(1,NA,"A1","protein_coding",NA,NA,NA,NA,NA,NA,NA,["splice_donor_variant"],NA,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000538967.5:c.1144+2T>C",NA,NA,"HIGH","7/7","HC",NA,NA,"INTRON_SIZE:1635",NA,NA,NA,NA,NA,"ENSP00000438215","Ensembl",-1,"ENST00000538967",5,["P14416-3"],"G"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],2740,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000539420",3,NA,"G"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],1310,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000540600",1,NA,"G"),(1,NA,"P2","protein_coding",NA,"CCDS8361.1",NA,NA,NA,NA,NA,["splice_donor_variant"],NA,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000542968.5:c.1138+2T>C",NA,NA,"HIGH","6/6","HC",NA,NA,"INTRON_SIZE:1635",NA,NA,NA,NA,NA,"ENSP00000442172","Ensembl",-1,"ENST00000542968",1,["P14416-1"],"G"),(1,NA,NA,"protein_coding",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],4309,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"ENSP00000438419","Ensembl",-1,"ENST00000543292",5,NA,"G"),(1,NA,"A1","protein_coding",NA,NA,NA,NA,NA,NA,NA,["splice_donor_variant"],NA,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000544518.5:c.1135+2T>C",NA,NA,"HIGH","6/6","HC",NA,NA,"INTRON_SIZE:1635",NA,NA,NA,NA,NA,"ENSP00000441068","Ensembl",-1,"ENST00000544518",1,NA,"G"),(1,NA,NA,"lncRNA",1,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],437,NA,NA,NA,"ENSG00000256757",NA,NA,NA,NA,NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",1,"ENST00000546284",3,NA,"G"),(1,NA,NA,"protein_coding",1,NA,NA,NA,NA,NA,NA,["splice_donor_variant"],NA,NA,NA,NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_000795.4:c.1138+2T>C",NA,NA,"HIGH","7/7","HC",NA,NA,"INTRON_SIZE:1635","ENST00000362072.8",NA,NA,NA,NA,"NP_000786.1","RefSeq",-1,"NM_000795.4",NA,NA,"G"),(1,NA,NA,"protein_coding",NA,NA,NA,NA,NA,NA,NA,["splice_donor_variant"],NA,NA,NA,NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_016574.4:c.1051+2T>C",NA,NA,"HIGH","6/6","HC",NA,NA,"INTRON_SIZE:1635",NA,NA,NA,NA,NA,"NP_057658.2","RefSeq",-1,"NM_016574.4",NA,NA,"G"),(1,NA,NA,"protein_coding",NA,NA,NA,NA,NA,NA,NA,["splice_donor_variant"],NA,NA,NA,NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","XM_017017296.2:c.1138+2T>C",NA,NA,"HIGH","7/7","HC",NA,NA,"INTRON_SIZE:1635",NA,NA,NA,NA,NA,"XP_016872785.1","RefSeq",-1,"XM_017017296.2",NA,NA,"G")]"SNV"5.30e+00"AS_MQ"FalseFalseFalseFalseFalseTrueTrueFalse"multi-snv"3False"snv"False[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,134,0,1469,0,311660,0,82,0,416443,0,0,0,0,0,0,1]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,1555,817,16216,229270,272936,45138,9370,3566,3616,4059,4521,5017,5495,5830,5759,5296,4555,4636]0102137[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][441,0,0,0,850,1,1469,0,311660,0,82,0,416443,0,0,0,0,0,0,1]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][244,858,1593,833,16218,229270,272936,45138,9370,3566,3616,4059,4521,5017,5495,5830,5759,5296,4555,4636]0102137[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,1,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]003.40e+015.66e+00NA9.60e-01-8.30e-016.33e+00NANA
chr11:113412612["CT","C"][(2,1.37e-06,1461892,0),(2,1.37e-06,1461894,0),(0,0.00e+00,33480,0),(0,0.00e+00,44724,0),(0,0.00e+00,26136,0),(0,0.00e+00,39700,0),(0,0.00e+00,53420,0),(0,0.00e+00,5768,0),(2,1.80e-06,1112010,0),(0,0.00e+00,60396,0),(0,0.00e+00,86258,0),(0,0.00e+00,734646,0),(2,2.75e-06,727246,0),(0,0.00e+00,19326,0),(0,0.00e+00,14154,0),(0,0.00e+00,25690,0),(0,0.00e+00,19034,0),(0,0.00e+00,12636,0),(0,0.00e+00,13500,0),(0,0.00e+00,20712,0),(0,0.00e+00,18988,0),(0,0.00e+00,27648,0),(0,0.00e+00,25772,0),(0,0.00e+00,2506,0),(0,0.00e+00,3262,0),(0,0.00e+00,572288,0),(2,3.71e-06,539722,0),(0,0.00e+00,31800,0),(0,0.00e+00,28596,0),(0,0.00e+00,22040,0),(0,0.00e+00,64218,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,44724,0),(0,0.00e+00,44724,0),(0,0.00e+00,44724,0),(0,0.00e+00,44724,0),(0,0.00e+00,44724,0),(0,0.00e+00,44724,0),(0,0.00e+00,53420,0),(0,0.00e+00,53420,0),(0,0.00e+00,53420,0),(0,0.00e+00,53420,0),(0,0.00e+00,53420,0),(0,0.00e+00,60396,0),(0,0.00e+00,60396,0),(0,0.00e+00,60396,0),(0,0.00e+00,60396,0),(0,0.00e+00,86258,0),(0,0.00e+00,86258,0),(0,0.00e+00,86258,0),(0,0.00e+00,100000,0),(0,0.00e+00,100000,0),(0,0.00e+00,200000,0),(0,0.00e+00,200000,0),(1,2.50e-06,400000,0),(1,2.50e-06,400000,0),(2,2.00e-06,999998,0),(2,2.00e-06,1000000,0),(2,1.80e-06,1112010,0),(2,1.80e-06,1112010,0),(2,3.18e-06,628782,0),(2,3.18e-06,628784,0),(0,0.00e+00,17694,0),(0,0.00e+00,43740,0),(0,0.00e+00,20984,0),(0,0.00e+00,36070,0),(0,0.00e+00,53144,0),(0,0.00e+00,4148,0),(2,5.71e-06,350106,0),(0,0.00e+00,33098,0),(0,0.00e+00,69798,0),(0,0.00e+00,286250,0),(2,5.84e-06,342532,0),(0,0.00e+00,10286,0),(0,0.00e+00,7408,0),(0,0.00e+00,25040,0),(0,0.00e+00,18700,0),(0,0.00e+00,9838,0),(0,0.00e+00,11146,0),(0,0.00e+00,18298,0),(0,0.00e+00,17772,0),(0,0.00e+00,27398,0),(0,0.00e+00,25746,0),(0,0.00e+00,1916,0),(0,0.00e+00,2232,0),(0,0.00e+00,162220,0),(2,1.06e-05,187886,0),(0,0.00e+00,16752,0),(0,0.00e+00,16346,0),(0,0.00e+00,14502,0),(0,0.00e+00,55296,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,33098,0),(0,0.00e+00,33098,0),(0,0.00e+00,33098,0),(0,0.00e+00,33098,0),(0,0.00e+00,33098,0),(0,0.00e+00,33098,0),(0,0.00e+00,33098,0),(0,0.00e+00,36070,0),(0,0.00e+00,36070,0),(0,0.00e+00,36070,0),(0,0.00e+00,36070,0),(0,0.00e+00,36070,0),(0,0.00e+00,36070,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,43740,0),(0,0.00e+00,43740,0),(0,0.00e+00,43740,0),(0,0.00e+00,43740,0),(0,0.00e+00,43740,0),(0,0.00e+00,53144,0),(0,0.00e+00,53144,0),(0,0.00e+00,53144,0),(0,0.00e+00,53144,0),(0,0.00e+00,69798,0),(0,0.00e+00,69798,0),(0,0.00e+00,69798,0),(1,1.00e-05,100000,0),(0,0.00e+00,100000,0),(2,1.00e-05,200000,0),(1,5.00e-06,200000,0),(2,5.71e-06,350106,0),(2,5.71e-06,350108,0),(2,5.00e-06,400000,0)]21.80e-0611120100"nfe"25.71e-063501060"nfe"[(2.30e-07,9.00e-08),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(3.00e-07,1.10e-07),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,(5.30e-07,2.00e-07),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(9.50e-07,3.60e-07),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]3.00e-07"nfe"1.10e-07"nfe"9.50e-07"nfe"3.60e-07"nfe"1FalseNA{}5.48e-016.00e+010.00e+0034581.79e+014.32e-01[65,38,58,32]7.50e-011935.48e-016.00e+010.00e+005.90e-0134581.79e+014.32e-01[65,38,58,32]7.50e-01193FalseNANAFalseFalseFalseFalse4.25e+00-1.37e-06["ga4gh:VA.NztLKtEJA7H0h_Tz31YRmTUR4hT2PNxO","ga4gh:VA.5xtydtW8O1beQhV-1c1hQnrSyzR36wKG"][113412611,113412612][113412613,113412613]["CT",""]"T/-"113412613".""chr11\t113412612\t.\tCT\tC\t.\t.\tGT"NA"frameshift_variant"NANA"chr11"1134126131[(1,"R/X",NA,"protein_coding",NA,"CCDS8362.1",1070,1070,994,994,"Agg/gg",["frameshift_variant"],NA,[("Gene3D","1"),("Pfam","PF00001"),("PROSITE_profiles","PS50262"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321"),("CDD","cd15309")],"6/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000346454.7:c.994del","ENSP00000278597.5:p.Arg332GlyfsTer35",NA,"HIGH",NA,"HC",NA,NA,"PERCENTILE:0.798393574297189,GERP_DIST:524.888328552246,BP_DIST:250,DIST_FROM_LAST_EXON:57,50_BP_RULE:PASS,ANN_ORF:1830.61,MAX_ORF:1830.61",NA,NA,NA,332,332,"ENSP00000278597","Ensembl",-1,"ENST00000346454",1,["P14416-2"],"-"),(1,"R/X","P2","protein_coding",1,"CCDS8361.1",1435,1435,1081,1081,"Agg/gg",["frameshift_variant"],NA,[("Gene3D","1"),("ENSP_mappings","6vms"),("ENSP_mappings","7jvr"),("Pfam","PF00001"),("PROSITE_profiles","PS50262"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321"),("CDD","cd15309")],"7/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000362072.8:c.1081del","ENSP00000354859.3:p.Arg361GlyfsTer35",NA,"HIGH",NA,"HC",NA,NA,"PERCENTILE:0.811561561561562,GERP_DIST:524.888328552246,BP_DIST:250,DIST_FROM_LAST_EXON:57,50_BP_RULE:PASS,ANN_ORF:1830.61,MAX_ORF:1830.61","NM_000795.4",NA,NA,361,361,"ENSP00000354859","Ensembl",-1,"ENST00000362072",1,["P14416-1"],"-"),(1,NA,NA,"processed_transcript",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],1762,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000535984",3,NA,"-"),(1,"R/X","A1","protein_coding",NA,NA,1087,1087,1087,1087,"Agg/gg",["frameshift_variant"],NA,[("Gene3D","1"),("Pfam","PF00001"),("PROSITE_profiles","PS50262"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321"),("CDD","cd15309")],"7/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000538967.5:c.1087del","ENSP00000438215.1:p.Arg363GlyfsTer35",NA,"HIGH",NA,"HC",NA,NA,"PERCENTILE:0.812406576980568,GERP_DIST:524.888328552246,BP_DIST:250,DIST_FROM_LAST_EXON:57,50_BP_RULE:PASS,ANN_ORF:1830.61,MAX_ORF:1830.61",NA,NA,NA,363,363,"ENSP00000438215","Ensembl",-1,"ENST00000538967",5,["P14416-3"],"-"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],2681,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000539420",3,NA,"-"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],1251,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000540600",1,NA,"-"),(1,"R/X","P2","protein_coding",NA,"CCDS8361.1",1402,1402,1081,1081,"Agg/gg",["frameshift_variant"],NA,[("Gene3D","1"),("ENSP_mappings","6vms"),("ENSP_mappings","7jvr"),("Pfam","PF00001"),("PROSITE_profiles","PS50262"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321"),("CDD","cd15309")],"6/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000542968.5:c.1081del","ENSP00000442172.1:p.Arg361GlyfsTer35",NA,"HIGH",NA,"HC",NA,NA,"PERCENTILE:0.811561561561562,GERP_DIST:524.888328552246,BP_DIST:250,DIST_FROM_LAST_EXON:57,50_BP_RULE:PASS,ANN_ORF:1830.61,MAX_ORF:1830.61",NA,NA,NA,361,361,"ENSP00000442172","Ensembl",-1,"ENST00000542968",1,["P14416-1"],"-"),(1,NA,NA,"protein_coding",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],4250,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"ENSP00000438419","Ensembl",-1,"ENST00000543292",5,NA,"-"),(1,"R/X","A1","protein_coding",NA,NA,1111,1111,1078,1078,"Agg/gg",["frameshift_variant"],NA,[("Gene3D","1"),("Pfam","PF00001"),("PROSITE_profiles","PS50262"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321"),("CDD","cd15309")],"6/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000544518.5:c.1078del","ENSP00000441068.1:p.Arg360GlyfsTer35",NA,"HIGH",NA,"HC",NA,NA,"PERCENTILE:0.811136192626035,GERP_DIST:524.888328552246,BP_DIST:250,DIST_FROM_LAST_EXON:57,50_BP_RULE:PASS,ANN_ORF:1830.61,MAX_ORF:1830.61",NA,NA,NA,360,360,"ENSP00000441068","Ensembl",-1,"ENST00000544518",1,NA,"-"),(1,NA,NA,"lncRNA",1,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],496,NA,NA,NA,"ENSG00000256757",NA,NA,NA,NA,NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",1,"ENST00000546284",3,NA,"-"),(1,"R/X",NA,"protein_coding",1,NA,1435,1435,1081,1081,"Agg/gg",["frameshift_variant"],NA,NA,"7/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_000795.4:c.1081del","NP_000786.1:p.Arg361GlyfsTer35",NA,"HIGH",NA,"HC",NA,NA,"PERCENTILE:0.811561561561562,GERP_DIST:524.888328552246,BP_DIST:250,DIST_FROM_LAST_EXON:57,50_BP_RULE:PASS,PHYLOCSF_TOO_SHORT","ENST00000362072.8",NA,NA,361,361,"NP_000786.1","RefSeq",-1,"NM_000795.4",NA,NA,"-"),(1,"R/X",NA,"protein_coding",NA,NA,1348,1348,994,994,"Agg/gg",["frameshift_variant"],NA,NA,"6/7",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_016574.4:c.994del","NP_057658.2:p.Arg332GlyfsTer35",NA,"HIGH",NA,"HC",NA,NA,"PERCENTILE:0.798393574297189,GERP_DIST:524.888328552246,BP_DIST:250,DIST_FROM_LAST_EXON:57,50_BP_RULE:PASS,PHYLOCSF_TOO_SHORT",NA,NA,NA,332,332,"NP_057658.2","RefSeq",-1,"NM_016574.4",NA,NA,"-"),(1,"R/X",NA,"protein_coding",NA,NA,1163,1163,1081,1081,"Agg/gg",["frameshift_variant"],NA,NA,"7/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","XM_017017296.2:c.1081del","XP_016872785.1:p.Arg361GlyfsTer35",NA,"HIGH",NA,"HC",NA,NA,"PERCENTILE:0.811561561561562,GERP_DIST:524.888328552246,BP_DIST:250,DIST_FROM_LAST_EXON:57,50_BP_RULE:PASS,PHYLOCSF_TOO_SHORT",NA,NA,NA,361,361,"XP_016872785.1","RefSeq",-1,"XM_017017296.2",NA,NA,"-")]"deletion"4.25e+00"AS_ReadPosRankSum"FalseFalseFalseFalseFalseTrueFalseFalse"indel"1False"del"False[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,1,0,2,0,314386,0,0,0,416555,0,0,0,0,0,0,2]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,1,279,16685,230939,273577,45298,9412,3597,3653,4094,4550,5033,5504,5845,5771,5311,4561,4649]0102187[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0]01[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][1,0,0,0,1,0,2,0,314386,0,0,0,416555,0,0,0,0,0,0,2]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,1,279,16685,230939,273577,45298,9412,3597,3653,4094,4550,5034,5504,5845,5771,5311,4561,4649]0102187[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0]01[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]10[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]003.20e+014.56e+00NA0.00e+00-4.00e-028.89e+00NANA
chr11:113412614["ACG","A"][(2,1.37e-06,1461894,0),(2,1.37e-06,1461894,0),(0,0.00e+00,33480,0),(0,0.00e+00,44724,0),(0,0.00e+00,26136,0),(0,0.00e+00,39700,0),(0,0.00e+00,53420,0),(0,0.00e+00,5768,0),(2,1.80e-06,1112012,0),(0,0.00e+00,60396,0),(0,0.00e+00,86258,0),(0,0.00e+00,734646,0),(2,2.75e-06,727248,0),(0,0.00e+00,19326,0),(0,0.00e+00,14154,0),(0,0.00e+00,25690,0),(0,0.00e+00,19034,0),(0,0.00e+00,12636,0),(0,0.00e+00,13500,0),(0,0.00e+00,20712,0),(0,0.00e+00,18988,0),(0,0.00e+00,27648,0),(0,0.00e+00,25772,0),(0,0.00e+00,2506,0),(0,0.00e+00,3262,0),(0,0.00e+00,572288,0),(2,3.71e-06,539724,0),(0,0.00e+00,31800,0),(0,0.00e+00,28596,0),(0,0.00e+00,22040,0),(0,0.00e+00,64218,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,44724,0),(0,0.00e+00,44724,0),(0,0.00e+00,44724,0),(0,0.00e+00,44724,0),(0,0.00e+00,44724,0),(0,0.00e+00,44724,0),(0,0.00e+00,53420,0),(0,0.00e+00,53420,0),(0,0.00e+00,53420,0),(0,0.00e+00,53420,0),(0,0.00e+00,53420,0),(0,0.00e+00,60396,0),(0,0.00e+00,60396,0),(0,0.00e+00,60396,0),(0,0.00e+00,60396,0),(0,0.00e+00,86258,0),(0,0.00e+00,86258,0),(0,0.00e+00,86258,0),(0,0.00e+00,100000,0),(0,0.00e+00,100000,0),(0,0.00e+00,200000,0),(0,0.00e+00,200000,0),(1,2.50e-06,400000,0),(1,2.50e-06,400000,0),(2,2.00e-06,1000000,0),(2,2.00e-06,1000000,0),(2,1.80e-06,1112012,0),(2,1.80e-06,1112012,0),(2,3.18e-06,628784,0),(2,3.18e-06,628784,0),(0,0.00e+00,17694,0),(0,0.00e+00,43740,0),(0,0.00e+00,20984,0),(0,0.00e+00,36070,0),(0,0.00e+00,53144,0),(0,0.00e+00,4148,0),(2,5.71e-06,350108,0),(0,0.00e+00,33098,0),(0,0.00e+00,69798,0),(0,0.00e+00,286250,0),(2,5.84e-06,342534,0),(0,0.00e+00,10286,0),(0,0.00e+00,7408,0),(0,0.00e+00,25040,0),(0,0.00e+00,18700,0),(0,0.00e+00,9838,0),(0,0.00e+00,11146,0),(0,0.00e+00,18298,0),(0,0.00e+00,17772,0),(0,0.00e+00,27398,0),(0,0.00e+00,25746,0),(0,0.00e+00,1916,0),(0,0.00e+00,2232,0),(0,0.00e+00,162220,0),(2,1.06e-05,187888,0),(0,0.00e+00,16752,0),(0,0.00e+00,16346,0),(0,0.00e+00,14502,0),(0,0.00e+00,55296,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,33098,0),(0,0.00e+00,33098,0),(0,0.00e+00,33098,0),(0,0.00e+00,33098,0),(0,0.00e+00,33098,0),(0,0.00e+00,33098,0),(0,0.00e+00,33098,0),(0,0.00e+00,36070,0),(0,0.00e+00,36070,0),(0,0.00e+00,36070,0),(0,0.00e+00,36070,0),(0,0.00e+00,36070,0),(0,0.00e+00,36070,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,43740,0),(0,0.00e+00,43740,0),(0,0.00e+00,43740,0),(0,0.00e+00,43740,0),(0,0.00e+00,43740,0),(0,0.00e+00,53144,0),(0,0.00e+00,53144,0),(0,0.00e+00,53144,0),(0,0.00e+00,53144,0),(0,0.00e+00,69798,0),(0,0.00e+00,69798,0),(0,0.00e+00,69798,0),(1,1.00e-05,100000,0),(0,0.00e+00,100000,0),(2,1.00e-05,200000,0),(1,5.00e-06,200000,0),(2,5.71e-06,350108,0),(2,5.71e-06,350108,0),(2,5.00e-06,400000,0)]21.80e-0611120120"nfe"25.71e-063501080"nfe"[(2.30e-07,9.00e-08),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(3.00e-07,1.10e-07),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,(5.30e-07,2.00e-07),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(9.50e-07,3.60e-07),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]3.00e-07"nfe"1.10e-07"nfe"9.50e-07"nfe"3.60e-07"nfe"1TrueNA{}2.32e+006.00e+010.00e+0053361.56e+014.62e-01[99,81,94,68]8.22e-013428.20e+006.00e+010.00e+006.65e-0134551.80e+014.62e-01[99,81,58,32]1.15e+00192FalseNANAFalseFalseFalseFalse3.61e+00-1.37e-06["ga4gh:VA.Lx5RcGLe0vnqmstRd134JgqaJUNZIzCF","ga4gh:VA.N3JXRaksYTV6CSLvZ_pZrKhYEcHiky2g"][113412613,113412614][113412616,113412616]["ACG",""]"CG/-"113412616".""chr11\t113412614\t.\tACG\tA\t.\t.\tGT"NA"frameshift_variant"NANA"chr11"1134126151[(1,"R/X",NA,"protein_coding",NA,"CCDS8362.1",1067,1068,992,991,"CGt/t",["frameshift_variant"],NA,[("Gene3D","1"),("Pfam","PF00001"),("PROSITE_profiles","PS50262"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321"),("CDD","cd15309")],"6/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000346454.7:c.991_992del","ENSP00000278597.5:p.Arg331Ter",NA,"HIGH",NA,"HC",NA,NA,"PERCENTILE:0.796787148594377,GERP_DIST:522.578328609467,BP_DIST:252,DIST_FROM_LAST_EXON:59,50_BP_RULE:PASS,ANN_ORF:1830.61,MAX_ORF:1830.61",NA,NA,NA,331,331,"ENSP00000278597","Ensembl",-1,"ENST00000346454",1,["P14416-2"],"-"),(1,"R/X","P2","protein_coding",1,"CCDS8361.1",1432,1433,1079,1078,"CGt/t",["frameshift_variant"],NA,[("Gene3D","1"),("ENSP_mappings","6vms"),("ENSP_mappings","7jvr"),("Pfam","PF00001"),("PROSITE_profiles","PS50262"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321"),("CDD","cd15309")],"7/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000362072.8:c.1078_1079del","ENSP00000354859.3:p.Arg360Ter",NA,"HIGH",NA,"HC",NA,NA,"PERCENTILE:0.81006006006006,GERP_DIST:522.578328609467,BP_DIST:252,DIST_FROM_LAST_EXON:59,50_BP_RULE:PASS,ANN_ORF:1830.61,MAX_ORF:1830.61","NM_000795.4",NA,NA,360,360,"ENSP00000354859","Ensembl",-1,"ENST00000362072",1,["P14416-1"],"-"),(1,NA,NA,"processed_transcript",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],1759,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000535984",3,NA,"-"),(1,"R/X","A1","protein_coding",NA,NA,1084,1085,1085,1084,"CGt/t",["frameshift_variant"],NA,[("Gene3D","1"),("Pfam","PF00001"),("PROSITE_profiles","PS50262"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321"),("CDD","cd15309")],"7/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000538967.5:c.1084_1085del","ENSP00000438215.1:p.Arg362Ter",NA,"HIGH",NA,"HC",NA,NA,"PERCENTILE:0.810911808669656,GERP_DIST:522.578328609467,BP_DIST:252,DIST_FROM_LAST_EXON:59,50_BP_RULE:PASS,ANN_ORF:1830.61,MAX_ORF:1830.61",NA,NA,NA,362,362,"ENSP00000438215","Ensembl",-1,"ENST00000538967",5,["P14416-3"],"-"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],2678,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000539420",3,NA,"-"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],1248,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000540600",1,NA,"-"),(1,"R/X","P2","protein_coding",NA,"CCDS8361.1",1399,1400,1079,1078,"CGt/t",["frameshift_variant"],NA,[("Gene3D","1"),("ENSP_mappings","6vms"),("ENSP_mappings","7jvr"),("Pfam","PF00001"),("PROSITE_profiles","PS50262"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321"),("CDD","cd15309")],"6/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000542968.5:c.1078_1079del","ENSP00000442172.1:p.Arg360Ter",NA,"HIGH",NA,"HC",NA,NA,"PERCENTILE:0.81006006006006,GERP_DIST:522.578328609467,BP_DIST:252,DIST_FROM_LAST_EXON:59,50_BP_RULE:PASS,ANN_ORF:1830.61,MAX_ORF:1830.61",NA,NA,NA,360,360,"ENSP00000442172","Ensembl",-1,"ENST00000542968",1,["P14416-1"],"-"),(1,NA,NA,"protein_coding",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],4247,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"ENSP00000438419","Ensembl",-1,"ENST00000543292",5,NA,"-"),(1,"R/X","A1","protein_coding",NA,NA,1108,1109,1076,1075,"CGt/t",["frameshift_variant"],NA,[("Gene3D","1"),("Pfam","PF00001"),("PROSITE_profiles","PS50262"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321"),("CDD","cd15309")],"6/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000544518.5:c.1075_1076del","ENSP00000441068.1:p.Arg359Ter",NA,"HIGH",NA,"HC",NA,NA,"PERCENTILE:0.809631301730624,GERP_DIST:522.578328609467,BP_DIST:252,DIST_FROM_LAST_EXON:59,50_BP_RULE:PASS,ANN_ORF:1830.61,MAX_ORF:1830.61",NA,NA,NA,359,359,"ENSP00000441068","Ensembl",-1,"ENST00000544518",1,NA,"-"),(1,NA,NA,"lncRNA",1,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],498,NA,NA,NA,"ENSG00000256757",NA,NA,NA,NA,NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",1,"ENST00000546284",3,NA,"-"),(1,"R/X",NA,"protein_coding",1,NA,1432,1433,1079,1078,"CGt/t",["frameshift_variant"],NA,NA,"7/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_000795.4:c.1078_1079del","NP_000786.1:p.Arg360Ter",NA,"HIGH",NA,"HC",NA,NA,"PERCENTILE:0.81006006006006,GERP_DIST:522.578328609467,BP_DIST:252,DIST_FROM_LAST_EXON:59,50_BP_RULE:PASS,PHYLOCSF_TOO_SHORT","ENST00000362072.8",NA,NA,360,360,"NP_000786.1","RefSeq",-1,"NM_000795.4",NA,NA,"-"),(1,"R/X",NA,"protein_coding",NA,NA,1345,1346,992,991,"CGt/t",["frameshift_variant"],NA,NA,"6/7",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_016574.4:c.991_992del","NP_057658.2:p.Arg331Ter",NA,"HIGH",NA,"HC",NA,NA,"PERCENTILE:0.796787148594377,GERP_DIST:522.578328609467,BP_DIST:252,DIST_FROM_LAST_EXON:59,50_BP_RULE:PASS,PHYLOCSF_TOO_SHORT",NA,NA,NA,331,331,"NP_057658.2","RefSeq",-1,"NM_016574.4",NA,NA,"-"),(1,"R/X",NA,"protein_coding",NA,NA,1160,1161,1079,1078,"CGt/t",["frameshift_variant"],NA,NA,"7/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","XM_017017296.2:c.1078_1079del","XP_016872785.1:p.Arg360Ter",NA,"HIGH",NA,"HC",NA,NA,"PERCENTILE:0.81006006006006,GERP_DIST:522.578328609467,BP_DIST:252,DIST_FROM_LAST_EXON:59,50_BP_RULE:PASS,PHYLOCSF_TOO_SHORT",NA,NA,NA,360,360,"XP_016872785.1","RefSeq",-1,"XM_017017296.2",NA,NA,"-")]"deletion"3.61e+00"AS_FS"FalseTrueFalseFalseFalseTrueFalseFalse"mixed"3False"del"True[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,1,0,1,0,314388,0,0,0,416555,0,0,0,0,0,0,2]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,278,16685,230938,273578,45300,9412,3597,3653,4094,4550,5033,5504,5845,5771,5311,4561,4649]0102188[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0]01[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,1,0,1,0,314388,0,0,0,416555,0,0,0,0,0,0,2]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,278,16685,230938,273578,45300,9412,3597,3653,4094,4550,5033,5504,5845,5771,5311,4561,4649]0102188[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0]01[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]10[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]003.30e+014.99e+00NA0.00e+00-1.20e-013.00e-01NANA
chr11:113412865["G","A"][(1,6.85e-07,1459642,0),(1,6.84e-07,1461894,0),(0,0.00e+00,33422,0),(0,0.00e+00,44708,0),(0,0.00e+00,26126,0),(0,0.00e+00,39698,0),(0,0.00e+00,52916,0),(0,0.00e+00,4548,0),(1,8.99e-07,1111812,0),(0,0.00e+00,60232,0),(0,0.00e+00,86180,0),(1,1.36e-06,733504,0),(0,0.00e+00,726138,0),(0,0.00e+00,19298,0),(0,0.00e+00,14124,0),(0,0.00e+00,25682,0),(0,0.00e+00,19026,0),(0,0.00e+00,12626,0),(0,0.00e+00,13500,0),(0,0.00e+00,20710,0),(0,0.00e+00,18988,0),(0,0.00e+00,27382,0),(0,0.00e+00,25534,0),(0,0.00e+00,1860,0),(0,0.00e+00,2688,0),(1,1.75e-06,572194,0),(0,0.00e+00,539618,0),(0,0.00e+00,31732,0),(0,0.00e+00,28500,0),(0,0.00e+00,22020,0),(0,0.00e+00,64160,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,16,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,154,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,998,0),(0,0.00e+00,1000,0),(0,0.00e+00,990,0),(0,0.00e+00,802,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1998,0),(0,0.00e+00,1998,0),(0,0.00e+00,1998,0),(0,0.00e+00,2000,0),(0,0.00e+00,1984,0),(0,0.00e+00,1574,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,1998,0),(0,0.00e+00,2000,0),(0,0.00e+00,3996,0),(0,0.00e+00,3996,0),(0,0.00e+00,3998,0),(0,0.00e+00,4000,0),(0,0.00e+00,3954,0),(0,0.00e+00,3138,0),(0,0.00e+00,4000,0),(0,0.00e+00,3998,0),(0,0.00e+00,3994,0),(0,0.00e+00,3998,0),(0,0.00e+00,5760,0),(0,0.00e+00,5762,0),(0,0.00e+00,5766,0),(0,0.00e+00,5766,0),(0,0.00e+00,5706,0),(0,0.00e+00,4548,0),(0,0.00e+00,5768,0),(0,0.00e+00,5760,0),(0,0.00e+00,5762,0),(0,0.00e+00,5766,0),(0,0.00e+00,9978,0),(0,0.00e+00,9994,0),(0,0.00e+00,9996,0),(0,0.00e+00,9998,0),(0,0.00e+00,9908,0),(0,0.00e+00,10000,0),(0,0.00e+00,9978,0),(0,0.00e+00,9992,0),(0,0.00e+00,9992,0),(0,0.00e+00,19966,0),(0,0.00e+00,19992,0),(0,0.00e+00,19990,0),(0,0.00e+00,19998,0),(0,0.00e+00,19810,0),(0,0.00e+00,20000,0),(0,0.00e+00,19960,0),(0,0.00e+00,19978,0),(0,0.00e+00,19978,0),(0,0.00e+00,26092,0),(0,0.00e+00,26126,0),(0,0.00e+00,26126,0),(0,0.00e+00,26134,0),(0,0.00e+00,25894,0),(0,0.00e+00,26136,0),(0,0.00e+00,26088,0),(0,0.00e+00,26110,0),(0,0.00e+00,26104,0),(0,0.00e+00,33422,0),(0,0.00e+00,33470,0),(0,0.00e+00,33478,0),(0,0.00e+00,33164,0),(0,0.00e+00,33480,0),(0,0.00e+00,33404,0),(0,0.00e+00,33446,0),(0,0.00e+00,33442,0),(0,0.00e+00,39688,0),(0,0.00e+00,39698,0),(0,0.00e+00,39316,0),(0,0.00e+00,39700,0),(0,0.00e+00,39608,0),(0,0.00e+00,39664,0),(0,0.00e+00,39656,0),(0,0.00e+00,39988,0),(0,0.00e+00,39612,0),(0,0.00e+00,40000,0),(0,0.00e+00,39908,0),(0,0.00e+00,39962,0),(0,0.00e+00,39954,0),(0,0.00e+00,44708,0),(0,0.00e+00,44292,0),(0,0.00e+00,44724,0),(0,0.00e+00,44618,0),(0,0.00e+00,44682,0),(0,0.00e+00,44670,0),(0,0.00e+00,52916,0),(0,0.00e+00,53420,0),(0,0.00e+00,53282,0),(0,0.00e+00,53368,0),(0,0.00e+00,53350,0),(0,0.00e+00,60394,0),(0,0.00e+00,60232,0),(0,0.00e+00,60336,0),(0,0.00e+00,60320,0),(1,1.16e-05,86254,0),(0,0.00e+00,86180,0),(1,1.16e-05,86144,0),(1,1.00e-05,99994,0),(1,1.00e-05,99866,0),(1,5.00e-06,199974,0),(1,5.01e-06,199730,0),(1,2.50e-06,399940,0),(1,2.50e-06,399434,0),(1,1.00e-06,999826,0),(1,1.00e-06,998478,0),(1,8.99e-07,1111812,0),(1,9.01e-07,1110292,0),(0,0.00e+00,626532,0),(0,0.00e+00,628784,0),(0,0.00e+00,17636,0),(0,0.00e+00,43724,0),(0,0.00e+00,20974,0),(0,0.00e+00,36068,0),(0,0.00e+00,52640,0),(0,0.00e+00,2928,0),(0,0.00e+00,349908,0),(0,0.00e+00,32934,0),(0,0.00e+00,69720,0),(0,0.00e+00,285108,0),(0,0.00e+00,341424,0),(0,0.00e+00,10258,0),(0,0.00e+00,7378,0),(0,0.00e+00,25032,0),(0,0.00e+00,18692,0),(0,0.00e+00,9828,0),(0,0.00e+00,11146,0),(0,0.00e+00,18296,0),(0,0.00e+00,17772,0),(0,0.00e+00,27132,0),(0,0.00e+00,25508,0),(0,0.00e+00,1270,0),(0,0.00e+00,1658,0),(0,0.00e+00,162126,0),(0,0.00e+00,187782,0),(0,0.00e+00,16684,0),(0,0.00e+00,16250,0),(0,0.00e+00,14482,0),(0,0.00e+00,55238,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,14,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,198,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,142,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,998,0),(0,0.00e+00,1000,0),(0,0.00e+00,998,0),(0,0.00e+00,1000,0),(0,0.00e+00,990,0),(0,0.00e+00,716,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1998,0),(0,0.00e+00,1998,0),(0,0.00e+00,1998,0),(0,0.00e+00,2000,0),(0,0.00e+00,1984,0),(0,0.00e+00,1402,0),(0,0.00e+00,2000,0),(0,0.00e+00,1998,0),(0,0.00e+00,1998,0),(0,0.00e+00,1998,0),(0,0.00e+00,3986,0),(0,0.00e+00,3996,0),(0,0.00e+00,3998,0),(0,0.00e+00,3998,0),(0,0.00e+00,3954,0),(0,0.00e+00,2810,0),(0,0.00e+00,4000,0),(0,0.00e+00,3988,0),(0,0.00e+00,3994,0),(0,0.00e+00,3992,0),(0,0.00e+00,4134,0),(0,0.00e+00,4144,0),(0,0.00e+00,4146,0),(0,0.00e+00,4146,0),(0,0.00e+00,4100,0),(0,0.00e+00,2928,0),(0,0.00e+00,4148,0),(0,0.00e+00,4134,0),(0,0.00e+00,4142,0),(0,0.00e+00,4140,0),(0,0.00e+00,9966,0),(0,0.00e+00,9994,0),(0,0.00e+00,9994,0),(0,0.00e+00,9998,0),(0,0.00e+00,9908,0),(0,0.00e+00,10000,0),(0,0.00e+00,9962,0),(0,0.00e+00,9986,0),(0,0.00e+00,9972,0),(0,0.00e+00,17636,0),(0,0.00e+00,17686,0),(0,0.00e+00,17684,0),(0,0.00e+00,17692,0),(0,0.00e+00,17542,0),(0,0.00e+00,17692,0),(0,0.00e+00,17622,0),(0,0.00e+00,17672,0),(0,0.00e+00,17644,0),(0,0.00e+00,19992,0),(0,0.00e+00,19990,0),(0,0.00e+00,19998,0),(0,0.00e+00,19808,0),(0,0.00e+00,19998,0),(0,0.00e+00,19916,0),(0,0.00e+00,19976,0),(0,0.00e+00,19944,0),(0,0.00e+00,20976,0),(0,0.00e+00,20974,0),(0,0.00e+00,20982,0),(0,0.00e+00,20782,0),(0,0.00e+00,20982,0),(0,0.00e+00,20896,0),(0,0.00e+00,20958,0),(0,0.00e+00,20922,0),(0,0.00e+00,33088,0),(0,0.00e+00,33096,0),(0,0.00e+00,32786,0),(0,0.00e+00,33092,0),(0,0.00e+00,32934,0),(0,0.00e+00,33060,0),(0,0.00e+00,33004,0),(0,0.00e+00,36060,0),(0,0.00e+00,36068,0),(0,0.00e+00,35726,0),(0,0.00e+00,36064,0),(0,0.00e+00,36028,0),(0,0.00e+00,35960,0),(0,0.00e+00,39986,0),(0,0.00e+00,39610,0),(0,0.00e+00,39988,0),(0,0.00e+00,39956,0),(0,0.00e+00,39876,0),(0,0.00e+00,43724,0),(0,0.00e+00,43316,0),(0,0.00e+00,43726,0),(0,0.00e+00,43688,0),(0,0.00e+00,43604,0),(0,0.00e+00,52640,0),(0,0.00e+00,53122,0),(0,0.00e+00,53082,0),(0,0.00e+00,52968,0),(0,0.00e+00,69768,0),(0,0.00e+00,69720,0),(0,0.00e+00,69578,0),(0,0.00e+00,99956,0),(0,0.00e+00,99674,0),(0,0.00e+00,199884,0),(0,0.00e+00,199332,0),(0,0.00e+00,349908,0),(0,0.00e+00,348866,0),(0,0.00e+00,398590,0)]18.99e-0711118120"nfe"NANANANANA[(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]NANANANANANANANA1TrueNA{}1.02e+006.00e+010.00e+005537.79e+002.96e-01[14,32,9,16]4.68e-01711.04e+006.00e+010.00e+003.92e-015318.56e+002.96e-01[14,32,8,15]5.03e-0162TrueFalseFalseFalseFalseFalseFalse5.39e+00-6.84e-07["ga4gh:VA.uAq5BRYMw_lO7PZcOF5TpbGC5hA8JCCE","ga4gh:VA.rN4HBsKxAnhIfQxMXe9zdR_JZUOk90h2"][113412864,113412864][113412865,113412865]["G","A"]"G/A"113412865".""chr11\t113412865\t.\tG\tA\t.\t.\tGT"NA"stop_gained"NANA"chr11"1134128651[(1,"Q/*",NA,"protein_coding",NA,"CCDS8362.1",818,818,742,742,"Cag/Tag",["stop_gained"],NA,[("Gene3D","1"),("Pfam","PF00001"),("PROSITE_profiles","PS50262"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321"),("CDD","cd15309")],"6/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000346454.7:c.742C>T","ENSP00000278597.5:p.Gln248Ter",NA,"HIGH",NA,"HC",NA,NA,"PERCENTILE:0.595983935742972,GERP_DIST:1028.46165180206,BP_DIST:502,DIST_FROM_LAST_EXON:309,50_BP_RULE:PASS,ANN_ORF:1830.61,MAX_ORF:1830.61",NA,NA,NA,248,248,"ENSP00000278597","Ensembl",-1,"ENST00000346454",1,["P14416-2"],"A"),(1,"Q/*","P2","protein_coding",1,"CCDS8361.1",1183,1183,829,829,"Cag/Tag",["stop_gained"],NA,[("ENSP_mappings","6vms"),("ENSP_mappings","7jvr"),("Pfam","PF00001"),("PROSITE_profiles","PS50262"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321"),("CDD","cd15309")],"7/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000362072.8:c.829C>T","ENSP00000354859.3:p.Gln277Ter",NA,"HIGH",NA,"HC",NA,NA,"PERCENTILE:0.622372372372372,GERP_DIST:1028.46165180206,BP_DIST:502,DIST_FROM_LAST_EXON:309,50_BP_RULE:PASS,ANN_ORF:1830.61,MAX_ORF:1830.61","NM_000795.4",NA,NA,277,277,"ENSP00000354859","Ensembl",-1,"ENST00000362072",1,["P14416-1"],"A"),(1,NA,NA,"processed_transcript",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],1510,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000535984",3,NA,"A"),(1,"Q/*","A1","protein_coding",NA,NA,835,835,835,835,"Cag/Tag",["stop_gained"],NA,[("Pfam","PF00001"),("PROSITE_profiles","PS50262"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321"),("CDD","cd15309"),("CDD","cd15309")],"7/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000538967.5:c.835C>T","ENSP00000438215.1:p.Gln279Ter",NA,"HIGH",NA,"HC",NA,NA,"PERCENTILE:0.62406576980568,GERP_DIST:1028.46165180206,BP_DIST:502,DIST_FROM_LAST_EXON:309,50_BP_RULE:PASS,ANN_ORF:1830.61,MAX_ORF:1830.61",NA,NA,NA,279,279,"ENSP00000438215","Ensembl",-1,"ENST00000538967",5,["P14416-3"],"A"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],2429,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000539420",3,NA,"A"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],999,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000540600",1,NA,"A"),(1,"Q/*","P2","protein_coding",NA,"CCDS8361.1",1150,1150,829,829,"Cag/Tag",["stop_gained"],NA,[("ENSP_mappings","6vms"),("ENSP_mappings","7jvr"),("Pfam","PF00001"),("PROSITE_profiles","PS50262"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321"),("CDD","cd15309")],"6/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000542968.5:c.829C>T","ENSP00000442172.1:p.Gln277Ter",NA,"HIGH",NA,"HC",NA,NA,"PERCENTILE:0.622372372372372,GERP_DIST:1028.46165180206,BP_DIST:502,DIST_FROM_LAST_EXON:309,50_BP_RULE:PASS,ANN_ORF:1830.61,MAX_ORF:1830.61",NA,NA,NA,277,277,"ENSP00000442172","Ensembl",-1,"ENST00000542968",1,["P14416-1"],"A"),(1,NA,NA,"protein_coding",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],3998,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"ENSP00000438419","Ensembl",-1,"ENST00000543292",5,NA,"A"),(1,"Q/*","A1","protein_coding",NA,NA,859,859,826,826,"Cag/Tag",["stop_gained"],NA,[("Pfam","PF00001"),("PROSITE_profiles","PS50262"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321"),("CDD","cd15309")],"6/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000544518.5:c.826C>T","ENSP00000441068.1:p.Gln276Ter",NA,"HIGH",NA,"HC",NA,NA,"PERCENTILE:0.621519939804364,GERP_DIST:1028.46165180206,BP_DIST:502,DIST_FROM_LAST_EXON:309,50_BP_RULE:PASS,ANN_ORF:1830.61,MAX_ORF:1830.61",NA,NA,NA,276,276,"ENSP00000441068","Ensembl",-1,"ENST00000544518",1,NA,"A"),(1,NA,NA,"lncRNA",1,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],748,NA,NA,NA,"ENSG00000256757",NA,NA,NA,NA,NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",1,"ENST00000546284",3,NA,"A"),(1,"Q/*",NA,"protein_coding",1,NA,1183,1183,829,829,"Cag/Tag",["stop_gained"],NA,NA,"7/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_000795.4:c.829C>T","NP_000786.1:p.Gln277Ter",NA,"HIGH",NA,"HC",NA,NA,"PERCENTILE:0.622372372372372,GERP_DIST:1028.46165180206,BP_DIST:502,DIST_FROM_LAST_EXON:309,50_BP_RULE:PASS,PHYLOCSF_TOO_SHORT","ENST00000362072.8",NA,NA,277,277,"NP_000786.1","RefSeq",-1,"NM_000795.4",NA,NA,"A"),(1,"Q/*",NA,"protein_coding",NA,NA,1096,1096,742,742,"Cag/Tag",["stop_gained"],NA,NA,"6/7",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_016574.4:c.742C>T","NP_057658.2:p.Gln248Ter",NA,"HIGH",NA,"HC",NA,NA,"PERCENTILE:0.595983935742972,GERP_DIST:1028.46165180206,BP_DIST:502,DIST_FROM_LAST_EXON:309,50_BP_RULE:PASS,PHYLOCSF_TOO_SHORT",NA,NA,NA,248,248,"NP_057658.2","RefSeq",-1,"NM_016574.4",NA,NA,"A"),(1,"Q/*",NA,"protein_coding",NA,NA,911,911,829,829,"Cag/Tag",["stop_gained"],NA,NA,"7/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","XM_017017296.2:c.829C>T","XP_016872785.1:p.Gln277Ter",NA,"HIGH",NA,"HC",NA,NA,"PERCENTILE:0.622372372372372,GERP_DIST:1028.46165180206,BP_DIST:502,DIST_FROM_LAST_EXON:309,50_BP_RULE:PASS,PHYLOCSF_TOO_SHORT",NA,NA,NA,277,277,"XP_016872785.1","RefSeq",-1,"XM_017017296.2",NA,NA,"A")]"SNV"5.39e+00"AS_MQ"FalseFalseFalseFalseFalseTrueFalseFalse"multi-snv"2False"snv"False[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,547,0,1910,0,310815,0,33,0,416515,0,0,0,0,0,0,1]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,1141,1461,3821,36585,211757,225880,49280,7441,3163,3441,5118,7834,11512,15298,17617,18581,18765,20944]070182[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][890,0,0,0,783,0,1910,0,310815,0,33,0,416515,0,0,0,0,0,0,1]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][431,622,1175,1493,3823,36589,211757,225880,49281,7441,3163,3441,5118,7834,11512,15298,17617,18581,18765,20944]070182[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,1,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]004.50e+018.76e+00NA0.00e+00-1.10e-018.79e+00NANA
chr11:113412885["T","C"][(1,6.86e-07,1458160,0),(2,1.37e-06,1461894,0),(0,0.00e+00,33408,0),(0,0.00e+00,44630,0),(0,0.00e+00,26106,0),(0,0.00e+00,39690,0),(0,0.00e+00,52116,0),(0,0.00e+00,4312,0),(1,9.00e-07,1111636,0),(0,0.00e+00,60164,0),(0,0.00e+00,86098,0),(1,1.36e-06,732774,0),(0,0.00e+00,725386,0),(0,0.00e+00,19292,0),(0,0.00e+00,14116,0),(0,0.00e+00,25634,0),(0,0.00e+00,18996,0),(0,0.00e+00,12610,0),(0,0.00e+00,13496,0),(0,0.00e+00,20702,0),(0,0.00e+00,18988,0),(0,0.00e+00,26976,0),(0,0.00e+00,25140,0),(0,0.00e+00,1734,0),(0,0.00e+00,2578,0),(1,1.75e-06,572122,0),(0,0.00e+00,539514,0),(0,0.00e+00,31706,0),(0,0.00e+00,28458,0),(0,0.00e+00,21998,0),(0,0.00e+00,64100,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,12,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,194,0),(0,0.00e+00,148,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,998,0),(0,0.00e+00,998,0),(0,0.00e+00,996,0),(0,0.00e+00,1000,0),(0,0.00e+00,970,0),(0,0.00e+00,756,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1994,0),(0,0.00e+00,1996,0),(0,0.00e+00,1996,0),(0,0.00e+00,2000,0),(0,0.00e+00,1950,0),(0,0.00e+00,1490,0),(0,0.00e+00,1998,0),(0,0.00e+00,2000,0),(0,0.00e+00,1996,0),(0,0.00e+00,2000,0),(0,0.00e+00,3992,0),(0,0.00e+00,3994,0),(0,0.00e+00,3996,0),(0,0.00e+00,4000,0),(0,0.00e+00,3888,0),(0,0.00e+00,2982,0),(0,0.00e+00,3998,0),(0,0.00e+00,3996,0),(0,0.00e+00,3988,0),(0,0.00e+00,3990,0),(0,0.00e+00,5754,0),(0,0.00e+00,5758,0),(0,0.00e+00,5762,0),(0,0.00e+00,5768,0),(0,0.00e+00,5602,0),(0,0.00e+00,4312,0),(0,0.00e+00,5766,0),(0,0.00e+00,5756,0),(0,0.00e+00,5754,0),(0,0.00e+00,5754,0),(0,0.00e+00,9972,0),(0,0.00e+00,9982,0),(0,0.00e+00,9986,0),(0,0.00e+00,10000,0),(0,0.00e+00,9736,0),(0,0.00e+00,9998,0),(0,0.00e+00,9968,0),(0,0.00e+00,9984,0),(0,0.00e+00,9976,0),(0,0.00e+00,19956,0),(0,0.00e+00,19974,0),(0,0.00e+00,19976,0),(0,0.00e+00,19996,0),(0,0.00e+00,19458,0),(0,0.00e+00,19998,0),(0,0.00e+00,19942,0),(0,0.00e+00,19960,0),(0,0.00e+00,19950,0),(0,0.00e+00,26080,0),(0,0.00e+00,26096,0),(0,0.00e+00,26106,0),(0,0.00e+00,26130,0),(0,0.00e+00,25472,0),(0,0.00e+00,26134,0),(0,0.00e+00,26068,0),(0,0.00e+00,26090,0),(0,0.00e+00,26074,0),(0,0.00e+00,33408,0),(0,0.00e+00,33414,0),(0,0.00e+00,33472,0),(0,0.00e+00,32646,0),(0,0.00e+00,33478,0),(0,0.00e+00,33382,0),(0,0.00e+00,33422,0),(0,0.00e+00,33404,0),(0,0.00e+00,39618,0),(0,0.00e+00,39690,0),(0,0.00e+00,38704,0),(0,0.00e+00,39698,0),(0,0.00e+00,39574,0),(0,0.00e+00,39636,0),(0,0.00e+00,39610,0),(0,0.00e+00,39916,0),(0,0.00e+00,38996,0),(0,0.00e+00,39998,0),(0,0.00e+00,39872,0),(0,0.00e+00,39934,0),(0,0.00e+00,39908,0),(0,0.00e+00,44630,0),(0,0.00e+00,43606,0),(0,0.00e+00,44722,0),(0,0.00e+00,44570,0),(0,0.00e+00,44654,0),(0,0.00e+00,44624,0),(0,0.00e+00,52116,0),(0,0.00e+00,53418,0),(0,0.00e+00,53230,0),(0,0.00e+00,53336,0),(0,0.00e+00,53296,0),(0,0.00e+00,60390,0),(0,0.00e+00,60164,0),(0,0.00e+00,60294,0),(0,0.00e+00,60258,0),(0,0.00e+00,86248,0),(0,0.00e+00,86098,0),(0,0.00e+00,86056,0),(0,0.00e+00,99986,0),(0,0.00e+00,99772,0),(0,0.00e+00,199950,0),(0,0.00e+00,199518,0),(0,0.00e+00,399882,0),(0,0.00e+00,399012,0),(1,1.00e-06,999674,0),(1,1.00e-06,997490,0),(1,9.00e-07,1111636,0),(1,9.02e-07,1109188,0),(0,0.00e+00,625052,0),(1,1.59e-06,628784,0),(0,0.00e+00,17622,0),(0,0.00e+00,43646,0),(0,0.00e+00,20954,0),(0,0.00e+00,36060,0),(0,0.00e+00,51840,0),(0,0.00e+00,2692,0),(0,0.00e+00,349734,0),(0,0.00e+00,32866,0),(0,0.00e+00,69638,0),(0,0.00e+00,284380,0),(0,0.00e+00,340672,0),(0,0.00e+00,10252,0),(0,0.00e+00,7370,0),(0,0.00e+00,24984,0),(0,0.00e+00,18662,0),(0,0.00e+00,9812,0),(0,0.00e+00,11142,0),(0,0.00e+00,18288,0),(0,0.00e+00,17772,0),(0,0.00e+00,26726,0),(0,0.00e+00,25114,0),(0,0.00e+00,1144,0),(0,0.00e+00,1548,0),(0,0.00e+00,162056,0),(0,0.00e+00,187678,0),(0,0.00e+00,16658,0),(0,0.00e+00,16208,0),(0,0.00e+00,14460,0),(0,0.00e+00,55178,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,10,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,198,0),(0,0.00e+00,200,0),(0,0.00e+00,194,0),(0,0.00e+00,136,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,994,0),(0,0.00e+00,998,0),(0,0.00e+00,996,0),(0,0.00e+00,1000,0),(0,0.00e+00,970,0),(0,0.00e+00,654,0),(0,0.00e+00,998,0),(0,0.00e+00,1000,0),(0,0.00e+00,998,0),(0,0.00e+00,996,0),(0,0.00e+00,1994,0),(0,0.00e+00,1996,0),(0,0.00e+00,1996,0),(0,0.00e+00,2000,0),(0,0.00e+00,1948,0),(0,0.00e+00,1302,0),(0,0.00e+00,1998,0),(0,0.00e+00,1996,0),(0,0.00e+00,1996,0),(0,0.00e+00,1986,0),(0,0.00e+00,3980,0),(0,0.00e+00,3994,0),(0,0.00e+00,3996,0),(0,0.00e+00,4000,0),(0,0.00e+00,3888,0),(0,0.00e+00,2588,0),(0,0.00e+00,3998,0),(0,0.00e+00,3984,0),(0,0.00e+00,3986,0),(0,0.00e+00,3976,0),(0,0.00e+00,4128,0),(0,0.00e+00,4142,0),(0,0.00e+00,4144,0),(0,0.00e+00,4148,0),(0,0.00e+00,4032,0),(0,0.00e+00,2692,0),(0,0.00e+00,4146,0),(0,0.00e+00,4130,0),(0,0.00e+00,4134,0),(0,0.00e+00,4124,0),(0,0.00e+00,9956,0),(0,0.00e+00,9982,0),(0,0.00e+00,9982,0),(0,0.00e+00,9998,0),(0,0.00e+00,9736,0),(0,0.00e+00,9998,0),(0,0.00e+00,9946,0),(0,0.00e+00,9970,0),(0,0.00e+00,9946,0),(0,0.00e+00,17622,0),(0,0.00e+00,17668,0),(0,0.00e+00,17666,0),(0,0.00e+00,17690,0),(0,0.00e+00,17240,0),(0,0.00e+00,17690,0),(0,0.00e+00,17600,0),(0,0.00e+00,17652,0),(0,0.00e+00,17598,0),(0,0.00e+00,19974,0),(0,0.00e+00,19970,0),(0,0.00e+00,19996,0),(0,0.00e+00,19456,0),(0,0.00e+00,19994,0),(0,0.00e+00,19886,0),(0,0.00e+00,19956,0),(0,0.00e+00,19896,0),(0,0.00e+00,20952,0),(0,0.00e+00,20954,0),(0,0.00e+00,20980,0),(0,0.00e+00,20420,0),(0,0.00e+00,20978,0),(0,0.00e+00,20864,0),(0,0.00e+00,20938,0),(0,0.00e+00,20870,0),(0,0.00e+00,33028,0),(0,0.00e+00,33088,0),(0,0.00e+00,32270,0),(0,0.00e+00,33082,0),(0,0.00e+00,32866,0),(0,0.00e+00,33032,0),(0,0.00e+00,32930,0),(0,0.00e+00,35996,0),(0,0.00e+00,36060,0),(0,0.00e+00,35158,0),(0,0.00e+00,36052,0),(0,0.00e+00,36000,0),(0,0.00e+00,35874,0),(0,0.00e+00,39912,0),(0,0.00e+00,38990,0),(0,0.00e+00,39972,0),(0,0.00e+00,39926,0),(0,0.00e+00,39784,0),(0,0.00e+00,43646,0),(0,0.00e+00,42640,0),(0,0.00e+00,43710,0),(0,0.00e+00,43654,0),(0,0.00e+00,43508,0),(0,0.00e+00,51840,0),(0,0.00e+00,53106,0),(0,0.00e+00,53036,0),(0,0.00e+00,52850,0),(0,0.00e+00,69740,0),(0,0.00e+00,69638,0),(0,0.00e+00,69416,0),(0,0.00e+00,99914,0),(0,0.00e+00,99438,0),(0,0.00e+00,199798,0),(0,0.00e+00,198850,0),(0,0.00e+00,349734,0),(0,0.00e+00,348096,0),(0,0.00e+00,397690,0)]19.00e-0711116360"nfe"NANANANANA[(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]NANANANANANANANA1FalseNA{}2.45e+006.00e+010.00e+008901.11e+011.80e-01[7,37,8,28]3.79e-01802.45e+006.00e+010.00e+004.53e-018901.11e+011.80e-01[7,37,8,28]3.79e-0180FalseFalseFalseFalseFalseFalseFalse5.84e+00-1.37e-06["ga4gh:VA.Hj6Aa_k4TOMxqWIs6lE_cgxiRrPFWp8C","ga4gh:VA.NDTpZX0YUzM19pYVv6I2tV0ypoJhtyrN"][113412884,113412884][113412885,113412885]["T","C"]"T/C"113412885".""chr11\t113412885\t.\tT\tC\t.\t.\tGT"NA"splice_acceptor_variant"NANA"chr11"1134128851[(1,NA,NA,"protein_coding",NA,"CCDS8362.1",NA,NA,NA,NA,NA,["splice_acceptor_variant"],NA,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000346454.7:c.724-2A>G",NA,NA,"HIGH","5/6","HC","NAGNAG_SITE",NA,"INTRON_SIZE:2537",NA,NA,NA,NA,NA,"ENSP00000278597","Ensembl",-1,"ENST00000346454",1,["P14416-2"],"C"),(1,NA,"P2","protein_coding",1,"CCDS8361.1",NA,NA,NA,NA,NA,["splice_acceptor_variant"],NA,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000362072.8:c.811-2A>G",NA,NA,"HIGH","6/7","HC","NAGNAG_SITE",NA,"INTRON_SIZE:1491","NM_000795.4",NA,NA,NA,NA,"ENSP00000354859","Ensembl",-1,"ENST00000362072",1,["P14416-1"],"C"),(1,NA,NA,"processed_transcript",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],1490,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000535984",3,NA,"C"),(1,NA,"A1","protein_coding",NA,NA,NA,NA,NA,NA,NA,["splice_acceptor_variant"],NA,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000538967.5:c.817-2A>G",NA,NA,"HIGH","6/7","HC","NAGNAG_SITE",NA,"INTRON_SIZE:451",NA,NA,NA,NA,NA,"ENSP00000438215","Ensembl",-1,"ENST00000538967",5,["P14416-3"],"C"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],2409,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000539420",3,NA,"C"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],979,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000540600",1,NA,"C"),(1,NA,"P2","protein_coding",NA,"CCDS8361.1",NA,NA,NA,NA,NA,["splice_acceptor_variant"],NA,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000542968.5:c.811-2A>G",NA,NA,"HIGH","5/6","HC","NAGNAG_SITE",NA,"INTRON_SIZE:1491",NA,NA,NA,NA,NA,"ENSP00000442172","Ensembl",-1,"ENST00000542968",1,["P14416-1"],"C"),(1,NA,NA,"protein_coding",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],3978,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"ENSP00000438419","Ensembl",-1,"ENST00000543292",5,NA,"C"),(1,NA,"A1","protein_coding",NA,NA,NA,NA,NA,NA,NA,["splice_acceptor_variant"],NA,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000544518.5:c.808-2A>G",NA,NA,"HIGH","5/6","HC","NAGNAG_SITE",NA,"INTRON_SIZE:1491",NA,NA,NA,NA,NA,"ENSP00000441068","Ensembl",-1,"ENST00000544518",1,NA,"C"),(1,NA,NA,"lncRNA",1,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],768,NA,NA,NA,"ENSG00000256757",NA,NA,NA,NA,NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",1,"ENST00000546284",3,NA,"C"),(1,NA,NA,"protein_coding",1,NA,NA,NA,NA,NA,NA,["splice_acceptor_variant"],NA,NA,NA,NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_000795.4:c.811-2A>G",NA,NA,"HIGH","6/7","HC","NAGNAG_SITE",NA,"INTRON_SIZE:1491","ENST00000362072.8",NA,NA,NA,NA,"NP_000786.1","RefSeq",-1,"NM_000795.4",NA,NA,"C"),(1,NA,NA,"protein_coding",NA,NA,NA,NA,NA,NA,NA,["splice_acceptor_variant"],NA,NA,NA,NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_016574.4:c.724-2A>G",NA,NA,"HIGH","5/6","HC","NAGNAG_SITE",NA,"INTRON_SIZE:2537",NA,NA,NA,NA,NA,"NP_057658.2","RefSeq",-1,"NM_016574.4",NA,NA,"C"),(1,NA,NA,"protein_coding",NA,NA,NA,NA,NA,NA,NA,["splice_acceptor_variant"],NA,NA,NA,NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","XM_017017296.2:c.811-2A>G",NA,NA,"HIGH","6/7","HC","NAGNAG_SITE",NA,"INTRON_SIZE:1491",NA,NA,NA,NA,NA,"XP_016872785.1","RefSeq",-1,"XM_017017296.2",NA,NA,"C")]"SNV"5.84e+00"AS_MQ"FalseFalseFalseFalseFalseTrueTrueFalse"snv"1False"snv"False[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,929,0,3800,0,308036,0,642,0,415672,0,0,0,0,0,0,1]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,2699,3244,4728,36120,209411,224276,48878,7369,3147,3425,5116,7827,11506,15293,17615,18578,18759,20940]070149[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][1313,0,2,0,1481,0,3800,0,308036,0,642,0,415672,0,0,0,0,0,0,1]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][618,1142,2737,3303,4730,36128,209411,224276,48878,7369,3147,3425,5116,7827,11506,15293,17615,18578,18759,20940]070149[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,1,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]003.50e+015.83e+00NA9.80e-01-7.90e-016.35e+00NANA

showing top 5 rows

\n" + ], + "text/plain": [ + "+-----------------+-------------+\n", + "| locus | alleles |\n", + "+-----------------+-------------+\n", + "| locus | array |\n", + "+-----------------+-------------+\n", + "| chr11:113412554 | [\"A\",\"G\"] |\n", + "| chr11:113412612 | [\"CT\",\"C\"] |\n", + "| chr11:113412614 | [\"ACG\",\"A\"] |\n", + "| chr11:113412865 | [\"G\",\"A\"] |\n", + "| chr11:113412885 | [\"T\",\"C\"] |\n", + "+-----------------+-------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| freq |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [(1,6.85e-07,1459578,0),(1,6.84e-07,1461894,0),(0,0.00e+00,33480,0),(0,0.... |\n", + "| [(2,1.37e-06,1461892,0),(2,1.37e-06,1461894,0),(0,0.00e+00,33480,0),(0,0.... |\n", + "| [(2,1.37e-06,1461894,0),(2,1.37e-06,1461894,0),(0,0.00e+00,33480,0),(0,0.... |\n", + "| [(1,6.85e-07,1459642,0),(1,6.84e-07,1461894,0),(0,0.00e+00,33422,0),(0,0.... |\n", + "| [(1,6.86e-07,1458160,0),(2,1.37e-06,1461894,0),(0,0.00e+00,33408,0),(0,0.... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+------------------+------------------+------------------+\n", + "| grpmax.gnomad.AC | grpmax.gnomad.AF | grpmax.gnomad.AN |\n", + "+------------------+------------------+------------------+\n", + "| int32 | float64 | int32 |\n", + "+------------------+------------------+------------------+\n", + "| 1 | 8.99e-07 | 1111998 |\n", + "| 2 | 1.80e-06 | 1112010 |\n", + "| 2 | 1.80e-06 | 1112012 |\n", + "| 1 | 8.99e-07 | 1111812 |\n", + "| 1 | 9.00e-07 | 1111636 |\n", + "+------------------+------------------+------------------+\n", + "\n", + "+--------------------------------+-----------------------+-------------------+\n", + "| grpmax.gnomad.homozygote_count | grpmax.gnomad.gen_anc | grpmax.non_ukb.AC |\n", + "+--------------------------------+-----------------------+-------------------+\n", + "| int64 | str | int32 |\n", + "+--------------------------------+-----------------------+-------------------+\n", + "| 0 | \"nfe\" | NA |\n", + "| 0 | \"nfe\" | 2 |\n", + "| 0 | \"nfe\" | 2 |\n", + "| 0 | \"nfe\" | NA |\n", + "| 0 | \"nfe\" | NA |\n", + "+--------------------------------+-----------------------+-------------------+\n", + "\n", + "+-------------------+-------------------+---------------------------------+\n", + "| grpmax.non_ukb.AF | grpmax.non_ukb.AN | grpmax.non_ukb.homozygote_count |\n", + "+-------------------+-------------------+---------------------------------+\n", + "| float64 | int32 | int64 |\n", + "+-------------------+-------------------+---------------------------------+\n", + "| NA | NA | NA |\n", + "| 5.71e-06 | 350106 | 0 |\n", + "| 5.71e-06 | 350108 | 0 |\n", + "| NA | NA | NA |\n", + "| NA | NA | NA |\n", + "+-------------------+-------------------+---------------------------------+\n", + "\n", + "+------------------------+\n", + "| grpmax.non_ukb.gen_anc |\n", + "+------------------------+\n", + "| str |\n", + "+------------------------+\n", + "| NA |\n", + "| \"nfe\" |\n", + "| \"nfe\" |\n", + "| NA |\n", + "| NA |\n", + "+------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| faf |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.... |\n", + "| [(2.30e-07,9.00e-08),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.... |\n", + "| [(2.30e-07,9.00e-08),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.... |\n", + "| [(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.... |\n", + "| [(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+-------------------------+---------------------------------+\n", + "| fafmax.gnomad.faf95_max | fafmax.gnomad.faf95_max_gen_anc |\n", + "+-------------------------+---------------------------------+\n", + "| float64 | str |\n", + "+-------------------------+---------------------------------+\n", + "| NA | NA |\n", + "| 3.00e-07 | \"nfe\" |\n", + "| 3.00e-07 | \"nfe\" |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "+-------------------------+---------------------------------+\n", + "\n", + "+-------------------------+---------------------------------+\n", + "| fafmax.gnomad.faf99_max | fafmax.gnomad.faf99_max_gen_anc |\n", + "+-------------------------+---------------------------------+\n", + "| float64 | str |\n", + "+-------------------------+---------------------------------+\n", + "| NA | NA |\n", + "| 1.10e-07 | \"nfe\" |\n", + "| 1.10e-07 | \"nfe\" |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "+-------------------------+---------------------------------+\n", + "\n", + "+--------------------------+----------------------------------+\n", + "| fafmax.non_ukb.faf95_max | fafmax.non_ukb.faf95_max_gen_anc |\n", + "+--------------------------+----------------------------------+\n", + "| float64 | str |\n", + "+--------------------------+----------------------------------+\n", + "| NA | NA |\n", + "| 9.50e-07 | \"nfe\" |\n", + "| 9.50e-07 | \"nfe\" |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "+--------------------------+----------------------------------+\n", + "\n", + "+--------------------------+----------------------------------+---------+\n", + "| fafmax.non_ukb.faf99_max | fafmax.non_ukb.faf99_max_gen_anc | a_index |\n", + "+--------------------------+----------------------------------+---------+\n", + "| float64 | str | int32 |\n", + "+--------------------------+----------------------------------+---------+\n", + "| NA | NA | 2 |\n", + "| 3.60e-07 | \"nfe\" | 1 |\n", + "| 3.60e-07 | \"nfe\" | 1 |\n", + "| NA | NA | 1 |\n", + "| NA | NA | 1 |\n", + "+--------------------------+----------------------------------+---------+\n", + "\n", + "+-----------+----------+----------+----------+----------+----------------+\n", + "| was_split | rsid | filters | info.FS | info.MQ | info.MQRankSum |\n", + "+-----------+----------+----------+----------+----------+----------------+\n", + "| bool | set | set | float64 | float64 | float64 |\n", + "+-----------+----------+----------+----------+----------+----------------+\n", + "| True | NA | {} | 2.83e+00 | 6.00e+01 | 0.00e+00 |\n", + "| False | NA | {} | 5.48e-01 | 6.00e+01 | 0.00e+00 |\n", + "| True | NA | {} | 2.32e+00 | 6.00e+01 | 0.00e+00 |\n", + "| True | NA | {} | 1.02e+00 | 6.00e+01 | 0.00e+00 |\n", + "| False | NA | {} | 2.45e+00 | 6.00e+01 | 0.00e+00 |\n", + "+-----------+----------+----------+----------+----------+----------------+\n", + "\n", + "+-----------------+----------+---------------------+---------------+----------+\n", + "| info.QUALapprox | info.QD | info.ReadPosRankSum | info.SB | info.SOR |\n", + "+-----------------+----------+---------------------+---------------+----------+\n", + "| int64 | float64 | float64 | array | float64 |\n", + "+-----------------+----------+---------------------+---------------+----------+\n", + "| 1498 | 1.05e+01 | -5.05e-01 | [63,17,52,10] | 1.04e+00 |\n", + "| 3458 | 1.79e+01 | 4.32e-01 | [65,38,58,32] | 7.50e-01 |\n", + "| 5336 | 1.56e+01 | 4.62e-01 | [99,81,94,68] | 8.22e-01 |\n", + "| 553 | 7.79e+00 | 2.96e-01 | [14,32,9,16] | 4.68e-01 |\n", + "| 890 | 1.11e+01 | 1.80e-01 | [7,37,8,28] | 3.79e-01 |\n", + "+-----------------+----------+---------------------+---------------+----------+\n", + "\n", + "+------------+------------+------------+-------------------+-----------------+\n", + "| info.VarDP | info.AS_FS | info.AS_MQ | info.AS_MQRankSum | info.AS_pab_max |\n", + "+------------+------------+------------+-------------------+-----------------+\n", + "| int32 | float64 | float64 | float64 | float64 |\n", + "+------------+------------+------------+-------------------+-----------------+\n", + "| 142 | 1.10e+00 | 6.00e+01 | 0.00e+00 | 1.00e+00 |\n", + "| 193 | 5.48e-01 | 6.00e+01 | 0.00e+00 | 5.90e-01 |\n", + "| 342 | 8.20e+00 | 6.00e+01 | 0.00e+00 | 6.65e-01 |\n", + "| 71 | 1.04e+00 | 6.00e+01 | 0.00e+00 | 3.92e-01 |\n", + "| 80 | 2.45e+00 | 6.00e+01 | 0.00e+00 | 4.53e-01 |\n", + "+------------+------------+------------+-------------------+-----------------+\n", + "\n", + "+--------------------+------------+------------------------+------------------+\n", + "| info.AS_QUALapprox | info.AS_QD | info.AS_ReadPosRankSum | info.AS_SB_TABLE |\n", + "+--------------------+------------+------------------------+------------------+\n", + "| int64 | float64 | float64 | array |\n", + "+--------------------+------------+------------------------+------------------+\n", + "| 661 | 1.35e+01 | -1.83e+00 | [63,17,21,4] |\n", + "| 3458 | 1.79e+01 | 4.32e-01 | [65,38,58,32] |\n", + "| 3455 | 1.80e+01 | 4.62e-01 | [99,81,58,32] |\n", + "| 531 | 8.56e+00 | 2.96e-01 | [14,32,8,15] |\n", + "| 890 | 1.11e+01 | 1.80e-01 | [7,37,8,28] |\n", + "+--------------------+------------+------------------------+------------------+\n", + "\n", + "+-------------+---------------+----------------+----------------------------+\n", + "| info.AS_SOR | info.AS_VarDP | info.singleton | info.transmitted_singleton |\n", + "+-------------+---------------+----------------+----------------------------+\n", + "| float64 | int32 | bool | bool |\n", + "+-------------+---------------+----------------+----------------------------+\n", + "| 9.29e-01 | 49 | True | False |\n", + "| 7.50e-01 | 193 | False | NA |\n", + "| 1.15e+00 | 192 | False | NA |\n", + "| 5.03e-01 | 62 | True | False |\n", + "| 3.79e-01 | 80 | False | False |\n", + "+-------------+---------------+----------------+----------------------------+\n", + "\n", + "+------------------------+-----------+------------+------------------+\n", + "| info.sibling_singleton | info.omni | info.mills | info.monoallelic |\n", + "+------------------------+-----------+------------+------------------+\n", + "| bool | bool | bool | bool |\n", + "+------------------------+-----------+------------+------------------+\n", + "| False | False | False | False |\n", + "| NA | False | False | False |\n", + "| NA | False | False | False |\n", + "| False | False | False | False |\n", + "| False | False | False | False |\n", + "+------------------------+-----------+------------+------------------+\n", + "\n", + "+---------------+----------------+-----------------------+\n", + "| info.only_het | info.AS_VQSLOD | info.inbreeding_coeff |\n", + "+---------------+----------------+-----------------------+\n", + "| bool | float64 | float64 |\n", + "+---------------+----------------+-----------------------+\n", + "| False | 5.30e+00 | -6.84e-07 |\n", + "| False | 4.25e+00 | -1.37e-06 |\n", + "| False | 3.61e+00 | -1.37e-06 |\n", + "| False | 5.39e+00 | -6.84e-07 |\n", + "| False | 5.84e+00 | -1.37e-06 |\n", + "+---------------+----------------+-----------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| info.vrs.VRS_Allele_IDs |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [\"ga4gh:VA.mqU9WPvGr3hduyybbeN-AKJ1zN-kclsI\",\"ga4gh:VA.uvlicmv1vZnrBBqm0U... |\n", + "| [\"ga4gh:VA.NztLKtEJA7H0h_Tz31YRmTUR4hT2PNxO\",\"ga4gh:VA.5xtydtW8O1beQhV-1c... |\n", + "| [\"ga4gh:VA.Lx5RcGLe0vnqmstRd134JgqaJUNZIzCF\",\"ga4gh:VA.N3JXRaksYTV6CSLvZ_... |\n", + "| [\"ga4gh:VA.uAq5BRYMw_lO7PZcOF5TpbGC5hA8JCCE\",\"ga4gh:VA.rN4HBsKxAnhIfQxMXe... |\n", + "| [\"ga4gh:VA.Hj6Aa_k4TOMxqWIs6lE_cgxiRrPFWp8C\",\"ga4gh:VA.NDTpZX0YUzM19pYVv6... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+-----------------------+-----------------------+---------------------+\n", + "| info.vrs.VRS_Starts | info.vrs.VRS_Ends | info.vrs.VRS_States |\n", + "+-----------------------+-----------------------+---------------------+\n", + "| array | array | array |\n", + "+-----------------------+-----------------------+---------------------+\n", + "| [113412553,113412553] | [113412554,113412554] | [\"A\",\"G\"] |\n", + "| [113412611,113412612] | [113412613,113412613] | [\"CT\",\"\"] |\n", + "| [113412613,113412614] | [113412616,113412616] | [\"ACG\",\"\"] |\n", + "| [113412864,113412864] | [113412865,113412865] | [\"G\",\"A\"] |\n", + "| [113412884,113412884] | [113412885,113412885] | [\"T\",\"C\"] |\n", + "+-----------------------+-----------------------+---------------------+\n", + "\n", + "+-------------------+-----------+--------+----------------------------------+\n", + "| vep.allele_string | vep.end | vep.id | vep.input |\n", + "+-------------------+-----------+--------+----------------------------------+\n", + "| str | int32 | str | str |\n", + "+-------------------+-----------+--------+----------------------------------+\n", + "| \"A/G\" | 113412554 | \".\" | \"chr11\t113412554\t.\tA\tG\t.\t.\tGT\" |\n", + "| \"T/-\" | 113412613 | \".\" | \"chr11\t113412612\t.\tCT\tC\t.\t.\tGT\" |\n", + "| \"CG/-\" | 113412616 | \".\" | \"chr11\t113412614\t.\tACG\tA\t.\t.\tGT\" |\n", + "| \"G/A\" | 113412865 | \".\" | \"chr11\t113412865\t.\tG\tA\t.\t.\tGT\" |\n", + "| \"T/C\" | 113412885 | \".\" | \"chr11\t113412885\t.\tT\tC\t.\t.\tGT\" |\n", + "+-------------------+-----------+--------+----------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| vep.intergenic_consequences |\n", + "+------------------------------------------------------------------------------+\n", + "| array, impact: st... |\n", + "+------------------------------------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+-----------------------------+\n", + "| vep.most_severe_consequence |\n", + "+-----------------------------+\n", + "| str |\n", + "+-----------------------------+\n", + "| \"splice_donor_variant\" |\n", + "| \"frameshift_variant\" |\n", + "| \"frameshift_variant\" |\n", + "| \"stop_gained\" |\n", + "| \"splice_acceptor_variant\" |\n", + "+-----------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| vep.motif_feature_consequences |\n", + "+------------------------------------------------------------------------------+\n", + "| array, high_inf_p... |\n", + "+------------------------------------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| vep.regulatory_feature_consequences |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------+\n", + "| histograms.qual_hists.gq_hist_all.bin_freq |\n", + "+------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------+\n", + "| [0,0,0,0,134,0,1469,0,311660,0,82,0,416443,0,0,0,0,0,0,1] |\n", + "| [0,0,0,0,1,0,2,0,314386,0,0,0,416555,0,0,0,0,0,0,2] |\n", + "| [0,0,0,0,1,0,1,0,314388,0,0,0,416555,0,0,0,0,0,0,2] |\n", + "| [0,0,0,0,547,0,1910,0,310815,0,33,0,416515,0,0,0,0,0,0,1] |\n", + "| [0,0,0,0,929,0,3800,0,308036,0,642,0,415672,0,0,0,0,0,0,1] |\n", + "+------------------------------------------------------------+\n", + "\n", + "+---------------------------------------------+\n", + "| histograms.qual_hists.gq_hist_all.n_smaller |\n", + "+---------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+---------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.qual_hists.gq_hist_all.n_larger |\n", + "+--------------------------------------------+\n", + "| int64 |\n", + "+--------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+--------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.qual_hists.dp_hist_all.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.qual_hists.dp_hist_all.bin_freq |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0,0,1555,817,16216,229270,272936,45138,9370,3566,3616,4059,4521,5017,549... |\n", + "| [0,0,1,279,16685,230939,273577,45298,9412,3597,3653,4094,4550,5033,5504,5... |\n", + "| [0,0,0,278,16685,230938,273578,45300,9412,3597,3653,4094,4550,5033,5504,5... |\n", + "| [0,0,1141,1461,3821,36585,211757,225880,49280,7441,3163,3441,5118,7834,11... |\n", + "| [0,0,2699,3244,4728,36120,209411,224276,48878,7369,3147,3425,5116,7827,11... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+---------------------------------------------+\n", + "| histograms.qual_hists.dp_hist_all.n_smaller |\n", + "+---------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+---------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.qual_hists.dp_hist_all.n_larger |\n", + "+--------------------------------------------+\n", + "| int64 |\n", + "+--------------------------------------------+\n", + "| 102137 |\n", + "| 102187 |\n", + "| 102188 |\n", + "| 70182 |\n", + "| 70149 |\n", + "+--------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.qual_hists.gq_hist_alt.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.qual_hists.gq_hist_alt.bin_freq |\n", + "+--------------------------------------------+\n", + "| array |\n", + "+--------------------------------------------+\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1] |\n", + "+--------------------------------------------+\n", + "\n", + "+---------------------------------------------+\n", + "| histograms.qual_hists.gq_hist_alt.n_smaller |\n", + "+---------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+---------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.qual_hists.gq_hist_alt.n_larger |\n", + "+--------------------------------------------+\n", + "| int64 |\n", + "+--------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+--------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.qual_hists.dp_hist_alt.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.qual_hists.dp_hist_alt.bin_freq |\n", + "+--------------------------------------------+\n", + "| array |\n", + "+--------------------------------------------+\n", + "| [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0] |\n", + "+--------------------------------------------+\n", + "\n", + "+---------------------------------------------+\n", + "| histograms.qual_hists.dp_hist_alt.n_smaller |\n", + "+---------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+---------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.qual_hists.dp_hist_alt.n_larger |\n", + "+--------------------------------------------+\n", + "| int64 |\n", + "+--------------------------------------------+\n", + "| 0 |\n", + "| 1 |\n", + "| 1 |\n", + "| 0 |\n", + "| 0 |\n", + "+--------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.qual_hists.ab_hist_alt.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.qual_hists.ab_hist_alt.bin_freq |\n", + "+--------------------------------------------+\n", + "| array |\n", + "+--------------------------------------------+\n", + "| [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0] |\n", + "+--------------------------------------------+\n", + "\n", + "+---------------------------------------------+\n", + "| histograms.qual_hists.ab_hist_alt.n_smaller |\n", + "+---------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+---------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.qual_hists.ab_hist_alt.n_larger |\n", + "+--------------------------------------------+\n", + "| int64 |\n", + "+--------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+--------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.raw_qual_hists.gq_hist_all.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+----------------------------------------------------------------+\n", + "| histograms.raw_qual_hists.gq_hist_all.bin_freq |\n", + "+----------------------------------------------------------------+\n", + "| array |\n", + "+----------------------------------------------------------------+\n", + "| [441,0,0,0,850,1,1469,0,311660,0,82,0,416443,0,0,0,0,0,0,1] |\n", + "| [1,0,0,0,1,0,2,0,314386,0,0,0,416555,0,0,0,0,0,0,2] |\n", + "| [0,0,0,0,1,0,1,0,314388,0,0,0,416555,0,0,0,0,0,0,2] |\n", + "| [890,0,0,0,783,0,1910,0,310815,0,33,0,416515,0,0,0,0,0,0,1] |\n", + "| [1313,0,2,0,1481,0,3800,0,308036,0,642,0,415672,0,0,0,0,0,0,1] |\n", + "+----------------------------------------------------------------+\n", + "\n", + "+-------------------------------------------------+\n", + "| histograms.raw_qual_hists.gq_hist_all.n_smaller |\n", + "+-------------------------------------------------+\n", + "| int64 |\n", + "+-------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+-------------------------------------------------+\n", + "\n", + "+------------------------------------------------+\n", + "| histograms.raw_qual_hists.gq_hist_all.n_larger |\n", + "+------------------------------------------------+\n", + "| int64 |\n", + "+------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.raw_qual_hists.dp_hist_all.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.raw_qual_hists.dp_hist_all.bin_freq |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [244,858,1593,833,16218,229270,272936,45138,9370,3566,3616,4059,4521,5017... |\n", + "| [0,0,1,279,16685,230939,273577,45298,9412,3597,3653,4094,4550,5034,5504,5... |\n", + "| [0,0,0,278,16685,230938,273578,45300,9412,3597,3653,4094,4550,5033,5504,5... |\n", + "| [431,622,1175,1493,3823,36589,211757,225880,49281,7441,3163,3441,5118,783... |\n", + "| [618,1142,2737,3303,4730,36128,209411,224276,48878,7369,3147,3425,5116,78... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+-------------------------------------------------+\n", + "| histograms.raw_qual_hists.dp_hist_all.n_smaller |\n", + "+-------------------------------------------------+\n", + "| int64 |\n", + "+-------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+-------------------------------------------------+\n", + "\n", + "+------------------------------------------------+\n", + "| histograms.raw_qual_hists.dp_hist_all.n_larger |\n", + "+------------------------------------------------+\n", + "| int64 |\n", + "+------------------------------------------------+\n", + "| 102137 |\n", + "| 102187 |\n", + "| 102188 |\n", + "| 70182 |\n", + "| 70149 |\n", + "+------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.raw_qual_hists.gq_hist_alt.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+------------------------------------------------+\n", + "| histograms.raw_qual_hists.gq_hist_alt.bin_freq |\n", + "+------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------+\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1] |\n", + "| [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1] |\n", + "+------------------------------------------------+\n", + "\n", + "+-------------------------------------------------+\n", + "| histograms.raw_qual_hists.gq_hist_alt.n_smaller |\n", + "+-------------------------------------------------+\n", + "| int64 |\n", + "+-------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+-------------------------------------------------+\n", + "\n", + "+------------------------------------------------+\n", + "| histograms.raw_qual_hists.gq_hist_alt.n_larger |\n", + "+------------------------------------------------+\n", + "| int64 |\n", + "+------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.raw_qual_hists.dp_hist_alt.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+------------------------------------------------+\n", + "| histograms.raw_qual_hists.dp_hist_alt.bin_freq |\n", + "+------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------+\n", + "| [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0] |\n", + "+------------------------------------------------+\n", + "\n", + "+-------------------------------------------------+\n", + "| histograms.raw_qual_hists.dp_hist_alt.n_smaller |\n", + "+-------------------------------------------------+\n", + "| int64 |\n", + "+-------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+-------------------------------------------------+\n", + "\n", + "+------------------------------------------------+\n", + "| histograms.raw_qual_hists.dp_hist_alt.n_larger |\n", + "+------------------------------------------------+\n", + "| int64 |\n", + "+------------------------------------------------+\n", + "| 0 |\n", + "| 1 |\n", + "| 1 |\n", + "| 0 |\n", + "| 0 |\n", + "+------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.raw_qual_hists.ab_hist_alt.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+------------------------------------------------+\n", + "| histograms.raw_qual_hists.ab_hist_alt.bin_freq |\n", + "+------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------+\n", + "| [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0] |\n", + "+------------------------------------------------+\n", + "\n", + "+-------------------------------------------------+\n", + "| histograms.raw_qual_hists.ab_hist_alt.n_smaller |\n", + "+-------------------------------------------------+\n", + "| int64 |\n", + "+-------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+-------------------------------------------------+\n", + "\n", + "+------------------------------------------------+\n", + "| histograms.raw_qual_hists.ab_hist_alt.n_larger |\n", + "+------------------------------------------------+\n", + "| int64 |\n", + "+------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.age_hists.age_hist_het.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.age_hists.age_hist_het.bin_freq |\n", + "+--------------------------------------------+\n", + "| array |\n", + "+--------------------------------------------+\n", + "| [0,0,0,0,1,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,1,0,0,0,0,0,0] |\n", + "| [0,0,0,0,1,0,0,0,0,0] |\n", + "+--------------------------------------------+\n", + "\n", + "+---------------------------------------------+\n", + "| histograms.age_hists.age_hist_het.n_smaller |\n", + "+---------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------+\n", + "| 0 |\n", + "| 1 |\n", + "| 1 |\n", + "| 0 |\n", + "| 0 |\n", + "+---------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.age_hists.age_hist_het.n_larger |\n", + "+--------------------------------------------+\n", + "| int64 |\n", + "+--------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+--------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.age_hists.age_hist_hom.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.age_hists.age_hist_hom.bin_freq |\n", + "+--------------------------------------------+\n", + "| array |\n", + "+--------------------------------------------+\n", + "| [0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0] |\n", + "+--------------------------------------------+\n", + "\n", + "+---------------------------------------------+\n", + "| histograms.age_hists.age_hist_hom.n_smaller |\n", + "+---------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+---------------------------------------------+\n", + "\n", + "+--------------------------------------------+---------------------------------+\n", + "| histograms.age_hists.age_hist_hom.n_larger | in_silico_predictors.cadd.phred |\n", + "+--------------------------------------------+---------------------------------+\n", + "| int64 | float32 |\n", + "+--------------------------------------------+---------------------------------+\n", + "| 0 | 3.40e+01 |\n", + "| 0 | 3.20e+01 |\n", + "| 0 | 3.30e+01 |\n", + "| 0 | 4.50e+01 |\n", + "| 0 | 3.50e+01 |\n", + "+--------------------------------------------+---------------------------------+\n", + "\n", + "+-------------------------------------+--------------------------------+\n", + "| in_silico_predictors.cadd.raw_score | in_silico_predictors.revel_max |\n", + "+-------------------------------------+--------------------------------+\n", + "| float32 | float64 |\n", + "+-------------------------------------+--------------------------------+\n", + "| 5.66e+00 | NA |\n", + "| 4.56e+00 | NA |\n", + "| 4.99e+00 | NA |\n", + "| 8.76e+00 | NA |\n", + "| 5.83e+00 | NA |\n", + "+-------------------------------------+--------------------------------+\n", + "\n", + "+--------------------------------------+\n", + "| in_silico_predictors.spliceai_ds_max |\n", + "+--------------------------------------+\n", + "| float32 |\n", + "+--------------------------------------+\n", + "| 9.60e-01 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 9.80e-01 |\n", + "+--------------------------------------+\n", + "\n", + "+------------------------------------------+-----------------------------+\n", + "| in_silico_predictors.pangolin_largest_ds | in_silico_predictors.phylop |\n", + "+------------------------------------------+-----------------------------+\n", + "| float64 | float64 |\n", + "+------------------------------------------+-----------------------------+\n", + "| -8.30e-01 | 6.33e+00 |\n", + "| -4.00e-02 | 8.89e+00 |\n", + "| -1.20e-01 | 3.00e-01 |\n", + "| -1.10e-01 | 8.79e+00 |\n", + "| -7.90e-01 | 6.35e+00 |\n", + "+------------------------------------------+-----------------------------+\n", + "\n", + "+-------------------------------+-----------------------------------+\n", + "| in_silico_predictors.sift_max | in_silico_predictors.polyphen_max |\n", + "+-------------------------------+-----------------------------------+\n", + "| float64 | float64 |\n", + "+-------------------------------+-----------------------------------+\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "+-------------------------------+-----------------------------------+\n", + "showing top 5 rows" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The total number of lof variants passing filters in DRD2 is: 17\n" + ] + } + ], "source": [ "var_ht = filter_by_consequence_category(plof=True, ht=drd2_ht)\n", "var_ht.show(5)\n", @@ -582,10 +2704,1079 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 7, "id": "86596aaf", "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
histograms
grpmax
fafmax
info
qual_hists
raw_qual_hists
age_hists
in_silico_predictors
gnomad
non_ukb
gnomad
non_ukb
vrs
vep
vqsr_results
region_flags
allele_info
gq_hist_all
dp_hist_all
gq_hist_alt
dp_hist_alt
ab_hist_alt
gq_hist_all
dp_hist_all
gq_hist_alt
dp_hist_alt
ab_hist_alt
age_hist_het
age_hist_hom
cadd
locus
alleles
freq
AC
AF
AN
homozygote_count
gen_anc
AC
AF
AN
homozygote_count
gen_anc
faf
faf95_max
faf95_max_gen_anc
faf99_max
faf99_max_gen_anc
faf95_max
faf95_max_gen_anc
faf99_max
faf99_max_gen_anc
a_index
was_split
rsid
filters
FS
MQ
MQRankSum
QUALapprox
QD
ReadPosRankSum
SB
SOR
VarDP
AS_FS
AS_MQ
AS_MQRankSum
AS_pab_max
AS_QUALapprox
AS_QD
AS_ReadPosRankSum
AS_SB_TABLE
AS_SOR
AS_VarDP
singleton
transmitted_singleton
sibling_singleton
omni
mills
monoallelic
only_het
AS_VQSLOD
inbreeding_coeff
VRS_Allele_IDs
VRS_Starts
VRS_Ends
VRS_States
allele_string
end
id
input
intergenic_consequences
most_severe_consequence
motif_feature_consequences
regulatory_feature_consequences
seq_region_name
start
strand
transcript_consequences
variant_class
AS_VQSLOD
AS_culprit
positive_train_site
negative_train_site
non_par
lcr
segdup
fail_interval_qc
outside_ukb_capture_region
outside_broad_capture_region
variant_type
n_alt_alleles
has_star
allele_type
was_mixed
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
phred
raw_score
revel_max
spliceai_ds_max
pangolin_largest_ds
phylop
sift_max
polyphen_max
locus<GRCh38>array<str>array<struct{AC: int32, AF: float64, AN: int32, homozygote_count: int64}>int32float64int32int64strint32float64int32int64strarray<struct{faf95: float64, faf99: float64}>float64strfloat64strfloat64strfloat64strint32boolset<str>set<str>float64float64float64int64float64float64array<int32>float64int32float64float64float64float64int64float64float64array<int32>float64int32boolboolboolboolboolboolboolfloat64float64array<str>array<int32>array<int32>array<str>strint32strstrarray<struct{allele_num: int32, consequence_terms: array<str>, impact: str, variant_allele: str}>strarray<struct{allele_num: int32, consequence_terms: array<str>, high_inf_pos: str, impact: str, motif_feature_id: str, motif_name: str, motif_pos: int32, motif_score_change: float64, transcription_factors: array<str>, strand: int32, variant_allele: str}>array<struct{allele_num: int32, biotype: str, consequence_terms: array<str>, impact: str, regulatory_feature_id: str, variant_allele: str}>strint32int32array<struct{allele_num: int32, amino_acids: str, appris: str, biotype: str, canonical: int32, ccds: str, cdna_start: int32, cdna_end: int32, cds_end: int32, cds_start: int32, codons: str, consequence_terms: array<str>, distance: int32, domains: array<struct{db: str, name: str}>, exon: str, flags: str, gene_id: str, gene_pheno: int32, gene_symbol: str, gene_symbol_source: str, hgnc_id: str, hgvsc: str, hgvsp: str, hgvs_offset: int32, impact: str, intron: str, lof: str, lof_flags: str, lof_filter: str, lof_info: str, mane_select: str, mane_plus_clinical: str, mirna: array<str>, protein_end: int32, protein_start: int32, protein_id: str, source: str, strand: int32, transcript_id: str, tsl: int32, uniprot_isoform: array<str>, variant_allele: str}>strfloat64strboolboolboolboolboolboolboolboolstrint32boolstrboolarray<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64float32float32float64float32float64float64float64float64
chr11:113410731["C","A"][(2,1.37e-06,1461866,0),(2,1.37e-06,1461894,0),(0,0.00e+00,33480,0),(2,4.47e-05,44724,0),(0,0.00e+00,26136,0),(0,0.00e+00,39698,0),(0,0.00e+00,53416,0),(0,0.00e+00,5752,0),(0,0.00e+00,1112010,0),(0,0.00e+00,60394,0),(0,0.00e+00,86256,0),(1,1.36e-06,734628,0),(1,1.38e-06,727238,0),(0,0.00e+00,19326,0),(0,0.00e+00,14154,0),(1,3.89e-05,25690,0),(1,5.25e-05,19034,0),(0,0.00e+00,12636,0),(0,0.00e+00,13500,0),(0,0.00e+00,20710,0),(0,0.00e+00,18988,0),(0,0.00e+00,27646,0),(0,0.00e+00,25770,0),(0,0.00e+00,2494,0),(0,0.00e+00,3258,0),(0,0.00e+00,572288,0),(0,0.00e+00,539722,0),(0,0.00e+00,31800,0),(0,0.00e+00,28594,0),(0,0.00e+00,22038,0),(0,0.00e+00,64218,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,996,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,1994,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,3990,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5752,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,19998,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,26136,0),(1,3.83e-05,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26134,0),(0,0.00e+00,26134,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26134,0),(0,0.00e+00,26136,0),(0,0.00e+00,33480,0),(2,5.97e-05,33480,0),(0,0.00e+00,33478,0),(0,0.00e+00,33476,0),(0,0.00e+00,33480,0),(0,0.00e+00,33478,0),(0,0.00e+00,33478,0),(0,0.00e+00,33480,0),(2,5.04e-05,39700,0),(0,0.00e+00,39698,0),(0,0.00e+00,39696,0),(0,0.00e+00,39700,0),(0,0.00e+00,39698,0),(0,0.00e+00,39698,0),(0,0.00e+00,39700,0),(2,5.00e-05,40000,0),(0,0.00e+00,39996,0),(0,0.00e+00,40000,0),(0,0.00e+00,39998,0),(0,0.00e+00,39998,0),(0,0.00e+00,40000,0),(2,4.47e-05,44724,0),(0,0.00e+00,44720,0),(0,0.00e+00,44724,0),(0,0.00e+00,44722,0),(0,0.00e+00,44722,0),(0,0.00e+00,44724,0),(0,0.00e+00,53416,0),(0,0.00e+00,53420,0),(0,0.00e+00,53418,0),(0,0.00e+00,53418,0),(0,0.00e+00,53420,0),(0,0.00e+00,60396,0),(0,0.00e+00,60394,0),(0,0.00e+00,60394,0),(0,0.00e+00,60396,0),(0,0.00e+00,86258,0),(0,0.00e+00,86256,0),(0,0.00e+00,86256,0),(0,0.00e+00,100000,0),(0,0.00e+00,99998,0),(0,0.00e+00,200000,0),(0,0.00e+00,199998,0),(0,0.00e+00,400000,0),(0,0.00e+00,399996,0),(0,0.00e+00,999998,0),(1,1.00e-06,999978,0),(0,0.00e+00,1112010,0),(2,1.80e-06,1111990,0),(2,3.18e-06,628756,0),(2,3.18e-06,628784,0),(0,0.00e+00,17694,0),(2,4.57e-05,43740,0),(0,0.00e+00,20984,0),(0,0.00e+00,36068,0),(0,0.00e+00,53140,0),(0,0.00e+00,4132,0),(0,0.00e+00,350106,0),(0,0.00e+00,33096,0),(0,0.00e+00,69796,0),(1,3.49e-06,286232,0),(1,2.92e-06,342524,0),(0,0.00e+00,10286,0),(0,0.00e+00,7408,0),(1,3.99e-05,25040,0),(1,5.35e-05,18700,0),(0,0.00e+00,9838,0),(0,0.00e+00,11146,0),(0,0.00e+00,18296,0),(0,0.00e+00,17772,0),(0,0.00e+00,27396,0),(0,0.00e+00,25744,0),(0,0.00e+00,1904,0),(0,0.00e+00,2228,0),(0,0.00e+00,162220,0),(0,0.00e+00,187886,0),(0,0.00e+00,16752,0),(0,0.00e+00,16344,0),(0,0.00e+00,14500,0),(0,0.00e+00,55296,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,198,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,996,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,1990,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,3984,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4132,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17692,0),(0,0.00e+00,17694,0),(0,0.00e+00,17692,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(1,5.00e-05,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,19998,0),(0,0.00e+00,20000,0),(0,0.00e+00,19998,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(1,4.77e-05,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20982,0),(0,0.00e+00,20984,0),(0,0.00e+00,20982,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(2,6.04e-05,33098,0),(0,0.00e+00,33096,0),(0,0.00e+00,33094,0),(0,0.00e+00,33098,0),(0,0.00e+00,33096,0),(0,0.00e+00,33096,0),(0,0.00e+00,33096,0),(2,5.54e-05,36070,0),(0,0.00e+00,36068,0),(0,0.00e+00,36066,0),(0,0.00e+00,36070,0),(0,0.00e+00,36068,0),(0,0.00e+00,36068,0),(2,5.00e-05,40000,0),(0,0.00e+00,39996,0),(0,0.00e+00,40000,0),(0,0.00e+00,39998,0),(0,0.00e+00,39998,0),(2,4.57e-05,43740,0),(0,0.00e+00,43736,0),(0,0.00e+00,43740,0),(0,0.00e+00,43738,0),(0,0.00e+00,43738,0),(0,0.00e+00,53140,0),(0,0.00e+00,53144,0),(0,0.00e+00,53142,0),(0,0.00e+00,53142,0),(0,0.00e+00,69798,0),(0,0.00e+00,69796,0),(0,0.00e+00,69796,0),(0,0.00e+00,100000,0),(0,0.00e+00,99996,0),(0,0.00e+00,199998,0),(0,0.00e+00,199990,0),(0,0.00e+00,350106,0),(1,2.86e-06,350088,0),(1,2.50e-06,399978,0)]24.47e-05447240"amr"24.57e-05437400"amr"[(2.30e-07,9.00e-08),(0.00e+00,0.00e+00),(7.41e-06,2.77e-06),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,(5.30e-07,2.00e-07),(0.00e+00,0.00e+00),(7.58e-06,2.84e-06),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]7.41e-06"amr"2.77e-06"amr"7.58e-06"amr"2.84e-06"amr"1True{"rs140938110"}{}5.56e+006.00e+010.00e+0038621.02e+01-1.98e-01[134,83,109,52]9.81e-013781.31e+016.00e+010.00e+002.94e-0118951.06e+012.52e-01[134,83,56,19]1.42e+00179FalseNANAFalseFalseFalseFalse5.27e+00-1.37e-06["ga4gh:VA.RY2FNHeS0QpJNM9lQpQ_pzX7Q27-MXmI","ga4gh:VA.ZonDIhdwyghm7SuWkXynZVYg2s9ceaeP"][113410730,113410730][113410731,113410731]["C","A"]"C/A"113410731".""chr11\t113410731\t.\tC\tA\t.\t.\tGT"NA"missense_variant"NANA"chr11"1134107311[(1,"C/F",NA,"protein_coding",NA,"CCDS8362.1",1317,1317,1241,1241,"tGc/tTc",["missense_variant"],NA,[("Gene3D","1"),("Superfamily","SSF81321")],"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000346454.7:c.1241G>T","ENSP00000278597.5:p.Cys414Phe",NA,"MODERATE",NA,NA,NA,NA,NA,NA,NA,NA,414,414,"ENSP00000278597","Ensembl",-1,"ENST00000346454",1,["P14416-2"],"A"),(1,"C/F","P2","protein_coding",1,"CCDS8361.1",1682,1682,1328,1328,"tGc/tTc",["missense_variant"],NA,[("Gene3D","1"),("ENSP_mappings","5aer"),("ENSP_mappings","5aer"),("ENSP_mappings","6cm4"),("ENSP_mappings","6luq"),("ENSP_mappings","6vms"),("ENSP_mappings","7dfp"),("ENSP_mappings","7jvr"),("Superfamily","SSF81321")],"8/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000362072.8:c.1328G>T","ENSP00000354859.3:p.Cys443Phe",NA,"MODERATE",NA,NA,NA,NA,NA,"NM_000795.4",NA,NA,443,443,"ENSP00000354859","Ensembl",-1,"ENST00000362072",1,["P14416-1"],"A"),(1,NA,NA,"processed_transcript",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],3644,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000535984",3,NA,"A"),(1,"C/F","A1","protein_coding",NA,NA,1334,1334,1334,1334,"tGc/tTc",["missense_variant"],NA,[("Gene3D","1"),("Superfamily","SSF81321")],"8/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000538967.5:c.1334G>T","ENSP00000438215.1:p.Cys445Phe",NA,"MODERATE",NA,NA,NA,NA,NA,NA,NA,NA,445,445,"ENSP00000438215","Ensembl",-1,"ENST00000538967",5,["P14416-3"],"A"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],4563,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000539420",3,NA,"A"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],3133,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000540600",1,NA,"A"),(1,"C/F","P2","protein_coding",NA,"CCDS8361.1",1649,1649,1328,1328,"tGc/tTc",["missense_variant"],NA,[("Gene3D","1"),("ENSP_mappings","5aer"),("ENSP_mappings","5aer"),("ENSP_mappings","6cm4"),("ENSP_mappings","6luq"),("ENSP_mappings","6vms"),("ENSP_mappings","7dfp"),("ENSP_mappings","7jvr"),("Superfamily","SSF81321")],"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000542968.5:c.1328G>T","ENSP00000442172.1:p.Cys443Phe",NA,"MODERATE",NA,NA,NA,NA,NA,NA,NA,NA,443,443,"ENSP00000442172","Ensembl",-1,"ENST00000542968",1,["P14416-1"],"A"),(1,"C/F","A1","protein_coding",NA,NA,1358,1358,1325,1325,"tGc/tTc",["missense_variant"],NA,[("Gene3D","1"),("Superfamily","SSF81321")],"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000544518.5:c.1325G>T","ENSP00000441068.1:p.Cys442Phe",NA,"MODERATE",NA,NA,NA,NA,NA,NA,NA,NA,442,442,"ENSP00000441068","Ensembl",-1,"ENST00000544518",1,NA,"A"),(1,NA,NA,"lncRNA",1,NA,NA,NA,NA,NA,NA,["intron_variant","non_coding_transcript_variant"],NA,NA,NA,NA,"ENSG00000256757",NA,NA,NA,NA,"ENST00000546284.1:n.245-816C>A",NA,NA,"MODIFIER","2/3",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",1,"ENST00000546284",3,NA,"A"),(1,"C/F",NA,"protein_coding",1,NA,1682,1682,1328,1328,"tGc/tTc",["missense_variant"],NA,NA,"8/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_000795.4:c.1328G>T","NP_000786.1:p.Cys443Phe",NA,"MODERATE",NA,NA,NA,NA,NA,"ENST00000362072.8",NA,NA,443,443,"NP_000786.1","RefSeq",-1,"NM_000795.4",NA,NA,"A"),(1,"C/F",NA,"protein_coding",NA,NA,1595,1595,1241,1241,"tGc/tTc",["missense_variant"],NA,NA,"7/7",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_016574.4:c.1241G>T","NP_057658.2:p.Cys414Phe",NA,"MODERATE",NA,NA,NA,NA,NA,NA,NA,NA,414,414,"NP_057658.2","RefSeq",-1,"NM_016574.4",NA,NA,"A"),(1,"C/F",NA,"protein_coding",NA,NA,1410,1410,1328,1328,"tGc/tTc",["missense_variant"],NA,NA,"8/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","XM_017017296.2:c.1328G>T","XP_016872785.1:p.Cys443Phe",NA,"MODERATE",NA,NA,NA,NA,NA,NA,NA,NA,443,443,"XP_016872785.1","RefSeq",-1,"XM_017017296.2",NA,NA,"A")]"SNV"5.27e+00"AS_MQ"FalseFalseFalseFalseFalseTrueFalseFalse"multi-snv"2False"snv"False[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,21,0,124,0,314262,0,99,0,416424,0,0,0,0,0,0,3]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,98,374,11344,107362,344923,189028,36319,5607,2388,2759,3074,2931,2955,2915,2973,2922,2564,2682]07715[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0]01[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][7,0,0,0,28,0,124,0,314262,0,99,0,416424,0,0,0,0,0,0,3]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,7,98,380,11345,107362,344923,189028,36319,5607,2388,2759,3074,2931,2955,2915,2973,2922,2564,2682]07715[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0]01[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]10[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]002.77e+014.10e+006.02e-010.00e+000.00e+008.78e+000.00e+009.89e-01
chr11:113410731["C","T"][(1,6.84e-07,1461866,0),(1,6.84e-07,1461894,0),(0,0.00e+00,33480,0),(0,0.00e+00,44724,0),(0,0.00e+00,26136,0),(0,0.00e+00,39698,0),(0,0.00e+00,53416,0),(0,0.00e+00,5752,0),(1,8.99e-07,1112010,0),(0,0.00e+00,60394,0),(0,0.00e+00,86256,0),(1,1.36e-06,734628,0),(0,0.00e+00,727238,0),(0,0.00e+00,19326,0),(0,0.00e+00,14154,0),(0,0.00e+00,25690,0),(0,0.00e+00,19034,0),(0,0.00e+00,12636,0),(0,0.00e+00,13500,0),(0,0.00e+00,20710,0),(0,0.00e+00,18988,0),(0,0.00e+00,27646,0),(0,0.00e+00,25770,0),(0,0.00e+00,2494,0),(0,0.00e+00,3258,0),(1,1.75e-06,572288,0),(0,0.00e+00,539722,0),(0,0.00e+00,31800,0),(0,0.00e+00,28594,0),(0,0.00e+00,22038,0),(0,0.00e+00,64218,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,996,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,1994,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,3990,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5752,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,19998,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26134,0),(0,0.00e+00,26134,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26134,0),(0,0.00e+00,26136,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33478,0),(0,0.00e+00,33476,0),(0,0.00e+00,33480,0),(0,0.00e+00,33478,0),(0,0.00e+00,33478,0),(0,0.00e+00,33480,0),(0,0.00e+00,39700,0),(0,0.00e+00,39698,0),(0,0.00e+00,39696,0),(0,0.00e+00,39700,0),(0,0.00e+00,39698,0),(0,0.00e+00,39698,0),(0,0.00e+00,39700,0),(0,0.00e+00,40000,0),(0,0.00e+00,39996,0),(0,0.00e+00,40000,0),(0,0.00e+00,39998,0),(0,0.00e+00,39998,0),(0,0.00e+00,40000,0),(0,0.00e+00,44724,0),(0,0.00e+00,44720,0),(0,0.00e+00,44724,0),(0,0.00e+00,44722,0),(0,0.00e+00,44722,0),(0,0.00e+00,44724,0),(0,0.00e+00,53416,0),(0,0.00e+00,53420,0),(0,0.00e+00,53418,0),(0,0.00e+00,53418,0),(0,0.00e+00,53420,0),(0,0.00e+00,60396,0),(0,0.00e+00,60394,0),(0,0.00e+00,60394,0),(0,0.00e+00,60396,0),(0,0.00e+00,86258,0),(0,0.00e+00,86256,0),(0,0.00e+00,86256,0),(0,0.00e+00,100000,0),(0,0.00e+00,99998,0),(0,0.00e+00,200000,0),(0,0.00e+00,199998,0),(0,0.00e+00,400000,0),(0,0.00e+00,399996,0),(1,1.00e-06,999998,0),(0,0.00e+00,999978,0),(1,8.99e-07,1112010,0),(1,8.99e-07,1111990,0),(0,0.00e+00,628756,0),(0,0.00e+00,628784,0),(0,0.00e+00,17694,0),(0,0.00e+00,43740,0),(0,0.00e+00,20984,0),(0,0.00e+00,36068,0),(0,0.00e+00,53140,0),(0,0.00e+00,4132,0),(0,0.00e+00,350106,0),(0,0.00e+00,33096,0),(0,0.00e+00,69796,0),(0,0.00e+00,286232,0),(0,0.00e+00,342524,0),(0,0.00e+00,10286,0),(0,0.00e+00,7408,0),(0,0.00e+00,25040,0),(0,0.00e+00,18700,0),(0,0.00e+00,9838,0),(0,0.00e+00,11146,0),(0,0.00e+00,18296,0),(0,0.00e+00,17772,0),(0,0.00e+00,27396,0),(0,0.00e+00,25744,0),(0,0.00e+00,1904,0),(0,0.00e+00,2228,0),(0,0.00e+00,162220,0),(0,0.00e+00,187886,0),(0,0.00e+00,16752,0),(0,0.00e+00,16344,0),(0,0.00e+00,14500,0),(0,0.00e+00,55296,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,198,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,996,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,1990,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,3984,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4132,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17692,0),(0,0.00e+00,17694,0),(0,0.00e+00,17692,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,19998,0),(0,0.00e+00,20000,0),(0,0.00e+00,19998,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20982,0),(0,0.00e+00,20984,0),(0,0.00e+00,20982,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,33098,0),(0,0.00e+00,33096,0),(0,0.00e+00,33094,0),(0,0.00e+00,33098,0),(0,0.00e+00,33096,0),(0,0.00e+00,33096,0),(0,0.00e+00,33096,0),(0,0.00e+00,36070,0),(0,0.00e+00,36068,0),(0,0.00e+00,36066,0),(0,0.00e+00,36070,0),(0,0.00e+00,36068,0),(0,0.00e+00,36068,0),(0,0.00e+00,40000,0),(0,0.00e+00,39996,0),(0,0.00e+00,40000,0),(0,0.00e+00,39998,0),(0,0.00e+00,39998,0),(0,0.00e+00,43740,0),(0,0.00e+00,43736,0),(0,0.00e+00,43740,0),(0,0.00e+00,43738,0),(0,0.00e+00,43738,0),(0,0.00e+00,53140,0),(0,0.00e+00,53144,0),(0,0.00e+00,53142,0),(0,0.00e+00,53142,0),(0,0.00e+00,69798,0),(0,0.00e+00,69796,0),(0,0.00e+00,69796,0),(0,0.00e+00,100000,0),(0,0.00e+00,99996,0),(0,0.00e+00,199998,0),(0,0.00e+00,199990,0),(0,0.00e+00,350106,0),(0,0.00e+00,350088,0),(0,0.00e+00,399978,0)]18.99e-0711120100"nfe"NANANANANA[(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]NANANANANANANANA2TrueNA{}5.56e+006.00e+010.00e+0038621.02e+01-1.98e-01[134,83,109,52]9.81e-013780.00e+006.00e+010.00e+009.04e-0119679.88e+00-5.01e-01[134,83,53,33]6.81e-01199TrueFalseFalseFalseFalseFalseFalse5.40e+00-6.84e-07["ga4gh:VA.RY2FNHeS0QpJNM9lQpQ_pzX7Q27-MXmI","ga4gh:VA.Hp20SlFHUdM7jlWmVV27L6utrtRpDmAq"][113410730,113410730][113410731,113410731]["C","T"]"C/T"113410731".""chr11\t113410731\t.\tC\tT\t.\t.\tGT"NA"missense_variant"NANA"chr11"1134107311[(1,"C/Y",NA,"protein_coding",NA,"CCDS8362.1",1317,1317,1241,1241,"tGc/tAc",["missense_variant"],NA,[("Gene3D","1"),("Superfamily","SSF81321")],"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000346454.7:c.1241G>A","ENSP00000278597.5:p.Cys414Tyr",NA,"MODERATE",NA,NA,NA,NA,NA,NA,NA,NA,414,414,"ENSP00000278597","Ensembl",-1,"ENST00000346454",1,["P14416-2"],"T"),(1,"C/Y","P2","protein_coding",1,"CCDS8361.1",1682,1682,1328,1328,"tGc/tAc",["missense_variant"],NA,[("Gene3D","1"),("ENSP_mappings","5aer"),("ENSP_mappings","5aer"),("ENSP_mappings","6cm4"),("ENSP_mappings","6luq"),("ENSP_mappings","6vms"),("ENSP_mappings","7dfp"),("ENSP_mappings","7jvr"),("Superfamily","SSF81321")],"8/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000362072.8:c.1328G>A","ENSP00000354859.3:p.Cys443Tyr",NA,"MODERATE",NA,NA,NA,NA,NA,"NM_000795.4",NA,NA,443,443,"ENSP00000354859","Ensembl",-1,"ENST00000362072",1,["P14416-1"],"T"),(1,NA,NA,"processed_transcript",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],3644,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000535984",3,NA,"T"),(1,"C/Y","A1","protein_coding",NA,NA,1334,1334,1334,1334,"tGc/tAc",["missense_variant"],NA,[("Gene3D","1"),("Superfamily","SSF81321")],"8/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000538967.5:c.1334G>A","ENSP00000438215.1:p.Cys445Tyr",NA,"MODERATE",NA,NA,NA,NA,NA,NA,NA,NA,445,445,"ENSP00000438215","Ensembl",-1,"ENST00000538967",5,["P14416-3"],"T"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],4563,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000539420",3,NA,"T"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],3133,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000540600",1,NA,"T"),(1,"C/Y","P2","protein_coding",NA,"CCDS8361.1",1649,1649,1328,1328,"tGc/tAc",["missense_variant"],NA,[("Gene3D","1"),("ENSP_mappings","5aer"),("ENSP_mappings","5aer"),("ENSP_mappings","6cm4"),("ENSP_mappings","6luq"),("ENSP_mappings","6vms"),("ENSP_mappings","7dfp"),("ENSP_mappings","7jvr"),("Superfamily","SSF81321")],"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000542968.5:c.1328G>A","ENSP00000442172.1:p.Cys443Tyr",NA,"MODERATE",NA,NA,NA,NA,NA,NA,NA,NA,443,443,"ENSP00000442172","Ensembl",-1,"ENST00000542968",1,["P14416-1"],"T"),(1,"C/Y","A1","protein_coding",NA,NA,1358,1358,1325,1325,"tGc/tAc",["missense_variant"],NA,[("Gene3D","1"),("Superfamily","SSF81321")],"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000544518.5:c.1325G>A","ENSP00000441068.1:p.Cys442Tyr",NA,"MODERATE",NA,NA,NA,NA,NA,NA,NA,NA,442,442,"ENSP00000441068","Ensembl",-1,"ENST00000544518",1,NA,"T"),(1,NA,NA,"lncRNA",1,NA,NA,NA,NA,NA,NA,["intron_variant","non_coding_transcript_variant"],NA,NA,NA,NA,"ENSG00000256757",NA,NA,NA,NA,"ENST00000546284.1:n.245-816C>T",NA,NA,"MODIFIER","2/3",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",1,"ENST00000546284",3,NA,"T"),(1,"C/Y",NA,"protein_coding",1,NA,1682,1682,1328,1328,"tGc/tAc",["missense_variant"],NA,NA,"8/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_000795.4:c.1328G>A","NP_000786.1:p.Cys443Tyr",NA,"MODERATE",NA,NA,NA,NA,NA,"ENST00000362072.8",NA,NA,443,443,"NP_000786.1","RefSeq",-1,"NM_000795.4",NA,NA,"T"),(1,"C/Y",NA,"protein_coding",NA,NA,1595,1595,1241,1241,"tGc/tAc",["missense_variant"],NA,NA,"7/7",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_016574.4:c.1241G>A","NP_057658.2:p.Cys414Tyr",NA,"MODERATE",NA,NA,NA,NA,NA,NA,NA,NA,414,414,"NP_057658.2","RefSeq",-1,"NM_016574.4",NA,NA,"T"),(1,"C/Y",NA,"protein_coding",NA,NA,1410,1410,1328,1328,"tGc/tAc",["missense_variant"],NA,NA,"8/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","XM_017017296.2:c.1328G>A","XP_016872785.1:p.Cys443Tyr",NA,"MODERATE",NA,NA,NA,NA,NA,NA,NA,NA,443,443,"XP_016872785.1","RefSeq",-1,"XM_017017296.2",NA,NA,"T")]"SNV"5.40e+00"AS_MQ"FalseFalseFalseFalseFalseTrueFalseFalse"multi-snv"2False"snv"False[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,21,0,124,0,314262,0,99,0,416424,0,0,0,0,0,0,3]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,98,374,11344,107362,344923,189028,36319,5607,2388,2759,3074,2931,2955,2915,2973,2922,2564,2682]07715[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][7,0,0,0,28,0,124,0,314262,0,99,0,416424,0,0,0,0,0,0,3]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,7,98,380,11345,107362,344923,189028,36319,5607,2388,2759,3074,2931,2955,2915,2973,2922,2564,2682]07715[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,1,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]002.75e+014.07e+007.19e-010.00e+002.00e-028.78e+000.00e+009.89e-01
chr11:113410735["G","A"][(75,5.13e-05,1461876,0),(75,5.13e-05,1461894,0),(0,0.00e+00,33480,0),(0,0.00e+00,44724,0),(58,2.22e-03,26136,0),(0,0.00e+00,39700,0),(0,0.00e+00,53418,0),(0,0.00e+00,5762,0),(8,7.19e-06,1112004,0),(9,1.49e-04,60396,0),(0,0.00e+00,86256,0),(39,5.31e-05,734640,0),(36,4.95e-05,727236,0),(0,0.00e+00,19326,0),(0,0.00e+00,14154,0),(0,0.00e+00,25690,0),(0,0.00e+00,19034,0),(29,2.30e-03,12636,0),(29,2.15e-03,13500,0),(0,0.00e+00,20712,0),(0,0.00e+00,18988,0),(0,0.00e+00,27648,0),(0,0.00e+00,25770,0),(0,0.00e+00,2504,0),(0,0.00e+00,3258,0),(5,8.74e-06,572286,0),(3,5.56e-06,539718,0),(5,1.57e-04,31800,0),(4,1.40e-04,28596,0),(0,0.00e+00,22038,0),(0,0.00e+00,64218,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,18,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,198,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(1,1.00e-03,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,998,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(4,2.00e-03,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,1998,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(7,1.75e-03,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,3996,0),(0,0.00e+00,4000,0),(1,2.50e-04,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,3998,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(11,1.91e-03,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5762,0),(0,0.00e+00,5768,0),(1,1.73e-04,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5766,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(22,2.20e-03,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(2,2.00e-04,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,9998,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(46,2.30e-03,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(3,1.50e-04,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,19998,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(58,2.22e-03,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(3,1.15e-04,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26134,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(6,1.79e-04,33480,0),(0,0.00e+00,33480,0),(1,2.99e-05,33478,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(7,1.76e-04,39700,0),(0,0.00e+00,39700,0),(1,2.52e-05,39698,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(7,1.75e-04,40000,0),(0,0.00e+00,39998,0),(1,2.50e-05,39998,0),(0,0.00e+00,44724,0),(0,0.00e+00,44722,0),(0,0.00e+00,44724,0),(7,1.57e-04,44724,0),(0,0.00e+00,44722,0),(1,2.24e-05,44722,0),(0,0.00e+00,53418,0),(0,0.00e+00,53420,0),(9,1.68e-04,53420,0),(0,0.00e+00,53418,0),(1,1.87e-05,53418,0),(0,0.00e+00,60396,0),(9,1.49e-04,60396,0),(0,0.00e+00,60394,0),(2,3.31e-05,60394,0),(0,0.00e+00,86258,0),(0,0.00e+00,86256,0),(4,4.64e-05,86256,0),(0,0.00e+00,100000,0),(5,5.00e-05,99998,0),(0,0.00e+00,200000,0),(9,4.50e-05,199998,0),(3,7.50e-06,399998,0),(21,5.25e-05,399998,0),(6,6.00e-06,999994,0),(50,5.00e-05,999992,0),(8,7.19e-06,1112004,0),(58,5.22e-05,1112000,0),(60,9.54e-05,628768,0),(60,9.54e-05,628784,0),(0,0.00e+00,17694,0),(0,0.00e+00,43740,0),(50,2.38e-03,20984,0),(0,0.00e+00,36070,0),(0,0.00e+00,53142,0),(0,0.00e+00,4142,0),(2,5.71e-06,350102,0),(8,2.42e-04,33098,0),(0,0.00e+00,69796,0),(30,1.05e-04,286244,0),(30,8.76e-05,342524,0),(0,0.00e+00,10286,0),(0,0.00e+00,7408,0),(0,0.00e+00,25040,0),(0,0.00e+00,18700,0),(24,2.44e-03,9838,0),(26,2.33e-03,11146,0),(0,0.00e+00,18298,0),(0,0.00e+00,17772,0),(0,0.00e+00,27398,0),(0,0.00e+00,25744,0),(0,0.00e+00,1914,0),(0,0.00e+00,2228,0),(2,1.23e-05,162218,0),(0,0.00e+00,187884,0),(4,2.39e-04,16752,0),(4,2.45e-04,16346,0),(0,0.00e+00,14500,0),(0,0.00e+00,55296,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,18,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,198,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(1,1.00e-03,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,998,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(4,2.00e-03,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,1998,0),(0,0.00e+00,2000,0),(1,5.00e-04,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,1998,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(6,1.50e-03,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,3994,0),(0,0.00e+00,4000,0),(2,5.00e-04,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,3998,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(7,1.69e-03,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4142,0),(0,0.00e+00,4148,0),(2,4.82e-04,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4146,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(19,1.90e-03,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(3,3.00e-04,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,9998,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(42,2.37e-03,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(6,3.39e-04,17694,0),(0,0.00e+00,17694,0),(1,5.65e-05,17692,0),(0,0.00e+00,20000,0),(49,2.45e-03,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(6,3.00e-04,20000,0),(0,0.00e+00,20000,0),(1,5.00e-05,19998,0),(0,0.00e+00,20984,0),(50,2.38e-03,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(6,2.86e-04,20984,0),(0,0.00e+00,20984,0),(1,4.77e-05,20982,0),(0,0.00e+00,33098,0),(0,0.00e+00,33098,0),(0,0.00e+00,33098,0),(0,0.00e+00,33098,0),(8,2.42e-04,33098,0),(0,0.00e+00,33096,0),(3,9.06e-05,33096,0),(0,0.00e+00,36070,0),(0,0.00e+00,36070,0),(0,0.00e+00,36070,0),(0,0.00e+00,36070,0),(0,0.00e+00,36068,0),(4,1.11e-04,36068,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,39998,0),(5,1.25e-04,39998,0),(0,0.00e+00,43740,0),(0,0.00e+00,43738,0),(0,0.00e+00,43740,0),(0,0.00e+00,43738,0),(5,1.14e-04,43738,0),(0,0.00e+00,53142,0),(0,0.00e+00,53144,0),(0,0.00e+00,53142,0),(5,9.41e-05,53142,0),(0,0.00e+00,69798,0),(0,0.00e+00,69796,0),(6,8.60e-05,69796,0),(1,1.00e-05,100000,0),(8,8.00e-05,99998,0),(1,5.00e-06,199998,0),(21,1.05e-04,199998,0),(2,5.71e-06,350102,0),(31,8.85e-05,350102,0),(37,9.25e-05,399992,0)]87.19e-0611120040"nfe"25.71e-063501020"nfe"[(4.19e-05,3.82e-05),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(3.09e-06,2.24e-06),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,(7.54e-05,6.91e-05),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(9.50e-07,3.60e-07),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]3.09e-06"nfe"2.24e-06"nfe"9.50e-07"nfe"3.60e-07"nfe"1True{"rs201801648"}{}0.00e+006.00e+010.00e+001275011.23e+013.70e-02[3240,2211,2993,1962]7.34e-01104040.00e+006.00e+010.00e+001.00e+001274801.23e+011.60e-02[3240,2211,2991,1961]7.34e-0110383FalseNANAFalseFalseFalseFalse8.85e+00-5.13e-05["ga4gh:VA.SBSoboxxiC0V-mhjjHg2geRlf3I0Ib2d","ga4gh:VA.GzUD_86k_EDbtk-R58BTRVazmjZW2O1U"][113410734,113410734][113410735,113410735]["G","A"]"G/A"113410735".""chr11\t113410735\t.\tG\tA\t.\t.\tGT"NA"missense_variant"NANA"chr11"1134107351[(1,"H/Y",NA,"protein_coding",NA,"CCDS8362.1",1313,1313,1237,1237,"Cac/Tac",["missense_variant"],NA,[("Gene3D","1"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("Superfamily","SSF81321")],"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000346454.7:c.1237C>T","ENSP00000278597.5:p.His413Tyr",NA,"MODERATE",NA,NA,NA,NA,NA,NA,NA,NA,413,413,"ENSP00000278597","Ensembl",-1,"ENST00000346454",1,["P14416-2"],"A"),(1,"H/Y","P2","protein_coding",1,"CCDS8361.1",1678,1678,1324,1324,"Cac/Tac",["missense_variant"],NA,[("Gene3D","1"),("ENSP_mappings","5aer"),("ENSP_mappings","5aer"),("ENSP_mappings","6cm4"),("ENSP_mappings","6luq"),("ENSP_mappings","6vms"),("ENSP_mappings","7dfp"),("ENSP_mappings","7jvr"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("Superfamily","SSF81321")],"8/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000362072.8:c.1324C>T","ENSP00000354859.3:p.His442Tyr",NA,"MODERATE",NA,NA,NA,NA,NA,"NM_000795.4",NA,NA,442,442,"ENSP00000354859","Ensembl",-1,"ENST00000362072",1,["P14416-1"],"A"),(1,NA,NA,"processed_transcript",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],3640,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000535984",3,NA,"A"),(1,"H/Y","A1","protein_coding",NA,NA,1330,1330,1330,1330,"Cac/Tac",["missense_variant"],NA,[("Gene3D","1"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("Superfamily","SSF81321")],"8/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000538967.5:c.1330C>T","ENSP00000438215.1:p.His444Tyr",NA,"MODERATE",NA,NA,NA,NA,NA,NA,NA,NA,444,444,"ENSP00000438215","Ensembl",-1,"ENST00000538967",5,["P14416-3"],"A"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],4559,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000539420",3,NA,"A"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],3129,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000540600",1,NA,"A"),(1,"H/Y","P2","protein_coding",NA,"CCDS8361.1",1645,1645,1324,1324,"Cac/Tac",["missense_variant"],NA,[("Gene3D","1"),("ENSP_mappings","5aer"),("ENSP_mappings","5aer"),("ENSP_mappings","6cm4"),("ENSP_mappings","6luq"),("ENSP_mappings","6vms"),("ENSP_mappings","7dfp"),("ENSP_mappings","7jvr"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("Superfamily","SSF81321")],"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000542968.5:c.1324C>T","ENSP00000442172.1:p.His442Tyr",NA,"MODERATE",NA,NA,NA,NA,NA,NA,NA,NA,442,442,"ENSP00000442172","Ensembl",-1,"ENST00000542968",1,["P14416-1"],"A"),(1,"H/Y","A1","protein_coding",NA,NA,1354,1354,1321,1321,"Cac/Tac",["missense_variant"],NA,[("Gene3D","1"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("Superfamily","SSF81321")],"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000544518.5:c.1321C>T","ENSP00000441068.1:p.His441Tyr",NA,"MODERATE",NA,NA,NA,NA,NA,NA,NA,NA,441,441,"ENSP00000441068","Ensembl",-1,"ENST00000544518",1,NA,"A"),(1,NA,NA,"lncRNA",1,NA,NA,NA,NA,NA,NA,["intron_variant","non_coding_transcript_variant"],NA,NA,NA,NA,"ENSG00000256757",NA,NA,NA,NA,"ENST00000546284.1:n.245-812G>A",NA,NA,"MODIFIER","2/3",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",1,"ENST00000546284",3,NA,"A"),(1,"H/Y",NA,"protein_coding",1,NA,1678,1678,1324,1324,"Cac/Tac",["missense_variant"],NA,NA,"8/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_000795.4:c.1324C>T","NP_000786.1:p.His442Tyr",NA,"MODERATE",NA,NA,NA,NA,NA,"ENST00000362072.8",NA,NA,442,442,"NP_000786.1","RefSeq",-1,"NM_000795.4",NA,NA,"A"),(1,"H/Y",NA,"protein_coding",NA,NA,1591,1591,1237,1237,"Cac/Tac",["missense_variant"],NA,NA,"7/7",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_016574.4:c.1237C>T","NP_057658.2:p.His413Tyr",NA,"MODERATE",NA,NA,NA,NA,NA,NA,NA,NA,413,413,"NP_057658.2","RefSeq",-1,"NM_016574.4",NA,NA,"A"),(1,"H/Y",NA,"protein_coding",NA,NA,1406,1406,1324,1324,"Cac/Tac",["missense_variant"],NA,NA,"8/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","XM_017017296.2:c.1324C>T","XP_016872785.1:p.His442Tyr",NA,"MODERATE",NA,NA,NA,NA,NA,NA,NA,NA,442,442,"XP_016872785.1","RefSeq",-1,"XM_017017296.2",NA,NA,"A")]"SNV"8.85e+00"AS_MQ"FalseFalseFalseFalseFalseTrueFalseFalse"multi-snv"2False"snv"False[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,12,0,76,0,314251,0,32,0,416492,0,0,0,0,0,0,75]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,65,332,11308,107353,344982,189073,36327,5607,2387,2756,3080,2935,2956,2918,2972,2924,2564,2682]07717[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,75]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,1,2,3,4,7,3,7,5,1,4,1,3,0,2]032[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,1,1,6,12,25,24,5,1,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][6,0,1,0,14,0,76,0,314251,0,32,0,416492,0,0,0,0,0,0,75]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,2,67,335,11310,107353,344982,189073,36327,5607,2387,2756,3080,2935,2956,2918,2972,2924,2564,2682]07717[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,75]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,1,2,3,4,7,3,7,5,1,4,1,3,0,2]032[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,1,1,6,12,25,24,5,1,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][1,0,0,2,3,3,8,4,0,0]31[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]002.28e+012.69e+002.67e-010.00e+001.00e-028.67e+001.30e-011.18e-01
chr11:113410738["G","T"][(2,1.37e-06,1461886,0),(2,1.37e-06,1461894,0),(0,0.00e+00,33480,0),(0,0.00e+00,44724,0),(0,0.00e+00,26136,0),(2,5.04e-05,39700,0),(0,0.00e+00,53420,0),(0,0.00e+00,5764,0),(0,0.00e+00,1112008,0),(0,0.00e+00,60396,0),(0,0.00e+00,86258,0),(0,0.00e+00,734644,0),(2,2.75e-06,727242,0),(0,0.00e+00,19326,0),(0,0.00e+00,14154,0),(0,0.00e+00,25690,0),(0,0.00e+00,19034,0),(0,0.00e+00,12636,0),(0,0.00e+00,13500,0),(0,0.00e+00,20712,0),(2,1.05e-04,18988,0),(0,0.00e+00,27648,0),(0,0.00e+00,25772,0),(0,0.00e+00,2506,0),(0,0.00e+00,3258,0),(0,0.00e+00,572286,0),(0,0.00e+00,539722,0),(0,0.00e+00,31800,0),(0,0.00e+00,28596,0),(0,0.00e+00,22040,0),(0,0.00e+00,64218,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,3998,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5764,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(1,5.00e-05,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(1,3.83e-05,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(2,5.97e-05,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,39700,0),(2,5.04e-05,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,44724,0),(0,0.00e+00,44724,0),(0,0.00e+00,44724,0),(0,0.00e+00,44724,0),(0,0.00e+00,44724,0),(0,0.00e+00,44724,0),(0,0.00e+00,53420,0),(0,0.00e+00,53420,0),(0,0.00e+00,53420,0),(0,0.00e+00,53420,0),(0,0.00e+00,53420,0),(0,0.00e+00,60396,0),(0,0.00e+00,60396,0),(0,0.00e+00,60396,0),(0,0.00e+00,60396,0),(0,0.00e+00,86258,0),(0,0.00e+00,86258,0),(0,0.00e+00,86258,0),(0,0.00e+00,100000,0),(0,0.00e+00,100000,0),(0,0.00e+00,200000,0),(0,0.00e+00,200000,0),(0,0.00e+00,400000,0),(0,0.00e+00,400000,0),(0,0.00e+00,999998,0),(1,1.00e-06,999998,0),(0,0.00e+00,1112008,0),(2,1.80e-06,1112008,0),(1,1.59e-06,628776,0),(1,1.59e-06,628784,0),(0,0.00e+00,17694,0),(0,0.00e+00,43740,0),(0,0.00e+00,20984,0),(1,2.77e-05,36070,0),(0,0.00e+00,53144,0),(0,0.00e+00,4144,0),(0,0.00e+00,350104,0),(0,0.00e+00,33098,0),(0,0.00e+00,69798,0),(0,0.00e+00,286248,0),(1,2.92e-06,342528,0),(0,0.00e+00,10286,0),(0,0.00e+00,7408,0),(0,0.00e+00,25040,0),(0,0.00e+00,18700,0),(0,0.00e+00,9838,0),(0,0.00e+00,11146,0),(0,0.00e+00,18298,0),(1,5.63e-05,17772,0),(0,0.00e+00,27398,0),(0,0.00e+00,25746,0),(0,0.00e+00,1916,0),(0,0.00e+00,2228,0),(0,0.00e+00,162218,0),(0,0.00e+00,187886,0),(0,0.00e+00,16752,0),(0,0.00e+00,16346,0),(0,0.00e+00,14502,0),(0,0.00e+00,55296,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,3996,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4144,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,33098,0),(1,3.02e-05,33098,0),(0,0.00e+00,33098,0),(0,0.00e+00,33098,0),(0,0.00e+00,33098,0),(0,0.00e+00,33098,0),(0,0.00e+00,33098,0),(0,0.00e+00,36070,0),(1,2.77e-05,36070,0),(0,0.00e+00,36070,0),(0,0.00e+00,36070,0),(0,0.00e+00,36070,0),(0,0.00e+00,36070,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,43740,0),(0,0.00e+00,43740,0),(0,0.00e+00,43740,0),(0,0.00e+00,43740,0),(0,0.00e+00,43740,0),(0,0.00e+00,53144,0),(0,0.00e+00,53144,0),(0,0.00e+00,53144,0),(0,0.00e+00,53144,0),(0,0.00e+00,69798,0),(0,0.00e+00,69798,0),(0,0.00e+00,69798,0),(0,0.00e+00,100000,0),(0,0.00e+00,100000,0),(0,0.00e+00,199998,0),(0,0.00e+00,200000,0),(0,0.00e+00,350104,0),(0,0.00e+00,350106,0),(0,0.00e+00,399998,0)]25.04e-05397000"eas"12.77e-05360700"eas"[(2.30e-07,9.00e-08),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(8.35e-06,3.12e-06),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]8.35e-06"eas"3.12e-06"eas"NANANANA1False{"rs1223741945"}{}1.38e+016.00e+010.00e+0032531.30e+01-1.33e+00[63,66,76,46]1.28e+002511.38e+016.00e+010.00e+001.00e+0032531.30e+01-1.33e+00[63,66,76,46]1.28e+00251FalseNANAFalseFalseFalseFalse3.73e+00-1.37e-06["ga4gh:VA.cROnHWMnTSTuzMfVIhSezHexCPbFdF3z","ga4gh:VA.WAkJ8ZSeVrsh6ThoH7lWSpSgVueGvuwh"][113410737,113410737][113410738,113410738]["G","T"]"G/T"113410738".""chr11\t113410738\t.\tG\tT\t.\t.\tGT"NA"missense_variant"NANA"chr11"1134107381[(1,"L/I",NA,"protein_coding",NA,"CCDS8362.1",1310,1310,1234,1234,"Ctc/Atc",["missense_variant"],NA,[("Gene3D","1"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321")],"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000346454.7:c.1234C>A","ENSP00000278597.5:p.Leu412Ile",NA,"MODERATE",NA,NA,NA,NA,NA,NA,NA,NA,412,412,"ENSP00000278597","Ensembl",-1,"ENST00000346454",1,["P14416-2"],"T"),(1,"L/I","P2","protein_coding",1,"CCDS8361.1",1675,1675,1321,1321,"Ctc/Atc",["missense_variant"],NA,[("Gene3D","1"),("ENSP_mappings","5aer"),("ENSP_mappings","5aer"),("ENSP_mappings","6cm4"),("ENSP_mappings","6luq"),("ENSP_mappings","6vms"),("ENSP_mappings","7dfp"),("ENSP_mappings","7jvr"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321")],"8/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000362072.8:c.1321C>A","ENSP00000354859.3:p.Leu441Ile",NA,"MODERATE",NA,NA,NA,NA,NA,"NM_000795.4",NA,NA,441,441,"ENSP00000354859","Ensembl",-1,"ENST00000362072",1,["P14416-1"],"T"),(1,NA,NA,"processed_transcript",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],3637,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000535984",3,NA,"T"),(1,"L/I","A1","protein_coding",NA,NA,1327,1327,1327,1327,"Ctc/Atc",["missense_variant"],NA,[("Gene3D","1"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321")],"8/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000538967.5:c.1327C>A","ENSP00000438215.1:p.Leu443Ile",NA,"MODERATE",NA,NA,NA,NA,NA,NA,NA,NA,443,443,"ENSP00000438215","Ensembl",-1,"ENST00000538967",5,["P14416-3"],"T"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],4556,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000539420",3,NA,"T"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],3126,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000540600",1,NA,"T"),(1,"L/I","P2","protein_coding",NA,"CCDS8361.1",1642,1642,1321,1321,"Ctc/Atc",["missense_variant"],NA,[("Gene3D","1"),("ENSP_mappings","5aer"),("ENSP_mappings","5aer"),("ENSP_mappings","6cm4"),("ENSP_mappings","6luq"),("ENSP_mappings","6vms"),("ENSP_mappings","7dfp"),("ENSP_mappings","7jvr"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321")],"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000542968.5:c.1321C>A","ENSP00000442172.1:p.Leu441Ile",NA,"MODERATE",NA,NA,NA,NA,NA,NA,NA,NA,441,441,"ENSP00000442172","Ensembl",-1,"ENST00000542968",1,["P14416-1"],"T"),(1,"L/I","A1","protein_coding",NA,NA,1351,1351,1318,1318,"Ctc/Atc",["missense_variant"],NA,[("Gene3D","1"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321")],"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000544518.5:c.1318C>A","ENSP00000441068.1:p.Leu440Ile",NA,"MODERATE",NA,NA,NA,NA,NA,NA,NA,NA,440,440,"ENSP00000441068","Ensembl",-1,"ENST00000544518",1,NA,"T"),(1,NA,NA,"lncRNA",1,NA,NA,NA,NA,NA,NA,["intron_variant","non_coding_transcript_variant"],NA,NA,NA,NA,"ENSG00000256757",NA,NA,NA,NA,"ENST00000546284.1:n.245-809G>T",NA,NA,"MODIFIER","2/3",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",1,"ENST00000546284",3,NA,"T"),(1,"L/I",NA,"protein_coding",1,NA,1675,1675,1321,1321,"Ctc/Atc",["missense_variant"],NA,NA,"8/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_000795.4:c.1321C>A","NP_000786.1:p.Leu441Ile",NA,"MODERATE",NA,NA,NA,NA,NA,"ENST00000362072.8",NA,NA,441,441,"NP_000786.1","RefSeq",-1,"NM_000795.4",NA,NA,"T"),(1,"L/I",NA,"protein_coding",NA,NA,1588,1588,1234,1234,"Ctc/Atc",["missense_variant"],NA,NA,"7/7",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_016574.4:c.1234C>A","NP_057658.2:p.Leu412Ile",NA,"MODERATE",NA,NA,NA,NA,NA,NA,NA,NA,412,412,"NP_057658.2","RefSeq",-1,"NM_016574.4",NA,NA,"T"),(1,"L/I",NA,"protein_coding",NA,NA,1403,1403,1321,1321,"Ctc/Atc",["missense_variant"],NA,NA,"8/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","XM_017017296.2:c.1321C>A","XP_016872785.1:p.Leu441Ile",NA,"MODERATE",NA,NA,NA,NA,NA,NA,NA,NA,441,441,"XP_016872785.1","RefSeq",-1,"XM_017017296.2",NA,NA,"T")]"SNV"3.73e+00"AS_MQ"FalseFalseFalseFalseFalseTrueFalseFalse"snv"1False"snv"False[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,12,0,66,0,314321,0,31,0,416511,0,0,0,0,0,0,2]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,57,319,11282,107355,345042,189122,36330,5605,2379,2756,3073,2932,2954,2914,2973,2922,2564,2680]07684[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0]01[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][3,0,0,0,13,0,66,0,314321,0,31,0,416511,0,0,0,0,0,0,2]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,1,58,321,11282,107355,345042,189122,36330,5605,2379,2756,3073,2932,2954,2914,2973,2922,2564,2680]07684[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0]01[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,1,0,0,0,1,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]002.53e+013.67e+002.65e-010.00e+001.00e-024.85e+003.00e-029.36e-01
chr11:113410740["A","G"][(1,6.84e-07,1461884,0),(1,6.84e-07,1461894,0),(0,0.00e+00,33480,0),(1,2.24e-05,44724,0),(0,0.00e+00,26136,0),(0,0.00e+00,39700,0),(0,0.00e+00,53420,0),(0,0.00e+00,5764,0),(0,0.00e+00,1112008,0),(0,0.00e+00,60394,0),(0,0.00e+00,86258,0),(0,0.00e+00,734644,0),(1,1.38e-06,727240,0),(0,0.00e+00,19326,0),(0,0.00e+00,14154,0),(0,0.00e+00,25690,0),(1,5.25e-05,19034,0),(0,0.00e+00,12636,0),(0,0.00e+00,13500,0),(0,0.00e+00,20712,0),(0,0.00e+00,18988,0),(0,0.00e+00,27648,0),(0,0.00e+00,25772,0),(0,0.00e+00,2504,0),(0,0.00e+00,3260,0),(0,0.00e+00,572288,0),(0,0.00e+00,539720,0),(0,0.00e+00,31800,0),(0,0.00e+00,28594,0),(0,0.00e+00,22040,0),(0,0.00e+00,64218,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5764,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,20000,0),(1,5.00e-05,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,26136,0),(1,3.83e-05,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,33480,0),(1,2.99e-05,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(1,2.52e-05,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(1,2.50e-05,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(1,2.24e-05,44724,0),(0,0.00e+00,44724,0),(0,0.00e+00,44724,0),(0,0.00e+00,44724,0),(0,0.00e+00,44724,0),(0,0.00e+00,44724,0),(0,0.00e+00,53420,0),(0,0.00e+00,53420,0),(0,0.00e+00,53420,0),(0,0.00e+00,53420,0),(0,0.00e+00,53420,0),(0,0.00e+00,60396,0),(0,0.00e+00,60394,0),(0,0.00e+00,60396,0),(0,0.00e+00,60396,0),(0,0.00e+00,86258,0),(0,0.00e+00,86258,0),(0,0.00e+00,86258,0),(0,0.00e+00,100000,0),(0,0.00e+00,100000,0),(0,0.00e+00,200000,0),(0,0.00e+00,200000,0),(0,0.00e+00,399996,0),(1,2.50e-06,399998,0),(0,0.00e+00,999996,0),(1,1.00e-06,999996,0),(0,0.00e+00,1112008,0),(1,8.99e-07,1112008,0),(1,1.59e-06,628774,0),(1,1.59e-06,628784,0),(0,0.00e+00,17694,0),(1,2.29e-05,43740,0),(0,0.00e+00,20984,0),(0,0.00e+00,36070,0),(0,0.00e+00,53144,0),(0,0.00e+00,4144,0),(0,0.00e+00,350104,0),(0,0.00e+00,33096,0),(0,0.00e+00,69798,0),(0,0.00e+00,286248,0),(1,2.92e-06,342526,0),(0,0.00e+00,10286,0),(0,0.00e+00,7408,0),(0,0.00e+00,25040,0),(1,5.35e-05,18700,0),(0,0.00e+00,9838,0),(0,0.00e+00,11146,0),(0,0.00e+00,18298,0),(0,0.00e+00,17772,0),(0,0.00e+00,27398,0),(0,0.00e+00,25746,0),(0,0.00e+00,1914,0),(0,0.00e+00,2230,0),(0,0.00e+00,162220,0),(0,0.00e+00,187884,0),(0,0.00e+00,16752,0),(0,0.00e+00,16344,0),(0,0.00e+00,14502,0),(0,0.00e+00,55296,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,3996,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4144,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,17694,0),(1,5.65e-05,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(1,5.00e-05,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(1,4.77e-05,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(1,3.02e-05,33098,0),(0,0.00e+00,33098,0),(0,0.00e+00,33098,0),(0,0.00e+00,33098,0),(0,0.00e+00,33096,0),(0,0.00e+00,33098,0),(0,0.00e+00,33098,0),(1,2.77e-05,36070,0),(0,0.00e+00,36070,0),(0,0.00e+00,36070,0),(0,0.00e+00,36070,0),(0,0.00e+00,36070,0),(0,0.00e+00,36070,0),(1,2.50e-05,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(1,2.29e-05,43740,0),(0,0.00e+00,43740,0),(0,0.00e+00,43740,0),(0,0.00e+00,43740,0),(0,0.00e+00,43740,0),(0,0.00e+00,53144,0),(0,0.00e+00,53144,0),(0,0.00e+00,53144,0),(0,0.00e+00,53144,0),(0,0.00e+00,69798,0),(0,0.00e+00,69798,0),(0,0.00e+00,69798,0),(0,0.00e+00,99998,0),(0,0.00e+00,100000,0),(0,0.00e+00,199996,0),(1,5.00e-06,199998,0),(0,0.00e+00,350104,0),(1,2.86e-06,350104,0),(1,2.50e-06,399996,0)]12.24e-05447240"amr"12.29e-05437400"amr"[(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]NANANANANANANANA1FalseNA{}3.13e+006.00e+010.00e+004021.01e+017.13e-01[17,8,12,3]1.29e+00403.13e+006.00e+010.00e+001.54e-014021.01e+017.13e-01[17,8,12,3]1.29e+0040TrueFalseFalseFalseFalseFalseFalse4.72e+00-6.84e-07["ga4gh:VA.gXv9EmAG-Lbw5gSNFxiBHWB_WT8twCnG","ga4gh:VA.S-YUvVERFiE1cgkxu2ZRfZV7mggBv176"][113410739,113410739][113410740,113410740]["A","G"]"A/G"113410740".""chr11\t113410740\t.\tA\tG\t.\t.\tGT"NA"missense_variant"NANA"chr11"1134107401[(1,"I/T",NA,"protein_coding",NA,"CCDS8362.1",1308,1308,1232,1232,"aTc/aCc",["missense_variant"],NA,[("Gene3D","1"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321")],"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000346454.7:c.1232T>C","ENSP00000278597.5:p.Ile411Thr",NA,"MODERATE",NA,NA,NA,NA,NA,NA,NA,NA,411,411,"ENSP00000278597","Ensembl",-1,"ENST00000346454",1,["P14416-2"],"G"),(1,"I/T","P2","protein_coding",1,"CCDS8361.1",1673,1673,1319,1319,"aTc/aCc",["missense_variant"],NA,[("Gene3D","1"),("ENSP_mappings","5aer"),("ENSP_mappings","5aer"),("ENSP_mappings","6cm4"),("ENSP_mappings","6luq"),("ENSP_mappings","6vms"),("ENSP_mappings","7dfp"),("ENSP_mappings","7jvr"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321")],"8/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000362072.8:c.1319T>C","ENSP00000354859.3:p.Ile440Thr",NA,"MODERATE",NA,NA,NA,NA,NA,"NM_000795.4",NA,NA,440,440,"ENSP00000354859","Ensembl",-1,"ENST00000362072",1,["P14416-1"],"G"),(1,NA,NA,"processed_transcript",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],3635,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000535984",3,NA,"G"),(1,"I/T","A1","protein_coding",NA,NA,1325,1325,1325,1325,"aTc/aCc",["missense_variant"],NA,[("Gene3D","1"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321")],"8/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000538967.5:c.1325T>C","ENSP00000438215.1:p.Ile442Thr",NA,"MODERATE",NA,NA,NA,NA,NA,NA,NA,NA,442,442,"ENSP00000438215","Ensembl",-1,"ENST00000538967",5,["P14416-3"],"G"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],4554,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000539420",3,NA,"G"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],3124,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000540600",1,NA,"G"),(1,"I/T","P2","protein_coding",NA,"CCDS8361.1",1640,1640,1319,1319,"aTc/aCc",["missense_variant"],NA,[("Gene3D","1"),("ENSP_mappings","5aer"),("ENSP_mappings","5aer"),("ENSP_mappings","6cm4"),("ENSP_mappings","6luq"),("ENSP_mappings","6vms"),("ENSP_mappings","7dfp"),("ENSP_mappings","7jvr"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321")],"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000542968.5:c.1319T>C","ENSP00000442172.1:p.Ile440Thr",NA,"MODERATE",NA,NA,NA,NA,NA,NA,NA,NA,440,440,"ENSP00000442172","Ensembl",-1,"ENST00000542968",1,["P14416-1"],"G"),(1,"I/T","A1","protein_coding",NA,NA,1349,1349,1316,1316,"aTc/aCc",["missense_variant"],NA,[("Gene3D","1"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321")],"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000544518.5:c.1316T>C","ENSP00000441068.1:p.Ile439Thr",NA,"MODERATE",NA,NA,NA,NA,NA,NA,NA,NA,439,439,"ENSP00000441068","Ensembl",-1,"ENST00000544518",1,NA,"G"),(1,NA,NA,"lncRNA",1,NA,NA,NA,NA,NA,NA,["intron_variant","non_coding_transcript_variant"],NA,NA,NA,NA,"ENSG00000256757",NA,NA,NA,NA,"ENST00000546284.1:n.245-807A>G",NA,NA,"MODIFIER","2/3",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",1,"ENST00000546284",3,NA,"G"),(1,"I/T",NA,"protein_coding",1,NA,1673,1673,1319,1319,"aTc/aCc",["missense_variant"],NA,NA,"8/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_000795.4:c.1319T>C","NP_000786.1:p.Ile440Thr",NA,"MODERATE",NA,NA,NA,NA,NA,"ENST00000362072.8",NA,NA,440,440,"NP_000786.1","RefSeq",-1,"NM_000795.4",NA,NA,"G"),(1,"I/T",NA,"protein_coding",NA,NA,1586,1586,1232,1232,"aTc/aCc",["missense_variant"],NA,NA,"7/7",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_016574.4:c.1232T>C","NP_057658.2:p.Ile411Thr",NA,"MODERATE",NA,NA,NA,NA,NA,NA,NA,NA,411,411,"NP_057658.2","RefSeq",-1,"NM_016574.4",NA,NA,"G"),(1,"I/T",NA,"protein_coding",NA,NA,1401,1401,1319,1319,"aTc/aCc",["missense_variant"],NA,NA,"8/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","XM_017017296.2:c.1319T>C","XP_016872785.1:p.Ile440Thr",NA,"MODERATE",NA,NA,NA,NA,NA,NA,NA,NA,440,440,"XP_016872785.1","RefSeq",-1,"XM_017017296.2",NA,NA,"G")]"SNV"4.72e+00"AS_MQ"FalseFalseFalseFalseFalseTrueFalseFalse"snv"1False"snv"False[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,12,0,49,0,314328,0,18,0,416534,0,0,0,0,0,0,1]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,49,301,11269,107358,345061,189138,36333,5605,2378,2755,3073,2932,2954,2914,2973,2922,2564,2680]07683[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][4,0,0,0,13,0,49,0,314328,0,18,0,416534,0,0,0,0,0,0,1]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,1,50,304,11269,107358,345061,189138,36333,5605,2378,2755,3073,2932,2954,2914,2973,2922,2564,2680]07683[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]002.72e+014.02e+006.41e-010.00e+003.00e-026.25e+000.00e+005.08e-01

showing top 5 rows

\n" + ], + "text/plain": [ + "+-----------------+------------+\n", + "| locus | alleles |\n", + "+-----------------+------------+\n", + "| locus | array |\n", + "+-----------------+------------+\n", + "| chr11:113410731 | [\"C\",\"A\"] |\n", + "| chr11:113410731 | [\"C\",\"T\"] |\n", + "| chr11:113410735 | [\"G\",\"A\"] |\n", + "| chr11:113410738 | [\"G\",\"T\"] |\n", + "| chr11:113410740 | [\"A\",\"G\"] |\n", + "+-----------------+------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| freq |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [(2,1.37e-06,1461866,0),(2,1.37e-06,1461894,0),(0,0.00e+00,33480,0),(2,4.... |\n", + "| [(1,6.84e-07,1461866,0),(1,6.84e-07,1461894,0),(0,0.00e+00,33480,0),(0,0.... |\n", + "| [(75,5.13e-05,1461876,0),(75,5.13e-05,1461894,0),(0,0.00e+00,33480,0),(0,... |\n", + "| [(2,1.37e-06,1461886,0),(2,1.37e-06,1461894,0),(0,0.00e+00,33480,0),(0,0.... |\n", + "| [(1,6.84e-07,1461884,0),(1,6.84e-07,1461894,0),(0,0.00e+00,33480,0),(1,2.... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+------------------+------------------+------------------+\n", + "| grpmax.gnomad.AC | grpmax.gnomad.AF | grpmax.gnomad.AN |\n", + "+------------------+------------------+------------------+\n", + "| int32 | float64 | int32 |\n", + "+------------------+------------------+------------------+\n", + "| 2 | 4.47e-05 | 44724 |\n", + "| 1 | 8.99e-07 | 1112010 |\n", + "| 8 | 7.19e-06 | 1112004 |\n", + "| 2 | 5.04e-05 | 39700 |\n", + "| 1 | 2.24e-05 | 44724 |\n", + "+------------------+------------------+------------------+\n", + "\n", + "+--------------------------------+-----------------------+-------------------+\n", + "| grpmax.gnomad.homozygote_count | grpmax.gnomad.gen_anc | grpmax.non_ukb.AC |\n", + "+--------------------------------+-----------------------+-------------------+\n", + "| int64 | str | int32 |\n", + "+--------------------------------+-----------------------+-------------------+\n", + "| 0 | \"amr\" | 2 |\n", + "| 0 | \"nfe\" | NA |\n", + "| 0 | \"nfe\" | 2 |\n", + "| 0 | \"eas\" | 1 |\n", + "| 0 | \"amr\" | 1 |\n", + "+--------------------------------+-----------------------+-------------------+\n", + "\n", + "+-------------------+-------------------+---------------------------------+\n", + "| grpmax.non_ukb.AF | grpmax.non_ukb.AN | grpmax.non_ukb.homozygote_count |\n", + "+-------------------+-------------------+---------------------------------+\n", + "| float64 | int32 | int64 |\n", + "+-------------------+-------------------+---------------------------------+\n", + "| 4.57e-05 | 43740 | 0 |\n", + "| NA | NA | NA |\n", + "| 5.71e-06 | 350102 | 0 |\n", + "| 2.77e-05 | 36070 | 0 |\n", + "| 2.29e-05 | 43740 | 0 |\n", + "+-------------------+-------------------+---------------------------------+\n", + "\n", + "+------------------------+\n", + "| grpmax.non_ukb.gen_anc |\n", + "+------------------------+\n", + "| str |\n", + "+------------------------+\n", + "| \"amr\" |\n", + "| NA |\n", + "| \"nfe\" |\n", + "| \"eas\" |\n", + "| \"amr\" |\n", + "+------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| faf |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [(2.30e-07,9.00e-08),(0.00e+00,0.00e+00),(7.41e-06,2.77e-06),(0.00e+00,0.... |\n", + "| [(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.... |\n", + "| [(4.19e-05,3.82e-05),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.... |\n", + "| [(2.30e-07,9.00e-08),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(8.35e-06,3.... |\n", + "| [(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+-------------------------+---------------------------------+\n", + "| fafmax.gnomad.faf95_max | fafmax.gnomad.faf95_max_gen_anc |\n", + "+-------------------------+---------------------------------+\n", + "| float64 | str |\n", + "+-------------------------+---------------------------------+\n", + "| 7.41e-06 | \"amr\" |\n", + "| NA | NA |\n", + "| 3.09e-06 | \"nfe\" |\n", + "| 8.35e-06 | \"eas\" |\n", + "| NA | NA |\n", + "+-------------------------+---------------------------------+\n", + "\n", + "+-------------------------+---------------------------------+\n", + "| fafmax.gnomad.faf99_max | fafmax.gnomad.faf99_max_gen_anc |\n", + "+-------------------------+---------------------------------+\n", + "| float64 | str |\n", + "+-------------------------+---------------------------------+\n", + "| 2.77e-06 | \"amr\" |\n", + "| NA | NA |\n", + "| 2.24e-06 | \"nfe\" |\n", + "| 3.12e-06 | \"eas\" |\n", + "| NA | NA |\n", + "+-------------------------+---------------------------------+\n", + "\n", + "+--------------------------+----------------------------------+\n", + "| fafmax.non_ukb.faf95_max | fafmax.non_ukb.faf95_max_gen_anc |\n", + "+--------------------------+----------------------------------+\n", + "| float64 | str |\n", + "+--------------------------+----------------------------------+\n", + "| 7.58e-06 | \"amr\" |\n", + "| NA | NA |\n", + "| 9.50e-07 | \"nfe\" |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "+--------------------------+----------------------------------+\n", + "\n", + "+--------------------------+----------------------------------+---------+\n", + "| fafmax.non_ukb.faf99_max | fafmax.non_ukb.faf99_max_gen_anc | a_index |\n", + "+--------------------------+----------------------------------+---------+\n", + "| float64 | str | int32 |\n", + "+--------------------------+----------------------------------+---------+\n", + "| 2.84e-06 | \"amr\" | 1 |\n", + "| NA | NA | 2 |\n", + "| 3.60e-07 | \"nfe\" | 1 |\n", + "| NA | NA | 1 |\n", + "| NA | NA | 1 |\n", + "+--------------------------+----------------------------------+---------+\n", + "\n", + "+-----------+------------------+----------+----------+----------+\n", + "| was_split | rsid | filters | info.FS | info.MQ |\n", + "+-----------+------------------+----------+----------+----------+\n", + "| bool | set | set | float64 | float64 |\n", + "+-----------+------------------+----------+----------+----------+\n", + "| True | {\"rs140938110\"} | {} | 5.56e+00 | 6.00e+01 |\n", + "| True | NA | {} | 5.56e+00 | 6.00e+01 |\n", + "| True | {\"rs201801648\"} | {} | 0.00e+00 | 6.00e+01 |\n", + "| False | {\"rs1223741945\"} | {} | 1.38e+01 | 6.00e+01 |\n", + "| False | NA | {} | 3.13e+00 | 6.00e+01 |\n", + "+-----------+------------------+----------+----------+----------+\n", + "\n", + "+----------------+-----------------+----------+---------------------+\n", + "| info.MQRankSum | info.QUALapprox | info.QD | info.ReadPosRankSum |\n", + "+----------------+-----------------+----------+---------------------+\n", + "| float64 | int64 | float64 | float64 |\n", + "+----------------+-----------------+----------+---------------------+\n", + "| 0.00e+00 | 3862 | 1.02e+01 | -1.98e-01 |\n", + "| 0.00e+00 | 3862 | 1.02e+01 | -1.98e-01 |\n", + "| 0.00e+00 | 127501 | 1.23e+01 | 3.70e-02 |\n", + "| 0.00e+00 | 3253 | 1.30e+01 | -1.33e+00 |\n", + "| 0.00e+00 | 402 | 1.01e+01 | 7.13e-01 |\n", + "+----------------+-----------------+----------+---------------------+\n", + "\n", + "+-----------------------+----------+------------+------------+------------+\n", + "| info.SB | info.SOR | info.VarDP | info.AS_FS | info.AS_MQ |\n", + "+-----------------------+----------+------------+------------+------------+\n", + "| array | float64 | int32 | float64 | float64 |\n", + "+-----------------------+----------+------------+------------+------------+\n", + "| [134,83,109,52] | 9.81e-01 | 378 | 1.31e+01 | 6.00e+01 |\n", + "| [134,83,109,52] | 9.81e-01 | 378 | 0.00e+00 | 6.00e+01 |\n", + "| [3240,2211,2993,1962] | 7.34e-01 | 10404 | 0.00e+00 | 6.00e+01 |\n", + "| [63,66,76,46] | 1.28e+00 | 251 | 1.38e+01 | 6.00e+01 |\n", + "| [17,8,12,3] | 1.29e+00 | 40 | 3.13e+00 | 6.00e+01 |\n", + "+-----------------------+----------+------------+------------+------------+\n", + "\n", + "+-------------------+-----------------+--------------------+------------+\n", + "| info.AS_MQRankSum | info.AS_pab_max | info.AS_QUALapprox | info.AS_QD |\n", + "+-------------------+-----------------+--------------------+------------+\n", + "| float64 | float64 | int64 | float64 |\n", + "+-------------------+-----------------+--------------------+------------+\n", + "| 0.00e+00 | 2.94e-01 | 1895 | 1.06e+01 |\n", + "| 0.00e+00 | 9.04e-01 | 1967 | 9.88e+00 |\n", + "| 0.00e+00 | 1.00e+00 | 127480 | 1.23e+01 |\n", + "| 0.00e+00 | 1.00e+00 | 3253 | 1.30e+01 |\n", + "| 0.00e+00 | 1.54e-01 | 402 | 1.01e+01 |\n", + "+-------------------+-----------------+--------------------+------------+\n", + "\n", + "+------------------------+-----------------------+-------------+---------------+\n", + "| info.AS_ReadPosRankSum | info.AS_SB_TABLE | info.AS_SOR | info.AS_VarDP |\n", + "+------------------------+-----------------------+-------------+---------------+\n", + "| float64 | array | float64 | int32 |\n", + "+------------------------+-----------------------+-------------+---------------+\n", + "| 2.52e-01 | [134,83,56,19] | 1.42e+00 | 179 |\n", + "| -5.01e-01 | [134,83,53,33] | 6.81e-01 | 199 |\n", + "| 1.60e-02 | [3240,2211,2991,1961] | 7.34e-01 | 10383 |\n", + "| -1.33e+00 | [63,66,76,46] | 1.28e+00 | 251 |\n", + "| 7.13e-01 | [17,8,12,3] | 1.29e+00 | 40 |\n", + "+------------------------+-----------------------+-------------+---------------+\n", + "\n", + "+----------------+----------------------------+------------------------+\n", + "| info.singleton | info.transmitted_singleton | info.sibling_singleton |\n", + "+----------------+----------------------------+------------------------+\n", + "| bool | bool | bool |\n", + "+----------------+----------------------------+------------------------+\n", + "| False | NA | NA |\n", + "| True | False | False |\n", + "| False | NA | NA |\n", + "| False | NA | NA |\n", + "| True | False | False |\n", + "+----------------+----------------------------+------------------------+\n", + "\n", + "+-----------+------------+------------------+---------------+----------------+\n", + "| info.omni | info.mills | info.monoallelic | info.only_het | info.AS_VQSLOD |\n", + "+-----------+------------+------------------+---------------+----------------+\n", + "| bool | bool | bool | bool | float64 |\n", + "+-----------+------------+------------------+---------------+----------------+\n", + "| False | False | False | False | 5.27e+00 |\n", + "| False | False | False | False | 5.40e+00 |\n", + "| False | False | False | False | 8.85e+00 |\n", + "| False | False | False | False | 3.73e+00 |\n", + "| False | False | False | False | 4.72e+00 |\n", + "+-----------+------------+------------------+---------------+----------------+\n", + "\n", + "+-----------------------+\n", + "| info.inbreeding_coeff |\n", + "+-----------------------+\n", + "| float64 |\n", + "+-----------------------+\n", + "| -1.37e-06 |\n", + "| -6.84e-07 |\n", + "| -5.13e-05 |\n", + "| -1.37e-06 |\n", + "| -6.84e-07 |\n", + "+-----------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| info.vrs.VRS_Allele_IDs |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [\"ga4gh:VA.RY2FNHeS0QpJNM9lQpQ_pzX7Q27-MXmI\",\"ga4gh:VA.ZonDIhdwyghm7SuWkX... |\n", + "| [\"ga4gh:VA.RY2FNHeS0QpJNM9lQpQ_pzX7Q27-MXmI\",\"ga4gh:VA.Hp20SlFHUdM7jlWmVV... |\n", + "| [\"ga4gh:VA.SBSoboxxiC0V-mhjjHg2geRlf3I0Ib2d\",\"ga4gh:VA.GzUD_86k_EDbtk-R58... |\n", + "| [\"ga4gh:VA.cROnHWMnTSTuzMfVIhSezHexCPbFdF3z\",\"ga4gh:VA.WAkJ8ZSeVrsh6ThoH7... |\n", + "| [\"ga4gh:VA.gXv9EmAG-Lbw5gSNFxiBHWB_WT8twCnG\",\"ga4gh:VA.S-YUvVERFiE1cgkxu2... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+-----------------------+-----------------------+---------------------+\n", + "| info.vrs.VRS_Starts | info.vrs.VRS_Ends | info.vrs.VRS_States |\n", + "+-----------------------+-----------------------+---------------------+\n", + "| array | array | array |\n", + "+-----------------------+-----------------------+---------------------+\n", + "| [113410730,113410730] | [113410731,113410731] | [\"C\",\"A\"] |\n", + "| [113410730,113410730] | [113410731,113410731] | [\"C\",\"T\"] |\n", + "| [113410734,113410734] | [113410735,113410735] | [\"G\",\"A\"] |\n", + "| [113410737,113410737] | [113410738,113410738] | [\"G\",\"T\"] |\n", + "| [113410739,113410739] | [113410740,113410740] | [\"A\",\"G\"] |\n", + "+-----------------------+-----------------------+---------------------+\n", + "\n", + "+-------------------+-----------+--------+--------------------------------+\n", + "| vep.allele_string | vep.end | vep.id | vep.input |\n", + "+-------------------+-----------+--------+--------------------------------+\n", + "| str | int32 | str | str |\n", + "+-------------------+-----------+--------+--------------------------------+\n", + "| \"C/A\" | 113410731 | \".\" | \"chr11\t113410731\t.\tC\tA\t.\t.\tGT\" |\n", + "| \"C/T\" | 113410731 | \".\" | \"chr11\t113410731\t.\tC\tT\t.\t.\tGT\" |\n", + "| \"G/A\" | 113410735 | \".\" | \"chr11\t113410735\t.\tG\tA\t.\t.\tGT\" |\n", + "| \"G/T\" | 113410738 | \".\" | \"chr11\t113410738\t.\tG\tT\t.\t.\tGT\" |\n", + "| \"A/G\" | 113410740 | \".\" | \"chr11\t113410740\t.\tA\tG\t.\t.\tGT\" |\n", + "+-------------------+-----------+--------+--------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| vep.intergenic_consequences |\n", + "+------------------------------------------------------------------------------+\n", + "| array, impact: st... |\n", + "+------------------------------------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+-----------------------------+\n", + "| vep.most_severe_consequence |\n", + "+-----------------------------+\n", + "| str |\n", + "+-----------------------------+\n", + "| \"missense_variant\" |\n", + "| \"missense_variant\" |\n", + "| \"missense_variant\" |\n", + "| \"missense_variant\" |\n", + "| \"missense_variant\" |\n", + "+-----------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| vep.motif_feature_consequences |\n", + "+------------------------------------------------------------------------------+\n", + "| array, high_inf_p... |\n", + "+------------------------------------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| vep.regulatory_feature_consequences |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+---------------------------------------------------------+\n", + "| histograms.qual_hists.gq_hist_all.bin_freq |\n", + "+---------------------------------------------------------+\n", + "| array |\n", + "+---------------------------------------------------------+\n", + "| [0,0,0,0,21,0,124,0,314262,0,99,0,416424,0,0,0,0,0,0,3] |\n", + "| [0,0,0,0,21,0,124,0,314262,0,99,0,416424,0,0,0,0,0,0,3] |\n", + "| [0,0,0,0,12,0,76,0,314251,0,32,0,416492,0,0,0,0,0,0,75] |\n", + "| [0,0,0,0,12,0,66,0,314321,0,31,0,416511,0,0,0,0,0,0,2] |\n", + "| [0,0,0,0,12,0,49,0,314328,0,18,0,416534,0,0,0,0,0,0,1] |\n", + "+---------------------------------------------------------+\n", + "\n", + "+---------------------------------------------+\n", + "| histograms.qual_hists.gq_hist_all.n_smaller |\n", + "+---------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+---------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.qual_hists.gq_hist_all.n_larger |\n", + "+--------------------------------------------+\n", + "| int64 |\n", + "+--------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+--------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.qual_hists.dp_hist_all.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.qual_hists.dp_hist_all.bin_freq |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0,0,98,374,11344,107362,344923,189028,36319,5607,2388,2759,3074,2931,295... |\n", + "| [0,0,98,374,11344,107362,344923,189028,36319,5607,2388,2759,3074,2931,295... |\n", + "| [0,0,65,332,11308,107353,344982,189073,36327,5607,2387,2756,3080,2935,295... |\n", + "| [0,0,57,319,11282,107355,345042,189122,36330,5605,2379,2756,3073,2932,295... |\n", + "| [0,0,49,301,11269,107358,345061,189138,36333,5605,2378,2755,3073,2932,295... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+---------------------------------------------+\n", + "| histograms.qual_hists.dp_hist_all.n_smaller |\n", + "+---------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+---------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.qual_hists.dp_hist_all.n_larger |\n", + "+--------------------------------------------+\n", + "| int64 |\n", + "+--------------------------------------------+\n", + "| 7715 |\n", + "| 7715 |\n", + "| 7717 |\n", + "| 7684 |\n", + "| 7683 |\n", + "+--------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.qual_hists.gq_hist_alt.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.qual_hists.gq_hist_alt.bin_freq |\n", + "+--------------------------------------------+\n", + "| array |\n", + "+--------------------------------------------+\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,75] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1] |\n", + "+--------------------------------------------+\n", + "\n", + "+---------------------------------------------+\n", + "| histograms.qual_hists.gq_hist_alt.n_smaller |\n", + "+---------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+---------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.qual_hists.gq_hist_alt.n_larger |\n", + "+--------------------------------------------+\n", + "| int64 |\n", + "+--------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+--------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.qual_hists.dp_hist_alt.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.qual_hists.dp_hist_alt.bin_freq |\n", + "+--------------------------------------------+\n", + "| array |\n", + "+--------------------------------------------+\n", + "| [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,1,2,3,4,7,3,7,5,1,4,1,3,0,2] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0] |\n", + "+--------------------------------------------+\n", + "\n", + "+---------------------------------------------+\n", + "| histograms.qual_hists.dp_hist_alt.n_smaller |\n", + "+---------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+---------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.qual_hists.dp_hist_alt.n_larger |\n", + "+--------------------------------------------+\n", + "| int64 |\n", + "+--------------------------------------------+\n", + "| 1 |\n", + "| 0 |\n", + "| 32 |\n", + "| 1 |\n", + "| 0 |\n", + "+--------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.qual_hists.ab_hist_alt.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+----------------------------------------------+\n", + "| histograms.qual_hists.ab_hist_alt.bin_freq |\n", + "+----------------------------------------------+\n", + "| array |\n", + "+----------------------------------------------+\n", + "| [0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,1,1,6,12,25,24,5,1,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "+----------------------------------------------+\n", + "\n", + "+---------------------------------------------+\n", + "| histograms.qual_hists.ab_hist_alt.n_smaller |\n", + "+---------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+---------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.qual_hists.ab_hist_alt.n_larger |\n", + "+--------------------------------------------+\n", + "| int64 |\n", + "+--------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+--------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.raw_qual_hists.gq_hist_all.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+---------------------------------------------------------+\n", + "| histograms.raw_qual_hists.gq_hist_all.bin_freq |\n", + "+---------------------------------------------------------+\n", + "| array |\n", + "+---------------------------------------------------------+\n", + "| [7,0,0,0,28,0,124,0,314262,0,99,0,416424,0,0,0,0,0,0,3] |\n", + "| [7,0,0,0,28,0,124,0,314262,0,99,0,416424,0,0,0,0,0,0,3] |\n", + "| [6,0,1,0,14,0,76,0,314251,0,32,0,416492,0,0,0,0,0,0,75] |\n", + "| [3,0,0,0,13,0,66,0,314321,0,31,0,416511,0,0,0,0,0,0,2] |\n", + "| [4,0,0,0,13,0,49,0,314328,0,18,0,416534,0,0,0,0,0,0,1] |\n", + "+---------------------------------------------------------+\n", + "\n", + "+-------------------------------------------------+\n", + "| histograms.raw_qual_hists.gq_hist_all.n_smaller |\n", + "+-------------------------------------------------+\n", + "| int64 |\n", + "+-------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+-------------------------------------------------+\n", + "\n", + "+------------------------------------------------+\n", + "| histograms.raw_qual_hists.gq_hist_all.n_larger |\n", + "+------------------------------------------------+\n", + "| int64 |\n", + "+------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.raw_qual_hists.dp_hist_all.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.raw_qual_hists.dp_hist_all.bin_freq |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0,7,98,380,11345,107362,344923,189028,36319,5607,2388,2759,3074,2931,295... |\n", + "| [0,7,98,380,11345,107362,344923,189028,36319,5607,2388,2759,3074,2931,295... |\n", + "| [0,2,67,335,11310,107353,344982,189073,36327,5607,2387,2756,3080,2935,295... |\n", + "| [0,1,58,321,11282,107355,345042,189122,36330,5605,2379,2756,3073,2932,295... |\n", + "| [0,1,50,304,11269,107358,345061,189138,36333,5605,2378,2755,3073,2932,295... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+-------------------------------------------------+\n", + "| histograms.raw_qual_hists.dp_hist_all.n_smaller |\n", + "+-------------------------------------------------+\n", + "| int64 |\n", + "+-------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+-------------------------------------------------+\n", + "\n", + "+------------------------------------------------+\n", + "| histograms.raw_qual_hists.dp_hist_all.n_larger |\n", + "+------------------------------------------------+\n", + "| int64 |\n", + "+------------------------------------------------+\n", + "| 7715 |\n", + "| 7715 |\n", + "| 7717 |\n", + "| 7684 |\n", + "| 7683 |\n", + "+------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.raw_qual_hists.gq_hist_alt.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+------------------------------------------------+\n", + "| histograms.raw_qual_hists.gq_hist_alt.bin_freq |\n", + "+------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------+\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,75] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1] |\n", + "+------------------------------------------------+\n", + "\n", + "+-------------------------------------------------+\n", + "| histograms.raw_qual_hists.gq_hist_alt.n_smaller |\n", + "+-------------------------------------------------+\n", + "| int64 |\n", + "+-------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+-------------------------------------------------+\n", + "\n", + "+------------------------------------------------+\n", + "| histograms.raw_qual_hists.gq_hist_alt.n_larger |\n", + "+------------------------------------------------+\n", + "| int64 |\n", + "+------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.raw_qual_hists.dp_hist_alt.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+------------------------------------------------+\n", + "| histograms.raw_qual_hists.dp_hist_alt.bin_freq |\n", + "+------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------+\n", + "| [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,1,2,3,4,7,3,7,5,1,4,1,3,0,2] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0] |\n", + "+------------------------------------------------+\n", + "\n", + "+-------------------------------------------------+\n", + "| histograms.raw_qual_hists.dp_hist_alt.n_smaller |\n", + "+-------------------------------------------------+\n", + "| int64 |\n", + "+-------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+-------------------------------------------------+\n", + "\n", + "+------------------------------------------------+\n", + "| histograms.raw_qual_hists.dp_hist_alt.n_larger |\n", + "+------------------------------------------------+\n", + "| int64 |\n", + "+------------------------------------------------+\n", + "| 1 |\n", + "| 0 |\n", + "| 32 |\n", + "| 1 |\n", + "| 0 |\n", + "+------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.raw_qual_hists.ab_hist_alt.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+------------------------------------------------+\n", + "| histograms.raw_qual_hists.ab_hist_alt.bin_freq |\n", + "+------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------+\n", + "| [0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,1,1,6,12,25,24,5,1,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "+------------------------------------------------+\n", + "\n", + "+-------------------------------------------------+\n", + "| histograms.raw_qual_hists.ab_hist_alt.n_smaller |\n", + "+-------------------------------------------------+\n", + "| int64 |\n", + "+-------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+-------------------------------------------------+\n", + "\n", + "+------------------------------------------------+\n", + "| histograms.raw_qual_hists.ab_hist_alt.n_larger |\n", + "+------------------------------------------------+\n", + "| int64 |\n", + "+------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.age_hists.age_hist_het.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.age_hists.age_hist_het.bin_freq |\n", + "+--------------------------------------------+\n", + "| array |\n", + "+--------------------------------------------+\n", + "| [0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,1,0,0,0,0,0] |\n", + "| [1,0,0,2,3,3,8,4,0,0] |\n", + "| [0,0,0,1,0,0,0,1,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0] |\n", + "+--------------------------------------------+\n", + "\n", + "+---------------------------------------------+\n", + "| histograms.age_hists.age_hist_het.n_smaller |\n", + "+---------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------+\n", + "| 1 |\n", + "| 0 |\n", + "| 3 |\n", + "| 0 |\n", + "| 0 |\n", + "+---------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.age_hists.age_hist_het.n_larger |\n", + "+--------------------------------------------+\n", + "| int64 |\n", + "+--------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 1 |\n", + "| 0 |\n", + "| 0 |\n", + "+--------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.age_hists.age_hist_hom.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.age_hists.age_hist_hom.bin_freq |\n", + "+--------------------------------------------+\n", + "| array |\n", + "+--------------------------------------------+\n", + "| [0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0] |\n", + "+--------------------------------------------+\n", + "\n", + "+---------------------------------------------+\n", + "| histograms.age_hists.age_hist_hom.n_smaller |\n", + "+---------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+---------------------------------------------+\n", + "\n", + "+--------------------------------------------+---------------------------------+\n", + "| histograms.age_hists.age_hist_hom.n_larger | in_silico_predictors.cadd.phred |\n", + "+--------------------------------------------+---------------------------------+\n", + "| int64 | float32 |\n", + "+--------------------------------------------+---------------------------------+\n", + "| 0 | 2.77e+01 |\n", + "| 0 | 2.75e+01 |\n", + "| 0 | 2.28e+01 |\n", + "| 0 | 2.53e+01 |\n", + "| 0 | 2.72e+01 |\n", + "+--------------------------------------------+---------------------------------+\n", + "\n", + "+-------------------------------------+--------------------------------+\n", + "| in_silico_predictors.cadd.raw_score | in_silico_predictors.revel_max |\n", + "+-------------------------------------+--------------------------------+\n", + "| float32 | float64 |\n", + "+-------------------------------------+--------------------------------+\n", + "| 4.10e+00 | 6.02e-01 |\n", + "| 4.07e+00 | 7.19e-01 |\n", + "| 2.69e+00 | 2.67e-01 |\n", + "| 3.67e+00 | 2.65e-01 |\n", + "| 4.02e+00 | 6.41e-01 |\n", + "+-------------------------------------+--------------------------------+\n", + "\n", + "+--------------------------------------+\n", + "| in_silico_predictors.spliceai_ds_max |\n", + "+--------------------------------------+\n", + "| float32 |\n", + "+--------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+--------------------------------------+\n", + "\n", + "+------------------------------------------+-----------------------------+\n", + "| in_silico_predictors.pangolin_largest_ds | in_silico_predictors.phylop |\n", + "+------------------------------------------+-----------------------------+\n", + "| float64 | float64 |\n", + "+------------------------------------------+-----------------------------+\n", + "| 0.00e+00 | 8.78e+00 |\n", + "| 2.00e-02 | 8.78e+00 |\n", + "| 1.00e-02 | 8.67e+00 |\n", + "| 1.00e-02 | 4.85e+00 |\n", + "| 3.00e-02 | 6.25e+00 |\n", + "+------------------------------------------+-----------------------------+\n", + "\n", + "+-------------------------------+-----------------------------------+\n", + "| in_silico_predictors.sift_max | in_silico_predictors.polyphen_max |\n", + "+-------------------------------+-----------------------------------+\n", + "| float64 | float64 |\n", + "+-------------------------------+-----------------------------------+\n", + "| 0.00e+00 | 9.89e-01 |\n", + "| 0.00e+00 | 9.89e-01 |\n", + "| 1.30e-01 | 1.18e-01 |\n", + "| 3.00e-02 | 9.36e-01 |\n", + "| 0.00e+00 | 5.08e-01 |\n", + "+-------------------------------+-----------------------------------+\n", + "showing top 5 rows" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The total number of missense variants passing filters in DRD2 is: 409\n" + ] + } + ], "source": [ "var_ht = filter_by_consequence_category(missense=True, ht=drd2_ht)\n", "var_ht.show(5)\n", @@ -597,22 +3788,1091 @@ "f42fc1f8-afe3-4684-9fee-66582eba9080.png": { "image/png": "iVBORw0KGgoAAAANSUhEUgAACuQAAAGKCAYAAAD+cbWXAAAMQWlDQ1BJQ0MgUHJvZmlsZQAASImVVwdYU8kWnluSkEBoAQSkhN4EESkBpITQQu8INkISIJQYA0HFjiwquBZURMCGroooWAGxI3YWxd4XCwrKuliwK29SQNd95XvzfXPnv/+c+c+Zc2fuvQOA2gmOSJSNqgOQI8wTxwT50ccnJdNJPUAZaAJ1QASjOdxcETMqKgzAMtT+vby7ARBpe9VeqvXP/v9aNHj8XC4ASBTEqbxcbg7EBwDAq7kicR4ARClvNj1PJMWwAi0xDBDixVKcLsfVUpwqx3tkNnExLIjbAFBS4XDE6QCoXoY8PZ+bDjVU+yF2FPIEQgDU6BB75+RM5UGcArE1tBFBLNVnpP6gk/43zdRhTQ4nfRjL5yIrSv6CXFE2Z+b/mY7/XXKyJUM+LGFVyRAHx0jnDPN2K2tqqBSrQNwnTI2IhFgT4g8CnsweYpSSIQmOl9ujBtxcFswZ0IHYkcfxD4XYAOJAYXZEmIJPTRMEsiGGKwSdIchjx0GsC/Fifm5ArMJmk3hqjMIX2pgmZjEV/DmOWOZX6uuBJCueqdB/ncFnK/Qx1YKMuESIKRCb5wsSIiBWhdghNys2VGEzriCDFTFkI5bESOM3hziGLwzyk+tj+WniwBiFfUlO7tB8sU0ZAnaEAu/Ly4gLlucHa+NyZPHDuWCX+UJm/JAOP3d82NBceHz/APncsR6+MD5WofNBlOcXIx+LU0TZUQp73JSfHSTlTSF2zs2PVYzFE/LggpTr42mivKg4eZx4QSYnJEoeD74ChAEW8Ad0IIE1FUwFmUDQ0dfUB+/kPYGAA8QgHfCBvYIZGpEo6xHCaywoAH9CxAe5w+P8ZL18kA/5r8Os/GoP0mS9+bIRWeApxDkgFGTDe4lslHDYWwJ4AhnBP7xzYOXCeLNhlfb/e36I/c4wIROmYCRDHulqQ5bEAKI/MZgYSLTB9XFv3BMPg1dfWJ1wBu4+NI/v9oSnhE7CI8J1Qhfh9hRBofinKMNBF9QPVOQi9cdc4JZQ0wX3w72gOlTGdXB9YI87Qz9M3Ad6doEsSxG3NCv0n7T/NoMfnobCjuxIRskjyL5k659HqtqqugyrSHP9Y37ksaYO55s13POzf9YP2efBNvRnS2wxth87i53EzmNHsCZAx45jzVg7dlSKh1fXE9nqGvIWI4snC+oI/uFv6MlKM5nrWOfY6/hF3pfHnyF9RwPWVNFMsSA9I4/OhF8EPp0t5DqMojs5OjkDIP2+yF9fb6Jl3w1Ep/07t/APALyODw4OHv7OhRwHYK8b3P6HvnPWDPjpUAbg3CGuRJwv53DphQDfEmpwp+kBI2AGrOF8nIAr8AS+IACEgEgQB5LAZBh9BlznYjAdzAYLQDEoBSvAGlAJNoItYAfYDfaBJnAEnARnwEVwGVwHd+Hq6QYvQD94Bz4jCEJCqAgN0UOMEQvEDnFCGIg3EoCEITFIEpKCpCNCRILMRhYipUgZUolsRmqRvcgh5CRyHulEbiMPkV7kNfIJxVAVVAs1RC3R0SgDZaKhaBw6CU1Hp6EFaBG6DK1Aa9BdaCN6Er2IXke70BfoAAYwZUwHM8HsMQbGwiKxZCwNE2NzsRKsHKvB6rEW+JyvYl1YH/YRJ+I0nI7bwxUcjMfjXHwaPhdfilfiO/BGvA2/ij/E+/FvBCrBgGBH8CCwCeMJ6YTphGJCOWEb4SDhNNxL3YR3RCJRh2hFdIN7MYmYSZxFXEpcT2wgniB2Eh8TB0gkkh7JjuRFiiRxSHmkYtI60i7ScdIVUjfpg5KykrGSk1KgUrKSUKlQqVxpp9IxpStKz5Q+k9XJFmQPciSZR55JXk7eSm4hXyJ3kz9TNChWFC9KHCWTsoBSQamnnKbco7xRVlY2VXZXjlYWKM9XrlDeo3xO+aHyRxVNFVsVlspEFYnKMpXtKidUbqu8oVKpllRfajI1j7qMWks9RX1A/aBKU3VQZavyVOepVqk2ql5RfalGVrNQY6pNVitQK1fbr3ZJrU+drG6pzlLnqM9Vr1I/pH5TfUCDpjFGI1IjR2Opxk6N8xo9miRNS80ATZ5mkeYWzVOaj2kYzYzGonFpC2lbaadp3VpELSsttlamVqnWbq0OrX5tTW1n7QTtGdpV2ke1u3QwHUsdtk62znKdfTo3dD6NMBzBHMEfsWRE/YgrI97rjtT11eXrlug26F7X/aRH1wvQy9Jbqdekd18f17fVj9afrr9B/7R+30itkZ4juSNLRu4beccANbA1iDGYZbDFoN1gwNDIMMhQZLjO8JRhn5GOka9RptFqo2NGvcY0Y29jgfFq4+PGz+nadCY9m15Bb6P3mxiYBJtITDabdJh8NrUyjTctNG0wvW9GMWOYpZmtNms16zc3Ng83n21eZ37HgmzBsMiwWGtx1uK9pZVlouUiyybLHitdK7ZVgVWd1T1rqrWP9TTrGutrNkQbhk2WzXqby7aorYtthm2V7SU71M7VTmC33q5zFGGU+yjhqJpRN+1V7Jn2+fZ19g8ddBzCHAodmhxejjYfnTx65eizo785ujhmO251vDtGc0zImMIxLWNeO9k6cZ2qnK6NpY4NHDtvbPPYV852znznDc63XGgu4S6LXFpdvrq6uYpd61173czdUtyq3W4ytBhRjKWMc+4Edz/3ee5H3D96uHrkeezz+MvT3jPLc6dnzzircfxxW8c99jL14nht9urypnuneG/y7vIx8eH41Pg88jXz5flu833GtGFmMncxX/o5+on9Dvq9Z3mw5rBO+GP+Qf4l/h0BmgHxAZUBDwJNA9MD6wL7g1yCZgWdCCYEhwavDL7JNmRz2bXs/hC3kDkhbaEqobGhlaGPwmzDxGEt4Wh4SPiq8HsRFhHCiKZIEMmOXBV5P8oqalrU4WhidFR0VfTTmDExs2POxtJip8TujH0X5xe3PO5uvHW8JL41QS1hYkJtwvtE/8SyxK7xo8fPGX8xST9JkNScTEpOSN6WPDAhYMKaCd0TXSYWT7wxyWrSjEnnJ+tPzp58dIraFM6U/SmElMSUnSlfOJGcGs5AKju1OrWfy+Ku5b7g+fJW83r5Xvwy/rM0r7SytJ50r/RV6b0ZPhnlGX0ClqBS8CozOHNj5vusyKztWYPZidkNOUo5KTmHhJrCLGHbVKOpM6Z2iuxExaKuaR7T1kzrF4eKt+UiuZNym/O04I98u8Ra8ovkYb53flX+h+kJ0/fP0JghnNE+03bmkpnPCgILfpuFz+LOap1tMnvB7IdzmHM2z0Xmps5tnWc2r2he9/yg+TsWUBZkLfi90LGwrPDtwsSFLUWGRfOLHv8S9EtdsWqxuPjmIs9FGxfjiwWLO5aMXbJuybcSXsmFUsfS8tIvS7lLL/w65teKXweXpS3rWO66fMMK4grhihsrfVbuKNMoKyh7vCp8VeNq+uqS1W/XTFlzvty5fONaylrJ2q6KsIrmdebrVqz7UplReb3Kr6qh2qB6SfX79bz1Vzb4bqjfaLixdOOnTYJNtzYHbW6ssawp30Lckr/l6daErWd/Y/xWu01/W+m2r9uF27t2xOxoq3Wrrd1psHN5HVonqevdNXHX5d3+u5vr7es3N+g0lO4BeyR7nu9N2XtjX+i+1v2M/fUHLA5UH6QdLGlEGmc29jdlNHU1JzV3Hgo51Nri2XLwsMPh7UdMjlQd1T66/BjlWNGxweMFxwdOiE70nUw/+bh1SuvdU+NPXWuLbus4HXr63JnAM6fOMs8eP+d17sh5j/OHLjAuNF10vdjY7tJ+8HeX3w92uHY0XnK71HzZ/XJL57jOY1d8rpy86n/1zDX2tYvXI6533oi/cevmxJtdt3i3em5n3351J//O57vz7xHuldxXv1/+wOBBzR82fzR0uXYdfej/sP1R7KO7j7mPXzzJffKlu+gp9Wn5M+NntT1OPUd6A3svP5/wvPuF6MXnvuI/Nf6sfmn98sBfvn+194/v734lfjX4eukbvTfb3zq/bR2IGnjwLufd5/clH/Q+7PjI+Hj2U+KnZ5+nfyF9qfhq87XlW+i3e4M5g4Mijpgj+xXAYEXT0gB4vR0AahIANHg+o0yQn/9kBZGfWWUI/CcsPyPKiisA9fD/PboP/t3cBGDPVnj8gvpqEwGIogIQ5w7QsWOH69BZTXaulBYiPAdsivyampMK/k2Rnzl/iPvnFkhVncHP7b8Ah9d8bcAadJgAAACWZVhJZk1NACoAAAAIAAUBEgADAAAAAQABAAABGgAFAAAAAQAAAEoBGwAFAAAAAQAAAFIBKAADAAAAAQACAACHaQAEAAAAAQAAAFoAAAAAAAAAkAAAAAEAAACQAAAAAQADkoYABwAAABIAAACEoAIABAAAAAEAAArkoAMABAAAAAEAAAGKAAAAAEFTQ0lJAAAAU2NyZWVuc2hvdGxAPf0AAAAJcEhZcwAAFiUAABYlAUlSJPAAAALYaVRYdFhNTDpjb20uYWRvYmUueG1wAAAAAAA8eDp4bXBtZXRhIHhtbG5zOng9ImFkb2JlOm5zOm1ldGEvIiB4OnhtcHRrPSJYTVAgQ29yZSA2LjAuMCI+CiAgIDxyZGY6UkRGIHhtbG5zOnJkZj0iaHR0cDovL3d3dy53My5vcmcvMTk5OS8wMi8yMi1yZGYtc3ludGF4LW5zIyI+CiAgICAgIDxyZGY6RGVzY3JpcHRpb24gcmRmOmFib3V0PSIiCiAgICAgICAgICAgIHhtbG5zOmV4aWY9Imh0dHA6Ly9ucy5hZG9iZS5jb20vZXhpZi8xLjAvIgogICAgICAgICAgICB4bWxuczp0aWZmPSJodHRwOi8vbnMuYWRvYmUuY29tL3RpZmYvMS4wLyI+CiAgICAgICAgIDxleGlmOlBpeGVsWERpbWVuc2lvbj4yNzg4PC9leGlmOlBpeGVsWERpbWVuc2lvbj4KICAgICAgICAgPGV4aWY6VXNlckNvbW1lbnQ+U2NyZWVuc2hvdDwvZXhpZjpVc2VyQ29tbWVudD4KICAgICAgICAgPGV4aWY6UGl4ZWxZRGltZW5zaW9uPjM5NDwvZXhpZjpQaXhlbFlEaW1lbnNpb24+CiAgICAgICAgIDx0aWZmOlJlc29sdXRpb25Vbml0PjI8L3RpZmY6UmVzb2x1dGlvblVuaXQ+CiAgICAgICAgIDx0aWZmOllSZXNvbHV0aW9uPjE0NDwvdGlmZjpZUmVzb2x1dGlvbj4KICAgICAgICAgPHRpZmY6WFJlc29sdXRpb24+MTQ0PC90aWZmOlhSZXNvbHV0aW9uPgogICAgICAgICA8dGlmZjpPcmllbnRhdGlvbj4xPC90aWZmOk9yaWVudGF0aW9uPgogICAgICA8L3JkZjpEZXNjcmlwdGlvbj4KICAgPC9yZGY6UkRGPgo8L3g6eG1wbWV0YT4K++N+rwAAQABJREFUeAHs3QecFPX5x/Fn93qjc0ev0qUpNiSixlijBls01ojRGBOjMXb/aSYxtigYjRVbFFRUREEURVFEkd6RdvQOB9xxcG33/3sGZtkyu7d7jd27z+/FMjO/6e/d292b/e5zrtLSUq/QEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQKBKAu4qrcVKCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIGAJEMjlgYAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggEA1BAjkVgOPVRFAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEiGAAEEEEAAgdoWKCgokLFjx0qLFi3kvPPOk9TU1NreJdtHAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBOpMgEBunVGzIwQQQKBhCnz77bcydOhQ38nn5ubK0qVLJScnx9fHCAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCQyAIEchP53uPYEUAgKoF169bJ3r17rWXXrFkj5eXlctRRR0m7du2kSZMmUW1jyZIl4vF4Ii6bkpIiGjbVbbpcrojLNqSZ//73vwNOd9u2bfLWW2/JDTfcENDPBAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCQqAIEchP1nuO4EUAgKgEN0Wp11o0bN4Ysf8cdd8hDDz0U0u/UMWDAAKfusH29evWSq666Si6//HJp37592OUawozVq1eHnOby5ctD+uhAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBJVwJ2oB85xI4AAAtEIzJw50zGMq+u+/vrrUlFREc1mYl5m6dKlcv/990vXrl3ld7/7nRw4cCDmbdSXFW666aaQU7n66qtD+uKx491335XmzZsH3P74xz/G46FyTAgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIHAEBQjkHkF8do0AArUvMHbs2LA72bZtm3zzzTdh59fUjOeeey5sld6a2kc8b0crBT/++OPSrVs3GTJkiIwZM0b69u0bz4fsO7aSkhIpLCwMufkWYAQBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQMAIEcnkYIIBAvRUoLy+XUaNGRTy/d955J+L8mpo5d+5cufLKK0WPqaG1zMxMq0rw4sWLZcqUKXLRRRc1NALOFwEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBOq5AIHcen4Hc3rxL6ABzdoKaXo8HtmyZYvs3r27yhC6ja1bt1o3Ha+ptmfPHuvYKtteRUWFbN68WXQYa/vqq6+syqaR1nvzzTeltLQ00iJh533yySeydu1a67Z8+XKZOnWqPPnkk1YlWKeVpk+fblWKdZp3pPq0Aqz61uR9q9v0er01ckq1cXwFBQXW47lGDjDKjWzfvl327t0b5dIshgACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAokm4DJBtJpJTSXamXO8CBxBgUWLFslTTz0lX375peTn51tH0rdvXznjjDPk7rvvlmbNmsm9994rc+bMCTjKESNGSM+ePa2+jRs3yvXXXx8wv2vXrvLMM8/IwoUL5W9/+5t88MEHvvm5ubly0kknyT/+8Q/p3r27r99pZM2aNfK///1PRo8eLStWrAhYpHPnznLVVVdZ1V67dOkSMM+eePjhh61KqPa0Dv/yl7/IoEGD5LHHHpOnn35atm3bZs3OycmRU089VR555BHR47fbhx9+aPXNmDHDt9wpp5wip59+utx8882SnJxsLxp2qMu99NJLAfNvvPFGef755wP6xo8fL2effXZAX/BEampqcJdo1ds+ffqE9GvA+oorrgjw919IA6FZWVn+XSHj6nP11VeH9KufPlac2i9/+UvZtGlTwCx11/vdbkVFRfLcc8/J7NmzZf78+QH37+DBg2XAgAHW/fGzn/3MXiVgqOe1a9eugL6xY8da+9VqwxMnTpRZs2ZZ8/Xxc/HFF8sTTzwhkyZNCljn0UcflX79+gX06URtHd+BAwdEH5cvv/yyL6Stj73+/fvLXXfdFXD/FxcXy7Bhw6xj27BhQ4CRdurPkv/9rj/LwT9T+jM4ZswYy/jbb7/17bNt27bWz4Hud/jw4dK6dWtrP/yHAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACiS1AIDex7z+OPgEFNHj6wAMPhD1yDQl+9NFH8uCDD8pnn30WsNy0adPk+OOPt/pWrlwpvXv3DpivQU0NR2rwtbCwMGCe/8Srr75qBUb9+3Rcq5pqoPf2228PnuU4raHKW2+9VVwuV8B8DYa+8cYbAX3vv/++fPHFFzJy5MiAfv+JyZMny49+9CO57rrrrDCj/zz/8WuuucYKlSYlJfl3B4xrAFPDj/4OvXr1Eg2NHn300QHLavA1OLgbsICZiCWQq+tqqPPcc88VrYob3N566y1f4DN4nv+0hjaXLl3q32UFre+5556APp3QKrcdO3YM6f/hhx9EQ9Ta1F9D3BrmrqzdcsstViA6JSUlYNF27dr5wtT2DA2Ya1DaDlnb/Rr81cfCb3/725AQtIZVL7roIntRa1hbx6dVjDVI7HRf2Afwm9/8xqpurNP6mGnevLk9q9KhhsYHDhxoLaeVhp999lm57bbbKl1Pf9b18ah2NAQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEhsAXdiHz5Hj0BiCfz73/+OGMbVs9Ew4KWXXhpVaDL47LVyqVY29Q+hBi+j09dee61s3bo1ZJZWCo02jKsr33nnnXLHHXeEbMep48UXX4wYxtV1NBSp1UY1rBmpvfbaa/KnP/0p0iLy+eefhzhotVatZNqtW7eAdV9//XUrQBvQWc2JzMxM0RCyhi6Dm4Ywo2lXXnllyGLBlWbtBb766it71DfUYLYdxtWKw2eddVbUjyutYnzhhReKVvutrGl4NziMW9k6wfNr8/i0UnKkMK4eiwbRP/nkk+DDinlaw8fRhHF1w/pzqpWZ33777Zj3wwoIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCAQXwIEcuPr/uBo6rFAfn6+OFU2dTplDTcGV0Z1Wi64TyufRruehoP9mwY9R4wY4d8V1fh//vMfmTBhQqXLRrPMihUrrJBvpRszC2iV30hNq9AGNw0/aguuzKp9NRHG1O34t6ZNm8rJJ5/s32WNL168OKTPqUMDxMFNg6W7d+8O7hatLhzctPKv3R5//HF7NGCogWGn0LAupBWao7nfpk6dGrDNqkzU5vFNnDgxqkO67777oloueKGMjAyra8mSJaLB8+Cmlau1kvT5558fPMuafvLJJx376UQAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIHEESCQmzj3FUea4AJagdOpaRXT559/XmbNmiWjRo2SIUOGOC0WU59WLP3iiy9k4cKFEi7oGFwx9Pe//73jPl555RXZsmWLddNxp/aHP/xBvF6v06yAvsGDB8v48eNlzpw58sgjjwTMC57Q49blNBR6xhlnBM+2KrKuWbMmpF87tPJocJXd3NxcOfbYY63lzz333JD1gpcPWaCKHXr/BrcNGzYEdzlOd+3aVZzWnzZtWsDyHo9HnCrnarVkbeoYfH+rx9y5c2XHjh2yfft2+f7776VXr14B29UJp+2GLHSoQwPE//rXvyx7vf+cwshO69bF8Z155plWxWINrGuFYj3/4KY/L/v27ZPs7GzZvHmzddOKzcFt2LBhvvlaabpnz57WIt98803woqImM2bMkMcee0zeffddy9uuWmwvrD/70Qbp7XUYIoAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAQHwJJMfX4XA0CNRPAQ2rjh07NuTkNJin1TubNGlizevXr59VvfW0006zwpIhK0TRocHaRx991Ldkjx49xO12y+233+7r0xGt5mk3DURqBd/gptU+f/GLX/i6dby8vFxuuOEGX5+O6Lq6DTvwGjDz0ISe6/vvvy9aNVbb0UcfLfv375c///nPh5Y4PND9XnPNNb6OY445xgo9auVg/6aB0k6dOvl3WeNOIVINpyYlJVnzjzvuOKsqrAZ37abHppVn7fvC7q/usH///iGb0P3quduVVUMW8Ou46qqrrLC2X5cVUv7pT3/q69KKu8E2+hhq3bq1tUzLli2tQKhvBTOiAVU7SOpyuWTAgAFyxx13hNy3a9eu9V8t7Pi4cePEKegcdgW/GbV9fCeccIK8/fbbkpmZae1Vg84dO3aU448/3u8oDo7q+fbu3VuaN29udThVD9bHiD3ffwMaXA9u+thNTj78UtuoUSPrZ14D0P6tTZs2/pOMI4AAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAQIIJHE4JJdiBc7gIJJKAVtvcuHFjyCFrZdzgAKiGBl9++WUrIBmyQhQdwcFbXeWyyy4LCeRqKLS4uNgKKX7yySchW9bKrP6hWHsB7Xv22WdDQqKffvppxECuhnntMK69La186xTI1aqi/k0rlp500knywQcf+HdblXADOg5NOFW79Q+LakDykksusZz9158wYYJceeWV/l3VHm/VqpXjNg4cOBBVIFersd52220B21CHJ5980ten1ZCD2+WXX+7rat++vdx6662+6XAjp5xySsgsfYxU1v7yl79UOYyr267t49Nzt8O49rloAFkrAgdXptWfVQ3kVqU5rXf//fdLaWmpVSlXw/EaftZAsN5oCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggUH8ECOTWn/uSM4ljgeDqpfahhqsoq0FBrczpX8HVXifSMDc3V5wqbWoFUqdWUVFhdTuFhTWQG67pvFmzZgXMdtqG/wJa/Te4OR2rVtLNysoKXlS0P5q2c+dO+fDDD0MWPfXUUwP6zj///JBA7ujRo2s8kLtixYqA/doTjRs3tkcjDrXKrVa79Q/dqvWqVat8oU4NQwc3PT+nptWa9Zi+/fZbq7Lxrl27rMrAWh34m2++cVql0j6nIG+lK4VZoDaOz6lKse6+S5cuIYFcrQBd1aahcaf217/+VfSmP9P6ODzxxBNFKxzrzzkNAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEE6ocAgdz6cT9yFnEuoKHH4Na2bVvRyq9OTato9u3bV6ZPn+40O2xfXl5e2HmRAr5OYdqePXuG3ZZTkNBpG/4bSE1N9Z8MO67Va52amkTTPvroI8fFnnvuuYD+oqKigGmd0GDr1q1bJZJjyEqVdCxYsCBkCQ1Ou93ukP5wHVdccUVAIFeXmzJlihXI1Qq2wYFcrQbcokWLgM1p0FUNtGJrrEHvgA05TDg9HhwWi9hVm8cXLpDuFPyOeJCVzNSA+cMPPyx3332345LqrmFxven9oG5avXf48OGOy9OJAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACiSPgnHxLnOPnSBFICIGMjIyQ49QAq1aoTUpKCpmnHZs3b3bsr41Ou1Ku/7bT09P9JwPG09LSAqZ1wmkbIQvVQcebb77puJdwIcnghT/44AO58cYbg7urPD137tyQdTt06BDSF6nDqdqthnB/9atfyXfffReyqgZ4/duePXvkuuuukwkTJvh319h4LOFip53W9vE57bO2+m6//XarwvPf/vY3CVcZ29730qVL5eabb5YffvhB/vWvf8UU0ra3wRABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQTiQyD6Eo3xcbwcBQIJKaAVUZ3amjVrnLpFA4r5+fmO82qjs1WrViGbXblyZUif3bFixQp71Dd02oZvZh2NaIj5iy++qNbewgV6q7JRPZ6pU6eGrHraaaeF9EXqaN68uZx33nkBi2hwuLS01KqUGzDDTJxzzjkBXW+88YZjGFerJl9++eVyzz33yEMPPSR33nlnwHp1NRHvxxergwa69Wd7/Pjxcs0110jnzp0jbuLJJ58MqXIccQVmIoAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAQNwJUCE37u4SDqg+CuifsndqTz31lGgYL7hpf102p+NbsmRJ2ENYvHhxyDynbYQsVMsd48aNq/Yepk+fLuvWrZNYq9gG79jj8citt94a3G1NX3jhhY79kTq16m1whduZM2fKxx9/HLDaxRdfLI0aNQromzhxYsC0TjzxxBNy0003SXLy4ZeBefPmyaOPPhqybG13xPvxVeX81fXss8+2brr+9u3bRR9bL7/8sjid77Rp03zLVmV/rIMAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAJHVuBwEuvIHgd7R6BeC2RkZIgGJd99992A83zmmWekR48ecv3110taWpqUlZXJ22+/Lfrn7uuynXjiiSG709DgjBkz5IQTTgiYp32TJk0K6NMJp22ELFTLHa+//rrjHpxCz/aCt912mz3qG+r9dPvtt/umYx0pKCgQrZKqVWyDW9u2bWXQoEHB3ZVOB1e91RVeffVVWbhwYcC6WvHWvxUXFztWX73hhhsCwri6zmeffea/ap2Mx/vxOSHMmjXLqduqiltYWOib53a7pU+fPtZ0y5YtRYPYerv//vtDgs8LFizwrccIAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIJJ4AgdzEu8844gQV0NBtcCBXT+X3v/+9dRs4cKCsXLlS/AN9dXWqp59+uuTk5ITs+5prrrEqsHbp0sU6lNWrV4v2BTddV7dxJNuqVavEKSg5f/586dWrV9hDKyoqkgceeCBg/v/+97+oArmTJ0+W9evXW+uWlpbKpk2bZM6cOfLKK68EbM9/4tlnnxUNasba1FjDtmPGjPGt6rSfn/zkJ775OpKamup432r49rzzzvMtq+dy3333+abraiTej0/D9MFNQ9AffvihnHXWWZavPV89V6xYYU9aw5EjR8qvf/3rgD69L4Nbu3btgruYRgABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgQQSIJCbQHcWh5rYAhqUvOSSS2Ts2LGOJzJ37tyAfqeAbMACNTihoch77703JJCZn58vPXv29AValy5d6rjXu+++OyCY6LhQLXe+9957IXvo3Lmz79hDZh7q0MqzwYFcDVwuW7bMOvdw62n/XXfdFWl2yDytSqshzqq2n//85wGB3ODtaFg6MzMzoDs5OVnOOOMMef/99wP6hw0bJkOHDpUBAwbI7NmzZdq0aQHz62oi3o/vqKOOcqTQitf6M9qoUSMZP3689O3bV37zm9+EBLlvvfVWmT59uvzoRz+ylp06daq8+OKLIdvU+TQEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBIXIHYyzQm7rly5AgccYHnnntOzj777EqP48EHH5STTz650uVqcoHbbrtNBg8e7LhJDeKGC+PqOn/4wx8c16vLTq1qG9w0AF1ZO/roo6Vt27Yhi4ULTocsGGXHTTfdJE888USUSzsv9uMf/9gKgTrPFSvw7TQv3GNOw6EjRow4YmFc+1jj+fi6du0a1lyrWW/cuFHKy8utU/nFL35hn1LAUKsa33LLLXL11Vc7hnE1zHvppZcGrMMEAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIJJYAgdzEur842gQX0Iqa7777rvznP/8Rrd4a3DSYN27cONGKs3XdtFKp7vv888+PetfnnXeeVXlV1z2SbdGiRY6BYa1+W1lzuVyOYcjXX3+9slWjmp+bmyujRo2Sp556StLS0qJaJ9xC6enpctlllznO1sfW6aef7jjv2muvDanc6rSgBsaPRIvn49OKw6+99lpULE2bNpV58+ZZ1XKjWsEspFWNv/zySznSP0PRHi/LIYAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAgLMAgVxnF3oRqDWBlJQUufHGG2XZsmWyfv160TDp7NmzZfv27dbw3HPPtfa9d+/ekGPQde3mFODTUGYsLXgbTZo0kXfeeUc0jDpkyJCwm9J5r776qhUu1hBicEtNTQ3uEg2TRtOys7OjWSxgmcmTJwdM64RanHjiiSH9Th22uf+8/Px8WbVqla8rWlsNWg8dOlSGDx8uH3/8saxdu1auuuoq33aqOxKukqpWZ3Vy1/253W55+OGHZeTIkTJw4MCQQ9AKtTNmzHAM9Gog1b/5Pwbtfqc+e54Ogx9n/vN0/Egfn//xZGRk+E9a4xo81wrR9913n2M1Zf/z7927t0yfPl3+7//+T3r16hWyLe3Qx5I+RkaPHm1VzI32seW4MToRQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAgLgRcpaWl3rg4Eg4CgXouMGvWLNmxY0fAWWo4Mi8vL6BPJ4qKiqRZs2Yh/Rs3bpSWLVuG9NdWx9atW2XDhg1WWFj3oftu27attGrVqrZ2yXbrQKC4uNgKG2t1YA0QZ2Vl1cFeo99FvB+fx+OxfkY1aKwBXnUM10pKSmTFihWWt4abNbDbpk2biOuE2xb9CCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggEL8CBHLj977hyOqZwAMPPCCPPPJIwFn17dtXpkyZIo0bN/b179mzR26++WYZO3asr09HNAirVVtpCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCAQXwIEcuPr/uBo6rGAVrfVaqRO7YQTThAN5xYUFMinn34qhYWFIYs9++yzcv3114f004EAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAkdWgEDukfVn7w1M4He/+50899xzMZ/15ZdfLqNGjZLk5OSY12UFBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBCoXQF37W6erSOAgL/AyJEj5YUXXpCcnBz/7ojj9913n7z00kuEcSMqMRMBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBIydAhdwjZ8+eG7DA5s2b5cUXX5QFCxZYt/z8/ACNwYMHy3nnnSeXXnqpdOrUKWAeEwgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggEF8CBHLj6/7gaBqoQHFxsZSUlEh6erpkZGQ0UAVOGwEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIHEFCCQm5j3G0eNAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIBAnAu44OQ4OAwEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgYQUIJCbkHcbB40AAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggEC8CBHLj5Z7gOBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEElKAQG5C3m0cNAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAvAgQyI2Xe4LjQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBISIHkhDzqeDxoj4i3VG9e8ZaZYbm5VXhFrKE54AozbSZFb2bZgxMuEfNPNBatozqeZIbmJuaecSW5xKXDFHNLNeOph5Y1AxoCCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAQHwIEMit7H4wAVoN2nqKvdbNW2zGD5jQ7X7Trzcd1yBuycHlpOTQtAniahjXCuTqUEO4VhDXb2hG/QO5VjDXhHM1hKuBXCuUq2Fcc5M0E8hN02Cuuekw3Uynm2GGyfPqeKYZZrnEnWnGdXkN99IQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBGpdgECuTWwq2Hr2m9BtoVcq9ppxM/QWmmGR6dtnwrZm6C0yQx03y2kwV/a7rECumDCuFb61t1UrQy2ta5reY4cCuWJCuK4Mr7mZEG6WGc82odzsg+PWMMdM57gkqdHBodsspxV4aQgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACNSfgKi0tPZT0rLmNxvuWvBq+NQHbit0mbKu3AjOtwz1muMeEbc3Qq0MTzNUArpTF+xkFHZ9W1TXhXJcJ4roamYBuYxPIbWyq5zYxwyY6NCFdHW9qhqaqLiHdID8mEUAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgRgEGkQg11sqVvi2YqcJ4Zqbxx7uMoFb62bCt6YabsIFb2O4o61FNairIV0TxHU3M4HcZmbY3AxbmGBuc3Mz00kmrOtKjXXDLI8AAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgg0XIF6Gcj1lpsArqlwW7HN3Lab21YTwjVDz3ZTAdcMvbvNHW5CujQjYMK3rqYHQ7nulmaYa0K5h27JLU1g11TWdSUjhQACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCAQTqDeBHI9+w+Gb8u3mOFmczNDzxYTwDVD7x5z+iakS4tCwIRvXU1MMLeVCeO2EkkyQ70ltzY3E9B1pbui2AiLIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAg1HIKEDuZ59XtEAbvlGE8DdZG46NDevqYQrJQ3nTqzVM003AV1TOTeprQnm6q2NCeaaYXKeCexmEc6tVXs2jgACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCSGQcIFcrYRrhXA3mOF6E8BdayrhmqG3wHhXJIR54h5kkgnnNjPVc9ubYG5HE8ptZ25m3ArnZhDOTdw7liNHAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIHqCCREINdbbrK2O7xSts4j5WtMENfcPCaI691lTp0QbnXu/6qvm3wonNvBBHI7m1snl6R0cEtSc5e4zDwaAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggg0FAE4jqQ6ykyIVxTCbdstQnirjbVcM3Nu83cNaUN5e5JkPNMNeHcPFM1t4tIchcTzO3ilhRTPdedRdXcBLkHOUwEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEKiGQPwFcj0i5btMCDffI2UrTQh3hbmZirhSVI2zrKtVk8yOUsxNA6opJoyabI5bq8WafpfOc5ubZlTtoRkVs4iYc7aHXq34qzdTFVjKXeItMwtoALnsUL8ZxHXLMadrquUmdzO3o0w4t5NbkpuZk9ZzpiGAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAL1UCBuArleE0At32ZCuCaAW/aDqYj7g6mGu8WIaxD1SDcN0WrINtMMs3TossZd6WY8w9zMUNJMX5oZ1+XMTUwg16XhXA3jmlBuNIFcrwZzTRhXLTSQaw1NINdrArneEnPTYG6JmT5gxvebmw6LzW2fCe3uOzhueWnI90g3Y+BubarmdjcUPdyS2t2Mt3BbFkf60Ng/AggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggUJMCRzyQ6zWB2/ItHik1IdyypaYargZxd5hT1HBqXTcN3mrAtpHeTKDWDN06nuMStwZxs810lunPNtO6nLm5M8y0CeS6TSBXw7e12bR6rlcDuSaM6zlwaFhshiaM6zGhXK+pIuwxN2+hVzx7dWhue03/HnNUJrxrVeGtzQN02rapjOtqaWh6mGq5vUww1wyTWxHMdaKiDwEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEElPgiAVyrYq4GsQ1IdyyRZ6DQdwCg1hX1V01fKsVbpuaMG0zE6rVYVMTtG1ihk3MsLEZmiBukgnmuk0A16p6mwD3sVbR9RSZYLMJ4nqsm5kuMOO7zXC3CecaY8+ug8M6Dekab1czE8ztaYK5R5tgrhkm5xHMTYCHFIeIAAIIIIAAAgjUG4HvvvtOTjzxxHpzPpwIAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggED8CNR9INdUvi3f5pWSpaYi7gITxDWBXA2J1noQVwO4psqtu6UJ2JqKre4W5tbcjJtbkt5MGDepsQnepsXPnVOTR+I1FXIr9pigrgnnVphArmeHue3UoQnobjc3My2m0m5d3A9WMLeXCeb2c0tab7cktzB3jqmkS0MAAQQQQAABBBBAwElgxowZcsIJJzjNirpvxIgR8sr7L8ne9fvkzTffrPb2ot4xCyKAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIINAiBOg3kahi09AdTFXeeR8oXmiCuCYPWagBUK+A2N1nP1iZsm2eGJoyblGcqs+pQw7iZWra1QdzPoSdp8reeYhPONaFcDUhXmJtHh1tN/5ZD901J6Go11qP0Jhid3NclqQNNxdzubkkylYlpCCCAAAIIIIAAAgj4C4wcOdIK0qanp8sTfxlZ5SBtbm6uXPb3s2Xd0o2Sur6pjB071n83jCOAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIFAtgToJ5HoPmCDualMVd44J4s71iGeTOeaKah2388qa59QquCaA624jkmSGyRrG1aFWxm3IAVxnscO9hwK6Gs4t32yCuYduel9pQLfWqucmmfurnQnmDjDVco81wdxOpkpxOsHcw3cMYwgggAACCCCAQMMWyMvLk0v+dqZsWrVVkvMbyzvvvBMzyFNPPSWvfPqcnHHVECkvq5Bx/54so599W44//viYt8UKCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIOAkkO3XWWJ9HpHyLRw7M90jZ9ybkucoEOw/U2NYPbyjbhDrbmOBtexPCbWfCt3pre7Diqqt2z/DwMST6mMnAurNMtdrOejOFi8tNZtpUNC7faELUG8x9Z91MOHeTuQ+LavBkTTDbs1akdKtHKkxou/w4l6T1d0tyntscUA3uh00hgAACCCCAAAIIJJzA008/LW2PayHZTbKkS98OMu6zz+X777+POUg7efJk6dKvg3X+ySlJ0u/H3eWrr76KeTsJB8gBI4AAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgjUmUCtVcj17DNVcX/wSMl3JtC5wCveXTV8Tukmr9nKVL3taKqrdjQB3I5uSTFB3KTGmiyt4X019M2Z0GzFHq+UmVBu+Vpzf671WiFaq3JuSc3iuJqb+7O/CeWeaKrldncfrGpcs7tgawgggAACCCCAAAIJInDBBRdIWt8yE6Y1b/pN+2HmKknf0FzGjBkT0xk0adJEhj91iSSnHvy23rplG2XfbJeMHz8+pu2wMAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAuEEar5+rKmKW2aq4pbM9kjptx7xrDG7NtVWa6SZoK2rqcnbdjIB3C7mZqq5ppggblIzl7iSamQPbMRJwNiqsd68vd1SscuEczWYm28CuqaqbcUaUzV3t1nR3PfVbd6d5vHzldnm+gopH+yV9GOTJDmXkHV1XVkfAQQQQAABBBBIRAGtYjv80kt8h56Rky47dpo3jDG0mTNnSmarNF8YV1dt0yVPXnpibAxbYVEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQiC9RoINdbYqrirvDIgWkeKZtrQpoFkXce9dxUE8RtZSqndjMh3KNMCLeLqYbb2oRw001Qk1anAi7ziNGAbHJuknj7mmDuJnNbbcK5K004d4WphLzFHE5ZNQ/JBLg9K0RKdnqkYqMJ5Q4x1XK7usWVxv1dTVlWRwABBBBAAAEEEkZg1qxZkhEUpG3dOU9mjp8S0zloqLddr7yAdbRSrm5b9zFo0KCAeUwggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCBQFYEaC+RW7PZKyXxTGfdLE6I0wUwprcrhBK2TYarhdjDhzx4mhNvd3EwoM7kp1VKDlI7YpAaiU02l4tRObikfYIK5K00Q29z35cu84llvHgMHqndo3l0Hq+V6tprH1Kkiaf1MNeTGhHKrp8raCCCAAAIIIIBAYghokLZ9z8AgbUpaspSWl8QUpC0uLpYOPduEnLRue9++fSH9dCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIFAVgeoHck3usmyzqYr7rUdKTWVc7yZzGKavWi1LJKmjS5J6mbBnb3Pr7BZ3NkHMapnW5spuUzW3hQlOt0iStD6mSnK+uS0xVXOXmmDuWvNgKK7Gzk2wu2KRV/bvNqHcHV7JONGEsluZHfJwqAYqqyKAAAIIIIAAAvEvoGHZDr1Cg7QDTu8pGtaNtrLtnDlzpPPP2oacsG77xRdflKFDh4bMowMBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIFYBUyysRqtwhTCXe2R4gkVUvKJCeNuNNuqThhXK+KaEG7auW7JvCxJss9PkvS+SYRxq3EX1fWq7hyXpJtKtnrfZZn7UO9Lt6lwLOnVOBLzmPKairslkzyyb6IJfud7TEq3GttjVQQQQAABBBBAAIG4F9AgbfueoUHarCaZ8vXXX0d9/FOnTpWU9JSQ5bVvy5YtIf10IIAAAggggAACCCCAAAIIIIAAAghUTUCv55x44onWl6CrtgXWQgABBBBAAAEEEEAAAQQSW6DKgVyvqVx6wFRBLf6gQsq+MYnJ3dWASDVB3K4iqWe7rRBn1nkmyNnbBDkzKYNaDdUjuqo7ywSr+5j709yXGq5OPcvcn53NIYVmIaI/zgJTjflr85gbbwLgy0wA3DwGaQgggAACCCCAAAL1U0Cr4KY6BGn1bIuKiqI+6dSWzn8UpFWn3Ki3wYIIIIAAAggggAACCCCAAAIIIIAAApULXHvttdL9wjbyzcbJ8tvf/rbyFVgCAQQQQAABBBBAAAEEEKhnAs6fTldykt4DXjmwyCMHPvZIxTITxi2rZIVws00c2GU+B0/uZ8Kbx7gltZsJbZoKq7T6I6DB3PS+Lknt5JISUym3dI5Hyhd6xbvdnKMpdBtzKxYpn+WV4uIK8Z7ttUK/rjQeMzE7sgICCCCAAAIIIBDnAinNkxyPsFXHljL5qfGO84I7586da6rs5gV3W9Ma9l1bkO84j04EEEAAAQQQQAABBBBAAAEEEEAAgdgERo0aJa7WpdK6S66U7i+VCR9OEr02M3DgwNg2xNIIIIAAAggggAACCCCAQAILxFwh11NswrhzPbLfVCmtWFKNMG6OSNKxJqx5UZJk/SxZ0gcmEcZN4AdSZYeuQeuMY819Pczc18OSJOkYE6LNrmytMPNNZdyKRV7zGDSh8Hke8ew3j0MaAggggAACCCCAQL0R0A9r2oUL0makSnIzt/WBTmUnHKnKrq57oGx/VNupbD/MRwABBBBAAAEEEEAAAQQQQAABBBq6wN///ncZMuw4iyHVXL/pPri9jBw5sqGzcP4IIIAAAggggAACCCDQwARiqpCrwccDpsLpgYkV4lltpKpS4dTs0d1OJOU4t6SZW0o7t7hiOooGdg/Vp9M1Gdzkli5JOiVJUrRi7kyPlM0ygdoN5iQrYjzRcrOKqc68v9ysaB6HaQNMdeUMKuXGqMjiCCCAAAIIIIBAXApokDYtIyXssaWaeXv37g07355RU8vY22OIAAIIIIAAAggggAACCCCAAAIIIBAqMG/ePMnqkiI5zQ5X4znqmM7yxp0fhi5MDwIIIIAAAggggAACCCBQjwWijsJqGLfEVMa1wrirjEhVipKaqrjJR7skbbAJ4/Y2AUpTNZXW8AQ0gJ3axS1JLVxS2tEEc7/xSPli84AqitHCBHE9K0T2TzQjptZzen8T7k7nMRWjIosjgAACCCCAAAJxJ1BZkDa3Y9OojzmvU8uwy8aynbAbYQYCCCCAAAIIIIAAAggggAACCCDQwAX0y9WNmmcFKKSZKrnuJiLz58+X/v37B8xjAgEEEEAAAQQQQAABBBCorwImxlh585aKlCz0yP6PD1XGjTWMazKSrramiulP3JJ1UZJkDEoijFs5e71fIqmRSzKOS5JM85hIPcOEaVubU441T2sei54VplKuqdp8YLFH9LFKQwABBBBAAAEEEEh8gbyO4YO0+oGOfphTWVuwYIGkZaaGXaxDz7ZRbSfsBpiBAAIIIIAAAggggAACCCCAAAIIICBff/21OF3Lad8zT3bv3o0QAggggAACCCCAAAIIINBgBCoP5FaYMO4yUxl3kkc8K42LKUYaUzN/adbd0yXpF5jg5dlJktLR7DIppi2wcH0WMI+F1M4mqH1OknmMmKrJPczJhv/rxM4SWil3uViP0dIVZsI8ZmkIIIAAAggggAACiStgBWmzwgdpczu2kD179lR6gvqBT277FmGXSzP70A+MaAgggAACCCCAAAIIIIAAAggggAACVRfQCrnte7YJ2UD7Xm3kjTfeCOmnAwEEEEAAAQQQQAABBBCorwKRA7mm+mhpvgnjflohFT+YiViDjuYvkyQPcknmxW7JPMktSU1iLX9aX9k5r2CBpKbmcXLywWq5yceYx0lm8BKVTJvHZsVSUynXPFZL15pQbqxVnCvZPLMRQAABBBBAAAEE6k6gsiBtelaaLFy4sNID0mCvLhupUaUlkg7zEEAAAQQQQAABBBBAAAEEEEAAgcgCev1FcjyO12D0rxPl5+dH3gBzEUAAAQQQQAABBBBAAIF6JBAxkFu+xSP7v6iQ8oUm3VgW41k3NYVOh5iQ5c9M5dOjk8SVThg3RsEGt7g+RtL7mlCuecyknGweL41jJCgVKZ/vlQNfeqR8G4ncGPVYHAEEEEAAAQQQiBsBDdtWFqQtKCio9HgrWyZS9dxKN84CCCCAAAIIIIAAAggggAACCCCAAAKi1XHb9cx1lNDrO+t3r3WcRycCCCCAAAIIIIDAYQH9bOzee++VN99883AnYwggkJACYQO5FXtNtdHvTLBxlgk27o/t3FwtRVJPM1Vxz02S1E5mF2H3Ett2WboBCCSZx06XQ48d8xhyhf8Lw84YxSY7/r2p6jyjQjyFhHKdkehFAAEEEEAAAQTiW8CTVR7xAHPbNY84357ZpH0je9RxGG2lXceV60nnAw88IKNHj67W2SxatEhqYjvVOghWRgABBBBAAAEEEEAAAQQQQACBIyKgX4iO9MXq4tJ9otcOaAgggAACCCCAAALOAvo5zX0P3SM/FM+Tt6a8bn3m4rxkw+7lPWXDvv8T6ewdo7JeUw23ZKFHSr/xiLfywlMB5+tqZQKVZ5hA5Rmmymlrs3kK4wb4MBGFgHnMpLQ1j6GfmED3j00o1/lLtWE35N0lUjrNIyWLzeM31srOYbfKDAQQQAABBBBAAIGaFtBfnP/v//5Phg0bJmPGjPFtPj07zTfuNJKenV7pBzm67cq2o9vetcu8eWyATX3UfUnhbBnz+esB/rFw6P12/0P3+raj9ycNAQQQQACBuhLQ1zP/9xB1tV/2gwACCCCAAAIIIBAo0LJ9+C9Pt2jXRHbu3Bm4AlMIIIAAAggggECCC9TkdamVK1fKxj1rpF2/PMnt21je/fSdSj8HS3C+mA9fP3/Sz6N0qPY0BOJZINnp4MrWmTCjCTR6NzjNDd+nYdw0E8bNGJIkSc3qVxJ3ypQp8sILL8ill14qF110UVgELSH+9ddfh8zPzs6W1q1bS79+/SQvLy9kfl10zJgxQ2bPnm3tqmfPnnL66afHtNuNGzfKBx98YK3z85//XJo3D//Ltf+GPR6PjB07Vj766CPJz8+X9u3by5lnnilXXXWVJCc7PgSt1ZNbuiTjVFMy1+S6S6eYx+NW/61GHvesEzlgHsNJeS5J7Ww2QEMAAQQQQAABBBCIK4G33npLJs+dIO5mFeLqXixPv/qU9O3bN+pjrMiI/M0r/aBHP/CprDVpF7mKbmXrJ+p8/XOSS3cukDN/+iPZX7jf59+nT5+YTmncuHGyvnC1DDn9OGs7Y998Wy6//HKJdTsx7ZSFEUAAAQQQMAJ/+tOfZMHqeSIZ5eJyuUSvVdEQQAABBBBAAAEE6l5g8eLF0vTE8NdXOvRqI7rM0KFD6/7g2CMCCCCAAAIIIFALAnpdalPpGtmxc0e1r0vp52Wz130rx/7kaMkwBWn01uGYXPnvf/8rTz/9dC0cfeJtUo2+WPypdBzYShZtnyW7/rsLm8S7GxvUEYekISt2e+XADI9ULPOKeKK3cLU0lXFPN2HcH5kwbtP6FcbVQOnw4cNFA6nvvvuuFBcXhw2Sauj1tttuiwh34YUXyjPPPCMtWxq0Omo7duyQc889VwoLC6093njjjTEFcsePHy+//OUvfevrL83RBHJLSkqsEPOkSZN8Z6pGGtB96aWX5OOPPxYNK4dryc1dkjnUhHLNY7H0c694d5jHZTTNLF+xxCslHUwo14TDkxrXr8dkNAQsg0BlAnoBTH8We/fubf2cVrY88xFAAAEEEKhJgX/84x/S5cw86dGxqzTtmCNFuxfJs88+K5dccokJ0jaudFfpOZGr6OoGMiqptKvLRLMdXa4+tXfeeccKQw8ZNsh3cSejw0bL/6mnnor6VHU7G0ry5ZgzDl8kaj+wZczbiXqHLIgAAggggMAhAX0NmrLwE+kwME8yc3JkzGevidvt5ndbHiEIIIAAAggggMARENAv/fbq3FrWbVorbdq0kTat2wQcRUZOulXM6De/+U1APxMIIIAAAggggEAiCtjXpXqe0kla5OVYBU+OPvroKhcqWb58uWzfu0V6tO7g4+gxqKt89vzn1peaGnoBFPXWoj49f9JJmrdpKvtbH5A5E2aJ9mtRTRoC8SgQWDq0QqRkiUfKZpk0474YDrepCeOecqgybj0L46rCt99+a4VxbZHPP//cHg077Natmzz00EPW7cEHH5SLL75YcswHBNq0yuxPf/pTKSgoCLt+Tc/4wx/+4AvTxrJtDR//9re/tYIRdpg3lvUfeOABscO4d955p0ydOtUqH64WGsz99a9/XenmNFCbcUqSpAwxodrKi5wd3l6RSNlMr5QuM49n84/WsAU0ePrrP95oVWzT8Ybe1OBPjzwg83Z8K29OflX+9re/NXQSzh8BBBBAoA4F9HWopHGRtO95+AOaHsd1lc9nTJYlS5ZYIdFoDkeXDdcizQteJ5Zlg9dNxOlly5bJtr2brQsX9vH7+9t9lQ11O827NKr2dirbD/MRQAABBBAIFvj73/8uPX/UUdr3aGO9DjXvlSXaR0MAAQQQQAABBBCoWwG9xqNFgZKyzH4zK2Tt+nwpLDpYHMj/SHQZGgIIIIAAAgggkOgC+t5H8xV6XUrDoXpLbyfy3HPPVfnUdJu9TjgqYH39QlO7AS1Ev/jU0Jt+FlUou3yfRamN+nMtsKE/MuL7/AMCueXbPFI62yPezTEcdKZIygkamHRLcov6WYV09OjRASBvvPFGwLTThFacvOOOO6zb3XffLbqN7du3y2effWYtPnfuXBk2bJgUFZnUaC23iRMnypgxY6xA8F133RXT3o477jh5/vnnrXX12wWxNK0oPGLECGsVHWoVtJNOOskK5Oo2tb399tuycOFCazzSf8ktzWPsVLekDDKPMfOYi7Z5NphA7hyPlG+LsrJutBtmuYQS0MrWb376quzJ3izFbXbIf14eKUuXLk2oc6jpg9U3J6mdy6Vdvzxp1iNTPjV/MlydaAgggAACCNSFgL4Ot2jTxFS0y/DtTsfb9m8e00ULfX8drsXyQU+k7YTbfiL362t+z+MDL+7Y/rFc3NHtdPALVauJvZ2GZprIjweOHQEEEEg0AX39OZBTKM3bNvMduo5v2ruxwf+u7wNhBAEEEEAAAQQQqCMB/awhPS/F+nJ1dpNMcaeLrF27JmDvLdocft8WMIMJBBBAAAEEEEAgwQT0861tezYFXJeyCp58N7lK16V0e8HXuWyS5m2bWn9lwJ5uqEO9FnjMj48OOH2uBQZwMBGHAr5ArrfMVMdd6JGKJSa4aCrlRtMqXBUyr3C2/HncvfLwqIdk9+7d8uWXX8ptt90m48aN821i586dVp9WSy0vL5fXXntNbrjhBjn99NPl5ptvjpjo19LcL774ovziF7+QCy64QB599FGrsqrHE1ry9K9//au1n61bt8r48ePlpptusvah1WE3bNhgHY8e4z//+U9rW7o9/UVx/fr1vmMNHtEKsXZ4VCu6atNwq24n1qZ/Ou+UU07xVYydPn26RPMnYfWc1XTmzJmOu3zllVes+Vp5N7jt3btXbrzxRqtb/wRwXl5e8CIRp1esWCFDhgyR+fPny4UXXuhb1uWqPHytjwVtnTt3luHDh1vj9n8XXXSRDBo0yJr89NNP7e6Iw5TWpgrz6UmS3MfsOznioodnmsdy+SKvlCw2QXPzGKc1PAF9A6M/5016pEuHXm2tbxaltKmIKewTD2rvvfee/O6eW0SHeqtO0/WLs/ZYHpmNMsyfBW8m3Yd04BtE1UFlXQQQQACBmAT0tajH8V1D1tHXpGir1TZv0zhkfToqF7DfB6h1cNO+aAO59nb0vURw0+28//77wZ8EqeQAAEAASURBVN1MI4AAAgggUCMCehH+5GHHhmxrwBk9Eu53/ZCToAMBBBBAAAEEEEggAb02sHHPeknJOvyhXXaTLNlRsCOgIJFeO9DPamgIIIAAAggggECiCzh9vqXvddr0b1al61L6V8ZbtHX+U+H6pab5q+YmOlm1jt/+LMrpMy2uBVaLlpVrWcD3G1L5ZlMdd4FXvLui26PWG128c6E8veQJmbjjA/FO8sp///tfueSSS+SZZ56RrKws+dnPfmZtrKCgwOrLzc2VXbt2WQFbey/Tpk2Tl156SZ5++mn51a9+ZXdbw48++kg0uOnfJk2aZE3+/ve/t8K5/vNeeOEF2bZtm2RkZMjjjz/um6X7ePXVV+WTTz6RSy+9VLRyq910e7p/XaZt27Z2t2/48ccfW+NDhw6VgQMHynnnnScTJkwQDb9ee+21vuViGdEg8h//+Ed57LHH5H//+5/ce++9EVfX6lJqqtV0tWKtf9OAs1biLSwsDAjM2ss8+OCDloket557NAFge10dPvHEE1awOTnZ91Dxnx1xXMO82i677DJJTU0NWFYDvVdeeaXMmjVLNHQdVTM53NTObqk41SueXRXiWRXVWuI1fwWnzITNy3u4JKWdL4Me3coslfACGirZl7FbWrZr7jsXrQg3+cVPREvb9+zZ09cfryMaaHnjk1ckOc9jDXdt2iNahbuqx64B5SG/OBiIt89ZfTYUTEkYE/u4GSKAAAIIJJ6Avq4FvzbbZ6EXFxq3ybEnIw4zG5mSK5W0Fn6V88It2iwo2GsHSfWvWdTHtnjxYvO+qKnjqan/lInfO84L7qxsO5MnfhK8CtMIIIAAAgjUiIB+EPHTC4eGbMv+XT9kBh0IIIAAAggggAACtSKgnzX0/3EPWbl8pW/7SSlJkt4oVdasXSNH9zlcyawkeb9vGUYQQAABBBBAAIFEFIj0+ZZelxr717Hy5JNPxnRqX3/9tQnkhhZQ0Y1o0LfwwN4GneGI9FmUmi9+e3FM3iyMQF0JWOlEb7mpjrvUI56VJmarSdso2pb9m2VZ1kL5zbM3yoKFC3xVZDU4Gq5pWFar3Wr4dsGCBVYYdfDgwdbi99xzj+zZs8e36rfffusL42qF1ylTpsjs2bPl4YcftpYZMWJE2CcyDeNqtdxFixZZ1Wg1aKuBVd2XVowdPXq0/PDDDzJ27FjJycmxArpatdepvf7661a3VujVdsUVV1jDl19+2RpW9T87WKuhVQ3aRmr2vvXJvaSkJGBRDRLruWnYWavv+jcNu6qTtliDuPZ2brnlFnEK43q9lT9Q7G+7duzY0d5cwLBDhw7WdLRV0KyFk0TSersldbBbXM6vSQH7sCbMoVb84JVSc9PHOq1hCWhQP7hyjr5xaXV0U9/zVjyLaPj/jUmvSKOjUqVTn3bW0J1bVuVj1+0VphVIy/aHA8r2+fczF87siuB2H0MEEEAAAQRqWkDfo7ds7xwI1dfotr1yA/7UT6T965drIrXMxqHVW4OXzzoU7NXXyNsf+L1MWjDOeu29/vrrrYscwcsn+rSa+f+Jb//z8b+449/vNK7b6T6oi9OsgItEjgvQiQACCCCAQBUF9PU6xe96kP81tVhex6q4e1ZDAAEEEEAAAQQQOCRgf9bgTnJLWk5gUR6tkrt586YAq4zG6fXyOkvASTKBAAIIIIAAAvVaoLLPtw6YLyBV9rlVMJAWmGvfs01wt2+6WZtGon8lPtFbrC72+Vb2WdTmvYcLctrrMEQgHgSsQG75NlM9dJkJKxZEd0glFSWypGyBXP3kFfKTC86QHj16yHXXXRfVn1EfNWqUVQlXKztq5VQN6GrTUKn/D6BWj9V2+eWXW2HSIUOGSN++feX222+3KvHqvLvuuksqKip0NKBp9VytOtu9e3fRarT+ATMN2F588cXSuXNnueCCC+SBBx6w1v3++9BKUJs3b5aJEyda83VZbeeee641nD59uqxevdoar8p//fr1862mFXAjtQEDBkivXr0soy+++CJg0XHjxlnTWl04KcmkVQ81rZyrYVptGspt167doTl1N9AXI23h9t2+fXtrfkyBXLOGO8sl6YPcktzPlMyNsnCvVn4uW+aRih2VB4mtg+K/eiEwfvx42ZOyQ3I7tAg5n14nmG8omVB+vDf9hnlO1xTfOei56LF/+s0k64sFsR6/fhkit4NzCMrebqzbZHkEEEAAAQRiFWjexvm1SLeTpd/43b8nqk3qF/7CNf0CXrRNl9XX3I3eFZLS2mu99i7eM9v3u0q020mE5fTb1h0iXdxp3Uj0AlBlTbfj9B7LXq+Z2U59uEhknw9DBBBAAIH4ENDfafW9graVq1bKivzlsnLtctmydYvV1+3YDlG9jlkL8x8CCCCAAAII1HsB/X3/0UcfFf2sQG+0mhOwP2vYt7s4ZKPJpkqux+2Ron2BBYm4ThBCRQcCCCCAAAIIJJCAvrcsSyrxXYcKPvR2PXNj/lxE3x9lNc4M3pRvWj/P+fDDD33TiTZivx9/8N9/lRtuuCHm9+SVfRa198CeKuVmEs2R4008ASuQW7bKKxXmFm113JV7l0vOaRmS0zHwSeH444/3BVbDUdiBVnv+UUcdZYVjdXrjxsPJ9RkzZliL3HnnneJymeClXxs+fLhV2Va7Vq5c6Tfn4Oj5558f0Hf00Yf/JMqpp57qOM/pl8B33nnHWva8886T5s0PVpPMzs4Wu2LtmDFjArYVy4RWtLVbcXHoL6v2PHuoFbq0vffee3aXaOjWruCrwWX/plVB586dKwMHDrQC0P7z6mp8y5aDH4Y0atTIcZdanVibhrFLS0sdlwnXmZxnquQe5xb3wUxvuMUO92uV3BVeKcv3HO5jrN4LzJ8/3wRF/Ern+J2xvqkpdu2LqxdnfTOiX0b445/vEK0MruOripbJ5j0bzBu3gz9Pegp67Ll9GlcpJKRv1rod29lP4vCobpc3LIc9GEMAAQQQqB0BfS3q0Ktt2I3v2rJH9hbuDTs/2hlO7+/DratfEixI2i6d+3U4+DrbsYUcd1Z/mfT1x3H1XiHc8cfSr+9/Il7c6dWm0iCTvmfR7URqHcx2Pvroo0iLMA8BBBBAAIGYBfQ1SH+nXbV6pWwr2CLe1HLZV14oG7ett/pyzWt4NF8siXnHrIAAAggggAACcSFgX0PXawuVBRN0vn7wPy3/M3l94ijrVtk6cXGScX4Qeh/YN/sL19ktQ/9CUUZ2eshf/YzzU+PwEEDgkID9XKufV+rzpk7TEEAAgXgWqIvnKX0+1GtO6W2SrOtQ8xfMC/nyUayfi+hxdzgmfHVcNc9qkimae0nUppk/fT9e2mK3bExbISNfejLs+/jg+1GnK/ss6ii+nJ+oD416f9xuT5FXyk1I0bsjunMtKt8nX22ZIq0Gm4CqFecNXO+YY44J7PCb0gBms2ah4Tg7MOv1HqxeumnTJrGrXXXr1s1vC4dH7f04PfG0aRP4hOUf6M3MDAwRp6WlHd5o0Nhzzz1n9WhoeN68eb5b165drf5nnnlGPJ6qBTz9q8LaYd+g3QdMajVhbe+++67vF9hvvvnGCrMOGjTIqlJsr6CVfbVKsLb//ve/kpwcZRlZewM1NNSKxtr8g9b+m7b7tVpxamrgn7PxX85x3Dz20nqaKrn9zUi64xIhnV5TQK0s3yv6mKc1DIHly5dLt2Ocw6cq0O/0brXyQZ3u94knnrBCKLEEUe6++275etVkmbPuG3nllVfk5QnPS6M2GVLiKjZv6kwod9vhP0XQ64Ru8vbbb8d8R+pzWV7HlmHXaxplVbywG/CboQ56/rEY+K3OKAIIIIBAPRVYvXVlxEDovt0HxP/PT4djaBahym64dcL16+vjkGHHBsy2vgDTO0deeumlgP5EntDX5ra9Dn8xUM9l15bdsnLuGt9pte/ZttJvcOtFp+Dt+DZwaEQvEqkrDQEEEEAAgZoU0KoYkuGRrbu2SFbTDMk01XLTMlMlOdNt9ZW5S8RapiZ3yrYQQAABBBBAIC4E9DrzP5580LqGPmHue/L6hFFhrz3r778jXxohB5rtknb98ySrc5J10z6d11BaTZ6r+t98883WffDMmBHWe65m7RtblOk5oZ/xZWSlBxQa0c8eJkyYwGcGDeXBx3nWuID+POtnj3f/7c5a/Tnyf65dU7pY9PlWP7+syeeTGsdhgwggUOcC8fKcoM9Z+tyo7xH1+VHHa6PpfvR9ZEHFTsnJy7SuQxWW7pF169YG7M7pc5FIVvpZS17H0Ayd/0abtWqasM/Ben8s3jrfej/epX9H6XdKL2nSO9X6i5X+Lv73o77f1Glt0XwWlceX8/0fLozHkUBy2QZTHXeNOaLy6I4q/8BKE8j9QgaXOgdvd+3aFXZDGRmh35DUhd3uwGTv7t27fdsIF5i1q64WFBT4lq3JEf3weMWKFdYmR4wYIXoLbhoa/u6772Tw4MHBsyqd9g8St2jRotLlW7dubVUfnjhxonzxxRdy9tlny/vvv2+t98tf/jJg/QceeMCavuSSS6Rjx46yc+dO33w73LB//34r9Kz3iV2p1rdQDY307t1bpk+fbl6E1jlucf369Va/LleV5s5xSWpft5QvNSHbH6II2ZrHeIUJ5JZt9kpaN1dVdsk6CSagL9CX//ScsEed16mlddHoV7/6VdhlYp1xyy23SEqeyB7zLYdvJ5gPCk3TLwVope1ITS9Efbdimgzs0UPWztkszQely7qVG6TLOS0l0wRayksrZM261ZKdlS1ZWVmSbfr2eQut56lwX1wI3p8+p7Uf2Dq4O2Ba/+SBfnhZXZMnn3xS5i6fIxl5SSbos0c+/vhjue222yTaYw04KCYQQAABBOqNgL4WZTZx/p3A/yRLSg74TzqO62thZa1ZqyaVLWLN19dHfV8Q3Hqd2E0+fnmCDJ0w1PeaW9lrevA24mla3xtlNz7oryHcLRu2iqR4pahgnwnlrpXjz+0vauZ/IcTp+PUvYdjbcZqvfbqd6cu/CjebfgQQQACBBiSgr//62qJDvelfz6rK66muq78HL1/xg+S0yrKCuDajhnL1ytCmLRusZex+hggggEA8C9jPj927d0+Ya2b2MVfleTye7wuOLf4F9Pq5VtPK6ZEs7TrrF03LJSPVZfU5XX/XL9du279BjhlwqnVy9jWEtUs3Wl+8ffjhh+P/pKtxhPqzqmZ6jb7PwB7Sp80Aqc5zjW7v73//uzTunyLZTbOkoGCzbCvaIjv37jDX//dKs9zQ4kcZOemyZ9Me6ywmjZoq+0oLJV8WS/KmMusahNP9Vo1TZlUEal3Afg3UHdXV66C9Tx1Om/uVlGXsk+QmLsmfsEp2m5+9HuYzxZr+3E1/1tue2sR6rs1ukiVFu/fJRu+qBvHcWesPInaAwBEU8H8+0fHqXJupyfcY1SHR89DnrF7ndJR9jffIyuIdMn3O11Y2Q3MJNdl0Pxk9zeceXbIkOSXJuiWlNJbd2wpkdf5q6dK5i7U7/89F1EmPMdL7Mfuvjkc6VjsXEmmZeJyn5//e1LesYjj2e3E9zq4DOsnaJYffk+ty+j6/7YDm1v24tWCtvDZhq3U/RvtZ1PJpW+KRgGNq4ALJ5Rs84tkYRZhRodJFtiZtkpl7v5Pvv/9efvzjHwfwabXYmqhC4f/GccOGDdK+ffuA/ejEokWLrL5+/fqFzKuJjrfeesu3meDAq854+eWXrflvvvlmzIHcsrIyeeedd6z1L7744qgr2F599dWigVwN4p5xxhny+uuvW9u46KKLrKH935QpU6zRsWPHit6cmq6rt6FDh8rkyZOdFql2n/5yr82+r4I3uHjxYqurV69ewbOink7t4pLS3ua2xjyGSypfzaMBdH28OxdernwDLJEwAvrmJtkEYyM1fUM04eWaC4roz+ekmR/JkIuOlVbmouCWNFOW2bSRLz4Z8WKXrvfoqIek3QnNZPP6LbJ7307pdm4bWfDaOslqlSr79xdbwfn9hftl3fq10qvnwRB739O6Wb8A/+tf/4p0mr55U6dOlVadTHXzCE3/jMLysZsDllBL/+flgJkOE3o+7375lrTs0UiyW+VKhrkWN2P6V+ZYcyTaY3XYbL3oUkttsXjWixPnJBBAAIFDAvqXMJq2yqnUI7uF+eLJvn3Wl1AiLWw/r4ZbRi8aB7cCrQg77/C3llfP2yi9TukUvJg1reu7G1fIQyP+Ic275Mi3P3wl0+dNk5MH/si6YOW4UpSdeuz6hRX9axx68asumv4lDW2r5q2RlctWibuRR9KzTFXBZK8UrC6Q+V8ukdMuHyxFJuxU3WZdsK+B7VT3OFgfAQQQQODIC2ggJn/PcvOFzRTZVLZRXvtos6xatUpuvfXWmA5O30ckm19py7ylkp7ZNGTddBPK3Xpgu3hTPb4v0oQsRAcCCCAQBwL27wJzf5gtxZ5C0b/4V77NJU899VQcHJ3zIQQfc039XuS8N3oRCBXQEETrUxrJUQM7+Wbq752F5gumOs8/HKeP14lTJ8gxPzt4Hd23ghnpfVI3mWi+eHvDihvq7TVaPf977rlHylsWSZIpYLt4Z5HMnjNbOjfuXuXr89b2cvfJgNNPtjjXLdsozbplm88ydsm2jTukWb+2/szWuIZVSitKrWsQej0it28jSW7pkYrG+yWjY+Wfm4RskA4EjpCA/kyNHDlSijx7JT3XbRWhmTRpkvX7TG1+1qOftb0z4S1rnx+//IWkH1MmuY1aSr/ufaVw2z7ZXlwY02eE0fDpPrd7NsvQgQN8i+tz7fHnDqj3z52+E2YEgTgV0Oei6jzn6Gt5br9Gst9bXOVrM+HeY+jvMvqXvuu62e9PUswXFZo3aWL9NcAuJ7axcgpaFDLW607hjl+fGxdtmS8DuvWS9EaH/yqAvtfJbJouq1ev8gVy7c9FdB3NiLTu30wKc3ZHfD/WrHXlhWUyzV+Jqu5jINz51Vb/nDlzxJNWauVmgvehrytvPfSW6Jfk7Pf5uT2bSq4cvN63JX+b5ZeX01oq81FztaEhEG8CyRWbRLx7ozssd1uX+cA2RYrfLZI///nPVpXWgQMH+lbWH5SFCxf6pqs6kpKSYoVctbrqp59+KsOHDw/Y1LJlyyQ/P9/q69u3b8C8mpjQwOzzzz9vbWrcuHGOH5BfeeWVVih29OjR8sgjj0hmZmZUu9bQ8o033igajNN23XXXWcNo/jvnnHOsUJ6GbLX6bWFhoWigt3lz82mEX9OAq11B2K/bGtVquVrZV5su165dO2u8Nv7r06ePtdk33nhD7r33XiuQaO9Hv8nw2GOPWZP2cva8WIbuLJekmGq35a1d4tFQbiXNu9t8b9pUyPXs94o7gyq5lXAl9GytANeqc+DPRvAJWRfszC/QNdH0l+/XPnpJTh52jO9NhYZytek3fEaNGiUPPfSQ465mz54ti/PnyTEX95Q107dITtsMcZmHc6NOqeJOcktJaYlklGdKTtNs2bZhm3TY19EKKLXqkiuzp8123KZTp1700hBypOb/hmXlypWi56UfDmS7G4k+B2l17kjNduh8Qitp3eVgIlq3qbdvPp5qba+ybUTafiLP+89//mNZNsnLkcykHNE3kGqhQSwaAkdawP55119Y9GddH5cN6bGp56+3hvr8VJePP3X2/yZsuH3rRY0DpkquVoWP1OyAaaRlgud98dYMyWjtluwWGdasnfkF4j3H+T3xqvlrRf/09Y7kddJ/wGnmg74iWVIwW2a/ONt6b1vVnxP7NWF76SaZvixbvp3/jRXyravH4PT350qL4zMkIzddUrOTRfZ5pHGXTFk3a4PM+nSB9SfA9b4Kd346r7L3FIqrf0o80naC7xumEUAAAQTqn4D+jvjN0qnS+cRWktelqeT1aiqbV2+Vdz4fbb2WxvLap68pFa5S87tx+PcHjZpnS0XKNtHwbnU+qKp/9wRnFM8C+tjWpj8v9u9i4d6HxfN5cGzRC9x3331S0myvCcp5ree0nbJRpn03W3r8p4f89re/jX5Ddbhk8DHr70WrPlpu/fXDWJ7L6/CQ2VU9EtDnx63lG+WUY/qHnFW3YzrL1NFvB/zuqZ8NuBqV+67T+6+k16mbd8+KeL3ef/l4H9fXEPWxQwh6XU8/f1xT+oOcOGCgVc1Wz2Gzd6t8891U0esRsT7P6Pbnrpsp5wwf6uMoMH8VL7t5hvkrSOlS4S2X9KaHwym+hcxIwYZC2e9ZJT1/0kE8yRXWtR6dr5+d6Ocm+txiFzDyX49xBOJJQD/fm/DdB9L/tJ7SJi9P0lK95i/EfiHZo7LDfu5XE8evuYu8Idmyf8sBKW60W3oce5T1JYSly5bIoGOP833uVpWf63DHp/vUzzmDW3177gw+P6YRiGcBfR3W13v9vL7PMT0ldV+W9XtjLO/Bfa/lPxkqeU1Dr83o75+6jP17aLht6/Oh9Z7AbEcr5mvT9xgzZ82q0nuM6rjb59R9UCeZ+fk8yethCp+t2C5JZamSkZ0mL775fI0EcvU5Vos0tu7bRDZtMAVPzJfAS0pKxP5L7+mZabK/8ID1uYqeT9O8xlJRUmGFTPU5XK+D5R0Kmdrvx/TYbWO9b7NN1d1oWjxe64p0PcMqSHN+R8dT09eVQpPTUV+n9/n2e8WvvlohJ/2y8kygbouGQLwJJHu2mtRXRRSHZbKLSV1Fzr7gJ3LG9DPks88+kxNOOEHOP/986dKli+gvuHPnzpXc3Fxf4DOKrYZd5IILLjBvZqfLzTffLL1795aTTjrJWlaDnBpC1XbmmWdKdna2NV6T/33++edW2DUnJ8cK3Tpt++STT/adqz6R2MfktKz2aeWP7777Tt577z358MMPrcW04u1ZZ50VbpWQfg39XnHFFVZY2P6F+aqrrgpZTr9tEa7pn5G/6667rFCwPrnZTYPC+g0RrWarywwYcPibb/YykYYaYNaKJ3fccYdcdtll1qKnnXaa9eGHXgjQfb766qvSuHFjKS4ulvvvv99aRo2HDRsWadOVzkvt7JbSLqbSsxY6Mw/niM081j0mkFuxwwRy2xPIjWgVJzP1RfyTTz6Rrl3NE5Bp9puTyg5P35BE02oqKDJz5kwpSimQPl26h+y29+DuMuGVj6Td0+2sP+O0d0uR9bNvf8iib7pyezQ1X3hIk8LtxdLm+KZSsKZI0hqlWIHc8opyOXBgv/V8l5qVbKrkrjNVcnuZN3RN5LuV00L2F64j2jd0hRV7rTfdn83+WJavWyZJjbyyZtcPsnX8Ruu57JZbbgm3C9EvKaT08PjCuPaC+qa8kwnpjnjhiajvQ3vd+jB8+umn5a3Jb0iL7jlS6jZ/4mfXPpm/xmV9SPzPf/6zPpwi55DAAvr41F/kt5VslH3lhdbPenZyI7nn1vt8v3wn8OlFPHR9/tXXmMKKPVJUvtca1/dm0b7WRNw4Mx0Fon19TkkzIdFaaLMnL5DdhQXS+ayjJKNxmhTt2C9J5tvTWpVq2/Ztktvy4JdpdNerTRh33teLJXdAtvlyjAnwmtcyvbU282ZsmWN9aPT222/HfJT6uLNfE9r1yZPCXUWyaNdMmfXCLGtbtfn40/cCBVv3yt79e6RtsxxxpZldJnkkOdMtaa5kyemcIvO+WiIVhV7ZuHFj2OcA68LPSaHVb5wwIm3HaXn6EEAAAQTqj4C+5r0y/kXrd0H7C5t6djruNddv9PdD+/fiaM7afh+RkX3wSzVO6+gXWVMy3NbvrvpXoWgIxLuAvj/718h/Suf+7WTGwhkybUmOtGvbVs44NvyXonUdbfb1slh+jmrDQ3/W9dq3/uly+5pXbb6nrYlzsA3tYV0aqtes/Blyzo+HBnzB4ORhx1q/J+ixROunx6/Lh2s6314m0nLh1rf7nY5Zfy/atGqr9Vyuy0V7zPY2GSIQi4Bee2/dpUXYVfqeepQVsLWvs2pYpP954f8yo16vH/PwmFoN0oU92BqcoT/fGmg90HSPdU1PN738hWWyevMqOenifr6gjPbb77+e/99z1s9rLM8J6t978FEB29NrGdr0M40kUx3One78edv+neZPW2a7pFP7XOv6h7XSof/0fnjrHxN8z1P+8xhHIF4E9DVw2pIvTUj1WGnT9VARGusaYbZM+/hL0WvrkT4zq+p56H43l26QHx17rrz+l3HS85wO1s9bckqybFu/Q/LX5EvnTp2t37Uef/zxmIP2Tsfl22cX579ObH/WOXzl8IjvP5y2TR8CCFRNQH8u9dpJbp/Gsjd9t8zdvFvcB1JkwhcH80bRvAfXbei1GX0es0O0ejT2e4MHH3xQeh3bw/qMUH8f1aa/3wU/t+l27OfD4O3otqvyHsPaWRX/0/cnB4pKRYu2pLZ0iye71BQdyZBd68znH5sKZcf/s/ce8I1dVf74UZclWZLl3ss0T2/pmUwqWTbLskCA328TWJa6bINlyx+WH+wCuwEW+FEWfgECgZCQUBYS0gikDZNMy/Q+Hnvce5El2eqS5f/53ucrP8uSLU9mJpN83pmRX7vvvvvOe+/eU77n3K6AwDvkw6NcTcA9w5dz8OAh2vYva6n7AF+ryEhhnt0YBFAufEyDRwKUWt5LnioXRUeCNGVIUrv/LPfh75pTteS52h4GW1dB+RSFwiExa6TaRzXn5MtwQ8qiG/+oeZ49A7KmGMdyjCm4HcjwGMO2fXhr1rvDuHNiRxtZHKasx9U7LxTmR12ntq5x4NVywJgay7MK7nuNdZwht8RIyHgKMCmy10pwKWr5+Mc/TuUcGQYF8NXSJz7xCTp16hQ99NBDBAN6Y2MjuTnNOEC/IGR3xbGLQT/96U9FtXfddReZzdmjOg0GA73vfe+jr371q6IdmYDcxx9/POe5qPxDH/oQff3rX19y85GZF+BXZAgGmPVNb3rTkuvIdgL4KrMCf//736fvfve72Ypl3ZdMJtOC/ic/+ck0INdoNNK9994r2giQcGlpqVD0d+/eLQDPqAwg3nyzC2e9OO80FOnIwO9mwsHenMlcpWb3p0YZg+4lMtXO7tPWLj8OQNDDeziR9NNQuJfsp5yikXj3AdTPh4oWyQYr67gQQBH0h+vvqpdVzlmO9XnJTyP00PM/5IxAJdRztp8Ft4MiQ3U1O1mO9R2iq1lQGT7LGfoYFOOqsdNYG099w1HlOrZj6fT8fnPmbhCirPzjPrGOrEDgD3glAcviQI4/AjxzjWIwyFFE7LZ7CugnT9xPxuoE1WwqpUKPEvgwcG6Ifv7sT0Xmi1zP4OWXX6Z33XF71uphrNj5iyfzbm/WSl5HO/Fc8F5g+ftDT5GpaoqqSl3kLnUIww2Mli//bod4z3Px83V0u1pTX6ccwDuK79qz3EE1q8v5e28kfOttLSfps5/9rIjgzKd/eT3ePu4dfd1wpE/0c85yOx07t4+GnugT/RwCvzS6OBzIZ3wucFiF8aHYU3zejUD/u4WUgB5U0nmihzpau6j5tloBxsW+sY4AOestpCvg4JOeTnJwRl6bTYlGhnM5Ph2h0mW1ImtLmA0i8tiaa9lp9MWnlzymyfeu4apyqlpegSaknfAtnDEGUxghm9/F+u4gCwy0jFLNjRwI5DKRuUAxZMB5hvXppmkK9A4RRRcGRAveFs3yVtxIlj/ICq+RxgGNAxoHNA5cOg6gf8bvcpFj4Bzp9XbQthuvmscE6Ic9Zw7TAw88IGTOeQVy7LBzJjaj2ZDjKNsu+RjKQM/XSOPA5c4BfK/QuwaM7WSOx4UNBraCYeoWugqm2Mz8niFP/uq3v6SG9TW079heYS+r5RnQbrvij+eVvRT3D9vdSydeJDOL7f6wnyb9QaFTLcV+dynaqb6Gmod9/b3kG5qgQrOL3nnHu/PmIZ4d6Hzkdsj82zjzXGa2bwHy4WiFe+65Z0FwK66NexgNDlNffx85jW7RbvW7guP7ju0RxyfjAcI7kho3CJvqUtuM60F3ztVm9OU///nPF2yzmv/ausaB8+EA3ummN9flPBU6+lMPPklf5H+glp7TtG3Z+pzll2pXz1nRa3wAY0hb8CRdezP3KWzTA/3si0+SZ5OFfCEvZ2ObDTrGMSF/rehfsvyFWX0abq1CFXPIXmwV21Fvgv0XcV6fHzTl74pQzZ8p7QCQUE14DusYiLFUeVBdh7auceBicwDjcsOb2Y43A8aV18P7C/ve93/6PTEGLnV8lfXkWkp5AfbMhCFKRXWKjQ36Dmat6unvFoBctCsfP6H0+2NcR1vxU8sOaAf0t6pluYMfhOziTCwYxJ/rfrT9GgfeqBzAN4Vf5vd0oe4XfZDnKitVrPVQBXnS1fpDvrx9CQvZZoY6R+j06DEKDgzT9bdekw6eyYYHgMzvaiiY1x+iUecrY6RvKMcKeAs5EEsQ+Cz7MOxH/+hsLCVPvYIjQRIW9Jf9x8do6Jz3VekpqP9rP/oyxe2T5FhuocJSG8UmkuRq5JmODZzkhUG5UX+Czj7bS7YSEzmWmai00UWRQIxSiWmqusJNXd1d1FDfINou/whezdjD3v/+94t7q2pmn9RAghO0RSkw6Sd3YZHAVslzsMzH1yL5JXmE5cUiXEvKoiVx8zx7xjLPqgXHFLSrksew0wfas75TOI5xZyoxlVWuxfFMuhCYn8w6tW2NA6+GA8bpcQYx5kH6Kh0Zq/RE/L+I05g/9dRTFAgECOBKZFfdsGED1dXV0Ze//OV5temAKFuAANwEAeQqCedAOGxoaBDXkkBcAHMBQv3Upz4l2iHLq5fqerBf1q8uI9czj4VCIZKZrmSmV1k2cwkQLgC5AJuOj4+Tx+MRAI7MctgGeLaGDV833HADAVQrM/5mK7vQvmuuuUaAk2HU/MAHPrAg6DdbPTDkgjLve+3atQLkfObMGXrLW96S7VSxD/cxOTk553zU9ZGPfEQAev/yL/9yzrkAUwO0/dGPflQI6IgiASGT8re+9S1629veNqf8eW3wLRmr9aSvmKYUZ/NajKa9XM63eLnF6tGOXzwOdHR0iAH8jO8o1a2uoprNFTThVSKuH/ndg+I7+6u/+qsFGwAhoO7q+UaizJPcZQrYNHP/UrYBYj/SfYBK/SbqHU6mBaTSklIB/mk9dY6qt7JnIhnnKQs4022llXpDrTQ80U5P7h4nZ52Vkjyt0xhPmY2suKDIeJzKN7rEup4Bucn4lFhHxsCJqZBYxx+7x0Z9fX1C+EzvzLECnmzxLC54TQwHKeb2U93yuWUBHEIWo+89eK/I8Ivs6Gp67rnnKFWkAIfV+9XrDeurhIEN0XZvZJLvcNDhpd89sIO2fng5mRn4NBoY5vHCS7W1dYT3o/7K8pz8fCPzR7u3y4MD+GZ//PgPxHtYvUIBBqJl+NYBxN/7hAKQeCN+r/LeDVUJunLF7HSHuPf+tiHBF8iiFyrw6fJ44pdHKzAWFTYqgNeFWgQnDbLDvxrC+Kim3Y8epqY/mjXO4FiUjSMWAFOtJp5GKMFZ6HupeVWzOK3rxACXV74NIwNWI2wMkYBcfCNrb1ScRkv5Rv6Tp32ru92TBuOq29d81TLaO3zooo6T4H/SHKPS5qo0GFfdhgKXmdz1ds60ESGMZbkyC2byVl2Her2wyLZgPeqy2rrGAY0DGgc0Dpw/B6CToo8PJHw0EfeLWa0gx8Dwnqm3nf9Vln4mZK7G23ODZ9ZypotHvvpI3oBc3KOzbHE5osBtSTtrlt5q7QyNA5eOA3BetfiP0bVvBZBKsU/JZf/0UDqLtPyO8U0hk46xNkHGeJTtZaXCXjaQ6nxNdBi0B3Y62DYqWKesICWYDjpVvva7S8dt5UpSFwxbfIKHVMo+CX2Chse78uIhzoecfLjlILnKChnI66ZJtqOhz81Hf8T5fYFOWr/85qy3Dp30t107xTXkc1cXxPkAZA+GekjnYFsh28XbxoLU/3i36Pthg0dfKd8THC+schDekVOnWmngswMEp28+bZXXxcyIPd72rMEVKIO+fPeDh3K2WdajLTUOnC8H8M2d7jpJ1y3/XzmrQN/pD4+L9xDfQHXzXCBqthOXYlfPdv5rvQ/9wd7WXXTHhzjb9swYgjbFkzGqXltD4yNeGh0bFTZodVuXKn+l+y1Pg7oa8o9MUvWNbrEvEUgSZvnLpJFWH8/MMy38IZnH5PZS2yPP05YaBy4FB/D+94a7uP9Zm/VyGLd3hg/k7aPLWkmWnenvjuWFXY/up9otc0GyyEztnfKJGWmR9GohGyX6UNQH2ayo3EkI1BmxdtNLJ18Uyb/Uvlb0n43rc+tvaGpdc6WQOXLZDLPcjrZL48AbkgOww4wgQK6v96LZYdJ90FV/Mo+H8CU8c3yH8CUAgyR1h2xyPurJZpsB4L/9bCc1v6mO5Ye4kCemklOMbeilId+AwEHJjPqoF3rBm//lunltkTsu9JiOdkvdB30XCHqPk3WwLc1X0CuvvEJX/+2qNBhXtgPL6g0lFOLMtWhzviT7S/SFhkId7X5uL41Vt1NqQk/OaqvASAW9Uar3lBD8RfFUggbPjlI0Eqc1t3MApH6KwL9UcpqMRayHMf6ju69LzMqYmaCwank5vbLrFSG7wtfS6FlDMYqQjmOdAtFxCoYnOWMbzZHjFvK1gFf7ju8V7yN0RftJJwdl1hL5jPSVr3wlXxYsqRx4mymLSpkU9ownn36caq+cO35lXsDPszlaPKy0LkDh8Qj5fEqyugWK0YXA/CxUv3ZM48D5cMA4rWDcFj3XwL5oQ5mOWlpaxM/lctHNN99Md9xxx5xz0fGB1q1bl94PB0Cco/xzEaY4z0bITgvDJH74yBARUFmJyZCyUy7HcElJSc7rX3fddXOO2Tkr1kJtVV95y5Yt88oCJIvfxSKAQ86ePXve1X/sYx8j/DLJarXS0aNHxf0gtXou8no5tWwW+s53vkNf+9rXCPVkEqZ+xnsDsC+yciGLMjIcZw48mectZdtYriM9J/5MtS1+Ft75lJ9RhcA3GhYvr5W49BzYuXMn7Wl5me748KwxSQ7gaM1Pf/uAcCzedtttORuHCJh8wKeFHrsQds5XeURmaQgyniaHEJAS8SRnnEhSIp6AnES7HztCTW8qIU+Dkzr29NPwkI+qtxTTyptryWQz8LQJk2QvtdA0v5BBb0RkqcRNTXbFROY6rOsMegbCJmhqaoqz/RjZuJVIK9quJQCKc/WRuIakrpO9lGCgjqdWMabJ/XIJ0N4xxxn6t3/7N9q+fXtawIeg/8gjj9C665fLolmX665fRU88+DgtBbyUtaLLfCf4c9p3hCrdZeRcUUBlK1jyZkry+zHpC1FrW6sQosHPnqZ+oTB94QtfuMzvSmveG40D+/bto54xdqptn5+xDH0unML4XuGsk8r8G4UHuPeWnhO07Yr5947vsp+GBDAkm/HiUvEAyr/84ZryGSw09l2qtr2a62B8LmmcLy9mqzMUDmfbfV77ML7FdDzOzkRKy0pCbECx15rFJmSCkb4hAcjNLI+AmDAH7qkz9soxLd9v5Pnnn6eeYCddu2KNvPy8Jerc9+i+efsv1A7IAqVX27OCcXENZMp1VtmpJ+4TzoQLcd185I8LcR3UgW8GBF6D5HeDpVwXB7Q/Ggc0DmgceANxADopdGSDK0XOYgc5Kwtpf+tO6vtNF+kDZoKe8Vr0gfmMe5A5/TzmoP/Op42QIwzVixtybIVW6u/VMuS+gV7zN+St4BvJtH2pb1TYC84owVrSXoDgLtcWIzVfvSJdVNrLoMN8875vXDIgPr7bH/9mfoAnGoa2g+594P8J4Gc+37c44RL8AQ9r31REzStm7VdpHjKQeCEe4pnhno3uaZ4Ja5xCU4U00TcpQNGn7jvJs1zpaDF9Ddff8KbVC97p2u1K4B8SX2TyTr4DNZsr5wDwAIJ+dveTNPBvA5RyxclQE5/znuCCGCNO721bsq77wAMPUCM76XMR+Odqsmq2rVwM0va/ag7AV1CVB8C2YV0VoSx0UOj3ixHKoy87X7/AYvVf7OPoD7bx9NCyD8P1YMswuzm5EvsQbEVWkSUbSSHUhPJLkb9gQ8vGz8nxMBWw7VvSNGfygP9CnTBpvHuCnDVWsV+Wy1xOJVPimckZPNHvyV9mWW1b48Cl5gDe/8V8XuhLXnjhhQval8DXtuFGRV7oOjlIa99VPe/WbYUFnFigR9gxYU985GuPZPW7wVcVKBgRAVSQBWQ2bcgO0CMhvyDpFggzYL7zj98071rqHXWrq5dsu5T2uky5Rl2vtq5x4PXEAWmHKWqyiWar7TDLi5uFHeZC3I8c67PVhTE/EovSz5/4GTVf1UR1w3XkY3Aj+iPoJFIvWcg2o8YwdJ/uoyMvnqRoMky+cT/L9xYKOIL0gye+Q8aURQD4U+7EHLkjs11LkTEW6xek7hU0ezkQFbpPo7gc+q5Bnonp3gdeEf73TH+Puk21W8roD787npfNCc+0Y/wsPfP4c9TedY6ctVZOshajtdtrqW+vlwpKzAK0HB1PMH5D8ScBlNt/2Eer7qgU+6KhGE2lpnhWRj8HRZrJZDUyMECX7qvVbSsqc9HpYDe1eVvEbgdngk0TB12grs6eDrLzbI5qTFU2Xwt4BT3WUBMTVYBfSHQ3MNVBJ0+cpeX3LU/38+lrvMoVXPO5g8/Mk0VltbAJPNW1g4O3lORzcn/msqeF9VfDLO4l8zi2zcVGSkzlxhrKc7LJq/KYttQ48FpxwChAiYtdnUHp+hIdGViRm+yeJJk59tvf/ja9613vIrfbLcCcv/rVr+jpp58Wtd10002L1bqk48jKq9HF5QCE7oXAuItdPRsYV56Dejdt2iR+ct+FXBqKGJBbzPBHPQNtU4vUzIG6KQ4qSUWnSW8HZFKjy4kDEBSfP/Q7uh5Tt7FxKJMwgMO4AyFUCpOZZbANQU49TXW2MtjnZoEnm/CSq7x6//33308PPf0A+WLjVF9bTFJYAuiSdNN0Yv9pCk8FGYzbRKNtPo4an6CaDeUCnCvrmU7oyVFVQCaLiSa6otRws2IgSwZmX2S8pTrOkisNWkYGBUU4ayAEMCcbF5Ex+0IZDvtaB3lahfmgI7TXPzpBR188RQbHNP3+5BOkq4vSsSG3iIZ3WT0iyuz2f7pW3lrWJZ6pL+wVbW7kjOdvRMI7/PKpPzCg/CZ68t4XOLKQI9BmCMbQonIX9Z8borGxMULAyFo2ljz8fx++YAqavJa21DiwGAf2n9jH05zOvp+Z5fG9OpvM9JOf/IQ+//nPZx5+XW6jv3zxxRdpF3+jU44Y9Qx2CYXYVmATmU/xTYIw1vz2ezvn9VU4HySNBViHIfFC92cYXw6dOUg6ngIMhlV3qZN2HlfAJ93d3fTBD34Ql76kdCHv3V26sBI+OaJEDEYjuTPkYkzCuMrquDAygRnZnkWYQb34tR5rJ3etLT2WSuZFeEqhmhsUPQN9dGIm6AXjYe2WWaeV1c4GmIyMvfhGUvYY9XJW3XwMynv37uV3a7ZO2Qb1EnWOBo/Pe/fUZV7tur10YUC0g4+b3YuDnV5tOy70+XhHP/e5z3EmoHI6ee6Y+G7Ucsqdf/xOuvXWWy/0ZbX6NA5oHNA48JpyALoHdNK6K8qoZuVsADtkGYxlJ84dnyPLXcjxfLEbz2fcQx1rb1wmdMl8xlKUR5DMYoSMURppHLjcOSC/Ech/uah6ZQU9/ODDwubT1dVFp4dO0Aeuefec4pCLQQgQP9F6bM43P6fgBd5ANpzusXO05Yp1Qt6GzA2CrQo/9EPdTX2XrD353B76zC6ereqaFW/JWly0mfWwbDowzv0WOzmd641Uyf1tJRWLOnAOaM8TB8Vx2NclZdNPTrQfp2v+JneWz6M7TtFon49+fvIRGguPUl1tLU2OhOiWW24R1aL9//ua+e1HO/Au/eKLT9Pq6xtp2zuuks1IL3H86j/ZTD//8lNCh8pXNl6szbgAbFt7H9ubvpa2onHgQnIAtvs6nuVlMUKfCTAZbDSw+S9GsjyCbF9vlKs/g/xX3KTcO+ShkWFvOrGH+h6RQThfWwbkx3z4qWM/MpIdFRQUpC+lBEErclkipiQxCU+FhV08HkrSSIeXvCPj5FpjpV/sfFDxdxwv4r6vjm674s2aDp/mpLbyWnEA39rqd9csePmL4d+BnPXONyvA2IA3wOD3pnltAPCov71PAHIxxuObziS0X/qqAMZVE2QH+Frv/fF30pnz4etcjHAt2C7zIdi4YUeX9arlmnzlkHyuo5XROHApOSCxAbnsMDsOPk/331//qn04ucZ63GvXKQbP7jxJzkYzeQf95Fllp/HQME3og/Sz3+8hBBNAL4E+IvXOTB6hjth0OI1ZYDgDnevroKotHqqo9ZCNZx4qjxdRR+tpqi1tEH1F45ZZu1NmfXIbMgb6sGw2HnFPrNeOcmZhzFQIKrJ4RNmGhoY54z5wINW3umj1yhWyarFE34Xf0RdbhL9nzsGMDcyeZPYYc7ZHFp99pqXU09VNq26vpiBn1zUXGchoNVB0IkGVVxQJexRm65Z4DV9nkAwWHblqFTAtZCEcG2sPkI0z6oLQVyMJDGQbNbAWz20k2k/XvHkLDZwclk1JLyHHhScD1NvXQ6tWNov92eQxyGnQU/XVUVp9zcr0+eirQVjCboiAqQvpV8R7BXtAtoRPshFhTkTnC4/JzazLgTMjVPfmojTuJVshzHAp/XZqHmYrq+3TOHC5cWBxKzZazPqTnpMl6hjsf+WVV9J73/teeuihh+jv//7vxS/zpu69994FM9lmlte2NQ68Wg7oWKfHO0oY2xT774JVToemKcXl9KpgkwVP0A5eMg7s2bOHukbbaNsN8w3HshFwND7zvZcWBKtkUz4DafCOAi4FwMk37KfOkAKwkvXnswSg64En7qe6raXUzcJZSRNeQIUA6MHv+Ml2Kl2jvGTergnOgpsik8NIo+f8omBoPEoiksrNsRE8hQFAuKZCg1CCZV1yKQG52MY03nB0yCx92e5VnqdeOkoXf+H9o0EqXe6eBzrqZsH83MlOGhlhwWhrOVW5POReaaNkGGCpKE9dd1Yo/HHazNtzFXt1G+R6T0/PBQewybpf66WMWISBY6TVS1s/NN9Y4qlwc5bcswKQi3I+nn5CI40Dl5IDUNK6xs/RHStvXvCy6G/37NqzYJnXy0H0279+5le0e9duGjf30/IbayiSClE0HKMoGx68EzwLAPtOS4oVUO7a7cuEIxYAP/Brx44dAiTrKkVGdARZcHQPU31dHS0vaSYYDKST9NXw5Ec/+pEYX1wNVqotqaQazmTiLC6kvrODolqMPXDGX6pM4wvdu7vAQwA5wtmFX76UaQDOPC/EinouwlgOY9EYO5WSnD2+wOGgHz32A1Fc3R48L1DPYLfILD82NE62OiOFwiGymhlwalGimFEGEc2pBAd1MSHoxTvu5SCUILnXsoA5QyYe17ORszj/wBjwMpvRJLPeKQb5Xsxx0tO48DiNLLlWlk3UhLbjB8L7B5lizDvXmALZRG0Qkd+Sup6LtS6/76ND+2lq+SoxfTO+mwkvvlNFTsF7AkPkhfhOL9Z9aPVqHNA4oHFgKRxAv4wMGNBJ1WBc1IHxcioxRXZXAT388CyYDwE/mbKMcdIiwH6QZdDHYynp1faZ+Yx7aDucNcgEmQ/ZPHMDS6BXg8K8xLqdj4+1+6meFgfu5HM9rYzGgYvFAcgvDTx7UjbCN3z0D6cpyVNgenXD9J2Hv0UnXjpNJRvs1HK2RdgSRjvHaYR/KGMvtvIySUbXND328v9Q6rMpMbPdq/2Gs7VN7gNoNVIVpI7u9vRsTgAFCyAWZwFCsCOytT3+0G8umwBPaa+R95BtiTY//PWH57UZfel0ZYT721knpzwfNrMIBxO2te6nr/zgS7R8TaPQF6ErGriPxSyDeBbotx3FShYtea5cymceSjLA2pWgEE1ST+Is9XScpYmxSep6rJ0GTg3Tlj9SnLHq8xCoKIHZZpbjdc6UkNVzyePIqIn7yQcIgzbDqb4YQcfr7Ny3WDHtuMaB8+aAs2RhPVZWLO3kzvqllZfnv16W8KGs2zYXoIK2S1sGZCLIRv6hSdo3fIiWrZq12dSvraG61VWiT8onyQd4uvzt8+WqydHQHHbpGegBEIqaEARdcbWTQv4IRfVxSk2niOcBpN6hHmp7boCnc04RQBZ1V5dSAU9XXFNbyn1ekHpirWzr6SUEpV/MGUnVbdXWNQ5k48DxtmN0NWe7XIguhn9H+osgH1jcpnmXl9/4wKlROqY/LYLSUQjypVr+k7JPLltsIWdkHOcEOrB/w7ZbVOdI2/tyyRG4Ds5ZiCA/wMZ9dPAVCkR85CwpFMWlXHP8vmPi+5Z1XEgdVNapLTUOXAwO4N2W2IBMOwyuJ/axm+HbP/xv8S0uxWeibi+ug7HeU+sQCVvUNndTyizAuI4GM9vAWU63pOj0gVZKxad5LDVT+cZCOrbvAH3j4f9iX36dwB5ks830nR2g4kbl20SfgiCa4rUuKm6YDWoC1gGZYfHDd6+P2CkcYR8AJ7jJRZAxpDymLoM+4bHfP0punlnDF571iZ8cnKTjw5ww5Vlz2naPvqwzcI6uXvkWdRXz1vW2WXDsvIMzO4qa7FnbI8vjWvKZwo5m4KaAr4d+cZac9RYyGBmQG0iQ0aEnvZ4Rt0zIgov1oWM+KltfKHAd8DtIWSgzCcy0cXoe4PTkrlbO/Kqj4rpZfIlsk1wCzDvMYN5agHmZ59nkYcwOIXy9d94sT5uzRP8PuyHeyQsJyMU72rA2uz1D3QABpF3gnYEvsLBs4cAX1KdOVodtjI9Kwp5ZzA/kYPgF85FvUYdGGgcuBQfmelpzXFHHuqtOlUkUUQJ33HGHmJ788OHDhCnjNm/eLMC6d999N1177cIZEnNcRtutceBVcUDv0BHeVcbULEooMx0B8EK3aFmtwKXlAByApY0eIdBFGNiBSGkAPIwsYIICo5PsQCwkR4mNHnzwQXrf+943x2GI8yV5GSgiwSH9J0dpsHdYGMjhoPMO+Ki4qoh6jo6Q1xakf//3fydk9s50QEphGYIFSG7v3r2bjCXsaCgxEYxPFieDajOmZJrsjVHxOjtN8PHRcxMsrE1Tz8EhIVACYBvxxyjh52y6TPFYQiwRkZpKpURGcrEj/YczlI+FaJr74kQwydPM91NqQnl/0WYJPMrWfqnMgmeL0UDLCK197/zpb3pZMA/GA7Tq1nr+eFhwZEdDz+n+dMS7w20TUWatba3prwrPDhTn9mYS2llfXz/n2WWWybaN80DyeYgN1R88H3lMPqvMbckP1Wnp1XzqX+z8Y61Had37/pTaWzoET6QhUj1dV4HDSiPd/H7OCKF4Nrj2QnWnG6mtaBy4ABwA6AFAwsUIgQtjDGZbCuFdlt9dtvPgjFST/O6wT32e/IbxXeRTRl1ntvUfPXof+fXDNGWPUIHFKiJTUQ7fI5wUkVCUzp5upVCxcr9TUylCX4/+FeNNi+8498FxcsYKycVGxIB+UoB3uyItdGLPUdL93pKO5M12/cX24R5xrXt/9t9kbSCqWFXFToqYGAd9wwFxOsbAlDVK//Vf/5X1Wpm8Xeyaix1Hm77+3a+xQt9G07YEOSN87zwGT88IW93eYQJfi2zF9A4G5krCeZn9mXyeeMb1Xld6fJbnYCnHeqxHgvxMIjHCWC4JgIPBjhGK8LRJZpeBzDYDjzEh8uuGRJHjRw7TmUMt1LimgU73HRP7IqmgAAiEJ2JU3ejm0JgpnsopLMZUgAUQGBMPJygZnaKwkZ89i4eDPcM06Q1Rqb2Eo5BnQT6JlI66E32iXimPBNhRhAw8kCEy71m2Wy5zObHkcbmsW11J4OFChgMcB8lvRs1z9TrKgPfqttlLZ7PV4Hg2srKxH/XgncRy16GXqd/bywZ+B3VzUI25yMiBJa3ilgMgAABAAElEQVRkMOk5iz8/OzbOTSVZLorYRHY21Ilnl2SHWzZCnSDZfrGR409m+7OdC0DBEe8eWrWtXshmRn43MMYClItfDecw6+Xpj775/W/McUzkuKS2W+OAxgGNA5ctB9AHyr4T8tzp3mN0841Xp8dL6L2ReESAtwqKzTQ0OEre6Qkxw4zXNEghnZ+aVjaSyW6ghH6KwV1j1H68mw73vkIrVy8jvy9Aq5tXpwOPYNjHGHc+Mgba6mSHrjCSs6EcJMdP9Tqmp7OzLIYxB32+vD8pO6CsehyzuRXZTTqhJzizvsluZJmJp7jzxUQAq78jQilnZ1rPRx2g87kP5Uztr8aB8+OAlFtwtny3ZU3QNf7iXW9N2wXwrYC62dYC+5Vvcky8z8YCHb1ybA+N9UzQhjtqqH+shwbah6ifv19T0TRZCk2kMzjJXeWkSruHhs+N0c92PCB0GQCZ1N8P6s+UrbBPkmxvZlvlcXkuvtcDZ16hzVc3iSBHY4rlcrYBYcao0V4vRVmW7zUPUE11jQBbyO87sy2y3kuxxL3BXrPqzj9meX8oq61KtgPBcZltRp975z23ySKib8MGnldvdx8lzTFyr7DQ2cARchL3sY4p6mJ5tLd9gDp9bYIPcNqa7Pp0n52ujFf2/voYTcb9tOq2ep5m3kJtr3RRDWd+AtAWNrdjuw5T57keetMt14rzoRuNdvkoloiK2S2CPp4ZhPtSvSMp7HfQbbupn3VWJZOv+lrQ859/8CX1rpzr+doOUMF4ZGFwTs6LaAc0DizCAdE31eUuJGUNgNc7O/tFf7v2zvr0t1bMgdeyj0UtEsAOGWSkc0J875m145qZfRbkCNGWmcKyr8wms8hysozcXmqd6vPV56KPKr+RnWEZBFtGoh3me6QGSZGxgMEi3iEyc5IQyE6g7jP9YjY+2DIWC4hCu9GGZltlmp8FnAUdFBqb64jTz8zwJw7O/IHNhdiFkUwmSM/jmd6AAykxVvh8Pmq+oZqsPI5FJxNCPoX+Pp2C347oxKkW+uIXefYonY7U9y7HIlFI+6Nx4CJyAO//Qj412a+gT8E3h+8yk2T/gHdY9gPyu84sK7fV1w1woLmNAXaSkOxHBCL6WN/hf3qjnrp7u1mGcFNBrZmDuL5J0OFk5m/IPld9dH5mfkxND90MCQ+Mzmn67dHHqNm3jteJegd7xOVg13Na3QIEJvtN2Q74RDPvV/1tfuELX6BzsRMcOLCK1hQ3ydNYbuoTvlnIkaPJPtJNGTiIq5jq++rn6KBov/q7T1egrWgceI05ANkY/hlPnSs9LkocgmwacAOOBiUrq+wD5LGFlvj20T9gietAl4vYQ9R2rpWcLmfa5h4bTFEwNkGrt6wW/cEY4w9S5KPCchtNm8xkLTVT403l1DfFibRG2ijRZiXPBs62mgGKhF/DVmUVTUJQc3IqSfaK2f4GfQ0oFeOkJ6zz4LsvYh+A18syP6sYwCqAZP8g7T2+kQB1hRW/guwX0F/8+Dc/JFeDhao21ZB9VLkOzoWuA5ls0hsUtiuM+7D1N22pEm0GVgSUyWe0p/yW4nnZ+UVh1Z+SZS7BU/AVJPtg+WyglzvrGNy8qpJ2PbqfKta5BV8nhyNUdY2bdds4xf1TQj6R/n70+fhFGeNRu90u1lE3ZCGQSMbGSWBk+cxEaygDma1qO/uf+P6QxVfyW8pr2EZAOoKrjk+eocq6csEnm2MWE4J7gDy3/oZVqFKQemzCDvlc8D6p+23wI1s/m7lf8knNN6zjHb1qzcr0d4BrQUZUg7VxX/AbAVOi3o+yklAGBD7IRHTymJTxxTaLhygTDyZotNMnbCYITjazPRBjZfGkmyZDAXpq929o+t+nc9oyM98DeS31MvOe1cfkuiwDHi6lTnm+5KfclkvUm+25yOPa8vXHgfwAuaxf6TL8tnfeeSfhp5HGgcuFA+IdVeSGRZvECdUIP40uPw5gAF/1nnLq7O4QhuUgCzwQEgudDo6W5kEVgNxgIaUK4vSLZx+hpD1KpnAB/cVf/IUQTh/l7IeSBr0DYpAPnYpTH6f71xdOkbWIs+AV6cjpsJB/UDFc9/v76Fs//xqd8B6gwPgkOVJFnPpeAZCs3ryCwTgxkRk2GUpRVY0yHUPb0XZKrI5QV3+nMD7Jaaz1jEoBoBYgH4BtJ/rCFBkapGBnlCpvKuQMuHqKjLPwFlSixQ1unTCAAQGEdRAiq0wuvSLA6XQU6ApR2Mvg3YkUOct4yQ6OZCBIoywgI6o8ZN5HgV8Nk8loppHRUeFABZ9ADfUNgj8LgXpEwZk/uO9sWQB7zwzTqrdXsEDIQNyDzEs2oMULu1jYxMeknGyw6cg/6aOO/naa7ItQaDTGWQdNbBTQ8b3MCqJTphg98dJjdG60hVaUrRbPTt2GXOswJOD5IgLMNxOB23t6KP2srEUmKndWiSlwAH7FswO1tbYLp9DWLVvFdpG9mErsZfOuC8Dd3uO7hYFjZGJQlJV/QuOscTA1smC1sebKrOeOhUbEO+ioMQujRU97PxWyEK9+N3T8fhQUKB1VphCazVEmr68tNQ5caA7AwZgPwRDe1bU/n6JC6cA3ind5PDQmgJvqE2W/dKTlEG1dc6UA5eO78/I0nCB8213dXWIdf9B/YboSgPd72elssxVkLYPMGcW2UgFezNXXof/oHG0V03YC3Bo2pcR1oNSiT0NfGvXHado4RUM6nzD2Bzia0sMBG1/+9hdp74ld7BitEdlNU2yBGIOSzAp1oiBCLoeb21VIJ15uETNIfPazn03fQz4raNuh0wcE3zAGhp3j5CwtoRMHzlCMlf1EaEo4t9HXwkhSscJDRRut9J1Hv0Yrlq8Q/VvYF6didrRK3ubiQz7tUZdBe3Yceo75dqUAIctjeC8kwUjx/KleOnu2VYx9cMgMTvSL54Z+GRT1JTjLSY1Yx7vXNeSkaJQz2NnsDOJUngXGy6mAMg6iYDzBmVMMU4SxHI590LlDfZTQxajxqipKBlM0eMYrMtsW2pT2GAt1tH/PPuowHydPjRLJzfnnyWw0UYzbgMxhoNE2P413TJLVahVj9VSCTdg8dg+eYdBSB2eesPrZwBRjMKmLYhNRmuyPEOQRmtLTmNPH2e4NFAnEyBNl40w8SHtbdtH9v/p+Wh7JpTBDMd9SvEy0YaE/eJ/AewQdZSM5HuJYV1e3GAfx3a3atJwNEAbq6ummhrp6mhgO8zOx0ZrVq9Nt06uCLLPVjX3jnZP87iVo34k91H1PNwUKh2k0MiiMG64487qCAdPHw8LRb7VYhBwTZ7HG4WDHGT8ztqaLqr2TDArLEikn249v/vjBU6L9eFfsHgthCktJ2dqP+5SygDwX5SGXVb7FRr74GPkGxshi4uh1lgUsnA3ZZDBTbU0t1fIUpz979EnRV+V6RvLa2lLjgMYBjQOXGwfU8oLs+9H3GVdNs4Olm2WZaQp0h2iwdYzMZayrTXB/OqynKZZxoIwd6NxL1exIsLN+lnJHWZ+KsEOBz+FsRVXXu2jaHaT2xCnylJVQspjH5Gkl49kLZ56ijvFWkfljqfIFxvxAYEiwMsAAGchbExxkWr68iDOxc3YVnp5Pd8pIY20TVF4ZpK/e+1+0fG0jnWP9DXINZEGQWtbDdv/xUeGoAPg2NT1FBaUm4aBANhgQDPK2Gj1N6kfpR8/dSycGD7MDhYNluU44KnAfS70XUbH2R+PAEjggv9lTB8+IQCYAKfpHlSk5ZTWQy9p7zpHLxTLlQJxtVABcWOjYU+fIs9VCtdeV0bnfD5LFY2C7Cgduu3Sc8cjCYCY9HX6ykyq2FlLVxmKWY6dJP61nYC6ceBxAzYFoFewgPt1+iL771Cgtb1ou5KJ87BrQS9Q2F9lWqcvhu4QdB3ocsrV5KhSZGzpV0MuyJ2xu/K1jxoUAT68Z7YhSgoGq3/npt4RMuhQbkLz2hVpitj84TQ/uOMr9z6TQJyxulhc5oyz6JGG44otN8cwZlloDfeMnXxU2phuu2E7bt2+nOAd2Sjrx8hkSM3Dw8+hkXci5zEIlNYxgYQp6DTwt8xhZMWU72x6v+7Mr6On7XqSDew9TXU09kS1J3cNdoiz+TE9NC9thb28fbXhHkwDjgp+BnjCdsrVQ94FhsvBUqeg/XZyhaYT7Ve+Ylzr2DCh2Tm57sYczWVXaKXE8TuNtcRpuG6dJ7suh4wQmoN/qxfWg84LMRouYkQP6yWJycb62A9SrBZuDCxpdDA7gPVy2pWxe1T0MLB0b8rKtZFLolbYiK4UKfRQd4UBcvYfts5McrBOl1GgHReNR1u+T/L2bRHlUBhkkmojQPffcI/pY7LNy8KmJAzzhJG+sa2Q7/JSwy5hSViFHZLNPZcos+K4wDiCQFTos9N3RSUUmqq6oZhuPojMHh6NZ60RyD+mD6B/rJZ1pmm3+IwTbtuyPd+3aRdvWbyC71ypkHLQdBHBKku32rnob98kFYrY+95SdbJxMhOyKjWasfVT4GezW3LZBtB8/2OzA/95BnmWKbWEgCcjFejAYFLYgrIPQ76gJ/hG9WUfmAhNZCixilkDMUNSzb5Sabi4TdhrMHEiGaQZZsN+Bn2n7yS5RBfwUQbeX7nv8O3PuHfyW/qDF+jB1W7R1jQNL5QC+X2dJ9oQWalmgY98g9zERoc9IWyiuleT+o7qyRgTH4J1F/1FRV0p7f3dA9A+ZtjDYP2HjneTviqxJnqa8l7/5kJANZNu7OeGPu8HGwFmWC/kb11tswr5qZsBT1RY3Be1j9MLZp8j/vXFhf69qLpWnzlliqnsX15NkP2vlZg85JkwUHPeJb5EsSh91ZMdJspkcVF5XQrhHyCMFLHdAbjKUJene33ydppP87c7YpT32knTChhcOP0t//uk/nXNN9NVnj7exLTVElZtcZK2ZpiCD8ao3N7P1dlYH/fXLPyOj0UhLtbHPuZi2oXHgInEAY2KE7SXAMCSS8TTYsCCiAKmkH8PEOISF7Pvq5kndEX1OF9v6W9vPCvkBZVa9o4JSJg6441k0EomE8IUMd/nJWWUXQNSxDj9FOKFIw41lVKjqr/CtYnw1kJGOHuoi47SL+rhPWbliVfrS0C9WbWNDP5O3I0CetQ4xjgOcO9YeEHodjhk5oDA2nhRYCFtJOQ2O9ovxGliHWIBxENxPQa+KTUWVRDb8rQfZbzb28ABVldbyDJC1tOOZnVSwhmgtz0aSOdZDfpuIMPajjjP77j1EX/3Bl6jtQCeVvol1rSx8ljyGH8paVLEgIFfcCwcy7Iq8LPw3uB/pg5Ty296dByi1Nsh4Eg6mZCxE3BTmQCG+N1+SdCw+xUJxSvpTApCb5IQkkqD3AqgLXgsdmLkNAghXJmOTchFwFwAyw0chCTKbs6xCATizOavrgIJLgK2L4b40wbgSC8uSBhs/n2i7KId+NMS4GPA2xQmFljUtE+/ZuvexnMbtR8CmlKNMTkUHxDkdp1MUS0bFOOWssXIynBgFQ8E0HgbjEfxKmfvRVomTaT/dye+7gr2AbaPf30s9wxZy2B1Cp0VZyIi6KZ24T8i7sBmIhEhZwLYoj7bJLPBov5rkewJ5cJp5jUQ7rcfaafwcJ6+z8D5LksdHnimI5fZCJz8DtjvYGzlYnwL0wAvfpaNnj8wLRsa3ls23pB67JzjAv2l9AxVyUpsTr7Rw8DMPjexnUpdBO8uLK+eN72p/VbbycdZRoB8Qy/aGDOyllPGlzQW4J43eGBzIC5BLrKehw9FI48DlzAEd3lP+KS6YRVrK4yX7bTS6DDkAgdM1wtHbLJz0tHBGW2+CFTwjTZunGAhlp4IqI8UY3GFmPRIK4mPP/Jr6GbAFhxqE28eeeTStJCOzIKLAe04MiCkbytcWiYhRoxXTCljYSB0UfZuNBQIokafHjlBpYTkd2d9B40M+FnRM1OI/KrL0uRwuGj4dEAI29k/ygLyWgR2JiJmMbj0Dh1hAYsM+ywRCyDWbleiuQA9H/RQpL5uztoCNYXbq/sOIALLivgC8RRQrCOs6xiKhHhCWgCb52bE6cjQosgFCnkOUuIGN6YNnfDwdoY6i7LwMdnrJbDVRDQtz3ulBCkxPsrI+QUdOH6LWl7sEuExUusgf3Fs2Gh/28X00CODa8KEJstZzQxqnafRMUAiGaPsUO0ABvp0I+zkLnZeBxwly1xeIaacw9ZSBpRbck7F4mk71HKGzXaepUl8/D9ya7frYJ59vbXM5A/2cAux35Mxh8ayKmjjqKmylZx9/QQi7JSsKqT18UgEvsyEDCklgakyA2YSSUbZm3nXhnDncu59KlhUKIQ4ZSSSFwzzNFwvBB07uo+P2lnnnQoh77uDvRPGEKU5jfjZsspAIx7j63TBwGgA1IFfWn8uwI49rS40DF4MD+I7yIfTL+RDK/cd//qeYztLFQDvXtPKdynN7RvrFN7iT++oPv/Ojwqn5n1y+YnWp6Ldxjpo6Rs7S6Zc7hKJvKtNT46o6Vujnl+nlsWKIgZSInM0FrsD3Le8XoFbXGuX7hmOm8/kRsjWYKNyVEIERzvopmuxmhQ4SRV2Cul/qFkAVPWcLmIwFlEjYGPdlMVaix1mJrqwThgxkzYVDc6mEvu3r3/u/gm/93SNUzaAYjF2DHcM0xn2ss8FCE12KEo4pciaiAe5beWogk59OjRwRxt0QO/Cdw26SvM3Fh/NpG6YYwr0tRDA+nehhsAsrlKFRDqJpKmCn8qjol3Fe/8FxAv8sTsUoMRmfEJlVQ1NBMWYCENvDGdrDYwlhwMA5eouOrGYGaPJYzvlrRX+OZ1e+uVAYgYaO+6jvpXGy1LAT3aE4tnAeyF1nZzCvEnkVCoUIY3KcDSiSJjhoZKKPwQFuZXzWmzhLi8nEUbV+8h5mQ05djKJj7MBjZxCyWMGwFWZ5BO1PGZPkcLGhoYYN8mZW+itNNNE/Vx7J5RDK91uS7cy1lOMhxo5+5pu+cJrHLROd6mfDFbcrUZgU78bEcIgK9HYx3kpZycTGscXI1xUU71zM1SuAriv+VxmVNcmpkzjLDj8vOBXMnMXGysYO8CjG2YyndSkyWSz8UxRHGFv8fexEyCDZfoznp3d1iPaLsZfHcZGxkUG5yUSSvL0BzsThEu2HLKOW9eS5ePcgA3g5UKlIX0NRxklA1kD7WKoiHYNTbGY7G0dKhJMQPMP1cz2jjKZqmxoHNA5oHLhsODBHXuC+H/0fxramLSVCNoDi2Nc2zIZ6A1VsKKHh4wHq2eUTelu0b4rKtzEQo4SBfNDXIgyENei4/KjILIvykKMwswn6cIz7cuyva64WGUJw/fORL9pPclAVj1G+Dp71hnVX6MCQZYxWDrgtZ1191xjFxpLUb2Vnc+conRw5yJ5rPdVO1RBkQYz90N+krIcHAnCaqIflo9JNdp6O0U1drGND/8R+M4MSC6sLyMxjO4J/WoeP81gdEbLSU2eeWVBmvGweuNaQ1z0H5DcrZWPIOpBzTDZFTsKMSQBS+IPsQI1FqH13PyU4rrp8pVs4yio3IRicnXC9EVpzd6WwIQW6I8IZZGSwa5KDvCv43cfsS2YT28lYFoPjb4wdqZMM8DLavFTU4KCoPcB2reNUwIFoi9k1oDOdHTnNQUyzNhf5INQ2JthxcH+Q+SX1HBzl4PIkuRsZAMb2NfzMTgZ5JKaobE3hedmAZN0Xaok2w2kL4KvvqJLtyb3RQlaLieIWM8v6bHtkFRCBDCXNdjrauZ+87UHqOtMtgg3VdpuTL5/jGUQ4cHuAZ7Fi24+r3sPNVGx5yEIJoInf76cJ/4RwRqIfC037afBEP2dfsnBgm5INGfcGQO4IbJCsa+gLlDrAT10BByf2D9IQ29c8mwo4Ey7rIZzxasoY5wA0fs7+EK2/o4703H+nuA6jheVetmNBrzWzjS4R5dkr2N4ZM4fIaFDeu4Q1zrN1Mfi7U3F2Qj9paGhAMzTSOPC65AAc9cf+0CJ0QmQQI9YDq9aW0CjPlEM2tk8gWzfbjAZf4sBbth3EWCaC/UfKEQBXWOsMok/DsoBlFuuEmWycWS5pmmK9OsB+Ac5COWGgya44PfPo7yibfSpTZnnve98rArbRT0IOgs26pEkJYOgIn6GwX7EzDxz00R8YoJJZp9STzTw1MsYOTMcMAIfa5o8HBrCsa7xwDiAX/ZxrvYuqNheLZwowDgCwACzgB0JbWp5jW1/2CW1EGfSZ0maHHbB1SwpxH5cGw8zYXOSxbEtTgTHt/5DHAXIpalBsTZgK2sDBJuhGFfCFIj/imVau81A8GZxz7/B3SBuH1odJjmrLS80ByAKhWFD4koZaRqmgzkgn+g6mbaFoD2b/2nv8JSovqhI+Onzrm65fQwdeOinkqExbWDQUo8AQJ4gwl/FsJjEBnnMQZAyFYMdG5sTmt1XLXUIGtNmtwvYJm2DdymoO2jTTg198iLZ+6cp0OfUKAFBjLHvMqaeNkxH0s3zAbk3Y80DB/gSFCsbYxppkeWRUyCMJKyeoiJqpfL2bWn0nKB5JijY3TjXRzpaXRCIcJNdQy03y2oGxCc7IO05b3r1S7iKf15/WPaUOioOQSzVAbppN2splxAHIzxMxP5n9DFRlHIOJAa8Y5+DDAIU5AEiA69mnbOzPHfiiviWMuT/41ffEdwNb/7SdZyqc8QlZixXgC3xVFrOJZ/lLcaAQ2+A5+Vc8zr5oTi4CX5GVk8dkI5mh1V4KfXA2wFCWlbJBGAlVONgQBJ1S+swgM1mSAOAoegqy6PqC49R/eJwDnaYo2qP4V4AZKGJdEPYmYrnFTyN0hGc6fHnfyxTj4JwE4z5uv/IaUX/mWG/jDKcuO3TLJFVy33Ky+ygNdftZlKugJPd5ZquF7ftW4TNT+4pQGQCvbN7KSbgXYBpMZUF68cDv55ST8hv8DiuqS6kp0ihmVYQsFa7ngK7QtPBdqU8CCFYQs0P4IFiWzIdEIrQM9uM6kmDfG2UQtJRRYT+L+zhRD+9HMjeTK8HYCy7N4Fy/boSOsh8Rbdl/Yh/52E7g6ptmebBkjhxVggznrB+Cty3P9YlZVY727CdngvV0zlrYVL+Mjuw8lB7LgLGKsm0CoG3sV+NkkL14spMT3pRbBfYCZY0M+OW5JykyFWY/DK8zFiMQZD11nBMocVtCY4rOjXvMBNvK+8a4kIvS7wkHNwPwDH9hT9sAjR+KUuPbPeSs5uQCM88BgFkQZHjIvfWVFTwbGAe3Zui7+NaAI8r0LUFWl9T50gi90rGbSjmzMmR1AHKBOVGXwb1OHmRfZcb4LmV4Kf/LOmX5wMm4GP/1rKdced0Vc5JaZdpcNECu5N7rf6lYYxa7D9aFZgKpFyupHdc48NpxAJhG/PIhjI/5jZH51KaVuYAcqKurI0RSkiVFlQz4nKrmqBcePEHmhIWBUEoUki6aoDJbOV27+Xqqe3u9MI5v27aNI1Q4m0jLYUXBJUV4LC7z8GA9xVEzPJVlARuxGHhj9zBQFFHh5Ty90micooEwldqaqLqskYqaaylYzAAej4mWr2ngqZm7RXa1KgYOQZlE9MoLT+wgXXSaCl1sOGJhz8xGcYBxQToWCjD4m1hQLV9XSMisa3KzmMhCp58j5yAgWAoNwhGYCCj3A5CtWOdjcIaKerDkn4uBRQArmTjDn8Njo8BwkOs3Uf2aahob4UyKVEJN3G5Ey5fYSsims1ExR1Vxfj8qqi+mO7eVEHgDgX4xinHGWwgGM6xLF3eUMviLAanFjS4KbYkKQd80baLicsUggOjYwY5RSnFErLPATdXLTBTxxMlg5I+SjXvWBE+hyPciwMTsPF7TsJGqi2tpy+or0tdYbAX3MMLZBGR2XLeukDY1bxHPyrXcJrIBHoucEdVsvGW1WJ471y6WVeXVPPUNO6s542UdZw0ssc+PDL7rrruo6UQDjQQHxTl2m/L+iA0WckubkSE4Ttesv07sUv95z3veQ82bObKP35X/+e0vBfgnYeZnOjGefjfwTshnK89FJmXQzCOXu7WlxoFLwoEL/d6hf/zYhz5OSUc0HcGL7xR9aD1/dwbuR9AngfA9o/y//uu/EvoX/8zUlhKwiGOgLfVshCwoIYNDxyYNRWPNLDOBMm9T+jlxUpY/tbW11NJyZN4RGBwabi1lRZeztHkmRQRoodtO5qgC/J2Y8FO1u5b8PKWp0WKg4jpM08XfLY8jFpOipGEalQmeEqWXp9W59sZb511jsR3gBSJr271nqWx6hM6NHKd6qiZ3RSEVGG08raCJTDylC8hdyUBXVn4jk+yALysVjteVPG5Os/MWfSr6tyvWZje2LtaObMcl33BvyC6ajWAsRYb2a7dcy45ddnqt4jGRx89R7kvrquvEKdUc3bpsYwMNckb6lkAHFZqd3O/pOUtuhAoLHDTFWVWXrWW+c7CMlw2zvuM9IssXstkV8bS7JgHMTfLYVkShgTAlq1JiPIpv46hwHncqqipENC0uZjIEaYQDaBo2wDg9RHa7PT0mi8bwHwB2+VKki3P2KooKJzgy9bprOAqcg0ssbOQJhGNi3EW/7a4p5IhYjsENsxOLM86apzgyOcZGriSDISZTLI9UzZFH5HUyl5Bx8iFMs7mm4aqcRfHOSHkH7wz4XcA/kN3NIOa4Ml0wMYZ2OjrzbszISlPhxQXgonrORM/AKWSdr95Ww5k5RvkbnXW+OVwMRmbC9EBGdpxBroFcnTLyuDeT4RZOBLQjwrJDJqnHc8sqd872Jzh7mDFlEe82ZBn0C5nnom7IAC3JNppmeUtMb8kNsrqs4t3A2IugKgGw57ITPBUU3muNNA5oHNA48HrjQKa8INs/FD9HNoODM2byeFXJU5VzwFDvHq8ANNjqGVBSzOCtAGd7H+DZS4o4WLSUHRksy9gcdvJU89TBM+WL6hi4x+Ouo8oj5BrUj+wMkHH0Eavof+U1l7JsWltLCc5YS0HOpMR6NDJEIOOtMVbAWTMYAGcKkZvHAmS3u/M97xZVDzAADeMt+n3obyAp68F4Xre1jEJ+zvAbYACa3kh9ezljPssDAKNh3Eb2O52Oj09wUCvXX8WZ6FY2K/onbAcXUlYSjdP+aBzIwgH5zSKDEmxI0s6ArDOgMGs33eEdVFlaKQKIHNd5aLyPZ0HiAKfqZj15edpR2F/K1jtp5CQHRXMQFGZNQnKBKf6HmXkmOADcWWNjJyEHtTPgEnIPzgkGQpxwhQMO+5IsJ/MUwLUN/C2wrLiIXQM2kcNnDs6xuchbg40JoFN8k7DjIHOkj2blw1oODgjNTJ0cZ8esQc/zVDAY18AZPgzswF1Tt3QbkLz2hVrimRw8dYDtVWVkjih9i6tyxvHGIquF7VZCrmXJMRadoLfe+GcUWZ+gbVtvUPojBtVKWnv9cgonlKzkcbbryeeF44koAwKrayhhTwo5FPsASllXtYZSET0dOLubgbWqgEd+NI51RXTs6XNiBg+UBz8n/DyDl8VJ5avQvxdQ1Jog76iXDNx3FpfYKFFhoL49Y6xjK9O7G8tZP+E+EEkD0NcjUzrPFUKFVhuPEcp7V8j9f7HDzDaxOB3vOifuC9dbiIQOc3KhErPHguxUbmhomN2hrWkcuIAcgMNeDdZC1bBTIEt4JKkAGpDgf7DbqwTYeuNkK7RTTX01Fd1eIoKSYvUMVGdZJDbF+j7sLOUMOuHp2vGeN21oELIKwBWY+hZ9WH9/P62oWSv0UtfKYlGuz9tLFfWlabsX2pEps9x0002cNKOGXjm1b1ZXZzszppWHtbmxupnCDOq/kWfiw7Uz64SevGLTMhoY70X1is2fgQ2jvZxVtm6FsPkP1/EMA0Ul86b2tXP/gIQQg8fGBTgnxcEaFv7uMe6AvJ0BscSYUrcyt40CfSZsduORMXom9Hth6xYn8h/IksJ/QJ1pm4s8hoBdNcE/EpvgZwHAtIqQFAQBAiKrHPt7EERg42yfRc0lbKNj2xD7PEARnvmnyOKmYl3FHH+H9AepqtRWNQ5cFA4gqCYbQRZA/wFdp3xVCcV5RrUyV1XaFopzkBEbdjLztFX46PCtx/hrtGzLYQtj2SHhZt8cBwZ4W71Uw/LEdMhA4cMztjW2v9n5W+rcyVly2XYHMnBGbAMAgOyLCvSHqGOyh+zkorfd/vZ58os4AX+4nysuL6KzL/QI2RG7whwsVlBQyGA6nwASI9C9dLmTPMVFFObZF3CPkEcEMcYqOsE2XZubluMeuc3rV24i2OjRdzQ2NnLyiZmyyhnir4tnXCswceKAmesKYH9UP0//1IVNdP3116vO1FY1Dlw+HIBduYIq2aYyC4AFKBeAQ8xUZzMzNoCzwoeHBsQYn0/L8d2obf0m9re/cnKPyMoaHIqSjcfFeCzBPhIAcjkJBesPmK0XSUgwjkbZ5oPZNUoYQKgmyEimmcA8gCPXbqlRHxbr8PsDtAkAIcZli511DdYpp2+FNZ1t7Fx/iGfORaZdewmSsUSptLyE7JuLhC/n3L4+UY/IoM1Jw0DQqQxRC227/gYxWzAwHgC3Hjuzj9ZuUuQ39VhP4Vm4mvS1mOucVOb0iGRtepZrwGNJ0lcEmYfTcQg9WB7LXOJeRhsnaOuqK+mqK67IKr9Fu39PZW6XSOZRyL5KOwdYYEbgMdar5Uwjol5ANvifeh26F1wjSAwiCXq5JCkXQW5y2+YmSEL75X7IS2pbF+xnRj2PB0xT3B873Dx7aIFyPnhbV6vIcOWF1fQHPwI/KkX7IRtL3oqJr2YSp6DPRzBGmbOCatnfCbuEi/twa3Mxx7OxPMa+JfTJEmeC/WqczLm2DopzchvIp7BtoGz35A6ymx1k5tkJcc9IqoN3v8KjtMUIMDmTkBlVcAuxc+YPxoVchHuJM54Egfr+JGNr2LToqXZTAYNxxtsCQt7FGFvA76+O7YEgZOX1907SeCJMN2y8ZZ6+i29N4kwgb4PgW1LTdXeXkoGDp4cDA9TAvAFllsk5vnOdal+drFeWj29MCftQ92AXh9sUE/znkjJtLnK/tnz9c2C291roXtjBKoFmCxXTjmkceE05MAMGyKsN6Jfn2gbyOk0rdPE5AGWtmCM6YTxG1kFQiAXOTDox0EobGrbQP/71PwsFD8dh9L355pvpxRdfpF/e9yhVFCvgoeKbykS2nwEGVA33jShVsXNCl2DAbJWbXKbqtKKYaThGe+BokIRtUKWzmp5p/RXVVzfSIUM7ZxuZHbClsGVlAQZgWkMcjhKk1GfsDhvqAaw1sSDiZ+fJFE8TCpAqHIdYB0FAAzhXgjeLGu0iww+FkV2VFVmORAPodf3mtfTyowfp6obrCYDQbIT2yjZnO565z6SfVSLUx5rW1FDvoWGq3VpOzbfXU//pIaqpqKPiaxVwHcr+5uRz5Oap2xtrlhGxXJ/gDEvIspRJeHZvveEdIsPSUtqGZ4vno34etG22dtTVeZ3yrGS9sqzcRmn1+uzZRO9///vpps6b5tavKiDPk0vVIfHeoX243sMPPyLe3QrOUHhub3/63ZDvhTwvyhHScDSDMPVQvkAteb621DjwajgAw8Evdw7Sum3NC1YDEEa+7ya+z89//vPiO5DfHipH1lgcA8nvRy5RHiTLy6U8jmNyXR6TS7lfXQbr2QjRhAc/dYBO7WllB46DjYxK5CUcAqv/qEGcYiseo0SYpxIrrhPfZoDvPXpaT8hsgmvub9vLgQed5KgtEuVLassYUDJJQ2fHSRcy0vbNt52XsRB9hxy76B1EH/3Hv6LEGE/fc+VqsvEUL2IM3Dh7Vyd2tbLjqIA++taPi51q3qp5MnvG+a9JvulGbXRqnHk3oyBjGluAacAjQ8xCd/7xu/j3zjkXUj93HEDbwMcv9X2J6mamtg3zVDW4R5BtBRusuE/sPsWg3d8xcMFkEVmg5FiOMhW3V9G+p3mK2TOYrtVGHs6mkvBNi6kck+xMAtgSjrCSomKanpmOFcaieIQz5vGYjEwSyFjlqrUJ8G18dJqGDnO2XoBKU+w4X8NTO1VwVq+Ug9r9DMJOMdCVQduOjQ5hZIgPsMGoei6Y098ZmSePoK3ZCDzANwXQ6ELkH+H3syx3icx3JndJ5QiuK9+NpI+BxQBHcGa1XORpKuTI6iBdX71NyBd4lvtadjG4vkecMjEOx1g/OYxOcpoLObo+LIwuqUiKM9SyAYdlFWTmLbSZaESV/UteD+3Heyu+ZX7nFyN1+3FetnNfqnqJfrHnAWqoQsZtjlieea9Qtxxr+84O0rKileJ7W+ya2nGNAxoHNA5cbhzI1vcD6Pcf932WGt7UJJpb4iyn6Qk9dZ3u46wsQXKvZt2Ss41NdPVRSbKKmkwNdJLBdo0rPWTgaZcbV9STvyNE/YfGyaNzUFP5SnKm7NR3eJTlv3rSjU5RfUENbX3bFefVd0LeLKm3isAXWj/LUT/P5OKemamh1FUuMnxGT6+if3r/p0ShhWS9L37xi1SzuYx1ac5EsUzRRUfP+VjRjpGZs1wisAaZXTDMOcZLhWyGzL4YO9TjyWxrtDWNAxeHA/Kble+zXKqvdmbXOVpWv0Lssq3m4Gv+NoQcyHuO7DlOvUOjHBRmo87dwyzDcgZcthnJYKfyFRx4Pmygbs4s7WFApomdsUlzUIDzYcOfZv1kQ+1GevsfvUO8//K6UiaUS7kfy6XYRABY+9in/458Q5zFx2HhLLhutv84RIY0Aa7g+pwcFFVRWkFHnz1Lf/epf3jNv0HoNt+675u0bvMaiq+Yb6tS8+LZHbvpn36o9EmSVx4OgJey/IYbV4vnVcmZd9CndbZ1ieflqubZKlindDUyeHmCgxpY/9h75BBtXL2FPviOj4hp3w8e28/6UKP6ckJ2HTzMs03tHRUO8PqrKqjtFc6At4Lfj5n+s/fsAA1wlik4UYuLi6nGHVX6+xEFXJxkp3ygm7ORc0ZNC+s8cPqhnJSF5QXdZYoj1388PufdkMczl+g/oWflQ0G2bWmkceBScqCe7dX4wY4Ago0ieIKz4LL53DrlYPtsNdmWKTYH2Kklib6W7Swo3/Z7G33605/O+j2o7RpSjpD9uVyiTtlPqNcxDsBHoSbUB8J3BcpZJ+vJOKa+Bsqr2zN81it8KMhApiYASQrZ1oWMcegTAHR1FusonOSkHmyL0HOQFIDNMQ40l+1Qny/X1eNYy5FW5qVLHlLp2wfI4VBAgTiYYh+HBP7IwrDFRBgcDT/HNBed4mxuupSOs5opoMKKjUU87XaBCK7COepnin6Phqz04Q//7Zy2Sr7Ja2hLjQMXiwML2cSlLCD6Ex6r9zx+hP723f8w712VbZPftPiuF7GFQc87ykmHahlw1dPSL5LEoB7YseuvqCDoP/i+QQarjqeyT5KnzE1+znJ7y21baSsHT+EbBiFYJpMwi9yWG9cJOSLUqxwfaBlnUC0HCPAMdxRjP6TBSptv4lnTOMOivEd1Pbjfj3z8Y+n7xf2B5HJL81ba+8Qhql1VRTWrKsUx9XUHj46wXdFNq9dtnK9/bpptvzhR+6Nx4DLiAIJunv/+k2n8gmzaHD8H26UHDnupgRN+5UNyzBVyw0z/sGPHDvrZz35GSQbM2kucNBWcIIfdyYHInHV+tYX8gwEybzJTHfcJx59soyBnxkpw5loAaEEFnDF3YoRBjGGe2Y4TcVmSnMgrU2Yo5kRcDLYFILeYs+f7Ov2ckMbFYHwH/9wiIzfq8vZwtloOBI+NMHifgb3Lr10hZAHoGeWV850YGL9XlW6if/7Av+L0NH3sU39PsM+rx3p5EDJZ39khWlGs6LC7du2iiINnYGSsSC5qKe2nWCBJllmYwryiuA8EI22/8iZ6zzvfM0e2kv1Vsa2UXmh9SuhNNavKSFce5xlnjBQc6KJpFh+tPAOwUcxwzOBfowKtY7GGsRw8Ww3PRhhlP5TNrQQeQRZC0n8AbEESF5ANlAqZbYJ1OXetRyTGbLy6ivt3f9rWJW8GGWcrPFUiCAt8qowsS2NCcA+pyf+giJV5xc+jfg1+s7KxrAM+rWfv300f+6d/Svfb8thiS1xDyqTqddgzGqsZD6Ii+GTS+ifL43j3MBMiwOrZCOMCymQj3Adsh908I8YwB6XpUnpauXEZOa9yUev+Lgqyvq1noLrRaOVnpeCIwOdV9s107abrxTjY0NAwp2p8a9i30Fgs3wt5z3MqmNmQZbApeZJPnbKuXHXLeuVSlteWr28OKL3BYvfA3wE6nMuBBgcHeZqGPrryyisvh+ZctDZg4Pb5fCKjo8WSe7C5aA1YYsVIiz86yp09d7RFRQpQZYlVvOriiIzI+z3lNx8pxjW6/Dhw3XXX0YutT9N1zVekG1eSRZja++RRuvv/3J1W8NKFeeWWW24Rm5ieWNDM+fVra6hrxkCH/X6ediroC4nyC01/km3ge9/73kcv/MOzFOUprCE0xSY5ipuj1NSESCJML7h6eyX5uhjYFYhQw5XVnE2PU5owOUuidM43JAIezAxaSQt0HO0lwbnq+iD02Xm6GFctC8OFHjH9urvUIXgg71ld/nzWcS+YOpEK5569fvtqOvTiMWp9sYdBuWWU5Oj65q0rKMngG1Bf6wClgtNiKoNMvs+tiRgQ1ybanI2vmWUzt3HOQudlHsvczqwvc3ux+jPLZ27j/A0rNor3omZlpRAkpcCtLhvh7FOFrDxJCnrDC96XLKctNQ5cKA7gXQ3MZBxbqM6eMwO0ffv2hYrMO3Y+3xHOAcnlvEpVxxYqk+087MM5//CRT9A3v/91VtKiNMTA2qKmWaeBibOO2+xsQKivEAAUnHNy11kxPnzgAx/AJr3wwgv062d+RYEowIgM8ggXUlXRcgrw1Hlbr71ClD2ftonK+I/sxz/595+iF488y2lAogxuTFBRhRKpiXLoaz2FJfSXd3+QZLvk+RdjKfmGusW9z2Qo0VMB1VmqKGBa2r2jvi996Uu00DiBsRqEaXwgV6bLYieP55vZYIzxOxLi/C6cKWWYjRQ3bC6nhi3N4p2G0RlKNRxVL/9qP2v9bAFhsjktFB1PCsCAiTOEIYLc4DIIoO5UPEUWG2cRLLSKLBCVpeXUztl1IVtiHwiZicvYsV6/Qmmf2Ml/YGDCfeX77OGwXwyQi7rzyeIq3xnZlnyXiHZ3lLJFZAFKcWZ+3JO8xs2dN1NHR4c4A7z9251/I8Z8PCPoLaBwWHHA23h6cGF84WNjpybEscw/S+FZPueivpHgMO3evYMDDVZxLjBky2XgOD+3iXBQfDvOZCl95jMfy6xO29Y4oHFA48DrigOyX0ajYcD95veL0roHxkmQWu/t43Gq3F4pMpxhfHzo1w/y9KdsqGaV1M0ZkJxbimhj7dXCaYvjIPTzcr2pqSnvMU6crPqDvnnfSKfol1W7eSaAWcK6lLlQHiSXYiPLnwgD3OBUkYT10TYG5c4QpnHVsWOktLCRPve5zy1anzxPW2ocuBgckO+zXKqvgX1Jnr0AMgsIzij8QAjX7jrZSxankTr1w7Sxkm1kjGUY7m0XoIaSK4vZ8WZQynAW2omhSTFdJGSf1Z5NtKq5WQTM3XrrraK+fP+gTdnamnk+dJF77rmHM2hzViYn25E40yRmpjDXmhmMpWTCqSitYvk7QRtXbUrLlJn1XMpt3FeR1cN2NQdVzmSVy3b9vtZBYdfJ5MOW1Vvp5O7jdN1bFXulfF7ox7CO53V2Xzsta1zOumJxWlcsavCI+0f/jX7b9o0MHWemEeu2rRR1BDl439vVS5OckSlUrsjZbpuHGkpX0GgxZwjlAH3oSLCVqvt7VOMwOWli8CQVuYtoy7UbhUw+U/2cBe5xKXp+PrYDXCAfHWZOQ7QNjQN5cgDvVkSVlTvzNGlHAHBt+/Zl1Nvby34161x7gkoFln2tLL8U+4rsG+Qysy3qbbXcpt6fuS7rkkt5PHNb7sdy586ddHDsJfWu9DoyaJYsU+SjifEQgzgqOLu2idxlLnJvdgpww64A20vyINkGnusgPV7J0+zFKqbyTsxsmC0JDrK7A0Shm9JTKjZFsVCc6jdU0fjZEHmP+8UMSbFJNsCUKrYX1B/ieZnR791y++2XxP4l70lbahxQcwDvP/w2uUjKAjj+7I92L/quoj75TeWqE/sFUOcbSolMGyJ0H7X+M9LrZUBUnfi+z/y+h/75b/5lzjXgq8K4D1+VmtBvSjkCOuOm8qvoxk030pnTZ6iWE/FIux7OkX2m+vzF7vfuu+8WQQldI+doX9vhOf3HipXLqVRfTW+bCRy7UPqnun3ausaBi8UBAPUnO3nW3dWJud/VjD0G18U359B5CHiHpZBabsA6knf9ct9PqLGuicIlIf4uFZt7edEEvfLUEeo7MiIClsuai4SOEPExKHdAyeg5dGyINq24gmcMqqOS5g5ylc8HxdStrqTOrg4hM5Q0uan/FM+S1xskx2pFP4U8AYrGrAKT4O/kDN9F9jnylZTB1PeZy18C/9yPHruPBqJj1NPbI/iHgEfosE4G/9+w6Za0Dot7v/+578zBiqivIdfD4zEqqfDIzQWXufpg4D1+c9ej4rnhfvY8/wptulMJnE3F2G/EWYPNnLVYp+PZSDixi0I6fj7KepT5bucs/yApCyEgKRrg/S4FiidAqda5clM1g3+7T3TRqhWrKM5+K5Da1iV28J/4OQ7UZDwG+mXYz3Af6ncFeh14VddcLU8R/Xt6g1ekjrsUmVd9vnrskutYZpMP1efhvqKT0XkzOmSWwXZBBn+wD+NPHS/3v3CUjOwvxEzImLG0kv24mXgflO9rHaIbr7qZFsP8yHvAObkonzLyXJRdanl5rrZ843MgL0DuNM/eMq0Ay19Tjvj9/nRq6Z/85Cf053/+569pey7mxT/4wQ/Sr3/9a9qzZw9dwSnU1XT8+HEhyO7evVsYPK+99lq67bbb6Oqrr1YXm7M+NjZGmNrv8OHDIhp/zZo1tGnTJhEdsBDgd//+/XTo0CHxQ0e/detWwvVWrlw5p34YXjds2EBOp5NOnTqV0+A356QLvIH3dGY260Vr1rFtGD+NLj8OCMHn7scIET+FnlmwlLql/W1D1OBcRgs5FnIZgRtmgD6iPl7f9Wh+xif19bGOgfW9f/KX9NDTPxZKedjLUWQzgFxkA8FUzTVry6jn2DARY9kQpXbw52cpsSZJZZzJBMQ2JhaYeVobTqFvtes4YkpPySDS1evE8Tl/OPuIGtipFkwwBVY+tJDxQJ5fvaKUek5283QHczMAIgpp680b6cgLJzmyb4wsU4UUOBchH4OiMDVCtX4FG9552i29IqDL+rIt+1tG3tBG+s985jP0of/v/XTHh2/kbJIuAXAuyABrjw/5OEMKz83BhPd5/bIN2Vil7dM4cNE4gD6yyFa8YF+Li/e0DNAnPvl/Llo7LmXFGDOQyQmgwq/+v6+wksvObx5nkM3TxNOq2IvZMVqCnlmhU7vP0Se+MnvvOB99vwQlohRAKuql2HiVfyAD1j9fL4wTqKqvZyRdY3XhCvrTP9lKKHOpSI61F/LeFxrjcV+2GaeOFVnhM0iM4zx+IztDj7mfIi06evt1/zvrs/jrv/5rYURGFdE10zQ4MMBTAJfNGU9xLDIeJwTGgKIhNhDwFIkYD8d5qks4sUDZopixH84tyMb5EMr9ofWZOcaRbOf1t43S9i+x8HCRCFNLLQbIDY3F5lwdzx8/SeAtDCAg6AgKKdszG5d0gbbB6eC8z0U9Qx3s0LPSYL93jpzyzre9a0HZ8ZI2WLuYxgGNAxoHLgAH0Pf9zfv/TuikcAxUr6hI14rxEuPtK08do09/8rNp2QHnXGxZRjYCemrPSwPzALnyuFwi0GahzPCynFyKWVjK5ZayLF0xGxgOaW7wzBgRi1DqsWvuGdqWxoHXngNCNtz9DF371q3zGoNvGL9Tu8/SFU1Xc1DRZ0SZu/7u3XTbnzan5S+UgVwsviMucXJ3K9109S0EEITUVeZVfoF24Bp/aGfZdlNDOjALVcNRrCxttOul/fTm9W8X25fDH9HmHDyX7dv92GH64Vd+LDfTy7vuuou+8f0hYcNR97cogOcQmYyQ1eumu9+l8F7yXy5RDn1SLj1cPnMAe3c9ephWNmyasbXVUqm9TDzPZZ5V9Icjz1BF7WwniPMkTVa66cBTJykxqku/I/KYepnrHtVl5Lq0HcjtXEvYtpYC8s1Vj7Zf40A2Dtxwww306yMPZjs0Z98kAzrWNF4lbD9RYllgEZLlFyl2WR6GD+XRv/r5PDkLtgy2YIg2Qz6Kn4vR6q0rs/YJ+foUUJl/NDAHUId9hWXzfTdq/wXKFLh5pkCrkQpL7GQxIQg6QsakhZYtb6L1G3jq+n0dNDIywsEEDG4qnKa+7pG0rwE6PPyeGmkceC05UGTxLGo/R/tQ7kKRWl6AXy4WUL5pdf34vuGHjPF03ptuXisOBTkbZqb+o/ZVZfO3FrPsAJ3xh1/5ipA1fvybH6btferrZa7jWgsR7Mn4Pf/88+JXWO4QwRKQK4Rcc0uT9n0vxEDt2GXLAXxjuewwaDTsMJC1P/3Rz75qOzTG+m/f/99U8gHY3Gft7jaeORBJSw7vPEltE31ElhRVNVSQsd7MgM1WwbsVpo30j+/9lPiuEcTz4+fvJdoiDqX/AMD58qMHaNWtdewbs1L56iLqOzgmMpzCpy392pM8C8bUgFckiglH2H6TB2WTMdAnSP9cR6qDM7IkyK8P0trqItFOjPlSd4Je8T9P/zKr7iUvD8yDbsBA5s1KVmC5P3Pp5YRpNe+c1Zkyj6ufqYtneSrQFVL/UZ6JpsHBAOUQFdYUiHYnQykG5KbE6YYZMK6rroATs4UZSDtrk5L1h72c3dhlE3iRAtP8DMUbblhNbf/dRSbd3GRv8nwsgTWxGjnr7Iz/JZv9TPLqzL42Wn2NAiRW1wE9refgCP37Z/5/9u4Dvq363v//R5J37DjOdCbZg4RMQhiFsEdYhVI2FC6rLbNAF6Xt/ZX2Uv4dl9Iy2wsFCrSUlLJHUjYkhJUEsveOs7zteEj6fz7HOYpkS7Y8I9mv84gi6czveUqWjs55n8+5K7x3qx83tj/Dnbkd57PKzm773f7h9zaOvceyhtbtRwgfZo/dK2zZcbvwbEz472DZ95vYivBFe+/VnyfPEehIgfgCuaUayNXKhwe6q9XLLridBUA7sps3b5689tprMm7cuHYPAr/zzjtOGNd2EtYP4z711FPOJcTC1/3NN990LhH929/+Vm66qWHVJwvhnnXWWc4P2/Dp7PHXvvY1+fvf/y59+/aNGFRVVSW33367PPzwwxH93Sd/+MMfxA7Eu11ubq787ne/k2uvvVZ+//vfh3YUu8M74j5QGtRLssW3JI/mBjyZUUKP8U3OWO0oYBtbZ514trz84mw9KDG1QSjXNhw2fFIgP7vzF422wubTVOCn0RnEMdDe77bx+FThU7Jt9WpJyfE6U/m0OklGSqZMPXqE7Fz8oQZ6SvQSgnpZ50HpUrnZL3tSSvRyEemSmqVnVGkVXbtsU4ZePiI9J8WpqJqll8f2da+bl83QPn0D/qBevrtuo9I2wCws5HbuBqr7PNZ9Uz+SbTq71M6q+zZEbNS487PL2h130ZHy8kP/kenDj5IjhmgAaUhdIG3EiBHOD+l3P3xdjjiz4cEkdx72mkwYfkhoo9rt35nu7UfDkOxhekmez2XohP6y6fMdMvr4uoCz7SQpK6qQvOyeoeDf4neXyfeu+FFnImBdkkDA/axt7G/WPm+H9OhcO8fcHflWLeW1Jf+SKVNHRv0x6Ky7/h2747svqbnF+5nrTtOSe1uufb9YFx6aOemkkzpk+dHa3JbrbidzRNsJ7C63+76DOt1CQU93yP57+04q2VPqeNR/nfaPpbuq9oWsU6alycqH1jcI44aP6+zg8GU67wn7nT1GbAAAQABJREFUPnzu/lf18zt8jMjH9p1ml3tsbPnhU1xxxRXygp501Fjnvvfa8322e3WJ9Du44U4it13VWpm5fHPDnf3u8ES9N7Nf//rXMmfOHKeJzt9O2HZKe5omqgntQgCBzi/g/iZ9Z/FcWbB6oQwcme/8DrY1D5b5tJrI0c5+GleiLb/P3XnGup85c6bc/rNbYw0O9d+yeqccfvXhoedNPait0TJrTXQ1VbUycODAJsZiMAIHVsDdNmxs39VXepLgn3/9aGh7c2zfCbLxy60ydsbIUONtu9huth05UU/8PfzwwzvkN4Pb/sItJREnBLgNs/Z496Y77XH7Heh7a/NnP/wk5oHd5R+vdvbnRNu+d3+jPfrvR0Kft7Y+9vrlZuWJf3Oa7g//kdhvtsY62+e5esfCmL+Hhk4Y7FQwOn7CCQ2C1fYZbu1f8NpCGafvgfDfVNYO2w916jGnSXFNYdR1tHHc3xvR1jFau22ZfbP7NbmPdd2XG+XqU8+ONgv6IdBqAXsfbnx6q4w/akyj8yosKNZKcYOcA/GP/eeBJk+GtfGdihmNzjUxB5qJ7Y+o/x0y9JDBsvCzRc7JxeH7OOqvhW1/2bZaPJ19r7y76vWonnalPTew4/droZF9xy/c+fa2S2BvKpbew3pIql5mu7ZaK/XqpbfdfTVTjp8g9vnxn0/nydevvMiZzNbNjjXYPR0CB1rATshpbP+5tc++W+3EgbbswrcXUoKpUYu+VJRpUYFedWU5rQ32t1q/s+97+01o2wjjjxod2mazzw7nqlJamd+Gu9sFeVqVv6nOpo22rGjT2Xzdedt+Ov6uoynRL9kEmrsfpqXrZ38vPdLyGnzX2/zsN4MdP/pQT+TL6ZEjfcYNks1bNsuRE45xFnfeLD2RU//+3M72zdQ/EdR+Q+bmdQ9lGDJ6pcrIcZqt2FCuV2PxyJbFO53JfeUZMvHgGdJXQ7+Pv/ioO8uY941tY4S3yT3uFe1zwfo5FXX1t9cWvZKhXVXG/e3j/qYxmx1fFUjlUfu3Reo3yvIZJasqm9zmCX9NR49Nk7de+kB6j86WHSs03zEyxynIZgFbX4ZXUrXqrXsCUv6kHrLshS1SNa3GyXnYIb1U3RbqeVA3J8zbZ3ieVv2v1ArDfRschzR/K4i5eO6K+s12ntt2XHCvR69SGFkksf7IrtW9j/ze+Z1o+wXdq/DYd8OeNeVy6awrIt4P9efRkufu/oD626Lh87LjfP17Dgjv1eCxFdAp3rYnai4lfORgTeMnnbrjRns/ucO4R+BACMQVyLWqo4Ei3ZmvVc49jZ9k0K7rYFWYrFqrXb7gtNNOa9dl1Z/5okWLnAO83/jGN9o1kOvXy8DffPPNzuLde7ctr7zySiiM+6Mf/UjOPvtssZDy3/72Nyc4awFau6yghW/dbvPmzaENY/uSs4pqAwYMkKVLl8oPfvAD+eCDD5yde+6Ba3e68DDuz3/+cye4ayHol19+WR555BGnjXYpsssvv9ydROyHyW233Sa/+MUvxM7aiVWhNDRBGz6w92bATsqJM6ft0WqkXreYVxu2g1m1jYB9ia/WgOu8lz6XCfoj0d3I2rK6QPasLpOLT728yR3c1pKmAj9ua1tzoO66665zzjq96Prz9YDICGeWVg2kb58+unHVTY46d6qs/Gq11OrO8CET+8uAnCHO801FOyQtW8vr60ZY4dpd0ntkrvTTyrnFmzWsOSxH0nv6ZG+JbsB1T3U2qq3ikW/fpRCCNcHQhltpYUXcZ/vEc1aQXbrKzlTauaZI/4Y1xVKv27p6u/Ts3tv5ez9ZLxkV3tlnzOM3PdpoINeqbTZ1cCJ8nsn62M48fuyxx/TU6FpZ9PwK6TEkW7J6pzuXP0/1p8tYvXykdeY5KHcYVUSS9YVO8na7ByPtfThAf6SFd/Yj6sPnP5OfXv//wnt3msfuuhdtLZGskZEbBObh35p6QE4uCgfuCp+V4etb/7FdxkevedNmnX2/9eybF9rB5M7Ydo44l0bUHs7OkT51J6nZ+Ha53cpi3aGjJ9H4tT15PSJ3Stt32pQxsU9CcZfh3tvOABs/2t+cO4793T189/+5T9v83rYFtuplPKtPqpG0zIaXi/BryGnn8iIJNHEyZjzbFG7jW7Od5c6jOfdd/W+nOVaMiwACnUPA+U365jCxk7W3bN0g/dKGyqCBg6SPBqjq/2bryDW2773c1OgHj9x22Hfi4KyhzfqNWKmXu2uq21tSJSOm1P0+b2pchiNwoATsb+TME86WV176l+5HaXhCerS/D9vXYAfaPilcpAH8fhH7y7Iqe8iVX7+mWX9PrVl3a/+3L/+uPP36E3r5Ton4TWltt5Pp491/15p2NGdaa/PN13xPHvv3n2V54Rq9Ykq3CMOajSn6O/AHMWdp25l24Ns+b73eupMDigKlMmXgNBlxzIi47G3f2Xt/eSNqsM1d8FYNys24akaD0Eqo/bq/afMXO6WsZk2o/cFSr5wwfpZTQGPNmjXOOn6ypu59YvO1K3tsXLZFpo8+Uq6/83x3UXHd21X53v/oTTn8jHpltcKmtjZTITcMhIdtKmC/P+2Ka0114e/Dn997Z6P7qG1etl+9satONrW8Az082neIXQmqcE2FFI4t0csmBzXE0TDE7H6/2GdKPJ3tQ3v83Oj7/Mv1qoEWyLVwilUVcY9fuPPtPSJXVszdLCPr8kFu74j79Mw0OXjoBLFtWjoEEk2gsfe/29b22JcXvr0w9qhhskkvTT/6uMHuIp37Mv1uP2Rs3UlaFmw/9aRzIoa7T+666y558MEHnd+K26t2yybNDWSndpexQw+Wo6aMjvjN2De77gRP95isO4/w+5Ye44v3Myd8WTxGIFEFOmo/jGVvYm2HDztkiHzy2pdy82W3Oiey2G8Adx+Qndjidva3F2vfjGUYPn1voWYY9Eq+vgw56swZzokyNu36eTskfW+WfP/7t4Tm+8Lcf0cNCLvLas42RlOfCe5vL/vtJoF0+WTBIhms24SFBSWSr/uRTv3+N5y8UrTPR7c9y+dscjIUTS3LxndfU3Mc3f0QZxYfBz7Wky5WSK/BuVKi+Y1eB+WKBZf3lmihte5pkpLl1X7dZf37BTL0mH4S8PglPT1NDjrMrpq8UvYeqlVy03IaHFeymZuVbf8M6jFIigftdYp5paT6nNfChvv8KTKo3xDpE3ZVT+sfrXOt3P2C5mUZMcfp1Gntso1lptG2Rd322fqV76mQlGDjB/kGj+svy74sCuVe3OnD76uKa6VXz7oTUML7139s2/Z0CCSagEb4tUl1+49ity2gn3O7guIvCkpK3wNbVfSQQw4Ru3XW7tNPP5Vly5bJqFGjZPLkusuZu+v6z3/+03n405/+VOzmdrbToLCwUJ599lknMBseyLV+1s2aNcupuuuesWFlxKdNmyaHHXaYWKn63bt3h86ks5Dv008/7Uxn03/96193Htt/p556qvTo0UP+P718hQ0LD+SmpaU54d6HHnpIrK233tp0JZTQjFv5wF8YdN6jou/VJjt9z3v0ajrejAP7Xm6ynV14BNtQtB+J999/v15ueJMEa9P0x+IW6Zs+WDf6pkVUZ47FZMHzatkTa3Cov305h2+YhgY044Ft4A7sNVgviz1UcvK6RUxpG8S28+vjtz6T8VMOlt3biiQn2EuKN9TI5OnTZeZpM+UHd98mGWmZ0l0zQJt0h/rQo/tJevcUKV5fLhkTe0iwfnXcsI2OLct2xN1+W89SLddfv40RDd73JGVHjmxdUyADRuy/DJ49X7+gQC48+dLQxnf4tBa46ZGpl/BpZBl2Cfgbfhn74Eb4/JL5sb0nbGPUguX56YNkzsLXJDC8Sg4aPdipSG5hbdfzJ9/5edyvYTKb0PbEE7DPhJuuvkV+9aCGbvUIqu1os88H+xue/8oXMn3EEZ32gJq77n998S/y6drFzmedXc7EuvTy7nLFWVdF/ZxLvFcx+VoU7/dztVa2a20gt34QdPwRI+XzDxc5B4ssZGtd39F5snr+Jj0ZJluy03J1O3d/5diDxgzUA907ZNSxg/WyilXSR0+2Ce/sO+3BZn6nXXjhhaG/ufDvWJvvyk/XyoCMIe363rP3/uZ3N0vRxjLnZJH6odxK3Zm0fbFWrxnRs9HKgvFuU7TFdla4OY8RQAABBKIL2O8Pu73++usycuRI5xZ9zI7ta997H82bKzNOjx7iWrtYDxyfHP3AcbSW2nbEqm0Low2K6Fe8Pc7LJ0VMxRMEOl7AQh4rV650fn+NP3K087vEfo9t0/0v9rvkJz/5SUSj7O88EAjIG2+8EdpfZiP0qRks5511frtuR0Y0ZN8Tu3qatef9JW/L9qo9UlJZJN0ze8j6RXX7jsKvrhZt+gPRzzV87tVnpUyr+27eqOHXw2ZIdU2anHd104bu563t73E7+9yNt7PfKIVapan+Pjd3eqd/I78JbPm2v8neA9aG0ppiZ7u97/B8uf76653Z2LZ6+PvEevZJGSzDx0xwxmlOe21ae5++eOkLTbbZlkuHQHsI2Hure0qPRvc5O8vdkxLax2r7qJvqbL+6/U0laxftO8Q5GblPD9m4UKumH3Vwg/0Ytq7N3f4y/2j7/LPzMkN0Fk6pXx3XBnbTyxB7g16prdADd3pMLlrX3PZEmwf9EGgvAff939Lv7Za2y91esO1Cu4rX7Af0Kl5hgVyrnJjmSw/9jW9ds0umXzk96uJsHewKu/Zb0YJmPctWO78XTznllAa/G6frMcvGfr/ZAgq3F8nASVyNJCo2PbuUgPu7oD33w9h3vV0hw44bjD408kQa91hCPL+5Yu2bsQzDHv2bXvnpahk2ZbCzvd97UC/n9+jwUcOcPED4/M847sxGPyPa+jvdjO13jXXphW/IyHz93aW1hdzPL8srFa4ulcIRpZI3JCfi/bf1y11SvLJCZl0U/1U86m8X2mt78y9uELuy8balhZJzat0yKrVabkqmT7wenww/YqAsfXW9bPhgh/QcpRs7egjJm+IVf7leIXlXjYyeNDj0WR3ewEXvLpdbrvyBcwzWjCt36xVmeqRImiddMjIypUf3vKjT1T/m5c4z/P1o/db0WhNycsdp6/v626LuyRzu/owTjjhJ30vrGz0ZNa9frpS91HhYMSWYIt26RRZWirYuRQWljR7TijYN/RBob4EUCyYGi5tejH+7yOqP18pD//mj9OzZU372s581mGjbtm1yzz33OP3/53/+J5Rkt4CpBTStymxJSYlMmTLFqdp67rnnRszDQqEWwsvOzpYf/vCH8uSTT8p//vMfJyxqiX4LfNp8d+zYIVbBNbwyk4VIn3rqKfnkk0+c6q+2k96Wc95558lBBx0UsRwLmy5YsEAuuOACycnJkeeff96pFGvLPfTQQ+XGG2902mATrVu3Tv7whz/IwoV1O/znz58vt9xyizM/a2P//v1D87b5vP/++864+fn5MnHiRKeibb9++wNtoZFjPLAPduvsizG8sy+bl156yekVHpB1x7EQrgVkLVwb3u3atcspw/69730vVD7dHT5p0iT3obMDz720xYYNG6S0tNQZVv+Lx3qefvrpTiB33rx5oendB1a11wK5L774YocGcmsLNJDb9EnSTjM9+l3p7aFhXJ/bau4TUcB2Dv/v//6v8yPR2mc7mS0QHu9OY6vK8O/FTzW5am315Xz6cWfIvI/e0gONUxoss++Q3tJD+srp48+TVatWyagpo0T0Cnbu+vz+od/ppZtKJDMnUzNxXufMqrxhejmDDWXS95AeWpUvINk5Gc583UsbuAvJ8XV3HzZ5b5+LhQV7mgzklhdWOhVD/vrin6VAD6gU6wGVUj3btmpnQC446ZLQDv76C7TXpjGHbWsLpH/aIGe960/bGZ+bh93sdf7Tn0bIB0vflqrdpVIS0EsEFhbIrhWljqcNp0PgQAnY+88+X+39GaxJlQK9NMie7cUyIvNgZ5sr3s/cA9X+1izX/dt77bXXpEDPFu3pG+hcReCoE47uMp9TrfFr6bT2nlqw6+24JrcdD63p6r9/h086SKyKwyoNpA6e0lfyBtftQCnfWSMBvcrCoMF60sS+Crm23EnHHixvPfuhfkeX6mZj5Ibjys/Wtug7zf2b+8ecp5xKYracnLxs2arfkZVrJOKkOxvWHl1vvVTS7pVlkt07SwK11VrBRncQ1Qb0cUAvYVQiudm5ermq3NCBzFhtKCzQk4zqnYhUf9y22s6qP1+eI4AAAghEF3C3b6IP7fi+//Vf/yWf/+BTcX4LDo/cN2b9BvcaJnbQN97Ofue/ev9svdyxX1LSIr+b3XnYwemavTXOdp3bj3sEElXAtldtX/cf//hH5zeJT4NLm79YJ33SBso3z7og6u8S+zu3m7sP2dbN5lN/27ej1tlCoCNeH+H8riwo3Sb9cvrLdN3n5YZDO6odzVmO+ZmX/RZ29jfO1P0yM+sc451PS71tumsvvU7s94BVsswO2562z8X1H2/X3wQ/b7QZNg93+dZ+93H4RPXfJ+HThI8Xz2ObtrE212z2dsjvmHjayjidV8COl8Xa925rbX8/4VWa++Xki514Hf43Fq5j448ZPDa8V9I9tr9N+w758Y9/LDWbA/LZ2i/1KgkDpVduH/HvDErP7IaVxFqy/WUw0fb55/XrLpUldccR7Wo7GRl1xy/qQ+aN1qvxLS0WuzRztKshbdOrB8YKEtafF88ROBACsb4D7TPGquM+cNcjbd4s+/u2v7s3X3lJDtdjjnVX8arWq3ilOb+FLEA3YcxEZ7n2dx3PcTfbNmiqs99vDx//UMwTKm16+5sN/7xtap4MR6CzC8Tzt9VSA/sssCt82FVSPiv8Uk/g7OucoJSrJ0E251iC/W2/fOmLsm2cfl7U2zdjRUNS9mRLaoVXtye8snnDDuf36AknTWvwm86dT9mRDbexWrqN0ZSN6+veh49v24dPvfqEFK+trKtaq5+Re4v1straFa7QAz7aXXTRRc59S/6zZd64+hbnt1t1Sa2U7qqQjNxUJyRsxdTsauLp6ely8KyhsvTNdVKxsVZ2phRL2a5Kp8LtzsWlkjUtspCbtcOsBmQPcT5L7TW2rmdmH+nVr4d004JeNt9oXTzFT6I5RZtXW/Rzt0Xd/Rl2jNkK7Ln7M2z4jOMPa/Q7xaq9W9bF+S6r99502+jT/X++YKr7NOa95Vtcz5gjMQCBDhZI8eR5NJAbbHKxgW1B6VHdSx544AFn3EsvvbTBZZNeeOEFZ/iRRx4ZCuM++uij8u1vfzti/m5o9Nprr5V7771XUlJSnOFW5dXmbyFZO0tr9uzZoen8/rpk/OOPP+6EZO0D3w3kWkDXQqpWXTa8s4Cq/SCdO3euE851h82ZM8cJ79pzC/264VN7bqHXv/71r868rB02b3edbfiWLVtCz610uQVy9+7dK7Yuf//7322UUPfcc8/Jb37zG3n11VfjvvTNv/71L2f6qVMjq4d4vV5nB6EFcy0QXb9z12HIkCERg2z9Y3UWlHa78KrDdrbcsGHDHOfPP/9cvva1r7mjOfcWZrYuvBKv00P/sxC0dR999JFj17evlvxs705PjKndoiGC7U2/j60pnp4e8eW1d6OYf1sJtHTDwb5wNz67VQ7WCiONdW315WyfSXagcfu6HZI/LPJ9//GrC2XWsWfIDTfcELUp3zz9fHns7QdkzPFDpOeQbCn4slC6D8iSrQsLJeAPSIovxdmgs4k9AY/0yO3hzMeW1ZwfvmayYPfbUdsQ3jPH2905uGOfN7Zj3w6olFSWyagTRsVcB3f6WA5lRbZz4nP5438/6I7ape7ttR/+6nD58Iv3paJWg13lpXLcCbHfE10Kh5U94ALu+9MaYn/zovvrTzvttC7xw8W+Y+xm22p2dQK70bWvgG077/mqqMmFlO+ukG5Do+94CJ84/OS48P6xHk/SqhILXq+W4jWVUrS5TDx+j6SnpEuWNycijGvT29m5k48+WL74aLH0HNrd+Y63g3nb1u6QilVBvZztnbEW02h/+5uz79h1xStl69atMqr3QVJR7pVrro4eumh0Zs0caF7eEVWy+qt1UrqxUvKG50hNRa2eoenRnVW1su3zEjn1opmy4FXdwacn8sTqbD41UhhrcKh/W21nhWbIAwQQQACBpBKw36B2RYa7H7lLT0TxhH4r2+/DdRo6+/G1P40aOIy1kja/msqAHoAqc76no41nJ7HaODYuHQLJIGDvVSsGYb9JrMuvGub8Hmvqt0lL95e1h0kitSXe9TP3A/U5Yb8H7BKic199RcYfOcoJDNpvjJ0rSuSbJ1zU7M/Fxta5rV6b+m22ZVrVPmtzcz/LG2svwxCIJeAEQC57ScqO0gBIj4b7Curvd7arQ3487205bFbD4hm2jDULN+hn7TmxFpc0/e1zzI4BWhEQO+F8VK9RMvUEvQyy7mv4ePHb0m/Q/uMU4fvnm/vZEM0/W08u3rxks/QZkys1epWjYJUWwam7GFGEX/chGVK1Keic7BxI0eO8afsHr/p8nfRLGdisz739U/MIgY4RqP8d6O4b3Lhsq0wZMr3d3r/2d7fyRyvFji/maeXr1e9tknGnDHV+C+Vk5ob2Y9b//GuNin2m2PFB+7yI9llrxyTtb/ZAbUO1Zt2YFoFkFbDvbDuWYN/zB/UdIEs2L5cpg6bJyKvrCkLFs172N3v1xdfKP996JmLfjP1Nu/tm3PnYMUI7Phjt96jNx/IO9bexWrON4S63JffO9snbL0l+fk8pLy/TYz6lerzH63x+9RuYJX2mtX4bwz2WU6uFAdd9vEZ/u2VKdalfsjKzQtmN7N6ZMmhGL+nl6a/DaiWje44U5e+V6YMOl6XzVkZsj4bvD3M/S51jLd0KQ5/rsSys+Eljx2xiTdee/W0dwvdn1H//NPadYu1aOm+NFnm8Tf7wt9/Jebed1qCp9h4t3V4mqYEoG5n1xrbx6BBINIEUT29t0vo4mlUiklmULZed8S158uXHxcK3VnU1vLMArHVWntq6nTt3hsK4N910k1x88cVO+Naq3d5xxx3yyCOPyDe/+U2ngqszwb7/LFxqYVy7LNfMmTMlMzPTqY4bPk74Y0vdWxjXwp8PP/ywjB07VpYsWeKEfT/44AO57bbb5K233gqfxHlsQVurAPv9739fcnNzxQK0VtrcquLaPK2NVkV2+fLlToDXqvdae2wZ1rmBYFsfC+Pa8p944gmn+q8Fiv/7v//bCfjaGarRlu/MJOy/iooKcUOykydPDhtS9zAvL3qKtLq6Wu677z5npBNO0F/bTXQ2/meffea8HjaqVTvOysqKmMpeW3vNrOLtgw8+KEcccYRUVVU562OVga1zX+fwCS0sbKXSLbj85ZdfSjztCZ++JY/9RUHxb9Qwbt3JuE3Owqul4n29dOcAXacWcKrBbm/8TWEbPaMGNB7YjRfJNkztQOOv/3yXM4mFcm3+29ftlJQd3eSq310Vc1ZXXXWVPPvK36Vg1R4NxmTLyjlbJDtfqwLq2zpQG5TM9Lq9VHsrqiUjJUs/a/o581r9xXo5dUL8Ow5tg27jBxpSPiL2Olub3ZDvrFmzYrY51gDX4fGX/0+2i26daldWVCG1+nc6ceBUack8Yy0r2frbutvNdpBaF+3HTLKtE+3tPAJd+W/TXsWuvv4d+U62z76yf1Y0uchCvXxsxpEZTY7X1Gepfa+F70DOy+8hp1wxU+w7dPUXG6Rn/1xJm9BNyrdURV3WiMlDnXDq5PzDpXhDiYzoNUTKSj1ylYZnW/O+se1s+z6wSxSPHq3fy8d2zPeCeRXu3iKTvzZeFr6/RHyeSknN8Ym/Wk9u01Bwv359xdb5nacWNPo9ZfNZsPudqGbhPdkJEq7BYwQQQKBrCtj3pX3ffbTiPVm4bolz8EBPhZEjxxzTou9Sn15WvmR37EBuVUWV2DiJdpCia776rHVzBFqzbdmc5TBuYgjYvsDSe0tl54ZtklmVIjml/eSYY09z9scnRgsbtiK8zQN0H6NWOXHazHu3oRV92l7AfoPOmnm6LJj3rhx2WuSxMztQ38fbP2K7wt6vr1iA1yq41QvwOvvs1++WqZdHFsVp+1Z3zBzNxvEJ25dv+xuseMiO5VrwI72m1fvnXf+39OSR4y8+ylkx259SPLdCKgr3OtVxy3Zq1bjudccxwtfco72cfRDzF0vO0Azpoxcrco+blK30t/hk5/Bl8BiB9hYI/w50v7dnDB4ZuqJueyzf/u5+/etfO1mHnYFtGsz9THYMKZLqmmo5+vgpob+j+p9/rW2LXV3Y/tYPmzU54vPT/m4/0IrA9/3sgdYugukRQKCZAra97W5zrzpGr8Srnw/N7ex4hAV7w/fNVG6XZu+bsc/DttzGaO56hI8f2j5ZXveZZZmMnv17SHVltaydv1XuaGFBlfBl2GOzs4KG511+row5YqgUbimU9MP3B0Qtv5GqGzyTjhofmnTxf1Y4n+HX/+A7svCtJXqCep/Q9lj9/WG2HvEca6nQCrAtee1DjWrHB+77s/4i7Dsl2va7jeduw5uvXeHejtmNnDI0NAsbXrlBpH4hy9AI9R5YDoYOgUQTSPHli+iJApr6aqJpGgzzrwnKZSde6QRyLYAaHsjdtm2bWPjVOqtWa92ePXucgKuFXS28adUwrJs4caJ8+OGH8sorr8j777/fIJBr4/zlL3+Ryy+/3B422dkHoAVpTznlFBk3bpwzvvWzYKgFSa1dFnatHzq1DywLEbv9LQRrQdKnnnpK5s+f78zHLrMyfPhw6dNHU5za9e7du0FlYKu4a91ll10mxx9/vPPYKs5adeDHHnvMmb99wVmV28a63bt3hwZb2+PtrDqXBXltGvvAitVZSXbztqq/1lkFYAseW6Xf+p1VNbZgswWWrRpyeGfL+dvf/iZHHVX3wzt8mD12HcPXp/44bfm8Zl1A/Gt1jvoebbLziXj7a4Xc3gRym7RK8hHs79su2dBYZ5etPv300xsbpVnDbF52oHGeHmhctGGpnhCeKbnSR3cq3dDoBpK19cb/ulkefPaP4s8ISu+BPWTn8iLxerwS2CuSmp0qVboxF6gIysABg0Jt2q47DqdcNiX0vKkHFrT9xR9/3uhoZnLYqGMbHaepgeYQDAZlzmevin03dNMzP6aMmSan39p21k21IZGHJ+rGciKb0TYEEOg8AvajuLCJE2bctY11aR53uJ3wIQ0vHOEOdu7tEm71D77ZAPth7/64Xzp/lSx6a3nEdOFPbHvi+1fdsT88O1PqQrThI7XgsX0fdPR3Qn5+vmz8cKuceqWuhHarPl+vl/XWCjU1PunZO08Ou3iY07+bR4+QNdK58zn4iMZ3/rETpBFEBiGAAAJdSOCWW26RkS+PdPYDju4+2vn+c05IaaaBfa94arySlZ7l/EZOz4oMfdjv5lQtu2bjdPR3bDNXhdERQKCLC9hn1P333y8vv/yyI2GfiS35XOxIxvA2u2117zuyHSyr6wrUBUA+k4L1Ox2Ebhq0LVi/Q7yFmQ1CnfZ+Pe2Y0+XT+e/J9FMnR6At030AvSW/TY8LRCwgAZ7Y+t901S3OicDrS1bpVVJLWr1/3vxX/GCFLHpnqeQP7eO8DlVFNdKvZ3/ZoFXdonW1NX7J7Z7r7H/Zs61Q1qxYJ56SLRLol+YcN7nyqgs79esQzYR+ySkQ/h1oa9BR39vhyz1i9NHy6ruv6In1Xtm+aqfUaBEc9/hjW6q6f+v2Wel+fto+2E9eWySH9J/C32xbYjMvBFogYJ8LLe0a7JuZNqrZv0HaYxujpetj07mfWfYZZccqCvV4UMGyIjl35gVt+nll2YdTjj5Nvtz2hZQV7y/uYts6hdsL5eBRh0Sshh1fca0sE7d7/fb9eYl62RQ71rLnq+jbUuEzLUnCCrD2+rx6+ctSdkSFHqeLLBBpJ3n84af3O6toebc//OVeWVS8NDSebeNffsZVsm3qNnlx6d/DKRo8tu8pt+Bcg4H0QOAACqT4NJwouZpkbPpvXAKbgzJp4lQZlDdEvvjiC6eS7LBhdQdtX3zxRWc1LrzwQunRoy4EN2bMGLFbtM6Cnvbhs2nTpmiD5dxzz43aP1rPaJVabTy7LI3bWbXegw46yH3q3J911lmhMK47wEqwWyDXKtzG27nzffLJJ51w8YknnuhUArYgsn2xxdvt2rXLGbU5YVyrXnvvvfc601lI1g0XR1umhYIrKytDg6wS8TPPPCMzZsxwQrShAfrAqttaheBonYWWbZn2g8MNKoeP16uXXutaO3d9woe19eNAeVCq9ZLBgW36Ho6j8+SK+AZ4xJtFIDcOrqQfJT9ngJQX6yWvcyO/4N0V27O1UPIP1rMS2rCzExVGvjTSqSZtfyNnnnlmzM/B8MXadHYpqfWlq2Rp5pdSuzxF/P7dUrSyQsPz2bK3tFpG6Bm3/fZVx7X16hXsJ2eccUb4bBp9bO3pnlH3+RxrxLYysXbZhqZb+S/Wd0GsdtAfAQQQQKBzCsTzXWRrnp6e0SSAfWc1FchtciY6gs2nomivFGzYKf0OqjsJz53O+k0aOaXDdrS7y22ve/Mv3FbizN4NJdslInv1z3POHrcBto1x9NFHN9qE8PnEGjGe+cSalv4IIIAAAp1PwH4jNuf3azQB+/7JCmbLgL6DpKBwq/hSfZKiN+ssjFtbEXCGbQ5ymbpofvRDAIHEE2jt5+KBWKNkbPOBcGKZbS9g2wE3XXWzPPHK/zkzL/QWSI6/l1xwxkVRtzEsAGAV3NYu2iDdNABgJ+tamNe7J0sDvN9r+wYm2Bzdv9UVK1Y4LWvt/nnzv+eee+R3v/udFGrFsgFpWsgoa6vk9+qvvlYxp2FXWbpXr8RTd7W/w2ZNke3rd8ng2rFy9Ihj4j5u0nCu9EHgwAm4f1cd3QJ3ue7lzd/99B3JH9G/Xf6O3L91q+q4c2WRlFYWS3VRQPIDQ+We39zT0avO8hBAoI0F7PPE/Uxp6azd6dtqG6Ol7bDp3M8s2z7JqPRJ7Z5iOftrJ0YUlmzN/MOnte0gK9C4o3SXsw/KhpUWlku3tJxQfsP62TEl9/iK6/3SSy85bY22PWbrUD57f4bL5hGts+BusnW2bt8670r55xtP6kkek0KZHTMKz7mYkxV7M6eKPWWSn99fZp5+rPNefffdd2XTbL0C9OGxw+iblm+R6aOPTTYe2tsFBFJSBns1oBgUf2EcgUat1Bhc4ZMbz71Ffvh/t8oLL7wQCpz+4x//cLguueSSCDarTGvD7A/FgllWNdWCmhYGjdX17dtXsrOzYw2O2t8Cwq+//rosWLBANm7cKAUFBaFKsFEn0J72AVC/c/vV1tbWHxTzua3zn//8ZyegbCFfqzxrlXLtTAmrFuwGlGPOYN8AN8Das2cTpb72jT979my5+eabnWdmHKtirbtc9zUqKiqSd955x3ldbB6HHXaYLF++PFT51ypaWjDZKuked9xx8tvf/taplltTUyOffvqpXHPNNc5rb6+lmaelRVYk6chAbvX6oNQu1feuvjfj6byDPJKigVy6riEwadIk+WL+h3LoKZOirvCOjXva5WwZC+Harbnd1VdfLbbxaic4jDlpjPP43S/eFv9Ij/Ttla87r/ZvaG1ctqVFy+jfvfGQclua2EZltA3L5rowPgIIIIBA5xJo6rsoKzdDevbq1qErPazvcPlQz8g95cpjQjsFdmzYJWVra+Xy88/v0La058Jsp01FceSG86ipdSdYusu1bYzpY451n0a9jzaf+iPGM5/60/AcAQQQQACBpgTsN2ZqIF1ys/L0ijI1UlVbLX6tSGInsQ7Xk1gL1+kl1PXqMHQIIIAAAggg0PkEbJ+7Hay3zvaj2/G4WPufrb9VibVqW8EBaVLk3SHdavO030Ut2q+erJqxfFqyPjavRx55pO74hT6+q/wu2a2Vb3vm5+q2WMNjvtVVNZKes/+E6/TMNLntttuiXjW1Je1hGgS6moB73NG9b6/1dz8/7XN2e7UG74cNkLNujv15217tYL4IIJDYAm25jdGaNXW3T9o7IGzLsUquN9xwgxRvK5OeffMkO627jBwxMqL5qz5bJ6dOOCeiX2Of206F3H1FVCImCntix6qSdV/X7bffLu+c8Y7UbPPKug0bJTuju5RtqW1whQszspu9juHvLfPZvHxHmEbDh7u16E6/cXUngTUcSh8EDpxASupAj/gOEvHbSZJxZFAD64Iya9JZ8kvPf8uzzz7rBHItwPnBBx+IBWlPOOGE0NpY9VsLpFq1Vbezirr2B2TBzrbqHnroIbnppptCs7N2WCh03LhxThA4NKDeA6/XW69Py57aJfM++ugjsQq1TzzxhLO+Fla227XXXivPP/98XCXR09PTnQbEEwaeM2eOXHTRRc749913n5xzTuSHemNrYgFhe13OPvtsp11z584Vq7T7m9/8xpnMquZaGPeQQw5xqhinpKQ4/VNTU50PeltXW2d7zefNm9fgx7MFd61zp3OetMN/gTKtjrs4IIENcYTJnQZpddxhHkklkNsOr0ZiztICrl879bGogdwdG3dJbk3viC/0A70W9tloN9uR6Ha33nqrLCqaLyMP278xZ21Pq8iWicdOdEeL+97+rhd9PF8OPbnhtFbJLtFM4l4xRkQAAQQQSBoB21a3AzaxKtj36p8r3brtP2DTEStm373z58+XT99cLONm1H3nrp63WW6/4scR38sd0Zb2XIZtZ2T6sxq9goDtvOg7tm+jzWir+TS6EAYigAACCCAQRcB+064uXiwHjT9IysrKpHRvsZRVlUvfvDzJ15NYV3+4UaZPODbKlPRCAAEEEEAAgc4gEL7vvKn1sXHdAK8VpbFjYmPHjm1qMoY3IeC+Blb97dkFjztjl+1sWNmturJaevWsu6KmjbSnibBJE4tlMAIIdKCA+3fegYtkUQgggECrBOyYRXt39tn4xz/+UWpri2TogOFRi0yWl1Q6ubl422Lt7p6hl/lupFv52doGId9GRk+4QVYA0oK273zyluSnDZCxp42Nedyt/usYz7EoM0/WwHLCvVg0qE0FvN4crRg63Cue/b+JGl9AhUifnfnyzUkXO6Ha9evXO6WjbaJvfetbESHMRx991Amn2mXLLUBqVXHtD80CnfZH1xZdSUlJKIz705/+VFavXi2bN2+WRYsWOdVb22IZ8czDAsBWrfazzz4TCyg//vjjMmXKFGdSC8uWl5c3OZvevXs741jl2ca6jz/+OBTwvfvuu+Xb3/521NH9fr+8//77TnA22ggej0dOPPFEZ9CyZctCo1jI1rqTTz454vV0R7B1daf75JNP3N6he7fSr4Ut2q0L6OUIVwSkdpE+aPg7P+piPXoF4lQN5HqzqZAbFagT9rSdaxm1mVKhX8L1u5WfrnV2wNXvn2jPLdS//atC2bmp7nPB1sUq+J00dVaL2m/zW/yfustU1V/XTcu3tmie9efDcwQQQAABBBoTsB/G7vdatPHKS/aKe6JatOHx9mvOtqiNa5c1GtNtkpSsrpbMkjyZddjZnfJ70baPLBAdqzP/mTNnxhoc6t/UfHZuKoxrPqEZ8gABBBBAAIE4BCxIs3HZVuegh1XJGDV0jIwaPlorktRdus6+fyZMmBDHnBgFAQQQQAABBLqCgG072O2HP/whYdw2fsFt34Edu4h2wnWVhnG9AV9EUKVSr9jTr1+/Nm4Fs0MAAQQQQAABBDpOwPY5+WpSI7Zxwpe+ZdmOZh8X6d99YNQ8S/h8m3O8K3y6RHhsx5Jse/x/f/kHZ5vcHjena+pYlJnbOHQIJJqAUyI2dYRWydWbxJlTDGwQuWzaFTI0dYRTBfaf//yns14XXnhhxPq9/fbbznMLjNoPs/AD6+6wiAla8MQNhObk5MiPf/xjGTJkSGguFspt6664uLjBLLdu3Srr1q2T6upqZ5gFVq167RtvvBEa96uvvgo9jvXAprPOqtPGqpK7ZMkSmTVrljPez3/+c+fyLs6TKP9ZpVqrhHv88cfLwoULo4whsnTpUqe/VRhxO/esg/CQrjvM7q1tFgq2buTI/VU7nR76X0FBgfOwPb8UandoddwFWh13k7vUJu71ve0bpeFzDeTSdS2B8847T5YvWB2x0js37xZvdZqMHz8+on8iPrGNh0vOvkyKV+6VpfNWyaZFBTIsZ3SLz/Kx+aXHCCkv+3hNUpgk4utEmxBAAAEE4hewQO6iGCeH2Fy2LC9wDtrEM8c+ffSMqxhdc36A27h2s5PqLjnlCrnx4lud3xYxZp3UvW37Z9fmPTHXoWZPMK6dF03Np2JjTVzzidkQBiCAAAIIIBBFwPY12XdV+Im32dnZzpjWr1tlj2ZdRSrKIuiFAAIIIIAAAgggEIeA7UcZ0H2QZOZkSFVZ3fFRd7Kyogrpn9/ffercF28tZT9BhAhPEEAAAQQQQCDZBKz4WazjW5ZBGZQ3pNnbO3aca9fW2Mdsdm4ubHE2JNl8o7W3sWNRrnm06eiHwIEWcAK5Kf28kjJWg4o94mxOjciowDiZNfAsefKhv8m7774rFugMD3XanNyw5muvvRYRMH3ggQfklVdeiXNhjY82bNgwZwSrvmuVd93OQrLXXHON+7TV97m5dWXC586dGwqcujO1CrgWYr3xxhvdXs59eKA1nkCAG8i1iVeuXBkxL3ti1YhPOeUUp9Lwj370I/nJT37SYJzwHhkZGXLZZZc5va677jpZs2ZN+GB5+umn5YknnnD6nXbaaaFhZ555pvP41Vdflbvuukus0q7bmbPN0+6tO+GEE9xBzr1d/ufTTz91HrfXma6BiqDs/cwvtYuDIvpejKfz5Gl1XH2Pp/Rx3vLxTMI4nUTA3vs1W32h4IlbYXbqkBly7rnnJsVa3nHHHXKxhoO6a3Xy6f2PlnvvvVfGjRvX4rZ/4xvfaBBStmBOVnlu0pi0eOWZEAEEEEDggAvYd1hadUZEkMZtlH0f2bDGAqPuuBWle5v8PgwP67jT1b+3+YR3tn3Qmu/Z8Hkl4mPbNlo4N3q1fHOfNKLuKh9Ntb2p+XCJoKYEGY4AAggg0BIB+44+8fCTox6o2Lh8C79pW4LKNAgggAACCCCAQAsFDj74YFn+8VopLagKzaG6skY8AY/k5HQP9bMHjZ1UHTEiTxBAAAEEEEAAgQQVaOz41ooFa1q0X8qOpTR2TKx8fXWnPmbV1Evd2LGolpo3tUyGI9AWAk460ZMikjbWK76RGsqNs4Cot9AnF024TAYWDdFJPHL11Vc3aI9VprTOQqwWzjzrrLNk0KBBcsstt8ioUXWXkmswUTN7DB8+XA499FBnqhNPPFGOPPJIOfbYY2Xo0KGyZ0/sswiauRiZOnVqaJLBgwfLjBkzZMuWLU6/22+/3bl/7LHHxALCV1xxhbOu7qVev/vd74ob6A3NJMqDlJQUOfXUU50h0SraWojOquda9+tf/1rS0tKi3sKDt7feeqvz4fzFF18499Zum4/bTpvXDTfcIEcddZQ9dLrp06eHKu9aINeqj5x00kmOq4WGZ8+e7Yz36KOP6g/qnH1T1d1ZaNgN606ePDliWJs80Wxw9bKAVH8YkODuOOeo72nfaI+kjfaKvdfpupaAbRTdcOVNsmdFhaz4ZI1sXlwgg9KHiX1xJ1Nnf7dPPfWUE8RvbUjI1r1qi1d2b6n7jLT7FR9skDvvvDOZSGgrAggggEASC9j3mn0v1++sqn28Qc7dWxpeuSJ8fr179250J4Y7blPzccfrLPd1O4zSpaK0ssEqff6fr+Too49u0D9aj7aaT7R50w8BBBBAAIHGBOzkmd1bChuMsnzB2i59gKIBCD0QQAABBBBAAIF2FrBjDRmlkccJi3eVSE5GbkSFXNsHYeFdOgQQQAABBBBAINkFYh3f2rW1qEX7peyY2MIYV5W0HEe8x8yS3TVW+xs7FtVS81jLoj8CbSkQKheaOsArqYdotFYricbbDU0bKecPu1QmZ02Tc89pWGnSwqXPPfecDBw40Alpvv7661JZWSm/+c1v5Oabb3YWk5qaGlqcxxNnGjg0Rd0Dq8BrH3rWWXVWq5RrYdg5c+aEAqMWdnU7n8/nPAzv5w5z+7n3bn+rgPvkk0+GqgBbwLWkpMQZ/M1vflOsDfZBYCFdqzxr62qh1/vvv9+pZunOp6n7M844wxnlgw8+aDBqQUFBg37ReoQ7DhkyRGxeFpi2YK21+6WXXnLaaRWNH3roIfn9738vronNz+v1yt133y3PPPOME3a2gK1VQXYrEB933HEyb948ufTSSxssfv78+U4/C2Onp6c3GN6qHloQt3pDQPa+E5DA+vjn5Oml1XEnanXc/qG3e/wTM2anELD348UnfUvSNubJ5N5HyH333deld/7Yjq8bNaS8e1m5rPx0rXM/ZdBh4p5E0SledFYCAQQQQCChBeyAzeaFu6QyrDrt7q2F0rd7f2fnQmVZZNXaWCtjodtYXXMO9DQ2n1jzT+b+FmSqH4i212LL8h3N2rnTVvNJZkvajgACCCDQ8QL2vb13s4htO7idPU4vzuZ3rQvCPQIIIIAAAggg0AECtu/FCn3UlPulrKhCqitqxSepMvSgoRFL36Vhkq627yUCgCcIIIAAAggg0GkEYh3faul+KdueSt2bFnG8zMVa9nH8RWzcaTrjfbRjUewL7IyvdOdaJ091dbXGHOu6mi0BKZ/tl9p52ksrkcbVddPqujO9knWaT1L6xQ7UWpi0qqpKBgwYIPXDrnEtJ46RampqZNOmTZKXl+fc4pikRaOUl5eLhV6zsrIaTG+B461btzrh1/rVYxuMHKXHxo0bZeTIkU6Q2ObT1qHW7du3y86dO8UqC3frpi9eHJ25rl271nndLGRsgd1Y3de//nV59dVX5fHHH5eLLroo1mgt6l+zLSAVr/ql5n19f1bEOQvNXqce7ZFu5+j7k0BunGiM1lUE/vGPf8izzz4r559/vkyYMEHGjx/fVVad9UQAAQQQSACB66+/Xlb7F8vk48aLBXDffPx9+X/X/4/k5+fLZTddLBfdcWajrXzsx8/JjrW7Yo5jJ5R97//7rpx0eeMVX5uaT8wFJPGAJUuWyHlXnisnXXeEZGZnOGtiAd3Vr2+Tr776Ku41a6v5xL1ARkQAAQQQQGCfgP2efWbu49JnfI5Wfd8rG77YLjdecKtccMEFGCGAAAIIIIAAAgh0sED//v1l3GUDpLteVTMnO0ePBQ+MaIHtc5iWe4z89Kc/jejPEwQQQAABBBBAIBkF7PjW4qIFMnb6cGe/VPnGGrnoxG+1eL9U+PGycI8X7p8jsx98scvnONxjUV+7eLL07J8XcUyRfYHh7xgeJ5JARLIyNd8raVO94slvRhPLRWrmB6Tyfb/4d4eyvQ1m0K9fP7Fqre0VxrUFWrVdC5paILc9OwuyRgvj2jIzMzNlxIgRocq8zW2HGV1yySVOReG5c+c2d/Imx7eAg1XGjTeMazM0V6sQbOvVWBjXQtcWxrXQ7jnnnNNkW5ozQu2uoFS+F5CaBc0I4+oCPAM0MK7v6ZS+EW/15iyacRHotAK2cTJ79mxnw5Awbqd9mVkxBBBAIGEFvvOd70j5er+s/mK9bF5cIH1loPOd1KuXXt4gjq5oc93VKhobddfmosYGO8PimU+TM0myEex7/7hDT5CFby+RPduLZMvq7RIsSnWq2jRnVerPx+bVkvk0Z5mMiwACCCCAgAnY79kLT7hcdnxVKmXLA3Lc+JNbfNADUQQQQAABBBBAAIHWCVjBjwljDpExo8c2COPanHdu2t26BTA1AggggAACCCCQQAJ2fKt3xaDQfinbR9WaYKjNb+PnO5ygqbuadrzFtzujy4dxzcOORZ13yvmOtx3PCj+m6Hpxj0CiCUSmFLWaaPp4r6RO094Ni7/GbHtwj0j1uxqY/EhDuUWxQ7kxZ8CACIFf/epXzvOf/exnUltbGzEskZ/cfffdTvN+//vfS0ZGXaWttmivv1DfWx9oZVwN5Mr+qxE2PWur3jxdQ+Zj9f2s7206BBBAAAEEEEAAgcQRsIM113/rRqldli4H50yTBx54wGmc9W+LLt5gb1ssKxnn8d3vflfySgfIji+LpXhJjYaaLpMLL7yw2asSPh//lpQWz6fZC2YCBBBAAIEuL2DfW/b99asf3y133XVXl/cAAAEEEEAAAQQQOFACPXv2lJ2bY4duK8urxMahQwABBBBAAAEEOoOAHcd6/vnnQ/ulWnJsJdzB5nfstONl5adrnd6FGsa1Yzd33nln+Ghd+rHt+7P9gCnbukccU+zSKKx8Qgt4qqurGyRoq1cFpPw5Ddcu0kGagYy38wzwSPpJHsk80ie+PE+8kzFeFIGHH35YnnnmGbnnnntkxowZUcZIrF6FhYVOVdxx48bJgw8+2GaN8++pC+NWzQ1IcHszZmsZ3Kke6fYNn6SNiMydN2MujIoAAggggAACCCBwAAT6jegjV/zPNxpd8uM3/1u2b298A3HIpIFy0R1ntno+jc4gyQc+/fTTzhU07Coarenaaj6taQPTIoAAAggggAACCCCAAAIIIIBAxwv86U9/kpeXPiuTZh4cdeF/vWO2zP33W87+h6gj0BMBBBBAAAEEEOjiAl9++aVcd/s1MvOCw2TJRyvlwuMvl4svvriLq7D6CCSvQNRAbrBGpHK+Xyqf90twc/NWztNfQ7knaCj3KA3l9iKU2zw9xg4XqN1VF8atfquZYVydiWeISOa5Psmc7hNPavhceYwAAggggAACCCCQ6AL9+vWTK+47J2Yz92pllaXPbJY5c+bEHMcG9Bupwd5fxQ72xjufRhfCQAQQQAABBBBAAAEEEEAAAQQQQKALC7z77rty2U0Xxzwp+n8ve1S0QFQXFmLVEUAAAQQQQACBpgWeeuqp0EiXXHJJ6DEPEEAg+QRSojXZAozpE73i3xGU6jc0DFkUbazo/YLbglKlx8WDVX7JPMYnKf0I5UaXom9MAS3MXLM9IHvfC0i13oI7Y44ZdYAnT9+/X/NK+gQvYdyoQvREAAEEEEAAAQQSW2DixIliYdmMbulRG7px+Rbp0aNH1GERPUsbv1LCjk274ptPxEx5ggACCCCAAAIIIIAAAggggAACCCDgCuTl5UlVefTAre3fGTZsmDsq9wgggAACCCCAAAIxBAjhxoChNwJJKBDzCLUv1yMZR3glZZoGajOat2bBAg3y/icgFa/VSs2GgIj+o0MgLgF9r1Svt/eOX6qsMm4zw7iSKZIyXd+7M7zi604YPC5zRkIAAQQQQAABBBJQwMKysbodG3aJhXab6mycqoqqmKPZwaJ45hNzBgxAAAEEEEAAAQQQQAABBBBAAAEEuriA7VsJlnii7oPZtHyrXHrppV1ciNVHAAEEEEAAAQQQQACBriQQM5BrCKn9vZJxnE98EzTYqFVzm9MF92iw8r2glL+owcqlfq2Yq2VP6RBoRMDeI3u/8kvFC36peV/fL4WNjBxtkL5HUyZ6JPNYrcyc3+hbO9rU9EMAAQQQQAABBBBIEIHc3Nw2a0nBxtjB3oINzT37q82axYwQQAABBBBAAAEEEEAAAQQQQACBTiNwzDHHSLR9MHaVo7bcz9NpwFgRBBBAAAEEEEAAAQQQ6LQCjacWNYebNsIrmSd7xTtKnzQ+dkOkMpHaj4NS8a+AVH4cEH8xodyGSPQxAX9RUCrnaWXcf/ml9hN9n5Q308Un4hurlXFP9knaMH2jUhy3mYCMjgACCCCAAAIIJI7A0UcfrVVVol/q0G1l9+7d3Ycx79tqnJgLYAACCCCAAAIIIIAAAggggAACCCCAgNi+nJLdemC4Xrd52Q6xsC4dAggggAACCCCAAAIIINBVBJqM2Ho06LhYyn0AAEAASURBVJg+zieZp2ood4SyNDlFPTo9ju5fomHLFzRs+aZWPt0Y0B71xuFp1xXQ90LNBn1vvOHX94hfAsuUoqaZHPqe9I4UydD3aPoYfaLvWToEEEAAAQQQQACB5BWYPHmybFy2NeYKVFXWxHUwxw74VDcS7LX52LLoEEAAAQQQQAABBBBAAAEEEEAAAQRaLmD7YD57fUnEDEr3lEmWP5t9LxEqPEEAAQQQQAABBBBAAIHOLhBXvNaTrqHcSV7JOM0n3qFK0tzqo1rwNLgpKFVvBKT83xq8/EKDl2VUy+3sb66m1i9QqkHtz/1S/rxfqt4MSHCLTtHct4UVbtageOYsn2Qc4hVPWlNLZTgCCCCAAAIIIIBAMgjs2LAnZjM3Ly+QKVOmxBzuDnCCvctjB3ttPvFU0XXnxz0CCCCAAAIIIIAAAggggAACCCCAQEMB20+TWdNNLITrdoveWSpXXnml+5R7BBBAAAEEEEAAAQQQQKBLCMQVyDUJb6ZHMqZqKFeDj95h1qMFPiUitfM1hDlbQ5hz6qrlBmtbMB8mSWoBe82r12s4WysmVz7nl9oFmsItbcEq6XvQwrgWFE+frGHcjOYmxVuwTCZBAAEEEEAAAQQQaHeBnJwcqd4b+7IJNbvjv+RGwfrYwd4964viCva2+wqzAAQQQAABBBBAAAEEEEAAAQQQQCDJBe6880755PVFzlqUFZZL98weMmDAgCRfK5qPAAIIIIAAAggggAACCDRPoFmxWm+WhnIP1VDuGRrKHakL8jVvYc7YGsYMrBGpekUDmRrMrZznF/9uK6HbgnkxSXIJ6Gtcu0sD2R/5pUJf+6pXAxJYp6vQklC2vve8o7Uyrr4XLShugXE6BBBAAAEEEEAAgc4hMHXqVKneWRs1lGtBXbsMYjydBXtrYgR7bT7Z2dnxzIZxEEAAAQQQQAABBBBAAAEEEEAAAQSaELjqqqvEX+yV7et3yqK5y+XkSWeK9aNDAAEEEEAAAQQQQAABBLqSQLMCuQbjhnIzz/SJb6yGIFNbyGXVcj+2arkazH3JL3sX+yVQRiq3hZoJP1mgNCh7F2pl5Bc1hK1h3NpP9LVuSVVcW1N9z/kO9kjmWfvCuBoUp0MAAQQQQAABBBDoXALTpk3TAzg7GqzUpuVbxAK78XQ2XpUGe6OFcm0+M2fOjGc2jIMAAggggAACCCCAAAIIIIAAAgggEIfAdy65QZbN3iSH9Dk07hOq45gtoyCAAAIIIIAAAggggAACSSOQ0pKWejO0Uu5kn3jSRfbOCUjtVxqurGzBnAJaGHdrUKq1amrtKo/UTA5K2iFeST3IQ8XTFnAm4iSBiqDUrNfX+MuA1CzSirgbtZXVrWhplkjKIfr+O8kn6WO94klrxbyYFAEEEEAAAQQQQCBhBfr27StVe3c3aN+2tTtk0oQGvWP2sGDvNg32Dhk7MGIcm8+pU8+J6McTBBBAAAEEEEAAAQQQQAABBBBAAIGWC1xzzTViNzoEEEAAAQQQQAABBBBAoKsKtCiQa1gWxk0/xOdUzK3M8UvNZxrKLW4howY0A6uCUrVZg7lLg5I60SOpB2swd7AGc6l+2kLUAzuZE8TdqEHcpRrYXhwU/7oWhrbDV6OHFsc9VCvjHu+TtGFa3NkXPpDHCCCAAAIIIIAAAp1J4Nprr5Xv33ujjJg8NGK1Kkr2Sp8+fSL6NfbExq2uKmwwSk11rWRl6dledAgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCLSBQIsDubZsjwYi00ZplVI9jr03LyDVHwUkuF0HaPayRZ1W2fUv0fCmVlSt0aq7KeM9kqZVUFOHaDA329OiWTJRxwoEyjSEa6/fcg3iarjaCeKWt7IN+tJ7Buh77UivZByl74f+Gsbl7dBKVCZHAAEEEEAAAQQSW8DCspuXFTRo5Lp5W+Xbr327Qf9YPa677rq6YO+kgyJGsXkfc8cxEf14ggACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAQEsFWhXIdRaqwcjUQV7xnqyh2d4iVe8GJLBGh9S0tEk6nQY4/V9qmHONBjsXacXccR5JGaXhXK2K6uuhC9Q8Jl0CCQT09SrUIO66gNRopePaZUEJbGiDiri2imlaCHekVmM+1ifpk/e9/gm06jQFAQQQQAABBBBAoH0Epk+fLhXbq6RWK9mmpNX9bKks2yvHHNO8EK0T7F2+I6KRNk+bty2DDgEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgbYQaH0gd18rfHkeyTrKJ77eHtn7gVZH1SCtFLWyiRUiAQ13VlkwVyukVo8JSOpIrZA6TAO6/TziSadMaiuFWzV5cK++LgV6W6ch3NX6mq8ISnCbzrK6VbPdP3Gehr0neST9aK+kj9ZKzLze+214hAACCCCAAAIIdAGBU045RdYu3iijDx3urO1nby6Wc465uFlrbqHb8q2VEcHejcu3NjvY26yFMjICCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAQJcTaLNArsl5MjyScci+UO5ArZY6T6vlbtIBta101YBnYL3eNmrw83O/VGsg1zfCI6lDNZg72CspGgYWXyuXweRxCQT9Wg13j4ZwN2kAd72+HhqWDqzVIG6hTq6Vctuk03elV68onHq4VzKmawA7X0siUxW5TWiZCQIIIIAAAgggkEwCt912m3z9irOcQG5tjV88AW+LgrQnn3yyrP1Sg73T6oK9FvK94uTrkomCtiKAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIJLhAmwZynXXV4GTqQK/4cj1SNVBvGsr1L9kX2GwthgY+gzs137tTg6Bfaii0vwZzhwUk5aB9wVxdnq+7hnMJb7ZWOnJ6dfcXq/lWvW3UIO6GoPjXaf52m1ZB3hs5amufeXqKpEzwSNoRWhV3rFe83aiC3FpTpkcAAQQQQAABBJJV4LDDDpPaXQEpL66QrWsKJD84VKxfc7vbb79dzr3ybCeQW1VRJZs+3iE3vnRjc2fD+AgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCMQUaPtA7r5FebM9kjnNJykamq3S0Gz1J1pJdZ0GOKtitqV5Ayo1EKqVWQNrRWpyguIbFBTvEA1zDtJwrgaCbbleDQV72m0Nm9fcZBs7qFWN/UUawNXQrX+rhnA36f1GNd+sr2FZO6xNhuaoh2sQd7pH0qdQFbcdhJklAggggAACCCCQlAI/+clP5K9P/5/T9ofu+UWL1mHGjBlSvdMvFSWVMu+lz8UCunQIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgi0pYCnurpaE5bt2wUqg1K9Rm+farBzUUAC23V5/nZYphVTzdZg5wCtlDtIxGf3+RrQ7af3vTWgm6kjUHA1Ory+C+x18lv14QK9325BXL1t3lcJ10K47fFO8dnrpUHqSVoRd5pX0kZoiDqDFyn6i0RfBBBAAAEEEECgawrMnz/fWfHDDz+8xQD33nuvPPavv0jxxjL5+9//Lq2ZV4sbwYQIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAp1WoEMCua6ef4+GcpdptdwvNJi7NCjB3TqkPUKe7gK16qqnT10w16vBXF9fvdlzDef6enbxgK4FcCs0cKuviX+X3jSI69+h/fYFcYO7FHGvC9kO95aN7q1B3PFaFXeyBnHHecWXRxC3HaSZJQIIIIAAAggggMA+gXnz5skRRxyBBwIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAm0u0KGBXKf1AdEKrAGp+iogNYs1BLpSg7lFOqQ9g7m2YMt6WvVcDeV6++p9H73vpeHcXhrO1SCot4fed9fqrOk2cufrglValLgkKIEiNbcQrt4CGogOaBA3UFB3L+1VBTec04K4eeo+xiOpEz2SPt4nKfqaiDd8JB4jgAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACySPQ8YHcfTbBWg3mbtVg7hIN5i7RgOgqTeR2RDDXfW0soJup4dCemgXVUK7X7jWY64RFc/W5hnO9OdovW+/15kl1J0zs+2C1hmvLNWRbard9Idxifay2wUK936PDd++rTmwVcNs7CO1yuUHcURrEnaBVccd7JSXfK54UdwTuEUAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgeQUOGCBXJcrWCNSo8Hc6mUBqV1WF8wNamhUtJJuh3duSLeHBnUtlJur9901lJujgVwL52bpfbd99xbm1Zs3Q/vpzZumrfW1c4v9yqKVboNVGqyt1FCtBmqDldqvQh+X670GcYNa5TaglXCDJXavwzWM61Qg1vE6LHwbzqCVbz1WiViDuCnjtCLuOA3i9tcgbpIEnMNXhccIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBANIEDHsh1G+VUzC3QYO5yrZi7QoO5qzVIWqBDNbB7wDsL6mrg1sK4ojePVczNqgvkWijXk2mhXL23UK6Nl6rPNXDqVH+1CrB681hY1+ZjlWI1pOo81jsnJKvh46BVqrV7Dd2K3bSCsJkEa9RBq96aQ9AJ4+q9hXE1YOvcKvReQ7hiYVwN5YqN21FVb3VRMTtb/3xd9ZEaxB2rFXHHaBC3LxVxY3oxAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEklYgYQK5IUENpdbuCkrNGg3maii3Vm+BTZowtdBponcWug2FcvWxVYH1aTg3RdtvwVw3iOuEcvU/7R20JK7+c4O5dUFcHVarPWs9TiDXCdla0NaCuoneZesqD/GIb6Su/kivpI7QIG4vXR9bdzoEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEECgEwokXiA3DDlQqsHcjXXh3Nq1WjV3vVaB3akjJELV3LB2dvmHVhW4jwZxh2o13OEeJ4SbqqFcr1YSpkMAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQ6u0BCB3Jd/KAGcGt3ajB3fUBq12kwd0Nd1dxgkY6RDFVj3RXpTPdaDdiTp4VvB2s13IM0hDtMw7hDtRpuH6sI3JlWlHVBAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEGhdIikBu+CoEKoJSu9Uq5wbEv0nDuZtEAlu0ci7h3HCm9nnshnAHagh3sFbEHeyVVA3jpvTXariZVMNtH3TmigACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACiS6QdIHccNBAmQZzt2lA14K5Gsr16+OAhnWDu3WsqvAxedxigXSthNtbw7cDNHSrwVvfQJFUDeI6IdxuhHBb7MqECCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCDQaQSSOpAb/ipY5Vz/Dg3oaiDXb7cCDecWiAS1X7BEx6wNH5vHMQVSNICbq7e+GsDtq0HcfK2Aq2Fcu/msH5VwY9IxAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEuqZApwnkhr98wRoRf1FdQLd2e0CDuiKBnRrQ3aUB3d0a0C3SsXUcOhVI2xfA7a1h214awHWCuBrA7acBXLv18IhHQ7p0CCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAALRBTplILf+qgarNKBbqAHdXftvAQ3mBgo1oGs3De8GS3Wqzl5FN1XDt9l6y9OQbZ6I1249NXTbR28ayHVuNkxDunQIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAvEJdIlAbn2KoAZvA2UazrWQ7h4L5taFcwPFGswt0YCuc6sL6QYrdOpkq6Zrwdtu+8K33TVgm6uPu2v4Nler4PbQKrgawvVq8Na5z9bhvvpCPEcAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQiFegSwZyo+L4NaRboQHdEg3nFutju7dbmQZ0y/WmAV7nXgO6wUp9XKlz2auP9SbVeuuo6ropuiytYOvJ8IhkBsWTqY8zNVSbpfcWwu2mj/Xem2M3Dd5aCFfDuD671/GE8K0C0iGAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAJtJ0AgtynLoIZuNXAbKNdwrt32BXLr7i2Qq+HcKr3XmwVzg9X63A3oakg3qEFfJ6xr9zYvvUnAHtsD7bwakrV/erN7JzCroVunaq2Fb+2xBXDTNGir95Kuj+2mgVwL43otiKtBW7v3ahjXbs54Ni86BBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIF2FyCQ21bEVmG3RnO2VRrI1Xup1XurmmuhXLtZCNcJ4uq9E8qNDOQ6YVyvhmvt5gZxUzRVuy+Q63UDuTqcDgEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAgcQQs+knXFgI+rVCrN9HKtXWde98WM2ceCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAKJKkC91UR9ZWgXAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggEBSCBDITYqXiUYigAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCSqAIHcRH1laBcCCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAQFIIEMhNipeJRiKAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIJKoAgdxEfWVoFwIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAUggQyE2Kl4lGIoAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggkqgCB3ER9ZWgXAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggEBSCBDITYqXiUYigAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCSqAIHcRH1laBcCCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAQFIIEMhNipeJRiKAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIJKoAgdxEfWVoFwIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAUggQyE2Kl4lGIoAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggkqgCB3ER9ZWgXAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggEBSCBDITYqXiUYigAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCSqAIHcRH1laBcCCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAQFIIEMhNipeJRiKAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIJKoAgdxEfWVoFwIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAUggQyE2Kl4lGIoAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggkqgCB3ER9ZWgXAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggEBSCBDITYqXiUYigAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCSqAIHcRH1laBcCCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAQFIIEMhNipeJRiKAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIJKoAgdxEfWVoFwIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAUggQyE2Kl4lGIoAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggkqgCB3ER9ZWgXAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggEBSCBDITYqXiUYigAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCSqAIHcRH1laBcCCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAQFIIEMhNipeJRiKAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIJKpASqI2jHYhgAACbSnw3HPPydz5b0rR5hI577zznFtbzp95IYAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIdF0BKuR23deeNUegywjMnj1bnn7zcSnO3iYVA3bJnx67T5YtW9Zl1p8VRQABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQaF8BArnt68vcEUDgAAtY8PaXv/yl9BiTIUPGDZRxM0ZK6gC/PPzwwwe4ZSweAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEECgswgQyO0sryTrgQACUQXee+89Kc8skj6DeoWGjz1spMyZ94YsX7481I8HCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCLRUgEBuS+WYDgEEkkLgz3/+sxx1zrSItmZ1z5T8CXnyyCOPRPTnCQIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAItESCQ2xI1pkEAgaQQePHFF6U4dZf0HdK7QXvHzRgpzz33XIP+idZjxYoVidYk2oMAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIFBPIKXec54igAACnUZg0aJFGsbtGXV9uuVmSYWnXCzwOmbMmKjjdHRPa8tLL70k20u3Scm2Uhk9erQsXPW5ZAWz5cwzz3RuHd0mlocAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIINC0AIHcpo0YAwEEklRg5cqVMmrqsJitn3j8KHnvvffaPJBry33llVdk1KhRzrLPOOOMmG0IH/DDH/5Qgv0rpXRvsXzw1Ocy7fyxkpLmk27pOfLkKzvF4/FIvPMKny+PEUAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBA4P9n7z7g5CjrP47/rqX33khIoYaaAJEaQJBeRQUEKVLFAoKiAiJF/hYQAUFBQDqCgEpHkQ7SQ5EaSigphPR2yeXK//k+ybPM7W2Z2du727t8nlc202eefd8+M8/M/OYZBBBoWQECclvWl7UjgEAbCijY9uC998iag8FrD7Qnn3zSjj322KzzJJ1w0kknWdVgs4UNc+y/9z3pF1cg7V577ZVzVQrgfXbqU7a5a633o5dnWv8tuljlyFprWF5v4zYaZYtnL7VLr/m9Dx4Ogb45V8hEBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBVhMob7UtuQ3NnDnTXnjhhdbcZMZt1dXV2VNPPWXz58/POL0tRpZinnI5LFiwwKZPn27V1dW5Zms0TfNqmdmzZzcazwACLSEwdepUq3SBsblSvyF9fAu5ueZJMu3++++3B1+41+Z3mmmD1u9rXUeZ/1x69e9N+cmWtNxvr/0/GzGpn838ZJYtWDrXRm03xMq7lNmylUvs408+siGjB9nKXovtmmuuybYaxiOAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCLSRQKKA3HfeeceuuOIKu/baa/NmV69s17y33HKLn1cBnKNGjbJtt93Wbr311rzLt+QMF1xwge288872pS99yerr61tyU7HXXYp5ypX5iy66yEaPHm2XXHJJrtkaTVNrpVrmm9/8ZqPxDCDQEgL6vQ0Z3T/nqnv06W6L6xflnCfuxAcffNBuuPca2/aACT54VsspiFafFT0X5dxvvvTSS/bGh69Y/7G9rHrhCus5vKt179fFyirMOvesspmfzbClS5fahluva/c/dq+99957cbPFfAgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAq0gUJlkG127drWTTz7ZL7LNNtvY+uuvn3Xx3//+93b11VfbwQcfbIceeqjV1tam5k3SqmpqoSL2LF++3K9NAW4KyC0vTxSXXMScfLGq1siTAqHfeust22uvvWzSpElfbLwZfaUS0NyMr8CiJS6g4NOHHnrIxo4d63O6++67x8rxjBkzYs3XvW9XH+A6bty4WPNnm0mtfy+pmm/jx6zbZJYNt1nX7rvuXhtx+QibvWSWLZq1xHbbbTfTNvVRMO+g9fpal+6dbfHny2zYVn39OioqKqxz905Ws3SZayX3Y9tg/Q2s37rdfHCvgvhJCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACpSGQKCB35MiRttNOO9mjjz5qd9xxh5155pkZv4WCS2+77TY/TcG4SgMGDDC1Ajlt2jTbY489/Li2+u+MM86wzTbbzLbYYgurrExE0GJZbo083X333XbnnXfa8OHDixaQ22IgrHiNF3j//fftj3/8oy2qXWCzln1i3d/o5U0+/PBDO/HEE2P59B3SJ9Z806dP94GxsWbOMtO//vUv2/jQURmnzvl0ri2w2Xbjw1fb4DED7ON3ptuLL75oI0aM8OXx1U9fskm7rW+fvTPfGirqrfeI7qn1KCi3snOFLVgw348bOnawvfDUC6np9CCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCLS9QOJo1COOOMIH5N54442mINKysrIm3+I///mPLV682Hr27Gm77LJLavrGG29s+rR16tatm33ta19r62w02n4p5qlRBhlAoBUFPvjgAzvrrLPsrfmv2MgNhtmIzYfYorlLfA5uefAG36r18ccfnzNHCugdOWlYznk0sc+gHnnnyTfDlVdeaVM+esEGLqiyTz6rtYEDB/pFBg4YaB++/rG9+8Z7Nnxif7PaGqteXG09hnaxT5a+a58tet/ueXqe9RrZxWobam3Oh/Otc6+qJpur6lJpSxcu8+P7Duptby6Z1mQeRiCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCLSdQOKA3H322cfnVq1UqsVbtTKbnm699VY/SgFz0RZo9Yr12bNn22mnneZbhowuN3fuXHvsscdMrUx+8skntuOOO/rWeLX+EPS7dOlSHwRcXl5uv/3tb00tR4akVnv/+c9/2iabbGJHH310GO27l156qSnA78gjj/Qt477yyit23XXX2UYbbWTHHHOMn0fbP++886xHjx72i1/8wm655RZ74okn/HLrrbeeHXLIIbbDDjs0Wq8GGhoaTK+qVxCy8t+vXz/7yle+Yocffrjfxv/+9z/79re/nTcQOVOetP5zzjnH5s+fbz/96U9N8/z73//2LWuqtWIFOx922GE+OFHzZkta5r777rNnn33Wz6K/z1tvvWUKAk5/7b3m1Uf57tSpk02cONF/n0mTJmVbvS1cuNC3ZKr162+1++67+2VGjx6ddZn0CfX19TZlypSU41prreW/n1pkVuvKpDVL4PHHH7dn3n7S9jx2svXstypgNnQlcdP919nYsWMbBfynC6nV2wn9xqaPbjLcs193X84nT57cZFqcEVdddZX95je/sX5jetjC5fNsZU2t1c+rdd2VpscVnv77FBuz6wDrt3Yv++CZ6fbZrPk2fEJ/W3entayqW4XN+3ixdR/Y2RqszpbMrbZ+45oGCCsgd1HdMlu2bJn3mL9sns/zmDFj4mSReRBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBFpYIHFArlq9VbCpWsj929/+1iQgd9GiRXb77bf7bB988MGNsn/99debAnkVMKtXtYf00Ucf2YQJE3yrumHcww8/7Ht//vOf25lnnun7FUB6xx13+KDeo446qlGQ65///Gc/bdCgQaZpIYi3trbWB7Wqxd5TTz3Vr+fdd9+1K664wvbbb79UQK6CXjVOy8+bN8+uvvrqkBV76qmn7JprrrHLL7/cjj322NR49SgwOOQvTLjzzjvt73//u1VXV5sCCxWgm69l4Ex50vr0vRTELPdf//rXYRP2zDPP2F//+lcfwHzTTTelxmfqee211/x3C9O0rD5aZwjIVWDxCSecYH/5y1/CbL57//33+0BleXzrW99qNE0DM2bMsPHjx/s8hokK/lV68sknLVcgb5hfXbWGKstoUl7093j++edt2LD8LZ1Gl6W//QoouP3hlx60bQ+YkArGjX6b4esM8YHw559/fs6AXAXhT7D8Abl9XIuzn376aXQTsfu1X7jxvuts/op5Nmqt/tajb3e/bK0LyrWyBnv9+TdtWd0SF4w7xj6fOt8WzF5kIzYZ7INzw0YaVpZbj2FdrapzlS2attzW3mlV67phurp6CKGqa4VVL6/2gfS9B/bwDy4QkBtVoh8BBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQaDuB8kI2/c1vftMvdvPNN5sCXqMpBGMqAFWt1eZLCxYssH333dcH46pl1QceeMC3lHrhhRf6Rc8999xUgK+CbDWvkgJKQ1IeHnroIT+o4FW17hqS+hWMu84665haXc2XtLyCTxV8q0BWBbtus802frGf/OQnvjXYsI5//OMfqWDcH/zgBz4A9bnnnvMt7D744IM+GDfM29yugnG1DQWnat2HHnqoX6WCnxX4mispAPrtt9/2gcGa7/TTT/fDL7/8cmoxtUwcgnH13V9//XVTULSCm5XUkrBa50xPah1UgcfBS4HIatVW6atf/arNnDkzfZEmw9puCMa95JJLfEvA+h2pxVL9PQ444ABT68ikNUNAZXva51NtxLpDs35hTXtt6qs+wD/bTGppOz0t/HyRffTGp/7z6mNv+u78zxbkXE/6OsLwI488YtfdfY2NnDjQevTvZgPG9AmTrLJTpXXt0dk+/t8sG7jhqiDdudMWuVZw662qR6V9/t4C/5n2/CxbPm+ldelTaXW1dVa70E3vWeEDjlMrW91TXlWeKoO9+ncvKM/p62QYAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEECgOAKJW8jVZnfYYQffcqmCJdV67I477pjKzW233eb7jzzyyNS4XD233nqrvfXWW7b55pv7Fl/VCq6SWl1V/3e+8x375S9/aV//+tf9+F133dUHzKrl2eOPP96Pe+GFF3zQ7fDhw02vqVcLm6FF2hC4q9Zw46Zrr73WDjvsMD/7+uuv71vv3XDDDf02FNgaWn39/e9/7+dRPkJAqUbou/Tu3dtOOeUUP70Y/6l12ug2FPSqgFn9DRSku/3222fdTN++fU0ftYirpNaJ01vWrKystN/85jfeXcZK6623nm255Za+5WEFNctZQbLp6ZZbbrHddtvNj5bXdtttZ1tttZUPGLzhhht8AHD6MmG4vr7eTjvtND+o34KCeJXkrW1vu+22PkBbf9MQjO1n4L8OKzBt2jQbOLqfLateZtUuCLxmaa0PRK2s7+S/88LPF1vvgT2tx4Bupt/XEUccYWuvvXbKQ8uHNHfuHL+s9iXT//e5zfzkMx9A3r1fF5s7Y771H9bXPn5lts3ttsTOPvtsvy/T8tH1jR492q9OrXsrheGnn37aKgfUWtcBVbb486XWuZcLqq2rs4qKCj+f/lv8yQrrv1F3W+Smf/7eIqvs0WAfvzjLt+BdVl5m1QtW2MoFqx5qqFmx0i+n1qpVLtQqbmjpWxPUX+1MQsoUcBym0UUAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEGhdgYICchW8qVZXf/WrX/nWa0NAroJD77//fv8NDjrooFjf5MUXX/TzHXfccT4AN7rQIYcc4gNyFbCrFlK7d++eCghVi7gKXFOQmoI1ldS6qrar1l5PPvlkP+7RRx/13S9/+cu+G+e/Pffcs9Fs48aN80F4CshTwK+SWuUNwb5quTY9KUi3mAG5aiU2mvS9999/f1MLtcUIzJNPJqOuXbvazjvvbP/85z9T3z2aDwUnh2DcMF7ByKeeeqp997vf9a3dhvGZujJVsK+ChUMwbpivT58+9o1vfMPOP/98vx4CcoNMx+4+8cQTtt5hg+3Djz6wz6fNtyWfVfvg3J69eljn3pXmA3KX9LT6rjV2279usdruy61qWVdT0PpHH31kdz1wRwpo5twZPgB36Rs19un/PrPynnXWpW8nq+9bZr1cC7YLZs63FSuX2/QFn9olf73QXp/7gi2ct9h61Pe1lXU1fj0bbL6OLVu8wge/1y6tt2EjVrXcO/WV923lBtU2bfqHtnSOCx5eXu3nLy8r9wG1KjsKtl30qZs2a6Yt+XC5Dd2xp2sBt9yq59VYzZI6P39FnzJTcK659nPVr1RXX7eqlVw3WFFe4fdzFa6F3JB6D+wVeukigAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgiUgEBBAbnKt4JlFZCrFnF/97vfWZcuXXzQpqYpoHXo0Oyvm9c8Iem170onnniib6E1jE/v/u9///Mt0/br18+22WYbHwyr1mo32GCDVBDwHnvs4VtnVcuxS5YsMQXEhfVvvfXW6avMOKzAUG0jPW200Ua+xVcFASu9++67qVlCi5mpEa5HQcshn9Hxhfavs846TRbVd1dSa5rFSAo2VuDts88+a++8844PQFy0aJEPmM22/s022yzjJLVwq6R15UqvvPKKn6ygXLXIm55Cq6QhcDt9OsMdT0BBtb1n11tlp0r7+G3Xou3cldalT6U1dKqzPoO6W9dhlbaiYZl1Gmi2ZN58+/sDd9r0t2b7YH0F8/79gbus14DuHmalrbDKruX28eszzDrX2+Dxfa28stwqu5S7Fmg727ypS6zM7QW79aly2+hkb86ZYgN7DrYpz39g82bNt859q+ztBa9Y9ZLl1rtHb/vszYW2srbGj1/8QbWNX3+YrazuZJV9yq1m5QofRNvgimNdbZ116rS6Rd+Pq61b31XBt73W6mq9R3W3jx6bbcsXrPpeVb1dXlyelNTvYu39eurNBeW6dSnAVwH45RWrgnU1n1oIJiGAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCJSOQMEBuQoG3XzzzW3KlCm+hdq99trLbr75Zv/NDj/88NjfUAGfISmoN1PStmpqVrVWqelqkVWt0+ozYMAAU7CmWsatqqqyvffe25566in/GT58uA8mVYCwXlkfJymIN1PS6+OjSa23hrR8+XLfem8YDt3PP/889Da7m759rVBBesVKstxnn31SwbcKTB4yZIiNGjUq1RJwpm2pNdxMqUePHn50aFE40zwaN3fu3NSkbH9/zRDWl5qZng4rMHLkSOvXfYAPoB06usHqhtdb/cpVgfCdVnZ2Qar17uNax16+0gZ1G2xbb76tjTxglP+tbrfddq4F3M726tsv27tPTrMq6+yd+g/qZ/UNdTbvvSVW1bXCyqvKrHu/rta5e5XZYLOln9fY8oXLbGC3MTZ80Gjru/5atqT/UuvUr8rGbbi2ffTxR1ZV0cmG1S3x2+nUt9L+c/ejLg8N1rO3C451RbFTVScfQKsNlnUus4qKCqtygcSDN+ppalm3qo8LD3Yt5i5oWOoCbt3X67mq5duVC1d9H30n3++mqWz7IFzXcm4o53UrXXTu6t3TojmLzQZ12J8AXwwBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQaHcCBQfk6pseffTR9r3vfc9uvfVWUwuyCupUIKdaqo2bJk2aZGrR9o477rB999031mK77LKLnX322fb4449bCIxV0K3Srrvuaj/5yU/8OkOrsgrgLXYaNmyYDRo0yLciq6BkBQJG0+zZs23q1KnRUSXdf/rpp/tg3P3228/OOuss//cMQcAHHHCA3XfffRnzr5aLM6XQgvDkyZMzTU6N23jjjX2/gq5fffXV1Hh61lyB0aNHW//uXazbwM621tCRHmLprOVNQF6f8a5tsvYE++GJp5mWUVp77bVtp5128i1j337VXTak/zA/vv+Og6xmSa3N+HiWffbpbD/OGqqsbKULmB3Wx3pXDfdlWOvROqJJ40JLzRoftjW013B74N07bNTw0fZSxfvWtcsXQf8KxlXq4gJ6e4/sbhU1nWzRxzU+ELfWBeBWVVZZVf8qW+Baz61b0LAqwLiszPdrOZW9ivJVAbsaVqqvWxWUrP4Fs92DDATkioKEAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCJSEQLMCcg888EAfkHv77bfbuHHj/Bc65JBDYrdGqwW22morHzz7yCOPZAzIffvtt62urs7Gjh1roQVVtcyrwF8tE14L/+Uvf9lvX4HBCpS95557bOLEiX5cmOYHivjf9ttvb3feeacdf/zxvkXevn37+rWrNd8krQQXMUuxVrVw4cJG8y1dutSee+45P+5nP/uZbbLJJqnpK1eutCeeeCI1nN7z5JNP+qBkmUfTvffe6wcnTJgQHd2kX38vpbfeestmzJhhCnSOJrWgO2vWLFNLvCNGjIhOor+DCmyzzTb2yLv32Tbrb5H6hgP6p3pTPf+95xX75hnfTAXIpia4np133tkPDujvWtpVWr38qPEjbNobn64a5/5fMHuhLZm/1M+vQPRsKQThRqcfccQR9p+T/2XL5660ngO724rFtdatz6oWecN8ZVUNtuiTattgh6E2f9pi1wpvta295XCrXVznZ+k1YLm9N3+Wb1m3U7cqq+xd7lvETQ/GDeujiwACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggUJoC5c3J1sCBA00tqipdcMEFvnvooYf6btz/Quu1V1xxhV177bVW715Hr6Qg3IsvvtgHh+6www5+OKyzsrLS9tlnHx8IesMNN5haWR06dKifrNe7q0VXtWipVneHDx9u6667bli0qN0LL7zQB/+qJVzl4ZhjjrHvfOc7tt5669mjjz7qg4aLusFmriy0Jvzggw9adXV1am3du3f330Mj7r///tT4FStW2LHHHutbzk2NTOtZvHixDz4OQb76u1155ZX217/+1c8Z/r5pi6UGFVj9la98xQ+Hv2mYOG3aNNPfXgHYt912WxhNt4MLKNB10Qc1tnjekqzfdPrUWbZ2r7GWK9h+rbXWyrj82i4oN3w222l8xnnijFSQ7uF7HWkfvzjblsxdZsvmflGmamtqfaDviPGDbM5bq77HyC2G+FZyVy6ttYHr9PWftScN9a3orlxa5wNxq/qUW+2Set+fnof6unrXCm/X1GgC1FMU9CCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACbS7QrIBc5f5b3/pW6kso+HXrrbdODcfp0fwKxlU64YQTTEG+e+65p40aNcpOP/10P/6yyy4zBY1GUwji1Lj9998/Osl233331HAIGE6NKGKPvq9a4t1ggw1SwcFXX321LVq0yK677jrbdttti7i15q9q0qRJfiVPPfWUb3E26nbUUUf5aeecc45vcXTvvff2rdXecsstGVsgDbnZYostfPCx/m5qMVgt5X7ve9/zk9XiaGipNMyfqXvjjTfaOuusY6+//rpvBVf51LoUSB2CnRUYTFozBMaMGWP77rKf/ffulzMG5SoY96MXPrMzzzwzJ4jWkyuoN+fCMSced9xxdtieR9pGYza22e/Ndy3uLvKf6oU11tm62oTtN7WuZd1t3keLrHv/LtZrRGer/rTOD1cvWGEK3FUrutVza2zlilrr3LPSVixY2WTrelChZtlK67+6xd/p731ukydPbjIfIxBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBNpGoNkBuQqMVSunSgqaVAu1SZNalr3qqqtsl1128a2xPvzwwz7AVS2jKuA1U6u7O+20U2ozWi6aFMwZ0q677hp6U92KigrfX1VVlRqXL99qlVcpLBsWVB5fffVV3yLvrbfeag888IC99957Ps9qYTZuCuuN5im6bJieaVzIW3Rapv7DDjvMFCSroFmlJ598MjWbAnE1TX/L6dOn27/+9S8bMGCA3XfffTZx4kQ/X6btKHA3tET83HPP+b+fWgs+99xz7YwzzkitXz3l5at+bunfsW/fvt5NwY0Kcp4yZYppXUqnnHKK6ffQq1cvP8x/a4bAkUceaev32dT+e8/LNuO9WT6wVsG1bz//vg/GPXT3b1mmsp2uM3/2wvRRGYf1uys0HX/88T44eN57y6xXpz7+M7D3YBu79jgbOGCgbXvgBFv84QofsDtyk6G27vhxfvjdxz6xqU98agN6DrL5HyyxivIKG7xOP1v46bImWamrrbeqsk7WrVs3P618fpUp4JiEAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCBQGgJlNTU1DaWRlVW5qK6uthkzZtiQIUOatIpbSvlUXtTS7Jw5c2zcuHG20UYbNcqevodeKb948WIfoDty5MhG09tyoK6uzpYtW2YKjO3SpUujrDQ0NPiAXAUA62+QL1A5LKzlZs2a5QOWQ8BvmJa0O3PmTNP6tP0QxJt0Hczf/gUU2H755ZfbzBWfWN/BvWz6jOk2qPNw23y9iXbSSSfl/YJHHHGE1YyZZyPXzx1s+8A1j9llZ1zZ7BZnN/nSxrbdkZtZz76NW/NWRj949SN77pGXbPzmG5rb51rNnAb79LVZtuWWW/rt/vj/TrXtTtrIlsyotjcemmYTjx7b6PstXVBtvcr62uabTbAZ739m5e/0suuvv77RPAwggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgi0ncCqZl/bbvtNtty1a1cbO7ZxMFqTmUpkxAsvvGCnn366b1VWrcROmjTJB7A+88wz9oc//MEH466zzjpWSsG4olOwbWjVOJ1SAbgKJE6atNzQoUOTLpZx/mKtJ+PKGdluBBTofvHFF9uDDz7o86wA3d13390HwMf5EjvssIP947Wb88664LPFvmXmvDPmmWGvnfa2/z7ziE3aa/Mmcw4aOcD62CDba/xBNnXqVFtn83XMXOPd4fv87k8X2fxPFlnXnl3dPqTcli+qsS69Ovn1KIB++cIVtsH4VeVSwb27b3RAk20wAgEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAoO0ESi4gt+0okm/5qKOOsuuuu87eeust22233ZqsQC3FXnvttU3GMwIBBOILKGi1kKSA3o9vn2EbbrNuzsWXzq+OHeSba0VHH320vfzjF23Wh7NtyOhBjWZ97v5XbM8d97bvfve7jcaHga/t9XX7y6NX2Ho7j7R+I3vYZ6/Pt1HbDjYfjLu4xnp07WWDBq5aZ/mKzjZx4sSwKF0EEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIESECgvgTy02yz06dPHnn/+eTv//PNtp5128q3OquXZyZMn26mnnmrPPfecbzW33X5BMo5AOxYYNmyYzZ+1OOc3WLJgqa0zLHfAbs4VRCaqNezvH3OyffDsDB+Uq0la/3tTplnl7O727W9/OzJ3415N676sn302dZ71HdPDZr+x2KoXrLC6lfW2ckmtDew30C+gYN/RvdaxPffcs/EKGEIAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEGhTgbKampqGNs0BG0cAAQRaSGDjL423PU/ZPuva33x2qm3Vb0c766yzss6TdMLFF19s/33nCVtUNtc6W1frbQPt63sdbHvvvXfOVWm5P95+mXUfW24LP1pmK2yZjZk8zMpXVNnokWPMlpXbsg/r7Vt7fzvvunJuiIkIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAJFF6gs+hpZIQIIIFAiAkN6DrOlC5dZ997dMuZo3oz5NmTDIRmnFTrylFNOsXH3jLN77rnH1l13Xdtnn31svfXWy7s6LTdjxgybtniqvdn1dat9u9JmvTLfxq031pbOXG6z3pxvP/72GQTj5pVkBgQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEECg9QVoIbf1zdkiAgi0ksBpp51mU+Y9bVvstmnGLd71+wft3useihUwm3EFRR75zjvvmD533323z5P6uw6vsE713WxIr2H2ox/9qMhbZHUIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAALFECAgtxjLtA++AABAAElEQVSKrAMBBEpS4O2337btdt/Wvv3rrzXJ3+yP59jrt02zF198scm0Uhqh77D++uuXUpbICwIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAQJpAedowgwgggECHEVAga5farrZsUXWT7/Tuix/Yfvvt12R8qY0gGLfU/iLkBwEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBoKkBAblMTxiCAQAcSOOigg+zt599r9I0+/3Suldd0svHjxzcazwACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAAChQgQkFuIGssggEC7ETj++ONt5YwKm/PpPJ9ntZb79N9fsgkjJ9mBBx7Ybr4HGUUAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEChdgbKampqG0s0eOUMAAQSaL3DHHXfYzf+6zhp6rbCyFRW26M2Vdtlll9mGG27Y/JWzBgQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgTVegIDcNf4nAAACa4bA3/72N9Nn/PjxdtBBB/numvHN+ZYIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAItLUBAbksLs34EEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgQ4tUN6hvx1fDgEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgRYWICC3hYFZPQIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAxxYgILdj/335dggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACLSxAQG4LA7N6BBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIGOLUBAbsf++/LtEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQRaWICA3BYGZvUIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAh1bgIDcjv335dshgAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCLSwAAG5LQzM6hFAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEOrYAAbkd++/Lt0MAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQaGEBAnJbGJjVI4AAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgh0bAECcjv235dvhwACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCDQwgIE5LYwMKtHAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEOjYAgTkduy/L98OAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQKCFBQjIbWFgVo8AAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggg0LEFCMjt2H9fvh0CCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAQAsLEJDbwsCsHgEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEECgYwsQkNux/758OwQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBFhYgILeFgVk9AggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggEDHFiAgt2P/ffl2CCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAItLEBAbgsDs3oEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgY4tQEBux/778u0QQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBFpYgIDcFgZm9QgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACHVuAgNyO/ffl2yGAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIItLAAAbktDMzqEUAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQ6tgABuR3778u3QwABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBoYQECclsYmNUjgAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCHRsAQJyO/bfl2+HAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIINDCAgTktjAwq0cAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQ6NgCBOR27L8v3w4BBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAoIUFCMhtYWBWjwACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCDQsQUIyO3Yf1++HQIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBACwsQkNvCwKweAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQKBjCxCQ27H/vnw7BBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIEWFqg466yzftHC22D1CCDQQgKffvqpLV261Hr27NlCW4i/2gULFthrr71mn3/+ufXq1cuqqqriL+zmnD9/vr3xxhs2Z84c69Onj1VWViZanpkRyCRQXV1tH374oXXv3r3Nf1MNDQ32/vvv21tvvWVlZWXWu3fvTFnOOk7Lv/vuu6ZyH6eMJS2Ty5cvtw8++KAkrLIiMAGBGAKlVO6V3Y8++siX3b59+yY+NtbX1/tyqf2GjqulcLyP8SdgFgTaRKCU6sXLli2zKVOmWG1tra/XJgVZtGiRvfLKK34xlXvVG7Kl5tYvsq2X8QiUqkCpHeeL4dRS+68VK1b4c49p06ZZt27drGvXrsXILutAoNUFdL1oxowZ/hy6vHzNalsi6Xl9R9xHtvoPjg2WhEBH+i1zXl8SPyky0Y4EOsJxf+bMmfb666+brg3oemBz6y9z5861V1991dfpVa8nIdBRBFrqXLhQH51zLF68uGSuwXek+lChfxOW6xgCrXlsb+51+VIRL7X9Y6m4dNR8tOb+vlTLSJJ76aGuXVNT4++/5bp/1ta/mTXrKmZba7N9BJzAPffcY/3797dOnTrZ//73vyYmunF/wQUX+OmaLz3V1dXZOeec49cxZswYGzVqlO/XMrrAlzQdcMABflvKz2effdZk8Xz50QKXXnqpDRo0yLbbbjvbaqutbK211rJ77723yboyjVAQwRlnnGGDBw+2bbbZxrbYYgt/sqPvqG1H03vvvZfKq/Kb/vn444+js9uIESOazBOWufXWWxvNy0DpCMybN88OOeQQ/7dTN1N68803beLEiX6eK6+8ssksCu7W70lBrxtttJEPYN1+++19UFyTmfOMeOGFF1K/ox/+8IcZ586XH1Wct912W9twww1tp512srFjx9pXv/pVf1Eu4wrTRv7yl7+0AQMG2MYbb+zLmILWzz//fFu5cmXanKsGk5RJXRyUjYJ8o1YaT0KgtQRKrdxfcsklqXL/j3/8IyNDvnKv5XQcWmeddfzxUeX229/+tin4PU7SQy6bb765bbDBBn6/oeP9pptumrHuEF2fbtqH45/mj6bnnnsu9b3C8TC9e/fdd0cXoR+BFhUopXpxrrITEPLVixVIq+O7yrvqxSr/Ko+PP/54WEXOrh7c0TFZx3x1VdffbLPN/I28TAsmrV/k229l2gbjECiGQL6yo23k+322dv0+Tt0k2MTZf4R5Q7c55/Vxzk8effRRf86hcybtT4YMGWLnnXde2DxdBFpcIE4ZylcPuOuuu2y99dbz14tUJ1ZQ+be+9S3T8TZpilO/z5Wf66+/Pms9evTo0UmzY/muxWmFSc7ri7mPTPxlWACB1QJxyn2pHe9z5SfpdehMP4Qk5/XhPD79HF3D0evY++67b9b9keZNvw6QKV+MQ6DYArnKkrYV53ygmMf9OMfZbMf95pQxXas/6qij/D27HXfc0V/LnzBhQtZ7Evn2m2+//ba/BzJ06FCbPHmyqat7HroWQEKgrQSylZ2Qn3y/6+acC4dthG6cc/F8+x9N/8UvfuHvs6+99tqmj+7Na5ymxUn59oHRdcTJM3X7qBj9bSWQrywrX/n2B8U8tuc7py/0unycMpnvb5Ct3pH0flwx94/58sz05gsUo4wUc3/fUmVEUtl+45kUM53PRsf96Ec/arRYknvpCu5XXnS/XHVtXSscOHCgaV9TqokmKEv1L0O+OpzAkiVL7Mc//rFdffXVqe+mYNRoUss1Rx55pD3zzDN+tJ7ES0/HH3+83XDDDf7EWzf8dXC+8cYb/cmBnmhQkF7cdMstt9h9992Xmr2Q/DzxxBN22mmn2fDhw+2EE07wN0b+9Kc/2YEHHmhTp071O8TUBjL0/PnPf7bf/va3phsYhx9+uL+ocNVVV5kCEBcuXGi/+93vUkvNnj3b9++5557+pCg1YXVPjx49UqN0oqT5FcCoG5Dpady4cemjGC4Bgccee8wOO+ww/7dTdtKDzPUb1e/rBz/4QSq36fOo8qIgNiX9NvW3VnDp5ZdfbltvvbUPZtPFqzhJTySpTIaUXkbi5Ef5O+644+zFF1/0QToKyP3b3/7mT1R+/vOf24UXXhhWn7H705/+1C666CIf1HPmmWf6J+FvuukmO/fcc2369On2xz/+sdFyScqkbgwoCF7p5JNP9hUXXTxQpU0371966SVfhhptgAEEiixQauVeLVFHTwgKKff//Oc/7etf/7o/tqk8KeBdx24dr1UfuO2223Iq6uLB1772Nd/Ct04udNx75513/P5CF/IVtKeHXzKl008/PbUPTb9oqIdnvvOd72RazP7973/74zYt1GfkYWSRBUqxXpyr7Ojr56unq7ztuuuuvmVcBd/vvPPOvkzpAr7GP/vss6bymy3phr8uIqj+quUV0KuH91QH0DFZLWXrgZ6QktQv4tRXwnrpIlBsgXxlJ87vszXr9/r++eom6Ub59h/p82u40PP6fOcnWrfeWnPQQQf5ln2+//3v+3N1nUMpIHeTTTax/fbbT7OREGgxgXxlKE49QOe8Rx99tP/96ty3X79+9sADD9hf//pX0zEzXDeL8yXy1e/j5GfWrFl+UzpGd+7cudFmMz1M32iGtIF81+I0e5Lz+mLuI9OyyiACsQXylftSO97HyU+S69CZoJKc1ye5jr3HHnv4B/fSt6l9ma47dOnSJX0Swwi0mECcspTvfECZK+ZxP99xNt9xvzllTPe5br75Zn+9XQ8RKRBHw7rv9dRTTzV6c1a+/abeZKcGPnSP8Oyzz7Z1113XHnnkEbvmmmvsS1/6kr9OqLcCkhBoLYF8ZUf5yPe71jyFngtr2fSU71w8zv7nmGOOMe03dJ/s4IMP9pvQOYcawVJrfX/5y1/SN5sajrMPTM28uidfnqnbp4sx3BYC+cpynP1BMY/t+c7pm3NdPl+ZzOefq96R9H5cMfeP+fLN9OYJFKOMFHN/35JlJNdvPJPiSSedZDo+pifl8eGHH/YPl4ZpSe+la92KbdMDat/4xjd8A1iKjdPx+/bbb7f9998/rLp0uq4Z3wY+GPAbaPnfgIvQ156nwZ2IN7inZH2/C3ZLlT93Q8GP0zzuxL0hzB/927gWYP08u+yyS4MLvk0t657AaHCvs21wB/YG1/Jeanx02fR+dyLhl3EtdzW4nZRfr9Yf5ouTH/fUUIMLxPXLuiCB1LKudT0/zgUepsaF9Ua7LhjQz+eCcRvchYXUvK4il/r+ymdYxgUx+vmffPLJ1LgwLb3rnhL28/7f//1f3nnTl2W45ctDJuM77rjD/830O3ZBa77fBaI1+vu5QFw/3p0cN+hvq/Ligt0yzvOf//yn0Xh3Au3ndwHfjcZnyksY97Of/cwvc9ZZZ/muO9A3WjZOfq644gq/rMp9WK97fWyDvoPyn57PMI+6rsl9P4/KqXtdTmp5d1G/QeVLyz///POp8UnLpAs69OtwFxhS69B2Xcsbfrx7iKDR+Gje6G+bctLR3Eut3LsglwZXkU/9/lXGXPBso3IQp9zvvvvufh3uol9qWR3nVJa1TtcifWp8pr+p6gqa79prr200n7uI4ccrD5mWcycifrqW1/FZ28s0X/o47Tu079UnejxOn49hyn2xfgOhnlsq9eJ8ZSdOvVj1U5VbF/zWqNy5FvX8+HzH1FNOOcXPl16vCXlzAXSN1pukfhFnv1Wsvy3rYT8R/Q3EKTtxfp9hnvR6c0vU7+PUTaLfMZTRJMfe5pzX5zs/Ud7cQ0F+f3Ldddel9huffPKJH6frBjrHiH4H+im3xfwNxClD+eoByo/m0e/VBcKmfq86jw71bPfQSmp8rvzHqd/HyY+O7zrOx73mli1P+a7Fabmk5/XF3Edmyzfj2U/k+g3EKffhd9qerucluQ6dySfJeX0xrmPrPEL7Kffgfqz9Y6Y8M46ynvQ3kK9sxzkf0DaLddyPc5yNc9zP5JCvjOlen8qg7nUtXbo0VQ51LUDj3RshU+Pi7DfDvQ/ti6L5cQ8H+fXpHlx0PP2U35b+DeQrO3F+1805F07/fvnOxePsf3SuofLpGnZqdE1c18c1TtNyXcfPtw9MmmfNH9ZZjOsf6dtnmP1EnN9AnLKcb3+g7RTr2B7nnL7Q6/L59iP5vOLUOzKtI9P9uGLuHzNtk3HFK//FKiPF2t+3ZBkp9Dee6fem+1s6rr7yyiupOmy4xhfnXrrul2t5nWdH1+/eKOHHa58THV8q/eUu0yQEEGgFgblz5/onfdVCbu/evZtsUa3BqpVYPTXrdsCWqYU6dyLvn8pT67HR6WoZVq/R0JP76a3hNdnQ6hE//OEP/dO1yk+mJ2nj5EetdqmFTrW2F22xy+08/St09JpMNR2eLYXXYruLGY1aGFGz5U8//bS5m4a+mfGwvDvx8b2DBw8Oo7J21SqQUtyWULOuiAmtJqDfklqBfPnll80FnWfcrl7HpJam9eSRXl2ZKalV5IsvvrhJy8juQOxnDy1cZFo2Ok6tx+opWP2e3cE9OinVHyc/4XeuJ9lDKisrM3dRzQ+qlZ9sKbT6c8QRR/jXV4f51NrFiSee6Af1ZFJIScukzJXU8l40heEwPTqNfgSKKVBq5V7HRJU7lf3x48dn/Kr5yr1arSwvL/etxg8bNiy1DrWkpdfLKamF22xJx3G1aqOn8g899NBGs6nVXB0bzzjjjEbjNaA6glrjdkG1vuX5JjPkGOECdnwdQi15prf4lWMxJiFQsEAp1YvjlJ049WLtz9QKvp7MjSa1dKukY3Su9OCDD/rJer1lNKl1XRdcb3paWG4hJalf5NtvhXXSRaDYAnHKTpzfZ2vW7+PUTYJTnP1HmDfaLfS8Ps75id6goxYBdO4T3R/pHFpv53A3Fv01h2h+6EegmAJxylC+eoALvPUtyamOqpZxQ9J5dKijR4+JYXqmbpz6fb78aL3uAVnfWq/q+c1J+a7Fad1Jz+uLtY9szvdi2TVbIE65L7XjfZz8JLkOnf4LSHpe39zr2Hprnu4X6HqA3jxGQqC1BPKVpTjnA8U87sc5zsY57qf7xSljevOUkq75V1VVpVZx6qmn+n69jjekOPtNtT6oeyS6JhBNerOOkt6iQ0KgNQXylZ04v+tCz4XTv2ecc/E4+585c+b4Ves6fPSauPo1Tikco/1A2n/59oHR2ePkWfNTt4+q0d8WAnHKcr79QTGP7XHO6ZXnpNfl45bJXH+DOPWOTMtnuh9XrP1jpu0xrrgCxSgjylGx9vctVUaUx0J/41o2mlwQrr+/pTfLbrjhhn5S0nvpIR5G573RNGbMGNNbrUJdPDqtFPorSyET5AGBNUFAr37PFUiqgFbNo+DabEnznHbaaU0m//e//7XXX3/dBzMqmDVf0g3/O++80wfSbr311j7wJ32ZOPlxTxj6xdQseHrafvvt7fHHHze9WicE96XPo6bJlXQRQXlyTzCZe4rDBywpaCndKwRS6mToyiuv9K/l0Y1GzatX9kRTOEnSzZu77rrLvyZ44MCBfl7lp6KiIjo7/SUgoNeqnnDCCaabbKrMZ0q///3vm/wu0ufLFDzrnoIx9+SMn1WV8nxJN7KVF6VLL73U5ynTMnHyo7KpYPtoYJ7WteWWW/pV5rp45lq/9vP06dPHd6P/6TspTZ06NTU6aZn86le/6l/Hc/nll9uvfvUrH0SoCpCGlQ488MDUuulBoCUESqncu9bi7Hvf+54/CdKDMe4px4xfOV+510366EX2sBK9okPHeaXoQyxheui6Jw59rx5Q0LHMtdBr7gk/f5zT8XKzzTYLszbqKohYJ4KuhWvr27dvo2m5BnRTQcty4y6XEtOKLVBK9eI4ZSdOvVjHzEzHTdUDlMKFhmyWqvu4lgAb3QAI84ZjvfYP4bXYSeoX+fZbYTt0ESi2QJyyE+f32Zr1+zh1k+AUZ/8R5o125ZL0vD7u+YluCCrpfDz9nFfn/kphn+IH+A+BIgvEKUP56gG65pOpjKi+rtfH6niZrU4c/Tpx6/f58qN16uL+qFGjbNq0aT4POm5vtdVW/hqT6tFxUpxrcVpP0vP6Yuwj4+SfeRDIJhCn3Jfa8T5OfpJch063SXpe39zr2HqFvfKr63nRgKL0fDGMQLEF8pWlOOcDxTruxz3OxjnupzvFKWPvvPOOX0z1g2jSNTrdP1MDACHwIM5+M9q4R3R9ekhPKVtjJdF56UegmAL5yk6c33Uh58KZvkOcc/E4+x/dV9Y9Zt0HUPB8uM+s8qxxmhbGZcpHvn1gdJk4edb81O2javS3hUCcspxvf1CsY3vcc/pCrsvHLZPZ/gZx6x3py2e7H1es/WP69hguvkAxyohyVYz9fUuWkUJ/45nEzzvvPD/6pz/9aWpy0nvpqgOr8RvFzKhRqylTpvh+xYmprh0nRi618VbsISC3FbHZ1JotkB5cmq7RrVu39FE5hxVcqJttuhmvFrMmTZpkf/7zn3Muo4k60KtlTd0wUEt42VKc/IQW/kaMGNFkNWuttZYfp3myBeS++eabPlDxpJNOshtvvDG1jj/84Q9+vFrYjQYxhpYJ9GRw+k3Eq666yo488sjUOsKFTJ1Epc+rA5zmb27LJqmN0VMUAQVM50v5ylF0ef329LSMWml+6KGH/O/gT3/6UyoQNjpver+eTnvxxRd9kKpan3avikifxQ/ny4/KmwLkMrX4qzKmG4kqB9nSl770JT/p3nvvtWOOOabRb/aFF17w00JguwaSlsk99tjDVAk666yz/H5ko4028q3xfPjhh368ppMQaEmBUir3p59+uv+q7jXwjVqySP/++cp9+vxh2L223p8guFfL5QyYDccsPcWvAD61ZBdN559/vm8pPDrujTfe8K3iqkVvBdonSXp6Mty4U+vbJARaQyBfOYpTD43ms9B6cdyykzQ/IW8qvz/60Y/8oMp+rrTzzjv7AJ9nn33WQtCc5tdFlZB0Y3/ChAm+Pp+kfpHPO6yfLgLFFohTdpL8Plujfh+nbiKnuPuPfKZx919xz0/C+UA4H49uP4wLdY3oNPoRKJZAnDKUpNy7V7X6ABYdA//+979b165dTW+ZUTdfKmb9XsddtViTfkNe5/TKY74A4bjX4vSdQjlOeq2tOfvIfJZMRyCXQLHLfXN+y3GPl3H2Q0muQ6f7hGNt3PP65lzH1r5J1/h1rf/www9PzwrDCLSoQL6yFOd8IJrBQo/7SY6z+fIczY/645axEJA7ZMiQ9FWY7i8oIFfn98OHD2/0VsgmM+cYEc5B9BadTPcbcizKJASaLZCv7MSpD0QzEfdcOLqM+kM5yHcdPO7+R/cQjz76aNO9sdCYj+5Nq5zpfmKulM8kLBs3z2F+dZtTH4quh34EkgrEKctxf/vadqHHdi0b95xe86anXNflCymT0fUnqXdEl1N/nPtxhe4f07fFcMsIFLuMNGd/31JlpDm/8XR1BfDfc889pkDm8Nar9Hmiw5nupS9atMjfx95hhx38w/HRxu7UYu5ee+3lG7cqxaBcAnKjf136EWhHAjpgK2AwJAWZxgmkueiii3yA4E033eSfGgjLF9INre+Elrqi6wgHI73WL1vSRQpViBT8pyf4tSPWDv6SSy4xPVmoYMBXX301tXhY1yabbGJ6Ta8qfE899ZR985vf9K/p1gnStttu6+cPrRjIRC31brrppr6Fwe9+97v+qQnNGw5SqQ3Q06EE1KpMeOJGX2y//fbLe5NM8+ki+I9//GP/9Ktay2xOCr/DAQMGZFyNLsaFlvMyzaCbfXplgZ5CUuC6PqpMqMVMlRMlXdwPqZAyqda2lFQO9QkpjA/DdBFoDwKFlntdZFNrW8cdd5x/wKXY3/Xpp5/269ZF93PPPTfn6tXqlpLKuJ7qu+yyy2zcuHGmIPxDDz3UzjzzTN8KhvZpSmp5N+yrwn7BT4jxn24qnHPOOdy4i2HFLKUtUEi9uDllJ46GXlOr+rluxuuVlXrKPVfS63q0H9p7771NgQR6NZ4e2vn+97+fWiwE6De3fpFaIT0ItDOBQo/zxazfi6yY+484+68k+VcrnkqZWuwM5+3hnMHPyH8IlLjAY489Zr/+9a9TudQD5tEHt1MT0nqKXb8P58pqrU7nDNoP6M1TerPGl7/8Zd+qba63VCS5FhfKaCiz0a+W61pbofvI6PrpR6AUBAr9LSc5Xsb5nkmuQ6evL+l5fajfF3IdWw106DxB5xxx7g2k55VhBEpJoNDjfpLjbNLvG7eM6eEhPahTWdn0tnuom4eA3KR50Px6SEDXC5SUp1IMOPCZ4z8EYgrEORdOX1Uxz8XDupcvX5562E/nECHp/nMxWp0vNM+F1odC/ukiUCoChR7bm3NOn+u6fKFlMupZaL0j7v24QvaP0fzR374ECt3ft1QZkV6hv/FM8iFW52c/+1mmyY3GZbuXHt5Ao9brVd/Wg/pq1Ebn3aeccordd999pvVfeOGFjdZXCgPlpZAJ8oAAAskFFGSqQDx11fKWAvV0414H82xJT1hop6en/L72ta9lmy32+NDCTrhoGF0w3AgM80Snhf5evXr5XuXp2GOP9S0GKljpN7/5jenpRj3doDyHpFcO6OKigokV1NCjRw8/3+233+5nuf/++8OsPgBXN0rUsqh2yHoaUi2KaVjprrvuSs1LT8cU2HXXXU1PzOggrafJ1MqtWpxVRTZX0u9GF7LVUnNVVVWuWfNOC0/ER1u3iy6kioKCw7OlsrIyX6nQPHo1ln7DelJXZeaMM87wN9qjTxOF8ha3TOrVAGpFY88997Tnn3/e5syZ47sa1vg4laNseWc8Am0hUEi5r6mpMT2soUp8vmDZQr6TjmX77ruvX7+OU+EmerZ1RW/k6+ETBeWrBTA9+aeb/koaH5KOgXo4RWV29OjRYXSsrlqL1/5OrWRz4y4WGTOVqEAh9eLmlJ18DLqwFy4EKGhHb2zIl3RjTUH1KpNq6VqvxdbDaXpYLby2OwT1Nrd+kS8vTEegVAUKOc7ruxSzfq/1FXP/EWf/lST/Op9WynT+Ec4R9FAgCYH2IqDfv87r9SDrb3/7W/vjH/9oY8aMyflga7Hr93q9tOraN998sz8PV31egTUKDtZ5uY7dzz33XFbSpNfikp7Xhw0Xuo8My9NFoFQECv0tJzlexvmuSa5Dp68v6Xm9GpJQ/pNex16yZIm/Rqh9UqZXnqbni2EESl2gkON+0uNsEoMkZUzX5FQnWLlyZZNNhAD/UFdvMkOeEVqvri2qxX69aVIP8JMQaO8Ccc6F079jMc/FtW49dPeVr3zFt2Cte4i6lxjuJ+p6u+ok4cG89LzEHS40z4XWh+Lmi/kQaC2BQo7tzTmnz3ddvtAyGbyaU++Iez+ukP1jyB/d9idQyP6+JctIc37j6fpqaEr3xXW/S/EtuVKue+l9+vRJLarWdvVgvGK/9JZZ3TfX/X01dlOKqbIUM0WeEEAgv4ACBfVRsKk+U6ZMsYcfftj+9a9/2QEHHJBxBWpVT2m33XazRx55JDXPJ5984vv1JIUuCijoJ04Kr+oLrXdEl1Hwo1IIHIhOC/0KJNRFhK222iqMSnWVR7UKqiDBsA61hJspbbfddn60npoISePC+DBO3X79+vmAZH1XBS937949Opn+DiRQXl7uA8yGDh1qhx12mP8dTZ482S6++GI75phjMn5T3eRTwO4GG2xgqszoVRpK4Ya2Tr4feughHyAXp1UeBbjpYpyebkpPuqCni2k77rhj+qRGw7qortawVRaefPJJX6nYfvvt/XrVDH80uD5JmQytUSt/qqxUVFT47epVmxpWi5xqqVqtZ8Z5HWijTDOAQBsJFFLu//KXv/gWLNX6rI6lIb322mu+V6/TUMVe5S7uq67COnR81cmUyrr2J9q35EsjR45MzRIeXAkjttxyS98bjuHaT4VAPwXuhn2WZlLggm4CaJ+lY3v6yY7ydP755/tggiOOOCJsgi4C7VIgab24OWUnDpDK1pVXXmn77LOPP5bGWUbzKLBHQbhPPPGEffDBB741bN100/qUQp24GPULv0L+Q6CdCRRynC92/b7Y+498+6+k+Q/7iXCOH/0Th/P2XA8ERuenH4FSEFArc/qst956/rNixQr/xgjdMNe5faZU7Pq99j3ZHlbVTQCdl+t8XQ+WZ0pJr8UlOa+Pbq+QfWR0efoRKBWBQn7LSY+Xcb5rkuvQ6etLcl6vZQu9jq1zDp3bX3DBBTxkm/5HYLhdChRy3E96nE0Ck6SMKSBAAXy6jxDdB2h7Or9XCg/X+oGY/6nu841vfMNfs1RjNeonIdARBPKdC6d/x2Kfi2v9t9xyiz+O6k1VujcQku4nqrGco446ym699das5wJh/mzd5uS5kPpQtnwwHoG2FCjk2N6cc/pc1+WbUyaDYaH1jiT345LuH0Pe6LZPgUL29y1VRiRY6G88k37c1nHz3UtXrE9IkyZNCr2+qwYcFWujQF3Fp6XXwxvN3AYDBOS2ATqbRKBQgX/+85+mQFK1kjVixIhGq9ENfwXk6vVc2VI48f/JT36ScRYF5Cj4L9yoyzhTZKRaJVHS6wYOOeSQ1BQ9faS8KIV5UhMjPQr4UwCxAgPTU2hhN7qDPf30002vCfnhD3/YaHZVYpSi8yqo8u233/atBKQHE2rdelIifXyjlTLQLgWqq6tNrb4q8Cw96Fat4+rvHn5bmb5guHGtp3AUEJOe9BSPPvp9xW15QgF4WkbBvNHWK0MAea4APZUNPZE7YMAAUzCxPiHpQoBSuFmn/lDe4pTJUM51sTAE42odShpW6xwKmNdHZZWEQKkKNLfcq4wp6QKcPulJrbbro/1CCHJJnyfT8Ny5c/1NebVGpxMBBfTGSaHVOgXYpicF2SqFfYkeLAmt3ekJw/Sk46PqB4cffrhvZTs6PdxUUAABreNGZehvLwLNqRc3p+zk81HZ0oWGXXbZxbekp4uOcZIuFihf66+/fqM6hgLr1Sq26jDRm3fNqV/EyQ/zIFAqAs09zhe7fl+M/UeS/VfS/IeHBvXwjl7RF90HKdhfKUl9plR+B+RjzRJ44403/KuY999/f39RPfrtdZ6umwN6bXO2VOz6vcqhgn933nnn1Kuiw7bnz5/ve3UtLVtKei0uyXl9c/eR2fLMeARaW6C5v+Wkx8s43y/Jdej09SU5r9eyhVzH1vUBBeLSOm66PsPtTaC5x/2kx9m4PknLWLh+rqDcaGCf7tepsQ293VIBfklSXV2df7Ok7rWp/hMeyk+yDuZFoJQEkpwLp+e7GOfi6esMDeno4b/0FMappcBCU9I8N7c+VGg+WQ6BYgs099he6Dl9vuvySctkJpdC6x357sc1Z/+YKZ+MK22B5u7vW6qMSK3Q33i6uN4kpcYXde860/3uMH+ce+m6vq0GJqZOnerfIK8GGKMpNKyneJpSS/HuDpZarskPAmuogJ6IueKKK0xPSlx00UWpE3g90aNgH6VowI8CY6Mn+Xq938KFC5voXXrppabm79VUfpLX5ijoUTs/PYWhINlwgnLffff5iwx67X20db/0/CigUd9HrXDqxkYIkFWgoNapFG0999133/U3QdTaYHTHrUqMUjRYUZUqfS/l7/jjj/fT9Z++p4KqtPOXI6ljCeg39N///tf/rhQIEy6A61sqSFXBaV//+tcbfeno73LChAmpV8JHZ9KBXK+01+tr9HtSK7Jxk1qwVUDuueeem/pd65WXoYUdtXwXTdH8zJs3zwfGKuhGLe507tzZz6rv8aMf/cgH5yjYLqQkZVJlQxftVV4VvK4AoJA0rDxrOjfsgwrdUhVobrnXE+9qaT49KZDl8ssv96+dV2s10Yc+0udNH9YxSAEEOjnQK3DU6nuuFC332o7KtY7rOlmJtrR12WWX+dXomKmkAD21aJ0pHXnkkf64qtf6pj/Eo5sKalVDZZzWcTPpMa49CDSnXlxo2cnnctddd9n3vvc9//rIv/3tbzmD3aPlXuv93e9+5+svN910U6O6isqw9iXpN96S1i/y5Z3pCJSqQHOP88Wu3xey/0gv70n2X0nzr3Nc1QHUwo/2J+pX0vnMr3/9a3/s14OKJARKWUAPoOhakc6BFYASfUvFP/7xD5/1UB8O3yNazopdv1ed+frrr/fnzrrm1rt3b79ZXYsL16O23XbbkBWL5kUjk16LS3JeX8g+MpVRehAoIYFCfsvRspb0eBnnqye5Dq31RfOT5LxeyxZyHTt6U19+JATaq0DS4360rOk7Jz3OxnXKV8bS86F7YT/+8Y/tjDPO8PeewnV85U8p/Z5EnHzo+r9ev/uDH/zAfv7zn8dZhHkQKGmBJOfC+iLRclbIuXg+jJ122sk/TH/NNdf4e36h4RoFw+uNHErR+87R/ORbt6YnzXMh9aE4+WAeBFpbIOmxXfmLlq9CzunjXJdPWibT86XhQuodce7HJd0/Ki+k9itQyP6+NcqIRJP+xqP5iv5F4rSOm+Re+gknnODvkek+WnijpLanN8fq4Tfdx49eP4zmpS37CchtS322jUBCAQUYKhD1D3/4gw+gU2CqWs3SDQntaHTSH1rbVACQKixqDVeBgEo77LBDxi3ee++9PlBVQT/RlrcyzhwZqRb19AS/Tkj0mj7tCFWpUICtKjUKZApJQbZq5UNPAj/zzDN+tC6W6vVfN998sw901JPDChjWxQ61+HfOOec02nF+5zvf8TdAdtxxRx8gpSbH1WKwlldw4YEHHhg25y9w6HsrKEKvLdNNRwXihgsgJ598cmpeejqWgC58qcXmiRMn2nHHHeeDcvW31w09Jf1OQ1IQuVqunTNnjg8e1+8/GuAa5ps2bZrv1e8s0/QwX6aufte33Xab/50uWLDAt5inC2n6Xaq162jQuYJ+FRivIFmVbwXR6TtonMrv0UcfbWr1QzfYVUZ0kz0aaJekTCpYXxcIdUFvk002sZNOOsmXUT35FMqupkeD+jN9P8YhUAoCzSn3aiVan/QUWl/X8SNpudcDJ3r6T+mBBx7wn+j6DzroIF/GNS59P6RxarVWAbkK2FcZHT9+vClAWPsOPTgTgmv0VGC2vOmBGJ18ZJquAD99P520cONO4qT2KNCcenGhZSeXk4KGDj74YD9L//79m7zRQRfVVIdXylRPV1lXXUX195deesm3Tq8n4/U2CdXvzz77bL9s+C9J/SIsQxeB9iqQ5DifXp8udv0+6f4jU3lPsv8qJP+/+tWv/MN1Oo94+eWXfd3hT3/6k//z67yiT58+7fWnQL7XEAEdR3V+qvPSLbfc0p/f9+3b1z9kq2Oj3hYRreOm16eLXb9XQI2O06o7b7PNNv6ago7rKt9qBU8PfKu+rpTp2lfSa3FJzuu1zST7SM1PQqBUBZL8ltPLfSHHy3wOSa5Dp+dH6457Xq95FaiX5Dq2rp/reM9DttIjtXeBJMf9Yhxn43jlK2OZ6vh6i51arVYjHKov6AH4Z5991u644w5/T0znKUmSHsoP1xDUIn+00RmtJ1zPT7JO5kWgrQWSnAunl7Ok5+Jxvutee+3l7y3rPvebb76ZahhDjWToPrbOOzSPUqb9T75tFJLnJPWhfNtnOgJtJZDk2K48ptelk57Tx70un7RMZir3Sc/v9f3i3I9Lsn/UOkntXyDJ/r61yohUk/zGM5URrUPHUN3XOuCAAxo1sqhp0ZTkXvqxxx7r68Z6o61iWRRHowbm9EYrJb1NohQTAbml+FchTx1eIDxlly/QTUGt0dSpUyfTayYVxKeTEbUUoqSLb3paVgGsIekpfqXo03thWrZu0vxoPWpVUK31qtWuEPirfKv1kGhru+HVH+mtBCr4VgGFaq0nBC9peV1UVKu70aQdqwIVjzrqqNS2NF1PMSpAUQ4hqSUCBSkr4Fc3HfVRUkDln//8Z5s0aVKYlW4JCoTWi0M3UxbD7zV9Ht0MUwCcfj/6bYakv7kuZIXWbZcvX+6DcTU+2pJzmD/aDdsK3ei00B+mpedH4xVgo4vr+v3qo6QbiOmVA530K0V/nwpwVws8CiZXgHlIZ511VsYn6+OWSa3nxBNP9OVP+QhBuBqvwB/dbIze5NR4EgItKRDKTuhm2la2ctYS5T5sP2wzDEe7YVp6ntUid0ihxfcwrK5u2OuYlm0/pBardUxUYN4ll1ySWlQX9G+88cZGgfipiTF7li1bZjph0TEzBPbGXJTZEGgRgVKtF+f7sun19Ndeey21SHhzRWrE6p5wMy1TPV0X+XXxUHXXcBFBi+lhPD2Ao+CcaEpSv0hfTsPp+63oPPQj0JIC6WUnuq1sx9W4x3mtK1N9OrqN0B+2FbphfLQbyknoRqfF7c9U3pOc12fbTsh36Ebn02u7tN9QPSIE4mq6WtXSQ7wkBFpLIJSd0M203Wz1ALV4MWrUKF8XDteatLwu5uvcNbyGLlt9OtO2wrhM5SZMy5YflR89yKaHVqOt1ivwXcft8B2zXfsK68/UzZSfJOf1SfaRmbbPOASKKRDKQuhmWnf4zafPE/e3nKTch22FbpL8xL0OnS0/Sc7rk17HVuAQD9lm+msyri0FQjlLL9vpecp0PhD3uF+s42zIU7bjfr4ylqmOr3WqERi9plsNyOgenpKus+velYKAMqXgFbphnnCvTMM33HBDGJ3qKkhQDzCREGgLgWxlJ+Ql/J5DN4xPci6crZyFdRXSTd//KGjw6aef9g1A3X333anGpDRfuD4XHmjNt/+Juw/Ml++49aF862E6AsUQCGU4dDOtM9v+IO6xPVtdOtO2wrhQ3sJwkuvyYZk43XzlPtM60vMW935ckv1jpu0yrm0EQtkI3Uy5yFZG4u7vS62MRH/j2cqI4ryUdA0tV4p7L13r0P0xxcmp4T098KaPkmK/9Nb09Ddp+Ykl8F+Ze71WQwnkgywggEBCATX/PWPGDH/RXxft0pNuviloVy1ytkbz3HpKVztdHVR0wTF9m7qIoZYFFESc6ckKNUmupxh0oqMdZ3Rnnv7dNPzxxx/7127qVX7du3fPNEtq3Lx58+ydd97xrX8OHjw4NZ6eji+giq6ezlFryumBLGo1d9NNN/UtzuWrEBRDqr6+3peRzz//3NZaay2fp/T16gKAWo7+97//nT7JB+4pwECvy1EZCRcCmsy4ekS+Mpm+XLBSgHx6+U2fl2EESlkg/JZLodznc8q3H9Kx/qOPPrLPPvvMt+KbftEw3/qZjsCaIlBq9eJ87vnq6dOnT/dP+aqOrzdM5LqgE6d+kS8/TEegPQnkOs7re+SqT7fF98xX3vPtv5qTZ12w1Tn2ihUrfKvbsiEh0B4F5s6d69/GpPp9uJERvke++nSYr1hdnY+rXKmrVnvSg2vyXftKmo9Cz+sznQsl3TbzI9CWArmO961d7uWQ6zp0vvwkPa/nOnZb/vLYdikI5DruF/s4W+j3zVfH1307vXFPLfzrOn56faHQ7bIcAh1JIN+5cL5y1hIWuh6nFG1sKmynLfY/uepDIV90EWgPArmO7fnq0m35/dqi3Ov75ts/tqUJ224ZgVz7e8pIU3PF2igube2117ZMcXJNl2i7MZkfyWu7/LBlBBCIKaCA1UwnBWFx7Zy/8pWvtFpgnS4u6FWC2VJ4mjHa8md0XgXVTpw4MToqZ79uLugTJ6mFILUuQlrzBBRYqtdFZUrvv/++H91aT8womEZ5yZYfnZCodQuV20xJAcUK1o2b8pXJ9PXkskqfl2EESlkg12+5tct9Pqd8+dGxfm13QqEPCQEEsguUWr04e05XTclXT1cdP1c9P7r+fPWL6Lz0I9ARBHId5/PVp9vi++cr7/n2X83Js84fwttBmrMelkWgrQUUTJ4toDxffbrYeVdAsN52kS3lu/aVbbls4zmvzybD+I4ukOt439rlXta5rkPny0/S83quY3f0XzffL59AruN+sY+z+fKSbXq+Ov6wYcNMHxICCGQXyHcunK+cZV9z4VNyXYtri/1PrvpQ4d+SJRFofYFcx/Z8denWz+0XW2yLcq+t59s/fpFD+jqKQK79PWWk6V954MCBpk97SOXtIZPkEQEEkgmopY7XX389a2BfsrUVZ261IKLX6HTu3Lk4K2QtCDRTQBVptTaZK5C8mZtItHioUH35y19OtBwzI4BAfIFSK/ellp/4ksyJQPsRKLV6canlp/38JckpAvkFSq0+TXnP/zdjDgSaK1Bq9WmufTX3L8ryCOQXKLVyX2r5yS/IHAi0X4FSOM5Sx2+/vx9y3n4ESrGclcL+p/38BckpAvEFSrkuTbmP/3dkzpYToIy0nG1rrLmspqamoTU2xDYQQKD1BNSU/ZQpU2zs2LHWu3fv1ttwji3pYKFWcHM9YZhjcSYhUHSBmTNn2sKFC2399dcv+roLWaFax506daptuummTV7DWcj6WAYBBJoKlFq5L7X8NBVjDALtX6DU6sWllp/2/xfmGyDwhUCp1acp71/8behDoKUESq0+zbWvlvpLs14EvhAotXJfavn5Qoo+BDqeQCkcZ6njd7zfFd+o9ARKsZyVwv6n9P5S5AiB5guUcl2act/8vy9raL4AZaT5hm25BgJy21Kfba8xAp06dbLJkyfbv//97zXmO/NFEVhTBc477zzT5+GHH7YddthhTWXgeyOwRglwnF+j/tx8WQT8cZ5jPT8EBNYcgSeeeMJ22WUXzunXnD853xQB23XXXe3xxx8315AFGgggsAYIhGP9WWedZfqQEECg4wtwrO/4f2O+IQJRgXDfjmN9VIV+BDq2APftOvbfl2+HQFQgHOdL7TpeeTST9COAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAMgECcpN5MTcCCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAKNBAjIbcTBAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAskECMhN5sXcCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIINBIgILcRBwMIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggkEyAgN5kXcyOAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIINBIoKympqah0RgGEECg6AKdOnXy65w8eXLR180KEUCg9AQef/xxo7yX3t+FHCHQUgIq80qU+5YSZr0IlJ4Ax/rS+5uQIwRaUoBjfUvqsm4ESk+AMl96fxNyhEBLC1DuW1qY9SNQWgKU+dL6e5AbBFpDgHLfGspsA4HSEaDMl87fgpwg0BoCKvMu/rU1NhV7GwTkxqZiRgQKFwgBuYWvgSURQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEIgvUGlV1rWsq3Ut72adyzpbVVknqyp3n7Iq162ySvepKCu3Miu38rIyK3P9GlKqtwZraKi3+gbXdUN1DXVWW19rK+tX2sqGmlR3RcNyW1Zfbcsbqs1NjZ855kQAAQQQQAABBBBAAAEEEEAAAQSKIFBqAbmVRfhOrAIBBPIIlFrBz5NdJiOAAAIIIIAAAggggAACCCCAAAIIIIAAAgiUmkC9C5RdYdZQ7UJk3cfFwFqDhpe7YXX9x70U0TUM0+BiY13c7Op+N67WDbuP1bmP+tXVx63TRdw2/rhBH5er2NzwKXf9FW7QfUx3ltSvrvuUdXIzVanrPq5r6nZ2Ab6dzcq7fNHvYoOtvKsb7z7lbpqL/iUhgAACCCCAAAIIIIAAAggggAACHUqAgNwO9efkyyCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggEB7FVDQbP1SF2DrPg1LXf8S179k1TgfgLvMxc4uWzXND7ugXNc8rQvKVddNc0G5Csj1wbau0zpJEb2rkwJ2FZDrAnHNB+OqqyBcN65b+Lhh1+8a7rWy7i44t7vr7+HGre6Wd3P93L1aDUoHAQQQQAABBBBAAAEEEEAAAQTak0CZa7kzcqWkPWWdvCKAAAIIIIAAAggggAACCCDQDgVcS2Rqkcy3SlbrgidC/+oWyhrq3Wm6WipzH/eW4C/6oy2X6WuHs3n3GmEXyuD/afTqtwyv6mq0WjVT62Pu495CHOl3EzROQRNq4UzdShf8EPo1TEIAAQQQQAABBBBoGQFX96t3gbV1C13A7SLXv0jdL/obFrvqngvE9V31uwBdBdz6emLL5Kh116p6qQJ2e6z+9HT10J6u333Ke7kg3V6ru268+it6u64L1FW9lYQAAggggAACCCCAAAIIIIAAAgiUqgABuaX6lyFfCCCAAAIIIIAAAggggAACpSngYiFWvQLYBdPqdcD6rIj0r3T97hXBJqZF9QAAQABJREFUptcE+48b1uuB1a+uPgrC9f1umgJxXb/vrg7KDQG5fr4QlKu42/BxvY36Nayk4NvwiQ6HYFwFMESCcr8IxHWLVbgFw2uHNZ9eP6xhvX64ygVIqJsaXj3Ov47Y9bvXFPtXFGtY/XpVsfJBQgABBBBAAAEEEPBBtGrxtnaeC7hdoI8bpe58fdTvqnYuMLfBBeaaawG3wwTdFvq3V31Vref21scF4rpueV/X7eu6fVzXfSpcf4XGuRZ2ff220G2xHAIIIIAAAggggAACCCCAAAIIIFBEAQJyi4jJqhBAAAEEEEAAAQQQQAABBNqxgAt8rXev+G2odoEReu2ve/2vXv2rYNt6dVf3+9cBaz7/cfPptcBhWK8Hdi+iCQG5VlPm+l0U7eoAXf/qYAXVtoekgFoF5iq4dnVQrnVymff9bpwCbzsrANf1q6sWzlaPSw3r9cRuWrmmqd93Nez6u7oACjeNAApnQEIAAQQQQACBDiWgumCdC7itm+s+CsJ13fq5rq45x3XnuXqkC8T1wbeqI5LiC6ge6lrLLevn6pH9XDVygPv0d/3uU+HGVajrAnj9w2Hx18qcCCCAAAIIIIAAAggggAACCCCAQNEECMgtGiUrQgABBBBAAAEEEEAAAQQQKGkBvRbYBdrWL3Vd10JZvWt9rMG9JrjBdetdEK66Pgh39Tj1mw/KddNWB+f61wQr6Fat1pKyC6hVMwXqKgC3q4Jx1a8g3NXDavHMvXK4TF03Tq8fTnW7rxouV9ctw2uJszMzBQEEEEAAAQRKQ0BvPvABuC7gtu5z95nt6pquWz/bVRvduAbXCq4e4CK1gIDqm2opV8G5A91nkAvKHbjqU+m65QrQ1VseSAgggEBHENADvu56RIOuSejNO+rWu+PM6rfthO6qaW5mP93N43q1aOpNOxrwI1wn9K8eXjWPBtz5uB7U1UdpdX9Z2rCfLTpu9Vt5ytTVm3hct2z123pWdd1+2U9z41fPm9qG3xD/IYAAAggggAACCCDQvgUIyG3ffz9yjwACCCCAAAIIIIAAAgggEBVQ0K1auF3iuktcd/HqfheA2+ACcf1H4930Bn3ceFvmWrF1Qbg+SEI3q0itJ6Cbb2pdVwG5LgDX3Efd8h6u28ONU1fD7lXEGlfuxvlPT9dPsG7r/Z3YEgIIIIAAAgg0FnBVx3pXf6xV8O0s13Wf+s/cZ5Yb74JxGxa42Wn9trFZaw2pFd0+rq442NUbB7tYsCEuOFcfN+wDdF29k8Cv1vpjsB0EEPAC7jqDWk7X23NWdb/oN/dAhx9Xu2qahv04jVd/nRu/elwqAFfBtyEYNxWI6w5M6eNXT/NBuW6yT67bKABX49M/mjHMr0DbaLBtGI50fYBudJ4QZKsgXPcJwbir+t2MIRh3dZCufwjXjfPzuQcoyirdPOpqWT1Qsfqj1s81zbeCrun+7T2rhqP9vIXHmZEQQAABBBBAAAEE2lSAgNw25WfjCCCAAAIIIIAAAggggAAChQio1Rffyu0iF/iwyPWrq+Dbxe6+kfuoX68BbnDjGxa7gFsF3i53WyLgthDutltGN+rU6pmCc3s2uI/rutcUl/fSsOsqQHf1sLoVbrxa26VV3bb7k7FlBBBAAAEEOqyAq0fWubpl7Uz3meECcV23znXrZ7o6p2sFlxZwS/Qvr4e/Brg64jBXRRzmAnOHusBc16103QpXtyRwq0T/bmQLgVIVCMG1K9z+37V83uC6Deq6N+k01ET7Vw2bxisYV2/aCfOo3wforuqu6nfHkTCu1u2bQkCuC9T1Qbqrg2077DWN1UG6/lzeB+C6c/5K991DcG6V618dgKvuqn7XdW/m8cG4ekNPJ7fM6mE/PgzrOKDxGg79nd1xQdcaNE7r0/ZJCCCAAAIIIIAAAggUSYCA3CJBshoEEEAAAQQQQAABBBBAAIGWEdDNLQU/1C9wQQ/u44NvF7obWgtdv+vWuxbIGjTs5rFlLg+6UUXq+AJqTaebu4Gm4Fy1gtbbffq4m2quq3HqVrhXFGucAnV1442EAAIIIIAAAggkElAQrqt/KgC3dnq91X7q6p6fujrpdFfvdA9/ddjAqERI7WhmtcCoOuNwVz8coY+L9Rpe7gN0VW8kIKsd/S3JKgLFFnD7ex9gu9xdZ3Bv3WlwD/Su+mh4db+CbzXeXaPQA78Nbt7UcCQ4Vw9o+HlWB+FyjaLYf6w861NAr4JsFYSr6wAKwvUft58P/QrG1Vt3fHf1dDdc5oZ9oO7q/rKuGnbXFbq6aQr6JXDXIZAQQAABBBBAAAEE8gkQkJtPiOkIIIAAAggggAACCCCAAAKtJuCDb12gbd18d9NLAbi+625mqfv/7H0HgBvF+f0n6XR3LuDe27njbjDF9G6aSWgB/qGEUJMAqZAACaH86AkEQgskhARIIUAooYQOwXSbYkxx770blyvS6v/eSCPvySornXQn6b7P3pvd2dnZ2afdndmZN+9bxxAL4iNbUCQl3jbb71JSJ6LrynZYQNL1dcLAWSeMmXUmMRchCbsk6CKepAsl6ZbUL6uFVQQUAUVAEVAEmgcBcG3D8LZgSLiLQcJdiDbpQhC1QMqVzSgCArUyQAA8LKHHBarmDoBiLpd+Pglim14Y4i7ay+BS9RIUAUUAr24qzoJo66AvwdmKEJN5uR1BaAi4Zhtx2BchATe2CNPYdXrdgYqtTsYoszuKJFsSeEnOBQHXR/ItQjHr2OZEYMaZEPUGvPLYdH7E+duh3rBpSAZWUwQUAUVAEVAEFAFFQBFo9QgoIbfV3wIKgCKgCCgCioAioAgoAoqAIqAIKAIthAAIteHNIDisI9mWIca1uA6XvyTfcp0EXMHglxIfWug3KpfTknDBATIScjtjwKwLFrouBlE3wG0TYh0DacZFZrlct16HIqAIKAKKgCKgCHhGgG7HQysj0rAAIZYwl8UxJdxSJeFakhGJRnD77aPLb3oZiC0+hkzDtpJ7waZpf/O67UI37dZlOkPjTh0HNSAB1kuapIbLMMq5IOQGakDMxRJk2MMfVUTE5akpAopAkSOAV1EEirTOFvQnoJ/BEG8RcjIv4xjG1zG5gkTcCOJlq8+QcKlqq0TbIv+NW7p4rC+psEtCLiYBmz4GTgbG4m/PMBpvCLvYNkRdG3IfFXZZ16opAoqAIqAIKAKKgCKgCJQ9AkrILfufWC9QEVAEFAFFQBFQBBQBRUARUAQUgeJAgIo0ziYQHEC4DZN0Gw8xEMbttSgnlW8x2K+mCBQcAQ6mcXAM5FxfF5BzQdANdMM2QywVjNsZg2aqcFPwn0JPoAgoAoqAIqAItBgC4GKF4X2hYRGW+Y6E56KdOg/ELUwOK1pvDJYQBLU+aROJq/QZ5X+q+1m33HTVzYVkXCy+yli7xpJx2cbBus8jITfCNjqIuGzTG2y4DqXICAm5DEGE47YwTObWnZPsYgqUTFO0bX5igvZhYBDag4OxDPRLsD/ah/CuoEQq/G5qikALI2CUbqFiy8m9ztd4lUDRPMKQ2yTaxrYjZh3bMVKuee/gdaWmCBQMAZJtWe+SpEuC7k6od6HEbtdJ2vUzLhYGsO7nfhJ8WTerKQKKgCKgCCgCioAioAiUDQJKyC2bn1IvRBFQBBQBRUARUAQUAUVAEVAEFIEiQwCD9GEScFdjsGwVFoQOl1UYLMMSWY/RMKrQqCkCxYIACSxUzO2OgbHuCLuRpIsF2xUMMWCmCrrF8mNpORQBRUARUAQUgdwRIKErtNqRBhBwG2aDiDsb7dOlaJuSNFoMRpIsXWXvTCJPlLzTSIGPyv8g8ERdZGMd5Fy/IeMibSz0U4mvmQk+VNA1xNxaEORIykVb34GLd+Mm3u0OPkGxMkqci5LqzG9QLBP08Bv4+6IdODS6VA72m4lbOmGrGB4SLUPZI4D3gLMN/Qcb0ZewCevoW3BiYWRjdDuC7QjiTQgCrlHqLntg9AJLFgFOjiFRl3U7J/92QB3DENsM/bHtANcZx4k3bA+oKQKKgCKgCCgCioAioAiUHAJKyC25n0wLrAgoAoqAIqAIKAKKgCKgCCgCikCRIgAOgwOlmjgBlyTcFRg0W4F4hJH1KDdVs9SigyokSHAx6mQYhAkAQG5zwIUh1VWwblTLGMeFcTSG7nXG4XBjDN3rJDRgMapmsXWjSMb1MNxzgjghIRzA0C7cpxZVt+kE6HtiQAxLoAd+mh4xgi5UdOmKMv47KF6KgCKgCCgCioAiUPQIkCTasAzLLJBxZ6GtiiWyBsVmG6gljO05EmhJzukYI+eAkEOiDlXzDEGHCnpU0wMx10+32CTosK1Yyga8DdHOuJbHulW6jBHuSLAj8S6yAQvIeCTfmYl8to3b3NcOvH3wpBAY5pOgWaCa29sfdT/e3GXR8ykCZYiA8aaD9wEVyx089yThOnYdoX0XcB+VtlvsnV2G2OslFQECrNNZv7P+t20BhP6OiDMh+iC4DqV2tgVUTbcIfjMtgiKgCCgCioAioAgoAhkQUEJuBoB0tyKgCCgCioAioAgoAoqAIqAIKAKKQBoEMJgexmBZCIRbLmEQHMLLoyTcCNRwBYpYZWt0/xtzBcxQqK7KkO6AGR/bT8Jt1FUw4qmIQgKudREcD0GsYDpLxk0k4tptkja40Nzr0ZgoEdcSFRhiSSTixrfx25l1KMRFYoTcuAtiE4d4Eqjhhjgacj0aR+UzqUc8FY7NOoi92DZECboxLlejUl1XDIT1woAYl95QSwNRlwtVbEqeHFOuv5telyKgCCgCikCrR4Dkz9CSiNR/BSLul2ivzka7hSTP5ja2F0Gq8XUCqaYL2hQMSbKJhQESb0i4oftqthNboVlinlHFdBHyHHjXcDDBz1mH9ug6F0m3OTFi+xuEqQAUc4MjfVI5HMRcKOj6qm0DvTkLo+dSBEoUAUz+5ETeMJ7pMJ9phnimHS7Y5kReetOh6q351izRy9RiKwJNRoD9SpywwzYCJgobbz6d0ffAbROiPmK7gROF2ZekpggoAoqAIqAIKAKKgCJQNAgoIbdofgotiCKgCCgCioAioAgoAoqAIqAIKAKlgQDJmRwwCy11JATyLUm4zlLEIRQOmpWyuirH0kmkJfEytghUyIzrX+P+F/EccOe63a7Cfg6UxAi5PrvNfEjADWK/OyS5otjH7PEbkgzB35pkXROCmGsIuSDgGlfEMUKuWQcxl4TcCF0Sk6TL0LgqZhhdBESYCNxAczGuiEn2RZYlayRJg5DhBynX3xsDYSTncukDV8YYIDMk7JK9OC24IqAIKAKKgCJQHgiwPdKwGETcz0HE/Rzt1nlofHzdTNfG9h7bkyTeUlkfCqv+LiDS2KUztkmqQdux6NuGzQRZytPgZ3PwW1IxM7wW3x1rYwS+NYiDwrGDiYAREHVNG7O52pdQMA4MATF3FIi5o2LEXP6WaoqAItAIAUOyh+q1eW757GIxzy1DPM+GYM9+BH4fqikCikB6BNi3RJIu2hJmYk8sDKCdESBJl9uYLNxaJ/WkB0/3KgKKgCKgCCgCioAi0HwIKCG3+bDWMykCioAioAgoAoqAIqAIKAKKgCJQsgiQdEkSbgNIuGGoi1FhzFmEwW+o4pqB71K5MqqGkDzbDgMU7VB2qo/BNaBZ2oIUQfItiRNY93Ef1uNxIOCSMEFCrh/kW1VDTf6jR6i8S4IuSRMk5cYIuVSmi8C9aCQWOiTnQhnJxDF+C/KDm9LIVqjtImxRt8TJLy19LO8fKOX6+0HsuB8GwqCWRlfGHBBTcm566HSvIqAIKAKKgCKQbwTYdmW71RBxPwUBbA7aFmxrFNo4QYsE3B5oE3RHc7E72gRcumEhWQauplXFLk8/AiaQhb/GbwtSbhiEXLOsQvtzJb5RVqJNSYIuJ4oV2trjd6Zi7tgYMRftP+M1o9Dn1fwVgSJFwBJwQ/a5REjSvLPaRZ7HN6JaExFg3waXQELox/eniUO9Z/cxHecLuBYzfcC1Hd+HZI3WkY2ZSMuQ5t6OxUUS4zhJmwv6BsTB970JkSgeZ/fF0iFQawIC7MPiJB+0NczkH9vmQPujghOClKDbBHD1UEVAEVAEFAFFQBFQBHJDQAm5ueGmRykCioAioAgoAoqAIqAIKAKKgCJQ/ghg0CQEV5GhxVDCXYQQi7MYYygk4RbzABoHlUiGAOHB1z4ivp0Ycjsa52cIQq4fRFw/0zAE+dZsU/2Wg1ZqBUfAEHdBznVAxnVIxAVJhqGDkIRcZzPCzYhnCCW76DoG8xBX9GRdErktObc/BsH6+w1JtwLuJPX+KvitpSdQBBQBRUARaM0IgOwTWulI3QyQcT8BSXMm2g1UXiyUkeQEpVRDwKViPup/LhUg5FaACMO2piE2Fer8mu92BPDbh9FODIOUGwIhN4xvFi7O8tj3C5WRcTsUzOA5ITAcpNzxfqkajbYffn8lXxcMbc24mBDAc8XvuBCevTCePT5/jpscvx6FVfXb6PuAXnQ4QRhedCQI4IwnHcTRi07Msw7Xjbop41zrvorYtyT6K3wuIq4h37IPIx4fffdESbmueETHibZcpyH0Jca79pk0fG/ad6ddRxgn4TKRK57rERfx1pBxY4TcKDEX6bHdaN2mp5eeMDJgiIVhfN1478E2PfdwP+8ps6CPAN56ouuIY16t3XhfdYr1SfTArcGJQWiXcKkgaRf9Ydo2ae03iV6/IqAIKAKKgCKgCBQaASXkFhphzV8RUAQUAUVAEVAEFAFFQBFQBBSBUkIA4xhUmqICbmgRiLgLMKi2AGMay7Cj2Ei4HCiCaq0PJAgfFT/gts9P131YZ+gnEZcECYR+hiBEkHirrvtK44Y0ykpQ0HVwP5Kca0ISc7kNYo0Dt6cRhNElul6URF2Sc3tj8GsgxlMHRMm5wT68J3UQrDTuRC2lIqAIKAKKQKkgEMZEsvqZIOJ+hDbsZ2gbrC1QyUl6AvnSz/q8D+p3hAGoolb0QojJN9rWLBDuWWbLtiTvidBy3A/4lgljcZYgbim+azYis0KQtti8g0JyxRgQc3fzS+VweEvghCw1RaDMEDDP1wY8V8vxjJH8jtA8YwjNuxcq5WVtJMSSXMv+CHrP4YRghpWoA+Lr0Tgf4gzxlkRcLJaQy3XjSSVGyiXhNr5tiLg4LkbINfVKIFq/xIm2yKpsDO9jM2GXBFwQcnl/cZGQa52EXLNE40jANdu41ywhl+r4XCQWF1+nWjq9+IC4S28+Zp39W1xHPgWpD5Bt0RjvSdRNfrZT2DeBsIITiGy7hYRuNUVAEVAEFAFFQBFQBBSBvCKghNy8wqmZKQKKgCKgCCgCioAioAgoAoqAIlCaCHCgIrTakYb5GFCbh8E0LosxWE0lqWIwDhBQyRbkBx+JDh2xjpDbJiQBtwMGFEjGJRGXA11qZYsAB9FIHCcp1ywgVTgbsY5BYWcDBtqwHeE6yRZ0T01FnpY2cjFADA/0w306CANgWIIDqVADt8YczFVTBBQBRUARUAQUgZwQYLugfgFUcaeiLQsybmQZssl33U/yFdqdgb6ox/tF6/OKfn4JgsyiKrg5/WzNe5CddEjyIL1/4DvHkHP5vcP2IoK8Gr5dDFl7AtRysVTWoL2n3yd5hVgza34EDAl3HZ4hkNtDSx0JYxJvGCR3B8+V6TfI93PU/JeIBxcnJXmxDT7e2sDbDgm3XDch1hnCq44h3Zp1bFdhm+uGiBvbR7It42Ohn997Snpsll/UEHtdhNxIXZSEa8i6dh1k3Egt4hmiDWEWu70NxWQ8vPlE4uuII3m3EBM5mgUV10nYL8H+M5Jx+8TaM30wqYhE3U64Z0ECV1MEFAFFQBFQBBQBRUARaDoCSshtOoaagyKgCCgCioAioAgoAoqAIqAIKAIliwBVRxsWYZmHgem5GFDDElmDy8k3iSEbhDgIRvJtJwxiYUDA3zkaBrBtyLcg4nKgIEA1XAxyqau9bMAt47QYAOZgWxikirAh5kYJuuF1iIc6mrMeIQaQGcpWLC05mEalo64Y/BoMQi6W4CAQekDUNaq5ZfwT6aUpAoqAIqAIKAJ5RQB1f2h1ROqmQxX3PZDDZiOC5Jl8GtukVMAdAKHCGtTbA1Bng7Si7p7zCXIz54XbxNmM7x+SChfiG4geQRYiDttmIlc+iwNPCYHhUMudCGLuWBCeuui3Sz7h1byaAQF8M4UxCZIedBr4vKDvwFmE54UkXH5TlZqRbNgW32Jc8H730YOO3QbxttE6PZ1gISHXhCTiMo4hCbYkNqqVPgK4lUnWdUjWRRuCRFwnRsh1zHY0LoL73Swk6tp1ePSJYAIwF9P+oKpvqRnbOSTn9kd91R99E2jnGOV/THY3BPVSux4tryKgCCgCioAioAgoAkWCgBJyi+SH0GIoAoqAIqAIKAKKgCKgCCgCioAi0GwIYFAtBGJiw3yoiM3C4BoWBwNreR+A9npBVI2B4pivKwa66EYPA9Uk4QYQBjpjISkXgwGqIuoVUE3nRoBuLDmI7OCeD8cWBy6sue2AfB5Zg0E0KqPRVWVLGAbAAgNwnw/D4BeWyoFwbYx7Xge/WuLH0HMqAoqAIqAIlAoCRhUXE8pq3w1L6CPU5atRcjRn82J24gyV7Klqj7qZE2cC8Mag9XNeEC6eTEg2hJeFhkUgGlpPIQjzOkERt42vOzzWUy13b6jl4n5StdziuQW0JMkR4ETHBpBujQcd9BuE5+P7CaTcFuszSF7MHWPxvAn7F9pjIeG2PfoRuG62sU7yIePboY/BhiDk+knMJfEWKrf6nt8RVo0BAqgvHKjkOiThYnEMKRchCbmY5GFCxm3B/s2Mi8abkIRdkH7z1k4p1A+C58QPTwAVaP8EsFSyHdQTzwYnwqspAoqAIqAIKAKKgCKgCGSFgBJys4JLEysCioAioAgoAoqAIqAIKAKKgCJQugjQxWRoFUi4UA9rmIVB55kYKFiO62luIiJdOYJw6++GAS+ohPpBxA1wwbYJoYBLd49qikChECCJJwzV3DDIuCEsTnzBABuU9iJQ1TUuKQtVgGT5YuDYKNMMB2FjOMgaQ0HMxTPhU9emydDSOEVAEVAEFIFWjADr8LpPHal7CyQxTCzLW51N5UMSUYZADXcISLgk43YHeZJKiGpljwAncYVW4ltpHtqHc/CtNAftQhIQoZSYF4NLe6rlVu0fVcsN4JtHTREoNgToQad+IfoL+Ayg38DB8xChhxGQEYvK+I1E9Vp6zdkJ30w74f2NhevxkORCEHK5bUKQcFXZtqh+xfIqDKoLo7QLQi5V2B0Qck2IZ4qkXOdr7Me6CTdF1yOIa3HvPcl+BXitYp9dgO2goZg4zDYR1HPVo08ysDROEVAEFAFFQBFQBBSB5AgoITc5LhqrCCgCioAioAgoAoqAIqAIKAKKQNkgYIi4GFyuBwG34XMQF0jEXYPLa65BNSrUdMIgWHd04EMdikTcQA8SHKIEXHbq++g6Uk0RaCEE+Ixw8Jlur8OroouD0FmFeIRmELq5iOsc/OqGwa9dMPA1EsRcEDcMGUifkRa6O/S0ioAioAgoAkWDANquDUugivsO2rXvOdGJZSDANNlA6KISXEVMrT5ItXq0T9UdeZORLc0McE/Ru4LxJoLvJpISw1DNFRKnmmq8rXpDdXBvn1TvA4JTbzT88F9NEWhpBIxSNFTH67/EPY/FWYx7HmqfLW7krYPMbjzqQKWcBFw/vevAgw5DetKJLniPk4xLRVz0P6gpAsWGgCHrgqhrvPeQmAtSrkNPPvDWE4FSO7fpuYfrxoMPJhEXhaIuFaTh0acC/ROVI6MeffjMqSkCioAioAgoAoqAIqAIpEdACbnp8dG9ioAioAgoAoqAIqAIKAKKgCKgCJQsApEwVJ5WRAfVGr4AEfcrdOyvxeXkg7iQDhX2zVOFhgTcnhgYg4u7QC8s2DYkXHbeq+pnOgR1XwsjwGfHwUCYIeiuxKDZCixw2eqsRDy2BQo3zfEc+aAgbYi5o6CkhgGwih5gbOiz08J3h55eEVAEFAFFoCUQIJGlfrYj214PS+jjPJEjO6JaHcwJMCCY7OKXCqjj+uGyXE0RsAg420DMBTGx4Sso536B9uBc3HsgTDXZQCoM7gZS7sEBqRwMFWYlEDYZUs0gNwSo4Fk/F30Gn+HbB5N3ncXIB+/bFjG+fkH+8+Hd7O8EYi3D2LofitJcApaES+KtTlhskZ9JT5pfBMzkYBJ1ScpF/cJ+CAeeAJwNXNDtAIVqrptJwttw7kL356W6PHix8vdDn8RotJm4oO7yQ3VaTRFQBBQBRUARUAQUAUUgOQJKyE2Oi8YqAoqAIqAIKAKKgCKgCCgCioAiULoIQD0stAYDaxg4roc73zAGjyPrcDmF7LjHYJhRwYXik783yA0g4FZw6QmFMQ6m6SBz6d5PWnLjejK8DoPUILiHQMw15NzlGBhbimcLg2QChd2CGca4fF3gOhtkoeA4KOaOAGGoMyJVTa1gkGvGioAioAgoAsWFgAP3z7XTHal7JerpoSlkMTaHnXYhqetTK/U12ySEJdwV7LNg6oYy6SadOneWrl27SjAYLC5wtDTNgkAESoUNS/FthUmODZ+jLQjVXIGaYZMM5KbACJByD8XEq9HNR2x68ZOIPPSmI3Mx4SxX8+GhOGmiX04/wC89QJhUKz0EOMmhYRHeq5/gnv4YRNyFuIbmJuLiGSDp1odvG39nfN6YBaRbbqMPgf0IJOD6qnDD8UWspgi0FgTwenZqSdBFfYP+hjAJuuiPcNZiIUEX/XsRrJu+iOZ+btG3569B3wQmlVSNh9J7X51U0lpuS71ORUARUAQUAUVAEcgOASXkZoeXplYEFAFFQBFQBBQBRUARUAQUAUWgqBEIQzmjflaUiBuCyk1kFYoLgm5BDB3xRsGzD0m4IN8iDEBZLAhFXKOUoYNmBYFdM21hBDg4BgWbBqrmgpAbwsLQkHOpQF2oATEQcH09QMwdAzUaDHxVDgXZHW5b1RQBRUARUAQUgXJGgIpxtR+GDRnXWYArbUK7NtwmLA29a6Vu0FZpGLRNnG4NqFi9kxLbtm0rNTU15Qy3XlsGBAyJkcTcz0BinI42IBVzt2Q4KN1utO/8g0BqOswv1bujbVdgN+Ak4171KFxB5MnGD/TLPeeBTKxN0jwh2jzZcKIhJznUvxeb5NCUezibIrfB9wwmGvq7ob+AYVf0H9gFJNwAybnVejNlA6mmbV0IGJIuyLlhEHLDIOSGMRHfMQuaRwiNRyyq6DaHtcekEnjxqcLkjKox0Yn4zXFaPYcioAgoAoqAIqAIKAKlgoASckvll9JyKgKKgCKgCCgCioAioAgoAoqAIpAGgUgdiLgLI1I3DQqeH0HhZikSF0K1E6JgHEQLwFVdoD8WhEGQcAMcVFMXv2l+Id1VrgjQlXF4FQi6SxDCpXEIi4PFDIaB55N3gxq1n8R3KtJMgCLNAFWkyTvGmqEioAgoAopAUSBAjw+174CM+7ojEbZtczQnCPJk9zqpGwoi7pCtEu6B2TNpFHFTnSYSiUjfvn2lQwdINqq1agTstxe9kRh10UWAI9dJWeAf+vqIVEEpt83EgAS6FI6QeNod4SYp4yb70X95YkCO3b1wZU52To3LEQFwseuhilv7Du7bD/BeXYF8vM9JyP6k1TikU0Q2VmyQpVsWy1pZI5uC62VT5Qb5OrhRagNbxfGln2Xhgxzz4MGDZb/99pMhQ4ZkXwY9QhEoZwTwTIe/Rj8EybmrsayMhg4m5jvoozB9ElB4L5ix/sLk/OCePmmzN/om+mGWSaBgZ9OMFQFFQBFQBBQBRUARKCkElJBbUj+XFlYRUAQUAUVAEVAEFAFFQBFQBBSBBAQwgBZCp3vd9LDUf4jO91mIyLciBpU5O4EEOCBKwq0AETeIpaK7TxVsEn4O3WzdCETgVpLPY8MihFjCXECUF7iZbIqiX1JU22KsazjUcvcAMXdsQCpAildXrkmR0khFQBFQBBSBEkQgBGLJtv+hffsaSGOrc7uACKrGUKd6qRu8VeqHb5Fw3zqJVKcnf9kz7bzzzmZ106ZNNsqEnTt3lp49ezaK043WiwC9JtTPdqKTIj+NeSfJkeDo64F23SEgNR2Adl2BSLkTL899xuYFkzAzE3bfS41nnJ22f0AuPloJucX+FFDduW4myLivhCUEdecmKTunulj0GwhenX54zAngNRnuEpL3Z70jczbMEqdTg1R1rpSIL7sHJBwOy4oVZA6LHH/88TJhwgSzrn8UAUUgCQJo4oRRL5GcG6JHn9ji4BFysC5f4xhvzaAkmaeJageHA+NRfx0WMJ58fPCmpaYIKAKKgCKgCCgCikBrRwC6KmqKgCKgCCgCioAioAgoAoqAIqAIKAKliADJf/VzMKj2LlRxP8YA8Jo8XwU61anEGahB53oNSLhwSVrRS5Vw84yyZldGCNDFahDE9eAAjHNBOTe0DOTc+Xg+F2AwbD7isJ23we+tGGyD2+FaKPOGQPqthiJN5SCo5aqb1zK6o/RSFAFFQBFonQgYMu6bIONSGTdHMq6gHVvba7PUjdwiDYO3SaSDdyJiVVWVWEIuf4FEUm5TfhWq7G7b5n32XHV1tfj9ZLmpFSMC/vY+qR4PAi1UAesGOVL/nhOdIIl2WrYWwaSu+lfRVsR/Q8rtWjwk1wmD/XL+pO3DiW5SLoqbV1u/fr189tlnMnPmTOnXr5+MGzdOevXqlfIcoVBI6uuj8sRt2rQRKqqmM5ue6Zie1tDQYBaue8mD6XhO5sXnk89pMRsVnWuno9/gBdyfM/GLNeZUN63oUMP0dUa/AVQy/VB6rkBY0Rvu69Fv8NoHb8jbdW/K/pP2l8mTJ+d8nq+++koeeeQReeqpp2SXXXaRdu3wgldTBBSBHRFAcyGwM/rwsFQORnWCpk94Q4ycuwz9EkvhzQceB9gvEVmPw6GwmxfbgglQEAjYujkszpHomxiNfomq9O/ivJxXM1EEFAFFQBFQBBQBRaCIEdj+BV3EhdSiKQLljkDDx+9K+IuPJLxgtjirV0ikvrbcL1mvTxFoUQSc81N34rZowfTkioAioAgoAopAFghENnYUZ84Icb6AQszyAeIL5UeCIiQhWRlYITOrvpQvqqfLzG3TZdlCKNosRw/7u1kUUJMqAopADAEMiNW3k951w2SX6nEyIjJGhteNlO7h7lKBf00ycjZAVNr00lZ5943p8lLH5+STjq9LQ9XGJmXbmg4+YNuJrely9VoVgaJEoLKyUjp16mSIV8OGDZNRo0YVZTm1UM2DQHgdCKtvxZRxc5lsBv6Hr7dIcA+/rOm6TpyeYJ5VZEcZdJNxuV5XV2eWfCCwdOlSGTRokOesvvzyS+Ou3fMBmrD5EcA9VwHybABKscF+Pql935GGD0Emp6hndreeROBmnKrQPpAcScoNdCoOQpNVxyW4JOZOnRuWaXPzK7P49ttvy/nnny+zZ8/e4Tfs3r273HnnnUYhNXHnv//9bzn99NNNNNNccMEFiUkabf/rX/+Ss846y8StXr1aOnToIA8++KBcdNFFJu7111+Xfffdt9ExyTaOPPJImTJlivTp00fmz5+fLElRxFEZt/YzR7Y9C6LcTBQpHz8bSH++jiDh4n4PYKEHnQpM5K2AMq6/HV/C0Uv/39tvSrdu3ZpExmVOJOEedNBB8vLLLwvJuS2lksu6gBM21MoDgdbwe/rQ3cD6iYuM8gtV3RuglDt/ykKZ9sQnsvPmDjJop6HSpaqrVPhR8TTF8K4JzwD5P4Q6DO+IqtEB8UWF1ZuSqx6rCCgCioAioAgoAopAySLQxJGfkr1uLbgiUBQI1L/+rNS/8pT4O3fHDOL+UjFmD3wd4bGEUgL7LNz9dcWyXXXMqUWBnRZCEcgVgU0/OM4cWt3zGHQO4snC81bKYXUPXIeaIqAIKAKKQKtCIAIFi4YFULeBwo3zMTq6MWibDwtVhGRThw2yvscqs0jPDVLToaMMqNgX7dJ94+1T2y4txvC7B0QHUfOBh+ahCBQCAQ6Ih1ZCPW0OVGqgbh0G38BZjvZoXdPO1ibSRnav20v2kIkSHA6ltn2hltsfo2BNHFNrWqmK/+j9r9vFFPLQQw/FZwG+w/F9UMohr0NNEShFBKgyuGbNGlm0aJF88MEH8txzz8l+++0n++yzTylejpa5CQiEN4GM+15MGTcXMi5EKgPDfFK1v1+qxvklvLQuo1pmYnFJwHUTrqiOS9KOmiKQCQESjyqHQhkUxKfaPj6pfwttPbT5JEvtDZJy60DKFfD+2u4bEP9O/PJqOSMZlwq51u5/KZR3Mu79998fJ8Ta8+y0007y9df0ry6yatUqOeWUU+TSSy+Va6+9VgKB5I3ciy++WA4++GDh5A4vFg5H5SGPO+64+Pkfe+yxjITcxYsXGzIuz3Haaad5OVXLpMHtZzzqvIi+g1koQlPJuG1BwsW9HRiIYSx40KkY4JcglXFJwk0w+9t17do1YU9umyQ+0zZtbNrEQ6ts7KUUboXym2++Wa688ko5+uijhSRwq1z+wx/+UN5//31DOub+1mA33XSTPPnkk7LHHnvIXXfdVXKX7DiOnHDCCfL888+b98lll11WcteQU4HxmLI++d3dN8uvf/1r2cnXQUa3HytjOo2XUZ3GyIiOo6Wm/SBpH2yfU/bmILxSw1+hLVeFvsq2aI8NQ92x4+sh9/z1SEVAEVAEFAFFQBFQBEoIASXkltCPpUUtHwSclUul9u/3SATTBIN7HoSeYnQgWWKgg14SUB4idjtGfSie7fL5HfRKWjcCfNJ8GHQv9bB1/4p69YqAIqAItD4EnG1wY/oVyLgYoA19hlosB1eoiaht8m2S2h5bZF2vFbKu50rZ1HO11LeBG10/8mdFSeMqO9GLPTSF1T+KQPEi4IOQdRAujYN9MVAFolD9PCiowW1sCIuzCA9YE59p6+rYWY38DolI1XC4iqzWEbBMdwRJuLRSDzNdp+5XBIoVASrk9u7d2ywTJ06UJUuWCBUKP//8c6OGmC8yT7Fev5YrigDbuXUfOVL3KpRFV+aASifUsRMwKQWqopWDUP/ReQTcMmdjJOO61XF5LAm5hbKrrrpKJk2alDJ7Er6yUdNNmZHuaFYEqGpLIm1FDxBz3wxLw8doZ2zIrgiR5SBS4lkg0bEN1J5bqj1HMi4Vcd1230sN7s0mr8+bNy9OhiUJ995775XDDz/cKKdv2bJF3nrrLfn+978vVJf+zW9+I4cccoikm4RE9ds333xTgkHv0oxU4D322GPlP//5jzz88MNyyy23COumVPbEE0/Ed516avEKmIRWQq0SiuMkyOXsmh6fEkYNdxAIuEN9EhyMBUTcQAfuiMNQMis//elPhQRwL/anP/1JzjzzTJOU9wSNJM4vvvhCRo8ebbZnzJghH3/8sYwZM8Zst4Y/VCnmNXfp0qUkL5e/H39HGt8prYaQi+slmZpkXNrXkY3y7tdvmaXH0l6yW8c9ZPJu35RdEXar7S5tw+3wiOfwkJOU+znePd3CEuiI9wbqQjVFQBFQBBQBRUARUARaIwLbp7W2xqvXa1YEWgCB8LyvZMutl4u/Z190YMAFHxVxSb6lMeRqMW+bguofRaD0EbDdANFwe9dCqW2X/i+hV6AIKAKKgCLgFQEqhtH96dZ/hyU0renEPaHoRc1X8o9Of5GZe02V+ROmy5rBC6W+XYyMy4apqRijoaktXdtmp2u7KPZ7BVPTKQItjQCenUBnECx2D0j7bwak3ckBqZqMge3R2NGuiYXbAhXeDyN4V8A1LdwlO19HyaZNzLWsD6cyLi36l5/kse3EMIZCse6PFU8DRaDkEejbt6+cccYZMnLkSLnvvvtk4cKFJX9NegEZEAB5w0w6ezUskSUZ0ibuxivbB+HEqkl+aXss6lNORknNo0s8Or6djIxLd/aFtKFDhxqFQaoMJlvolt3WOYUsh+adfwR4D1aNwD35DdyTh+Ge7IVz2IaGx9M5i6CU+wpI6jMha4pnpLktGRn3/Hvzrxb93//+N35pr776qpx88smGjMvIdu3ayZFHHinvvfdePM0jjzwSX0+2MnXqVEM6S7YvXdx3vvMds5vKrq+99lq6pIa0ywS77rprnJiZ9oAW2BkBb7ruU/QdfIJvgVx+Nr5bIW5bsQ8mOpzgl3an4LvlmAqpHhcwJLts7+cWgKDJp3Sro5999tkmPxJvd9kl6mUj0wmo9E9i9wUXXJApqe5vRgT4+/HZpX33u99txjPveCpO+uE9wuXvf//7jgnyGPPAAw/EybiJ2Z5/xbny9PLH5dx/nyFjrxwmXb6zswT3Qd0FznVU0ibxiAzbeOew37LuM7Tr8juHI8OJdbcioAgoAoqAIqAIKALFg0Djqa3FUy4tiSJQlghQGXfrH26Q4B4Hwl0HRlk5LsqOuFIKy/KX0YtqjQjYxy567TGl3DgQpbYdL7iuKAKKgCKgCJQpAuF1Ufe9RjGMJAVWZLkamqEBqtuM8klD5XPy32l/k159MUAUb5cic1NRNg4jvsbbkJpvlK4o9ueKiR6nCLQgAv72cOUIIi7VphpGQwX7cyhgz4hIeD6esVwVc0PwSAslrNotYXG2RKTNXhg4h1qbWnIE4sq4sd3x7UTl3CLfn/zqNFYRKF0E9t13X2nfvr2QfEUyiyrllu5vmank9QujHiCcuUiJ6s+zQW7EPxDERxAeqyfESGIZDq6qqhI3yYrJGZdMGTcxXYasC7r7b3/7m8ycOdOc4/zzzxcS190WDoeNque2bdvMPqZx27vvvmvcrM+ZM0e2bt0q/fr1k/32209OOukk85y503KdCqCffvqpIZ5RAZSkyTfeeMPEDR8+XL71rW/J/vvvbw7jOf/yl78Yt+2rVq0yRCc+v3TtnsrWr19vnu0PP/xQli9fLt26dZPddtvNqFFSrTSZ0c34Cy+8INOmTZOPPvrIKKCOGzdOeK6DDz442SEtG4emV7CPX/yH+8TfEZxIKN46C1Ek8Gs9GZ6F8By05153jBppsKYw+joTBvtl2tzGhWJcojLu/S+Fdkjn6ToyJLKEXP7u48ePT5q6R48ehmT7v//9z5Py7f/93/8Z9em99toraX7JIqlWTYVeEnIfffRRQwROlu7LL7+Uzz77zOyiGm+i8Z5mOXmfbt682RB2eV0nnHACtFmab0g2tNyRenjViaxNLKGHbdyvFbvg+2QsvlNGYtJgDxDz4OSxnIz325NPPpn2kvr37x/fTyXVn//850YVlurl2RjvKbXiQYDPIevEtWvXmrqnWEpGRfBCGpXGk9mVV14pXGi+KjFeBoL9/RIag3fIF1imox6aXi8V24JZ8fAja0Qa8A4K7eLAQ1B2z0yycmqcIqAIKAKKgCKgCCgCpYZA8339lRoyWl5FoAAI1P79Hgnuurch46I/Lur2l+fhBs0VFvX+aGn1ryJQ0giYx42KVxxkR+iLhSW3XdK/ghZeEVAEFAFFwAsCIbie3wY3k/VvwH3vCi9HpEiDjnX/AAyqjfNJ5Vi/BPv7ZNPMRSKfgLnHuhCHkVTLtQg2SnE7xZVrtCJQEgj422DAmwPfeE4bRoGYO92Rhk8j4ixCezUXVSscZpTVXuDxYamm6+SufLLVEhGg+iBJuKUeJl6XbisC5YAAyXYkNJE0c95555XDJek1JCDAiWe170QnowiapZ4NIxuBYVBuPMIvVeNAemybuY6zKrhUpONiLRkZ173fpmvJkGq6VsmPZMBEIhmV76666ipTxL/+9a+NivrDH/5Q/vCHPzSK48ZDDz0k11xzjbzzzjvSq1evRvtJfOV+knbnzZsn1157bXz/66+/bvIjQe3EE080xNylS5fG97/yyivGDfivfvWrpGp8s2bNkr333tsQH+MHYeXxxx+XK664whAZE92/b9iwQc455xz5z3/+4z5Enn76abPNfbfeequ0bdu20f5i2OCkqDZoh/na+aT2RUyWmoNSeb3XoSwYAhlqWw9H/B18eZ9gZVVwSba976XtMoaMd1vifve+pq5bcjnJ3CRqd+rUKWmWP/3pT4VLOnvrrbfiRPEzzzzT3Euc2OHFqqurjTr7PffcIyTA33XXXUahN/FYktWtkWRrjaT4G2+8sdGzwn2WcEy1VD6bAwYMsIcUNKyfAwL4XHwHZGNQdvYPAiFvD7xXx/uloheIuGU6ikz1ZSqTZ2OcOKBWHgiQVN2afs/bbrst6Q/nJuPaBJxQcMABB5gJJRUg4weHg1A7pErWvrJRAsuCUh2otkkzhuHZEWmYFwEhN2NSTaAIKAKKgCKgCCgCikDZIVCmn1Jl9zvpBZUBAvWvPwtiAzowdkaHEvpBSHKwxL+oAlnj7aLdXwa/hV6CIkAE2B1JEm6ph/prKgKKgCKgCJQ3AqE1GHx9E2Tc10DGhbpETgYlG7pIDYKoULkrFqhw+jEY3MhYJ5r2KdupbKwyRAoTltB2o4vSDUWgNBGIE3P7+qR+GBRp4Ga24dMYIT8Hd8WR5XAV+RKecRzb9kCoB3ZJeP5LE6a8ljqlIi4n7cFKZX9eQdHMFIEiQoDqlyQEkjRIQpNa+SAQqRepRR3X8CHUObMRhiMZdwRIjseANDYK/a1Vmes2S8YlepaAS9It16mQay2RrGvjWzrcc889jYIdlT+fe+45o2BLMixt2bJlctFFF5l1xv2///f/zDr/3HDDDXEyLhUhjzvuOKHa6KuvvmqeKRJpJ0+ebLY7doQsZoJNmTJFuOy+++4m3erVq+Xuu+82qS699FK5//77hXkceeSRhrxLtVsSeakIed1118mhhx5qFGxttjz+2GOPjZNxjznmGEOK+/jjj+Pk2qOOOkqoMuomCZNUbMm4JFoy35UrVxos3nzzTSEheciQIfKzn/3MnqqoQn5/tdkd9yoIj7XPOxKeiTaGV1LuZqgMfoD2XF9H2kwEsbcxVzbn67RkXGZg1XBJymU8FXKtFZKMy3PwHf+nP/3JnI730cMPPyzDhg2zp88qHDhwoPz5z3+Ws88+W+bPny+XXXaZIdZ6zeTb3/62kJBLI5HWPmP2eLYJWT4a72M+S9aoEm2J66yrvvOd75hdvD/pip512MUXXyzPPPOMPaRgobMN3jaWov2/PotTdECfwa6YILg/+gyGYJIDJguqbUfg2WeflQ8++EAGDRokyZSRt6cUo1bOyUSLFmECNIwEx1//+tdmnarNfO+5LVvFcE6G4DuW70oqlrNsnCixZMkS8951K0Nnm7ct19y5c43y+YwZM6ShoUFGjhwpVEunknm29sc//lEWL15snpcLL7ww6eF8n9u6hQrs7kkZVGd/++23hWXhdXOyFhe+L2x9bjNdt26d3H777WaTirBUnX3++eeFzyF/k8cee8wc8/vf/17WrFlj6pIDDzzQHh4PszknFdufeuopIamf75yvvvpKODGFEwRCoZCMGjVKTjnllEbXRHXeO+64Q2pra+Pn5EQA4kRjeh5njW0T/s6sK6dPn26U8EePHm3ugV122cUmSxlykk0y473ptsMPP9xgxTji8vLLL0sl1HIrusHLVk1H+ef3npB9uu8vnau6uA9Luc53UAjvIr6T9J2SEibdoQgoAoqAIqAIKAJlioAScsv0h9XLKj4E6l95SoJ7HRQtmO3LoDonrdS2o6XWv0WAAF3C0c1cfX29+bgvgiLlVAS6CaqsrDQqFm3atMkpj2wPij925kCjBRhbY1A626bQ+kcRUAQUAUXAIFBu9WJ1XVtxPghKPVyU5kzGpavJkVDEpcINXU2mclmPijGqjEvyGTesUm5pbeujoAiUEwL+9lD9Gx+AmjUIGENAzv0A6oFf4pncmP1VRlaLbAXBYuPmjRKZgEG/nRu7Jc4+x8Id0SLfBqqQW7gfVHNOi0C5tV2oTFmob3q6oyehKZ+E3M+/nCmfzvhC5i9YLOuhvlmq1gkkyoE1/WTc6JEyasTwkrqMhkWYePJell4gMNksAEX5NpNJxgU5EQTHXMwScd1kXObTnMq4JMUGg6nZlT179jRKsvb6SPSxhJzzzz9f+Fx07txZfvKTn5gkJNzeeeedNrm89tprcvXVV5ttKt2++OKL8fNRFY/E2XPPPVeouEvCK7eT2cknn2z2WTftJC2SREmbPXu2Ueb95S9/GT+U6S3BiQQ2m5YJqPJLoiSN17///vubdf6hC3EeR6VUKmLzWmns+/znP/9p1km4pQqpNRKRSW4jGY3lL1ZCLstL4nj1OM6WBCk3EiPlepxsFVmG9uC7jlT0wbfdoO1kWYtDPkKScknEdZNxma9bOTcf50nMg8RWEgjff/99QzYjyWzXXXeV448/3sRPmDBhB9JdYh7u7dNPP92Qt6kiTcL40UcfbRZ3mlTrVEwdOHCguUdZ5yQScqdOnRq/f88444xG2VjlXJLXScZjm5bGe55kcZJ1SfIlKb3QypzOBhDg1uLkHpv8PnDrgvv5pc1BUMPsjfsL96haYwT4PqVqMomimQi5JHvyPWaN6zfddJPZ/NGPftSIkJuLYjiJnMzTcRz5+c9/bp4d97nsei5581iSMBNJwy+99JIhulLFPFtzX/9JJ53UiMhu8yJR3WJkJ5Vs3LjRqGJbErxNy7LQ+FuwnnBP3qCaus2HatTEhyReaxxHo913332m/iLZ2NZXjM/lnF988UX8nBMnTjREYeZljZNobrnlFnP/sO6muctp05G0z4XG94gl5JLgy3cR69tE+8UvfmGIvSQfpzMSkpMZ4zkuxzYBybnudFxnHNVySaatHhuQKTu/JmsXr5Ej+2BCQpvtExKS5W3iUMc5a/E+Qh+Gv3mG/VIWRXcoAoqAIqAIKAKKgCLQ3AgoIbe5EdfztUoEQh+/K77O3fHFEXvkYryGqDQnICml7Vb5CxbfRbPjgB/tNA54dejQId7JV3ylzVwizhTmbGB2jnChIgc7Agpp9rGLniOmlBs/YaltxwuuK4qAIqAItEoEyrFe3LYG9eKUOvG/gSbkGgzaZmtodvprMKi2p1+qJ8QG1TJkY2o/U0HiD//HlHJJzqUl219XXykbtuwsW2qrJezgBOZ4kzg6iGe3TQ5J4mP7A/6wtKuulY7tNklVJQZIEO/l/NHzMZNY+cya/lEEyguBQGeftN2bxFy4OZ4KFUEQc51FuEavqmoxOALrAlLx0U5S3bODtBkQEBJ+i9Fa5NugxJRwUyn2FuPvqWVKjkA5tl0K/U1Pl+YkMH3++edxgkJydDPHLlm2XJ557iW0XRyZMH6sHH7wgdKlS+fMBxZpirVr18nsufPltf+9I29OeU++ccwk6dsb7hGK3JzNIBh+BFLiLDb8PBYWVZd/iEj10dmTcS3R1q2ml0jGJVGuOe3BBx8ULqmMhMS99947vpvkXbq8Hzt2rOk/u/zyy41KJ4mHNJIPu3btGk9PdT7aTjvtJP/4xz/iZFybgEqzJNuQyErCUCojucyScZmGpEUSJqnUx7xJCHIby9ynTx+jnPvpp5/Gd5FYa4lUVHh0k3GZiMeRbMvrYjq2CUhqXLFiRTwPvgvcxv0sO99B7jK60xTTOgnkJDUJSErbGsLizEHpvNz/SBP+Cs/MJyDl9kji8SSHi7REW6uOyywSybjn31uXQ87ZHcJnkqQ6kvBIZKXx3uJijSQ+3q+HHXaYpz5wKm1SUZNEQBJnv/zySyFhPZP5MEmLJHUSzKnITLVNkt6tPf7442aV9z3VOd1G1UoayYGWjGv3M78f//jHZrN9+/Y2umChA8XxCBZP1hb9Bnvhe+NwfCt0L87vA0/XUUSJ+HtzjMMSc0eMGCGnnXaaKSEnR1jLVTHcHk+SJ43v24MOOsi8/3v37m3ics17zpw5RgnXZII/nPhBwirVaXn/U6suSrsAAEAASURBVHWd9382RmXda665xhzCZ/2cc87Z4fB//etfJo5EVOJF47ksGZfxhxxyiHnP853PiSRcqPpOMn8ysyRVEnc5MYTfUIn1fuJxTT0n3wvEh+8sqgqz3foXqGfTOIFk0qRJUlNTY94rVJGvq6sTKt/TSIK2db5VIg6Hw+a9x3cZjfcW8+U77dFHHzUkXZK8md6tjGwSx/784Q9/cG8mXbdlcO8kSZdk3Ljh9fDQ63+WQcGhUuWvlsn9jpP2wczvM76LnK2s6PT9EsdSVxQBRUARUAQUAUWgVSAQYwe2imvVi1QEWgyB0BcfSaB3/+3fG/ju4KeHcQPMUpXadoshqScmAlTQoTudTp06SXN04DUH6uyk5LVwoesguijiAEKhlHV4TebzH52s6InBBjQBY2HJbTfHD6TnUAQUAUWgiBEox3ox4FRIYF4bqZyKAdo1OYC/M1Rxx8DVJBRuqnaBq0m4R81s1MeNtk+Thtjnjt+4rb0sWN5bVm/olDnrLFN067heanotkw5tN5v2sjlvwvnZjnaXR7v2swRZk5ceAuBtBOEqMtDFJ3X9sEyBWu4M3PnbxX48XVNkmUjda474O0DhZrf8uTz2dHKPiVrk2wDfAxygJQmjlEOPEGuyFkagHNsuzfXc0iUv1d6sYlguPyVVcR985FE54RvHyMQ9J+SSRdEdQzIxF17Pex9Mk9vv/qN893S4Oi5ytdz6OZhk8gnqMq+kMSDvQ/dq9aSAVI/256SMm4yUa39Q7iMxpjmNpJ10fV9uIqAtF58DuuMmuY9kXksQJImQSqBu+/DDD80mia89eiRXsvvGN75hCLkkj9G9ev/+ANllQ4cObURItLtqamoMYZIEoETyIdOQALV06dJGmJLQZY2kNBJuE23PPfeMR82cOdM87wMHDjQEJ5aRasB0wU4V3mHDhpm09h0UP7DIV0jKrRrrl8g29PPWhiWy2GOBN4s0fByR+qERqcb3Xj4sGSnX5nv/SyGZNtexmwUNKTZBt/JUgqQyLUl4vH+s8T7nQpVIktIzCTmwX/mBBx4whHXeNyTmWQVbm2eqkK7iSXqjkZT7ne98x6zzfv0bXMrTSPKle3q3kbjGMvIYquJSCZPkdd6fbGM2Zz9+hI/Wjo+Xu7jxdV879B9AGVnJuHFImrxiiaBPPfWUIYWz3UKl1kTLRTE8MQ+SPDnBIRDAB6PLcs2bxGE+MzSq1rqJ57feequ5py051HW6tKuDBw82Hg6o/kribSIhd/ny5XFlVqs+TDGa3/3udybfb37zm0Yl3V4j1aap6k6iKYn7HEtKVcc98sgjpr5IW8DYznyck8R/TgagOq+1ww8/PE7I5jvikksuMWN7vCfY9rBkWNbhVId3G8nGFm9OvnErF/MdQ6Iy9zPfVIRcK+zjzjfdOgnYO5BxcYAt57yG2fLZuo/lwJ6HeCLkSgP6Gj2+j9KVS/cpAoqAIqAIKAKKgCJQaggUxrdNqaGg5VUECoxAeAFcibTDrFES/vCfIYOS3C4wVpp9egSookMyLlVhmrMTL32p8ruX18Xr43Xyegtl9hks9bBQ+Gi+ioAioAiUAgJlWS+iYqrHoCcJc0YBM5sfgiRViKFUHe6XdicEpA1c3Xsj4+Ikpn2Kk3sIF6/uIR9+OaogZFxeLkm+zJ/n8VKeqHIv/5paPRvENK0iUHII8JluAyItn/GKgyMS7oKRrSz5GM4CuEnGO6Z+HggWRf7YNNu3Ab/VYamUZ0sl3lyE/ilqBMqy7ZKAeCGfW5IblixZknBG75tUxiUZ99yzTisbMm7i1ZOUy+vjdfJ6i9XCG0EqnA4Xxou8V0R0qV51ILw/jAcZtzrLys8FBMkvlphro5PF2X2FDO+9915zT/O+TrZwfzL73ve+ZxTzuI/EKaoj3nzzzY2Ssu569913Tdzo0aMb7XNvkOBrza1ma+NSkZzs/lRqg8nUaj/55BN7mFEBpNevxOXQQw+Np7HlIZnRrSRMMhaviWq5JHa9+OKLScm98YyKcIXuv6vgyaRyf9zP2wVYM5bUWYBn5zMoS2/y/uxkypSkXJJv3cZtS9Z1xxd6nfcjf9/58+fLwoULjQKkVRbluUmqtWTHTGU54ogj5MILLzTJSJK1KpWZjiMpnaqgNJKDrVFx2hLjqOabaFdffXVchZfEXZLaeH9TwZOkwMT3TuLx+dz2UYrJoxxTZCu4u/MjElqdv3sqn9dSqLx4j3Xp0iXlkuw3zmdZvCqG85xWMTzx/JyscNttt+1Axs01b052sMrUVD53k3F5bqo/817OxUgQpr3++uuGQOvOw63QfsIJJ5hdVM6mQjUXKrxbMq49zubH7alTp9roRuEFF1zgmYzLA/NxTpKj3WRc5ku1XNbTtNmzMVachc2bNy+e2uZhI3r27ClUNCZG119/vY3eIWxoACPWo5GI+/LLLzdWxsWxJONaQm5NcJCM6jQWZFyPSsl4F5l3kscyaDJFQBFQBBQBRUARUATKBQEl5JbLL6nXUdQIOKtXiC/Arw50FrO/mCGtFLejJde/LYQAZ7NSGTdxBn4LFadgp+X18Tqznb2bTYFiT2GMvxBVBeTx0fjS2c7mmjWtIqAIKALlhkA51oscBKudEpbwTAyGZSNGBDEU/1Aohh3rl7ZQDQv2w6deY4GU9D8/KkBT+5mK0GwgfeOQ+5es6SkzF9WkzytPe3kens+Ww0v58nRqzUYRKG4E8GwHB/ilbs9NEjw6Iv7BKC7iPBveLeEv4PL4nbCE1hT/wHuzfBvEvtHNKxBAkvhD2yE0sUnibfoW3h87vQZFjEA5tl2SwV2o55aKhyQd5GrPPPeSUcYdNoQvzvI1Xh8VgHm9xWoN86H0/hXqIK/zsNuAW7YH1N33wISznezbOvercxNw3eu559i8R5LsSrKftYEDB+4wcZ9qv1blsGPHjjbpDqHb9XhTnq8dMk4SYcmMSXYljdq4cWM8nkq+H3zwgfzgBz+Iu0tnflRSPfbYY42S7oIFC+LpS2ElgHu5zUQok07APd1YbDV18SHiHEI7rmFhfttwblJuS5FxEy+a5L/jjz/ekLGnTZsW/935m3sVcSBJjSrPNKpJusltiedzb1tVXJIHly2DiwkYlT1pfN7cSs4mEn+o2ExVahJz3cQ5Kv+effbZxhscyePNYf62aK9C+daTQaW84T1Htr4SloZlxT9hz9M1eUzEd2SqhR4NCmnJFMOpwuxe3PcZFcMT7aijjkqMMtu55u0+ju/cZMa6x11vJEuTLI4qt9bcBFzGPfbYY2YXn3e29Wis5zjJi4tbhZ34kDjsngyyZUtyqX1LrDcZeviTj3NSFTvR+E05YsQIE51tPbjbbrvFs5s8ebL8+c9/bkRoZpubGKVTDQ8Gg/E8Mq242xZM+7///U+o8GvJuLtUjZJzh/5ADuk9SXbySMjlu8jftultt0xl1/2KgCKgCCgCioAioAgUGwJgCKopAopAoRGI1NfiFOgkYz8ZvzuyDKfNnif3PPuivDTtU9mwBVOWc7SO7drKpAnj5AeTj5AJQwdlXQ5T7hzPrYc1HQHbCcQP7NZgvE7O5uZ1p3PflysW9jGMHh/V1NveLZB+e9qns+WeB56Vl1+fJhs2Ju/w8VKujh3ayaSDJ8j3z5ksu40bYl4PuZTHy7k0jSKgCCgC5YZAOdaLEQyu1n0Cghxd92Lds6FvPTACBIUj/FIF971UW8racMqIj39wZIpw47Z2O5Bx27XZJhWBkGzZ1lZC4WwYgY1LWBEIS7s2W5FHBfIC4yJmJOXu3G6z7Nxmc8bymfLbAzVUBMocAb4DfR0j0vHQtlLX3ZHaF6GURiK/V/EbvGMaPgIpt78jgf0DObn9bk6IC/5tYBVyYxeVUhE3YT8HxumKluSLzZvhR7oJxmvkAC5V1KwL7h3KkXD+xP1NOL0e2gwIlGPbJR1shXhuSTbwSsJKLNvnX86UsOOUrTJu4vVSKXfaJ9OF1z1qxPDE3S267WwDmRB1lrOEDU9vFhiKtu4+UIfvnkM7N8UprFqlDVMkK8roWbNmGXfStnBTpkyRBx54QM4991wbZSbzjxkzRj777DP56quv4vGJK1TXs5ZOSdemaUrI8lhbvHhxShfjNk1iOH78eLn99tvlt7/9rbkukiXvvPNOWbp0qVFUpSJqMtJaYj7FtF3RA6rP+2Iu5jJMyvzc2zPhLMYzNNuRyiG+3L79UgBgFXFtmCJZi0Tz3iG5lm7qabyvJ0yYkLEsVKglgXfixIkmLYmxbmXNVBmQ5G2NbuKpxGwJuczDTtqyaWxIEvEVV1xhlrlz5xrX9STQvfPOOyYJ86VCZqKCpj0+X6G/I+4NKi9TksnDRN/IGsyPeN2RCJSXq/eLSOXgpimR5+s6CplP9+7dzXsz1TksMTTV/qbGJyqGZ8qPiuGjRo1qlCxVGXPN203IHT48eduB9z5Jom+++WajsmTa4MSQU089Vf75z3/K448/bkjqPGbFihVGNZfrZ555JoNG9tprr8kzzzxjVFuzVZelAnIu1pRz9uvXL+kpcyExMyMSeX/2s5/JrbfeahS6qZBP40QDEnSp5My6MZ0ddthh8utf/zpdkvi+Aw44IL7OFR5Lq/JVy34dD5ITa06V/XocJF2ro8RpszPdH7yD/F3xPuqQLpHuUwQUAUVAEVAEFAFFoDwRUEJuef6uelXFioDtM0bI1Yhr2xTZtW33P/zq/+TyB/8uV5xyvNx8zunSdeeoGxCzP811Jtu/ZtPX8q8335FvXnOL3Pjdb8sZh8Y+rlznteWw57fbjcI059VdhUOA5FR2IrYm4/XyugtByDW3PZWsOPiO0BcLM20//M9X5Ir/+4tc/pNT5Oarz5GunfFMuvKxx3sJ16zDM/nkm3LcadfIDVeeJWecig6OLMvTmu4HvVZFQBFQBNwIlGO92LAILuQ/xKQQDIZ5tkqQccdAWenogFQNx6AZtnMy1oU4kKRWrrGdmri9YHmfRll3bP+1bAZ5tk/vVdJj8GypqmgAnzd2PFKa4z1u14WCsnJdF5m3rI8w3w2bo21enpDnHTt41g7lSSwft9UUgdaCgH0HUmmmelcQaqtEtr0AUi6JHB7VBiOrkPRDR4I1PjPoXuzYFfTbAO9Akls5wOw1pMLZ/fffL6effrpwYJQuTrM5PvE8VE4lsYgkDiq4TZo0Kev8iv03bO3ls89ta8KhkM9ttjh+OuMLmTB+bLaHlXR6Xi+vu9gIuaFlcI0+F/UV9Qs8mA+cj8q9UFcNRGsvywZfpuS5kHET3WZ7uIS8JqE64FlnnWXy3GuvvYSkqYceesgoxx5yyCEyaBBEGGLG/SQucuJIKuN+a4lkLxufr3DcuHHxrKZPn25U9+IRWaxQLXHXXXc1CwmadEtO0iVd0FMB1Y1BFtm2TFLcpJWDfdKwp0+cFfiaWuuhGBDuDM3Bc4T05rnwcIhNgqaO6Xq024lhLmTcKu/ii4mnE5JWrQrobbfdJlaZdoeEiMj12SN5kOqOdMVOYqwlxyY7h40jee6MM84w9xWfLxJoreI0SYVebPDgwcKFJEOSci2R7q233io8IRffCIE++LLHBL6IV2H5DZiwNwWTJVY4uB8jUjUW6s090ceQ+7xbLzC1WJp27doJSfwtZdkqpboVwzOVOde8167d/gJKNw6VTnU9Xdn4TJGQ+8orrxhyKUnRVi2XzxyVWK2xruMzSyJqMmN6+0wm259LXD7OmYqsn0t5eAzzu/HGG2W//faTv/zlL/L000+brEhO/t3vfmeWY445Rv72t7+lHDvMhgzMyW9ulVz2D46oHiOH9T5SDu99lIzsNFraBLZPos90XT5MDKjond/JI5nOqfsVgZZGgG1rtkf5LmY/D59BTqBgW4JtklzbMy19XZnOv2TJElmAtjheXOadlSl9qe2nGvuXX35pis1J9OwDbO1G7yX18MrSH/d2//79PcPBbza2OdgWswryng/WhIpAiSHA+ZFqioAi0FwIkGhHQ2DWXNvR+Mb7qYxLMu7z114uPzj2COm6U0wZ1ePx8d61WLY8nvkwP+bL/KPnjQbu9GnLF0uuQfMiQBUYuqApNmOD64knnpBXX30170Xj9eaqfpOpMPYezyac9slsQ8Z97tFrjaotybjZHM9nzJ2ex1Mdl/mR5Mv83fsT0yfbznSdul8RUAQUgXJFoBjrRXYmsE7kwo78bIxKYXXTQabDwGq0MvBwNJVxR/uk7WSQcUc0gYzLU5k6KnpuU1slbNfVB2X1hk7xQlEZl2Tc3YZ9Kf26L5fKQD2Knfr4TPnzeObD/Jgv87fG8/L8nvK3B2moCJQ5Au53IIn4VaMD0mayXwIjwbLwOvUaj2x4VkTqZ0ANqxYbTTQqxNp34PLly5uY246HF/TbIPZtnqg4m2qb6nsk4958881G0dZ2xKdK7yW+Q4cOJi/mybypfujlOCJl0+2ImsYUEwLu57aYykUiBJ9dNykvX+Ur5HObbRnnL1gsQwcPzPawvKdPhndT2pDpCsjr5XUXlaG6aVjgCBU+PRlGLyrQ3q0aw8knqOOytE6dKRGZP+P7lgOHLWlUh506daopwr333mvqIku2oUJuOByOF88qiHLwmGkTbdGiRXGlXRJcC93vSCKCLeuvfvWrpOrydI9Nt+VcFi5caIr83//+15AaqWy6bNmyRpdBcq6bPFSKdSLv7epxsXacxxE7ZwEIuYvwHHl8lCxoJ030eAJ7gIdwwiAPiVIkIWG1pqbGEOtuueUWSeV6nirzJMZay5Z0TYXJffbZxx7uKTzttNNMuo8//liuuuoqs857LZm6Ld/jJN5y4QSrRDv44IPjUQ7U2pvDglC59YPsnZXBiwYn+NU95ciWJ8Ky7S148AHxW7a/Vjxn5/dH77V8Xa/tY/EHyoMhnKgYznZiuuX73/++Z+xzzdutkm7fv8lOygkVuRifA5JwaZaI61aeJhnUGonzloxLlVaSeKmszgluxGnBggU2ad7Cljin18KTdPvYY4/J+vXrjVow32m2PiWWv/jFL1JmxYk77noyZULXjoP2P1iWv7tSzup3gVwy+go5Z9j3ZLeue2RFxmV2ASi5Bwdm+R5ylUNXFYFSQmDlypVyxx13mIkHHDfne4qEXL672Jagd6Xrrrsu7US5UrrexLJSyf0FtNlfeOGFxF1lsU2PHPSawIXq7i1lbA+tXr3aLLZt5KUsuR6XLu///Oc/5jf/4osv0iXbYd9LL71kcCzXe2WHC9aIVo1A/r++WzWcevGKQAYEMCvImP3+yLB9z7MvGmXcsYMGxI7L7njOQkp2PuZHxV3mn2x/XG0ixfHRg/RvcyPAxhI7mYvNfvOb3xjXOFQayLfxerNpUGZz/vhjaA6KqgJyNRqffPveB541yrhjRw3a/phkcXyq/JkfFXeZf7rzJzvenL6E/tRhtpyaIqAIZEagoQFKozFyUObUrTNFMdaLHCimuzguHCDIxhpASgh9gYGuLR6PwpdcYBiUcY/ySyWVcZvaREAFZGo/UxGZjUbbG7Y0nvVdEQjJoN5LZae2LPCO6aNR0fhs9jM/5sv83cbzpytf/Hzug3RdEShjBBLfgXwHVO0CUu6RGHiHW2/jntbL9W8GMQqD7g1ZuA1PlS0VQOw7MNvO2FR5uuML+m0Q+/a1ikaZQg6kUBl3yJAhpoiZ0mezn8QU5s1zZHOcGytdL04EEp/bYiklSW98djmwlG8r5HObbVnXYzC0S5f8kjOzLQPTn3jC8XLat/+fPOXC+8UX/2viGJ9tGzJdGXi9vO5iMmdLRMJo90Y8FssH3k5wDFQau6Nuy8GoRkWVv3x8WzGPbt26pVSgy6F4ZkCe5L10C8lH1uiG3LqdpqI6yVN0yX3nnXeaJFOmTJG7777bJpeTTjpJLDHrRz/6kVHSIzl3zZo15pnn828VBq+99tr4cYVaYb1mCVYkJpx44olCxXmSFTiZ54EHHjBEXJKL2Jbo0yfqoYMhVRWpAMhrIg58p5Lo9/bbb8v1119visxrZT1ailbRw2/udV83b6WPrIdKLtpvfKaysdMP8Mv4gfkbFjzjIL/sni3pM6HA9AxAo+Ij7+l///vfQtIDf1+qZ9F9PNUh33//fZOOpNdOnbZPFjWRGf6wPqJKbTZG1+2WPGgnraRS8O3du7chGPI+5T1K4Qr77JKQc+GFF8ZPffTRR8fXC7kS7I17ChMaqFCZrZn76+2IbHs8DGJuSLa8ERZ69Ilk0c3ByQv8nebMmSPr1nmV6U1dUvsb9OzZM3WiIt2TrA5KVAzPZ9FzzdvWFyxLKtItCaEkoOdifA6twjvJpSSvWQI726JuIwHX2n333Sd8Hnv06BEfH0tVPntMLmFLnNNdTveEGne8e53PFcm1VM3lu2XgwIFmd6Z2/FFHHeXOJuX6Nb+8Vp7744vy431+IU/+6AW5cMRPZFKfo6VbdXd2u2Vlvi6xNlyv/NU5WRVAEysCzYgAJw5xYrVVKOf7rl+/frLLLruYtoSdpMJvPfb1zJgxoxlLp6cqJwT4jXT77bebJRticK7HlRN2ei2KQEsg0NRh25Yos55TEShdBNg/xq8Wj+FL0z6Vm8853XN6r/ky3ckH7iM3PhobbPFYnmxn3DfHD8XGqx3Ucs+gLdS57fm85E9VCdvI9pJe0zQvAva2j57VaO65OhWSb7/0+jS56aqzcUjy/ds7JbLf/63jDpCbbn80BkK2x+cXOz5TdhAwGAwKF6/mPpbPJD88aexEP+GEE+T5558XDvJcdtllXrPUdHlEgGRBqnrQLc6bb76Z9re1vyUHzNq0aZPHUogZTKGbrWnTpgldrl166aXCwUG1KAIvv/yy0AUiBxk4W9QOQhYan5tuuskMyu6xxx5y1113Nfl0f/3rX+Wee+4xHebPPPNMk/Mr5wwi4J42zII67nzWTt7M1xfku0P9UMaFWlievupM7WMqSPzhf180FIRbahur9G/Z1lZ6DJ4Va6fyoFjtyNXYce7js9nfo/MambcMF+gynj9d+eL5u44pxCo7WNmBxY7T9u3bCwe6qM6kbb5CoK15ZouAD022qlEBcb4W2fZ1WCJLvOUQhtvw+jmOBGvyQO73dsqiS2UHyb2GdP1N99he02ebjupRJB1le1xzAMt2/eeff25UC0mWoTpw3759hW7OOzdRiZLtTw62czCahDMqQakpAopA+SBAVddPnpohuy6dKAPCgzxdWGC4TyqHgciRI5eD/Rk1NTXmu5PtuFyN39AkwaRz4Z1L3lTR4pLOSKAlybS2tlYsGZAEnJ///Ofxw0hk4vcXiU2XXHKJTJo0yRAAqL7+7LPPGmVQvrOpoJdMRe9Pf/pTs7luJxmLSmGc2G+JyPELia1Q9e/RRx+N9ymRJEa1UtaNvI/23HPPxEOMUuANN9ywQ3zJRED0kxMtG4Y4EloZ/b5KW3YoloaXYVLnmohUtt/eI5n2GOzs0VHknvP88tw0nyxYFf2cy3RMsv1VaHfuNURA7vV+7mT5MI73BL0PsB+C9yn7Q1IZya6ZnplUx/K7jfc6laS9GPs0mdZ9X33jG99IemhVVZVQtOJ73/ueIblb8hvvZUt654HXXHONcVudNJM8R9KLBpWXwwsw+Q7kWsmCTGuKgkMiuEcaVuM+mwFCLpQuK4bim2EQJkn080lgZ/z2GX5+EgdJPHrwwQflkEMOiROcs7lU9lGz7U3lPbY3qfZZKmbdkr/33ns7FNkqhvP+oGL43nvvbfoY3AmpGP673/3ORJF8k0yd2Z3erueaN+tLaz/96U/loIMOakR+57eJm1xu02YT8vmmGjbJr3weaUOHDjVu3N35kPhrLbFfmt8j2RLsbV7pwpY4p71HWC5OVEk0/v6M5+QA9tvasRam4/tl//3390SQ5u9JJUKOBySzboEe8u0Dz5CLx18iWx4Li4M+gk7ru0mntslSe4irgoeD3ejhAH0M3oeWPGSsSRSB4kSAk8nYVqfttttucuyxx4qbs8C+Do6PcDyM9o9//MOM07nTmB36p2gR6NWrV/x7yU7YKtrCasEUAUWgaBDI09Bt0VyPFkQRKFoE2DcRsR0UCL1sb9iyVbruvJO5Ji/ps8m/G/Jl/jbzrPKPHlUUf/khyVlnI0aMMJ0yhS6UPZ+X87BDgTP21YoTAd7zRkWaCpQ+qAXEQox6p9zesHGLdO0ChUCP6bPJvxvyZf7Gssk/ekRe/1KJgqpctG9+85vGHZLXE5x99tlGtYTp3c8AyUsk49LYQa2EXANFs/8hIZedeLvvvntaMi4L5r4POFhGFYJ8GMmmieQKd4dnPs5R6nmwU5kd8lw4eErCT3PYV199Ze4PKizlw6w7Ju2gyIxmeB0GuDBIJlCq9GSoiir3Bhl3LDq2t3v083Ro6kRGf9a0V2270B2GHYwQuywUDkhVRQgk2dhx2OdOz3Zpo+0U+2+95B4ZPm6wHHPmEfH0zJf5u43n55l2yNeeJ5a/+5h8rnNgmHWcVW9x581BEE4qoEqZe3DEnUbXFYHmQsCHga+q8Rh4h2vZuo1whwtybkZDGg7Uh9dHpKIbn9zWZ5yAxAFmr+HmzZuFJCev6bNN17FjR+PGO9vjCvnL2YFvDgpTwS6ZnXPOOYYgNnDgwGS7M8bxHNYNu7YPM8KlCRSBkkDg3XffNQR7SwA5qee3ZczIPUTQns1oSFMB5c1Al6bXTXxncykGy3Yil50kzfcvybk0Tnx0k4NZX1AZd+TIkWb/D37wAzMRlhscPOZ3+JVXXilPPPGE2W//kARFIliiMiH3u0lCNr07JAExV+M5+XuQlGWVxGxe3/3ud+Xyyy+XmpoaG2VCEvo4YeXmm29uVA+xLc7JHLfddpvkWv80OlELbrAdxns+NB3fhh7acBEQd8MgS0pNdoX245E6dvemP1fZnTV1at5L/P323Xdf802VTH2TE5VJBKSbdt7vbnNv2+fFvd+9zr56utd9+umn3dEp10855ZQ4IZekcE5ESmX8XiRhlKR4q+Zrybh77bWXXH311XLooYemOrwg8RVQpqzeH0IJa8ISpkceELmzNhwWWQtF5rUk5mIiX198M/DdXANX9CDmVvT0ib9d49/EnoP9j5s2bTLvI6oHN8VIxLVE56bk05zH8p3Ee4H9CewPp1gFJ7BROZj3LRXDqRBtFcM59sR7hRNI2I/OiRe8h5hPNpP1c82b733WNT/5yU9MmU8++WSzvs8++xjS/MMPPyyPP/54kyCkCvauu+5qrpkEddp55523Q558VqiMS6OQA7HhPcAxBr4vmno/7XBCRLTEOTnZxxL3iS2J61QE5z3Cep6iP/ZaSfYjDpxcQKI64x966CFzKXw/ZTLWuby/rLX37SQj2o2WUR3HyqhOY2V0aKzUPok+hNiwsU2XdYjuvMAIn1TvF5CKHsnfDVnnqQcoAkWOACcW0di+5bve3TZhPPuLGb969WpZtGgRo4x3CK8TLcwB+qdFEbDfHC1aCD25IqAIlBwCSsgtuZ9MC1yqCKDfAj0X/MsPEOh7seMo07Y5JvrHU/pM+SXuzyl/HlR8ZmeeFVPJ6urqiqk4WpYEBMzTiGcim5BZZJOeJN9s0ueSf8Jl5X2THdTsNPTS6Uf3GLaDKLEgdM1iO9s4uKLWMghwEI7Gzr1sjDN482UcOLT229/+1swqbaqams2vXEIqvnCglB/5hx12WLlcll5HGgQaFjviLE6TwLWLhNQgOrardvdHFWlc+5q0yjor2kxNGSbmb2o5VHSZjku1n2TcWZ/OxTLH1JeTz5xkKlqTfseTIQ1PluF8icflYZtEkm9961uNyAJ2wITZc4Dsuuuukw8++MAMhug7LQ+gaxZNQiDQAe+IPf0SWgiSxrToc5MpwzDGA0JLWy8hN1cl2myPK3T6TL9zrvvpcplk20Qil/tdyLzpavxf//qXUX4hqSbRODnMKstxwKrUiVOJ16fbioAisB0BkotIJLJEXLunb7v+0r2NN3fj/j4ge/UvP/V2ura3XoksLl5CklS5pLIhQ4akzJf7qMTF9/mSJUuMgheJul27dt2BMGDzJxHKkqFsnDskCcgSgdzxdp2qmKmMJIUf/vCHctFFFxmX5XRbzomhxCYdEZhkSi68jnnz5gknsFClvVyMnk8qBvjF3zsizky04TKYswb8SpAkzccUv+VK3E488UThwu8rku5IWKHnoEwq/PxW4+LVHnvsMa9JjQhINs8ryW5vvfWW8ei3cOFCo/pP8lyLTdzEfUGVceeIiGyrh+ol51SBb5ezQUuC92b9bExk6wzR3f4g5g4AKZfE3N5YusfIua77kX2QnCwwZ84cM+Es23MTOz7n7FsuNZs8eXK8r/yXv/ylcOFkXpJzaVSHzlYx3CsGueZN4jvViOnZjHV4Yj3OiRxUbWe7Pldj2dhOsEbie6JxAgZFeDgRheroXNzGd0Xit4l7fy7rLXFOlpOTYig6xHffGWecYYpOci6/m7jvD3/4g8GBabgkfoPxN6E6dybbdfyucvOvfyOP3fqEDO8wQoZ3HGnCoTsPl65V3aXCDyZtU8m4fhH/MKhzH+GXysHYcL0LMpVP9ysCpYoAuQBsm9LYlk0k47qvixNVLCGX467JCLkLFiwwdaZNV1NTY967/fv3T5k3y/Ah+qXn49h169YZMR6Sg/kNwHHZRCVe5s2J1pwUMHHiRFOmKVOmmGM5NsX2lzWmZb3AkBNGmC/LTYXuRAVzewzDZcuWmckcs2bNMp7lWH626by23adPn24IzMyLZWRZE43jlraeIvasN6xxkjcV6pcvX24mB3GSA78d6HmDbYrE34nXuGbNGqNIzjQfffSRfPLJJ+aaWTfS0ye9RdGIaeK1Z3s+TkZnnrbcxIltJeLMayVeY8eOjSvV8zfmb0RcrXG7W7duQo+XqSaNZXNcttdgy8Fwy5YtZoI9J9YxH35r8t6lZ5NsJ6TyPvvss8/Mdysnb/KblW0P1nf0WKimCJQSAkrILaVfS8ta+gigszFqsTDTNhObpB7TZ8ovcX/O+UevojX/pdrfk08+mRYCNpZa0thwZAcjOzfYccGO7fHjx5sPebrMSDR2YLAhxw4yzgZm5yEbc2wUsrHDDwWqWrJxmM44sEoX6zS6WuJxyYyd9mxskrTiZQZvsjyaEtf4aTSaeya7aHzpbDcFA6/HUoWE6iWZjLPkUxk7T0loWrt2rflASJVO4wuHAAe4rJoZZ9q3lNHdGo3PPQfg1HZEgJ3KfIdT2SXxw37H1BrjBQF2zpAgxDqNH/M01olUUqILqUSjggnJlazz+Huwbnv11VdNJ05DQ4Pp5OCgEvNIZ17rxA+enipDFo2UKvzLZJGdwxIcXynBPujYzqehAjS1n48Dv9xIDJOdrHG69MdHtXQjsXxvu+RuQ8a1uT770ItyLFRy7X4bHw8zls9q9caPyMsKyXPf/va342RculAnKY2dSrwX2BFHhRK2mdj+ufPOO43LsbycXDNRBJqAQLAvBsDGOVI7D1T2dZkzcqCoG17F0Xm/mYxFpXy233i/s81O95Z8L3LAgB3P7FA98sgjM2Zs2/zMi4OEiR3ezICdzi+++KLJi6pXHDBobmO5+LzjVRPltNjtxDC235YvfpxN5/H4HY5LcjzPsUO6DPnzmEIYlbvsgDcn6tHN+HHHHWc6wsPhsHkXUnGJdS0HkjmYbV2spypPU1zHp8qz3OKJIVX8+E1PUk9NTY1pe3CgnvWQ26guTHVMGl3Vk/xDt5l08cy2DxXF2A9ADyhuVU13Hna9VJ5bW96WDvn7PAHSxOzZszDwtAHtx14YLBoiJ2Ig06qVtnQZm/v8dKnMNlOiVUhQulV3l/YVmQfR2BIN9AE5EcqLavlDgM//sGFgyhSJcXCW77PEd1qm4vE6qLJYjhYEqTGAV7wz08PVbUO7ZSOWBrQZKj2kL5EkJJuR2OpWciyRoseLybYviQPFYLw3quFdh0Tcbf/FZGCQaQX3TJMMeUVICF+DbwgoOjeAnOvvi3uXCyZT8N1NZUz/zuglwCg0iT1uck+Tzt3Eg9m+zsVSTRZIp8pMojgJKiRUugmo7vPnohie7pxNzZvH//73vzekpdtvv92dnSGLcjKynRySSPBqlDjNBvvZSEym8ZsyWR1Awhf7kC+++OI4qdlmyTYGleDt9wmfN2upfie734buY2xcruf0QjSyqvLJznv99deb54P3iVWNt/cpyWMklBH3v/71r2Y/v7do/C5j2577UhGUItDYcDZC3RqK6iF8858z4EI58PgjJbAqKN2re0jQH7SX3/QQWQWGQxn3KChzj86nR6+mF01zUAQKiYD7nUwyIvs6Uo3pjBs3zozVszyJXgXZt8Lvf37Du23u3LlmXIJteI6pJb5H+N5gfzT7BNzG/jvrufT73/9+o3qYeb722muGKMmysi/HmiUXs4+M4yGJ3uJItiRpmBwCenZMRrClMNAbb7xhszQhj+F7nf0ZXibZsPzsb6fxHZpsTJPXx+ugcazGEnI5BpSMw8F+FRJvyZcgyda+m3k837Ukw7IvheOo06ZNY3TcOL7KPhYaORPub6pczsdro2Iyy8zrIAHYbfRmSQxZTp6PwnT2Wm06O85lJ7DZeHfo9bhcrsGeh2JdVK93i+dxfJPlI66ciMP6zItxohInBbnzsp44Wd9yciaJuWqKQKkgsL2VWiol1nIqAqWMQIzXEJ+1nmnbXmumdLnuzyV/e0wrDzk7iTOOitWSKbmxrHR1dMMNNxg3P3RVR5c31vjBz5lkHHR/5ZVXjMsku48hSZk8lo1vDgSmMjZg6T6MdvTRR0syRQzOSDv33HNNmuOPP75FCLn2sTGFwEPpZTualn+9pd/evectfe75bz+yEGu8N37xi18YcmCq/El2cyufJkvHxjJn66m1DAIk0VhrqUEN3ie20zDZB7Qtn4bw4JrGDaLikx0C7LxhR4/twLFHs8674447TF117733NhoAYGfT1VdfLQMHDjSdWYkTR2yn/zPPPJOWkOapTlywQj78z1QZMWQcRlFt6VKH4f4NUjm0ygxqpU6Vwx5UhIYMaypEbiAPkmfd4Q7ZNt6f6Xi7P5GMy2wnk4zLk9nzJZ7L7HLtt+lcYZTMm3hg07bZScd7iEbXjewEs8YOV5Ky2clIVQB2XP3xj380k1i8DgLZvDRUBPKNgA+DYcHhfqntjxG4dR4I/FswoA7ibqQuYhTnbHueqhe87+1zwHLaDmgOHicjXLmv5e233zbfEYzj91OyyXpsQ9p25EEHHeQ+vNnW48q1sTPGtzEAQYtvx/bbIB5v08V27BDfTPttufIZ8vd2D86QnO0ePOH7jqodnJzH9r71mEECNicq2MHkfJapNeRFtWEOmrmN9QzVsuiunW2Y008/Pb6bg2/2ueU+TnxzD5xZFTOSdTlxN9UAITMslec2fvEtuPIzTMq5++67kpbg+uuvw+/wI7klpoKXNFEZRqYi4/JSuwa6y5C+Qz29F+rDdTJ1xlQ58pyDyxAlvSRFIDUCfng68HfDh2EQbZBMpEkkcb6Gmu6WiAQqPXxMpj6t7ilzBHzVIMntGhAfhgJqX3EkNAM3T1OVMC1m+NyIrMK3xCqQcz9Bvh1AygOx3A9ieaAXCLog5gagnFvRFXFtcZ96+DSxWRciJGmJS7ZGVVurbOs+1k4sdMfZdbaD6SmOy6ZNm4xicmJ/H9NkqxhOwpcXyyVv5ssxI062u/baa406HdX1SFCy7UcSZbjkaiSheVGeJkGWE8U4LkUSFb+xKIJjyW/J8uD3a7L4xLKyryeZ5XJOTuLmks54HVySGc/Jb+srrrjCTIblNxXjrBF3kna5kAhHLIhDUu9M4OOxTgiRLM9nEkTcMIi4zjI8o8vwfG4S6e8MFGlrc89TCOHKijF4zxwWkKpdlIybJ1Q1mxJBgM9sjx49jNcHkgjZf3zggQeayZmdOnVqdBUk09bU1DSKsxsk3ZMoS+N7mERNjqfRKwQnd3AyO+sv1hm235n7+T62ZFweQ4IsVXJ5HN8ZNs1ll11mTxUPeRz7GKyxfDZv9ifYPgVeIyca9ezZA/nON32EPJbvZ44dJ07QsGRcXivHhNmnaJVd2XfEd56tU+y5E0P2IdrxHCrVJhtPdJNYLWeDRFB6fqWx3BMmTDBkUJaBmPA3onAUyc9UA040pnFb4rW593G9qefjRGxrJPlyPIn3AYnRrM+I8aWXXmrqPk745W9KjgWNdR75KunIrqwzMx3X1GuwQlC8bzkZnEahGmJN0jHrPy/iTPTkQj6CNY7Nsc3A6yVZmvcc73cq67MfUk0RKAUElJBbCr+SlrF8EEB/gzGEXI2743XFu/dHE+Nviv2Zjs+0P+f84wfmZ4UdGSRoUQ2JiqokwbAhxEYIGxEkOpx99tmmQZufM27PhcRVqj/RDQAbN/369TONOjbCUs0q3X50ca5xxhEb+9Y4W4iz7tiAYyOUjU5izkYYyUaJxoE/azyWqgQcSGWDiseyc+Gdd96xSXYI2cBmw5gNZRKA2ThM/Ojg72vNPYho45ojNI+VD385OI7QFwvTbtuCeU3fHPnbMhUw5AxL/paccZ3KeI/w/khnnF3Phj0VmN33KI9hQ5qD+5x1yI8o3p+8b+nqlgpbyYydT+z05DELMLuSDX0qpHCWPWc4pjLevxyE5jPB87JRT4UvzqBMJAzww9WqAdgBcV4rZ3/yA5JkBF4P1aOTWS7XxXz43DzyyCNmNiw/NvjRSkUrPpOJM2eTnTdZHMtMo7uVxGcyWfpUcblgQqz4IUU8rPF9xN+QdvLJJ8fVbdx1An/TZ5991nz482OMM/7dZGJ+1JFcwPceZ0myw4H3DX+TZCrl7rzpHocEE9Y5nMHJ48477zypqakxZSLufB9SwYLl5nmPOOIIowpoEiT5k829leTweNSMGTMM8YUf+24yPJ8NTnLghy07UDhLlhMo+NuyY4XXxI9R/sapjPc9P1p5Dqp78mP81FNPNfdXqmNsfCHuS5t3oULW7ayT7PuJE0W4vXnzZlO3kdjC9xtdwNlZ4e6ycJDDknF5LDtFeIztDKL7OM6OTvVM8X7KVCe++tTrcA3XTfw+D6NSQbwvezdAacZDWveFeFlHneVDOpJaucZ2pHvbbCTkE02XPH3i8Xb71ksaK+MySyrjHoOl0fkSzsWdXs6XeFhTt90zz9lWTWbsqLzmmmviyoSs69gRS3Iu300cJPnxj3+c7FDzvmdHLe2EE04w7d58POt8XkmK42QMvj/Zpub9S4WeZMrOubzb+f60bsEuueSSlBMJfvvb35rBR6qqciIWrdDvY77r/v73vxuFAft7sKOO7c5k3h74vmedRBdofNYTjeoWN954o4l211k2HQdXWV+xzqBLNXZ+s03Ce8ZNXLTpmysM9vLLyx+/KAc4h0ploDL9adEkjqzHYB0G6NzGNhKNdQvbSuwAtSoTrJf5/Xb44Ye7D2m0zvcrO49prMMSCbmsv6yXBdbj6eqwRhnneYNtQA7weg3t6b2mzyUdz5HtcbZc+QxvvfXWeHb87VPd0ywr23tsn/FZ4PuB7zMOfrC9zraf7aRnhiTt1dTUmHZ/sgEcpuG7zLa9OSjC+8e2yRJVYZiexvYN7zW2kfiNwO96lpnPP++xREt851K9g+839hWQeHDXXcnJlon55HOb9YedAMK2P9tqHGhhWTkZiP0nto8k2fNnFcd4LPs22B7iZCIeRzz5PiPBIpWVynObqvzNFc972pJxqdByOiaAUbVzGtqK/M4g3r///R1yAPpn6LK6NRjr01QTNTgp/LKzfilbHg1L6ANUOhlsY/0GefLZJ6Tndzum/QbLkI3uVgRKDgGqifohIOUDuSmyIXPxI5vxjbgVhNxO/JpSUwRSI+CrAsFnTED87X1S282RhqmOIdKaSbGpD8tuD7v91oP4x++Kz9Euq0b7uivuaSjmkpjr7w6SLgjngS6xpR3u20B2pyjV1IlE3MTrIGkoF8XwxHySbeeaN/sfW8J7SeI1sM+F7fLmtJY4J3+nVP2L9tq5v1GaMJ63zXje1mEhCXc1yLerEQcirrMC9QjipNYeXYCQfXXwbB/cHaq4+8JLzwD0V7aSZ7oAaGqWJYwAxwj4HU8jeZbjDVz4fThw4EDzDuN7LNXYHsm27MukkfjK/gtLBKVyriXrso+T3tosGZHjQ/RqReMY5T777GPW7R/2DXPsjN+m7BdgeRKNY1+2b88qxjKtm4xLMqVbbImTtjmxgYRLljuxr4XvM3paIufCGvsk2KdB4/VyPC6dURWW5yShk2N1HM9x8zZIVrV9TDyPrWc5bmPHIS+66KJG3BL2QVLJlZglEm/dZWH52R/KPnRLUHbvd6/n43wk1Z4FFVnbZ82JMBwv4O+2YcMG06/O6+M4FfudH330UVME9mEnUyh2l4+/eabj8nEN7BMhf+T/s3ceAHJV1f8/M1tTCEFKAiSQTegdAgiKEULzB0QQBBSRXvwBKt3KD/ypIEVA+QECUkR6kSaIoLQ/vQmhl9BLhEQSSLKb3Z2Z//nc2TN79+2bmTdtd3Z5J3n72m3vzO33e77X8i1z6ZDgAH5m/Yz1yGI7nBgJDulHHz4TLr8X88v8tqwJWxnwvzW+jjVQjxqIAbn1+KvEaRq+GsgB/gA76Gd691kEgg6OdBHLkYPx3oR56oD7SP5rEb6lqYpn2FsA/AHAY/I+aCnKot+JJ54oWEBVc7s/OpC+pY19EvEDqgBYFbZdjrmr1/PPfvazXNLolLBwbsICCNtz00mF7ZbFubAOEJ3nq6++OqdvBhD4o+MOEInfK9/Agbh8JkJAlkELYcCQCGDfsAVE97LGf1yx0jJSypkkleIekG8p7ssJv8ZqcqAUBo4XXHBBQUDuhRde6JIC0JZBFQOFoBAGeY9Fch+Qy4DiQGVm9oHa+GWBE+EdQAB/sIhbOuR+PDZAZHH5yiuv7BOHC0j/AIgyBjZ7xpm0AXZl0AyYwIS0ARZAADsCgjRgH89Y6GeRnjzOYCDot9TvIkwGowyA/W/jOZaqWMoDaCgHrAKwAAGsWomUoxMGXKZHi5v6iQMBYGB1kbUJDKyOP/54eeyxx8xLbtsu3jEgtS3SzIHlAeoWgFHo0RcLmwE1Wy3z+5kATgAgRhhMOARB1iyqs7icjxG11Lxl8YadMRIxfQHGsIlWtq6x54DGgluFk0YYLMiTTHgEBRbP4Hfx3YDOyVuFpFb5slCc1XjHoN/KLL85gB8T2kRYSpiYos2nDFNmg0J+YtLLB1KwNd4f//hH55StlgoZLBRrEx/820OybVM4qD+YlsSS2g4tlRYW0qoutFmuv6lx9DDjBu+DcRqjLe7PPOY8efXZWY7pdqd9tuvtz2pDaOH99tisGz8cmHF3dO4D8fuOuCac7J9ceMH0ufugvwrv2QLQhHKQbxGI/kywT0N/ycosQFg/LAuTcmtuzCq/0rLOZCwGLcF2hDip5+jnBuvPcup2+u6WdtolvjEoTJZZ/UIdbFLL+phJ4TCDL57DwIAxT9DYh3oA8CB9gTBALhPM9q0Ai63N4nvQN8ZANgls38iZOodvNaMe/91AXD/+zGNy/9P3yLprbSjjRugqWRHJKEtWpp3ea1+hbwXo2gCQTPxStyHoM5j3fd8YJTBuoDzQP6Mu9vtL1L+WV6mTB0vyMtoyplYJvrd0Bp8P9r2lq1pnFj3MCAVQaLAfEYyH/jr9EOoghD47gFwWjKwMmR/KnQlsuv7iDs/JF8TH+NPE+m6UVcYf9Ol8YdxKfvT98J50UP/RduPXF7/OZbLfDHFwE1xU8v3V6hqAvzHXsHBHH95fYOHbbJGN/h669cdJli7qpXPPPTfHnAV7ro0hGGcVAuQOlXJr3zpY59NPO9VFTb557PEn+vwOGMOsMiULHHlE6zm/HzlY6R2IePO1d/S7OTpfV/BXZ7SUAMj9pPMTNyZkHBNLrIHPkwYATMpo/eIogNzF2k+JWK4+TzqMvzWPBhpEmldJSlIB3ItXTEjnY2lJvab93Wqx5QajVSBg5j0FB76nQEHG84oDcgBdZcwFmJsErAs49wt6aJoaAKO39M7LBoOL72MNfN41kOnQsqTYOwd6n6ugWz1Sc9QwwwFxddZMr2tWnoPKV8ORhtUS0vxFBeNukHTlOOgkvo818HnRAMbGGM1CAMYcqwnrTIzZORAIE7bccktncGhzbDxnfhjhGQayBmrkGYBQ5jmZz0UwHjYwIvOVgDmZG2HuJSgYVbCujzBfEjZ3wBxncLzKrjkGamVeJjhfs8022zhALuGylhWcOwGX4INxcUeaDZCL8XUUwSCbdT6E7/DX+wB4mvjPATCjE8CtEGb4gn5JF4Bc9JFPWOsJ02eY+2rEx/qygXGJA2A0YGAjWWKeyADHYWmo9Fml34BeIQry8y0MyJBasD6HgPHx59ODaca4n7ljhHl7H4zLM9ZkmAtjjpLfDxKUYB7DXSyxBupNAzEgt95+kTg9w1sDBvKyOYVi96aNqO6LhRd8X2745q/KZxZnEYAvLB7RkALmtMU0GLVgqzFgUiXRA0Y1MC4LxFg60TFjsYtFYcA7dEC5L0T1X0kaauGXzqwB3ACH+WBc4oM19JJLLnHbKnOPtVFYBwg3PviZzisLsNZxB1xXCJBLZ/XQQw8lCheHD8hlUdfY1HiOpfVgSK5Yucgd517PFaehc+8SXcM/LPICyGXxGyAS7HpBgUESNwggtYMOOijopOA94HgD47JADmCUPMYglLwCUJ+Bo23BasAXAiUfAnbhTP0AoJ5OOyyDMLiRd01g6DUwLovbWK0yUCDtMHLjF+vTIEjJ/BvwhLqIgSCWfdQjgAVg4WNg6oORSv0u4sHac8aMGTlgCmGy1QosYwZQhm3viSeeKMlgAOZDK79sq14tiaqT8ePHO3ZbBnYYWCAM2pl8QGD/DQrAUgQAG+6wiLVBKW2D/U68p84hDsC0HPwmgL4ZlAUH3YRJG4Dgb9NNN3WTB7YVMwNHrDcRABnUkVj7GmiEfMOAz99Sp9K85SIr8Q9gXNpLAHzU10zqwHyLYPnLdsSTJk1y9/xhYoR63IRBLTpi4gKwNzohvDCpVb4Mi6uaz7B4tt8aAIoPxiUeJrMA4dtvi/7CALkAsYOTUuR9A+Tadkv50l6sTXz5yZdlp3V3y+e9z/PEGGVwHNXLNN3nZaU32jAaAy1XSh0fuO8fgbn/6+V3OTAuLv56+d+dQ0C59p7wzjw2HzOugnfD4nOheH+Kpi+bXs9HVS6pI0yoE8gvtFNBEJi58c+UOZssBcwfBlKxbcGYuLTJVD+MUss6+ZF2wgCOVtYBxmLkxnPqYerOICjN4o1atwPYIhz6zdShfhtoYVnbxT1tc1CsjFarPqYNMDAudRp1IYwLGHfY5DZs5+UatwTTT7tGe2YThhjGUSfTrwC0CkgXpkraOfoOAy0AIBsXj5R5CmiKAsjtXqTL5J26Su8JfREDB9pjfkvLJ7S1hYS+FkZUtOvkFSZgATWbGNsu92F5yNzV+gxIGDBt1LOlJ6r7ctwRR6n+LF3VOvuGUUF243xx+ONL26aQhQQYlZlgN0Zk+so2pvT77BausbwCkgfgS/8MEC7ljX47rLcAxU0oj+Q1mz9gop76GmAk5R9/jFPYRcH6oObXzgbGpY9Emmu54GFxBs/0R6wOxyjRB+Pilt+BuhNjB8oUi3FBgzv0Sh/HZ49h5wnqRIyx/C0Rg/FzP1TKbVjaB/JZk+5mQft9qALKgwub/G5tbW3CWPmjj7OLSgOZtsGIC6ahMDEwLu8yuq25cESQ9lS7tHcvcnMChH300UdH8BU7iTUwPDSAAWaiWctMlM/RMuXKVhS3sZttDxQTAABAAElEQVRYAz0aaAQE+5UGaVxJQbn/UrZcPdIKnJVag7sxAHxHwYTv9AB0yetLKSh3GQXnLq3XDpyr9w6cq8+W1HSqYXKi2U0IxL9frIHPjwa0Acgs1nKiO9ik5+lZjzTM0//R58qGm56rz5X9NgOmTQ0zBlS0fUqupKy4CsJt2SgpTSslXZs1oGmII4s1UIcaYG3xuOOOc7sxMuZmPZX5CAO2kmTAuuzow7wFa+jMLzMXBfMtAgjRX3dyD/UPQEebgyVME+YHgnM1rIkQD3PEGNEXk7D1QtbxTcKY0tkNjvRDvsR1UMJ2VvLX6Wz9LegveM+8jAFyWSP1gbfM7SLoEDIlE/AlQYFxljVS5mkxyi4k+cDN+fxUGh8YCX8dz+KxtVDuo+rL/JZ6rvQbmBcJy7fMizA/zxyX5fF8afPnl/15Y989+cpIA1jriAG5vnbi63rVQAzIrddfJk7X8NQAs2g6d+Bm06KcTQul+ovqvpzwzU+NzjTaAGJtQY6JewBvLNaxkMGiHItvlQhbD5900kkuCIAEdEhh+EKIj/BZqAO8RryVxucCHqA//sKaLZIHozZWHJ4DbAxKmy4ahVl++R1aWyAM+rV7OuCAFllgB2hJ59+AzdZ5xi3At8ESKybZ+B3nniuehe570xrNPcU8K9Hcm2sqidLS1+uz2lcs2tpAD/ZI267ZjwfmSISF3yBozXcXdo2FqIHhANz64QMqBAQCuIZyaIBcH9wDCN0W8slPAHpIM3mUsg64FWGh2hbsWdQHAMVCMwI4AEs98iogpelqvZkPNBNkR6WuYHEbQQ8GJCnnuwgDZjjqOgSDAH8wzDcADgBMcPDBB+cGos5xkT9sWW6S79vsfannKDqBbRy2WyYDDJDL77XvvvsWjI48AJtZcFsYniHUVwzAzEIXwBCGBlgRI+jMttp2D7w/55xzTs5wgMcAn5kwMVAVoF8f3EDdaQzkgFhxj1Qrb7nASvhDvsdSGXZhExjhDEhCHrc8z3ueW90d/M0Ae/A99u0Wnp1rlS8t/FqdGcTbN1NmwgRrYwA79D3yTcZYufb9+5NKWCgXkmJtYmOySRrYlzSKNGrrwFEjca0PwecYcvXG7kPiNPevPvt6n7c+KBf/YWDcXmbcnvj0ZOG5+PuEmL3p856k9aTT3Lv3If4qeUQ9g7EJBh3kJ9ol2kXAtkwCUnby7ajARKzlL8CZQUAuE4Fm0BIGBifdpZZ1jJ0AaCEA0HzmUpjFYddm8pH2iwlb3wDLeer5E6wnwto7Jihhf8CojrY5zFrf2nj05k+8+nFVqz5Gn4BtESb72MKL38qEutsMQAAts5W99QXMTalnwIpWd9Lv5TtNMGpCx7ynTq52+2vxFDpjwDM1tZmMGDOikLPcu/bPOmSJlK6ueeIb1tljxk5MjjIZbvWsvQs70+aboQ15yyZW6RfYzhmAx/3fKyycWj4rldnW0lKqv1q7t3RV6zx7tu5z2iP+ONKehZ2ZhGdcz9j07bffdk4wOODAeNQAudQf+eogC5e5ANyZ0DckHMoV43i/rwNgz8YJv/71r12/zvzhnjJI/chCA32EIIASt9S59AGjfquFX82zsbxQjwV3Q7B4/PE6Rld+nxU3jMV9MK75Q3cAchEWBanH88lQKLf50j5Qz++9975+UdEWsUB6vRqq2Liun6Nh+oCyEybsJpETtSt78ekXZfXmNXOP8l2kFGHY3YMyJOwYkJtPU/HzYakB7KM4okhKHdXIZjNK9LGboasBgN8tqymYbnkF5a6qx8y0dL+kQD+Gk7UG5praFEiY0e5majYAXRXG+Mqt4EC6ypqbVLBuQsG5SWXOTY4FnKvXY/R6CT2PUhPgiFMpFl18jjVQjxqgu5NeqGXv0x4A7ny95lCwbQYgroJwAeNm9OzYb5mnGwwBiDtBpyXXUlbc9ZJZtm0Y3WOJNRBroI8GII7hYJ6LOSDmI5gfYS0Tkh+EMSNjc8b8Plss7sAphIkBezkzn2Zzmtyz/sccHXF1dpbWiEOEExQfPAnRV5hg7JxPwvywDmNic2N2n+/M/BIgZeaymc9h3ZW5HACqzOsiEDGYLtwD/cN7DMTBQDBGN93Z+0JnDLMxji9FKonP8DDB+Hy22eC7WtxX8g1hecjSSF5g7tjP5/bOP0PSZcKOnsUkynx0sTDi97EGBkID+WdeByL2OI5YA58jDbim29pvPUe6N/1EdT9Q4Vu6anBmO4dg54PtK806x5itKonaKP5Z4Lr66qtzYFwLE7YwYwzLFx8LK3Qi8h0GBrMwB+qMRZBJGJMp7+isskCKhIGP8oFK/AXLKJ1lA4URjy36cW1McCy4A1IZLMmWwZ5Co53rSPeW2KjurdMe1X254Zu/GpwZyBx++OEuZBipGPD4wpYoAGkQyqqB2303ha79Rf4g+xNxUwYZMAF6NGHwhVCGl1xSaRI82XLLLV3HHj/+ltO2vS2L7IAA/AEaYE8Av4SHmIWdF6y7BCwVXBRvU6CW1Re27QyOy/kudGtlBcCpD8YlTIBfBljGHYPuqGLfxOAVHVRLStFJqXGiW4AVQTAu4Vi+wHDCwLgWPmAo+y39fGPvOQOyMBZve26/I/cAuYPABp9d1oASuK1G3iKcUoU84oNx8Q9broGZrJzwnMEuEzIILLHBfEy9f8UVV7j3wT+1zJfBuKp974MgrN0Li8PA1QzimbQKStgEUjXbRIAGjc0RV1sp9inr8AVTWuk9baGG7dqskHNI8Ob+mN8eLqutv0ofF4Byb1fm3DOPPT/HnmsOZuyzvQDINf/u7O68eM2xd+7jPphO8++5r9YlQNajjjoqFxwTgADZKXOUQww5aEfCJoIAtCO2A0MuEL3wgSthwG/cllLWFyxY4OLB389//vM+YFyeUTf6bKSkKUxKqdsBbJkEWRcog1b3+HWsuedczfrY4iJcGHutPuQegbXTmK0p6349mXVR+l+/7x2Mj8l3gHL0SQAHDrRQf/OdzQ3NMrJ1ZKTo2zsWSiJQHeWbVLUxG6ykxYTf2ephdhUwYXcDq3f9sYO9H8izTbZHPVvaorofKHeWrmqdYck38Q007Vm+s7WtZiCQz12h57BP+2Bc3GLkwpgDYScNP//Z2J2+IEZWvtD/NQMB6mrbOcJ3wzX1/WCCcUkDLDpI2KKSe6F//DSG1WX5+vul9F+GQrk1fQzmmUXAY5S5dfPNviitLc2ywvLjZdNNNtb2+7TBTNagxG07IQUj5zmLiRjw/OioH7ndRoJuwu4xWGvsQVoRBgzbscQa+NxoAIBtVJAtfTcdRsUSa6BcDQBubd2oQUbt0igjdm+Q5u0U7KoAXYlm01dutOH+ABouUBDiuzr18WxGuu7LSOfNaem4Ji3teiy8NiULr0/Jghv1uKVbFv4jJe2PpWTxi8ry+25aUoAWS8MhhacjfhproAYaIG+SR7veScviFzRPa95deHc2Ly+4UfOz5u1F12mevjab5ztv0XytZSA1U/O1lglhd/XBAOPqdEJyNQXhbp+QkXtoXbFzo7Ru0CDJGIxbg1wSBzkUNcD8G+svEFMFhbkgCApYt8TA0AiEcGfr8+zG6Avg0bAj6IZ74mV3LMiGAPn6YFx2Gw5b1/DD4TrMUNfSBNGWzWcF/RW6ryaY1N+9zuZy7EwaIJ/wBVAzuwqxJgqw2MC4fCess8V27Q1bj/TDD15XGl+x9ATjq8V9pd8QlocsnVExA375Ccv/9szCjYJTMbfxOdbAYGogth8cTO3HcX+uNODGSWoJlZ0h0wGUdsLUNKrwPRrKeozmvlh4wfdlhY+n2ggMUjCJhQkML7AesnjGNgs+VX+Y+0LPYIpCALvlY+piS3IDVrDtfZilVxjowuLFkmgwxBiIAFz41mbBtLBARwcrDNBnTLZBP6Xew8hGOtATzFcwkAJShO0UYTvRQp20UuMr1b0rfVomSjkTRynuEwMQfqnfXY572JbZEpXfEiCPD5hgoGdlIbhgHiUuQJeWTwA7MYAkrxigHOBskN0JdisrnyzUAzDE2tSAIXb247dyDzgAq8pg3qe8wJrHQp9tdeL75zo4sLP3llYfcFDOd/kgT9i7g2kkPn/wyYJkVGAEbMGIz5ToHlT4pxSdlBoV7IX5JOw3ZkC2cOFClx8tT3IfJjANB4UJCpMwFkMfMM4WNybVyFsWVilnA7r4fpgcAfBEXjSAE+/9vEX7FiboxMqi/973W+186cdTi2t/a6VCk0/+bx82kC/UnkZNd6E2ccORG8vY5TX/9bV3CA06o2S8iYU1Wm2lzSJobejynYOJcq1oj/ujz/hvBd+e1wd8e5uCcoPSy4xbJL6gR+JxicufPpfuoL8q3FO2Tj31VDdxSn8URnQf/MkEHwduAOn7xk0wtxtDM8ygPkuuMYMCkvf9+Ekupaz7k5H56lDaLOoJ+oG0dzDfBqWUup3wqDNhigUE6wOLjamSuiVoCGBxVrM+hmnChInuMPH18swzz+RAomFuozwzxl3cskvA//7v/zqWXBtjDOakqhkHLd2yrIzMKM1UBEk1pPptNRnsh0UIJtQJfX/6bAC1YS+GqZNt+kzytU/2vtZnq/+jni09Ud0PlDtLVy3OtogRJWwfKBvFfZgbfytC/731vXnG4grljX6zGRlQ/sP60T6I9dlnnw1lraavM9gCkB+xeiQsPf6YPex3+byU2zDdDOSzs846U36iO3QEZdlll5Nttt1GrvYMEIJuhts9bNbFBEDupqO/JFutu30xp+59a8MIGdHYa1BiY7xInkMcYZyPwWax3S1CvLpHGGFRL2HgE0usgVprIANraO+0Q+HodIWvVJbQvz+TkcvvT8ssZSUtV1ja+OZmSdl7WlLGKXtpLENfAw3KQDtiYwXkrpqUrrcUCPhaRrpfV3bON3UkDlYoKki82qogm+pSS6Zd0/GhJUMfNuhzbSYSYzgURKycDVwDME4o5wJgwaQOgxI9Z3c/Ut81qb8aTatU+9Pj8IaYBpi36tI8CtutO/R+Adf6TM+Zz/SsLLjM7aX1yPRcu/nA4nauA6uMpBYTrduTbQlpXCUhTVovNE/SMqVlLZZYA7EG+mqA+V6bk2XeC4bVfMKcK+MSwIew5TJX5JMOMVdmu3/lC4N1dQO8Qjpma2ATJ050O3WBszAgLXO/EKGVKswpkMauLq3UBlnYqZB1YuZ5mI9nHtrWcJlzDq7bQQRg8yQYOjMXBMbD1hQx1rbfq9JPY51wIOOrNL1h/qvxDf5aZDAOA3f7a3BBN9yTZ8H/IIDXiwGjfYNz5yn+E2ugTjUQA3Lr9IeJkzVMNcBMlZOec7F73DqnEd0XCy/4vuzw3UdU/Y+/oB0M3N8amgXccgG5dG6NMbHQJLofH4t1QUAugNaLL744mMzcfT4mqZyDGl2YXliogLk0HwgAkDHif2e1kwToEaZgWFUBZJAmYy0iLh+wUe24o4TXtzTCuZedhM4+Hzr3Ub61UjcsBgPCvfLKK+Xcc8/tA8g9//zzXfCwWFv+KyU+QE6XXnqpYxnEH0AWDsoYA0/AuTCV+oy25CtAP4BnAQDtuuuuLkoYlwHD8N5nqaPcP/TQQ84NebBYR93qCOfB+xNkI7VXDPqCUs53AQwyyQdAsPecqZuiAHJZcHzyySed1yDrrh9eOdel6KTU8IvVowCSmXD45z//6ayJS1mghV2tkIQBMPlNg1KtvBUMN8o9EyxhEpYffVDt6quvHubNWTobKN13UKt86cdRq2ufHc7fZikYnw/c9f0E3VVyX6hN/KTrExk3eVlFThePgUWwxH8aHONLorm4+5JcaBZ3rR9bRNIB7XcOC62vO5hyf3vMuX1Aub4vmHF33Ge7POFn+sbve+S6aPqy/oPeqnlPe3jYYYe5g8kkJv9gub3kkktcPweWQoBg1M/WB2MyCYZtJvuuvfbaHCAXA5Q77rjDJW/ffffNm8xSyjrxmuQr67zfcMMNHSDXwGvmx86l1u2wANMe09+jzbGJZ9pqhD4EZSBMqlUfE7YBcjHyyzdpB6s69SRtBu4r3dUCcPMxxxzjGJOZfDTmThjprU+ywQYbhH16zZ9RnzVKk6w0amVp7mqNFF/LF1okMUILWw0ERmkWJhDyCn0YYyzlnQ8wrEH0RYOknadd5+tdLWj3wXPPewsw58/cRfTfz1+If+Lo565I+PippvigUNhbYH6OImyXiPh98ij+fDdtbW3+be7aFlFyD/TCZ86EHTfIkOu75doWb4LPCxnwBN3W6p65B+oTf7u+YFz+Ykc+PQX9lHNf7+W2nG+qlp8nNI8bGJd25Xit36ZP39rNsVgefVKNwcMYjKuVhnoKx2ezKZSuRd0LpSPVUchJ7t2SzUvK2OZelB9GT7Tx5QhzGRgjMRdQTr1E+4ABPAdGRvUA3i9HD7GfoaMBgFuOCTFCkhMt2l/QI6oAxj1RWUYrFS0Wcv0jaXlttsh5ByclWZsuZKXJjP2XoYGGJRPSsH6DtKyuTJ4f6DFLt8Z+U1k631YQ4fv6w0cwJi4j2tK9kI0V4AjIMaPpyuGFmcugXIzuOXoAutwDyk0A0lVgrgPrKqA3CUhXh6uckzoWcnMtCkaMJdZAPw1oJksry21mkeY3AOIKFE9zrYDbjJYL95zrHvBtBrbnz7JAXK4F9mbNnnUtWj6SK2odsLJIY5sCcackpWkFLRctcSVf179bnLhB1QDzJAbwZMwRRvbiJ5CxBQKwljkffz4McK1/7/tjh85PdBeultZWgcABIKWRBDF3w46QhOeLARz9Z1GumT9ljEd6wrAGkJLBzAtIljEapGq1EvTEXDbEOO+++66wkxNswEiQVAISAAPjfvnLX+6zi6qlr1ydmH//PNDx+XFX67oa32CkEME0wdhs63LF5tuYxzbWaPyFkZewO+AzPTuBrqbrnLVaywt+R3wfa6ASDcSA3Eq0F/uNNVCqBuhj0ReKerbwo7ov1V054ZufGpx9K7Bg8P47AAzlCh1UA23l69QStg9oYpvZoLDAUsxKLehnIO5XWWWVXDQAsMIWK+iw0sFC8jES5wKp8IJtjAHkInfddZcDUXKNRdpaa63F5aCJFZdsAnRiRC96hyrh972JDX9fzH+x9+WH3+uzVleHHHKIA+QC7MQKkQEQeQxGQIT35QqMaCzaX3bZZfLnP//ZlVEWmbnmaNPFeLbBnjRpkosC60yAHIA42HrawKYAizhg8/2f//kft103Hvxy7wIo8icfY05wMFskGCn1u/yF9WJh894sC4u5NQZX3EUB+hYLz39fqk58v5VcA/Lae++9Q4NgEFaqLkMDivCwWnkrQlT9nJSie6ytTQoB0sPaxVJ1GTVfWnpqeZ48eXIueIDFACWDwgQY7RNC21SKXoNhFbvP1yaOW3NZGTtpSel8QVsiGqNCokbpiQ+apPvfaWmaWOUVIqJn4Yo05Dv3S1tf9/g/+ozD+jHl4q2XGTd/+H3iD8blouobXzCdzn/QX43u6ZtOnz7dHYAMAS3RBtHHop3061uY5mmzeM9EKUAQgLwmPmurPbNzKXnSJrjwa2AgC8c/W1n36wb/fSlx4o9JVwOi0l5jdMUW3tY+Vwp69dNW6NrAa8VAvkyUMx7w9VUo3ELv0NUpp5zigDn0Y+ifIACwzjrrLHfsuOOOrg9VqP4tFEe57+gvfXXSdFl1SWWSyEAfVVjSmbSMXnGkNPS3MyrsMeJbwOUwImNQRXmg/Fgb4+++EDG4qjuzBRGqQCR337NQkrvPvs79zT03dz1v+j0foPe5hFXpwgfg0vfndysmbNdoIMR8AP9iYZT6ngWZUiRff7+UMGrlFqA/9SdGFixyhRk0wKhjwlipVlLv5bZW3x0l3L/f1bsLwC233Cpf0sU+X1gosnLgPx+u11GZk+Z2zZUV1lhBRFnhisnY5qVkudZxOk+D+bQCwspkZ6K8sDA+depUZ/BbLN587wHjXnHFFXLnnXc6hv1iC4r5womfxxoopoGMggzT87QvAngrggAuBEgYVWDGraY882Zabn8qITM2jp6GasYfh1U7DSRadYv6yXpMSkpqvtbD7ygw9y1lzX1HAYiKg0nDsKyAxLoTOvRq+5HhmEPqrIffcw1DrgJxHTB3lLYyAHQ5eAY414F09Rpwrto1cjigrrtW0C5nBSfGTLvoc5iIZhGYbTOLNW+7vKM9D8C2HXrmnuseAK4BbzMGwlUmXHet9w6sPvhkkqX/KOT58Zq3JygIdyVlxNUy3zRRQbkKzpcqTz2WnrjYR6yB+teAT1QEMRBrDPnmAAGD2voJoFcEwCljC+ZpZ82a5YCwNndrXw8uAiZWhF2DAOT6O/VCjhCcz2XtyoDCFk7Uc5vOM9h4FhKG4A5nDzzwQG5nolrjDEgz32vrnIzJTBjj+cI43MTHldgz5iHzzYebm1LOAx1fKWmL6rYa38Cc3BtvvCH+ehzx85sZQBr250Lik5IwhoesKyiQmxghCYDcWGINDAUNxF2pofArxWkcPhqweSk9u0vv3n2kd2+Xwed2H8m/BRJytkcWXvBcMHznuPp/sO7KJ6+++mruVRRGyJzjwAVsZXSGkZdffjnwtvfWtonkSSEm3V4f9XHld2iMuTSYsssvvzz3KN/2wTkHFV7AWGoWSmeffbbce++9LsQDDzywwpAr957N4z0lQcEUke4t2qju1Z2TqO7LDd/81fAMsMjKjrFDwwiIwAIXBnQrJTmwx5FHANMwwMO60phrADcFAfAMaA844AAHbgJkzhbifgcdll3bCpxyz8I2csQRRwjWdYWOag7ISvku0y/p5JsKpZF3/rbn+MknAMAQBtH+5EA+9/X+HJCHgXHJIzBOUmcDrkIvWMeGGSPU4rsGM2+V8j1+O8ZCcj6BgT4otcqXwXhqcc8g3gxsfve73+Umify4GNybkcouu+ziv6r6db428dsHfEuSS2t7oRPgUaTh3Sbp1K0jM91RXJfgxrVVmg73nz+0jf59/7D6vu91D1Puauv3GgnBjAsgN5/77PNe/+4+GF0uXSQxLH09/oP+BuAeRu9zzjknF5MxQ9qDrbbaKtcfYhszxNqogw46KO8krfmPevaZWAHE5hPrczOZWQ1hyykAyYix4howlbYnyFZQjTjDwrC632f2DrpjMtomlH19mbtUKpwtDDaIQgLolt+UCfK7777bseZa/QM7vzHDFgqj2u+oI2asu4usueTakYJepCuLoyaM0AVnLV81EsDpCL/Bz372M3eNnrbddlt3PZh/bOEi6tnSGtX9QLmzdFXr7JffRx99NFKwGCWYbLPNNnZZ07Nv7Ek9VKwfzS4L9Sq2oETf1toKP60sZtg4jOf0L2op9Vxua/ndxcKeO6fX4G1CyM4Vt/W098XCGS7vm5pANxWXj1P/lmXaCu9WYqE0N7TIiqNWknENy7tHUeMw/3ZmBxzmD/z5AntXyhkDA2uv/DnKUsKI3cYaiKKBtAIf0x8rOiwiqCuh7J9JBRVGlVmAKMuUQ7drEo6gvPVR8El8P6w0oKvIDUslpFVZc0ft0Cij92iUEXskpeUbSWmcpvlPt7MXjPqiZ8PBVQ9lS3cfynygIEudW0kpa3T3Qwo4vjsjnbekZfG1aWm/OnssuiYli65LyUKO6/W4oVsW3JiSBX/pls9u7pZ5t3bIwnvUzUMpaX8qJR3PpWTxq2npfCut7MIKYJ6j5fnTLKhTwoeag6uLYRr74kWLHZAW3fMb8Ft0qvHA4lfS7jdqfzL7m/HbLbgj+1t+pr/pghuyv7H7rfX3XqRs4uSB9mvUnx7kDfIIeaX74WzeSb+WzUvkqaj19qCrnbI6RkGAq2rZ/ooSSmtZpkxTtinjreslXZmPwbj5fynmlmKJNWAaYH10wgRFtKuwtvjb3/7W4Q9Yx0Iw2Ga+kPVxdiA18ddUd955Z3vsSIh8YjLWTCEmMrHdOgCcAuZFmGcz1ljmDNgll/UQGG5NmCeJKrDLNjc3O+eQmbBuZIbngIaNqIn4C+3SFjW+Yu5YBzSArREsTJo0Kbf2Y/59o3LA0WaMzbcDTvbn79GTfZP5L/U80PGRPtuVj2vAqbAUR5F8/qr1DX/605+EcTLpYX6dnelsd0CIQ3z8Slh62dHZWHH5LkDf9vvwWzHfbmBc3Bn2JCys+FmsgXrSQGM9JSZOS6yBYa8BWHEU3IBRboZBj3fvJiy8e/feFMI8WcB9JP9eeKH+ywnf/NTgDAsMDbW/Nb1FY40s95V27tgugo6XWVNZHP7ZtxqrBADshzkQ1wALYCm76aabHLMo1kg//vGP3ba9dFhuuOEG+cUvfuGSwsLd9OnTa5ostgsGaHLyySc7kKVFtttuu9nloJ1dsdIyUsqZxJbiPjEA4Q+kAg8//HDHgAfrMfnq//7v/1z0gFwNZFBpeij/sO9y/OAHP3DbrMCSC2AuzMKO+NiOZcaMGe6AHdcANsbShxvABLDiRAUS4KeaEuW71l9//VyUDHBtsS/3sMwLA8JvvfXWZYZQX94YSJucdtpp/bbDYaLDWBnNXS3Pg523onybD6olb4VZLTPJY8BUP8xa5Us/jlpdM2n0q1/9Sn74wx86VlJYOzFKMZAcbb2/ndJhhx1Wq6S4cAu1iQ3v6iLWsgnd5o5WprAk5zdI17O6sKOLXk0rZSfdCvuI+JY2y/U36adqOvgfuA+G5FpR566/+6PP+G/565/vktXWmyKrbTBFAysefp/4+kemSbJ47KyOgvEH/VV4T7+TiT7yij/5GQyW3zef0Absu+++cvrppzsjgm9961sCSBPZa6+98nkr+blfXmGyDCvr9LWZEEMMwFpyRCEe9tlnH9fPBIjLZCfGEsh+++1XtT5CSLR9HhmIDbYDjrCJOfoCJvQ1TIxRON+2ZYUAzhYGZ8KBNYKDPgk6pm6lb+5P+vp+anXd9V5adlxzF2l9RemeoshyGWlYjkJfO6G/ZmIGQxhY2SS/vRuMs03yRj1bGqO6Hyh3lq5qnSlHxmzMWBLw/a677po3eLY09HfOYMeIfJIPAJ/PfaHnpJMFGljIqeNqbWRTKC2VvqPeZPxMPcZYGqOPHXbYwQXLwu/Pf/7znKEr18VYwStNTz2X20q/rRL/q6/Ry8Zy+umnyamnnuZAn+ywdNVVV8qxxxyTC36RtwiaezjMLgDfs0tNMelWpMrE9SZIh4KVirEq0iK1LaH9yNFryuz5H+TdurVYnPRLzNi3mNti7y0cY7Uq5r6U94xjGZ+weE5dyoIkhpUYPsXy+dJA1wcK8vow4jerUWdyrC4b9MfIRgwgurOpum35Idv1LidecFcvYliHZBUJYxSAEswthjHDVxR4Ac8s7NOWIswXVjq3yXzLwQcf7ML7y1/+UrW6xwVYJ3/Ia43jlEFzXINkdBoz9YkCE9/X+YkPybcKPtW8m/63jtz/owmOjvupk6/rSQYk0oqhyizK5mz/b9ZF9gk7jLSn2pUtt11GLTtaDRv1eYuWR2XPFcUwJdx19iw9jLoJsE28Uz0mmtWomCLFNYe7zj5zZVrvE416z1SDu9b7Bg1b792znukg5s8ht9hpp53khBNOyCZxKP5VvcMQDnA5k9I8BL5ID87cu2utdtzzrux7WG0BwTp2W32WVobbay66Vj6Y9YFs8ZUtHKNiRnGTdgjX5EvHfKsM/Hrmmcur/O55Jfub5309FF6Q79QmyjHhLi+yoPVT+d+zTpQn339cTr3kZNlmo22GwlcMehpZY2U8DMgMQhjWyGKJNUD/gZ2fAOLSp8GonzVNhDlhngWFtXkfoMgcLms4jAdYpznjjDPc+JI855MEbLrpprn5XuJl3tGIISDpAnRJnwp/CCy8tqMQ67qAeaOsO5Ju1vHNmJl5XgyGAeD638N6S0uLNngDIBBL/OMf/8jF5BuQ20MIiYxtmDHbqaee6uZqfWCyvUdHrB1huFku7mSg4+M7J02aZJ/rCKuYX2Vevtg35PMHoNx0UonOyBeAcsOEucQo/WzcAVrnt2F9n746a3n++Js8aIRNYXHFz2IN1JsGqriCW2+fFqcn1kAdakA7R056Ttr6FL63T4jqvlh4wfflhm/+qnxmwYnOT1CwtmIrWIQOaaWdO1usZ0E+jEWWyW+bvGCh3rcaCqatHu9ZvDOwEeBbJjIBFdPxtk4K7xkcDITQIfcFSz8AlIMtuWLlEgKrXlay56FzP5B69H9L32ITYFG5wnaPDBb2339/CYJgGPT5W6EAZOA46qijnJ+w8gsTbhgAx8o9QE1j7/PTzGCBCUwAV4A8K5VSv4v4YNyxssuCgL9ViKUHq0DSyFGI6dTcs6hn1qpf+YqavA8DYXHSxPRl95wNBOY/q+X1QOetcr5l0qRJOW9HH320m9TJPdALyhWA+zCpRb4Mi6dWz2BkN9AdAEgmF5icaGtrc9vWwj6HXHDBBe5drdJh4fr1KM+sTWyamJTkRHNV+AxWtvvFjHQ8lZb0Z1VcFNAG0LV+riF0N/3ugykr5h5mXAfGpZWNEH6f8PpH1i89fdxb+EF/Fd4z0U4+Acz9yiuv5A3t0ksvzb0LmwCztpJJMmu/AHVUk9nQZ4U+/vjj+5V1EnjiiSe67+HaygbXlQpGH1YnM3FmhhH23ZWGH8W/D0j+/ve/7+o23x8T0kceeWTukT/xbbrAiMVnoTDH1BFhctZZZ7k+ybHHHttnQhq36GOw2t6UMgEtfiIto2YvIQ2J4tM+1CRj1x0jjSsUdxumh6jPfDZl88OiRT2ITQxHPVuao7ofKHeWrmqeqU9MKNPGsm3P7AzAlj69sVADIvXLGe584wXfCNbCqOTMjh4IdVDYbjizZ88W2mH60cbSUUl8tfILk6cP4AdcDNsOY3rqFVhuEOZGMIystdRzua31txcKf+edd8m1exfpwuYXlhor666ztqyw/HgHxuW3MqM4dnPZZOOpoe1LoTiG0jvrA0RJ86GHHywffPZeFKcyefQUWWupdV0f8Hvf+14kP0PNEYDhX/7yl0I/jn4D7SJjM/pWzJ3Rr/R3uhpq3xentzQNADTrflvHeQrKjSKJpbVtZbcV/V9r8ZlxAeYC0K2WAF5la2aYz2CBGyiBSQ5mfw4znqokbsYRFt7ngT0RAGmjGha3btAgo7/WKEvsruyaezbIiN0bpGWXpKS+lJR/KdD0Q80qQxWbWyg/JHWcNapxlIxMjZKMMk+n31Iwsk4ZpGYqOPnJHtbde5R192963KzsqtdnWVY7YN9VtlVYeB0DKyysyrwKC69j44WJt+dYcD2srbDycqTEsbjCzstxkz67pVtWeW0d2WLe1jLh5Smy8O5ux9i78D4N6wE9YO59RI/H9VBWWHcok2/708rm+y89ntHj2Z5jpp6V4dex/D6vTL8v6PFiz8E1z3red+AWf/jn0LAIE5bgXDzEqXGTBpcWTROMtC6Nd2ralZl2wV+z38C3+N/mWIj57p7D9MHZGIt7dafxoE+Oq1Iyo3E3OWzNI2X9ORs73XfpbwADMr9J6jn9nV7R422dC1XguGO1ZTOcgmDcQrmgjt8B8l5W24i11Zh/y4QrkyP2UJZrPZb4ZqPc/umNcukzF8pzHz8jF192cR1/SH0l7cUXX8yNJTG6jyXWgGlgzJgx8pOf/EQAzPrig1d5ztoEcxJh5DnMt5gxLm5Z2zMwLmul+AkaPbNjl79jEO4BMwJaZMc2iEps10zSYuyyNkdFPP419yYYBx566KE5jATh2vcwb7Hnnnv2mfMhzlqKrcMRB/rwv9viJQ3MS4GHMDEwLlgPMBIYTxkxAPqy9SFLv53Nv53D9FSN+Px5Mour0Jm0T5s2rY8T+136PAzc5PNXyTdYFP/1X/8VCggmTnZ6XW211cypO5uO7WwvYetl/dLW+MlzPhh3pZVWcmNlxg2xxBoYKhrQIVMssQZiDQyYBphLY4Is6tkSFtV9qe7KCd/81OgMmJTOB4tOdBLvv/9+x+hqHSKsDsME5iljgQx7zzMW6WGPwcLmvPPOc5ZmdEbpcH3ta19zHTS2rgYUXCy+fHHUw3Ms6VjchIkN/SG2KMo1FnPXXHON0HHxxbb/s7P/rtA1HV8knz8WDs2yD3d0hutBrLhk06JAT72geGYl/N7eUoijuC8WXvB9+eH3+qzlFYtsLPrCjGsL6DBgVcLYAhiJ/IgAdKJsMtCjI87Wkr/+9a/dO/KQMf0B3IVpDn/UFwxgGWDRMTc2KTzx3AQrRxbnAeIz6GKCHxYfwIbES91ibIVBwJyFUcq5nO9iQAdQHp0ygY8FKoMPWL3b29vdZA+ACOqntra2SEwbTz31VC7ZBlLIPRiiFz64CWAZg390xEIKzG1mUDFQnzfQeauc76KcABoDzA5zHGnmGiAg+R+LbXQXJrXIl2Hx1OoZg/777rvPTYhRvyA+EzD1Got/PvgfN6VOhOAH8SdmghMKvM/XJrKI2jgpId3/0tZlAS6LyHwlAXlEQbnj0jJi4wZlViniPuJr17q5Bk7/8L+HKVc4h0gf9/q+z32I/5LeF4svX/gh/ip5ZAwHhEFbhNEGzDO0H11dXa4MMQlvZYj6P2yLdvxaf+ikk05ySTpQAeNh+cS9LPMPZR1GRfK5lXXqf4w4btXts23BgEnZsMnfMqN1/UDaL9ox6mYE1gXaq4ESACv7KbPkZZdd5voJgFnYap1yR3sIEwSAaATDF3/yzgcN0lc988wzXV/53XffdfXnVVddFfoZTOZaP4YxBe02O1QA/uW5AWgGEnQK489iZdHufExXFT8NTXa/hwndYpY6qOEL2d6pXwfm6+P3C0Qf+HVgPn/owsoLQGjb2SAsvIF8ZiCMqGdLW1T3A+XO0lXNM+wplCVjeNl+++0dEyZjdibJ6afSd6V+9IGuPqjU0gPgzIQxBWAz6kabbLd35ZzpJ5O36CuzGAATCv1GyimsYccoY6mNiynj9SyMYxjLw6JO3w3jZQ4TDBp///vfu36wPfPPpRox0x9Cb37Z98Or13Lrp3Ggr9ki8ZZbbtWysbf7jYjf8te0aV+VCy+6SD7Q32769K1c0hg/004gOX03QnmXFWdk1HNd7b6BxVHLM22wsWkXi+etBW/I3NQcWaFxQjGnslTL0rLeUhvKyu9PLup2KDqgfLOobvMr9g2WR7inT0ffjp1i6Ocx/o1l+GogpVurd8/SgU7EPlxSmUoblumdXayVZgDj+gDcC+/qlqdm1QbBFgVQUKvvjMOtQAOaDZNLJKSZYxWdG1Bwecd7GblI8/OKOj5ZXllMx3VnZFxKZDk9ltHsM0Kjq33ureCbauFVvx0GWNEugZsf6Ymj91rLf14JvEN5enxz9Heke+0uSXQlHChVFA/lmHTBRTWoH7obPOO+x48jCmKex93zx67NjT7T9za+c2MZoneHvlPDfndNAHbd570+TusDqgn3zepOrx3TLff23D/r4/KFyPlM/cd3fh6lVX8yJdVPapuQXCZ7blDAfAOM1roTTnJJ7W16iJCtt8kaVTMGYL00lmgaYAcD5jEY/w72OidGXeymgjAPVs0duKJpI3YV1ABzD5BvMC/M+iPMtOygQv8dbALzHsXIqr785S+7NXzGCYwnG3T9nfVXWEzDxuuszzNeZ76AOUz6UZCzEJfV4Rg2YqDMXKXNvWy55ZbCUUzAEbDexnew/sZYlbVYjuC4lXkYjnzCPIWt9+ZzU+g5oOco/tEX2A/mwvlufpe2tjZn+GXhw26NzjAsZy4fsV0OzE3wzG8QFn+58UEQVUiob8Liww/zcsy7YwzG9wH0jiL5/JX7DRiWmpAe1kpef/11ByZn7cTqKHNj50K6Ji3oZu7cuS5Ps+7Pb09ezBeehRufYw3Uowa87lc9Ji9OU6yB4aMBHXJmt/3lk/Qmyv3YUSNlzqefyTJjlojk3m3zGzH8uRou4TuJmJ5c+FlfVf+L9ReAOBpwvxG3iADMYe2VT+hIFBLAeDTyWNv/9a9/dUAkOrU/+tGP3BH0y7bExcIM+qmXe8DM0PnT4YTBiI74Kqus4oCOLByFib94Gvaezjkd9qDYlhXB5/49wAQWGOjsb7fddv6rQbumDLrJJyaNFAiZ6Dm7SaQ892OXHCVz5jLQXTKS+1LCnztnvhC+kzzxh4aX9TFgf1kIYvHchPtKhAV4BoxXXnmlY9MLWpASNotRAG1NWGxnaxImjAAIc/gLVrijrvCBRoBuqF/YxoSBFgvyYcJESjXY/Mr5LtIDkIjySh2IkUGYoQHfCgusgeHDvsOeGTsug8pJkybZ4yF9xkoSEAIgJya/gsA3WJKZeLAF8Vp/7EDnrXK/B2Das88+6yboAHiYwYaFx4QCoHfYnYNS7XwZDL/W9zDFn3322Q6US5v46quvCm0hIL02nYwJm8zK1zewtDKBFNYmMsFVjL0rrE1kUrxp1aR0TVLGjuezCwkWV75z+h1lwPynWrzrglfLmsk+E+v5/BR+rm2hOqC/F3ZuSLJS0iuNDSnp6m6WpkZd+NHHpDrMXy68Et53dTcJ4XeneoEqxE8Kc+EF09kTvp6qKhiJ0Ce09o42iCNMqH9uvvnmvPUzYTAhaPLtb3/bLqt2pn7EcIVto8PKOhHRRsEWXypgq1gi+R5/BwbqjoEUJprp7zPZSl3G78YRFNIVNN5gwpj2hP4FfeJgvxjjvbD6kW/+wx/+4Ax+APxyBPsk1K/F6oVgGsu9z+jCt2Mxuictmfeih9IwmYXz3noEg42wOs4P8Z577vFv3TV5q5g/m+jGA0wb9SLkHxaao55Hjx7tjMHoB5TiL2r4LK4RR1T35q5W+qRswUxBn52+tPXBw+JjzHfbbbc5tsfge/oalAn6aTBp22IN5ZYFqkoEcPff/vY3FybjfNsdJhgm9QLtf70LxhQYTtFvof/C2AcGGNoaFiiCwtigWPnDGIEjKCx0FJJ6LbeF0jwQ776ki6XPPf+CPK1GH2+88YasPGll2Wijqa4dIH7GX2/rDkzvvfe+a3Nt8fXjOf31faj2ITmGslCeg2OMsO/Z5ftfl40mbShdf9feY9/uZT/nSa2bN1h6I/nN98/Iuh1GIBuMGZgfs3ErC5jsckXZpzzDrskOOSzCYlDEbgwshLNVbCzDVANaHjpfSUvq9WjjQUB2DSso0EoBV7UUwLgw4vpywV2Krowl1kABDTDHkVBjv3dG66HuwH62KmB06U4F5Wr2Ga/jluW6MrKsgjM5AOguqW6aC4QZvwpogKoCnSWapLlR6VCR7CZQ+piXfaXvE//OvzY/9szO9pyz/8y/NjdRn5n7+FyyBvTnxqiWMuZAuDqMwjgDMC5ndwQAuME4GJcBrgM8BdAplmgaoI8GiQzjJ5+BM5rv2rkyBtDaxRCHXIoGRo0a5Yz1WQMoR5ivxW8p/pmHMbBtME7WPvwxffB9lHvmayqds4kST7XcMEc2ScfjHGGCjn2D8TA3pTwb6PhIG/mMo1TJ568a3wA5A3NWlQppAXwbA3Ar1WTsvx40MIymsepBnXEaYg3k14AbhuasRXuGxEXut5u6vlx3/8M6xo3m3gEJiSiC+2s1XMJ34+cI7nPpz/+JFb+Bsh7GBxa8fWFRG3Aa4Jig0CiXIwBx7r77bsdAGfTPAuGf/vQnB/gKvis3vmA4A3GPdVqbLjTC4saWADAb5QPj1jI9H374oTLH3OKiYPvgKCDCWqbHwrY8Xcp5u62mynU3P9CnjJXi3y+bQX+ES/jB58Xu7XuqeS6Uz1kENiZJWEkLsZoFgT75fnsWllgYp+z5QtkHWMtivQ+OZ2uS559/3pVf3CAsUCN09mGNgfESy0Bf2Or1n//8p7NS9Z9zTdyXqSUxDJq+ZWcYUC/oFwbOMCn1uywMFsnPOOOM0AE0gGFY/grp3cLhDOs34oOT3YMIf/Llg0p04oeZjzkv33M/yQCeAJsFJxkAdwOYssmBYJ4rFrblJz+uKNfl5K1C4ebTsZ838/m3chf8dtzDpOZv125hwHoHCM30Fpany8mX+b7D4h3oMyCI6dOnO2Ac1uoYqgx0Ggu1iU0r62LqWtqviUp6pQtWqZcz0n5nSjpfU/AdLCOViOsPaquT5zyqpb1P6KNGLJLZ/9FZ/zzuK3lOuITvC/G7HnGx+HxPVboG5ErdS7sXJtQdgDzpx9L3yie77rpr7hWAR2N+zz3suai0rGPlz5bmYZOtfAuGaRio+RKlLITVDX4YsMz6bXlwGzXfba3qY8KFzRbgc7BO5x4gLsBCvz0iXfQZYLSFVTjoj3rzggsuyCXf1wNgzEcffVSOO+64XJtkfRL0f9hhhzlmzkL5IhdwhRcOjKsgjvY7FcjxqpblIiCnXHQ6d9uk21g2TihvXJULJ+IFgE4T9F0vUiqD7SabbOIMp0r1F9U9gGfiiOre3NVKn5SRSy65xPWXAV7nE8rLE0884ViDwtxQRhkbwqjtC2BfJFg2fTd27fdxgnUJfV7YwNkVJiiA7mHNpx70JUqd67sfyGvqGwxD2AoSow7ajjAwbq3TVK/lttbfHSV82I62UCbmfXSHoq9+dct+bci4ceOF8avtAhMlzKHqBpZ4myvI9w28P+6kY6RxorY5EXeZnDByomw9aTvp/tjNjuQLesg9h8XbwLgwrdE/g9Xb6jjGdczjYWw/Y8YM933Un+z6E8vw1ED3R7qt/XM6ruslRC/4oQktQ5Sl5Kja9eHCwLiHnL+4YLril7EGwjSAYW27Tp++pwDdp5ZKyO0KGvzzckm5WM8XKajw4rEJeX2jBmnZtkGaNk5KwxQ1FtSdhMhtw6v2D9NO/CzWQAENaLlJKPFhcooCbacmpGlrNcrfJSmtuydl5B5JGb1ngyyxZ6OMntEoI7+sZWj1pDRq2fHZcPOFDoFBDMbNp538zxk/1hMYN39K4zexBmINxBqINRBrINbAYGsgoewJ8XhmsH+FOP5hr4FPD9tFWnb8Vsnf+dTrb8jOJ+m2j7/8iazXtnLJ/vN5mPnm27LDCafILScdL1NXKc1Cq5zvyJcOew6QCZYdwFXG1rJgwQK3LRsL4ry3CWnzU83zokWLnDUo2wcCWMXiJspCYDXTECUsQDwM9GqpiyjpiOLGthcD3MG26LZNOMyfxgoTNRy29agmkJjymD5keWkdv6OXBCav/eYw/P6pZ1+XXb7zC7n92l/KemtPKtl/r4e+4c984S3Zcc8T5OYrT5Sp66+izvq+L3TfOn6n3mCHwRXlEXYhAC6U/WIC+ICygVUywKao2zdiNQxzFqwzbJ1R68mnUr+L7waYwNY2HGw5AvN1FMCU6YxvM1ARgOcg+MDcDfUz1vzol/wS9fev5TcPdN4q51to79AbeQRLayZgo0ql+TJqPFHcDZV2sZQ2cbGC6RZdn5LUc9om+c1SIYW06ELs+gkZ8V8N0ryaLlopU0YpMu+Z/5YZf71X9p92uLY+yhDpIrZ2qPe8uKtJHpy5US7oUSPaZXFnk2y02kuyxEjAs8osWcB/1PefLhopT7+6prQ0d8nC9t68ucV6T0trU1fe9Fn4+087IpfGWlzAPghbIdsvAVADYBOlvSItMB0akA2AZ623t/PLK+0BANGgsUo1dYRuqFPo17NV3mVq6DKYAtML9QRscvSh6YNG6UfTt2CXCcoubAlm6BDlW9gqDL9so2VGDlH8lePGrwMzuokF9Uf7HT31R/9NLcKj0CLesEFCRn1T6w9l6a6V0O6Q92bNmpVjSjj22GP77IAQJW5+k2qPDb7yqzVkWvtuzniJ3z5X66nhp7sPnjWhVM+AqH7yk5/Iaaed5vI948dS/Ofcmz87a9ivq54wRmWHCLaB75OOnvjz+S/HCEuDLFn4Ld9R5k9+D/oR1IMY2JbCzkEZZdxPGatFH46yT3+f8Onvl1KWS1ZIRA9+uY3oZdCc1XO5/dnPfpZ368ZCCvv16b+XQ/bfW8dWalD0OZG5c/8jF156hfzsuMLbYVZLHexgks+AyeKgv9D5eloWXqtt1rPROryJZdV45hsKPJnWKAkFppQizDPSByq2JWiUMKlTMHKEzTZIJhDFv7lh/MqcB0IfDb3Rd8gn1LVmaEX/0TcUMj/0Qa644gpnFGF1zUYbbeTmAYKGrPi58cYb3Q4qbIVKv43dedhh57HHHnNpYzcRDAEKAU5oCzCEevHFF2XOnDmur4WBFgzlzF8ExY+TnYkwpsVQgp1caO923313B0rGHwzC9CVJD31LQMts4bvDDjsEg83dl6oDPNJfhl0d47unn35aMPRYf/31XVxbbbVVLuxaX2QWZ2TRfSnpuEUBuXOixQYwa9Tu2oebXFofbrOfKDVpQKYq+PGpWX2tuXh24X/rYNOTC+/qljB23L2+0iA/2IFeVHnC7h3GbP/mm2/m8jttObvdIJBNIHfddZczPmdXEPIvfZ9CO+qRLyDeePzxx93cIQaEgN0xHiSP2Y4NtHthRjowVMNMTX4nv7S1tckuu+zijH2D6wewhBM28vLLL/djtmMHBMD3lPmZM2e6/hPjSRjG+ZbhJnM+FdnplOj57YKDWyT1mRoXfqI7B+lx7wMpefJf3bK0Gh9/QY+xeiyl2XT5JpEWgtX7WGINDBsNKOs5BvpJJatNwG6rNtRJPRIKVp/b+bHc/+R98uK7z8ubn8ySEcu1ytrrrZW3vaU9Y/cmxuAYbGNEDEkJzK7M2bD7IeMwxrLIgQce6MZLXFej3iUM6l0MNenDUO9iHPmNb3zDEa+wmwrCzgDBetS96PnD+J9dUxH6l/nqeup36lbqcNYifQN0+hkYz0PugvE0bTwH/bjgelDw25njZ/ck6nb0RVuAH/qC9Htof8KM0UqJM/hb0XZAmgHJCt9PfwzjTJtLRBesg2GET7tlbSSGm9OmTeO1c48/E+aoMPCir/PWW2+5Phdtz2677RZ5m3sLKz7HGog1EGsg1kCsgVgDpWmg714zpfmNXccaiDVQqgaYZ86t8Ol1kfupUybLKfvv5cCzP93zG7LHtC/JMksqG2QRf/nez5n/mVz3wMNy8rU3uXAJ30kp4WV91Pwv23P6g4xaRsjiH4uH9S6w4zDIQjf1LgBOmCxnYcFYwmAqKwWMyzfyvT4LWTW/27J9Nsxe+FGhe8CyJ5+wnwPP/uSoPWWPXabJMkuzpU80/71T01n3c+d+6hh3TznrWvm1hpsF45KCUsPLpno4/KU8MiEQVZi0YaEnbLGnUBiABQay3Jf6XaSdSSTA6OUC0p955pmcCjbbbLPc9XC7iAqEG6jvHui8Vc53MSELO2w5Umm+LCfOfH6GSrtYSpvYPCkpXRunJf2BtgMRF2KhjOl+Rhdwu1KS2T4jzWslJdna2+Lk01+/59owZthH0jWQ/c8tjZ2yzNhPZM687DbZgGXHjv7UgWcnr/CejFtqrjQrYDaff54XCr9TAb///mRpeeODCTJa2XHnLejdMo94iZ+kFQ2/34dV94GxFZbSVlkKWAhB6B8xoV5rGejy+oc//MEBJviuaoBeKtUPgArALYUALmFx0LeYNGlS2Kuiz2CuHCj2SqsDRzaMksUvpKUDZtyXtJSUsINwYhnd4nQTZdlZqTQgR1FFBBwccMABbtttADUmRxxxhF1GPtd0bKBgXCT7V892Hzz3pJZFRVhejz/+eLcQCmiHhb+o/sPCnz9/vgNEAagibPqq/dz1xN/veU86e17X/IQhXD6W76iRU0ZrWV4AxdcaGB/1W82dlduhMKYfCuXW9Br13DZporw2683PFSCX7+W7B0qYBwI4gcF9PmEHrK02my5LNayg25MvLa2JvjvbhPmjX9z5eEYaV0pLCwYkZXR1w8IdrGcALUwAwxTrqwCKvfrqqx3wNWzbTozFNt9889z8m4V9ww03yE9/+lMHwAjOsQJCvfzyyx24GCPgsF3J2LkHIEoY4lxK9gAAQABJREFUyNoHUFp8nHkOCBrgRxDQ6seJIbaBbPAHIJi+5Omnn+4AIrAFA4A2QWe8I+yw/FWODubNm+dASAYMsrhsly8ASr/97W9rYjRicbmzdh4631R2XM3jkceAWmwalS2xcfnKC4Ox4AbBtjz3Jfjef1era36j3/zmNy54wEWMp4L5AmAZoHJ2qQoCu3BL/vX7oOQ1dl0CHMaucoUE5n8jmfDdAYrH6P2iiy7qF6fvzr8GZAX4yZix/XeUP8BVBjr23w2363z5zcDfjUspu6dOObj89n5aZFm9V+Dt6O6MLKkg3C/osetqCfmiYv4zn2qZUdBvRjdNy3ym15wXqsZKGA8NN/3G31PfGmCs2JlaLJ92zZd5nfNk3uJP9Pwf6Whsl+2/+zVZcsJoBeEq87k71HhWzzfefoN8Z5/v9P+w6yRve4uhjNWdjFvZUc7EthIHbGpuqCcxYEQqrXdp39npxdYECRNAK2Qh2223nQPVWrwnnXRSwToUg2pAxPgn3fkAuYBS6fNggGSET4yt2b3hz3/+M0nICUYdCP0iQLz+uov/7eiDsb7/HRiVIbQB1OUYmPqA3HLi9H8r1m+CBl+33367A07T1tkuM346XYL0D8YjHAi7xRgglz4OO3r530E7iNAPYycU/xvci/hPrIFYA7EGYg3EGog1UDUNxIDcqqkyDijWQAQN2ByZnrlkqx4nIWd7/92tp8laK0+Q8277u5yiQNp5C/tu39sTQqTT2FEjZbup6ztm3I2VGZcBoJMC8Ye+7/EWnwZWAwD6GDgNhcU704wN9BjUsQhQqsAaAmilFuKyvQIudJVbC6RaHfeci91/d8+tZa01J8n5f7xNfnP2tTJvPjN95cnYJUfJdltNlZuvOkmmrjfFpaNY/P3elxd17OtzoAHYbRAmo5h8iyXWwHDTwFBrF6O0iQklIGrdICmpdzLS9YC2T9m53uI/nbqDVXdRe0rSuiDVomE0KItGSUJbqB4AzXJFPzV4P3n5D3KAXMIGNAtT7kcOSDtRulNQepQnjQ0pB8SFGdcH4xIa8bq2Wq8Lpa/ELy4voSX6ApANIAEGMANfnHDCCbVf2C8xneU6h+UJZjQYVzgjMJfByBZLbTVAHfjpewsk8c4IWXyvlv1ZGl8pLFGwa2+k212u1yDUPbUWHwgB4LRUYyrSV9OxgdaBgFwBckQ9s6DY1tYmN910k1vIgjWnEmGcx+JlKDNuxHRVEn/st/YaGGp9l3ovt6X+Yuuvs5bco0bqm206tVSvQ9b9U8/MlOlq3D+QYgZIYaBJ0gEgl387LLOLHLX2j2TtpdYtnjztFqdeycjih9PSoFudNy5bj72+4p9hLh544AG7jNxnAsjHERSY52bMmJEDWgBWoS2BgdOApbBvwlLng04sHOYNOJgzgDEU8C99Vg7GL4A/YFTzdxkAyGFspszZ0R7CNgebLcARZPvttw8FAvPO4gQwAiCSbzj33HN5Jccdd5wDSwKkBJQCGzGMv4CHSc+vfvUrx0gHW65JuTrAgMzAuIArYboDnMw3AP65+OKLnSHrMcccY1HV5Nz9UUY6HlLG6NdzM/VF40lOVIMq3R0lOaKysmDgSCI8ZLvsUiEMuDyHIddkMMC4Fredv/vd77pLGBYBj8EQCIibfME4hLwPy7IJ/cZdd901B8YFfMU4BcDUX/7yF5fHybP5BAZEA+PS36N8UA4Aqb/00ksuT2KcxI4JxSSVSjkAsLWrML2vtdZaLpxrr73WAbsgsmAMFQaALxb+UHmfL78ZGNe+o09+0yzerVlzXmNC5qmDt/WYquOXbb6akPSijM5/cCjbtQJy3TWgXD3SCxSgq11zALoZvRauWVYDrBu9qKnjWGINlKgBquVmncIaqVltZEaenvmUfNo5X+YrAHd+1zzpau6UFdZeXlIju+WBx++Xp158QmZ3aTuXvlD+dvcdfXY1or39znezYNpy2ltSbmBc1uc22GCDfqywhb6u1HoXRnK/T0I7T3+A5/RJAMMaILZQvP470kCbTL2LYUOQTRxgMWBcBOCp9VcYUxsYl3RMnz7dkZ/Qxj/33HPugO08XztgBhK0HfQ5mCMotuNKpXHS7+F3/uY3v+naiBdeeMExufNtGDTT35o0aZIzOqU/xM539KsR2kCMsxCbjzNDEJ6xPoTxB2fm7+hX0SbRTrLzTSk73RBeLLEGYg3EGog1EGsg1kA0DcSA3Gh6il3FGqhIA4nmHraHHOBPB2MMzLz7LOJBZwN0oY1JAf89TLYXH6XbMhVwH/Rf7N7NOxQIz4/fTVJYeivSROy5Eg2wFSiTjCz01jsol4lKJhTZVgUWRgauNhiOqgNb0C5lK/WoYeOOMgAIt5wz4NmLfn9ktpgRjoVX6bmM9GiUscQaCNUAWxshTDgFWUJCPcQPYw0MMQ0MlXax1DaxcVxSWnV9OT1bF2Vf1FZKSWEiiTLFpF/R7V3Z4nFORlo3S0rTCrqI2ruOWjgY2qCeBs2YbIP3S4z8TFaf+Ja88u6kXFgw5VZDAPPOW9DfCIf4iLe3f0w/WfXC/7D0ViMxVQwDMMOxxx6bC3GPPfbIbYuaeziEL2A/8dlwYS0555xzhvAXDZGkK/C2cU6LZB7slEW6jWvi31oY6NRGFa0XGtZISOuXGgYE1ASzDIAbQD6wS4cBgoolveZjA8bGKvmYZ/M9B8DE91Vb8sVX7Hm10xGHV10NDJW+C19dr+UWZiqYhsuRtddcXe5/8FF59PGnPhegXL6zQXdd4bsHWgDlAsAoBCx7/D8Py9Nzn5DJS6wqIxp75k0LJbRdcVRPKCP8crqj87QGSY6mIzg0xWf4XH31yn6f/fffX958802nCLajhlnWBFY5ADgALg4++GDHBGfv/DNMtgBl2EkFgVGO/h1gRwAwAHLtt2Q7Z35bBNDIzJkzZcUVV3T3/GFLaAOCAARma+Sw+UD6xIBB2NEBgeHUQLawzp144okCaNEE98bgxtbU5pb35egAsOY111zjggdwe8opp1hUDvQCsAUgFGmsJSAXEGHHYynpflL7IZrHI4lWgY1rKSB35eqXAUC5AHF9MC5pAqRbD3Lrrbf2YQ886KCD3NbbpI3t0X1ALmAlgOkIICQDLXF/5plnCvkTkFeYUHZsDAeIF7CX5WPCJT8C5iafMudm5SMsLJ4B+DIwLoZc5C8TQO+AxXhPPMXCMn/D4RyW356alY6U3xK6st0wJuGOPrrQopTRXYRSCsIFlJsGiNtzDUA3rQDdR/72iHz8xhxZdsxyssnUTSXTrp4WqVEeZ/UbeQ6mT8TxzedFA7qnlRpDJCWBQYQCbkWbzhdefk7emf22Mt9+Kt/6/rekeclGSYzSrNSakjOvOkXmLp4jczo/lqnTN5RrbrpaGpuy0Iz9ZC9HYgMj/UOPPegMM409vlrtLQBMGOpZnytHSql3IeQxFnBYcOlPmMA4b3WnPYty3nnnnYW6Hrn55psdU7rv7+67787dfvvb33bXMMieddZZ7hr/tPcNDVkCAfRrfRzaCAxx8u3qiSExaY4i1YiT3+qhhx7KsRUT77bbbpsDVdNG0DaxywxjNQzkrW2jraKv54sZZvHs6aefdmBcrtmxC70A8GW9+Z577nFAat7FEmsg1kCsgVgDsQZiDVRXAzEgt7r6jEOLNRCqgeSy43T0paumyWyn36H3cAn41p2zpyFz35Pcap3Ycqy9vd2xKVQrzOEaztixY90gkUlAmyivx2+F+QfGgnKF7WixnM03GC43XN+fTVtnz44L0L0eavf+N8XXsQZ8DbCgBYOHLYb57+LrWAPDRQNDoV0suU3UhqhZt+JNTc9I+6cpybxTwq/F4tP7yh72d114+reyN3w5I80wJ420Vq9AWOoky4yrgdBZzTHl9r2fsNxs9/qVdyYVCKw6r1Zf6S2ZsKzGVyA9Dpzrva9OzNULhW3iAAmwFTHMYSy+DicjCbZNZjtftoWH5Yl2B3BGLLXTQHqhbmn8igKSHkpL47MKiFdGqFIluZIyaU9PSjPMZxGqh1LDD7qHiYejXBmQsYGOzQG7lsKQW4/uy9Vx7G/gNDAU+i5oo17L7Zw5c9widLm/2Nd33E7OPvcibbfGymqrTCk3mLr39+rrs+Qvt94uRx7ed2F+IBO+4YYbCgBqgG8AQYLAtznpj+T+2ffIhktvIutEYcnVxGc+1g0k7s/oVs5pGTFVwTCtA9CI1UBpML4iGDIxVggKTGUAW8MEdjaYXBFApcY0x9yqD8blPUxpAE1h8MQdRvMGKuS9yUUXXdRvjvHII490gFzczJo1KwcSNIAjz6+77ro+YFyeYXjDttSAZwAYAsyx7bF5bwL7qIFxeQarL3mG8OlLAqD0hW8B+AuY+dlnn829KlcHs2czxsjKhAkT7NKd0REMevQ//DT2cVSFm0yHgnH/lZbF/y8tmbnRA0wqELd5Xd0RRbcyr1QMaGvsuIQXBOMecj4IxcEXxhzBrbzb2toEdmOA0zAJ+sIuJciXvvQlB5z13/EbA7Ri/AIYKSi2swngKBgW/XIDqIv4GN/hF8bnYiBajBhNfAA7z8aPHy+vv/66K5/lGpxY2PV+HpD8xlSGAiQbaR+W6V9GMootv+ehO+SvM2+XdVZdT766x+bKnKvzJ8qeyxkW3YyC4wHnunOHyLsvvSsLPlogIxtHyYrjVpREl46hdJeikgwi6/3HidPnDL7buxZJe6pd0o0pGTdZLYA0HyV0yP3IIw/L+x+9Jwu7Fsi+x+4rTUtoH2RUQufaNL/p0fKSyCkHnihzuufIF9dYT6Zumt0xqLMzLfd8kq2LqE/+cNn5OTCuqRyA6H333SdPPvmkY+42QG612luAqeWCcUutdwF2Isx7HXXUUfaJ7kzdieEEafENk/o4CrlZcsklHSD1yiuvlKuvvrofINfYcelDMP+GjBkzRgA0I6yhGhjXPdA/zNFhdISgd99Iwj3UP4ceemhkMC5+qhEnfbmVV17ZkuDOsOUCvkVnBnbu46DAjbmnX4Uefdlyyy3d+itzGrUiRPLji69jDcQaiDUQayDWwOdVAzEg9/P6y8ffPaAaaJi0mlrifiaJJcZmFzx7cA1u0M68wFC6r4HmzHKxBkEPuyCZmAP4wHZsWELWO1NuOT8A7FeAcfnOWk5EWrHLprGHKTeX4KF2n0t4fBFrIKeBqBbcOQ/xRayBIaiB4douJpT1qHX9pKTnKyj3jpQkPu6/kFTw55qvDGIPZyT1YVq6N1Ng7obKljteF416bMPy+XWtn2sg9Q//e5hoAeci9h6Q7JiRC+TN2SvKnHlL5Quu7OfLjP1E2sa/L2NGQWejwQTid/f50ld2rLXxyCQ3x3AVAAznn3/+cP28+voute/s0jK9+Om0dD6qvDxvafKUGbtUSYxX0P90ZeJWIAd1Tb3LgI0NymTILcZYO9Dv6/33jNOn5S8e01eUDQAqTpw4sewwJqywvOy/957yx8uulF2/vuOwZMqFGRcwLt/J9w62wI5mDGmAH2AQ6+rKsm2OToyRFUYo4OU5TaWCoKJI+i01Prsrpex0CoBZp2FItGXB77Itj/MZ2gMG/N73vhf0lrufO3euA636oN0tttjCAfpyjnouNt1009yjV155JQdWsYcAhAAWBsV/xhykCQxrJvn6uDCPmjzzzDP9ALmwy2PMFRS2YQaABLjRB0CaOwPxsEWzSbk6aFMgJwAVAJWAhpiHZA5ltdVWc0ETfy3nXDMK5ut4Tg2s7i7RAFMZF5s2VEDu5BLHh6awkHMYSNKcXXhXt8BYWg+y2WabhSbDfjMf4EUeYUtyBBbAsPwECcQ222wjMNYG5YknnnCPAIoDVALM7gtlGON3DA1gkC4mvqE8u0YAuAMAZkQU+eqCYuEOxffF8lutvynRJLIw+Zm81vmydC9a7OZd+sSp2T2tVYwD6SpoHlDuY+c9IHff+w9ZommMnLz/yTKqabRkFKh77QXXStdn3bLO2uvIuuus55h5M4sz8tITL0mTNEtrQ6uMXWIpd06mdD5Gx3OxDIwGGIOlE2lpGKGTYDrm7ehulw9mv6/nDpmiOx+O/MJISbRoWvQAwJ1oUeCtnv941qXy4ZwPZcXVV5Af7PF9x4Kb1OfX3XO53DvzHll7s7XlyG8d2m8nqhW/ME7z1Cvu49794B2ZKllArv+1sGmz3hUU6ifqKYChHGY8U432lrjoH5QrpdS79E2MsT+fITrtKoYVF198cUlJ2nvvvQVALqz99GVsd4GFCxc64yAC22+//XJhYkwT1oajW9p964fhgTDChN0DSpFqxEmbExQMhjFsoo0zpvWgm3z39KcwIOGbae8wduK7Ro3SzoSKnfP5j5/HGog1EGsg1kCsgVgDlWsgBuRWrsM4hFgDRTXQsNZG0nXPbbotqAJyEZ0zY9rMbbM7FO9JcyyDpgEmApmwYxEDJgjYNJi4C5tcHLRElhgxg2GYJ/gehO+rJRiXONzUNSzVLL7rOdFzHnL3fEwssQZiDcQa+BxrYNi2i4kOWbhqu2Q2bZbGRxVxUAJrkssOinNIv6qAhY8z0q3AhZZNlC13dWVSGutawJAcAz9utn8aetZ3/vMxoxbKBlNelY6uZpm3YIws7GiVdDqZxc8SjrmPeE4m0zKqtUPGjv5UWps6e/wrY6VG6uK1cOw+eO55r6dYYg0MOw2k5ikr7ksKxtWturuf19I1r7xPTCybBeOO+GJ9b/U9KGMDHQ+wcBsz5JaXt2JfpWlg2PZdBmBMz0K8DzAsTfNZ12uvubpjjr319rvkqWdmytQN1pNVp7TJ0kv3BwiWE/5g+Jk79z/y2qw33fc0KAgBZtx6AOMGdREGMl38aloWLU5J6lmsrYI+Qu7VTepVkfa/KWqqISEtaw4NAxP/SwCS3HvvvQ586j+3a+b4AMr6ws5iACp8AexqAoNsMYFZ1tjjzK2BGe3ezvnmGA0gtPHGG/djnDO/yy67bA7sivsgEYOBEM198OwDZfx3YWy15eqA9v7SSy8VmOcQAJIc6H377bd34FyYiPPpwU9XqdeAcRe/kJIOzcPp19V3lHxPJDr+aVhD87waWyZHM0KqnoSBJAHj2vPqxVR+SEHWQAspbHcOAFsmYQzN9m699dbrB8ilP8iW4QhMyWEs1uaf8yOPPOLfhl6ThmOOOUbYsh1AldWFgNMB6FJGKtlNIjTSOn5o+cpnZq6b/Ka4WQw+ZERC7Zmz5eyml6+Tf3z0D6fRi3b9vyxztjZBF/zyd/Le6+/LD6cdKZvtsWEPIFfbqHGL5PxTfycjGkdmj4YRsvSSS8vktikKJFxDJq4wURIpHXvAsqvzNhnFez9x7+NqbJmQccuNkwkT1PBIn2UPddetlYTep5VttXuxMp0nGiWZ0IQOM6EqZKkGQ/KudJcs6ljkzt1Ka9yt9zzrdOfFeu6UzhT3i/V5p6y58Vqy8uorqcWCyPVXXScfzf1I1t50bdn669Md8PbeO+6Xm/95kyzqXiRXnnGFNI7UX9eBcbNA3CSAXPU786bH5canbpRtVlXw4iZH5jT8TvpN+TD1vmw7Zet+YFwcRQE2wiCfT/x3r776qmPvrkZ7S3xLL710vmiLPi+l3vUNZGAfzyfl1HVf/epXXftM/XnzzTfnWPSNzZy4dtttt35Rwth76623yt13310yu2y5eqskznxGh2HtXL+PDXlA28JuBhiPPPbYY7Lrrrs6VzDHW9sTZG0PCSZ+FGsg1kCsgVgDsQZiDVSggRiQW4HyYq+xBqJqoGnDzWXx9RdLUkGHiQaKnVrXMroEANgDMRg691G/OnZXSw0AVmWSmAl5QKxMyrNwPVSFCW6+icEli5MDIa70aRkc6ueB0FUcR6yBWAOxBupdA8O1XRwzcbQ0LdUq7a0p6byvtK1M7TfLfKJrNw8pO8hbaenaUEG5G+g29W1srRdYxKVN5JE2jKWcWxoXy7illDWrt1tr3duyzwRVajpy7u3D43OsgWGggfRCBeK+occzWn71yHygH1Ums1JqbEq6N1wkiyZ3KIheV5CVgLpeZVDGBm5srlXPED/X628ap6u/BoZr36WWY/r33nvPAZmCgML+2i3+BLDqYQfvKy+89Io8+/yLcu8DD8knavQ8VGWpsWOlbdJEmT7tSwLgeChJ86Sk29GhY7Yyhc6OmHJtC1Mv6E4SNIpab7esNbSYcgHhmcyZM6cfY95ee+0lHL6ccMIJcuqpp7pHNm9WKlPa/Pm6jUaF8u9//9uFEMZw6wc9fvx4N1fJ99VSKtHB17/+dXn88cflsssukz//+c8uvYTHNUdbW5v8/e9/l0mTJlXtE2DPXPxCWtpvT0vqZR31lNCvY5eDls1055OJtQHi+SDJugFHepoHRB1VYDw2KcQ+G5aPYdcNgt8trLDzp59+Gva4zzPSfsoppzimSvLbLbfc4t6znTjbyXPAKAkDZDEAcJ+Ah/BNvec3Uy1jA4BsCMC1nGGAFsNFmYUyN/2xzG/+jzSt1Fsup62zuYz58oieuuXi3vz0dELxok2y3irry9VXXy0Txk2UTJfOwygo94I/nSML/7NAdttzd1ltj73dM0C4gHWz54x88tF8ufD0i6Qp2Sjbf/1rsubaCnrUOuS2a26VubPnypTVVpEtttxCkbvqT5+/O+tdmfnYTGlINqj9ihpkKohXTVicAWJzc4t0depapebN8SuMl1XX1HaJuSA95s39RF59/lXndr1N1pfmlmaZ8+858sZrb6iTjGyyxSbS0KioWYqkHSjIrnvOYIbffUfT8NSzktIE7fTtGdLQpA/VqwbujGpwc+dtd2rYs2TC5Amy8147u/eP3POw3Hf3vT0AXAXfAsBV8G1nqlMWpzqkI92h58XZa70/6htHytp7Tnag2j+c/TuZ+eozcswOx8jOM7YjZTL3jQ/k+tlXuuvFKy2QkbrzZJjUss1it8t8MmbMmNwrSHiQemhvS6l3/frUr4NzH9ZzUY6OmR844IAD5De/+Y1cddVVOUDujTfe6EKFYdg3ZGKdlH4TRhBhwnillHo+LIzgs2rEWYq+g/GH3cMSTHtzzTXXyB//+EfHwIy7hx9+2B0//elP5X/+53/k5z//eZj3+FmsgVgDsQZiDcQaiDVQBQ3EgNwqKDEOItZAFA00b7uLdD37uDSuinUgo1JOPechd59Nfvx38DXAJLxNxA9+aoZWCvqWPp2MYtZJJft86NwPLa3HqY01EGsg1kBtNTAs20W1Uxmxpa5Y6EJF5/0KyPuoDB3qYkz6HQX1faRsucqa27WBMiutw2KutYYapl661i9Be8hN//NQeF+GdmIvsQbqTgPpdi2r7ypg43kF4v4LQL2WR906tVwBwDFyyyYZ8ZUvSOOyXrkvN8Bh6I/FL8eQq9/maj+7D57r/P0w/GmG/ScNy75LjX41GEW/8pWvVDV0wKtDDcBaVQXUQWAJ3Uq6Zf2kpN7Tvuo9iiLKbpxUPGUKUnKg3LT2j5VlsGVdBRopo2GYmLFF2LtSnqVS2qlWyQGySvHsuZ0yZUruDuayww47LHef7+Kf//ynewUzrbG2rrvuujnn7777rtttKvegRhfE/+CDD4rPTBuMCkAjQEOkHCa8YHiF7ivVAek7++yz5YwzzpDnnnvOMRefc845bmtott6GLddnWy2UlmLv0ou0bzczLR13KhhXx2SA7CKL7i7d9MWky+eUmVqJgSTtXKt4ah3uGmuskYvinXfeyV0HL1544YXgI7cLHYy2MLIfccQRcuaZZ/ZzU+4DQLccbJHO1vR33nmnXHjhhQ4YBhsv24mT/z4vYvnMzvX43f/6179ywD1Af1GlUN3y1OtPyPZ7bNtTt2Tbrcc+e1A++uQjaX2nUQ7eZN/QaB65+xk59bWT3Ltd9viaLLGOLu9rs3TVZZfIw88/Ivusv498bc8tHSB30YJ22X3NGY5Nd+JKK8mRxx7ptr1feqmlpampyYVx2AGHy6vPvSI7rrqTrL+HlhkGQXq0ppaSn+5xgXwy5xM5ePrBMmOXneS3P79Qnnj+Cdl2xrYy/dtfdlNGbhGF5PccfZY69Rlg29dvf0FOufQk6VZk8e43zpDmVk2zPld8sJ51hknPt95xrVz/0nWy4+QdZe/dsyyn6YZFcs6FZ7h0ltq+tStQOigbbrhh7hF1/bRp03L3dgGgEibRWgl1Sj6BFdfE6q96a28tffnOlm7e00egrgsT6r5yBLZXALnoEX1NmDDBAU0J67vf/W6fIAGcGhh3m222kR//+MfKTr26YwumDwUYt1wG3D4ReTeDEacXfd5LjDwAM3MA8sYQ6dprr3XMuXhidwB0s/vuu+cNI34RayDWQKyBWAOxBmINlK8B7frGEmsg1sBAaKB5q50kkVa2h/lqoc3gFhmq52zq47+xBoa0Bqz4ZT8iy5Tb+0FD7b435fFVrIFYA7EGYg0MPw00jkvIiOkN0rK98pmsqN/Hgkc50qFrMy/pQvBtaVl4fUoW3pWS9AcTdBFHF0W0YXStn2sg3Y3G0Pc8JN6Xo5fYT6yBOtFApkPBSK/p1t1aNhdel3JlNf2KlsNywbgshE5UkJLWHSMV2B+DcfP/0AbWclWgOsvdBxlze4Ko1/f5vzB+E2tgaGuA7cM7OjqELVZjGX4aaFw6Ia1fTkrj2tpwlUIfYqDcWxTk+JiCHOdbLd6rI7Zb/uCDD+Ttt9/ufVjmFcAsZIUVVigzhKw323qZu5NPPtntfFUowA8//DDHauYDXNdff/2ct5kzZ+aua3kxdepUFzxMsvnYaX3QkQ+CqkW6qqUDADqk9eijj3ZgYgP3AMp94403Kk56ap4yOj+izLi3prLMuKWAcbVMNK6rZWTzpDR8odyBYO8n5EBzvY/6XJUDjmzJ4vv6hDOYN+PGjcuxJVq5DUvPE088EfZYNttsM/f80UcfDX1f6UO2t6cegDX3rbfekra2NhfkTTfdVGnQdeU/Sr4oK7819q/ra/Hh77//vsCkbbLbblmwqN1HOZdatwBWzLcL4rPPPpuLcvU1VndgVgD67ZlFsjDzmSxMfiYNYxOunnj0lYfkja7X5NXOl+SAX+wj2x+wtay0+Qoyao0WaZ6izPTLd8jlj1wsjyoQ+N2WN6RldQX8r6HHmjpuXKdJpnxjJbl33l3yf/84Sxat+KmcfsfJct+8u2Xz/Td2bpxb/Kymx6p6rKI7MWm47pjMrkxqAL5yUhaOme/SQFoalsmmjTQml9BDDQ0SrSJd0unmovzVmGrV7aawddZZxy7ll7/8pXR2qiVPQAB71lLy1TfEafUULMzGNFtv7W0x3QD0tn76+eefL+xsEZR77rlHMD4oRzCUAKSM3HzzzfKPf/zDXcN2i/GML/aOZxdccIEDYNMumEFTLfpMgxGn/81mNOY/C16jgxkzZsgVV1zRx7CK3QBiiTUQayDWQKyBWAOxBmqjgRiQWxu9xqHGGgjVQOt3DlOGo0ck07Ewi6OwObSQs3sU8twFrM8H9X3o18UPYw0MLQ1ky1BPIdPZ6CF9P7RUH6c21kCsgVgDsQbK0ABAhRHTGqR1J2X/WkUDKAWsEIxPt6pPPZORjpvTkn5gB9n639+RsR8sL02LW1wn07WKrm3U1tH95w9Ph8B98Fvj+1gDQ0AD6YUKlH9JgfJ3ZoG4HQosSs3Uheb+5D7Rv0briORqyrA9o0GZcXWb0ioAOKJHPvRc2vaQQ/089DQfpzjWQHENAEC577775Bvf+EZxx7GLIauBpklJaZ2u/dw2/QTtckYWJdVNv65gx9tSsujelHTP1vbTw2ptvvnmLijAB7CCAbAq9YBhky1/YT9bZpllxAf2RE6n5xAwHkBcBFDr/vvvn2Ng9Jy5S8C4sLuZ7LXXXnYpgI0BoiBsN7xggXbyA/LAAw+4skP5qQYo2QdJff/7388ZsFi0gJyOPPJIu5X11lsvd12Li3J1ADPpPvvs43QPYNsXADuAJU3MCMfuSzprXuz6UI2t7klJx1/VGHKW+tY8G1m0LCSVULl1KwW4rVSdpbxvbladcPxvmDrZv6uP6y9+8YsuIeeee66EAeEAaRkILphiA8IBjoTFOigAJn/wgx+4snXaaacFX/e7P+uss1x+O/bYY/uBLSnD1WZ/75eAQXqwhO72s2FbKRV6tIROnVz9MIMxz5kzR7bbbruc4QEgtii/U6V1C23Cr371q2ByZNasWQ7AzQuYwVtadO6mgMybNy/31tqJ3AO9gCGzkHzrW99yr2n3AFcigEUNcOke1PBPuXV7viTR7tLWIrDgHnTQQa78A2JEt6eeeqpjCs3nvxrPH3vsMbn00kv7BfXII484pmxemDEA1/XW3pKmYnLIIYc4J+RjGKUB4La3t8vHH3/s6tJKWVj33XdfFz7594YbbnDXPAuWh08+UVKsHgnuLprWnRUuueQSe12182DE2dAA1XRWgu0ZfZejjjrKtT1Whs0tZwDOyy23nP8ovo41EGsg1kCsgVgDsQZqoIFKlnFrkJw4yFgDw1sDyXErysjv/VQW/eFkadpwc0mMGevADW6imHkE2HcU7ODIyAL3bjK6Ht4P758o/rrPkQa0tOlu3Fnb66F8/hz9ZPGnxhqINRBr4HOvgYYlFZT7JQXW6blDt/TtfkFbs/YK1MKa/YK1ZZ/EBGl/dIHMXWG2fDL+3/LZcnOkc0SHZJIaPv8Tdlb39X5fgTpir7EGBlQDWpZg8ut6My1dum1x98sZSb2lDysB4doHjFTM/jrKpKbApmZlOcq3hbc5j89atTHWVhnq5/i3jDUw3DQAMy5g3L333tsBIYfb98Xf06sBtq1uXiupbaNIxyLdYez93ndFr+ifvivSeacam83NSKsaojQrwBfmQMCzX/va19zW8DfeeGPRoAo5AIy7xx57FHIS+R3A2t/97nfC1tmwYj7//PMObLXRRhvJ+PHj3ZbMAIgB+8HSihxxxBGyxRZb5OLAiIQtmQHAAMSAvRGGV4CIAGDuuOMOOf744x3Yt62tzYGpcp7LvGBb4/32208uu+wyl+7DDz/cbRW99tpry1NPPeVARQC4EEDCY8fq3HcNpVwdACy75pprXMpeeeUVOe+881xeSSaTAjjq17/+tXsH8G3KlCllfUFGCRg731D25v+Xkq4nNZP24oMih6fDNGndRvOzMleKlpFqyN7TkvLabN1SXPug1ZDvbpmUjaewkFFfwhblt912m0sUgHTK0lZbbeXKg5WNfCmmnAPkhe2Z9odtvgHGAxIkv7DFt7E8RgGYtba25vIbbO+U08mTJzuWTvLh5Zdf7pLyne98J1+ShuzzH6pB8Q8vTsv8Rdm+dqUfcvA2SVlrYnXyG6Dbe++9N5ckDApmz57tANwXXnhh7jn1BXVEFKlG3YLBBkC7XXbZxTGyAyD9xS9+kTPcIP8VEx88fOKJJwrb1tM2wFoKkPGEE04oGAR1Hwdt1EknneTcHnjggUIdORBSbt1eKG2///3vHQP6gw8+6MqjtQHmB3AiIEX0XSs59NBDnfEMjK4Apcl/tNMm/nW9tbeWxkJn+jbUmwCcyTv0v4JCX6Xc/hh+MQYibA7EN1SyuLbeemvHjMv9cccd5+pc9Pniiy/KmWeemauPzX01zoMRJ0Bz8tFnn33myvX06dNdP3GppZZyZR6DI/qY5HXqFNrCZZddVubPn+8Mw2yng9josRo5IA4j1kCsgVgDsQZiDYRrIAbkhuslfhproGYaaJiyhow69hTpuOo8yXz0oTROXl0n1Hpm1ADjIjanUK/32VT+//bOLEauq87D51b15n3fdweHJM5iJ3aCmExGA/MWDRIQgUDKA0gZAS8kYhACBC8wEuI5jJAACYQgEhFoYCYSIU6IPJBFZILD4sRx4niN931pd3fVvfP7narbKbfbdnd1VXd19XeU43Purbt+91bfU7nf+R/+hcCkJjD4NYtn4Zh/lf8xWJk/eaYn9UXg4CEAAQhAYNQELNZ1byqGgqXchRL5XklDdmLUm7lihdnZnDD78Jww//jicG7/6XBKUu7pJcck5p4MvbPPhbRDL2sl5cano+VcN1ZbdPqKE2MCAi1IwHJG6Zi+u+9IwlVEv9KuLKSH9L3qa8zBJgpy0rlFUQb/UcOEWkZqkLzRmKNr3a34pa9l3Mleti5hjgwCoyNgYcSSgsUlywsWIUntT8Dt3J57CiFz5Pin1cY9Nrpzzk4pGul2PVePlUP5H7PQfUchdmSzxHrzzTfHKHiWEEabLCAtX758zJFxa/frKKweIviRRx6JYt/u3bvDQw89VLvIFfUHH3xw2Oh9lmMPHDgQh+D2d6ZWLss3YFnD0eTyoZrz+fWUfk5aVLS05kiQP/zhD2Meui0f142Er6Hr1DtdDwOLZpYff/aznwVHQb333nuv2r255ZGMr/rwBjPKZ3QP/yUNff+rUQ/U1guXb7DCMB8nS0Lo/rCGgt/c2M5VS+RI/+cjhfDU/yVhr75jlf8bOswB3GBWd2cI970vhE3r8v/DeoMVxvnjrVu3xiiIn/3sZ2OUU98nQ5Nl9lrxMv/cIrmFW0ertLD0pS99Kf/oitIRN/NIold8MGTiU5/6VPj+978fRTXvzzmXqPJFN2zYED73uc/lk21T3rI8CU/+ezE8o9E/Dp2s/7SmKyCs77c71jTufrPENnSo+6FH6Ci57oAw0nbIWP+2+H7yvfetb30r5qHHYxnXz4MbJXfscBRwy97usFEbad3rWjx1pGc/e66VHEX2i1/84uDHvo/HM9Xzt/16x+coqk8++WTs3DJUCDUfi5rOzRJy3Z51ZG7/PRnub8pPf/rTsHnz5sFTaMXn7eDBXadiedzJUm5tWrduXeyIdPLkybqFXH8PLY9aMnXy380tW7bU7ibW3fnC97jlYD/nnWvTWKTg2u3U1idin96/v5d+pvjv2cMPPxwPydL9Rz7ykSh7b9u2LX7mTl3OQ589/ntimZgEAQhAAAIQgEBzCCDkNocrW4XAdQnESLmP/Ufo//3/hP5t/xWS+YtDcfnqEGbM0gvT4nvrVn2H+H/G/P8aWmH6vaOjBoFJTSD/OlVOohopd/CMJtv04IFTgQAEIACBKUAg0a+4rg16MWspd5kiL72gaGDv6MQl+o0ldZY6wwJJufNOLAwX964OpxcfVz4WzknMvbDgdBhQ1NyYBiPm6mkaH6j+x9WaaVery1neHbfP4574BwItRkBfgfI5ybcHKxFxLeKWlTO/lC436FgVBbBwk8SND0rcuLsYOhY17mV1g46wpTcz2SPj5sff0pA5OAhch4Cj0jlS3f79++PLcw9ta4lyvIZGvs6h8dE4E/BIED0aESJTR5X+ZyXljlbg0ugR5R1Z6D0hEfJdSblb1UFlZSEOy9tqQ/NaLPnVr34VHn/88SgBHTp06CrajrboSLoWK66VHIl2zpw5MQJoHu0sX9bC4Fe/+tWwdu3afFYsa4c5vuKDmolc2ujqUiOjJnV2doaf//znMWKjh322BJInr/Poo48GRye1TFSbbrTPoUNO1657o3o9DDx0uAUaS0O1UprP4YEHHojXxALRaFI2ICl8v0TcP6Wh/2Xdv+9q7cpPodFsJiTqg9D1z4Uw7QMaHWX2lRxHtaFrLFzQJv91S+O3e43d3XD20HslX+FG94yXG3p/5uu6dHTbvr6+4Aihtd8NP1ss3r322muDiw89hpUrV4Znn302Rnr+9a9/PbicK5bAvv71r4dPfvKTV0QMvdbxWvB96aWXwre//e3wk5/8JB5L/r3xd9xDu/uzmTNnXrGfdpmYPS2Ej9/X+vebefs5sXr16ij5+f4ZTtbPr8u1OjmM5W+LO4987WtfiyKdOz3kyX+XHD21NoJq/pn/Jg+XLOn5b79l8Nr7350R3Nkgj/h+rfP42Mc+Nijk+jtTT7TwkUTUzf/2D3cc9fxtH247OZ8FCxaEJ554IvJw9Hm3P31e7nTj5I5gw6VrMc6Xrf3uX2tZRyi2JO0I2S+//HK+arznLGD778nQVO/zdiTcr7VM7bkMPZ58+np/d71dn89XvvKV8NZbb4VTp07F6OKOMO5r86Mf/SjfzFXthMEPrlMxw1zIdYeL4ZLbRNu3b4/RdIdGQv7mN78ZvvCFLwxKwbX3y0jO3furXSfff737vNZ1yLfr8nrfEUf0t4Bf+z3Pn2f33HNPHIHB99zvfve72F7Lnz0Wlt0pxSzy5Wv3SR0CEIAABCAAgcYQSNTgrON/CTRm52wFAhCoEBj484uhvPNVDVG6O6THj4Ssf/gffvCCAAQaQyD9N9lLJAhAAAIQgEAbEMj6u0J2cE1Id94dsnduDcl5DwvbmJdd/qF4NjkT9nS9FXb17Ay7pv09vDNjZzjXI1mgWGoDepwCBJpMoNwZ5vSuCOsu3Rbe37sx3KK8fuCmMEtRqRvzLa2I8EeLR8JL0/8Ynp333+HgLA3dyPdzVBf2gd6Pj2p5FoYABBpPwC/2PbzqqlWrYiTTjRs3Nn4nbHFSESgdk1T7+3Lof74OKTc/U7ltxVs1usQH1Fllo6LlztPTt1EP4HwfDSxPnz4dh2A+evRosAxoMcvy0EhTmqbB6zp7PQtGI5VLRrqPocsNDAyEw4cPR+HGwyAvWbJkWFFl6HrNmq6XwaVLl8KePXuCxUmzH3Vy56tTior7N8m4L0kGf0MzLo56K3GFZFFVxv0nOljVR/DqtcrlcvDQ3Y7MaCnMz5vRpIsXLwYL85Z7vf7s2bNHs/pVy/q7vm/fvih+zp8//6rPmdE+BEb6t8V/dyzNWha0hOp04cKFYGnUMq4/H04CHCkpjzzgY/F2pk+fPqLVdu3aFRzx18mRXd3BY6JSvX/ba483l2D9rFq/fn3tR7HufVhSNPMvf/nLwaJjs1L+N8Adc5YtWzaiZ3WrPW+HY7Nz584ofVog3bRp03CLRAHU0fUdDTi/JsMu2KCZ/vvvv7fuwGrZ/lrCdIN2FzczEfv0/etRICz4Wg4emnz+bq/5OWgJfaR/B4Zupx2mryeUt8P5cQ4QgAAEmkHAnZhI9RFAyK2PG2tBAAIQgAAEIAABCEAAAhBoDQJpCKWjabi8Iw0Df1Lkzbf1AljRwRqaCvIX5AMU1iahw3mV8krlRYWQaPhIEgQgUCGQXVYk3OOVaLilAyr3auhsZQ+jHfRdbWhStKnihiR0KcJZ9yZJG0taWzRq6LmzMQhAAAIQaHsCUcp9virlnqjzdP1oVJ/szrsLoetuPTPXa5SJ6S1s5dZ5mqw2cQTSi1nof1sRcV/VSAh/lkB+RMfino11pCjjfkiRcR9Axq0DH6tAYNISGE7IneiT+ehHPxqeeuqpKAQfOHBg0gt8jvL7yiuvRKw7duwIt9122yDiUqkUo1Q7crDT008/HSOoDy5AZUQELJR/5zvficv++Mc/Dp/+9KevWM/3k+8rp2984xsxX7EAExCAAAQgAAEIQKDNCCDkttkF5XQgAAEIQAACEIAABCAAgalJIOvTy+A9isz0ShpKknPTw+LQjEC2GhHRL4uLa5JQXF0Vc1eoXJiEpAfBYWrefVP7rNNeifAnJN9qaGxLuOX9yvsk4Voe0tDFDU8dkuM1qmbHZkX82yLBSJJ80s13r+Gc2SAEIAABCEw4AXdy6f1DVcp127bepA5khXUVMbf7zkLoVNuVZ2e9MFnPBPzba0Dtvr6/qFPkq/rttVczxxA4KFHbrlsybs8HJePqdxUJAhCYOgRaRch1VFzLqL/97W/Dtm3b4gX47ne/Gx599NFJfzF+85vfhIceemjwPO67776wdevW4IhvzzzzTIyM6w+3bNkSnnvuudDT0zO4LJWREXAEVkcRz9OGDRvC/fffH6Vuy9AvvPBC/MhRn1988cU4EkC+LCUEIAABCEAAAhBoRwIIue14VTknCEAAAhCAAAQgAAEIQGDKEiiflpj7hqI0Scot/b0qBTY6MmdOt0ty7mLJuYqYW5TYUFwuMdd5cRIKM/QimXfJOSnKdiKgqGeOhlY6qnxY8u2hapaUkR3XiY5BxrguJkeqlgzfsVER/jZJxL1Fw2/P5Ut2XWZ8CAEIQAACk55A+UwWLr9cDpe3KfroAZ3OWNq1s9RuvTkJnXcquvzGQuhYptEe1NmMBIGREsjU2WrgXf3W+rtE3NfUBtythuGFka49zHJq3xXkL3X/i2Tce4uhOIe23TCUmAWBtibQKkLu9773vfDYY48Nsv7EJz4RfvCDH4Rp0zQ0SxukX/ziF+Hzn/98OH/+/LBn8/DDD4fHH3+8bc532JNs8sxXX301fOYznwmvv/76sHvavHlz+OUvfxl8z5MgAAEIQAACEIBAuxNAyG33K8z5QQACEIAABCAAAQhAAAJTj4BEBUcU64svitNQ3iVR8LQw6H1x05KidiYL9EJ5ZUXMLS6TmLtEded5ikKG7NA09Gy4+QQySbYWgizhlo/oO6XhiC3ipgf13Tql/TcjGnV+Wnbb50sgen9VxL1NApEjp0ngIEEAAhCAAASmAoH0gqRcdTa7/KwikVqAHGPnl2Sunqu3SMy9Xc/W91fFXHU0I0HgWgTcFowirjo+DvxN7UH9vgpnr7X0COfrnnP7rvvDknHvKlQ6NI5wVRaDAATah8ATTzwRent7w1133RXuueeeCTux559/PvhYVq9eHY/lwQcfDEnSXp0Ejh8/HqOzvvHGG2H//v1h4cKF4c477wy33347EVsbdOf19fWF7du3h927d8fc0dER7rjjjpg3btwYurpocDUINZuBAAQgAAEIQKDFCSDktvgF4vAgAAEIQAACEIAABCAAAQjUSyCTJFg6rAhOO/XiWNFyy2+Og5jrg/U7m9nyBZdKxl2mUnKuxVxHzi1KJCzO0gLFes+K9SAwDgTKEm7PScA9oe+N5PbyEcm3joar4bJT1YOD6jRTcPcp6msSRVxH8nNUXEfyW6pIfnx3xuEGYBcQgAAEINBqBLK+EPreVKTc5zQKhCKTjikqaX5y8xR5Xs/Zjtv0nL25EDo14kPS017yUX6qlPURSHvVHlQnrP43q7+nLISfqW9bV6ylaM0dm5Iw7UPF0LVB7Tv8pCvwMAEBCEAAAhCAAAQgAAEIQAACEJjMBBByJ/PV49ghAAEIQAACEIAABCAAAQiMgMCgmPu6XiTvrIq5juo5liF/R7DfwUX0gjlGz5WUW3DE3MXycRepdF6AoDvIicqEEcgk4Kbn9d04qWwB91glp0c1X1FxYxTcMUbjG/HJKfKtvy9xSG0LQrdWRVxFoSZBAAIQgAAEpjQBtV379ytS7h/Vpn05DZme0w3pIDNHz92bJOYqWmmn5Miu1WqzugMZbu7UvN3k3JbVLhzYp7xbArii4Zbf1sxzDcDh20odFrvuU1Tcf5AEvlINP0Y9aABYNgEBCEAAAhCAAAQgAAEIQAACEGgdAgi5rXMtOBIIQAACEIAABCAAAQhAAAJNJRDF3KOKmKuXyqVdermsCE9RZBho6m6v3nhPjaBrKXeh3kNbzM3zXEUnI0rU1dyY0zACjrJXPiu5wgKucloVcdPjVQH3pHalZcY1dep7sVTR0jZUhKA4hPZiRUxDxB3Xy8DOIAABCECg9QmUT2Xh8p/T0PeHNKRvSZRs1DN7mtqkknGjmLtecu66QhzdIdEzmtT+BDL9Jiodl+z9jn4rScAtaXSR9IDur94GnXt3pcNV1/2ScTfp3pqH8d0gsmwGAhCAAAQgAAEIQAACEIAABCDQUgQQclvqcnAwEIAABCAAAQhAAAIQgAAExoGAoouVJCAOvKUXzhp+tbRbEuJBvWy+NA77Hm4XjqA7VwKE5NzCIpULVc6XoKthhAt6Ue2X1YWZknSRIYajx7wbELBcEaPfnpZ8q5w6K0J0ekLlCZWKiJt56OHxioA79Hhn6D5fKflHIm6nhs3ufJ8i4ur+J1raUFBMQwACEIAABN4j4M41/YpeevmFcijt0LPcnWnUnG1IUmeYRG3S4vv0fFbk3M41ejavUJt0Ns/nhvBtpY3od1H5nORb/RYa2KffRRJxy5K8M7URQ6lBB+qouLqfOjYloeeDxdB1kzpcSc4lQQACEIAABCAAAQhAAAIQgAAEINCeBBBy2/O6clYQgAAEIAABCEAAAhCAAARGRMAvoAf2Kr+dhvIevYBWRKgoNJRHtHpzFvKwrZYUF+jltcRElxZ0C4qcW7S4O0d1ZUsRMZIuwaWacx0m21Yl4WT9uoc1nHDq6LdnJNyeVT0KuBUJN3M0XMm44aKyBIwJS0Xd24oMXVwn0UcR+DokZnSt0X1t0YcEAQhAAAIQgMDICOjZXzqWhb4d5dD3sp7xjpZ7eWSrjnipmWp7uuOMntnFtZJzV6m+VM/sGbYsR7wVFmwlArpN0ov6/XNYIq4i4Jb0W8i/gWIHRbcRG5kUddlid9d9SejeVAwd6oDIfdNIwGwLAhCAAAQgAAEIQAACEIAABCDQegQQclvvmnBEEIAABCAAAQhAAAIQgAAExp1ApuigpaOKmOvhWfcoOtQ7elF9SG+rL4z7oQy/QwmMwUKEouYmEnNdOnpuMqcq6M6yzKgX3i4dTVdRd0ntS8D3a3rB8q3kifOqu3RWpNvMIu5plRZxHfnW9/BECua1l2GW7ldF2OtYpyhp6wuhU1H3OhYrShr3ay0l6hCAAAQgAIFREYjRctW5rO9PasvuSEN2RKs3+tmvDmNxRIfVEnPViabDkq6f6ci5o7pWE7awJVy1HUtHJOLqN05ZEXHL+9RW3K/OiOrA1fCOWu58tSyEzs2F0L1VHa/WERV3wq49O4YABCAAAQhAAAIQgAAEIAABCIwzAYTccQbO7iAAAQhAAAIQgAAEIAABCLQ0Ab2sjlFzY7QoibmOGLVfcqNeXjc84thYQTgqWY9edkvKTRQxN8q5knIdPTdxKTG3YIm3pkym6zPLvaSWJ5BpmOCsV6KE5IlUUu1geV7ihCVcRcF1BFxLFJnqmSLjxntUt2pLJd2jhWW6F9dIwpXA07lWw14rup7lcSKktdSV4mAgAAEIQGCSEyifUrTcnWnof1UjP+xU28BR8ZuRLFu6c5ik3KKf6csl5upZH+Vct0NpazaD+qi36bZk2aMm6HdMSdFwy+8q6zeOI+Fm7rTVaGm7eoSJRvcoblRU3Lsl495aCEV1IiRBAAIQgAAEIAABCEAAAhCAAAQgMHUIIOROnWvNmUIAAhCAAAQgAAEIQAACEBgVgUwvqcsnFUVqf1XM1Qvs8iHJjxoauOXk3Nozy0VdybiJIpImsyVGODKpBMg4PUN1ibkFlRZ0B0sNKVvo0cpIFLU0m1fX/ZVelhRxSeUliRF5qaGCPYxwpjKzjCvR1gJuJWu+6qFPudXE21pSFsUXS9BZqdvJQ1t7iOvVEnHnc3/VYqIOAQhAAAIQaDgBtS8Gjiha7l8cLVdt17fUYHDboVnJkXPdEcydb1boua+y6DaAcscitzP17HfblNR8ArrUMQruCV33o8r6zVK2iKvfL6nKeB+kTTwM3QfFDRJx70pC951q9y3VzaH/SBCAAAQgAAEIQAACEIAABCAAAQhMLQIIuVPrenO2EIAABCAAAQhAAAIQgAAE6iKQ9YdQ0svt0kHJuRZzPczrQTmRlnN769rkxKzkl+Ld8iIs41rYlSRRKat1SblJzJpvQTevO8ppt+Z5XUm7hS5tB3F3+Gto0Vb3SybZ1kNIW7p1GaPd6l7JYtY8l5JwM8m3qeTbUBVws4tJnBel22ZKE8Mfff1zfb8s0b1hCdfDWDuvkoyxQPeN7xcSBCAAAQhAAALjRsBtjwG1W/v+qrbrX9Vu3aM2q9sbzU7ulLNQbYKlknKVC4vVLliourLbBFHQRdJszFVQO7GszlvuQBjzcbUpLcTB1ZoAAAuZSURBVOEeUftTUXGzE9qNO3E1O+l3RfEmdb66QzLuHYXQubJA26/ZzNk+BCAAAQhAAAIQgAAEIAABCECghQkg5LbwxeHQIAABCEAAAhCAAAQgAAEItCKBbOA9Obd8SC+94xCwlRffTY881WwgjmAmedIyblD03GR6tW4x14JFzJqf1y3odlWFS68Xc2U66dR0p+od2pbrHarHUtOtHilNzoqH+fW1zkqaiKWnJTe4buG2X3WVIdY13adpi7fOl5017dLCtstqFNw4LRHX22zpKLc6vOsmyzSOiGfhZplEDA1XXVwhGUMSRtESrq41CQIQgAAEIACBiSXg9kj/PmWLuTvVbt2rds2FcTomt/fclrSg66i5i1RKzC0oYn7ReZ7yHH2uTl8t3zYcJ2TX3I3bpmprls9Iwj2t8pTkW2dHwz2u3yEScaOA63anlh2XpM59xXUSrTcqIu7tEnFXq/3n0TZIEIAABCAAAQhAAAIQgAAEIAABCExpAgi5U/ryc/IQgAAEIAABCEAAAhCAAATGRiBzNNQzWRiIw8FKdFCZ5lGpTmnbEjHbMvldu0VbC7mWKLqyGD03OIquo6FW5dwo4npay0Zx15Km615XEXbzMljWdcRdz7PoWZMHp73P6jv+pKaezxuUDywhWFpQEf9xRRHEMkebrclxWtfP4m1QGcoSGar1WFrItWwrCTcKuRZoqzJulHAdccxSrss+RbVVPUYh83LtmixiL9DlUSTc4tKKhNuxXFFwLePO0UUhanK7XnnOCwIQgAAEJjmBtFft1f0Sc3eqvfq6JE5HzD03ASfltsRctSXcecdtCkfN9fTcSluiIEG3MFvz3DFsirYr3A5N1ZErPad8Vk3Usy6VT2u+JNzspEpFxc00PS4RcIfeJrpGMSLureqIdatE3FW6XtOqjfShyzINAQhAAAIQgAAEIAABCEAAAhCAwJQjgJA75S45JwwBCEAAAhCAAAQgAAEIQKBJBOQ1pBezUFKEqpKGiS0f1YvzmDXfUasU0SpGRW3S7ifVZi3cVqXcKOgW9RI/TgtiQfVCpUxcWsbw8n7PX5s16ekk2rmqa9Es0z+e6TKrKVNNW76tEXKjnFuWSGsJ11FwLeVWhdz4mSanfHJEY0syEnALSyplR5RxFQ1Nke4sy8RrMuVBAQACEIAABCAwOQg4yurAQYm5b0jMfVPt1bcrgmdsB03EKagpEaqSbiIptzDPbQ+VjsI/y1li7kxNKxqr2x2FGSodhXWyy7pqd6aKXpxerPx+iOV5XQvl9LzmScb1b4dUOVNE3Exibuzo56buRCTxdqRji7gdNyeh6xaJuBoZIXbMm4jjYZ8QgAAEIAABCEAAAhCAAAQgAAEItCwBhNyWvTQcGAQgAAEIQAACEIAABCAAgUlOQC/aHdGqJCnXcm5ZUm5Zw8pmHlbWpaNaKQIrCQItQ8ARjy3gLpLwUh1WuughpiXhRhFXEesmvQDTMrA5EAhAAAIQgMDEEcgU0b90LA0DuyXo7k4l5qp9+q5sz1YZ3cHC7TS1S9T2SCTnJhZylS3nup5M17SisiZeRjnWqyM3JCoLXfrMozSMt7hr0dYjLEh8jiMtuBRTy7dZr+YrO1pxJhE35gsScC+o7mwJ11GLLym7E1krJLP1SAg3hdC5QRLuBnfKKlRGuWiF4+MYIAABCEAAAhCAAAQgAAEIQAACEGg5Agi5LXdJOCAIQAACEIAABCAAAQhAAALtScDiQ1kv2svHq3KuSou5qYadzTT8bHpK591KL+Db8zJwVjkBRx12lLn5ElnmS8D1sNELJVxIxnXusJQ7RzKLIxeTIAABCEAAAhBoTwIeJEARWAf2Ss5VtNzSO2qT7pUY6nZpq0ihQ8m7DWP51pH6p2dRzk0s5zrSrnLorta9jKL9B0f879SyLtWuSSzpVnOsV0diiIMuaLHB6P+ORqscB2BwXTwyCbcxmrDKWNfoCtmAeKmd75EwooRrIddisyXcvko9UxvfOVjKvaSNaX7L8hWbRO3D4lq1CdcloVNRcTvXFkJRkYsH2ejwSRCAAAQgAAEIQAACEIAABCAAAQhAYDgCCLnDUWEeBCAAAQhAAAIQgAAEIAABCDSfgF7klzUsbfnke9lyblqVcweHp9WLe8sAJAjUTcByiSPIOfqtZApLFoWqhFtcINnCIq5LRZ0b90hydZ8UK0IAAhCAAAQg0EgCjupaOpyF/j1pKEnKLe9Tu/SQGqHntZfJ2ha1bGspV9Fyo5TboROxjNuh9lCxWo9CrmVTTbso6B9VM5u4+i9kleko0JYl2VrKLWme6i6zfpVVIbdlJVsd8nWTTifMUvtwpdqDa4RHAm7XenXQWipOEpxJEIAABCAAAQhAAAIQgAAEIAABCEBgpAQQckdKiuUgAAEIQAACEIAABCAAAQhAoOkEHE2rfEYChKRcRytL83xGLsBpZX2WnVXpCFuWAUgQGErAUc0U+TaZo2z5Nkq4EizmKeKtclEibsz+TJHjSBCAAAQgAAEIQOAKAvJLPapD6aAi5+5LQ3m/2qUHJOdK1g0XtaQKUhsQsGc7U23EZWobrpKnvFqRcNcUQoel3Fn6EA+3DS4ypwABCEAAAhCAAAQgAAEIQAACEBh/Agi548+cPUIAAhCAAAQgAAEIQAACEIDAKAhkGu62LAk3CroSclNnTacSJVxm55TPStR19DJH00XUHQXdSbyoo7s56q2imSVzJNfOllAhCbeg+mBpAdfZci7RzSbxxebQIQABCEAAAhNEIK20QQcOKmquBN2y86GqnOu2pz4nTSICjgbsNqMl3BWScFcoCu4qibgrC6GozlrBn5MgAAEIQAACEIAABCAAAQhAAAIQgMAYCCDkjgEeq0IAAhCAAAQgAAEIQAACEIDAxBDISvIfLkrIlZRrWTeVkOu65dz0vMoLknQlSWSxrqF0tWzo07EiTUzMBat3r5YiFMU2RrxVBLNE0cqigOshhav1wmwLuBXpNsq4M7SMZV0SBCAAAQhAAAIQaCQBy7lqc5YOOUvQfVftzyNqXh5R2/OkdtTfyJ2xrYYRcFtygdqOS9VmXBpCx3JJuCsUCVcyblHtSCTchpFmQxCAAAQgAAEIQAACEIAABCAAAQiIAEIutwEEIAABCEAAAhCAAAQgAAEItA8BRcdNL0mOkIhblpDrMrWYKyHXkq4l3kxDDUdh95JKLRsuSdjtRdidkJsgF26nSYaYnoVkumTaGVUBV2VhZmU6lh5SWNJEsSrjFrwO4u2EXDZ2CgEIQAACEJjyBNR0dLuydEz5sNqdzkfV7jym9qXmZeowFtSBjDQBBDrVlvToCIsk4C5Wc3GJ2o+KiNvhrHpB7c2g/0gQgAAEIAABCEAAAhCAAAQgAAEIQKAZBBBym0GVbUIAAhCAAAQgAAEIQAACEIBA6xGwrCvxNq2KuanFXIkUaVXMzVz2ViTdWLruqLqXJVVcVl05ODv6mSQM0nUIWLSVDBF65DtUc+iRXJtPT9d8CbVJLFVXVNuC6xIkClURN5ZIt9eBzEcQgAAEIAABCLQKgWxA0XPPSMq1oKucKruenlCz8WRV0HW7ktR4Ao6AO1cdtxaobblQAq5E3OJiZYu4Ludqfkfjd8sWIQABCEAAAhCAAAQgAAEIQAACEIDAcAQQcoejwjwIQAACEIAABCAAAQhAAAIQmHoENAxxKlHCEXYdMddSbprLuJZzXa9KuhZ1sz5NW8513aVyFHgHNF9SRohZ0Xc1HeuOkiYpeNLIvI4c5gi0FmslMSSdmtGpc3HUMc/rktzQ5VLTFiFcj6Xmu8zlW4u3sS7Z1uU0CRNRxtW0lmOYYDEgQQACEIAABCDQVgTcNoyC7gmJuc6SclOV6Sk1BU87q72oURyIojvKy+52qEZLSCzZzrOEWxFxi5JxiwuVLeP6M7dVSRCAAAQgAAEIQAACEIAABCAAAQhAYAII/D+7abgJIr49ugAAAABJRU5ErkJggg==" } - }, - "cell_type": "markdown", - "id": "5b980b4f-13bd-4bb4-bdbc-5584a6a59ca5", - "metadata": {}, - "source": [ - "### Filter to `synonymous` variants passing filters\n", - "\n", - "![Screenshot 2024-12-20 at 11.12.57 AM.png](attachment:f42fc1f8-afe3-4684-9fee-66582eba9080.png)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "b7e4368b", - "metadata": {}, - "outputs": [], + }, + "cell_type": "markdown", + "id": "5b980b4f-13bd-4bb4-bdbc-5584a6a59ca5", + "metadata": {}, + "source": [ + "### Filter to `synonymous` variants passing filters\n", + "\n", + "![Screenshot 2024-12-20 at 11.12.57 AM.png](attachment:f42fc1f8-afe3-4684-9fee-66582eba9080.png)" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "b7e4368b", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
histograms
grpmax
fafmax
info
qual_hists
raw_qual_hists
age_hists
in_silico_predictors
gnomad
non_ukb
gnomad
non_ukb
vrs
vep
vqsr_results
region_flags
allele_info
gq_hist_all
dp_hist_all
gq_hist_alt
dp_hist_alt
ab_hist_alt
gq_hist_all
dp_hist_all
gq_hist_alt
dp_hist_alt
ab_hist_alt
age_hist_het
age_hist_hom
cadd
locus
alleles
freq
AC
AF
AN
homozygote_count
gen_anc
AC
AF
AN
homozygote_count
gen_anc
faf
faf95_max
faf95_max_gen_anc
faf99_max
faf99_max_gen_anc
faf95_max
faf95_max_gen_anc
faf99_max
faf99_max_gen_anc
a_index
was_split
rsid
filters
FS
MQ
MQRankSum
QUALapprox
QD
ReadPosRankSum
SB
SOR
VarDP
AS_FS
AS_MQ
AS_MQRankSum
AS_pab_max
AS_QUALapprox
AS_QD
AS_ReadPosRankSum
AS_SB_TABLE
AS_SOR
AS_VarDP
singleton
transmitted_singleton
sibling_singleton
omni
mills
monoallelic
only_het
AS_VQSLOD
inbreeding_coeff
VRS_Allele_IDs
VRS_Starts
VRS_Ends
VRS_States
allele_string
end
id
input
intergenic_consequences
most_severe_consequence
motif_feature_consequences
regulatory_feature_consequences
seq_region_name
start
strand
transcript_consequences
variant_class
AS_VQSLOD
AS_culprit
positive_train_site
negative_train_site
non_par
lcr
segdup
fail_interval_qc
outside_ukb_capture_region
outside_broad_capture_region
variant_type
n_alt_alleles
has_star
allele_type
was_mixed
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
phred
raw_score
revel_max
spliceai_ds_max
pangolin_largest_ds
phylop
sift_max
polyphen_max
locus<GRCh38>array<str>array<struct{AC: int32, AF: float64, AN: int32, homozygote_count: int64}>int32float64int32int64strint32float64int32int64strarray<struct{faf95: float64, faf99: float64}>float64strfloat64strfloat64strfloat64strint32boolset<str>set<str>float64float64float64int64float64float64array<int32>float64int32float64float64float64float64int64float64float64array<int32>float64int32boolboolboolboolboolboolboolfloat64float64array<str>array<int32>array<int32>array<str>strint32strstrarray<struct{allele_num: int32, consequence_terms: array<str>, impact: str, variant_allele: str}>strarray<struct{allele_num: int32, consequence_terms: array<str>, high_inf_pos: str, impact: str, motif_feature_id: str, motif_name: str, motif_pos: int32, motif_score_change: float64, transcription_factors: array<str>, strand: int32, variant_allele: str}>array<struct{allele_num: int32, biotype: str, consequence_terms: array<str>, impact: str, regulatory_feature_id: str, variant_allele: str}>strint32int32array<struct{allele_num: int32, amino_acids: str, appris: str, biotype: str, canonical: int32, ccds: str, cdna_start: int32, cdna_end: int32, cds_end: int32, cds_start: int32, codons: str, consequence_terms: array<str>, distance: int32, domains: array<struct{db: str, name: str}>, exon: str, flags: str, gene_id: str, gene_pheno: int32, gene_symbol: str, gene_symbol_source: str, hgnc_id: str, hgvsc: str, hgvsp: str, hgvs_offset: int32, impact: str, intron: str, lof: str, lof_flags: str, lof_filter: str, lof_info: str, mane_select: str, mane_plus_clinical: str, mirna: array<str>, protein_end: int32, protein_start: int32, protein_id: str, source: str, strand: int32, transcript_id: str, tsl: int32, uniprot_isoform: array<str>, variant_allele: str}>strfloat64strboolboolboolboolboolboolboolboolstrint32boolstrboolarray<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64float32float32float64float32float64float64float64float64
chr11:113410736["G","A"][(15,1.03e-05,1461882,0),(15,1.03e-05,1461894,0),(0,0.00e+00,33480,0),(0,0.00e+00,44724,0),(0,0.00e+00,26136,0),(0,0.00e+00,39700,0),(0,0.00e+00,53420,0),(0,0.00e+00,5762,0),(15,1.35e-05,1112010,0),(0,0.00e+00,60396,0),(0,0.00e+00,86254,0),(10,1.36e-05,734642,0),(5,6.88e-06,727240,0),(0,0.00e+00,19326,0),(0,0.00e+00,14154,0),(0,0.00e+00,25690,0),(0,0.00e+00,19034,0),(0,0.00e+00,12636,0),(0,0.00e+00,13500,0),(0,0.00e+00,20712,0),(0,0.00e+00,18988,0),(0,0.00e+00,27648,0),(0,0.00e+00,25772,0),(0,0.00e+00,2506,0),(0,0.00e+00,3256,0),(10,1.75e-05,572288,0),(5,9.26e-06,539722,0),(0,0.00e+00,31800,0),(0,0.00e+00,28596,0),(0,0.00e+00,22036,0),(0,0.00e+00,64218,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,1998,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,3996,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5762,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26134,0),(0,0.00e+00,26136,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33478,0),(0,0.00e+00,33480,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,39698,0),(0,0.00e+00,39700,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,39998,0),(0,0.00e+00,40000,0),(0,0.00e+00,44724,0),(0,0.00e+00,44724,0),(0,0.00e+00,44724,0),(0,0.00e+00,44724,0),(0,0.00e+00,44722,0),(0,0.00e+00,44724,0),(0,0.00e+00,53420,0),(0,0.00e+00,53420,0),(0,0.00e+00,53420,0),(0,0.00e+00,53418,0),(0,0.00e+00,53420,0),(0,0.00e+00,60396,0),(0,0.00e+00,60396,0),(0,0.00e+00,60394,0),(0,0.00e+00,60396,0),(1,1.16e-05,86258,0),(0,0.00e+00,86254,0),(0,0.00e+00,86258,0),(2,2.00e-05,100000,0),(1,1.00e-05,100000,0),(2,1.00e-05,200000,0),(2,1.00e-05,200000,0),(7,1.75e-05,400000,0),(4,1.00e-05,400000,0),(14,1.40e-05,1000000,0),(10,1.00e-05,999994,0),(15,1.35e-05,1112010,0),(12,1.08e-05,1112006,0),(1,1.59e-06,628772,0),(1,1.59e-06,628784,0),(0,0.00e+00,17694,0),(0,0.00e+00,43740,0),(0,0.00e+00,20984,0),(0,0.00e+00,36070,0),(0,0.00e+00,53144,0),(0,0.00e+00,4142,0),(1,2.86e-06,350106,0),(0,0.00e+00,33098,0),(0,0.00e+00,69794,0),(1,3.49e-06,286246,0),(0,0.00e+00,342526,0),(0,0.00e+00,10286,0),(0,0.00e+00,7408,0),(0,0.00e+00,25040,0),(0,0.00e+00,18700,0),(0,0.00e+00,9838,0),(0,0.00e+00,11146,0),(0,0.00e+00,18298,0),(0,0.00e+00,17772,0),(0,0.00e+00,27398,0),(0,0.00e+00,25746,0),(0,0.00e+00,1916,0),(0,0.00e+00,2226,0),(1,6.16e-06,162220,0),(0,0.00e+00,187886,0),(0,0.00e+00,16752,0),(0,0.00e+00,16346,0),(0,0.00e+00,14498,0),(0,0.00e+00,55296,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,1998,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,3994,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4142,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20982,0),(0,0.00e+00,20984,0),(0,0.00e+00,33098,0),(0,0.00e+00,33098,0),(0,0.00e+00,33098,0),(1,3.02e-05,33098,0),(0,0.00e+00,33098,0),(0,0.00e+00,33096,0),(0,0.00e+00,33098,0),(0,0.00e+00,36070,0),(0,0.00e+00,36070,0),(0,0.00e+00,36070,0),(1,2.77e-05,36070,0),(0,0.00e+00,36068,0),(0,0.00e+00,36070,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(1,2.50e-05,40000,0),(0,0.00e+00,39998,0),(0,0.00e+00,40000,0),(0,0.00e+00,43740,0),(0,0.00e+00,43740,0),(1,2.29e-05,43740,0),(0,0.00e+00,43738,0),(1,2.29e-05,43740,0),(0,0.00e+00,53144,0),(1,1.88e-05,53144,0),(0,0.00e+00,53142,0),(1,1.88e-05,53144,0),(1,1.43e-05,69798,0),(0,0.00e+00,69794,0),(1,1.43e-05,69798,0),(1,1.00e-05,100000,0),(1,1.00e-05,100000,0),(1,5.00e-06,200000,0),(1,5.00e-06,199998,0),(1,2.86e-06,350106,0),(1,2.86e-06,350104,0),(1,2.50e-06,399994,0)]151.35e-0511120100"nfe"12.86e-063501060"nfe"[(6.16e-06,4.89e-06),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(8.10e-06,6.42e-06),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]8.10e-06"nfe"6.42e-06"nfe"NANANANA1True{"rs1159504221"}{}5.49e-016.00e+010.00e+00123071.16e+017.40e-02[386,195,316,166]6.55e-0110639.64e-166.00e+010.00e+009.11e-01118991.17e+019.70e-02[386,195,304,161]6.47e-011013FalseNANAFalseFalseFalseFalse7.50e+00-1.03e-05["ga4gh:VA.QVbOetW6APM1_3jfGLLwArt4GfwgT6jE","ga4gh:VA.OXPDvbuulFZ9CSk4XtIFat1UOKdMachQ"][113410735,113410735][113410736,113410736]["G","A"]"G/A"113410736".""chr11\t113410736\t.\tG\tA\t.\t.\tGT"NA"synonymous_variant"NANA"chr11"1134107361[(1,"L",NA,"protein_coding",NA,"CCDS8362.1",1312,1312,1236,1236,"ctC/ctT",["synonymous_variant"],NA,[("Gene3D","1"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321")],"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000346454.7:c.1236C>T","ENSP00000278597.5:p.Leu412=",NA,"LOW",NA,NA,NA,NA,NA,NA,NA,NA,412,412,"ENSP00000278597","Ensembl",-1,"ENST00000346454",1,["P14416-2"],"A"),(1,"L","P2","protein_coding",1,"CCDS8361.1",1677,1677,1323,1323,"ctC/ctT",["synonymous_variant"],NA,[("Gene3D","1"),("ENSP_mappings","5aer"),("ENSP_mappings","5aer"),("ENSP_mappings","6cm4"),("ENSP_mappings","6luq"),("ENSP_mappings","6vms"),("ENSP_mappings","7dfp"),("ENSP_mappings","7jvr"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321")],"8/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000362072.8:c.1323C>T","ENSP00000354859.3:p.Leu441=",NA,"LOW",NA,NA,NA,NA,NA,"NM_000795.4",NA,NA,441,441,"ENSP00000354859","Ensembl",-1,"ENST00000362072",1,["P14416-1"],"A"),(1,NA,NA,"processed_transcript",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],3639,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000535984",3,NA,"A"),(1,"L","A1","protein_coding",NA,NA,1329,1329,1329,1329,"ctC/ctT",["synonymous_variant"],NA,[("Gene3D","1"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321")],"8/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000538967.5:c.1329C>T","ENSP00000438215.1:p.Leu443=",NA,"LOW",NA,NA,NA,NA,NA,NA,NA,NA,443,443,"ENSP00000438215","Ensembl",-1,"ENST00000538967",5,["P14416-3"],"A"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],4558,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000539420",3,NA,"A"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],3128,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000540600",1,NA,"A"),(1,"L","P2","protein_coding",NA,"CCDS8361.1",1644,1644,1323,1323,"ctC/ctT",["synonymous_variant"],NA,[("Gene3D","1"),("ENSP_mappings","5aer"),("ENSP_mappings","5aer"),("ENSP_mappings","6cm4"),("ENSP_mappings","6luq"),("ENSP_mappings","6vms"),("ENSP_mappings","7dfp"),("ENSP_mappings","7jvr"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321")],"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000542968.5:c.1323C>T","ENSP00000442172.1:p.Leu441=",NA,"LOW",NA,NA,NA,NA,NA,NA,NA,NA,441,441,"ENSP00000442172","Ensembl",-1,"ENST00000542968",1,["P14416-1"],"A"),(1,"L","A1","protein_coding",NA,NA,1353,1353,1320,1320,"ctC/ctT",["synonymous_variant"],NA,[("Gene3D","1"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321")],"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000544518.5:c.1320C>T","ENSP00000441068.1:p.Leu440=",NA,"LOW",NA,NA,NA,NA,NA,NA,NA,NA,440,440,"ENSP00000441068","Ensembl",-1,"ENST00000544518",1,NA,"A"),(1,NA,NA,"lncRNA",1,NA,NA,NA,NA,NA,NA,["intron_variant","non_coding_transcript_variant"],NA,NA,NA,NA,"ENSG00000256757",NA,NA,NA,NA,"ENST00000546284.1:n.245-811G>A",NA,NA,"MODIFIER","2/3",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",1,"ENST00000546284",3,NA,"A"),(1,"L",NA,"protein_coding",1,NA,1677,1677,1323,1323,"ctC/ctT",["synonymous_variant"],NA,NA,"8/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_000795.4:c.1323C>T","NP_000786.1:p.Leu441=",NA,"LOW",NA,NA,NA,NA,NA,"ENST00000362072.8",NA,NA,441,441,"NP_000786.1","RefSeq",-1,"NM_000795.4",NA,NA,"A"),(1,"L",NA,"protein_coding",NA,NA,1590,1590,1236,1236,"ctC/ctT",["synonymous_variant"],NA,NA,"7/7",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_016574.4:c.1236C>T","NP_057658.2:p.Leu412=",NA,"LOW",NA,NA,NA,NA,NA,NA,NA,NA,412,412,"NP_057658.2","RefSeq",-1,"NM_016574.4",NA,NA,"A"),(1,"L",NA,"protein_coding",NA,NA,1405,1405,1323,1323,"ctC/ctT",["synonymous_variant"],NA,NA,"8/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","XM_017017296.2:c.1323C>T","XP_016872785.1:p.Leu441=",NA,"LOW",NA,NA,NA,NA,NA,NA,NA,NA,441,441,"XP_016872785.1","RefSeq",-1,"XM_017017296.2",NA,NA,"A")]"SNV"7.50e+00"AS_MQ"FalseFalseFalseFalseFalseTrueFalseFalse"multi-snv"2False"snv"False[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,8,0,71,0,314313,0,37,0,416496,0,0,0,0,0,0,16]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,61,328,11304,107355,345020,189098,36329,5607,2382,2757,3074,2931,2955,2914,2974,2923,2564,2680]07685[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,15]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,1,3,1,2,3,1,0,1,0,1,1,0,0]01[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,1,0,0,1,1,11,1,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][5,0,0,0,9,0,71,0,314313,0,37,0,416496,0,0,0,0,0,0,16]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,1,62,330,11305,107356,345020,189098,36329,5607,2382,2757,3074,2931,2955,2914,2974,2923,2564,2680]07685[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,15]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,1,3,1,2,3,1,0,1,0,1,1,0,0]01[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,1,0,0,1,1,11,1,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,1,2,4,2,4,1,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]003.44e+002.28e-01NA0.00e+001.00e-02-2.55e-01NANA
chr11:113410736["G","T"][(1,6.84e-07,1461882,0),(1,6.84e-07,1461894,0),(0,0.00e+00,33480,0),(0,0.00e+00,44724,0),(0,0.00e+00,26136,0),(0,0.00e+00,39700,0),(0,0.00e+00,53420,0),(0,0.00e+00,5762,0),(1,8.99e-07,1112010,0),(0,0.00e+00,60396,0),(0,0.00e+00,86254,0),(0,0.00e+00,734642,0),(1,1.38e-06,727240,0),(0,0.00e+00,19326,0),(0,0.00e+00,14154,0),(0,0.00e+00,25690,0),(0,0.00e+00,19034,0),(0,0.00e+00,12636,0),(0,0.00e+00,13500,0),(0,0.00e+00,20712,0),(0,0.00e+00,18988,0),(0,0.00e+00,27648,0),(0,0.00e+00,25772,0),(0,0.00e+00,2506,0),(0,0.00e+00,3256,0),(0,0.00e+00,572288,0),(1,1.85e-06,539722,0),(0,0.00e+00,31800,0),(0,0.00e+00,28596,0),(0,0.00e+00,22036,0),(0,0.00e+00,64218,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,1998,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,3996,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5762,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26134,0),(0,0.00e+00,26136,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33478,0),(0,0.00e+00,33480,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,39698,0),(0,0.00e+00,39700,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,39998,0),(0,0.00e+00,40000,0),(0,0.00e+00,44724,0),(0,0.00e+00,44724,0),(0,0.00e+00,44724,0),(0,0.00e+00,44724,0),(0,0.00e+00,44722,0),(0,0.00e+00,44724,0),(0,0.00e+00,53420,0),(0,0.00e+00,53420,0),(0,0.00e+00,53420,0),(0,0.00e+00,53418,0),(0,0.00e+00,53420,0),(0,0.00e+00,60396,0),(0,0.00e+00,60396,0),(0,0.00e+00,60394,0),(0,0.00e+00,60396,0),(0,0.00e+00,86258,0),(0,0.00e+00,86254,0),(0,0.00e+00,86258,0),(0,0.00e+00,100000,0),(0,0.00e+00,100000,0),(0,0.00e+00,200000,0),(0,0.00e+00,200000,0),(1,2.50e-06,400000,0),(1,2.50e-06,400000,0),(1,1.00e-06,1000000,0),(1,1.00e-06,999994,0),(1,8.99e-07,1112010,0),(1,8.99e-07,1112006,0),(0,0.00e+00,628772,0),(0,0.00e+00,628784,0),(0,0.00e+00,17694,0),(0,0.00e+00,43740,0),(0,0.00e+00,20984,0),(0,0.00e+00,36070,0),(0,0.00e+00,53144,0),(0,0.00e+00,4142,0),(0,0.00e+00,350106,0),(0,0.00e+00,33098,0),(0,0.00e+00,69794,0),(0,0.00e+00,286246,0),(0,0.00e+00,342526,0),(0,0.00e+00,10286,0),(0,0.00e+00,7408,0),(0,0.00e+00,25040,0),(0,0.00e+00,18700,0),(0,0.00e+00,9838,0),(0,0.00e+00,11146,0),(0,0.00e+00,18298,0),(0,0.00e+00,17772,0),(0,0.00e+00,27398,0),(0,0.00e+00,25746,0),(0,0.00e+00,1916,0),(0,0.00e+00,2226,0),(0,0.00e+00,162220,0),(0,0.00e+00,187886,0),(0,0.00e+00,16752,0),(0,0.00e+00,16346,0),(0,0.00e+00,14498,0),(0,0.00e+00,55296,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,1998,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,3994,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4142,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20982,0),(0,0.00e+00,20984,0),(0,0.00e+00,33098,0),(0,0.00e+00,33098,0),(0,0.00e+00,33098,0),(0,0.00e+00,33098,0),(0,0.00e+00,33098,0),(0,0.00e+00,33096,0),(0,0.00e+00,33098,0),(0,0.00e+00,36070,0),(0,0.00e+00,36070,0),(0,0.00e+00,36070,0),(0,0.00e+00,36070,0),(0,0.00e+00,36068,0),(0,0.00e+00,36070,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,39998,0),(0,0.00e+00,40000,0),(0,0.00e+00,43740,0),(0,0.00e+00,43740,0),(0,0.00e+00,43740,0),(0,0.00e+00,43738,0),(0,0.00e+00,43740,0),(0,0.00e+00,53144,0),(0,0.00e+00,53144,0),(0,0.00e+00,53142,0),(0,0.00e+00,53144,0),(0,0.00e+00,69798,0),(0,0.00e+00,69794,0),(0,0.00e+00,69798,0),(0,0.00e+00,100000,0),(0,0.00e+00,100000,0),(0,0.00e+00,200000,0),(0,0.00e+00,199998,0),(0,0.00e+00,350106,0),(0,0.00e+00,350104,0),(0,0.00e+00,399994,0)]18.99e-0711120100"nfe"NANANANANA[(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]NANANANANANANANA2TrueNA{}5.49e-016.00e+010.00e+00123071.16e+017.40e-02[386,195,316,166]6.55e-0110639.64e-166.00e+010.00e+003.28e-024088.16e+00-9.23e-01[386,195,12,5]7.90e-0150TrueFalseFalseFalseFalseFalseFalse5.00e+00-6.84e-07["ga4gh:VA.QVbOetW6APM1_3jfGLLwArt4GfwgT6jE","ga4gh:VA.4qhkDG1qrfqiD2TeOA6LYLsi4UGWF19l"][113410735,113410735][113410736,113410736]["G","T"]"G/T"113410736".""chr11\t113410736\t.\tG\tT\t.\t.\tGT"NA"synonymous_variant"NANA"chr11"1134107361[(1,"L",NA,"protein_coding",NA,"CCDS8362.1",1312,1312,1236,1236,"ctC/ctA",["synonymous_variant"],NA,[("Gene3D","1"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321")],"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000346454.7:c.1236C>A","ENSP00000278597.5:p.Leu412=",NA,"LOW",NA,NA,NA,NA,NA,NA,NA,NA,412,412,"ENSP00000278597","Ensembl",-1,"ENST00000346454",1,["P14416-2"],"T"),(1,"L","P2","protein_coding",1,"CCDS8361.1",1677,1677,1323,1323,"ctC/ctA",["synonymous_variant"],NA,[("Gene3D","1"),("ENSP_mappings","5aer"),("ENSP_mappings","5aer"),("ENSP_mappings","6cm4"),("ENSP_mappings","6luq"),("ENSP_mappings","6vms"),("ENSP_mappings","7dfp"),("ENSP_mappings","7jvr"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321")],"8/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000362072.8:c.1323C>A","ENSP00000354859.3:p.Leu441=",NA,"LOW",NA,NA,NA,NA,NA,"NM_000795.4",NA,NA,441,441,"ENSP00000354859","Ensembl",-1,"ENST00000362072",1,["P14416-1"],"T"),(1,NA,NA,"processed_transcript",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],3639,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000535984",3,NA,"T"),(1,"L","A1","protein_coding",NA,NA,1329,1329,1329,1329,"ctC/ctA",["synonymous_variant"],NA,[("Gene3D","1"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321")],"8/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000538967.5:c.1329C>A","ENSP00000438215.1:p.Leu443=",NA,"LOW",NA,NA,NA,NA,NA,NA,NA,NA,443,443,"ENSP00000438215","Ensembl",-1,"ENST00000538967",5,["P14416-3"],"T"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],4558,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000539420",3,NA,"T"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],3128,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000540600",1,NA,"T"),(1,"L","P2","protein_coding",NA,"CCDS8361.1",1644,1644,1323,1323,"ctC/ctA",["synonymous_variant"],NA,[("Gene3D","1"),("ENSP_mappings","5aer"),("ENSP_mappings","5aer"),("ENSP_mappings","6cm4"),("ENSP_mappings","6luq"),("ENSP_mappings","6vms"),("ENSP_mappings","7dfp"),("ENSP_mappings","7jvr"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321")],"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000542968.5:c.1323C>A","ENSP00000442172.1:p.Leu441=",NA,"LOW",NA,NA,NA,NA,NA,NA,NA,NA,441,441,"ENSP00000442172","Ensembl",-1,"ENST00000542968",1,["P14416-1"],"T"),(1,"L","A1","protein_coding",NA,NA,1353,1353,1320,1320,"ctC/ctA",["synonymous_variant"],NA,[("Gene3D","1"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321")],"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000544518.5:c.1320C>A","ENSP00000441068.1:p.Leu440=",NA,"LOW",NA,NA,NA,NA,NA,NA,NA,NA,440,440,"ENSP00000441068","Ensembl",-1,"ENST00000544518",1,NA,"T"),(1,NA,NA,"lncRNA",1,NA,NA,NA,NA,NA,NA,["intron_variant","non_coding_transcript_variant"],NA,NA,NA,NA,"ENSG00000256757",NA,NA,NA,NA,"ENST00000546284.1:n.245-811G>T",NA,NA,"MODIFIER","2/3",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",1,"ENST00000546284",3,NA,"T"),(1,"L",NA,"protein_coding",1,NA,1677,1677,1323,1323,"ctC/ctA",["synonymous_variant"],NA,NA,"8/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_000795.4:c.1323C>A","NP_000786.1:p.Leu441=",NA,"LOW",NA,NA,NA,NA,NA,"ENST00000362072.8",NA,NA,441,441,"NP_000786.1","RefSeq",-1,"NM_000795.4",NA,NA,"T"),(1,"L",NA,"protein_coding",NA,NA,1590,1590,1236,1236,"ctC/ctA",["synonymous_variant"],NA,NA,"7/7",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_016574.4:c.1236C>A","NP_057658.2:p.Leu412=",NA,"LOW",NA,NA,NA,NA,NA,NA,NA,NA,412,412,"NP_057658.2","RefSeq",-1,"NM_016574.4",NA,NA,"T"),(1,"L",NA,"protein_coding",NA,NA,1405,1405,1323,1323,"ctC/ctA",["synonymous_variant"],NA,NA,"8/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","XM_017017296.2:c.1323C>A","XP_016872785.1:p.Leu441=",NA,"LOW",NA,NA,NA,NA,NA,NA,NA,NA,441,441,"XP_016872785.1","RefSeq",-1,"XM_017017296.2",NA,NA,"T")]"SNV"5.00e+00"AS_MQ"FalseFalseFalseFalseFalseTrueFalseFalse"multi-snv"2False"snv"False[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,8,0,71,0,314313,0,37,0,416496,0,0,0,0,0,0,16]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,61,328,11304,107355,345020,189098,36329,5607,2382,2757,3074,2931,2955,2914,2974,2923,2564,2680]07685[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][5,0,0,0,9,0,71,0,314313,0,37,0,416496,0,0,0,0,0,0,16]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,1,62,330,11305,107356,345020,189098,36329,5607,2382,2757,3074,2931,2955,2914,2974,2923,2564,2680]07685[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,1,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]002.96e+001.86e-01NA0.00e+003.00e-02-2.55e-01NANA
chr11:113410739["G","A"][(1,6.84e-07,1461882,0),(1,6.84e-07,1461894,0),(0,0.00e+00,33478,0),(0,0.00e+00,44724,0),(0,0.00e+00,26136,0),(0,0.00e+00,39700,0),(0,0.00e+00,53418,0),(0,0.00e+00,5764,0),(0,0.00e+00,1112010,0),(1,1.66e-05,60396,0),(0,0.00e+00,86256,0),(1,1.36e-06,734642,0),(0,0.00e+00,727240,0),(0,0.00e+00,19326,0),(0,0.00e+00,14152,0),(0,0.00e+00,25690,0),(0,0.00e+00,19034,0),(0,0.00e+00,12636,0),(0,0.00e+00,13500,0),(0,0.00e+00,20712,0),(0,0.00e+00,18988,0),(0,0.00e+00,27646,0),(0,0.00e+00,25772,0),(0,0.00e+00,2504,0),(0,0.00e+00,3260,0),(0,0.00e+00,572288,0),(0,0.00e+00,539722,0),(1,3.14e-05,31800,0),(0,0.00e+00,28596,0),(0,0.00e+00,22040,0),(0,0.00e+00,64216,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,3998,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5764,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,19998,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,26134,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,33478,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33478,0),(0,0.00e+00,33480,0),(1,2.99e-05,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,39698,0),(0,0.00e+00,39700,0),(1,2.52e-05,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,40000,0),(0,0.00e+00,39998,0),(0,0.00e+00,40000,0),(1,2.50e-05,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,44724,0),(0,0.00e+00,44722,0),(0,0.00e+00,44724,0),(1,2.24e-05,44724,0),(0,0.00e+00,44724,0),(0,0.00e+00,44724,0),(0,0.00e+00,53418,0),(0,0.00e+00,53420,0),(1,1.87e-05,53420,0),(0,0.00e+00,53420,0),(0,0.00e+00,53420,0),(0,0.00e+00,60396,0),(1,1.66e-05,60396,0),(0,0.00e+00,60396,0),(0,0.00e+00,60396,0),(0,0.00e+00,86258,0),(0,0.00e+00,86256,0),(0,0.00e+00,86258,0),(0,0.00e+00,100000,0),(0,0.00e+00,100000,0),(0,0.00e+00,200000,0),(0,0.00e+00,200000,0),(0,0.00e+00,400000,0),(0,0.00e+00,400000,0),(0,0.00e+00,1000000,0),(1,1.00e-06,999994,0),(0,0.00e+00,1112010,0),(1,8.99e-07,1112006,0),(1,1.59e-06,628772,0),(1,1.59e-06,628784,0),(0,0.00e+00,17692,0),(0,0.00e+00,43740,0),(0,0.00e+00,20984,0),(0,0.00e+00,36070,0),(0,0.00e+00,53142,0),(0,0.00e+00,4144,0),(0,0.00e+00,350106,0),(1,3.02e-05,33098,0),(0,0.00e+00,69796,0),(1,3.49e-06,286246,0),(0,0.00e+00,342526,0),(0,0.00e+00,10286,0),(0,0.00e+00,7406,0),(0,0.00e+00,25040,0),(0,0.00e+00,18700,0),(0,0.00e+00,9838,0),(0,0.00e+00,11146,0),(0,0.00e+00,18298,0),(0,0.00e+00,17772,0),(0,0.00e+00,27396,0),(0,0.00e+00,25746,0),(0,0.00e+00,1914,0),(0,0.00e+00,2230,0),(0,0.00e+00,162220,0),(0,0.00e+00,187886,0),(1,5.97e-05,16752,0),(0,0.00e+00,16346,0),(0,0.00e+00,14502,0),(0,0.00e+00,55294,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,1998,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,3996,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4144,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,9998,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,17692,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(1,5.00e-05,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(1,4.77e-05,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,33098,0),(0,0.00e+00,33098,0),(0,0.00e+00,33096,0),(0,0.00e+00,33098,0),(1,3.02e-05,33098,0),(0,0.00e+00,33098,0),(0,0.00e+00,33098,0),(0,0.00e+00,36070,0),(0,0.00e+00,36070,0),(0,0.00e+00,36068,0),(0,0.00e+00,36070,0),(0,0.00e+00,36070,0),(0,0.00e+00,36070,0),(0,0.00e+00,40000,0),(0,0.00e+00,39998,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,43740,0),(0,0.00e+00,43738,0),(0,0.00e+00,43740,0),(0,0.00e+00,43740,0),(0,0.00e+00,43740,0),(0,0.00e+00,53142,0),(0,0.00e+00,53144,0),(0,0.00e+00,53144,0),(0,0.00e+00,53144,0),(0,0.00e+00,69798,0),(0,0.00e+00,69796,0),(0,0.00e+00,69798,0),(0,0.00e+00,100000,0),(0,0.00e+00,100000,0),(0,0.00e+00,200000,0),(0,0.00e+00,200000,0),(0,0.00e+00,350106,0),(0,0.00e+00,350102,0),(1,2.50e-06,399994,0)]NANANANANANANANANANA[(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]NANANANANANANANA1FalseNA{}4.26e+006.00e+010.00e+005741.10e+015.32e-01[23,8,13,8]2.93e-01524.26e+006.00e+010.00e+002.12e-015741.10e+015.32e-01[23,8,13,8]2.93e-0152TrueFalseFalseFalseFalseFalseFalse5.73e+00-6.84e-07["ga4gh:VA.uv4czuJ2nBK7lcR9wkK2XxHxMSui2-ME","ga4gh:VA.bA0gzyCzudiyDon8QV-8d84fdAMj_fHU"][113410738,113410738][113410739,113410739]["G","A"]"G/A"113410739".""chr11\t113410739\t.\tG\tA\t.\t.\tGT"NA"synonymous_variant"NANA"chr11"1134107391[(1,"I",NA,"protein_coding",NA,"CCDS8362.1",1309,1309,1233,1233,"atC/atT",["synonymous_variant"],NA,[("Gene3D","1"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321")],"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000346454.7:c.1233C>T","ENSP00000278597.5:p.Ile411=",NA,"LOW",NA,NA,NA,NA,NA,NA,NA,NA,411,411,"ENSP00000278597","Ensembl",-1,"ENST00000346454",1,["P14416-2"],"A"),(1,"I","P2","protein_coding",1,"CCDS8361.1",1674,1674,1320,1320,"atC/atT",["synonymous_variant"],NA,[("Gene3D","1"),("ENSP_mappings","5aer"),("ENSP_mappings","5aer"),("ENSP_mappings","6cm4"),("ENSP_mappings","6luq"),("ENSP_mappings","6vms"),("ENSP_mappings","7dfp"),("ENSP_mappings","7jvr"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321")],"8/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000362072.8:c.1320C>T","ENSP00000354859.3:p.Ile440=",NA,"LOW",NA,NA,NA,NA,NA,"NM_000795.4",NA,NA,440,440,"ENSP00000354859","Ensembl",-1,"ENST00000362072",1,["P14416-1"],"A"),(1,NA,NA,"processed_transcript",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],3636,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000535984",3,NA,"A"),(1,"I","A1","protein_coding",NA,NA,1326,1326,1326,1326,"atC/atT",["synonymous_variant"],NA,[("Gene3D","1"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321")],"8/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000538967.5:c.1326C>T","ENSP00000438215.1:p.Ile442=",NA,"LOW",NA,NA,NA,NA,NA,NA,NA,NA,442,442,"ENSP00000438215","Ensembl",-1,"ENST00000538967",5,["P14416-3"],"A"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],4555,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000539420",3,NA,"A"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],3125,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000540600",1,NA,"A"),(1,"I","P2","protein_coding",NA,"CCDS8361.1",1641,1641,1320,1320,"atC/atT",["synonymous_variant"],NA,[("Gene3D","1"),("ENSP_mappings","5aer"),("ENSP_mappings","5aer"),("ENSP_mappings","6cm4"),("ENSP_mappings","6luq"),("ENSP_mappings","6vms"),("ENSP_mappings","7dfp"),("ENSP_mappings","7jvr"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321")],"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000542968.5:c.1320C>T","ENSP00000442172.1:p.Ile440=",NA,"LOW",NA,NA,NA,NA,NA,NA,NA,NA,440,440,"ENSP00000442172","Ensembl",-1,"ENST00000542968",1,["P14416-1"],"A"),(1,"I","A1","protein_coding",NA,NA,1350,1350,1317,1317,"atC/atT",["synonymous_variant"],NA,[("Gene3D","1"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321")],"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000544518.5:c.1317C>T","ENSP00000441068.1:p.Ile439=",NA,"LOW",NA,NA,NA,NA,NA,NA,NA,NA,439,439,"ENSP00000441068","Ensembl",-1,"ENST00000544518",1,NA,"A"),(1,NA,NA,"lncRNA",1,NA,NA,NA,NA,NA,NA,["intron_variant","non_coding_transcript_variant"],NA,NA,NA,NA,"ENSG00000256757",NA,NA,NA,NA,"ENST00000546284.1:n.245-808G>A",NA,NA,"MODIFIER","2/3",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",1,"ENST00000546284",3,NA,"A"),(1,"I",NA,"protein_coding",1,NA,1674,1674,1320,1320,"atC/atT",["synonymous_variant"],NA,NA,"8/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_000795.4:c.1320C>T","NP_000786.1:p.Ile440=",NA,"LOW",NA,NA,NA,NA,NA,"ENST00000362072.8",NA,NA,440,440,"NP_000786.1","RefSeq",-1,"NM_000795.4",NA,NA,"A"),(1,"I",NA,"protein_coding",NA,NA,1587,1587,1233,1233,"atC/atT",["synonymous_variant"],NA,NA,"7/7",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_016574.4:c.1233C>T","NP_057658.2:p.Ile411=",NA,"LOW",NA,NA,NA,NA,NA,NA,NA,NA,411,411,"NP_057658.2","RefSeq",-1,"NM_016574.4",NA,NA,"A"),(1,"I",NA,"protein_coding",NA,NA,1402,1402,1320,1320,"atC/atT",["synonymous_variant"],NA,NA,"8/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","XM_017017296.2:c.1320C>T","XP_016872785.1:p.Ile440=",NA,"LOW",NA,NA,NA,NA,NA,NA,NA,NA,440,440,"XP_016872785.1","RefSeq",-1,"XM_017017296.2",NA,NA,"A")]"SNV"5.73e+00"AS_MQ"FalseFalseFalseFalseFalseTrueFalseFalse"snv"1False"snv"False[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,9,0,68,0,314320,0,24,0,416519,0,0,0,0,0,0,1]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,55,309,11275,107353,345050,189133,36332,5605,2379,2755,3073,2932,2954,2914,2973,2922,2564,2680]07683[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][5,0,0,0,10,0,68,0,314320,0,24,0,416519,0,0,0,0,0,0,1]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,1,56,312,11275,107353,345051,189133,36332,5605,2379,2755,3073,2932,2954,2914,2973,2922,2564,2680]07683[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]001.03e+018.89e-01NA0.00e+000.00e+003.26e+00NANA
chr11:113410751["G","A"][(1,6.84e-07,1461894,0),(1,6.84e-07,1461894,0),(0,0.00e+00,33480,0),(0,0.00e+00,44724,0),(0,0.00e+00,26136,0),(0,0.00e+00,39700,0),(0,0.00e+00,53420,0),(0,0.00e+00,5768,0),(1,8.99e-07,1112012,0),(0,0.00e+00,60396,0),(0,0.00e+00,86258,0),(1,1.36e-06,734646,0),(0,0.00e+00,727248,0),(0,0.00e+00,19326,0),(0,0.00e+00,14154,0),(0,0.00e+00,25690,0),(0,0.00e+00,19034,0),(0,0.00e+00,12636,0),(0,0.00e+00,13500,0),(0,0.00e+00,20712,0),(0,0.00e+00,18988,0),(0,0.00e+00,27648,0),(0,0.00e+00,25772,0),(0,0.00e+00,2506,0),(0,0.00e+00,3262,0),(1,1.75e-06,572288,0),(0,0.00e+00,539724,0),(0,0.00e+00,31800,0),(0,0.00e+00,28596,0),(0,0.00e+00,22040,0),(0,0.00e+00,64218,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,44724,0),(0,0.00e+00,44724,0),(0,0.00e+00,44724,0),(0,0.00e+00,44724,0),(0,0.00e+00,44724,0),(0,0.00e+00,44724,0),(0,0.00e+00,53420,0),(0,0.00e+00,53420,0),(0,0.00e+00,53420,0),(0,0.00e+00,53420,0),(0,0.00e+00,53420,0),(0,0.00e+00,60396,0),(0,0.00e+00,60396,0),(0,0.00e+00,60396,0),(0,0.00e+00,60396,0),(0,0.00e+00,86258,0),(0,0.00e+00,86258,0),(0,0.00e+00,86258,0),(0,0.00e+00,100000,0),(0,0.00e+00,100000,0),(1,5.00e-06,200000,0),(1,5.00e-06,200000,0),(1,2.50e-06,400000,0),(1,2.50e-06,400000,0),(1,1.00e-06,1000000,0),(1,1.00e-06,1000000,0),(1,8.99e-07,1112012,0),(1,8.99e-07,1112012,0),(1,1.59e-06,628784,0),(1,1.59e-06,628784,0),(0,0.00e+00,17694,0),(0,0.00e+00,43740,0),(0,0.00e+00,20984,0),(0,0.00e+00,36070,0),(0,0.00e+00,53144,0),(0,0.00e+00,4148,0),(1,2.86e-06,350108,0),(0,0.00e+00,33098,0),(0,0.00e+00,69798,0),(1,3.49e-06,286250,0),(0,0.00e+00,342534,0),(0,0.00e+00,10286,0),(0,0.00e+00,7408,0),(0,0.00e+00,25040,0),(0,0.00e+00,18700,0),(0,0.00e+00,9838,0),(0,0.00e+00,11146,0),(0,0.00e+00,18298,0),(0,0.00e+00,17772,0),(0,0.00e+00,27398,0),(0,0.00e+00,25746,0),(0,0.00e+00,1916,0),(0,0.00e+00,2232,0),(1,6.16e-06,162220,0),(0,0.00e+00,187888,0),(0,0.00e+00,16752,0),(0,0.00e+00,16346,0),(0,0.00e+00,14502,0),(0,0.00e+00,55296,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,33098,0),(0,0.00e+00,33098,0),(0,0.00e+00,33098,0),(1,3.02e-05,33098,0),(0,0.00e+00,33098,0),(0,0.00e+00,33098,0),(0,0.00e+00,33098,0),(0,0.00e+00,36070,0),(0,0.00e+00,36070,0),(0,0.00e+00,36070,0),(1,2.77e-05,36070,0),(0,0.00e+00,36070,0),(0,0.00e+00,36070,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(1,2.50e-05,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,40000,0),(0,0.00e+00,43740,0),(0,0.00e+00,43740,0),(1,2.29e-05,43740,0),(0,0.00e+00,43740,0),(0,0.00e+00,43740,0),(0,0.00e+00,53144,0),(1,1.88e-05,53144,0),(0,0.00e+00,53144,0),(0,0.00e+00,53144,0),(1,1.43e-05,69798,0),(0,0.00e+00,69798,0),(1,1.43e-05,69798,0),(1,1.00e-05,100000,0),(1,1.00e-05,100000,0),(1,5.00e-06,200000,0),(1,5.00e-06,200000,0),(1,2.86e-06,350108,0),(1,2.86e-06,350108,0),(1,2.50e-06,400000,0)]18.99e-0711120120"nfe"12.86e-063501080"nfe"[(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]NANANANANANANANA1FalseNA{}8.26e+006.00e+010.00e+0010982.03e+01-7.69e-01[5,11,21,18]4.64e-01548.26e+006.00e+010.00e+003.84e-0310982.03e+01-7.69e-01[5,11,21,18]4.64e-0154TrueFalseFalseFalseFalseFalseFalse2.35e+00-6.84e-07["ga4gh:VA.euCgAx3O0dYWO86rUZqEKUoRwnhnhr-k","ga4gh:VA.XQ_C7TKjlSKQw_ABwxZ_ZFkA_UwtEjVw"][113410750,113410750][113410751,113410751]["G","A"]"G/A"113410751".""chr11\t113410751\t.\tG\tA\t.\t.\tGT"NA"synonymous_variant"NANA"chr11"1134107511[(1,"A",NA,"protein_coding",NA,"CCDS8362.1",1297,1297,1221,1221,"gcC/gcT",["synonymous_variant"],NA,[("Gene3D","1"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321"),("CDD","cd15309")],"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000346454.7:c.1221C>T","ENSP00000278597.5:p.Ala407=",NA,"LOW",NA,NA,NA,NA,NA,NA,NA,NA,407,407,"ENSP00000278597","Ensembl",-1,"ENST00000346454",1,["P14416-2"],"A"),(1,"A","P2","protein_coding",1,"CCDS8361.1",1662,1662,1308,1308,"gcC/gcT",["synonymous_variant"],NA,[("Gene3D","1"),("ENSP_mappings","5aer"),("ENSP_mappings","5aer"),("ENSP_mappings","6cm4"),("ENSP_mappings","6luq"),("ENSP_mappings","6vms"),("ENSP_mappings","7dfp"),("ENSP_mappings","7jvr"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321"),("CDD","cd15309")],"8/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000362072.8:c.1308C>T","ENSP00000354859.3:p.Ala436=",NA,"LOW",NA,NA,NA,NA,NA,"NM_000795.4",NA,NA,436,436,"ENSP00000354859","Ensembl",-1,"ENST00000362072",1,["P14416-1"],"A"),(1,NA,NA,"processed_transcript",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],3624,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000535984",3,NA,"A"),(1,"A","A1","protein_coding",NA,NA,1314,1314,1314,1314,"gcC/gcT",["synonymous_variant"],NA,[("Gene3D","1"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321"),("CDD","cd15309")],"8/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000538967.5:c.1314C>T","ENSP00000438215.1:p.Ala438=",NA,"LOW",NA,NA,NA,NA,NA,NA,NA,NA,438,438,"ENSP00000438215","Ensembl",-1,"ENST00000538967",5,["P14416-3"],"A"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],4543,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000539420",3,NA,"A"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],3113,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000540600",1,NA,"A"),(1,"A","P2","protein_coding",NA,"CCDS8361.1",1629,1629,1308,1308,"gcC/gcT",["synonymous_variant"],NA,[("Gene3D","1"),("ENSP_mappings","5aer"),("ENSP_mappings","5aer"),("ENSP_mappings","6cm4"),("ENSP_mappings","6luq"),("ENSP_mappings","6vms"),("ENSP_mappings","7dfp"),("ENSP_mappings","7jvr"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321"),("CDD","cd15309")],"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000542968.5:c.1308C>T","ENSP00000442172.1:p.Ala436=",NA,"LOW",NA,NA,NA,NA,NA,NA,NA,NA,436,436,"ENSP00000442172","Ensembl",-1,"ENST00000542968",1,["P14416-1"],"A"),(1,"A","A1","protein_coding",NA,NA,1338,1338,1305,1305,"gcC/gcT",["synonymous_variant"],NA,[("Gene3D","1"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321"),("CDD","cd15309")],"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000544518.5:c.1305C>T","ENSP00000441068.1:p.Ala435=",NA,"LOW",NA,NA,NA,NA,NA,NA,NA,NA,435,435,"ENSP00000441068","Ensembl",-1,"ENST00000544518",1,NA,"A"),(1,NA,NA,"lncRNA",1,NA,NA,NA,NA,NA,NA,["intron_variant","non_coding_transcript_variant"],NA,NA,NA,NA,"ENSG00000256757",NA,NA,NA,NA,"ENST00000546284.1:n.245-796G>A",NA,NA,"MODIFIER","2/3",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",1,"ENST00000546284",3,NA,"A"),(1,"A",NA,"protein_coding",1,NA,1662,1662,1308,1308,"gcC/gcT",["synonymous_variant"],NA,NA,"8/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_000795.4:c.1308C>T","NP_000786.1:p.Ala436=",NA,"LOW",NA,NA,NA,NA,NA,"ENST00000362072.8",NA,NA,436,436,"NP_000786.1","RefSeq",-1,"NM_000795.4",NA,NA,"A"),(1,"A",NA,"protein_coding",NA,NA,1575,1575,1221,1221,"gcC/gcT",["synonymous_variant"],NA,NA,"7/7",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_016574.4:c.1221C>T","NP_057658.2:p.Ala407=",NA,"LOW",NA,NA,NA,NA,NA,NA,NA,NA,407,407,"NP_057658.2","RefSeq",-1,"NM_016574.4",NA,NA,"A"),(1,"A",NA,"protein_coding",NA,NA,1390,1390,1308,1308,"gcC/gcT",["synonymous_variant"],NA,NA,"8/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","XM_017017296.2:c.1308C>T","XP_016872785.1:p.Ala436=",NA,"LOW",NA,NA,NA,NA,NA,NA,NA,NA,436,436,"XP_016872785.1","RefSeq",-1,"XM_017017296.2",NA,NA,"A")]"SNV"2.35e+00"AS_MQ"FalseFalseFalseFalseFalseTrueFalseFalse"snv"1False"snv"False[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,1,0,28,0,314363,0,2,0,416552,0,0,0,0,0,0,1]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,18,272,11233,107401,345096,189157,36337,5604,2379,2755,3073,2932,2954,2914,2973,2922,2564,2680]07683[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,1,0,28,0,314363,0,2,0,416552,0,0,0,0,0,0,1]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,18,272,11233,107401,345096,189157,36337,5604,2379,2755,3073,2932,2954,2914,2973,2922,2564,2680]07683[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]001.20e+011.03e+00NA0.00e+000.00e+008.67e+00NANA
chr11:113410754["C","T"][(576,3.94e-04,1461892,2),(576,3.94e-04,1461894,2),(12,3.58e-04,33480,1),(43,9.61e-04,44724,0),(144,5.51e-03,26136,0),(0,0.00e+00,39700,0),(0,0.00e+00,53418,0),(8,1.39e-03,5768,0),(328,2.95e-04,1112012,0),(41,6.79e-04,60396,1),(0,0.00e+00,86258,0),(291,3.96e-04,734646,0),(285,3.92e-04,727246,2),(3,1.55e-04,19326,0),(9,6.36e-04,14154,1),(25,9.73e-04,25690,0),(18,9.46e-04,19034,0),(73,5.78e-03,12636,0),(71,5.26e-03,13500,0),(0,0.00e+00,20712,0),(0,0.00e+00,18988,0),(0,0.00e+00,27648,0),(0,0.00e+00,25770,0),(1,3.99e-04,2506,0),(7,2.15e-03,3262,0),(169,2.95e-04,572288,0),(159,2.95e-04,539724,0),(20,6.29e-04,31800,0),(21,7.34e-04,28596,1),(0,0.00e+00,22040,0),(0,0.00e+00,64218,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(3,1.50e-02,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(5,5.00e-03,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(11,5.50e-03,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(2,1.00e-03,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(2,5.00e-04,4000,0),(6,1.50e-03,4000,0),(22,5.50e-03,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(3,7.50e-04,4000,0),(1,2.50e-04,4000,0),(2,5.00e-04,4000,0),(0,0.00e+00,4000,0),(1,2.50e-04,4000,0),(4,6.93e-04,5768,0),(7,1.21e-03,5768,0),(30,5.20e-03,5768,0),(0,0.00e+00,5768,0),(0,0.00e+00,5768,0),(8,1.39e-03,5768,0),(1,1.73e-04,5768,0),(2,3.47e-04,5768,0),(0,0.00e+00,5768,0),(2,3.47e-04,5768,0),(6,6.00e-04,10000,0),(11,1.10e-03,10000,0),(54,5.40e-03,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(1,1.00e-04,10000,0),(6,6.00e-04,10000,0),(0,0.00e+00,10000,0),(2,2.00e-04,10000,0),(8,4.00e-04,20000,0),(20,1.00e-03,20000,0),(115,5.75e-03,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(5,2.50e-04,20000,0),(11,5.50e-04,20000,1),(0,0.00e+00,20000,0),(6,3.00e-04,20000,0),(9,3.44e-04,26136,0),(23,8.80e-04,26136,0),(144,5.51e-03,26136,0),(0,0.00e+00,26136,0),(0,0.00e+00,26136,0),(8,3.06e-04,26136,0),(13,4.97e-04,26136,1),(0,0.00e+00,26136,0),(8,3.06e-04,26136,0),(12,3.58e-04,33480,1),(28,8.36e-04,33480,0),(0,0.00e+00,33480,0),(0,0.00e+00,33480,0),(11,3.29e-04,33480,0),(16,4.78e-04,33480,1),(0,0.00e+00,33480,0),(12,3.58e-04,33480,0),(37,9.32e-04,39700,0),(0,0.00e+00,39700,0),(0,0.00e+00,39700,0),(13,3.27e-04,39700,0),(23,5.79e-04,39700,1),(0,0.00e+00,39700,0),(13,3.27e-04,39700,0),(38,9.50e-04,40000,0),(0,0.00e+00,40000,0),(13,3.25e-04,40000,0),(23,5.75e-04,40000,1),(0,0.00e+00,40000,0),(13,3.25e-04,40000,0),(43,9.61e-04,44724,0),(0,0.00e+00,44724,0),(16,3.58e-04,44724,0),(29,6.48e-04,44724,1),(0,0.00e+00,44724,0),(17,3.80e-04,44724,0),(0,0.00e+00,53418,0),(18,3.37e-04,53420,0),(35,6.55e-04,53420,1),(0,0.00e+00,53420,0),(19,3.56e-04,53420,0),(18,2.98e-04,60396,0),(41,6.79e-04,60396,1),(0,0.00e+00,60396,0),(23,3.81e-04,60396,0),(31,3.59e-04,86258,0),(0,0.00e+00,86258,0),(32,3.71e-04,86258,0),(34,3.40e-04,100000,0),(42,4.20e-04,100000,0),(57,2.85e-04,200000,0),(82,4.10e-04,200000,0),(116,2.90e-04,400000,0),(156,3.90e-04,400000,1),(293,2.93e-04,1000000,0),(378,3.78e-04,1000000,1),(328,2.95e-04,1112012,0),(435,3.91e-04,1112012,1),(283,4.50e-04,628782,0),(283,4.50e-04,628784,0),(8,4.52e-04,17694,0),(40,9.14e-04,43740,0),(116,5.53e-03,20984,0),(0,0.00e+00,36070,0),(0,0.00e+00,53142,0),(4,9.64e-04,4148,0),(90,2.57e-04,350108,0),(25,7.55e-04,33098,0),(0,0.00e+00,69798,0),(140,4.89e-04,286250,0),(143,4.17e-04,342532,0),(1,9.72e-05,10286,0),(7,9.45e-04,7408,0),(23,9.19e-04,25040,0),(17,9.09e-04,18700,0),(60,6.10e-03,9838,0),(56,5.02e-03,11146,0),(0,0.00e+00,18298,0),(0,0.00e+00,17772,0),(0,0.00e+00,27398,0),(0,0.00e+00,25744,0),(1,5.22e-04,1916,0),(3,1.34e-03,2232,0),(43,2.65e-04,162220,0),(47,2.50e-04,187888,0),(12,7.16e-04,16752,0),(13,7.95e-04,16346,0),(0,0.00e+00,14502,0),(0,0.00e+00,55296,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(3,1.50e-02,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(6,6.00e-03,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(1,1.00e-03,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(2,1.00e-03,2000,0),(0,0.00e+00,2000,0),(13,6.50e-03,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(2,1.00e-03,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(3,7.50e-04,4000,0),(4,1.00e-03,4000,0),(21,5.25e-03,4000,0),(0,0.00e+00,4000,0),(0,0.00e+00,4000,0),(4,1.00e-03,4000,0),(1,2.50e-04,4000,0),(3,7.50e-04,4000,0),(0,0.00e+00,4000,0),(1,2.50e-04,4000,0),(3,7.23e-04,4148,0),(4,9.64e-04,4148,0),(24,5.79e-03,4148,0),(0,0.00e+00,4148,0),(0,0.00e+00,4148,0),(4,9.64e-04,4148,0),(1,2.41e-04,4148,0),(3,7.23e-04,4148,0),(0,0.00e+00,4148,0),(1,2.41e-04,4148,0),(6,6.00e-04,10000,0),(9,9.00e-04,10000,0),(54,5.40e-03,10000,0),(0,0.00e+00,10000,0),(0,0.00e+00,10000,0),(2,2.00e-04,10000,0),(6,6.00e-04,10000,0),(0,0.00e+00,10000,0),(5,5.00e-04,10000,0),(8,4.52e-04,17694,0),(15,8.48e-04,17694,0),(99,5.60e-03,17694,0),(0,0.00e+00,17694,0),(0,0.00e+00,17694,0),(4,2.26e-04,17694,0),(10,5.65e-04,17694,0),(0,0.00e+00,17694,0),(6,3.39e-04,17694,0),(18,9.00e-04,20000,0),(111,5.55e-03,20000,0),(0,0.00e+00,20000,0),(0,0.00e+00,20000,0),(4,2.00e-04,20000,0),(13,6.50e-04,20000,0),(0,0.00e+00,20000,0),(8,4.00e-04,20000,0),(19,9.05e-04,20984,0),(116,5.53e-03,20984,0),(0,0.00e+00,20984,0),(0,0.00e+00,20984,0),(4,1.91e-04,20984,0),(13,6.20e-04,20984,0),(0,0.00e+00,20984,0),(9,4.29e-04,20984,0),(26,7.86e-04,33098,0),(0,0.00e+00,33098,0),(0,0.00e+00,33098,0),(7,2.11e-04,33098,0),(25,7.55e-04,33098,0),(0,0.00e+00,33098,0),(15,4.53e-04,33098,0),(31,8.59e-04,36070,0),(0,0.00e+00,36070,0),(0,0.00e+00,36070,0),(7,1.94e-04,36070,0),(0,0.00e+00,36070,0),(15,4.16e-04,36070,0),(37,9.25e-04,40000,0),(0,0.00e+00,40000,0),(7,1.75e-04,40000,0),(0,0.00e+00,40000,0),(16,4.00e-04,40000,0),(40,9.14e-04,43740,0),(0,0.00e+00,43740,0),(7,1.60e-04,43740,0),(0,0.00e+00,43740,0),(21,4.80e-04,43740,0),(0,0.00e+00,53142,0),(7,1.32e-04,53144,0),(0,0.00e+00,53144,0),(22,4.14e-04,53144,0),(13,1.86e-04,69798,0),(0,0.00e+00,69798,0),(30,4.30e-04,69798,0),(24,2.40e-04,100000,0),(40,4.00e-04,100000,0),(50,2.50e-04,200000,0),(90,4.50e-04,200000,0),(90,2.57e-04,350108,0),(147,4.20e-04,350108,0),(176,4.40e-04,400000,0)]81.39e-0357680"mid"49.64e-0441480"mid"[(3.67e-04,3.57e-04),(2.06e-04,1.62e-04),(7.33e-04,6.53e-04),(0.00e+00,0.00e+00),(6.90e-04,5.04e-04),(2.68e-04,2.58e-04),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,(4.07e-04,3.90e-04),(2.24e-04,1.64e-04),(6.90e-04,6.12e-04),(0.00e+00,0.00e+00),(3.29e-04,1.98e-04),(2.13e-04,1.98e-04),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]7.33e-04"amr"6.53e-04"amr"6.90e-04"amr"6.12e-04"amr"1False{"rs77930100"}{}1.45e-156.00e+010.00e+009476781.23e+01-7.00e-03[20804,19237,19605,17401]7.35e-01770271.45e-156.00e+010.00e+001.00e+009476781.23e+017.00e-03[20804,19237,19605,17401]7.35e-0177027FalseNANAFalseFalseFalseFalse8.87e+006.55e-03["ga4gh:VA.8tDWBt70tPv5g5-MDqwnSl1-pElrIl1E","ga4gh:VA.f3fUPUzazutlUq0GulwJsX0XJSbepMoo"][113410753,113410753][113410754,113410754]["C","T"]"C/T"113410754".""chr11\t113410754\t.\tC\tT\t.\t.\tGT"NA"synonymous_variant"NANA"chr11"1134107541[(1,"K",NA,"protein_coding",NA,"CCDS8362.1",1294,1294,1218,1218,"aaG/aaA",["synonymous_variant"],NA,[("Gene3D","1"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321"),("CDD","cd15309")],"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000346454.7:c.1218G>A","ENSP00000278597.5:p.Lys406=",NA,"LOW",NA,NA,NA,NA,NA,NA,NA,NA,406,406,"ENSP00000278597","Ensembl",-1,"ENST00000346454",1,["P14416-2"],"T"),(1,"K","P2","protein_coding",1,"CCDS8361.1",1659,1659,1305,1305,"aaG/aaA",["synonymous_variant"],NA,[("Gene3D","1"),("ENSP_mappings","5aer"),("ENSP_mappings","5aer"),("ENSP_mappings","6cm4"),("ENSP_mappings","6luq"),("ENSP_mappings","6vms"),("ENSP_mappings","7dfp"),("ENSP_mappings","7jvr"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321"),("CDD","cd15309")],"8/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000362072.8:c.1305G>A","ENSP00000354859.3:p.Lys435=",NA,"LOW",NA,NA,NA,NA,NA,"NM_000795.4",NA,NA,435,435,"ENSP00000354859","Ensembl",-1,"ENST00000362072",1,["P14416-1"],"T"),(1,NA,NA,"processed_transcript",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],3621,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000535984",3,NA,"T"),(1,"K","A1","protein_coding",NA,NA,1311,1311,1311,1311,"aaG/aaA",["synonymous_variant"],NA,[("Gene3D","1"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321"),("CDD","cd15309")],"8/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000538967.5:c.1311G>A","ENSP00000438215.1:p.Lys437=",NA,"LOW",NA,NA,NA,NA,NA,NA,NA,NA,437,437,"ENSP00000438215","Ensembl",-1,"ENST00000538967",5,["P14416-3"],"T"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],4540,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000539420",3,NA,"T"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],3110,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000540600",1,NA,"T"),(1,"K","P2","protein_coding",NA,"CCDS8361.1",1626,1626,1305,1305,"aaG/aaA",["synonymous_variant"],NA,[("Gene3D","1"),("ENSP_mappings","5aer"),("ENSP_mappings","5aer"),("ENSP_mappings","6cm4"),("ENSP_mappings","6luq"),("ENSP_mappings","6vms"),("ENSP_mappings","7dfp"),("ENSP_mappings","7jvr"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321"),("CDD","cd15309")],"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000542968.5:c.1305G>A","ENSP00000442172.1:p.Lys435=",NA,"LOW",NA,NA,NA,NA,NA,NA,NA,NA,435,435,"ENSP00000442172","Ensembl",-1,"ENST00000542968",1,["P14416-1"],"T"),(1,"K","A1","protein_coding",NA,NA,1335,1335,1302,1302,"aaG/aaA",["synonymous_variant"],NA,[("Gene3D","1"),("Prints","PR00242"),("PANTHER","PTHR24248"),("PANTHER","PTHR24248"),("SMART","SM01381"),("Superfamily","SSF81321"),("CDD","cd15309")],"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000544518.5:c.1302G>A","ENSP00000441068.1:p.Lys434=",NA,"LOW",NA,NA,NA,NA,NA,NA,NA,NA,434,434,"ENSP00000441068","Ensembl",-1,"ENST00000544518",1,NA,"T"),(1,NA,NA,"lncRNA",1,NA,NA,NA,NA,NA,NA,["intron_variant","non_coding_transcript_variant"],NA,NA,NA,NA,"ENSG00000256757",NA,NA,NA,NA,"ENST00000546284.1:n.245-793C>T",NA,NA,"MODIFIER","2/3",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",1,"ENST00000546284",3,NA,"T"),(1,"K",NA,"protein_coding",1,NA,1659,1659,1305,1305,"aaG/aaA",["synonymous_variant"],NA,NA,"8/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_000795.4:c.1305G>A","NP_000786.1:p.Lys435=",NA,"LOW",NA,NA,NA,NA,NA,"ENST00000362072.8",NA,NA,435,435,"NP_000786.1","RefSeq",-1,"NM_000795.4",NA,NA,"T"),(1,"K",NA,"protein_coding",NA,NA,1572,1572,1218,1218,"aaG/aaA",["synonymous_variant"],NA,NA,"7/7",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_016574.4:c.1218G>A","NP_057658.2:p.Lys406=",NA,"LOW",NA,NA,NA,NA,NA,NA,NA,NA,406,406,"NP_057658.2","RefSeq",-1,"NM_016574.4",NA,NA,"T"),(1,"K",NA,"protein_coding",NA,NA,1387,1387,1305,1305,"aaG/aaA",["synonymous_variant"],NA,NA,"8/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","XM_017017296.2:c.1305G>A","XP_016872785.1:p.Lys435=",NA,"LOW",NA,NA,NA,NA,NA,NA,NA,NA,435,435,"XP_016872785.1","RefSeq",-1,"XM_017017296.2",NA,NA,"T")]"SNV"8.87e+00"AS_MQ"FalseFalseFalseFalseFalseTrueFalseFalse"snv"1False"snv"False[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,3,0,24,0,314081,0,0,0,416264,0,0,0,0,0,0,574]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,16,266,11219,107342,344994,189134,36335,5603,2386,2754,3071,2938,2971,2945,3008,2939,2587,2701]07737[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,574]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,1,1,4,13,22,21,26,25,30,25,35,40,41,25,31,27]0207[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,3,1,13,43,101,196,147,52,11,5,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][1,0,0,0,3,0,24,0,314081,0,0,0,416264,0,0,0,0,0,0,574]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,16,267,11219,107342,344994,189134,36335,5603,2386,2754,3071,2938,2971,2945,3008,2939,2587,2701]07737[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,574]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,1,1,4,13,22,21,26,25,30,25,35,40,41,25,31,27]0207[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,3,1,13,43,101,196,147,52,11,5,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][3,2,30,42,65,52,79,55,7,3]153[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,1,0,0,0,1,0]009.48e+008.09e-01NA0.00e+001.00e-025.82e+00NANA

showing top 5 rows

\n" + ], + "text/plain": [ + "+-----------------+------------+\n", + "| locus | alleles |\n", + "+-----------------+------------+\n", + "| locus | array |\n", + "+-----------------+------------+\n", + "| chr11:113410736 | [\"G\",\"A\"] |\n", + "| chr11:113410736 | [\"G\",\"T\"] |\n", + "| chr11:113410739 | [\"G\",\"A\"] |\n", + "| chr11:113410751 | [\"G\",\"A\"] |\n", + "| chr11:113410754 | [\"C\",\"T\"] |\n", + "+-----------------+------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| freq |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [(15,1.03e-05,1461882,0),(15,1.03e-05,1461894,0),(0,0.00e+00,33480,0),(0,... |\n", + "| [(1,6.84e-07,1461882,0),(1,6.84e-07,1461894,0),(0,0.00e+00,33480,0),(0,0.... |\n", + "| [(1,6.84e-07,1461882,0),(1,6.84e-07,1461894,0),(0,0.00e+00,33478,0),(0,0.... |\n", + "| [(1,6.84e-07,1461894,0),(1,6.84e-07,1461894,0),(0,0.00e+00,33480,0),(0,0.... |\n", + "| [(576,3.94e-04,1461892,2),(576,3.94e-04,1461894,2),(12,3.58e-04,33480,1),... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+------------------+------------------+------------------+\n", + "| grpmax.gnomad.AC | grpmax.gnomad.AF | grpmax.gnomad.AN |\n", + "+------------------+------------------+------------------+\n", + "| int32 | float64 | int32 |\n", + "+------------------+------------------+------------------+\n", + "| 15 | 1.35e-05 | 1112010 |\n", + "| 1 | 8.99e-07 | 1112010 |\n", + "| NA | NA | NA |\n", + "| 1 | 8.99e-07 | 1112012 |\n", + "| 8 | 1.39e-03 | 5768 |\n", + "+------------------+------------------+------------------+\n", + "\n", + "+--------------------------------+-----------------------+-------------------+\n", + "| grpmax.gnomad.homozygote_count | grpmax.gnomad.gen_anc | grpmax.non_ukb.AC |\n", + "+--------------------------------+-----------------------+-------------------+\n", + "| int64 | str | int32 |\n", + "+--------------------------------+-----------------------+-------------------+\n", + "| 0 | \"nfe\" | 1 |\n", + "| 0 | \"nfe\" | NA |\n", + "| NA | NA | NA |\n", + "| 0 | \"nfe\" | 1 |\n", + "| 0 | \"mid\" | 4 |\n", + "+--------------------------------+-----------------------+-------------------+\n", + "\n", + "+-------------------+-------------------+---------------------------------+\n", + "| grpmax.non_ukb.AF | grpmax.non_ukb.AN | grpmax.non_ukb.homozygote_count |\n", + "+-------------------+-------------------+---------------------------------+\n", + "| float64 | int32 | int64 |\n", + "+-------------------+-------------------+---------------------------------+\n", + "| 2.86e-06 | 350106 | 0 |\n", + "| NA | NA | NA |\n", + "| NA | NA | NA |\n", + "| 2.86e-06 | 350108 | 0 |\n", + "| 9.64e-04 | 4148 | 0 |\n", + "+-------------------+-------------------+---------------------------------+\n", + "\n", + "+------------------------+\n", + "| grpmax.non_ukb.gen_anc |\n", + "+------------------------+\n", + "| str |\n", + "+------------------------+\n", + "| \"nfe\" |\n", + "| NA |\n", + "| NA |\n", + "| \"nfe\" |\n", + "| \"mid\" |\n", + "+------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| faf |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [(6.16e-06,4.89e-06),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.... |\n", + "| [(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.... |\n", + "| [(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.... |\n", + "| [(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.... |\n", + "| [(3.67e-04,3.57e-04),(2.06e-04,1.62e-04),(7.33e-04,6.53e-04),(0.00e+00,0.... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+-------------------------+---------------------------------+\n", + "| fafmax.gnomad.faf95_max | fafmax.gnomad.faf95_max_gen_anc |\n", + "+-------------------------+---------------------------------+\n", + "| float64 | str |\n", + "+-------------------------+---------------------------------+\n", + "| 8.10e-06 | \"nfe\" |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| 7.33e-04 | \"amr\" |\n", + "+-------------------------+---------------------------------+\n", + "\n", + "+-------------------------+---------------------------------+\n", + "| fafmax.gnomad.faf99_max | fafmax.gnomad.faf99_max_gen_anc |\n", + "+-------------------------+---------------------------------+\n", + "| float64 | str |\n", + "+-------------------------+---------------------------------+\n", + "| 6.42e-06 | \"nfe\" |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| 6.53e-04 | \"amr\" |\n", + "+-------------------------+---------------------------------+\n", + "\n", + "+--------------------------+----------------------------------+\n", + "| fafmax.non_ukb.faf95_max | fafmax.non_ukb.faf95_max_gen_anc |\n", + "+--------------------------+----------------------------------+\n", + "| float64 | str |\n", + "+--------------------------+----------------------------------+\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| 6.90e-04 | \"amr\" |\n", + "+--------------------------+----------------------------------+\n", + "\n", + "+--------------------------+----------------------------------+---------+\n", + "| fafmax.non_ukb.faf99_max | fafmax.non_ukb.faf99_max_gen_anc | a_index |\n", + "+--------------------------+----------------------------------+---------+\n", + "| float64 | str | int32 |\n", + "+--------------------------+----------------------------------+---------+\n", + "| NA | NA | 1 |\n", + "| NA | NA | 2 |\n", + "| NA | NA | 1 |\n", + "| NA | NA | 1 |\n", + "| 6.12e-04 | \"amr\" | 1 |\n", + "+--------------------------+----------------------------------+---------+\n", + "\n", + "+-----------+------------------+----------+----------+----------+\n", + "| was_split | rsid | filters | info.FS | info.MQ |\n", + "+-----------+------------------+----------+----------+----------+\n", + "| bool | set | set | float64 | float64 |\n", + "+-----------+------------------+----------+----------+----------+\n", + "| True | {\"rs1159504221\"} | {} | 5.49e-01 | 6.00e+01 |\n", + "| True | NA | {} | 5.49e-01 | 6.00e+01 |\n", + "| False | NA | {} | 4.26e+00 | 6.00e+01 |\n", + "| False | NA | {} | 8.26e+00 | 6.00e+01 |\n", + "| False | {\"rs77930100\"} | {} | 1.45e-15 | 6.00e+01 |\n", + "+-----------+------------------+----------+----------+----------+\n", + "\n", + "+----------------+-----------------+----------+---------------------+\n", + "| info.MQRankSum | info.QUALapprox | info.QD | info.ReadPosRankSum |\n", + "+----------------+-----------------+----------+---------------------+\n", + "| float64 | int64 | float64 | float64 |\n", + "+----------------+-----------------+----------+---------------------+\n", + "| 0.00e+00 | 12307 | 1.16e+01 | 7.40e-02 |\n", + "| 0.00e+00 | 12307 | 1.16e+01 | 7.40e-02 |\n", + "| 0.00e+00 | 574 | 1.10e+01 | 5.32e-01 |\n", + "| 0.00e+00 | 1098 | 2.03e+01 | -7.69e-01 |\n", + "| 0.00e+00 | 947678 | 1.23e+01 | -7.00e-03 |\n", + "+----------------+-----------------+----------+---------------------+\n", + "\n", + "+---------------------------+----------+------------+------------+------------+\n", + "| info.SB | info.SOR | info.VarDP | info.AS_FS | info.AS_MQ |\n", + "+---------------------------+----------+------------+------------+------------+\n", + "| array | float64 | int32 | float64 | float64 |\n", + "+---------------------------+----------+------------+------------+------------+\n", + "| [386,195,316,166] | 6.55e-01 | 1063 | 9.64e-16 | 6.00e+01 |\n", + "| [386,195,316,166] | 6.55e-01 | 1063 | 9.64e-16 | 6.00e+01 |\n", + "| [23,8,13,8] | 2.93e-01 | 52 | 4.26e+00 | 6.00e+01 |\n", + "| [5,11,21,18] | 4.64e-01 | 54 | 8.26e+00 | 6.00e+01 |\n", + "| [20804,19237,19605,17401] | 7.35e-01 | 77027 | 1.45e-15 | 6.00e+01 |\n", + "+---------------------------+----------+------------+------------+------------+\n", + "\n", + "+-------------------+-----------------+--------------------+------------+\n", + "| info.AS_MQRankSum | info.AS_pab_max | info.AS_QUALapprox | info.AS_QD |\n", + "+-------------------+-----------------+--------------------+------------+\n", + "| float64 | float64 | int64 | float64 |\n", + "+-------------------+-----------------+--------------------+------------+\n", + "| 0.00e+00 | 9.11e-01 | 11899 | 1.17e+01 |\n", + "| 0.00e+00 | 3.28e-02 | 408 | 8.16e+00 |\n", + "| 0.00e+00 | 2.12e-01 | 574 | 1.10e+01 |\n", + "| 0.00e+00 | 3.84e-03 | 1098 | 2.03e+01 |\n", + "| 0.00e+00 | 1.00e+00 | 947678 | 1.23e+01 |\n", + "+-------------------+-----------------+--------------------+------------+\n", + "\n", + "+------------------------+---------------------------+-------------+\n", + "| info.AS_ReadPosRankSum | info.AS_SB_TABLE | info.AS_SOR |\n", + "+------------------------+---------------------------+-------------+\n", + "| float64 | array | float64 |\n", + "+------------------------+---------------------------+-------------+\n", + "| 9.70e-02 | [386,195,304,161] | 6.47e-01 |\n", + "| -9.23e-01 | [386,195,12,5] | 7.90e-01 |\n", + "| 5.32e-01 | [23,8,13,8] | 2.93e-01 |\n", + "| -7.69e-01 | [5,11,21,18] | 4.64e-01 |\n", + "| 7.00e-03 | [20804,19237,19605,17401] | 7.35e-01 |\n", + "+------------------------+---------------------------+-------------+\n", + "\n", + "+---------------+----------------+----------------------------+\n", + "| info.AS_VarDP | info.singleton | info.transmitted_singleton |\n", + "+---------------+----------------+----------------------------+\n", + "| int32 | bool | bool |\n", + "+---------------+----------------+----------------------------+\n", + "| 1013 | False | NA |\n", + "| 50 | True | False |\n", + "| 52 | True | False |\n", + "| 54 | True | False |\n", + "| 77027 | False | NA |\n", + "+---------------+----------------+----------------------------+\n", + "\n", + "+------------------------+-----------+------------+------------------+\n", + "| info.sibling_singleton | info.omni | info.mills | info.monoallelic |\n", + "+------------------------+-----------+------------+------------------+\n", + "| bool | bool | bool | bool |\n", + "+------------------------+-----------+------------+------------------+\n", + "| NA | False | False | False |\n", + "| False | False | False | False |\n", + "| False | False | False | False |\n", + "| False | False | False | False |\n", + "| NA | False | False | False |\n", + "+------------------------+-----------+------------+------------------+\n", + "\n", + "+---------------+----------------+-----------------------+\n", + "| info.only_het | info.AS_VQSLOD | info.inbreeding_coeff |\n", + "+---------------+----------------+-----------------------+\n", + "| bool | float64 | float64 |\n", + "+---------------+----------------+-----------------------+\n", + "| False | 7.50e+00 | -1.03e-05 |\n", + "| False | 5.00e+00 | -6.84e-07 |\n", + "| False | 5.73e+00 | -6.84e-07 |\n", + "| False | 2.35e+00 | -6.84e-07 |\n", + "| False | 8.87e+00 | 6.55e-03 |\n", + "+---------------+----------------+-----------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| info.vrs.VRS_Allele_IDs |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [\"ga4gh:VA.QVbOetW6APM1_3jfGLLwArt4GfwgT6jE\",\"ga4gh:VA.OXPDvbuulFZ9CSk4Xt... |\n", + "| [\"ga4gh:VA.QVbOetW6APM1_3jfGLLwArt4GfwgT6jE\",\"ga4gh:VA.4qhkDG1qrfqiD2TeOA... |\n", + "| [\"ga4gh:VA.uv4czuJ2nBK7lcR9wkK2XxHxMSui2-ME\",\"ga4gh:VA.bA0gzyCzudiyDon8QV... |\n", + "| [\"ga4gh:VA.euCgAx3O0dYWO86rUZqEKUoRwnhnhr-k\",\"ga4gh:VA.XQ_C7TKjlSKQw_ABwx... |\n", + "| [\"ga4gh:VA.8tDWBt70tPv5g5-MDqwnSl1-pElrIl1E\",\"ga4gh:VA.f3fUPUzazutlUq0Gul... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+-----------------------+-----------------------+---------------------+\n", + "| info.vrs.VRS_Starts | info.vrs.VRS_Ends | info.vrs.VRS_States |\n", + "+-----------------------+-----------------------+---------------------+\n", + "| array | array | array |\n", + "+-----------------------+-----------------------+---------------------+\n", + "| [113410735,113410735] | [113410736,113410736] | [\"G\",\"A\"] |\n", + "| [113410735,113410735] | [113410736,113410736] | [\"G\",\"T\"] |\n", + "| [113410738,113410738] | [113410739,113410739] | [\"G\",\"A\"] |\n", + "| [113410750,113410750] | [113410751,113410751] | [\"G\",\"A\"] |\n", + "| [113410753,113410753] | [113410754,113410754] | [\"C\",\"T\"] |\n", + "+-----------------------+-----------------------+---------------------+\n", + "\n", + "+-------------------+-----------+--------+--------------------------------+\n", + "| vep.allele_string | vep.end | vep.id | vep.input |\n", + "+-------------------+-----------+--------+--------------------------------+\n", + "| str | int32 | str | str |\n", + "+-------------------+-----------+--------+--------------------------------+\n", + "| \"G/A\" | 113410736 | \".\" | \"chr11\t113410736\t.\tG\tA\t.\t.\tGT\" |\n", + "| \"G/T\" | 113410736 | \".\" | \"chr11\t113410736\t.\tG\tT\t.\t.\tGT\" |\n", + "| \"G/A\" | 113410739 | \".\" | \"chr11\t113410739\t.\tG\tA\t.\t.\tGT\" |\n", + "| \"G/A\" | 113410751 | \".\" | \"chr11\t113410751\t.\tG\tA\t.\t.\tGT\" |\n", + "| \"C/T\" | 113410754 | \".\" | \"chr11\t113410754\t.\tC\tT\t.\t.\tGT\" |\n", + "+-------------------+-----------+--------+--------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| vep.intergenic_consequences |\n", + "+------------------------------------------------------------------------------+\n", + "| array, impact: st... |\n", + "+------------------------------------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+-----------------------------+\n", + "| vep.most_severe_consequence |\n", + "+-----------------------------+\n", + "| str |\n", + "+-----------------------------+\n", + "| \"synonymous_variant\" |\n", + "| \"synonymous_variant\" |\n", + "| \"synonymous_variant\" |\n", + "| \"synonymous_variant\" |\n", + "| \"synonymous_variant\" |\n", + "+-----------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| vep.motif_feature_consequences |\n", + "+------------------------------------------------------------------------------+\n", + "| array, high_inf_p... |\n", + "+------------------------------------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| vep.regulatory_feature_consequences |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+--------------------------------------------------------+\n", + "| histograms.qual_hists.gq_hist_all.bin_freq |\n", + "+--------------------------------------------------------+\n", + "| array |\n", + "+--------------------------------------------------------+\n", + "| [0,0,0,0,8,0,71,0,314313,0,37,0,416496,0,0,0,0,0,0,16] |\n", + "| [0,0,0,0,8,0,71,0,314313,0,37,0,416496,0,0,0,0,0,0,16] |\n", + "| [0,0,0,0,9,0,68,0,314320,0,24,0,416519,0,0,0,0,0,0,1] |\n", + "| [0,0,0,0,1,0,28,0,314363,0,2,0,416552,0,0,0,0,0,0,1] |\n", + "| [0,0,0,0,3,0,24,0,314081,0,0,0,416264,0,0,0,0,0,0,574] |\n", + "+--------------------------------------------------------+\n", + "\n", + "+---------------------------------------------+\n", + "| histograms.qual_hists.gq_hist_all.n_smaller |\n", + "+---------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+---------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.qual_hists.gq_hist_all.n_larger |\n", + "+--------------------------------------------+\n", + "| int64 |\n", + "+--------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+--------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.qual_hists.dp_hist_all.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.qual_hists.dp_hist_all.bin_freq |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0,0,61,328,11304,107355,345020,189098,36329,5607,2382,2757,3074,2931,295... |\n", + "| [0,0,61,328,11304,107355,345020,189098,36329,5607,2382,2757,3074,2931,295... |\n", + "| [0,0,55,309,11275,107353,345050,189133,36332,5605,2379,2755,3073,2932,295... |\n", + "| [0,0,18,272,11233,107401,345096,189157,36337,5604,2379,2755,3073,2932,295... |\n", + "| [0,0,16,266,11219,107342,344994,189134,36335,5603,2386,2754,3071,2938,297... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+---------------------------------------------+\n", + "| histograms.qual_hists.dp_hist_all.n_smaller |\n", + "+---------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+---------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.qual_hists.dp_hist_all.n_larger |\n", + "+--------------------------------------------+\n", + "| int64 |\n", + "+--------------------------------------------+\n", + "| 7685 |\n", + "| 7685 |\n", + "| 7683 |\n", + "| 7683 |\n", + "| 7737 |\n", + "+--------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.qual_hists.gq_hist_alt.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+---------------------------------------------+\n", + "| histograms.qual_hists.gq_hist_alt.bin_freq |\n", + "+---------------------------------------------+\n", + "| array |\n", + "+---------------------------------------------+\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,15] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,574] |\n", + "+---------------------------------------------+\n", + "\n", + "+---------------------------------------------+\n", + "| histograms.qual_hists.gq_hist_alt.n_smaller |\n", + "+---------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+---------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.qual_hists.gq_hist_alt.n_larger |\n", + "+--------------------------------------------+\n", + "| int64 |\n", + "+--------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+--------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.qual_hists.dp_hist_alt.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+--------------------------------------------------------+\n", + "| histograms.qual_hists.dp_hist_alt.bin_freq |\n", + "+--------------------------------------------------------+\n", + "| array |\n", + "+--------------------------------------------------------+\n", + "| [0,0,0,0,0,0,0,1,3,1,2,3,1,0,1,0,1,1,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,1,1,4,13,22,21,26,25,30,25,35,40,41,25,31,27] |\n", + "+--------------------------------------------------------+\n", + "\n", + "+---------------------------------------------+\n", + "| histograms.qual_hists.dp_hist_alt.n_smaller |\n", + "+---------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+---------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.qual_hists.dp_hist_alt.n_larger |\n", + "+--------------------------------------------+\n", + "| int64 |\n", + "+--------------------------------------------+\n", + "| 1 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 207 |\n", + "+--------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.qual_hists.ab_hist_alt.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+-----------------------------------------------------+\n", + "| histograms.qual_hists.ab_hist_alt.bin_freq |\n", + "+-----------------------------------------------------+\n", + "| array |\n", + "+-----------------------------------------------------+\n", + "| [0,0,0,0,1,0,0,1,1,11,1,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0] |\n", + "| [0,0,0,0,3,1,13,43,101,196,147,52,11,5,0,0,0,0,0,0] |\n", + "+-----------------------------------------------------+\n", + "\n", + "+---------------------------------------------+\n", + "| histograms.qual_hists.ab_hist_alt.n_smaller |\n", + "+---------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+---------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.qual_hists.ab_hist_alt.n_larger |\n", + "+--------------------------------------------+\n", + "| int64 |\n", + "+--------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+--------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.raw_qual_hists.gq_hist_all.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+--------------------------------------------------------+\n", + "| histograms.raw_qual_hists.gq_hist_all.bin_freq |\n", + "+--------------------------------------------------------+\n", + "| array |\n", + "+--------------------------------------------------------+\n", + "| [5,0,0,0,9,0,71,0,314313,0,37,0,416496,0,0,0,0,0,0,16] |\n", + "| [5,0,0,0,9,0,71,0,314313,0,37,0,416496,0,0,0,0,0,0,16] |\n", + "| [5,0,0,0,10,0,68,0,314320,0,24,0,416519,0,0,0,0,0,0,1] |\n", + "| [0,0,0,0,1,0,28,0,314363,0,2,0,416552,0,0,0,0,0,0,1] |\n", + "| [1,0,0,0,3,0,24,0,314081,0,0,0,416264,0,0,0,0,0,0,574] |\n", + "+--------------------------------------------------------+\n", + "\n", + "+-------------------------------------------------+\n", + "| histograms.raw_qual_hists.gq_hist_all.n_smaller |\n", + "+-------------------------------------------------+\n", + "| int64 |\n", + "+-------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+-------------------------------------------------+\n", + "\n", + "+------------------------------------------------+\n", + "| histograms.raw_qual_hists.gq_hist_all.n_larger |\n", + "+------------------------------------------------+\n", + "| int64 |\n", + "+------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.raw_qual_hists.dp_hist_all.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.raw_qual_hists.dp_hist_all.bin_freq |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0,1,62,330,11305,107356,345020,189098,36329,5607,2382,2757,3074,2931,295... |\n", + "| [0,1,62,330,11305,107356,345020,189098,36329,5607,2382,2757,3074,2931,295... |\n", + "| [0,1,56,312,11275,107353,345051,189133,36332,5605,2379,2755,3073,2932,295... |\n", + "| [0,0,18,272,11233,107401,345096,189157,36337,5604,2379,2755,3073,2932,295... |\n", + "| [0,0,16,267,11219,107342,344994,189134,36335,5603,2386,2754,3071,2938,297... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+-------------------------------------------------+\n", + "| histograms.raw_qual_hists.dp_hist_all.n_smaller |\n", + "+-------------------------------------------------+\n", + "| int64 |\n", + "+-------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+-------------------------------------------------+\n", + "\n", + "+------------------------------------------------+\n", + "| histograms.raw_qual_hists.dp_hist_all.n_larger |\n", + "+------------------------------------------------+\n", + "| int64 |\n", + "+------------------------------------------------+\n", + "| 7685 |\n", + "| 7685 |\n", + "| 7683 |\n", + "| 7683 |\n", + "| 7737 |\n", + "+------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.raw_qual_hists.gq_hist_alt.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+------------------------------------------------+\n", + "| histograms.raw_qual_hists.gq_hist_alt.bin_freq |\n", + "+------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------+\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,15] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,574] |\n", + "+------------------------------------------------+\n", + "\n", + "+-------------------------------------------------+\n", + "| histograms.raw_qual_hists.gq_hist_alt.n_smaller |\n", + "+-------------------------------------------------+\n", + "| int64 |\n", + "+-------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+-------------------------------------------------+\n", + "\n", + "+------------------------------------------------+\n", + "| histograms.raw_qual_hists.gq_hist_alt.n_larger |\n", + "+------------------------------------------------+\n", + "| int64 |\n", + "+------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.raw_qual_hists.dp_hist_alt.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+--------------------------------------------------------+\n", + "| histograms.raw_qual_hists.dp_hist_alt.bin_freq |\n", + "+--------------------------------------------------------+\n", + "| array |\n", + "+--------------------------------------------------------+\n", + "| [0,0,0,0,0,0,0,1,3,1,2,3,1,0,1,0,1,1,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,1,1,4,13,22,21,26,25,30,25,35,40,41,25,31,27] |\n", + "+--------------------------------------------------------+\n", + "\n", + "+-------------------------------------------------+\n", + "| histograms.raw_qual_hists.dp_hist_alt.n_smaller |\n", + "+-------------------------------------------------+\n", + "| int64 |\n", + "+-------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+-------------------------------------------------+\n", + "\n", + "+------------------------------------------------+\n", + "| histograms.raw_qual_hists.dp_hist_alt.n_larger |\n", + "+------------------------------------------------+\n", + "| int64 |\n", + "+------------------------------------------------+\n", + "| 1 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 207 |\n", + "+------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.raw_qual_hists.ab_hist_alt.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+-----------------------------------------------------+\n", + "| histograms.raw_qual_hists.ab_hist_alt.bin_freq |\n", + "+-----------------------------------------------------+\n", + "| array |\n", + "+-----------------------------------------------------+\n", + "| [0,0,0,0,1,0,0,1,1,11,1,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0] |\n", + "| [0,0,0,0,3,1,13,43,101,196,147,52,11,5,0,0,0,0,0,0] |\n", + "+-----------------------------------------------------+\n", + "\n", + "+-------------------------------------------------+\n", + "| histograms.raw_qual_hists.ab_hist_alt.n_smaller |\n", + "+-------------------------------------------------+\n", + "| int64 |\n", + "+-------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+-------------------------------------------------+\n", + "\n", + "+------------------------------------------------+\n", + "| histograms.raw_qual_hists.ab_hist_alt.n_larger |\n", + "+------------------------------------------------+\n", + "| int64 |\n", + "+------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.age_hists.age_hist_het.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.age_hists.age_hist_het.bin_freq |\n", + "+--------------------------------------------+\n", + "| array |\n", + "+--------------------------------------------+\n", + "| [0,0,1,2,4,2,4,1,0,0] |\n", + "| [0,0,0,0,0,1,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0] |\n", + "| [3,2,30,42,65,52,79,55,7,3] |\n", + "+--------------------------------------------+\n", + "\n", + "+---------------------------------------------+\n", + "| histograms.age_hists.age_hist_het.n_smaller |\n", + "+---------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 15 |\n", + "+---------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.age_hists.age_hist_het.n_larger |\n", + "+--------------------------------------------+\n", + "| int64 |\n", + "+--------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 3 |\n", + "+--------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.age_hists.age_hist_hom.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.age_hists.age_hist_hom.bin_freq |\n", + "+--------------------------------------------+\n", + "| array |\n", + "+--------------------------------------------+\n", + "| [0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,1,0,0,0,1,0] |\n", + "+--------------------------------------------+\n", + "\n", + "+---------------------------------------------+\n", + "| histograms.age_hists.age_hist_hom.n_smaller |\n", + "+---------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+---------------------------------------------+\n", + "\n", + "+--------------------------------------------+---------------------------------+\n", + "| histograms.age_hists.age_hist_hom.n_larger | in_silico_predictors.cadd.phred |\n", + "+--------------------------------------------+---------------------------------+\n", + "| int64 | float32 |\n", + "+--------------------------------------------+---------------------------------+\n", + "| 0 | 3.44e+00 |\n", + "| 0 | 2.96e+00 |\n", + "| 0 | 1.03e+01 |\n", + "| 0 | 1.20e+01 |\n", + "| 0 | 9.48e+00 |\n", + "+--------------------------------------------+---------------------------------+\n", + "\n", + "+-------------------------------------+--------------------------------+\n", + "| in_silico_predictors.cadd.raw_score | in_silico_predictors.revel_max |\n", + "+-------------------------------------+--------------------------------+\n", + "| float32 | float64 |\n", + "+-------------------------------------+--------------------------------+\n", + "| 2.28e-01 | NA |\n", + "| 1.86e-01 | NA |\n", + "| 8.89e-01 | NA |\n", + "| 1.03e+00 | NA |\n", + "| 8.09e-01 | NA |\n", + "+-------------------------------------+--------------------------------+\n", + "\n", + "+--------------------------------------+\n", + "| in_silico_predictors.spliceai_ds_max |\n", + "+--------------------------------------+\n", + "| float32 |\n", + "+--------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+--------------------------------------+\n", + "\n", + "+------------------------------------------+-----------------------------+\n", + "| in_silico_predictors.pangolin_largest_ds | in_silico_predictors.phylop |\n", + "+------------------------------------------+-----------------------------+\n", + "| float64 | float64 |\n", + "+------------------------------------------+-----------------------------+\n", + "| 1.00e-02 | -2.55e-01 |\n", + "| 3.00e-02 | -2.55e-01 |\n", + "| 0.00e+00 | 3.26e+00 |\n", + "| 0.00e+00 | 8.67e+00 |\n", + "| 1.00e-02 | 5.82e+00 |\n", + "+------------------------------------------+-----------------------------+\n", + "\n", + "+-------------------------------+-----------------------------------+\n", + "| in_silico_predictors.sift_max | in_silico_predictors.polyphen_max |\n", + "+-------------------------------+-----------------------------------+\n", + "| float64 | float64 |\n", + "+-------------------------------+-----------------------------------+\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "+-------------------------------+-----------------------------------+\n", + "showing top 5 rows" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The total number of synonymous variants passing filters in DRD2 is: 238\n" + ] + } + ], "source": [ "var_ht = filter_by_consequence_category(synonymous=True, ht=drd2_ht)\n", "var_ht.show(5)\n", @@ -636,10 +4896,1079 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 9, "id": "4141ccb3", "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
histograms
grpmax
fafmax
info
qual_hists
raw_qual_hists
age_hists
in_silico_predictors
gnomad
non_ukb
gnomad
non_ukb
vrs
vep
vqsr_results
region_flags
allele_info
gq_hist_all
dp_hist_all
gq_hist_alt
dp_hist_alt
ab_hist_alt
gq_hist_all
dp_hist_all
gq_hist_alt
dp_hist_alt
ab_hist_alt
age_hist_het
age_hist_hom
cadd
locus
alleles
freq
AC
AF
AN
homozygote_count
gen_anc
AC
AF
AN
homozygote_count
gen_anc
faf
faf95_max
faf95_max_gen_anc
faf99_max
faf99_max_gen_anc
faf95_max
faf95_max_gen_anc
faf99_max
faf99_max_gen_anc
a_index
was_split
rsid
filters
FS
MQ
MQRankSum
QUALapprox
QD
ReadPosRankSum
SB
SOR
VarDP
AS_FS
AS_MQ
AS_MQRankSum
AS_pab_max
AS_QUALapprox
AS_QD
AS_ReadPosRankSum
AS_SB_TABLE
AS_SOR
AS_VarDP
singleton
transmitted_singleton
sibling_singleton
omni
mills
monoallelic
only_het
AS_VQSLOD
inbreeding_coeff
VRS_Allele_IDs
VRS_Starts
VRS_Ends
VRS_States
allele_string
end
id
input
intergenic_consequences
most_severe_consequence
motif_feature_consequences
regulatory_feature_consequences
seq_region_name
start
strand
transcript_consequences
variant_class
AS_VQSLOD
AS_culprit
positive_train_site
negative_train_site
non_par
lcr
segdup
fail_interval_qc
outside_ukb_capture_region
outside_broad_capture_region
variant_type
n_alt_alleles
has_star
allele_type
was_mixed
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
bin_edges
bin_freq
n_smaller
n_larger
phred
raw_score
revel_max
spliceai_ds_max
pangolin_largest_ds
phylop
sift_max
polyphen_max
locus<GRCh38>array<str>array<struct{AC: int32, AF: float64, AN: int32, homozygote_count: int64}>int32float64int32int64strint32float64int32int64strarray<struct{faf95: float64, faf99: float64}>float64strfloat64strfloat64strfloat64strint32boolset<str>set<str>float64float64float64int64float64float64array<int32>float64int32float64float64float64float64int64float64float64array<int32>float64int32boolboolboolboolboolboolboolfloat64float64array<str>array<int32>array<int32>array<str>strint32strstrarray<struct{allele_num: int32, consequence_terms: array<str>, impact: str, variant_allele: str}>strarray<struct{allele_num: int32, consequence_terms: array<str>, high_inf_pos: str, impact: str, motif_feature_id: str, motif_name: str, motif_pos: int32, motif_score_change: float64, transcription_factors: array<str>, strand: int32, variant_allele: str}>array<struct{allele_num: int32, biotype: str, consequence_terms: array<str>, impact: str, regulatory_feature_id: str, variant_allele: str}>strint32int32array<struct{allele_num: int32, amino_acids: str, appris: str, biotype: str, canonical: int32, ccds: str, cdna_start: int32, cdna_end: int32, cds_end: int32, cds_start: int32, codons: str, consequence_terms: array<str>, distance: int32, domains: array<struct{db: str, name: str}>, exon: str, flags: str, gene_id: str, gene_pheno: int32, gene_symbol: str, gene_symbol_source: str, hgnc_id: str, hgvsc: str, hgvsp: str, hgvs_offset: int32, impact: str, intron: str, lof: str, lof_flags: str, lof_filter: str, lof_info: str, mane_select: str, mane_plus_clinical: str, mirna: array<str>, protein_end: int32, protein_start: int32, protein_id: str, source: str, strand: int32, transcript_id: str, tsl: int32, uniprot_isoform: array<str>, variant_allele: str}>strfloat64strboolboolboolboolboolboolboolboolstrint32boolstrboolarray<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64array<float64>array<int64>int64int64float32float32float64float32float64float64float64float64
chr11:113410657["C","T"][(18,1.25e-05,1445518,0),(24,1.64e-05,1461322,0),(1,3.02e-05,33096,0),(0,0.00e+00,44684,0),(0,0.00e+00,26010,0),(4,1.01e-04,39606,0),(0,0.00e+00,53166,0),(0,0.00e+00,4742,0),(10,9.10e-06,1098860,0),(1,1.67e-05,59762,0),(2,2.34e-05,85592,0),(12,1.65e-05,725392,0),(6,8.33e-06,720126,0),(1,5.24e-05,19098,0),(0,0.00e+00,13998,0),(0,0.00e+00,25658,0),(0,0.00e+00,19026,0),(0,0.00e+00,12572,0),(0,0.00e+00,13438,0),(4,1.94e-04,20642,0),(0,0.00e+00,18964,0),(0,0.00e+00,27516,0),(0,0.00e+00,25650,0),(0,0.00e+00,1942,0),(0,0.00e+00,2800,0),(6,1.06e-05,564798,0),(4,7.49e-06,534062,0),(1,3.18e-05,31454,0),(0,0.00e+00,28308,0),(0,0.00e+00,21712,0),(2,3.13e-05,63880,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,12,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,162,0),(0,0.00e+00,198,0),(0,0.00e+00,198,0),(0,0.00e+00,200,0),(0,0.00e+00,198,0),(0,0.00e+00,984,0),(0,0.00e+00,1000,0),(0,0.00e+00,994,0),(0,0.00e+00,1000,0),(0,0.00e+00,994,0),(0,0.00e+00,828,0),(0,0.00e+00,996,0),(0,0.00e+00,986,0),(0,0.00e+00,992,0),(0,0.00e+00,994,0),(0,0.00e+00,1976,0),(0,0.00e+00,2000,0),(0,0.00e+00,1984,0),(0,0.00e+00,1998,0),(0,0.00e+00,1992,0),(0,0.00e+00,1656,0),(0,0.00e+00,1988,0),(0,0.00e+00,1984,0),(0,0.00e+00,1976,0),(0,0.00e+00,1990,0),(0,0.00e+00,3952,0),(0,0.00e+00,4000,0),(0,0.00e+00,3978,0),(0,0.00e+00,3986,0),(0,0.00e+00,3984,0),(0,0.00e+00,3280,0),(0,0.00e+00,3970,0),(0,0.00e+00,3964,0),(0,0.00e+00,3962,0),(0,0.00e+00,3966,0),(0,0.00e+00,5692,0),(0,0.00e+00,5766,0),(0,0.00e+00,5732,0),(0,0.00e+00,5744,0),(0,0.00e+00,5740,0),(0,0.00e+00,4742,0),(0,0.00e+00,5714,0),(0,0.00e+00,5718,0),(0,0.00e+00,5716,0),(0,0.00e+00,5722,0),(0,0.00e+00,9872,0),(0,0.00e+00,9994,0),(0,0.00e+00,9944,0),(1,1.00e-04,9960,0),(0,0.00e+00,9938,0),(0,0.00e+00,9900,0),(0,0.00e+00,9894,0),(0,0.00e+00,9918,0),(0,0.00e+00,9912,0),(0,0.00e+00,19778,0),(0,0.00e+00,19982,0),(0,0.00e+00,19900,0),(1,5.02e-05,19940,0),(0,0.00e+00,19894,0),(0,0.00e+00,19780,0),(0,0.00e+00,19800,0),(0,0.00e+00,19830,0),(0,0.00e+00,19784,0),(0,0.00e+00,25850,0),(0,0.00e+00,26110,0),(0,0.00e+00,26010,0),(3,1.15e-04,26064,0),(0,0.00e+00,26006,0),(0,0.00e+00,25842,0),(0,0.00e+00,25870,0),(0,0.00e+00,25918,0),(0,0.00e+00,25850,0),(1,3.02e-05,33096,0),(0,0.00e+00,33450,0),(4,1.20e-04,33404,0),(0,0.00e+00,33316,0),(0,0.00e+00,33110,0),(0,0.00e+00,33158,0),(0,0.00e+00,33202,0),(0,0.00e+00,33108,0),(0,0.00e+00,39666,0),(4,1.01e-04,39606,0),(0,0.00e+00,39508,0),(0,0.00e+00,39258,0),(0,0.00e+00,39300,0),(1,2.54e-05,39374,0),(0,0.00e+00,39266,0),(0,0.00e+00,39964,0),(0,0.00e+00,39808,0),(0,0.00e+00,39554,0),(0,0.00e+00,39598,0),(1,2.52e-05,39670,0),(0,0.00e+00,39562,0),(0,0.00e+00,44684,0),(0,0.00e+00,44514,0),(0,0.00e+00,44226,0),(0,0.00e+00,44266,0),(1,2.25e-05,44352,0),(0,0.00e+00,44244,0),(0,0.00e+00,53166,0),(0,0.00e+00,52822,0),(1,1.89e-05,52870,0),(1,1.89e-05,52986,0),(0,0.00e+00,52850,0),(0,0.00e+00,59694,0),(1,1.67e-05,59762,0),(1,1.67e-05,59908,0),(0,0.00e+00,59748,0),(0,0.00e+00,85258,0),(2,2.34e-05,85592,0),(0,0.00e+00,85300,0),(0,0.00e+00,98824,0),(0,0.00e+00,98906,0),(1,5.06e-06,197618,0),(1,5.06e-06,197732,0),(4,1.01e-05,395192,0),(4,1.01e-05,395514,0),(7,7.08e-06,988108,0),(11,1.11e-05,988718,0),(10,9.10e-06,1098860,0),(13,1.18e-05,1099436,0),(11,1.76e-05,626724,0),(11,1.75e-05,628782,0),(1,5.67e-05,17648,0),(0,0.00e+00,43726,0),(0,0.00e+00,20972,0),(4,1.11e-04,36050,0),(0,0.00e+00,52892,0),(0,0.00e+00,3150,0),(4,1.14e-05,349876,0),(0,0.00e+00,32960,0),(2,2.88e-05,69450,0),(7,2.45e-05,285192,0),(4,1.17e-05,341532,0),(1,9.74e-05,10264,0),(0,0.00e+00,7384,0),(0,0.00e+00,25030,0),(0,0.00e+00,18696,0),(0,0.00e+00,9834,0),(0,0.00e+00,11138,0),(4,2.19e-04,18284,0),(0,0.00e+00,17766,0),(0,0.00e+00,27268,0),(0,0.00e+00,25624,0),(0,0.00e+00,1368,0),(0,0.00e+00,1782,0),(2,1.23e-05,162102,0),(2,1.07e-05,187774,0),(0,0.00e+00,16698,0),(0,0.00e+00,16262,0),(0,0.00e+00,14344,0),(2,3.63e-05,55106,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,12,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,152,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,998,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,994,0),(0,0.00e+00,764,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,992,0),(0,0.00e+00,1000,0),(0,0.00e+00,1998,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,1998,0),(0,0.00e+00,1992,0),(0,0.00e+00,1552,0),(0,0.00e+00,2000,0),(0,0.00e+00,1998,0),(0,0.00e+00,1986,0),(0,0.00e+00,1994,0),(0,0.00e+00,3988,0),(0,0.00e+00,4000,0),(0,0.00e+00,3998,0),(0,0.00e+00,3996,0),(0,0.00e+00,3984,0),(0,0.00e+00,3034,0),(0,0.00e+00,4000,0),(0,0.00e+00,3996,0),(0,0.00e+00,3976,0),(0,0.00e+00,3992,0),(0,0.00e+00,4136,0),(0,0.00e+00,4148,0),(0,0.00e+00,4146,0),(0,0.00e+00,4144,0),(0,0.00e+00,4130,0),(0,0.00e+00,3150,0),(0,0.00e+00,4148,0),(0,0.00e+00,4142,0),(0,0.00e+00,4124,0),(0,0.00e+00,4140,0),(0,0.00e+00,9974,0),(0,0.00e+00,9998,0),(0,0.00e+00,9994,0),(1,1.00e-04,9990,0),(0,0.00e+00,9938,0),(0,0.00e+00,10000,0),(0,0.00e+00,9966,0),(0,0.00e+00,9932,0),(0,0.00e+00,9974,0),(1,5.67e-05,17648,0),(0,0.00e+00,17688,0),(0,0.00e+00,17682,0),(1,5.66e-05,17680,0),(0,0.00e+00,17598,0),(0,0.00e+00,17684,0),(0,0.00e+00,17634,0),(0,0.00e+00,17590,0),(0,0.00e+00,17642,0),(0,0.00e+00,19994,0),(0,0.00e+00,19988,0),(1,5.00e-05,19986,0),(0,0.00e+00,19894,0),(0,0.00e+00,19986,0),(0,0.00e+00,19926,0),(0,0.00e+00,19888,0),(0,0.00e+00,19942,0),(0,0.00e+00,20976,0),(0,0.00e+00,20972,0),(1,4.77e-05,20970,0),(0,0.00e+00,20874,0),(0,0.00e+00,20970,0),(0,0.00e+00,20906,0),(0,0.00e+00,20866,0),(0,0.00e+00,20924,0),(0,0.00e+00,33088,0),(4,1.21e-04,33082,0),(0,0.00e+00,32938,0),(0,0.00e+00,33078,0),(0,0.00e+00,32960,0),(1,3.04e-05,32912,0),(0,0.00e+00,33000,0),(0,0.00e+00,36060,0),(4,1.11e-04,36050,0),(0,0.00e+00,35892,0),(0,0.00e+00,36046,0),(1,2.79e-05,35868,0),(0,0.00e+00,35962,0),(0,0.00e+00,39988,0),(0,0.00e+00,39810,0),(0,0.00e+00,39974,0),(1,2.51e-05,39776,0),(0,0.00e+00,39878,0),(0,0.00e+00,43726,0),(0,0.00e+00,43536,0),(0,0.00e+00,43712,0),(1,2.30e-05,43498,0),(0,0.00e+00,43608,0),(0,0.00e+00,52892,0),(0,0.00e+00,53106,0),(2,3.78e-05,52854,0),(0,0.00e+00,52980,0),(0,0.00e+00,69750,0),(2,2.88e-05,69450,0),(0,0.00e+00,69582,0),(1,1.00e-05,99946,0),(0,0.00e+00,99660,0),(3,1.50e-05,199866,0),(3,1.50e-05,199362,0),(4,1.14e-05,349876,0),(5,1.43e-05,348968,0),(6,1.50e-05,398694,0)]41.01e-04396060"eas"41.11e-04360500"eas"[(7.78e-06,6.42e-06),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(3.35e-05,1.99e-05),(0.00e+00,0.00e+00),(4.60e-06,3.36e-06),(3.88e-06,1.45e-06),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,(9.41e-06,6.88e-06),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(3.78e-05,2.24e-05),(0.00e+00,0.00e+00),(3.67e-06,1.80e-06),(4.78e-06,1.79e-06),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]3.35e-05"eas"1.99e-05"eas"3.78e-05"eas"2.24e-05"eas"3True{"rs200559334"}{}0.00e+006.00e+010.00e+00129921.27e+010.00e+00[543,53,386,37]7.04e-0110194.82e-166.00e+010.00e+001.00e+00128911.32e+01-3.90e-02[543,53,379,36]7.13e-01976FalseNANAFalseFalseFalseFalse9.14e+00-1.64e-05["ga4gh:VA.xwHxL6yO3I874HqhfGar1ZIaOp66ifsx","ga4gh:VA.eglRJIN5-izMH1peMx_9JvpakP8TCBXX"][113410656,113410656][113410657,113410657]["C","T"]"C/T"113410657".""chr11\t113410657\t.\tC\tT\t.\t.\tGT"NA"3_prime_UTR_variant"NANA"chr11"1134106571[(1,NA,NA,"protein_coding",NA,"CCDS8362.1",1391,1391,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000346454.7:c.*70G>A",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"ENSP00000278597","Ensembl",-1,"ENST00000346454",1,["P14416-2"],"T"),(1,NA,"P2","protein_coding",1,"CCDS8361.1",1756,1756,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"8/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000362072.8:c.*70G>A",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,"NM_000795.4",NA,NA,NA,NA,"ENSP00000354859","Ensembl",-1,"ENST00000362072",1,["P14416-1"],"T"),(1,NA,NA,"processed_transcript",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],3718,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000535984",3,NA,"T"),(1,NA,"A1","protein_coding",NA,NA,1408,1408,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"8/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000538967.5:c.*70G>A",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"ENSP00000438215","Ensembl",-1,"ENST00000538967",5,["P14416-3"],"T"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],4637,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000539420",3,NA,"T"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],3207,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000540600",1,NA,"T"),(1,NA,"P2","protein_coding",NA,"CCDS8361.1",1723,1723,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000542968.5:c.*70G>A",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"ENSP00000442172","Ensembl",-1,"ENST00000542968",1,["P14416-1"],"T"),(1,NA,"A1","protein_coding",NA,NA,1432,1432,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000544518.5:c.*70G>A",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"ENSP00000441068","Ensembl",-1,"ENST00000544518",1,NA,"T"),(1,NA,NA,"lncRNA",1,NA,NA,NA,NA,NA,NA,["intron_variant","non_coding_transcript_variant"],NA,NA,NA,NA,"ENSG00000256757",NA,NA,NA,NA,"ENST00000546284.1:n.245-890C>T",NA,NA,"MODIFIER","2/3",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",1,"ENST00000546284",3,NA,"T"),(1,NA,NA,"protein_coding",1,NA,1756,1756,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"8/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_000795.4:c.*70G>A",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,"ENST00000362072.8",NA,NA,NA,NA,"NP_000786.1","RefSeq",-1,"NM_000795.4",NA,NA,"T"),(1,NA,NA,"protein_coding",NA,NA,1669,1669,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"7/7",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_016574.4:c.*70G>A",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"NP_057658.2","RefSeq",-1,"NM_016574.4",NA,NA,"T"),(1,NA,NA,"protein_coding",NA,NA,1484,1484,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"8/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","XM_017017296.2:c.*70G>A",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"XP_016872785.1","RefSeq",-1,"XM_017017296.2",NA,NA,"T")]"SNV"9.14e+00"AS_MQ"FalseFalseFalseFalseFalseNATrueFalse"multi-snv"3False"snv"False[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,4430,0,32721,0,357851,0,60423,0,267316,0,0,0,0,0,0,18]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,29987,74977,120278,300405,170342,18935,3117,1021,684,644,577,507,353,258,173,112,77,60]0252[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,18]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,2,3,3,2,1,0,1,1,0,1,0,0,1,1,0,0,1]01[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,2,0,4,4,4,3,1,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][979,2,2487,1,8860,1,32722,0,357851,0,60423,0,267317,0,0,0,0,0,0,18]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][415,5663,30415,76214,120310,300505,170348,18947,3122,1023,686,644,577,507,353,258,173,112,77,60]0252[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][1,2,0,1,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,18]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,1,3,6,4,2,1,0,1,1,0,1,0,0,1,1,0,0,1]01[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,1,3,2,0,0,2,0,4,4,4,3,1,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][1,1,0,2,5,2,1,0,0,0]20[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]003.61e+002.42e-01NA0.00e+001.20e-01-4.68e-01NANA
chr11:113410658["G","A"][(23,1.59e-05,1448166,0),(23,1.57e-05,1461456,0),(0,0.00e+00,33180,0),(0,0.00e+00,44684,0),(1,3.84e-05,26038,0),(3,7.57e-05,39630,0),(0,0.00e+00,53152,0),(0,0.00e+00,4770,0),(17,1.54e-05,1101160,0),(1,1.67e-05,59860,0),(1,1.17e-05,85692,0),(14,1.93e-05,726896,0),(9,1.25e-05,721270,0),(0,0.00e+00,19144,0),(0,0.00e+00,14036,0),(0,0.00e+00,25658,0),(0,0.00e+00,19026,0),(1,7.95e-05,12586,0),(0,0.00e+00,13452,0),(2,9.68e-05,20662,0),(1,5.27e-05,18968,0),(0,0.00e+00,27504,0),(0,0.00e+00,25648,0),(0,0.00e+00,1952,0),(0,0.00e+00,2818,0),(10,1.77e-05,566134,0),(7,1.31e-05,535026,0),(0,0.00e+00,31512,0),(1,3.53e-05,28348,0),(1,4.60e-05,21744,0),(0,0.00e+00,63948,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,12,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,162,0),(0,0.00e+00,198,0),(0,0.00e+00,198,0),(0,0.00e+00,200,0),(0,0.00e+00,198,0),(0,0.00e+00,988,0),(0,0.00e+00,1000,0),(0,0.00e+00,996,0),(0,0.00e+00,1000,0),(0,0.00e+00,992,0),(0,0.00e+00,834,0),(0,0.00e+00,994,0),(0,0.00e+00,986,0),(0,0.00e+00,992,0),(0,0.00e+00,992,0),(0,0.00e+00,1980,0),(0,0.00e+00,1998,0),(0,0.00e+00,1988,0),(0,0.00e+00,1998,0),(0,0.00e+00,1990,0),(0,0.00e+00,1672,0),(0,0.00e+00,1986,0),(0,0.00e+00,1982,0),(0,0.00e+00,1980,0),(0,0.00e+00,1988,0),(0,0.00e+00,3964,0),(0,0.00e+00,3998,0),(0,0.00e+00,3980,0),(0,0.00e+00,3994,0),(0,0.00e+00,3980,0),(0,0.00e+00,3304,0),(0,0.00e+00,3972,0),(0,0.00e+00,3964,0),(0,0.00e+00,3972,0),(0,0.00e+00,3964,0),(0,0.00e+00,5712,0),(0,0.00e+00,5766,0),(0,0.00e+00,5738,0),(0,0.00e+00,5752,0),(0,0.00e+00,5740,0),(0,0.00e+00,4770,0),(0,0.00e+00,5718,0),(0,0.00e+00,5720,0),(0,0.00e+00,5728,0),(0,0.00e+00,5724,0),(0,0.00e+00,9908,0),(0,0.00e+00,9994,0),(0,0.00e+00,9950,0),(1,1.00e-04,9972,0),(0,0.00e+00,9942,0),(0,0.00e+00,9912,0),(0,0.00e+00,9904,0),(0,0.00e+00,9932,0),(0,0.00e+00,9920,0),(0,0.00e+00,19832,0),(0,0.00e+00,19980,0),(1,5.02e-05,19918,0),(2,1.00e-04,19956,0),(0,0.00e+00,19896,0),(1,5.05e-05,19818,0),(0,0.00e+00,19830,0),(0,0.00e+00,19858,0),(0,0.00e+00,19820,0),(0,0.00e+00,25916,0),(0,0.00e+00,26110,0),(1,3.84e-05,26038,0),(3,1.15e-04,26082,0),(0,0.00e+00,25998,0),(1,3.86e-05,25884,0),(0,0.00e+00,25910,0),(0,0.00e+00,25962,0),(1,3.86e-05,25892,0),(0,0.00e+00,33180,0),(0,0.00e+00,33452,0),(3,8.98e-05,33420,0),(0,0.00e+00,33304,0),(1,3.02e-05,33160,0),(0,0.00e+00,33206,0),(0,0.00e+00,33254,0),(1,3.02e-05,33158,0),(0,0.00e+00,39670,0),(3,7.57e-05,39630,0),(0,0.00e+00,39492,0),(1,2.54e-05,39322,0),(0,0.00e+00,39360,0),(1,2.54e-05,39426,0),(1,2.54e-05,39326,0),(0,0.00e+00,39968,0),(0,0.00e+00,39792,0),(1,2.52e-05,39622,0),(0,0.00e+00,39658,0),(1,2.52e-05,39722,0),(1,2.52e-05,39620,0),(0,0.00e+00,44684,0),(0,0.00e+00,44492,0),(1,2.26e-05,44294,0),(0,0.00e+00,44340,0),(1,2.25e-05,44416,0),(1,2.26e-05,44306,0),(0,0.00e+00,53152,0),(1,1.89e-05,52914,0),(0,0.00e+00,52958,0),(1,1.88e-05,53060,0),(1,1.89e-05,52926,0),(1,1.67e-05,59796,0),(1,1.67e-05,59860,0),(1,1.67e-05,59994,0),(1,1.67e-05,59832,0),(1,1.17e-05,85402,0),(1,1.17e-05,85692,0),(1,1.17e-05,85434,0),(2,2.02e-05,99006,0),(1,1.01e-05,99072,0),(4,2.02e-05,198028,0),(4,2.02e-05,198104,0),(9,2.27e-05,396076,0),(5,1.26e-05,396306,0),(15,1.51e-05,990236,0),(15,1.51e-05,990630,0),(17,1.54e-05,1101160,0),(19,1.72e-05,1101514,0),(14,2.23e-05,626744,0),(14,2.23e-05,628782,0),(0,0.00e+00,17650,0),(0,0.00e+00,43720,0),(1,4.77e-05,20968,0),(1,2.77e-05,36050,0),(0,0.00e+00,52878,0),(0,0.00e+00,3172,0),(10,2.86e-05,349848,0),(1,3.03e-05,32968,0),(1,1.44e-05,69490,0),(8,2.81e-05,285194,0),(6,1.76e-05,341550,0),(0,0.00e+00,10264,0),(0,0.00e+00,7386,0),(0,0.00e+00,25026,0),(0,0.00e+00,18694,0),(1,1.02e-04,9832,0),(0,0.00e+00,11136,0),(0,0.00e+00,18284,0),(1,5.63e-05,17766,0),(0,0.00e+00,27256,0),(0,0.00e+00,25622,0),(0,0.00e+00,1376,0),(0,0.00e+00,1796,0),(6,3.70e-05,162104,0),(4,2.13e-05,187744,0),(0,0.00e+00,16698,0),(1,6.15e-05,16270,0),(1,6.97e-05,14354,0),(0,0.00e+00,55136,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,12,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,152,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,998,0),(0,0.00e+00,1000,0),(0,0.00e+00,998,0),(0,0.00e+00,1000,0),(0,0.00e+00,992,0),(0,0.00e+00,766,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,992,0),(0,0.00e+00,1000,0),(0,0.00e+00,1998,0),(0,0.00e+00,1998,0),(0,0.00e+00,1996,0),(0,0.00e+00,1998,0),(0,0.00e+00,1990,0),(0,0.00e+00,1568,0),(0,0.00e+00,2000,0),(0,0.00e+00,1998,0),(0,0.00e+00,1988,0),(0,0.00e+00,1994,0),(0,0.00e+00,3986,0),(0,0.00e+00,3998,0),(0,0.00e+00,3994,0),(0,0.00e+00,3996,0),(0,0.00e+00,3980,0),(0,0.00e+00,3054,0),(0,0.00e+00,4000,0),(0,0.00e+00,3996,0),(0,0.00e+00,3982,0),(0,0.00e+00,3992,0),(0,0.00e+00,4134,0),(0,0.00e+00,4146,0),(0,0.00e+00,4142,0),(0,0.00e+00,4144,0),(0,0.00e+00,4126,0),(0,0.00e+00,3172,0),(0,0.00e+00,4148,0),(0,0.00e+00,4142,0),(0,0.00e+00,4130,0),(0,0.00e+00,4140,0),(0,0.00e+00,9972,0),(0,0.00e+00,9996,0),(0,0.00e+00,9990,0),(0,0.00e+00,9990,0),(0,0.00e+00,9944,0),(0,0.00e+00,9998,0),(0,0.00e+00,9968,0),(0,0.00e+00,9946,0),(0,0.00e+00,9974,0),(0,0.00e+00,17650,0),(0,0.00e+00,17686,0),(1,5.66e-05,17680,0),(1,5.66e-05,17678,0),(0,0.00e+00,17600,0),(0,0.00e+00,17686,0),(0,0.00e+00,17636,0),(0,0.00e+00,17610,0),(0,0.00e+00,17638,0),(0,0.00e+00,19990,0),(1,5.00e-05,19984,0),(1,5.00e-05,19984,0),(0,0.00e+00,19898,0),(0,0.00e+00,19986,0),(0,0.00e+00,19930,0),(0,0.00e+00,19912,0),(0,0.00e+00,19940,0),(0,0.00e+00,20970,0),(1,4.77e-05,20968,0),(1,4.77e-05,20968,0),(0,0.00e+00,20880,0),(0,0.00e+00,20970,0),(0,0.00e+00,20908,0),(0,0.00e+00,20890,0),(0,0.00e+00,20922,0),(0,0.00e+00,33082,0),(1,3.02e-05,33080,0),(0,0.00e+00,32926,0),(0,0.00e+00,33078,0),(1,3.03e-05,32968,0),(1,3.04e-05,32938,0),(0,0.00e+00,33000,0),(0,0.00e+00,36054,0),(1,2.77e-05,36050,0),(0,0.00e+00,35882,0),(0,0.00e+00,36048,0),(1,2.79e-05,35896,0),(0,0.00e+00,35960,0),(0,0.00e+00,39982,0),(0,0.00e+00,39794,0),(0,0.00e+00,39976,0),(1,2.51e-05,39804,0),(0,0.00e+00,39878,0),(0,0.00e+00,43720,0),(0,0.00e+00,43514,0),(0,0.00e+00,43712,0),(1,2.30e-05,43532,0),(0,0.00e+00,43608,0),(0,0.00e+00,52878,0),(0,0.00e+00,53108,0),(1,1.89e-05,52890,0),(0,0.00e+00,52980,0),(0,0.00e+00,69748,0),(1,1.44e-05,69490,0),(0,0.00e+00,69590,0),(1,1.00e-05,99940,0),(0,0.00e+00,99680,0),(4,2.00e-05,199860,0),(1,5.02e-06,199386,0),(10,2.86e-05,349848,0),(7,2.01e-05,348992,0),(7,1.76e-05,398714,0)]37.57e-05396300"eas"102.86e-053498480"nfe"[(1.06e-05,8.83e-06),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(2.01e-05,1.06e-05),(0.00e+00,0.00e+00),(9.40e-06,7.69e-06),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,(1.30e-05,1.01e-05),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(1.54e-05,1.15e-05),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]2.01e-05"eas"1.06e-05"eas"1.54e-05"nfe"1.15e-05"nfe"1True{"rs201475538"}{}8.65e-016.00e+010.00e+001428051.36e+01-1.80e-02[4798,567,4576,579]6.27e-01105181.55e+006.00e+010.00e+001.00e+00191891.44e+011.34e-01[4798,567,588,57]8.94e-011334FalseNANAFalseFalseFalseFalse6.96e+00-1.57e-05["ga4gh:VA.3n-gYs3xsspnxwI91EMCEDsIcrj9bIqO","ga4gh:VA.9Y9GDmOWCTqMks8dsNx1IJY-TlI1AbW8"][113410657,113410657][113410658,113410658]["G","A"]"G/A"113410658".""chr11\t113410658\t.\tG\tA\t.\t.\tGT"NA"3_prime_UTR_variant"NANA"chr11"1134106581[(1,NA,NA,"protein_coding",NA,"CCDS8362.1",1390,1390,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000346454.7:c.*69C>T",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"ENSP00000278597","Ensembl",-1,"ENST00000346454",1,["P14416-2"],"A"),(1,NA,"P2","protein_coding",1,"CCDS8361.1",1755,1755,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"8/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000362072.8:c.*69C>T",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,"NM_000795.4",NA,NA,NA,NA,"ENSP00000354859","Ensembl",-1,"ENST00000362072",1,["P14416-1"],"A"),(1,NA,NA,"processed_transcript",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],3717,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000535984",3,NA,"A"),(1,NA,"A1","protein_coding",NA,NA,1407,1407,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"8/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000538967.5:c.*69C>T",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"ENSP00000438215","Ensembl",-1,"ENST00000538967",5,["P14416-3"],"A"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],4636,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000539420",3,NA,"A"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],3206,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000540600",1,NA,"A"),(1,NA,"P2","protein_coding",NA,"CCDS8361.1",1722,1722,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000542968.5:c.*69C>T",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"ENSP00000442172","Ensembl",-1,"ENST00000542968",1,["P14416-1"],"A"),(1,NA,"A1","protein_coding",NA,NA,1431,1431,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000544518.5:c.*69C>T",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"ENSP00000441068","Ensembl",-1,"ENST00000544518",1,NA,"A"),(1,NA,NA,"lncRNA",1,NA,NA,NA,NA,NA,NA,["intron_variant","non_coding_transcript_variant"],NA,NA,NA,NA,"ENSG00000256757",NA,NA,NA,NA,"ENST00000546284.1:n.245-889G>A",NA,NA,"MODIFIER","2/3",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",1,"ENST00000546284",3,NA,"A"),(1,NA,NA,"protein_coding",1,NA,1755,1755,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"8/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_000795.4:c.*69C>T",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,"ENST00000362072.8",NA,NA,NA,NA,"NP_000786.1","RefSeq",-1,"NM_000795.4",NA,NA,"A"),(1,NA,NA,"protein_coding",NA,NA,1668,1668,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"7/7",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_016574.4:c.*69C>T",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"NP_057658.2","RefSeq",-1,"NM_016574.4",NA,NA,"A"),(1,NA,NA,"protein_coding",NA,NA,1483,1483,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"8/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","XM_017017296.2:c.*69C>T",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"XP_016872785.1","RefSeq",-1,"XM_017017296.2",NA,NA,"A")]"SNV"6.96e+00"AS_MQ"FalseFalseFalseFalseFalseNATrueFalse"multi-snv"2False"snv"False[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,4183,2,30033,1,354765,0,58262,0,276721,0,0,0,1,0,0,115]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,26988,70993,120130,305542,173013,19471,3177,1036,688,647,582,509,357,257,172,116,78,62]0265[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,21]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,1,2,4,3,4,1,1,0,0,1,0,1,0,0,0,2,0,1]02[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,2,0,1,0,3,3,8,5,0,1,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][886,4,2000,0,7936,2,30033,1,354765,1,58262,0,276721,0,0,0,1,0,0,116]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][362,4790,27388,71922,120182,305624,173020,19481,3184,1039,690,648,582,509,357,257,172,116,78,62]0265[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,21]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,1,2,4,3,4,1,1,0,0,1,0,1,0,0,0,2,0,1]02[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,2,0,1,0,3,3,8,5,0,1,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,1,1,5,3,2,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]002.90e+001.80e-01NA0.00e+005.00e-027.10e-02NANA
chr11:113410658["G","T"][(94,6.49e-05,1448162,0),(105,7.18e-05,1461456,0),(24,7.23e-04,33180,0),(4,8.95e-05,44684,0),(0,0.00e+00,26038,0),(0,0.00e+00,39630,0),(58,1.09e-03,53152,0),(2,4.19e-04,4770,0),(0,0.00e+00,1101156,0),(6,1.00e-04,59860,0),(0,0.00e+00,85692,0),(44,6.05e-05,726894,0),(50,6.93e-05,721268,0),(11,5.75e-04,19144,0),(13,9.26e-04,14036,0),(2,7.79e-05,25658,0),(2,1.05e-04,19026,0),(0,0.00e+00,12586,0),(0,0.00e+00,13452,0),(0,0.00e+00,20662,0),(0,0.00e+00,18968,0),(27,9.82e-04,27504,0),(31,1.21e-03,25648,0),(0,0.00e+00,1952,0),(2,7.10e-04,2818,0),(0,0.00e+00,566132,0),(0,0.00e+00,535024,0),(4,1.27e-04,31512,0),(2,7.06e-05,28348,0),(0,0.00e+00,21744,0),(0,0.00e+00,63948,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,12,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,162,0),(0,0.00e+00,198,0),(0,0.00e+00,198,0),(0,0.00e+00,200,0),(0,0.00e+00,198,0),(1,1.01e-03,988,0),(0,0.00e+00,1000,0),(0,0.00e+00,996,0),(0,0.00e+00,1000,0),(4,4.03e-03,992,0),(2,2.40e-03,834,0),(0,0.00e+00,994,0),(0,0.00e+00,986,0),(0,0.00e+00,992,0),(0,0.00e+00,992,0),(2,1.01e-03,1980,0),(0,0.00e+00,1998,0),(0,0.00e+00,1988,0),(0,0.00e+00,1998,0),(6,3.02e-03,1990,0),(2,1.20e-03,1672,0),(0,0.00e+00,1986,0),(0,0.00e+00,1982,0),(0,0.00e+00,1980,0),(0,0.00e+00,1988,0),(4,1.01e-03,3964,0),(0,0.00e+00,3998,0),(0,0.00e+00,3980,0),(0,0.00e+00,3994,0),(8,2.01e-03,3980,0),(2,6.05e-04,3304,0),(0,0.00e+00,3972,0),(0,0.00e+00,3964,0),(0,0.00e+00,3972,0),(0,0.00e+00,3964,0),(6,1.05e-03,5712,0),(0,0.00e+00,5766,0),(0,0.00e+00,5738,0),(0,0.00e+00,5752,0),(9,1.57e-03,5740,0),(2,4.19e-04,4770,0),(0,0.00e+00,5718,0),(0,0.00e+00,5720,0),(0,0.00e+00,5728,0),(0,0.00e+00,5724,0),(9,9.08e-04,9908,0),(0,0.00e+00,9994,0),(0,0.00e+00,9950,0),(0,0.00e+00,9972,0),(13,1.31e-03,9942,0),(0,0.00e+00,9912,0),(3,3.03e-04,9904,0),(0,0.00e+00,9932,0),(1,1.01e-04,9920,0),(18,9.08e-04,19832,0),(0,0.00e+00,19980,0),(0,0.00e+00,19918,0),(0,0.00e+00,19956,0),(23,1.16e-03,19896,0),(0,0.00e+00,19818,0),(3,1.51e-04,19830,0),(0,0.00e+00,19858,0),(3,1.51e-04,19820,0),(22,8.49e-04,25916,0),(2,7.66e-05,26110,0),(0,0.00e+00,26038,0),(0,0.00e+00,26082,0),(29,1.12e-03,25998,0),(0,0.00e+00,25884,0),(3,1.16e-04,25910,0),(0,0.00e+00,25962,0),(5,1.93e-04,25892,0),(24,7.23e-04,33180,0),(2,5.98e-05,33452,0),(0,0.00e+00,33420,0),(35,1.05e-03,33304,0),(0,0.00e+00,33160,0),(4,1.20e-04,33206,0),(0,0.00e+00,33254,0),(6,1.81e-04,33158,0),(4,1.01e-04,39670,0),(0,0.00e+00,39630,0),(44,1.11e-03,39492,0),(0,0.00e+00,39322,0),(4,1.02e-04,39360,0),(0,0.00e+00,39426,0),(7,1.78e-04,39326,0),(4,1.00e-04,39968,0),(44,1.11e-03,39792,0),(0,0.00e+00,39622,0),(4,1.01e-04,39658,0),(0,0.00e+00,39722,0),(7,1.77e-04,39620,0),(4,8.95e-05,44684,0),(48,1.08e-03,44492,0),(0,0.00e+00,44294,0),(4,9.02e-05,44340,0),(0,0.00e+00,44416,0),(7,1.58e-04,44306,0),(58,1.09e-03,53152,0),(0,0.00e+00,52914,0),(4,7.55e-05,52958,0),(0,0.00e+00,53060,0),(7,1.32e-04,52926,0),(0,0.00e+00,59796,0),(6,1.00e-04,59860,0),(0,0.00e+00,59994,0),(7,1.17e-04,59832,0),(0,0.00e+00,85402,0),(0,0.00e+00,85692,0),(10,1.17e-04,85434,0),(0,0.00e+00,99006,0),(10,1.01e-04,99072,0),(0,0.00e+00,198028,0),(21,1.06e-04,198104,0),(0,0.00e+00,396074,0),(31,7.82e-05,396304,0),(0,0.00e+00,990232,0),(70,7.07e-05,990628,0),(0,0.00e+00,1101156,0),(75,6.81e-05,1101512,0),(85,1.36e-04,626744,0),(87,1.38e-04,628782,0),(15,8.50e-04,17650,0),(4,9.15e-05,43720,0),(0,0.00e+00,20968,0),(0,0.00e+00,36050,0),(58,1.10e-03,52878,0),(2,6.31e-04,3172,0),(0,0.00e+00,349848,0),(6,1.82e-04,32968,0),(0,0.00e+00,69490,0),(39,1.37e-04,285194,0),(46,1.35e-04,341550,0),(6,5.85e-04,10264,0),(9,1.22e-03,7386,0),(2,7.99e-05,25026,0),(2,1.07e-04,18694,0),(0,0.00e+00,9832,0),(0,0.00e+00,11136,0),(0,0.00e+00,18284,0),(0,0.00e+00,17766,0),(27,9.91e-04,27256,0),(31,1.21e-03,25622,0),(0,0.00e+00,1376,0),(2,1.11e-03,1796,0),(0,0.00e+00,162104,0),(0,0.00e+00,187744,0),(4,2.40e-04,16698,0),(2,1.23e-04,16270,0),(0,0.00e+00,14354,0),(0,0.00e+00,55136,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,12,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(1,6.58e-03,152,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(1,1.00e-03,998,0),(0,0.00e+00,1000,0),(0,0.00e+00,998,0),(0,0.00e+00,1000,0),(4,4.03e-03,992,0),(2,2.61e-03,766,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,992,0),(0,0.00e+00,1000,0),(3,1.50e-03,1998,0),(0,0.00e+00,1998,0),(0,0.00e+00,1996,0),(0,0.00e+00,1998,0),(6,3.02e-03,1990,0),(2,1.28e-03,1568,0),(0,0.00e+00,2000,0),(0,0.00e+00,1998,0),(0,0.00e+00,1988,0),(0,0.00e+00,1994,0),(4,1.00e-03,3986,0),(0,0.00e+00,3998,0),(0,0.00e+00,3994,0),(0,0.00e+00,3996,0),(8,2.01e-03,3980,0),(2,6.55e-04,3054,0),(0,0.00e+00,4000,0),(1,2.50e-04,3996,0),(0,0.00e+00,3982,0),(0,0.00e+00,3992,0),(4,9.68e-04,4134,0),(0,0.00e+00,4146,0),(0,0.00e+00,4142,0),(0,0.00e+00,4144,0),(8,1.94e-03,4126,0),(2,6.31e-04,3172,0),(0,0.00e+00,4148,0),(1,2.41e-04,4142,0),(0,0.00e+00,4130,0),(0,0.00e+00,4140,0),(10,1.00e-03,9972,0),(0,0.00e+00,9996,0),(0,0.00e+00,9990,0),(0,0.00e+00,9990,0),(13,1.31e-03,9944,0),(0,0.00e+00,9998,0),(3,3.01e-04,9968,0),(0,0.00e+00,9946,0),(4,4.01e-04,9974,0),(15,8.50e-04,17650,0),(0,0.00e+00,17686,0),(0,0.00e+00,17680,0),(0,0.00e+00,17678,0),(20,1.14e-03,17600,0),(0,0.00e+00,17686,0),(4,2.27e-04,17636,0),(0,0.00e+00,17610,0),(6,3.40e-04,17638,0),(0,0.00e+00,19990,0),(0,0.00e+00,19984,0),(0,0.00e+00,19984,0),(23,1.16e-03,19898,0),(0,0.00e+00,19986,0),(4,2.01e-04,19930,0),(0,0.00e+00,19912,0),(6,3.01e-04,19940,0),(1,4.77e-05,20970,0),(0,0.00e+00,20968,0),(0,0.00e+00,20968,0),(24,1.15e-03,20880,0),(0,0.00e+00,20970,0),(4,1.91e-04,20908,0),(0,0.00e+00,20890,0),(6,2.87e-04,20922,0),(2,6.05e-05,33082,0),(0,0.00e+00,33080,0),(35,1.06e-03,32926,0),(0,0.00e+00,33078,0),(6,1.82e-04,32968,0),(0,0.00e+00,32938,0),(7,2.12e-04,33000,0),(2,5.55e-05,36054,0),(0,0.00e+00,36050,0),(41,1.14e-03,35882,0),(0,0.00e+00,36048,0),(0,0.00e+00,35896,0),(7,1.95e-04,35960,0),(4,1.00e-04,39982,0),(44,1.11e-03,39794,0),(0,0.00e+00,39976,0),(0,0.00e+00,39804,0),(9,2.26e-04,39878,0),(4,9.15e-05,43720,0),(48,1.10e-03,43514,0),(0,0.00e+00,43712,0),(0,0.00e+00,43532,0),(10,2.29e-04,43608,0),(58,1.10e-03,52878,0),(0,0.00e+00,53108,0),(0,0.00e+00,52890,0),(11,2.08e-04,52980,0),(0,0.00e+00,69748,0),(0,0.00e+00,69490,0),(15,2.16e-04,69590,0),(0,0.00e+00,99940,0),(21,2.11e-04,99680,0),(0,0.00e+00,199860,0),(29,1.45e-04,199386,0),(0,0.00e+00,349848,0),(50,1.43e-04,348992,0),(56,1.40e-04,398714,0)]247.23e-04331800"afr"158.50e-04176500"afr"[(5.41e-05,5.02e-05),(4.99e-04,4.24e-04),(2.99e-05,1.81e-05),(0.00e+00,0.00e+00),(7.37e-05,3.06e-05),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,(1.12e-04,1.03e-04),(5.23e-04,4.23e-04),(3.03e-05,1.84e-05),(0.00e+00,0.00e+00),(1.12e-04,4.63e-05),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]4.99e-04"afr"4.24e-04"afr"5.23e-04"afr"4.23e-04"afr"2True{"rs201475538"}{}8.65e-016.00e+010.00e+001428051.36e+01-1.80e-02[4798,567,4576,579]6.27e-01105180.00e+006.00e+010.00e+001.00e+001236161.35e+01-2.10e-02[4798,567,3988,522]5.96e-019184FalseNANAFalseFalseFalseFalse9.35e+00-7.19e-05["ga4gh:VA.3n-gYs3xsspnxwI91EMCEDsIcrj9bIqO","ga4gh:VA.R13f7bcCv-WGRkCM6W3Y_O-jy_2slTPt"][113410657,113410657][113410658,113410658]["G","T"]"G/T"113410658".""chr11\t113410658\t.\tG\tT\t.\t.\tGT"NA"3_prime_UTR_variant"NANA"chr11"1134106581[(1,NA,NA,"protein_coding",NA,"CCDS8362.1",1390,1390,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000346454.7:c.*69C>A",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"ENSP00000278597","Ensembl",-1,"ENST00000346454",1,["P14416-2"],"T"),(1,NA,"P2","protein_coding",1,"CCDS8361.1",1755,1755,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"8/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000362072.8:c.*69C>A",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,"NM_000795.4",NA,NA,NA,NA,"ENSP00000354859","Ensembl",-1,"ENST00000362072",1,["P14416-1"],"T"),(1,NA,NA,"processed_transcript",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],3717,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000535984",3,NA,"T"),(1,NA,"A1","protein_coding",NA,NA,1407,1407,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"8/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000538967.5:c.*69C>A",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"ENSP00000438215","Ensembl",-1,"ENST00000538967",5,["P14416-3"],"T"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],4636,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000539420",3,NA,"T"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],3206,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000540600",1,NA,"T"),(1,NA,"P2","protein_coding",NA,"CCDS8361.1",1722,1722,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000542968.5:c.*69C>A",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"ENSP00000442172","Ensembl",-1,"ENST00000542968",1,["P14416-1"],"T"),(1,NA,"A1","protein_coding",NA,NA,1431,1431,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000544518.5:c.*69C>A",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"ENSP00000441068","Ensembl",-1,"ENST00000544518",1,NA,"T"),(1,NA,NA,"lncRNA",1,NA,NA,NA,NA,NA,NA,["intron_variant","non_coding_transcript_variant"],NA,NA,NA,NA,"ENSG00000256757",NA,NA,NA,NA,"ENST00000546284.1:n.245-889G>T",NA,NA,"MODIFIER","2/3",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",1,"ENST00000546284",3,NA,"T"),(1,NA,NA,"protein_coding",1,NA,1755,1755,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"8/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_000795.4:c.*69C>A",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,"ENST00000362072.8",NA,NA,NA,NA,"NP_000786.1","RefSeq",-1,"NM_000795.4",NA,NA,"T"),(1,NA,NA,"protein_coding",NA,NA,1668,1668,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"7/7",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_016574.4:c.*69C>A",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"NP_057658.2","RefSeq",-1,"NM_016574.4",NA,NA,"T"),(1,NA,NA,"protein_coding",NA,NA,1483,1483,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"8/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","XM_017017296.2:c.*69C>A",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"XP_016872785.1","RefSeq",-1,"XM_017017296.2",NA,NA,"T")]"SNV"9.35e+00"AS_FS"FalseFalseFalseFalseFalseNATrueFalse"multi-snv"2False"snv"False[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,4183,0,30033,1,354765,0,58262,0,276721,0,0,0,1,0,0,115]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,26986,70993,120130,305542,173013,19471,3177,1036,688,647,582,509,357,257,172,116,78,62]0265[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,94]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,2,3,11,13,14,10,8,9,1,3,2,0,4,0,0,1,1,1]011[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,6,5,19,14,25,17,6,1,1,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][886,4,2000,0,7936,2,30033,1,354765,1,58262,0,276721,0,0,0,1,0,0,116]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][362,4790,27388,71922,120182,305624,173020,19481,3184,1039,690,648,582,509,357,257,172,116,78,62]0265[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][2,4,1,0,0,2,0,0,0,1,0,0,0,0,0,0,0,0,0,95]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,2,4,4,17,13,14,10,8,9,1,3,2,0,4,0,0,1,1,1]011[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,2,7,0,0,1,6,5,19,14,26,17,6,1,1,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,1,4,4,2,5,0,1,4,1]10[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]002.38e+001.31e-01NA0.00e+003.00e-027.10e-02NANA
chr11:113410660["A","G"][(1,6.89e-07,1450438,0),(2,1.37e-06,1461588,0),(0,0.00e+00,33208,0),(0,0.00e+00,44698,0),(0,0.00e+00,26050,0),(0,0.00e+00,39632,0),(0,0.00e+00,53222,0),(0,0.00e+00,4878,0),(1,9.07e-07,1103066,0),(0,0.00e+00,59922,0),(0,0.00e+00,85762,0),(0,0.00e+00,728116,0),(1,1.38e-06,722322,0),(0,0.00e+00,19158,0),(0,0.00e+00,14050,0),(0,0.00e+00,25670,0),(0,0.00e+00,19028,0),(0,0.00e+00,12590,0),(0,0.00e+00,13460,0),(0,0.00e+00,20660,0),(0,0.00e+00,18972,0),(0,0.00e+00,27540,0),(0,0.00e+00,25682,0),(0,0.00e+00,2012,0),(0,0.00e+00,2866,0),(0,0.00e+00,567156,0),(1,1.87e-06,535910,0),(0,0.00e+00,31542,0),(0,0.00e+00,28380,0),(0,0.00e+00,21788,0),(0,0.00e+00,63974,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,12,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,166,0),(0,0.00e+00,200,0),(0,0.00e+00,198,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,980,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,994,0),(0,0.00e+00,846,0),(0,0.00e+00,996,0),(0,0.00e+00,992,0),(0,0.00e+00,992,0),(0,0.00e+00,994,0),(0,0.00e+00,1974,0),(0,0.00e+00,2000,0),(0,0.00e+00,1990,0),(0,0.00e+00,1998,0),(0,0.00e+00,1994,0),(0,0.00e+00,1716,0),(0,0.00e+00,1984,0),(0,0.00e+00,1992,0),(0,0.00e+00,1980,0),(0,0.00e+00,1990,0),(0,0.00e+00,3960,0),(0,0.00e+00,4000,0),(0,0.00e+00,3984,0),(0,0.00e+00,3994,0),(0,0.00e+00,3986,0),(0,0.00e+00,3394,0),(0,0.00e+00,3970,0),(0,0.00e+00,3972,0),(0,0.00e+00,3972,0),(0,0.00e+00,3962,0),(0,0.00e+00,5716,0),(0,0.00e+00,5768,0),(0,0.00e+00,5744,0),(0,0.00e+00,5754,0),(0,0.00e+00,5750,0),(0,0.00e+00,4878,0),(0,0.00e+00,5722,0),(0,0.00e+00,5732,0),(0,0.00e+00,5728,0),(0,0.00e+00,5724,0),(0,0.00e+00,9914,0),(0,0.00e+00,9998,0),(0,0.00e+00,9962,0),(0,0.00e+00,9972,0),(0,0.00e+00,9954,0),(0,0.00e+00,9920,0),(0,0.00e+00,9922,0),(0,0.00e+00,9938,0),(0,0.00e+00,9922,0),(0,0.00e+00,19846,0),(0,0.00e+00,19986,0),(0,0.00e+00,19926,0),(0,0.00e+00,19956,0),(0,0.00e+00,19926,0),(0,0.00e+00,19836,0),(0,0.00e+00,19852,0),(0,0.00e+00,19864,0),(0,0.00e+00,19832,0),(0,0.00e+00,25940,0),(0,0.00e+00,26118,0),(0,0.00e+00,26050,0),(0,0.00e+00,26082,0),(0,0.00e+00,26038,0),(0,0.00e+00,25906,0),(0,0.00e+00,25940,0),(0,0.00e+00,25974,0),(0,0.00e+00,25914,0),(0,0.00e+00,33208,0),(0,0.00e+00,33460,0),(0,0.00e+00,33422,0),(0,0.00e+00,33354,0),(0,0.00e+00,33194,0),(0,0.00e+00,33234,0),(0,0.00e+00,33280,0),(0,0.00e+00,33184,0),(0,0.00e+00,39680,0),(0,0.00e+00,39632,0),(0,0.00e+00,39558,0),(0,0.00e+00,39368,0),(0,0.00e+00,39402,0),(0,0.00e+00,39462,0),(0,0.00e+00,39366,0),(0,0.00e+00,39978,0),(0,0.00e+00,39858,0),(0,0.00e+00,39664,0),(0,0.00e+00,39700,0),(0,0.00e+00,39758,0),(0,0.00e+00,39660,0),(0,0.00e+00,44698,0),(0,0.00e+00,44564,0),(0,0.00e+00,44334,0),(0,0.00e+00,44384,0),(0,0.00e+00,44448,0),(0,0.00e+00,44352,0),(0,0.00e+00,53222,0),(0,0.00e+00,52964,0),(0,0.00e+00,53010,0),(0,0.00e+00,53096,0),(0,0.00e+00,52982,0),(0,0.00e+00,59866,0),(0,0.00e+00,59922,0),(0,0.00e+00,60036,0),(0,0.00e+00,59886,0),(0,0.00e+00,85516,0),(0,0.00e+00,85762,0),(0,0.00e+00,85528,0),(0,0.00e+00,99132,0),(0,0.00e+00,99166,0),(0,0.00e+00,198282,0),(0,0.00e+00,198350,0),(1,2.52e-06,396678,0),(1,2.52e-06,396834,0),(1,1.01e-06,991944,0),(1,1.01e-06,992168,0),(1,9.07e-07,1103066,0),(1,9.06e-07,1103268,0),(1,1.59e-06,627050,0),(2,3.18e-06,628784,0),(0,0.00e+00,17650,0),(0,0.00e+00,43726,0),(0,0.00e+00,20970,0),(0,0.00e+00,36054,0),(0,0.00e+00,52946,0),(0,0.00e+00,3278,0),(1,2.86e-06,349920,0),(0,0.00e+00,32974,0),(0,0.00e+00,69532,0),(0,0.00e+00,285344,0),(1,2.93e-06,341706,0),(0,0.00e+00,10264,0),(0,0.00e+00,7386,0),(0,0.00e+00,25032,0),(0,0.00e+00,18694,0),(0,0.00e+00,9832,0),(0,0.00e+00,11138,0),(0,0.00e+00,18288,0),(0,0.00e+00,17766,0),(0,0.00e+00,27290,0),(0,0.00e+00,25656,0),(0,0.00e+00,1434,0),(0,0.00e+00,1844,0),(0,0.00e+00,162128,0),(1,5.33e-06,187792,0),(0,0.00e+00,16698,0),(0,0.00e+00,16276,0),(0,0.00e+00,14378,0),(0,0.00e+00,55154,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,12,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,156,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,998,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,994,0),(0,0.00e+00,792,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,992,0),(0,0.00e+00,1000,0),(0,0.00e+00,1998,0),(0,0.00e+00,2000,0),(0,0.00e+00,1998,0),(0,0.00e+00,1998,0),(0,0.00e+00,1994,0),(0,0.00e+00,1616,0),(0,0.00e+00,2000,0),(0,0.00e+00,1998,0),(0,0.00e+00,1990,0),(0,0.00e+00,1994,0),(0,0.00e+00,3988,0),(0,0.00e+00,4000,0),(0,0.00e+00,3996,0),(0,0.00e+00,3998,0),(0,0.00e+00,3986,0),(0,0.00e+00,3158,0),(0,0.00e+00,4000,0),(0,0.00e+00,3996,0),(0,0.00e+00,3984,0),(0,0.00e+00,3992,0),(0,0.00e+00,4136,0),(0,0.00e+00,4148,0),(0,0.00e+00,4144,0),(0,0.00e+00,4146,0),(0,0.00e+00,4134,0),(0,0.00e+00,3278,0),(0,0.00e+00,4148,0),(0,0.00e+00,4142,0),(0,0.00e+00,4132,0),(0,0.00e+00,4140,0),(0,0.00e+00,9974,0),(0,0.00e+00,9998,0),(0,0.00e+00,9994,0),(0,0.00e+00,9992,0),(0,0.00e+00,9954,0),(0,0.00e+00,10000,0),(0,0.00e+00,9968,0),(0,0.00e+00,9950,0),(0,0.00e+00,9974,0),(0,0.00e+00,17650,0),(0,0.00e+00,17686,0),(0,0.00e+00,17682,0),(0,0.00e+00,17682,0),(0,0.00e+00,17626,0),(0,0.00e+00,17688,0),(0,0.00e+00,17638,0),(0,0.00e+00,17616,0),(0,0.00e+00,17652,0),(0,0.00e+00,19992,0),(0,0.00e+00,19986,0),(0,0.00e+00,19988,0),(0,0.00e+00,19924,0),(0,0.00e+00,19990,0),(0,0.00e+00,19930,0),(0,0.00e+00,19916,0),(0,0.00e+00,19954,0),(0,0.00e+00,20974,0),(0,0.00e+00,20970,0),(0,0.00e+00,20972,0),(0,0.00e+00,20906,0),(0,0.00e+00,20974,0),(0,0.00e+00,20910,0),(0,0.00e+00,20898,0),(0,0.00e+00,20936,0),(0,0.00e+00,33086,0),(0,0.00e+00,33084,0),(0,0.00e+00,32974,0),(0,0.00e+00,33086,0),(0,0.00e+00,32974,0),(0,0.00e+00,32956,0),(0,0.00e+00,33018,0),(0,0.00e+00,36058,0),(0,0.00e+00,36054,0),(0,0.00e+00,35938,0),(0,0.00e+00,36056,0),(0,0.00e+00,35916,0),(0,0.00e+00,35980,0),(0,0.00e+00,39988,0),(0,0.00e+00,39856,0),(0,0.00e+00,39982,0),(0,0.00e+00,39824,0),(0,0.00e+00,39900,0),(0,0.00e+00,43726,0),(0,0.00e+00,43584,0),(0,0.00e+00,43722,0),(0,0.00e+00,43556,0),(0,0.00e+00,43632,0),(0,0.00e+00,52946,0),(0,0.00e+00,53120,0),(0,0.00e+00,52924,0),(0,0.00e+00,53008,0),(0,0.00e+00,69766,0),(0,0.00e+00,69532,0),(0,0.00e+00,69624,0),(1,1.00e-05,99960,0),(0,0.00e+00,99716,0),(1,5.00e-06,199898,0),(1,5.01e-06,199490,0),(1,2.86e-06,349920,0),(1,2.86e-06,349164,0),(1,2.51e-06,398918,0)]19.07e-0711030660"nfe"12.86e-063499200"nfe"[(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]NANANANANANANANA2True{"rs1950760213"}{}0.00e+006.00e+010.00e+0036191.78e+016.74e-01[83,21,79,20]6.91e-012034.82e-166.00e+010.00e+004.53e-0135911.98e+019.51e-01[83,21,77,19]7.15e-01181FalseFalseFalseFalseFalseFalseFalse4.34e+00-1.37e-06["ga4gh:VA.MHTiWiUO_hsQ_FAaIagdomN6DdnpjqRm","ga4gh:VA.D8-MF1xUzSMIKncRc7QFwqQ-l8WgfYlV"][113410659,113410659][113410660,113410660]["A","G"]"A/G"113410660".""chr11\t113410660\t.\tA\tG\t.\t.\tGT"NA"3_prime_UTR_variant"NANA"chr11"1134106601[(1,NA,NA,"protein_coding",NA,"CCDS8362.1",1388,1388,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000346454.7:c.*67T>C",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"ENSP00000278597","Ensembl",-1,"ENST00000346454",1,["P14416-2"],"G"),(1,NA,"P2","protein_coding",1,"CCDS8361.1",1753,1753,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"8/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000362072.8:c.*67T>C",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,"NM_000795.4",NA,NA,NA,NA,"ENSP00000354859","Ensembl",-1,"ENST00000362072",1,["P14416-1"],"G"),(1,NA,NA,"processed_transcript",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],3715,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000535984",3,NA,"G"),(1,NA,"A1","protein_coding",NA,NA,1405,1405,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"8/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000538967.5:c.*67T>C",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"ENSP00000438215","Ensembl",-1,"ENST00000538967",5,["P14416-3"],"G"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],4634,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000539420",3,NA,"G"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],3204,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000540600",1,NA,"G"),(1,NA,"P2","protein_coding",NA,"CCDS8361.1",1720,1720,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000542968.5:c.*67T>C",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"ENSP00000442172","Ensembl",-1,"ENST00000542968",1,["P14416-1"],"G"),(1,NA,"A1","protein_coding",NA,NA,1429,1429,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000544518.5:c.*67T>C",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"ENSP00000441068","Ensembl",-1,"ENST00000544518",1,NA,"G"),(1,NA,NA,"lncRNA",1,NA,NA,NA,NA,NA,NA,["intron_variant","non_coding_transcript_variant"],NA,NA,NA,NA,"ENSG00000256757",NA,NA,NA,NA,"ENST00000546284.1:n.245-887A>G",NA,NA,"MODIFIER","2/3",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",1,"ENST00000546284",3,NA,"G"),(1,NA,NA,"protein_coding",1,NA,1753,1753,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"8/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_000795.4:c.*67T>C",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,"ENST00000362072.8",NA,NA,NA,NA,"NP_000786.1","RefSeq",-1,"NM_000795.4",NA,NA,"G"),(1,NA,NA,"protein_coding",NA,NA,1666,1666,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"7/7",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_016574.4:c.*67T>C",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"NP_057658.2","RefSeq",-1,"NM_016574.4",NA,NA,"G"),(1,NA,NA,"protein_coding",NA,NA,1481,1481,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"8/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","XM_017017296.2:c.*67T>C",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"XP_016872785.1","RefSeq",-1,"XM_017017296.2",NA,NA,"G")]"SNV"4.34e+00"AS_MQ"FalseFalseFalseFalseFalseNATrueFalse"multi-snv"3False"snv"False[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,3304,0,26636,0,351846,0,54948,0,288484,0,0,0,0,0,0,1]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,24253,67281,120581,309738,175490,19882,3222,1041,692,644,582,508,354,258,173,113,79,64]0264[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]01[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][684,0,1637,0,6556,2,26636,0,351846,0,54948,0,288484,0,0,0,0,0,0,1]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][296,4122,24622,67964,120609,309787,175498,19891,3228,1043,694,645,582,508,354,258,173,113,79,64]0264[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]01[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][1,0,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]001.22e+00-1.85e-02NA0.00e+004.00e-02-1.27e+00NANA
chr11:113410662["G","A"][(2,1.38e-06,1451396,0),(2,1.37e-06,1461538,0),(0,0.00e+00,33252,0),(1,2.24e-05,44696,0),(0,0.00e+00,26064,0),(0,0.00e+00,39622,0),(0,0.00e+00,53232,0),(0,0.00e+00,4926,0),(1,9.06e-07,1103856,0),(0,0.00e+00,59956,0),(0,0.00e+00,85792,0),(1,1.37e-06,728678,0),(1,1.38e-06,722718,0),(0,0.00e+00,19190,0),(0,0.00e+00,14062,0),(1,3.90e-05,25668,0),(0,0.00e+00,19028,0),(0,0.00e+00,12598,0),(0,0.00e+00,13466,0),(0,0.00e+00,20652,0),(0,0.00e+00,18970,0),(0,0.00e+00,27536,0),(0,0.00e+00,25696,0),(0,0.00e+00,2038,0),(0,0.00e+00,2888,0),(0,0.00e+00,567634,0),(1,1.86e-06,536222,0),(0,0.00e+00,31566,0),(0,0.00e+00,28390,0),(0,0.00e+00,21796,0),(0,0.00e+00,63996,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,12,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,166,0),(0,0.00e+00,200,0),(0,0.00e+00,198,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,984,0),(0,0.00e+00,1000,0),(0,0.00e+00,998,0),(0,0.00e+00,1000,0),(0,0.00e+00,994,0),(0,0.00e+00,854,0),(0,0.00e+00,998,0),(0,0.00e+00,990,0),(0,0.00e+00,994,0),(0,0.00e+00,996,0),(0,0.00e+00,1978,0),(0,0.00e+00,2000,0),(0,0.00e+00,1986,0),(0,0.00e+00,1998,0),(0,0.00e+00,1994,0),(0,0.00e+00,1734,0),(0,0.00e+00,1988,0),(0,0.00e+00,1990,0),(0,0.00e+00,1982,0),(0,0.00e+00,1992,0),(0,0.00e+00,3970,0),(0,0.00e+00,4000,0),(0,0.00e+00,3982,0),(0,0.00e+00,3994,0),(0,0.00e+00,3986,0),(0,0.00e+00,3428,0),(0,0.00e+00,3978,0),(0,0.00e+00,3972,0),(0,0.00e+00,3972,0),(0,0.00e+00,3970,0),(0,0.00e+00,5726,0),(0,0.00e+00,5768,0),(0,0.00e+00,5742,0),(0,0.00e+00,5752,0),(0,0.00e+00,5750,0),(0,0.00e+00,4926,0),(0,0.00e+00,5734,0),(0,0.00e+00,5732,0),(0,0.00e+00,5728,0),(0,0.00e+00,5732,0),(0,0.00e+00,9918,0),(0,0.00e+00,10000,0),(0,0.00e+00,9958,0),(0,0.00e+00,9970,0),(0,0.00e+00,9950,0),(0,0.00e+00,9932,0),(0,0.00e+00,9930,0),(0,0.00e+00,9940,0),(0,0.00e+00,9932,0),(0,0.00e+00,19860,0),(1,5.00e-05,19986,0),(0,0.00e+00,19936,0),(0,0.00e+00,19948,0),(0,0.00e+00,19924,0),(0,0.00e+00,19854,0),(0,0.00e+00,19874,0),(0,0.00e+00,19884,0),(0,0.00e+00,19844,0),(0,0.00e+00,25972,0),(1,3.83e-05,26118,0),(0,0.00e+00,26064,0),(0,0.00e+00,26076,0),(0,0.00e+00,26038,0),(0,0.00e+00,25924,0),(0,0.00e+00,25962,0),(0,0.00e+00,25990,0),(0,0.00e+00,25934,0),(0,0.00e+00,33252,0),(1,2.99e-05,33458,0),(0,0.00e+00,33414,0),(0,0.00e+00,33356,0),(0,0.00e+00,33220,0),(0,0.00e+00,33256,0),(0,0.00e+00,33292,0),(0,0.00e+00,33206,0),(1,2.52e-05,39676,0),(0,0.00e+00,39622,0),(0,0.00e+00,39558,0),(0,0.00e+00,39392,0),(0,0.00e+00,39432,0),(0,0.00e+00,39480,0),(0,0.00e+00,39384,0),(1,2.50e-05,39974,0),(0,0.00e+00,39858,0),(0,0.00e+00,39690,0),(0,0.00e+00,39728,0),(0,0.00e+00,39776,0),(0,0.00e+00,39682,0),(1,2.24e-05,44696,0),(0,0.00e+00,44568,0),(0,0.00e+00,44372,0),(0,0.00e+00,44412,0),(0,0.00e+00,44468,0),(0,0.00e+00,44378,0),(0,0.00e+00,53232,0),(0,0.00e+00,52996,0),(0,0.00e+00,53046,0),(0,0.00e+00,53120,0),(0,0.00e+00,53012,0),(0,0.00e+00,59904,0),(0,0.00e+00,59956,0),(0,0.00e+00,60062,0),(0,0.00e+00,59924,0),(0,0.00e+00,85568,0),(0,0.00e+00,85792,0),(0,0.00e+00,85566,0),(0,0.00e+00,99198,0),(0,0.00e+00,99210,0),(0,0.00e+00,198402,0),(0,0.00e+00,198452,0),(1,2.52e-06,396938,0),(1,2.52e-06,397058,0),(1,1.01e-06,992632,0),(2,2.01e-06,992784,0),(1,9.06e-07,1103856,0),(2,1.81e-06,1103950,0),(1,1.59e-06,627150,0),(1,1.59e-06,628784,0),(0,0.00e+00,17654,0),(1,2.29e-05,43728,0),(0,0.00e+00,20976,0),(0,0.00e+00,36054,0),(0,0.00e+00,52956,0),(0,0.00e+00,3318,0),(0,0.00e+00,349938,0),(0,0.00e+00,32986,0),(0,0.00e+00,69540,0),(1,3.50e-06,285386,0),(0,0.00e+00,341764,0),(0,0.00e+00,10266,0),(0,0.00e+00,7388,0),(1,3.99e-05,25032,0),(0,0.00e+00,18696,0),(0,0.00e+00,9836,0),(0,0.00e+00,11140,0),(0,0.00e+00,18288,0),(0,0.00e+00,17766,0),(0,0.00e+00,27286,0),(0,0.00e+00,25670,0),(0,0.00e+00,1454,0),(0,0.00e+00,1864,0),(0,0.00e+00,162146,0),(0,0.00e+00,187792,0),(0,0.00e+00,16706,0),(0,0.00e+00,16280,0),(0,0.00e+00,14372,0),(0,0.00e+00,55168,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,12,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,20,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,156,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,200,0),(0,0.00e+00,998,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,994,0),(0,0.00e+00,806,0),(0,0.00e+00,1000,0),(0,0.00e+00,1000,0),(0,0.00e+00,994,0),(0,0.00e+00,1000,0),(0,0.00e+00,1998,0),(0,0.00e+00,2000,0),(0,0.00e+00,2000,0),(0,0.00e+00,1998,0),(0,0.00e+00,1994,0),(0,0.00e+00,1638,0),(0,0.00e+00,2000,0),(0,0.00e+00,1998,0),(0,0.00e+00,1990,0),(0,0.00e+00,1994,0),(0,0.00e+00,3988,0),(0,0.00e+00,4000,0),(0,0.00e+00,3998,0),(0,0.00e+00,3998,0),(0,0.00e+00,3986,0),(0,0.00e+00,3196,0),(0,0.00e+00,4000,0),(0,0.00e+00,3996,0),(0,0.00e+00,3984,0),(0,0.00e+00,3992,0),(0,0.00e+00,4136,0),(0,0.00e+00,4148,0),(0,0.00e+00,4146,0),(0,0.00e+00,4146,0),(0,0.00e+00,4134,0),(0,0.00e+00,3318,0),(0,0.00e+00,4148,0),(0,0.00e+00,4142,0),(0,0.00e+00,4132,0),(0,0.00e+00,4140,0),(0,0.00e+00,9974,0),(0,0.00e+00,10000,0),(0,0.00e+00,9996,0),(0,0.00e+00,9992,0),(0,0.00e+00,9950,0),(0,0.00e+00,10000,0),(0,0.00e+00,9976,0),(0,0.00e+00,9952,0),(0,0.00e+00,9976,0),(0,0.00e+00,17654,0),(1,5.65e-05,17690,0),(0,0.00e+00,17688,0),(0,0.00e+00,17682,0),(0,0.00e+00,17626,0),(0,0.00e+00,17688,0),(0,0.00e+00,17644,0),(0,0.00e+00,17624,0),(0,0.00e+00,17652,0),(1,5.00e-05,19996,0),(0,0.00e+00,19992,0),(0,0.00e+00,19988,0),(0,0.00e+00,19922,0),(0,0.00e+00,19988,0),(0,0.00e+00,19938,0),(0,0.00e+00,19924,0),(0,0.00e+00,19954,0),(1,4.77e-05,20978,0),(0,0.00e+00,20976,0),(0,0.00e+00,20972,0),(0,0.00e+00,20904,0),(0,0.00e+00,20972,0),(0,0.00e+00,20918,0),(0,0.00e+00,20906,0),(0,0.00e+00,20936,0),(1,3.02e-05,33088,0),(0,0.00e+00,33084,0),(0,0.00e+00,32976,0),(0,0.00e+00,33084,0),(0,0.00e+00,32986,0),(0,0.00e+00,32964,0),(0,0.00e+00,33016,0),(1,2.77e-05,36060,0),(0,0.00e+00,36054,0),(0,0.00e+00,35940,0),(0,0.00e+00,36054,0),(0,0.00e+00,35922,0),(0,0.00e+00,35978,0),(1,2.50e-05,39988,0),(0,0.00e+00,39858,0),(0,0.00e+00,39982,0),(0,0.00e+00,39834,0),(0,0.00e+00,39898,0),(1,2.29e-05,43728,0),(0,0.00e+00,43588,0),(0,0.00e+00,43722,0),(0,0.00e+00,43566,0),(0,0.00e+00,43630,0),(0,0.00e+00,52956,0),(0,0.00e+00,53120,0),(0,0.00e+00,52934,0),(0,0.00e+00,53010,0),(0,0.00e+00,69764,0),(0,0.00e+00,69540,0),(0,0.00e+00,69628,0),(0,0.00e+00,99958,0),(0,0.00e+00,99732,0),(0,0.00e+00,199906,0),(0,0.00e+00,199516,0),(0,0.00e+00,349938,0),(1,2.86e-06,349218,0),(1,2.51e-06,398984,0)]12.24e-05446960"amr"12.29e-05437280"amr"[(2.30e-07,9.00e-08),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA]NANANANANANANANA1TrueNA{}5.51e-016.00e+010.00e+0030709.27e+000.00e+00[174,36,99,22]6.12e-013311.21e+006.00e+010.00e+008.45e-0129721.38e+011.49e+00[174,36,87,20]5.79e-01216FalseNANAFalseFalseFalseFalse5.24e+00-1.37e-06["ga4gh:VA.oDr3967BFZ6uu2LJEc9_RVWIOnNqtSF-","ga4gh:VA.N81rCvIHb-9PjhcHLL1zScmYT6cnOs-Y"][113410661,113410661][113410662,113410662]["G","A"]"G/A"113410662".""chr11\t113410662\t.\tG\tA\t.\t.\tGT"NA"3_prime_UTR_variant"NANA"chr11"1134106621[(1,NA,NA,"protein_coding",NA,"CCDS8362.1",1386,1386,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000346454.7:c.*65C>T",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"ENSP00000278597","Ensembl",-1,"ENST00000346454",1,["P14416-2"],"A"),(1,NA,"P2","protein_coding",1,"CCDS8361.1",1751,1751,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"8/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000362072.8:c.*65C>T",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,"NM_000795.4",NA,NA,NA,NA,"ENSP00000354859","Ensembl",-1,"ENST00000362072",1,["P14416-1"],"A"),(1,NA,NA,"processed_transcript",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],3713,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000535984",3,NA,"A"),(1,NA,"A1","protein_coding",NA,NA,1403,1403,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"8/8",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000538967.5:c.*65C>T",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"ENSP00000438215","Ensembl",-1,"ENST00000538967",5,["P14416-3"],"A"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],4632,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000539420",3,NA,"A"),(1,NA,NA,"retained_intron",NA,NA,NA,NA,NA,NA,NA,["downstream_gene_variant"],3202,NA,NA,NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023",NA,NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",-1,"ENST00000540600",1,NA,"A"),(1,NA,"P2","protein_coding",NA,"CCDS8361.1",1718,1718,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000542968.5:c.*65C>T",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"ENSP00000442172","Ensembl",-1,"ENST00000542968",1,["P14416-1"],"A"),(1,NA,"A1","protein_coding",NA,NA,1427,1427,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"7/7",NA,"ENSG00000149295",1,"DRD2","HGNC","HGNC:3023","ENST00000544518.5:c.*65C>T",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"ENSP00000441068","Ensembl",-1,"ENST00000544518",1,NA,"A"),(1,NA,NA,"lncRNA",1,NA,NA,NA,NA,NA,NA,["intron_variant","non_coding_transcript_variant"],NA,NA,NA,NA,"ENSG00000256757",NA,NA,NA,NA,"ENST00000546284.1:n.245-885G>A",NA,NA,"MODIFIER","2/3",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Ensembl",1,"ENST00000546284",3,NA,"A"),(1,NA,NA,"protein_coding",1,NA,1751,1751,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"8/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_000795.4:c.*65C>T",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,"ENST00000362072.8",NA,NA,NA,NA,"NP_000786.1","RefSeq",-1,"NM_000795.4",NA,NA,"A"),(1,NA,NA,"protein_coding",NA,NA,1664,1664,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"7/7",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","NM_016574.4:c.*65C>T",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"NP_057658.2","RefSeq",-1,"NM_016574.4",NA,NA,"A"),(1,NA,NA,"protein_coding",NA,NA,1479,1479,NA,NA,NA,["3_prime_UTR_variant"],NA,NA,"8/8",NA,"1813",NA,"DRD2","EntrezGene","HGNC:3023","XM_017017296.2:c.*65C>T",NA,NA,"MODIFIER",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"XP_016872785.1","RefSeq",-1,"XM_017017296.2",NA,NA,"A")]"SNV"5.24e+00"AS_MQ"FalseFalseFalseFalseFalseNATrueFalse"multi-snv"2False"snv"False[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,4139,0,27770,1,353590,0,56800,0,283396,0,0,0,0,0,0,2]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,22477,65025,118275,313361,178106,20388,3276,1054,693,645,582,508,355,259,173,113,79,64]0265[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]01[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][653,0,1690,2,6865,0,27770,1,353590,0,56800,0,283396,0,0,0,0,0,0,2]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][264,3602,22767,65834,118294,313419,178113,20399,3282,1056,696,645,582,508,355,259,173,113,79,64]0265[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2]00[0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01,8.50e+01,9.00e+01,9.50e+01,1.00e+02][0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]01[0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,4.00e-01,4.50e-01,5.00e-01,5.50e-01,6.00e-01,6.50e-01,7.00e-01,7.50e-01,8.00e-01,8.50e-01,9.00e-01,9.50e-01,1.00e+00][0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,1,0,1,0,0,0,0,0]00[3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,7.00e+01,7.50e+01,8.00e+01][0,0,0,0,0,0,0,0,0,0]006.25e+004.76e-01NA0.00e+002.10e-011.62e+00NANA

showing top 5 rows

\n" + ], + "text/plain": [ + "+-----------------+------------+\n", + "| locus | alleles |\n", + "+-----------------+------------+\n", + "| locus | array |\n", + "+-----------------+------------+\n", + "| chr11:113410657 | [\"C\",\"T\"] |\n", + "| chr11:113410658 | [\"G\",\"A\"] |\n", + "| chr11:113410658 | [\"G\",\"T\"] |\n", + "| chr11:113410660 | [\"A\",\"G\"] |\n", + "| chr11:113410662 | [\"G\",\"A\"] |\n", + "+-----------------+------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| freq |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [(18,1.25e-05,1445518,0),(24,1.64e-05,1461322,0),(1,3.02e-05,33096,0),(0,... |\n", + "| [(23,1.59e-05,1448166,0),(23,1.57e-05,1461456,0),(0,0.00e+00,33180,0),(0,... |\n", + "| [(94,6.49e-05,1448162,0),(105,7.18e-05,1461456,0),(24,7.23e-04,33180,0),(... |\n", + "| [(1,6.89e-07,1450438,0),(2,1.37e-06,1461588,0),(0,0.00e+00,33208,0),(0,0.... |\n", + "| [(2,1.38e-06,1451396,0),(2,1.37e-06,1461538,0),(0,0.00e+00,33252,0),(1,2.... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+------------------+------------------+------------------+\n", + "| grpmax.gnomad.AC | grpmax.gnomad.AF | grpmax.gnomad.AN |\n", + "+------------------+------------------+------------------+\n", + "| int32 | float64 | int32 |\n", + "+------------------+------------------+------------------+\n", + "| 4 | 1.01e-04 | 39606 |\n", + "| 3 | 7.57e-05 | 39630 |\n", + "| 24 | 7.23e-04 | 33180 |\n", + "| 1 | 9.07e-07 | 1103066 |\n", + "| 1 | 2.24e-05 | 44696 |\n", + "+------------------+------------------+------------------+\n", + "\n", + "+--------------------------------+-----------------------+-------------------+\n", + "| grpmax.gnomad.homozygote_count | grpmax.gnomad.gen_anc | grpmax.non_ukb.AC |\n", + "+--------------------------------+-----------------------+-------------------+\n", + "| int64 | str | int32 |\n", + "+--------------------------------+-----------------------+-------------------+\n", + "| 0 | \"eas\" | 4 |\n", + "| 0 | \"eas\" | 10 |\n", + "| 0 | \"afr\" | 15 |\n", + "| 0 | \"nfe\" | 1 |\n", + "| 0 | \"amr\" | 1 |\n", + "+--------------------------------+-----------------------+-------------------+\n", + "\n", + "+-------------------+-------------------+---------------------------------+\n", + "| grpmax.non_ukb.AF | grpmax.non_ukb.AN | grpmax.non_ukb.homozygote_count |\n", + "+-------------------+-------------------+---------------------------------+\n", + "| float64 | int32 | int64 |\n", + "+-------------------+-------------------+---------------------------------+\n", + "| 1.11e-04 | 36050 | 0 |\n", + "| 2.86e-05 | 349848 | 0 |\n", + "| 8.50e-04 | 17650 | 0 |\n", + "| 2.86e-06 | 349920 | 0 |\n", + "| 2.29e-05 | 43728 | 0 |\n", + "+-------------------+-------------------+---------------------------------+\n", + "\n", + "+------------------------+\n", + "| grpmax.non_ukb.gen_anc |\n", + "+------------------------+\n", + "| str |\n", + "+------------------------+\n", + "| \"eas\" |\n", + "| \"nfe\" |\n", + "| \"afr\" |\n", + "| \"nfe\" |\n", + "| \"amr\" |\n", + "+------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| faf |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [(7.78e-06,6.42e-06),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(3.35e-05,1.... |\n", + "| [(1.06e-05,8.83e-06),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(2.01e-05,1.... |\n", + "| [(5.41e-05,5.02e-05),(4.99e-04,4.24e-04),(2.99e-05,1.81e-05),(0.00e+00,0.... |\n", + "| [(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.... |\n", + "| [(2.30e-07,9.00e-08),(0.00e+00,0.00e+00),(0.00e+00,0.00e+00),(0.00e+00,0.... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+-------------------------+---------------------------------+\n", + "| fafmax.gnomad.faf95_max | fafmax.gnomad.faf95_max_gen_anc |\n", + "+-------------------------+---------------------------------+\n", + "| float64 | str |\n", + "+-------------------------+---------------------------------+\n", + "| 3.35e-05 | \"eas\" |\n", + "| 2.01e-05 | \"eas\" |\n", + "| 4.99e-04 | \"afr\" |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "+-------------------------+---------------------------------+\n", + "\n", + "+-------------------------+---------------------------------+\n", + "| fafmax.gnomad.faf99_max | fafmax.gnomad.faf99_max_gen_anc |\n", + "+-------------------------+---------------------------------+\n", + "| float64 | str |\n", + "+-------------------------+---------------------------------+\n", + "| 1.99e-05 | \"eas\" |\n", + "| 1.06e-05 | \"eas\" |\n", + "| 4.24e-04 | \"afr\" |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "+-------------------------+---------------------------------+\n", + "\n", + "+--------------------------+----------------------------------+\n", + "| fafmax.non_ukb.faf95_max | fafmax.non_ukb.faf95_max_gen_anc |\n", + "+--------------------------+----------------------------------+\n", + "| float64 | str |\n", + "+--------------------------+----------------------------------+\n", + "| 3.78e-05 | \"eas\" |\n", + "| 1.54e-05 | \"nfe\" |\n", + "| 5.23e-04 | \"afr\" |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "+--------------------------+----------------------------------+\n", + "\n", + "+--------------------------+----------------------------------+---------+\n", + "| fafmax.non_ukb.faf99_max | fafmax.non_ukb.faf99_max_gen_anc | a_index |\n", + "+--------------------------+----------------------------------+---------+\n", + "| float64 | str | int32 |\n", + "+--------------------------+----------------------------------+---------+\n", + "| 2.24e-05 | \"eas\" | 3 |\n", + "| 1.15e-05 | \"nfe\" | 1 |\n", + "| 4.23e-04 | \"afr\" | 2 |\n", + "| NA | NA | 2 |\n", + "| NA | NA | 1 |\n", + "+--------------------------+----------------------------------+---------+\n", + "\n", + "+-----------+------------------+----------+----------+----------+\n", + "| was_split | rsid | filters | info.FS | info.MQ |\n", + "+-----------+------------------+----------+----------+----------+\n", + "| bool | set | set | float64 | float64 |\n", + "+-----------+------------------+----------+----------+----------+\n", + "| True | {\"rs200559334\"} | {} | 0.00e+00 | 6.00e+01 |\n", + "| True | {\"rs201475538\"} | {} | 8.65e-01 | 6.00e+01 |\n", + "| True | {\"rs201475538\"} | {} | 8.65e-01 | 6.00e+01 |\n", + "| True | {\"rs1950760213\"} | {} | 0.00e+00 | 6.00e+01 |\n", + "| True | NA | {} | 5.51e-01 | 6.00e+01 |\n", + "+-----------+------------------+----------+----------+----------+\n", + "\n", + "+----------------+-----------------+----------+---------------------+\n", + "| info.MQRankSum | info.QUALapprox | info.QD | info.ReadPosRankSum |\n", + "+----------------+-----------------+----------+---------------------+\n", + "| float64 | int64 | float64 | float64 |\n", + "+----------------+-----------------+----------+---------------------+\n", + "| 0.00e+00 | 12992 | 1.27e+01 | 0.00e+00 |\n", + "| 0.00e+00 | 142805 | 1.36e+01 | -1.80e-02 |\n", + "| 0.00e+00 | 142805 | 1.36e+01 | -1.80e-02 |\n", + "| 0.00e+00 | 3619 | 1.78e+01 | 6.74e-01 |\n", + "| 0.00e+00 | 3070 | 9.27e+00 | 0.00e+00 |\n", + "+----------------+-----------------+----------+---------------------+\n", + "\n", + "+---------------------+----------+------------+------------+------------+\n", + "| info.SB | info.SOR | info.VarDP | info.AS_FS | info.AS_MQ |\n", + "+---------------------+----------+------------+------------+------------+\n", + "| array | float64 | int32 | float64 | float64 |\n", + "+---------------------+----------+------------+------------+------------+\n", + "| [543,53,386,37] | 7.04e-01 | 1019 | 4.82e-16 | 6.00e+01 |\n", + "| [4798,567,4576,579] | 6.27e-01 | 10518 | 1.55e+00 | 6.00e+01 |\n", + "| [4798,567,4576,579] | 6.27e-01 | 10518 | 0.00e+00 | 6.00e+01 |\n", + "| [83,21,79,20] | 6.91e-01 | 203 | 4.82e-16 | 6.00e+01 |\n", + "| [174,36,99,22] | 6.12e-01 | 331 | 1.21e+00 | 6.00e+01 |\n", + "+---------------------+----------+------------+------------+------------+\n", + "\n", + "+-------------------+-----------------+--------------------+------------+\n", + "| info.AS_MQRankSum | info.AS_pab_max | info.AS_QUALapprox | info.AS_QD |\n", + "+-------------------+-----------------+--------------------+------------+\n", + "| float64 | float64 | int64 | float64 |\n", + "+-------------------+-----------------+--------------------+------------+\n", + "| 0.00e+00 | 1.00e+00 | 12891 | 1.32e+01 |\n", + "| 0.00e+00 | 1.00e+00 | 19189 | 1.44e+01 |\n", + "| 0.00e+00 | 1.00e+00 | 123616 | 1.35e+01 |\n", + "| 0.00e+00 | 4.53e-01 | 3591 | 1.98e+01 |\n", + "| 0.00e+00 | 8.45e-01 | 2972 | 1.38e+01 |\n", + "+-------------------+-----------------+--------------------+------------+\n", + "\n", + "+------------------------+---------------------+-------------+---------------+\n", + "| info.AS_ReadPosRankSum | info.AS_SB_TABLE | info.AS_SOR | info.AS_VarDP |\n", + "+------------------------+---------------------+-------------+---------------+\n", + "| float64 | array | float64 | int32 |\n", + "+------------------------+---------------------+-------------+---------------+\n", + "| -3.90e-02 | [543,53,379,36] | 7.13e-01 | 976 |\n", + "| 1.34e-01 | [4798,567,588,57] | 8.94e-01 | 1334 |\n", + "| -2.10e-02 | [4798,567,3988,522] | 5.96e-01 | 9184 |\n", + "| 9.51e-01 | [83,21,77,19] | 7.15e-01 | 181 |\n", + "| 1.49e+00 | [174,36,87,20] | 5.79e-01 | 216 |\n", + "+------------------------+---------------------+-------------+---------------+\n", + "\n", + "+----------------+----------------------------+------------------------+\n", + "| info.singleton | info.transmitted_singleton | info.sibling_singleton |\n", + "+----------------+----------------------------+------------------------+\n", + "| bool | bool | bool |\n", + "+----------------+----------------------------+------------------------+\n", + "| False | NA | NA |\n", + "| False | NA | NA |\n", + "| False | NA | NA |\n", + "| False | False | False |\n", + "| False | NA | NA |\n", + "+----------------+----------------------------+------------------------+\n", + "\n", + "+-----------+------------+------------------+---------------+----------------+\n", + "| info.omni | info.mills | info.monoallelic | info.only_het | info.AS_VQSLOD |\n", + "+-----------+------------+------------------+---------------+----------------+\n", + "| bool | bool | bool | bool | float64 |\n", + "+-----------+------------+------------------+---------------+----------------+\n", + "| False | False | False | False | 9.14e+00 |\n", + "| False | False | False | False | 6.96e+00 |\n", + "| False | False | False | False | 9.35e+00 |\n", + "| False | False | False | False | 4.34e+00 |\n", + "| False | False | False | False | 5.24e+00 |\n", + "+-----------+------------+------------------+---------------+----------------+\n", + "\n", + "+-----------------------+\n", + "| info.inbreeding_coeff |\n", + "+-----------------------+\n", + "| float64 |\n", + "+-----------------------+\n", + "| -1.64e-05 |\n", + "| -1.57e-05 |\n", + "| -7.19e-05 |\n", + "| -1.37e-06 |\n", + "| -1.37e-06 |\n", + "+-----------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| info.vrs.VRS_Allele_IDs |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [\"ga4gh:VA.xwHxL6yO3I874HqhfGar1ZIaOp66ifsx\",\"ga4gh:VA.eglRJIN5-izMH1peMx... |\n", + "| [\"ga4gh:VA.3n-gYs3xsspnxwI91EMCEDsIcrj9bIqO\",\"ga4gh:VA.9Y9GDmOWCTqMks8dsN... |\n", + "| [\"ga4gh:VA.3n-gYs3xsspnxwI91EMCEDsIcrj9bIqO\",\"ga4gh:VA.R13f7bcCv-WGRkCM6W... |\n", + "| [\"ga4gh:VA.MHTiWiUO_hsQ_FAaIagdomN6DdnpjqRm\",\"ga4gh:VA.D8-MF1xUzSMIKncRc7... |\n", + "| [\"ga4gh:VA.oDr3967BFZ6uu2LJEc9_RVWIOnNqtSF-\",\"ga4gh:VA.N81rCvIHb-9PjhcHLL... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+-----------------------+-----------------------+---------------------+\n", + "| info.vrs.VRS_Starts | info.vrs.VRS_Ends | info.vrs.VRS_States |\n", + "+-----------------------+-----------------------+---------------------+\n", + "| array | array | array |\n", + "+-----------------------+-----------------------+---------------------+\n", + "| [113410656,113410656] | [113410657,113410657] | [\"C\",\"T\"] |\n", + "| [113410657,113410657] | [113410658,113410658] | [\"G\",\"A\"] |\n", + "| [113410657,113410657] | [113410658,113410658] | [\"G\",\"T\"] |\n", + "| [113410659,113410659] | [113410660,113410660] | [\"A\",\"G\"] |\n", + "| [113410661,113410661] | [113410662,113410662] | [\"G\",\"A\"] |\n", + "+-----------------------+-----------------------+---------------------+\n", + "\n", + "+-------------------+-----------+--------+--------------------------------+\n", + "| vep.allele_string | vep.end | vep.id | vep.input |\n", + "+-------------------+-----------+--------+--------------------------------+\n", + "| str | int32 | str | str |\n", + "+-------------------+-----------+--------+--------------------------------+\n", + "| \"C/T\" | 113410657 | \".\" | \"chr11\t113410657\t.\tC\tT\t.\t.\tGT\" |\n", + "| \"G/A\" | 113410658 | \".\" | \"chr11\t113410658\t.\tG\tA\t.\t.\tGT\" |\n", + "| \"G/T\" | 113410658 | \".\" | \"chr11\t113410658\t.\tG\tT\t.\t.\tGT\" |\n", + "| \"A/G\" | 113410660 | \".\" | \"chr11\t113410660\t.\tA\tG\t.\t.\tGT\" |\n", + "| \"G/A\" | 113410662 | \".\" | \"chr11\t113410662\t.\tG\tA\t.\t.\tGT\" |\n", + "+-------------------+-----------+--------+--------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| vep.intergenic_consequences |\n", + "+------------------------------------------------------------------------------+\n", + "| array, impact: st... |\n", + "+------------------------------------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+-----------------------------+\n", + "| vep.most_severe_consequence |\n", + "+-----------------------------+\n", + "| str |\n", + "+-----------------------------+\n", + "| \"3_prime_UTR_variant\" |\n", + "| \"3_prime_UTR_variant\" |\n", + "| \"3_prime_UTR_variant\" |\n", + "| \"3_prime_UTR_variant\" |\n", + "| \"3_prime_UTR_variant\" |\n", + "+-----------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| vep.motif_feature_consequences |\n", + "+------------------------------------------------------------------------------+\n", + "| array, high_inf_p... |\n", + "+------------------------------------------------------------------------------+\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "| NA |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| vep.regulatory_feature_consequences |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------+\n", + "| histograms.qual_hists.gq_hist_all.bin_freq |\n", + "+------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------+\n", + "| [0,0,0,0,4430,0,32721,0,357851,0,60423,0,267316,0,0,0,0,0,0,18] |\n", + "| [0,0,0,0,4183,2,30033,1,354765,0,58262,0,276721,0,0,0,1,0,0,115] |\n", + "| [0,0,0,0,4183,0,30033,1,354765,0,58262,0,276721,0,0,0,1,0,0,115] |\n", + "| [0,0,0,0,3304,0,26636,0,351846,0,54948,0,288484,0,0,0,0,0,0,1] |\n", + "| [0,0,0,0,4139,0,27770,1,353590,0,56800,0,283396,0,0,0,0,0,0,2] |\n", + "+------------------------------------------------------------------+\n", + "\n", + "+---------------------------------------------+\n", + "| histograms.qual_hists.gq_hist_all.n_smaller |\n", + "+---------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+---------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.qual_hists.gq_hist_all.n_larger |\n", + "+--------------------------------------------+\n", + "| int64 |\n", + "+--------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+--------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.qual_hists.dp_hist_all.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.qual_hists.dp_hist_all.bin_freq |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0,0,29987,74977,120278,300405,170342,18935,3117,1021,684,644,577,507,353... |\n", + "| [0,0,26988,70993,120130,305542,173013,19471,3177,1036,688,647,582,509,357... |\n", + "| [0,0,26986,70993,120130,305542,173013,19471,3177,1036,688,647,582,509,357... |\n", + "| [0,0,24253,67281,120581,309738,175490,19882,3222,1041,692,644,582,508,354... |\n", + "| [0,0,22477,65025,118275,313361,178106,20388,3276,1054,693,645,582,508,355... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+---------------------------------------------+\n", + "| histograms.qual_hists.dp_hist_all.n_smaller |\n", + "+---------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+---------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.qual_hists.dp_hist_all.n_larger |\n", + "+--------------------------------------------+\n", + "| int64 |\n", + "+--------------------------------------------+\n", + "| 252 |\n", + "| 265 |\n", + "| 265 |\n", + "| 264 |\n", + "| 265 |\n", + "+--------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.qual_hists.gq_hist_alt.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.qual_hists.gq_hist_alt.bin_freq |\n", + "+--------------------------------------------+\n", + "| array |\n", + "+--------------------------------------------+\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,18] |\n", + "| [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,21] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,94] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2] |\n", + "+--------------------------------------------+\n", + "\n", + "+---------------------------------------------+\n", + "| histograms.qual_hists.gq_hist_alt.n_smaller |\n", + "+---------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+---------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.qual_hists.gq_hist_alt.n_larger |\n", + "+--------------------------------------------+\n", + "| int64 |\n", + "+--------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+--------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.qual_hists.dp_hist_alt.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+-----------------------------------------------+\n", + "| histograms.qual_hists.dp_hist_alt.bin_freq |\n", + "+-----------------------------------------------+\n", + "| array |\n", + "+-----------------------------------------------+\n", + "| [0,0,0,2,3,3,2,1,0,1,1,0,1,0,0,1,1,0,0,1] |\n", + "| [0,0,1,2,4,3,4,1,1,0,0,1,0,1,0,0,0,2,0,1] |\n", + "| [0,0,2,3,11,13,14,10,8,9,1,3,2,0,4,0,0,1,1,1] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "+-----------------------------------------------+\n", + "\n", + "+---------------------------------------------+\n", + "| histograms.qual_hists.dp_hist_alt.n_smaller |\n", + "+---------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+---------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.qual_hists.dp_hist_alt.n_larger |\n", + "+--------------------------------------------+\n", + "| int64 |\n", + "+--------------------------------------------+\n", + "| 1 |\n", + "| 2 |\n", + "| 11 |\n", + "| 1 |\n", + "| 1 |\n", + "+--------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.qual_hists.ab_hist_alt.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+-----------------------------------------------+\n", + "| histograms.qual_hists.ab_hist_alt.bin_freq |\n", + "+-----------------------------------------------+\n", + "| array |\n", + "+-----------------------------------------------+\n", + "| [0,0,0,0,0,0,2,0,4,4,4,3,1,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,2,0,1,0,3,3,8,5,0,1,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,6,5,19,14,25,17,6,1,1,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0] |\n", + "+-----------------------------------------------+\n", + "\n", + "+---------------------------------------------+\n", + "| histograms.qual_hists.ab_hist_alt.n_smaller |\n", + "+---------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+---------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.qual_hists.ab_hist_alt.n_larger |\n", + "+--------------------------------------------+\n", + "| int64 |\n", + "+--------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+--------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.raw_qual_hists.gq_hist_all.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+-----------------------------------------------------------------------+\n", + "| histograms.raw_qual_hists.gq_hist_all.bin_freq |\n", + "+-----------------------------------------------------------------------+\n", + "| array |\n", + "+-----------------------------------------------------------------------+\n", + "| [979,2,2487,1,8860,1,32722,0,357851,0,60423,0,267317,0,0,0,0,0,0,18] |\n", + "| [886,4,2000,0,7936,2,30033,1,354765,1,58262,0,276721,0,0,0,1,0,0,116] |\n", + "| [886,4,2000,0,7936,2,30033,1,354765,1,58262,0,276721,0,0,0,1,0,0,116] |\n", + "| [684,0,1637,0,6556,2,26636,0,351846,0,54948,0,288484,0,0,0,0,0,0,1] |\n", + "| [653,0,1690,2,6865,0,27770,1,353590,0,56800,0,283396,0,0,0,0,0,0,2] |\n", + "+-----------------------------------------------------------------------+\n", + "\n", + "+-------------------------------------------------+\n", + "| histograms.raw_qual_hists.gq_hist_all.n_smaller |\n", + "+-------------------------------------------------+\n", + "| int64 |\n", + "+-------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+-------------------------------------------------+\n", + "\n", + "+------------------------------------------------+\n", + "| histograms.raw_qual_hists.gq_hist_all.n_larger |\n", + "+------------------------------------------------+\n", + "| int64 |\n", + "+------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.raw_qual_hists.dp_hist_all.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.raw_qual_hists.dp_hist_all.bin_freq |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [415,5663,30415,76214,120310,300505,170348,18947,3122,1023,686,644,577,50... |\n", + "| [362,4790,27388,71922,120182,305624,173020,19481,3184,1039,690,648,582,50... |\n", + "| [362,4790,27388,71922,120182,305624,173020,19481,3184,1039,690,648,582,50... |\n", + "| [296,4122,24622,67964,120609,309787,175498,19891,3228,1043,694,645,582,50... |\n", + "| [264,3602,22767,65834,118294,313419,178113,20399,3282,1056,696,645,582,50... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+-------------------------------------------------+\n", + "| histograms.raw_qual_hists.dp_hist_all.n_smaller |\n", + "+-------------------------------------------------+\n", + "| int64 |\n", + "+-------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+-------------------------------------------------+\n", + "\n", + "+------------------------------------------------+\n", + "| histograms.raw_qual_hists.dp_hist_all.n_larger |\n", + "+------------------------------------------------+\n", + "| int64 |\n", + "+------------------------------------------------+\n", + "| 252 |\n", + "| 265 |\n", + "| 265 |\n", + "| 264 |\n", + "| 265 |\n", + "+------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.raw_qual_hists.gq_hist_alt.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+------------------------------------------------+\n", + "| histograms.raw_qual_hists.gq_hist_alt.bin_freq |\n", + "+------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------+\n", + "| [1,2,0,1,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,18] |\n", + "| [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,21] |\n", + "| [2,4,1,0,0,2,0,0,0,1,0,0,0,0,0,0,0,0,0,95] |\n", + "| [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1] |\n", + "| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2] |\n", + "+------------------------------------------------+\n", + "\n", + "+-------------------------------------------------+\n", + "| histograms.raw_qual_hists.gq_hist_alt.n_smaller |\n", + "+-------------------------------------------------+\n", + "| int64 |\n", + "+-------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+-------------------------------------------------+\n", + "\n", + "+------------------------------------------------+\n", + "| histograms.raw_qual_hists.gq_hist_alt.n_larger |\n", + "+------------------------------------------------+\n", + "| int64 |\n", + "+------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.raw_qual_hists.dp_hist_alt.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "| [0.00e+00,5.00e+00,1.00e+01,1.50e+01,2.00e+01,2.50e+01,3.00e+01,3.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+------------------------------------------------+\n", + "| histograms.raw_qual_hists.dp_hist_alt.bin_freq |\n", + "+------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------+\n", + "| [0,0,1,3,6,4,2,1,0,1,1,0,1,0,0,1,1,0,0,1] |\n", + "| [0,0,1,2,4,3,4,1,1,0,0,1,0,1,0,0,0,2,0,1] |\n", + "| [0,2,4,4,17,13,14,10,8,9,1,3,2,0,4,0,0,1,1,1] |\n", + "| [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0] |\n", + "+------------------------------------------------+\n", + "\n", + "+-------------------------------------------------+\n", + "| histograms.raw_qual_hists.dp_hist_alt.n_smaller |\n", + "+-------------------------------------------------+\n", + "| int64 |\n", + "+-------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+-------------------------------------------------+\n", + "\n", + "+------------------------------------------------+\n", + "| histograms.raw_qual_hists.dp_hist_alt.n_larger |\n", + "+------------------------------------------------+\n", + "| int64 |\n", + "+------------------------------------------------+\n", + "| 1 |\n", + "| 2 |\n", + "| 11 |\n", + "| 1 |\n", + "| 1 |\n", + "+------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.raw_qual_hists.ab_hist_alt.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "| [0.00e+00,5.00e-02,1.00e-01,1.50e-01,2.00e-01,2.50e-01,3.00e-01,3.50e-01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+------------------------------------------------+\n", + "| histograms.raw_qual_hists.ab_hist_alt.bin_freq |\n", + "+------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------+\n", + "| [0,1,3,2,0,0,2,0,4,4,4,3,1,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,2,0,1,0,3,3,8,5,0,1,0,0,0,0,0,0] |\n", + "| [0,2,7,0,0,1,6,5,19,14,26,17,6,1,1,0,0,0,0,0] |\n", + "| [0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0] |\n", + "+------------------------------------------------+\n", + "\n", + "+-------------------------------------------------+\n", + "| histograms.raw_qual_hists.ab_hist_alt.n_smaller |\n", + "+-------------------------------------------------+\n", + "| int64 |\n", + "+-------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+-------------------------------------------------+\n", + "\n", + "+------------------------------------------------+\n", + "| histograms.raw_qual_hists.ab_hist_alt.n_larger |\n", + "+------------------------------------------------+\n", + "| int64 |\n", + "+------------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+------------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.age_hists.age_hist_het.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.age_hists.age_hist_het.bin_freq |\n", + "+--------------------------------------------+\n", + "| array |\n", + "+--------------------------------------------+\n", + "| [1,1,0,2,5,2,1,0,0,0] |\n", + "| [0,0,1,1,5,3,2,0,0,0] |\n", + "| [0,1,4,4,2,5,0,1,4,1] |\n", + "| [1,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,1,0,1,0,0,0,0,0] |\n", + "+--------------------------------------------+\n", + "\n", + "+---------------------------------------------+\n", + "| histograms.age_hists.age_hist_het.n_smaller |\n", + "+---------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------+\n", + "| 2 |\n", + "| 0 |\n", + "| 1 |\n", + "| 0 |\n", + "| 0 |\n", + "+---------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.age_hists.age_hist_het.n_larger |\n", + "+--------------------------------------------+\n", + "| int64 |\n", + "+--------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+--------------------------------------------+\n", + "\n", + "+------------------------------------------------------------------------------+\n", + "| histograms.age_hists.age_hist_hom.bin_edges |\n", + "+------------------------------------------------------------------------------+\n", + "| array |\n", + "+------------------------------------------------------------------------------+\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "| [3.00e+01,3.50e+01,4.00e+01,4.50e+01,5.00e+01,5.50e+01,6.00e+01,6.50e+01,... |\n", + "+------------------------------------------------------------------------------+\n", + "\n", + "+--------------------------------------------+\n", + "| histograms.age_hists.age_hist_hom.bin_freq |\n", + "+--------------------------------------------+\n", + "| array |\n", + "+--------------------------------------------+\n", + "| [0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0] |\n", + "| [0,0,0,0,0,0,0,0,0,0] |\n", + "+--------------------------------------------+\n", + "\n", + "+---------------------------------------------+\n", + "| histograms.age_hists.age_hist_hom.n_smaller |\n", + "+---------------------------------------------+\n", + "| int64 |\n", + "+---------------------------------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "+---------------------------------------------+\n", + "\n", + "+--------------------------------------------+---------------------------------+\n", + "| histograms.age_hists.age_hist_hom.n_larger | in_silico_predictors.cadd.phred |\n", + "+--------------------------------------------+---------------------------------+\n", + "| int64 | float32 |\n", + "+--------------------------------------------+---------------------------------+\n", + "| 0 | 3.61e+00 |\n", + "| 0 | 2.90e+00 |\n", + "| 0 | 2.38e+00 |\n", + "| 0 | 1.22e+00 |\n", + "| 0 | 6.25e+00 |\n", + "+--------------------------------------------+---------------------------------+\n", + "\n", + "+-------------------------------------+--------------------------------+\n", + "| in_silico_predictors.cadd.raw_score | in_silico_predictors.revel_max |\n", + "+-------------------------------------+--------------------------------+\n", + "| float32 | float64 |\n", + "+-------------------------------------+--------------------------------+\n", + "| 2.42e-01 | NA |\n", + "| 1.80e-01 | NA |\n", + "| 1.31e-01 | NA |\n", + "| -1.85e-02 | NA |\n", + "| 4.76e-01 | NA |\n", + "+-------------------------------------+--------------------------------+\n", + "\n", + "+--------------------------------------+\n", + "| in_silico_predictors.spliceai_ds_max |\n", + "+--------------------------------------+\n", + "| float32 |\n", + "+--------------------------------------+\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "| 0.00e+00 |\n", + "+--------------------------------------+\n", + "\n", + "+------------------------------------------+-----------------------------+\n", + "| in_silico_predictors.pangolin_largest_ds | in_silico_predictors.phylop |\n", + "+------------------------------------------+-----------------------------+\n", + "| float64 | float64 |\n", + "+------------------------------------------+-----------------------------+\n", + "| 1.20e-01 | -4.68e-01 |\n", + "| 5.00e-02 | 7.10e-02 |\n", + "| 3.00e-02 | 7.10e-02 |\n", + "| 4.00e-02 | -1.27e+00 |\n", + "| 2.10e-01 | 1.62e+00 |\n", + "+------------------------------------------+-----------------------------+\n", + "\n", + "+-------------------------------+-----------------------------------+\n", + "| in_silico_predictors.sift_max | in_silico_predictors.polyphen_max |\n", + "+-------------------------------+-----------------------------------+\n", + "| float64 | float64 |\n", + "+-------------------------------+-----------------------------------+\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "| NA | NA |\n", + "+-------------------------------+-----------------------------------+\n", + "showing top 5 rows" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The total number of other variants passing filters in DRD2 is: 783\n" + ] + } + ], "source": [ "var_ht = filter_by_consequence_category(other=True, ht=drd2_ht)\n", "var_ht.show(5)\n", @@ -658,7 +5987,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 10, "id": "a25ddd1b", "metadata": {}, "outputs": [], @@ -676,10 +6005,52 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 11, "id": "4f78166f", "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
afr
locus
alleles
filters
AC
AF
AN
homozygote_count
locus<GRCh38>array<str>set<str>int32float64int32int64
chr11:113410736["G","A"]{}00.00e+00334800
chr11:113410736["G","T"]{}00.00e+00334800
chr11:113410739["G","A"]{}00.00e+00334780
chr11:113410751["G","A"]{}00.00e+00334800
chr11:113410754["C","T"]{}123.58e-04334801

showing top 5 rows

\n" + ], + "text/plain": [ + "+-----------------+------------+----------+--------+----------+--------+\n", + "| locus | alleles | filters | afr.AC | afr.AF | afr.AN |\n", + "+-----------------+------------+----------+--------+----------+--------+\n", + "| locus | array | set | int32 | float64 | int32 |\n", + "+-----------------+------------+----------+--------+----------+--------+\n", + "| chr11:113410736 | [\"G\",\"A\"] | {} | 0 | 0.00e+00 | 33480 |\n", + "| chr11:113410736 | [\"G\",\"T\"] | {} | 0 | 0.00e+00 | 33480 |\n", + "| chr11:113410739 | [\"G\",\"A\"] | {} | 0 | 0.00e+00 | 33478 |\n", + "| chr11:113410751 | [\"G\",\"A\"] | {} | 0 | 0.00e+00 | 33480 |\n", + "| chr11:113410754 | [\"C\",\"T\"] | {} | 12 | 3.58e-04 | 33480 |\n", + "+-----------------+------------+----------+--------+----------+--------+\n", + "\n", + "+----------------------+\n", + "| afr.homozygote_count |\n", + "+----------------------+\n", + "| int64 |\n", + "+----------------------+\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 0 |\n", + "| 1 |\n", + "+----------------------+\n", + "showing top 5 rows" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "var_ht = get_ancestry_callstats(gen_ancs='afr', ht=drd2_synonymous_ht)\n", "var_ht.show(5)" @@ -695,10 +6066,118 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 12, "id": "e3a07848", "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
afr
amr
eas
mid
nfe
sas
locus
alleles
filters
AC
AF
AN
homozygote_count
AC
AF
AN
homozygote_count
AC
AF
AN
homozygote_count
AC
AF
AN
homozygote_count
AC
AF
AN
homozygote_count
AC
AF
AN
homozygote_count
locus<GRCh38>array<str>set<str>int32float64int32int64int32float64int32int64int32float64int32int64int32float64int32int64int32float64int32int64int32float64int32int64
chr11:113410736["G","A"]{}00.00e+0033480000.00e+0044724000.00e+0039700000.00e+0057620151.35e-051112010000.00e+00862540
chr11:113410736["G","T"]{}00.00e+0033480000.00e+0044724000.00e+0039700000.00e+005762018.99e-071112010000.00e+00862540
chr11:113410739["G","A"]{}00.00e+0033478000.00e+0044724000.00e+0039700000.00e+005764000.00e+001112010000.00e+00862560
chr11:113410751["G","A"]{}00.00e+0033480000.00e+0044724000.00e+0039700000.00e+005768018.99e-071112012000.00e+00862580
chr11:113410754["C","T"]{}123.58e-04334801439.61e-0444724000.00e+0039700081.39e-03576803282.95e-041112012000.00e+00862580
chr11:113410757["G","A"]{}00.00e+0033480000.00e+0044724012.52e-0539700000.00e+005766000.00e+001112012000.00e+00862580
chr11:113410757["G","T"]{}00.00e+0033480000.00e+0044724000.00e+0039700000.00e+005766000.00e+001112012033.48e-05862580
chr11:113410763["C","T"]{}00.00e+0033480000.00e+0044724000.00e+0039700000.00e+005768000.00e+001112010011.16e-05862580
chr11:113410769["G","A"]{}00.00e+0033480000.00e+0044724000.00e+0039700000.00e+005768021.80e-061112012000.00e+00862580
chr11:113410775["G","A"]{}00.00e+0033480000.00e+0044724012.52e-0539700000.00e+005768018.99e-071112010000.00e+00862580

showing top 10 rows

\n" + ], + "text/plain": [ + "+-----------------+------------+----------+--------+----------+--------+\n", + "| locus | alleles | filters | afr.AC | afr.AF | afr.AN |\n", + "+-----------------+------------+----------+--------+----------+--------+\n", + "| locus | array | set | int32 | float64 | int32 |\n", + "+-----------------+------------+----------+--------+----------+--------+\n", + "| chr11:113410736 | [\"G\",\"A\"] | {} | 0 | 0.00e+00 | 33480 |\n", + "| chr11:113410736 | [\"G\",\"T\"] | {} | 0 | 0.00e+00 | 33480 |\n", + "| chr11:113410739 | [\"G\",\"A\"] | {} | 0 | 0.00e+00 | 33478 |\n", + "| chr11:113410751 | [\"G\",\"A\"] | {} | 0 | 0.00e+00 | 33480 |\n", + "| chr11:113410754 | [\"C\",\"T\"] | {} | 12 | 3.58e-04 | 33480 |\n", + "| chr11:113410757 | [\"G\",\"A\"] | {} | 0 | 0.00e+00 | 33480 |\n", + "| chr11:113410757 | [\"G\",\"T\"] | {} | 0 | 0.00e+00 | 33480 |\n", + "| chr11:113410763 | [\"C\",\"T\"] | {} | 0 | 0.00e+00 | 33480 |\n", + "| chr11:113410769 | [\"G\",\"A\"] | {} | 0 | 0.00e+00 | 33480 |\n", + "| chr11:113410775 | [\"G\",\"A\"] | {} | 0 | 0.00e+00 | 33480 |\n", + "+-----------------+------------+----------+--------+----------+--------+\n", + "\n", + "+----------------------+--------+----------+--------+----------------------+\n", + "| afr.homozygote_count | amr.AC | amr.AF | amr.AN | amr.homozygote_count |\n", + "+----------------------+--------+----------+--------+----------------------+\n", + "| int64 | int32 | float64 | int32 | int64 |\n", + "+----------------------+--------+----------+--------+----------------------+\n", + "| 0 | 0 | 0.00e+00 | 44724 | 0 |\n", + "| 0 | 0 | 0.00e+00 | 44724 | 0 |\n", + "| 0 | 0 | 0.00e+00 | 44724 | 0 |\n", + "| 0 | 0 | 0.00e+00 | 44724 | 0 |\n", + "| 1 | 43 | 9.61e-04 | 44724 | 0 |\n", + "| 0 | 0 | 0.00e+00 | 44724 | 0 |\n", + "| 0 | 0 | 0.00e+00 | 44724 | 0 |\n", + "| 0 | 0 | 0.00e+00 | 44724 | 0 |\n", + "| 0 | 0 | 0.00e+00 | 44724 | 0 |\n", + "| 0 | 0 | 0.00e+00 | 44724 | 0 |\n", + "+----------------------+--------+----------+--------+----------------------+\n", + "\n", + "+--------+----------+--------+----------------------+--------+----------+\n", + "| eas.AC | eas.AF | eas.AN | eas.homozygote_count | mid.AC | mid.AF |\n", + "+--------+----------+--------+----------------------+--------+----------+\n", + "| int32 | float64 | int32 | int64 | int32 | float64 |\n", + "+--------+----------+--------+----------------------+--------+----------+\n", + "| 0 | 0.00e+00 | 39700 | 0 | 0 | 0.00e+00 |\n", + "| 0 | 0.00e+00 | 39700 | 0 | 0 | 0.00e+00 |\n", + "| 0 | 0.00e+00 | 39700 | 0 | 0 | 0.00e+00 |\n", + "| 0 | 0.00e+00 | 39700 | 0 | 0 | 0.00e+00 |\n", + "| 0 | 0.00e+00 | 39700 | 0 | 8 | 1.39e-03 |\n", + "| 1 | 2.52e-05 | 39700 | 0 | 0 | 0.00e+00 |\n", + "| 0 | 0.00e+00 | 39700 | 0 | 0 | 0.00e+00 |\n", + "| 0 | 0.00e+00 | 39700 | 0 | 0 | 0.00e+00 |\n", + "| 0 | 0.00e+00 | 39700 | 0 | 0 | 0.00e+00 |\n", + "| 1 | 2.52e-05 | 39700 | 0 | 0 | 0.00e+00 |\n", + "+--------+----------+--------+----------------------+--------+----------+\n", + "\n", + "+--------+----------------------+--------+----------+---------+\n", + "| mid.AN | mid.homozygote_count | nfe.AC | nfe.AF | nfe.AN |\n", + "+--------+----------------------+--------+----------+---------+\n", + "| int32 | int64 | int32 | float64 | int32 |\n", + "+--------+----------------------+--------+----------+---------+\n", + "| 5762 | 0 | 15 | 1.35e-05 | 1112010 |\n", + "| 5762 | 0 | 1 | 8.99e-07 | 1112010 |\n", + "| 5764 | 0 | 0 | 0.00e+00 | 1112010 |\n", + "| 5768 | 0 | 1 | 8.99e-07 | 1112012 |\n", + "| 5768 | 0 | 328 | 2.95e-04 | 1112012 |\n", + "| 5766 | 0 | 0 | 0.00e+00 | 1112012 |\n", + "| 5766 | 0 | 0 | 0.00e+00 | 1112012 |\n", + "| 5768 | 0 | 0 | 0.00e+00 | 1112010 |\n", + "| 5768 | 0 | 2 | 1.80e-06 | 1112012 |\n", + "| 5768 | 0 | 1 | 8.99e-07 | 1112010 |\n", + "+--------+----------------------+--------+----------+---------+\n", + "\n", + "+----------------------+--------+----------+--------+----------------------+\n", + "| nfe.homozygote_count | sas.AC | sas.AF | sas.AN | sas.homozygote_count |\n", + "+----------------------+--------+----------+--------+----------------------+\n", + "| int64 | int32 | float64 | int32 | int64 |\n", + "+----------------------+--------+----------+--------+----------------------+\n", + "| 0 | 0 | 0.00e+00 | 86254 | 0 |\n", + "| 0 | 0 | 0.00e+00 | 86254 | 0 |\n", + "| 0 | 0 | 0.00e+00 | 86256 | 0 |\n", + "| 0 | 0 | 0.00e+00 | 86258 | 0 |\n", + "| 0 | 0 | 0.00e+00 | 86258 | 0 |\n", + "| 0 | 0 | 0.00e+00 | 86258 | 0 |\n", + "| 0 | 3 | 3.48e-05 | 86258 | 0 |\n", + "| 0 | 1 | 1.16e-05 | 86258 | 0 |\n", + "| 0 | 0 | 0.00e+00 | 86258 | 0 |\n", + "| 0 | 0 | 0.00e+00 | 86258 | 0 |\n", + "+----------------------+--------+----------+--------+----------------------+\n", + "showing top 10 rows" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "var_ht = get_ancestry_callstats(gen_ancs=['afr', 'amr', 'eas', 'mid', 'nfe', 'sas'], ht=drd2_synonymous_ht)\n", "var_ht.show()" @@ -722,10 +6201,39 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 13, "id": "4845be1d-d4c0-4b83-9e92-bd72379b8a99", "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "
afr
locus
alleles
filters
AC
AF
AN
homozygote_count
locus<GRCh38>array<str>set<str>int32float64int32int64
chr22:15528692["C","G"]{}6351.90e-02333806
" + ], + "text/plain": [ + "+----------------+------------+----------+--------+----------+--------+\n", + "| locus | alleles | filters | afr.AC | afr.AF | afr.AN |\n", + "+----------------+------------+----------+--------+----------+--------+\n", + "| locus | array | set | int32 | float64 | int32 |\n", + "+----------------+------------+----------+--------+----------+--------+\n", + "| chr22:15528692 | [\"C\",\"G\"] | {} | 635 | 1.90e-02 | 33380 |\n", + "+----------------+------------+----------+--------+----------+--------+\n", + "\n", + "+----------------------+\n", + "| afr.homozygote_count |\n", + "+----------------------+\n", + "| int64 |\n", + "+----------------------+\n", + "| 6 |\n", + "+----------------------+" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "var_ht = get_single_variant_ancestry_callstats(gen_ancs='AFR', contig='chr22', position=15528692, ref='C', alt='G')\n", "var_ht.show(5)" @@ -741,10 +6249,36 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 14, "id": "bee28829", "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "
afr
locus
alleles
filters
AC
AF
AN
homozygote_count
locus<GRCh38>array<str>set<str>int32float64int32int64
" + ], + "text/plain": [ + "+---------------+------------+----------+--------+---------+--------+\n", + "| locus | alleles | filters | afr.AC | afr.AF | afr.AN |\n", + "+---------------+------------+----------+--------+---------+--------+\n", + "| locus | array | set | int32 | float64 | int32 |\n", + "+---------------+------------+----------+--------+---------+--------+\n", + "+---------------+------------+----------+--------+---------+--------+\n", + "\n", + "+----------------------+\n", + "| afr.homozygote_count |\n", + "+----------------------+\n", + "| int64 |\n", + "+----------------------+\n", + "+----------------------+" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "var_ht = get_single_variant_ancestry_callstats(gen_ancs='AFR', contig='chr22', position=15528692, ref='C', alt='A')\n", "var_ht.show(5)" From 233704c5571abb781b7710d2c194bacbe2432ed0 Mon Sep 17 00:00:00 2001 From: Qin He <44242118+KoalaQin@users.noreply.github.com> Date: Wed, 15 Jan 2025 18:04:44 -0500 Subject: [PATCH 095/121] Apply suggestions --- gnomad_toolbox/notebooks/explore_release_data.ipynb | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/gnomad_toolbox/notebooks/explore_release_data.ipynb b/gnomad_toolbox/notebooks/explore_release_data.ipynb index 18cc006..5070564 100644 --- a/gnomad_toolbox/notebooks/explore_release_data.ipynb +++ b/gnomad_toolbox/notebooks/explore_release_data.ipynb @@ -523,7 +523,7 @@ " \n", "\n", "\n", - "**NOTE:** In this notebook, we show examples to mainly explore our GRCh38 release datasets, click on the full name of the datasets will take you to the Downloads page on gnomAD Browser, and the abbreviations or the data_type to each section in this notebook (just as if you clink on the Table of Contents)." + "**NOTE**: In this notebook, most of the examples show the GRCh38 release datasets. Clicking on the full name under the Datasets column in the above table links to the relevant section of the Downloads page on gnomAD Browser. Clicking on the abbreviation under the data_type column links to the relevant section in this notebook that includes an example of loading and exploring the Hail Table." ] }, { From 306daf751691baad043522cc4720dce7e1b39b0a Mon Sep 17 00:00:00 2001 From: Qin He <44242118+KoalaQin@users.noreply.github.com> Date: Wed, 15 Jan 2025 18:11:43 -0500 Subject: [PATCH 096/121] Add jupyter server version limit to avoid jupyter notebook 403 error --- requirements.txt | 1 + 1 file changed, 1 insertion(+) diff --git a/requirements.txt b/requirements.txt index b0183e0..6604853 100644 --- a/requirements.txt +++ b/requirements.txt @@ -7,3 +7,4 @@ jupyterlab nodejs npm jupyter_bokeh +jupyter-server<2.0.0 From aabf57448fb31964d5ac4b82d79443f04e201a90 Mon Sep 17 00:00:00 2001 From: jkgoodrich <33063077+jkgoodrich@users.noreply.github.com> Date: Tue, 21 Jan 2025 16:08:55 -0700 Subject: [PATCH 097/121] Add changes to the README.md and support for jupyter configs --- MANIFEST.in | 2 + README.md | 166 +++++++++++++++++++++------------- gnomad_toolbox/scripts.py | 184 ++++++++++++++++++++++++++++++++++++++ setup.py | 8 ++ 4 files changed, 296 insertions(+), 64 deletions(-) create mode 100644 MANIFEST.in create mode 100644 gnomad_toolbox/scripts.py diff --git a/MANIFEST.in b/MANIFEST.in new file mode 100644 index 0000000..2151586 --- /dev/null +++ b/MANIFEST.in @@ -0,0 +1,2 @@ +include gnomad_toolbox/notebooks/*.ipynb +include gnomad_toolbox/configs/* diff --git a/README.md b/README.md index ae3d9fb..fab60eb 100644 --- a/README.md +++ b/README.md @@ -1,14 +1,17 @@ # gnomad-toolbox -This repository provides a set of Python functions to simplify working with gnomAD Hail Tables. It includes tools for data access, filtering, and analysis. +This repository provides a set of Python functions to simplify working with gnomAD Hail Tables. It includes tools for +data access, filtering, and analysis. + +**Disclaimer: This package is in its early stages of development, and we are actively working on improving it. There may +be bugs, and the API may change. We welcome feedback and contributions.** ## Repository structure ``` -ggnomad_toolbox/ +gnomad_toolbox/ │ ├── load_data.py # Functions to load gnomAD release Hail Tables. │ ├── filtering/ -│ ├── __init__.py │ ├── constraint.py # Functions to filter constraint metrics (e.g., observed/expected ratios). │ ├── coverage.py # Functions to filter variants or regions based on coverage thresholds. │ ├── frequency.py # Functions to filter variants by allele frequency thresholds. @@ -17,40 +20,56 @@ ggnomad_toolbox/ │ ├── vep.py # Functions to filter variants based on VEP (Variant Effect Predictor) annotations. │ ├── analysis/ -│ ├── __init__.py │ ├── general.py # General analysis functions, such as summarizing variant statistics. │ ├── notebooks/ -│ ├── intro_to_release_data.ipynb # Jupyter notebook introducing the loading of gnomAD release data. +│ ├── explore_release_data.ipynb # Jupyter notebook introducing the loading of gnomAD release data. +| |── intro_to_filtering_variant_data.ipynb # Jupyter notebook introducing the filtering of gnomAD variant data. +| |── dive_into_secondary_analyses.ipynb # Jupyter notebook introducing secondary analyses using gnomAD data. ``` +--- + ## Setting Up Your Environment for Hail and gnomAD Toolbox This guide provides step-by-step instructions to set up a working environment for -using Hail and the gnomad_toolbox. +using Hail and the gnomAD Toolbox. + +**Disclaimer: We provide this guide to help you set up your environment, but we cannot +guarantee that it will work on all systems. If you encounter any issues, you can +reach out to us on the [gnomAD Forum](https://discuss.gnomad.broadinstitute.org), and +if it is something that we have come across before, we will try to help you out.** -Prerequisites +### Prerequisites Before starting, ensure you have the following: * Administrator access to your system to install software. * Internet connection for downloading dependencies. - - -## Part 1: Setting Up Your Environment +* **Note: Hail 0.2.127+ requires Java 8 or Java 11 and jupyter labs requires Java +11+, and if you have an Apple M1 or M2, you must have arm64 Java installed, you +can first check your Java version by running:** + ```commandline + java -version + ``` + and check if you have the arm64 Java by running: + ```commandline + file $JAVA_HOME/bin/java + ``` + If you don't have the arm64 Java, you can find it [here](https://www.azul.com/downloads/?os=macos&architecture=arm-64-bit&package=jre#zulu) ### Install Miniconda Miniconda is a lightweight distribution of Conda that includes just Conda and its dependencies. 1. Download Miniconda for your system from the [official website](https://docs.anaconda.com/miniconda/install/). 2. Follow the installation instructions for your operating system: - - • Linux/macOS: Run the installer script in your terminal: - ``` - bash Miniconda3-latest-Linux-x86_64.sh - ``` - • Windows: Run the installer executable and follow the installation wizard. - (# TODO: Will we encourage users to use Windows?) + * Linux/macOS: Run the installer script in your terminal: + ```commandline + bash Miniconda3-latest-Linux-x86_64.sh + ``` + * Windows: Run the installer executable and follow the installation wizard. + **Note: Our team has not tested the gnomad-toolbox on Windows, so we cannot guarantee that it will + work as expected or support any issues that may arise.** 3. Confirm the installation by running: - ``` + ```commandline conda --version ``` @@ -63,67 +82,51 @@ Miniconda is a lightweight distribution of Conda that includes just Conda and it ```commandline conda activate gnomad-toolbox ``` -3. Clone the gnomad-toolbox repository and install the dependencies: +3. Install the gnomad-toolbox package and its dependencies: + * To install the latest version from PyPI: + ```commandline + pip install gnomad-toolbox + ``` + * To install the most up-to-date version from GitHub: + ```commandline + pip install git+https://github.com/broadinstitute/gnomad-toolbox@main + ``` + Note: If you encounter an error like: `pg_config executable not found`, you may need to install the `postgresql` package: ```commandline - cd /path/to/your/directory - git clone https://github.com/broadinstitute/gnomad-toolbox.git - cd gnomad-toolbox - pip install -r requirements.txt - ``` - **Note:** Hail 0.2.127+ requires Java 8 or Java 11 and jupyter labs requires Java - 11+, and if you have an Apple M1 or M2, you must have arm64 Java installed, you - can first check your Java version by running: - ```commandline - java -version - ``` - and check if you have the arm64 Java by running: - ```commandline - file $JAVA_HOME/bin/java - ``` - If you don't have the arm64 Java, you can find it [here](https://www.azul.com/downloads/?os=macos&architecture=arm-64-bit&package=jre#zulu) - - You might encounter errors when installing the dependencies, such as `pg_config - executable not found`. If so, you may need to install additional system packages. - For example, on Ubuntu, you can install the `libpq-dev` package: - ```commandline - sudo apt-get install libpq-dev - ``` - or on macOS, you can install the `postgresql` package: - ```commandline - brew install postgresql + conda install postgresql ``` ### Verify the Setup - Start a Python shell and test if Hail and gnomad_toolbox are working: - ```commandline - import hail as hl - from gnomad_toolbox.analysis.general import get_variant_count_by_freq_bin - hl.init() - print("Hail and gnomad_toolbox setup is complete!") - ``` - Or open the notebooks: - ```commandline - jupyter lab - ``` +Start a Python shell and test if Hail and gnomad_toolbox are working: +```python +import hail as hl +import gnomad_toolbox +hl.init() +print("Hail and gnomad_toolbox setup is complete!") +``` -## Part2: Accessing gnomAD Data Locally with example notebooks +## Accessing gnomAD Data Locally with example notebooks If you already have experience with gcloud and have no problem running these notebooks, you can skip this section. +### Prerequisites +You must have a Google Cloud account and a project set up. + * If you don't have a Google Cloud account, you can sign up for a free trial [here](https://cloud.google.com/free). + ### Install Google Cloud SDK (gcloud) The Google Cloud SDK is required to interact with Google Cloud services and access gnomAD public data locally. 1. Follow the official Google Cloud SDK installation [guide](https://cloud.google.com/sdk/docs/install) for your operating system. 2. After installation, initialize gcloud to log in and set up your default project: - ``` + ```commandline gcloud init ``` 3. You can check your gcloud config by: - ``` + ```commandline gcloud config list ``` or set the default project: - ``` + ```commandline gcloud config set project {YOUR_PROJECT_ID} ``` @@ -131,10 +134,45 @@ The Google Cloud SDK is required to interact with Google Cloud services and acce You will need to create a service account in gcloud console IAM & Admin or using cloud CLI. Then you can create a key for service account and set the key. +1. Create a service account: + ```commandline + gcloud iam service-accounts create hail-local-sa --display-name "Hail Local Service Account" + ``` +2. Set the GOOGLE_APPLICATION_CREDENTIALS environment variable to the path of the service account key: ```commandline - gcloud iam service-accounts keys create hail-local-sa-key.json --iam-account {YOUR_SERVICE_ACCOUNT} export GOOGLE_APPLICATION_CREDENTIALS=./hail-local-sa-key.json ``` -Now, you can access gnomAD data locally using the gnomad_toolbox functions, however, -you should avoid running queries on the full dataset as it may take a long time and -consume a lot of resources, and most importantly, it may generate costs. + +### Using the Example Notebooks +The gnomAD tool-box package includes example notebooks to help you get started with +loading and filtering gnomAD data. + +1. Run the `copy-gnomad-toolbox-notebooks` command to copy the example notebooks to a new directory: + ```commandline + copy-gnomad-toolbox-notebooks /path/to/copy/notebooks + ``` + Note: If the specified directory already exists, you will need to provide a different path, or if you want to + overwrite the existing directory, you will need to add the `--overwrite` flag: + ```commandline + copy-gnomad-toolbox-notebooks /path/to/copy/notebooks --overwrite + ``` + +2. Use the `gnomad-toolbox-jupyter` command to start a Jupyter server: + * To start jupyter Notebook: + ```commandline + gnomad-toolbox-jupyter notebook + ``` + * To start jupyter Lab: + ```commandline + gnomad-toolbox-jupyter lab + ``` + + These commands will start a Jupyter notebook/lab server and open a new tab in your default web browser. The notebook + directory containing the example notebooks will be displayed. + +3. Open the `explore_release_data.ipynb` notebook to learn how to load gnomAD release data. + +4. Explore the other notebooks to learn about additional functionalities and analyses you can perform with gnomAD data. + +5. Try adding your own queries to the notebooks to explore the data further. +**WARNING: you should avoid running queries on the full dataset as it may take a long time.** diff --git a/gnomad_toolbox/scripts.py b/gnomad_toolbox/scripts.py new file mode 100644 index 0000000..8b4c589 --- /dev/null +++ b/gnomad_toolbox/scripts.py @@ -0,0 +1,184 @@ +"""Script to copy Jupyter notebooks and configurations to a user-specified directory.""" + +import json +import logging +import os +import shutil +import subprocess +import sys +from typing import Union + +import click + +# Constants +CONFIG_FILE = os.path.expanduser("~/.gnomad_toolbox_config.json") +CONFIGS_DIR = "configs" +NOTEBOOKS_DIR = "notebooks" + +# Logging configuration +logging.basicConfig(format="%(levelname)s (%(name)s %(lineno)s): %(message)s") +logger = logging.getLogger("gnomad_toolbox") +logger.setLevel(logging.INFO) + + +def load_config(config_file: str = CONFIG_FILE) -> dict: + """ + Load configuration from a JSON file. + + :param config_file: Path to the configuration file. + :return: The configuration dictionary. + """ + if os.path.exists(config_file): + with open(config_file, "r") as f: + return json.load(f) + return {} + + +def save_config(config: dict, config_file: str = CONFIG_FILE) -> None: + """ + Save configuration to a JSON file. + + :param config: The configuration dictionary. + :param config_file: Path to the configuration file. + :return: None. + """ + with open(config_file, "w") as f: + json.dump(config, f, indent=4) + + +def set_config( + key: str, value: Union[str, dict], config_file: str = CONFIG_FILE +) -> None: + """ + Add a key-value pair to the configuration file, supporting nested keys. + + :param key: The key to save, with nesting indicated by periods. + :param value: The value to save. + :param config_file: Path to the configuration file. + :return: None. + """ + config = load_config(config_file) + keys = key.split(".") + current = config + + # Traverse or create nested dictionaries + for k in keys[:-1]: + current = current.setdefault(k, {}) + + current[keys[-1]] = value + save_config(config, config_file) + + +def get_config(key: str, config_file: str = CONFIG_FILE) -> Union[str, None]: + """ + Retrieve a value from the configuration file by key, supporting nested keys. + + :param key: The key to retrieve, with nesting indicated by periods. + :param config_file: Path to the configuration file. + :return: The value associated with the key, or None if the key doesn't exist. + """ + config = load_config(config_file) + keys = key.split(".") + current = config + + for k in keys: + if k in current: + current = current[k] + else: + return None + + return current + + +def copy_directory(src: str, dest: str, overwrite: bool = False) -> None: + """ + Copy a directory to a destination. + + :param src: Source directory. + :param dest: Destination directory. + :param overwrite: Whether to overwrite if the destination exists. + :return: None. + """ + if os.path.exists(dest): + if overwrite: + shutil.rmtree(dest) + logger.info("Overwriting existing directory: %s", dest) + else: + raise FileExistsError(f"Directory '{dest}' already exists.") + shutil.copytree(src, dest) + logger.info("Copied %s to %s", src, dest) + + +def copy_notebooks(destination: str, overwrite: bool = False) -> None: + """ + Copy Jupyter notebooks and configurations to a user-specified directory. + + :param destination: The target directory. + :param overwrite: Whether to overwrite existing files/directories. + :return: None. + """ + pkg_dir = os.path.dirname(__file__) + notebook_dir = os.path.join(pkg_dir, NOTEBOOKS_DIR) + config_dir = os.path.join(pkg_dir, CONFIGS_DIR) + + # Validate source directories + if not os.path.exists(notebook_dir): + raise FileNotFoundError(f"No notebooks directory found at {notebook_dir}") + if not os.path.exists(config_dir): + raise FileNotFoundError(f"No configs directory found at {config_dir}") + + # Copy notebooks + copy_directory(notebook_dir, destination, overwrite) + + # Copy configs + config_dest = os.path.join(destination, "jupyter_configs") + copy_directory(config_dir, config_dest, overwrite) + + # Update configuration + set_config("notebook_dir", destination) + logger.info("Default notebook directory set to: %s", destination) + + +@click.command() +@click.argument("destination", type=click.Path()) +@click.option( + "--overwrite", is_flag=True, help="Overwrite existing files if necessary." +) +def copy_notebooks_cli(destination: str, overwrite: bool) -> None: + """ + CLI command to copy Jupyter notebooks and configurations. + + :param destination: Target directory for the notebooks and configs. + :param overwrite: Whether to overwrite existing files. + :return: None. + """ + try: + copy_notebooks(destination, overwrite) + logger.info("Notebooks successfully copied to %s.", destination) + except Exception as e: + logger.error("Error during notebook copy: %s", e) + + +def run_jupyter_cli() -> None: + """ + Launch Jupyter Lab or Notebook using the configured directory. + + :return: None. + """ + notebook_dir = get_config("notebook_dir") + if not notebook_dir: + logger.error("No notebook directory configured. Run `copy-notebooks` first.") + return + + if not os.path.exists(notebook_dir): + logger.error("Configured notebook directory does not exist: %s", notebook_dir) + return + + # Set Jupyter configuration directory + jupyter_config_dir = os.path.join(notebook_dir, "jupyter_configs") + os.environ["JUPYTER_CONFIG_DIR"] = jupyter_config_dir + logger.info("Launching Jupyter with config directory: %s", jupyter_config_dir) + + # Launch Jupyter + command = sys.argv[1] if len(sys.argv) > 1 else "lab" + subprocess.run(["jupyter", command]) diff --git a/setup.py b/setup.py index 78ab1cb..c3cf301 100644 --- a/setup.py +++ b/setup.py @@ -22,6 +22,8 @@ long_description_content_type="text/markdown", url="https://github.com/broadinstitute/gnomad-toolbox", packages=setuptools.find_namespace_packages(include=["gnomad_toolbox*"]), + include_package_data=True, + package_data={"gnomad_toolbox": ["notebooks/*.ipynb", "configs/*"]}, project_urls={ "Documentation": "https://broadinstitute.github.io/gnomad-toolbox/", "Source Code": "https://github.com/broadinstitute/gnomad-toolbox", @@ -36,5 +38,11 @@ "Development Status :: 4 - Beta", ], python_requires=">=3.9", + entry_points={ + "console_scripts": [ + "copy-gnomad-toolbox-notebooks=gnomad_toolbox.scripts:copy_notebooks_cli", + "gnomad-toolbox-jupyter=gnomad_toolbox.scripts:run_jupyter_cli", + ], + }, install_requires=install_requires, ) From b9b5095f95b96ce00b74201c80088006e176f4c1 Mon Sep 17 00:00:00 2001 From: jkgoodrich <33063077+jkgoodrich@users.noreply.github.com> Date: Tue, 21 Jan 2025 16:10:14 -0700 Subject: [PATCH 098/121] Add jupyter configs --- configs/jupyter_notebook_config.json | 7 +++++++ .../@jupyterlab/toc-extension/plugin.jupyterlab-settings | 5 +++++ 2 files changed, 12 insertions(+) create mode 100644 configs/jupyter_notebook_config.json create mode 100644 configs/lab/user-settings/@jupyterlab/toc-extension/plugin.jupyterlab-settings diff --git a/configs/jupyter_notebook_config.json b/configs/jupyter_notebook_config.json new file mode 100644 index 0000000..d2d2d3e --- /dev/null +++ b/configs/jupyter_notebook_config.json @@ -0,0 +1,7 @@ +{ + "NotebookApp": { + "nbserver_extensions": { + "jupyter_nbextensions_configurator": true + } + } +} diff --git a/configs/lab/user-settings/@jupyterlab/toc-extension/plugin.jupyterlab-settings b/configs/lab/user-settings/@jupyterlab/toc-extension/plugin.jupyterlab-settings new file mode 100644 index 0000000..86e72da --- /dev/null +++ b/configs/lab/user-settings/@jupyterlab/toc-extension/plugin.jupyterlab-settings @@ -0,0 +1,5 @@ +{ + "numberingH1": false, + "includeOutput": false, + "syncCollapseState": false +} From a1eece825709f0168e9e8ed0162df33b5c798aed Mon Sep 17 00:00:00 2001 From: jkgoodrich <33063077+jkgoodrich@users.noreply.github.com> Date: Tue, 21 Jan 2025 16:36:43 -0700 Subject: [PATCH 099/121] Move jupyter configs --- {configs => gnomad_toolbox/configs}/jupyter_notebook_config.json | 0 .../@jupyterlab/toc-extension/plugin.jupyterlab-settings | 0 2 files changed, 0 insertions(+), 0 deletions(-) rename {configs => gnomad_toolbox/configs}/jupyter_notebook_config.json (100%) rename {configs => gnomad_toolbox/configs}/lab/user-settings/@jupyterlab/toc-extension/plugin.jupyterlab-settings (100%) diff --git a/configs/jupyter_notebook_config.json b/gnomad_toolbox/configs/jupyter_notebook_config.json similarity index 100% rename from configs/jupyter_notebook_config.json rename to gnomad_toolbox/configs/jupyter_notebook_config.json diff --git a/configs/lab/user-settings/@jupyterlab/toc-extension/plugin.jupyterlab-settings b/gnomad_toolbox/configs/lab/user-settings/@jupyterlab/toc-extension/plugin.jupyterlab-settings similarity index 100% rename from configs/lab/user-settings/@jupyterlab/toc-extension/plugin.jupyterlab-settings rename to gnomad_toolbox/configs/lab/user-settings/@jupyterlab/toc-extension/plugin.jupyterlab-settings From 18b1a9683512ece9b58ebfba4155d007532d4f97 Mon Sep 17 00:00:00 2001 From: jkgoodrich <33063077+jkgoodrich@users.noreply.github.com> Date: Tue, 21 Jan 2025 16:47:39 -0700 Subject: [PATCH 100/121] Modify the Jupyter config file to set the notebook directory. --- gnomad_toolbox/scripts.py | 22 +++++++++++++--------- 1 file changed, 13 insertions(+), 9 deletions(-) diff --git a/gnomad_toolbox/scripts.py b/gnomad_toolbox/scripts.py index 8b4c589..a184170 100644 --- a/gnomad_toolbox/scripts.py +++ b/gnomad_toolbox/scripts.py @@ -10,12 +10,10 @@ import click -# Constants CONFIG_FILE = os.path.expanduser("~/.gnomad_toolbox_config.json") CONFIGS_DIR = "configs" NOTEBOOKS_DIR = "notebooks" -# Logging configuration logging.basicConfig(format="%(levelname)s (%(name)s %(lineno)s): %(message)s") logger = logging.getLogger("gnomad_toolbox") logger.setLevel(logging.INFO) @@ -61,7 +59,7 @@ def set_config( keys = key.split(".") current = config - # Traverse or create nested dictionaries + # Traverse or create nested dictionaries. for k in keys[:-1]: current = current.setdefault(k, {}) @@ -121,23 +119,29 @@ def copy_notebooks(destination: str, overwrite: bool = False) -> None: notebook_dir = os.path.join(pkg_dir, NOTEBOOKS_DIR) config_dir = os.path.join(pkg_dir, CONFIGS_DIR) - # Validate source directories + # Validate source directories. if not os.path.exists(notebook_dir): raise FileNotFoundError(f"No notebooks directory found at {notebook_dir}") if not os.path.exists(config_dir): raise FileNotFoundError(f"No configs directory found at {config_dir}") - # Copy notebooks + # Copy example jupyter notebooks. copy_directory(notebook_dir, destination, overwrite) - # Copy configs + # Copy jupyter configs. config_dest = os.path.join(destination, "jupyter_configs") copy_directory(config_dir, config_dest, overwrite) - # Update configuration + # Update gnomAD Toolbox configuration. set_config("notebook_dir", destination) logger.info("Default notebook directory set to: %s", destination) + # Modify the Jupyter config file to set the notebook directory. + jupyter_config = os.path.join( + destination, "jupyter_configs/jupyter_notebook_config.json" + ) + set_config("NotebookApp.notebook_dir", destination, jupyter_config) + @click.command() @click.argument("destination", type=click.Path()) @@ -174,11 +178,11 @@ def run_jupyter_cli() -> None: logger.error("Configured notebook directory does not exist: %s", notebook_dir) return - # Set Jupyter configuration directory + # Set Jupyter configuration directory. jupyter_config_dir = os.path.join(notebook_dir, "jupyter_configs") os.environ["JUPYTER_CONFIG_DIR"] = jupyter_config_dir logger.info("Launching Jupyter with config directory: %s", jupyter_config_dir) - # Launch Jupyter + # Launch Jupyter. command = sys.argv[1] if len(sys.argv) > 1 else "lab" subprocess.run(["jupyter", command]) From d9f10396c36334194e1324527ba8ce6f97afc8a7 Mon Sep 17 00:00:00 2001 From: jkgoodrich <33063077+jkgoodrich@users.noreply.github.com> Date: Tue, 21 Jan 2025 16:59:59 -0700 Subject: [PATCH 101/121] Add nbconfig --- gnomad_toolbox/configs/nbconfig/notebook.json | 8 ++++++++ gnomad_toolbox/configs/nbconfig/tree.json | 5 +++++ 2 files changed, 13 insertions(+) create mode 100644 gnomad_toolbox/configs/nbconfig/notebook.json create mode 100644 gnomad_toolbox/configs/nbconfig/tree.json diff --git a/gnomad_toolbox/configs/nbconfig/notebook.json b/gnomad_toolbox/configs/nbconfig/notebook.json new file mode 100644 index 0000000..a53aa71 --- /dev/null +++ b/gnomad_toolbox/configs/nbconfig/notebook.json @@ -0,0 +1,8 @@ +{ + "load_extensions": { + "nbextensions_configurator/config_menu/main": true, + "contrib_nbextensions_help_item/main": true, + "toc": true, + "toc2/main": true + } +} diff --git a/gnomad_toolbox/configs/nbconfig/tree.json b/gnomad_toolbox/configs/nbconfig/tree.json new file mode 100644 index 0000000..8592283 --- /dev/null +++ b/gnomad_toolbox/configs/nbconfig/tree.json @@ -0,0 +1,5 @@ +{ + "load_extensions": { + "nbextensions_configurator/tree_tab/main": true + } +} From 9ea6b535948b0d888d986bcebb20e6665e6769a0 Mon Sep 17 00:00:00 2001 From: jkgoodrich <33063077+jkgoodrich@users.noreply.github.com> Date: Tue, 21 Jan 2025 17:21:35 -0700 Subject: [PATCH 102/121] Use recursive glob --- MANIFEST.in | 2 +- setup.py | 2 +- 2 files changed, 2 insertions(+), 2 deletions(-) diff --git a/MANIFEST.in b/MANIFEST.in index 2151586..5bc0296 100644 --- a/MANIFEST.in +++ b/MANIFEST.in @@ -1,2 +1,2 @@ include gnomad_toolbox/notebooks/*.ipynb -include gnomad_toolbox/configs/* +include gnomad_toolbox/configs/** diff --git a/setup.py b/setup.py index c3cf301..60757d3 100644 --- a/setup.py +++ b/setup.py @@ -23,7 +23,7 @@ url="https://github.com/broadinstitute/gnomad-toolbox", packages=setuptools.find_namespace_packages(include=["gnomad_toolbox*"]), include_package_data=True, - package_data={"gnomad_toolbox": ["notebooks/*.ipynb", "configs/*"]}, + package_data={"gnomad_toolbox": ["notebooks/*.ipynb", "configs/**"]}, project_urls={ "Documentation": "https://broadinstitute.github.io/gnomad-toolbox/", "Source Code": "https://github.com/broadinstitute/gnomad-toolbox", From c22aac0f9acc0bbe951c5f0ace6d439525b937db Mon Sep 17 00:00:00 2001 From: jkgoodrich <33063077+jkgoodrich@users.noreply.github.com> Date: Tue, 21 Jan 2025 17:24:47 -0700 Subject: [PATCH 103/121] I don't think the MANIFEST.in is needed --- MANIFEST.in | 2 -- 1 file changed, 2 deletions(-) delete mode 100644 MANIFEST.in diff --git a/MANIFEST.in b/MANIFEST.in deleted file mode 100644 index 5bc0296..0000000 --- a/MANIFEST.in +++ /dev/null @@ -1,2 +0,0 @@ -include gnomad_toolbox/notebooks/*.ipynb -include gnomad_toolbox/configs/** From 612342917176ba4a0ccbde0d8a78b07642df7ffa Mon Sep 17 00:00:00 2001 From: jkgoodrich <33063077+jkgoodrich@users.noreply.github.com> Date: Tue, 21 Jan 2025 17:25:11 -0700 Subject: [PATCH 104/121] Small changes in README.md --- README.md | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) diff --git a/README.md b/README.md index fab60eb..107e8ca 100644 --- a/README.md +++ b/README.md @@ -91,7 +91,7 @@ Miniconda is a lightweight distribution of Conda that includes just Conda and it ```commandline pip install git+https://github.com/broadinstitute/gnomad-toolbox@main ``` - Note: If you encounter an error like: `pg_config executable not found`, you may need to install the `postgresql` package: + Note: If you encounter an error like: `Error: pg_config executable not found.`, you may need to install the `postgresql` package: ```commandline conda install postgresql ``` @@ -110,8 +110,8 @@ If you already have experience with gcloud and have no problem running these not you can skip this section. ### Prerequisites -You must have a Google Cloud account and a project set up. - * If you don't have a Google Cloud account, you can sign up for a free trial [here](https://cloud.google.com/free). +You must have a Google Cloud account and a project set up. If you don't have a Google Cloud account, you can sign up +for a free trial [here](https://cloud.google.com/free). ### Install Google Cloud SDK (gcloud) From 25516a3b53e793cda0c3d6c78b2169ca0e3aaee9 Mon Sep 17 00:00:00 2001 From: jkgoodrich <33063077+jkgoodrich@users.noreply.github.com> Date: Tue, 21 Jan 2025 17:52:40 -0700 Subject: [PATCH 105/121] Make sure to install hail --- setup.py | 3 +-- 1 file changed, 1 insertion(+), 2 deletions(-) diff --git a/setup.py b/setup.py index 60757d3..dc613a4 100644 --- a/setup.py +++ b/setup.py @@ -8,8 +8,7 @@ install_requires = [] with open("requirements.txt", "r") as requirements_file: for req in (line.strip() for line in requirements_file): - if req != "hail": - install_requires.append(req) + install_requires.append(req) setuptools.setup( From 957c1490f2ba07557ffc22c8589106022bdaa7a4 Mon Sep 17 00:00:00 2001 From: jkgoodrich <33063077+jkgoodrich@users.noreply.github.com> Date: Tue, 21 Jan 2025 19:21:17 -0700 Subject: [PATCH 106/121] Add resources to README.md --- README.md | 32 +++++++++++++++++-- .../notebooks/explore_release_data.ipynb | 2 +- requirements.txt | 1 - 3 files changed, 30 insertions(+), 5 deletions(-) diff --git a/README.md b/README.md index 107e8ca..5aa9762 100644 --- a/README.md +++ b/README.md @@ -138,9 +138,13 @@ cloud CLI. Then you can create a key for service account and set the key. ```commandline gcloud iam service-accounts create hail-local-sa --display-name "Hail Local Service Account" ``` -2. Set the GOOGLE_APPLICATION_CREDENTIALS environment variable to the path of the service account key: +2. Create service account key: ```commandline - export GOOGLE_APPLICATION_CREDENTIALS=./hail-local-sa-key.json + gcloud iam service-accounts keys create hail-local-sa-key.json --iam-account hail-local-sa@{YOUR_PROJECT_ID}.iam.gserviceaccount.com + ``` +3. Set the GOOGLE_APPLICATION_CREDENTIALS environment variable to the path of the service account key: + ```commandline + export GOOGLE_APPLICATION_CREDENTIALS=/full/path/to/hail-local-sa-key.json ``` ### Using the Example Notebooks @@ -170,9 +174,31 @@ loading and filtering gnomAD data. These commands will start a Jupyter notebook/lab server and open a new tab in your default web browser. The notebook directory containing the example notebooks will be displayed. -3. Open the `explore_release_data.ipynb` notebook to learn how to load gnomAD release data. +3. Open the `explore_release_data.ipynb` notebook to learn how to load gnomAD release data. You can run all cells by +clicking on the >> button in the toolbar (shown in the image below) or by selecting "Run All" from the "Cell" menu. + ![jupyter notebook -- run all cells](images/run_all_cells.png) 4. Explore the other notebooks to learn about additional functionalities and analyses you can perform with gnomAD data. 5. Try adding your own queries to the notebooks to explore the data further. **WARNING: you should avoid running queries on the full dataset as it may take a long time.** + +--- + +## Resources + +### gnomAD: + * [gnomAD Toolbox Documentation](https://broadinstitute.github.io/gnomad-toolbox/) + * [gnomAD Browser](https://gnomad.broadinstitute.org/) + * [gnomAD Download Page](https://gnomad.broadinstitute.org/downloads) + * [gnomAD Forum](https://discuss.gnomad.broadinstitute.org) + +### Hail: + * [Hail Documentation](https://hail.is/docs/0.2/index.html) + * [Hail Discussion Forum](https://discuss.hail.is/) + +### Google Cloud: + * [SDK Documentation](https://cloud.google.com/sdk/docs) + * [Free Trial](https://cloud.google.com/free) + * [Service Account Creation](https://cloud.google.com/iam/docs/service-accounts-create#creating) + * [Service Account Key Creation](https://cloud.google.com/iam/docs/keys-create-delete#creating) diff --git a/gnomad_toolbox/notebooks/explore_release_data.ipynb b/gnomad_toolbox/notebooks/explore_release_data.ipynb index 5070564..8a1f28e 100644 --- a/gnomad_toolbox/notebooks/explore_release_data.ipynb +++ b/gnomad_toolbox/notebooks/explore_release_data.ipynb @@ -14648,7 +14648,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.6" + "version": "3.11.11" }, "toc": { "base_numbering": 1, diff --git a/requirements.txt b/requirements.txt index 6604853..c2a1eb5 100644 --- a/requirements.txt +++ b/requirements.txt @@ -6,5 +6,4 @@ jupyter_nbextensions_configurator jupyterlab nodejs npm -jupyter_bokeh jupyter-server<2.0.0 From b7e6cfadf008591bfaa45b6c96c662bb5ed2f75a Mon Sep 17 00:00:00 2001 From: jkgoodrich <33063077+jkgoodrich@users.noreply.github.com> Date: Tue, 21 Jan 2025 19:27:09 -0700 Subject: [PATCH 107/121] Change to use the Cloud Storage Connector --- README.md | 49 ++++++------------------------------------------- 1 file changed, 6 insertions(+), 43 deletions(-) diff --git a/README.md b/README.md index 5aa9762..9bd6be8 100644 --- a/README.md +++ b/README.md @@ -109,43 +109,12 @@ print("Hail and gnomad_toolbox setup is complete!") If you already have experience with gcloud and have no problem running these notebooks, you can skip this section. -### Prerequisites -You must have a Google Cloud account and a project set up. If you don't have a Google Cloud account, you can sign up -for a free trial [here](https://cloud.google.com/free). - -### Install Google Cloud SDK (gcloud) - -The Google Cloud SDK is required to interact with Google Cloud services and access gnomAD public data locally. -1. Follow the official Google Cloud SDK installation [guide](https://cloud.google.com/sdk/docs/install) for your operating system. -2. After installation, initialize gcloud to log in and set up your default project: - ```commandline - gcloud init - ``` -3. You can check your gcloud config by: - ```commandline - gcloud config list - ``` - or set the default project: - ```commandline - gcloud config set project {YOUR_PROJECT_ID} - ``` - -### Configure a Service Account -You will need to create a service account in gcloud console IAM & Admin or using -cloud CLI. Then you can create a key for service account and set the key. - -1. Create a service account: - ```commandline - gcloud iam service-accounts create hail-local-sa --display-name "Hail Local Service Account" - ``` -2. Create service account key: - ```commandline - gcloud iam service-accounts keys create hail-local-sa-key.json --iam-account hail-local-sa@{YOUR_PROJECT_ID}.iam.gserviceaccount.com - ``` -3. Set the GOOGLE_APPLICATION_CREDENTIALS environment variable to the path of the service account key: - ```commandline - export GOOGLE_APPLICATION_CREDENTIALS=/full/path/to/hail-local-sa-key.json - ``` +### Install the Cloud Storage Connector +Hail uses the Google Cloud Storage Connector to read and write data from Google Cloud Storage. The easiest way to +install the connector is to use the `install-gcs-connector` script provided by the Broad Institute: +```commandline +curl -sSL https://broad.io/install-gcs-connector | python3 - --auth-type UNAUTHENTICATED +``` ### Using the Example Notebooks The gnomAD tool-box package includes example notebooks to help you get started with @@ -196,9 +165,3 @@ clicking on the >> button in the toolbar (shown in the image below) or by select ### Hail: * [Hail Documentation](https://hail.is/docs/0.2/index.html) * [Hail Discussion Forum](https://discuss.hail.is/) - -### Google Cloud: - * [SDK Documentation](https://cloud.google.com/sdk/docs) - * [Free Trial](https://cloud.google.com/free) - * [Service Account Creation](https://cloud.google.com/iam/docs/service-accounts-create#creating) - * [Service Account Key Creation](https://cloud.google.com/iam/docs/keys-create-delete#creating) From f67bd315e3cbe5035680372be438c8836aa45297 Mon Sep 17 00:00:00 2001 From: jkgoodrich <33063077+jkgoodrich@users.noreply.github.com> Date: Tue, 21 Jan 2025 20:37:16 -0700 Subject: [PATCH 108/121] Add image for README.md --- README.md | 2 ++ images/jupyter_run_all.png | Bin 0 -> 484090 bytes 2 files changed, 2 insertions(+) create mode 100644 images/jupyter_run_all.png diff --git a/README.md b/README.md index 9bd6be8..8fdeb54 100644 --- a/README.md +++ b/README.md @@ -105,6 +105,8 @@ hl.init() print("Hail and gnomad_toolbox setup is complete!") ``` +--- + ## Accessing gnomAD Data Locally with example notebooks If you already have experience with gcloud and have no problem running these notebooks, you can skip this section. diff --git a/images/jupyter_run_all.png b/images/jupyter_run_all.png new file mode 100644 index 0000000000000000000000000000000000000000..687e500fc391e5fc2bcbb91d37096abc5184cf1b GIT binary patch literal 484090 zcmb@u1ymf-vNj3?f_w1b0TMJMxCbW$NPq-)cXxLPmOz3_fB+F(hQS?z4z7dCATxuz z{mnVo-h1o6Yn_uft7mo7-Fx@$+O?~``l^PQx2g*GIMg^OC@Ai6&w={*%qX%dDnln-8Y8 z&4}_iy&zoWi!RMe#4`OU!F+?6J=khfL}=$Kl-{W=L6QFK0{2j^K5P5VO8B;JW8-zC zsdh(E5(`1X=V7WTgyr!1+h-p_z-no9#MqUrUG(T;>5^SfS(Hg0^PDN*gD*I>Uw(T~ z$(*=Gk5h@-719BXevXlw!-!=rgQtZhqVl#aAxxWMwfp)ySUUp3dazC@$63QGGib_w zUj4X|vy5*lKuJ|hBkxWm7V=@s?3bL5OAL_)g8_xg3fehxcl~MZXP?COnMlz3B73_(pVS6s2=9N@xDZ7uSN>wT(3TNb2dI zh-s49rz_4i==+o}LW5*sZ9Neen;oo(yR&Pet85c#);H~nkxXNgkzz5ZvO%WLc|Tc) z?XE3?+2|f7wp0kO;6Ved>6UJ=)vyf0qr&aN9Xm>uLN8WxtMD)v-b%iG7kf-^7osPv zLIEW_3*C83HQjy^B96pcd+tI{Ig3%nDYrQGYb0pwb{;PfOoJm?#Z1ML$Z(ZZ8btTg z_V><<5~k9V#FNjk3<-UwDQ5`eKu1zD7ZZ{v>1P^Sc{4)=NB1NUjpIiZ@x-(15vgES z7i(&u8~8B&wuVwiLinx1exkRG*9YA`|6Y+^!(N`l7PMQwZBgn9*4Uz0jC36gch+mB z{cU^3X_H3_eWQICDBEXpx0k-8Tvv_^BD72O7(pn@9`?@8`y*c5>y#*d3(IRuhuPJZ zZE8_3P^|R8BrbVborRca{>nev*;EKAQC}M4!`9ICL)i8)P#Mr=Lxn!!v39_#mqjST zej2l;VSaq|OdEA7_;m%bJ*sG%V+A2!Nar%T5I%RX@-j8}ftDJfH|k}(=swjeA`)pi z>u5UDIBf>cXwnX;rq3u(@M2yiedc>YO3XxJ&RT`?Os@aaYx9@tv2Z!vPo#f@zvI?N zh)MZ=p8mu3Nap=pt_h-AS%m_;FENq%E?ek)q}ie5dAOq%))=~BNNJi;(k+Z*>bdw9 zDa_}=&&)*9uq_jLpOcfv6dF^dQD(+}HQvz1|BzVQapjM(+jCiwC`4Sm;tr)NTQ(M> zgRN@p&z`F{kt~G>t|HFKu2B~ggP7l9KSUP|#SBqVWHKiyBKe5D5$+Hk7Ot_cv%}cL zOcEm^%aKpxPo5kz+eOt?*mctNaMi_>;(*vCSe9w~GhET|yCO-HrW8ACDKmnJmf3*y zKiWopKUu%u7YMuL+uI-cKTUsk zs4Kny{DV_tw#-$3Bc-2){j06gNnz1j+#dr!YA2E>t|kb7@x8}<4`NsINU;5CTd-p> znQCj!kIP>)CtJ%@>sotbOEGyl(YKSb!|9Q5X@A0gLViNC^MIN!o|pPFwGXv2zo%{1 zxOb7#Sj`09$hr;p1T^1A{fHR9AbnJukJ|y&fdlcVR3Y|l zh?4AY;wp`=ucAHc2#U;pc24z8>XcQh!5W5(i6fcQn9rG0;(pM(_;mR#d~RrI@LwQV zc(`EKkbAu4i|Q-v%W;x%jND$k1YM3^YMcme<&N#q{Nx{Vd*Wr@_a}haiRRlw&_mvb zFY!Q>?v!|x)Km|tKH^PN-GKU5r6WYCLh0(wb!zFh(&K= zs#{A^L69nk9 zU-)ipy)0-IZV=iOar9_(hW-37@^pU& zc92@!Y?T00g;=eX^c?g$(4PGnn224go&7zZiOk+??rWUy?TT8{SUVb-9!!Nb4xK$4 zk4ztecKdI`w%ATZx6X1l+B3REkck(V7pdo753L_|VQM~v67t~>;+5dS30<)>h~34~ zh#pfny*Ph3|7pl#y6Q>>Ds3526ZI>+C-Ot21YR{hX;f`w!3yKb?~XlrZCNbl45n94 zL|xynH$VOTqqwh!6OnbTpXpse*vUQA4$`VDU$+WrHgVDS<$hYy|ArB?F8X9D$><3oPBZRr9LYB-X$?UcJ$x%Q z3EQCY)Hgx8kF<~H@%$fp$8sItqxLOz&c07om(P&0zVL05h z1QQ+R$-MJ?wHi7V5s3@q_CHo0;qmDH)xEk(6DvmHpdZIW&WY52;n~-~vh>=U1*S}^ zJfPglxxp=dx0`0f5lE|_Qd#0wzk7(!5zP_KQC5DeQ(y3=pyUU9^w<9T_}|;Vl|Qr^ zytEmrcZD6s+dZ>mv1{b$U_}7v+@{Ha${M&PDuz9zx*8p>V#%k-~9rk+`~`d8!oTS=>In z;bEQqz06B%r%bu=#!GN|e%i@##OCS3gHy#*v87DV*=5T}fWsBl)h?m-;~x@=qS|B8 ze5y`xr+(WVM^#6pEw+t~-HE-p_n(!K(@xf?-wD?AI)PtY-B(82&E$F?Cd4M3W&aU7 z_~D>FpPj74Rt{3A^UA>y_c(Q5-cGhkvr5Q55%D|E>a9;XiaS!F(C6Xv1iL@JUf4Jb z%Pz}~r&!8z1F!IyW9wA^}pNMQrp?{VF~0v_uZyx7Mx!a zX?389rUu_}?=8U2Sm=)>;OBqNy*D*hi;HuM0~rH;p4%SPp6G4WHHP_wg)t?hF<+6j z8OywUf#Tgvi(>l%g%2!Q5SO}lXCC?ItmFmyEosUgvBf5il=yW}A~GyUP!MINn#{5F zTZ=9`$~#SzRVaX7;LbF2zxz(Vsxx;4v=#j+-}c#FUP|+aT*xd+=7wlaQeFGsQtT}F zYlJU|F9QL^M+;n-7H*XoE(6Mx=Z}`g#E{J|L4X3Xeh>W|L*@o7XK9V zKh6S@mcS9?`L9`%z`6VLhXI(#$2PKRn!p}Vv-=O)y&66J=N>plJI1@3gbt&iNTDdn zzS8tYg=b?1)4rd*U0P5H3rAP9&LjQB@LuYp@fHsIP$W+D?av*yrz*r`n&=lO2O5uv z-=fQYVqyq=v@KW2oX7Hnk@5SP`R+Aj51Q3iU+p%JT&&0x<9Sn*eVOStJhiocfH{UnIM^48`4ayF&VAEWXtt0r|(Q&XeM{+(t3L;03~{$#m~S)YaL@5Il5 z#v2lOdV2c3vXWP#$l>qA4+uL%gvfepYfDkF4p20LJ`Sb7?@{U-qYJrb4f$VAB`Wa` zdSC|RJGls>>ohQuy zOT=FfZ6BR_ZhoHBXUTA7J_O}2CCB*y?XayGkAVaCZ(}`CMRU{p=@Lel4<1{F)FVE`bw4$V=YE$bR0_LU&Qsf!n1~|51^Co_f7T6} zQVsdYl>c3cf14(!hO0cyDWKkkthioR~7XTDSp855Oq!}m%_O~GHBzg z7QC{TuKH{-(>A*P>SWi7Sst$r5_nn-+WGZc_a4Q#$h}wo_ow$ql2nu%s+i5Cf96)o zvug4gKDNaiey2(J6r!B}o6C9`#C~jVe z3YxOznD@2AtK|};G}$c|9*p{3CBz~792=|^J)jRt`WZ|!>SjbH+6*ww{q~wu5y1Nic<(PCg9ZM5IBYD(Rx#o;MRzpJ>4zNJKAmc;&W0f(KqJ_7 zE+qr2x4dV2N&LMcV{URL{@$S;=M~;tbiDQ!^OkG;_Nk>)wS@LHMWrI{POX0T@p7o z*kI9+(SI8wg^(qonC{Nv>cW%sa_g|iH+A&%qVTt-t$&w5mp;&qm~)jP1l$%)^(Np= zE=Rd%6}08JIUr%=_xUYw!Sl~3&}`>nu*3MthdLg*itGUESdVP6FU%YurM6~MqafQ{ z9Pqa6q$duna^4b>gXo@;c}NHfd4Tyrt*T%_Bm<^*1*Mvj2x{;c%(PJ&U{apTSQuLs zb&+WeoEmZZ#(zw29?wBoTl8KYYysxS*I6j3G%9W?Qq8ta6h8%*ztPjv^KJS0v+s1) zss;g?cNCcUs=@m2n|=q z1-~W-nKN_0qrH6zC0WSv@A4K~r$lw6QQUS*R*hMZv+^-gVW1ZJCa*D+Uy$*E*@tU|~>KVs#VQ*zF)# zwtlFmZrFc3XIDP|5+Y`%QS_!VC54=Z&-zno^{@!&?)GXv!>-IEy58b1^gEwa8#?9~ z;UKJV#ng!U zEuK1pZ|WJ&Pfc7X;J5U`revZQ6@>FqAbl^n-aT6K2PVbYp1LbKB|lKqQN3zWSXDC2 zgPLxAJ9j<&{2EK^kPX8FCla7e0?~Efebo#Kp}f<^DUl6)yTB_SJF2_T`P{1SM;|hO zzqY@uz$+Z4WPtqV~{LU@&<`9_*-*9G(nBvFdS^h3HOkO=9I1JEO|X zqxPEPX@z|=`4Y)IWaz+J6CABIi$8-ihsTy>$G*ZtFzG5V>HJ5?x%IcgR%>Zc&rpZQ zPl8b&q{#1CSD#)~msqS0fR-h_bO%K5Y7;i4vkF5RS|Yst_7gDY+un%+dL*yg8T_^B zPvh=0_RT|ClyZ111<&a~zFe&Ra&xMb#$kSWo3Z7^;40v34GpW;+Y z$0j(yyfGf0nY-YoM8JW3jfNyUn~Tbr=3EX094dVA3R&%Qw0XgI3Aoe(g+$QJ*}PLs z@VrM2=!0D@f8VCKZy1;V39+&+dBnA^d;GG0oBaIzC&GY!?0QM__^?PJVlT7A&AhHl zx)6YZ$$Vk)@#bpj4#aELBUBDApRchQhwuC@2Tf`jHUEmi2`HapulzS*ji!R}%Ib%! zK9#$wdk2ArlrQdudJNRs-_Z)z#81;%zTD)liZV;C)#?!aAXQ!w0 zPI`dKJAh^_7ayE`&~w}_U@MI+wYZKI*e#c=2KkKZ({l}e`@xFfj&KQ+A77rd|Dzf; zvur?6*TeYR>lu}tZXnjO&($j!%WYljjf03=)Er>sul3C)|Gg09+b%je!}9I;OF)Oe zJS5z)>Wm_A-MyUxY{|GKPeu9>xeu)&ktJ!_^1FF#aH{tdH@O!@7u4qbDc*MA3^o{Y zIcA-tlcxe`z~$jpzaMJdk#<%^l)~<7d4)`IKafg>*lgDR{FJU87mb8J_{1v*EJ{9D zC3hFl<+Io_98*_3ZPY}Iv)kk-SSB{{Va}9L&*BWC+sZG1V^w2_ip{VbxEz8B@8>Az z{MC#Ol@qFA{+sztHE(qIu+0iS(msq#)Za*Vl*x;v;sf$3b*{EmIBU$LH z658R<4;SlYGFF7pkPD#2kzo;CG)HW(jS2_I2eoeZaRi+f3vOs#P0jhpO_p;b;P&QV zLltu6V&+G=O?`8lZ%$~-HC^#<9%_&Gcb2$(C7$9l=eMI2nxW2ks4a6BqAH8b2h}zd zc8lmz==65fPpxz<(;ivr_#K6+E9Fbn6@87I`=;Vm`TkU*=Q4igo4a&(rRw$_O!0%TFGyHuD?!G*42dS)c%*TM_`fL%d%6+6mx+4&pHdW&EkGf6wZ z+3w1xHfcCFrqiU0-vB8H9 z^~LzKH)PC4vmX_t00rI4IE$cO@|<_@JYR__mb)3Wk}wloaMx%kkKagc`&pc0n`+>x zqg&5W2JTQ5JLqyZqTyf-p}*NuIBnhw;3>VnfaN;DvfNY~%JKiTnBa$Ch#Z%L=gE>$ zm6sJ~g+Tc%CsuiLFbxk>xob{YAnSH6+bhCUJjkSaD5LHVIlrh?^Q&b9geM->*=Y6( zWw?dHImlT?R1Xa~@$5S~^u%$ySulWS+0n_V*hu(>4{c|T)5Z?eZAMppp?1@)yLeH) z7pEGJXfh$JMBNQ+yDYCxKZ{)8vsYm&GhCp?EVl)0EO;=>xRJcTt+Av+kJ9*E46?yvw&#ilGLTiJV_X5W44p6S=Uuh$99XWZP=-=?Qsu1G-acgEMKA zwb&$&$%@#m&ak1ryQQ98#0uZBmD;lNwaWx=VL`XO+^yG#H3=ln#ZNzM#g_zMH60Ce zkht^U3K2?PS1dSp;@f;sp!N8IXg*s6RQX>DQc|4IycYsD5LBRV_1zcH6Oyse5A#~0 zR!g+(k5%CDF)!iiT5PkTl2BlU5U8zklM7LSaz7iik?MnE(-UY^iXAsPTX4G>i6v2)&QR&?RfI;(8 zjm4^zzH+^R?^>lEbMuB<@u_?73B|e}I<_?OAMYB;*&5)!a9NejlniR2H&-SzBw6HUx) zzrWnhQb1yLY7gsfDjkYqyaptl8fo<{OW3U_o?dcs(Qi*2fKMT{fLS`?D6L7trx6&O zGVn5JeG72~S&!!P#Sa|>*iKX_{z6HKK@0T$-1b|p?T(WlhC0I{(-$@2%R5% z1+tsFs0OUc#i00|chcD4-B-1H#j`Z%(AFD-6XJX=QOzU}VP{lrbiGRPuj<96K*&X` zp2NzjfF4}TL9njY@3TOLZTM8BPwQNF6i&x3ACWY?L)GN#%z#<(95bZVVQn$HR#r4d zD%1K^1;Q&opxDhFrjB}6c_kdxTs-wD z+j5Z_fx6dnYE!Uz^seAu&6xY|B`+Ly>*oG6VEyU4-pq6Y)h+rC5c0v9*%!T*0vzJ` zr;G)s>AaUw{jLvs$K8IHf-+X(y@vRwOLS%ZuMlQ`n zG8{eEoPw@0o39TCeiBhnUt!YwS3pQBPlN8RjQkL_)9{mNqcgM(0In5oGjkgSoJ=;4 z_#X`k)|J*R&P|i$x#Tc{0}uPy5D^rHifV+E&)Wz@;m_&I$rBeL;%8anH^<|KT`H#0 zYtK5_Brp2-5DIiYU06{wH1DpCx5t}jgz=XJfS9mRlZckSm^=4!qPRpqeP1?Vi%!6) z=^(QC=5*fhEqjQvX(w>#Rw6w6#6QHyg+^(Vg=Oyt*xGj#OOKf@B9M#T$(b4e+6 z`hgg1)fnGZ-FCv~@l}RxoX4H*C@Vtd4Hsw!rk|0o9uEbvEF&|gOWBkW7*N&y49&Fw zq0EE)yW8mFLsuH6OrtnrqMA*aocjYH_ z_cbN0U}xJ^0%5dYrD!PJ^%MYzl+&2+B;pR71GfuPeL>MTcL#|^{=Q2F&ct4hQhY>{1ne``9ev+ zWJk=-EvJsO_%~jtE&80QDI#LdK4LAqn9&vVKT1&_?7!wHUB~F~ zp0PxR>_piZGpkm<87XuG0}2!a~D_XB?}0GekKW$Pz@$71DD| ziERT1tQ6)81yu2L@Fm2XSI|Q0Q#0WGyhHe}yt^Wa4F@Q=bl2r}y^k0F#2f;AE@VDI z6sbMcd3Mj?OzXSFp9QN@t@vDQr2086P2eXk>BkzAIAf9oSaG3xE!BSz*HOm?`z382 zCf`dEQmd)*FCdL?f<#h!0uIBbe)|z#@G`3&SoBX^!j(k$?71=YS>VnmGHOTgyPRw`_X_`Kpw;j)4E0Z`*`T3!zXu=fo5R>v!h?# z6krj4U-KEnE5}pOp+VPc^oVv$`ZsdJ^p_)1P3M=xqI)&Ckc(C6Z$y@w=dT&_8 z4VaC4u8wJ(noRauuF5FbuG&4Yn@T}*{eB0F=E*7|*k6iOGA)BH$8(#k;BCH>@3m@4 z)x<_U7d)navEqrH&X{=ue&*_0>A?!$Vvm|AqUO_gBT{5xs^KA;ZP&y-f>w9fuK0fHf|JqntBDu7U9VG}KuZ;f-<+z#RbM@VU@C)~-FX>@)i&cMSsB!!Kd` z6~ZSI8V=bWQ+;Hgk|B2G&70!Yq!cpOH{-dt6GRJ%R4;pQJL)CA+0r9!NelK#O1E9P|_C*FawZ5Ut1F0s%^G@kAH&cjr+mxe^O*lw#f$6zFS=G-;4Zn@RK za;ZyBqv92yE4#a#ZuR}_j&~T%oKW$AP;6vMHO9&6IF?hNO`jER z9I!bis(=jx0pVib!H<9$lc-t1EoW17XJlr^HxYNQi9eQEZk{&un?2~IUy89)L=O=| zyMpBgNj$Dn3)s;(1@N3-ySNR5)RG%SyczQl;8}fM2^+RuB{6Ci)2d|f^~J(}VopCw zgkSBo29>o*OgOcNV#tfeIRNhAU?pk63S z@B)_OH=N_WiXEh4HJG--Cc^M%2|&mWxdEpK$@J19g;NW}&dD&qt2nLo#2-O_4BUfi z0Q{WZq+kXh|Zkrhpg{aoAZWcd-)p`1p3^=WJ$*LjZ~x4WKmsR z-6pMT05aWcv7jXJ6CT6nL|&h;Dii2*nmI9z15x5FDeIg4>7yvgYZKqnHD~+eserQu z7@O6b^cUTA6m$4C$hxJ#TWa$)^D`g>L8=Dzr7**fJkaJ|oWQ8ZDTI5v9+9)wI1i;i zQI9;A&(HH6JvWR@N$^d)%O&@Y;n^@;o1d)Q9qp%8RmK+bV7$ zZY3|*^L?8N{bq~QrM@WZhjx$i{gptI&~ffYxVmeoCREa~=|KK!*sCS^L#*Gf9EHIb zB2KO8y4v~*OXntgrqudoK+0@3HPjIYwCi|0HD zTP%;rYrOF_iPZeWCrC_cBsaS!bPfcVY!b-O$I&4@gmev^2cZ=WLi(I&5M0avuc*6b?ipvO0T=BNl{E zCB0aFK9P0?WuCh49+mujC*{gI_ihdnbX!fq{E*n5=mqoht3L`7ruP9w^CwZY!Nh1X z6Y`uNS z02DE2*6HF9aXgdz4ctm{w>xILZ}8!U1VCN*&kh(QmSKU3t#VxZp8+~tXW`1VScr$k zqb9TxUgPj6>M8tYQ?T`bZogA_?rFZt949pBAl4{cBQT(wOzTkujKS2XM?4&|f%obb zhzP7j;T1CV#^QkqyK>E;jIM=*0DZ3)2sd_>v-fUZvdnZ?l?hB5=wr*Zzc<*U2k>E+ zURv0$w(7SzGE^_M<5YVcDz)!r*D=l2$U>JC@ae6qbV!830hf-;zC{9XX^secjf*Y92T=3%T|(C=>aRaM*C*7XDw&VHCVvn&FQ|{ zj$xsR(>hitQ(|GxEe}B0oi6MJ)+zo`p;-M$H29Z<+MELhC||O z)loB?QJ%V6lSAbFi#=Fpq0sLcO;FY_7QrVBbn6ae->}BlPuRgY>mBmF%BfW z-|;q~0fj5aVj&}h>CxHQ>+?tT&*c6$mPq>)opngt_|DriUwpqq7FJTlFf4yQ=*b=| z4>tJF6mQ%>BuHk|$k*X%(k%NH(Q$ECa1`PHvDuvh?H&3Uw>BH^Dz$OJ$X1l6x^|g+n2Iw@D(kr{pImLnA6b zgb#gy*&IBNZ5KfJj7W6-unlBwO<2mrQW{ zIY3%@EqG`tb_h;&5=uh-=46G)X>y$Rz-t6Nr_#p}jFz`!sV(ML$VR8nV9tbI0mC=M zZx8eFWfadx69Xp_gg4Ww4t%BC;?EGVJS{W02}*>7#ojkPGCnM-?#5!H>Ze+UKHaI= z!~PTR6lPyx(thD6$xjf3I)_EPN>@Bq=+ch9*x+IJbdNPY41jR@Fj~ZRpNX(OwJH`2VfC$m8Ua6l-vA`YSgDT zk|@KKkm|(~!Pli|j;yH8opBMcdTa$u;+i|8SL+d-b3x~}CE($su4D*=yCe=`)V#}E zY}#08bWjBszou`6U@qI@p+3#&O!u!S;pAAB2ghRu$bQFqT%AJZJpMtEna5s$`wEDG zOUuok@v3s6A#>n7E;nqPcRwr89jxj6^gdaA z%ifB73~Tw*MZ)T$X?GvIx6(y}!oHF^k4IUz)>4PMUizo;g-<)Sc)u;(zy{YR1|25n z9z#ebi)4hx@|{MD8qBcTFOsl&z9*|2b#AHB1+Z`@KTLa@DmaS12ZIu(J?dVs783=4 z7e3_Tjrm8m=Jg1KL$CMd`bAQoPEAaUW#091ly2|HS#{Z)t+w4jt{%cU!l3icZ6Qr% zsBgFh$uv*Ug>o)m@>_}h5W)#&n!;yja_HwDaa*~(i(tDH*EwHKB+%Yy5<=Xdk{5d2 zRTVA%l7{5|zAp%Sf>?!Ld=70L-zO7E|KEZyPBru#AB6ZlGy?*yrcmuU8_Zg<+B7;5av*E_kF3Wt%S@u8wG>~!fg*^ ze(+lu4H;@J`h_RDk>+8UlS-$ACH?~ixo4*fL*K|`r!{zF%8AjTOP5o1@T1&2|K=)P z?lHM?K~K1LIak*^v*sZH%KhQ(J8ID18%&Kl1{@6y>NXInYCKu()K~*%Z(H11i}eNqI13M^c}L1~P9&ke`L00TXOudpKa8?Wqh}N~9Es&jJY?3@KCov~ zoSm{eN{%YXbL`{tm}ZqvR$IRqSRe-zgTWvA{M_}ID&iF>o!WJX&j9>2t%MT&{1Zim z4-rFM=&xh^`?fVd~plnL4hEa>J6p~twp zCBZa3(Zlos$D>5wt!Z(=+p*rE<#KOTP4(%~Q@>t1yz5z*>B9jNXTEgF*Q_@~6_jq< zZ&Oz$1|#?TXdu7HoTm#~-(vQtu?COyG@2GRL677@7+iny8?dfEmmqj7RG~59>$3Ib z9pU3;!%oW7lbyw{-<7e!M?FotW4*s6q{&Je0pqmeZD}?3Mk}rog=cxzr8%YMocN$v z@}^G#+lc4~%k33eik}#Sj}pTB#(e7+V?HeQ(IiePao){wu_WRcuicHt5LwUdlQY$* z+hRdXI4W!=g0{79=Bcwjui-OMeGS;4!XV_PGJiCh-`F{msuprXzW}Maxb@R_--5n{ zI-Hm4D>i>~x36o~7MF**Fb;Z0^)s`(YKVm1q?1ym-YI$-r3a9?x{SNqySs%130vxX z$>&*0Oa*@9JQ!x>bz9W6R4e9lDDAko91M3O z7l(E)wHwhc9C${!Pd{Zx9;{&3Y5LQSJtbJvP(E^|+4jUrRD|{_9dWU~Fr6_LH9ZEM zUOcF)J53L&`0kN30G{NEXj&ISmqf~~Ikvid<1Y;i=Pzq&R<4mC2#8hITWa1P z22u`}u4ODIXL4-_5j=6_DGam#owoSskHbN$F>KV*iM9@>@Y%(IJs?mtiAFpZt68NI z-NjEXikR8zz~!k)H42<{=1pWgmN*`fLCDZwep-UuhNW#)4R9aj-2MrxLIMmxq{8}Z z3j{W*psAi%Jm!H=s7!bqjYG{l(2x2ntc8OYvEBp^qt}R)7{MJHP9HcEQ;pG~_W{q? zF_C@H8qL!FVk{;hT^8LQ2aQhU^9_0Z>oEH3He4T~LJg-K|0x|S50aTxaq_)<9o(Gi z)iv*8IU?#&3|P4KZy^+Ayo6{L<=CO@J4yU=>~Nwa4RTgH`^s+e zTMMtpr*}84cd#pr8!8tz)3)96RtYlg9uu=XcmJm1x-do7?|Q!yYUFw(#kvw73y(cD z%K4GR8(7|aT6G_p2Zf;Q6%3a3yUKLoyS3O7>D8hk;kAtMIa@r%S*{<;&GcD&s!3Ia z+Wq7V>`H5|YiR@>vlarc5P?-Hk5e3as=<)wyjB2~-<_}`mS%{Y_g;&?q3m6!Wp&o~ z-7b_PjZ!3iC%Je~{eg#I*5B7u(utGFpog0hv%Ff&{zxvyHFUlyhUI(rI-})DcTaPQ z5_gSo3s$A|DAQ74XLy_tXEHaqj523yg(j|Cq6?9B$iz($sU_W$W$f*{$;dAtMi~fz z=CkA{TME&KOF)`puRdFZ@l#A`qx5hK`||A?{oPip7#c46R-A?bulH&_|1A#M8vh#K zbYh^0kKw5VU}&Om6TFU~hJ$CJ4-tBdqOdC@$l!??-hsrRUY5VMnOGZ`)q z_z>V)so88-@+wZ)+P=SL!j-VJ_0@FS?GKTr9d_agyGP;3L-*GZ5@{xX!u?m|Q* z_jd^n=l`87sE{U36LzXxxEb`mx@zs^A=cm_e#=}I8E%A`=TR9vpX&z0ZO2LuqPxjV zP2<+Fs*63#CYn!|+^qX}r{gqa;(18yH-nrnv2YmAPRKJ;m2Ya+{G)O~@Dx zQ68NbeKtC><+zY%wpa4jh32`j)I0a^?C2AsSjO9)4+b9Z_lC}rbFa-mKYuRke|rII zwpu<|>%EeR&XGK=Or*-qhJ4JG$*MpCt4^9N+yQHisGZKGi`ejoZt16t+i>GOnB-l( zT3FRPNvluyb^=s5*hR$BX?A-oj5PiTOem$^xdaf`HtF z*WnaCg{)#_JNf5hfUzg02hC_uOUrfHRPKL1y#<6nE3#Xn@hCCd70pph^Q8*|gb2>m zpC;mAJGw1asm_n)7+wj41InL&B!wS;J=nMR z=!}%3D*4Gi!DHNR6Q6Mv!3znhUc&ikPvZ2R>DDg{l3m+BJwCM27AxyrBAkMDBN8e{ zG6W(}lGGy6Wd`G;jKX(yWJcn&g?IaCAzfH@X20dz3?R2jWGHK|(s%W3-_!#X^No1~ zm>_z}%th49>_eP_(NliLsK7t#Iog8*T2$6rm6ORbS!!zbFMp!u`GWSCT{nM|`$P&l zG__l;5ecZZ;g`cxG5X^bzRP5a-CZBe9?KhTv}AfUZ{x-_w(n02eJ@atoYqBNwOf-O zQ*~YY2$*!B1I$7h&snhcqa2EIXeF6J+mLzEc`SAf=B4{-eRQ8y4F)o{y~;rW4JlICEHy)ZP?f=-ZZ7rHuUoDzC<7?$Q=7gdKdAf@R>o6gzRo}`%_$q*$hR?KE^!2 z#rnxq`cnZbf0L(Ayz?D1idD1u0l$tbl-BOC zXE1+R)qQTYj|5pq`qeJ6WUp}hQ_@6C! z-6uOE$7g(7!UC7jp*jZ&&nQI<-+a4YSqTgudq_RGdX#yZYIEF%g(I~^D4E98{8vc@ z>}M*Rfgg2BH8IHSD`FNgk1rA>GK0Q9){*H7{`B0tZ4ofC&Cw#{#FlH}H%J`tGoF0q zF1IgV+tEyz3?uEf*(S*H-Vb8Engp^YYt3IG537bro$ssL3{k=;7F#TRq$OpCe9+e4 z3U(dp!={ab#2+8#n}iSOm_6^gvggEmf|sK}3}t#Pn?*^3uvrQ?izh6cFGPn|$tJL(#dEr$vPiof0Lfdn4UYDlW%r46ShH_NiTrgW|h zJd?kxZgy=$_7`Iyrz}qI7Q_eb*13gk3g{H;&jEV;H-0;PSjkMb@6oq+!!4JS<>WpM z3ucMpOdjz`coCzWC2GWC{4EyJMDyXn$2*{Ec`hahd)Lf zg}*sjB}y$Q2JzIdlUz;JwY>lGIQezj7tLWXYn;J>_p5U;R4Ld-}&4&HqdSA8} zHq-ZEoOUH*r$exU*V>RP8kt z}OoG^FdWwyZd~ky`y)vA6U2+JpOy&^a$;Z!5P7eHB(@nPDmR-5`EfNWU~GuGp%H&dcQRoH z7Iqr5AXt^)Lnw?mbt^+DmB0^Q>hijKH1+CFHj-kPpI~-@Itpol|3F0aU~qGG{_N^w zaHf~h*03SqwVA$WI)Kur^}mh}e51PVq`x&5I_@@Mip;?eplyi!7SN_d>zhBrs+zTR zV)&hS)s-%a3*hZ@vzp5;bi}!y_o4Q^tQ8j&|mQ z5Z$cQi(*X^%?0jg>KWiItyfsn@pBg-zRer{A8It? zflB#6xKidN^OLfkBhkh8#Ls$DPC5);w+-PHsw40mD~ru9FN^?ODU_Ks@4XI-q`=#2 zJ}&ju%?Zx5>x*xiK##l6M$!Q;u0}iBO-=k{!o79k;Tpr5HRU+g+2H^W%`~qzkV_Q5 zQU(oeU=PX&ukjl$Z&$YyeO>v;Lks=Ot;t!LHF=L%9G%TI|X=?qF8vR(6w~b(j%MaE93==UV>TT&%atNb_6EwRZ>L z_U}{mt$Vymw)bqZI$3g9{{faoTbP6-Xwm;jg+A4)$(D72IG0}M`j458P2tz;)YoZS zZ~GfX9kM`%WlJiV0z-FgOaVDc(Va)M8(nE{x(KCNbKh=K82OJ%jwfw?&~te2*^#bh z+$X7TgdC4vt7m(D`|=&n)#FFKCSvP8$qhXo=8w&#$>lRwbGmC`KB0b;(;K+kV*hRG);eO{VHu_;Yx_`Dy^M53?Q&v;4h=U zNpm5iI~JXL(Q0EI^)>ERG28prG9M=>3)^UTMWV~641fB^m(iAI50WYG3(=O0z*Bos zyw8&R(kY=b^((_3y{os|gtB+bCpia{VHT8H4fBQtoYzlQwTuEL)%1&u+CK)S2p(`G z^m^8wje_akY;LsZ^slx&I_nnl*P55G8HuD+-tU2kXTg|r5`A*EpP>q_aYC@56yV|G zq4+G!nDet&`nfqx^wV>gYrK^ySE~BA-kG}!&D&vO8VB~WMv93W^ugCA&6&IF z;L1=+WsFh3UD=D#enlHg!PnlZ)JUVCv~rFJ;A;xtZdU??OrRI#v80{4J5H!VSZ)8VVqa=_iQAb~6V@a(c#_o?fi zo&t(pmQryyX#*Iefm*sQRQ84j^&ZjTeMcH`{Cv1^Q|l`)_2CgIefLp0xxKpEYnbGf zS(hJR=3JNZ7JXpZi?d87Bkcz{tNWdVR)W*c?)tk|d(d!Kf=hvA5v^6@>ZD1<P>FH{Q&_MZ zZG>kUd=g5mw0X?N`Wgw8!Bx4u&UTj$Sx+-dP|Cu3rULQtd6P8*()`lp0qPpcQ0%;C z{ZYy-Me1nGVC?WX;p&mS zk;mkFIg@?_(GoV|$I@*IXw%B5rAW7Xaak7A}orE>pw$ zKu4N-FK90P1^nxI#WF{LM1j_$C2Y6YP=6rCe<}hIqS6z;!ac+30eGlU?JN)EDIi95 zO~V=Uavwv=j`}FpTrI~AGJ>gOnTQfQ2?V-iHf25bqxZ#~;;i$VS;37O{$*NV&yph~ zt;-WOK(^Wq8gqqn)uiea5gw~wh3fMi&c5ktlCu%9i{#d=HN~^V{U5^KJDTnI|NH({ zRjJl2YFAr(x3-{YYg4pFt=6n9jgi=`U8}9VqFSTWsJ*E@V$~)wgCG(m2x8oy{;qRf ze_Z#uzqfOo;}8DGIX>_4d_A6z&n4Ijwz!obZ}8XIAOF5tN2~GrQn#Lr=0pslPlkAx zc=em{{9m7>BL;qj!FZh(gjjQ_fb~&u>hRBbCy7DE)i3RgNzCiU9({V*ny7B}_J$Y( z=jZ(8N6ug1jMcm-VRf#(dA+Z~BsWZW2$fv`2fv%5WQ~F1uvE1w`&`K7IRyQscdIBD zu2>lE`uG&~EaaxcYtHgm#^b`i1zHuAx}KF)ceqlHgn~FMBrZVgTqc3hvzf|~YSb6T zJeb?c4+j7~Xa57D(Uzj2FvAI+At5H&79qC>t6P{cW59=18ZOa^1-GsFsmtLVUz3*T z3r@vbsyBkiiuM-P(s#DJb1&}fugG385z3_#Q`CRH+fu0zUsyx6{J6L?bE;!=YJ@-5Can|caBwNsr2QeiWWj+i0e}9D(^}s8 zC~kyT3exs2&#q!Zzb7aNDZi}2U3^L{1Ot?F5e8TrwfbY+5DD!lex3L?wTl`HPu6R= zEW6%~KB`F?^Q{Uh{^_23%1}R zoI(Qq_UE`4QUW*56q5{cFK5>J33$zf;}zV%ib{j1{0^y}FA7ddTN~S5_!79Cowe}J zczL2 zZ|CdfiQc@`Wv#sTJdS_R$Qr7Z)wC=~Z7|nCeUFPaXSQ(S=4Y3|FSo+_bXyEp zf<)>-v?%>adnltAra(mhd%YWBjtDKJv6d1Zj*LOz!_W81_h978X`h^G?#oFU3yd~+ zK=%Q-)_!s8zzlxf1N4Bxz|Z;jLv|pJuh^T5cs+FE9ohF^SfyY8(wi-1>&}H+_ZNz8 zEelG>3?{HlxZv`W^dGiZUhi^Ms{Z(49k#q-%m|GXb^yrS{l%wUu$KQgAy`KoW|DIy zAIh9Ul|-@cv%ptJKNNuajY3-9_C@w>xeUj2d~ET9#OFX&;<*CuuistC=@(RL7a{3n zI@i3f9|ypX;ebIBFjvF(EpFBlc!x1iz4wB3dFmb_P}Pwmr@U8jMj`F_dt{=hY#(8mgT) zaE}~US6G#yo$-C&=q}EWe&6B;br?-+N16tAQXmp4R-nGPC%(OLFK>?49aI|i>KZFk zy%;zadaRj5xSwzIO5TTF z&|tWOkKbIv^0a3CFJ6t?et1^<>7+U_ZKG_dvSg~aoE6>2$oZv(PemB4)JBUTmqw9kC7>sDEX%{X!^*c+&-S6=*?*8}PH`8$3_=hUTw z$vlTZD!rpwPgzCg1`-(03T+Gh<>5S>^U^ka#nYMr2b+I3_-tRsF(fAPNC5o-rB`Cg z?Yx~Vl*dAhqrx4>dZ)vl!4t<#s=R0{OW=Aj%Cke;`9%PHiO;L!nBiKxXxIv`JQVGC zv-RQ>+g1Ec8l9hIiB9a+<--enZkj)eL3sMZ?H0JN%!xXqDmtM?c%qXvSzKA1XbQ-HPF68E9GnQTYUK7SqV+v& zQ#TLWi>M8wQTVY_%@i_9WurKF@eDswiyN#q7x3dq6AylQ8lW0oRQuo3ssj_Ukf3c* z%=>`s;fy8Azja$R^3alJ-x0c~-3w(FPZFg(*)JBYGpNO}m{x6T z`HYpnDHVadhf=_)kP43fuo6T?TUS1DA`!*uYqr`g?x5ro(eNhTRNOJ7d$Dw`H_Vy0 z7Ygnaeg!<`bGJRb_TYE+EN62HUR=Pq8ghQ{fyF zF0K|op@MZbr$w!U*o|oBHOqViSQe>ne=IQ_xJsL2`+#Y3JKj;&Z7^MRXigT@p(z-AjsxSb&ncL&%Z5X2tG`M8y_-S1{t^r$JVTrUtX=#>L>GjLNZ zSl=Fb_V<`|e4VW+<~IDg-8FYnuKNO>ZcyY+u(=}Gb|1J&@OQ5_iXCn0&F__(fTH`H zyOh@Aot*iHL=|?Qn1H9Zki1F+A`1sxENY3Q?C zd*(?MS)dgp`Dm_r9RR)wYu}qxvIyoM7uQa!*=s^T5hAvymLU8-FK1lEakvcAcqB}Y zS%rGi;w`$)6@Le`Ssw1=nl@nUdl|Y`C@`o+wF>x52LAFoOyUv~v zJ+bzafwje=CC$ZjIVJO7KjvQ6wqkWOvL?RNH(feCz(KgRUoExX-EYEyJkdS@WY+cV z>n-kR7!tO?W%{>i;h{(I3~r-dUpsRNBy;S_^V)9e>0UB?#krV6_y6A{F{+xLV2~Ml?DJc37s;OSuUvzshM6LC1c9;zR%{vTqw#xK`f+yfkYr!J z!&l=);Qm;9J8$C`A}Lf+IJv*Arp!l07&RDXv7Pjn5?fMP8megU+DI^`RPI0T-P}^h zQ2<7+_lMepT)37ECxwu0i*dMyO4*M2%a>*CN2F()ny4bfn}uhjiK7ktu($g(?l4&Z zUEiurag+@mqIg4xTJ0Q)0Dk<&Ja(pH;YzWQ7r# z2VRS^{f@!v-&!|fekc;wrAvo&y5=*LiaEdSMF`~{jQNi!vrnXJ32Bg21EEdby1XpegXbC+#nj(*%#8-48y>|ENSzNJQ8zS_0i_;sh! zJ=eHvc~%T!`s{oD(bUKmEzyHYx=0_9?qk zq%q!ATmc!LJxP6}jYl33Qm6!Pa5Huz+Z)!4*UGdWC2dU05V^{wojr4MyrtT6yhVar zPaQr}W7B5797T-syF+$$<{d4u;Yb!<(WEv^H`0k$lrhIEV3k!T0*R*g$OVc=Iz7l? zyY^J6L?vG5V5~hqie?pu&I!$0@6LCh4hlN2I@u>WUXk4u`0$v`-AWLxpSE|pSE+Vn*XLL6@t|GI>_iZ=Zy*<9C_2dR{3cC#{-k6H^b_8?L}7iK99tYn6D)2CZc5Z=J{1YDOx9{nVY>s|R1M zm8^E}KUhw9>b6qw)^FN;#hBUYY+pKyR_z<;{bL!Rfttm#Rr|^W#7xblDa`!cP=6lg zR_UZLa=)c`$^#hB9X$1ZO-~#ED5pfoy2w#D%QzO#CjR-b23RkcHP_Zj%}eLyjMex_ z`YRg$R*gfvILfo6nATQ;+*UdLFIA7NN`oCLY1KEGKa`JS)Rt0OUAZz^p_^Z?v(bRR zU`4Kv76popu+5Ks-JaaD2w~0r&;x&k2;zAFzxmjDZ>^x=4A>PbKhbzL6^KLw0%2Fx zbaUi%zrcf-c`_9(gB z%qbh}45neL7td3VVN#ZfX4!+gBQ2+rBa*?51~E)ArRq&E*I>r|v&S~}4;=*2fy>N^ zxo6Wi`VcS=r)R;GEYuBXs+S2k1B(NXpwI5#b%!+^VdT-#L2cw&5U`}V#jwXnEGs%rPmV^fLChNKW zH_~_0mHgspXm)K4u{#=F@2R8Y>BsDOIS^Ctd9dnEj>OgV2@}qc2~ZuM2Z=i8 zUXJFwZ%k=nYY+?XGAzW(T69|PLM#al0Z+o-D8h z-%j^kAI0c;y9#7k%T$2116vPMUWZ6!r9E_Uc=#tRAVaN?8fw zRC8I>um#$senOqkkfwuUkI5^2fhU^#R-bmOEX`IBv3W_a>l9^44_aBW2&;yvN=gBDrSY-R_3Te` zC``(*j}%0_J4j+1YyCTe5N;~;${z)LD#b7G3ykhPu>)|bwu(z&=I@C&#>0yUg-*ak zNQz&szV&DxL2-*MxwoQb#oGQ~qtJ5%X=nHxb3X7a?vCM0tDHN3vX{GF$2Y3>(x{wy zLB!Fq<2%KinDHePwFN}HcjCdq5Z$N)P`lMkJdB9XJzL}7py;dlQKMJxYU&Q4CbcVF zQJ7~%w0}IZp9>K|*K?x#P);1$a7;Miu`^(2@G(q(74>w!gi$`vzubav!>hyuOz3y%Y;M~ z0O{TH&_n8H64NT08w}D+tc0|2v1IyZXdpgYR7d7!iLRB-;>W2e~&X1!6}rE`&>|___l?U9j8c zOoa_wr0`MV8l12exk%y-P({D`xI<9B0Aum$8z$00#P=H{BmtX6 zETvz%nqBV#u@&TAgs~isKG_-bO;kR88v@$pmZcIK?t|qWs&*=o`-0SGT-2jz4oAl< zzyF&NXWv!P>!flXjv1UdhlW)K0q`#&ic)>nXrmh|^KMNuM8ShPE@LGF4NQ9oXs2SS zJF=b)D-(kHLL++3h#Z-^=VBbM`Nj(Y@Ufy8Lb40qB0X<8{^bawF38+gh`gIR6#6A;Z91)AiW&9eS3 z>Frrwl7aGEcEe;M`$5WUOX1*(e{x% zBe4A*sQny>@DKhH?~X{~o5VFwUIWac_WUJmWaGkYa5cbsQK|k#OF0+qc{ZsBuoA?6 zd9Qlx-nEPQ_f&5N&VsoHhxHN&%^pU{@|9&v2}ldmdF(Y7%hyXMBYtW!0LK_liuA5_y(mYw zJzS+#yi)(Ctwd6`vWqgY2dym)reaJCs9j7%tQ+ca?~DZTw>g4X2(oaaUQe*>pRrtD zG7pH2=00+vv2GzqCKlaCJTdYa1OL~xA4d+93OSnz#q~QlLCBfnlg0bY%tcO?ReGGM zT;kdF`CSx8o>ikbk}C32{kvOA;hy8LxY@YOT&Z1U>>q2ZDJumrA7Thkd#B91N!}B) z4Jcb1oue~rSFmQHR99sI^459etBJo|rQlhO5@8#08m7gJ?*l*5_JZX%4WO9tqi<{w zo0+5Ca;jL9NI#o`9RP=vSPa{{_#^MRzxx^{9+j6RQ~-Ibczdy8pX0^eT$pd1QmQAAr&?r!{9ok9k( zd*xJr!`OHBD==<;1VW~9`3{oLUu#@AWsIv^j`Ed7`T7SP6ZE-?ePJ)6M>APzEBPB* z8h~U68hm;|Y|jO1Zj$0qyd)@kkM%84?Gd>1OU+Ga{VD`8b;p{LD$&VxFu_S3bQOJV zASQGi4UO&k2^I8oDcJu&&vjy}?56lx<7J#yn)%%!N-Af$$|!^C>8fNQyQAa%wf9IW zfmD=y<0FgJZppdrqgmy}3*cjYa2h+_+EQ)>Tr3ihVfCx3Mo&^FXogfc|1hhx#Q|HtyCZ@iC_PRX=_D2otsTPCG zJyd@`b~4Ih1uNainDl$CA8WDi=2lKsx7#Z@Cxytkb2X^9v`7=FiN9W~ z<%#FVr;WWnT%+6HEcUUsS-&ufm9Kn3Z%2G?c6)(}C3d9i=4jJ;OL-)@E$x@??=7&6 z@X4pJWn6Re${Qui`d`Ypnh6GwO6ns}Q`FzmB?DSiUiL4C=?&rnfp&%mA)GuD15>-* zK9Z2j!{I6`*cn1qkW3uF`!6T7DyQv_n7^2P8?_gQxyQWC6?Yn;5NlseB7(+j?%wyFu+{+xG7V%OLat|T3;Fj(HBx$3Uc?p%KQ*MnV3$(Z@4ja%}6v)nV z1k4pz%%fYz)qsF4DgkizxHlS;=O3_~fVBQ$Dve!UPgDNfTHm(^v;H0HB?y;98X=(* z7@|nKApzc_9?V0_FQ#X{TGo_J&)=P>wBEZoiwLTUugSTipcf|d!XOs=EO+RYf&VgI zJ79h8=IGXY=avn)rUf`;a-SIQHaEAs9h3~+Q<6QZ!tv?luY*I(bgFS4|5lE@fadI; z_NhVeaG`3}&6_$(*X_~Wq&KMh@kS=w!5mQ)wX_WNibPJL#(d43J zCcc(;0T0TeSFx;rN95=n_;0oIui|vaqgdlFKx1HUEt-1~&T(-SWQi0rViL2UwHKr$&d+gA{J*+n2iCsU;Y+dGI+(Gi%s3- zElV0PUj>tP0xOVc1Bi7!AnycUtN3^I`z)1so@t@4mATZ3J<_^1iuB~z1$k7jA zTlA*WF44EMuj9YfXeN#f$9B5hG*on0ou^AvxTjEYuv(v4L+BJSAoFo6`Y7xG z&JBi8A`cG?OBeG(6F8Sy71{ufJD>j;X)cGMB#%zgHCZ3lZtkEU8Asa9Nh(XZ?$0OH$E zB>lnpaYwynhAlns-lFFfSz6MZ?;XO&o=~9DcIeIZlhMqcWRgvxc3c|T0JLr3tm<5p zny!*?D>al^J~z4DWI=KYL)>S5&FWO?Gju>b;kUUEwyLlCOx;S&9I8K3ZT5SZpvD`! zTTH15-=CzfiaO;bZ{1ALVLZZquX};W9N?|o3y9xqwq&b8z8V?^8LU=5%96o>m~oM= z%uCeOK|EO@fu6C~P6r^V7wo*dnPEqw(~Cr5{j-@3GU@i`W|wY zwpN+8sIM^3qNsZCFE9c#b-MH8;UB!R)}wk>aaz&!?G|*N1|VVQJp`*3B79Y6r zsGeY*^D+BRcFIGJbqYzTZ=N@Yo#Y~wYm--6q{GoUWWA&suQ)&K7lC zHPhzkTO`U&yg1XCO#YqEKR6LSak++PPkkJMf#aStB`)*aq96yQrZRN(IQ;MlfH8R8 ze~@4kSq0dROid%mB~?ZC?|Q)Be!e2de2bn&^4Z(2e{JQWhs(~=%;eqI1{rnk-Th$# zO^^__aN@i9?~&A-EtLgr_v;n2sfT|Sy$b7{X1XG4r;{yaN$393&YZTraFclTUiHfFg~H;2?hw!)>CR?MuVlBDY}&vtRrI$G!&={DJ=%Nf?j`i|9)`z z8UU!rcei}#*shsO_5^)wEpbCRSu046+-R`t@a+Gdxwi@U7jVhG#Q`RDA-$`MZcjIf zc^svC$>swMEKc&Rxj?hRxYy@(i%)Ko*5A8S-@QU8iOl3L3xMM={E=A8U$xyHMg25) za+k`U8O9FdvR;B_|M%1Y#uEv8(e8MDW*-fS-tdS|eAcoV^cKUNkOxVJYL;zmf0(Fe zqP_p#9I1v3MWbOh5i!?LMY+NLJ*DdM<`eL(u$4OwKkO@`<(PXS_nn^pT%aG1s0we( z#uji~0mCkBc) z9d5Yty?tqy&lrH*u-44%){x+Yvk=P7cYv!SKYbEk*KkWb><*HG|6*yoEfsur zTm#>;XW8EY_Iae{V$gfghn{wBS9-5LMsA(+D-vs;>&qQc!hnlOpF3Y

bD2QnrSX zZzJu|#dG$~$R+KC*1EYf7vMTTC|W@L*WJB>5$ZJGvX)K@ z7e7R3X%LWF*aJikl+?#Wj#6#FwRl|L^Zh)7GiwPdWc0cZ=%!FK*7a%8^~NhQ@cP&m z4~2_aw>=Jyx?YVwQ=!x*V6Lda*2qd@gS{MsM_ZaMyanbZ^^NlyF z;2tsLCXqMNeahE($bVGZd%VCD8!_aUq4tL#YTiT^?;8XLRJG@!E zD$B~F`=e)`WkgHi)lY(>rB2f!C9pO6j{li9O3Y6JgaVk++}&2Q`>$wLm(^*Nq~7rT zM?B5>cFW(5%)eDMs+_BC;j+LTyM@K`(IXyc6yGgnC!3$wJ)SI!MEB9ZAuuGc)U=#^ zL|*Mwu->_M6I~D}@W?fM8VdPoV$UWi!4E=O``P;1N8xf!I6$|PCsq}Z`{dtZB){(M-vaK@ ztv(S2cKPjRid5px=J$twtR2QdWf!4#h9K)g3PVneWVzK&(8IN)Ai-RweTMR64J_!2 z>BCb;I=hIf?$s}J?QB3_G4spq9Ij=zov{c)W}zqW3qcMflg@Hv{;0wUymi^Pl02FAhL({ZsW zaeHFnw61NDbnL_uuLPgkZz!_|YM^-yx5H(+qNOAxEQsliFE6^uo+Km!45a>LHBaNH zx@JvB8b<9SOuM^u0^z{m3S^U9<(8onUjPp5Hdx~p*A3rJ=(+dXEY4Cd6KrE|IgB0% zQb?9XDkIh#Bt<;8_LKMm^juc)9FJJVC2Y;Sc3_ij;U-7fFnAZ=qTH%5(*)1+K zCic2#w8wVO@a+oAfsaKH4Lfd5Nac`OYWJdX&kx7)HK~&EnB`9zjRUlnet0L5GaRqk zW&psW^v#qA2T26WR7_p<+j*LMWR0JfaK0yT1Nhfk%5h~sPI+bOFJmWi!=dB=WF$n( z`QP4$^nUTl>yfjb0d9Q209C`~7vRhfIqI-fVHK&rL?B38REb*%bhNSSt7s}Evn4(8Miun?p8t{-2e8v&Vz zv80r($Lcp;_3t0LT7b3aA7KD~oX8SBS^B5U&}MM~P5w~1&sSub@A4S5>j^E24wF5& zT8Z&E_*vOT=l&#GC&RO8i?4!^4T4pLurQBA_>>lWCEI)_uVFdZ-E6gODXw!31?DXo zD21KHmZK9OK~O{Kj-`4DcSs>$Y~O{VYPS_F78q~58~a2T;GpDu|7+7A>{a)Kv~4p# z9NH<%v9J2;H?L&BDeuDl}lD+pKu|YLX*I&vJ^z!~)m0p;>+E|3Cmhw}C z4rtuogzVcoP@Cn6*I}bP|J$i`UyRr(R-qf-4)pz6|B5H`mkJ_s{1!7L)W83H#^1L2 zE%xJ}&Z*Y}_wXA~U&oboYeB$wM{02rdLow>IGM%D3>3Ip4X!_HadUjLyfXi80jd?} zrw;<(;{sj>ohl17^Phx07Hqlm)U5wMmV<8r;@u2Gbq}`1J`yEO7FD_@2>ka`{tH!| z!cMWwuzvib6H-M!QS^ZC4iVfaDzCRX87bX5n8wF2* z1z0Pb>fYQzJD|$ri>@KWQ3=4*mW_P+b-w@XvsGnvD1R_bd9nr;$H>FM;>?&&ES)i> zJ+>^J5~+@5T<5%_-=*O+I`Qg&r+$wZy5r-hLJDOHd8ibg81Z!Ov~si|9VgsDu%)!2 zrQyNBts%4s|Fp<+G;18qC9kDv;Lky)}+ zm_dQ;nb8SsdD9whQ`vK3G=FmSmhF}Lx}VlU_Wxv*GPywC%0|ZQZ0cH&QSqmB+MC9l z?4{2ybb#Yf%~j8o&vkVTIK$0M7iX@If@xqSIvc0GwvF0Qi^Bkc8Ngj*ot?51coF*X ztj-p47!I0_3fkn=;)zB2uUv4Bq-^8Wm;(Y5u?maHp>1bqK zxFqA&v%BIah^d>b%UEQI2uzt*j!#U3Q9k|;8C~dq$nXB=%K!BvA@(sYyJ^kyk|Sw{ zgpF!}2Bdu^@+s!RJgX*Hi4RUzak${aK6|7wUh_zvxVVyB}M};+d%HqM|Z!zTv-cu>-t`1vpLdE-DLVDCxH|ewl-`dW>=@nzo#;SgssJ zX>5F~Uov3yl!Y$9PZlo*hWv;Ij`8wh#aXAGQB4jbA2BnH&K~WASHC%*AcpnA_|${E z##Llktj{s~vpJp&fwD}dBjKG#X1~k4_m#Y(y!KwadgXj=UoW#u&hjEKQ1?XP6VxJ_ z2*}pfcE7nHgs!p{Y$%AovVWuk?b!%CjPYUn73X7Z3qyG07r!05b2YS$Y`5jQO)LeX zTu#M2tWvF!CH@D3B#)fCv)N{7tk=w8R>{R*p9JL2YR-j`$DYi*m?8p=w^6R z%{l>%t0E-FH@@?21S4lUV`dg1&O;w4esy0-X;%(9HB01D3iQ{%yG-Qw(DzynYf8|A z!0U!$ZtG$shAppuli!`#Q1*c@>^%FC&NxGYz^%+xAL+|El)v*xwwsxA!IoAhi2qay zIFcf6k%#QytEc4O^ysY{t=~;Q7VvN@pIAag!(Y_l`CfZGe$0W&hW2D%_rWfnM=2nv z65R??Oa`e~#2XTPARp-ejo#dUhhEuuvfPGJ;IZZy8f{Jpuqh|VZk|G}Ua9)|lFR!X zlf{^vvHdx4!e@iRGQIo|FePU&MrAOzW-*?vT|a~c0X2E{vi5(jOhDMzU+%Z+-3*LP zs}K>6FRtI@RFJap3-{8ed#kW0J#E&NYVODi`Jf1~1wmx1p1sK_l5bb;cK=yi&N>s_ z&$mmCl1Eju?>nM~$FjX1c$Q_9t4}rl(*swCqoRdu_!~aIj_+*h;Q61ob(E@H9HSw3 z6tDP=$Wy*Y0xVoD!;Ij3T0#$O?C7w5(}V7#{7OpkqVA&wPw$Eec`m>`sFyC$ zQQc3AB{yk{+xGv{s!hBtdpb;b7bdbFmgNeaW43VnT-_!rx3=>&j=D+Qt?gtZ-e_{q zvl&-c2av%QOKm|x?5Z;*u0zr{*iGar^V)YK9ISMj>esTi|04@UoDz3EJwAPm2TTXq z0@Afyl;9~oFxiWVlRvFW>FffIz)I$9c3`}2fqcly{-uA{<)4ji2cXo;Jhelu?%JFtiDKMSj!7jt3 z^b)CuQA$6`^H+}lKJQi%wQyC762F_&bP=`%QtW8jvR3rjp8TcYRN}4Rhu@hg=0t-$ zo$C91$_94_SV5G9w&{8QgKsF6Z^t zvtlEyAS~N3xA?G93QdyKHck zP;}Zy#eeRf;*{c=G5DVS#}+0>U=|f>s*-zYKvYxu-k<#+MI@ikRY~_bhqOcNl#G#L zCEy1QHoxp%xD_rfDmQay0JjLk3h<){`_~PZ_piA_{h^H3jeVr`32dS| zdEO8lSlg%0ZaNB8kGwfhCqJ=$Z(Y?#>+SCL*`|WWaJB2v-H++uu%Kb8%^=OGYe1`6 zRbOOEaV5i&Xpl28`@+QglBSRZ{=ujtSmBc8vo+qs|I=TM*aOT=AMWre#*dcavDZ1g zLPIE=aY0g9zp`R>(@LVcf=p+M%98?x3wAJR^tBH9KtVX$YSS7+v7EtvH`l7-A*O93 z#md8_7v|Fc=7*EN?AQbTkBrgC)mU+OtBem#*CTbwL+d;eI1v5{ax2w;DF%u2H}MIZ zJr5G#Xjz05U;H_jH4CKCmai|U8(vi~a8L0Xr982}@qcfb|7Rop%0Sg3+#T8WuX@+?ASgE29Ls=RsxQLTtVkf;(FJ9AWb=YkN4wYOZ8q*E1_Jkz zuY#NkwlEXC<-#^DJ#j>5g2Y^GL>{i31#&ogWX>HV=dTVgM2#n+8}z1Hrz^LE6<-x% zU$ZpqiypvqCdN$o+zTO-bKlkqu0%`wjby}X5gxQUxsB(R(E9yTz-~!S=$J+vg=SzLD>jj?wXQ?Cp=hAJ+|r$JNx)cviLyy#P)g$i;owE`YLbcXS0G&T3&Q% zk`V|NV`=_nv1H#1{{>6$oZ_pBOCOoMgst1&-d8CrOij6t85S!dfWke?LM`@qO{U`I zqd%x+_UKACJh4U8F(U-TD}Ovk^xSA*l3~8-(#Tub`=MLm#H2K|88s8TZ>TLls6r#E zbDK4M7LO$l{`&Y;gYC4|e~L&>ZMD~;&VrI5@-`y#^EJFOaXod~{AG9-_tTF>q&&8v zj^227r!XtUub+B4t*L@6?(e@~bM|>Ak|0)dS#wzFWo(PRo32aEUcqP~Io%bm>r)f1 z;-aYaR#Y;V{OO7+Pj^bX*FUo>k+XL9gI1h~VGG5bVx_N9H!(`n_4K!&sgW!^8hOb9 z2KG-^C`Eg*Xu%bUlW(nV`N^y?h}*II$wROO&{lc=`Sz= zyUAx*kp4F3$%OxJD%*gFKV8`rmIDXBzE`mfMv|wnJ)}|_6F70 zT0M*%P?>MT6**9K=lIz#T@12#xi$}eATLxHEeV-CdTvgYDkGq?x_Eq6;*tDV4`-5c zE#~)X)op5%6py^KG@*Rsc_C_5fg+jo?q)XVhB9lxaN+yNz5mEeZB;HWTo+o+f9_?XxV%CIDp{^Ff5Wd$Cd3;lWwZO&P(723O&4~bi%Du9 z#hV${N^%Na^+$ysuB$o^K6o}I&8+*)pw)5=@`=K0^Yq0Dbs3^lJ-YnkI(1vBu&$qSPJ(37g0T7a$S!Nl(5>bSqH0WcP@I!JjzIbu{k-()ZKK> zbU}#uWM_iHD!c|EAK#PbY`c7HDOAyPJtk(G=GO7Y(dzw|VprbQZcCnJRs(b5rV* z#pq{${hML7HCCy>Lt!;9K0HMsfznpMw z7V>mP%$m+cc5~x4-_r)pCo`4($O;`Q?8MMQ8jHJdpeDcWBWaWB**25fG5^%!t(VS4 z0@CdSwcj~SXp{0}52K*3Qmjo-+Z=Qe5@uhyn6 zIo`%3hc@3yqIrDIG+2MSK54VGIFxq9Pn8#cSK9fr-sMvDKsP(B0pFQpqWvJ_3_qkT zV+^=&&^HA4`VGX@=j!lT2Rz^3lJ80q6i0oY)XN=bZq`P{=w(xig1L}YDl@ROhJ=}K zM9h=o80?qbnLQjwrP8|RL*AJQ-|WYuylhf+0ov3PHB{R7F=QP@pjSh%SEeenFPqa z4~~i2xut$N1M+*x3Ce%yhG5krbNFt}7)Iz?DPqa*qKe>_v&o2y(4Dd2=%Zq}aqSSB z!jEy5k)={p|wM3r- z2k}^69EiZDKlCN(S+@0j3nP{Z6}3Glrw?(cvz*cC|HQblzN0dtGv7jhZ|!P1Ba=pga7#;<;)BTCEv&K&JlOy zI;^%^1yMHpqmXQ>1p~Dv{T)`%eL{&1lS;Ut6aZ(sviH0sRi`)TlOqK@qKmNihrQd- zEpmp%w0wZ@cEmVcTx#lkgzAhPr{?ZhyLY398tVhkCZ0drqh4Qv%?uZAJ-aLWk;O#L zV0+H%jaB+K?B0%wuAM&qjf_+Cd}f)XtmfS;eF!ciHQz?JF%EmBc6dUh+-~9SkQ?1X z*i{x;iM!3#xr;Zjhp6ZMFHEDn^h0wPhhiRABh}KOCHr5G)XdVj+tdBk++WrHRAY-M zEU{yfNryKch`bO8Y_WDg#ynM@uEiWN^^NAvfUz)P>x$8$Ymlq*U(V_*I7|p7 z>T0b;nDyBM-4cWJ^*${N6Gf^D}lc41&bQhRE?~d_X-Rip#FDvm+D4U z-C?}?Vf!L=w~216>1MFywzOFSDS>@#YUh!wrAmnslLe5tB-dqZfAP9_N&Dvi91#Cs zs~R&oSuJGy3(L~!1Nr0es3cAeRL+jqsnx(y(L#n>$aZeh|4CcwXf&p z*FvfBI`|NLh`yA<{S3mPs1`0i_RD+>i_}@0oJ#TeYD>OvXCvM(fs~UnnZTVf85~?l z%K1EWv2$R5R8-WsR6MX_5WF7DFMHOTlRk8DOim;@JPg>`!~0o2#D2H?V$RKl3)bMR zR+bw-PtXLS7}Pn9j$>=c4-)5>A+{i|huGHK<|WmEAtH@;`&E?ZrTs=To;VVWudlcq zK3$&74?ew4-MKZ$6-IJ#|F-nu?fBi|ik)wfaPOA+VpW zQ+bo4nW?(4{Yd*WUPazqn+CmyTZQ+(?An~T8p-02CIzP2`KK8ZUoyB`G6T=kAW3^H zyXk?x7pVi?SX!-(Kx{b6VVPpv#{PGjYM_^MU&9;Qq6(ArhJd?#slsv)zDommP%Q@Dnd_dZN zcTnx5K+VS(&`tk0M8G8EKN)3UmLrm48iZ8VB~sjd`UQ6x zT;x0*2LMHQw%q8uHnbV%ABNT2cG`&eK}}Rqs1gJtFZ@}~!dXxcb7h1&kym>>q5$%} z1~}V-QOPmI1clUStz)g^am$v%aW?~Gw#Jy_HU8}}U#`ZplhM)U^7ye1wn7FICJVnU zR21}$5RaySlQWsey6UQWj7iw6Pi^T02BCsSbNW?Cbw>FcvGZ^ z2%>_5ND*X9Rg~VrMpx+|AYFPdArL@B!~&wyt0KMk5+HyeO%i%ZARsML0@4y7ly7C9 z^NjBu=h^$5cklE5;fKRRQl| z%&rB?;Zn9QFCVR zuGgF9UHT!QGfJlM<%KxR4frblQIjnjsz>R2LV#jyDgzwR(IeAuE|WU@`X zZl%h?P&Z;Brhi$VkXAcvf2YXl_(XKrhn${_%i=Z^uBiysy_g6er&?BVa~rFWJ*z5R zyqrC|_ao@d_K_+eENcAnao$l6%IrpOn1kLQHGj}Y`|?n^=Gu<%@RRg)z7`B7!sq<3 zqZ}uOd@olr6^+=(J&|%_V131P;d$NO&U180L*zLYot4QiaSGMfe481nr}f30%hbw& zgXk|O+Vd<=#r6&RUw~|pg+wi;gsp2ZWmoc=ST7UP z9*K@w51}yr6sR}ma)UVVE;^u{q~o0Ryvz!XuHc$==5oYesSckqdUc?{bNwYGau<{| z*Bkq*^MSp^m_4X53y8DM+{duTJ%2>dx~}@r+nWvRv@c{YD_G{?^N3finrK27$>CJO z_2z=q{Jou1G=EutKT+ZRHS%$(TLIOKr=IlZm$U7_g!G(oclRDF?j9A8r6BGRbLi^$ z!Q7QA80PS6!*gTfJuouyU@$~r@<_i8ulIgpE;Rr;slLYcx|V-ZarBUH(htGJhXw!l z(nig54C1LUHvTE*7{=@-MOR1kMn+`#W6hc^-{~ZcT@cNqblWMV@$`csaB~)KS0?mhJMat0|S$KHDTGhpMd3VF9?gHp`d2+L+ae^Jp zWhx%iUqE84(DK#ZP_MaeJ2f07>AadE>HJ+t6595(kOZq3K_$D5Op%PI({y+Cy6S?e zBV=?PkB0h7)UX1jx?}ED19$xZ=;<)kSZj+YxiS>eJazs7mv+hGf~ZACM@hcp_x`ln z)cNX=!;?vhkwv;_kO^0`u5In;_}G}al;6=g7i=;0_UW&TPyP|z@W%DY`bt#frv7Q~ zHZ$+f9>?7-!38Fxl@7Yz&+Z?q6K1X=E|DIwqchHmCaxT8XS~P*2)LH-<9&$^5fLV9 zF*cH{k%n2XhF;M2(B5Dve`C8T;z?f`in-){PD$nPcD;?jt?h;GsI#v9nJUe~%V+5v z7lJGT6k88{u9d083s#Kq+e@?rmF)m^w2jm&@Mkaz5<}z-(!U1d^2R%b)ML{mA#Sq zR9G5gpv!nsygdN}!1g%bkiDq5t-yyD2Xntq{dUIN+Q!meKe z*L+zYb~3oaQNy23w<3MZ>sJCh(2eApH_pUPqZ(S zUi~NzqQBm^0yTb&P5u2l&V~#M;(#;oEJ|d+OFW z3vA3-q(qvkeAgJn$q+J0Tc^cU$K@x^AU*8~x>n6B*_}U=khztJUk}rv`?(^Yas619 zk3!*Wp6eH!$jAr~c=Spc@h_m#A6vOx6!>(eC9H2vb5HLu+pBcfX)I5>u)^$B{%NoD zh+u`%n)2n_3LGc&f>&;jj+R;~O~ayVBd#YGh(0{h7mJiNaDC$Wv0jWdiR0G_Zs=&K zUh81$i9G7|n9rx+><%%UtW;=6Dl=MOiRM(|S)bgirO+(&(}s+^rkUq``9ILs*=V-? z;nc)Jm+iGFOhUw>qKwgUaMiGlqxJ+7Y4`?Q47S$*&-e47n@)D@%0SaMux>YU^mscD z3SHHyFKM+VjObrbpvpTkvyS4gXiZhdB5(sIi3{vxIp<2urUNBBe%M(fi{G`9Eao`* zgd4GvQ_^?PSbpj+V^byzU0&%zr5K`;ln(7oha6s+CVuwaH{nhDw8*huEHYztAe>*KR&pa)bZ}Z_u zHTeuKuQ!$I>U3`I&ft%wv_n+}kuM#m9Y9~qKWwizU*cZIFtRGi=E!dPcm`l5ip+|p9vN2tiYeN9-)ok8)N9cfmf_+X(>yxY2{%SD5^4&NI!_WDQ(haY>f=SJqE z<*gm%^oLlV2io{3Y_iUsv|(gnf{gpL#n0T+E5H~Cn<{W!jPGg8L9!xmjiGqhBK2fk zkjp&hzdD+gs+4ZypuxEn8A=m11)PasxHSfv#l|bS_VYkSTmpAy!rj}lsT>#uNl840 zn&le_v!t)ce1-7Vkgd+}BCqFZDf!QMSi-LptC=!hki5*6XQ&uY^*@nm%8YZ&jJ%EC z8X{|GLV=0i!IKjUx%}a4IEUs5sXytb{zvW~W=;P+zfcMng|UDTZ^Do3Yh5>oFCt}@ z9>-R#ARchNfKlxes?1-Y&U@${4LzptPdlrNI&Vu`UW4%r=Qdk8d`7}8nzOH2-tr|q ztrA72zs-88)J~kmGox~GHBgn>9330eAxr@qwx@s%-6Afb(>Uccl|SelQp3$qcgO5> z{`?c|V0*`_onO}qKVfC`(1hqRQK6a96T_whE{9d_uHT?yXkw}2lWNPLcVCMOy!{2{ zEr!i+uZ?+IDHSg-ET-kI6|6NC7nq4jiGMEK8pJo+j(y+xh?jTZ-$Ckm;e|ErwJZ0R z^orf~YYmU5Y*TJ7FccmiaR`hb_4Mgh*?#jEEh>~>G>tp!?r-T?w=?-G7kf6qc$!s@ zc+q7&O&<%h-LzO#Y;{_ztZ^-ezaMfDqjcK{1b0{ytsCUk`)=pdM(zbDmDpaU`frqX zn3Y@1slSMy82DY#H!%U@hlMyOz08?hdT+77;*sG(yd2gGq23g1K+3Lsys19;>^JJg zGZfU5TXeVJVal;!s$+y~=)7cNK=s*XXp2C$NHyxdS>60%i1qURTyVU%#j`Ci#5gT5 zart@Sg1qG5vz7^m3|F$z4Xr1+wZ19Mg92-%!2{fUw+ZGkw!EN25)6Df^f1Q)7!Vj9@ay;BB35!>jyJIoWKI*IYy>7F8ka#mn>1$-ODDMw-pJ1^alL5};HEG||f5APenJL8pyjYkt zm>6_oqI3)9-3PWATb%wty(EbXk`=vA?$?qXQdfp@btj?|o^wAC2A{d(y`aKl;Y=Zg zYOY89x%~#THq3O?YSJtNcb8caOXI`04X?;7}&G&fRqb*t1hs z+V@qcgwyOL+>$Kamh{45`f#S-YpN~LG+F$w} z9E@~+Pb%#FzLkS-@{)THi*u=cl2p=bVu0F7z3kKf_?5Rrn#>?FH9{T@!L)rIN|YU` z8T#Poty3olmv)0tR7dm9SSagSnw;(hhATw;g9A;CDz|06lnsKnSdw_?r7EtTdwyMkbP2rkI%%>=@+ZlL z(=}bZudBp&YTimBPE0PpWRrrJk+z3)wS{-;O?^iTuebs|0B5t`zMKxDq-OSD`)!D( z(1yZX=0gae_qYN-EMbTDUkrXwqg7jq#qN;ZE6?k^SXIlkVR^Z(L{}$ge{m)c!$tA7 zY8vRRYY*kDe!q#TioJ5r6o(8{F*0EtQ#d7EROEfnEk)oLxCfHZliEp*xM^^wTTD*r z*VSNIEnf$oX;@5luGtY)=la)m@?Qut%%RG5%=hga}=wTkBkJElfLvQ<1YYyG*?TtOx$ zCN&~Aj-z-<_)tAJ8EZtPB}y4|%Y+&uh9a{~BLuHKonLn$Y*q;gTZ8T=f|(XIr> zgl(^DJG4)AXkVUYGjq9tav3xCFYY?MC!WUsJ_!X@90fm{8CV4-qBXsO5ib;RCYlDn;H8cG5Ce|xO>r0yZDa*C@#^zKB;LzNs_6Zr; zApyl#46t2#vOkziGg?yCcJfG85%{1MTOwdvhwr$8eyJS$UZ$@FX6C>4(z(R{GO#LV zPBG^tgpv%!W^~@0CKT7tt`t4RL{)E%)i1O&G~Pr?`Nd&GnI^o)>VHoBdc`*TZOg#C zxS(^{uyVKcHtJokU3aQ!A?I;=@bP9aaGL~0*qRW|%91VM zV&6h-0n~kEo*FY{G||=|iuhze6hz>h>EABM1PJU5gwP0yF6VBV@c>=Ndg^M!OEkS1wSBn#H)UG&lUiBiFc* zrzzcQWdiWgcQB#~hYNJ|g$-uDD2XEbs4E|zMoLmoa_(=F!cl=Ur!U9$M)4)x#N;6M z>PQNUqT8q<7{Nz#dC}r$@l@;O~2%VIdHJaRLTTz#(38oa-+$u0K!2!ysyzuor!MJz$1RK>Dq3zc2EUa!@zML)F20+c5sjK^2TCaI;()nfdk z*iaHUfwk%%uI{Csx-37=kO$^vwj?JUU0sXc0+&`DrNeEP{n^o6U9R==pw}WbPuVgC z`|P8WPHQS>xP<_Bg33;%r~TYRxtJUO7R~;L&BVY5{9X}_kdjb%jmk$(pEQd)PRJC} zL=2x>BeSKt_QHcPx&MtxLYU!*t4ZyRxhhPCiTIXHE>p&G_>~#AmdsM&{zG zi`0x;*MM$GN+V-!T=3z}nBTXH4gr4XPI5XzHiFIYTN&*$)muXgmVROQ^F8+8{p(L= z>P9fWJClA`?_D6mH0d2N&SIxohKFHW-HoGb9me_?R}#!WF0YL)-ODx3>3y$*FrOPt zf9h*_+_!Yw(x-c*Z>OcHW~(LGI8u3XScP}S?UhdF_^1=psSkBQd-#3|t$FfdCmy>kNMTV*) z&$^4v(>&hZ*fKC3GeNkCzTwEe!Gs5cp4DXek2$lapCYu{=GLa*Bun3&#xt=Aa~=yS zkCoDdk~T|hVt+LkYuU{KYvgT`xm}z=qmd0nbbT;e^Ug~w<`u)zUpICCl!;1?Xp0u?ECxDVMb}JrK?a!wyW7Aj!!z`pRv}mlwR=M05e6 zn$S1z&JO91m-eq;NZ7hukiserpBf#J2*8ziUy(le{dB?^2vuo`C!4bXvC#9PbG`qs z)id!{cc0bv^!48RaW|1bE z<|W`kmTXa$0*~YWyMf|Aeq-3)U2adLzXR-Nqs{b>)L*c%nXa+dRSW@Br@^G&$nl(b3DdTuNA|q0VbezMcSvlnXT@u1#$ir_sFh{rf8oj_Z?V=663E zMwhQ1k1XdlS#_s6in5ss$mHj+csWZ3OsC70MxC{hdQNX85oaLdN#HJAF0UARYiM@( zrd)?_4W`4LzEo9au!9|U+Q+Z9Po=Rx^Pd4>PwrQD2K1*zi@Bxcy2PZ&M%&@=2i*xU zkLdzTW8VJWL*-w)Hsu0{S!E^WaBz}uzdZlXUjK;Yz7wLX!Trd7XK4CnVal5Ll??(= z$@78+`^|gGDQO{jq|f+ki`8D8tC|*V+MkHex9BPeEOs3^^z%XE?|7^F51#<1V(0s@ z$D|2G?d>sc_Ee#>}SeEbCyms@h@U+vldF7Sb~j0R^}(>{2% z(c^e*8R4H^=MeIPdeWDXca3}4Pw&vK$(sb>j5P9NQ{=`)$PM{kEA*Si7oA8uqSkHttr%Otv0Q?OOG&|uZMptg)P(l7HkcI;4NGSrZeFQH1-Z_ zx$mfXC(Wq~{hx33dMbaR_#a;IFMihp`LHhpO-*~)JdDfq@VlqZumTn`pFYYx>Bfh3 z1Maa?y#=Yp;DyT!d@YgUQ!ivoCmGl>l1?+TQ25hIclTYgE(A$FF~z;PoOlo6o&np> z?@Lzbbt-T!a-VLlnbiddw%BR{aV1ejaN@KP`2pi{bwJO{0qWf3515iXLWgK|GK>SHzvV<*}VEE0UNWV zw6qp{Lyhj6dw;WL_&=ZaAeLHOr!mb|Jn7YU`J@;B!y5lL5$u6FNPgBddagqv{ud9) zr)~_DQ)l_g;GdnYy2<#Db|d-c{l8ryklpfn>*V}3()aIm+5fr5Kw>w$T~l;FBw35qrQryE;2^BKME^78U~uzOA_QdgY*$E&QIDNbj*ys~oE zPU1ti{@v(q{{O|fILZGG9ImI>Zpr_}LtgRDoR}Q+mYj|XY-@w4Ys(woMj7Kd=?>5ap4ov`z6_2W<#Gn_Ps3-B8Rqw9-<4u}L zN13$0A6WXM0|4>Eo|KHw{_nQyYXT#tJTI&D& zod8n%pLaNF6Up%^cYCh`C9|y1H;0lQKeTb>rAXLDNo6Jq?zdnzDy1;STPY!lB zUe*ec&L!WT)D$ki9l>>CBJz*?%8T4RJpJl#7X+D%^g;Vexr#dgqHJI!st&r|nE^&5 zo9ax!M!ncirQwg{=Ya~yP~ZT8A;&&mOu$UZ%c0v>|K9Nn6K4UhcsFs2=NiC#DP-Z~ z7}Fn3Z=3o@7L1pEU2me+lGYpkH_P-Vt>o0Q0(FCOZ4fz4L3?TDY~5V6oQCGhaq_#P z=_%I3;A!*Oc`n>Dq9@OW{q+|8v(FKB;^l9YYdwldbak3?A>hy4Jr_FV%tLYj=Tk3w z)aU^a!H|fTmq6p~zsVE-E$ek9-)xvo*OlQj9tn3ZQ209@yab6~l@jG2#kD&Kba*lU zYce1RP(~R1ohLJgwoqz=hudXXfEk4}CGcnC3dk<{kLUs@{7JorKQ8gih<<+|@;4v) zO#P3C8vV&b-}A+H+oCPk9(g?vl{;~=@b4~h@*hjw^k0`)xn=4INiPE$-GA$W@6^DH zo{oNH2DTgenp%rFyOK4y8u2mYh$;G{*y3%@?O&wA@4OV z@Mrf72PO0GVqqqg_7h*!KdgcVQ&nm6eouq%iv4TRhP-2uiZ0$ecws$D%Z%S`uYR~D z*miLGc_DoB_Xc zBKI8FLO3S!K9V(E1+RmVTaPJ6ra8G}TlM-^eYNC{A+B^!j|*hP0EDIiz1e#z&AoG% z+y&FqRj?C798`>qj^-@dbn_=v0m!&ba?(R>1zqjzbfNgWbnAOI54KYSNXe>u6htt? zXbpsJ&0pUaY2Kan11(^ZbO>PO;DPOGHRy~^fX4HIK8MdUF39{Du0_xrtFVhV`G(pm z1*TYlyfaS4B;Q}qE?PJ9jI|RA*bsOSdp5)Qb)kcS8sn{U5A+t|>6esSue zH56Z+Kpt^*Fso-(HNWXGqbvtnT$SA~2%$71X+T?Wf}kv^Oq-Degh&p7N#xEsA0~y3 z_OmJco2!*5^pLJn8lzOut_Rs2yRw&I^VCBAUL_RRH=#jyGpGd+rza(+e1`0=yycV| zb*o=s<#Gf1VYNWoK5IhSm6Ln;T9qX_*@vWIDMpC|T}YQ49hrr5D^qZPKberl#T0kR zru*-JS)v!Kg~$GR$Z?K#iandTPpl=T-rE6qe0>Rdajm+@k$Qg*m$5!%Zu3^c1-MtE zFgIT_h=+|%c6Q9ggdAj%C#19XfSSz@jN`&gJ1O4l0UzU^9)z$xl}uo!E>oR+(?O@O zLdg9ycolbp$rCr;V^O+kvLjrkr4~(E>jP%ibaiH`g`VU62wJrp8Q!6BE^|D)aG z`f>Zx!-F3RTP+GT-`}-vZ9gzLo(4@SNvGkw&qSe(n&lGJ=-Chy#IJ@*S( z+C#2T7-uO%gywk<{Sl-zOA@fbMFTB01*H%$HE4=TS2%2Jw*$+bk&!SC1#Ue%TL(f+ zVF=LQ^8=WCjbQocEoxvBVEEyk)>SJD=6OvzAHswKX$NR*mvee`@xUyO`Me%n9(iX0 z+gorAXO!%6v&ji-0hA1P;F+Ry*v35;deR!ZxceBg5O?(qVzpE0sGJkJTFzQxM^9B+ zH~VVw{S&Ah_b)*9!92Xj8P})oT+-(&$r#53+CNxTiqRVBrDK86}$D-!xcGU z{=h{lQP&8i8hF)7>@K_jkGie7KF4#9T^by5uHBBD9tfS~>PMnT$9vvOe;P8Cp;!9Z zDQdBMI?1>44I+63q`?rZN#Sgb0bdg_epGwC-r30s?Ie}Iv}}$8!0XT2r6x%K(H9yW zlPGYbX)qW@95q>!4(7hBHy*3V;SXqNB{%kS7ROAyec`tAOOifaGda)BH@W5vg_(z7 zG8#|2jKmq16-!P?3#`@Z<)90`a$I_kub3M38!1KgPBdoZm{^CcLZ?p5@Xg~8oT)WnV4G)E?-qc4opPZUUV)r`T(Tf8Kj zZ*R({kB^815R0mu{8L;iqVPbm=xwTueJV~JWJ(Wku7!lr7qRFp+O_`J;;->+u7}At zAqou7VpJ(PWY48!8KVh76#nH`Xe1i0zg#zaA3jP~XMp9u{P9GrrzT*aEi=l(2GQU-dzq;mIjP#hH{O zM--(S+MqABQQXC?J6ImeNx7Ctv-KC5)OEEMS1f%L^%Ah3|BQ#bhbwzq#4&>8_m$5+ zOf}<<4E5wDA=N!2hyXbfG;2JzCQPakO{8#lYV}Dj2h^A+aPuH>(t0)AT>7)hS=K>3 z9i^LNP0ch;89D~Rx*;z&&as+#kHn=gj6Q{?Z9Qr3r9hM&AFXq89fx7u3COoY?JaM4 zQIY5A>KN2?$CL;?svs1_FKd5`E7C@LF?%&R>7QNO1G+a7#6!+#Y zIbg6<{_6S2xh}kUi-=We|Nd3Vlm1}_3sjY$#7Dk8F}dj`Du#1) z1T(SwAGZNZYTmzTP(x@!cBSY;AC2lW;aAUYvKw5}bpeDnqSdWOcD*9C!WS$!tV^G< z*ewsy?4Jy4Ok4S|!D6u1xP{ctY5hh}0V$lCO*+Npz6226He#;Ed~XH4ZV}6MTuj&K z*EX{A0NHecZkaaVdF!o-IR5YFSXy}MT-lw<+e+_o1>eFQ6gMmv__fgs1Tgh#uUoaE z$zdx9ge}i5V4yyJYqR=Y^*suIs2c**1^VxMDv!WiLpeF^5Fkt3pxt3xDZ|gV*27K$ zDI>WFK&OmlKLUb*8{x@S8^98?V#Ls_FH)$wh-XHpW6H{q70QL8eHJR0LD&1|`++k} z8O-W{+~${MD9RzXG!1b`z`&|+u>f|1F^qYLgaZwUTc%1%M$|F0Ko1dTlBh&FeF)7y zS;w@$l z8L&&YKtzzx=h@PoS4!$%3~Bn+3~&WK#T_ncKsOeQ4*a5U$2+@UWvs`n%apcel~yxt zbhlNGeWna*HuhKc_iCp(Tw@dtQ!}PVAktj2wq+R^)5n0qrbq=wvLY0JeD_{GLMYh_ z3D>?koNiK*CJLoKTB+3nNkNE6b9H*{7O@dfUXo$0%pSBX{9576n(9?|Tg;!1f!!E; z4Yf}I`)Bznvxn3jT%>FH?{+}nAV=pYN9*n0OoTr$$Jj})O*x6GA%H>&;1|{!ximco zn+b^TG*ckMa78H)zl-Mf$&*$qbHb!rUu~>$wMj}b;%VePr0xm&LvOT|*5SX5vrlGH zn8s~pCrw@vbp^7;TL*0n>C(2ozSZWQ9p_IV76&c^<+vjZMxJu5M&SxMtwnO{L*{iz z*3W6mg8*9s#;tkbydq$lz-OK@u-jc{HF2H;vC{?cE!@tPNC?eV?WlKGB4rCDx~tSL zrNhzG&N`nvCOf@(znd%nHwX@A5_va71S}QSc*$NPr&lxsR4V#2CL_p>jj9CKmnY6@l?K#6hrN7|YUw_xLbc9*M(Y%}OeF zMolaGHvK^UZ%Zo|XCvSx4h45U2GHArya2+re_KeXgY`Dk% zL40BZjyXEJx{7=4(2aOpKM*RKI4M-rzjn7Jdm$KB;>tMy!F(ZWh!}+iS#X*M&GENl3)U2oG3T2fMsO7$^hY64;Pg zlD{{Jnm63Kn9~o5^WT`UdVKjvC?DzO(_&{a@G;a3w-4wbJJ3}?WCOxG-6&_D4WP}p z(p0=MsjkdN(4N@cmG~`_Vn_-0Upq7-06zY-I&nkhD0Oit0XH z0%RHyvzWr~OO>P!`sPrXP$1+z|#X`fbSh{NU%ND>sGgNQBvJ=Iyt6Y1JS=fr4}S(4a^CWsy}dGxK$J2K`w4wBeUt#2j_FSW zTC<#e!S~(9J9a!uDSS6}XnkUmJ)%%n#Z^8oip+o!3(9lra%akmE-fzJxftE6k3N&P znty6JJqMa1{PAWsMxS&C|9&9r9;qUi)ZhO}P1};^0cVbUk55SNF{m&Kn+oP0){oq9 zeDJ(PEt|)$ykjXXa5?{IoKMg&>7zs(${J(5aU{DR#O&}oT(LI0^mKbpMF6nd+cn^D ztNT=%+jetDTWV@JPae2A9QOro8k*sNq9N+4k&DStlO8_3bh4_{nb<}33aumpfRjfS zaX+kAcKR*c)!`Zo`klGbfqp+RwWW+6Vn7S$4(o-RGStcN7#wvpt0@RK-N6<8r1;&7 zyz&`K@{y!Q?36HkwW9foP;v8{3Z(F#rj7tXdaev*_R!?G={U$o8i;}E$J-3cNjE`9 zV8c>b%}_^)VWrRhXet8o=?N{Oj>+iA z&Ya`X7QN-TDD6R8DJD456<;;SvF{PMvuZVEE<^I`(Kqwmjfas$k!srp2t^d}&H)kc z@48y2y9#$4a+zUyjd|58=0L@2HXP}^HqDoN6XO0olCXrEbN$uAHBn}laATqA-8H7l zNeOJe-dmB?{nK_gABW85`C}^wN|YM?OCwye7ZR#@G#NL?Zh!I_9PQNdN84+X4m;ka zFK*Jy1nyM189Y?)`?(vFc@WyG=R}fl=TN{Wv`8OAC@XApNoF00J^Tl)e4nLgu8pE-4 zyg!DhphSV3YvA<@KK+xt^)7r;l|Z}{J!;gHuG9bvu z8}h-@@bXE#9+fL!Ll5!e-fPQ)Hrzvut{narS=_}I+!(f!!Sr{(y}9_o9GUS6*2Vuh z(uwie$*T`@+LJmG6)zIn&+6`GIu}>RcYFK02!^mkMxtJIVDyR3WnEwfimjBe^{M1x z6OS&Ub(Rp?-W_-&>`*!L+K+_i7#0s&Owd-}VUv_FTXIc~NcR5Bo14gA>T7^Q2^4E^ z58I5B+FRJG&L=30toICcuvw-y8SS-rAFI2-`c-Jp2U!g#H$2}wcUC8ZNi4tzDcbP! z^Q8g5Ppuz-q16tHF7flP?3gMATrE9}gqcPIBFs|wTG`jrIbL!0<+}#HZ{)A60Ht`n zlhu}>jJF#a(|C4YP6vtt%qWWzh3!bCgVxefwa=GXZJ?@A<5xtt^>b#_W<30r)>_%8Gny_NO}rj zBosYa*$NGCu(dIKMXxBJy}|8jrHn>>ruE_1ii@+M>o5`?hmq8HfKqh?4m2XABE@5K zetrbytfV^g>_BsTgGbZd)`KD%^5t?r`2d`|(MbV@Cij6%^{G<3 zhMaB4IL2L<==X{6DgDGI?cyz8d6)1%M{1Sxsa2)rLna3>=XV{s#>!Vu-F9jCJKIA>b}D7FIF0M(B264CIcAle^vW}Ak6kRakFG{9 z;`mn&`yf|bvwX)Kt6WJLoKLf`!KhJyE`Y+_2)%IyDVZJT{#D8tC935A<-{4UBSO^z z8DAsF92g^(-kgo8{5o~x%LKhcx()HT>66k*ypUL}NaQh}i1Bg*zz8~EQ1h?cuMyLb zl;VcjlM^207j~naOUkq*U8E7Ea;;v>qZw<|(^QwZIQ^6HwKzAw(Qd@{=Yz7~&O;cs zz-!~%%^2v7U|<3W<=Tg*1reBZ5|Dc%QGUM^p^;P2@;%1d!vWFeW%O!8z~V=n=rS9o zJxF5@s@O&yDSPl-A2(@lbeTOm zE!_EE#`(L^doWA@Y}n>_RtRgMVXg{!rJjR|WRw4qn$P)(@LY@N!-!momGY{;MnSwK zHETW#gIse%&PsLx)H0S+`YJ^pA;muM`Y_dJtsRX3dec0ehjqIU)n3P(gzQhJa13=B zfy>v#?(4p0D?Ka5X!}m;4H$9V^YwH_8*enr?Kh&Uou+#>73`hO56+*g*49rbfW6CR z^oycpD^TF{|LvB+=&;Ucy-Uxq{YjLTBjwtoUT5d!9qSCZPq1^pYn@@TEHeHStFvI* z30JdEqyX>E2_Rbak!1TAJF6mB9ty8-bc8QI7&+{KX=f$gqNnPW)8tysXNIJMI<=LZs;Q^cEkv7j+= zFjg>hX(OTzG$ouzTVFJW_dYb$TlX0$O<$kajt)F0_H;-Uy`kTk2~$qOl4ZP>st$vG zPN%R@uA#o^mNC{~_@NKDUrsxSGuN{P3mrd^o551*Ws!^|5EL^|lOFm{9Zy zHmKkUr$Jlmoc-W__Nq=rpFaizH5{!;;DUC=KMqocl|Ac)UJ9yf+7ArhDq=c5e7{a) z3}c820~*bAm|>slIHPTx;>)ph*vt>ZxYwAF>6yn>U=!ijebPc&?OojZO zFfGlv^f32LSxDo)sh&yAgKx9SDlJXnTUAYUL)BB;opN)1CKUcMJ?&~SN>-ielHvk~ z2Pfk8Nbd0NgtukI{W3#-jIX2@t7vlT$IJ=N7+7zgT2+OXgEVSoS#3~agq5{Q5gOm{T7z85NzSi`C^)Ec}^Oh*tY%tKTD%hLd`*jdB#(Bo+OD0?}KiUR(fgpQtNG{h!3I1CGfQh`mdPa*! z`~@HLMGflduks{c=Cuo_VcfK6kQh-u6}7c9!`hw*>=fgOf){6dY-$?Qdi2?zW`@c? zE(rQbq0dy#Q*w9rTLy*>SZEvGSNl0dWqtA-Z`aEIDij^O?>6;1T>X?l%yR2Vdf<>rqq;P7>&F=A1Ey{9zmGrlWc^QB+7_CQRY zQ7qtDsF~Qwok0&UpsF|s23%6+S}lcASUh^S${G!Nw>RCK{oOAtmIP0Ef6SrbppH58 zG*crPkoZn*57je-w+2~zA3OHHB#3=5en1s$8?k&2Qt=XT>oYX7kzPp236UpK zb`MAYv!nG#Bv*Pi&!XT^D|uFTda=LqInAvO{7{hl&y5+?Y#!9=1_NBx4i7-Z4b_b@ z-D-nvadSMY0-{h@5sVjFRc0(QkW(;?Dv6!Ia+LY<7dneXgXuzfaswy5x-t7Fg!@#< z=xRHnI3I93$A6rqV#z#pUvn76-6c!vRYc%9evZhwL!yqP869}XT+R*mMYUsWBeO?_@5X{3W{S8+^&xRD7VhT%dDgLJ z_64Jz4hJ@9?byW%mw9bkw0V;qP8gLtSmqG*xA3DCwm;jPXlp5Z?}5Y7{v*VZz)Gnz z3Ey0p!PPjdY-TlK=OynEc?(1hC%?AX$nlD`hM^sv@?Qp05<%uhRu;jt>yl5(@2Gk7 zvK<`xjHRvS!q;4=5{xIm!8Y^da-jHi-Gc}5rSnmc-!a`-E8?Nw<9G-x}+-0R>9OBq!_Gq9^H%Rv0rK*g#yLRE7Yt}63 zKQ0xBAg~@>`n)TM!==&GrxEQf05kPevOUg#Fkz=S2!QqM!jLXl_u}C6Q*-rJU%3;@s=-Rj!BI~|)P)Boia_gHy6&uy~{zGE7C@qD* zUqs5%L>An&42i~W)wB`tQy2}Avx5F#{n1z8DOpU4{eC_c2sYma_zk2G5uk|HVsLLU zJqYyZ2f|ovELT{_2U&%uV)L&w=a7$GU%8EElktSgXa|QzTcM@}}%wD8B7qIWGh43oQn>MSo+DzP-oU= zJ>M1EJZI=>&4idOLfT0%+kEKXe8wQ!<@eLs3?!1wmW&z@j}O_9#Zx~LC7GEE`{~Af zuf;xcVVTqTD5QDT@VT=LtHHG*RfbI;}Jiz3T zCuO!2HWnF}&i??!pWf(`BVMZ}k2Cll$+W<@`&lSz?@lhWrLfn|vNx)H<0WwiJPLrQ z#TgBcTMs1NJzIFH%cpNeo`xsAIX*LTZ2a6^sUO_G8FGH2RW<>tyW?e6egK~exbY;F zW=Bmc>sRCRZ5Coz&6J;+Sh~oihB}e*PTZ}q+(%LCH#VCu-F@$D_NgJ~0aV%Z`j&-_ zFH^kwZ-S`(&25g961`x2re=cZ#`0ZYbCx|wJqaAF-{!ByU`+QY-J&c&U0juVy~lX< z(7^H>omiAcvF7i(Z*`zq=YO1tL8e%Ab#J0dX(H9%uor>rQ!He!w}|KpxsBxVC?Gt0 zUSsuJ3>x=|QOxRTz!KYC^ow98S?5tuf2AnRHxXsL|Ap5LO;^PePdnA4!p+R7}<%@bhPPM^4W$|Uu$a#-<44l z`)sh@HLKF(dB`1$pt;mF+Zqv=#F?&kaF-}nT$KMf!=sIUqM|fmV!uGWx#RMDwTNYl zxf4Vr+rkKz>}=FA>%rLnJ>+tiyWY34+QCk*^||5&Parw6-^%yOa`_K4 z;57XEhaA-$#k866yS>Yiu{I(y=yA|Hsupziy1;Vjde;D&-MJ`sD(B)({ryg!NcTXc z68}}N$5*tw02Dd@b-5|?5~Qm)z$K7PSOkJA@K-`cVmlw+W$NP=y*(;3ZS}-%zc_i>W;pT>&TK0T#nq}`?WO_x{})| zxmt(F(P_WjqPqRhH+3t6iCrVzzt4XKRtaARDZM}mnmq}z>}6K(JTF1l;OAZYSm1FG~?{|AeHum@6JEFL?xN_ zC|}i4DG=Bn15ggz`0PPdzD}EQ6|27wYYOTF(AFq%?k-;*ngGqo)EHi#B>AZB;a?xF z^Y-03d7aR8o>c^YkSJta%#((1U#Z5)yr7>H zJkMA1h5#bZ0$<`0W;LR*XK~g1a&?INl){^CYaWZE77nhK!=XIOC#BaYC|Zi=yPoEsq$AK&=ojb34g~oMVlKuH#`m!8E{}N{Yf*J@C+_~>+ zk9V;wOzf|EYwLU)js| zE#Y^inyLy`hFpVh+g|XToU76CX)!C=b;TCZo2D8~C8s2bli7i$JJnj@vV5i}M2?Tb z&j}r|{hh}bmKnLCLS(4QO7(`Lq6HjxTV{(AxckNd*y)^n4^v+CuN)@FC z(WN!LCXWJ$`OTp-KEm@4kq+A(Hc8Z-fw`&fARK8DeE=}GKhM`5e^YX&m-++IHLAdF zSt`cY8vMd+_#oTa1zT-PChbb&m%#vhga|~l1Zx%v=w$@+G?yp1HA$h^(sS`*7Lg#A z8rar>P|-iuqsOe^#Bk!$UtOalFf)TFjP$p5Unenus+l+4^@gOa~VTKeMG_kzuC zZTW*TEZT~GNm8my@9`x%(j4kD#%M`%yre$QvFjrZ3$KmRKQ;bL-)i|I! z=QHl&xcg271xhMRYDu{xIowV8$sQf~3^z9wW7O#n;S2<;(aIixK4dnMlSvy`EpngK z&hMC#h7K4$eioO3>GN?sKR_q>%b5JoTNgw|+!ZRTK3LaAo5^{-Y?q^tOt5@FL_L?h z0)fja)S`0KSN7KvB-UAE0#VmF+%!McGefU~iOy%Gt1Q|!mbZ4Ar3uU8xO!=#juPlk z%(&(!R_}X1=Kl6e^WKXEvJY1~BOZy`t#z0#S>jy8MG8JCGZN|auY3rP4^b=~%T*w6 zy<;&BMxCkXm_)CZFEw-#cg=j(Shw0u!yk9N=XpkaJfbs+0tl7k^NkF`^sA4i!yFzx z+LI&4!@Ya^Wuf`C4p$NaxxSag)O{3q*YEQY@^Z>Y78Wq|SUl9Ez$;it>5P2yVIgI^ zuOO>iIHY) zydo~UjT5X^h_axp4(=nLn+-ZeYVbp=qX&gAEb@W-;tyWmZj8!0X+1TNWjR>;MS0`U zqQu*T!E6bweQkNXRzvtkIM($BW_uKr196WBeloYDMDJscCpaoTR(`U1x35q``211? z5Fb%!%sh8yX*M`~*}?18S)J#XQ#NvWx4QJSCCDfjv$Q1K2L}>4d-uuaWSu_`Qm$)X z-|X{8;;C!2l|iZ{U6g0Iur4SYVd7;9K(myqXD?XOatZJvKV~VA+;oh%1cVi_*Z|=a z(tGtxUw2<_o$8yy^o`v*_tw5-a6pZm)Na)%-$tuK?-jfGBXY*s`QrbU^ zJ-J1%>$>@A`|7Xt0Pqzhx+Zz05fxWrvNU&0QnAtqM_}itPKb-0GbABaltXPcB5|*y zN?Xs4QgCk9j)gB;*X{uA{ucIK3Rjz(Z6zB=A?9BQ=H#x1&;Bu3<;tD6_hpIe$0x7k zmxKf6EW4wa!LF+R&WK4F0CCmwuqcsJv(6{d=ws-${2Lx@!H~x8Bg=HTjzHjQVi*oE zs+KI}iIYxtJ|70S6`WEPP4c&viR$Ucj|>~nnvW=5x9XkLJtn@h-|)tu%LZHU`XV87 zRnV7~a~?d+BQqzMCxjBwv%dPTFEm`ifpqO}_Qew~o{Z*C7PO*@rw}o@8~fYsT`6D5 zOVOVs{W@5eqkQcVEANubo_Vb{c#5mJcG9SkORu|ne4z;Y!PF9TTvNc7wsdwhX|7Y^ z{ltIqNyQvW&)=wr^o4O;*sA_qvc(zCxWe&pS5`9LB2tx|bqDo|PsEB>h4GSM!_yOd zM88qkFGZj80N-b?-csTn<02hzKV{tqW!Fc^Qq1SI@^Lq^-5&?gk(D<_Jn2D3YfhEz zM{5p+uUKE`WqxslNnsQtwspywvy24b{9Wl!5KVh+&Bv*`VHu8byBB9#*fH}BZ;Pnn z3Z$JbGaAEqihL#@D^Gp~ZqrRm|9TbI2L;d_^5%HdRk(ZTk_SmWL}L3&E`r^6H-&xu z1$iBz<=NjOIwCV9Qq#PlY)h;IKJx?gd6Ey~p`eSb!`jBxVcgZY@Qc#*_`~4C zfuE2V8p;a3Ff{n%uD9m+l_PW4s;nr3O8AocpF0((XE}#3%@4>I*FQzYY|3*Tz5K3k z=0EN;q_eJxkxjnyh*_FlJ=54V|HOeS=Pf=bKYKT-nL0D@>~O!niJ>PwyB7oJzE$^1 z(||454QO-N_JtFk2mtRXc#H;D}GR=7i z?z=wtnbd=LWo$pN{xnjqlHY`r%zgJ!`TqTNv(HW(W^J3~jc#kuJf8U|pRGHkJWYGx zJV+}Ssw0);cxDM1#%a8jxBD?frKiPa^y1IEUl2U@yS{AayWE$u-`D~?9ryj`@dpBq zo&zG`mQIZ(02cc97}RszP=u&VHBH#M<4qsMs>R^dInL6kUTwd4JJ*zsu}WSX z%wSQ`!Wf$-?2!{!c%Kjvhb=h&akft{?rN05j=IalZ+o;VKYzDp^hnt|av~dlPH^ZE zW8o|lf2g)eY(w>>!vd?z2l;(!X%O$U(MThdwjfSne;yD(6JG-A2qxlr*pJ$V?4^EiW zA)dCRU@~@^iJ)>Mz^BBIo5Cyk5g4^eom}6YX*I3Y%slB59koDvSqyKs(3tu6?@1gy zhTh|Wp-Q=SI~zSr1Ba2MXWDZrTDVB_>ACzLiromg2C3Q~eKP_5)a~XuuolQhi9)80 z*Q~{Hr0XG3eYDi`Y_X*ux%>+kMbhV=9Q#)cx*4B33|SUq(&wt@ zKDyGUm{kBpC+MJzQ{t0K!*60U@_e2PsYc(DBPv?ptO*!*)In=njf7V>$2@?QneYCp zUU6(xpOt}En{m&4w}!Lt;|?VAeYMR;YZ*elHY3x^#y^VRE_)3HTqAvOlpj7+oir}2 zah$6BNL@U15-)oI?hJDu<;O&a)r1FA%S-L6?T=_vc#xfVb+Cl8Un^NICJqd7G8M?1GE!c^daOBW3$DqPH}JnWS`-*x+e=|@?& z1_K3}*#WrF2uJQVZjcsN5_>y+ynC8d5#$S03qQk?zVd<&V^jjFve|-ef99;MczcFc;^}*9wf7gZ z5Sng3{zfSJ-`v4qz|Gi-bLY}5Rs8y!rt&OGbb*MuV!QSj+~={BqFue_8S0N{^ATCX3b`RK6ULRKgRexnew=z>XFl2M8~|kjBCZa zvoF0Bsm;8khC z%Y8R$lT_W~(38sEjV;6F5}(VP%vyJ6w2|?&y;>yoo*xF!PhCd+!%Rk3(swqlR;ldf zjlwiJlT0AF4eQ^Y5SC7wx#z4^nOL72NaG>}Uemc;mSFPndYS<>s>tZ4F$=J&`nkgG z+)PALzZ4Gh{xG39Am#anw%%p4rjlLt^caP3>0>Ku#|=#lEXxRzfYs<7b&iD#D43@H z)Rme$flD3PS3RmL7Xt|o$;~rYsn9iRF|k&iZ=$}CH5ZsH=hH6O=(TAt*!zjvRiQzh zT>fs@racXqYD~5T7dZ|!+p-rZIA?V4VX~YF%Jz5w8C zSRx8BmY?Q)LkzbSJhQL*ojJEm)-iTSXKoTG$pJi*@sbczFIi8l{ssVXz5+{=cLW$* zYGJxC*_T*NG}x+a7BX;iv`eO0;hDulne#@wYefEc(1bZf0X#KhTC|}gzWE36vSXmG z?gLPy6kT)MHYA`PZc%Uz)%TSf{DOsYC$3a*Y~h{x8x{shgbOE{McJD%ia4ixgYG03 z!MGEduqRC4)H`qZ0`A-i&g)|4;;%m79P)GpfZOYGmPnGTp=IE#Hh-(Xk)uENena`m z)#-9do>r4p0{%PPDbls8xumr*LFY}~;{ztwInkQ@U-15Rk}U>>WL!X9L0PsKY;=|P zkC|9nRJPze9C3fyvjWFdD7RTsJ&d?Mr0JKdoPQ+{!<NPE68T<46aQ7~O18Roo*C za})rG`?Cf4{)ytL3*(SLAoAOwJ#MJPId82$3Go0*MOPA@haI!QhH#y!QPrgPDi^fM zBz~^0(U>|S>C7Z#>v=YGuN#70LP+P|oI@+89&+3K)^6*HgC4UZqg!W)?q zXkq>Iz*-X?`BDd}Zq!!hF(dz0plGkOvYL!r%=cy27XV|!@6v>hQsve+oZ;w-q<0x; zTIGj&52t+XYw_J!zC2|GP9!rS(nU?;7WB+|91YDIJ^fX)MmzXT6#a$9)un1_dATwE z;3QaqQKTSU8&Rsr?z`N6tOC`g@j+%~`M_&npM1p`>x@0^e57DXz0`>!h;kD|_6TwP z=>sAQw}>Jt5x85D*f~m5cr#3SN#?f2&I8W3<%T5m@V!H9QP4PD#o>#Um>zUl;5~xx^H-`Q6es(f%~=brv#AT z{N6HtKv#Ic)>b^d2>W*L{AMj7U_sC(9=pD&Ay_}{WICZD-CJFhjUm$xN9v0hKr zJqrMFYnnZ0%?v8CFeGi+N|i&hIEb+oSMEZQOF6P( zH@wFZ=s_7^4gOj!gK9>Yv6VQMM{HsP= za{!29Zt<|F#&TKve#jrKt6qKiM2N8er z87#wXbPJyhDGHGN{eVuk`5`Z<NM=F!SPMn4!&y;tik zdnKivxo^!fd?5$R0=+nBaMy&4fAj)>3eWsLtU(;ea!T#`Xp4{6#tw8atB zG)z5qoF8lbIBjsR+1{)L;I+LbaNLH3^d)}o4$9PRDtW&qPuyt0{-FwG>LZ!cwbiaYPerZ+qGS66D z(Uw*D94tZI|H^vZ`$amlwz2@+@P%Kz^8S||90S$dQYxX&xHY33gvUEjkf*n}4Q5D8 zisx#!I`hhq?1G^@ZGRJ&c3^b+}}C(`P$NkXY?F2YWjYd8Gv1Ji_=n zJ#MjS^8IpZz3N>v=NEx)EAwdC*_W_hIU}4JW%M5kw(cGdOGDSf;U{~$Jl|;Kjt@C& zf{r&Lctq;p{?SrPH8dG6UdWn^KmdG&Z8Z$0^DR(9w|+g177V#u#;wd}IU7m!%8^du zdA+wQifX^xBaSUqce?sAu`aY^t6d>Eu=%KQHd%a!p-LV)ZcqN~u%g=Y@{}D%@Ifrz z{vZ)OD?tFdzpl@jkiqh+Gu-p3!2Y-Cv+2n0bJ)S&ZiDr%bWP^?636l99f%cvgf_U3 z`;I5Tk_)t~5}xv|sqU*2qY9e0Kd72zR&~w!gxI|w2@*$CZCwypoW*QdYdl7Nsb69& z3b067kRU6fa)mg~4XC8>4qPm&;>uT3$=FY)6}A1Oy4z&Io`&O#DT`}?-O_9vo#j4~ znKc;`@^JGbKwakSST1Jt@QN`uz1g0t5N$Qc}O&ReL=G;@)Ms%_J6 z#7~}mB53JQ1Poo{Y0fHnn?^=*@kuQIyIQ>#XeQ)K-9CZ`fqT8ov!_3LAeSxjyjM6jDH+~Egkor!n z1~D?=KukUylCjb(Vqxx_OXq&F?w zyjto=A6Fo!<({<_6^20&7 z(7_4k@iqc)gV;lCm0vQ#x!h2G&=3G=*iS(!i_~lH_#IESo>`Rxt$1)lu29eSlA6Q3 z;I+nHT`1Fp3?zj28DQRT* zkpq|7D|!ckoxAf{ZExms1W#)v)VT#kS#>%QScNE8q5PtB<)-y|5@_1>Z{G5bY}s7z z{rYlz3bM3n)VDM_XN$3++C4iMRkzOIu2t;HI$bBtS$a%(FxTV3)ADRzYQX^NIo5{P z_le4W(xm3$++o!x{&sVN5W7~Jo-X|G-A3u|N z-fb~3Ud!_DG56RG@GVehC7)enleVpMX*#)GB|BI)+I5luMW)%l&X5^FiX(ne_1`+h zd`6&e&F}Zdl&PJij(9sZJG4H}I9W|tc_%lcIoX#mnD7ARVOl{Ag+5i}%9Dt#5}d@O z%B3pF4$KHbKlg$1mVTu9*9M&btRPA^h3AXi>PBOf<5I3P{!9R2UB?yskKF?CE~pdM z=(uubxN18xtY{z2fu9Kp%DB>;lo-WR@QZZ|+~4@MgSvgEJk)jPpsrTaixK zF&S2^e9F7sc}`0>bti=onN6e=BJ@SBv1LVOg~Nn_YpG_ex#=rD0x|2(qLOB^`huwV=Z!DMi4=xj`^8sL4gmRzZ_%<9YPB^03$W@N?t`>G3l4=|$;n z(9b*vY>Rz`6avBn5C~2&!2}k7h;JI8aV$BkAWz2ckslpl(Q0>6&61yh37_}q$jh-B z6X>Mr?eTaOAaIA?hH@km0{33C$=H{`she}AVD!Fb3S4rGb)e}2Hc?KCjW$c*equit z7{J6nf4SD%_al!)dmx1-wpsGPe9{U|HFA)+b7DH;hD`*PmMITz7OlEJfFtH z?3-yq(4FU-dDY-;*G3doyfy3dFxl~_DR~YW0xYD*{RO9IOj-fZ@W=VoC%>3>X0d_kARvTc?*JudZIkRlae-Z%VBY&3-K_mU9 zjev-oQdT?N6M&~@_7xZ!y}t$_eZw;!u=q}-5764U**g*AB}tlDnMYSam(zC_0BTZ; zvn+`4QI@HijG$4uO4LW_A2x8W18e$_$D01fkG_b^o2+k^$SoVS-kb;~9&P)fBSN?eF78lJ zH>;F`z73kDdw%L`(*f&eJNc*fPBr%MG_hXCxe7geuC3WXb+;!@2??8g7ps#aFUn-oKZzId>PNMRu_9X)OTJYcYfh^CY&rj_FuLRdvmfu4 zJ$%Ji6N0x9g@1mi7W)3N-WDf1@H=T;DH|)?biRX2F+F?CPV}?Ur`^)AmHxyQPywgR22^GT`qT#@_GJZMq~ zKtNQFy-~LTjv~dU!#TdnGEsu`P5G)2wjA3Z=wVOHBO!|~m)YT-c8V9+Ze72o)<%=e z@oMfdrupr9SGr_YSW3Vvsk4K{{h0EqrrKV=&u@?rDI3;-Bn=3>$y=ToGJ92tgeMkK zqE}XJzva6UY6Qb78BCdnkZoKdJ9==3{N0h;oj6{#+tRZzetklB;(Bjs17q*=G%=5S z`pBQJUcW8$HJCICJaVgW_z+Fx+`}0fYpbwj95^2qz)J_TG}dgO>vCB-r}jyd9_QeQ z?>~K+Ns2UX_QePvBcT=VtFEC-cjnlMoaxI#dmo0H0a`aNIWScb4>s|d>I8dNq?x{s zTh|QN*-G$0HaiB}g7hz9)}JBFG{$vi&5nNM>~%RQ8)%CF5Lb~`{*=q!%w*LQPkA`| z9&%fC>j3B{r&8-156?MCT~+Q|H>wp@854Mf>m)<(jh{&9;@>o;Ag^k(nyHO6R%U|( zegr13DMuz5^%j{XZAmEgs(uk<;aaEGdMECxek}^!Nxz-y5e=y+z$@MK)eA8|J9`Q| zUaRN217I#Kcl+xHJv;ly%ipsn2c9f4lGv-#U!go%4;ba{OX3|?Q=@aLypPab&kMzxj&7^4llm1_n3=XQ_RYXSlHL4EMq zU6a=%UX2_ygJyTllqM&$6h-f?u)DX=SoK7=Q1$H1(&0d^7L9B`PJLU1S>^-|KTHQ7 z?+L72mg1NzjQtt#cnwe7#gLQ9GgwW0`Axj-k$GLp=M&Z?(PC{(+30bU*s~zJ*!8bQ zkc=9YIx-Pn0L)ID-znfZv2Gr>PD}Oon(Hi0z42*Vv**Dm{UTC;r}<1?oSgFX zjGOhnm!1+%-GJLrcKh;oyTOLh6l_;=Vyj85SjNF^_bjZcucmIsS^DUi+R?$Uoj?%> z$VLo&pk~Bo4#)Z%bc>d_WA1EaEYk3GZb#b#@SASkI?FlUa;SJGnb?|c$ws~~P`kAw z;;~DeRNo(I1!7YgP@h^iY?y3U$gfCw)wAf*d`s%SdAH$8iZ9~}QU5b-0(z?n6W_9U z0&BkAlU7q7{=cs}C{2UFpapScuIok`XUH%i+1+<$df^YY#`7D8e!&V(kKX+M?toY&!#WbCf^ znpcENinuXD0S@AklEUqFb6JtJH|!fTNL!;Xq7FQQY)*P519-ZcP(_kf8+ZFK zU^$O2)HtTIk|csnAlz;=}lN(lNk<9lZt+O>u$f_JYRjc%E^V1yjkCu_K*+E7-Z$aI{h-oOV zuXNnJD-|uo8Ab4FiJ$CXG)OIQTfba%+_h;4Q~&h6YMV(PcE(s2uuB*i0rhLhn~u0~ zFb_f1Kjr$97Ka82t|F*;3)|3kjBXti6BH3yHs|#%GROXz0iwiN>}u%-D>sWh6K1B%kJrKL+gUET_|PS(vt&6Sdg2wZ zNDoONt!QFfq_eom{F+?o^cb1xRyc->s;*FB((XHIDfN;R7y)BJQ$RUO`3!i>f4fOkl7!`0w}*KAp!l0Pr@r_h*Ke~qH|e>c?xV_SQn zSkX-z|NM>5R)N4-7eVkv_p)1?@a;*Yd6V|^-Y;Yw|>3)<}B0u1hY!y z-nyzVsVFnBlp>OxI5PCy#D}JYV%cb{img~`zN>86)9irNtx)bmg9=0R63&m=R#f7> z2Sw0ww`nc=2&F>S2+FzjWPCG9ydJ-tirJs1aryydwQ-xkB~CswE#%q?=%JEml|nbA zw;z|TOIMGR)wo6zY}#prLFbnI^_`yE6yLP30{v89XMG=zim}v}>X}6euS?00Fx?!^4YP`R0b|#OGOS3ICm;3yvX&t6nfI~@ z-_49Xf-kft&0dlO0#`+&nUfwGgRV8S4REB=r#}Wa6p~}(PTW96OGW^Ia_y&00Y4m_ zf-J#xzY$0w<2NxK4YQJJeM(gtha+dM;D+>_J5p!?c`<(COyxt(z+6H5Q2X|mb`4IT zw=dU}hnVBkYxDnsb8I*`xZ@s6iwI3J6Y^#BiJ#>d`~oqB=voK0O+W=?1Zhm&YOs@( zHD(K3WHSUdW$eDc{rq}hCk) z_PXOxJ}kYMEDTzjhw-9^<3%<8Z`$t%emwf9H&>{~j%`Zx0~FNNOYc367|L8497-FO z6Zvvp!ULelXKJD+SE`iKLQfM7srD}azm~2Ps`8!-V&GeWq;6I`%7FW(2YM-gB{2== znN=WZ;L>!~xcqWV$Y-$(vf+kt!FEzxB(`j$r1qGqY>Ur1)2Ow0(qkI`r)5$X#wH=o z+S59Z3cV4opD$^tXAmHEQ*W?A;+r~e-K@X*G^{r3O_Mfb^%k6V!HIrr!oi05L9-k} zn=NuT_gN{sF1z%pU%41!p|^i8$*jm@cFE9hTQh8&!a~7Bz{+**Yc${BDZ&cjbeh1< zDAcdD6{VGWB$LPI;g1MSR~|4TB)jp<<|ENJ**1C>tsEGoZec7NkG;L);{)2Ok-E0S zckjU{M@!nrOAQ4i#QE%dP;WV})2dMoMQnlbK0oENk}6Xf$wX71wLLez8;m&N=$6Cf zo18O4(F()>1>Fw`iZoqFwN{iNVcn0JHJ3swZlQNIU^|kYWv)kVhCjcg0=vn536-@l9(JUnSMk9+B5K2w|ByN z#_mhh>XVwcooh05x)ul6s0vz+Sd`Gl`iFv|>Ve{60hqN#{~^4{ESd>K*nP^a?;xS$ zI;E7?P470sPtHoR5Z?{|SYP!EaeP&fgk;wSnwV*R-|lLQX=D&|yK0H%E9Q#dDJxB? zG|VZ^tiy*yNG9)HOr3+by(zMyH#Nbiu2QXFeQi%neb-5;Vh3F8)x-#oMoW_^S?Y}W z^1SI5|OlGUY8`?zYJRb8!%PyFb8HvQ>! zF->d!QMt5|_r}@j`PrvQC|Zddv3GuCU*(}pr=mh17RoA`v!kb#O9 zTlknGOr@^c)K%?L_hjM{nCn)__qfIQ#NuhhhPgEEI(xvaYT(EMDarO~6Yr(l+FX*2 z)>;0`DK@1~IaegL1f&WBO#{J9u{>j3Dk)?zHU5R~1AiZX&Zfc?zALUaD09+(l`Os= z)ApS`%TX%W;T%Y8*??yGVkA@QTUS8j^18-I|HC4TK5|zujUtAOXbcZ$-9hU9@>Or3 zKAS(B-G4D?4}?q{9HCm;1!?xNEN3Je3Rgj^?*o&z);$ywwq*zFkhfsW<1iE_YN2$C2s^OfVG!J;1!hox&Zqo`zBi5iu5LDI9Jwv-~gAoZo zfHg-*wfwM*NCEA~37?;83g#Da(T{_Uo6IBa8nf{Pcd7l=mxJ^Kl^9DG& z+`~1!YcEDr&pP10kYcyoT9o2i@G)_~)W`C@UBefYbDR|(RkHY|n1Jh$d0K=GW2(8H z5$m+92PLla`lC~m?Z3~+e812z__tNt)o7h&G~wG+;ySAu8grP|1F56zYcVYU@t2zv-?T;a(|i;`7FJJSKp1OkSlkD!15Fk#|21(?Y1Ht&ilt8Uoxzuv+M}Z z8CJOdsljDjB*M9QHj>WMME-$%CSTtM5Q3mR{$cw97Y_(vNTLT<`kf{A`E&0{itx)S z64e*c#J-@C+8!O0Nh^nKJqtKGr13xw#r3uMAF-we$g)@iZM9j5h}>%mR}p;Afq#|% z*SQ@G23TqAS$-o;KnQO+j4^=sXtNGzFQ)31J)!kpf`d)i{~_Yulki8(gYRN4plc{h z$4EFwn!I--38=cU63bXIT@p^5sXw++u-yPpufIUoP;=-kL;O(NyZ)_hd;X* z`%@jNMF^3zlY8)d1-FaLUW!D0nY%>|n@Hb2#@&@P>@_@<`?K7tcgxwbkw@ohTK`KO znRPFt^ZvaV_uV1aDK9Oa%3($155g+x%E{+zdFPgDw9l&zs}HdFe;QxDhG}^J>e7jTGiXI2zHd#Rj{C^XIe(Ra@6C2=QUS1?sQB_r4 zj^&?y*k+PX^V;!`&)>hEhJX4itU%Bo`pg!=Y5{(;1$aSpzcsR#6u^c!G@)|;cO8+K zLV$$#B|7T5;2>zdGBA-44d?*2Iz7?%`%eycX}Ew2_EJ*S8@ivt61bP3{}NpPSc&1E zei|%~)k?QAdjh_y2_P|d{+2V>2*9^L1KMC0d-TAYI9$5NqCiwHoBip3#k4i!QO?=P}oWx^{sfpUCHz%K?6 zX77*Smj)T#aF%psf0wxT$NBcpf65|jj+|+*K07)5&LV%8>|r+W&CK^iOpv)dtC9SE zRZEYu+0a^b4D~dI&tg$MhH}o^ZS**={|w##zcGS;d)@bQS+{{Y>||e>2ss5L)YKxp z&ZyefBGJGyoP--^>bFr+FblB(`HUi)!Fn}FWvRStf0F9{4|@1{x4~=Dd8YW^xUvM@ z@6QT6YsdziuTM}vk)1Y^mdV%Y|K@S{r!}3zJ{<=|9e9n8D#N(qa*67De?0^#?@!Ot zKmF%F`j~BwtJh}YT1pTJ9v0`P$G<5#|4*+m`wp(q?#iH<1_!)OR||jUk%`Og|NP~X zJ-$E=a&wmUfBq}RA7w8Cqh{mm+mmBsI&$B^%cn>RSNYFSJm6ckKZFDcD|lh&|R1_meiufn(kGRhQvMG(yVv8dz>4 zE1R{R0sH4aIT!zk7k~T@h$ssW0cHq*v?-fi2}!^HH)c-mY~~kdgoK2a(z}M5zLR3G zrO)|8yiZjB@wW@QpF&X>d%PK+qIA_QiB`GtPt~7 z_jk;3m*T$&IUo%><4)i~kmj%c_#FM;ej04~w;Je@X??^aMZf=Iy+E|b!GQc>cMZh* zja$8|g(xhPE*0zH0h)-6R`FH8sw%;-;`c1B+Hs11LdbrjbUw~6gSm5^xy@h4f3oQZ zrMAsm*2jKCg3`EIekjF7P8|kT`|0W;ySbL;wV|94yOEEI417emz!8r#_}dvwG7Is< z@uoXS=hlE;WDWRE%b?rUyAuD7?b247yaxvd(O=YykFm?Ur+2Zma8x_P6Zo*pUi>B8 zz$NSgpLr`wLNTpR#d*M@Kl!-GhuD=-cdI7a$bDVK*u5j<{vxwR8Ll&gRcOA_7lRag zG(#jx&zE@Rjtp+++lZ=!!qk8?o5lI4PCHqprc>bE{v-J0UWUE#@^MR%yl_12Uu+|t z8#tWvrk~7%!Er2l(-gSVNn;Hvmt`PV5n<>#uB%#Q-GBG?oSVQQP~Axt^H@&C2I6Yx z+39Ng@w;0ei-W2CQ013nam>7zsC^xC-wD6Hq)kRxoPvkZJh@?7hJGzh)jFVK)MwwM zQ2e>Cc=G(9OU4nM_@*Is1K_Xt82$HR55cW=g zTo~VmNz&la^W>8q0@H>R0Q~3*AhjR<@Mwaz=kC(6UQ9|$|DzQ6t=;ARs=3$h%`P8C z%w_&!HG=MYQxuBgV1O2y1(;fsbH>OvN)Y4H+R0~UQQ8dW**6Eba z61#+(B{wP{LWzb#)u|U}?w$j0tnAP!fJocm-^ikJwZE1F1UQ>4t?!d?k{&Y+{UCbG zQqp>U+1|C2Ow;?$Z+*E&&_RNzGsqfC5m3e(3ZFFtRIm ze!e=?K2WNy7-EZ{WiJT1-%J(5s|SCljW^TZmm;uvC<3^Q9jKqkbCyvRE)TL84LSy- z)M&YhMA}mf8E5@o#A4LpagXOLjXh_yGmLw-1>BNhx0&W^uOATpV^RJ!3H~jo0Pj83 zVu5awdd|G7ZsJFG^Bkv8v;{M63(tCG#TX;BCq&(PQXb4SwdW+#(E;thhOpvhcn3#d zx~N+@nOjfDeIe5=d#)<`G^&YP^HKY4n}9RpP-b;;Mm1HCBl>27G59-)K^?HblbtYc zFkRpDdT;3fIcHC?W;Lr7m7MXl1~R1TzVlwVoAdnL-{{GaE~}e`gKo}&KTtsbwsHy> zUk~X=@BT%_2^`e`5kx$+r$(03phJ}2zg_UIn}k}!Vn>mjFcA90?zkeq%B7o^Yo5=y z`NwZchl}fNqS@3A7dyfi2G3CJ8t*2dH+oA`S6_J&)q9ZEOF)p3gh*7NU+mYrEKERM z&$ShZ>DKNkzAY<3&tB1ex3KNHm9oDHD`+)alSn*Hq&Ak%fQ3ego35X##nXE-KxWL2 z5FmC{YErl=P(1sqfKW&W_7{&fNOgHCKj{l{E8OoXJXc$cmrzSzrHjYJidwy+Drn;9 z=%uH#Z)nHCfuu_mP9s#)QC;CwE7MmBB#Cqu(d8f#)QVXEi-{RrBw)UPHdD01)rO$^ z1USGpp6}`F+2|k%JoOJZ-QWpGsj6=`91MoNG@3SFO*yaGh&pBkHswrY@WNzTVFgyM zCNRc;gB-G`AXvdS@xKUXg(}!2&1xm3reMaJz;n04t%sgnZS1huKk)avN760)BEMWS zHXjs}c3j|!>xN7dbt4(1tO_AWe3@G z6w}`}%JedJqkt}3*JzmW{cKlU%HG@a_tK5hum66xqX1%39b_c%UCgaE@yv(U3~AsR zDC;DVQyUmiH)v*W5{SA|u>_Rh&2vGc{QLjmtAcY%W&5DP^O=<_Z9y)Nkxzm<*Y6E} zm7(458#em1?+U+m5*;&rB+4`&*|LdTok^5b)#{Rad;T(WxAb3>Q5uH$rG(C&xJA1qlw8=I5znd5@Ow)eAKsZ^p-59sQ8q?M7+%NvFkrV|gu6l5X*wC8jLR=~ zg3ByiC0%qFRMI0Vz>8^MM+^D*{Z|SFy4V0cjzO#x<7uzRIdF}&Yv!b8n@sRZ&}n+C@WjBI@-fQi z9M#LSKbs9v;&22eTD*Y2WIC+KZn*3xkZaQpR5|)4%>tdk>{mZ`ic9Z_9V;;LKqPlw zGvbH=&={mdfJKhF>Iz*cHYyf8YvjzBz6uD&_0$Ru zW&kDIj|CRjp(S+COm?F#jaEq}wQ7~ckb#-TMC2fG{VWQwD?YbZHMiwBmUMoaA{i=FO`BJiQV z-YYBhbY}2k7td|QL8VvAW4jZ!E~&3j-I0jWqOS&D_y>SA)(sQaD@4)R0r5MSxf^pG zyGpXTeB||5X~6n@_hF#NCd=O%9(e9w1;pS}u>~Di-K{(5Q>uh>(BS8J+7|ic``1%7 ziOs9jc`V0^@iJ=Zg?-R=${SqIflW_x6upG}MXNwO3b1z3z#q@pYs!k1GaUb`y3FbG z!l9CwI5xv&$CXn+@#+Kq^nJ|Hl3FX?^9$S!zuxa>l=$WWOrUd}iBi)(nDrU8KcNf} z%lLGU7^kkhhM;KGr2YieYx7IOaS_PR@Y`f~Celj#)yH0Gy#?GhWHnaOuRKl+3MgQj zS4*_hvHu;wka85-RvaFZBbtpF3NiNysl z7)kyqG}#%KZ3Boq)%35XMSS-inRn`%oGXCEk$gtrx}YRbn!$!xlWMu7-`RRb1*o2P zS_8jW&kx|xo$2Z5uiXD4u@En$mhM-13c|k8t%QzlO0^<^7ocbp0TteNcAw@j4r)T` z4jLEbAb_CvO~DQi*YRfpfyBKEpn9WPY6m5EBmKYC69Flg@V+H7kr{KWjUlJA#%Uvn z_o{$VCV-dlq9h)pt~0@^LnrELp79m?TN*&Uh1lR(iV|IlreZI?1Td?MKIE9S(Jne* zGhp3GtsnVTi|3g2_IM<2LthQ^UeplNrz2E+I;WW;gF4Cw>Sgr)kTgGUKVw~sFY#GQ zE{e}%Sw+HD7S901H(rKybdr{+KKn{8^TYSijt~(aF;AwNK~j7WK873Q#+}R!335K zqa^svvkT8pty`B<9r}O}ij@*j9NhYnEjC=cFEQ-py4C@kuGmtqWP#5L-#Yt?q=G{v zcs)4vaCe30j$WZwRzoyc@&p-nd~x6a(T|vwUgO8|sazHoi+pxpN^fj|j{1z#zqGjDwhHAoY78X4?* zxRBucgQcR*p)R4aZ|UB=S`Dnv!v%nZ&B7)x zMV%4_+l<%o9(?Emn+>I_18*Vz3;-b&!ZKD-z@UpC?6Jmcf_3W3=jsapH-WXmW)iFY zi{aD#CCWlYPyF#svAc_?jCEIbLzuZ5(Jm7 zo3oU^C*m>aU_%RGMaMos4z?b3Om!+eVw0 zY!yrX$NNIuMzwmr6r)^)5SGnNtDlvK8C-*2ht+<5Xv5^{Tf0H2x- z?saS3s3YT9vzt|Sja*xEj7F`mQ^QiCfOregr8kTn{9=%22IPdepH%bqrwWyLXc2d? zP?Ago>1yqYkSi}&)O{qr`*zg8-VfwvnKqEtvkGGkSWmeMCefzGfK&3$nk5;yI|0Mg zC~Dt4Jh@V=c+k`U>jHqGlFVJX?TkNjJNiL(CGqO$V^-pNA%P#j*mV73V`jzk$P@`DJ_Ca$*+5#mu zh>K9rW0mP406~4S=Td0e86S*lh=F?;i{0pTa7A`Lk*cgPbyA+AuE0 zg|iO)t71q?q{`K%!8RT8x#m3ESmSov#+yJ}!RK@0bE$Aj7tSoeuA(t=y3#sijE&eWN;j|>g$*N78FDDD$KwEk%_;1g9 z=}#L3*Fp(MG1leZ7q^Mo)6J#MZ5TLa69Gd9C`>YEVNltn!D1_!zU3(*E}8v9!1lxj zMBKy?tMW{3uStcF=(j?X&YZ#-jyt`EZBkY}R|P-=LVOBf5jXpRJEo(~WX22CU>0d` zK2saOa2;Fqn6PKUG>LJYmxR*ZNZgs%J2<-L25cEUFX1Mr-k*DP_fZ>n?C0rDwB3!E z{0E35DWg)bsG>L!z_>1hI5qF?u?N>0iGTKTHFOM6rZ@9cU*@SPcfoO9n?Mi5ZGP@z z@cJ(E7q^KE!9Cc@y4<6L@+}3p0Tmmo5yfMzxON`R005;^ht8Qf#v0^^v_it&-fr$jOQO6~jeUu*Au=K0U>I%6=0 zH64Du@AKSwg$;F;J}OqV=fTf8ex3y3;MOQaofMrtWy~Ru2a-)pHM(G`yGCLJL(TT* z-+Df*A)={ha$@&9R|qkS-NinkeQnvgLaYAUC0DciO`CFyEVC}}LC5E5;3S|kp4C36 z=+$i6yhBizMf7s**T^;YKlkxLSEe4Q_;?+sAq>C56Z#gX^k3S29eDlK`}Zo#2bXau zc8G4|!_u$&MO=sou;F(OZ_XETB2@;wc#~!dQ{>^EnsJF6v)M-pYf|@<_mK#&RCc?k57n~MFj*hdv6UnR{$1zlq?F{P*>~*(J6Lf#O zKR*be zl7Ek^gb-P;bPc5GEg1yBSVz^&>E1g=v`OKS&S-|Okf|&H&!G-cXhbTl;obS4Iz}>i z51C<>UqkBg;wf8wyu2feLf zE2-7fB*8)A;8YIf_uAhyW@__cRrsh&UjsJW5jOj^Iw>8lo7VCIV?xF@B?okT=vFmgr4ayNn+iRZNqXxFZHy2rHL=%aMYfoPKt34|1B4r5lb|A zEktP8I6&{54Byg--m~x0&kJ*;2#BVIjRqn4n zqWaV7bS02t)h`kX_A*1S^243742pm7s97)k0s`K8OYVYLf2N`(OOFTTMT!RURFqri zJ9g2ki3|$LhjlKD*0t3Q5@>wR91&jNrEqUPN>3AQr8>4>mr3V+tWt{g>kiS^;%G(; z_mPC`T{wY4PER)xE~;0ralMNi*#OM-*sFo(jX8sQ^lqq=<)Eiq@~7prP`N2R>9}?; zRZu9;G_A$4b>eokT3D6BWACYLfWz|;tsq)t(vI7piKK94zD|g(fN@&Z+k76nCd$jy z3y=56cI2ArM#nQgKBuV$PF+k>TdfI>Aio<2ZExeKsOZV8|L})Ge#Z8=Z2cv5+gDtJ zHmEmvnJ1vK*tkMVuDlfI;0k^5=XsTS*>o^xaTToJn69s-;wovzX8U-|R2;K-Sg3(i zIc|94WHAMG3^L*8Mz&{n6Ww&9Zz(kuh+;@jO46k_pJ>p)u>#r8S>x6aLK%9inK!&v z#u#oVr)A!V))TCJ#j9#RPGD9c0Fsxo68_R*$#V}HkNJqz;&P`RR(BGz zb(Ut4!7`W-RZ^`UJz0AzJUKL13rx+4FR1d$v1yDLEQQX;aXmhTnVi$qK+5K@cq`^b z;BeWGQn@yuZINac3H;ocS5*r?0tFqNhA=MOxFJ$0!zs&TZItq@nPCbVto;T4wcJp3 zK5y%qK&eFc?DTI8xV(eqvN$F#|HTPW;m6*7@r0?+cY>*O(y1pIvd#b=?}HMmM>)Qy z;EKbyr?uW2x>c^9?>o`9{UbNlt4J_9S0u49?pPjIQ6WY;W@Mt?Z2DlKH?kw(^jP zDc!O0a@eD+4zzWKc_igiV??aNzMzflh+eXX<4x`UdK)Z7kIN4pxK5^O}pZ2%5A9jYsIr5>EO55XGWyb^VeoP?qA|pTDb5BB2=5aeyGY`$C8WT$BIET{u!|m z>YVefUGcC6BWH8xaURZ)#wmpoPbbQ}(7;OfIIa0&iPNXpKy{+h-abVpD*u~`h|%i~94$Jkgg!PF}vg&20^Gx5^f(8>vSy%LXKK3E;JO>>xTJk0;j!*Wvrh61jNYVJ4++3+@Q zTwPuZ-kSusaAy!D2{LQ!6LYt3gx9?8X6J&m6!`eLVRN~0K?B-kcM-88BDGf7hUl5G zW`@*~Aa6l0uKRrnVyS%?^Y_fUqTtZuq4po=>s!?@lzIcm9&z%R)<}j~<*Q6sW^@jH zLMx*cN_6y4Go`VmZ!rk4-W!vfPw{7qtQClTpw9EDlUGoSC+sSSn^;QhLUFT6tMzsC z0I{LGo~l!6XFD-u-|#Do)MWkFyRmn`fD#g!)pD-^kIJUWj(SjaZm>V}NC-`vAsg8>R@(fPvn{(t;n(;6aQ1D3y4Bl+-+*4+7@`&X%W{X6 z2EZjSU4n96EiscDC@@4_XxDobJ_sv^l?zhM!&{E+2RF%a4=#lN?;usPw~~C3y&)p$vZjB*Sy%y<=U<24)Lu$dVqm8Ij;Kv z1{5_g$+ulCxl~cB+w6OUP3StX6m_eTbH0yhHj>Cb%wLq`K`H~GJrNmVxhl29x9X~n zi2o9AjNev*c2qhCqNNU}m!mv@>F~JUU1AnxUS-jO^$b5#+wn5_U{~Y~P`}t47O|TY zWZQV~mbN^@@7~@XXV393Ta=Yu&aU;%X>RvaewWuyBn~}1dFZZ!2rK6e8!Ee6y#!F@ z(HLWzPsq`?&3cjl2r?OF6@Um-PZb|lgS+KjXLtq{92uxHHNi|0@m>B~AW21aL)N$n zM%2x$k?BH#Zqu5-_l~B@tkehd9<#Bra!NH7e7>>4s%i!M!h8E2%9v7wtWvF;buMfL z2yf)ZoM+{R$I_YDRi*K4eZ}otej<3WYHh0Z&RK`Eh>2nF-$IAw3)H7-Y4>qF!*0EM zkx78e#G!GoDa}XvX*e=azOZz`s+@Ztko-xo{vYmaIRfh1Et=rlE;Cn?fr9Sg{1pz`aQQbxp)2-`3~WJ9NwkCz~mC)$4azk;+>q`WRb>*;zfv09isq6#wab zPI0;kmSol<3IXN`(VH;Ulj$#fce7!f-(y)Y_KIP8z%eA6QUD&+OtI6wj+YRl-@4Z} zA^ct};!&RODPo!K-|`5r{JO~VHB$`pp9YuxJ{KlF!E4lm;b>cxx#?*&Z~5Fbwn=e$ zHMH8?XZ9?{?f2IJH-rmioc>rS|@K!!m)KV%2y;hk^HLZ_MB@JpW(IP?&2Kx;^)aTe}{82$_^))Pjt5>}!s2}WykdB2~4 zWM(XkwY6v_(#t6Ez3j*cg@SQ;{fDp5O*X?93ctRa|xHWTN=KL~cxD$@*x3}~5)7_%=>@SQBRp$um1 zOjfFl-wdgt(DCskUBkP^MO!c46%QM;H(+p5ryK*Tk(V%tWteq&ru7$$uwT1u6L!@Q z-J_?`mTEsA(4p?NWfApvnK-@ATJ1{f$ZG%Tr%PS`le zz~BaSZc2pa0*HIzWW6aC?~_UOAcU2Fo%}&Y|PPBNpH=`w?S% z5U=?ZtD31dW~E4hv%ZX#&`9i;Qj9Do3vrz@qSU23WrcGm& zn(=h;qXA}FN=nbCfj_zSnTGFaTr{g<|LVI{ZG=?Tb*vFPFm9fmds+FXGA}Vx%t!`6 zmnr5$JvWx=VJ}7_>7<8a?$;7z>)}A6Ix3T_3`Eu{)|_<*7k(0zkcC&Y_;}tnlypg7 zNIvYpLR~6M%A2X&`4dlSv|!pxB(wU9hSz;)$k~8;g>U_(4S2lsdf;0gp;-XM)e!85 z6K&dwkdE(B0^ck_z^%L`75Dlb#virCBGV6hf zTDw>j2axUR7vfZsMHj7iRJpUXjTkRnv&K|fm9~RnjyQ#P`x$k$Ke7$h8eeUo;v7O? z6*NYvKJafrXCB^K(tx&L2tL9Iz9uooc zd?efSu+Y#^;UlCWyS=x3#+JDq%c`BobENUBW zn&Vy@D19+m<+!Tw878FTo*JhVu^4ut<9tv0$8LSfHwIfp;hxWhHGw}q3j3194xOq)><+*j3F1$vDny@wv_R zwMozW+=cN`GuDbzTbGNdvOWwRb*Y~zHdEl*?I>l~xi3HSj{wCRQq7mLp{g(J1Bgm2 zUrYUHBDzfdm7kb#CR{YlKx8E>`9#b;6q~`EXp@m+diWP&u#lQl!bCS~_dO$!^k5st zxU0WOpEtZX2Hlp>jL9oSpHKEm*!&7VW$!g}7-g1zM4j}&=vpvOqMJ34%Y+)7D5=Y{ zh6mR?nzm@Nw?24n5T&wpf@mBq&`s6m0TcWillwaTF|5x0jeus-QW+fc_W$+L+Wp(m z^C;^ZT=dFBS>2C(c-O=1ZxAp$zL%OLvigL3t7se!Of1#Im7`B-x88rS=dl3Gy2q9M z8E*a?4Do+<>HiP>wqLtclgDh~M`WQn|2k<>Ysuo= zEWCtl#n9Bna{r|Nw4InG@&N=+JP z-GKt|2!~kNf#bg#FDG#EMgU4-h22m2?3?6KJGlWx_ff{M&^lfFeEoqoBmrfSL>Gst!<(`5bt zf6OGYXTz7rsp1>`2?d(kfH?x}0*+c`>y8(QEu_c7V?A77k>wB&Yez|j0Np1-CPd-dO10QVbwCuV#Gl?1MT?IY%OpB-)zOGf`}>2L$x z?;fTgVPzPxY+XTBJb3JE%a>DW0+u6e4(6CV2(j$@F~@5Dl%N+M?1lSa*p<+W#tMWZ zaZ@$w9eMCAABLe9TL!UkJicI5vfcaQkC6gnzfXT47-iIFEhv>AT8RF#djin6MpFSE z{S2{=5IK+hoaV!(&ANuIvO#5;w1!`AS||4KCV;-erY8aWI=ynNs%^+N>q4W?n;)>3 zL4BZ8+zpNGSI9Z0jB&9D<93aF`Y%UG+$Q-WMpy=mbdI^12@mc+TB)tG&l}Vn)F8i8 zMVlsV3^j{6 zR?+f)Md+BQQ&(`-ju=)O*_3fc`s!{{g%U750Y3q=M+4HEoR6B$0okC#IV+r72lfev zL#z8Mkh1%crJ>1?A-Dc>(|>-l&CBF*zcWlrKDF}e&G@IM>Zo@)S180a1zFAt@Ifck zP4`zfP@&7+blv52nmD%4VJ4pvQ-LD%LnhoBYMaFG5|6c$j%^bQ&FP%x?XcRJDB-Y9 zd#J5y@t%Zqg62AD^=O-jL6dj=o&caBnp4pE8of@tr zA{mDnyl2>d>e)mBG5NotQqd8_oHc@5Qdb6EyDO`m1p10pv*oV-=!l{*WRV=1)BOXm z_z@=PSYqbc9)8`bDBz8g0sTwBDX}xWlHyWM%2sxmA^sfjctp=R!X2<-1+P^Mw5Ggr zJs)+XyUk;<5hN1ayr~f5Uz?4XPpv-|z7<7O($lgLL}8b7w04b@|7oMBT=)GqqOskl zUjOR9FspDHJzz71BYxkTJ0@R1)gmrLm->_!lhN=K{%*w{(VwQW(0EfYb^1d9$uhDK5uI#mf~A0);iIBe*k$)VA_p= z!*pw`G#gQqKYx?T9DM!M+?%NjBpPD3(l6$3E13xk<<% zlY|%vZ>ft^fPmn8$026t>1q(g33zwob$n5-(uz4_rvTm@?Q0UGDHKHMx@}j^(jG}= ztpj95n1gD4Kr#q?W9~I@H{Y-8sjemM7;Hi(e~LPU^#GK~@<2p4%Ob_vWYv8cU4OzK z>uj)A2j!wg@&E6L*p-QtO@1zsIOTyBt%|zaY@{JEfdd6w31a26c~TF{<*%??*1-4) z>vxme)r&;6hH3LgMu<|<8Rpt4h;>gY7-n9l-$AgTv8{g4aU!V`B`n_MgIR_%JecJ) z4p~ijr)5F>i-Ye7|yQf)_SbO{v zHP5YmT-$#KU=iC)w1j>KV~D4Pb$bs=yO>i<1K3;;Dx^m9wo4)pn)D6fM>;Fe569Kz zkpq0=gX}J=h7~*a*&$yE!=^N)fPz*&OqDFjpr?Z%d@HhDH<)t~kSsO+TZsvZ*7MWj z%9mQ3hA=cQ?|h1wSQ|t zdAf`MD3FfGo09XoOT~pOA;dsnU&~A6Zcz%`Vx8j10QS9WwE(gnoh`NK=VwWK7IRp0 zon+5UfpbkO<~XjKvwwU~X3JFyqrX7e5=#xRs4 zyEXKKbD;KZq)PMqf)J((e2ZZ!Ya}0MY6wdmGhunG z*&^oJhn8&k^?*tf0W5cPNF}=ktZ49wMlKEpRjvodvTAH1g~lJU6c@ENBGmj4_66Z} z_83ZYE#tSoI0V`x>cBE%T7$X;^b&5uk1=EppQy@VB61yf=e2xJk*9c~{IdcN_Slme zSQN-KuR~Maxi$FQ)%HPc%c+3!Cx+}LfkW)d*m|%6(}f z6Uli$wuW5UD}U5nuH3nPRKRvJt%Xn-KK7}%#ur*7Am{tO1XC?a;iPYuQ~8Kl*_IS1 zO6Xs}RzUpm^*wE;D5w+^bs*Q|QZ*qs5|ypDfQ^)^ zjp)3gW3>^9(LVuMe%<#!Caaw{3lWWMgV$+IOSA$OW_uKk{n!y`B3VA&K;W1=2g`-~ zKon`ev+5VM+?)GiEAberQ_hI$&E5{Okc}9t%{A0X_YV&+@@0@Ju{mM*@T~4+KFo^D zPI{j7E;$%eEV;zLxQ@8i%8w*7P$yyfUPZ+Pi^rxi0^wT`Y8z1uvj|Ou%_}rZE3eoJ zxeziYU*FU*Zv%8@8HUtRy?Na?-xo>&5uSm2>G``KPf&UnT#41qI+`x{4!o9+rW_U@W498yM(S&cVu3ZyqBk^@GG41=)< zZGC@;m*3~>yq_h>c7r`5_!d^6bXP4!KUxYK8TVIpP~)E z3x^>osn@jNrsQ$DWYc-VQqgs?{|`@$ON(vA*@7D*;uq9!R{YF=WYT9SI$p9mGe%om zQb*usp+6#tfB4>#R!{SJb!Y0G_V|wvb0^Wi=MRWxr(XW9?M700@lCwwFPSC8h327K$3UL3nQf_n5v?Uhjj{QxUs>k9%bBa}A^6&avb?v{vze79 z{9FwYr}rg^PU80A?G??2l4gj7%-4(3qObOs$@62B+7~^OBzI_;SOs^Oc+8`EK{;@i zxkvAonu}~l;6&`W66i+ZjOBcWIf!mjjh5|8(V^!S)XH4}|CXJSnwmNG9{}^?3LEVi zM}#htXQ%Dx=l5dE3Jj?zLAVrIvu1-=Pww3Zcs_}g9>H!C$`*`AbNcIzM_`f-4pVm? zzrTlu0A9#DN?pZojJUx!VAgj;7({ocOK-+$ip=yG(>WIe$R*;?$@2e_9|1cH6n3g=Ma5zf1w9IG>B^i!zo=p$d|$py$WD!Bz3wB z?^IrtU+GY&yB55@X^KvH?BEkZo|J|(k%pRmY`eJXr~8wO`QHcTf1jLx{>1O4ENzd+ zwU2MfglImlj7a0|zw5WwW`@?A#=~QXMJH0_dJB&I9n?Le1QEp)sYIco@nG#?E?Z-c zne@A!Wx+O>KPQn}`4L6i5%#*qTTQdBWdc(n>>6JYOq5YX7WS<9=qtin+~Tq$ffLoz zcZE<3j#*k;bwYpGIR*}j>I@*2%VaNJk+MCVn`BDVi?Qxm9db-s!XIq6excsv)qdT= zlCDplC2i3x{b&i0OKNNy`QJuJ-Gs2$#TtW63+=J17)JO5YzVgJez$P`$a}1CxHYAV zV|i}VG932#b~0dr=52d5A=oiZw^KR+LB(4Mf3%YZaK1WHp(axh!m`oM!^k-`s)`8T zyT;#oT*l&qS;$le5Mk`}uY?b$8@xR0?~>elBnP_*6{E|TqaEL=Oa*eQyv8&7b#hzB zsh6C6vloQ)YA@Vn#xtUC&dOXMx=k1q5Xa=XY>wxFG)5i-Ih~Wc7JZa~)pYOd>ppAc zJ-V5;^6$5v{YI&z1IO8mw&T4iW>svxXy}0~k}LheXacI7?_a(KQX~=%KmYt(`<7QL zfeZh49ho&iHuAt_gm5~#-e!R#Sc|+F!!24t2D5b1Xq?fc(EYn?k{Rw`JEV-QsZYS9 zVB#}rzj}V%(*|QF4woA`+o{FhV{VON&b49!f+t_$8B*ROaX7WTIekb_j0b3^BVo*9 z@&NChkBQx{$xoxIUw{;tx>=r&AZp9 zCpqg6)HbzwD-DN9jP$|322o4Al(l?O&M4PZ0)HuN9EH!|U2oWHU1U4<9%!-N1>w_B z)5RR=$kdJcC8nktHVL`yydyg^5r0KWd$n=9;q=k&e48!LhVwNaAU?Y!^C0b(r(oEP z+D=xfhE+jfv0+0Ny**J`)Z8O@mGQMED(kE=)i17<2SWWIy#26<^@UfU-(TJg;?>dC zV_6~zP(NC($YIbWe^s@MF?2?SB$p{c*LJ)UT#Buo`IHc^qXs95e>sFnNr-lPD~>}$lwV@ z%S!$FkK7LkG1=S7InS=48;u9NNtI<_7Z-dY(j9irQIt4?qR{=Sh21BK-vB2d(R?RE z(IDTmNT^seM&izhfJYD}Y2zej7tsZ?XYzu+Mu;U{meO;AKTkb3-SbX+j}nr=GR7{C z0hd;ZX{b}J>lfihKx91zHkC=C59WpA*DHQ?*B>O_E-(zZ=UKD^iFB>VaAUHXrx`T^ zQL23c`0DB&Y)=j5EYRz;uBc2wTmLwYfQouv#APD~dykw%kxX&L5Shdw+iogANVD5L z2-yz1O1(1EiShp=!GDIbf5*B`eMpX-_dREo$#>P0Fubb6xcKUWwYRuz)k=B0Xqb9S zf~;cCl2^Q<+`k~boB*J*l4K_p|7;Rkk;x8Ga`~uq;Ti)}@)-(~NR_966mK@z$&<;}6n@O(f9c7l%l0~YllzlYDzcx}- zgiU^%@;91JNKqmuD6~)Ql<9wv!A0wz*hO_4GAMrt-cxepT9bMqeMX6%sSq7!xEBM#t{&g%su(UI3q>F<40khgx==2C|K{R}!K z`W`i<)!t{UJcjTPBjR7T%F*i-Y!xe@ka&_~l)$H$(rWSM(xX!W4_?5-9g-W&O$&Dd z#JjNF+mMWbhFTeH5KhGOz!Japy$IKhAR~gT2yWAHmg+NjL+3K7JvgsJPvw|z^YAke z4y!h$!J1QV+IH+NmMJ?D;c;N5* z@+hW!R1$2X3PfBFwK}bv*CQ#NxMKa)jIIS(#m3-@Nc%hdx;d--Ju9K2#dKaQCbTCU z_ff!e5(o9BvPzYJEI^e!GSvo+0{gpW?N|7ExzOU8A{$nc317 ztNg~@UjGJ0ytfwmfr#U@XM;pcDfs6&&GPP>IXiV~b1X_Axh7HZ4pydc_0VJ~B|UH9 z|K%^iT)3^MXKrIlpZ@{z+Rhvg=Gf(Ez2Sg&^t0Q9{Rt`|z7&@o!t)^v2l!SiD$5Bo zmotHz%E$wKG!3HxG~I-pdU8mWJI0F0j1qtOT2+?toNd2PD|+%Em|$7bP?$Y&hO&j- zHHqJQzq9D@&-*^BIScI#qjdTije<65bo4=S#;zF=5sZd$Cl>LMldBqd9FvR7LqA6% zZr*;!_ux`mzY{D8+EW-E=KumxRX}VZoM(Q!^@DU)I)$i1!0)}NREv312NS$sk6R;b z`>rbQR)kdCoaMjCt@M`<4Bru2urHZI_Taqfntwl64^@_uur1EAUJJW*68~}%8j}*9 zkaY|t>nvWWip6giV)I`uWmu(lqs%@8ovnvy@V*O_{`J1aBgInDuv%4ok+)8g18oVH z^=_^t(<0mT_K?`7tbTUxi*U*E)g1`=O4B+);;@45btM1yPv@>eyAHbBW2^IC6jczy zdpvtX`)U7Np%caZtYEI58(B)z?D|`g5AcLubkR-j@(ory{%RZ)c_>PK3u43;_4j?l z?SDPhrGG!wndlH6dcP;Av~Myoww~k@m18>>#_eB4og^?_xYXLaKYeE8ZI@wNSt6Cl zr07X#ono8WOJdK!fowT8xp2OjccM*5pNRD#Ds4ihuL$3#N0Gt1b*QW>*P;5)u)(bM$E;E>eKsfK zNbC@1sVg=4`Ms|QrD4VY-OT*=aoq1r4hmC(xQNgtauq4>*NDWq&O^2K=Nzv#HQPoa z&M`%0@nC&8rPDC2(8DGwbHl!aP3GRcU@Kztsn1Fmw68!x6?v(9Guiuh1^ z3E~iiyuE@pxyyqyLH{QnKrSuWbf366>GG!%eFb6qN0li^^T*L#rz!;YhoiRv`ILhQ6KOvB$0QC-}#Don;Yr=Nrvqt z4);?xndjT<_G%p_x|9PZm5~IbCRm9HA;2m-^~U}^uKk9%MvZEPKe<|h2@^U^41DTG zhigOXZDHgpiB>GU{h%R{2fz4qFAzHyjJG%(43nE*y+F1nDhx8BPOo)|TMkU_^E*|o z!WE3Iq_E?et4LO~j{mPLP+?6tY?k5c2@5goktyjgvd6&v*`NHnG+qZZ=seS|7@cQ7 zt$MMEX#L`deI;Cux2B%14rDscc%CY099=5@77rqi{XFuT=EaWRI5cL>++}jn^cCcG zgX3$I;IL)}iH6ZJSf5SdBp>H7~a!E3X-m?i1>X4w(GPvBdAy3ig0 zNmgxb)Fg^yhu%(fQV;SnU||#CcVmQMGlXofl-z{)-tp3dl5g=kBX^nNO-7~a-rsqV zWhXFc{?eWy*)I8C-}=5HDRgl4#%WnXu>9vLqRqwv_B&YJN03F&lQeOCHxUqi#X+A zn$+2Mhn;-!MXZrrRn=cJ7~|^-)Dm`kG0b1nY|--9@WtocEqf9;)@Hx>n?LqbAct1$ zan3`@$3+HrZ|_$4vi{8PlpW?ZA;MJgJymscNgj`xP|PZHzb$~}M%)P-R@EL9_Bt!j zLh9mfo48l_&M>9N=?=5sGsf3H4F!4WCKN3hR@6aZ9P@lIF%989zFU|kGNco>{yTmkH z_11|oZEbCL5u8ZnzbCu@`P;oN0h#rxR+paC-z)L|KC=H;o$hxgNy|2Y{mbMQr0ah? z5yrQ^lY6s0_lLjp%5J@dRH`5)2qOuC6g9w!dM zx)mL*l+TIe0frx|jjCqOLps}AE;;ulrb!IL-aY&s?Gc(uZ7cnR^<0i3QsrXuqUv(@ zq-DWAuTNYMgZm%f;D7teMSEmeOybAvA3qWj`RBtGRFv2|53Fj~3r9^A3%8An7U9xsoAULW;U=ZYw)1?4$pu4k^b?Ui{i-I!}s%T+;ieDvpTN-^Jq31 zA!li+qBg1po!&V6s5fAKcYq!_o>$Z{EF$ELpvNl)^J!cA200H;PaAx6{`F{?nVp>o z-sR@qF2f2!J0BrVG>6ND-QbRy)Wk3c>My&Jk%Yy4;%dSBQ6InKd2#*Y)BLx;gpW9m z;(C!nW+C;@lOBvE7+4TP?)WC8L^bjb=EvxEd}OO13?bK)Tm1&`Y#Bp#Zn(!SV0a#2 zd4Bx5tLhCf(-22Nv0u)o3l|*=_)(3yf|s4{S0^Z5rmnnBbdHX*M!BH-chmVl9Q96e zR1j-H#rkC|lZyJ!qkaulN-yGCGcVz%(9j?E^O+4~Raxk53H2CcbPtS%6+~Kdh&_35 zJ;P02m1kb%etE#K?-!y?q{2U+oH8=~kM?tHWGRc2_mteI5h1Fa z1~Sr=xD;0YcNW`-^A^8r*gTAKI=Fc(8RmLwFbB<)Yd7ATFlR z*&!;WCeH6&@|9$_V;{mJ1(E$T6a%M7r}Wa-7XQN|{NI1nsf(-)%+ZqcW7ALbZDH2M zFBLJ&PUej8jZs4jP=62y@0+Jph@N%WnUKEcw2(N5HPFzHT=gNaY54(@hcsrF21Mo1RuT_ zY%p?q$*~{C$cBqaO)?*{#tO@~pqq4`O z$!T%90%u5tna0Pl@U^cq$`M8!o$a#Y#cQY0loevD{-nP*@p80c$Oxe;yN578KWCTG zS<=vhx4JL(z@Sm7wm?68d!D0i|Kf)q} zK5Mfa+3hw5;tYX8L5_KU`liOFwnnkB^w1|w&gX!2$;pro^B5-$cm>P0rF^cA<|oxS z^Cc!N?J{ducSL2rH^gG^!}CH5gc2IfOvyZK`}rX%veveS_ZqL|>l@2I>f z>04;vZmtP?lvg_8%t~)^x?)*m<4gb4WZ1}lPy&$#w9Vc@L@fz5%-IVhal*9s>XSa5 z^`Wf<`EyL-m>-$sD6BZ2cZONwR%GSiKL0sLqVQ(Z%;tcjBE;;)0n?Wal+BNLM|T?H zQk<7g7VYgsCNG?hd^Q>3<(KLM9Aa#x|ZO=%b_Dpy3VFcq88BW5p!288nI;X z?rL16sP_4Cj`dqI{B6kC>mXe3Yxlb|#ak^|<{d`g^$Lk4JZ=xZI}nmdv-rKeEV{Z0 zUHnfnc9I$|nW0_&uQ)Em$s*J*9+S9_-*wie2o{V<)M7Su zvCJ~EK)09zI0H$YtS8#)%%|xB(2rkUgOzD%8=)Qls?O23`}oz^RTx*Vy{mEEPA?2w z656&J%*w^15|$de{|5{u6Hgw8+(X&n0--3ZUjO|JI4wkP}-7}x)M;_ny;R6kWoy zuBriRXj*jpeZ@ZZDOzY}e76zJ@$=PvdG!{) z6JwM|W!YGp^x&!T{Z1MdyacLlowAHO2($4cn)mTr$A3%gAIdgd15n& zFFbm_Iv`zw#vJ7930EFk1teGSXV2&!tOo%%7=FrfprcL})gS3Ra<3t)1JuVFEb-K# z9Z?5P|6_nDmy@GS@ATh2)_V>->D&YkU76}J^7~bDoN6CKOr4ovzflaVowxMAy@Bcd z2xL3xyOW@BkPC+x8oFy@4Sn!S$t%Z%Cv(%t+yUlQD$#cc6Y1LVU7Tp>-Fe7v4RG!m zM_n_h}p8EuiTF4``vrRY>`}Z)iO6Q_>Eb)h2tS0B={*(+>9O79sySy zJ`e}WjeG@*yF4%e&%cW*#MbzGjSZ;tuDOOj=R?|=`@l|r^BeFY`s)MLfbODs1o0zO z2Q>~no_O*^r*LRz?O?t1!&su}9Hf+FJZNj=cKGx0t9`S3Xq^+(%4 z@kbq)ET6n{jn;nTt^vWccs(Y0wAwivw%{6%5?g}tH33Kye#-(0E{7WgoM4NN1Vl>n zzp_QK+J;15zdy6=*7-Siu1*nYE%$oEqN%2J~i^%!lJUNE`~Eobcn~tJF{#2o#zkEbchGsRgy%oW6$^L5NVZ z#v%#3w@^1$REBFQ_^&>`j|;^$E>+ylqeJ;KEV0T##s<>!= z2BAbu2ZD#|BT+jZ)O=qWv1yN<6Faof0c8+GQ8ENqfn?YnV$x&Cia!9r zz0Ma{)m=>0`&Qhrw7i0Yqa9-c9rp&So8~bNLJsni?l1KdkHcmBEM=Y2tX>-6WPzUVN_qH8mG0ShXT3T4K{h%TD0fK*2pE@sja3oL<%-nw{d^4J zY4-){r-!LLnkLY-Qz(# zo969|izJiC;(Y^Kqbo(LM4(rffsRMXIu_yv5+*vPIGoD{be(sA?xipVpdD3xiQWlV zzjIvi2F{$ZhdhmdT`Jk#yhf9~B2*gU8b1Np5(P+86eK4060*ezVU zBzsuk4IvO(kKb+}*Rg*Cw|F$~P}JVj0Al5D^eg6yBKa`L zleqd=BKf0Pt}6O>{%%LFa<^S$-8c@f5LdfVT8SiPW4=*ZxyBHsxi>;$8{d?d=_&@^ zj)@QK#fp8rySIE|%yRB@M!8#$Y5hfZm>9aw*mKkgv?J0jpI}4NFWl&&i%Bn&I^MPz z8Z_-POhq+nbzo|dIiDt)FszxL_w3E5pM!)->BKuqeq%OU!VfB_@(PCkVTRSiI>D-% z+tEqy7Zl;@DP_lR)A@46F-P=TeDIRx&-eu8UXK-tm=04Dcf+8jYt27sk?<2~rvu5Y zEUFF$6zX?9o-cFFSSs z`C^4Xq_#}*Ou;?>1oWd-0R-y?8ckr3cn`;s;g+!}wc9MxCYJtik=1WV2RR76MrmPO zB!TH`O->kC1m!9Bb`a}hFVKpTd^65JYVdhV4#9MMNq+2xg4zv8Uz578$P*@>ft_QU zOM%eud;$uV8bA%SJS7lm8GyObI#mwu$ruW>ikn?2!4#*yY<2{xbqlD@A$Qnx%5q*F zpJ*ZNC!$1;@>vZ?Av8z8pe&9XAT>KI5=fQe3_6I4RS}tBIFwvX&*#;*zB*1x9aM9t zZ6w{0GDEjHv~@H2UmFB=)_9&Y=-jI;!3N4+%GV#@d2*AAgcc;!h-If8_+PsxRBEd% z+;O`Ew;S&`+j*GgIX<)_ug+z!+6do4Pq8=W4uB; z-u_(Jnp=4Oo5lw!?1D@DITAaQ+9rNKr&Rm72;Bqk^Xll{eS($6&VAM z@*64Xtw-N>=T@AAj=r(gq7}FBTn}JZz)Zva9c@wL1Jk1GVLvQ0`8b~pOl3ZHUQp+p)Sc^1zfakwmZLb)G652tTO)z&V)tR zX=i2Lc3~1!YJSpCay^XlIlJ!#id2rzam)!K7)1Abd9a)JKN|rdHxF7Zqm&LCkg7Sh zvL90Z06{1h=uHnF7wU~cwc(b8jlUfw_S;gCj<3!vnAAa+)BYzp3zx>7`}EEamPJR& zu|5*R{T{Tkbu5IG(8cI`ig~ukjON9_F~S1%*GSjN+!FU>twdc!4Hhx8CDJi8fH6WG zN7DZqoLI@fgNk$bGVZ}A0FtinGm#;$DDljShSBtW*z;k%*@B}U!$0vK%_SX@eASyc z_}ngD&N9uCiG-F`*iF5`RSgIU%0%Jj+TZh)UF#h!K>ZBRl-#xK3~lK|N+Bsi9E_PzG9HpJbk+5q1_d>s+D@^nz+N{bRe!XMkQ zv_!|OqT5oI`8k*!b%X1PFU0oG*~)1*G%G>g0|Y^I>eL~l^jBo3I=%AN67sotp+fP< z22e9|XuhWC;i3IxDM$vN<~T%iMz&#vWQ{+CP+_bs9wbm`X>lEO0Au1$p~Ngfw$wv~ zP+b7Iqd^UN%>7^{e0Ef_M>C}%WLy@ z;@)pTJk|sntSSU~&Yw9|FA$wRe9bCA)vlKLAP=~z+HckArrX_#x%&!sYHTm;@vTsW zF6lQ(UVI4u4;s9ACfa_4x)RU#@E_2O+h582IHjoFQ4;y(C4TmfT>`?m$ zD}eC*bhgQl@Vu$ki5*EG>0YYACk>8r?{g21xT$h$O(~j~YKW#o5WF%;?d!v&g_(Jk~N_#e%@>{nJ+QxDZ4)WrOI(3;|;InHwoZkw%!gN{SEx& z;pX2sx2u|NC!!ADMBUI*M(xF*KLfH{m4`hBkDI@W`Oo2k6l6o5aERQJHZ+V+Sc1Qu z0xSB6H#qwMoQMg6APxqu0c7BSlED(K70}BnBkN3-6yq>EUL^QzkVOw$KqR70L1d@x zC)57#uDb7D!G`SFsxgow>jspRA(#>zJ~wMeT15WWVBXjN%7wtAnrAmR{U{#0jmg*9 zFeF^g(2=QDrUt9prw3=InP8g#eHBK#fHk{5hY3N?!ORE@pMQn_r0zx6P7$#03qqxv!DMz|NtxJJEGnU&ce$6*=o)NpS z(8vMB9@*ZFYX*9BF4JXJvHHxRy9*ubOR=KHA;w!Z>$f?)xqG6w#>+n;-^U_w@N`Eg z>V6mkT~1Up#%P0AEm`CCRPD%C2`p=$f_|Bcm*3yQCLL930Alm{qqzBZQda}q`nD2am6O;2B z2?ad|IN39|5m3Nv-%|)Hs!+=2*|LQqD#wtLG$dpXOw%-^3d@D7JH4CCv*|#$sR4bS z)a7x7eHax`JdQ*TiI}VR1i3=hLjbRSmi|fLP#gN``%frNpB=KFPr1(I!aPDe&yWQ8 z7x;P5tq?vZAcpSvkkG7CqG_`N7n&`VD5{~RTW+AsNm7@eB7%e}W@j+iFSu}ZGjzP* zEteTI&8j=&cIZX6&1KPLBOY-cp>*BBa$?cnicMq>-(H@vZWfMix|Cx0nsao8c=!eJ5E?wi0cG^)HiDc9= zLOOwY5J2ksJ;eu-Q;KNO~zvgM~la_uf#y4N&o>S zU%hR`ExIR3vPlO1T;xoY{F}3(VIiGTeb>~Cekr5SaK0M@2|9_&VbjP z3;*5CP`pE+Mt)OGszf+QZc?FXbJ_jIOZ!3Vif8=R!|WW2iFG^;AOJK3z03-`#*Rb8 zVek&vw76qejT9Lcb;q-j4^g85V%Ui^7;L)r^&P&T5!%ucxe_}VdaPy^X3Qbj+2s(Z zGw^v3LO^+t>~s)iD4)&f!+1`^>HNO(0}$jHf@5WM?6Xz9k~h~9JmKDmYC!uFm}(_Q zDk|zPZn(o>3VXVL0SkwW{aeQIQcvP1817dUrXVU?2=xQcQ~b2B*B78Dj=VwEK^U^P zd+$oXOo2}Ms}du`oP*cz8Dv%AepyaJ1;mwW`d^H_1yt1S);BDOfJ@!VD$dAt7mjNUDU=okORzNDrOD&`8(2$8+xcTkml`=ks46NQrMepS@KPHtEbEqZdlJUmi2u z4zB6XoEkJKhu6$OK|0{bGs$jmFA(snr+K@lmOY z<%8}_9c&M0k=ZtEoHS@m2e`V-OtnaghwFM)0`MVGcM9%QL(+8S^X{+Xn#ALQD*9&$ zilUiZn!=esrsaJBIrcXQ^6u71S9pJoTIEV5REb{&u6X*JJ2Kqy^u*rRCiU6`$S6Mq z%Se*KtnJ_jsFI?Nbv-p@J=8&yj7I@iZlClv2wpz>VGHiqWv#S!O1NVmzj%7kb6G)XiBUQNO}m_I>EV8;=Z*xH2}_t z)wi#_(Meb59mY5;k7N>}-;sl2+>RvRJ}6q}G>Z&s{jMN;DFR(i6}xQAQ}-yq+&ad{n$UFmGaI$hiMaEma6&zjKDH+wNu~>t>?ynKwwM@R~|;a2hF%h;lK-Jl@BYc>u7e z3Lf&xw9|bFc%H+C6{*y9na&l4DfW33geB}k_ReHafsSteGi6Z}2Mto!!o_tHoF&<0 zS(9i2@+wSSP2lNb=Ij12;Qged22I$A?jIw5Dt`Kut$M&r68X<78ieTI!jRv)QFWaB zD};8`)3ZFh*g{fWNwR+Yrh*YGG)Ruq*7GMKB;C(hU3PA7R8VLrxb3Agpv?nI^!~94 z^ME=Et0CSnMAM`{&SXE40adpy&>W7xR(qC)U9ODvvaK&E`J5z8r{#~<9O>Lj10~+I z@x4aJNVcrTFo%l3epo*DD_svDw}f-nwCLPiUk2)0qYWb7_}k@&6unNVp~T-VULMJ) zn)5;|T8B~_6eh~ng8g6(3Z!WfHD$H@?70nm}Zr`eNxeBp$r`5I5^yXhS5_g9pqX{F%i zx#ZHHZ7>h%YrN3|W&sZ|zBOoiOoONV5d3wx8bwF65>tB}G|&!MmrY0$z|DIh2+`e6 zFF7-dYaUmT{t%pRJ%+@h<9?2NAy{zg1m1B_Zl{42;-M5hS)9~yv5-nYYoywK4#Hq% z2rUwt;lrb7A&e3uKk-A+PGjZLVFV|qT4u0ujR+KUl_XQN1PhzovS{a#-!1s^ckJsCcf@(MpSJ zfALDf9=z*g+aDYcQdmoh16W!o2v@$_9I}RCkPwXcp4MR+N0;&H{MFRt2eGNkPM8Jn zcY7$G@ARBauFu}?5$$hIduO++*on#a2(6;2SE}HAQGV&-yq`r*MmBZipnlXeN&iY@ z|KVkc7(nr3V{DU9nDqqleK~i;G@bObW-pHzML8 zTlG00wP|}_ZEx|q!({a!hJbue@Kc-$p;(7O#6V=CR;4VpgAikj*D{z#sfDd~J z`rHLTMsB%9^m~d>q)ut~b#KqX`&9>^Gps*v5_(j9(1Oc}P9( zzX8R88?2cJw%iE~Fnj1jn&XC_{2oNa2F()^q8(>9Pg9tA0P?BaLt#}bS_H>n1+<85 zEU^u>$`S-cc|X8O)eYlBx}h>p(sfz9sb|m%hwB>-PevFpalq$gtJ^dwHOE~v^qDcW zw5RMn3|F}g6{y>$Pd7|J6PUSxc1t*m<*6G8Slxq&$&KUMKPy1&dwNe3u+cU{c%6}; z>!tF2qMWNd+m;@C(cq0MtPv>#l01e3FFq}%Xfh{o_&nzRJch-KD0fr z1$Sh=I-Cw3$XTtSyh+zrn0+4#fj1F0F&?sGA;(T$Nu7?QD9VK2qMM#_b&siA|XQsoDQVlpA*=*Q&|~}e5mA?)F=I9$HFWDr?hjO zy}`+V_Snq1)fGxaX^Xp?ZTQD7_W#QV3i{$s1xn5CUy!kwF_Iyi2x=$kx@?H96 zS2)O()&ur7GgbyF#n6AGAC#OttcNyrAB>1;NIrB~AgLla)e@ z?k+j;TQ55S`>FTue0K_1 z2VTtN3fm(?Uf2fo7V{5IE$vFVBeFdlLVBzA*;z z6IRGh(6P)wW{TRw(D;CQVB3eDN=b4MY;lo%t+ivC$3x!06M7YkTSda1R=HASIjW1h z=$dy;uL2_i>1SM)Nq169Y%70yThr0n*3!yZ4etPbcSW13{&X?&o5s4(<5X2Mx8*!2 z#RF)`6yIM<%Gz1RB+M(jG05)DrN=)?M+ZLRty=cWBbRQz zy!JTtnPpn>D50P>m0G5@##SIQQx(ACSa;{!b{jq1FSG(ic?B|)G9sP7?7sD8T8xpF z(>^mfLf$vLvQ`eVu&>i^4k;U3`YnR;ZC!24s&}tw6{e#J1#DQk-4ZfEy51`?XkLB= z(>fTpsrdd9@qliOK$B6lG{$=JqmysJ+RAy98~cN(t(YsfFL~QCHYo0m1>1Vl zN5?k$@HDczE}q8pW@x2^83-*4`PkCW?)tiQ9t;jRusD$vgVi+|f+W*APN}=cAbDx` zTW>T-mB-jB`{xH>UN?sQ)%X1ioB3Zq`%3140FIvij8mVm z3=o9TdlWymAmjNnkizGcIp_kSn4b$AXV|S~y;OG=Z2+`2r8jUZ_IQq2pqY1ugnJHPRUuN&_nl0%A{296TiwBicB<`l@L4;UPevq5X&Ez3Jb?e@qfs zun-V>LKpB5>B4f5z&*ofH?L|3*>-G$)Y!L@4V3Z)o}#}>5Pih%h3*^bQBoFs=pX< zvFna}k}X?NfUxepT}|(%3{Cm|OdT!g#Ew5sSGWH51VkswkP4fF7fmeku`#jLMc$tZ zl6(Yjh5zq9zhtE&dE}WTe@w;h8k}uufEVDBw?DUltv9h9bSiVrp|c(Frfye_y}9N5 zGKM0@()b{i!OyNkSrt3U-UM~yHz*M6(3Tu4H8^Ol&1eS9NbG&``CkS@#(trlrFDUB zd>1|wX+!ZFR5=kWmu`QcBcBXtkZYi4)C;0yW+(bk?mV1U|GRfUKI8)LBW{gcnW8#p z{7@#2RoZqi2t}if{0t*RsK3=UE!N|| zjX4`bsFjzMFqeQ$2!4tBYQIROnxr7iqDe=rCsY&Z8Z*1YV=+0+VasDwc_6v8J{c81 zP^qU`NRTzD@Z)p+!jTf5A5un!jK268(ra&&J)y8C-B&7VK=6jBzSCD|K9DU4)m za=mr5&yO=+?EBp7)6Gg&icA3+;`*B#p+{ftgyn{o$#$E@8#s|wx{iGPF_5YlnK}4k zqAqYAPO*0;&Wsf>o?=6oP>;3NsalMo&P8m#KgZ{mUv#4@X2=W4zP}!iyo2#I2sL7G z;3;w3GI#NM6aMu{Mk+(4QDf*XeNc%$Bhg)xd&;QIqX4$Vs?42sE+`Hao9iw)1>P&ID$mTVFlIoVALN!Ds z-hO*)f*`)X)|Q%~U4-$CqBw,&Q@bm{Rvai$wDn5EToW$vN02B;UM?5ir72rUYt z<_z3$VnnsaZxkIvYCTZ;1-esJiqB;y9D98FiF79pmyZsW@c#Q~(n}($XGVqxt7?UN zrS2;p!vG3)u(BR_IWAz$Fr;ur0PTDYlD*qR1;mhzYgKO07M3}W`4ySKElOgr!qm+z z`H+m6h~dhFzklh6Jus5f8tdYvK2B>-@zSonw$mhRIl5ET<$13W9x3-bF=D@8p|IYs{o0mvo{v%sK9AK+S&)$E=)BYJX~DsHEDcQ5i15)HG=%Zck! z)Q9{4@^6yx1*GJB4MK*x&z+rw__RBV{W-PHtNCf{`M0onqreh=1;=`C=JIG|yvSz% ziA2ViN&s@7Ikc2{5(vkd9)UF&9SfEdDA(^eq;VIBs9fmms`Wl zhOuZBwj9VEC{=RdktVu`JWkm^QU4u+T(JwctVDhZTrsMjzp&+1tn@CNtFVjFP!MfW zo_Mh7<8ie2*qkxMa#(Rx$}kHh8Opih8oK8~>VQSn^Oi@(B0k_yzmPVe)MEz?hVZYh7e|LIqJc42Dh8Vg< z6VN8-494g?73&!vj6Ti2E*M5!_=$B~jA4B6H^_SmbO|Mf4V;96Xh)#PHa)WKq`wm? zYItecoqO>OWsqkX==MrQxe#@O08?MCK_yZ?L>^U!o7;YS>x^oW_(z(7jl$tfVB1o|@EA)GBjXwtAKwaWOyamjkBf*ZaUgo;iKQM|vMutW>% z%jAqTbL*|?cPe5paqez+#l>u+8M0I$wj|rY=TJ4LwVJcRw0)eL!kbD^3EPEdRW<9v zI$Ro^6NbO3Ts}ehAlF;$*v9-afkah$q+!m>Rf@K0+TL;Kg)#pOGJ!nO~ga zwr4*`#V6)6>NKn4T=C%b<(ZXnf0Z6!v#52SpAaR&><1#rn9p7ksoNcFSBTx*o9u&K zBz^u6X3oz~dtX>@=FEC%hl~5_e?h`MW)~uQ?L>4Na%P@|k~6a}88D6br5IY(?1o!2 z>$?8_@u}C&N_d#PSKN1-UEv+zqq^q2%{wd|!F2IjNZ&&(>^2I?!-s;vri?y1%(wU# zU3Vkytfg64S6&?=t(7Dy3?wPukk;@pMEPXD&IyNM;wPLXb|%AoQh{_jjXdcy4Z&zV zRbD>&pVtGkNt^GJ N_bwmIkHo7c2eUh`Z&6g+R>NsLxSfXF3U6(8ZxcC2DOqE zc5Wh-ss&-Gv>MBQ)smx+)o!Y&=?&MUwm*TBCTy_WrRWypS;j+Ocgo|7W26W>A=L9fbRf-lz7%Iu(dlP&GxUsO)Nb))s0zr-a>X|) zcV-Z~FE5;Z8ft{My7oCw+}-tATmZH+8x!G>Ba7|dT$MN-qqll{gl=-^S`DiEF3-eUMAk5wF_71>9Vy~p@DW2emZbt|v+Zq=7Urqtur7=J7aiIU?3d`czZxmLO zpTx^{eAn6Kx4o)W4R@_J>}FGdg)903Xe7!pYnST>hqvpcCi-3<%sp`J!}Lvlp;nF zUR|pFr%+1SK*@W9xuNFrT^_UI0)AW+sFbd36Is!FepSzmI)oaKWc)$}kB>?)1PhZBDr@dFa@$0eL6+4AmcmnLdp0-KH|>EVppuY@J0i|vfIgZhnU4crTEnz zG3FuhllHO8BQFLON3vqCKJ{I}hr2{3@1D8+;c^YY{lC@1!b2l@2OUq?x{^GF>@YO< zNQ3?HuoA~P73sE*jo*kFex>9AgPrLNpOO?juAb7{s_uJw&mi||s~uLi)60zCe&GV{ z<#a7p^}b@$5#ZIotXFQPf~rhCrIv@ni@Pu46i{swq{|dluMmM>gbN+h$Y$ zuDre|CqN?4`!Zv1g-y7!%xb!lKFI88yWxvntF>0ayqI)7Ju?Eq;Fyu5+I!dH1SoW>_WEy=i=S6` z>I%Gh8YroFRxqpK^b7&}zST2)W7Uid+ml{pT2-~uNb(^#xoylps|ARiwY>-#uCiz7 zW2PM)uXQ{K*jx^{IntM&X6J0{sIy=#>PKC;~|LjU5v@*5T8S#19=)q~}o=-0{I1aWkzlWrHVp8!Yj`QCxXW&>|7um4R z8Y?IA6oOnuU;IjFsl#z*vNOVL3@jN#_H5f;^||xcf5zo4f`{{R9QDuB)XiE9C28}x zd@$RXA;%`zFZMm(z7}#-yS|{ZZ=*8aQKjKUgZtvWYPO{xV;MtdS?`2COj3CNgx|DX z6)*qEd=;595YLYatu*g@AWmapmF1UpGl~F7UkDr$@IS9j+4hK$A= zw0ui+v1fwoPh!vd=5JqnLo{?W9!Ey7C3%6C`7G3c$&aeUK?c59udTG3B>_WvbHu2M zdQ0|}aA`o*r|LZ*Z4qEV&wy2Z)Sbd)c#BXZy*qbxVSkJycn+bUd9~m^m zf?M2p#c8wjZS@gw;sXx7r)YpSIND6h20Dd zKqe-Fye>&Eyt?Jg%B|4&x%UXS=tiG}Mpj`tXcHWE6*bz0y}A3xw{2jF%s;oKSAlGZ zO8d}Ad4?mGE2_Wbdww`8BWh6lmV}K=7Ki|LZg13%>8Id8f$aA-fl2?36{47O#U*)6 z4GA+&3`p)!m@q`a!d+BcvZhoy(rS9|p% zwQT}7lS#)>7=pM;VoipDu??<>aD>}!&k+BPoG1FJL__Ki#1ee_$6?sEwT^`#LD7Yp zXnwIrQE{`04-6go8~K3Q)Nm@N4!;ITOuu2q@Uzu@5Ejf|TX8sD{Nv;ZF*6qfnA6@- z9N#dhvVQ?Q7LK^0WSmS<{v7gJlBr8Azt*kQwxwy{5351rf@U6{y!~WX5(7Bs;X~HExQZ|JVq6G=UHT>4U zL=oGVj-=gt5*A}LJQzr71Qe3@-7%n$HP!tN7|lxTr5S20OoJy+$n>&I$en%7mKg@) zV=LX=v=d~W0Xt4+w_N@jsXJkO!_krS98-5g`B`bW8&v_*{QNOPr%VodM2{Xw@@ENs z>rRNqj!=+b3!<9OS0qo;?AJx3Q4eSO+7+9w9Dtgw-+3qN4fhyX zi~6o@!_2mcPNn<7XQJOL3NC<%N1MdWRr@gJRD|aZ(#({ikX`D9S5?NY+66QQJN2G> zKvM|$ICKG30`CdYMLBq!T`#;LH_%g*vQVnTKrBoDbn)<}56^mSU-sDhVb1-n%A=mG zgs+jPDs$1hs#W69t-8_k&UQh@Uk_lrI`8fgIKT?GJ#7EoCg|`O27ebG-sy!5JXIK% zt-3g9_xsGG$DvbGsYm7D;AOSvN>hNNn3wnKs8w?Do3yHzajrY+pH8cW!vJ z?Q3zx(}N7t*{^Xg0;ytYvHxLu{||Hlz67E38W%waEylb5!$v#bRNJkXjc2$gCYy5+ zWIr1+7)>=O2n7Ei=@D-eblPX^bs>W2_{TTw;|A9)Yk~H_XO}T0>4e6^-S!65H8kfRyHE9d@6P^G3F0S!0LIRgMMd~ z!Q6OCn2d=gM*vK6bnX=BAWsBxnO&M+dD&h3Inph=C z{Sw%FcNO_SSDU->GV-*&@Hu`Eg%W)@XLzdEdf67LA9d}}&Y6J$k9pi62>!JC^4_N- zF;lMM96I16LXt$L7Jaj#2&kYBd?1Axzdwj zK{t>I|8@(A=b^oSU=c&OlznzB&r?*eU!)`o*BrG;W#u2mNL0cSZXfC|ru)XP&xEKF zRdwE~mR0mtl!+f;%Np33m(TY$Q4v-pVVP@M$ru_de}m`O^Z4DM=~AzmZ12rER8kc3 zsC34+LvAatch3;}lU-6J7wc3KtX4c;tkj@L2^?y^uI5hHQZsZDlva~RSK$`xUQD?k zot%6x%5aPQl*MuV5Kr2jRV9HxYntx?pP}Q}btr~v&YU5UeRci^ubBCy|2p>}@fB&* zJ|oHO6XDB2#ONE+!VCWv7yhpR_P@VbbyqTuTd1WC^XpiQan72_rLK1C7^jqSty>T+ z0Wg34kt^4sa+Vjm|7a&`ip z0)B!ZIc?0Evc}R;xuqqNb1VeAzaU0t0uqX(-O8iA%J8TC!Jxnjkwk;k?!i8KGTOLZ zpdHgM($XdtN^LTd7V=JUp;vDH0=&q1F2dZ(mQ_MQZjykcd%7$>83D!CZZDln=yv-m z50g#|6%Pbn-af?*6b~==8$TW@y{o6Fu00mf#Pg7v;im{L)%k;{BT{@zop31{U3yms z=9N14UsW0DX25`s#14S_EbWgFXP;y7cheT5dpY_@28fzylL=RPAxwivjYg;=|^jUm=*2!(QU>7O= z7r5U0vG#*zX6$1R1XT9*PV151_H?jyY#GfnEn@#zp{A!5dVzPy*{eKXhqw#~Gd26vb4EJHJrdz{Ni=@66FS)1o|o^TCIM zL3+*~H;9JrFgW?%YOf|BBpM)*pLD%8QY70NA`+uUDbpWf%li_0@zl}(JlX!^JB}3L zvu7B3HrI*sbn}lrnpvog3hR5YFl?ArF>K-UF3{wY^h^0hv@U9#=^3PK_U2`Y55DGI zSaIcVSwqK=N)d^L?3|#~+#bk@1JFds3j{h?mL<)C=hJD#NfeQ_wx5W^9%cb!{*(@$ zFI%9bJEfIq$NC!wUCFz`GRZs_&%;_l;~cLfXVY2*{>lNSomD& zh#Dy+k=(x|Cu+(6{;9n;M$oB2r7yNV;( z0LObOgaXfJ?Zf~bhLbao--W433yACabNxAAHk(6Uz)0$iKEH4pf-PWZ9>W!>{L~*r z$yn!4%WSdu{%}$1Vq+@|RnzGpeGl*ip6w9De9qfY+Z+bZ7z>0L2!?9G<4qQH^%*i4F`-uh2=3(idJ)?9Ud> zPiYm+XNj^$XCMT{zqT-@ZvkGR*>~^bjqhvC`?9`|KiDz;@KS29MDWb|BjpT^-h1w) z!?mvr(lezfPb>LGUT~&v1`(3O8cNj)c4wxvpRuqc`t8*_wfHMc7B+B zYOKVYzj)58l`kM{*2w~>EiO;pM+@D36(5&DbJlhi}6nq z0e(pi;iaIa(X>K*ia$s0DT*8B4c!Y0$!l$GET!OEOhh)o%b$q%blg5~eTm3Oe)0oT z;|Y>tN_|edV#;$`0hY><7LYfFi4}F|HL}DO_Ut-0?>#@*-Pmop!mX*D@w{6|t}pOd zuG!BPkev6;;YHG;U54$rA8*Xxe6at%bN-dkZQX@Fop7u?>Y1CwpO6 zzbb#p%b-1Hv-#`T_Vu2Ybfwu8~EIp26kWUox|`oByynVev#uJ`@lC z*&apAp4WOWnyAf&pL@|r9BDfkeb5m7;G?Gt?Csu|yvGB%!sLk)u_TLsizLsnhFcI6 zjn)U`jkHFa*?vpZHq`Ex*EH-`984G7vreub(Fk?rL&gm4n$iI+Gjgu#5V=DB{|kI7Nuozq{GNxu$D*)wYee@s zNbf|#j21y#o^D%9`A4R9VCa`GyI?0qfykQtakEeR3x1LYZ_q0+cctQoGPla{yd1j1-%$^W&h^ZI(&-rb7p{0K&wt#Z z|M4aC4uSJ7E3Hzyz{bfBX6Vkx$iR{y70qKb75(PG8CJw)Mu^5qsSC(ZY(GUF|Ley| z&f^KWMQxE1A?cDR8c|qFqKnG3IF=?0PFf`x!a7SsTwrV7!Uv7!{@r6+j1+-^Oo+x4 z-;Lt^9nTt5SVuP=BQZ~EgFLsM%A*6zmYIaj&`TX}3ZMOuh8E=B!QmbUs9O)TqYYgh zdv7h~|5R=JSdhMBtYNQlT6zo=efPjRf4@WN;^fPI0hDH%^TvZiMW)!vyYz9zqs}f`s~N&L4=^Mb8?X;YHIs<4pQb7tVGOV`cGtK`a@Q^;1}w$ zrbY$k5F=5rfZ}2x=3=&1Di3XCU~ska+|)b-b*#pSjb1_8gt3L-3pT?L4}6Xf-u+Yb z0cM(d_r37NU$R+xRy50{SM+k91{PF|y)qVMG2CZO}KOONf`NSV4e$WyTzL_n0w7-5hxMZ`r2)({~V?_Bp&{5gCeEkW# zTZ{>92N82XwWxx0wrkG@IA`O457z1U#Vs~7m99YI4|6>3;))@`V;6_)4WbQ`yD^6? z3bWf6sdoM`L5`1;z{aOgeNk^b-tTxR>|tacQs5!nCHWn9EBDvZK1z7#*14a-s!y`v z`u(gYNLQ*tYzacY>j#!d=5tS2{PxGhXc@2?qUg>z#h6oehW?`nhROESn8xjJCi}Is zgs8;U0qCarac%i|8F|;`%Wdy{FWX?ZTdliGWd&CxH-g-BEHLozpUJdA^ahe~k-qy8 zb!G@oB<%x3qlV(**BIgCcO^ZFv1VcUY9&8IonT@AzI@F3g0BGt&+b*yBLNfL|K zVMh7x6RA6NPq`D@U<*(rXHjr;um8|X8*C`h$fugFUVV<1;Zd2xawvsU+08ne31S*J za)bD)-85gb$i9%6cq!0)MTQ{aRO?IQ&g(UW>o^I926wl5E%H@yq7e0>{`R$NzQ&y( z@KB_1tr!Gp#&k)s!_dzy?8(Wc&S&9z{TEeU$3j@9jium_vbA*gkWt(bd&vf`d~Cr@%IwtGBtT0pdj3qpigX(TmCvssw@@G9aG+s_|FQVTmFW zH6c0%XKihClHW4ffYm85DRzoI0&u<|dZlK4qvUDtCa$;cHFe+TFSqtvfLt8h{R>&! zfu>3%*l<59MB_=y=Wx)%8*V|tdIb3~T4vNm#7o;Iisty@+<9v$34nRLp~Top-{Y!> zQbZm=!%dF~;X=)85A#elyPLKTB;HR0khT1t8tFGll!#$0*xt z$y}l#U0MdT%1u<;4GVT;PJSe&?$LFWl^3hsxoEpL5%$R;@9xs4J+Q#HoQZ-2l>Xlj z$yP783q{DEMeIN1hjZOEAkIN$_lY9ML%@9@lNE-UC;Sn_%d}cNiR< zRM8MNmncd=Qk;?IbfRN_!dj~i%QD!oL#10tDN~0^Ht@IQcmL{NZkB>r`^Q9G&{PGm zy9(ggLQF~DoaDO8YTtY6-cPya7}Rj{eMH^}C-yo^7Rx$l9UOVxU3I&|2FMqCB+Bpw9yzpLgr}E&F?q7KO8p9vn+D1%uPI1 zT!g|VKh`#GiP%8A-T3=wmq;?v5u!`3oZ=Jz*?aFx2CRNQexy;tz3TyqBV2C_&$ZNt z^(&P8o(;Y)Y8tDhyX%lJIvfAY4jMXYB?(M*gM0 zfCNbns;`>Vgi8{SA)yFmiJf?f=o_MV79_7lG&J^-kMem-iALrRWy|E(|D4$ZQ+)yt zm-Pl)_}#wyyyEBXU`Qm}cr=rL^P9pY!@Q8+lP0()rh`#tbE8~mKH{rrI9O#x1NYTqH}EAIcg;uVK>}u#(f1IA*W5E_(Q~?yaF|oJ_Bp^y9bs- z6k+4rU~=ydazy0pKP02XgXmm8wq8RH+t7VKMY%t%C5H4E19x&8K)2stKVTPrf z6npMGDK~PzKg7mY=Fsb#=osT4XWIWG5YvnBZk4MalbM)acs`wC$vc98#MqoF8_qjX z??e|{ZzZ*J+HZ~<&pwH}L9kVb!sf1qCjAXYM{nF015HT@yi#3s; z6vZbg3@PtcT_6>AwFdL);EVwW3i z{i5AoE9sfvpUi#kLCjyj(7%4I|M|J<{joU8DLI}!*^3|9-MVQWm zpxPR%?=JN-t{97<=C>SUBPF(`0z~Iv+u9*6kLT`29?|55F{Y>mYIG?4`#rTf2i_o` z>!}YvdFNeITk9?1Q)_JDBoMqVZS{#wnzZEE8@{WwU*AMJ=aqL?_i7-GyTbSdupjMA zochmjt!3SH-0n{g67UTyRG@BQ|_1Fdi}5dB#E z&_NfIkVuvz<`B-;&%!NXT5dLLY#yQL@{U;uJNr)Vi1hiaMHD=E@caMXdI$=wMS9k& z;In<}{W|tv{lo?Emka2t-(B~cDOfbI09hlD9}sYNf-SltX-r zw8;|s8k^_VMKlEGL`wr3WVTHH-+!Q_31zk}w}|7Ir^xR{sVn|pBHXZXI;Fu3#kQRv z2!pPudr*H6FuB;%6m5)l(&qdyEf47t!{$N}aA${mUM2|0nf`E`ASxh_oxAZOrP&vH z5PIC<+JG6@Y9RSi+g2bHw{n><`B&Joq!)*kIwqt(9n_~AN9A4fV5=;W9R$&frmnkC z)~h>cu#k7R2x}4zXG>lByCeJm@ARf|kv*rJ3PBeKk^8X#I-AU{HqI{?S4# z@ds+z!9w$+WhyFVO6s#rCbYGgAJmk2$39ZMdKFJ_-0&DR0ph56m_5%+=ph z-%Bf-fAy;L6&(@vdoJ(d7CnbHjQCCQVcT}L3uE7KA}T$PEnilYm8Ew4{<$2uxNecV zW)5==$%ix?-(MzVVIpM7t|M_Q->ixEus=HJ@UZn~B58xGDjAR|**O z9O7BFfEv=zS3UUl@k-{MFn(N4D)gDmwpT#w&CE8z@XV~8Qt?v*(JI(s<1cso!{ zqcaw^KtMF#E?yL=WfU^A1j$A=AZ&Q9ya*H7pJb|}xD9)ss4NBpihu?pC{>&EOPqLz zHD^ZtXP3=^+2QTg$=heZSXL&wkbT={YiGPRYt2aGVMs)**3jM?hAD{bTCg9sqZKr6 zR(04K_E4ZT*CLw#AX!f)(k?LQAjn_{~s=+ohPOO3+TW5OjqvGnnJqP)ER`Rq3T zXiCLKfrvuBc@1aq?-%_2T<*OK;R!DBMRm1Gaf~E0%M1p5r}!{H%V;z^Tu=RV6 z-#g&u)9zY{w2a=?jNInbc8}%LBQ-64>dKC4Pa@(k3a>f$B~-s!0(#pTv_Uczh#Rgh^(3@RczEi4$3X<$0Iqx8$Qy_pF6mcOn8+eZDt2?S0`IZuQvG-xG zTCc{f^lv#<(KozNRF+0YNL6LIifMxsSm6KkVJE8(Ssqe?`i9RZgir^Xw|I96u!S}g z>CVo;DH7g;Zu1{1?yKd~9)hbLIuDI-ilgr; zms40V+Nqir?JZsMo?Qfim!s0}yq1&dFS}u;C_l{9Tbyw}+CvR*jVi4Z9!QO!2)(x8 zeNQ%l=G6I$tjzlM=bftUA`^L9ndSD|@BQ%U5R?|I4JM?USssQ$Bu>ZpcmPo5w2`nquoAyWmAoQUpa1C~3(wsx-=<<#AX z5X3^7g#66)dFCYsap!#6%=T}648_QjDZ`@8L2i6T?N9(E>w5V4SUoJ^+-K42UD<_= zpa72@f|HBhnUP07VXNW*^_ul+yG7FbC#SvTmMABzzOx^<4Z}{*h?_c%nWP6`OUQ}^ zQV}#;6;DHKVXmAV=)=y+0wtLOQ#kwbTHjqJ40W2b<_SXez5w(9)nAf}9GI_=nf2@yEG2X92Ykk(~j));lk@En2Y-a_8KLq_rvh<dl?)S$&!*!QP` zjw|7H77(*~HZJb~so;cMuzl-_F;kKI0O;sSFZv}(T=Y$Ins!zyZ!J;Gua^|13&pWf zE<;_PP3yu@SoGLMLG*&t1G3pK8L_<%IjbVLd>a7ZDLGtn<<+c7!%FBZ82Fu*<9O!y#gd@YK-{c)# zAgnoqqiiQ&v#jiYEXIc!0NEpgRxqPf_a>T;4llcBp+lzd4h6{>kgV)DXhJq-G+{Br zl_`2F;*Lvy;&G=|)BbA#Pze0LKO}W1$4Uys!&z{KhAAI*l(a- zAaT;QOQXZu2$80DCG#B5Rd>DpRPRQnDOjsZv#?CW1O)2AVEA}0j(`gHW7^T9=IyiEMfPACLrJ!eY z7|KE8GKy?CGgJ#tf_Z#c{Aho42z+rAYWIn{zyLDp<4L<*PlM0eDGsEPu!e0BJz6vn zamjFZr}78~#$I!^%=n%4S(oLpr67so|Zs4|9@(QGW zveB;+Mq6u8Jnn}Qe|waZTq8aJ3jA59;?z9i4kp@#CR-DO>sA{b?BGqxqa8w8iMzx_ zJ6(@ROCY6GPbZr92`{qt|MARZd8kHY6=2eF{g=-yElp#`Rj$!yuF!REWa!=5moJ9J%7iMPoEW+h zT$Ei(q6mtSaXpZ&9Y4pQyLwF5;QP7a-T5@1fRnGMLG>58p#P{Gu=kcFSYM}0@Kxu? z%p;BsciZii@oIiH-BU0F_+7BzND)kub?yj9uo){VPCy0r0+Nb7ggla!;+NpU9u+0h zYjOS{VwYM5KdTna!Zql!TpsyKCzG2%(9-076kn3UUa)B=S5}u|o+q}B)|092K5@=8 zT!C!@m!ciJ7IM{T3H3Q!%u^~qvT_#6Eqk2(8}rIx`@s7m*05PhA(E8;JA?3qbDw@a_1netI@5Uf zc|RAg{8ghRiN$V}A%V(0od~BU1WfWQTWyGbGbw4(KN~k&Onvc2Q+iP+qkmdfN$;|4 z;Dt-9h*6*tCmB32GFEP?v+d|G@huXR>*~(z(jYDq`RgkEs(l>Zl%Ai7pi1?sqrEY|V(3wnnd?DDQAUm8WccKV&di z30L&-wEq1|xq1`srcLi1-lY%MlN#HC=(+dj%PXmBtk>hJjDF+|Buc!x` zi4|IIVMm=Q?a2?%P@1aAHxe#EI8f7>iY?np$E&?o4Gd5!yXSXf9p2ruH>Srzr}- zm%CauoNq>jFAzjC@6LEoq4V0`6!urpQeY)+?Hth(Al9y^z#aS#A6}&#p6x;U9UK$0 z=OavW1_tcu-_8j8Pe*ZE>jt3KExL9JIL0>P2KF6k?^eaK1gl$uwpht#wKXMN=@>5o zL(fWaZ+#F$D%I%%Yd8f&-9N|0WA3PG$Jc;``3;FN<=!$xqi&cv%7#o6A?>4h45YI| zI<}JBMuoDjmo4PloL%{h52}i6(Yh$e;X?2Ob}zNx2pnN!;vysDb*i!D`md}Y;?~9B zp_7t-4$4iT&(AYjcpu)>E0?7?O&B%8i=cWxty>()PEcg6zc_2eY#zpVM83Omn;=djCR?n}P2Fhmm#LEWGF+S6qO6Ys4y zp;Z3MDX&dnedOKN7IHnEakq5b4>1I7CqgWO3}OFL%dW?d8SiVch6XS!eB?*aOZ)*E zemIv>a>(9!EAUrztKxOKU%k3z#>E{Mc@3XtpYgzOgf1iSN&Ef#YeC3i@vRXYG+A0j z&@Zu1h;HuHoY^a*<2NA^rIOF%{W&}A)TdJ&y#Z(2Eue8vZx&jeYBOrNwr=I+y#!*H&1UO1fOwF!^LJ%jHUpzseu(y=~lBu*=+o?8lnOm2ovP+Ykl42XRO1u6n(kF-Q`+tg_9E zTN1jM?FH!g!)|S=CwpQCE2j)ShBQs+1uZFp;wV{1?e{K?Z?ia$Wc{o_zkQVTOVCMb zzjDMK`>{1xP1B6sp}w?T*{Fc`ag`lcU03^v^G3o z6cDA31VunViUJ}nbb?eBDUM3-D2OB!sgV*u5Rj%KO_~)^YCu8@J@gW#1`>Lc-lVth zgqgYbUF%zGu50;UR7i4uXYc*&r=;6%)Lu~C->tBBx5xmw&{1%vxIBH^7#*&oF8=!GMv>;$pavKfaF~_~yW{RJ74GbEoqNTqbA6`et|(_1rcD<(E&JaDWw6F4{q52}203OY;5n>4Q8 z2NecFm4eBzF$5N6Xhkw@AFou2)OB*q7j9$sbxjeLASyCmLs zr2uupIuX^E(FP$K=9adM3ByE$bRMpcl?gvHH_pwQ%F0{Z*<4yOF!ngJ*^CcgY#B8S*|AUe z$RO4Fpbk(&xDnJ2Py}D!aTvmtmS-M@TvOSr*_Tu5zWD;od=z`Rv;Wdgbrh_)e$zdNUy4#-G%}4lyVEgoS z)fFvn?Un)-4&=9&6c&K$kBD&#_f3?m-+5h7{P1p1#KB&%*SN9hA?8`K%#!^kxM28o zT%*iq8hi3@^KJg9g0H4^<m7cLlei`8B6t_ z(+0nS)&Xm}s=&Qn+K^`V7v}o8+p3g99p}-1FIT@_DU2<$#7-9`KwFZGVk8glwVrRQ z5f~A`qPInGO4g~cmD^Z49n`52%TEzJ+&TVSMR$wc+LNY6%c%g8MY66oq2DX`{Q99?yIKp@mR9&pR54)%&PND zv7eEJcSu@?#<7a&tOYI>Zo#YF*P8-#@W3$@EKqV6>5nS#z zeJ}x>xlBHB&XKpT7f+{ohgeK>$j>2UKzjN|~@1=nNZb*uWdHLmAPn5BU%&0-9lI!fOh#r7DDeiCm8(cb|Q=koHo-12d2!|US@ z$_vp{0Wa!Ncb3}AK@<57$4=#S^%q(;W~F6_=)-6EU@~s-=7H_d5PWTDiusTg?Cg8w zHuBGlkL`S4a?GokTEwm8e)r#Nv@mL7adA_0E_0R2`%ylf?lYt`j~=~#4HC~DIObIN zVH8~4cV)zku??>ao0?(C@fOvCO@vLrLuQ=2>_$cP4i@Mb#hA81myHqliIv*Mve{<+ zUq~Xj(mixWfXl_LG+W{totv)OaJ<&}&qy;@{}gCn(H@RC&@LRa#y=A6(0$E>t0e0L zfOWNS#r3VnzCF;XHZPKV=Wje---)wcoI9=r(l@?X9?Kqmc#^Kfk+{c_WdSy;lt7O# zs;olRFplM3uFwbO)lo)IV~%T^Mg}~s_DlhmxE@V?+?1X!la30~-zFw7WtS%Y5*x?7 z_JEEmKfLUVByiIjne>|NUL6}#9T%tC1d0=!ELJ`LeBW8=*%M+9O?jAIycV9MkRBw! zw_FeUBF3Iv950mTR~_Nln{p;o6jZ<)LeF3#D4_g-wv4qZib_W8lsRfLAD>%*r}RKL zLt9(w8AaD+s@I*|*0S-9gq}3{O=t^d{j~&`fUQ zw%q@lmNBuMJU$w110ja106QfHG%0}Mp0xwR_ zO|qMFSs7NtYK2v(Tt&`b(IAs1lr|q zB6yv#bO!P3F&$RF)g`n-ZdL0PDrQ|3mv#t3nj%nG9mI@2&*$j42lX>M#;|z9ENUmu z0tx}!GpC{TD~*%CXG*APR(8Sj@#!?W35xyIwdMSNyX4Z-Fye(UYMZx!!oo0iT3yI7 zrzpPeN`#WlHAO1k%U5Ia!fwOYhdO1AzeLEugd=vFw8x{iz*z4FEKyLIjRcRiwK9|- z*M9QDm+1zL(SCN^f~Y)CVIMIkQv^oi=OTzSaRuJyoAAEDTA!qH;fb7*vFA18rbFIM zF}p(D4WOQJ`X8L1QtTGI%HV(Q{L33aJ22Q_kzb?tnH0hi`S@Vui|hMC2UJ7*!EI=6 z4_%Bmqia1NU0($AE&n_XLQV@fHgR-(u-Pec8v#NIua9z@>mNdgUFbhbXtad)i*Mxr~Ua%=y;vt58y%QqWl-!97-5i2Ebnm z2P|8CtG*Hw10g|k4X6028CGaEkwH}pBF+r&Jb zZ}^e0iMyv-1qsU8h4FSs&1$7apQzkinngJ`yK>;>EcWZn;SKtda&NtEPWgGRTOG?b zcI9IE^4UE=fJB=t_C&9H6BW~K(aKrN4`podf!qbfY;@OE9*%C&he}R=- z+2;yDhakF-Kud-$Avsm?6}UpODE&y_o10!(}hO``&rCxuWs=yM)koa0ygA*>F#G!hX5u<+itfbraYD zw7Z$^Z4~oVy$Dd?x&t<2fj=omcn6I>yX`)u)sSuA3_JCdLo4QS)yiSA_W^1taMv0& zqRa4}MLX^9Hj8P&c4mxuGWfo(=Rl;T*29Ua-SwY8__h~2%=TNd!FYV8MdXD=$SNc8OO1y<9fiUxHLWG?{F!TB> zJ@v9b!;b<~;QQ>RuU_87Bk|OW0MwH4zB6S%(nU2o89;T+OypY>a`}0aKhH^BnrQxP zVb-#YxqNdV93%b&;N~XW7=6cJ-DOYKkg3D&c*9Neoo4zy^;O_FkZ9ZnY1|G49$QQ| z`3`{5*29bdg`r~bNDYDCQ}-R6Y#K;y;_(BPMJL4lxePa=(sKwW!*2ZKz_8B90>t5A zbjf*Z*+x%%7>ny&M1n5ZID0{EH74y2qQ((m#vU>m=PlwHoF0)Pfk1T!KT)ErC z>T(A*|NLF<7qmmfZY0pqC1nTIKssahy<%$oMP^(yH@gN6Or1G{%cs-4{DmrO=>w9t zeV%U)`4OUUqtD#Wc-aAlK)GnKdlx!oac67SPc?31yQ9DlyYl12riuOTl62T(<^>D! z`Ico~o(J{806nVpm?!=a-J67ZJ%h@8Rs%x)K>#>Bo2O)3?T<2|UDo_}n%7s~`*tK` z`5LP&)eN*;ou3OC!ky9r&$&~BFWI&6*~*AU3RHAFA0X>NOtCmsYNyIB%cx=}w5U$1 zM9-jqBj;$nifNVD#^!{mX_0#fXgHNN_Qi1DbBYh1IK`tcxqctvX>P5KOkJ{ru2+4} znXnXUV{uvApOY8+Lr`(7o+4M6Gul$H=2##0i*jM-(^_5Ev{W%2vEwpFx**lp+MXx z0uzz$_HoX5-`y;mbN$i1>h@#FHn@Qd8nd>If-57M`Yn2IK8Ji3PX+~?1dpt|(((00 zcx`NtS()eJObXMnlBuoQXaAd=9gr{k!cd8jM9{U z4J)yIDd|_;MLkpi!eOTyVz`}+OIOYqnlVETF*SM?!9fAC+P<8mmzw&1^B8_=CSf0- z#l_h-yCEedHJiA(Nk$)2ik-c$ErC$phm1=zVY9;YVc(cX@KnwLk);KGb=q_xBI zzu}w#gmB>6ft-4-0mvb5TOf!l@7}kot&pF(B>T47CQDfc8^vB99;t6Cv?qMAWhCqE zB+Q$HKp|)6g6S+EN{{bKXi3C#DV2dH1N&>3x58@o)wR)jNd%q1$idJs!IF6R{#9FN zl>pXa1id|V5?uv0uMfoBRs!Uco*$e=P^0-| z<=upK&7l_q(~^72K0jo501`4RIb;j0a^Rzuo`bENKU`A0s@;o0j`lf z&bHJw^Vy40?Ciy;9sH*u(&o7X1+z54St7OwdYJrqc~cO#q`3uMnIEXml5TX{?_9^e z2uQYcni(ut{|2YvHB{(yhrlJReI;R4fOdJr?BCY%(6w;Sh}q@daw}m2kk~@>(m+p+ z@s6VwfJlHCqOa;ZF@3aj*4vTs%(@nYjVAExqXKixna9DMa{Z|Cmd$p7D2@>5I}=z>3-_O@|n&eCzN=+NYc)VzgAv z>en?~-9Y|^a0FmvDFOG)k-+5i<=lw;Z2FR@vs|UjM!8L69il}9Sj&{jQx&4#LYlIJZM7}P%9EC6{?^1>c|fl z3SB#u*Y7>|jN5_>*i828bI}hqS7%AsSkiX`DeXA5B;=~M{}fKr&d%^2RdLTae-H@H zgh!qxJOhT40I7kf^M&b-eea={QwGs6FX~q&5=TCrb6o)o!SUSEsW*>pg$=6PgQI`? zWNaRIf&AH!4Y@<+H>}IAnmw2zUSy32D&%sX+dwmYBzd&B)|VHdrnPSQ9c=TzKQ~`` zz^r9T1lU5*=f|u$bMDp$Z`$;9j=J@vDIO9ki`F3potB%W` z)93_6br4vkn~kINoSeR7dT#ahq?QBHlNo4~YV@h%G(Z)^C8kDp7FHo{Sekwgl zAg2%eEcrG25jPI{q;%!CKYs6>H!dXK(St9r3-1czO_3Hc6~6p4j##ALi7Pt zLsu3vVc~#Z=OaVVgfxcGoh2h+W+&5JIliGlo;&cN3RIpUshV`Rp=6%?%G7VG7+E94 zh~E)Q>3};GT^i9eLWQGmW4F(>s|`Evt)1R{27M=q1!Yc-+}HmWU@$1E^*4^W42@3F zhdr4z2YXf}u#!!s)v!9sB7*7Ni-7X7Mt{KYc?>oCuCRCWb(EZN2a8K#p0CUWm-Ow? z(8G?eUlo~+Rw2)OYz6s5v9->x&P}q&^-m(+N5#{YRM0s2P$kSIZR2sywk^22vKEsN zK__ZY1nJ2wxtg*3cfYeS(1O@d$(S$C2UQn7m*s?)UqEuZL*g0EXwPMI5fc}iTSPLl ziTaL5KHoG{GB%_#+SaE596x4{L(N{K2)U?Rp;|6|zIeTB$oW#Wq#IxX1f3r1nf{O- zu1jB{6?HC-RxSHBUKBu6bQXTi+7Z!!UEnSzf|5*J0+gp~I0QVz5xMNP;O&JC$Yfm+ z;sIU|zanLp20cmbZLx_PD=b4_?+J(YEzJfW-7f0OARbJG=~|`VTZw}jRgjKQEpEmm&pv9po`7wu;_k(`9+BTw=+8B)_OI^WrwMYL( zO-*iC2V_LdoWuhAX$<;H;jccsJ(R~HYFaR@Y{kZZ{a#%KbnTVcCYb{`zR}#^h@&eh zjE>+e9{AHml6^5`_esa;n@feSsCMwGXn2L{m+Au020XF%Cj7*e7#Ry)9LaFRTfv zPl*y6;fX!9tAYv+%5l}lHXj{ma8-^McC7A4txK}G#=>f_sA;TpKZGo$t+X5Z@GA%M zH+CO6EGl)^^X=L28!5G8B_gR)r6*AF+{I@;Uy@m%+I9__YuGlPF=2HX4@{<#zO-Hz z-(#$^8t*|R^WIKzElH@yh$p|AKJU2V4DW^OH0rSe?9m#9m;esKAk@NW)va%42cr@v z!8JQR!%nE8O{0rsu6c@TWk~vw4zySD_^eV>PEaBlF13tS+=ZoB7MRJ5Q37*BjcGvWBY^5dzOJIBaEdexjh!&6j` zL}p_+>S8wnhg#nshltVIF$<&uW6ok<`$NnSjqIoE+;I6vE^i!y$8Jg7KV`kfDC?&%MgsMS9P5 z<7&X9pj{~pGM_e!5a`yk{NP;dj+5^VZh9XUbh5bE-~N)A;3dgy+5nqzf0F!U!npDiQi1JpG7=+JinsmC zgfa?WuyTv=le1~(L5fd)Y-f8Zv&JOuiTgv#7tH@xz`ikBf^#QqN z^}7fh`}lDMwzf`XRg&%yX${;&DYT``PT-t^&(Bm52uUwJ4#XT{Rz;b+xt6&_^8qwp04VYUagu~rL6Sh z{7B_XLpA$^!vkj_FbIg@=FrxY0CN&EY@B`Oj~!|$a#+~Cw2s{gIpp121bCZ$x=%-2 zOTBgaKK(Q6bnOr_ZE>CQF6I;3qp4w&_#vjWD*oW+snam$Au=G5rkj5HrEvQY@CzIc zLV8u-RULAD8`_yGCBS#dr`M~nu?%FW`CLrj^R)T|OW&C*!WD-y<@8U|mj(bAlj(GN zSD~St_0?0FW@vM!>y2EkUrhU5$3uE;qi0y~4fbgsp0YAI@G&Z=`Jeb%asqr=rPmjee+}KQ)a4=XfM~`)T-V6B{DEu9LX)uo#;!yOiK95<->7IeArKBS*&iAdIcDv zkrOQaCMyECN97lL#3QF8x$GOJoPJIwl=c`{4(cpVFNM97c`e-ajJ8{tx_%ZDdktz@ zL)bUw5mab>t(dz;837I*ufhkk_u5Wp=O83EZ#V3yStU!1$#R|qQv*0W|NV#USRhCf zd`~W1nti2#=($znQuB74*Z|1QuMOSCCgGXm; zS%42%UY@jwE+meapJFUl-0E1n86^t{Hp8cTY=0ntuh1%jV>47x7Lo+P=l+Ud{|0>P zc=9690nVzV7cY0}nqv~~Q`>ZyI+gN&w59SIaC5mDcJL>QrB+61Go=DkyiH{lS3ezl z&&8V5$klAid^K&;#OKFNgAo&zt9qI9C7-vu74hzkdd(9l2DPFe;ahA<08naH8i_Bm|3Hf_m`7?8)ZH`dVoW%#Z= ztwwjVVaE!!$awlpecO#D8Acm9h?{To#E`J?$fYx*!kZrtG)N+`CsAQ5?DUb|rG<%B z`+E}_WBDSm`-^UvxGV>+YATwNV+=%i_hMgh`fg2CeyQxS#_aE|S?wzq3J~3yx4n(u z5yz8y;L~RtTOr+M+R}9O=Y14oohRy74?5i$x1qt?^_S>V+@RY_3ZlJ;(dCAyX-|4U ztXr>o*rR|L0?7P9NTXr)bqsAc{OHKOgqrf$Q#Cj1zR}}1!6IhP$vpb0tFZ9RWj_?E ziaRY9nC~PZ$dnwAOvHwZwwv7gnU(EgBr`;6JVk0dw5J#J5b5@|+eMd0 zGH!FR^l2FN9w+ZUA=pp#%e50AWN)R0T~`B@Q*!=$Tl)8Fbzz_tRW(*znhG(pavb^u zjNLuKSdyv#$+F6yfw3Azg`uf6Ql00KWphdQ9t+O}&U7dp$WpU6ZSM1*a)UEDSsnxD9;gcamfmAHgM!PHRlPFvmRt_5~%=nv;9Qub_M0i~ZdOU(D z=uU9!#2sC(%{%ysHJJ2X8Iu9KNSI_Vw3affVSMjU%wOc;w5wKmR#396cVH@k}(kSnwidVGA0o=N5u1XfcULv>BMLyT}Dp%?!)t5joDvsSj5Xr7*$8f zECKsYMU0-{$?&|c4P#Qsz*R;vrb%&7H!VPcP4M&FUF<%v_IZ}Bm)G{JK;)(55PQ__ zlewH}En~M*9(aD0x5f76Un#$9EdiS&5}Y99CzcJ5(~2Z z_~2|V<4SuYPZs-Q}U0xx#>5>!kTwUl(Gi}W={;pm;`71M!F9n6w(pf;vYCFeCW0r%IRs8KM0VR^J3?iYycH&Q%Op{ znVYUeIFR)W#uIuHwAV-yK0ZT9n{OZ=S%@L7@{cft9WfK%KoalF)4vEWO!5&CV{?vm z9$S=+qFFR9WOC8VnG!mAPk49Cuu0;z;SXFU?7;-!Vv8L{TnjA^vB04z@S0!V_iiz2 zTGicOrPVp*i)E$9C_KSE?JSuxU@>xn10gnx<~e-e>gx=`_r6xSCzFy+s=vKL`)B2G zy>$~rNXqexf(ku13QDn17a0d~6JFe={>o8=j`^Vt_ zOBWD8+szvYaQ3o-X|{|@7h-@8$3d7+AW^5;U}M+@k!=U+;B;G3VOXeyH!Ldx2ol?m zlLeaE6_mZdbHWftLNM^%dks?}x9Pc}o3gkRQ$|-JDGIGp;Ciq8(e|47LNathKXK;{ zXmuqBWRY%79SE6Xm!=k}!#+|`c2B^lsAh$=4*0S7-G(~HHzkFpbqn4VkS{&}jDI#S zz}gDYY49Eiq&Z=I?EN0d$_ep}W>lTYDISvd&Yc<+8OPfebIK@K0s(+h=(IaE0&ukd z>_nk$Ui$2Hs`OU=p!`6L*XmYE>p9XybL=1mzIz`3I$#&%+IfIXn%nGZZ5aZ*Q(N9{ zh+E&&>Mw}pl~FGe>)=%k)!G86zw--mbgZNZ@FzP2oabmR#Z&) zj?*@ogNW@nLTt0R(5Ub5QS<7brWQEKhuv;aw{4RqYpqO%`JAAiSSv`Y2LdKqF}D4! zaraFC!zLPwHr~72aqkB%o~FDF)>!)EL*rSeb~eW{aR0Sc%q;2sIV(sN-Q%Aszr7@E zT3Xa=BD}}?V6@h95XAH@DDP~27|}?bBh_;G%rD9>_W#gHlCK|hQEL{vZk%MpoSAS0 za6A>ms&-JnicOVDzc~`(pvQ8VmQD)) z298?Bs}BWxn@8^v5yBj3ahO3>FN8d#z0AwiAq5P22XcFWf8!ha66Pm>)ekFeJigSX zr?{dn)VQ{hTfR8Uw6d`{s4y`q$H6#&q7r);_JIxvH#WI`Xok9rj8JwTWT)~4w$(yP zhh*P#WBSaa4+7MSl#SpZa7=#Jy1Q6TK;l*!W)@?Stbg8}w0@A*B*&(~hXr|}8l8Ib zH7jE!%=3wjjTm5n2I9zbTYdY-0C(97tfuHaK&l~t&C3A3DL64ol_EZ+BLUU`R|LPu zXtbbq4OppUp347x`;-hqWooy!=sfU0jd_$A6M_Sh!9WjXvw=x7iys2ZE)TG8z5Q_G z5QNACg-XrwaRSfGNq{j_(ld^%e5(NIIwxXhPnLu-axZd$GyGjMetNOwaO?QX#ldnx zvE$wMhsQSx{~3#*5h9o4<0lfM>g^h_ll2ZQqQj6lw&c_}R_$t}`Wc}11x?eYnE=ZN z<+YQWm)jIx^ITTT*Wn`hQWcbjA(e4^Fx!S(D8PuJ(&uE(w52vHCl{|4gbc#FT@xNz zKxWfak~&J8Dxc@P_|VEj)U?R*?E*tpb$q)`46$Q`vpU)UL&&i~I>>5``lppNOl~bakdB|A(B<~XR z;lUzsjyjzIEEHY6R|N32{h!RiM#+5K@07y1{cVseHF#T#^UPyef7&qsOz}=DVrO9R z!#y`I&|wJldv`TRt^>-)2tcu;U!X@rpaN-`tZM025=8Xjer)=E5)GVcUQK=>kl$e19HeT*$v_?b#%aM2n>p7_w8Q1P~?5xy38G7=~9yQZ{BPkgqy#mqoq5&HxlfsK~A0PU^*E zil8uxL;92$ZDH6nvZ}>-t{psuNGv zuyLW?@gIt+=C#aP=SQ!Uj0C;l61NGakR(-ivI{#NgUjW#!)~40J@q2*8(6C`XRIw~ zn@2Oy3YB(;0CiD-bmI_KJj%ms8#x)&iy+7&pM3D~_>`hb!yR{=bCKvs!`dc=mf@+; zdPk}8#0tz}RuqqT#A{=BD4Ry9P7lvf0cv?_f{1$Wu-tUYxCMw|%nw(Z4h$hiP?X7a za!wEMDC$Kp>VR38O&A&1FXc5?-l-}8Rs4Z_ zOG{$m$>X58neWHqWH}SuqFFjIJ$#nbPJ9`FkMLF=V&upa!MvsshT>1NHA*NME<%M# z1rk?LRCA5opMf~ugCSt{@9+9-P8^4;WmgC^#i)Av8i-vE^nXkr})q8xPo7PLBMA5 zjwpjyF_au) zI=$dUO0vk0K8>`dq{On`l3Iv|^#Zzw_pQQ`Ogv`wwf{D2n6|@{~>)9$={Q7R>K?Cn3&M)gr zK=L98dmBI4D6ZmH;u|{zTPqI55k3>FTg$0Orq!vHn#%@JhJIXk$D{T^dWnb^f?caE zBZJp2*Am~wCM#BA2eOS9D!~D~V1WjzWmWM;2Ju}J$D9XKi`<7>TFcp*C;DW>P}v}h z+zH%r+Ed{ojAUZtPYhp?wtF zb~oq=E!I|C*`kWshc%Hbi@lR^>qd_V>Er3OhFeY|e|3-}vzIa^rha*y44}ZV~4yvSfHQ%!mqcDfn@a-|RHxkNhOfG8$z+iY!h^qM7 zZIL4f0sZ2m{`7+oRyF!Bg(IB*Vd=(z6X;M&!6%>;R%EQD)6{PA{9$sUV#^lMd zy*ImPR&-&`?-1}bMu2}lEkX2Q`ZN^cqic;(>Z1+$gq}yyB)bkEvPA(EPxwkh!z^$& z;9w*x;%Yct%!5DOtKJ8BKjrYfQAR4dG-u{4lQ4~U-Z;*yRsmcFU}}a03hlng zjcGcUM+OJRC*%nx)Iz;5%zlmf7L)s!PXA8k*MM?;4gp{Y8)-kA9gt}c#@K36Ogz96PLI@Z00_Wz?~!w1P!{$+;XK@5x|uq1e!wC-Bo{PV z;WVpTW^JTmu$I`Qrdn`Yd~==s1PuD#qq&b~yMIiNmpt`aCia-D}O7oTxBxls0uLec$rUb_vdr5> z5uEdp<8aqPfhd(1TikP$nLOA)eoGHc>gMWIwXe7KK80WKB3y5)7!kkn=t|17XM0 z0jX2dyZV{Yapx8=Ai4nWUUwkDwO}f}`zalO??WpN-``$iy0j))+UlrMqTtYZF|-Ma zdDI#&I(QR^+NWi`cZ29cLqC9epRpNTWOCcD5lVJS8IQhw&hlR`0KLOs6<|<`cjQBsmlP*Oc#r-epr|6?(!q_Ic*zq5 z6^CqiFwd8`_|-7MB6h8%rza>gC|D0E^x;rz^`5%5v1>0YQ7_+vo++9J^ep=3%Q2+a z0SXx}(_t8m$`EbHSxnBSabjmL+w{}Pq!)EIt%C71|MVMQ0YS^!DO|%AQFvg|HgNq- zq6)%;*%kERH>nrD)+SUOUHK~Obbn?w>OT438{_73>k}Zf|7!YSdv+0UMd{~+9Yy9Y z4=;=*KBC3Zz3zX~hV^5#t0?*u42ej8b;4ld5@NFccu!| zRHzrnqCe5G3m3vTA}~en=S>F&RI9B~AL-akl>z#uc?)#tU~^1Nd6nBpu1(;zxW#7` z`jAv9#517zP%~1r>Z^p`&MD_+G5X-k&D^s_K5Pkp+V%hSSH>%0jD5#N0t7L$Ayh1e z{)CK|9&JQSvL&$X-2Cz`{#Q!3=z`#{wi4e%qr1fP%)x9}4|--LT=sa%Sl(I;>pPKP zZM{CrOHA!>>w`_Ho4K)(+nZI{bSt=56&bIy8HxSpsK*ebg7wDUq*ogl#yQI~Q-^js z$-$O?jU{B>!bRzmEIK|_Y}wX2t=?+VdE;7mBDtyj7v%QE-*_lgj~)u=$_OTnkuRUG z1OYm^@$JJtRmtWqRE$A(-RIR}q!z+*c^jIBA4?>{|l(FxpjzsTx0UG`$3PBL6!9MW`r#{{DwsRQojn0kt-r zb3b6>!{#C}KF9q7gFVNv`8-y7KKSlyDVj-iy$Gke-hq72{A+u58+ZhXT~vp}CW7>P z!ycV@kfUV7k=(=+#p-K@MTE_*HKOx_BoZ+b^(9VN>{gC6-ud6=+2|NS|c{dTo4Ihd+D=EjBk8X$LN8d`(!l)F;74ACYq>9~kH=bz*z-b@I1EkXem;wv#p2(f_^cqrCc- zflj2DdJ*J0Tp6?00oczRBoCajx_?iZh86I&tD%>1eK7hlR`)RwY!{eXhn%@Ad8c1O zmGaOsd<>Vr{Qo|*`PL`_u0rB!IH~DaG0z>)$xzTfMO**Trnnv?rk9eWD!l}qeYPm^<%1?kcjqpqyHT)6AhW-nGw;~UO)40gWSi{uG6+D zAZ+VGg_G6D={OniW>yJyY^7ju=%%v)P#bIZqq`KW zB;J^seyT(5li|!kdy0(A>pbkhqa;sYIPk>IACm-lleThQa&A+>3%G-pvp|vuAf$V_ z^#kVr&xe#G`x4pdiooIlh%9vkBI{7M@wJJE)!VE{wDVMEoDb};4WU;n4gYpY>!BU5 zq@pX|&BDh6k<(WklNATxCxpFid(<~jz+H8jdP3=cerj2FOGiVipE zDmyr)v-_-D@(w`%Iab8ICi26z*#hOmf^^s+CJ#GR6Qsh$oy$0HL_qAnz48E3D5#@M zGSKAgoai?RKJCZcb_GGX6#nDGI(n&FJaE#WS_y=bXej18fJJNSh4_GS-Tbe&DP5M4 z9o=5p2y`>ulFgtD&Ek?khY>y&a`mZ|YYJA;Mw`a=urc_Vf!*XpBNA}I@f54W?%;rS zXQ)izb4ivvj%so%7JDx zu6Phy)m&BDkb&|k+y?1SAOjcS3@ccSZCcctt*Kj2_qbc_NwX#?30nRJVRH}S8d0)u_`18#{&cn@q;YnegQcZ++~3H%kqu<;>$m0U z^g;CD9bSp1bD)hOGAsC|XEzG_=1MU>IM8DE~I_5wn#A zM(kRfD2(vJemg9e`6bVQz>AoiaO{mWe$kC?Z7$Dl%(otX7}ZtG`cqDB>ILJdl6!7dD?S(t-b_lov=Pu zQ*;>eK(GNOnkhi=rwSqt;5&Mu1L5%AjQ-9O4)ncM$luu{)L)}?0e}G43ePg0cq8TT zmte|d;Qt;KES>l1n!E#@PlqCVXEfA8{6L|*m10h%``X&(RK%qMN-y=5ck6=Kfxg{) z^}>VzQrIQ%QDk1BO15W;WWMEMx6O7Z`lrYhaFA>5sIe1CQT1V6nT|+nM~@r}gF^#N zgiVRN5-USzXnz;ug7K}h>qM;81B1pLK{#8NF(-IjH2*w&e zdk!1WqKoamNIUGuZo`KJI|ayg`}vLmu>4|T@B0^{hl#2EFPzsMBo~JfIk`t3YyVA7 z&(x-FEdm<`80i1ASu0sw`sfU#FH_p6R_VZ{%H1pT=plkW4h)&nV}$@6h|hxCcck3h z6}C5v0;S#VZYdjY1jSIVVF+9#4vvK2XA`7QiB&o~F)FX>BhqTotv@i}{}O_6_wU&T z6?i+fu-M-jMuh3Swp)XaNv{!s&t6T(j?9nq+u&lgeSQoDgRLTy6RnVUVx+iR#txoZ z&v3VNqnlTthb%wjKR=^%J#D9tF5EtRzvsT&{5EkwwXL!DwYLJY(d=BF2BNTo$u!>+ zsid9mX!rSds?zi7$D$)A9#M+*^PGXd$1bYBP zbz5(+xNwM54ECgXs#9#%v_-Ce&{4O;u(#ve@!fT4Wdh2D^7x6Q>!bm#d`+$g0#>cF z!+1wE%v7)Om;`wH=;!G=++^!xoq`pQh5)0NX0ZS8>+P9uGsMupiI-*Y)r>P07lY<*2II z6E+AB*=|%<$P!@d{C`6ueANHkiVi`i{%2sgplY%AF48xsAGBsJN3EGCQ$DI*-B#dk zM7>?SJr-fBcmA_zj5UvXp#-avX=V7x*l6+}(aP7m;O}J+qJ(*5GB6@93N#lPYUof^ zywb{tE$dC&`L`N~RIM!myGnhheT=k3g$2>X*2cLdNx?`vQ|;CT`tjZB6c?Dr)FIt_*g3@Obyn&EVME?faFb@;k{+jBoS zqVaH4-o#+aG8d)nxi860JiuhUfW0iv5p&63d#cz;9N4=i=aB3y((Z|Pn)*AGi!0Qv zIY&OS5#E_yAkwJ5-emuuN~sb>3&>9b_}o(;=_ExOdXJvaRtV4k?+I0}o?^3MefdeF z&#rD0I(1PwY%{FgRN7&F%gTP?M?77B+cRWKPNcbYvac!`4mL0B=|$HLC%WLO@~d&!^0cw=QwOu`nK)+UgpBv;cZE+t9y=fw7WO*JtC34=Shbr zPM-^27qr-H8|r08EZFu%$5}i2y)^jmyNdE^VEqjhY7hwso!-u<{QI;&QUN`)1he%6 zcIJmnM=ra((N;z~jq0}z?64Ri<~wvHwvTR7syQ1~vd^tx&GHEz6Sap8X6nXfPAI&9 zQ=ybcCO0YhXEGMUr%%|4UdXW^UqOY1VfgSHc3NBxb8xKTA^&?HVt7>tyyKWT`VBf! za=~^jw;q-!VJVWgCWaW>pDyEh;XDTvYiA`}M7e!B*$@YxDu3tuyK!^@hf0GB*zDC_ zPw_u(&YwEqU9G;KS9GC;(XurH}NC(q9V_^Pfia_pT*1J}7I8C#{jJ^K+jSJ?+zZZ-J{^@zT zl7xww&z1jd_bAg1Qq*7_ID;5rqt`Jd~wNav5d9)U``4(o$a1^U3m z$9M;N=#^8R2GK~7pA_loQzZ{@FeiIYY!jJ<#%&i~K{uTj^u0pP7+jyvMmyF`-I&kT zeRpsPJc)V#wp)Iv6twZ?bESi9QzB`{)-fyx?yCG?W#{1>cjRwen{SnwjB)|CPITz} zc*9SY;oQ@Izo(0o62Vk1VI(l}KP6(3z9|C!`la4gaIYL=pe(dA`KSeyKcHCCnUfzz zN%2ZS5CX5U+s(5DQJhrPBA)n({uH}O*mP1(Q4I{%8@~=@V(qZOs-7a)|Fl9{YtG1Q z_%~+y67ZE2fr`)}qcEL_rnS@lopaVr^Y1-TbIj|5X4Gt*>v#5lzRkB6sOU;sgQ0OX z60Xnci6)c*3duvuL+Ng8SpT=X5vGO>Uyvx2yTtavSPnCpte*_5MdaFBFw&zO4(dJL zYXXcMHd&3Z8uc+(_{VLgG2blh%1^-e)p$QS3S9UK&h7^@JGNXu_U^2{if(^t20i*q z<(^H&?q<4Wl^sa#h`Ie6m%`2ws6$9oQlKs202Cq1XpPk9 zagep*=|y(cirSF{Iy3UlT%P45?8*A<8Gi<^2vMvHSUs4;&D|NLFf`Vt30@qC{J^>X zLi?ftqgQbt?rgmJa2VJ#`RL;%#&Oz0I3N+@-zJ$&<=J=Pw5B4% zHZ4tpi4_nsRVbyzb&FFa$J)4_b69205*K71PvYQ#1tEe^0`(oM?eU2)+9?gv6l~Ro z`TVw>vuca`;RLj+stCD&$vM!*Wk#Tz-yo;2>Dhk^Fu4j{pwEwkmA&856Wn zanZ}U;JLaf*4Ea{sF`sy9ppSZIH6i zo`hk6#7Fj1C5p6ybSdyh zN>l`-1f*LUDd`Z9l9Uh-q$H&4&e!F-_nfu%_nmX@US|x)*n92mBL46D%xBJD%>biE zUk1D4gnMj(pMR`!rR+Y~CSerKZN&cY1cXqPV8|$!@wUA)>$o&lUI6i;$_v)x z6^^Qj3-@2RPnR*@Ok4)5NY-umhVtdT*D0cMegbb**_|LBR1H#^i3G4I&vld*JtT64 zXhA9&o6kwPmC5gFUi@*>vk*1v{l4i*= z3Uw&Iz2l}6Ey5kKq)swsaLJ{#@Yr}4x;@t2 zjQBR`T3d2?UTI?gg=7S~fzRDPA~gSt50&Bfhl+s@C}CbiYue}5pO8aR`QheLwYBMjL(G28o)Jmtwuqg;xG@Klv@_ibTJSvLw2uC?2rE2;yCQsq&5jNJq zy-FiK8nIMJHJ0fE*Z(c`sUE?+r2^Tuygm6%o+Z3_zdWY0GOe=X+j03smp=UpD*C@4 z@61+=SNG9`TjdgijMknaa+iSqpT9*Ad4rlRZln%09?M0msS%Pm%0LJx;m8+A z65@l6=DP4}XoX5`lqV%Lge2qr-+w)PzcfDt4@(rh|H`MOwoUL}pT#{9RcEo5-c)&U z?24re>%dX1Nbb!Nm3Oe`APK#dt708@0en5jx<#vmzUuCP|7r>!^2;B?z(tOmhP--j zsxXvwyB<*x>BMD@HZ_&lHs}#udLch5$(&xiT^RAWRL;h)WF+U;Bib-~oL~3O1pBrz z?cHNGH%ByTp`g)mrQE&pSxb6@o7q*z!>`}|Hzuf8Lci`8aGHgt2|+`B<~5F`XK05kQF(ewS6&(5~c$Bl>nKNKH#C_aPR zvUv90XC*^3VAITno)W#Gi-+Fe{QJaGrYA()vaDm|JXjy*x$iHY3qDHnTiai-1o2nDeV}R;0Mz$j?7~Y) z(H^XL3Sir6;~>ob{+FuKG0@<0I9Q&LQ+y0MPeHP{^}WA!1zdM@H9$ZHJc!yX2bC7x z4-jZQvPyJIkAu~P1`ylPHWPhXNB>^hv+n&(z}kZx)nKuNKaMu-E2oHkN$o%I0IgdJzo$(Q z`}_ePD50SdHS+ls1@a})5tr??&kO zt3i)B4&3s6J%!LUhk9SM?k5on(vjHIZ(y0|%4&L?T}N(Fm(W;+-|4fj#(vx~@fs{D za5K%xD^sjaoFCDZJYv}J1SPWnLjT5$YeCI6j`@uc_sxnyt@^OFYJq`3q(+g~1;2wSv0Ym!v0KH45zeW|I6t;Z_?F4JrKJU)9N6p+7j zLuz;Gu{3Lw_wXLpV@R$WUjfCRAJIB&vRs6HE1#WO!>dp~ut8yJDI$#TmvMStU?t5& z85OY-COkp*WG)m}+D^>Dm=fT4g|aZN_8Uys!zsVJKzt1?C0K^pe)UXYkk!I(D4(_1 z&OB2VjTs2SRI!H(&tA?k;rD%#OoC&i%{wC|1_~)k>bV&Q&<<6>N^KU4E8yjquBMJQ zcuh)v48qrdF33pleD?(r96+A`P{0c8gB_^>nba!Waw;8MA3_MRMj}MMVs$Eh9lhIl z=~_uwWrDLRZ(zTwco!Ay77kYHTD&MGMPSbm+Jg)Ka^-uF^mbmfN=QPC%!TblT0pY; z^ODGr4?LtEdu1iW%v#LP!IE@)>`$oYzh=t*vq)r+uFwz+C$3TRm=$8Y(VxX2t}F@K z7TSkgB@rkb0>>6ZNdC*@p2K1!fUruj3vMzNHfxGsKp8w`B%1$1)daQ?2WQMYg!C@s zmfuM!NmkEi8E7Yg8fkRl+)z1}B3p!R*W@2<fX$=);wl(JB-g* zImNQIj+0m#1T`~mF>0`;vHF&Y=X%QG-L-1C541-Z0mgwS^2E6#Jn(qq@Qi+%Au zSoK4o40^kaMA^YY3Y;-ljc!5;mKMnmO6NlZ)Na&!LHx*Bp09e;6?OZI97t$UfJ=oc z>>~-7YQJJ33qGzcx3={Ut9$cF1p@}<+F^2&uc9xurnq<9XP>%W^3j`=;)2)$?V}Hv zq>PC@S+^)`KXnt`lprvsr!&%<(!W+h)AOLnSA6LZB0awapb<6nKbqKMgRTWt_0HTv z=Kh};)pOsm8^4g~|MI&1&wl{{Kl6OYLKJH3?yHNU85{ZM_t=sGCf;DMoeImfE~pEk z8&${D0mc3y?j5!}!NZn`d{`JRTLdxf4lARjxKefD8Dl_)G8tF0$)6+lc+pKnk1W6Z zK(PuNebB!m#`ozX@`84-4CQ%16!({FcvoId)d7+!Q>Sp<4`ZSM*3-r5!g3`&>DwU= z4`6vBqF1>gan-!30(NnIhlQC@t`yhn?@z=MxDaM0eIvxt@GWjFakE1ER=r9RNC6a|^rKX#Yare)z{`6s>ee`1!AUPc&NH14 zqGMB6a2aUgjhEFm#RrAXoD@G|cDSW-aAFdraY-RqSv@d?F~EVrT#GgGT$&cUv*vR{ zoLC%320A$lYC?W3iyL>^$Lo1CE34!PpB~TGNp>EsS|uDUnKj2Po^Q)`hipqvg7n}ioW!9sJPDq%9EB?u9fy>9!ol;Jljk-!#mA@ef_JY_8O zPeMk_DJHo3{@c;0C-FSYr7pDTmf^q(8oh0v>v8$eWwPIJS-0j0( zdirMAm_=OX5wNMm$4xfLPLMC9B5RI{w|#uo32vW6vP%S|bR`#YiRdRm4ZnyCxLG93 zIsvXE>ba)s4W^nO_IIFR$b?cb#3B854)(|Q$6dbzi|cXB?xNgHrH_$PS!|3?pmarZ zWO|aTd^`mrZ>_B-9`>s&7B*hs7_^2FklBg%&TRvkOiq#(F3=5try+Eh`q-f4ZgNW) zMFwn0WDgNwlbyw{Z7l4Djz&=C#1pq-nquifZ>_C2nlSwXbFURID)qN~`KI`T<+fv= zU6LJaeA`H7E(PBBf-vUo2bkmDe0=QF&HfN`|YctIYvV4N3ltuLP0QX zDs6s#?v|lr0Q9wP%QW~yt+8K{3Xks2wnb9o$?CLj2hD+oe!^`&ZRJtl4t&|ZYF7Vy zHV5D%ns^(tjayN?-dkWIwaJfjNCmF$Zy~24$P$zJ3OHDILQ%#zjIYJhkI+{O*MqCp zPC#szxxcmKalqZtoYFE65?mV1Fm$`*i}6o+4KxOxS0^YMSF6=?F~-35*S{?P{xAQL zQQ^&9%yBUsI~>>roEytH$v-WwT7SiB|KS$&f^p8$CBtAW$rx~#3$C_B6UHbd6q~q~y4ircQ4^{dl1c+V{;- z3x=t{!gYwd+ex{97JIbl)LLMh2|e01!w}Y{JrW1l1D?0|=JAD%&kFoyz7zy`1kPW| zpaihV-VF4^lUj3!4vi%^Qv)&WKxwPuAg##Tru6U^(Z-35&bHH}4l@L_~&e=K|RAvNfmRB67+@zjL zNV1n(v7Sm;l5L8c!0fSQOfd2wUmy?i@ZWoosQUBMI$Mi_FJ=vxJ>l%8>X^-SL@mNA zq(#K6tOnyjY1U#y9~ZhE76W+UQrWe$i5K62T0D_P+}iOOKDqjPCZ}~cr#2~^L85`K z6yQ^{h;57_8Jfa4%GOZ+pT$wV@-hnb`okC9!H0D|$U4+Nbf zH_L{7$SMjGc0q@L3t6_HZ=g~p-YO7TgjsS-U7uN>X^lhmw?Q;Q)b(?r5=g_LLu%}r z+&+W(1lBza&dwZj9~VgKN``T{fY(p?EP| zQ{63R!?-!{JcG8(fXTz=y##;X@$rg3BG zJyCb~ZQNYG*lfUnXx`Fwn6gBBRzqH6AQE}hp8wvX)>qDUHej2J;E!Wmmf2cipE8Ec zm%-WRJ_x1A@aUJcg<#ke7{ovZXAE6QD8GR&XJnkZ)D6_(?;>tN990G3O!nCUxTM+5A*4AyQYVJv8EFbQ6-8e> zwwLd{0_E3PL9kz!ShlLnYSxE&|NJp21p^#B@$+LnWo(-1nc(Q};&$qgTB|>89dTv* z29bk&SlU~R@iJdBGXvS%q{TZlsOOC-H?1dNTKP%B?7a#rhb$s zPDN^pj(IY4mjPlBqxo@TW#N07uQ&zGcFfw3x_cZsEDho3;eW99Y%qE0JGL6)GZK?1 z`XHU{0+E(x{Sm1k!5yWi8tr3QvnSSR#F*nU{%rr_TKVkibBw1t^+zD*PQ!06(J!@D z*x(|nHNqIjliYnnz^e4t%A=X~*%xrQTv2y~k3RAl-FE0ZKwNTw(T-s+BNGJyhE|@XklFh~PRrc+0gf za_Ib|4;cHXCXAx!uubNnKdzEZDR+DHW5Vb>r3ik0JQuvVvPwuyD0(y(`YP}A5#XCO zcbEMx$l%cJ+d+Q=((uTko3NIto%Fs9tv=z=iz*GZ{iAU3|dO?NFYW+YAtiTC3q z`c9QV20du7qHT1uT=I57oX;io^dcX+MX@sRvS8ccp)=>mZa+1Ibg6JcQEJI%oApwk zLq#fuXihydV^sa+aBO_zMyD-4=S3}^=X+4{v;j#EoqXf7G*qzDaxUC!>cRu6q)ZCP zm#0WV257^Wnf&(MV?Oj9ldG~ZTx^O=_8HGfLx~-5vD5$Gwdeo+|Dr(1s*hGq@*@4z zXQmB@=M-=7k(*20dGT%S@&5gOZL9#gXIo<_av=lcR`I4!8!^UX_P~^Xi6FP`N;+Nq z{mI&zeOQz9ahcS_vzKW2EOv#hG_UL&-1J`03^bWjB$R14szOGVj+Tpi*k#{e5HN7P z!1oA(mTR&{a4KMp?@Cc1>JX>|z7)5f^%MRGi4Bzh8}e_Y^=BNf)!5KG6zCSoI4^uc z>(T}pN7&uZ${2^pIIK);_0j(m=~pig4=SL8z~-Beb2m%*p^aV=FWL^^7@6?!h=z?J z!s5dzo5R3`zBSxNmus@$d2ufZlQqV{WkQ32Q$uvoajeS4X0P%&*7Z`~i`Tx%R+T%WZ? zdn6>e)`!)CelGG0fwcHX8v@bK*sV9=0t>(N=R-uvTxb-+;>Y>VW5Y`?>bZ>|H`XA9 zBLGHY?j6GhZ`%LqA3qx`IGYDBG%7}M+)^FPRA->D^T`o{_AzmVvY?5Ta{`lj{Rhmk!tzc$pO75MO_V^&S6}`IU}n9{a7Sf@J_u z^J%|Elj6W;NiK$`+!$!W?ssuBGL&P#VkaH^{GPfN9V|^8wu13^_q}R@Sla6Xz2fUs z;4m;2mF*GnR!x)`A>x~a>%bZ!EO!=fw1iKDzvD#{-i`x|^}2Spmcr}wG(bQ!fQG(o zi8>W=V~rOaabXeA!IDpxIi{bq$3)!|KQGQb3nH06+C}xTvF0SwJjk$DlJRd1 zd*puaEp+9uk)baK|I4K_Xu?hH@Z7lXT@XB-yk}^|ac(Hm)yZSIp zwc2&v40F0{7+hr82tpHknN2ni)xw$52eTF{YQVNr2QJ93wg6azi?w>?^K8)-q!}ro zjLbnikSalr#h5EF*ExsFMo3=e#6@P7;N2A;Y;^y-FskGK!X23-dJ7KiLHK5ZlH-JO#Y62{!0gesB@p!;Qk zV6XcSRL*O&(lwKfoq+S)lf+Q|Kh%vCj(R|l~8-f|J+5z#Yb z3&^JSNn!c-h%Iq4PzE~u1pMPNftTF4*zNjL&fTK(H-ydlp*^BVF4B^KnD~oL2@tw` z3*U7TY!cQm#_+$_`f2;I4VdD#9uzP4=gJ3G3_tU9i&BsbV&wtb;A$>se7;NQ`v@LJ z8~`szN-S2zRtR1;Fvf|xWSxGW$OyW84pxMTl8^k(Qa@XbVeOq_I+M(UQO9e;f%T$% z%uaj@C|~xU*S;wnK~suMNWuABozfN#vgap(=_F3!s{`sU@hZ79D5c-N7Phy`p1)Qf z=I90&K84SeFKP-7GGFg1-wOTIb#rlg!Sq!6ICJk9F8vbLl>lt4&wSg9gE<+rcbj$V zz-mog@!^w+>`I_1r_4jHz;)kkky?272dWEAe=uZ{GEKF379yTrE$~lX#ONHR7GXxg z#xnFrFZVFVSvv=Ue6AEy)x(DIN4H>$GrOQ9bm8B<_)c|p!XRt@3D&$lx$|vz6tv+F zl$*(($c6QQ^Z)a}2S@(437~-9n9cJCKj%5WMu^90*AUyT5oz3&A@(x(wB*zK;YTWz z?CWnrGe-)czI!SWd)MK`Ue`L5etd>aT&5hR$IoXEdy=FkZGKb~g+*Uqi}D44OQR|Z zR{sGx*x}uariujY2-=QbhB)rsco%r|!~eLsge?$e8JTK1MT3Wmnx0-cWPLSOy^ zyiMBWKm{+<>b?JQ0l13J_>2pw0ZTU;*siAf8bG8!zC{D1RanzskHcP?{Q13Kh1d-1 zrtP(tqsK=F6uk?`SlBdWhPnW&!?|uk-!czGPBsuZIt;6?+;4!1k;54df85+zIXS6s zG3Lr|@7J}dd(!R~?{3K-1h5`L9J2sHfNgI^iL(M-N-gxm1J9Y1`m(Rd24nT(UmAio z!8TDj9-yX0n63o5!hzK6% zrnf*<5^PZh+R~~g(OtF!tV!P^_Ui22P)&n2?#;vR8*`mq?pM{8NmqpKe^%aF8M}q# zTI9uYP1SC6aP+6V9lL0&&ev20jbPA~F|0O%kuhq`nbwF~P=D5Cp2&){Nw|I+A6~gXMUbn3ecOUclNz$_KK%@iRV9kKD zX9^nq2(nF;`DraD!@@Ah-JXVy~H8JWx=lI zJP5o&!a za(h`O=0c=Yi%JZwRJ*su;#l~=moz0(hJ~I1d9@<|K-8t%s$Ev}1-fa6&%D67$c~}C z(_wK^UmFxH>@s?fr8vUlB07KB?mjTk{OZd^S8DgZQ51VpGPnTNRdRR8TNtLMo#5}# zIK7ryz6lv>N?BgqnJR>q+q>iNTX)engkK4*KN=!AB@px0#kk{{;)K@c6V@pbLS=>j zX_fWGc+RLcfNqC!&(Y3##b~n63@y4}6ILjNuqs`Zu+8E?7PGsX8Lm>Bx5EoKW=D1uj~ICon)di1q9LMh8LSaN0%>^)7Dq)Ej&F{_hk{owb+!5-4al zt}ESSNWw+)b;)y=m1CI|K{(}Ye@*>Wzoveke{1STAoR~wd4S+3gmWXmdmD!zl-?`| zQ!*aRH!`RJ&(|W1euBq{4|xy*0jjz0Yl?OT?TXPz3JvamtD?lIP!RX> zDicrbzwsnW&{u)PX4-P>jiKDS0}J&(RWY; z3OBHw)?JSM7YA$n4aRjLiW)7c2Hgj0RBIWK1+`YBPbs1sJ(|>$U zaaW&=JWt90)ft5R|L+Wl9W?6`W_MHIWkKFo3BotN?`2U`0own_SC`|O;x?(R2Kq<; zx##z|-;K-0bzfL9OXotYgD$2=T;l~JDb*JpeRdp7D6f^99c7XCBO(i%

I)}uSP(n^bx3A#1|3Z)H**ut=PZZeJ4(9!ez5Uyy}@QGw_hdSErAKJ4CC_B5 z=`ipsP;K&@l7-qdivh#wdN5lkxx?s%t9kv+73%h9UmXdT zgRGY(LAlCfrnd~SZcl@)U7st}?eTd>M*ntHG%(djz z-7BQTI#7FDPhU*+^k@AZ^e%f^VEUDFj_(N~@&)xWt~SbH44pf~ONKBY>CTHe%&TwV z9oFMcN3WyNZ)0T1g=zQhf~!QbWRgVS*3Z|G&o8%emhnWk9CTU1(uX24I?9Z$rA2W9 zTj*C(9;QAoHQL4`7xTGK%T$grEJ!We%f`N`&fD#NzYoBfz5G7Cbi|<`l>8XWu{}B* z=~l?^fiw~qu;w`a*81Z^D|3q=rG$~uJ=S1A`cyU~y|amlqlrfS5SgA;Zk6`4%aQqU zA5w1h=jA}+lYl$fD{*D;Xlc$`vB+tU2O`Qh-IA0(nTegoNnT6wBCH6oxO`~8TS5OV89&k>#V*f>4!{Gt?-v)ePJsen(!)wThaTuZ}`CtCPM;}Oh(v(2&} zXu6NquGQ~&t26O$)Y>nNJO;^9>&msl*?(7qf6YIjaVLqiH{_&G5f?P)MPc_X@*jr@ zX7j?mj1sL9To-lj9Fkfy0E*Jcq?(vp5W<6rNq@RG>Jww!QF=zqN4bR2i zMk+1^88;IQtz{cx!7@`5^(Dx*?+ptiaaX6<4}034H3G?vet#9xRT1W?)E38DVm8H9 zK$(3E@(np3rtCQCN0q(AM^g@FMnSefmVrHyYOODX1^T27#u*K9iQtRrn^%IgWkxJmW+-9Oer6qclH zIuenfo9VIT5D^a33REP4M)-)1YtQO=L`vN-~jxKAm~27H!5xGvKppCA@-B9CFAf% zMS%I;t=(to*}vf}@FBP{I@$u!2>T$wbHkd2Qbb+Go!<4@bi~N>^efy<0CAh#C=i~y znb0a+A?lyv>&iv=bM_q?2M`hmh!&%K=o1EDDXd+74f%?!^!B`N**%{h*)m?~klrCq zB=P!0)z>KCwgE`DvGj-YO^m=rHflsp!&O$E0B7J6WB~5ZLdIP?(*bW7($bgKkzV!lbq;9Gao|YQ%Np`I{ zhxdqe6H=l(1|ibFzZHH0Dw*Y|5?k~&NwEynjvMLU-qGudTzAqv?)zVKTmH7<0fGZYQHNy&6tAXE9xymPjNG7cT1IB_<;kTp26)EOUSU zA>g)Oe@bA6mJ6r92N`nhzx;z*v9kaDDQrUkz>yPi6h7DJm%gAhqQd zt&DrseN%UX4=g6Blc}y=^Usm7x_3}%tq!%(uMgv@5;ilv!w(Y|h%*~g)4aqiFD-b- z&D1jHgSXU?2v&+>TXcW+ZvxOm<3t}0 zi84VG3v4I%ZNEtcx&~RMvgbsf&g$Yma-Y7I3@W|+B}wwbA#!6sP>|twoyEIW#VD#= z?f?q`#3o0w#(WBM^)QkVCZQ|bM;g?MlnOZhOj6ClSKxqXRo<>&XZ-WRv~4qm7^7`< zR#WE93K@%BIk;nCQXi1N=YB-xzXa;H1QWYi+EnN;b`t@;21jg^iZ>o`vbcJ&1J;np z=!w<8@M0<`4oAtn@CK@F+ZF#1@{(x?w}ZWzVThR6b^oxXl>_Uwn*1a3KXE6b9O7ULL8#FaAevY-`SjR-W`iLWklueF=W<(zh;UZ#@OV1&ny4^_oT z5_KVs+ibGDU!UEr<4US!u?EV)Dokenmlob|Z0vGbcyKAIYRMYOweIC3)2-XPvK6zgryQwbZWtQ6$(sp105gMchqko+g+oKPy ztN+IwfH%^+(EZc87w$nRt{yrfCb_Lw_IIBjlDOexk43YP>9alJ*D>M${6LKKg~Zrb zlmhHK1d(}REIAW~=O9vco31FAi#U=PF{6J3;`?7`(u=Qbv*D#_SuKTQeu5z|e`G45 z+(b8~SC{Gcp{69+t*VS@_7Z8bTP}(cX@RFQ!(hl_KE-|LI79;xqYJpe<7Ma!bhFzm zp>Mr*`qT!e7-iUcX=tgvVvmW^p(yBW5(Dt-0Dr*o5TX+l2L>51{sz6=0GHk^9tAz| z>}L`XKVSsvLIQEx+2aw$xYNq08SEgZltNxG96 z#?4C=&B$qp=Q0n5%9L`^vhJ{FLz5? z>UV!qrn4y3zlll<=#){pRHjFiBKw7J^FAvJGa~zWI`9Al0@x%nfpL;sZ=WQA%!=Ju zIT=iXqF2#Nd70!jOhI!Ckd`B|1LO8Ju2>$KYy|Aw!ct(qCg>^|PkDlWN@zB(rNn8p zL%4udj3nJ+QY!=e*N$#_QeUDAw0OpclVhblEr9EU_s01wiOvfS>@7}DpJ{$NOh&v9 zFmUW8KyBxs{3QGGHf-aD%?l(s-1UJwe}kP6xZp*Kp+1I0$WrDTz~z{%N-R;c$FlyJ zNM)AJsO=W+(@Y1{a>!=WHYKH|Oc)YX^|qBs2!ig5+GHn7W63RS^z9>Qxjw_R4+0Z2 za@~H=djxt(?AT42ZWVsao*lW@eEpR$9(J4r_qv};umPmDA+;VWdO3MvgE&2UTL3@Q z{_8s9fc1H%=GUraXg*BR7L{%?k;zYJGchwmTKO4S%CP1U<5F{b#l+(L#l9DHzdKU` z)aYAm7>yVz^#M5?e*>K!fe+c$vbozV|KW>ue#0Blk|ESX%JBv07k(JxA_+-RNaCQ- z#)LtID1b`E2dL_aOF4<`PuIY%r$~x`cZ9OCt_&LUn?= zx;cK)kuTjH#by>3ANjJx1EW*KbqZt_pmyVK0eoTfo(~{|F;X37xW}hpKj}=v#<@$F zwhHp@+#U)XrTY7)DBp%fO7yUWr3lJ0+XDB@WKc}lI^VSbg8s#R@XbUsyPLN!{Q6A^ zKBrCe^T1t8sX9aO=-PB|kcriyLpMaB0*fa{;Lo-#eMJ}rjE|_`oIF?I?*EzTc7$nx zfJYlUT7be5eFeEqe6&i+z%PLq|NXJ2``MVx$1P@ihfeM)I-fz_WHd=h(}JfVJ3z*( zLGUzI#P zqlN7YBW}0xqgE2=i$Rr$lP_w#g&_o_-<Q)4I5+iNGvRA@}_Qj|>s`vj8HWe2cC7lvymFkfQ;92OMT8ZV@7ws>jm_ ziF7FT1wSV9zBk+&bw(nLx^mlRrGJW%IPrXos8TNcyeRz+E63rfppDaMBB*cNW^G#^ZuD%L?zhQ-%+L zxiH@nxzfYO2s$%6thg}Scb%;Ti=FM!x|z;iA|?#mks{nx`BG-DQopPY!@uRc0r#W(_$ zv9Nzob})?$`JYglhixx~@htI^B>Sh5KLadulbqq)XXwc-);5hZKO*#F>i?v4w59&% zvL?v@lWp3cu^Z8{+){vqJ}x#lYwQEjW7Jg%Q`&31G*R>BdVgP#6`vGRpju>l%?5c6xfZen&X`B)wV=a>LW|^?lBF3TRGv$x2$ie^ zQ3DPj-ur~{vGKt3(<@$9VB$CdwA4Mp(^W2IYf23Zkm5<=^RzG+6aiR^qoWlkOanD` zZ;s8cd8Hl^{Q&3T)(orF`b6CofWDVm(dJpz%Qs1waxjpA{7x$P1aA>P-{XWWLO%#-rDTh(%|$Nw zSN3EXT?-uTS_J$~~u}AK;Xp zw9J`6eXkIAYC-=Hm~*40!jtf~I@0NJpCa98bb%fbGCWN_{0nB33;+4Nq=Z*Li>xOs zE68GLxCKBdMhXT;q%@v>*bMT4B3!Bc8Pr*MN$}1*;~T^`qsniK{e?e9&&|+9zkwSi zrlxGgtnV0)#v$8d1>jXX?pSH8(H2FFd;NIuKL1(oWgwHq<}&fjOBqbGl-+}s##6uA z{;Y7#$*f+Y@GLKg0?7-Vh;EU4;qSqh1ab+>$Awo;G0Ig*pL%%&wxcgXIh9E9_ig8| zGszGqSk&Gz<87r}0FwruOa)*mm^374a*6RTUOmI*(%>)Y22$%T{^p>_=B7r>{L%L7 zJ!@tsGWHtAohG;a*QL1Y#LA!5UuM3~BE#d6iu0n9YYnnirF)-e+>xZMM zN+)f=DGAbQ?HnuQ01E-VCGjmOQhBAkCcZMHv2OVKgR#=OnW~hlWhNpqbOO(t?Mw)=8Bp;lBbB5 z_R5A_QA=a%C6qVd10;SY#$&Y=6#Q@7zdzPGlH@s9tnXsv*P+1g5jNAqC>>UOS~+;E zbs|LJJM=bpS}#Apc@ndE${~(X^x0V?rquYA(Hc{G=e2jpf*;m4^OwNJ&Dz{fZ) znUiSAOqjVJwp_TUtuLMw{mH)@IhqrY=STQF^xiFMmPKM-)LF+cn;!Ku0$w>~k3t>8 z$N09ga%n|q&r#w`=?D$xzQH4Uu_7ddzygBFdJC`hP5!z}W&*c72WvI59(w2ZQ(=ZBhk#SWX7m0TA z1L)JMpYXRi;JH&xB*5!{c;Co`|M))(w{55j4S4V5K=1X1}wG zh<*GHbPLf$vU4S>Qs1JH|J(-B@}GZkMxMF{Pzq8>P{~lOp0&IW!;+rMnsjLT)e9g; z;YVA%$ytTgxuj^tfsDtvjSzAPj*_FqGVk%`PP$oXZnrn6Yc4nt@gjt|HuEZr4>lrkj$<8y+a3GK^zn3z)7;>T*6`*1mMxn~N&8 zN8S5x>G=i0e13epgzkT3{b^ce#+&b`4+GNY9JAcSN&n+zu)cFaN5cn7M>|7?{{JvG z6j==HpKz*r2u?W6AM}<6&1hXXAAsMsiWu!Jc62fTv z7x0cw>r>Z8jfqQ06UyMFE!2Q@VT(IvX}0+)vE`b&HB~85g?1`rC&(>Abea?ue?amU zrr+8)+dQ=ixFhIyDts&y>4_%;AIb7;Cp-|WCvF7+KB+=Z+ z;cjF>h)eGekl^OsZ00^GiW&E$^rF~#Q(mDiN{D{kT31@4e5(RROawrQz=!c5vYbEz|0Pcx*51;4}*hOJ3RRV5l@0O@q;l!_e2J^k`PqaJ1q;_|(P0tyAWj}K zXcfi=4kmtni{qDZX@YXVLU~FE@+%m$eM4u?FyC@7BxZUOr|hKzo|2SZUNPXGb`@M( zmZu-hzsQvLGLQb5E#)P8eCEilkbF-QJP9f>rQCwy&J6QSq=e(LKrSO#CV!Y$hWgLcI#LI%5 zsj-yw9JB3#F3gM6U7H-E=zI8N*l?7h{ov5)2Mn)$;PD0Te|jbtWF;Qp7c3WLAs!iN zbm<-x|KizQPo{_DEu2E`0cXt7oE+oajKlNw>yeS=BEioHI>H%Oihj%7A>~AKGYIal zjz%!6DhW7y9H`HiP}&gWKLFB_=O~dPtIa!2RLTXtMjAYid_R z48&1NWll03_%bt(-Rf(#E$eE^R9S~VJr3P4aC>#^_UD0Oaapa|$A((7AdekD`rR30 zSLZdaOx}b>>vKeL=NJ{ZU@}Lh$!(7-K=L{}jV4q$%0iavkexfmF{Sh7-b!D2dNhVFp&a~t>o zVIpquP~u32#6!d>nMA&L-IpJ^^AS^%+#t!dDa0JItU1-J{j_`%v4;$;2i>bb z%t3DOq1xSSlMW32%;37f1xI%<*^nyO(i}4P?DzcESBwhgW zDesMP0$(>=LHQE>>>oZjZ38LHAvF8U2T;g^Kis(IyDcj>lQ>!J?x5yd0hS7_tC~uh z-@s;*dLQ}r)lUp^2=-l1sgzLhyAF)K}0eh`kR+ z(l+1K>alTB-4CR|lT;HgH}dU=I>5XbzwkdfGQ*b=#C4G{S6ifiYbss7NxCW+zOvB$ z&F~RGcyJ|o(o)GHynKFU+RpeV!h;l3X95t8iMwB%ZjG;ft(I!W@D#xoeerdFsquTb z=9p%p|BtYmm*z53@I>xh)61>;7C#hPRfC*AT83npkyqj2Q&? zqit_Biom&wm40eA>;tQ7owsJ`{!M3nr5b;0e&7ZVSQ+-YtbxNqff>}EmCOca3$O@K zJqBb<0lkK4X-?XajE9m_fDP3Jv+$k^HLcrdv?4=4{u=-LVtgc&65r^HcRTE^kAQH0 zJpBfGYv{4*;lO$>KUtg$nj(y<)#sVzRv0Qdx2uw4ryFhZi9k|F#XYV03Vox-mPsKV z6tmSVQ1Te8rPF+#zfO4YFZG3@e7`BDs(_{Wr7!L^7;{HPhiqqmYP8Z=!C5zIJRs=+ zWNpYjnOeyEQTXk=_`Q1H*XPMBsMCV{g6VP&f}MM{vEGx@ABq9ArbllZPaT)jDApm| zbpD`veIW}sJJIduRtJlqsp0Gh;M?5sgR2e^9s zqWiv#s%cppz?|vki(A)q{I!Y5Y71p9*_U!|`+1z&*rdeLsKFnj)GSvN6^{rMU>~s4 z0*Q{(C14h{A}!WEYM0hwaY6lEWb9#}{W7SZLH;TUffQCK+CQrm_;``8&m%5qVbx6K*_QLoDBCUsJN|pze6t)nN4kSnn z_+($lTTUq^++2vK7)ez6*;h-kCvy+PQ#4#`Vydyg`MeE6>KP+9&cK;(h$LlNK;*+T z!uRC9^~BUmLv)?IdX%qV&qMwcQ%)@paYof|9oJ@H54$U8h(J_8e1 zck$JJi>ndMTK1$^HB%BlVCae(jPYkc`4oneUM&|Ql+$t<+`Z#lR4BG_nE(E$>GmU2)Y!~Z0ElTFlWiM0@u4+D}Ny-jj2@z1f7|_me=1s>3%=^ z-gw)I((ES90^X+~>0Q?~CmHvdreZ+0yKG!`SNd<)3!v8jow$Bo5j{7sC+g2Y<9EDZ z^6-*Lww!GW5bCVFAH_NWu3Ld6|EpQbijo(}o>g2R#2$^T$-Zspe`koquKyh?x)}>E z?EMeOoA3`9|Nj4|IsgRZz`%E|C76O2axuS1`QmzNp!z7Fryn;kGDcfbqkpC=guK5H z!*7%SAzPI50!cgjsZ-dhhC)U8yD_(Yz+fL zz@uU}K$H*8`y{vX*6*Sv&0Ml%pMhR33;{_M0eADEB|Jrqs4TfAjG9k^JxU$F?`nm6=>KEsT<*_>*D zu_df5VF*ylQR^ejN(Oj6PzN9a?=kM&L*16+L-2t_G$qbKq?Sdwe%Lu{QWUvVlp(*w zj<^9noNV#$R(}0&><_!-z`ZaAl!bFSm(w4@g zU;rsKZ?8?2_NfJ?#PfZmvCiL#UZjq&jek&>zjAZ~Gr@I2djm|o5X;sX%Btj^e4H;p zD-G-BA;#z@gG*@asXZw@*;J)6p}d)NzBH($U*JX3wVWarUVWj`?z`$6z$tJTLxgX8 zlBBmjoEudeuHED;^!}428vEKpQiiT zV;`_#Ch>j6Wc-;L+dlA&4~p|artUGKi%YQ|PQWW6T-P7(D3Z*uq6}p=JHNCt{+Op+ z?%FA(U~pYV0pD5Rjq5ss2T}kcSi+t3l)m)GE%*s&0VfO0&+h)xO)fnQHJr=NjiV*Y z&1m^Cw|^iDt!=o=UyWIv;b0e$bN2@;hg@PF$^V)Z_%{EM{0~#=i9aXdgR2ONM}15# zrMh0cck}v(y>G(ZwfuZt?@cr0`prXLO%yD;vV=6zDk0GF=%wark!M8XpJrVlvU4n{ zfUhJnSq_O(#5O)8=8TA6G-ZG&r_j>tnBQaK+WLkGUm!X5B*YjGGorbp$4+JMX@9^x zkArLtao*v8Orc6DXyoqhtT!a+sJ!@rG;AxS!>bq#7y>K>0CD`pd0N<5!&z;SbuK?l zE(F!Vitl5WL)LNmYaPxP^xq{E*_w!4IjYdZPAAQLxywIr8ncN#cT3Rzu_@s!-qO9~ z?eeV_gjuR>StO44G zWhdbHsA*CUytASJNCKxH&36Irm+@-g1VCbnAD2nubLB)9kwoWQf|r1Rn8q1wFu=|j z_Is$CY{(=G>a>gREY!T;H(6c(uy^x{=pk=X!qcmPq_+#Ft48ue{PV*fkgZLdxXz~V+mq@T%qw|A>v|ZY`M*QzzkQif}zyS zQd9x|f~aHlOuA2^-2UGI@+F3W3q}1e2*rp;&GvK~!!*L(^Qf;XqLfqO<9rMu)1*Hd z5{dbne=y3bE)!o*h@J;y&i9|TY5s0?RkZ~>Zv7py_VQ_Y3qPFMoc^Uo$6#s%IFFxe zwnuM3zPCTSC?pc|5T%=Dy&gh9`| zIlr7TLA^Gr%%J?3mt*Iw*GZjT&^M`o6TKS*FDRfCB0v!_xb7A-D+Ir*_|6P>&v&JZ zz>@5!DJ%!&Ypv_nJ*9o`u}=kL9XQ1=)^;|IW?!zKvEOWo|#jiqyypYLu~Kh()3 z=a0(r5uQ@)-=N3vX6HTBs8^pB`2ddbn(PAhAT`BA7gqJw&w*)L-Z=}VyZ!gWw+YWK zw|UImQ#ZKQc>c^?M(EGa#Qnb9(5C1POlg|dm@n#m3;Uw(_4FRjO#RiIv4DQo&%j4R zYM&V*k7Rz^E6pydU9+%w{ygYoD8rZwKmIsrmVYeRZ_2!fqc?^);PiCjVD_&|(_h!A z?jKX-f2^91{|#*Fwlf$FNb*lM_@5)G|70833j9B4#SJ>`53jQ`Dj7|sf(KBXz7PO* zi5Aha1*}1jOm4zP$j&IU41ugNf8J@o%kx8uSXWaybr!dnz#G~S1e6V;q1 zhMb~YD{wjh;%jvIxamsg=mhzk6;pr&kYX54?%>naXldB4HI?4SVGm8ysmZ~xw}9Q& zYwjEDwm87WKn}MdnXKGTT5NJta;ho$5uiYl_b|>aQy}jRxuymdebhggU0U026HediAMT?%eJM$|{*j1M1wO^5ypHb!Nbkp_m! zD?jz{@Mzz@lxFLDwOvCD!v{T}}Z8cY<_Qv2t8N04PIbrt#15 z*SMQ-h81hMn&@rd%K!|X4?WX(;M$uk;ag;@z8xfpWegSgV|SW$GL9EO&Gy5 z(lGVuEtq!Ygo{jzm|FXV8|MRe_7}uG7Cw@HKgaD5FYi#8O{)gLr+m`1qUo(mENdXk zBGjHs^LD{FL^08h8Wr9o2i9;dn`R!_f;pS-V`i0W?0zsCyw7M6wseJXcB7GXmLWgp zjV$srQR4D1r$ZZ7$nBu@Vc6UIj=}XspzElKa_JkLzaNGv5n+PRLVaCM(*vr{u1Re` zir&ZMbebzz-FS>llQ4GI{NS;_JiVMDr2{4;_2u)VXndF@Cl=hEYQLam>4syeG4Bnx zir21Ee(;QusEpSnm@}}fD+HIK%6@G<3hoQ|{<@8mI7-0JvI2r4y;B1^klH(Oc@d6Up7OCVy>#j-pyDmP0o*P`?FGgA12XFOn$;hWH(I9Ktdl{sq702vyLHI+` z3u5TB459evm5XR-4HV-%l+#$sx6c}4$sqUE^rEt*?`iyW(WXiY1#xyk>S?kes^!o& z1f~cgBiTAFpr`0b2buKx8)pT9Jod|um(Cm8LqsMDHh+CaN>VifgGc1Fb(GlNL;885 z+gY&7ogE(XNWz$!{Tj$okvE;r0`Y=%Yx?xhs`=sgl%b0$BNc7~LF%|gU}_6E-Pk$R zuI4*DG3v+syyJdJPl;bn_B{;=7J9r6HCxzUn|kZlz3a{>@utGxEVjz2y(8PLe}xjS?g+Qd;GcU3 zkiROgY@cB|aCa5sJe!;-4P}SeroL=5KQNwKQ(J!A@M1Eatr7}Nv9MNH`Sn>3^PC&Q zIh{L>y_>z;KKW)oP;Iy3(Hu5cx3b_hEiW(7#m$LGS7-q>h(MYE-@-1OFgoV5`fl~j zbb4k&XOeee`X)rD(RlK40v9Pl`18*ciK`?jB7wg%CCU$V2fnWF8>iUu{xE#z_oYlR zbib8Y%PSJ568L z8Mopv?%Ic|*1Llag|}v+HV5`G7k=3spBMYQzC)&RZPoTaP0;UvJS+unrpXkebg{g6 z`W=cl)WlNQlwgn}3&!jB6`NlR-=9zW@;5+Cz`#fF*4kL;REYeBo<)1NZi`w_+O$;8 zR(aufe<|!{?2b0@5q93Yc<@$_{u&k|HVP!0PNFPPdPZ}oJg`l`PfRL!^f#Q0Nt25E zY6&cwssucaH~X_b-p~F3Z&(Gj{~HXK4e*+(ih;1uP5=*Jjb)z%$3U7P1#<`~=lREA zTNNr>Remh>1F$mqUS!Z+_5MNh2ry7NIz)t_Ci7X#&o#IX$3_f4L={pN?e(S58-q-} z$lN9@5}3%S1zC9!8vsP08r&%+eF>zq=Fp(o63eNuab&;_-Wya3 z`3iNnggmVk?1;8P8-rdO1vr0db4UuF;|BuJ2ATS_^ISBX$0?(Kuu85HE6t?>#FfrU~`=1^3dSLFBv zx!E7EuMsmCvG+?KCa?bZjmmOr*ww0^E?!;%T7AJcf`J7Oqz)Uo)HC;9;lRq>j7btW$v8Z|DoY z$Wlk}mxs?1|IOkag;s#CYxJPmZ(!A?=jy>akjIZyrrPrrMjYg9LHb=02Os($KLb0W z@>!+5^?X`{#ru|Ea0xQ_l{{TckhZLm7%Iu-30+t6gG`@H#Rz-JwI1L$SeS_+<6IZg zLs%)K_cHmwGs`SD=jZ3&x#Ez1XjL0oV}!|bC!@M(J;MYRlqA3jex1vg!>V~HcDV8) zz>s^NLYj;ek^90bS3Zje8C8`ABa_2bIE^@YY-Izw3@HRBRU|v|+srq8iitX~EOW}a z5TJF9^HeRIWfVcqv~vfkqNDb}w31|q7%SXeoNEz7#kgER#j#NW3j9?=5`;-G0g0}D zseD^7h2AQVi^o+j7@JEz{ZkxzN4PTLNv(|(nnLeW==Tf2#qDW#1s1}5q`1Qz|75+$? zBB$TDMor!6`_^YGorGJ*t_C=cb1)im=6xFSgakL1pXa!cvi|JpD5cqFiHM(>qfd?< zkRN_jmc57gZy(sa66CjO^ua$kwwqBD&wV0Zqy0)3k~^9(^2s&IaZ+(OMCDFjjZ~=I zsb5;3mQ`0Ti4yoX#1m>fH$*WI34<0nypGJ@p!sl|y}jH?W5D^C7H@e@7>T(4YkTeB z<&u#asl}riF_JzsujrPD=<**DOb}?9k0J)DwChJ4y&fZ*@b#428_?1NQYrK4xFbt9 zD>o1txvZDsb`1euBi-tWqGm$3@ zItQDA*%OsCou3(y5awbjfB0{r$lX&PXywJgm`1#It9-}7P|5%{av*}V6zYLkBlRMg zhb9uv+R2mlUggCz@E5H-S5NQr_`||_)csoWa8=6LF>IIQ<$8=Tm?g`#bsKm8wx?e- ziP5-oV*Aqml8IXO_rO*bO68;EcE9Sq0`nLlm;KeztPe#BzUj%JTZ13Z8*)#sxUDTD zDo(=e)!MUvv><=JItNnVCbmp5rVA&3RV4F0$4m?FWJZl2ua*N3PnACRN)XY%o8 z;eM&%c;Q;r3czSmPK`6kO+k#UjC3iihp(gLnC1gjLcSzb4wG&*jgU(W<5w;#+}*$C zMxKuxU+6w4I}y{GQv<279FUPsIzLfZ#EKx?uh9x zg8nh`!*V~}xaVS25ONcWZC;N*8gngL zkL?Zeh7CBTb0Cq+Wqd9P@xYXtMTM`|&iu)8VxN2YXj^img4~5PPA5L>Ph%TSOz_^osDSn0XTsaNIV#`4mmEu5RJ&qmBwZ<@+!k!Ii2KJV=PGYXPEoLf$&`V~Ig z>oM&koie|eK1fL0_oVlcE$-WIc0Bf7y4V^xkNcGe3x_q=Xpp80C&dq*)+%sw;+zxy6ls+y5!w|5W(fYT(ob%Syd^&r*x8R$T9d5pzB}X-Q7Jt8CTb+m42! z5h78?pKf7{vzD5@>bq~YC^b?Q#l-fv}Uj;u(xSF1QDq}8yNH$NT)}D zY3Xg$tQhM)7=Z!Q&gHi~_fdGz7^nqo75W4Ha}hEnKL8=`B!}iJq zxPfQE%>fF|4R>T$X2B-ptCiOFei*DgoX3YV!=_SOuM0oXQA-E|Fj;RC}aY z-^@Ltddv*8TOK8zDAghYe^4j7{ABv_ww#KaZ71;q5ki=)8rksbMBj$YyIPo>o{fJ0v>lKjWgDeG5iO@QDugn+-npCBfs0R@~yW@h;b`og%9r67H zG(2+)19Hz%Tk@3KbxU0t$=6mM{(-9n8dN;Jq=c)QOvtEDn2AeUSMUZ+Wd)shEkuYK)aP zn68D`GGHYI{DjBl`uNtquLk;#JXfxGW%LU9)!4SE1#tdWL9KrjUSa%rNZ+1c&byV5 z$_14$U(+L1CW1*lom*8XelT@~PCei&Dr5kPVLYmgt5wVBbPxUpz6p3ZBj-o<=@{#5 zDl@7wfjfHa`}&vavBOVq6>|$Uww!(xCKJHMmfk9`iGTUX%6ckTEPQ}UW%iwNtuF`eWAQsNMTBzNE?$7$ zx5D+wz?|D}TuR{S_7GCC5Qew^xUl&#qHg01&Cw=NxG)Dgq(X+0o>`rqc{jQ`RuyRv z$tkk9n-28RVZ-e`l5L5viL0c*p z;@c~3Z@p^L&5;dbaC6#Q2=4uRb$*0;E>mpzNPjTS5@bA6)YpQI<6qeUM?X`Fylarl zyi(KW_mp6`)^}2xdiXfA>&bUGXlt2;Nz^KH6mE3TKX?#^pGjCJAAeKi@JVs5lpgBO z_%f(3tzz%YeQqXMUD}8%u!;Bc8ejt894Fa=uQL98nBXI)_y^zk&OOZsQUrIqw|K#; zbDIQFzL{$tZ%9fcVF{9RmoCka&#Ra|A8}y9&?~u_b$|2T688Trp}g<`#(s`}vR`Q| zwpgaZ{CmzxWvRTB_j@YwFv-z`-sCX(o=CprN#7Ts2a~VB64obGQC$QZG(k$223A$$ zfVB5=sr#gk2MWIHnJHgDgEg?^>F>!#vRrc}+13(Qx zlvy(a_0m>S>^E^5mnq7oS>JDro)OOC!m6cCb5o9RD4ywMZE|ihj6W*!ou;pnNk5pY z`f|zwT6LCafu@+MkBE>Y*cCZs{xLzR+hTtJYs0apVmA}^1|rElW?jQ)6I1ePvhiAF z+s)@tHtWm$y5s^QLbol>di{Z9jx>By%wND-zqx4E%}hlF=*{6C;&`GW-7r1_!nTA(<$Mr}9cra{hf7OS&Q zr_=nDc6|>1si}XD*;rm$W1z5F-9#C(Va{5^Qmh@H4;BF6n*UvRIWkeC7#f9<(q|~r z{dY+uvUOgn(^iK1m!7Cep1EA0+RN#@03CHIEx*75Ka*j-jha9x=VTI2s20{(gbbJ} zJO#30l#qCm9q3~cM+9tYk(G?L`W47TPTNnIPHY1F1fNH>xSH$-4t8EAQ6+v)^pT2W z2RO%?5ldLI@gok}(!ac&i>E|{PQo?0X{AMiSi{`9(usQFUm&EbBn+~TDTg3Hp7@oBBEXCy`0ECmC%b@K5+;n){T(=#n06PK(Ys%5I~jVB z&Z_AIV35qQRse2*?1nTLA7Gg$i(PC6mB{PU@HpM$do&vnTc0j;dN-zgoWZWs? z!b%T_vmXIT5_VV-O|Ae}5es9WtI*9{;soGztibp;EW`N;SrI}RFi13{-IW#m?&{+2 zXGjW?HBy#kDc68*QNrD=re-OZND$B5UEhNVtE7dJNlx5@>sU3(Aj*eGD!CL1e4s19 z_!iM&vvD;7(aHY)L3dz8t>m+tl#HJuea1Pvb>lIdLssq==A*XK$~CZ*2I3-|@qWt? zIi_2DHPHQ&I^508%!l-}JegrYOnAXlV^Y2WJxxYJ0I@R?u1J8s*C~H5TwqBzUSf=u z-egLVv}U&97>s#~zVqqxThQ(DS%Jo*TSV7ml#DWX3~>&qO`vmIs+A!;`6O(0IM>in z*0P7uHPccWXC#q;xWI_eav{-MX3?ZLTAZ!KeYcHYgV(jUq|&m_+kIuFxP|e)xB#H1 zZO~3t4NGBO32zmDGP%yW<=O`Tt|!ok&nXUFO|B-FSKI;lSI_}(^ZGzQ&_d}skjHGF zgu#f}F(c#&dKEP=e9l{&aWRq)SLdm8<(ez$SBHlI4i(+22*nmof zm@*1xCmn>BwiGG}iK-*LDASvMHJ((}1N{IgXN*PEh^z)UG0!4$URTSvmT1A?mf2LHS8LNcvTOVH6j%@YWT*RNp!MXucJ|1Gp zx|${;5@p%in)FhB%JrRUo<1 zss7(rPfRKei$S@P3Ed3+=3bC@xvfD^%mibJW$lX!<9}}kMMy)EuEM5f~_YXV6R;6cmX)iJZXb|DBgGe6>>nj@DczCG^`0Dy-iG8^79%J|08Pg*?(dQIhWW{Hs}qOB@u1~!^XGNq@z-*Q zt$rXbz`V)k$hf(|P|&(upl0!Eo%(KF==wt-AdJmu9TT$D2trR0Hw7F~%PT2vh0v`_ ziE1~$#dbfVm>0VG$bopFHRzyhdordlB`2ccv_&E(inCR2x!IuD#%jfE0dmC1eIezL zu%dj0sxP<{=Qr#XAQB=H>P;y~ne&uD#}X#nsMgO*92yX~$}T59ofFwW;6Z6*Wx<}a znJ_nE*?n<0=7Uq)^-mL7078o2dY!)^;RbGCoqk59+@{8pkhm%JlWk3Sb2D$%t`P1_ zhzR;%lW9}E@(T|U^-8X&X>9cD1?c%d`Bb`MVe)BbrK+5~_Hg@!=_)bpg)9xO5Kf%> zds2`nTx=z_(zHL}N{p@z6Dz-mM4zA#$z;2dGy@GUS% zd`?$ECxYK=0{CMB2Jc9bkaGlGQ=|F*05^1Q{kLyD>*dqq;!24I(Z#vjhKJWnZFfLb2LRwqjPTfWExyqn$Ib8XL1^@5i6smS`UMiGVp5 zIUB1zHDpQkJA~7wh@6NPa=7VHkSw`8JOAvS;_Nt9u^Rpps|*d7a<)mr5FOr2o;0En zOJG~g;mGFRVB=XS8Q)v_twVwu(YctT$Ins^?h^9tmYy~=Jz5Ygc5)o3pDbQ?gL3yP z-+=GWa7bB0(?*~3A@1j%A?Rt`ag;^)>)E3v3gx z{;FWo{`2-Sw3dY)O2>18ss(VEHo;fdoZ?^S&lbp{d09 zv3H}{ylw%lH7RftvVo^b2;4k#PIHJgNwMs1B)B#%zWA|uW}F_`JN%}e3G zJkC0U47=Q06E5n#^DMRmIhef910CuVU+s!;fo$FEMPWze$4IYPbp2MQ#A$7fJna+h zy8@cS*T|)`tR~if)?hy|)1(p01&=xVzcDnb=P_JU&|0)D7JFv!yq}v_`j2 zfnZs=wkb~H{XR`NmJNq^3)*HE+&o~i``H=1B4469Cs2$i(Ve!(F>A*hC zR!Q~`SBmx3LUZtH+h(#ztScW2m4Z3z=l5w%i#JQFA|E)jmirHZd%{>pp5m1I*d%Tf zP2v`pgWSqxhn_YpPPy!Z7+l=mh_}NoOrGZV4R%GkY32^boOE1(OL>I5g7#q4;t4J5 zoDz_cK@u0%Xg`ROeOH=0_&kGnKSrYUn5@44zPM?J@bHevyNY!B%RFJ0*-9i!Qq||$ zCq8QDmcF=aeNM~5OJZ3O2gy9N;`}@Ja?Od6k-JO61ew{OlNg2r72j;X=dvj(o)vFN z2+-uhnR>%%ACIJ@yJ$`XRZ)Q$%lrc)`Bz$Mwm(2}B*{b{NOH{mQT}3v^MR{IOhL?c zSD61)E6YDHx?jCL;e@p$N5V*C+G-@o5D?9|iVu`7GQ>teyu&6j403j5nr%Qp@Ogv_ z@#2%3ei6HGkR73ihk=-RV23I zZNwIx^e?s(aH$Y+DuwM+6H9?v%dMX%bGh7Rc4Lqa&|BKL26ZgJ6hNZphFDl9ki}2eH{LqiZK*Ne7)`WSN61#Z2QEoCvg;%XmS4Go?L03 ze2Y+5*ZdYQs%IWH;P}>HkN(C>o)x_xa!x~1R!btTJW8`W^`Au|E4Aiax;Q){%{Qf* zkCR+ELjqevgHr?ywqMK>fmN0L2E!%j9Q+gc^y?i%z7Kf^P~NK-Ch)S0gTs}4Ni3;S zRYth5T^7vlH|q6u0+jlgP*$j(;}PRgI67vJ5mlElMz@@9h2dP0PnkE$D1v8R(hGbU zUK2-tJtqlrbDGX}tTB+WtC*fhCvfhF^i87H#7>5s*`*MjOGd`|r!bN0!UZ zZxya%?hHT8&UrLbqyXDoBSB6QlI5+~y>R+#4>qYByZPZ2lyxthx==2e5m_^6aX8r# zY|&>Hze*D1?{^rg19KC?A0^kl9L>K`ZO_nItdM9@xHs}Dx#g*U`C40LVehL=))eyH zr7?A8itn7)jf5LhO1h@-&Rf*7vviZGODpozi}g7U*=pG-xzch?Mz0(mj0byB5Xw?( z#tOzdsc}bl3`}B~kf~MSLJK##?mORtHH~4+#QyQG`<68%LVGk@KIV)7Y)3Ii;O@lr!R76A~d+$WKNu|TyD@AUE zY!Oq~DerKG><3R- z_z2P`UtMzpOziUZcpSo}8(VX?WCHEP9PUgkc^b7ID~Z?1QLeErwF}|w#^pN;TN|M3 z*Lsqs(Fe*)U9}Z+ZZaH~;mVL$HeSY0uZm2pFs6$V3plzeXFziy4X==chhB??rld2b z-z;?n8)K?(rBs+tRhOCKj+75|c^tMmvWNRs*#5S$WolXZe3m3SD#K@=R)~M)!~AqE zTo8Sc9H|~BX?1ow(Gzcy#`+Xs66fcIO&5r6?_aYIIC%-bG&i3v3wty=3sH&N_j(cR!#rs+m=GM zi$^opPyQBjph3^Ai(>dCBa{HC|J4#4IjaqVV!$CmDN}W&Ff4c-043b*6>8q6;f?@3 zrt;^Gwj`B!=CSxkJ|QcxU`hpabjON$(fRP!r!H(ZhjjOc2XrhP;xq{RO#jPh^@~p- z%Ex3yNuT>y^Px-Er5HXJfG2C~xhjhu53v^>(Ams3d+|4^#u(}bojzT&@{k(SP=}k> znKe9%sCueq=lwn5^IJ@ccH3q&2f24C)JJy-!WUQf+$Xp867W$fWAIGS7qFwpOKtnJo= z+lP0~gZ)XL4PWjbWl2ARw1_G%N(%mwAH5|%M*+7olUfd%P^j!`@cTaLh?^~x#oGl(VGl4 zIa@G#6lA_{pr915ObF@rpvB858Dq#j_&N7+5nGE1JSj?AKEAFt-5oZ0MRziE1=T9< zPZ6Hjit4|Qe5^GoY$)E97X5QWW3nUj`2x4T%Ba0t`UY$#$+SBXCi|)Hvch^>J5IC7 zIfLSi0krirOr-M#oaz1ZaCcj)7s;3FFYnoN9A8t(qI*a80j4hdtAk&1`ujj^AGe!d zdh4AO#=>D+>(#;YIez$Wv$YI9iH};&HMuI&stI4O#Eh?;_ptB|OY-OOh2L9h{f~Xc zllUSDh$}qZ*`xMzCAtijJw$Zpk#8M_0`D$E;TTbMSXE?FnkA^Zk?JxeMB*tj!i9Wi zc##*2XreMtm@-oy20E?cHA%<&!l4kVmmQi7MCyYp(8{gv0z_-41w%W&etM!dB1czxkeSRwre$ zjHiY1*LEZ$oRwGsqUU+vyu2a+EOEdfj5K`zJs12H4WosKSN>f7GLQNy%&We+Iayu( z=^ldRa;KHX0#{*kF!iBNyTRvBeM0`i+;CHuu{KR28zKg}E>dXn!r+B~C9G7;m(;;?TTGi(JMi5qzlVrf59bX11VEV;gAYEJcHgU6Lz^aakT%^D zQM$0T*z4xmf0n3yDS}))cb|XuwZ=ZF=IFp)_oYOd=FM+mXP;F z5_l+P=G-sOUPjP``yp-*C0uC_Cqh{La6Z3Z4`IqjIc*DTZN|datw}IU0ZW@~44qb) z3B2{U$5!KbQp{@l@M{`Y+AJ${>jR|@<9^JQuZLRH?gzgiisk3hi9LvT#>M!Yd-?rW zx48&hfNj}wjaq}&?n?H)u<>1{l%VGlYb(l+XpCO;D~flxh5jMm{kNm};5lG$(kH`@ zrQ2LKBk%BH6K!1FvtDz}fjqR>uqi;~-Ew{OM}|2^dr;8%0@ab>|5I=Zfg^J_!}fEVT!rFIjvy|KEQVI14Vn zGy_O3%k|POi^}?d_}Jl_c8$=RqzeSG-}XH{sEpL^biUnLFRq>x%cozbJ;PXoHL4OV zptKjZXLS4PRBn5 zrN>{Gk9kj&IBYj%im>3G^s%%*>kO>PG9NB;k?*GXEUR(wW>d037l@%kOP#mbAJ1(+ zbkEZYc2!BByW91I>!s?pf>q+V4@z?QTCj$)#9jR4soOQt2zTEK$du#(OLPMA1$vvS zI6nErC-eEzEv-x=aA)Co6EKt3nH8K=sBLrpEVx431|G^ACy?_RU`N_r-KnOWTJ~5+ zhV^}0-}k0unNbICnOMDu5qjcMHyYWMPl}1^dc7C=kFtLG^zV+K4dlpL;X}IhM>YZQ zQa1UWX8|YCRew$YcN|4>53D6_NF}F|TVlMt-RS^6NVHLnOE8Q8-fHDvVa3B8M1gg>Bbz3RTO%2|611Q3{LoYgxn7(?lv~#mO_N3ftR?IV^m;(H zBo(uW>J1Tl>n4Y?`7m6C7Cd3__nt`C+32Lj@PTic)unuAnq*xpcdW{{cz*W%YewBM z!iENL{@#OfjbbL*vj&5|`WwQl;bZXPJKUWf`G>u*&z&BRmGX=x%AbZMwrwPS?TlHE zAQ}xl!@uj?f*rMPjW65EAzTM(ifn{q# z&SmGh@meR(zRJ(~pMZ&{JTWe=PT)J;UD6_bL!?`nK5tcLl(tScMx5E=urbKRpjGRy zYa&~YbNx2`Gta9so+wH3TgNZ|^Y{W6tZ=R4V?XhA0TX+i#Bj8El=Pdx=0m)!=q&xa z|H~eZDf0J})I;YU!1x|Jc>>Jh=0Cq5I_Zs)41ILouG6gw^0;Rsjok!q>Fslr^X-8S zU(rhHOo$0is_BpW!qlg&ss(5el6THVfCaMSBT#rG_Yx$=3#EMye#uJQUha(H`eQD& zmphX?@NadhhbSdL&Sa)4?GhsVHGu)0zW^!Oo0_ zlf>hjE^WKdzGl=cwa&(ONy_qneogGsg-$Z0$OI7w!E!wO1YhRx&)kxpeEG>S_s3Ul z4@3%{pa-fpjI!Ir75XezZZmWg506n~8c)4-R1+_Ms$c!gy4Hdq(>>m$R)>tu_0P(x z^&al5bo(SV&+jGa&K6CaSnPXZ_)XsERVRFGj>1@3_c{D|ron1!B%Xx`o!n<=uU%jy z@53hXWG_*YP^$H0e5tn9x)*j{t$mS8E?_DZHBz7_7C-{@+Pk;or-eM0-1Q5#7ByxjJy*%|-N-C00GVGXi?D{@k6b%y2^EUrQ|e zFfZVDy|;)hEV8)VVV{viRmq(XkeFwWe zfGk-OsTTm#3@}G#)DrNX)n0p+lgZ{WBz|W6rj16HJzri;juz+&G)FIy(y+!J?-9BI zKxpsHVz<>Ht!hW(&Un6yD3XLCd~Es=*f3SB5j-B5we!na&Jw8mhjD82sRQaZFeWVe>2L4Ue-*^oKvXAKqMp+Q;0U^0}R@zI@FTcHb zs_9{Eh&XvfgQFgEy#Z_y1wU-MMLs~%fTv@TQw02oulwl^s9L+_@0|_!o(I(I^4IyN zQa*p3PXBae|A!9yU%T`_+pqh5froj6GoNy+6+u(dCMPPORE=+jL&?SaalZ9m8r{O` zk1B<(tyTFBi$BZ?f(&D)!pUM4B%`kLAv~`+R^P<$^=_-ji+5Ld^AW~AtG6eFP3Uv; zfT|}C%l7NC4(;fuGGx-#$-OEJ&uJOe+OzJLi*^{w-g~fejPfHiym4Q;hw2fKN)L1s zFU=@y^4wJS+A0ti(g3e=@!PSheS^D~PkG?kYIfTI?#FiA&$zG-U*mNg8FLnx{ghy{ zKJw~qRRkXU+nKy+aiUbqs1kGX=iBaFvC5m^M}y&?9}jd^6-Bx`9}*+8J=0rvkN_`r zv+>9-`0Z}H5ZqxE)z~z4Zru!0ggQan(zKdhNU3!aG_=RN!e)Df39gFd&h7lsTp@q9 z(3#IfxSz~sYof{{dc|p=k+5(@Jd;EkPn*SRZR`GKgprZ**jy2 z1TB(V`Z_}aa~WW$j{hqTr7QRWsmmhvHrDU`Kw_(aWYqIjxZToYeN4@<@pu`37t(XQ z7^Bezj21CEHJ-WvX>MHr-Twv+_RR#4X3irz?G{sb0NAM~qY_A2J+VffQ&p+~a%p}i zHqcPnBRtd#KraP_ZMxRDEG+^+ikQC-px#fau3%rN=X+8?{?#ZV)k`4Aa2Lo3VEn<{ z2%i@nljj$Trp{9FW}ubBi{j8a(vHT@5e&&%$AzOTCja0Izh zJu{}|?iz71OX`MZ@P+XgnP zk+nVIv348zKr6Z^gw{Exmvq-x8`>JzEN>T_>SDgDhX#r*NV&H z)aF*cJ!#R6IFtqmK+G~?ZxYWQSfte0&W>jnz2I~0c(bEH{BipdkqGIzRAwcvaxGBt zV1?VfPHI`MJ76t2PN)uzN!={C%h+IQa^ao|>9Jef1-fM8tD}!>5=-q1rY>f#x#E95 zKTV~yQ`w{lwioBn1AU-5_WkPSVEnw=+>~^2s{K+BEnVHx59$Ri5Ys2mRG6nhwof;I z6|P-N;No|%UN0^G%f&omC&ms=nXUOBw&tm@_>4COEq}S#xwF4m@jjcnBPUq~Uao3# z>6gACjTneDyzQ_49O^ichmeV!yEF2%z8G@kaP5rqm*sAY+U^LU+#c zeBko;zb7iy!oMpiEj9uwiodR2sn3HF;MFZkp1+sLP*l+=t`7hv79LTuivwgA6;VM> zIZ^%reiAB1_U*>gBHuRplZL|?VJpjO7Ewd|210O%&qEuuZk6V%^X-38_SR8RzU}_# z3mx7dZ4Bd#Rq;!XLOAkE=(j^^3cMaY3yLrFwyU*TxowLq4 zf4N-z0Rzu--`Dj?H4zV0+z$6{_UiGc+mn?+I6mcQQ`KO$#w4KGa*BVC6MP0LyqIja zXg~uf(tW1^dz7FL(s8>}WaM3zx+rht8Ju*v)8j&+l@#E)#Syb1hzHdr<%I(P)S z%G(@R6fJxx;pDQZ^Pt$!SW=H!y-?Gva<^j6D~TK-_Gvgbe3LtL!0|3(PefhWd0;~N z)8N)IkyXO5XStZ$+gKihrB&VojrXU1>Lg2kF(kMq_*R7TQuaWc?_CljBc8%S@_H#+ zq_2cMq~L)H*1D&CZvpW~;0MHXGO*J&Hdkqgt1;-;FIDi}%-ZN{_)C>x(3t&=FJD&^ zGerCG&UJ-sesnLVjlnEhq(xAe<8(F2;7kFRJy3ftpYs-UPxN+8@E~?XB;ua(lI&yB zNB}y2qQWy3iY!!qLtR$#NkdIht=ghWFG~?wf)7%mdvtAtMPbHL=H$+I%|Mu3ziySn z0r$+{wC<31XJ>S#e%1@j043dDa+ud;FHP8I8Kw7E!=2ChVj}|V3;fT$)=wtb;?u3y z!KaE$BpD86RYOqKt(MF%o)DxwV&z9g^lgZHZBwX`SoWJ3!}<~CJjQz_0mlcjspX$? zL#4OjOWRkeWSz4?%wygQP-OYhxR?Qj%~6*7)YJUeTIfxGF~sZ+vvnaO_f~p8B%J*N z@&d%*j6@bcGU3c2vf=@Vh#glKU6}=WIK_Knr~SRo?y&AtR26K<>;PFcKQ!kw-~GF3 zXR5m2BrAqN4EW%-#rd4WdR{d@WicXT8tKQ zpJ-u8VkTSr4S`i*)N?DhM)^C30HZG8lXa_6(sk2m-w604(K%#~daAXDWH%FfU7Z!nM z6Sxk0OJlDbA{JhVn-4zGQ9PFb{wzXWBv1L)$a%xrbZPJKB1hlrpjUv$a{Sjo>6)l=lb7d3N&;V?6ZtZ_xvk>%+HLZ_ zPBP}Z6akwQ(G#S@BbjsCQz31NRy4S(s!RrTSfLmIjQk43eS^f(JODgUq#r`T+qVDV z-Vs5!?U>RhL7%Cj{u+NNcW|!t>UkpJb}RX)4K8Y`q)n$^*WmBt)NVQpHyiq9vObu# z4*FyN&blF>=u&w9_gbZw7O}>oJ z8n7nA@F-E2F^3o!hWhn~dGV;KTaGjI>yKzAsJ}LIs&wk6so4*(TN!A$FmPT=+VGe@ z`;2p5@>57cMtpz1rV|5xqrP_fWsFHK?|04eii3sxrZB@&cawU@P-;K7ZT$(wNTyZB zASQiXMvrcz+PSB&4r$TEhfN7rS1AfH(+1I#5#5Ojs}c_{XA746-Dd;G8L2(tD!ik4 z4lXLtgjccpH-7zaHG{JSL5xZV?9gS{aJ;*}br`yU-8zfipj7jUZocomq~aY4#}0~1 zMuiesB2cFHAo zspP@P%&+}|Wwf?tyuUDZkO`Z9%3l0y~bE5---CFbU2l z{Y|-m1=r=eZv{)=K9p}AY_E<)F!~Dn;;Z7V+{kE;aXhMVpvjl9PW9UOH&_&ZYwIw5 zgk=qzyJFI*vV3%x|3JOFLWu%@5};WM{H>m&TBa0K$-Jh09~qwBwPk`y%}FCu{h`6Q z9_whkRWHBYx1SFn`+_j@(UKf}KPMh6B>>$GatBg*E+FT~riS1?S*J>9fudyFT~?Ew zmnz5f?``h`Ehf)651*98B^Y4s+o_$$+0rb0tjQqjkUuX8AH%wRv1r}a(!&`!JRvEF z^*g()@10#dK=x?5(GeH`iyO~3cGVtxF^OdcK}Z|HG)`Pd=D3ELyOJ7YYbIO?aVC6s z18!{Ms1Jl(ZCTW7)6x|czeMj6M$&HRb7A5=d|>|yHCb7J^t#w?{&P$*o$9iHeL?lv zQ#Eqs4i8p4N??#9rv1IqG_l>7teJ!jd2cU}ff6f};H~a0WgEYCFrDiPJ3fE>gnqfiB>^=Tb z&Sv~4&7lm<+Y?{;shAQ`zT?Gj5F~nI| zgS*N77K$Tg0YJfR62|-zZ|zFHgwg(B%KJ4sY_qXaRe?qINf@=iQL=7HX7d08&N2=Z zIYHv%RiWdlpwty@Sm&Vgk3b=WUTWT|26T?F{l+z|B=RX=Eo~6d1WoO5~e!Zkw{NAdG5^YsHgvY ztE8RP)BGH#v1urVv~G!}V|`bZ&RqbiDpTHo0B-1hl~nOklZxY!kk?nZ>s{2#6a z@wecgk+ev8QUbn1`t;q}T2X19tgHPaRMhXOC)^->c52>|ng;lt0`V&+01gvdX58In z({yDr3oT9-DVoBsen%CV+`vyyF1QTQdYv{8cJ+X~kN{m@fGkHcD&RuGs?)ui z|4a#qqyGe}6_*Ezf6o-yf)4E7w3Q~@;1pKkvLy98o z6~fBy0Ev;BJ%jkHBdn7G?cOWN&pF|_yhg&t^j1(*je2YyA`khf@mBC=olj40tHPI< zJ!d^n@Q-#q+VtS92S-^pZUx9jnm9e9k- zfZm)Kv8d~>U13Hfk8h;~@bDM2(^$x}^)yLH67h`h)W@&q?Lx+NEUdNt&3PAFPA^R< zRxoZ#dqiwS0{#WDo^sxTZ8!Go=k>1t@34&T8qP;jANK}frV|g>`Yn|?GBddAks;>I z0&rG^Wv;>gr)AQ?%sky+4~VEbFFf?sH?R9*LL^S9BH1@F@^{M4JX%w zbCb8VvevG1E$jPJJ+Q$%W1*UDJVdZihB)~WKOxQ;U3(#T&IOEmsSnwwPPSrEIchQ8Q}3#_ zKse>rs(f!dK1R1lbusgpb1qF(r+CI*@{Uq8w*x;p;`)ym)0ffsLhJdaT>eN>%a~+$ z=1A{5gzh_D7&Voaf3X_|w)6T;yT`nXqIeTPp`PjJ*So7tM=dX0Z&v^8fnuQ3)k^)_ zu#bdXYI@h{GF<&DsL$~zkxfK2LH7Jp{$bfJKHV4HZb2;Qz(ZlkvGl{^f%s*X%Xw9qQlz90SV#o?cfaXK3G zHsYjC&y=oNHmguSREH@p{#xTL2)(a!B%o~21?YqCQkQEXF1#wQHSe_`9giz#G5#RB zjhOz-jd>~VyN(Nd*yEk?%tDXTi?^A{0&?5Z1-6@mXuv*+F!H|#F$*~vqP`!~8!lxOYD zBX73I=S>_jS6J6SL~F{ht%1X|or+$V!1)k;4}z-0QjDH8Esh2FYvksG2mP@k?x!E_ zH0YnYSp&H}Xu!Vt(Dmue>GxBuD(hI!*$m^p0>iY^M$<9AlOszvkAL_Y1goth^DQHA z$JS<|Y&q5F5I-Hv6EZT}Z*tx-V%p`9&M;1ZKeumDUS}Twyf9>i$pL(r2f~UlOeajK ze%wBVAmhH+fnD*}LK80}mq{VvHSw^Y43DBIs~?2Ykpr=VFo=#%D|fT?{^r@Z z7%GChrlgQSEP~l>XPey^p-8tX4IJ-UDz{_q zpSLHj|HB*gpF`$lb$EvkvoA0M2PnHg|a3GY~+h8avs;w*jZ=ddj_eQ?qcTc0D68OBm$ zF)S;;){)p8!!~36Pk-nSc9D~A3Y;MDM|qEhK7MUI0=ujaS-F4R+}p0>W`}7|eiqKS zTEWZ&G9^^->}6AuCYJgqqP7cNASdn{g;!NCj^~#tMMsHK`yzH83>K@Vr-`NsFCwXN zk)yFT<17vu*0B;KmM%|y(m}3vAsDQQnDY@ za}GF;943HNJ7UtkO;~9SeFhL_*UP z)hv8x%~VPiKNhNl@eS??hKV??y}wZEqfJ`Q+mr**52_mLUx`>m5!7Qc^7$4NA1^iBacTT?wM8I zJCMGGdb?X=9q?igzr6~8RveLJR{W5QUdjYY-OxnG5)CHiul28m`PmByPZ?qN`dO|x zY|IEx7b->AXs4X0!^;z6qsNAuFMujwDLrVDf~xoVAkN%%sN%X=TnKeMDAgQTXIuwe!&a!TG_f)VNZH$O!8_OJJ=9hMg*Vt~y~hBeNs z-CZ@aOgM8kM4yCs1Lp6y9W=HTjAd(stkQs7J1h&1O1e1HIbPazJ)}rmhWK1thPByy z^cq^1{_F4nzgI~{jenkB^*ObgBJWJ)^i#5%H~KO|?5^|RS#F+sBFGLBF>4z=FB0e- zm2n{obbs$N$lozdv~Ucg5wp~vsd~ha)%`0Ag`{{8~>H_CcvR&F!8C@8rzb*_WqDz-mQza6&DBAz24}0peMm} zY_q2c!&H#*bDidn;MJ?PPOiBhIR=_JuxIts?iFt#kT1dB%NB!v0=OxR@c3MVrbfq| znQ3vR;~X%EysfgFxKqHu)QioJ--Ezt00orkLQxiVPTQYZ+S%3eqwu913t^uijY{l@ z>K1Fqw3K`f0Pyn)U3&rNP&nmHm@)vj3uT zwy5D5u`!_V#$qw{Ul_4(usZlnQWU`@QvMqf^nd>(10e(z&enLT6i6VTuMZL%EOowl z9^ga9vR3y-(Lz)HT3N!tG*{~l?i{A2ekR=>*h*L zHg8i^)lYRsFMU^KeciX!-gP{Eu^hd#(!KkwKrKwS%=|*UX1}7V3b{>J1hGConHV?T zN5&rXs9lz+E@U2jBf<4Er4UZPh{gG}*m|}9Od+%M(+zNG7jD^#-<&r_W-8CLpcYjt zaA}m8jzSVpjA}t007~KqrQT&F9`l?N?sI8LGw@)fhoVAfBr9bgQBtK)A0bA|Uye1z z)nN6($Er_yr7!h|AUQTBCYtNHu zretB5{4XoE@QI>&n^|%5k^E>+jL%L3$G42BPwE}~dBFggd#m`}`<4^<(-p6DV$UuI zZoA2qQ#c^ytnUPeFNS)9_-+%qjDbp^YV8|S%H4HxU4gszO+TYM?~XV3M^RgEJ`X&? zqV-Vj6Th(30f}4Aguk<_MXwHrnp@f~l8|L`Y`uFo3(Z$yXanzZij!n$G_fvVz|N)h)Y?$6YaWzsB)jZ$&?QH8NoR= zPj(!y#h8*|c)yvK`IS#lP*8VIXYa82RQCH$a@gPQSl&7+gMzqPY#LS(62p<<1!_BVRTL2qZ4)fK95LNY#}fA!<%+IhcZXOMDqj z2MS$`dD^CfnQ~tvY)E7SYyC^e%UDctA zW5%gft@@p`gT;#ERJ{0;N@o^=_rz1`MwfAOBro37#-}-lRztgN{Yt+Aq`fT%tws+$ zj4D$*qlO!giECAP#R@&&LAoOb11ubySRcxr83xXOKsBVC*@xCRpzEWD0%1dDbN}Ls zb(Ech0CTXXmL?aZz_ydI-G(<2a9|widA3Ch8d(d+CCh_MhMaV}O55jG-n|9!VqG@LrR$mgf*BhSs!0KLQ zEnOEMy&01j!Mm#ATCWD8Bs%rXfSBrA{Z&XWQUOmJ@$H~#f<*mw5>pO*ewpCQakw3})oQG+wPc-i>fkVo0OZfeuxvjV5w z0%v_!x%vIy8y`{s5mATYV?^vvEv$9O4XW0->>27z?AiXZyEE&5gY?iL*F=rtDT3@j zuXr-{h_cWrQp^};pj1qZ{<+SLV=}njjgDlA;B=+TB0-3GUwc419GmY&0tL@&u<&9i zC*DPivTle}6lS?&ECKSr?Ey+uC%u<#;B}TIdOU8#UjmW?FvSlT8lWh(0`*S7HyO2K zR9pd?gBSs4%WP*=u5?Ja-YjWas@rLdyfsZ!{n4X}-IImtih(>_okPGWy#~`IeGzFw z`#qK%V(U@F-ye$abc>SDJ!Z0s88tHhXjZZ7q={yG~UFD61QMIpeYza_7SI z)j*}h`1PH6?;QlSig4mO6txC?J^#8}=`wDG!LL}o9I3-%%Yuc0tmAIotm4L%CReOz zJ#BhRw4yd#OMlHZX_zhcnTYBlUBx>CX3qjeA@ANPItvog$r8?VTkL$*(lkf2x9SN` zpS*i%@bpr{B>^4l#*`BVsrl_6tN90KWpw_XL*i=!F0z)1Y_%DJjeA-C`8(X_g+XMJ zGE%!d__+qg6kmh`JYVAQr*SDK(bM zZ&?*EitG6iwf?T&n{7aw$I1Lt$>fomcXd5!Q8K}7v$dL+13J?h+_Icv&8x0}4t3eR zq0f3G9qyj2q99M&MeQ&v7;UA|Uh!ok+$l!*ch(ahIfb3y<6h4LpB=ze;DnUL{9TvrUYs8g*xz}!Az!Vgs18}k ztPOm{8tjBi7yq|hAWn6zQafxv8`8Ksd2yAgCR}l0Dbk}Oz^B^rGrXA>H$yTiE`tD#P+-ID%+9X)E5Mg#HHy`G*L>Ft$$ z)?8y7==UPC2Dn!CPqXmY2xNpkwYE=nDw1i6w~x32O8TtT72PTd?yLD7>6~dl!Dlho8Skh7de;$K*@)_U@e*;>t5ngWb+$9B6*m}km1a5%HQ<2YnS5UE9Jpcc z=QPvPv1$?c7IkxrhTJYR^0(&!sr}qcEv(>L{Za;pWM9fS^YF9WhLbte_F$h-79sQk z>rtP?^{LdYo=w>vXkn;!WSj>ck)6f_lF#E0Bjz>qU}|>{@qZ71tvYg-?y|d^cJTf+ z*JrFpm-JMG!k*`jx4O9A7T+YY!g)Lj0xes0XNW+W8&GXpC7O9x+04@TnM2{O>j@&x zmt+$470dHK9N4f(+ps64xs(91YOyx2z!x`WMP}Y5^%!et(A}RW^v>HwL|+T-0;saD z!s7M_jUkN@yFOj?V-+ImOcssP7eahOIOcKR<80xpsG#jY;6cI-$K5TGPFn zao@qVK5U-D;^*wpi(d@y=yo7$7F97tN|goNBTL9Y-&CpcJU_HcY#rhff<;lk6wxQ- zX@5iuk+?+O+5N-*d!*b9;l`ZqO8^>2Ch$;KsOL@HOz#5>hmSm z6mm0+HdbE|pB_#==d%3vEGtBq+Ag?L}WKHZj~LVrYeYf zgdNuil{iu|Jb?ni{x;Tju47-8K6#y2V12YGQS9~FRCURfbywu-FJiU&bwMnRg702^e(8EIjEldD~dT>M_|q~9$;^OO=5Lo_@^f9<`E*Bnq;Q&b>Jf< zxx%sZTr3ZXSqO?p_}vjAF|;~%lLk~vC9IeC3I|Bov0v(yuxh00s}+k@+V`MC-{KC> zPeNHSEySKip~VVAP$2oC8%RLQ&j)t)zc?xRUwi=SSVt4`48n8khHA86JpGHBs+rxk zCzNiD1!&0Fb>$;hnAx!z42H-&HGFmu9Z9iL$s1ZQf{1myL(8DxhI{w$E$ptvCF7-qZ9~51>xOo5DA{Z z%5dZ`p3Ee>=U4NXCi(pGbU3| zO#FwZ(!xOVOj-g5mAa~{F0nz_#KjAMKdf4&pHUn-d##OztS4KlCfw0kAJ?vT*>hBE zm~GIYyCUhZga`;-TlUz;g9yv%NIMA~b#LdFL28rp>ld8`6^nBm6F-|^aL#3Yg46gu z7g3wnU2F8gtvs?j-^kWrf^VbPl3qU@zj~)~F^%z_iXCoxsU`!9PaAla+8pFy!PGLj z@n#yBFrwKbm=?;LPQ3M>l*ibBEfS}@hP_Mf`F8HIA5ob2wP!q=UX$vFl^58kJ=fyH zxZhijsM@6^K~F|f?|0;mu5Z&#QL##@tCl`i3&5I{U<9LYP^#D5anK7lNijF<;a1hF zaLyBd`J6frQ^8J@fL0Gn17*Wl7}Ye=;eSX~&@Wztwe9F3#2V}Dt^0A=9z=}qq5Ma4 z|6(LRH(j$kUK4jQ!I|?4{Uq7WpTfTI%X3dIIx{yxl2CFvV;Ik)Q2b^JJ{|4u#GdGJ ztQ)co6Zo(7i}@{GlDp{lh?IrQe*!Wf6PIU35TPpgl;1BWv{SL9^ON~Unv{7A*7CD z7+=83>nzof#fvt_Xa%>ZgIq34n}LqJ&t&Sj>liP${VoNpk>hSn2jOkaMVZv$53%gr z<_>%?Vz+L|plrmS<}3J>bOKuM{$LEkmpnJ=!yok$efCHur5ImythOm!jiM==CcTZ( zA`4?;yo6B9gSIKH&zxJ7gh`N@l>ly-@BAn59he0JJOQ$q&hC$}0(cQm!`7_pD)m&c zR=El0cc6CAU3*5*(`uT7LCD$OHj)rKxY!mF2_8ZIcbH=a-kx{!!9XiT@om=^A2W*8 zm(-_4R8$H}n0^=1o`EzM0K+?jWc#r6*b2P$R)P5A5cseni=z#IQXA-3GOGbK zsAv-qhPuij{fYjt*$#8n{3p=a?GOAp8iom-zmCn&DgB(cy4*D-!S=SgL2U)@uY)V) zuFm#jOw#y^zj4RdxAPaKk&TvLhhm9N9E<5;N76liX`cJk#WbdUDsCw{+R-%+7&LC z_gJm{ms%;~cYq|BN@?Mu5^l0_Ateq5BMwdmQ_T;=sb}X-$7AX5cQhh_3E^&22>@FR zo2p$Ei9Eg#+Zf;cVI`FI9oBdMxy7$mK2~DDNls5FDiHLMBRn5H({Pa<+|vu*ec!E| zuF$B=a;d}a0*~NNx*?Y#@Rdjm1op<0;?FssOrIqE;srpe`tu(ef&CiFOFqFKrym3U z60~q+ZpWHi;C-~#D%b3w7QYW-v9Tlxso*-p%+{(^Afi6~(GZE@1S@TRi|C1EGr53s zMvq=iug{KK{G50wzLf-vZKylL``)2xO1UC?40^v8%^s)y>lu)fMjx4yyt>RFaZ|O} zAZ-nMgGB{EIROpUf{-KXuVTcdbzG@skgzR^AAxP!l{k!1q4|JL6z+i9OmRmEZN@nQ zA^L(x4O-EQ3Idjo&em_l+j>YT0K}%Y%poh4$Vv_MmLMt!Q9C< ziL4R^4?XDjyxbSTFpE>s!dV?7ddk!M)$-y2&rDt$o|^@u>w~9C-G5i#{#22#dbBON z=l~H&7WYqPpx-7I*t6Q`z+1w9lls6%pTMYZ8nS{w1>-!RI$|8Oiwj&wC{BM_^~HFg zk9GZDaknx#x1_cqKJwjA;ko2vdZoW~h~%WjeIw_N@JGLGKhz645_K}fr?>i8Qdi*M z_S)&O>D3N@!B6Bh4NWAm!+8+W!V{hy6byk2kwSO~bg6>3LuthuHjC@nO02yG0;YO{ z_(PUPsjQ}Lo#$mY_k04dXqx#Bl4Gj@L8r-OlW7EZ^+`G0cc!aMq&0T~x-5CHPfG>; z%nBfZ*g=b0jD~Yn(!sGMeL%-Jj!oy`*;s8c)<@Ma9kf22DKvOJElOh#WopNH@1;BB zo2CbtabEi_mYkOu`9@IW7JU|sPd(lN^>#<7-w=bE*X3?Z62C|#L|_|Jilhx^Bf$S5 zU_f5yb##M&w8$jJ{`ERjVFOpC=aY95ZlUoHzlO##(q2`)n^BW#zaL{fp2l!`+s=#Wg{*;ro=R z2UsXC4ZdJOT#Kg>k@Jb5JXF{JJV~u3DN^?Ckx`iN2_!B=y}GA4!I|&(hqb-#jn}1U zEY8qFi1U6>!ry+|zU)XI#bCrEM_VUoc<-8-#MNPBqA`~R055^2MzVeH)>E6WUi7JH zaV>bWg*99k;0DSyKuVy9G(LViba3JTw?>%4tU+_IO=b{tZwuZl};{^avE&n9yms zhZA|$9_0Zj0lc{v4CFEp2 zis90+0v(C%5LM~`?5m}27a7!^IF}j_RECmks^NcQmi%trhxedJ9K26Vh29Yu=$NcQ zH%X2dZ-EW-_XSwj?U3ZgcGTFodFp(f_HGK zy1M_c7Q-LUgd16cG9$Zq9B=MU;UH3WoUD5}8#4{=ydwIx9yG;-IVo>y?(@2YiBqwQrDsP*-Dh6Pz^%GKmF)u^m9XyXf7v59pWS!%hBb- zlVwT&e18d}y=nK8@rXKU@^-ca^*| z#e{I|b67}n=qo*FZv1?eE-E+%MXkRlVj+)+|ABTF$#Qo;im24{B7MGjaMJ}GD_`Fp zw*M3IC3jn~Avd%xTU6<^txX}}RX^Ywc`@jAv@!8j^x3Cj+3-wIP=q68FeDWH$fG9g z{Y%N>V}zqDI}~n6sOh_N@=PO^bL^2MG{FeN)*7c5ZPaptJqt$rY$U+;?<6&Vl3z{a@9qlqcIERPe-M!N z$*?=%Cx8D#z?5Hy7Q(1=KUtUj_t6CB>fO-b%(DhcotFV+o&6vPcRPh^?1clDD3F+M+B zkJca~ZfVp5!>FaIfk!&fnKOsr8L<^&0HX}C^A_QD{-wW|#BX}d8$cN|p_@zC;SbVzjEXYDq z!&ytuVSM&Z-1xH(ZFGfY*m`-#K-7wt7c8iC&=3d4`em2?RK*})7%iY=}g!?*KmM6MMh@!U3AxQ(4$f>M)Sg9 z!Ep1wD^~?_&M7H^>_1jdRM7+?`3aQ@C~ZWBP6RDyfz2#opyw*wCEu}l3{nS>Q)+no zbMMw8`Gq%fw`RDR13|FHAJtYWCJSrTwI@@`ezBOCHmkPZS^Y{MdiR-y3A&utJto(d zXE-O+K)5TA{5)tP5l+kJacT?OuRGr;C?EY9sw;InQ-1)0M_+e}9;cYXor>r+)|xFLtLWFylyzGBWAgXUvf zRT*a#fo5vIbCPNsao?kp+&H_U7XeF(H)g(5d~!=Y)-pPCNt4GF5s5b}cZ~>62H_>m z4d{Iih96!DRV<{CbZ%Ervp(TWH@sjs5<_j7CqtUFaSpIw4gJDTDia zzRO&g7+ji|EhbUke`t2_Ex_q{qR|(DNvchUun2dB;PwilHk&HdOxeCh;Td%=G-R+e z??>IFCs)W|4Azzu68?~AJd2nS^D?WZC-ZOOyWtJO!_ng9dn@8r77%L`-rtp`%l+3O z&ZmhEh@H++>JfYiM)c6h*6dH zp|Wr1t6$F^gWu;Dhd!Zpb-4@qo{xK^+kq3<@P4VDXcviqi_aB!pMw{f@U`>LQLiOV6i{=NSZ`6w7TCtM9qYa$aG6VwR+J^(0+em zx3ZOU$4kV3xV2a!ON&{p@T=ljUtG`utr2^cU6FmdNtQx+^AmKqT%nPBt6r;SMYK{o z=dk9dxmAhW0;8~EJgLfkhLMSc@j{o?B^pfs>b!4Hi*&IdZuA@(Yc^ z_c!^8@Cpm{s~-i&ojSzvdj}|LC>0KV+WEdPs`or}I%d+5GnqU%u2DUD@Vw46Ci(9W znZ?f)yZbU@Aq#6;&m0;vtay5_EdTnRS41r}kp7%6K}$Li>Wk`qLc_~suG<>aeP;1E zmFVP6Ok<#ympTrig5_A%hh=4!bm~c(^#WVz8X=DR7=#$4$%{T05~PpdsL zu=I!Se8x_(8)3sxnu!j#(lS^7u-9eqo0?N0+`>P#G8F}Lx)<`yD!x_YoTBY%%Iy2b z7orF;mvc@^2TSU6&2w6WM%$A%B}2cAFmYkRgC+H~9Ip8E8*o+Y<$?;uP&IPzynBl@ zrP$eg>RO&Q=vcB!Y9DbN#ODC9)rpoSrbq1?Isf}(y6hv^%m zU_&;#>$yfqf32*&QBsS?7r_8{VB8a@Ig`T08k$WzkJjeah~OV~xKSC86L09U)2+CU zcYFL!15IgLg@#j)f7g7ahSzwdd6C6BtKGD<#JA*m;>%js*)KxplrF0c4l64Qcyo8y8Ts(>))7tLNtC2Oef zLFch+w)9rp!Sg=ihkH#VhB$|&u7-C^^r}u7tv9Rcn`+TSbf8#p=VOZ9t2(q|AJ#b> zI9f3TM-ZX+6=IDoDS*aeJ2dlpUeyQdG4gH>-mdZ&N=}SCTi)2j$H=q=Ok4qJ9$yXU z^BR^GJX#u>-Ef~o%qe?%pY2`A@a?kXk8Ua&G4s$D`B<2sIhcS0K3{G2_pzsJOYdXr zw2wbkyoUX;gpt7u&xuyQP)hD8-B={R+Q!8s7>(ivgtxGzO>X>-I^p!@m&q2Ib__liDnVeYTTA3fuMK)AO{2~T zyeNEh&Xej4%*H-;2diE;xXdT4f+aV?&fSk zgnvH`oe(|F?U&%B%6pAM99VwTednz!5@n*i!59@)vcN>FV6}ljE7}CFQ=qA}*0N+371_jU;+uYxNm67@;Qw>nQuKWi-Os=RRyrC$5Ci1{9?&uuM) zg-7g)O|P%w!`aWe9U8??8mzjHwjqRgAGWL|GdTAXOpDAe9? z|6C37C_)Xw#=Ix&vqAORL$4PmE=j1`?Qp}WpRx$~y$vd~XJqD6phoOhoVDR=_i%sn zFCIa}2PhzkZfI-D1JT#XZpzMejCYhJK*j(GRn0-4$g{I}K&r6ax*#_j9-4%peNE@! z4^<{ey8`q6x^Q84&0`|U@F0s1->t$J zgq{OD?g*XPp?T>r6X5=s(Rj&v-3dorZ@2K{4tKXUy^ z_fr|a4S1vKC`_^>47J*}Gjucv1iD?MJ6RFESI>f3AV16i18pq;%56;~_{(g0vEF zSxnNb5nH-jCc0}Ah#iKvX*kWSo5~K)jh|ZaBpT?#nO=!O&bX2g;r6YA;U0~mt4G#rDpzhl70FO`h)vN z+1YR)z42&l_s8Q{dE=nK;s%MBIFk%U(v%rv!ASp1V?8 zFM|bj@6VuUL{$tE@%9y}ytc|0#npb#*7D<2K8+rQ*&WjG87jK$9(B&oc@}hW$3{#z znOKl~Cz)n97A?NlAwijWO&c1|$$dQhOZh$~OSUxDw+2Nb#N`H4liJ#KLL|fS1nx8E z`fJaS*z57eD#&*CgZvf2udB?JSu|s*WlCo3-vZT7O_~QQq126pzfue@78)w2LkFF{ zbu$xtYtmS|e@J>VScHFKFfNP~vh~n>vd8i}E_663F7kRu)vh6%bKFC_BJ~NW#Z&Ar zP8_h7#GBHp(IcOP`F@#acg1LEi-Hxx+KJ^>kYEx><_0TJA$iQLxww1dO8g*UL)nEN)4n{<55-(8)}F3%|~?VQA{iH%Z+c?;=!NV2k$K+zTnQS#M5v;E+76$cFu+RrDT{65qu_WiHh`;H8DB8b~H#PbXf#2Z8Mpdy@w}GB-a-I)5 zQbg5rw)&sZ^fgId0HooJMYz2g}h6hsQp&5=k{%u z;kvhy>`#j76R*_u*}BeqB$8ANuxdRMFihAvbCL1K$B$nrj|r3&9~{g}wxRG_(f z?3!vWbmaKtUt_|SE(X=yOwBpdlnBA83!+=f&JcolOqJ^*C~n$Eg+W@Q+_aHjU@uCw z(#%63;`+X~MH!jqGNACA!Iu9QIf1wxtP-pLN&Y-J#+?8MGRPx>a@Y4^4kQFz&_T^u ztY7iMw&bX#`lhJUvQ$eKsI>rPUq2>+tbicK8O~~oYqMQ0~=|s zD}k?#Tgr$i6`dqj_(2uW`fwteNaV=~)VgAo1#@&_Ytus^<(#;w>}jYsMQ9w;@GB^N zKVfWhYHW#W+_5~=!{T0H`MRBz?v%og5I$nF&LI8?{txMva*fJ+YTc%FT~;-1jDkzx zJyglDL{hmYPm8`QP<~sDj!^Kld-}3k8|~S=Xb1=V5yuaWIkLG^c{DziQTb%w0a~Km znhH3@!pl%qM!LTQXd+N@^uimxG$JZu*JDeFGdDEK4gdo_+<$^du@Ubh?^vfpn69qi zZQ8U~be$5eP`IzHPe!VXO)Z)l*jee zUb8BP8lBe7_S|b3W^jPTG2)M~1<^l7&2J~XQ`a~!KhXHneJ4TdQC|pL6HOwPRqtH{ zbd+_x!Sd+b*0EqCJy7y>1*jSw07Dg5dpsqUY!WM3kc9w86g<&EF@;n)q*fWSwd3Mi zFX+K}Pi>hB#b6ZxgO=L*EnQ6{Z(>rd+r4bhqlVylPIx=mjV~cpZ;0^=v#<%m8lOo+ zg(sW62E}cI+S3nZgub&voS*Rj6w|N5@;!{XJKBxpuJM9&JHV0s_BmIU0FMj zd9~>bf(=w;Bk+a{{%ZWax!g3kd3ze(54D9nlx@ST$Ts*nkUB4~V1VIh$Q!#JD|gKe z!U?gDp^)c>IGA{lV91~(5~ylxey=^@Etl}2ISxUm5%BT-lp7{=h-MYZhK{QbA_T5d zts;sF-glMJH19=0>zjok8J3C0dFa{^; zG~|`n9f}60s4j{AOl*RiHk-$KWr(*HTf zz4s!aN$9DQQ#ar4GTyDH9tN`Cx-&X?~pHZPt2Mo`F^+Wdu)#ongw&sB_UaTNJT40iRqLK96_ zW9hXvKbhZIEyrQLy59jv(zm&u_J}s&@DC@9fk#^ERZ`@wHBDy$kzPN%te-4_Q6f4m zWfUQrTG(pl)-kP8;(A;uOY2t}{G`S*%NQ&S`sv7h!ti>%E|C`GFeR1qy@xmRYR(9k zpNi6YSv%q$65aL~b2%2|SwmuQ)I4LDo}NGFKIObp@o3bjm~%eYQe)vJ?8__6f?Q#d zW?jj^Ub!~Q>}KX69;WZ12kBl2#s0$Wjqko!U6~JQmrDOYMKD6Nw^6Mv} z8PL|;ZY|B%z+GqFDJdWfDxaX%ixBB!p}B!wUxDk$+hrlYW{})9)yBM(?j% z9F3K-wb0Cm1$LrMjx=Z51qWzOUjJk(^{*gexqO4D&C@Tr9+utBe(yKT{cL%fuuprr0I?g51WvO{C1=bW4so z-71VVQ1-|adfe@1+Mq9E5M!ckukM2*x9?0E8jnueBVP$o3@2j$QD)&j1uM-aik z!+gVu)Rn*;ZKH(?OTr287joBkhld36VOG#z5G_`%Y8`>4*%B(!HrNEc?c+`tWPTAQ z)UR&~NC|xUOMXJ#iI3de$Vw=Aa<%{=Q=wWfqi&T%^&FfNN0tc3IFgo~4+AZb4d#ro z7oL^G$NcFB>UP=GwaF=?l<68<>CJQwFd08Sf)gU}?v?95PtSqLPgZ?7XCFi8J39T$ zY><006JvMZTNZI+nM=faM9&rd>W|x_i_xr${_GCaL7?krYum$@Ntx?Q->*WvwJNVw z;cw4XGYByNP&7y$zq8hN&E8`6W6{J(pWiq*k13^k*AaA%da?HPU<|vu+2;iJ7`l*F z?JK4C^{xoHlEh+f1LcN&Pd4z+hd9wo`EonA@^-GnV0e2$^-t2Ne(-bjDvZ@imaaKR zzxMUGt7+1iS@ig2^0~2jCvTHi)7L3E&P25%dm#{^hz!EuS(X8Sx?OZOI?p3TmktG# zFZ}41okd$X;5R-|(HX!df%8l}YSPDsfvaC$Jo{dog0itee}w<-N-H+l{MkwQLUi;y zjAiBqO@CnfSBM1l$%yMy)O<*rws53&@C9U>PsPTV`#C9X<|nGb3tu)|H12rnPf{d8 z84Mi;>8(b=(TnL1#S`imrTm#Bg{4}J;`epsd6eOENJ#?vjE&ojv~qB~^gS;>=77m) z`647B`o^It(mw{nu2Wfa(d25p!Ufm&3Df!SfbcZ;b8p?nG`-E6Hah4z1t5;MZ=l(< z0Am2Pq`Z`d_NCf}JOpeY6vco!S&3mE7>@1R1}!v$!T{qE6LH1(-@^wLkc{oMpIV>^ zm^hu{#c37+b1sV2T_7Fu4k$&H>g!UMPWG>VC*D69pqGV7+y(Okg$P0q?G*Ak!*@(D@#8 zdt1;!QwLG9K(;U09^Mt=D&j+l3$YaOk)_yt09(lAb^IKYju;qb8yvRi2I|C)rp4p;@+KE}A{wa3 z-K?x*Mg&D{BxzB@hCrE`HiRraIoh*TNK(uA9LvW-o!9^_T*OYZ{K-@^&MP+G)GCq% zUTkW)9i_CV3`J7S>pKA2BE{GSMjiujx{n$x-a#CQ)H|q8zOsDXp6ql#*4Zy|S1ZWe zqa;DEE`t|B`GEKK3ZiDq*gGmU*<_-K>l0PVH6SK!bd^3I~A>*`s!3z2dx*YVjYPFc8pSW%5 zfwyt@_F3jMR}HO@#<1$}p8Q|+8z+lD@6y>7lG++HG3YX`Q=9bU$-d}y2%$&x?56R&mRk%j{pq+_X185*3HE1WE7F<02V0H7 zQXxDdl8O9zp-U5K9wtY0&#FW6iF*HzR@CCcw~oT*uk=9_Ci0S)^DKd7`*F9@ot2b_ z7BjixA1c8ZjQv;B_LEN-SsORF5xP(@OE8F354#e;Tv1y4^@;p-Gj=nhYX;J@2*)lQ zCvGUm_zw8P)mad?#09RI3P&933Pon{885j%%$!v3SyCi0_D2sG4{&_X>imK~$Xe{7 z%Aho&LK-(1n$eMlfd0NI_x-hB$#4SOqym%jngSK<09o*fKb!zY;wA*Eatc;CxcKy;habfYXvSQF*orx zws0g*F*5_)arFFWb<~X_jCphOJZqpuy(9A_JwDknd=p4C49)k>Y_Q4k#Tk2O zkxtJ=N8?G2e*QDgCCVVhXoyQIP~02)Ura?#%q3IUKCzMQCXjmqiXP zQ94z^K)iMH+g3VLk&U^)|26>oQUBhsTlf6;U{37!-OulLb))O|8f1Md|JonxfgOPl z-9b56?pHtmBQG`v<(R*Qefr#am%IwXoWI_@x)6a>fW}V5nZ+%IVn4$iNJZ~9$ef8R zt{K!1wbQ8rJ2*3_-(k(Pw;wsd!#qFhn>e<5ifiZee~sm{`;~O+QXZ!;`nmCq!dW;G5yOg+3( z?6n-yDLFt4t8wE3Aww9F3C+0S79S4dkCBl3Mvz5aT8f%Xp6lqD!%-} zq&hyp1GO;q^I1ZtgN?2FJ-9?{I@*?aNl^~(*sgK!`F(dCig#3Hy^Q433s_zi*bnM- zd1!8J)3FTdIG#D`wZe8m%)Pfg)ag-wVtORrMNQq@sdWvpfv|OSv4)nuApAf+j@EL& zyPu8nsU->@Uyc18Tc4ElvWe4iNkbjAjnsRN=M6WdMh`i>7jxWBNA^`Z37$$+K0+O0 z{h#2O>UvCWn@XT>ANBP~<3!9xQ$-ZWQdL+MX^3_O`r=v+xs&+GT#_BGwo?6RpI-NuEJSc}yhJ7xmh zh>8(Cb6L<)ijmy?o6YVMS@=7o`{TEBiL^zWKUY0eqZHFQgQ$R;pMy|beDrpL>Zkzq zdB27@K9RA3=*fMB zU2jGLV+ut&W6DE5k8+!e_e|NF+(iXYGI9KqT`m*ZcdWADK9XQ+Gc5Rt&NZ>2cRj%e z#dtiDmtyM1{wID-}7>H4nGlF)pSrhGA9a z-xaCGrUOL7B=rE_S$-7i5Q^0;(vXgPsD`=@cp(yttQpX-WXP)M>8a<-ZAN50^ghOE zXq_pPiKWj`&BrC!V!y&;nZStd@uMEIDpGQlm#&j^^!m*{p`NZm9%}$QbqWKI_S=&# zWn3dd>_Id zhwOr^ebb0`P-onii$wIsqUwpndXYC=c1NN(cH^lz^@D|qf}O^l9Aa)&`$CDg7!_@%ha&EZ;eSM$WR%f27F=k}V+1%HtAT@Zo;Gg4ys>S#=Hdp`? zdTq*()a#Btl4rAK^K;l1EBEwY&W8R}FS{Z~3O&?)*6%q=#1E}e|zuK0ILu~FdEftlRjakoU>q_Ow-w(P{fgQilO z)3xk_)hJR_)J_j+&X6RS9~->uFE3zrv+Z`-rdqqRdcN`>1fIq!q8QBPa${B`$X$y_ z8)?{TY+!aByQkq1D5{~Dnrxq75Xz>=4)WRhFDg@Ng5h;R-Tpw}?1di>yWnpD z-v<3jVcO?jbZiE)C8Yw6J!tbws~5CHEVgIqI5wlD;|Fp`o(f9 z%>^XM77kvy%)K4+pK*1cUkWT^ANB60=;QsN^P5G?R%z5x*i_&<^7U2hQmAWh9EyA~ zV&hW?a`Z1MllrUn@WKTxW+6yYXwkFfk6O&RVMR$163pSslz2=|=iN0L%*U4FeX-)J zO|#eZf1aYfDEwXT1(K4iIf2?1%7rMue#>RCAA2vp$AZf{-qM5uhT-S31lb)JK}R2T z7kk@~TF`nI$TJ{j{W%9C>$TV@7!ED$HjCXX;g?lQgF%&h`_@g$}()R5!-cL{)6I@ER5P| z5y5Vd;E#;_)CNU&vFjNBl%9siZ$D7pqmuZ{NVXt}_07G1q=iVG&vzj|*IisI#lh+> z<&Pz#=9iO?uR!@BtZ$XW*o0CW(rQJlI4ow7#@&=o==xg`rGanQfuYzb@QFa#VJ-EH zPNWj0*KR_;!(3*u0-ZCP(G3eaR!TS#7@#m7DXY4CvXua5$QSQs#s_d zBU2JKbNd474N8NMil6=w_}50ghye?SKaUkRmNLE$_E#Om;&VmabSDVk9=sWQXBv;< z#k7xYjkbq+=Cv<%uAiZF9Lm0;fRDjQlS%@X*&H^Rb3*Z7rIch5o>^(=MnC~g{0nDh& z9g0;b(sid#jsKdq_0yUJ=XC&5*^Axk$l-}K4}T&3{->s#fRRF!SS6H?t0KTpcn8EAKa1$GK})c-W^_FRWIFCKNZ z2fS|{-8PewJuz-pir)37q;|(@VZ!noZB3^QU5@5vzx}u~Gf1j1b^2Xtg(WLEwCTEv&W+D1;evvpP6@G z?l$N)omC(eOmng9GFOzBJ1A~G03TXl?*{MsQ1ekhf&BwK`;z)v^2lB-jy|Y?Yddo0 z2h;2`M=9--k0~2Zjx8suqPx&#{Zyl6rvm5ZmJ)bRGwH}vLW`TUxGT6zIgjRlIwve( z-%e;_STJ-LE{t~N7sMeiA*!ff#^0flOCv+)%XRticFY{c z>4z|&#V?M(i&;-MzPYie=WX)$38Ec2a=RHHHZ3})ha8=hQEC{fsm+RCK{PnZ*N}dR zs|;Q#3~9?145!~8NRjXNcK2O>muHJTYO?fr*fW)1_Tz=(jZ&%KfN%br-;F$Rp%Ls~SQTHpbzJ&Y+oO2BEc~xV zje0Zt^r(er_NsghnmImzT?;KPrw=C_EXGtO8+|sQPfhb;O+K=QkZ_Z8e$g-@(=ju_ z2S-)M{Ui7PHL-w~`KM;C*+bP+z0GsIZ7;jV>nmGJ4rQ*dB#oKYr$kx2mld4|%9hRS zUGepQT=zJ6o=AUeX0v+F;(rx{B}nt6sn?`tY`-GEC*NFdSx#hW7wbZ8=$oaVo5(FN?xxt^< zE7}HB-W~C3BR)@eVx_`Z=sq!~=g@*37W{r%+Yb9r9l3ynhId&(Tdt2#T4th3X;C1frj<% zt&E5feZg6G_~4C$E|>cH?96(PI+u~2xXQV8=_)|ocLw_fc}-93$hT>tiNDeN$3Q7N z*Fy~SBRMO_F4ae*GG+EOmzMB|{e1PQ*9&PBD>?8zI18{YP{a~3FY?8(sec5siNWSl z(*2KW#a!8MV*!=3$6IaAyO|CeuC=3DJ|g^tfnenB%JWkjNbnEt*RQa)PS4gQHyjy* z(uj|hsqzAgwNGKLDW-yzaj0gj3PBrBwWSxYONV6@%9H#YD}%kwP(*n8>^`3$i-lPH zDGgrfI!NW6%CJ`7YRAq4Ik_CR4usEDA@6n<=`PeQ^EpcpX(#E?mB0#50B<T6~ysrUD#iy)+h?_SdwbEs#W$W0|IpIy*+^-TxDCK3%}s1ewR zbmVba8qyE|d`Vw4&zAcxGjYsUDe zriy)?r*gxG0X^y<%N3fqGV?hy1wxK2)5OU_O0uI@1oF zMEw9(xeycBt@s>|n{N5Iw;7JOLCzV1B@$0Xom2O=69^BsWAXzCL}G`ZVD@z(!-nLz zeQ=tnQ#`CNGi5-Z9WX~EY%!M?27fChnji5(!eg&8l1rT4fuliz-(q}Pj~vb1ZTJmo z+Iu)~hA>ac|Bp1rT8+@^c_2S?Ox^Z%+Tn#q?+}1` z;Q_eO=7zVTHFrcQ|73OzZw7Or8XDs9#yh!Fnv*T(+BdfY%oaq39mXe(^x@~FZu`xeBmvzz4i7%d= zsh`%JJ@aHPS8*nJJ%*{LzCw~V^TWMvseSL;dS{|>^2I%o za}sa?7>TfrnUz?XKKt=XVWU>CBleM0f))i??B>VMDTOv~+;POR;vJmv1~ zEcV$}&jaP*AI|pQr+TV(ry70%jgm7};J9JM!&yyzD}HmFepzt~1us<=Se-qj z04U(p2HgYn@Eft%22L^+qH~kJQ5pVy7jzYuMLlifT?$d--*lx0Qd=l4_Bz zOmg2;=j}}BWhg#ftNXMzYt*VqKKD$L@JLrMYA^F5vd_kc=K4Gw_A;AAsPNAfAQZg^ z+JFoJXb<@toVrhfAZ1)tcBK}t`)n!}SB5V*4pt$He~T@eX*@j5h{RgoU7?D2@H2Q? z$@qe8M$EE}Y{icNvnB}XopQj(vW=<6t#4h?Z&7-6e)(3InY9mo_2`;oXY{&RtKnq8 zvTgov^c$E7u{C#EXY()lV;pB_wQ5VyN{Me0>L(b9d^P0mT0NvBhhESkhQNde8bBGe zbZ%z@Yy0emPvzj|;;ybbHZOV$biKE|qg@n0NW4aAYbbOJ%bw2h15-Ie)G1sLx}H_^4pg!%?;{)GN}5yp5b}ytFy^zmz=~8St#f3mW=ffEdwA(BQ#HQN3_NVgGA^>i zVO4|Bm)yysOimFo@M!x+MMwYbshMqyh~FV0?MjLt4!hDcrTbl4)UFBTK6q;?z%SVw z_)7&dI4kFo{`;W4#-G&w0AkxXW~VrH;XHWoxOKOmLP<|Qb20Cfms(aLtvzCX57#C6 zX7E}XIl?YGH{Ww2`?tYh@7?wA>qxEB|6AqkH5Dj8f zzjAQ$*ha`x$rd^gt@v)Sn|rtKgv#;9U1{t(B6rjR_i;Gg-uvo>*TjJS&<@pl>=1egv^oVl&H*`@l>md2 zwDr3=|3}F}EYz;48t6Hj(1Bj_%;xBJx#2G`XgP;`bBpE~=hLytTPC}-0a*!iw@eO9 zyXqC3YTPI6fjv0pBh`y@vTLhHv>#4CiTbEe9Zhf8FB2<$OyTVg-=;;bNm!fR^eyrt zya&;w97Te8%g49JdB06L1ey)7i=eKje9jZ+c8T~iTz_fA?^;e{s1FlX>$~s4vmLre zu%5Ih4JpZcNve5+yn|^~CTyKA{mie^z|~1*cfpckX<~ZR?XAd;%?k%IM=K#?rAGYN zz1R;}as*9e@Vx|0dxdbvb+c)h5>yS)fC>Gbq}Jt8bTeQI(TNj6gK@F+;~d;;pfm8T z*dM@SB%eU!#>eF{ng@@|0BC7mi7r3EoW%5ie*3ezb3Q-gdCLa9EXXUuCMy|ccoDS* z#=D9+Xs;-DgQgAK5tn7|Mc$C=zt^5 zSLl4l$u|%@nRH);bobO}1}Dwk)cz$h<_~;8HJ}_72|kM{yK&Y^u5uRrDEB(yA0mGQ zsc!?)WT^%n&*35&?!`b?oI@ zNA7B$m~<1*B7##800-lcE+c90O~coObbNg#{4F~ zef{!to5jB)+>jZX;>KSDHg^R@?E@o_=orM{PQM(?EPDR*o9dL=yZ&QQFIctq5AEG- zweVw^Oi99k->iP@_alaUiRu%-nN|JehkEqs0xNm=p+Hccz{;}v>9NR;CdZOmO@D!w z?ZjLAWpWo5|Ip+=6cOGh)>QkZmnfB;kCCpUACF|7B#XN3JXRW%`Hj_!_ ze=T2J;GWYta)tMB<|CiliTy;H7r0aVW{mR0;C6;*mR_dWgm`)s^uA&#pS82-2VPm| z7>}QyNLUF^EzA{3tOuG71Y~*kVk0HvImrv-7{x_ins5aVrA`LrM2tX_%LVN$PpO0A&{HMhJT}t?mpzA-tJRbV*;s$T&th{&rvh9k0 z;%LsU|6d2wStL65r>KM4I3j%9BCDLq=%zO@sHDV8Z&`-W9O z`lsc;N2-*I01xoeV)r-jI|JMy<^m7q@QgBT%D|fHEXBb*^=N0&&>{s&H1$M6qYyQM zyz76A`pJBHfQ1vZ+p~T59hkMVB5a82bs^E0?(&xJEk{63%_tlsx7+ zxf+f#|Jiub8IGM#wmoH&qNA~G@}`aVcEj@B8PIE}axbT;ZgqxV8e8%Ic3bb#%Z5~a zDT_=L$xu*e?UA@gi@Jx85VIe^46#Ay!Boh8Y{uyNWP0Bkq!VllDh;SY=YV#*no~M} z9m^`AEw?ROduPZ7TMPO}(peIxd)7fYvJCZhVz~gh4_wxIs}S}{p37LihgPfoIY)g7CFlC?7{E{H4$Ieir&C~CeuLJR_r86bhW<%;K=C;h z!1HFG1)kAhCY<@1CQ9$&5Be80x|4bJDi}g&d63b&@4*rP83Wz|4H&7{h1D0Y(yYCT zY_9+>G IMD`8j~!#6q5xqeo@dvr9;YDi671{q$O}N$IlaABP~d^ z2Pb5bWy|@S_oG$i5Zw7-d==e3C-{Zl5t@m&1nGHhICumv#r(dY0guXk`(iJ7E@-va z4|{~$qm(=K%<8Bd>cuBXe|WmXmT=-X{%&JmYxE10R5dkj%=X5=W8mO7;pf@=2BiSw zL3=wkemw7bRphMKqpsa-iaK-U@>@MW;Oyz@#*eU#J9{#GYBb1`T4EaNd%pqnt4};d z`yyr8**di{;^3Vb-Z?{PuiSQ|ZE9APlQ3`}k*6bu<3)IC|ILQoTFB0?7O7#zNY;L@ z^SLHTincJV=mVQ^q7MGqQ0DlX%xz`Fho@k%&rCjfqx)4dT|I9%+?Du0sfe{LcjOitIjFVW?L%Ymqo~3i+ zxxCkn#E7}ihyrvc5{f)nxxr~L-g>ac)FTzz)_oF{xP?HZ^prQR68(beThFxTGdV;s?{fll;R0yXU@m3OCF;h|?zQpQ z$;#_Ig?9@v$ENv-rrInTV~pT5;OgD&oqTgxU^w3ZI>(x+Wdb}yddjq z0H`yOkWOT|xvu|q`UK8>oqw7mHG_h+NK9we|G$cmI2!(6RYa>8Wrhsg1b7zZ;P48- z0VXk+r|y>r9@j-|G8#hpyn~U^P+6K?%*-mp$kA95gl(9a3f{5!+Q;4&Jo1{Xw*5BG z+^m;}SJ=+D`xUd-GD{Sj!K&4I@T2+|?=pbSHN3sC^kMev z=Z_55PqQ01(P5cl1a-j7vQ{wmQ(1iqkelq+ciBUY(y4tq$9v5TKI?SG~BEcor3y8SmPj+^A#S+MXH8j z#$DiEf?QV7zstO{{Yc(^E8owrw%Dr8*BceBI}{3Xdwi-XlmiaH-5)8ARO@-2DvPf^ z{7q-iix=%>0|k%uuYPp*Gam^sF0f?T3zt?j*elgviC;@lXCcI>$208zRN_RQP|5k{ zavTZ(hOXWq?*Jy;<4@jJp%{@Wv(G&@|AKiAK`{+NgiFa>PzzeK*iN~Pcn$XeKPD?M z9d#UHB#sem;CBvy;UOO((QlZmnXSy=?XX1P4uBpW`w7Nc)77jtPDd|q8|uWmFzgql zf$rbOucHx7!|FXuUr-t-eoycCU)URfRjf*wrQ|0NC3-LiZKKYDcz=W_2OEeN(-hHz z9QP8K&pJH!S(?zQ(=9+aKPdT!P*9IbIR=vK{nPDYhtBeLx%M zg{^?}@=JEiHf>~x@ZY&(VnEymw zv^D)&9BeBYD)gl>c;%}4HnQYO;?d&EuBd|rWwnoEc=@^KW-*s9nl>x45gyIG^gACW zYq24O13Z%-B!ep4k;e^vVGEISuZ;aEtKmLWr51z>Y}$zl{vZ!7;FF+h-&S${f4u-6 zG{fe$B8m!M4liJNF;1fP*an!VQ3R9$Hs~GUD#gn;w@i5jGC`YDqB z4*5=%cQy>)RdWKt9VLqYy0tSZJo9XguU@s~4XNnQ;MJ-O`^#sZQ6^m5N@OB^ zeQL*HmlGW6nQWfg(69z_6YL8zqx(D5kOx)B8Vs^RKX`gbmkr{p8?l!c*34A&Rc*gDA%IX$F*PZE|&${%%D{y4qw7l*MdSUj_#YX;r~^YGRKf zjO|*se$ldVS8$-(14GHP-;0}xGB#6i9d(jUXolEr=WuV4*d%rS6|ib;3s%vnoPOfV zRQ2_eBx`KS$*mxhV~`%vIr1B7iYwr^Y&UWJl%nZp8i87A|MX51bCq=emsjUE%gAz! zowc$5hrRnYnk}Z$TIeCRvF#Y9XFT0Bc2TiJ4{rW%g!zF@6S$%OO1Xd3mBxF#KGa`y zek~Iom2`^B(11gg^^sp{9+H!K?WcOrTa93jlaD&UAsMt)cb@U?77f69C>|m`(p_bs zU&Wpae~iC)OkHPMXp&FJG1h+K0HNtN&ue2#+<#(iam6(&Iy*XTlPf0+5AE^ozC5dB zTK#?}EGMl`wbv>uB`!}J)O$h(_PPOg#vT3DC9yz6pzoyuRHI+oH} zM@csZCro?CHE_X5s7cg!{0n6&b+3lI!3y2p854K!5bqF~L1puYR4QUx)X^?uk6_G) zwPXq?%0ELJmwneTn6bO*wE%G(PJN_`&1)c>YIsyuv9WUm&Yh-7R~K-C>oHpNt9c>+ zFsXlwtd6lM|G=hn2&pcKm_kmukt9F=zZ#}h3UGQFeE4Rx*N>do`u<&On#-S7pX9v8 zNUpP?kVuP~U+#cG`^JA2O5>FO1+5J7`_V1XtWHiY7REbr0unIZneW87r#?aCg-^NN zyooeRY>70X8It7(N8oe$ETB3c?vB;`{37857M zSI8Y>EAJL=j_=3MxWtLmMV>f#$_lN{9Q}IW>+K$yAiYP$TS^^us=p+@7K<7(>tgzF zT>h22@zZ8)wls@OB&r((rtR81qVTqk8##aBp)brkO=f@tLDxNY%ohP=_qWaa5W{?V z1uB$9Gw5)WPLT3@^t_bdz#BWMg=+~dr+RvE)2#)^K64{>coA2=ckd^4`d(*tT`x3s zq5(qs8hbWz*>IwJ>RX@GcE`0%B+YF4#JZnPrvTLH3YwmJ5ON-bPlea+gNvqD_SWPn zb50|_3>}`5{-EP&X6R48}L{oXQ4G0G>ZnP)Om_QCS0kR;ZzdmS^PBnd6l`$OwOQmV*s9=U$z}ZZcsE^k@4~m<4`6%Dfu!(4xiJax%E=XuuQ#NskX}>gediX! zY0RGxe!c;xYtJ<+s>yyvvIlPwmn)4cJLwTd&4UX@Fhhy%UeX!)Ro%(t z&RL->#Lz2+M?sGPKOnkVC%*xb2@Xbl->|#MFV7dTo?yVNE|m#NnseinESv=DY`yK` zDm4k1`W>ujQQCeRVy6@L_z&bSQEnk0Hb{;A&+6A4P{M&S5igAN_Z+V-9(LiB8q=PQ$RHAO3+BVZ4KnfuE>rU-^dxvfbg0BV=%=?79_IVqp++eYC`! z9%=Ap3V+%;P_Shg@rfDKIGN5ILr#I^@gVU+*nz@AfHP)hiWNNgQ423~pBWjXGF#Lk zE<<3^2Pd-%CLTNh6~)&9OKb$_%y}4rf<;H(<#+ zoYw+~9esP7xeHOCL1oc`dlg;lY3}5YY@6(r)yKik5r0&D47UrgE}*RqBb(Pu-`)ru}vmDtU^ppK3Q$N;y&d7CQ{)Qt{YRM*`;+( zW*E%pJ0;KYJkR;y-((J!+He;4`i$}4_i%ndGVW0W7r7)=8qvK5F4=7~BkcV1ZI)b2 z=sizLJD1~o5W*M-h;Kumne^Dno&)8HX|}|RP3<26e=caJt!OA}%PknL**YEJk16oD zKjW4|XOF(+to61FJ`riFcW)dkez`zL(!F%Y;rH0fM-3C>u`M+SCAAD>#>EypnOdp= zyXvcHaYH$;7nv){61*(#mGyMo`As*+bi(AW9L3b@l`^*N4(4xv8&8<916p_&aaXWa zIBTP2_Xheyq#L2UvRR6L&7#qA_HxFJB|qb$;wn+!>UnO*Oh_)y3GicQf1hZ-WLX%s zYhR&^vvlnFlAvS*TVs1UqF$TQ_2l0+HoPWNX%mJKta<38{;dXD2g7GF3?MISTX^4# zS7g$`wIGALi$l9BKrj-6P^4R=sOH@ZWJBP*z!phN;QT{GasD`kL~c#ye%6HPUwX1w z@B&XFW#U_2apSUE`J!TC7NShR+Jff!>&5(;Me$R>iFa}X%E>r=@qs_pK(oKf=&KhCEqfLp2jsY8a!X>XN((6o)joF09bid*dI&L-% z#;gC{Y`}8o>TuS4`0`2@=lElA7o=6>+iq0T|9M-Xr2a{K4S+`N(8nwLkL<1QzrM!- zZk+zd_zGm;t-$K1#rMJ@#DZs9a`#+&<4|b*UUT(v=YY*WIo6=StI5Ai=sdU6<$rRl z45;?f->cOe(my0EwbuCb{1Am?LYu^RB)nOr(Z( z%D(SXfQmDT8Pk($DvKfb$}0?qC49Fv{Jh_CZ5<;O<&4T_rhN5W+PbG_m~I8A1b)q4 z-p_u?SJoH&K^7b~)PJZ|a_DlW^X&5u=UjCJo@herVZ}s?p-Ae;$ZR}Iv~)EqwwiN$ zvepeZY>!>4rMO&mH9E80*%#Qmr;#P%cWSh9v^U3>AVLvtd_9`A`fxLZ*mT`-fSvxs z6_Dq-C>eXN>^h6<74oVwF_(=-M-KRg^ofySF>{O|ygQ*tee2j3$|EBb!+@?mW!9^* z0c&pinLR-nf}lu!AB<(6ZJ&OAPOSIIRz9Ef>Jb`DEfSMuur zqwn9bW9SL0XTQJSW~cC*Jo5j0J{D7Q&uKPbQ1j8fEP7B7T(Oq9P&XLuDS|A82|&oO zZ5I(T2bQO3-}*%tD4$tYoQMX}@2y^ug3DKuKv51ann2A!{@8AQpc}eDhNlKM_?Fqa z(q$N;>({`H1kE{7Inxw|abQ2GT-7%YuL{Qbo+IDIf&$lAUI~I0AdbDb9RfPO8#$`> zOrzMbm*5UkgbYncE7W2*#Qv=JAyx=0wX_Z(08vRm1<3x&Zx?@>(XodZ0aPL4uuQv| z88zQ0+uuM|(2fpHm!q%8i1tB=^%R2YHZD-l-{|yPmDc*_Xb5Zohyn2&s#NGMj=oj{ zJq6SZ(@Mm5G`ZR5vl!3g=uz5a2H*Qw`G5VdmfLDgI0LVe!K9FawhxhRF^!0TD{5GP zMsry%N+6Uf>>Gt6HE&*l5_HTxjB;dIyygkA*xx!C6qnxjo>l%%_ZMSQ z8(e=l4`qWI6;)5O_I&nx1BQl{IXOdo^FKi5hf~iaj|YEO0kd=CNl}o#LJ*NW)GB2< zrdrzj!nwxDqBo*G?2@r`bB}S~95{mL|BaaOlLlg`h&8D{1B5oQ?o@U!ADttZYrXb+ zEt^i`ZmiMJ8dyb-xZHeJzuu|9t9N#s(As&B@XfLjpIQ&JrU(z=*aPFgbg5{(J8K#3 zNMM_jeHxnhK-$DU7Pt4-TKMbRt0tMh{Q=S!s?+t{^}xuOg{0tTL>24&M2tcA-2-6| z7u}hPcvV5~!o=68pnblQNG~du++&sTK9LuTEvNAYH~tU_Cx)}BmbXi|+1^MP(gj+4 zfYL;-`V>B>Z$IXeV>R^fAQUO&^-0f09{23lceUalv6`Yt~csJXIAppK{ygSMKoHj-}UStVp-Wh>2_nRb!QfCMeXH+=y@hHS_~P zZ^`q{$D1e}ry|KQfyss;>E-vv)l6>Q6VyWQfS?Cud60l7W3?0#ncBBQNn;B`jl+F( zYY00`j!BW8+v_V)J^%Y%V=MM#OasrmEo}KG6px-o!qw5?3zhFDp+MqrCFjLA-EXg_ z*X|~2l_LqIF3_XzgUq`N)jLH%k3Djs39+Nz_B_FU{DTY$NyeROg@lo<9iJ+{W1810 zxC@CZ?OLen!31TypZk9EwaopklEeMoeyqrhH(kFU3WY?F)7jn(x7Q3OzmpQ_)N8fP zky$*mV?KRqbJ;n$i4C27(Hk%?Ya=t?-!ImXGk-YZp3eEq!DAYo)wwaYiz9=sG2k?W zm7O{K_$1~eqSHZuru||mton+u49&k<+EAy$P;|nKkj{bhS#Q|B!!w|dos5ltohcbW z?huRD4Xazf2`?>UJR|Q+nLlvS+)+EjST7XMr;O39^x0rZmQe>Zt{0LPrkP{4d-)8@ z7h4vaAouynaX2NJ)#Xkpx&#B>92_@yN`2Il<+!l!6jV4?64%Ok&R_#BL= zpr&5tPga~F@!aRl=0b#xo5LM$6b0~mAT*!i#=6^JvPQeacH&&0@Z5s_a@ICo=D15{ z6drpyFq1lLRF!1c%kPjcQlG}U`-@@2RubEWZ6gdQKY`$IJ7&Nh`0rVU*`#ub+5B=r zJXhjTv>0%O$Vsxu!bJdQuW96cvfxg5jl((q@lv>~!}UQqw@Y7UKmAX37J|s8{zq!p z_iE<#i+r1p-@ZN&zdXY^F_|VQe#`LuY{)p|wbvw)t@4d`1;A}jQ8su4h zT|n%tCk^}F)HTm|8ZYw0aR3xgL0O=GjnZLvy7oJkBuN%VF07~f?C(tK;Plt+f}+y2Z^FWD*gz1>|NdJ$U-wOOh=dAEY1^7XAFKC5zYH zfwvd_{#*rye!R*nGK|uXGqQWPQ!9G2pDx6jYrB9EhWZros;*}ZhHw5O4h>YN&FcNP zCp`-fh-3{Db&F8d z{WXeV>R5%ROd9Uqhuu3gz?R1w{#$&Utva@$DY?H1j0sE}4yXz4Q0ds~*s@t)$J<6I zL`G?YIp)Bp=b1W$x%Xm-93NdPf6|Z%UsjQ61}Eyk)S;~o^L_r>wM~K6H_eZN=c>!} zJxR|f92PteDUHJRrif_dzO}=5gx@kuV>mp8*$p2+`I`FMbQ2eIK|?W;eDjZ^6yWZE z&Q&S&C<>KPFAXr<|h zWSPMkdB0qvlShYf{pJu$m5QTjUCUPizvzSxQ(lbhJ}#k)c()o|q^b0~3!)2EXpqlI!*XOF zY!*x!Oj(7z(|+~)W!)w85FOrAO2Xhavcion0t2KWFw9u*S1e>7&NPw*_{ab$m#WvuIZ_8VssvB#N$a+=wg(Dq4bkubX^%r}^t zRP{9WZY>er1r7?b30S!ty`>ggM5RoJc*kx+bNbJH*IB8v z)=bsHzGL?WohONBMwQ@9p41XUaV?@IZgeGl#UlSuZKo-XVtwYNaMOQ3l%j zb%z?vJY4ANOgF7z=Uvkgvy9+ut66Qc z(PGaz`{b57RHQF2N}yCVUCD<%+Ui=$>lL+#>k{SwY|28ntpkc}+MRzO_5iU1iZ?n$ z8%$WP@s*uOVsU(!e`yf{v}?!hL6tLmW)lp7nW+G1mQRa_0EIuex~5+2*&*yPvN$<}FqqaI2b za{q*?&LxCBM0F^Ao~wnv4+rD3%QFZ1N=)_un1HyKp|1FJzkM#4mkSk0+D%s9rH|)3 zhh}F*!fe_i)RZ$^S8oLEV)bFijT1WG&yMi>5VEweIYJVHSPmR;b&OSb9Uo=lO4WDSTb4lF}Q*w3QT? z+|r(}OobnPDPrt@a zl0D~Mrs-fZrdxh?_^7&e2uYi=Ei0;fmZ&1C;ZgK>tWASizbs|jXGQqBM?dm>>#+^W zM_Ax0Q~2wdzcZfy2vrV&LOAO_#cmsP?{%)XZFXDM1ut`BavE~7DldgU3tzO5cx#hw zZYzTg&{*KaQi}RdGbE@mRd%6rtGz!qiVU8ZAfPL!=m){^Ghrc$P z$=*HSZE_@q+v&fI60Uw%CBUxy@-^G_qk$WoeM4{gtJFOE-L~e(0*KLfDRgJGx7=>^R zPu*!)xY=UIVWWwA#20weh^NeomR_B5P91rHB!7KIWBIoM7{-p@GfA*Q(ul%PuFzPn zo2E@oh%!?$MvoD6PPu&JgI$MEnmPPON2qWL&a-dYkR6A`88{XPGRM)OiRyQ_F=$IZ z8BSq!YG;h?#v-&^qR@T>*X%apm3sR6jaWEg*B8T7dYwKFC@|vsLW2`B!Wnw{Hl_W{AGU()Lmy+wW_URefajK=kJ&BuAgw%KY zr<)AMVz+Bka_uqiO~UlijLud~jnA~rCu&R&<@@Y%kMpzaTIifzduk{7#MHe8Jm1^_ z@A;FEqLQcq8lmaA9>w$$miam3^E08u7Q0N=xQkGyYU*x`GfCnsTbn_r!NZqaNB4F5 zbQNgROjj=l%&;{+GfXnvp#S!Lwhh@EdK5AA?C@ONrsLj*rCu{-*_=PQ6Vt<%y{&~Y zIuz9HnS=S;4@G=`%h#Yf{xeH!yRG->mA8cKW*c_9M4e@f7yNhgLiK#pZa22u)7D=G zZDuSI&A74xR6N(EP)I)TqDTag<4FQa!t{SpNGSerJRWzu_P(kG zre>3%bFX?S?hWjm&q|Es*c;r*UZ2~mMpR=;3ml)2vW~Jc7-T1Sp=83V_U2ys>mhv4 zpEfiJW6EA_JSFYV_Evd1R22jYT^nvLx}k_I^W!dO%TE7rRdwpX0_)Xz4M4lGfBtu* z`e2nY@bz-g=Oh!aL3{RNf)%LapO=4^{bl3I1vt|p)}E$Xp5*P*p3p@2nfyS|!oE!8 z?L%F`g-*PA)qPt_JK?vRa@gVQluz8o1{-_*^uPw-YjWO~GFkoCx<<3I2G zYZ)uN!I|cHy|JYOf{1^3xRwVoAthXcMu}!6mQo*S!|@sQVV>Tfmt8X+Hp2Vgn*#y< zQ~&B>0|F7`zXFkOg%6^}!;)*(`#IbT$D_f;)xovE)-Q?Z=Hx2eY77QT=dO?c{%yMc zQm|#x!5HLZU^rUi!E%&v(0H*%Fc=&cSY_H51Qf|ZstUZc9AFHu_V;=4octIMt~Crd zf4VHr+OG$f7qB1~PuM*s_L+Sug9{Z@o6k}E-7eY%8M_<*zQ^WSM(~GNe7N!7l@FOz zh}CgJKl!ktfg93Zq*%FADzN-DM)Ms$fxUF!^VTSYJZ_%UUPESH8?} z5nh{5h5L5-!GIRan;TZ!Pdm-}vNc__y!@}6Y%kuzwDYeN&bPg>v{~+lOIa#;GANF8 z2GhcSJ#xcICBNUUKp*~gx5+@fQRS6*5%#P1#?a>O#?zd?H`j$XknErDAGdgv{=Ety z;FEvYZde@=@Z8)zeF=>9#kI!5U`q1ChV<7{120yK?l>3x?y&hkZnu9v@9(w$&wn0& zg|)Ls{O6f~{4(YPyNU@r)0f0TU}tSiZ_wr?YT>Dm^v|=V(0GViA61Tqni|&q2Upt% zYp43n0DRl$mk;F!Zw0n}`v3Kzf9J0M_dh%xyS9J*pg*^T67*0zOy%dfIg&>lhRcBc zGm%;6rFP~dl>uJEW`627uxXrA-DVtmUZ8HxI}HlHohZ?I8zp%57z`#H&_LS&3gMi=)*%#IfCY+pN!&QX4lCr2(YRL`dE8NaGG3qQ=s|ZWLa8qgD}W5wjGP` z>9wj%8o=l}G4K_t%&{lOo1+E6pjov+J3nY{|NU(+X`*wZGr8Tb!+dClZ++e$!_xT@ zcN_X(THJpcMCJb%hs6JN)gXRQ=tJ|5zt3viCx7qsk9dq+cURlxSz;eh5OYpFn2+B0 zi=*?>l<2o=*I!QP*dtQR>s9JPz9MRg92F|(965))N5Vkw_XzlLXDB4H&sM?kax`-9lb9DMpB4Cfqu9V)_z(G0>ho>h z;tzVe>IcTqJk24fO?V%O>P(aL^7lt?oq%36n83h`b(X5p2MI?1i&~LxQWyb@O@W{? zm_UlvS`=)mEZ1g6x+m}!*hHU8!$<%bid!Iq=>Gz5C^)d)ivj~Ar5+6E zko8xk>GdUlw^=d#|I;emptki&ZC;oEe$SgQZg;#8-}~G1#qSuxYQs^yYoCOCE7 zBCr0}7W;3WFFM4N_&;2vu7AKouK*xdXRQrr(uTC^l`C?&cuhcF9ZApYcjf&YLf7e!slUSpLLese*}gtyF2$ zH3a5(RZQx8nmUt|e0KmhDCz44KIsj!Q>k+-V!mP~nF82*w?VfUWCA?BDmp&SyS0-+ zQ9@Tz?G5{FW1xeiQyZ^&3yW<p@5izd>{bM?{;*X+05`z^Jj+lkofv%BzpK!{_`s zfDT!FGQbMSDB@l(0l!50y43`IrlTZ{Wg50eDzy~MkdYccJ9ccjd0~MuhGuIi3mmp$ z{KUP&L(wqsm7*ymzC>Wtcv=2cR>sKRVJma-(AEz3^}`VqZay0|^)JlyFT4A1jlJLn%8i{iW#N*7dI-lh$^Zh{KK zcfLKz;&ruI(A$RY*CyzB26_%SOI-;LUC49K=5{zQ!7*#sJm#K(h;NJ*D8jVlfdadB za4bIffzZ^xD^I{LBM%B3hu@LH&%i%=@)$@HJ)a7`bDpR=%LiJg#Y7!DyE4-Shl&h-EB$Ca&|)V+dUs zPVoLh9ZEBP&u|ywe+#BWJ|9BI?kjJ<`yz6O%F^-~;=FWz;|+jokdA#TXFQV@+xE7E zU-QE(H!!Ah;7Z8H35+ET1bn#_>L=zIaC)rv8G*3d_EYRAs{Uf|*J8OqO1?%A!!I>C-1Tv;D-T60LJ< z%}O(G&E~s$rF@APrADt%Oy=0uigxHKZiSOUi$#o5ncA?D$$5awn(wu(v1ZLuQbjX| z_OxAPb|bOUo+Di^#*c^7JME93*ICd-gMv*1Y5(q3Gz5fx9VH!8Fs++1565ro`5ZA3 zm(3?*RuOeWDA>aS&rZ~V@}#Zqwu`HyB+W4pE~aqf|9|U17Prt zHc2-Y_mg7DcaT898sJ?|D*;Wbo9*Y@vOrh8E4^nTP7|-$+~bHrkGqGdvq2jA9<-CC z%92}FpyT9jwR3sLUCr&&8AZ1izsjBc%k@mf`YA{UEYgM}x&vKO?_ajlD3&V336SRH z*nh67{~KwV{e!ap7kl~lfBM|RaATg1c`$y*2vZOCke#5X*Qs_aQmVH~R`MNWLn$+Jh=pW?(SX2-F%JfB}BWYRczI<%SG_5@%LQv#9)l}Yli-qccr@3 zlr<#=hxbr^oQf|W&!gIr>EQyHvMD|{ytiI$Gf7;FZ8mFE(=M{K+)K_&wA4y&ye?*{ zopEHGl=@=9nZobCu#7r){&e%HL zLNYat%M`<{h;y47@vWR@?A;?kLTLHY2{*%-Ct z^Vh*mdA;Kd#`d@&Uk@pkF1rGH8Q*KYsL$C`jL)jdh(t8CU_+;*Kq&d-_jpE~2GY~j zRax&6tgEYA;@)@fR&eKru(z^eVm05^Dm@ou_$0YmyVfeud6`-=atI(Dxg+OB$5jh} zcT9}qE`?)RT2Epb9Eh@QKz@AuwydlS7aLm)Yy!^EZvZW_0Z#l!&C}@a7>N>8l|%!t z!&fMeAAb%EMBsDX`6T1P^%H85O5lGDfMfnT)h)5Np^wz@YX?WiY~Xyp80UcAE*9KI zosT)ue=K{R@8y9F-PyS~swkWX&Ip;=Fmfy`tg%KX^U-xMWVYC&vAJ1QQ}e0!?dfE` zg#8Ink6E31jiNP@2t4uk1n9TM@GIP@T8U-7-K^TT+NdZDe<=9oO@LyRCnK`?6>xF= z!MDtExE~mDzAnLv{boH@n5F;H?{nngV1}TMUQbl1PJL{3b@f$RT!&t@nf%sNb%C}M z%?PzWsi#KLgG4n{$9F(}VXna;N5)7}C){>pC`+x`)%KgO`}=?Zwe~AoSf@taa~95+ z$1}-Pu6Ea8wq?_69dDbG)5<+r1Uq>#tB19T0c$hSu*GH$E&}~9G2z5S9zTZtPZu5S zItvOi(gpT)X?eGltj@RH%pVnHeo5iF)=(=ZQH|wgVbm6`CKQ}3*IwsX^qxUvWZT6V z=k4MPN?DEW-cCEQz3weH&McR~Y*ePORWxw>h#sh~dW&budf7`vySY06YtjSfW@Gfc zUYaKD{1lQ)<$Aw+vW%!RIMQ@WP{ryUIGPy-Ib!d$Wtq$#;~9FNGRbtB89n1GSTY9Y5hlGE+U zL7LkeD%$`&?vMwt@!UvcHY# z*WkEmwtC~}Qr8Okk<0UphAb1Gbc=gn2w0u&#-hYKAk9zD zs9r+h>+5Tb!)pdd1u_5lyV3SBv)MM0?P+D@L{Ae7Rs$z;(FZ@wir3&}o#iimY2f0& z+gcB=-0S=E`>U3&+dRoLz%Zc6g;0NOG;3UvSrU5sF1>3Ly0WJmsPCCCQ0s9shkd?e zyLfV%&mRBNd-p2WBcrZ+EhlNimsnBtJq*UX52LlSd-+WJd=3e7mwWViPPpeG3U3M> zM3A3rcLt^H*uH5mKF=s9_vIB&kRiy4NiU9$Y8KDPIJdXu@V;fxZlh+KTqH0`hPFW{ z6MTePj7^{KX;xqtJCS;!6TDg&fc=<;{a_?B?;lRJXAooIjgu+Q9kj+97V3k~aNH(B zxhUJt);SASkub6QpID8@EOQXhzMg`SlPc@{t~*jdX2RM2hSrkXdO|L}T(dG;=Aavi z#%r=zV{nYDcdj8rRn(}~2fa*K&YyUYH9uhcu(PwX(AmMuZa5p!`{uA`3md^n(7xmY zYpvFN*ff1}YJoN}G?{$8z60&;Cg{rdCe{_;5IO1LwLwmqx$cv#04j)L3P-3y8jq+u zFCy|fz?`g^a9Xh~zYzCottVsa>)qXDpu>{HxEW{$ zHI^fZ0j4V~clg6|74cOBf}ORlOLF!9ap}bt<{2Q>)1t(@i|$;gGl$ZaV|9@PXxo?~A8g5$W#3&H!J*yE zQ_9FGzdJ8%x<&sM*3|QWaOuwE!F&EDG{4p=x;>tQIF6_NtV!o_f;AqKd z7VgHjoUuWnj8EFPTZ0$c3uUYOGC1$lsn3lFUx>?W**3Y~KHKGWNtj@-KG=}xK6uPo zq#ZEl{bGow<(_ydq~q3Jmy__}=I=RRu^LLH7R(&tTTA(=Aorv5O~EHONO%o7IXOij zBCt}En%8ghYV5)?x_@fA4_0`UzMqI+N=oYU(2$aLg(2+jT&s>A8_G<#$(|?juioC? zz<3iqviy!#kK;8Ph81@^ZEd3QasvZ2SmR_a+Z4V#P^4$M@*`%e!T0{|WT$%Y%W|5} z6LKM4)~~ghzIVwo@$@mO)lBRChpWH@2GO>=MwBNqws#v%kJ~DJdik_cGWq08tJMRynv^Owa+^q+COlz>3y%-74{pCO&)P_$v*$fASSq) z`c$?FPZQrmm-j^iqM?AyVv~A$SBy+JD1yRuu|&uvpl&QJBfZ|3_r){)l9!=qv&F6` z{>Kv;i06rQ5jaI7cB#vs4Uc6ijNA=b%ee1PRteM=>+nH&DhSGGXR?Wz){XZKUvyng z4ZPY72`>NW&~7OFR-xN5ZXM37fxwA%0MGMD$;illp@d5bq0oEEwGi(hmq_`RuIoc| z-h=7p%4j=X9D!|pIPR;kMGr%a*)`s&9P+(+|DKctueBeizbkrPy3u*^KkvRC$a*|) zy!edfr{po&w=`ZG5+WU)*XJ>eW#7?z~yvDx9zEe{s zd+AKvKad`9frt<$ra$x}!X7cV-Hd;(Qj7bYQdB|6c_X?BVTyR9{zbI1!!FR0s-p>Oon5 zHS|W3uGkLmtuclKGxRK88k)||$(H*7CW!bE&^5A<3cgeO1?$ODU?jcZvznk`vC!eq zJ8Q&eeiOMn-)@lSql4WL^CiN0_nJBJZ1(o-*uaVf&MiMA9ol5YsxxU(92HS3G~pfE zQ7SFP3~&S|Hh2m|8hUF?51`_|cWxK!h;|_j1|__C5)(Z?n^h)*e5OpsLN;i$d#lb& z6|DD^=7X)`nH8+H0`89cIlrh5r)SvjB-t`3zM>ssWItp0>S9z*q?Q`j;KYbQ1=)WR zxmL4FpJ3(@5r>cTE~&f@5s~aHcBKqw5!Z zD^Quau6UTaPpSpbafZ^M$64I;RFQS}c=81-b4paq2zCUL{72``*>uI8DyM8+cm>r- z_CszugNN-GKB?N1XAcOgO8)p@YP;sH12NG-)e;kRS!nN7BX>4Vj6==oZ#~XUp+mDZ&_eER`Yv19Tf@A8LW&la_cSqv$Cv zSE|0BVfQ?e=I;8Z$&z$)?A=w#la{FWM~sV7dc>D1y-R2LeV<07JO_*Kf?W&yZ>I_e zDU}b$inX+8$M$&%#g!*x=~pLgYoFn@d~`r*aZ8MMlZE3RS^n<+>u$jVL9$zwsl6q- zdwX}su*`=bJDNX}r`*QPf&tYHSzMiue+f?NSy0oz0`K#idmT_6EXNHb{ zLGK@u4`3;#gOq^4Z5_+!wotRu=(6EMZgGHE2Yu2S=QyG9e4Q;ZB^FU07^22uHAe4Z zv)KbuR2IwK5nD&VUWx$n+C~4Uszvr-h%dapx&(Eo7TN^INYq%QEoFMm`7iJ!{E00WGrf+GOSP)Iy)L$@3kv8K zg`K6AUsuvVz!;SHcV|0A)0$UV=NM(y_`uC9hdoNX>f5{-NaydJ6FSC_;jOK#bNb_A zN?Y-(T_WnPers+U&n7*dNeLVSkV}*L!4Er(n-2WfLCQa7=IhACt(jNoOPDh$HW?u+Pe%_9^FW?02&P%dZoPtZjARa|uVQk&f7r#;V zIl6cLeh#Ap!`RZW%E_LSzZQ00%veh_;{Lu5hN{?QEEd|27@Sna>KOq~<3j98%5Y<* zE5f?8s+q_SCb_{-f&nSrph6*!ab#LF>e@?=D74Tasf@jAIghP72|~`gG@q3>3*D`Z zuCIn_YAMw|=53vOs;Or44H%es+^7CBPq+x@utZRxMk8kUP2ZKivyq&l&+%Cvk<&N) zbW)h*OKa6a={qI~^Vez^$>(&W3%T|*%8ColXFZxe6Q;NR^eL^B@goh;%x(_#-u=vb z_t>+lj=7f|@7L2mYZ~i~df1L!Ue-N9-$AM?vY2k>MV@(TN#8eI%@s6s=;UCP`DyTb znCZ!${7s>(xPc&z!nHyk>%5a6xiGO)Plo6gSFTM-ssS<*(NGf{r=gZ!K`1q)*WO^k zCV`nBhr{yK(knl+7B?Rw<=Iai0Do(`GyT#e_;%#keI@1?B`>$=otUq(Qhbe95T#!x zdd5rBn)-+d>0#^mBhgU6)jyuWXmDAn3wXUCins?@C#;cR;Cg245*?jN3zJN9( ziTZP%`+`@iNd|K39b_!16nP}sZ2*|cFi!R!J;1rA0`3(>nQ7=1>P-u#2sdwgM!bTb z5Q;@tDj$r9>))-yACzgZY?Ei79G5iWgMNFR1GeNA|5KM&@>Kypab6!1FXO~^@EZl(;sRT|0t`Jb;nb6GaA5HLTI z<$ObRT3Q3GahBxq?gN41iULz}z0X*fz{Qjl-@Vx=A>UWzspu4>+S0<<{uqG>4=_4f z)TK8pu0WZBsy?+r{`9^1lYONR)02#)YoC4&UZx;k(?SOir#(g_StgW<7QlUw><+RZ zP$W0kG{e)S6b#Q8h+Aktp7b5Mo;*XnDBXV+vrYqfzi-a;-k#S{tJM5neYMEJuON0I zD!6AjpwyfpR<%5)M6goBC9Wm1l{eVb(;SH(zuCKxc90ZX=;w7mS#?}jb?xfECpJ*j4TDOMyT z*;lA>4R*%H#&?z7hcGbYn9>rWYDHR!$Cu0y@$L!B?dWVkVJi#_3}|J9Vt`y_E@-Bz zm(F4VSMRVd7GMB^JwWcffRZG#7$`_dNdoU@Y)_>;ry{EDaecNsZn}I|O9L7FJ6kmF z1Jnti=2rhSZiYd~D1c_jr}k?WXV(Zq$VnvYIWysh0?FnMlUJwaPY{bNstO!*-1XO#v@^r$V}SH06$ z$!}XEgM6JnQ4|a7&&l@=PR7{{ckm*;5#v_rO`V&CZzpe;GbSL_@QS&c%T|{rnqw9B zid@4zwoEI$lN`e9YD3$vMP=f%_9yltfWWoT?KA381lDKPq*M5cyZY`XJ8mJqPea&K zQV`r1w9V9R7W#Et)PrL>PPEZRG38rBr71mv`IT~mn%8qJ2(u|MS`4o>U90nq(_wvA z49e5!v$JGuC3iemQmoSTJqKq~Re?en8(+4TN6%~8I;yHLbJJjf@9DBBTuuk+VCdX; z5H&4?xYtGpuE#0359?%Vx+&(o&-J#(isC|xg&IHxqt+HWQNx7@a@?(+^$eWNfcVRAE$S)X z9?p>*1)z3J5+L>$FZ7z?E4ZDW8+f1MEfRcWWtaml*kSo~LQBM%;JcI0Ks>VeQis)t zj!4+V|9e7QAEn|A(P#t+*%FM@lF4Ott36YESj%2x06?<#}rE&SR zQ-)ay|EtsI&7*;2;|bCHNjRT0_9AnirD39fC9xdncDz!7J56=*^U|Cln<_#XFIzCf zZn)){B|aDUX#~;lyL~+45L$H7t%1a_qe2z2U{1Yx4FbHAiAmq*yqEA9-Z)Hg8 zxE^?>s*KEGd1)Xsogth{cIkLkqr9-E*|vgOejt0gX3S-0=y8}52=@g<2_fgCd8(z`_1yVz|$XLcxn*6!~8 z)okQrJ4nQ~k80Kmlaa|TCm~=3I_E}dywK}+Z|0k52?tSKZ4V2tf~R6vVe4=h&Tns7 z9+k>$SEg9=Z83$vxQ?UrKe=4-F-Hf7-t!0=(z|1XaO|^NaCWbB2O23VDqaCbpm%bT zyDwKvT>K%+$_YA=X9y$%z*shYvNay2kRebMxjvYwDCNwB-_ptlSrCa^iOAgr3~6f0 z)66Jqpi!W*-!HL`euRivB;ZRexp5B>Ekg3ET=0R8eUNAr`*+K&hLYdnt4P8&f^@MDrkc9k;1fIJ_U%e!-mcEmkE=#2mX z`DPyoht#p#4wI!m1ofBGdh5coSBQ(MTsYuQ#G zUbK!z%te!{pGpw!0ho;ZQK_W~hP@4f+imQpPYWkh2bD90-<=d{%ia?9PFsW-S++4S zFpQPy@yFdn3YMNn>>>GLZcdhylL~ohrdQF7Y@bbNhjpYg7_HYK)qE~3=g&k$jv7pbxkjjc1~<)AQb<&F8IG#EBi{-31Vp`lMJ(%C)sTTm*k&IOdV6^RyP3 z)|7-ijf@xOGCEuXZ>Og*6)q!{V$Ulg-xT7?wzWGLoi%jzY_j4POICJ-kL`rtMLPMi zJ`ZhC^(Kd-%eCKMGmmFk?X>(^MpBbBJ|MryWqtN4MpapdHbgvo0(k~DjYw$ELjlda zlDmA>2f>c!!+A!VVksqpYsiEYX=c?`t_*_45_=T1Ma0DCxKCV5Ws<-KEytrhBkL;d zrBIf+OJat->ORZauzbe+HIpQ@sn@MPDo4(|asRIf*TX)znOicVa@5fb~Rj`?aBfyrf&S+;vv1bts{SWi!$??ut7W+{W-(T z>}M=M}d>Jb1}R%ZXZ!oNF;ygYRTXebLt zRu2aui&M}#+Z=GeMccoRw zznXe)9}jm(o^CEhd(Q|&RUv%BF34ebgg3%nX9zE)Q7EtsvUR{-D>F!HPh$zdg#Q3@;M=~3M&HCB5?xA+a<)PA!8`# z(Rle%naO-x^;t}+>RX~~FU|y+2=nkIbCPBAnPR_FYv!L1XjC4Y+&Pr$%gG+h=hTqQ zHuv}X$&FEDfcuNm|58MAy05ixKR;NY)#+NW$W-FlZ0hFs;)rbXs`rJXLrspTEu->w zPYZn@PHoJ$2!yTkrZ;)kX)3pS=aRf#vl(qZ)seAfl#FhcE3)1m8Nxduh8|ZnDf@kj zm#S}}Vu0B?oGm_@JNn7BTO^#mlzS|t;5DeX&^^5;vf`&*X!HgK@C^Tw?3;geXW9(|DAnTbj^RiYbNH)hWE8Q0S;XJd)fmAi5QM zkmp=I5%mBX0bD#h(4L~3&Bb&(7J7NnYX%;{=yEQY9*D%~W zQL3{Eh$wE_1aps1iw|XsMb?vLLF|p>YxN!JpFT;kv|SkCTh4nSETFyhoNaQ+mj#fE z;>R2!r9bg|B5pep+nI)8jk_>{g{cRrF*XMT5nzk|SfBAk3cqFtFoIi_L?s5>-LmLorZa=5tqju&M@rT}-_9!3pP8_$%{%pSgu5 z4v$sj>93pPIPWGtKl69j@;iF7aA&9$EfZ@0wP@)*bge})$*BqqoY$0G;>2#~bGSv3 z-B>T9ainS>M2tGFaOR4O7bj886*!Xc+e8)ad|x!lawmIvWz|gaAt0I1 zD=#R!{}@u>Q+;kOy)ZEu-RaFvtB1TS#TD%ABOoAtAqjV9h`&NvEQ|Hv>sPq{?C95U z+?~t>1W7k@k|PGN6bBT*+=C*H7_oyXQy-+#QxaCf!op%z=Y1^g{rB;5XTBNhgTnW@ z01GKYAP{__Xuk(K{r2jVx`vPk@_Cal&?;Of2`GNXK~jysDrC9=h+~XtKeeCFdFGET zfqi~S`)FKPB{?oOcFfobyMfh=Mr~a!T1p>?a$SnFs?AQO%ri}`T^GM02BbwEZmw^< z23pPByW8tx8Z++~EVarDWtx>#%z8~6EcI9_)u+1s9>!_x<^#FEQn}5yivgGWke08V z0JS0Pzu?(8B(4FyJ`#wGGv=-7R)Qg8Csu6*$rSF8DNqxy>3K(pIs%PB$AFz~S;+GT z?3T_fJ7CvG``}Z^_0>1P)TAb~>ne~O)vkR zs}!bWyOd>8EIW9r?5}pxkWJIZfx$TZPYkA{tGCcS<>I@6bFykpJGn|!qD|E2@idzo zu{gG|^W-D7&KJcN{nHrfi=AuS?LrdLOv2Pzm(2Jsvg^@9UgfoSbO?Je2IfRPy-Pl{ zY=JAO^&^|8_zB!3EuRrqhM7wFQ}Q^(Wyl2fF-e7R`ixu|Xh+5RgK}HeSKi=vM5#8$ zMxI#iYjd1Hg&Ekcp0&<>36M$dZfA@#r(h*Q?kgob&t4?`5-lFHGbd{`ZA;bmHGha& zEku3|*po5yV0HM6=d`}eqItbn4Q}hD4Xxwq$$=hSj^)@*4nndQiR^6DRkNASz?J{%;FF}&WMJrKBZmPBvKKGqep67HwhZyDzki^P|cP7aTv}ce;e)cdUXM>c4rR)9l z2`pU)KS6Dt8*gcItQ)I~@W{Ndd9SCv)RWs;1iM^smJ8-^t1E(ndj4ZnWHYKO+aN#O zt6#w^s&9k|P6b-xU&gLSx@>=S+L)~JN^IO0#QPpP+rz*>D~~)w8wNf0GP1mhU3N}b zuXlHce{Ow7;tbPB&M@1JU{@l_7kvD7v2u^kl%M$)om9Xn!mL6w68AtPajV^kRo7sU zjpFhzD(Qmw59A_7o{3frBVf7Xt_z>BVn(1)HE3~^G?AeqY`OmzPlmC(q@{ECW~2`9VT+p-@}OmD?Q^R7`wJVIhYR$GOwskD^Y z!^0z{y4p#UD4PhieMU68v2smFNJtIT5HPh=CW?xRZk?l-=!oiufiAXRc!7u|y1AME zZQ9zsKPob^@^uv`g-~m#SmlnYJRisuEVT5WW=xk&e&(Jq7Idi>G3rn=8g z*-i=HB01Kubj|67se)Hs-c^D?VU6c-@N{1b+b8oKXiHyyJ zJ6Fap4(`8>v$>qQ)mHx;c`AF%!*)X+zPizs%pwbWpa38H-%uFt)vros zBDP}iWYI^>+@fhThg{g)=&lSB}B~X@GTI4^Cu?7 zWlTKm9-H5k+r#@i=sdU={ev>N=d}ALIH$LajZ33k45%R1*ea;7l!g%xcGUeQi5Fb_ zWm*3X&ySMWffnjA3kb13Y`3@k#0eDPHA@&^?Xd?4#a>K2*$tpxj^9CBBx%A+Ptxs*0j{Ipk3s~BCp;||)>;YZ~mFou;h3ABxmt|5Z160n{Rv8?Dv`!dg z#@bi5+F#er!K^B_19}B*F2#ns-QTqMF7M+5XHrxvD7O<`-IPWSrewJ_+tAb<-z8(C zkF{EA9cdu{blcd;lhCf&C3#g@p${TJ#Cee~x_sr1`HFL2| z(gnRgR-bGjfQ9DpyLq`PZw4y%K%YAwgqRqmJvMj3P?%2PJsraS(abYpkWS(yY?+KR z?d|%iP}$N|68)0Yl{e;~MGAk2lB0d7Q?Yh*bNSO`%P;edU{Wl#-*uRRlfR?L7}sS6 z(CeIexjy)qZay`tWDcf0vwxG3VZCCly=|e8<>Rs@qyQbj9GD(I%^%i-li$9ER`xvr zngqiL^K+kRgI!wYuJwWrw8blNh2L|8UI{Xl77-o@kQB}{mI;KS-|h^s*QR2FTWaO8 z%`z=yJm(aPb7teRDyh@@E1O2;CMUCWWh2^&hlfk>AMqP-8kuwV$X#C_w6MiC9|pW< zcWTE?l_S>D>}jP3F)9<1w?}j~kIPN(R>oLSTa*k(PapP0hIjL7iFVElG;hnN`)&+> zcIN|qfkz8*`uW0B$L&W~7j64_%n2RBABo697Ld+75Nv1_|08}ofEHpbIH2DqisO3` zrtpe3nzXMe+9O8Yi`zt-dFq$WrpzCPr=DExH4ktnwNW1^`aX+rkS8`x`>I>{+=;qt)kOs^Br4( zA++*oM$Ds#z!ikH0*klAL|>7iij(w3BWV%uXT6WU#8x}7NG#NYETNM^6&F6xaHe~p z$j(F;=#lKIZE?nCl^?PjVXIsa)-m~LD381xSP$-qICWk%pPISVSRb{Y&zHatw|4|6 zuq)l8tXxR-|C`_0(_izL%#NL%ZXs$jF>M|H(%R)oSLP_nH9P+~Ya&JY_w{R!?{%ri>{KTu%eHM>@8e$}wO#M0W`T1HA6Nh4 zm#>{(Jo(8JxSQqljct4C6*nE<)KNRzanH$@k7K2Otoqyk*EYG91GofjrCs%>J%;wc z%f$L?yhWC3>%={-1GX{V%(&iDy8KF<))CEhv%+QG&(GG`Y9D=jw(DPRV8<~!b9<($ zeL8Rrn%B$3kQ{4IU~zxUts;g3u5*n2%d%dcA;_5r7EK#QqbT3W0H zw$7PreBb5t_PHvuoX`TNf&*9tofFwue0Vh_i!2vB05%1>?H{^4nQs|-v-9#g`}(C~ ztiRHD(_N$tS)K!@G(T-=$+wA~xT{dBIFISOkze`0Ptz~6bee8|^f+$HvAqGktA6d& zSXuT;>NCqb>n&OSDyKIqiUF6lsK{Fu&z-ihVc+{Jq0_d#4_MA-XR;_+^lQeFiunl# z#XWD`ZeFyRXF2ETqx!{NrLKPW+9Gn}l7xeSU5Ml_>dUiti)#CHx0|OJ-nzDDrci6M zGVn$d`$Hj0TQ(k?JV&F?rP$-uFG*>Otv?rw9u#@;+~;xSKf5^+^R64szI?(^{PU+1 zu^S~kANMlZtnf_WoOU%b<6L6gkKM5zCtpWe#ck4^Gb#A8@7<~TPd(1t2e!?7)RN_K z_ZSmnmFar+C7I!Vs__O(=6QKt&)pF%webPR+tiP?7p~7dR=VD8U)#>uJ$1pHAFKV2 zUHI`X)bipT@B3M+(sMW#%5QTIXs=rOve!&B)XF;Opt{cQZmG|6CWOU)ddJOn^0WKzoS84T_Q9%2C%!T(WUs#^d$9A?M6V6kpa0&b;~!cf?~@#8 zZDgg{eW2G&JaX5+zSNv0C9j)o89n#qv6jF3`BP5o+@e41HqWI}yH~57{Ie$ZOp@gK z>z;L;Oiq?u@3P}oi+oKuCwH`~;LuJhU3+jz^V18s_EuYH2XGqm{f!$pCQP0jyf07b zr4O{PeBiK>0(fnkbTUOtIa&Q5Y+Gj9Xu~5Yd1*(o;BA?sPgVR@^!52a+y9}a<&I_N z?TJgj{V7Wqo_zUbmeVG$W8V@2uix`&(#yzhn(}G2PH}VW#zn0suX3)u_tW?3!}C_a z>L|9)ds)e}GZQV|0aspmexCN6@h5O`%Jv`oCarVbBr$?uVMZ5!o# z-Uq$$EqY*5R=)3je8&w7Sxex6@`HE>kpG2ud{mpRQt+R9-%KMHP;P4w2!Q6M+d>r8 z_bv~n*@Ddjw+BRcpewiJ<ae8q|6e1+`MaX*opWgNqH) zhXzhC?_dt}76RHh9d6@yU>yWnxG1elbsOCu{Ij2J7O!&qM+FN55O})!xvX Date: Tue, 21 Jan 2025 20:40:25 -0700 Subject: [PATCH 109/121] Use correct name for the jupyter notebook -- run all cells --- README.md | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/README.md b/README.md index 8fdeb54..c9618d5 100644 --- a/README.md +++ b/README.md @@ -147,7 +147,7 @@ loading and filtering gnomAD data. 3. Open the `explore_release_data.ipynb` notebook to learn how to load gnomAD release data. You can run all cells by clicking on the >> button in the toolbar (shown in the image below) or by selecting "Run All" from the "Cell" menu. - ![jupyter notebook -- run all cells](images/run_all_cells.png) + ![jupyter notebook -- run all cells](images/jupyter_run_all.png) 4. Explore the other notebooks to learn about additional functionalities and analyses you can perform with gnomAD data. From 8e1f73b22326f2a39477fb1a054d7391e3c5176e Mon Sep 17 00:00:00 2001 From: jkgoodrich <33063077+jkgoodrich@users.noreply.github.com> Date: Tue, 21 Jan 2025 22:03:57 -0700 Subject: [PATCH 110/121] Formatting and clean-up of the README.md --- README.md | 184 ++++++++++++++++++++++++++++-------------------------- 1 file changed, 96 insertions(+), 88 deletions(-) diff --git a/README.md b/README.md index c9618d5..57492ad 100644 --- a/README.md +++ b/README.md @@ -1,11 +1,14 @@ # gnomad-toolbox -This repository provides a set of Python functions to simplify working with gnomAD Hail Tables. It includes tools for -data access, filtering, and analysis. -**Disclaimer: This package is in its early stages of development, and we are actively working on improving it. There may -be bugs, and the API may change. We welcome feedback and contributions.** +![License](https://img.shields.io/github/license/broadinstitute/gnomad-toolbox) -## Repository structure +This repository provides a set of Python functions to simplify working with gnomAD Hail Tables. It includes tools for data access, filtering, and analysis. + +> **Disclaimer:** This package is in its early stages of development, and we are actively working on improving it. There may be bugs, and the API may change. Feedback and contributions are welcome. + +--- + +## Repository Structure ``` gnomad_toolbox/ │ @@ -16,69 +19,61 @@ gnomad_toolbox/ │ ├── coverage.py # Functions to filter variants or regions based on coverage thresholds. │ ├── frequency.py # Functions to filter variants by allele frequency thresholds. │ ├── pext.py # Functions to filter variants using predicted expression (pext) scores. -| ├── variant.py # Functions to filter to a specific variant or set of variants. +│ ├── variant.py # Functions to filter to a specific variant or set of variants. │ ├── vep.py # Functions to filter variants based on VEP (Variant Effect Predictor) annotations. │ ├── analysis/ │ ├── general.py # General analysis functions, such as summarizing variant statistics. │ ├── notebooks/ -│ ├── explore_release_data.ipynb # Jupyter notebook introducing the loading of gnomAD release data. -| |── intro_to_filtering_variant_data.ipynb # Jupyter notebook introducing the filtering of gnomAD variant data. -| |── dive_into_secondary_analyses.ipynb # Jupyter notebook introducing secondary analyses using gnomAD data. +│ ├── explore_release_data.ipynb # Guide to loading gnomAD release data. +│ ├── intro_to_filtering_variant_data.ipynb # Introduction to filtering gnomAD variants. +│ ├── dive_into_secondary_analyses.ipynb # Analyses with gnomAD data. ``` --- -## Setting Up Your Environment for Hail and gnomAD Toolbox +## Set Up Your Environment for Hail and gnomAD Toolbox -This guide provides step-by-step instructions to set up a working environment for -using Hail and the gnomAD Toolbox. +This guide provides step-by-step instructions to set up a working environment for using Hail and the gnomAD Toolbox. -**Disclaimer: We provide this guide to help you set up your environment, but we cannot -guarantee that it will work on all systems. If you encounter any issues, you can -reach out to us on the [gnomAD Forum](https://discuss.gnomad.broadinstitute.org), and -if it is something that we have come across before, we will try to help you out.** +> **Note:** We provide this guide to help you set up your environment, but we cannot guarantee that it will work on all systems. If you encounter any issues, you can reach out to us on the [gnomAD Forum](https://discuss.gnomad.broadinstitute.org), and if it is something that we have come across before, we will try to help you out. ### Prerequisites -Before starting, ensure you have the following: -* Administrator access to your system to install software. -* Internet connection for downloading dependencies. -* **Note: Hail 0.2.127+ requires Java 8 or Java 11 and jupyter labs requires Java -11+, and if you have an Apple M1 or M2, you must have arm64 Java installed, you -can first check your Java version by running:** - ```commandline - java -version - ``` - and check if you have the arm64 Java by running: - ```commandline - file $JAVA_HOME/bin/java - ``` - If you don't have the arm64 Java, you can find it [here](https://www.azul.com/downloads/?os=macos&architecture=arm-64-bit&package=jre#zulu) +Ensure you have the following: +- Administrator access to your system to install software. +- Internet connection for downloading dependencies. + +> **Note:** Hail 0.2.127+ requires Java 8 or Java 11. If you use an Apple M1/M2 chip, you must have arm64 Java installed. Verify your setup: +> ```commandline +> java -version +> file $JAVA_HOME/bin/java +> ``` +If you don’t have arm64 Java, download it [here](https://www.azul.com/downloads/?os=macos&architecture=arm-64-bit&package=jre#zulu). + +--- ### Install Miniconda -Miniconda is a lightweight distribution of Conda that includes just Conda and its dependencies. -1. Download Miniconda for your system from the [official website](https://docs.anaconda.com/miniconda/install/). -2. Follow the installation instructions for your operating system: - * Linux/macOS: Run the installer script in your terminal: - ```commandline - bash Miniconda3-latest-Linux-x86_64.sh - ``` - * Windows: Run the installer executable and follow the installation wizard. - **Note: Our team has not tested the gnomad-toolbox on Windows, so we cannot guarantee that it will - work as expected or support any issues that may arise.** -3. Confirm the installation by running: + +Miniconda is a lightweight distribution of Conda. + +1. Download Miniconda from the [official website](https://docs.anaconda.com/miniconda/install/). +2. Follow the installation instructions described on the download page for your operating system. +3. Verify installation: ```commandline conda --version ``` +--- + ### Create a Conda Environment -1. Create a new Conda environment with a specific version of Python: + +1. Create a new environment with a specified Python version: ```commandline conda create -n gnomad-toolbox python=3.11 ``` -2. Activate the Conda environment: +2. Activate the environment: ```commandline conda activate gnomad-toolbox ``` @@ -91,12 +86,13 @@ Miniconda is a lightweight distribution of Conda that includes just Conda and it ```commandline pip install git+https://github.com/broadinstitute/gnomad-toolbox@main ``` - Note: If you encounter an error like: `Error: pg_config executable not found.`, you may need to install the `postgresql` package: - ```commandline - conda install postgresql - ``` + > **Note:** If you encounter an error like: `Error: pg_config executable not found`, you may need to install the `postgresql` package: + > ```commandline + > conda install postgresql + > ``` ### Verify the Setup + Start a Python shell and test if Hail and gnomad_toolbox are working: ```python import hail as hl @@ -107,63 +103,75 @@ print("Hail and gnomad_toolbox setup is complete!") --- -## Accessing gnomAD Data Locally with example notebooks -If you already have experience with gcloud and have no problem running these notebooks, -you can skip this section. +## Access gnomAD Data Locally with example notebooks + +If you already have experience with gcloud and have no problem running these notebooks, you can skip this section. ### Install the Cloud Storage Connector -Hail uses the Google Cloud Storage Connector to read and write data from Google Cloud Storage. The easiest way to -install the connector is to use the `install-gcs-connector` script provided by the Broad Institute: + +Hail uses the Google Cloud Storage Connector to read and write data from Google Cloud Storage. The easiest way to install the connector is to use the `install-gcs-connector` script provided by the Broad Institute: ```commandline curl -sSL https://broad.io/install-gcs-connector | python3 - --auth-type UNAUTHENTICATED ``` -### Using the Example Notebooks -The gnomAD tool-box package includes example notebooks to help you get started with -loading and filtering gnomAD data. +### Use the Example Notebooks -1. Run the `copy-gnomad-toolbox-notebooks` command to copy the example notebooks to a new directory: - ```commandline - copy-gnomad-toolbox-notebooks /path/to/copy/notebooks - ``` - Note: If the specified directory already exists, you will need to provide a different path, or if you want to - overwrite the existing directory, you will need to add the `--overwrite` flag: +The gnomAD tool-box package includes example notebooks to help you get started with loading and filtering gnomAD data. + +1. Copy example notebooks to a new directory: ```commandline - copy-gnomad-toolbox-notebooks /path/to/copy/notebooks --overwrite + copy-gnomad-toolbox-notebooks /path/to/copy/notebooks/to ``` - -2. Use the `gnomad-toolbox-jupyter` command to start a Jupyter server: - * To start jupyter Notebook: - ```commandline - gnomad-toolbox-jupyter notebook - ``` - * To start jupyter Lab: - ```commandline - gnomad-toolbox-jupyter lab - ``` - - These commands will start a Jupyter notebook/lab server and open a new tab in your default web browser. The notebook - directory containing the example notebooks will be displayed. - -3. Open the `explore_release_data.ipynb` notebook to learn how to load gnomAD release data. You can run all cells by -clicking on the >> button in the toolbar (shown in the image below) or by selecting "Run All" from the "Cell" menu. - ![jupyter notebook -- run all cells](images/jupyter_run_all.png) - -4. Explore the other notebooks to learn about additional functionalities and analyses you can perform with gnomAD data. + > **Note:** If the specified directory already exists, you will need to provide a different path, or if you want to overwrite the existing directory, you will need to add the `--overwrite` flag: + > ```commandline + > copy-gnomad-toolbox-notebooks /path/to/copy/notebooks/to --overwrite + > ``` + +2. Start Jupyter with gnomad-toolbox specific configurations: + - jupyter Notebook: + ```commandline + gnomad-toolbox-jupyter notebook + ``` + - jupyter Lab: + ```commandline + gnomad-toolbox-jupyter lab + ``` + + > **Note:** These commands will start a Jupyter notebook/lab server and open a new tab in your default web browser. The notebook directory containing the example notebooks will be displayed. + +3. Open the `explore_release_data.ipynb` notebook to learn how to load gnomAD release data: + - Run all cells by clicking on the >> button in the toolbar (shown in the image below) or by selecting "Run All" from the "Cell" menu. + ![jupyter notebook -- run all cells](images/jupyter_run_all.png) + +4. Explore the other notebooks: + - `intro_to_filtering_variant_data.ipynb`: Introduction to filtering variants. + - `dive_into_secondary_analyses.ipynb`: Examples of some simple analyses using gnomAD data. 5. Try adding your own queries to the notebooks to explore the data further. -**WARNING: you should avoid running queries on the full dataset as it may take a long time.** +> **WARNING:** Avoid running queries on the full dataset as it may take a long time. --- ## Resources ### gnomAD: - * [gnomAD Toolbox Documentation](https://broadinstitute.github.io/gnomad-toolbox/) - * [gnomAD Browser](https://gnomad.broadinstitute.org/) - * [gnomAD Download Page](https://gnomad.broadinstitute.org/downloads) - * [gnomAD Forum](https://discuss.gnomad.broadinstitute.org) +- [gnomAD Toolbox Documentation](https://broadinstitute.github.io/gnomad-toolbox/) +- [gnomAD Browser](https://gnomad.broadinstitute.org/) +- [gnomAD Download Page](https://gnomad.broadinstitute.org/downloads) +- [gnomAD Forum](https://discuss.gnomad.broadinstitute.org) ### Hail: - * [Hail Documentation](https://hail.is/docs/0.2/index.html) - * [Hail Discussion Forum](https://discuss.hail.is/) +- [Hail Documentation](https://hail.is/docs/0.2/index.html) +- [Hail Discussion Forum](https://discuss.hail.is/) + +--- + +## Contributing + +We welcome contributions! Please submit issues and pull requests on our [GitHub repository](https://github.com/broadinstitute/gnomad-toolbox). + +--- + +## License + +This project is licensed under the BSD 3-Clause License - see the [LICENSE](LICENSE) file for details. From 47d54faa032c9f9732329ec2f4960c1fc4d65244 Mon Sep 17 00:00:00 2001 From: jkgoodrich <33063077+jkgoodrich@users.noreply.github.com> Date: Tue, 21 Jan 2025 23:10:45 -0700 Subject: [PATCH 111/121] A bit more README.md clean-up --- README.md | 147 +++++++++++++++++++++++++++++------------------------- 1 file changed, 78 insertions(+), 69 deletions(-) diff --git a/README.md b/README.md index 57492ad..b54b674 100644 --- a/README.md +++ b/README.md @@ -1,58 +1,59 @@ -# gnomad-toolbox +# gnomad-toolbox: Simplifying Access and Analysis of gnomAD Data ![License](https://img.shields.io/github/license/broadinstitute/gnomad-toolbox) -This repository provides a set of Python functions to simplify working with gnomAD Hail Tables. It includes tools for data access, filtering, and analysis. +The gnomAD Toolbox is a Python package designed to streamline the use of gnomAD Hail Tables. The Genome Aggregation Database (gnomAD) is a widely used resource for understanding genetic variation, offering large-scale data on millions of variants across diverse populations. This toolbox simplifies tasks like loading, filtering, and analyzing gnomAD data, making it more accessible to researchers. -> **Disclaimer:** This package is in its early stages of development, and we are actively working on improving it. There may be bugs, and the API may change. Feedback and contributions are welcome. +> **Disclaimer:** This package is in its early stages of development, and we are actively working on improving it. There may be bugs, and the API is subject to change. Feedback and contributions are highly encouraged. --- ## Repository Structure + +The package is organized as follows: + ``` gnomad_toolbox/ │ ├── load_data.py # Functions to load gnomAD release Hail Tables. │ -├── filtering/ -│ ├── constraint.py # Functions to filter constraint metrics (e.g., observed/expected ratios). -│ ├── coverage.py # Functions to filter variants or regions based on coverage thresholds. -│ ├── frequency.py # Functions to filter variants by allele frequency thresholds. -│ ├── pext.py # Functions to filter variants using predicted expression (pext) scores. -│ ├── variant.py # Functions to filter to a specific variant or set of variants. -│ ├── vep.py # Functions to filter variants based on VEP (Variant Effect Predictor) annotations. +├── filtering/ # Modules for filtering gnomAD data. +│ ├── constraint.py # Filter by constraint metrics (e.g., observed/expected ratios). +│ ├── coverage.py # Filter by coverage thresholds. +│ ├── frequency.py # Filter by allele frequency thresholds. +│ ├── pext.py # Filter by predicted expression (pext) scores. +│ ├── variant.py # Filter specific variants or sets of variants. +│ ├── vep.py # Filter by VEP (Variant Effect Predictor) annotations. │ -├── analysis/ -│ ├── general.py # General analysis functions, such as summarizing variant statistics. +├── analysis/ # Analysis functions. +│ ├── general.py # General-purpose analyses, such as summarizing variant statistics. │ -├── notebooks/ -│ ├── explore_release_data.ipynb # Guide to loading gnomAD release data. -│ ├── intro_to_filtering_variant_data.ipynb # Introduction to filtering gnomAD variants. -│ ├── dive_into_secondary_analyses.ipynb # Analyses with gnomAD data. +├── notebooks/ # Example Jupyter notebooks. +│ ├── explore_release_data.ipynb # Guide to loading gnomAD release data. +│ ├── intro_to_filtering_variant_data.ipynb # Introduction to filtering gnomAD variants. +│ ├── dive_into_secondary_analyses.ipynb # Secondary analyses using gnomAD data. ``` --- ## Set Up Your Environment for Hail and gnomAD Toolbox -This guide provides step-by-step instructions to set up a working environment for using Hail and the gnomAD Toolbox. +This section provides step-by-step instructions to set up a working environment for using Hail and the gnomAD Toolbox. > **Note:** We provide this guide to help you set up your environment, but we cannot guarantee that it will work on all systems. If you encounter any issues, you can reach out to us on the [gnomAD Forum](https://discuss.gnomad.broadinstitute.org), and if it is something that we have come across before, we will try to help you out. ### Prerequisites -Ensure you have the following: -- Administrator access to your system to install software. -- Internet connection for downloading dependencies. - -> **Note:** Hail 0.2.127+ requires Java 8 or Java 11. If you use an Apple M1/M2 chip, you must have arm64 Java installed. Verify your setup: -> ```commandline -> java -version -> file $JAVA_HOME/bin/java -> ``` -If you don’t have arm64 Java, download it [here](https://www.azul.com/downloads/?os=macos&architecture=arm-64-bit&package=jre#zulu). - ---- +Before installing the toolbox, ensure the following: +- Administrator access to install software. +- A working Python >3.9 environment. +- Java **8** or Java **11** for Hail. + > **Note:** If you are using an Apple M1/M2 chip, you must have arm64 Java installed. Verify your Java installation: + > ```bash + > java -version + > file $JAVA_HOME/bin/java + > ``` + > If you need arm64 Java, download it [here](https://www.azul.com/downloads/?os=macos&architecture=arm-64-bit&package=jre#zulu). ### Install Miniconda @@ -65,35 +66,33 @@ Miniconda is a lightweight distribution of Conda. conda --version ``` ---- +### Set Up a Conda Environment -### Create a Conda Environment +Create and activate a new environment with a specified Python version for the gnomAD Toolbox: +```commandline +conda create -n gnomad-toolbox python=3.11 +conda activate gnomad-toolbox +``` + +### Install gnomAD Toolbox +- To install from PyPI: + ```commandline + pip install gnomad-toolbox + ``` +- To install the latest development version from GitHub: + ```commandline + pip install git+https://github.com/broadinstitute/gnomad-toolbox@main + ``` + +> **Troubleshooting:** If you encounter an error such as `Error: pg_config executable not found`, install the `postgresql` package: +> ```commandline +> conda install postgresql +> ``` -1. Create a new environment with a specified Python version: - ```commandline - conda create -n gnomad-toolbox python=3.11 - ``` -2. Activate the environment: - ```commandline - conda activate gnomad-toolbox - ``` -3. Install the gnomad-toolbox package and its dependencies: - * To install the latest version from PyPI: - ```commandline - pip install gnomad-toolbox - ``` - * To install the most up-to-date version from GitHub: - ```commandline - pip install git+https://github.com/broadinstitute/gnomad-toolbox@main - ``` - > **Note:** If you encounter an error like: `Error: pg_config executable not found`, you may need to install the `postgresql` package: - > ```commandline - > conda install postgresql - > ``` -### Verify the Setup +### Verify the Installation -Start a Python shell and test if Hail and gnomad_toolbox are working: +Start a Python shell and ensure that Hail and the gnomAD Toolbox are set up correctly: ```python import hail as hl import gnomad_toolbox @@ -105,7 +104,21 @@ print("Hail and gnomad_toolbox setup is complete!") ## Access gnomAD Data Locally with example notebooks -If you already have experience with gcloud and have no problem running these notebooks, you can skip this section. +> **Note:** If you already have experience with gcloud and have no problem running these notebooks, you can skip this section. + +The gnomAD Toolbox includes Jupyter notebooks to help you get started with gnomAD data: + +- **Explore Release Data:** + - Learn how to load and inspect gnomAD release data. + - Notebook: `explore_release_data.ipynb` + +- **Filter Variants:** + - Understand how to filter variants using different criteria. + - Notebook: `intro_to_filtering_variant_data.ipynb` + +- **Perform Secondary Analyses:** + - Explore more advanced analyses using gnomAD data. + - Notebook: `dive_into_secondary_analyses.ipynb` ### Install the Cloud Storage Connector @@ -114,25 +127,23 @@ Hail uses the Google Cloud Storage Connector to read and write data from Google curl -sSL https://broad.io/install-gcs-connector | python3 - --auth-type UNAUTHENTICATED ``` -### Use the Example Notebooks - -The gnomAD tool-box package includes example notebooks to help you get started with loading and filtering gnomAD data. +### Copy and Open the Notebooks -1. Copy example notebooks to a new directory: +1. Copy the notebooks to a directory of your choice: ```commandline - copy-gnomad-toolbox-notebooks /path/to/copy/notebooks/to + copy-gnomad-toolbox-notebooks /path/to/your/notebooks ``` > **Note:** If the specified directory already exists, you will need to provide a different path, or if you want to overwrite the existing directory, you will need to add the `--overwrite` flag: > ```commandline - > copy-gnomad-toolbox-notebooks /path/to/copy/notebooks/to --overwrite + > copy-gnomad-toolbox-notebooks /path/to/your/notebooks --overwrite > ``` 2. Start Jupyter with gnomad-toolbox specific configurations: - - jupyter Notebook: + - For Jupyter Notebook: ```commandline gnomad-toolbox-jupyter notebook ``` - - jupyter Lab: + - For Jupyter Lab: ```commandline gnomad-toolbox-jupyter lab ``` @@ -143,12 +154,10 @@ The gnomAD tool-box package includes example notebooks to help you get started w - Run all cells by clicking on the >> button in the toolbar (shown in the image below) or by selecting "Run All" from the "Cell" menu. ![jupyter notebook -- run all cells](images/jupyter_run_all.png) -4. Explore the other notebooks: - - `intro_to_filtering_variant_data.ipynb`: Introduction to filtering variants. - - `dive_into_secondary_analyses.ipynb`: Examples of some simple analyses using gnomAD data. +4. Explore the other notebooks described above. 5. Try adding your own queries to the notebooks to explore the data further. -> **WARNING:** Avoid running queries on the full dataset as it may take a long time. + > **WARNING:** Avoid running queries on the full dataset as it may take a long time. --- @@ -168,10 +177,10 @@ The gnomAD tool-box package includes example notebooks to help you get started w ## Contributing -We welcome contributions! Please submit issues and pull requests on our [GitHub repository](https://github.com/broadinstitute/gnomad-toolbox). +We welcome contributions to the gnomAD Toolbox! See the [CONTRIBUTING.md](CONTRIBUTING.md) file for more information. --- ## License -This project is licensed under the BSD 3-Clause License - see the [LICENSE](LICENSE) file for details. +This project is licensed under the BSD 3-Clause License. See the [LICENSE](LICENSE) file for details. From efe069b9309c5537b6607f4293fec80f0a275dd7 Mon Sep 17 00:00:00 2001 From: jkgoodrich <33063077+jkgoodrich@users.noreply.github.com> Date: Wed, 22 Jan 2025 08:14:53 -0700 Subject: [PATCH 112/121] Update the Java prereq section --- README.md | 27 ++++++++++++++------------- 1 file changed, 14 insertions(+), 13 deletions(-) diff --git a/README.md b/README.md index b54b674..1e0b768 100644 --- a/README.md +++ b/README.md @@ -40,20 +40,20 @@ gnomad_toolbox/ This section provides step-by-step instructions to set up a working environment for using Hail and the gnomAD Toolbox. -> **Note:** We provide this guide to help you set up your environment, but we cannot guarantee that it will work on all systems. If you encounter any issues, you can reach out to us on the [gnomAD Forum](https://discuss.gnomad.broadinstitute.org), and if it is something that we have come across before, we will try to help you out. +> We provide this guide to help you set up your environment, but we cannot guarantee that it will work on all systems. If you encounter any issues, you can reach out to us on the [gnomAD Forum](https://discuss.gnomad.broadinstitute.org), and if it is something that we have come across before, we will try to help you out. ### Prerequisites Before installing the toolbox, ensure the following: - Administrator access to install software. - A working Python >3.9 environment. -- Java **8** or Java **11** for Hail. - > **Note:** If you are using an Apple M1/M2 chip, you must have arm64 Java installed. Verify your Java installation: - > ```bash - > java -version - > file $JAVA_HOME/bin/java - > ``` - > If you need arm64 Java, download it [here](https://www.azul.com/downloads/?os=macos&architecture=arm-64-bit&package=jre#zulu). +- Java **11**. + > For macOS: [Hail recommends](https://hail.is/docs/0.2/install/macosx.html) using a packaged installation from [Azul](https://www.azul.com/downloads/?version=java-11-lts&os=macos&package=jdk&show-old-builds=true) or using [Homebrew](https://brew.sh/): + > ```commandline + > brew tap homebrew/cask-versions + > brew install --cask temurin8 + > ``` + > Make sure to choose a Java installation with a compatible architecture (Can be found in “Apple Menu > About This Mac”), Apple M1/M2 must use an “arm64” Java, otherwise use an “x86_64” Java. ### Install Miniconda @@ -102,9 +102,7 @@ print("Hail and gnomad_toolbox setup is complete!") --- -## Access gnomAD Data Locally with example notebooks - -> **Note:** If you already have experience with gcloud and have no problem running these notebooks, you can skip this section. +## Available Example Notebooks The gnomAD Toolbox includes Jupyter notebooks to help you get started with gnomAD data: @@ -120,6 +118,9 @@ The gnomAD Toolbox includes Jupyter notebooks to help you get started with gnomA - Explore more advanced analyses using gnomAD data. - Notebook: `dive_into_secondary_analyses.ipynb` +## Run the Example Notebooks Locally +> If you already have experience with Google Cloud and using Jupyter notebooks, you can skip this section and use the notebooks in your preferred environment. + ### Install the Cloud Storage Connector Hail uses the Google Cloud Storage Connector to read and write data from Google Cloud Storage. The easiest way to install the connector is to use the `install-gcs-connector` script provided by the Broad Institute: @@ -133,7 +134,7 @@ curl -sSL https://broad.io/install-gcs-connector | python3 - --auth-type UNAUTHE ```commandline copy-gnomad-toolbox-notebooks /path/to/your/notebooks ``` - > **Note:** If the specified directory already exists, you will need to provide a different path, or if you want to overwrite the existing directory, you will need to add the `--overwrite` flag: + > If the specified directory already exists, you will need to provide a different path, or if you want to overwrite the existing directory, you will need to add the `--overwrite` flag: > ```commandline > copy-gnomad-toolbox-notebooks /path/to/your/notebooks --overwrite > ``` @@ -148,7 +149,7 @@ curl -sSL https://broad.io/install-gcs-connector | python3 - --auth-type UNAUTHE gnomad-toolbox-jupyter lab ``` - > **Note:** These commands will start a Jupyter notebook/lab server and open a new tab in your default web browser. The notebook directory containing the example notebooks will be displayed. + > These commands will start a Jupyter notebook/lab server and open a new tab in your default web browser. The notebook directory containing the example notebooks will be displayed. 3. Open the `explore_release_data.ipynb` notebook to learn how to load gnomAD release data: - Run all cells by clicking on the >> button in the toolbar (shown in the image below) or by selecting "Run All" from the "Cell" menu. From f8fac364c997c8bfcc8a88bf5108d69bd9b11cba Mon Sep 17 00:00:00 2001 From: jkgoodrich <33063077+jkgoodrich@users.noreply.github.com> Date: Wed, 22 Jan 2025 08:20:09 -0700 Subject: [PATCH 113/121] Wrap lines for easier reading --- README.md | 37 ++++++++++++++++++++++++++----------- 1 file changed, 26 insertions(+), 11 deletions(-) diff --git a/README.md b/README.md index 1e0b768..d845e6a 100644 --- a/README.md +++ b/README.md @@ -2,9 +2,13 @@ ![License](https://img.shields.io/github/license/broadinstitute/gnomad-toolbox) -The gnomAD Toolbox is a Python package designed to streamline the use of gnomAD Hail Tables. The Genome Aggregation Database (gnomAD) is a widely used resource for understanding genetic variation, offering large-scale data on millions of variants across diverse populations. This toolbox simplifies tasks like loading, filtering, and analyzing gnomAD data, making it more accessible to researchers. +The gnomAD Toolbox is a Python package designed to streamline the use of gnomAD Hail Tables. The Genome Aggregation +Database (gnomAD) is a widely used resource for understanding genetic variation, offering large-scale data on millions +of variants across diverse populations. This toolbox simplifies tasks like loading, filtering, and analyzing gnomAD +data, making it more accessible to researchers. -> **Disclaimer:** This package is in its early stages of development, and we are actively working on improving it. There may be bugs, and the API is subject to change. Feedback and contributions are highly encouraged. +> **Disclaimer:** This package is in its early stages of development, and we are actively working on improving it. +> There may be bugs, and the API is subject to change. Feedback and contributions are highly encouraged. --- @@ -40,7 +44,9 @@ gnomad_toolbox/ This section provides step-by-step instructions to set up a working environment for using Hail and the gnomAD Toolbox. -> We provide this guide to help you set up your environment, but we cannot guarantee that it will work on all systems. If you encounter any issues, you can reach out to us on the [gnomAD Forum](https://discuss.gnomad.broadinstitute.org), and if it is something that we have come across before, we will try to help you out. +> We provide this guide to help you set up your environment, but we cannot guarantee that it will work on all systems. +> If you encounter any issues, you can reach out to us on the [gnomAD Forum](https://discuss.gnomad.broadinstitute.org), +> and if it is something that we have come across before, we will try to help you out. ### Prerequisites @@ -48,12 +54,15 @@ Before installing the toolbox, ensure the following: - Administrator access to install software. - A working Python >3.9 environment. - Java **11**. - > For macOS: [Hail recommends](https://hail.is/docs/0.2/install/macosx.html) using a packaged installation from [Azul](https://www.azul.com/downloads/?version=java-11-lts&os=macos&package=jdk&show-old-builds=true) or using [Homebrew](https://brew.sh/): + > For macOS: [Hail recommends](https://hail.is/docs/0.2/install/macosx.html) using a packaged installation from + > [Azul](https://www.azul.com/downloads/?version=java-11-lts&os=macos&package=jdk&show-old-builds=true) or using + > [Homebrew](https://brew.sh/): > ```commandline > brew tap homebrew/cask-versions > brew install --cask temurin8 > ``` - > Make sure to choose a Java installation with a compatible architecture (Can be found in “Apple Menu > About This Mac”), Apple M1/M2 must use an “arm64” Java, otherwise use an “x86_64” Java. + > Make sure to choose a Java installation with a compatible architecture (Can be found in “Apple Menu > About This + > Mac”), Apple M1/M2 must use an “arm64” Java, otherwise use an “x86_64” Java. ### Install Miniconda @@ -84,7 +93,8 @@ conda activate gnomad-toolbox pip install git+https://github.com/broadinstitute/gnomad-toolbox@main ``` -> **Troubleshooting:** If you encounter an error such as `Error: pg_config executable not found`, install the `postgresql` package: +> **Troubleshooting:** If you encounter an error such as `Error: pg_config executable not found`, install the +> `postgresql` package: > ```commandline > conda install postgresql > ``` @@ -119,11 +129,13 @@ The gnomAD Toolbox includes Jupyter notebooks to help you get started with gnomA - Notebook: `dive_into_secondary_analyses.ipynb` ## Run the Example Notebooks Locally -> If you already have experience with Google Cloud and using Jupyter notebooks, you can skip this section and use the notebooks in your preferred environment. +> If you already have experience with Google Cloud and using Jupyter notebooks, you can skip this section and use the +> notebooks in your preferred environment. ### Install the Cloud Storage Connector -Hail uses the Google Cloud Storage Connector to read and write data from Google Cloud Storage. The easiest way to install the connector is to use the `install-gcs-connector` script provided by the Broad Institute: +Hail uses the Google Cloud Storage Connector to read and write data from Google Cloud Storage. The easiest way to +install the connector is to use the `install-gcs-connector` script provided by the Broad Institute: ```commandline curl -sSL https://broad.io/install-gcs-connector | python3 - --auth-type UNAUTHENTICATED ``` @@ -134,7 +146,8 @@ curl -sSL https://broad.io/install-gcs-connector | python3 - --auth-type UNAUTHE ```commandline copy-gnomad-toolbox-notebooks /path/to/your/notebooks ``` - > If the specified directory already exists, you will need to provide a different path, or if you want to overwrite the existing directory, you will need to add the `--overwrite` flag: + > If the specified directory already exists, you will need to provide a different path, or if you want to overwrite + > the existing directory, you will need to add the `--overwrite` flag: > ```commandline > copy-gnomad-toolbox-notebooks /path/to/your/notebooks --overwrite > ``` @@ -149,10 +162,12 @@ curl -sSL https://broad.io/install-gcs-connector | python3 - --auth-type UNAUTHE gnomad-toolbox-jupyter lab ``` - > These commands will start a Jupyter notebook/lab server and open a new tab in your default web browser. The notebook directory containing the example notebooks will be displayed. + > These commands will start a Jupyter notebook/lab server and open a new tab in your default web browser. The + > notebook directory containing the example notebooks will be displayed. 3. Open the `explore_release_data.ipynb` notebook to learn how to load gnomAD release data: - - Run all cells by clicking on the >> button in the toolbar (shown in the image below) or by selecting "Run All" from the "Cell" menu. + - Run all cells by clicking on the >> button in the toolbar (shown in the image below) or by selecting "Run All" + - from the "Cell" menu. ![jupyter notebook -- run all cells](images/jupyter_run_all.png) 4. Explore the other notebooks described above. From 3527120dfaed7de5dee1980e8a4c815475f41700 Mon Sep 17 00:00:00 2001 From: jkgoodrich <33063077+jkgoodrich@users.noreply.github.com> Date: Wed, 22 Jan 2025 09:13:24 -0700 Subject: [PATCH 114/121] Apply suggestions from code review Co-authored-by: Katherine Chao --- README.md | 9 +++------ 1 file changed, 3 insertions(+), 6 deletions(-) diff --git a/README.md b/README.md index d845e6a..e12d3a2 100644 --- a/README.md +++ b/README.md @@ -2,10 +2,7 @@ ![License](https://img.shields.io/github/license/broadinstitute/gnomad-toolbox) -The gnomAD Toolbox is a Python package designed to streamline the use of gnomAD Hail Tables. The Genome Aggregation -Database (gnomAD) is a widely used resource for understanding genetic variation, offering large-scale data on millions -of variants across diverse populations. This toolbox simplifies tasks like loading, filtering, and analyzing gnomAD -data, making it more accessible to researchers. +The Genome Aggregation Database ([gnomAD](https://gnomad.broadinstitute.org/)) is a widely used resource for understanding genetic variation, offering large-scale data on millions of variants across diverse populations. This toolbox is a Python package designed to streamline use of gnomAD data, simplifying tasks like loading, filtering, and analysis, to make it more accessible to researchers. > **Disclaimer:** This package is in its early stages of development, and we are actively working on improving it. > There may be bugs, and the API is subject to change. Feedback and contributions are highly encouraged. @@ -42,7 +39,7 @@ gnomad_toolbox/ ## Set Up Your Environment for Hail and gnomAD Toolbox -This section provides step-by-step instructions to set up a working environment for using Hail and the gnomAD Toolbox. +This section provides step-by-step instructions to set up a working environment for using [Hail](https://hail.is/) and the gnomAD Toolbox. > We provide this guide to help you set up your environment, but we cannot guarantee that it will work on all systems. > If you encounter any issues, you can reach out to us on the [gnomAD Forum](https://discuss.gnomad.broadinstitute.org), @@ -62,7 +59,7 @@ Before installing the toolbox, ensure the following: > brew install --cask temurin8 > ``` > Make sure to choose a Java installation with a compatible architecture (Can be found in “Apple Menu > About This - > Mac”), Apple M1/M2 must use an “arm64” Java, otherwise use an “x86_64” Java. + > Mac”); Apple M1/M2 must use an “arm64” Java, otherwise use an “x86_64” Java. ### Install Miniconda From d6629092d900468c0516b28f2f29ff7da1fccf45 Mon Sep 17 00:00:00 2001 From: jkgoodrich <33063077+jkgoodrich@users.noreply.github.com> Date: Wed, 22 Jan 2025 09:43:15 -0700 Subject: [PATCH 115/121] Add more infor to java install --- README.md | 31 +++++++++++++++++++++---------- 1 file changed, 21 insertions(+), 10 deletions(-) diff --git a/README.md b/README.md index d845e6a..a14943e 100644 --- a/README.md +++ b/README.md @@ -52,17 +52,28 @@ This section provides step-by-step instructions to set up a working environment Before installing the toolbox, ensure the following: - Administrator access to install software. -- A working Python >3.9 environment. +- A working internet connection. - Java **11**. - > For macOS: [Hail recommends](https://hail.is/docs/0.2/install/macosx.html) using a packaged installation from - > [Azul](https://www.azul.com/downloads/?version=java-11-lts&os=macos&package=jdk&show-old-builds=true) or using - > [Homebrew](https://brew.sh/): - > ```commandline - > brew tap homebrew/cask-versions - > brew install --cask temurin8 - > ``` - > Make sure to choose a Java installation with a compatible architecture (Can be found in “Apple Menu > About This - > Mac”), Apple M1/M2 must use an “arm64” Java, otherwise use an “x86_64” Java. + - Check your Java version: + ```commandline + java -version + ``` + - If you do not have Java 11 installed: + - For Linux, use `apt-get` or `yum` to install OpenJDK 11. + - For macOS, [Hail recommends](https://hail.is/docs/0.2/install/macosx.html) using [Homebrew](https://brew.sh/): + ```commandline + brew tap homebrew/cask-versions + brew install --cask temurin8 + ``` + or using a packaged installation from [Azul](https://www.azul.com/downloads/?version=java-11-lts&os=macos&package=jdk&show-old-builds=true) + > Make sure to choose a Java installation with a compatible architecture (Can be found in “Apple Menu > About + > This Mac”), Apple M1/M2 must use an “arm64” Java, otherwise use an “x86_64” Java. + > + > You may also need to set the `JAVA_HOME` environment variable to the path of the installed Java version. For example: + > ```commandline + > export JAVA_HOME=/Library/Java/JavaVirtualMachines/zulu-11.jdk/Contents/Home + > export PATH=$JAVA_HOME/bin:$PATH + > ``` ### Install Miniconda From fc766e3f706ad5bc7793cc52ef3fefb27bbb3a82 Mon Sep 17 00:00:00 2001 From: jkgoodrich <33063077+jkgoodrich@users.noreply.github.com> Date: Wed, 22 Jan 2025 09:53:18 -0700 Subject: [PATCH 116/121] Add Zulip to resources --- README.md | 1 + 1 file changed, 1 insertion(+) diff --git a/README.md b/README.md index c1b7d77..1695538 100644 --- a/README.md +++ b/README.md @@ -196,6 +196,7 @@ curl -sSL https://broad.io/install-gcs-connector | python3 - --auth-type UNAUTHE ### Hail: - [Hail Documentation](https://hail.is/docs/0.2/index.html) - [Hail Discussion Forum](https://discuss.hail.is/) +- [Hail Zulip Chat](https://hail.zulipchat.com/) --- From a749531769ed49e38b16a0d10879c9ca1f45f2ef Mon Sep 17 00:00:00 2001 From: jkgoodrich <33063077+jkgoodrich@users.noreply.github.com> Date: Wed, 22 Jan 2025 10:28:26 -0700 Subject: [PATCH 117/121] Add more info about running notebooks locally --- README.md | 18 ++++++++++++++++-- 1 file changed, 16 insertions(+), 2 deletions(-) diff --git a/README.md b/README.md index 1695538..53cf751 100644 --- a/README.md +++ b/README.md @@ -140,10 +140,24 @@ The gnomAD Toolbox includes Jupyter notebooks to help you get started with gnomA > If you already have experience with Google Cloud and using Jupyter notebooks, you can skip this section and use the > notebooks in your preferred environment. +Hail can be [initialized](https://hail.is/docs/0.2/api.html#hail.init) with different backends depending on +where you want to run your analysis. For analyses that require a lot of computational resources, a cloud-based +environment will be most suitable. + +However, running the gnomaAD Toolbox example notebooks can be done locally using the +`local` backend. At the beginning of each notebook, Hail is initialized with the `local` backend using: + ```python + hl.init(backend="local") + ``` + +To run the example notebooks locally, there are a few additional steps needed to set up your environment: + ### Install the Cloud Storage Connector +The gnomAD Hail tables are stored in Google Cloud Storage, and in order to avoid downloading the entire dataset to your local machine, +we recommend using the [Google Cloud Storage Connector](https://cloud.google.com/dataproc/docs/concepts/connectors/cloud-storage) +to access the data. -Hail uses the Google Cloud Storage Connector to read and write data from Google Cloud Storage. The easiest way to -install the connector is to use the `install-gcs-connector` script provided by the Broad Institute: +The easiest way to install the connector is to use the `install-gcs-connector` script provided by the Broad Institute: ```commandline curl -sSL https://broad.io/install-gcs-connector | python3 - --auth-type UNAUTHENTICATED ``` From a4866dcc2aea55e25434564074af3d4913ed5f12 Mon Sep 17 00:00:00 2001 From: jkgoodrich <33063077+jkgoodrich@users.noreply.github.com> Date: Wed, 22 Jan 2025 10:39:36 -0700 Subject: [PATCH 118/121] Small format addition --- README.md | 2 ++ 1 file changed, 2 insertions(+) diff --git a/README.md b/README.md index 53cf751..e49fad4 100644 --- a/README.md +++ b/README.md @@ -136,6 +136,8 @@ The gnomAD Toolbox includes Jupyter notebooks to help you get started with gnomA - Explore more advanced analyses using gnomAD data. - Notebook: `dive_into_secondary_analyses.ipynb` +--- + ## Run the Example Notebooks Locally > If you already have experience with Google Cloud and using Jupyter notebooks, you can skip this section and use the > notebooks in your preferred environment. From 6207d60f6e9eb617dd09d3bfcaf7e50cbd53c204 Mon Sep 17 00:00:00 2001 From: jkgoodrich <33063077+jkgoodrich@users.noreply.github.com> Date: Wed, 22 Jan 2025 11:03:02 -0700 Subject: [PATCH 119/121] Apply suggestions from code review Co-authored-by: Qin He <44242118+KoalaQin@users.noreply.github.com> --- README.md | 11 ++++++----- 1 file changed, 6 insertions(+), 5 deletions(-) diff --git a/README.md b/README.md index e49fad4..6aa7cbd 100644 --- a/README.md +++ b/README.md @@ -30,8 +30,8 @@ gnomad_toolbox/ │ ├── general.py # General-purpose analyses, such as summarizing variant statistics. │ ├── notebooks/ # Example Jupyter notebooks. -│ ├── explore_release_data.ipynb # Guide to loading gnomAD release data. -│ ├── intro_to_filtering_variant_data.ipynb # Introduction to filtering gnomAD variants. +│ ├── explore_release_data.ipynb # Guide to loading gnomAD release data. +│ ├── intro_to_filtering_variant_data.ipynb # Introduction to filtering gnomAD variants. │ ├── dive_into_secondary_analyses.ipynb # Secondary analyses using gnomAD data. ``` @@ -62,9 +62,10 @@ Before installing the toolbox, ensure the following: brew tap homebrew/cask-versions brew install --cask temurin8 ``` - or using a packaged installation from [Azul](https://www.azul.com/downloads/?version=java-11-lts&os=macos&package=jdk&show-old-builds=true) - > Make sure to choose a Java installation with a compatible architecture (Can be found in “Apple Menu > About - > This Mac”); Apple M1/M2 must use an “arm64” Java, otherwise use an “x86_64” Java. + or using a packaged installation from [Azul](https://www.azul.com/downloads/?version=java-11-lts&os=macos&package=jdk&show-old-builds=true). + > Ensure you choose a Java installation that matches your system architecture (found in **Apple Menu > About This Mac**). + > - For Apple M1/M2 chips, select an **arm64** Java package. + > - For Intel-based Macs, choose an **x86_64** Java package. > > You may also need to set the `JAVA_HOME` environment variable to the path of the installed Java version. For example: > ```commandline From 25f108b2e6465c30aaacba4044d10d848c166b25 Mon Sep 17 00:00:00 2001 From: jkgoodrich <33063077+jkgoodrich@users.noreply.github.com> Date: Wed, 22 Jan 2025 11:16:25 -0700 Subject: [PATCH 120/121] Align comments in repo structure --- README.md | 8 ++++---- 1 file changed, 4 insertions(+), 4 deletions(-) diff --git a/README.md b/README.md index 6aa7cbd..5e952b9 100644 --- a/README.md +++ b/README.md @@ -30,9 +30,9 @@ gnomad_toolbox/ │ ├── general.py # General-purpose analyses, such as summarizing variant statistics. │ ├── notebooks/ # Example Jupyter notebooks. -│ ├── explore_release_data.ipynb # Guide to loading gnomAD release data. +│ ├── explore_release_data.ipynb # Guide to loading gnomAD release data. │ ├── intro_to_filtering_variant_data.ipynb # Introduction to filtering gnomAD variants. -│ ├── dive_into_secondary_analyses.ipynb # Secondary analyses using gnomAD data. +│ ├── dive_into_secondary_analyses.ipynb # Secondary analyses using gnomAD data. ``` --- @@ -63,8 +63,8 @@ Before installing the toolbox, ensure the following: brew install --cask temurin8 ``` or using a packaged installation from [Azul](https://www.azul.com/downloads/?version=java-11-lts&os=macos&package=jdk&show-old-builds=true). - > Ensure you choose a Java installation that matches your system architecture (found in **Apple Menu > About This Mac**). - > - For Apple M1/M2 chips, select an **arm64** Java package. + > Ensure you choose a Java installation that matches your system architecture (found in **Apple Menu > About This Mac**). + > - For Apple M1/M2 chips, select an **arm64** Java package. > - For Intel-based Macs, choose an **x86_64** Java package. > > You may also need to set the `JAVA_HOME` environment variable to the path of the installed Java version. For example: From bc46c3b3d3bec0166c2867e9b7cdcbce4bb3d45d Mon Sep 17 00:00:00 2001 From: jkgoodrich <33063077+jkgoodrich@users.noreply.github.com> Date: Wed, 22 Jan 2025 11:53:46 -0700 Subject: [PATCH 121/121] Remove toc from config, we have toc2 --- gnomad_toolbox/configs/nbconfig/notebook.json | 1 - 1 file changed, 1 deletion(-) diff --git a/gnomad_toolbox/configs/nbconfig/notebook.json b/gnomad_toolbox/configs/nbconfig/notebook.json index a53aa71..64ed80b 100644 --- a/gnomad_toolbox/configs/nbconfig/notebook.json +++ b/gnomad_toolbox/configs/nbconfig/notebook.json @@ -2,7 +2,6 @@ "load_extensions": { "nbextensions_configurator/config_menu/main": true, "contrib_nbextensions_help_item/main": true, - "toc": true, "toc2/main": true } }

4yfB0H6DT;u+~{)q{puUZdg|9Le2 zI30h~1?h{>*kp1bgY0g~zct7b_)#?E{XznN9Y9_}m9{^#0FXu&&f`D-9X$XJLS8wA zjkG^rYp6yPXn!0VwST6(K%w`|``>;>9xw&!mq%&*@4s_K?}advb)av1KC3kO=R7Km zPV5kkRh0VX7oCZ8xyGLA|5kq@b@Wp+TP6S}`xiw2zxZ%go#s0D&>uZd4f$2|eK9r^ zf0rEHf3oEKrwb42XB)@wx9s*m^OnISR(gLZopvA_Bqz^3aa(qvEzLpL_kGPuCrgBd z(604#%Q!ZA&?RWy{PbeF9Z1u(p=nMSwKTZ5G26Zfk#K5J?AjWTAd#m~yrr!(hU|T_ zhQSX<{i}R9Wfmgjepki5EDYBYHTECXtl=N4W+xDs$L5;{Q^T(x9|rD0zE;Yat$9c@ z(g7`2fiTspJ?KldA@iJnFYHOa{i2E?RV`0pAa{Sd7bLM26Jo2>AgsWflaa#kB)*ZeS|bO$`w`&Ol1XSp)N+ zg-^m_8vtZrt!L%pa8at>k*2DsoDqn!f|GA()FX+;IUv%JMo5va7(Rv~=QrkXA0HC^ zaUaXw`e*KAjwwJ#l1lA3(tsO`WSsQhI0CdN3v`>f1!v7Z)F zkTou{YpDTCru5uidJiE}tzlpLP)3$!Mm8WnuKmX!!G%#UT5kX2;x%0(W&cO^%_q^x zzGF9^^ux~-_xg7iu>H?;0s3e=qowyXDTM8`e${3B4|}z<&y@yXucvYy?AlH41~u&` zNy&{i25U%Zx^oP1k!diXRFzbLQ-wG3-K~7XES&;lTY5{7+A1Ny!m}j=(7ya=#vJ7C zg1vQgiLj&g<{)&-5Wr~nMgRN4f;H%I?no|Tl8HE6oh@imPX#4};p$Td2#O4~jfPF#X^Q)r8;FNrw3 zX`f;81+77hC-X@?-cq4OJ7NC`F!tKWyZ}lYSTL0hDrSmD5U1q(J$mvH^EsPst9Zx2 z5o6t(s9jT(6E$OZYgKB*?NEsd)40npfZnE0J*aeejd9%l`)0Sb`lm{+L5RBMDFbMi z8TVTD5ntFKEGN!B20PDi)iDk}J+gvG4Fo#@J~|7RUkO^Y;S129Pe3fkrR0ZdkKwk? z0=oRQp74ZgDrpTx!y_yoz<22wFfLeoz?+@}H5PgKJ&Gaqh0PfVpV#+LjdWE=79#;~ zD!y%g&9=U#kjJ)-Cf-rA`>2prHzk8z;F@R~0uV6>A=qfm2tExWUQ*scfQkDWAVcMD_dX8ThBJ z9y=;GQSE%g%KFSk1@xVR>$3B}F}9j4ON3<(;~!RCN|9uEE%aoj5UTi1L`9tT`WmBa z12#*H6ILc28K`f}gi#S0HZfEc$Y#S7RnrA5;eD9eg%U~i1Tqa~ybr1zylej=2`f-xP z652=snK}4InILz$2DeLNhUCY*M@-SToSl*?oQTeJc&;Z(%#^d(|~SJ zMyQXL_{s1A0{v~#_8~vkAbi^QQ!aSn)B9plJ+Wmf^KaI%1Y0pXMKhOLr10`bd&?8SD|s zY_(wg8-%9BeglMWAp~n?UqQ960a#WHTlq;CBus9KI)0VCd3%-Af#IF-BCPFev7=_6 zN))zF3^oqyfRws27RGXlvEHl?#6G-rYvki#w6MmUF1K|lu{AgqE{4zZ2sW8&Nr5Cp zV!il_B>Tze{emonC)VhJNu@b7n(pBanqQZKNNd?bwu zED091xJdY@NW*ufGVjTF1l;_~AHO>BUj(MK zJq|^=8pilSNC-;&*1FKE(-c4%BYnHdM7UO%zdW^@Y#5dJ=Z{OhsX<~;QdA@tX{a^4 zfjYbXMgn$v{4jk_l{QA=@B=JhICyi9fvBa@y49freG`J+1z3W)XefO+yw4W5;?bC` zaB+CwXH`1hXPI9h4NnK3J!Fo3ie&ooVRLXIOcgo!Y*cq}D^#T0>O{`;Den`I_!%tj z^+TbJ3G(WZ*bM#t;$wsXX;v#RYqXDkkGyyP#mGx6?g#4o29)Gik*hI??4`mw-lPcw z=?Vf!%~Q|q+y?t=M0SIl8{?^IQy>B9uS_7M2c)k?I*YtOu&<|4r^1s(UbT!sdSomzakOPIC2DOgss{FTW+Or`XmmL!gx&5vo_`I(jIgZ$t1j0&ae32AsNF@g_`M|3 zroqXVo2_9Kq#lWZ_2LVj5i3XlQrjxYMwPsar$ARzCxLq4RZ-VORR%v5xl?rkU|`c; z1bKxPcoJ-9&FHEjg*ZIxbdhk=7xm9I9*>-RuI#+bZtw`zxSQRxwpt= zT&)X>HRsc7PfTKb-&^%0X8W8RA1~e!Q?0MD`y#dld7oq-gg%=?qJHA-aThY?sg}57 zc-w1?20K}prUG{>;bXWXin5jjO_hDDH2LA}W9TMg^`ysWDbBp3yoDxQA@gz*T$5}z z<^(MvGzx6L@OxUfKc8i1MA%<}(l^7{6*vJM&!NR=T4PG#y*5w;^um*_J8rMw8tNuA zyix2KYW|c%X3FlHnPK$TO6eGBN*%yv3r9Fv&UC1HXP$k z!A@5~Y1OrjZivjjm}q2Y-MASJ{_|#Tp<8G>kV8-G*%W)?CT)16BASH0s-ht7tw-$8 zDqt3-B0mMcfFN3|!?7dZfy5mB)avKFxCT#r zPFNmZq8h}+7`a%i>6P6 z?cM6Uj|PCFq8`P@;vi6oM0z?m?5Wr}Afo5TgTce3jYPOtdaKC|ExmhFHu8$D5aUU= zW5a;W(b>{eUvZS813BjS2ScG-_r|>&u*T!=cM?xJ5tJ;Xgm8D;M=5ai>ZY!Y`xV*uIDEZ4msK zKQ2NTqF$-ZNFP=Pbb6`?;@fQYjqV_B>OBiO_T zr(%Y@^79+tu_&#PTzT-akJ~LfI}*fz{=gc<_bnV@^SLlEbX6o=cBtWgvA?I>`vcTq z(twrmB-x$zQm>~%F%>>TU%kp1mk0mR6_|*7OoJxT(}WAG_n}jZGSoRTa*Dr}75Jd9 zP9QQ~1Nlp;bWVzhXzxNPr>F#&0S1BNv#XNuK6DMp94my(`W)!#Vyh41fU6Qd0cKb8 zmXUMRM@1#1`xk`qSo0MR+78TM5+8({W(uk|6sN2tz`f7+Lo+>qd5RkPFn5?E&PRjy z=vD&cYup>RKyR@9X{3xXUdfN|1KLDvBIZnliq|?Csyj|omE5zq_bm;OnxoEN{cT-Z1O1u~OeCpX4^=-x5wlxib^D7>VMi7JvWpooXZ z|R>o%pNXrD24|71! z{oQl6d}DyuX5yb8vyV1*&jLaCi@v9z_0E7X*QNvF_VZ|Wx5uFMAAoHRUoS>biR&o* zbdddtNFTbYl^GlgjNa=|fxMSTzGWUk${ryf1FR>R+bfcnxtekxR5y?$FEhjmi*T0dZJBkewO* zRCko$E)m*}(3p+6h@xm8Y#WqQNe~+(mi}mu+pZ2-0M`YK@hy$cjiJ}xh2OgUPY~1K z@37z>H!*NP+mVEI$H;Bylotta4d^^-JeCSAXKIg-z~#8E4Gfst6HaMWF#<`cTj`Vr zK(U<;_4+b7dZi8Kr~DyHJ?HMCUbtn^lW4?+9%TcIPQ9Bvxp1@mlr0klAYT3*>NV zgPK!)+AV8xO&PC86@DR)0IT;S`rJ!X@04*Wj9BN4gV0yU$@j1DqL(LOWe5wRMSJ9f zV37mERo^UZ6hpcevH1|@i?+{4z0{*#l95BYn1~~N;M4Qh}G-P zUZ9N8ArbPsF?Abt_nUg)!dX3O=u>+=zI^~l_jbqn_v(r^9%IWpFfF`e{{8u;U==gT86h5-X42mdnX5%a4i|Ai ztFX+#5xQ|Wjq3(Ua@f`=ow?IQb$DE z=AB0X8qPEZ?1t#PD})o1JD){kbyy)~(dlZ-(vC&9!@cgWhf}eMCv2B=8)NlQAfxpm zI(VShYO`NUW>{FSe{Du6DJD#}ZuR;Et2Ynj|28+MX(3}nUO)+(gdu3z(y(**_L2TG zTwEU)k0bblb2H1W4wd8U5pHxszqK2AZECLWm({ zn_ZV&HvRe&>tO^nz!>{%Qwk8bAlzWc+~L{`qOe{p^bbHKTtX``VLk7ny9&0sJUiH3 zS$xi*KFr^S93&c@yN^+aAZ!&flwIIPx6`U;DYXagqvXbPdh+q30d@Jh*e&>~sfh+_aj(+kPjKd4|$;1xxRToDR|0W)N6N61$>PsPmu=FIG+db}I z5M3_APa^;Y_ts58d!hptC*{qc@_iWAZw?lkUPDwWC2p0N9Dt9D5QaO`>3A6&%o_T zWAOyq9sr)rfz?=awBn`_1Rk)f-oIxCdX9hDD>+@np{rt$RWuFsD1_sb-enAZ+Fma? zkD@m?1aWo0|Mea=?oYO9dO!>CaB(67PoiMc{c#4ODfNk<;3}e|9=oPg$ zZjtO@l?(Ncq>pAe+YH z=}&|_r*xio%QjHSPmbTun|SW^1G~iGN!8X|kFz6es*`&Cd?_%r0bSvot=q0JNUO;9 zgTVIl_%)DQH2~L!!FE^ULqoIz&hbP zU>Zb~j#vT)-&raZCs@?sZ6+zXsZGK~k&PcF+2LUL(?H1lk)|z!kIANJ*vu!uFszNe zTi0(;+nI$<$Dkg_0odKOO>9bKe7p7dk|lI=9#h5VCCb+)#fQC@A7FMAB~4fGnzx*L z@Uba++<~&ewebPF=iqYvX}rrvO?>nwWo$j9SPuA>$1_;rABOJ$oT~v#DKyD~cx{To z>?>D#w^s&Qi(C{IOL*>P-vwC)(nf{`BIKl zM}YRk@R)zq$3eSW&)x04|DEN*`6Iw~V;*3Z1sP^cyJNJ{yv5S@zcDgmc!J?rb`WKY zVHf|%q066?g*Lo->v1Sk{L-gKl=tJ{-d7c!BOV0Jzekbi{Q5GDiIChIa!!gF@}U!v z`Hml$BFAQ&GkEIzj#9p~QjW@oVnLP&9Qn)4Eh5>rZ%)y11^+XR&u}2t=;H^{lIM4# zrcOFI3SyjFhd;R8=$_Z*?iSx==QM7)_9^b|`JEAwGsD|GKF0#vmXsLW8z2dQ9nfvdg`Vc5X*DwJoEi;;@%?X@Q!M_oNs-yur+0bzY)=#_cVD^1yefMh z7^Ps~V_m-4vw3sInCjcUcwSwNaGsCI4LTg*u-}EP0|)KsnMi|YD(jcY&@htL z8`w9c_I&^PSYPd}R49kx3kx&-kC6?!;Y%4lwc&=Z`}_~v5S%>#9_pg~(Fx=st7}D{nFr{lh!2`0XdEhh0p2uv5#>zJ14P zxkEmcD;H4IS#)%-$Uw1R2$$0`0I;I8RCoTG-_sO{LdWaj&Fi7!by#kh2QM)+Ms z^_9sNIxP*(3Vkg4G&iamqEVB!K#Hj$A{poidU)}gDrs`cTQm6={XLgR#WeSsUeHD- zTS|K`^YivJIV3%RIKDd%SN!Mhp_NurH*R@wr(@=@9XZ`s#C5*5H?}n2lllcT7D;_P zix%VO5AQrGuig2?Gi_07Lus`&WT3gN+fhMOg_eI>pr*Uk9l)JAcnaD=ArI{yfdAC8 zxuq_F7aU$cO6JU#F$aq~9g@f`xOd2e#~rSz^?%|Y*Zdl@;zV6`fb!yA_2zh(?0zQk ztO>*;>CyC;zL5%;$8zmf{Z|e_QuGu#e{O7_6m5Sy?4FinbN|Hl0>=gc?cS@w%pIQ< zf?e1ZO_(~Gf=k$*{pG)X=lsxOt{d^KTe&Agh9q&d{YP>MzEs zy0xD$#*w%Z&AP_VttR<(#?PM;O;ur4An_UXwrXwYcFXd-l*LDehhXBflMwG{b-pZH z?>HuX>fqp85@ckYpLWO}(ymZ#j_{1Vw3-JoTlk$5b>61^PEu2&cs3_CCjM(XXq_#B z_UY-V)mB{8(UP|hES*&1?$Nv;b}&EJ=Kds2q~MI6zj10}Mwsz##i6FuzuJCG z^?gqp#3L?;&ZriMHOo%yL?FiSPJbLP(Q%Vtq{ChT$HeF}Zsc{N06b}QyYV+x94@#s z0Sk`!=2m8|FMvYA+Mj7i!KZgfE#O991&mM7iq6kR+|*~&03LSIR~#&k!=)EXKVfE^ zZY2<*Vwt)=+X}mH=f|aF4|~dO714ISjbGpUdWPU8z|&3>uej+uZ5SM`*^q5DV-6kB z6BUholQe0{BkJB9xo&@P65n^`{#pJ6TO?4#>I$V}9zppyl9jOg$gT3Mx~)Jd@;sx1 zNJGAUzPMQ=#cXP+0zSC8{N8G#icx3UXQ6~t#|fC@+$Q#DIkadyeQ8RYPMoi7{W2H0 zd3k6Sprtr|0R0J zno3iGNG`u0*!=m|h$YdE>PH?r#o3l&FXtYc(ie`Gu0h|Ynv=~?75lw#E={}JOvb10 z@{G=Y3UgW5KqT?`Uk;U^{j&m^cz^dJ`_*wE^q9;&Khx#K8c<|p1BQ{d_?;#vD%{&3 zTOt_!DA*n$Ox*MNzCcu=z1UD_czs@pYhy*Q0ngD)q1aMx@ylcNFZYV{>+^t^w=Y-) zC(^l_q9^VG8_#;_#R67JA=a(gy`M)W>)HiTSzwk#%IqZB@1m6>#-i6bkeR@GM7~?X zfAWN6mz64V$b?cPk0FwSiyAwgB>=uEq!G%;az-tpP>Q&HN>THvS3@vgl61M|L(dGh zo^X&WM3v{h2_-qohRDA&T^k*SG44?UA46e3*!P>C(duC|XMQb#EP`(Rc>_p)8JB_7V=#Nnx4lSylSs#o%{I@nt$^I=J= z#(AKIZ)I}^BSA))K!-AZcBYHx5yB+03GqxILLy0!5m&d&B>)hb9I(oc$@#f)ebj*N zGocFRz5zgch;-#~9F==zm_HsW%T1)(jlaSFiFuEP%Y8+Fq?5$si8?O z4d#%Jq0etZ+-&P-+?*+Qo0kVCv{L)cglVY~97h}1KP^|k1Vx{~zzJY?WfKmR6!xyjp?-}y0Y_VyWI?tF z8QqYj+egU)MBEQew72skwD}h8b`0t$0Mf6o*hwlfLyQN0TS9rO)P-;nUwqS7-Lo;LhQk`%C|6KV0~McrKes z0Nu_NXWz7?PVG;U?kXMrGa7|PRexfKlhUZ!*6Y9HzibSC8*G5^dX}Tcs=5$=vlg;R z`BHG!W8ba`PA*yERye=qbB6Fo_LoeSVua-lc>Rc}!LSKJQS)ephP8A^Fvjs;E`yiK zjT95xTq3&OIUa@kg0giF{}v;Y69M%NN6Nn5o#m90!*oIi^JGM}SNw)E?*$!EoJ_qD z))=eBmH>O88hJ{ziX{Xcgl#oF9))2=@L?40oM&WvRr6LRLgtyUvuLs)U5xV=9+`xukM)(5JE9;9Wz~KF zS=@>~-!rw`YH`;5nYYslNv$S4H&y2F?nV|^HsU>bzejxL#0Ya-^b3Yx=R* zXVR_)=hA=2yiE9-l|%I;;Btgse&jsvGyC!XY8;XNlLGfLNqp+LB!)%S2>>1P=k^1F zKNPy9=Vya-{%QdMP6u#`IfDht@+%JBPejnRp)<^Z$V0w7YFyXhL_|tjI;A^@Mk%SGbLfVlJBN4A@4Bz&y`SrP-?jXM#){RI_eIg9q1ZTA=f73DF!CpQl)9bTaGC)F4^@F8eqcz!OZ>->@-y)!Qm zIswmesF8ZJWL#gc#)Ais4tx^4_S+@Y&)iYshclN2fdp>X(i7M9!Cx5cAc3~T)E=iy z^A&)?=YuHc>watXXGPfBMHHDr?elQQsEnJu+jmZ8Jx;1bi8 zfSr~%8X z{0^$b>Rn=vDqLuDNI52U2XqmJq9?2WJ;Q$Z%;z(BI&aEuc+py23C8?;wfif)@rvgI z_gwK0bF-kTHKJ>|Z%0k~h0HwU`H%=S>*ZA>IOU%o6hFUQr&g&Kxzc}+=XE|`i@7)J zf0#@`M>)#i&ttSLxeYKHmItsOwG{!{AZb*<1wD+Jnu2hh}N-3m}wj3V8up zaYeBWp`tMML9XsW-?DM^y9>~hOzVFTZOJQgpOSxgB7iJ)ymx4yU#2>enw?5P2w1Um z!3)3Fy!cM{bIK96U;dBfg$1Lc+wFw3uLhQbFwBh$k) zC4R)eG?bCSrxxVVyi9ThIL{B7@cAWu0F;Jmc`@oPs^dF;zDSpRhHi5k0)j|YpiYrw zpON4v?Qip%uSlqXT`nT)mojA%GM9RgiT%5rDUpFpP=K?v@Bg?s!ywW}1HkSe;mpP%i|8UEe?N!zw}qeJ~UcN6@0##TzI-{8rs!F*#R= zrN0MGhj=i>)u064>T~u}J5B1Rx-A7i5adetE)PoNG46~L75MC6IP}B0AuAJA6{Ljn z#b=3)IOF7Z>*Qj}n#@UqO14Q?Ys}SpCbH3WPgw_eu73_JaAu{61zfg(3Lh`FDr zBk7#l>Hed6ekZc+fvv5Engcybr|I_bla_mZtlCAfoQ;0(n?612-T*F7JhS-0&kN&K zKKJd}9BQh%4H9O7DI-f7(`mkW-fRtcCLj2T%V2jI@_lE&+7Qf@X+JIh!&W5p6FZK~ zJIkiw;TTniaH6!$4$UfGCOpfwAqE#|TuH;_bjIs7KcVweub`vw*2-f28qbxlfd%pb zCBF-5%R0<7*dM;Ee}Nr`5_-7(yScydL<9I0yOybLdDH=#s~=fP^~v{DI#M@%A?=-vd61uCUB~Rn!Lub5RauLM=E>Y=0BTAhGvLH{vaR zY3GfBt3R`(i$zO~*iN?-?tPsAle7gks}`pR#7E7}!;dOg^#r~)-1EI4+N5y0DiLfq z`a#-tMoYpt9(o+aUItZ{R-1put4G}oWBE(7_CVh>7G=^P+Iy>88%i$#yb7|F{xri- zBX!}8^NyX@W2l!+O*y9IdYq%UpKIJH5cl=!xus#_=j+U^rB}B*cw2&OY*8ZsI`oEz z1NnTjHnRX1?%29IT%y;~M*paRlzRRpQq* z+VeThpA(5p`ad2;m34CjZ3#fP@m|Kp^4M-YGQPSv3ER3QvF6#*9b|i{4Xp@qgWacf zXqu1vG*xE1{hP}rO7!RU0@LOc)iTmCx%)`;86Zff8$K1kQY9;&4S4bUg{ap%meH`# zN4j19L4?$hP|3&8yk?g`%`nfabIF=H!T&a6(lTPg=u&eW3*mjLz_Lc;^YSeiM~yJj zx_baIf~ z7wcX3qe_Y62caCTmDg|g#Nvf}zQ1@I%L+1Q%HV%NZ7uk&C- z=&)bB^y%-3qgwh%!&uUr)j>Bj8_S3*(chAv@)-F+iM{(i6WT1I7;K-~YJbz`wOjg| z(>vE|Pc$5$6WMz7?0xf=ot4-pUtTQ`N*m&ezIM6y+f;kjc8i+9Gq!R5R}`-jY>mxB$xK#wUO7LfMGr%+5um-v+Gd{;|otJ$N@)lyof@ucW{j}lRd6?%-F(z-T zkA3mIo7bUc7LWhBcDD{Vef6seLno9_5uHH>rTF@H{`>Q8BE{_Mu@|#pFY^F1={!09 zf9>qjVcbbmMhTW!0vBNHc{`?#jLLoYx2ft;EK85W`2HY^@ryL-LE|YIUH`VKZ~&a~ z`6pJcc>U$Asgie|VwzZ{0;Q_fdY_{7=zz#eR`%ME0=ieWMPSs{Fuc$f^oyBugy=eoEHbkf z!A+hRQfnyi5Rdf4y=qub zy;pQnp`JBd;2xrX73T(wy7|iJEvze;{jWP$PT`$9z^HwH`$9FT!4Ut4PPBxg{p&fb5`l=*{!?xzU4&> z)q^9dN&~ym^FFWW2?EawR~3|z)CQdoEG&$2#D%OU*J%H>oNK%b zlb`cHzn~)F9uiIcX_tMUE`=)}DbBlgS%U*LzMul~$l>;O^Fc#*%>LDiI9cg30Q32=KDV1pw&09 zpca@I{7c!tT4vB)bQ_pVmK!Vl(#2E408Tzpa*je&ZX?8>ja!wrk)<8*`Th6A-vxIK zQW6&(yZV0r5_jl0B?|v}T!5)5tEqZi#Zk7Cz_sA@A@CW!S3+pMWS0pF`I<%jaq!w`oOefZi zTqU(FycEgDwqf+6$)al^-NuYavj8cElq#hR&6(Smyb=5DpbSTX=}rs$iZ2#t3UL0S z+9b0;ejs#9S}_VC#;5zYtF5%veRI(^OE)TT*@xfut0nmull!ygHoL2HY+9F&qdNyW zVXVNxUsF&%JOGK{JrZI&ho5#bva=Gw%QblF?x+7^m>M$nWR zH+YuwKq0|fjEfKROL6!1BOfgh2IJe?zSP;9G{B}Y!SusCQ#$tT$Tw|A5NmAxGni5v z8lvpaT%ZYmw88qXHIVd|9%~QWQhH z#=Q%w(6pizVpAdT=e}LmjC|B;bHXN)SZt))1p$NS5!#NaPYpx1*9EkidT4nmDP5|wSj^> zZWj8W2pi+j0`D&>WFIv<@Af#!LmxMwcQKwj=H5}i!x27JxKTRw07xlZ&fD5`@7iG! z@luDMgN>gq5{YUxnXE1`Vb;}UY&W^x-Y+uu&YK+>Ai_ht%gQa9WPdh@-G~J^pc$zv zK875NWCL-2jZ=hcoPK}Gp85!EchmE#0rqMQ;`L#7W~r{?AmmlH8hsdsA@_FK4?*$fU=3s3Dok<1sYSEYNfb)DPX^u4i-%l$mWH$OK zBSibOZovxG;+qkHqCY3V{`8j-h(js9-+H;p!MFTY5YKIC#)ID@{_TqgdzZsQ1>h=c z&0*o|1>Cv1esC;(v*6NP9m<^tI9ChxKPjx>q991bR^|zSc7j?GTI6*=(})iBeWIZ% zeWe2YwsQF&m{;-FRkXcmj0Tmy{&F>OJ?Q0O#mP-)d&~J)MWjdpjI>_px90$%jrVVZ z+E@EEFyJDE6*-fNq1MVbe(HzrxnmoGLo5FNh=NzO+1@ta z_sWnC`{;tpNqtw;xg(TP^<;Z`1VllfYz!{PKd-QT@XAKp1gz2rRK5u@h5)~gCaG_) ziC$<61r!LFyiI+FqwEy^Q>fq19w33_gOTMYM0QPmDq;B}#DB-iPAP~0h4|!JxGi>w z0_~My+pPNRpWqquEs)g7@~*pg?}JnL?YDE*Z)nugegpxodLNCp&5Lg)&mQ8HgTMp< zm7uz4#pdVpSEHp1;%YY&yMIuw_EA##taiRn}_5pXb_XY6E1e5O4xlRLP6j?Qk=>cFSJZ5bL)?Dr9 zKG{LLxC4B9FU1p|*%@dzl+ny_R9HUj5Hj=Be%=25_E6bVay_#upnXHD;)Fe1H_!SY za~zom{=2~>+IMiteibIwep@4aK^CsRc#k%hxzr-jn_{&MY{l)Kk8jcbE!FRka>7Qk z$>$JY6Vd@G<0`xnER7(C?S#PCBJCo5?XY6ulkiB8i9942)0&7!@lTGu)9d~d`#IV3 z+?1sA2t?}e^J5%grMPe%x|3ULfM=+}I8a$WgVXp`bnMo|Qvw~R%04?kBodhH6@l;X z-l2ai;jZtkqPm4f!iQ@#S)3rS;&C5>yK*7Rbn1!+{W}4&Id{C_@uip4lR$E$dCYvRf5CC-OLnx$$7iQdp5^>x6=5b>7!=Xx1bv!4_t&2kBj zm8DmMSiHH(O5dGqk%~dD1ycZeFs!gR!@=!H=aptNB}xq+E?Xn6p?&RmyH$DX51xa= zn7SA5HS+6G2&x54u=RM}y-q2%y#&=Z9YwLBD%xf`9N=6x?!^DZDA&pM4#(BNp8#bm zkc3zoN3SX5U=BOp=B;qc!aG``at9x?L~5ueu-VVQ>3jsc-S`7(m2U#ub-TND&J)?! zX_~?~#%`}kC$1OE zXWHD~7+keLncQ^##A8*z*FL`72rjZdmO4d5wl54px{!qTn$(nuYT#uyls$S_(?rygw!18rB5F)GI-FyP3j?{)ACqoUe^}Q8@`G*X0}!e^=e9LjC$su9x0YB({JroqzOtSt}BrLxp18J zjkh}MA5>V#pB?)LY8U)%!&g6tSOM3%nd}e*oTxPDzV@ zAW;7HT2o;|gtY&J-9Ugc<$}@xB1=s^BAhy|P*D+f)26^O`i~4re8sbxe@VgjM=!=uP)c z_$dgEJ#DyBy${iDrCcooNK)n!gh!`Tv(DR9e2oF#7*StIQ}b+p`nm0)Y=zB7fm%Bj zD;-I);AK<}lV09i^p?E_iazl&BMJtWcGmEGh6C5B4(vXc78nIM{yP8=<$(d=wuimc6X}V% z>h0qCSA_Xg0AOp}Dg$w-7-rf90en3)BLyV^GKJ4^;op_*0-LX#No|_I;Te&D!LXEy zs8fT&I|O?3I|yKf99fPz6a6-z`&kRNS^bM}09gmO%`&xTFL!8Z25)r_EfMfTtZUni%V0D#n5LG8}do+ee3e~S=gXUP+(^F%`1{R5Jvp$ z@l}W^m}HF}+!Mhr!5OAcOs^hQ<)q0BTHemTX=P`wbV%L>0lS_R%4p|_o#q<@DUl^* zAfUsbEC7|+1Xf}*P%xGYxJqnJJ){ZV0+FaZppUig%YIJT0(pttdFtv!@VrgM@+`O; z30y}i2){#NOaNso<7I~34;vMIi={Buw5zd7)FLI1G?#_f=H;CNf$mzVbaq+-dDjlXnZ_maXM^J7(R0F$0Ul6x^Z+1Cpt zzS+C%f>zVMlkn4#l#q{_C7WDhw2yw>`3AHfDe2V@noC5lSt~Yyilqule&4OR_w-{~ zjnu;qD)<2sKoOt>yfovyXd}^cPo$+?kL%th+$FFf5^wTtukMk~lVp$yD%nhL-9LNs zZ=;H;fymKn??``|_|V2DA;*e8|0ry`%^@X{5^gP>7V zs6pb#l@#!eF)Rl!+g#JD5wc(YPk(i7`DRuhfqI|33g&*OfhIIaDvFFeJNk?X&ywQo zBDNF52QMfIlYSi9`7eQryKkBIM*F8N9zl`dmrq5Ed*ew}+Y(Lyhn?jL%a?~T3U@LV zZ`u9XRfvB2ogf)6e^D^E!xSCyPnv;$y9*c&Mti0`FMD9r{$fzfl+>v&c(DfrVo2+P zGg;h$%iRoUSN9xJzziz&gYG<7icu&Jj!@M?t?FagUk~Cw0YDNvxtK0{Lino=v|f zHs1s@p3@a|@d+3T)dA~G&lwL-Yx#$vbKS>)VgaJZM~UQCb--y;H`CxI?bu*5&LPE;d%p-?Zhr=fsYbP0{tFv|^Rvt;6{iVDp5uWa%&}#^&qk0s88SnFkuIO|aPYmp6 zA|mS(6I+w7!fTufnMn+9x@`*8=7p*x}* z!R2X-I(;XD^{>Aq6-m^53v~b1O{Zpx6M8pWyh|-lrUG#L0x<>6@_g)V z*D6^*>0;$$HFyp6)%6(3(({79S@r0)7Vxryj!Qx5uEgc`jQrQxtH#s&t>Uq*y!7iz zk_6Rb?i&i8FbLUzlpWIFqaU5m^gfB7%f&hpySgImJnk^qQ zbST@BAZ&lh>3Fw!`oX)xx~+_3A-0soJNf>LV%ATXDV8W3*Wfw(1+YKqRjO`tqfSn- z*ZBI-R{Gw>g36E%sG=I&y53u0hW=IIq8YSlUr>ht+%Kywlc%MkC;^Wx4yn3QT_|kO z@R(s}_ZqK0rHC;dq4tYFTkt_R82s$?zk!+4^e#=2RuC!zONHMz~| zGxHC}K!YLMmpzD?Zhz}X_Wf9Ya<3o18~>vCpq&L%^NxR!YI#7=LyF!83wcyb>&Rt} zW70~e?lhpmjK7F{uiEa~+s@$lD}@!aMK%v^FN@yCqh|I-$yJ_O;f+vH>+?N=uHnP$ zE$Uj1rwZH;9B0J;`-7&(eO-vXy*`v3lD!qsOi zPuj7wS(zMOy+2=+sZduTN=!R%@b)*#IvEqbI2boww$?{ti`;?SwxzJHw>8)YYrVk@ zyf#{f==aHZKo(NU&=eOobP!o$D*5Z+0pAi~H82*%6j_rludjkEjNLx{a|KRH+yE-q zoXD|zFax%InNgyPiuK0ZyUklWPv?E=E*>bl-o1&_!+o0{wXQVNyW6Z|#rxN76Ifaj zv^1b(D8AK$^k=KO_{ruUX6`R9_xtKlki&>BhEmWE1>b4b)sN$sPSFOjMW``E{esP* zL4KK3P<4eX2HP2C2f;JE2tRCQXWYN7xn%gNyTwqmsmtZe)khYbtTgT+~&49uF2a={!(-lEcs|9>nulCvHI0>HGvn7rQmBVFMc4Tn6nzHdL1-_PCLSs9Q>N;$*ehR zIG$v!&NrokU)_r2*x7Q2PN7zS(4<}GN*A;;9)y^1gzl}1T=R_&?s216k}60|&{v?! z_#Nwp6Rf-p+p1wcdo4r?44;)4lDjRXH!O8)btB1^CMV(c%Vg1fy>;4aJxvY!4#uOj=VxQF9{Wx_?_&{b=v0g^0vuEn?;nR3~> zJ_5r7rJ2T2byyd3 zIu8aX_(uZg40_7a&Vx;_FAT0(px;ZDn>xJ zCD(CKvKlHAV}DF!uM=c&XJ>h8-SOBoE!exRhj)7o)jPr@^o7Mo9NK?02fztG)EHRm zz~eIow8He|3W*rSrit5ApFc?bm`OTTnnbfDoM1}Z!5OP2JwV1`3!-;S;JNFkGQ=PA z_LNOeBd#B~p{Lic#n=RB)!!qr!Q&ZvkZdyaJza3e2YCf%P@ys9#9&I^NBJtg1qNI; zNG@O~Seypu(8*<{SKrar5l5C9i!~-}`9&+0+#m>HPS%zr1PQv=M(q0b9csvH9Q2KT zW;p8vwz7W5^U9x(^M8`wo-#z>(-X2E-1v@w7(gI2bBK(^sh=@#FA%y@p2f7AW_`I8wFmVrs`_b=2aCboAHa>Dkv#@=@mu zG3vArV{6)3?0cW<8&YM)*rxy$Ocm>?tS{X zw#rJ(p<|!}|CX7duqSPXPeZecG|nl7!GPxh?GI(f`cyizMW!*C%I6>66-!mvE(uLk znA)`xNlO@>Taw=qNlW6pYe`9F95Moo$3-SwxywdlZg=0YLn2Kt+7v=#bLEpJzIj8R z7lfT`hM&Vg*@Su08U5CILOGX59^Q-+bZ+I zDKBX_NlcvNW*-XDwBK5fZiCGOB+6gQoz+`rGY4wPfr_JRTM2n)h7_l-~XKar^>Yw7ME(@n(i?ahpK+*u`71;M>uMJ5TZnwR70C<9W&V#C zA-D1x3`unjx%P|iU@@E@xiehim zK1`bm%E7aQ-E@AgC3#H&ZJtJil21nSlSNM_JF)IQM*oieWBITevyq$Kl0Yp&;&$rW2H;4tW+ z$aq?f{qVR2AO1nk6d@QCwtT_!C9`Toy^3GM)~rR|Xu}<1?h%u6l#)`pQMX;2-=F2x zoV_CXSA%hKiJUT};Rd|dD}<{GZQQ2OL2$&LAF}MWb6OQYrM_Cv->y+t!E4G|C@-k6 z+HdIV^@hQ@!Dt8{j{G^~RT*vA2Hl*@k{kU4hVb~7mbL3ymhrKC#w>N7k2(0OhV}F1 zq-EJo11#{XXPbJ<`y<+wMjK1qA<7DsLj&gbdZ**J>Up;`*$e67>)83JcdZKp<73vH z_p3>`87ld{@h$Ln7Oe=_c_mByvSX?v`PE z4qU#g;sflQg*9Kg?$^;qra7r^Orxwl&AnGqYA^^ zsA!uTA8rbUyeg-*L26TNnyB8-|K7mkY&n)mMxe>0N`UT0$(65n-NA+a$8yC(rt!yn zRg;X@@3+EgS>%rrZ>Z~_K0qy)p6!v42xyc>l9#?uo}!s6GE>ke$0GbWf)hoG*DH@@ zHO+w;$rhLU1f6Y|j2*84F;Hr-MK zyc~4Oe~E3(|1gL7L(}I?m`*Im1QTp z<_)_9g$dyPr0-`ra4UD(gA3rp+Y0I~b#oxLR;KH0ztbn%#eqb6bVFYAIubThZc&eP z%ah)_J^t) z-~z_QHMO3Q_x!BNhri19C8kYIxRqP6)N(@=1_0o>d8y zjI2p={+cK!rC-FVq~W+JlpSJ1eYrs1#60!j#XfWu8OOpuJ9b?|^_KJavz0b(6 zzBp- zW8ZY1;RXUvhWNy$#EqLL(!W2LCc9`E;=qlwmHMi{AJ-90El@Q12tFfw;{iDh*4R~k zT=6T`ZogAC=qq-x5Iw<#PWD70`O$L2l%NSps_b@;mSv@?DFrdi;0`WDu%uE!!YnA1 zb(c%OgDZA;SpA4}`nAGjFR@K5(ONt^u01_oxQjR~{!t1kdO#T02ip@;bW7hVBEr|r~P&+!*b|$RO`IqNl4K_ znONLj_(K-MiHNsT?aCjg;;?PXM=AQK0kK7odYH#{+8|QS4A`*6cR338qVG)`QZrnP zgd0*GlpVh#J=0i7On3C4pn|s*3tZ_we9=kF#@HbW)=)PdL3z8Bom*K9lYFAO85_#- zQK#Z@eSt}eLzW<_iGKoM%=+-KwqIJa4j>tp9y76O+x))stKIiF7O^vkg|+>WMGXow ze4fmI($AM(r0WoBv|6-ZtFu(2c_BuSz3$G){_v`*EHr?hhvgzQ6@B7}D8_y`B7ahe z@s4Xg{+)9k%lIUE>^i*>l}Lx0zkiewd|yj?GQs|V@afzi;k7Ag0!KstG6ESWkO;Tl zZvummKT7SI;dRqqJB8m*?J>Pt^Z?Re2`8(E!Z2cC&xvx~puGURTHsZ-$`7f5iE7?e zU7q()VDxE8Q5e7{ttxXn2u0kJBp}XF;2-ODds7KIafF+GY+`r+`4%VEmsol<;MmGBPP)R z%W02xgr!+**Q`2$h>%<%lNLHF_8`)t2zY6%KxvngEPG`X3aDdd9wL0G`q)s#EXRBT z^pE+=`<|;pZ@xIq0-D7%K&?$?HKe?;n_=}nm}#2=!xR)5)J5;4VaKBn*st>C8Y=GW zP|m>m9Q7zQS0iLO9-qg39NQnx1~$^(vrg7kru19cz}wpgBcRZ``dFNN$|Q0Yh#_Z- zM`DmspnSKaq~?Tb;WB?tOvtNzj{9O z&&Q$9pL_rZM0rbK-_Q5I1hKwpQyn}gC*g7R!j9)jot|zVxKO3BZFL`a+jXgmo7YHnz zb;NM+9|Z6bmTGVq^v3+9pXb&F>_yB$@@M37$E!=ZkE;zPZRIbA_ydl4_+NE5?EYSN zXJV}f3_2^YEA_D;dYgcrl-Tt6>BeiBYV6I3cziuyQc?XIGJGa4Ar@LZHmuZU( zfHQjbS@7zadkR6N&er=`@J$i;v6IVc(P`jR)NEo59rFVozA86Rr#l(V^|HlnvuAon zDn#G1yZTAvET!nw1Yylvf9v+$*lz%&6sI{N>}NAFAavVaQ5t zU1bItluJ_RpHhPErYD=suofqG9crBr&@6onx;~+21wu>^EhDsKZ5w#^3{H^j7uZ6H zUTax8o`NkR%?tH@J}w{4H0|qQ9gL7chdpzn-Uic|0%jM;-)*4xv*g8S6`hIhY;jkI z;yGGn+Gn~jyFtmUhyFUuxL7Q?zMf618A_iM0whB&vP#u6QEbX3gAC^JBd_`yKtEfp zXBu_+Xry^ffu2v~Y=2$7;qSFg;B_jlvq}Oqs>UHf@nZJEhNj$;^nbduK`U8Rn3Xh6L6tVMaR z@)kGCht=vCw-0r0)ac)`*)==qsmGujG*%1rvA1|-uIxKlu23gCpl>45SCr09_ZFuC zoRX5AH4Wz2n-Po4FYNlPPU~|ZgEl~iC3-3TIm6aYcf*q8cIZ)$$zV1+{X$TTIP0I%G z&9d$(AP2;ZUD65^;2zvKp23&_>pQ?WVo7@0TuOfiV((P>pDi z>g6k>xeW3PlkzHaLc(9(k;(mJURzlO_lifAN@6?<^&JU4?}P$xIYjb5PaFv$A$bO# z(KAtcVXGLg-h1J+sm`=#rP=QpzV+JYdu#26S3Kt_ zxb!&?N0}_VWVZn7h#tl38Vv=`w35l!GR=j7?0YqUB=2VAd@r=g^t-8BH?UW}>TO{=#0^XtwQM5yG)L!Z_=Q%}^0``7Nef$!`H&=lEt zxE4(YxNxrZ0^B}e;$bo!U7yQ+QMFx*s$!+fxFC7cJk64hKx#Ra4}2b}bP%knm=J5W zr2qEphK~`GA`m0;ao`QH6+Hn0LC22T6)L~HwH8PMc{UTPa&#%5$A0Q}3uS#+5i@}Z zEfC3Dy!Su<@h%)4Cx7fTvGT2=5mADTit zRrR}RI+z#L7-hvx$ThPoMYfAJJOf`)OzTmP)Uj(EHH@83mHrsvh%1JDP1oNnp!r9~ zl8me=_x0AIEefZTW(<(2GsGRJ6iT`uzdGOr1?t9CS8^=r#Mavys;qr$hV{2Ywa6Yk zEGt}^#Rm)7A-+Hi#xU)-|Wh#=#46C7?J={-{; zJ#0pfYFSSsE&Z5w^wTk(im=xL*Vo`BX?KK{ZHPf_^BUOmTTR_$PT@nXjbd zn!}7EQw7i}K3+OW2gRlLJR*2*O@9dtiUzsYUo?mq3(563+KSdJg2+=Wj(i#fFX9{MuEIwbGNh0D-4e&nLd4VEU4STlQR zW_|8Mn9R^QJtr{AL_|FMo1e}|M+#ij1MT^X)muKurg))msp7_VjTKGw5rJ;!JU5-? z%X8l9OJY5lE(yd&LQJu&U|eG@`1>nKx<=l-mDlQv zx7O8IOD{AHV-5;HnJgiPH3v&lFYQ*A56scQ}Xrfzw)oebA%hGI0xYZBFeB-dFr zn)vZn4NC6Fo-c&JfQ9zQD%ywb<8fy^1N{rZWy$he^56cyGs zZ^*T*2v8QHgVkW$v3|jst1B)9m=)^BC$J6I&pq2eb?wev9DCV$9#1l)72DM_#DsJ* z(70|p9_@B<>uu}QZ%8~v`=6q#Ld!Z~H!_lO%MhlHN^Do=mK3d4U zYSHzXcq#)kgMP0X1j7NMa#;hquW(=pS!mfGZ`ihnSf`#;Z*oNoU}O$ornwB-eb zUumlz+}`<9U)9BuKYUrT-QS_GF>=2<$lQFU`~B%@b`Q#`_%6D#hRds5ux!zKP0A@5 zgi)DwQG2vUIqz|=Z+rCO7iaLxTm+8ApCFVDii-n^?BxO#yLvzRH^1X-yI(v{aq<8#i4SO@Iq}<(lF^t$9#6OaX0x7 zvOpStBQlzm%szz3OT2i6nlJ|@>XERQ=|N4fS0!WaWp=L-9PGJvM1_KTfe!OhGoXv> z>*DX@pp)0seMKICTE?}b@xly6Etn$&NNZdnq7a-MSlFCW+~^fR3RIc)iJdU*?s#3- zWrc+1RlxttDjS=M+y>~x$*k)y_Q!#rb;2VT6V_Bwdw-l}xXz87}#l^RV^ z@6CEiO$8NPjTVw%&H)Y;Jd4P+gqHSMZ3*Onl?56CP-*D%+b<9hEG zg&GNhN#=P_rKX5w=po^R>7kS4SAE>1?hSX2i7*6)wY5EePE!^CCli5tN%5V3njoo~ z{AhZXzHc)O(I8MZyMR)0gP>VA1JKt&zKC1_WQxmdeM#d=8=)hH|^4X@dI-2-Odh7L#tLrS>bTVSsb?u5u3q0~ylc=IJ!$uT>0tl#~ zT~cvd&+{Ukk`-637XaE(9_1?6)SK>@#l2~eg*f>>ic0cyFk_Ej9p1?{5i;x^1JiGA z`yq`a)-tsfmmD`DFq$%HIWH2{0knG!ozVSkxrC2eMsbGx4KwMB#pefp)R#1x)-Thx zsJYBkvM<7?$jda2-4*L2wgk#IXX`Z%77mxPK9+4#-(cQ!8|9O)7q87$sp#cL|MHgt z>asfk80h(5F>ho?UtsI~@d&RFW;&>_3i)7;%;DXl`d~NBCjOuDvONhWdxUA^`+R!J zv~69PMHZnC+OwGz|B}R*hu%Kt-cm_!?CRPWurh5pr{^*{;@|-w;T9c%Y&zO);2{vi zkw9H_g44>oJ+sj=iO$YcikiK1;=_%vjaE?_jbA1@=Y#|#mWhqcn;HD>+H2!%H6SHa zBe1qB99@dX2l$7{aib$KV(+(&r(hUr`P~aJ1*8r0V(-P9s8Ar~Q7N8@G1(O3rlJd< z^6lsS$+J{DdtRlLR2K8d&!~iZw^$fVdmj{shHjWF^ocnW*~tE|MDEtjULk777%{CM z8T>O^?g=l=^VRj`FE}4N*h~R)BOS#|hFbzlm2L!aSStGAmsG*k9J3*ZK({2cH6o>c$MaDVCUO=nfNCv{*# zT_E+3Mgz7h>NVPGsFJj{#EB&id_*DX!YwS5YuaMFM^3+T>{cY@eRPOwCFo44Z1L!K z{E0RXs(Pl-T-b=Zu6f&9dsWGsENy6OOU7K_a-NO9qY<@v|qqdJoP)~e~c zI^@~7?GBrfKRTQ4=Vw*#X!K9Lo!ohmoV^Iu{5JMZ*4ZEIpPOCRL9ZX|)xY$Wv=mnZ zhs_SM9qW&pW1S)QTy2=lb@nb#r#^vA&*j2(h+iav#2a8Xx$W#xWxvc1UtY;0xJE09 zb!&*QtoTOPf}0gPaz(Dz6)HjH6q(fl23&4MLS$1dPHbp`$es!C7;K+j8_19qxPE6& z-Ny=cLManOQ#k?tIS=36fLBCOzO4Z4F_r7M0nbYKehvw?cGlFix7QG*wYt9RJA8fo zT1yhfuNx+?-l=IVs2i%-Wg$INdvtLO-EZRBt2!4Ez=c-|#iw9kc>+RYhsYtAjgaU; zuj>tdYwB3`A()wQQ3ql7;76&zNq2GGdg?WDmg_-YMpOP30Bvq zc(T{F`U@X$wH@t$$0+d5e{qsqT5fJF$|EPg&BWSmUp5heZGdlkvszFu+aC;AILz{K zlPgj?smme1tL_L1>7CUE{vcgQPLYGNLLQHPER{fX(iFc3vn7pF1DNi+s?ufNx>MJ# ztVkZ!im+kl7hU`3KN$A6Ik2qcGR-LtVL*<#r<%a4utaIhw6molnmkr$wQp3iMNWZj z)Ur?N1^i7h(~P6mpTSi3yG6E8e}C3Z{ORvNa18U6-WA-d>LRpp&exMQrn%vx@xvQo z*fkY3471SOEym`s(CrHuPES}fyd6BMkVMg47eB+MVnnfswJl{Gd-R+&2K#lAg6tQi ztm2Q-w0J@iKOGyBDjN&jxAI*D7Xk|#O2x*eMvDv7eV5WxE#rUzdp+Tl*d1k518XqP z^hTcNSsoTk7R#DIL^}WqfLa3AD4WjKxV`i|sS?6=4fLY?IxW{!aoWw-qJQy>5>&Z$O^Y_hlh|en#g9v{_>*gB-~PAq*OxKwO^e2 zSGicYqB_=Sfno)uY{h4AbKU3qR9#NCr46-t+4AYXq@7q z*JEe*5|Ga$-^Qkt-XOguJu2@>cwW&qR0s(vHBNa4UOuk5(f`QY@c1%^o}Yg>NY#%e~hU99#m*LtHgP$icIeBJ5x z{2}2izKD|oYmHJWw7E)u3(omY(Q3U!6Re>@5piP!H-w*RlK+S^9HGB_Q!q$Xvym#t z4MhF~4&6qtv+Hk@U(L3S)nR-SJW7*$`k+R=B$5=U5M!Q)6Gnj4~;MT~$1M|4)Dw9xI zp41sgcQ`>$DcQBa;i%E3>9h@!nDV8vfbgPIa+z~~=a)_FBGEAibhg#iS9n|LxgRKQE0V}>pBD(vrBVA+pjU;p98i$KL{ za3>GoM-|l-9bkR=aZKWiP-qW01m_-9y|MQX`3rvFS);^`B63 z^b+qnOTe}QHF8eu?CeUO(!?TXoeH#6pI?1y_7;0J$%EnH=d4=a<-4wJ{=@B=K6aK+ zxDBj{HZ#ai74i^uTqNx+Oh9uAXeSRXFknU)8;-9>rxyV88s9VaFeUKQB0# zW;-2%LF)TnNJ4HY2?5lBl&pM|ycii?;YDgQ-Rn@mf%mcF^GNkSqQX$=TiD)z>XP79 zlHiT#JJMaE{(f%{)Mc$WP`(7k47^GC_n*9GPP9G&_=RqsVYf0T^zT6%_EdZMB$72R zS5WV654BhTYM^K}s1pxB#oZxOPmMrt@V^^#L>s}~K$fTFI{jy09}t%}8iA7Re=vZ6 z`Yky^uiI*m_r+9JsS%DdB*jD5WhYacK(lz`a-nl8+rUc=a{(Xn=Qscf@6+ zaj>$KT&osT4RR58SQvMU{G|+4s+~DFP}jR~2p+r)F6ui%4(;V7_ZM8eJ>ZYm|BDCh zN4-wr%n#V!^?H&2D)X8!C)V3}a~{*ZgphVfPCvLwncyg&Rikyy_`bURi8(LiuyE}4 zk-)oV#L(;2f&;ZAag?^|DkDEc14we|VF+1%*XxYP=^l$BbJ8oGGi;4S=Z}PlLWk{q z{VQcz_T?CDyG|Q4$P{#Q8@R*v;6qdCh{CJhKb+LXN8jUI*6Uk>GLxM7iHpQv3e2Qp z^#&m;1CCRww3;AE-D~c4;gV#yt7H5fWVbw?Jg$Evu-ji5&>oC9sDxf2+MpM2#;7Nm z47XuiW!Ak$vigHfHO=c!WG_U=cKNe5E_oXv71RzPQ-9~Ezu`9FhKNx3)glJ=#K4#0 z6hWZ2&J0dwv2xGrLJP% zC3#zp#o?nYKxD-?=kKrB)h|wS>Ci81|39>SbzGMD_N|0c(gG^dWl$=ibP7nTgrta+ zba!`3NGPFzAWBNUbhk=}lt`(RfOOvdsPj8BbMBe*yZ4;=Pe0?p`##S%_Fil4wQ`&^ zN2w^Rc*R&>%bX2~P7K(k;?MS<0(2eCYzBuc`2i$!#b=xXB+ z9^s*2x@nisg8v>UG(=CBgh_-_A6=j*X~pJ@dJG4zqrRF7VuxojC6q zE*!SYWfl?-*Rm$=iRqPGt#^vTx8{eGH?a~{&}DSmi|dMEjZbz3Ja2b2fYO)DuS-`{4$QGxQjrxEKF zS=*v2CXrQHNY;0UFq~XARc+Z;ec40+CeCvlDnD5x%c-$=OY{ecrT0Acmrw3TCvx7B zNuPQZ*t#+4uH22mL8A2m;qS2 zCipHj(`#}o*+sL7$nU#xtTA6SCp1sZ#LDWVe*=Zx9lEl4>AGC|foX4`&>w!pMk|w8 zgsj3s#0$ZoP&<;B$C)&S1>b-9;^b!jRfn@QtCx)_83_4F-Y1?Hl&z!MYOpYmSw)QS z-h>nt9FS00btY~ROP!12Qby%qom-zo*Bhku@~TvkNG@xYGd6!Sufa#HIbudP$wSig zd$8k+2Du$$z(uqt^(WxYRpqQ_l4Kj7gh!|#h+=a)S?#cFpIA7B^oNW|pF5bQ0k?417 zR+ft9W3_#6v!F&Hw=)Z!lTJ4V7EB)A%epn=y=UpUmq3ChzsvCU zEV6!a-+bRpz$yBl^@}-n!{-n1zP7B0tqkNlzg_anJJ{eX5*$lW-2uYI#)V&9x!ZR} zi;_Y)?cARUfj=(%8zjaWP-0ujq6T_!tPCU;hw-SbNiDfSg0&Mrk_ta7vihP3cR3>25H0Po6AxKz!9W9p>@knT4E^(OL zcKQYc{p^V~e1`;P)}WLasz_cNXI!-}5$MYhY&3|thopLvJRRM}J#)0@vQ#oe&vEZA zHA+QA|I&p9UjC6Gm&hqF3?RG_Z7Tl|x@fi!u)np3@ zL$&VZkP>cQ`hi(ME=4Wy%D>wN#>h5^!?M6}z&d%l+cqd&=H?ph*mRn4h#wH7WY2dg?!-Trbgy3$S}t^#0-4}e+-(}ZI!61u$RY! zgLHxQQaVK;`EnrqbMpuLL5wW~?-kJKtkLl|%b8xdy&J?3flXcfIAW`W-)Zs?h8)sX z89pJYw2MgIb6zP9Bns=#ED0*sxr6>KaCJ0u^@#j%|Fdubs@NnLw-B%irUx_}%;VuWw38NO%Ac2*Ni{TcD&itq<9IZ& zQQ?@Ee=nD>Nb#b6I9Me$AWCQw@7`TKUvrP8>ts~=dhJa=5+=|Y84$)n4Sa+u zUfoeV$9F!6m?7;=F<>;6VE)SZnskennG%Td8cjWavNRhekW^r7W$PYvR6`9*r#tNm z=XCh|u!jt^TS~sw_ciPpqZM7YJ%D{4gMbDKGnvzQ2O2GjuEjPa+Bc7(Ic5{_TS_Hx zj{b=b`$r+ty@3gFvDGWjE8ZF1>0uD;PqM>QYIZ5W`Nu!`$JY7X0Thk-RJBgfeb+93 z^mTb$TpS~59Hks6#NyhVf|=sZmjrlYU{xT;djH5ZT+Ba*CT0Ob%zF2*UK;n z3NjI0og9D%mJ9Zgu@g{ZUncRqWDDs{j+b(aqhlyG5$qtSLfqh}1WMToS@v?qwVZuG zlxCM?CQ8_HN(MD7`s8`-;Xk}^1^Lf7JmQHKjG|J{0TnfSIQL@rKu~-(*nhwgCty~z z3I<}9pB?SLjNvtQu2q$Gu_@g!Xl6d8>I`pg?HoH{4>{zW@|VH<3ub-!t}}cPsg$zZ zh=k!yJ1pQuAcI`990VyWcB_HH`+7v990hgg3cPWM1xp2(^)*z`+z&3=;4`Z3xSO_* z@*2Ik41>vf0+1nDwT#>sz>h4X*&9DYqzmSLQ$L`$@IU~CgdSExe_0MPmGSnXO5wS3 z5S4X|L+o6SQk{_ahAFN;pX z4z@$)2T&6hc8|EaUX)c3|L(p0-~K3~Muc1?TQ4+Yl(IdK4z=s6Uk#q2uo^1*M3Ssy z`;MD^x%}=D(zTU-e=Z1DCau=Nm-I&s7a8}%U2QzTIetu8ifUE|E}AiR=~Ha^&Aun_ zL+0Hnfv8$U$YE&V%oy{+`68vyK{|(?CL8~<|L9ublq^Rz7j}P9N6Zeq1rK-&g_kYH zt~tUYzwqSDjEM%i8y-peLgqsR)07hgo6rTFhpbUsGwm^>i?VE85WOAcrP*NS9Crlz znA_&(Z&OdhoVy*;MwPwN-($KkshWXAq9FC9IkmcR-?k?nrFn5wBB!2MA{JfmeAG}i zHgY!I|GadD)bKCPCPFm9$Q-P?jT5CeFa^6kL6vm9nkwx7x-)+FgeyWs`fyPQ#tml0 z@yPI++8fKK8xD8s*t(h_*G_Mx_yN5d&h1%wezvyGbx?7q(T|5|!gEZY1tW-FZD22# zVS9!PoYG9Kab zRUs^mAQ@VKPMd2hzIHz&xj-$Y6}m}Xq~l^tEJq|qUrTDYAl(RrvAa5L&1X_aB5AgmML8}t)z`Rc6UG=;(+ex5pdILbuappv`DG!i9 z22wVtvJ*}tGkBO|XA{93)E>HL2O?KZ!Dghz*95L0dGOh0+%adGzD8W&TuYAN2B)vw zRPtRTW5hk0w(Qx|QHhvDKJNOYbS!Gm3SQ#+ug3JkQhb1%PJM$?Mx< z>29D(l0+>@m+84+$F3AXe$%*3ZBSGGxCAKv@)B^z*#{eA8yC*~e9wdIL_Yi1eKVPJ z&Qqd8lNB{O@cJ4t-n!t$_G13KLP#57`(441Sf@v<$JAbIh4|Sf1?XOCW5{LP1 zsk%KI)gw0ZQX(r#ocq83nQt{P5t%QaU|kOH5^yVSPQxiB4m8#Nf9yN{xbe7{ezb30 z0^B$yyIbErKITse2f7^rcOL=ft4ilEF>zI|wE4B^4_%qR*QhknpJ|}K`uXq$RDKlO zTOGGahvBljxO1QKXKB*S`D?`~$tV2lcI%&)(Qk^y-@b@QEOMW+5sr~qY(SLi&6?pK zUjWuy*w1f3edn*vr{A49|Kg8IKb}!n!sW(=(ua9)$g8Y1^ZXh#)ce)5Jb(HZg~D&2 z^j|+H?~5=4=j94!$|V35l|w(M+D6`#mkq&;{Mqwp|m>HXO~2ql|_1WD9A!^t{t zkYQS9$RR@d<&1b8TzfbA4{wY1qoa#debwxvtrW|9oBluQmZTir7l+dQHXKO+}A2(k+mU1Z;c+ z+Dn1{Gb$}Bh~A$@ z+C)1O=rOHE;;wuGOFMf)!F8pqi{2G2G7Jp}#wgKOh!~}nLAQ0H=zqATUWOZCR)`~o z^k?^Em-$!lU-LS%Z>ck*ZI9V@X{&SSh&DKcv-ktJQ3-u(OQ>uHe_?gT$=es`5kxhJ zN>oM$si9QfAQaFOk)OKK-}PSq_K(Q@SmIS_)RmHF`LPD>Uk3`f6tz$4OgsnED|duq zEC;KF5^W63v8BidhFrJmkSQu7+}@7>X=V|U40e8Z(TF^zm4aHp!A32l4%pj+mH+`8 zef}G3*ywG7GOS@N^yQ0EY7`@2i*u3&&2d`5susw?WmsA#yODaitpAp*zg@cEtyaN2 zM3QL%6UwX;Jxr!x3x@MLG@I^cKZX0B*DHXeX92c(3pTAIF)YaDNn$Hrg}P)(O0=!R zyT)zbXn&oee*gI?`s1K>0e^#h-CDTLDnqg1@gKm{Vg(eTeTZqTg3c%a!Cxo!$^l2n zC|!nb-QKeHpmYxgK$FZ&-m(D{WC6BXwt}vkti_+In=3Ee&O{-zpH5-AP(m{hc3D4q z>$%gZi)-!bAhh8yZm+i0BSljVz*(C%#HP_%A~PH?H%#~yW^J311nPItWG%yX z$8jEsfP-uRNl3>(%~{7*^!AFy5445qVfxZGjF+FGPExmNXTs>bhkBn6_+8@?5ZbA+ zgPyRl;tQ=H=(7SK&-49)(_s+ro?z-}`s{)rIDSsLpF0f9FfxUF4)eVU8Ka#LFuUV0>mR4O$hZz}0Q%!#R+Fs3 z-m?w95We^L?&`tnwUat$?Z*$XC=!5f3K>2dk)uk)q!f||Q|U<0HUoLTB~!F*?a(vY?3_#UjVSAEx{1K^Ti#$E&Y z$_Q68^mVH^E2U@#FK)4@xnqwlHgx1+lnhMz}RV=uc2QhwL}kR>1cB}@MI5B?vO_>c12!g(^zDmx=1 zDVVrtE$xRdxjsNtb{FHnZgEk^J;eI1&WptfG;aB zh@Xn|NB_u|den&&n;m}`D)_f2{_p<5&*n&z8a4aMq0S5K=js0?%xe!enIlBa8!%49 z)v4cK1|jU8g8m#xgB*dm(qK$EeD7E@4M)P+Az)jKO}8Lgvu(QAuQ1W9P{vpol1a*u zV+OH9BEfwGatb6UU0E}@Wj1)&r|O546&ZSRr19K;;|kBtH~urqNz=X)()i#CHm+Vf zWTPAra{jIwDYeTzsLt?W8r{MmYXZ1ml3lvhZ6E|^5m&yT#tSc#rogh1d}MwB5K9LT zT$mT{hwARrn+>7ku}<1emV>ny{iBIOcQ|VTH>B`wNZhtQ z0lJpurX`>T91-B@{3E>a*dA@nF(9k`D6bmIeM#Sp67bJ2?!Ea54Fjit;0TB;md6VV zu&3>iQ?b(oeHlTMm*D=^d)CQNEl^;(sG$y}l~2%U+;_||2#r)*Y09gZ9|cL}7gbGj zZeG|qCV8;GilL)6#G7P9PY(h;#>B3I;4Nlcb z#;OP`9C;>bp88i+a+XE!cv3_B@|YjQ#UtovaX3mdmJvHnT1%Av12RBJmzxiVecz80 z#~J*j2pa}p@J=CD&=MTWQEghW@aBAbj@*HpGE6;Mqesx!mQXQ1K;E&IfqUQ~+0&Rs zCa9=v-(J>JPO~Q^yd9&|ma2wO2O3>AlXRhm7!$3pH7(GrDw*qTh z`X*w@LH-ReLt6E+E6wxYfCi*qvNhL)i72tyW%@}WNVD_l)=J)8vh-Z=06sSGu(>t@ zTrG?}p8+tgpf5)Uq;JqJRI?$aJ!Y`0FD(P`Xuvo&q&{#>4aN_;lCED3+Ig3L08;TO z#;`|N13jmsS9D=^*}@93x>ciF`au@m|BMf6hJOvn{`)iQ=VhVzOlTYdJpSjfq9U_0 zm21l`a4w6$(~3!?kNO4|>zTr7dSe_dL@yCp3p`vUg2{j2a_XG`&l#~p;DD$EoJ>Wj zYlgIJ-(}SZxMmBmwdt4SO3kX^qDoRwYE}zfVAXxPD)i?`4b1LINs@$72UFdqY939^ zX6rYuz1j9vI#ARKDwjlL%k_ToH zx=o!w)#3=gXWn!59*FiWxLjVC6krOb@I}Ux)_g^|S4ANLc zMP~sGlgYry4Ab#3Wbiw2Eyo`^AFefxl=ZsgfjQ98+L65Y2&Bp~@SxP zYpp;iov?D`m~j!ITh8ETpL|a`-nkCHfM%=c*#T<~laNOdSi_hv&ggl(%80`?kI{AU zsu%dsN)sYIXgc@n!CL=U9xQm<4Y+K~&+cw6Y5u5ty(4f@&s>+Umm#7aoz7{yu}1rm zOzEV3fWQOjgR7Z#OKC5^?nnXuvMo4ND`9nUlMrfBHCv2Sc-5!t3jT@Wg!Raf0aB74o5frFIsVmwNV zPPXm<3a8_ib0l1fPp&XcB^G}K`x}xSA#fyJhB^;>^!b~3aOvNSEpj!S7lL|s43+?OFG;aN0w3ibKQ6q_(OZ^}5ghMI6}Ef1W9DFbzk zoHI-1ci|QuJ3(nSDFoJvksBb?IPt9oYQv|M(3Xp*R5{T=%9?0_`O+y_F5`&`5UL}7 zQRZMOm-IVE_Q7eMTa_O(s43yBRoVi4#lOZ5<{sS^Z(@2vAyeG!x3x((D=oaRx zRZGx@EW`Y3b$@O(#M>fm98m}3<5*5r(TPw*EE8D+MTpkZ?r)$)aD)QNHj9*^?&i7k zXk|?(Tv$GNn)>0~VthMHbc<(k{h?bxBBPXljYI-RZiPEIbM(!Nzbq;jzUFidxxpUBQ_aY zX$$b<4DX0_fe$L*UVp5T^EMK*1W^)({H6g!xWs6 z3(WFQA4o3q*6xHO8RzOqb%2roLTVO8bWPFj+?fO2GUV);_rVsfQE>K; zOZX_Udy(|&o7<5u*8vy}C_WwJFBbRw`YDG=Q&9EUA)nm%$vI8y{LhH0CuV5jfzq=_ zpxQsLnSy#3TDjO!;}7@%-J;^?jZROH3^mjg8#oWDYWwFbA;;$!+`GiVAGtHl#}cTh z9)X`64YWL6{yD64)dQA;r++fDC;y6>{YU5huU^_O*6kXb#)XQGkGIXfgZlkyX))C9Is$$Ysr z96~aBMFJ9#&@`_=-7qi&M>{*otY#~tpN>(o{TMjCR=|*!&f8i1(FRb_P)PJan-jQ) zKwniBiJ#50(+?OFSJr5sowCY~X!!=R-1#_2fMX$?A+c<2O{waW9kzgCCU@<(7D;tr z3G6=VEBAfy*iR24*|n7*KHzz5`W7h_&pl(%$i?|_x{bhB+&`dj@_%Bk|5s2r z!Uyq~Yve+Nlqjbr(>*gsd~cLjr5WK=O6EtG1vVDKx;YvC&H&6-L;^^(szK$P8@GL( zLwbGur6SE1l=Kn{y0Swx`ZAyajoP3hQFdhl zIpK9jxOxMs-s7SSW{@r#QRB?K5;(1}!#5SgFa}brXSbqL2B0$mE%KBDY&xE_gPEtz z&{RN-hTz4sLT;#-;Yv^ms=jOqr~Hf{=UJX6I5>s*V2Y9@J!S4p4zluCmKJAG^er4x zW(l1(6<)fs3l9*uAH#^90f~`oQ1)tpTPeAcO9 z!jAV6xCDuQSPH^}hz%!VKMifMp~_O}4#`bKCPHw39muRoN%Ff*F!xhCy5R^JwhH$x zmcD~g=olNQY|NcZb!$KlW&xO+!d@=_aws5DtY(eSt$!g`zvtcE1x0r{{sLfVe%9CR zz9=EHS)~_3IgA%!r5xev*F^2fO&tLuJleij?x6_D(8en_X>@tNZvGTajP{wly9^-G z#UHd#iNyaOE%Zw^K`rQFCyQnh%YW`C5z4th@>4Z2`U5%tSE8B!?a|YM;TYS9`}0RD z9sk9h)clvYlfReb{&j95+!^T0{xn#*TGf=-jmKd-aDLCgc^+-3b6 z|HE(oE#KisTL=B|-*t)t$pt=cl)Nwz{PzgMRO$|n(2gBDIx28mBmXUHb5R=$bxLxu znpV_@QIr@{xhV&GE(opuIGL(8nfA~*Rmr<#efd7bWEl4&ywEV{)3SojCt%Q@KYv%m z=Do7rq3gW!!g$`-WgN?iDy;nFt#^0qXN6S8wLkUe+Cc7>98o9Fs2N6MCwV{}l#Dko zspbS#XWxvys0@JwS*52olgTZ~6m--42Hun}Gy*W(4cCwN)*-yu?C}u+O&wpVL3d|?r6f)EijX8IVjN2mV zT1p^cs~`R%64a~Hx=XeBDUjwCM3Ttu2zpmWN>F7feHIHEyx*X?IC82|Vhhtkv?1|7 zd35mqidfSt8RCrPsBodB#Tj$6DMY%D>_~~k(A00{-^#f8oM>S%H$6i({=}G-HOzx` z!=U!l8S2kUNthPKTS739E4K;Q6CY48^45|#8?vzhELJRysw3^y?MxGETF>pzJ}}2F zo|%5qV(15jY|#8*ZsJ-1#8Y8Z08u25f{uw-=BkHDzWxEhcg*E`_LVOdo?F((`Vo`n z{a7{lij(AwRbT&qR>toh%_$aigSfhCx1F^nU}q&kV8Wr`=03vYCvs{>nF4Em%yat_ z7FeZHz=yJI$%Zhzb!c&wm@iJmv)&a0WkhE1$0}!AKA1tU=aDRYNw51d#_2VefH(h{ z=3a$mdG^(~&uhS=Co(G}8C#eEEd<&-egnIhl)7YMEuIzFABIZ>D~2q#$?g1?BSk_& z4Laj8u%i~2qVr8Yr8SkjnY2hf4iymm@A+VJ9gbAuB~j%p)&r5n0PIh$pOYPVh7P-aY+JKn?0de`uyo(% z>S3tB?w4IMM^qHWCVkAeYa*!lNm?AAbhJe=;82EKRLzk_G;-L9Zq=t~&|$(d9d={F zNv|ycOSRpe%wCw?`Tn^N@H%}P(~;r}z>Io0cYH8nz?KkfbrPNwM63U5inxDE(CJzp zS8CFGP`^eVDxy^x{JjWgrl;_JGj8AE<<-#ea)=atflNuceX~&s({c;6Rf%J}PBmT% zC^p9kw8u+J4{NnNeXU$RfiZ!+&Zt=teu>5S$Xwzp$%($8p&EBrh$p?3DYLzjanf6v z^m9)IzUR|hD&rOCR4CVj;+xxj{r<)G-?g+ANN3lV4w&rm4H##yJ=t1fAZ0gvbi8x0 z`{_nvmW}^ff58M#bCPCH^pW`l?$hc55xqto`O=IEZeNyoa<+{^vc0ZalJ)U?Ta!7T z*kZc@m)FWAB*{)I@9*TRs_f3im#?>G)@IR{1&ePztkWMrHzWF-ZEgEjvg9J!7q9VN zR|g)J2X~#x5pRoAXIM=JTXxfl8!5a`I#v=YEe)H8(3 zm$#maK!eX~daIxej_&7QWcR25*YAgXddyDswH~Q1l#-CoKcCA=Q`nF1qVvY6J_(Fn z!CWS>^l85BC5JtBz8)T_6e2ji@D{KMaRkABBVNhFdsQeHb2hLytPDk>(AD1nuP=7+c8z4NtOaz7Eyh_XTdB0$c%?y~3tl@t9L4&^1T5 z);K1rJK+%c*zPLlDv`QS=@Qc+9ux3voG>9aAI#TPgcZ+S+Yx&y(G?wsbmQ~Q)83RD ztB?-y#1&D?yaEzwuBIR;_9l@B^lMxo^%TD%=Kc-N@lyHn)y5J0F(npbVZe2fS%tL3;X$=u)t;}Q!c$0Wkep+1gM)Ajti)4pWyIniNtUP-7U}4FXkY6 z50hSoA63@!kqbnlzEGMdCbee#T`BpoW9+7Ah#tm&gY6z9wjEKfIMniotqcM;NQr|0zidX_KUm2QV1!+9YhqF8%r zrd+7(h1%AkUyA};!l=!`*aFqUz;i?X!OZU?%kq_6LC*;7rsux9EKd#C4JLnk%9?0% zeQ&Iv{n-bjq@nNMj^sGpxh9$_Q~O{(T2KC}LZcL|2Fi?0`=}rL>E+sc?3$eAM}_)d z3aTlUM)NS7Vj5{$oVUe|Ze@fVr}Q7P9Fs85^Xx;Zz0!&jn&06FuK19k&QiZkN$+m1 z?Ua+c2=q$JSI{D*D+=vMxPBgpD7pSYBR%xjrDw zRn5%tOc)5;VD%|N%uLjqX^!_@CvNJsOVS8Rl56IadB&9uzuw@T`{T{H!i!vV??O-G zuqp&b@wzVz?-K{n3*Q*O3xb+2V2Z;zfnd$r;8NT&ktt6p{?OkUc!vbhJ8FeXh2wZqA_+Q?*LpQRW76)^%~xXgRGh0IOARClIh~B3`h5 z@e7<+$GPmTgQ7)(4+?`U*RAD%=gXN3aeW&{pc42B7b;gmxknvQ%(*H9L2Mxo7YwyYVIlL@1o(X$iWLGBle$`Izi1Cmzi`A2+G+7Ej+yd5ycK*@4+=1LI(*8Qt%0p#VtkEK{Z1Q+8N@f^4v zqybJXF2(H-S+%#ZAeCQx=yFQ{=j0Mr8w2ILAn7B(@E8xOq$@Zzi;eYqC*T|AUL8@4 zXV+dVF*TW}x?T-Kba}Ru8Yv&V(kn!?&$)a_MMHN~o_KmT_brUqBR=wJyemq zB%j6VWlL60z?asUj}!@*IkV9*Py5QvHwP6`H{mqr^X`k7NM<)K%kQzu8J8U)Fz-+k z=1Xdk*L@HIB>|H*!%pW>rjc-ZeruOZM*%Al3ivpQBBL&ztqA!cCG7MJE@Bk0oMhQK zIHnQ_*&GWb+zuTS>;|!Q$=O0KHS@2EXQ!Xd_Np?}2>hXX5kN1$@%$|b>TYPRo})>x zVP5^l*VuFD$}_E5B;&wDZVt0YmWfUUV4peF>W2)Vt^?nDBKnv&rC$vqWJCF4vuYG_ z6H|;7S)UVZYf?rh*$(HOFs`~Cm2WSk{52ynfSskSTfIA!R9gWD%SJz6r#j2?=y2-P zLxhEA)?#K{22@lX|7~jU;S%-~2lkwX$Ns96I5q);$AZ;0A94x(3-QcW;+hUx)pS(G zR*sLN{h3XSJ*c@KK7N0(eR(h=k5DdCui|;tNEVzX&_AR&>rFg%BOo-qqnZ0=4=t7b|*eJ$vnr+J1@Y zk0DXrDDa~Z2uvr+ZI)1fV+ti>-2aq}9aqpZ{OiIGxpzm16erma$%A7oti(>jO1aut zd9B^{N$iWofCzfJrl=VAYO><^YhfK0p&>QjQ4XY^DU$CmyMvk>?`q29$E$43m%q{4 zO=A|>G3kE%WY>8+u2EEzfoE8JEQUIyXxtgy@ven^&(zTxF6 zqf@oEn!mp2s&7s#;5{n#MpBdKaFwN`W*Oi0(dTC&jaksQbWi(EPKwP zQcub9gv2_a^A5UM6`qD~i1*a2fB02h+4hm_Rc}g6&m1ywn_O>xHTU(Y{M6njzMgTi zM%CN5od4Kt&JcKCk)52wIWcF>gx&hZ<--~g9F_s&Um?vqOFWQZP!>DIiU_@I;{jgr zSsGxzZ-|eBC`3GzfZZP6Rj=!-R-LK zlQruz2VXz3EXJPuVj16jX|QLU!(Cih;fZCV*ZTPP+ScKP=wi92C6C#^UguK6RGcKJ zd(*7*{M|E$J^s1Ff;W@Zu8J8q$;xoYzQJTZ+Sw7&Ig4AhnH!q5)}$rnHTTl5OnLMd zO+HYgymz(034O~@N#?R-*jfH&iS}1&Cd^j)xsHQ5cjr9bWR`*AbHugvYXe9c%E}$u z$9a^(m|zzru$CHgC{9kKWe9{a=i!`iRnChy^S$4f^eKvVI)lU^5+E2FB9g2gK?RVqx^+4};q+WO_D3_Mu zC5imW)+s%RLyt-Gx)xzYbaEoXANuftWee7Vf*xh;w}VXf7d9Yw8mO zN#Jpfe2mC7T$diM24EH6^Q|Kg-Bs@=bzXeangxu}+#1MyFKduDE6T}>VBMukB=3!S zqu)vrp+W9F=t4A9Vm4e*FCbNS#s(s4N7^}Xu*|%O=Or70b@?(a_`7)`jPA-RFKmN& zr}Sx8`Utc1K^rBB!=nm;Jnh=XVwwp>qJEPEH+YVE?@cO2F#^eZGD%{e5hR9dW7|Gy zvX>dsvt|lQz-IWd`d9w6`a5m37hC~B3cq2vImOszph`kBB1s#Ow78IaEcaTNmcRk` z6Kng?Qgi%MJNaAY!`e<}Hzi>XpM( zF4vx$BX4x@_0t4W>a?RvqHC*qmKDFLicFrkzL%jn@-n#`3Ke`61$38QBZYf!P3SY8 z)KNL6mor*XWIUo)YhnA)CETfLv$X5_Cou8Yk5c%o1}SZ?SWJFA8=?34HT~E8_Q5Gn z>+qM#yVDkKR$wl}b^OR-n9hlnvA36T3iM>nk*Q3N?#!6tP#9(2Y-BoVq@h4mYVdgn zj8$a29nLWW`kIC~Ewtc0u;@8PMXoybT)9#+++;7e#+5&P4jIum5xN-%lp?L& z3jCi?4Yk+~JvCG}=x<;~@+uS1Ro4I^A7GW+UOj9=*ibH8CFN#Z?lB$iGfk4ZbjHAM z%w-`LlWmYlrcdjdC#}OY7BPKE9${pBDqCl@k(r3s4F_UlbjS9uD;RGMq4MOdFSsj; zNs05k8t26d^xY8`)$&+%2IT^0%rP#74%XmDmoq=jzIQ_wWv1Z8k3G~)%^t0Y?#N@$ z`t5W-jDopKsJy-tm8MC$gtsLO4w%!MuxCk&4Kf&_YbXcddJP_C=h@W=`f$HN5dj~Y zHh#CBXd~)i{>)75Bc4wm8$f50!~Fr4RJ*sYIUi@yE;joRZRHa*sQQ>7la?f{3mfqP z`vOuco=p&McU$x}2Gd<5K7I>A%k`%SL%qI?(hBVkbwBmn+6Os>xx&gdF!(T6H?RLn zQ>ceSdEwHXtmoC?R4ldkim13$KE1#sOCs1%b1{b^{NSw1OBv8=sc33Sq#GOB>ky(JIy!(0B zYa0Y|2`_rEkcb{Tp23J1QKhY6t)ScYIS1=o1lLy^b~A&pJ(Jqd>#rTZcE69hBa~)@ zlt*_ekTkGicapjAd!P`;LTPuMISFA!*i)fE|J(K$tKct6K? z6JL~{ppS%*^|;!$RLK@V3{PUhBFVW>Q=f10Y|Lk-=4XW0Yg9~MF0W?RX}o!?=}Q85#=gd7PKs2X`>S(j?9!*S zeV(;}#!pWnKibs%zU^_I&tg^$WDR0UifK`5DS~DZO|GN{BHH?HA*5j|H4!cZQ=C`M zyb?}|^jlxep?42UkK~!S3`p7?I$u>2jM$4RS6HsrQ`id`chlZ}HoSt^@|>VI2r;3x zc}n5LEERFiWa5ldK=<6rc!Mjct?226a*`p7sr@m#TiO^j#r9QQtBqg1eYhv6^uFB? z5D!8o+0wI)IZwV|cP^XW3$whL^tj1UJ)VVTBf=rflCOp`%h4@R`J0nY0nUWG6avsX z=p66jUU@|NwyW(L>35#xGTuZ7mM-cw`_4#<%FgwgD2kORBUh08UhNVr_MUzcR~qby zH*xg~sm#$yYwdbhssqZlreM+-o?Y2(w_-FRA0u{k8B#;`)b^tITjNhvOg?JQ_bi7$ z>>G@|cv@^NsX1FNYSR$EFHOa9JV2gnb&ILRJ!`K zkS&cAkT11<<<5!U?N=naZuC}H=JsdSbQ9aS+XK0mtoBFxANLKvS>_pQWnEmry}_A! z;JBIQbA@O04UbCxt>DPP#~(UTtg^=J@ibo-2OemSI0tGJ$KEtL?B(Y2*u8(qcK=~*=2txZS%?VAzu9S2*iapOopMjy|Ly-vrp}A%7wr0Mv}9xHAI@ryqrda@;o#ru8lcN8yPh-=jP$ia}z!?;d!TB z`1I^xt^(DglPPV%4#8K_mtS^iiVnQK!)5Q%RKsrr!4rGGfh~`z824icOdl>T(==MF zB{y`nzxWv6^K`>gsaiwjbR(Z#oy7*j=t~7GbNsFkX$A|%JM$ZvZrs@_nR8=vD{fy) zUrpCX@EpA3ur(QMP|19!W{5vjays$Gz8O{F5W$?Y{WNOm!{jtiErHVTl zw#*aO4tpGG4(zGleJ=I2D}ANWUd&c?b>*$Bvm9FAcH?PTg?<4L$(x^i8=C$ItA6X) zLhkmB=O5AQtLgx$5Zm^slkhw~Z5l?=^SR-)z(5(<*9W@?k1wBkJiNX%N+Ht?vsyp>I>7 zv?2SaV<}IVfr_6La94IB2~w2y(l7}p6*@1ukH`u>X|DX42L{I0B=z@$BelM#dh;jR zh$Y?z)rWi(ph#3V(Y;twcv-2%3XX9Bj;;S_udyj*P&&c|{S8IT3H5zK1`b-mT=%n| zbU;*%GK=2l0xZCesIL)IDnk%db1ir=-i4=KTFw{|k?+vL>}KBO#zW30=)FRiBUPy; znxv@9*2m=1!J zx+bYl7ZZu)CRq=ygf;xS$$wO9oG>(|m%PHSb}48Aphc zUyah|_sQ?t+4&+$(~rXNoz=5C?!4Hil}y!jdVl?MLb$KqSBY5NhO~Sv^H;rCWR90b z4;ve}dA3bNseDdRvWQ8{(@Wu>+VMwdCoS^sf(=`eGZ%_ChwvY*l>UuFdwe?sG*JA3iK^x`@Sq0%PB& zCm+c_vgwF;ah&v;5Zvv9IH6g3q0wLTJFfZ&U2LJHmwcrr!|=AL$XlL_D6AZ8ucA(! z+{hWlQ@GI(przKmTw%Xpn6%2?a1}rJN00WkKT$@YnFjmf=_4HP3H%9QZHm6C4KeWS zOr2sPE>=!royC>DVtk3-iKcy<=-a&+JT!9J-pTdM^Jt%r4VO24ycWjDW_Ci<&Fo$T zN!Z3^Ap%O?FT0}rjo-W9=u1^PpZIn%%vZ9o{?1gU{*+*FIYn{hHD_qXqd9-zY}Pv{ z4=2y5WEv)8Qd$#z-wIG3B}Hm_X>{#Nk#C2GNayuyAClV_b_3Nx|yvO~P( zIsjQlB?-Qd$#~~lPGChorOhHVD<(pB%p0K^IWa*;|7t|LbSr#a8=Y6-Ok*YA>wNDm zsu88(0OAAcAbKkbM@n!)yyC(vxU#zy;1z7jMtfY?L*CS7DF%njZT;l*hT#@LKvpACKAUG9eN!c|AQ0TO0Zk7pH`x5_G4*+zv@YD#nI z>a%HEcE|mk`!`+@w|MAP9(>s+-AYZ*XHTH)imS_&sfJ5YaHD3|$t8JoD#jP@u^8=D zwZ@&7!tY<~>Ec;-VSDO~x_?RA+^atuX@@=5sb=|nZ`YIZgHA#4r_@Uk220bQKBn}< zeD0gJJdy@dgK#F7L&Obf)s0!087tRzUy{D+3Y<36MjbloaLl>xQ3&fRN3#K_Sbxxq zC0s~(y`dphi)MrMi*DHxUtJuyx*CnVqpirZcS@dMW?mEjUPZK2LbDj;xaUdmk|CjO z3AguKGv!I4ZHK1|2KmaKymoxUM60>_xOgoi*H*a{R;XKBgc6?Cg>xSZ`@UhQnoPiB zmToz>d7GFy@f*t&m-*S6%c5(NwP)O`g> z*Lm*_QMOR1f3G{u@Gyx~&2o1_n}50X8qS#HD;D`)4;Uk0{Y10%{D5=0{%X|C!XLLp zWZ{?Ha8pwYcYOu47uy9M)N@-RK`pyfkHtSdAs{8Hej`Ic>8{;AR21e+9F}jO-N}Zv z`z1k*s97(sws!N+4EEzwKY0mp9Iupz-svwcwtUv)!sOan^&?d%z+>i9G0sQdA@h|v z$*RrPik*!!rvBihCZ=LwU3hRrR`dH_iOKhwN!_p6o|16ayjuK96cTlUJm~ouLAe6X z6VX@aUx6lu2b;Nv9kMBG5edwwqz5Ifza%N@jS~yrv_&!Sgv^qhGSRQFH=+4!h%x4M z?2F-v(4GdrgQpATc`zP8QgoY|LeEM6GO-_%+~7TW0#XOPXm)SSkNhcQlc!k{FkR{54K;Dlr42g zsNL~+)hj#u4QK2X(c0mU8m~+$@%WSK4IPhYhmAuRocf{=mfN_3 z?20XvdB(CBI9k%*tex+FB4Ctfds>$}KD{`+{i?m1g#5)ld33TZPEw5~@BHk$WO|`K zG*d6>yG%U&r1;T@D=o$=P;wVehkE7U1@k>TGfgkgSeM34u3M6${-(hK*N^|%O+#L; zQzbg~LU~jN?#2ArZQHcVl|CMY)Eod>3)-D@1o8Cf8F|MFh=Li>mx44Aaa`u zGOeg(G9h=Q6cM5|6wYWXh%Vz14as?bHZ1kiSrW-fq39Ayaa)H|&YHbdtBc~V4pJ-I zGA{G(ud-}BAlWHU?!#DCrr@&DdhrmzHXk?>BN(b_sW_JNAdIjLIfL z*@ZJiO!Fv-MiRQpU4yDWQ^yw<&h(%$u=MC#KH^ap5%}ggDq~^in#|@+IWw$u1UaD%rHgRD^Gn2CLMaQy z;spw~iBYM_hjT{4yj$nL`aLOmZ7KiA(L_GH43DHB)qXETD!^Y-#-{Nq@AJJ2cYI51 zLf7@D*6?WdS>xZ#*&CgcpgNa3BiYQt-snbzO1-{!^ncho%eW}pcI!)nNDczhIe;MD zjdY8k(jm=|k`hCAgVHT6-Q5fz($YhBcZcuA{p@)5-tQMb`4fS;uJbsLwbp-S{Plxw zxXaOB>3VXL*Dgiz&QL1dx7{R*!#atYwxsi8LN?P^-GitJB23^Wi5*s4WfQO$qHr(3e>(r zQ4uNFz@H&HDd_OoZy;oBGLh6GPe3wvIT84vOZGFcSH1_YbkvrN1!k1UA5}pKBw@x5 zgV;x{QI$=TLx5c^U!$UMY)uzBT>Gv*K(P;b2N9%yLuK#(!v2XKY$egxCB(}wPRd6I z%nou?Z*w~Q!2MSae!X5S_HV^KN7sWr@f)~GjThQh4@WMLvMDf6cjW#E{RTA*P{@)8 z|FC%e5@gg{rd+A0J^B`h@4=rEPK{5|hvxp|9}q^=d5yS(->~s0@jAeT6qm~(jTL=l z)Py#?W;6;8`tsF5w!POd0_`H8++oE$wy ziLBNhd`(DIiJ&6IX1min_@qp%)2~!$qMefR`uL%T-ytV|JOrhpuBqt9I@KhHpZbp$ zsg`tpJ^>KhR_I}cIAjMehP2#QE`Z=?l1@58s5uj5Hs>=^*!fwn5t zZ;34yd-0~UE2xJTtb<)}@M{tPfdF@osmG>Vy7W_eG^7vjPs)A>2kNdIW`Ar7RRoGj z4bmHa6j?c33lBh4s!N&A$ynq6@Ni4e@f$q^I6ybbhY&a5ayFA^RA60pD*%#p|qdAK=K}ILl@%Z z&U%zcc=I~{eGtF8_nLislH{|2XU+(m7%=ylEV?5?3#~tM2WxZ6X$HE$>z7s>$jWu#U9)ZUMNu&W}@nBt^8njmsXP5D^Nkd7&EP{`bxvfr;o!B)88} zqw?)nkljg`v(v6kASqo&Qytd90-fg%?K)&z6Q@hPK;+ZE4|`OO?fK7`9)-9|eMFJ1aLyPjAwjL{(xBCTJFuiF-Rt$Itu(=YmUbG-p zZq$#SDWE2w&*8v&w0bRaF4LKW;VVeqUf{4)_K_#0+U@(vG%2$9FEjxIx+q{zK18)U z2u8&{#q+M0sm0LFmKcVfrgJ2~vGA{$>ocTyia*A!?|jo)tb1hiXqHSRQQjP_!5Uf| z6|2CU+~2tG zdzL6m!4^McHLYLx{8_!~@NJ&vyR_!92W}cKBZ;{ta((Nb-Rp4AM-|)XjahK_J*eJ$ zg`V^+t?8*`J-9HvyZ3dSooo%(5wkF|^D+b#fBN~nbj6jtrcVqu;$KtV-Kf0aYROD0 zI*j<4g_lEOl#-y+9rf1BZOb?vJ>@$OhelWSQeeDERwoezXZvc^gJn(Q9J5lhR6cVS zDmM11s~*Ge@s&!BpP>qZBPQ-|gZ`pdFzVjS#p?(t;x{y-2^wA&BN22`F4J@*`Nq_k z3)hO=yMNA~w4d&Z2zfh>M2V<}IaBcz{*BsoYxg;a0u!R{YA~etsCw-VHg8JWB*ue+ zY^>8@p}+Wfh#1(L{jkX064-}jz43Z1({SnhDn($QXl~pR7A6KOFkTrO2>;N;c>vtT zzdgTaxOQBtwmasw{9pIzH)KS>bP*|CgbdZMQ$lv*1b2q}Z1y#KRJX}bE!vDPuldkU z7=Ec73TMc+<_EiIy6Q*N9G01$Z;$bkK^~sFovqeg0A)WNYzyHUmISqFE%v5^{UCJ= zaC7c`Wx_Hth-RV{g)|Cn4nsdc<$Q0NtrO(QYfuCMTP9T~kyJv39n97WAe|y|DN0tM z5ik-zYktwo#elU?ti2%a@lGToO;CDhrmdG8sX2{;$&IFB&6{xSfJ??Jw0NQ$Pzz(G zA*Y;Qv@@5)*RI|mqqogb6qZ{UOr&TViu6k0ij^^!n&q~4bxz}BCq2Uf7^%FVlAhTV z=_2Dlwab0EH8p$0BcGdSF2X&}g(BpYG47990v^U~?9^7^+{c=#=RTj!lMr@RH=|dY`K39j3o9452S#v#I3+iP2Y(L+U!fuLxz@g_TGnK;$)Wn zBZe|!p)b$FkkrqNZMc1DvdihA?8$Da0RBLd>IG|(lv($QpIV%^Aa;wuNPcHZg5;0w zs*WhpeCF%A6U3j&g9mn84kNcGt9g;bCWd8Pz)1(VY!4f>-cOup`AmIY$W`8w&slhbgIW%ZRvloTETr%m08n|k2Ih;-{*4-HFGdeaEit)E{e z@4^j9glZ4v5z`yB5staG9*NXR{10}5O5ezBFh@dj|4De)8DEiiN_`iPQ?jqIqYq5EZ>-a z4#c{P_P(cO5_mXtSW1`oH6}YfAs_zK`h<`o%9&zo=pM0OzGXxo{=$ zqVzPDQYc<{dC_)KHk#BiOnR|VhX@8uBN{CS~y&uLJ6`5 zk@DI;|3*pFu4IsA;rNisOV%}_^PXK6^)FL(BI^C{wkUt4Nw1(A3bF$oTaqJDdDSC& z`NN^tMrsdC?D>2cvJ{D&L6`pDb@UU?&5jWUEwKP2o8R!wYnksQTJ0P=P}oDATp(k` zuvX3Mn1nWS@@wDew(1p%SL_NNukQX*{QYxFYyHg$>ePUBbz0%qI9gayCS;GRYW&FqGc}w2($8P^6T_&PAZQiZ`?bNzl=hGo1kZ}PE zI$gcz#jUtNI|-lAG8>V9TaxvJWbDBbbo*R*qtF;GbwZnH9c$JXzcoW zCrTMreYkMvSrlJ)DL;I69Bf6(`|dgB?c}K!`d)d~2=gQRn5%?A-^+7|6aVjKE2iBm zkR=Dg8_m@KwKSo|LT|Np z1v7>VIj285*^CO=Hby-sw*=In)tyOS?e~m~fw+H-h}SJDoM5 z_2hQea9YFm!;{;-u7shjeI)q8hR+W~lC2-z)#m69?=ismWepf`x0C0*ZYrAH3FCQH_Vt(B>!|ex`za!y@g`*x;N(von!A0Xh zykpJ~!N_9S;l%f0dq|`S`VQ4v(4IaqsmXGX2P}?)w2VhjoT|Vt%%{ByjN_Rqw7-W_ z>TNRIysb_vNcF|I7z-4I<)pD4Cc>MB`<|xmsJn@SCHmljhcyrC3v6}o2|XG|O_Gw* zQP?zcWt_EZW7|>TRjgsiRkI;FehlG%zU-7kkXIacewmEde!KW8Z7r>-oZ*B4&y2)6 zLZf}7Y&MmYawf09>-~+^stw=7<@eGGTHZ(f{}ZjtLqRxC zKSBCR+RiDt4Er4NbF8RFBaBUU?8zl=mQn@y=4c4>m~L`m0Idpkk`1M?V7Z+ zt~EJHW#eBsHMu3w>m^aWHe69|-U($SCkmfzDn(yuCCG&l>FBEB9)mdp--lld!R{d~@S?LSkO9HlSt@hj^0OyNfE zvdNEQa$r$Hs$MT5I<4?k3fG5^dH(}b(C--K-R034>5ip3K<`Nq>b=IW0?=y;AZ zzZmD+77$^qThYU}d5y@&OS*fSLrKn{Ig@Y<+*Wh3iZS5)k@PC!sH5vXK<`!;GTO&D z-us(Ec!LT4lOGH#8bvl%cV#P%_X3gO*N#q1p~v7@-{L8zl!(_;VIp3e#H8pC)x#=tHrrLc<3NlJg`W~zhFbH#PPBLG+Zy-f)bEveEaU?TFN|2$QWq$z&{!k}iu;q5yzCnmPvqg%{M|G+eehJRA+liRE5qd0q!xbbhw<86g&&0*>%Nst zwDx|-SxIhjRPThLuTnh7xXdCP%;VT9T^hubD#8I)Ua0%kp-qcV>~d~5r*Eouy{%0e zP*^Al!~wZndL%vN&Nhcaqg(Pwc&w5jH^$>N4t>tmW7N_DjB}yNylH0NF7Mc1xhBib{~p9;E6vcbP6$AlK zSE-$*hhbb(=M@lqY zD%lg*Tu#shH+7svR#_RX5}lZoI=r2iO0Ju;VkV~>XT1o2c1sQmKm?)f1Y$rIUpT7F zKS81}1N3UGzBfkwV#DPR#}r0Oe!j@?Z;@(|jCb5C%dBG8o#ZqtCnf*Aq6N}&2mq2} z8cqRH4XvG+(eVO)e<3^=sgT7O*%n6Q2VKltQ6(tna7$wl=R-o4_nQa1MO<0HOkR?T z@}2q9aMMW$%$dF%8v2-($d={&lF+S*F+B}*wHEOdRJc3Siu`Au|}kLAUM_R1A~IVcG-<%L>I~6oQQfGlT%`H=EtLo z;11m?)(=>!{O=yp7wBGYueiv8g13N2n>0h=r|2Rn@>=kd`L9x%^;mML5!ll5dQJOr zo}!M`-1*vi>YfFO&H=89NTN-4_RHdT*@!BHKLAhgE7u4eHzWq2#i2(R0_U*poO$NA zl~h|u;!(CcNtdvSV@z*JM4WmoBMn*u==oBOb2zb=M#P;2qic-_0bD;R8Ugo?|(Y6Sr*fOChM^MaNkkGH? zVabzCNv;Gb5lCmX--&*b;e9`{&f3eMP*OBvBnUdFO&<1AjkwYUZ9V}PZ3TXU4X@qa zO0AUw#p6cQmr+LGJQbmn56w76TE0i6#_o7#gLl*pWIdCvMB?obsX2%O1Sn&l?#B!# zKa?!5j?E7oobFHhWKnnylUxxKa3k`PJ+1ezJ%9p_AvcmsjU}sq&^S-eV8xupuM>VZ zk0&ttu4WWRaLbqo2I{#HdnPUZ71qYYwnenaCA-9i9{5DJI(JTw_iCtMUh4(iwa~+$ z0oI^3^3_nq9O&2Mk+|>>zp6hSLj|t8IwZFbcKKw}X)aXhQ&xP&(YKI!=Vu%a<8JM< ztw@vQ>O(UH!&)*#i+{5#`HBqU^_%j%H1M6g{~m2W*kLY`i?G^A%kHa>Ca5$&kbhQg z1TWHlB9}$m|0u?Z<#z7Ahvt5F<_DdaEd^XksQbiNnS3v0LZ z*Zy_JFq_Kt-^msL~tojVz3nAA5zkP%v<9 zmRBr_{PkcVuiC=CBq3B<8q#YC0|S;hs6j(qK49OAH+xgNk=S9OI-TJVqdN{dipb^@ zO*bs>tuk&U`I9s2azCGOx#TQVtWzE4ro}~cJ=61)dB1Mfm~^eAoxCtd#g zYg^N>R z&OV>gG#O3`9nxt0vLXJSc{qCpdX)CQ5t9hyPe) zdG@PI3IfEGkIBQK#8XA%cqN_vDL7O50PR11)M9oDG@jtB8M zCA`FV_w!@vZ!!uc5wULsGeZ9dfT4iyyE9Rcnr3>?0K^O~No-F+u1xt2Yuc+}uQtFA zdg^_S4{*q08YGQV@2~3w6WW`4;vS=wslkL`0B684A@s%)kq?4EgUcu-Uf78!LRc=* zBq#emFBXVUL|I_J4+JL~BfJXlrW%VNe_73tDicUm<9zgUx#uW#zk-MPw?!8^mWn~ zE)MO=&(es#Na4NLmYv90=sO+k65mXb$LZ~j)i6^}bEMcrH~c#y?YPiOjpDF;Nq4eF(BE5=sgbXU zKS%RrolySaPL-w%9B(q2_+4`)ZzQJq1MaiM*mAYp_KpmJdxYG15qcoC76}83d(H^< z7_w^2N5GA&vqo`IKy+R?6D4{HR86av)XqwE!X$8;){w7?7`S~T!wKIoe!2!Cj~W8( zQw_jOmD4iur4JkgbOWVSPzn0e6`pObc@M#+03SOEqAz&ohZuGj8*+~>_1adkzH%4S zi_QO^xm*EOvH_QR5lYMW0n8_5zNF zfFZOPr;t?i;K&h9Y?IO^7vcOphOi`cvZNfPvIkd-%&WzY zdgh!JaLg^OyryIvcyeI?*BM%et>WmXQl1}2X_9N#tE*wfg4?otD4dK`w~U@|LEo{Qnu}Cz8(oT zD_aK)IT)L9(?Md7xu7x+NmedSiAxGMb6F5WSjW)ZE=Ifc`jjJ10WTU4huU<>o&Vy4 z`|H-r0c6FnXhmQ*K)WBj^dM8hA;wBlYqb~xBy=ecsw6va^~;V!htBO(mFtFI`rh>o zU=|Lpt(g4LFtzfwP;UZEC`#*Ux%J| zbOn7LwqliqORBk<%!quOcO08AGkezw`csEq`lj8ZERRflKFTGj^}NBH_JJLI_gER- z)=n{%QF9hnAP2q26qQT9MdaGPN+i2HyaB95pYATnGlV z7&&4DPxJrxl_iS~k8uLomL(vRH$ScfIn(von?98(u-5YGiz!HH?u3gcA z_Y&JVFi>TzKfC+o_l^U6K(eqf3;rjbOK2@29E*h<7Yxa;@4|2b#y+VyHu!Nv!foIJ zsKNJbwnddzHe?iR)DuuXQ_JKMdVm4<3*Zw$r0}hZ@L{k&%FuW?+ZthriK!64Tr#D$ z+ws|6dJA#_-o3SsB_d16hx~8NUL#%sX*?o+Q-+11+-J{7q5_c1G2k=ki3(@2`oyS> zMB(|#_zera?<^!?`NP0>qjqgcQ=!4nEA`nrKw3N2NiG?m_xB$C^cG827kXo5E-AU$g1$wH%RTDaN?wO}j7i%(UgI6?CVyzXC=4D=Ymu6h~ zF{}=%hmQF~MLZbPVQCTfPOYX2%djBL7ECHnc+HrF4eR)m8=m_@!9Ip=WwT939JdoS zmVFF(WC?@JF8DjwGZ$l+=kR~9hgkvkG$|4FCTPv2bNa_Jj!8?%9e}tu+hnaF<*v%M z`D`8Oio}ij<9AFPmHnWQLgH9$Un|-L*Edxx_$=^Q`fzl+j@pTzvVEc=_3&e{vJ>MB z*X@&}E+QYiB37!#^6eniW-3)kxB!>j%w}$!m8*2Co$|6vCW>PUF5fT+k|p2OE58iANr<;7xaCo5%z4x&e`FRpJJeiT zxb*=$-F*!v^#FW;s#p}pAq{G#5sqSONg~_D>i*B=s_5-ilNtk9JqiuiXioQC9X;l5 z>{e}cU)3yyaI~w}iyDv=NM2ft15;N-rPvVhm3av@D~ImgWN{l0&!T9{uu1&0@tN`+ z7j}!0^twD|p*r?U4R38`t}f`}-F_~k_X*g?_z(D*MQ)k4fG5&V(#E%er|0LjHW7{l zzIV=GU9o`+EMK#2875xhBp-l_;(VX+Wd5>v11WDmjg2nNcfvqA80jcGap6&FE!C{{ zrEohCS|gWP4(e;dO4Zc4d;5f(k&$e%ph)EI1#l|f@2bfm)m4e`W!fEBa<9blqcaR2 zn2Ni2+vcO3SHp0R{bjyfY3Ve55s6IUj&7q6O9bK)Ws|TnT0hT6sYH-PYJ2S%q@CZR z4IM8109~c{BC#w(Nxp97dPaGRx7}?V5k3(#iWZ|Dy^0Q}U!aV-1s5o8qm;R)QOM%U zXnqO{???}K52Lm0yJ@^4b|IgZjZUdXSCob4z>u1tKjuirwqK0R;$lQ2dfDy~Hju(wfBa<)Jdfok#S;J>yDJUsz{LW7N>fj|CDh#m+0}a|N6v%AX^OnNeyb- zbfi{R4Mjtt>o1^_-> zf-%-s`psXU2HWQB2#8&qh^}@5vYy*HPfY}+nCLjp%5iJLDJQk2>`?!(lt3yrBv$1W zkr&HAB2Q83F%lYfjco}Yw<(EdPc2q7@P&#)DOQ?J&3rupXYYk2>*iYtgAF~uTDqLPH7oik#`(xBaZU~yxMQS<8}`OD9l)> zcN)Q&CNEPW%C;DFoun2GKMzJ+Rm%~`Y%}jwWtHaQKdAH&>(doOdnnERwc3R&V#Cz| zK#9_lL9j3RNEuvcuH?T&@I6;ryN~FY`1Z{Jx5Vbv!VP#4+3q2!gFGa0Kw7k|`=-z} z;viSl=oB>$d2{7h#5Iu5c(%fgs4-`$pe1&|ZO=|=25ux@+pG)cgY}U#Yb>#!_d2CD^Vqb%GHL$%cFuRvY zX4K80HV3XYTFaM8-CL@GM&sOaaNGyKs%)P(xE~La)dhp+&kc9(x9#`-o>mwjLLG=) z&mVrlB%AhlO+=@I_-~=_mfT)Gt$X8n?;mH*&9jJAaVQ{X-(9|yeeLb;MzrkJ%d(DR z{e?$QwD30@>uMgpKP9XwRIR+$T3#?$0=&uknto7J$Lb?ND=e3xsNMqfmF^3$++0yo zfSK;G9eEUg-%XZKqM1m{YvsNgmmz7RyWZIYB^CbHJs2~gtkRVKDuX(k+F7T&nhyWN zH1o7|g(a*OL7o8wI`Ew8`i?Obmcf6s>B~#G9DEs5w9SEiyIU4PE;I$j(L}1>BX8K8 zNU_!gBkHv4dWyvo-|n8;e7RHNttLnSxP& zy|8K>kd+>!W-A}5oDtQhAURzS*Toj=wI&;8qKg0lawbx{{wb~0n+(Qw@s5yi4X<5GeKg$o|Jhz~S;xnxiouVex&;EiwI+!GTbbEO|bpGkbTwc8~9F6 z>_dR8bo@Dz_SMGg5se)m&j>7Zs^pHI@INncC$wmdKLeZOvQKlkh8%Ab1`P*s}6 zdkJEq-T1Bs<}hEV5t~HlDi%i@s`bx@>_L?_B-8iqV$L~tp2=x4si!fe<1TQ-4u?7E z`{d0xo*>&6z4}M0H+_WwuvH4ZVrVNnU~@qI38h5-*L=HP#$O7q##|YU?IF;XnE0`F;VB1tObd z-7i6;Xd`vPm^1L5=b5~w6Ns-+;~o7l4@otbMRkFJEkN=wpNehEiA<_000FQW<&WSN z0M_PiJ5QJ3oYzGzdbADNllv6_uQu=F0eNdSWj*rm1XH+PPvrKEe1VHqfj6 zubIE*(*WV(Qa1qk^2PBqO01Hj;Ew^D$d=o?|CU-PS%2d z7L7B}WkjMz^I)&n-Vw$jo{g}I=3sU&;tJ1{+L5nkjW3_9QjLi;ZsFSc!3e{A1r_gR zN{81xroqfPrSTW%G;0%@O5AWYLfiuBQ|V<208Q|Q?N^1F*J(@kH~HU1jtMBM4Lv8; z=y1TMLne1tyV9=U@+uXl?XgvP&)=?qUR<-Ub>(Vie!%(kS6_RQySQG@107ZpKK4a= znN+O%!nJGbdF`9>@KREjvC~=%I4!h&m~o#$3a>%p`1@T)^(jO9*(!2?U9QOa-4g!W zcT=eZ+yZcA^HHL}krc3fbaGWkjWe7S{Zh@ZDXyvu85*Oz4EkQ+!iEj#UfX zN>!@2UZJH+H;S0IVVRHo6U$dOsx4-x=57y0@qXY=^QtlN=h^Lvz0%9Wy;q=(ArxO7 z82GwQI#M=EeYP>09J*s7T|D zg%@jHPcuZy5p!g3=(4}nob?Hfj7@Qh=v`y%Y%mCZsynb5)m=#pt9c4+dQdiGvg6mj z(RdyXlVVGOM8pOxzd)>ES(d3C(ftDn`>bPUP4-=I@+jqSp?RLYVj1~0Mqgiy&K?slotTzM$;Mhuf!2`SqK0KAZvk9XczCjf?Jv({f^IaG2b_-$>^TIWM(DjlrlZg z8bBM-nx5C+i$uMlvEKu+`p|}Ss+|Jen_4A!grH_^UIs*0(OvQ*BFj{_CFxM;M?App z9oZn_eqOP2GIrrYOOye8lRE#L*7b_ZE=7h?med@Ql#Rwd;Sx3r{%xD^Wz%4?B`iftnrq1FUns!~bjovR*M_9}8gk3C- zTsQtlAh%U10bdKbttKk1TET@5{PF|20D9~n5y;gljXgy9j9-LGg&V`;Jog67I2W)S z9EqcbxY`<^SX)WYg0)co;_hmHMeqzFy1OPz+YV7(44MaYIWjQfKaGQ>i-$@Ir zBQNryrzc45@*ges%?r}$Qhwl>DE_x+LgZi1#NHOoJO}Zwj9o1l?8DcO9+&$&i)F1r zG|U)ipgo)akIe$%2`mL$Wvj9G_*ZTMcyu~8{eUaK2jbP{_(v~+ryal$5rT5DQ!V!% zN*;d|)uBEFt#>m;NjhFZ?;s~GLEmX0=vkyw4q<(h)6Qoi=chWocUTSl7@I(&Pwk4h z;E>c8HE8JvQp}xE=+1NQkC@p+U;X~*~-vAi8DWTv7}Bu*L?ES68fr_j!) zPy2bGk%(j@ehv#IE^Fx9x9Vc*vRV}$?{sLj)ynDw?i;wn^y?dlV#>Fe6T6s*XsRnpg4z!zR4L~(4sfwq_n2mgNz5$$8 z;I$+paNb-6aBerHXzM*K=CyT>0A0-7AArPyk99LVPY0%O2orNLm1-K0ZI=n^sG=I# zT7bxQjdba6Ds0*ZeewH$LKhP#bEg0h(QHDN|C5fZ#>4iVZ);&v(@x{G_D?1;31T?0JN(G zg4$V`OeodJ%iq8h)jVlhrdYhNvDyZNW)4A8LatnBw=eilB-ViAQevpv;mCK@7O4=u z^oGP_8H3Be2Q~@eLq*SfYyF$Y*JF*+8w@x*XYd&$E(52GKZ&P(=j?E*b>0G&$R5+C z#3BM-eiNjbD(F3vQWrq()SI)@l>~B%>iZ!P;gY{}m^I31dV6(OFy_3Px^nlNK7AF4 zGI2GtigBw1TgpsJIe)W(-M{5@Ch#S_`Vrdd_OXjs*vH3f?<{k^31NpA(VAx#dYm|r z8Y`~hZ6aQw?|?&-8JTW6fs!n|ecd#7m-Mf80Fe{};ooQtTW;wsR+yP6;$ zLobu%S=u{>n8mPX(dKWgtC2F;N{h%YVvDvbBSoF1$K?}=!;aOE51&R)(c7g{uP4|d0Yem*w$t^fOJ^7^k6W@rm|g%R*gC`tj{*{oSWCqatN8j1=a>J;qThyrBq z9?bYnz~Ff9{rAdyYNVFi>Q6`#3nVSMLpd3$Xxp>{{ydZb7KK@t>eS~0G-(jXqzFKT z!^qbJ@W6QQ1E0TK=QL~sa{E2uY_LcSnI7$kQn5C#5~F!tF0F8&1CK+2N{jiRMwe#r2mQwKOITo2`AyRCF>6(>M#88 z^CO^=nF4+Zf)m6K9hn1FP5_At6|M>5oh;LvZ{ny-0d#R0;D>_Q(+>P6LgkHk$=I;p z1M^*|yu&$QdKd+|uB=;Wap!R6V$qK`0=XNx!4(HHm9*5V6a}F8HjCrsPTm*0lr}{` zm+Vv|#G?-+@Km0pCa|>1_+ZxCj3J`Qbup64fjF`0&Cl;+@r2 z1PP(ftNBvdPP;>>*p!Stg5yG~ANyY|sd2B=_CuCQstc181l7Qh&zNu_ zyW=c?RT&SUuq_r9JDwjYeL5cM@UR7DfKVGgX&ZGVL8>WtihhbEUEz9*W;fUNCr=Tj z4We@e0BF} zFpvI@&gk&|RBaWcWay0heRt%rq{MK{{je_ai7D2cR*ySbpBre0x0`5QN5kYU(4qDi;0B3#m89Gh%}3|rc7^S z^64)O2Q~+KnIx7RZkM+p%V?N$A%Ga`(N0xP(w?l(cRhS$_|9f9b5$2B$r7GW{$s+H z(!^_6%)y|kVxevG_P8Qvik}flf>e{bYnnq ziOCTvfV&Zf{bsvl?dnB?=@*Cd$p_`*d@L)q%+xtk{K){*gUOzCb7M4C%8UC?CM2}5 zdzFP-Ps@kB$zp}RIt!)d{deJ&I+6yFsgm*LY_*Slbu*!d4a?{r5BGOs6N;3PeAE9a z(q9@Mw60 zS#i)Y^5U0fBzy8#lCfdg~+xis(Z)OP1Gk+ZD*2uosR`Txo?kwvOg=s7ZLW`=Ff1>=|?|> z-(f2>v7i0h*+uTi2cWL17L(K^NEKw+ae7l_mEYCdY~*Cb@Sgez18uQA0s6*$25FgC z1jh0O(HY?<;u;T4(u(zM09y!>fb$z|hx>x-=ax{7P?tFus$`1>;QuGDG^5?q3h{pw zp8GhI!V{`$&9mmXh>OWad#G6i^f0^ZN0@6)tM9rAHqWmfSbR63 z%_sLlEj@UXHm42L!=oZc{3v_V{rU2q&Rd5d)`t@%#*JL-5J%|1ZrC000Pdkx)*;q_e+dpwDL zmi@_&IHbGd0trtXG}axmQ{n}WL8W62d09fvcKkbp@^{YEPZj3x3kzg;GS|{1tZL+R z5;0lbbXKu~z-3LPHE<(u0VrZql>9YHic-@)bF!bE{#0=c!&oP1okdDj0zf!q7`Dpr z>K@-Ujy^I;pnV-s9V7T^94J7FN#Vw+qaLl$^Ib~WN zyp@}KjCOm&BuyAb61mRw^+>+dQNL z>tZ)-kr-91CH0#Ba@5uOUl%;Ey?>9NT`2CQuF^Wm5wEp&+|cXQj9rm;X*S}&*iA1v zn|5YL5PM`#K-FhOXvAL%ahuQSP`O0gpZ9QN zTip4-U-$lTA`N^5RX7W*?oW#e__by7k02w2I^lvk>OUhkfPuEnY3SXdZnW*qRra4z zYL7kkCBSdqvoysrE#4bJnLDOs46_X;`sa^Tcs2`=w zA1aL2(BbIFUry86yp+XMbu8ATv<}<0Ed-msQs20)9w}~*qhaz@NcT1a-l-kxf_v4+ za;$@DN4?vBNl$+)scdjlkJ_#aJ03b)8Lz3JubET;x9y^88yBzmYSim!MSWTR2WUtb z!{My(d`S3^50z;X;#q9rjfH%T!T(Iqz}|#E&LzzN{t#x+kBC1`vE>(Ohfm*2qTuh~IY zBbc+kv^i=pb|afSjH#sbZ$$Q%vsI>kq28Vm?wx9jf}(8O^ZeJWS3467odN87;D#wA7f7sYk_Gkj;0C35zejEd28C#h$s-$)yNYbt5r*#04HquT6 znE)sEt4Ivcd&%yGsM)EXsVZ;XK%TCQZX!zM?_ zAn(#tRwPi%P%{gQKYxUi8#sy~$(k}nG~?@3TA@GM{w=ZHd6Bw&ep0@I>RsPTkBPx?>vdACjZ2BSS4Qz{R(l(ZpV9{>DG5<_6>PX?Hl_}cS5@SmRjfdmyteK z&FAmaF4}-o4Y>lBtTyxr%kG_A7Nze|7A!rK{C$g0s9liC8Zbs(!r!f_f(W`@m)U7Y_eQFhWFB z;HU7d(CD^ITfcOV5!}7Lxh#4sKOTIYE7Aw{?dAAIQrD};E4CQ zy-#e2_Z6w?c+-A%bcqg_aLU4F&~ewse>_akX1J=yS=BQI9U{rFB+SmS9X=3>MQsC& zgbuuHHF@l_JxN!jf}&$P!&latjj~B4(xRQIBwaaRXqvE?1E2=IUDKPmi|+x3D5aL* zMMh7R81P(re@){c2&d&z&w>O!eCvD&4-Tj3P>W}aRoI0#jm9Nmoc zFQaE-mP!w~GZ8&)-(!aO9R9~tKvy#IfZdjsX)qnq9JgWgMwh+FrQ05(aDXgIuaAE$7Ch4bAAB_ zoraz{4&u3_%Tu;8uK7C6Yd2jy0K9U|-(TaQGo`QU0ZK$ikTDkA*Z#&cp)Zm&vEgZp zs^z5PPww?G;{Vb1oncX>+17xf2#sJURHC*mC`eGrQKiiwC=?(F2uLiVKOwdF{dxhu%PWdj1R;1oarjR9bzElMm+CzFE39OJ@e!%0`BG zkYUb1?d!;jmwSCt^7Z+TyRR4!@fsq7YfuYIdNp!2O=@8?8ECZy>WWtR-mAM`s_$#PEa zh3JQM*z7uIXY}RUCCtEMQIju;`z|$*bod-Rm383l8jV`doqH994~rN$e%NJOt>Y85+)xw*p1^3ZC@jK8eRj>!XaV{)YW zl|3QvTXxy-7`k%v-pTMEYsFn0S~+~1MzHs6baPv@BMWoh+_9(mta6MAhzMxC#Fw|Y zAnT=``YS6~_7hJj;;WfXYskuFi-abQ6O(R&%}WPiJSKQ=19ivnYzvFp4M(Al=$k^H zRg~iBcw6W~(&Adig`53Tq>8~5Dc?eCI_28ko{#6}f>Vzfg{2kCPfI)#_{d`1cSL8u zU<*#`^_Z#BiQ{IY@BIS0ZdkpRi%)1TGp=UFDd}Nw4a>w76*2sTN^1Ajr$oLV^SebX`euwJz$Z%$a1wOE(^_A}4Wp&^5>D2MS^Y30%f8^!p zt$aqCePk!!V<&DtHNxAO^N^tD-J15gb9{Rupx`aW^X#|c|H;CIfuy1LM{%zdivjh` zN=?#*HJiKFj@QT!6vX=vujUiwJ__Ho9s6Qce71nkS99QFUdn0L`(FMG$O0?!r^W3@ zCWXJ;szN{iXKoFDTFpCIM+2jy8`iI}?OXr${I#R$cJDam2grku7J8YR2UoaA2k!jT zdRb0Nd$VUb*Hk6a$yS>0Y|7IA#V;@aJfg@M4Xy|zz@&z$u0;C$LA!gxw)Gixt2}rs zP0#F8LA0IU4naduxtV3pL2(;x$WoD>xiofn-QAsK9VOdRTy2oE0wTA!> z6c?2zo)q7k>fU*xO|P+y@ykh?!;EbgHJ*^`tY6qKk_66a?6!Nod9BU*TYbJEX}wz_ zov)#&@wht$70prP7eNC`sxH5kF-udLqm8e2Di_=J&P8Ot&p4Xffj6Ag37c16(Wbj~ zqVHVQTFbXeTnjE-%H}znV4lU{DVuM{qlf9>&q?Q`HEm6J+HLbKt+i5V@D1a63d)^- z`o(BJ)g6{T6>4+p+<675=Ix&t(NgWqtWpPpZCpvJ@U4I4xUbr#h24To1{l99ZoBV%L@Ji$}M8*f{4Fjh$J)Te#4EZRWXs zuD|1Aqc{1^)2=t^43s2MwjDbe)pk(RSf+U#3R1fG4> z`qj*${UygR+S$lVJtrM=v!_}ZcJ-t~DD2-nq@ewHzVEa9s@<`ch zIevX;cvvKf?nC*{$dB)*QBaaoQx&CU_u)dA26?UZvBJ#ZKOXbn zKa!7+&bRK$yK()xZa$ut=k)1MG^d|#eVU_v?^%?Gwx_xBbVn;r`cC`uC6TAI?7Vk7rLk zZ=obXUb*EV5omu1vvvCf6Sv>3xEh0jb6UQ%|DyC_4vl5uPO0xV^Iv@4-yhNa+ea}w zy5i#EGP+c#DM@lYnkjzB&l;n?zo>iv`-}S9DgNjG@A);46ne{$pdj?gM6{yf^K06z zm$$xYRQXOCOVwQ&pQD`wI-Tnltg@Ff(k{7oo*3EpPrmz~!oZ(?dNdHZc6@w%sf?yN zIy#)#J1kqL(PP(vqh*>$DsTFZm77ip5v!Vds!EtB%|oKD{M)De``_dtM|Z)mIXn4zy5&7BU{nJC83Nq{WYeV>R`7{d@vBmo|S@wbYO46`RCr z=gG#k6-&gGfAqY)fBznppPwHb5)uN3Ld%b;L2~YyCP+UEi9eKOkotm9ZZP0y60`zi znoUEP3(=SN!XBKmqq)4>^!#Uqu!%9RJEu;L{BnUNcj7r_DDhL`w~ z0H&X>Q}I+?3{vxov0`{wSZ^C|pUhCAV4K zfx|McMM<~Qa$z^P4OSZsL2Q_=yd7NpnzS7Hy%~2dh~YlEfD^^?yGD`4=MREB&H8pD z<^**SQk@0%Q|#QYxcGY8%s@RGRX7s!v_dC&b`k7tQPSzrxN%yGv{Z_vPp{8Sy6@Oa zQ)Szx_7m*&(%{KD$>6r^nKa;( zo%Cc1vHDT~ix`(IoZZq$)A5bG4BwZ7yF)!LC^1+D969%a1ZI3kWAEX8uQ^lA9n=>FZaEPl+Gxw>id!f1cg!k`3{oluZc?~4& zEBBdqh?p0|x^1is%U>|f0ja|_2qJ;z1&B+YUAumWx0o-R-75fH9A{Rlsk%PL%V$*w za%oJ+Qm7~^1Mf54V_~BGoc>kG5;fEGd*xJQ@OF?tHV4O8t+xaVLsav4h6BG4BHcE` zw9crs_yl@4B6MTiRg5-1L{0y0Clm>$qs?*sVs+PuNVtJZp;H5PCT8l|#~jk`cjM5> z%f9T)9hb|$ol=VTB2IisQnEz+nF`)%j*6ihV8PwI%@uZ2+rjFS?E{W58Pt+PC>s9s z`alGDjfUr#bqbdRFA~LZcf&(M4iU!HkpnLb^bbn~6cf{j;Z2CJ@x50U?t)D+9+o5s z8>{2KH9a%eGA>LkvGPF30A9o?tuq=NOoydi9A3o}n=!3#<)PWHmnKgLEJQeyGUP?N zvpEaV5?6-vP1`dC6o%V?H1U$WTnrkIPp74?zDb;02aSq{Ssxw*ua|l3kYBo`YaI!7 z&2Cw#H1Z-C8|^V*G0VQ?P`XV1*@>SsHEz8GKE`y1_|3W&XY|b`%rKc(yQE92*1?|gRt5WwGofM1W( zSh`7rFoA6FwH?dtG%w^PuT1T3S?{@}pP(*jxuia^e-nGATUzVR-|{i_e~~jKm`wbJ z2;47xR?hCJ?|6O40anfA(T`gWiX-Njfj*JzR}W4DZ-h(!*iG-G;>?VQ0H2p2!=Y0+ z@PuaqAd^MS!QzVnhqPTX@HwsOGiFU57dvSm!=8CaQ=LxAbUMzR!}05HX#daJ8iAw| zvN;(3*5M|S1*Z2(OfdF>m3nSFjKBv1gc_wvz(vPLF`FHN1v%c`6vsrL#TE9s)XmKq z9Lg$`TwTOBR@>y>h@RO=vSr)f3E@r$tOIWOdDhW}kzmO1xK`P54W#*e?#+VZG>T9w zXV)_yD$cZ^s^zGkUJ7R6YsStnlf{EQ+9Qo`#Dm5*~SaEe9LnG+79b zs7hpIeShzBfxMM(VP^0g=`}FU4Zoa5vF}Hk7_PY)Gxkr5AimBziJc(t>$BVA^ydcc zPnFp}DYHJlMH&LVAOjxdCee&g6V8k~&Mh>bLWPpAm)-V|r#42vFCf&()^sQYC8G7k z&`KzC>hc3T`ZB=4vx9e^(7{`x>7nL*nU0pWf?#xY>1&{Z@cI)1)MH<6iuQXg$KSVB z9(5jRjMlknmi$}QA^)FX@6`~=;cd6IS*TB-++9J_;ODgTSxfLh|7p(Tc6b3Fr8(M* zUBb?E&0Fd@Pa2e|v2hQ+R@Hyg1&uK_fdRpSxjv$DYwp-0Jv-;vD%z z%UYOuK{cV*m8|GkN?4N16xxFn+<`00!bsUNxz#JI|5v?2MwFiSy*-wOvy19j438I1 zz$82AY}UgtV7H`0(zS?-vbBLW^O(MwQjQMw4UrC`SjAInC_KotcQ`y>f{T^aZP!_6 zp9}H)6;*1_K_+RK`kF$ZU}(Xj^_L-`&nFfxA;sIPDv}-YFmh> zf!{ol!$(U;k1a5?0#6$jj{%FrXTBC-b5ylZx8dF1Ye37=T zcj9qvVBwq&RF^IwjIc3$;@V~Y?&h_U#3uz6c_uiD$(9VzFE$;A)Y4W0yd5vh6e>@N zI`7@rO>EOl((T;TFshOVOHt{#G#<$`To)7^Ic{KFw+PWy%yj~nis-9!K;Y7$?FBlT zNY^=ar!X@@29&dcMb`t^rR1VVL$h}o}g-bLNH^c+I+&xIrfq5P2&9Ls0 z4c9I|=!Fu)>>a&`U|LytUMY8SvPoX(qN?{4B&IJ=Ht5j?kK0=04+T#bm8?x#xIJ}K z`3x!fk_}PF5F81hoJQHS*#lRz0y5u_SxXfr)ZAF0`8*=u{qZ z0IB$XE5UT;$ma%8gXs5G)E?+dk{K;k2IUW_k&?2~vjRC7G&PsCWv#!8f!0p?3b-(* z15|q{;VoNoMW!m9s=kf)Vk|x$B8sIdV+T(xhCa7Rbf&;4%>T}C0s$gwCupyrKCH$Z zouk~%%E*3Y2YF^s%TG2IJe6DcsiZ$`1m%ZFvBj5| z3kFgumnNa|!Wbcj$IE514%4Olv{l>(Cxa$zEeJ3KlVqW{#CTRr&`Ob=``vE5{Ryd* zId@hHP4T;}Je>sR>XI8pswZ4ZLr@=8PHOX>DU*8e^{T|cqvHc)<0#9GeqRoDhI+1& z$QX{RR~L02uXdel+Hnkd+x`W=_#+@d#1c{zPbvK8MKN1neRcI2^uc)iYbx4-Q%6_9 zAT{h_^JoW!JXQoosD^FwI=vu2CjJa;_?U6Z;~rFlaB+)J zD3tf`{?fbFbwcsaGt>pYBtIW*%g}pgS9j#>{i}!hH3+A7HY}XKpp&*Mh4v#V_wNF6=I@TT>bGEEH@YC>Axz!S@pIDa<$ZFVVX^et5yE#5P%9N{6R zU5u2Z`{=p_^`@v!8wDb zD!qIcOJ#DhFV}JH7`rA$8(nvDok*|Ts_Qkhhlb7+@Laf+RaNhm06FkC)%7U>^hXKi zK9!T2L_QG_`?z(Kj~j3VD;7s~^JYgEP}t8GLE8S6!D|cA8hatSbx(V??y1aweot-P zHPVIXg$!nYPPh9;ef`Fb$;iz$!^DqxTo58TRa=+n&1Aat7rfG@Ww6?N@_WIb{; z0%h!#UhbO~KtJyq=3GRYKjwn?$CGf+bHEDnM9CdWNAIQFt_L?XAi55A2GYaJgWHxS zdsG8eW9#<<9jaC2kiiC3<%~&FQ_ zqac!zyF|D10-O&52q#EQxB)=X31Nx#!|H8K_d@9LjrqjLrfBOE_K zsyjruw4-Ztxk_eWF2++Cik)&~*etLBAGjjFT-R1Arj7AXaeP&(Sh1pf>2WazTbJj1NU2~(0fIudaN z9EM1Ua|*vdF8Hgv2Jr&%ct+jpb5*XJ3a0@xj3Uek&Zs64*fNfkU)>fdZDQYa!n-W;e9a zXCJZIUSo9zSW;>V!GU`t{~H{bEm=z=T0j@30f0+7qv%dP%e`OyVj3qVCe{iatw}&1 zu!|TdjUp5K=AdK(YjJl8X56A2yoz-%-DOvxD>hpuP8!fI5U7`th?rTkECTCpXapJ=EA7sHW_oY6qJLb#!;_R2O z0m}-5aBJvqKg&OsQSGI$FPLk7nkb%^>WfoU2p1RHC}_F>R$~aUDob9t{g)C)G0F1aLC&3K&SKqiN7Lyq=fdev$s8Ug>AsEVfB-WRC5GH8fk zD{WZUYGKChPvdSiagFrdy+`{tbsl<%3|&kPv}1fa0h`iaasb-DRK)EF@8ElMRcsa- zJJ8qq(6;!md<&YlZ{Lo-{$XWh1;F@8^y#RY4q69X(*Defb|GUZ80?D17T{2rS8=$x zwAINrj#d;UQFVbAYpEZk&J=4&lh()ORh+pF_p1ec6hK}q7>)7cw`!B_F(C36wRhlGom*LaX zd%2vtJCyl}phGAlqijoD{$7T(Biqven7tJCu36AZ(hAVyc#@$PASKNHiHJ=(I&TnW zW&oW_E?5J3Gn`0NFDm7S!gir(QK1#y4ywo%TJym|Rsfyix%&(Jov>`lsl#YhP1Ls( ze+v7xKHVME?HH$qUzfIuzaK6KcIF}7!-hI9=1Q_eGILr*SW6C&_dn0ym`sfIKT93g z0%t)*6y0wuQY{Sdopy zY8p=NbSaA-Nr`W-^ite5H)e1HNacWs=3{2TMEv7@cXE7~c_sn_v(_9BkkkbX>q5=D z=9T1Ad3fBIkl6ygjXG(d0osbn9|N{){BreD0WJJPA^I8?MkW#(JxR zi{*Q)hjehm+kNT^_akrCkTRRG#`|d}gbe?teE~ywpRd zlnV7IqjHPq>dw4abVg1q{4UnCij=A*COrF_iC3{f0jNHeG7Z!dWVg`4T{S3Wff=wf zdSqhqdk$y{!Oe&UQkt_R_^a}^udH5h1*2;_=)!$`X-WRvLW8n98AcQWXnPeF zaT}wcD7*P6^OBWsjK8!BqvIC^Y_L3*qRCRreV+a5NI;o?bMcD_?Stf5TeDE^ zTF9s7{hm8;y7(tu1xsIS%#o@uXvjQ&h^Y|Zu6G24hl;?as*YL=!F-w~NXN4r<-snZ z3?Wyz7c$wz6Q0z@S)QE4Zro3n#HEPG5j0x}|CbY1TZnhj7UJ#pUnAb!#QlBsUng^% zTK!e1TKBDy>`Up6^>=l3z1=+zyCN!kTrMYXwsMu>4=Lr`XA9`)EBBnlC8yG&9=`M0 z#5zJ_oa}`OM1OLHnqe}xbluEGdvbeoj2XMMsaaS-L-V0U!Y=zBI3-DXKE%Vcy ztJv(@f;G%X88BT}c;b?Aix69x>Q{nPwK6J~l;&MfDyl|O9m@Kv4Q?A*Nwfr!Zq>8O za|}m~Sg{OaR@o<#%cQIZeucr*udfJDpZL~%ZNduPbcsybpG!4na)49rk!m;5_takT zk*IX3nOgX3&2oEPo!e3{g)<*msuDhajd{vP8xV^k=0unLm6cQrr8$g>>FBoR71z%9 ze=<_c1~=1VmEFmz{Nu2^!K+o&ri@yG_$!2-TCjrwO{Hg4hf3u0%*9A)tW(hSN^$=K zH$}@^wcW5`685Qn95Ouzix%wwHSC1ULt+>#=03!5ji@Nqk%Uo=KxJH-Y)(%a>l{2QVVjc|z5g5aEO~%j@@vuE_Z$ zc|T>(;|rV0sL$x8D;O5J6u}nzH3y`^*dhzkoO8Ryd z3-qTjY}A!VLgMbnXv=hP*tO~OFKFbLpt@N(uJ9bh3_|eNgJs@FGHK-qnyl4Q@IAGw zI+h4C{NB3+X#zHRi2Ei+4{LVtC1CXu@@T(g41?sf`@&RjX@N01qT#-~^Tygrbmj{5 z5x63Q%-sbHsG9+VXj$J--2E$^R#j|``^_MEnGTby1ht_r)jmx1e;YuAO zw&#vVwB7ThU(+dqahDEFrb3u7ZwaqeRC+#DXA=YO2sRjM}{Trp;z0aiI!4 z(@WKZmbw8MX6nA0y!JBqZV}GL#-vFq1?9tQ!Qmsy3N)w6ryd8TTHP7V9uxJ zQ~w3FlFFXr{jX5*3wk%1`fl2ucB&3-bAiTO*x=J)rITVANw`eYRsd=$6L44;K3`Y`SRfwa%UN#5H^s%yOS09nlXn-_Pdg5=DvU0mWl@D`y#gLAhMBiVZI~l@_a~inc^Yr&@eo#Tlikgjd5r_Faz4pr43}(;f74 z8PIGzEg~Yq8q%voiyrqp(Bv$l>E0>xma+KIg6`1JkR4pjR}~wN&C1*<`**N)3a zuG`uK@@@|D>aM#xgGw?Q=XizK+)-d|QvGlOSAt- z^CwXQU-;QPA65eZs}`5mtEMfdV}Z6%IWbHy>+FEmzzi7_rueeRq(W5i8Bcm%QW3eT zcoj5p#?TAmB@Xnv9*`ki%C(f)@{dO}7w3p;Oe_(nwRm`V=%zBDAy>b7^XA%fS0XG&q{I2Bi1w5Y*|lh6^RxRs7P!Qc0Y}Cl~e(XR9D;wq&rfWk^$k`rjMEL`_WN8 zt_e#KJ-Hr6a;+PZeIRcCJ_JxFJ8P*Gf%Ggp4+w=DT1%Q(}{kV z-hnV1XidHkz_%$qMgl+*1a!kDaqHx5Rj-);YKjDnDbE9IYhHeS{=kxLvXc9G&pq2z zJK2RFVsMFpbKI79VsB+pN#Vd*8`nia$yYOQyk z+W%iqCX)eGa*{6Xu#a z2ntoaJn&T5qNgaxV1BB%*B{V&WaAPKWg3rEgHJrqG$iRx=vZe8AGE^Dal z5g!4jZyV4ZXF-1cVpKZDiLh)U90nc>Or~VjXZ933`_8-(vo?h?N2dsy`%WO>D0Sc7 z;z%Nsbd%w@(8dB=OyTNSG9E^ON%6mQZ$P)$uDvlEGTjB!c~dAaHJTkqgKo{Lw_TZm;G6d2de@Ytgpa`Lt-*p$!{^){Dt(@sK)FLM26gRH^bgR z&|GTu7ae#cAWg~}G+mzV*Lg##1t{49^!wEcPPIrUP&h!NgbP0u9(9kLuJf)U9%jki z{xA_8`7Fdt9CE>A3j{LX{hoJHf9ME6cU;c2O>*1hic;(X@Y4dBv!DXO!=oK2Gx`9o z5DX#NBc{yuF!%bfcI02cE{oH$>tmUIcsZc z%fcLpx|$t~rP{NNKUZ*4Yem95@@2GYZ$QZmogjf?37QWxH*#k$RToT{%n%CJVG)~4 zCg_hUjp|!NC(0eWysTthj+J#YK9M)1->!O8>wYjoEj^^BQc`( z+Q%@%e&tla`GbL z&YpU|gRS%BDJ9dMBFA{*mlb65{r$wIxmJNq(&z$AyHF38Cp&W)$YX8I)YD45p`#SJ zsmZCH(iBlvKqaV{8QU;!!L?lXMHTNY&~m+*e6Ebwy1PnzwR@T9qqd z6?U|bdR^w~n(Ag|exH)8WiWt*)!{Hn$4oPTX_3Aep&Og7EzfM&6!n@HPEG)Om;h;q zr-WC$QCd|SYfIB{ITw?{xQI9ofrFRrfYPzX)Ik+z2>BB*AGyY?$RX*F?#C>|?d8B< zy7s^srV*;@7*Mk5KMd>-LbG*;fYm@{x=%&fV|n7`;U19A=T@j*08SfSY0(2Gn}-$k zAb^s!NiN-dYMyHMCW#`qeiHEabU>=OhtB*`ct}v2s36aA7GYMu%M;m>XSx%LYO|OViOlt$2;9C54|X$E6#Eo*Q&Hx z#IG*n4>(Rp>>{)%Y+t4Dw?7(7(JD95(PDuk$<}7*B$X3A1%x%VJ}eOVqaWDHw<=yT zW?12#Cj;7(kV17ga3RK87yV@t(4(vX>D7}3j&U>JL7}uv&8oM0O8UC!AXiucz)5mo zqqw^emV40kE?n?B@Riz;q&o8Dt)90%irrs@t+d~VWde4KY3G(YEo7V_0tS+j{b(m~ zq4O}|eg5DkECt9?+(o@FKJ_S(2$S+FE=tX=TSU5;W9HtWpS`28(ff{HepN9oWcHfI zl4ryXA+nu!wXOQip{R)>H|5|f)#PhY`31x$(%PEt8pm#9^ZJ47_?Q%IlcM(}!|Ca+ zJgi26*3uJF_lWQQ=5PxvDb}W{+}iegg610ep#*K_F2VE&uNWoVxea@xq7hdR@orUI zU$TI;d?%bseYfRz92N60C#p>aVn`@SeNqzr7I8nSkn~Pz01&X#@*TZw&J<9shzNsB zTeblaBbljU?^~p&4H*{&rrU8$Cjnm!lOnsx9O4HaUu`g4f&oS0iVZ>(mG3MV-bNgjQ)uVdXO#sOI8Rr_;vzP1Ln_ApjLkZ!&G63o?fVTJ1x_x=?+X`@6NJ z^3zsN0b0~w95ZaQ9$RjUHt<*R@}GKj|M_EzTwL0CR|{g~1+#E^R4Va~AzPT3wLzlE zWKb=tZK<#5n@BKBy@&vAD)}Bv4Z?jG7l-x!s)LHencfGry#0>Y6<}*HrCp9ZT_$DO zS7uo{?y9o931r^XS=TnmuCk9h56Kv9ph%k%|gKJd=P`!@Qq_#KUGqu-KnwgvIDO<2H2B+lQrWOz=pr z8zFkv!8LIfJtXx=r5El~-MdxXw}>{R%5Y-y4sMA_J3w#AqwEY&Fek~piDDUQ;|U;d zsTuoopNX`t7t?XhuF0e7)SA4DE({PKOAK0U@qxhl@g|hw({Fsgpe)&8KGhcgq!qVQ zOHq-Log9MH9YAdgpSBFqw95d(FER3Zr-%*gjSVRPCt2|~7f*WON2;s}l8=l&N~jkX zWbDjC{JqHVT~9;5fXuKR8fBc=lP>l=2IioJ>Iq=6V0bLk2tYV&LpVn;9|msFEwxwt z^nBZ`?%p46byJ=^ps^et8q$ZGlcxEZ(O&air}zr+lQf^Jp@NEIY`L?I+z~4E%)M-? z z{?)u_M$#CeBHv`oaLA_lnhq>hCVrr9+t6S!8iH$V;RopNUD?rvyS@JL zcz{=uNVm=B>n+7tdhburF7!>O!^mwB^fKE4T)v1hjEo)Yo$Y{9BL$=Zc+hr>jzXgc zc67l+|DL>ER_W&Y)Qr2EE;UJ+4wP2D07uIiNoa#ip`C|!bS2ea&}l|CDB!eUkY;5~ zYX7>xMTojfzq#DbfjyOWgmFJ@1KTT;u!cfEs7y&(?YffW?=iXXdoCLN!CbVpSjde4 zY8J8Dg$0cE*b3wg9$Gc)m?# z=4yRz+BOroK0Fh!90F$ClrUfNFU{v1uxEueIWyQLh&FKqs`CEGn`BYuJ`xn#qqZi^ zzqh7Jz#0K!0Os=yPot!M%|Yli)tlp3tlc&G5!OsEBDrI^*L8|3;_AHXqg{D0jdYNJ ze|I23)sb~Qy%HwD2$zT zB7iEAj?9+_$=qKx16z}nxW;=+-Cn6j0w?7aJ9hrocxSFfO-O*s$KZEJxaxu@2JYDV z9ul200N4>V``E=$0^=ZrC8eh8a0S&+x;#KfCYElXxbK#dNrfdhMqs(Z!0?ULp zc0n6=XM}YPgw_x5#@NJd(mnTze-!RCJvR>Sli+7tXQKtam>$Kz-|SD9%ud;j;7yv? zg%+K{)N0^O0HG#IO!AH||JmDdra8!_0Iazx>Ic#B7d2|ZZ(A1j-q=mgd>?l^b_N9%yB79;9|4T^Hah;pn)UtI z^8-un?M7w)msgR(4zHqNOza7oj6-&pPn~+KIfd-U-_05DTW&cxumL;{Jtk?XkTf_}UPt4Iu=&$9KEKuzUfU#epC5+`UTi z5TVR+PQ^}FxFqF#uM8zOed_;VD;&-|jiuordic#Yp8WTu*WdTHw->-a9DDw1(3tf~ zP(Hh7)^s|Z3D2sRx6FI9%4k%$7kZ^FHB4yl4kmd-%Ow-rD6C1s)fSG$E`1Bt1Gbu(FXerx3Q%~_kB_7vG z+wK%+j#gGlS6O1dt{#JycS0!6J+YZ(3I}G{Ix{p098g{3sy4FG_6Dnl%F+q86B5nDa5D&R#@vM8tz zO%CQR(~Km4)b=gWffI~q9#pT2*!28^5J&sT=M&^vQ=7hjf4nJosuZ8s^*3zcD95?I z2f+`Xx96!zXzR~G!NDCLe>*-2eV2b}R7EUpig{)==P^YxLP`Z-OAehSWy2Q9$^tD; zhb!#%wnJ28jC`;Aqr(VU)*PCl9H0W7@^Xdcv&rQJBcvmSi9rAQ zGyv6|P*Y77zQ$clR=0-uE8l-vGZsoQ33F%Q_*5oitL(3zF&d%mdR%URX66tydVcDD z8hI4n46=5tD#lD5ZQrJ|dmOG^ERALI#X^^2HlVE@bLow_L>C5(tHgrIpj>P{5TEyR zCyaYiLS0=q3Kjr)KCoZ=TM|`13DgJ+YV8?<`cS4z@N)3O<4zna9rN@&-$fi+OQYws ztp9F4{qZu?DeVp|Vut^A<1xyL=9g~{%vHDa7f*s72piqOs#JT>)%et-jaE?=`kJ9v z)d8b{JNnMJ-Lwwc05%^>#EHSD^sWGU{_QXUor|~=6^n?qJVu+(Miq{HmxJ~y@gU9(7F7n7?x!)(BBz6M z&_c$gl9Z392maO>?!=)c-iVD^Rc zn_$I?HVF6`me9A!0-$S>C8Czuf@af*?ltlr8JH(iGn~2N^zA zN%rUz5+1AuKb)YSL3oYFC?XufvGU%|==WlGl=|)l6}H$x-^h4W;ms1z;Jg^^vorI) zCB`hk=CxVnqkYJRHy6pEiDC&6*1&azw<$kfLkO2)2Y4LFT}Z&S1HEt`Utr|;)3b?x ziF~p&i{wHqY@*JXNh=NwZ*lry+q(DQ6vEYJJRBiteA^|A;VZIn={;?OESp*9U_?m5 zhl*H4n1}3gz8PJLC}1d~?xx|btE;Px(-&BDk5M-#$cGu=)bZ{s2#6+>5do=V9XRn! z)1IZbso=U<$#6#b_1&ktZHog; zX7RObep>6PkY z=YsLPT)CGfROhCX@Azk4M5)Zw(rRSr=A%>840wY1vxbJAnvD)*Zf>Y6o7`YJ*jcfX zWqNHUMIhJss^v@IfRu&uKpk|)x*>b^6NDl>ZC61bz%D_|&$i1Yqss5snJ>^ycK9FU zsh<1653^=)*7e(Ll7H4-2ugc&wXU?5RB^T%cl+TJH7shUvi)<+HH_+Xk4+kg)^bO?mykr1Iw5I}>hW6{_neGIYB(r7rlrOVifXnQTjYvbj)tI#*lw*wlM{ zYrJW_O_nQ}r&Fkcgs&qIxVAfu0FXCJQ0aHTflLVGoL4CCJWJ z`>GZPQvThmJG5P`+voguQR?2pp05NW{roz;QuUmy#c^{J%u**GQwPbyk*&b{-r|_V z+4c2VewEos4%7Oj$o5bCy&27SluX});+gi)V(n~P@?4_>LLR#3hr0S{CMAQ5Su6u| zkPaO>r26&SH+2|sd3he&R%r55{XU38&svNW{eyy8<}LW4u$FE85z3uoJW;(8u>6is zl=W3>iR@bCtJMIcdleJgqM3mVR@l; zcJ?y1iwfX-y^X0pRe? zp8%`Yh-%tIr0IIEOr3hKcRRet%LP{%eIzB#9yUgjs2hft_1)RR=}|MC@3Q% zBb$Bt>6XaK`FG#7-2xZ>&5Jvpz7p&?A;R^>Xg8@a0J{Hb^;{Da*-&$jC9&!ycHc)8 zO4O0p=M4RkfuqJAQH!0KTKBFw<_87wrW?!DL!M*Ly~5%8oYB6u7e(>MJ;XdZpT){E z*3|1{UJzzGk^gweUcE{^hc~^Ap}F{( zFTdg7@_;XqVuEy|IM?--8K>_`TFX;1wk+fi?mpY!@c`rZtCYX?PZPe)tL=pEQ9zs0 zYcDIYoPK;__Gv>dM0TR>kwsZJd%%P=H{ZFF(UNjKWh{%oB$IB#A$ombLDjVS#fgoB ze-SE8}{msl;K@T!WC8 zXGbTnCHZwUVzQd^3EVIx4~Z~y>v|LtDb9VzPc(1+&oRUOSV(!MMPqNyQPF%s->cHJ z%NkEDZY6X(B^U6OyF$b}k1!;*)b=WO)-at;uZnQ_z*joIKWy<`>6t&>siZ>#wbxrZJ|cPB~>l7)}*Rk0E zyWr2uw-T_?Tu`p5#)!P7KqRJMn)BntLw=8tU%#rky1H_+5Wdr-5`TY@hyQhb5|v6t z=6K*GYg)Kd;Nrs!dXk}H~GEdN%-KuWL(9SaJUu## z#b`haZAI&+tQ02|cR*45XEt$^Doq<*FRoBU?SxAo;9-e>4E zEkfR>8okos4;MRYYY&a^W5*YmPuZKdep1gql^vWRkPE|_AYxpu?Ons;B}<0>wzMZwKELuPfo-MwRxUG&i>*a_@bE?5Ot~(Cr)IHYa*PycFSL(WhL1?4LBBo> zCmd>kFP>+<*8nQtztW|DR|EXtzLK2>lwPg*4XuQBN<;N>bt#N(-YU5rRU6#)BGXZL zFnMXBlR+!pJF7IQg*n;zflh!tzJah?Eks&FZQSlsaAypfmm#Ubz-=iBJ6qwWau$Qz z__;8ce2xvdvDVbcjU~NSiMRu3@_R-2UsCzj83b|8)7#}R>FmlsgE-*fv!sa+Kck?s zMM%}EVvr#`?nA{8n3PWMF~I~4WH&J~>kpYm<}CM$PEE3z#g0Ys_q2ucxcAX2Z50FU z!fxM`!&ZiV4O?01B$!$m^DbJrC}|wB&9U7zVbU$!)%v7hk>2cFc0JciptHXiD|8oh%Hp?KIjwUQm7% z(?Srix?WQyvpMaJUHi14g1g?ewWr{*i!AXz{@2&QPi@owS@pCA;nR~RPePj)2Gq9V zK&IOFb7|K1KjvNA%?(y{9pPnS7u&hsI6P(ImGdB-xDnijXimaJ^bXB~gxj|qG<3## zHx_e)Nj*)GIqFK$(?HB@2WUYTS<4-5=qkttnoiALn6q#fB3g%bLqV!4|G`7SF&T9l zYj*ax@!%7Ef^t<)^W<`rIuTu$M=pg)OwwtTyfsC0%;KCuupkAkwR=3T=lpn9cXVq$ zF~0S*{7m48$NF%mTZeCew(*T8Zcoe&;C#~Dj{}H;i-i%9bVZiPOO22PF`w~IVp}q{ zDU`prP6_|CbsD{x*FN$a{jenXMdtR9tUZ*+pG~>H+3iw#D_% z@rJwJpTQ#Q{;KOYWH%X6t=Jg0?g&4w0Ny9H1Q^9!A-vMGX}Vl`U+5tTbl(4H6&%=t6so znC7=g**KThzHemx?Ucs6bEOZ9`QiFl1Lw1J9`QWS{V2`XS5js87o2qm8Yb4R6EH-+ zgZj;p0XZvEG`()}BSXrcr@X(us(B!vo;WHtQep!9puEy~sfdz>8iPYvnIz|vO;M?v zw^asg8<$ccE%rP6wPzXnx_R8#90(~n)MULncb6DNkndHppX_Lv@7-IyQ5a1a$NR55 z2yu%kX6G_buAMP9TVDz$*{|~$t*+d(m9P3mb-e_)={kcgupMXGVEMK8#+Y+$OM9z2 z20!gwN=j%eO)n8=&<`pm^zt~Bj}-q#(z<5LtJ;3SaN66(ydZ7C`O!}{3S-0c)uFCF zQN5n?y`KTmv)xdo2*h_E&K(^_tvY(t3w@pnfV4#DPc6;ZC}h*iuhWPhTGoI6fM;V= z!+ALRhG})tsPXV>U_t$AP#g1DLqeskYRg~+`wr92=;1rA3G5jrU88PN2--OR_IPx!`SK2=+ROu z{x=lv&-w~dGOEvko$v#EPhF&4% zRi1#Fq*>5fNomb@KZ0|9lMUMN6fw5^a}# z>{5Af^W=HK&$KKRIEsun6O=?f#vrIv)Xp#G(aHfd3zGFqdcjNjl}d|#>xoUlm7I{iKH*w3{*F>Wcucm)v;BY#+B?lpH$xelcIFUDFNx7a6-s zZ=S*l{GDHVeDrWe%0GKeGoPw5LfU!VAbiue*>Yb@;>7lw+w4ahqu`Ps2NWx0$q7wY zc5U3KFe1Yo-X%%WYGPXK$TZcntyw@*d#1C&lGa1ivZH7)gLU!z*Cgmlb3WOyA~v+z z8Gg-?Ja5WWP8+5+ucUdnWuStfcd&r!m@1HsDR+wM9U9n|^v14}d=RpHZvLDrq`M3U z`^2*+zV1JFg5IJ!R0g)2ve?Iu-qL1|oY!sJtS^I}yS+p~-8?^i(_lyBEYaK#=Xm7n z9$u@kEc5Tai6$!Lv~NvNNZTSo`aiI``(8#TQeQ=A;k{(6*;tN+-DW`^CwAq?!zPU8 zxek6a%}k@Eiz=_5kaD!Dz6Mxhw@1FN9z8ix9TuUI4Tdqf>r+7|>vsS8)|@CuRkUcA z9~8vlw#+|0Wz#z33T>P|s6Zl5>i-$qBENb{%DJUwm42YR1>e?$2V*%kfWi*Tl|<7R+2HT-)<*;16_zpCTS zU#!&ZW(cTq>*~55s_VC)PUu-0$Bn;#C;TcXm5xq-HJ-upkk%+d1D#X1;wu5f~w|N6tepB1+j@xUzl~tytY@-PHN#5PgBBW>~Bd9UYvDjaBPuT5TbO3(gh+2iP?c&0{e!L zDDd^8i<4H+%xWHtn)q%s>*6IVf7H=TDTG!c+lW1C#-=AwtZM@&bhMY4=Ck3;5bVU! zo22$}0O{XtWLxoE%i09ZLH`q+f7FjX?)RQZcn;W<2JII%LbZ=3nr$0pTD6WkZ?i5e zg>VMq#FU3EH?-JsZ8D4xI6iw9-QeuD=d{5EG?ALOXTr)tC>yt*a@&{copIaor|B^kvjS)~dF|wmPI2ms_>bJbT^|R8Uai!}^>ED@o+X8PaQJ3l@0r2}BHK775 zNvHw1uJ50B#9;3?UxHwBtUD_FP77!4GA5<17G1qStWC4DkC^u`4~M%7)fpoca2(TU zJ+s_Bvk&tg+lu73gE#ib8~B(tY@0MRPS4j>LI(sIsVuqCBH*NNn%BiMkU~h1K*szSPIXl8T_3 zg=52=LvC;TWhQv2gS_J=)>l+O*87K;;2>Ft!;x@Slkjc7EwAh;D{~8yWDYEfQF=hZ z{V@7Qn!x28Ut)^M{Xj!A#OsRh?`8~3r%k6SgO=yWZh<8iis-C}-1^lN+O*j}fPk0$Bq!(fe;t};*EP4oH0q7UGinxWq&9?eMx6C`;j zK`xK^`NLrWQ&SZ2^JijTijzP2@UQc1(($2a?KWF#uQ%sk8(3_Mt%DZ( zz7hrmKL@T?lG0d#3=mb^Y(~CM z{!hb3P;ecU{yja+$y#x(Qdh#`6<4^zp)S=2OlVh>T%# z`%Gcf*>cXEF=**N|L;qUmDF}F5<-~VCk*J+wQRwB@{>~V|*rUkq*HwhNn z`xXeQ+yUqovb^i()a*gcy25wRG>o>-HntcU#Mtx|2A1CmS;3;M1(&C8EndU@q6MI4 z;*#N@X-7WMc>lBl+LGC{a8ce?6i^q8hX#Esm7MUTO%MmH_I*sHflE?HqE{xw%|%dc zK07%}^+Z9@loSw-(XYJmid?dtht&|NmZz7AAJx@}ag zAd?6#q{n?@rF*nPO0;_Ws)jk!{%+$1v9S@ zJ>6706y>2Gu^Ms_UCeRJ8A%Pb?QrMC4okE|>O-xQ$nQUaaHC8sA1B%C?!#--e?K{V zF@C>|f${h(`az&iAeSz6z$eA6fLIz*6c~+6+h7RNScudtE{&IMiA^CZp@zAlQNvDl z_@k}BWr!~mhv3S|*EK3--UydIEW6Lravzd3`EGAHXlwZ3cdSa+Xq?>4ZjkshF&K%yytj0oiRTQ(eSMk_Cns}M9 z)gV$ojCSE~#2gVn3{%PkFTR8Sxg(vm{4GX1K& z1m$O^&k+v<6EI^ELJl|CMame0DMfXk{3PMfEmCqalQy{(F>N9pzqQyT;vB7dRG#IX zd5&uIEZ#Ks*iNKA3+g57yzX@ZImFkO6E&O(87(9MU$`R z1(fhLdui9+|CP5`x?~;wp?cBjwoRk0j)Kb=^yF&K+@#`aTU3^jhwrGA{`Li0?_hvY z8BD2PpI6la8$)mM_8-SSZ(+D9|HhT~!dKsll>~+Un<;w2+y*Sj zQXxE@0qEl%lNL|Jal;q2SV;y^)oZ2{Lr}Q!hjX(cdRA#_XX<`x*F=fjz;=ZEd$e_j zyl}7@XmW|ISRcp_T&u60_~794fX?e=&KHzr`oY2FL1c-Vu`BNy-8FZ6m6SI}x{b}W%*J-^z$S5GXorqt6~_)Zcl+S>Dx zZ#m%|@8+e25bjS7=8tbK9#+_UJ^)^w9NXv+5i>jV)MMC|<>+(UcEg$yp`9`{7D*@H zA1&CgZcC4Ns!BBNLJJem9dGY{Xp(*R@v#WbKbZ5bToLBB@ zK4)DEo=nbAw2f{fEA_Y!CZ1c&PSSaVfq3qu1g)m{*P~~p2cGtOGXH@^g~5LXn`bm6 zR&*gA&}FO-m4lmVH(vbh<=ei_$}7Rpr6H!cGJ4lK1(Rvk1I0*o*n+N?_71+zq^IXltVsXc9T)5$VkP%2y}I=u0=G_{C~&OpJ_M!{=N+*tyQeLrBvBnZ z?ah4He_iAX!0|ySAyMAy^V`iPRdxF<`)v2*dvX;immMp#)Wr!kKo+I^&MaGZ(_^jn zo4Ks1>u2u1{1u_4-{ZRR=^d>3ncVE`$(AokB`934_6` z{=W$~%2Jno+7u~Hpsl^*ud44z9nz2=f$zSPKy%hsMUzwFQJ)$=6}Y0{Sz`y0 zupDH~Sk@ogj(!ce^kox}7^&q<&F+&Rh}EZZ()ObAN$!TibS*2&6qIh-<%M{MK+y89 zB$WpB#M6ul6PMm;tkE)!)g;M^?;(DDzG}Z|Yx>oWM=oHS>ZCXfz#9S#sfz&J$`}tx0S>#kXX?TW`&RbX0-- zo)SfA3Ni^I{7B@Crz^R31h*exb?k;r=4Fge4OcU>UB+v7RNynZwxzk`?5Z7D@5Zw_yZ~xT@p4&Z!R(*e`f_w6@ zX(IhzZ@quRYVDkE*|lCc;+7t2o!|CYfpNUyB44Sw61>W_ApVk@?V;R#Wz*~9Kdi_< zr>*H5mzrb6I$Zxyi|4n&FQi6ir7UbfHAq|Tjp?{#>=|U^M$aJed(j}jlL^=(uEJ?= zUI8>6YBuS(aW~s%w6k-l?h{KuRhfm13P3vFu~E@0U=nH#f(7`frM}FYl~Iw-1H|2W zl-32WZ@8B6>|wl@vOkUG0b5C7mrW574{4g> zQ@qBy2IJGfPRMLI$D&#vgzDuw0@7~H6ayu*PZ^|Dti$ZImI@T#O!w;!fzTb!Ok9vY zsyYTf(4ck6UW?KAku9ik=SyHiDU;^d5?3T|{IZ;}XkLr z^TZa}KAWjvDiG!%s^=hz*?dQ=0H%3NSJFcb{A40ag?a{j6Dy(|u+WLfyV!-nWpd4T z9sgqvIVKz(Gvs9WFvDwLmDgt_%<-aR>2a^=8UlqE&>e7!Ah)ph$ebYHNmt;BLfigh zjsBe#%QmDSHwOD;--Fa-?GE_FZW$_=7UtYPt*r`m=dU*|?-@)Wnu3GQ0=|dG zULyJDlX%sBcB}Qj;6-xiOzB5NfbpHOJSX$4Jj@ui{M0dR2Y0^2n5fag`FDgzzfK1u z_7dmFReYhFF1h-5sk~fe9y&Q}Iu(KLHFnJ6ex{s1mSr8LGd@+#uJTh^yI2@|xcMDQ zz+LK#Q2B5@lc6W(AlLXNf-N;MU`UM)_w5TjTjS#>EK2(vvr+S8{Tq8(FZ*O*n#Sf4 z0amwcEFMwtzc(xEr*Cmyx2sxn$yG>;3G;V>-r2KB(3+!XJ`OgOtgp*lPi!gdT%xJHo%cxJ zj6mgoLBS}{_Z7kA^O_&24>M13oTv6LE@!6IlH)knIH%EBa-8sRQ*iV>Ca2D)NnMh? zK_oUvWf06})am#eQ$_(htq8P`Oj-cHOAhA{5FjZ^zL&x1NGmL`YTsvULzgD3U1{>6+Q z0yI|d9N-xEwLkg2=0;k3ExAy{>O9NF!>LIJz#YMjnV6R3KwqZ_HfPMbOM|=1y4CyM^@McOFxOZ1x5C%o3OcML zS(sXpqT2=0b`;BrM=dBza9z7!HG>uOc(oL{(Dp`~eXo#hPx-*O2PzmZi9XrWJ&>+{ zk+5a6<(cBW`PC-+#>rFas0<~R;nz@ySzh!a^TdBErE87}_O7T3U3cy97Z%?%h&?{u zzpW3~NXWItsy9W(Zy!3Dw5TU~xyqgx9=6}#cTo7YMKnYed9gcIi`~-XAaHo!avgt` zKKdyt+7A9hV0JyA<2<$S)PvNBZB7Z9?VrV(s=H^=WDt-_=68h2k5WZ`(}5v@F3=bq zZWLQxtp$})WLhm;RLT+;*~gj5$ANzF%K{Gr=_tXJpL;;yqI%1)h4g572w2$4zDH81 zKJ{1=gZg4-pq~nHMdu*8+jF0RrIqpB8t`bRwQAGO`G-t(zxSsgRHy*t|Uo^0xJ_@6AEoiL(t ziBad^Nu6M`u62CO+YWMQmpo!}objCHy1>=(0f0C&v{ey^0Z&muc!D3CNG ztf;=9LiLm|!|rs7WTa;=vGO*TFhv_@tr3AdWwN3-cj@5RYW4AGN1PVER{dj^!|Yu8 z&-GScL%Si~FT<}?1@cyg9qDam17)-kw%D=kuc|&f4+Q82IEkg$>LTo)%|5Fhg-^0G zkuqkr<=uuu(w87E&EwDd^yO+sEYm-i?%tbKi59i%>y5-lQf<=x9;d;V2OEm^q)yKv zMl-(J9Qy6Wbgj2NZvS2`V0OGY>GVb5dCDiaDK0Szs%7 zdO*2}?p(?uPy2W+~8rl~dw)m=-IaAxYXjg;pb+;4(-EKihsv5zlbeIlU@kQD0c5pa1w zLBVqlOkbR(I^{6P{MthOB#d5MlJjUisIIoK{b|cTspu#b+}NJ8oL?rj@bZ0(Dl1wO z)`Gudy1Vo4vK>%9%kG`kq-NABnL3tn;s9*H2?-q;>YQ(MV$?JKzWV}y#RR^?a*j#- zDav8elp)k0Y6C5#b(59C);<42?c91*8(ny4Nzl8*C8U< zasGRCRJ4vnnYck^O=Y^aCO=F5x*~;sCv>KO{*l`HJ~YG^^7PHYDB#}ulwg))isLrF zd~#bfbp^HM_%@}p2(gYj26v886VAWZinX^wkQ}3Me zwe*}sAiUz;j*$+__CBIj{T~3CYN;0{F7tvs5|t+(2Qza?AM$%GS(G5M=(K$l+~4}C z?UeYUpq|-GT8^ISkSwM82{#mM&%^AZ^Rk$OBR}9?Q#NxPlFeYsU>u`*dM!lvVitlO}Ynj^|7wYpmzPBq6sIy_h&53+j@5W># zkL~ zJ691l@It0I4yZdc=vErY*1B#t&``8ETU_2wZAxWs>$%{^lF>jrmvN zGQI=@IfGY#qw&CU?#%;zJCI806`0NQrMsH=XHC~qxpdLx z$_5|darzJLoM&%uifX%wZLeGUuX#FRj!Goe}>oe*{<_8~UW zwgvrosyiJHO#9q0n0!RNFKd5UM=hTUG^<_q2ZS_{qw;{N+$$fu=qwq#rrKK{8zQzT zQ9*f}6){80NIx5}>rRm_)`{1d7qe12X=+>Yho9{A@zjG5Bn+r(UDA<>@=vx#bohLv zmviLILq@&^R9nJ1I~*3z&z#Yb)ktNew7UeIUr=+NxK^H9mHI}AN{1MFF*7NmQ)|J9 zc&E`_7cVRDs0D4bXTSL_Y5234-7m1iJuQ4xlGE9Vfm2QMxB7Q5k9-tNv>%(@d71IV zwRJJhpk&pu$AvARgSt1~AhMk5l&MNrQPFznv2)#RduDjjGhx?7a6KX+m#kakBI2M3 zAtyc>4vg!?g)s<3ibR=c-7s7DpxMgFGrvYw ztEtF{vvmyYYCDdD`7LR#8MyOFQGUU*52qJV)GdRTp)qD~yudvn71ZTD{S&R@IhWtQ zP4GSk;bD?4+7-3xILEDJu(etmNLb{K_tcC?c<#uNY8akoNmi*&rU+0|x2x0T4eU(d zDgiC?k4ly6v6$m68Cy=q>y z(P6tx?tK>MZ`M&%*T7TRnjilKMaE73I!Z8k6|KC>;`QvU>oJ=5M6LyX5}2j_&}t-V zTVCtRrWNK0A0_RhCRo$^7&IN#b7#T(yQ+}1f2|Li^LjF7u*J+CSg8 za^U=9rYjmuZJlDTHqizh#t6AB^|zB8(^Dh!|087A=^m?TeZJ$-06e8TX$x8L3ukr|9on^Nd&0@qcXAAhC1x;Yq` z!HB~@vCtmiF?BL+kyo&sx^SnVwq?KA#q`_F;(E8f!|q$JEOT$dOdkzc?Vo=oe6GON z&pf-94j1(Ii?DK_iM9y%;pjHsktQSV6Td-PP6VJBGz<~om!Q#-uHL|vzchJ+f?O4v zvHw*h|9wNJCbWRVbfa7aTRiru9IQI?aL^pfRJW+1PvIK8LuuzjPPtDkKDm3biJ{*9+`KNzsxJDx?j41X7^~#jY(pOR0y&1lsqvVOdRIFD@ZPo0E|y2 zLh&0uUrJfSSMAWU-qbW+w8`V^l@&*nze*4E7d{pJTA;W1TFci-1bwP|XQXmwOoTiqkYO9$ukwv-V_D_&HU_yeaDUv zI)C{w(N%hKfBn7&dh`=#+4;tcEaqPYbwY+jZ?f;y25~;I!o=avIs9p+zmcq~g|{X? z>oI%Tz$nP^WcK?Tdz6Pg4R4U5dk+*s`t_D`Dg_ow;r%Y7H{L2SePsP3)^+vf`5cmB z_F^AnT+l$k_m->4kJ9r||)z zH0>z2du!NgPi#%h+RL}iVg$@ktmxFBcc{G}R(IqmkV)u7VK`&UXzCYdm_LFVzvFHQJWd+`f-Kr}( zIYG`$8VJ2?(8hzY0?ke5lh8{iMk3z?)`xj^Dr}mqZ3*R50eeS*KSG7>lqRa$-#?)ExKHn7z$*QfNj+e~V-Eq2N-bKtv-5gYgysEdnAnG22fpkHs^;qBCp zDvyRnUD(AatN5WGPX4aGh<3YwEfZY2x=kr;VW=}R$o1vJf>K0GXE9)$ivC%lYxaMU zsu8Rks&pQ`5t(|7Px~+tI-LqK|&$2G&c0c*XRxjl( z@cOa6GPdr@-so#OYX=sd$M|$#+wZ;&(o%<{e2XP!?ALO^J3fKzH7lh#Vq~LXMz(>B z_!~YPR*R~KrW~Nc^)ZT^);$rR_W00h58T2#*3J80@Gdyf>-h3rk+FzRGv;>eGBsriFrcEo8k2`M7o&W$1dPioWRBie%R_ zV?0pTW8@lo`~^BW_xP!sPQ)LPl|&vedvEm$)j$~WwVR|x4$kf#E;w1kx{`%OosiG( zs3ba21kH+rw1>e*WuY!X5G3~uxrMMEKY*sxl8CV3<7R65uTv2pL_^I3JDQL~{I z%J`GC=AdHeBn_OLf!fxoSHYh4sen88bsSx8|95V2QS;?1XG&*=u15b?z@pHB*MNWS z3sKT=(R-%Z`uRyk8&Ly(Kb-ExVmzS;2Q7hHMkaP4n%Gj~ld`!-tgNmU61fam7w%|Y zZDV1^5I5x5^(6KWR$JijTR$$-7kxXcC0DhRekpe|IkQ|zUt((~{@lep@g)SL8C)CW zV(Dfo1-f|>#~t%rUf%)Y;bMI+^nlQ$l0HJ>{Zabnjp-Z8n~hgdPW0D1*Q&84Z{|A^ zdXa*{e)Y)?pY3#prrJC8TBn8zXy8esV>UNN32uU~1jjLg<2O1qm?(UpGb~D;e#~{A zO=JF+S-I=tPqf%IUd!zBLkARM`6w6L{O-Q>2%Ka7+WW?5ZfeAEyEnO(%iJ!4 z59#)m;m~F&6H51EU>eBKRq*wCD?xRJ9*oET&2DB;Dq`Q`1QFF%*7rh94xh~{0kxu+ z1i;zV?Zq&}x|YXvb9HfwY-gcXP9I&ej(D5Ob1CLNqeP@BA4S} z@IW}D3%H@Y8VB&AvqQfruO_mb`e%KKZ_CK+J)5eFeor*RIXp2vc!#VHAb0>UW{Ht} ztqIWUNxt7A2;T8K=DlKfKL?V2!D-Z{^@?}(I?=;*En-6GN{)bkkPq&_)nr2o&f`sE`mGO?)CuDLde>B8!QzGOw-A&RqojLvO<+kbN&;MIv3@ekM?n0X=JvL?i`|9MuE#+&3l2i}u&OPGHxdoB4t5i#W_Ot+RH?I5qzG(Dy<|)kG5)~j zlihDfe+Zo)-2mNp#}eQ(`06duDZ%i*R=gT1oMtC!8IzE26|^{bf<>vXI^-vGB613t zU0L?hQ{t7fm?{`QGnZT!jPN@H{GIsg4yu4V&WJj;m=;*E{sd8a;x0H|DEQ<8 zpemHbCN4rJ4XP29BIgm|KE&)Vj2_@WqY$@B@VIx@l_R?2T!8>4tNZH}dwgie)o$%W z*)urP`aDRs75aI7jm0u8NZ})!$*#i~DIR5&93ymBd%=Mr)H`Og)BUXC8IK`v|7+=> z(ibA5Iv4Dof+UhZnL61%=k?FM5br5GW!;P`$PVF3zMVj_J z3R7yb%hnkJ1r!()94hHuZAcK6r$9*gp+@I7RqY`Plf)s79KgBlW9I~WY=xB_{{ktaw) zKP~YEYyKBfhJ~f=;i?1REbWXY)o)#5^j(Us7NRya{4WxnnuflH>xg6A>2WHjmn^@= ziRhf}nY!`Y)=Tho3E!)a=BGRbrZ=<}46RnYUGF&WKRV@x6h$TDrQT9PPK^f&Fn2lo z^ta-{u0u^`f);j>vNB_t+!m!v9hWLHH?()$8ppk=gMYtd0!fSk-^28SmGc>Q|1+V~AQOLF1pIV(q+i(S4kLXz=JH6K5a8 zu7JBL5~89Jkek(LF=n+4)Kx1}vsz>|C)`{U_$SAdNmXA}+A$5qbK+g1EqJmi7}s$* z%5?1z{p_b(wCu^9Q@?L^P+LQ*E(n}aDmTsuHeDH`;UH$fV^Y5y#X$M#JE%&RBSIqq z3R-*V_I$1{=QL-R&9%Kof&=#j5~-955{6ztBw%LSDnJG!>sfMiLK~H==&g}}ea!Qv z#V=zoJA5b0KQ%6&H@;1~#%(+{@UVWXPy2`V3gq~8y@9QhWe};2I&HTX_)bbtzJ89R zZ7*TA`z)AG*zp1?&6n`z&;H6=l?C9onN?u1S^6c?%0<6(SjFsHEh{O|8af=KXPnmO z-EXKh%-%>7Sa$zDF}fvXy;m#yF>>*h8mga|rRM}K<|Rh`^{*n+)#tSEd|o=?`5?-d z|1?5OgeO%uhL>>J}PQ2kT`$$yKPQ#Q}}Y#mv?+^0Y`Jxth4{4%blNg*6Fyg4nC@A=mk91FF*do zh=gbyIm$V`x|qt$ay;jCn5`K8Kr@CJ5$--T21UD>=IYVpyqKHWbFeee?~ESla_Z#p z)e~9t=l9~6QRsgB_ITx*xa1$5t+)QPpmZug z`n$x9HVc06Am(VjGRWk8p<$5W0vz}GSX*P^{`v1W)C z5k$Go9V$(J$wXe39)M$3L6cRGYykw=f-~!XIN3RSk*wuLMWYgrMn9(ZN5!c|SM*y>SLSUBVO@@&=HG)PKmQ8K%B z==q5OH*nN-b^)1%hIP^m)o`89VbT&tNbL=cm5YdWjywCU)Ky_Q$KrxiUf?NGG(SPa zqppf}w0cPl+IBVlG&3^eU^hJM*Bgih>O%Cw>A%Z}q?<_pB0bmIq;`bN{0?~p@&HSU zg>0>);a~fQmUG%aS;vDs1lB>3e;Y1a{Rae$-+Oz`d7UBI(2TP};Bu--t#78#Sx88< z(PYLAK=)6xmu9OM^5?UuA6`13p7zn7*eE;4W_8BPbcn?N?E;AZkK>c>Qvz==-Q;iX zV;@tk$#=H*>~zZuTypNQGw(i|=bVL9E!`NnHPtWWZSLbVY>S_aZ_!J6!D#?{v_*UW zNa0O}r*GE+V>$x)TKefc7Fb)NVkX`xi)PP3K8`71l#v3F44i^{^lxf^L&?h0EeGyi zatgLCLG=Y2R?jvzCYu0v|7IUK#>(&YB~k&8(t-VYEqV{I+Tm*+x_Kk)KfB>kjJuJ~+;Fxz-*MLn2%crM{6gZ;c zHqkm~{A2fU>V~6(4XI(whA7W|R7sskc5Pev&x-3(oE|`vhJ0#fLtx-Kmw2Bw`*NnA zaGv^s<^1j4;U8hpa8HFp>Gfw|tL`%k53=$%5}L=ASh6SxqFrZEJ3$|O$?_@1y*ibg-)81X1yrbRS)UZNE zUv9d6EUkO$PdcGSva^5<-cgbWhY=L24 zg_i;CCd@~Hs*S=F|# z3Ai0iGNVv3FK(J~ zxL!ct7*}U^d>UqT?b72;w)dCJQ*wh|k|EjLB}AP0#cu+q+I^^?ph?)TfX`+p+76=U zX@5h8r+32~tg!Zl5*`jcgQK08!GW`{@(PK20T3E!5S)>R&r|vJm1+F^V%Zmw#feP7 z!@~6{H+;FsE9uu?+J_M1FGE5SBG4yR`y<*#O?|}SfuvP67K<96mJBdmMy%N2O{&E} zt*3Z)hPs&GlwMS5?N_tZmze^{fX1gqOH*otYGv8#Wddw)j&EX-XECcc9G1BGE`}Pb z(}Vp5!EtE|8mfI}g8_H(LaQ6kM7t~#g`lQVjcRPfT@)H)uF4pBUISlL3hpEbvc3kh zby_8ohMLdm^arRT!Vj2**?i~briEqh{Dy!Yb9@&J#Z*`JH8Lbe3`|dgG6?E4SwpLQ zEs>4di~kL9d^F|yv6V^4)O znIWzb`6%4-4qxTchTx0in3!8mgG_6r&2}se@|ogc_d#%r#2_v!6-HdiFhywaJ}@14 zCbZa*z7rd-7E}2u^hQ^`5a3G}36}ueS6$K=aU34HavwK-aGDbKRC6%#K~8;ZtP_UU zNNb87(WMveN=CMv<@X($+&958iC*vnpC2sP@9Z)P(QGXg^g$DgbRvY-Z#d$OGE)9_ z6FV%lI_v*by1oQm@M`xE7DIL2fPZx8cb|<+p9;349@f5)rOsIeE5TR32+xQFHR5M4 zIrfctA`+m9qmb1z_)TXm*!G+v*Tw~|VbyNtsG(y{GV^&kA3m?Q9PrQ3{8|A4Z?YP`AoZz6|hpb29N? zFbBc8cfP610bAp*OGcOi7(sk=u(ahrTwJNpz)#q0b;30A~htD(Ma?d4& z8a8AUUxZ&bpOeAp#qSFAUCss#_gcz*ZVSje|$# zKKF`y+0pviOrGiAB2vwWeY8A9t3N(3^bmaq}Znn+dNy=Ewd)-|2H<_L^F3<7(JxC z{I>hD798vg7|5v&FdnoJ)_~AG!O?QnAzoUacI1P#BuguC67bl}i4dMFf4j}G6}y8? z?fuwKv@kbs@}@E}ee0&Q?3CaLaP{PK?9-#ry(`X#-r+$N&$Fx#gL&dd0=nlmru!sc zGC6Mxxb*6ElrFciq7|r|>j_6w?6?}7(BbX3&55gJ8V*z@G$N-jWU|E+9O?Ev)TiHj z|F7llPxtK>U@7js+uiobXBdyB%$DeJ*nCw}vJQOUsVYl@)hIK--*S=Mee zRM3+=nMwI+MlrWR{T;RnHfQpZ6nV~$J9yN+q62?fN#l5h(gY)0yjTN+Rho;si!Oqy z!(UKevr+jbGTJDpS&v|M$ET-uG-_C7|7fwmPJ-qvmECL;s+&poKy$bBPX@_c$;_ldFo%DD8rVR+k!2@1dUd(aPA>>~-*!FD4@>1d% zysai;2^E9Ru7Q*fW;{ClFuZ(z=0trteAS|>De;gVFJqT{q45V6a$Fq!R&^mD>+|%^ zVe?KfCg;MD?qdkYCp{*Plm6DA5!LY@d-Ps52y`5Rwr{k;sW2wS^YQZdHG;>NFio}X z^0PiB)U4$dzS~jswvUVKHV)TDakRVR&*t6zi*rLU)Uh*$wMjCs9bZ#DADy-)RAADA zWMoX%g5E9)`K4=L3bF{ZF0Pt8|AI|!)`VyOD6uApT7_k-Y!d9&J@M@SefB44dR9zm zInAFBCsDRI*P`+IS7B2BM9IybZL4qw2T9UWbC=&V2T)7+sxf&!yEy*E=llM}bv-8+ zS4svN8PNTAjrgnCzgh+_;Qj>DH+o|0IaXpob=N8Un?B<=RoTX(#7$nh@?@(NE=j#<^M4a{;`iQr zB_&^#^|O*v2}(?G)MU6zjec$8v6x3G!!^sT@;+HJ^@PE_PHq_l|c>sLYbK#y> zr$4)=mDx0yJvl-`{Lt#w%Ph!^!!-IqX=6v&q90x{8-90U(W?`|spqdQUx)H= z4nBHK7r8)Yy8DBrbY)cxekSQPwjmD01^oHSMsW?5h5KwsYpaMx{0l(`-mZ2iY^Br={B>N&8p+fT#xY(8d8jZ(^Byeg-$C(y=BBp~ zOB31iT4G`O`?0_6GGVl_%kftK+_;Ib!!q!MhsIgT<8mg;f&wLaUiU@!D>^v68uJMU z+g+#pDzqaCoXnA4MrsK6gy<3FOHl{arJGzZGveS+J08R5m{B=H& zfc&wY2$_-zcDyRYF86%$%~Pukie_5wPp%|t%e&n{QJg4{>BV! zoGJmTGb1ky8bmYyh5}8wn9BRyVHv#W8`@EqZv<-4YA7k92=p|%WL|QAAlrMQmeR=R zvEI4o6;bgS8<_kofu(z-dC*T1r2818`jATn`Z zF)FdsuPoVx2v}8D@3ws+DYN`P%zz_dEY5}gphs($N7IjVtrC=a)tLV4H!WN3sM6@4 z3iJX(c_#0sK&#;!6b)^9j|F~yMpiV2@gXIP)KpN4D$nmP0M+di7uWk>=c!NuW%wjX&bnrI^cOSd8qFl&ORU4w>X{y7sQqTbHP}vi7 zbGOxcg7$KKNo;Nrv0qXErVRuU?cK#&q^eX6&67vl*!Y6Cny2&%ucOECJQbnEsH@1v z(|e&!n%R0Y?@{9u{Fs>J8AhChz~7m1JW3AV;g{5~YMl@e)n$qq1GXl8x{qj|ds&4D zg40v`h(P5V+fyq|mcTSkC|V4YXL}~3#n(&uMYC)*Za)_FY*Qqs$*O)-?CwnEFwnX~ z`nk;>Y`vq$c_u+m-LqdE=?(FfI$TQ75LL}p z7r*s8f9`zYd-=}+j|WF?Yp$|AzIB-IWt;RM=))A>2;lDA*}?iw*~xq>O^wMjj@$Ka zs(9iz{MqO z_f5+&d5q$v_1z`vAno78p?a%S-h+@)sYG{pExr54pIkvM+*>)74vrK5|4EW@-stu$ z`HS9w2me3&BjdoiUWq0j74b0ngx%L>M`!9xl|>6K;M>!Hhsin0>$i$f5mF4#2ekZNgEzp& z{K1Qy1|rQ4pb3Vr;2|#3PEbAbrM=5GLLVod279WSyPro#3Dh>*$nt@ToEVvC{6b#Q zgaP%Fpjtx;HNz>L3+PK;;rQmv8~i}B5wTA=buBFj2+hPp+ynYk54M$;EaHhA)QA+s zSv#PJaG3j9ok<8ai3fe!PQ!r%4FP8NVZbG43v-`vs|{QXCs1V z>7JqFXbprSsw+a}c~#qPy}6{CuJ8jB9)bnZ6R}i$DyiP5I27{uD9SvH9?Y@q8&N!u z)^Y>E=+hG)Rg@M)3_esn-v;2zskqXIH!dDC}m{g)#IteA->zIu-+{la-=J8Tu@wj}qN_ zZeH=q1tY!9$URzRog6W+Xg77{x2@g49Dg9M9U>pP@L^ZQvQv&1_q8+slkTSh>)=xc z&3?8wGS;u?E*6q%&hqtYf^dl2qw;F1;v4Z$^WPoBFD~;;`?)T)VIK>g2iJHwoI;b2 z`>`7t=yLO*nwV<7I>V*@~_r*8m@3Z9huS?&ABx z?{0@KF5iEEDx}@Sq>PLe^+$Io*f2hdAFyHFbEKbDaDGt_TgzvuxV_@aG`f)X=pilR#Q@4d(~B(`Z-j5p|oVYHvxg zSyw>r%60)~Mn7SO6$f*GxM@qio%=>(p~0#e?vtVq?rk;8z;N9uxE`6EE zzEAt}k+37_ROvzc3CTK=rfH!HmOFG8y6heeW1hb0(E|D=I&?%TtCB&NF#UFY@VMb8 zyo|1b30cbJi_Vrgk@BvSbD4u~F+TJt*^zcy?OcWhH2bc;z^zV&^%9?cpzzotxklfd zx?;-|bx?~rm7D<9zNr3wUZL^Xg+UwWVM;R4ap^EmH7-i60l!d*3>YNXmIL8b!vrJC zY}%xpkm^v7Tg0jCGg=mVs&NcJgNpY#K{AVaykmM)`R54f>RJrkARyKZsPsK_VlHaC z_&%-CV%o++VZ#Vftqc@pxhBXQi&`mqzX&6hvYrTKd1GZ1XaC%@F(yE~U(4~(JLP~R z@rWjW1lQCGh3GT&HPTKmqQ_5;h6_$x`7Rn>=-+CgdLS`k!Sw59pU9m|lA$5bbK(A42t_yGtc)LXGv;JU25K+!`@g z0hi@(!yk6xFPjEC$d376wD(}M09kBQrw_>!Ldiv4ujb<1nD5%Q>|87iwmO_;@Amb$ z@*OBmW3H??3SM_L5t?IY9g(=%9E$kRjmpuJrJf$5fW&q#-qM=8yzb8af#wNqZ6u@e zN&6mX(VF%h(OBV+!Zw!i$`@k=L1>{N192K-zWS43v}6D;HT_CQ93vCP5f>a}mx zqbn~i9+X;Uv(9sO1V0y-x~-}SGPvf>J6qktteiQfyvWTyE$vVmMayDaat6Wms8e5x zDr)~76>rf>X=;;h&~=wUZ(CLMMP6^iEOHZg&Kt;A!@|XuvZV3v`TDfd!SslR3EBKe z7y%=9Q5whCd-^9?q3@-8tiT@5 z-Um0+T~A02B!Ml9Ik&!CW?W#&82uun=wZpvV|tfMDZOhK=$(hVdfJ?xh99G9bjKX_ zutf?>-ee^o978B5{A99Bta-hRIHdP?_^{Los<7oN5?Lt_i8;V*We_c>wP=6KNFull zr65^v%>}I;6|x{YI{uqQpn4QRqlQ#?8t@;)yQc}?QAo-sH~6s zWi1@D&FIu-zh0kxyVRiRiP?TX`JH>08mN3NqIDO@$+4YYcE{GvES@$sWcEpH;uBda z>H?wRASmpNE?C;tRNb$HC1~%(J?nrIkY*a<%mb(f}!>L z1#bGf5Kr8}B@hmUA>*7=Uw*Y6iwzR!9~CkO6tewc=zK!@#EQxyKfkGR*T^# zd~fS0$SXZH%H8kY@Z&Lj)Im*U`O$?Bl3!>Zeb6x7mWE6%@*MWmmWBO3TNzzYU;8xF z0;>GTN5@td`Mm%`NGiA38ke9(!(KuZZH`+Ho9<=+4ZFd0`KNsS38|FWydn6u9ZZ%O z$pB+CrBSDIr~SbR~$PIM0FONgUsK@dS;SgO${8k5xA*b%(8STPfC#l;Hy(hTW!~jWCLco z{;dK6+`7m|ug;_MQ5KhJ0#?D_K{=IRxJJq3U1PZhZ3A9){g)E(n@WuFm?c-+@%)cUn7w z{HT?|bG++6cp)W(abjf5PIP*hPt79>f>L`F+zEEyaXF5Vm;#yFEM@+(s@>9;r4maV zASe*~_hUJELS!M6kx2!aR5ZH(`iEgWNWA4>2IS$5@W#5l9-%e}=!+lXzLg602+STz zTqFFfX{a+@0-_zE&DZ!PnFAzSob}SIJ*T2}kWLT}?=+^m$X_|r&UYFKvruJmi@H>4 z4(88G72Jz0*G1v@u(v{)L{Q z-&4BWbx9xRA1!woNFlT~?NEyQ5v4oyFzRbG{ASmh@HD>w$-gTEYr0JbQ_WBvr`mgw z#yyyJu%a7u-kjE>xW7#o#=PNl;afTX$LZ9y1zcY#z& zCjm<9QUf}bnvY^Adojd?!v0MUF=2cZXktF9YB0p9`vM+u>cxq%(=n0O6z{R|DjuTIpapNc(T(Ph)`H%O`e~D?IWxuP&hV%7wX>`GN)jS0zWLHKD+qchSX$57h&{7JL1P z0?uFgpqO8IvelPgWLos&sfdS7YCSCIb>4e?QtQU$RfA^mHYln~Cd~W9G~MngRccA` zl1~QUW$=w}DyHc?VokSLtf+p1Gz)cCD>|(}9>q>r!_eQ>i&tG6gy^F|PZ&VqKX?QC zOi>U3F(r-nsg|VU+`^jFwj;R%0&);5iRT4K{ZSakgm`GNI3I6-3wiFNf^QDI$sb!t zq}p0hIniwkkw9Tw=+JuXImNk4^;DOy86Y2ltlD*u9+nt}ST~@er-tuox)@8SEpcKe zAG&^v_{1cC7?E@xaGOqk5e0cYNMkQ57(c10O-bABW72W1S38&h=%Mf-tRzAs#05@>FVHfzSc2Nr zeeUMaJy0>dqw-nz4bX$(pI_7JXHUz2y2tGl(5K~MeGctvB~=#nu!v@)<9*3U6Nl=d zvYpyq>F?qo@aHomX4UZq>zgR~H+tO4tHjYt0CkC-r*5^)T`1Uge6;#I{wZ=Vr;H2T z>G+uVj9+oSX8!7^bAEq;K=9`fqZ9n@XF#$PlSM{vzH4Ipnm3z{Mo%JAF)t~INNLTD z_&izTZAt$*Z_vcS8OW6_`fKI>9gn1w3z3Q~yd6(6uY-t}<{BYwTBvr>h{6Kg^ZcN8 zSUoMf{uHryOE@NI#=4V+8%c;9Hi(uBP+AU}Dl{Sn2AqdQikYx`#l{FCh(Y_3t{G8M z3Ca1kI3eMghXeG3o3!2bTU4-d6!vQYCEhgb)HF#LW#jjZZwu&0(Bk%vYNMtUsHC-Z zPzafI8Hf86(#&c5QkWHB#}re#egLjawvWP#td0JRS?ze}dDlD>+-Z z-|#+ONL^GA?<+ih`<;^J1nq}@g z(O;tHBd$}2-8J|^5eNuYa$NtsUUVKrbg-Kh1C{$_ccd;YN6bG9@@!_rh{{hZ5E4<5 zQE4l(^Bz707JL~|XYgEO*}e*My|De>Gn4(qCv_`aSbdlV=4aRw?ZUa$AYuppv8Blj zC6U(Sek^y?t}y+x*k|h&V_(bs0vQkq(jEetazZda`Bv!!cF5r9DA)!?$GpV3bOEHx zv6Rux>!QvKTUHzHb5HPl9()Ew+!#G{m(uZf2Fd1_bX`DKrfG|{c z1>$1IwepV$R-D|UG_U9@dL8q(I&y)&bf7c6+{31vV@EP@v_sSMwuUDx|KnFgj9S^p_gA}+yZu;blo<}{8TbLlR zk)wv()1&L*0uj<4+CGLstrwLLnPt-~QB#jp*p<8c>08EbS*{kfX{ic_^d49)Lc#n_ zKzMD<+odU`L^QOVU#q=qaEgnXS&9R7OPgg&OZ3?^0XH)IA|A)&}g&UblGNsD|lGCA%T%S&*DZ2ad=EB(?@U9lg))0$Zp*juy<>@8=YjkyG7?m+OqKus4&c3jl@gcLky1-{*fcq*ov zAOXVd?Oqb@o3i_$am66b^am3 z<8JvBPmJS$eu{EvuFA(3mDxh}U)ba3z_}n&Sm0;gJ`#_0E`>;iNVRkjRJ19O@kFoPyZAmzuXOi%D8WQxWs$z2B2mm`QO5JYsO~&CCRUD^U5ii))0)vy3@N2FLy9i9vwVid!j{QBjIX zIL|N5sQOtctr{bSAPLD<>hKk4Ti=sCybjOG>TMi|p}b8G5$kb44b01vrL64;zd4qN zeZB4?3!qsh^vYRWYOX2d*ud zE9Dy6K@8u{rk|AT67zeIFD|7_h$M83%RSJn9vt3RZ;dht!ZoxNTM9yU6x}F)XMClx`7V&36@wYUFTQ8+E-$-Je2f%e zo{a|#aIS)mYj}KCbY=T|zCqB+U1jB2+F+UeCd~fE{7b&0Wea={`(u|k3NZ>jACP;$ zg!7|JycD;7aUjfms#sZ{5zfgDT9T<39J5IiKh5 zqZIRsr@j3ixI5!qCX08Air~acMcx9S^3%#YYK)%i8pvxnI@8{=%;8M>v~zd$3infx3OA;*W2z1$gmGXMxPdCTHDb!Tu|)MN~k}8ny=s zw@Ri(MwJ3q;?lXmGvR9k)*;`w2oT1yjWC|ol%@ce7oW&uj*rMQYg~)v$fJVqRZ=RQ z<V4O&#%g)|ObrvkSG47PtCk#?Pf-J*1;>hOZJF&1uZ+imvWY|Z8`=_e& zuSAmZtcdmYlQa3JGJ2Q3h}NTztQcCMg8X9?iRjjRtZ_d@0&>?!qmUD(%-*p?i;|il zQrIqLba-RE7Npw>2uU zZ(q9pu=G+|$}AxsUTyeZ_rTcIk2bQ8B0**8(2AEaU0eqO=C6o$PkmK5$B%$``MxCdXL zKYjr~M{oOKCJ#d0?$+^)IoWw$e}I~e#O|0>an?9!H-(R^U8m(9Id5ZQ;&*Z7?Mpjx zQ{W4%Ke19di<;mw+?fUMbAE@={v2CdrVT5>rTaV%a0hevHf{DNrYlrYy2&O7lxi#gzdS*Xb{t7=#Owr5k6y+M6=DwD-O?-mQVAVm9>|0>Vt=(1%lDjK? zeO6OGi-5z9-tE@M7tN`eq=i|6qla`zm?nn7^F2>Z(2qkWxKQZbt6kG-Zs&z>nNSt- zK<@7A{;VB#Dz((ZD!Ce^U9bel`_kqaVQ?oApR-U*419_4`Ibv2lHBy#RY;I{L8KZ{*I`Smkj4%V!?KN@=%RszZal z#eO~-TiXw74Tg(((@ws%Iy>or)tEPAXy4spo{Y#a0!gkd)+##Y^XD$BZL@iwsmzqv zzBF8uJLFHmj*O0O-pvPg*!gZ{TSvkFjyr$9sqkfzu}6{5zcycHG&&OHMZ(|wJ1C? zUdwc^x8`W406!8gQz+Qg|DZ>63isrthzS(bkKta${FW~kW5 z?tIW>fO2bm)C0fk*mau&hp%EbYwedB@)5xYQVUhmkYa4rc*`$V_FTN=Rypx!=i<1S1`QbIW_|@{UD8-Mu5#vL?ifPr3SzKB6>`fWgb|Z?fi1tQ)-71O? z>F3zHSIq4%x|kqZYEI(;kZF~>U|~P|5Z7R&il&+J8!Gg=ZGeCIkqO&r;@l`91uIIQJLS4CXH0XBoM)Jr^c%+M z!kEOh&~AcBPi8k z=T?`PU?FL?$*V63(`%P?+cU%AZZA~sY#bALFc4+`7w`?bzc#5cOM7D-k939!DxY^;=_cqUcdxjPu4glkdfq zNQSNRHJouQV#-q1D{=Gyd6-PulG{&J6@6`dslD2 z>S@8t3rjvz%dhOg8hirRcAd@C{oWb$Z$I%*Di|bgE&Z%L;4^J#iQay^VCuuPllMNM zdV02%)BCkTk?C@c4B$X#GWU{~5!-g;r;!Qfm>WqeyfR15XFjx+&6r%WW|XT6eh6;Z z4WPG*bzG#X5OLMFer5DhH?tsOt+jDa*r0VarCl?dT)}eovtx7|p}{K-<6^n464kE1 zQB(cN`n~fncNYIFl^*a4wD~>Z+5P>ZdSD86b=Q{93$nItk(0_$aejR5+wF_$OcyD` zTKPoTT#}ACat+fqT58{TzGOh{?K6+Q)CiMl%9b0&$+#u719;+`!&})W ztwsTkaXPWLLpgHNAl%F{dx?E6tR6S_S%1 zFZzm@_KchBl=>Zc`%tPVAbhv^;+=d%$-}VwFZq#l(-O$OwM5<(PUgsws1tPt3M-#W z+nlntbG?xF!m|OqINuAWLoRx{+zrGS?{_U*CM+5ay%Tc8|1mB^sGBBA4?Mbk6ShxH zYyJggCPh(4aM%N&`SpOa8r7~Y;ho_1`Ar!$THHNAXWwG(BI9yG{ULU`X9lPu^LTeZ zG^4qVvz~>T^>D)L0^{;`wjERA2~d)(z^F@fY;i z69M>GIVt(}tcczm`Q{cELHcbf{oDM+TJx#kri`lOM>x4u) z#Hq@qMouIuqZgdILEEvNKGytUdvrNp=;=03!MX}l!!p_=nYqCe7gV+$agN@1p*v7f zc71>^RP^hYAydmeB7?cPu_dOTd8pyv)?#9wh`T6MbH0GR@xQY~CiGxt9h3B}R_Z_; z2Mcb(w)%OhDpC?7p}y&5_uxn8Ht*Y>UUumXic*<7f2HmAzA3>*l3-;`rO+sBlLZpG zIV%s34YXrr>B|h_>996MbZlGKO0?XNiUu+6!?u$H6r+>`+W5RZLiL>rd@z7*m5M+Kjnhr7F!pb+dRubN%A6G=J!ZmlGEJi1P z-GK7GJaYcU^QxOeCdn7$ceqqN$RCg`Pfl#Tfzzro=Cxp+zKnDMOkUZ!;R?awn<=PO z$F0DOO)$TEBO`(Rrbad23@VB%!IDC0N~RbSM+MxcEXfr+TygW3^48mfl2GJx3gl!g zsdLhvJ=i(!5zdv!xqOe3uGM{?&G(l8A)6PIA75$rh)u%%3)ZA|adT1}?{5Ze9LMB9 zst_}dz3j~JuOt#Q;q?n^MR(&OHQY*LT<2kNdrczzF5l&)GZ>=OVvO3!nnw0t3e%O# z{@b?>hBfEzSdU0dYVDM!5@H$0ek3_ZbbTW9xvymSkWH&%p?HUJjr}(zrXM(fI4Vj{ ze$ZUy+TzaoHrUl>CZw|a#huy%Q-!XdLF1cs{_~plA&A1S)lU@JhRkRlTb0DNHGCg< z3~BeMAmp_)%v^2MuY&?GT1~fRicQF`s{8M{ z-**n&M3NNb{_drqs5bwnqX3)(7F*T@qBSm5@YLR6nnD5Pjzmjz^f0>z1E?)FPrv;B zW#Fg|$>#jv*y7F-hJ+1}p%)OTRF4z6ilo?LZ7(#%_TWS39LA(`eUzeioDi#Y(?`bc zVRzd`2M_bR_tTZn`OgP15uYRo!Kgh#ZPzFMv}DL#(_2#H_MLx9Yg{VYAV%(CI^*NV z6xrhku1K6~Y1h|b6Y*N@(q*d}y>-RfXw(U)lE16^I-NDsU_@R#KqG(H@z#CFr3nBg zwm^~yk?Bp9e+AUVvQ?BVpAAdt7xBhcB}W|scs|C=3zK2W2fZ=75kAGv4VfS}$ntW$ zpGd#fl3jZ6G$v_ zcg|on-yP@1EYbs=4B6INJ+GGRw#9(-Qe`6(MtS$VmQ8q>?S&+T*;2u4R)S3~O^UsG@N92B=-|6zVeKWpu)EMXfBrJTGUUG?Y(7Kaw zop^|J^v>`T?`G=W@oo%kq!fSjx!~ve9zI4fxdJiO^LcWsO_LNuol5I5r%ukZSz#$* zaWkr*C7=1|qC9R#FFp;j^X+;RJDCH;T7^CXiCv^YpN@v1L{^Sb?NZQk-Kbm45eMxiFZ%fNmt^(HAM^$xEj(xe; zjh_v2V3#8~`KpW&EgsCo9l%x-%&VH)J-Pp#aZ)BC#E%uNCkblU&tU~Mc;H#d+(yVFNT7eN0ZoChJWRNLCS}BGramp zE7M$2t_LjUeU2rt#iFTO`aIzJb-G$3WO9tb3ROamB^Lta_Cqar?gNNN-jQ7hGX7MO z@$$y_6EG6WGwx6BnHWnvUVF`NfZ?Y)ehjxy$^BH~ehR{^&p3CK{t5jbhyQ^DfCByA z<-P9dvwIX4^CsV;Tb?j$pRI**a>e+PPnQdhsdf|%W&+!!@`YheJ5Z_YYd>cFwKoZ| z__gFpO@HJEArfpM3H>w9+c*8@Oq2+3P4Kv#62NHpJdBbR!+oCLObjOZ5LGC9Ca7*o zzqQ+YxQdY6W;8R-jnrs>&G*^CUzvMKeiPGppf7~MDsRoyEqB4jw>r8OitDaQ2bGaA z$Lc?w8o+31y4=KdjQzUH^`m-@2QQabsit63b8qbmPRm*O?S28MZ{Iz7ky~X2+2m9ria0sfR z!{q3q>J?ud9`DJezEb9jfm3a8WZZPH4 zxZokM@9v(LPFi;5FCLEq*(d;4G=}@R0i^+tG?+ZD;OVGr=5H|VV=|>s)sIX8pIm8d zR-sCPUdqs?HRq!^%b%Ke$+0xwA=5QK-Rzj2V7XRjf|CYfEd^1ZwKOmcvs&K=#;ZWf zQIkKQ&qUdeK4>NAPO)9h?rk>xD8J+p{qCTLjd^s+I(<5&? z?N05Hck1|r!@B1Jyy0v{54CFIjHYZ=@0gMb!V|OK1H_D@KfjV9o+c=bco*v>@k!HKe#4bBlXg)d;B-7TR zKeh8{hZp5da>2%qSP3J8ytSVe^IN)> z>rbH`9sLDFpv+k1V3DWI872Th`qIQRC$2xC#=il_q&9G^1Xu5-8ex6Il2AG}AyGJG zU+Z4C)Kn*`-z6M{4EpSMcR^sscX#r3Q0rk0nuM4LivLNg#@#kp0FA&|<<#Xt7TZJN zok4jL$?&~kh-9Y0(r(8($hLJmhS6}EKcJi=PUm&l60q?SR9=eM1TiV9OLTYIlc5#ZZzwes(h z&S(61@+&C(L`Ep6gm&qyHvJ-;G>)0V&|N(f#C|OYL9Jc~1hiCsRTREEFZWB>`;Cps zLI5ysX#&h}h3n(Gvo&d~8opi)6#LUrs~iuufu1Zc<^qAnt|C%5!HQ=O>iG`qmE94^ zTV0R>$_?m`jof(E9mNtC5Rql%l)7gQWbzxm`IX#sM(TEheb713C4`3`HIRg&w-K}( zR&M6M7T(=A?hApq3rFofMvUKrpO{Y4q`=wrCMC>hZNBLz?Z)^Fb+Jsqt3;9$o{c}FT3VW*xZ0PNx9B`fN zFAKz-c<|3#x}MP5xY~aX?nc?ZyY4vbfrOIt@dx>EPl+S5JwwT>BYM75T}5JN(KYD{ zF8;E|SP-X=nRV)Ej&XZ)Ncu7KEdFx&IO;FY{`;M62EF4BMdEgug94xnwlS%s!h$r) z3eFZ!A>(u@1Sq*{0#j`l)E`kPJz>ufQ$72Tl-?Fo*VHx%#cUo;CKh<6SL*H!22+M{ z6XkUuNs{AqI{(B1C^rbQ!8w{W9P2&6@cSJCfJJ-rg!-DBf}rCefg|U4hbc0Mz^N2) zltYeFJsc8w`WC9O8Wg>*U=lpUqs_JF&&EI?bIo;6a2Su<84i94{N4h8H2Q$Jqu#4 z@ZqIHeXG-G9{m#U<0E<1%LXVV7O&0Q5qG_%TsM2ZU>Qo@_@=398o{@I;nY|2`19L- zp`7h|3VNhTK*a)G+7FL6(O7;Y!yV8JUyqR?Wn{%~*(6#$apa_>5T zQ;s{vq^>*bo!{x551x=kjdoU*S1*WfDGmh>L3}w0=JMA2?IycO7Cr~Rc9EQIq-8lO zE1mZ~v&~c0K;-z|@npNB>#o_b9x+vKq)olb^F+(<;Pp}yJ->hwh$0Z$5WBE9iX@L7 zeUR>wvvu86-E%B#nByf@99<{(btT%u_6~;Y;FOhJVdc&6&~38+s&g-uaxeh1$-`EN zxn)u7=j48)3os39xx)-A*pf-M2(;LHuPvP`SUdCbuQ0&VRS^-|wi`)LJ~=3%FO~>3x%{34HkcfKFP~i7!-`YHT0QnLVfwHN8dY zgKeJW15Cr1;8DwMKIEwQ!_-`E6Ub3EpqFaRq3K+~?ojNeEDkDQeWRJcha^8I#uZzS z!)9!Q`}J!5M=kKK;eR>SID}e_yZh>ZKj7b61LF^cwYWXip*y+2>{CGLdPZ=AvX3T~ zl!t?@#+C}#hm@GX<_Z!u+kIWaxgnpN37pT-rU(xZ!O7=ne+f#Ln_lbg@sevBnVXU1 zS8gS218bkkpYhY9soD(Rn$$$xLQjkxzB;S_h@|+u{hPQ7AueVc$vf;e-|8lSR5zhV zdK`C2P7({UVw3|cum6$LWJ0!V&C12;9EDG{#1Gv;+4!vv7wLK(NX9sM;&~Nd*$m_F zSl6M*$_dn`(J*-yk|E9lE(q9mxcOt-PH_}8F{2JS7Rq^-=-GTF+=OFr9-)wJeyp?Q znwfXq8@J7QVUd>o9;3IqF5Mkhnh2?W8}Xg z_22J}ogo6zid7I?Hgpx|v)b(k43Dp9inzZakZc*?32oD$jFL%?DnqbE0sQ*W4j&~G zHScU~rC7l8e71eK$_h$0$7DffZbH|i$z5E&T9%vb_Km0)^%V_=5I16z7%;-YfO4N$ zuM*@Bt#_n+3n_obL-<+KR4t}khJa+T{HSC-PD zR>ZU=#T>|5UU3!OlvUHz`09k*&#hxdPG9m5w4Fo47mwB4(vYjKGxrGhvEk+&q3Mf9S+;Y_Of5~~6y=6ENW57Erq*5?WZWcg+H*K@DbVhP9H zpb!$an1n%n!~PIE{&!L;HFLm-07|wRCo@@^@7qbX>@`Lmvk}kCG3`#Ij_U$DdWwDo z6702$^fjP_OIN)_?(JoWKt-SaD?sx%RD)jinr^ktpO`$v#jLqKM+HJnP`f+r4q{qv zA2_#X-GkO&;6#^#t56$<2EOb;Gd9FhNmvys5Ajj5W^e6S`2;{m1u<7p&)GeoU^qmG zcHYttE^_^qdlC^ShunqOS$`6>ekf^A)viofwhf5gjnlF$gsgICjjArb7xi8B7{ph5 zG7l*4D#&7^Yr0NXWfk}giVv&NwfoJmtBmp-qLDtxy|wa_7LtOPB%Qw!5k8M*X({Gg zlgsPBLtU{x?N^#>>Dn5<8~m@;q4STA-ycP;YP9T?bhB>F8!lV`0DlMrvpxU^{XBr3 z0-k8}Gt{K_pZxlV$EQ8KrjM8pdvSu2@LSLheC7U(m}Vdp_)oO*AIiqRaTx@hJ68Hy zc(2CfIA)W6vRj3;RAm4oR0}SQ6*&P4{(pXrSTS)M`C*Qtxu(h>o21|hRJ|*{@WzI> z<*H8jX$wLW1uJnhW>V#TxI_ztuVAHzlv3W`FsDj5KvX(U0}0U>+RK);SO&wXm*oYI z+I!0RleP*Q9z?rph+o%LVEK_DBY)ldA*|GkmO3(}%czK7}08Jci-~ zomo;oa`o6}Epjvcdxo(0nNE2sl1ft6zL)la+|uNBM{I|$eE$06`?4?HM zs?xr6{;Ai<{Z9uMOA8`iEz`~YV;14&(RywHTey|(=f=c5%KA4{G2+LAV{Q$6do1p9 zQgY9idD@K2Z?qW%X9sR}SWVR|M7b~5Zo4nJlSpHX|4$?60)0|jh^W;%q{`Wn!ZxV~ z-*`Of>ke;$53kuT)|n8B)^>9!OGxMvY&s9ufh0YGwhh-6nY^89AN{ikk4N&?er<9O zHDG%>fDi_3<~2KTN&!QR$+u)T<)1S5hxbQtg(Urx?pcTbmsJA4xLOwQcaaYA(-Cfd zGw?A3#UFua7`|rIWz75Uc~=4i70UP3@&9^EXGYZa*5J@wsNutdTvQBvUTu9%?eX0| z+T(u`V%M20K4C&g7ie2yYb3=_sIKtx{UM2wz&y585uB`K&1cduW#4jMK38Wdf6?34nB z;RW~JqJ6S2yVdhs&`xJq%L{|D`9Ff`H8s0+kS9@c304%iHcr9g(ujvn#QHi2wC=%= z!K{BMlD`o$;0O-NZ%~S%yc-YCIrG7FwE1H-8ES}AahLiYsDC+e<>Wne?AzoBT6G#R zn_F=aHCb1#7>n_BwcnH z(#W=pv?Fy*!bbvbexT7tvlvzi$nU=w+YhY$^^5z`xqsa9?~N-i zGrUUtDzva#9)D@!nQncd%TUH}NE7UGMes7{4=G`J{|HV$|2D z>~*3L@YEp_>gdV2Ha%a6weKgiUI-~DN<2xI>ar@;WshhE!)bl?LfEHL>t!sP|9Y*r zGtt%bT!lD;n+}5JFb+iP7L4^R10E0YUtJPnA=5n#_rCi0hKre+Ug{V~2%9}GSYpV) zaH<{pSoB>Z>Pz-zo!J>B);jmxUm6ARBTD8zC@cNX+?|hge(V2vmgy)2s%1_b^TlVP zfEI^9fEZ3|yt*v(Pr{RFu6X1`jMN5nz&{n6&zF+AeoU6z8%>v8t`G#XZfH@Rs~{H+ zk2?HMRQpT2|9syoKQSM7IHMt`PFY|Uy)^UXyY7R11y-ZX%yT`q@0Kv+Qq=vNquvwa zq|1JIHu)0Rm&@EELTwD83y%(O$-{5#VqP?p-hmim(SmvaRVzPp1y*^&MLqcBz2?td zrad`vbnW-3=J7*R+&J-K>g_$U_m6?g5u8OjrcFF zST5j+5!JU?-^-4;ygaF{Z8utV)n|A}douBIo;GKj3IE}t&SZ{$Tj4Jbc`uLTU+be{ z^w7MdJKXWDy67Zt* zA7ly<`^R&CD*8X;2_`CVJ?-Ti-(S4aNQ|dCbDqoCT4lkFSLg6yz_aQnx^1CI}55e z`%C}3$Mk=dy80~T?`ajHf2wNUWogH5chWyALqHe|OC@QQ>$Ea9;=af4l}L8-|7v=5@j&BNgjjnJWC_ z=V=1KdF$73vDRK^S3qf4q3{!9FmpCqH{BQJ0P_c5Rt*{F3ru%CmOuYHSIESzV;RL$ zs!&(D;T*#Cw6UR~>;E2Eqhn%*kCX+^oH?_Ud`(yQ?-Pf3t0SnORblIl-~Nvd@W0M> zEaXH*pkif~@lrV(AToq6Uru}R^*k>x9L`Ye^A9@7Y5haa#g0k(_(fFvVJb^WWnw2M zl4!~SDRHEYpek3{RT#hfU&@Ss-BOjR@+BZv;~~#{;m$MVR8R|xiEn7MD#Pj1O8*zP z^Bt9d2NDC`bx%}&^6Nx+ObpSVG(Bx2VqTV)AZns-R{Bh^>FxQg518>brNG_R;%;SU zeJF0iRKaI?THHBbF(WNaEJpd@YaADs%(KhXbf;PqcdBC(&C1=D-HOytxv>(7d?-9TG1bx~@ACWo^?d00KZkS_i6b5B z@!9G>db}p%f2GI&+w*e#1yvkBAXMk0&C)Sudq2>y`PMV*`1=wfxWgw7E9@z%YePQ- zMMOlj%E|a(ifB#1&N~DG!EIS?-@z6#A2CoD9L#y+sbO?JF;QMnP(%4(SwP-%_SL}m zhq_}WPIIED7H`wUPu(v{+%Z!YPq9A(_0VE$1D|HeMtp%aH+J!bz02n;!kAis|{)1P6$%$e-wGmV_H?jtmJ9Z z>5S{PZz8$n`{ubIelFRqdzCdY>E0Z)xX8)$bV=u%F_W1zf239*{l5>_N5h51qY;P+*jo}bH?*=_?8>{D}?NRum9FuOH9XXQ-poP zD~2N9HDmAZsv%T_PFc)}&vY+iBtdG-GiMq-Hs&j;y|aQ{i1gT#bT<`b`R-j zalg-bqb5=-o0F&Flwk+0z}NH|YYz#!BG$D*(HC?=AX*g`AIwXh&WyE0OZZ74y`_X5 zuJA`N7Zw(p&bJ1QSypwW2^8l=Defv9YX+%*Yle`HH@~-A9R6DqQphwnOfQ&PwC=GU+T z;<>=x9kaDVAky)Su+Jt1Rz*(zLiL#^x3%=o(&Exsbvq0~NPGeTbEFV5y%Y;7&g0a# zCrxi1I#m9ct0I7^gNf`2jo<#?6@TpPfcm=x27|Nv3G;0NUBSB*>qdc0$U^*t0&!hF zzPw@b1!c?*;7Nv$9_L^y$;$drkM`hq=aWA=LEq-*fY&Y)`Ptu@d+T^yH#F=@?3F>R&8g z%eSrxC=HLa{Qf}XoAHm7|H0Z@M^(ACd&7z#Dc#-ODP4<2gLH$^AdPfMFQmIc3F+?c zE-yEaCN7KixUp$tT&ae-y7_viANSkt zXF$T|urg6H_+`2u?9ROT_htA|$`APsaOOg#5sR?LNm745=uBHx6*j;nw@D)4kd&52 z2<-G?8?y*(x^|1Hd1sOP_w(iP9X_zp8ndB-H(#W_9xXS#SA6^SZHfgg1H;(PMCL@7 z@6CBSzhv(vFQO-Q^E3sEb~&fLu-AEkX7QVzdKTeGiMW8f>*LyYeJ}r1p#4)Jw}a-v zB%f{3XcAKC+_(3$<$4;-TBS)Pt8MPb+-5ki7mizXoAVFk*F4R6#)uf?yblQc@$vEM zRmL5z=covTiqq56;6X62)oh!~_UKM}wOh5pES;Fxns58vN!!HlzPex}sGOvvW6qYaS0wcI%k^A$o?dU;vkt|8S1X-5fs%=gj-HZ0r$`*OM3kA6 z@zWlCr7NJTj4Y=zQ#_!vsBcLO9GD5`(TIr30{|dH7oek>xEPJTjQ{VD&)=oK8yFZ3 z*F=E~WtPkd(oIc5hsAIlm1UQ7I6ByN zz#Zr<=O=BaqXv#0+pR7@>9$1ZQx;e?kCANbe0sc_=+uY`i}F5hSOBK_iO3#< zxV_w`fvtMvVu?HNjWFaUop#<$ie?^O0IT3|-iGeEIO0Gw>Fs{BsMh*npE_SQmOrS~ zr{?79gSfcWB&ip0B@>MY=KA(`KaQ$7CUo_}^A_#7=S+e8PHuF<$v7ev0TiodNh8P_ z13%#Dp{eNmOqGfF{(4uyOT8r~7&?WRp}K~K1+>|jyo!R)HtE9&bZJv?_5sk)6Ld`c z<~F@91#f54vmOGSUpPDg-79+hXdJPI2-bN%%3=W&aBkCnh!Qk@HxQ9LE=SZyh=cDg zu3h~8m-G$rJ`|6U6_1JE)!YvG&Bbn0cx{Kw&1u(@f7tGTmore!m6t3=lbp#0e-nv# zRv*^gsXW|XZ39w(t9aIrIzLMu(ht58CcKVoBEj8${C;Rm4>!BHsT2YC)6S{&Mo|;- zG_ne1+7;Z{V+S9b1f$?Qym9SJ(CiEB{sWNa=#jcU_6d^8*4_{Wu54^j0CZR}3V`T} z<%)!UMW{>H7l(BRRqb% z=x0d1QM;$}4RB+B-1!a>P5_u)?bx|Q8iZt*Z!Roj2%0i(_pFg+T24Vg_TBsTWyehW zyx~IZ+8bu?KISx!)60}+d8aVxz3dxD!l0B!sqs~*CS1e;IP!Mqg84~4<9n}vAJt8@ zQgaHUTP=tFM(u&7r?4B@hP+k%*~DW~q2CZ?ZFjhh+l)m%iRw||5Ik_OK@nq0~D|Niq?(?{LNJ@*S!4Y7)yNzH)WR&#!}U?N=S1r7I& z>YR|5;&qgp2D;POIrs2X+_!l4kZw`upCFs1T8o!~cS?7J@ncjAR(xX68!KcP9?#4^ zfUPUecD~l1UjBc>yZ~WE7OqJlp@{Pc=r=AyduD8tOu&iEFUkbT$|?dy(x|9>BjSbj zhI{rb8HmqexxPfR(ooN#<4Rlb!`_<|xTX$rtPm_MqG;81x2^?)ePKpFyGr*;vW^gA0MI0v@uiY?*uMR25;_hoT} zx5M@>F`sRk^$OqndEDW-fQPG8rEH-&I@xv4&1i5l_?=4N3O@REwvZb(C<@%wel|#Q zK130a_I-OaIkBqqcGQy3U^nks7GmPTTv_JbM5e$LXAQvy=^%DO(WCWxXGcU{v~!)= z5IT+;>E?WTtJ@)c+##3$_0f_Uby$^t!>D;+b(FI`&dJk8Fh)k~9tY@ol}=TTW{J8? z_p9jwdyuzzhNw?tNO<_lSRE8VqWL?-nOHC>vNwZ+(Im=Cnf&&(McXTmUCHW&3hDlO zwdN6m=uB(u^qzp!I?iPn>%7e(xx8Sa%ZW-~-3^C~%1z8`{q`CFz$^gBv|1e+ils<3 zaA+C8BkEAj@^$%#HYbN}35dkM*$<@cP&00i+&XeXf=NmzxL0zX-qpi8M@H z9%vf#)WY!XBeB=|Ad~Qr$l^s{X-gH^!^Us>FvOet{XGKj4$7)hhRA(b`A~6kc2LN~sd0vSI~IYu<{O+a&uBu=Ugh zlYrHuO+wo9AOzHmscVdW^Wj0cy}Nb)yNS!#w(jV=WyZs6eWZ5GuN88~Nm*1X7=)bN z<}x2no7Vje%5@#8!n>hmIvf{R@l#flSvDufYZRD6Sm~mal-ufyVnF4-xYy9@^ z5*ga4bA3oM<8GZDX;tk%%n$jk3x*3$z4Mon%Jo*b*qwrXc)c=&d9|8;xxhRw>j-n* z5lwtpTwEkI*UT~(mvapd7m~n0hLiL z>W-!#W0SaaGP~ zv|mxUIp0RWroXnov{%LEV*l74;jO!W1+-mkqy?20g6TS{thPv4vp>+8&zG!n-|1i; z6S;wixlBVMOr!k_=&x6C`W^12YpEOR#3?y|)(%TwjzU0!3_IXZ2eysvzecR_-<`~+ zC&6b~3<-q?&L5BZZ{WHR4e)pCiVRnd3?Dz^WP8uS+c12p&p`|Jb=1Onx{)s1vj=+3;~JEo803)MVXu>F7pQdSl5#)!!GuBM^kfEd^cAmu>PDV=i5){_u}c82 z1b(FY;}AstQ7t2j>vXmLF(m5$3la&lv!7^6NPGl*5+l>Tw29}>i|#$I=5&0bVn}dt zY2!?={F;DeOwS|DCoSrJRYCw)<1-r5y;^A`j8n1npzk}W3Ig5|-i` zy$1>}eEhU%A;5G|X{|0bfE{O~r(J2t1QfWo8{hz05dlc`(9qpI3r>JqL3;Q)Ndy^M zQc?ouge9#naE+}oIe8o{PUEdYAM}L>0f@+~QKaG~ZZEd(wVPeJHD z_B5JAU=;X6qA7_+fh$YyA}kwwEC2-cIUgi(Ok+Kn-sLFh&i*cD-09l_bsi$?%-A{0 zs=8}7d3#4N1eDi5$_YL2>UsoRQ_sd#EMCPiKG9z;ie%LPRO$bBnhgkrf8k9!c^q&e zoX3gh?@2c{pj!!c#NsvkjTA3oHTy+0x5#e*+uHqf&B*-(nyyjL4e)^~tol{dm3FVX zc7Si}WE2$8!oKhD&>n_U`0G}4Zl;>}b79Rn=LI}Ha$A3+j9u^)-UEOl-EA0&!>_ct z#O~v$$Kx|<4n(SaY3oi*IM~_d&^7>JV8jR=x;3Uj2^+1A@V3Y9+IG@LN76 z$kQXa-Um#H2=RsXA8bgQ|FuIG1v`BkrXEN`Zh_*r@=!fAwYJ0gFY8R!sR-jwV|QNs zf1tcJT3VJPjQ; zH@D(=PfyPbfb)RHq?+QDO@#Tw3#f5HNGlLVQGjgh+7NNR{Rjn0>JC&C1~r>>J6_hx z@%$Nqc2j%n#1AI`|80!DZQLyqSev$MzhhiBeNEfBQa4F>2c$9a$KUy7LZaT6abJ}) zGpsKm3MSQWd(h&i>R6m|MZ9J%Sx~MU_IlQSXM3#016_a2w|{XTP`E^s%Mcu*Bw5iU zN)4JSi99Ml-7S`=7k)}&)*6+KxzzZ3_1uLj#(lKM8x6Lq|J4rZ{C()bm&K`SFInw%; z@S5Y7h~oVQqlkj6*Vbl$PRU$nHN{^<6!>D_j!OGP;J z;>C+qRiB3=d-VK2R*+9<5kq;J{lA-WwGW}2*A$aKUMEbL)R@X#qzC*__BPb1B?9l% z50o4KW2(gTK%)FuIz-Oz$(<;MTT=?2L|vL4m?#gENJS+m&r6 z+=!TNBnjNuv_>FR@WEAa3?Xh1I<{kllBW0y+*rq z!Eng797O-|4>j;J*~TE@SMtBvCP?I9fNSDuZK^t}1{&P{Qe6=fMF8cRbaxYz04lV2 z(`~_s0TG>)bFN`?aDKJL@2FmkP6<%^4l8 zLvv!OzRCI_N(&)bi~OORjDA%_(b zC*vdp1PnSxZpnh?G)|krJlvjuOo4!1dl&Qyvidq^3-`+uKsrYc3KdiNl}1z8-k+E~ z^$!jz{Gp`hzkyT14mrqNeXKTv>Ny%Tu6koP?~bR_VE&5NZ?xP0`M#y^X># zBij7#t}CZH-T57$)}RlWL*G3=e!zI=2Y4g&D}atf3&>0jscFYcDA2f^T+g4#8u&RR zB=M_jTXuK9$2hu@taAP4al<=5TE{|mCPVfPfj(9x7*Z1B$Aww!3-#W|3@jgX+k&wcH9V_j^U5e>yOW0 zjHk)qu7jhATVn2(M@plPQ2N&39iVqWe;TGtl^&LXKgyGd94*x<+lm!`jH6RbNwbx5 zd3d}#uD#Uw^5Og1XiE*i zl$!wbd{6%4#0j&e*S3FU3O@hukp@DWhS&KPm(;rxLjUrC7TOJE|M7j%NBcmMtI&Hu zM3_edUVrH7LL=s7?Bg<_@J)_4dbgO`{c8UVK)d|h4OQM7q6aabY@N7IpMIc{G`Y0jTya$j3{^ z7{Y_D%uf02G_o;CL_C(iOH;6RvA#g*e`WLAXFTk=mZ6$&0XGT~|EPdgVwZS%J^}!a z(dY!~-l~k7&kK;H?ADp<^bn-}aW6l%73AxK0Xqf`I-A*GR6GzWfoT|vuRO}UM1c}< zwJ0tSO?~yN^*X|r{R^`Z{g0C`|K1#25CNkBx7l?_&YW#BV8DdM4PQcA*{@w~`wuur#*?@q3SbZT@87$`R zo9tY95V1m2d&yGOP7Sbu2~CpfKhzoZ!gXc9jntOC%8@2?)j%EN47k2SBN$R)tYGAdG6SBF=tRttcI zoQI*4G4t8Z#`&CfEL<|3|Hd9z9jnfzicrlF(c^r~LiP)TK!Xu6+#?PrfyaFos&a{B zha-_ztr9G!a@bCR#uIkugWWv!H5O~);ZH@*4R{ok)^wh20`R8Glqf9iEK$I5jg+tF znuFbC^4%TmRABpKWYJa@gGlz&fo>!|8@IWTS-jfyF(Oo4%cOUxwPkATUkwBhzidT31529U^5&>V% za34>T9PyVXb}N$N03$Vyqv}3i;FGe*2^&dlE+X89F)gbucA{!r2V!TaRPe-Nl(JHM zK~f^Q%P&l1bNV=0jBVs^T|yqF#uq6cJ|&CX223Vp3ofLuw@_pWNTBRYv7{wpFciF2 zHNw3M97UTlJQxX}JzGQ;yovR2w|*aA?Mv^d)a#s^#i6+=dR26>);So&v);0}3-xDb zwCsxd1t*D(OGruhVq{2lbUFz~{mpvS>zvPKf?R@gzNw>C>mE{9L=9e?qMkx255hbQ z|7Y0cV;5i_{!x*^EuzV?PpR}kxXovL$@mZFZT9>-33rwEkCy8`Q$o|z-$u8knpA7w z`p4J41n-{|u@ZUI=ZZ8F1i2p!Q|w~SGNv{MiZHHibkrQWNajM4976P*s4WR?deg(-%9Qe$M0V~X>5AAv}Mc)4C>?hi_*SiVN z;3r4vdJDYMon9?ED_F9v9;&g2_3IV+7J%@_331`i&z-X!xpq$?l~atuV{UQNv)vpG znwrs0^rfj$;1%0`hztK&_(GKM;re$K7FRK^y&fa^YV8B^hP)Ar_x#-Y63+W4+_vBP z)BdiJ>He8Jeye(P>?Tl0;0blO$Nms^gHuO3C}J3(JCZA_|~ zBWOjpV~>gDZ$l2*^S$R1-)AOagQ`Q}TU2FEBI)p6O);$MC-JF6bKhTQ@@E~kKKbbOeZlG4K*9%eJUzJu|wXME&!2mP#0WusmQp|z%cntFu# z55kxTv?Mw`%cILz@HkWh8Ws3Y<$vjFuXT&KNMF>RJ2mO=EWB{=f2;}+{plH-vb`0k zGN%mxK{Xl7d$y12KH|#!)dX_sIDRZijQ4QxlCJPWJf>bJn>N0^h%Z&f!4>&LDIQ-W zZ9+_LT*>W;Fa<|p?C8umzZ#-yM;}(!32TuBdTN9qm#k1b*@Ag{{`n8 zO8j9_avMM#O8~1GKv3)(n41-Ux7dyGzfY)Iy=mirPai%8;8ep26!dg%?piWA$x?_h zH%V`(09wupSmohUsJYVm%OLCh1#v;)U?lw#Q1NUTCX)~E%xPY9_+=NyR^zfymFg8Y z7Ppt2;!-h|eeUgtnJftLIJrr z!Ej~$loG?D?uXrj2W&D|rC9_%IH#84Aa#u)52rUDv68GDI?BgF1YN(HIA}e9f_YlBD{y?9jbCQU&qUepRj`YTo5MeHB$KV9lv{&|mFv5xKnu%@Rr}Oa@D|>3}Cd)_ltfUZKSsEuj-UV%dd!7?N{>FXe zAP~uEGBH{LX+L`17<=t}pCe!KlR{WS6lhY?>(gS||IXsH@^?)?NQcxy9|tW@r24bC|m{v6k)rfKyt4VBQSyz z9rGzTJGIY!gzd`%vqkGp*s3gIea_Vq;YsMnD}OC*~B~1>P|qjvFAM5 zWt=2UR){5)nXXT1c4~?E#_b??g_eB#kgv~YK0YiNMShy$wH-QP=R<#J&ksp%&81p=(= z;ec7a)Ctn!T?H0=w7%9(FM3ET$5O9Tz;G+G$tzaTAi}bX@5WWr>3Z;KdW+^}qYWO# zWuhc;9~#?QZyez!lP%utTm4=sV~}Dm$m;lh)hVC=0w?LRel<7o+gp-u=vN#i(Py-2 z@~zyi$GAp|MAA1m3)g-jF%Ql!i1$6^xUu}XwDo6MOQ)o3qwZXy%h&xtD7Jpf2WQ5_ zZunTARf|144KBK_HtF?RXtZOB9?cfJJblb~CcknlvaPd0?GMbKKF%F8=W9>z)u;xv zsy7}f^XA!cu~m6wqRh0aI3s`G71Xv^rO;x0w3J-FusgIFJFAyz<02R0Wi5&S8mx5p zZTG#$z}R=c1JqkAU>b`8wv|tSZo2^|!w-`$-`-v*`CcAs>s3>2>h{!W*1mzD&5Aje zs(nP=LQTpSlBMju3eR||21DFM6wY@ZQssjtxz;(N=KawVW1y{8PZ%A?^&RtvSdZ88k*sySany*qjFeJHzKFeRqXt$C3c_7mhhvPE#-}v8S9mf4@Z3SkQD(6-@nZQpvbHT?phi#@Ljo1X>U*Pa2w@%n5cE0wtp>!dMV?1 z8RRy2xS{3Rw921`-@ts1i=@w(T+GT`)bl@t97PI$b-i=Hak~*ip0l3vFfq`|(BWVX zT#hAiXGq(%Jg$7b;QPbIp-Tst2vdqT-NLe*gHnS{YQ^_1pyeJDhEv?Wnr~Mgqr@ z`pKI#29g6Ga<@LD!8T%8w_&j0ZtK^=LZ8T5OaGpWP-hQz_!CUOCL^`Bw42E{`njUC zzOw0gu4rq=Ot%lukxy59ZbjaTc^j-VxGs?M4jt#dcdJ2OI~8YJDZBSb^Vr^Q$SaVl zd4oKE%Gria#<$+X35&Wl5A7J=#DCB#)GUVjYvFAh%MpBrPm^Kc!I#af-MqZZRTg}h zbZSvJ_k85iUR$s_ME9E{W`r5tI*vF~$U>veGHtHcbTg+4$on$5HMa-F14>O%2>xUkT3n)5*>tUbYrSFiCjCjONH?9esy+7JH$ zTHBCXl5l zrxbr>02|S^=V<;MGsld-5HNt2ujNg_YVAyasZ(MaU+WW4&T5o>=C?IIFuj4zd3O6-1hhVDWRpH|46BB>erIvSD}mrB_}-Mi}}?#LemxJiN=_8!T_c1D$??bSQPn+k-hPbOyL;25KO-G#59t*UxoB${_?3AeXO+A|`C7U@ z90^UZ^<&EO64V4X>as~4HM9qwH*}3{TK*wUzq=e4NYrL=3j!#^#fu*xon80wdOMth z-N~;MhQEv$v6hN0pR?6rh8Cb?hfN8PeC*7F~;y{Rf!>b z4KcO7iIK>&eN>pD_L+ie+X$sZjzJ>wD`C*TXj_#0VIzJ&HjEu`MFNk z&lXbd`V|R3cycSbe=<23YSPV9)Ss$Z(YTk~BlS47jb3gxbWznw8Xp&{lY5#%zmQg| zPWvJG#yxUg%7(@G#;;b6-?&Q1xucn>uY&*K9F>A9kM9?DyDe%Y9<}7otZr%-t*Pb&r~^7aXJ}Ht zWO7ZPzdVUJi{dxUlCG5Pt(*O9`i^L&E6_{qjVfzM^~I#IpK+M7{#R6-pGI?rztm-U zCf@-5RW>KZ#*#rBk1_wLavXZJ0}RvWGe1PR>|05FsqDnwWnR+=F3<#RP<;5 zHn)U~i(F$sl~+Us0hYup2kNiPF-OA zYA^KVp>$K?4%KyFoKEPexF2O?Ipzf`VfSk%c8HA{jRHX=FQ-|>0&2iW&i6=+qmJr< z`-_@Jf`|BP)+}yUv_Zzfl_}=1M$H=+%_{HK-}H<1>rS)xX=4Hhc_}r-dZgv?K(c@k z=21erDzmE@b(UIG#j}Z@#{_>VDrEUmMG0r+Y|Y!|Ee%;6Q-aAI<`gZwzer>;1%7r^ zTD#Kj@WYP(@8Cx-wW^-1$W}@J0YbUCUFQn1;J8650@Ztmjs-#FDS;gyRuxafp#c>< zxNCV-I`dCsy_ugnHzgH@ zf)d+=wfQdePYHI3)rd^l4k85!NY5sX8~MQW2R_d?5if=}i`LzmIdTNHFf`w!y`Z;V z55mLVF>0sj76+uZ_T4@=EY#Z%Z3^?AkJZ11HG11W-MxMH{FeLzam}xJH}Q7W>};pc z(m2d6N(SHa^dnu~I>GBz*y-WjkInVQ^!FmGFCxE^pBO8a?!&Q-qskG!PxGjjL%Ns= zXq$f{*xt_md$AHVmp|iX&kn&sWaTY}m)PQ^&vM%} zz_Xx}6`*i!zx*_jq*4g(%7Fd|LZMqipO3;=l4N8-ahx z=Ugv=+^z^30y*{HWELv>x2osyPgTA0?pJ|`@#$E~-!)1rX1J(h!T*wV@-&!;;=QR} zQb}=|msjmj)moNf4N~SvZh?5GinLTh-)t*xg!!g_hJj}fl8Hxfg3$Vh0R15JBT_m> z!e^em(z+Z$yk;syX?^LC?Y*_6bCPi*@VI?@@ zRf>t0f^-KJiR7i!)(AB-tyDqKn^2^-xb|i15Vhf%+%h?Yu(+B^wTP-P;}>W4TSF}7 z$qE&6n9W!}h!SvVC%Ujgb;qjI_zf{T@b3CF2SW&b)4{p+nuXQz!<7CV#XtGB6p-{V z^+e_UwKu}L8(m4$b?0gjm8FBh{+a{rwQ2}k zv08W0N{BVsW+lO3%dlsc=K_Zotzf;YBuY~$IhHClDJ%;-v!lZsVkUJ#HqB|W_%LCc zes`o~$UK_hD>W@DaV<77`h`P6kQDrRY`}^wyqzknhszPpLq59sQ%$5Z+B@vcZQF{r z_+MK1AqCOaLzrWw)*;T9bOk<;xKnF*H6Y~Gf;nBMhF@?cMf|1Nry$ATXne6b8zf{=OTLT zR1eR&gATMYl;z}?$US;ou#Ypme50xKzPOi?)}mmQ*lWdT1MG9A zh3SFyiuj_>2ZMjXiqgg;r;HqQgyWzz}W;Ppynfu@x0cxPswcNwr`LvPGJ3 zwC*4%wu`x0OYM&43PwQCMZzv~CCF>>_}(auvX-a*SiwxX+0s|X)o3DpAtE&&4vi7o zOeL>IdJ%sWUyI#LRfI9$Idu1G%GfA-Y;?baa@N#NQgf&`LHyD$L8}%{;IWN$%_r_q zO{YEa3?uU6x28lZN1jufDAaqDXKQ5;(ts{@Y{_%pCWAl{*B>Zk1YLV=IDT6C0cy|G zIZrO;$CYmt;S477LXS|O0%aSq9t?SE>*do=T#aXnD7xh#umz!P0ZKRVvhvKsyiz{q zqhN$v0#~MkSQy=o5|kp+*}JqpQqZjIdQ4{&H&5)uxq-b{;?nJMu2^+uhr#3PUaWVk zCt4SM-~d-#oyo0tg%^f2<4_f%1Qa~$R()@AV|*djFI?5wdB~M&7S(Zi)vDC>=ItrM z8RY zJ4cDuH~kH3b&S8u-Rxat`C9=J_h=7{K*S6&mNpY|^qW0Q?1L&$%%)-XnOfiXzRU0? zTyg0&yo*(UmZ-n6Z~%3qYp;>;9bAb-r$wKBVI$E_U?%n>!K!IGdR=^e={$kMILDG4 z#~FRwNpo9$UxCdX1AGj{0!%)VZOU8s1a_rG4^HEl{dv(ZVyi;DaZb_Q9Zzq9?4XV7 zkZH*9YPGxGg`ed}DH*fyDbMK*4_>pg$t;Db5Vggr_7{@l3N^j1t}@-nyP)W=mBZmk z8^;FPJZiP6x$64&#>#mp;Wh>5x=Z;%ua|W}+rK^$+mKSjdXx31lzpyr zCGob(GOSm-CJm~hW;#7S9}y=xI7$b&$jTci#0zsk31H%NK&!ORwt%{Q@N6;Qvb37i0^S6rJSZnw+Op4K$!1ru!gq(K>Xcbzu@ z7`R%=8-zdEQj~=P&1PqziM7_W1=W*3{%}eChGbKp46f6X9g{1^BnOIGc$i$MyEO5N zn-B->`U)R42WVw4jW!xdOegeP9`hT1-rg;wWZG%+Ov)GetRUG3DH%49AQ(7%{qKe= z`DU%2Eeu;f4SUMO%c-N z{1k5~rEwue_DA3`vRBT&WUHq5UZF-{{9*Y@S-1rnToqGEhFFmfQe?W~)9te}+%{ zwg+X0G-?Xa-qY?GQL%dByNRX?Y6v&kl4I62h}P-l`s#9Q9n(4s^Uj7a8QswD-+dsq z0-X%yy~+eGF6d}lLg=I9hI8`vmd~r*fYA-y_aQNkmn7J<-k`++*Fdol>sRr3o6oR9 zsAN}eB|ZH&*DT@oNl@)A*_X^hBsJo~#haKoKxSd(z7Km#m880uPN51zkWthxc#&Yv zaB3><0E*;(s<)D|w{o)X_(O(x54C%#mtHW+qED4E{VZyXf69=)a z5oW*5iTpHxnqg(pgfdL%Gby;HIe833pQ$p;)IyA!gKwiwj7)N;De1CwOm&0@V!(J%zt=V}E8MLc?z> zb|88*xa=a6ZOYt6kqATzhikf{tzMiyyA(FR312h#=~|Ov&v1JnWMm$AiXXhLXXoG2 zopb1`XTu|QmQ#0Ho8@aIA*d2~M-+`2dxJEUR+Xd?C=8;3HoZ4C!VL8pn+!f5TF+EE z^Q1_fLHbTbOeJ(?{pm=fgvhJXR#@XOlj-kV6p%@G;R^oPpOdivHBsZ(Wpsu)WeSJ?-s_QTHIM29l;8DnS#6*~&>TS3pap*rf*OETU*858$$cp-BqqC#Tpc7b+s0zLL?>Y$ZbZ5me{R+7S>?m@odJ`IOY zIu=u||CxTo{h47Tj{W!a0Tc|3sn;mKBmNfTT$uhE=TyaB`_Db)eofH!WeR1J1S61> zZvXVo9&^=0f<~{Zb`2BnBc=Wle7f5KO+~>+2dXdrx4Y=MZ~`aM!_}DXb~7vKkhv)v z_;blFSlUuk*`FkJ1Djh8BpEV#tNL1sp-|P@|g*#C7W4G zYv(Z{^P>%IF7l6_iao;^+aRnDDQgsYC+R3qOz}3chc-o}UO!4VzcbzUIMd#jNy*^h z@rWqALbW)G)-NgbRVGsO{%yu$8psprt;G`JnsmHKb@`eqP3LVqv8yn8Cz{feL}nrC zWrwNVC(V)j;*Nehs%QS^PAoLorgm)KkapG*1OnSYU+(D>_~DILx-h4(=7=BWrMCr( z7%_S<)Qqqqn$~}N5m7r$nRv*(>}ng#8rz|FY7e%}@2I!oocFAlMy!tx(>|+HzwaST{E1$;RaE zkrp!+v&Q8O)QwXfT+-g9O|yM%UBcaRjhy#fI!|WSG4p`&@SVUMmfRq$v-8d2hsB)H z>SJ&3AK+pI7t9W<__g%zmug={k)g6$m1O)j=@EPHt4btqSyxmy~U)Rv{c^{>>_;K$CN#5pm zW9n|(0mSER4I;kSTS;|oIDx?*I6~xHu=05;yG7Zt@n)$pAS<-s!kbVDCK-C|XE@aY za7=nTV2*^$OU%xi;%CTRa9ph(q8H^?voffA(wQf-kdcR~ay#93@#qO0fg}(9nF>df z<^;RrVxlToJ%5$WkHtG_j$8pt0}RD4sP$rJ8u4Oht)Z$9U)6rbW`>GAESEV|Q48WH zP^t^(T?aFDx^A%9?HXGNXWaqOV^-GRhb`~Nt2~vynb0};cXeM07#pjcoNBJJ?lc3+ z@gz0Rv58zDNy0UdnbKODpo!hjg1~}!-0Y3PVS9IYuFKsK7ZVqeH_UBV%~PO_!3z-w ziRCPaApAur&%1X^h`|O0Y~?cu29Ukn#8WiJF%+m*!)itNCDs=KEr zget-Bzal>K&IUJy)km9u<;wQwd@)z01}2`JF-iP(s$(*tZ)t9yDF3w4NoKH+F#HSd zd<^PV>#ADL0_Ra1vkh1nNgc#)!et@1m+hT3{yOL>{ROysO%_$)A7YeD`Y*8$%!Zzp zkf2@T(?YgecCgv2gIo32c^_F#niNy2R_#x;+VtgZw7c>mvN|LNPV)7u&~;{$xam-A z`dyO8l{+s5TNQ2?@fycS(tT!9FO-PpSnyK6UX7AGf9R`voDY?JVl2b7@zc{{DphNH z(yw1aIy<@g@o%H^{uN+|0&*b06-+V$0uN?R&Nouh(mXM6{{N;387lm(2u1!66d~k> z)88$|2sT^6zexRFv%$f*k`+((-pql7u4FK$QT{mN5u67sa7}peP#I&K7H%SoAzn8$>-*{B<|Pw3ww}e1tjfp+w5Ow?;Gd^=3Q4HI?Ti$-?wjdht2g z@*dl^Mg-b)F;&UL8=|{Vjsx>?w_X?-{cv0o3`)n$721w9QUIqF*`mW09 zM0+W(lm}c<*xUd6xk5N)wt1Rb$rrC^GA&nUQUW<-^TKJ4l-VHwX+Hj1 zsHjvtP75(#zG&$(jE{|fuD-(;tuRWD*L>HC42|o?npjH5w88sn6s$ljYP3C1p;;St zc^iB!x+swl9A%FKvIBvKbnSVL7ile#tW3TZ#SwFS6(`RrK%h1o zix*3aT)hf!UbKOr_qDmUTm{5E#(D*#gwfC9A>pekX3dJIWM!E7ag-ryps=LHIx=&0 zaE&tLbF9~^D+!R^E;TOckQX2>rJt-yvK2Ul%Hg~sjbx#uq`^a;u!6S{X?xq{sgbb- z;5rf)mj2B@20HGeDqnAF(-v;C!K>`Tpm+LYcK)2%k01kA-#r_qwU`&6VKOeSmhx|V zx6&WDy4fmNhErYni0f+Wv5xEoPYi&n7ZS7m=OrHjMkY^(@^AKIy7^JLH+BsuP-OPN zm7G3&zmEgYb)$YNb;3IgZ@@Zp*w;2&z41_NaDlS!+iyxJBF?cVMKfFhnSE+*TutZ9 zMW6Lpve$=|1GmY8PCrixz;Ah6dAaY-mDt$eP*KG94_O=NI83oBE&CV*`pj?`jJLm~ zxidZKPpc|$Wys5-_;8;9=fCtkl7OJ?@l6Y{+IcqWD?oI3n2sAm zupefo!WQ!Hc(zF%KTwnQOl>eeX0HwA@v!}3T$PX`CAx{b0~x9_8#A-p7U329BbD~o zd;H0en-i=Dyzrkw#y(LG8U)ydW9O5;i(PR*C0}T|y*I^z_-SWfm1qko8MhUsW3^*F zkV;+M;5XOoA)fmwKgdK8ToK5A6PVmGL^^BtAG!e(&~K!--Ywe_;bSblr@WyN68B#n z7`*`c40T*%tc8ET;`{6sfc7>wnx<2`=slodV`Cp>6eaL+U(IKSn_mrz0wK(1y)9>% z@62$5MC$~8bfA?%w;Mih7$BJ|_DQK;8n=2EQ8K?) zubNb*1<_rU&%o+*Y?Dqv$Si59%e-au1D`_D_tqd_W9h;ZdSzq5=V*Z<4_wF1O0#OE|lcgGi#VSj$uE%R?`_r*W0ZIgx@VoWeYgE`Q3sAh-F z6jtms_F0!8fn&@x5_H86yb&fL^tRV`2`4e>i!>%49#(Vk#Y;JN_>+D!hOK!5KI$?s zQWG-w<`8i-KP}^%LB9@gr%4*SllzR^H#S}=JLF_TMLcw__&BT!oN2$@@5ODxq|>VQ zUW-z}F%zi_OL1Zm=vBs-t1){g+tVm6&rAJzl2!?V|nCPN(NOkM1ix%eUs=LmtEP*84 zZv>)4{1&N%ehSH5yBaqSf|w>=!3k{H%RwjM_wBPjeFuyjezlw)YGF87L?R}X8x@L) zMRhWG@O$WW@9RNP%!dx=Y z(+WKG3v;y9GCt}0|0sJ4s3_O<|633QM1etRkVZfO0qKUJOB$qoA(~w`|Q2m-#+Jm&RQ(jEJkH`p8L7-dtIN#cY;N}_5mT^wv3yMPundAQ5ao<)Sqc4+LY$&Bp7EIkXsaOY1OvrB5Hm#8sy zJ|-MZ7=xq9^y3c|uBgF3w>AV!IXkFmWOkedig3vnuq+cfu_- z`!dSYcd6ku{qa^P>g2wD9`bP;wl4FqOi=PEA*8t>t8aNL3Uz(Z8xJYEr^rV6Ib-~t zcx7JvkaeMp0hCrGqgkQ|ae}nYeLCBWzBaR&1%a!L<$QJl70vfZz9b7pqt#6ZqujUx zcs3EbQoeO^(a3v0cQ{K~6bN?Z^rFouh4FqKwt6KJ%^iO$8flNj@+HA+-0^m%t9y2H zfh1I~mj;>Z>{T4I`2_8`48_BW&BKG!@IQu%VlKw|F*=~FA^R=lJ~ZluGnERQ6$j(% z*61khKbWYSIoF(i;3ZX=bKwQj(Q&<6*GyGL?IGCU2S%X`L0hi*2%3&bT5Y524=7x| z9?24y3OqL3lW{5 z%O;yK{xegdLb+5rBkj7vHFSY-3$fVr&o5W%f9Yvge8hyn+R}-^=7ry4(V7S_uMf72 zYAkF1H!D(_n=n#xo4ud`I_Nf0-xF*?ql0F&&07TYpL&VUO0u< z>^ru}p;9TmJ-uHqfgbeKpFY1$@q(JGPFy@tj(>OSBkm{r2(X1DS;Q#drVF1GTw~) z(>EUHR%0f>K4PTdEa1%DkIwQEr>`=0op|o+(KU@iomM#G)nZhTb;Gxx~k zj6L1fSBX)RANdD5p&k-L`={B)B8tZ~IFRb)Pki)ZPdm%lMMeU5G^H}Qgy0afWpf&P zeMs(Z_vLZmJ7w<2>5hcEvLEgImtV~5${WW^us_I{WIg)+FxBb9mtqnN5;KBJv@v{0 zq@=tSWgXT>rgtk-AK_r&;wzNlfsmIj9p$u^jm>$YMcjg<$528{Eg^DDG5fd^(CV{E zpf))lhNPD?UyiA7`0``kk48_)^e%*~B(2MV)|UFrEgcLhh^MdT z`dGSLx^Svsq!u&Y$K>cclL&9VdOdQt&&?S`6h+?9nwM$KqW*%`q0c5s%uu(`@j4JP zMY0JrcB9-v5WV`QKT0}&7$ERXGFK78Khi^dh^s*fWVpY`NmBf6& z!6pYb3>A6Q4D8*tHdpI?JljkP6TjVLVf6EoG5zB!qn$_ViBYCbSjRNB87aYx$yB_Y zl#GLYQ)?jfuRtyFFl|hYz}v-;?b+8 zYh(LdQU!UmS>EAnG4}k!=-)M?79Qa}TRoGbvgPaYe|C3{cr#a}AQJ`cXFLb-lt-|{ z*Vg033HS1-%*6$|yu(Uev!=b*>!Ghm3adYb$V{L*0L5A!7u;YpPgxl>@tLFAO0an@ zj+?kTg9rO;+BhpRRZFC_O026MYnOEmebcg0JdYZfsK}u^i4HmKs(g2JKllzFbXD;F zy1;ltcByOFUptjA;{RTPGeEKS@tPd7{xx-V0v25$_KzQ?{kMX4P`k2YoaPv9ABI_m zT(}dsmqK zz#<2t*LGy_f@$5ib3=vM_uM>w=iMvEZNhk3%7QVe&p0)WUho2l z5#{Uolqw@?d}{NfGDbNoA+iDzh^~h@%{)Tb6pig?%x;YOnN<1g6<+#x^<>K_>Zk9v zMu|CGCpFBJsK7w$sK(gl+s33bcsA;)G zbHi?pP!H?*LmBFmt0%P$l?+M}KBdYy(s+KS>x}Qj;vN*(Zv_rgah$DQt>?=gno-19kES0Bxa!lx{~%&62?tonu=#a7hsJ(G!SGqby&nJMAyRcqswtMMU;n6a1lK^EsoDf) zs4$HUbX4N0QD!Y3)lW081PZ+^UdJKyn5g`=wd#QTfhhfiUp&GjrajLF)g*2UddYN( zA|%+(y&sO=m8J|4xGraF)*LHh+d^xyj26<^=IS#(?&|8e+tW#Wil>w)xwd~N zcv8ayvg_`+?d~T|_?3=nc-f>W*vKbR!YM#5$kZa>%|oiKh+$I-wLZ$cr~cxZ4wSZr zCAZR8_`6_hVf15L7@Mv9_w!P=U5$Mq*`R?zdDGBNk}sU`!TZw7b0M1q>^N5Z3|CnN zUyqKZuY2D;WOdnC;gt&Y`N6plX~qc}bsn7?M81Wur9MFWz*uQL?ErmZ+O3>>$gpX{ zhvr`Q5Ycz_)W(*NykWCU5LR`?(&sRR?c}!K*oESd^3azAey*aTv3eq8Jx#k}+D(8E z*N@~lMmREqOZ&XFEI6kZcE*2NRZuFu%(}DUV{B~po-_(H=`G^=#i@B8JX(Q6x_wW? zQIjb`4Wgl3sc5W)=_jrMTKoombv6#M&EelTVQJT)62?KU5&Ex%84IG{2bm}D6wYkn zRDXtSv-4x_J8qF}XeJGmC^5L@DSA=wEa)CBuiY&Cn8@(Fxjty;F{R8?n#+m8JR@(~ z*+*X3mgBLN=x9xOuk}Aw%YNGha0IFSAaBR`IWyB|%WHn(&=b@M?}g=eHEm1DhX?V< z(Ila;>7dm)AN9+P>oaB`Se^H;1TxzhJliTcIx%WYTX&9?uLnq_vWMeuAS6w-PzW2f*iehG#`7YS(fz?D21uAzr+i%e)MHmzG`!hpS z=~bZWg^>xy78PW?LX>!qaOn!3-gY!{MM`Yel{(Iki;VF+6R`SL`%0So-BH7hnI4>i z+B}IcL0j(6?Ol)$loG;N-&cl0HMXKEk_QP0Z>_S>4&^J2Lp$}#%!-29yudE|UHDuK z{?BuAtqSkR=rSdj?o_hp!%+jYw>v&=q8ZI~ZpOfyCI^~498wa#F*=HENQh2#SmKJFN(57Q`J9=3Hct78F&_^Z+h5`pT|ckaGI&}f z|1C7oj07%+vd`n*>unoIP-L_y8&M1ZAx-Wo5;@JI+#qr(Ver3XiIS_evt6 zgrDz=t|}6zPIP|UYETE$ePPu#g+mPFW{b-04pI0($vgtnjY^EjyJzU9`!SQuwV=9D^|9)tXmdydfx#pHZ+gV1gmCi|nK10e8Y#}4AsA@B)q%lXqO5*J zh?{%YG}LV~=#WwCVGei7WA$Qw65qO{+ctyguPoM%*7v;j#>4J*vdEXed3HM&+u$LJ zH4XGxz<0H${7sgsT8=Sn5)%|UGoZ_He?(A3)x2G=5nevuI1_GZdX?PDLfn5eC=_4T zxhJV+vQ{uKtxJ|~9@lx})Z^<*fvO(pWdPxnaz-@VC;PHO$B!wT9sAX7$h`uPh(M+3aeb5EgDFhR#QB|6U?Wxq+8Wk#R zKDZ;-WJ7emk_wOJTqM;ziM|D=kMd^3iEB+X3)5|>H!RavK1aPb>q89geidrS`tFfv zEdn(&5JOSTdn&HliTBN3{CRX(b0M}y`N%q5o`Bh1MpG@-m#i|j)l_xeX{ zYT{vr39q=V~Vnb+eD@+g>E>Nb2i1V%4j zih+;rYQ19}bP{{K#6n-hhF%vQr5 z#jo87ygs-J77D)c^V0KmqQRJyS3@}W;sIVtP+}w$k85(p769c4i9Q{n2zXk(jB_*Nwsryeamrix|^FJn2qB`hFPGH zSJKS4?0GmXdLC8VG*PUGnR?Rw<@`=4tX9a2ch9AmC#3J*W5Ui1=mhPW_T%Yu_v9CL zH>L$#A5M-oMi6hSl&Xpcw#_gQwrwS<4Le|ldhHy4`H~*SR%D62Vqx%!Q}#O^WP z63$t8fP$;bf?jeC>u3Jtla5<%`$A2tTUhEo`i|!6(kzyrX9%|Qj$LSJyRlcEX*9(u zb>LU;UJ>R0(9cX$tdHC+JaLoNX%|P+tj{FK$vH+h@~GFY%-=OrYD&?&@hsRRxNm@ zb9@i?fD!M|Jsx*(*KImW{$_A6GtF)u)|S)pv}-PWP0v#g&&w-pKU>zP|B|6_3s0Gs z%Dw4&RndN>eKmkT$1oet8n8GJ$Pu^W{SI%-X?j^Gw=ZZ>+y&M>b+v|>`TFcakkCi2 zYh%KNEKcTU2*#rI!Rn6^sGH4anL4wYVmWemAsGT%l0ji~uu0uiPF&3QrGYKSk%yt<>KrYnvVSZ{<&Q|Hn&ok#srtQjl8 zwl_RcV_2yPV*G=qUC|?6^%euZ-$@xG)k+)Vp6#a)1D?4E*|-hTti`9stC|?2{$YW& zAK;t|??yQv7yWz%ovO6f$LxT8;av%jSAg2VEZ*>?=Tp(Ng(Tw{Eq=~phRVf)-J4!T zxgRp-M4f#O2gA>%af}ao*Uim$F{!eMkx!MyAA3uQGarGV6PY^Cz8X?Z$$O>UkB~weR}Bm!x5K82AvP~<)Z6|+q6jo2_gykRuvL6*)!>S z8hgmg$k`$Xoom#?=!s(8M0tCm%@Kj!xEs4aBet>N%<~A;J_F+8GoOE7dw7+6hw84_ zILEx;5@YKFOdJaQ!fE1mv<+4lO0M~bbf7uH0yM(L$}Q z(@jyfUeS_KQ+Zdg^&>eT)n8}e^M$#)geTZF4z-NZhidsZcHVM31MNBl4dOw<|~8lF7Q=l@e6+z27e! z6o8>Eo{vR+FD~bfo4S(5EF9xZ+rQMs8I8MKRJoVn2v()7dqiJ+#D`Mgx?l7UMladv z@)Imv4L|D({ajRZ=Y-A=NoLWiV0sLu9_ct=)MOm|T&he%oUL_P#T=Qd_p|A=Fm1kJ zNt9O+ci=Jc*1jNK^!OFv4LfAZ;Z?^cVJ3ve%Ly5c=e?G7d8V{OuC@=s#7Rp&&c6zK zQ!lusPtaAfR@PB(XooAve$D$flYm;Jc$T7OV4Zq^`sVNc^v*HP|Qe#Q=4Tsx(PnM9=$ivp}vHPgc+$v_7 zeK1K9bxrv`QEgP5gb)o1Yvp1W9@#2t@q)rQ7p!~RE=9fs!AKeB1=c2zk9CVu^x{m$ zSs~pe)#%C`P}j#ebs6&Vr3zqn zN!q?&5#ynH9G<0~v2Ou?QSJ~PQm$L*sN}_Dne1}6W%yNalS0?X>HbgoGO!5R{5^F2%<0i8>(qyq4VJ6({MEo%4b}c;78_MDahAU9 z3U=g`w>hYhzqAR)^L6Wt^J@r^vvfI+@pVp_jfF?Z5xChZ@I99y!vQvGZx+8xLPn zSj|lyEy-D(OUhqpp5-9aV) zF5c9H4hiyu@hi`t%yYJQ%KNm9dUcyS$JM-cB0bPuPyaW85p1o;|CMd585tKCUWW z6PF|UzkLaxo?Ct;P0Y5*I{X0tD+L=1 zeo?i`Aa7Qjj=mye9Q~)IW_7aDDcy%ZD&5N$*=TR+JG|7ow49xO;!`q&t^dMf63s%b z?)31IjN4PR^$`T$p!{l5+5XWqbx}@9v9TGHOhVOLDmaNRc9cHB| za^Y)4y6MN$NMtbX!zyE`KtPS4~t8ox}yP1=1M(x!~)S3_OU>2#qA@&ZT;zEu2bxancn35WtolYGj)i-RpaNn z8$LH@9d0Q_Bo?S$s`ywCYLRVLS*eQn2+on6nO@i}+pyQ^x)9-Vjeo5p@MB)$TiiY# zDho61R4_YDM#5w-=0;uEZ$D@bKyyyk`?+UqkYy4-z0EeH zN$a!=YkBDTu#BuRo&aw;ZW`q0ng5ygMoVzhVs=H-`pSrcxEf4-&)EyFhp$#ju zznvzpcEW``j%gxxnGLQYMx*!)zPEN*r(AAWwaQE#;zWcOPJ+ydA4rpTB}R8WQ=4iJ z{Yf{cIUGWp`TSdq^0NlhXxj!|pH|rqqNiCKc=5)h#WFS{jbWmOA=&xgIxLzfB@_y4e6>s=4Vi_8AAMrh9C~$dME(hKN-C6;zH9C)$=!## z*ri>V_Yq}`e(XI|P^tyTD4N1^dgeo6Lb8x{iL7L@#Kfxfim6?NEtQP;_BZ}8jZ!o2 zOSwJ{>RlaMVHEFrK5SCyAxy&hv*2YMOs=hGkl_8iy>Lc2TT2(aG@)Ys!fwh~H|4r0 z{F|$*K(?uU!9m&^afy>ppU;UfA&nOgWBA4k3R)(kt90n`;<*JJTN#;DCywu}jccB~ zsks{MP$@m^%XmJ5t#)n69cW4z%3NHG=I3pWA-DVBi-UE`3y0oSRI)sQLpLl+zKXuv zP(7Ah{3Kx-tiy1Uk6tbj%Qv<)>Qzg)J1_f#YJ&SHyR{!%3#XP*zO*BTzopLNWWMd| zJ!Ah8OGheS)$(UJ1|kqFLvqN6oy+0y%Z2ZYbsuxh>Trb(_SBWCfNev1>b@ z*^nl+-6~o2X|dufd!fHX0Z`)KIWd4zq&Th(F$9N)hnKsxUm4;0A|P{MD=H<}OBu&z z-1+3pozBjr45Y(v5z3=d7+FZ^X{0Beq^?S(g9@jW(kv%U5-87}{L;rq@NWO>@uA?u zs7BoyqDnV0)pxVPm3oB4;>%ZHl_GygX>fPdy)eQb({1bg?sZ7I97uA|=V7X0=mRiS!I6+0(he_0n;D8tL}Hil22$a1$cd-* zTsk`-{)wkT4SlXQtGc%eAydB?I)1s@WLCH-&>^q?D5u|9`i z=@_*5W%A-!m|I8oEKRQ(gQNEdO;s-eRh-80DXbLJ-|5 zN-yG4e6CIbajU7!n!AMX&-KKbL(!5zduT@N_NDg*YT98 z+6+6q?0$8u_{K9Zq-SM6#9_?GWjqMjs$zaTfHD0GTf306pY|_oZD}k}gKT8>S(tJn zHDOH72E%3}kE?~>F)9&W@2_tAe3_*pW}!Oh)hrd4T*7+DW@!=`nLd6!Tk9PuEM4mX6t7{E+nyI0Lq*z3%%3!r_Htg$p9K0{U!5ddPM0Va z)|3~jGV05XSpHy`xvpn|%JTnxNbd$P%3d_KZQs7p&gGjM7#MJ$JJ9=rE7_5wl<}pu zt~ZshD~eKVXcRy9+TJ)T*}7I5Y{|~~HiKXy@y6_jIxP3%wZmb`GXRlxpNn+W5&@N5 zSpfg;=9!@7k0)lMg{eB8yWiY>!1`|EwV_-jCpHIaR#v5tis^;apT#~k&WAkeU9s1E zwgc{FHUKqs#-kd(RT%&<9A-iw=w&zQh9ymmmly_lf<@uALSUV59AHP8$js2&J`DZw z;RXro#A1#`r?YkEN2c48fhZ23#Vv$T1GXtG3;gbc0CkViLtlqZ@vaJj_)-0ILE|~P zPKPlb!g}Yxd-SRlMdb~deyWUGnoHhgx|Lfz@8(8fL$^qV87X`En3&XL#W9RFudM{= z^^2ycCp=pyVp^A80+5nrzi6p>m&obK`Hb=QhZd-zl0d z?4F2t|ESh)JasA}6}-|&IPfL-1^-AT76aDn~8ykljikzh};h~yI&F7j1N!OH^`B3{RwElw(%DziZe zI2`UcI57YF=jZRg;Xk~lU_;P2fM}hZyr{l_ zhD?{6?IXEIG>8gjbpiMwB4w(=LcML%1EAZ? zbN3#OQFNoN7r6lDh~&Vl*-&OI1WzOva95Q9o6iBfCN#-fWmd5412;fiyi;_P9o4&= z#7ieh_S?ok`?og!&#v7+{JOv1qIv_md0=GL&dyHyB=6nI%1V2Z*M@i?B1&X-ExukM>hpJb`u@dH3aG3=ikV`W)@@oS=4 z#?goF>(LfLHju0G(2G2he@`mm_R8387C#m+sn&ff2(V!67PJr|w)WRw@0L z1xI}UKYZa}{ox$Rc;oz~MSS^EBo{XF_UD4gZ$m9Jf%Wc8Vl@<PRn+irc1i0?oa|2W&kya z11L-BLY){UnoBIi-F@-*wnsJEr$jYEv-_K#v9_3#JzX#C)lxXOJ!nM(hNLc ze*WC^Y7_2Xya>QDUCS$Kx~kQ&{fs)7l3-3YxvcMVnYBLm0N}dF4@lXM_kMO|r{8oD zpWFt=`Kf8#XQGYu(IS>4$t|Ok#hzph_7=PD3BW})GXdMtiUjygT0##Cu4RRdh zz|c%a;jbvalF)Y|>IGo6&q@M!bIH9{|M%&X-+M{^&7ZJ4za7-0Ts1ds=`=QdBRR>V zc{z;7I@Ql`;t4SZ<^X(Qi9skCjEf*xpUA=Y*eZf8!xkztFODW`x&VB}7;qexR38Q% zoB)=TELi8A;^mAqz)7Sb(&5LlG@ckVkasut(&*gt5)m{XqVMrWutSUM z0Xjk%*x9jay9|oXW0x7PWzsTC05D4gWbJ2+>Ys943@<)&X|4f`%Ov1`e8xiC2r5S) zAse;yMU|wq@IE;Pj6lV)pQ9EH?SEtLpR4BzaivTChH7zu? zT5+-{b?1U2gk$L*${`?Wm|vObB}pN8MKz>+&T<?m{NX7(A{nP7&suZ$EOr%ZvTK0YHH;P1GQRo^6d3Bp1exyjoQFs{TPCm6y%1^-jaX21^PV(bs7J z65|vQ_YIJ8*WBlz*@E}L$M^u?7i&5{&}(MZKFSd>W%Hq_A%RuMeIU}ci2fnC#H<0F z?~{lmk6et&swwB>d*KsP5gsIvGyV^e{n zN7zCa6qo16qd_=i-T;xIH+*o2z*%^Gl8k(y@N@@6UY%qvlOL#uJknlm`ahW}GgUN= zWU^i0X=b;0Sk-LRCqDEwiT`j&g$;0)&Y$+NrEzo%#BRWrVEmD&7$0!qXNKMsZ%=VQ zU4aGnSz2W#ynEi@mT4q|PpbLC4}H-z2FH%9FFBRaSKCJ`D54XaS>mJ+0F}dojS+gn zb_j49%dnS=^8b9R{?u0g^=`A4G$>H_p;&h-Q+K7svnQlt$=twYG*acGWMgmX+3yq5 z&jbIzXnE!OyHX|wLvr|CvBw1fiV$%>3^sy5zf$iB?su~fz{N2gYAt~kr>K61qICiu z`9xrBB_)r=hk0@77cKV*H?Z zSr0@=ivXHBWG{3y_m&H?Z+8vrj(oLcmdgIBD^>Yk^=N_iLx8GwOvfK_E;0CaQ2isG z!4`n-mv44~0D~tPma3j zD0F!cyWAns-T<&DsL0ke_CNX8$70y1Y@7Cb`52bEAEtX!0UYw+@{Id>K?F2}tWwH* z%4yW>C6CQ?J<_OXiw=~D6Jvm5QG-T%=n|kkQ2er_5p18w`i+y8YovZ=(Ny9oUNHN5 z%Q3bFE6jX_036f<0!SO^4~JCqWd$Kn$%_E-W(%Fe7CaFSEj{9RhQ?oIGgIgSq6O^% z+(Udwf_%9xR3fO{CfgQ(Zft|ltyqqpSbk6Q&?(0DYQ3c7c=cTvLBr8)Wr1~XPE?If zR2FZmN@cySxf?u|>L(5(=X3t_Vpp`<3^))4AJ#S;qDh6|;9$SyTOIgsOTuB}IIw7Z zW}O@Y{*`baZxNiJ`&LwAhSmVX_l&#()q3M~H`eMHKj!sQi0W+Glb3$@ElS%6;4=cY zmNLHx^S4=I^S6{bm9qBr`2JpG09e>%{`(ZmE}P@Skmaeq*anKv79~*krLd{!A@D#8 zP#;e$2dK1`ZQ&mw?k<+;RxuVvlyEPFurHr!81=T_U+T4g7YG0Tey_wIzMtpmDmbGt zfKZec?hx;V_2!0=5;`12hLyrGSn&Y1o=ts3b-OgxQhH3b6AD!0R#UYVf_F=|SNb!Y z+yKXeSB8U=BFqP%a730TKs1UH!y3bMD9Q$Kzj@P}$^--^hT0o*q@^609@Lf@%I@F}?^R~40XCnuY(H!-j3;vC=ZiYG zeUqt&&}VIvrKkt@Q!AV;Cn|e_Z({|!16x0$)Zcd>{}u)1JVz@khC`{%Ok*u}h54{O zJb(So2upG*lSm!vmUt+>n;^?)DqFFmE5N^Ta&$u9N4bMY2?>Y?Pb`_&A# z$u-R>C{h&5APY_1Z%cBK`j6?r-!g@0Fj$P}VV<0vWa`w|O9M4YX0PPYqnj8xu=P@4 z`N*P4lxhI5D;e%2HG+tH0XFO_j|t|aUUY)eE{ISgo=(-fIrwsip&&T{;(P5K5hA#K zaXEm|lT8t{ZNhq1vLQy0a1Rh>)dmmeYsiASk`s|ALuXWg$Ke_+z;i}U+ejV-l3K{N z)QU1T4N!qQ*i&t{U<4AyS~Q%lss0lAQQ+Na!BH4U{tUHO8BI0yZw}{t@^R|`uqfL> zRJE}YNP+Fv1fm}0Mo%}O zx5~^KON&-1ZUpZm(9%qZT7vI6 z4NE?7gGzQ*_LX%xL#<$oI5N=`>6M_yfJMqpu`+?+9%;JnjA+|*gt9c|PysrutMG^fIxOM1S^n|G=&t!gY830Ro2_3{kG7^B zVe{|2UKYI(Hkg&Dm*-PhzbDg?%w^NOx{6nQlNht)rECYGENpa+j{hd?Rk%O;j7iCj zB?N%3fB;j+zJt~eeOC`7hNty5?g487O25)wc>s#j&5T8Gg< zCO7+l-?i9reWYhU`sSGXFH+vu`P^<8d$TZ*{(|fNIwAQ#G-m`3qoEefjU6G zbd!`sCkK$t$J&*0T~i>t9vY~DScl)YIJ1^KII6deN}ansY5HXexGZ$W!&|En)8QV> zn#C`27<)?&Zcl#L!XyxJv<*XpKeL&v?yo7-rPr-3=Lcb!{j}RMPhFYJY(!|N!;%ij zhY_`1hqI{XNRV~y@>d`7$CgFII3d%N{)Q1hFpfDv1peM$5T6i~DB9jGn-s$DLW3pm zThOrg9R{vzfPA|b%01JQs5}b5m08!!of{=wIjD2HuV;G z&c|0L0OE~m=ywd)_+o$q4J*zBo67_#JFij^g6_Qvax%dl zsqY_*re7c*mzxb5eeuVrO$~bBE(J)%#O05GSLQWfXRJQI98?tQ006hbK5?Nsmu+Sc z<&8`Lp+`Ix8E^YYfi_6QnBB=+egXiT3?N7!I_JQ?)QU#wzh$r`K_W{GtOl2~pQ1r( z`tAp^>gau2Sk$Y6DhEoeGs-{q8Ma;0>U-SWH-O{ zkF@SQYeE-0UwQNRIswcx0RZ?qfU7j_P2u^GMLn7>AYr^?VG%D)ncn0!(?qP~~J*Q!{=gpSm<+%sjGy0*WIXB)` zf@&h~7iRy>n`l^4AacvnYj9Uk-36idGs!V0;yYzgZ;_8d>STO&uv+_&-Ly9jl-*D_ z@wUh@=ADb_KkGfr)|joNR`jSKwP?5fOgUh-j^B2Zq=B}LturW{dpSptc*y^^Zl33lhXgG8<3)A>PF^9Yt{yG483v(7 zndgjQGSpU6z7II9Q-BBif^p{O~aX`q+nq4 z-OnVD5TWY}2gzA+8Vj8alb(0HV4Ke-uhUw47!mu1Y=CaB99T*N^@*Ve52cZx?DbKk6C^_5u4Tp*7 zQp9|^z6Mbk;1w;N-t8*_mCal26?%}erpqI35My|347QM=o&xA^3`myP-edKyf*`B8 z(UvQ$`K}VFmt*!pv9z4r5F{7EL)0OQ9!Nh{q%U;3nw{>L`a-!_aAo&V8Om1E)tM{~ z1{sDWMSCK%F0VK?om>(HxM_putjweOJ`KzuXqyOb4bPc`^`<5qfE<2(rJozE^lB(q zMWs6zRKF~0Cd>KE258KF6n_}I!&gO}MV)s9imrzOK4+`h^WJG2=K-Iv%%&7zY?qS` zeHic;$^LGrfl?+&$el;*Fe^Sc@mW0p+Py>gL|6k9JKw&a*;@4O#R(?y;~mh@_xcH) zYBLA{ovT{K(Fp`?8GKJIk+l+BfkG8*Ilx-XtJ;LE|A?Oc6>WjWlk5;Dfy)?dgs#o* zSJ8hNSg(K6*!^#d{=djWoSd9&CZNsn0foYJ9R4ccHePv4cup>Ou;W0d852J5eKcn3 zx6(j&xG^>e5h-C2h+*rUDKV53rZG6k0NH_kFVAv2s2&)1#L$9uRhfcbXYIN!Q^uUB zq|u?;m6o{~l*y^q(g(*gK8loSej>nE_b`}sg5q{TfNsjr2Qf6HI$TJ=%C^@0rO+f`Yvf{X<6B{^)^mu4!6K2ekv77 z))`f0Q}Yu)SHG$8K7%qe@=@j`h(6GQoJ66nVFI{I)5eLqAG=OadqLtd99_;*yFz8^ zQ|#yNvg!sJR}XYikq9D%LA}zyp5v{D_tBU3J3@lN2^7 z_cP|2MO*-)#DQk`98b9zgYL``gZtbU5D+pNcg9JBAr1U$#aJ9lGJDTP&(i~TbjnF6 z6PFWCJZb;buBVZIvlUBevnEK&^={)a(rD<|1w1%E=q4I81q*Cq#VwOV>nwp@Wuf|4 zC3_!u;6DVGvmIOsXSyE4PCL6Rq)3sp=n~LE^~O zjKlzZcW-4+>&7VBFpI;Ti6xy_w27cgy$->?_38%f2ajSf#?8rPWqAmwY^kXpw@80X zk(>n?(%yG5Y%>h*$-4Faj35L(z1P3hZ8biw{}#$FrC1IW5{!x}^?_Zxs zO;=LiH*5n_fSJl!GDuF^73Q>bc}}3|YP>aBgVZ)y%4$8y{g%hUq?y5KZKxlTUBZs2 zc`5*`D9$i<#Z#{{M^NzAGap8dF#Xu%@QGd7$upO!dO(WvrN7D`+sfIo=q0ye842 z(>jXGB|*u{%WH7!4OxdPGAQ!L01-haXotMvoCc1=mp}Z~=cR8i7)jjl<{7B&c+fsZ zc{N#GBIr1*rqS`E#85>Qc=&W-`apX3jUOei7oy;hc#`En8JN^%^G)m(#?NQ$1}*3! z<))cFm+ShxY-Q8jZ}iQh-)ylPJs&g$q7Y4e+YZ|wAb!JUd-(;$H*P}#mUo9!El<^s zT*m1aHU4b9Xx-fz#nNH^8-f0(P*_Shj{$BW2GMAHgGm$L41mN(lmgzVWl*Fpngbj> z`^drLsW@ZA21NoagJ5x_0Mu5pX;W%{iFbt$?niyw$^G8AB-A5wC}{(_! zsSgdJ8Xyfs(J7d~CjRV7O!Py=lrVQm^`5gpdXg4(Kg6&3)+(>Xs3NZ-}4uA4hX$E0TI6NnQU3WA#?7 zS!%Mf-U@C@U7a%%V}oimX`qkySnannn6Eqx)BC_kUir8z4)}a_(^=8k?qeETz}>jri59D`Cy4m$6X- zzY{|ANKm2%SNT5cuk$GX>pX%LF@H8U>zp_D7OeiJ5&F*sPVjDN(rYGLu-y!tuRne$ zUNtruZzfPY+@2g0LL0mJ>y!IFK~OmHOT;MI|MB(~yKL(TO>_P)*O>&pnsy6NrA@_H zN{?f}Gk_4cp(uqys>@uE_tt)UwK+u156l_Be`z-V&+VOU_Pyy{Z#B*S-^Qv@!ua=! ze_H7fPk={FYch1BDa8hLtGc?HX7+gDz3FwiA@(1&U;jU@w9r3a={1s&|M9`MqOa@9z`I5_kz7=_K)uT7@2Bez>15CUaJj+U%l{Z;jY&1bCV|QBYt=LA%kp|; zOU~;^kI|lykx>@JUnKKKQfmf=6@hEP3h4dkOC5ag;s1EP&_RDgn+8O2?lcq?6GA3U zM06mGlX%VLR_wK;<6@n@EVwkysVA~K|7|L0pgi>v5J_VYL<9#*4+ekwb4+JU{13Bs z=bukslFzHt-Rb`&<{Xp#RfD&dnC+bo3fFk}>!eBX{T}3`cbDkqg6tk$q5A`9UmD*B`&m(08BScWp384{vsxxQ$Um@5 z=NV0%Sgwhzsgi$D?I?*L4r@%S$F#Jz))sxX`ol)Ur2cpUZyNohPx=2%HvK=t?`VLr zu8O4k&&V?eOAn;$0vd?$k_dEOO`+n!&!###Nz{PVv_kG2@=A8Fc1lEErC)@Hbw;Ui? zlK;#H{#~a0iz^1G%ZFj5;DLbwgeyj{7l~7(e{G~gVPpj={^h^$2DrLg;SB76&n)oz zU1{z9JZ{SzL^xg)r7&9N)zHugI=eM+c<*&7c{iA@^>uYJ4U2!R zo&qD)-nK~p*GB`$g8zk{`7I%BTZ>=wdAc#m?o4)f>(Ic1|zy5wPF3^SuVcu13;lx}n zS2}Nm`|_1@_C^l_cNIa&%MAdNpB!~wR#}U&;ywbMGT3gW!0_o2G_GQ4E^ED7=b$LB zbmf89?kq-byvO=2_%gY|W1JHa60vY)0 zT9(NI(KMLknZ^)M8ey8k`|=g)2IJyTusK%4@;j=ACEy}66wy5;qIX+Q+=p8DO-ZHe zwo@6_QGwx}SZHUnXl1y8#vAX*}mQOiIP*D0}Fdd!1~ zb=g`E14QJx?nnk&4+Rn;Cn5FWsir4ZpbqNJ%$*=F5klwC}S&Y2OF`6SUQM zPtJ^!T&r>o=Oxfi)`EvIEOIXcVIP@c4OblL$(ChclNfr*&`%-UY2ewz9=r3e1 zv0bvO$}oP^^B;MD)Ec^z0-f@eP39i-g#?)CGu-KuOeM~Mko!->99 zZZ1ZNQlKdHSPKJS`po%z6}y0%_srbYlreW`L`FmQ9mJNv5uen9;9`RtSZV)F*!V|O zX6%BB9O%gqKN6AQHWEP6&Sl|kRJm;30dO7HEzAXLX<%1YD;Jlyd10c^9 zw+^_?BS20n>1b%UVMFv!#fmw6fXzJ#bj7Ph4{l`K$PAZ}=TMHEU55FR?FdXv4G<1T z%frgGaLX|lI+rs|Ie?3bb^3I$;+2e0Z_(Q?4lvOOnv;4*&;fDJ+AjCKHHI(}OWzXC z8=Vx_?+@*M6U>wFMN0c~3=QS=<*w_zJW76Cmh$xVCK0;+ONQ5s3!sT`Io5!;LBUgB zUq81qA)%22laH$fcU3y(VZ_~U{KBJDYjwZNcbHvG0&?3s9C`WMS(}=IL^peO7*T$I zF5+#9gZ7tNX58<^3u57;JXcZ-tUiQrsMT0Izi-u8VjL;&vIqS@F0vJg=N z{$YJ9HzU1_t85(-QCkEQ(X#f3Fp)C=lJsv_jn@%x(@w-{q^Z)msNrb7_|*92?e_&H z*!(^GnP*O87Xb!Y0gz)hHG=0R`Da{i4*U#)UzYYcQilOsx?OC!B3B{+%4+%A;;8bL z>F)v}{?SOeBf=0=oY%2adls5LPehS3iI9nGR%Ta5|9A`JBU>P<<|q?)DCeoc?zL8D z!b>Mtuu-fE&q$*MPG7oX4$-k20}W;U!X?imB2KHO@^SX6>I6*zY8StF0-)M7n$=RQ z{v9ULil5$jt?ih!gf~Ckf4~;`8!GQIIOQAWZhM0wed;bNpcvYU4DfG>*3KKbIT7G2 zhKm&ed|P8J@)=CnO->THMYCH`H{VZ;u! zF_QAf<#pA>*FtSJRfI-ZX@o3$7MFH}sjlxQHw$4`SU3I3N{lYL{&0+va4FB;Z4(-6LWZ3{KjLc7QBQP#dFq0aav|5TH*}O+Y*xlNBNv6UE+Pj3278Fp+Pp}G^+hqbLf}k|fZumqSPk{EFW^Z8w8aEK42UDl z`O=_Q`~B#t^F+c7H0xUpa4*iiW788r<_#U!TP$73MyII7OT;y{sv=3U_||yXPX&qb zPX)=*{}(>$=M_1YfMgG z*au&suIR%{5l?g{4kLX5%=h%+3doI9a3qfnN~H7xoU9~_w*lGlq$Vp8s;&8v@hr>H ziMuefVIq@WZH*GRJZcQYH#>1LCqdPxN5lXp51f&HaDjZ~hL%1Xu$JuRfdjJ*EU*?B z{md86-KbICzb$j#Cd6tCuzC-;0_Abyce$o}I{4m{x;0PWJccdZYz+c@y9tJ{ zMsJ*_BhzM;b7g+k*9}BlNG8v55x&bHPj?8DPy>P|tQMT^ZPAsAhrg?K{;GePT;V%F z8U^j6!eI;)y@Qfp^K%JF1xPcTfGK~^_6Ct}ppd}n*X&l+Knh%G73dI-SooOe;jgU+ zG@(HdHdJik(5iL!uS-wflX)u06{&vzFea4`mj$O*wEPU~nwG(1S>V&WA-Q}gPRt=Y zq1t=Vm$u&^@3xo3vBYB2&ZP1qQ5S%Vm^zs7Snd#JU6%1$JYcC;(e@U+gu}P_QgB<# z)rNdPCg=Uca%u}`O|&9$X4WbSS+yNR{2kbg(UIMn;426li9&i%0B%QG8Vua|&p zwF_aaJZ$`6kUe*nPb10Gh~R@+PUZB=1CzI3hCI%;KnopJrB@lU;9ph;Rt_YU2TU6aIo097mJ@kr1tY$~6yL9mmeHO~eRo|W zU79$qL}C@DB4>DY3Uf&adG8h0WQ{)G-;aZVMI1|D*VoDBU($YC?w-I<-k_Z=8zAjA-l4HsmV$PYvXPyI5ipE3c zM>u5m0!lQDRkX*zrc9^1Q-d#v}%*x+xEz^{(K4K>K}XrfEMD++%%N#=8_Px-R|Hb$gT8^@iaXHVp^vs#guZI+?w(L^I?&(AqGixA%_z?|_H&hclfS}}0*-*Bc2p=+E2l50 z*813{An3Tbv~w8+V+*Y(U087J?@%(J;@BNJK5DorLANYrj zJq<*viN~__elO=D%PJKz>tau?2;$C!)>z1oS$<4Fh11)>EDi6-(9>^3OsAUt-_c!3 zFNC1>-m7piT)eXn=0A2l`k@w&PYn+;SzT6=wY6X^sToOAV?fnda1afXss6jqA4d4k8Xk-O35)W(mEV&M>Wb@t{ z21N61a=ZcY;RB41CM3=Z1u{M|0Igg*o_oodtFHVN`*@Q5lnu;%rEOx-ViV|9Pp_O=| zE$`hZQBr3KOai=p3L6H^ac08)-ph{983#M|%j|&6w{kbHkv^nDV(Uso+mDYl*@mR( zFCMEPv1oze@AR8XC>kkDm)#)+O*-^1Tv_n{j1B%*5D%ycu86S=$Tm>64jFiITi*+> z@IxPEvjQ4;x6WHRaqk{d4-Yn?^kg}|uIJ086UWN7*N5#yen#cQ$w5T;lbKWXX84t$ z#j6-+T$w8MIUOtx0(!T7t~AJok%8%Et}fP~)GE;*V-|n-(_U8CDVAuO!S!2W zD8J!o#)E)1Xo(Be7iq7&HiF9fn}#NEJsBMiE{~*+OtIx5Z695DdIVXg`wg5`*i~MoWQu>E3}Kp@1LhV{DT_%;%{I(N zTM&{e`u=x<`;`Fg?8hq^oayzCfFs;w32NmdG=i-QJ%L+`UIe6`Oz&83jb1)RSRxSg z9zGc0ovwV7mcZ?r+O>uL7FfEs3uRL#HY?Ej+Ob+=wt&R^rbEPjF;Zl4GKj~@gZIu4 z5aSVh&Vm~6e!J?-E?4Qv0X(5m67L3j9wwddK)YMJC6-^=zjg4O9<+@f7pQEjw?xiS z{o=!+fDZ>~`gvHalPaN0d(*FfX6pXU?>+ZmU#g%BbIaAc;gOM%Rx|ScS=3j?RdXti zR>9=q6%Bnh7B0t z0A>2>P*cZoxOs$M#=xQc(=(cw^k$rKVsQkoE;}M>8zB3*WNqu4CNyFj;_rHd={Tmc z3$Uu!paR=e2g-1fqu)`nuDt%owd#EkDfdyW5`@YG+Dc8 zJ=sLYF<-(vclk`ig&;;_NgY7#UN5X^1!=>ba z@fI6&e(*1w!{4L=kS{E*x?|2tl$OZqXk!4C#cOax5KY?fB&LY5fe!iMo0O)FrC|<>p~B8B zxCX6Q_MR>_?yT`M78{sE+~fo43uXWMkTuW*7l=L}(%^)nDTPo<#>_)tJ3=Sgvv4&7 zcRA&*jJcc>pf#_7sG(CV?-qER-ymk%ixrZ=aL~I>j+aagiO_ldB!L=Kl$wuL48FMj zP`M>NV1{PA1lTxq8K;a*fB*wR z>7fORW<`Y6mUWdtW6*=mJ6};zaWgmS@*G*I!}2IEpvB!wmk!2BxH#o1n~7k&S3o-I zP;=V@C{**_y}~DhD)K&J=QDHq-W601Fq%%#6GCz;W+@_c?pr+TBZC?SORG4eOCDPu zhrb@sC=CKH%$&;gSLaPX)_DAw)89ib7mgAQk`4s9S3U%+a!!W7@m;t&gVVH#%vj~T z2E3~*4jMNkMoF;AK3?U|6W~V&e zrn*bo+kl3J0`@gq4mf1YPc1X;mGsv8KUH~18yZxypGBLF7HFFxj6OoaFT$%Vh6OM6 zn1$?ojo(!;H-9^Lq>0RH;AN~Xwrav(><*AX%6Ejuo=lXT+4pV{7%sMSx}acFPZxnH zDPv$@8||6H`@2}I&@3F$vxEDEvIYI=#ZN;z$~vBJeWVqb-E`_psnM3fK>D6n==1ip zOj(79R!`=0Kvltng$01Iv5WkU2ceCc=la2T`x^itwjInGSh;w{7M3=UjlH>%ncA|> z?;Q7>yc7t1bC^sQi4O>MgzQ6`tIWxqtFL`VkE~bac`fG|Hy(_6ICM$E0jGzO3b-S` z-Y2&6T^123h%;#aI#kFUl;!?iJzd1W2C|n~|o9CQ`y$}qP z>@^fui&jK4dOdjr3r3IZZ{JSxXSO&|1+qT?r9z%68!;VVe!UBAfzvMF8K-}CI5H#8 z90Tyr(l9@$bthOW{%)e2mP+3+l)@3`D2?cJD(9$1PTm&4zZYVTqS;zJyZY)tx&U+= z+a8ZVWl8%*5_sf8`7DvfuD7$x#!ix=^B9_W2^M1KBie|9S7GG~Cy(+O_>#9iu3Z5X z#)9dji*BjaEuXUuS{E3dgg5>02N}q+RoqttjByHEfziND&&s^TbEf#-t3}S`J-i(M zyor37D{zh{p>8G-c7>dH$<~$SF*?2sm~~p={D!!g1D&HhQfI}O)Ne_iVDfsE>1dgh zoNOnqON(G}SP|Q5{$unPIq5`gtxgbzd_>BMz7U^Zcsm7Tv3C6QlOI`k8s3%oMpjF{ zyHDO(^2I?PQD@>w^9a5l%a72vk81DUveW#uin9A-Xq5LCCmHl0%5XLMaSdT!isyD7 z6el3jJpmb>suv->qtt``>@1cae4s`F7lCQoujK4YL|y4b))c`ktW7`$Y=MX503vun z_cLAf;weMj^j0DiO=pOom1{Fw#B3GQ8+|w?7n84u#r{YOq{0*8TWjWsZ_2&(KBfg3 zsGPd+fE8iR!aiE?Zef=elp#^5m%CbAf9?FfOVmNxz}PQAuAo}Z=@B5 zaTMIaUD^2vAb^Wr zjvW=<_fkGXECNGea?thIKyzHYQk)8n$z%rOP~ zURr~rX|mKFiijzg(gngGM6bHrDi;chm6aC$`0UwD6(lm4DOrUeNBrDNnCl+79F=%9 z_C?K7FACfI`<~;^fJ=Ji=LdL2nmF8`2pNom^?4vwoBu${&DqiB5oVE1Ok^@QnEK`SE9yo(mod6vb| zcEBfdmL-eKSfnqoVvU;p2mD0?AAh;AelHmE=QGcM`s0b@tjkdPG8-Mq^=tAEVuZ+F z<~(vZ=@Eui1{5RRvwmOXd&dn=CC6~a z=xA9=Tsb1QM9<)tAY>%QWaM~q2A>>Ol_SQaYJJ<#1Onlzkh@XhZF}|~V#d$~IccP# z8MJ48WuveB-7^2Tzu);a%Pk3>E3Bcr68yC>wBr@}2Q-?tcg7JJsX;D)<10CC+uV10 z<_%rH%PM2+S9Q-n^X~j6Y9%u)J`-bewJ;!kl++{0T^74eepcl&=_}aqIYMOj%b=T@ z4m8@o4|r8|7dm~dKVQMe?agdsir;e~BGtLBqxQfjGDR`vsA&C2bn7*(aZF} zt`k2GXt02UgaIkj$#*%xT0L?5%=ErV zX9cXm%mgil|IRS<-DeX>grA96HPSiEHjNJm0)RXNm^4dCw6VRVyrJ9{&K5F`i-nAz zgD-~ElBrb4tgqEYr$%s^Z`0e8bNqy_fC^aq0TY^6J*}?~a@Evy^uxa1is@mz&Zvm=W?0k%2MokbV8@L*ikwE``!e9=DW ze!k~6?)!1}S>Th*>lw_TBIvskz#z$o3=H6Y8TG zZx`!ac{-xjpv|KP17p5;%q}~2NMVa9rau8*y}H%ddTXncYvKu!EHuKK1$fKc8zuOW z<@eht$jMhPy7N4DILUnL8H*ZH)W-IeHEbfMh?Ec7@K3=XhMYhy{Vf{9`XlybwXW4M z*Uu&T>6A1ynbicuz9Iz^W7k1>>vt^RkGl1z)xXx+<=f{^tUpLBeyEwTL$k9=Mx=#R z9lOzvD?r;Vq?#DX@IHTgH9-nhu=Q+U%bZCHLbXHjm5T?2I@foo^q*={?7NTFh2JMC}GzwLqNps7B6;g9k< zc5#mf0#<&(XLwmIxGxTVY08aYwR#16@1wvisH9fFV`o7L;l6;(Tx^y2q7vREctGG2 z+<9OnglxAI#OA@4r8V>*^cdd+xtfLyh=WSMw28o^I^@&)=Vpn+ne|srl1x;kPdMgEj&sv)Hbo6Ti9WJpAPQ)gzqJ2D*LNj(SY7AS z*VD0HPq+T)p`PM1Kb0!ojX#T5{_56G>YC-@+LFLlA&#HiH9NMo7TWj4BK?!K>$j@4 z@;knYS}u!Ok9&^R?Ru!FeR#cd&xV|jmVzQA&fbv^d;*asb?W@n!fnvuFXZIyLeCX* z2(+vjp^zL0@1pR#q<<=_3tOrC*pRli5NVZ;>)h1ZxI$pr{T^oJA0XbmhN*47%a(nC z7-RMHD>Fn&3cf&VPq)_(?u;5%IObi67E}SlBWIAl1cLRO?k;w$_Z!K<$19UTFmFCw z^*9wA;L6QQP%8+p06?#PG*eV#W8>jEGlzGQ-Xqp>Za}QUKm&RM{1rGLGZaM|{llyBA1sJ}`5VUQU(|>;xZ?Fk;g=N= zA9&-T?*VIkc&N&MR2BTkyfIeqkFN8DgQp4X-D_CYZqHjktz;Aqz!|&$G|cNpH@8)E zHuI1jjJJy%E!LxGI}7f$Ml!)@)mHOfv~gg9+xD8)V=%m%3Q?0di@w%|L=~h@1ws{p z_W-x%+d!x)Q=O{N@1U?MI$@c^(>RZVa$W^4#WEETGm!3gjk zX!anHIKikpG1l@;E(&N30xIr>E-0X6DM3}pCMv443<5-&4UhC;KxhMZoQJFK3Qqxj zQP2sK+~`P?px$Wpi0y}fK9)dz?f;J;?~XmjLXw#otU zFN;kf{M3NuRhvMC*@bp^_+8R@X20Q$p!HAG@4Bvq`s2Ajbtj-Xew^B*lR&ffAfNY2 z;$cn7n}^GNe3-R0^ZKb|2xLueP#y-wIkn6sCo+7E2k9t+uOqv&m>3MkIYf$)x?P~! z5Z4+N1rl2Un-HnEuLgc6qhXyNAeMGjZVcRT)#<%>i!qlCee(@w2CXceUeNX5MPz)w zIDK-wlDZYZ-A80c4Io(u&5#dUgV3=6Xw|x)D>IH3ezp&vao>I-seO2)Pyg<>_GkCw z<4B1yX8qZ1yMSCtI-Vw4HqxmMvsGa-w@AnnnN6f=sZ9`oy2$oIV zX)AT?vLy&OE&ipBLbJqDzdr{W%SvzGa($;ElK1oyP#C zr&iG;-vqNH%3(IAC!f5ihhXkUDxUhgCq$MY^w_Vb92^`Bs?jeCkBYh}iuTJy9t&2+ zM-h2YbfoSx+|NH=0hW1Fy8ZpeV9HWzegkuu;1xh$K~?%3NF>8 z2*v>1A4`C+A^7B*l^D=>RG3TZmVj?vzC$1?f12{sX5w@Dd{BvXu7PYVqXmTOm(dVA zRKEJC{4_hNc5#7T=q+q*oI2hnkQ5${x$Ray^q+>p#MZbk$8b#chyM@s7`@A?Mz^Dg zh)AbvRqk@tmT2Bcz|ul9)9)W2rLVjXC3Xj|B*|fpC06m*UO68tw-QMSP9{A(E;=hL<5#d3w}! z%VJ@)5?wEM5WvjW6!pd|PcjXkAEUeS&e8mhL1lR**xw;aVvijiNLUU?y;NTIf&I03Q`Jh6!tNj_* z8ZRIcZp2Ir$VNA+vLS60fdyCNX`p(+697xF=<+dz4sRW?ctP~Ba^}& z3#zGvUbtz@)rPE8d3n1b?B{AEME-m%-!hZgWAKk8G{GNzUp|Pi=YbappdKIIhE0dK z7M7m%oLa2tg;OZB)N?7X=|bS10ycQ9DhD#h!0z_g?#)Gmt~7(A^cM$!crjkXS*(xe zP__T|F;_@OpvbyxYl&>R@8X-Y$%0^694XLhJBC21bS|r%1Vib68(01*@YvJ+I($Kr z!ZY(EEjMr8L|Z<$X8RSFYL1aA*r9YaMDMk|no6>xx2oCS2OsP3w*27HQ<3xFra;b? zppa0n;`HrJ?&Q`ty=@nf$gO+^weg5~cf$wQDub7EwwN!$K_2KPs#7X)9@<{Y-nbTw zSAxI5om0_;42Sc9PYyM!~c-^A9vHF$j) zwx$f8gT1}ICA7R(7-p`x{|d*8$MCP}V-fp3UrP}{H5a;G`^MUKDdN5X2e1$dfx+Hh z@Ko>t`l*jQ9aGQnsy{P4ZoYuj8`H60{hKbTw#{!16F{f#XRo zlma4Wb%O1!H$JqJma>H*tR8z{c8iqheeLQ8jOP$WH~$bm?vAag$KNG~f4sz+Y?h}r zel?W~_B2|1KRacJ)SJT?pC*_NYDa^yNv!?Q{k~!gUFxZ8cBkX58%}B#+-;lHXR(sk zP)Bx&`aHf5_f+_%=jC&#VDi#6E^@^2%5HgdggIXB#?v_Z3MZ(3l1YTQb=IKRHbb(U zEWIn=$7*3JHeM_6m#A%9^B2SAf^jP4z0(An%vRJ=(geTHa7tc~x0>*AFz9@>6Zv14 z9#PS|Ky91)nEvr(5ExVmIQ#&vV%Z9rJngNhs3?sdB8&zl<Cl^Y$ zGXtF8%!A`5*klK*)`!fpq`eMhL$%s$53{LZm|&0FIoMHgYZgM>D7CSTllY`WVqKpK zL5J$r7Kpj?p?iLZ-~rAVvw7J!fh{Uj0)_4{(9F$Yu-IvDD1}{TZTfxWQ!j^;f0@-P zM;|SyT*b0ScZuO5Te${t~f6xdR%&mh^ z`(}kpCnR~Xoo^Fa5ToF6E^t^YPmaRyAr@jLK|7ZsN|&sJN>;D4);MJPz zqS}%8Wn_cHiy$<;&TzPl)z0GM@D%*h_!| zE6@SJRUW`17J&26Ffm6A*8heB@PTxoeSZr-V<%b`>z|Z>8)vJT%dX&Gyjk+FQ2Dm`SON_)lo<1230c35q^Zm|de|5QO zgpcDOI4Fn#^s6s(#chlT6NfK?Y=40)*HFW@;)5)dHY@mduMxSj|`9DXn{ z1`(3SJCR+~$j|S41TDSbqe%rCFd59cS-?KPro(qF^(7sg{q-i60Bzsnyh&@|P+Wv) zyw~B~%P&0n1j7FUuua2&UF~e9UY&(_#cQ=OZK${lN2$q)F-TfL%mrB^8dH(N7yP%M z;hkFttp6TJY95(8WZo=D1tvgUxx=#MrLrfmF(Hwj07gPQ;s9Fnm7S9H>&3=5qo9$|eQYow3SNZi@kL^UzJ$S`S_p7ULO%+)%k{V8*F1u<$Wm z)%dD(ZUhPe)gOT;&e_g>45oE@-lzkN%q3Tm~p9ep)*>W!TLtmJphOQCm>0ojs7D=yzMV88AV1{JDKp3ZOcRCY^ z1D(z?|8yi7ts*wb>tdzOp>#Po^KH*4_U(YWoR@=xLz}MTt=r*+F$(bSHIUHIkt_kI zdc3qcqz?)=RxJkS#k|yAsm|&$Bx}10_1jInmcc7wcG$sz)G{^Gs$w}_?i=_l?su%p7I46D2(>4XB$h6do$jaL+K=& z=3hf6ducz!AgK%rDJ9XU?D z0U?0uTO_`2l~u#T80ZV-jb)>v?M{jj6oAJUAAc$x~t7r}{iVv^EjZY;8bMKtD(EF_c)i!UOuW z@|ta^`iHKmiJNq%sX37Bx5Z%wpOG-&=C4ca{`iWt>wfS4ImPVl=Nc%(pv$)C*LR3@ z{&;5evJN;2Ws1YMsE)5!JJ-ePk#SQHW5DpQ7+h{5B~a`JGE3OcEb{)gBv#N(^@^X# zP}4j8!m~!7obu#>-`AaD5C)ODb22&3hNW4SVf0JZd!h_ESc1<~m#}Q>h@}X4~ zokixU3~SjQ!Tt(#FH8Bj)&nme<9d?lJ8%Gn_D)bLi;hSiZ`Kqueo*gMlO>*`Ca%tE zSxHUl=L%+`*{UYJ1d?R?QO@_?o-#&~@qh#@{BWbiz4#kla8t^2`Ue32*~QBwb7Ed} z0fMmz_+1GE$1b08p;clbQ8?KgW4SNzE$zC}h+-do;Nr`-uL`++tfEH0*!(8A!v(D^ zkBxzCY*D1a7ZQ+mm_sZ5!u7UlE;XJ*;6al=IGXgoS`acWUag?|bLY+}J#4g|ibdAK zs*ni7#$m;gjOxzx5AC0ug#DT$g7h&<&`vNlwi<+nV*Fk<6HJ#x$On41C3k*k>f;I!#I?jcdBkH@w@ekyskk0JH=F^i8 z6>9uG$?PXu6#Z3o0MR)lQ}O|!Y`%U;Z)sOMyLvF*2B49V3a*oI3?r5%-zY9+K z^xeB0W^ew!wj7_v!C=ciO%q5Or)?2KN}!<{L-Z&H{!2{}_s|F^Ja|`j^4`AXF#{XB zUbqKGVI$GTmH}>2un$_MId6*9J}x-pxCGMz2ZqFKL47wcqWMxzm5v63Q48QqWE+s- z6{(H0o$YrrYrCEejFKBU1|vF!rnhcWMzi)Q&}szZCoS_Tz2>qq%i%g#io0|!YdY&f zNL_GL)Z8@nlNZz|UFMg4%3D$!>EcLJ%yEFAV{K|2lQT*^MDi+n-~m6hX~QJ4aZiz+ zC^#9pj073v&_P17te%4*f~5Tvl%7+=ZbTU3PY&YuH`l@eY>zM?L6i&qs@`8yF1Ifi=Gs!Og*%^X`>dwA+>B(xA9LE>~& z)apAha!Pksf(2>0f7kuLmj4CH>@dRQw9EPZQY&|aXASTETR?IWy!Fnr^x6`ptYCYB zVb{vtrs5cREYy-3(H9>-s<_LsdHQOsXM^K?5R%!yKPn`AOSD)&$&X`hnJt7`% zoWL0`7@Mpo!9F1gzE>wI$n_u@>GfU%rsc*FIFDB{nR(W@L0F_3@&ez78AP78d9|(s zGPziMdO%HEAA;Zpib98X?H=z{YxYgLYb1B(@0H+NZqK}+$M0RX*mST{Oo2MGoD)<2 z%vGzW^i4=$_H!b(myOEvz|LcHRmS#R9@;EXJhAJ+LC-M%kBZ?DI`b|M?HMp`E7!Z(xFFSw|qsW-S5YU2sO%C zo-_4x8MGJ5cf(@n)Xp6pU6uTOv#C~IAvQkb*IO8L)D{8V1G@q>gv7)?4nbhdxzTKtFPvu<)4EKk_lDpqKOsgFU zDx(lN9<`#FfpbN9EPU^`kB#NZ75qFvW$tiVoh4g3PFeaK@N!rldka~zSIHifiRzIx zS%t(6qr;0qtmLMRoG>qVhSj?$ppxg)<$+>e%{~>UBo1Ybddb?}w^0M#POVtc2}^^0dS^tjCDFqubXuA$wq|$WP6|W*&sP zX{6EH`4v(IpC2!jxhWgh`yJ9_gzpt+Xv}0}KgEeV>p;)Coq;R&ky#8$vWSOCJ%Vre zF6ttkoqp&{LPb`UELkZ~j!so(C%Ks&8HrDN%*~}U(kaid^x+apmufyOK&Jm9YXIU( zXbaab zS|zcI$m(Z@?!_LB9S%X?k9d5;c5ub4wYdq$5A5WD)G@s9@P6 zb*v^n4g#6P>8;InL?$<4+pU6A?<$XYej|~y7lyL-7I}|KPOt6rVtw?YQt8sOZ02TV zFwN=Wy&ocTXNe-7Qe#+t3@K&~d4BJIq9!sGI{Rv26lsA~)u>QgC_;Lxq%w9pq}_+! zZ22MoE9BOJ&NWvU16*;w!lj7~ml21Cb5?wFKQh-v15lYXUbX&az3eJ8${8jqs?!@} zONNi9s5lz7&W2?MtOwS)vB{cSf+r^T*I;>Q_$^)3dJGVfvh%(qKr^9RbPALrkxfZU zlYdC`-x1N8-vfb2?DGrNgo|3Z!DZdo${3J4OK;p6fDfQBo!WlG_pxIiepewjfwH{GXTU@50Df z{7^gKnm)FV-VsU;{ZJS2&k4_oRui7jU*B0U+qh% zz9?*DGu@g;#v(TW!tBLY?syJo&N0fj05bh zebj?aV)_GUyYm5*8VUn7fHa3ixrZ?S?zcusT8aymFlEyOb(C=BidOw040sZ>k1^GD zLOFWEPluicC05H-49@!@fqeVzAl!FaW&rJkgZi5K>Sq{^l!|Wv!YRw3P9!&X43yO= z&POY6*B>$)tExmRS?#ium(~vzT=V=6DXAltW-E#C#1qyn>}9gN?RQUNAhWLrRaL71 zKIfu@8ijiY@OtO25rX8vL`OHCv{an<(a#D{4f>DO{--DZ?S%HPlug9_tA_!@*Jc%E z$24PldnKEe;uh|-1QHKb_h=#K^m^iu_!!;q&(c6PI=pz_22K8^5?`Et5R`a@rY(Jl+QsJ_XSbJQLB!GP& z2&-Kk{RY8BCH|ZhU+xm$Iamcrfl-%MuU?@r|b7A zYU-mK5S{(}=MKZMwF$}tmbW>AU*@z&aFCZSSA11_FWlw3G)mG@IYZlM4KDamT+ z6O$Ln#Rz3(sB=JhRh9~5EGpg~$Q;CRAwvJ+SJJu>^8g8a;@ogy5fd9;A9Hi-K5!gxU^_#=r3&B{ zpy;Z!Z=N+vih-ArwRJ((w)$Y}pRKL-ueCJ*Nq4rO6a4p&2;c^RGp%X3r6)D@gm%1rBB{ox8eM;GFJ_#!2z?SvE2 zN_ZPkAe({W-^NA~e2A6;+jOB_Y)GE57XU_?KxDzR!)I6O{(KSfSL(TXAo3mnP@ z@{xzYmb`MVI2cNq4RTGrExV zbRBvL+ycm8mr1ByPuq0lax|z|H;Tn;J>8sx3A)Zs&URjly1l7sAjn!+ zNS4@9M5miu6}F?61gH;3^c5XdD4VtEC~LRtDAdjq`zk>l{(^!6I0=@{pmflWO>#5@ z*ZEGN@XVJLlhf03$##SUmWuvv-&+jzgcM82Jt!(KF_SQ9Lj$@U7_Nj@az|egt>kl? z@7Rkj&}_^*ri=6P@@kYkS%Vj;+_2u+$0j=l(1LZfkRI4d34(RDP{eic!Ex3i^Ot{l z;ua7nJ~XNj8aKQ=E32TT#A>CysVVbaMzQmQnBDy3D~~N9aJGSiJq(;o{aw&q+yt(9=opk5Hc_3#Bo0r0*6ua73eI4^Duj0~(F!ib7Ef_?ZJzZrbIo_0>fiqDAsutl~? z(%U+1Hd+21;2Y_GM@GMp+R7h&Mm&tyORBfqZV(V?zZfAeWt%vSgkpOn96nm~l^KAd zoA3D4mzb_<-s>%**V9zD9EQ3v2MwF3hKIE?p)j042)LIi7RyagD#Jpdvy$q&JLvCkN{8xN-6)?jzb1h}Q7rSp+liqHruKfrU%E22 z_+gr}jETx~=034j0XZNwy+2RUrV2{brePxVXPSI>W%i9t58q&*Wf}DlaXs?0U_m1#$cWukq|l#K+o+NFU#|`(_LEBN zDr#zD+YWpV>QAMhKk1o-;S1F)g)Wmu8Th=jbCm%Gf|!JuQuo4cO=J(!a?ePyjAu2K z1k_3st{~K6i$W&nk4%WM2q6nH)i4;f#FC1`?JMa`^Ns2$7K*vBK1JGtH@?n~piAh0 zOJZqBZV?X?AGZhR`Lk>2LQ#lZg4s(eQ?m`JM;kC2DBT~F`on1;hHLj5Nw{4fM~~seWz!-C zaMxh4xAa%1R+R~p)q2?oQ0bSW*MWoh5H6(*GwY9ol+_PYK9-^QcMkz;_^LekV%>{6 z$0ggfini5dFu-FkZQo*r(9>{ZChqtA0qBWR4(=6}{n>V(M9507O|)rs6%ZZ5$kK_O zxW5Sn^BLKF>p_JSeoUXf!8Fu{JZCvMy*D^MgiUb_;W!|Ak)b8nrNtDg!nJhD>Q#VI zT7c@cbA7;_nI%W3=(LW$9%>6nPQ0xI(zl?UjBEcFUAz~-BMP>c$wh!3ze zC_$J+%>EdsV!a~?bMH>}=3yTmddkup91YFE_#2=?l}`@Ld#Fch%> zZ!Bc&JYyDu|77TX+RbIm)8S2Mt}G@@X?!g)p${Gb;>`D|_G z0@vZlEnhxYD6<9pz&2oNO}2NJo4JGr6SrkwK5JO_K|UkgG-vG)yX-?PTSwxLd5R=Q z^#Gv4#lT2ec=PkqnY8CrfYE(Y?XJ2AW!X6Hlgs*GBSK&pBB0h&H(I8ia$WoAF5Flp zWP3}Nw7=A+OVtP3B{8)+f3?{X9savpdPToBz1RPK(+3h`;6xW864VBq@o_E{sdH;U zFug;rdrHvU)Td8Bly&f`A*^!|w0Zo7g|}m&mUE(>(v>d7Uy(sZ;>AX_c+_)f0FzTI z(P*|8!9e@BIp+kIGrk4lc6d-w(4!Kv$EELCZOqyLzcb8)nX1I7P7B<6c2iR`{Qk&Q zYhHk`CULibPl*s{ggOQotUw@Rzm*S^Q%#VWcrGMVZomYgT--3&jQzVCSfZuQ&NxZ- zX6g3JzE%?^J4FlU7umt#pKlj;^!7)1l<{xn?RA-qFCkF8FP+B-{87m6VI*BBdEM~V z9>+83c{&UV*r`$39s~eJt5$Dp%+yWKQ{=SA(?oAo<*j}3r=q+GS7bY|hH2ni9u4%t zoAbw>)QbO6tmj^_zp^F85$m&u3Bu|o6n)n0IBuZ#2cHA ze^GY)-=)S?k6-BuYJ(Z2t5B>f`HeL4>{Z)daJ1Vg@KU}T5P2+_4yqHYKNqsq~%)adT+_HcfB?$;Y*G=ZjS=EXqs@#epIMAfVt zh?oejGZijkuQ&gFe~?Q-aI}t zho8{KaNT%s>MnHx>G7<4%kCkC-ES8*;}X1|J9x+q;#oi;$jIA@+~e#ekiy44X0|_f z{Xeupev#lxz>40?08 zDo{;L?f=)0K~9t^HXG`f2a6JS_vXVtiT-iku}8wF3tY0R{-2{Ps0(~*c&)kj(&1j) zN(o#HBtAU*@He~qe|&HO)J3kzGBGiEjYRWbTN5Qs^y~DfKmO08_o$jIi-@?mxKrqW zn|lY~5HPc1Ic{@Yp8C%mmtS1ry5SE+t*xy+11@`^j!~WHSD-(68cBaHzlhL>QNtmO z!1sKI5a3^Cwu>XM&A){Pke^!ND4Yr)7s4IJ5!@QwP*Wn6%KvY#28Xl&sjpw(1Y*xM z%^Eb#e` zASG<&UgS<7+WUyo|IkN(Fc;7*csX!9{Wj=-tr?1WFFkzvyY%qyBLHe_$3L|?It&O- zwEuW{2|dUo!RLWMCR--!<;#~>hpqJX2QH~-))coLnaD6 zwbu&($lR;i(%Q;XbhOdSfgS~AW^H~!L5M*D@VqoZ)t?EsVHH8&`vC4AD|Ab000rz& zAk$^NuNi4^4-n>KQa0Dk95-)$o3;z8mKVppS>6Jk#wF6BFOqRm;O@YC63Ior$1v?h zZ|8C6bQHO=oH6U;p#evQ`{Lm|H^)blfpk28+jtOY_9h2#m;qooCX>)GA*rx-?IkZ# ztv}d6cFfL`|G|zyMT`G6g#D{r&mzK*mjFc!*_giMY@gF4x0?kmG1_m>0z!k_SgD&Q zc^r(mAG0@WWq=H^4{q1GtuJ(Q26O-jqGSPI(g*kYBB)M2&U*L|jWLAPpJP%>ka{mc z%j7Gj8hKjs8}qJ^gvf&WGyblDXcsAcV+;%4DD>y%rUdwa*a@!dh z&R9Un{T60l--|Go@r}7R&^jXPu>Nx$Z2#ZZfi6gsWmMDh{G0m^ z%rD*5xQg$-G6DP|i!hLS3ax_r5TWG(f!PXvvf-2WVl)yYZq~O09zB8v&;hq{FV-&n z=!r9ogV)E4sRR$=Ib1T&;M+JJ^CeCzIlVi$D2$TLaQVLYOSp)gnsP1~4ZcAS!N|;Z z20R{?2$(0*em)|T724!wRh?3Q=QF9=jW1=do*;S;Nvb~&b5hv5B!87Aze-1_41nz` z#LL@;%&C#c9m6LZC6}}VYC8nM4 zAV=QlxpsI-EAol{?7pC5UVf;W|Btn|fXZ^+)`pb@3Zf_>DBUTdC?G8YQUU@Jk}4(L z4I*ODDJ`IYAfPYOFAXXwA>G~a(v843AJo0iIeV{veBVC*7;CMeV;S&1_jAuVuX%+| z$fJz!WjMyA)17}1Cd&oj&KJN$L^97zi1vTM@o>5>O%+`*=B{|>hQ^zhVBS%iF0Xr@ zL#K8g19BFRqi>Jqum9b*CzX;n0L#exMn*GJ zk|?cv^$%pxZ<r1EW-uSa(s&FF)%dj1#YD#{aN&5F3$To z-|Bn9ym*!n#X=d&qa`i7`sQZGPGq|8_jFxi#VQPYB5h__ALiMj5PQ9Tv2;zL+W{zq zU8(XE>S~N8n5ZyaeGC`gG{PkYDT)^O3Q>MdT4-|K3ZHT70e=i0cU=f@taD&mPA3)Aw^)-?8{+A>hSdkmjfPS z7!7fgGmxwhZAsA-tgf{{3#?k{ zJ0iRvH%U-R3}-NB{xJwZxB>xf z9?Q5X5zrsFEmxf!FEDG$kE|lmK8vBSDFMJNzL9c)CHsCi;?!l1tVRbxRE~qrYypE& zBY+LgB+NC0l_ELP$d(2F&9q=5A{8SC1a4hbvYF=q{(^|5eIg-*nD3;&1R|v?7? z_>UL`C&Pa>bA@;I;&8|+~yHxY^>Lqj}j6SnmmFEGIx2QO~<+DoqspN6q1Nuj3I zzw1B2I~qOM3q@?ua1W0B^ZI@dL}-L5E`bVg)+*XbT8!*#9{<9mKpXn=!qP27aRZl{ zR9xvu`YA4JDGCN0NghiO?IN^jN3a0s0blD==h6E+ezYGyH24j%%iL~rzLK;IR+&JDNOuWFL3n)9&J5AK0a zd?^+rIac5nzoDZ;?aq1=^T@XH_(}A<2W-89d_~19`s8F+x{{&FUiK^4Yy$1}2)&=# z@QHR{FE7$pnH^rzDejOweF!kPHW}XczHX7(T_n^+u)~$@)HXtb2a7yj8~a~GC@o_@E5Ub@B29&@MM!DC~z0!b9sH1ZrP{kg3?)48Rg| zibHTo!gX&q6{Q0QOj4@E@Yi1u&!w{eZ1VayeKZx}Ph0qF%w}h25tv8Pmq?mXbk`rr zE|fw0`R$K*pS?Z#sQx3YId0qQeLFS45^o;{VZIJK23;;|Q|Dzy)SgelEw81i8Jqa> zyLV{L`B{x;xr#(K$QGBt`&qUXm#l8jh3qfZHq+_BDgxsH*OGEDpzQtbmAz4-atK(g{l$F)==1n$Tkq&Jx8VjkqdOT1KFOT(U*EP zWXwcitz0OQja7)6PyV=P$F$5&UPPAe9hUoT7U10?l;7e$5V_;XzVGi4MT3jY6v6qO zpCERz?+(&A>pSk(h+0w?kx^c3PYV{!>tP)-y-TtHCmablDH73p^V>X2>4pjI5j_jGC8Ze!(W-ah@mof;VJ@-e_rKH3_=6DM_y*J!=Q zYR%z_N}8!jO*%CIZWOsdY5kV4NPphVcN-QRPTYA*_oCe~draT)DHzl)TwWAnGI!f4 z@H{-Y+-Fm|0}6UFL`hr1Tt6U!WnWreZVB32FhdY^>iM9=;07LWYxQfU(GW9$?CMZ0 zAoF|x1obO2(d>IOeJhNQ;%Qw}*0!N_7}#Nu3c8NhEmox7n#=U2)^AH-6!9m3#;7Vj z^KnaTa@!fcfsrJQ%!S%}{Jb&?T~T51*yrh7c7Tx2W!>U>OpLJCLz!_|gI~vjXr7Ey zbE0_mAx`2tZ570~zacpQ7K8>QTf3`V=klAN!cekeCtJyJpY@yavb-#d_PimsL4-Ol zJitae7`D~rvK#8w!@HE zXcK{)r;Zj=Alf-nbN=5frm*rbGglOg0G9^1Do;PYXDhj{Kw8Al zTI@d#G~x49rs}5#s&&Spq)0NjnsKqSdnTonO%LyZYKcb@%_X}!pIHu;#E1gLDVA(3 z+=jDZTM{FVZMpR^%FW6rhOFFw6%R|&@Qx?~Yo#N=rmEUAmp?P;AH3n8(^5}9_PTH1 zZofMa7Mw6Iipc-5o54jkh%raHr%d?n9^l^{P{GBXtPNKXV6(K>E*oX4VBcK??W+=P zL$(Gs&}zzveDqa-Mvl-@CC!3_VZ3CtwrUYNud3CW?;qz!Ph!>x4>p!QxmFIEz$-G% znrTq|B}?3ak>v=TWXU+(iJg|kv#F1@luiNfoA5o8L9N^hwq?Cyn5%!B(B9k1K`^s> zY`@mC@{`)CEyXvGT3Dc-B)JxE<_9B`W78h`H??)(xPH*77uX5{llcWrP zk6derz7~BsyLH;>eWlI-&jIM279hmKEl110KXO4Jn`L`LbswxCO?XT@tab8?WN`-w z#J`YnY3^xL{Q^3D{vVD$A-eakKRxKtdK)%?ANL#&444Va6wGa@iUwlMC&)%+>5r+H_sJ}H1L4r>lo@rXP8EHBpi6w zK{CF(iJ{nfBM||go>G#cASMs3GmbYZChz0NkGHNyfm?qN|I`HzmDD@$JiMtGNfEj$$wN3kz~&!+kc*IU zz_DAo+p$%Wtf&AH;|KB$MQ77_G1e!b$oE1M__mkCwKmqsA7JqhYkm@#l$~>X4`NO+n8P5Deq_7Ki49#|=hg->- zcxk!aJ$r(c%C?Tqa#)fjA>{`=wM^LHhEco7`Z`Z@=H` zvSbrj%5Ngz zAQLXwN7+a1K^q+AH<#e+?DM@jsIm+|i^41(ewi*nQLkW@dQ$cgHh=LPoVPj3fI1Nf zyi&QoBryy7{A|Rn$f$k*h#t;)X6#ZU1gKVDmW0R9nW@_kW#e#RXNmwHuYiBlCTZ#6 z(a!FcbLffxvV-`Z6*adX)psvzVvox%rxN}5AHJQz zrauUnoS2Ay2416oF3OuGzl?8yM-k6)pIcbCEN_#dd(amfidA(PBbF0&HcZ!j;6pyn zPU4^ymJ`OPBdMr12X;b;P&7hcZ>l-o3~7M1^SjbmL(_RsHR`S)p+S^jC`xzV(kKjo zt#)~`x2yruT$8MN0%+3$B2nC2c>#124e%i{hpq+HfL{w@CPdn>iHxFGnYLtC1Eatc z%?xmy5;G#c75s)OV9gcwTb6JRrB7|4pRa*GWG$v09K#Ub4KtN*woHJ1K%4FxR5n~OFkiVg$Uc&?_~|C<}$w#fS&Aa4BO4D;z!Sp6LE-f`&GA@isl zfw>7G4&lTRNAB-th+8i)SWnAz;EhU>mp=Ya)+bMK2NwSEJdo`-06V4&5=Plyk3MNC zbRN#)14a|c*X6(t_jAMFNm8n%NdEA}8WbGxvR>}Xrx)Z92IR^S0TSZU7-i~*b(s(T za16^uRtQM=wFt{2?90jOygh)dj9_SXsv=m01kXaNfM@4tPs-yK&B&fGE!-S z@R@vXXs}gs556(x^VlQj)UfO6kZ@xx&vzKw-#iYdzs<2~15ZRg>Ak@yqQ?e#)x<6mYfXMed&{ALElmRF zNN)!AN0=U8-zkXr`!Lf3%*^q$P-MgHQ-o$f&~$C_7-U5 zgPIYhb2cL4+TfgX-4@o>hWeOX{UhyKi%@%g)9!IJEIP;>`lW_8J(@vzKqjnn+CS_W zVO^(QXhF4FqVroGP|(&k;vbp@2bO;-hU0-i03{1K-><)xN$MW@a4$V9-=w{UYH5aC z&Q@^#W3D+uJ2OK9Zx+Rl;msA7Zx#hFJ^@%ccBn#9{)tB?jhCQkzQ(M8=e(6vd2oyB zFTxjq;s2|?nqFoql1=5r5i^BJ#2*kW8?JkOScOv@I}Tuqv6DIkzRdFwaZz4uaI(IJ zHRH;gJ0p?n+b~fI#t8HZb)${`DSX zIZ&flUdgN>v{%S-#z2LY?Nc;+KQr`-%2C7X30!iuesc#{FvQl4GiBHK6Vam z_YCa$i71$0ERUlmXE%jb_yBicC%sy>dq>MtaMi;drTL3<^V_fJ|AupO?%#B0MET%p z@_Pe!?llc`jE9z60vyWO5EAhW))Dd=`006g_4*u52#ARJhnhw;V$Txh3saZ! z+f2p>l6`9H<7JzDnKw)5g~7jJ5Q4ZSu;>dXOz?(?T)o*?w+P_(>3y4fAX-18Nx>w! zW(l~|=U%*IzZFN^^;&4=s~~~aCv5@>K0ffCO0Ayzly1N&=$)^kMvzhW3Hcd zCZQi_!7yy7K3~MhAf_{j)^d0Q+DyTm8o#LnKv(*pd03S^-|Y?^r3smieQ3WZu*x{P zIJY-CWvZ4QBHr^9QreD^h_{nM*$}LL{XHnM+Z;-dyVE3Q2LIyu(Ef7Q_`l)#{LlIU z$~xd_n*%{hSXlUoP*6!N@c?N43K|GDr;5_<1w(l=K&%Hw1z#@|fzl!TUWQcH z2CGO(axLxyfM*`K4x1^6*%V9vwQw`-%^ON5i+ZJ4C&*0th*n-A&=y%t4-1A{+!RDK zh^Jf3^UWTb=YXCSz%oS>ZX@IlvZ-bJh~QBOMK7E(b8kp>)#l+E`|Kt(-_h7+c&mL; zk2K$W=$DK+i}cd*0a5=M-G$aV_vD|}1!xu7LzL5egG5D`*-H}zp|Gf|N5{@~dvi*~dgQ<6mbvs%Rc?tW#|AWuk z{QiFiJJN1oF9yaH_BJ@gak_myH1FKyRO5YQWvt3+bwA?pL4FQ-`%_)X=_~j%Y1d`ru?KTPU~5UC1oTyrYD^#=c)Q*ZGlTM=-HBX_CTXKlPK^ z%2~rthT*1;l4+@G##{%7*COd^f6dokgTEg4FByAB1E_}Lw=UWJGN3yLeLO;%m!&tGWTF10mDZX663=nWQmvXbEi5T*~1^LO2l&ETNfS(WkNd0E3w z7FyFu%@KUaWxH4)T{8FmeMBJk(2vpr$!6aGvh23+QG1v^a=ZQ|JGBJTqJkO@7CT`D zA_^V7t*m)7_rNI9qT34>=hEhj-Tc=3$z$3hrQ?-%q&?%aQg*7F^)|%RiVt%_uS)+u zGCGogkO3z&rjAQYVq{3wiVO9NFe`}Yhk+AV)AlznfC5Gp$sHR6C%sK*ovgYg&c^^0 z-{lBvR%97Yz7xDZoYZCB{ou{77ySoDT<7OUsT(-k|IV{>b5*fxEt9@q5f;;OzJXnkRRH!bh^{A6!GW=|o1za*yT8W04e7%Ch zmvSS_3VVhRIx6QRnspL$J8L|PIwC&~7+4UX2z}RennnBrgx6~G6_$r86jTLQMl{tb zjLz?wbl%>3JasB=V_ZP1WW`ghP?Jf}dieC7${Km362Bt1CuWU_cPVY7%OKHSFi$Mf zLrDKc)ArSVd#eqzdj+CY_u6A6o4*gCt3?uX8&aF~EI7I?vdh}PYlREUT2d3WdCT0| z%cJS)>A=afSn-n&wL3KCxyI4+B-Dk9sHo=nUaFMA;;@7r-b8r$UUe#0LqXTc&d+|6 zu(YyM@Bhd&|IxJiy3@WD8Oo+@cjaVv9_gMT4%cMEBmR|=M2o?iPmWzQ^Y_cjA;C0hj4`RY(MWH++ ziMHl!e!1?V3O4pf1@wwELyx&wo>!0&#)>AEvC~J*TLl?uF;J1j7pq9nR;*{qCxsSg zU0ezDAPFs?ketd^l=ybAyf=ASvoOh=>XW(d~5Dr@HWEGZ2G1Y|K+7H2ImuIbUpslWffqwi6vp+8@5uXxHt! zNmI)&Hgu*E{}xn*@RZ@C5fIr~rBi$9& zB1n^~$hhiwe$PcdNO)yah-^bJbB@Mbg^}KAk6}*Zd#amOuTQVANngvRE~D+{lyn}( zti^oln>Dz?ENdkslBN$E)l%MV>dXItnJRRJ4y18{M%w^0PVm8UUy$a3!zOCtxfPeS z`nLFezKUG>wa6Rg>Yb~hE~)+Fp)RGXv%!vc;o?s37b|EPav>~Gx9WLxHXu&lN^z(D zfXLTCWZCK@%U1=8Uk~Z+H@xR7OHq*PW=*-z58u_?EO~>dyAT?@;^S= zXdsMX6J3OH{~CSUW*Hf!rTkoKNnJZQsno^UF@&wtJH127;kir&^Dgt(7-Lf#!;u^m$>KP{#^K3=hAtNz2|&Tr52e?Kyx|Bpuo z?S&z@!DNH{8dZr6%s5lHLsQr?9L?Kkv=_^^bhplP*>1t6(j4e*PHD5#iCuaw=50N` z321~Zzr*s;dwNz>4dz6$Ps%hKXP5);m%C2{pQ#WPD>rFp28yr^R&n3;mwn?pdZHCP zsfS^CsQGkH0OVJ71fAtQbr(EL2?W%;RTF{V&rA={_o1koYdjR&)#84@+gvn&DVyG{rK(ibx-t`7%r(i_KRdkzra!PcaM6$qs56S@#Ob%g(9w!=1?+UmGYr!)3v0i zrC~6z^E`Fr2rT>(#xc{&@97P}4s&u7DA^>@BVZMQnMn@5e0PZhfzhWE4-XgOPdbxS z57&C${D3DzyFTQmB9LT{T}|)>pOxNGDVvsF((jaP_FHK}N$l73J`esnzY=U8Lgb1^ z#fVLW_5AMe4neb_rCk*Et)hwYHKC%IK>+sm8?|$y_7<#YqCkQdql!YPmbS1`n>W8nf--$S`0VHN!%Ykthzu!K;b?W;~@I$EwFNzc- z{0Rz{#{!&Q|FnwEbGhIpl{g~=R;ZUkM(L!$y+#{M2^oMO)QuT?xpeA0yEGuqld#MF zVaSjsE}#bo=Bj*=rg?^>$&u_E{I2x61XQ97K0)yeW=~5G9^ja0^CTKHzrNau zwKdKuD^oc2zVV$yxdIj0GyCeKs#T+YS>=qIA!cp^z4)tB-SdXk1+2kXTb%E2O@^nL z70o3-of*TtJm9>4&G>bppt?$Ewq1z@&B{J$OzzL8Bn=UR@*_1n)B@BjN-WK?1ZAW2 zf4l(92lzQn#2%^E+H4E@y*jXh*2?{8b+zi3g;i6QzsQmY z`&ZC1Oqqu!s?!iHJEz#-1@8&;k8%Ib1k;v-RF{2LEGK*WbtdMY%%6=I{?uN2mD@> zmfcMbK(Mf(GB-JZeFrmc`dGqpfIg-aL~m_{R(fLhR*{JMj;0~Yy@$sS1wVkpbSc== zL&~?D&NPTfBWK&wzN2(Xh&pRe{mdE#!-*(xtC901ViM|t=%3CnH#8uyrc$43x&hc` zDgsW6A6uBNT=`*fO~QSB1;h@P^K{Dk6<&XxY=D0U3glzBCAZG%`>r^q!Wy(5T-i}O zf`wu~Xn-br8cZaLWN6L?2-UCqvfJVOO*&hpJky9jR^jnypXIaJiJZPwuozZv>aPwC z?=fyRx^Sv(S?NjoO*Vy^dhNw@8RmU95Ap@IV#Mpp!IF502xCD@*5eIqa6GSHMiurn z6=5%$-{)?40IoIRWN5+cE_fWoHY2y+8aqVWAM`QP;$i!Mcuk}%kszi z*uy^u$N`QBi%*YC==HGJdZq5yn1R>wS|sQ*c*yTRkcNCEs~}fpLNwjv6KIygL_MEm z#f!Raesm_+lIZ3=JXS=FwFRGca-!p;{K#zsGl}pa7=GyA^|)~ROb9*vf=%_FytPjM z(W5u2M4SxV{PeQ=df}yb0}wUI+JA0LxW3=W6L%8IFR66Bp8LuRckt`ODz9gfAeZuZ zlN(=o;+6pRW?h|hcfOxat;)syo3E{Kmx11GOPpDDWROniKpLqrr0ybKej3&Wc}yo_Ydy z_+iV-%Mv>HxVRzU!-PlA$Y(XA4K(}dUF(DownQA3FDnB*v2Lzb%Xc5^O0O?i0zS;#)nSHFWHOIcSgA1%?= z^5|EG*LJzo)1}si#Dqzw#F-d<#!Ou@^Oy+*VYBGY z1Tm*}qJTp~A3IhrO=~?^;m;LNxeR3Y zEmp@d7*1}oG8q|1sTGpE9^lV)exAR7_oL9}s4ZS|=>6hh9koT2s&u4h~AD_A0a6xtHStbCl|*^Hr}eRK;h=bT!U-#>{zo zUsQd(FrL;d6LmJK-sb%KJy{&fjU}1;7Y?#c?=ow%v$6dwyWDB`BhUJN`9`!*S6+&} ziJCI^DD9tEG;41p)h!u!fPJ@v$$j=BC8fJ}+QqX{NALShEOn_$T#@uLf428heB8|& z0=lx*EF~57GP)nk=AsAM1Gv?>?YEPPD8JrNzT;Vti~Y1&p+~t%gb^JPQ}7 zK`N$0e*G~mRQR^gPlQV3go(L^-%}ZADSUf}YF}Huth5LU99Spxd}UK!@7u9mdnQRh zyf`R0xLefGEma#dc2qA)4C=#NBlx`fJEYuZ@Shu&(tx{7GLBvDpi0n_w<5~Q9!Po; za7@InC`fPLLc~X1`|TVDZdEtlHC0yL9JCCg446F055Q(|K0cZo-7MC0Y{neJ_{y`%qmw_gnq*CQ4;b z&4#q^4clGrb-(B8k*|h!L@sec3#4iDFaYyHBlEsCvb=l;2c6U6!bZk|k&S zcZW-)zpv?$+Ys}Hk;39*upX`}Bn_7Qb+vQC)vged8$M?8%{)9A#nxZM7FWP(O+kb- zPCr8-(r%b)1CZPXXw0}Emt4Vyh3*(o8C2%Fv$zU}Tr=-w>FP+`-CS1;j$^Zq;!sxr zs%y&LsVeeY%b+ZyZ)W{5_08rlM^FOh)1EGJfp?D^uJqv0qVKQSl9OfmEc)&(CA_W- z#O*v+PR9mO;4(n}c=uu+1eJa+r=w@R>!A<*IO+QNh5Z2-=$(=<_8Dlt2QFqY5W@FX zQ5v24wP#_tV)&COl7$Sb!`9GDx>4~NU5HggBKJT{879qY1!Q;;qsKFoKDVG;hV+_s zW-tNO?gwH2)k`S(&!5?m z3mA*Pzx|ny>wzoZqm~BZ#E&5it;Q+Zqi@>EA6`w@xGwQ5$EfX)#XnGxNxT3*`x@OMX_=WkSKt4Nk03G5T4i z==a<(+(T+S<;e@7wh9l!`WWF{D}{TTen+h_?I7{;x{i^n=&X+qu7@8pE!nfHbPszE zuFh}VHY-Utn|AEY^LH3hmYs|CXmUzRKXW3Mj+yzki&hjPBjdNcCZTxZO0wAy>g7p+ z@(af68}=e2Lc&DSuYR`$XR-)$<%5b-&8Jh%`;saxq_42Rr6Gk}8crQod6T7rBY|y# z%Q(Ryzbz#Ny&jIzTRKrP){t}QI2MDKyePQWU|pSt^9Z*?y2NQI5`rcWNvN4v8hl)mPCtwL?4ru@C{;vs(i{-jk& z-iI?WC2#t4uUirDJ4}_D3x4>9k(Mz#Yl{8x8=>Ik@QOFAeRp2CrN zr`_v7veLAtAZ`7?$U~%7F(CpDQq|ts>b>Nm{)ri1=lWRwWFZIRi?h~lSIr;6{f{&m zUU9de&7%QZ*`T2E=Umb&8YZdha>w+Lj2;~+Lc0cnZDq>fi%Wg^nFnLN#5nH0!6lUE zsw`)Iyi3T~#uVpOo(QI>WvEjBs6hu9P89_SDfDn(-YAXy{}+8HGoI&sH|`GxAz#e!$1I#?<*RhU*G~0&Ekya zu@hbJ6Fs2PG5CBlZ)+k#6TZKgn0;scaeE^8vCjCkC(z#?*JM?{yjANoR(v6G{!Q!0 zwaM>kFD4K7Dh}J_-H6e-2KDqnMoEp#A{6dRfy-(}x(%ihImU1XKO{|u$5Y*;W zO?`O}S3xUeI!d8b7MxXCkwe;W1waf(Lvu-zp`Ub>e( zR19!0G)TNOXnXH_18>;~<#FXq^Jsgu)(><}#tqR``8&`38iXxYbaxCl==h0K-!;#7BIC$JXbqFL#kO)Oyr{$u!Le^QFh*QB=bgjLu6dE)Md;ke)o>8^*|rSqJqT~>+o z@qCKi!ihRkT5mzs2(5eAHi918U)5sD%qvKm!o`^@Yc1cUJPsRzm6#xt@$R@x_9TDhb z)XbH;VtBZT>CfNx=bG7P1Atjhw2wlslp*KMwH*NpiAr&rc*4;k*LhAb>T=V5ghTBT zRErw^Kte;4#n47aB=l_#sFymO@90Vz-|%1S_3%H>!F=KSdKjqX2&#H+9TE9j-oVah z&j6&l#iAgsj{=Ww-KcV<5ruQv;aKK>d#Y(1e#Srh_!FqI^}t~LAewgLFp|lMbURH7 zST6S0tp-y3?7>V`;^`u2?`vBg+^D#$Q|#kv8reTfD_fA(V(_86$j+D(-7h%N6sL|q zFqIp?=S9)_o-VM^qQ7fMC(5QNkm9DzU+?0P`M>Fh?kjFoC#_SQ8E-BX))v&q)XB%W z%_;=h6x|VMLe)Wg)Wx^MKGNktJFzKOTro(8Jv$4B^*Ess@PvX#w8Lei^&gxy8H`!x zKebvRgN}I%{&z;L5#zV-o9q9+PJTU}|MFjHLF6Q#xa!kw+^id-vO+fTBl|`#bi7_Y zI`6DMPn>OH=Fc%w7RB?rVBT;pQ!x{F@Elryyjey>RkYA=dvHdj5A33h=raJ}?YE5CYh;qI3JCC2>4w$~b*QlJd*Ab- zNul7hhRBq=2vY80E=`ZN88IcIuZ6flx?UYNYZm{R*n3YOW8>lBg((7=C`+cK`F6nR z=ffs^^wl*PQhw?7WkF7mg2N#a_}a%bHK^X^oJxV63UB<|e-?U$s~t2KQ{LO%wx5A> zZI-?Tebx^mUQ1i=#{o3vitPLF#a)isHo_h7DHb-UJI5I=xaYfuWNnc~V=R#B9dyMa zOZ;LthjUUh(1)iB*xq9~!DNSIMTY`-ScD0F0e_~3XR7t>zi4>Pqf0>;={rXw?0V1o z>u3;_;6Q;35!#08*;Rm~;x1|CNrR{+D_L96(5CPuB|h7EH1rdW9&2gWT#J(V%Y3Al z(4(C(K=!1AZ<$!)R4os&rG%t`wctY}pl||Y!ujgCcYcpb|8p7~8OL^)8QHYCH=E>k zu9xmfiH|5Rn6;n;QmR3;B?!otgNhO6z@9@5+8Su z0Xm3&)SE$wzH|Y3eMh|CqSKwR@2kNgyLA}ePUGZJ-+xcVD?dd(&&r^=_Gs#jQs}`DRf;IX{6@ z`yIR|^Dlf%5Sq*;Mn9p1Fu9@IUVAn81L%a|97F#AYGF;V2uP4t+q&_XS}pb7$P>a3kleqw5C1@(Vk3F_@1;Z-RrcTcRedXPjVRLIv7;{@;78b z`yToAF_nS7p5m;?!+ss ztxlV9UF2+73&Vs}PJPcxAuhxltWz#SZ_wU`a(VV@5E$|eGam*uq<(*TQXR_x=MPdx za$HWkH&SyZ6Ya(G{_xOw{!^j-bNdo;^bQqa{YnRW<0q&x3R0ql^RyYeNZMo8qrVGt zr#*uN(w{gnOYT4zT1ZjmvU3=QK+&3pw%>CD4`hYyR>#Mvh8=flrhOt;)!~ z@oh|w?Eq_SF75nQX)88BcPBX?jiZsugcw-&zCeaTh?jAQ2avV_qW?xSmSjeTN}RHS zB1x&JIGxv>zy>fyBm0pqla0E5#?!MRU_RQ>x?(%s%;}@61}J`g2%Wc%eALReMWYg< z1jX%d&c@(P5k0>$^SI@rA>{@@eiIO(_I3Wvw zfVRa$&phwCPUc&pHLgJCwwqp0B}f?r2yZWA>;(D z0-QbXuub($s)519RWH@PdFBKq*X>H##j=GSOa@uglJ~rW(ARxgfyYm{nDc|v^=&(N z3i`)P;@cG?3UY#`z(^^A*jI!IpLM=W8EM4dF{^Njw~r^Yrh%MtXA08 zembwN*nQwAtgVMcMXZA6paiwj=%_tCx+H}12T=7fO`;C0i3}X=CTH3~2F?ba6QySH zY(fzDu?l9wGc9Mfe|pb%f%GP}NuW0WqQNjEJ{5hc{Q^@q9mKIolSGgct%AxV?t@74 zU)<|Q*FGmeOWfu?S7v*%lXZjVzkqY(3~sBVq;`oXz=LfN@8Xt!SzKcgvL&fcx-s;5 z0PlT4wK%}6Q*aS2u6MGZ!iIAX$ow*3roKK0e|Y~!OegA7Edpul}@QQZ} zIhw6g8$Z?q6;&B%W-ZZE!ABA}|;4H>f1dbo|u76GrPy z{2y{5BtpKg(%(o8>@yQbL%wj3Y=GrWfu8_y2{p8&#%ib`m# z6ufK%GU$@rkwA=vxkzzmXDD!a&R%COcrI^5QhWZip{j1~cXSg@u@JJPnuSwi?>prf zpUK96C2aZhrYmToCqWjl(Q{hD^9>ErkUo+jIM0mz`7f@toBDjuAA8);6CB<5X6=er zJl6qQ<&>Q`mxuI$;y(NyyLqJIjoQ~Sv`HeCyia@dH?Q^IL5iZ7gjn4s^FxBonO1SG zpo`aTTR(X)nto;hi4uy|*$`T}*K+UaX@I$ep)-h9=Qh4W;b@r>KhJcpzxGxP*4AX) zV^(WH;}cO(XWAIx36}F^pkq$2E`#snijAjk>*bp~6SdH^oT$K02KIy7}~UcJS@I%+pyka z4!gYI%F5tMT|;Qc#ShcW!kz1u#)8d;63z!8%(36|`GD(!)rulC1go(z%_~_dX+d!* z3+7+jSAhsJ30FjC+&RoHl=YQ+@-!_%&PysI3O>&;zQOm6=?&v3=jD+F?82*IxuYu?#}dviUdT;XW*7># zZjy#z0f`wLnPSc1CY)lZj#j%a|oleAggLR`oJzZH6>Rxi@7;|ndwc8zQ z&Y3&tq9&Jds<{z6!oHfO&}IoQK@%^EM0J~{#XHWLXHas0#f}%?bu*!52osOL;Umz^ z!X4Q5cp8U&u4=Gc_lruH^?q;*p7U6s%=YjpOVY}~*n{n0p08f;mHp!g{g)r4s3P~? zTwV6?@9sFH9Cv$s>kc$|uIE-fD8g(Mv&|2qH;Ti6fBxBglc%WAL1T%nch9BIGV7Yy z7i9|f>wn=`Qkd;>h~IKJh3nIJ+J=~LLiRQ5XzYSad>JQOGBq>xH)SC#iqNHVt-C<| zvhyw7ZX*v}zS9RS{(R`5#>xBJAc-LnN~O>%7cZsavwV|&8OYV0dX4%x&$T5cZ|5-R z&7Ysc38s^>*9*7Sbq*+sr=>_%ln&9Ni(`%;pca}5vpRYD!rK=7>C^X*v9YpB)1F{> zA9*H;Q@l?S>pN7n`%=|4Tw}}2)>OSsxN8cdYD*KNIKj&=*PlMe{lP52i#-kuhnWr7 zOm^v8(OUynt_Cf(jN`;`ieXn^!bM`ThKtqb3Mf^r>koWTh@nCq(qg+) zoIn45`gAM`w%9`JKg4%gfemq9x}8nNr}33ffb>kn@(?= zKqw9)5fl1qRZM_+;D*mL3+ix!%h6HNBgfNEt`P-$)($*#e&(|+t#G{GvR#Db3f2~2 zZCVXcTv;?S!D|kSXI*fWzJ`7ll}Lu0$>jKnRidChur-*&IPbs)U7Js?2dgmssSQx# z0v82qPAm1vzZSc4oPsfckDdgqRAr@%YXzh^nIDNX(}eC2Htow!pYF3|M$ox}@W3*2 z35Ia}xT7_L2it#JGf+5a_m7c3fo#NQEP*|Eim$8AIG~4~Eyp39o>9jOMj?oT+5u|L zxBtVm_tk^? zXnbWNAjA#KOz^O^-A5PLdc(Nst;a(Ms~i&2V9x`c(SRFWyOi=zaF7b3h^C3-Bv)<80`wy-BtFoboC5@%J#uI7Tpj_xWs| z^g`V6>Ej1!uTKs5j1Um^Q9FG-f#I*kng3z@hNcZfj`ZWT!QFz`gM-b)`+71?cbk`;7RUwoKdJcCOkxQBN9^9pKZ)yu0~xXKmxm zSq&?q2@UDi+l{pYjgg#jL+1Dc8pmU(ltWy&qIss3!>}zVO*y zyv3X1&X`s?2pU2Ya4X|aX{MV-g6Nr=1&0+k&)_9kMoKrm$riljB`Ef-py#KK9&a+vM+u>X0@bJ+w3!w9{60NMy1jQ-;Vcz@;E2)hdO00=hV~_ry zhVY1e16k4Kb>+{048xr|uC=quFZRuwRsbR_ycpx}A;yOG-*l(RnhR1EWEv#me45=r z={`3_w?}`AnuuC5Xg`!T;1DV+5jlBAR6G}y>+{4)O_8p2F|l>dAKJmWvy20q!e?6g z+za{Z4}Vb&lotp5gk#w?`MUhV=yh01M&x*X23D5UJc?F;m!8y3Hbk7Z zih+O9S#bm7&<(cZB%PGCpCu;&$83P*y%mjS6kYYr>o4uCo?Dnpf2s_W9xAxE551?^ zyAw(YSEmWfD9yp+ ze@W>j<2Trb>uOeYGmumx^i8Ej;#NfSMUTou-6P@(FPU*~oiTH*;}LSTr!vCJh;;PZ zN4*^XoR4il+?=(?Sil#Htqa{E=%KI1#{{`^bZTGIS&rAUZZ^GxONeY>;Y3Wo$`?_& za~>DF3lk(BxzU^&kO53&s8YoU`bU2X;BCbT?yiOvvU--@op-x;M7>nDK^hy39pd>v8|~kdTm$yssYZxW^?D zv~rCCgX#i548-wT$adICcOhJwCwI`jkMRc*=sAACl$KTe z-e%$xn>DtVE+8bV^2AsDQC9#c0IqHp1= zp)Nf&2}zS2hSz}c6(it~v3UF&l$n{HRI?CLYUh#TWi#@Od=BwD`RCBBCu%xkKsze8 z1LQHCOu9PpA#gKICB3XoAw;4Kj2f7f@q4$=1zufUkG91nMY6ml{R^FG)!Y_4xJS3Pllj=^PLh_b4oiUUT`xehvZ7ug{&#Bj(a zsF*%Wd4m>)yjJ~}TX;aYsT6qm2i%V zTvPRZ-bV%X*@FlXs_Edr5uuiX1QM*DQ7l+{KQ>hX)1>wP!`oZORk?2c-lP&rDWK9N z4IRfKmby!UUuYIs}oNz(l$`CvnC!*51$Adq2d3@2}WE3da)~P z-^dZ-Z0dQMP=#zNwC-EYj9; z1Dg>2hrwhE-ulScLd?>SfD%bQb81^)IjXoM&|i zp=4cwRI(Xf9Vy*)F598Vi4=+R?6&f@4em7LC+#c=G*Y8Pd@-MCUwHm@sfGpKQcv62 zD*n@mQwo+z&r2}V9Mh_wNzlQ6O@in*VQr-<5XkL4U zpY0oPsvN-)Nw098>rwXZeQYd}=mjhTCGTTbOcH)Svwyve&SNek2W0=FKbMgWrhgg< zN)6=B4>9OhSGSwiN;7!mSOy$Zi21~l9jyuo;Xa(woa3t%u>HfWivU@sV>OqEOsca| zOr!@t%q5!<Lhu%GzMb} z>U^#OuVD@-5sBNAxpi}6t^u6qd*B37(9O}(huTK%Bh+_GpRJHE(K>uq7cB>SzkBRD z(@8op`_Dq1?S@xqf+)f{dX?^{&f_;ehdTX7D@YL7VVYvMVCPD1>MOGr)DSwMhFTgb zFGRw3jCZ#G@a8J&sTIH9y|Fn1&Sar z&ntXQzIfKVDoO=W@lGj{c`xT8;#o2Hw~g~Mc#&Aa?CmH*xv6HhEfVOacBjRzWHL$K z`GTA=?<>N$ZbBheyO1|6=GZ8q^k;@f>=uBJSyV2WJ&=&&pa+0kPFA3dS)$fX(HHFW zaaztJtSkr5aX83#ov&b&;mxPK{jb@vgBEyTGhZ^d`hrkSrK ze)H%k+m>fo-Nj0C{?8c?ALb=PW}d-doX2LSZUze?}@>lz&5D!>2Az6ZJyVXid%g}uX!dkA>8!@c_lRBv=Fv; zI6){*I*-9VCjsX-RIRVy^v|R&+_t+CwzxCPVUCG zopqOC8Fv{s?W?Am?C-xh+_ot`0&2)YM3VaKpf)bdf1{b^jx&QLN{`F?v@lg-hJm5*nCxLJG!l>1|E0fq%UC)kyx5o~P>@99~QlNgYh zshN{U*e7$k^|QzdeoRB}-$uvoW0<$rG`U~(&s)3vkGGaqn>p;w_OrB+j?S>95dI1# zoAdExp(kXN=p>v@2X!mufG#WRa_UvT2R-KxW(F33cc38;$s0;3bFIZiV`Yr#ujGGK5eb+>r6&9QSne?U@(6dp*uTFM?eC= zi}gXFQ_n~)5~b&6U3z^3RmP%`wULk=cnDL&CZVmH+wdqJ-ocrK*qNYB_K@+Ze}>2_ zI%c5}VkI)G6E@Y%`20aQN5K1;dx6Noz8jPnm_QR$XT|PbBYzQ7eM?^5@!!X0B4|#k zI{@sV>%s7XGOFQ2Akq(y54aqsL(&A9h{Tu)n1?NWhn5WN9U2N$|EIc4-8~~r;8Xi` z#Mz#(uoHIY{4TLtPmB~$M~j=5o)n-ZFU7^d*>DsMn8~x^&oQ-2BKYj;p?pk}wix4@ z+3frtGW>p`!nBd(V1wN-%{_PvXdCjoU`TN^DV($$p!)Yss))K!HW+U*UPU12W zggX<#AK%iH8!yb%r|wB&X4sERsR@u|AIQn6yHIWMdqHNQrZKz*HxyA%5upzp0IydT z7PIza^E9GMV}rW++wKeF%V$6hB-kbtDPgmYlujSvZPRdNOAt8Sp1A6Brc(#EVB zrFvFG^07Mdl{Sbfu3{0KRsxODd-_M!D3^L+r5+`+iqNmi*;9_>6v{AZ+ziDHx*HmV zOmJ5cEeGyl#UiGc(*n(_oW9N3Z;F^?yL|DcPeeCx&^Eeb%Y) zM}hpOfAUvfO_h4FnEaT?u$h!Bp*IfYWQjpKw}&6owAedGC?Dw`L*4?RRGdbK|xEqd@qXF!kRsm!UhBqE|6pPCO_#PvbXp zJjFKBBNsCZA~b^Z+erbg_)nFlj^V{DZZpO$PH^Ig(2I>`D3TiGLzOOmv7(x^rDOXn zvz`2PMU2ADP;=W(@C#Jng?$nxD?2+Nah&;n2D2}+D%VFDkUAU1bar&yS`z=?sur0r z@yD!Di|vc5GnsYOe)oFV+w<6fji-U3Im4Ug@GrN zD`7enJ#Kr6NaJPlz8q!>GNZKoIck`SVi>Uobp#ye@aOIS6~IcwZ`elv?_M z=jCY~8PpXH(?Vr9i)i)n)kRcM98gwTI-a4qHLt9USHPufp zN9%PPpI!`f8+3`Q`e$p6X+H0y)p{&^uxxS?Qha4dt~YjMPaDG)@VCa* z`V8DKNWo~@x!r1w`F&~V<_1c#=p|y9Y%uGvwE!thc;ZCQIMKr+2!>zor;w4;n}!Ee zID>@`O2ay_OP6#MyK7)+veA4sWluZ1n=!qZy@H-E)&T$>m0*RQW5A;ef>8ooqF20a z7Txq~J<(2{Jnl(!YDnYd)0rl&lax6|Rb?tvQ)mJ{bA}9VMR^_D?>q08x8xsx z^(_UbkF!3l(AFO<&6&<$W!)GVt7gd#gnM(WzjkfV*$MWaNW0Q2ng~`|&LuuH9ERqdhTzVL#ldHp7 zVPQQ46|U$0jvd{=KIj*$8#hXQTnWU6)m_>|)6Ir*RO9*905sa4_aP3%=`kE1-)FT1 z-H^In=fh1gnzEQ+Cp<5}4oAtH%4iq1yO%cAI4>LbiJM~=iv?Jr-{5~(W^^A~N2{>d zj*D&`c8tH6gkp%0IUxzpl}1F&5EfQ(Mkbju28*SidgIiQu=TSC_4HX5GHBquBHhm( zl-2cr?m-=j&Pke6*s@0?*QJ1_AV)VZ?(pp}OfCrt2yAV9RR4;g|JxT2qadJO60=;m z^e3Q7{O(L=w-O*{mpm7oE<-XO3vTx&=oJk24iSSTl(Okt5S3-?P`2rWZctXxg#}I{ zgsmKKtMWvESFZq@V&bv~0rH4{SwNxdTb4$ZRp4o88ug3h1O)X!49qR~kuL-I7b*q! zt8PD@u|GDuUu{dt4-(6-o=>km+JkIitCyPgBAexn0z*!CB`K7eI|8y>Zfk#Vv73Hl z7Oxmi&x>h26__j52}@j-l)XG**+vedAB;E|JfInWI-zW)II#(7H*rHBD~qkEn2vuFW>#k zb@}UI&xXJ=ek}Y_lI~9`nt`{!ip~Nhzm$H1L3@Hg#-p?IZQ-|Up7y?NEFS2a80k&) zOsS|&b4YU7#fWPtle>B{PpGKt!WBz|%z2gYbn8io$IMqI-`j3eZD-{s-a#>{4B7}* zy#hm#jcbf{KaP9)BrJs2x=3ONE`-js2Thz%ehDVxC|(0$4P8$QIxo&Ul1#JmhYC7J z(DWaDH_D50!uWnK*|yzl<7~@MO1yjb?uPrxAIC>bL9;`K4kuuq2n-BVeefWgQR_oB z@B4!=XuUT+MbT4Hy%}<@X@tu5O~!`&<%+X!wFJ$7*$vw%F|o_>XY4Ay^6z37R>5m< zcVwi^1$3T87&pq8tW=!n>uIuS*er49uTc080zTV(xTI=&6$a@4>4ZsmG$NuvjefUAP z#akeoeg0!va|*UryIV-ovzJ!(HuE1si>lMg#qS>oJ+Gsqqw^#TeHsvuP?q>xg5skA z8SGDA-t~X)%YzH~=S%lb)7pO-;o@6&{6l*?3K~F+8dU)@*H}Sw_0a^+g+Eau`T~JK9qq3jBzo+R|5%urD7I6YD6pY9}J0!vC zFYOXc$bkqkG8y-;I9Vh2OaI-~)fEqy9IKq1T#W#_ zpZL#NdJ2aNk6eON=l|?yxzyj^uL}E*p!-ht|LWu9yE8c1miSHNK7+g5?-#!rBMk%# z=aUx9&13ZI=F$Auo97>Q{J(spFYDUH{)$W}nqO5g=C$OMe|iEV_oOKaum1ht``ANi2)6#6K)g|4%+d{R-BDKP&*u2MP$&sQ>fFkMV#I zxjN0)QbA0;`SpHVgk15x4i4B)sN|H*pK}f)wkM|6wAbjTvBE>KYhTrDf0I=DV4Pfx zf{y>nnpynb&BuaUj_J-hwbk~3A+1qZbs7m67wU3f4vo+KRy$Be!1d{ z9{k|iPxSMV)@}ZIR%L(tSw+;~Eqz<1Hk*p_EWWdC=No7w%2V|iQH?m=k|H(mDolHA zEAt6?@uI9{dgU#giz*Lp-{*|ru8QG~(QY|?B1*D;p!-SF!H*rG;``GA54G58Pb?V< zbybWmP_Eygk6{uNQGT6X-(4$D$@zl4v3-dmT;rE-GUb1ND<;I%*o9SpAFaN)-;tyE zZ$}QtW>cA3K@=5_ zV%pe9g*cdnRHxN*Enf6r^_5UNaY{lN^AmYt;vDGA;lakde92gwfRt4J8RL9QHGW0# zo(Jayh9GcLo{pF&;e67|_PT?sF|38xq&q)HSU_kAys9eI5u6 z&odgNG1r*v9_HJ2;#prCN1;#~Vo9zyejU=;uwS2QPQ4He*#0eP;8&^oS3l=pzvvFE z^HeANKDuucel4L^m1v@aZ@Y(&HSOTTcrN~uu*K1c6?es(#@DLMK`WkXZLkF;P5$C+ zIKeY%M|GmWd-0kY-(&V)4H!Cp)AxmPhelv49#j2x^Z%-K(nRepgE5lBHfwZSuruW6 zZ_)j}wfrCb?YM{Z@I}J|UmF_yWWV&0jnjlRtA`_zyX)O&j$3X6y&3ik6Ss11Fzawp z6WisL9H5k4trxg_n}*kYiK2KN&dazF{36WfZ89>rlmUWo;tDKy^AU_=+Ff1p}V~21jP&I7_kIFDt!5#L94p z^tk6P6w5aM(Bz5|-LkqVP-ym!#Ga8$oysOShU~pYbnfnC`dokVB$|!G{eF%C-?guS zn^obeJ0oW*vM1Ir;`>i*sqC`a*xqPP5O~D|^ZPJweZqMI(&UKm65-%_){YX>zRH;@ zbKN4onfLYDapf|eM8gB2CxT#JBoU%d+WOL@?znVTH>;J3C~EDAzav9&Zjs%21<}!W z>{o9rik?57p{`2*z467|nKSdXA6f3rI45Olb={sFeHDCKmnXuuMv<~MbZ+1Ft$bsr zlJfT~qF|fX=}Z(aaOmK;D~aM2_0T zdS`Stp^Yq>tYX&?Pf0Y3(CWtgk7CS_AKbiLmkNsYk2O@?A{Y=v_jjmd2OCj}!mJ^?Am4gsrv)!#4=>pbuXj*WO^2;z5*-dX0 zB*t6_B^bfxve98ndu(N_(%j%%ygc*J)w}op@HY05-WB~G4wU$5W)GQ*_BnCAdGRM= zeS?W79%ZiQ=8LtGG&PACWE$^Ys9p?-db#XA?X8bfTdsa**KSg-+QuiUfGL7S4$pgc zWX+AC`f@dld%Hw}=7{?kB1 zOXN|JeRD!zConlp$lbk}Yi2rj=3tA%3!oNJh_30yfzV6*os@6En*s z@Rulu(kIsOt4ixa%LI>`#YEdpvqg)a$J@%%kL&#?%4QuJ!;c9o5$FGk}UDp7h?Gq!>Oj*6JbMZq3~Ge#YD_ zJ#U4kKJTSC52gXL?$%9Kw0C40`APSd^x?IEPKn26Q++xcRtnaK4xh+*9ZjGEt1w~;irz@?WT|jVCwNsxRon}?s+&HR3_x)EX z{Y}rU?t|_(>P)i-*V!Bf#V>Bx*?e?-yu^HGVDkNO?(C+%J8lvR)1*_Du?%{2F7EVu=_fw2{#HxX_J-b89<+tm0 ztCCH{9{*n492b{(!!hRVFnRWSMxX8EQUcGNj*MU8EDV2U_pzc)zfwbS$68+~Ev}F$ ze|c{^bH8}%U6|zIx_T5+%#n9_gx~el%lBJr@uW0#xRS>6)6L+6 z=kWsEEksCZDY*f$U&s3hRJE97(c=7>zkU7HFxi3*RCVZ;_k2)$XDJs8sW3+_i-@TQ zNnZ9)P|ZPk@W^;gDwhg z8v6WCVhtf|2WwSXS`T<}+(>08(f<*HM3xRtDh*xvXwUKL*2K+)TZz>kwPDviRj!;2 zwDj^GX1@4nK>BRP=jr4D9JBk&PxUPu2rrYR6{O!{aTD&CRi@P3JBrE9zpHC8uv;O( z9a~4sk9$~{dnr3Yv3X!sAJtH!8yq;JG!#+56gBP=6fAX1c_lFxc@P)873vuQ?5Wzf zVyymIRy}L${wm$pc@4N9MesKL8-Gl2Q7Dx}mML_Td!Y)ATgEnG6+k4`p_niJnQ4^OM!2RhERDZb~sy z91YX@aQ^5llMIhc_St@%Z4;HN%TfwKrwx_&*PQ=^Tht3HxNQAI%^Kw8Ha2R{=$>CNk-tbd$=|li`;?Rxme0!+`pet@wIptT{ zb~1wME1u_8@l1{4)vGPAEcI~(So!UN#A_7oP9wQ|yzX8eMS8)CnB?_Cn=`DT#*u+7{tv7B^1jRj4O;OTbX z@A@kAnXINk!(Y~pwe(M0JmfqxWE}t$g#B3!J&U4>z^I@ko%X^E8;w2F@|ZRTj%uAt zRtkYnZLPXjqo*@RV>Z{q#o3#_pK|Ys-K;X5sJ@kS&t!r#am~Wh(aU$w5X~vz`DKg4 zwN#lfF*9J+eeU$3h6hOmBoHbw*Q#U>+mdN505>KHDIcOytD@xuz%Q3(wb2;mz_-8mZQ3m*s_mXE5*6$e!Og#y-v{1#KG)cA`*^+9P)ultisy z7kQk98D@w%O!Z8{))y7%Y&ur_ZbutNdyR$&)Sjo?UcGuj8vfz;YQv(tPb#_fhT~c% z`hGW{)bRdxBc{$7Z%GJJFIAN(UV{rtBbIu~EvMT!Bkaui2G}#EtfD2jrekYJ_2OhH zbN14S@DECYDMC5EXLTAzkftK8Sj4nVp6h`9^o1ji*Nkba8q}Dt9_ev%?)G+9nAv9K zQk-)U>rc%y&AqTu)xP#E*I!(Gla(z~er2f;&oTLEo>VsiJ$E`%4Smu*H)w;oqj?Mm$t!e>IA2%=$9_=Tje~-m{tb_J=|5Qn{DUlMIRch9ISVO@ zT2&9fS{686yHi(AV^%M7R7r?LhowdpFywz-oF;DPavsr=Z4ciM))bDH3~L(wJ@HJG|r<~#7YM8C0l+BTohKO>lajRD3*L_lK1 zh>udQRvNykOObvWi{rd^rty(06=o>Akcs&F#aj)FZJMa3x}s^=^~iK|S>an|{pnLp zpAU3d=O7WERcf`epzhXuy?r$`j(pT6Qda_|u~=5&lc8jYX}~cobDyn31k(?z5;lKV zecEz#(uB)hm(_}(S)M+BN?>n&;!4%zbNnh+_qc0o0}k)sH%VT*f=Vr4dx^Zk8UA6Y zqO#4%Rkn3DG;boBdYO~|letYCn?btHr3Ef=KSvWbjic(_?4MKzA+A?pEPP<)DL#H^ zqC3oxL>Mp^IEps7+nKDYg*p`33!!RYGIF*yG)#SO+dN1f`e6l>7i>PgwR$(lIjf&(~^2YtGCD8n_Ad9H8CIo|Qg_44h+{b}pn zg=so#9Fek4-4Ad0M_2;GQo5K$dMS0tD<0($j5>brQxF@2iQA_)g|Y<5!XbCQ~LrS|-7abH`d%yEEyMry$-EfTfyYh{XEagZ=GF ziZ%-RS>=S0PpP1Yd{tj5XY~44m+t3$=x=rDR_J_bB9pSRgWA$MM>$D*`I$RMb#D;Y zYlIsEp04;|PSxee+ZDE}QE@3U`*-qgrxmoTDq|~7Or3O3ccfEzTw`!0rz2~tP*=E| z!lT5U&Yobxlieil3)5)`@y(Bn6tI?s>{6m~!?}t?6-MT+-wMtS>Q1@J6Dy^t-fTs= z-XamM6YX>DS%$2J{uw5dLnV2;%q@5x&{dxGJv4LGbuOQWO z^edxWRevH^vyL@f{hP}L2}pzTAj$p1ySzTNZr=Dgg=H*>1jrmp1dHj9*Yl07jy($` z<woGa^kxD)W?n)N@541U+}%15!`L1|L&BBGD~f2@_8^jwwtX$-9czzbX$f zIO>-z$S_Uo^lT-I;bf}ie^im?XB&v&==?QOh!Fl&QDE*1eG~~1kqS-8y7;F3mte{@ zq(kRyuY}VA$Li`T4mQm!IG3Wqt}|PlMQuWXklO5gn^C9cJJj~1G!ATGk64_5PWh{y z`S)97C<)MhiWlA>e}7zKhy$8nEjKAs_Tq&CC%&bXaTB8L1MU;lM3mL;v0OgSRYc9n z;Vzr5)EBfL;s%ttxrIc*9K+1CsJAwG5qitxvl!tv+!Ly`ob!_kNY{tAGJHOCm8F~A z=w5qt>L~JcQby*};0CE|ZC$nt=8h7lJM8L2#@5i4pQ5-qo?ml)?~9jr$e`K1F|P7L zx^QBgemgE2fBrCbQAM48v^q@o@{xI;UA4*N-TJlL{^@Jo2qCTa2#QACOe=+ytCcr! z%AfUkE|`5_#1ZXaF+Ju?K79X)SBR$RW?pcnl*Nd!nAh6d4`1KBMQVzr;c+q1T@+E+ zO6#T7A#W{55F!QR7osusjoaiWyo+wHkk9bZBhkIhCNwOkuAq9^^Nktp({#pt#+RTX zX)|%Zd6+e4uIIPEGd-^aM)@~fzg3D1P!j$biBM8d{22eXw&zp`7!#Oe*UtDe25%+` znq#1cP|wZx#e<>6b+HblKHJNq{GiYmzvxnCIe;0bX;nUc2xI)(#zR_QRkXU^D!Ctv zLf!VHFDfdkw9ZmbnSc>w6u*h|Pu{J#cBi%}j4Fz)hJ**oZPHR1KpTd^#JJ_ol`W~D z7s?zi5+5g}kEwRwR)HaDvXuJ`GO-#Em1+UId{a)|v)eZFcc!s1_=LDn9n~OEkG%k^ zg;_v177b=K(Xhv^0xT3+jRP5-G^`K{iow0fGQxH=n)TwFi4 zCOP`QQ7y-YPg{S}+T>PIy1HR0ac9(b^l9rGPxj2RV1h%ra)V7V&hN6usqe1#E{DZc zPJT2i31&5V?~+aR3HQ4I3H|fvu@aHi1}XMT$3?%3>&pk-Z=o-g=XsAeXZ%bbAju3o z&lg6^h$yJ+eiU<@Sl8Me_BSmUbiMYpeUMo+&6-!G)l^Nj36D~DKTpPq^ObbT{?}9K$n8*PDWn5bZO&F zM;*urT0zD3`rcRWMFIsarJe}x!t-)vmLnf3M&1KK;^L!T9$up|i|;C`RsA4-lwqZ~ z-dqF2t5xZAVVf$Rn0?-6Nf^mAFOXxf|7vM6KMp zsf5=YP_(OO@yGoNc&jZ}Tzo8y#br5;v?5sb|B z`mHInYDIBh$A7PVTq4tKtL5=jRIV?-{A5Nm>h7 zoaGTFFVh`JkCu@ZaUE<@3~#fy<$4y_Wo~f>##owEJb1UEchTeK%4GH=pr)D$C{x^X z#7S!U@;64ERu&{&t9g*N3Y~-sOATe$xOT=|C*SZ4oqIj8)@~2;hv9IF-7}C7{9?SJ z<}t%GVAv2oQ)&{a!_gtyZ4?7a1nbqCRt#bh zHuYVOXKH}`GSQU_9s=E$CZ?LB*{g)v+1D$%#EIagJiTH|^e)T-=N9Dw2;&^A?6=s& ze1`_6;b7`wcFkIJYGZc=fJo87H{y|&#h&HhN?cZ{)dDF!a8DeB96@{e`HB((O!AKJ z$8)a33Mr$`I7IY02Zchf@lX*nxMEUYIONX*k(VmYh&zh2A7{(Rd6*4IeBIBFq;U;hQG{HgY1EQ{Ba-r!1q-t070&JKPXVT54qHcHfn=%W3C?EJXDjc8MTE z!;GRo-v8SpnVq=0&{bKp`EA{Rd8x=O$H%jALPSc-;HQ;U?&MU1)KuQT_yOll28~;- zMdlsNwLrdM-3u{}RkeZ+d!gh|aV2T#(%l?G=zsV*n8g7NScR7|axl}Co3tfM#yb9#-83uf zg%Xdw$7*aB*cBRT;=m51=;^&hm00+BeqF_o{}$u*EBvIIo>h|4=$?MYz0C|Y6_v)T zUmU4Fecuh$iP{oo8xG_esDj%rRrQMW=)p4Qt)j&Q3|$SKq5hoLcHHpjgbXvo!8+O|z4fP9h`SgW*O< zN9$tjS`!VaZj@}}&Y9HTWPXqEU&x_Yo!kNuK4m4PCbg7j5!tZy3`NmekSR#^fSkPV z?0b>dR+9TGpNb##@fi(=l~#k=dzjtQrxeVjGOBN`B~l2@$GlN{l4)kF-KZVbR0G=( zdy{}sTbMx~&!wxFiBrs)BH;4sWKwW1&qy&H zVhNZ0G5CcF(XOJvT?kA84DYYgAB?fhp#E#W&--lr7=E;tU@g$D$}X_CwNr|Efy5RA zK<%xSZ*#q@6F3o?M0hc`%3!t13_K%zt_*8Okf5sdC79s(>2zkiSyL?L-n(njFyZ1n;!XP0rd! zeVLiu>^@b_ihZXRk~nV@CE&b~eQ~1>Yw0nbEmS}Uj4wgfS#h}j@^fsN`}PtOf+rOR z+XmOD+;ZSz>bFxVxDmwJ*K$G8e7R-s)0mAM0u3#&#{dr^^m>aP`&uf)MAbIm`Kyw3qh9EIzn1!SKSm3e#EjS{^PV+zujyGyrrcY3%MpNz(j*;I0*23XRO1@iUioDd zRtIZxC0uoPhqqnVkbT3V5EUn>Tfggf@X7{kWD5a4V*;5VUx)(ZsgP{YCOj zun2|ZfO!pk5tS5dDy$rI(^#?JNHWJh1#)w=dzA{Of$gg@*MVdcYYJMo+%iwQL9K2C zz1z*{o5aU1Q`3$RT6|{O!;$sex$6(scX8SQW!dSv=}gq7A}(rbM0TrQA?d^3T;41B z$h~ejFvF0JB$*uFZT2Bh=S{6pvSeXx;=vI{pYTrUjSi1jTWFZUXqzK2z=_p$7a z4`&2DGqs8(84sEBwd$p7jmK0~LsgODGlP;n1PEXI6UAQ24;bOsH3_gcgxuO53 z$B7>YPE|Oe(d|Y>x^=U)hKI?Cl;WMqoc>2mi@Wna28@n4mpa+g^eBTQ60p8x@gOs; zM}6jF1QIxKZTGy2y7+D}CL#RIzlGZ!8)dd0>&c6HKzXfdi{4hXZ_zdn4^&{e$uj0t zddx@41v>SXe67z2+ZpY84#zv`tQV)GtcQE6_2WLemQ)7gRIk?#h;f(YkW4(?eIUpFJe;d1)gaaS$ZK6zF{1Yg3MXc>OUIP*wH#hdlBXN#sT)Ql)kv9bz zlB)ri%NKATx{)QMDKA%Vr@Di0+>zns*$aY_SNz{()PET33q11pLa7%(`+6Dni8*&& zp?;E<{`CT19pd`&R@!_XGZfRj64o|Gn#~q(n7++KYM9URnsMQI)oKKj{6=X{j99nl zzCdy!90a=qa$s~FOk3U~_p6jDA-#zP7+gsnX9bo>oiN#j9GGbpKxS6SaA?&M!?^?| zk-krL$ZEIE?t=$b>JnhA?sMxv)%#QaAnA-w!>-z8CU?eEF9$bA{j5H^$_@g0M(wdO zSp;lq(P*-ga`CjlUV6~c4Xb$w#J=FZ%aC)ydC|Cc-enWN$Fvf8vQ|h)nBmzDXz5&g9^;kF7%VO+|9s3(idjmATrE5MDo4VLZ$&Ltp9*+D;r^q@`s(gX2xZAqvf1Tv_L z2ap#8O4o0q-CBC#DN8J(bUsOhb%1geN&n=Zt)H3kYQ_aw(sd9RMLChD=vB z@!X8%2GgjxX;x|5*lr_Q5G6c$2C$WAAgXQ__uwFX<^lKd{R5Ug0G>`2i6W%jw^td- z81mcw)t5vY6jen(;_5})KB}27s7g;cCr%#_XBR*(YR&R6olhlTM-y$#On4|KEIrzTQbE)7Gb%pnMFS7^V!PO$P}*e z$J*A_Gn&L|`ScBP8zTUCTn>EroS6T^^^}hTq=6Ok?1SpTr!V-R34-WUWl8U&d8hXd zP`%6O4<}GtD*e3>uDUaDj@f24-Y6IUed_+x!-f|DtNhD9y$+cte;v>Ax}=X*bl33s zj{07mA^stKZbf+WQw{>|s#m$ag(fnk49I$`fh@+Ix$s}-^04y35VY+i7#||DKArk} z2z|U<6A1hcu+Cb=R;9GqR*T06?R|t!bDxaWqnM!VB(3X+<k_qmal9dH2RG8Dlo^b$bI(JI0U+d{SI4*}J z(JORxtd6c-K$^hzI9;nJU4H|yEr#C0XHX_zc!9`xdE4I#Wz?fhGb-nU1`nJ)tk+m8 zC$_>iW^kP#r_;N999LpP?Z-=4O8LB zblAurcRk3ib0b~Fc?0gU2B9C+5A~3i8yY%9N81`40<=TkY2J|LqNOkf*0BZwN4 zu;OHPP`HqsW=9M;?z{&OhF19)lx6|a!8fSXgYa#S8$Fj#{8EIwF$~QYDZ$tG)aQgj zg5?x0wUuB1w%*U$*vnFnQ}lhRfWu%7E-LcnQ}ZZjyv!8eZ=Yj+FJ_Ad5;x8KT2LAk zr>)fhts$2orays$JaRZvseYn^i&#F9uU6v?!iyw zSAOlCjMu)4BUaj_hgyE)^$bmg5E1L;%hImFn}xbI%=tV>q>fe@uo3c!tsP+9N5TpNN?`_oogFU7G(L0r z97Il%kQAfk;|^FYlBQ%}JW4q3^fE;4+$c1z4zg})=5%;#(3U1MY6KhbUTMR!o~aJ; zd7j2H=(-iyj(y|<9rr6YIQ$KF=*}eJnI*Anq<*c=SOoCsfRJVX^;d^VSR#y>fym}@ z_`sjX>H3X>qvNaFdC@atfjv0=tHzj(ZdG8)e@N)3zHua6Ck5@@1Y&heON*F>Bik9J zj`_@&z)>WTyb`SfvytnKJCOLbzoIKxt>3_mM9-_ez#|>-y7(tl2>)LS6(S@^9|M@a zU!&=wesvluLnl!wnZup&0=WFhJCqKYP|9m;j98V+=hT|(364O)rmpn1gPUrJ@P__EfJUGh{uP_pCy|WW z5Q7=8i%dDE>Md(04Qm;Yd!A|W4AWvuwL2l>tlnO*tbEfPeIIiZ*R5v4+ux}DNZ;tc z%{VdHXpjl^wMzJI;};A{%>L;buk(J5IY9&{Di>|hxBdcjR!4cV`&mm>Hlxygu*wbC zUwqYHfObCvG989>Cro4zLE6gCB)=rK{dup_w6K2cfXPS?c2YQ2oc~Lwm5q2~x8{?; z{~$SZ~^PrC%w4N8+XqnGkHc(MlPEYOl_7 zDitQZ`~{+W$RoH6ZiWSVVE{OeuW)2sw`YRbkC8MG-&Vv$_{N+Qv3@HCR@6QWPuCY2 zzF_RW_W{|fBrJU`r4rA#sC82pYqZ|TzWz!fixk%6Rl~9cH(KWvj2YLfw0Py!aYVB-@L=4$ zR)(auk>fQ7TLw}+;CJqWfs_K-HikC6!<^#KA+`iGSjQaRlKWJX245@OP<6fqFis`x zFvI7$T^;!0)7Zf6lp5%UMts``0+bO9orDVW3MyNMAAeJ;tOetyqu}w+Y}hTBM#=Vp zh^%7r+boT=fZPH8Mp@M-YBDf6~b|A??JeJ54tn4jf5|39~%cF&jo|b7&gAWT}0&!?c9r9%2 zb9pU;tqkW2TxSTzv_8VmM2=m0@Ktu(f7DMMHC0EabAA{7>*VE3|MSViMj8_iy@0~o zO$Q3^jsCeC=KoD?_p9zZfhs%mk0Q{w^wsYZ);Q>2*9=1v^`DQBnLrBXvoQ8^Uft1vqkQ4B1OfWI` ztNAov^@i3HJ6AP|y-)_35w#R?U71cm3(^Q#=rq+!-$=q8^oH8&l?Qewr#V2AhhsRk zkr+F(RUIKrj2^?;wVy%Wlz>{DB<`dO&C6=I_eip7hy9=te)~8bq{`=diXRP8$LO9jD^_$d~scxGhI) zb!zVDCj`$_U1yXoiHg5or6a9VLw@B)C~6UIyS;QB@w&}<59%^cyw72;Umh=*AN{G zK-}pnB~Rz%{{owWmQy{qZneLJe1M5jXoMCU;Tx=2zyHBilsbuR)Q`Fk+d%kmFu}kCYVDJLGqG+5=(y+wkjA?8Q&)fN zmOX;P{MGt~+3wR*E&xO8i5z5DABu?^Fk!HoPk9d7^k`HJ*l{bK^HnxEf=qQd)UI@k z@Frb?6u}4-3TR2&FZ35~`w-Xir;R5g^9@8C*|(=l)NSs!ZC_SglGX!N{>ORIS< zT+XKo(pmlK6_4GsGl>ao*rq11(7tlHmKXM8V6Ve|-d*`hwyPX^z#BG#8O_Gc6*nIY z8g+j40cr#GU|imoF9+6ybiLHh9l$aaz+LGk`N8G~!68NkVUE@9vo30k7VRaSFn|x? zJr5=Kjg3GGD{YEV47m8yZ0hMpU5)Vn+muAsvhdb%=oKV4@Obv278TT@-{Ss?dxZbj z;@*y+k(g~(C?AzKr;k2%hKOZ93TqBDT4SKKOXjH)Ijmv>7>o^w4T!SLTVk3iVN6_r zKGeQtVbg8kw}1ScFZT-?j4^__Vtwvoka#wTiHAFpx&&6ZIczS>oRBD zIrn1hb1)*0+twVTXn_Dx#w~u-N66>_6S1)37!J+L^ZO?8oZSb{aO-SeKHS4!Or_<( zy!AOeV~sO;8@Fm6Oh>DWH&1q^9c4G%+mZS<)cNbl%A@c_J9ys08){#FNtHdRdkDJy3qX{qbPiM zLHl~2)L{2Wys_Lx!kz4xZu8Co21uPYj6GuRmCel!&V{lv3|Pv4pQYQN*HZvVYbiqTP@KI@UiH+%yNPD^5_jvVdJlj5@qR^`vu zMGz04i&Wis|Ga{WE$lE!_gScCdg$Re$J-yDk5_)34vUk%Q~r)2JRL_eKAb_uxZM+0 zVr-;I#vk#THu23SMN)h^IWD?-T6#-C{3uPl;lo9{`l}+|lTOY~i_Acnbet6vSmHM* z|JHsB3e^60t&`2E14hW~fR0nEbAE5!&1iR3r>v%4L|-(wWp6>enEc%2p!Q++&G+@M zA=5E4<8PuxW!%U=>j z60W}kFY9o7nv6`>wCoT*F;x$KL{_qWaGqwy(IUW3i|SIFI@>^(n;Xj2 zdO`ORc2K-R@^~C%9nKPdy$HEV;CW0TUgOF2`kpjZ!E+rGs_^w2tW@?HPrPxp?dMA{ zJQx2{Usr*~vkdFL!Vtwb-`(~d&)4+%j=>fI)XTxJk8PXPD;@z|IONw?@|)dYD?p%^ zsyc`5TY19{N@H9E&%O8>4~~UJ!1Tq$1yeiUa&hPbK2E{P8OJ+ziux*?U9PY>ktnm| zs|@JMUd^pkohD|&`aY|Hk)?zgy*d>(o)WWlkjaW&YQ#b|Z-zbZwc}ZB@XoDj=!0q6 z#|y8C?mJ9ApRoO|GUa66!!toNrDEVInp3&D%iz8ASi|#DW4nIY_i7g_I=%9bGRGBh z`FW`#T)I8F>^sEEb(T)vR%l7%E_q~F;q%DL{?3!M5~ADFr^rU6{JkBbGfxg);#pd< zF!=5r^QMeiS{V9m6`e-inVD6y`~BmSVZ-R*YI!ehmm2%kWImg)wpW!{-jhJ;9e>|C z<#>;H`YS%}t5aI<1n2s63yzxb`JT((vDvgl1y6;N_OLIZJ;gio2N6RjtMiMvd9Tl2 zp2ZD6nU(>2*&E8;g-@d-@t*|SHRH`bGEq0mC)595e7$)zl#ly2e$O!0EZKKT)~u=Q zOiIWa6|zP`!i;@4NXV8YOV&hEvX`-sZHR1HV=(r8?ECh+ectcS_xC-|bI$Wee|4O3 zj=Asax?bzXO^gRn1(lVmDf_c8%-p&3fT8{Ksic?rgZ-chU=s+~p8FmDa@^o)%&d9k z-3~2f$YSUFwU$})%;jxk^e>ilFpfMUAsFno7h70MV)=Li<{=mOi0RtjNiLpTGUxaK zKjTl8A+>yf-MSI#(mox@p$3){)@%Mz3qF0T%0%P&HFZbzVfTpGOs7&rSi41<3t>jMkh_c(2hZ2;_8Hx`4$-48Y`k`f2U-?{? z(5&k!nU>~pd&YQdx(A$TVm8kA9yFHM%(Ir`Ser?0_xx4;*tMQF`=lQ!A(Hc7nQZbb_|5ONUM<;dD0UU-cs=^jUI^^Lnhv!Td2s-0mb}HrXS(I`!bJ*& z+2Z4D2mAVmJ95Gto#I-WsvUjZ`&3koA3Z7X67#&j8(id5fU6F_;ug1-Yk%>K_jg%` z{tLN-pl|d)E11dIM~`>Pi?hGIcQV-iXvdbm{r9;)`S$Pj$5;FR9)RrbBonJc-_zts zW~fiwd1KKa5Tz>WH(u>N4yFp_1ay!SGyQ20h<(tpz2A3x7mJ(5|=l84PePd^+@blV^Ewn|OQ5l#~C02}?8RtwwxmU9Tv!lE- z$O{iuYBE&7C_26M`3>Q4N2Z;^$?7&p$MSujhyTq2hhb6j#L_U-KZLOUwDN0(NPlqn_K&A&kl;a4&(8?V>wbVjhoP762p1gySrb~4JgR5 zkaRoI-^VVtPN%a6p%wjDV{$Nv@5Gk!#ZG;CwfA~%E$O~EDgEoO=pHR5vgm4j3n{LB zym4KpkXy@$Fi&1#cqYM-;-(!-U=`tD1LK;MhRXplyP-rTfbh2rp4WEWAimJ8>rd7A zE!$*I_l`NmWyy?zE{K%HiC<7~8%S|a6)8*4HBi=`u2~_AC+2kM)md3ijEG)V5>7hZ zy^%R%Jljx8qYo5bPxa^D%-^CEaN(dHelP1ioBQ7BK=(S11Y%U+t7NMlYi-ML~QVsNu=UktNy~UxW}W3>N~43v~|Wf z>~vmmRVKxv4ZTn^+>T(w=>dt7>*H?F=5_nA7 z&t;70Gu%p*u&t}k^^~itSeX#sv^qqV4+)9Xn_C@MeRHUJ^L~4!iGfMv5@&-}@xtNT zPz4c{Q9j9rCzj6ovc@}Zs^x!1_eAze6ZbAy-L=ZN_r3q6bJb}sII$SO30eN9p@|iw z$Etr0_FepM(98v*9E%z$eLC>}#H#xPGE%=yf(4et`MTT!&VBlJYhVMWE9#5))-{he zIrq8nMPMeS`GP}4+AbI*i@WG!3OLzRtMuJ>GAy-Hb>|^~rA*4AkH)!5>1@{X;VKe!MhLbs!sE0R+-s}Jr3-{csd4e? z+qi7~fPKHp(Q_XS0w`k}2K$_bKi(xB201H35INIh{X>T_Q^)+-)7HFxNei;%T(i&l z&TCY-cm3nplkbnjSlg~wf5_uKkD>oM@^Ip>cxjzgvs0!0@fADPMVY*UG0ggZ1Wt3jbzPD>O!ceo=`3}o zw&Za|d)g~!RXqyGe}BoOqc*^>=A}mPl*YKcs2>+GdcCI5r#<={Rht1T@!$NwNjUzy z@_cpTQ_oG?_U+%I%#Z$@4kU7uE{9EI&7CF6PAPgD++_v-`Dma9GLB9;eA3jX6pY8& z6<0bk@ zG_vx=r|?zlAqI%@R~7;v_$pm@?l`cSxW6W#U@=&nqPtM+e@wGz74uA4Y*;!Qj0qW3 z9M4M%o^3oH3mCls)GGdpJrVxz8p=}#5{sU4Q1o0@!Fw_{7O*b{_iB>F!^^9 z4Z8eZzt%uSIJSOuTAwL0`F}B(y2tJlV9st0xYvz?MEjsI%_76%5qReyZPStWTPVCx z>|s;7N{83nsJE4n)a|EJVcak4SBF7yZr$Ff0|;v-Hi+RSXN`!_{(t+oZ`T1h@Hln7 zARxpjEF&YGpKAYtMfSf`jFBdFB0}@3je>=>X1mL3H24?wKGUD72$4eH7*DEmj9ERA zGjtSkhvuEmwa3ItXXYH2xi4>!sNuhvB)KMMJv_4TbdD~3@JH>O3dP>OHz&?i?fkje z9Su|VQPuW*`94@|J3}*>Z5@$v^=Ei# zVlMa&$)7#@RmV?;INy2H**mu*%X6EOvCF5RWaV*5t$-{&F&uqdCFuZQUQgG_#fxC+l*daA7n#fh8@`$ zVi%a~kJ5QCidz$($sBzsZ&o zT*ZF=PQCWiqb5vlXdo1FN83B3Q`Wz22{)mNO)4rwT)&I=#FRFiE}7Gk28@P1y2DY8 zTrRp6GpBjz-mhW2dw7wZGEy~^1E^Q{b#da(yM#`2}8|dPUOHX z*5ntNml2p~oPh^V4OnMsc4Yws_^Lror5wBoJiKZ^JxdKJnfYqq4!U6I9;H`Z zrga4M#ZI82(5W#P7NeZ_sL0f~c&fh9;h?P>>{XlsxyrR}kRmq(J0smI=g%-7FK}CC zQ$&zh`UD8JvMUGFCWUOp4}%ge!pq^JwX)|Liwtv=uomy#LBkplt+V$Yu_${UQ3IBx z?0{MGT4w{jx7je9a#I`KAXv5P)Ntw{YFl{HR7`YqpBoqf$@3~OxvmDJ5~@IQr5c1S zWHFmy2JB!RDB~&uodrI!)j5pAeM}X+?x3zF209D=$Y9n|7&@dUMY0*>ncBND;4HMnr0J5Zh{|&22q!nV@aSYb^G2vh!C~H7LP`Nb-2!Tm+WLb&0!;?E3zT(py7g8O;+Z&@FnGZ`3Vu`HjfNrC|CXyA z)0N7ACJQq_@7ohmQF%Gy^Un;gWiE6{!*#x%(T8A0BpUn;s=-Kb*^coq4?htP_w`hJ ztbLUOJ&j{Ut_$5Cx5`4sB$0QrOe>u-uIpu^=8;3jw)Q8jE`6Ulmpl{4+a7@-g1GOM z6JPgb7SdgB>MRvwsutT+h%4?HTD|ph`jZ>6w~nt1SF{Q-vK#yP9eWP`ia1beHx7~n zg~QjrsE^P@*??-Hq1${z5sDRj-4S(Q9{mt_!do0uTBqp_MBE0q^F-_!$k6Qo) z|8fLOkBzReR4N4sUMo|bElFFnnv30D!2wY{QJ-4m=O}(&9?pGaTeM3~#X4*sE0E>) zM>5k@c{D>dSn_SX1XxfxE?_>A-$Qra!p-KAzOpsnwNgH`2I^k2k1hxxIVQT57Ewx% z@W&IG>f@{ec2X4rO7`;D%M*_<^;z_G7FNrkPN?tL+-oY7d^9=jhFGagxYwrRDy3?J zt?8Wk?A<8vW-*$f6b*NE`+Qbg$1}1ID$L9WQMYqWg#`S=S3v3nKkeNK(dm<}QyO#} zJ56@DsuNB_#_=}9wqoZXT-K=q=%8xZ-58?0{%t#7+0aZ`n&6@wX}#fsJSXlJ{UH8L z#$&Z10CK>mm_%4ccR_WoYxpWlu-T(P znMV>e^du+@Azx&6yZD>HZZ3}N#s2WUQT;P;Irwf#$FoH>&Ce+sP4C&uOmkNYejkkx zfFWj#>JYmgq_sa^ZaXC#Pv_hVN-$0M3NtGR{%iWAAYT_4N|<+cLx0Qic6nx~j=Ry^ zzh8dFAke3{j4}EC+$q(TCIdqJrJ++{tXbM|tHr00g)_&Ji`6FQ~I{9BBT1KNBS zsI=QWir#%r?di1D6uqplnwxQ*v1f@*Gb*t?FkU4=$>8RiKzHW1+XRoht;RnpWWLcg z;E1Aigp#Epmpa`SZv+m;?X{;VmS-B|d5IZnZS`=FzUHFB@6BzEr9xjRxw4Fih=xPRL&9DEb8%?{4ikv}d16X;^7Tl$5~=#xt~leyhEuv&spMC2F0b4z zw9I(LzRBC*etngAK_b*_|7WjtoBN0}J zjo<->h4)tuZbY?6{RP!)#oMr+rwY0fZze&a_Na!aCtJby9MlpWX|<-erVoIsAb+Pz zO4nVS=Q-xd3C&*JCi>wIY0+KO%UN&!AoUKsuUjCJkgdb)--%SR_uQ?l7 z*7El4OFyXT=e9f6rW04q{qCS?IuIZ5#rj#(3(txkVS7(}N8XAD`K5s1rj{-noUCA$ zWYP3nT(!BR`-6!e`>6W9XYYSAMw#W=tZoTqvQX@G(zH5y)?w1!I~LrjTHj}+DCFxr zjON6BxBca1e$OiJ;T)8We!wBRg|+vnm{QvQFY7UjHRvhr3^q7eC@YCTR^?#w+&kNx zh?Z_RB}etOoDHa^J%2SS)Dy-!kjI*AIW4|270{l>67bGDe)FUzHE_AkK9Y{EZD$>; zKVheXlj&=a^(ke);ZzX(OC;(ep^xs}{�>R~f3IZh^4*0~&sjWNFpsy#W^R z^j?9tN{ja=^JBNQ^o+6P>Zc^k8}I+Tp|{EW$hEUS?LzfbYVV+0zlihCnZa`o5<%xD zx&2J8w#arrprP^GaT;iVm-94<;50$tHB!;&Lx;H&f#Xo`s^s<{0AIa ziF3Uy?CVAxBDNL&rrWFr-jqa7rC!{iE~kCawks0W(YD(H+dTngzN6f4ADBpZ^vIl; zhHCoy+n)=Usq-8Z(ymQ3&Qz=oitD&^+HC$!6<~HbbhU8@@rTbn4^L|bH3mEpLgyZD zPU_UHs`F9XRpp#)7U8Lt*E~oA8y+3`dsM#c7vnT=l55CucwA$*m=v|COa8j6*3))O zn4p6EEZ{F^pXWQ*sXEHF-p*lkXH-~WQ$)>l`}3RruZ#orTmdns>3bKtxV0Y<@7w?9 zK>v?uwHt5>PFHR+x$$2ub_@)55OzywB9I~Xr_KrQQC2Otq0Q{Km`aE>ooqbBoD%Zs4}%Q*f{{Rp7dQ;45fucK@uQ$YTTA`Hdx+C zm$1I$heMZsjybvdAMHHsZCs%AIs{cHH5YaAkP=AqLlQcG^Ds^tARw&HstkugB}OQ4tG{^?E$$A~0>3#xEQcLLz~pR+ zG>A?h$#3$#AWoK#Q91ya9KJFf|p@A6$h?aN(tp!R-+%V+UQ z=%p%BJ)Yt0>l@pyJ&O4}6%Dta)|vY(@eS8_I>Rnkk+jFVKrHlMptO0IJ3y)6?NA zPXc(2c>qIpt=xOPLASv=lqf7Y56$qqtAo;Pn67eZ!m4xa<{N19tZr&=)&N*k=pH~E z&hH(bAal`JsB#Q%IP>d<5H93BKe(z~xq~OIAh;ckZc<{tzDzq1xD(F|Jo64sJdoA5 zQh-Y>W84>Ywz97ybtm(*f!bd*;bU1dGqk|_kyrfqc-;$i`Ano7qya%4y2#$6{6B#$qg}^X{A{4`%_$t?M7sNq$$*iYE}<_ zfsA{xE6f#`369mBWELc))Vt`b@FY|%eC2N;8ZMOx4pnIZOM<;`>YhjYmI#Law9z6x z6S&M?+;CQn{dw;H{!E4axb;#LZ{i`icn`D+HrDH|mh}c#y+gL`2hLx|e$^DOyV>Wr z&^cQPmvQzhH-eX3f;t;Avy^3@3r>3+zR4hH1_^FI?_7OK*52%}tRW*Bd*B^<>^A)X zmMu$SN=~Z|l>s$uTM_2AG?x2s0LA{6TXDoF(%HMvX~)2)LP4HyYhFQx4~ey4wIsy% z;x+M)Ri*RaaY}HbOf-U;%xgYocJf*}-XwJ@GA{8+leyh(Frp!K$xpuO6_@8i>tn`y zR2(`LlnOA@om%u==-WD92W!|SU53{I@UBk~nQSVGk+9@0S||maI?nehBL`s_BEh53 zVhgJ6naJ@ZBDK!#BFG(F zE}K~(;W7_5{Om_DlMw#bZsQ)Xyu#C+4I-^f&|w(?{kP2c&)ju;yH?VxY7ntjjs4Q= zI!{;<6oNz{L-$W=O@WpM#^uD19j8Cev*ng5?e%`UGmJ!ii2fD-TL2;>pJ)8_coB-eaH@!b7s*9taKOPLRV1XP29y+E>S z0YpIVPnSQ3=9^j`GAm`RBXR^_V`SM(ZKg~C08PEDPs9-Cu*XrMa@JZ%+2ZR`GKmz) zaB=J>jz8jpQhG1Af*Qwe3m2`$D`KIHT{2D5Ox}{+Ql#-Grp-z{*FDGG4WXzsWLjzF zf-u%i*>n5%?`_J+S109{U43kYG-o^ar2`!^zRRHD-tQryG7vlIwi^*`OIy)YkdzJ~5h>&^R$Lfv>r7YUE3`qA6 zFE)kmJ3EW`i`SqR2z^L8+vi6|t zdco9yem!i7ZOu?pwVK>^dueim>EfFQ{*Ytu^1I)gw;KyQqx&Rt9AWf=@!!1DF-< zKu6iog`@03s%~%oFQdQ~d6+R<+2|h_^?hC^$QzFW|v&8+6wx*wI80yy`Epk5MG;Mp2Jc5V_TJVWAi%9&)mV6Xq zXmZvI!FSsNS(vLQmlUFj96`SCku&~2oIX7yXre0fC`SXN2yco3Z$R1BCyAS4QyPtY zai|w~re!tLDXlRT!0ycQjqep;3FK24C`fo>-yYi!VmwsvxpCq`9))tSWo(VEu*O~R;i171TYCY{ToYyFi^&Y zRWYxH2VkZ#AHm1~51D0psg`TBFLPT)lyrD}ZdyeFPhp9qI{bYC5!ROW9YiUYT3++= z1$voOyA{Y?>E8$3AkXT`Yr$z^F-_wScrI-(wg%+3NZnd%GiqW{322ch`i(a37wApe zeCx3fNIR;?M$mURJJK8dwFtX@c)^Gu3lOU z#V&D_C(dNY8W~>Br{^q&jKo!Mi<4TaSLqg;_nHMdg}&=_zD6ZD4E$Q?kN7q)S9N~N zJ^s7RO^}lKs}^=zMED>xH=RRK5lYZ(W%Zt}jiyLQQBUXM~A2AwKXc)qOJZ6)x6PKG^&16HdI|BRVwq1+M>ZVih zdL6gtjX=@%<7+PnPKLKCvUy|y>C(+3=}26=#ztoGhhnvUB5y z&=d&hUfYD?OqK7Ze_ao-{ruCnvb;lxp$kdVK;$>XJnVy8k)p(_y&|gZ>v3j+GmcPU zHaZKwxtBt_s}c`iLWCg;M(Xfao6JS*#9QV(Mb#)*j^=33e3_UTktmbfIyK_Int%qB z_3z(5C}^A#M=+2oP_h7h7s-`#E9)T%69wMyH%GbZO~0ocPuesO5qFDu_p{HDibtYx zD{Pt;wRbHIn5Yq#viBSyM3Aj267@JYpC2kk6^rNP=sY4EQLGfnph$uV@V8+wf?fK_ z(IT(mz@rUQaV@O$yjg(qlyP!Zx-Dxak++WZi47OI96~B*V|uGm&o